[PATCH 14/57][Arm][GAS] Add support for MVE instructions: vcadd, vcmla and vcmul
[deliverable/binutils-gdb.git] / gas / config / tc-arm.c
1 /* tc-arm.c -- Assemble for the ARM
2 Copyright (C) 1994-2019 Free Software Foundation, Inc.
3 Contributed by Richard Earnshaw (rwe@pegasus.esprit.ec.org)
4 Modified by David Taylor (dtaylor@armltd.co.uk)
5 Cirrus coprocessor mods by Aldy Hernandez (aldyh@redhat.com)
6 Cirrus coprocessor fixes by Petko Manolov (petkan@nucleusys.com)
7 Cirrus coprocessor fixes by Vladimir Ivanov (vladitx@nucleusys.com)
8
9 This file is part of GAS, the GNU Assembler.
10
11 GAS is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 3, or (at your option)
14 any later version.
15
16 GAS is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with GAS; see the file COPYING. If not, write to the Free
23 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
24 02110-1301, USA. */
25
26 #include "as.h"
27 #include <limits.h>
28 #include <stdarg.h>
29 #define NO_RELOC 0
30 #include "safe-ctype.h"
31 #include "subsegs.h"
32 #include "obstack.h"
33 #include "libiberty.h"
34 #include "opcode/arm.h"
35
36 #ifdef OBJ_ELF
37 #include "elf/arm.h"
38 #include "dw2gencfi.h"
39 #endif
40
41 #include "dwarf2dbg.h"
42
43 #ifdef OBJ_ELF
44 /* Must be at least the size of the largest unwind opcode (currently two). */
45 #define ARM_OPCODE_CHUNK_SIZE 8
46
47 /* This structure holds the unwinding state. */
48
49 static struct
50 {
51 symbolS * proc_start;
52 symbolS * table_entry;
53 symbolS * personality_routine;
54 int personality_index;
55 /* The segment containing the function. */
56 segT saved_seg;
57 subsegT saved_subseg;
58 /* Opcodes generated from this function. */
59 unsigned char * opcodes;
60 int opcode_count;
61 int opcode_alloc;
62 /* The number of bytes pushed to the stack. */
63 offsetT frame_size;
64 /* We don't add stack adjustment opcodes immediately so that we can merge
65 multiple adjustments. We can also omit the final adjustment
66 when using a frame pointer. */
67 offsetT pending_offset;
68 /* These two fields are set by both unwind_movsp and unwind_setfp. They
69 hold the reg+offset to use when restoring sp from a frame pointer. */
70 offsetT fp_offset;
71 int fp_reg;
72 /* Nonzero if an unwind_setfp directive has been seen. */
73 unsigned fp_used:1;
74 /* Nonzero if the last opcode restores sp from fp_reg. */
75 unsigned sp_restored:1;
76 } unwind;
77
78 /* Whether --fdpic was given. */
79 static int arm_fdpic;
80
81 #endif /* OBJ_ELF */
82
83 /* Results from operand parsing worker functions. */
84
85 typedef enum
86 {
87 PARSE_OPERAND_SUCCESS,
88 PARSE_OPERAND_FAIL,
89 PARSE_OPERAND_FAIL_NO_BACKTRACK
90 } parse_operand_result;
91
92 enum arm_float_abi
93 {
94 ARM_FLOAT_ABI_HARD,
95 ARM_FLOAT_ABI_SOFTFP,
96 ARM_FLOAT_ABI_SOFT
97 };
98
99 /* Types of processor to assemble for. */
100 #ifndef CPU_DEFAULT
101 /* The code that was here used to select a default CPU depending on compiler
102 pre-defines which were only present when doing native builds, thus
103 changing gas' default behaviour depending upon the build host.
104
105 If you have a target that requires a default CPU option then the you
106 should define CPU_DEFAULT here. */
107 #endif
108
109 #ifndef FPU_DEFAULT
110 # ifdef TE_LINUX
111 # define FPU_DEFAULT FPU_ARCH_FPA
112 # elif defined (TE_NetBSD)
113 # ifdef OBJ_ELF
114 # define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, but VFP order. */
115 # else
116 /* Legacy a.out format. */
117 # define FPU_DEFAULT FPU_ARCH_FPA /* Soft-float, but FPA order. */
118 # endif
119 # elif defined (TE_VXWORKS)
120 # define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, VFP order. */
121 # else
122 /* For backwards compatibility, default to FPA. */
123 # define FPU_DEFAULT FPU_ARCH_FPA
124 # endif
125 #endif /* ifndef FPU_DEFAULT */
126
127 #define streq(a, b) (strcmp (a, b) == 0)
128
129 /* Current set of feature bits available (CPU+FPU). Different from
130 selected_cpu + selected_fpu in case of autodetection since the CPU
131 feature bits are then all set. */
132 static arm_feature_set cpu_variant;
133 /* Feature bits used in each execution state. Used to set build attribute
134 (in particular Tag_*_ISA_use) in CPU autodetection mode. */
135 static arm_feature_set arm_arch_used;
136 static arm_feature_set thumb_arch_used;
137
138 /* Flags stored in private area of BFD structure. */
139 static int uses_apcs_26 = FALSE;
140 static int atpcs = FALSE;
141 static int support_interwork = FALSE;
142 static int uses_apcs_float = FALSE;
143 static int pic_code = FALSE;
144 static int fix_v4bx = FALSE;
145 /* Warn on using deprecated features. */
146 static int warn_on_deprecated = TRUE;
147
148 /* Understand CodeComposer Studio assembly syntax. */
149 bfd_boolean codecomposer_syntax = FALSE;
150
151 /* Variables that we set while parsing command-line options. Once all
152 options have been read we re-process these values to set the real
153 assembly flags. */
154
155 /* CPU and FPU feature bits set for legacy CPU and FPU options (eg. -marm1
156 instead of -mcpu=arm1). */
157 static const arm_feature_set *legacy_cpu = NULL;
158 static const arm_feature_set *legacy_fpu = NULL;
159
160 /* CPU, extension and FPU feature bits selected by -mcpu. */
161 static const arm_feature_set *mcpu_cpu_opt = NULL;
162 static arm_feature_set *mcpu_ext_opt = NULL;
163 static const arm_feature_set *mcpu_fpu_opt = NULL;
164
165 /* CPU, extension and FPU feature bits selected by -march. */
166 static const arm_feature_set *march_cpu_opt = NULL;
167 static arm_feature_set *march_ext_opt = NULL;
168 static const arm_feature_set *march_fpu_opt = NULL;
169
170 /* Feature bits selected by -mfpu. */
171 static const arm_feature_set *mfpu_opt = NULL;
172
173 /* Constants for known architecture features. */
174 static const arm_feature_set fpu_default = FPU_DEFAULT;
175 static const arm_feature_set fpu_arch_vfp_v1 ATTRIBUTE_UNUSED = FPU_ARCH_VFP_V1;
176 static const arm_feature_set fpu_arch_vfp_v2 = FPU_ARCH_VFP_V2;
177 static const arm_feature_set fpu_arch_vfp_v3 ATTRIBUTE_UNUSED = FPU_ARCH_VFP_V3;
178 static const arm_feature_set fpu_arch_neon_v1 ATTRIBUTE_UNUSED = FPU_ARCH_NEON_V1;
179 static const arm_feature_set fpu_arch_fpa = FPU_ARCH_FPA;
180 static const arm_feature_set fpu_any_hard = FPU_ANY_HARD;
181 #ifdef OBJ_ELF
182 static const arm_feature_set fpu_arch_maverick = FPU_ARCH_MAVERICK;
183 #endif
184 static const arm_feature_set fpu_endian_pure = FPU_ARCH_ENDIAN_PURE;
185
186 #ifdef CPU_DEFAULT
187 static const arm_feature_set cpu_default = CPU_DEFAULT;
188 #endif
189
190 static const arm_feature_set arm_ext_v1 = ARM_FEATURE_CORE_LOW (ARM_EXT_V1);
191 static const arm_feature_set arm_ext_v2 = ARM_FEATURE_CORE_LOW (ARM_EXT_V2);
192 static const arm_feature_set arm_ext_v2s = ARM_FEATURE_CORE_LOW (ARM_EXT_V2S);
193 static const arm_feature_set arm_ext_v3 = ARM_FEATURE_CORE_LOW (ARM_EXT_V3);
194 static const arm_feature_set arm_ext_v3m = ARM_FEATURE_CORE_LOW (ARM_EXT_V3M);
195 static const arm_feature_set arm_ext_v4 = ARM_FEATURE_CORE_LOW (ARM_EXT_V4);
196 static const arm_feature_set arm_ext_v4t = ARM_FEATURE_CORE_LOW (ARM_EXT_V4T);
197 static const arm_feature_set arm_ext_v5 = ARM_FEATURE_CORE_LOW (ARM_EXT_V5);
198 static const arm_feature_set arm_ext_v4t_5 =
199 ARM_FEATURE_CORE_LOW (ARM_EXT_V4T | ARM_EXT_V5);
200 static const arm_feature_set arm_ext_v5t = ARM_FEATURE_CORE_LOW (ARM_EXT_V5T);
201 static const arm_feature_set arm_ext_v5e = ARM_FEATURE_CORE_LOW (ARM_EXT_V5E);
202 static const arm_feature_set arm_ext_v5exp = ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP);
203 static const arm_feature_set arm_ext_v5j = ARM_FEATURE_CORE_LOW (ARM_EXT_V5J);
204 static const arm_feature_set arm_ext_v6 = ARM_FEATURE_CORE_LOW (ARM_EXT_V6);
205 static const arm_feature_set arm_ext_v6k = ARM_FEATURE_CORE_LOW (ARM_EXT_V6K);
206 static const arm_feature_set arm_ext_v6t2 = ARM_FEATURE_CORE_LOW (ARM_EXT_V6T2);
207 /* Only for compatability of hint instructions. */
208 static const arm_feature_set arm_ext_v6k_v6t2 =
209 ARM_FEATURE_CORE_LOW (ARM_EXT_V6K | ARM_EXT_V6T2);
210 static const arm_feature_set arm_ext_v6_notm =
211 ARM_FEATURE_CORE_LOW (ARM_EXT_V6_NOTM);
212 static const arm_feature_set arm_ext_v6_dsp =
213 ARM_FEATURE_CORE_LOW (ARM_EXT_V6_DSP);
214 static const arm_feature_set arm_ext_barrier =
215 ARM_FEATURE_CORE_LOW (ARM_EXT_BARRIER);
216 static const arm_feature_set arm_ext_msr =
217 ARM_FEATURE_CORE_LOW (ARM_EXT_THUMB_MSR);
218 static const arm_feature_set arm_ext_div = ARM_FEATURE_CORE_LOW (ARM_EXT_DIV);
219 static const arm_feature_set arm_ext_v7 = ARM_FEATURE_CORE_LOW (ARM_EXT_V7);
220 static const arm_feature_set arm_ext_v7a = ARM_FEATURE_CORE_LOW (ARM_EXT_V7A);
221 static const arm_feature_set arm_ext_v7r = ARM_FEATURE_CORE_LOW (ARM_EXT_V7R);
222 #ifdef OBJ_ELF
223 static const arm_feature_set ATTRIBUTE_UNUSED arm_ext_v7m = ARM_FEATURE_CORE_LOW (ARM_EXT_V7M);
224 #endif
225 static const arm_feature_set arm_ext_v8 = ARM_FEATURE_CORE_LOW (ARM_EXT_V8);
226 static const arm_feature_set arm_ext_m =
227 ARM_FEATURE_CORE (ARM_EXT_V6M | ARM_EXT_V7M,
228 ARM_EXT2_V8M | ARM_EXT2_V8M_MAIN);
229 static const arm_feature_set arm_ext_mp = ARM_FEATURE_CORE_LOW (ARM_EXT_MP);
230 static const arm_feature_set arm_ext_sec = ARM_FEATURE_CORE_LOW (ARM_EXT_SEC);
231 static const arm_feature_set arm_ext_os = ARM_FEATURE_CORE_LOW (ARM_EXT_OS);
232 static const arm_feature_set arm_ext_adiv = ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV);
233 static const arm_feature_set arm_ext_virt = ARM_FEATURE_CORE_LOW (ARM_EXT_VIRT);
234 static const arm_feature_set arm_ext_pan = ARM_FEATURE_CORE_HIGH (ARM_EXT2_PAN);
235 static const arm_feature_set arm_ext_v8m = ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8M);
236 static const arm_feature_set arm_ext_v8m_main =
237 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8M_MAIN);
238 static const arm_feature_set arm_ext_v8_1m_main =
239 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8_1M_MAIN);
240 /* Instructions in ARMv8-M only found in M profile architectures. */
241 static const arm_feature_set arm_ext_v8m_m_only =
242 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8M | ARM_EXT2_V8M_MAIN);
243 static const arm_feature_set arm_ext_v6t2_v8m =
244 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V6T2_V8M);
245 /* Instructions shared between ARMv8-A and ARMv8-M. */
246 static const arm_feature_set arm_ext_atomics =
247 ARM_FEATURE_CORE_HIGH (ARM_EXT2_ATOMICS);
248 #ifdef OBJ_ELF
249 /* DSP instructions Tag_DSP_extension refers to. */
250 static const arm_feature_set arm_ext_dsp =
251 ARM_FEATURE_CORE_LOW (ARM_EXT_V5E | ARM_EXT_V5ExP | ARM_EXT_V6_DSP);
252 #endif
253 static const arm_feature_set arm_ext_ras =
254 ARM_FEATURE_CORE_HIGH (ARM_EXT2_RAS);
255 /* FP16 instructions. */
256 static const arm_feature_set arm_ext_fp16 =
257 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST);
258 static const arm_feature_set arm_ext_fp16_fml =
259 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_FML);
260 static const arm_feature_set arm_ext_v8_2 =
261 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8_2A);
262 static const arm_feature_set arm_ext_v8_3 =
263 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8_3A);
264 static const arm_feature_set arm_ext_sb =
265 ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB);
266 static const arm_feature_set arm_ext_predres =
267 ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES);
268
269 static const arm_feature_set arm_arch_any = ARM_ANY;
270 #ifdef OBJ_ELF
271 static const arm_feature_set fpu_any = FPU_ANY;
272 #endif
273 static const arm_feature_set arm_arch_full ATTRIBUTE_UNUSED = ARM_FEATURE (-1, -1, -1);
274 static const arm_feature_set arm_arch_t2 = ARM_ARCH_THUMB2;
275 static const arm_feature_set arm_arch_none = ARM_ARCH_NONE;
276
277 static const arm_feature_set arm_cext_iwmmxt2 =
278 ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT2);
279 static const arm_feature_set arm_cext_iwmmxt =
280 ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT);
281 static const arm_feature_set arm_cext_xscale =
282 ARM_FEATURE_COPROC (ARM_CEXT_XSCALE);
283 static const arm_feature_set arm_cext_maverick =
284 ARM_FEATURE_COPROC (ARM_CEXT_MAVERICK);
285 static const arm_feature_set fpu_fpa_ext_v1 =
286 ARM_FEATURE_COPROC (FPU_FPA_EXT_V1);
287 static const arm_feature_set fpu_fpa_ext_v2 =
288 ARM_FEATURE_COPROC (FPU_FPA_EXT_V2);
289 static const arm_feature_set fpu_vfp_ext_v1xd =
290 ARM_FEATURE_COPROC (FPU_VFP_EXT_V1xD);
291 static const arm_feature_set fpu_vfp_ext_v1 =
292 ARM_FEATURE_COPROC (FPU_VFP_EXT_V1);
293 static const arm_feature_set fpu_vfp_ext_v2 =
294 ARM_FEATURE_COPROC (FPU_VFP_EXT_V2);
295 static const arm_feature_set fpu_vfp_ext_v3xd =
296 ARM_FEATURE_COPROC (FPU_VFP_EXT_V3xD);
297 static const arm_feature_set fpu_vfp_ext_v3 =
298 ARM_FEATURE_COPROC (FPU_VFP_EXT_V3);
299 static const arm_feature_set fpu_vfp_ext_d32 =
300 ARM_FEATURE_COPROC (FPU_VFP_EXT_D32);
301 static const arm_feature_set fpu_neon_ext_v1 =
302 ARM_FEATURE_COPROC (FPU_NEON_EXT_V1);
303 static const arm_feature_set fpu_vfp_v3_or_neon_ext =
304 ARM_FEATURE_COPROC (FPU_NEON_EXT_V1 | FPU_VFP_EXT_V3);
305 static const arm_feature_set mve_ext =
306 ARM_FEATURE_COPROC (FPU_MVE);
307 static const arm_feature_set mve_fp_ext =
308 ARM_FEATURE_COPROC (FPU_MVE_FP);
309 #ifdef OBJ_ELF
310 static const arm_feature_set fpu_vfp_fp16 =
311 ARM_FEATURE_COPROC (FPU_VFP_EXT_FP16);
312 static const arm_feature_set fpu_neon_ext_fma =
313 ARM_FEATURE_COPROC (FPU_NEON_EXT_FMA);
314 #endif
315 static const arm_feature_set fpu_vfp_ext_fma =
316 ARM_FEATURE_COPROC (FPU_VFP_EXT_FMA);
317 static const arm_feature_set fpu_vfp_ext_armv8 =
318 ARM_FEATURE_COPROC (FPU_VFP_EXT_ARMV8);
319 static const arm_feature_set fpu_vfp_ext_armv8xd =
320 ARM_FEATURE_COPROC (FPU_VFP_EXT_ARMV8xD);
321 static const arm_feature_set fpu_neon_ext_armv8 =
322 ARM_FEATURE_COPROC (FPU_NEON_EXT_ARMV8);
323 static const arm_feature_set fpu_crypto_ext_armv8 =
324 ARM_FEATURE_COPROC (FPU_CRYPTO_EXT_ARMV8);
325 static const arm_feature_set crc_ext_armv8 =
326 ARM_FEATURE_COPROC (CRC_EXT_ARMV8);
327 static const arm_feature_set fpu_neon_ext_v8_1 =
328 ARM_FEATURE_COPROC (FPU_NEON_EXT_RDMA);
329 static const arm_feature_set fpu_neon_ext_dotprod =
330 ARM_FEATURE_COPROC (FPU_NEON_EXT_DOTPROD);
331
332 static int mfloat_abi_opt = -1;
333 /* Architecture feature bits selected by the last -mcpu/-march or .cpu/.arch
334 directive. */
335 static arm_feature_set selected_arch = ARM_ARCH_NONE;
336 /* Extension feature bits selected by the last -mcpu/-march or .arch_extension
337 directive. */
338 static arm_feature_set selected_ext = ARM_ARCH_NONE;
339 /* Feature bits selected by the last -mcpu/-march or by the combination of the
340 last .cpu/.arch directive .arch_extension directives since that
341 directive. */
342 static arm_feature_set selected_cpu = ARM_ARCH_NONE;
343 /* FPU feature bits selected by the last -mfpu or .fpu directive. */
344 static arm_feature_set selected_fpu = FPU_NONE;
345 /* Feature bits selected by the last .object_arch directive. */
346 static arm_feature_set selected_object_arch = ARM_ARCH_NONE;
347 /* Must be long enough to hold any of the names in arm_cpus. */
348 static char selected_cpu_name[20];
349
350 extern FLONUM_TYPE generic_floating_point_number;
351
352 /* Return if no cpu was selected on command-line. */
353 static bfd_boolean
354 no_cpu_selected (void)
355 {
356 return ARM_FEATURE_EQUAL (selected_cpu, arm_arch_none);
357 }
358
359 #ifdef OBJ_ELF
360 # ifdef EABI_DEFAULT
361 static int meabi_flags = EABI_DEFAULT;
362 # else
363 static int meabi_flags = EF_ARM_EABI_UNKNOWN;
364 # endif
365
366 static int attributes_set_explicitly[NUM_KNOWN_OBJ_ATTRIBUTES];
367
368 bfd_boolean
369 arm_is_eabi (void)
370 {
371 return (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4);
372 }
373 #endif
374
375 #ifdef OBJ_ELF
376 /* Pre-defined "_GLOBAL_OFFSET_TABLE_" */
377 symbolS * GOT_symbol;
378 #endif
379
380 /* 0: assemble for ARM,
381 1: assemble for Thumb,
382 2: assemble for Thumb even though target CPU does not support thumb
383 instructions. */
384 static int thumb_mode = 0;
385 /* A value distinct from the possible values for thumb_mode that we
386 can use to record whether thumb_mode has been copied into the
387 tc_frag_data field of a frag. */
388 #define MODE_RECORDED (1 << 4)
389
390 /* Specifies the intrinsic IT insn behavior mode. */
391 enum implicit_it_mode
392 {
393 IMPLICIT_IT_MODE_NEVER = 0x00,
394 IMPLICIT_IT_MODE_ARM = 0x01,
395 IMPLICIT_IT_MODE_THUMB = 0x02,
396 IMPLICIT_IT_MODE_ALWAYS = (IMPLICIT_IT_MODE_ARM | IMPLICIT_IT_MODE_THUMB)
397 };
398 static int implicit_it_mode = IMPLICIT_IT_MODE_ARM;
399
400 /* If unified_syntax is true, we are processing the new unified
401 ARM/Thumb syntax. Important differences from the old ARM mode:
402
403 - Immediate operands do not require a # prefix.
404 - Conditional affixes always appear at the end of the
405 instruction. (For backward compatibility, those instructions
406 that formerly had them in the middle, continue to accept them
407 there.)
408 - The IT instruction may appear, and if it does is validated
409 against subsequent conditional affixes. It does not generate
410 machine code.
411
412 Important differences from the old Thumb mode:
413
414 - Immediate operands do not require a # prefix.
415 - Most of the V6T2 instructions are only available in unified mode.
416 - The .N and .W suffixes are recognized and honored (it is an error
417 if they cannot be honored).
418 - All instructions set the flags if and only if they have an 's' affix.
419 - Conditional affixes may be used. They are validated against
420 preceding IT instructions. Unlike ARM mode, you cannot use a
421 conditional affix except in the scope of an IT instruction. */
422
423 static bfd_boolean unified_syntax = FALSE;
424
425 /* An immediate operand can start with #, and ld*, st*, pld operands
426 can contain [ and ]. We need to tell APP not to elide whitespace
427 before a [, which can appear as the first operand for pld.
428 Likewise, a { can appear as the first operand for push, pop, vld*, etc. */
429 const char arm_symbol_chars[] = "#[]{}";
430
431 enum neon_el_type
432 {
433 NT_invtype,
434 NT_untyped,
435 NT_integer,
436 NT_float,
437 NT_poly,
438 NT_signed,
439 NT_unsigned
440 };
441
442 struct neon_type_el
443 {
444 enum neon_el_type type;
445 unsigned size;
446 };
447
448 #define NEON_MAX_TYPE_ELS 4
449
450 struct neon_type
451 {
452 struct neon_type_el el[NEON_MAX_TYPE_ELS];
453 unsigned elems;
454 };
455
456 enum pred_instruction_type
457 {
458 OUTSIDE_PRED_INSN,
459 INSIDE_VPT_INSN,
460 INSIDE_IT_INSN,
461 INSIDE_IT_LAST_INSN,
462 IF_INSIDE_IT_LAST_INSN, /* Either outside or inside;
463 if inside, should be the last one. */
464 NEUTRAL_IT_INSN, /* This could be either inside or outside,
465 i.e. BKPT and NOP. */
466 IT_INSN, /* The IT insn has been parsed. */
467 VPT_INSN, /* The VPT/VPST insn has been parsed. */
468 MVE_OUTSIDE_PRED_INSN , /* Instruction to indicate a MVE instruction without
469 a predication code. */
470 MVE_UNPREDICABLE_INSN /* MVE instruction that is non-predicable. */
471 };
472
473 /* The maximum number of operands we need. */
474 #define ARM_IT_MAX_OPERANDS 6
475 #define ARM_IT_MAX_RELOCS 3
476
477 struct arm_it
478 {
479 const char * error;
480 unsigned long instruction;
481 int size;
482 int size_req;
483 int cond;
484 /* "uncond_value" is set to the value in place of the conditional field in
485 unconditional versions of the instruction, or -1 if nothing is
486 appropriate. */
487 int uncond_value;
488 struct neon_type vectype;
489 /* This does not indicate an actual NEON instruction, only that
490 the mnemonic accepts neon-style type suffixes. */
491 int is_neon;
492 /* Set to the opcode if the instruction needs relaxation.
493 Zero if the instruction is not relaxed. */
494 unsigned long relax;
495 struct
496 {
497 bfd_reloc_code_real_type type;
498 expressionS exp;
499 int pc_rel;
500 } relocs[ARM_IT_MAX_RELOCS];
501
502 enum pred_instruction_type pred_insn_type;
503
504 struct
505 {
506 unsigned reg;
507 signed int imm;
508 struct neon_type_el vectype;
509 unsigned present : 1; /* Operand present. */
510 unsigned isreg : 1; /* Operand was a register. */
511 unsigned immisreg : 2; /* .imm field is a second register.
512 0: imm, 1: gpr, 2: MVE Q-register. */
513 unsigned isscalar : 2; /* Operand is a (SIMD) scalar:
514 0) not scalar,
515 1) Neon scalar,
516 2) MVE scalar. */
517 unsigned immisalign : 1; /* Immediate is an alignment specifier. */
518 unsigned immisfloat : 1; /* Immediate was parsed as a float. */
519 /* Note: we abuse "regisimm" to mean "is Neon register" in VMOV
520 instructions. This allows us to disambiguate ARM <-> vector insns. */
521 unsigned regisimm : 1; /* 64-bit immediate, reg forms high 32 bits. */
522 unsigned isvec : 1; /* Is a single, double or quad VFP/Neon reg. */
523 unsigned isquad : 1; /* Operand is SIMD quad register. */
524 unsigned issingle : 1; /* Operand is VFP single-precision register. */
525 unsigned iszr : 1; /* Operand is ZR register. */
526 unsigned hasreloc : 1; /* Operand has relocation suffix. */
527 unsigned writeback : 1; /* Operand has trailing ! */
528 unsigned preind : 1; /* Preindexed address. */
529 unsigned postind : 1; /* Postindexed address. */
530 unsigned negative : 1; /* Index register was negated. */
531 unsigned shifted : 1; /* Shift applied to operation. */
532 unsigned shift_kind : 3; /* Shift operation (enum shift_kind). */
533 } operands[ARM_IT_MAX_OPERANDS];
534 };
535
536 static struct arm_it inst;
537
538 #define NUM_FLOAT_VALS 8
539
540 const char * fp_const[] =
541 {
542 "0.0", "1.0", "2.0", "3.0", "4.0", "5.0", "0.5", "10.0", 0
543 };
544
545 LITTLENUM_TYPE fp_values[NUM_FLOAT_VALS][MAX_LITTLENUMS];
546
547 #define FAIL (-1)
548 #define SUCCESS (0)
549
550 #define SUFF_S 1
551 #define SUFF_D 2
552 #define SUFF_E 3
553 #define SUFF_P 4
554
555 #define CP_T_X 0x00008000
556 #define CP_T_Y 0x00400000
557
558 #define CONDS_BIT 0x00100000
559 #define LOAD_BIT 0x00100000
560
561 #define DOUBLE_LOAD_FLAG 0x00000001
562
563 struct asm_cond
564 {
565 const char * template_name;
566 unsigned long value;
567 };
568
569 #define COND_ALWAYS 0xE
570
571 struct asm_psr
572 {
573 const char * template_name;
574 unsigned long field;
575 };
576
577 struct asm_barrier_opt
578 {
579 const char * template_name;
580 unsigned long value;
581 const arm_feature_set arch;
582 };
583
584 /* The bit that distinguishes CPSR and SPSR. */
585 #define SPSR_BIT (1 << 22)
586
587 /* The individual PSR flag bits. */
588 #define PSR_c (1 << 16)
589 #define PSR_x (1 << 17)
590 #define PSR_s (1 << 18)
591 #define PSR_f (1 << 19)
592
593 struct reloc_entry
594 {
595 const char * name;
596 bfd_reloc_code_real_type reloc;
597 };
598
599 enum vfp_reg_pos
600 {
601 VFP_REG_Sd, VFP_REG_Sm, VFP_REG_Sn,
602 VFP_REG_Dd, VFP_REG_Dm, VFP_REG_Dn
603 };
604
605 enum vfp_ldstm_type
606 {
607 VFP_LDSTMIA, VFP_LDSTMDB, VFP_LDSTMIAX, VFP_LDSTMDBX
608 };
609
610 /* Bits for DEFINED field in neon_typed_alias. */
611 #define NTA_HASTYPE 1
612 #define NTA_HASINDEX 2
613
614 struct neon_typed_alias
615 {
616 unsigned char defined;
617 unsigned char index;
618 struct neon_type_el eltype;
619 };
620
621 /* ARM register categories. This includes coprocessor numbers and various
622 architecture extensions' registers. Each entry should have an error message
623 in reg_expected_msgs below. */
624 enum arm_reg_type
625 {
626 REG_TYPE_RN,
627 REG_TYPE_CP,
628 REG_TYPE_CN,
629 REG_TYPE_FN,
630 REG_TYPE_VFS,
631 REG_TYPE_VFD,
632 REG_TYPE_NQ,
633 REG_TYPE_VFSD,
634 REG_TYPE_NDQ,
635 REG_TYPE_NSD,
636 REG_TYPE_NSDQ,
637 REG_TYPE_VFC,
638 REG_TYPE_MVF,
639 REG_TYPE_MVD,
640 REG_TYPE_MVFX,
641 REG_TYPE_MVDX,
642 REG_TYPE_MVAX,
643 REG_TYPE_MQ,
644 REG_TYPE_DSPSC,
645 REG_TYPE_MMXWR,
646 REG_TYPE_MMXWC,
647 REG_TYPE_MMXWCG,
648 REG_TYPE_XSCALE,
649 REG_TYPE_RNB,
650 REG_TYPE_ZR
651 };
652
653 /* Structure for a hash table entry for a register.
654 If TYPE is REG_TYPE_VFD or REG_TYPE_NQ, the NEON field can point to extra
655 information which states whether a vector type or index is specified (for a
656 register alias created with .dn or .qn). Otherwise NEON should be NULL. */
657 struct reg_entry
658 {
659 const char * name;
660 unsigned int number;
661 unsigned char type;
662 unsigned char builtin;
663 struct neon_typed_alias * neon;
664 };
665
666 /* Diagnostics used when we don't get a register of the expected type. */
667 const char * const reg_expected_msgs[] =
668 {
669 [REG_TYPE_RN] = N_("ARM register expected"),
670 [REG_TYPE_CP] = N_("bad or missing co-processor number"),
671 [REG_TYPE_CN] = N_("co-processor register expected"),
672 [REG_TYPE_FN] = N_("FPA register expected"),
673 [REG_TYPE_VFS] = N_("VFP single precision register expected"),
674 [REG_TYPE_VFD] = N_("VFP/Neon double precision register expected"),
675 [REG_TYPE_NQ] = N_("Neon quad precision register expected"),
676 [REG_TYPE_VFSD] = N_("VFP single or double precision register expected"),
677 [REG_TYPE_NDQ] = N_("Neon double or quad precision register expected"),
678 [REG_TYPE_NSD] = N_("Neon single or double precision register expected"),
679 [REG_TYPE_NSDQ] = N_("VFP single, double or Neon quad precision register"
680 " expected"),
681 [REG_TYPE_VFC] = N_("VFP system register expected"),
682 [REG_TYPE_MVF] = N_("Maverick MVF register expected"),
683 [REG_TYPE_MVD] = N_("Maverick MVD register expected"),
684 [REG_TYPE_MVFX] = N_("Maverick MVFX register expected"),
685 [REG_TYPE_MVDX] = N_("Maverick MVDX register expected"),
686 [REG_TYPE_MVAX] = N_("Maverick MVAX register expected"),
687 [REG_TYPE_DSPSC] = N_("Maverick DSPSC register expected"),
688 [REG_TYPE_MMXWR] = N_("iWMMXt data register expected"),
689 [REG_TYPE_MMXWC] = N_("iWMMXt control register expected"),
690 [REG_TYPE_MMXWCG] = N_("iWMMXt scalar register expected"),
691 [REG_TYPE_XSCALE] = N_("XScale accumulator register expected"),
692 [REG_TYPE_MQ] = N_("MVE vector register expected"),
693 [REG_TYPE_RNB] = N_("")
694 };
695
696 /* Some well known registers that we refer to directly elsewhere. */
697 #define REG_R12 12
698 #define REG_SP 13
699 #define REG_LR 14
700 #define REG_PC 15
701
702 /* ARM instructions take 4bytes in the object file, Thumb instructions
703 take 2: */
704 #define INSN_SIZE 4
705
706 struct asm_opcode
707 {
708 /* Basic string to match. */
709 const char * template_name;
710
711 /* Parameters to instruction. */
712 unsigned int operands[8];
713
714 /* Conditional tag - see opcode_lookup. */
715 unsigned int tag : 4;
716
717 /* Basic instruction code. */
718 unsigned int avalue;
719
720 /* Thumb-format instruction code. */
721 unsigned int tvalue;
722
723 /* Which architecture variant provides this instruction. */
724 const arm_feature_set * avariant;
725 const arm_feature_set * tvariant;
726
727 /* Function to call to encode instruction in ARM format. */
728 void (* aencode) (void);
729
730 /* Function to call to encode instruction in Thumb format. */
731 void (* tencode) (void);
732
733 /* Indicates whether this instruction may be vector predicated. */
734 unsigned int mayBeVecPred : 1;
735 };
736
737 /* Defines for various bits that we will want to toggle. */
738 #define INST_IMMEDIATE 0x02000000
739 #define OFFSET_REG 0x02000000
740 #define HWOFFSET_IMM 0x00400000
741 #define SHIFT_BY_REG 0x00000010
742 #define PRE_INDEX 0x01000000
743 #define INDEX_UP 0x00800000
744 #define WRITE_BACK 0x00200000
745 #define LDM_TYPE_2_OR_3 0x00400000
746 #define CPSI_MMOD 0x00020000
747
748 #define LITERAL_MASK 0xf000f000
749 #define OPCODE_MASK 0xfe1fffff
750 #define V4_STR_BIT 0x00000020
751 #define VLDR_VMOV_SAME 0x0040f000
752
753 #define T2_SUBS_PC_LR 0xf3de8f00
754
755 #define DATA_OP_SHIFT 21
756 #define SBIT_SHIFT 20
757
758 #define T2_OPCODE_MASK 0xfe1fffff
759 #define T2_DATA_OP_SHIFT 21
760 #define T2_SBIT_SHIFT 20
761
762 #define A_COND_MASK 0xf0000000
763 #define A_PUSH_POP_OP_MASK 0x0fff0000
764
765 /* Opcodes for pushing/poping registers to/from the stack. */
766 #define A1_OPCODE_PUSH 0x092d0000
767 #define A2_OPCODE_PUSH 0x052d0004
768 #define A2_OPCODE_POP 0x049d0004
769
770 /* Codes to distinguish the arithmetic instructions. */
771 #define OPCODE_AND 0
772 #define OPCODE_EOR 1
773 #define OPCODE_SUB 2
774 #define OPCODE_RSB 3
775 #define OPCODE_ADD 4
776 #define OPCODE_ADC 5
777 #define OPCODE_SBC 6
778 #define OPCODE_RSC 7
779 #define OPCODE_TST 8
780 #define OPCODE_TEQ 9
781 #define OPCODE_CMP 10
782 #define OPCODE_CMN 11
783 #define OPCODE_ORR 12
784 #define OPCODE_MOV 13
785 #define OPCODE_BIC 14
786 #define OPCODE_MVN 15
787
788 #define T2_OPCODE_AND 0
789 #define T2_OPCODE_BIC 1
790 #define T2_OPCODE_ORR 2
791 #define T2_OPCODE_ORN 3
792 #define T2_OPCODE_EOR 4
793 #define T2_OPCODE_ADD 8
794 #define T2_OPCODE_ADC 10
795 #define T2_OPCODE_SBC 11
796 #define T2_OPCODE_SUB 13
797 #define T2_OPCODE_RSB 14
798
799 #define T_OPCODE_MUL 0x4340
800 #define T_OPCODE_TST 0x4200
801 #define T_OPCODE_CMN 0x42c0
802 #define T_OPCODE_NEG 0x4240
803 #define T_OPCODE_MVN 0x43c0
804
805 #define T_OPCODE_ADD_R3 0x1800
806 #define T_OPCODE_SUB_R3 0x1a00
807 #define T_OPCODE_ADD_HI 0x4400
808 #define T_OPCODE_ADD_ST 0xb000
809 #define T_OPCODE_SUB_ST 0xb080
810 #define T_OPCODE_ADD_SP 0xa800
811 #define T_OPCODE_ADD_PC 0xa000
812 #define T_OPCODE_ADD_I8 0x3000
813 #define T_OPCODE_SUB_I8 0x3800
814 #define T_OPCODE_ADD_I3 0x1c00
815 #define T_OPCODE_SUB_I3 0x1e00
816
817 #define T_OPCODE_ASR_R 0x4100
818 #define T_OPCODE_LSL_R 0x4080
819 #define T_OPCODE_LSR_R 0x40c0
820 #define T_OPCODE_ROR_R 0x41c0
821 #define T_OPCODE_ASR_I 0x1000
822 #define T_OPCODE_LSL_I 0x0000
823 #define T_OPCODE_LSR_I 0x0800
824
825 #define T_OPCODE_MOV_I8 0x2000
826 #define T_OPCODE_CMP_I8 0x2800
827 #define T_OPCODE_CMP_LR 0x4280
828 #define T_OPCODE_MOV_HR 0x4600
829 #define T_OPCODE_CMP_HR 0x4500
830
831 #define T_OPCODE_LDR_PC 0x4800
832 #define T_OPCODE_LDR_SP 0x9800
833 #define T_OPCODE_STR_SP 0x9000
834 #define T_OPCODE_LDR_IW 0x6800
835 #define T_OPCODE_STR_IW 0x6000
836 #define T_OPCODE_LDR_IH 0x8800
837 #define T_OPCODE_STR_IH 0x8000
838 #define T_OPCODE_LDR_IB 0x7800
839 #define T_OPCODE_STR_IB 0x7000
840 #define T_OPCODE_LDR_RW 0x5800
841 #define T_OPCODE_STR_RW 0x5000
842 #define T_OPCODE_LDR_RH 0x5a00
843 #define T_OPCODE_STR_RH 0x5200
844 #define T_OPCODE_LDR_RB 0x5c00
845 #define T_OPCODE_STR_RB 0x5400
846
847 #define T_OPCODE_PUSH 0xb400
848 #define T_OPCODE_POP 0xbc00
849
850 #define T_OPCODE_BRANCH 0xe000
851
852 #define THUMB_SIZE 2 /* Size of thumb instruction. */
853 #define THUMB_PP_PC_LR 0x0100
854 #define THUMB_LOAD_BIT 0x0800
855 #define THUMB2_LOAD_BIT 0x00100000
856
857 #define BAD_SYNTAX _("syntax error")
858 #define BAD_ARGS _("bad arguments to instruction")
859 #define BAD_SP _("r13 not allowed here")
860 #define BAD_PC _("r15 not allowed here")
861 #define BAD_ODD _("Odd register not allowed here")
862 #define BAD_EVEN _("Even register not allowed here")
863 #define BAD_COND _("instruction cannot be conditional")
864 #define BAD_OVERLAP _("registers may not be the same")
865 #define BAD_HIREG _("lo register required")
866 #define BAD_THUMB32 _("instruction not supported in Thumb16 mode")
867 #define BAD_ADDR_MODE _("instruction does not accept this addressing mode")
868 #define BAD_BRANCH _("branch must be last instruction in IT block")
869 #define BAD_BRANCH_OFF _("branch out of range or not a multiple of 2")
870 #define BAD_NOT_IT _("instruction not allowed in IT block")
871 #define BAD_NOT_VPT _("instruction missing MVE vector predication code")
872 #define BAD_FPU _("selected FPU does not support instruction")
873 #define BAD_OUT_IT _("thumb conditional instruction should be in IT block")
874 #define BAD_OUT_VPT \
875 _("vector predicated instruction should be in VPT/VPST block")
876 #define BAD_IT_COND _("incorrect condition in IT block")
877 #define BAD_VPT_COND _("incorrect condition in VPT/VPST block")
878 #define BAD_IT_IT _("IT falling in the range of a previous IT block")
879 #define MISSING_FNSTART _("missing .fnstart before unwinding directive")
880 #define BAD_PC_ADDRESSING \
881 _("cannot use register index with PC-relative addressing")
882 #define BAD_PC_WRITEBACK \
883 _("cannot use writeback with PC-relative addressing")
884 #define BAD_RANGE _("branch out of range")
885 #define BAD_FP16 _("selected processor does not support fp16 instruction")
886 #define UNPRED_REG(R) _("using " R " results in unpredictable behaviour")
887 #define THUMB1_RELOC_ONLY _("relocation valid in thumb1 code only")
888 #define MVE_NOT_IT _("Warning: instruction is UNPREDICTABLE in an IT " \
889 "block")
890 #define MVE_NOT_VPT _("Warning: instruction is UNPREDICTABLE in a VPT " \
891 "block")
892 #define MVE_BAD_PC _("Warning: instruction is UNPREDICTABLE with PC" \
893 " operand")
894 #define MVE_BAD_SP _("Warning: instruction is UNPREDICTABLE with SP" \
895 " operand")
896 #define BAD_SIMD_TYPE _("bad type in SIMD instruction")
897 #define BAD_MVE_AUTO \
898 _("GAS auto-detection mode and -march=all is deprecated for MVE, please" \
899 " use a valid -march or -mcpu option.")
900 #define BAD_MVE_SRCDEST _("Warning: 32-bit element size and same destination "\
901 "and source operands makes instruction UNPREDICTABLE")
902 #define BAD_EL_TYPE _("bad element type for instruction")
903 #define MVE_BAD_QREG _("MVE vector register Q[0..7] expected")
904
905 static struct hash_control * arm_ops_hsh;
906 static struct hash_control * arm_cond_hsh;
907 static struct hash_control * arm_vcond_hsh;
908 static struct hash_control * arm_shift_hsh;
909 static struct hash_control * arm_psr_hsh;
910 static struct hash_control * arm_v7m_psr_hsh;
911 static struct hash_control * arm_reg_hsh;
912 static struct hash_control * arm_reloc_hsh;
913 static struct hash_control * arm_barrier_opt_hsh;
914
915 /* Stuff needed to resolve the label ambiguity
916 As:
917 ...
918 label: <insn>
919 may differ from:
920 ...
921 label:
922 <insn> */
923
924 symbolS * last_label_seen;
925 static int label_is_thumb_function_name = FALSE;
926
927 /* Literal pool structure. Held on a per-section
928 and per-sub-section basis. */
929
930 #define MAX_LITERAL_POOL_SIZE 1024
931 typedef struct literal_pool
932 {
933 expressionS literals [MAX_LITERAL_POOL_SIZE];
934 unsigned int next_free_entry;
935 unsigned int id;
936 symbolS * symbol;
937 segT section;
938 subsegT sub_section;
939 #ifdef OBJ_ELF
940 struct dwarf2_line_info locs [MAX_LITERAL_POOL_SIZE];
941 #endif
942 struct literal_pool * next;
943 unsigned int alignment;
944 } literal_pool;
945
946 /* Pointer to a linked list of literal pools. */
947 literal_pool * list_of_pools = NULL;
948
949 typedef enum asmfunc_states
950 {
951 OUTSIDE_ASMFUNC,
952 WAITING_ASMFUNC_NAME,
953 WAITING_ENDASMFUNC
954 } asmfunc_states;
955
956 static asmfunc_states asmfunc_state = OUTSIDE_ASMFUNC;
957
958 #ifdef OBJ_ELF
959 # define now_pred seg_info (now_seg)->tc_segment_info_data.current_pred
960 #else
961 static struct current_pred now_pred;
962 #endif
963
964 static inline int
965 now_pred_compatible (int cond)
966 {
967 return (cond & ~1) == (now_pred.cc & ~1);
968 }
969
970 static inline int
971 conditional_insn (void)
972 {
973 return inst.cond != COND_ALWAYS;
974 }
975
976 static int in_pred_block (void);
977
978 static int handle_pred_state (void);
979
980 static void force_automatic_it_block_close (void);
981
982 static void it_fsm_post_encode (void);
983
984 #define set_pred_insn_type(type) \
985 do \
986 { \
987 inst.pred_insn_type = type; \
988 if (handle_pred_state () == FAIL) \
989 return; \
990 } \
991 while (0)
992
993 #define set_pred_insn_type_nonvoid(type, failret) \
994 do \
995 { \
996 inst.pred_insn_type = type; \
997 if (handle_pred_state () == FAIL) \
998 return failret; \
999 } \
1000 while(0)
1001
1002 #define set_pred_insn_type_last() \
1003 do \
1004 { \
1005 if (inst.cond == COND_ALWAYS) \
1006 set_pred_insn_type (IF_INSIDE_IT_LAST_INSN); \
1007 else \
1008 set_pred_insn_type (INSIDE_IT_LAST_INSN); \
1009 } \
1010 while (0)
1011
1012 /* Pure syntax. */
1013
1014 /* This array holds the chars that always start a comment. If the
1015 pre-processor is disabled, these aren't very useful. */
1016 char arm_comment_chars[] = "@";
1017
1018 /* This array holds the chars that only start a comment at the beginning of
1019 a line. If the line seems to have the form '# 123 filename'
1020 .line and .file directives will appear in the pre-processed output. */
1021 /* Note that input_file.c hand checks for '#' at the beginning of the
1022 first line of the input file. This is because the compiler outputs
1023 #NO_APP at the beginning of its output. */
1024 /* Also note that comments like this one will always work. */
1025 const char line_comment_chars[] = "#";
1026
1027 char arm_line_separator_chars[] = ";";
1028
1029 /* Chars that can be used to separate mant
1030 from exp in floating point numbers. */
1031 const char EXP_CHARS[] = "eE";
1032
1033 /* Chars that mean this number is a floating point constant. */
1034 /* As in 0f12.456 */
1035 /* or 0d1.2345e12 */
1036
1037 const char FLT_CHARS[] = "rRsSfFdDxXeEpP";
1038
1039 /* Prefix characters that indicate the start of an immediate
1040 value. */
1041 #define is_immediate_prefix(C) ((C) == '#' || (C) == '$')
1042
1043 /* Separator character handling. */
1044
1045 #define skip_whitespace(str) do { if (*(str) == ' ') ++(str); } while (0)
1046
1047 static inline int
1048 skip_past_char (char ** str, char c)
1049 {
1050 /* PR gas/14987: Allow for whitespace before the expected character. */
1051 skip_whitespace (*str);
1052
1053 if (**str == c)
1054 {
1055 (*str)++;
1056 return SUCCESS;
1057 }
1058 else
1059 return FAIL;
1060 }
1061
1062 #define skip_past_comma(str) skip_past_char (str, ',')
1063
1064 /* Arithmetic expressions (possibly involving symbols). */
1065
1066 /* Return TRUE if anything in the expression is a bignum. */
1067
1068 static bfd_boolean
1069 walk_no_bignums (symbolS * sp)
1070 {
1071 if (symbol_get_value_expression (sp)->X_op == O_big)
1072 return TRUE;
1073
1074 if (symbol_get_value_expression (sp)->X_add_symbol)
1075 {
1076 return (walk_no_bignums (symbol_get_value_expression (sp)->X_add_symbol)
1077 || (symbol_get_value_expression (sp)->X_op_symbol
1078 && walk_no_bignums (symbol_get_value_expression (sp)->X_op_symbol)));
1079 }
1080
1081 return FALSE;
1082 }
1083
1084 static bfd_boolean in_my_get_expression = FALSE;
1085
1086 /* Third argument to my_get_expression. */
1087 #define GE_NO_PREFIX 0
1088 #define GE_IMM_PREFIX 1
1089 #define GE_OPT_PREFIX 2
1090 /* This is a bit of a hack. Use an optional prefix, and also allow big (64-bit)
1091 immediates, as can be used in Neon VMVN and VMOV immediate instructions. */
1092 #define GE_OPT_PREFIX_BIG 3
1093
1094 static int
1095 my_get_expression (expressionS * ep, char ** str, int prefix_mode)
1096 {
1097 char * save_in;
1098
1099 /* In unified syntax, all prefixes are optional. */
1100 if (unified_syntax)
1101 prefix_mode = (prefix_mode == GE_OPT_PREFIX_BIG) ? prefix_mode
1102 : GE_OPT_PREFIX;
1103
1104 switch (prefix_mode)
1105 {
1106 case GE_NO_PREFIX: break;
1107 case GE_IMM_PREFIX:
1108 if (!is_immediate_prefix (**str))
1109 {
1110 inst.error = _("immediate expression requires a # prefix");
1111 return FAIL;
1112 }
1113 (*str)++;
1114 break;
1115 case GE_OPT_PREFIX:
1116 case GE_OPT_PREFIX_BIG:
1117 if (is_immediate_prefix (**str))
1118 (*str)++;
1119 break;
1120 default:
1121 abort ();
1122 }
1123
1124 memset (ep, 0, sizeof (expressionS));
1125
1126 save_in = input_line_pointer;
1127 input_line_pointer = *str;
1128 in_my_get_expression = TRUE;
1129 expression (ep);
1130 in_my_get_expression = FALSE;
1131
1132 if (ep->X_op == O_illegal || ep->X_op == O_absent)
1133 {
1134 /* We found a bad or missing expression in md_operand(). */
1135 *str = input_line_pointer;
1136 input_line_pointer = save_in;
1137 if (inst.error == NULL)
1138 inst.error = (ep->X_op == O_absent
1139 ? _("missing expression") :_("bad expression"));
1140 return 1;
1141 }
1142
1143 /* Get rid of any bignums now, so that we don't generate an error for which
1144 we can't establish a line number later on. Big numbers are never valid
1145 in instructions, which is where this routine is always called. */
1146 if (prefix_mode != GE_OPT_PREFIX_BIG
1147 && (ep->X_op == O_big
1148 || (ep->X_add_symbol
1149 && (walk_no_bignums (ep->X_add_symbol)
1150 || (ep->X_op_symbol
1151 && walk_no_bignums (ep->X_op_symbol))))))
1152 {
1153 inst.error = _("invalid constant");
1154 *str = input_line_pointer;
1155 input_line_pointer = save_in;
1156 return 1;
1157 }
1158
1159 *str = input_line_pointer;
1160 input_line_pointer = save_in;
1161 return SUCCESS;
1162 }
1163
1164 /* Turn a string in input_line_pointer into a floating point constant
1165 of type TYPE, and store the appropriate bytes in *LITP. The number
1166 of LITTLENUMS emitted is stored in *SIZEP. An error message is
1167 returned, or NULL on OK.
1168
1169 Note that fp constants aren't represent in the normal way on the ARM.
1170 In big endian mode, things are as expected. However, in little endian
1171 mode fp constants are big-endian word-wise, and little-endian byte-wise
1172 within the words. For example, (double) 1.1 in big endian mode is
1173 the byte sequence 3f f1 99 99 99 99 99 9a, and in little endian mode is
1174 the byte sequence 99 99 f1 3f 9a 99 99 99.
1175
1176 ??? The format of 12 byte floats is uncertain according to gcc's arm.h. */
1177
1178 const char *
1179 md_atof (int type, char * litP, int * sizeP)
1180 {
1181 int prec;
1182 LITTLENUM_TYPE words[MAX_LITTLENUMS];
1183 char *t;
1184 int i;
1185
1186 switch (type)
1187 {
1188 case 'f':
1189 case 'F':
1190 case 's':
1191 case 'S':
1192 prec = 2;
1193 break;
1194
1195 case 'd':
1196 case 'D':
1197 case 'r':
1198 case 'R':
1199 prec = 4;
1200 break;
1201
1202 case 'x':
1203 case 'X':
1204 prec = 5;
1205 break;
1206
1207 case 'p':
1208 case 'P':
1209 prec = 5;
1210 break;
1211
1212 default:
1213 *sizeP = 0;
1214 return _("Unrecognized or unsupported floating point constant");
1215 }
1216
1217 t = atof_ieee (input_line_pointer, type, words);
1218 if (t)
1219 input_line_pointer = t;
1220 *sizeP = prec * sizeof (LITTLENUM_TYPE);
1221
1222 if (target_big_endian)
1223 {
1224 for (i = 0; i < prec; i++)
1225 {
1226 md_number_to_chars (litP, (valueT) words[i], sizeof (LITTLENUM_TYPE));
1227 litP += sizeof (LITTLENUM_TYPE);
1228 }
1229 }
1230 else
1231 {
1232 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_endian_pure))
1233 for (i = prec - 1; i >= 0; i--)
1234 {
1235 md_number_to_chars (litP, (valueT) words[i], sizeof (LITTLENUM_TYPE));
1236 litP += sizeof (LITTLENUM_TYPE);
1237 }
1238 else
1239 /* For a 4 byte float the order of elements in `words' is 1 0.
1240 For an 8 byte float the order is 1 0 3 2. */
1241 for (i = 0; i < prec; i += 2)
1242 {
1243 md_number_to_chars (litP, (valueT) words[i + 1],
1244 sizeof (LITTLENUM_TYPE));
1245 md_number_to_chars (litP + sizeof (LITTLENUM_TYPE),
1246 (valueT) words[i], sizeof (LITTLENUM_TYPE));
1247 litP += 2 * sizeof (LITTLENUM_TYPE);
1248 }
1249 }
1250
1251 return NULL;
1252 }
1253
1254 /* We handle all bad expressions here, so that we can report the faulty
1255 instruction in the error message. */
1256
1257 void
1258 md_operand (expressionS * exp)
1259 {
1260 if (in_my_get_expression)
1261 exp->X_op = O_illegal;
1262 }
1263
1264 /* Immediate values. */
1265
1266 #ifdef OBJ_ELF
1267 /* Generic immediate-value read function for use in directives.
1268 Accepts anything that 'expression' can fold to a constant.
1269 *val receives the number. */
1270
1271 static int
1272 immediate_for_directive (int *val)
1273 {
1274 expressionS exp;
1275 exp.X_op = O_illegal;
1276
1277 if (is_immediate_prefix (*input_line_pointer))
1278 {
1279 input_line_pointer++;
1280 expression (&exp);
1281 }
1282
1283 if (exp.X_op != O_constant)
1284 {
1285 as_bad (_("expected #constant"));
1286 ignore_rest_of_line ();
1287 return FAIL;
1288 }
1289 *val = exp.X_add_number;
1290 return SUCCESS;
1291 }
1292 #endif
1293
1294 /* Register parsing. */
1295
1296 /* Generic register parser. CCP points to what should be the
1297 beginning of a register name. If it is indeed a valid register
1298 name, advance CCP over it and return the reg_entry structure;
1299 otherwise return NULL. Does not issue diagnostics. */
1300
1301 static struct reg_entry *
1302 arm_reg_parse_multi (char **ccp)
1303 {
1304 char *start = *ccp;
1305 char *p;
1306 struct reg_entry *reg;
1307
1308 skip_whitespace (start);
1309
1310 #ifdef REGISTER_PREFIX
1311 if (*start != REGISTER_PREFIX)
1312 return NULL;
1313 start++;
1314 #endif
1315 #ifdef OPTIONAL_REGISTER_PREFIX
1316 if (*start == OPTIONAL_REGISTER_PREFIX)
1317 start++;
1318 #endif
1319
1320 p = start;
1321 if (!ISALPHA (*p) || !is_name_beginner (*p))
1322 return NULL;
1323
1324 do
1325 p++;
1326 while (ISALPHA (*p) || ISDIGIT (*p) || *p == '_');
1327
1328 reg = (struct reg_entry *) hash_find_n (arm_reg_hsh, start, p - start);
1329
1330 if (!reg)
1331 return NULL;
1332
1333 *ccp = p;
1334 return reg;
1335 }
1336
1337 static int
1338 arm_reg_alt_syntax (char **ccp, char *start, struct reg_entry *reg,
1339 enum arm_reg_type type)
1340 {
1341 /* Alternative syntaxes are accepted for a few register classes. */
1342 switch (type)
1343 {
1344 case REG_TYPE_MVF:
1345 case REG_TYPE_MVD:
1346 case REG_TYPE_MVFX:
1347 case REG_TYPE_MVDX:
1348 /* Generic coprocessor register names are allowed for these. */
1349 if (reg && reg->type == REG_TYPE_CN)
1350 return reg->number;
1351 break;
1352
1353 case REG_TYPE_CP:
1354 /* For backward compatibility, a bare number is valid here. */
1355 {
1356 unsigned long processor = strtoul (start, ccp, 10);
1357 if (*ccp != start && processor <= 15)
1358 return processor;
1359 }
1360 /* Fall through. */
1361
1362 case REG_TYPE_MMXWC:
1363 /* WC includes WCG. ??? I'm not sure this is true for all
1364 instructions that take WC registers. */
1365 if (reg && reg->type == REG_TYPE_MMXWCG)
1366 return reg->number;
1367 break;
1368
1369 default:
1370 break;
1371 }
1372
1373 return FAIL;
1374 }
1375
1376 /* As arm_reg_parse_multi, but the register must be of type TYPE, and the
1377 return value is the register number or FAIL. */
1378
1379 static int
1380 arm_reg_parse (char **ccp, enum arm_reg_type type)
1381 {
1382 char *start = *ccp;
1383 struct reg_entry *reg = arm_reg_parse_multi (ccp);
1384 int ret;
1385
1386 /* Do not allow a scalar (reg+index) to parse as a register. */
1387 if (reg && reg->neon && (reg->neon->defined & NTA_HASINDEX))
1388 return FAIL;
1389
1390 if (reg && reg->type == type)
1391 return reg->number;
1392
1393 if ((ret = arm_reg_alt_syntax (ccp, start, reg, type)) != FAIL)
1394 return ret;
1395
1396 *ccp = start;
1397 return FAIL;
1398 }
1399
1400 /* Parse a Neon type specifier. *STR should point at the leading '.'
1401 character. Does no verification at this stage that the type fits the opcode
1402 properly. E.g.,
1403
1404 .i32.i32.s16
1405 .s32.f32
1406 .u16
1407
1408 Can all be legally parsed by this function.
1409
1410 Fills in neon_type struct pointer with parsed information, and updates STR
1411 to point after the parsed type specifier. Returns SUCCESS if this was a legal
1412 type, FAIL if not. */
1413
1414 static int
1415 parse_neon_type (struct neon_type *type, char **str)
1416 {
1417 char *ptr = *str;
1418
1419 if (type)
1420 type->elems = 0;
1421
1422 while (type->elems < NEON_MAX_TYPE_ELS)
1423 {
1424 enum neon_el_type thistype = NT_untyped;
1425 unsigned thissize = -1u;
1426
1427 if (*ptr != '.')
1428 break;
1429
1430 ptr++;
1431
1432 /* Just a size without an explicit type. */
1433 if (ISDIGIT (*ptr))
1434 goto parsesize;
1435
1436 switch (TOLOWER (*ptr))
1437 {
1438 case 'i': thistype = NT_integer; break;
1439 case 'f': thistype = NT_float; break;
1440 case 'p': thistype = NT_poly; break;
1441 case 's': thistype = NT_signed; break;
1442 case 'u': thistype = NT_unsigned; break;
1443 case 'd':
1444 thistype = NT_float;
1445 thissize = 64;
1446 ptr++;
1447 goto done;
1448 default:
1449 as_bad (_("unexpected character `%c' in type specifier"), *ptr);
1450 return FAIL;
1451 }
1452
1453 ptr++;
1454
1455 /* .f is an abbreviation for .f32. */
1456 if (thistype == NT_float && !ISDIGIT (*ptr))
1457 thissize = 32;
1458 else
1459 {
1460 parsesize:
1461 thissize = strtoul (ptr, &ptr, 10);
1462
1463 if (thissize != 8 && thissize != 16 && thissize != 32
1464 && thissize != 64)
1465 {
1466 as_bad (_("bad size %d in type specifier"), thissize);
1467 return FAIL;
1468 }
1469 }
1470
1471 done:
1472 if (type)
1473 {
1474 type->el[type->elems].type = thistype;
1475 type->el[type->elems].size = thissize;
1476 type->elems++;
1477 }
1478 }
1479
1480 /* Empty/missing type is not a successful parse. */
1481 if (type->elems == 0)
1482 return FAIL;
1483
1484 *str = ptr;
1485
1486 return SUCCESS;
1487 }
1488
1489 /* Errors may be set multiple times during parsing or bit encoding
1490 (particularly in the Neon bits), but usually the earliest error which is set
1491 will be the most meaningful. Avoid overwriting it with later (cascading)
1492 errors by calling this function. */
1493
1494 static void
1495 first_error (const char *err)
1496 {
1497 if (!inst.error)
1498 inst.error = err;
1499 }
1500
1501 /* Parse a single type, e.g. ".s32", leading period included. */
1502 static int
1503 parse_neon_operand_type (struct neon_type_el *vectype, char **ccp)
1504 {
1505 char *str = *ccp;
1506 struct neon_type optype;
1507
1508 if (*str == '.')
1509 {
1510 if (parse_neon_type (&optype, &str) == SUCCESS)
1511 {
1512 if (optype.elems == 1)
1513 *vectype = optype.el[0];
1514 else
1515 {
1516 first_error (_("only one type should be specified for operand"));
1517 return FAIL;
1518 }
1519 }
1520 else
1521 {
1522 first_error (_("vector type expected"));
1523 return FAIL;
1524 }
1525 }
1526 else
1527 return FAIL;
1528
1529 *ccp = str;
1530
1531 return SUCCESS;
1532 }
1533
1534 /* Special meanings for indices (which have a range of 0-7), which will fit into
1535 a 4-bit integer. */
1536
1537 #define NEON_ALL_LANES 15
1538 #define NEON_INTERLEAVE_LANES 14
1539
1540 /* Record a use of the given feature. */
1541 static void
1542 record_feature_use (const arm_feature_set *feature)
1543 {
1544 if (thumb_mode)
1545 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used, *feature);
1546 else
1547 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used, *feature);
1548 }
1549
1550 /* If the given feature available in the selected CPU, mark it as used.
1551 Returns TRUE iff feature is available. */
1552 static bfd_boolean
1553 mark_feature_used (const arm_feature_set *feature)
1554 {
1555
1556 /* Do not support the use of MVE only instructions when in auto-detection or
1557 -march=all. */
1558 if (((feature == &mve_ext) || (feature == &mve_fp_ext))
1559 && ARM_CPU_IS_ANY (cpu_variant))
1560 {
1561 first_error (BAD_MVE_AUTO);
1562 return FALSE;
1563 }
1564 /* Ensure the option is valid on the current architecture. */
1565 if (!ARM_CPU_HAS_FEATURE (cpu_variant, *feature))
1566 return FALSE;
1567
1568 /* Add the appropriate architecture feature for the barrier option used.
1569 */
1570 record_feature_use (feature);
1571
1572 return TRUE;
1573 }
1574
1575 /* Parse either a register or a scalar, with an optional type. Return the
1576 register number, and optionally fill in the actual type of the register
1577 when multiple alternatives were given (NEON_TYPE_NDQ) in *RTYPE, and
1578 type/index information in *TYPEINFO. */
1579
1580 static int
1581 parse_typed_reg_or_scalar (char **ccp, enum arm_reg_type type,
1582 enum arm_reg_type *rtype,
1583 struct neon_typed_alias *typeinfo)
1584 {
1585 char *str = *ccp;
1586 struct reg_entry *reg = arm_reg_parse_multi (&str);
1587 struct neon_typed_alias atype;
1588 struct neon_type_el parsetype;
1589
1590 atype.defined = 0;
1591 atype.index = -1;
1592 atype.eltype.type = NT_invtype;
1593 atype.eltype.size = -1;
1594
1595 /* Try alternate syntax for some types of register. Note these are mutually
1596 exclusive with the Neon syntax extensions. */
1597 if (reg == NULL)
1598 {
1599 int altreg = arm_reg_alt_syntax (&str, *ccp, reg, type);
1600 if (altreg != FAIL)
1601 *ccp = str;
1602 if (typeinfo)
1603 *typeinfo = atype;
1604 return altreg;
1605 }
1606
1607 /* Undo polymorphism when a set of register types may be accepted. */
1608 if ((type == REG_TYPE_NDQ
1609 && (reg->type == REG_TYPE_NQ || reg->type == REG_TYPE_VFD))
1610 || (type == REG_TYPE_VFSD
1611 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD))
1612 || (type == REG_TYPE_NSDQ
1613 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD
1614 || reg->type == REG_TYPE_NQ))
1615 || (type == REG_TYPE_NSD
1616 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD))
1617 || (type == REG_TYPE_MMXWC
1618 && (reg->type == REG_TYPE_MMXWCG)))
1619 type = (enum arm_reg_type) reg->type;
1620
1621 if (type == REG_TYPE_MQ)
1622 {
1623 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
1624 return FAIL;
1625
1626 if (!reg || reg->type != REG_TYPE_NQ)
1627 return FAIL;
1628
1629 if (reg->number > 14 && !mark_feature_used (&fpu_vfp_ext_d32))
1630 {
1631 first_error (_("expected MVE register [q0..q7]"));
1632 return FAIL;
1633 }
1634 type = REG_TYPE_NQ;
1635 }
1636 else if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)
1637 && (type == REG_TYPE_NQ))
1638 return FAIL;
1639
1640
1641 if (type != reg->type)
1642 return FAIL;
1643
1644 if (reg->neon)
1645 atype = *reg->neon;
1646
1647 if (parse_neon_operand_type (&parsetype, &str) == SUCCESS)
1648 {
1649 if ((atype.defined & NTA_HASTYPE) != 0)
1650 {
1651 first_error (_("can't redefine type for operand"));
1652 return FAIL;
1653 }
1654 atype.defined |= NTA_HASTYPE;
1655 atype.eltype = parsetype;
1656 }
1657
1658 if (skip_past_char (&str, '[') == SUCCESS)
1659 {
1660 if (type != REG_TYPE_VFD
1661 && !(type == REG_TYPE_VFS
1662 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8_2))
1663 && !(type == REG_TYPE_NQ
1664 && ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)))
1665 {
1666 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
1667 first_error (_("only D and Q registers may be indexed"));
1668 else
1669 first_error (_("only D registers may be indexed"));
1670 return FAIL;
1671 }
1672
1673 if ((atype.defined & NTA_HASINDEX) != 0)
1674 {
1675 first_error (_("can't change index for operand"));
1676 return FAIL;
1677 }
1678
1679 atype.defined |= NTA_HASINDEX;
1680
1681 if (skip_past_char (&str, ']') == SUCCESS)
1682 atype.index = NEON_ALL_LANES;
1683 else
1684 {
1685 expressionS exp;
1686
1687 my_get_expression (&exp, &str, GE_NO_PREFIX);
1688
1689 if (exp.X_op != O_constant)
1690 {
1691 first_error (_("constant expression required"));
1692 return FAIL;
1693 }
1694
1695 if (skip_past_char (&str, ']') == FAIL)
1696 return FAIL;
1697
1698 atype.index = exp.X_add_number;
1699 }
1700 }
1701
1702 if (typeinfo)
1703 *typeinfo = atype;
1704
1705 if (rtype)
1706 *rtype = type;
1707
1708 *ccp = str;
1709
1710 return reg->number;
1711 }
1712
1713 /* Like arm_reg_parse, but also allow the following extra features:
1714 - If RTYPE is non-zero, return the (possibly restricted) type of the
1715 register (e.g. Neon double or quad reg when either has been requested).
1716 - If this is a Neon vector type with additional type information, fill
1717 in the struct pointed to by VECTYPE (if non-NULL).
1718 This function will fault on encountering a scalar. */
1719
1720 static int
1721 arm_typed_reg_parse (char **ccp, enum arm_reg_type type,
1722 enum arm_reg_type *rtype, struct neon_type_el *vectype)
1723 {
1724 struct neon_typed_alias atype;
1725 char *str = *ccp;
1726 int reg = parse_typed_reg_or_scalar (&str, type, rtype, &atype);
1727
1728 if (reg == FAIL)
1729 return FAIL;
1730
1731 /* Do not allow regname(... to parse as a register. */
1732 if (*str == '(')
1733 return FAIL;
1734
1735 /* Do not allow a scalar (reg+index) to parse as a register. */
1736 if ((atype.defined & NTA_HASINDEX) != 0)
1737 {
1738 first_error (_("register operand expected, but got scalar"));
1739 return FAIL;
1740 }
1741
1742 if (vectype)
1743 *vectype = atype.eltype;
1744
1745 *ccp = str;
1746
1747 return reg;
1748 }
1749
1750 #define NEON_SCALAR_REG(X) ((X) >> 4)
1751 #define NEON_SCALAR_INDEX(X) ((X) & 15)
1752
1753 /* Parse a Neon scalar. Most of the time when we're parsing a scalar, we don't
1754 have enough information to be able to do a good job bounds-checking. So, we
1755 just do easy checks here, and do further checks later. */
1756
1757 static int
1758 parse_scalar (char **ccp, int elsize, struct neon_type_el *type, enum
1759 arm_reg_type reg_type)
1760 {
1761 int reg;
1762 char *str = *ccp;
1763 struct neon_typed_alias atype;
1764 unsigned reg_size;
1765
1766 reg = parse_typed_reg_or_scalar (&str, reg_type, NULL, &atype);
1767
1768 switch (reg_type)
1769 {
1770 case REG_TYPE_VFS:
1771 reg_size = 32;
1772 break;
1773 case REG_TYPE_VFD:
1774 reg_size = 64;
1775 break;
1776 case REG_TYPE_MQ:
1777 reg_size = 128;
1778 break;
1779 default:
1780 gas_assert (0);
1781 return FAIL;
1782 }
1783
1784 if (reg == FAIL || (atype.defined & NTA_HASINDEX) == 0)
1785 return FAIL;
1786
1787 if (reg_type != REG_TYPE_MQ && atype.index == NEON_ALL_LANES)
1788 {
1789 first_error (_("scalar must have an index"));
1790 return FAIL;
1791 }
1792 else if (atype.index >= reg_size / elsize)
1793 {
1794 first_error (_("scalar index out of range"));
1795 return FAIL;
1796 }
1797
1798 if (type)
1799 *type = atype.eltype;
1800
1801 *ccp = str;
1802
1803 return reg * 16 + atype.index;
1804 }
1805
1806 /* Types of registers in a list. */
1807
1808 enum reg_list_els
1809 {
1810 REGLIST_RN,
1811 REGLIST_CLRM,
1812 REGLIST_VFP_S,
1813 REGLIST_VFP_S_VPR,
1814 REGLIST_VFP_D,
1815 REGLIST_VFP_D_VPR,
1816 REGLIST_NEON_D
1817 };
1818
1819 /* Parse an ARM register list. Returns the bitmask, or FAIL. */
1820
1821 static long
1822 parse_reg_list (char ** strp, enum reg_list_els etype)
1823 {
1824 char *str = *strp;
1825 long range = 0;
1826 int another_range;
1827
1828 gas_assert (etype == REGLIST_RN || etype == REGLIST_CLRM);
1829
1830 /* We come back here if we get ranges concatenated by '+' or '|'. */
1831 do
1832 {
1833 skip_whitespace (str);
1834
1835 another_range = 0;
1836
1837 if (*str == '{')
1838 {
1839 int in_range = 0;
1840 int cur_reg = -1;
1841
1842 str++;
1843 do
1844 {
1845 int reg;
1846 const char apsr_str[] = "apsr";
1847 int apsr_str_len = strlen (apsr_str);
1848
1849 reg = arm_reg_parse (&str, REGLIST_RN);
1850 if (etype == REGLIST_CLRM)
1851 {
1852 if (reg == REG_SP || reg == REG_PC)
1853 reg = FAIL;
1854 else if (reg == FAIL
1855 && !strncasecmp (str, apsr_str, apsr_str_len)
1856 && !ISALPHA (*(str + apsr_str_len)))
1857 {
1858 reg = 15;
1859 str += apsr_str_len;
1860 }
1861
1862 if (reg == FAIL)
1863 {
1864 first_error (_("r0-r12, lr or APSR expected"));
1865 return FAIL;
1866 }
1867 }
1868 else /* etype == REGLIST_RN. */
1869 {
1870 if (reg == FAIL)
1871 {
1872 first_error (_(reg_expected_msgs[REGLIST_RN]));
1873 return FAIL;
1874 }
1875 }
1876
1877 if (in_range)
1878 {
1879 int i;
1880
1881 if (reg <= cur_reg)
1882 {
1883 first_error (_("bad range in register list"));
1884 return FAIL;
1885 }
1886
1887 for (i = cur_reg + 1; i < reg; i++)
1888 {
1889 if (range & (1 << i))
1890 as_tsktsk
1891 (_("Warning: duplicated register (r%d) in register list"),
1892 i);
1893 else
1894 range |= 1 << i;
1895 }
1896 in_range = 0;
1897 }
1898
1899 if (range & (1 << reg))
1900 as_tsktsk (_("Warning: duplicated register (r%d) in register list"),
1901 reg);
1902 else if (reg <= cur_reg)
1903 as_tsktsk (_("Warning: register range not in ascending order"));
1904
1905 range |= 1 << reg;
1906 cur_reg = reg;
1907 }
1908 while (skip_past_comma (&str) != FAIL
1909 || (in_range = 1, *str++ == '-'));
1910 str--;
1911
1912 if (skip_past_char (&str, '}') == FAIL)
1913 {
1914 first_error (_("missing `}'"));
1915 return FAIL;
1916 }
1917 }
1918 else if (etype == REGLIST_RN)
1919 {
1920 expressionS exp;
1921
1922 if (my_get_expression (&exp, &str, GE_NO_PREFIX))
1923 return FAIL;
1924
1925 if (exp.X_op == O_constant)
1926 {
1927 if (exp.X_add_number
1928 != (exp.X_add_number & 0x0000ffff))
1929 {
1930 inst.error = _("invalid register mask");
1931 return FAIL;
1932 }
1933
1934 if ((range & exp.X_add_number) != 0)
1935 {
1936 int regno = range & exp.X_add_number;
1937
1938 regno &= -regno;
1939 regno = (1 << regno) - 1;
1940 as_tsktsk
1941 (_("Warning: duplicated register (r%d) in register list"),
1942 regno);
1943 }
1944
1945 range |= exp.X_add_number;
1946 }
1947 else
1948 {
1949 if (inst.relocs[0].type != 0)
1950 {
1951 inst.error = _("expression too complex");
1952 return FAIL;
1953 }
1954
1955 memcpy (&inst.relocs[0].exp, &exp, sizeof (expressionS));
1956 inst.relocs[0].type = BFD_RELOC_ARM_MULTI;
1957 inst.relocs[0].pc_rel = 0;
1958 }
1959 }
1960
1961 if (*str == '|' || *str == '+')
1962 {
1963 str++;
1964 another_range = 1;
1965 }
1966 }
1967 while (another_range);
1968
1969 *strp = str;
1970 return range;
1971 }
1972
1973 /* Parse a VFP register list. If the string is invalid return FAIL.
1974 Otherwise return the number of registers, and set PBASE to the first
1975 register. Parses registers of type ETYPE.
1976 If REGLIST_NEON_D is used, several syntax enhancements are enabled:
1977 - Q registers can be used to specify pairs of D registers
1978 - { } can be omitted from around a singleton register list
1979 FIXME: This is not implemented, as it would require backtracking in
1980 some cases, e.g.:
1981 vtbl.8 d3,d4,d5
1982 This could be done (the meaning isn't really ambiguous), but doesn't
1983 fit in well with the current parsing framework.
1984 - 32 D registers may be used (also true for VFPv3).
1985 FIXME: Types are ignored in these register lists, which is probably a
1986 bug. */
1987
1988 static int
1989 parse_vfp_reg_list (char **ccp, unsigned int *pbase, enum reg_list_els etype,
1990 bfd_boolean *partial_match)
1991 {
1992 char *str = *ccp;
1993 int base_reg;
1994 int new_base;
1995 enum arm_reg_type regtype = (enum arm_reg_type) 0;
1996 int max_regs = 0;
1997 int count = 0;
1998 int warned = 0;
1999 unsigned long mask = 0;
2000 int i;
2001 bfd_boolean vpr_seen = FALSE;
2002 bfd_boolean expect_vpr =
2003 (etype == REGLIST_VFP_S_VPR) || (etype == REGLIST_VFP_D_VPR);
2004
2005 if (skip_past_char (&str, '{') == FAIL)
2006 {
2007 inst.error = _("expecting {");
2008 return FAIL;
2009 }
2010
2011 switch (etype)
2012 {
2013 case REGLIST_VFP_S:
2014 case REGLIST_VFP_S_VPR:
2015 regtype = REG_TYPE_VFS;
2016 max_regs = 32;
2017 break;
2018
2019 case REGLIST_VFP_D:
2020 case REGLIST_VFP_D_VPR:
2021 regtype = REG_TYPE_VFD;
2022 break;
2023
2024 case REGLIST_NEON_D:
2025 regtype = REG_TYPE_NDQ;
2026 break;
2027
2028 default:
2029 gas_assert (0);
2030 }
2031
2032 if (etype != REGLIST_VFP_S && etype != REGLIST_VFP_S_VPR)
2033 {
2034 /* VFPv3 allows 32 D registers, except for the VFPv3-D16 variant. */
2035 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_d32))
2036 {
2037 max_regs = 32;
2038 if (thumb_mode)
2039 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
2040 fpu_vfp_ext_d32);
2041 else
2042 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
2043 fpu_vfp_ext_d32);
2044 }
2045 else
2046 max_regs = 16;
2047 }
2048
2049 base_reg = max_regs;
2050 *partial_match = FALSE;
2051
2052 do
2053 {
2054 int setmask = 1, addregs = 1;
2055 const char vpr_str[] = "vpr";
2056 int vpr_str_len = strlen (vpr_str);
2057
2058 new_base = arm_typed_reg_parse (&str, regtype, &regtype, NULL);
2059
2060 if (expect_vpr)
2061 {
2062 if (new_base == FAIL
2063 && !strncasecmp (str, vpr_str, vpr_str_len)
2064 && !ISALPHA (*(str + vpr_str_len))
2065 && !vpr_seen)
2066 {
2067 vpr_seen = TRUE;
2068 str += vpr_str_len;
2069 if (count == 0)
2070 base_reg = 0; /* Canonicalize VPR only on d0 with 0 regs. */
2071 }
2072 else if (vpr_seen)
2073 {
2074 first_error (_("VPR expected last"));
2075 return FAIL;
2076 }
2077 else if (new_base == FAIL)
2078 {
2079 if (regtype == REG_TYPE_VFS)
2080 first_error (_("VFP single precision register or VPR "
2081 "expected"));
2082 else /* regtype == REG_TYPE_VFD. */
2083 first_error (_("VFP/Neon double precision register or VPR "
2084 "expected"));
2085 return FAIL;
2086 }
2087 }
2088 else if (new_base == FAIL)
2089 {
2090 first_error (_(reg_expected_msgs[regtype]));
2091 return FAIL;
2092 }
2093
2094 *partial_match = TRUE;
2095 if (vpr_seen)
2096 continue;
2097
2098 if (new_base >= max_regs)
2099 {
2100 first_error (_("register out of range in list"));
2101 return FAIL;
2102 }
2103
2104 /* Note: a value of 2 * n is returned for the register Q<n>. */
2105 if (regtype == REG_TYPE_NQ)
2106 {
2107 setmask = 3;
2108 addregs = 2;
2109 }
2110
2111 if (new_base < base_reg)
2112 base_reg = new_base;
2113
2114 if (mask & (setmask << new_base))
2115 {
2116 first_error (_("invalid register list"));
2117 return FAIL;
2118 }
2119
2120 if ((mask >> new_base) != 0 && ! warned && !vpr_seen)
2121 {
2122 as_tsktsk (_("register list not in ascending order"));
2123 warned = 1;
2124 }
2125
2126 mask |= setmask << new_base;
2127 count += addregs;
2128
2129 if (*str == '-') /* We have the start of a range expression */
2130 {
2131 int high_range;
2132
2133 str++;
2134
2135 if ((high_range = arm_typed_reg_parse (&str, regtype, NULL, NULL))
2136 == FAIL)
2137 {
2138 inst.error = gettext (reg_expected_msgs[regtype]);
2139 return FAIL;
2140 }
2141
2142 if (high_range >= max_regs)
2143 {
2144 first_error (_("register out of range in list"));
2145 return FAIL;
2146 }
2147
2148 if (regtype == REG_TYPE_NQ)
2149 high_range = high_range + 1;
2150
2151 if (high_range <= new_base)
2152 {
2153 inst.error = _("register range not in ascending order");
2154 return FAIL;
2155 }
2156
2157 for (new_base += addregs; new_base <= high_range; new_base += addregs)
2158 {
2159 if (mask & (setmask << new_base))
2160 {
2161 inst.error = _("invalid register list");
2162 return FAIL;
2163 }
2164
2165 mask |= setmask << new_base;
2166 count += addregs;
2167 }
2168 }
2169 }
2170 while (skip_past_comma (&str) != FAIL);
2171
2172 str++;
2173
2174 /* Sanity check -- should have raised a parse error above. */
2175 if ((!vpr_seen && count == 0) || count > max_regs)
2176 abort ();
2177
2178 *pbase = base_reg;
2179
2180 if (expect_vpr && !vpr_seen)
2181 {
2182 first_error (_("VPR expected last"));
2183 return FAIL;
2184 }
2185
2186 /* Final test -- the registers must be consecutive. */
2187 mask >>= base_reg;
2188 for (i = 0; i < count; i++)
2189 {
2190 if ((mask & (1u << i)) == 0)
2191 {
2192 inst.error = _("non-contiguous register range");
2193 return FAIL;
2194 }
2195 }
2196
2197 *ccp = str;
2198
2199 return count;
2200 }
2201
2202 /* True if two alias types are the same. */
2203
2204 static bfd_boolean
2205 neon_alias_types_same (struct neon_typed_alias *a, struct neon_typed_alias *b)
2206 {
2207 if (!a && !b)
2208 return TRUE;
2209
2210 if (!a || !b)
2211 return FALSE;
2212
2213 if (a->defined != b->defined)
2214 return FALSE;
2215
2216 if ((a->defined & NTA_HASTYPE) != 0
2217 && (a->eltype.type != b->eltype.type
2218 || a->eltype.size != b->eltype.size))
2219 return FALSE;
2220
2221 if ((a->defined & NTA_HASINDEX) != 0
2222 && (a->index != b->index))
2223 return FALSE;
2224
2225 return TRUE;
2226 }
2227
2228 /* Parse element/structure lists for Neon VLD<n> and VST<n> instructions.
2229 The base register is put in *PBASE.
2230 The lane (or one of the NEON_*_LANES constants) is placed in bits [3:0] of
2231 the return value.
2232 The register stride (minus one) is put in bit 4 of the return value.
2233 Bits [6:5] encode the list length (minus one).
2234 The type of the list elements is put in *ELTYPE, if non-NULL. */
2235
2236 #define NEON_LANE(X) ((X) & 0xf)
2237 #define NEON_REG_STRIDE(X) ((((X) >> 4) & 1) + 1)
2238 #define NEON_REGLIST_LENGTH(X) ((((X) >> 5) & 3) + 1)
2239
2240 static int
2241 parse_neon_el_struct_list (char **str, unsigned *pbase,
2242 int mve,
2243 struct neon_type_el *eltype)
2244 {
2245 char *ptr = *str;
2246 int base_reg = -1;
2247 int reg_incr = -1;
2248 int count = 0;
2249 int lane = -1;
2250 int leading_brace = 0;
2251 enum arm_reg_type rtype = REG_TYPE_NDQ;
2252 const char *const incr_error = mve ? _("register stride must be 1") :
2253 _("register stride must be 1 or 2");
2254 const char *const type_error = _("mismatched element/structure types in list");
2255 struct neon_typed_alias firsttype;
2256 firsttype.defined = 0;
2257 firsttype.eltype.type = NT_invtype;
2258 firsttype.eltype.size = -1;
2259 firsttype.index = -1;
2260
2261 if (skip_past_char (&ptr, '{') == SUCCESS)
2262 leading_brace = 1;
2263
2264 do
2265 {
2266 struct neon_typed_alias atype;
2267 if (mve)
2268 rtype = REG_TYPE_MQ;
2269 int getreg = parse_typed_reg_or_scalar (&ptr, rtype, &rtype, &atype);
2270
2271 if (getreg == FAIL)
2272 {
2273 first_error (_(reg_expected_msgs[rtype]));
2274 return FAIL;
2275 }
2276
2277 if (base_reg == -1)
2278 {
2279 base_reg = getreg;
2280 if (rtype == REG_TYPE_NQ)
2281 {
2282 reg_incr = 1;
2283 }
2284 firsttype = atype;
2285 }
2286 else if (reg_incr == -1)
2287 {
2288 reg_incr = getreg - base_reg;
2289 if (reg_incr < 1 || reg_incr > 2)
2290 {
2291 first_error (_(incr_error));
2292 return FAIL;
2293 }
2294 }
2295 else if (getreg != base_reg + reg_incr * count)
2296 {
2297 first_error (_(incr_error));
2298 return FAIL;
2299 }
2300
2301 if (! neon_alias_types_same (&atype, &firsttype))
2302 {
2303 first_error (_(type_error));
2304 return FAIL;
2305 }
2306
2307 /* Handle Dn-Dm or Qn-Qm syntax. Can only be used with non-indexed list
2308 modes. */
2309 if (ptr[0] == '-')
2310 {
2311 struct neon_typed_alias htype;
2312 int hireg, dregs = (rtype == REG_TYPE_NQ) ? 2 : 1;
2313 if (lane == -1)
2314 lane = NEON_INTERLEAVE_LANES;
2315 else if (lane != NEON_INTERLEAVE_LANES)
2316 {
2317 first_error (_(type_error));
2318 return FAIL;
2319 }
2320 if (reg_incr == -1)
2321 reg_incr = 1;
2322 else if (reg_incr != 1)
2323 {
2324 first_error (_("don't use Rn-Rm syntax with non-unit stride"));
2325 return FAIL;
2326 }
2327 ptr++;
2328 hireg = parse_typed_reg_or_scalar (&ptr, rtype, NULL, &htype);
2329 if (hireg == FAIL)
2330 {
2331 first_error (_(reg_expected_msgs[rtype]));
2332 return FAIL;
2333 }
2334 if (! neon_alias_types_same (&htype, &firsttype))
2335 {
2336 first_error (_(type_error));
2337 return FAIL;
2338 }
2339 count += hireg + dregs - getreg;
2340 continue;
2341 }
2342
2343 /* If we're using Q registers, we can't use [] or [n] syntax. */
2344 if (rtype == REG_TYPE_NQ)
2345 {
2346 count += 2;
2347 continue;
2348 }
2349
2350 if ((atype.defined & NTA_HASINDEX) != 0)
2351 {
2352 if (lane == -1)
2353 lane = atype.index;
2354 else if (lane != atype.index)
2355 {
2356 first_error (_(type_error));
2357 return FAIL;
2358 }
2359 }
2360 else if (lane == -1)
2361 lane = NEON_INTERLEAVE_LANES;
2362 else if (lane != NEON_INTERLEAVE_LANES)
2363 {
2364 first_error (_(type_error));
2365 return FAIL;
2366 }
2367 count++;
2368 }
2369 while ((count != 1 || leading_brace) && skip_past_comma (&ptr) != FAIL);
2370
2371 /* No lane set by [x]. We must be interleaving structures. */
2372 if (lane == -1)
2373 lane = NEON_INTERLEAVE_LANES;
2374
2375 /* Sanity check. */
2376 if (lane == -1 || base_reg == -1 || count < 1 || (!mve && count > 4)
2377 || (count > 1 && reg_incr == -1))
2378 {
2379 first_error (_("error parsing element/structure list"));
2380 return FAIL;
2381 }
2382
2383 if ((count > 1 || leading_brace) && skip_past_char (&ptr, '}') == FAIL)
2384 {
2385 first_error (_("expected }"));
2386 return FAIL;
2387 }
2388
2389 if (reg_incr == -1)
2390 reg_incr = 1;
2391
2392 if (eltype)
2393 *eltype = firsttype.eltype;
2394
2395 *pbase = base_reg;
2396 *str = ptr;
2397
2398 return lane | ((reg_incr - 1) << 4) | ((count - 1) << 5);
2399 }
2400
2401 /* Parse an explicit relocation suffix on an expression. This is
2402 either nothing, or a word in parentheses. Note that if !OBJ_ELF,
2403 arm_reloc_hsh contains no entries, so this function can only
2404 succeed if there is no () after the word. Returns -1 on error,
2405 BFD_RELOC_UNUSED if there wasn't any suffix. */
2406
2407 static int
2408 parse_reloc (char **str)
2409 {
2410 struct reloc_entry *r;
2411 char *p, *q;
2412
2413 if (**str != '(')
2414 return BFD_RELOC_UNUSED;
2415
2416 p = *str + 1;
2417 q = p;
2418
2419 while (*q && *q != ')' && *q != ',')
2420 q++;
2421 if (*q != ')')
2422 return -1;
2423
2424 if ((r = (struct reloc_entry *)
2425 hash_find_n (arm_reloc_hsh, p, q - p)) == NULL)
2426 return -1;
2427
2428 *str = q + 1;
2429 return r->reloc;
2430 }
2431
2432 /* Directives: register aliases. */
2433
2434 static struct reg_entry *
2435 insert_reg_alias (char *str, unsigned number, int type)
2436 {
2437 struct reg_entry *new_reg;
2438 const char *name;
2439
2440 if ((new_reg = (struct reg_entry *) hash_find (arm_reg_hsh, str)) != 0)
2441 {
2442 if (new_reg->builtin)
2443 as_warn (_("ignoring attempt to redefine built-in register '%s'"), str);
2444
2445 /* Only warn about a redefinition if it's not defined as the
2446 same register. */
2447 else if (new_reg->number != number || new_reg->type != type)
2448 as_warn (_("ignoring redefinition of register alias '%s'"), str);
2449
2450 return NULL;
2451 }
2452
2453 name = xstrdup (str);
2454 new_reg = XNEW (struct reg_entry);
2455
2456 new_reg->name = name;
2457 new_reg->number = number;
2458 new_reg->type = type;
2459 new_reg->builtin = FALSE;
2460 new_reg->neon = NULL;
2461
2462 if (hash_insert (arm_reg_hsh, name, (void *) new_reg))
2463 abort ();
2464
2465 return new_reg;
2466 }
2467
2468 static void
2469 insert_neon_reg_alias (char *str, int number, int type,
2470 struct neon_typed_alias *atype)
2471 {
2472 struct reg_entry *reg = insert_reg_alias (str, number, type);
2473
2474 if (!reg)
2475 {
2476 first_error (_("attempt to redefine typed alias"));
2477 return;
2478 }
2479
2480 if (atype)
2481 {
2482 reg->neon = XNEW (struct neon_typed_alias);
2483 *reg->neon = *atype;
2484 }
2485 }
2486
2487 /* Look for the .req directive. This is of the form:
2488
2489 new_register_name .req existing_register_name
2490
2491 If we find one, or if it looks sufficiently like one that we want to
2492 handle any error here, return TRUE. Otherwise return FALSE. */
2493
2494 static bfd_boolean
2495 create_register_alias (char * newname, char *p)
2496 {
2497 struct reg_entry *old;
2498 char *oldname, *nbuf;
2499 size_t nlen;
2500
2501 /* The input scrubber ensures that whitespace after the mnemonic is
2502 collapsed to single spaces. */
2503 oldname = p;
2504 if (strncmp (oldname, " .req ", 6) != 0)
2505 return FALSE;
2506
2507 oldname += 6;
2508 if (*oldname == '\0')
2509 return FALSE;
2510
2511 old = (struct reg_entry *) hash_find (arm_reg_hsh, oldname);
2512 if (!old)
2513 {
2514 as_warn (_("unknown register '%s' -- .req ignored"), oldname);
2515 return TRUE;
2516 }
2517
2518 /* If TC_CASE_SENSITIVE is defined, then newname already points to
2519 the desired alias name, and p points to its end. If not, then
2520 the desired alias name is in the global original_case_string. */
2521 #ifdef TC_CASE_SENSITIVE
2522 nlen = p - newname;
2523 #else
2524 newname = original_case_string;
2525 nlen = strlen (newname);
2526 #endif
2527
2528 nbuf = xmemdup0 (newname, nlen);
2529
2530 /* Create aliases under the new name as stated; an all-lowercase
2531 version of the new name; and an all-uppercase version of the new
2532 name. */
2533 if (insert_reg_alias (nbuf, old->number, old->type) != NULL)
2534 {
2535 for (p = nbuf; *p; p++)
2536 *p = TOUPPER (*p);
2537
2538 if (strncmp (nbuf, newname, nlen))
2539 {
2540 /* If this attempt to create an additional alias fails, do not bother
2541 trying to create the all-lower case alias. We will fail and issue
2542 a second, duplicate error message. This situation arises when the
2543 programmer does something like:
2544 foo .req r0
2545 Foo .req r1
2546 The second .req creates the "Foo" alias but then fails to create
2547 the artificial FOO alias because it has already been created by the
2548 first .req. */
2549 if (insert_reg_alias (nbuf, old->number, old->type) == NULL)
2550 {
2551 free (nbuf);
2552 return TRUE;
2553 }
2554 }
2555
2556 for (p = nbuf; *p; p++)
2557 *p = TOLOWER (*p);
2558
2559 if (strncmp (nbuf, newname, nlen))
2560 insert_reg_alias (nbuf, old->number, old->type);
2561 }
2562
2563 free (nbuf);
2564 return TRUE;
2565 }
2566
2567 /* Create a Neon typed/indexed register alias using directives, e.g.:
2568 X .dn d5.s32[1]
2569 Y .qn 6.s16
2570 Z .dn d7
2571 T .dn Z[0]
2572 These typed registers can be used instead of the types specified after the
2573 Neon mnemonic, so long as all operands given have types. Types can also be
2574 specified directly, e.g.:
2575 vadd d0.s32, d1.s32, d2.s32 */
2576
2577 static bfd_boolean
2578 create_neon_reg_alias (char *newname, char *p)
2579 {
2580 enum arm_reg_type basetype;
2581 struct reg_entry *basereg;
2582 struct reg_entry mybasereg;
2583 struct neon_type ntype;
2584 struct neon_typed_alias typeinfo;
2585 char *namebuf, *nameend ATTRIBUTE_UNUSED;
2586 int namelen;
2587
2588 typeinfo.defined = 0;
2589 typeinfo.eltype.type = NT_invtype;
2590 typeinfo.eltype.size = -1;
2591 typeinfo.index = -1;
2592
2593 nameend = p;
2594
2595 if (strncmp (p, " .dn ", 5) == 0)
2596 basetype = REG_TYPE_VFD;
2597 else if (strncmp (p, " .qn ", 5) == 0)
2598 basetype = REG_TYPE_NQ;
2599 else
2600 return FALSE;
2601
2602 p += 5;
2603
2604 if (*p == '\0')
2605 return FALSE;
2606
2607 basereg = arm_reg_parse_multi (&p);
2608
2609 if (basereg && basereg->type != basetype)
2610 {
2611 as_bad (_("bad type for register"));
2612 return FALSE;
2613 }
2614
2615 if (basereg == NULL)
2616 {
2617 expressionS exp;
2618 /* Try parsing as an integer. */
2619 my_get_expression (&exp, &p, GE_NO_PREFIX);
2620 if (exp.X_op != O_constant)
2621 {
2622 as_bad (_("expression must be constant"));
2623 return FALSE;
2624 }
2625 basereg = &mybasereg;
2626 basereg->number = (basetype == REG_TYPE_NQ) ? exp.X_add_number * 2
2627 : exp.X_add_number;
2628 basereg->neon = 0;
2629 }
2630
2631 if (basereg->neon)
2632 typeinfo = *basereg->neon;
2633
2634 if (parse_neon_type (&ntype, &p) == SUCCESS)
2635 {
2636 /* We got a type. */
2637 if (typeinfo.defined & NTA_HASTYPE)
2638 {
2639 as_bad (_("can't redefine the type of a register alias"));
2640 return FALSE;
2641 }
2642
2643 typeinfo.defined |= NTA_HASTYPE;
2644 if (ntype.elems != 1)
2645 {
2646 as_bad (_("you must specify a single type only"));
2647 return FALSE;
2648 }
2649 typeinfo.eltype = ntype.el[0];
2650 }
2651
2652 if (skip_past_char (&p, '[') == SUCCESS)
2653 {
2654 expressionS exp;
2655 /* We got a scalar index. */
2656
2657 if (typeinfo.defined & NTA_HASINDEX)
2658 {
2659 as_bad (_("can't redefine the index of a scalar alias"));
2660 return FALSE;
2661 }
2662
2663 my_get_expression (&exp, &p, GE_NO_PREFIX);
2664
2665 if (exp.X_op != O_constant)
2666 {
2667 as_bad (_("scalar index must be constant"));
2668 return FALSE;
2669 }
2670
2671 typeinfo.defined |= NTA_HASINDEX;
2672 typeinfo.index = exp.X_add_number;
2673
2674 if (skip_past_char (&p, ']') == FAIL)
2675 {
2676 as_bad (_("expecting ]"));
2677 return FALSE;
2678 }
2679 }
2680
2681 /* If TC_CASE_SENSITIVE is defined, then newname already points to
2682 the desired alias name, and p points to its end. If not, then
2683 the desired alias name is in the global original_case_string. */
2684 #ifdef TC_CASE_SENSITIVE
2685 namelen = nameend - newname;
2686 #else
2687 newname = original_case_string;
2688 namelen = strlen (newname);
2689 #endif
2690
2691 namebuf = xmemdup0 (newname, namelen);
2692
2693 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2694 typeinfo.defined != 0 ? &typeinfo : NULL);
2695
2696 /* Insert name in all uppercase. */
2697 for (p = namebuf; *p; p++)
2698 *p = TOUPPER (*p);
2699
2700 if (strncmp (namebuf, newname, namelen))
2701 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2702 typeinfo.defined != 0 ? &typeinfo : NULL);
2703
2704 /* Insert name in all lowercase. */
2705 for (p = namebuf; *p; p++)
2706 *p = TOLOWER (*p);
2707
2708 if (strncmp (namebuf, newname, namelen))
2709 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2710 typeinfo.defined != 0 ? &typeinfo : NULL);
2711
2712 free (namebuf);
2713 return TRUE;
2714 }
2715
2716 /* Should never be called, as .req goes between the alias and the
2717 register name, not at the beginning of the line. */
2718
2719 static void
2720 s_req (int a ATTRIBUTE_UNUSED)
2721 {
2722 as_bad (_("invalid syntax for .req directive"));
2723 }
2724
2725 static void
2726 s_dn (int a ATTRIBUTE_UNUSED)
2727 {
2728 as_bad (_("invalid syntax for .dn directive"));
2729 }
2730
2731 static void
2732 s_qn (int a ATTRIBUTE_UNUSED)
2733 {
2734 as_bad (_("invalid syntax for .qn directive"));
2735 }
2736
2737 /* The .unreq directive deletes an alias which was previously defined
2738 by .req. For example:
2739
2740 my_alias .req r11
2741 .unreq my_alias */
2742
2743 static void
2744 s_unreq (int a ATTRIBUTE_UNUSED)
2745 {
2746 char * name;
2747 char saved_char;
2748
2749 name = input_line_pointer;
2750
2751 while (*input_line_pointer != 0
2752 && *input_line_pointer != ' '
2753 && *input_line_pointer != '\n')
2754 ++input_line_pointer;
2755
2756 saved_char = *input_line_pointer;
2757 *input_line_pointer = 0;
2758
2759 if (!*name)
2760 as_bad (_("invalid syntax for .unreq directive"));
2761 else
2762 {
2763 struct reg_entry *reg = (struct reg_entry *) hash_find (arm_reg_hsh,
2764 name);
2765
2766 if (!reg)
2767 as_bad (_("unknown register alias '%s'"), name);
2768 else if (reg->builtin)
2769 as_warn (_("ignoring attempt to use .unreq on fixed register name: '%s'"),
2770 name);
2771 else
2772 {
2773 char * p;
2774 char * nbuf;
2775
2776 hash_delete (arm_reg_hsh, name, FALSE);
2777 free ((char *) reg->name);
2778 if (reg->neon)
2779 free (reg->neon);
2780 free (reg);
2781
2782 /* Also locate the all upper case and all lower case versions.
2783 Do not complain if we cannot find one or the other as it
2784 was probably deleted above. */
2785
2786 nbuf = strdup (name);
2787 for (p = nbuf; *p; p++)
2788 *p = TOUPPER (*p);
2789 reg = (struct reg_entry *) hash_find (arm_reg_hsh, nbuf);
2790 if (reg)
2791 {
2792 hash_delete (arm_reg_hsh, nbuf, FALSE);
2793 free ((char *) reg->name);
2794 if (reg->neon)
2795 free (reg->neon);
2796 free (reg);
2797 }
2798
2799 for (p = nbuf; *p; p++)
2800 *p = TOLOWER (*p);
2801 reg = (struct reg_entry *) hash_find (arm_reg_hsh, nbuf);
2802 if (reg)
2803 {
2804 hash_delete (arm_reg_hsh, nbuf, FALSE);
2805 free ((char *) reg->name);
2806 if (reg->neon)
2807 free (reg->neon);
2808 free (reg);
2809 }
2810
2811 free (nbuf);
2812 }
2813 }
2814
2815 *input_line_pointer = saved_char;
2816 demand_empty_rest_of_line ();
2817 }
2818
2819 /* Directives: Instruction set selection. */
2820
2821 #ifdef OBJ_ELF
2822 /* This code is to handle mapping symbols as defined in the ARM ELF spec.
2823 (See "Mapping symbols", section 4.5.5, ARM AAELF version 1.0).
2824 Note that previously, $a and $t has type STT_FUNC (BSF_OBJECT flag),
2825 and $d has type STT_OBJECT (BSF_OBJECT flag). Now all three are untyped. */
2826
2827 /* Create a new mapping symbol for the transition to STATE. */
2828
2829 static void
2830 make_mapping_symbol (enum mstate state, valueT value, fragS *frag)
2831 {
2832 symbolS * symbolP;
2833 const char * symname;
2834 int type;
2835
2836 switch (state)
2837 {
2838 case MAP_DATA:
2839 symname = "$d";
2840 type = BSF_NO_FLAGS;
2841 break;
2842 case MAP_ARM:
2843 symname = "$a";
2844 type = BSF_NO_FLAGS;
2845 break;
2846 case MAP_THUMB:
2847 symname = "$t";
2848 type = BSF_NO_FLAGS;
2849 break;
2850 default:
2851 abort ();
2852 }
2853
2854 symbolP = symbol_new (symname, now_seg, value, frag);
2855 symbol_get_bfdsym (symbolP)->flags |= type | BSF_LOCAL;
2856
2857 switch (state)
2858 {
2859 case MAP_ARM:
2860 THUMB_SET_FUNC (symbolP, 0);
2861 ARM_SET_THUMB (symbolP, 0);
2862 ARM_SET_INTERWORK (symbolP, support_interwork);
2863 break;
2864
2865 case MAP_THUMB:
2866 THUMB_SET_FUNC (symbolP, 1);
2867 ARM_SET_THUMB (symbolP, 1);
2868 ARM_SET_INTERWORK (symbolP, support_interwork);
2869 break;
2870
2871 case MAP_DATA:
2872 default:
2873 break;
2874 }
2875
2876 /* Save the mapping symbols for future reference. Also check that
2877 we do not place two mapping symbols at the same offset within a
2878 frag. We'll handle overlap between frags in
2879 check_mapping_symbols.
2880
2881 If .fill or other data filling directive generates zero sized data,
2882 the mapping symbol for the following code will have the same value
2883 as the one generated for the data filling directive. In this case,
2884 we replace the old symbol with the new one at the same address. */
2885 if (value == 0)
2886 {
2887 if (frag->tc_frag_data.first_map != NULL)
2888 {
2889 know (S_GET_VALUE (frag->tc_frag_data.first_map) == 0);
2890 symbol_remove (frag->tc_frag_data.first_map, &symbol_rootP, &symbol_lastP);
2891 }
2892 frag->tc_frag_data.first_map = symbolP;
2893 }
2894 if (frag->tc_frag_data.last_map != NULL)
2895 {
2896 know (S_GET_VALUE (frag->tc_frag_data.last_map) <= S_GET_VALUE (symbolP));
2897 if (S_GET_VALUE (frag->tc_frag_data.last_map) == S_GET_VALUE (symbolP))
2898 symbol_remove (frag->tc_frag_data.last_map, &symbol_rootP, &symbol_lastP);
2899 }
2900 frag->tc_frag_data.last_map = symbolP;
2901 }
2902
2903 /* We must sometimes convert a region marked as code to data during
2904 code alignment, if an odd number of bytes have to be padded. The
2905 code mapping symbol is pushed to an aligned address. */
2906
2907 static void
2908 insert_data_mapping_symbol (enum mstate state,
2909 valueT value, fragS *frag, offsetT bytes)
2910 {
2911 /* If there was already a mapping symbol, remove it. */
2912 if (frag->tc_frag_data.last_map != NULL
2913 && S_GET_VALUE (frag->tc_frag_data.last_map) == frag->fr_address + value)
2914 {
2915 symbolS *symp = frag->tc_frag_data.last_map;
2916
2917 if (value == 0)
2918 {
2919 know (frag->tc_frag_data.first_map == symp);
2920 frag->tc_frag_data.first_map = NULL;
2921 }
2922 frag->tc_frag_data.last_map = NULL;
2923 symbol_remove (symp, &symbol_rootP, &symbol_lastP);
2924 }
2925
2926 make_mapping_symbol (MAP_DATA, value, frag);
2927 make_mapping_symbol (state, value + bytes, frag);
2928 }
2929
2930 static void mapping_state_2 (enum mstate state, int max_chars);
2931
2932 /* Set the mapping state to STATE. Only call this when about to
2933 emit some STATE bytes to the file. */
2934
2935 #define TRANSITION(from, to) (mapstate == (from) && state == (to))
2936 void
2937 mapping_state (enum mstate state)
2938 {
2939 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
2940
2941 if (mapstate == state)
2942 /* The mapping symbol has already been emitted.
2943 There is nothing else to do. */
2944 return;
2945
2946 if (state == MAP_ARM || state == MAP_THUMB)
2947 /* PR gas/12931
2948 All ARM instructions require 4-byte alignment.
2949 (Almost) all Thumb instructions require 2-byte alignment.
2950
2951 When emitting instructions into any section, mark the section
2952 appropriately.
2953
2954 Some Thumb instructions are alignment-sensitive modulo 4 bytes,
2955 but themselves require 2-byte alignment; this applies to some
2956 PC- relative forms. However, these cases will involve implicit
2957 literal pool generation or an explicit .align >=2, both of
2958 which will cause the section to me marked with sufficient
2959 alignment. Thus, we don't handle those cases here. */
2960 record_alignment (now_seg, state == MAP_ARM ? 2 : 1);
2961
2962 if (TRANSITION (MAP_UNDEFINED, MAP_DATA))
2963 /* This case will be evaluated later. */
2964 return;
2965
2966 mapping_state_2 (state, 0);
2967 }
2968
2969 /* Same as mapping_state, but MAX_CHARS bytes have already been
2970 allocated. Put the mapping symbol that far back. */
2971
2972 static void
2973 mapping_state_2 (enum mstate state, int max_chars)
2974 {
2975 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
2976
2977 if (!SEG_NORMAL (now_seg))
2978 return;
2979
2980 if (mapstate == state)
2981 /* The mapping symbol has already been emitted.
2982 There is nothing else to do. */
2983 return;
2984
2985 if (TRANSITION (MAP_UNDEFINED, MAP_ARM)
2986 || TRANSITION (MAP_UNDEFINED, MAP_THUMB))
2987 {
2988 struct frag * const frag_first = seg_info (now_seg)->frchainP->frch_root;
2989 const int add_symbol = (frag_now != frag_first) || (frag_now_fix () > 0);
2990
2991 if (add_symbol)
2992 make_mapping_symbol (MAP_DATA, (valueT) 0, frag_first);
2993 }
2994
2995 seg_info (now_seg)->tc_segment_info_data.mapstate = state;
2996 make_mapping_symbol (state, (valueT) frag_now_fix () - max_chars, frag_now);
2997 }
2998 #undef TRANSITION
2999 #else
3000 #define mapping_state(x) ((void)0)
3001 #define mapping_state_2(x, y) ((void)0)
3002 #endif
3003
3004 /* Find the real, Thumb encoded start of a Thumb function. */
3005
3006 #ifdef OBJ_COFF
3007 static symbolS *
3008 find_real_start (symbolS * symbolP)
3009 {
3010 char * real_start;
3011 const char * name = S_GET_NAME (symbolP);
3012 symbolS * new_target;
3013
3014 /* This definition must agree with the one in gcc/config/arm/thumb.c. */
3015 #define STUB_NAME ".real_start_of"
3016
3017 if (name == NULL)
3018 abort ();
3019
3020 /* The compiler may generate BL instructions to local labels because
3021 it needs to perform a branch to a far away location. These labels
3022 do not have a corresponding ".real_start_of" label. We check
3023 both for S_IS_LOCAL and for a leading dot, to give a way to bypass
3024 the ".real_start_of" convention for nonlocal branches. */
3025 if (S_IS_LOCAL (symbolP) || name[0] == '.')
3026 return symbolP;
3027
3028 real_start = concat (STUB_NAME, name, NULL);
3029 new_target = symbol_find (real_start);
3030 free (real_start);
3031
3032 if (new_target == NULL)
3033 {
3034 as_warn (_("Failed to find real start of function: %s\n"), name);
3035 new_target = symbolP;
3036 }
3037
3038 return new_target;
3039 }
3040 #endif
3041
3042 static void
3043 opcode_select (int width)
3044 {
3045 switch (width)
3046 {
3047 case 16:
3048 if (! thumb_mode)
3049 {
3050 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
3051 as_bad (_("selected processor does not support THUMB opcodes"));
3052
3053 thumb_mode = 1;
3054 /* No need to force the alignment, since we will have been
3055 coming from ARM mode, which is word-aligned. */
3056 record_alignment (now_seg, 1);
3057 }
3058 break;
3059
3060 case 32:
3061 if (thumb_mode)
3062 {
3063 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
3064 as_bad (_("selected processor does not support ARM opcodes"));
3065
3066 thumb_mode = 0;
3067
3068 if (!need_pass_2)
3069 frag_align (2, 0, 0);
3070
3071 record_alignment (now_seg, 1);
3072 }
3073 break;
3074
3075 default:
3076 as_bad (_("invalid instruction size selected (%d)"), width);
3077 }
3078 }
3079
3080 static void
3081 s_arm (int ignore ATTRIBUTE_UNUSED)
3082 {
3083 opcode_select (32);
3084 demand_empty_rest_of_line ();
3085 }
3086
3087 static void
3088 s_thumb (int ignore ATTRIBUTE_UNUSED)
3089 {
3090 opcode_select (16);
3091 demand_empty_rest_of_line ();
3092 }
3093
3094 static void
3095 s_code (int unused ATTRIBUTE_UNUSED)
3096 {
3097 int temp;
3098
3099 temp = get_absolute_expression ();
3100 switch (temp)
3101 {
3102 case 16:
3103 case 32:
3104 opcode_select (temp);
3105 break;
3106
3107 default:
3108 as_bad (_("invalid operand to .code directive (%d) (expecting 16 or 32)"), temp);
3109 }
3110 }
3111
3112 static void
3113 s_force_thumb (int ignore ATTRIBUTE_UNUSED)
3114 {
3115 /* If we are not already in thumb mode go into it, EVEN if
3116 the target processor does not support thumb instructions.
3117 This is used by gcc/config/arm/lib1funcs.asm for example
3118 to compile interworking support functions even if the
3119 target processor should not support interworking. */
3120 if (! thumb_mode)
3121 {
3122 thumb_mode = 2;
3123 record_alignment (now_seg, 1);
3124 }
3125
3126 demand_empty_rest_of_line ();
3127 }
3128
3129 static void
3130 s_thumb_func (int ignore ATTRIBUTE_UNUSED)
3131 {
3132 s_thumb (0);
3133
3134 /* The following label is the name/address of the start of a Thumb function.
3135 We need to know this for the interworking support. */
3136 label_is_thumb_function_name = TRUE;
3137 }
3138
3139 /* Perform a .set directive, but also mark the alias as
3140 being a thumb function. */
3141
3142 static void
3143 s_thumb_set (int equiv)
3144 {
3145 /* XXX the following is a duplicate of the code for s_set() in read.c
3146 We cannot just call that code as we need to get at the symbol that
3147 is created. */
3148 char * name;
3149 char delim;
3150 char * end_name;
3151 symbolS * symbolP;
3152
3153 /* Especial apologies for the random logic:
3154 This just grew, and could be parsed much more simply!
3155 Dean - in haste. */
3156 delim = get_symbol_name (& name);
3157 end_name = input_line_pointer;
3158 (void) restore_line_pointer (delim);
3159
3160 if (*input_line_pointer != ',')
3161 {
3162 *end_name = 0;
3163 as_bad (_("expected comma after name \"%s\""), name);
3164 *end_name = delim;
3165 ignore_rest_of_line ();
3166 return;
3167 }
3168
3169 input_line_pointer++;
3170 *end_name = 0;
3171
3172 if (name[0] == '.' && name[1] == '\0')
3173 {
3174 /* XXX - this should not happen to .thumb_set. */
3175 abort ();
3176 }
3177
3178 if ((symbolP = symbol_find (name)) == NULL
3179 && (symbolP = md_undefined_symbol (name)) == NULL)
3180 {
3181 #ifndef NO_LISTING
3182 /* When doing symbol listings, play games with dummy fragments living
3183 outside the normal fragment chain to record the file and line info
3184 for this symbol. */
3185 if (listing & LISTING_SYMBOLS)
3186 {
3187 extern struct list_info_struct * listing_tail;
3188 fragS * dummy_frag = (fragS * ) xmalloc (sizeof (fragS));
3189
3190 memset (dummy_frag, 0, sizeof (fragS));
3191 dummy_frag->fr_type = rs_fill;
3192 dummy_frag->line = listing_tail;
3193 symbolP = symbol_new (name, undefined_section, 0, dummy_frag);
3194 dummy_frag->fr_symbol = symbolP;
3195 }
3196 else
3197 #endif
3198 symbolP = symbol_new (name, undefined_section, 0, &zero_address_frag);
3199
3200 #ifdef OBJ_COFF
3201 /* "set" symbols are local unless otherwise specified. */
3202 SF_SET_LOCAL (symbolP);
3203 #endif /* OBJ_COFF */
3204 } /* Make a new symbol. */
3205
3206 symbol_table_insert (symbolP);
3207
3208 * end_name = delim;
3209
3210 if (equiv
3211 && S_IS_DEFINED (symbolP)
3212 && S_GET_SEGMENT (symbolP) != reg_section)
3213 as_bad (_("symbol `%s' already defined"), S_GET_NAME (symbolP));
3214
3215 pseudo_set (symbolP);
3216
3217 demand_empty_rest_of_line ();
3218
3219 /* XXX Now we come to the Thumb specific bit of code. */
3220
3221 THUMB_SET_FUNC (symbolP, 1);
3222 ARM_SET_THUMB (symbolP, 1);
3223 #if defined OBJ_ELF || defined OBJ_COFF
3224 ARM_SET_INTERWORK (symbolP, support_interwork);
3225 #endif
3226 }
3227
3228 /* Directives: Mode selection. */
3229
3230 /* .syntax [unified|divided] - choose the new unified syntax
3231 (same for Arm and Thumb encoding, modulo slight differences in what
3232 can be represented) or the old divergent syntax for each mode. */
3233 static void
3234 s_syntax (int unused ATTRIBUTE_UNUSED)
3235 {
3236 char *name, delim;
3237
3238 delim = get_symbol_name (& name);
3239
3240 if (!strcasecmp (name, "unified"))
3241 unified_syntax = TRUE;
3242 else if (!strcasecmp (name, "divided"))
3243 unified_syntax = FALSE;
3244 else
3245 {
3246 as_bad (_("unrecognized syntax mode \"%s\""), name);
3247 return;
3248 }
3249 (void) restore_line_pointer (delim);
3250 demand_empty_rest_of_line ();
3251 }
3252
3253 /* Directives: sectioning and alignment. */
3254
3255 static void
3256 s_bss (int ignore ATTRIBUTE_UNUSED)
3257 {
3258 /* We don't support putting frags in the BSS segment, we fake it by
3259 marking in_bss, then looking at s_skip for clues. */
3260 subseg_set (bss_section, 0);
3261 demand_empty_rest_of_line ();
3262
3263 #ifdef md_elf_section_change_hook
3264 md_elf_section_change_hook ();
3265 #endif
3266 }
3267
3268 static void
3269 s_even (int ignore ATTRIBUTE_UNUSED)
3270 {
3271 /* Never make frag if expect extra pass. */
3272 if (!need_pass_2)
3273 frag_align (1, 0, 0);
3274
3275 record_alignment (now_seg, 1);
3276
3277 demand_empty_rest_of_line ();
3278 }
3279
3280 /* Directives: CodeComposer Studio. */
3281
3282 /* .ref (for CodeComposer Studio syntax only). */
3283 static void
3284 s_ccs_ref (int unused ATTRIBUTE_UNUSED)
3285 {
3286 if (codecomposer_syntax)
3287 ignore_rest_of_line ();
3288 else
3289 as_bad (_(".ref pseudo-op only available with -mccs flag."));
3290 }
3291
3292 /* If name is not NULL, then it is used for marking the beginning of a
3293 function, whereas if it is NULL then it means the function end. */
3294 static void
3295 asmfunc_debug (const char * name)
3296 {
3297 static const char * last_name = NULL;
3298
3299 if (name != NULL)
3300 {
3301 gas_assert (last_name == NULL);
3302 last_name = name;
3303
3304 if (debug_type == DEBUG_STABS)
3305 stabs_generate_asm_func (name, name);
3306 }
3307 else
3308 {
3309 gas_assert (last_name != NULL);
3310
3311 if (debug_type == DEBUG_STABS)
3312 stabs_generate_asm_endfunc (last_name, last_name);
3313
3314 last_name = NULL;
3315 }
3316 }
3317
3318 static void
3319 s_ccs_asmfunc (int unused ATTRIBUTE_UNUSED)
3320 {
3321 if (codecomposer_syntax)
3322 {
3323 switch (asmfunc_state)
3324 {
3325 case OUTSIDE_ASMFUNC:
3326 asmfunc_state = WAITING_ASMFUNC_NAME;
3327 break;
3328
3329 case WAITING_ASMFUNC_NAME:
3330 as_bad (_(".asmfunc repeated."));
3331 break;
3332
3333 case WAITING_ENDASMFUNC:
3334 as_bad (_(".asmfunc without function."));
3335 break;
3336 }
3337 demand_empty_rest_of_line ();
3338 }
3339 else
3340 as_bad (_(".asmfunc pseudo-op only available with -mccs flag."));
3341 }
3342
3343 static void
3344 s_ccs_endasmfunc (int unused ATTRIBUTE_UNUSED)
3345 {
3346 if (codecomposer_syntax)
3347 {
3348 switch (asmfunc_state)
3349 {
3350 case OUTSIDE_ASMFUNC:
3351 as_bad (_(".endasmfunc without a .asmfunc."));
3352 break;
3353
3354 case WAITING_ASMFUNC_NAME:
3355 as_bad (_(".endasmfunc without function."));
3356 break;
3357
3358 case WAITING_ENDASMFUNC:
3359 asmfunc_state = OUTSIDE_ASMFUNC;
3360 asmfunc_debug (NULL);
3361 break;
3362 }
3363 demand_empty_rest_of_line ();
3364 }
3365 else
3366 as_bad (_(".endasmfunc pseudo-op only available with -mccs flag."));
3367 }
3368
3369 static void
3370 s_ccs_def (int name)
3371 {
3372 if (codecomposer_syntax)
3373 s_globl (name);
3374 else
3375 as_bad (_(".def pseudo-op only available with -mccs flag."));
3376 }
3377
3378 /* Directives: Literal pools. */
3379
3380 static literal_pool *
3381 find_literal_pool (void)
3382 {
3383 literal_pool * pool;
3384
3385 for (pool = list_of_pools; pool != NULL; pool = pool->next)
3386 {
3387 if (pool->section == now_seg
3388 && pool->sub_section == now_subseg)
3389 break;
3390 }
3391
3392 return pool;
3393 }
3394
3395 static literal_pool *
3396 find_or_make_literal_pool (void)
3397 {
3398 /* Next literal pool ID number. */
3399 static unsigned int latest_pool_num = 1;
3400 literal_pool * pool;
3401
3402 pool = find_literal_pool ();
3403
3404 if (pool == NULL)
3405 {
3406 /* Create a new pool. */
3407 pool = XNEW (literal_pool);
3408 if (! pool)
3409 return NULL;
3410
3411 pool->next_free_entry = 0;
3412 pool->section = now_seg;
3413 pool->sub_section = now_subseg;
3414 pool->next = list_of_pools;
3415 pool->symbol = NULL;
3416 pool->alignment = 2;
3417
3418 /* Add it to the list. */
3419 list_of_pools = pool;
3420 }
3421
3422 /* New pools, and emptied pools, will have a NULL symbol. */
3423 if (pool->symbol == NULL)
3424 {
3425 pool->symbol = symbol_create (FAKE_LABEL_NAME, undefined_section,
3426 (valueT) 0, &zero_address_frag);
3427 pool->id = latest_pool_num ++;
3428 }
3429
3430 /* Done. */
3431 return pool;
3432 }
3433
3434 /* Add the literal in the global 'inst'
3435 structure to the relevant literal pool. */
3436
3437 static int
3438 add_to_lit_pool (unsigned int nbytes)
3439 {
3440 #define PADDING_SLOT 0x1
3441 #define LIT_ENTRY_SIZE_MASK 0xFF
3442 literal_pool * pool;
3443 unsigned int entry, pool_size = 0;
3444 bfd_boolean padding_slot_p = FALSE;
3445 unsigned imm1 = 0;
3446 unsigned imm2 = 0;
3447
3448 if (nbytes == 8)
3449 {
3450 imm1 = inst.operands[1].imm;
3451 imm2 = (inst.operands[1].regisimm ? inst.operands[1].reg
3452 : inst.relocs[0].exp.X_unsigned ? 0
3453 : ((bfd_int64_t) inst.operands[1].imm) >> 32);
3454 if (target_big_endian)
3455 {
3456 imm1 = imm2;
3457 imm2 = inst.operands[1].imm;
3458 }
3459 }
3460
3461 pool = find_or_make_literal_pool ();
3462
3463 /* Check if this literal value is already in the pool. */
3464 for (entry = 0; entry < pool->next_free_entry; entry ++)
3465 {
3466 if (nbytes == 4)
3467 {
3468 if ((pool->literals[entry].X_op == inst.relocs[0].exp.X_op)
3469 && (inst.relocs[0].exp.X_op == O_constant)
3470 && (pool->literals[entry].X_add_number
3471 == inst.relocs[0].exp.X_add_number)
3472 && (pool->literals[entry].X_md == nbytes)
3473 && (pool->literals[entry].X_unsigned
3474 == inst.relocs[0].exp.X_unsigned))
3475 break;
3476
3477 if ((pool->literals[entry].X_op == inst.relocs[0].exp.X_op)
3478 && (inst.relocs[0].exp.X_op == O_symbol)
3479 && (pool->literals[entry].X_add_number
3480 == inst.relocs[0].exp.X_add_number)
3481 && (pool->literals[entry].X_add_symbol
3482 == inst.relocs[0].exp.X_add_symbol)
3483 && (pool->literals[entry].X_op_symbol
3484 == inst.relocs[0].exp.X_op_symbol)
3485 && (pool->literals[entry].X_md == nbytes))
3486 break;
3487 }
3488 else if ((nbytes == 8)
3489 && !(pool_size & 0x7)
3490 && ((entry + 1) != pool->next_free_entry)
3491 && (pool->literals[entry].X_op == O_constant)
3492 && (pool->literals[entry].X_add_number == (offsetT) imm1)
3493 && (pool->literals[entry].X_unsigned
3494 == inst.relocs[0].exp.X_unsigned)
3495 && (pool->literals[entry + 1].X_op == O_constant)
3496 && (pool->literals[entry + 1].X_add_number == (offsetT) imm2)
3497 && (pool->literals[entry + 1].X_unsigned
3498 == inst.relocs[0].exp.X_unsigned))
3499 break;
3500
3501 padding_slot_p = ((pool->literals[entry].X_md >> 8) == PADDING_SLOT);
3502 if (padding_slot_p && (nbytes == 4))
3503 break;
3504
3505 pool_size += 4;
3506 }
3507
3508 /* Do we need to create a new entry? */
3509 if (entry == pool->next_free_entry)
3510 {
3511 if (entry >= MAX_LITERAL_POOL_SIZE)
3512 {
3513 inst.error = _("literal pool overflow");
3514 return FAIL;
3515 }
3516
3517 if (nbytes == 8)
3518 {
3519 /* For 8-byte entries, we align to an 8-byte boundary,
3520 and split it into two 4-byte entries, because on 32-bit
3521 host, 8-byte constants are treated as big num, thus
3522 saved in "generic_bignum" which will be overwritten
3523 by later assignments.
3524
3525 We also need to make sure there is enough space for
3526 the split.
3527
3528 We also check to make sure the literal operand is a
3529 constant number. */
3530 if (!(inst.relocs[0].exp.X_op == O_constant
3531 || inst.relocs[0].exp.X_op == O_big))
3532 {
3533 inst.error = _("invalid type for literal pool");
3534 return FAIL;
3535 }
3536 else if (pool_size & 0x7)
3537 {
3538 if ((entry + 2) >= MAX_LITERAL_POOL_SIZE)
3539 {
3540 inst.error = _("literal pool overflow");
3541 return FAIL;
3542 }
3543
3544 pool->literals[entry] = inst.relocs[0].exp;
3545 pool->literals[entry].X_op = O_constant;
3546 pool->literals[entry].X_add_number = 0;
3547 pool->literals[entry++].X_md = (PADDING_SLOT << 8) | 4;
3548 pool->next_free_entry += 1;
3549 pool_size += 4;
3550 }
3551 else if ((entry + 1) >= MAX_LITERAL_POOL_SIZE)
3552 {
3553 inst.error = _("literal pool overflow");
3554 return FAIL;
3555 }
3556
3557 pool->literals[entry] = inst.relocs[0].exp;
3558 pool->literals[entry].X_op = O_constant;
3559 pool->literals[entry].X_add_number = imm1;
3560 pool->literals[entry].X_unsigned = inst.relocs[0].exp.X_unsigned;
3561 pool->literals[entry++].X_md = 4;
3562 pool->literals[entry] = inst.relocs[0].exp;
3563 pool->literals[entry].X_op = O_constant;
3564 pool->literals[entry].X_add_number = imm2;
3565 pool->literals[entry].X_unsigned = inst.relocs[0].exp.X_unsigned;
3566 pool->literals[entry].X_md = 4;
3567 pool->alignment = 3;
3568 pool->next_free_entry += 1;
3569 }
3570 else
3571 {
3572 pool->literals[entry] = inst.relocs[0].exp;
3573 pool->literals[entry].X_md = 4;
3574 }
3575
3576 #ifdef OBJ_ELF
3577 /* PR ld/12974: Record the location of the first source line to reference
3578 this entry in the literal pool. If it turns out during linking that the
3579 symbol does not exist we will be able to give an accurate line number for
3580 the (first use of the) missing reference. */
3581 if (debug_type == DEBUG_DWARF2)
3582 dwarf2_where (pool->locs + entry);
3583 #endif
3584 pool->next_free_entry += 1;
3585 }
3586 else if (padding_slot_p)
3587 {
3588 pool->literals[entry] = inst.relocs[0].exp;
3589 pool->literals[entry].X_md = nbytes;
3590 }
3591
3592 inst.relocs[0].exp.X_op = O_symbol;
3593 inst.relocs[0].exp.X_add_number = pool_size;
3594 inst.relocs[0].exp.X_add_symbol = pool->symbol;
3595
3596 return SUCCESS;
3597 }
3598
3599 bfd_boolean
3600 tc_start_label_without_colon (void)
3601 {
3602 bfd_boolean ret = TRUE;
3603
3604 if (codecomposer_syntax && asmfunc_state == WAITING_ASMFUNC_NAME)
3605 {
3606 const char *label = input_line_pointer;
3607
3608 while (!is_end_of_line[(int) label[-1]])
3609 --label;
3610
3611 if (*label == '.')
3612 {
3613 as_bad (_("Invalid label '%s'"), label);
3614 ret = FALSE;
3615 }
3616
3617 asmfunc_debug (label);
3618
3619 asmfunc_state = WAITING_ENDASMFUNC;
3620 }
3621
3622 return ret;
3623 }
3624
3625 /* Can't use symbol_new here, so have to create a symbol and then at
3626 a later date assign it a value. That's what these functions do. */
3627
3628 static void
3629 symbol_locate (symbolS * symbolP,
3630 const char * name, /* It is copied, the caller can modify. */
3631 segT segment, /* Segment identifier (SEG_<something>). */
3632 valueT valu, /* Symbol value. */
3633 fragS * frag) /* Associated fragment. */
3634 {
3635 size_t name_length;
3636 char * preserved_copy_of_name;
3637
3638 name_length = strlen (name) + 1; /* +1 for \0. */
3639 obstack_grow (&notes, name, name_length);
3640 preserved_copy_of_name = (char *) obstack_finish (&notes);
3641
3642 #ifdef tc_canonicalize_symbol_name
3643 preserved_copy_of_name =
3644 tc_canonicalize_symbol_name (preserved_copy_of_name);
3645 #endif
3646
3647 S_SET_NAME (symbolP, preserved_copy_of_name);
3648
3649 S_SET_SEGMENT (symbolP, segment);
3650 S_SET_VALUE (symbolP, valu);
3651 symbol_clear_list_pointers (symbolP);
3652
3653 symbol_set_frag (symbolP, frag);
3654
3655 /* Link to end of symbol chain. */
3656 {
3657 extern int symbol_table_frozen;
3658
3659 if (symbol_table_frozen)
3660 abort ();
3661 }
3662
3663 symbol_append (symbolP, symbol_lastP, & symbol_rootP, & symbol_lastP);
3664
3665 obj_symbol_new_hook (symbolP);
3666
3667 #ifdef tc_symbol_new_hook
3668 tc_symbol_new_hook (symbolP);
3669 #endif
3670
3671 #ifdef DEBUG_SYMS
3672 verify_symbol_chain (symbol_rootP, symbol_lastP);
3673 #endif /* DEBUG_SYMS */
3674 }
3675
3676 static void
3677 s_ltorg (int ignored ATTRIBUTE_UNUSED)
3678 {
3679 unsigned int entry;
3680 literal_pool * pool;
3681 char sym_name[20];
3682
3683 pool = find_literal_pool ();
3684 if (pool == NULL
3685 || pool->symbol == NULL
3686 || pool->next_free_entry == 0)
3687 return;
3688
3689 /* Align pool as you have word accesses.
3690 Only make a frag if we have to. */
3691 if (!need_pass_2)
3692 frag_align (pool->alignment, 0, 0);
3693
3694 record_alignment (now_seg, 2);
3695
3696 #ifdef OBJ_ELF
3697 seg_info (now_seg)->tc_segment_info_data.mapstate = MAP_DATA;
3698 make_mapping_symbol (MAP_DATA, (valueT) frag_now_fix (), frag_now);
3699 #endif
3700 sprintf (sym_name, "$$lit_\002%x", pool->id);
3701
3702 symbol_locate (pool->symbol, sym_name, now_seg,
3703 (valueT) frag_now_fix (), frag_now);
3704 symbol_table_insert (pool->symbol);
3705
3706 ARM_SET_THUMB (pool->symbol, thumb_mode);
3707
3708 #if defined OBJ_COFF || defined OBJ_ELF
3709 ARM_SET_INTERWORK (pool->symbol, support_interwork);
3710 #endif
3711
3712 for (entry = 0; entry < pool->next_free_entry; entry ++)
3713 {
3714 #ifdef OBJ_ELF
3715 if (debug_type == DEBUG_DWARF2)
3716 dwarf2_gen_line_info (frag_now_fix (), pool->locs + entry);
3717 #endif
3718 /* First output the expression in the instruction to the pool. */
3719 emit_expr (&(pool->literals[entry]),
3720 pool->literals[entry].X_md & LIT_ENTRY_SIZE_MASK);
3721 }
3722
3723 /* Mark the pool as empty. */
3724 pool->next_free_entry = 0;
3725 pool->symbol = NULL;
3726 }
3727
3728 #ifdef OBJ_ELF
3729 /* Forward declarations for functions below, in the MD interface
3730 section. */
3731 static void fix_new_arm (fragS *, int, short, expressionS *, int, int);
3732 static valueT create_unwind_entry (int);
3733 static void start_unwind_section (const segT, int);
3734 static void add_unwind_opcode (valueT, int);
3735 static void flush_pending_unwind (void);
3736
3737 /* Directives: Data. */
3738
3739 static void
3740 s_arm_elf_cons (int nbytes)
3741 {
3742 expressionS exp;
3743
3744 #ifdef md_flush_pending_output
3745 md_flush_pending_output ();
3746 #endif
3747
3748 if (is_it_end_of_statement ())
3749 {
3750 demand_empty_rest_of_line ();
3751 return;
3752 }
3753
3754 #ifdef md_cons_align
3755 md_cons_align (nbytes);
3756 #endif
3757
3758 mapping_state (MAP_DATA);
3759 do
3760 {
3761 int reloc;
3762 char *base = input_line_pointer;
3763
3764 expression (& exp);
3765
3766 if (exp.X_op != O_symbol)
3767 emit_expr (&exp, (unsigned int) nbytes);
3768 else
3769 {
3770 char *before_reloc = input_line_pointer;
3771 reloc = parse_reloc (&input_line_pointer);
3772 if (reloc == -1)
3773 {
3774 as_bad (_("unrecognized relocation suffix"));
3775 ignore_rest_of_line ();
3776 return;
3777 }
3778 else if (reloc == BFD_RELOC_UNUSED)
3779 emit_expr (&exp, (unsigned int) nbytes);
3780 else
3781 {
3782 reloc_howto_type *howto = (reloc_howto_type *)
3783 bfd_reloc_type_lookup (stdoutput,
3784 (bfd_reloc_code_real_type) reloc);
3785 int size = bfd_get_reloc_size (howto);
3786
3787 if (reloc == BFD_RELOC_ARM_PLT32)
3788 {
3789 as_bad (_("(plt) is only valid on branch targets"));
3790 reloc = BFD_RELOC_UNUSED;
3791 size = 0;
3792 }
3793
3794 if (size > nbytes)
3795 as_bad (ngettext ("%s relocations do not fit in %d byte",
3796 "%s relocations do not fit in %d bytes",
3797 nbytes),
3798 howto->name, nbytes);
3799 else
3800 {
3801 /* We've parsed an expression stopping at O_symbol.
3802 But there may be more expression left now that we
3803 have parsed the relocation marker. Parse it again.
3804 XXX Surely there is a cleaner way to do this. */
3805 char *p = input_line_pointer;
3806 int offset;
3807 char *save_buf = XNEWVEC (char, input_line_pointer - base);
3808
3809 memcpy (save_buf, base, input_line_pointer - base);
3810 memmove (base + (input_line_pointer - before_reloc),
3811 base, before_reloc - base);
3812
3813 input_line_pointer = base + (input_line_pointer-before_reloc);
3814 expression (&exp);
3815 memcpy (base, save_buf, p - base);
3816
3817 offset = nbytes - size;
3818 p = frag_more (nbytes);
3819 memset (p, 0, nbytes);
3820 fix_new_exp (frag_now, p - frag_now->fr_literal + offset,
3821 size, &exp, 0, (enum bfd_reloc_code_real) reloc);
3822 free (save_buf);
3823 }
3824 }
3825 }
3826 }
3827 while (*input_line_pointer++ == ',');
3828
3829 /* Put terminator back into stream. */
3830 input_line_pointer --;
3831 demand_empty_rest_of_line ();
3832 }
3833
3834 /* Emit an expression containing a 32-bit thumb instruction.
3835 Implementation based on put_thumb32_insn. */
3836
3837 static void
3838 emit_thumb32_expr (expressionS * exp)
3839 {
3840 expressionS exp_high = *exp;
3841
3842 exp_high.X_add_number = (unsigned long)exp_high.X_add_number >> 16;
3843 emit_expr (& exp_high, (unsigned int) THUMB_SIZE);
3844 exp->X_add_number &= 0xffff;
3845 emit_expr (exp, (unsigned int) THUMB_SIZE);
3846 }
3847
3848 /* Guess the instruction size based on the opcode. */
3849
3850 static int
3851 thumb_insn_size (int opcode)
3852 {
3853 if ((unsigned int) opcode < 0xe800u)
3854 return 2;
3855 else if ((unsigned int) opcode >= 0xe8000000u)
3856 return 4;
3857 else
3858 return 0;
3859 }
3860
3861 static bfd_boolean
3862 emit_insn (expressionS *exp, int nbytes)
3863 {
3864 int size = 0;
3865
3866 if (exp->X_op == O_constant)
3867 {
3868 size = nbytes;
3869
3870 if (size == 0)
3871 size = thumb_insn_size (exp->X_add_number);
3872
3873 if (size != 0)
3874 {
3875 if (size == 2 && (unsigned int)exp->X_add_number > 0xffffu)
3876 {
3877 as_bad (_(".inst.n operand too big. "\
3878 "Use .inst.w instead"));
3879 size = 0;
3880 }
3881 else
3882 {
3883 if (now_pred.state == AUTOMATIC_PRED_BLOCK)
3884 set_pred_insn_type_nonvoid (OUTSIDE_PRED_INSN, 0);
3885 else
3886 set_pred_insn_type_nonvoid (NEUTRAL_IT_INSN, 0);
3887
3888 if (thumb_mode && (size > THUMB_SIZE) && !target_big_endian)
3889 emit_thumb32_expr (exp);
3890 else
3891 emit_expr (exp, (unsigned int) size);
3892
3893 it_fsm_post_encode ();
3894 }
3895 }
3896 else
3897 as_bad (_("cannot determine Thumb instruction size. " \
3898 "Use .inst.n/.inst.w instead"));
3899 }
3900 else
3901 as_bad (_("constant expression required"));
3902
3903 return (size != 0);
3904 }
3905
3906 /* Like s_arm_elf_cons but do not use md_cons_align and
3907 set the mapping state to MAP_ARM/MAP_THUMB. */
3908
3909 static void
3910 s_arm_elf_inst (int nbytes)
3911 {
3912 if (is_it_end_of_statement ())
3913 {
3914 demand_empty_rest_of_line ();
3915 return;
3916 }
3917
3918 /* Calling mapping_state () here will not change ARM/THUMB,
3919 but will ensure not to be in DATA state. */
3920
3921 if (thumb_mode)
3922 mapping_state (MAP_THUMB);
3923 else
3924 {
3925 if (nbytes != 0)
3926 {
3927 as_bad (_("width suffixes are invalid in ARM mode"));
3928 ignore_rest_of_line ();
3929 return;
3930 }
3931
3932 nbytes = 4;
3933
3934 mapping_state (MAP_ARM);
3935 }
3936
3937 do
3938 {
3939 expressionS exp;
3940
3941 expression (& exp);
3942
3943 if (! emit_insn (& exp, nbytes))
3944 {
3945 ignore_rest_of_line ();
3946 return;
3947 }
3948 }
3949 while (*input_line_pointer++ == ',');
3950
3951 /* Put terminator back into stream. */
3952 input_line_pointer --;
3953 demand_empty_rest_of_line ();
3954 }
3955
3956 /* Parse a .rel31 directive. */
3957
3958 static void
3959 s_arm_rel31 (int ignored ATTRIBUTE_UNUSED)
3960 {
3961 expressionS exp;
3962 char *p;
3963 valueT highbit;
3964
3965 highbit = 0;
3966 if (*input_line_pointer == '1')
3967 highbit = 0x80000000;
3968 else if (*input_line_pointer != '0')
3969 as_bad (_("expected 0 or 1"));
3970
3971 input_line_pointer++;
3972 if (*input_line_pointer != ',')
3973 as_bad (_("missing comma"));
3974 input_line_pointer++;
3975
3976 #ifdef md_flush_pending_output
3977 md_flush_pending_output ();
3978 #endif
3979
3980 #ifdef md_cons_align
3981 md_cons_align (4);
3982 #endif
3983
3984 mapping_state (MAP_DATA);
3985
3986 expression (&exp);
3987
3988 p = frag_more (4);
3989 md_number_to_chars (p, highbit, 4);
3990 fix_new_arm (frag_now, p - frag_now->fr_literal, 4, &exp, 1,
3991 BFD_RELOC_ARM_PREL31);
3992
3993 demand_empty_rest_of_line ();
3994 }
3995
3996 /* Directives: AEABI stack-unwind tables. */
3997
3998 /* Parse an unwind_fnstart directive. Simply records the current location. */
3999
4000 static void
4001 s_arm_unwind_fnstart (int ignored ATTRIBUTE_UNUSED)
4002 {
4003 demand_empty_rest_of_line ();
4004 if (unwind.proc_start)
4005 {
4006 as_bad (_("duplicate .fnstart directive"));
4007 return;
4008 }
4009
4010 /* Mark the start of the function. */
4011 unwind.proc_start = expr_build_dot ();
4012
4013 /* Reset the rest of the unwind info. */
4014 unwind.opcode_count = 0;
4015 unwind.table_entry = NULL;
4016 unwind.personality_routine = NULL;
4017 unwind.personality_index = -1;
4018 unwind.frame_size = 0;
4019 unwind.fp_offset = 0;
4020 unwind.fp_reg = REG_SP;
4021 unwind.fp_used = 0;
4022 unwind.sp_restored = 0;
4023 }
4024
4025
4026 /* Parse a handlerdata directive. Creates the exception handling table entry
4027 for the function. */
4028
4029 static void
4030 s_arm_unwind_handlerdata (int ignored ATTRIBUTE_UNUSED)
4031 {
4032 demand_empty_rest_of_line ();
4033 if (!unwind.proc_start)
4034 as_bad (MISSING_FNSTART);
4035
4036 if (unwind.table_entry)
4037 as_bad (_("duplicate .handlerdata directive"));
4038
4039 create_unwind_entry (1);
4040 }
4041
4042 /* Parse an unwind_fnend directive. Generates the index table entry. */
4043
4044 static void
4045 s_arm_unwind_fnend (int ignored ATTRIBUTE_UNUSED)
4046 {
4047 long where;
4048 char *ptr;
4049 valueT val;
4050 unsigned int marked_pr_dependency;
4051
4052 demand_empty_rest_of_line ();
4053
4054 if (!unwind.proc_start)
4055 {
4056 as_bad (_(".fnend directive without .fnstart"));
4057 return;
4058 }
4059
4060 /* Add eh table entry. */
4061 if (unwind.table_entry == NULL)
4062 val = create_unwind_entry (0);
4063 else
4064 val = 0;
4065
4066 /* Add index table entry. This is two words. */
4067 start_unwind_section (unwind.saved_seg, 1);
4068 frag_align (2, 0, 0);
4069 record_alignment (now_seg, 2);
4070
4071 ptr = frag_more (8);
4072 memset (ptr, 0, 8);
4073 where = frag_now_fix () - 8;
4074
4075 /* Self relative offset of the function start. */
4076 fix_new (frag_now, where, 4, unwind.proc_start, 0, 1,
4077 BFD_RELOC_ARM_PREL31);
4078
4079 /* Indicate dependency on EHABI-defined personality routines to the
4080 linker, if it hasn't been done already. */
4081 marked_pr_dependency
4082 = seg_info (now_seg)->tc_segment_info_data.marked_pr_dependency;
4083 if (unwind.personality_index >= 0 && unwind.personality_index < 3
4084 && !(marked_pr_dependency & (1 << unwind.personality_index)))
4085 {
4086 static const char *const name[] =
4087 {
4088 "__aeabi_unwind_cpp_pr0",
4089 "__aeabi_unwind_cpp_pr1",
4090 "__aeabi_unwind_cpp_pr2"
4091 };
4092 symbolS *pr = symbol_find_or_make (name[unwind.personality_index]);
4093 fix_new (frag_now, where, 0, pr, 0, 1, BFD_RELOC_NONE);
4094 seg_info (now_seg)->tc_segment_info_data.marked_pr_dependency
4095 |= 1 << unwind.personality_index;
4096 }
4097
4098 if (val)
4099 /* Inline exception table entry. */
4100 md_number_to_chars (ptr + 4, val, 4);
4101 else
4102 /* Self relative offset of the table entry. */
4103 fix_new (frag_now, where + 4, 4, unwind.table_entry, 0, 1,
4104 BFD_RELOC_ARM_PREL31);
4105
4106 /* Restore the original section. */
4107 subseg_set (unwind.saved_seg, unwind.saved_subseg);
4108
4109 unwind.proc_start = NULL;
4110 }
4111
4112
4113 /* Parse an unwind_cantunwind directive. */
4114
4115 static void
4116 s_arm_unwind_cantunwind (int ignored ATTRIBUTE_UNUSED)
4117 {
4118 demand_empty_rest_of_line ();
4119 if (!unwind.proc_start)
4120 as_bad (MISSING_FNSTART);
4121
4122 if (unwind.personality_routine || unwind.personality_index != -1)
4123 as_bad (_("personality routine specified for cantunwind frame"));
4124
4125 unwind.personality_index = -2;
4126 }
4127
4128
4129 /* Parse a personalityindex directive. */
4130
4131 static void
4132 s_arm_unwind_personalityindex (int ignored ATTRIBUTE_UNUSED)
4133 {
4134 expressionS exp;
4135
4136 if (!unwind.proc_start)
4137 as_bad (MISSING_FNSTART);
4138
4139 if (unwind.personality_routine || unwind.personality_index != -1)
4140 as_bad (_("duplicate .personalityindex directive"));
4141
4142 expression (&exp);
4143
4144 if (exp.X_op != O_constant
4145 || exp.X_add_number < 0 || exp.X_add_number > 15)
4146 {
4147 as_bad (_("bad personality routine number"));
4148 ignore_rest_of_line ();
4149 return;
4150 }
4151
4152 unwind.personality_index = exp.X_add_number;
4153
4154 demand_empty_rest_of_line ();
4155 }
4156
4157
4158 /* Parse a personality directive. */
4159
4160 static void
4161 s_arm_unwind_personality (int ignored ATTRIBUTE_UNUSED)
4162 {
4163 char *name, *p, c;
4164
4165 if (!unwind.proc_start)
4166 as_bad (MISSING_FNSTART);
4167
4168 if (unwind.personality_routine || unwind.personality_index != -1)
4169 as_bad (_("duplicate .personality directive"));
4170
4171 c = get_symbol_name (& name);
4172 p = input_line_pointer;
4173 if (c == '"')
4174 ++ input_line_pointer;
4175 unwind.personality_routine = symbol_find_or_make (name);
4176 *p = c;
4177 demand_empty_rest_of_line ();
4178 }
4179
4180
4181 /* Parse a directive saving core registers. */
4182
4183 static void
4184 s_arm_unwind_save_core (void)
4185 {
4186 valueT op;
4187 long range;
4188 int n;
4189
4190 range = parse_reg_list (&input_line_pointer, REGLIST_RN);
4191 if (range == FAIL)
4192 {
4193 as_bad (_("expected register list"));
4194 ignore_rest_of_line ();
4195 return;
4196 }
4197
4198 demand_empty_rest_of_line ();
4199
4200 /* Turn .unwind_movsp ip followed by .unwind_save {..., ip, ...}
4201 into .unwind_save {..., sp...}. We aren't bothered about the value of
4202 ip because it is clobbered by calls. */
4203 if (unwind.sp_restored && unwind.fp_reg == 12
4204 && (range & 0x3000) == 0x1000)
4205 {
4206 unwind.opcode_count--;
4207 unwind.sp_restored = 0;
4208 range = (range | 0x2000) & ~0x1000;
4209 unwind.pending_offset = 0;
4210 }
4211
4212 /* Pop r4-r15. */
4213 if (range & 0xfff0)
4214 {
4215 /* See if we can use the short opcodes. These pop a block of up to 8
4216 registers starting with r4, plus maybe r14. */
4217 for (n = 0; n < 8; n++)
4218 {
4219 /* Break at the first non-saved register. */
4220 if ((range & (1 << (n + 4))) == 0)
4221 break;
4222 }
4223 /* See if there are any other bits set. */
4224 if (n == 0 || (range & (0xfff0 << n) & 0xbff0) != 0)
4225 {
4226 /* Use the long form. */
4227 op = 0x8000 | ((range >> 4) & 0xfff);
4228 add_unwind_opcode (op, 2);
4229 }
4230 else
4231 {
4232 /* Use the short form. */
4233 if (range & 0x4000)
4234 op = 0xa8; /* Pop r14. */
4235 else
4236 op = 0xa0; /* Do not pop r14. */
4237 op |= (n - 1);
4238 add_unwind_opcode (op, 1);
4239 }
4240 }
4241
4242 /* Pop r0-r3. */
4243 if (range & 0xf)
4244 {
4245 op = 0xb100 | (range & 0xf);
4246 add_unwind_opcode (op, 2);
4247 }
4248
4249 /* Record the number of bytes pushed. */
4250 for (n = 0; n < 16; n++)
4251 {
4252 if (range & (1 << n))
4253 unwind.frame_size += 4;
4254 }
4255 }
4256
4257
4258 /* Parse a directive saving FPA registers. */
4259
4260 static void
4261 s_arm_unwind_save_fpa (int reg)
4262 {
4263 expressionS exp;
4264 int num_regs;
4265 valueT op;
4266
4267 /* Get Number of registers to transfer. */
4268 if (skip_past_comma (&input_line_pointer) != FAIL)
4269 expression (&exp);
4270 else
4271 exp.X_op = O_illegal;
4272
4273 if (exp.X_op != O_constant)
4274 {
4275 as_bad (_("expected , <constant>"));
4276 ignore_rest_of_line ();
4277 return;
4278 }
4279
4280 num_regs = exp.X_add_number;
4281
4282 if (num_regs < 1 || num_regs > 4)
4283 {
4284 as_bad (_("number of registers must be in the range [1:4]"));
4285 ignore_rest_of_line ();
4286 return;
4287 }
4288
4289 demand_empty_rest_of_line ();
4290
4291 if (reg == 4)
4292 {
4293 /* Short form. */
4294 op = 0xb4 | (num_regs - 1);
4295 add_unwind_opcode (op, 1);
4296 }
4297 else
4298 {
4299 /* Long form. */
4300 op = 0xc800 | (reg << 4) | (num_regs - 1);
4301 add_unwind_opcode (op, 2);
4302 }
4303 unwind.frame_size += num_regs * 12;
4304 }
4305
4306
4307 /* Parse a directive saving VFP registers for ARMv6 and above. */
4308
4309 static void
4310 s_arm_unwind_save_vfp_armv6 (void)
4311 {
4312 int count;
4313 unsigned int start;
4314 valueT op;
4315 int num_vfpv3_regs = 0;
4316 int num_regs_below_16;
4317 bfd_boolean partial_match;
4318
4319 count = parse_vfp_reg_list (&input_line_pointer, &start, REGLIST_VFP_D,
4320 &partial_match);
4321 if (count == FAIL)
4322 {
4323 as_bad (_("expected register list"));
4324 ignore_rest_of_line ();
4325 return;
4326 }
4327
4328 demand_empty_rest_of_line ();
4329
4330 /* We always generate FSTMD/FLDMD-style unwinding opcodes (rather
4331 than FSTMX/FLDMX-style ones). */
4332
4333 /* Generate opcode for (VFPv3) registers numbered in the range 16 .. 31. */
4334 if (start >= 16)
4335 num_vfpv3_regs = count;
4336 else if (start + count > 16)
4337 num_vfpv3_regs = start + count - 16;
4338
4339 if (num_vfpv3_regs > 0)
4340 {
4341 int start_offset = start > 16 ? start - 16 : 0;
4342 op = 0xc800 | (start_offset << 4) | (num_vfpv3_regs - 1);
4343 add_unwind_opcode (op, 2);
4344 }
4345
4346 /* Generate opcode for registers numbered in the range 0 .. 15. */
4347 num_regs_below_16 = num_vfpv3_regs > 0 ? 16 - (int) start : count;
4348 gas_assert (num_regs_below_16 + num_vfpv3_regs == count);
4349 if (num_regs_below_16 > 0)
4350 {
4351 op = 0xc900 | (start << 4) | (num_regs_below_16 - 1);
4352 add_unwind_opcode (op, 2);
4353 }
4354
4355 unwind.frame_size += count * 8;
4356 }
4357
4358
4359 /* Parse a directive saving VFP registers for pre-ARMv6. */
4360
4361 static void
4362 s_arm_unwind_save_vfp (void)
4363 {
4364 int count;
4365 unsigned int reg;
4366 valueT op;
4367 bfd_boolean partial_match;
4368
4369 count = parse_vfp_reg_list (&input_line_pointer, &reg, REGLIST_VFP_D,
4370 &partial_match);
4371 if (count == FAIL)
4372 {
4373 as_bad (_("expected register list"));
4374 ignore_rest_of_line ();
4375 return;
4376 }
4377
4378 demand_empty_rest_of_line ();
4379
4380 if (reg == 8)
4381 {
4382 /* Short form. */
4383 op = 0xb8 | (count - 1);
4384 add_unwind_opcode (op, 1);
4385 }
4386 else
4387 {
4388 /* Long form. */
4389 op = 0xb300 | (reg << 4) | (count - 1);
4390 add_unwind_opcode (op, 2);
4391 }
4392 unwind.frame_size += count * 8 + 4;
4393 }
4394
4395
4396 /* Parse a directive saving iWMMXt data registers. */
4397
4398 static void
4399 s_arm_unwind_save_mmxwr (void)
4400 {
4401 int reg;
4402 int hi_reg;
4403 int i;
4404 unsigned mask = 0;
4405 valueT op;
4406
4407 if (*input_line_pointer == '{')
4408 input_line_pointer++;
4409
4410 do
4411 {
4412 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWR);
4413
4414 if (reg == FAIL)
4415 {
4416 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWR]));
4417 goto error;
4418 }
4419
4420 if (mask >> reg)
4421 as_tsktsk (_("register list not in ascending order"));
4422 mask |= 1 << reg;
4423
4424 if (*input_line_pointer == '-')
4425 {
4426 input_line_pointer++;
4427 hi_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWR);
4428 if (hi_reg == FAIL)
4429 {
4430 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWR]));
4431 goto error;
4432 }
4433 else if (reg >= hi_reg)
4434 {
4435 as_bad (_("bad register range"));
4436 goto error;
4437 }
4438 for (; reg < hi_reg; reg++)
4439 mask |= 1 << reg;
4440 }
4441 }
4442 while (skip_past_comma (&input_line_pointer) != FAIL);
4443
4444 skip_past_char (&input_line_pointer, '}');
4445
4446 demand_empty_rest_of_line ();
4447
4448 /* Generate any deferred opcodes because we're going to be looking at
4449 the list. */
4450 flush_pending_unwind ();
4451
4452 for (i = 0; i < 16; i++)
4453 {
4454 if (mask & (1 << i))
4455 unwind.frame_size += 8;
4456 }
4457
4458 /* Attempt to combine with a previous opcode. We do this because gcc
4459 likes to output separate unwind directives for a single block of
4460 registers. */
4461 if (unwind.opcode_count > 0)
4462 {
4463 i = unwind.opcodes[unwind.opcode_count - 1];
4464 if ((i & 0xf8) == 0xc0)
4465 {
4466 i &= 7;
4467 /* Only merge if the blocks are contiguous. */
4468 if (i < 6)
4469 {
4470 if ((mask & 0xfe00) == (1 << 9))
4471 {
4472 mask |= ((1 << (i + 11)) - 1) & 0xfc00;
4473 unwind.opcode_count--;
4474 }
4475 }
4476 else if (i == 6 && unwind.opcode_count >= 2)
4477 {
4478 i = unwind.opcodes[unwind.opcode_count - 2];
4479 reg = i >> 4;
4480 i &= 0xf;
4481
4482 op = 0xffff << (reg - 1);
4483 if (reg > 0
4484 && ((mask & op) == (1u << (reg - 1))))
4485 {
4486 op = (1 << (reg + i + 1)) - 1;
4487 op &= ~((1 << reg) - 1);
4488 mask |= op;
4489 unwind.opcode_count -= 2;
4490 }
4491 }
4492 }
4493 }
4494
4495 hi_reg = 15;
4496 /* We want to generate opcodes in the order the registers have been
4497 saved, ie. descending order. */
4498 for (reg = 15; reg >= -1; reg--)
4499 {
4500 /* Save registers in blocks. */
4501 if (reg < 0
4502 || !(mask & (1 << reg)))
4503 {
4504 /* We found an unsaved reg. Generate opcodes to save the
4505 preceding block. */
4506 if (reg != hi_reg)
4507 {
4508 if (reg == 9)
4509 {
4510 /* Short form. */
4511 op = 0xc0 | (hi_reg - 10);
4512 add_unwind_opcode (op, 1);
4513 }
4514 else
4515 {
4516 /* Long form. */
4517 op = 0xc600 | ((reg + 1) << 4) | ((hi_reg - reg) - 1);
4518 add_unwind_opcode (op, 2);
4519 }
4520 }
4521 hi_reg = reg - 1;
4522 }
4523 }
4524
4525 return;
4526 error:
4527 ignore_rest_of_line ();
4528 }
4529
4530 static void
4531 s_arm_unwind_save_mmxwcg (void)
4532 {
4533 int reg;
4534 int hi_reg;
4535 unsigned mask = 0;
4536 valueT op;
4537
4538 if (*input_line_pointer == '{')
4539 input_line_pointer++;
4540
4541 skip_whitespace (input_line_pointer);
4542
4543 do
4544 {
4545 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWCG);
4546
4547 if (reg == FAIL)
4548 {
4549 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWCG]));
4550 goto error;
4551 }
4552
4553 reg -= 8;
4554 if (mask >> reg)
4555 as_tsktsk (_("register list not in ascending order"));
4556 mask |= 1 << reg;
4557
4558 if (*input_line_pointer == '-')
4559 {
4560 input_line_pointer++;
4561 hi_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWCG);
4562 if (hi_reg == FAIL)
4563 {
4564 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWCG]));
4565 goto error;
4566 }
4567 else if (reg >= hi_reg)
4568 {
4569 as_bad (_("bad register range"));
4570 goto error;
4571 }
4572 for (; reg < hi_reg; reg++)
4573 mask |= 1 << reg;
4574 }
4575 }
4576 while (skip_past_comma (&input_line_pointer) != FAIL);
4577
4578 skip_past_char (&input_line_pointer, '}');
4579
4580 demand_empty_rest_of_line ();
4581
4582 /* Generate any deferred opcodes because we're going to be looking at
4583 the list. */
4584 flush_pending_unwind ();
4585
4586 for (reg = 0; reg < 16; reg++)
4587 {
4588 if (mask & (1 << reg))
4589 unwind.frame_size += 4;
4590 }
4591 op = 0xc700 | mask;
4592 add_unwind_opcode (op, 2);
4593 return;
4594 error:
4595 ignore_rest_of_line ();
4596 }
4597
4598
4599 /* Parse an unwind_save directive.
4600 If the argument is non-zero, this is a .vsave directive. */
4601
4602 static void
4603 s_arm_unwind_save (int arch_v6)
4604 {
4605 char *peek;
4606 struct reg_entry *reg;
4607 bfd_boolean had_brace = FALSE;
4608
4609 if (!unwind.proc_start)
4610 as_bad (MISSING_FNSTART);
4611
4612 /* Figure out what sort of save we have. */
4613 peek = input_line_pointer;
4614
4615 if (*peek == '{')
4616 {
4617 had_brace = TRUE;
4618 peek++;
4619 }
4620
4621 reg = arm_reg_parse_multi (&peek);
4622
4623 if (!reg)
4624 {
4625 as_bad (_("register expected"));
4626 ignore_rest_of_line ();
4627 return;
4628 }
4629
4630 switch (reg->type)
4631 {
4632 case REG_TYPE_FN:
4633 if (had_brace)
4634 {
4635 as_bad (_("FPA .unwind_save does not take a register list"));
4636 ignore_rest_of_line ();
4637 return;
4638 }
4639 input_line_pointer = peek;
4640 s_arm_unwind_save_fpa (reg->number);
4641 return;
4642
4643 case REG_TYPE_RN:
4644 s_arm_unwind_save_core ();
4645 return;
4646
4647 case REG_TYPE_VFD:
4648 if (arch_v6)
4649 s_arm_unwind_save_vfp_armv6 ();
4650 else
4651 s_arm_unwind_save_vfp ();
4652 return;
4653
4654 case REG_TYPE_MMXWR:
4655 s_arm_unwind_save_mmxwr ();
4656 return;
4657
4658 case REG_TYPE_MMXWCG:
4659 s_arm_unwind_save_mmxwcg ();
4660 return;
4661
4662 default:
4663 as_bad (_(".unwind_save does not support this kind of register"));
4664 ignore_rest_of_line ();
4665 }
4666 }
4667
4668
4669 /* Parse an unwind_movsp directive. */
4670
4671 static void
4672 s_arm_unwind_movsp (int ignored ATTRIBUTE_UNUSED)
4673 {
4674 int reg;
4675 valueT op;
4676 int offset;
4677
4678 if (!unwind.proc_start)
4679 as_bad (MISSING_FNSTART);
4680
4681 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
4682 if (reg == FAIL)
4683 {
4684 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_RN]));
4685 ignore_rest_of_line ();
4686 return;
4687 }
4688
4689 /* Optional constant. */
4690 if (skip_past_comma (&input_line_pointer) != FAIL)
4691 {
4692 if (immediate_for_directive (&offset) == FAIL)
4693 return;
4694 }
4695 else
4696 offset = 0;
4697
4698 demand_empty_rest_of_line ();
4699
4700 if (reg == REG_SP || reg == REG_PC)
4701 {
4702 as_bad (_("SP and PC not permitted in .unwind_movsp directive"));
4703 return;
4704 }
4705
4706 if (unwind.fp_reg != REG_SP)
4707 as_bad (_("unexpected .unwind_movsp directive"));
4708
4709 /* Generate opcode to restore the value. */
4710 op = 0x90 | reg;
4711 add_unwind_opcode (op, 1);
4712
4713 /* Record the information for later. */
4714 unwind.fp_reg = reg;
4715 unwind.fp_offset = unwind.frame_size - offset;
4716 unwind.sp_restored = 1;
4717 }
4718
4719 /* Parse an unwind_pad directive. */
4720
4721 static void
4722 s_arm_unwind_pad (int ignored ATTRIBUTE_UNUSED)
4723 {
4724 int offset;
4725
4726 if (!unwind.proc_start)
4727 as_bad (MISSING_FNSTART);
4728
4729 if (immediate_for_directive (&offset) == FAIL)
4730 return;
4731
4732 if (offset & 3)
4733 {
4734 as_bad (_("stack increment must be multiple of 4"));
4735 ignore_rest_of_line ();
4736 return;
4737 }
4738
4739 /* Don't generate any opcodes, just record the details for later. */
4740 unwind.frame_size += offset;
4741 unwind.pending_offset += offset;
4742
4743 demand_empty_rest_of_line ();
4744 }
4745
4746 /* Parse an unwind_setfp directive. */
4747
4748 static void
4749 s_arm_unwind_setfp (int ignored ATTRIBUTE_UNUSED)
4750 {
4751 int sp_reg;
4752 int fp_reg;
4753 int offset;
4754
4755 if (!unwind.proc_start)
4756 as_bad (MISSING_FNSTART);
4757
4758 fp_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
4759 if (skip_past_comma (&input_line_pointer) == FAIL)
4760 sp_reg = FAIL;
4761 else
4762 sp_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
4763
4764 if (fp_reg == FAIL || sp_reg == FAIL)
4765 {
4766 as_bad (_("expected <reg>, <reg>"));
4767 ignore_rest_of_line ();
4768 return;
4769 }
4770
4771 /* Optional constant. */
4772 if (skip_past_comma (&input_line_pointer) != FAIL)
4773 {
4774 if (immediate_for_directive (&offset) == FAIL)
4775 return;
4776 }
4777 else
4778 offset = 0;
4779
4780 demand_empty_rest_of_line ();
4781
4782 if (sp_reg != REG_SP && sp_reg != unwind.fp_reg)
4783 {
4784 as_bad (_("register must be either sp or set by a previous"
4785 "unwind_movsp directive"));
4786 return;
4787 }
4788
4789 /* Don't generate any opcodes, just record the information for later. */
4790 unwind.fp_reg = fp_reg;
4791 unwind.fp_used = 1;
4792 if (sp_reg == REG_SP)
4793 unwind.fp_offset = unwind.frame_size - offset;
4794 else
4795 unwind.fp_offset -= offset;
4796 }
4797
4798 /* Parse an unwind_raw directive. */
4799
4800 static void
4801 s_arm_unwind_raw (int ignored ATTRIBUTE_UNUSED)
4802 {
4803 expressionS exp;
4804 /* This is an arbitrary limit. */
4805 unsigned char op[16];
4806 int count;
4807
4808 if (!unwind.proc_start)
4809 as_bad (MISSING_FNSTART);
4810
4811 expression (&exp);
4812 if (exp.X_op == O_constant
4813 && skip_past_comma (&input_line_pointer) != FAIL)
4814 {
4815 unwind.frame_size += exp.X_add_number;
4816 expression (&exp);
4817 }
4818 else
4819 exp.X_op = O_illegal;
4820
4821 if (exp.X_op != O_constant)
4822 {
4823 as_bad (_("expected <offset>, <opcode>"));
4824 ignore_rest_of_line ();
4825 return;
4826 }
4827
4828 count = 0;
4829
4830 /* Parse the opcode. */
4831 for (;;)
4832 {
4833 if (count >= 16)
4834 {
4835 as_bad (_("unwind opcode too long"));
4836 ignore_rest_of_line ();
4837 }
4838 if (exp.X_op != O_constant || exp.X_add_number & ~0xff)
4839 {
4840 as_bad (_("invalid unwind opcode"));
4841 ignore_rest_of_line ();
4842 return;
4843 }
4844 op[count++] = exp.X_add_number;
4845
4846 /* Parse the next byte. */
4847 if (skip_past_comma (&input_line_pointer) == FAIL)
4848 break;
4849
4850 expression (&exp);
4851 }
4852
4853 /* Add the opcode bytes in reverse order. */
4854 while (count--)
4855 add_unwind_opcode (op[count], 1);
4856
4857 demand_empty_rest_of_line ();
4858 }
4859
4860
4861 /* Parse a .eabi_attribute directive. */
4862
4863 static void
4864 s_arm_eabi_attribute (int ignored ATTRIBUTE_UNUSED)
4865 {
4866 int tag = obj_elf_vendor_attribute (OBJ_ATTR_PROC);
4867
4868 if (tag >= 0 && tag < NUM_KNOWN_OBJ_ATTRIBUTES)
4869 attributes_set_explicitly[tag] = 1;
4870 }
4871
4872 /* Emit a tls fix for the symbol. */
4873
4874 static void
4875 s_arm_tls_descseq (int ignored ATTRIBUTE_UNUSED)
4876 {
4877 char *p;
4878 expressionS exp;
4879 #ifdef md_flush_pending_output
4880 md_flush_pending_output ();
4881 #endif
4882
4883 #ifdef md_cons_align
4884 md_cons_align (4);
4885 #endif
4886
4887 /* Since we're just labelling the code, there's no need to define a
4888 mapping symbol. */
4889 expression (&exp);
4890 p = obstack_next_free (&frchain_now->frch_obstack);
4891 fix_new_arm (frag_now, p - frag_now->fr_literal, 4, &exp, 0,
4892 thumb_mode ? BFD_RELOC_ARM_THM_TLS_DESCSEQ
4893 : BFD_RELOC_ARM_TLS_DESCSEQ);
4894 }
4895 #endif /* OBJ_ELF */
4896
4897 static void s_arm_arch (int);
4898 static void s_arm_object_arch (int);
4899 static void s_arm_cpu (int);
4900 static void s_arm_fpu (int);
4901 static void s_arm_arch_extension (int);
4902
4903 #ifdef TE_PE
4904
4905 static void
4906 pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
4907 {
4908 expressionS exp;
4909
4910 do
4911 {
4912 expression (&exp);
4913 if (exp.X_op == O_symbol)
4914 exp.X_op = O_secrel;
4915
4916 emit_expr (&exp, 4);
4917 }
4918 while (*input_line_pointer++ == ',');
4919
4920 input_line_pointer--;
4921 demand_empty_rest_of_line ();
4922 }
4923 #endif /* TE_PE */
4924
4925 /* This table describes all the machine specific pseudo-ops the assembler
4926 has to support. The fields are:
4927 pseudo-op name without dot
4928 function to call to execute this pseudo-op
4929 Integer arg to pass to the function. */
4930
4931 const pseudo_typeS md_pseudo_table[] =
4932 {
4933 /* Never called because '.req' does not start a line. */
4934 { "req", s_req, 0 },
4935 /* Following two are likewise never called. */
4936 { "dn", s_dn, 0 },
4937 { "qn", s_qn, 0 },
4938 { "unreq", s_unreq, 0 },
4939 { "bss", s_bss, 0 },
4940 { "align", s_align_ptwo, 2 },
4941 { "arm", s_arm, 0 },
4942 { "thumb", s_thumb, 0 },
4943 { "code", s_code, 0 },
4944 { "force_thumb", s_force_thumb, 0 },
4945 { "thumb_func", s_thumb_func, 0 },
4946 { "thumb_set", s_thumb_set, 0 },
4947 { "even", s_even, 0 },
4948 { "ltorg", s_ltorg, 0 },
4949 { "pool", s_ltorg, 0 },
4950 { "syntax", s_syntax, 0 },
4951 { "cpu", s_arm_cpu, 0 },
4952 { "arch", s_arm_arch, 0 },
4953 { "object_arch", s_arm_object_arch, 0 },
4954 { "fpu", s_arm_fpu, 0 },
4955 { "arch_extension", s_arm_arch_extension, 0 },
4956 #ifdef OBJ_ELF
4957 { "word", s_arm_elf_cons, 4 },
4958 { "long", s_arm_elf_cons, 4 },
4959 { "inst.n", s_arm_elf_inst, 2 },
4960 { "inst.w", s_arm_elf_inst, 4 },
4961 { "inst", s_arm_elf_inst, 0 },
4962 { "rel31", s_arm_rel31, 0 },
4963 { "fnstart", s_arm_unwind_fnstart, 0 },
4964 { "fnend", s_arm_unwind_fnend, 0 },
4965 { "cantunwind", s_arm_unwind_cantunwind, 0 },
4966 { "personality", s_arm_unwind_personality, 0 },
4967 { "personalityindex", s_arm_unwind_personalityindex, 0 },
4968 { "handlerdata", s_arm_unwind_handlerdata, 0 },
4969 { "save", s_arm_unwind_save, 0 },
4970 { "vsave", s_arm_unwind_save, 1 },
4971 { "movsp", s_arm_unwind_movsp, 0 },
4972 { "pad", s_arm_unwind_pad, 0 },
4973 { "setfp", s_arm_unwind_setfp, 0 },
4974 { "unwind_raw", s_arm_unwind_raw, 0 },
4975 { "eabi_attribute", s_arm_eabi_attribute, 0 },
4976 { "tlsdescseq", s_arm_tls_descseq, 0 },
4977 #else
4978 { "word", cons, 4},
4979
4980 /* These are used for dwarf. */
4981 {"2byte", cons, 2},
4982 {"4byte", cons, 4},
4983 {"8byte", cons, 8},
4984 /* These are used for dwarf2. */
4985 { "file", dwarf2_directive_file, 0 },
4986 { "loc", dwarf2_directive_loc, 0 },
4987 { "loc_mark_labels", dwarf2_directive_loc_mark_labels, 0 },
4988 #endif
4989 { "extend", float_cons, 'x' },
4990 { "ldouble", float_cons, 'x' },
4991 { "packed", float_cons, 'p' },
4992 #ifdef TE_PE
4993 {"secrel32", pe_directive_secrel, 0},
4994 #endif
4995
4996 /* These are for compatibility with CodeComposer Studio. */
4997 {"ref", s_ccs_ref, 0},
4998 {"def", s_ccs_def, 0},
4999 {"asmfunc", s_ccs_asmfunc, 0},
5000 {"endasmfunc", s_ccs_endasmfunc, 0},
5001
5002 { 0, 0, 0 }
5003 };
5004 \f
5005 /* Parser functions used exclusively in instruction operands. */
5006
5007 /* Generic immediate-value read function for use in insn parsing.
5008 STR points to the beginning of the immediate (the leading #);
5009 VAL receives the value; if the value is outside [MIN, MAX]
5010 issue an error. PREFIX_OPT is true if the immediate prefix is
5011 optional. */
5012
5013 static int
5014 parse_immediate (char **str, int *val, int min, int max,
5015 bfd_boolean prefix_opt)
5016 {
5017 expressionS exp;
5018
5019 my_get_expression (&exp, str, prefix_opt ? GE_OPT_PREFIX : GE_IMM_PREFIX);
5020 if (exp.X_op != O_constant)
5021 {
5022 inst.error = _("constant expression required");
5023 return FAIL;
5024 }
5025
5026 if (exp.X_add_number < min || exp.X_add_number > max)
5027 {
5028 inst.error = _("immediate value out of range");
5029 return FAIL;
5030 }
5031
5032 *val = exp.X_add_number;
5033 return SUCCESS;
5034 }
5035
5036 /* Less-generic immediate-value read function with the possibility of loading a
5037 big (64-bit) immediate, as required by Neon VMOV, VMVN and logic immediate
5038 instructions. Puts the result directly in inst.operands[i]. */
5039
5040 static int
5041 parse_big_immediate (char **str, int i, expressionS *in_exp,
5042 bfd_boolean allow_symbol_p)
5043 {
5044 expressionS exp;
5045 expressionS *exp_p = in_exp ? in_exp : &exp;
5046 char *ptr = *str;
5047
5048 my_get_expression (exp_p, &ptr, GE_OPT_PREFIX_BIG);
5049
5050 if (exp_p->X_op == O_constant)
5051 {
5052 inst.operands[i].imm = exp_p->X_add_number & 0xffffffff;
5053 /* If we're on a 64-bit host, then a 64-bit number can be returned using
5054 O_constant. We have to be careful not to break compilation for
5055 32-bit X_add_number, though. */
5056 if ((exp_p->X_add_number & ~(offsetT)(0xffffffffU)) != 0)
5057 {
5058 /* X >> 32 is illegal if sizeof (exp_p->X_add_number) == 4. */
5059 inst.operands[i].reg = (((exp_p->X_add_number >> 16) >> 16)
5060 & 0xffffffff);
5061 inst.operands[i].regisimm = 1;
5062 }
5063 }
5064 else if (exp_p->X_op == O_big
5065 && LITTLENUM_NUMBER_OF_BITS * exp_p->X_add_number > 32)
5066 {
5067 unsigned parts = 32 / LITTLENUM_NUMBER_OF_BITS, j, idx = 0;
5068
5069 /* Bignums have their least significant bits in
5070 generic_bignum[0]. Make sure we put 32 bits in imm and
5071 32 bits in reg, in a (hopefully) portable way. */
5072 gas_assert (parts != 0);
5073
5074 /* Make sure that the number is not too big.
5075 PR 11972: Bignums can now be sign-extended to the
5076 size of a .octa so check that the out of range bits
5077 are all zero or all one. */
5078 if (LITTLENUM_NUMBER_OF_BITS * exp_p->X_add_number > 64)
5079 {
5080 LITTLENUM_TYPE m = -1;
5081
5082 if (generic_bignum[parts * 2] != 0
5083 && generic_bignum[parts * 2] != m)
5084 return FAIL;
5085
5086 for (j = parts * 2 + 1; j < (unsigned) exp_p->X_add_number; j++)
5087 if (generic_bignum[j] != generic_bignum[j-1])
5088 return FAIL;
5089 }
5090
5091 inst.operands[i].imm = 0;
5092 for (j = 0; j < parts; j++, idx++)
5093 inst.operands[i].imm |= generic_bignum[idx]
5094 << (LITTLENUM_NUMBER_OF_BITS * j);
5095 inst.operands[i].reg = 0;
5096 for (j = 0; j < parts; j++, idx++)
5097 inst.operands[i].reg |= generic_bignum[idx]
5098 << (LITTLENUM_NUMBER_OF_BITS * j);
5099 inst.operands[i].regisimm = 1;
5100 }
5101 else if (!(exp_p->X_op == O_symbol && allow_symbol_p))
5102 return FAIL;
5103
5104 *str = ptr;
5105
5106 return SUCCESS;
5107 }
5108
5109 /* Returns the pseudo-register number of an FPA immediate constant,
5110 or FAIL if there isn't a valid constant here. */
5111
5112 static int
5113 parse_fpa_immediate (char ** str)
5114 {
5115 LITTLENUM_TYPE words[MAX_LITTLENUMS];
5116 char * save_in;
5117 expressionS exp;
5118 int i;
5119 int j;
5120
5121 /* First try and match exact strings, this is to guarantee
5122 that some formats will work even for cross assembly. */
5123
5124 for (i = 0; fp_const[i]; i++)
5125 {
5126 if (strncmp (*str, fp_const[i], strlen (fp_const[i])) == 0)
5127 {
5128 char *start = *str;
5129
5130 *str += strlen (fp_const[i]);
5131 if (is_end_of_line[(unsigned char) **str])
5132 return i + 8;
5133 *str = start;
5134 }
5135 }
5136
5137 /* Just because we didn't get a match doesn't mean that the constant
5138 isn't valid, just that it is in a format that we don't
5139 automatically recognize. Try parsing it with the standard
5140 expression routines. */
5141
5142 memset (words, 0, MAX_LITTLENUMS * sizeof (LITTLENUM_TYPE));
5143
5144 /* Look for a raw floating point number. */
5145 if ((save_in = atof_ieee (*str, 'x', words)) != NULL
5146 && is_end_of_line[(unsigned char) *save_in])
5147 {
5148 for (i = 0; i < NUM_FLOAT_VALS; i++)
5149 {
5150 for (j = 0; j < MAX_LITTLENUMS; j++)
5151 {
5152 if (words[j] != fp_values[i][j])
5153 break;
5154 }
5155
5156 if (j == MAX_LITTLENUMS)
5157 {
5158 *str = save_in;
5159 return i + 8;
5160 }
5161 }
5162 }
5163
5164 /* Try and parse a more complex expression, this will probably fail
5165 unless the code uses a floating point prefix (eg "0f"). */
5166 save_in = input_line_pointer;
5167 input_line_pointer = *str;
5168 if (expression (&exp) == absolute_section
5169 && exp.X_op == O_big
5170 && exp.X_add_number < 0)
5171 {
5172 /* FIXME: 5 = X_PRECISION, should be #define'd where we can use it.
5173 Ditto for 15. */
5174 #define X_PRECISION 5
5175 #define E_PRECISION 15L
5176 if (gen_to_words (words, X_PRECISION, E_PRECISION) == 0)
5177 {
5178 for (i = 0; i < NUM_FLOAT_VALS; i++)
5179 {
5180 for (j = 0; j < MAX_LITTLENUMS; j++)
5181 {
5182 if (words[j] != fp_values[i][j])
5183 break;
5184 }
5185
5186 if (j == MAX_LITTLENUMS)
5187 {
5188 *str = input_line_pointer;
5189 input_line_pointer = save_in;
5190 return i + 8;
5191 }
5192 }
5193 }
5194 }
5195
5196 *str = input_line_pointer;
5197 input_line_pointer = save_in;
5198 inst.error = _("invalid FPA immediate expression");
5199 return FAIL;
5200 }
5201
5202 /* Returns 1 if a number has "quarter-precision" float format
5203 0baBbbbbbc defgh000 00000000 00000000. */
5204
5205 static int
5206 is_quarter_float (unsigned imm)
5207 {
5208 int bs = (imm & 0x20000000) ? 0x3e000000 : 0x40000000;
5209 return (imm & 0x7ffff) == 0 && ((imm & 0x7e000000) ^ bs) == 0;
5210 }
5211
5212
5213 /* Detect the presence of a floating point or integer zero constant,
5214 i.e. #0.0 or #0. */
5215
5216 static bfd_boolean
5217 parse_ifimm_zero (char **in)
5218 {
5219 int error_code;
5220
5221 if (!is_immediate_prefix (**in))
5222 {
5223 /* In unified syntax, all prefixes are optional. */
5224 if (!unified_syntax)
5225 return FALSE;
5226 }
5227 else
5228 ++*in;
5229
5230 /* Accept #0x0 as a synonym for #0. */
5231 if (strncmp (*in, "0x", 2) == 0)
5232 {
5233 int val;
5234 if (parse_immediate (in, &val, 0, 0, TRUE) == FAIL)
5235 return FALSE;
5236 return TRUE;
5237 }
5238
5239 error_code = atof_generic (in, ".", EXP_CHARS,
5240 &generic_floating_point_number);
5241
5242 if (!error_code
5243 && generic_floating_point_number.sign == '+'
5244 && (generic_floating_point_number.low
5245 > generic_floating_point_number.leader))
5246 return TRUE;
5247
5248 return FALSE;
5249 }
5250
5251 /* Parse an 8-bit "quarter-precision" floating point number of the form:
5252 0baBbbbbbc defgh000 00000000 00000000.
5253 The zero and minus-zero cases need special handling, since they can't be
5254 encoded in the "quarter-precision" float format, but can nonetheless be
5255 loaded as integer constants. */
5256
5257 static unsigned
5258 parse_qfloat_immediate (char **ccp, int *immed)
5259 {
5260 char *str = *ccp;
5261 char *fpnum;
5262 LITTLENUM_TYPE words[MAX_LITTLENUMS];
5263 int found_fpchar = 0;
5264
5265 skip_past_char (&str, '#');
5266
5267 /* We must not accidentally parse an integer as a floating-point number. Make
5268 sure that the value we parse is not an integer by checking for special
5269 characters '.' or 'e'.
5270 FIXME: This is a horrible hack, but doing better is tricky because type
5271 information isn't in a very usable state at parse time. */
5272 fpnum = str;
5273 skip_whitespace (fpnum);
5274
5275 if (strncmp (fpnum, "0x", 2) == 0)
5276 return FAIL;
5277 else
5278 {
5279 for (; *fpnum != '\0' && *fpnum != ' ' && *fpnum != '\n'; fpnum++)
5280 if (*fpnum == '.' || *fpnum == 'e' || *fpnum == 'E')
5281 {
5282 found_fpchar = 1;
5283 break;
5284 }
5285
5286 if (!found_fpchar)
5287 return FAIL;
5288 }
5289
5290 if ((str = atof_ieee (str, 's', words)) != NULL)
5291 {
5292 unsigned fpword = 0;
5293 int i;
5294
5295 /* Our FP word must be 32 bits (single-precision FP). */
5296 for (i = 0; i < 32 / LITTLENUM_NUMBER_OF_BITS; i++)
5297 {
5298 fpword <<= LITTLENUM_NUMBER_OF_BITS;
5299 fpword |= words[i];
5300 }
5301
5302 if (is_quarter_float (fpword) || (fpword & 0x7fffffff) == 0)
5303 *immed = fpword;
5304 else
5305 return FAIL;
5306
5307 *ccp = str;
5308
5309 return SUCCESS;
5310 }
5311
5312 return FAIL;
5313 }
5314
5315 /* Shift operands. */
5316 enum shift_kind
5317 {
5318 SHIFT_LSL, SHIFT_LSR, SHIFT_ASR, SHIFT_ROR, SHIFT_RRX, SHIFT_UXTW
5319 };
5320
5321 struct asm_shift_name
5322 {
5323 const char *name;
5324 enum shift_kind kind;
5325 };
5326
5327 /* Third argument to parse_shift. */
5328 enum parse_shift_mode
5329 {
5330 NO_SHIFT_RESTRICT, /* Any kind of shift is accepted. */
5331 SHIFT_IMMEDIATE, /* Shift operand must be an immediate. */
5332 SHIFT_LSL_OR_ASR_IMMEDIATE, /* Shift must be LSL or ASR immediate. */
5333 SHIFT_ASR_IMMEDIATE, /* Shift must be ASR immediate. */
5334 SHIFT_LSL_IMMEDIATE, /* Shift must be LSL immediate. */
5335 SHIFT_UXTW_IMMEDIATE /* Shift must be UXTW immediate. */
5336 };
5337
5338 /* Parse a <shift> specifier on an ARM data processing instruction.
5339 This has three forms:
5340
5341 (LSL|LSR|ASL|ASR|ROR) Rs
5342 (LSL|LSR|ASL|ASR|ROR) #imm
5343 RRX
5344
5345 Note that ASL is assimilated to LSL in the instruction encoding, and
5346 RRX to ROR #0 (which cannot be written as such). */
5347
5348 static int
5349 parse_shift (char **str, int i, enum parse_shift_mode mode)
5350 {
5351 const struct asm_shift_name *shift_name;
5352 enum shift_kind shift;
5353 char *s = *str;
5354 char *p = s;
5355 int reg;
5356
5357 for (p = *str; ISALPHA (*p); p++)
5358 ;
5359
5360 if (p == *str)
5361 {
5362 inst.error = _("shift expression expected");
5363 return FAIL;
5364 }
5365
5366 shift_name = (const struct asm_shift_name *) hash_find_n (arm_shift_hsh, *str,
5367 p - *str);
5368
5369 if (shift_name == NULL)
5370 {
5371 inst.error = _("shift expression expected");
5372 return FAIL;
5373 }
5374
5375 shift = shift_name->kind;
5376
5377 switch (mode)
5378 {
5379 case NO_SHIFT_RESTRICT:
5380 case SHIFT_IMMEDIATE:
5381 if (shift == SHIFT_UXTW)
5382 {
5383 inst.error = _("'UXTW' not allowed here");
5384 return FAIL;
5385 }
5386 break;
5387
5388 case SHIFT_LSL_OR_ASR_IMMEDIATE:
5389 if (shift != SHIFT_LSL && shift != SHIFT_ASR)
5390 {
5391 inst.error = _("'LSL' or 'ASR' required");
5392 return FAIL;
5393 }
5394 break;
5395
5396 case SHIFT_LSL_IMMEDIATE:
5397 if (shift != SHIFT_LSL)
5398 {
5399 inst.error = _("'LSL' required");
5400 return FAIL;
5401 }
5402 break;
5403
5404 case SHIFT_ASR_IMMEDIATE:
5405 if (shift != SHIFT_ASR)
5406 {
5407 inst.error = _("'ASR' required");
5408 return FAIL;
5409 }
5410 break;
5411 case SHIFT_UXTW_IMMEDIATE:
5412 if (shift != SHIFT_UXTW)
5413 {
5414 inst.error = _("'UXTW' required");
5415 return FAIL;
5416 }
5417 break;
5418
5419 default: abort ();
5420 }
5421
5422 if (shift != SHIFT_RRX)
5423 {
5424 /* Whitespace can appear here if the next thing is a bare digit. */
5425 skip_whitespace (p);
5426
5427 if (mode == NO_SHIFT_RESTRICT
5428 && (reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
5429 {
5430 inst.operands[i].imm = reg;
5431 inst.operands[i].immisreg = 1;
5432 }
5433 else if (my_get_expression (&inst.relocs[0].exp, &p, GE_IMM_PREFIX))
5434 return FAIL;
5435 }
5436 inst.operands[i].shift_kind = shift;
5437 inst.operands[i].shifted = 1;
5438 *str = p;
5439 return SUCCESS;
5440 }
5441
5442 /* Parse a <shifter_operand> for an ARM data processing instruction:
5443
5444 #<immediate>
5445 #<immediate>, <rotate>
5446 <Rm>
5447 <Rm>, <shift>
5448
5449 where <shift> is defined by parse_shift above, and <rotate> is a
5450 multiple of 2 between 0 and 30. Validation of immediate operands
5451 is deferred to md_apply_fix. */
5452
5453 static int
5454 parse_shifter_operand (char **str, int i)
5455 {
5456 int value;
5457 expressionS exp;
5458
5459 if ((value = arm_reg_parse (str, REG_TYPE_RN)) != FAIL)
5460 {
5461 inst.operands[i].reg = value;
5462 inst.operands[i].isreg = 1;
5463
5464 /* parse_shift will override this if appropriate */
5465 inst.relocs[0].exp.X_op = O_constant;
5466 inst.relocs[0].exp.X_add_number = 0;
5467
5468 if (skip_past_comma (str) == FAIL)
5469 return SUCCESS;
5470
5471 /* Shift operation on register. */
5472 return parse_shift (str, i, NO_SHIFT_RESTRICT);
5473 }
5474
5475 if (my_get_expression (&inst.relocs[0].exp, str, GE_IMM_PREFIX))
5476 return FAIL;
5477
5478 if (skip_past_comma (str) == SUCCESS)
5479 {
5480 /* #x, y -- ie explicit rotation by Y. */
5481 if (my_get_expression (&exp, str, GE_NO_PREFIX))
5482 return FAIL;
5483
5484 if (exp.X_op != O_constant || inst.relocs[0].exp.X_op != O_constant)
5485 {
5486 inst.error = _("constant expression expected");
5487 return FAIL;
5488 }
5489
5490 value = exp.X_add_number;
5491 if (value < 0 || value > 30 || value % 2 != 0)
5492 {
5493 inst.error = _("invalid rotation");
5494 return FAIL;
5495 }
5496 if (inst.relocs[0].exp.X_add_number < 0
5497 || inst.relocs[0].exp.X_add_number > 255)
5498 {
5499 inst.error = _("invalid constant");
5500 return FAIL;
5501 }
5502
5503 /* Encode as specified. */
5504 inst.operands[i].imm = inst.relocs[0].exp.X_add_number | value << 7;
5505 return SUCCESS;
5506 }
5507
5508 inst.relocs[0].type = BFD_RELOC_ARM_IMMEDIATE;
5509 inst.relocs[0].pc_rel = 0;
5510 return SUCCESS;
5511 }
5512
5513 /* Group relocation information. Each entry in the table contains the
5514 textual name of the relocation as may appear in assembler source
5515 and must end with a colon.
5516 Along with this textual name are the relocation codes to be used if
5517 the corresponding instruction is an ALU instruction (ADD or SUB only),
5518 an LDR, an LDRS, or an LDC. */
5519
5520 struct group_reloc_table_entry
5521 {
5522 const char *name;
5523 int alu_code;
5524 int ldr_code;
5525 int ldrs_code;
5526 int ldc_code;
5527 };
5528
5529 typedef enum
5530 {
5531 /* Varieties of non-ALU group relocation. */
5532
5533 GROUP_LDR,
5534 GROUP_LDRS,
5535 GROUP_LDC,
5536 GROUP_MVE
5537 } group_reloc_type;
5538
5539 static struct group_reloc_table_entry group_reloc_table[] =
5540 { /* Program counter relative: */
5541 { "pc_g0_nc",
5542 BFD_RELOC_ARM_ALU_PC_G0_NC, /* ALU */
5543 0, /* LDR */
5544 0, /* LDRS */
5545 0 }, /* LDC */
5546 { "pc_g0",
5547 BFD_RELOC_ARM_ALU_PC_G0, /* ALU */
5548 BFD_RELOC_ARM_LDR_PC_G0, /* LDR */
5549 BFD_RELOC_ARM_LDRS_PC_G0, /* LDRS */
5550 BFD_RELOC_ARM_LDC_PC_G0 }, /* LDC */
5551 { "pc_g1_nc",
5552 BFD_RELOC_ARM_ALU_PC_G1_NC, /* ALU */
5553 0, /* LDR */
5554 0, /* LDRS */
5555 0 }, /* LDC */
5556 { "pc_g1",
5557 BFD_RELOC_ARM_ALU_PC_G1, /* ALU */
5558 BFD_RELOC_ARM_LDR_PC_G1, /* LDR */
5559 BFD_RELOC_ARM_LDRS_PC_G1, /* LDRS */
5560 BFD_RELOC_ARM_LDC_PC_G1 }, /* LDC */
5561 { "pc_g2",
5562 BFD_RELOC_ARM_ALU_PC_G2, /* ALU */
5563 BFD_RELOC_ARM_LDR_PC_G2, /* LDR */
5564 BFD_RELOC_ARM_LDRS_PC_G2, /* LDRS */
5565 BFD_RELOC_ARM_LDC_PC_G2 }, /* LDC */
5566 /* Section base relative */
5567 { "sb_g0_nc",
5568 BFD_RELOC_ARM_ALU_SB_G0_NC, /* ALU */
5569 0, /* LDR */
5570 0, /* LDRS */
5571 0 }, /* LDC */
5572 { "sb_g0",
5573 BFD_RELOC_ARM_ALU_SB_G0, /* ALU */
5574 BFD_RELOC_ARM_LDR_SB_G0, /* LDR */
5575 BFD_RELOC_ARM_LDRS_SB_G0, /* LDRS */
5576 BFD_RELOC_ARM_LDC_SB_G0 }, /* LDC */
5577 { "sb_g1_nc",
5578 BFD_RELOC_ARM_ALU_SB_G1_NC, /* ALU */
5579 0, /* LDR */
5580 0, /* LDRS */
5581 0 }, /* LDC */
5582 { "sb_g1",
5583 BFD_RELOC_ARM_ALU_SB_G1, /* ALU */
5584 BFD_RELOC_ARM_LDR_SB_G1, /* LDR */
5585 BFD_RELOC_ARM_LDRS_SB_G1, /* LDRS */
5586 BFD_RELOC_ARM_LDC_SB_G1 }, /* LDC */
5587 { "sb_g2",
5588 BFD_RELOC_ARM_ALU_SB_G2, /* ALU */
5589 BFD_RELOC_ARM_LDR_SB_G2, /* LDR */
5590 BFD_RELOC_ARM_LDRS_SB_G2, /* LDRS */
5591 BFD_RELOC_ARM_LDC_SB_G2 }, /* LDC */
5592 /* Absolute thumb alu relocations. */
5593 { "lower0_7",
5594 BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC,/* ALU. */
5595 0, /* LDR. */
5596 0, /* LDRS. */
5597 0 }, /* LDC. */
5598 { "lower8_15",
5599 BFD_RELOC_ARM_THUMB_ALU_ABS_G1_NC,/* ALU. */
5600 0, /* LDR. */
5601 0, /* LDRS. */
5602 0 }, /* LDC. */
5603 { "upper0_7",
5604 BFD_RELOC_ARM_THUMB_ALU_ABS_G2_NC,/* ALU. */
5605 0, /* LDR. */
5606 0, /* LDRS. */
5607 0 }, /* LDC. */
5608 { "upper8_15",
5609 BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC,/* ALU. */
5610 0, /* LDR. */
5611 0, /* LDRS. */
5612 0 } }; /* LDC. */
5613
5614 /* Given the address of a pointer pointing to the textual name of a group
5615 relocation as may appear in assembler source, attempt to find its details
5616 in group_reloc_table. The pointer will be updated to the character after
5617 the trailing colon. On failure, FAIL will be returned; SUCCESS
5618 otherwise. On success, *entry will be updated to point at the relevant
5619 group_reloc_table entry. */
5620
5621 static int
5622 find_group_reloc_table_entry (char **str, struct group_reloc_table_entry **out)
5623 {
5624 unsigned int i;
5625 for (i = 0; i < ARRAY_SIZE (group_reloc_table); i++)
5626 {
5627 int length = strlen (group_reloc_table[i].name);
5628
5629 if (strncasecmp (group_reloc_table[i].name, *str, length) == 0
5630 && (*str)[length] == ':')
5631 {
5632 *out = &group_reloc_table[i];
5633 *str += (length + 1);
5634 return SUCCESS;
5635 }
5636 }
5637
5638 return FAIL;
5639 }
5640
5641 /* Parse a <shifter_operand> for an ARM data processing instruction
5642 (as for parse_shifter_operand) where group relocations are allowed:
5643
5644 #<immediate>
5645 #<immediate>, <rotate>
5646 #:<group_reloc>:<expression>
5647 <Rm>
5648 <Rm>, <shift>
5649
5650 where <group_reloc> is one of the strings defined in group_reloc_table.
5651 The hashes are optional.
5652
5653 Everything else is as for parse_shifter_operand. */
5654
5655 static parse_operand_result
5656 parse_shifter_operand_group_reloc (char **str, int i)
5657 {
5658 /* Determine if we have the sequence of characters #: or just :
5659 coming next. If we do, then we check for a group relocation.
5660 If we don't, punt the whole lot to parse_shifter_operand. */
5661
5662 if (((*str)[0] == '#' && (*str)[1] == ':')
5663 || (*str)[0] == ':')
5664 {
5665 struct group_reloc_table_entry *entry;
5666
5667 if ((*str)[0] == '#')
5668 (*str) += 2;
5669 else
5670 (*str)++;
5671
5672 /* Try to parse a group relocation. Anything else is an error. */
5673 if (find_group_reloc_table_entry (str, &entry) == FAIL)
5674 {
5675 inst.error = _("unknown group relocation");
5676 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5677 }
5678
5679 /* We now have the group relocation table entry corresponding to
5680 the name in the assembler source. Next, we parse the expression. */
5681 if (my_get_expression (&inst.relocs[0].exp, str, GE_NO_PREFIX))
5682 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5683
5684 /* Record the relocation type (always the ALU variant here). */
5685 inst.relocs[0].type = (bfd_reloc_code_real_type) entry->alu_code;
5686 gas_assert (inst.relocs[0].type != 0);
5687
5688 return PARSE_OPERAND_SUCCESS;
5689 }
5690 else
5691 return parse_shifter_operand (str, i) == SUCCESS
5692 ? PARSE_OPERAND_SUCCESS : PARSE_OPERAND_FAIL;
5693
5694 /* Never reached. */
5695 }
5696
5697 /* Parse a Neon alignment expression. Information is written to
5698 inst.operands[i]. We assume the initial ':' has been skipped.
5699
5700 align .imm = align << 8, .immisalign=1, .preind=0 */
5701 static parse_operand_result
5702 parse_neon_alignment (char **str, int i)
5703 {
5704 char *p = *str;
5705 expressionS exp;
5706
5707 my_get_expression (&exp, &p, GE_NO_PREFIX);
5708
5709 if (exp.X_op != O_constant)
5710 {
5711 inst.error = _("alignment must be constant");
5712 return PARSE_OPERAND_FAIL;
5713 }
5714
5715 inst.operands[i].imm = exp.X_add_number << 8;
5716 inst.operands[i].immisalign = 1;
5717 /* Alignments are not pre-indexes. */
5718 inst.operands[i].preind = 0;
5719
5720 *str = p;
5721 return PARSE_OPERAND_SUCCESS;
5722 }
5723
5724 /* Parse all forms of an ARM address expression. Information is written
5725 to inst.operands[i] and/or inst.relocs[0].
5726
5727 Preindexed addressing (.preind=1):
5728
5729 [Rn, #offset] .reg=Rn .relocs[0].exp=offset
5730 [Rn, +/-Rm] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5731 [Rn, +/-Rm, shift] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5732 .shift_kind=shift .relocs[0].exp=shift_imm
5733
5734 These three may have a trailing ! which causes .writeback to be set also.
5735
5736 Postindexed addressing (.postind=1, .writeback=1):
5737
5738 [Rn], #offset .reg=Rn .relocs[0].exp=offset
5739 [Rn], +/-Rm .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5740 [Rn], +/-Rm, shift .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5741 .shift_kind=shift .relocs[0].exp=shift_imm
5742
5743 Unindexed addressing (.preind=0, .postind=0):
5744
5745 [Rn], {option} .reg=Rn .imm=option .immisreg=0
5746
5747 Other:
5748
5749 [Rn]{!} shorthand for [Rn,#0]{!}
5750 =immediate .isreg=0 .relocs[0].exp=immediate
5751 label .reg=PC .relocs[0].pc_rel=1 .relocs[0].exp=label
5752
5753 It is the caller's responsibility to check for addressing modes not
5754 supported by the instruction, and to set inst.relocs[0].type. */
5755
5756 static parse_operand_result
5757 parse_address_main (char **str, int i, int group_relocations,
5758 group_reloc_type group_type)
5759 {
5760 char *p = *str;
5761 int reg;
5762
5763 if (skip_past_char (&p, '[') == FAIL)
5764 {
5765 if (skip_past_char (&p, '=') == FAIL)
5766 {
5767 /* Bare address - translate to PC-relative offset. */
5768 inst.relocs[0].pc_rel = 1;
5769 inst.operands[i].reg = REG_PC;
5770 inst.operands[i].isreg = 1;
5771 inst.operands[i].preind = 1;
5772
5773 if (my_get_expression (&inst.relocs[0].exp, &p, GE_OPT_PREFIX_BIG))
5774 return PARSE_OPERAND_FAIL;
5775 }
5776 else if (parse_big_immediate (&p, i, &inst.relocs[0].exp,
5777 /*allow_symbol_p=*/TRUE))
5778 return PARSE_OPERAND_FAIL;
5779
5780 *str = p;
5781 return PARSE_OPERAND_SUCCESS;
5782 }
5783
5784 /* PR gas/14887: Allow for whitespace after the opening bracket. */
5785 skip_whitespace (p);
5786
5787 if (group_type == GROUP_MVE)
5788 {
5789 enum arm_reg_type rtype = REG_TYPE_MQ;
5790 struct neon_type_el et;
5791 if ((reg = arm_typed_reg_parse (&p, rtype, &rtype, &et)) != FAIL)
5792 {
5793 inst.operands[i].isquad = 1;
5794 }
5795 else if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
5796 {
5797 inst.error = BAD_ADDR_MODE;
5798 return PARSE_OPERAND_FAIL;
5799 }
5800 }
5801 else if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
5802 {
5803 if (group_type == GROUP_MVE)
5804 inst.error = BAD_ADDR_MODE;
5805 else
5806 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
5807 return PARSE_OPERAND_FAIL;
5808 }
5809 inst.operands[i].reg = reg;
5810 inst.operands[i].isreg = 1;
5811
5812 if (skip_past_comma (&p) == SUCCESS)
5813 {
5814 inst.operands[i].preind = 1;
5815
5816 if (*p == '+') p++;
5817 else if (*p == '-') p++, inst.operands[i].negative = 1;
5818
5819 enum arm_reg_type rtype = REG_TYPE_MQ;
5820 struct neon_type_el et;
5821 if (group_type == GROUP_MVE
5822 && (reg = arm_typed_reg_parse (&p, rtype, &rtype, &et)) != FAIL)
5823 {
5824 inst.operands[i].immisreg = 2;
5825 inst.operands[i].imm = reg;
5826
5827 if (skip_past_comma (&p) == SUCCESS)
5828 {
5829 if (parse_shift (&p, i, SHIFT_UXTW_IMMEDIATE) == SUCCESS)
5830 {
5831 inst.operands[i].imm |= inst.relocs[0].exp.X_add_number << 5;
5832 inst.relocs[0].exp.X_add_number = 0;
5833 }
5834 else
5835 return PARSE_OPERAND_FAIL;
5836 }
5837 }
5838 else if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
5839 {
5840 inst.operands[i].imm = reg;
5841 inst.operands[i].immisreg = 1;
5842
5843 if (skip_past_comma (&p) == SUCCESS)
5844 if (parse_shift (&p, i, SHIFT_IMMEDIATE) == FAIL)
5845 return PARSE_OPERAND_FAIL;
5846 }
5847 else if (skip_past_char (&p, ':') == SUCCESS)
5848 {
5849 /* FIXME: '@' should be used here, but it's filtered out by generic
5850 code before we get to see it here. This may be subject to
5851 change. */
5852 parse_operand_result result = parse_neon_alignment (&p, i);
5853
5854 if (result != PARSE_OPERAND_SUCCESS)
5855 return result;
5856 }
5857 else
5858 {
5859 if (inst.operands[i].negative)
5860 {
5861 inst.operands[i].negative = 0;
5862 p--;
5863 }
5864
5865 if (group_relocations
5866 && ((*p == '#' && *(p + 1) == ':') || *p == ':'))
5867 {
5868 struct group_reloc_table_entry *entry;
5869
5870 /* Skip over the #: or : sequence. */
5871 if (*p == '#')
5872 p += 2;
5873 else
5874 p++;
5875
5876 /* Try to parse a group relocation. Anything else is an
5877 error. */
5878 if (find_group_reloc_table_entry (&p, &entry) == FAIL)
5879 {
5880 inst.error = _("unknown group relocation");
5881 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5882 }
5883
5884 /* We now have the group relocation table entry corresponding to
5885 the name in the assembler source. Next, we parse the
5886 expression. */
5887 if (my_get_expression (&inst.relocs[0].exp, &p, GE_NO_PREFIX))
5888 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5889
5890 /* Record the relocation type. */
5891 switch (group_type)
5892 {
5893 case GROUP_LDR:
5894 inst.relocs[0].type
5895 = (bfd_reloc_code_real_type) entry->ldr_code;
5896 break;
5897
5898 case GROUP_LDRS:
5899 inst.relocs[0].type
5900 = (bfd_reloc_code_real_type) entry->ldrs_code;
5901 break;
5902
5903 case GROUP_LDC:
5904 inst.relocs[0].type
5905 = (bfd_reloc_code_real_type) entry->ldc_code;
5906 break;
5907
5908 default:
5909 gas_assert (0);
5910 }
5911
5912 if (inst.relocs[0].type == 0)
5913 {
5914 inst.error = _("this group relocation is not allowed on this instruction");
5915 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5916 }
5917 }
5918 else
5919 {
5920 char *q = p;
5921
5922 if (my_get_expression (&inst.relocs[0].exp, &p, GE_IMM_PREFIX))
5923 return PARSE_OPERAND_FAIL;
5924 /* If the offset is 0, find out if it's a +0 or -0. */
5925 if (inst.relocs[0].exp.X_op == O_constant
5926 && inst.relocs[0].exp.X_add_number == 0)
5927 {
5928 skip_whitespace (q);
5929 if (*q == '#')
5930 {
5931 q++;
5932 skip_whitespace (q);
5933 }
5934 if (*q == '-')
5935 inst.operands[i].negative = 1;
5936 }
5937 }
5938 }
5939 }
5940 else if (skip_past_char (&p, ':') == SUCCESS)
5941 {
5942 /* FIXME: '@' should be used here, but it's filtered out by generic code
5943 before we get to see it here. This may be subject to change. */
5944 parse_operand_result result = parse_neon_alignment (&p, i);
5945
5946 if (result != PARSE_OPERAND_SUCCESS)
5947 return result;
5948 }
5949
5950 if (skip_past_char (&p, ']') == FAIL)
5951 {
5952 inst.error = _("']' expected");
5953 return PARSE_OPERAND_FAIL;
5954 }
5955
5956 if (skip_past_char (&p, '!') == SUCCESS)
5957 inst.operands[i].writeback = 1;
5958
5959 else if (skip_past_comma (&p) == SUCCESS)
5960 {
5961 if (skip_past_char (&p, '{') == SUCCESS)
5962 {
5963 /* [Rn], {expr} - unindexed, with option */
5964 if (parse_immediate (&p, &inst.operands[i].imm,
5965 0, 255, TRUE) == FAIL)
5966 return PARSE_OPERAND_FAIL;
5967
5968 if (skip_past_char (&p, '}') == FAIL)
5969 {
5970 inst.error = _("'}' expected at end of 'option' field");
5971 return PARSE_OPERAND_FAIL;
5972 }
5973 if (inst.operands[i].preind)
5974 {
5975 inst.error = _("cannot combine index with option");
5976 return PARSE_OPERAND_FAIL;
5977 }
5978 *str = p;
5979 return PARSE_OPERAND_SUCCESS;
5980 }
5981 else
5982 {
5983 inst.operands[i].postind = 1;
5984 inst.operands[i].writeback = 1;
5985
5986 if (inst.operands[i].preind)
5987 {
5988 inst.error = _("cannot combine pre- and post-indexing");
5989 return PARSE_OPERAND_FAIL;
5990 }
5991
5992 if (*p == '+') p++;
5993 else if (*p == '-') p++, inst.operands[i].negative = 1;
5994
5995 enum arm_reg_type rtype = REG_TYPE_MQ;
5996 struct neon_type_el et;
5997 if (group_type == GROUP_MVE
5998 && (reg = arm_typed_reg_parse (&p, rtype, &rtype, &et)) != FAIL)
5999 {
6000 inst.operands[i].immisreg = 2;
6001 inst.operands[i].imm = reg;
6002 }
6003 else if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
6004 {
6005 /* We might be using the immediate for alignment already. If we
6006 are, OR the register number into the low-order bits. */
6007 if (inst.operands[i].immisalign)
6008 inst.operands[i].imm |= reg;
6009 else
6010 inst.operands[i].imm = reg;
6011 inst.operands[i].immisreg = 1;
6012
6013 if (skip_past_comma (&p) == SUCCESS)
6014 if (parse_shift (&p, i, SHIFT_IMMEDIATE) == FAIL)
6015 return PARSE_OPERAND_FAIL;
6016 }
6017 else
6018 {
6019 char *q = p;
6020
6021 if (inst.operands[i].negative)
6022 {
6023 inst.operands[i].negative = 0;
6024 p--;
6025 }
6026 if (my_get_expression (&inst.relocs[0].exp, &p, GE_IMM_PREFIX))
6027 return PARSE_OPERAND_FAIL;
6028 /* If the offset is 0, find out if it's a +0 or -0. */
6029 if (inst.relocs[0].exp.X_op == O_constant
6030 && inst.relocs[0].exp.X_add_number == 0)
6031 {
6032 skip_whitespace (q);
6033 if (*q == '#')
6034 {
6035 q++;
6036 skip_whitespace (q);
6037 }
6038 if (*q == '-')
6039 inst.operands[i].negative = 1;
6040 }
6041 }
6042 }
6043 }
6044
6045 /* If at this point neither .preind nor .postind is set, we have a
6046 bare [Rn]{!}, which is shorthand for [Rn,#0]{!}. */
6047 if (inst.operands[i].preind == 0 && inst.operands[i].postind == 0)
6048 {
6049 inst.operands[i].preind = 1;
6050 inst.relocs[0].exp.X_op = O_constant;
6051 inst.relocs[0].exp.X_add_number = 0;
6052 }
6053 *str = p;
6054 return PARSE_OPERAND_SUCCESS;
6055 }
6056
6057 static int
6058 parse_address (char **str, int i)
6059 {
6060 return parse_address_main (str, i, 0, GROUP_LDR) == PARSE_OPERAND_SUCCESS
6061 ? SUCCESS : FAIL;
6062 }
6063
6064 static parse_operand_result
6065 parse_address_group_reloc (char **str, int i, group_reloc_type type)
6066 {
6067 return parse_address_main (str, i, 1, type);
6068 }
6069
6070 /* Parse an operand for a MOVW or MOVT instruction. */
6071 static int
6072 parse_half (char **str)
6073 {
6074 char * p;
6075
6076 p = *str;
6077 skip_past_char (&p, '#');
6078 if (strncasecmp (p, ":lower16:", 9) == 0)
6079 inst.relocs[0].type = BFD_RELOC_ARM_MOVW;
6080 else if (strncasecmp (p, ":upper16:", 9) == 0)
6081 inst.relocs[0].type = BFD_RELOC_ARM_MOVT;
6082
6083 if (inst.relocs[0].type != BFD_RELOC_UNUSED)
6084 {
6085 p += 9;
6086 skip_whitespace (p);
6087 }
6088
6089 if (my_get_expression (&inst.relocs[0].exp, &p, GE_NO_PREFIX))
6090 return FAIL;
6091
6092 if (inst.relocs[0].type == BFD_RELOC_UNUSED)
6093 {
6094 if (inst.relocs[0].exp.X_op != O_constant)
6095 {
6096 inst.error = _("constant expression expected");
6097 return FAIL;
6098 }
6099 if (inst.relocs[0].exp.X_add_number < 0
6100 || inst.relocs[0].exp.X_add_number > 0xffff)
6101 {
6102 inst.error = _("immediate value out of range");
6103 return FAIL;
6104 }
6105 }
6106 *str = p;
6107 return SUCCESS;
6108 }
6109
6110 /* Miscellaneous. */
6111
6112 /* Parse a PSR flag operand. The value returned is FAIL on syntax error,
6113 or a bitmask suitable to be or-ed into the ARM msr instruction. */
6114 static int
6115 parse_psr (char **str, bfd_boolean lhs)
6116 {
6117 char *p;
6118 unsigned long psr_field;
6119 const struct asm_psr *psr;
6120 char *start;
6121 bfd_boolean is_apsr = FALSE;
6122 bfd_boolean m_profile = ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_m);
6123
6124 /* PR gas/12698: If the user has specified -march=all then m_profile will
6125 be TRUE, but we want to ignore it in this case as we are building for any
6126 CPU type, including non-m variants. */
6127 if (ARM_FEATURE_CORE_EQUAL (selected_cpu, arm_arch_any))
6128 m_profile = FALSE;
6129
6130 /* CPSR's and SPSR's can now be lowercase. This is just a convenience
6131 feature for ease of use and backwards compatibility. */
6132 p = *str;
6133 if (strncasecmp (p, "SPSR", 4) == 0)
6134 {
6135 if (m_profile)
6136 goto unsupported_psr;
6137
6138 psr_field = SPSR_BIT;
6139 }
6140 else if (strncasecmp (p, "CPSR", 4) == 0)
6141 {
6142 if (m_profile)
6143 goto unsupported_psr;
6144
6145 psr_field = 0;
6146 }
6147 else if (strncasecmp (p, "APSR", 4) == 0)
6148 {
6149 /* APSR[_<bits>] can be used as a synonym for CPSR[_<flags>] on ARMv7-A
6150 and ARMv7-R architecture CPUs. */
6151 is_apsr = TRUE;
6152 psr_field = 0;
6153 }
6154 else if (m_profile)
6155 {
6156 start = p;
6157 do
6158 p++;
6159 while (ISALNUM (*p) || *p == '_');
6160
6161 if (strncasecmp (start, "iapsr", 5) == 0
6162 || strncasecmp (start, "eapsr", 5) == 0
6163 || strncasecmp (start, "xpsr", 4) == 0
6164 || strncasecmp (start, "psr", 3) == 0)
6165 p = start + strcspn (start, "rR") + 1;
6166
6167 psr = (const struct asm_psr *) hash_find_n (arm_v7m_psr_hsh, start,
6168 p - start);
6169
6170 if (!psr)
6171 return FAIL;
6172
6173 /* If APSR is being written, a bitfield may be specified. Note that
6174 APSR itself is handled above. */
6175 if (psr->field <= 3)
6176 {
6177 psr_field = psr->field;
6178 is_apsr = TRUE;
6179 goto check_suffix;
6180 }
6181
6182 *str = p;
6183 /* M-profile MSR instructions have the mask field set to "10", except
6184 *PSR variants which modify APSR, which may use a different mask (and
6185 have been handled already). Do that by setting the PSR_f field
6186 here. */
6187 return psr->field | (lhs ? PSR_f : 0);
6188 }
6189 else
6190 goto unsupported_psr;
6191
6192 p += 4;
6193 check_suffix:
6194 if (*p == '_')
6195 {
6196 /* A suffix follows. */
6197 p++;
6198 start = p;
6199
6200 do
6201 p++;
6202 while (ISALNUM (*p) || *p == '_');
6203
6204 if (is_apsr)
6205 {
6206 /* APSR uses a notation for bits, rather than fields. */
6207 unsigned int nzcvq_bits = 0;
6208 unsigned int g_bit = 0;
6209 char *bit;
6210
6211 for (bit = start; bit != p; bit++)
6212 {
6213 switch (TOLOWER (*bit))
6214 {
6215 case 'n':
6216 nzcvq_bits |= (nzcvq_bits & 0x01) ? 0x20 : 0x01;
6217 break;
6218
6219 case 'z':
6220 nzcvq_bits |= (nzcvq_bits & 0x02) ? 0x20 : 0x02;
6221 break;
6222
6223 case 'c':
6224 nzcvq_bits |= (nzcvq_bits & 0x04) ? 0x20 : 0x04;
6225 break;
6226
6227 case 'v':
6228 nzcvq_bits |= (nzcvq_bits & 0x08) ? 0x20 : 0x08;
6229 break;
6230
6231 case 'q':
6232 nzcvq_bits |= (nzcvq_bits & 0x10) ? 0x20 : 0x10;
6233 break;
6234
6235 case 'g':
6236 g_bit |= (g_bit & 0x1) ? 0x2 : 0x1;
6237 break;
6238
6239 default:
6240 inst.error = _("unexpected bit specified after APSR");
6241 return FAIL;
6242 }
6243 }
6244
6245 if (nzcvq_bits == 0x1f)
6246 psr_field |= PSR_f;
6247
6248 if (g_bit == 0x1)
6249 {
6250 if (!ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6_dsp))
6251 {
6252 inst.error = _("selected processor does not "
6253 "support DSP extension");
6254 return FAIL;
6255 }
6256
6257 psr_field |= PSR_s;
6258 }
6259
6260 if ((nzcvq_bits & 0x20) != 0
6261 || (nzcvq_bits != 0x1f && nzcvq_bits != 0)
6262 || (g_bit & 0x2) != 0)
6263 {
6264 inst.error = _("bad bitmask specified after APSR");
6265 return FAIL;
6266 }
6267 }
6268 else
6269 {
6270 psr = (const struct asm_psr *) hash_find_n (arm_psr_hsh, start,
6271 p - start);
6272 if (!psr)
6273 goto error;
6274
6275 psr_field |= psr->field;
6276 }
6277 }
6278 else
6279 {
6280 if (ISALNUM (*p))
6281 goto error; /* Garbage after "[CS]PSR". */
6282
6283 /* Unadorned APSR is equivalent to APSR_nzcvq/CPSR_f (for writes). This
6284 is deprecated, but allow it anyway. */
6285 if (is_apsr && lhs)
6286 {
6287 psr_field |= PSR_f;
6288 as_tsktsk (_("writing to APSR without specifying a bitmask is "
6289 "deprecated"));
6290 }
6291 else if (!m_profile)
6292 /* These bits are never right for M-profile devices: don't set them
6293 (only code paths which read/write APSR reach here). */
6294 psr_field |= (PSR_c | PSR_f);
6295 }
6296 *str = p;
6297 return psr_field;
6298
6299 unsupported_psr:
6300 inst.error = _("selected processor does not support requested special "
6301 "purpose register");
6302 return FAIL;
6303
6304 error:
6305 inst.error = _("flag for {c}psr instruction expected");
6306 return FAIL;
6307 }
6308
6309 static int
6310 parse_sys_vldr_vstr (char **str)
6311 {
6312 unsigned i;
6313 int val = FAIL;
6314 struct {
6315 const char *name;
6316 int regl;
6317 int regh;
6318 } sysregs[] = {
6319 {"FPSCR", 0x1, 0x0},
6320 {"FPSCR_nzcvqc", 0x2, 0x0},
6321 {"VPR", 0x4, 0x1},
6322 {"P0", 0x5, 0x1},
6323 {"FPCXTNS", 0x6, 0x1},
6324 {"FPCXTS", 0x7, 0x1}
6325 };
6326 char *op_end = strchr (*str, ',');
6327 size_t op_strlen = op_end - *str;
6328
6329 for (i = 0; i < sizeof (sysregs) / sizeof (sysregs[0]); i++)
6330 {
6331 if (!strncmp (*str, sysregs[i].name, op_strlen))
6332 {
6333 val = sysregs[i].regl | (sysregs[i].regh << 3);
6334 *str = op_end;
6335 break;
6336 }
6337 }
6338
6339 return val;
6340 }
6341
6342 /* Parse the flags argument to CPSI[ED]. Returns FAIL on error, or a
6343 value suitable for splatting into the AIF field of the instruction. */
6344
6345 static int
6346 parse_cps_flags (char **str)
6347 {
6348 int val = 0;
6349 int saw_a_flag = 0;
6350 char *s = *str;
6351
6352 for (;;)
6353 switch (*s++)
6354 {
6355 case '\0': case ',':
6356 goto done;
6357
6358 case 'a': case 'A': saw_a_flag = 1; val |= 0x4; break;
6359 case 'i': case 'I': saw_a_flag = 1; val |= 0x2; break;
6360 case 'f': case 'F': saw_a_flag = 1; val |= 0x1; break;
6361
6362 default:
6363 inst.error = _("unrecognized CPS flag");
6364 return FAIL;
6365 }
6366
6367 done:
6368 if (saw_a_flag == 0)
6369 {
6370 inst.error = _("missing CPS flags");
6371 return FAIL;
6372 }
6373
6374 *str = s - 1;
6375 return val;
6376 }
6377
6378 /* Parse an endian specifier ("BE" or "LE", case insensitive);
6379 returns 0 for big-endian, 1 for little-endian, FAIL for an error. */
6380
6381 static int
6382 parse_endian_specifier (char **str)
6383 {
6384 int little_endian;
6385 char *s = *str;
6386
6387 if (strncasecmp (s, "BE", 2))
6388 little_endian = 0;
6389 else if (strncasecmp (s, "LE", 2))
6390 little_endian = 1;
6391 else
6392 {
6393 inst.error = _("valid endian specifiers are be or le");
6394 return FAIL;
6395 }
6396
6397 if (ISALNUM (s[2]) || s[2] == '_')
6398 {
6399 inst.error = _("valid endian specifiers are be or le");
6400 return FAIL;
6401 }
6402
6403 *str = s + 2;
6404 return little_endian;
6405 }
6406
6407 /* Parse a rotation specifier: ROR #0, #8, #16, #24. *val receives a
6408 value suitable for poking into the rotate field of an sxt or sxta
6409 instruction, or FAIL on error. */
6410
6411 static int
6412 parse_ror (char **str)
6413 {
6414 int rot;
6415 char *s = *str;
6416
6417 if (strncasecmp (s, "ROR", 3) == 0)
6418 s += 3;
6419 else
6420 {
6421 inst.error = _("missing rotation field after comma");
6422 return FAIL;
6423 }
6424
6425 if (parse_immediate (&s, &rot, 0, 24, FALSE) == FAIL)
6426 return FAIL;
6427
6428 switch (rot)
6429 {
6430 case 0: *str = s; return 0x0;
6431 case 8: *str = s; return 0x1;
6432 case 16: *str = s; return 0x2;
6433 case 24: *str = s; return 0x3;
6434
6435 default:
6436 inst.error = _("rotation can only be 0, 8, 16, or 24");
6437 return FAIL;
6438 }
6439 }
6440
6441 /* Parse a conditional code (from conds[] below). The value returned is in the
6442 range 0 .. 14, or FAIL. */
6443 static int
6444 parse_cond (char **str)
6445 {
6446 char *q;
6447 const struct asm_cond *c;
6448 int n;
6449 /* Condition codes are always 2 characters, so matching up to
6450 3 characters is sufficient. */
6451 char cond[3];
6452
6453 q = *str;
6454 n = 0;
6455 while (ISALPHA (*q) && n < 3)
6456 {
6457 cond[n] = TOLOWER (*q);
6458 q++;
6459 n++;
6460 }
6461
6462 c = (const struct asm_cond *) hash_find_n (arm_cond_hsh, cond, n);
6463 if (!c)
6464 {
6465 inst.error = _("condition required");
6466 return FAIL;
6467 }
6468
6469 *str = q;
6470 return c->value;
6471 }
6472
6473 /* Parse an option for a barrier instruction. Returns the encoding for the
6474 option, or FAIL. */
6475 static int
6476 parse_barrier (char **str)
6477 {
6478 char *p, *q;
6479 const struct asm_barrier_opt *o;
6480
6481 p = q = *str;
6482 while (ISALPHA (*q))
6483 q++;
6484
6485 o = (const struct asm_barrier_opt *) hash_find_n (arm_barrier_opt_hsh, p,
6486 q - p);
6487 if (!o)
6488 return FAIL;
6489
6490 if (!mark_feature_used (&o->arch))
6491 return FAIL;
6492
6493 *str = q;
6494 return o->value;
6495 }
6496
6497 /* Parse the operands of a table branch instruction. Similar to a memory
6498 operand. */
6499 static int
6500 parse_tb (char **str)
6501 {
6502 char * p = *str;
6503 int reg;
6504
6505 if (skip_past_char (&p, '[') == FAIL)
6506 {
6507 inst.error = _("'[' expected");
6508 return FAIL;
6509 }
6510
6511 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
6512 {
6513 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
6514 return FAIL;
6515 }
6516 inst.operands[0].reg = reg;
6517
6518 if (skip_past_comma (&p) == FAIL)
6519 {
6520 inst.error = _("',' expected");
6521 return FAIL;
6522 }
6523
6524 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
6525 {
6526 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
6527 return FAIL;
6528 }
6529 inst.operands[0].imm = reg;
6530
6531 if (skip_past_comma (&p) == SUCCESS)
6532 {
6533 if (parse_shift (&p, 0, SHIFT_LSL_IMMEDIATE) == FAIL)
6534 return FAIL;
6535 if (inst.relocs[0].exp.X_add_number != 1)
6536 {
6537 inst.error = _("invalid shift");
6538 return FAIL;
6539 }
6540 inst.operands[0].shifted = 1;
6541 }
6542
6543 if (skip_past_char (&p, ']') == FAIL)
6544 {
6545 inst.error = _("']' expected");
6546 return FAIL;
6547 }
6548 *str = p;
6549 return SUCCESS;
6550 }
6551
6552 /* Parse the operands of a Neon VMOV instruction. See do_neon_mov for more
6553 information on the types the operands can take and how they are encoded.
6554 Up to four operands may be read; this function handles setting the
6555 ".present" field for each read operand itself.
6556 Updates STR and WHICH_OPERAND if parsing is successful and returns SUCCESS,
6557 else returns FAIL. */
6558
6559 static int
6560 parse_neon_mov (char **str, int *which_operand)
6561 {
6562 int i = *which_operand, val;
6563 enum arm_reg_type rtype;
6564 char *ptr = *str;
6565 struct neon_type_el optype;
6566
6567 if ((val = parse_scalar (&ptr, 8, &optype, REG_TYPE_MQ)) != FAIL)
6568 {
6569 /* Cases 17 or 19. */
6570 inst.operands[i].reg = val;
6571 inst.operands[i].isvec = 1;
6572 inst.operands[i].isscalar = 2;
6573 inst.operands[i].vectype = optype;
6574 inst.operands[i++].present = 1;
6575
6576 if (skip_past_comma (&ptr) == FAIL)
6577 goto wanted_comma;
6578
6579 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
6580 {
6581 /* Case 17: VMOV<c>.<dt> <Qd[idx]>, <Rt> */
6582 inst.operands[i].reg = val;
6583 inst.operands[i].isreg = 1;
6584 inst.operands[i].present = 1;
6585 }
6586 else if ((val = parse_scalar (&ptr, 8, &optype, REG_TYPE_MQ)) != FAIL)
6587 {
6588 /* Case 19: VMOV<c> <Qd[idx]>, <Qd[idx2]>, <Rt>, <Rt2> */
6589 inst.operands[i].reg = val;
6590 inst.operands[i].isvec = 1;
6591 inst.operands[i].isscalar = 2;
6592 inst.operands[i].vectype = optype;
6593 inst.operands[i++].present = 1;
6594
6595 if (skip_past_comma (&ptr) == FAIL)
6596 goto wanted_comma;
6597
6598 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
6599 goto wanted_arm;
6600
6601 inst.operands[i].reg = val;
6602 inst.operands[i].isreg = 1;
6603 inst.operands[i++].present = 1;
6604
6605 if (skip_past_comma (&ptr) == FAIL)
6606 goto wanted_comma;
6607
6608 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
6609 goto wanted_arm;
6610
6611 inst.operands[i].reg = val;
6612 inst.operands[i].isreg = 1;
6613 inst.operands[i].present = 1;
6614 }
6615 else
6616 {
6617 first_error (_("expected ARM or MVE vector register"));
6618 return FAIL;
6619 }
6620 }
6621 else if ((val = parse_scalar (&ptr, 8, &optype, REG_TYPE_VFD)) != FAIL)
6622 {
6623 /* Case 4: VMOV<c><q>.<size> <Dn[x]>, <Rd>. */
6624 inst.operands[i].reg = val;
6625 inst.operands[i].isscalar = 1;
6626 inst.operands[i].vectype = optype;
6627 inst.operands[i++].present = 1;
6628
6629 if (skip_past_comma (&ptr) == FAIL)
6630 goto wanted_comma;
6631
6632 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
6633 goto wanted_arm;
6634
6635 inst.operands[i].reg = val;
6636 inst.operands[i].isreg = 1;
6637 inst.operands[i].present = 1;
6638 }
6639 else if (((val = arm_typed_reg_parse (&ptr, REG_TYPE_NSDQ, &rtype, &optype))
6640 != FAIL)
6641 || ((val = arm_typed_reg_parse (&ptr, REG_TYPE_MQ, &rtype, &optype))
6642 != FAIL))
6643 {
6644 /* Cases 0, 1, 2, 3, 5 (D only). */
6645 if (skip_past_comma (&ptr) == FAIL)
6646 goto wanted_comma;
6647
6648 inst.operands[i].reg = val;
6649 inst.operands[i].isreg = 1;
6650 inst.operands[i].isquad = (rtype == REG_TYPE_NQ);
6651 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
6652 inst.operands[i].isvec = 1;
6653 inst.operands[i].vectype = optype;
6654 inst.operands[i++].present = 1;
6655
6656 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
6657 {
6658 /* Case 5: VMOV<c><q> <Dm>, <Rd>, <Rn>.
6659 Case 13: VMOV <Sd>, <Rm> */
6660 inst.operands[i].reg = val;
6661 inst.operands[i].isreg = 1;
6662 inst.operands[i].present = 1;
6663
6664 if (rtype == REG_TYPE_NQ)
6665 {
6666 first_error (_("can't use Neon quad register here"));
6667 return FAIL;
6668 }
6669 else if (rtype != REG_TYPE_VFS)
6670 {
6671 i++;
6672 if (skip_past_comma (&ptr) == FAIL)
6673 goto wanted_comma;
6674 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
6675 goto wanted_arm;
6676 inst.operands[i].reg = val;
6677 inst.operands[i].isreg = 1;
6678 inst.operands[i].present = 1;
6679 }
6680 }
6681 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_NSDQ, &rtype,
6682 &optype)) != FAIL)
6683 {
6684 /* Case 0: VMOV<c><q> <Qd>, <Qm>
6685 Case 1: VMOV<c><q> <Dd>, <Dm>
6686 Case 8: VMOV.F32 <Sd>, <Sm>
6687 Case 15: VMOV <Sd>, <Se>, <Rn>, <Rm> */
6688
6689 inst.operands[i].reg = val;
6690 inst.operands[i].isreg = 1;
6691 inst.operands[i].isquad = (rtype == REG_TYPE_NQ);
6692 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
6693 inst.operands[i].isvec = 1;
6694 inst.operands[i].vectype = optype;
6695 inst.operands[i].present = 1;
6696
6697 if (skip_past_comma (&ptr) == SUCCESS)
6698 {
6699 /* Case 15. */
6700 i++;
6701
6702 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
6703 goto wanted_arm;
6704
6705 inst.operands[i].reg = val;
6706 inst.operands[i].isreg = 1;
6707 inst.operands[i++].present = 1;
6708
6709 if (skip_past_comma (&ptr) == FAIL)
6710 goto wanted_comma;
6711
6712 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
6713 goto wanted_arm;
6714
6715 inst.operands[i].reg = val;
6716 inst.operands[i].isreg = 1;
6717 inst.operands[i].present = 1;
6718 }
6719 }
6720 else if (parse_qfloat_immediate (&ptr, &inst.operands[i].imm) == SUCCESS)
6721 /* Case 2: VMOV<c><q>.<dt> <Qd>, #<float-imm>
6722 Case 3: VMOV<c><q>.<dt> <Dd>, #<float-imm>
6723 Case 10: VMOV.F32 <Sd>, #<imm>
6724 Case 11: VMOV.F64 <Dd>, #<imm> */
6725 inst.operands[i].immisfloat = 1;
6726 else if (parse_big_immediate (&ptr, i, NULL, /*allow_symbol_p=*/FALSE)
6727 == SUCCESS)
6728 /* Case 2: VMOV<c><q>.<dt> <Qd>, #<imm>
6729 Case 3: VMOV<c><q>.<dt> <Dd>, #<imm> */
6730 ;
6731 else
6732 {
6733 first_error (_("expected <Rm> or <Dm> or <Qm> operand"));
6734 return FAIL;
6735 }
6736 }
6737 else if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
6738 {
6739 /* Cases 6, 7, 16, 18. */
6740 inst.operands[i].reg = val;
6741 inst.operands[i].isreg = 1;
6742 inst.operands[i++].present = 1;
6743
6744 if (skip_past_comma (&ptr) == FAIL)
6745 goto wanted_comma;
6746
6747 if ((val = parse_scalar (&ptr, 8, &optype, REG_TYPE_MQ)) != FAIL)
6748 {
6749 /* Case 18: VMOV<c>.<dt> <Rt>, <Qn[idx]> */
6750 inst.operands[i].reg = val;
6751 inst.operands[i].isscalar = 2;
6752 inst.operands[i].present = 1;
6753 inst.operands[i].vectype = optype;
6754 }
6755 else if ((val = parse_scalar (&ptr, 8, &optype, REG_TYPE_VFD)) != FAIL)
6756 {
6757 /* Case 6: VMOV<c><q>.<dt> <Rd>, <Dn[x]> */
6758 inst.operands[i].reg = val;
6759 inst.operands[i].isscalar = 1;
6760 inst.operands[i].present = 1;
6761 inst.operands[i].vectype = optype;
6762 }
6763 else if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
6764 {
6765 inst.operands[i].reg = val;
6766 inst.operands[i].isreg = 1;
6767 inst.operands[i++].present = 1;
6768
6769 if (skip_past_comma (&ptr) == FAIL)
6770 goto wanted_comma;
6771
6772 if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFSD, &rtype, &optype))
6773 != FAIL)
6774 {
6775 /* Case 7: VMOV<c><q> <Rd>, <Rn>, <Dm> */
6776
6777 inst.operands[i].reg = val;
6778 inst.operands[i].isreg = 1;
6779 inst.operands[i].isvec = 1;
6780 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
6781 inst.operands[i].vectype = optype;
6782 inst.operands[i].present = 1;
6783
6784 if (rtype == REG_TYPE_VFS)
6785 {
6786 /* Case 14. */
6787 i++;
6788 if (skip_past_comma (&ptr) == FAIL)
6789 goto wanted_comma;
6790 if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFS, NULL,
6791 &optype)) == FAIL)
6792 {
6793 first_error (_(reg_expected_msgs[REG_TYPE_VFS]));
6794 return FAIL;
6795 }
6796 inst.operands[i].reg = val;
6797 inst.operands[i].isreg = 1;
6798 inst.operands[i].isvec = 1;
6799 inst.operands[i].issingle = 1;
6800 inst.operands[i].vectype = optype;
6801 inst.operands[i].present = 1;
6802 }
6803 }
6804 else
6805 {
6806 if ((val = parse_scalar (&ptr, 8, &optype, REG_TYPE_MQ))
6807 != FAIL)
6808 {
6809 /* Case 16: VMOV<c> <Rt>, <Rt2>, <Qd[idx]>, <Qd[idx2]> */
6810 inst.operands[i].reg = val;
6811 inst.operands[i].isvec = 1;
6812 inst.operands[i].isscalar = 2;
6813 inst.operands[i].vectype = optype;
6814 inst.operands[i++].present = 1;
6815
6816 if (skip_past_comma (&ptr) == FAIL)
6817 goto wanted_comma;
6818
6819 if ((val = parse_scalar (&ptr, 8, &optype, REG_TYPE_MQ))
6820 == FAIL)
6821 {
6822 first_error (_(reg_expected_msgs[REG_TYPE_MQ]));
6823 return FAIL;
6824 }
6825 inst.operands[i].reg = val;
6826 inst.operands[i].isvec = 1;
6827 inst.operands[i].isscalar = 2;
6828 inst.operands[i].vectype = optype;
6829 inst.operands[i].present = 1;
6830 }
6831 else
6832 {
6833 first_error (_("VFP single, double or MVE vector register"
6834 " expected"));
6835 return FAIL;
6836 }
6837 }
6838 }
6839 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFS, NULL, &optype))
6840 != FAIL)
6841 {
6842 /* Case 13. */
6843 inst.operands[i].reg = val;
6844 inst.operands[i].isreg = 1;
6845 inst.operands[i].isvec = 1;
6846 inst.operands[i].issingle = 1;
6847 inst.operands[i].vectype = optype;
6848 inst.operands[i].present = 1;
6849 }
6850 }
6851 else
6852 {
6853 first_error (_("parse error"));
6854 return FAIL;
6855 }
6856
6857 /* Successfully parsed the operands. Update args. */
6858 *which_operand = i;
6859 *str = ptr;
6860 return SUCCESS;
6861
6862 wanted_comma:
6863 first_error (_("expected comma"));
6864 return FAIL;
6865
6866 wanted_arm:
6867 first_error (_(reg_expected_msgs[REG_TYPE_RN]));
6868 return FAIL;
6869 }
6870
6871 /* Use this macro when the operand constraints are different
6872 for ARM and THUMB (e.g. ldrd). */
6873 #define MIX_ARM_THUMB_OPERANDS(arm_operand, thumb_operand) \
6874 ((arm_operand) | ((thumb_operand) << 16))
6875
6876 /* Matcher codes for parse_operands. */
6877 enum operand_parse_code
6878 {
6879 OP_stop, /* end of line */
6880
6881 OP_RR, /* ARM register */
6882 OP_RRnpc, /* ARM register, not r15 */
6883 OP_RRnpcsp, /* ARM register, neither r15 nor r13 (a.k.a. 'BadReg') */
6884 OP_RRnpcb, /* ARM register, not r15, in square brackets */
6885 OP_RRnpctw, /* ARM register, not r15 in Thumb-state or with writeback,
6886 optional trailing ! */
6887 OP_RRw, /* ARM register, not r15, optional trailing ! */
6888 OP_RCP, /* Coprocessor number */
6889 OP_RCN, /* Coprocessor register */
6890 OP_RF, /* FPA register */
6891 OP_RVS, /* VFP single precision register */
6892 OP_RVD, /* VFP double precision register (0..15) */
6893 OP_RND, /* Neon double precision register (0..31) */
6894 OP_RNDMQ, /* Neon double precision (0..31) or MVE vector register. */
6895 OP_RNDMQR, /* Neon double precision (0..31), MVE vector or ARM register.
6896 */
6897 OP_RNQ, /* Neon quad precision register */
6898 OP_RNQMQ, /* Neon quad or MVE vector register. */
6899 OP_RVSD, /* VFP single or double precision register */
6900 OP_RVSD_COND, /* VFP single, double precision register or condition code. */
6901 OP_RVSDMQ, /* VFP single, double precision or MVE vector register. */
6902 OP_RNSD, /* Neon single or double precision register */
6903 OP_RNDQ, /* Neon double or quad precision register */
6904 OP_RNDQMQ, /* Neon double, quad or MVE vector register. */
6905 OP_RNSDQ, /* Neon single, double or quad precision register */
6906 OP_RNSC, /* Neon scalar D[X] */
6907 OP_RVC, /* VFP control register */
6908 OP_RMF, /* Maverick F register */
6909 OP_RMD, /* Maverick D register */
6910 OP_RMFX, /* Maverick FX register */
6911 OP_RMDX, /* Maverick DX register */
6912 OP_RMAX, /* Maverick AX register */
6913 OP_RMDS, /* Maverick DSPSC register */
6914 OP_RIWR, /* iWMMXt wR register */
6915 OP_RIWC, /* iWMMXt wC register */
6916 OP_RIWG, /* iWMMXt wCG register */
6917 OP_RXA, /* XScale accumulator register */
6918
6919 OP_RNSDQMQ, /* Neon single, double or quad register or MVE vector register
6920 */
6921 OP_RNSDQMQR, /* Neon single, double or quad register, MVE vector register or
6922 GPR (no SP/SP) */
6923 OP_RMQ, /* MVE vector register. */
6924 OP_RMQRZ, /* MVE vector or ARM register including ZR. */
6925
6926 /* New operands for Armv8.1-M Mainline. */
6927 OP_LR, /* ARM LR register */
6928 OP_RRe, /* ARM register, only even numbered. */
6929 OP_RRo, /* ARM register, only odd numbered, not r13 or r15. */
6930 OP_RRnpcsp_I32, /* ARM register (no BadReg) or literal 1 .. 32 */
6931
6932 OP_REGLST, /* ARM register list */
6933 OP_CLRMLST, /* CLRM register list */
6934 OP_VRSLST, /* VFP single-precision register list */
6935 OP_VRDLST, /* VFP double-precision register list */
6936 OP_VRSDLST, /* VFP single or double-precision register list (& quad) */
6937 OP_NRDLST, /* Neon double-precision register list (d0-d31, qN aliases) */
6938 OP_NSTRLST, /* Neon element/structure list */
6939 OP_VRSDVLST, /* VFP single or double-precision register list and VPR */
6940 OP_MSTRLST2, /* MVE vector list with two elements. */
6941 OP_MSTRLST4, /* MVE vector list with four elements. */
6942
6943 OP_RNDQ_I0, /* Neon D or Q reg, or immediate zero. */
6944 OP_RVSD_I0, /* VFP S or D reg, or immediate zero. */
6945 OP_RSVD_FI0, /* VFP S or D reg, or floating point immediate zero. */
6946 OP_RSVDMQ_FI0, /* VFP S, D, MVE vector register or floating point immediate
6947 zero. */
6948 OP_RR_RNSC, /* ARM reg or Neon scalar. */
6949 OP_RNSD_RNSC, /* Neon S or D reg, or Neon scalar. */
6950 OP_RNSDQ_RNSC, /* Vector S, D or Q reg, or Neon scalar. */
6951 OP_RNSDQ_RNSC_MQ, /* Vector S, D or Q reg, Neon scalar or MVE vector register.
6952 */
6953 OP_RNDQ_RNSC, /* Neon D or Q reg, or Neon scalar. */
6954 OP_RNDQMQ_RNSC, /* Neon D, Q or MVE vector reg, or Neon scalar. */
6955 OP_RND_RNSC, /* Neon D reg, or Neon scalar. */
6956 OP_VMOV, /* Neon VMOV operands. */
6957 OP_RNDQ_Ibig, /* Neon D or Q reg, or big immediate for logic and VMVN. */
6958 /* Neon D, Q or MVE vector register, or big immediate for logic and VMVN. */
6959 OP_RNDQMQ_Ibig,
6960 OP_RNDQ_I63b, /* Neon D or Q reg, or immediate for shift. */
6961 OP_RIWR_I32z, /* iWMMXt wR register, or immediate 0 .. 32 for iWMMXt2. */
6962 OP_VLDR, /* VLDR operand. */
6963
6964 OP_I0, /* immediate zero */
6965 OP_I7, /* immediate value 0 .. 7 */
6966 OP_I15, /* 0 .. 15 */
6967 OP_I16, /* 1 .. 16 */
6968 OP_I16z, /* 0 .. 16 */
6969 OP_I31, /* 0 .. 31 */
6970 OP_I31w, /* 0 .. 31, optional trailing ! */
6971 OP_I32, /* 1 .. 32 */
6972 OP_I32z, /* 0 .. 32 */
6973 OP_I63, /* 0 .. 63 */
6974 OP_I63s, /* -64 .. 63 */
6975 OP_I64, /* 1 .. 64 */
6976 OP_I64z, /* 0 .. 64 */
6977 OP_I255, /* 0 .. 255 */
6978
6979 OP_I4b, /* immediate, prefix optional, 1 .. 4 */
6980 OP_I7b, /* 0 .. 7 */
6981 OP_I15b, /* 0 .. 15 */
6982 OP_I31b, /* 0 .. 31 */
6983
6984 OP_SH, /* shifter operand */
6985 OP_SHG, /* shifter operand with possible group relocation */
6986 OP_ADDR, /* Memory address expression (any mode) */
6987 OP_ADDRMVE, /* Memory address expression for MVE's VSTR/VLDR. */
6988 OP_ADDRGLDR, /* Mem addr expr (any mode) with possible LDR group reloc */
6989 OP_ADDRGLDRS, /* Mem addr expr (any mode) with possible LDRS group reloc */
6990 OP_ADDRGLDC, /* Mem addr expr (any mode) with possible LDC group reloc */
6991 OP_EXP, /* arbitrary expression */
6992 OP_EXPi, /* same, with optional immediate prefix */
6993 OP_EXPr, /* same, with optional relocation suffix */
6994 OP_EXPs, /* same, with optional non-first operand relocation suffix */
6995 OP_HALF, /* 0 .. 65535 or low/high reloc. */
6996 OP_IROT1, /* VCADD rotate immediate: 90, 270. */
6997 OP_IROT2, /* VCMLA rotate immediate: 0, 90, 180, 270. */
6998
6999 OP_CPSF, /* CPS flags */
7000 OP_ENDI, /* Endianness specifier */
7001 OP_wPSR, /* CPSR/SPSR/APSR mask for msr (writing). */
7002 OP_rPSR, /* CPSR/SPSR/APSR mask for msr (reading). */
7003 OP_COND, /* conditional code */
7004 OP_TB, /* Table branch. */
7005
7006 OP_APSR_RR, /* ARM register or "APSR_nzcv". */
7007
7008 OP_RRnpc_I0, /* ARM register or literal 0 */
7009 OP_RR_EXr, /* ARM register or expression with opt. reloc stuff. */
7010 OP_RR_EXi, /* ARM register or expression with imm prefix */
7011 OP_RF_IF, /* FPA register or immediate */
7012 OP_RIWR_RIWC, /* iWMMXt R or C reg */
7013 OP_RIWC_RIWG, /* iWMMXt wC or wCG reg */
7014
7015 /* Optional operands. */
7016 OP_oI7b, /* immediate, prefix optional, 0 .. 7 */
7017 OP_oI31b, /* 0 .. 31 */
7018 OP_oI32b, /* 1 .. 32 */
7019 OP_oI32z, /* 0 .. 32 */
7020 OP_oIffffb, /* 0 .. 65535 */
7021 OP_oI255c, /* curly-brace enclosed, 0 .. 255 */
7022
7023 OP_oRR, /* ARM register */
7024 OP_oLR, /* ARM LR register */
7025 OP_oRRnpc, /* ARM register, not the PC */
7026 OP_oRRnpcsp, /* ARM register, neither the PC nor the SP (a.k.a. BadReg) */
7027 OP_oRRw, /* ARM register, not r15, optional trailing ! */
7028 OP_oRND, /* Optional Neon double precision register */
7029 OP_oRNQ, /* Optional Neon quad precision register */
7030 OP_oRNDQMQ, /* Optional Neon double, quad or MVE vector register. */
7031 OP_oRNDQ, /* Optional Neon double or quad precision register */
7032 OP_oRNSDQ, /* Optional single, double or quad precision vector register */
7033 OP_oRNSDQMQ, /* Optional single, double or quad register or MVE vector
7034 register. */
7035 OP_oSHll, /* LSL immediate */
7036 OP_oSHar, /* ASR immediate */
7037 OP_oSHllar, /* LSL or ASR immediate */
7038 OP_oROR, /* ROR 0/8/16/24 */
7039 OP_oBARRIER_I15, /* Option argument for a barrier instruction. */
7040
7041 OP_oRMQRZ, /* optional MVE vector or ARM register including ZR. */
7042
7043 /* Some pre-defined mixed (ARM/THUMB) operands. */
7044 OP_RR_npcsp = MIX_ARM_THUMB_OPERANDS (OP_RR, OP_RRnpcsp),
7045 OP_RRnpc_npcsp = MIX_ARM_THUMB_OPERANDS (OP_RRnpc, OP_RRnpcsp),
7046 OP_oRRnpc_npcsp = MIX_ARM_THUMB_OPERANDS (OP_oRRnpc, OP_oRRnpcsp),
7047
7048 OP_FIRST_OPTIONAL = OP_oI7b
7049 };
7050
7051 /* Generic instruction operand parser. This does no encoding and no
7052 semantic validation; it merely squirrels values away in the inst
7053 structure. Returns SUCCESS or FAIL depending on whether the
7054 specified grammar matched. */
7055 static int
7056 parse_operands (char *str, const unsigned int *pattern, bfd_boolean thumb)
7057 {
7058 unsigned const int *upat = pattern;
7059 char *backtrack_pos = 0;
7060 const char *backtrack_error = 0;
7061 int i, val = 0, backtrack_index = 0;
7062 enum arm_reg_type rtype;
7063 parse_operand_result result;
7064 unsigned int op_parse_code;
7065 bfd_boolean partial_match;
7066
7067 #define po_char_or_fail(chr) \
7068 do \
7069 { \
7070 if (skip_past_char (&str, chr) == FAIL) \
7071 goto bad_args; \
7072 } \
7073 while (0)
7074
7075 #define po_reg_or_fail(regtype) \
7076 do \
7077 { \
7078 val = arm_typed_reg_parse (& str, regtype, & rtype, \
7079 & inst.operands[i].vectype); \
7080 if (val == FAIL) \
7081 { \
7082 first_error (_(reg_expected_msgs[regtype])); \
7083 goto failure; \
7084 } \
7085 inst.operands[i].reg = val; \
7086 inst.operands[i].isreg = 1; \
7087 inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \
7088 inst.operands[i].issingle = (rtype == REG_TYPE_VFS); \
7089 inst.operands[i].isvec = (rtype == REG_TYPE_VFS \
7090 || rtype == REG_TYPE_VFD \
7091 || rtype == REG_TYPE_NQ); \
7092 inst.operands[i].iszr = (rtype == REG_TYPE_ZR); \
7093 } \
7094 while (0)
7095
7096 #define po_reg_or_goto(regtype, label) \
7097 do \
7098 { \
7099 val = arm_typed_reg_parse (& str, regtype, & rtype, \
7100 & inst.operands[i].vectype); \
7101 if (val == FAIL) \
7102 goto label; \
7103 \
7104 inst.operands[i].reg = val; \
7105 inst.operands[i].isreg = 1; \
7106 inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \
7107 inst.operands[i].issingle = (rtype == REG_TYPE_VFS); \
7108 inst.operands[i].isvec = (rtype == REG_TYPE_VFS \
7109 || rtype == REG_TYPE_VFD \
7110 || rtype == REG_TYPE_NQ); \
7111 inst.operands[i].iszr = (rtype == REG_TYPE_ZR); \
7112 } \
7113 while (0)
7114
7115 #define po_imm_or_fail(min, max, popt) \
7116 do \
7117 { \
7118 if (parse_immediate (&str, &val, min, max, popt) == FAIL) \
7119 goto failure; \
7120 inst.operands[i].imm = val; \
7121 } \
7122 while (0)
7123
7124 #define po_scalar_or_goto(elsz, label, reg_type) \
7125 do \
7126 { \
7127 val = parse_scalar (& str, elsz, & inst.operands[i].vectype, \
7128 reg_type); \
7129 if (val == FAIL) \
7130 goto label; \
7131 inst.operands[i].reg = val; \
7132 inst.operands[i].isscalar = 1; \
7133 } \
7134 while (0)
7135
7136 #define po_misc_or_fail(expr) \
7137 do \
7138 { \
7139 if (expr) \
7140 goto failure; \
7141 } \
7142 while (0)
7143
7144 #define po_misc_or_fail_no_backtrack(expr) \
7145 do \
7146 { \
7147 result = expr; \
7148 if (result == PARSE_OPERAND_FAIL_NO_BACKTRACK) \
7149 backtrack_pos = 0; \
7150 if (result != PARSE_OPERAND_SUCCESS) \
7151 goto failure; \
7152 } \
7153 while (0)
7154
7155 #define po_barrier_or_imm(str) \
7156 do \
7157 { \
7158 val = parse_barrier (&str); \
7159 if (val == FAIL && ! ISALPHA (*str)) \
7160 goto immediate; \
7161 if (val == FAIL \
7162 /* ISB can only take SY as an option. */ \
7163 || ((inst.instruction & 0xf0) == 0x60 \
7164 && val != 0xf)) \
7165 { \
7166 inst.error = _("invalid barrier type"); \
7167 backtrack_pos = 0; \
7168 goto failure; \
7169 } \
7170 } \
7171 while (0)
7172
7173 skip_whitespace (str);
7174
7175 for (i = 0; upat[i] != OP_stop; i++)
7176 {
7177 op_parse_code = upat[i];
7178 if (op_parse_code >= 1<<16)
7179 op_parse_code = thumb ? (op_parse_code >> 16)
7180 : (op_parse_code & ((1<<16)-1));
7181
7182 if (op_parse_code >= OP_FIRST_OPTIONAL)
7183 {
7184 /* Remember where we are in case we need to backtrack. */
7185 backtrack_pos = str;
7186 backtrack_error = inst.error;
7187 backtrack_index = i;
7188 }
7189
7190 if (i > 0 && (i > 1 || inst.operands[0].present))
7191 po_char_or_fail (',');
7192
7193 switch (op_parse_code)
7194 {
7195 /* Registers */
7196 case OP_oRRnpc:
7197 case OP_oRRnpcsp:
7198 case OP_RRnpc:
7199 case OP_RRnpcsp:
7200 case OP_oRR:
7201 case OP_RRe:
7202 case OP_RRo:
7203 case OP_LR:
7204 case OP_oLR:
7205 case OP_RR: po_reg_or_fail (REG_TYPE_RN); break;
7206 case OP_RCP: po_reg_or_fail (REG_TYPE_CP); break;
7207 case OP_RCN: po_reg_or_fail (REG_TYPE_CN); break;
7208 case OP_RF: po_reg_or_fail (REG_TYPE_FN); break;
7209 case OP_RVS: po_reg_or_fail (REG_TYPE_VFS); break;
7210 case OP_RVD: po_reg_or_fail (REG_TYPE_VFD); break;
7211 case OP_oRND:
7212 case OP_RNDMQR:
7213 po_reg_or_goto (REG_TYPE_RN, try_rndmq);
7214 break;
7215 try_rndmq:
7216 case OP_RNDMQ:
7217 po_reg_or_goto (REG_TYPE_MQ, try_rnd);
7218 break;
7219 try_rnd:
7220 case OP_RND: po_reg_or_fail (REG_TYPE_VFD); break;
7221 case OP_RVC:
7222 po_reg_or_goto (REG_TYPE_VFC, coproc_reg);
7223 break;
7224 /* Also accept generic coprocessor regs for unknown registers. */
7225 coproc_reg:
7226 po_reg_or_fail (REG_TYPE_CN);
7227 break;
7228 case OP_RMF: po_reg_or_fail (REG_TYPE_MVF); break;
7229 case OP_RMD: po_reg_or_fail (REG_TYPE_MVD); break;
7230 case OP_RMFX: po_reg_or_fail (REG_TYPE_MVFX); break;
7231 case OP_RMDX: po_reg_or_fail (REG_TYPE_MVDX); break;
7232 case OP_RMAX: po_reg_or_fail (REG_TYPE_MVAX); break;
7233 case OP_RMDS: po_reg_or_fail (REG_TYPE_DSPSC); break;
7234 case OP_RIWR: po_reg_or_fail (REG_TYPE_MMXWR); break;
7235 case OP_RIWC: po_reg_or_fail (REG_TYPE_MMXWC); break;
7236 case OP_RIWG: po_reg_or_fail (REG_TYPE_MMXWCG); break;
7237 case OP_RXA: po_reg_or_fail (REG_TYPE_XSCALE); break;
7238 case OP_oRNQ:
7239 case OP_RNQMQ:
7240 po_reg_or_goto (REG_TYPE_MQ, try_nq);
7241 break;
7242 try_nq:
7243 case OP_RNQ: po_reg_or_fail (REG_TYPE_NQ); break;
7244 case OP_RNSD: po_reg_or_fail (REG_TYPE_NSD); break;
7245 case OP_oRNDQMQ:
7246 case OP_RNDQMQ:
7247 po_reg_or_goto (REG_TYPE_MQ, try_rndq);
7248 break;
7249 try_rndq:
7250 case OP_oRNDQ:
7251 case OP_RNDQ: po_reg_or_fail (REG_TYPE_NDQ); break;
7252 case OP_RVSDMQ:
7253 po_reg_or_goto (REG_TYPE_MQ, try_rvsd);
7254 break;
7255 try_rvsd:
7256 case OP_RVSD: po_reg_or_fail (REG_TYPE_VFSD); break;
7257 case OP_RVSD_COND:
7258 po_reg_or_goto (REG_TYPE_VFSD, try_cond);
7259 break;
7260 case OP_oRNSDQ:
7261 case OP_RNSDQ: po_reg_or_fail (REG_TYPE_NSDQ); break;
7262 case OP_RNSDQMQR:
7263 po_reg_or_goto (REG_TYPE_RN, try_mq);
7264 break;
7265 try_mq:
7266 case OP_oRNSDQMQ:
7267 case OP_RNSDQMQ:
7268 po_reg_or_goto (REG_TYPE_MQ, try_nsdq2);
7269 break;
7270 try_nsdq2:
7271 po_reg_or_fail (REG_TYPE_NSDQ);
7272 inst.error = 0;
7273 break;
7274 case OP_RMQ:
7275 po_reg_or_fail (REG_TYPE_MQ);
7276 break;
7277 /* Neon scalar. Using an element size of 8 means that some invalid
7278 scalars are accepted here, so deal with those in later code. */
7279 case OP_RNSC: po_scalar_or_goto (8, failure, REG_TYPE_VFD); break;
7280
7281 case OP_RNDQ_I0:
7282 {
7283 po_reg_or_goto (REG_TYPE_NDQ, try_imm0);
7284 break;
7285 try_imm0:
7286 po_imm_or_fail (0, 0, TRUE);
7287 }
7288 break;
7289
7290 case OP_RVSD_I0:
7291 po_reg_or_goto (REG_TYPE_VFSD, try_imm0);
7292 break;
7293
7294 case OP_RSVDMQ_FI0:
7295 po_reg_or_goto (REG_TYPE_MQ, try_rsvd_fi0);
7296 break;
7297 try_rsvd_fi0:
7298 case OP_RSVD_FI0:
7299 {
7300 po_reg_or_goto (REG_TYPE_VFSD, try_ifimm0);
7301 break;
7302 try_ifimm0:
7303 if (parse_ifimm_zero (&str))
7304 inst.operands[i].imm = 0;
7305 else
7306 {
7307 inst.error
7308 = _("only floating point zero is allowed as immediate value");
7309 goto failure;
7310 }
7311 }
7312 break;
7313
7314 case OP_RR_RNSC:
7315 {
7316 po_scalar_or_goto (8, try_rr, REG_TYPE_VFD);
7317 break;
7318 try_rr:
7319 po_reg_or_fail (REG_TYPE_RN);
7320 }
7321 break;
7322
7323 case OP_RNSDQ_RNSC_MQ:
7324 po_reg_or_goto (REG_TYPE_MQ, try_rnsdq_rnsc);
7325 break;
7326 try_rnsdq_rnsc:
7327 case OP_RNSDQ_RNSC:
7328 {
7329 po_scalar_or_goto (8, try_nsdq, REG_TYPE_VFD);
7330 inst.error = 0;
7331 break;
7332 try_nsdq:
7333 po_reg_or_fail (REG_TYPE_NSDQ);
7334 inst.error = 0;
7335 }
7336 break;
7337
7338 case OP_RNSD_RNSC:
7339 {
7340 po_scalar_or_goto (8, try_s_scalar, REG_TYPE_VFD);
7341 break;
7342 try_s_scalar:
7343 po_scalar_or_goto (4, try_nsd, REG_TYPE_VFS);
7344 break;
7345 try_nsd:
7346 po_reg_or_fail (REG_TYPE_NSD);
7347 }
7348 break;
7349
7350 case OP_RNDQMQ_RNSC:
7351 po_reg_or_goto (REG_TYPE_MQ, try_rndq_rnsc);
7352 break;
7353 try_rndq_rnsc:
7354 case OP_RNDQ_RNSC:
7355 {
7356 po_scalar_or_goto (8, try_ndq, REG_TYPE_VFD);
7357 break;
7358 try_ndq:
7359 po_reg_or_fail (REG_TYPE_NDQ);
7360 }
7361 break;
7362
7363 case OP_RND_RNSC:
7364 {
7365 po_scalar_or_goto (8, try_vfd, REG_TYPE_VFD);
7366 break;
7367 try_vfd:
7368 po_reg_or_fail (REG_TYPE_VFD);
7369 }
7370 break;
7371
7372 case OP_VMOV:
7373 /* WARNING: parse_neon_mov can move the operand counter, i. If we're
7374 not careful then bad things might happen. */
7375 po_misc_or_fail (parse_neon_mov (&str, &i) == FAIL);
7376 break;
7377
7378 case OP_RNDQMQ_Ibig:
7379 po_reg_or_goto (REG_TYPE_MQ, try_rndq_ibig);
7380 break;
7381 try_rndq_ibig:
7382 case OP_RNDQ_Ibig:
7383 {
7384 po_reg_or_goto (REG_TYPE_NDQ, try_immbig);
7385 break;
7386 try_immbig:
7387 /* There's a possibility of getting a 64-bit immediate here, so
7388 we need special handling. */
7389 if (parse_big_immediate (&str, i, NULL, /*allow_symbol_p=*/FALSE)
7390 == FAIL)
7391 {
7392 inst.error = _("immediate value is out of range");
7393 goto failure;
7394 }
7395 }
7396 break;
7397
7398 case OP_RNDQ_I63b:
7399 {
7400 po_reg_or_goto (REG_TYPE_NDQ, try_shimm);
7401 break;
7402 try_shimm:
7403 po_imm_or_fail (0, 63, TRUE);
7404 }
7405 break;
7406
7407 case OP_RRnpcb:
7408 po_char_or_fail ('[');
7409 po_reg_or_fail (REG_TYPE_RN);
7410 po_char_or_fail (']');
7411 break;
7412
7413 case OP_RRnpctw:
7414 case OP_RRw:
7415 case OP_oRRw:
7416 po_reg_or_fail (REG_TYPE_RN);
7417 if (skip_past_char (&str, '!') == SUCCESS)
7418 inst.operands[i].writeback = 1;
7419 break;
7420
7421 /* Immediates */
7422 case OP_I7: po_imm_or_fail ( 0, 7, FALSE); break;
7423 case OP_I15: po_imm_or_fail ( 0, 15, FALSE); break;
7424 case OP_I16: po_imm_or_fail ( 1, 16, FALSE); break;
7425 case OP_I16z: po_imm_or_fail ( 0, 16, FALSE); break;
7426 case OP_I31: po_imm_or_fail ( 0, 31, FALSE); break;
7427 case OP_I32: po_imm_or_fail ( 1, 32, FALSE); break;
7428 case OP_I32z: po_imm_or_fail ( 0, 32, FALSE); break;
7429 case OP_I63s: po_imm_or_fail (-64, 63, FALSE); break;
7430 case OP_I63: po_imm_or_fail ( 0, 63, FALSE); break;
7431 case OP_I64: po_imm_or_fail ( 1, 64, FALSE); break;
7432 case OP_I64z: po_imm_or_fail ( 0, 64, FALSE); break;
7433 case OP_I255: po_imm_or_fail ( 0, 255, FALSE); break;
7434
7435 case OP_I4b: po_imm_or_fail ( 1, 4, TRUE); break;
7436 case OP_oI7b:
7437 case OP_I7b: po_imm_or_fail ( 0, 7, TRUE); break;
7438 case OP_I15b: po_imm_or_fail ( 0, 15, TRUE); break;
7439 case OP_oI31b:
7440 case OP_I31b: po_imm_or_fail ( 0, 31, TRUE); break;
7441 case OP_oI32b: po_imm_or_fail ( 1, 32, TRUE); break;
7442 case OP_oI32z: po_imm_or_fail ( 0, 32, TRUE); break;
7443 case OP_oIffffb: po_imm_or_fail ( 0, 0xffff, TRUE); break;
7444
7445 /* Immediate variants */
7446 case OP_oI255c:
7447 po_char_or_fail ('{');
7448 po_imm_or_fail (0, 255, TRUE);
7449 po_char_or_fail ('}');
7450 break;
7451
7452 case OP_I31w:
7453 /* The expression parser chokes on a trailing !, so we have
7454 to find it first and zap it. */
7455 {
7456 char *s = str;
7457 while (*s && *s != ',')
7458 s++;
7459 if (s[-1] == '!')
7460 {
7461 s[-1] = '\0';
7462 inst.operands[i].writeback = 1;
7463 }
7464 po_imm_or_fail (0, 31, TRUE);
7465 if (str == s - 1)
7466 str = s;
7467 }
7468 break;
7469
7470 /* Expressions */
7471 case OP_EXPi: EXPi:
7472 po_misc_or_fail (my_get_expression (&inst.relocs[0].exp, &str,
7473 GE_OPT_PREFIX));
7474 break;
7475
7476 case OP_EXP:
7477 po_misc_or_fail (my_get_expression (&inst.relocs[0].exp, &str,
7478 GE_NO_PREFIX));
7479 break;
7480
7481 case OP_EXPr: EXPr:
7482 po_misc_or_fail (my_get_expression (&inst.relocs[0].exp, &str,
7483 GE_NO_PREFIX));
7484 if (inst.relocs[0].exp.X_op == O_symbol)
7485 {
7486 val = parse_reloc (&str);
7487 if (val == -1)
7488 {
7489 inst.error = _("unrecognized relocation suffix");
7490 goto failure;
7491 }
7492 else if (val != BFD_RELOC_UNUSED)
7493 {
7494 inst.operands[i].imm = val;
7495 inst.operands[i].hasreloc = 1;
7496 }
7497 }
7498 break;
7499
7500 case OP_EXPs:
7501 po_misc_or_fail (my_get_expression (&inst.relocs[i].exp, &str,
7502 GE_NO_PREFIX));
7503 if (inst.relocs[i].exp.X_op == O_symbol)
7504 {
7505 inst.operands[i].hasreloc = 1;
7506 }
7507 else if (inst.relocs[i].exp.X_op == O_constant)
7508 {
7509 inst.operands[i].imm = inst.relocs[i].exp.X_add_number;
7510 inst.operands[i].hasreloc = 0;
7511 }
7512 break;
7513
7514 /* Operand for MOVW or MOVT. */
7515 case OP_HALF:
7516 po_misc_or_fail (parse_half (&str));
7517 break;
7518
7519 /* Register or expression. */
7520 case OP_RR_EXr: po_reg_or_goto (REG_TYPE_RN, EXPr); break;
7521 case OP_RR_EXi: po_reg_or_goto (REG_TYPE_RN, EXPi); break;
7522
7523 /* Register or immediate. */
7524 case OP_RRnpc_I0: po_reg_or_goto (REG_TYPE_RN, I0); break;
7525 I0: po_imm_or_fail (0, 0, FALSE); break;
7526
7527 case OP_RF_IF: po_reg_or_goto (REG_TYPE_FN, IF); break;
7528 IF:
7529 if (!is_immediate_prefix (*str))
7530 goto bad_args;
7531 str++;
7532 val = parse_fpa_immediate (&str);
7533 if (val == FAIL)
7534 goto failure;
7535 /* FPA immediates are encoded as registers 8-15.
7536 parse_fpa_immediate has already applied the offset. */
7537 inst.operands[i].reg = val;
7538 inst.operands[i].isreg = 1;
7539 break;
7540
7541 case OP_RIWR_I32z: po_reg_or_goto (REG_TYPE_MMXWR, I32z); break;
7542 I32z: po_imm_or_fail (0, 32, FALSE); break;
7543
7544 /* Two kinds of register. */
7545 case OP_RIWR_RIWC:
7546 {
7547 struct reg_entry *rege = arm_reg_parse_multi (&str);
7548 if (!rege
7549 || (rege->type != REG_TYPE_MMXWR
7550 && rege->type != REG_TYPE_MMXWC
7551 && rege->type != REG_TYPE_MMXWCG))
7552 {
7553 inst.error = _("iWMMXt data or control register expected");
7554 goto failure;
7555 }
7556 inst.operands[i].reg = rege->number;
7557 inst.operands[i].isreg = (rege->type == REG_TYPE_MMXWR);
7558 }
7559 break;
7560
7561 case OP_RIWC_RIWG:
7562 {
7563 struct reg_entry *rege = arm_reg_parse_multi (&str);
7564 if (!rege
7565 || (rege->type != REG_TYPE_MMXWC
7566 && rege->type != REG_TYPE_MMXWCG))
7567 {
7568 inst.error = _("iWMMXt control register expected");
7569 goto failure;
7570 }
7571 inst.operands[i].reg = rege->number;
7572 inst.operands[i].isreg = 1;
7573 }
7574 break;
7575
7576 /* Misc */
7577 case OP_CPSF: val = parse_cps_flags (&str); break;
7578 case OP_ENDI: val = parse_endian_specifier (&str); break;
7579 case OP_oROR: val = parse_ror (&str); break;
7580 try_cond:
7581 case OP_COND: val = parse_cond (&str); break;
7582 case OP_oBARRIER_I15:
7583 po_barrier_or_imm (str); break;
7584 immediate:
7585 if (parse_immediate (&str, &val, 0, 15, TRUE) == FAIL)
7586 goto failure;
7587 break;
7588
7589 case OP_wPSR:
7590 case OP_rPSR:
7591 po_reg_or_goto (REG_TYPE_RNB, try_psr);
7592 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_virt))
7593 {
7594 inst.error = _("Banked registers are not available with this "
7595 "architecture.");
7596 goto failure;
7597 }
7598 break;
7599 try_psr:
7600 val = parse_psr (&str, op_parse_code == OP_wPSR);
7601 break;
7602
7603 case OP_VLDR:
7604 po_reg_or_goto (REG_TYPE_VFSD, try_sysreg);
7605 break;
7606 try_sysreg:
7607 val = parse_sys_vldr_vstr (&str);
7608 break;
7609
7610 case OP_APSR_RR:
7611 po_reg_or_goto (REG_TYPE_RN, try_apsr);
7612 break;
7613 try_apsr:
7614 /* Parse "APSR_nvzc" operand (for FMSTAT-equivalent MRS
7615 instruction). */
7616 if (strncasecmp (str, "APSR_", 5) == 0)
7617 {
7618 unsigned found = 0;
7619 str += 5;
7620 while (found < 15)
7621 switch (*str++)
7622 {
7623 case 'c': found = (found & 1) ? 16 : found | 1; break;
7624 case 'n': found = (found & 2) ? 16 : found | 2; break;
7625 case 'z': found = (found & 4) ? 16 : found | 4; break;
7626 case 'v': found = (found & 8) ? 16 : found | 8; break;
7627 default: found = 16;
7628 }
7629 if (found != 15)
7630 goto failure;
7631 inst.operands[i].isvec = 1;
7632 /* APSR_nzcv is encoded in instructions as if it were the REG_PC. */
7633 inst.operands[i].reg = REG_PC;
7634 }
7635 else
7636 goto failure;
7637 break;
7638
7639 case OP_TB:
7640 po_misc_or_fail (parse_tb (&str));
7641 break;
7642
7643 /* Register lists. */
7644 case OP_REGLST:
7645 val = parse_reg_list (&str, REGLIST_RN);
7646 if (*str == '^')
7647 {
7648 inst.operands[i].writeback = 1;
7649 str++;
7650 }
7651 break;
7652
7653 case OP_CLRMLST:
7654 val = parse_reg_list (&str, REGLIST_CLRM);
7655 break;
7656
7657 case OP_VRSLST:
7658 val = parse_vfp_reg_list (&str, &inst.operands[i].reg, REGLIST_VFP_S,
7659 &partial_match);
7660 break;
7661
7662 case OP_VRDLST:
7663 val = parse_vfp_reg_list (&str, &inst.operands[i].reg, REGLIST_VFP_D,
7664 &partial_match);
7665 break;
7666
7667 case OP_VRSDLST:
7668 /* Allow Q registers too. */
7669 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
7670 REGLIST_NEON_D, &partial_match);
7671 if (val == FAIL)
7672 {
7673 inst.error = NULL;
7674 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
7675 REGLIST_VFP_S, &partial_match);
7676 inst.operands[i].issingle = 1;
7677 }
7678 break;
7679
7680 case OP_VRSDVLST:
7681 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
7682 REGLIST_VFP_D_VPR, &partial_match);
7683 if (val == FAIL && !partial_match)
7684 {
7685 inst.error = NULL;
7686 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
7687 REGLIST_VFP_S_VPR, &partial_match);
7688 inst.operands[i].issingle = 1;
7689 }
7690 break;
7691
7692 case OP_NRDLST:
7693 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
7694 REGLIST_NEON_D, &partial_match);
7695 break;
7696
7697 case OP_MSTRLST4:
7698 case OP_MSTRLST2:
7699 val = parse_neon_el_struct_list (&str, &inst.operands[i].reg,
7700 1, &inst.operands[i].vectype);
7701 if (val != (((op_parse_code == OP_MSTRLST2) ? 3 : 7) << 5 | 0xe))
7702 goto failure;
7703 break;
7704 case OP_NSTRLST:
7705 val = parse_neon_el_struct_list (&str, &inst.operands[i].reg,
7706 0, &inst.operands[i].vectype);
7707 break;
7708
7709 /* Addressing modes */
7710 case OP_ADDRMVE:
7711 po_misc_or_fail (parse_address_group_reloc (&str, i, GROUP_MVE));
7712 break;
7713
7714 case OP_ADDR:
7715 po_misc_or_fail (parse_address (&str, i));
7716 break;
7717
7718 case OP_ADDRGLDR:
7719 po_misc_or_fail_no_backtrack (
7720 parse_address_group_reloc (&str, i, GROUP_LDR));
7721 break;
7722
7723 case OP_ADDRGLDRS:
7724 po_misc_or_fail_no_backtrack (
7725 parse_address_group_reloc (&str, i, GROUP_LDRS));
7726 break;
7727
7728 case OP_ADDRGLDC:
7729 po_misc_or_fail_no_backtrack (
7730 parse_address_group_reloc (&str, i, GROUP_LDC));
7731 break;
7732
7733 case OP_SH:
7734 po_misc_or_fail (parse_shifter_operand (&str, i));
7735 break;
7736
7737 case OP_SHG:
7738 po_misc_or_fail_no_backtrack (
7739 parse_shifter_operand_group_reloc (&str, i));
7740 break;
7741
7742 case OP_oSHll:
7743 po_misc_or_fail (parse_shift (&str, i, SHIFT_LSL_IMMEDIATE));
7744 break;
7745
7746 case OP_oSHar:
7747 po_misc_or_fail (parse_shift (&str, i, SHIFT_ASR_IMMEDIATE));
7748 break;
7749
7750 case OP_oSHllar:
7751 po_misc_or_fail (parse_shift (&str, i, SHIFT_LSL_OR_ASR_IMMEDIATE));
7752 break;
7753
7754 case OP_RMQRZ:
7755 case OP_oRMQRZ:
7756 po_reg_or_goto (REG_TYPE_MQ, try_rr_zr);
7757 break;
7758 try_rr_zr:
7759 po_reg_or_goto (REG_TYPE_RN, ZR);
7760 break;
7761 ZR:
7762 po_reg_or_fail (REG_TYPE_ZR);
7763 break;
7764
7765 default:
7766 as_fatal (_("unhandled operand code %d"), op_parse_code);
7767 }
7768
7769 /* Various value-based sanity checks and shared operations. We
7770 do not signal immediate failures for the register constraints;
7771 this allows a syntax error to take precedence. */
7772 switch (op_parse_code)
7773 {
7774 case OP_oRRnpc:
7775 case OP_RRnpc:
7776 case OP_RRnpcb:
7777 case OP_RRw:
7778 case OP_oRRw:
7779 case OP_RRnpc_I0:
7780 if (inst.operands[i].isreg && inst.operands[i].reg == REG_PC)
7781 inst.error = BAD_PC;
7782 break;
7783
7784 case OP_oRRnpcsp:
7785 case OP_RRnpcsp:
7786 if (inst.operands[i].isreg)
7787 {
7788 if (inst.operands[i].reg == REG_PC)
7789 inst.error = BAD_PC;
7790 else if (inst.operands[i].reg == REG_SP
7791 /* The restriction on Rd/Rt/Rt2 on Thumb mode has been
7792 relaxed since ARMv8-A. */
7793 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
7794 {
7795 gas_assert (thumb);
7796 inst.error = BAD_SP;
7797 }
7798 }
7799 break;
7800
7801 case OP_RRnpctw:
7802 if (inst.operands[i].isreg
7803 && inst.operands[i].reg == REG_PC
7804 && (inst.operands[i].writeback || thumb))
7805 inst.error = BAD_PC;
7806 break;
7807
7808 case OP_RVSD_COND:
7809 case OP_VLDR:
7810 if (inst.operands[i].isreg)
7811 break;
7812 /* fall through. */
7813
7814 case OP_CPSF:
7815 case OP_ENDI:
7816 case OP_oROR:
7817 case OP_wPSR:
7818 case OP_rPSR:
7819 case OP_COND:
7820 case OP_oBARRIER_I15:
7821 case OP_REGLST:
7822 case OP_CLRMLST:
7823 case OP_VRSLST:
7824 case OP_VRDLST:
7825 case OP_VRSDLST:
7826 case OP_VRSDVLST:
7827 case OP_NRDLST:
7828 case OP_NSTRLST:
7829 case OP_MSTRLST2:
7830 case OP_MSTRLST4:
7831 if (val == FAIL)
7832 goto failure;
7833 inst.operands[i].imm = val;
7834 break;
7835
7836 case OP_LR:
7837 case OP_oLR:
7838 if (inst.operands[i].reg != REG_LR)
7839 inst.error = _("operand must be LR register");
7840 break;
7841
7842 case OP_RMQRZ:
7843 case OP_oRMQRZ:
7844 if (!inst.operands[i].iszr && inst.operands[i].reg == REG_PC)
7845 inst.error = BAD_PC;
7846 break;
7847
7848 case OP_RRe:
7849 if (inst.operands[i].isreg
7850 && (inst.operands[i].reg & 0x00000001) != 0)
7851 inst.error = BAD_ODD;
7852 break;
7853
7854 case OP_RRo:
7855 if (inst.operands[i].isreg)
7856 {
7857 if ((inst.operands[i].reg & 0x00000001) != 1)
7858 inst.error = BAD_EVEN;
7859 else if (inst.operands[i].reg == REG_SP)
7860 as_tsktsk (MVE_BAD_SP);
7861 else if (inst.operands[i].reg == REG_PC)
7862 inst.error = BAD_PC;
7863 }
7864 break;
7865
7866 default:
7867 break;
7868 }
7869
7870 /* If we get here, this operand was successfully parsed. */
7871 inst.operands[i].present = 1;
7872 continue;
7873
7874 bad_args:
7875 inst.error = BAD_ARGS;
7876
7877 failure:
7878 if (!backtrack_pos)
7879 {
7880 /* The parse routine should already have set inst.error, but set a
7881 default here just in case. */
7882 if (!inst.error)
7883 inst.error = BAD_SYNTAX;
7884 return FAIL;
7885 }
7886
7887 /* Do not backtrack over a trailing optional argument that
7888 absorbed some text. We will only fail again, with the
7889 'garbage following instruction' error message, which is
7890 probably less helpful than the current one. */
7891 if (backtrack_index == i && backtrack_pos != str
7892 && upat[i+1] == OP_stop)
7893 {
7894 if (!inst.error)
7895 inst.error = BAD_SYNTAX;
7896 return FAIL;
7897 }
7898
7899 /* Try again, skipping the optional argument at backtrack_pos. */
7900 str = backtrack_pos;
7901 inst.error = backtrack_error;
7902 inst.operands[backtrack_index].present = 0;
7903 i = backtrack_index;
7904 backtrack_pos = 0;
7905 }
7906
7907 /* Check that we have parsed all the arguments. */
7908 if (*str != '\0' && !inst.error)
7909 inst.error = _("garbage following instruction");
7910
7911 return inst.error ? FAIL : SUCCESS;
7912 }
7913
7914 #undef po_char_or_fail
7915 #undef po_reg_or_fail
7916 #undef po_reg_or_goto
7917 #undef po_imm_or_fail
7918 #undef po_scalar_or_fail
7919 #undef po_barrier_or_imm
7920
7921 /* Shorthand macro for instruction encoding functions issuing errors. */
7922 #define constraint(expr, err) \
7923 do \
7924 { \
7925 if (expr) \
7926 { \
7927 inst.error = err; \
7928 return; \
7929 } \
7930 } \
7931 while (0)
7932
7933 /* Reject "bad registers" for Thumb-2 instructions. Many Thumb-2
7934 instructions are unpredictable if these registers are used. This
7935 is the BadReg predicate in ARM's Thumb-2 documentation.
7936
7937 Before ARMv8-A, REG_PC and REG_SP were not allowed in quite a few
7938 places, while the restriction on REG_SP was relaxed since ARMv8-A. */
7939 #define reject_bad_reg(reg) \
7940 do \
7941 if (reg == REG_PC) \
7942 { \
7943 inst.error = BAD_PC; \
7944 return; \
7945 } \
7946 else if (reg == REG_SP \
7947 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8)) \
7948 { \
7949 inst.error = BAD_SP; \
7950 return; \
7951 } \
7952 while (0)
7953
7954 /* If REG is R13 (the stack pointer), warn that its use is
7955 deprecated. */
7956 #define warn_deprecated_sp(reg) \
7957 do \
7958 if (warn_on_deprecated && reg == REG_SP) \
7959 as_tsktsk (_("use of r13 is deprecated")); \
7960 while (0)
7961
7962 /* Functions for operand encoding. ARM, then Thumb. */
7963
7964 #define rotate_left(v, n) (v << (n & 31) | v >> ((32 - n) & 31))
7965
7966 /* If the current inst is scalar ARMv8.2 fp16 instruction, do special encoding.
7967
7968 The only binary encoding difference is the Coprocessor number. Coprocessor
7969 9 is used for half-precision calculations or conversions. The format of the
7970 instruction is the same as the equivalent Coprocessor 10 instruction that
7971 exists for Single-Precision operation. */
7972
7973 static void
7974 do_scalar_fp16_v82_encode (void)
7975 {
7976 if (inst.cond < COND_ALWAYS)
7977 as_warn (_("ARMv8.2 scalar fp16 instruction cannot be conditional,"
7978 " the behaviour is UNPREDICTABLE"));
7979 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16),
7980 _(BAD_FP16));
7981
7982 inst.instruction = (inst.instruction & 0xfffff0ff) | 0x900;
7983 mark_feature_used (&arm_ext_fp16);
7984 }
7985
7986 /* If VAL can be encoded in the immediate field of an ARM instruction,
7987 return the encoded form. Otherwise, return FAIL. */
7988
7989 static unsigned int
7990 encode_arm_immediate (unsigned int val)
7991 {
7992 unsigned int a, i;
7993
7994 if (val <= 0xff)
7995 return val;
7996
7997 for (i = 2; i < 32; i += 2)
7998 if ((a = rotate_left (val, i)) <= 0xff)
7999 return a | (i << 7); /* 12-bit pack: [shift-cnt,const]. */
8000
8001 return FAIL;
8002 }
8003
8004 /* If VAL can be encoded in the immediate field of a Thumb32 instruction,
8005 return the encoded form. Otherwise, return FAIL. */
8006 static unsigned int
8007 encode_thumb32_immediate (unsigned int val)
8008 {
8009 unsigned int a, i;
8010
8011 if (val <= 0xff)
8012 return val;
8013
8014 for (i = 1; i <= 24; i++)
8015 {
8016 a = val >> i;
8017 if ((val & ~(0xff << i)) == 0)
8018 return ((val >> i) & 0x7f) | ((32 - i) << 7);
8019 }
8020
8021 a = val & 0xff;
8022 if (val == ((a << 16) | a))
8023 return 0x100 | a;
8024 if (val == ((a << 24) | (a << 16) | (a << 8) | a))
8025 return 0x300 | a;
8026
8027 a = val & 0xff00;
8028 if (val == ((a << 16) | a))
8029 return 0x200 | (a >> 8);
8030
8031 return FAIL;
8032 }
8033 /* Encode a VFP SP or DP register number into inst.instruction. */
8034
8035 static void
8036 encode_arm_vfp_reg (int reg, enum vfp_reg_pos pos)
8037 {
8038 if ((pos == VFP_REG_Dd || pos == VFP_REG_Dn || pos == VFP_REG_Dm)
8039 && reg > 15)
8040 {
8041 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_d32))
8042 {
8043 if (thumb_mode)
8044 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
8045 fpu_vfp_ext_d32);
8046 else
8047 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
8048 fpu_vfp_ext_d32);
8049 }
8050 else
8051 {
8052 first_error (_("D register out of range for selected VFP version"));
8053 return;
8054 }
8055 }
8056
8057 switch (pos)
8058 {
8059 case VFP_REG_Sd:
8060 inst.instruction |= ((reg >> 1) << 12) | ((reg & 1) << 22);
8061 break;
8062
8063 case VFP_REG_Sn:
8064 inst.instruction |= ((reg >> 1) << 16) | ((reg & 1) << 7);
8065 break;
8066
8067 case VFP_REG_Sm:
8068 inst.instruction |= ((reg >> 1) << 0) | ((reg & 1) << 5);
8069 break;
8070
8071 case VFP_REG_Dd:
8072 inst.instruction |= ((reg & 15) << 12) | ((reg >> 4) << 22);
8073 break;
8074
8075 case VFP_REG_Dn:
8076 inst.instruction |= ((reg & 15) << 16) | ((reg >> 4) << 7);
8077 break;
8078
8079 case VFP_REG_Dm:
8080 inst.instruction |= (reg & 15) | ((reg >> 4) << 5);
8081 break;
8082
8083 default:
8084 abort ();
8085 }
8086 }
8087
8088 /* Encode a <shift> in an ARM-format instruction. The immediate,
8089 if any, is handled by md_apply_fix. */
8090 static void
8091 encode_arm_shift (int i)
8092 {
8093 /* register-shifted register. */
8094 if (inst.operands[i].immisreg)
8095 {
8096 int op_index;
8097 for (op_index = 0; op_index <= i; ++op_index)
8098 {
8099 /* Check the operand only when it's presented. In pre-UAL syntax,
8100 if the destination register is the same as the first operand, two
8101 register form of the instruction can be used. */
8102 if (inst.operands[op_index].present && inst.operands[op_index].isreg
8103 && inst.operands[op_index].reg == REG_PC)
8104 as_warn (UNPRED_REG ("r15"));
8105 }
8106
8107 if (inst.operands[i].imm == REG_PC)
8108 as_warn (UNPRED_REG ("r15"));
8109 }
8110
8111 if (inst.operands[i].shift_kind == SHIFT_RRX)
8112 inst.instruction |= SHIFT_ROR << 5;
8113 else
8114 {
8115 inst.instruction |= inst.operands[i].shift_kind << 5;
8116 if (inst.operands[i].immisreg)
8117 {
8118 inst.instruction |= SHIFT_BY_REG;
8119 inst.instruction |= inst.operands[i].imm << 8;
8120 }
8121 else
8122 inst.relocs[0].type = BFD_RELOC_ARM_SHIFT_IMM;
8123 }
8124 }
8125
8126 static void
8127 encode_arm_shifter_operand (int i)
8128 {
8129 if (inst.operands[i].isreg)
8130 {
8131 inst.instruction |= inst.operands[i].reg;
8132 encode_arm_shift (i);
8133 }
8134 else
8135 {
8136 inst.instruction |= INST_IMMEDIATE;
8137 if (inst.relocs[0].type != BFD_RELOC_ARM_IMMEDIATE)
8138 inst.instruction |= inst.operands[i].imm;
8139 }
8140 }
8141
8142 /* Subroutine of encode_arm_addr_mode_2 and encode_arm_addr_mode_3. */
8143 static void
8144 encode_arm_addr_mode_common (int i, bfd_boolean is_t)
8145 {
8146 /* PR 14260:
8147 Generate an error if the operand is not a register. */
8148 constraint (!inst.operands[i].isreg,
8149 _("Instruction does not support =N addresses"));
8150
8151 inst.instruction |= inst.operands[i].reg << 16;
8152
8153 if (inst.operands[i].preind)
8154 {
8155 if (is_t)
8156 {
8157 inst.error = _("instruction does not accept preindexed addressing");
8158 return;
8159 }
8160 inst.instruction |= PRE_INDEX;
8161 if (inst.operands[i].writeback)
8162 inst.instruction |= WRITE_BACK;
8163
8164 }
8165 else if (inst.operands[i].postind)
8166 {
8167 gas_assert (inst.operands[i].writeback);
8168 if (is_t)
8169 inst.instruction |= WRITE_BACK;
8170 }
8171 else /* unindexed - only for coprocessor */
8172 {
8173 inst.error = _("instruction does not accept unindexed addressing");
8174 return;
8175 }
8176
8177 if (((inst.instruction & WRITE_BACK) || !(inst.instruction & PRE_INDEX))
8178 && (((inst.instruction & 0x000f0000) >> 16)
8179 == ((inst.instruction & 0x0000f000) >> 12)))
8180 as_warn ((inst.instruction & LOAD_BIT)
8181 ? _("destination register same as write-back base")
8182 : _("source register same as write-back base"));
8183 }
8184
8185 /* inst.operands[i] was set up by parse_address. Encode it into an
8186 ARM-format mode 2 load or store instruction. If is_t is true,
8187 reject forms that cannot be used with a T instruction (i.e. not
8188 post-indexed). */
8189 static void
8190 encode_arm_addr_mode_2 (int i, bfd_boolean is_t)
8191 {
8192 const bfd_boolean is_pc = (inst.operands[i].reg == REG_PC);
8193
8194 encode_arm_addr_mode_common (i, is_t);
8195
8196 if (inst.operands[i].immisreg)
8197 {
8198 constraint ((inst.operands[i].imm == REG_PC
8199 || (is_pc && inst.operands[i].writeback)),
8200 BAD_PC_ADDRESSING);
8201 inst.instruction |= INST_IMMEDIATE; /* yes, this is backwards */
8202 inst.instruction |= inst.operands[i].imm;
8203 if (!inst.operands[i].negative)
8204 inst.instruction |= INDEX_UP;
8205 if (inst.operands[i].shifted)
8206 {
8207 if (inst.operands[i].shift_kind == SHIFT_RRX)
8208 inst.instruction |= SHIFT_ROR << 5;
8209 else
8210 {
8211 inst.instruction |= inst.operands[i].shift_kind << 5;
8212 inst.relocs[0].type = BFD_RELOC_ARM_SHIFT_IMM;
8213 }
8214 }
8215 }
8216 else /* immediate offset in inst.relocs[0] */
8217 {
8218 if (is_pc && !inst.relocs[0].pc_rel)
8219 {
8220 const bfd_boolean is_load = ((inst.instruction & LOAD_BIT) != 0);
8221
8222 /* If is_t is TRUE, it's called from do_ldstt. ldrt/strt
8223 cannot use PC in addressing.
8224 PC cannot be used in writeback addressing, either. */
8225 constraint ((is_t || inst.operands[i].writeback),
8226 BAD_PC_ADDRESSING);
8227
8228 /* Use of PC in str is deprecated for ARMv7. */
8229 if (warn_on_deprecated
8230 && !is_load
8231 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v7))
8232 as_tsktsk (_("use of PC in this instruction is deprecated"));
8233 }
8234
8235 if (inst.relocs[0].type == BFD_RELOC_UNUSED)
8236 {
8237 /* Prefer + for zero encoded value. */
8238 if (!inst.operands[i].negative)
8239 inst.instruction |= INDEX_UP;
8240 inst.relocs[0].type = BFD_RELOC_ARM_OFFSET_IMM;
8241 }
8242 }
8243 }
8244
8245 /* inst.operands[i] was set up by parse_address. Encode it into an
8246 ARM-format mode 3 load or store instruction. Reject forms that
8247 cannot be used with such instructions. If is_t is true, reject
8248 forms that cannot be used with a T instruction (i.e. not
8249 post-indexed). */
8250 static void
8251 encode_arm_addr_mode_3 (int i, bfd_boolean is_t)
8252 {
8253 if (inst.operands[i].immisreg && inst.operands[i].shifted)
8254 {
8255 inst.error = _("instruction does not accept scaled register index");
8256 return;
8257 }
8258
8259 encode_arm_addr_mode_common (i, is_t);
8260
8261 if (inst.operands[i].immisreg)
8262 {
8263 constraint ((inst.operands[i].imm == REG_PC
8264 || (is_t && inst.operands[i].reg == REG_PC)),
8265 BAD_PC_ADDRESSING);
8266 constraint (inst.operands[i].reg == REG_PC && inst.operands[i].writeback,
8267 BAD_PC_WRITEBACK);
8268 inst.instruction |= inst.operands[i].imm;
8269 if (!inst.operands[i].negative)
8270 inst.instruction |= INDEX_UP;
8271 }
8272 else /* immediate offset in inst.relocs[0] */
8273 {
8274 constraint ((inst.operands[i].reg == REG_PC && !inst.relocs[0].pc_rel
8275 && inst.operands[i].writeback),
8276 BAD_PC_WRITEBACK);
8277 inst.instruction |= HWOFFSET_IMM;
8278 if (inst.relocs[0].type == BFD_RELOC_UNUSED)
8279 {
8280 /* Prefer + for zero encoded value. */
8281 if (!inst.operands[i].negative)
8282 inst.instruction |= INDEX_UP;
8283
8284 inst.relocs[0].type = BFD_RELOC_ARM_OFFSET_IMM8;
8285 }
8286 }
8287 }
8288
8289 /* Write immediate bits [7:0] to the following locations:
8290
8291 |28/24|23 19|18 16|15 4|3 0|
8292 | a |x x x x x|b c d|x x x x x x x x x x x x|e f g h|
8293
8294 This function is used by VMOV/VMVN/VORR/VBIC. */
8295
8296 static void
8297 neon_write_immbits (unsigned immbits)
8298 {
8299 inst.instruction |= immbits & 0xf;
8300 inst.instruction |= ((immbits >> 4) & 0x7) << 16;
8301 inst.instruction |= ((immbits >> 7) & 0x1) << (thumb_mode ? 28 : 24);
8302 }
8303
8304 /* Invert low-order SIZE bits of XHI:XLO. */
8305
8306 static void
8307 neon_invert_size (unsigned *xlo, unsigned *xhi, int size)
8308 {
8309 unsigned immlo = xlo ? *xlo : 0;
8310 unsigned immhi = xhi ? *xhi : 0;
8311
8312 switch (size)
8313 {
8314 case 8:
8315 immlo = (~immlo) & 0xff;
8316 break;
8317
8318 case 16:
8319 immlo = (~immlo) & 0xffff;
8320 break;
8321
8322 case 64:
8323 immhi = (~immhi) & 0xffffffff;
8324 /* fall through. */
8325
8326 case 32:
8327 immlo = (~immlo) & 0xffffffff;
8328 break;
8329
8330 default:
8331 abort ();
8332 }
8333
8334 if (xlo)
8335 *xlo = immlo;
8336
8337 if (xhi)
8338 *xhi = immhi;
8339 }
8340
8341 /* True if IMM has form 0bAAAAAAAABBBBBBBBCCCCCCCCDDDDDDDD for bits
8342 A, B, C, D. */
8343
8344 static int
8345 neon_bits_same_in_bytes (unsigned imm)
8346 {
8347 return ((imm & 0x000000ff) == 0 || (imm & 0x000000ff) == 0x000000ff)
8348 && ((imm & 0x0000ff00) == 0 || (imm & 0x0000ff00) == 0x0000ff00)
8349 && ((imm & 0x00ff0000) == 0 || (imm & 0x00ff0000) == 0x00ff0000)
8350 && ((imm & 0xff000000) == 0 || (imm & 0xff000000) == 0xff000000);
8351 }
8352
8353 /* For immediate of above form, return 0bABCD. */
8354
8355 static unsigned
8356 neon_squash_bits (unsigned imm)
8357 {
8358 return (imm & 0x01) | ((imm & 0x0100) >> 7) | ((imm & 0x010000) >> 14)
8359 | ((imm & 0x01000000) >> 21);
8360 }
8361
8362 /* Compress quarter-float representation to 0b...000 abcdefgh. */
8363
8364 static unsigned
8365 neon_qfloat_bits (unsigned imm)
8366 {
8367 return ((imm >> 19) & 0x7f) | ((imm >> 24) & 0x80);
8368 }
8369
8370 /* Returns CMODE. IMMBITS [7:0] is set to bits suitable for inserting into
8371 the instruction. *OP is passed as the initial value of the op field, and
8372 may be set to a different value depending on the constant (i.e.
8373 "MOV I64, 0bAAAAAAAABBBB..." which uses OP = 1 despite being MOV not
8374 MVN). If the immediate looks like a repeated pattern then also
8375 try smaller element sizes. */
8376
8377 static int
8378 neon_cmode_for_move_imm (unsigned immlo, unsigned immhi, int float_p,
8379 unsigned *immbits, int *op, int size,
8380 enum neon_el_type type)
8381 {
8382 /* Only permit float immediates (including 0.0/-0.0) if the operand type is
8383 float. */
8384 if (type == NT_float && !float_p)
8385 return FAIL;
8386
8387 if (type == NT_float && is_quarter_float (immlo) && immhi == 0)
8388 {
8389 if (size != 32 || *op == 1)
8390 return FAIL;
8391 *immbits = neon_qfloat_bits (immlo);
8392 return 0xf;
8393 }
8394
8395 if (size == 64)
8396 {
8397 if (neon_bits_same_in_bytes (immhi)
8398 && neon_bits_same_in_bytes (immlo))
8399 {
8400 if (*op == 1)
8401 return FAIL;
8402 *immbits = (neon_squash_bits (immhi) << 4)
8403 | neon_squash_bits (immlo);
8404 *op = 1;
8405 return 0xe;
8406 }
8407
8408 if (immhi != immlo)
8409 return FAIL;
8410 }
8411
8412 if (size >= 32)
8413 {
8414 if (immlo == (immlo & 0x000000ff))
8415 {
8416 *immbits = immlo;
8417 return 0x0;
8418 }
8419 else if (immlo == (immlo & 0x0000ff00))
8420 {
8421 *immbits = immlo >> 8;
8422 return 0x2;
8423 }
8424 else if (immlo == (immlo & 0x00ff0000))
8425 {
8426 *immbits = immlo >> 16;
8427 return 0x4;
8428 }
8429 else if (immlo == (immlo & 0xff000000))
8430 {
8431 *immbits = immlo >> 24;
8432 return 0x6;
8433 }
8434 else if (immlo == ((immlo & 0x0000ff00) | 0x000000ff))
8435 {
8436 *immbits = (immlo >> 8) & 0xff;
8437 return 0xc;
8438 }
8439 else if (immlo == ((immlo & 0x00ff0000) | 0x0000ffff))
8440 {
8441 *immbits = (immlo >> 16) & 0xff;
8442 return 0xd;
8443 }
8444
8445 if ((immlo & 0xffff) != (immlo >> 16))
8446 return FAIL;
8447 immlo &= 0xffff;
8448 }
8449
8450 if (size >= 16)
8451 {
8452 if (immlo == (immlo & 0x000000ff))
8453 {
8454 *immbits = immlo;
8455 return 0x8;
8456 }
8457 else if (immlo == (immlo & 0x0000ff00))
8458 {
8459 *immbits = immlo >> 8;
8460 return 0xa;
8461 }
8462
8463 if ((immlo & 0xff) != (immlo >> 8))
8464 return FAIL;
8465 immlo &= 0xff;
8466 }
8467
8468 if (immlo == (immlo & 0x000000ff))
8469 {
8470 /* Don't allow MVN with 8-bit immediate. */
8471 if (*op == 1)
8472 return FAIL;
8473 *immbits = immlo;
8474 return 0xe;
8475 }
8476
8477 return FAIL;
8478 }
8479
8480 #if defined BFD_HOST_64_BIT
8481 /* Returns TRUE if double precision value V may be cast
8482 to single precision without loss of accuracy. */
8483
8484 static bfd_boolean
8485 is_double_a_single (bfd_int64_t v)
8486 {
8487 int exp = (int)((v >> 52) & 0x7FF);
8488 bfd_int64_t mantissa = (v & (bfd_int64_t)0xFFFFFFFFFFFFFULL);
8489
8490 return (exp == 0 || exp == 0x7FF
8491 || (exp >= 1023 - 126 && exp <= 1023 + 127))
8492 && (mantissa & 0x1FFFFFFFl) == 0;
8493 }
8494
8495 /* Returns a double precision value casted to single precision
8496 (ignoring the least significant bits in exponent and mantissa). */
8497
8498 static int
8499 double_to_single (bfd_int64_t v)
8500 {
8501 int sign = (int) ((v >> 63) & 1l);
8502 int exp = (int) ((v >> 52) & 0x7FF);
8503 bfd_int64_t mantissa = (v & (bfd_int64_t)0xFFFFFFFFFFFFFULL);
8504
8505 if (exp == 0x7FF)
8506 exp = 0xFF;
8507 else
8508 {
8509 exp = exp - 1023 + 127;
8510 if (exp >= 0xFF)
8511 {
8512 /* Infinity. */
8513 exp = 0x7F;
8514 mantissa = 0;
8515 }
8516 else if (exp < 0)
8517 {
8518 /* No denormalized numbers. */
8519 exp = 0;
8520 mantissa = 0;
8521 }
8522 }
8523 mantissa >>= 29;
8524 return (sign << 31) | (exp << 23) | mantissa;
8525 }
8526 #endif /* BFD_HOST_64_BIT */
8527
8528 enum lit_type
8529 {
8530 CONST_THUMB,
8531 CONST_ARM,
8532 CONST_VEC
8533 };
8534
8535 static void do_vfp_nsyn_opcode (const char *);
8536
8537 /* inst.relocs[0].exp describes an "=expr" load pseudo-operation.
8538 Determine whether it can be performed with a move instruction; if
8539 it can, convert inst.instruction to that move instruction and
8540 return TRUE; if it can't, convert inst.instruction to a literal-pool
8541 load and return FALSE. If this is not a valid thing to do in the
8542 current context, set inst.error and return TRUE.
8543
8544 inst.operands[i] describes the destination register. */
8545
8546 static bfd_boolean
8547 move_or_literal_pool (int i, enum lit_type t, bfd_boolean mode_3)
8548 {
8549 unsigned long tbit;
8550 bfd_boolean thumb_p = (t == CONST_THUMB);
8551 bfd_boolean arm_p = (t == CONST_ARM);
8552
8553 if (thumb_p)
8554 tbit = (inst.instruction > 0xffff) ? THUMB2_LOAD_BIT : THUMB_LOAD_BIT;
8555 else
8556 tbit = LOAD_BIT;
8557
8558 if ((inst.instruction & tbit) == 0)
8559 {
8560 inst.error = _("invalid pseudo operation");
8561 return TRUE;
8562 }
8563
8564 if (inst.relocs[0].exp.X_op != O_constant
8565 && inst.relocs[0].exp.X_op != O_symbol
8566 && inst.relocs[0].exp.X_op != O_big)
8567 {
8568 inst.error = _("constant expression expected");
8569 return TRUE;
8570 }
8571
8572 if (inst.relocs[0].exp.X_op == O_constant
8573 || inst.relocs[0].exp.X_op == O_big)
8574 {
8575 #if defined BFD_HOST_64_BIT
8576 bfd_int64_t v;
8577 #else
8578 offsetT v;
8579 #endif
8580 if (inst.relocs[0].exp.X_op == O_big)
8581 {
8582 LITTLENUM_TYPE w[X_PRECISION];
8583 LITTLENUM_TYPE * l;
8584
8585 if (inst.relocs[0].exp.X_add_number == -1)
8586 {
8587 gen_to_words (w, X_PRECISION, E_PRECISION);
8588 l = w;
8589 /* FIXME: Should we check words w[2..5] ? */
8590 }
8591 else
8592 l = generic_bignum;
8593
8594 #if defined BFD_HOST_64_BIT
8595 v =
8596 ((((((((bfd_int64_t) l[3] & LITTLENUM_MASK)
8597 << LITTLENUM_NUMBER_OF_BITS)
8598 | ((bfd_int64_t) l[2] & LITTLENUM_MASK))
8599 << LITTLENUM_NUMBER_OF_BITS)
8600 | ((bfd_int64_t) l[1] & LITTLENUM_MASK))
8601 << LITTLENUM_NUMBER_OF_BITS)
8602 | ((bfd_int64_t) l[0] & LITTLENUM_MASK));
8603 #else
8604 v = ((l[1] & LITTLENUM_MASK) << LITTLENUM_NUMBER_OF_BITS)
8605 | (l[0] & LITTLENUM_MASK);
8606 #endif
8607 }
8608 else
8609 v = inst.relocs[0].exp.X_add_number;
8610
8611 if (!inst.operands[i].issingle)
8612 {
8613 if (thumb_p)
8614 {
8615 /* LDR should not use lead in a flag-setting instruction being
8616 chosen so we do not check whether movs can be used. */
8617
8618 if ((ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2)
8619 || ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2_v8m))
8620 && inst.operands[i].reg != 13
8621 && inst.operands[i].reg != 15)
8622 {
8623 /* Check if on thumb2 it can be done with a mov.w, mvn or
8624 movw instruction. */
8625 unsigned int newimm;
8626 bfd_boolean isNegated;
8627
8628 newimm = encode_thumb32_immediate (v);
8629 if (newimm != (unsigned int) FAIL)
8630 isNegated = FALSE;
8631 else
8632 {
8633 newimm = encode_thumb32_immediate (~v);
8634 if (newimm != (unsigned int) FAIL)
8635 isNegated = TRUE;
8636 }
8637
8638 /* The number can be loaded with a mov.w or mvn
8639 instruction. */
8640 if (newimm != (unsigned int) FAIL
8641 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2))
8642 {
8643 inst.instruction = (0xf04f0000 /* MOV.W. */
8644 | (inst.operands[i].reg << 8));
8645 /* Change to MOVN. */
8646 inst.instruction |= (isNegated ? 0x200000 : 0);
8647 inst.instruction |= (newimm & 0x800) << 15;
8648 inst.instruction |= (newimm & 0x700) << 4;
8649 inst.instruction |= (newimm & 0x0ff);
8650 return TRUE;
8651 }
8652 /* The number can be loaded with a movw instruction. */
8653 else if ((v & ~0xFFFF) == 0
8654 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2_v8m))
8655 {
8656 int imm = v & 0xFFFF;
8657
8658 inst.instruction = 0xf2400000; /* MOVW. */
8659 inst.instruction |= (inst.operands[i].reg << 8);
8660 inst.instruction |= (imm & 0xf000) << 4;
8661 inst.instruction |= (imm & 0x0800) << 15;
8662 inst.instruction |= (imm & 0x0700) << 4;
8663 inst.instruction |= (imm & 0x00ff);
8664 return TRUE;
8665 }
8666 }
8667 }
8668 else if (arm_p)
8669 {
8670 int value = encode_arm_immediate (v);
8671
8672 if (value != FAIL)
8673 {
8674 /* This can be done with a mov instruction. */
8675 inst.instruction &= LITERAL_MASK;
8676 inst.instruction |= INST_IMMEDIATE | (OPCODE_MOV << DATA_OP_SHIFT);
8677 inst.instruction |= value & 0xfff;
8678 return TRUE;
8679 }
8680
8681 value = encode_arm_immediate (~ v);
8682 if (value != FAIL)
8683 {
8684 /* This can be done with a mvn instruction. */
8685 inst.instruction &= LITERAL_MASK;
8686 inst.instruction |= INST_IMMEDIATE | (OPCODE_MVN << DATA_OP_SHIFT);
8687 inst.instruction |= value & 0xfff;
8688 return TRUE;
8689 }
8690 }
8691 else if (t == CONST_VEC && ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1))
8692 {
8693 int op = 0;
8694 unsigned immbits = 0;
8695 unsigned immlo = inst.operands[1].imm;
8696 unsigned immhi = inst.operands[1].regisimm
8697 ? inst.operands[1].reg
8698 : inst.relocs[0].exp.X_unsigned
8699 ? 0
8700 : ((bfd_int64_t)((int) immlo)) >> 32;
8701 int cmode = neon_cmode_for_move_imm (immlo, immhi, FALSE, &immbits,
8702 &op, 64, NT_invtype);
8703
8704 if (cmode == FAIL)
8705 {
8706 neon_invert_size (&immlo, &immhi, 64);
8707 op = !op;
8708 cmode = neon_cmode_for_move_imm (immlo, immhi, FALSE, &immbits,
8709 &op, 64, NT_invtype);
8710 }
8711
8712 if (cmode != FAIL)
8713 {
8714 inst.instruction = (inst.instruction & VLDR_VMOV_SAME)
8715 | (1 << 23)
8716 | (cmode << 8)
8717 | (op << 5)
8718 | (1 << 4);
8719
8720 /* Fill other bits in vmov encoding for both thumb and arm. */
8721 if (thumb_mode)
8722 inst.instruction |= (0x7U << 29) | (0xF << 24);
8723 else
8724 inst.instruction |= (0xFU << 28) | (0x1 << 25);
8725 neon_write_immbits (immbits);
8726 return TRUE;
8727 }
8728 }
8729 }
8730
8731 if (t == CONST_VEC)
8732 {
8733 /* Check if vldr Rx, =constant could be optimized to vmov Rx, #constant. */
8734 if (inst.operands[i].issingle
8735 && is_quarter_float (inst.operands[1].imm)
8736 && ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v3xd))
8737 {
8738 inst.operands[1].imm =
8739 neon_qfloat_bits (v);
8740 do_vfp_nsyn_opcode ("fconsts");
8741 return TRUE;
8742 }
8743
8744 /* If our host does not support a 64-bit type then we cannot perform
8745 the following optimization. This mean that there will be a
8746 discrepancy between the output produced by an assembler built for
8747 a 32-bit-only host and the output produced from a 64-bit host, but
8748 this cannot be helped. */
8749 #if defined BFD_HOST_64_BIT
8750 else if (!inst.operands[1].issingle
8751 && ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v3))
8752 {
8753 if (is_double_a_single (v)
8754 && is_quarter_float (double_to_single (v)))
8755 {
8756 inst.operands[1].imm =
8757 neon_qfloat_bits (double_to_single (v));
8758 do_vfp_nsyn_opcode ("fconstd");
8759 return TRUE;
8760 }
8761 }
8762 #endif
8763 }
8764 }
8765
8766 if (add_to_lit_pool ((!inst.operands[i].isvec
8767 || inst.operands[i].issingle) ? 4 : 8) == FAIL)
8768 return TRUE;
8769
8770 inst.operands[1].reg = REG_PC;
8771 inst.operands[1].isreg = 1;
8772 inst.operands[1].preind = 1;
8773 inst.relocs[0].pc_rel = 1;
8774 inst.relocs[0].type = (thumb_p
8775 ? BFD_RELOC_ARM_THUMB_OFFSET
8776 : (mode_3
8777 ? BFD_RELOC_ARM_HWLITERAL
8778 : BFD_RELOC_ARM_LITERAL));
8779 return FALSE;
8780 }
8781
8782 /* inst.operands[i] was set up by parse_address. Encode it into an
8783 ARM-format instruction. Reject all forms which cannot be encoded
8784 into a coprocessor load/store instruction. If wb_ok is false,
8785 reject use of writeback; if unind_ok is false, reject use of
8786 unindexed addressing. If reloc_override is not 0, use it instead
8787 of BFD_ARM_CP_OFF_IMM, unless the initial relocation is a group one
8788 (in which case it is preserved). */
8789
8790 static int
8791 encode_arm_cp_address (int i, int wb_ok, int unind_ok, int reloc_override)
8792 {
8793 if (!inst.operands[i].isreg)
8794 {
8795 /* PR 18256 */
8796 if (! inst.operands[0].isvec)
8797 {
8798 inst.error = _("invalid co-processor operand");
8799 return FAIL;
8800 }
8801 if (move_or_literal_pool (0, CONST_VEC, /*mode_3=*/FALSE))
8802 return SUCCESS;
8803 }
8804
8805 inst.instruction |= inst.operands[i].reg << 16;
8806
8807 gas_assert (!(inst.operands[i].preind && inst.operands[i].postind));
8808
8809 if (!inst.operands[i].preind && !inst.operands[i].postind) /* unindexed */
8810 {
8811 gas_assert (!inst.operands[i].writeback);
8812 if (!unind_ok)
8813 {
8814 inst.error = _("instruction does not support unindexed addressing");
8815 return FAIL;
8816 }
8817 inst.instruction |= inst.operands[i].imm;
8818 inst.instruction |= INDEX_UP;
8819 return SUCCESS;
8820 }
8821
8822 if (inst.operands[i].preind)
8823 inst.instruction |= PRE_INDEX;
8824
8825 if (inst.operands[i].writeback)
8826 {
8827 if (inst.operands[i].reg == REG_PC)
8828 {
8829 inst.error = _("pc may not be used with write-back");
8830 return FAIL;
8831 }
8832 if (!wb_ok)
8833 {
8834 inst.error = _("instruction does not support writeback");
8835 return FAIL;
8836 }
8837 inst.instruction |= WRITE_BACK;
8838 }
8839
8840 if (reloc_override)
8841 inst.relocs[0].type = (bfd_reloc_code_real_type) reloc_override;
8842 else if ((inst.relocs[0].type < BFD_RELOC_ARM_ALU_PC_G0_NC
8843 || inst.relocs[0].type > BFD_RELOC_ARM_LDC_SB_G2)
8844 && inst.relocs[0].type != BFD_RELOC_ARM_LDR_PC_G0)
8845 {
8846 if (thumb_mode)
8847 inst.relocs[0].type = BFD_RELOC_ARM_T32_CP_OFF_IMM;
8848 else
8849 inst.relocs[0].type = BFD_RELOC_ARM_CP_OFF_IMM;
8850 }
8851
8852 /* Prefer + for zero encoded value. */
8853 if (!inst.operands[i].negative)
8854 inst.instruction |= INDEX_UP;
8855
8856 return SUCCESS;
8857 }
8858
8859 /* Functions for instruction encoding, sorted by sub-architecture.
8860 First some generics; their names are taken from the conventional
8861 bit positions for register arguments in ARM format instructions. */
8862
8863 static void
8864 do_noargs (void)
8865 {
8866 }
8867
8868 static void
8869 do_rd (void)
8870 {
8871 inst.instruction |= inst.operands[0].reg << 12;
8872 }
8873
8874 static void
8875 do_rn (void)
8876 {
8877 inst.instruction |= inst.operands[0].reg << 16;
8878 }
8879
8880 static void
8881 do_rd_rm (void)
8882 {
8883 inst.instruction |= inst.operands[0].reg << 12;
8884 inst.instruction |= inst.operands[1].reg;
8885 }
8886
8887 static void
8888 do_rm_rn (void)
8889 {
8890 inst.instruction |= inst.operands[0].reg;
8891 inst.instruction |= inst.operands[1].reg << 16;
8892 }
8893
8894 static void
8895 do_rd_rn (void)
8896 {
8897 inst.instruction |= inst.operands[0].reg << 12;
8898 inst.instruction |= inst.operands[1].reg << 16;
8899 }
8900
8901 static void
8902 do_rn_rd (void)
8903 {
8904 inst.instruction |= inst.operands[0].reg << 16;
8905 inst.instruction |= inst.operands[1].reg << 12;
8906 }
8907
8908 static void
8909 do_tt (void)
8910 {
8911 inst.instruction |= inst.operands[0].reg << 8;
8912 inst.instruction |= inst.operands[1].reg << 16;
8913 }
8914
8915 static bfd_boolean
8916 check_obsolete (const arm_feature_set *feature, const char *msg)
8917 {
8918 if (ARM_CPU_IS_ANY (cpu_variant))
8919 {
8920 as_tsktsk ("%s", msg);
8921 return TRUE;
8922 }
8923 else if (ARM_CPU_HAS_FEATURE (cpu_variant, *feature))
8924 {
8925 as_bad ("%s", msg);
8926 return TRUE;
8927 }
8928
8929 return FALSE;
8930 }
8931
8932 static void
8933 do_rd_rm_rn (void)
8934 {
8935 unsigned Rn = inst.operands[2].reg;
8936 /* Enforce restrictions on SWP instruction. */
8937 if ((inst.instruction & 0x0fbfffff) == 0x01000090)
8938 {
8939 constraint (Rn == inst.operands[0].reg || Rn == inst.operands[1].reg,
8940 _("Rn must not overlap other operands"));
8941
8942 /* SWP{b} is obsolete for ARMv8-A, and deprecated for ARMv6* and ARMv7.
8943 */
8944 if (!check_obsolete (&arm_ext_v8,
8945 _("swp{b} use is obsoleted for ARMv8 and later"))
8946 && warn_on_deprecated
8947 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6))
8948 as_tsktsk (_("swp{b} use is deprecated for ARMv6 and ARMv7"));
8949 }
8950
8951 inst.instruction |= inst.operands[0].reg << 12;
8952 inst.instruction |= inst.operands[1].reg;
8953 inst.instruction |= Rn << 16;
8954 }
8955
8956 static void
8957 do_rd_rn_rm (void)
8958 {
8959 inst.instruction |= inst.operands[0].reg << 12;
8960 inst.instruction |= inst.operands[1].reg << 16;
8961 inst.instruction |= inst.operands[2].reg;
8962 }
8963
8964 static void
8965 do_rm_rd_rn (void)
8966 {
8967 constraint ((inst.operands[2].reg == REG_PC), BAD_PC);
8968 constraint (((inst.relocs[0].exp.X_op != O_constant
8969 && inst.relocs[0].exp.X_op != O_illegal)
8970 || inst.relocs[0].exp.X_add_number != 0),
8971 BAD_ADDR_MODE);
8972 inst.instruction |= inst.operands[0].reg;
8973 inst.instruction |= inst.operands[1].reg << 12;
8974 inst.instruction |= inst.operands[2].reg << 16;
8975 }
8976
8977 static void
8978 do_imm0 (void)
8979 {
8980 inst.instruction |= inst.operands[0].imm;
8981 }
8982
8983 static void
8984 do_rd_cpaddr (void)
8985 {
8986 inst.instruction |= inst.operands[0].reg << 12;
8987 encode_arm_cp_address (1, TRUE, TRUE, 0);
8988 }
8989
8990 /* ARM instructions, in alphabetical order by function name (except
8991 that wrapper functions appear immediately after the function they
8992 wrap). */
8993
8994 /* This is a pseudo-op of the form "adr rd, label" to be converted
8995 into a relative address of the form "add rd, pc, #label-.-8". */
8996
8997 static void
8998 do_adr (void)
8999 {
9000 inst.instruction |= (inst.operands[0].reg << 12); /* Rd */
9001
9002 /* Frag hacking will turn this into a sub instruction if the offset turns
9003 out to be negative. */
9004 inst.relocs[0].type = BFD_RELOC_ARM_IMMEDIATE;
9005 inst.relocs[0].pc_rel = 1;
9006 inst.relocs[0].exp.X_add_number -= 8;
9007
9008 if (support_interwork
9009 && inst.relocs[0].exp.X_op == O_symbol
9010 && inst.relocs[0].exp.X_add_symbol != NULL
9011 && S_IS_DEFINED (inst.relocs[0].exp.X_add_symbol)
9012 && THUMB_IS_FUNC (inst.relocs[0].exp.X_add_symbol))
9013 inst.relocs[0].exp.X_add_number |= 1;
9014 }
9015
9016 /* This is a pseudo-op of the form "adrl rd, label" to be converted
9017 into a relative address of the form:
9018 add rd, pc, #low(label-.-8)"
9019 add rd, rd, #high(label-.-8)" */
9020
9021 static void
9022 do_adrl (void)
9023 {
9024 inst.instruction |= (inst.operands[0].reg << 12); /* Rd */
9025
9026 /* Frag hacking will turn this into a sub instruction if the offset turns
9027 out to be negative. */
9028 inst.relocs[0].type = BFD_RELOC_ARM_ADRL_IMMEDIATE;
9029 inst.relocs[0].pc_rel = 1;
9030 inst.size = INSN_SIZE * 2;
9031 inst.relocs[0].exp.X_add_number -= 8;
9032
9033 if (support_interwork
9034 && inst.relocs[0].exp.X_op == O_symbol
9035 && inst.relocs[0].exp.X_add_symbol != NULL
9036 && S_IS_DEFINED (inst.relocs[0].exp.X_add_symbol)
9037 && THUMB_IS_FUNC (inst.relocs[0].exp.X_add_symbol))
9038 inst.relocs[0].exp.X_add_number |= 1;
9039 }
9040
9041 static void
9042 do_arit (void)
9043 {
9044 constraint (inst.relocs[0].type >= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
9045 && inst.relocs[0].type <= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC ,
9046 THUMB1_RELOC_ONLY);
9047 if (!inst.operands[1].present)
9048 inst.operands[1].reg = inst.operands[0].reg;
9049 inst.instruction |= inst.operands[0].reg << 12;
9050 inst.instruction |= inst.operands[1].reg << 16;
9051 encode_arm_shifter_operand (2);
9052 }
9053
9054 static void
9055 do_barrier (void)
9056 {
9057 if (inst.operands[0].present)
9058 inst.instruction |= inst.operands[0].imm;
9059 else
9060 inst.instruction |= 0xf;
9061 }
9062
9063 static void
9064 do_bfc (void)
9065 {
9066 unsigned int msb = inst.operands[1].imm + inst.operands[2].imm;
9067 constraint (msb > 32, _("bit-field extends past end of register"));
9068 /* The instruction encoding stores the LSB and MSB,
9069 not the LSB and width. */
9070 inst.instruction |= inst.operands[0].reg << 12;
9071 inst.instruction |= inst.operands[1].imm << 7;
9072 inst.instruction |= (msb - 1) << 16;
9073 }
9074
9075 static void
9076 do_bfi (void)
9077 {
9078 unsigned int msb;
9079
9080 /* #0 in second position is alternative syntax for bfc, which is
9081 the same instruction but with REG_PC in the Rm field. */
9082 if (!inst.operands[1].isreg)
9083 inst.operands[1].reg = REG_PC;
9084
9085 msb = inst.operands[2].imm + inst.operands[3].imm;
9086 constraint (msb > 32, _("bit-field extends past end of register"));
9087 /* The instruction encoding stores the LSB and MSB,
9088 not the LSB and width. */
9089 inst.instruction |= inst.operands[0].reg << 12;
9090 inst.instruction |= inst.operands[1].reg;
9091 inst.instruction |= inst.operands[2].imm << 7;
9092 inst.instruction |= (msb - 1) << 16;
9093 }
9094
9095 static void
9096 do_bfx (void)
9097 {
9098 constraint (inst.operands[2].imm + inst.operands[3].imm > 32,
9099 _("bit-field extends past end of register"));
9100 inst.instruction |= inst.operands[0].reg << 12;
9101 inst.instruction |= inst.operands[1].reg;
9102 inst.instruction |= inst.operands[2].imm << 7;
9103 inst.instruction |= (inst.operands[3].imm - 1) << 16;
9104 }
9105
9106 /* ARM V5 breakpoint instruction (argument parse)
9107 BKPT <16 bit unsigned immediate>
9108 Instruction is not conditional.
9109 The bit pattern given in insns[] has the COND_ALWAYS condition,
9110 and it is an error if the caller tried to override that. */
9111
9112 static void
9113 do_bkpt (void)
9114 {
9115 /* Top 12 of 16 bits to bits 19:8. */
9116 inst.instruction |= (inst.operands[0].imm & 0xfff0) << 4;
9117
9118 /* Bottom 4 of 16 bits to bits 3:0. */
9119 inst.instruction |= inst.operands[0].imm & 0xf;
9120 }
9121
9122 static void
9123 encode_branch (int default_reloc)
9124 {
9125 if (inst.operands[0].hasreloc)
9126 {
9127 constraint (inst.operands[0].imm != BFD_RELOC_ARM_PLT32
9128 && inst.operands[0].imm != BFD_RELOC_ARM_TLS_CALL,
9129 _("the only valid suffixes here are '(plt)' and '(tlscall)'"));
9130 inst.relocs[0].type = inst.operands[0].imm == BFD_RELOC_ARM_PLT32
9131 ? BFD_RELOC_ARM_PLT32
9132 : thumb_mode ? BFD_RELOC_ARM_THM_TLS_CALL : BFD_RELOC_ARM_TLS_CALL;
9133 }
9134 else
9135 inst.relocs[0].type = (bfd_reloc_code_real_type) default_reloc;
9136 inst.relocs[0].pc_rel = 1;
9137 }
9138
9139 static void
9140 do_branch (void)
9141 {
9142 #ifdef OBJ_ELF
9143 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
9144 encode_branch (BFD_RELOC_ARM_PCREL_JUMP);
9145 else
9146 #endif
9147 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH);
9148 }
9149
9150 static void
9151 do_bl (void)
9152 {
9153 #ifdef OBJ_ELF
9154 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
9155 {
9156 if (inst.cond == COND_ALWAYS)
9157 encode_branch (BFD_RELOC_ARM_PCREL_CALL);
9158 else
9159 encode_branch (BFD_RELOC_ARM_PCREL_JUMP);
9160 }
9161 else
9162 #endif
9163 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH);
9164 }
9165
9166 /* ARM V5 branch-link-exchange instruction (argument parse)
9167 BLX <target_addr> ie BLX(1)
9168 BLX{<condition>} <Rm> ie BLX(2)
9169 Unfortunately, there are two different opcodes for this mnemonic.
9170 So, the insns[].value is not used, and the code here zaps values
9171 into inst.instruction.
9172 Also, the <target_addr> can be 25 bits, hence has its own reloc. */
9173
9174 static void
9175 do_blx (void)
9176 {
9177 if (inst.operands[0].isreg)
9178 {
9179 /* Arg is a register; the opcode provided by insns[] is correct.
9180 It is not illegal to do "blx pc", just useless. */
9181 if (inst.operands[0].reg == REG_PC)
9182 as_tsktsk (_("use of r15 in blx in ARM mode is not really useful"));
9183
9184 inst.instruction |= inst.operands[0].reg;
9185 }
9186 else
9187 {
9188 /* Arg is an address; this instruction cannot be executed
9189 conditionally, and the opcode must be adjusted.
9190 We retain the BFD_RELOC_ARM_PCREL_BLX till the very end
9191 where we generate out a BFD_RELOC_ARM_PCREL_CALL instead. */
9192 constraint (inst.cond != COND_ALWAYS, BAD_COND);
9193 inst.instruction = 0xfa000000;
9194 encode_branch (BFD_RELOC_ARM_PCREL_BLX);
9195 }
9196 }
9197
9198 static void
9199 do_bx (void)
9200 {
9201 bfd_boolean want_reloc;
9202
9203 if (inst.operands[0].reg == REG_PC)
9204 as_tsktsk (_("use of r15 in bx in ARM mode is not really useful"));
9205
9206 inst.instruction |= inst.operands[0].reg;
9207 /* Output R_ARM_V4BX relocations if is an EABI object that looks like
9208 it is for ARMv4t or earlier. */
9209 want_reloc = !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5);
9210 if (!ARM_FEATURE_ZERO (selected_object_arch)
9211 && !ARM_CPU_HAS_FEATURE (selected_object_arch, arm_ext_v5))
9212 want_reloc = TRUE;
9213
9214 #ifdef OBJ_ELF
9215 if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
9216 #endif
9217 want_reloc = FALSE;
9218
9219 if (want_reloc)
9220 inst.relocs[0].type = BFD_RELOC_ARM_V4BX;
9221 }
9222
9223
9224 /* ARM v5TEJ. Jump to Jazelle code. */
9225
9226 static void
9227 do_bxj (void)
9228 {
9229 if (inst.operands[0].reg == REG_PC)
9230 as_tsktsk (_("use of r15 in bxj is not really useful"));
9231
9232 inst.instruction |= inst.operands[0].reg;
9233 }
9234
9235 /* Co-processor data operation:
9236 CDP{cond} <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>}
9237 CDP2 <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>} */
9238 static void
9239 do_cdp (void)
9240 {
9241 inst.instruction |= inst.operands[0].reg << 8;
9242 inst.instruction |= inst.operands[1].imm << 20;
9243 inst.instruction |= inst.operands[2].reg << 12;
9244 inst.instruction |= inst.operands[3].reg << 16;
9245 inst.instruction |= inst.operands[4].reg;
9246 inst.instruction |= inst.operands[5].imm << 5;
9247 }
9248
9249 static void
9250 do_cmp (void)
9251 {
9252 inst.instruction |= inst.operands[0].reg << 16;
9253 encode_arm_shifter_operand (1);
9254 }
9255
9256 /* Transfer between coprocessor and ARM registers.
9257 MRC{cond} <coproc>, <opcode_1>, <Rd>, <CRn>, <CRm>{, <opcode_2>}
9258 MRC2
9259 MCR{cond}
9260 MCR2
9261
9262 No special properties. */
9263
9264 struct deprecated_coproc_regs_s
9265 {
9266 unsigned cp;
9267 int opc1;
9268 unsigned crn;
9269 unsigned crm;
9270 int opc2;
9271 arm_feature_set deprecated;
9272 arm_feature_set obsoleted;
9273 const char *dep_msg;
9274 const char *obs_msg;
9275 };
9276
9277 #define DEPR_ACCESS_V8 \
9278 N_("This coprocessor register access is deprecated in ARMv8")
9279
9280 /* Table of all deprecated coprocessor registers. */
9281 static struct deprecated_coproc_regs_s deprecated_coproc_regs[] =
9282 {
9283 {15, 0, 7, 10, 5, /* CP15DMB. */
9284 ARM_FEATURE_CORE_LOW (ARM_EXT_V8), ARM_ARCH_NONE,
9285 DEPR_ACCESS_V8, NULL},
9286 {15, 0, 7, 10, 4, /* CP15DSB. */
9287 ARM_FEATURE_CORE_LOW (ARM_EXT_V8), ARM_ARCH_NONE,
9288 DEPR_ACCESS_V8, NULL},
9289 {15, 0, 7, 5, 4, /* CP15ISB. */
9290 ARM_FEATURE_CORE_LOW (ARM_EXT_V8), ARM_ARCH_NONE,
9291 DEPR_ACCESS_V8, NULL},
9292 {14, 6, 1, 0, 0, /* TEEHBR. */
9293 ARM_FEATURE_CORE_LOW (ARM_EXT_V8), ARM_ARCH_NONE,
9294 DEPR_ACCESS_V8, NULL},
9295 {14, 6, 0, 0, 0, /* TEECR. */
9296 ARM_FEATURE_CORE_LOW (ARM_EXT_V8), ARM_ARCH_NONE,
9297 DEPR_ACCESS_V8, NULL},
9298 };
9299
9300 #undef DEPR_ACCESS_V8
9301
9302 static const size_t deprecated_coproc_reg_count =
9303 sizeof (deprecated_coproc_regs) / sizeof (deprecated_coproc_regs[0]);
9304
9305 static void
9306 do_co_reg (void)
9307 {
9308 unsigned Rd;
9309 size_t i;
9310
9311 Rd = inst.operands[2].reg;
9312 if (thumb_mode)
9313 {
9314 if (inst.instruction == 0xee000010
9315 || inst.instruction == 0xfe000010)
9316 /* MCR, MCR2 */
9317 reject_bad_reg (Rd);
9318 else if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
9319 /* MRC, MRC2 */
9320 constraint (Rd == REG_SP, BAD_SP);
9321 }
9322 else
9323 {
9324 /* MCR */
9325 if (inst.instruction == 0xe000010)
9326 constraint (Rd == REG_PC, BAD_PC);
9327 }
9328
9329 for (i = 0; i < deprecated_coproc_reg_count; ++i)
9330 {
9331 const struct deprecated_coproc_regs_s *r =
9332 deprecated_coproc_regs + i;
9333
9334 if (inst.operands[0].reg == r->cp
9335 && inst.operands[1].imm == r->opc1
9336 && inst.operands[3].reg == r->crn
9337 && inst.operands[4].reg == r->crm
9338 && inst.operands[5].imm == r->opc2)
9339 {
9340 if (! ARM_CPU_IS_ANY (cpu_variant)
9341 && warn_on_deprecated
9342 && ARM_CPU_HAS_FEATURE (cpu_variant, r->deprecated))
9343 as_tsktsk ("%s", r->dep_msg);
9344 }
9345 }
9346
9347 inst.instruction |= inst.operands[0].reg << 8;
9348 inst.instruction |= inst.operands[1].imm << 21;
9349 inst.instruction |= Rd << 12;
9350 inst.instruction |= inst.operands[3].reg << 16;
9351 inst.instruction |= inst.operands[4].reg;
9352 inst.instruction |= inst.operands[5].imm << 5;
9353 }
9354
9355 /* Transfer between coprocessor register and pair of ARM registers.
9356 MCRR{cond} <coproc>, <opcode>, <Rd>, <Rn>, <CRm>.
9357 MCRR2
9358 MRRC{cond}
9359 MRRC2
9360
9361 Two XScale instructions are special cases of these:
9362
9363 MAR{cond} acc0, <RdLo>, <RdHi> == MCRR{cond} p0, #0, <RdLo>, <RdHi>, c0
9364 MRA{cond} acc0, <RdLo>, <RdHi> == MRRC{cond} p0, #0, <RdLo>, <RdHi>, c0
9365
9366 Result unpredictable if Rd or Rn is R15. */
9367
9368 static void
9369 do_co_reg2c (void)
9370 {
9371 unsigned Rd, Rn;
9372
9373 Rd = inst.operands[2].reg;
9374 Rn = inst.operands[3].reg;
9375
9376 if (thumb_mode)
9377 {
9378 reject_bad_reg (Rd);
9379 reject_bad_reg (Rn);
9380 }
9381 else
9382 {
9383 constraint (Rd == REG_PC, BAD_PC);
9384 constraint (Rn == REG_PC, BAD_PC);
9385 }
9386
9387 /* Only check the MRRC{2} variants. */
9388 if ((inst.instruction & 0x0FF00000) == 0x0C500000)
9389 {
9390 /* If Rd == Rn, error that the operation is
9391 unpredictable (example MRRC p3,#1,r1,r1,c4). */
9392 constraint (Rd == Rn, BAD_OVERLAP);
9393 }
9394
9395 inst.instruction |= inst.operands[0].reg << 8;
9396 inst.instruction |= inst.operands[1].imm << 4;
9397 inst.instruction |= Rd << 12;
9398 inst.instruction |= Rn << 16;
9399 inst.instruction |= inst.operands[4].reg;
9400 }
9401
9402 static void
9403 do_cpsi (void)
9404 {
9405 inst.instruction |= inst.operands[0].imm << 6;
9406 if (inst.operands[1].present)
9407 {
9408 inst.instruction |= CPSI_MMOD;
9409 inst.instruction |= inst.operands[1].imm;
9410 }
9411 }
9412
9413 static void
9414 do_dbg (void)
9415 {
9416 inst.instruction |= inst.operands[0].imm;
9417 }
9418
9419 static void
9420 do_div (void)
9421 {
9422 unsigned Rd, Rn, Rm;
9423
9424 Rd = inst.operands[0].reg;
9425 Rn = (inst.operands[1].present
9426 ? inst.operands[1].reg : Rd);
9427 Rm = inst.operands[2].reg;
9428
9429 constraint ((Rd == REG_PC), BAD_PC);
9430 constraint ((Rn == REG_PC), BAD_PC);
9431 constraint ((Rm == REG_PC), BAD_PC);
9432
9433 inst.instruction |= Rd << 16;
9434 inst.instruction |= Rn << 0;
9435 inst.instruction |= Rm << 8;
9436 }
9437
9438 static void
9439 do_it (void)
9440 {
9441 /* There is no IT instruction in ARM mode. We
9442 process it to do the validation as if in
9443 thumb mode, just in case the code gets
9444 assembled for thumb using the unified syntax. */
9445
9446 inst.size = 0;
9447 if (unified_syntax)
9448 {
9449 set_pred_insn_type (IT_INSN);
9450 now_pred.mask = (inst.instruction & 0xf) | 0x10;
9451 now_pred.cc = inst.operands[0].imm;
9452 }
9453 }
9454
9455 /* If there is only one register in the register list,
9456 then return its register number. Otherwise return -1. */
9457 static int
9458 only_one_reg_in_list (int range)
9459 {
9460 int i = ffs (range) - 1;
9461 return (i > 15 || range != (1 << i)) ? -1 : i;
9462 }
9463
9464 static void
9465 encode_ldmstm(int from_push_pop_mnem)
9466 {
9467 int base_reg = inst.operands[0].reg;
9468 int range = inst.operands[1].imm;
9469 int one_reg;
9470
9471 inst.instruction |= base_reg << 16;
9472 inst.instruction |= range;
9473
9474 if (inst.operands[1].writeback)
9475 inst.instruction |= LDM_TYPE_2_OR_3;
9476
9477 if (inst.operands[0].writeback)
9478 {
9479 inst.instruction |= WRITE_BACK;
9480 /* Check for unpredictable uses of writeback. */
9481 if (inst.instruction & LOAD_BIT)
9482 {
9483 /* Not allowed in LDM type 2. */
9484 if ((inst.instruction & LDM_TYPE_2_OR_3)
9485 && ((range & (1 << REG_PC)) == 0))
9486 as_warn (_("writeback of base register is UNPREDICTABLE"));
9487 /* Only allowed if base reg not in list for other types. */
9488 else if (range & (1 << base_reg))
9489 as_warn (_("writeback of base register when in register list is UNPREDICTABLE"));
9490 }
9491 else /* STM. */
9492 {
9493 /* Not allowed for type 2. */
9494 if (inst.instruction & LDM_TYPE_2_OR_3)
9495 as_warn (_("writeback of base register is UNPREDICTABLE"));
9496 /* Only allowed if base reg not in list, or first in list. */
9497 else if ((range & (1 << base_reg))
9498 && (range & ((1 << base_reg) - 1)))
9499 as_warn (_("if writeback register is in list, it must be the lowest reg in the list"));
9500 }
9501 }
9502
9503 /* If PUSH/POP has only one register, then use the A2 encoding. */
9504 one_reg = only_one_reg_in_list (range);
9505 if (from_push_pop_mnem && one_reg >= 0)
9506 {
9507 int is_push = (inst.instruction & A_PUSH_POP_OP_MASK) == A1_OPCODE_PUSH;
9508
9509 if (is_push && one_reg == 13 /* SP */)
9510 /* PR 22483: The A2 encoding cannot be used when
9511 pushing the stack pointer as this is UNPREDICTABLE. */
9512 return;
9513
9514 inst.instruction &= A_COND_MASK;
9515 inst.instruction |= is_push ? A2_OPCODE_PUSH : A2_OPCODE_POP;
9516 inst.instruction |= one_reg << 12;
9517 }
9518 }
9519
9520 static void
9521 do_ldmstm (void)
9522 {
9523 encode_ldmstm (/*from_push_pop_mnem=*/FALSE);
9524 }
9525
9526 /* ARMv5TE load-consecutive (argument parse)
9527 Mode is like LDRH.
9528
9529 LDRccD R, mode
9530 STRccD R, mode. */
9531
9532 static void
9533 do_ldrd (void)
9534 {
9535 constraint (inst.operands[0].reg % 2 != 0,
9536 _("first transfer register must be even"));
9537 constraint (inst.operands[1].present
9538 && inst.operands[1].reg != inst.operands[0].reg + 1,
9539 _("can only transfer two consecutive registers"));
9540 constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed here"));
9541 constraint (!inst.operands[2].isreg, _("'[' expected"));
9542
9543 if (!inst.operands[1].present)
9544 inst.operands[1].reg = inst.operands[0].reg + 1;
9545
9546 /* encode_arm_addr_mode_3 will diagnose overlap between the base
9547 register and the first register written; we have to diagnose
9548 overlap between the base and the second register written here. */
9549
9550 if (inst.operands[2].reg == inst.operands[1].reg
9551 && (inst.operands[2].writeback || inst.operands[2].postind))
9552 as_warn (_("base register written back, and overlaps "
9553 "second transfer register"));
9554
9555 if (!(inst.instruction & V4_STR_BIT))
9556 {
9557 /* For an index-register load, the index register must not overlap the
9558 destination (even if not write-back). */
9559 if (inst.operands[2].immisreg
9560 && ((unsigned) inst.operands[2].imm == inst.operands[0].reg
9561 || (unsigned) inst.operands[2].imm == inst.operands[1].reg))
9562 as_warn (_("index register overlaps transfer register"));
9563 }
9564 inst.instruction |= inst.operands[0].reg << 12;
9565 encode_arm_addr_mode_3 (2, /*is_t=*/FALSE);
9566 }
9567
9568 static void
9569 do_ldrex (void)
9570 {
9571 constraint (!inst.operands[1].isreg || !inst.operands[1].preind
9572 || inst.operands[1].postind || inst.operands[1].writeback
9573 || inst.operands[1].immisreg || inst.operands[1].shifted
9574 || inst.operands[1].negative
9575 /* This can arise if the programmer has written
9576 strex rN, rM, foo
9577 or if they have mistakenly used a register name as the last
9578 operand, eg:
9579 strex rN, rM, rX
9580 It is very difficult to distinguish between these two cases
9581 because "rX" might actually be a label. ie the register
9582 name has been occluded by a symbol of the same name. So we
9583 just generate a general 'bad addressing mode' type error
9584 message and leave it up to the programmer to discover the
9585 true cause and fix their mistake. */
9586 || (inst.operands[1].reg == REG_PC),
9587 BAD_ADDR_MODE);
9588
9589 constraint (inst.relocs[0].exp.X_op != O_constant
9590 || inst.relocs[0].exp.X_add_number != 0,
9591 _("offset must be zero in ARM encoding"));
9592
9593 constraint ((inst.operands[1].reg == REG_PC), BAD_PC);
9594
9595 inst.instruction |= inst.operands[0].reg << 12;
9596 inst.instruction |= inst.operands[1].reg << 16;
9597 inst.relocs[0].type = BFD_RELOC_UNUSED;
9598 }
9599
9600 static void
9601 do_ldrexd (void)
9602 {
9603 constraint (inst.operands[0].reg % 2 != 0,
9604 _("even register required"));
9605 constraint (inst.operands[1].present
9606 && inst.operands[1].reg != inst.operands[0].reg + 1,
9607 _("can only load two consecutive registers"));
9608 /* If op 1 were present and equal to PC, this function wouldn't
9609 have been called in the first place. */
9610 constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed here"));
9611
9612 inst.instruction |= inst.operands[0].reg << 12;
9613 inst.instruction |= inst.operands[2].reg << 16;
9614 }
9615
9616 /* In both ARM and thumb state 'ldr pc, #imm' with an immediate
9617 which is not a multiple of four is UNPREDICTABLE. */
9618 static void
9619 check_ldr_r15_aligned (void)
9620 {
9621 constraint (!(inst.operands[1].immisreg)
9622 && (inst.operands[0].reg == REG_PC
9623 && inst.operands[1].reg == REG_PC
9624 && (inst.relocs[0].exp.X_add_number & 0x3)),
9625 _("ldr to register 15 must be 4-byte aligned"));
9626 }
9627
9628 static void
9629 do_ldst (void)
9630 {
9631 inst.instruction |= inst.operands[0].reg << 12;
9632 if (!inst.operands[1].isreg)
9633 if (move_or_literal_pool (0, CONST_ARM, /*mode_3=*/FALSE))
9634 return;
9635 encode_arm_addr_mode_2 (1, /*is_t=*/FALSE);
9636 check_ldr_r15_aligned ();
9637 }
9638
9639 static void
9640 do_ldstt (void)
9641 {
9642 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
9643 reject [Rn,...]. */
9644 if (inst.operands[1].preind)
9645 {
9646 constraint (inst.relocs[0].exp.X_op != O_constant
9647 || inst.relocs[0].exp.X_add_number != 0,
9648 _("this instruction requires a post-indexed address"));
9649
9650 inst.operands[1].preind = 0;
9651 inst.operands[1].postind = 1;
9652 inst.operands[1].writeback = 1;
9653 }
9654 inst.instruction |= inst.operands[0].reg << 12;
9655 encode_arm_addr_mode_2 (1, /*is_t=*/TRUE);
9656 }
9657
9658 /* Halfword and signed-byte load/store operations. */
9659
9660 static void
9661 do_ldstv4 (void)
9662 {
9663 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
9664 inst.instruction |= inst.operands[0].reg << 12;
9665 if (!inst.operands[1].isreg)
9666 if (move_or_literal_pool (0, CONST_ARM, /*mode_3=*/TRUE))
9667 return;
9668 encode_arm_addr_mode_3 (1, /*is_t=*/FALSE);
9669 }
9670
9671 static void
9672 do_ldsttv4 (void)
9673 {
9674 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
9675 reject [Rn,...]. */
9676 if (inst.operands[1].preind)
9677 {
9678 constraint (inst.relocs[0].exp.X_op != O_constant
9679 || inst.relocs[0].exp.X_add_number != 0,
9680 _("this instruction requires a post-indexed address"));
9681
9682 inst.operands[1].preind = 0;
9683 inst.operands[1].postind = 1;
9684 inst.operands[1].writeback = 1;
9685 }
9686 inst.instruction |= inst.operands[0].reg << 12;
9687 encode_arm_addr_mode_3 (1, /*is_t=*/TRUE);
9688 }
9689
9690 /* Co-processor register load/store.
9691 Format: <LDC|STC>{cond}[L] CP#,CRd,<address> */
9692 static void
9693 do_lstc (void)
9694 {
9695 inst.instruction |= inst.operands[0].reg << 8;
9696 inst.instruction |= inst.operands[1].reg << 12;
9697 encode_arm_cp_address (2, TRUE, TRUE, 0);
9698 }
9699
9700 static void
9701 do_mlas (void)
9702 {
9703 /* This restriction does not apply to mls (nor to mla in v6 or later). */
9704 if (inst.operands[0].reg == inst.operands[1].reg
9705 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6)
9706 && !(inst.instruction & 0x00400000))
9707 as_tsktsk (_("Rd and Rm should be different in mla"));
9708
9709 inst.instruction |= inst.operands[0].reg << 16;
9710 inst.instruction |= inst.operands[1].reg;
9711 inst.instruction |= inst.operands[2].reg << 8;
9712 inst.instruction |= inst.operands[3].reg << 12;
9713 }
9714
9715 static void
9716 do_mov (void)
9717 {
9718 constraint (inst.relocs[0].type >= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
9719 && inst.relocs[0].type <= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC ,
9720 THUMB1_RELOC_ONLY);
9721 inst.instruction |= inst.operands[0].reg << 12;
9722 encode_arm_shifter_operand (1);
9723 }
9724
9725 /* ARM V6T2 16-bit immediate register load: MOV[WT]{cond} Rd, #<imm16>. */
9726 static void
9727 do_mov16 (void)
9728 {
9729 bfd_vma imm;
9730 bfd_boolean top;
9731
9732 top = (inst.instruction & 0x00400000) != 0;
9733 constraint (top && inst.relocs[0].type == BFD_RELOC_ARM_MOVW,
9734 _(":lower16: not allowed in this instruction"));
9735 constraint (!top && inst.relocs[0].type == BFD_RELOC_ARM_MOVT,
9736 _(":upper16: not allowed in this instruction"));
9737 inst.instruction |= inst.operands[0].reg << 12;
9738 if (inst.relocs[0].type == BFD_RELOC_UNUSED)
9739 {
9740 imm = inst.relocs[0].exp.X_add_number;
9741 /* The value is in two pieces: 0:11, 16:19. */
9742 inst.instruction |= (imm & 0x00000fff);
9743 inst.instruction |= (imm & 0x0000f000) << 4;
9744 }
9745 }
9746
9747 static int
9748 do_vfp_nsyn_mrs (void)
9749 {
9750 if (inst.operands[0].isvec)
9751 {
9752 if (inst.operands[1].reg != 1)
9753 first_error (_("operand 1 must be FPSCR"));
9754 memset (&inst.operands[0], '\0', sizeof (inst.operands[0]));
9755 memset (&inst.operands[1], '\0', sizeof (inst.operands[1]));
9756 do_vfp_nsyn_opcode ("fmstat");
9757 }
9758 else if (inst.operands[1].isvec)
9759 do_vfp_nsyn_opcode ("fmrx");
9760 else
9761 return FAIL;
9762
9763 return SUCCESS;
9764 }
9765
9766 static int
9767 do_vfp_nsyn_msr (void)
9768 {
9769 if (inst.operands[0].isvec)
9770 do_vfp_nsyn_opcode ("fmxr");
9771 else
9772 return FAIL;
9773
9774 return SUCCESS;
9775 }
9776
9777 static void
9778 do_vmrs (void)
9779 {
9780 unsigned Rt = inst.operands[0].reg;
9781
9782 if (thumb_mode && Rt == REG_SP)
9783 {
9784 inst.error = BAD_SP;
9785 return;
9786 }
9787
9788 /* MVFR2 is only valid at ARMv8-A. */
9789 if (inst.operands[1].reg == 5)
9790 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
9791 _(BAD_FPU));
9792
9793 /* APSR_ sets isvec. All other refs to PC are illegal. */
9794 if (!inst.operands[0].isvec && Rt == REG_PC)
9795 {
9796 inst.error = BAD_PC;
9797 return;
9798 }
9799
9800 /* If we get through parsing the register name, we just insert the number
9801 generated into the instruction without further validation. */
9802 inst.instruction |= (inst.operands[1].reg << 16);
9803 inst.instruction |= (Rt << 12);
9804 }
9805
9806 static void
9807 do_vmsr (void)
9808 {
9809 unsigned Rt = inst.operands[1].reg;
9810
9811 if (thumb_mode)
9812 reject_bad_reg (Rt);
9813 else if (Rt == REG_PC)
9814 {
9815 inst.error = BAD_PC;
9816 return;
9817 }
9818
9819 /* MVFR2 is only valid for ARMv8-A. */
9820 if (inst.operands[0].reg == 5)
9821 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
9822 _(BAD_FPU));
9823
9824 /* If we get through parsing the register name, we just insert the number
9825 generated into the instruction without further validation. */
9826 inst.instruction |= (inst.operands[0].reg << 16);
9827 inst.instruction |= (Rt << 12);
9828 }
9829
9830 static void
9831 do_mrs (void)
9832 {
9833 unsigned br;
9834
9835 if (do_vfp_nsyn_mrs () == SUCCESS)
9836 return;
9837
9838 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
9839 inst.instruction |= inst.operands[0].reg << 12;
9840
9841 if (inst.operands[1].isreg)
9842 {
9843 br = inst.operands[1].reg;
9844 if (((br & 0x200) == 0) && ((br & 0xf0000) != 0xf0000))
9845 as_bad (_("bad register for mrs"));
9846 }
9847 else
9848 {
9849 /* mrs only accepts CPSR/SPSR/CPSR_all/SPSR_all. */
9850 constraint ((inst.operands[1].imm & (PSR_c|PSR_x|PSR_s|PSR_f))
9851 != (PSR_c|PSR_f),
9852 _("'APSR', 'CPSR' or 'SPSR' expected"));
9853 br = (15<<16) | (inst.operands[1].imm & SPSR_BIT);
9854 }
9855
9856 inst.instruction |= br;
9857 }
9858
9859 /* Two possible forms:
9860 "{C|S}PSR_<field>, Rm",
9861 "{C|S}PSR_f, #expression". */
9862
9863 static void
9864 do_msr (void)
9865 {
9866 if (do_vfp_nsyn_msr () == SUCCESS)
9867 return;
9868
9869 inst.instruction |= inst.operands[0].imm;
9870 if (inst.operands[1].isreg)
9871 inst.instruction |= inst.operands[1].reg;
9872 else
9873 {
9874 inst.instruction |= INST_IMMEDIATE;
9875 inst.relocs[0].type = BFD_RELOC_ARM_IMMEDIATE;
9876 inst.relocs[0].pc_rel = 0;
9877 }
9878 }
9879
9880 static void
9881 do_mul (void)
9882 {
9883 constraint (inst.operands[2].reg == REG_PC, BAD_PC);
9884
9885 if (!inst.operands[2].present)
9886 inst.operands[2].reg = inst.operands[0].reg;
9887 inst.instruction |= inst.operands[0].reg << 16;
9888 inst.instruction |= inst.operands[1].reg;
9889 inst.instruction |= inst.operands[2].reg << 8;
9890
9891 if (inst.operands[0].reg == inst.operands[1].reg
9892 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6))
9893 as_tsktsk (_("Rd and Rm should be different in mul"));
9894 }
9895
9896 /* Long Multiply Parser
9897 UMULL RdLo, RdHi, Rm, Rs
9898 SMULL RdLo, RdHi, Rm, Rs
9899 UMLAL RdLo, RdHi, Rm, Rs
9900 SMLAL RdLo, RdHi, Rm, Rs. */
9901
9902 static void
9903 do_mull (void)
9904 {
9905 inst.instruction |= inst.operands[0].reg << 12;
9906 inst.instruction |= inst.operands[1].reg << 16;
9907 inst.instruction |= inst.operands[2].reg;
9908 inst.instruction |= inst.operands[3].reg << 8;
9909
9910 /* rdhi and rdlo must be different. */
9911 if (inst.operands[0].reg == inst.operands[1].reg)
9912 as_tsktsk (_("rdhi and rdlo must be different"));
9913
9914 /* rdhi, rdlo and rm must all be different before armv6. */
9915 if ((inst.operands[0].reg == inst.operands[2].reg
9916 || inst.operands[1].reg == inst.operands[2].reg)
9917 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6))
9918 as_tsktsk (_("rdhi, rdlo and rm must all be different"));
9919 }
9920
9921 static void
9922 do_nop (void)
9923 {
9924 if (inst.operands[0].present
9925 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6k))
9926 {
9927 /* Architectural NOP hints are CPSR sets with no bits selected. */
9928 inst.instruction &= 0xf0000000;
9929 inst.instruction |= 0x0320f000;
9930 if (inst.operands[0].present)
9931 inst.instruction |= inst.operands[0].imm;
9932 }
9933 }
9934
9935 /* ARM V6 Pack Halfword Bottom Top instruction (argument parse).
9936 PKHBT {<cond>} <Rd>, <Rn>, <Rm> {, LSL #<shift_imm>}
9937 Condition defaults to COND_ALWAYS.
9938 Error if Rd, Rn or Rm are R15. */
9939
9940 static void
9941 do_pkhbt (void)
9942 {
9943 inst.instruction |= inst.operands[0].reg << 12;
9944 inst.instruction |= inst.operands[1].reg << 16;
9945 inst.instruction |= inst.operands[2].reg;
9946 if (inst.operands[3].present)
9947 encode_arm_shift (3);
9948 }
9949
9950 /* ARM V6 PKHTB (Argument Parse). */
9951
9952 static void
9953 do_pkhtb (void)
9954 {
9955 if (!inst.operands[3].present)
9956 {
9957 /* If the shift specifier is omitted, turn the instruction
9958 into pkhbt rd, rm, rn. */
9959 inst.instruction &= 0xfff00010;
9960 inst.instruction |= inst.operands[0].reg << 12;
9961 inst.instruction |= inst.operands[1].reg;
9962 inst.instruction |= inst.operands[2].reg << 16;
9963 }
9964 else
9965 {
9966 inst.instruction |= inst.operands[0].reg << 12;
9967 inst.instruction |= inst.operands[1].reg << 16;
9968 inst.instruction |= inst.operands[2].reg;
9969 encode_arm_shift (3);
9970 }
9971 }
9972
9973 /* ARMv5TE: Preload-Cache
9974 MP Extensions: Preload for write
9975
9976 PLD(W) <addr_mode>
9977
9978 Syntactically, like LDR with B=1, W=0, L=1. */
9979
9980 static void
9981 do_pld (void)
9982 {
9983 constraint (!inst.operands[0].isreg,
9984 _("'[' expected after PLD mnemonic"));
9985 constraint (inst.operands[0].postind,
9986 _("post-indexed expression used in preload instruction"));
9987 constraint (inst.operands[0].writeback,
9988 _("writeback used in preload instruction"));
9989 constraint (!inst.operands[0].preind,
9990 _("unindexed addressing used in preload instruction"));
9991 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE);
9992 }
9993
9994 /* ARMv7: PLI <addr_mode> */
9995 static void
9996 do_pli (void)
9997 {
9998 constraint (!inst.operands[0].isreg,
9999 _("'[' expected after PLI mnemonic"));
10000 constraint (inst.operands[0].postind,
10001 _("post-indexed expression used in preload instruction"));
10002 constraint (inst.operands[0].writeback,
10003 _("writeback used in preload instruction"));
10004 constraint (!inst.operands[0].preind,
10005 _("unindexed addressing used in preload instruction"));
10006 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE);
10007 inst.instruction &= ~PRE_INDEX;
10008 }
10009
10010 static void
10011 do_push_pop (void)
10012 {
10013 constraint (inst.operands[0].writeback,
10014 _("push/pop do not support {reglist}^"));
10015 inst.operands[1] = inst.operands[0];
10016 memset (&inst.operands[0], 0, sizeof inst.operands[0]);
10017 inst.operands[0].isreg = 1;
10018 inst.operands[0].writeback = 1;
10019 inst.operands[0].reg = REG_SP;
10020 encode_ldmstm (/*from_push_pop_mnem=*/TRUE);
10021 }
10022
10023 /* ARM V6 RFE (Return from Exception) loads the PC and CPSR from the
10024 word at the specified address and the following word
10025 respectively.
10026 Unconditionally executed.
10027 Error if Rn is R15. */
10028
10029 static void
10030 do_rfe (void)
10031 {
10032 inst.instruction |= inst.operands[0].reg << 16;
10033 if (inst.operands[0].writeback)
10034 inst.instruction |= WRITE_BACK;
10035 }
10036
10037 /* ARM V6 ssat (argument parse). */
10038
10039 static void
10040 do_ssat (void)
10041 {
10042 inst.instruction |= inst.operands[0].reg << 12;
10043 inst.instruction |= (inst.operands[1].imm - 1) << 16;
10044 inst.instruction |= inst.operands[2].reg;
10045
10046 if (inst.operands[3].present)
10047 encode_arm_shift (3);
10048 }
10049
10050 /* ARM V6 usat (argument parse). */
10051
10052 static void
10053 do_usat (void)
10054 {
10055 inst.instruction |= inst.operands[0].reg << 12;
10056 inst.instruction |= inst.operands[1].imm << 16;
10057 inst.instruction |= inst.operands[2].reg;
10058
10059 if (inst.operands[3].present)
10060 encode_arm_shift (3);
10061 }
10062
10063 /* ARM V6 ssat16 (argument parse). */
10064
10065 static void
10066 do_ssat16 (void)
10067 {
10068 inst.instruction |= inst.operands[0].reg << 12;
10069 inst.instruction |= ((inst.operands[1].imm - 1) << 16);
10070 inst.instruction |= inst.operands[2].reg;
10071 }
10072
10073 static void
10074 do_usat16 (void)
10075 {
10076 inst.instruction |= inst.operands[0].reg << 12;
10077 inst.instruction |= inst.operands[1].imm << 16;
10078 inst.instruction |= inst.operands[2].reg;
10079 }
10080
10081 /* ARM V6 SETEND (argument parse). Sets the E bit in the CPSR while
10082 preserving the other bits.
10083
10084 setend <endian_specifier>, where <endian_specifier> is either
10085 BE or LE. */
10086
10087 static void
10088 do_setend (void)
10089 {
10090 if (warn_on_deprecated
10091 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
10092 as_tsktsk (_("setend use is deprecated for ARMv8"));
10093
10094 if (inst.operands[0].imm)
10095 inst.instruction |= 0x200;
10096 }
10097
10098 static void
10099 do_shift (void)
10100 {
10101 unsigned int Rm = (inst.operands[1].present
10102 ? inst.operands[1].reg
10103 : inst.operands[0].reg);
10104
10105 inst.instruction |= inst.operands[0].reg << 12;
10106 inst.instruction |= Rm;
10107 if (inst.operands[2].isreg) /* Rd, {Rm,} Rs */
10108 {
10109 inst.instruction |= inst.operands[2].reg << 8;
10110 inst.instruction |= SHIFT_BY_REG;
10111 /* PR 12854: Error on extraneous shifts. */
10112 constraint (inst.operands[2].shifted,
10113 _("extraneous shift as part of operand to shift insn"));
10114 }
10115 else
10116 inst.relocs[0].type = BFD_RELOC_ARM_SHIFT_IMM;
10117 }
10118
10119 static void
10120 do_smc (void)
10121 {
10122 inst.relocs[0].type = BFD_RELOC_ARM_SMC;
10123 inst.relocs[0].pc_rel = 0;
10124 }
10125
10126 static void
10127 do_hvc (void)
10128 {
10129 inst.relocs[0].type = BFD_RELOC_ARM_HVC;
10130 inst.relocs[0].pc_rel = 0;
10131 }
10132
10133 static void
10134 do_swi (void)
10135 {
10136 inst.relocs[0].type = BFD_RELOC_ARM_SWI;
10137 inst.relocs[0].pc_rel = 0;
10138 }
10139
10140 static void
10141 do_setpan (void)
10142 {
10143 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_pan),
10144 _("selected processor does not support SETPAN instruction"));
10145
10146 inst.instruction |= ((inst.operands[0].imm & 1) << 9);
10147 }
10148
10149 static void
10150 do_t_setpan (void)
10151 {
10152 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_pan),
10153 _("selected processor does not support SETPAN instruction"));
10154
10155 inst.instruction |= (inst.operands[0].imm << 3);
10156 }
10157
10158 /* ARM V5E (El Segundo) signed-multiply-accumulate (argument parse)
10159 SMLAxy{cond} Rd,Rm,Rs,Rn
10160 SMLAWy{cond} Rd,Rm,Rs,Rn
10161 Error if any register is R15. */
10162
10163 static void
10164 do_smla (void)
10165 {
10166 inst.instruction |= inst.operands[0].reg << 16;
10167 inst.instruction |= inst.operands[1].reg;
10168 inst.instruction |= inst.operands[2].reg << 8;
10169 inst.instruction |= inst.operands[3].reg << 12;
10170 }
10171
10172 /* ARM V5E (El Segundo) signed-multiply-accumulate-long (argument parse)
10173 SMLALxy{cond} Rdlo,Rdhi,Rm,Rs
10174 Error if any register is R15.
10175 Warning if Rdlo == Rdhi. */
10176
10177 static void
10178 do_smlal (void)
10179 {
10180 inst.instruction |= inst.operands[0].reg << 12;
10181 inst.instruction |= inst.operands[1].reg << 16;
10182 inst.instruction |= inst.operands[2].reg;
10183 inst.instruction |= inst.operands[3].reg << 8;
10184
10185 if (inst.operands[0].reg == inst.operands[1].reg)
10186 as_tsktsk (_("rdhi and rdlo must be different"));
10187 }
10188
10189 /* ARM V5E (El Segundo) signed-multiply (argument parse)
10190 SMULxy{cond} Rd,Rm,Rs
10191 Error if any register is R15. */
10192
10193 static void
10194 do_smul (void)
10195 {
10196 inst.instruction |= inst.operands[0].reg << 16;
10197 inst.instruction |= inst.operands[1].reg;
10198 inst.instruction |= inst.operands[2].reg << 8;
10199 }
10200
10201 /* ARM V6 srs (argument parse). The variable fields in the encoding are
10202 the same for both ARM and Thumb-2. */
10203
10204 static void
10205 do_srs (void)
10206 {
10207 int reg;
10208
10209 if (inst.operands[0].present)
10210 {
10211 reg = inst.operands[0].reg;
10212 constraint (reg != REG_SP, _("SRS base register must be r13"));
10213 }
10214 else
10215 reg = REG_SP;
10216
10217 inst.instruction |= reg << 16;
10218 inst.instruction |= inst.operands[1].imm;
10219 if (inst.operands[0].writeback || inst.operands[1].writeback)
10220 inst.instruction |= WRITE_BACK;
10221 }
10222
10223 /* ARM V6 strex (argument parse). */
10224
10225 static void
10226 do_strex (void)
10227 {
10228 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
10229 || inst.operands[2].postind || inst.operands[2].writeback
10230 || inst.operands[2].immisreg || inst.operands[2].shifted
10231 || inst.operands[2].negative
10232 /* See comment in do_ldrex(). */
10233 || (inst.operands[2].reg == REG_PC),
10234 BAD_ADDR_MODE);
10235
10236 constraint (inst.operands[0].reg == inst.operands[1].reg
10237 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
10238
10239 constraint (inst.relocs[0].exp.X_op != O_constant
10240 || inst.relocs[0].exp.X_add_number != 0,
10241 _("offset must be zero in ARM encoding"));
10242
10243 inst.instruction |= inst.operands[0].reg << 12;
10244 inst.instruction |= inst.operands[1].reg;
10245 inst.instruction |= inst.operands[2].reg << 16;
10246 inst.relocs[0].type = BFD_RELOC_UNUSED;
10247 }
10248
10249 static void
10250 do_t_strexbh (void)
10251 {
10252 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
10253 || inst.operands[2].postind || inst.operands[2].writeback
10254 || inst.operands[2].immisreg || inst.operands[2].shifted
10255 || inst.operands[2].negative,
10256 BAD_ADDR_MODE);
10257
10258 constraint (inst.operands[0].reg == inst.operands[1].reg
10259 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
10260
10261 do_rm_rd_rn ();
10262 }
10263
10264 static void
10265 do_strexd (void)
10266 {
10267 constraint (inst.operands[1].reg % 2 != 0,
10268 _("even register required"));
10269 constraint (inst.operands[2].present
10270 && inst.operands[2].reg != inst.operands[1].reg + 1,
10271 _("can only store two consecutive registers"));
10272 /* If op 2 were present and equal to PC, this function wouldn't
10273 have been called in the first place. */
10274 constraint (inst.operands[1].reg == REG_LR, _("r14 not allowed here"));
10275
10276 constraint (inst.operands[0].reg == inst.operands[1].reg
10277 || inst.operands[0].reg == inst.operands[1].reg + 1
10278 || inst.operands[0].reg == inst.operands[3].reg,
10279 BAD_OVERLAP);
10280
10281 inst.instruction |= inst.operands[0].reg << 12;
10282 inst.instruction |= inst.operands[1].reg;
10283 inst.instruction |= inst.operands[3].reg << 16;
10284 }
10285
10286 /* ARM V8 STRL. */
10287 static void
10288 do_stlex (void)
10289 {
10290 constraint (inst.operands[0].reg == inst.operands[1].reg
10291 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
10292
10293 do_rd_rm_rn ();
10294 }
10295
10296 static void
10297 do_t_stlex (void)
10298 {
10299 constraint (inst.operands[0].reg == inst.operands[1].reg
10300 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
10301
10302 do_rm_rd_rn ();
10303 }
10304
10305 /* ARM V6 SXTAH extracts a 16-bit value from a register, sign
10306 extends it to 32-bits, and adds the result to a value in another
10307 register. You can specify a rotation by 0, 8, 16, or 24 bits
10308 before extracting the 16-bit value.
10309 SXTAH{<cond>} <Rd>, <Rn>, <Rm>{, <rotation>}
10310 Condition defaults to COND_ALWAYS.
10311 Error if any register uses R15. */
10312
10313 static void
10314 do_sxtah (void)
10315 {
10316 inst.instruction |= inst.operands[0].reg << 12;
10317 inst.instruction |= inst.operands[1].reg << 16;
10318 inst.instruction |= inst.operands[2].reg;
10319 inst.instruction |= inst.operands[3].imm << 10;
10320 }
10321
10322 /* ARM V6 SXTH.
10323
10324 SXTH {<cond>} <Rd>, <Rm>{, <rotation>}
10325 Condition defaults to COND_ALWAYS.
10326 Error if any register uses R15. */
10327
10328 static void
10329 do_sxth (void)
10330 {
10331 inst.instruction |= inst.operands[0].reg << 12;
10332 inst.instruction |= inst.operands[1].reg;
10333 inst.instruction |= inst.operands[2].imm << 10;
10334 }
10335 \f
10336 /* VFP instructions. In a logical order: SP variant first, monad
10337 before dyad, arithmetic then move then load/store. */
10338
10339 static void
10340 do_vfp_sp_monadic (void)
10341 {
10342 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1xd)
10343 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
10344 _(BAD_FPU));
10345
10346 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
10347 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
10348 }
10349
10350 static void
10351 do_vfp_sp_dyadic (void)
10352 {
10353 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
10354 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sn);
10355 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Sm);
10356 }
10357
10358 static void
10359 do_vfp_sp_compare_z (void)
10360 {
10361 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
10362 }
10363
10364 static void
10365 do_vfp_dp_sp_cvt (void)
10366 {
10367 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10368 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
10369 }
10370
10371 static void
10372 do_vfp_sp_dp_cvt (void)
10373 {
10374 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
10375 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dm);
10376 }
10377
10378 static void
10379 do_vfp_reg_from_sp (void)
10380 {
10381 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1xd)
10382 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
10383 _(BAD_FPU));
10384
10385 inst.instruction |= inst.operands[0].reg << 12;
10386 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sn);
10387 }
10388
10389 static void
10390 do_vfp_reg2_from_sp2 (void)
10391 {
10392 constraint (inst.operands[2].imm != 2,
10393 _("only two consecutive VFP SP registers allowed here"));
10394 inst.instruction |= inst.operands[0].reg << 12;
10395 inst.instruction |= inst.operands[1].reg << 16;
10396 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Sm);
10397 }
10398
10399 static void
10400 do_vfp_sp_from_reg (void)
10401 {
10402 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1xd)
10403 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
10404 _(BAD_FPU));
10405
10406 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sn);
10407 inst.instruction |= inst.operands[1].reg << 12;
10408 }
10409
10410 static void
10411 do_vfp_sp2_from_reg2 (void)
10412 {
10413 constraint (inst.operands[0].imm != 2,
10414 _("only two consecutive VFP SP registers allowed here"));
10415 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sm);
10416 inst.instruction |= inst.operands[1].reg << 12;
10417 inst.instruction |= inst.operands[2].reg << 16;
10418 }
10419
10420 static void
10421 do_vfp_sp_ldst (void)
10422 {
10423 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
10424 encode_arm_cp_address (1, FALSE, TRUE, 0);
10425 }
10426
10427 static void
10428 do_vfp_dp_ldst (void)
10429 {
10430 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10431 encode_arm_cp_address (1, FALSE, TRUE, 0);
10432 }
10433
10434
10435 static void
10436 vfp_sp_ldstm (enum vfp_ldstm_type ldstm_type)
10437 {
10438 if (inst.operands[0].writeback)
10439 inst.instruction |= WRITE_BACK;
10440 else
10441 constraint (ldstm_type != VFP_LDSTMIA,
10442 _("this addressing mode requires base-register writeback"));
10443 inst.instruction |= inst.operands[0].reg << 16;
10444 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sd);
10445 inst.instruction |= inst.operands[1].imm;
10446 }
10447
10448 static void
10449 vfp_dp_ldstm (enum vfp_ldstm_type ldstm_type)
10450 {
10451 int count;
10452
10453 if (inst.operands[0].writeback)
10454 inst.instruction |= WRITE_BACK;
10455 else
10456 constraint (ldstm_type != VFP_LDSTMIA && ldstm_type != VFP_LDSTMIAX,
10457 _("this addressing mode requires base-register writeback"));
10458
10459 inst.instruction |= inst.operands[0].reg << 16;
10460 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
10461
10462 count = inst.operands[1].imm << 1;
10463 if (ldstm_type == VFP_LDSTMIAX || ldstm_type == VFP_LDSTMDBX)
10464 count += 1;
10465
10466 inst.instruction |= count;
10467 }
10468
10469 static void
10470 do_vfp_sp_ldstmia (void)
10471 {
10472 vfp_sp_ldstm (VFP_LDSTMIA);
10473 }
10474
10475 static void
10476 do_vfp_sp_ldstmdb (void)
10477 {
10478 vfp_sp_ldstm (VFP_LDSTMDB);
10479 }
10480
10481 static void
10482 do_vfp_dp_ldstmia (void)
10483 {
10484 vfp_dp_ldstm (VFP_LDSTMIA);
10485 }
10486
10487 static void
10488 do_vfp_dp_ldstmdb (void)
10489 {
10490 vfp_dp_ldstm (VFP_LDSTMDB);
10491 }
10492
10493 static void
10494 do_vfp_xp_ldstmia (void)
10495 {
10496 vfp_dp_ldstm (VFP_LDSTMIAX);
10497 }
10498
10499 static void
10500 do_vfp_xp_ldstmdb (void)
10501 {
10502 vfp_dp_ldstm (VFP_LDSTMDBX);
10503 }
10504
10505 static void
10506 do_vfp_dp_rd_rm (void)
10507 {
10508 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1)
10509 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
10510 _(BAD_FPU));
10511
10512 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10513 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dm);
10514 }
10515
10516 static void
10517 do_vfp_dp_rn_rd (void)
10518 {
10519 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dn);
10520 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
10521 }
10522
10523 static void
10524 do_vfp_dp_rd_rn (void)
10525 {
10526 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10527 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dn);
10528 }
10529
10530 static void
10531 do_vfp_dp_rd_rn_rm (void)
10532 {
10533 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2)
10534 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
10535 _(BAD_FPU));
10536
10537 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10538 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dn);
10539 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Dm);
10540 }
10541
10542 static void
10543 do_vfp_dp_rd (void)
10544 {
10545 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10546 }
10547
10548 static void
10549 do_vfp_dp_rm_rd_rn (void)
10550 {
10551 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2)
10552 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
10553 _(BAD_FPU));
10554
10555 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dm);
10556 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
10557 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Dn);
10558 }
10559
10560 /* VFPv3 instructions. */
10561 static void
10562 do_vfp_sp_const (void)
10563 {
10564 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
10565 inst.instruction |= (inst.operands[1].imm & 0xf0) << 12;
10566 inst.instruction |= (inst.operands[1].imm & 0x0f);
10567 }
10568
10569 static void
10570 do_vfp_dp_const (void)
10571 {
10572 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10573 inst.instruction |= (inst.operands[1].imm & 0xf0) << 12;
10574 inst.instruction |= (inst.operands[1].imm & 0x0f);
10575 }
10576
10577 static void
10578 vfp_conv (int srcsize)
10579 {
10580 int immbits = srcsize - inst.operands[1].imm;
10581
10582 if (srcsize == 16 && !(immbits >= 0 && immbits <= srcsize))
10583 {
10584 /* If srcsize is 16, inst.operands[1].imm must be in the range 0-16.
10585 i.e. immbits must be in range 0 - 16. */
10586 inst.error = _("immediate value out of range, expected range [0, 16]");
10587 return;
10588 }
10589 else if (srcsize == 32 && !(immbits >= 0 && immbits < srcsize))
10590 {
10591 /* If srcsize is 32, inst.operands[1].imm must be in the range 1-32.
10592 i.e. immbits must be in range 0 - 31. */
10593 inst.error = _("immediate value out of range, expected range [1, 32]");
10594 return;
10595 }
10596
10597 inst.instruction |= (immbits & 1) << 5;
10598 inst.instruction |= (immbits >> 1);
10599 }
10600
10601 static void
10602 do_vfp_sp_conv_16 (void)
10603 {
10604 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
10605 vfp_conv (16);
10606 }
10607
10608 static void
10609 do_vfp_dp_conv_16 (void)
10610 {
10611 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10612 vfp_conv (16);
10613 }
10614
10615 static void
10616 do_vfp_sp_conv_32 (void)
10617 {
10618 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
10619 vfp_conv (32);
10620 }
10621
10622 static void
10623 do_vfp_dp_conv_32 (void)
10624 {
10625 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10626 vfp_conv (32);
10627 }
10628 \f
10629 /* FPA instructions. Also in a logical order. */
10630
10631 static void
10632 do_fpa_cmp (void)
10633 {
10634 inst.instruction |= inst.operands[0].reg << 16;
10635 inst.instruction |= inst.operands[1].reg;
10636 }
10637
10638 static void
10639 do_fpa_ldmstm (void)
10640 {
10641 inst.instruction |= inst.operands[0].reg << 12;
10642 switch (inst.operands[1].imm)
10643 {
10644 case 1: inst.instruction |= CP_T_X; break;
10645 case 2: inst.instruction |= CP_T_Y; break;
10646 case 3: inst.instruction |= CP_T_Y | CP_T_X; break;
10647 case 4: break;
10648 default: abort ();
10649 }
10650
10651 if (inst.instruction & (PRE_INDEX | INDEX_UP))
10652 {
10653 /* The instruction specified "ea" or "fd", so we can only accept
10654 [Rn]{!}. The instruction does not really support stacking or
10655 unstacking, so we have to emulate these by setting appropriate
10656 bits and offsets. */
10657 constraint (inst.relocs[0].exp.X_op != O_constant
10658 || inst.relocs[0].exp.X_add_number != 0,
10659 _("this instruction does not support indexing"));
10660
10661 if ((inst.instruction & PRE_INDEX) || inst.operands[2].writeback)
10662 inst.relocs[0].exp.X_add_number = 12 * inst.operands[1].imm;
10663
10664 if (!(inst.instruction & INDEX_UP))
10665 inst.relocs[0].exp.X_add_number = -inst.relocs[0].exp.X_add_number;
10666
10667 if (!(inst.instruction & PRE_INDEX) && inst.operands[2].writeback)
10668 {
10669 inst.operands[2].preind = 0;
10670 inst.operands[2].postind = 1;
10671 }
10672 }
10673
10674 encode_arm_cp_address (2, TRUE, TRUE, 0);
10675 }
10676 \f
10677 /* iWMMXt instructions: strictly in alphabetical order. */
10678
10679 static void
10680 do_iwmmxt_tandorc (void)
10681 {
10682 constraint (inst.operands[0].reg != REG_PC, _("only r15 allowed here"));
10683 }
10684
10685 static void
10686 do_iwmmxt_textrc (void)
10687 {
10688 inst.instruction |= inst.operands[0].reg << 12;
10689 inst.instruction |= inst.operands[1].imm;
10690 }
10691
10692 static void
10693 do_iwmmxt_textrm (void)
10694 {
10695 inst.instruction |= inst.operands[0].reg << 12;
10696 inst.instruction |= inst.operands[1].reg << 16;
10697 inst.instruction |= inst.operands[2].imm;
10698 }
10699
10700 static void
10701 do_iwmmxt_tinsr (void)
10702 {
10703 inst.instruction |= inst.operands[0].reg << 16;
10704 inst.instruction |= inst.operands[1].reg << 12;
10705 inst.instruction |= inst.operands[2].imm;
10706 }
10707
10708 static void
10709 do_iwmmxt_tmia (void)
10710 {
10711 inst.instruction |= inst.operands[0].reg << 5;
10712 inst.instruction |= inst.operands[1].reg;
10713 inst.instruction |= inst.operands[2].reg << 12;
10714 }
10715
10716 static void
10717 do_iwmmxt_waligni (void)
10718 {
10719 inst.instruction |= inst.operands[0].reg << 12;
10720 inst.instruction |= inst.operands[1].reg << 16;
10721 inst.instruction |= inst.operands[2].reg;
10722 inst.instruction |= inst.operands[3].imm << 20;
10723 }
10724
10725 static void
10726 do_iwmmxt_wmerge (void)
10727 {
10728 inst.instruction |= inst.operands[0].reg << 12;
10729 inst.instruction |= inst.operands[1].reg << 16;
10730 inst.instruction |= inst.operands[2].reg;
10731 inst.instruction |= inst.operands[3].imm << 21;
10732 }
10733
10734 static void
10735 do_iwmmxt_wmov (void)
10736 {
10737 /* WMOV rD, rN is an alias for WOR rD, rN, rN. */
10738 inst.instruction |= inst.operands[0].reg << 12;
10739 inst.instruction |= inst.operands[1].reg << 16;
10740 inst.instruction |= inst.operands[1].reg;
10741 }
10742
10743 static void
10744 do_iwmmxt_wldstbh (void)
10745 {
10746 int reloc;
10747 inst.instruction |= inst.operands[0].reg << 12;
10748 if (thumb_mode)
10749 reloc = BFD_RELOC_ARM_T32_CP_OFF_IMM_S2;
10750 else
10751 reloc = BFD_RELOC_ARM_CP_OFF_IMM_S2;
10752 encode_arm_cp_address (1, TRUE, FALSE, reloc);
10753 }
10754
10755 static void
10756 do_iwmmxt_wldstw (void)
10757 {
10758 /* RIWR_RIWC clears .isreg for a control register. */
10759 if (!inst.operands[0].isreg)
10760 {
10761 constraint (inst.cond != COND_ALWAYS, BAD_COND);
10762 inst.instruction |= 0xf0000000;
10763 }
10764
10765 inst.instruction |= inst.operands[0].reg << 12;
10766 encode_arm_cp_address (1, TRUE, TRUE, 0);
10767 }
10768
10769 static void
10770 do_iwmmxt_wldstd (void)
10771 {
10772 inst.instruction |= inst.operands[0].reg << 12;
10773 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2)
10774 && inst.operands[1].immisreg)
10775 {
10776 inst.instruction &= ~0x1a000ff;
10777 inst.instruction |= (0xfU << 28);
10778 if (inst.operands[1].preind)
10779 inst.instruction |= PRE_INDEX;
10780 if (!inst.operands[1].negative)
10781 inst.instruction |= INDEX_UP;
10782 if (inst.operands[1].writeback)
10783 inst.instruction |= WRITE_BACK;
10784 inst.instruction |= inst.operands[1].reg << 16;
10785 inst.instruction |= inst.relocs[0].exp.X_add_number << 4;
10786 inst.instruction |= inst.operands[1].imm;
10787 }
10788 else
10789 encode_arm_cp_address (1, TRUE, FALSE, 0);
10790 }
10791
10792 static void
10793 do_iwmmxt_wshufh (void)
10794 {
10795 inst.instruction |= inst.operands[0].reg << 12;
10796 inst.instruction |= inst.operands[1].reg << 16;
10797 inst.instruction |= ((inst.operands[2].imm & 0xf0) << 16);
10798 inst.instruction |= (inst.operands[2].imm & 0x0f);
10799 }
10800
10801 static void
10802 do_iwmmxt_wzero (void)
10803 {
10804 /* WZERO reg is an alias for WANDN reg, reg, reg. */
10805 inst.instruction |= inst.operands[0].reg;
10806 inst.instruction |= inst.operands[0].reg << 12;
10807 inst.instruction |= inst.operands[0].reg << 16;
10808 }
10809
10810 static void
10811 do_iwmmxt_wrwrwr_or_imm5 (void)
10812 {
10813 if (inst.operands[2].isreg)
10814 do_rd_rn_rm ();
10815 else {
10816 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2),
10817 _("immediate operand requires iWMMXt2"));
10818 do_rd_rn ();
10819 if (inst.operands[2].imm == 0)
10820 {
10821 switch ((inst.instruction >> 20) & 0xf)
10822 {
10823 case 4:
10824 case 5:
10825 case 6:
10826 case 7:
10827 /* w...h wrd, wrn, #0 -> wrorh wrd, wrn, #16. */
10828 inst.operands[2].imm = 16;
10829 inst.instruction = (inst.instruction & 0xff0fffff) | (0x7 << 20);
10830 break;
10831 case 8:
10832 case 9:
10833 case 10:
10834 case 11:
10835 /* w...w wrd, wrn, #0 -> wrorw wrd, wrn, #32. */
10836 inst.operands[2].imm = 32;
10837 inst.instruction = (inst.instruction & 0xff0fffff) | (0xb << 20);
10838 break;
10839 case 12:
10840 case 13:
10841 case 14:
10842 case 15:
10843 {
10844 /* w...d wrd, wrn, #0 -> wor wrd, wrn, wrn. */
10845 unsigned long wrn;
10846 wrn = (inst.instruction >> 16) & 0xf;
10847 inst.instruction &= 0xff0fff0f;
10848 inst.instruction |= wrn;
10849 /* Bail out here; the instruction is now assembled. */
10850 return;
10851 }
10852 }
10853 }
10854 /* Map 32 -> 0, etc. */
10855 inst.operands[2].imm &= 0x1f;
10856 inst.instruction |= (0xfU << 28) | ((inst.operands[2].imm & 0x10) << 4) | (inst.operands[2].imm & 0xf);
10857 }
10858 }
10859 \f
10860 /* Cirrus Maverick instructions. Simple 2-, 3-, and 4-register
10861 operations first, then control, shift, and load/store. */
10862
10863 /* Insns like "foo X,Y,Z". */
10864
10865 static void
10866 do_mav_triple (void)
10867 {
10868 inst.instruction |= inst.operands[0].reg << 16;
10869 inst.instruction |= inst.operands[1].reg;
10870 inst.instruction |= inst.operands[2].reg << 12;
10871 }
10872
10873 /* Insns like "foo W,X,Y,Z".
10874 where W=MVAX[0:3] and X,Y,Z=MVFX[0:15]. */
10875
10876 static void
10877 do_mav_quad (void)
10878 {
10879 inst.instruction |= inst.operands[0].reg << 5;
10880 inst.instruction |= inst.operands[1].reg << 12;
10881 inst.instruction |= inst.operands[2].reg << 16;
10882 inst.instruction |= inst.operands[3].reg;
10883 }
10884
10885 /* cfmvsc32<cond> DSPSC,MVDX[15:0]. */
10886 static void
10887 do_mav_dspsc (void)
10888 {
10889 inst.instruction |= inst.operands[1].reg << 12;
10890 }
10891
10892 /* Maverick shift immediate instructions.
10893 cfsh32<cond> MVFX[15:0],MVFX[15:0],Shift[6:0].
10894 cfsh64<cond> MVDX[15:0],MVDX[15:0],Shift[6:0]. */
10895
10896 static void
10897 do_mav_shift (void)
10898 {
10899 int imm = inst.operands[2].imm;
10900
10901 inst.instruction |= inst.operands[0].reg << 12;
10902 inst.instruction |= inst.operands[1].reg << 16;
10903
10904 /* Bits 0-3 of the insn should have bits 0-3 of the immediate.
10905 Bits 5-7 of the insn should have bits 4-6 of the immediate.
10906 Bit 4 should be 0. */
10907 imm = (imm & 0xf) | ((imm & 0x70) << 1);
10908
10909 inst.instruction |= imm;
10910 }
10911 \f
10912 /* XScale instructions. Also sorted arithmetic before move. */
10913
10914 /* Xscale multiply-accumulate (argument parse)
10915 MIAcc acc0,Rm,Rs
10916 MIAPHcc acc0,Rm,Rs
10917 MIAxycc acc0,Rm,Rs. */
10918
10919 static void
10920 do_xsc_mia (void)
10921 {
10922 inst.instruction |= inst.operands[1].reg;
10923 inst.instruction |= inst.operands[2].reg << 12;
10924 }
10925
10926 /* Xscale move-accumulator-register (argument parse)
10927
10928 MARcc acc0,RdLo,RdHi. */
10929
10930 static void
10931 do_xsc_mar (void)
10932 {
10933 inst.instruction |= inst.operands[1].reg << 12;
10934 inst.instruction |= inst.operands[2].reg << 16;
10935 }
10936
10937 /* Xscale move-register-accumulator (argument parse)
10938
10939 MRAcc RdLo,RdHi,acc0. */
10940
10941 static void
10942 do_xsc_mra (void)
10943 {
10944 constraint (inst.operands[0].reg == inst.operands[1].reg, BAD_OVERLAP);
10945 inst.instruction |= inst.operands[0].reg << 12;
10946 inst.instruction |= inst.operands[1].reg << 16;
10947 }
10948 \f
10949 /* Encoding functions relevant only to Thumb. */
10950
10951 /* inst.operands[i] is a shifted-register operand; encode
10952 it into inst.instruction in the format used by Thumb32. */
10953
10954 static void
10955 encode_thumb32_shifted_operand (int i)
10956 {
10957 unsigned int value = inst.relocs[0].exp.X_add_number;
10958 unsigned int shift = inst.operands[i].shift_kind;
10959
10960 constraint (inst.operands[i].immisreg,
10961 _("shift by register not allowed in thumb mode"));
10962 inst.instruction |= inst.operands[i].reg;
10963 if (shift == SHIFT_RRX)
10964 inst.instruction |= SHIFT_ROR << 4;
10965 else
10966 {
10967 constraint (inst.relocs[0].exp.X_op != O_constant,
10968 _("expression too complex"));
10969
10970 constraint (value > 32
10971 || (value == 32 && (shift == SHIFT_LSL
10972 || shift == SHIFT_ROR)),
10973 _("shift expression is too large"));
10974
10975 if (value == 0)
10976 shift = SHIFT_LSL;
10977 else if (value == 32)
10978 value = 0;
10979
10980 inst.instruction |= shift << 4;
10981 inst.instruction |= (value & 0x1c) << 10;
10982 inst.instruction |= (value & 0x03) << 6;
10983 }
10984 }
10985
10986
10987 /* inst.operands[i] was set up by parse_address. Encode it into a
10988 Thumb32 format load or store instruction. Reject forms that cannot
10989 be used with such instructions. If is_t is true, reject forms that
10990 cannot be used with a T instruction; if is_d is true, reject forms
10991 that cannot be used with a D instruction. If it is a store insn,
10992 reject PC in Rn. */
10993
10994 static void
10995 encode_thumb32_addr_mode (int i, bfd_boolean is_t, bfd_boolean is_d)
10996 {
10997 const bfd_boolean is_pc = (inst.operands[i].reg == REG_PC);
10998
10999 constraint (!inst.operands[i].isreg,
11000 _("Instruction does not support =N addresses"));
11001
11002 inst.instruction |= inst.operands[i].reg << 16;
11003 if (inst.operands[i].immisreg)
11004 {
11005 constraint (is_pc, BAD_PC_ADDRESSING);
11006 constraint (is_t || is_d, _("cannot use register index with this instruction"));
11007 constraint (inst.operands[i].negative,
11008 _("Thumb does not support negative register indexing"));
11009 constraint (inst.operands[i].postind,
11010 _("Thumb does not support register post-indexing"));
11011 constraint (inst.operands[i].writeback,
11012 _("Thumb does not support register indexing with writeback"));
11013 constraint (inst.operands[i].shifted && inst.operands[i].shift_kind != SHIFT_LSL,
11014 _("Thumb supports only LSL in shifted register indexing"));
11015
11016 inst.instruction |= inst.operands[i].imm;
11017 if (inst.operands[i].shifted)
11018 {
11019 constraint (inst.relocs[0].exp.X_op != O_constant,
11020 _("expression too complex"));
11021 constraint (inst.relocs[0].exp.X_add_number < 0
11022 || inst.relocs[0].exp.X_add_number > 3,
11023 _("shift out of range"));
11024 inst.instruction |= inst.relocs[0].exp.X_add_number << 4;
11025 }
11026 inst.relocs[0].type = BFD_RELOC_UNUSED;
11027 }
11028 else if (inst.operands[i].preind)
11029 {
11030 constraint (is_pc && inst.operands[i].writeback, BAD_PC_WRITEBACK);
11031 constraint (is_t && inst.operands[i].writeback,
11032 _("cannot use writeback with this instruction"));
11033 constraint (is_pc && ((inst.instruction & THUMB2_LOAD_BIT) == 0),
11034 BAD_PC_ADDRESSING);
11035
11036 if (is_d)
11037 {
11038 inst.instruction |= 0x01000000;
11039 if (inst.operands[i].writeback)
11040 inst.instruction |= 0x00200000;
11041 }
11042 else
11043 {
11044 inst.instruction |= 0x00000c00;
11045 if (inst.operands[i].writeback)
11046 inst.instruction |= 0x00000100;
11047 }
11048 inst.relocs[0].type = BFD_RELOC_ARM_T32_OFFSET_IMM;
11049 }
11050 else if (inst.operands[i].postind)
11051 {
11052 gas_assert (inst.operands[i].writeback);
11053 constraint (is_pc, _("cannot use post-indexing with PC-relative addressing"));
11054 constraint (is_t, _("cannot use post-indexing with this instruction"));
11055
11056 if (is_d)
11057 inst.instruction |= 0x00200000;
11058 else
11059 inst.instruction |= 0x00000900;
11060 inst.relocs[0].type = BFD_RELOC_ARM_T32_OFFSET_IMM;
11061 }
11062 else /* unindexed - only for coprocessor */
11063 inst.error = _("instruction does not accept unindexed addressing");
11064 }
11065
11066 /* Table of Thumb instructions which exist in both 16- and 32-bit
11067 encodings (the latter only in post-V6T2 cores). The index is the
11068 value used in the insns table below. When there is more than one
11069 possible 16-bit encoding for the instruction, this table always
11070 holds variant (1).
11071 Also contains several pseudo-instructions used during relaxation. */
11072 #define T16_32_TAB \
11073 X(_adc, 4140, eb400000), \
11074 X(_adcs, 4140, eb500000), \
11075 X(_add, 1c00, eb000000), \
11076 X(_adds, 1c00, eb100000), \
11077 X(_addi, 0000, f1000000), \
11078 X(_addis, 0000, f1100000), \
11079 X(_add_pc,000f, f20f0000), \
11080 X(_add_sp,000d, f10d0000), \
11081 X(_adr, 000f, f20f0000), \
11082 X(_and, 4000, ea000000), \
11083 X(_ands, 4000, ea100000), \
11084 X(_asr, 1000, fa40f000), \
11085 X(_asrs, 1000, fa50f000), \
11086 X(_b, e000, f000b000), \
11087 X(_bcond, d000, f0008000), \
11088 X(_bf, 0000, f040e001), \
11089 X(_bfcsel,0000, f000e001), \
11090 X(_bfx, 0000, f060e001), \
11091 X(_bfl, 0000, f000c001), \
11092 X(_bflx, 0000, f070e001), \
11093 X(_bic, 4380, ea200000), \
11094 X(_bics, 4380, ea300000), \
11095 X(_cmn, 42c0, eb100f00), \
11096 X(_cmp, 2800, ebb00f00), \
11097 X(_cpsie, b660, f3af8400), \
11098 X(_cpsid, b670, f3af8600), \
11099 X(_cpy, 4600, ea4f0000), \
11100 X(_dec_sp,80dd, f1ad0d00), \
11101 X(_dls, 0000, f040e001), \
11102 X(_eor, 4040, ea800000), \
11103 X(_eors, 4040, ea900000), \
11104 X(_inc_sp,00dd, f10d0d00), \
11105 X(_ldmia, c800, e8900000), \
11106 X(_ldr, 6800, f8500000), \
11107 X(_ldrb, 7800, f8100000), \
11108 X(_ldrh, 8800, f8300000), \
11109 X(_ldrsb, 5600, f9100000), \
11110 X(_ldrsh, 5e00, f9300000), \
11111 X(_ldr_pc,4800, f85f0000), \
11112 X(_ldr_pc2,4800, f85f0000), \
11113 X(_ldr_sp,9800, f85d0000), \
11114 X(_le, 0000, f00fc001), \
11115 X(_lsl, 0000, fa00f000), \
11116 X(_lsls, 0000, fa10f000), \
11117 X(_lsr, 0800, fa20f000), \
11118 X(_lsrs, 0800, fa30f000), \
11119 X(_mov, 2000, ea4f0000), \
11120 X(_movs, 2000, ea5f0000), \
11121 X(_mul, 4340, fb00f000), \
11122 X(_muls, 4340, ffffffff), /* no 32b muls */ \
11123 X(_mvn, 43c0, ea6f0000), \
11124 X(_mvns, 43c0, ea7f0000), \
11125 X(_neg, 4240, f1c00000), /* rsb #0 */ \
11126 X(_negs, 4240, f1d00000), /* rsbs #0 */ \
11127 X(_orr, 4300, ea400000), \
11128 X(_orrs, 4300, ea500000), \
11129 X(_pop, bc00, e8bd0000), /* ldmia sp!,... */ \
11130 X(_push, b400, e92d0000), /* stmdb sp!,... */ \
11131 X(_rev, ba00, fa90f080), \
11132 X(_rev16, ba40, fa90f090), \
11133 X(_revsh, bac0, fa90f0b0), \
11134 X(_ror, 41c0, fa60f000), \
11135 X(_rors, 41c0, fa70f000), \
11136 X(_sbc, 4180, eb600000), \
11137 X(_sbcs, 4180, eb700000), \
11138 X(_stmia, c000, e8800000), \
11139 X(_str, 6000, f8400000), \
11140 X(_strb, 7000, f8000000), \
11141 X(_strh, 8000, f8200000), \
11142 X(_str_sp,9000, f84d0000), \
11143 X(_sub, 1e00, eba00000), \
11144 X(_subs, 1e00, ebb00000), \
11145 X(_subi, 8000, f1a00000), \
11146 X(_subis, 8000, f1b00000), \
11147 X(_sxtb, b240, fa4ff080), \
11148 X(_sxth, b200, fa0ff080), \
11149 X(_tst, 4200, ea100f00), \
11150 X(_uxtb, b2c0, fa5ff080), \
11151 X(_uxth, b280, fa1ff080), \
11152 X(_nop, bf00, f3af8000), \
11153 X(_yield, bf10, f3af8001), \
11154 X(_wfe, bf20, f3af8002), \
11155 X(_wfi, bf30, f3af8003), \
11156 X(_wls, 0000, f040c001), \
11157 X(_sev, bf40, f3af8004), \
11158 X(_sevl, bf50, f3af8005), \
11159 X(_udf, de00, f7f0a000)
11160
11161 /* To catch errors in encoding functions, the codes are all offset by
11162 0xF800, putting them in one of the 32-bit prefix ranges, ergo undefined
11163 as 16-bit instructions. */
11164 #define X(a,b,c) T_MNEM##a
11165 enum t16_32_codes { T16_32_OFFSET = 0xF7FF, T16_32_TAB };
11166 #undef X
11167
11168 #define X(a,b,c) 0x##b
11169 static const unsigned short thumb_op16[] = { T16_32_TAB };
11170 #define THUMB_OP16(n) (thumb_op16[(n) - (T16_32_OFFSET + 1)])
11171 #undef X
11172
11173 #define X(a,b,c) 0x##c
11174 static const unsigned int thumb_op32[] = { T16_32_TAB };
11175 #define THUMB_OP32(n) (thumb_op32[(n) - (T16_32_OFFSET + 1)])
11176 #define THUMB_SETS_FLAGS(n) (THUMB_OP32 (n) & 0x00100000)
11177 #undef X
11178 #undef T16_32_TAB
11179
11180 /* Thumb instruction encoders, in alphabetical order. */
11181
11182 /* ADDW or SUBW. */
11183
11184 static void
11185 do_t_add_sub_w (void)
11186 {
11187 int Rd, Rn;
11188
11189 Rd = inst.operands[0].reg;
11190 Rn = inst.operands[1].reg;
11191
11192 /* If Rn is REG_PC, this is ADR; if Rn is REG_SP, then this
11193 is the SP-{plus,minus}-immediate form of the instruction. */
11194 if (Rn == REG_SP)
11195 constraint (Rd == REG_PC, BAD_PC);
11196 else
11197 reject_bad_reg (Rd);
11198
11199 inst.instruction |= (Rn << 16) | (Rd << 8);
11200 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMM12;
11201 }
11202
11203 /* Parse an add or subtract instruction. We get here with inst.instruction
11204 equaling any of THUMB_OPCODE_add, adds, sub, or subs. */
11205
11206 static void
11207 do_t_add_sub (void)
11208 {
11209 int Rd, Rs, Rn;
11210
11211 Rd = inst.operands[0].reg;
11212 Rs = (inst.operands[1].present
11213 ? inst.operands[1].reg /* Rd, Rs, foo */
11214 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
11215
11216 if (Rd == REG_PC)
11217 set_pred_insn_type_last ();
11218
11219 if (unified_syntax)
11220 {
11221 bfd_boolean flags;
11222 bfd_boolean narrow;
11223 int opcode;
11224
11225 flags = (inst.instruction == T_MNEM_adds
11226 || inst.instruction == T_MNEM_subs);
11227 if (flags)
11228 narrow = !in_pred_block ();
11229 else
11230 narrow = in_pred_block ();
11231 if (!inst.operands[2].isreg)
11232 {
11233 int add;
11234
11235 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
11236 constraint (Rd == REG_SP && Rs != REG_SP, BAD_SP);
11237
11238 add = (inst.instruction == T_MNEM_add
11239 || inst.instruction == T_MNEM_adds);
11240 opcode = 0;
11241 if (inst.size_req != 4)
11242 {
11243 /* Attempt to use a narrow opcode, with relaxation if
11244 appropriate. */
11245 if (Rd == REG_SP && Rs == REG_SP && !flags)
11246 opcode = add ? T_MNEM_inc_sp : T_MNEM_dec_sp;
11247 else if (Rd <= 7 && Rs == REG_SP && add && !flags)
11248 opcode = T_MNEM_add_sp;
11249 else if (Rd <= 7 && Rs == REG_PC && add && !flags)
11250 opcode = T_MNEM_add_pc;
11251 else if (Rd <= 7 && Rs <= 7 && narrow)
11252 {
11253 if (flags)
11254 opcode = add ? T_MNEM_addis : T_MNEM_subis;
11255 else
11256 opcode = add ? T_MNEM_addi : T_MNEM_subi;
11257 }
11258 if (opcode)
11259 {
11260 inst.instruction = THUMB_OP16(opcode);
11261 inst.instruction |= (Rd << 4) | Rs;
11262 if (inst.relocs[0].type < BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
11263 || (inst.relocs[0].type
11264 > BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC))
11265 {
11266 if (inst.size_req == 2)
11267 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_ADD;
11268 else
11269 inst.relax = opcode;
11270 }
11271 }
11272 else
11273 constraint (inst.size_req == 2, BAD_HIREG);
11274 }
11275 if (inst.size_req == 4
11276 || (inst.size_req != 2 && !opcode))
11277 {
11278 constraint ((inst.relocs[0].type
11279 >= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC)
11280 && (inst.relocs[0].type
11281 <= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC) ,
11282 THUMB1_RELOC_ONLY);
11283 if (Rd == REG_PC)
11284 {
11285 constraint (add, BAD_PC);
11286 constraint (Rs != REG_LR || inst.instruction != T_MNEM_subs,
11287 _("only SUBS PC, LR, #const allowed"));
11288 constraint (inst.relocs[0].exp.X_op != O_constant,
11289 _("expression too complex"));
11290 constraint (inst.relocs[0].exp.X_add_number < 0
11291 || inst.relocs[0].exp.X_add_number > 0xff,
11292 _("immediate value out of range"));
11293 inst.instruction = T2_SUBS_PC_LR
11294 | inst.relocs[0].exp.X_add_number;
11295 inst.relocs[0].type = BFD_RELOC_UNUSED;
11296 return;
11297 }
11298 else if (Rs == REG_PC)
11299 {
11300 /* Always use addw/subw. */
11301 inst.instruction = add ? 0xf20f0000 : 0xf2af0000;
11302 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMM12;
11303 }
11304 else
11305 {
11306 inst.instruction = THUMB_OP32 (inst.instruction);
11307 inst.instruction = (inst.instruction & 0xe1ffffff)
11308 | 0x10000000;
11309 if (flags)
11310 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
11311 else
11312 inst.relocs[0].type = BFD_RELOC_ARM_T32_ADD_IMM;
11313 }
11314 inst.instruction |= Rd << 8;
11315 inst.instruction |= Rs << 16;
11316 }
11317 }
11318 else
11319 {
11320 unsigned int value = inst.relocs[0].exp.X_add_number;
11321 unsigned int shift = inst.operands[2].shift_kind;
11322
11323 Rn = inst.operands[2].reg;
11324 /* See if we can do this with a 16-bit instruction. */
11325 if (!inst.operands[2].shifted && inst.size_req != 4)
11326 {
11327 if (Rd > 7 || Rs > 7 || Rn > 7)
11328 narrow = FALSE;
11329
11330 if (narrow)
11331 {
11332 inst.instruction = ((inst.instruction == T_MNEM_adds
11333 || inst.instruction == T_MNEM_add)
11334 ? T_OPCODE_ADD_R3
11335 : T_OPCODE_SUB_R3);
11336 inst.instruction |= Rd | (Rs << 3) | (Rn << 6);
11337 return;
11338 }
11339
11340 if (inst.instruction == T_MNEM_add && (Rd == Rs || Rd == Rn))
11341 {
11342 /* Thumb-1 cores (except v6-M) require at least one high
11343 register in a narrow non flag setting add. */
11344 if (Rd > 7 || Rn > 7
11345 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6t2)
11346 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_msr))
11347 {
11348 if (Rd == Rn)
11349 {
11350 Rn = Rs;
11351 Rs = Rd;
11352 }
11353 inst.instruction = T_OPCODE_ADD_HI;
11354 inst.instruction |= (Rd & 8) << 4;
11355 inst.instruction |= (Rd & 7);
11356 inst.instruction |= Rn << 3;
11357 return;
11358 }
11359 }
11360 }
11361
11362 constraint (Rd == REG_PC, BAD_PC);
11363 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
11364 constraint (Rd == REG_SP && Rs != REG_SP, BAD_SP);
11365 constraint (Rs == REG_PC, BAD_PC);
11366 reject_bad_reg (Rn);
11367
11368 /* If we get here, it can't be done in 16 bits. */
11369 constraint (inst.operands[2].shifted && inst.operands[2].immisreg,
11370 _("shift must be constant"));
11371 inst.instruction = THUMB_OP32 (inst.instruction);
11372 inst.instruction |= Rd << 8;
11373 inst.instruction |= Rs << 16;
11374 constraint (Rd == REG_SP && Rs == REG_SP && value > 3,
11375 _("shift value over 3 not allowed in thumb mode"));
11376 constraint (Rd == REG_SP && Rs == REG_SP && shift != SHIFT_LSL,
11377 _("only LSL shift allowed in thumb mode"));
11378 encode_thumb32_shifted_operand (2);
11379 }
11380 }
11381 else
11382 {
11383 constraint (inst.instruction == T_MNEM_adds
11384 || inst.instruction == T_MNEM_subs,
11385 BAD_THUMB32);
11386
11387 if (!inst.operands[2].isreg) /* Rd, Rs, #imm */
11388 {
11389 constraint ((Rd > 7 && (Rd != REG_SP || Rs != REG_SP))
11390 || (Rs > 7 && Rs != REG_SP && Rs != REG_PC),
11391 BAD_HIREG);
11392
11393 inst.instruction = (inst.instruction == T_MNEM_add
11394 ? 0x0000 : 0x8000);
11395 inst.instruction |= (Rd << 4) | Rs;
11396 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_ADD;
11397 return;
11398 }
11399
11400 Rn = inst.operands[2].reg;
11401 constraint (inst.operands[2].shifted, _("unshifted register required"));
11402
11403 /* We now have Rd, Rs, and Rn set to registers. */
11404 if (Rd > 7 || Rs > 7 || Rn > 7)
11405 {
11406 /* Can't do this for SUB. */
11407 constraint (inst.instruction == T_MNEM_sub, BAD_HIREG);
11408 inst.instruction = T_OPCODE_ADD_HI;
11409 inst.instruction |= (Rd & 8) << 4;
11410 inst.instruction |= (Rd & 7);
11411 if (Rs == Rd)
11412 inst.instruction |= Rn << 3;
11413 else if (Rn == Rd)
11414 inst.instruction |= Rs << 3;
11415 else
11416 constraint (1, _("dest must overlap one source register"));
11417 }
11418 else
11419 {
11420 inst.instruction = (inst.instruction == T_MNEM_add
11421 ? T_OPCODE_ADD_R3 : T_OPCODE_SUB_R3);
11422 inst.instruction |= Rd | (Rs << 3) | (Rn << 6);
11423 }
11424 }
11425 }
11426
11427 static void
11428 do_t_adr (void)
11429 {
11430 unsigned Rd;
11431
11432 Rd = inst.operands[0].reg;
11433 reject_bad_reg (Rd);
11434
11435 if (unified_syntax && inst.size_req == 0 && Rd <= 7)
11436 {
11437 /* Defer to section relaxation. */
11438 inst.relax = inst.instruction;
11439 inst.instruction = THUMB_OP16 (inst.instruction);
11440 inst.instruction |= Rd << 4;
11441 }
11442 else if (unified_syntax && inst.size_req != 2)
11443 {
11444 /* Generate a 32-bit opcode. */
11445 inst.instruction = THUMB_OP32 (inst.instruction);
11446 inst.instruction |= Rd << 8;
11447 inst.relocs[0].type = BFD_RELOC_ARM_T32_ADD_PC12;
11448 inst.relocs[0].pc_rel = 1;
11449 }
11450 else
11451 {
11452 /* Generate a 16-bit opcode. */
11453 inst.instruction = THUMB_OP16 (inst.instruction);
11454 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_ADD;
11455 inst.relocs[0].exp.X_add_number -= 4; /* PC relative adjust. */
11456 inst.relocs[0].pc_rel = 1;
11457 inst.instruction |= Rd << 4;
11458 }
11459
11460 if (inst.relocs[0].exp.X_op == O_symbol
11461 && inst.relocs[0].exp.X_add_symbol != NULL
11462 && S_IS_DEFINED (inst.relocs[0].exp.X_add_symbol)
11463 && THUMB_IS_FUNC (inst.relocs[0].exp.X_add_symbol))
11464 inst.relocs[0].exp.X_add_number += 1;
11465 }
11466
11467 /* Arithmetic instructions for which there is just one 16-bit
11468 instruction encoding, and it allows only two low registers.
11469 For maximal compatibility with ARM syntax, we allow three register
11470 operands even when Thumb-32 instructions are not available, as long
11471 as the first two are identical. For instance, both "sbc r0,r1" and
11472 "sbc r0,r0,r1" are allowed. */
11473 static void
11474 do_t_arit3 (void)
11475 {
11476 int Rd, Rs, Rn;
11477
11478 Rd = inst.operands[0].reg;
11479 Rs = (inst.operands[1].present
11480 ? inst.operands[1].reg /* Rd, Rs, foo */
11481 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
11482 Rn = inst.operands[2].reg;
11483
11484 reject_bad_reg (Rd);
11485 reject_bad_reg (Rs);
11486 if (inst.operands[2].isreg)
11487 reject_bad_reg (Rn);
11488
11489 if (unified_syntax)
11490 {
11491 if (!inst.operands[2].isreg)
11492 {
11493 /* For an immediate, we always generate a 32-bit opcode;
11494 section relaxation will shrink it later if possible. */
11495 inst.instruction = THUMB_OP32 (inst.instruction);
11496 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
11497 inst.instruction |= Rd << 8;
11498 inst.instruction |= Rs << 16;
11499 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
11500 }
11501 else
11502 {
11503 bfd_boolean narrow;
11504
11505 /* See if we can do this with a 16-bit instruction. */
11506 if (THUMB_SETS_FLAGS (inst.instruction))
11507 narrow = !in_pred_block ();
11508 else
11509 narrow = in_pred_block ();
11510
11511 if (Rd > 7 || Rn > 7 || Rs > 7)
11512 narrow = FALSE;
11513 if (inst.operands[2].shifted)
11514 narrow = FALSE;
11515 if (inst.size_req == 4)
11516 narrow = FALSE;
11517
11518 if (narrow
11519 && Rd == Rs)
11520 {
11521 inst.instruction = THUMB_OP16 (inst.instruction);
11522 inst.instruction |= Rd;
11523 inst.instruction |= Rn << 3;
11524 return;
11525 }
11526
11527 /* If we get here, it can't be done in 16 bits. */
11528 constraint (inst.operands[2].shifted
11529 && inst.operands[2].immisreg,
11530 _("shift must be constant"));
11531 inst.instruction = THUMB_OP32 (inst.instruction);
11532 inst.instruction |= Rd << 8;
11533 inst.instruction |= Rs << 16;
11534 encode_thumb32_shifted_operand (2);
11535 }
11536 }
11537 else
11538 {
11539 /* On its face this is a lie - the instruction does set the
11540 flags. However, the only supported mnemonic in this mode
11541 says it doesn't. */
11542 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
11543
11544 constraint (!inst.operands[2].isreg || inst.operands[2].shifted,
11545 _("unshifted register required"));
11546 constraint (Rd > 7 || Rs > 7 || Rn > 7, BAD_HIREG);
11547 constraint (Rd != Rs,
11548 _("dest and source1 must be the same register"));
11549
11550 inst.instruction = THUMB_OP16 (inst.instruction);
11551 inst.instruction |= Rd;
11552 inst.instruction |= Rn << 3;
11553 }
11554 }
11555
11556 /* Similarly, but for instructions where the arithmetic operation is
11557 commutative, so we can allow either of them to be different from
11558 the destination operand in a 16-bit instruction. For instance, all
11559 three of "adc r0,r1", "adc r0,r0,r1", and "adc r0,r1,r0" are
11560 accepted. */
11561 static void
11562 do_t_arit3c (void)
11563 {
11564 int Rd, Rs, Rn;
11565
11566 Rd = inst.operands[0].reg;
11567 Rs = (inst.operands[1].present
11568 ? inst.operands[1].reg /* Rd, Rs, foo */
11569 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
11570 Rn = inst.operands[2].reg;
11571
11572 reject_bad_reg (Rd);
11573 reject_bad_reg (Rs);
11574 if (inst.operands[2].isreg)
11575 reject_bad_reg (Rn);
11576
11577 if (unified_syntax)
11578 {
11579 if (!inst.operands[2].isreg)
11580 {
11581 /* For an immediate, we always generate a 32-bit opcode;
11582 section relaxation will shrink it later if possible. */
11583 inst.instruction = THUMB_OP32 (inst.instruction);
11584 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
11585 inst.instruction |= Rd << 8;
11586 inst.instruction |= Rs << 16;
11587 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
11588 }
11589 else
11590 {
11591 bfd_boolean narrow;
11592
11593 /* See if we can do this with a 16-bit instruction. */
11594 if (THUMB_SETS_FLAGS (inst.instruction))
11595 narrow = !in_pred_block ();
11596 else
11597 narrow = in_pred_block ();
11598
11599 if (Rd > 7 || Rn > 7 || Rs > 7)
11600 narrow = FALSE;
11601 if (inst.operands[2].shifted)
11602 narrow = FALSE;
11603 if (inst.size_req == 4)
11604 narrow = FALSE;
11605
11606 if (narrow)
11607 {
11608 if (Rd == Rs)
11609 {
11610 inst.instruction = THUMB_OP16 (inst.instruction);
11611 inst.instruction |= Rd;
11612 inst.instruction |= Rn << 3;
11613 return;
11614 }
11615 if (Rd == Rn)
11616 {
11617 inst.instruction = THUMB_OP16 (inst.instruction);
11618 inst.instruction |= Rd;
11619 inst.instruction |= Rs << 3;
11620 return;
11621 }
11622 }
11623
11624 /* If we get here, it can't be done in 16 bits. */
11625 constraint (inst.operands[2].shifted
11626 && inst.operands[2].immisreg,
11627 _("shift must be constant"));
11628 inst.instruction = THUMB_OP32 (inst.instruction);
11629 inst.instruction |= Rd << 8;
11630 inst.instruction |= Rs << 16;
11631 encode_thumb32_shifted_operand (2);
11632 }
11633 }
11634 else
11635 {
11636 /* On its face this is a lie - the instruction does set the
11637 flags. However, the only supported mnemonic in this mode
11638 says it doesn't. */
11639 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
11640
11641 constraint (!inst.operands[2].isreg || inst.operands[2].shifted,
11642 _("unshifted register required"));
11643 constraint (Rd > 7 || Rs > 7 || Rn > 7, BAD_HIREG);
11644
11645 inst.instruction = THUMB_OP16 (inst.instruction);
11646 inst.instruction |= Rd;
11647
11648 if (Rd == Rs)
11649 inst.instruction |= Rn << 3;
11650 else if (Rd == Rn)
11651 inst.instruction |= Rs << 3;
11652 else
11653 constraint (1, _("dest must overlap one source register"));
11654 }
11655 }
11656
11657 static void
11658 do_t_bfc (void)
11659 {
11660 unsigned Rd;
11661 unsigned int msb = inst.operands[1].imm + inst.operands[2].imm;
11662 constraint (msb > 32, _("bit-field extends past end of register"));
11663 /* The instruction encoding stores the LSB and MSB,
11664 not the LSB and width. */
11665 Rd = inst.operands[0].reg;
11666 reject_bad_reg (Rd);
11667 inst.instruction |= Rd << 8;
11668 inst.instruction |= (inst.operands[1].imm & 0x1c) << 10;
11669 inst.instruction |= (inst.operands[1].imm & 0x03) << 6;
11670 inst.instruction |= msb - 1;
11671 }
11672
11673 static void
11674 do_t_bfi (void)
11675 {
11676 int Rd, Rn;
11677 unsigned int msb;
11678
11679 Rd = inst.operands[0].reg;
11680 reject_bad_reg (Rd);
11681
11682 /* #0 in second position is alternative syntax for bfc, which is
11683 the same instruction but with REG_PC in the Rm field. */
11684 if (!inst.operands[1].isreg)
11685 Rn = REG_PC;
11686 else
11687 {
11688 Rn = inst.operands[1].reg;
11689 reject_bad_reg (Rn);
11690 }
11691
11692 msb = inst.operands[2].imm + inst.operands[3].imm;
11693 constraint (msb > 32, _("bit-field extends past end of register"));
11694 /* The instruction encoding stores the LSB and MSB,
11695 not the LSB and width. */
11696 inst.instruction |= Rd << 8;
11697 inst.instruction |= Rn << 16;
11698 inst.instruction |= (inst.operands[2].imm & 0x1c) << 10;
11699 inst.instruction |= (inst.operands[2].imm & 0x03) << 6;
11700 inst.instruction |= msb - 1;
11701 }
11702
11703 static void
11704 do_t_bfx (void)
11705 {
11706 unsigned Rd, Rn;
11707
11708 Rd = inst.operands[0].reg;
11709 Rn = inst.operands[1].reg;
11710
11711 reject_bad_reg (Rd);
11712 reject_bad_reg (Rn);
11713
11714 constraint (inst.operands[2].imm + inst.operands[3].imm > 32,
11715 _("bit-field extends past end of register"));
11716 inst.instruction |= Rd << 8;
11717 inst.instruction |= Rn << 16;
11718 inst.instruction |= (inst.operands[2].imm & 0x1c) << 10;
11719 inst.instruction |= (inst.operands[2].imm & 0x03) << 6;
11720 inst.instruction |= inst.operands[3].imm - 1;
11721 }
11722
11723 /* ARM V5 Thumb BLX (argument parse)
11724 BLX <target_addr> which is BLX(1)
11725 BLX <Rm> which is BLX(2)
11726 Unfortunately, there are two different opcodes for this mnemonic.
11727 So, the insns[].value is not used, and the code here zaps values
11728 into inst.instruction.
11729
11730 ??? How to take advantage of the additional two bits of displacement
11731 available in Thumb32 mode? Need new relocation? */
11732
11733 static void
11734 do_t_blx (void)
11735 {
11736 set_pred_insn_type_last ();
11737
11738 if (inst.operands[0].isreg)
11739 {
11740 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
11741 /* We have a register, so this is BLX(2). */
11742 inst.instruction |= inst.operands[0].reg << 3;
11743 }
11744 else
11745 {
11746 /* No register. This must be BLX(1). */
11747 inst.instruction = 0xf000e800;
11748 encode_branch (BFD_RELOC_THUMB_PCREL_BLX);
11749 }
11750 }
11751
11752 static void
11753 do_t_branch (void)
11754 {
11755 int opcode;
11756 int cond;
11757 bfd_reloc_code_real_type reloc;
11758
11759 cond = inst.cond;
11760 set_pred_insn_type (IF_INSIDE_IT_LAST_INSN);
11761
11762 if (in_pred_block ())
11763 {
11764 /* Conditional branches inside IT blocks are encoded as unconditional
11765 branches. */
11766 cond = COND_ALWAYS;
11767 }
11768 else
11769 cond = inst.cond;
11770
11771 if (cond != COND_ALWAYS)
11772 opcode = T_MNEM_bcond;
11773 else
11774 opcode = inst.instruction;
11775
11776 if (unified_syntax
11777 && (inst.size_req == 4
11778 || (inst.size_req != 2
11779 && (inst.operands[0].hasreloc
11780 || inst.relocs[0].exp.X_op == O_constant))))
11781 {
11782 inst.instruction = THUMB_OP32(opcode);
11783 if (cond == COND_ALWAYS)
11784 reloc = BFD_RELOC_THUMB_PCREL_BRANCH25;
11785 else
11786 {
11787 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2),
11788 _("selected architecture does not support "
11789 "wide conditional branch instruction"));
11790
11791 gas_assert (cond != 0xF);
11792 inst.instruction |= cond << 22;
11793 reloc = BFD_RELOC_THUMB_PCREL_BRANCH20;
11794 }
11795 }
11796 else
11797 {
11798 inst.instruction = THUMB_OP16(opcode);
11799 if (cond == COND_ALWAYS)
11800 reloc = BFD_RELOC_THUMB_PCREL_BRANCH12;
11801 else
11802 {
11803 inst.instruction |= cond << 8;
11804 reloc = BFD_RELOC_THUMB_PCREL_BRANCH9;
11805 }
11806 /* Allow section relaxation. */
11807 if (unified_syntax && inst.size_req != 2)
11808 inst.relax = opcode;
11809 }
11810 inst.relocs[0].type = reloc;
11811 inst.relocs[0].pc_rel = 1;
11812 }
11813
11814 /* Actually do the work for Thumb state bkpt and hlt. The only difference
11815 between the two is the maximum immediate allowed - which is passed in
11816 RANGE. */
11817 static void
11818 do_t_bkpt_hlt1 (int range)
11819 {
11820 constraint (inst.cond != COND_ALWAYS,
11821 _("instruction is always unconditional"));
11822 if (inst.operands[0].present)
11823 {
11824 constraint (inst.operands[0].imm > range,
11825 _("immediate value out of range"));
11826 inst.instruction |= inst.operands[0].imm;
11827 }
11828
11829 set_pred_insn_type (NEUTRAL_IT_INSN);
11830 }
11831
11832 static void
11833 do_t_hlt (void)
11834 {
11835 do_t_bkpt_hlt1 (63);
11836 }
11837
11838 static void
11839 do_t_bkpt (void)
11840 {
11841 do_t_bkpt_hlt1 (255);
11842 }
11843
11844 static void
11845 do_t_branch23 (void)
11846 {
11847 set_pred_insn_type_last ();
11848 encode_branch (BFD_RELOC_THUMB_PCREL_BRANCH23);
11849
11850 /* md_apply_fix blows up with 'bl foo(PLT)' where foo is defined in
11851 this file. We used to simply ignore the PLT reloc type here --
11852 the branch encoding is now needed to deal with TLSCALL relocs.
11853 So if we see a PLT reloc now, put it back to how it used to be to
11854 keep the preexisting behaviour. */
11855 if (inst.relocs[0].type == BFD_RELOC_ARM_PLT32)
11856 inst.relocs[0].type = BFD_RELOC_THUMB_PCREL_BRANCH23;
11857
11858 #if defined(OBJ_COFF)
11859 /* If the destination of the branch is a defined symbol which does not have
11860 the THUMB_FUNC attribute, then we must be calling a function which has
11861 the (interfacearm) attribute. We look for the Thumb entry point to that
11862 function and change the branch to refer to that function instead. */
11863 if ( inst.relocs[0].exp.X_op == O_symbol
11864 && inst.relocs[0].exp.X_add_symbol != NULL
11865 && S_IS_DEFINED (inst.relocs[0].exp.X_add_symbol)
11866 && ! THUMB_IS_FUNC (inst.relocs[0].exp.X_add_symbol))
11867 inst.relocs[0].exp.X_add_symbol
11868 = find_real_start (inst.relocs[0].exp.X_add_symbol);
11869 #endif
11870 }
11871
11872 static void
11873 do_t_bx (void)
11874 {
11875 set_pred_insn_type_last ();
11876 inst.instruction |= inst.operands[0].reg << 3;
11877 /* ??? FIXME: Should add a hacky reloc here if reg is REG_PC. The reloc
11878 should cause the alignment to be checked once it is known. This is
11879 because BX PC only works if the instruction is word aligned. */
11880 }
11881
11882 static void
11883 do_t_bxj (void)
11884 {
11885 int Rm;
11886
11887 set_pred_insn_type_last ();
11888 Rm = inst.operands[0].reg;
11889 reject_bad_reg (Rm);
11890 inst.instruction |= Rm << 16;
11891 }
11892
11893 static void
11894 do_t_clz (void)
11895 {
11896 unsigned Rd;
11897 unsigned Rm;
11898
11899 Rd = inst.operands[0].reg;
11900 Rm = inst.operands[1].reg;
11901
11902 reject_bad_reg (Rd);
11903 reject_bad_reg (Rm);
11904
11905 inst.instruction |= Rd << 8;
11906 inst.instruction |= Rm << 16;
11907 inst.instruction |= Rm;
11908 }
11909
11910 static void
11911 do_t_csdb (void)
11912 {
11913 set_pred_insn_type (OUTSIDE_PRED_INSN);
11914 }
11915
11916 static void
11917 do_t_cps (void)
11918 {
11919 set_pred_insn_type (OUTSIDE_PRED_INSN);
11920 inst.instruction |= inst.operands[0].imm;
11921 }
11922
11923 static void
11924 do_t_cpsi (void)
11925 {
11926 set_pred_insn_type (OUTSIDE_PRED_INSN);
11927 if (unified_syntax
11928 && (inst.operands[1].present || inst.size_req == 4)
11929 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6_notm))
11930 {
11931 unsigned int imod = (inst.instruction & 0x0030) >> 4;
11932 inst.instruction = 0xf3af8000;
11933 inst.instruction |= imod << 9;
11934 inst.instruction |= inst.operands[0].imm << 5;
11935 if (inst.operands[1].present)
11936 inst.instruction |= 0x100 | inst.operands[1].imm;
11937 }
11938 else
11939 {
11940 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1)
11941 && (inst.operands[0].imm & 4),
11942 _("selected processor does not support 'A' form "
11943 "of this instruction"));
11944 constraint (inst.operands[1].present || inst.size_req == 4,
11945 _("Thumb does not support the 2-argument "
11946 "form of this instruction"));
11947 inst.instruction |= inst.operands[0].imm;
11948 }
11949 }
11950
11951 /* THUMB CPY instruction (argument parse). */
11952
11953 static void
11954 do_t_cpy (void)
11955 {
11956 if (inst.size_req == 4)
11957 {
11958 inst.instruction = THUMB_OP32 (T_MNEM_mov);
11959 inst.instruction |= inst.operands[0].reg << 8;
11960 inst.instruction |= inst.operands[1].reg;
11961 }
11962 else
11963 {
11964 inst.instruction |= (inst.operands[0].reg & 0x8) << 4;
11965 inst.instruction |= (inst.operands[0].reg & 0x7);
11966 inst.instruction |= inst.operands[1].reg << 3;
11967 }
11968 }
11969
11970 static void
11971 do_t_cbz (void)
11972 {
11973 set_pred_insn_type (OUTSIDE_PRED_INSN);
11974 constraint (inst.operands[0].reg > 7, BAD_HIREG);
11975 inst.instruction |= inst.operands[0].reg;
11976 inst.relocs[0].pc_rel = 1;
11977 inst.relocs[0].type = BFD_RELOC_THUMB_PCREL_BRANCH7;
11978 }
11979
11980 static void
11981 do_t_dbg (void)
11982 {
11983 inst.instruction |= inst.operands[0].imm;
11984 }
11985
11986 static void
11987 do_t_div (void)
11988 {
11989 unsigned Rd, Rn, Rm;
11990
11991 Rd = inst.operands[0].reg;
11992 Rn = (inst.operands[1].present
11993 ? inst.operands[1].reg : Rd);
11994 Rm = inst.operands[2].reg;
11995
11996 reject_bad_reg (Rd);
11997 reject_bad_reg (Rn);
11998 reject_bad_reg (Rm);
11999
12000 inst.instruction |= Rd << 8;
12001 inst.instruction |= Rn << 16;
12002 inst.instruction |= Rm;
12003 }
12004
12005 static void
12006 do_t_hint (void)
12007 {
12008 if (unified_syntax && inst.size_req == 4)
12009 inst.instruction = THUMB_OP32 (inst.instruction);
12010 else
12011 inst.instruction = THUMB_OP16 (inst.instruction);
12012 }
12013
12014 static void
12015 do_t_it (void)
12016 {
12017 unsigned int cond = inst.operands[0].imm;
12018
12019 set_pred_insn_type (IT_INSN);
12020 now_pred.mask = (inst.instruction & 0xf) | 0x10;
12021 now_pred.cc = cond;
12022 now_pred.warn_deprecated = FALSE;
12023 now_pred.type = SCALAR_PRED;
12024
12025 /* If the condition is a negative condition, invert the mask. */
12026 if ((cond & 0x1) == 0x0)
12027 {
12028 unsigned int mask = inst.instruction & 0x000f;
12029
12030 if ((mask & 0x7) == 0)
12031 {
12032 /* No conversion needed. */
12033 now_pred.block_length = 1;
12034 }
12035 else if ((mask & 0x3) == 0)
12036 {
12037 mask ^= 0x8;
12038 now_pred.block_length = 2;
12039 }
12040 else if ((mask & 0x1) == 0)
12041 {
12042 mask ^= 0xC;
12043 now_pred.block_length = 3;
12044 }
12045 else
12046 {
12047 mask ^= 0xE;
12048 now_pred.block_length = 4;
12049 }
12050
12051 inst.instruction &= 0xfff0;
12052 inst.instruction |= mask;
12053 }
12054
12055 inst.instruction |= cond << 4;
12056 }
12057
12058 /* Helper function used for both push/pop and ldm/stm. */
12059 static void
12060 encode_thumb2_multi (bfd_boolean do_io, int base, unsigned mask,
12061 bfd_boolean writeback)
12062 {
12063 bfd_boolean load, store;
12064
12065 gas_assert (base != -1 || !do_io);
12066 load = do_io && ((inst.instruction & (1 << 20)) != 0);
12067 store = do_io && !load;
12068
12069 if (mask & (1 << 13))
12070 inst.error = _("SP not allowed in register list");
12071
12072 if (do_io && (mask & (1 << base)) != 0
12073 && writeback)
12074 inst.error = _("having the base register in the register list when "
12075 "using write back is UNPREDICTABLE");
12076
12077 if (load)
12078 {
12079 if (mask & (1 << 15))
12080 {
12081 if (mask & (1 << 14))
12082 inst.error = _("LR and PC should not both be in register list");
12083 else
12084 set_pred_insn_type_last ();
12085 }
12086 }
12087 else if (store)
12088 {
12089 if (mask & (1 << 15))
12090 inst.error = _("PC not allowed in register list");
12091 }
12092
12093 if (do_io && ((mask & (mask - 1)) == 0))
12094 {
12095 /* Single register transfers implemented as str/ldr. */
12096 if (writeback)
12097 {
12098 if (inst.instruction & (1 << 23))
12099 inst.instruction = 0x00000b04; /* ia! -> [base], #4 */
12100 else
12101 inst.instruction = 0x00000d04; /* db! -> [base, #-4]! */
12102 }
12103 else
12104 {
12105 if (inst.instruction & (1 << 23))
12106 inst.instruction = 0x00800000; /* ia -> [base] */
12107 else
12108 inst.instruction = 0x00000c04; /* db -> [base, #-4] */
12109 }
12110
12111 inst.instruction |= 0xf8400000;
12112 if (load)
12113 inst.instruction |= 0x00100000;
12114
12115 mask = ffs (mask) - 1;
12116 mask <<= 12;
12117 }
12118 else if (writeback)
12119 inst.instruction |= WRITE_BACK;
12120
12121 inst.instruction |= mask;
12122 if (do_io)
12123 inst.instruction |= base << 16;
12124 }
12125
12126 static void
12127 do_t_ldmstm (void)
12128 {
12129 /* This really doesn't seem worth it. */
12130 constraint (inst.relocs[0].type != BFD_RELOC_UNUSED,
12131 _("expression too complex"));
12132 constraint (inst.operands[1].writeback,
12133 _("Thumb load/store multiple does not support {reglist}^"));
12134
12135 if (unified_syntax)
12136 {
12137 bfd_boolean narrow;
12138 unsigned mask;
12139
12140 narrow = FALSE;
12141 /* See if we can use a 16-bit instruction. */
12142 if (inst.instruction < 0xffff /* not ldmdb/stmdb */
12143 && inst.size_req != 4
12144 && !(inst.operands[1].imm & ~0xff))
12145 {
12146 mask = 1 << inst.operands[0].reg;
12147
12148 if (inst.operands[0].reg <= 7)
12149 {
12150 if (inst.instruction == T_MNEM_stmia
12151 ? inst.operands[0].writeback
12152 : (inst.operands[0].writeback
12153 == !(inst.operands[1].imm & mask)))
12154 {
12155 if (inst.instruction == T_MNEM_stmia
12156 && (inst.operands[1].imm & mask)
12157 && (inst.operands[1].imm & (mask - 1)))
12158 as_warn (_("value stored for r%d is UNKNOWN"),
12159 inst.operands[0].reg);
12160
12161 inst.instruction = THUMB_OP16 (inst.instruction);
12162 inst.instruction |= inst.operands[0].reg << 8;
12163 inst.instruction |= inst.operands[1].imm;
12164 narrow = TRUE;
12165 }
12166 else if ((inst.operands[1].imm & (inst.operands[1].imm-1)) == 0)
12167 {
12168 /* This means 1 register in reg list one of 3 situations:
12169 1. Instruction is stmia, but without writeback.
12170 2. lmdia without writeback, but with Rn not in
12171 reglist.
12172 3. ldmia with writeback, but with Rn in reglist.
12173 Case 3 is UNPREDICTABLE behaviour, so we handle
12174 case 1 and 2 which can be converted into a 16-bit
12175 str or ldr. The SP cases are handled below. */
12176 unsigned long opcode;
12177 /* First, record an error for Case 3. */
12178 if (inst.operands[1].imm & mask
12179 && inst.operands[0].writeback)
12180 inst.error =
12181 _("having the base register in the register list when "
12182 "using write back is UNPREDICTABLE");
12183
12184 opcode = (inst.instruction == T_MNEM_stmia ? T_MNEM_str
12185 : T_MNEM_ldr);
12186 inst.instruction = THUMB_OP16 (opcode);
12187 inst.instruction |= inst.operands[0].reg << 3;
12188 inst.instruction |= (ffs (inst.operands[1].imm)-1);
12189 narrow = TRUE;
12190 }
12191 }
12192 else if (inst.operands[0] .reg == REG_SP)
12193 {
12194 if (inst.operands[0].writeback)
12195 {
12196 inst.instruction =
12197 THUMB_OP16 (inst.instruction == T_MNEM_stmia
12198 ? T_MNEM_push : T_MNEM_pop);
12199 inst.instruction |= inst.operands[1].imm;
12200 narrow = TRUE;
12201 }
12202 else if ((inst.operands[1].imm & (inst.operands[1].imm-1)) == 0)
12203 {
12204 inst.instruction =
12205 THUMB_OP16 (inst.instruction == T_MNEM_stmia
12206 ? T_MNEM_str_sp : T_MNEM_ldr_sp);
12207 inst.instruction |= ((ffs (inst.operands[1].imm)-1) << 8);
12208 narrow = TRUE;
12209 }
12210 }
12211 }
12212
12213 if (!narrow)
12214 {
12215 if (inst.instruction < 0xffff)
12216 inst.instruction = THUMB_OP32 (inst.instruction);
12217
12218 encode_thumb2_multi (TRUE /* do_io */, inst.operands[0].reg,
12219 inst.operands[1].imm,
12220 inst.operands[0].writeback);
12221 }
12222 }
12223 else
12224 {
12225 constraint (inst.operands[0].reg > 7
12226 || (inst.operands[1].imm & ~0xff), BAD_HIREG);
12227 constraint (inst.instruction != T_MNEM_ldmia
12228 && inst.instruction != T_MNEM_stmia,
12229 _("Thumb-2 instruction only valid in unified syntax"));
12230 if (inst.instruction == T_MNEM_stmia)
12231 {
12232 if (!inst.operands[0].writeback)
12233 as_warn (_("this instruction will write back the base register"));
12234 if ((inst.operands[1].imm & (1 << inst.operands[0].reg))
12235 && (inst.operands[1].imm & ((1 << inst.operands[0].reg) - 1)))
12236 as_warn (_("value stored for r%d is UNKNOWN"),
12237 inst.operands[0].reg);
12238 }
12239 else
12240 {
12241 if (!inst.operands[0].writeback
12242 && !(inst.operands[1].imm & (1 << inst.operands[0].reg)))
12243 as_warn (_("this instruction will write back the base register"));
12244 else if (inst.operands[0].writeback
12245 && (inst.operands[1].imm & (1 << inst.operands[0].reg)))
12246 as_warn (_("this instruction will not write back the base register"));
12247 }
12248
12249 inst.instruction = THUMB_OP16 (inst.instruction);
12250 inst.instruction |= inst.operands[0].reg << 8;
12251 inst.instruction |= inst.operands[1].imm;
12252 }
12253 }
12254
12255 static void
12256 do_t_ldrex (void)
12257 {
12258 constraint (!inst.operands[1].isreg || !inst.operands[1].preind
12259 || inst.operands[1].postind || inst.operands[1].writeback
12260 || inst.operands[1].immisreg || inst.operands[1].shifted
12261 || inst.operands[1].negative,
12262 BAD_ADDR_MODE);
12263
12264 constraint ((inst.operands[1].reg == REG_PC), BAD_PC);
12265
12266 inst.instruction |= inst.operands[0].reg << 12;
12267 inst.instruction |= inst.operands[1].reg << 16;
12268 inst.relocs[0].type = BFD_RELOC_ARM_T32_OFFSET_U8;
12269 }
12270
12271 static void
12272 do_t_ldrexd (void)
12273 {
12274 if (!inst.operands[1].present)
12275 {
12276 constraint (inst.operands[0].reg == REG_LR,
12277 _("r14 not allowed as first register "
12278 "when second register is omitted"));
12279 inst.operands[1].reg = inst.operands[0].reg + 1;
12280 }
12281 constraint (inst.operands[0].reg == inst.operands[1].reg,
12282 BAD_OVERLAP);
12283
12284 inst.instruction |= inst.operands[0].reg << 12;
12285 inst.instruction |= inst.operands[1].reg << 8;
12286 inst.instruction |= inst.operands[2].reg << 16;
12287 }
12288
12289 static void
12290 do_t_ldst (void)
12291 {
12292 unsigned long opcode;
12293 int Rn;
12294
12295 if (inst.operands[0].isreg
12296 && !inst.operands[0].preind
12297 && inst.operands[0].reg == REG_PC)
12298 set_pred_insn_type_last ();
12299
12300 opcode = inst.instruction;
12301 if (unified_syntax)
12302 {
12303 if (!inst.operands[1].isreg)
12304 {
12305 if (opcode <= 0xffff)
12306 inst.instruction = THUMB_OP32 (opcode);
12307 if (move_or_literal_pool (0, CONST_THUMB, /*mode_3=*/FALSE))
12308 return;
12309 }
12310 if (inst.operands[1].isreg
12311 && !inst.operands[1].writeback
12312 && !inst.operands[1].shifted && !inst.operands[1].postind
12313 && !inst.operands[1].negative && inst.operands[0].reg <= 7
12314 && opcode <= 0xffff
12315 && inst.size_req != 4)
12316 {
12317 /* Insn may have a 16-bit form. */
12318 Rn = inst.operands[1].reg;
12319 if (inst.operands[1].immisreg)
12320 {
12321 inst.instruction = THUMB_OP16 (opcode);
12322 /* [Rn, Rik] */
12323 if (Rn <= 7 && inst.operands[1].imm <= 7)
12324 goto op16;
12325 else if (opcode != T_MNEM_ldr && opcode != T_MNEM_str)
12326 reject_bad_reg (inst.operands[1].imm);
12327 }
12328 else if ((Rn <= 7 && opcode != T_MNEM_ldrsh
12329 && opcode != T_MNEM_ldrsb)
12330 || ((Rn == REG_PC || Rn == REG_SP) && opcode == T_MNEM_ldr)
12331 || (Rn == REG_SP && opcode == T_MNEM_str))
12332 {
12333 /* [Rn, #const] */
12334 if (Rn > 7)
12335 {
12336 if (Rn == REG_PC)
12337 {
12338 if (inst.relocs[0].pc_rel)
12339 opcode = T_MNEM_ldr_pc2;
12340 else
12341 opcode = T_MNEM_ldr_pc;
12342 }
12343 else
12344 {
12345 if (opcode == T_MNEM_ldr)
12346 opcode = T_MNEM_ldr_sp;
12347 else
12348 opcode = T_MNEM_str_sp;
12349 }
12350 inst.instruction = inst.operands[0].reg << 8;
12351 }
12352 else
12353 {
12354 inst.instruction = inst.operands[0].reg;
12355 inst.instruction |= inst.operands[1].reg << 3;
12356 }
12357 inst.instruction |= THUMB_OP16 (opcode);
12358 if (inst.size_req == 2)
12359 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_OFFSET;
12360 else
12361 inst.relax = opcode;
12362 return;
12363 }
12364 }
12365 /* Definitely a 32-bit variant. */
12366
12367 /* Warning for Erratum 752419. */
12368 if (opcode == T_MNEM_ldr
12369 && inst.operands[0].reg == REG_SP
12370 && inst.operands[1].writeback == 1
12371 && !inst.operands[1].immisreg)
12372 {
12373 if (no_cpu_selected ()
12374 || (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7)
12375 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7a)
12376 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7r)))
12377 as_warn (_("This instruction may be unpredictable "
12378 "if executed on M-profile cores "
12379 "with interrupts enabled."));
12380 }
12381
12382 /* Do some validations regarding addressing modes. */
12383 if (inst.operands[1].immisreg)
12384 reject_bad_reg (inst.operands[1].imm);
12385
12386 constraint (inst.operands[1].writeback == 1
12387 && inst.operands[0].reg == inst.operands[1].reg,
12388 BAD_OVERLAP);
12389
12390 inst.instruction = THUMB_OP32 (opcode);
12391 inst.instruction |= inst.operands[0].reg << 12;
12392 encode_thumb32_addr_mode (1, /*is_t=*/FALSE, /*is_d=*/FALSE);
12393 check_ldr_r15_aligned ();
12394 return;
12395 }
12396
12397 constraint (inst.operands[0].reg > 7, BAD_HIREG);
12398
12399 if (inst.instruction == T_MNEM_ldrsh || inst.instruction == T_MNEM_ldrsb)
12400 {
12401 /* Only [Rn,Rm] is acceptable. */
12402 constraint (inst.operands[1].reg > 7 || inst.operands[1].imm > 7, BAD_HIREG);
12403 constraint (!inst.operands[1].isreg || !inst.operands[1].immisreg
12404 || inst.operands[1].postind || inst.operands[1].shifted
12405 || inst.operands[1].negative,
12406 _("Thumb does not support this addressing mode"));
12407 inst.instruction = THUMB_OP16 (inst.instruction);
12408 goto op16;
12409 }
12410
12411 inst.instruction = THUMB_OP16 (inst.instruction);
12412 if (!inst.operands[1].isreg)
12413 if (move_or_literal_pool (0, CONST_THUMB, /*mode_3=*/FALSE))
12414 return;
12415
12416 constraint (!inst.operands[1].preind
12417 || inst.operands[1].shifted
12418 || inst.operands[1].writeback,
12419 _("Thumb does not support this addressing mode"));
12420 if (inst.operands[1].reg == REG_PC || inst.operands[1].reg == REG_SP)
12421 {
12422 constraint (inst.instruction & 0x0600,
12423 _("byte or halfword not valid for base register"));
12424 constraint (inst.operands[1].reg == REG_PC
12425 && !(inst.instruction & THUMB_LOAD_BIT),
12426 _("r15 based store not allowed"));
12427 constraint (inst.operands[1].immisreg,
12428 _("invalid base register for register offset"));
12429
12430 if (inst.operands[1].reg == REG_PC)
12431 inst.instruction = T_OPCODE_LDR_PC;
12432 else if (inst.instruction & THUMB_LOAD_BIT)
12433 inst.instruction = T_OPCODE_LDR_SP;
12434 else
12435 inst.instruction = T_OPCODE_STR_SP;
12436
12437 inst.instruction |= inst.operands[0].reg << 8;
12438 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_OFFSET;
12439 return;
12440 }
12441
12442 constraint (inst.operands[1].reg > 7, BAD_HIREG);
12443 if (!inst.operands[1].immisreg)
12444 {
12445 /* Immediate offset. */
12446 inst.instruction |= inst.operands[0].reg;
12447 inst.instruction |= inst.operands[1].reg << 3;
12448 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_OFFSET;
12449 return;
12450 }
12451
12452 /* Register offset. */
12453 constraint (inst.operands[1].imm > 7, BAD_HIREG);
12454 constraint (inst.operands[1].negative,
12455 _("Thumb does not support this addressing mode"));
12456
12457 op16:
12458 switch (inst.instruction)
12459 {
12460 case T_OPCODE_STR_IW: inst.instruction = T_OPCODE_STR_RW; break;
12461 case T_OPCODE_STR_IH: inst.instruction = T_OPCODE_STR_RH; break;
12462 case T_OPCODE_STR_IB: inst.instruction = T_OPCODE_STR_RB; break;
12463 case T_OPCODE_LDR_IW: inst.instruction = T_OPCODE_LDR_RW; break;
12464 case T_OPCODE_LDR_IH: inst.instruction = T_OPCODE_LDR_RH; break;
12465 case T_OPCODE_LDR_IB: inst.instruction = T_OPCODE_LDR_RB; break;
12466 case 0x5600 /* ldrsb */:
12467 case 0x5e00 /* ldrsh */: break;
12468 default: abort ();
12469 }
12470
12471 inst.instruction |= inst.operands[0].reg;
12472 inst.instruction |= inst.operands[1].reg << 3;
12473 inst.instruction |= inst.operands[1].imm << 6;
12474 }
12475
12476 static void
12477 do_t_ldstd (void)
12478 {
12479 if (!inst.operands[1].present)
12480 {
12481 inst.operands[1].reg = inst.operands[0].reg + 1;
12482 constraint (inst.operands[0].reg == REG_LR,
12483 _("r14 not allowed here"));
12484 constraint (inst.operands[0].reg == REG_R12,
12485 _("r12 not allowed here"));
12486 }
12487
12488 if (inst.operands[2].writeback
12489 && (inst.operands[0].reg == inst.operands[2].reg
12490 || inst.operands[1].reg == inst.operands[2].reg))
12491 as_warn (_("base register written back, and overlaps "
12492 "one of transfer registers"));
12493
12494 inst.instruction |= inst.operands[0].reg << 12;
12495 inst.instruction |= inst.operands[1].reg << 8;
12496 encode_thumb32_addr_mode (2, /*is_t=*/FALSE, /*is_d=*/TRUE);
12497 }
12498
12499 static void
12500 do_t_ldstt (void)
12501 {
12502 inst.instruction |= inst.operands[0].reg << 12;
12503 encode_thumb32_addr_mode (1, /*is_t=*/TRUE, /*is_d=*/FALSE);
12504 }
12505
12506 static void
12507 do_t_mla (void)
12508 {
12509 unsigned Rd, Rn, Rm, Ra;
12510
12511 Rd = inst.operands[0].reg;
12512 Rn = inst.operands[1].reg;
12513 Rm = inst.operands[2].reg;
12514 Ra = inst.operands[3].reg;
12515
12516 reject_bad_reg (Rd);
12517 reject_bad_reg (Rn);
12518 reject_bad_reg (Rm);
12519 reject_bad_reg (Ra);
12520
12521 inst.instruction |= Rd << 8;
12522 inst.instruction |= Rn << 16;
12523 inst.instruction |= Rm;
12524 inst.instruction |= Ra << 12;
12525 }
12526
12527 static void
12528 do_t_mlal (void)
12529 {
12530 unsigned RdLo, RdHi, Rn, Rm;
12531
12532 RdLo = inst.operands[0].reg;
12533 RdHi = inst.operands[1].reg;
12534 Rn = inst.operands[2].reg;
12535 Rm = inst.operands[3].reg;
12536
12537 reject_bad_reg (RdLo);
12538 reject_bad_reg (RdHi);
12539 reject_bad_reg (Rn);
12540 reject_bad_reg (Rm);
12541
12542 inst.instruction |= RdLo << 12;
12543 inst.instruction |= RdHi << 8;
12544 inst.instruction |= Rn << 16;
12545 inst.instruction |= Rm;
12546 }
12547
12548 static void
12549 do_t_mov_cmp (void)
12550 {
12551 unsigned Rn, Rm;
12552
12553 Rn = inst.operands[0].reg;
12554 Rm = inst.operands[1].reg;
12555
12556 if (Rn == REG_PC)
12557 set_pred_insn_type_last ();
12558
12559 if (unified_syntax)
12560 {
12561 int r0off = (inst.instruction == T_MNEM_mov
12562 || inst.instruction == T_MNEM_movs) ? 8 : 16;
12563 unsigned long opcode;
12564 bfd_boolean narrow;
12565 bfd_boolean low_regs;
12566
12567 low_regs = (Rn <= 7 && Rm <= 7);
12568 opcode = inst.instruction;
12569 if (in_pred_block ())
12570 narrow = opcode != T_MNEM_movs;
12571 else
12572 narrow = opcode != T_MNEM_movs || low_regs;
12573 if (inst.size_req == 4
12574 || inst.operands[1].shifted)
12575 narrow = FALSE;
12576
12577 /* MOVS PC, LR is encoded as SUBS PC, LR, #0. */
12578 if (opcode == T_MNEM_movs && inst.operands[1].isreg
12579 && !inst.operands[1].shifted
12580 && Rn == REG_PC
12581 && Rm == REG_LR)
12582 {
12583 inst.instruction = T2_SUBS_PC_LR;
12584 return;
12585 }
12586
12587 if (opcode == T_MNEM_cmp)
12588 {
12589 constraint (Rn == REG_PC, BAD_PC);
12590 if (narrow)
12591 {
12592 /* In the Thumb-2 ISA, use of R13 as Rm is deprecated,
12593 but valid. */
12594 warn_deprecated_sp (Rm);
12595 /* R15 was documented as a valid choice for Rm in ARMv6,
12596 but as UNPREDICTABLE in ARMv7. ARM's proprietary
12597 tools reject R15, so we do too. */
12598 constraint (Rm == REG_PC, BAD_PC);
12599 }
12600 else
12601 reject_bad_reg (Rm);
12602 }
12603 else if (opcode == T_MNEM_mov
12604 || opcode == T_MNEM_movs)
12605 {
12606 if (inst.operands[1].isreg)
12607 {
12608 if (opcode == T_MNEM_movs)
12609 {
12610 reject_bad_reg (Rn);
12611 reject_bad_reg (Rm);
12612 }
12613 else if (narrow)
12614 {
12615 /* This is mov.n. */
12616 if ((Rn == REG_SP || Rn == REG_PC)
12617 && (Rm == REG_SP || Rm == REG_PC))
12618 {
12619 as_tsktsk (_("Use of r%u as a source register is "
12620 "deprecated when r%u is the destination "
12621 "register."), Rm, Rn);
12622 }
12623 }
12624 else
12625 {
12626 /* This is mov.w. */
12627 constraint (Rn == REG_PC, BAD_PC);
12628 constraint (Rm == REG_PC, BAD_PC);
12629 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
12630 constraint (Rn == REG_SP && Rm == REG_SP, BAD_SP);
12631 }
12632 }
12633 else
12634 reject_bad_reg (Rn);
12635 }
12636
12637 if (!inst.operands[1].isreg)
12638 {
12639 /* Immediate operand. */
12640 if (!in_pred_block () && opcode == T_MNEM_mov)
12641 narrow = 0;
12642 if (low_regs && narrow)
12643 {
12644 inst.instruction = THUMB_OP16 (opcode);
12645 inst.instruction |= Rn << 8;
12646 if (inst.relocs[0].type < BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
12647 || inst.relocs[0].type > BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC)
12648 {
12649 if (inst.size_req == 2)
12650 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_IMM;
12651 else
12652 inst.relax = opcode;
12653 }
12654 }
12655 else
12656 {
12657 constraint ((inst.relocs[0].type
12658 >= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC)
12659 && (inst.relocs[0].type
12660 <= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC) ,
12661 THUMB1_RELOC_ONLY);
12662
12663 inst.instruction = THUMB_OP32 (inst.instruction);
12664 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
12665 inst.instruction |= Rn << r0off;
12666 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
12667 }
12668 }
12669 else if (inst.operands[1].shifted && inst.operands[1].immisreg
12670 && (inst.instruction == T_MNEM_mov
12671 || inst.instruction == T_MNEM_movs))
12672 {
12673 /* Register shifts are encoded as separate shift instructions. */
12674 bfd_boolean flags = (inst.instruction == T_MNEM_movs);
12675
12676 if (in_pred_block ())
12677 narrow = !flags;
12678 else
12679 narrow = flags;
12680
12681 if (inst.size_req == 4)
12682 narrow = FALSE;
12683
12684 if (!low_regs || inst.operands[1].imm > 7)
12685 narrow = FALSE;
12686
12687 if (Rn != Rm)
12688 narrow = FALSE;
12689
12690 switch (inst.operands[1].shift_kind)
12691 {
12692 case SHIFT_LSL:
12693 opcode = narrow ? T_OPCODE_LSL_R : THUMB_OP32 (T_MNEM_lsl);
12694 break;
12695 case SHIFT_ASR:
12696 opcode = narrow ? T_OPCODE_ASR_R : THUMB_OP32 (T_MNEM_asr);
12697 break;
12698 case SHIFT_LSR:
12699 opcode = narrow ? T_OPCODE_LSR_R : THUMB_OP32 (T_MNEM_lsr);
12700 break;
12701 case SHIFT_ROR:
12702 opcode = narrow ? T_OPCODE_ROR_R : THUMB_OP32 (T_MNEM_ror);
12703 break;
12704 default:
12705 abort ();
12706 }
12707
12708 inst.instruction = opcode;
12709 if (narrow)
12710 {
12711 inst.instruction |= Rn;
12712 inst.instruction |= inst.operands[1].imm << 3;
12713 }
12714 else
12715 {
12716 if (flags)
12717 inst.instruction |= CONDS_BIT;
12718
12719 inst.instruction |= Rn << 8;
12720 inst.instruction |= Rm << 16;
12721 inst.instruction |= inst.operands[1].imm;
12722 }
12723 }
12724 else if (!narrow)
12725 {
12726 /* Some mov with immediate shift have narrow variants.
12727 Register shifts are handled above. */
12728 if (low_regs && inst.operands[1].shifted
12729 && (inst.instruction == T_MNEM_mov
12730 || inst.instruction == T_MNEM_movs))
12731 {
12732 if (in_pred_block ())
12733 narrow = (inst.instruction == T_MNEM_mov);
12734 else
12735 narrow = (inst.instruction == T_MNEM_movs);
12736 }
12737
12738 if (narrow)
12739 {
12740 switch (inst.operands[1].shift_kind)
12741 {
12742 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_I; break;
12743 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_I; break;
12744 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_I; break;
12745 default: narrow = FALSE; break;
12746 }
12747 }
12748
12749 if (narrow)
12750 {
12751 inst.instruction |= Rn;
12752 inst.instruction |= Rm << 3;
12753 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_SHIFT;
12754 }
12755 else
12756 {
12757 inst.instruction = THUMB_OP32 (inst.instruction);
12758 inst.instruction |= Rn << r0off;
12759 encode_thumb32_shifted_operand (1);
12760 }
12761 }
12762 else
12763 switch (inst.instruction)
12764 {
12765 case T_MNEM_mov:
12766 /* In v4t or v5t a move of two lowregs produces unpredictable
12767 results. Don't allow this. */
12768 if (low_regs)
12769 {
12770 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6),
12771 "MOV Rd, Rs with two low registers is not "
12772 "permitted on this architecture");
12773 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
12774 arm_ext_v6);
12775 }
12776
12777 inst.instruction = T_OPCODE_MOV_HR;
12778 inst.instruction |= (Rn & 0x8) << 4;
12779 inst.instruction |= (Rn & 0x7);
12780 inst.instruction |= Rm << 3;
12781 break;
12782
12783 case T_MNEM_movs:
12784 /* We know we have low registers at this point.
12785 Generate LSLS Rd, Rs, #0. */
12786 inst.instruction = T_OPCODE_LSL_I;
12787 inst.instruction |= Rn;
12788 inst.instruction |= Rm << 3;
12789 break;
12790
12791 case T_MNEM_cmp:
12792 if (low_regs)
12793 {
12794 inst.instruction = T_OPCODE_CMP_LR;
12795 inst.instruction |= Rn;
12796 inst.instruction |= Rm << 3;
12797 }
12798 else
12799 {
12800 inst.instruction = T_OPCODE_CMP_HR;
12801 inst.instruction |= (Rn & 0x8) << 4;
12802 inst.instruction |= (Rn & 0x7);
12803 inst.instruction |= Rm << 3;
12804 }
12805 break;
12806 }
12807 return;
12808 }
12809
12810 inst.instruction = THUMB_OP16 (inst.instruction);
12811
12812 /* PR 10443: Do not silently ignore shifted operands. */
12813 constraint (inst.operands[1].shifted,
12814 _("shifts in CMP/MOV instructions are only supported in unified syntax"));
12815
12816 if (inst.operands[1].isreg)
12817 {
12818 if (Rn < 8 && Rm < 8)
12819 {
12820 /* A move of two lowregs is encoded as ADD Rd, Rs, #0
12821 since a MOV instruction produces unpredictable results. */
12822 if (inst.instruction == T_OPCODE_MOV_I8)
12823 inst.instruction = T_OPCODE_ADD_I3;
12824 else
12825 inst.instruction = T_OPCODE_CMP_LR;
12826
12827 inst.instruction |= Rn;
12828 inst.instruction |= Rm << 3;
12829 }
12830 else
12831 {
12832 if (inst.instruction == T_OPCODE_MOV_I8)
12833 inst.instruction = T_OPCODE_MOV_HR;
12834 else
12835 inst.instruction = T_OPCODE_CMP_HR;
12836 do_t_cpy ();
12837 }
12838 }
12839 else
12840 {
12841 constraint (Rn > 7,
12842 _("only lo regs allowed with immediate"));
12843 inst.instruction |= Rn << 8;
12844 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_IMM;
12845 }
12846 }
12847
12848 static void
12849 do_t_mov16 (void)
12850 {
12851 unsigned Rd;
12852 bfd_vma imm;
12853 bfd_boolean top;
12854
12855 top = (inst.instruction & 0x00800000) != 0;
12856 if (inst.relocs[0].type == BFD_RELOC_ARM_MOVW)
12857 {
12858 constraint (top, _(":lower16: not allowed in this instruction"));
12859 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_MOVW;
12860 }
12861 else if (inst.relocs[0].type == BFD_RELOC_ARM_MOVT)
12862 {
12863 constraint (!top, _(":upper16: not allowed in this instruction"));
12864 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_MOVT;
12865 }
12866
12867 Rd = inst.operands[0].reg;
12868 reject_bad_reg (Rd);
12869
12870 inst.instruction |= Rd << 8;
12871 if (inst.relocs[0].type == BFD_RELOC_UNUSED)
12872 {
12873 imm = inst.relocs[0].exp.X_add_number;
12874 inst.instruction |= (imm & 0xf000) << 4;
12875 inst.instruction |= (imm & 0x0800) << 15;
12876 inst.instruction |= (imm & 0x0700) << 4;
12877 inst.instruction |= (imm & 0x00ff);
12878 }
12879 }
12880
12881 static void
12882 do_t_mvn_tst (void)
12883 {
12884 unsigned Rn, Rm;
12885
12886 Rn = inst.operands[0].reg;
12887 Rm = inst.operands[1].reg;
12888
12889 if (inst.instruction == T_MNEM_cmp
12890 || inst.instruction == T_MNEM_cmn)
12891 constraint (Rn == REG_PC, BAD_PC);
12892 else
12893 reject_bad_reg (Rn);
12894 reject_bad_reg (Rm);
12895
12896 if (unified_syntax)
12897 {
12898 int r0off = (inst.instruction == T_MNEM_mvn
12899 || inst.instruction == T_MNEM_mvns) ? 8 : 16;
12900 bfd_boolean narrow;
12901
12902 if (inst.size_req == 4
12903 || inst.instruction > 0xffff
12904 || inst.operands[1].shifted
12905 || Rn > 7 || Rm > 7)
12906 narrow = FALSE;
12907 else if (inst.instruction == T_MNEM_cmn
12908 || inst.instruction == T_MNEM_tst)
12909 narrow = TRUE;
12910 else if (THUMB_SETS_FLAGS (inst.instruction))
12911 narrow = !in_pred_block ();
12912 else
12913 narrow = in_pred_block ();
12914
12915 if (!inst.operands[1].isreg)
12916 {
12917 /* For an immediate, we always generate a 32-bit opcode;
12918 section relaxation will shrink it later if possible. */
12919 if (inst.instruction < 0xffff)
12920 inst.instruction = THUMB_OP32 (inst.instruction);
12921 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
12922 inst.instruction |= Rn << r0off;
12923 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
12924 }
12925 else
12926 {
12927 /* See if we can do this with a 16-bit instruction. */
12928 if (narrow)
12929 {
12930 inst.instruction = THUMB_OP16 (inst.instruction);
12931 inst.instruction |= Rn;
12932 inst.instruction |= Rm << 3;
12933 }
12934 else
12935 {
12936 constraint (inst.operands[1].shifted
12937 && inst.operands[1].immisreg,
12938 _("shift must be constant"));
12939 if (inst.instruction < 0xffff)
12940 inst.instruction = THUMB_OP32 (inst.instruction);
12941 inst.instruction |= Rn << r0off;
12942 encode_thumb32_shifted_operand (1);
12943 }
12944 }
12945 }
12946 else
12947 {
12948 constraint (inst.instruction > 0xffff
12949 || inst.instruction == T_MNEM_mvns, BAD_THUMB32);
12950 constraint (!inst.operands[1].isreg || inst.operands[1].shifted,
12951 _("unshifted register required"));
12952 constraint (Rn > 7 || Rm > 7,
12953 BAD_HIREG);
12954
12955 inst.instruction = THUMB_OP16 (inst.instruction);
12956 inst.instruction |= Rn;
12957 inst.instruction |= Rm << 3;
12958 }
12959 }
12960
12961 static void
12962 do_t_mrs (void)
12963 {
12964 unsigned Rd;
12965
12966 if (do_vfp_nsyn_mrs () == SUCCESS)
12967 return;
12968
12969 Rd = inst.operands[0].reg;
12970 reject_bad_reg (Rd);
12971 inst.instruction |= Rd << 8;
12972
12973 if (inst.operands[1].isreg)
12974 {
12975 unsigned br = inst.operands[1].reg;
12976 if (((br & 0x200) == 0) && ((br & 0xf000) != 0xf000))
12977 as_bad (_("bad register for mrs"));
12978
12979 inst.instruction |= br & (0xf << 16);
12980 inst.instruction |= (br & 0x300) >> 4;
12981 inst.instruction |= (br & SPSR_BIT) >> 2;
12982 }
12983 else
12984 {
12985 int flags = inst.operands[1].imm & (PSR_c|PSR_x|PSR_s|PSR_f|SPSR_BIT);
12986
12987 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_m))
12988 {
12989 /* PR gas/12698: The constraint is only applied for m_profile.
12990 If the user has specified -march=all, we want to ignore it as
12991 we are building for any CPU type, including non-m variants. */
12992 bfd_boolean m_profile =
12993 !ARM_FEATURE_CORE_EQUAL (selected_cpu, arm_arch_any);
12994 constraint ((flags != 0) && m_profile, _("selected processor does "
12995 "not support requested special purpose register"));
12996 }
12997 else
12998 /* mrs only accepts APSR/CPSR/SPSR/CPSR_all/SPSR_all (for non-M profile
12999 devices). */
13000 constraint ((flags & ~SPSR_BIT) != (PSR_c|PSR_f),
13001 _("'APSR', 'CPSR' or 'SPSR' expected"));
13002
13003 inst.instruction |= (flags & SPSR_BIT) >> 2;
13004 inst.instruction |= inst.operands[1].imm & 0xff;
13005 inst.instruction |= 0xf0000;
13006 }
13007 }
13008
13009 static void
13010 do_t_msr (void)
13011 {
13012 int flags;
13013 unsigned Rn;
13014
13015 if (do_vfp_nsyn_msr () == SUCCESS)
13016 return;
13017
13018 constraint (!inst.operands[1].isreg,
13019 _("Thumb encoding does not support an immediate here"));
13020
13021 if (inst.operands[0].isreg)
13022 flags = (int)(inst.operands[0].reg);
13023 else
13024 flags = inst.operands[0].imm;
13025
13026 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_m))
13027 {
13028 int bits = inst.operands[0].imm & (PSR_c|PSR_x|PSR_s|PSR_f|SPSR_BIT);
13029
13030 /* PR gas/12698: The constraint is only applied for m_profile.
13031 If the user has specified -march=all, we want to ignore it as
13032 we are building for any CPU type, including non-m variants. */
13033 bfd_boolean m_profile =
13034 !ARM_FEATURE_CORE_EQUAL (selected_cpu, arm_arch_any);
13035 constraint (((ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6_dsp)
13036 && (bits & ~(PSR_s | PSR_f)) != 0)
13037 || (!ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6_dsp)
13038 && bits != PSR_f)) && m_profile,
13039 _("selected processor does not support requested special "
13040 "purpose register"));
13041 }
13042 else
13043 constraint ((flags & 0xff) != 0, _("selected processor does not support "
13044 "requested special purpose register"));
13045
13046 Rn = inst.operands[1].reg;
13047 reject_bad_reg (Rn);
13048
13049 inst.instruction |= (flags & SPSR_BIT) >> 2;
13050 inst.instruction |= (flags & 0xf0000) >> 8;
13051 inst.instruction |= (flags & 0x300) >> 4;
13052 inst.instruction |= (flags & 0xff);
13053 inst.instruction |= Rn << 16;
13054 }
13055
13056 static void
13057 do_t_mul (void)
13058 {
13059 bfd_boolean narrow;
13060 unsigned Rd, Rn, Rm;
13061
13062 if (!inst.operands[2].present)
13063 inst.operands[2].reg = inst.operands[0].reg;
13064
13065 Rd = inst.operands[0].reg;
13066 Rn = inst.operands[1].reg;
13067 Rm = inst.operands[2].reg;
13068
13069 if (unified_syntax)
13070 {
13071 if (inst.size_req == 4
13072 || (Rd != Rn
13073 && Rd != Rm)
13074 || Rn > 7
13075 || Rm > 7)
13076 narrow = FALSE;
13077 else if (inst.instruction == T_MNEM_muls)
13078 narrow = !in_pred_block ();
13079 else
13080 narrow = in_pred_block ();
13081 }
13082 else
13083 {
13084 constraint (inst.instruction == T_MNEM_muls, BAD_THUMB32);
13085 constraint (Rn > 7 || Rm > 7,
13086 BAD_HIREG);
13087 narrow = TRUE;
13088 }
13089
13090 if (narrow)
13091 {
13092 /* 16-bit MULS/Conditional MUL. */
13093 inst.instruction = THUMB_OP16 (inst.instruction);
13094 inst.instruction |= Rd;
13095
13096 if (Rd == Rn)
13097 inst.instruction |= Rm << 3;
13098 else if (Rd == Rm)
13099 inst.instruction |= Rn << 3;
13100 else
13101 constraint (1, _("dest must overlap one source register"));
13102 }
13103 else
13104 {
13105 constraint (inst.instruction != T_MNEM_mul,
13106 _("Thumb-2 MUL must not set flags"));
13107 /* 32-bit MUL. */
13108 inst.instruction = THUMB_OP32 (inst.instruction);
13109 inst.instruction |= Rd << 8;
13110 inst.instruction |= Rn << 16;
13111 inst.instruction |= Rm << 0;
13112
13113 reject_bad_reg (Rd);
13114 reject_bad_reg (Rn);
13115 reject_bad_reg (Rm);
13116 }
13117 }
13118
13119 static void
13120 do_t_mull (void)
13121 {
13122 unsigned RdLo, RdHi, Rn, Rm;
13123
13124 RdLo = inst.operands[0].reg;
13125 RdHi = inst.operands[1].reg;
13126 Rn = inst.operands[2].reg;
13127 Rm = inst.operands[3].reg;
13128
13129 reject_bad_reg (RdLo);
13130 reject_bad_reg (RdHi);
13131 reject_bad_reg (Rn);
13132 reject_bad_reg (Rm);
13133
13134 inst.instruction |= RdLo << 12;
13135 inst.instruction |= RdHi << 8;
13136 inst.instruction |= Rn << 16;
13137 inst.instruction |= Rm;
13138
13139 if (RdLo == RdHi)
13140 as_tsktsk (_("rdhi and rdlo must be different"));
13141 }
13142
13143 static void
13144 do_t_nop (void)
13145 {
13146 set_pred_insn_type (NEUTRAL_IT_INSN);
13147
13148 if (unified_syntax)
13149 {
13150 if (inst.size_req == 4 || inst.operands[0].imm > 15)
13151 {
13152 inst.instruction = THUMB_OP32 (inst.instruction);
13153 inst.instruction |= inst.operands[0].imm;
13154 }
13155 else
13156 {
13157 /* PR9722: Check for Thumb2 availability before
13158 generating a thumb2 nop instruction. */
13159 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6t2))
13160 {
13161 inst.instruction = THUMB_OP16 (inst.instruction);
13162 inst.instruction |= inst.operands[0].imm << 4;
13163 }
13164 else
13165 inst.instruction = 0x46c0;
13166 }
13167 }
13168 else
13169 {
13170 constraint (inst.operands[0].present,
13171 _("Thumb does not support NOP with hints"));
13172 inst.instruction = 0x46c0;
13173 }
13174 }
13175
13176 static void
13177 do_t_neg (void)
13178 {
13179 if (unified_syntax)
13180 {
13181 bfd_boolean narrow;
13182
13183 if (THUMB_SETS_FLAGS (inst.instruction))
13184 narrow = !in_pred_block ();
13185 else
13186 narrow = in_pred_block ();
13187 if (inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
13188 narrow = FALSE;
13189 if (inst.size_req == 4)
13190 narrow = FALSE;
13191
13192 if (!narrow)
13193 {
13194 inst.instruction = THUMB_OP32 (inst.instruction);
13195 inst.instruction |= inst.operands[0].reg << 8;
13196 inst.instruction |= inst.operands[1].reg << 16;
13197 }
13198 else
13199 {
13200 inst.instruction = THUMB_OP16 (inst.instruction);
13201 inst.instruction |= inst.operands[0].reg;
13202 inst.instruction |= inst.operands[1].reg << 3;
13203 }
13204 }
13205 else
13206 {
13207 constraint (inst.operands[0].reg > 7 || inst.operands[1].reg > 7,
13208 BAD_HIREG);
13209 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
13210
13211 inst.instruction = THUMB_OP16 (inst.instruction);
13212 inst.instruction |= inst.operands[0].reg;
13213 inst.instruction |= inst.operands[1].reg << 3;
13214 }
13215 }
13216
13217 static void
13218 do_t_orn (void)
13219 {
13220 unsigned Rd, Rn;
13221
13222 Rd = inst.operands[0].reg;
13223 Rn = inst.operands[1].present ? inst.operands[1].reg : Rd;
13224
13225 reject_bad_reg (Rd);
13226 /* Rn == REG_SP is unpredictable; Rn == REG_PC is MVN. */
13227 reject_bad_reg (Rn);
13228
13229 inst.instruction |= Rd << 8;
13230 inst.instruction |= Rn << 16;
13231
13232 if (!inst.operands[2].isreg)
13233 {
13234 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
13235 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
13236 }
13237 else
13238 {
13239 unsigned Rm;
13240
13241 Rm = inst.operands[2].reg;
13242 reject_bad_reg (Rm);
13243
13244 constraint (inst.operands[2].shifted
13245 && inst.operands[2].immisreg,
13246 _("shift must be constant"));
13247 encode_thumb32_shifted_operand (2);
13248 }
13249 }
13250
13251 static void
13252 do_t_pkhbt (void)
13253 {
13254 unsigned Rd, Rn, Rm;
13255
13256 Rd = inst.operands[0].reg;
13257 Rn = inst.operands[1].reg;
13258 Rm = inst.operands[2].reg;
13259
13260 reject_bad_reg (Rd);
13261 reject_bad_reg (Rn);
13262 reject_bad_reg (Rm);
13263
13264 inst.instruction |= Rd << 8;
13265 inst.instruction |= Rn << 16;
13266 inst.instruction |= Rm;
13267 if (inst.operands[3].present)
13268 {
13269 unsigned int val = inst.relocs[0].exp.X_add_number;
13270 constraint (inst.relocs[0].exp.X_op != O_constant,
13271 _("expression too complex"));
13272 inst.instruction |= (val & 0x1c) << 10;
13273 inst.instruction |= (val & 0x03) << 6;
13274 }
13275 }
13276
13277 static void
13278 do_t_pkhtb (void)
13279 {
13280 if (!inst.operands[3].present)
13281 {
13282 unsigned Rtmp;
13283
13284 inst.instruction &= ~0x00000020;
13285
13286 /* PR 10168. Swap the Rm and Rn registers. */
13287 Rtmp = inst.operands[1].reg;
13288 inst.operands[1].reg = inst.operands[2].reg;
13289 inst.operands[2].reg = Rtmp;
13290 }
13291 do_t_pkhbt ();
13292 }
13293
13294 static void
13295 do_t_pld (void)
13296 {
13297 if (inst.operands[0].immisreg)
13298 reject_bad_reg (inst.operands[0].imm);
13299
13300 encode_thumb32_addr_mode (0, /*is_t=*/FALSE, /*is_d=*/FALSE);
13301 }
13302
13303 static void
13304 do_t_push_pop (void)
13305 {
13306 unsigned mask;
13307
13308 constraint (inst.operands[0].writeback,
13309 _("push/pop do not support {reglist}^"));
13310 constraint (inst.relocs[0].type != BFD_RELOC_UNUSED,
13311 _("expression too complex"));
13312
13313 mask = inst.operands[0].imm;
13314 if (inst.size_req != 4 && (mask & ~0xff) == 0)
13315 inst.instruction = THUMB_OP16 (inst.instruction) | mask;
13316 else if (inst.size_req != 4
13317 && (mask & ~0xff) == (1U << (inst.instruction == T_MNEM_push
13318 ? REG_LR : REG_PC)))
13319 {
13320 inst.instruction = THUMB_OP16 (inst.instruction);
13321 inst.instruction |= THUMB_PP_PC_LR;
13322 inst.instruction |= mask & 0xff;
13323 }
13324 else if (unified_syntax)
13325 {
13326 inst.instruction = THUMB_OP32 (inst.instruction);
13327 encode_thumb2_multi (TRUE /* do_io */, 13, mask, TRUE);
13328 }
13329 else
13330 {
13331 inst.error = _("invalid register list to push/pop instruction");
13332 return;
13333 }
13334 }
13335
13336 static void
13337 do_t_clrm (void)
13338 {
13339 if (unified_syntax)
13340 encode_thumb2_multi (FALSE /* do_io */, -1, inst.operands[0].imm, FALSE);
13341 else
13342 {
13343 inst.error = _("invalid register list to push/pop instruction");
13344 return;
13345 }
13346 }
13347
13348 static void
13349 do_t_vscclrm (void)
13350 {
13351 if (inst.operands[0].issingle)
13352 {
13353 inst.instruction |= (inst.operands[0].reg & 0x1) << 22;
13354 inst.instruction |= (inst.operands[0].reg & 0x1e) << 11;
13355 inst.instruction |= inst.operands[0].imm;
13356 }
13357 else
13358 {
13359 inst.instruction |= (inst.operands[0].reg & 0x10) << 18;
13360 inst.instruction |= (inst.operands[0].reg & 0xf) << 12;
13361 inst.instruction |= 1 << 8;
13362 inst.instruction |= inst.operands[0].imm << 1;
13363 }
13364 }
13365
13366 static void
13367 do_t_rbit (void)
13368 {
13369 unsigned Rd, Rm;
13370
13371 Rd = inst.operands[0].reg;
13372 Rm = inst.operands[1].reg;
13373
13374 reject_bad_reg (Rd);
13375 reject_bad_reg (Rm);
13376
13377 inst.instruction |= Rd << 8;
13378 inst.instruction |= Rm << 16;
13379 inst.instruction |= Rm;
13380 }
13381
13382 static void
13383 do_t_rev (void)
13384 {
13385 unsigned Rd, Rm;
13386
13387 Rd = inst.operands[0].reg;
13388 Rm = inst.operands[1].reg;
13389
13390 reject_bad_reg (Rd);
13391 reject_bad_reg (Rm);
13392
13393 if (Rd <= 7 && Rm <= 7
13394 && inst.size_req != 4)
13395 {
13396 inst.instruction = THUMB_OP16 (inst.instruction);
13397 inst.instruction |= Rd;
13398 inst.instruction |= Rm << 3;
13399 }
13400 else if (unified_syntax)
13401 {
13402 inst.instruction = THUMB_OP32 (inst.instruction);
13403 inst.instruction |= Rd << 8;
13404 inst.instruction |= Rm << 16;
13405 inst.instruction |= Rm;
13406 }
13407 else
13408 inst.error = BAD_HIREG;
13409 }
13410
13411 static void
13412 do_t_rrx (void)
13413 {
13414 unsigned Rd, Rm;
13415
13416 Rd = inst.operands[0].reg;
13417 Rm = inst.operands[1].reg;
13418
13419 reject_bad_reg (Rd);
13420 reject_bad_reg (Rm);
13421
13422 inst.instruction |= Rd << 8;
13423 inst.instruction |= Rm;
13424 }
13425
13426 static void
13427 do_t_rsb (void)
13428 {
13429 unsigned Rd, Rs;
13430
13431 Rd = inst.operands[0].reg;
13432 Rs = (inst.operands[1].present
13433 ? inst.operands[1].reg /* Rd, Rs, foo */
13434 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
13435
13436 reject_bad_reg (Rd);
13437 reject_bad_reg (Rs);
13438 if (inst.operands[2].isreg)
13439 reject_bad_reg (inst.operands[2].reg);
13440
13441 inst.instruction |= Rd << 8;
13442 inst.instruction |= Rs << 16;
13443 if (!inst.operands[2].isreg)
13444 {
13445 bfd_boolean narrow;
13446
13447 if ((inst.instruction & 0x00100000) != 0)
13448 narrow = !in_pred_block ();
13449 else
13450 narrow = in_pred_block ();
13451
13452 if (Rd > 7 || Rs > 7)
13453 narrow = FALSE;
13454
13455 if (inst.size_req == 4 || !unified_syntax)
13456 narrow = FALSE;
13457
13458 if (inst.relocs[0].exp.X_op != O_constant
13459 || inst.relocs[0].exp.X_add_number != 0)
13460 narrow = FALSE;
13461
13462 /* Turn rsb #0 into 16-bit neg. We should probably do this via
13463 relaxation, but it doesn't seem worth the hassle. */
13464 if (narrow)
13465 {
13466 inst.relocs[0].type = BFD_RELOC_UNUSED;
13467 inst.instruction = THUMB_OP16 (T_MNEM_negs);
13468 inst.instruction |= Rs << 3;
13469 inst.instruction |= Rd;
13470 }
13471 else
13472 {
13473 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
13474 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
13475 }
13476 }
13477 else
13478 encode_thumb32_shifted_operand (2);
13479 }
13480
13481 static void
13482 do_t_setend (void)
13483 {
13484 if (warn_on_deprecated
13485 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
13486 as_tsktsk (_("setend use is deprecated for ARMv8"));
13487
13488 set_pred_insn_type (OUTSIDE_PRED_INSN);
13489 if (inst.operands[0].imm)
13490 inst.instruction |= 0x8;
13491 }
13492
13493 static void
13494 do_t_shift (void)
13495 {
13496 if (!inst.operands[1].present)
13497 inst.operands[1].reg = inst.operands[0].reg;
13498
13499 if (unified_syntax)
13500 {
13501 bfd_boolean narrow;
13502 int shift_kind;
13503
13504 switch (inst.instruction)
13505 {
13506 case T_MNEM_asr:
13507 case T_MNEM_asrs: shift_kind = SHIFT_ASR; break;
13508 case T_MNEM_lsl:
13509 case T_MNEM_lsls: shift_kind = SHIFT_LSL; break;
13510 case T_MNEM_lsr:
13511 case T_MNEM_lsrs: shift_kind = SHIFT_LSR; break;
13512 case T_MNEM_ror:
13513 case T_MNEM_rors: shift_kind = SHIFT_ROR; break;
13514 default: abort ();
13515 }
13516
13517 if (THUMB_SETS_FLAGS (inst.instruction))
13518 narrow = !in_pred_block ();
13519 else
13520 narrow = in_pred_block ();
13521 if (inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
13522 narrow = FALSE;
13523 if (!inst.operands[2].isreg && shift_kind == SHIFT_ROR)
13524 narrow = FALSE;
13525 if (inst.operands[2].isreg
13526 && (inst.operands[1].reg != inst.operands[0].reg
13527 || inst.operands[2].reg > 7))
13528 narrow = FALSE;
13529 if (inst.size_req == 4)
13530 narrow = FALSE;
13531
13532 reject_bad_reg (inst.operands[0].reg);
13533 reject_bad_reg (inst.operands[1].reg);
13534
13535 if (!narrow)
13536 {
13537 if (inst.operands[2].isreg)
13538 {
13539 reject_bad_reg (inst.operands[2].reg);
13540 inst.instruction = THUMB_OP32 (inst.instruction);
13541 inst.instruction |= inst.operands[0].reg << 8;
13542 inst.instruction |= inst.operands[1].reg << 16;
13543 inst.instruction |= inst.operands[2].reg;
13544
13545 /* PR 12854: Error on extraneous shifts. */
13546 constraint (inst.operands[2].shifted,
13547 _("extraneous shift as part of operand to shift insn"));
13548 }
13549 else
13550 {
13551 inst.operands[1].shifted = 1;
13552 inst.operands[1].shift_kind = shift_kind;
13553 inst.instruction = THUMB_OP32 (THUMB_SETS_FLAGS (inst.instruction)
13554 ? T_MNEM_movs : T_MNEM_mov);
13555 inst.instruction |= inst.operands[0].reg << 8;
13556 encode_thumb32_shifted_operand (1);
13557 /* Prevent the incorrect generation of an ARM_IMMEDIATE fixup. */
13558 inst.relocs[0].type = BFD_RELOC_UNUSED;
13559 }
13560 }
13561 else
13562 {
13563 if (inst.operands[2].isreg)
13564 {
13565 switch (shift_kind)
13566 {
13567 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_R; break;
13568 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_R; break;
13569 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_R; break;
13570 case SHIFT_ROR: inst.instruction = T_OPCODE_ROR_R; break;
13571 default: abort ();
13572 }
13573
13574 inst.instruction |= inst.operands[0].reg;
13575 inst.instruction |= inst.operands[2].reg << 3;
13576
13577 /* PR 12854: Error on extraneous shifts. */
13578 constraint (inst.operands[2].shifted,
13579 _("extraneous shift as part of operand to shift insn"));
13580 }
13581 else
13582 {
13583 switch (shift_kind)
13584 {
13585 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_I; break;
13586 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_I; break;
13587 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_I; break;
13588 default: abort ();
13589 }
13590 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_SHIFT;
13591 inst.instruction |= inst.operands[0].reg;
13592 inst.instruction |= inst.operands[1].reg << 3;
13593 }
13594 }
13595 }
13596 else
13597 {
13598 constraint (inst.operands[0].reg > 7
13599 || inst.operands[1].reg > 7, BAD_HIREG);
13600 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
13601
13602 if (inst.operands[2].isreg) /* Rd, {Rs,} Rn */
13603 {
13604 constraint (inst.operands[2].reg > 7, BAD_HIREG);
13605 constraint (inst.operands[0].reg != inst.operands[1].reg,
13606 _("source1 and dest must be same register"));
13607
13608 switch (inst.instruction)
13609 {
13610 case T_MNEM_asr: inst.instruction = T_OPCODE_ASR_R; break;
13611 case T_MNEM_lsl: inst.instruction = T_OPCODE_LSL_R; break;
13612 case T_MNEM_lsr: inst.instruction = T_OPCODE_LSR_R; break;
13613 case T_MNEM_ror: inst.instruction = T_OPCODE_ROR_R; break;
13614 default: abort ();
13615 }
13616
13617 inst.instruction |= inst.operands[0].reg;
13618 inst.instruction |= inst.operands[2].reg << 3;
13619
13620 /* PR 12854: Error on extraneous shifts. */
13621 constraint (inst.operands[2].shifted,
13622 _("extraneous shift as part of operand to shift insn"));
13623 }
13624 else
13625 {
13626 switch (inst.instruction)
13627 {
13628 case T_MNEM_asr: inst.instruction = T_OPCODE_ASR_I; break;
13629 case T_MNEM_lsl: inst.instruction = T_OPCODE_LSL_I; break;
13630 case T_MNEM_lsr: inst.instruction = T_OPCODE_LSR_I; break;
13631 case T_MNEM_ror: inst.error = _("ror #imm not supported"); return;
13632 default: abort ();
13633 }
13634 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_SHIFT;
13635 inst.instruction |= inst.operands[0].reg;
13636 inst.instruction |= inst.operands[1].reg << 3;
13637 }
13638 }
13639 }
13640
13641 static void
13642 do_t_simd (void)
13643 {
13644 unsigned Rd, Rn, Rm;
13645
13646 Rd = inst.operands[0].reg;
13647 Rn = inst.operands[1].reg;
13648 Rm = inst.operands[2].reg;
13649
13650 reject_bad_reg (Rd);
13651 reject_bad_reg (Rn);
13652 reject_bad_reg (Rm);
13653
13654 inst.instruction |= Rd << 8;
13655 inst.instruction |= Rn << 16;
13656 inst.instruction |= Rm;
13657 }
13658
13659 static void
13660 do_t_simd2 (void)
13661 {
13662 unsigned Rd, Rn, Rm;
13663
13664 Rd = inst.operands[0].reg;
13665 Rm = inst.operands[1].reg;
13666 Rn = inst.operands[2].reg;
13667
13668 reject_bad_reg (Rd);
13669 reject_bad_reg (Rn);
13670 reject_bad_reg (Rm);
13671
13672 inst.instruction |= Rd << 8;
13673 inst.instruction |= Rn << 16;
13674 inst.instruction |= Rm;
13675 }
13676
13677 static void
13678 do_t_smc (void)
13679 {
13680 unsigned int value = inst.relocs[0].exp.X_add_number;
13681 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7a),
13682 _("SMC is not permitted on this architecture"));
13683 constraint (inst.relocs[0].exp.X_op != O_constant,
13684 _("expression too complex"));
13685 inst.relocs[0].type = BFD_RELOC_UNUSED;
13686 inst.instruction |= (value & 0xf000) >> 12;
13687 inst.instruction |= (value & 0x0ff0);
13688 inst.instruction |= (value & 0x000f) << 16;
13689 /* PR gas/15623: SMC instructions must be last in an IT block. */
13690 set_pred_insn_type_last ();
13691 }
13692
13693 static void
13694 do_t_hvc (void)
13695 {
13696 unsigned int value = inst.relocs[0].exp.X_add_number;
13697
13698 inst.relocs[0].type = BFD_RELOC_UNUSED;
13699 inst.instruction |= (value & 0x0fff);
13700 inst.instruction |= (value & 0xf000) << 4;
13701 }
13702
13703 static void
13704 do_t_ssat_usat (int bias)
13705 {
13706 unsigned Rd, Rn;
13707
13708 Rd = inst.operands[0].reg;
13709 Rn = inst.operands[2].reg;
13710
13711 reject_bad_reg (Rd);
13712 reject_bad_reg (Rn);
13713
13714 inst.instruction |= Rd << 8;
13715 inst.instruction |= inst.operands[1].imm - bias;
13716 inst.instruction |= Rn << 16;
13717
13718 if (inst.operands[3].present)
13719 {
13720 offsetT shift_amount = inst.relocs[0].exp.X_add_number;
13721
13722 inst.relocs[0].type = BFD_RELOC_UNUSED;
13723
13724 constraint (inst.relocs[0].exp.X_op != O_constant,
13725 _("expression too complex"));
13726
13727 if (shift_amount != 0)
13728 {
13729 constraint (shift_amount > 31,
13730 _("shift expression is too large"));
13731
13732 if (inst.operands[3].shift_kind == SHIFT_ASR)
13733 inst.instruction |= 0x00200000; /* sh bit. */
13734
13735 inst.instruction |= (shift_amount & 0x1c) << 10;
13736 inst.instruction |= (shift_amount & 0x03) << 6;
13737 }
13738 }
13739 }
13740
13741 static void
13742 do_t_ssat (void)
13743 {
13744 do_t_ssat_usat (1);
13745 }
13746
13747 static void
13748 do_t_ssat16 (void)
13749 {
13750 unsigned Rd, Rn;
13751
13752 Rd = inst.operands[0].reg;
13753 Rn = inst.operands[2].reg;
13754
13755 reject_bad_reg (Rd);
13756 reject_bad_reg (Rn);
13757
13758 inst.instruction |= Rd << 8;
13759 inst.instruction |= inst.operands[1].imm - 1;
13760 inst.instruction |= Rn << 16;
13761 }
13762
13763 static void
13764 do_t_strex (void)
13765 {
13766 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
13767 || inst.operands[2].postind || inst.operands[2].writeback
13768 || inst.operands[2].immisreg || inst.operands[2].shifted
13769 || inst.operands[2].negative,
13770 BAD_ADDR_MODE);
13771
13772 constraint (inst.operands[2].reg == REG_PC, BAD_PC);
13773
13774 inst.instruction |= inst.operands[0].reg << 8;
13775 inst.instruction |= inst.operands[1].reg << 12;
13776 inst.instruction |= inst.operands[2].reg << 16;
13777 inst.relocs[0].type = BFD_RELOC_ARM_T32_OFFSET_U8;
13778 }
13779
13780 static void
13781 do_t_strexd (void)
13782 {
13783 if (!inst.operands[2].present)
13784 inst.operands[2].reg = inst.operands[1].reg + 1;
13785
13786 constraint (inst.operands[0].reg == inst.operands[1].reg
13787 || inst.operands[0].reg == inst.operands[2].reg
13788 || inst.operands[0].reg == inst.operands[3].reg,
13789 BAD_OVERLAP);
13790
13791 inst.instruction |= inst.operands[0].reg;
13792 inst.instruction |= inst.operands[1].reg << 12;
13793 inst.instruction |= inst.operands[2].reg << 8;
13794 inst.instruction |= inst.operands[3].reg << 16;
13795 }
13796
13797 static void
13798 do_t_sxtah (void)
13799 {
13800 unsigned Rd, Rn, Rm;
13801
13802 Rd = inst.operands[0].reg;
13803 Rn = inst.operands[1].reg;
13804 Rm = inst.operands[2].reg;
13805
13806 reject_bad_reg (Rd);
13807 reject_bad_reg (Rn);
13808 reject_bad_reg (Rm);
13809
13810 inst.instruction |= Rd << 8;
13811 inst.instruction |= Rn << 16;
13812 inst.instruction |= Rm;
13813 inst.instruction |= inst.operands[3].imm << 4;
13814 }
13815
13816 static void
13817 do_t_sxth (void)
13818 {
13819 unsigned Rd, Rm;
13820
13821 Rd = inst.operands[0].reg;
13822 Rm = inst.operands[1].reg;
13823
13824 reject_bad_reg (Rd);
13825 reject_bad_reg (Rm);
13826
13827 if (inst.instruction <= 0xffff
13828 && inst.size_req != 4
13829 && Rd <= 7 && Rm <= 7
13830 && (!inst.operands[2].present || inst.operands[2].imm == 0))
13831 {
13832 inst.instruction = THUMB_OP16 (inst.instruction);
13833 inst.instruction |= Rd;
13834 inst.instruction |= Rm << 3;
13835 }
13836 else if (unified_syntax)
13837 {
13838 if (inst.instruction <= 0xffff)
13839 inst.instruction = THUMB_OP32 (inst.instruction);
13840 inst.instruction |= Rd << 8;
13841 inst.instruction |= Rm;
13842 inst.instruction |= inst.operands[2].imm << 4;
13843 }
13844 else
13845 {
13846 constraint (inst.operands[2].present && inst.operands[2].imm != 0,
13847 _("Thumb encoding does not support rotation"));
13848 constraint (1, BAD_HIREG);
13849 }
13850 }
13851
13852 static void
13853 do_t_swi (void)
13854 {
13855 inst.relocs[0].type = BFD_RELOC_ARM_SWI;
13856 }
13857
13858 static void
13859 do_t_tb (void)
13860 {
13861 unsigned Rn, Rm;
13862 int half;
13863
13864 half = (inst.instruction & 0x10) != 0;
13865 set_pred_insn_type_last ();
13866 constraint (inst.operands[0].immisreg,
13867 _("instruction requires register index"));
13868
13869 Rn = inst.operands[0].reg;
13870 Rm = inst.operands[0].imm;
13871
13872 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
13873 constraint (Rn == REG_SP, BAD_SP);
13874 reject_bad_reg (Rm);
13875
13876 constraint (!half && inst.operands[0].shifted,
13877 _("instruction does not allow shifted index"));
13878 inst.instruction |= (Rn << 16) | Rm;
13879 }
13880
13881 static void
13882 do_t_udf (void)
13883 {
13884 if (!inst.operands[0].present)
13885 inst.operands[0].imm = 0;
13886
13887 if ((unsigned int) inst.operands[0].imm > 255 || inst.size_req == 4)
13888 {
13889 constraint (inst.size_req == 2,
13890 _("immediate value out of range"));
13891 inst.instruction = THUMB_OP32 (inst.instruction);
13892 inst.instruction |= (inst.operands[0].imm & 0xf000u) << 4;
13893 inst.instruction |= (inst.operands[0].imm & 0x0fffu) << 0;
13894 }
13895 else
13896 {
13897 inst.instruction = THUMB_OP16 (inst.instruction);
13898 inst.instruction |= inst.operands[0].imm;
13899 }
13900
13901 set_pred_insn_type (NEUTRAL_IT_INSN);
13902 }
13903
13904
13905 static void
13906 do_t_usat (void)
13907 {
13908 do_t_ssat_usat (0);
13909 }
13910
13911 static void
13912 do_t_usat16 (void)
13913 {
13914 unsigned Rd, Rn;
13915
13916 Rd = inst.operands[0].reg;
13917 Rn = inst.operands[2].reg;
13918
13919 reject_bad_reg (Rd);
13920 reject_bad_reg (Rn);
13921
13922 inst.instruction |= Rd << 8;
13923 inst.instruction |= inst.operands[1].imm;
13924 inst.instruction |= Rn << 16;
13925 }
13926
13927 /* Checking the range of the branch offset (VAL) with NBITS bits
13928 and IS_SIGNED signedness. Also checks the LSB to be 0. */
13929 static int
13930 v8_1_branch_value_check (int val, int nbits, int is_signed)
13931 {
13932 gas_assert (nbits > 0 && nbits <= 32);
13933 if (is_signed)
13934 {
13935 int cmp = (1 << (nbits - 1));
13936 if ((val < -cmp) || (val >= cmp) || (val & 0x01))
13937 return FAIL;
13938 }
13939 else
13940 {
13941 if ((val <= 0) || (val >= (1 << nbits)) || (val & 0x1))
13942 return FAIL;
13943 }
13944 return SUCCESS;
13945 }
13946
13947 /* For branches in Armv8.1-M Mainline. */
13948 static void
13949 do_t_branch_future (void)
13950 {
13951 unsigned long insn = inst.instruction;
13952
13953 inst.instruction = THUMB_OP32 (inst.instruction);
13954 if (inst.operands[0].hasreloc == 0)
13955 {
13956 if (v8_1_branch_value_check (inst.operands[0].imm, 5, FALSE) == FAIL)
13957 as_bad (BAD_BRANCH_OFF);
13958
13959 inst.instruction |= ((inst.operands[0].imm & 0x1f) >> 1) << 23;
13960 }
13961 else
13962 {
13963 inst.relocs[0].type = BFD_RELOC_THUMB_PCREL_BRANCH5;
13964 inst.relocs[0].pc_rel = 1;
13965 }
13966
13967 switch (insn)
13968 {
13969 case T_MNEM_bf:
13970 if (inst.operands[1].hasreloc == 0)
13971 {
13972 int val = inst.operands[1].imm;
13973 if (v8_1_branch_value_check (inst.operands[1].imm, 17, TRUE) == FAIL)
13974 as_bad (BAD_BRANCH_OFF);
13975
13976 int immA = (val & 0x0001f000) >> 12;
13977 int immB = (val & 0x00000ffc) >> 2;
13978 int immC = (val & 0x00000002) >> 1;
13979 inst.instruction |= (immA << 16) | (immB << 1) | (immC << 11);
13980 }
13981 else
13982 {
13983 inst.relocs[1].type = BFD_RELOC_ARM_THUMB_BF17;
13984 inst.relocs[1].pc_rel = 1;
13985 }
13986 break;
13987
13988 case T_MNEM_bfl:
13989 if (inst.operands[1].hasreloc == 0)
13990 {
13991 int val = inst.operands[1].imm;
13992 if (v8_1_branch_value_check (inst.operands[1].imm, 19, TRUE) == FAIL)
13993 as_bad (BAD_BRANCH_OFF);
13994
13995 int immA = (val & 0x0007f000) >> 12;
13996 int immB = (val & 0x00000ffc) >> 2;
13997 int immC = (val & 0x00000002) >> 1;
13998 inst.instruction |= (immA << 16) | (immB << 1) | (immC << 11);
13999 }
14000 else
14001 {
14002 inst.relocs[1].type = BFD_RELOC_ARM_THUMB_BF19;
14003 inst.relocs[1].pc_rel = 1;
14004 }
14005 break;
14006
14007 case T_MNEM_bfcsel:
14008 /* Operand 1. */
14009 if (inst.operands[1].hasreloc == 0)
14010 {
14011 int val = inst.operands[1].imm;
14012 int immA = (val & 0x00001000) >> 12;
14013 int immB = (val & 0x00000ffc) >> 2;
14014 int immC = (val & 0x00000002) >> 1;
14015 inst.instruction |= (immA << 16) | (immB << 1) | (immC << 11);
14016 }
14017 else
14018 {
14019 inst.relocs[1].type = BFD_RELOC_ARM_THUMB_BF13;
14020 inst.relocs[1].pc_rel = 1;
14021 }
14022
14023 /* Operand 2. */
14024 if (inst.operands[2].hasreloc == 0)
14025 {
14026 constraint ((inst.operands[0].hasreloc != 0), BAD_ARGS);
14027 int val2 = inst.operands[2].imm;
14028 int val0 = inst.operands[0].imm & 0x1f;
14029 int diff = val2 - val0;
14030 if (diff == 4)
14031 inst.instruction |= 1 << 17; /* T bit. */
14032 else if (diff != 2)
14033 as_bad (_("out of range label-relative fixup value"));
14034 }
14035 else
14036 {
14037 constraint ((inst.operands[0].hasreloc == 0), BAD_ARGS);
14038 inst.relocs[2].type = BFD_RELOC_THUMB_PCREL_BFCSEL;
14039 inst.relocs[2].pc_rel = 1;
14040 }
14041
14042 /* Operand 3. */
14043 constraint (inst.cond != COND_ALWAYS, BAD_COND);
14044 inst.instruction |= (inst.operands[3].imm & 0xf) << 18;
14045 break;
14046
14047 case T_MNEM_bfx:
14048 case T_MNEM_bflx:
14049 inst.instruction |= inst.operands[1].reg << 16;
14050 break;
14051
14052 default: abort ();
14053 }
14054 }
14055
14056 /* Helper function for do_t_loloop to handle relocations. */
14057 static void
14058 v8_1_loop_reloc (int is_le)
14059 {
14060 if (inst.relocs[0].exp.X_op == O_constant)
14061 {
14062 int value = inst.relocs[0].exp.X_add_number;
14063 value = (is_le) ? -value : value;
14064
14065 if (v8_1_branch_value_check (value, 12, FALSE) == FAIL)
14066 as_bad (BAD_BRANCH_OFF);
14067
14068 int imml, immh;
14069
14070 immh = (value & 0x00000ffc) >> 2;
14071 imml = (value & 0x00000002) >> 1;
14072
14073 inst.instruction |= (imml << 11) | (immh << 1);
14074 }
14075 else
14076 {
14077 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_LOOP12;
14078 inst.relocs[0].pc_rel = 1;
14079 }
14080 }
14081
14082 /* To handle the Scalar Low Overhead Loop instructions
14083 in Armv8.1-M Mainline. */
14084 static void
14085 do_t_loloop (void)
14086 {
14087 unsigned long insn = inst.instruction;
14088
14089 set_pred_insn_type (OUTSIDE_PRED_INSN);
14090 inst.instruction = THUMB_OP32 (inst.instruction);
14091
14092 switch (insn)
14093 {
14094 case T_MNEM_le:
14095 /* le <label>. */
14096 if (!inst.operands[0].present)
14097 inst.instruction |= 1 << 21;
14098
14099 v8_1_loop_reloc (TRUE);
14100 break;
14101
14102 case T_MNEM_wls:
14103 v8_1_loop_reloc (FALSE);
14104 /* Fall through. */
14105 case T_MNEM_dls:
14106 constraint (inst.operands[1].isreg != 1, BAD_ARGS);
14107 inst.instruction |= (inst.operands[1].reg << 16);
14108 break;
14109
14110 default: abort();
14111 }
14112 }
14113
14114 /* MVE instruction encoder helpers. */
14115 #define M_MNEM_vabav 0xee800f01
14116 #define M_MNEM_vmladav 0xeef00e00
14117 #define M_MNEM_vmladava 0xeef00e20
14118 #define M_MNEM_vmladavx 0xeef01e00
14119 #define M_MNEM_vmladavax 0xeef01e20
14120 #define M_MNEM_vmlsdav 0xeef00e01
14121 #define M_MNEM_vmlsdava 0xeef00e21
14122 #define M_MNEM_vmlsdavx 0xeef01e01
14123 #define M_MNEM_vmlsdavax 0xeef01e21
14124 #define M_MNEM_vmullt 0xee011e00
14125 #define M_MNEM_vmullb 0xee010e00
14126 #define M_MNEM_vst20 0xfc801e00
14127 #define M_MNEM_vst21 0xfc801e20
14128 #define M_MNEM_vst40 0xfc801e01
14129 #define M_MNEM_vst41 0xfc801e21
14130 #define M_MNEM_vst42 0xfc801e41
14131 #define M_MNEM_vst43 0xfc801e61
14132 #define M_MNEM_vld20 0xfc901e00
14133 #define M_MNEM_vld21 0xfc901e20
14134 #define M_MNEM_vld40 0xfc901e01
14135 #define M_MNEM_vld41 0xfc901e21
14136 #define M_MNEM_vld42 0xfc901e41
14137 #define M_MNEM_vld43 0xfc901e61
14138 #define M_MNEM_vstrb 0xec000e00
14139 #define M_MNEM_vstrh 0xec000e10
14140 #define M_MNEM_vstrw 0xec000e40
14141 #define M_MNEM_vstrd 0xec000e50
14142 #define M_MNEM_vldrb 0xec100e00
14143 #define M_MNEM_vldrh 0xec100e10
14144 #define M_MNEM_vldrw 0xec100e40
14145 #define M_MNEM_vldrd 0xec100e50
14146 #define M_MNEM_vmovlt 0xeea01f40
14147 #define M_MNEM_vmovlb 0xeea00f40
14148 #define M_MNEM_vmovnt 0xfe311e81
14149 #define M_MNEM_vmovnb 0xfe310e81
14150 #define M_MNEM_vadc 0xee300f00
14151 #define M_MNEM_vadci 0xee301f00
14152 #define M_MNEM_vbrsr 0xfe011e60
14153 #define M_MNEM_vaddlv 0xee890f00
14154 #define M_MNEM_vaddlva 0xee890f20
14155 #define M_MNEM_vaddv 0xeef10f00
14156 #define M_MNEM_vaddva 0xeef10f20
14157
14158 /* Neon instruction encoder helpers. */
14159
14160 /* Encodings for the different types for various Neon opcodes. */
14161
14162 /* An "invalid" code for the following tables. */
14163 #define N_INV -1u
14164
14165 struct neon_tab_entry
14166 {
14167 unsigned integer;
14168 unsigned float_or_poly;
14169 unsigned scalar_or_imm;
14170 };
14171
14172 /* Map overloaded Neon opcodes to their respective encodings. */
14173 #define NEON_ENC_TAB \
14174 X(vabd, 0x0000700, 0x1200d00, N_INV), \
14175 X(vabdl, 0x0800700, N_INV, N_INV), \
14176 X(vmax, 0x0000600, 0x0000f00, N_INV), \
14177 X(vmin, 0x0000610, 0x0200f00, N_INV), \
14178 X(vpadd, 0x0000b10, 0x1000d00, N_INV), \
14179 X(vpmax, 0x0000a00, 0x1000f00, N_INV), \
14180 X(vpmin, 0x0000a10, 0x1200f00, N_INV), \
14181 X(vadd, 0x0000800, 0x0000d00, N_INV), \
14182 X(vaddl, 0x0800000, N_INV, N_INV), \
14183 X(vsub, 0x1000800, 0x0200d00, N_INV), \
14184 X(vsubl, 0x0800200, N_INV, N_INV), \
14185 X(vceq, 0x1000810, 0x0000e00, 0x1b10100), \
14186 X(vcge, 0x0000310, 0x1000e00, 0x1b10080), \
14187 X(vcgt, 0x0000300, 0x1200e00, 0x1b10000), \
14188 /* Register variants of the following two instructions are encoded as
14189 vcge / vcgt with the operands reversed. */ \
14190 X(vclt, 0x0000300, 0x1200e00, 0x1b10200), \
14191 X(vcle, 0x0000310, 0x1000e00, 0x1b10180), \
14192 X(vfma, N_INV, 0x0000c10, N_INV), \
14193 X(vfms, N_INV, 0x0200c10, N_INV), \
14194 X(vmla, 0x0000900, 0x0000d10, 0x0800040), \
14195 X(vmls, 0x1000900, 0x0200d10, 0x0800440), \
14196 X(vmul, 0x0000910, 0x1000d10, 0x0800840), \
14197 X(vmull, 0x0800c00, 0x0800e00, 0x0800a40), /* polynomial not float. */ \
14198 X(vmlal, 0x0800800, N_INV, 0x0800240), \
14199 X(vmlsl, 0x0800a00, N_INV, 0x0800640), \
14200 X(vqdmlal, 0x0800900, N_INV, 0x0800340), \
14201 X(vqdmlsl, 0x0800b00, N_INV, 0x0800740), \
14202 X(vqdmull, 0x0800d00, N_INV, 0x0800b40), \
14203 X(vqdmulh, 0x0000b00, N_INV, 0x0800c40), \
14204 X(vqrdmulh, 0x1000b00, N_INV, 0x0800d40), \
14205 X(vqrdmlah, 0x3000b10, N_INV, 0x0800e40), \
14206 X(vqrdmlsh, 0x3000c10, N_INV, 0x0800f40), \
14207 X(vshl, 0x0000400, N_INV, 0x0800510), \
14208 X(vqshl, 0x0000410, N_INV, 0x0800710), \
14209 X(vand, 0x0000110, N_INV, 0x0800030), \
14210 X(vbic, 0x0100110, N_INV, 0x0800030), \
14211 X(veor, 0x1000110, N_INV, N_INV), \
14212 X(vorn, 0x0300110, N_INV, 0x0800010), \
14213 X(vorr, 0x0200110, N_INV, 0x0800010), \
14214 X(vmvn, 0x1b00580, N_INV, 0x0800030), \
14215 X(vshll, 0x1b20300, N_INV, 0x0800a10), /* max shift, immediate. */ \
14216 X(vcvt, 0x1b30600, N_INV, 0x0800e10), /* integer, fixed-point. */ \
14217 X(vdup, 0xe800b10, N_INV, 0x1b00c00), /* arm, scalar. */ \
14218 X(vld1, 0x0200000, 0x0a00000, 0x0a00c00), /* interlv, lane, dup. */ \
14219 X(vst1, 0x0000000, 0x0800000, N_INV), \
14220 X(vld2, 0x0200100, 0x0a00100, 0x0a00d00), \
14221 X(vst2, 0x0000100, 0x0800100, N_INV), \
14222 X(vld3, 0x0200200, 0x0a00200, 0x0a00e00), \
14223 X(vst3, 0x0000200, 0x0800200, N_INV), \
14224 X(vld4, 0x0200300, 0x0a00300, 0x0a00f00), \
14225 X(vst4, 0x0000300, 0x0800300, N_INV), \
14226 X(vmovn, 0x1b20200, N_INV, N_INV), \
14227 X(vtrn, 0x1b20080, N_INV, N_INV), \
14228 X(vqmovn, 0x1b20200, N_INV, N_INV), \
14229 X(vqmovun, 0x1b20240, N_INV, N_INV), \
14230 X(vnmul, 0xe200a40, 0xe200b40, N_INV), \
14231 X(vnmla, 0xe100a40, 0xe100b40, N_INV), \
14232 X(vnmls, 0xe100a00, 0xe100b00, N_INV), \
14233 X(vfnma, 0xe900a40, 0xe900b40, N_INV), \
14234 X(vfnms, 0xe900a00, 0xe900b00, N_INV), \
14235 X(vcmp, 0xeb40a40, 0xeb40b40, N_INV), \
14236 X(vcmpz, 0xeb50a40, 0xeb50b40, N_INV), \
14237 X(vcmpe, 0xeb40ac0, 0xeb40bc0, N_INV), \
14238 X(vcmpez, 0xeb50ac0, 0xeb50bc0, N_INV), \
14239 X(vseleq, 0xe000a00, N_INV, N_INV), \
14240 X(vselvs, 0xe100a00, N_INV, N_INV), \
14241 X(vselge, 0xe200a00, N_INV, N_INV), \
14242 X(vselgt, 0xe300a00, N_INV, N_INV), \
14243 X(vmaxnm, 0xe800a00, 0x3000f10, N_INV), \
14244 X(vminnm, 0xe800a40, 0x3200f10, N_INV), \
14245 X(vcvta, 0xebc0a40, 0x3bb0000, N_INV), \
14246 X(vrintr, 0xeb60a40, 0x3ba0400, N_INV), \
14247 X(vrinta, 0xeb80a40, 0x3ba0400, N_INV), \
14248 X(aes, 0x3b00300, N_INV, N_INV), \
14249 X(sha3op, 0x2000c00, N_INV, N_INV), \
14250 X(sha1h, 0x3b902c0, N_INV, N_INV), \
14251 X(sha2op, 0x3ba0380, N_INV, N_INV)
14252
14253 enum neon_opc
14254 {
14255 #define X(OPC,I,F,S) N_MNEM_##OPC
14256 NEON_ENC_TAB
14257 #undef X
14258 };
14259
14260 static const struct neon_tab_entry neon_enc_tab[] =
14261 {
14262 #define X(OPC,I,F,S) { (I), (F), (S) }
14263 NEON_ENC_TAB
14264 #undef X
14265 };
14266
14267 /* Do not use these macros; instead, use NEON_ENCODE defined below. */
14268 #define NEON_ENC_INTEGER_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
14269 #define NEON_ENC_ARMREG_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
14270 #define NEON_ENC_POLY_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
14271 #define NEON_ENC_FLOAT_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
14272 #define NEON_ENC_SCALAR_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
14273 #define NEON_ENC_IMMED_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
14274 #define NEON_ENC_INTERLV_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
14275 #define NEON_ENC_LANE_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
14276 #define NEON_ENC_DUP_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
14277 #define NEON_ENC_SINGLE_(X) \
14278 ((neon_enc_tab[(X) & 0x0fffffff].integer) | ((X) & 0xf0000000))
14279 #define NEON_ENC_DOUBLE_(X) \
14280 ((neon_enc_tab[(X) & 0x0fffffff].float_or_poly) | ((X) & 0xf0000000))
14281 #define NEON_ENC_FPV8_(X) \
14282 ((neon_enc_tab[(X) & 0x0fffffff].integer) | ((X) & 0xf000000))
14283
14284 #define NEON_ENCODE(type, inst) \
14285 do \
14286 { \
14287 inst.instruction = NEON_ENC_##type##_ (inst.instruction); \
14288 inst.is_neon = 1; \
14289 } \
14290 while (0)
14291
14292 #define check_neon_suffixes \
14293 do \
14294 { \
14295 if (!inst.error && inst.vectype.elems > 0 && !inst.is_neon) \
14296 { \
14297 as_bad (_("invalid neon suffix for non neon instruction")); \
14298 return; \
14299 } \
14300 } \
14301 while (0)
14302
14303 /* Define shapes for instruction operands. The following mnemonic characters
14304 are used in this table:
14305
14306 F - VFP S<n> register
14307 D - Neon D<n> register
14308 Q - Neon Q<n> register
14309 I - Immediate
14310 S - Scalar
14311 R - ARM register
14312 L - D<n> register list
14313
14314 This table is used to generate various data:
14315 - enumerations of the form NS_DDR to be used as arguments to
14316 neon_select_shape.
14317 - a table classifying shapes into single, double, quad, mixed.
14318 - a table used to drive neon_select_shape. */
14319
14320 #define NEON_SHAPE_DEF \
14321 X(4, (R, R, S, S), QUAD), \
14322 X(4, (S, S, R, R), QUAD), \
14323 X(3, (I, Q, Q), QUAD), \
14324 X(3, (I, Q, R), QUAD), \
14325 X(3, (R, Q, Q), QUAD), \
14326 X(3, (D, D, D), DOUBLE), \
14327 X(3, (Q, Q, Q), QUAD), \
14328 X(3, (D, D, I), DOUBLE), \
14329 X(3, (Q, Q, I), QUAD), \
14330 X(3, (D, D, S), DOUBLE), \
14331 X(3, (Q, Q, S), QUAD), \
14332 X(3, (Q, Q, R), QUAD), \
14333 X(3, (R, R, Q), QUAD), \
14334 X(2, (R, Q), QUAD), \
14335 X(2, (D, D), DOUBLE), \
14336 X(2, (Q, Q), QUAD), \
14337 X(2, (D, S), DOUBLE), \
14338 X(2, (Q, S), QUAD), \
14339 X(2, (D, R), DOUBLE), \
14340 X(2, (Q, R), QUAD), \
14341 X(2, (D, I), DOUBLE), \
14342 X(2, (Q, I), QUAD), \
14343 X(3, (D, L, D), DOUBLE), \
14344 X(2, (D, Q), MIXED), \
14345 X(2, (Q, D), MIXED), \
14346 X(3, (D, Q, I), MIXED), \
14347 X(3, (Q, D, I), MIXED), \
14348 X(3, (Q, D, D), MIXED), \
14349 X(3, (D, Q, Q), MIXED), \
14350 X(3, (Q, Q, D), MIXED), \
14351 X(3, (Q, D, S), MIXED), \
14352 X(3, (D, Q, S), MIXED), \
14353 X(4, (D, D, D, I), DOUBLE), \
14354 X(4, (Q, Q, Q, I), QUAD), \
14355 X(4, (D, D, S, I), DOUBLE), \
14356 X(4, (Q, Q, S, I), QUAD), \
14357 X(2, (F, F), SINGLE), \
14358 X(3, (F, F, F), SINGLE), \
14359 X(2, (F, I), SINGLE), \
14360 X(2, (F, D), MIXED), \
14361 X(2, (D, F), MIXED), \
14362 X(3, (F, F, I), MIXED), \
14363 X(4, (R, R, F, F), SINGLE), \
14364 X(4, (F, F, R, R), SINGLE), \
14365 X(3, (D, R, R), DOUBLE), \
14366 X(3, (R, R, D), DOUBLE), \
14367 X(2, (S, R), SINGLE), \
14368 X(2, (R, S), SINGLE), \
14369 X(2, (F, R), SINGLE), \
14370 X(2, (R, F), SINGLE), \
14371 /* Half float shape supported so far. */\
14372 X (2, (H, D), MIXED), \
14373 X (2, (D, H), MIXED), \
14374 X (2, (H, F), MIXED), \
14375 X (2, (F, H), MIXED), \
14376 X (2, (H, H), HALF), \
14377 X (2, (H, R), HALF), \
14378 X (2, (R, H), HALF), \
14379 X (2, (H, I), HALF), \
14380 X (3, (H, H, H), HALF), \
14381 X (3, (H, F, I), MIXED), \
14382 X (3, (F, H, I), MIXED), \
14383 X (3, (D, H, H), MIXED), \
14384 X (3, (D, H, S), MIXED)
14385
14386 #define S2(A,B) NS_##A##B
14387 #define S3(A,B,C) NS_##A##B##C
14388 #define S4(A,B,C,D) NS_##A##B##C##D
14389
14390 #define X(N, L, C) S##N L
14391
14392 enum neon_shape
14393 {
14394 NEON_SHAPE_DEF,
14395 NS_NULL
14396 };
14397
14398 #undef X
14399 #undef S2
14400 #undef S3
14401 #undef S4
14402
14403 enum neon_shape_class
14404 {
14405 SC_HALF,
14406 SC_SINGLE,
14407 SC_DOUBLE,
14408 SC_QUAD,
14409 SC_MIXED
14410 };
14411
14412 #define X(N, L, C) SC_##C
14413
14414 static enum neon_shape_class neon_shape_class[] =
14415 {
14416 NEON_SHAPE_DEF
14417 };
14418
14419 #undef X
14420
14421 enum neon_shape_el
14422 {
14423 SE_H,
14424 SE_F,
14425 SE_D,
14426 SE_Q,
14427 SE_I,
14428 SE_S,
14429 SE_R,
14430 SE_L
14431 };
14432
14433 /* Register widths of above. */
14434 static unsigned neon_shape_el_size[] =
14435 {
14436 16,
14437 32,
14438 64,
14439 128,
14440 0,
14441 32,
14442 32,
14443 0
14444 };
14445
14446 struct neon_shape_info
14447 {
14448 unsigned els;
14449 enum neon_shape_el el[NEON_MAX_TYPE_ELS];
14450 };
14451
14452 #define S2(A,B) { SE_##A, SE_##B }
14453 #define S3(A,B,C) { SE_##A, SE_##B, SE_##C }
14454 #define S4(A,B,C,D) { SE_##A, SE_##B, SE_##C, SE_##D }
14455
14456 #define X(N, L, C) { N, S##N L }
14457
14458 static struct neon_shape_info neon_shape_tab[] =
14459 {
14460 NEON_SHAPE_DEF
14461 };
14462
14463 #undef X
14464 #undef S2
14465 #undef S3
14466 #undef S4
14467
14468 /* Bit masks used in type checking given instructions.
14469 'N_EQK' means the type must be the same as (or based on in some way) the key
14470 type, which itself is marked with the 'N_KEY' bit. If the 'N_EQK' bit is
14471 set, various other bits can be set as well in order to modify the meaning of
14472 the type constraint. */
14473
14474 enum neon_type_mask
14475 {
14476 N_S8 = 0x0000001,
14477 N_S16 = 0x0000002,
14478 N_S32 = 0x0000004,
14479 N_S64 = 0x0000008,
14480 N_U8 = 0x0000010,
14481 N_U16 = 0x0000020,
14482 N_U32 = 0x0000040,
14483 N_U64 = 0x0000080,
14484 N_I8 = 0x0000100,
14485 N_I16 = 0x0000200,
14486 N_I32 = 0x0000400,
14487 N_I64 = 0x0000800,
14488 N_8 = 0x0001000,
14489 N_16 = 0x0002000,
14490 N_32 = 0x0004000,
14491 N_64 = 0x0008000,
14492 N_P8 = 0x0010000,
14493 N_P16 = 0x0020000,
14494 N_F16 = 0x0040000,
14495 N_F32 = 0x0080000,
14496 N_F64 = 0x0100000,
14497 N_P64 = 0x0200000,
14498 N_KEY = 0x1000000, /* Key element (main type specifier). */
14499 N_EQK = 0x2000000, /* Given operand has the same type & size as the key. */
14500 N_VFP = 0x4000000, /* VFP mode: operand size must match register width. */
14501 N_UNT = 0x8000000, /* Must be explicitly untyped. */
14502 N_DBL = 0x0000001, /* If N_EQK, this operand is twice the size. */
14503 N_HLF = 0x0000002, /* If N_EQK, this operand is half the size. */
14504 N_SGN = 0x0000004, /* If N_EQK, this operand is forced to be signed. */
14505 N_UNS = 0x0000008, /* If N_EQK, this operand is forced to be unsigned. */
14506 N_INT = 0x0000010, /* If N_EQK, this operand is forced to be integer. */
14507 N_FLT = 0x0000020, /* If N_EQK, this operand is forced to be float. */
14508 N_SIZ = 0x0000040, /* If N_EQK, this operand is forced to be size-only. */
14509 N_UTYP = 0,
14510 N_MAX_NONSPECIAL = N_P64
14511 };
14512
14513 #define N_ALLMODS (N_DBL | N_HLF | N_SGN | N_UNS | N_INT | N_FLT | N_SIZ)
14514
14515 #define N_SU_ALL (N_S8 | N_S16 | N_S32 | N_S64 | N_U8 | N_U16 | N_U32 | N_U64)
14516 #define N_SU_32 (N_S8 | N_S16 | N_S32 | N_U8 | N_U16 | N_U32)
14517 #define N_SU_16_64 (N_S16 | N_S32 | N_S64 | N_U16 | N_U32 | N_U64)
14518 #define N_S_32 (N_S8 | N_S16 | N_S32)
14519 #define N_F_16_32 (N_F16 | N_F32)
14520 #define N_SUF_32 (N_SU_32 | N_F_16_32)
14521 #define N_I_ALL (N_I8 | N_I16 | N_I32 | N_I64)
14522 #define N_IF_32 (N_I8 | N_I16 | N_I32 | N_F16 | N_F32)
14523 #define N_F_ALL (N_F16 | N_F32 | N_F64)
14524 #define N_I_MVE (N_I8 | N_I16 | N_I32)
14525 #define N_F_MVE (N_F16 | N_F32)
14526 #define N_SU_MVE (N_S8 | N_S16 | N_S32 | N_U8 | N_U16 | N_U32)
14527
14528 /* Pass this as the first type argument to neon_check_type to ignore types
14529 altogether. */
14530 #define N_IGNORE_TYPE (N_KEY | N_EQK)
14531
14532 /* Select a "shape" for the current instruction (describing register types or
14533 sizes) from a list of alternatives. Return NS_NULL if the current instruction
14534 doesn't fit. For non-polymorphic shapes, checking is usually done as a
14535 function of operand parsing, so this function doesn't need to be called.
14536 Shapes should be listed in order of decreasing length. */
14537
14538 static enum neon_shape
14539 neon_select_shape (enum neon_shape shape, ...)
14540 {
14541 va_list ap;
14542 enum neon_shape first_shape = shape;
14543
14544 /* Fix missing optional operands. FIXME: we don't know at this point how
14545 many arguments we should have, so this makes the assumption that we have
14546 > 1. This is true of all current Neon opcodes, I think, but may not be
14547 true in the future. */
14548 if (!inst.operands[1].present)
14549 inst.operands[1] = inst.operands[0];
14550
14551 va_start (ap, shape);
14552
14553 for (; shape != NS_NULL; shape = (enum neon_shape) va_arg (ap, int))
14554 {
14555 unsigned j;
14556 int matches = 1;
14557
14558 for (j = 0; j < neon_shape_tab[shape].els; j++)
14559 {
14560 if (!inst.operands[j].present)
14561 {
14562 matches = 0;
14563 break;
14564 }
14565
14566 switch (neon_shape_tab[shape].el[j])
14567 {
14568 /* If a .f16, .16, .u16, .s16 type specifier is given over
14569 a VFP single precision register operand, it's essentially
14570 means only half of the register is used.
14571
14572 If the type specifier is given after the mnemonics, the
14573 information is stored in inst.vectype. If the type specifier
14574 is given after register operand, the information is stored
14575 in inst.operands[].vectype.
14576
14577 When there is only one type specifier, and all the register
14578 operands are the same type of hardware register, the type
14579 specifier applies to all register operands.
14580
14581 If no type specifier is given, the shape is inferred from
14582 operand information.
14583
14584 for example:
14585 vadd.f16 s0, s1, s2: NS_HHH
14586 vabs.f16 s0, s1: NS_HH
14587 vmov.f16 s0, r1: NS_HR
14588 vmov.f16 r0, s1: NS_RH
14589 vcvt.f16 r0, s1: NS_RH
14590 vcvt.f16.s32 s2, s2, #29: NS_HFI
14591 vcvt.f16.s32 s2, s2: NS_HF
14592 */
14593 case SE_H:
14594 if (!(inst.operands[j].isreg
14595 && inst.operands[j].isvec
14596 && inst.operands[j].issingle
14597 && !inst.operands[j].isquad
14598 && ((inst.vectype.elems == 1
14599 && inst.vectype.el[0].size == 16)
14600 || (inst.vectype.elems > 1
14601 && inst.vectype.el[j].size == 16)
14602 || (inst.vectype.elems == 0
14603 && inst.operands[j].vectype.type != NT_invtype
14604 && inst.operands[j].vectype.size == 16))))
14605 matches = 0;
14606 break;
14607
14608 case SE_F:
14609 if (!(inst.operands[j].isreg
14610 && inst.operands[j].isvec
14611 && inst.operands[j].issingle
14612 && !inst.operands[j].isquad
14613 && ((inst.vectype.elems == 1 && inst.vectype.el[0].size == 32)
14614 || (inst.vectype.elems > 1 && inst.vectype.el[j].size == 32)
14615 || (inst.vectype.elems == 0
14616 && (inst.operands[j].vectype.size == 32
14617 || inst.operands[j].vectype.type == NT_invtype)))))
14618 matches = 0;
14619 break;
14620
14621 case SE_D:
14622 if (!(inst.operands[j].isreg
14623 && inst.operands[j].isvec
14624 && !inst.operands[j].isquad
14625 && !inst.operands[j].issingle))
14626 matches = 0;
14627 break;
14628
14629 case SE_R:
14630 if (!(inst.operands[j].isreg
14631 && !inst.operands[j].isvec))
14632 matches = 0;
14633 break;
14634
14635 case SE_Q:
14636 if (!(inst.operands[j].isreg
14637 && inst.operands[j].isvec
14638 && inst.operands[j].isquad
14639 && !inst.operands[j].issingle))
14640 matches = 0;
14641 break;
14642
14643 case SE_I:
14644 if (!(!inst.operands[j].isreg
14645 && !inst.operands[j].isscalar))
14646 matches = 0;
14647 break;
14648
14649 case SE_S:
14650 if (!(!inst.operands[j].isreg
14651 && inst.operands[j].isscalar))
14652 matches = 0;
14653 break;
14654
14655 case SE_L:
14656 break;
14657 }
14658 if (!matches)
14659 break;
14660 }
14661 if (matches && (j >= ARM_IT_MAX_OPERANDS || !inst.operands[j].present))
14662 /* We've matched all the entries in the shape table, and we don't
14663 have any left over operands which have not been matched. */
14664 break;
14665 }
14666
14667 va_end (ap);
14668
14669 if (shape == NS_NULL && first_shape != NS_NULL)
14670 first_error (_("invalid instruction shape"));
14671
14672 return shape;
14673 }
14674
14675 /* True if SHAPE is predominantly a quadword operation (most of the time, this
14676 means the Q bit should be set). */
14677
14678 static int
14679 neon_quad (enum neon_shape shape)
14680 {
14681 return neon_shape_class[shape] == SC_QUAD;
14682 }
14683
14684 static void
14685 neon_modify_type_size (unsigned typebits, enum neon_el_type *g_type,
14686 unsigned *g_size)
14687 {
14688 /* Allow modification to be made to types which are constrained to be
14689 based on the key element, based on bits set alongside N_EQK. */
14690 if ((typebits & N_EQK) != 0)
14691 {
14692 if ((typebits & N_HLF) != 0)
14693 *g_size /= 2;
14694 else if ((typebits & N_DBL) != 0)
14695 *g_size *= 2;
14696 if ((typebits & N_SGN) != 0)
14697 *g_type = NT_signed;
14698 else if ((typebits & N_UNS) != 0)
14699 *g_type = NT_unsigned;
14700 else if ((typebits & N_INT) != 0)
14701 *g_type = NT_integer;
14702 else if ((typebits & N_FLT) != 0)
14703 *g_type = NT_float;
14704 else if ((typebits & N_SIZ) != 0)
14705 *g_type = NT_untyped;
14706 }
14707 }
14708
14709 /* Return operand OPNO promoted by bits set in THISARG. KEY should be the "key"
14710 operand type, i.e. the single type specified in a Neon instruction when it
14711 is the only one given. */
14712
14713 static struct neon_type_el
14714 neon_type_promote (struct neon_type_el *key, unsigned thisarg)
14715 {
14716 struct neon_type_el dest = *key;
14717
14718 gas_assert ((thisarg & N_EQK) != 0);
14719
14720 neon_modify_type_size (thisarg, &dest.type, &dest.size);
14721
14722 return dest;
14723 }
14724
14725 /* Convert Neon type and size into compact bitmask representation. */
14726
14727 static enum neon_type_mask
14728 type_chk_of_el_type (enum neon_el_type type, unsigned size)
14729 {
14730 switch (type)
14731 {
14732 case NT_untyped:
14733 switch (size)
14734 {
14735 case 8: return N_8;
14736 case 16: return N_16;
14737 case 32: return N_32;
14738 case 64: return N_64;
14739 default: ;
14740 }
14741 break;
14742
14743 case NT_integer:
14744 switch (size)
14745 {
14746 case 8: return N_I8;
14747 case 16: return N_I16;
14748 case 32: return N_I32;
14749 case 64: return N_I64;
14750 default: ;
14751 }
14752 break;
14753
14754 case NT_float:
14755 switch (size)
14756 {
14757 case 16: return N_F16;
14758 case 32: return N_F32;
14759 case 64: return N_F64;
14760 default: ;
14761 }
14762 break;
14763
14764 case NT_poly:
14765 switch (size)
14766 {
14767 case 8: return N_P8;
14768 case 16: return N_P16;
14769 case 64: return N_P64;
14770 default: ;
14771 }
14772 break;
14773
14774 case NT_signed:
14775 switch (size)
14776 {
14777 case 8: return N_S8;
14778 case 16: return N_S16;
14779 case 32: return N_S32;
14780 case 64: return N_S64;
14781 default: ;
14782 }
14783 break;
14784
14785 case NT_unsigned:
14786 switch (size)
14787 {
14788 case 8: return N_U8;
14789 case 16: return N_U16;
14790 case 32: return N_U32;
14791 case 64: return N_U64;
14792 default: ;
14793 }
14794 break;
14795
14796 default: ;
14797 }
14798
14799 return N_UTYP;
14800 }
14801
14802 /* Convert compact Neon bitmask type representation to a type and size. Only
14803 handles the case where a single bit is set in the mask. */
14804
14805 static int
14806 el_type_of_type_chk (enum neon_el_type *type, unsigned *size,
14807 enum neon_type_mask mask)
14808 {
14809 if ((mask & N_EQK) != 0)
14810 return FAIL;
14811
14812 if ((mask & (N_S8 | N_U8 | N_I8 | N_8 | N_P8)) != 0)
14813 *size = 8;
14814 else if ((mask & (N_S16 | N_U16 | N_I16 | N_16 | N_F16 | N_P16)) != 0)
14815 *size = 16;
14816 else if ((mask & (N_S32 | N_U32 | N_I32 | N_32 | N_F32)) != 0)
14817 *size = 32;
14818 else if ((mask & (N_S64 | N_U64 | N_I64 | N_64 | N_F64 | N_P64)) != 0)
14819 *size = 64;
14820 else
14821 return FAIL;
14822
14823 if ((mask & (N_S8 | N_S16 | N_S32 | N_S64)) != 0)
14824 *type = NT_signed;
14825 else if ((mask & (N_U8 | N_U16 | N_U32 | N_U64)) != 0)
14826 *type = NT_unsigned;
14827 else if ((mask & (N_I8 | N_I16 | N_I32 | N_I64)) != 0)
14828 *type = NT_integer;
14829 else if ((mask & (N_8 | N_16 | N_32 | N_64)) != 0)
14830 *type = NT_untyped;
14831 else if ((mask & (N_P8 | N_P16 | N_P64)) != 0)
14832 *type = NT_poly;
14833 else if ((mask & (N_F_ALL)) != 0)
14834 *type = NT_float;
14835 else
14836 return FAIL;
14837
14838 return SUCCESS;
14839 }
14840
14841 /* Modify a bitmask of allowed types. This is only needed for type
14842 relaxation. */
14843
14844 static unsigned
14845 modify_types_allowed (unsigned allowed, unsigned mods)
14846 {
14847 unsigned size;
14848 enum neon_el_type type;
14849 unsigned destmask;
14850 int i;
14851
14852 destmask = 0;
14853
14854 for (i = 1; i <= N_MAX_NONSPECIAL; i <<= 1)
14855 {
14856 if (el_type_of_type_chk (&type, &size,
14857 (enum neon_type_mask) (allowed & i)) == SUCCESS)
14858 {
14859 neon_modify_type_size (mods, &type, &size);
14860 destmask |= type_chk_of_el_type (type, size);
14861 }
14862 }
14863
14864 return destmask;
14865 }
14866
14867 /* Check type and return type classification.
14868 The manual states (paraphrase): If one datatype is given, it indicates the
14869 type given in:
14870 - the second operand, if there is one
14871 - the operand, if there is no second operand
14872 - the result, if there are no operands.
14873 This isn't quite good enough though, so we use a concept of a "key" datatype
14874 which is set on a per-instruction basis, which is the one which matters when
14875 only one data type is written.
14876 Note: this function has side-effects (e.g. filling in missing operands). All
14877 Neon instructions should call it before performing bit encoding. */
14878
14879 static struct neon_type_el
14880 neon_check_type (unsigned els, enum neon_shape ns, ...)
14881 {
14882 va_list ap;
14883 unsigned i, pass, key_el = 0;
14884 unsigned types[NEON_MAX_TYPE_ELS];
14885 enum neon_el_type k_type = NT_invtype;
14886 unsigned k_size = -1u;
14887 struct neon_type_el badtype = {NT_invtype, -1};
14888 unsigned key_allowed = 0;
14889
14890 /* Optional registers in Neon instructions are always (not) in operand 1.
14891 Fill in the missing operand here, if it was omitted. */
14892 if (els > 1 && !inst.operands[1].present)
14893 inst.operands[1] = inst.operands[0];
14894
14895 /* Suck up all the varargs. */
14896 va_start (ap, ns);
14897 for (i = 0; i < els; i++)
14898 {
14899 unsigned thisarg = va_arg (ap, unsigned);
14900 if (thisarg == N_IGNORE_TYPE)
14901 {
14902 va_end (ap);
14903 return badtype;
14904 }
14905 types[i] = thisarg;
14906 if ((thisarg & N_KEY) != 0)
14907 key_el = i;
14908 }
14909 va_end (ap);
14910
14911 if (inst.vectype.elems > 0)
14912 for (i = 0; i < els; i++)
14913 if (inst.operands[i].vectype.type != NT_invtype)
14914 {
14915 first_error (_("types specified in both the mnemonic and operands"));
14916 return badtype;
14917 }
14918
14919 /* Duplicate inst.vectype elements here as necessary.
14920 FIXME: No idea if this is exactly the same as the ARM assembler,
14921 particularly when an insn takes one register and one non-register
14922 operand. */
14923 if (inst.vectype.elems == 1 && els > 1)
14924 {
14925 unsigned j;
14926 inst.vectype.elems = els;
14927 inst.vectype.el[key_el] = inst.vectype.el[0];
14928 for (j = 0; j < els; j++)
14929 if (j != key_el)
14930 inst.vectype.el[j] = neon_type_promote (&inst.vectype.el[key_el],
14931 types[j]);
14932 }
14933 else if (inst.vectype.elems == 0 && els > 0)
14934 {
14935 unsigned j;
14936 /* No types were given after the mnemonic, so look for types specified
14937 after each operand. We allow some flexibility here; as long as the
14938 "key" operand has a type, we can infer the others. */
14939 for (j = 0; j < els; j++)
14940 if (inst.operands[j].vectype.type != NT_invtype)
14941 inst.vectype.el[j] = inst.operands[j].vectype;
14942
14943 if (inst.operands[key_el].vectype.type != NT_invtype)
14944 {
14945 for (j = 0; j < els; j++)
14946 if (inst.operands[j].vectype.type == NT_invtype)
14947 inst.vectype.el[j] = neon_type_promote (&inst.vectype.el[key_el],
14948 types[j]);
14949 }
14950 else
14951 {
14952 first_error (_("operand types can't be inferred"));
14953 return badtype;
14954 }
14955 }
14956 else if (inst.vectype.elems != els)
14957 {
14958 first_error (_("type specifier has the wrong number of parts"));
14959 return badtype;
14960 }
14961
14962 for (pass = 0; pass < 2; pass++)
14963 {
14964 for (i = 0; i < els; i++)
14965 {
14966 unsigned thisarg = types[i];
14967 unsigned types_allowed = ((thisarg & N_EQK) != 0 && pass != 0)
14968 ? modify_types_allowed (key_allowed, thisarg) : thisarg;
14969 enum neon_el_type g_type = inst.vectype.el[i].type;
14970 unsigned g_size = inst.vectype.el[i].size;
14971
14972 /* Decay more-specific signed & unsigned types to sign-insensitive
14973 integer types if sign-specific variants are unavailable. */
14974 if ((g_type == NT_signed || g_type == NT_unsigned)
14975 && (types_allowed & N_SU_ALL) == 0)
14976 g_type = NT_integer;
14977
14978 /* If only untyped args are allowed, decay any more specific types to
14979 them. Some instructions only care about signs for some element
14980 sizes, so handle that properly. */
14981 if (((types_allowed & N_UNT) == 0)
14982 && ((g_size == 8 && (types_allowed & N_8) != 0)
14983 || (g_size == 16 && (types_allowed & N_16) != 0)
14984 || (g_size == 32 && (types_allowed & N_32) != 0)
14985 || (g_size == 64 && (types_allowed & N_64) != 0)))
14986 g_type = NT_untyped;
14987
14988 if (pass == 0)
14989 {
14990 if ((thisarg & N_KEY) != 0)
14991 {
14992 k_type = g_type;
14993 k_size = g_size;
14994 key_allowed = thisarg & ~N_KEY;
14995
14996 /* Check architecture constraint on FP16 extension. */
14997 if (k_size == 16
14998 && k_type == NT_float
14999 && ! ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16))
15000 {
15001 inst.error = _(BAD_FP16);
15002 return badtype;
15003 }
15004 }
15005 }
15006 else
15007 {
15008 if ((thisarg & N_VFP) != 0)
15009 {
15010 enum neon_shape_el regshape;
15011 unsigned regwidth, match;
15012
15013 /* PR 11136: Catch the case where we are passed a shape of NS_NULL. */
15014 if (ns == NS_NULL)
15015 {
15016 first_error (_("invalid instruction shape"));
15017 return badtype;
15018 }
15019 regshape = neon_shape_tab[ns].el[i];
15020 regwidth = neon_shape_el_size[regshape];
15021
15022 /* In VFP mode, operands must match register widths. If we
15023 have a key operand, use its width, else use the width of
15024 the current operand. */
15025 if (k_size != -1u)
15026 match = k_size;
15027 else
15028 match = g_size;
15029
15030 /* FP16 will use a single precision register. */
15031 if (regwidth == 32 && match == 16)
15032 {
15033 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16))
15034 match = regwidth;
15035 else
15036 {
15037 inst.error = _(BAD_FP16);
15038 return badtype;
15039 }
15040 }
15041
15042 if (regwidth != match)
15043 {
15044 first_error (_("operand size must match register width"));
15045 return badtype;
15046 }
15047 }
15048
15049 if ((thisarg & N_EQK) == 0)
15050 {
15051 unsigned given_type = type_chk_of_el_type (g_type, g_size);
15052
15053 if ((given_type & types_allowed) == 0)
15054 {
15055 first_error (BAD_SIMD_TYPE);
15056 return badtype;
15057 }
15058 }
15059 else
15060 {
15061 enum neon_el_type mod_k_type = k_type;
15062 unsigned mod_k_size = k_size;
15063 neon_modify_type_size (thisarg, &mod_k_type, &mod_k_size);
15064 if (g_type != mod_k_type || g_size != mod_k_size)
15065 {
15066 first_error (_("inconsistent types in Neon instruction"));
15067 return badtype;
15068 }
15069 }
15070 }
15071 }
15072 }
15073
15074 return inst.vectype.el[key_el];
15075 }
15076
15077 /* Neon-style VFP instruction forwarding. */
15078
15079 /* Thumb VFP instructions have 0xE in the condition field. */
15080
15081 static void
15082 do_vfp_cond_or_thumb (void)
15083 {
15084 inst.is_neon = 1;
15085
15086 if (thumb_mode)
15087 inst.instruction |= 0xe0000000;
15088 else
15089 inst.instruction |= inst.cond << 28;
15090 }
15091
15092 /* Look up and encode a simple mnemonic, for use as a helper function for the
15093 Neon-style VFP syntax. This avoids duplication of bits of the insns table,
15094 etc. It is assumed that operand parsing has already been done, and that the
15095 operands are in the form expected by the given opcode (this isn't necessarily
15096 the same as the form in which they were parsed, hence some massaging must
15097 take place before this function is called).
15098 Checks current arch version against that in the looked-up opcode. */
15099
15100 static void
15101 do_vfp_nsyn_opcode (const char *opname)
15102 {
15103 const struct asm_opcode *opcode;
15104
15105 opcode = (const struct asm_opcode *) hash_find (arm_ops_hsh, opname);
15106
15107 if (!opcode)
15108 abort ();
15109
15110 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant,
15111 thumb_mode ? *opcode->tvariant : *opcode->avariant),
15112 _(BAD_FPU));
15113
15114 inst.is_neon = 1;
15115
15116 if (thumb_mode)
15117 {
15118 inst.instruction = opcode->tvalue;
15119 opcode->tencode ();
15120 }
15121 else
15122 {
15123 inst.instruction = (inst.cond << 28) | opcode->avalue;
15124 opcode->aencode ();
15125 }
15126 }
15127
15128 static void
15129 do_vfp_nsyn_add_sub (enum neon_shape rs)
15130 {
15131 int is_add = (inst.instruction & 0x0fffffff) == N_MNEM_vadd;
15132
15133 if (rs == NS_FFF || rs == NS_HHH)
15134 {
15135 if (is_add)
15136 do_vfp_nsyn_opcode ("fadds");
15137 else
15138 do_vfp_nsyn_opcode ("fsubs");
15139
15140 /* ARMv8.2 fp16 instruction. */
15141 if (rs == NS_HHH)
15142 do_scalar_fp16_v82_encode ();
15143 }
15144 else
15145 {
15146 if (is_add)
15147 do_vfp_nsyn_opcode ("faddd");
15148 else
15149 do_vfp_nsyn_opcode ("fsubd");
15150 }
15151 }
15152
15153 /* Check operand types to see if this is a VFP instruction, and if so call
15154 PFN (). */
15155
15156 static int
15157 try_vfp_nsyn (int args, void (*pfn) (enum neon_shape))
15158 {
15159 enum neon_shape rs;
15160 struct neon_type_el et;
15161
15162 switch (args)
15163 {
15164 case 2:
15165 rs = neon_select_shape (NS_HH, NS_FF, NS_DD, NS_NULL);
15166 et = neon_check_type (2, rs, N_EQK | N_VFP, N_F_ALL | N_KEY | N_VFP);
15167 break;
15168
15169 case 3:
15170 rs = neon_select_shape (NS_HHH, NS_FFF, NS_DDD, NS_NULL);
15171 et = neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
15172 N_F_ALL | N_KEY | N_VFP);
15173 break;
15174
15175 default:
15176 abort ();
15177 }
15178
15179 if (et.type != NT_invtype)
15180 {
15181 pfn (rs);
15182 return SUCCESS;
15183 }
15184
15185 inst.error = NULL;
15186 return FAIL;
15187 }
15188
15189 static void
15190 do_vfp_nsyn_mla_mls (enum neon_shape rs)
15191 {
15192 int is_mla = (inst.instruction & 0x0fffffff) == N_MNEM_vmla;
15193
15194 if (rs == NS_FFF || rs == NS_HHH)
15195 {
15196 if (is_mla)
15197 do_vfp_nsyn_opcode ("fmacs");
15198 else
15199 do_vfp_nsyn_opcode ("fnmacs");
15200
15201 /* ARMv8.2 fp16 instruction. */
15202 if (rs == NS_HHH)
15203 do_scalar_fp16_v82_encode ();
15204 }
15205 else
15206 {
15207 if (is_mla)
15208 do_vfp_nsyn_opcode ("fmacd");
15209 else
15210 do_vfp_nsyn_opcode ("fnmacd");
15211 }
15212 }
15213
15214 static void
15215 do_vfp_nsyn_fma_fms (enum neon_shape rs)
15216 {
15217 int is_fma = (inst.instruction & 0x0fffffff) == N_MNEM_vfma;
15218
15219 if (rs == NS_FFF || rs == NS_HHH)
15220 {
15221 if (is_fma)
15222 do_vfp_nsyn_opcode ("ffmas");
15223 else
15224 do_vfp_nsyn_opcode ("ffnmas");
15225
15226 /* ARMv8.2 fp16 instruction. */
15227 if (rs == NS_HHH)
15228 do_scalar_fp16_v82_encode ();
15229 }
15230 else
15231 {
15232 if (is_fma)
15233 do_vfp_nsyn_opcode ("ffmad");
15234 else
15235 do_vfp_nsyn_opcode ("ffnmad");
15236 }
15237 }
15238
15239 static void
15240 do_vfp_nsyn_mul (enum neon_shape rs)
15241 {
15242 if (rs == NS_FFF || rs == NS_HHH)
15243 {
15244 do_vfp_nsyn_opcode ("fmuls");
15245
15246 /* ARMv8.2 fp16 instruction. */
15247 if (rs == NS_HHH)
15248 do_scalar_fp16_v82_encode ();
15249 }
15250 else
15251 do_vfp_nsyn_opcode ("fmuld");
15252 }
15253
15254 static void
15255 do_vfp_nsyn_abs_neg (enum neon_shape rs)
15256 {
15257 int is_neg = (inst.instruction & 0x80) != 0;
15258 neon_check_type (2, rs, N_EQK | N_VFP, N_F_ALL | N_VFP | N_KEY);
15259
15260 if (rs == NS_FF || rs == NS_HH)
15261 {
15262 if (is_neg)
15263 do_vfp_nsyn_opcode ("fnegs");
15264 else
15265 do_vfp_nsyn_opcode ("fabss");
15266
15267 /* ARMv8.2 fp16 instruction. */
15268 if (rs == NS_HH)
15269 do_scalar_fp16_v82_encode ();
15270 }
15271 else
15272 {
15273 if (is_neg)
15274 do_vfp_nsyn_opcode ("fnegd");
15275 else
15276 do_vfp_nsyn_opcode ("fabsd");
15277 }
15278 }
15279
15280 /* Encode single-precision (only!) VFP fldm/fstm instructions. Double precision
15281 insns belong to Neon, and are handled elsewhere. */
15282
15283 static void
15284 do_vfp_nsyn_ldm_stm (int is_dbmode)
15285 {
15286 int is_ldm = (inst.instruction & (1 << 20)) != 0;
15287 if (is_ldm)
15288 {
15289 if (is_dbmode)
15290 do_vfp_nsyn_opcode ("fldmdbs");
15291 else
15292 do_vfp_nsyn_opcode ("fldmias");
15293 }
15294 else
15295 {
15296 if (is_dbmode)
15297 do_vfp_nsyn_opcode ("fstmdbs");
15298 else
15299 do_vfp_nsyn_opcode ("fstmias");
15300 }
15301 }
15302
15303 static void
15304 do_vfp_nsyn_sqrt (void)
15305 {
15306 enum neon_shape rs = neon_select_shape (NS_HH, NS_FF, NS_DD, NS_NULL);
15307 neon_check_type (2, rs, N_EQK | N_VFP, N_F_ALL | N_KEY | N_VFP);
15308
15309 if (rs == NS_FF || rs == NS_HH)
15310 {
15311 do_vfp_nsyn_opcode ("fsqrts");
15312
15313 /* ARMv8.2 fp16 instruction. */
15314 if (rs == NS_HH)
15315 do_scalar_fp16_v82_encode ();
15316 }
15317 else
15318 do_vfp_nsyn_opcode ("fsqrtd");
15319 }
15320
15321 static void
15322 do_vfp_nsyn_div (void)
15323 {
15324 enum neon_shape rs = neon_select_shape (NS_HHH, NS_FFF, NS_DDD, NS_NULL);
15325 neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
15326 N_F_ALL | N_KEY | N_VFP);
15327
15328 if (rs == NS_FFF || rs == NS_HHH)
15329 {
15330 do_vfp_nsyn_opcode ("fdivs");
15331
15332 /* ARMv8.2 fp16 instruction. */
15333 if (rs == NS_HHH)
15334 do_scalar_fp16_v82_encode ();
15335 }
15336 else
15337 do_vfp_nsyn_opcode ("fdivd");
15338 }
15339
15340 static void
15341 do_vfp_nsyn_nmul (void)
15342 {
15343 enum neon_shape rs = neon_select_shape (NS_HHH, NS_FFF, NS_DDD, NS_NULL);
15344 neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
15345 N_F_ALL | N_KEY | N_VFP);
15346
15347 if (rs == NS_FFF || rs == NS_HHH)
15348 {
15349 NEON_ENCODE (SINGLE, inst);
15350 do_vfp_sp_dyadic ();
15351
15352 /* ARMv8.2 fp16 instruction. */
15353 if (rs == NS_HHH)
15354 do_scalar_fp16_v82_encode ();
15355 }
15356 else
15357 {
15358 NEON_ENCODE (DOUBLE, inst);
15359 do_vfp_dp_rd_rn_rm ();
15360 }
15361 do_vfp_cond_or_thumb ();
15362
15363 }
15364
15365 /* Turn a size (8, 16, 32, 64) into the respective bit number minus 3
15366 (0, 1, 2, 3). */
15367
15368 static unsigned
15369 neon_logbits (unsigned x)
15370 {
15371 return ffs (x) - 4;
15372 }
15373
15374 #define LOW4(R) ((R) & 0xf)
15375 #define HI1(R) (((R) >> 4) & 1)
15376
15377 static unsigned
15378 mve_get_vcmp_vpt_cond (struct neon_type_el et)
15379 {
15380 switch (et.type)
15381 {
15382 default:
15383 first_error (BAD_EL_TYPE);
15384 return 0;
15385 case NT_float:
15386 switch (inst.operands[0].imm)
15387 {
15388 default:
15389 first_error (_("invalid condition"));
15390 return 0;
15391 case 0x0:
15392 /* eq. */
15393 return 0;
15394 case 0x1:
15395 /* ne. */
15396 return 1;
15397 case 0xa:
15398 /* ge/ */
15399 return 4;
15400 case 0xb:
15401 /* lt. */
15402 return 5;
15403 case 0xc:
15404 /* gt. */
15405 return 6;
15406 case 0xd:
15407 /* le. */
15408 return 7;
15409 }
15410 case NT_integer:
15411 /* only accept eq and ne. */
15412 if (inst.operands[0].imm > 1)
15413 {
15414 first_error (_("invalid condition"));
15415 return 0;
15416 }
15417 return inst.operands[0].imm;
15418 case NT_unsigned:
15419 if (inst.operands[0].imm == 0x2)
15420 return 2;
15421 else if (inst.operands[0].imm == 0x8)
15422 return 3;
15423 else
15424 {
15425 first_error (_("invalid condition"));
15426 return 0;
15427 }
15428 case NT_signed:
15429 switch (inst.operands[0].imm)
15430 {
15431 default:
15432 first_error (_("invalid condition"));
15433 return 0;
15434 case 0xa:
15435 /* ge. */
15436 return 4;
15437 case 0xb:
15438 /* lt. */
15439 return 5;
15440 case 0xc:
15441 /* gt. */
15442 return 6;
15443 case 0xd:
15444 /* le. */
15445 return 7;
15446 }
15447 }
15448 /* Should be unreachable. */
15449 abort ();
15450 }
15451
15452 static void
15453 do_mve_vpt (void)
15454 {
15455 /* We are dealing with a vector predicated block. */
15456 if (inst.operands[0].present)
15457 {
15458 enum neon_shape rs = neon_select_shape (NS_IQQ, NS_IQR, NS_NULL);
15459 struct neon_type_el et
15460 = neon_check_type (3, rs, N_EQK, N_KEY | N_F_MVE | N_I_MVE | N_SU_32,
15461 N_EQK);
15462
15463 unsigned fcond = mve_get_vcmp_vpt_cond (et);
15464
15465 constraint (inst.operands[1].reg > 14, MVE_BAD_QREG);
15466
15467 if (et.type == NT_invtype)
15468 return;
15469
15470 if (et.type == NT_float)
15471 {
15472 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext),
15473 BAD_FPU);
15474 constraint (et.size != 16 && et.size != 32, BAD_EL_TYPE);
15475 inst.instruction |= (et.size == 16) << 28;
15476 inst.instruction |= 0x3 << 20;
15477 }
15478 else
15479 {
15480 constraint (et.size != 8 && et.size != 16 && et.size != 32,
15481 BAD_EL_TYPE);
15482 inst.instruction |= 1 << 28;
15483 inst.instruction |= neon_logbits (et.size) << 20;
15484 }
15485
15486 if (inst.operands[2].isquad)
15487 {
15488 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
15489 inst.instruction |= LOW4 (inst.operands[2].reg);
15490 inst.instruction |= (fcond & 0x2) >> 1;
15491 }
15492 else
15493 {
15494 if (inst.operands[2].reg == REG_SP)
15495 as_tsktsk (MVE_BAD_SP);
15496 inst.instruction |= 1 << 6;
15497 inst.instruction |= (fcond & 0x2) << 4;
15498 inst.instruction |= inst.operands[2].reg;
15499 }
15500 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15501 inst.instruction |= (fcond & 0x4) << 10;
15502 inst.instruction |= (fcond & 0x1) << 7;
15503
15504 }
15505 set_pred_insn_type (VPT_INSN);
15506 now_pred.cc = 0;
15507 now_pred.mask = ((inst.instruction & 0x00400000) >> 19)
15508 | ((inst.instruction & 0xe000) >> 13);
15509 now_pred.warn_deprecated = FALSE;
15510 now_pred.type = VECTOR_PRED;
15511 inst.is_neon = 1;
15512 }
15513
15514 static void
15515 do_mve_vcmp (void)
15516 {
15517 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext), BAD_FPU);
15518 if (!inst.operands[1].isreg || !inst.operands[1].isquad)
15519 first_error (_(reg_expected_msgs[REG_TYPE_MQ]));
15520 if (!inst.operands[2].present)
15521 first_error (_("MVE vector or ARM register expected"));
15522 constraint (inst.operands[1].reg > 14, MVE_BAD_QREG);
15523
15524 /* Deal with 'else' conditional MVE's vcmp, it will be parsed as vcmpe. */
15525 if ((inst.instruction & 0xffffffff) == N_MNEM_vcmpe
15526 && inst.operands[1].isquad)
15527 {
15528 inst.instruction = N_MNEM_vcmp;
15529 inst.cond = 0x10;
15530 }
15531
15532 if (inst.cond > COND_ALWAYS)
15533 inst.pred_insn_type = INSIDE_VPT_INSN;
15534 else
15535 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
15536
15537 enum neon_shape rs = neon_select_shape (NS_IQQ, NS_IQR, NS_NULL);
15538 struct neon_type_el et
15539 = neon_check_type (3, rs, N_EQK, N_KEY | N_F_MVE | N_I_MVE | N_SU_32,
15540 N_EQK);
15541
15542 constraint (rs == NS_IQR && inst.operands[2].reg == REG_PC
15543 && !inst.operands[2].iszr, BAD_PC);
15544
15545 unsigned fcond = mve_get_vcmp_vpt_cond (et);
15546
15547 inst.instruction = 0xee010f00;
15548 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15549 inst.instruction |= (fcond & 0x4) << 10;
15550 inst.instruction |= (fcond & 0x1) << 7;
15551 if (et.type == NT_float)
15552 {
15553 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext),
15554 BAD_FPU);
15555 inst.instruction |= (et.size == 16) << 28;
15556 inst.instruction |= 0x3 << 20;
15557 }
15558 else
15559 {
15560 inst.instruction |= 1 << 28;
15561 inst.instruction |= neon_logbits (et.size) << 20;
15562 }
15563 if (inst.operands[2].isquad)
15564 {
15565 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
15566 inst.instruction |= (fcond & 0x2) >> 1;
15567 inst.instruction |= LOW4 (inst.operands[2].reg);
15568 }
15569 else
15570 {
15571 if (inst.operands[2].reg == REG_SP)
15572 as_tsktsk (MVE_BAD_SP);
15573 inst.instruction |= 1 << 6;
15574 inst.instruction |= (fcond & 0x2) << 4;
15575 inst.instruction |= inst.operands[2].reg;
15576 }
15577
15578 inst.is_neon = 1;
15579 return;
15580 }
15581
15582 static void
15583 do_mve_vcmul (void)
15584 {
15585 enum neon_shape rs = neon_select_shape (NS_QQQI, NS_NULL);
15586 struct neon_type_el et
15587 = neon_check_type (3, rs, N_EQK, N_EQK, N_F_MVE | N_KEY);
15588
15589 if (inst.cond > COND_ALWAYS)
15590 inst.pred_insn_type = INSIDE_VPT_INSN;
15591 else
15592 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
15593
15594 unsigned rot = inst.relocs[0].exp.X_add_number;
15595 constraint (rot != 0 && rot != 90 && rot != 180 && rot != 270,
15596 _("immediate out of range"));
15597
15598 if (et.size == 32 && (inst.operands[0].reg == inst.operands[1].reg
15599 || inst.operands[0].reg == inst.operands[2].reg))
15600 as_tsktsk (BAD_MVE_SRCDEST);
15601
15602 inst.instruction |= (et.size == 32) << 28;
15603 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15604 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15605 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15606 inst.instruction |= (rot > 90) << 12;
15607 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
15608 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
15609 inst.instruction |= LOW4 (inst.operands[2].reg);
15610 inst.instruction |= (rot == 90 || rot == 270);
15611 inst.is_neon = 1;
15612 }
15613
15614 static void
15615 do_vfp_nsyn_cmp (void)
15616 {
15617 enum neon_shape rs;
15618 if (!inst.operands[0].isreg)
15619 {
15620 do_mve_vcmp ();
15621 return;
15622 }
15623 else
15624 {
15625 constraint (inst.operands[2].present, BAD_SYNTAX);
15626 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1xd),
15627 BAD_FPU);
15628 }
15629
15630 if (inst.operands[1].isreg)
15631 {
15632 rs = neon_select_shape (NS_HH, NS_FF, NS_DD, NS_NULL);
15633 neon_check_type (2, rs, N_EQK | N_VFP, N_F_ALL | N_KEY | N_VFP);
15634
15635 if (rs == NS_FF || rs == NS_HH)
15636 {
15637 NEON_ENCODE (SINGLE, inst);
15638 do_vfp_sp_monadic ();
15639 }
15640 else
15641 {
15642 NEON_ENCODE (DOUBLE, inst);
15643 do_vfp_dp_rd_rm ();
15644 }
15645 }
15646 else
15647 {
15648 rs = neon_select_shape (NS_HI, NS_FI, NS_DI, NS_NULL);
15649 neon_check_type (2, rs, N_F_ALL | N_KEY | N_VFP, N_EQK);
15650
15651 switch (inst.instruction & 0x0fffffff)
15652 {
15653 case N_MNEM_vcmp:
15654 inst.instruction += N_MNEM_vcmpz - N_MNEM_vcmp;
15655 break;
15656 case N_MNEM_vcmpe:
15657 inst.instruction += N_MNEM_vcmpez - N_MNEM_vcmpe;
15658 break;
15659 default:
15660 abort ();
15661 }
15662
15663 if (rs == NS_FI || rs == NS_HI)
15664 {
15665 NEON_ENCODE (SINGLE, inst);
15666 do_vfp_sp_compare_z ();
15667 }
15668 else
15669 {
15670 NEON_ENCODE (DOUBLE, inst);
15671 do_vfp_dp_rd ();
15672 }
15673 }
15674 do_vfp_cond_or_thumb ();
15675
15676 /* ARMv8.2 fp16 instruction. */
15677 if (rs == NS_HI || rs == NS_HH)
15678 do_scalar_fp16_v82_encode ();
15679 }
15680
15681 static void
15682 nsyn_insert_sp (void)
15683 {
15684 inst.operands[1] = inst.operands[0];
15685 memset (&inst.operands[0], '\0', sizeof (inst.operands[0]));
15686 inst.operands[0].reg = REG_SP;
15687 inst.operands[0].isreg = 1;
15688 inst.operands[0].writeback = 1;
15689 inst.operands[0].present = 1;
15690 }
15691
15692 static void
15693 do_vfp_nsyn_push (void)
15694 {
15695 nsyn_insert_sp ();
15696
15697 constraint (inst.operands[1].imm < 1 || inst.operands[1].imm > 16,
15698 _("register list must contain at least 1 and at most 16 "
15699 "registers"));
15700
15701 if (inst.operands[1].issingle)
15702 do_vfp_nsyn_opcode ("fstmdbs");
15703 else
15704 do_vfp_nsyn_opcode ("fstmdbd");
15705 }
15706
15707 static void
15708 do_vfp_nsyn_pop (void)
15709 {
15710 nsyn_insert_sp ();
15711
15712 constraint (inst.operands[1].imm < 1 || inst.operands[1].imm > 16,
15713 _("register list must contain at least 1 and at most 16 "
15714 "registers"));
15715
15716 if (inst.operands[1].issingle)
15717 do_vfp_nsyn_opcode ("fldmias");
15718 else
15719 do_vfp_nsyn_opcode ("fldmiad");
15720 }
15721
15722 /* Fix up Neon data-processing instructions, ORing in the correct bits for
15723 ARM mode or Thumb mode and moving the encoded bit 24 to bit 28. */
15724
15725 static void
15726 neon_dp_fixup (struct arm_it* insn)
15727 {
15728 unsigned int i = insn->instruction;
15729 insn->is_neon = 1;
15730
15731 if (thumb_mode)
15732 {
15733 /* The U bit is at bit 24 by default. Move to bit 28 in Thumb mode. */
15734 if (i & (1 << 24))
15735 i |= 1 << 28;
15736
15737 i &= ~(1 << 24);
15738
15739 i |= 0xef000000;
15740 }
15741 else
15742 i |= 0xf2000000;
15743
15744 insn->instruction = i;
15745 }
15746
15747 static void
15748 mve_encode_qqr (int size, int fp)
15749 {
15750 if (inst.operands[2].reg == REG_SP)
15751 as_tsktsk (MVE_BAD_SP);
15752 else if (inst.operands[2].reg == REG_PC)
15753 as_tsktsk (MVE_BAD_PC);
15754
15755 if (fp)
15756 {
15757 /* vadd. */
15758 if (((unsigned)inst.instruction) == 0xd00)
15759 inst.instruction = 0xee300f40;
15760 /* vsub. */
15761 else if (((unsigned)inst.instruction) == 0x200d00)
15762 inst.instruction = 0xee301f40;
15763
15764 /* Setting size which is 1 for F16 and 0 for F32. */
15765 inst.instruction |= (size == 16) << 28;
15766 }
15767 else
15768 {
15769 /* vadd. */
15770 if (((unsigned)inst.instruction) == 0x800)
15771 inst.instruction = 0xee010f40;
15772 /* vsub. */
15773 else if (((unsigned)inst.instruction) == 0x1000800)
15774 inst.instruction = 0xee011f40;
15775 /* Setting bits for size. */
15776 inst.instruction |= neon_logbits (size) << 20;
15777 }
15778 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15779 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15780 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15781 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
15782 inst.instruction |= inst.operands[2].reg;
15783 inst.is_neon = 1;
15784 }
15785
15786 static void
15787 mve_encode_rqq (unsigned bit28, unsigned size)
15788 {
15789 inst.instruction |= bit28 << 28;
15790 inst.instruction |= neon_logbits (size) << 20;
15791 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15792 inst.instruction |= inst.operands[0].reg << 12;
15793 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
15794 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
15795 inst.instruction |= LOW4 (inst.operands[2].reg);
15796 inst.is_neon = 1;
15797 }
15798
15799 static void
15800 mve_encode_qqq (int ubit, int size)
15801 {
15802
15803 inst.instruction |= (ubit != 0) << 28;
15804 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15805 inst.instruction |= neon_logbits (size) << 20;
15806 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15807 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15808 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
15809 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
15810 inst.instruction |= LOW4 (inst.operands[2].reg);
15811
15812 inst.is_neon = 1;
15813 }
15814
15815 static void
15816 mve_encode_rq (unsigned bit28, unsigned size)
15817 {
15818 inst.instruction |= bit28 << 28;
15819 inst.instruction |= neon_logbits (size) << 18;
15820 inst.instruction |= inst.operands[0].reg << 12;
15821 inst.instruction |= LOW4 (inst.operands[1].reg);
15822 inst.is_neon = 1;
15823 }
15824
15825 /* Encode insns with bit pattern:
15826
15827 |28/24|23|22 |21 20|19 16|15 12|11 8|7|6|5|4|3 0|
15828 | U |x |D |size | Rn | Rd |x x x x|N|Q|M|x| Rm |
15829
15830 SIZE is passed in bits. -1 means size field isn't changed, in case it has a
15831 different meaning for some instruction. */
15832
15833 static void
15834 neon_three_same (int isquad, int ubit, int size)
15835 {
15836 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15837 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15838 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15839 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
15840 inst.instruction |= LOW4 (inst.operands[2].reg);
15841 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
15842 inst.instruction |= (isquad != 0) << 6;
15843 inst.instruction |= (ubit != 0) << 24;
15844 if (size != -1)
15845 inst.instruction |= neon_logbits (size) << 20;
15846
15847 neon_dp_fixup (&inst);
15848 }
15849
15850 /* Encode instructions of the form:
15851
15852 |28/24|23|22|21 20|19 18|17 16|15 12|11 7|6|5|4|3 0|
15853 | U |x |D |x x |size |x x | Rd |x x x x x|Q|M|x| Rm |
15854
15855 Don't write size if SIZE == -1. */
15856
15857 static void
15858 neon_two_same (int qbit, int ubit, int size)
15859 {
15860 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15861 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15862 inst.instruction |= LOW4 (inst.operands[1].reg);
15863 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
15864 inst.instruction |= (qbit != 0) << 6;
15865 inst.instruction |= (ubit != 0) << 24;
15866
15867 if (size != -1)
15868 inst.instruction |= neon_logbits (size) << 18;
15869
15870 neon_dp_fixup (&inst);
15871 }
15872
15873 /* Neon instruction encoders, in approximate order of appearance. */
15874
15875 static void
15876 do_neon_dyadic_i_su (void)
15877 {
15878 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
15879 struct neon_type_el et = neon_check_type (3, rs,
15880 N_EQK, N_EQK, N_SU_32 | N_KEY);
15881 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
15882 }
15883
15884 static void
15885 do_neon_dyadic_i64_su (void)
15886 {
15887 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
15888 struct neon_type_el et = neon_check_type (3, rs,
15889 N_EQK, N_EQK, N_SU_ALL | N_KEY);
15890 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
15891 }
15892
15893 static void
15894 neon_imm_shift (int write_ubit, int uval, int isquad, struct neon_type_el et,
15895 unsigned immbits)
15896 {
15897 unsigned size = et.size >> 3;
15898 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15899 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15900 inst.instruction |= LOW4 (inst.operands[1].reg);
15901 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
15902 inst.instruction |= (isquad != 0) << 6;
15903 inst.instruction |= immbits << 16;
15904 inst.instruction |= (size >> 3) << 7;
15905 inst.instruction |= (size & 0x7) << 19;
15906 if (write_ubit)
15907 inst.instruction |= (uval != 0) << 24;
15908
15909 neon_dp_fixup (&inst);
15910 }
15911
15912 static void
15913 do_neon_shl_imm (void)
15914 {
15915 if (!inst.operands[2].isreg)
15916 {
15917 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
15918 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_KEY | N_I_ALL);
15919 int imm = inst.operands[2].imm;
15920
15921 constraint (imm < 0 || (unsigned)imm >= et.size,
15922 _("immediate out of range for shift"));
15923 NEON_ENCODE (IMMED, inst);
15924 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
15925 }
15926 else
15927 {
15928 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
15929 struct neon_type_el et = neon_check_type (3, rs,
15930 N_EQK, N_SU_ALL | N_KEY, N_EQK | N_SGN);
15931 unsigned int tmp;
15932
15933 /* VSHL/VQSHL 3-register variants have syntax such as:
15934 vshl.xx Dd, Dm, Dn
15935 whereas other 3-register operations encoded by neon_three_same have
15936 syntax like:
15937 vadd.xx Dd, Dn, Dm
15938 (i.e. with Dn & Dm reversed). Swap operands[1].reg and operands[2].reg
15939 here. */
15940 tmp = inst.operands[2].reg;
15941 inst.operands[2].reg = inst.operands[1].reg;
15942 inst.operands[1].reg = tmp;
15943 NEON_ENCODE (INTEGER, inst);
15944 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
15945 }
15946 }
15947
15948 static void
15949 do_neon_qshl_imm (void)
15950 {
15951 if (!inst.operands[2].isreg)
15952 {
15953 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
15954 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_ALL | N_KEY);
15955 int imm = inst.operands[2].imm;
15956
15957 constraint (imm < 0 || (unsigned)imm >= et.size,
15958 _("immediate out of range for shift"));
15959 NEON_ENCODE (IMMED, inst);
15960 neon_imm_shift (TRUE, et.type == NT_unsigned, neon_quad (rs), et, imm);
15961 }
15962 else
15963 {
15964 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
15965 struct neon_type_el et = neon_check_type (3, rs,
15966 N_EQK, N_SU_ALL | N_KEY, N_EQK | N_SGN);
15967 unsigned int tmp;
15968
15969 /* See note in do_neon_shl_imm. */
15970 tmp = inst.operands[2].reg;
15971 inst.operands[2].reg = inst.operands[1].reg;
15972 inst.operands[1].reg = tmp;
15973 NEON_ENCODE (INTEGER, inst);
15974 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
15975 }
15976 }
15977
15978 static void
15979 do_neon_rshl (void)
15980 {
15981 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
15982 struct neon_type_el et = neon_check_type (3, rs,
15983 N_EQK, N_EQK, N_SU_ALL | N_KEY);
15984 unsigned int tmp;
15985
15986 tmp = inst.operands[2].reg;
15987 inst.operands[2].reg = inst.operands[1].reg;
15988 inst.operands[1].reg = tmp;
15989 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
15990 }
15991
15992 static int
15993 neon_cmode_for_logic_imm (unsigned immediate, unsigned *immbits, int size)
15994 {
15995 /* Handle .I8 pseudo-instructions. */
15996 if (size == 8)
15997 {
15998 /* Unfortunately, this will make everything apart from zero out-of-range.
15999 FIXME is this the intended semantics? There doesn't seem much point in
16000 accepting .I8 if so. */
16001 immediate |= immediate << 8;
16002 size = 16;
16003 }
16004
16005 if (size >= 32)
16006 {
16007 if (immediate == (immediate & 0x000000ff))
16008 {
16009 *immbits = immediate;
16010 return 0x1;
16011 }
16012 else if (immediate == (immediate & 0x0000ff00))
16013 {
16014 *immbits = immediate >> 8;
16015 return 0x3;
16016 }
16017 else if (immediate == (immediate & 0x00ff0000))
16018 {
16019 *immbits = immediate >> 16;
16020 return 0x5;
16021 }
16022 else if (immediate == (immediate & 0xff000000))
16023 {
16024 *immbits = immediate >> 24;
16025 return 0x7;
16026 }
16027 if ((immediate & 0xffff) != (immediate >> 16))
16028 goto bad_immediate;
16029 immediate &= 0xffff;
16030 }
16031
16032 if (immediate == (immediate & 0x000000ff))
16033 {
16034 *immbits = immediate;
16035 return 0x9;
16036 }
16037 else if (immediate == (immediate & 0x0000ff00))
16038 {
16039 *immbits = immediate >> 8;
16040 return 0xb;
16041 }
16042
16043 bad_immediate:
16044 first_error (_("immediate value out of range"));
16045 return FAIL;
16046 }
16047
16048 enum vfp_or_neon_is_neon_bits
16049 {
16050 NEON_CHECK_CC = 1,
16051 NEON_CHECK_ARCH = 2,
16052 NEON_CHECK_ARCH8 = 4
16053 };
16054
16055 /* Call this function if an instruction which may have belonged to the VFP or
16056 Neon instruction sets, but turned out to be a Neon instruction (due to the
16057 operand types involved, etc.). We have to check and/or fix-up a couple of
16058 things:
16059
16060 - Make sure the user hasn't attempted to make a Neon instruction
16061 conditional.
16062 - Alter the value in the condition code field if necessary.
16063 - Make sure that the arch supports Neon instructions.
16064
16065 Which of these operations take place depends on bits from enum
16066 vfp_or_neon_is_neon_bits.
16067
16068 WARNING: This function has side effects! If NEON_CHECK_CC is used and the
16069 current instruction's condition is COND_ALWAYS, the condition field is
16070 changed to inst.uncond_value. This is necessary because instructions shared
16071 between VFP and Neon may be conditional for the VFP variants only, and the
16072 unconditional Neon version must have, e.g., 0xF in the condition field. */
16073
16074 static int
16075 vfp_or_neon_is_neon (unsigned check)
16076 {
16077 /* Conditions are always legal in Thumb mode (IT blocks). */
16078 if (!thumb_mode && (check & NEON_CHECK_CC))
16079 {
16080 if (inst.cond != COND_ALWAYS)
16081 {
16082 first_error (_(BAD_COND));
16083 return FAIL;
16084 }
16085 if (inst.uncond_value != -1)
16086 inst.instruction |= inst.uncond_value << 28;
16087 }
16088
16089
16090 if (((check & NEON_CHECK_ARCH) && !mark_feature_used (&fpu_neon_ext_v1))
16091 || ((check & NEON_CHECK_ARCH8)
16092 && !mark_feature_used (&fpu_neon_ext_armv8)))
16093 {
16094 first_error (_(BAD_FPU));
16095 return FAIL;
16096 }
16097
16098 return SUCCESS;
16099 }
16100
16101 static int
16102 check_simd_pred_availability (int fp, unsigned check)
16103 {
16104 if (inst.cond > COND_ALWAYS)
16105 {
16106 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
16107 {
16108 inst.error = BAD_FPU;
16109 return 1;
16110 }
16111 inst.pred_insn_type = INSIDE_VPT_INSN;
16112 }
16113 else if (inst.cond < COND_ALWAYS)
16114 {
16115 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
16116 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
16117 else if (vfp_or_neon_is_neon (check) == FAIL)
16118 return 2;
16119 }
16120 else
16121 {
16122 if (!ARM_CPU_HAS_FEATURE (cpu_variant, fp ? mve_fp_ext : mve_ext)
16123 && vfp_or_neon_is_neon (check) == FAIL)
16124 return 3;
16125
16126 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
16127 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
16128 }
16129 return 0;
16130 }
16131
16132 static void
16133 do_neon_logic (void)
16134 {
16135 if (inst.operands[2].present && inst.operands[2].isreg)
16136 {
16137 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
16138 if (rs == NS_QQQ
16139 && check_simd_pred_availability (0, NEON_CHECK_ARCH | NEON_CHECK_CC)
16140 == FAIL)
16141 return;
16142 else if (rs != NS_QQQ
16143 && !ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1))
16144 first_error (BAD_FPU);
16145
16146 neon_check_type (3, rs, N_IGNORE_TYPE);
16147 /* U bit and size field were set as part of the bitmask. */
16148 NEON_ENCODE (INTEGER, inst);
16149 neon_three_same (neon_quad (rs), 0, -1);
16150 }
16151 else
16152 {
16153 const int three_ops_form = (inst.operands[2].present
16154 && !inst.operands[2].isreg);
16155 const int immoperand = (three_ops_form ? 2 : 1);
16156 enum neon_shape rs = (three_ops_form
16157 ? neon_select_shape (NS_DDI, NS_QQI, NS_NULL)
16158 : neon_select_shape (NS_DI, NS_QI, NS_NULL));
16159 /* Because neon_select_shape makes the second operand a copy of the first
16160 if the second operand is not present. */
16161 if (rs == NS_QQI
16162 && check_simd_pred_availability (0, NEON_CHECK_ARCH | NEON_CHECK_CC)
16163 == FAIL)
16164 return;
16165 else if (rs != NS_QQI
16166 && !ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1))
16167 first_error (BAD_FPU);
16168
16169 struct neon_type_el et;
16170 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
16171 et = neon_check_type (2, rs, N_I32 | N_I16 | N_KEY, N_EQK);
16172 else
16173 et = neon_check_type (2, rs, N_I8 | N_I16 | N_I32 | N_I64 | N_F32
16174 | N_KEY, N_EQK);
16175
16176 if (et.type == NT_invtype)
16177 return;
16178 enum neon_opc opcode = (enum neon_opc) inst.instruction & 0x0fffffff;
16179 unsigned immbits;
16180 int cmode;
16181
16182
16183 if (three_ops_form)
16184 constraint (inst.operands[0].reg != inst.operands[1].reg,
16185 _("first and second operands shall be the same register"));
16186
16187 NEON_ENCODE (IMMED, inst);
16188
16189 immbits = inst.operands[immoperand].imm;
16190 if (et.size == 64)
16191 {
16192 /* .i64 is a pseudo-op, so the immediate must be a repeating
16193 pattern. */
16194 if (immbits != (inst.operands[immoperand].regisimm ?
16195 inst.operands[immoperand].reg : 0))
16196 {
16197 /* Set immbits to an invalid constant. */
16198 immbits = 0xdeadbeef;
16199 }
16200 }
16201
16202 switch (opcode)
16203 {
16204 case N_MNEM_vbic:
16205 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
16206 break;
16207
16208 case N_MNEM_vorr:
16209 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
16210 break;
16211
16212 case N_MNEM_vand:
16213 /* Pseudo-instruction for VBIC. */
16214 neon_invert_size (&immbits, 0, et.size);
16215 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
16216 break;
16217
16218 case N_MNEM_vorn:
16219 /* Pseudo-instruction for VORR. */
16220 neon_invert_size (&immbits, 0, et.size);
16221 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
16222 break;
16223
16224 default:
16225 abort ();
16226 }
16227
16228 if (cmode == FAIL)
16229 return;
16230
16231 inst.instruction |= neon_quad (rs) << 6;
16232 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16233 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16234 inst.instruction |= cmode << 8;
16235 neon_write_immbits (immbits);
16236
16237 neon_dp_fixup (&inst);
16238 }
16239 }
16240
16241 static void
16242 do_neon_bitfield (void)
16243 {
16244 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
16245 neon_check_type (3, rs, N_IGNORE_TYPE);
16246 neon_three_same (neon_quad (rs), 0, -1);
16247 }
16248
16249 static void
16250 neon_dyadic_misc (enum neon_el_type ubit_meaning, unsigned types,
16251 unsigned destbits)
16252 {
16253 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_QQR, NS_NULL);
16254 struct neon_type_el et = neon_check_type (3, rs, N_EQK | destbits, N_EQK,
16255 types | N_KEY);
16256 if (et.type == NT_float)
16257 {
16258 NEON_ENCODE (FLOAT, inst);
16259 if (rs == NS_QQR)
16260 mve_encode_qqr (et.size, 1);
16261 else
16262 neon_three_same (neon_quad (rs), 0, et.size == 16 ? (int) et.size : -1);
16263 }
16264 else
16265 {
16266 NEON_ENCODE (INTEGER, inst);
16267 if (rs == NS_QQR)
16268 mve_encode_qqr (et.size, 0);
16269 else
16270 neon_three_same (neon_quad (rs), et.type == ubit_meaning, et.size);
16271 }
16272 }
16273
16274
16275 static void
16276 do_neon_dyadic_if_su_d (void)
16277 {
16278 /* This version only allow D registers, but that constraint is enforced during
16279 operand parsing so we don't need to do anything extra here. */
16280 neon_dyadic_misc (NT_unsigned, N_SUF_32, 0);
16281 }
16282
16283 static void
16284 do_neon_dyadic_if_i_d (void)
16285 {
16286 /* The "untyped" case can't happen. Do this to stop the "U" bit being
16287 affected if we specify unsigned args. */
16288 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
16289 }
16290
16291 static void
16292 do_mve_vstr_vldr_QI (int size, int elsize, int load)
16293 {
16294 constraint (size < 32, BAD_ADDR_MODE);
16295 constraint (size != elsize, BAD_EL_TYPE);
16296 constraint (inst.operands[1].immisreg, BAD_ADDR_MODE);
16297 constraint (!inst.operands[1].preind, BAD_ADDR_MODE);
16298 constraint (load && inst.operands[0].reg == inst.operands[1].reg,
16299 _("destination register and offset register may not be the"
16300 " same"));
16301
16302 int imm = inst.relocs[0].exp.X_add_number;
16303 int add = 1;
16304 if (imm < 0)
16305 {
16306 add = 0;
16307 imm = -imm;
16308 }
16309 constraint ((imm % (size / 8) != 0)
16310 || imm > (0x7f << neon_logbits (size)),
16311 (size == 32) ? _("immediate must be a multiple of 4 in the"
16312 " range of +/-[0,508]")
16313 : _("immediate must be a multiple of 8 in the"
16314 " range of +/-[0,1016]"));
16315 inst.instruction |= 0x11 << 24;
16316 inst.instruction |= add << 23;
16317 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16318 inst.instruction |= inst.operands[1].writeback << 21;
16319 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
16320 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16321 inst.instruction |= 1 << 12;
16322 inst.instruction |= (size == 64) << 8;
16323 inst.instruction &= 0xffffff00;
16324 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
16325 inst.instruction |= imm >> neon_logbits (size);
16326 }
16327
16328 static void
16329 do_mve_vstr_vldr_RQ (int size, int elsize, int load)
16330 {
16331 unsigned os = inst.operands[1].imm >> 5;
16332 constraint (os != 0 && size == 8,
16333 _("can not shift offsets when accessing less than half-word"));
16334 constraint (os && os != neon_logbits (size),
16335 _("shift immediate must be 1, 2 or 3 for half-word, word"
16336 " or double-word accesses respectively"));
16337 if (inst.operands[1].reg == REG_PC)
16338 as_tsktsk (MVE_BAD_PC);
16339
16340 switch (size)
16341 {
16342 case 8:
16343 constraint (elsize >= 64, BAD_EL_TYPE);
16344 break;
16345 case 16:
16346 constraint (elsize < 16 || elsize >= 64, BAD_EL_TYPE);
16347 break;
16348 case 32:
16349 case 64:
16350 constraint (elsize != size, BAD_EL_TYPE);
16351 break;
16352 default:
16353 break;
16354 }
16355 constraint (inst.operands[1].writeback || !inst.operands[1].preind,
16356 BAD_ADDR_MODE);
16357 if (load)
16358 {
16359 constraint (inst.operands[0].reg == (inst.operands[1].imm & 0x1f),
16360 _("destination register and offset register may not be"
16361 " the same"));
16362 constraint (size == elsize && inst.vectype.el[0].type != NT_unsigned,
16363 BAD_EL_TYPE);
16364 constraint (inst.vectype.el[0].type != NT_unsigned
16365 && inst.vectype.el[0].type != NT_signed, BAD_EL_TYPE);
16366 inst.instruction |= (inst.vectype.el[0].type == NT_unsigned) << 28;
16367 }
16368 else
16369 {
16370 constraint (inst.vectype.el[0].type != NT_untyped, BAD_EL_TYPE);
16371 }
16372
16373 inst.instruction |= 1 << 23;
16374 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16375 inst.instruction |= inst.operands[1].reg << 16;
16376 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16377 inst.instruction |= neon_logbits (elsize) << 7;
16378 inst.instruction |= HI1 (inst.operands[1].imm) << 5;
16379 inst.instruction |= LOW4 (inst.operands[1].imm);
16380 inst.instruction |= !!os;
16381 }
16382
16383 static void
16384 do_mve_vstr_vldr_RI (int size, int elsize, int load)
16385 {
16386 enum neon_el_type type = inst.vectype.el[0].type;
16387
16388 constraint (size >= 64, BAD_ADDR_MODE);
16389 switch (size)
16390 {
16391 case 16:
16392 constraint (elsize < 16 || elsize >= 64, BAD_EL_TYPE);
16393 break;
16394 case 32:
16395 constraint (elsize != size, BAD_EL_TYPE);
16396 break;
16397 default:
16398 break;
16399 }
16400 if (load)
16401 {
16402 constraint (elsize != size && type != NT_unsigned
16403 && type != NT_signed, BAD_EL_TYPE);
16404 }
16405 else
16406 {
16407 constraint (elsize != size && type != NT_untyped, BAD_EL_TYPE);
16408 }
16409
16410 int imm = inst.relocs[0].exp.X_add_number;
16411 int add = 1;
16412 if (imm < 0)
16413 {
16414 add = 0;
16415 imm = -imm;
16416 }
16417
16418 if ((imm % (size / 8) != 0) || imm > (0x7f << neon_logbits (size)))
16419 {
16420 switch (size)
16421 {
16422 case 8:
16423 constraint (1, _("immediate must be in the range of +/-[0,127]"));
16424 break;
16425 case 16:
16426 constraint (1, _("immediate must be a multiple of 2 in the"
16427 " range of +/-[0,254]"));
16428 break;
16429 case 32:
16430 constraint (1, _("immediate must be a multiple of 4 in the"
16431 " range of +/-[0,508]"));
16432 break;
16433 }
16434 }
16435
16436 if (size != elsize)
16437 {
16438 constraint (inst.operands[1].reg > 7, BAD_HIREG);
16439 constraint (inst.operands[0].reg > 14,
16440 _("MVE vector register in the range [Q0..Q7] expected"));
16441 inst.instruction |= (load && type == NT_unsigned) << 28;
16442 inst.instruction |= (size == 16) << 19;
16443 inst.instruction |= neon_logbits (elsize) << 7;
16444 }
16445 else
16446 {
16447 if (inst.operands[1].reg == REG_PC)
16448 as_tsktsk (MVE_BAD_PC);
16449 else if (inst.operands[1].reg == REG_SP && inst.operands[1].writeback)
16450 as_tsktsk (MVE_BAD_SP);
16451 inst.instruction |= 1 << 12;
16452 inst.instruction |= neon_logbits (size) << 7;
16453 }
16454 inst.instruction |= inst.operands[1].preind << 24;
16455 inst.instruction |= add << 23;
16456 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16457 inst.instruction |= inst.operands[1].writeback << 21;
16458 inst.instruction |= inst.operands[1].reg << 16;
16459 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16460 inst.instruction &= 0xffffff80;
16461 inst.instruction |= imm >> neon_logbits (size);
16462
16463 }
16464
16465 static void
16466 do_mve_vstr_vldr (void)
16467 {
16468 unsigned size;
16469 int load = 0;
16470
16471 if (inst.cond > COND_ALWAYS)
16472 inst.pred_insn_type = INSIDE_VPT_INSN;
16473 else
16474 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
16475
16476 switch (inst.instruction)
16477 {
16478 default:
16479 gas_assert (0);
16480 break;
16481 case M_MNEM_vldrb:
16482 load = 1;
16483 /* fall through. */
16484 case M_MNEM_vstrb:
16485 size = 8;
16486 break;
16487 case M_MNEM_vldrh:
16488 load = 1;
16489 /* fall through. */
16490 case M_MNEM_vstrh:
16491 size = 16;
16492 break;
16493 case M_MNEM_vldrw:
16494 load = 1;
16495 /* fall through. */
16496 case M_MNEM_vstrw:
16497 size = 32;
16498 break;
16499 case M_MNEM_vldrd:
16500 load = 1;
16501 /* fall through. */
16502 case M_MNEM_vstrd:
16503 size = 64;
16504 break;
16505 }
16506 unsigned elsize = inst.vectype.el[0].size;
16507
16508 if (inst.operands[1].isquad)
16509 {
16510 /* We are dealing with [Q, imm]{!} cases. */
16511 do_mve_vstr_vldr_QI (size, elsize, load);
16512 }
16513 else
16514 {
16515 if (inst.operands[1].immisreg == 2)
16516 {
16517 /* We are dealing with [R, Q, {UXTW #os}] cases. */
16518 do_mve_vstr_vldr_RQ (size, elsize, load);
16519 }
16520 else if (!inst.operands[1].immisreg)
16521 {
16522 /* We are dealing with [R, Imm]{!}/[R], Imm cases. */
16523 do_mve_vstr_vldr_RI (size, elsize, load);
16524 }
16525 else
16526 constraint (1, BAD_ADDR_MODE);
16527 }
16528
16529 inst.is_neon = 1;
16530 }
16531
16532 static void
16533 do_mve_vst_vld (void)
16534 {
16535 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
16536 return;
16537
16538 constraint (!inst.operands[1].preind || inst.relocs[0].exp.X_add_symbol != 0
16539 || inst.relocs[0].exp.X_add_number != 0
16540 || inst.operands[1].immisreg != 0,
16541 BAD_ADDR_MODE);
16542 constraint (inst.vectype.el[0].size > 32, BAD_EL_TYPE);
16543 if (inst.operands[1].reg == REG_PC)
16544 as_tsktsk (MVE_BAD_PC);
16545 else if (inst.operands[1].reg == REG_SP && inst.operands[1].writeback)
16546 as_tsktsk (MVE_BAD_SP);
16547
16548
16549 /* These instructions are one of the "exceptions" mentioned in
16550 handle_pred_state. They are MVE instructions that are not VPT compatible
16551 and do not accept a VPT code, thus appending such a code is a syntax
16552 error. */
16553 if (inst.cond > COND_ALWAYS)
16554 first_error (BAD_SYNTAX);
16555 /* If we append a scalar condition code we can set this to
16556 MVE_OUTSIDE_PRED_INSN as it will also lead to a syntax error. */
16557 else if (inst.cond < COND_ALWAYS)
16558 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
16559 else
16560 inst.pred_insn_type = MVE_UNPREDICABLE_INSN;
16561
16562 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16563 inst.instruction |= inst.operands[1].writeback << 21;
16564 inst.instruction |= inst.operands[1].reg << 16;
16565 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16566 inst.instruction |= neon_logbits (inst.vectype.el[0].size) << 7;
16567 inst.is_neon = 1;
16568 }
16569
16570 static void
16571 do_mve_vaddlv (void)
16572 {
16573 enum neon_shape rs = neon_select_shape (NS_RRQ, NS_NULL);
16574 struct neon_type_el et
16575 = neon_check_type (3, rs, N_EQK, N_EQK, N_S32 | N_U32 | N_KEY);
16576
16577 if (et.type == NT_invtype)
16578 first_error (BAD_EL_TYPE);
16579
16580 if (inst.cond > COND_ALWAYS)
16581 inst.pred_insn_type = INSIDE_VPT_INSN;
16582 else
16583 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
16584
16585 constraint (inst.operands[1].reg > 14, MVE_BAD_QREG);
16586
16587 inst.instruction |= (et.type == NT_unsigned) << 28;
16588 inst.instruction |= inst.operands[1].reg << 19;
16589 inst.instruction |= inst.operands[0].reg << 12;
16590 inst.instruction |= inst.operands[2].reg;
16591 inst.is_neon = 1;
16592 }
16593
16594 static void
16595 do_neon_dyadic_if_su (void)
16596 {
16597 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_QQR, NS_NULL);
16598 struct neon_type_el et = neon_check_type (3, rs, N_EQK , N_EQK,
16599 N_SUF_32 | N_KEY);
16600
16601 if (check_simd_pred_availability (et.type == NT_float,
16602 NEON_CHECK_ARCH | NEON_CHECK_CC))
16603 return;
16604
16605 neon_dyadic_misc (NT_unsigned, N_SUF_32, 0);
16606 }
16607
16608 static void
16609 do_neon_addsub_if_i (void)
16610 {
16611 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1xd)
16612 && try_vfp_nsyn (3, do_vfp_nsyn_add_sub) == SUCCESS)
16613 return;
16614
16615 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_QQR, NS_NULL);
16616 struct neon_type_el et = neon_check_type (3, rs, N_EQK,
16617 N_EQK, N_IF_32 | N_I64 | N_KEY);
16618
16619 constraint (rs == NS_QQR && et.size == 64, BAD_FPU);
16620 /* If we are parsing Q registers and the element types match MVE, which NEON
16621 also supports, then we must check whether this is an instruction that can
16622 be used by both MVE/NEON. This distinction can be made based on whether
16623 they are predicated or not. */
16624 if ((rs == NS_QQQ || rs == NS_QQR) && et.size != 64)
16625 {
16626 if (check_simd_pred_availability (et.type == NT_float,
16627 NEON_CHECK_ARCH | NEON_CHECK_CC))
16628 return;
16629 }
16630 else
16631 {
16632 /* If they are either in a D register or are using an unsupported. */
16633 if (rs != NS_QQR
16634 && vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
16635 return;
16636 }
16637
16638 /* The "untyped" case can't happen. Do this to stop the "U" bit being
16639 affected if we specify unsigned args. */
16640 neon_dyadic_misc (NT_untyped, N_IF_32 | N_I64, 0);
16641 }
16642
16643 /* Swaps operands 1 and 2. If operand 1 (optional arg) was omitted, we want the
16644 result to be:
16645 V<op> A,B (A is operand 0, B is operand 2)
16646 to mean:
16647 V<op> A,B,A
16648 not:
16649 V<op> A,B,B
16650 so handle that case specially. */
16651
16652 static void
16653 neon_exchange_operands (void)
16654 {
16655 if (inst.operands[1].present)
16656 {
16657 void *scratch = xmalloc (sizeof (inst.operands[0]));
16658
16659 /* Swap operands[1] and operands[2]. */
16660 memcpy (scratch, &inst.operands[1], sizeof (inst.operands[0]));
16661 inst.operands[1] = inst.operands[2];
16662 memcpy (&inst.operands[2], scratch, sizeof (inst.operands[0]));
16663 free (scratch);
16664 }
16665 else
16666 {
16667 inst.operands[1] = inst.operands[2];
16668 inst.operands[2] = inst.operands[0];
16669 }
16670 }
16671
16672 static void
16673 neon_compare (unsigned regtypes, unsigned immtypes, int invert)
16674 {
16675 if (inst.operands[2].isreg)
16676 {
16677 if (invert)
16678 neon_exchange_operands ();
16679 neon_dyadic_misc (NT_unsigned, regtypes, N_SIZ);
16680 }
16681 else
16682 {
16683 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
16684 struct neon_type_el et = neon_check_type (2, rs,
16685 N_EQK | N_SIZ, immtypes | N_KEY);
16686
16687 NEON_ENCODE (IMMED, inst);
16688 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16689 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16690 inst.instruction |= LOW4 (inst.operands[1].reg);
16691 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
16692 inst.instruction |= neon_quad (rs) << 6;
16693 inst.instruction |= (et.type == NT_float) << 10;
16694 inst.instruction |= neon_logbits (et.size) << 18;
16695
16696 neon_dp_fixup (&inst);
16697 }
16698 }
16699
16700 static void
16701 do_neon_cmp (void)
16702 {
16703 neon_compare (N_SUF_32, N_S_32 | N_F_16_32, FALSE);
16704 }
16705
16706 static void
16707 do_neon_cmp_inv (void)
16708 {
16709 neon_compare (N_SUF_32, N_S_32 | N_F_16_32, TRUE);
16710 }
16711
16712 static void
16713 do_neon_ceq (void)
16714 {
16715 neon_compare (N_IF_32, N_IF_32, FALSE);
16716 }
16717
16718 /* For multiply instructions, we have the possibility of 16-bit or 32-bit
16719 scalars, which are encoded in 5 bits, M : Rm.
16720 For 16-bit scalars, the register is encoded in Rm[2:0] and the index in
16721 M:Rm[3], and for 32-bit scalars, the register is encoded in Rm[3:0] and the
16722 index in M.
16723
16724 Dot Product instructions are similar to multiply instructions except elsize
16725 should always be 32.
16726
16727 This function translates SCALAR, which is GAS's internal encoding of indexed
16728 scalar register, to raw encoding. There is also register and index range
16729 check based on ELSIZE. */
16730
16731 static unsigned
16732 neon_scalar_for_mul (unsigned scalar, unsigned elsize)
16733 {
16734 unsigned regno = NEON_SCALAR_REG (scalar);
16735 unsigned elno = NEON_SCALAR_INDEX (scalar);
16736
16737 switch (elsize)
16738 {
16739 case 16:
16740 if (regno > 7 || elno > 3)
16741 goto bad_scalar;
16742 return regno | (elno << 3);
16743
16744 case 32:
16745 if (regno > 15 || elno > 1)
16746 goto bad_scalar;
16747 return regno | (elno << 4);
16748
16749 default:
16750 bad_scalar:
16751 first_error (_("scalar out of range for multiply instruction"));
16752 }
16753
16754 return 0;
16755 }
16756
16757 /* Encode multiply / multiply-accumulate scalar instructions. */
16758
16759 static void
16760 neon_mul_mac (struct neon_type_el et, int ubit)
16761 {
16762 unsigned scalar;
16763
16764 /* Give a more helpful error message if we have an invalid type. */
16765 if (et.type == NT_invtype)
16766 return;
16767
16768 scalar = neon_scalar_for_mul (inst.operands[2].reg, et.size);
16769 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16770 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16771 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
16772 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
16773 inst.instruction |= LOW4 (scalar);
16774 inst.instruction |= HI1 (scalar) << 5;
16775 inst.instruction |= (et.type == NT_float) << 8;
16776 inst.instruction |= neon_logbits (et.size) << 20;
16777 inst.instruction |= (ubit != 0) << 24;
16778
16779 neon_dp_fixup (&inst);
16780 }
16781
16782 static void
16783 do_neon_mac_maybe_scalar (void)
16784 {
16785 if (try_vfp_nsyn (3, do_vfp_nsyn_mla_mls) == SUCCESS)
16786 return;
16787
16788 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
16789 return;
16790
16791 if (inst.operands[2].isscalar)
16792 {
16793 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
16794 struct neon_type_el et = neon_check_type (3, rs,
16795 N_EQK, N_EQK, N_I16 | N_I32 | N_F_16_32 | N_KEY);
16796 NEON_ENCODE (SCALAR, inst);
16797 neon_mul_mac (et, neon_quad (rs));
16798 }
16799 else
16800 {
16801 /* The "untyped" case can't happen. Do this to stop the "U" bit being
16802 affected if we specify unsigned args. */
16803 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
16804 }
16805 }
16806
16807 static void
16808 do_neon_fmac (void)
16809 {
16810 if (try_vfp_nsyn (3, do_vfp_nsyn_fma_fms) == SUCCESS)
16811 return;
16812
16813 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
16814 return;
16815
16816 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
16817 }
16818
16819 static void
16820 do_neon_tst (void)
16821 {
16822 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
16823 struct neon_type_el et = neon_check_type (3, rs,
16824 N_EQK, N_EQK, N_8 | N_16 | N_32 | N_KEY);
16825 neon_three_same (neon_quad (rs), 0, et.size);
16826 }
16827
16828 /* VMUL with 3 registers allows the P8 type. The scalar version supports the
16829 same types as the MAC equivalents. The polynomial type for this instruction
16830 is encoded the same as the integer type. */
16831
16832 static void
16833 do_neon_mul (void)
16834 {
16835 if (try_vfp_nsyn (3, do_vfp_nsyn_mul) == SUCCESS)
16836 return;
16837
16838 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
16839 return;
16840
16841 if (inst.operands[2].isscalar)
16842 do_neon_mac_maybe_scalar ();
16843 else
16844 neon_dyadic_misc (NT_poly, N_I8 | N_I16 | N_I32 | N_F16 | N_F32 | N_P8, 0);
16845 }
16846
16847 static void
16848 do_neon_qdmulh (void)
16849 {
16850 if (inst.operands[2].isscalar)
16851 {
16852 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
16853 struct neon_type_el et = neon_check_type (3, rs,
16854 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
16855 NEON_ENCODE (SCALAR, inst);
16856 neon_mul_mac (et, neon_quad (rs));
16857 }
16858 else
16859 {
16860 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
16861 struct neon_type_el et = neon_check_type (3, rs,
16862 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
16863 NEON_ENCODE (INTEGER, inst);
16864 /* The U bit (rounding) comes from bit mask. */
16865 neon_three_same (neon_quad (rs), 0, et.size);
16866 }
16867 }
16868
16869 static void
16870 do_mve_vaddv (void)
16871 {
16872 enum neon_shape rs = neon_select_shape (NS_RQ, NS_NULL);
16873 struct neon_type_el et
16874 = neon_check_type (2, rs, N_EQK, N_SU_32 | N_KEY);
16875
16876 if (et.type == NT_invtype)
16877 first_error (BAD_EL_TYPE);
16878
16879 if (inst.cond > COND_ALWAYS)
16880 inst.pred_insn_type = INSIDE_VPT_INSN;
16881 else
16882 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
16883
16884 constraint (inst.operands[1].reg > 14, MVE_BAD_QREG);
16885
16886 mve_encode_rq (et.type == NT_unsigned, et.size);
16887 }
16888
16889 static void
16890 do_mve_vadc (void)
16891 {
16892 enum neon_shape rs = neon_select_shape (NS_QQQ, NS_NULL);
16893 struct neon_type_el et
16894 = neon_check_type (3, rs, N_KEY | N_I32, N_EQK, N_EQK);
16895
16896 if (et.type == NT_invtype)
16897 first_error (BAD_EL_TYPE);
16898
16899 if (inst.cond > COND_ALWAYS)
16900 inst.pred_insn_type = INSIDE_VPT_INSN;
16901 else
16902 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
16903
16904 mve_encode_qqq (0, 64);
16905 }
16906
16907 static void
16908 do_mve_vbrsr (void)
16909 {
16910 enum neon_shape rs = neon_select_shape (NS_QQR, NS_NULL);
16911 struct neon_type_el et
16912 = neon_check_type (3, rs, N_EQK, N_EQK, N_8 | N_16 | N_32 | N_KEY);
16913
16914 if (inst.cond > COND_ALWAYS)
16915 inst.pred_insn_type = INSIDE_VPT_INSN;
16916 else
16917 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
16918
16919 mve_encode_qqr (et.size, 0);
16920 }
16921
16922 static void
16923 do_mve_vsbc (void)
16924 {
16925 neon_check_type (3, NS_QQQ, N_EQK, N_EQK, N_I32 | N_KEY);
16926
16927 if (inst.cond > COND_ALWAYS)
16928 inst.pred_insn_type = INSIDE_VPT_INSN;
16929 else
16930 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
16931
16932 mve_encode_qqq (1, 64);
16933 }
16934
16935 static void
16936 do_mve_vmull (void)
16937 {
16938
16939 enum neon_shape rs = neon_select_shape (NS_HHH, NS_FFF, NS_DDD, NS_DDS,
16940 NS_QQS, NS_QQQ, NS_QQR, NS_NULL);
16941 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)
16942 && inst.cond == COND_ALWAYS
16943 && ((unsigned)inst.instruction) == M_MNEM_vmullt)
16944 {
16945 if (rs == NS_QQQ)
16946 {
16947
16948 struct neon_type_el et = neon_check_type (3, rs, N_EQK , N_EQK,
16949 N_SUF_32 | N_F64 | N_P8
16950 | N_P16 | N_I_MVE | N_KEY);
16951 if (((et.type == NT_poly) && et.size == 8
16952 && ARM_CPU_IS_ANY (cpu_variant))
16953 || (et.type == NT_integer) || (et.type == NT_float))
16954 goto neon_vmul;
16955 }
16956 else
16957 goto neon_vmul;
16958 }
16959
16960 constraint (rs != NS_QQQ, BAD_FPU);
16961 struct neon_type_el et = neon_check_type (3, rs, N_EQK , N_EQK,
16962 N_SU_32 | N_P8 | N_P16 | N_KEY);
16963
16964 /* We are dealing with MVE's vmullt. */
16965 if (et.size == 32
16966 && (inst.operands[0].reg == inst.operands[1].reg
16967 || inst.operands[0].reg == inst.operands[2].reg))
16968 as_tsktsk (BAD_MVE_SRCDEST);
16969
16970 if (inst.cond > COND_ALWAYS)
16971 inst.pred_insn_type = INSIDE_VPT_INSN;
16972 else
16973 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
16974
16975 if (et.type == NT_poly)
16976 mve_encode_qqq (neon_logbits (et.size), 64);
16977 else
16978 mve_encode_qqq (et.type == NT_unsigned, et.size);
16979
16980 return;
16981
16982 neon_vmul:
16983 inst.instruction = N_MNEM_vmul;
16984 inst.cond = 0xb;
16985 if (thumb_mode)
16986 inst.pred_insn_type = INSIDE_IT_INSN;
16987 do_neon_mul ();
16988 }
16989
16990 static void
16991 do_mve_vabav (void)
16992 {
16993 enum neon_shape rs = neon_select_shape (NS_RQQ, NS_NULL);
16994
16995 if (rs == NS_NULL)
16996 return;
16997
16998 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
16999 return;
17000
17001 struct neon_type_el et = neon_check_type (2, NS_NULL, N_EQK, N_KEY | N_S8
17002 | N_S16 | N_S32 | N_U8 | N_U16
17003 | N_U32);
17004
17005 if (inst.cond > COND_ALWAYS)
17006 inst.pred_insn_type = INSIDE_VPT_INSN;
17007 else
17008 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17009
17010 mve_encode_rqq (et.type == NT_unsigned, et.size);
17011 }
17012
17013 static void
17014 do_mve_vmladav (void)
17015 {
17016 enum neon_shape rs = neon_select_shape (NS_RQQ, NS_NULL);
17017 struct neon_type_el et = neon_check_type (3, rs,
17018 N_EQK, N_EQK, N_SU_MVE | N_KEY);
17019
17020 if (et.type == NT_unsigned
17021 && (inst.instruction == M_MNEM_vmladavx
17022 || inst.instruction == M_MNEM_vmladavax
17023 || inst.instruction == M_MNEM_vmlsdav
17024 || inst.instruction == M_MNEM_vmlsdava
17025 || inst.instruction == M_MNEM_vmlsdavx
17026 || inst.instruction == M_MNEM_vmlsdavax))
17027 first_error (BAD_SIMD_TYPE);
17028
17029 constraint (inst.operands[2].reg > 14,
17030 _("MVE vector register in the range [Q0..Q7] expected"));
17031
17032 if (inst.cond > COND_ALWAYS)
17033 inst.pred_insn_type = INSIDE_VPT_INSN;
17034 else
17035 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17036
17037 if (inst.instruction == M_MNEM_vmlsdav
17038 || inst.instruction == M_MNEM_vmlsdava
17039 || inst.instruction == M_MNEM_vmlsdavx
17040 || inst.instruction == M_MNEM_vmlsdavax)
17041 inst.instruction |= (et.size == 8) << 28;
17042 else
17043 inst.instruction |= (et.size == 8) << 8;
17044
17045 mve_encode_rqq (et.type == NT_unsigned, 64);
17046 inst.instruction |= (et.size == 32) << 16;
17047 }
17048
17049 static void
17050 do_neon_qrdmlah (void)
17051 {
17052 /* Check we're on the correct architecture. */
17053 if (!mark_feature_used (&fpu_neon_ext_armv8))
17054 inst.error =
17055 _("instruction form not available on this architecture.");
17056 else if (!mark_feature_used (&fpu_neon_ext_v8_1))
17057 {
17058 as_warn (_("this instruction implies use of ARMv8.1 AdvSIMD."));
17059 record_feature_use (&fpu_neon_ext_v8_1);
17060 }
17061
17062 if (inst.operands[2].isscalar)
17063 {
17064 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
17065 struct neon_type_el et = neon_check_type (3, rs,
17066 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
17067 NEON_ENCODE (SCALAR, inst);
17068 neon_mul_mac (et, neon_quad (rs));
17069 }
17070 else
17071 {
17072 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
17073 struct neon_type_el et = neon_check_type (3, rs,
17074 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
17075 NEON_ENCODE (INTEGER, inst);
17076 /* The U bit (rounding) comes from bit mask. */
17077 neon_three_same (neon_quad (rs), 0, et.size);
17078 }
17079 }
17080
17081 static void
17082 do_neon_fcmp_absolute (void)
17083 {
17084 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
17085 struct neon_type_el et = neon_check_type (3, rs, N_EQK, N_EQK,
17086 N_F_16_32 | N_KEY);
17087 /* Size field comes from bit mask. */
17088 neon_three_same (neon_quad (rs), 1, et.size == 16 ? (int) et.size : -1);
17089 }
17090
17091 static void
17092 do_neon_fcmp_absolute_inv (void)
17093 {
17094 neon_exchange_operands ();
17095 do_neon_fcmp_absolute ();
17096 }
17097
17098 static void
17099 do_neon_step (void)
17100 {
17101 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
17102 struct neon_type_el et = neon_check_type (3, rs, N_EQK, N_EQK,
17103 N_F_16_32 | N_KEY);
17104 neon_three_same (neon_quad (rs), 0, et.size == 16 ? (int) et.size : -1);
17105 }
17106
17107 static void
17108 do_neon_abs_neg (void)
17109 {
17110 enum neon_shape rs;
17111 struct neon_type_el et;
17112
17113 if (try_vfp_nsyn (2, do_vfp_nsyn_abs_neg) == SUCCESS)
17114 return;
17115
17116 rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
17117 et = neon_check_type (2, rs, N_EQK, N_S_32 | N_F_16_32 | N_KEY);
17118
17119 if (check_simd_pred_availability (et.type == NT_float,
17120 NEON_CHECK_ARCH | NEON_CHECK_CC))
17121 return;
17122
17123 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17124 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17125 inst.instruction |= LOW4 (inst.operands[1].reg);
17126 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
17127 inst.instruction |= neon_quad (rs) << 6;
17128 inst.instruction |= (et.type == NT_float) << 10;
17129 inst.instruction |= neon_logbits (et.size) << 18;
17130
17131 neon_dp_fixup (&inst);
17132 }
17133
17134 static void
17135 do_neon_sli (void)
17136 {
17137 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
17138 struct neon_type_el et = neon_check_type (2, rs,
17139 N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
17140 int imm = inst.operands[2].imm;
17141 constraint (imm < 0 || (unsigned)imm >= et.size,
17142 _("immediate out of range for insert"));
17143 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
17144 }
17145
17146 static void
17147 do_neon_sri (void)
17148 {
17149 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
17150 struct neon_type_el et = neon_check_type (2, rs,
17151 N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
17152 int imm = inst.operands[2].imm;
17153 constraint (imm < 1 || (unsigned)imm > et.size,
17154 _("immediate out of range for insert"));
17155 neon_imm_shift (FALSE, 0, neon_quad (rs), et, et.size - imm);
17156 }
17157
17158 static void
17159 do_neon_qshlu_imm (void)
17160 {
17161 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
17162 struct neon_type_el et = neon_check_type (2, rs,
17163 N_EQK | N_UNS, N_S8 | N_S16 | N_S32 | N_S64 | N_KEY);
17164 int imm = inst.operands[2].imm;
17165 constraint (imm < 0 || (unsigned)imm >= et.size,
17166 _("immediate out of range for shift"));
17167 /* Only encodes the 'U present' variant of the instruction.
17168 In this case, signed types have OP (bit 8) set to 0.
17169 Unsigned types have OP set to 1. */
17170 inst.instruction |= (et.type == NT_unsigned) << 8;
17171 /* The rest of the bits are the same as other immediate shifts. */
17172 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
17173 }
17174
17175 static void
17176 do_neon_qmovn (void)
17177 {
17178 struct neon_type_el et = neon_check_type (2, NS_DQ,
17179 N_EQK | N_HLF, N_SU_16_64 | N_KEY);
17180 /* Saturating move where operands can be signed or unsigned, and the
17181 destination has the same signedness. */
17182 NEON_ENCODE (INTEGER, inst);
17183 if (et.type == NT_unsigned)
17184 inst.instruction |= 0xc0;
17185 else
17186 inst.instruction |= 0x80;
17187 neon_two_same (0, 1, et.size / 2);
17188 }
17189
17190 static void
17191 do_neon_qmovun (void)
17192 {
17193 struct neon_type_el et = neon_check_type (2, NS_DQ,
17194 N_EQK | N_HLF | N_UNS, N_S16 | N_S32 | N_S64 | N_KEY);
17195 /* Saturating move with unsigned results. Operands must be signed. */
17196 NEON_ENCODE (INTEGER, inst);
17197 neon_two_same (0, 1, et.size / 2);
17198 }
17199
17200 static void
17201 do_neon_rshift_sat_narrow (void)
17202 {
17203 /* FIXME: Types for narrowing. If operands are signed, results can be signed
17204 or unsigned. If operands are unsigned, results must also be unsigned. */
17205 struct neon_type_el et = neon_check_type (2, NS_DQI,
17206 N_EQK | N_HLF, N_SU_16_64 | N_KEY);
17207 int imm = inst.operands[2].imm;
17208 /* This gets the bounds check, size encoding and immediate bits calculation
17209 right. */
17210 et.size /= 2;
17211
17212 /* VQ{R}SHRN.I<size> <Dd>, <Qm>, #0 is a synonym for
17213 VQMOVN.I<size> <Dd>, <Qm>. */
17214 if (imm == 0)
17215 {
17216 inst.operands[2].present = 0;
17217 inst.instruction = N_MNEM_vqmovn;
17218 do_neon_qmovn ();
17219 return;
17220 }
17221
17222 constraint (imm < 1 || (unsigned)imm > et.size,
17223 _("immediate out of range"));
17224 neon_imm_shift (TRUE, et.type == NT_unsigned, 0, et, et.size - imm);
17225 }
17226
17227 static void
17228 do_neon_rshift_sat_narrow_u (void)
17229 {
17230 /* FIXME: Types for narrowing. If operands are signed, results can be signed
17231 or unsigned. If operands are unsigned, results must also be unsigned. */
17232 struct neon_type_el et = neon_check_type (2, NS_DQI,
17233 N_EQK | N_HLF | N_UNS, N_S16 | N_S32 | N_S64 | N_KEY);
17234 int imm = inst.operands[2].imm;
17235 /* This gets the bounds check, size encoding and immediate bits calculation
17236 right. */
17237 et.size /= 2;
17238
17239 /* VQSHRUN.I<size> <Dd>, <Qm>, #0 is a synonym for
17240 VQMOVUN.I<size> <Dd>, <Qm>. */
17241 if (imm == 0)
17242 {
17243 inst.operands[2].present = 0;
17244 inst.instruction = N_MNEM_vqmovun;
17245 do_neon_qmovun ();
17246 return;
17247 }
17248
17249 constraint (imm < 1 || (unsigned)imm > et.size,
17250 _("immediate out of range"));
17251 /* FIXME: The manual is kind of unclear about what value U should have in
17252 VQ{R}SHRUN instructions, but U=0, op=0 definitely encodes VRSHR, so it
17253 must be 1. */
17254 neon_imm_shift (TRUE, 1, 0, et, et.size - imm);
17255 }
17256
17257 static void
17258 do_neon_movn (void)
17259 {
17260 struct neon_type_el et = neon_check_type (2, NS_DQ,
17261 N_EQK | N_HLF, N_I16 | N_I32 | N_I64 | N_KEY);
17262 NEON_ENCODE (INTEGER, inst);
17263 neon_two_same (0, 1, et.size / 2);
17264 }
17265
17266 static void
17267 do_neon_rshift_narrow (void)
17268 {
17269 struct neon_type_el et = neon_check_type (2, NS_DQI,
17270 N_EQK | N_HLF, N_I16 | N_I32 | N_I64 | N_KEY);
17271 int imm = inst.operands[2].imm;
17272 /* This gets the bounds check, size encoding and immediate bits calculation
17273 right. */
17274 et.size /= 2;
17275
17276 /* If immediate is zero then we are a pseudo-instruction for
17277 VMOVN.I<size> <Dd>, <Qm> */
17278 if (imm == 0)
17279 {
17280 inst.operands[2].present = 0;
17281 inst.instruction = N_MNEM_vmovn;
17282 do_neon_movn ();
17283 return;
17284 }
17285
17286 constraint (imm < 1 || (unsigned)imm > et.size,
17287 _("immediate out of range for narrowing operation"));
17288 neon_imm_shift (FALSE, 0, 0, et, et.size - imm);
17289 }
17290
17291 static void
17292 do_neon_shll (void)
17293 {
17294 /* FIXME: Type checking when lengthening. */
17295 struct neon_type_el et = neon_check_type (2, NS_QDI,
17296 N_EQK | N_DBL, N_I8 | N_I16 | N_I32 | N_KEY);
17297 unsigned imm = inst.operands[2].imm;
17298
17299 if (imm == et.size)
17300 {
17301 /* Maximum shift variant. */
17302 NEON_ENCODE (INTEGER, inst);
17303 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17304 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17305 inst.instruction |= LOW4 (inst.operands[1].reg);
17306 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
17307 inst.instruction |= neon_logbits (et.size) << 18;
17308
17309 neon_dp_fixup (&inst);
17310 }
17311 else
17312 {
17313 /* A more-specific type check for non-max versions. */
17314 et = neon_check_type (2, NS_QDI,
17315 N_EQK | N_DBL, N_SU_32 | N_KEY);
17316 NEON_ENCODE (IMMED, inst);
17317 neon_imm_shift (TRUE, et.type == NT_unsigned, 0, et, imm);
17318 }
17319 }
17320
17321 /* Check the various types for the VCVT instruction, and return which version
17322 the current instruction is. */
17323
17324 #define CVT_FLAVOUR_VAR \
17325 CVT_VAR (s32_f32, N_S32, N_F32, whole_reg, "ftosls", "ftosis", "ftosizs") \
17326 CVT_VAR (u32_f32, N_U32, N_F32, whole_reg, "ftouls", "ftouis", "ftouizs") \
17327 CVT_VAR (f32_s32, N_F32, N_S32, whole_reg, "fsltos", "fsitos", NULL) \
17328 CVT_VAR (f32_u32, N_F32, N_U32, whole_reg, "fultos", "fuitos", NULL) \
17329 /* Half-precision conversions. */ \
17330 CVT_VAR (s16_f16, N_S16, N_F16 | N_KEY, whole_reg, NULL, NULL, NULL) \
17331 CVT_VAR (u16_f16, N_U16, N_F16 | N_KEY, whole_reg, NULL, NULL, NULL) \
17332 CVT_VAR (f16_s16, N_F16 | N_KEY, N_S16, whole_reg, NULL, NULL, NULL) \
17333 CVT_VAR (f16_u16, N_F16 | N_KEY, N_U16, whole_reg, NULL, NULL, NULL) \
17334 CVT_VAR (f32_f16, N_F32, N_F16, whole_reg, NULL, NULL, NULL) \
17335 CVT_VAR (f16_f32, N_F16, N_F32, whole_reg, NULL, NULL, NULL) \
17336 /* New VCVT instructions introduced by ARMv8.2 fp16 extension. \
17337 Compared with single/double precision variants, only the co-processor \
17338 field is different, so the encoding flow is reused here. */ \
17339 CVT_VAR (f16_s32, N_F16 | N_KEY, N_S32, N_VFP, "fsltos", "fsitos", NULL) \
17340 CVT_VAR (f16_u32, N_F16 | N_KEY, N_U32, N_VFP, "fultos", "fuitos", NULL) \
17341 CVT_VAR (u32_f16, N_U32, N_F16 | N_KEY, N_VFP, "ftouls", "ftouis", "ftouizs")\
17342 CVT_VAR (s32_f16, N_S32, N_F16 | N_KEY, N_VFP, "ftosls", "ftosis", "ftosizs")\
17343 /* VFP instructions. */ \
17344 CVT_VAR (f32_f64, N_F32, N_F64, N_VFP, NULL, "fcvtsd", NULL) \
17345 CVT_VAR (f64_f32, N_F64, N_F32, N_VFP, NULL, "fcvtds", NULL) \
17346 CVT_VAR (s32_f64, N_S32, N_F64 | key, N_VFP, "ftosld", "ftosid", "ftosizd") \
17347 CVT_VAR (u32_f64, N_U32, N_F64 | key, N_VFP, "ftould", "ftouid", "ftouizd") \
17348 CVT_VAR (f64_s32, N_F64 | key, N_S32, N_VFP, "fsltod", "fsitod", NULL) \
17349 CVT_VAR (f64_u32, N_F64 | key, N_U32, N_VFP, "fultod", "fuitod", NULL) \
17350 /* VFP instructions with bitshift. */ \
17351 CVT_VAR (f32_s16, N_F32 | key, N_S16, N_VFP, "fshtos", NULL, NULL) \
17352 CVT_VAR (f32_u16, N_F32 | key, N_U16, N_VFP, "fuhtos", NULL, NULL) \
17353 CVT_VAR (f64_s16, N_F64 | key, N_S16, N_VFP, "fshtod", NULL, NULL) \
17354 CVT_VAR (f64_u16, N_F64 | key, N_U16, N_VFP, "fuhtod", NULL, NULL) \
17355 CVT_VAR (s16_f32, N_S16, N_F32 | key, N_VFP, "ftoshs", NULL, NULL) \
17356 CVT_VAR (u16_f32, N_U16, N_F32 | key, N_VFP, "ftouhs", NULL, NULL) \
17357 CVT_VAR (s16_f64, N_S16, N_F64 | key, N_VFP, "ftoshd", NULL, NULL) \
17358 CVT_VAR (u16_f64, N_U16, N_F64 | key, N_VFP, "ftouhd", NULL, NULL)
17359
17360 #define CVT_VAR(C, X, Y, R, BSN, CN, ZN) \
17361 neon_cvt_flavour_##C,
17362
17363 /* The different types of conversions we can do. */
17364 enum neon_cvt_flavour
17365 {
17366 CVT_FLAVOUR_VAR
17367 neon_cvt_flavour_invalid,
17368 neon_cvt_flavour_first_fp = neon_cvt_flavour_f32_f64
17369 };
17370
17371 #undef CVT_VAR
17372
17373 static enum neon_cvt_flavour
17374 get_neon_cvt_flavour (enum neon_shape rs)
17375 {
17376 #define CVT_VAR(C,X,Y,R,BSN,CN,ZN) \
17377 et = neon_check_type (2, rs, (R) | (X), (R) | (Y)); \
17378 if (et.type != NT_invtype) \
17379 { \
17380 inst.error = NULL; \
17381 return (neon_cvt_flavour_##C); \
17382 }
17383
17384 struct neon_type_el et;
17385 unsigned whole_reg = (rs == NS_FFI || rs == NS_FD || rs == NS_DF
17386 || rs == NS_FF) ? N_VFP : 0;
17387 /* The instruction versions which take an immediate take one register
17388 argument, which is extended to the width of the full register. Thus the
17389 "source" and "destination" registers must have the same width. Hack that
17390 here by making the size equal to the key (wider, in this case) operand. */
17391 unsigned key = (rs == NS_QQI || rs == NS_DDI || rs == NS_FFI) ? N_KEY : 0;
17392
17393 CVT_FLAVOUR_VAR;
17394
17395 return neon_cvt_flavour_invalid;
17396 #undef CVT_VAR
17397 }
17398
17399 enum neon_cvt_mode
17400 {
17401 neon_cvt_mode_a,
17402 neon_cvt_mode_n,
17403 neon_cvt_mode_p,
17404 neon_cvt_mode_m,
17405 neon_cvt_mode_z,
17406 neon_cvt_mode_x,
17407 neon_cvt_mode_r
17408 };
17409
17410 /* Neon-syntax VFP conversions. */
17411
17412 static void
17413 do_vfp_nsyn_cvt (enum neon_shape rs, enum neon_cvt_flavour flavour)
17414 {
17415 const char *opname = 0;
17416
17417 if (rs == NS_DDI || rs == NS_QQI || rs == NS_FFI
17418 || rs == NS_FHI || rs == NS_HFI)
17419 {
17420 /* Conversions with immediate bitshift. */
17421 const char *enc[] =
17422 {
17423 #define CVT_VAR(C,A,B,R,BSN,CN,ZN) BSN,
17424 CVT_FLAVOUR_VAR
17425 NULL
17426 #undef CVT_VAR
17427 };
17428
17429 if (flavour < (int) ARRAY_SIZE (enc))
17430 {
17431 opname = enc[flavour];
17432 constraint (inst.operands[0].reg != inst.operands[1].reg,
17433 _("operands 0 and 1 must be the same register"));
17434 inst.operands[1] = inst.operands[2];
17435 memset (&inst.operands[2], '\0', sizeof (inst.operands[2]));
17436 }
17437 }
17438 else
17439 {
17440 /* Conversions without bitshift. */
17441 const char *enc[] =
17442 {
17443 #define CVT_VAR(C,A,B,R,BSN,CN,ZN) CN,
17444 CVT_FLAVOUR_VAR
17445 NULL
17446 #undef CVT_VAR
17447 };
17448
17449 if (flavour < (int) ARRAY_SIZE (enc))
17450 opname = enc[flavour];
17451 }
17452
17453 if (opname)
17454 do_vfp_nsyn_opcode (opname);
17455
17456 /* ARMv8.2 fp16 VCVT instruction. */
17457 if (flavour == neon_cvt_flavour_s32_f16
17458 || flavour == neon_cvt_flavour_u32_f16
17459 || flavour == neon_cvt_flavour_f16_u32
17460 || flavour == neon_cvt_flavour_f16_s32)
17461 do_scalar_fp16_v82_encode ();
17462 }
17463
17464 static void
17465 do_vfp_nsyn_cvtz (void)
17466 {
17467 enum neon_shape rs = neon_select_shape (NS_FH, NS_FF, NS_FD, NS_NULL);
17468 enum neon_cvt_flavour flavour = get_neon_cvt_flavour (rs);
17469 const char *enc[] =
17470 {
17471 #define CVT_VAR(C,A,B,R,BSN,CN,ZN) ZN,
17472 CVT_FLAVOUR_VAR
17473 NULL
17474 #undef CVT_VAR
17475 };
17476
17477 if (flavour < (int) ARRAY_SIZE (enc) && enc[flavour])
17478 do_vfp_nsyn_opcode (enc[flavour]);
17479 }
17480
17481 static void
17482 do_vfp_nsyn_cvt_fpv8 (enum neon_cvt_flavour flavour,
17483 enum neon_cvt_mode mode)
17484 {
17485 int sz, op;
17486 int rm;
17487
17488 /* Targets like FPv5-SP-D16 don't support FP v8 instructions with
17489 D register operands. */
17490 if (flavour == neon_cvt_flavour_s32_f64
17491 || flavour == neon_cvt_flavour_u32_f64)
17492 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
17493 _(BAD_FPU));
17494
17495 if (flavour == neon_cvt_flavour_s32_f16
17496 || flavour == neon_cvt_flavour_u32_f16)
17497 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16),
17498 _(BAD_FP16));
17499
17500 set_pred_insn_type (OUTSIDE_PRED_INSN);
17501
17502 switch (flavour)
17503 {
17504 case neon_cvt_flavour_s32_f64:
17505 sz = 1;
17506 op = 1;
17507 break;
17508 case neon_cvt_flavour_s32_f32:
17509 sz = 0;
17510 op = 1;
17511 break;
17512 case neon_cvt_flavour_s32_f16:
17513 sz = 0;
17514 op = 1;
17515 break;
17516 case neon_cvt_flavour_u32_f64:
17517 sz = 1;
17518 op = 0;
17519 break;
17520 case neon_cvt_flavour_u32_f32:
17521 sz = 0;
17522 op = 0;
17523 break;
17524 case neon_cvt_flavour_u32_f16:
17525 sz = 0;
17526 op = 0;
17527 break;
17528 default:
17529 first_error (_("invalid instruction shape"));
17530 return;
17531 }
17532
17533 switch (mode)
17534 {
17535 case neon_cvt_mode_a: rm = 0; break;
17536 case neon_cvt_mode_n: rm = 1; break;
17537 case neon_cvt_mode_p: rm = 2; break;
17538 case neon_cvt_mode_m: rm = 3; break;
17539 default: first_error (_("invalid rounding mode")); return;
17540 }
17541
17542 NEON_ENCODE (FPV8, inst);
17543 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
17544 encode_arm_vfp_reg (inst.operands[1].reg, sz == 1 ? VFP_REG_Dm : VFP_REG_Sm);
17545 inst.instruction |= sz << 8;
17546
17547 /* ARMv8.2 fp16 VCVT instruction. */
17548 if (flavour == neon_cvt_flavour_s32_f16
17549 ||flavour == neon_cvt_flavour_u32_f16)
17550 do_scalar_fp16_v82_encode ();
17551 inst.instruction |= op << 7;
17552 inst.instruction |= rm << 16;
17553 inst.instruction |= 0xf0000000;
17554 inst.is_neon = TRUE;
17555 }
17556
17557 static void
17558 do_neon_cvt_1 (enum neon_cvt_mode mode)
17559 {
17560 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_FFI, NS_DD, NS_QQ,
17561 NS_FD, NS_DF, NS_FF, NS_QD, NS_DQ,
17562 NS_FH, NS_HF, NS_FHI, NS_HFI,
17563 NS_NULL);
17564 enum neon_cvt_flavour flavour = get_neon_cvt_flavour (rs);
17565
17566 if (flavour == neon_cvt_flavour_invalid)
17567 return;
17568
17569 /* PR11109: Handle round-to-zero for VCVT conversions. */
17570 if (mode == neon_cvt_mode_z
17571 && ARM_CPU_HAS_FEATURE (cpu_variant, fpu_arch_vfp_v2)
17572 && (flavour == neon_cvt_flavour_s16_f16
17573 || flavour == neon_cvt_flavour_u16_f16
17574 || flavour == neon_cvt_flavour_s32_f32
17575 || flavour == neon_cvt_flavour_u32_f32
17576 || flavour == neon_cvt_flavour_s32_f64
17577 || flavour == neon_cvt_flavour_u32_f64)
17578 && (rs == NS_FD || rs == NS_FF))
17579 {
17580 do_vfp_nsyn_cvtz ();
17581 return;
17582 }
17583
17584 /* ARMv8.2 fp16 VCVT conversions. */
17585 if (mode == neon_cvt_mode_z
17586 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16)
17587 && (flavour == neon_cvt_flavour_s32_f16
17588 || flavour == neon_cvt_flavour_u32_f16)
17589 && (rs == NS_FH))
17590 {
17591 do_vfp_nsyn_cvtz ();
17592 do_scalar_fp16_v82_encode ();
17593 return;
17594 }
17595
17596 /* VFP rather than Neon conversions. */
17597 if (flavour >= neon_cvt_flavour_first_fp)
17598 {
17599 if (mode == neon_cvt_mode_x || mode == neon_cvt_mode_z)
17600 do_vfp_nsyn_cvt (rs, flavour);
17601 else
17602 do_vfp_nsyn_cvt_fpv8 (flavour, mode);
17603
17604 return;
17605 }
17606
17607 switch (rs)
17608 {
17609 case NS_QQI:
17610 if (mode == neon_cvt_mode_z
17611 && (flavour == neon_cvt_flavour_f16_s16
17612 || flavour == neon_cvt_flavour_f16_u16
17613 || flavour == neon_cvt_flavour_s16_f16
17614 || flavour == neon_cvt_flavour_u16_f16
17615 || flavour == neon_cvt_flavour_f32_u32
17616 || flavour == neon_cvt_flavour_f32_s32
17617 || flavour == neon_cvt_flavour_s32_f32
17618 || flavour == neon_cvt_flavour_u32_f32))
17619 {
17620 if (check_simd_pred_availability (1, NEON_CHECK_CC | NEON_CHECK_ARCH))
17621 return;
17622 }
17623 else if (mode == neon_cvt_mode_n)
17624 {
17625 /* We are dealing with vcvt with the 'ne' condition. */
17626 inst.cond = 0x1;
17627 inst.instruction = N_MNEM_vcvt;
17628 do_neon_cvt_1 (neon_cvt_mode_z);
17629 return;
17630 }
17631 /* fall through. */
17632 case NS_DDI:
17633 {
17634 unsigned immbits;
17635 unsigned enctab[] = {0x0000100, 0x1000100, 0x0, 0x1000000,
17636 0x0000100, 0x1000100, 0x0, 0x1000000};
17637
17638 if ((rs != NS_QQI || !ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext))
17639 && vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
17640 return;
17641
17642 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext))
17643 {
17644 constraint (inst.operands[2].present && inst.operands[2].imm == 0,
17645 _("immediate value out of range"));
17646 switch (flavour)
17647 {
17648 case neon_cvt_flavour_f16_s16:
17649 case neon_cvt_flavour_f16_u16:
17650 case neon_cvt_flavour_s16_f16:
17651 case neon_cvt_flavour_u16_f16:
17652 constraint (inst.operands[2].imm > 16,
17653 _("immediate value out of range"));
17654 break;
17655 case neon_cvt_flavour_f32_u32:
17656 case neon_cvt_flavour_f32_s32:
17657 case neon_cvt_flavour_s32_f32:
17658 case neon_cvt_flavour_u32_f32:
17659 constraint (inst.operands[2].imm > 32,
17660 _("immediate value out of range"));
17661 break;
17662 default:
17663 inst.error = BAD_FPU;
17664 return;
17665 }
17666 }
17667
17668 /* Fixed-point conversion with #0 immediate is encoded as an
17669 integer conversion. */
17670 if (inst.operands[2].present && inst.operands[2].imm == 0)
17671 goto int_encode;
17672 NEON_ENCODE (IMMED, inst);
17673 if (flavour != neon_cvt_flavour_invalid)
17674 inst.instruction |= enctab[flavour];
17675 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17676 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17677 inst.instruction |= LOW4 (inst.operands[1].reg);
17678 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
17679 inst.instruction |= neon_quad (rs) << 6;
17680 inst.instruction |= 1 << 21;
17681 if (flavour < neon_cvt_flavour_s16_f16)
17682 {
17683 inst.instruction |= 1 << 21;
17684 immbits = 32 - inst.operands[2].imm;
17685 inst.instruction |= immbits << 16;
17686 }
17687 else
17688 {
17689 inst.instruction |= 3 << 20;
17690 immbits = 16 - inst.operands[2].imm;
17691 inst.instruction |= immbits << 16;
17692 inst.instruction &= ~(1 << 9);
17693 }
17694
17695 neon_dp_fixup (&inst);
17696 }
17697 break;
17698
17699 case NS_QQ:
17700 if ((mode == neon_cvt_mode_a || mode == neon_cvt_mode_n
17701 || mode == neon_cvt_mode_m || mode == neon_cvt_mode_p)
17702 && (flavour == neon_cvt_flavour_s16_f16
17703 || flavour == neon_cvt_flavour_u16_f16
17704 || flavour == neon_cvt_flavour_s32_f32
17705 || flavour == neon_cvt_flavour_u32_f32))
17706 {
17707 if (check_simd_pred_availability (1,
17708 NEON_CHECK_CC | NEON_CHECK_ARCH8))
17709 return;
17710 }
17711 else if (mode == neon_cvt_mode_z
17712 && (flavour == neon_cvt_flavour_f16_s16
17713 || flavour == neon_cvt_flavour_f16_u16
17714 || flavour == neon_cvt_flavour_s16_f16
17715 || flavour == neon_cvt_flavour_u16_f16
17716 || flavour == neon_cvt_flavour_f32_u32
17717 || flavour == neon_cvt_flavour_f32_s32
17718 || flavour == neon_cvt_flavour_s32_f32
17719 || flavour == neon_cvt_flavour_u32_f32))
17720 {
17721 if (check_simd_pred_availability (1,
17722 NEON_CHECK_CC | NEON_CHECK_ARCH))
17723 return;
17724 }
17725 /* fall through. */
17726 case NS_DD:
17727 if (mode != neon_cvt_mode_x && mode != neon_cvt_mode_z)
17728 {
17729
17730 NEON_ENCODE (FLOAT, inst);
17731 if (check_simd_pred_availability (1,
17732 NEON_CHECK_CC | NEON_CHECK_ARCH8))
17733 return;
17734
17735 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17736 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17737 inst.instruction |= LOW4 (inst.operands[1].reg);
17738 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
17739 inst.instruction |= neon_quad (rs) << 6;
17740 inst.instruction |= (flavour == neon_cvt_flavour_u16_f16
17741 || flavour == neon_cvt_flavour_u32_f32) << 7;
17742 inst.instruction |= mode << 8;
17743 if (flavour == neon_cvt_flavour_u16_f16
17744 || flavour == neon_cvt_flavour_s16_f16)
17745 /* Mask off the original size bits and reencode them. */
17746 inst.instruction = ((inst.instruction & 0xfff3ffff) | (1 << 18));
17747
17748 if (thumb_mode)
17749 inst.instruction |= 0xfc000000;
17750 else
17751 inst.instruction |= 0xf0000000;
17752 }
17753 else
17754 {
17755 int_encode:
17756 {
17757 unsigned enctab[] = { 0x100, 0x180, 0x0, 0x080,
17758 0x100, 0x180, 0x0, 0x080};
17759
17760 NEON_ENCODE (INTEGER, inst);
17761
17762 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext))
17763 {
17764 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
17765 return;
17766 }
17767
17768 if (flavour != neon_cvt_flavour_invalid)
17769 inst.instruction |= enctab[flavour];
17770
17771 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17772 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17773 inst.instruction |= LOW4 (inst.operands[1].reg);
17774 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
17775 inst.instruction |= neon_quad (rs) << 6;
17776 if (flavour >= neon_cvt_flavour_s16_f16
17777 && flavour <= neon_cvt_flavour_f16_u16)
17778 /* Half precision. */
17779 inst.instruction |= 1 << 18;
17780 else
17781 inst.instruction |= 2 << 18;
17782
17783 neon_dp_fixup (&inst);
17784 }
17785 }
17786 break;
17787
17788 /* Half-precision conversions for Advanced SIMD -- neon. */
17789 case NS_QD:
17790 case NS_DQ:
17791 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
17792 return;
17793
17794 if ((rs == NS_DQ)
17795 && (inst.vectype.el[0].size != 16 || inst.vectype.el[1].size != 32))
17796 {
17797 as_bad (_("operand size must match register width"));
17798 break;
17799 }
17800
17801 if ((rs == NS_QD)
17802 && ((inst.vectype.el[0].size != 32 || inst.vectype.el[1].size != 16)))
17803 {
17804 as_bad (_("operand size must match register width"));
17805 break;
17806 }
17807
17808 if (rs == NS_DQ)
17809 inst.instruction = 0x3b60600;
17810 else
17811 inst.instruction = 0x3b60700;
17812
17813 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17814 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17815 inst.instruction |= LOW4 (inst.operands[1].reg);
17816 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
17817 neon_dp_fixup (&inst);
17818 break;
17819
17820 default:
17821 /* Some VFP conversions go here (s32 <-> f32, u32 <-> f32). */
17822 if (mode == neon_cvt_mode_x || mode == neon_cvt_mode_z)
17823 do_vfp_nsyn_cvt (rs, flavour);
17824 else
17825 do_vfp_nsyn_cvt_fpv8 (flavour, mode);
17826 }
17827 }
17828
17829 static void
17830 do_neon_cvtr (void)
17831 {
17832 do_neon_cvt_1 (neon_cvt_mode_x);
17833 }
17834
17835 static void
17836 do_neon_cvt (void)
17837 {
17838 do_neon_cvt_1 (neon_cvt_mode_z);
17839 }
17840
17841 static void
17842 do_neon_cvta (void)
17843 {
17844 do_neon_cvt_1 (neon_cvt_mode_a);
17845 }
17846
17847 static void
17848 do_neon_cvtn (void)
17849 {
17850 do_neon_cvt_1 (neon_cvt_mode_n);
17851 }
17852
17853 static void
17854 do_neon_cvtp (void)
17855 {
17856 do_neon_cvt_1 (neon_cvt_mode_p);
17857 }
17858
17859 static void
17860 do_neon_cvtm (void)
17861 {
17862 do_neon_cvt_1 (neon_cvt_mode_m);
17863 }
17864
17865 static void
17866 do_neon_cvttb_2 (bfd_boolean t, bfd_boolean to, bfd_boolean is_double)
17867 {
17868 if (is_double)
17869 mark_feature_used (&fpu_vfp_ext_armv8);
17870
17871 encode_arm_vfp_reg (inst.operands[0].reg,
17872 (is_double && !to) ? VFP_REG_Dd : VFP_REG_Sd);
17873 encode_arm_vfp_reg (inst.operands[1].reg,
17874 (is_double && to) ? VFP_REG_Dm : VFP_REG_Sm);
17875 inst.instruction |= to ? 0x10000 : 0;
17876 inst.instruction |= t ? 0x80 : 0;
17877 inst.instruction |= is_double ? 0x100 : 0;
17878 do_vfp_cond_or_thumb ();
17879 }
17880
17881 static void
17882 do_neon_cvttb_1 (bfd_boolean t)
17883 {
17884 enum neon_shape rs = neon_select_shape (NS_HF, NS_HD, NS_FH, NS_FF, NS_FD,
17885 NS_DF, NS_DH, NS_QQ, NS_QQI, NS_NULL);
17886
17887 if (rs == NS_NULL)
17888 return;
17889 else if (rs == NS_QQ || rs == NS_QQI)
17890 {
17891 int single_to_half = 0;
17892 if (check_simd_pred_availability (1, NEON_CHECK_ARCH))
17893 return;
17894
17895 enum neon_cvt_flavour flavour = get_neon_cvt_flavour (rs);
17896
17897 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)
17898 && (flavour == neon_cvt_flavour_u16_f16
17899 || flavour == neon_cvt_flavour_s16_f16
17900 || flavour == neon_cvt_flavour_f16_s16
17901 || flavour == neon_cvt_flavour_f16_u16
17902 || flavour == neon_cvt_flavour_u32_f32
17903 || flavour == neon_cvt_flavour_s32_f32
17904 || flavour == neon_cvt_flavour_f32_s32
17905 || flavour == neon_cvt_flavour_f32_u32))
17906 {
17907 inst.cond = 0xf;
17908 inst.instruction = N_MNEM_vcvt;
17909 set_pred_insn_type (INSIDE_VPT_INSN);
17910 do_neon_cvt_1 (neon_cvt_mode_z);
17911 return;
17912 }
17913 else if (rs == NS_QQ && flavour == neon_cvt_flavour_f32_f16)
17914 single_to_half = 1;
17915 else if (rs == NS_QQ && flavour != neon_cvt_flavour_f16_f32)
17916 {
17917 first_error (BAD_FPU);
17918 return;
17919 }
17920
17921 inst.instruction = 0xee3f0e01;
17922 inst.instruction |= single_to_half << 28;
17923 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17924 inst.instruction |= LOW4 (inst.operands[0].reg) << 13;
17925 inst.instruction |= t << 12;
17926 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
17927 inst.instruction |= LOW4 (inst.operands[1].reg) << 1;
17928 inst.is_neon = 1;
17929 }
17930 else if (neon_check_type (2, rs, N_F16, N_F32 | N_VFP).type != NT_invtype)
17931 {
17932 inst.error = NULL;
17933 do_neon_cvttb_2 (t, /*to=*/TRUE, /*is_double=*/FALSE);
17934 }
17935 else if (neon_check_type (2, rs, N_F32 | N_VFP, N_F16).type != NT_invtype)
17936 {
17937 inst.error = NULL;
17938 do_neon_cvttb_2 (t, /*to=*/FALSE, /*is_double=*/FALSE);
17939 }
17940 else if (neon_check_type (2, rs, N_F16, N_F64 | N_VFP).type != NT_invtype)
17941 {
17942 /* The VCVTB and VCVTT instructions with D-register operands
17943 don't work for SP only targets. */
17944 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
17945 _(BAD_FPU));
17946
17947 inst.error = NULL;
17948 do_neon_cvttb_2 (t, /*to=*/TRUE, /*is_double=*/TRUE);
17949 }
17950 else if (neon_check_type (2, rs, N_F64 | N_VFP, N_F16).type != NT_invtype)
17951 {
17952 /* The VCVTB and VCVTT instructions with D-register operands
17953 don't work for SP only targets. */
17954 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
17955 _(BAD_FPU));
17956
17957 inst.error = NULL;
17958 do_neon_cvttb_2 (t, /*to=*/FALSE, /*is_double=*/TRUE);
17959 }
17960 else
17961 return;
17962 }
17963
17964 static void
17965 do_neon_cvtb (void)
17966 {
17967 do_neon_cvttb_1 (FALSE);
17968 }
17969
17970
17971 static void
17972 do_neon_cvtt (void)
17973 {
17974 do_neon_cvttb_1 (TRUE);
17975 }
17976
17977 static void
17978 neon_move_immediate (void)
17979 {
17980 enum neon_shape rs = neon_select_shape (NS_DI, NS_QI, NS_NULL);
17981 struct neon_type_el et = neon_check_type (2, rs,
17982 N_I8 | N_I16 | N_I32 | N_I64 | N_F32 | N_KEY, N_EQK);
17983 unsigned immlo, immhi = 0, immbits;
17984 int op, cmode, float_p;
17985
17986 constraint (et.type == NT_invtype,
17987 _("operand size must be specified for immediate VMOV"));
17988
17989 /* We start out as an MVN instruction if OP = 1, MOV otherwise. */
17990 op = (inst.instruction & (1 << 5)) != 0;
17991
17992 immlo = inst.operands[1].imm;
17993 if (inst.operands[1].regisimm)
17994 immhi = inst.operands[1].reg;
17995
17996 constraint (et.size < 32 && (immlo & ~((1 << et.size) - 1)) != 0,
17997 _("immediate has bits set outside the operand size"));
17998
17999 float_p = inst.operands[1].immisfloat;
18000
18001 if ((cmode = neon_cmode_for_move_imm (immlo, immhi, float_p, &immbits, &op,
18002 et.size, et.type)) == FAIL)
18003 {
18004 /* Invert relevant bits only. */
18005 neon_invert_size (&immlo, &immhi, et.size);
18006 /* Flip from VMOV/VMVN to VMVN/VMOV. Some immediate types are unavailable
18007 with one or the other; those cases are caught by
18008 neon_cmode_for_move_imm. */
18009 op = !op;
18010 if ((cmode = neon_cmode_for_move_imm (immlo, immhi, float_p, &immbits,
18011 &op, et.size, et.type)) == FAIL)
18012 {
18013 first_error (_("immediate out of range"));
18014 return;
18015 }
18016 }
18017
18018 inst.instruction &= ~(1 << 5);
18019 inst.instruction |= op << 5;
18020
18021 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
18022 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
18023 inst.instruction |= neon_quad (rs) << 6;
18024 inst.instruction |= cmode << 8;
18025
18026 neon_write_immbits (immbits);
18027 }
18028
18029 static void
18030 do_neon_mvn (void)
18031 {
18032 if (inst.operands[1].isreg)
18033 {
18034 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
18035
18036 NEON_ENCODE (INTEGER, inst);
18037 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
18038 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
18039 inst.instruction |= LOW4 (inst.operands[1].reg);
18040 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
18041 inst.instruction |= neon_quad (rs) << 6;
18042 }
18043 else
18044 {
18045 NEON_ENCODE (IMMED, inst);
18046 neon_move_immediate ();
18047 }
18048
18049 neon_dp_fixup (&inst);
18050 }
18051
18052 /* Encode instructions of form:
18053
18054 |28/24|23|22|21 20|19 16|15 12|11 8|7|6|5|4|3 0|
18055 | U |x |D |size | Rn | Rd |x x x x|N|x|M|x| Rm | */
18056
18057 static void
18058 neon_mixed_length (struct neon_type_el et, unsigned size)
18059 {
18060 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
18061 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
18062 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
18063 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
18064 inst.instruction |= LOW4 (inst.operands[2].reg);
18065 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
18066 inst.instruction |= (et.type == NT_unsigned) << 24;
18067 inst.instruction |= neon_logbits (size) << 20;
18068
18069 neon_dp_fixup (&inst);
18070 }
18071
18072 static void
18073 do_neon_dyadic_long (void)
18074 {
18075 enum neon_shape rs = neon_select_shape (NS_QDD, NS_QQQ, NS_QQR, NS_NULL);
18076 if (rs == NS_QDD)
18077 {
18078 if (vfp_or_neon_is_neon (NEON_CHECK_ARCH | NEON_CHECK_CC) == FAIL)
18079 return;
18080
18081 NEON_ENCODE (INTEGER, inst);
18082 /* FIXME: Type checking for lengthening op. */
18083 struct neon_type_el et = neon_check_type (3, NS_QDD,
18084 N_EQK | N_DBL, N_EQK, N_SU_32 | N_KEY);
18085 neon_mixed_length (et, et.size);
18086 }
18087 else if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)
18088 && (inst.cond == 0xf || inst.cond == 0x10))
18089 {
18090 /* If parsing for MVE, vaddl/vsubl/vabdl{e,t} can only be vadd/vsub/vabd
18091 in an IT block with le/lt conditions. */
18092
18093 if (inst.cond == 0xf)
18094 inst.cond = 0xb;
18095 else if (inst.cond == 0x10)
18096 inst.cond = 0xd;
18097
18098 inst.pred_insn_type = INSIDE_IT_INSN;
18099
18100 if (inst.instruction == N_MNEM_vaddl)
18101 {
18102 inst.instruction = N_MNEM_vadd;
18103 do_neon_addsub_if_i ();
18104 }
18105 else if (inst.instruction == N_MNEM_vsubl)
18106 {
18107 inst.instruction = N_MNEM_vsub;
18108 do_neon_addsub_if_i ();
18109 }
18110 else if (inst.instruction == N_MNEM_vabdl)
18111 {
18112 inst.instruction = N_MNEM_vabd;
18113 do_neon_dyadic_if_su ();
18114 }
18115 }
18116 else
18117 first_error (BAD_FPU);
18118 }
18119
18120 static void
18121 do_neon_abal (void)
18122 {
18123 struct neon_type_el et = neon_check_type (3, NS_QDD,
18124 N_EQK | N_INT | N_DBL, N_EQK, N_SU_32 | N_KEY);
18125 neon_mixed_length (et, et.size);
18126 }
18127
18128 static void
18129 neon_mac_reg_scalar_long (unsigned regtypes, unsigned scalartypes)
18130 {
18131 if (inst.operands[2].isscalar)
18132 {
18133 struct neon_type_el et = neon_check_type (3, NS_QDS,
18134 N_EQK | N_DBL, N_EQK, regtypes | N_KEY);
18135 NEON_ENCODE (SCALAR, inst);
18136 neon_mul_mac (et, et.type == NT_unsigned);
18137 }
18138 else
18139 {
18140 struct neon_type_el et = neon_check_type (3, NS_QDD,
18141 N_EQK | N_DBL, N_EQK, scalartypes | N_KEY);
18142 NEON_ENCODE (INTEGER, inst);
18143 neon_mixed_length (et, et.size);
18144 }
18145 }
18146
18147 static void
18148 do_neon_mac_maybe_scalar_long (void)
18149 {
18150 neon_mac_reg_scalar_long (N_S16 | N_S32 | N_U16 | N_U32, N_SU_32);
18151 }
18152
18153 /* Like neon_scalar_for_mul, this function generate Rm encoding from GAS's
18154 internal SCALAR. QUAD_P is 1 if it's for Q format, otherwise it's 0. */
18155
18156 static unsigned
18157 neon_scalar_for_fmac_fp16_long (unsigned scalar, unsigned quad_p)
18158 {
18159 unsigned regno = NEON_SCALAR_REG (scalar);
18160 unsigned elno = NEON_SCALAR_INDEX (scalar);
18161
18162 if (quad_p)
18163 {
18164 if (regno > 7 || elno > 3)
18165 goto bad_scalar;
18166
18167 return ((regno & 0x7)
18168 | ((elno & 0x1) << 3)
18169 | (((elno >> 1) & 0x1) << 5));
18170 }
18171 else
18172 {
18173 if (regno > 15 || elno > 1)
18174 goto bad_scalar;
18175
18176 return (((regno & 0x1) << 5)
18177 | ((regno >> 1) & 0x7)
18178 | ((elno & 0x1) << 3));
18179 }
18180
18181 bad_scalar:
18182 first_error (_("scalar out of range for multiply instruction"));
18183 return 0;
18184 }
18185
18186 static void
18187 do_neon_fmac_maybe_scalar_long (int subtype)
18188 {
18189 enum neon_shape rs;
18190 int high8;
18191 /* NOTE: vfmal/vfmsl use slightly different NEON three-same encoding. 'size"
18192 field (bits[21:20]) has different meaning. For scalar index variant, it's
18193 used to differentiate add and subtract, otherwise it's with fixed value
18194 0x2. */
18195 int size = -1;
18196
18197 if (inst.cond != COND_ALWAYS)
18198 as_warn (_("vfmal/vfmsl with FP16 type cannot be conditional, the "
18199 "behaviour is UNPREDICTABLE"));
18200
18201 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16_fml),
18202 _(BAD_FP16));
18203
18204 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_armv8),
18205 _(BAD_FPU));
18206
18207 /* vfmal/vfmsl are in three-same D/Q register format or the third operand can
18208 be a scalar index register. */
18209 if (inst.operands[2].isscalar)
18210 {
18211 high8 = 0xfe000000;
18212 if (subtype)
18213 size = 16;
18214 rs = neon_select_shape (NS_DHS, NS_QDS, NS_NULL);
18215 }
18216 else
18217 {
18218 high8 = 0xfc000000;
18219 size = 32;
18220 if (subtype)
18221 inst.instruction |= (0x1 << 23);
18222 rs = neon_select_shape (NS_DHH, NS_QDD, NS_NULL);
18223 }
18224
18225 neon_check_type (3, rs, N_EQK, N_EQK, N_KEY | N_F16);
18226
18227 /* "opcode" from template has included "ubit", so simply pass 0 here. Also,
18228 the "S" bit in size field has been reused to differentiate vfmal and vfmsl,
18229 so we simply pass -1 as size. */
18230 unsigned quad_p = (rs == NS_QDD || rs == NS_QDS);
18231 neon_three_same (quad_p, 0, size);
18232
18233 /* Undo neon_dp_fixup. Redo the high eight bits. */
18234 inst.instruction &= 0x00ffffff;
18235 inst.instruction |= high8;
18236
18237 #define LOW1(R) ((R) & 0x1)
18238 #define HI4(R) (((R) >> 1) & 0xf)
18239 /* Unlike usually NEON three-same, encoding for Vn and Vm will depend on
18240 whether the instruction is in Q form and whether Vm is a scalar indexed
18241 operand. */
18242 if (inst.operands[2].isscalar)
18243 {
18244 unsigned rm
18245 = neon_scalar_for_fmac_fp16_long (inst.operands[2].reg, quad_p);
18246 inst.instruction &= 0xffffffd0;
18247 inst.instruction |= rm;
18248
18249 if (!quad_p)
18250 {
18251 /* Redo Rn as well. */
18252 inst.instruction &= 0xfff0ff7f;
18253 inst.instruction |= HI4 (inst.operands[1].reg) << 16;
18254 inst.instruction |= LOW1 (inst.operands[1].reg) << 7;
18255 }
18256 }
18257 else if (!quad_p)
18258 {
18259 /* Redo Rn and Rm. */
18260 inst.instruction &= 0xfff0ff50;
18261 inst.instruction |= HI4 (inst.operands[1].reg) << 16;
18262 inst.instruction |= LOW1 (inst.operands[1].reg) << 7;
18263 inst.instruction |= HI4 (inst.operands[2].reg);
18264 inst.instruction |= LOW1 (inst.operands[2].reg) << 5;
18265 }
18266 }
18267
18268 static void
18269 do_neon_vfmal (void)
18270 {
18271 return do_neon_fmac_maybe_scalar_long (0);
18272 }
18273
18274 static void
18275 do_neon_vfmsl (void)
18276 {
18277 return do_neon_fmac_maybe_scalar_long (1);
18278 }
18279
18280 static void
18281 do_neon_dyadic_wide (void)
18282 {
18283 struct neon_type_el et = neon_check_type (3, NS_QQD,
18284 N_EQK | N_DBL, N_EQK | N_DBL, N_SU_32 | N_KEY);
18285 neon_mixed_length (et, et.size);
18286 }
18287
18288 static void
18289 do_neon_dyadic_narrow (void)
18290 {
18291 struct neon_type_el et = neon_check_type (3, NS_QDD,
18292 N_EQK | N_DBL, N_EQK, N_I16 | N_I32 | N_I64 | N_KEY);
18293 /* Operand sign is unimportant, and the U bit is part of the opcode,
18294 so force the operand type to integer. */
18295 et.type = NT_integer;
18296 neon_mixed_length (et, et.size / 2);
18297 }
18298
18299 static void
18300 do_neon_mul_sat_scalar_long (void)
18301 {
18302 neon_mac_reg_scalar_long (N_S16 | N_S32, N_S16 | N_S32);
18303 }
18304
18305 static void
18306 do_neon_vmull (void)
18307 {
18308 if (inst.operands[2].isscalar)
18309 do_neon_mac_maybe_scalar_long ();
18310 else
18311 {
18312 struct neon_type_el et = neon_check_type (3, NS_QDD,
18313 N_EQK | N_DBL, N_EQK, N_SU_32 | N_P8 | N_P64 | N_KEY);
18314
18315 if (et.type == NT_poly)
18316 NEON_ENCODE (POLY, inst);
18317 else
18318 NEON_ENCODE (INTEGER, inst);
18319
18320 /* For polynomial encoding the U bit must be zero, and the size must
18321 be 8 (encoded as 0b00) or, on ARMv8 or later 64 (encoded, non
18322 obviously, as 0b10). */
18323 if (et.size == 64)
18324 {
18325 /* Check we're on the correct architecture. */
18326 if (!mark_feature_used (&fpu_crypto_ext_armv8))
18327 inst.error =
18328 _("Instruction form not available on this architecture.");
18329
18330 et.size = 32;
18331 }
18332
18333 neon_mixed_length (et, et.size);
18334 }
18335 }
18336
18337 static void
18338 do_neon_ext (void)
18339 {
18340 enum neon_shape rs = neon_select_shape (NS_DDDI, NS_QQQI, NS_NULL);
18341 struct neon_type_el et = neon_check_type (3, rs,
18342 N_EQK, N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
18343 unsigned imm = (inst.operands[3].imm * et.size) / 8;
18344
18345 constraint (imm >= (unsigned) (neon_quad (rs) ? 16 : 8),
18346 _("shift out of range"));
18347 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
18348 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
18349 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
18350 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
18351 inst.instruction |= LOW4 (inst.operands[2].reg);
18352 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
18353 inst.instruction |= neon_quad (rs) << 6;
18354 inst.instruction |= imm << 8;
18355
18356 neon_dp_fixup (&inst);
18357 }
18358
18359 static void
18360 do_neon_rev (void)
18361 {
18362 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
18363 struct neon_type_el et = neon_check_type (2, rs,
18364 N_EQK, N_8 | N_16 | N_32 | N_KEY);
18365 unsigned op = (inst.instruction >> 7) & 3;
18366 /* N (width of reversed regions) is encoded as part of the bitmask. We
18367 extract it here to check the elements to be reversed are smaller.
18368 Otherwise we'd get a reserved instruction. */
18369 unsigned elsize = (op == 2) ? 16 : (op == 1) ? 32 : (op == 0) ? 64 : 0;
18370 gas_assert (elsize != 0);
18371 constraint (et.size >= elsize,
18372 _("elements must be smaller than reversal region"));
18373 neon_two_same (neon_quad (rs), 1, et.size);
18374 }
18375
18376 static void
18377 do_neon_dup (void)
18378 {
18379 if (inst.operands[1].isscalar)
18380 {
18381 enum neon_shape rs = neon_select_shape (NS_DS, NS_QS, NS_NULL);
18382 struct neon_type_el et = neon_check_type (2, rs,
18383 N_EQK, N_8 | N_16 | N_32 | N_KEY);
18384 unsigned sizebits = et.size >> 3;
18385 unsigned dm = NEON_SCALAR_REG (inst.operands[1].reg);
18386 int logsize = neon_logbits (et.size);
18387 unsigned x = NEON_SCALAR_INDEX (inst.operands[1].reg) << logsize;
18388
18389 if (vfp_or_neon_is_neon (NEON_CHECK_CC) == FAIL)
18390 return;
18391
18392 NEON_ENCODE (SCALAR, inst);
18393 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
18394 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
18395 inst.instruction |= LOW4 (dm);
18396 inst.instruction |= HI1 (dm) << 5;
18397 inst.instruction |= neon_quad (rs) << 6;
18398 inst.instruction |= x << 17;
18399 inst.instruction |= sizebits << 16;
18400
18401 neon_dp_fixup (&inst);
18402 }
18403 else
18404 {
18405 enum neon_shape rs = neon_select_shape (NS_DR, NS_QR, NS_NULL);
18406 struct neon_type_el et = neon_check_type (2, rs,
18407 N_8 | N_16 | N_32 | N_KEY, N_EQK);
18408 /* Duplicate ARM register to lanes of vector. */
18409 NEON_ENCODE (ARMREG, inst);
18410 switch (et.size)
18411 {
18412 case 8: inst.instruction |= 0x400000; break;
18413 case 16: inst.instruction |= 0x000020; break;
18414 case 32: inst.instruction |= 0x000000; break;
18415 default: break;
18416 }
18417 inst.instruction |= LOW4 (inst.operands[1].reg) << 12;
18418 inst.instruction |= LOW4 (inst.operands[0].reg) << 16;
18419 inst.instruction |= HI1 (inst.operands[0].reg) << 7;
18420 inst.instruction |= neon_quad (rs) << 21;
18421 /* The encoding for this instruction is identical for the ARM and Thumb
18422 variants, except for the condition field. */
18423 do_vfp_cond_or_thumb ();
18424 }
18425 }
18426
18427 static void
18428 do_mve_mov (int toQ)
18429 {
18430 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
18431 return;
18432 if (inst.cond > COND_ALWAYS)
18433 inst.pred_insn_type = MVE_UNPREDICABLE_INSN;
18434
18435 unsigned Rt = 0, Rt2 = 1, Q0 = 2, Q1 = 3;
18436 if (toQ)
18437 {
18438 Q0 = 0;
18439 Q1 = 1;
18440 Rt = 2;
18441 Rt2 = 3;
18442 }
18443
18444 constraint (inst.operands[Q0].reg != inst.operands[Q1].reg + 2,
18445 _("Index one must be [2,3] and index two must be two less than"
18446 " index one."));
18447 constraint (inst.operands[Rt].reg == inst.operands[Rt2].reg,
18448 _("General purpose registers may not be the same"));
18449 constraint (inst.operands[Rt].reg == REG_SP
18450 || inst.operands[Rt2].reg == REG_SP,
18451 BAD_SP);
18452 constraint (inst.operands[Rt].reg == REG_PC
18453 || inst.operands[Rt2].reg == REG_PC,
18454 BAD_PC);
18455
18456 inst.instruction = 0xec000f00;
18457 inst.instruction |= HI1 (inst.operands[Q1].reg / 32) << 23;
18458 inst.instruction |= !!toQ << 20;
18459 inst.instruction |= inst.operands[Rt2].reg << 16;
18460 inst.instruction |= LOW4 (inst.operands[Q1].reg / 32) << 13;
18461 inst.instruction |= (inst.operands[Q1].reg % 4) << 4;
18462 inst.instruction |= inst.operands[Rt].reg;
18463 }
18464
18465 static void
18466 do_mve_movn (void)
18467 {
18468 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
18469 return;
18470
18471 if (inst.cond > COND_ALWAYS)
18472 inst.pred_insn_type = INSIDE_VPT_INSN;
18473 else
18474 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
18475
18476 struct neon_type_el et = neon_check_type (2, NS_QQ, N_EQK, N_I16 | N_I32
18477 | N_KEY);
18478
18479 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
18480 inst.instruction |= (neon_logbits (et.size) - 1) << 18;
18481 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
18482 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
18483 inst.instruction |= LOW4 (inst.operands[1].reg);
18484 inst.is_neon = 1;
18485
18486 }
18487
18488 /* VMOV has particularly many variations. It can be one of:
18489 0. VMOV<c><q> <Qd>, <Qm>
18490 1. VMOV<c><q> <Dd>, <Dm>
18491 (Register operations, which are VORR with Rm = Rn.)
18492 2. VMOV<c><q>.<dt> <Qd>, #<imm>
18493 3. VMOV<c><q>.<dt> <Dd>, #<imm>
18494 (Immediate loads.)
18495 4. VMOV<c><q>.<size> <Dn[x]>, <Rd>
18496 (ARM register to scalar.)
18497 5. VMOV<c><q> <Dm>, <Rd>, <Rn>
18498 (Two ARM registers to vector.)
18499 6. VMOV<c><q>.<dt> <Rd>, <Dn[x]>
18500 (Scalar to ARM register.)
18501 7. VMOV<c><q> <Rd>, <Rn>, <Dm>
18502 (Vector to two ARM registers.)
18503 8. VMOV.F32 <Sd>, <Sm>
18504 9. VMOV.F64 <Dd>, <Dm>
18505 (VFP register moves.)
18506 10. VMOV.F32 <Sd>, #imm
18507 11. VMOV.F64 <Dd>, #imm
18508 (VFP float immediate load.)
18509 12. VMOV <Rd>, <Sm>
18510 (VFP single to ARM reg.)
18511 13. VMOV <Sd>, <Rm>
18512 (ARM reg to VFP single.)
18513 14. VMOV <Rd>, <Re>, <Sn>, <Sm>
18514 (Two ARM regs to two VFP singles.)
18515 15. VMOV <Sd>, <Se>, <Rn>, <Rm>
18516 (Two VFP singles to two ARM regs.)
18517 16. VMOV<c> <Rt>, <Rt2>, <Qd[idx]>, <Qd[idx2]>
18518 17. VMOV<c> <Qd[idx]>, <Qd[idx2]>, <Rt>, <Rt2>
18519 18. VMOV<c>.<dt> <Rt>, <Qn[idx]>
18520 19. VMOV<c>.<dt> <Qd[idx]>, <Rt>
18521
18522 These cases can be disambiguated using neon_select_shape, except cases 1/9
18523 and 3/11 which depend on the operand type too.
18524
18525 All the encoded bits are hardcoded by this function.
18526
18527 Cases 4, 6 may be used with VFPv1 and above (only 32-bit transfers!).
18528 Cases 5, 7 may be used with VFPv2 and above.
18529
18530 FIXME: Some of the checking may be a bit sloppy (in a couple of cases you
18531 can specify a type where it doesn't make sense to, and is ignored). */
18532
18533 static void
18534 do_neon_mov (void)
18535 {
18536 enum neon_shape rs = neon_select_shape (NS_RRSS, NS_SSRR, NS_RRFF, NS_FFRR,
18537 NS_DRR, NS_RRD, NS_QQ, NS_DD, NS_QI,
18538 NS_DI, NS_SR, NS_RS, NS_FF, NS_FI,
18539 NS_RF, NS_FR, NS_HR, NS_RH, NS_HI,
18540 NS_NULL);
18541 struct neon_type_el et;
18542 const char *ldconst = 0;
18543
18544 switch (rs)
18545 {
18546 case NS_DD: /* case 1/9. */
18547 et = neon_check_type (2, rs, N_EQK, N_F64 | N_KEY);
18548 /* It is not an error here if no type is given. */
18549 inst.error = NULL;
18550 if (et.type == NT_float && et.size == 64)
18551 {
18552 do_vfp_nsyn_opcode ("fcpyd");
18553 break;
18554 }
18555 /* fall through. */
18556
18557 case NS_QQ: /* case 0/1. */
18558 {
18559 if (check_simd_pred_availability (0, NEON_CHECK_CC | NEON_CHECK_ARCH))
18560 return;
18561 /* The architecture manual I have doesn't explicitly state which
18562 value the U bit should have for register->register moves, but
18563 the equivalent VORR instruction has U = 0, so do that. */
18564 inst.instruction = 0x0200110;
18565 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
18566 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
18567 inst.instruction |= LOW4 (inst.operands[1].reg);
18568 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
18569 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
18570 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
18571 inst.instruction |= neon_quad (rs) << 6;
18572
18573 neon_dp_fixup (&inst);
18574 }
18575 break;
18576
18577 case NS_DI: /* case 3/11. */
18578 et = neon_check_type (2, rs, N_EQK, N_F64 | N_KEY);
18579 inst.error = NULL;
18580 if (et.type == NT_float && et.size == 64)
18581 {
18582 /* case 11 (fconstd). */
18583 ldconst = "fconstd";
18584 goto encode_fconstd;
18585 }
18586 /* fall through. */
18587
18588 case NS_QI: /* case 2/3. */
18589 if (check_simd_pred_availability (0, NEON_CHECK_CC | NEON_CHECK_ARCH))
18590 return;
18591 inst.instruction = 0x0800010;
18592 neon_move_immediate ();
18593 neon_dp_fixup (&inst);
18594 break;
18595
18596 case NS_SR: /* case 4. */
18597 {
18598 unsigned bcdebits = 0;
18599 int logsize;
18600 unsigned dn = NEON_SCALAR_REG (inst.operands[0].reg);
18601 unsigned x = NEON_SCALAR_INDEX (inst.operands[0].reg);
18602
18603 /* .<size> is optional here, defaulting to .32. */
18604 if (inst.vectype.elems == 0
18605 && inst.operands[0].vectype.type == NT_invtype
18606 && inst.operands[1].vectype.type == NT_invtype)
18607 {
18608 inst.vectype.el[0].type = NT_untyped;
18609 inst.vectype.el[0].size = 32;
18610 inst.vectype.elems = 1;
18611 }
18612
18613 et = neon_check_type (2, NS_NULL, N_8 | N_16 | N_32 | N_KEY, N_EQK);
18614 logsize = neon_logbits (et.size);
18615
18616 if (et.size != 32)
18617 {
18618 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)
18619 && vfp_or_neon_is_neon (NEON_CHECK_ARCH) == FAIL)
18620 return;
18621 }
18622 else
18623 {
18624 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1)
18625 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
18626 _(BAD_FPU));
18627 }
18628
18629 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
18630 {
18631 if (inst.operands[1].reg == REG_SP)
18632 as_tsktsk (MVE_BAD_SP);
18633 else if (inst.operands[1].reg == REG_PC)
18634 as_tsktsk (MVE_BAD_PC);
18635 }
18636 unsigned size = inst.operands[0].isscalar == 1 ? 64 : 128;
18637
18638 constraint (et.type == NT_invtype, _("bad type for scalar"));
18639 constraint (x >= size / et.size, _("scalar index out of range"));
18640
18641
18642 switch (et.size)
18643 {
18644 case 8: bcdebits = 0x8; break;
18645 case 16: bcdebits = 0x1; break;
18646 case 32: bcdebits = 0x0; break;
18647 default: ;
18648 }
18649
18650 bcdebits |= (x & ((1 << (3-logsize)) - 1)) << logsize;
18651
18652 inst.instruction = 0xe000b10;
18653 do_vfp_cond_or_thumb ();
18654 inst.instruction |= LOW4 (dn) << 16;
18655 inst.instruction |= HI1 (dn) << 7;
18656 inst.instruction |= inst.operands[1].reg << 12;
18657 inst.instruction |= (bcdebits & 3) << 5;
18658 inst.instruction |= ((bcdebits >> 2) & 3) << 21;
18659 inst.instruction |= (x >> (3-logsize)) << 16;
18660 }
18661 break;
18662
18663 case NS_DRR: /* case 5 (fmdrr). */
18664 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2)
18665 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
18666 _(BAD_FPU));
18667
18668 inst.instruction = 0xc400b10;
18669 do_vfp_cond_or_thumb ();
18670 inst.instruction |= LOW4 (inst.operands[0].reg);
18671 inst.instruction |= HI1 (inst.operands[0].reg) << 5;
18672 inst.instruction |= inst.operands[1].reg << 12;
18673 inst.instruction |= inst.operands[2].reg << 16;
18674 break;
18675
18676 case NS_RS: /* case 6. */
18677 {
18678 unsigned logsize;
18679 unsigned dn = NEON_SCALAR_REG (inst.operands[1].reg);
18680 unsigned x = NEON_SCALAR_INDEX (inst.operands[1].reg);
18681 unsigned abcdebits = 0;
18682
18683 /* .<dt> is optional here, defaulting to .32. */
18684 if (inst.vectype.elems == 0
18685 && inst.operands[0].vectype.type == NT_invtype
18686 && inst.operands[1].vectype.type == NT_invtype)
18687 {
18688 inst.vectype.el[0].type = NT_untyped;
18689 inst.vectype.el[0].size = 32;
18690 inst.vectype.elems = 1;
18691 }
18692
18693 et = neon_check_type (2, NS_NULL,
18694 N_EQK, N_S8 | N_S16 | N_U8 | N_U16 | N_32 | N_KEY);
18695 logsize = neon_logbits (et.size);
18696
18697 if (et.size != 32)
18698 {
18699 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)
18700 && vfp_or_neon_is_neon (NEON_CHECK_CC
18701 | NEON_CHECK_ARCH) == FAIL)
18702 return;
18703 }
18704 else
18705 {
18706 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1)
18707 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
18708 _(BAD_FPU));
18709 }
18710
18711 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
18712 {
18713 if (inst.operands[0].reg == REG_SP)
18714 as_tsktsk (MVE_BAD_SP);
18715 else if (inst.operands[0].reg == REG_PC)
18716 as_tsktsk (MVE_BAD_PC);
18717 }
18718
18719 unsigned size = inst.operands[1].isscalar == 1 ? 64 : 128;
18720
18721 constraint (et.type == NT_invtype, _("bad type for scalar"));
18722 constraint (x >= size / et.size, _("scalar index out of range"));
18723
18724 switch (et.size)
18725 {
18726 case 8: abcdebits = (et.type == NT_signed) ? 0x08 : 0x18; break;
18727 case 16: abcdebits = (et.type == NT_signed) ? 0x01 : 0x11; break;
18728 case 32: abcdebits = 0x00; break;
18729 default: ;
18730 }
18731
18732 abcdebits |= (x & ((1 << (3-logsize)) - 1)) << logsize;
18733 inst.instruction = 0xe100b10;
18734 do_vfp_cond_or_thumb ();
18735 inst.instruction |= LOW4 (dn) << 16;
18736 inst.instruction |= HI1 (dn) << 7;
18737 inst.instruction |= inst.operands[0].reg << 12;
18738 inst.instruction |= (abcdebits & 3) << 5;
18739 inst.instruction |= (abcdebits >> 2) << 21;
18740 inst.instruction |= (x >> (3-logsize)) << 16;
18741 }
18742 break;
18743
18744 case NS_RRD: /* case 7 (fmrrd). */
18745 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2)
18746 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
18747 _(BAD_FPU));
18748
18749 inst.instruction = 0xc500b10;
18750 do_vfp_cond_or_thumb ();
18751 inst.instruction |= inst.operands[0].reg << 12;
18752 inst.instruction |= inst.operands[1].reg << 16;
18753 inst.instruction |= LOW4 (inst.operands[2].reg);
18754 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
18755 break;
18756
18757 case NS_FF: /* case 8 (fcpys). */
18758 do_vfp_nsyn_opcode ("fcpys");
18759 break;
18760
18761 case NS_HI:
18762 case NS_FI: /* case 10 (fconsts). */
18763 ldconst = "fconsts";
18764 encode_fconstd:
18765 if (!inst.operands[1].immisfloat)
18766 {
18767 unsigned new_imm;
18768 /* Immediate has to fit in 8 bits so float is enough. */
18769 float imm = (float) inst.operands[1].imm;
18770 memcpy (&new_imm, &imm, sizeof (float));
18771 /* But the assembly may have been written to provide an integer
18772 bit pattern that equates to a float, so check that the
18773 conversion has worked. */
18774 if (is_quarter_float (new_imm))
18775 {
18776 if (is_quarter_float (inst.operands[1].imm))
18777 as_warn (_("immediate constant is valid both as a bit-pattern and a floating point value (using the fp value)"));
18778
18779 inst.operands[1].imm = new_imm;
18780 inst.operands[1].immisfloat = 1;
18781 }
18782 }
18783
18784 if (is_quarter_float (inst.operands[1].imm))
18785 {
18786 inst.operands[1].imm = neon_qfloat_bits (inst.operands[1].imm);
18787 do_vfp_nsyn_opcode (ldconst);
18788
18789 /* ARMv8.2 fp16 vmov.f16 instruction. */
18790 if (rs == NS_HI)
18791 do_scalar_fp16_v82_encode ();
18792 }
18793 else
18794 first_error (_("immediate out of range"));
18795 break;
18796
18797 case NS_RH:
18798 case NS_RF: /* case 12 (fmrs). */
18799 do_vfp_nsyn_opcode ("fmrs");
18800 /* ARMv8.2 fp16 vmov.f16 instruction. */
18801 if (rs == NS_RH)
18802 do_scalar_fp16_v82_encode ();
18803 break;
18804
18805 case NS_HR:
18806 case NS_FR: /* case 13 (fmsr). */
18807 do_vfp_nsyn_opcode ("fmsr");
18808 /* ARMv8.2 fp16 vmov.f16 instruction. */
18809 if (rs == NS_HR)
18810 do_scalar_fp16_v82_encode ();
18811 break;
18812
18813 case NS_RRSS:
18814 do_mve_mov (0);
18815 break;
18816 case NS_SSRR:
18817 do_mve_mov (1);
18818 break;
18819
18820 /* The encoders for the fmrrs and fmsrr instructions expect three operands
18821 (one of which is a list), but we have parsed four. Do some fiddling to
18822 make the operands what do_vfp_reg2_from_sp2 and do_vfp_sp2_from_reg2
18823 expect. */
18824 case NS_RRFF: /* case 14 (fmrrs). */
18825 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2)
18826 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
18827 _(BAD_FPU));
18828 constraint (inst.operands[3].reg != inst.operands[2].reg + 1,
18829 _("VFP registers must be adjacent"));
18830 inst.operands[2].imm = 2;
18831 memset (&inst.operands[3], '\0', sizeof (inst.operands[3]));
18832 do_vfp_nsyn_opcode ("fmrrs");
18833 break;
18834
18835 case NS_FFRR: /* case 15 (fmsrr). */
18836 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2)
18837 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
18838 _(BAD_FPU));
18839 constraint (inst.operands[1].reg != inst.operands[0].reg + 1,
18840 _("VFP registers must be adjacent"));
18841 inst.operands[1] = inst.operands[2];
18842 inst.operands[2] = inst.operands[3];
18843 inst.operands[0].imm = 2;
18844 memset (&inst.operands[3], '\0', sizeof (inst.operands[3]));
18845 do_vfp_nsyn_opcode ("fmsrr");
18846 break;
18847
18848 case NS_NULL:
18849 /* neon_select_shape has determined that the instruction
18850 shape is wrong and has already set the error message. */
18851 break;
18852
18853 default:
18854 abort ();
18855 }
18856 }
18857
18858 static void
18859 do_mve_movl (void)
18860 {
18861 if (!(inst.operands[0].present && inst.operands[0].isquad
18862 && inst.operands[1].present && inst.operands[1].isquad
18863 && !inst.operands[2].present))
18864 {
18865 inst.instruction = 0;
18866 inst.cond = 0xb;
18867 if (thumb_mode)
18868 set_pred_insn_type (INSIDE_IT_INSN);
18869 do_neon_mov ();
18870 return;
18871 }
18872
18873 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
18874 return;
18875
18876 if (inst.cond != COND_ALWAYS)
18877 inst.pred_insn_type = INSIDE_VPT_INSN;
18878
18879 struct neon_type_el et = neon_check_type (2, NS_QQ, N_EQK, N_S8 | N_U8
18880 | N_S16 | N_U16 | N_KEY);
18881
18882 inst.instruction |= (et.type == NT_unsigned) << 28;
18883 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
18884 inst.instruction |= (neon_logbits (et.size) + 1) << 19;
18885 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
18886 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
18887 inst.instruction |= LOW4 (inst.operands[1].reg);
18888 inst.is_neon = 1;
18889 }
18890
18891 static void
18892 do_neon_rshift_round_imm (void)
18893 {
18894 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
18895 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_ALL | N_KEY);
18896 int imm = inst.operands[2].imm;
18897
18898 /* imm == 0 case is encoded as VMOV for V{R}SHR. */
18899 if (imm == 0)
18900 {
18901 inst.operands[2].present = 0;
18902 do_neon_mov ();
18903 return;
18904 }
18905
18906 constraint (imm < 1 || (unsigned)imm > et.size,
18907 _("immediate out of range for shift"));
18908 neon_imm_shift (TRUE, et.type == NT_unsigned, neon_quad (rs), et,
18909 et.size - imm);
18910 }
18911
18912 static void
18913 do_neon_movhf (void)
18914 {
18915 enum neon_shape rs = neon_select_shape (NS_HH, NS_NULL);
18916 constraint (rs != NS_HH, _("invalid suffix"));
18917
18918 if (inst.cond != COND_ALWAYS)
18919 {
18920 if (thumb_mode)
18921 {
18922 as_warn (_("ARMv8.2 scalar fp16 instruction cannot be conditional,"
18923 " the behaviour is UNPREDICTABLE"));
18924 }
18925 else
18926 {
18927 inst.error = BAD_COND;
18928 return;
18929 }
18930 }
18931
18932 do_vfp_sp_monadic ();
18933
18934 inst.is_neon = 1;
18935 inst.instruction |= 0xf0000000;
18936 }
18937
18938 static void
18939 do_neon_movl (void)
18940 {
18941 struct neon_type_el et = neon_check_type (2, NS_QD,
18942 N_EQK | N_DBL, N_SU_32 | N_KEY);
18943 unsigned sizebits = et.size >> 3;
18944 inst.instruction |= sizebits << 19;
18945 neon_two_same (0, et.type == NT_unsigned, -1);
18946 }
18947
18948 static void
18949 do_neon_trn (void)
18950 {
18951 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
18952 struct neon_type_el et = neon_check_type (2, rs,
18953 N_EQK, N_8 | N_16 | N_32 | N_KEY);
18954 NEON_ENCODE (INTEGER, inst);
18955 neon_two_same (neon_quad (rs), 1, et.size);
18956 }
18957
18958 static void
18959 do_neon_zip_uzp (void)
18960 {
18961 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
18962 struct neon_type_el et = neon_check_type (2, rs,
18963 N_EQK, N_8 | N_16 | N_32 | N_KEY);
18964 if (rs == NS_DD && et.size == 32)
18965 {
18966 /* Special case: encode as VTRN.32 <Dd>, <Dm>. */
18967 inst.instruction = N_MNEM_vtrn;
18968 do_neon_trn ();
18969 return;
18970 }
18971 neon_two_same (neon_quad (rs), 1, et.size);
18972 }
18973
18974 static void
18975 do_neon_sat_abs_neg (void)
18976 {
18977 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
18978 struct neon_type_el et = neon_check_type (2, rs,
18979 N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
18980 neon_two_same (neon_quad (rs), 1, et.size);
18981 }
18982
18983 static void
18984 do_neon_pair_long (void)
18985 {
18986 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
18987 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_32 | N_KEY);
18988 /* Unsigned is encoded in OP field (bit 7) for these instruction. */
18989 inst.instruction |= (et.type == NT_unsigned) << 7;
18990 neon_two_same (neon_quad (rs), 1, et.size);
18991 }
18992
18993 static void
18994 do_neon_recip_est (void)
18995 {
18996 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
18997 struct neon_type_el et = neon_check_type (2, rs,
18998 N_EQK | N_FLT, N_F_16_32 | N_U32 | N_KEY);
18999 inst.instruction |= (et.type == NT_float) << 8;
19000 neon_two_same (neon_quad (rs), 1, et.size);
19001 }
19002
19003 static void
19004 do_neon_cls (void)
19005 {
19006 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
19007 struct neon_type_el et = neon_check_type (2, rs,
19008 N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
19009 neon_two_same (neon_quad (rs), 1, et.size);
19010 }
19011
19012 static void
19013 do_neon_clz (void)
19014 {
19015 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
19016 struct neon_type_el et = neon_check_type (2, rs,
19017 N_EQK, N_I8 | N_I16 | N_I32 | N_KEY);
19018 neon_two_same (neon_quad (rs), 1, et.size);
19019 }
19020
19021 static void
19022 do_neon_cnt (void)
19023 {
19024 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
19025 struct neon_type_el et = neon_check_type (2, rs,
19026 N_EQK | N_INT, N_8 | N_KEY);
19027 neon_two_same (neon_quad (rs), 1, et.size);
19028 }
19029
19030 static void
19031 do_neon_swp (void)
19032 {
19033 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
19034 neon_two_same (neon_quad (rs), 1, -1);
19035 }
19036
19037 static void
19038 do_neon_tbl_tbx (void)
19039 {
19040 unsigned listlenbits;
19041 neon_check_type (3, NS_DLD, N_EQK, N_EQK, N_8 | N_KEY);
19042
19043 if (inst.operands[1].imm < 1 || inst.operands[1].imm > 4)
19044 {
19045 first_error (_("bad list length for table lookup"));
19046 return;
19047 }
19048
19049 listlenbits = inst.operands[1].imm - 1;
19050 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
19051 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
19052 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
19053 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
19054 inst.instruction |= LOW4 (inst.operands[2].reg);
19055 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
19056 inst.instruction |= listlenbits << 8;
19057
19058 neon_dp_fixup (&inst);
19059 }
19060
19061 static void
19062 do_neon_ldm_stm (void)
19063 {
19064 /* P, U and L bits are part of bitmask. */
19065 int is_dbmode = (inst.instruction & (1 << 24)) != 0;
19066 unsigned offsetbits = inst.operands[1].imm * 2;
19067
19068 if (inst.operands[1].issingle)
19069 {
19070 do_vfp_nsyn_ldm_stm (is_dbmode);
19071 return;
19072 }
19073
19074 constraint (is_dbmode && !inst.operands[0].writeback,
19075 _("writeback (!) must be used for VLDMDB and VSTMDB"));
19076
19077 constraint (inst.operands[1].imm < 1 || inst.operands[1].imm > 16,
19078 _("register list must contain at least 1 and at most 16 "
19079 "registers"));
19080
19081 inst.instruction |= inst.operands[0].reg << 16;
19082 inst.instruction |= inst.operands[0].writeback << 21;
19083 inst.instruction |= LOW4 (inst.operands[1].reg) << 12;
19084 inst.instruction |= HI1 (inst.operands[1].reg) << 22;
19085
19086 inst.instruction |= offsetbits;
19087
19088 do_vfp_cond_or_thumb ();
19089 }
19090
19091 static void
19092 do_neon_ldr_str (void)
19093 {
19094 int is_ldr = (inst.instruction & (1 << 20)) != 0;
19095
19096 /* Use of PC in vstr in ARM mode is deprecated in ARMv7.
19097 And is UNPREDICTABLE in thumb mode. */
19098 if (!is_ldr
19099 && inst.operands[1].reg == REG_PC
19100 && (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v7) || thumb_mode))
19101 {
19102 if (thumb_mode)
19103 inst.error = _("Use of PC here is UNPREDICTABLE");
19104 else if (warn_on_deprecated)
19105 as_tsktsk (_("Use of PC here is deprecated"));
19106 }
19107
19108 if (inst.operands[0].issingle)
19109 {
19110 if (is_ldr)
19111 do_vfp_nsyn_opcode ("flds");
19112 else
19113 do_vfp_nsyn_opcode ("fsts");
19114
19115 /* ARMv8.2 vldr.16/vstr.16 instruction. */
19116 if (inst.vectype.el[0].size == 16)
19117 do_scalar_fp16_v82_encode ();
19118 }
19119 else
19120 {
19121 if (is_ldr)
19122 do_vfp_nsyn_opcode ("fldd");
19123 else
19124 do_vfp_nsyn_opcode ("fstd");
19125 }
19126 }
19127
19128 static void
19129 do_t_vldr_vstr_sysreg (void)
19130 {
19131 int fp_vldr_bitno = 20, sysreg_vldr_bitno = 20;
19132 bfd_boolean is_vldr = ((inst.instruction & (1 << fp_vldr_bitno)) != 0);
19133
19134 /* Use of PC is UNPREDICTABLE. */
19135 if (inst.operands[1].reg == REG_PC)
19136 inst.error = _("Use of PC here is UNPREDICTABLE");
19137
19138 if (inst.operands[1].immisreg)
19139 inst.error = _("instruction does not accept register index");
19140
19141 if (!inst.operands[1].isreg)
19142 inst.error = _("instruction does not accept PC-relative addressing");
19143
19144 if (abs (inst.operands[1].imm) >= (1 << 7))
19145 inst.error = _("immediate value out of range");
19146
19147 inst.instruction = 0xec000f80;
19148 if (is_vldr)
19149 inst.instruction |= 1 << sysreg_vldr_bitno;
19150 encode_arm_cp_address (1, TRUE, FALSE, BFD_RELOC_ARM_T32_VLDR_VSTR_OFF_IMM);
19151 inst.instruction |= (inst.operands[0].imm & 0x7) << 13;
19152 inst.instruction |= (inst.operands[0].imm & 0x8) << 19;
19153 }
19154
19155 static void
19156 do_vldr_vstr (void)
19157 {
19158 bfd_boolean sysreg_op = !inst.operands[0].isreg;
19159
19160 /* VLDR/VSTR (System Register). */
19161 if (sysreg_op)
19162 {
19163 if (!mark_feature_used (&arm_ext_v8_1m_main))
19164 as_bad (_("Instruction not permitted on this architecture"));
19165
19166 do_t_vldr_vstr_sysreg ();
19167 }
19168 /* VLDR/VSTR. */
19169 else
19170 {
19171 if (!mark_feature_used (&fpu_vfp_ext_v1xd))
19172 as_bad (_("Instruction not permitted on this architecture"));
19173 do_neon_ldr_str ();
19174 }
19175 }
19176
19177 /* "interleave" version also handles non-interleaving register VLD1/VST1
19178 instructions. */
19179
19180 static void
19181 do_neon_ld_st_interleave (void)
19182 {
19183 struct neon_type_el et = neon_check_type (1, NS_NULL,
19184 N_8 | N_16 | N_32 | N_64);
19185 unsigned alignbits = 0;
19186 unsigned idx;
19187 /* The bits in this table go:
19188 0: register stride of one (0) or two (1)
19189 1,2: register list length, minus one (1, 2, 3, 4).
19190 3,4: <n> in instruction type, minus one (VLD<n> / VST<n>).
19191 We use -1 for invalid entries. */
19192 const int typetable[] =
19193 {
19194 0x7, -1, 0xa, -1, 0x6, -1, 0x2, -1, /* VLD1 / VST1. */
19195 -1, -1, 0x8, 0x9, -1, -1, 0x3, -1, /* VLD2 / VST2. */
19196 -1, -1, -1, -1, 0x4, 0x5, -1, -1, /* VLD3 / VST3. */
19197 -1, -1, -1, -1, -1, -1, 0x0, 0x1 /* VLD4 / VST4. */
19198 };
19199 int typebits;
19200
19201 if (et.type == NT_invtype)
19202 return;
19203
19204 if (inst.operands[1].immisalign)
19205 switch (inst.operands[1].imm >> 8)
19206 {
19207 case 64: alignbits = 1; break;
19208 case 128:
19209 if (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 2
19210 && NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4)
19211 goto bad_alignment;
19212 alignbits = 2;
19213 break;
19214 case 256:
19215 if (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4)
19216 goto bad_alignment;
19217 alignbits = 3;
19218 break;
19219 default:
19220 bad_alignment:
19221 first_error (_("bad alignment"));
19222 return;
19223 }
19224
19225 inst.instruction |= alignbits << 4;
19226 inst.instruction |= neon_logbits (et.size) << 6;
19227
19228 /* Bits [4:6] of the immediate in a list specifier encode register stride
19229 (minus 1) in bit 4, and list length in bits [5:6]. We put the <n> of
19230 VLD<n>/VST<n> in bits [9:8] of the initial bitmask. Suck it out here, look
19231 up the right value for "type" in a table based on this value and the given
19232 list style, then stick it back. */
19233 idx = ((inst.operands[0].imm >> 4) & 7)
19234 | (((inst.instruction >> 8) & 3) << 3);
19235
19236 typebits = typetable[idx];
19237
19238 constraint (typebits == -1, _("bad list type for instruction"));
19239 constraint (((inst.instruction >> 8) & 3) && et.size == 64,
19240 BAD_EL_TYPE);
19241
19242 inst.instruction &= ~0xf00;
19243 inst.instruction |= typebits << 8;
19244 }
19245
19246 /* Check alignment is valid for do_neon_ld_st_lane and do_neon_ld_dup.
19247 *DO_ALIGN is set to 1 if the relevant alignment bit should be set, 0
19248 otherwise. The variable arguments are a list of pairs of legal (size, align)
19249 values, terminated with -1. */
19250
19251 static int
19252 neon_alignment_bit (int size, int align, int *do_alignment, ...)
19253 {
19254 va_list ap;
19255 int result = FAIL, thissize, thisalign;
19256
19257 if (!inst.operands[1].immisalign)
19258 {
19259 *do_alignment = 0;
19260 return SUCCESS;
19261 }
19262
19263 va_start (ap, do_alignment);
19264
19265 do
19266 {
19267 thissize = va_arg (ap, int);
19268 if (thissize == -1)
19269 break;
19270 thisalign = va_arg (ap, int);
19271
19272 if (size == thissize && align == thisalign)
19273 result = SUCCESS;
19274 }
19275 while (result != SUCCESS);
19276
19277 va_end (ap);
19278
19279 if (result == SUCCESS)
19280 *do_alignment = 1;
19281 else
19282 first_error (_("unsupported alignment for instruction"));
19283
19284 return result;
19285 }
19286
19287 static void
19288 do_neon_ld_st_lane (void)
19289 {
19290 struct neon_type_el et = neon_check_type (1, NS_NULL, N_8 | N_16 | N_32);
19291 int align_good, do_alignment = 0;
19292 int logsize = neon_logbits (et.size);
19293 int align = inst.operands[1].imm >> 8;
19294 int n = (inst.instruction >> 8) & 3;
19295 int max_el = 64 / et.size;
19296
19297 if (et.type == NT_invtype)
19298 return;
19299
19300 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != n + 1,
19301 _("bad list length"));
19302 constraint (NEON_LANE (inst.operands[0].imm) >= max_el,
19303 _("scalar index out of range"));
19304 constraint (n != 0 && NEON_REG_STRIDE (inst.operands[0].imm) == 2
19305 && et.size == 8,
19306 _("stride of 2 unavailable when element size is 8"));
19307
19308 switch (n)
19309 {
19310 case 0: /* VLD1 / VST1. */
19311 align_good = neon_alignment_bit (et.size, align, &do_alignment, 16, 16,
19312 32, 32, -1);
19313 if (align_good == FAIL)
19314 return;
19315 if (do_alignment)
19316 {
19317 unsigned alignbits = 0;
19318 switch (et.size)
19319 {
19320 case 16: alignbits = 0x1; break;
19321 case 32: alignbits = 0x3; break;
19322 default: ;
19323 }
19324 inst.instruction |= alignbits << 4;
19325 }
19326 break;
19327
19328 case 1: /* VLD2 / VST2. */
19329 align_good = neon_alignment_bit (et.size, align, &do_alignment, 8, 16,
19330 16, 32, 32, 64, -1);
19331 if (align_good == FAIL)
19332 return;
19333 if (do_alignment)
19334 inst.instruction |= 1 << 4;
19335 break;
19336
19337 case 2: /* VLD3 / VST3. */
19338 constraint (inst.operands[1].immisalign,
19339 _("can't use alignment with this instruction"));
19340 break;
19341
19342 case 3: /* VLD4 / VST4. */
19343 align_good = neon_alignment_bit (et.size, align, &do_alignment, 8, 32,
19344 16, 64, 32, 64, 32, 128, -1);
19345 if (align_good == FAIL)
19346 return;
19347 if (do_alignment)
19348 {
19349 unsigned alignbits = 0;
19350 switch (et.size)
19351 {
19352 case 8: alignbits = 0x1; break;
19353 case 16: alignbits = 0x1; break;
19354 case 32: alignbits = (align == 64) ? 0x1 : 0x2; break;
19355 default: ;
19356 }
19357 inst.instruction |= alignbits << 4;
19358 }
19359 break;
19360
19361 default: ;
19362 }
19363
19364 /* Reg stride of 2 is encoded in bit 5 when size==16, bit 6 when size==32. */
19365 if (n != 0 && NEON_REG_STRIDE (inst.operands[0].imm) == 2)
19366 inst.instruction |= 1 << (4 + logsize);
19367
19368 inst.instruction |= NEON_LANE (inst.operands[0].imm) << (logsize + 5);
19369 inst.instruction |= logsize << 10;
19370 }
19371
19372 /* Encode single n-element structure to all lanes VLD<n> instructions. */
19373
19374 static void
19375 do_neon_ld_dup (void)
19376 {
19377 struct neon_type_el et = neon_check_type (1, NS_NULL, N_8 | N_16 | N_32);
19378 int align_good, do_alignment = 0;
19379
19380 if (et.type == NT_invtype)
19381 return;
19382
19383 switch ((inst.instruction >> 8) & 3)
19384 {
19385 case 0: /* VLD1. */
19386 gas_assert (NEON_REG_STRIDE (inst.operands[0].imm) != 2);
19387 align_good = neon_alignment_bit (et.size, inst.operands[1].imm >> 8,
19388 &do_alignment, 16, 16, 32, 32, -1);
19389 if (align_good == FAIL)
19390 return;
19391 switch (NEON_REGLIST_LENGTH (inst.operands[0].imm))
19392 {
19393 case 1: break;
19394 case 2: inst.instruction |= 1 << 5; break;
19395 default: first_error (_("bad list length")); return;
19396 }
19397 inst.instruction |= neon_logbits (et.size) << 6;
19398 break;
19399
19400 case 1: /* VLD2. */
19401 align_good = neon_alignment_bit (et.size, inst.operands[1].imm >> 8,
19402 &do_alignment, 8, 16, 16, 32, 32, 64,
19403 -1);
19404 if (align_good == FAIL)
19405 return;
19406 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 2,
19407 _("bad list length"));
19408 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
19409 inst.instruction |= 1 << 5;
19410 inst.instruction |= neon_logbits (et.size) << 6;
19411 break;
19412
19413 case 2: /* VLD3. */
19414 constraint (inst.operands[1].immisalign,
19415 _("can't use alignment with this instruction"));
19416 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 3,
19417 _("bad list length"));
19418 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
19419 inst.instruction |= 1 << 5;
19420 inst.instruction |= neon_logbits (et.size) << 6;
19421 break;
19422
19423 case 3: /* VLD4. */
19424 {
19425 int align = inst.operands[1].imm >> 8;
19426 align_good = neon_alignment_bit (et.size, align, &do_alignment, 8, 32,
19427 16, 64, 32, 64, 32, 128, -1);
19428 if (align_good == FAIL)
19429 return;
19430 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4,
19431 _("bad list length"));
19432 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
19433 inst.instruction |= 1 << 5;
19434 if (et.size == 32 && align == 128)
19435 inst.instruction |= 0x3 << 6;
19436 else
19437 inst.instruction |= neon_logbits (et.size) << 6;
19438 }
19439 break;
19440
19441 default: ;
19442 }
19443
19444 inst.instruction |= do_alignment << 4;
19445 }
19446
19447 /* Disambiguate VLD<n> and VST<n> instructions, and fill in common bits (those
19448 apart from bits [11:4]. */
19449
19450 static void
19451 do_neon_ldx_stx (void)
19452 {
19453 if (inst.operands[1].isreg)
19454 constraint (inst.operands[1].reg == REG_PC, BAD_PC);
19455
19456 switch (NEON_LANE (inst.operands[0].imm))
19457 {
19458 case NEON_INTERLEAVE_LANES:
19459 NEON_ENCODE (INTERLV, inst);
19460 do_neon_ld_st_interleave ();
19461 break;
19462
19463 case NEON_ALL_LANES:
19464 NEON_ENCODE (DUP, inst);
19465 if (inst.instruction == N_INV)
19466 {
19467 first_error ("only loads support such operands");
19468 break;
19469 }
19470 do_neon_ld_dup ();
19471 break;
19472
19473 default:
19474 NEON_ENCODE (LANE, inst);
19475 do_neon_ld_st_lane ();
19476 }
19477
19478 /* L bit comes from bit mask. */
19479 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
19480 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
19481 inst.instruction |= inst.operands[1].reg << 16;
19482
19483 if (inst.operands[1].postind)
19484 {
19485 int postreg = inst.operands[1].imm & 0xf;
19486 constraint (!inst.operands[1].immisreg,
19487 _("post-index must be a register"));
19488 constraint (postreg == 0xd || postreg == 0xf,
19489 _("bad register for post-index"));
19490 inst.instruction |= postreg;
19491 }
19492 else
19493 {
19494 constraint (inst.operands[1].immisreg, BAD_ADDR_MODE);
19495 constraint (inst.relocs[0].exp.X_op != O_constant
19496 || inst.relocs[0].exp.X_add_number != 0,
19497 BAD_ADDR_MODE);
19498
19499 if (inst.operands[1].writeback)
19500 {
19501 inst.instruction |= 0xd;
19502 }
19503 else
19504 inst.instruction |= 0xf;
19505 }
19506
19507 if (thumb_mode)
19508 inst.instruction |= 0xf9000000;
19509 else
19510 inst.instruction |= 0xf4000000;
19511 }
19512
19513 /* FP v8. */
19514 static void
19515 do_vfp_nsyn_fpv8 (enum neon_shape rs)
19516 {
19517 /* Targets like FPv5-SP-D16 don't support FP v8 instructions with
19518 D register operands. */
19519 if (neon_shape_class[rs] == SC_DOUBLE)
19520 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
19521 _(BAD_FPU));
19522
19523 NEON_ENCODE (FPV8, inst);
19524
19525 if (rs == NS_FFF || rs == NS_HHH)
19526 {
19527 do_vfp_sp_dyadic ();
19528
19529 /* ARMv8.2 fp16 instruction. */
19530 if (rs == NS_HHH)
19531 do_scalar_fp16_v82_encode ();
19532 }
19533 else
19534 do_vfp_dp_rd_rn_rm ();
19535
19536 if (rs == NS_DDD)
19537 inst.instruction |= 0x100;
19538
19539 inst.instruction |= 0xf0000000;
19540 }
19541
19542 static void
19543 do_vsel (void)
19544 {
19545 set_pred_insn_type (OUTSIDE_PRED_INSN);
19546
19547 if (try_vfp_nsyn (3, do_vfp_nsyn_fpv8) != SUCCESS)
19548 first_error (_("invalid instruction shape"));
19549 }
19550
19551 static void
19552 do_vmaxnm (void)
19553 {
19554 set_pred_insn_type (OUTSIDE_PRED_INSN);
19555
19556 if (try_vfp_nsyn (3, do_vfp_nsyn_fpv8) == SUCCESS)
19557 return;
19558
19559 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH8) == FAIL)
19560 return;
19561
19562 neon_dyadic_misc (NT_untyped, N_F_16_32, 0);
19563 }
19564
19565 static void
19566 do_vrint_1 (enum neon_cvt_mode mode)
19567 {
19568 enum neon_shape rs = neon_select_shape (NS_HH, NS_FF, NS_DD, NS_QQ, NS_NULL);
19569 struct neon_type_el et;
19570
19571 if (rs == NS_NULL)
19572 return;
19573
19574 /* Targets like FPv5-SP-D16 don't support FP v8 instructions with
19575 D register operands. */
19576 if (neon_shape_class[rs] == SC_DOUBLE)
19577 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
19578 _(BAD_FPU));
19579
19580 et = neon_check_type (2, rs, N_EQK | N_VFP, N_F_ALL | N_KEY
19581 | N_VFP);
19582 if (et.type != NT_invtype)
19583 {
19584 /* VFP encodings. */
19585 if (mode == neon_cvt_mode_a || mode == neon_cvt_mode_n
19586 || mode == neon_cvt_mode_p || mode == neon_cvt_mode_m)
19587 set_pred_insn_type (OUTSIDE_PRED_INSN);
19588
19589 NEON_ENCODE (FPV8, inst);
19590 if (rs == NS_FF || rs == NS_HH)
19591 do_vfp_sp_monadic ();
19592 else
19593 do_vfp_dp_rd_rm ();
19594
19595 switch (mode)
19596 {
19597 case neon_cvt_mode_r: inst.instruction |= 0x00000000; break;
19598 case neon_cvt_mode_z: inst.instruction |= 0x00000080; break;
19599 case neon_cvt_mode_x: inst.instruction |= 0x00010000; break;
19600 case neon_cvt_mode_a: inst.instruction |= 0xf0000000; break;
19601 case neon_cvt_mode_n: inst.instruction |= 0xf0010000; break;
19602 case neon_cvt_mode_p: inst.instruction |= 0xf0020000; break;
19603 case neon_cvt_mode_m: inst.instruction |= 0xf0030000; break;
19604 default: abort ();
19605 }
19606
19607 inst.instruction |= (rs == NS_DD) << 8;
19608 do_vfp_cond_or_thumb ();
19609
19610 /* ARMv8.2 fp16 vrint instruction. */
19611 if (rs == NS_HH)
19612 do_scalar_fp16_v82_encode ();
19613 }
19614 else
19615 {
19616 /* Neon encodings (or something broken...). */
19617 inst.error = NULL;
19618 et = neon_check_type (2, rs, N_EQK, N_F_16_32 | N_KEY);
19619
19620 if (et.type == NT_invtype)
19621 return;
19622
19623 set_pred_insn_type (OUTSIDE_PRED_INSN);
19624 NEON_ENCODE (FLOAT, inst);
19625
19626 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH8) == FAIL)
19627 return;
19628
19629 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
19630 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
19631 inst.instruction |= LOW4 (inst.operands[1].reg);
19632 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
19633 inst.instruction |= neon_quad (rs) << 6;
19634 /* Mask off the original size bits and reencode them. */
19635 inst.instruction = ((inst.instruction & 0xfff3ffff)
19636 | neon_logbits (et.size) << 18);
19637
19638 switch (mode)
19639 {
19640 case neon_cvt_mode_z: inst.instruction |= 3 << 7; break;
19641 case neon_cvt_mode_x: inst.instruction |= 1 << 7; break;
19642 case neon_cvt_mode_a: inst.instruction |= 2 << 7; break;
19643 case neon_cvt_mode_n: inst.instruction |= 0 << 7; break;
19644 case neon_cvt_mode_p: inst.instruction |= 7 << 7; break;
19645 case neon_cvt_mode_m: inst.instruction |= 5 << 7; break;
19646 case neon_cvt_mode_r: inst.error = _("invalid rounding mode"); break;
19647 default: abort ();
19648 }
19649
19650 if (thumb_mode)
19651 inst.instruction |= 0xfc000000;
19652 else
19653 inst.instruction |= 0xf0000000;
19654 }
19655 }
19656
19657 static void
19658 do_vrintx (void)
19659 {
19660 do_vrint_1 (neon_cvt_mode_x);
19661 }
19662
19663 static void
19664 do_vrintz (void)
19665 {
19666 do_vrint_1 (neon_cvt_mode_z);
19667 }
19668
19669 static void
19670 do_vrintr (void)
19671 {
19672 do_vrint_1 (neon_cvt_mode_r);
19673 }
19674
19675 static void
19676 do_vrinta (void)
19677 {
19678 do_vrint_1 (neon_cvt_mode_a);
19679 }
19680
19681 static void
19682 do_vrintn (void)
19683 {
19684 do_vrint_1 (neon_cvt_mode_n);
19685 }
19686
19687 static void
19688 do_vrintp (void)
19689 {
19690 do_vrint_1 (neon_cvt_mode_p);
19691 }
19692
19693 static void
19694 do_vrintm (void)
19695 {
19696 do_vrint_1 (neon_cvt_mode_m);
19697 }
19698
19699 static unsigned
19700 neon_scalar_for_vcmla (unsigned opnd, unsigned elsize)
19701 {
19702 unsigned regno = NEON_SCALAR_REG (opnd);
19703 unsigned elno = NEON_SCALAR_INDEX (opnd);
19704
19705 if (elsize == 16 && elno < 2 && regno < 16)
19706 return regno | (elno << 4);
19707 else if (elsize == 32 && elno == 0)
19708 return regno;
19709
19710 first_error (_("scalar out of range"));
19711 return 0;
19712 }
19713
19714 static void
19715 do_vcmla (void)
19716 {
19717 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext)
19718 && (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_armv8)
19719 || !mark_feature_used (&arm_ext_v8_3)), (BAD_FPU));
19720 constraint (inst.relocs[0].exp.X_op != O_constant,
19721 _("expression too complex"));
19722 unsigned rot = inst.relocs[0].exp.X_add_number;
19723 constraint (rot != 0 && rot != 90 && rot != 180 && rot != 270,
19724 _("immediate out of range"));
19725 rot /= 90;
19726
19727 if (check_simd_pred_availability (1, NEON_CHECK_ARCH8 | NEON_CHECK_CC))
19728 return;
19729
19730 if (inst.operands[2].isscalar)
19731 {
19732 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext))
19733 first_error (_("invalid instruction shape"));
19734 enum neon_shape rs = neon_select_shape (NS_DDSI, NS_QQSI, NS_NULL);
19735 unsigned size = neon_check_type (3, rs, N_EQK, N_EQK,
19736 N_KEY | N_F16 | N_F32).size;
19737 unsigned m = neon_scalar_for_vcmla (inst.operands[2].reg, size);
19738 inst.is_neon = 1;
19739 inst.instruction = 0xfe000800;
19740 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
19741 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
19742 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
19743 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
19744 inst.instruction |= LOW4 (m);
19745 inst.instruction |= HI1 (m) << 5;
19746 inst.instruction |= neon_quad (rs) << 6;
19747 inst.instruction |= rot << 20;
19748 inst.instruction |= (size == 32) << 23;
19749 }
19750 else
19751 {
19752 enum neon_shape rs;
19753 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext))
19754 rs = neon_select_shape (NS_QQQI, NS_NULL);
19755 else
19756 rs = neon_select_shape (NS_DDDI, NS_QQQI, NS_NULL);
19757
19758 unsigned size = neon_check_type (3, rs, N_EQK, N_EQK,
19759 N_KEY | N_F16 | N_F32).size;
19760 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext) && size == 32
19761 && (inst.operands[0].reg == inst.operands[1].reg
19762 || inst.operands[0].reg == inst.operands[2].reg))
19763 as_tsktsk (BAD_MVE_SRCDEST);
19764
19765 neon_three_same (neon_quad (rs), 0, -1);
19766 inst.instruction &= 0x00ffffff; /* Undo neon_dp_fixup. */
19767 inst.instruction |= 0xfc200800;
19768 inst.instruction |= rot << 23;
19769 inst.instruction |= (size == 32) << 20;
19770 }
19771 }
19772
19773 static void
19774 do_vcadd (void)
19775 {
19776 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)
19777 && (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_armv8)
19778 || !mark_feature_used (&arm_ext_v8_3)), (BAD_FPU));
19779 constraint (inst.relocs[0].exp.X_op != O_constant,
19780 _("expression too complex"));
19781
19782 unsigned rot = inst.relocs[0].exp.X_add_number;
19783 constraint (rot != 90 && rot != 270, _("immediate out of range"));
19784 enum neon_shape rs;
19785 struct neon_type_el et;
19786 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
19787 {
19788 rs = neon_select_shape (NS_DDDI, NS_QQQI, NS_NULL);
19789 et = neon_check_type (3, rs, N_EQK, N_EQK, N_KEY | N_F16 | N_F32);
19790 }
19791 else
19792 {
19793 rs = neon_select_shape (NS_QQQI, NS_NULL);
19794 et = neon_check_type (3, rs, N_EQK, N_EQK, N_KEY | N_F16 | N_F32 | N_I8
19795 | N_I16 | N_I32);
19796 if (et.size == 32 && inst.operands[0].reg == inst.operands[2].reg)
19797 as_tsktsk (_("Warning: 32-bit element size and same first and third "
19798 "operand makes instruction UNPREDICTABLE"));
19799 }
19800
19801 if (et.type == NT_invtype)
19802 return;
19803
19804 if (check_simd_pred_availability (et.type == NT_float, NEON_CHECK_ARCH8
19805 | NEON_CHECK_CC))
19806 return;
19807
19808 if (et.type == NT_float)
19809 {
19810 neon_three_same (neon_quad (rs), 0, -1);
19811 inst.instruction &= 0x00ffffff; /* Undo neon_dp_fixup. */
19812 inst.instruction |= 0xfc800800;
19813 inst.instruction |= (rot == 270) << 24;
19814 inst.instruction |= (et.size == 32) << 20;
19815 }
19816 else
19817 {
19818 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext), BAD_FPU);
19819 inst.instruction = 0xfe000f00;
19820 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
19821 inst.instruction |= neon_logbits (et.size) << 20;
19822 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
19823 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
19824 inst.instruction |= (rot == 270) << 12;
19825 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
19826 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
19827 inst.instruction |= LOW4 (inst.operands[2].reg);
19828 inst.is_neon = 1;
19829 }
19830 }
19831
19832 /* Dot Product instructions encoding support. */
19833
19834 static void
19835 do_neon_dotproduct (int unsigned_p)
19836 {
19837 enum neon_shape rs;
19838 unsigned scalar_oprd2 = 0;
19839 int high8;
19840
19841 if (inst.cond != COND_ALWAYS)
19842 as_warn (_("Dot Product instructions cannot be conditional, the behaviour "
19843 "is UNPREDICTABLE"));
19844
19845 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_armv8),
19846 _(BAD_FPU));
19847
19848 /* Dot Product instructions are in three-same D/Q register format or the third
19849 operand can be a scalar index register. */
19850 if (inst.operands[2].isscalar)
19851 {
19852 scalar_oprd2 = neon_scalar_for_mul (inst.operands[2].reg, 32);
19853 high8 = 0xfe000000;
19854 rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
19855 }
19856 else
19857 {
19858 high8 = 0xfc000000;
19859 rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
19860 }
19861
19862 if (unsigned_p)
19863 neon_check_type (3, rs, N_EQK, N_EQK, N_KEY | N_U8);
19864 else
19865 neon_check_type (3, rs, N_EQK, N_EQK, N_KEY | N_S8);
19866
19867 /* The "U" bit in traditional Three Same encoding is fixed to 0 for Dot
19868 Product instruction, so we pass 0 as the "ubit" parameter. And the
19869 "Size" field are fixed to 0x2, so we pass 32 as the "size" parameter. */
19870 neon_three_same (neon_quad (rs), 0, 32);
19871
19872 /* Undo neon_dp_fixup. Dot Product instructions are using a slightly
19873 different NEON three-same encoding. */
19874 inst.instruction &= 0x00ffffff;
19875 inst.instruction |= high8;
19876 /* Encode 'U' bit which indicates signedness. */
19877 inst.instruction |= (unsigned_p ? 1 : 0) << 4;
19878 /* Re-encode operand2 if it's indexed scalar operand. What has been encoded
19879 from inst.operand[2].reg in neon_three_same is GAS's internal encoding, not
19880 the instruction encoding. */
19881 if (inst.operands[2].isscalar)
19882 {
19883 inst.instruction &= 0xffffffd0;
19884 inst.instruction |= LOW4 (scalar_oprd2);
19885 inst.instruction |= HI1 (scalar_oprd2) << 5;
19886 }
19887 }
19888
19889 /* Dot Product instructions for signed integer. */
19890
19891 static void
19892 do_neon_dotproduct_s (void)
19893 {
19894 return do_neon_dotproduct (0);
19895 }
19896
19897 /* Dot Product instructions for unsigned integer. */
19898
19899 static void
19900 do_neon_dotproduct_u (void)
19901 {
19902 return do_neon_dotproduct (1);
19903 }
19904
19905 /* Crypto v1 instructions. */
19906 static void
19907 do_crypto_2op_1 (unsigned elttype, int op)
19908 {
19909 set_pred_insn_type (OUTSIDE_PRED_INSN);
19910
19911 if (neon_check_type (2, NS_QQ, N_EQK | N_UNT, elttype | N_UNT | N_KEY).type
19912 == NT_invtype)
19913 return;
19914
19915 inst.error = NULL;
19916
19917 NEON_ENCODE (INTEGER, inst);
19918 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
19919 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
19920 inst.instruction |= LOW4 (inst.operands[1].reg);
19921 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
19922 if (op != -1)
19923 inst.instruction |= op << 6;
19924
19925 if (thumb_mode)
19926 inst.instruction |= 0xfc000000;
19927 else
19928 inst.instruction |= 0xf0000000;
19929 }
19930
19931 static void
19932 do_crypto_3op_1 (int u, int op)
19933 {
19934 set_pred_insn_type (OUTSIDE_PRED_INSN);
19935
19936 if (neon_check_type (3, NS_QQQ, N_EQK | N_UNT, N_EQK | N_UNT,
19937 N_32 | N_UNT | N_KEY).type == NT_invtype)
19938 return;
19939
19940 inst.error = NULL;
19941
19942 NEON_ENCODE (INTEGER, inst);
19943 neon_three_same (1, u, 8 << op);
19944 }
19945
19946 static void
19947 do_aese (void)
19948 {
19949 do_crypto_2op_1 (N_8, 0);
19950 }
19951
19952 static void
19953 do_aesd (void)
19954 {
19955 do_crypto_2op_1 (N_8, 1);
19956 }
19957
19958 static void
19959 do_aesmc (void)
19960 {
19961 do_crypto_2op_1 (N_8, 2);
19962 }
19963
19964 static void
19965 do_aesimc (void)
19966 {
19967 do_crypto_2op_1 (N_8, 3);
19968 }
19969
19970 static void
19971 do_sha1c (void)
19972 {
19973 do_crypto_3op_1 (0, 0);
19974 }
19975
19976 static void
19977 do_sha1p (void)
19978 {
19979 do_crypto_3op_1 (0, 1);
19980 }
19981
19982 static void
19983 do_sha1m (void)
19984 {
19985 do_crypto_3op_1 (0, 2);
19986 }
19987
19988 static void
19989 do_sha1su0 (void)
19990 {
19991 do_crypto_3op_1 (0, 3);
19992 }
19993
19994 static void
19995 do_sha256h (void)
19996 {
19997 do_crypto_3op_1 (1, 0);
19998 }
19999
20000 static void
20001 do_sha256h2 (void)
20002 {
20003 do_crypto_3op_1 (1, 1);
20004 }
20005
20006 static void
20007 do_sha256su1 (void)
20008 {
20009 do_crypto_3op_1 (1, 2);
20010 }
20011
20012 static void
20013 do_sha1h (void)
20014 {
20015 do_crypto_2op_1 (N_32, -1);
20016 }
20017
20018 static void
20019 do_sha1su1 (void)
20020 {
20021 do_crypto_2op_1 (N_32, 0);
20022 }
20023
20024 static void
20025 do_sha256su0 (void)
20026 {
20027 do_crypto_2op_1 (N_32, 1);
20028 }
20029
20030 static void
20031 do_crc32_1 (unsigned int poly, unsigned int sz)
20032 {
20033 unsigned int Rd = inst.operands[0].reg;
20034 unsigned int Rn = inst.operands[1].reg;
20035 unsigned int Rm = inst.operands[2].reg;
20036
20037 set_pred_insn_type (OUTSIDE_PRED_INSN);
20038 inst.instruction |= LOW4 (Rd) << (thumb_mode ? 8 : 12);
20039 inst.instruction |= LOW4 (Rn) << 16;
20040 inst.instruction |= LOW4 (Rm);
20041 inst.instruction |= sz << (thumb_mode ? 4 : 21);
20042 inst.instruction |= poly << (thumb_mode ? 20 : 9);
20043
20044 if (Rd == REG_PC || Rn == REG_PC || Rm == REG_PC)
20045 as_warn (UNPRED_REG ("r15"));
20046 }
20047
20048 static void
20049 do_crc32b (void)
20050 {
20051 do_crc32_1 (0, 0);
20052 }
20053
20054 static void
20055 do_crc32h (void)
20056 {
20057 do_crc32_1 (0, 1);
20058 }
20059
20060 static void
20061 do_crc32w (void)
20062 {
20063 do_crc32_1 (0, 2);
20064 }
20065
20066 static void
20067 do_crc32cb (void)
20068 {
20069 do_crc32_1 (1, 0);
20070 }
20071
20072 static void
20073 do_crc32ch (void)
20074 {
20075 do_crc32_1 (1, 1);
20076 }
20077
20078 static void
20079 do_crc32cw (void)
20080 {
20081 do_crc32_1 (1, 2);
20082 }
20083
20084 static void
20085 do_vjcvt (void)
20086 {
20087 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
20088 _(BAD_FPU));
20089 neon_check_type (2, NS_FD, N_S32, N_F64);
20090 do_vfp_sp_dp_cvt ();
20091 do_vfp_cond_or_thumb ();
20092 }
20093
20094 \f
20095 /* Overall per-instruction processing. */
20096
20097 /* We need to be able to fix up arbitrary expressions in some statements.
20098 This is so that we can handle symbols that are an arbitrary distance from
20099 the pc. The most common cases are of the form ((+/-sym -/+ . - 8) & mask),
20100 which returns part of an address in a form which will be valid for
20101 a data instruction. We do this by pushing the expression into a symbol
20102 in the expr_section, and creating a fix for that. */
20103
20104 static void
20105 fix_new_arm (fragS * frag,
20106 int where,
20107 short int size,
20108 expressionS * exp,
20109 int pc_rel,
20110 int reloc)
20111 {
20112 fixS * new_fix;
20113
20114 switch (exp->X_op)
20115 {
20116 case O_constant:
20117 if (pc_rel)
20118 {
20119 /* Create an absolute valued symbol, so we have something to
20120 refer to in the object file. Unfortunately for us, gas's
20121 generic expression parsing will already have folded out
20122 any use of .set foo/.type foo %function that may have
20123 been used to set type information of the target location,
20124 that's being specified symbolically. We have to presume
20125 the user knows what they are doing. */
20126 char name[16 + 8];
20127 symbolS *symbol;
20128
20129 sprintf (name, "*ABS*0x%lx", (unsigned long)exp->X_add_number);
20130
20131 symbol = symbol_find_or_make (name);
20132 S_SET_SEGMENT (symbol, absolute_section);
20133 symbol_set_frag (symbol, &zero_address_frag);
20134 S_SET_VALUE (symbol, exp->X_add_number);
20135 exp->X_op = O_symbol;
20136 exp->X_add_symbol = symbol;
20137 exp->X_add_number = 0;
20138 }
20139 /* FALLTHROUGH */
20140 case O_symbol:
20141 case O_add:
20142 case O_subtract:
20143 new_fix = fix_new_exp (frag, where, size, exp, pc_rel,
20144 (enum bfd_reloc_code_real) reloc);
20145 break;
20146
20147 default:
20148 new_fix = (fixS *) fix_new (frag, where, size, make_expr_symbol (exp), 0,
20149 pc_rel, (enum bfd_reloc_code_real) reloc);
20150 break;
20151 }
20152
20153 /* Mark whether the fix is to a THUMB instruction, or an ARM
20154 instruction. */
20155 new_fix->tc_fix_data = thumb_mode;
20156 }
20157
20158 /* Create a frg for an instruction requiring relaxation. */
20159 static void
20160 output_relax_insn (void)
20161 {
20162 char * to;
20163 symbolS *sym;
20164 int offset;
20165
20166 /* The size of the instruction is unknown, so tie the debug info to the
20167 start of the instruction. */
20168 dwarf2_emit_insn (0);
20169
20170 switch (inst.relocs[0].exp.X_op)
20171 {
20172 case O_symbol:
20173 sym = inst.relocs[0].exp.X_add_symbol;
20174 offset = inst.relocs[0].exp.X_add_number;
20175 break;
20176 case O_constant:
20177 sym = NULL;
20178 offset = inst.relocs[0].exp.X_add_number;
20179 break;
20180 default:
20181 sym = make_expr_symbol (&inst.relocs[0].exp);
20182 offset = 0;
20183 break;
20184 }
20185 to = frag_var (rs_machine_dependent, INSN_SIZE, THUMB_SIZE,
20186 inst.relax, sym, offset, NULL/*offset, opcode*/);
20187 md_number_to_chars (to, inst.instruction, THUMB_SIZE);
20188 }
20189
20190 /* Write a 32-bit thumb instruction to buf. */
20191 static void
20192 put_thumb32_insn (char * buf, unsigned long insn)
20193 {
20194 md_number_to_chars (buf, insn >> 16, THUMB_SIZE);
20195 md_number_to_chars (buf + THUMB_SIZE, insn, THUMB_SIZE);
20196 }
20197
20198 static void
20199 output_inst (const char * str)
20200 {
20201 char * to = NULL;
20202
20203 if (inst.error)
20204 {
20205 as_bad ("%s -- `%s'", inst.error, str);
20206 return;
20207 }
20208 if (inst.relax)
20209 {
20210 output_relax_insn ();
20211 return;
20212 }
20213 if (inst.size == 0)
20214 return;
20215
20216 to = frag_more (inst.size);
20217 /* PR 9814: Record the thumb mode into the current frag so that we know
20218 what type of NOP padding to use, if necessary. We override any previous
20219 setting so that if the mode has changed then the NOPS that we use will
20220 match the encoding of the last instruction in the frag. */
20221 frag_now->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
20222
20223 if (thumb_mode && (inst.size > THUMB_SIZE))
20224 {
20225 gas_assert (inst.size == (2 * THUMB_SIZE));
20226 put_thumb32_insn (to, inst.instruction);
20227 }
20228 else if (inst.size > INSN_SIZE)
20229 {
20230 gas_assert (inst.size == (2 * INSN_SIZE));
20231 md_number_to_chars (to, inst.instruction, INSN_SIZE);
20232 md_number_to_chars (to + INSN_SIZE, inst.instruction, INSN_SIZE);
20233 }
20234 else
20235 md_number_to_chars (to, inst.instruction, inst.size);
20236
20237 int r;
20238 for (r = 0; r < ARM_IT_MAX_RELOCS; r++)
20239 {
20240 if (inst.relocs[r].type != BFD_RELOC_UNUSED)
20241 fix_new_arm (frag_now, to - frag_now->fr_literal,
20242 inst.size, & inst.relocs[r].exp, inst.relocs[r].pc_rel,
20243 inst.relocs[r].type);
20244 }
20245
20246 dwarf2_emit_insn (inst.size);
20247 }
20248
20249 static char *
20250 output_it_inst (int cond, int mask, char * to)
20251 {
20252 unsigned long instruction = 0xbf00;
20253
20254 mask &= 0xf;
20255 instruction |= mask;
20256 instruction |= cond << 4;
20257
20258 if (to == NULL)
20259 {
20260 to = frag_more (2);
20261 #ifdef OBJ_ELF
20262 dwarf2_emit_insn (2);
20263 #endif
20264 }
20265
20266 md_number_to_chars (to, instruction, 2);
20267
20268 return to;
20269 }
20270
20271 /* Tag values used in struct asm_opcode's tag field. */
20272 enum opcode_tag
20273 {
20274 OT_unconditional, /* Instruction cannot be conditionalized.
20275 The ARM condition field is still 0xE. */
20276 OT_unconditionalF, /* Instruction cannot be conditionalized
20277 and carries 0xF in its ARM condition field. */
20278 OT_csuffix, /* Instruction takes a conditional suffix. */
20279 OT_csuffixF, /* Some forms of the instruction take a scalar
20280 conditional suffix, others place 0xF where the
20281 condition field would be, others take a vector
20282 conditional suffix. */
20283 OT_cinfix3, /* Instruction takes a conditional infix,
20284 beginning at character index 3. (In
20285 unified mode, it becomes a suffix.) */
20286 OT_cinfix3_deprecated, /* The same as OT_cinfix3. This is used for
20287 tsts, cmps, cmns, and teqs. */
20288 OT_cinfix3_legacy, /* Legacy instruction takes a conditional infix at
20289 character index 3, even in unified mode. Used for
20290 legacy instructions where suffix and infix forms
20291 may be ambiguous. */
20292 OT_csuf_or_in3, /* Instruction takes either a conditional
20293 suffix or an infix at character index 3. */
20294 OT_odd_infix_unc, /* This is the unconditional variant of an
20295 instruction that takes a conditional infix
20296 at an unusual position. In unified mode,
20297 this variant will accept a suffix. */
20298 OT_odd_infix_0 /* Values greater than or equal to OT_odd_infix_0
20299 are the conditional variants of instructions that
20300 take conditional infixes in unusual positions.
20301 The infix appears at character index
20302 (tag - OT_odd_infix_0). These are not accepted
20303 in unified mode. */
20304 };
20305
20306 /* Subroutine of md_assemble, responsible for looking up the primary
20307 opcode from the mnemonic the user wrote. STR points to the
20308 beginning of the mnemonic.
20309
20310 This is not simply a hash table lookup, because of conditional
20311 variants. Most instructions have conditional variants, which are
20312 expressed with a _conditional affix_ to the mnemonic. If we were
20313 to encode each conditional variant as a literal string in the opcode
20314 table, it would have approximately 20,000 entries.
20315
20316 Most mnemonics take this affix as a suffix, and in unified syntax,
20317 'most' is upgraded to 'all'. However, in the divided syntax, some
20318 instructions take the affix as an infix, notably the s-variants of
20319 the arithmetic instructions. Of those instructions, all but six
20320 have the infix appear after the third character of the mnemonic.
20321
20322 Accordingly, the algorithm for looking up primary opcodes given
20323 an identifier is:
20324
20325 1. Look up the identifier in the opcode table.
20326 If we find a match, go to step U.
20327
20328 2. Look up the last two characters of the identifier in the
20329 conditions table. If we find a match, look up the first N-2
20330 characters of the identifier in the opcode table. If we
20331 find a match, go to step CE.
20332
20333 3. Look up the fourth and fifth characters of the identifier in
20334 the conditions table. If we find a match, extract those
20335 characters from the identifier, and look up the remaining
20336 characters in the opcode table. If we find a match, go
20337 to step CM.
20338
20339 4. Fail.
20340
20341 U. Examine the tag field of the opcode structure, in case this is
20342 one of the six instructions with its conditional infix in an
20343 unusual place. If it is, the tag tells us where to find the
20344 infix; look it up in the conditions table and set inst.cond
20345 accordingly. Otherwise, this is an unconditional instruction.
20346 Again set inst.cond accordingly. Return the opcode structure.
20347
20348 CE. Examine the tag field to make sure this is an instruction that
20349 should receive a conditional suffix. If it is not, fail.
20350 Otherwise, set inst.cond from the suffix we already looked up,
20351 and return the opcode structure.
20352
20353 CM. Examine the tag field to make sure this is an instruction that
20354 should receive a conditional infix after the third character.
20355 If it is not, fail. Otherwise, undo the edits to the current
20356 line of input and proceed as for case CE. */
20357
20358 static const struct asm_opcode *
20359 opcode_lookup (char **str)
20360 {
20361 char *end, *base;
20362 char *affix;
20363 const struct asm_opcode *opcode;
20364 const struct asm_cond *cond;
20365 char save[2];
20366
20367 /* Scan up to the end of the mnemonic, which must end in white space,
20368 '.' (in unified mode, or for Neon/VFP instructions), or end of string. */
20369 for (base = end = *str; *end != '\0'; end++)
20370 if (*end == ' ' || *end == '.')
20371 break;
20372
20373 if (end == base)
20374 return NULL;
20375
20376 /* Handle a possible width suffix and/or Neon type suffix. */
20377 if (end[0] == '.')
20378 {
20379 int offset = 2;
20380
20381 /* The .w and .n suffixes are only valid if the unified syntax is in
20382 use. */
20383 if (unified_syntax && end[1] == 'w')
20384 inst.size_req = 4;
20385 else if (unified_syntax && end[1] == 'n')
20386 inst.size_req = 2;
20387 else
20388 offset = 0;
20389
20390 inst.vectype.elems = 0;
20391
20392 *str = end + offset;
20393
20394 if (end[offset] == '.')
20395 {
20396 /* See if we have a Neon type suffix (possible in either unified or
20397 non-unified ARM syntax mode). */
20398 if (parse_neon_type (&inst.vectype, str) == FAIL)
20399 return NULL;
20400 }
20401 else if (end[offset] != '\0' && end[offset] != ' ')
20402 return NULL;
20403 }
20404 else
20405 *str = end;
20406
20407 /* Look for unaffixed or special-case affixed mnemonic. */
20408 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
20409 end - base);
20410 if (opcode)
20411 {
20412 /* step U */
20413 if (opcode->tag < OT_odd_infix_0)
20414 {
20415 inst.cond = COND_ALWAYS;
20416 return opcode;
20417 }
20418
20419 if (warn_on_deprecated && unified_syntax)
20420 as_tsktsk (_("conditional infixes are deprecated in unified syntax"));
20421 affix = base + (opcode->tag - OT_odd_infix_0);
20422 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
20423 gas_assert (cond);
20424
20425 inst.cond = cond->value;
20426 return opcode;
20427 }
20428 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
20429 {
20430 /* Cannot have a conditional suffix on a mnemonic of less than a character.
20431 */
20432 if (end - base < 2)
20433 return NULL;
20434 affix = end - 1;
20435 cond = (const struct asm_cond *) hash_find_n (arm_vcond_hsh, affix, 1);
20436 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
20437 affix - base);
20438 /* If this opcode can not be vector predicated then don't accept it with a
20439 vector predication code. */
20440 if (opcode && !opcode->mayBeVecPred)
20441 opcode = NULL;
20442 }
20443 if (!opcode || !cond)
20444 {
20445 /* Cannot have a conditional suffix on a mnemonic of less than two
20446 characters. */
20447 if (end - base < 3)
20448 return NULL;
20449
20450 /* Look for suffixed mnemonic. */
20451 affix = end - 2;
20452 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
20453 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
20454 affix - base);
20455 }
20456
20457 if (opcode && cond)
20458 {
20459 /* step CE */
20460 switch (opcode->tag)
20461 {
20462 case OT_cinfix3_legacy:
20463 /* Ignore conditional suffixes matched on infix only mnemonics. */
20464 break;
20465
20466 case OT_cinfix3:
20467 case OT_cinfix3_deprecated:
20468 case OT_odd_infix_unc:
20469 if (!unified_syntax)
20470 return NULL;
20471 /* Fall through. */
20472
20473 case OT_csuffix:
20474 case OT_csuffixF:
20475 case OT_csuf_or_in3:
20476 inst.cond = cond->value;
20477 return opcode;
20478
20479 case OT_unconditional:
20480 case OT_unconditionalF:
20481 if (thumb_mode)
20482 inst.cond = cond->value;
20483 else
20484 {
20485 /* Delayed diagnostic. */
20486 inst.error = BAD_COND;
20487 inst.cond = COND_ALWAYS;
20488 }
20489 return opcode;
20490
20491 default:
20492 return NULL;
20493 }
20494 }
20495
20496 /* Cannot have a usual-position infix on a mnemonic of less than
20497 six characters (five would be a suffix). */
20498 if (end - base < 6)
20499 return NULL;
20500
20501 /* Look for infixed mnemonic in the usual position. */
20502 affix = base + 3;
20503 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
20504 if (!cond)
20505 return NULL;
20506
20507 memcpy (save, affix, 2);
20508 memmove (affix, affix + 2, (end - affix) - 2);
20509 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
20510 (end - base) - 2);
20511 memmove (affix + 2, affix, (end - affix) - 2);
20512 memcpy (affix, save, 2);
20513
20514 if (opcode
20515 && (opcode->tag == OT_cinfix3
20516 || opcode->tag == OT_cinfix3_deprecated
20517 || opcode->tag == OT_csuf_or_in3
20518 || opcode->tag == OT_cinfix3_legacy))
20519 {
20520 /* Step CM. */
20521 if (warn_on_deprecated && unified_syntax
20522 && (opcode->tag == OT_cinfix3
20523 || opcode->tag == OT_cinfix3_deprecated))
20524 as_tsktsk (_("conditional infixes are deprecated in unified syntax"));
20525
20526 inst.cond = cond->value;
20527 return opcode;
20528 }
20529
20530 return NULL;
20531 }
20532
20533 /* This function generates an initial IT instruction, leaving its block
20534 virtually open for the new instructions. Eventually,
20535 the mask will be updated by now_pred_add_mask () each time
20536 a new instruction needs to be included in the IT block.
20537 Finally, the block is closed with close_automatic_it_block ().
20538 The block closure can be requested either from md_assemble (),
20539 a tencode (), or due to a label hook. */
20540
20541 static void
20542 new_automatic_it_block (int cond)
20543 {
20544 now_pred.state = AUTOMATIC_PRED_BLOCK;
20545 now_pred.mask = 0x18;
20546 now_pred.cc = cond;
20547 now_pred.block_length = 1;
20548 mapping_state (MAP_THUMB);
20549 now_pred.insn = output_it_inst (cond, now_pred.mask, NULL);
20550 now_pred.warn_deprecated = FALSE;
20551 now_pred.insn_cond = TRUE;
20552 }
20553
20554 /* Close an automatic IT block.
20555 See comments in new_automatic_it_block (). */
20556
20557 static void
20558 close_automatic_it_block (void)
20559 {
20560 now_pred.mask = 0x10;
20561 now_pred.block_length = 0;
20562 }
20563
20564 /* Update the mask of the current automatically-generated IT
20565 instruction. See comments in new_automatic_it_block (). */
20566
20567 static void
20568 now_pred_add_mask (int cond)
20569 {
20570 #define CLEAR_BIT(value, nbit) ((value) & ~(1 << (nbit)))
20571 #define SET_BIT_VALUE(value, bitvalue, nbit) (CLEAR_BIT (value, nbit) \
20572 | ((bitvalue) << (nbit)))
20573 const int resulting_bit = (cond & 1);
20574
20575 now_pred.mask &= 0xf;
20576 now_pred.mask = SET_BIT_VALUE (now_pred.mask,
20577 resulting_bit,
20578 (5 - now_pred.block_length));
20579 now_pred.mask = SET_BIT_VALUE (now_pred.mask,
20580 1,
20581 ((5 - now_pred.block_length) - 1));
20582 output_it_inst (now_pred.cc, now_pred.mask, now_pred.insn);
20583
20584 #undef CLEAR_BIT
20585 #undef SET_BIT_VALUE
20586 }
20587
20588 /* The IT blocks handling machinery is accessed through the these functions:
20589 it_fsm_pre_encode () from md_assemble ()
20590 set_pred_insn_type () optional, from the tencode functions
20591 set_pred_insn_type_last () ditto
20592 in_pred_block () ditto
20593 it_fsm_post_encode () from md_assemble ()
20594 force_automatic_it_block_close () from label handling functions
20595
20596 Rationale:
20597 1) md_assemble () calls it_fsm_pre_encode () before calling tencode (),
20598 initializing the IT insn type with a generic initial value depending
20599 on the inst.condition.
20600 2) During the tencode function, two things may happen:
20601 a) The tencode function overrides the IT insn type by
20602 calling either set_pred_insn_type (type) or
20603 set_pred_insn_type_last ().
20604 b) The tencode function queries the IT block state by
20605 calling in_pred_block () (i.e. to determine narrow/not narrow mode).
20606
20607 Both set_pred_insn_type and in_pred_block run the internal FSM state
20608 handling function (handle_pred_state), because: a) setting the IT insn
20609 type may incur in an invalid state (exiting the function),
20610 and b) querying the state requires the FSM to be updated.
20611 Specifically we want to avoid creating an IT block for conditional
20612 branches, so it_fsm_pre_encode is actually a guess and we can't
20613 determine whether an IT block is required until the tencode () routine
20614 has decided what type of instruction this actually it.
20615 Because of this, if set_pred_insn_type and in_pred_block have to be
20616 used, set_pred_insn_type has to be called first.
20617
20618 set_pred_insn_type_last () is a wrapper of set_pred_insn_type (type),
20619 that determines the insn IT type depending on the inst.cond code.
20620 When a tencode () routine encodes an instruction that can be
20621 either outside an IT block, or, in the case of being inside, has to be
20622 the last one, set_pred_insn_type_last () will determine the proper
20623 IT instruction type based on the inst.cond code. Otherwise,
20624 set_pred_insn_type can be called for overriding that logic or
20625 for covering other cases.
20626
20627 Calling handle_pred_state () may not transition the IT block state to
20628 OUTSIDE_PRED_BLOCK immediately, since the (current) state could be
20629 still queried. Instead, if the FSM determines that the state should
20630 be transitioned to OUTSIDE_PRED_BLOCK, a flag is marked to be closed
20631 after the tencode () function: that's what it_fsm_post_encode () does.
20632
20633 Since in_pred_block () calls the state handling function to get an
20634 updated state, an error may occur (due to invalid insns combination).
20635 In that case, inst.error is set.
20636 Therefore, inst.error has to be checked after the execution of
20637 the tencode () routine.
20638
20639 3) Back in md_assemble(), it_fsm_post_encode () is called to commit
20640 any pending state change (if any) that didn't take place in
20641 handle_pred_state () as explained above. */
20642
20643 static void
20644 it_fsm_pre_encode (void)
20645 {
20646 if (inst.cond != COND_ALWAYS)
20647 inst.pred_insn_type = INSIDE_IT_INSN;
20648 else
20649 inst.pred_insn_type = OUTSIDE_PRED_INSN;
20650
20651 now_pred.state_handled = 0;
20652 }
20653
20654 /* IT state FSM handling function. */
20655 /* MVE instructions and non-MVE instructions are handled differently because of
20656 the introduction of VPT blocks.
20657 Specifications say that any non-MVE instruction inside a VPT block is
20658 UNPREDICTABLE, with the exception of the BKPT instruction. Whereas most MVE
20659 instructions are deemed to be UNPREDICTABLE if inside an IT block. For the
20660 few exceptions we have MVE_UNPREDICABLE_INSN.
20661 The error messages provided depending on the different combinations possible
20662 are described in the cases below:
20663 For 'most' MVE instructions:
20664 1) In an IT block, with an IT code: syntax error
20665 2) In an IT block, with a VPT code: error: must be in a VPT block
20666 3) In an IT block, with no code: warning: UNPREDICTABLE
20667 4) In a VPT block, with an IT code: syntax error
20668 5) In a VPT block, with a VPT code: OK!
20669 6) In a VPT block, with no code: error: missing code
20670 7) Outside a pred block, with an IT code: error: syntax error
20671 8) Outside a pred block, with a VPT code: error: should be in a VPT block
20672 9) Outside a pred block, with no code: OK!
20673 For non-MVE instructions:
20674 10) In an IT block, with an IT code: OK!
20675 11) In an IT block, with a VPT code: syntax error
20676 12) In an IT block, with no code: error: missing code
20677 13) In a VPT block, with an IT code: error: should be in an IT block
20678 14) In a VPT block, with a VPT code: syntax error
20679 15) In a VPT block, with no code: UNPREDICTABLE
20680 16) Outside a pred block, with an IT code: error: should be in an IT block
20681 17) Outside a pred block, with a VPT code: syntax error
20682 18) Outside a pred block, with no code: OK!
20683 */
20684
20685
20686 static int
20687 handle_pred_state (void)
20688 {
20689 now_pred.state_handled = 1;
20690 now_pred.insn_cond = FALSE;
20691
20692 switch (now_pred.state)
20693 {
20694 case OUTSIDE_PRED_BLOCK:
20695 switch (inst.pred_insn_type)
20696 {
20697 case MVE_UNPREDICABLE_INSN:
20698 case MVE_OUTSIDE_PRED_INSN:
20699 if (inst.cond < COND_ALWAYS)
20700 {
20701 /* Case 7: Outside a pred block, with an IT code: error: syntax
20702 error. */
20703 inst.error = BAD_SYNTAX;
20704 return FAIL;
20705 }
20706 /* Case 9: Outside a pred block, with no code: OK! */
20707 break;
20708 case OUTSIDE_PRED_INSN:
20709 if (inst.cond > COND_ALWAYS)
20710 {
20711 /* Case 17: Outside a pred block, with a VPT code: syntax error.
20712 */
20713 inst.error = BAD_SYNTAX;
20714 return FAIL;
20715 }
20716 /* Case 18: Outside a pred block, with no code: OK! */
20717 break;
20718
20719 case INSIDE_VPT_INSN:
20720 /* Case 8: Outside a pred block, with a VPT code: error: should be in
20721 a VPT block. */
20722 inst.error = BAD_OUT_VPT;
20723 return FAIL;
20724
20725 case INSIDE_IT_INSN:
20726 case INSIDE_IT_LAST_INSN:
20727 if (inst.cond < COND_ALWAYS)
20728 {
20729 /* Case 16: Outside a pred block, with an IT code: error: should
20730 be in an IT block. */
20731 if (thumb_mode == 0)
20732 {
20733 if (unified_syntax
20734 && !(implicit_it_mode & IMPLICIT_IT_MODE_ARM))
20735 as_tsktsk (_("Warning: conditional outside an IT block"\
20736 " for Thumb."));
20737 }
20738 else
20739 {
20740 if ((implicit_it_mode & IMPLICIT_IT_MODE_THUMB)
20741 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2))
20742 {
20743 /* Automatically generate the IT instruction. */
20744 new_automatic_it_block (inst.cond);
20745 if (inst.pred_insn_type == INSIDE_IT_LAST_INSN)
20746 close_automatic_it_block ();
20747 }
20748 else
20749 {
20750 inst.error = BAD_OUT_IT;
20751 return FAIL;
20752 }
20753 }
20754 break;
20755 }
20756 else if (inst.cond > COND_ALWAYS)
20757 {
20758 /* Case 17: Outside a pred block, with a VPT code: syntax error.
20759 */
20760 inst.error = BAD_SYNTAX;
20761 return FAIL;
20762 }
20763 else
20764 gas_assert (0);
20765 case IF_INSIDE_IT_LAST_INSN:
20766 case NEUTRAL_IT_INSN:
20767 break;
20768
20769 case VPT_INSN:
20770 if (inst.cond != COND_ALWAYS)
20771 first_error (BAD_SYNTAX);
20772 now_pred.state = MANUAL_PRED_BLOCK;
20773 now_pred.block_length = 0;
20774 now_pred.type = VECTOR_PRED;
20775 now_pred.cc = 0;
20776 break;
20777 case IT_INSN:
20778 now_pred.state = MANUAL_PRED_BLOCK;
20779 now_pred.block_length = 0;
20780 now_pred.type = SCALAR_PRED;
20781 break;
20782 }
20783 break;
20784
20785 case AUTOMATIC_PRED_BLOCK:
20786 /* Three things may happen now:
20787 a) We should increment current it block size;
20788 b) We should close current it block (closing insn or 4 insns);
20789 c) We should close current it block and start a new one (due
20790 to incompatible conditions or
20791 4 insns-length block reached). */
20792
20793 switch (inst.pred_insn_type)
20794 {
20795 case INSIDE_VPT_INSN:
20796 case VPT_INSN:
20797 case MVE_UNPREDICABLE_INSN:
20798 case MVE_OUTSIDE_PRED_INSN:
20799 gas_assert (0);
20800 case OUTSIDE_PRED_INSN:
20801 /* The closure of the block shall happen immediately,
20802 so any in_pred_block () call reports the block as closed. */
20803 force_automatic_it_block_close ();
20804 break;
20805
20806 case INSIDE_IT_INSN:
20807 case INSIDE_IT_LAST_INSN:
20808 case IF_INSIDE_IT_LAST_INSN:
20809 now_pred.block_length++;
20810
20811 if (now_pred.block_length > 4
20812 || !now_pred_compatible (inst.cond))
20813 {
20814 force_automatic_it_block_close ();
20815 if (inst.pred_insn_type != IF_INSIDE_IT_LAST_INSN)
20816 new_automatic_it_block (inst.cond);
20817 }
20818 else
20819 {
20820 now_pred.insn_cond = TRUE;
20821 now_pred_add_mask (inst.cond);
20822 }
20823
20824 if (now_pred.state == AUTOMATIC_PRED_BLOCK
20825 && (inst.pred_insn_type == INSIDE_IT_LAST_INSN
20826 || inst.pred_insn_type == IF_INSIDE_IT_LAST_INSN))
20827 close_automatic_it_block ();
20828 break;
20829
20830 case NEUTRAL_IT_INSN:
20831 now_pred.block_length++;
20832 now_pred.insn_cond = TRUE;
20833
20834 if (now_pred.block_length > 4)
20835 force_automatic_it_block_close ();
20836 else
20837 now_pred_add_mask (now_pred.cc & 1);
20838 break;
20839
20840 case IT_INSN:
20841 close_automatic_it_block ();
20842 now_pred.state = MANUAL_PRED_BLOCK;
20843 break;
20844 }
20845 break;
20846
20847 case MANUAL_PRED_BLOCK:
20848 {
20849 int cond, is_last;
20850 if (now_pred.type == SCALAR_PRED)
20851 {
20852 /* Check conditional suffixes. */
20853 cond = now_pred.cc ^ ((now_pred.mask >> 4) & 1) ^ 1;
20854 now_pred.mask <<= 1;
20855 now_pred.mask &= 0x1f;
20856 is_last = (now_pred.mask == 0x10);
20857 }
20858 else
20859 {
20860 now_pred.cc ^= (now_pred.mask >> 4);
20861 cond = now_pred.cc + 0xf;
20862 now_pred.mask <<= 1;
20863 now_pred.mask &= 0x1f;
20864 is_last = now_pred.mask == 0x10;
20865 }
20866 now_pred.insn_cond = TRUE;
20867
20868 switch (inst.pred_insn_type)
20869 {
20870 case OUTSIDE_PRED_INSN:
20871 if (now_pred.type == SCALAR_PRED)
20872 {
20873 if (inst.cond == COND_ALWAYS)
20874 {
20875 /* Case 12: In an IT block, with no code: error: missing
20876 code. */
20877 inst.error = BAD_NOT_IT;
20878 return FAIL;
20879 }
20880 else if (inst.cond > COND_ALWAYS)
20881 {
20882 /* Case 11: In an IT block, with a VPT code: syntax error.
20883 */
20884 inst.error = BAD_SYNTAX;
20885 return FAIL;
20886 }
20887 else if (thumb_mode)
20888 {
20889 /* This is for some special cases where a non-MVE
20890 instruction is not allowed in an IT block, such as cbz,
20891 but are put into one with a condition code.
20892 You could argue this should be a syntax error, but we
20893 gave the 'not allowed in IT block' diagnostic in the
20894 past so we will keep doing so. */
20895 inst.error = BAD_NOT_IT;
20896 return FAIL;
20897 }
20898 break;
20899 }
20900 else
20901 {
20902 /* Case 15: In a VPT block, with no code: UNPREDICTABLE. */
20903 as_tsktsk (MVE_NOT_VPT);
20904 return SUCCESS;
20905 }
20906 case MVE_OUTSIDE_PRED_INSN:
20907 if (now_pred.type == SCALAR_PRED)
20908 {
20909 if (inst.cond == COND_ALWAYS)
20910 {
20911 /* Case 3: In an IT block, with no code: warning:
20912 UNPREDICTABLE. */
20913 as_tsktsk (MVE_NOT_IT);
20914 return SUCCESS;
20915 }
20916 else if (inst.cond < COND_ALWAYS)
20917 {
20918 /* Case 1: In an IT block, with an IT code: syntax error.
20919 */
20920 inst.error = BAD_SYNTAX;
20921 return FAIL;
20922 }
20923 else
20924 gas_assert (0);
20925 }
20926 else
20927 {
20928 if (inst.cond < COND_ALWAYS)
20929 {
20930 /* Case 4: In a VPT block, with an IT code: syntax error.
20931 */
20932 inst.error = BAD_SYNTAX;
20933 return FAIL;
20934 }
20935 else if (inst.cond == COND_ALWAYS)
20936 {
20937 /* Case 6: In a VPT block, with no code: error: missing
20938 code. */
20939 inst.error = BAD_NOT_VPT;
20940 return FAIL;
20941 }
20942 else
20943 {
20944 gas_assert (0);
20945 }
20946 }
20947 case MVE_UNPREDICABLE_INSN:
20948 as_tsktsk (now_pred.type == SCALAR_PRED ? MVE_NOT_IT : MVE_NOT_VPT);
20949 return SUCCESS;
20950 case INSIDE_IT_INSN:
20951 if (inst.cond > COND_ALWAYS)
20952 {
20953 /* Case 11: In an IT block, with a VPT code: syntax error. */
20954 /* Case 14: In a VPT block, with a VPT code: syntax error. */
20955 inst.error = BAD_SYNTAX;
20956 return FAIL;
20957 }
20958 else if (now_pred.type == SCALAR_PRED)
20959 {
20960 /* Case 10: In an IT block, with an IT code: OK! */
20961 if (cond != inst.cond)
20962 {
20963 inst.error = now_pred.type == SCALAR_PRED ? BAD_IT_COND :
20964 BAD_VPT_COND;
20965 return FAIL;
20966 }
20967 }
20968 else
20969 {
20970 /* Case 13: In a VPT block, with an IT code: error: should be
20971 in an IT block. */
20972 inst.error = BAD_OUT_IT;
20973 return FAIL;
20974 }
20975 break;
20976
20977 case INSIDE_VPT_INSN:
20978 if (now_pred.type == SCALAR_PRED)
20979 {
20980 /* Case 2: In an IT block, with a VPT code: error: must be in a
20981 VPT block. */
20982 inst.error = BAD_OUT_VPT;
20983 return FAIL;
20984 }
20985 /* Case 5: In a VPT block, with a VPT code: OK! */
20986 else if (cond != inst.cond)
20987 {
20988 inst.error = BAD_VPT_COND;
20989 return FAIL;
20990 }
20991 break;
20992 case INSIDE_IT_LAST_INSN:
20993 case IF_INSIDE_IT_LAST_INSN:
20994 if (now_pred.type == VECTOR_PRED || inst.cond > COND_ALWAYS)
20995 {
20996 /* Case 4: In a VPT block, with an IT code: syntax error. */
20997 /* Case 11: In an IT block, with a VPT code: syntax error. */
20998 inst.error = BAD_SYNTAX;
20999 return FAIL;
21000 }
21001 else if (cond != inst.cond)
21002 {
21003 inst.error = BAD_IT_COND;
21004 return FAIL;
21005 }
21006 if (!is_last)
21007 {
21008 inst.error = BAD_BRANCH;
21009 return FAIL;
21010 }
21011 break;
21012
21013 case NEUTRAL_IT_INSN:
21014 /* The BKPT instruction is unconditional even in a IT or VPT
21015 block. */
21016 break;
21017
21018 case IT_INSN:
21019 if (now_pred.type == SCALAR_PRED)
21020 {
21021 inst.error = BAD_IT_IT;
21022 return FAIL;
21023 }
21024 /* fall through. */
21025 case VPT_INSN:
21026 if (inst.cond == COND_ALWAYS)
21027 {
21028 /* Executing a VPT/VPST instruction inside an IT block or a
21029 VPT/VPST/IT instruction inside a VPT block is UNPREDICTABLE.
21030 */
21031 if (now_pred.type == SCALAR_PRED)
21032 as_tsktsk (MVE_NOT_IT);
21033 else
21034 as_tsktsk (MVE_NOT_VPT);
21035 return SUCCESS;
21036 }
21037 else
21038 {
21039 /* VPT/VPST do not accept condition codes. */
21040 inst.error = BAD_SYNTAX;
21041 return FAIL;
21042 }
21043 }
21044 }
21045 break;
21046 }
21047
21048 return SUCCESS;
21049 }
21050
21051 struct depr_insn_mask
21052 {
21053 unsigned long pattern;
21054 unsigned long mask;
21055 const char* description;
21056 };
21057
21058 /* List of 16-bit instruction patterns deprecated in an IT block in
21059 ARMv8. */
21060 static const struct depr_insn_mask depr_it_insns[] = {
21061 { 0xc000, 0xc000, N_("Short branches, Undefined, SVC, LDM/STM") },
21062 { 0xb000, 0xb000, N_("Miscellaneous 16-bit instructions") },
21063 { 0xa000, 0xb800, N_("ADR") },
21064 { 0x4800, 0xf800, N_("Literal loads") },
21065 { 0x4478, 0xf478, N_("Hi-register ADD, MOV, CMP, BX, BLX using pc") },
21066 { 0x4487, 0xfc87, N_("Hi-register ADD, MOV, CMP using pc") },
21067 /* NOTE: 0x00dd is not the real encoding, instead, it is the 'tvalue'
21068 field in asm_opcode. 'tvalue' is used at the stage this check happen. */
21069 { 0x00dd, 0x7fff, N_("ADD/SUB sp, sp #imm") },
21070 { 0, 0, NULL }
21071 };
21072
21073 static void
21074 it_fsm_post_encode (void)
21075 {
21076 int is_last;
21077
21078 if (!now_pred.state_handled)
21079 handle_pred_state ();
21080
21081 if (now_pred.insn_cond
21082 && !now_pred.warn_deprecated
21083 && warn_on_deprecated
21084 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8)
21085 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_m))
21086 {
21087 if (inst.instruction >= 0x10000)
21088 {
21089 as_tsktsk (_("IT blocks containing 32-bit Thumb instructions are "
21090 "performance deprecated in ARMv8-A and ARMv8-R"));
21091 now_pred.warn_deprecated = TRUE;
21092 }
21093 else
21094 {
21095 const struct depr_insn_mask *p = depr_it_insns;
21096
21097 while (p->mask != 0)
21098 {
21099 if ((inst.instruction & p->mask) == p->pattern)
21100 {
21101 as_tsktsk (_("IT blocks containing 16-bit Thumb "
21102 "instructions of the following class are "
21103 "performance deprecated in ARMv8-A and "
21104 "ARMv8-R: %s"), p->description);
21105 now_pred.warn_deprecated = TRUE;
21106 break;
21107 }
21108
21109 ++p;
21110 }
21111 }
21112
21113 if (now_pred.block_length > 1)
21114 {
21115 as_tsktsk (_("IT blocks containing more than one conditional "
21116 "instruction are performance deprecated in ARMv8-A and "
21117 "ARMv8-R"));
21118 now_pred.warn_deprecated = TRUE;
21119 }
21120 }
21121
21122 is_last = (now_pred.mask == 0x10);
21123 if (is_last)
21124 {
21125 now_pred.state = OUTSIDE_PRED_BLOCK;
21126 now_pred.mask = 0;
21127 }
21128 }
21129
21130 static void
21131 force_automatic_it_block_close (void)
21132 {
21133 if (now_pred.state == AUTOMATIC_PRED_BLOCK)
21134 {
21135 close_automatic_it_block ();
21136 now_pred.state = OUTSIDE_PRED_BLOCK;
21137 now_pred.mask = 0;
21138 }
21139 }
21140
21141 static int
21142 in_pred_block (void)
21143 {
21144 if (!now_pred.state_handled)
21145 handle_pred_state ();
21146
21147 return now_pred.state != OUTSIDE_PRED_BLOCK;
21148 }
21149
21150 /* Whether OPCODE only has T32 encoding. Since this function is only used by
21151 t32_insn_ok, OPCODE enabled by v6t2 extension bit do not need to be listed
21152 here, hence the "known" in the function name. */
21153
21154 static bfd_boolean
21155 known_t32_only_insn (const struct asm_opcode *opcode)
21156 {
21157 /* Original Thumb-1 wide instruction. */
21158 if (opcode->tencode == do_t_blx
21159 || opcode->tencode == do_t_branch23
21160 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_msr)
21161 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_barrier))
21162 return TRUE;
21163
21164 /* Wide-only instruction added to ARMv8-M Baseline. */
21165 if (ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_v8m_m_only)
21166 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_atomics)
21167 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_v6t2_v8m)
21168 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_div))
21169 return TRUE;
21170
21171 return FALSE;
21172 }
21173
21174 /* Whether wide instruction variant can be used if available for a valid OPCODE
21175 in ARCH. */
21176
21177 static bfd_boolean
21178 t32_insn_ok (arm_feature_set arch, const struct asm_opcode *opcode)
21179 {
21180 if (known_t32_only_insn (opcode))
21181 return TRUE;
21182
21183 /* Instruction with narrow and wide encoding added to ARMv8-M. Availability
21184 of variant T3 of B.W is checked in do_t_branch. */
21185 if (ARM_CPU_HAS_FEATURE (arch, arm_ext_v8m)
21186 && opcode->tencode == do_t_branch)
21187 return TRUE;
21188
21189 /* MOV accepts T1/T3 encodings under Baseline, T3 encoding is 32bit. */
21190 if (ARM_CPU_HAS_FEATURE (arch, arm_ext_v8m)
21191 && opcode->tencode == do_t_mov_cmp
21192 /* Make sure CMP instruction is not affected. */
21193 && opcode->aencode == do_mov)
21194 return TRUE;
21195
21196 /* Wide instruction variants of all instructions with narrow *and* wide
21197 variants become available with ARMv6t2. Other opcodes are either
21198 narrow-only or wide-only and are thus available if OPCODE is valid. */
21199 if (ARM_CPU_HAS_FEATURE (arch, arm_ext_v6t2))
21200 return TRUE;
21201
21202 /* OPCODE with narrow only instruction variant or wide variant not
21203 available. */
21204 return FALSE;
21205 }
21206
21207 void
21208 md_assemble (char *str)
21209 {
21210 char *p = str;
21211 const struct asm_opcode * opcode;
21212
21213 /* Align the previous label if needed. */
21214 if (last_label_seen != NULL)
21215 {
21216 symbol_set_frag (last_label_seen, frag_now);
21217 S_SET_VALUE (last_label_seen, (valueT) frag_now_fix ());
21218 S_SET_SEGMENT (last_label_seen, now_seg);
21219 }
21220
21221 memset (&inst, '\0', sizeof (inst));
21222 int r;
21223 for (r = 0; r < ARM_IT_MAX_RELOCS; r++)
21224 inst.relocs[r].type = BFD_RELOC_UNUSED;
21225
21226 opcode = opcode_lookup (&p);
21227 if (!opcode)
21228 {
21229 /* It wasn't an instruction, but it might be a register alias of
21230 the form alias .req reg, or a Neon .dn/.qn directive. */
21231 if (! create_register_alias (str, p)
21232 && ! create_neon_reg_alias (str, p))
21233 as_bad (_("bad instruction `%s'"), str);
21234
21235 return;
21236 }
21237
21238 if (warn_on_deprecated && opcode->tag == OT_cinfix3_deprecated)
21239 as_tsktsk (_("s suffix on comparison instruction is deprecated"));
21240
21241 /* The value which unconditional instructions should have in place of the
21242 condition field. */
21243 inst.uncond_value = (opcode->tag == OT_csuffixF) ? 0xf : -1;
21244
21245 if (thumb_mode)
21246 {
21247 arm_feature_set variant;
21248
21249 variant = cpu_variant;
21250 /* Only allow coprocessor instructions on Thumb-2 capable devices. */
21251 if (!ARM_CPU_HAS_FEATURE (variant, arm_arch_t2))
21252 ARM_CLEAR_FEATURE (variant, variant, fpu_any_hard);
21253 /* Check that this instruction is supported for this CPU. */
21254 if (!opcode->tvariant
21255 || (thumb_mode == 1
21256 && !ARM_CPU_HAS_FEATURE (variant, *opcode->tvariant)))
21257 {
21258 if (opcode->tencode == do_t_swi)
21259 as_bad (_("SVC is not permitted on this architecture"));
21260 else
21261 as_bad (_("selected processor does not support `%s' in Thumb mode"), str);
21262 return;
21263 }
21264 if (inst.cond != COND_ALWAYS && !unified_syntax
21265 && opcode->tencode != do_t_branch)
21266 {
21267 as_bad (_("Thumb does not support conditional execution"));
21268 return;
21269 }
21270
21271 /* Two things are addressed here:
21272 1) Implicit require narrow instructions on Thumb-1.
21273 This avoids relaxation accidentally introducing Thumb-2
21274 instructions.
21275 2) Reject wide instructions in non Thumb-2 cores.
21276
21277 Only instructions with narrow and wide variants need to be handled
21278 but selecting all non wide-only instructions is easier. */
21279 if (!ARM_CPU_HAS_FEATURE (variant, arm_ext_v6t2)
21280 && !t32_insn_ok (variant, opcode))
21281 {
21282 if (inst.size_req == 0)
21283 inst.size_req = 2;
21284 else if (inst.size_req == 4)
21285 {
21286 if (ARM_CPU_HAS_FEATURE (variant, arm_ext_v8m))
21287 as_bad (_("selected processor does not support 32bit wide "
21288 "variant of instruction `%s'"), str);
21289 else
21290 as_bad (_("selected processor does not support `%s' in "
21291 "Thumb-2 mode"), str);
21292 return;
21293 }
21294 }
21295
21296 inst.instruction = opcode->tvalue;
21297
21298 if (!parse_operands (p, opcode->operands, /*thumb=*/TRUE))
21299 {
21300 /* Prepare the pred_insn_type for those encodings that don't set
21301 it. */
21302 it_fsm_pre_encode ();
21303
21304 opcode->tencode ();
21305
21306 it_fsm_post_encode ();
21307 }
21308
21309 if (!(inst.error || inst.relax))
21310 {
21311 gas_assert (inst.instruction < 0xe800 || inst.instruction > 0xffff);
21312 inst.size = (inst.instruction > 0xffff ? 4 : 2);
21313 if (inst.size_req && inst.size_req != inst.size)
21314 {
21315 as_bad (_("cannot honor width suffix -- `%s'"), str);
21316 return;
21317 }
21318 }
21319
21320 /* Something has gone badly wrong if we try to relax a fixed size
21321 instruction. */
21322 gas_assert (inst.size_req == 0 || !inst.relax);
21323
21324 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
21325 *opcode->tvariant);
21326 /* Many Thumb-2 instructions also have Thumb-1 variants, so explicitly
21327 set those bits when Thumb-2 32-bit instructions are seen. The impact
21328 of relaxable instructions will be considered later after we finish all
21329 relaxation. */
21330 if (ARM_FEATURE_CORE_EQUAL (cpu_variant, arm_arch_any))
21331 variant = arm_arch_none;
21332 else
21333 variant = cpu_variant;
21334 if (inst.size == 4 && !t32_insn_ok (variant, opcode))
21335 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
21336 arm_ext_v6t2);
21337
21338 check_neon_suffixes;
21339
21340 if (!inst.error)
21341 {
21342 mapping_state (MAP_THUMB);
21343 }
21344 }
21345 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
21346 {
21347 bfd_boolean is_bx;
21348
21349 /* bx is allowed on v5 cores, and sometimes on v4 cores. */
21350 is_bx = (opcode->aencode == do_bx);
21351
21352 /* Check that this instruction is supported for this CPU. */
21353 if (!(is_bx && fix_v4bx)
21354 && !(opcode->avariant &&
21355 ARM_CPU_HAS_FEATURE (cpu_variant, *opcode->avariant)))
21356 {
21357 as_bad (_("selected processor does not support `%s' in ARM mode"), str);
21358 return;
21359 }
21360 if (inst.size_req)
21361 {
21362 as_bad (_("width suffixes are invalid in ARM mode -- `%s'"), str);
21363 return;
21364 }
21365
21366 inst.instruction = opcode->avalue;
21367 if (opcode->tag == OT_unconditionalF)
21368 inst.instruction |= 0xFU << 28;
21369 else
21370 inst.instruction |= inst.cond << 28;
21371 inst.size = INSN_SIZE;
21372 if (!parse_operands (p, opcode->operands, /*thumb=*/FALSE))
21373 {
21374 it_fsm_pre_encode ();
21375 opcode->aencode ();
21376 it_fsm_post_encode ();
21377 }
21378 /* Arm mode bx is marked as both v4T and v5 because it's still required
21379 on a hypothetical non-thumb v5 core. */
21380 if (is_bx)
21381 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used, arm_ext_v4t);
21382 else
21383 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
21384 *opcode->avariant);
21385
21386 check_neon_suffixes;
21387
21388 if (!inst.error)
21389 {
21390 mapping_state (MAP_ARM);
21391 }
21392 }
21393 else
21394 {
21395 as_bad (_("attempt to use an ARM instruction on a Thumb-only processor "
21396 "-- `%s'"), str);
21397 return;
21398 }
21399 output_inst (str);
21400 }
21401
21402 static void
21403 check_pred_blocks_finished (void)
21404 {
21405 #ifdef OBJ_ELF
21406 asection *sect;
21407
21408 for (sect = stdoutput->sections; sect != NULL; sect = sect->next)
21409 if (seg_info (sect)->tc_segment_info_data.current_pred.state
21410 == MANUAL_PRED_BLOCK)
21411 {
21412 if (now_pred.type == SCALAR_PRED)
21413 as_warn (_("section '%s' finished with an open IT block."),
21414 sect->name);
21415 else
21416 as_warn (_("section '%s' finished with an open VPT/VPST block."),
21417 sect->name);
21418 }
21419 #else
21420 if (now_pred.state == MANUAL_PRED_BLOCK)
21421 {
21422 if (now_pred.type == SCALAR_PRED)
21423 as_warn (_("file finished with an open IT block."));
21424 else
21425 as_warn (_("file finished with an open VPT/VPST block."));
21426 }
21427 #endif
21428 }
21429
21430 /* Various frobbings of labels and their addresses. */
21431
21432 void
21433 arm_start_line_hook (void)
21434 {
21435 last_label_seen = NULL;
21436 }
21437
21438 void
21439 arm_frob_label (symbolS * sym)
21440 {
21441 last_label_seen = sym;
21442
21443 ARM_SET_THUMB (sym, thumb_mode);
21444
21445 #if defined OBJ_COFF || defined OBJ_ELF
21446 ARM_SET_INTERWORK (sym, support_interwork);
21447 #endif
21448
21449 force_automatic_it_block_close ();
21450
21451 /* Note - do not allow local symbols (.Lxxx) to be labelled
21452 as Thumb functions. This is because these labels, whilst
21453 they exist inside Thumb code, are not the entry points for
21454 possible ARM->Thumb calls. Also, these labels can be used
21455 as part of a computed goto or switch statement. eg gcc
21456 can generate code that looks like this:
21457
21458 ldr r2, [pc, .Laaa]
21459 lsl r3, r3, #2
21460 ldr r2, [r3, r2]
21461 mov pc, r2
21462
21463 .Lbbb: .word .Lxxx
21464 .Lccc: .word .Lyyy
21465 ..etc...
21466 .Laaa: .word Lbbb
21467
21468 The first instruction loads the address of the jump table.
21469 The second instruction converts a table index into a byte offset.
21470 The third instruction gets the jump address out of the table.
21471 The fourth instruction performs the jump.
21472
21473 If the address stored at .Laaa is that of a symbol which has the
21474 Thumb_Func bit set, then the linker will arrange for this address
21475 to have the bottom bit set, which in turn would mean that the
21476 address computation performed by the third instruction would end
21477 up with the bottom bit set. Since the ARM is capable of unaligned
21478 word loads, the instruction would then load the incorrect address
21479 out of the jump table, and chaos would ensue. */
21480 if (label_is_thumb_function_name
21481 && (S_GET_NAME (sym)[0] != '.' || S_GET_NAME (sym)[1] != 'L')
21482 && (bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) != 0)
21483 {
21484 /* When the address of a Thumb function is taken the bottom
21485 bit of that address should be set. This will allow
21486 interworking between Arm and Thumb functions to work
21487 correctly. */
21488
21489 THUMB_SET_FUNC (sym, 1);
21490
21491 label_is_thumb_function_name = FALSE;
21492 }
21493
21494 dwarf2_emit_label (sym);
21495 }
21496
21497 bfd_boolean
21498 arm_data_in_code (void)
21499 {
21500 if (thumb_mode && ! strncmp (input_line_pointer + 1, "data:", 5))
21501 {
21502 *input_line_pointer = '/';
21503 input_line_pointer += 5;
21504 *input_line_pointer = 0;
21505 return TRUE;
21506 }
21507
21508 return FALSE;
21509 }
21510
21511 char *
21512 arm_canonicalize_symbol_name (char * name)
21513 {
21514 int len;
21515
21516 if (thumb_mode && (len = strlen (name)) > 5
21517 && streq (name + len - 5, "/data"))
21518 *(name + len - 5) = 0;
21519
21520 return name;
21521 }
21522 \f
21523 /* Table of all register names defined by default. The user can
21524 define additional names with .req. Note that all register names
21525 should appear in both upper and lowercase variants. Some registers
21526 also have mixed-case names. */
21527
21528 #define REGDEF(s,n,t) { #s, n, REG_TYPE_##t, TRUE, 0 }
21529 #define REGNUM(p,n,t) REGDEF(p##n, n, t)
21530 #define REGNUM2(p,n,t) REGDEF(p##n, 2 * n, t)
21531 #define REGSET(p,t) \
21532 REGNUM(p, 0,t), REGNUM(p, 1,t), REGNUM(p, 2,t), REGNUM(p, 3,t), \
21533 REGNUM(p, 4,t), REGNUM(p, 5,t), REGNUM(p, 6,t), REGNUM(p, 7,t), \
21534 REGNUM(p, 8,t), REGNUM(p, 9,t), REGNUM(p,10,t), REGNUM(p,11,t), \
21535 REGNUM(p,12,t), REGNUM(p,13,t), REGNUM(p,14,t), REGNUM(p,15,t)
21536 #define REGSETH(p,t) \
21537 REGNUM(p,16,t), REGNUM(p,17,t), REGNUM(p,18,t), REGNUM(p,19,t), \
21538 REGNUM(p,20,t), REGNUM(p,21,t), REGNUM(p,22,t), REGNUM(p,23,t), \
21539 REGNUM(p,24,t), REGNUM(p,25,t), REGNUM(p,26,t), REGNUM(p,27,t), \
21540 REGNUM(p,28,t), REGNUM(p,29,t), REGNUM(p,30,t), REGNUM(p,31,t)
21541 #define REGSET2(p,t) \
21542 REGNUM2(p, 0,t), REGNUM2(p, 1,t), REGNUM2(p, 2,t), REGNUM2(p, 3,t), \
21543 REGNUM2(p, 4,t), REGNUM2(p, 5,t), REGNUM2(p, 6,t), REGNUM2(p, 7,t), \
21544 REGNUM2(p, 8,t), REGNUM2(p, 9,t), REGNUM2(p,10,t), REGNUM2(p,11,t), \
21545 REGNUM2(p,12,t), REGNUM2(p,13,t), REGNUM2(p,14,t), REGNUM2(p,15,t)
21546 #define SPLRBANK(base,bank,t) \
21547 REGDEF(lr_##bank, 768|((base+0)<<16), t), \
21548 REGDEF(sp_##bank, 768|((base+1)<<16), t), \
21549 REGDEF(spsr_##bank, 768|(base<<16)|SPSR_BIT, t), \
21550 REGDEF(LR_##bank, 768|((base+0)<<16), t), \
21551 REGDEF(SP_##bank, 768|((base+1)<<16), t), \
21552 REGDEF(SPSR_##bank, 768|(base<<16)|SPSR_BIT, t)
21553
21554 static const struct reg_entry reg_names[] =
21555 {
21556 /* ARM integer registers. */
21557 REGSET(r, RN), REGSET(R, RN),
21558
21559 /* ATPCS synonyms. */
21560 REGDEF(a1,0,RN), REGDEF(a2,1,RN), REGDEF(a3, 2,RN), REGDEF(a4, 3,RN),
21561 REGDEF(v1,4,RN), REGDEF(v2,5,RN), REGDEF(v3, 6,RN), REGDEF(v4, 7,RN),
21562 REGDEF(v5,8,RN), REGDEF(v6,9,RN), REGDEF(v7,10,RN), REGDEF(v8,11,RN),
21563
21564 REGDEF(A1,0,RN), REGDEF(A2,1,RN), REGDEF(A3, 2,RN), REGDEF(A4, 3,RN),
21565 REGDEF(V1,4,RN), REGDEF(V2,5,RN), REGDEF(V3, 6,RN), REGDEF(V4, 7,RN),
21566 REGDEF(V5,8,RN), REGDEF(V6,9,RN), REGDEF(V7,10,RN), REGDEF(V8,11,RN),
21567
21568 /* Well-known aliases. */
21569 REGDEF(wr, 7,RN), REGDEF(sb, 9,RN), REGDEF(sl,10,RN), REGDEF(fp,11,RN),
21570 REGDEF(ip,12,RN), REGDEF(sp,13,RN), REGDEF(lr,14,RN), REGDEF(pc,15,RN),
21571
21572 REGDEF(WR, 7,RN), REGDEF(SB, 9,RN), REGDEF(SL,10,RN), REGDEF(FP,11,RN),
21573 REGDEF(IP,12,RN), REGDEF(SP,13,RN), REGDEF(LR,14,RN), REGDEF(PC,15,RN),
21574
21575 /* Defining the new Zero register from ARMv8.1-M. */
21576 REGDEF(zr,15,ZR),
21577 REGDEF(ZR,15,ZR),
21578
21579 /* Coprocessor numbers. */
21580 REGSET(p, CP), REGSET(P, CP),
21581
21582 /* Coprocessor register numbers. The "cr" variants are for backward
21583 compatibility. */
21584 REGSET(c, CN), REGSET(C, CN),
21585 REGSET(cr, CN), REGSET(CR, CN),
21586
21587 /* ARM banked registers. */
21588 REGDEF(R8_usr,512|(0<<16),RNB), REGDEF(r8_usr,512|(0<<16),RNB),
21589 REGDEF(R9_usr,512|(1<<16),RNB), REGDEF(r9_usr,512|(1<<16),RNB),
21590 REGDEF(R10_usr,512|(2<<16),RNB), REGDEF(r10_usr,512|(2<<16),RNB),
21591 REGDEF(R11_usr,512|(3<<16),RNB), REGDEF(r11_usr,512|(3<<16),RNB),
21592 REGDEF(R12_usr,512|(4<<16),RNB), REGDEF(r12_usr,512|(4<<16),RNB),
21593 REGDEF(SP_usr,512|(5<<16),RNB), REGDEF(sp_usr,512|(5<<16),RNB),
21594 REGDEF(LR_usr,512|(6<<16),RNB), REGDEF(lr_usr,512|(6<<16),RNB),
21595
21596 REGDEF(R8_fiq,512|(8<<16),RNB), REGDEF(r8_fiq,512|(8<<16),RNB),
21597 REGDEF(R9_fiq,512|(9<<16),RNB), REGDEF(r9_fiq,512|(9<<16),RNB),
21598 REGDEF(R10_fiq,512|(10<<16),RNB), REGDEF(r10_fiq,512|(10<<16),RNB),
21599 REGDEF(R11_fiq,512|(11<<16),RNB), REGDEF(r11_fiq,512|(11<<16),RNB),
21600 REGDEF(R12_fiq,512|(12<<16),RNB), REGDEF(r12_fiq,512|(12<<16),RNB),
21601 REGDEF(SP_fiq,512|(13<<16),RNB), REGDEF(sp_fiq,512|(13<<16),RNB),
21602 REGDEF(LR_fiq,512|(14<<16),RNB), REGDEF(lr_fiq,512|(14<<16),RNB),
21603 REGDEF(SPSR_fiq,512|(14<<16)|SPSR_BIT,RNB), REGDEF(spsr_fiq,512|(14<<16)|SPSR_BIT,RNB),
21604
21605 SPLRBANK(0,IRQ,RNB), SPLRBANK(0,irq,RNB),
21606 SPLRBANK(2,SVC,RNB), SPLRBANK(2,svc,RNB),
21607 SPLRBANK(4,ABT,RNB), SPLRBANK(4,abt,RNB),
21608 SPLRBANK(6,UND,RNB), SPLRBANK(6,und,RNB),
21609 SPLRBANK(12,MON,RNB), SPLRBANK(12,mon,RNB),
21610 REGDEF(elr_hyp,768|(14<<16),RNB), REGDEF(ELR_hyp,768|(14<<16),RNB),
21611 REGDEF(sp_hyp,768|(15<<16),RNB), REGDEF(SP_hyp,768|(15<<16),RNB),
21612 REGDEF(spsr_hyp,768|(14<<16)|SPSR_BIT,RNB),
21613 REGDEF(SPSR_hyp,768|(14<<16)|SPSR_BIT,RNB),
21614
21615 /* FPA registers. */
21616 REGNUM(f,0,FN), REGNUM(f,1,FN), REGNUM(f,2,FN), REGNUM(f,3,FN),
21617 REGNUM(f,4,FN), REGNUM(f,5,FN), REGNUM(f,6,FN), REGNUM(f,7, FN),
21618
21619 REGNUM(F,0,FN), REGNUM(F,1,FN), REGNUM(F,2,FN), REGNUM(F,3,FN),
21620 REGNUM(F,4,FN), REGNUM(F,5,FN), REGNUM(F,6,FN), REGNUM(F,7, FN),
21621
21622 /* VFP SP registers. */
21623 REGSET(s,VFS), REGSET(S,VFS),
21624 REGSETH(s,VFS), REGSETH(S,VFS),
21625
21626 /* VFP DP Registers. */
21627 REGSET(d,VFD), REGSET(D,VFD),
21628 /* Extra Neon DP registers. */
21629 REGSETH(d,VFD), REGSETH(D,VFD),
21630
21631 /* Neon QP registers. */
21632 REGSET2(q,NQ), REGSET2(Q,NQ),
21633
21634 /* VFP control registers. */
21635 REGDEF(fpsid,0,VFC), REGDEF(fpscr,1,VFC), REGDEF(fpexc,8,VFC),
21636 REGDEF(FPSID,0,VFC), REGDEF(FPSCR,1,VFC), REGDEF(FPEXC,8,VFC),
21637 REGDEF(fpinst,9,VFC), REGDEF(fpinst2,10,VFC),
21638 REGDEF(FPINST,9,VFC), REGDEF(FPINST2,10,VFC),
21639 REGDEF(mvfr0,7,VFC), REGDEF(mvfr1,6,VFC),
21640 REGDEF(MVFR0,7,VFC), REGDEF(MVFR1,6,VFC),
21641 REGDEF(mvfr2,5,VFC), REGDEF(MVFR2,5,VFC),
21642
21643 /* Maverick DSP coprocessor registers. */
21644 REGSET(mvf,MVF), REGSET(mvd,MVD), REGSET(mvfx,MVFX), REGSET(mvdx,MVDX),
21645 REGSET(MVF,MVF), REGSET(MVD,MVD), REGSET(MVFX,MVFX), REGSET(MVDX,MVDX),
21646
21647 REGNUM(mvax,0,MVAX), REGNUM(mvax,1,MVAX),
21648 REGNUM(mvax,2,MVAX), REGNUM(mvax,3,MVAX),
21649 REGDEF(dspsc,0,DSPSC),
21650
21651 REGNUM(MVAX,0,MVAX), REGNUM(MVAX,1,MVAX),
21652 REGNUM(MVAX,2,MVAX), REGNUM(MVAX,3,MVAX),
21653 REGDEF(DSPSC,0,DSPSC),
21654
21655 /* iWMMXt data registers - p0, c0-15. */
21656 REGSET(wr,MMXWR), REGSET(wR,MMXWR), REGSET(WR, MMXWR),
21657
21658 /* iWMMXt control registers - p1, c0-3. */
21659 REGDEF(wcid, 0,MMXWC), REGDEF(wCID, 0,MMXWC), REGDEF(WCID, 0,MMXWC),
21660 REGDEF(wcon, 1,MMXWC), REGDEF(wCon, 1,MMXWC), REGDEF(WCON, 1,MMXWC),
21661 REGDEF(wcssf, 2,MMXWC), REGDEF(wCSSF, 2,MMXWC), REGDEF(WCSSF, 2,MMXWC),
21662 REGDEF(wcasf, 3,MMXWC), REGDEF(wCASF, 3,MMXWC), REGDEF(WCASF, 3,MMXWC),
21663
21664 /* iWMMXt scalar (constant/offset) registers - p1, c8-11. */
21665 REGDEF(wcgr0, 8,MMXWCG), REGDEF(wCGR0, 8,MMXWCG), REGDEF(WCGR0, 8,MMXWCG),
21666 REGDEF(wcgr1, 9,MMXWCG), REGDEF(wCGR1, 9,MMXWCG), REGDEF(WCGR1, 9,MMXWCG),
21667 REGDEF(wcgr2,10,MMXWCG), REGDEF(wCGR2,10,MMXWCG), REGDEF(WCGR2,10,MMXWCG),
21668 REGDEF(wcgr3,11,MMXWCG), REGDEF(wCGR3,11,MMXWCG), REGDEF(WCGR3,11,MMXWCG),
21669
21670 /* XScale accumulator registers. */
21671 REGNUM(acc,0,XSCALE), REGNUM(ACC,0,XSCALE),
21672 };
21673 #undef REGDEF
21674 #undef REGNUM
21675 #undef REGSET
21676
21677 /* Table of all PSR suffixes. Bare "CPSR" and "SPSR" are handled
21678 within psr_required_here. */
21679 static const struct asm_psr psrs[] =
21680 {
21681 /* Backward compatibility notation. Note that "all" is no longer
21682 truly all possible PSR bits. */
21683 {"all", PSR_c | PSR_f},
21684 {"flg", PSR_f},
21685 {"ctl", PSR_c},
21686
21687 /* Individual flags. */
21688 {"f", PSR_f},
21689 {"c", PSR_c},
21690 {"x", PSR_x},
21691 {"s", PSR_s},
21692
21693 /* Combinations of flags. */
21694 {"fs", PSR_f | PSR_s},
21695 {"fx", PSR_f | PSR_x},
21696 {"fc", PSR_f | PSR_c},
21697 {"sf", PSR_s | PSR_f},
21698 {"sx", PSR_s | PSR_x},
21699 {"sc", PSR_s | PSR_c},
21700 {"xf", PSR_x | PSR_f},
21701 {"xs", PSR_x | PSR_s},
21702 {"xc", PSR_x | PSR_c},
21703 {"cf", PSR_c | PSR_f},
21704 {"cs", PSR_c | PSR_s},
21705 {"cx", PSR_c | PSR_x},
21706 {"fsx", PSR_f | PSR_s | PSR_x},
21707 {"fsc", PSR_f | PSR_s | PSR_c},
21708 {"fxs", PSR_f | PSR_x | PSR_s},
21709 {"fxc", PSR_f | PSR_x | PSR_c},
21710 {"fcs", PSR_f | PSR_c | PSR_s},
21711 {"fcx", PSR_f | PSR_c | PSR_x},
21712 {"sfx", PSR_s | PSR_f | PSR_x},
21713 {"sfc", PSR_s | PSR_f | PSR_c},
21714 {"sxf", PSR_s | PSR_x | PSR_f},
21715 {"sxc", PSR_s | PSR_x | PSR_c},
21716 {"scf", PSR_s | PSR_c | PSR_f},
21717 {"scx", PSR_s | PSR_c | PSR_x},
21718 {"xfs", PSR_x | PSR_f | PSR_s},
21719 {"xfc", PSR_x | PSR_f | PSR_c},
21720 {"xsf", PSR_x | PSR_s | PSR_f},
21721 {"xsc", PSR_x | PSR_s | PSR_c},
21722 {"xcf", PSR_x | PSR_c | PSR_f},
21723 {"xcs", PSR_x | PSR_c | PSR_s},
21724 {"cfs", PSR_c | PSR_f | PSR_s},
21725 {"cfx", PSR_c | PSR_f | PSR_x},
21726 {"csf", PSR_c | PSR_s | PSR_f},
21727 {"csx", PSR_c | PSR_s | PSR_x},
21728 {"cxf", PSR_c | PSR_x | PSR_f},
21729 {"cxs", PSR_c | PSR_x | PSR_s},
21730 {"fsxc", PSR_f | PSR_s | PSR_x | PSR_c},
21731 {"fscx", PSR_f | PSR_s | PSR_c | PSR_x},
21732 {"fxsc", PSR_f | PSR_x | PSR_s | PSR_c},
21733 {"fxcs", PSR_f | PSR_x | PSR_c | PSR_s},
21734 {"fcsx", PSR_f | PSR_c | PSR_s | PSR_x},
21735 {"fcxs", PSR_f | PSR_c | PSR_x | PSR_s},
21736 {"sfxc", PSR_s | PSR_f | PSR_x | PSR_c},
21737 {"sfcx", PSR_s | PSR_f | PSR_c | PSR_x},
21738 {"sxfc", PSR_s | PSR_x | PSR_f | PSR_c},
21739 {"sxcf", PSR_s | PSR_x | PSR_c | PSR_f},
21740 {"scfx", PSR_s | PSR_c | PSR_f | PSR_x},
21741 {"scxf", PSR_s | PSR_c | PSR_x | PSR_f},
21742 {"xfsc", PSR_x | PSR_f | PSR_s | PSR_c},
21743 {"xfcs", PSR_x | PSR_f | PSR_c | PSR_s},
21744 {"xsfc", PSR_x | PSR_s | PSR_f | PSR_c},
21745 {"xscf", PSR_x | PSR_s | PSR_c | PSR_f},
21746 {"xcfs", PSR_x | PSR_c | PSR_f | PSR_s},
21747 {"xcsf", PSR_x | PSR_c | PSR_s | PSR_f},
21748 {"cfsx", PSR_c | PSR_f | PSR_s | PSR_x},
21749 {"cfxs", PSR_c | PSR_f | PSR_x | PSR_s},
21750 {"csfx", PSR_c | PSR_s | PSR_f | PSR_x},
21751 {"csxf", PSR_c | PSR_s | PSR_x | PSR_f},
21752 {"cxfs", PSR_c | PSR_x | PSR_f | PSR_s},
21753 {"cxsf", PSR_c | PSR_x | PSR_s | PSR_f},
21754 };
21755
21756 /* Table of V7M psr names. */
21757 static const struct asm_psr v7m_psrs[] =
21758 {
21759 {"apsr", 0x0 }, {"APSR", 0x0 },
21760 {"iapsr", 0x1 }, {"IAPSR", 0x1 },
21761 {"eapsr", 0x2 }, {"EAPSR", 0x2 },
21762 {"psr", 0x3 }, {"PSR", 0x3 },
21763 {"xpsr", 0x3 }, {"XPSR", 0x3 }, {"xPSR", 3 },
21764 {"ipsr", 0x5 }, {"IPSR", 0x5 },
21765 {"epsr", 0x6 }, {"EPSR", 0x6 },
21766 {"iepsr", 0x7 }, {"IEPSR", 0x7 },
21767 {"msp", 0x8 }, {"MSP", 0x8 },
21768 {"psp", 0x9 }, {"PSP", 0x9 },
21769 {"msplim", 0xa }, {"MSPLIM", 0xa },
21770 {"psplim", 0xb }, {"PSPLIM", 0xb },
21771 {"primask", 0x10}, {"PRIMASK", 0x10},
21772 {"basepri", 0x11}, {"BASEPRI", 0x11},
21773 {"basepri_max", 0x12}, {"BASEPRI_MAX", 0x12},
21774 {"faultmask", 0x13}, {"FAULTMASK", 0x13},
21775 {"control", 0x14}, {"CONTROL", 0x14},
21776 {"msp_ns", 0x88}, {"MSP_NS", 0x88},
21777 {"psp_ns", 0x89}, {"PSP_NS", 0x89},
21778 {"msplim_ns", 0x8a}, {"MSPLIM_NS", 0x8a},
21779 {"psplim_ns", 0x8b}, {"PSPLIM_NS", 0x8b},
21780 {"primask_ns", 0x90}, {"PRIMASK_NS", 0x90},
21781 {"basepri_ns", 0x91}, {"BASEPRI_NS", 0x91},
21782 {"faultmask_ns", 0x93}, {"FAULTMASK_NS", 0x93},
21783 {"control_ns", 0x94}, {"CONTROL_NS", 0x94},
21784 {"sp_ns", 0x98}, {"SP_NS", 0x98 }
21785 };
21786
21787 /* Table of all shift-in-operand names. */
21788 static const struct asm_shift_name shift_names [] =
21789 {
21790 { "asl", SHIFT_LSL }, { "ASL", SHIFT_LSL },
21791 { "lsl", SHIFT_LSL }, { "LSL", SHIFT_LSL },
21792 { "lsr", SHIFT_LSR }, { "LSR", SHIFT_LSR },
21793 { "asr", SHIFT_ASR }, { "ASR", SHIFT_ASR },
21794 { "ror", SHIFT_ROR }, { "ROR", SHIFT_ROR },
21795 { "rrx", SHIFT_RRX }, { "RRX", SHIFT_RRX },
21796 { "uxtw", SHIFT_UXTW}, { "UXTW", SHIFT_UXTW}
21797 };
21798
21799 /* Table of all explicit relocation names. */
21800 #ifdef OBJ_ELF
21801 static struct reloc_entry reloc_names[] =
21802 {
21803 { "got", BFD_RELOC_ARM_GOT32 }, { "GOT", BFD_RELOC_ARM_GOT32 },
21804 { "gotoff", BFD_RELOC_ARM_GOTOFF }, { "GOTOFF", BFD_RELOC_ARM_GOTOFF },
21805 { "plt", BFD_RELOC_ARM_PLT32 }, { "PLT", BFD_RELOC_ARM_PLT32 },
21806 { "target1", BFD_RELOC_ARM_TARGET1 }, { "TARGET1", BFD_RELOC_ARM_TARGET1 },
21807 { "target2", BFD_RELOC_ARM_TARGET2 }, { "TARGET2", BFD_RELOC_ARM_TARGET2 },
21808 { "sbrel", BFD_RELOC_ARM_SBREL32 }, { "SBREL", BFD_RELOC_ARM_SBREL32 },
21809 { "tlsgd", BFD_RELOC_ARM_TLS_GD32}, { "TLSGD", BFD_RELOC_ARM_TLS_GD32},
21810 { "tlsldm", BFD_RELOC_ARM_TLS_LDM32}, { "TLSLDM", BFD_RELOC_ARM_TLS_LDM32},
21811 { "tlsldo", BFD_RELOC_ARM_TLS_LDO32}, { "TLSLDO", BFD_RELOC_ARM_TLS_LDO32},
21812 { "gottpoff",BFD_RELOC_ARM_TLS_IE32}, { "GOTTPOFF",BFD_RELOC_ARM_TLS_IE32},
21813 { "tpoff", BFD_RELOC_ARM_TLS_LE32}, { "TPOFF", BFD_RELOC_ARM_TLS_LE32},
21814 { "got_prel", BFD_RELOC_ARM_GOT_PREL}, { "GOT_PREL", BFD_RELOC_ARM_GOT_PREL},
21815 { "tlsdesc", BFD_RELOC_ARM_TLS_GOTDESC},
21816 { "TLSDESC", BFD_RELOC_ARM_TLS_GOTDESC},
21817 { "tlscall", BFD_RELOC_ARM_TLS_CALL},
21818 { "TLSCALL", BFD_RELOC_ARM_TLS_CALL},
21819 { "tlsdescseq", BFD_RELOC_ARM_TLS_DESCSEQ},
21820 { "TLSDESCSEQ", BFD_RELOC_ARM_TLS_DESCSEQ},
21821 { "gotfuncdesc", BFD_RELOC_ARM_GOTFUNCDESC },
21822 { "GOTFUNCDESC", BFD_RELOC_ARM_GOTFUNCDESC },
21823 { "gotofffuncdesc", BFD_RELOC_ARM_GOTOFFFUNCDESC },
21824 { "GOTOFFFUNCDESC", BFD_RELOC_ARM_GOTOFFFUNCDESC },
21825 { "funcdesc", BFD_RELOC_ARM_FUNCDESC },
21826 { "FUNCDESC", BFD_RELOC_ARM_FUNCDESC },
21827 { "tlsgd_fdpic", BFD_RELOC_ARM_TLS_GD32_FDPIC }, { "TLSGD_FDPIC", BFD_RELOC_ARM_TLS_GD32_FDPIC },
21828 { "tlsldm_fdpic", BFD_RELOC_ARM_TLS_LDM32_FDPIC }, { "TLSLDM_FDPIC", BFD_RELOC_ARM_TLS_LDM32_FDPIC },
21829 { "gottpoff_fdpic", BFD_RELOC_ARM_TLS_IE32_FDPIC }, { "GOTTPOFF_FDIC", BFD_RELOC_ARM_TLS_IE32_FDPIC },
21830 };
21831 #endif
21832
21833 /* Table of all conditional affixes. */
21834 static const struct asm_cond conds[] =
21835 {
21836 {"eq", 0x0},
21837 {"ne", 0x1},
21838 {"cs", 0x2}, {"hs", 0x2},
21839 {"cc", 0x3}, {"ul", 0x3}, {"lo", 0x3},
21840 {"mi", 0x4},
21841 {"pl", 0x5},
21842 {"vs", 0x6},
21843 {"vc", 0x7},
21844 {"hi", 0x8},
21845 {"ls", 0x9},
21846 {"ge", 0xa},
21847 {"lt", 0xb},
21848 {"gt", 0xc},
21849 {"le", 0xd},
21850 {"al", 0xe}
21851 };
21852 static const struct asm_cond vconds[] =
21853 {
21854 {"t", 0xf},
21855 {"e", 0x10}
21856 };
21857
21858 #define UL_BARRIER(L,U,CODE,FEAT) \
21859 { L, CODE, ARM_FEATURE_CORE_LOW (FEAT) }, \
21860 { U, CODE, ARM_FEATURE_CORE_LOW (FEAT) }
21861
21862 static struct asm_barrier_opt barrier_opt_names[] =
21863 {
21864 UL_BARRIER ("sy", "SY", 0xf, ARM_EXT_BARRIER),
21865 UL_BARRIER ("st", "ST", 0xe, ARM_EXT_BARRIER),
21866 UL_BARRIER ("ld", "LD", 0xd, ARM_EXT_V8),
21867 UL_BARRIER ("ish", "ISH", 0xb, ARM_EXT_BARRIER),
21868 UL_BARRIER ("sh", "SH", 0xb, ARM_EXT_BARRIER),
21869 UL_BARRIER ("ishst", "ISHST", 0xa, ARM_EXT_BARRIER),
21870 UL_BARRIER ("shst", "SHST", 0xa, ARM_EXT_BARRIER),
21871 UL_BARRIER ("ishld", "ISHLD", 0x9, ARM_EXT_V8),
21872 UL_BARRIER ("un", "UN", 0x7, ARM_EXT_BARRIER),
21873 UL_BARRIER ("nsh", "NSH", 0x7, ARM_EXT_BARRIER),
21874 UL_BARRIER ("unst", "UNST", 0x6, ARM_EXT_BARRIER),
21875 UL_BARRIER ("nshst", "NSHST", 0x6, ARM_EXT_BARRIER),
21876 UL_BARRIER ("nshld", "NSHLD", 0x5, ARM_EXT_V8),
21877 UL_BARRIER ("osh", "OSH", 0x3, ARM_EXT_BARRIER),
21878 UL_BARRIER ("oshst", "OSHST", 0x2, ARM_EXT_BARRIER),
21879 UL_BARRIER ("oshld", "OSHLD", 0x1, ARM_EXT_V8)
21880 };
21881
21882 #undef UL_BARRIER
21883
21884 /* Table of ARM-format instructions. */
21885
21886 /* Macros for gluing together operand strings. N.B. In all cases
21887 other than OPS0, the trailing OP_stop comes from default
21888 zero-initialization of the unspecified elements of the array. */
21889 #define OPS0() { OP_stop, }
21890 #define OPS1(a) { OP_##a, }
21891 #define OPS2(a,b) { OP_##a,OP_##b, }
21892 #define OPS3(a,b,c) { OP_##a,OP_##b,OP_##c, }
21893 #define OPS4(a,b,c,d) { OP_##a,OP_##b,OP_##c,OP_##d, }
21894 #define OPS5(a,b,c,d,e) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e, }
21895 #define OPS6(a,b,c,d,e,f) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e,OP_##f, }
21896
21897 /* These macros are similar to the OPSn, but do not prepend the OP_ prefix.
21898 This is useful when mixing operands for ARM and THUMB, i.e. using the
21899 MIX_ARM_THUMB_OPERANDS macro.
21900 In order to use these macros, prefix the number of operands with _
21901 e.g. _3. */
21902 #define OPS_1(a) { a, }
21903 #define OPS_2(a,b) { a,b, }
21904 #define OPS_3(a,b,c) { a,b,c, }
21905 #define OPS_4(a,b,c,d) { a,b,c,d, }
21906 #define OPS_5(a,b,c,d,e) { a,b,c,d,e, }
21907 #define OPS_6(a,b,c,d,e,f) { a,b,c,d,e,f, }
21908
21909 /* These macros abstract out the exact format of the mnemonic table and
21910 save some repeated characters. */
21911
21912 /* The normal sort of mnemonic; has a Thumb variant; takes a conditional suffix. */
21913 #define TxCE(mnem, op, top, nops, ops, ae, te) \
21914 { mnem, OPS##nops ops, OT_csuffix, 0x##op, top, ARM_VARIANT, \
21915 THUMB_VARIANT, do_##ae, do_##te, 0 }
21916
21917 /* Two variants of the above - TCE for a numeric Thumb opcode, tCE for
21918 a T_MNEM_xyz enumerator. */
21919 #define TCE(mnem, aop, top, nops, ops, ae, te) \
21920 TxCE (mnem, aop, 0x##top, nops, ops, ae, te)
21921 #define tCE(mnem, aop, top, nops, ops, ae, te) \
21922 TxCE (mnem, aop, T_MNEM##top, nops, ops, ae, te)
21923
21924 /* Second most common sort of mnemonic: has a Thumb variant, takes a conditional
21925 infix after the third character. */
21926 #define TxC3(mnem, op, top, nops, ops, ae, te) \
21927 { mnem, OPS##nops ops, OT_cinfix3, 0x##op, top, ARM_VARIANT, \
21928 THUMB_VARIANT, do_##ae, do_##te, 0 }
21929 #define TxC3w(mnem, op, top, nops, ops, ae, te) \
21930 { mnem, OPS##nops ops, OT_cinfix3_deprecated, 0x##op, top, ARM_VARIANT, \
21931 THUMB_VARIANT, do_##ae, do_##te, 0 }
21932 #define TC3(mnem, aop, top, nops, ops, ae, te) \
21933 TxC3 (mnem, aop, 0x##top, nops, ops, ae, te)
21934 #define TC3w(mnem, aop, top, nops, ops, ae, te) \
21935 TxC3w (mnem, aop, 0x##top, nops, ops, ae, te)
21936 #define tC3(mnem, aop, top, nops, ops, ae, te) \
21937 TxC3 (mnem, aop, T_MNEM##top, nops, ops, ae, te)
21938 #define tC3w(mnem, aop, top, nops, ops, ae, te) \
21939 TxC3w (mnem, aop, T_MNEM##top, nops, ops, ae, te)
21940
21941 /* Mnemonic that cannot be conditionalized. The ARM condition-code
21942 field is still 0xE. Many of the Thumb variants can be executed
21943 conditionally, so this is checked separately. */
21944 #define TUE(mnem, op, top, nops, ops, ae, te) \
21945 { mnem, OPS##nops ops, OT_unconditional, 0x##op, 0x##top, ARM_VARIANT, \
21946 THUMB_VARIANT, do_##ae, do_##te, 0 }
21947
21948 /* Same as TUE but the encoding function for ARM and Thumb modes is the same.
21949 Used by mnemonics that have very minimal differences in the encoding for
21950 ARM and Thumb variants and can be handled in a common function. */
21951 #define TUEc(mnem, op, top, nops, ops, en) \
21952 { mnem, OPS##nops ops, OT_unconditional, 0x##op, 0x##top, ARM_VARIANT, \
21953 THUMB_VARIANT, do_##en, do_##en, 0 }
21954
21955 /* Mnemonic that cannot be conditionalized, and bears 0xF in its ARM
21956 condition code field. */
21957 #define TUF(mnem, op, top, nops, ops, ae, te) \
21958 { mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##top, ARM_VARIANT, \
21959 THUMB_VARIANT, do_##ae, do_##te, 0 }
21960
21961 /* ARM-only variants of all the above. */
21962 #define CE(mnem, op, nops, ops, ae) \
21963 { mnem, OPS##nops ops, OT_csuffix, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL, 0 }
21964
21965 #define C3(mnem, op, nops, ops, ae) \
21966 { #mnem, OPS##nops ops, OT_cinfix3, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL, 0 }
21967
21968 /* Thumb-only variants of TCE and TUE. */
21969 #define ToC(mnem, top, nops, ops, te) \
21970 { mnem, OPS##nops ops, OT_csuffix, 0x0, 0x##top, 0, THUMB_VARIANT, NULL, \
21971 do_##te, 0 }
21972
21973 #define ToU(mnem, top, nops, ops, te) \
21974 { mnem, OPS##nops ops, OT_unconditional, 0x0, 0x##top, 0, THUMB_VARIANT, \
21975 NULL, do_##te, 0 }
21976
21977 /* T_MNEM_xyz enumerator variants of ToC. */
21978 #define toC(mnem, top, nops, ops, te) \
21979 { mnem, OPS##nops ops, OT_csuffix, 0x0, T_MNEM##top, 0, THUMB_VARIANT, NULL, \
21980 do_##te, 0 }
21981
21982 /* T_MNEM_xyz enumerator variants of ToU. */
21983 #define toU(mnem, top, nops, ops, te) \
21984 { mnem, OPS##nops ops, OT_unconditional, 0x0, T_MNEM##top, 0, THUMB_VARIANT, \
21985 NULL, do_##te, 0 }
21986
21987 /* Legacy mnemonics that always have conditional infix after the third
21988 character. */
21989 #define CL(mnem, op, nops, ops, ae) \
21990 { mnem, OPS##nops ops, OT_cinfix3_legacy, \
21991 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL, 0 }
21992
21993 /* Coprocessor instructions. Isomorphic between Arm and Thumb-2. */
21994 #define cCE(mnem, op, nops, ops, ae) \
21995 { mnem, OPS##nops ops, OT_csuffix, 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae, 0 }
21996
21997 /* mov instructions that are shared between coprocessor and MVE. */
21998 #define mcCE(mnem, op, nops, ops, ae) \
21999 { #mnem, OPS##nops ops, OT_csuffix, 0x##op, 0xe##op, ARM_VARIANT, THUMB_VARIANT, do_##ae, do_##ae, 0 }
22000
22001 /* Legacy coprocessor instructions where conditional infix and conditional
22002 suffix are ambiguous. For consistency this includes all FPA instructions,
22003 not just the potentially ambiguous ones. */
22004 #define cCL(mnem, op, nops, ops, ae) \
22005 { mnem, OPS##nops ops, OT_cinfix3_legacy, \
22006 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae, 0 }
22007
22008 /* Coprocessor, takes either a suffix or a position-3 infix
22009 (for an FPA corner case). */
22010 #define C3E(mnem, op, nops, ops, ae) \
22011 { mnem, OPS##nops ops, OT_csuf_or_in3, \
22012 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae, 0 }
22013
22014 #define xCM_(m1, m2, m3, op, nops, ops, ae) \
22015 { m1 #m2 m3, OPS##nops ops, \
22016 sizeof (#m2) == 1 ? OT_odd_infix_unc : OT_odd_infix_0 + sizeof (m1) - 1, \
22017 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL, 0 }
22018
22019 #define CM(m1, m2, op, nops, ops, ae) \
22020 xCM_ (m1, , m2, op, nops, ops, ae), \
22021 xCM_ (m1, eq, m2, op, nops, ops, ae), \
22022 xCM_ (m1, ne, m2, op, nops, ops, ae), \
22023 xCM_ (m1, cs, m2, op, nops, ops, ae), \
22024 xCM_ (m1, hs, m2, op, nops, ops, ae), \
22025 xCM_ (m1, cc, m2, op, nops, ops, ae), \
22026 xCM_ (m1, ul, m2, op, nops, ops, ae), \
22027 xCM_ (m1, lo, m2, op, nops, ops, ae), \
22028 xCM_ (m1, mi, m2, op, nops, ops, ae), \
22029 xCM_ (m1, pl, m2, op, nops, ops, ae), \
22030 xCM_ (m1, vs, m2, op, nops, ops, ae), \
22031 xCM_ (m1, vc, m2, op, nops, ops, ae), \
22032 xCM_ (m1, hi, m2, op, nops, ops, ae), \
22033 xCM_ (m1, ls, m2, op, nops, ops, ae), \
22034 xCM_ (m1, ge, m2, op, nops, ops, ae), \
22035 xCM_ (m1, lt, m2, op, nops, ops, ae), \
22036 xCM_ (m1, gt, m2, op, nops, ops, ae), \
22037 xCM_ (m1, le, m2, op, nops, ops, ae), \
22038 xCM_ (m1, al, m2, op, nops, ops, ae)
22039
22040 #define UE(mnem, op, nops, ops, ae) \
22041 { #mnem, OPS##nops ops, OT_unconditional, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL, 0 }
22042
22043 #define UF(mnem, op, nops, ops, ae) \
22044 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL, 0 }
22045
22046 /* Neon data-processing. ARM versions are unconditional with cond=0xf.
22047 The Thumb and ARM variants are mostly the same (bits 0-23 and 24/28), so we
22048 use the same encoding function for each. */
22049 #define NUF(mnem, op, nops, ops, enc) \
22050 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##op, \
22051 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc, 0 }
22052
22053 /* Neon data processing, version which indirects through neon_enc_tab for
22054 the various overloaded versions of opcodes. */
22055 #define nUF(mnem, op, nops, ops, enc) \
22056 { #mnem, OPS##nops ops, OT_unconditionalF, N_MNEM##op, N_MNEM##op, \
22057 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc, 0 }
22058
22059 /* Neon insn with conditional suffix for the ARM version, non-overloaded
22060 version. */
22061 #define NCE_tag(mnem, op, nops, ops, enc, tag, mve_p) \
22062 { #mnem, OPS##nops ops, tag, 0x##op, 0x##op, ARM_VARIANT, \
22063 THUMB_VARIANT, do_##enc, do_##enc, mve_p }
22064
22065 #define NCE(mnem, op, nops, ops, enc) \
22066 NCE_tag (mnem, op, nops, ops, enc, OT_csuffix, 0)
22067
22068 #define NCEF(mnem, op, nops, ops, enc) \
22069 NCE_tag (mnem, op, nops, ops, enc, OT_csuffixF, 0)
22070
22071 /* Neon insn with conditional suffix for the ARM version, overloaded types. */
22072 #define nCE_tag(mnem, op, nops, ops, enc, tag, mve_p) \
22073 { #mnem, OPS##nops ops, tag, N_MNEM##op, N_MNEM##op, \
22074 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc, mve_p }
22075
22076 #define nCE(mnem, op, nops, ops, enc) \
22077 nCE_tag (mnem, op, nops, ops, enc, OT_csuffix, 0)
22078
22079 #define nCEF(mnem, op, nops, ops, enc) \
22080 nCE_tag (mnem, op, nops, ops, enc, OT_csuffixF, 0)
22081
22082 /* */
22083 #define mCEF(mnem, op, nops, ops, enc) \
22084 { #mnem, OPS##nops ops, OT_csuffixF, M_MNEM##op, M_MNEM##op, \
22085 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc, 1 }
22086
22087
22088 /* nCEF but for MVE predicated instructions. */
22089 #define mnCEF(mnem, op, nops, ops, enc) \
22090 nCE_tag (mnem, op, nops, ops, enc, OT_csuffixF, 1)
22091
22092 /* nCE but for MVE predicated instructions. */
22093 #define mnCE(mnem, op, nops, ops, enc) \
22094 nCE_tag (mnem, op, nops, ops, enc, OT_csuffix, 1)
22095
22096 /* NUF but for potentially MVE predicated instructions. */
22097 #define MNUF(mnem, op, nops, ops, enc) \
22098 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##op, \
22099 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc, 1 }
22100
22101 /* nUF but for potentially MVE predicated instructions. */
22102 #define mnUF(mnem, op, nops, ops, enc) \
22103 { #mnem, OPS##nops ops, OT_unconditionalF, N_MNEM##op, N_MNEM##op, \
22104 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc, 1 }
22105
22106 /* ToC but for potentially MVE predicated instructions. */
22107 #define mToC(mnem, top, nops, ops, te) \
22108 { mnem, OPS##nops ops, OT_csuffix, 0x0, 0x##top, 0, THUMB_VARIANT, NULL, \
22109 do_##te, 1 }
22110
22111 /* NCE but for MVE predicated instructions. */
22112 #define MNCE(mnem, op, nops, ops, enc) \
22113 NCE_tag (mnem, op, nops, ops, enc, OT_csuffix, 1)
22114
22115 /* NCEF but for MVE predicated instructions. */
22116 #define MNCEF(mnem, op, nops, ops, enc) \
22117 NCE_tag (mnem, op, nops, ops, enc, OT_csuffixF, 1)
22118 #define do_0 0
22119
22120 static const struct asm_opcode insns[] =
22121 {
22122 #define ARM_VARIANT & arm_ext_v1 /* Core ARM Instructions. */
22123 #define THUMB_VARIANT & arm_ext_v4t
22124 tCE("and", 0000000, _and, 3, (RR, oRR, SH), arit, t_arit3c),
22125 tC3("ands", 0100000, _ands, 3, (RR, oRR, SH), arit, t_arit3c),
22126 tCE("eor", 0200000, _eor, 3, (RR, oRR, SH), arit, t_arit3c),
22127 tC3("eors", 0300000, _eors, 3, (RR, oRR, SH), arit, t_arit3c),
22128 tCE("sub", 0400000, _sub, 3, (RR, oRR, SH), arit, t_add_sub),
22129 tC3("subs", 0500000, _subs, 3, (RR, oRR, SH), arit, t_add_sub),
22130 tCE("add", 0800000, _add, 3, (RR, oRR, SHG), arit, t_add_sub),
22131 tC3("adds", 0900000, _adds, 3, (RR, oRR, SHG), arit, t_add_sub),
22132 tCE("adc", 0a00000, _adc, 3, (RR, oRR, SH), arit, t_arit3c),
22133 tC3("adcs", 0b00000, _adcs, 3, (RR, oRR, SH), arit, t_arit3c),
22134 tCE("sbc", 0c00000, _sbc, 3, (RR, oRR, SH), arit, t_arit3),
22135 tC3("sbcs", 0d00000, _sbcs, 3, (RR, oRR, SH), arit, t_arit3),
22136 tCE("orr", 1800000, _orr, 3, (RR, oRR, SH), arit, t_arit3c),
22137 tC3("orrs", 1900000, _orrs, 3, (RR, oRR, SH), arit, t_arit3c),
22138 tCE("bic", 1c00000, _bic, 3, (RR, oRR, SH), arit, t_arit3),
22139 tC3("bics", 1d00000, _bics, 3, (RR, oRR, SH), arit, t_arit3),
22140
22141 /* The p-variants of tst/cmp/cmn/teq (below) are the pre-V6 mechanism
22142 for setting PSR flag bits. They are obsolete in V6 and do not
22143 have Thumb equivalents. */
22144 tCE("tst", 1100000, _tst, 2, (RR, SH), cmp, t_mvn_tst),
22145 tC3w("tsts", 1100000, _tst, 2, (RR, SH), cmp, t_mvn_tst),
22146 CL("tstp", 110f000, 2, (RR, SH), cmp),
22147 tCE("cmp", 1500000, _cmp, 2, (RR, SH), cmp, t_mov_cmp),
22148 tC3w("cmps", 1500000, _cmp, 2, (RR, SH), cmp, t_mov_cmp),
22149 CL("cmpp", 150f000, 2, (RR, SH), cmp),
22150 tCE("cmn", 1700000, _cmn, 2, (RR, SH), cmp, t_mvn_tst),
22151 tC3w("cmns", 1700000, _cmn, 2, (RR, SH), cmp, t_mvn_tst),
22152 CL("cmnp", 170f000, 2, (RR, SH), cmp),
22153
22154 tCE("mov", 1a00000, _mov, 2, (RR, SH), mov, t_mov_cmp),
22155 tC3("movs", 1b00000, _movs, 2, (RR, SHG), mov, t_mov_cmp),
22156 tCE("mvn", 1e00000, _mvn, 2, (RR, SH), mov, t_mvn_tst),
22157 tC3("mvns", 1f00000, _mvns, 2, (RR, SH), mov, t_mvn_tst),
22158
22159 tCE("ldr", 4100000, _ldr, 2, (RR, ADDRGLDR),ldst, t_ldst),
22160 tC3("ldrb", 4500000, _ldrb, 2, (RRnpc_npcsp, ADDRGLDR),ldst, t_ldst),
22161 tCE("str", 4000000, _str, _2, (MIX_ARM_THUMB_OPERANDS (OP_RR,
22162 OP_RRnpc),
22163 OP_ADDRGLDR),ldst, t_ldst),
22164 tC3("strb", 4400000, _strb, 2, (RRnpc_npcsp, ADDRGLDR),ldst, t_ldst),
22165
22166 tCE("stm", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
22167 tC3("stmia", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
22168 tC3("stmea", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
22169 tCE("ldm", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
22170 tC3("ldmia", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
22171 tC3("ldmfd", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
22172
22173 tCE("b", a000000, _b, 1, (EXPr), branch, t_branch),
22174 TCE("bl", b000000, f000f800, 1, (EXPr), bl, t_branch23),
22175
22176 /* Pseudo ops. */
22177 tCE("adr", 28f0000, _adr, 2, (RR, EXP), adr, t_adr),
22178 C3(adrl, 28f0000, 2, (RR, EXP), adrl),
22179 tCE("nop", 1a00000, _nop, 1, (oI255c), nop, t_nop),
22180 tCE("udf", 7f000f0, _udf, 1, (oIffffb), bkpt, t_udf),
22181
22182 /* Thumb-compatibility pseudo ops. */
22183 tCE("lsl", 1a00000, _lsl, 3, (RR, oRR, SH), shift, t_shift),
22184 tC3("lsls", 1b00000, _lsls, 3, (RR, oRR, SH), shift, t_shift),
22185 tCE("lsr", 1a00020, _lsr, 3, (RR, oRR, SH), shift, t_shift),
22186 tC3("lsrs", 1b00020, _lsrs, 3, (RR, oRR, SH), shift, t_shift),
22187 tCE("asr", 1a00040, _asr, 3, (RR, oRR, SH), shift, t_shift),
22188 tC3("asrs", 1b00040, _asrs, 3, (RR, oRR, SH), shift, t_shift),
22189 tCE("ror", 1a00060, _ror, 3, (RR, oRR, SH), shift, t_shift),
22190 tC3("rors", 1b00060, _rors, 3, (RR, oRR, SH), shift, t_shift),
22191 tCE("neg", 2600000, _neg, 2, (RR, RR), rd_rn, t_neg),
22192 tC3("negs", 2700000, _negs, 2, (RR, RR), rd_rn, t_neg),
22193 tCE("push", 92d0000, _push, 1, (REGLST), push_pop, t_push_pop),
22194 tCE("pop", 8bd0000, _pop, 1, (REGLST), push_pop, t_push_pop),
22195
22196 /* These may simplify to neg. */
22197 TCE("rsb", 0600000, ebc00000, 3, (RR, oRR, SH), arit, t_rsb),
22198 TC3("rsbs", 0700000, ebd00000, 3, (RR, oRR, SH), arit, t_rsb),
22199
22200 #undef THUMB_VARIANT
22201 #define THUMB_VARIANT & arm_ext_os
22202
22203 TCE("swi", f000000, df00, 1, (EXPi), swi, t_swi),
22204 TCE("svc", f000000, df00, 1, (EXPi), swi, t_swi),
22205
22206 #undef THUMB_VARIANT
22207 #define THUMB_VARIANT & arm_ext_v6
22208
22209 TCE("cpy", 1a00000, 4600, 2, (RR, RR), rd_rm, t_cpy),
22210
22211 /* V1 instructions with no Thumb analogue prior to V6T2. */
22212 #undef THUMB_VARIANT
22213 #define THUMB_VARIANT & arm_ext_v6t2
22214
22215 TCE("teq", 1300000, ea900f00, 2, (RR, SH), cmp, t_mvn_tst),
22216 TC3w("teqs", 1300000, ea900f00, 2, (RR, SH), cmp, t_mvn_tst),
22217 CL("teqp", 130f000, 2, (RR, SH), cmp),
22218
22219 TC3("ldrt", 4300000, f8500e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
22220 TC3("ldrbt", 4700000, f8100e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
22221 TC3("strt", 4200000, f8400e00, 2, (RR_npcsp, ADDR), ldstt, t_ldstt),
22222 TC3("strbt", 4600000, f8000e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
22223
22224 TC3("stmdb", 9000000, e9000000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
22225 TC3("stmfd", 9000000, e9000000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
22226
22227 TC3("ldmdb", 9100000, e9100000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
22228 TC3("ldmea", 9100000, e9100000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
22229
22230 /* V1 instructions with no Thumb analogue at all. */
22231 CE("rsc", 0e00000, 3, (RR, oRR, SH), arit),
22232 C3(rscs, 0f00000, 3, (RR, oRR, SH), arit),
22233
22234 C3(stmib, 9800000, 2, (RRw, REGLST), ldmstm),
22235 C3(stmfa, 9800000, 2, (RRw, REGLST), ldmstm),
22236 C3(stmda, 8000000, 2, (RRw, REGLST), ldmstm),
22237 C3(stmed, 8000000, 2, (RRw, REGLST), ldmstm),
22238 C3(ldmib, 9900000, 2, (RRw, REGLST), ldmstm),
22239 C3(ldmed, 9900000, 2, (RRw, REGLST), ldmstm),
22240 C3(ldmda, 8100000, 2, (RRw, REGLST), ldmstm),
22241 C3(ldmfa, 8100000, 2, (RRw, REGLST), ldmstm),
22242
22243 #undef ARM_VARIANT
22244 #define ARM_VARIANT & arm_ext_v2 /* ARM 2 - multiplies. */
22245 #undef THUMB_VARIANT
22246 #define THUMB_VARIANT & arm_ext_v4t
22247
22248 tCE("mul", 0000090, _mul, 3, (RRnpc, RRnpc, oRR), mul, t_mul),
22249 tC3("muls", 0100090, _muls, 3, (RRnpc, RRnpc, oRR), mul, t_mul),
22250
22251 #undef THUMB_VARIANT
22252 #define THUMB_VARIANT & arm_ext_v6t2
22253
22254 TCE("mla", 0200090, fb000000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas, t_mla),
22255 C3(mlas, 0300090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas),
22256
22257 /* Generic coprocessor instructions. */
22258 TCE("cdp", e000000, ee000000, 6, (RCP, I15b, RCN, RCN, RCN, oI7b), cdp, cdp),
22259 TCE("ldc", c100000, ec100000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
22260 TC3("ldcl", c500000, ec500000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
22261 TCE("stc", c000000, ec000000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
22262 TC3("stcl", c400000, ec400000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
22263 TCE("mcr", e000010, ee000010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
22264 TCE("mrc", e100010, ee100010, 6, (RCP, I7b, APSR_RR, RCN, RCN, oI7b), co_reg, co_reg),
22265
22266 #undef ARM_VARIANT
22267 #define ARM_VARIANT & arm_ext_v2s /* ARM 3 - swp instructions. */
22268
22269 CE("swp", 1000090, 3, (RRnpc, RRnpc, RRnpcb), rd_rm_rn),
22270 C3(swpb, 1400090, 3, (RRnpc, RRnpc, RRnpcb), rd_rm_rn),
22271
22272 #undef ARM_VARIANT
22273 #define ARM_VARIANT & arm_ext_v3 /* ARM 6 Status register instructions. */
22274 #undef THUMB_VARIANT
22275 #define THUMB_VARIANT & arm_ext_msr
22276
22277 TCE("mrs", 1000000, f3e08000, 2, (RRnpc, rPSR), mrs, t_mrs),
22278 TCE("msr", 120f000, f3808000, 2, (wPSR, RR_EXi), msr, t_msr),
22279
22280 #undef ARM_VARIANT
22281 #define ARM_VARIANT & arm_ext_v3m /* ARM 7M long multiplies. */
22282 #undef THUMB_VARIANT
22283 #define THUMB_VARIANT & arm_ext_v6t2
22284
22285 TCE("smull", 0c00090, fb800000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
22286 CM("smull","s", 0d00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
22287 TCE("umull", 0800090, fba00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
22288 CM("umull","s", 0900090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
22289 TCE("smlal", 0e00090, fbc00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
22290 CM("smlal","s", 0f00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
22291 TCE("umlal", 0a00090, fbe00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
22292 CM("umlal","s", 0b00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
22293
22294 #undef ARM_VARIANT
22295 #define ARM_VARIANT & arm_ext_v4 /* ARM Architecture 4. */
22296 #undef THUMB_VARIANT
22297 #define THUMB_VARIANT & arm_ext_v4t
22298
22299 tC3("ldrh", 01000b0, _ldrh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
22300 tC3("strh", 00000b0, _strh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
22301 tC3("ldrsh", 01000f0, _ldrsh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
22302 tC3("ldrsb", 01000d0, _ldrsb, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
22303 tC3("ldsh", 01000f0, _ldrsh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
22304 tC3("ldsb", 01000d0, _ldrsb, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
22305
22306 #undef ARM_VARIANT
22307 #define ARM_VARIANT & arm_ext_v4t_5
22308
22309 /* ARM Architecture 4T. */
22310 /* Note: bx (and blx) are required on V5, even if the processor does
22311 not support Thumb. */
22312 TCE("bx", 12fff10, 4700, 1, (RR), bx, t_bx),
22313
22314 #undef ARM_VARIANT
22315 #define ARM_VARIANT & arm_ext_v5 /* ARM Architecture 5T. */
22316 #undef THUMB_VARIANT
22317 #define THUMB_VARIANT & arm_ext_v5t
22318
22319 /* Note: blx has 2 variants; the .value coded here is for
22320 BLX(2). Only this variant has conditional execution. */
22321 TCE("blx", 12fff30, 4780, 1, (RR_EXr), blx, t_blx),
22322 TUE("bkpt", 1200070, be00, 1, (oIffffb), bkpt, t_bkpt),
22323
22324 #undef THUMB_VARIANT
22325 #define THUMB_VARIANT & arm_ext_v6t2
22326
22327 TCE("clz", 16f0f10, fab0f080, 2, (RRnpc, RRnpc), rd_rm, t_clz),
22328 TUF("ldc2", c100000, fc100000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
22329 TUF("ldc2l", c500000, fc500000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
22330 TUF("stc2", c000000, fc000000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
22331 TUF("stc2l", c400000, fc400000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
22332 TUF("cdp2", e000000, fe000000, 6, (RCP, I15b, RCN, RCN, RCN, oI7b), cdp, cdp),
22333 TUF("mcr2", e000010, fe000010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
22334 TUF("mrc2", e100010, fe100010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
22335
22336 #undef ARM_VARIANT
22337 #define ARM_VARIANT & arm_ext_v5exp /* ARM Architecture 5TExP. */
22338 #undef THUMB_VARIANT
22339 #define THUMB_VARIANT & arm_ext_v5exp
22340
22341 TCE("smlabb", 1000080, fb100000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
22342 TCE("smlatb", 10000a0, fb100020, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
22343 TCE("smlabt", 10000c0, fb100010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
22344 TCE("smlatt", 10000e0, fb100030, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
22345
22346 TCE("smlawb", 1200080, fb300000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
22347 TCE("smlawt", 12000c0, fb300010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
22348
22349 TCE("smlalbb", 1400080, fbc00080, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
22350 TCE("smlaltb", 14000a0, fbc000a0, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
22351 TCE("smlalbt", 14000c0, fbc00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
22352 TCE("smlaltt", 14000e0, fbc000b0, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
22353
22354 TCE("smulbb", 1600080, fb10f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
22355 TCE("smultb", 16000a0, fb10f020, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
22356 TCE("smulbt", 16000c0, fb10f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
22357 TCE("smultt", 16000e0, fb10f030, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
22358
22359 TCE("smulwb", 12000a0, fb30f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
22360 TCE("smulwt", 12000e0, fb30f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
22361
22362 TCE("qadd", 1000050, fa80f080, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
22363 TCE("qdadd", 1400050, fa80f090, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
22364 TCE("qsub", 1200050, fa80f0a0, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
22365 TCE("qdsub", 1600050, fa80f0b0, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
22366
22367 #undef ARM_VARIANT
22368 #define ARM_VARIANT & arm_ext_v5e /* ARM Architecture 5TE. */
22369 #undef THUMB_VARIANT
22370 #define THUMB_VARIANT & arm_ext_v6t2
22371
22372 TUF("pld", 450f000, f810f000, 1, (ADDR), pld, t_pld),
22373 TC3("ldrd", 00000d0, e8500000, 3, (RRnpc_npcsp, oRRnpc_npcsp, ADDRGLDRS),
22374 ldrd, t_ldstd),
22375 TC3("strd", 00000f0, e8400000, 3, (RRnpc_npcsp, oRRnpc_npcsp,
22376 ADDRGLDRS), ldrd, t_ldstd),
22377
22378 TCE("mcrr", c400000, ec400000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
22379 TCE("mrrc", c500000, ec500000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
22380
22381 #undef ARM_VARIANT
22382 #define ARM_VARIANT & arm_ext_v5j /* ARM Architecture 5TEJ. */
22383
22384 TCE("bxj", 12fff20, f3c08f00, 1, (RR), bxj, t_bxj),
22385
22386 #undef ARM_VARIANT
22387 #define ARM_VARIANT & arm_ext_v6 /* ARM V6. */
22388 #undef THUMB_VARIANT
22389 #define THUMB_VARIANT & arm_ext_v6
22390
22391 TUF("cpsie", 1080000, b660, 2, (CPSF, oI31b), cpsi, t_cpsi),
22392 TUF("cpsid", 10c0000, b670, 2, (CPSF, oI31b), cpsi, t_cpsi),
22393 tCE("rev", 6bf0f30, _rev, 2, (RRnpc, RRnpc), rd_rm, t_rev),
22394 tCE("rev16", 6bf0fb0, _rev16, 2, (RRnpc, RRnpc), rd_rm, t_rev),
22395 tCE("revsh", 6ff0fb0, _revsh, 2, (RRnpc, RRnpc), rd_rm, t_rev),
22396 tCE("sxth", 6bf0070, _sxth, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
22397 tCE("uxth", 6ff0070, _uxth, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
22398 tCE("sxtb", 6af0070, _sxtb, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
22399 tCE("uxtb", 6ef0070, _uxtb, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
22400 TUF("setend", 1010000, b650, 1, (ENDI), setend, t_setend),
22401
22402 #undef THUMB_VARIANT
22403 #define THUMB_VARIANT & arm_ext_v6t2_v8m
22404
22405 TCE("ldrex", 1900f9f, e8500f00, 2, (RRnpc_npcsp, ADDR), ldrex, t_ldrex),
22406 TCE("strex", 1800f90, e8400000, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
22407 strex, t_strex),
22408 #undef THUMB_VARIANT
22409 #define THUMB_VARIANT & arm_ext_v6t2
22410
22411 TUF("mcrr2", c400000, fc400000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
22412 TUF("mrrc2", c500000, fc500000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
22413
22414 TCE("ssat", 6a00010, f3000000, 4, (RRnpc, I32, RRnpc, oSHllar),ssat, t_ssat),
22415 TCE("usat", 6e00010, f3800000, 4, (RRnpc, I31, RRnpc, oSHllar),usat, t_usat),
22416
22417 /* ARM V6 not included in V7M. */
22418 #undef THUMB_VARIANT
22419 #define THUMB_VARIANT & arm_ext_v6_notm
22420 TUF("rfeia", 8900a00, e990c000, 1, (RRw), rfe, rfe),
22421 TUF("rfe", 8900a00, e990c000, 1, (RRw), rfe, rfe),
22422 UF(rfeib, 9900a00, 1, (RRw), rfe),
22423 UF(rfeda, 8100a00, 1, (RRw), rfe),
22424 TUF("rfedb", 9100a00, e810c000, 1, (RRw), rfe, rfe),
22425 TUF("rfefd", 8900a00, e990c000, 1, (RRw), rfe, rfe),
22426 UF(rfefa, 8100a00, 1, (RRw), rfe),
22427 TUF("rfeea", 9100a00, e810c000, 1, (RRw), rfe, rfe),
22428 UF(rfeed, 9900a00, 1, (RRw), rfe),
22429 TUF("srsia", 8c00500, e980c000, 2, (oRRw, I31w), srs, srs),
22430 TUF("srs", 8c00500, e980c000, 2, (oRRw, I31w), srs, srs),
22431 TUF("srsea", 8c00500, e980c000, 2, (oRRw, I31w), srs, srs),
22432 UF(srsib, 9c00500, 2, (oRRw, I31w), srs),
22433 UF(srsfa, 9c00500, 2, (oRRw, I31w), srs),
22434 UF(srsda, 8400500, 2, (oRRw, I31w), srs),
22435 UF(srsed, 8400500, 2, (oRRw, I31w), srs),
22436 TUF("srsdb", 9400500, e800c000, 2, (oRRw, I31w), srs, srs),
22437 TUF("srsfd", 9400500, e800c000, 2, (oRRw, I31w), srs, srs),
22438 TUF("cps", 1020000, f3af8100, 1, (I31b), imm0, t_cps),
22439
22440 /* ARM V6 not included in V7M (eg. integer SIMD). */
22441 #undef THUMB_VARIANT
22442 #define THUMB_VARIANT & arm_ext_v6_dsp
22443 TCE("pkhbt", 6800010, eac00000, 4, (RRnpc, RRnpc, RRnpc, oSHll), pkhbt, t_pkhbt),
22444 TCE("pkhtb", 6800050, eac00020, 4, (RRnpc, RRnpc, RRnpc, oSHar), pkhtb, t_pkhtb),
22445 TCE("qadd16", 6200f10, fa90f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22446 TCE("qadd8", 6200f90, fa80f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22447 TCE("qasx", 6200f30, faa0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22448 /* Old name for QASX. */
22449 TCE("qaddsubx",6200f30, faa0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22450 TCE("qsax", 6200f50, fae0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22451 /* Old name for QSAX. */
22452 TCE("qsubaddx",6200f50, fae0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22453 TCE("qsub16", 6200f70, fad0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22454 TCE("qsub8", 6200ff0, fac0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22455 TCE("sadd16", 6100f10, fa90f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22456 TCE("sadd8", 6100f90, fa80f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22457 TCE("sasx", 6100f30, faa0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22458 /* Old name for SASX. */
22459 TCE("saddsubx",6100f30, faa0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22460 TCE("shadd16", 6300f10, fa90f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22461 TCE("shadd8", 6300f90, fa80f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22462 TCE("shasx", 6300f30, faa0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22463 /* Old name for SHASX. */
22464 TCE("shaddsubx", 6300f30, faa0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22465 TCE("shsax", 6300f50, fae0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22466 /* Old name for SHSAX. */
22467 TCE("shsubaddx", 6300f50, fae0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22468 TCE("shsub16", 6300f70, fad0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22469 TCE("shsub8", 6300ff0, fac0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22470 TCE("ssax", 6100f50, fae0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22471 /* Old name for SSAX. */
22472 TCE("ssubaddx",6100f50, fae0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22473 TCE("ssub16", 6100f70, fad0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22474 TCE("ssub8", 6100ff0, fac0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22475 TCE("uadd16", 6500f10, fa90f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22476 TCE("uadd8", 6500f90, fa80f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22477 TCE("uasx", 6500f30, faa0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22478 /* Old name for UASX. */
22479 TCE("uaddsubx",6500f30, faa0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22480 TCE("uhadd16", 6700f10, fa90f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22481 TCE("uhadd8", 6700f90, fa80f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22482 TCE("uhasx", 6700f30, faa0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22483 /* Old name for UHASX. */
22484 TCE("uhaddsubx", 6700f30, faa0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22485 TCE("uhsax", 6700f50, fae0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22486 /* Old name for UHSAX. */
22487 TCE("uhsubaddx", 6700f50, fae0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22488 TCE("uhsub16", 6700f70, fad0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22489 TCE("uhsub8", 6700ff0, fac0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22490 TCE("uqadd16", 6600f10, fa90f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22491 TCE("uqadd8", 6600f90, fa80f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22492 TCE("uqasx", 6600f30, faa0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22493 /* Old name for UQASX. */
22494 TCE("uqaddsubx", 6600f30, faa0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22495 TCE("uqsax", 6600f50, fae0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22496 /* Old name for UQSAX. */
22497 TCE("uqsubaddx", 6600f50, fae0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22498 TCE("uqsub16", 6600f70, fad0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22499 TCE("uqsub8", 6600ff0, fac0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22500 TCE("usub16", 6500f70, fad0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22501 TCE("usax", 6500f50, fae0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22502 /* Old name for USAX. */
22503 TCE("usubaddx",6500f50, fae0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22504 TCE("usub8", 6500ff0, fac0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22505 TCE("sxtah", 6b00070, fa00f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
22506 TCE("sxtab16", 6800070, fa20f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
22507 TCE("sxtab", 6a00070, fa40f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
22508 TCE("sxtb16", 68f0070, fa2ff080, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
22509 TCE("uxtah", 6f00070, fa10f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
22510 TCE("uxtab16", 6c00070, fa30f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
22511 TCE("uxtab", 6e00070, fa50f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
22512 TCE("uxtb16", 6cf0070, fa3ff080, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
22513 TCE("sel", 6800fb0, faa0f080, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22514 TCE("smlad", 7000010, fb200000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
22515 TCE("smladx", 7000030, fb200010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
22516 TCE("smlald", 7400010, fbc000c0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
22517 TCE("smlaldx", 7400030, fbc000d0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
22518 TCE("smlsd", 7000050, fb400000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
22519 TCE("smlsdx", 7000070, fb400010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
22520 TCE("smlsld", 7400050, fbd000c0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
22521 TCE("smlsldx", 7400070, fbd000d0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
22522 TCE("smmla", 7500010, fb500000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
22523 TCE("smmlar", 7500030, fb500010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
22524 TCE("smmls", 75000d0, fb600000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
22525 TCE("smmlsr", 75000f0, fb600010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
22526 TCE("smmul", 750f010, fb50f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
22527 TCE("smmulr", 750f030, fb50f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
22528 TCE("smuad", 700f010, fb20f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
22529 TCE("smuadx", 700f030, fb20f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
22530 TCE("smusd", 700f050, fb40f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
22531 TCE("smusdx", 700f070, fb40f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
22532 TCE("ssat16", 6a00f30, f3200000, 3, (RRnpc, I16, RRnpc), ssat16, t_ssat16),
22533 TCE("umaal", 0400090, fbe00060, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal, t_mlal),
22534 TCE("usad8", 780f010, fb70f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
22535 TCE("usada8", 7800010, fb700000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
22536 TCE("usat16", 6e00f30, f3a00000, 3, (RRnpc, I15, RRnpc), usat16, t_usat16),
22537
22538 #undef ARM_VARIANT
22539 #define ARM_VARIANT & arm_ext_v6k_v6t2
22540 #undef THUMB_VARIANT
22541 #define THUMB_VARIANT & arm_ext_v6k_v6t2
22542
22543 tCE("yield", 320f001, _yield, 0, (), noargs, t_hint),
22544 tCE("wfe", 320f002, _wfe, 0, (), noargs, t_hint),
22545 tCE("wfi", 320f003, _wfi, 0, (), noargs, t_hint),
22546 tCE("sev", 320f004, _sev, 0, (), noargs, t_hint),
22547
22548 #undef THUMB_VARIANT
22549 #define THUMB_VARIANT & arm_ext_v6_notm
22550 TCE("ldrexd", 1b00f9f, e8d0007f, 3, (RRnpc_npcsp, oRRnpc_npcsp, RRnpcb),
22551 ldrexd, t_ldrexd),
22552 TCE("strexd", 1a00f90, e8c00070, 4, (RRnpc_npcsp, RRnpc_npcsp, oRRnpc_npcsp,
22553 RRnpcb), strexd, t_strexd),
22554
22555 #undef THUMB_VARIANT
22556 #define THUMB_VARIANT & arm_ext_v6t2_v8m
22557 TCE("ldrexb", 1d00f9f, e8d00f4f, 2, (RRnpc_npcsp,RRnpcb),
22558 rd_rn, rd_rn),
22559 TCE("ldrexh", 1f00f9f, e8d00f5f, 2, (RRnpc_npcsp, RRnpcb),
22560 rd_rn, rd_rn),
22561 TCE("strexb", 1c00f90, e8c00f40, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
22562 strex, t_strexbh),
22563 TCE("strexh", 1e00f90, e8c00f50, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
22564 strex, t_strexbh),
22565 TUF("clrex", 57ff01f, f3bf8f2f, 0, (), noargs, noargs),
22566
22567 #undef ARM_VARIANT
22568 #define ARM_VARIANT & arm_ext_sec
22569 #undef THUMB_VARIANT
22570 #define THUMB_VARIANT & arm_ext_sec
22571
22572 TCE("smc", 1600070, f7f08000, 1, (EXPi), smc, t_smc),
22573
22574 #undef ARM_VARIANT
22575 #define ARM_VARIANT & arm_ext_virt
22576 #undef THUMB_VARIANT
22577 #define THUMB_VARIANT & arm_ext_virt
22578
22579 TCE("hvc", 1400070, f7e08000, 1, (EXPi), hvc, t_hvc),
22580 TCE("eret", 160006e, f3de8f00, 0, (), noargs, noargs),
22581
22582 #undef ARM_VARIANT
22583 #define ARM_VARIANT & arm_ext_pan
22584 #undef THUMB_VARIANT
22585 #define THUMB_VARIANT & arm_ext_pan
22586
22587 TUF("setpan", 1100000, b610, 1, (I7), setpan, t_setpan),
22588
22589 #undef ARM_VARIANT
22590 #define ARM_VARIANT & arm_ext_v6t2
22591 #undef THUMB_VARIANT
22592 #define THUMB_VARIANT & arm_ext_v6t2
22593
22594 TCE("bfc", 7c0001f, f36f0000, 3, (RRnpc, I31, I32), bfc, t_bfc),
22595 TCE("bfi", 7c00010, f3600000, 4, (RRnpc, RRnpc_I0, I31, I32), bfi, t_bfi),
22596 TCE("sbfx", 7a00050, f3400000, 4, (RR, RR, I31, I32), bfx, t_bfx),
22597 TCE("ubfx", 7e00050, f3c00000, 4, (RR, RR, I31, I32), bfx, t_bfx),
22598
22599 TCE("mls", 0600090, fb000010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas, t_mla),
22600 TCE("rbit", 6ff0f30, fa90f0a0, 2, (RR, RR), rd_rm, t_rbit),
22601
22602 TC3("ldrht", 03000b0, f8300e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
22603 TC3("ldrsht", 03000f0, f9300e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
22604 TC3("ldrsbt", 03000d0, f9100e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
22605 TC3("strht", 02000b0, f8200e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
22606
22607 #undef ARM_VARIANT
22608 #define ARM_VARIANT & arm_ext_v3
22609 #undef THUMB_VARIANT
22610 #define THUMB_VARIANT & arm_ext_v6t2
22611
22612 TUE("csdb", 320f014, f3af8014, 0, (), noargs, t_csdb),
22613 TUF("ssbb", 57ff040, f3bf8f40, 0, (), noargs, t_csdb),
22614 TUF("pssbb", 57ff044, f3bf8f44, 0, (), noargs, t_csdb),
22615
22616 #undef ARM_VARIANT
22617 #define ARM_VARIANT & arm_ext_v6t2
22618 #undef THUMB_VARIANT
22619 #define THUMB_VARIANT & arm_ext_v6t2_v8m
22620 TCE("movw", 3000000, f2400000, 2, (RRnpc, HALF), mov16, t_mov16),
22621 TCE("movt", 3400000, f2c00000, 2, (RRnpc, HALF), mov16, t_mov16),
22622
22623 /* Thumb-only instructions. */
22624 #undef ARM_VARIANT
22625 #define ARM_VARIANT NULL
22626 TUE("cbnz", 0, b900, 2, (RR, EXP), 0, t_cbz),
22627 TUE("cbz", 0, b100, 2, (RR, EXP), 0, t_cbz),
22628
22629 /* ARM does not really have an IT instruction, so always allow it.
22630 The opcode is copied from Thumb in order to allow warnings in
22631 -mimplicit-it=[never | arm] modes. */
22632 #undef ARM_VARIANT
22633 #define ARM_VARIANT & arm_ext_v1
22634 #undef THUMB_VARIANT
22635 #define THUMB_VARIANT & arm_ext_v6t2
22636
22637 TUE("it", bf08, bf08, 1, (COND), it, t_it),
22638 TUE("itt", bf0c, bf0c, 1, (COND), it, t_it),
22639 TUE("ite", bf04, bf04, 1, (COND), it, t_it),
22640 TUE("ittt", bf0e, bf0e, 1, (COND), it, t_it),
22641 TUE("itet", bf06, bf06, 1, (COND), it, t_it),
22642 TUE("itte", bf0a, bf0a, 1, (COND), it, t_it),
22643 TUE("itee", bf02, bf02, 1, (COND), it, t_it),
22644 TUE("itttt", bf0f, bf0f, 1, (COND), it, t_it),
22645 TUE("itett", bf07, bf07, 1, (COND), it, t_it),
22646 TUE("ittet", bf0b, bf0b, 1, (COND), it, t_it),
22647 TUE("iteet", bf03, bf03, 1, (COND), it, t_it),
22648 TUE("ittte", bf0d, bf0d, 1, (COND), it, t_it),
22649 TUE("itete", bf05, bf05, 1, (COND), it, t_it),
22650 TUE("ittee", bf09, bf09, 1, (COND), it, t_it),
22651 TUE("iteee", bf01, bf01, 1, (COND), it, t_it),
22652 /* ARM/Thumb-2 instructions with no Thumb-1 equivalent. */
22653 TC3("rrx", 01a00060, ea4f0030, 2, (RR, RR), rd_rm, t_rrx),
22654 TC3("rrxs", 01b00060, ea5f0030, 2, (RR, RR), rd_rm, t_rrx),
22655
22656 /* Thumb2 only instructions. */
22657 #undef ARM_VARIANT
22658 #define ARM_VARIANT NULL
22659
22660 TCE("addw", 0, f2000000, 3, (RR, RR, EXPi), 0, t_add_sub_w),
22661 TCE("subw", 0, f2a00000, 3, (RR, RR, EXPi), 0, t_add_sub_w),
22662 TCE("orn", 0, ea600000, 3, (RR, oRR, SH), 0, t_orn),
22663 TCE("orns", 0, ea700000, 3, (RR, oRR, SH), 0, t_orn),
22664 TCE("tbb", 0, e8d0f000, 1, (TB), 0, t_tb),
22665 TCE("tbh", 0, e8d0f010, 1, (TB), 0, t_tb),
22666
22667 /* Hardware division instructions. */
22668 #undef ARM_VARIANT
22669 #define ARM_VARIANT & arm_ext_adiv
22670 #undef THUMB_VARIANT
22671 #define THUMB_VARIANT & arm_ext_div
22672
22673 TCE("sdiv", 710f010, fb90f0f0, 3, (RR, oRR, RR), div, t_div),
22674 TCE("udiv", 730f010, fbb0f0f0, 3, (RR, oRR, RR), div, t_div),
22675
22676 /* ARM V6M/V7 instructions. */
22677 #undef ARM_VARIANT
22678 #define ARM_VARIANT & arm_ext_barrier
22679 #undef THUMB_VARIANT
22680 #define THUMB_VARIANT & arm_ext_barrier
22681
22682 TUF("dmb", 57ff050, f3bf8f50, 1, (oBARRIER_I15), barrier, barrier),
22683 TUF("dsb", 57ff040, f3bf8f40, 1, (oBARRIER_I15), barrier, barrier),
22684 TUF("isb", 57ff060, f3bf8f60, 1, (oBARRIER_I15), barrier, barrier),
22685
22686 /* ARM V7 instructions. */
22687 #undef ARM_VARIANT
22688 #define ARM_VARIANT & arm_ext_v7
22689 #undef THUMB_VARIANT
22690 #define THUMB_VARIANT & arm_ext_v7
22691
22692 TUF("pli", 450f000, f910f000, 1, (ADDR), pli, t_pld),
22693 TCE("dbg", 320f0f0, f3af80f0, 1, (I15), dbg, t_dbg),
22694
22695 #undef ARM_VARIANT
22696 #define ARM_VARIANT & arm_ext_mp
22697 #undef THUMB_VARIANT
22698 #define THUMB_VARIANT & arm_ext_mp
22699
22700 TUF("pldw", 410f000, f830f000, 1, (ADDR), pld, t_pld),
22701
22702 /* AArchv8 instructions. */
22703 #undef ARM_VARIANT
22704 #define ARM_VARIANT & arm_ext_v8
22705
22706 /* Instructions shared between armv8-a and armv8-m. */
22707 #undef THUMB_VARIANT
22708 #define THUMB_VARIANT & arm_ext_atomics
22709
22710 TCE("lda", 1900c9f, e8d00faf, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
22711 TCE("ldab", 1d00c9f, e8d00f8f, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
22712 TCE("ldah", 1f00c9f, e8d00f9f, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
22713 TCE("stl", 180fc90, e8c00faf, 2, (RRnpc, RRnpcb), rm_rn, rd_rn),
22714 TCE("stlb", 1c0fc90, e8c00f8f, 2, (RRnpc, RRnpcb), rm_rn, rd_rn),
22715 TCE("stlh", 1e0fc90, e8c00f9f, 2, (RRnpc, RRnpcb), rm_rn, rd_rn),
22716 TCE("ldaex", 1900e9f, e8d00fef, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
22717 TCE("ldaexb", 1d00e9f, e8d00fcf, 2, (RRnpc,RRnpcb), rd_rn, rd_rn),
22718 TCE("ldaexh", 1f00e9f, e8d00fdf, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
22719 TCE("stlex", 1800e90, e8c00fe0, 3, (RRnpc, RRnpc, RRnpcb),
22720 stlex, t_stlex),
22721 TCE("stlexb", 1c00e90, e8c00fc0, 3, (RRnpc, RRnpc, RRnpcb),
22722 stlex, t_stlex),
22723 TCE("stlexh", 1e00e90, e8c00fd0, 3, (RRnpc, RRnpc, RRnpcb),
22724 stlex, t_stlex),
22725 #undef THUMB_VARIANT
22726 #define THUMB_VARIANT & arm_ext_v8
22727
22728 tCE("sevl", 320f005, _sevl, 0, (), noargs, t_hint),
22729 TCE("ldaexd", 1b00e9f, e8d000ff, 3, (RRnpc, oRRnpc, RRnpcb),
22730 ldrexd, t_ldrexd),
22731 TCE("stlexd", 1a00e90, e8c000f0, 4, (RRnpc, RRnpc, oRRnpc, RRnpcb),
22732 strexd, t_strexd),
22733
22734 /* Defined in V8 but is in undefined encoding space for earlier
22735 architectures. However earlier architectures are required to treat
22736 this instuction as a semihosting trap as well. Hence while not explicitly
22737 defined as such, it is in fact correct to define the instruction for all
22738 architectures. */
22739 #undef THUMB_VARIANT
22740 #define THUMB_VARIANT & arm_ext_v1
22741 #undef ARM_VARIANT
22742 #define ARM_VARIANT & arm_ext_v1
22743 TUE("hlt", 1000070, ba80, 1, (oIffffb), bkpt, t_hlt),
22744
22745 /* ARMv8 T32 only. */
22746 #undef ARM_VARIANT
22747 #define ARM_VARIANT NULL
22748 TUF("dcps1", 0, f78f8001, 0, (), noargs, noargs),
22749 TUF("dcps2", 0, f78f8002, 0, (), noargs, noargs),
22750 TUF("dcps3", 0, f78f8003, 0, (), noargs, noargs),
22751
22752 /* FP for ARMv8. */
22753 #undef ARM_VARIANT
22754 #define ARM_VARIANT & fpu_vfp_ext_armv8xd
22755 #undef THUMB_VARIANT
22756 #define THUMB_VARIANT & fpu_vfp_ext_armv8xd
22757
22758 nUF(vseleq, _vseleq, 3, (RVSD, RVSD, RVSD), vsel),
22759 nUF(vselvs, _vselvs, 3, (RVSD, RVSD, RVSD), vsel),
22760 nUF(vselge, _vselge, 3, (RVSD, RVSD, RVSD), vsel),
22761 nUF(vselgt, _vselgt, 3, (RVSD, RVSD, RVSD), vsel),
22762 nUF(vmaxnm, _vmaxnm, 3, (RNSDQ, oRNSDQ, RNSDQ), vmaxnm),
22763 nUF(vminnm, _vminnm, 3, (RNSDQ, oRNSDQ, RNSDQ), vmaxnm),
22764 nCE(vrintr, _vrintr, 2, (RNSDQ, oRNSDQ), vrintr),
22765 nCE(vrintz, _vrintr, 2, (RNSDQ, oRNSDQ), vrintz),
22766 nCE(vrintx, _vrintr, 2, (RNSDQ, oRNSDQ), vrintx),
22767 nUF(vrinta, _vrinta, 2, (RNSDQ, oRNSDQ), vrinta),
22768 nUF(vrintn, _vrinta, 2, (RNSDQ, oRNSDQ), vrintn),
22769 nUF(vrintp, _vrinta, 2, (RNSDQ, oRNSDQ), vrintp),
22770 nUF(vrintm, _vrinta, 2, (RNSDQ, oRNSDQ), vrintm),
22771
22772 /* Crypto v1 extensions. */
22773 #undef ARM_VARIANT
22774 #define ARM_VARIANT & fpu_crypto_ext_armv8
22775 #undef THUMB_VARIANT
22776 #define THUMB_VARIANT & fpu_crypto_ext_armv8
22777
22778 nUF(aese, _aes, 2, (RNQ, RNQ), aese),
22779 nUF(aesd, _aes, 2, (RNQ, RNQ), aesd),
22780 nUF(aesmc, _aes, 2, (RNQ, RNQ), aesmc),
22781 nUF(aesimc, _aes, 2, (RNQ, RNQ), aesimc),
22782 nUF(sha1c, _sha3op, 3, (RNQ, RNQ, RNQ), sha1c),
22783 nUF(sha1p, _sha3op, 3, (RNQ, RNQ, RNQ), sha1p),
22784 nUF(sha1m, _sha3op, 3, (RNQ, RNQ, RNQ), sha1m),
22785 nUF(sha1su0, _sha3op, 3, (RNQ, RNQ, RNQ), sha1su0),
22786 nUF(sha256h, _sha3op, 3, (RNQ, RNQ, RNQ), sha256h),
22787 nUF(sha256h2, _sha3op, 3, (RNQ, RNQ, RNQ), sha256h2),
22788 nUF(sha256su1, _sha3op, 3, (RNQ, RNQ, RNQ), sha256su1),
22789 nUF(sha1h, _sha1h, 2, (RNQ, RNQ), sha1h),
22790 nUF(sha1su1, _sha2op, 2, (RNQ, RNQ), sha1su1),
22791 nUF(sha256su0, _sha2op, 2, (RNQ, RNQ), sha256su0),
22792
22793 #undef ARM_VARIANT
22794 #define ARM_VARIANT & crc_ext_armv8
22795 #undef THUMB_VARIANT
22796 #define THUMB_VARIANT & crc_ext_armv8
22797 TUEc("crc32b", 1000040, fac0f080, 3, (RR, oRR, RR), crc32b),
22798 TUEc("crc32h", 1200040, fac0f090, 3, (RR, oRR, RR), crc32h),
22799 TUEc("crc32w", 1400040, fac0f0a0, 3, (RR, oRR, RR), crc32w),
22800 TUEc("crc32cb",1000240, fad0f080, 3, (RR, oRR, RR), crc32cb),
22801 TUEc("crc32ch",1200240, fad0f090, 3, (RR, oRR, RR), crc32ch),
22802 TUEc("crc32cw",1400240, fad0f0a0, 3, (RR, oRR, RR), crc32cw),
22803
22804 /* ARMv8.2 RAS extension. */
22805 #undef ARM_VARIANT
22806 #define ARM_VARIANT & arm_ext_ras
22807 #undef THUMB_VARIANT
22808 #define THUMB_VARIANT & arm_ext_ras
22809 TUE ("esb", 320f010, f3af8010, 0, (), noargs, noargs),
22810
22811 #undef ARM_VARIANT
22812 #define ARM_VARIANT & arm_ext_v8_3
22813 #undef THUMB_VARIANT
22814 #define THUMB_VARIANT & arm_ext_v8_3
22815 NCE (vjcvt, eb90bc0, 2, (RVS, RVD), vjcvt),
22816
22817 #undef ARM_VARIANT
22818 #define ARM_VARIANT & fpu_neon_ext_dotprod
22819 #undef THUMB_VARIANT
22820 #define THUMB_VARIANT & fpu_neon_ext_dotprod
22821 NUF (vsdot, d00, 3, (RNDQ, RNDQ, RNDQ_RNSC), neon_dotproduct_s),
22822 NUF (vudot, d00, 3, (RNDQ, RNDQ, RNDQ_RNSC), neon_dotproduct_u),
22823
22824 #undef ARM_VARIANT
22825 #define ARM_VARIANT & fpu_fpa_ext_v1 /* Core FPA instruction set (V1). */
22826 #undef THUMB_VARIANT
22827 #define THUMB_VARIANT NULL
22828
22829 cCE("wfs", e200110, 1, (RR), rd),
22830 cCE("rfs", e300110, 1, (RR), rd),
22831 cCE("wfc", e400110, 1, (RR), rd),
22832 cCE("rfc", e500110, 1, (RR), rd),
22833
22834 cCL("ldfs", c100100, 2, (RF, ADDRGLDC), rd_cpaddr),
22835 cCL("ldfd", c108100, 2, (RF, ADDRGLDC), rd_cpaddr),
22836 cCL("ldfe", c500100, 2, (RF, ADDRGLDC), rd_cpaddr),
22837 cCL("ldfp", c508100, 2, (RF, ADDRGLDC), rd_cpaddr),
22838
22839 cCL("stfs", c000100, 2, (RF, ADDRGLDC), rd_cpaddr),
22840 cCL("stfd", c008100, 2, (RF, ADDRGLDC), rd_cpaddr),
22841 cCL("stfe", c400100, 2, (RF, ADDRGLDC), rd_cpaddr),
22842 cCL("stfp", c408100, 2, (RF, ADDRGLDC), rd_cpaddr),
22843
22844 cCL("mvfs", e008100, 2, (RF, RF_IF), rd_rm),
22845 cCL("mvfsp", e008120, 2, (RF, RF_IF), rd_rm),
22846 cCL("mvfsm", e008140, 2, (RF, RF_IF), rd_rm),
22847 cCL("mvfsz", e008160, 2, (RF, RF_IF), rd_rm),
22848 cCL("mvfd", e008180, 2, (RF, RF_IF), rd_rm),
22849 cCL("mvfdp", e0081a0, 2, (RF, RF_IF), rd_rm),
22850 cCL("mvfdm", e0081c0, 2, (RF, RF_IF), rd_rm),
22851 cCL("mvfdz", e0081e0, 2, (RF, RF_IF), rd_rm),
22852 cCL("mvfe", e088100, 2, (RF, RF_IF), rd_rm),
22853 cCL("mvfep", e088120, 2, (RF, RF_IF), rd_rm),
22854 cCL("mvfem", e088140, 2, (RF, RF_IF), rd_rm),
22855 cCL("mvfez", e088160, 2, (RF, RF_IF), rd_rm),
22856
22857 cCL("mnfs", e108100, 2, (RF, RF_IF), rd_rm),
22858 cCL("mnfsp", e108120, 2, (RF, RF_IF), rd_rm),
22859 cCL("mnfsm", e108140, 2, (RF, RF_IF), rd_rm),
22860 cCL("mnfsz", e108160, 2, (RF, RF_IF), rd_rm),
22861 cCL("mnfd", e108180, 2, (RF, RF_IF), rd_rm),
22862 cCL("mnfdp", e1081a0, 2, (RF, RF_IF), rd_rm),
22863 cCL("mnfdm", e1081c0, 2, (RF, RF_IF), rd_rm),
22864 cCL("mnfdz", e1081e0, 2, (RF, RF_IF), rd_rm),
22865 cCL("mnfe", e188100, 2, (RF, RF_IF), rd_rm),
22866 cCL("mnfep", e188120, 2, (RF, RF_IF), rd_rm),
22867 cCL("mnfem", e188140, 2, (RF, RF_IF), rd_rm),
22868 cCL("mnfez", e188160, 2, (RF, RF_IF), rd_rm),
22869
22870 cCL("abss", e208100, 2, (RF, RF_IF), rd_rm),
22871 cCL("abssp", e208120, 2, (RF, RF_IF), rd_rm),
22872 cCL("abssm", e208140, 2, (RF, RF_IF), rd_rm),
22873 cCL("abssz", e208160, 2, (RF, RF_IF), rd_rm),
22874 cCL("absd", e208180, 2, (RF, RF_IF), rd_rm),
22875 cCL("absdp", e2081a0, 2, (RF, RF_IF), rd_rm),
22876 cCL("absdm", e2081c0, 2, (RF, RF_IF), rd_rm),
22877 cCL("absdz", e2081e0, 2, (RF, RF_IF), rd_rm),
22878 cCL("abse", e288100, 2, (RF, RF_IF), rd_rm),
22879 cCL("absep", e288120, 2, (RF, RF_IF), rd_rm),
22880 cCL("absem", e288140, 2, (RF, RF_IF), rd_rm),
22881 cCL("absez", e288160, 2, (RF, RF_IF), rd_rm),
22882
22883 cCL("rnds", e308100, 2, (RF, RF_IF), rd_rm),
22884 cCL("rndsp", e308120, 2, (RF, RF_IF), rd_rm),
22885 cCL("rndsm", e308140, 2, (RF, RF_IF), rd_rm),
22886 cCL("rndsz", e308160, 2, (RF, RF_IF), rd_rm),
22887 cCL("rndd", e308180, 2, (RF, RF_IF), rd_rm),
22888 cCL("rnddp", e3081a0, 2, (RF, RF_IF), rd_rm),
22889 cCL("rnddm", e3081c0, 2, (RF, RF_IF), rd_rm),
22890 cCL("rnddz", e3081e0, 2, (RF, RF_IF), rd_rm),
22891 cCL("rnde", e388100, 2, (RF, RF_IF), rd_rm),
22892 cCL("rndep", e388120, 2, (RF, RF_IF), rd_rm),
22893 cCL("rndem", e388140, 2, (RF, RF_IF), rd_rm),
22894 cCL("rndez", e388160, 2, (RF, RF_IF), rd_rm),
22895
22896 cCL("sqts", e408100, 2, (RF, RF_IF), rd_rm),
22897 cCL("sqtsp", e408120, 2, (RF, RF_IF), rd_rm),
22898 cCL("sqtsm", e408140, 2, (RF, RF_IF), rd_rm),
22899 cCL("sqtsz", e408160, 2, (RF, RF_IF), rd_rm),
22900 cCL("sqtd", e408180, 2, (RF, RF_IF), rd_rm),
22901 cCL("sqtdp", e4081a0, 2, (RF, RF_IF), rd_rm),
22902 cCL("sqtdm", e4081c0, 2, (RF, RF_IF), rd_rm),
22903 cCL("sqtdz", e4081e0, 2, (RF, RF_IF), rd_rm),
22904 cCL("sqte", e488100, 2, (RF, RF_IF), rd_rm),
22905 cCL("sqtep", e488120, 2, (RF, RF_IF), rd_rm),
22906 cCL("sqtem", e488140, 2, (RF, RF_IF), rd_rm),
22907 cCL("sqtez", e488160, 2, (RF, RF_IF), rd_rm),
22908
22909 cCL("logs", e508100, 2, (RF, RF_IF), rd_rm),
22910 cCL("logsp", e508120, 2, (RF, RF_IF), rd_rm),
22911 cCL("logsm", e508140, 2, (RF, RF_IF), rd_rm),
22912 cCL("logsz", e508160, 2, (RF, RF_IF), rd_rm),
22913 cCL("logd", e508180, 2, (RF, RF_IF), rd_rm),
22914 cCL("logdp", e5081a0, 2, (RF, RF_IF), rd_rm),
22915 cCL("logdm", e5081c0, 2, (RF, RF_IF), rd_rm),
22916 cCL("logdz", e5081e0, 2, (RF, RF_IF), rd_rm),
22917 cCL("loge", e588100, 2, (RF, RF_IF), rd_rm),
22918 cCL("logep", e588120, 2, (RF, RF_IF), rd_rm),
22919 cCL("logem", e588140, 2, (RF, RF_IF), rd_rm),
22920 cCL("logez", e588160, 2, (RF, RF_IF), rd_rm),
22921
22922 cCL("lgns", e608100, 2, (RF, RF_IF), rd_rm),
22923 cCL("lgnsp", e608120, 2, (RF, RF_IF), rd_rm),
22924 cCL("lgnsm", e608140, 2, (RF, RF_IF), rd_rm),
22925 cCL("lgnsz", e608160, 2, (RF, RF_IF), rd_rm),
22926 cCL("lgnd", e608180, 2, (RF, RF_IF), rd_rm),
22927 cCL("lgndp", e6081a0, 2, (RF, RF_IF), rd_rm),
22928 cCL("lgndm", e6081c0, 2, (RF, RF_IF), rd_rm),
22929 cCL("lgndz", e6081e0, 2, (RF, RF_IF), rd_rm),
22930 cCL("lgne", e688100, 2, (RF, RF_IF), rd_rm),
22931 cCL("lgnep", e688120, 2, (RF, RF_IF), rd_rm),
22932 cCL("lgnem", e688140, 2, (RF, RF_IF), rd_rm),
22933 cCL("lgnez", e688160, 2, (RF, RF_IF), rd_rm),
22934
22935 cCL("exps", e708100, 2, (RF, RF_IF), rd_rm),
22936 cCL("expsp", e708120, 2, (RF, RF_IF), rd_rm),
22937 cCL("expsm", e708140, 2, (RF, RF_IF), rd_rm),
22938 cCL("expsz", e708160, 2, (RF, RF_IF), rd_rm),
22939 cCL("expd", e708180, 2, (RF, RF_IF), rd_rm),
22940 cCL("expdp", e7081a0, 2, (RF, RF_IF), rd_rm),
22941 cCL("expdm", e7081c0, 2, (RF, RF_IF), rd_rm),
22942 cCL("expdz", e7081e0, 2, (RF, RF_IF), rd_rm),
22943 cCL("expe", e788100, 2, (RF, RF_IF), rd_rm),
22944 cCL("expep", e788120, 2, (RF, RF_IF), rd_rm),
22945 cCL("expem", e788140, 2, (RF, RF_IF), rd_rm),
22946 cCL("expdz", e788160, 2, (RF, RF_IF), rd_rm),
22947
22948 cCL("sins", e808100, 2, (RF, RF_IF), rd_rm),
22949 cCL("sinsp", e808120, 2, (RF, RF_IF), rd_rm),
22950 cCL("sinsm", e808140, 2, (RF, RF_IF), rd_rm),
22951 cCL("sinsz", e808160, 2, (RF, RF_IF), rd_rm),
22952 cCL("sind", e808180, 2, (RF, RF_IF), rd_rm),
22953 cCL("sindp", e8081a0, 2, (RF, RF_IF), rd_rm),
22954 cCL("sindm", e8081c0, 2, (RF, RF_IF), rd_rm),
22955 cCL("sindz", e8081e0, 2, (RF, RF_IF), rd_rm),
22956 cCL("sine", e888100, 2, (RF, RF_IF), rd_rm),
22957 cCL("sinep", e888120, 2, (RF, RF_IF), rd_rm),
22958 cCL("sinem", e888140, 2, (RF, RF_IF), rd_rm),
22959 cCL("sinez", e888160, 2, (RF, RF_IF), rd_rm),
22960
22961 cCL("coss", e908100, 2, (RF, RF_IF), rd_rm),
22962 cCL("cossp", e908120, 2, (RF, RF_IF), rd_rm),
22963 cCL("cossm", e908140, 2, (RF, RF_IF), rd_rm),
22964 cCL("cossz", e908160, 2, (RF, RF_IF), rd_rm),
22965 cCL("cosd", e908180, 2, (RF, RF_IF), rd_rm),
22966 cCL("cosdp", e9081a0, 2, (RF, RF_IF), rd_rm),
22967 cCL("cosdm", e9081c0, 2, (RF, RF_IF), rd_rm),
22968 cCL("cosdz", e9081e0, 2, (RF, RF_IF), rd_rm),
22969 cCL("cose", e988100, 2, (RF, RF_IF), rd_rm),
22970 cCL("cosep", e988120, 2, (RF, RF_IF), rd_rm),
22971 cCL("cosem", e988140, 2, (RF, RF_IF), rd_rm),
22972 cCL("cosez", e988160, 2, (RF, RF_IF), rd_rm),
22973
22974 cCL("tans", ea08100, 2, (RF, RF_IF), rd_rm),
22975 cCL("tansp", ea08120, 2, (RF, RF_IF), rd_rm),
22976 cCL("tansm", ea08140, 2, (RF, RF_IF), rd_rm),
22977 cCL("tansz", ea08160, 2, (RF, RF_IF), rd_rm),
22978 cCL("tand", ea08180, 2, (RF, RF_IF), rd_rm),
22979 cCL("tandp", ea081a0, 2, (RF, RF_IF), rd_rm),
22980 cCL("tandm", ea081c0, 2, (RF, RF_IF), rd_rm),
22981 cCL("tandz", ea081e0, 2, (RF, RF_IF), rd_rm),
22982 cCL("tane", ea88100, 2, (RF, RF_IF), rd_rm),
22983 cCL("tanep", ea88120, 2, (RF, RF_IF), rd_rm),
22984 cCL("tanem", ea88140, 2, (RF, RF_IF), rd_rm),
22985 cCL("tanez", ea88160, 2, (RF, RF_IF), rd_rm),
22986
22987 cCL("asns", eb08100, 2, (RF, RF_IF), rd_rm),
22988 cCL("asnsp", eb08120, 2, (RF, RF_IF), rd_rm),
22989 cCL("asnsm", eb08140, 2, (RF, RF_IF), rd_rm),
22990 cCL("asnsz", eb08160, 2, (RF, RF_IF), rd_rm),
22991 cCL("asnd", eb08180, 2, (RF, RF_IF), rd_rm),
22992 cCL("asndp", eb081a0, 2, (RF, RF_IF), rd_rm),
22993 cCL("asndm", eb081c0, 2, (RF, RF_IF), rd_rm),
22994 cCL("asndz", eb081e0, 2, (RF, RF_IF), rd_rm),
22995 cCL("asne", eb88100, 2, (RF, RF_IF), rd_rm),
22996 cCL("asnep", eb88120, 2, (RF, RF_IF), rd_rm),
22997 cCL("asnem", eb88140, 2, (RF, RF_IF), rd_rm),
22998 cCL("asnez", eb88160, 2, (RF, RF_IF), rd_rm),
22999
23000 cCL("acss", ec08100, 2, (RF, RF_IF), rd_rm),
23001 cCL("acssp", ec08120, 2, (RF, RF_IF), rd_rm),
23002 cCL("acssm", ec08140, 2, (RF, RF_IF), rd_rm),
23003 cCL("acssz", ec08160, 2, (RF, RF_IF), rd_rm),
23004 cCL("acsd", ec08180, 2, (RF, RF_IF), rd_rm),
23005 cCL("acsdp", ec081a0, 2, (RF, RF_IF), rd_rm),
23006 cCL("acsdm", ec081c0, 2, (RF, RF_IF), rd_rm),
23007 cCL("acsdz", ec081e0, 2, (RF, RF_IF), rd_rm),
23008 cCL("acse", ec88100, 2, (RF, RF_IF), rd_rm),
23009 cCL("acsep", ec88120, 2, (RF, RF_IF), rd_rm),
23010 cCL("acsem", ec88140, 2, (RF, RF_IF), rd_rm),
23011 cCL("acsez", ec88160, 2, (RF, RF_IF), rd_rm),
23012
23013 cCL("atns", ed08100, 2, (RF, RF_IF), rd_rm),
23014 cCL("atnsp", ed08120, 2, (RF, RF_IF), rd_rm),
23015 cCL("atnsm", ed08140, 2, (RF, RF_IF), rd_rm),
23016 cCL("atnsz", ed08160, 2, (RF, RF_IF), rd_rm),
23017 cCL("atnd", ed08180, 2, (RF, RF_IF), rd_rm),
23018 cCL("atndp", ed081a0, 2, (RF, RF_IF), rd_rm),
23019 cCL("atndm", ed081c0, 2, (RF, RF_IF), rd_rm),
23020 cCL("atndz", ed081e0, 2, (RF, RF_IF), rd_rm),
23021 cCL("atne", ed88100, 2, (RF, RF_IF), rd_rm),
23022 cCL("atnep", ed88120, 2, (RF, RF_IF), rd_rm),
23023 cCL("atnem", ed88140, 2, (RF, RF_IF), rd_rm),
23024 cCL("atnez", ed88160, 2, (RF, RF_IF), rd_rm),
23025
23026 cCL("urds", ee08100, 2, (RF, RF_IF), rd_rm),
23027 cCL("urdsp", ee08120, 2, (RF, RF_IF), rd_rm),
23028 cCL("urdsm", ee08140, 2, (RF, RF_IF), rd_rm),
23029 cCL("urdsz", ee08160, 2, (RF, RF_IF), rd_rm),
23030 cCL("urdd", ee08180, 2, (RF, RF_IF), rd_rm),
23031 cCL("urddp", ee081a0, 2, (RF, RF_IF), rd_rm),
23032 cCL("urddm", ee081c0, 2, (RF, RF_IF), rd_rm),
23033 cCL("urddz", ee081e0, 2, (RF, RF_IF), rd_rm),
23034 cCL("urde", ee88100, 2, (RF, RF_IF), rd_rm),
23035 cCL("urdep", ee88120, 2, (RF, RF_IF), rd_rm),
23036 cCL("urdem", ee88140, 2, (RF, RF_IF), rd_rm),
23037 cCL("urdez", ee88160, 2, (RF, RF_IF), rd_rm),
23038
23039 cCL("nrms", ef08100, 2, (RF, RF_IF), rd_rm),
23040 cCL("nrmsp", ef08120, 2, (RF, RF_IF), rd_rm),
23041 cCL("nrmsm", ef08140, 2, (RF, RF_IF), rd_rm),
23042 cCL("nrmsz", ef08160, 2, (RF, RF_IF), rd_rm),
23043 cCL("nrmd", ef08180, 2, (RF, RF_IF), rd_rm),
23044 cCL("nrmdp", ef081a0, 2, (RF, RF_IF), rd_rm),
23045 cCL("nrmdm", ef081c0, 2, (RF, RF_IF), rd_rm),
23046 cCL("nrmdz", ef081e0, 2, (RF, RF_IF), rd_rm),
23047 cCL("nrme", ef88100, 2, (RF, RF_IF), rd_rm),
23048 cCL("nrmep", ef88120, 2, (RF, RF_IF), rd_rm),
23049 cCL("nrmem", ef88140, 2, (RF, RF_IF), rd_rm),
23050 cCL("nrmez", ef88160, 2, (RF, RF_IF), rd_rm),
23051
23052 cCL("adfs", e000100, 3, (RF, RF, RF_IF), rd_rn_rm),
23053 cCL("adfsp", e000120, 3, (RF, RF, RF_IF), rd_rn_rm),
23054 cCL("adfsm", e000140, 3, (RF, RF, RF_IF), rd_rn_rm),
23055 cCL("adfsz", e000160, 3, (RF, RF, RF_IF), rd_rn_rm),
23056 cCL("adfd", e000180, 3, (RF, RF, RF_IF), rd_rn_rm),
23057 cCL("adfdp", e0001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
23058 cCL("adfdm", e0001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
23059 cCL("adfdz", e0001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
23060 cCL("adfe", e080100, 3, (RF, RF, RF_IF), rd_rn_rm),
23061 cCL("adfep", e080120, 3, (RF, RF, RF_IF), rd_rn_rm),
23062 cCL("adfem", e080140, 3, (RF, RF, RF_IF), rd_rn_rm),
23063 cCL("adfez", e080160, 3, (RF, RF, RF_IF), rd_rn_rm),
23064
23065 cCL("sufs", e200100, 3, (RF, RF, RF_IF), rd_rn_rm),
23066 cCL("sufsp", e200120, 3, (RF, RF, RF_IF), rd_rn_rm),
23067 cCL("sufsm", e200140, 3, (RF, RF, RF_IF), rd_rn_rm),
23068 cCL("sufsz", e200160, 3, (RF, RF, RF_IF), rd_rn_rm),
23069 cCL("sufd", e200180, 3, (RF, RF, RF_IF), rd_rn_rm),
23070 cCL("sufdp", e2001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
23071 cCL("sufdm", e2001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
23072 cCL("sufdz", e2001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
23073 cCL("sufe", e280100, 3, (RF, RF, RF_IF), rd_rn_rm),
23074 cCL("sufep", e280120, 3, (RF, RF, RF_IF), rd_rn_rm),
23075 cCL("sufem", e280140, 3, (RF, RF, RF_IF), rd_rn_rm),
23076 cCL("sufez", e280160, 3, (RF, RF, RF_IF), rd_rn_rm),
23077
23078 cCL("rsfs", e300100, 3, (RF, RF, RF_IF), rd_rn_rm),
23079 cCL("rsfsp", e300120, 3, (RF, RF, RF_IF), rd_rn_rm),
23080 cCL("rsfsm", e300140, 3, (RF, RF, RF_IF), rd_rn_rm),
23081 cCL("rsfsz", e300160, 3, (RF, RF, RF_IF), rd_rn_rm),
23082 cCL("rsfd", e300180, 3, (RF, RF, RF_IF), rd_rn_rm),
23083 cCL("rsfdp", e3001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
23084 cCL("rsfdm", e3001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
23085 cCL("rsfdz", e3001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
23086 cCL("rsfe", e380100, 3, (RF, RF, RF_IF), rd_rn_rm),
23087 cCL("rsfep", e380120, 3, (RF, RF, RF_IF), rd_rn_rm),
23088 cCL("rsfem", e380140, 3, (RF, RF, RF_IF), rd_rn_rm),
23089 cCL("rsfez", e380160, 3, (RF, RF, RF_IF), rd_rn_rm),
23090
23091 cCL("mufs", e100100, 3, (RF, RF, RF_IF), rd_rn_rm),
23092 cCL("mufsp", e100120, 3, (RF, RF, RF_IF), rd_rn_rm),
23093 cCL("mufsm", e100140, 3, (RF, RF, RF_IF), rd_rn_rm),
23094 cCL("mufsz", e100160, 3, (RF, RF, RF_IF), rd_rn_rm),
23095 cCL("mufd", e100180, 3, (RF, RF, RF_IF), rd_rn_rm),
23096 cCL("mufdp", e1001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
23097 cCL("mufdm", e1001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
23098 cCL("mufdz", e1001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
23099 cCL("mufe", e180100, 3, (RF, RF, RF_IF), rd_rn_rm),
23100 cCL("mufep", e180120, 3, (RF, RF, RF_IF), rd_rn_rm),
23101 cCL("mufem", e180140, 3, (RF, RF, RF_IF), rd_rn_rm),
23102 cCL("mufez", e180160, 3, (RF, RF, RF_IF), rd_rn_rm),
23103
23104 cCL("dvfs", e400100, 3, (RF, RF, RF_IF), rd_rn_rm),
23105 cCL("dvfsp", e400120, 3, (RF, RF, RF_IF), rd_rn_rm),
23106 cCL("dvfsm", e400140, 3, (RF, RF, RF_IF), rd_rn_rm),
23107 cCL("dvfsz", e400160, 3, (RF, RF, RF_IF), rd_rn_rm),
23108 cCL("dvfd", e400180, 3, (RF, RF, RF_IF), rd_rn_rm),
23109 cCL("dvfdp", e4001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
23110 cCL("dvfdm", e4001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
23111 cCL("dvfdz", e4001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
23112 cCL("dvfe", e480100, 3, (RF, RF, RF_IF), rd_rn_rm),
23113 cCL("dvfep", e480120, 3, (RF, RF, RF_IF), rd_rn_rm),
23114 cCL("dvfem", e480140, 3, (RF, RF, RF_IF), rd_rn_rm),
23115 cCL("dvfez", e480160, 3, (RF, RF, RF_IF), rd_rn_rm),
23116
23117 cCL("rdfs", e500100, 3, (RF, RF, RF_IF), rd_rn_rm),
23118 cCL("rdfsp", e500120, 3, (RF, RF, RF_IF), rd_rn_rm),
23119 cCL("rdfsm", e500140, 3, (RF, RF, RF_IF), rd_rn_rm),
23120 cCL("rdfsz", e500160, 3, (RF, RF, RF_IF), rd_rn_rm),
23121 cCL("rdfd", e500180, 3, (RF, RF, RF_IF), rd_rn_rm),
23122 cCL("rdfdp", e5001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
23123 cCL("rdfdm", e5001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
23124 cCL("rdfdz", e5001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
23125 cCL("rdfe", e580100, 3, (RF, RF, RF_IF), rd_rn_rm),
23126 cCL("rdfep", e580120, 3, (RF, RF, RF_IF), rd_rn_rm),
23127 cCL("rdfem", e580140, 3, (RF, RF, RF_IF), rd_rn_rm),
23128 cCL("rdfez", e580160, 3, (RF, RF, RF_IF), rd_rn_rm),
23129
23130 cCL("pows", e600100, 3, (RF, RF, RF_IF), rd_rn_rm),
23131 cCL("powsp", e600120, 3, (RF, RF, RF_IF), rd_rn_rm),
23132 cCL("powsm", e600140, 3, (RF, RF, RF_IF), rd_rn_rm),
23133 cCL("powsz", e600160, 3, (RF, RF, RF_IF), rd_rn_rm),
23134 cCL("powd", e600180, 3, (RF, RF, RF_IF), rd_rn_rm),
23135 cCL("powdp", e6001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
23136 cCL("powdm", e6001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
23137 cCL("powdz", e6001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
23138 cCL("powe", e680100, 3, (RF, RF, RF_IF), rd_rn_rm),
23139 cCL("powep", e680120, 3, (RF, RF, RF_IF), rd_rn_rm),
23140 cCL("powem", e680140, 3, (RF, RF, RF_IF), rd_rn_rm),
23141 cCL("powez", e680160, 3, (RF, RF, RF_IF), rd_rn_rm),
23142
23143 cCL("rpws", e700100, 3, (RF, RF, RF_IF), rd_rn_rm),
23144 cCL("rpwsp", e700120, 3, (RF, RF, RF_IF), rd_rn_rm),
23145 cCL("rpwsm", e700140, 3, (RF, RF, RF_IF), rd_rn_rm),
23146 cCL("rpwsz", e700160, 3, (RF, RF, RF_IF), rd_rn_rm),
23147 cCL("rpwd", e700180, 3, (RF, RF, RF_IF), rd_rn_rm),
23148 cCL("rpwdp", e7001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
23149 cCL("rpwdm", e7001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
23150 cCL("rpwdz", e7001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
23151 cCL("rpwe", e780100, 3, (RF, RF, RF_IF), rd_rn_rm),
23152 cCL("rpwep", e780120, 3, (RF, RF, RF_IF), rd_rn_rm),
23153 cCL("rpwem", e780140, 3, (RF, RF, RF_IF), rd_rn_rm),
23154 cCL("rpwez", e780160, 3, (RF, RF, RF_IF), rd_rn_rm),
23155
23156 cCL("rmfs", e800100, 3, (RF, RF, RF_IF), rd_rn_rm),
23157 cCL("rmfsp", e800120, 3, (RF, RF, RF_IF), rd_rn_rm),
23158 cCL("rmfsm", e800140, 3, (RF, RF, RF_IF), rd_rn_rm),
23159 cCL("rmfsz", e800160, 3, (RF, RF, RF_IF), rd_rn_rm),
23160 cCL("rmfd", e800180, 3, (RF, RF, RF_IF), rd_rn_rm),
23161 cCL("rmfdp", e8001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
23162 cCL("rmfdm", e8001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
23163 cCL("rmfdz", e8001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
23164 cCL("rmfe", e880100, 3, (RF, RF, RF_IF), rd_rn_rm),
23165 cCL("rmfep", e880120, 3, (RF, RF, RF_IF), rd_rn_rm),
23166 cCL("rmfem", e880140, 3, (RF, RF, RF_IF), rd_rn_rm),
23167 cCL("rmfez", e880160, 3, (RF, RF, RF_IF), rd_rn_rm),
23168
23169 cCL("fmls", e900100, 3, (RF, RF, RF_IF), rd_rn_rm),
23170 cCL("fmlsp", e900120, 3, (RF, RF, RF_IF), rd_rn_rm),
23171 cCL("fmlsm", e900140, 3, (RF, RF, RF_IF), rd_rn_rm),
23172 cCL("fmlsz", e900160, 3, (RF, RF, RF_IF), rd_rn_rm),
23173 cCL("fmld", e900180, 3, (RF, RF, RF_IF), rd_rn_rm),
23174 cCL("fmldp", e9001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
23175 cCL("fmldm", e9001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
23176 cCL("fmldz", e9001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
23177 cCL("fmle", e980100, 3, (RF, RF, RF_IF), rd_rn_rm),
23178 cCL("fmlep", e980120, 3, (RF, RF, RF_IF), rd_rn_rm),
23179 cCL("fmlem", e980140, 3, (RF, RF, RF_IF), rd_rn_rm),
23180 cCL("fmlez", e980160, 3, (RF, RF, RF_IF), rd_rn_rm),
23181
23182 cCL("fdvs", ea00100, 3, (RF, RF, RF_IF), rd_rn_rm),
23183 cCL("fdvsp", ea00120, 3, (RF, RF, RF_IF), rd_rn_rm),
23184 cCL("fdvsm", ea00140, 3, (RF, RF, RF_IF), rd_rn_rm),
23185 cCL("fdvsz", ea00160, 3, (RF, RF, RF_IF), rd_rn_rm),
23186 cCL("fdvd", ea00180, 3, (RF, RF, RF_IF), rd_rn_rm),
23187 cCL("fdvdp", ea001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
23188 cCL("fdvdm", ea001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
23189 cCL("fdvdz", ea001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
23190 cCL("fdve", ea80100, 3, (RF, RF, RF_IF), rd_rn_rm),
23191 cCL("fdvep", ea80120, 3, (RF, RF, RF_IF), rd_rn_rm),
23192 cCL("fdvem", ea80140, 3, (RF, RF, RF_IF), rd_rn_rm),
23193 cCL("fdvez", ea80160, 3, (RF, RF, RF_IF), rd_rn_rm),
23194
23195 cCL("frds", eb00100, 3, (RF, RF, RF_IF), rd_rn_rm),
23196 cCL("frdsp", eb00120, 3, (RF, RF, RF_IF), rd_rn_rm),
23197 cCL("frdsm", eb00140, 3, (RF, RF, RF_IF), rd_rn_rm),
23198 cCL("frdsz", eb00160, 3, (RF, RF, RF_IF), rd_rn_rm),
23199 cCL("frdd", eb00180, 3, (RF, RF, RF_IF), rd_rn_rm),
23200 cCL("frddp", eb001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
23201 cCL("frddm", eb001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
23202 cCL("frddz", eb001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
23203 cCL("frde", eb80100, 3, (RF, RF, RF_IF), rd_rn_rm),
23204 cCL("frdep", eb80120, 3, (RF, RF, RF_IF), rd_rn_rm),
23205 cCL("frdem", eb80140, 3, (RF, RF, RF_IF), rd_rn_rm),
23206 cCL("frdez", eb80160, 3, (RF, RF, RF_IF), rd_rn_rm),
23207
23208 cCL("pols", ec00100, 3, (RF, RF, RF_IF), rd_rn_rm),
23209 cCL("polsp", ec00120, 3, (RF, RF, RF_IF), rd_rn_rm),
23210 cCL("polsm", ec00140, 3, (RF, RF, RF_IF), rd_rn_rm),
23211 cCL("polsz", ec00160, 3, (RF, RF, RF_IF), rd_rn_rm),
23212 cCL("pold", ec00180, 3, (RF, RF, RF_IF), rd_rn_rm),
23213 cCL("poldp", ec001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
23214 cCL("poldm", ec001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
23215 cCL("poldz", ec001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
23216 cCL("pole", ec80100, 3, (RF, RF, RF_IF), rd_rn_rm),
23217 cCL("polep", ec80120, 3, (RF, RF, RF_IF), rd_rn_rm),
23218 cCL("polem", ec80140, 3, (RF, RF, RF_IF), rd_rn_rm),
23219 cCL("polez", ec80160, 3, (RF, RF, RF_IF), rd_rn_rm),
23220
23221 cCE("cmf", e90f110, 2, (RF, RF_IF), fpa_cmp),
23222 C3E("cmfe", ed0f110, 2, (RF, RF_IF), fpa_cmp),
23223 cCE("cnf", eb0f110, 2, (RF, RF_IF), fpa_cmp),
23224 C3E("cnfe", ef0f110, 2, (RF, RF_IF), fpa_cmp),
23225
23226 cCL("flts", e000110, 2, (RF, RR), rn_rd),
23227 cCL("fltsp", e000130, 2, (RF, RR), rn_rd),
23228 cCL("fltsm", e000150, 2, (RF, RR), rn_rd),
23229 cCL("fltsz", e000170, 2, (RF, RR), rn_rd),
23230 cCL("fltd", e000190, 2, (RF, RR), rn_rd),
23231 cCL("fltdp", e0001b0, 2, (RF, RR), rn_rd),
23232 cCL("fltdm", e0001d0, 2, (RF, RR), rn_rd),
23233 cCL("fltdz", e0001f0, 2, (RF, RR), rn_rd),
23234 cCL("flte", e080110, 2, (RF, RR), rn_rd),
23235 cCL("fltep", e080130, 2, (RF, RR), rn_rd),
23236 cCL("fltem", e080150, 2, (RF, RR), rn_rd),
23237 cCL("fltez", e080170, 2, (RF, RR), rn_rd),
23238
23239 /* The implementation of the FIX instruction is broken on some
23240 assemblers, in that it accepts a precision specifier as well as a
23241 rounding specifier, despite the fact that this is meaningless.
23242 To be more compatible, we accept it as well, though of course it
23243 does not set any bits. */
23244 cCE("fix", e100110, 2, (RR, RF), rd_rm),
23245 cCL("fixp", e100130, 2, (RR, RF), rd_rm),
23246 cCL("fixm", e100150, 2, (RR, RF), rd_rm),
23247 cCL("fixz", e100170, 2, (RR, RF), rd_rm),
23248 cCL("fixsp", e100130, 2, (RR, RF), rd_rm),
23249 cCL("fixsm", e100150, 2, (RR, RF), rd_rm),
23250 cCL("fixsz", e100170, 2, (RR, RF), rd_rm),
23251 cCL("fixdp", e100130, 2, (RR, RF), rd_rm),
23252 cCL("fixdm", e100150, 2, (RR, RF), rd_rm),
23253 cCL("fixdz", e100170, 2, (RR, RF), rd_rm),
23254 cCL("fixep", e100130, 2, (RR, RF), rd_rm),
23255 cCL("fixem", e100150, 2, (RR, RF), rd_rm),
23256 cCL("fixez", e100170, 2, (RR, RF), rd_rm),
23257
23258 /* Instructions that were new with the real FPA, call them V2. */
23259 #undef ARM_VARIANT
23260 #define ARM_VARIANT & fpu_fpa_ext_v2
23261
23262 cCE("lfm", c100200, 3, (RF, I4b, ADDR), fpa_ldmstm),
23263 cCL("lfmfd", c900200, 3, (RF, I4b, ADDR), fpa_ldmstm),
23264 cCL("lfmea", d100200, 3, (RF, I4b, ADDR), fpa_ldmstm),
23265 cCE("sfm", c000200, 3, (RF, I4b, ADDR), fpa_ldmstm),
23266 cCL("sfmfd", d000200, 3, (RF, I4b, ADDR), fpa_ldmstm),
23267 cCL("sfmea", c800200, 3, (RF, I4b, ADDR), fpa_ldmstm),
23268
23269 #undef ARM_VARIANT
23270 #define ARM_VARIANT & fpu_vfp_ext_v1xd /* VFP V1xD (single precision). */
23271
23272 /* Moves and type conversions. */
23273 cCE("fmstat", ef1fa10, 0, (), noargs),
23274 cCE("vmrs", ef00a10, 2, (APSR_RR, RVC), vmrs),
23275 cCE("vmsr", ee00a10, 2, (RVC, RR), vmsr),
23276 cCE("fsitos", eb80ac0, 2, (RVS, RVS), vfp_sp_monadic),
23277 cCE("fuitos", eb80a40, 2, (RVS, RVS), vfp_sp_monadic),
23278 cCE("ftosis", ebd0a40, 2, (RVS, RVS), vfp_sp_monadic),
23279 cCE("ftosizs", ebd0ac0, 2, (RVS, RVS), vfp_sp_monadic),
23280 cCE("ftouis", ebc0a40, 2, (RVS, RVS), vfp_sp_monadic),
23281 cCE("ftouizs", ebc0ac0, 2, (RVS, RVS), vfp_sp_monadic),
23282 cCE("fmrx", ef00a10, 2, (RR, RVC), rd_rn),
23283 cCE("fmxr", ee00a10, 2, (RVC, RR), rn_rd),
23284
23285 /* Memory operations. */
23286 cCE("flds", d100a00, 2, (RVS, ADDRGLDC), vfp_sp_ldst),
23287 cCE("fsts", d000a00, 2, (RVS, ADDRGLDC), vfp_sp_ldst),
23288 cCE("fldmias", c900a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
23289 cCE("fldmfds", c900a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
23290 cCE("fldmdbs", d300a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
23291 cCE("fldmeas", d300a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
23292 cCE("fldmiax", c900b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
23293 cCE("fldmfdx", c900b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
23294 cCE("fldmdbx", d300b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
23295 cCE("fldmeax", d300b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
23296 cCE("fstmias", c800a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
23297 cCE("fstmeas", c800a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
23298 cCE("fstmdbs", d200a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
23299 cCE("fstmfds", d200a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
23300 cCE("fstmiax", c800b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
23301 cCE("fstmeax", c800b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
23302 cCE("fstmdbx", d200b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
23303 cCE("fstmfdx", d200b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
23304
23305 /* Monadic operations. */
23306 cCE("fabss", eb00ac0, 2, (RVS, RVS), vfp_sp_monadic),
23307 cCE("fnegs", eb10a40, 2, (RVS, RVS), vfp_sp_monadic),
23308 cCE("fsqrts", eb10ac0, 2, (RVS, RVS), vfp_sp_monadic),
23309
23310 /* Dyadic operations. */
23311 cCE("fadds", e300a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
23312 cCE("fsubs", e300a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
23313 cCE("fmuls", e200a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
23314 cCE("fdivs", e800a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
23315 cCE("fmacs", e000a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
23316 cCE("fmscs", e100a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
23317 cCE("fnmuls", e200a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
23318 cCE("fnmacs", e000a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
23319 cCE("fnmscs", e100a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
23320
23321 /* Comparisons. */
23322 cCE("fcmps", eb40a40, 2, (RVS, RVS), vfp_sp_monadic),
23323 cCE("fcmpzs", eb50a40, 1, (RVS), vfp_sp_compare_z),
23324 cCE("fcmpes", eb40ac0, 2, (RVS, RVS), vfp_sp_monadic),
23325 cCE("fcmpezs", eb50ac0, 1, (RVS), vfp_sp_compare_z),
23326
23327 /* Double precision load/store are still present on single precision
23328 implementations. */
23329 cCE("fldd", d100b00, 2, (RVD, ADDRGLDC), vfp_dp_ldst),
23330 cCE("fstd", d000b00, 2, (RVD, ADDRGLDC), vfp_dp_ldst),
23331 cCE("fldmiad", c900b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
23332 cCE("fldmfdd", c900b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
23333 cCE("fldmdbd", d300b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
23334 cCE("fldmead", d300b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
23335 cCE("fstmiad", c800b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
23336 cCE("fstmead", c800b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
23337 cCE("fstmdbd", d200b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
23338 cCE("fstmfdd", d200b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
23339
23340 #undef ARM_VARIANT
23341 #define ARM_VARIANT & fpu_vfp_ext_v1 /* VFP V1 (Double precision). */
23342
23343 /* Moves and type conversions. */
23344 cCE("fcvtds", eb70ac0, 2, (RVD, RVS), vfp_dp_sp_cvt),
23345 cCE("fcvtsd", eb70bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
23346 cCE("fmdhr", e200b10, 2, (RVD, RR), vfp_dp_rn_rd),
23347 cCE("fmdlr", e000b10, 2, (RVD, RR), vfp_dp_rn_rd),
23348 cCE("fmrdh", e300b10, 2, (RR, RVD), vfp_dp_rd_rn),
23349 cCE("fmrdl", e100b10, 2, (RR, RVD), vfp_dp_rd_rn),
23350 cCE("fsitod", eb80bc0, 2, (RVD, RVS), vfp_dp_sp_cvt),
23351 cCE("fuitod", eb80b40, 2, (RVD, RVS), vfp_dp_sp_cvt),
23352 cCE("ftosid", ebd0b40, 2, (RVS, RVD), vfp_sp_dp_cvt),
23353 cCE("ftosizd", ebd0bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
23354 cCE("ftouid", ebc0b40, 2, (RVS, RVD), vfp_sp_dp_cvt),
23355 cCE("ftouizd", ebc0bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
23356
23357 /* Monadic operations. */
23358 cCE("fabsd", eb00bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
23359 cCE("fnegd", eb10b40, 2, (RVD, RVD), vfp_dp_rd_rm),
23360 cCE("fsqrtd", eb10bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
23361
23362 /* Dyadic operations. */
23363 cCE("faddd", e300b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
23364 cCE("fsubd", e300b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
23365 cCE("fmuld", e200b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
23366 cCE("fdivd", e800b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
23367 cCE("fmacd", e000b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
23368 cCE("fmscd", e100b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
23369 cCE("fnmuld", e200b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
23370 cCE("fnmacd", e000b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
23371 cCE("fnmscd", e100b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
23372
23373 /* Comparisons. */
23374 cCE("fcmpd", eb40b40, 2, (RVD, RVD), vfp_dp_rd_rm),
23375 cCE("fcmpzd", eb50b40, 1, (RVD), vfp_dp_rd),
23376 cCE("fcmped", eb40bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
23377 cCE("fcmpezd", eb50bc0, 1, (RVD), vfp_dp_rd),
23378
23379 /* Instructions which may belong to either the Neon or VFP instruction sets.
23380 Individual encoder functions perform additional architecture checks. */
23381 #undef ARM_VARIANT
23382 #define ARM_VARIANT & fpu_vfp_ext_v1xd
23383 #undef THUMB_VARIANT
23384 #define THUMB_VARIANT & fpu_vfp_ext_v1xd
23385
23386 /* These mnemonics are unique to VFP. */
23387 NCE(vsqrt, 0, 2, (RVSD, RVSD), vfp_nsyn_sqrt),
23388 NCE(vdiv, 0, 3, (RVSD, RVSD, RVSD), vfp_nsyn_div),
23389 nCE(vnmul, _vnmul, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
23390 nCE(vnmla, _vnmla, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
23391 nCE(vnmls, _vnmls, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
23392 NCE(vpush, 0, 1, (VRSDLST), vfp_nsyn_push),
23393 NCE(vpop, 0, 1, (VRSDLST), vfp_nsyn_pop),
23394 NCE(vcvtz, 0, 2, (RVSD, RVSD), vfp_nsyn_cvtz),
23395
23396 /* Mnemonics shared by Neon and VFP. */
23397 nCEF(vmul, _vmul, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mul),
23398 nCEF(vmla, _vmla, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mac_maybe_scalar),
23399 nCEF(vmls, _vmls, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mac_maybe_scalar),
23400
23401 NCE(vldm, c900b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
23402 NCE(vldmia, c900b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
23403 NCE(vldmdb, d100b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
23404 NCE(vstm, c800b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
23405 NCE(vstmia, c800b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
23406 NCE(vstmdb, d000b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
23407
23408 mnCEF(vcvt, _vcvt, 3, (RNSDQMQ, RNSDQMQ, oI32z), neon_cvt),
23409 nCEF(vcvtr, _vcvt, 2, (RNSDQ, RNSDQ), neon_cvtr),
23410 MNCEF(vcvtb, eb20a40, 3, (RVSDMQ, RVSDMQ, oI32b), neon_cvtb),
23411 MNCEF(vcvtt, eb20a40, 3, (RVSDMQ, RVSDMQ, oI32b), neon_cvtt),
23412
23413
23414 /* NOTE: All VMOV encoding is special-cased! */
23415 NCE(vmovq, 0, 1, (VMOV), neon_mov),
23416
23417 #undef THUMB_VARIANT
23418 /* Could be either VLDR/VSTR or VLDR/VSTR (system register) which are guarded
23419 by different feature bits. Since we are setting the Thumb guard, we can
23420 require Thumb-1 which makes it a nop guard and set the right feature bit in
23421 do_vldr_vstr (). */
23422 #define THUMB_VARIANT & arm_ext_v4t
23423 NCE(vldr, d100b00, 2, (VLDR, ADDRGLDC), vldr_vstr),
23424 NCE(vstr, d000b00, 2, (VLDR, ADDRGLDC), vldr_vstr),
23425
23426 #undef ARM_VARIANT
23427 #define ARM_VARIANT & arm_ext_fp16
23428 #undef THUMB_VARIANT
23429 #define THUMB_VARIANT & arm_ext_fp16
23430 /* New instructions added from v8.2, allowing the extraction and insertion of
23431 the upper 16 bits of a 32-bit vector register. */
23432 NCE (vmovx, eb00a40, 2, (RVS, RVS), neon_movhf),
23433 NCE (vins, eb00ac0, 2, (RVS, RVS), neon_movhf),
23434
23435 /* New backported fma/fms instructions optional in v8.2. */
23436 NCE (vfmal, 810, 3, (RNDQ, RNSD, RNSD_RNSC), neon_vfmal),
23437 NCE (vfmsl, 810, 3, (RNDQ, RNSD, RNSD_RNSC), neon_vfmsl),
23438
23439 #undef THUMB_VARIANT
23440 #define THUMB_VARIANT & fpu_neon_ext_v1
23441 #undef ARM_VARIANT
23442 #define ARM_VARIANT & fpu_neon_ext_v1
23443
23444 /* Data processing with three registers of the same length. */
23445 /* integer ops, valid types S8 S16 S32 U8 U16 U32. */
23446 NUF(vaba, 0000710, 3, (RNDQ, RNDQ, RNDQ), neon_dyadic_i_su),
23447 NUF(vabaq, 0000710, 3, (RNQ, RNQ, RNQ), neon_dyadic_i_su),
23448 NUF(vhadd, 0000000, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
23449 NUF(vhaddq, 0000000, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
23450 NUF(vrhadd, 0000100, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
23451 NUF(vrhaddq, 0000100, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
23452 NUF(vhsub, 0000200, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
23453 NUF(vhsubq, 0000200, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
23454 /* integer ops, valid types S8 S16 S32 S64 U8 U16 U32 U64. */
23455 NUF(vqadd, 0000010, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i64_su),
23456 NUF(vqaddq, 0000010, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i64_su),
23457 NUF(vqsub, 0000210, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i64_su),
23458 NUF(vqsubq, 0000210, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i64_su),
23459 NUF(vrshl, 0000500, 3, (RNDQ, oRNDQ, RNDQ), neon_rshl),
23460 NUF(vrshlq, 0000500, 3, (RNQ, oRNQ, RNQ), neon_rshl),
23461 NUF(vqrshl, 0000510, 3, (RNDQ, oRNDQ, RNDQ), neon_rshl),
23462 NUF(vqrshlq, 0000510, 3, (RNQ, oRNQ, RNQ), neon_rshl),
23463 /* If not immediate, fall back to neon_dyadic_i64_su.
23464 shl_imm should accept I8 I16 I32 I64,
23465 qshl_imm should accept S8 S16 S32 S64 U8 U16 U32 U64. */
23466 nUF(vshl, _vshl, 3, (RNDQ, oRNDQ, RNDQ_I63b), neon_shl_imm),
23467 nUF(vshlq, _vshl, 3, (RNQ, oRNQ, RNDQ_I63b), neon_shl_imm),
23468 nUF(vqshl, _vqshl, 3, (RNDQ, oRNDQ, RNDQ_I63b), neon_qshl_imm),
23469 nUF(vqshlq, _vqshl, 3, (RNQ, oRNQ, RNDQ_I63b), neon_qshl_imm),
23470 /* Logic ops, types optional & ignored. */
23471 nUF(vandq, _vand, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
23472 nUF(vbicq, _vbic, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
23473 nUF(vorrq, _vorr, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
23474 nUF(vornq, _vorn, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
23475 nUF(veorq, _veor, 3, (RNQ, oRNQ, RNQ), neon_logic),
23476 /* Bitfield ops, untyped. */
23477 NUF(vbsl, 1100110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
23478 NUF(vbslq, 1100110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
23479 NUF(vbit, 1200110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
23480 NUF(vbitq, 1200110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
23481 NUF(vbif, 1300110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
23482 NUF(vbifq, 1300110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
23483 /* Int and float variants, types S8 S16 S32 U8 U16 U32 F16 F32. */
23484 nUF(vabdq, _vabd, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
23485 nUF(vmax, _vmax, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
23486 nUF(vmaxq, _vmax, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
23487 nUF(vmin, _vmin, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
23488 nUF(vminq, _vmin, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
23489 /* Comparisons. Types S8 S16 S32 U8 U16 U32 F32. Non-immediate versions fall
23490 back to neon_dyadic_if_su. */
23491 nUF(vcge, _vcge, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp),
23492 nUF(vcgeq, _vcge, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp),
23493 nUF(vcgt, _vcgt, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp),
23494 nUF(vcgtq, _vcgt, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp),
23495 nUF(vclt, _vclt, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp_inv),
23496 nUF(vcltq, _vclt, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp_inv),
23497 nUF(vcle, _vcle, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp_inv),
23498 nUF(vcleq, _vcle, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp_inv),
23499 /* Comparison. Type I8 I16 I32 F32. */
23500 nUF(vceq, _vceq, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_ceq),
23501 nUF(vceqq, _vceq, 3, (RNQ, oRNQ, RNDQ_I0), neon_ceq),
23502 /* As above, D registers only. */
23503 nUF(vpmax, _vpmax, 3, (RND, oRND, RND), neon_dyadic_if_su_d),
23504 nUF(vpmin, _vpmin, 3, (RND, oRND, RND), neon_dyadic_if_su_d),
23505 /* Int and float variants, signedness unimportant. */
23506 nUF(vmlaq, _vmla, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mac_maybe_scalar),
23507 nUF(vmlsq, _vmls, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mac_maybe_scalar),
23508 nUF(vpadd, _vpadd, 3, (RND, oRND, RND), neon_dyadic_if_i_d),
23509 /* Add/sub take types I8 I16 I32 I64 F32. */
23510 nUF(vaddq, _vadd, 3, (RNQ, oRNQ, RNQ), neon_addsub_if_i),
23511 nUF(vsubq, _vsub, 3, (RNQ, oRNQ, RNQ), neon_addsub_if_i),
23512 /* vtst takes sizes 8, 16, 32. */
23513 NUF(vtst, 0000810, 3, (RNDQ, oRNDQ, RNDQ), neon_tst),
23514 NUF(vtstq, 0000810, 3, (RNQ, oRNQ, RNQ), neon_tst),
23515 /* VMUL takes I8 I16 I32 F32 P8. */
23516 nUF(vmulq, _vmul, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mul),
23517 /* VQD{R}MULH takes S16 S32. */
23518 nUF(vqdmulh, _vqdmulh, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qdmulh),
23519 nUF(vqdmulhq, _vqdmulh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qdmulh),
23520 nUF(vqrdmulh, _vqrdmulh, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qdmulh),
23521 nUF(vqrdmulhq, _vqrdmulh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qdmulh),
23522 NUF(vacge, 0000e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute),
23523 NUF(vacgeq, 0000e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute),
23524 NUF(vacgt, 0200e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute),
23525 NUF(vacgtq, 0200e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute),
23526 NUF(vaclt, 0200e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute_inv),
23527 NUF(vacltq, 0200e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute_inv),
23528 NUF(vacle, 0000e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute_inv),
23529 NUF(vacleq, 0000e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute_inv),
23530 NUF(vrecps, 0000f10, 3, (RNDQ, oRNDQ, RNDQ), neon_step),
23531 NUF(vrecpsq, 0000f10, 3, (RNQ, oRNQ, RNQ), neon_step),
23532 NUF(vrsqrts, 0200f10, 3, (RNDQ, oRNDQ, RNDQ), neon_step),
23533 NUF(vrsqrtsq, 0200f10, 3, (RNQ, oRNQ, RNQ), neon_step),
23534 /* ARM v8.1 extension. */
23535 nUF (vqrdmlah, _vqrdmlah, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qrdmlah),
23536 nUF (vqrdmlahq, _vqrdmlah, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qrdmlah),
23537 nUF (vqrdmlsh, _vqrdmlsh, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qrdmlah),
23538 nUF (vqrdmlshq, _vqrdmlsh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qrdmlah),
23539
23540 /* Two address, int/float. Types S8 S16 S32 F32. */
23541 NUF(vabsq, 1b10300, 2, (RNQ, RNQ), neon_abs_neg),
23542 NUF(vnegq, 1b10380, 2, (RNQ, RNQ), neon_abs_neg),
23543
23544 /* Data processing with two registers and a shift amount. */
23545 /* Right shifts, and variants with rounding.
23546 Types accepted S8 S16 S32 S64 U8 U16 U32 U64. */
23547 NUF(vshr, 0800010, 3, (RNDQ, oRNDQ, I64z), neon_rshift_round_imm),
23548 NUF(vshrq, 0800010, 3, (RNQ, oRNQ, I64z), neon_rshift_round_imm),
23549 NUF(vrshr, 0800210, 3, (RNDQ, oRNDQ, I64z), neon_rshift_round_imm),
23550 NUF(vrshrq, 0800210, 3, (RNQ, oRNQ, I64z), neon_rshift_round_imm),
23551 NUF(vsra, 0800110, 3, (RNDQ, oRNDQ, I64), neon_rshift_round_imm),
23552 NUF(vsraq, 0800110, 3, (RNQ, oRNQ, I64), neon_rshift_round_imm),
23553 NUF(vrsra, 0800310, 3, (RNDQ, oRNDQ, I64), neon_rshift_round_imm),
23554 NUF(vrsraq, 0800310, 3, (RNQ, oRNQ, I64), neon_rshift_round_imm),
23555 /* Shift and insert. Sizes accepted 8 16 32 64. */
23556 NUF(vsli, 1800510, 3, (RNDQ, oRNDQ, I63), neon_sli),
23557 NUF(vsliq, 1800510, 3, (RNQ, oRNQ, I63), neon_sli),
23558 NUF(vsri, 1800410, 3, (RNDQ, oRNDQ, I64), neon_sri),
23559 NUF(vsriq, 1800410, 3, (RNQ, oRNQ, I64), neon_sri),
23560 /* QSHL{U} immediate accepts S8 S16 S32 S64 U8 U16 U32 U64. */
23561 NUF(vqshlu, 1800610, 3, (RNDQ, oRNDQ, I63), neon_qshlu_imm),
23562 NUF(vqshluq, 1800610, 3, (RNQ, oRNQ, I63), neon_qshlu_imm),
23563 /* Right shift immediate, saturating & narrowing, with rounding variants.
23564 Types accepted S16 S32 S64 U16 U32 U64. */
23565 NUF(vqshrn, 0800910, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow),
23566 NUF(vqrshrn, 0800950, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow),
23567 /* As above, unsigned. Types accepted S16 S32 S64. */
23568 NUF(vqshrun, 0800810, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow_u),
23569 NUF(vqrshrun, 0800850, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow_u),
23570 /* Right shift narrowing. Types accepted I16 I32 I64. */
23571 NUF(vshrn, 0800810, 3, (RND, RNQ, I32z), neon_rshift_narrow),
23572 NUF(vrshrn, 0800850, 3, (RND, RNQ, I32z), neon_rshift_narrow),
23573 /* Special case. Types S8 S16 S32 U8 U16 U32. Handles max shift variant. */
23574 nUF(vshll, _vshll, 3, (RNQ, RND, I32), neon_shll),
23575 /* CVT with optional immediate for fixed-point variant. */
23576 nUF(vcvtq, _vcvt, 3, (RNQ, RNQ, oI32b), neon_cvt),
23577
23578 nUF(vmvn, _vmvn, 2, (RNDQ, RNDQ_Ibig), neon_mvn),
23579 nUF(vmvnq, _vmvn, 2, (RNQ, RNDQ_Ibig), neon_mvn),
23580
23581 /* Data processing, three registers of different lengths. */
23582 /* Dyadic, long insns. Types S8 S16 S32 U8 U16 U32. */
23583 NUF(vabal, 0800500, 3, (RNQ, RND, RND), neon_abal),
23584 /* If not scalar, fall back to neon_dyadic_long.
23585 Vector types as above, scalar types S16 S32 U16 U32. */
23586 nUF(vmlal, _vmlal, 3, (RNQ, RND, RND_RNSC), neon_mac_maybe_scalar_long),
23587 nUF(vmlsl, _vmlsl, 3, (RNQ, RND, RND_RNSC), neon_mac_maybe_scalar_long),
23588 /* Dyadic, widening insns. Types S8 S16 S32 U8 U16 U32. */
23589 NUF(vaddw, 0800100, 3, (RNQ, oRNQ, RND), neon_dyadic_wide),
23590 NUF(vsubw, 0800300, 3, (RNQ, oRNQ, RND), neon_dyadic_wide),
23591 /* Dyadic, narrowing insns. Types I16 I32 I64. */
23592 NUF(vaddhn, 0800400, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
23593 NUF(vraddhn, 1800400, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
23594 NUF(vsubhn, 0800600, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
23595 NUF(vrsubhn, 1800600, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
23596 /* Saturating doubling multiplies. Types S16 S32. */
23597 nUF(vqdmlal, _vqdmlal, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
23598 nUF(vqdmlsl, _vqdmlsl, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
23599 nUF(vqdmull, _vqdmull, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
23600 /* VMULL. Vector types S8 S16 S32 U8 U16 U32 P8, scalar types
23601 S16 S32 U16 U32. */
23602 nUF(vmull, _vmull, 3, (RNQ, RND, RND_RNSC), neon_vmull),
23603
23604 /* Extract. Size 8. */
23605 NUF(vext, 0b00000, 4, (RNDQ, oRNDQ, RNDQ, I15), neon_ext),
23606 NUF(vextq, 0b00000, 4, (RNQ, oRNQ, RNQ, I15), neon_ext),
23607
23608 /* Two registers, miscellaneous. */
23609 /* Reverse. Sizes 8 16 32 (must be < size in opcode). */
23610 NUF(vrev64, 1b00000, 2, (RNDQ, RNDQ), neon_rev),
23611 NUF(vrev64q, 1b00000, 2, (RNQ, RNQ), neon_rev),
23612 NUF(vrev32, 1b00080, 2, (RNDQ, RNDQ), neon_rev),
23613 NUF(vrev32q, 1b00080, 2, (RNQ, RNQ), neon_rev),
23614 NUF(vrev16, 1b00100, 2, (RNDQ, RNDQ), neon_rev),
23615 NUF(vrev16q, 1b00100, 2, (RNQ, RNQ), neon_rev),
23616 /* Vector replicate. Sizes 8 16 32. */
23617 nCE(vdup, _vdup, 2, (RNDQ, RR_RNSC), neon_dup),
23618 nCE(vdupq, _vdup, 2, (RNQ, RR_RNSC), neon_dup),
23619 /* VMOVL. Types S8 S16 S32 U8 U16 U32. */
23620 NUF(vmovl, 0800a10, 2, (RNQ, RND), neon_movl),
23621 /* VMOVN. Types I16 I32 I64. */
23622 nUF(vmovn, _vmovn, 2, (RND, RNQ), neon_movn),
23623 /* VQMOVN. Types S16 S32 S64 U16 U32 U64. */
23624 nUF(vqmovn, _vqmovn, 2, (RND, RNQ), neon_qmovn),
23625 /* VQMOVUN. Types S16 S32 S64. */
23626 nUF(vqmovun, _vqmovun, 2, (RND, RNQ), neon_qmovun),
23627 /* VZIP / VUZP. Sizes 8 16 32. */
23628 NUF(vzip, 1b20180, 2, (RNDQ, RNDQ), neon_zip_uzp),
23629 NUF(vzipq, 1b20180, 2, (RNQ, RNQ), neon_zip_uzp),
23630 NUF(vuzp, 1b20100, 2, (RNDQ, RNDQ), neon_zip_uzp),
23631 NUF(vuzpq, 1b20100, 2, (RNQ, RNQ), neon_zip_uzp),
23632 /* VQABS / VQNEG. Types S8 S16 S32. */
23633 NUF(vqabs, 1b00700, 2, (RNDQ, RNDQ), neon_sat_abs_neg),
23634 NUF(vqabsq, 1b00700, 2, (RNQ, RNQ), neon_sat_abs_neg),
23635 NUF(vqneg, 1b00780, 2, (RNDQ, RNDQ), neon_sat_abs_neg),
23636 NUF(vqnegq, 1b00780, 2, (RNQ, RNQ), neon_sat_abs_neg),
23637 /* Pairwise, lengthening. Types S8 S16 S32 U8 U16 U32. */
23638 NUF(vpadal, 1b00600, 2, (RNDQ, RNDQ), neon_pair_long),
23639 NUF(vpadalq, 1b00600, 2, (RNQ, RNQ), neon_pair_long),
23640 NUF(vpaddl, 1b00200, 2, (RNDQ, RNDQ), neon_pair_long),
23641 NUF(vpaddlq, 1b00200, 2, (RNQ, RNQ), neon_pair_long),
23642 /* Reciprocal estimates. Types U32 F16 F32. */
23643 NUF(vrecpe, 1b30400, 2, (RNDQ, RNDQ), neon_recip_est),
23644 NUF(vrecpeq, 1b30400, 2, (RNQ, RNQ), neon_recip_est),
23645 NUF(vrsqrte, 1b30480, 2, (RNDQ, RNDQ), neon_recip_est),
23646 NUF(vrsqrteq, 1b30480, 2, (RNQ, RNQ), neon_recip_est),
23647 /* VCLS. Types S8 S16 S32. */
23648 NUF(vcls, 1b00400, 2, (RNDQ, RNDQ), neon_cls),
23649 NUF(vclsq, 1b00400, 2, (RNQ, RNQ), neon_cls),
23650 /* VCLZ. Types I8 I16 I32. */
23651 NUF(vclz, 1b00480, 2, (RNDQ, RNDQ), neon_clz),
23652 NUF(vclzq, 1b00480, 2, (RNQ, RNQ), neon_clz),
23653 /* VCNT. Size 8. */
23654 NUF(vcnt, 1b00500, 2, (RNDQ, RNDQ), neon_cnt),
23655 NUF(vcntq, 1b00500, 2, (RNQ, RNQ), neon_cnt),
23656 /* Two address, untyped. */
23657 NUF(vswp, 1b20000, 2, (RNDQ, RNDQ), neon_swp),
23658 NUF(vswpq, 1b20000, 2, (RNQ, RNQ), neon_swp),
23659 /* VTRN. Sizes 8 16 32. */
23660 nUF(vtrn, _vtrn, 2, (RNDQ, RNDQ), neon_trn),
23661 nUF(vtrnq, _vtrn, 2, (RNQ, RNQ), neon_trn),
23662
23663 /* Table lookup. Size 8. */
23664 NUF(vtbl, 1b00800, 3, (RND, NRDLST, RND), neon_tbl_tbx),
23665 NUF(vtbx, 1b00840, 3, (RND, NRDLST, RND), neon_tbl_tbx),
23666
23667 #undef THUMB_VARIANT
23668 #define THUMB_VARIANT & fpu_vfp_v3_or_neon_ext
23669 #undef ARM_VARIANT
23670 #define ARM_VARIANT & fpu_vfp_v3_or_neon_ext
23671
23672 /* Neon element/structure load/store. */
23673 nUF(vld1, _vld1, 2, (NSTRLST, ADDR), neon_ldx_stx),
23674 nUF(vst1, _vst1, 2, (NSTRLST, ADDR), neon_ldx_stx),
23675 nUF(vld2, _vld2, 2, (NSTRLST, ADDR), neon_ldx_stx),
23676 nUF(vst2, _vst2, 2, (NSTRLST, ADDR), neon_ldx_stx),
23677 nUF(vld3, _vld3, 2, (NSTRLST, ADDR), neon_ldx_stx),
23678 nUF(vst3, _vst3, 2, (NSTRLST, ADDR), neon_ldx_stx),
23679 nUF(vld4, _vld4, 2, (NSTRLST, ADDR), neon_ldx_stx),
23680 nUF(vst4, _vst4, 2, (NSTRLST, ADDR), neon_ldx_stx),
23681
23682 #undef THUMB_VARIANT
23683 #define THUMB_VARIANT & fpu_vfp_ext_v3xd
23684 #undef ARM_VARIANT
23685 #define ARM_VARIANT & fpu_vfp_ext_v3xd
23686 cCE("fconsts", eb00a00, 2, (RVS, I255), vfp_sp_const),
23687 cCE("fshtos", eba0a40, 2, (RVS, I16z), vfp_sp_conv_16),
23688 cCE("fsltos", eba0ac0, 2, (RVS, I32), vfp_sp_conv_32),
23689 cCE("fuhtos", ebb0a40, 2, (RVS, I16z), vfp_sp_conv_16),
23690 cCE("fultos", ebb0ac0, 2, (RVS, I32), vfp_sp_conv_32),
23691 cCE("ftoshs", ebe0a40, 2, (RVS, I16z), vfp_sp_conv_16),
23692 cCE("ftosls", ebe0ac0, 2, (RVS, I32), vfp_sp_conv_32),
23693 cCE("ftouhs", ebf0a40, 2, (RVS, I16z), vfp_sp_conv_16),
23694 cCE("ftouls", ebf0ac0, 2, (RVS, I32), vfp_sp_conv_32),
23695
23696 #undef THUMB_VARIANT
23697 #define THUMB_VARIANT & fpu_vfp_ext_v3
23698 #undef ARM_VARIANT
23699 #define ARM_VARIANT & fpu_vfp_ext_v3
23700
23701 cCE("fconstd", eb00b00, 2, (RVD, I255), vfp_dp_const),
23702 cCE("fshtod", eba0b40, 2, (RVD, I16z), vfp_dp_conv_16),
23703 cCE("fsltod", eba0bc0, 2, (RVD, I32), vfp_dp_conv_32),
23704 cCE("fuhtod", ebb0b40, 2, (RVD, I16z), vfp_dp_conv_16),
23705 cCE("fultod", ebb0bc0, 2, (RVD, I32), vfp_dp_conv_32),
23706 cCE("ftoshd", ebe0b40, 2, (RVD, I16z), vfp_dp_conv_16),
23707 cCE("ftosld", ebe0bc0, 2, (RVD, I32), vfp_dp_conv_32),
23708 cCE("ftouhd", ebf0b40, 2, (RVD, I16z), vfp_dp_conv_16),
23709 cCE("ftould", ebf0bc0, 2, (RVD, I32), vfp_dp_conv_32),
23710
23711 #undef ARM_VARIANT
23712 #define ARM_VARIANT & fpu_vfp_ext_fma
23713 #undef THUMB_VARIANT
23714 #define THUMB_VARIANT & fpu_vfp_ext_fma
23715 /* Mnemonics shared by Neon and VFP. These are included in the
23716 VFP FMA variant; NEON and VFP FMA always includes the NEON
23717 FMA instructions. */
23718 nCEF(vfma, _vfma, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_fmac),
23719 nCEF(vfms, _vfms, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_fmac),
23720 /* ffmas/ffmad/ffmss/ffmsd are dummy mnemonics to satisfy gas;
23721 the v form should always be used. */
23722 cCE("ffmas", ea00a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
23723 cCE("ffnmas", ea00a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
23724 cCE("ffmad", ea00b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
23725 cCE("ffnmad", ea00b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
23726 nCE(vfnma, _vfnma, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
23727 nCE(vfnms, _vfnms, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
23728
23729 #undef THUMB_VARIANT
23730 #undef ARM_VARIANT
23731 #define ARM_VARIANT & arm_cext_xscale /* Intel XScale extensions. */
23732
23733 cCE("mia", e200010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
23734 cCE("miaph", e280010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
23735 cCE("miabb", e2c0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
23736 cCE("miabt", e2d0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
23737 cCE("miatb", e2e0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
23738 cCE("miatt", e2f0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
23739 cCE("mar", c400000, 3, (RXA, RRnpc, RRnpc), xsc_mar),
23740 cCE("mra", c500000, 3, (RRnpc, RRnpc, RXA), xsc_mra),
23741
23742 #undef ARM_VARIANT
23743 #define ARM_VARIANT & arm_cext_iwmmxt /* Intel Wireless MMX technology. */
23744
23745 cCE("tandcb", e13f130, 1, (RR), iwmmxt_tandorc),
23746 cCE("tandch", e53f130, 1, (RR), iwmmxt_tandorc),
23747 cCE("tandcw", e93f130, 1, (RR), iwmmxt_tandorc),
23748 cCE("tbcstb", e400010, 2, (RIWR, RR), rn_rd),
23749 cCE("tbcsth", e400050, 2, (RIWR, RR), rn_rd),
23750 cCE("tbcstw", e400090, 2, (RIWR, RR), rn_rd),
23751 cCE("textrcb", e130170, 2, (RR, I7), iwmmxt_textrc),
23752 cCE("textrch", e530170, 2, (RR, I7), iwmmxt_textrc),
23753 cCE("textrcw", e930170, 2, (RR, I7), iwmmxt_textrc),
23754 cCE("textrmub",e100070, 3, (RR, RIWR, I7), iwmmxt_textrm),
23755 cCE("textrmuh",e500070, 3, (RR, RIWR, I7), iwmmxt_textrm),
23756 cCE("textrmuw",e900070, 3, (RR, RIWR, I7), iwmmxt_textrm),
23757 cCE("textrmsb",e100078, 3, (RR, RIWR, I7), iwmmxt_textrm),
23758 cCE("textrmsh",e500078, 3, (RR, RIWR, I7), iwmmxt_textrm),
23759 cCE("textrmsw",e900078, 3, (RR, RIWR, I7), iwmmxt_textrm),
23760 cCE("tinsrb", e600010, 3, (RIWR, RR, I7), iwmmxt_tinsr),
23761 cCE("tinsrh", e600050, 3, (RIWR, RR, I7), iwmmxt_tinsr),
23762 cCE("tinsrw", e600090, 3, (RIWR, RR, I7), iwmmxt_tinsr),
23763 cCE("tmcr", e000110, 2, (RIWC_RIWG, RR), rn_rd),
23764 cCE("tmcrr", c400000, 3, (RIWR, RR, RR), rm_rd_rn),
23765 cCE("tmia", e200010, 3, (RIWR, RR, RR), iwmmxt_tmia),
23766 cCE("tmiaph", e280010, 3, (RIWR, RR, RR), iwmmxt_tmia),
23767 cCE("tmiabb", e2c0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
23768 cCE("tmiabt", e2d0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
23769 cCE("tmiatb", e2e0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
23770 cCE("tmiatt", e2f0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
23771 cCE("tmovmskb",e100030, 2, (RR, RIWR), rd_rn),
23772 cCE("tmovmskh",e500030, 2, (RR, RIWR), rd_rn),
23773 cCE("tmovmskw",e900030, 2, (RR, RIWR), rd_rn),
23774 cCE("tmrc", e100110, 2, (RR, RIWC_RIWG), rd_rn),
23775 cCE("tmrrc", c500000, 3, (RR, RR, RIWR), rd_rn_rm),
23776 cCE("torcb", e13f150, 1, (RR), iwmmxt_tandorc),
23777 cCE("torch", e53f150, 1, (RR), iwmmxt_tandorc),
23778 cCE("torcw", e93f150, 1, (RR), iwmmxt_tandorc),
23779 cCE("waccb", e0001c0, 2, (RIWR, RIWR), rd_rn),
23780 cCE("wacch", e4001c0, 2, (RIWR, RIWR), rd_rn),
23781 cCE("waccw", e8001c0, 2, (RIWR, RIWR), rd_rn),
23782 cCE("waddbss", e300180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23783 cCE("waddb", e000180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23784 cCE("waddbus", e100180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23785 cCE("waddhss", e700180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23786 cCE("waddh", e400180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23787 cCE("waddhus", e500180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23788 cCE("waddwss", eb00180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23789 cCE("waddw", e800180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23790 cCE("waddwus", e900180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23791 cCE("waligni", e000020, 4, (RIWR, RIWR, RIWR, I7), iwmmxt_waligni),
23792 cCE("walignr0",e800020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23793 cCE("walignr1",e900020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23794 cCE("walignr2",ea00020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23795 cCE("walignr3",eb00020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23796 cCE("wand", e200000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23797 cCE("wandn", e300000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23798 cCE("wavg2b", e800000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23799 cCE("wavg2br", e900000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23800 cCE("wavg2h", ec00000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23801 cCE("wavg2hr", ed00000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23802 cCE("wcmpeqb", e000060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23803 cCE("wcmpeqh", e400060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23804 cCE("wcmpeqw", e800060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23805 cCE("wcmpgtub",e100060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23806 cCE("wcmpgtuh",e500060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23807 cCE("wcmpgtuw",e900060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23808 cCE("wcmpgtsb",e300060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23809 cCE("wcmpgtsh",e700060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23810 cCE("wcmpgtsw",eb00060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23811 cCE("wldrb", c100000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
23812 cCE("wldrh", c500000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
23813 cCE("wldrw", c100100, 2, (RIWR_RIWC, ADDR), iwmmxt_wldstw),
23814 cCE("wldrd", c500100, 2, (RIWR, ADDR), iwmmxt_wldstd),
23815 cCE("wmacs", e600100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23816 cCE("wmacsz", e700100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23817 cCE("wmacu", e400100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23818 cCE("wmacuz", e500100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23819 cCE("wmadds", ea00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23820 cCE("wmaddu", e800100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23821 cCE("wmaxsb", e200160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23822 cCE("wmaxsh", e600160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23823 cCE("wmaxsw", ea00160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23824 cCE("wmaxub", e000160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23825 cCE("wmaxuh", e400160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23826 cCE("wmaxuw", e800160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23827 cCE("wminsb", e300160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23828 cCE("wminsh", e700160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23829 cCE("wminsw", eb00160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23830 cCE("wminub", e100160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23831 cCE("wminuh", e500160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23832 cCE("wminuw", e900160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23833 cCE("wmov", e000000, 2, (RIWR, RIWR), iwmmxt_wmov),
23834 cCE("wmulsm", e300100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23835 cCE("wmulsl", e200100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23836 cCE("wmulum", e100100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23837 cCE("wmulul", e000100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23838 cCE("wor", e000000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23839 cCE("wpackhss",e700080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23840 cCE("wpackhus",e500080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23841 cCE("wpackwss",eb00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23842 cCE("wpackwus",e900080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23843 cCE("wpackdss",ef00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23844 cCE("wpackdus",ed00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23845 cCE("wrorh", e700040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
23846 cCE("wrorhg", e700148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
23847 cCE("wrorw", eb00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
23848 cCE("wrorwg", eb00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
23849 cCE("wrord", ef00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
23850 cCE("wrordg", ef00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
23851 cCE("wsadb", e000120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23852 cCE("wsadbz", e100120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23853 cCE("wsadh", e400120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23854 cCE("wsadhz", e500120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23855 cCE("wshufh", e0001e0, 3, (RIWR, RIWR, I255), iwmmxt_wshufh),
23856 cCE("wsllh", e500040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
23857 cCE("wsllhg", e500148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
23858 cCE("wsllw", e900040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
23859 cCE("wsllwg", e900148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
23860 cCE("wslld", ed00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
23861 cCE("wslldg", ed00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
23862 cCE("wsrah", e400040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
23863 cCE("wsrahg", e400148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
23864 cCE("wsraw", e800040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
23865 cCE("wsrawg", e800148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
23866 cCE("wsrad", ec00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
23867 cCE("wsradg", ec00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
23868 cCE("wsrlh", e600040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
23869 cCE("wsrlhg", e600148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
23870 cCE("wsrlw", ea00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
23871 cCE("wsrlwg", ea00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
23872 cCE("wsrld", ee00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
23873 cCE("wsrldg", ee00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
23874 cCE("wstrb", c000000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
23875 cCE("wstrh", c400000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
23876 cCE("wstrw", c000100, 2, (RIWR_RIWC, ADDR), iwmmxt_wldstw),
23877 cCE("wstrd", c400100, 2, (RIWR, ADDR), iwmmxt_wldstd),
23878 cCE("wsubbss", e3001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23879 cCE("wsubb", e0001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23880 cCE("wsubbus", e1001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23881 cCE("wsubhss", e7001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23882 cCE("wsubh", e4001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23883 cCE("wsubhus", e5001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23884 cCE("wsubwss", eb001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23885 cCE("wsubw", e8001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23886 cCE("wsubwus", e9001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23887 cCE("wunpckehub",e0000c0, 2, (RIWR, RIWR), rd_rn),
23888 cCE("wunpckehuh",e4000c0, 2, (RIWR, RIWR), rd_rn),
23889 cCE("wunpckehuw",e8000c0, 2, (RIWR, RIWR), rd_rn),
23890 cCE("wunpckehsb",e2000c0, 2, (RIWR, RIWR), rd_rn),
23891 cCE("wunpckehsh",e6000c0, 2, (RIWR, RIWR), rd_rn),
23892 cCE("wunpckehsw",ea000c0, 2, (RIWR, RIWR), rd_rn),
23893 cCE("wunpckihb", e1000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23894 cCE("wunpckihh", e5000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23895 cCE("wunpckihw", e9000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23896 cCE("wunpckelub",e0000e0, 2, (RIWR, RIWR), rd_rn),
23897 cCE("wunpckeluh",e4000e0, 2, (RIWR, RIWR), rd_rn),
23898 cCE("wunpckeluw",e8000e0, 2, (RIWR, RIWR), rd_rn),
23899 cCE("wunpckelsb",e2000e0, 2, (RIWR, RIWR), rd_rn),
23900 cCE("wunpckelsh",e6000e0, 2, (RIWR, RIWR), rd_rn),
23901 cCE("wunpckelsw",ea000e0, 2, (RIWR, RIWR), rd_rn),
23902 cCE("wunpckilb", e1000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23903 cCE("wunpckilh", e5000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23904 cCE("wunpckilw", e9000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23905 cCE("wxor", e100000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23906 cCE("wzero", e300000, 1, (RIWR), iwmmxt_wzero),
23907
23908 #undef ARM_VARIANT
23909 #define ARM_VARIANT & arm_cext_iwmmxt2 /* Intel Wireless MMX technology, version 2. */
23910
23911 cCE("torvscb", e12f190, 1, (RR), iwmmxt_tandorc),
23912 cCE("torvsch", e52f190, 1, (RR), iwmmxt_tandorc),
23913 cCE("torvscw", e92f190, 1, (RR), iwmmxt_tandorc),
23914 cCE("wabsb", e2001c0, 2, (RIWR, RIWR), rd_rn),
23915 cCE("wabsh", e6001c0, 2, (RIWR, RIWR), rd_rn),
23916 cCE("wabsw", ea001c0, 2, (RIWR, RIWR), rd_rn),
23917 cCE("wabsdiffb", e1001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23918 cCE("wabsdiffh", e5001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23919 cCE("wabsdiffw", e9001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23920 cCE("waddbhusl", e2001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23921 cCE("waddbhusm", e6001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23922 cCE("waddhc", e600180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23923 cCE("waddwc", ea00180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23924 cCE("waddsubhx", ea001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23925 cCE("wavg4", e400000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23926 cCE("wavg4r", e500000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23927 cCE("wmaddsn", ee00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23928 cCE("wmaddsx", eb00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23929 cCE("wmaddun", ec00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23930 cCE("wmaddux", e900100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23931 cCE("wmerge", e000080, 4, (RIWR, RIWR, RIWR, I7), iwmmxt_wmerge),
23932 cCE("wmiabb", e0000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23933 cCE("wmiabt", e1000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23934 cCE("wmiatb", e2000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23935 cCE("wmiatt", e3000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23936 cCE("wmiabbn", e4000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23937 cCE("wmiabtn", e5000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23938 cCE("wmiatbn", e6000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23939 cCE("wmiattn", e7000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23940 cCE("wmiawbb", e800120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23941 cCE("wmiawbt", e900120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23942 cCE("wmiawtb", ea00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23943 cCE("wmiawtt", eb00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23944 cCE("wmiawbbn", ec00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23945 cCE("wmiawbtn", ed00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23946 cCE("wmiawtbn", ee00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23947 cCE("wmiawttn", ef00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23948 cCE("wmulsmr", ef00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23949 cCE("wmulumr", ed00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23950 cCE("wmulwumr", ec000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23951 cCE("wmulwsmr", ee000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23952 cCE("wmulwum", ed000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23953 cCE("wmulwsm", ef000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23954 cCE("wmulwl", eb000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23955 cCE("wqmiabb", e8000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23956 cCE("wqmiabt", e9000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23957 cCE("wqmiatb", ea000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23958 cCE("wqmiatt", eb000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23959 cCE("wqmiabbn", ec000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23960 cCE("wqmiabtn", ed000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23961 cCE("wqmiatbn", ee000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23962 cCE("wqmiattn", ef000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23963 cCE("wqmulm", e100080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23964 cCE("wqmulmr", e300080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23965 cCE("wqmulwm", ec000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23966 cCE("wqmulwmr", ee000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23967 cCE("wsubaddhx", ed001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23968
23969 #undef ARM_VARIANT
23970 #define ARM_VARIANT & arm_cext_maverick /* Cirrus Maverick instructions. */
23971
23972 cCE("cfldrs", c100400, 2, (RMF, ADDRGLDC), rd_cpaddr),
23973 cCE("cfldrd", c500400, 2, (RMD, ADDRGLDC), rd_cpaddr),
23974 cCE("cfldr32", c100500, 2, (RMFX, ADDRGLDC), rd_cpaddr),
23975 cCE("cfldr64", c500500, 2, (RMDX, ADDRGLDC), rd_cpaddr),
23976 cCE("cfstrs", c000400, 2, (RMF, ADDRGLDC), rd_cpaddr),
23977 cCE("cfstrd", c400400, 2, (RMD, ADDRGLDC), rd_cpaddr),
23978 cCE("cfstr32", c000500, 2, (RMFX, ADDRGLDC), rd_cpaddr),
23979 cCE("cfstr64", c400500, 2, (RMDX, ADDRGLDC), rd_cpaddr),
23980 cCE("cfmvsr", e000450, 2, (RMF, RR), rn_rd),
23981 cCE("cfmvrs", e100450, 2, (RR, RMF), rd_rn),
23982 cCE("cfmvdlr", e000410, 2, (RMD, RR), rn_rd),
23983 cCE("cfmvrdl", e100410, 2, (RR, RMD), rd_rn),
23984 cCE("cfmvdhr", e000430, 2, (RMD, RR), rn_rd),
23985 cCE("cfmvrdh", e100430, 2, (RR, RMD), rd_rn),
23986 cCE("cfmv64lr",e000510, 2, (RMDX, RR), rn_rd),
23987 cCE("cfmvr64l",e100510, 2, (RR, RMDX), rd_rn),
23988 cCE("cfmv64hr",e000530, 2, (RMDX, RR), rn_rd),
23989 cCE("cfmvr64h",e100530, 2, (RR, RMDX), rd_rn),
23990 cCE("cfmval32",e200440, 2, (RMAX, RMFX), rd_rn),
23991 cCE("cfmv32al",e100440, 2, (RMFX, RMAX), rd_rn),
23992 cCE("cfmvam32",e200460, 2, (RMAX, RMFX), rd_rn),
23993 cCE("cfmv32am",e100460, 2, (RMFX, RMAX), rd_rn),
23994 cCE("cfmvah32",e200480, 2, (RMAX, RMFX), rd_rn),
23995 cCE("cfmv32ah",e100480, 2, (RMFX, RMAX), rd_rn),
23996 cCE("cfmva32", e2004a0, 2, (RMAX, RMFX), rd_rn),
23997 cCE("cfmv32a", e1004a0, 2, (RMFX, RMAX), rd_rn),
23998 cCE("cfmva64", e2004c0, 2, (RMAX, RMDX), rd_rn),
23999 cCE("cfmv64a", e1004c0, 2, (RMDX, RMAX), rd_rn),
24000 cCE("cfmvsc32",e2004e0, 2, (RMDS, RMDX), mav_dspsc),
24001 cCE("cfmv32sc",e1004e0, 2, (RMDX, RMDS), rd),
24002 cCE("cfcpys", e000400, 2, (RMF, RMF), rd_rn),
24003 cCE("cfcpyd", e000420, 2, (RMD, RMD), rd_rn),
24004 cCE("cfcvtsd", e000460, 2, (RMD, RMF), rd_rn),
24005 cCE("cfcvtds", e000440, 2, (RMF, RMD), rd_rn),
24006 cCE("cfcvt32s",e000480, 2, (RMF, RMFX), rd_rn),
24007 cCE("cfcvt32d",e0004a0, 2, (RMD, RMFX), rd_rn),
24008 cCE("cfcvt64s",e0004c0, 2, (RMF, RMDX), rd_rn),
24009 cCE("cfcvt64d",e0004e0, 2, (RMD, RMDX), rd_rn),
24010 cCE("cfcvts32",e100580, 2, (RMFX, RMF), rd_rn),
24011 cCE("cfcvtd32",e1005a0, 2, (RMFX, RMD), rd_rn),
24012 cCE("cftruncs32",e1005c0, 2, (RMFX, RMF), rd_rn),
24013 cCE("cftruncd32",e1005e0, 2, (RMFX, RMD), rd_rn),
24014 cCE("cfrshl32",e000550, 3, (RMFX, RMFX, RR), mav_triple),
24015 cCE("cfrshl64",e000570, 3, (RMDX, RMDX, RR), mav_triple),
24016 cCE("cfsh32", e000500, 3, (RMFX, RMFX, I63s), mav_shift),
24017 cCE("cfsh64", e200500, 3, (RMDX, RMDX, I63s), mav_shift),
24018 cCE("cfcmps", e100490, 3, (RR, RMF, RMF), rd_rn_rm),
24019 cCE("cfcmpd", e1004b0, 3, (RR, RMD, RMD), rd_rn_rm),
24020 cCE("cfcmp32", e100590, 3, (RR, RMFX, RMFX), rd_rn_rm),
24021 cCE("cfcmp64", e1005b0, 3, (RR, RMDX, RMDX), rd_rn_rm),
24022 cCE("cfabss", e300400, 2, (RMF, RMF), rd_rn),
24023 cCE("cfabsd", e300420, 2, (RMD, RMD), rd_rn),
24024 cCE("cfnegs", e300440, 2, (RMF, RMF), rd_rn),
24025 cCE("cfnegd", e300460, 2, (RMD, RMD), rd_rn),
24026 cCE("cfadds", e300480, 3, (RMF, RMF, RMF), rd_rn_rm),
24027 cCE("cfaddd", e3004a0, 3, (RMD, RMD, RMD), rd_rn_rm),
24028 cCE("cfsubs", e3004c0, 3, (RMF, RMF, RMF), rd_rn_rm),
24029 cCE("cfsubd", e3004e0, 3, (RMD, RMD, RMD), rd_rn_rm),
24030 cCE("cfmuls", e100400, 3, (RMF, RMF, RMF), rd_rn_rm),
24031 cCE("cfmuld", e100420, 3, (RMD, RMD, RMD), rd_rn_rm),
24032 cCE("cfabs32", e300500, 2, (RMFX, RMFX), rd_rn),
24033 cCE("cfabs64", e300520, 2, (RMDX, RMDX), rd_rn),
24034 cCE("cfneg32", e300540, 2, (RMFX, RMFX), rd_rn),
24035 cCE("cfneg64", e300560, 2, (RMDX, RMDX), rd_rn),
24036 cCE("cfadd32", e300580, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
24037 cCE("cfadd64", e3005a0, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
24038 cCE("cfsub32", e3005c0, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
24039 cCE("cfsub64", e3005e0, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
24040 cCE("cfmul32", e100500, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
24041 cCE("cfmul64", e100520, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
24042 cCE("cfmac32", e100540, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
24043 cCE("cfmsc32", e100560, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
24044 cCE("cfmadd32",e000600, 4, (RMAX, RMFX, RMFX, RMFX), mav_quad),
24045 cCE("cfmsub32",e100600, 4, (RMAX, RMFX, RMFX, RMFX), mav_quad),
24046 cCE("cfmadda32", e200600, 4, (RMAX, RMAX, RMFX, RMFX), mav_quad),
24047 cCE("cfmsuba32", e300600, 4, (RMAX, RMAX, RMFX, RMFX), mav_quad),
24048
24049 /* ARMv8.5-A instructions. */
24050 #undef ARM_VARIANT
24051 #define ARM_VARIANT & arm_ext_sb
24052 #undef THUMB_VARIANT
24053 #define THUMB_VARIANT & arm_ext_sb
24054 TUF("sb", 57ff070, f3bf8f70, 0, (), noargs, noargs),
24055
24056 #undef ARM_VARIANT
24057 #define ARM_VARIANT & arm_ext_predres
24058 #undef THUMB_VARIANT
24059 #define THUMB_VARIANT & arm_ext_predres
24060 CE("cfprctx", e070f93, 1, (RRnpc), rd),
24061 CE("dvprctx", e070fb3, 1, (RRnpc), rd),
24062 CE("cpprctx", e070ff3, 1, (RRnpc), rd),
24063
24064 /* ARMv8-M instructions. */
24065 #undef ARM_VARIANT
24066 #define ARM_VARIANT NULL
24067 #undef THUMB_VARIANT
24068 #define THUMB_VARIANT & arm_ext_v8m
24069 ToU("sg", e97fe97f, 0, (), noargs),
24070 ToC("blxns", 4784, 1, (RRnpc), t_blx),
24071 ToC("bxns", 4704, 1, (RRnpc), t_bx),
24072 ToC("tt", e840f000, 2, (RRnpc, RRnpc), tt),
24073 ToC("ttt", e840f040, 2, (RRnpc, RRnpc), tt),
24074 ToC("tta", e840f080, 2, (RRnpc, RRnpc), tt),
24075 ToC("ttat", e840f0c0, 2, (RRnpc, RRnpc), tt),
24076
24077 /* FP for ARMv8-M Mainline. Enabled for ARMv8-M Mainline because the
24078 instructions behave as nop if no VFP is present. */
24079 #undef THUMB_VARIANT
24080 #define THUMB_VARIANT & arm_ext_v8m_main
24081 ToC("vlldm", ec300a00, 1, (RRnpc), rn),
24082 ToC("vlstm", ec200a00, 1, (RRnpc), rn),
24083
24084 /* Armv8.1-M Mainline instructions. */
24085 #undef THUMB_VARIANT
24086 #define THUMB_VARIANT & arm_ext_v8_1m_main
24087 toC("bf", _bf, 2, (EXPs, EXPs), t_branch_future),
24088 toU("bfcsel", _bfcsel, 4, (EXPs, EXPs, EXPs, COND), t_branch_future),
24089 toC("bfx", _bfx, 2, (EXPs, RRnpcsp), t_branch_future),
24090 toC("bfl", _bfl, 2, (EXPs, EXPs), t_branch_future),
24091 toC("bflx", _bflx, 2, (EXPs, RRnpcsp), t_branch_future),
24092
24093 toU("dls", _dls, 2, (LR, RRnpcsp), t_loloop),
24094 toU("wls", _wls, 3, (LR, RRnpcsp, EXP), t_loloop),
24095 toU("le", _le, 2, (oLR, EXP), t_loloop),
24096
24097 ToC("clrm", e89f0000, 1, (CLRMLST), t_clrm),
24098 ToC("vscclrm", ec9f0a00, 1, (VRSDVLST), t_vscclrm),
24099
24100 #undef THUMB_VARIANT
24101 #define THUMB_VARIANT & mve_ext
24102
24103 ToC("vpt", ee410f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24104 ToC("vptt", ee018f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24105 ToC("vpte", ee418f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24106 ToC("vpttt", ee014f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24107 ToC("vptte", ee01cf00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24108 ToC("vptet", ee41cf00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24109 ToC("vptee", ee414f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24110 ToC("vptttt", ee012f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24111 ToC("vpttte", ee016f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24112 ToC("vpttet", ee01ef00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24113 ToC("vpttee", ee01af00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24114 ToC("vptett", ee41af00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24115 ToC("vptete", ee41ef00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24116 ToC("vpteet", ee416f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24117 ToC("vpteee", ee412f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24118
24119 ToC("vpst", fe710f4d, 0, (), mve_vpt),
24120 ToC("vpstt", fe318f4d, 0, (), mve_vpt),
24121 ToC("vpste", fe718f4d, 0, (), mve_vpt),
24122 ToC("vpsttt", fe314f4d, 0, (), mve_vpt),
24123 ToC("vpstte", fe31cf4d, 0, (), mve_vpt),
24124 ToC("vpstet", fe71cf4d, 0, (), mve_vpt),
24125 ToC("vpstee", fe714f4d, 0, (), mve_vpt),
24126 ToC("vpstttt", fe312f4d, 0, (), mve_vpt),
24127 ToC("vpsttte", fe316f4d, 0, (), mve_vpt),
24128 ToC("vpsttet", fe31ef4d, 0, (), mve_vpt),
24129 ToC("vpsttee", fe31af4d, 0, (), mve_vpt),
24130 ToC("vpstett", fe71af4d, 0, (), mve_vpt),
24131 ToC("vpstete", fe71ef4d, 0, (), mve_vpt),
24132 ToC("vpsteet", fe716f4d, 0, (), mve_vpt),
24133 ToC("vpsteee", fe712f4d, 0, (), mve_vpt),
24134
24135 /* MVE and MVE FP only. */
24136 mCEF(vadc, _vadc, 3, (RMQ, RMQ, RMQ), mve_vadc),
24137 mCEF(vadci, _vadci, 3, (RMQ, RMQ, RMQ), mve_vadc),
24138 mToC("vsbc", fe300f00, 3, (RMQ, RMQ, RMQ), mve_vsbc),
24139 mToC("vsbci", fe301f00, 3, (RMQ, RMQ, RMQ), mve_vsbc),
24140 mCEF(vmullb, _vmullb, 3, (RMQ, RMQ, RMQ), mve_vmull),
24141 mCEF(vabav, _vabav, 3, (RRnpcsp, RMQ, RMQ), mve_vabav),
24142 mCEF(vmladav, _vmladav, 3, (RRe, RMQ, RMQ), mve_vmladav),
24143 mCEF(vmladava, _vmladava, 3, (RRe, RMQ, RMQ), mve_vmladav),
24144 mCEF(vmladavx, _vmladavx, 3, (RRe, RMQ, RMQ), mve_vmladav),
24145 mCEF(vmladavax, _vmladavax, 3, (RRe, RMQ, RMQ), mve_vmladav),
24146 mCEF(vmlav, _vmladav, 3, (RRe, RMQ, RMQ), mve_vmladav),
24147 mCEF(vmlava, _vmladava, 3, (RRe, RMQ, RMQ), mve_vmladav),
24148 mCEF(vmlsdav, _vmlsdav, 3, (RRe, RMQ, RMQ), mve_vmladav),
24149 mCEF(vmlsdava, _vmlsdava, 3, (RRe, RMQ, RMQ), mve_vmladav),
24150 mCEF(vmlsdavx, _vmlsdavx, 3, (RRe, RMQ, RMQ), mve_vmladav),
24151 mCEF(vmlsdavax, _vmlsdavax, 3, (RRe, RMQ, RMQ), mve_vmladav),
24152
24153 mCEF(vst20, _vst20, 2, (MSTRLST2, ADDRMVE), mve_vst_vld),
24154 mCEF(vst21, _vst21, 2, (MSTRLST2, ADDRMVE), mve_vst_vld),
24155 mCEF(vst40, _vst40, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
24156 mCEF(vst41, _vst41, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
24157 mCEF(vst42, _vst42, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
24158 mCEF(vst43, _vst43, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
24159 mCEF(vld20, _vld20, 2, (MSTRLST2, ADDRMVE), mve_vst_vld),
24160 mCEF(vld21, _vld21, 2, (MSTRLST2, ADDRMVE), mve_vst_vld),
24161 mCEF(vld40, _vld40, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
24162 mCEF(vld41, _vld41, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
24163 mCEF(vld42, _vld42, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
24164 mCEF(vld43, _vld43, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
24165 mCEF(vstrb, _vstrb, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
24166 mCEF(vstrh, _vstrh, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
24167 mCEF(vstrw, _vstrw, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
24168 mCEF(vstrd, _vstrd, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
24169 mCEF(vldrb, _vldrb, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
24170 mCEF(vldrh, _vldrh, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
24171 mCEF(vldrw, _vldrw, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
24172 mCEF(vldrd, _vldrd, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
24173
24174 mCEF(vmovnt, _vmovnt, 2, (RMQ, RMQ), mve_movn),
24175 mCEF(vmovnb, _vmovnb, 2, (RMQ, RMQ), mve_movn),
24176 mCEF(vbrsr, _vbrsr, 3, (RMQ, RMQ, RR), mve_vbrsr),
24177 mCEF(vaddlv, _vaddlv, 3, (RRe, RRo, RMQ), mve_vaddlv),
24178 mCEF(vaddlva, _vaddlva, 3, (RRe, RRo, RMQ), mve_vaddlv),
24179 mCEF(vaddv, _vaddv, 2, (RRe, RMQ), mve_vaddv),
24180 mCEF(vaddva, _vaddva, 2, (RRe, RMQ), mve_vaddv),
24181
24182 #undef THUMB_VARIANT
24183 #define THUMB_VARIANT & mve_fp_ext
24184 mToC("vcmul", ee300e00, 4, (RMQ, RMQ, RMQ, EXPi), mve_vcmul),
24185
24186 #undef ARM_VARIANT
24187 #define ARM_VARIANT & fpu_vfp_ext_v1
24188 #undef THUMB_VARIANT
24189 #define THUMB_VARIANT & arm_ext_v6t2
24190
24191 mcCE(fcpyd, eb00b40, 2, (RVD, RVD), vfp_dp_rd_rm),
24192
24193 #undef ARM_VARIANT
24194 #define ARM_VARIANT & fpu_vfp_ext_v1xd
24195
24196 MNCE(vmov, 0, 1, (VMOV), neon_mov),
24197 mcCE(fmrs, e100a10, 2, (RR, RVS), vfp_reg_from_sp),
24198 mcCE(fmsr, e000a10, 2, (RVS, RR), vfp_sp_from_reg),
24199 mcCE(fcpys, eb00a40, 2, (RVS, RVS), vfp_sp_monadic),
24200
24201 mCEF(vmullt, _vmullt, 3, (RNSDQMQ, oRNSDQMQ, RNSDQ_RNSC_MQ), mve_vmull),
24202 mnCEF(vadd, _vadd, 3, (RNSDQMQ, oRNSDQMQ, RNSDQMQR), neon_addsub_if_i),
24203 mnCEF(vsub, _vsub, 3, (RNSDQMQ, oRNSDQMQ, RNSDQMQR), neon_addsub_if_i),
24204
24205 MNCEF(vabs, 1b10300, 2, (RNSDQMQ, RNSDQMQ), neon_abs_neg),
24206 MNCEF(vneg, 1b10380, 2, (RNSDQMQ, RNSDQMQ), neon_abs_neg),
24207
24208 mCEF(vmovlt, _vmovlt, 1, (VMOV), mve_movl),
24209 mCEF(vmovlb, _vmovlb, 1, (VMOV), mve_movl),
24210
24211 mnCE(vcmp, _vcmp, 3, (RVSD_COND, RSVDMQ_FI0, oRMQRZ), vfp_nsyn_cmp),
24212 mnCE(vcmpe, _vcmpe, 3, (RVSD_COND, RSVDMQ_FI0, oRMQRZ), vfp_nsyn_cmp),
24213
24214 #undef ARM_VARIANT
24215 #define ARM_VARIANT & fpu_vfp_ext_v2
24216
24217 mcCE(fmsrr, c400a10, 3, (VRSLST, RR, RR), vfp_sp2_from_reg2),
24218 mcCE(fmrrs, c500a10, 3, (RR, RR, VRSLST), vfp_reg2_from_sp2),
24219 mcCE(fmdrr, c400b10, 3, (RVD, RR, RR), vfp_dp_rm_rd_rn),
24220 mcCE(fmrrd, c500b10, 3, (RR, RR, RVD), vfp_dp_rd_rn_rm),
24221
24222 #undef ARM_VARIANT
24223 #define ARM_VARIANT & fpu_vfp_ext_armv8xd
24224 mnUF(vcvta, _vcvta, 2, (RNSDQMQ, oRNSDQMQ), neon_cvta),
24225 mnUF(vcvtp, _vcvta, 2, (RNSDQMQ, oRNSDQMQ), neon_cvtp),
24226 mnUF(vcvtn, _vcvta, 3, (RNSDQMQ, oRNSDQMQ, oI32z), neon_cvtn),
24227 mnUF(vcvtm, _vcvta, 2, (RNSDQMQ, oRNSDQMQ), neon_cvtm),
24228
24229 #undef ARM_VARIANT
24230 #define ARM_VARIANT & fpu_neon_ext_v1
24231 mnUF(vabd, _vabd, 3, (RNDQMQ, oRNDQMQ, RNDQMQ), neon_dyadic_if_su),
24232 mnUF(vabdl, _vabdl, 3, (RNQMQ, RNDMQ, RNDMQ), neon_dyadic_long),
24233 mnUF(vaddl, _vaddl, 3, (RNQMQ, RNDMQ, RNDMQR), neon_dyadic_long),
24234 mnUF(vsubl, _vsubl, 3, (RNQMQ, RNDMQ, RNDMQR), neon_dyadic_long),
24235 mnUF(vand, _vand, 3, (RNDQMQ, oRNDQMQ, RNDQMQ_Ibig), neon_logic),
24236 mnUF(vbic, _vbic, 3, (RNDQMQ, oRNDQMQ, RNDQMQ_Ibig), neon_logic),
24237 mnUF(vorr, _vorr, 3, (RNDQMQ, oRNDQMQ, RNDQMQ_Ibig), neon_logic),
24238 mnUF(vorn, _vorn, 3, (RNDQMQ, oRNDQMQ, RNDQMQ_Ibig), neon_logic),
24239 mnUF(veor, _veor, 3, (RNDQMQ, oRNDQMQ, RNDQMQ), neon_logic),
24240
24241 #undef ARM_VARIANT
24242 #define ARM_VARIANT & arm_ext_v8_3
24243 #undef THUMB_VARIANT
24244 #define THUMB_VARIANT & arm_ext_v6t2_v8m
24245 MNUF (vcadd, 0, 4, (RNDQMQ, RNDQMQ, RNDQMQ, EXPi), vcadd),
24246 MNUF (vcmla, 0, 4, (RNDQMQ, RNDQMQ, RNDQMQ_RNSC, EXPi), vcmla),
24247 };
24248 #undef ARM_VARIANT
24249 #undef THUMB_VARIANT
24250 #undef TCE
24251 #undef TUE
24252 #undef TUF
24253 #undef TCC
24254 #undef cCE
24255 #undef cCL
24256 #undef C3E
24257 #undef C3
24258 #undef CE
24259 #undef CM
24260 #undef CL
24261 #undef UE
24262 #undef UF
24263 #undef UT
24264 #undef NUF
24265 #undef nUF
24266 #undef NCE
24267 #undef nCE
24268 #undef OPS0
24269 #undef OPS1
24270 #undef OPS2
24271 #undef OPS3
24272 #undef OPS4
24273 #undef OPS5
24274 #undef OPS6
24275 #undef do_0
24276 #undef ToC
24277 #undef toC
24278 #undef ToU
24279 #undef toU
24280 \f
24281 /* MD interface: bits in the object file. */
24282
24283 /* Turn an integer of n bytes (in val) into a stream of bytes appropriate
24284 for use in the a.out file, and stores them in the array pointed to by buf.
24285 This knows about the endian-ness of the target machine and does
24286 THE RIGHT THING, whatever it is. Possible values for n are 1 (byte)
24287 2 (short) and 4 (long) Floating numbers are put out as a series of
24288 LITTLENUMS (shorts, here at least). */
24289
24290 void
24291 md_number_to_chars (char * buf, valueT val, int n)
24292 {
24293 if (target_big_endian)
24294 number_to_chars_bigendian (buf, val, n);
24295 else
24296 number_to_chars_littleendian (buf, val, n);
24297 }
24298
24299 static valueT
24300 md_chars_to_number (char * buf, int n)
24301 {
24302 valueT result = 0;
24303 unsigned char * where = (unsigned char *) buf;
24304
24305 if (target_big_endian)
24306 {
24307 while (n--)
24308 {
24309 result <<= 8;
24310 result |= (*where++ & 255);
24311 }
24312 }
24313 else
24314 {
24315 while (n--)
24316 {
24317 result <<= 8;
24318 result |= (where[n] & 255);
24319 }
24320 }
24321
24322 return result;
24323 }
24324
24325 /* MD interface: Sections. */
24326
24327 /* Calculate the maximum variable size (i.e., excluding fr_fix)
24328 that an rs_machine_dependent frag may reach. */
24329
24330 unsigned int
24331 arm_frag_max_var (fragS *fragp)
24332 {
24333 /* We only use rs_machine_dependent for variable-size Thumb instructions,
24334 which are either THUMB_SIZE (2) or INSN_SIZE (4).
24335
24336 Note that we generate relaxable instructions even for cases that don't
24337 really need it, like an immediate that's a trivial constant. So we're
24338 overestimating the instruction size for some of those cases. Rather
24339 than putting more intelligence here, it would probably be better to
24340 avoid generating a relaxation frag in the first place when it can be
24341 determined up front that a short instruction will suffice. */
24342
24343 gas_assert (fragp->fr_type == rs_machine_dependent);
24344 return INSN_SIZE;
24345 }
24346
24347 /* Estimate the size of a frag before relaxing. Assume everything fits in
24348 2 bytes. */
24349
24350 int
24351 md_estimate_size_before_relax (fragS * fragp,
24352 segT segtype ATTRIBUTE_UNUSED)
24353 {
24354 fragp->fr_var = 2;
24355 return 2;
24356 }
24357
24358 /* Convert a machine dependent frag. */
24359
24360 void
24361 md_convert_frag (bfd *abfd, segT asec ATTRIBUTE_UNUSED, fragS *fragp)
24362 {
24363 unsigned long insn;
24364 unsigned long old_op;
24365 char *buf;
24366 expressionS exp;
24367 fixS *fixp;
24368 int reloc_type;
24369 int pc_rel;
24370 int opcode;
24371
24372 buf = fragp->fr_literal + fragp->fr_fix;
24373
24374 old_op = bfd_get_16(abfd, buf);
24375 if (fragp->fr_symbol)
24376 {
24377 exp.X_op = O_symbol;
24378 exp.X_add_symbol = fragp->fr_symbol;
24379 }
24380 else
24381 {
24382 exp.X_op = O_constant;
24383 }
24384 exp.X_add_number = fragp->fr_offset;
24385 opcode = fragp->fr_subtype;
24386 switch (opcode)
24387 {
24388 case T_MNEM_ldr_pc:
24389 case T_MNEM_ldr_pc2:
24390 case T_MNEM_ldr_sp:
24391 case T_MNEM_str_sp:
24392 case T_MNEM_ldr:
24393 case T_MNEM_ldrb:
24394 case T_MNEM_ldrh:
24395 case T_MNEM_str:
24396 case T_MNEM_strb:
24397 case T_MNEM_strh:
24398 if (fragp->fr_var == 4)
24399 {
24400 insn = THUMB_OP32 (opcode);
24401 if ((old_op >> 12) == 4 || (old_op >> 12) == 9)
24402 {
24403 insn |= (old_op & 0x700) << 4;
24404 }
24405 else
24406 {
24407 insn |= (old_op & 7) << 12;
24408 insn |= (old_op & 0x38) << 13;
24409 }
24410 insn |= 0x00000c00;
24411 put_thumb32_insn (buf, insn);
24412 reloc_type = BFD_RELOC_ARM_T32_OFFSET_IMM;
24413 }
24414 else
24415 {
24416 reloc_type = BFD_RELOC_ARM_THUMB_OFFSET;
24417 }
24418 pc_rel = (opcode == T_MNEM_ldr_pc2);
24419 break;
24420 case T_MNEM_adr:
24421 if (fragp->fr_var == 4)
24422 {
24423 insn = THUMB_OP32 (opcode);
24424 insn |= (old_op & 0xf0) << 4;
24425 put_thumb32_insn (buf, insn);
24426 reloc_type = BFD_RELOC_ARM_T32_ADD_PC12;
24427 }
24428 else
24429 {
24430 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
24431 exp.X_add_number -= 4;
24432 }
24433 pc_rel = 1;
24434 break;
24435 case T_MNEM_mov:
24436 case T_MNEM_movs:
24437 case T_MNEM_cmp:
24438 case T_MNEM_cmn:
24439 if (fragp->fr_var == 4)
24440 {
24441 int r0off = (opcode == T_MNEM_mov
24442 || opcode == T_MNEM_movs) ? 0 : 8;
24443 insn = THUMB_OP32 (opcode);
24444 insn = (insn & 0xe1ffffff) | 0x10000000;
24445 insn |= (old_op & 0x700) << r0off;
24446 put_thumb32_insn (buf, insn);
24447 reloc_type = BFD_RELOC_ARM_T32_IMMEDIATE;
24448 }
24449 else
24450 {
24451 reloc_type = BFD_RELOC_ARM_THUMB_IMM;
24452 }
24453 pc_rel = 0;
24454 break;
24455 case T_MNEM_b:
24456 if (fragp->fr_var == 4)
24457 {
24458 insn = THUMB_OP32(opcode);
24459 put_thumb32_insn (buf, insn);
24460 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH25;
24461 }
24462 else
24463 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH12;
24464 pc_rel = 1;
24465 break;
24466 case T_MNEM_bcond:
24467 if (fragp->fr_var == 4)
24468 {
24469 insn = THUMB_OP32(opcode);
24470 insn |= (old_op & 0xf00) << 14;
24471 put_thumb32_insn (buf, insn);
24472 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH20;
24473 }
24474 else
24475 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH9;
24476 pc_rel = 1;
24477 break;
24478 case T_MNEM_add_sp:
24479 case T_MNEM_add_pc:
24480 case T_MNEM_inc_sp:
24481 case T_MNEM_dec_sp:
24482 if (fragp->fr_var == 4)
24483 {
24484 /* ??? Choose between add and addw. */
24485 insn = THUMB_OP32 (opcode);
24486 insn |= (old_op & 0xf0) << 4;
24487 put_thumb32_insn (buf, insn);
24488 if (opcode == T_MNEM_add_pc)
24489 reloc_type = BFD_RELOC_ARM_T32_IMM12;
24490 else
24491 reloc_type = BFD_RELOC_ARM_T32_ADD_IMM;
24492 }
24493 else
24494 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
24495 pc_rel = 0;
24496 break;
24497
24498 case T_MNEM_addi:
24499 case T_MNEM_addis:
24500 case T_MNEM_subi:
24501 case T_MNEM_subis:
24502 if (fragp->fr_var == 4)
24503 {
24504 insn = THUMB_OP32 (opcode);
24505 insn |= (old_op & 0xf0) << 4;
24506 insn |= (old_op & 0xf) << 16;
24507 put_thumb32_insn (buf, insn);
24508 if (insn & (1 << 20))
24509 reloc_type = BFD_RELOC_ARM_T32_ADD_IMM;
24510 else
24511 reloc_type = BFD_RELOC_ARM_T32_IMMEDIATE;
24512 }
24513 else
24514 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
24515 pc_rel = 0;
24516 break;
24517 default:
24518 abort ();
24519 }
24520 fixp = fix_new_exp (fragp, fragp->fr_fix, fragp->fr_var, &exp, pc_rel,
24521 (enum bfd_reloc_code_real) reloc_type);
24522 fixp->fx_file = fragp->fr_file;
24523 fixp->fx_line = fragp->fr_line;
24524 fragp->fr_fix += fragp->fr_var;
24525
24526 /* Set whether we use thumb-2 ISA based on final relaxation results. */
24527 if (thumb_mode && fragp->fr_var == 4 && no_cpu_selected ()
24528 && !ARM_CPU_HAS_FEATURE (thumb_arch_used, arm_arch_t2))
24529 ARM_MERGE_FEATURE_SETS (arm_arch_used, thumb_arch_used, arm_ext_v6t2);
24530 }
24531
24532 /* Return the size of a relaxable immediate operand instruction.
24533 SHIFT and SIZE specify the form of the allowable immediate. */
24534 static int
24535 relax_immediate (fragS *fragp, int size, int shift)
24536 {
24537 offsetT offset;
24538 offsetT mask;
24539 offsetT low;
24540
24541 /* ??? Should be able to do better than this. */
24542 if (fragp->fr_symbol)
24543 return 4;
24544
24545 low = (1 << shift) - 1;
24546 mask = (1 << (shift + size)) - (1 << shift);
24547 offset = fragp->fr_offset;
24548 /* Force misaligned offsets to 32-bit variant. */
24549 if (offset & low)
24550 return 4;
24551 if (offset & ~mask)
24552 return 4;
24553 return 2;
24554 }
24555
24556 /* Get the address of a symbol during relaxation. */
24557 static addressT
24558 relaxed_symbol_addr (fragS *fragp, long stretch)
24559 {
24560 fragS *sym_frag;
24561 addressT addr;
24562 symbolS *sym;
24563
24564 sym = fragp->fr_symbol;
24565 sym_frag = symbol_get_frag (sym);
24566 know (S_GET_SEGMENT (sym) != absolute_section
24567 || sym_frag == &zero_address_frag);
24568 addr = S_GET_VALUE (sym) + fragp->fr_offset;
24569
24570 /* If frag has yet to be reached on this pass, assume it will
24571 move by STRETCH just as we did. If this is not so, it will
24572 be because some frag between grows, and that will force
24573 another pass. */
24574
24575 if (stretch != 0
24576 && sym_frag->relax_marker != fragp->relax_marker)
24577 {
24578 fragS *f;
24579
24580 /* Adjust stretch for any alignment frag. Note that if have
24581 been expanding the earlier code, the symbol may be
24582 defined in what appears to be an earlier frag. FIXME:
24583 This doesn't handle the fr_subtype field, which specifies
24584 a maximum number of bytes to skip when doing an
24585 alignment. */
24586 for (f = fragp; f != NULL && f != sym_frag; f = f->fr_next)
24587 {
24588 if (f->fr_type == rs_align || f->fr_type == rs_align_code)
24589 {
24590 if (stretch < 0)
24591 stretch = - ((- stretch)
24592 & ~ ((1 << (int) f->fr_offset) - 1));
24593 else
24594 stretch &= ~ ((1 << (int) f->fr_offset) - 1);
24595 if (stretch == 0)
24596 break;
24597 }
24598 }
24599 if (f != NULL)
24600 addr += stretch;
24601 }
24602
24603 return addr;
24604 }
24605
24606 /* Return the size of a relaxable adr pseudo-instruction or PC-relative
24607 load. */
24608 static int
24609 relax_adr (fragS *fragp, asection *sec, long stretch)
24610 {
24611 addressT addr;
24612 offsetT val;
24613
24614 /* Assume worst case for symbols not known to be in the same section. */
24615 if (fragp->fr_symbol == NULL
24616 || !S_IS_DEFINED (fragp->fr_symbol)
24617 || sec != S_GET_SEGMENT (fragp->fr_symbol)
24618 || S_IS_WEAK (fragp->fr_symbol))
24619 return 4;
24620
24621 val = relaxed_symbol_addr (fragp, stretch);
24622 addr = fragp->fr_address + fragp->fr_fix;
24623 addr = (addr + 4) & ~3;
24624 /* Force misaligned targets to 32-bit variant. */
24625 if (val & 3)
24626 return 4;
24627 val -= addr;
24628 if (val < 0 || val > 1020)
24629 return 4;
24630 return 2;
24631 }
24632
24633 /* Return the size of a relaxable add/sub immediate instruction. */
24634 static int
24635 relax_addsub (fragS *fragp, asection *sec)
24636 {
24637 char *buf;
24638 int op;
24639
24640 buf = fragp->fr_literal + fragp->fr_fix;
24641 op = bfd_get_16(sec->owner, buf);
24642 if ((op & 0xf) == ((op >> 4) & 0xf))
24643 return relax_immediate (fragp, 8, 0);
24644 else
24645 return relax_immediate (fragp, 3, 0);
24646 }
24647
24648 /* Return TRUE iff the definition of symbol S could be pre-empted
24649 (overridden) at link or load time. */
24650 static bfd_boolean
24651 symbol_preemptible (symbolS *s)
24652 {
24653 /* Weak symbols can always be pre-empted. */
24654 if (S_IS_WEAK (s))
24655 return TRUE;
24656
24657 /* Non-global symbols cannot be pre-empted. */
24658 if (! S_IS_EXTERNAL (s))
24659 return FALSE;
24660
24661 #ifdef OBJ_ELF
24662 /* In ELF, a global symbol can be marked protected, or private. In that
24663 case it can't be pre-empted (other definitions in the same link unit
24664 would violate the ODR). */
24665 if (ELF_ST_VISIBILITY (S_GET_OTHER (s)) > STV_DEFAULT)
24666 return FALSE;
24667 #endif
24668
24669 /* Other global symbols might be pre-empted. */
24670 return TRUE;
24671 }
24672
24673 /* Return the size of a relaxable branch instruction. BITS is the
24674 size of the offset field in the narrow instruction. */
24675
24676 static int
24677 relax_branch (fragS *fragp, asection *sec, int bits, long stretch)
24678 {
24679 addressT addr;
24680 offsetT val;
24681 offsetT limit;
24682
24683 /* Assume worst case for symbols not known to be in the same section. */
24684 if (!S_IS_DEFINED (fragp->fr_symbol)
24685 || sec != S_GET_SEGMENT (fragp->fr_symbol)
24686 || S_IS_WEAK (fragp->fr_symbol))
24687 return 4;
24688
24689 #ifdef OBJ_ELF
24690 /* A branch to a function in ARM state will require interworking. */
24691 if (S_IS_DEFINED (fragp->fr_symbol)
24692 && ARM_IS_FUNC (fragp->fr_symbol))
24693 return 4;
24694 #endif
24695
24696 if (symbol_preemptible (fragp->fr_symbol))
24697 return 4;
24698
24699 val = relaxed_symbol_addr (fragp, stretch);
24700 addr = fragp->fr_address + fragp->fr_fix + 4;
24701 val -= addr;
24702
24703 /* Offset is a signed value *2 */
24704 limit = 1 << bits;
24705 if (val >= limit || val < -limit)
24706 return 4;
24707 return 2;
24708 }
24709
24710
24711 /* Relax a machine dependent frag. This returns the amount by which
24712 the current size of the frag should change. */
24713
24714 int
24715 arm_relax_frag (asection *sec, fragS *fragp, long stretch)
24716 {
24717 int oldsize;
24718 int newsize;
24719
24720 oldsize = fragp->fr_var;
24721 switch (fragp->fr_subtype)
24722 {
24723 case T_MNEM_ldr_pc2:
24724 newsize = relax_adr (fragp, sec, stretch);
24725 break;
24726 case T_MNEM_ldr_pc:
24727 case T_MNEM_ldr_sp:
24728 case T_MNEM_str_sp:
24729 newsize = relax_immediate (fragp, 8, 2);
24730 break;
24731 case T_MNEM_ldr:
24732 case T_MNEM_str:
24733 newsize = relax_immediate (fragp, 5, 2);
24734 break;
24735 case T_MNEM_ldrh:
24736 case T_MNEM_strh:
24737 newsize = relax_immediate (fragp, 5, 1);
24738 break;
24739 case T_MNEM_ldrb:
24740 case T_MNEM_strb:
24741 newsize = relax_immediate (fragp, 5, 0);
24742 break;
24743 case T_MNEM_adr:
24744 newsize = relax_adr (fragp, sec, stretch);
24745 break;
24746 case T_MNEM_mov:
24747 case T_MNEM_movs:
24748 case T_MNEM_cmp:
24749 case T_MNEM_cmn:
24750 newsize = relax_immediate (fragp, 8, 0);
24751 break;
24752 case T_MNEM_b:
24753 newsize = relax_branch (fragp, sec, 11, stretch);
24754 break;
24755 case T_MNEM_bcond:
24756 newsize = relax_branch (fragp, sec, 8, stretch);
24757 break;
24758 case T_MNEM_add_sp:
24759 case T_MNEM_add_pc:
24760 newsize = relax_immediate (fragp, 8, 2);
24761 break;
24762 case T_MNEM_inc_sp:
24763 case T_MNEM_dec_sp:
24764 newsize = relax_immediate (fragp, 7, 2);
24765 break;
24766 case T_MNEM_addi:
24767 case T_MNEM_addis:
24768 case T_MNEM_subi:
24769 case T_MNEM_subis:
24770 newsize = relax_addsub (fragp, sec);
24771 break;
24772 default:
24773 abort ();
24774 }
24775
24776 fragp->fr_var = newsize;
24777 /* Freeze wide instructions that are at or before the same location as
24778 in the previous pass. This avoids infinite loops.
24779 Don't freeze them unconditionally because targets may be artificially
24780 misaligned by the expansion of preceding frags. */
24781 if (stretch <= 0 && newsize > 2)
24782 {
24783 md_convert_frag (sec->owner, sec, fragp);
24784 frag_wane (fragp);
24785 }
24786
24787 return newsize - oldsize;
24788 }
24789
24790 /* Round up a section size to the appropriate boundary. */
24791
24792 valueT
24793 md_section_align (segT segment ATTRIBUTE_UNUSED,
24794 valueT size)
24795 {
24796 return size;
24797 }
24798
24799 /* This is called from HANDLE_ALIGN in write.c. Fill in the contents
24800 of an rs_align_code fragment. */
24801
24802 void
24803 arm_handle_align (fragS * fragP)
24804 {
24805 static unsigned char const arm_noop[2][2][4] =
24806 {
24807 { /* ARMv1 */
24808 {0x00, 0x00, 0xa0, 0xe1}, /* LE */
24809 {0xe1, 0xa0, 0x00, 0x00}, /* BE */
24810 },
24811 { /* ARMv6k */
24812 {0x00, 0xf0, 0x20, 0xe3}, /* LE */
24813 {0xe3, 0x20, 0xf0, 0x00}, /* BE */
24814 },
24815 };
24816 static unsigned char const thumb_noop[2][2][2] =
24817 {
24818 { /* Thumb-1 */
24819 {0xc0, 0x46}, /* LE */
24820 {0x46, 0xc0}, /* BE */
24821 },
24822 { /* Thumb-2 */
24823 {0x00, 0xbf}, /* LE */
24824 {0xbf, 0x00} /* BE */
24825 }
24826 };
24827 static unsigned char const wide_thumb_noop[2][4] =
24828 { /* Wide Thumb-2 */
24829 {0xaf, 0xf3, 0x00, 0x80}, /* LE */
24830 {0xf3, 0xaf, 0x80, 0x00}, /* BE */
24831 };
24832
24833 unsigned bytes, fix, noop_size;
24834 char * p;
24835 const unsigned char * noop;
24836 const unsigned char *narrow_noop = NULL;
24837 #ifdef OBJ_ELF
24838 enum mstate state;
24839 #endif
24840
24841 if (fragP->fr_type != rs_align_code)
24842 return;
24843
24844 bytes = fragP->fr_next->fr_address - fragP->fr_address - fragP->fr_fix;
24845 p = fragP->fr_literal + fragP->fr_fix;
24846 fix = 0;
24847
24848 if (bytes > MAX_MEM_FOR_RS_ALIGN_CODE)
24849 bytes &= MAX_MEM_FOR_RS_ALIGN_CODE;
24850
24851 gas_assert ((fragP->tc_frag_data.thumb_mode & MODE_RECORDED) != 0);
24852
24853 if (fragP->tc_frag_data.thumb_mode & (~ MODE_RECORDED))
24854 {
24855 if (ARM_CPU_HAS_FEATURE (selected_cpu_name[0]
24856 ? selected_cpu : arm_arch_none, arm_ext_v6t2))
24857 {
24858 narrow_noop = thumb_noop[1][target_big_endian];
24859 noop = wide_thumb_noop[target_big_endian];
24860 }
24861 else
24862 noop = thumb_noop[0][target_big_endian];
24863 noop_size = 2;
24864 #ifdef OBJ_ELF
24865 state = MAP_THUMB;
24866 #endif
24867 }
24868 else
24869 {
24870 noop = arm_noop[ARM_CPU_HAS_FEATURE (selected_cpu_name[0]
24871 ? selected_cpu : arm_arch_none,
24872 arm_ext_v6k) != 0]
24873 [target_big_endian];
24874 noop_size = 4;
24875 #ifdef OBJ_ELF
24876 state = MAP_ARM;
24877 #endif
24878 }
24879
24880 fragP->fr_var = noop_size;
24881
24882 if (bytes & (noop_size - 1))
24883 {
24884 fix = bytes & (noop_size - 1);
24885 #ifdef OBJ_ELF
24886 insert_data_mapping_symbol (state, fragP->fr_fix, fragP, fix);
24887 #endif
24888 memset (p, 0, fix);
24889 p += fix;
24890 bytes -= fix;
24891 }
24892
24893 if (narrow_noop)
24894 {
24895 if (bytes & noop_size)
24896 {
24897 /* Insert a narrow noop. */
24898 memcpy (p, narrow_noop, noop_size);
24899 p += noop_size;
24900 bytes -= noop_size;
24901 fix += noop_size;
24902 }
24903
24904 /* Use wide noops for the remainder */
24905 noop_size = 4;
24906 }
24907
24908 while (bytes >= noop_size)
24909 {
24910 memcpy (p, noop, noop_size);
24911 p += noop_size;
24912 bytes -= noop_size;
24913 fix += noop_size;
24914 }
24915
24916 fragP->fr_fix += fix;
24917 }
24918
24919 /* Called from md_do_align. Used to create an alignment
24920 frag in a code section. */
24921
24922 void
24923 arm_frag_align_code (int n, int max)
24924 {
24925 char * p;
24926
24927 /* We assume that there will never be a requirement
24928 to support alignments greater than MAX_MEM_FOR_RS_ALIGN_CODE bytes. */
24929 if (max > MAX_MEM_FOR_RS_ALIGN_CODE)
24930 {
24931 char err_msg[128];
24932
24933 sprintf (err_msg,
24934 _("alignments greater than %d bytes not supported in .text sections."),
24935 MAX_MEM_FOR_RS_ALIGN_CODE + 1);
24936 as_fatal ("%s", err_msg);
24937 }
24938
24939 p = frag_var (rs_align_code,
24940 MAX_MEM_FOR_RS_ALIGN_CODE,
24941 1,
24942 (relax_substateT) max,
24943 (symbolS *) NULL,
24944 (offsetT) n,
24945 (char *) NULL);
24946 *p = 0;
24947 }
24948
24949 /* Perform target specific initialisation of a frag.
24950 Note - despite the name this initialisation is not done when the frag
24951 is created, but only when its type is assigned. A frag can be created
24952 and used a long time before its type is set, so beware of assuming that
24953 this initialisation is performed first. */
24954
24955 #ifndef OBJ_ELF
24956 void
24957 arm_init_frag (fragS * fragP, int max_chars ATTRIBUTE_UNUSED)
24958 {
24959 /* Record whether this frag is in an ARM or a THUMB area. */
24960 fragP->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
24961 }
24962
24963 #else /* OBJ_ELF is defined. */
24964 void
24965 arm_init_frag (fragS * fragP, int max_chars)
24966 {
24967 bfd_boolean frag_thumb_mode;
24968
24969 /* If the current ARM vs THUMB mode has not already
24970 been recorded into this frag then do so now. */
24971 if ((fragP->tc_frag_data.thumb_mode & MODE_RECORDED) == 0)
24972 fragP->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
24973
24974 /* PR 21809: Do not set a mapping state for debug sections
24975 - it just confuses other tools. */
24976 if (bfd_get_section_flags (NULL, now_seg) & SEC_DEBUGGING)
24977 return;
24978
24979 frag_thumb_mode = fragP->tc_frag_data.thumb_mode ^ MODE_RECORDED;
24980
24981 /* Record a mapping symbol for alignment frags. We will delete this
24982 later if the alignment ends up empty. */
24983 switch (fragP->fr_type)
24984 {
24985 case rs_align:
24986 case rs_align_test:
24987 case rs_fill:
24988 mapping_state_2 (MAP_DATA, max_chars);
24989 break;
24990 case rs_align_code:
24991 mapping_state_2 (frag_thumb_mode ? MAP_THUMB : MAP_ARM, max_chars);
24992 break;
24993 default:
24994 break;
24995 }
24996 }
24997
24998 /* When we change sections we need to issue a new mapping symbol. */
24999
25000 void
25001 arm_elf_change_section (void)
25002 {
25003 /* Link an unlinked unwind index table section to the .text section. */
25004 if (elf_section_type (now_seg) == SHT_ARM_EXIDX
25005 && elf_linked_to_section (now_seg) == NULL)
25006 elf_linked_to_section (now_seg) = text_section;
25007 }
25008
25009 int
25010 arm_elf_section_type (const char * str, size_t len)
25011 {
25012 if (len == 5 && strncmp (str, "exidx", 5) == 0)
25013 return SHT_ARM_EXIDX;
25014
25015 return -1;
25016 }
25017 \f
25018 /* Code to deal with unwinding tables. */
25019
25020 static void add_unwind_adjustsp (offsetT);
25021
25022 /* Generate any deferred unwind frame offset. */
25023
25024 static void
25025 flush_pending_unwind (void)
25026 {
25027 offsetT offset;
25028
25029 offset = unwind.pending_offset;
25030 unwind.pending_offset = 0;
25031 if (offset != 0)
25032 add_unwind_adjustsp (offset);
25033 }
25034
25035 /* Add an opcode to this list for this function. Two-byte opcodes should
25036 be passed as op[0] << 8 | op[1]. The list of opcodes is built in reverse
25037 order. */
25038
25039 static void
25040 add_unwind_opcode (valueT op, int length)
25041 {
25042 /* Add any deferred stack adjustment. */
25043 if (unwind.pending_offset)
25044 flush_pending_unwind ();
25045
25046 unwind.sp_restored = 0;
25047
25048 if (unwind.opcode_count + length > unwind.opcode_alloc)
25049 {
25050 unwind.opcode_alloc += ARM_OPCODE_CHUNK_SIZE;
25051 if (unwind.opcodes)
25052 unwind.opcodes = XRESIZEVEC (unsigned char, unwind.opcodes,
25053 unwind.opcode_alloc);
25054 else
25055 unwind.opcodes = XNEWVEC (unsigned char, unwind.opcode_alloc);
25056 }
25057 while (length > 0)
25058 {
25059 length--;
25060 unwind.opcodes[unwind.opcode_count] = op & 0xff;
25061 op >>= 8;
25062 unwind.opcode_count++;
25063 }
25064 }
25065
25066 /* Add unwind opcodes to adjust the stack pointer. */
25067
25068 static void
25069 add_unwind_adjustsp (offsetT offset)
25070 {
25071 valueT op;
25072
25073 if (offset > 0x200)
25074 {
25075 /* We need at most 5 bytes to hold a 32-bit value in a uleb128. */
25076 char bytes[5];
25077 int n;
25078 valueT o;
25079
25080 /* Long form: 0xb2, uleb128. */
25081 /* This might not fit in a word so add the individual bytes,
25082 remembering the list is built in reverse order. */
25083 o = (valueT) ((offset - 0x204) >> 2);
25084 if (o == 0)
25085 add_unwind_opcode (0, 1);
25086
25087 /* Calculate the uleb128 encoding of the offset. */
25088 n = 0;
25089 while (o)
25090 {
25091 bytes[n] = o & 0x7f;
25092 o >>= 7;
25093 if (o)
25094 bytes[n] |= 0x80;
25095 n++;
25096 }
25097 /* Add the insn. */
25098 for (; n; n--)
25099 add_unwind_opcode (bytes[n - 1], 1);
25100 add_unwind_opcode (0xb2, 1);
25101 }
25102 else if (offset > 0x100)
25103 {
25104 /* Two short opcodes. */
25105 add_unwind_opcode (0x3f, 1);
25106 op = (offset - 0x104) >> 2;
25107 add_unwind_opcode (op, 1);
25108 }
25109 else if (offset > 0)
25110 {
25111 /* Short opcode. */
25112 op = (offset - 4) >> 2;
25113 add_unwind_opcode (op, 1);
25114 }
25115 else if (offset < 0)
25116 {
25117 offset = -offset;
25118 while (offset > 0x100)
25119 {
25120 add_unwind_opcode (0x7f, 1);
25121 offset -= 0x100;
25122 }
25123 op = ((offset - 4) >> 2) | 0x40;
25124 add_unwind_opcode (op, 1);
25125 }
25126 }
25127
25128 /* Finish the list of unwind opcodes for this function. */
25129
25130 static void
25131 finish_unwind_opcodes (void)
25132 {
25133 valueT op;
25134
25135 if (unwind.fp_used)
25136 {
25137 /* Adjust sp as necessary. */
25138 unwind.pending_offset += unwind.fp_offset - unwind.frame_size;
25139 flush_pending_unwind ();
25140
25141 /* After restoring sp from the frame pointer. */
25142 op = 0x90 | unwind.fp_reg;
25143 add_unwind_opcode (op, 1);
25144 }
25145 else
25146 flush_pending_unwind ();
25147 }
25148
25149
25150 /* Start an exception table entry. If idx is nonzero this is an index table
25151 entry. */
25152
25153 static void
25154 start_unwind_section (const segT text_seg, int idx)
25155 {
25156 const char * text_name;
25157 const char * prefix;
25158 const char * prefix_once;
25159 const char * group_name;
25160 char * sec_name;
25161 int type;
25162 int flags;
25163 int linkonce;
25164
25165 if (idx)
25166 {
25167 prefix = ELF_STRING_ARM_unwind;
25168 prefix_once = ELF_STRING_ARM_unwind_once;
25169 type = SHT_ARM_EXIDX;
25170 }
25171 else
25172 {
25173 prefix = ELF_STRING_ARM_unwind_info;
25174 prefix_once = ELF_STRING_ARM_unwind_info_once;
25175 type = SHT_PROGBITS;
25176 }
25177
25178 text_name = segment_name (text_seg);
25179 if (streq (text_name, ".text"))
25180 text_name = "";
25181
25182 if (strncmp (text_name, ".gnu.linkonce.t.",
25183 strlen (".gnu.linkonce.t.")) == 0)
25184 {
25185 prefix = prefix_once;
25186 text_name += strlen (".gnu.linkonce.t.");
25187 }
25188
25189 sec_name = concat (prefix, text_name, (char *) NULL);
25190
25191 flags = SHF_ALLOC;
25192 linkonce = 0;
25193 group_name = 0;
25194
25195 /* Handle COMDAT group. */
25196 if (prefix != prefix_once && (text_seg->flags & SEC_LINK_ONCE) != 0)
25197 {
25198 group_name = elf_group_name (text_seg);
25199 if (group_name == NULL)
25200 {
25201 as_bad (_("Group section `%s' has no group signature"),
25202 segment_name (text_seg));
25203 ignore_rest_of_line ();
25204 return;
25205 }
25206 flags |= SHF_GROUP;
25207 linkonce = 1;
25208 }
25209
25210 obj_elf_change_section (sec_name, type, 0, flags, 0, group_name,
25211 linkonce, 0);
25212
25213 /* Set the section link for index tables. */
25214 if (idx)
25215 elf_linked_to_section (now_seg) = text_seg;
25216 }
25217
25218
25219 /* Start an unwind table entry. HAVE_DATA is nonzero if we have additional
25220 personality routine data. Returns zero, or the index table value for
25221 an inline entry. */
25222
25223 static valueT
25224 create_unwind_entry (int have_data)
25225 {
25226 int size;
25227 addressT where;
25228 char *ptr;
25229 /* The current word of data. */
25230 valueT data;
25231 /* The number of bytes left in this word. */
25232 int n;
25233
25234 finish_unwind_opcodes ();
25235
25236 /* Remember the current text section. */
25237 unwind.saved_seg = now_seg;
25238 unwind.saved_subseg = now_subseg;
25239
25240 start_unwind_section (now_seg, 0);
25241
25242 if (unwind.personality_routine == NULL)
25243 {
25244 if (unwind.personality_index == -2)
25245 {
25246 if (have_data)
25247 as_bad (_("handlerdata in cantunwind frame"));
25248 return 1; /* EXIDX_CANTUNWIND. */
25249 }
25250
25251 /* Use a default personality routine if none is specified. */
25252 if (unwind.personality_index == -1)
25253 {
25254 if (unwind.opcode_count > 3)
25255 unwind.personality_index = 1;
25256 else
25257 unwind.personality_index = 0;
25258 }
25259
25260 /* Space for the personality routine entry. */
25261 if (unwind.personality_index == 0)
25262 {
25263 if (unwind.opcode_count > 3)
25264 as_bad (_("too many unwind opcodes for personality routine 0"));
25265
25266 if (!have_data)
25267 {
25268 /* All the data is inline in the index table. */
25269 data = 0x80;
25270 n = 3;
25271 while (unwind.opcode_count > 0)
25272 {
25273 unwind.opcode_count--;
25274 data = (data << 8) | unwind.opcodes[unwind.opcode_count];
25275 n--;
25276 }
25277
25278 /* Pad with "finish" opcodes. */
25279 while (n--)
25280 data = (data << 8) | 0xb0;
25281
25282 return data;
25283 }
25284 size = 0;
25285 }
25286 else
25287 /* We get two opcodes "free" in the first word. */
25288 size = unwind.opcode_count - 2;
25289 }
25290 else
25291 {
25292 /* PR 16765: Missing or misplaced unwind directives can trigger this. */
25293 if (unwind.personality_index != -1)
25294 {
25295 as_bad (_("attempt to recreate an unwind entry"));
25296 return 1;
25297 }
25298
25299 /* An extra byte is required for the opcode count. */
25300 size = unwind.opcode_count + 1;
25301 }
25302
25303 size = (size + 3) >> 2;
25304 if (size > 0xff)
25305 as_bad (_("too many unwind opcodes"));
25306
25307 frag_align (2, 0, 0);
25308 record_alignment (now_seg, 2);
25309 unwind.table_entry = expr_build_dot ();
25310
25311 /* Allocate the table entry. */
25312 ptr = frag_more ((size << 2) + 4);
25313 /* PR 13449: Zero the table entries in case some of them are not used. */
25314 memset (ptr, 0, (size << 2) + 4);
25315 where = frag_now_fix () - ((size << 2) + 4);
25316
25317 switch (unwind.personality_index)
25318 {
25319 case -1:
25320 /* ??? Should this be a PLT generating relocation? */
25321 /* Custom personality routine. */
25322 fix_new (frag_now, where, 4, unwind.personality_routine, 0, 1,
25323 BFD_RELOC_ARM_PREL31);
25324
25325 where += 4;
25326 ptr += 4;
25327
25328 /* Set the first byte to the number of additional words. */
25329 data = size > 0 ? size - 1 : 0;
25330 n = 3;
25331 break;
25332
25333 /* ABI defined personality routines. */
25334 case 0:
25335 /* Three opcodes bytes are packed into the first word. */
25336 data = 0x80;
25337 n = 3;
25338 break;
25339
25340 case 1:
25341 case 2:
25342 /* The size and first two opcode bytes go in the first word. */
25343 data = ((0x80 + unwind.personality_index) << 8) | size;
25344 n = 2;
25345 break;
25346
25347 default:
25348 /* Should never happen. */
25349 abort ();
25350 }
25351
25352 /* Pack the opcodes into words (MSB first), reversing the list at the same
25353 time. */
25354 while (unwind.opcode_count > 0)
25355 {
25356 if (n == 0)
25357 {
25358 md_number_to_chars (ptr, data, 4);
25359 ptr += 4;
25360 n = 4;
25361 data = 0;
25362 }
25363 unwind.opcode_count--;
25364 n--;
25365 data = (data << 8) | unwind.opcodes[unwind.opcode_count];
25366 }
25367
25368 /* Finish off the last word. */
25369 if (n < 4)
25370 {
25371 /* Pad with "finish" opcodes. */
25372 while (n--)
25373 data = (data << 8) | 0xb0;
25374
25375 md_number_to_chars (ptr, data, 4);
25376 }
25377
25378 if (!have_data)
25379 {
25380 /* Add an empty descriptor if there is no user-specified data. */
25381 ptr = frag_more (4);
25382 md_number_to_chars (ptr, 0, 4);
25383 }
25384
25385 return 0;
25386 }
25387
25388
25389 /* Initialize the DWARF-2 unwind information for this procedure. */
25390
25391 void
25392 tc_arm_frame_initial_instructions (void)
25393 {
25394 cfi_add_CFA_def_cfa (REG_SP, 0);
25395 }
25396 #endif /* OBJ_ELF */
25397
25398 /* Convert REGNAME to a DWARF-2 register number. */
25399
25400 int
25401 tc_arm_regname_to_dw2regnum (char *regname)
25402 {
25403 int reg = arm_reg_parse (&regname, REG_TYPE_RN);
25404 if (reg != FAIL)
25405 return reg;
25406
25407 /* PR 16694: Allow VFP registers as well. */
25408 reg = arm_reg_parse (&regname, REG_TYPE_VFS);
25409 if (reg != FAIL)
25410 return 64 + reg;
25411
25412 reg = arm_reg_parse (&regname, REG_TYPE_VFD);
25413 if (reg != FAIL)
25414 return reg + 256;
25415
25416 return FAIL;
25417 }
25418
25419 #ifdef TE_PE
25420 void
25421 tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
25422 {
25423 expressionS exp;
25424
25425 exp.X_op = O_secrel;
25426 exp.X_add_symbol = symbol;
25427 exp.X_add_number = 0;
25428 emit_expr (&exp, size);
25429 }
25430 #endif
25431
25432 /* MD interface: Symbol and relocation handling. */
25433
25434 /* Return the address within the segment that a PC-relative fixup is
25435 relative to. For ARM, PC-relative fixups applied to instructions
25436 are generally relative to the location of the fixup plus 8 bytes.
25437 Thumb branches are offset by 4, and Thumb loads relative to PC
25438 require special handling. */
25439
25440 long
25441 md_pcrel_from_section (fixS * fixP, segT seg)
25442 {
25443 offsetT base = fixP->fx_where + fixP->fx_frag->fr_address;
25444
25445 /* If this is pc-relative and we are going to emit a relocation
25446 then we just want to put out any pipeline compensation that the linker
25447 will need. Otherwise we want to use the calculated base.
25448 For WinCE we skip the bias for externals as well, since this
25449 is how the MS ARM-CE assembler behaves and we want to be compatible. */
25450 if (fixP->fx_pcrel
25451 && ((fixP->fx_addsy && S_GET_SEGMENT (fixP->fx_addsy) != seg)
25452 || (arm_force_relocation (fixP)
25453 #ifdef TE_WINCE
25454 && !S_IS_EXTERNAL (fixP->fx_addsy)
25455 #endif
25456 )))
25457 base = 0;
25458
25459
25460 switch (fixP->fx_r_type)
25461 {
25462 /* PC relative addressing on the Thumb is slightly odd as the
25463 bottom two bits of the PC are forced to zero for the
25464 calculation. This happens *after* application of the
25465 pipeline offset. However, Thumb adrl already adjusts for
25466 this, so we need not do it again. */
25467 case BFD_RELOC_ARM_THUMB_ADD:
25468 return base & ~3;
25469
25470 case BFD_RELOC_ARM_THUMB_OFFSET:
25471 case BFD_RELOC_ARM_T32_OFFSET_IMM:
25472 case BFD_RELOC_ARM_T32_ADD_PC12:
25473 case BFD_RELOC_ARM_T32_CP_OFF_IMM:
25474 return (base + 4) & ~3;
25475
25476 /* Thumb branches are simply offset by +4. */
25477 case BFD_RELOC_THUMB_PCREL_BRANCH5:
25478 case BFD_RELOC_THUMB_PCREL_BRANCH7:
25479 case BFD_RELOC_THUMB_PCREL_BRANCH9:
25480 case BFD_RELOC_THUMB_PCREL_BRANCH12:
25481 case BFD_RELOC_THUMB_PCREL_BRANCH20:
25482 case BFD_RELOC_THUMB_PCREL_BRANCH25:
25483 case BFD_RELOC_THUMB_PCREL_BFCSEL:
25484 case BFD_RELOC_ARM_THUMB_BF17:
25485 case BFD_RELOC_ARM_THUMB_BF19:
25486 case BFD_RELOC_ARM_THUMB_BF13:
25487 case BFD_RELOC_ARM_THUMB_LOOP12:
25488 return base + 4;
25489
25490 case BFD_RELOC_THUMB_PCREL_BRANCH23:
25491 if (fixP->fx_addsy
25492 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
25493 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
25494 && ARM_IS_FUNC (fixP->fx_addsy)
25495 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
25496 base = fixP->fx_where + fixP->fx_frag->fr_address;
25497 return base + 4;
25498
25499 /* BLX is like branches above, but forces the low two bits of PC to
25500 zero. */
25501 case BFD_RELOC_THUMB_PCREL_BLX:
25502 if (fixP->fx_addsy
25503 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
25504 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
25505 && THUMB_IS_FUNC (fixP->fx_addsy)
25506 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
25507 base = fixP->fx_where + fixP->fx_frag->fr_address;
25508 return (base + 4) & ~3;
25509
25510 /* ARM mode branches are offset by +8. However, the Windows CE
25511 loader expects the relocation not to take this into account. */
25512 case BFD_RELOC_ARM_PCREL_BLX:
25513 if (fixP->fx_addsy
25514 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
25515 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
25516 && ARM_IS_FUNC (fixP->fx_addsy)
25517 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
25518 base = fixP->fx_where + fixP->fx_frag->fr_address;
25519 return base + 8;
25520
25521 case BFD_RELOC_ARM_PCREL_CALL:
25522 if (fixP->fx_addsy
25523 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
25524 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
25525 && THUMB_IS_FUNC (fixP->fx_addsy)
25526 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
25527 base = fixP->fx_where + fixP->fx_frag->fr_address;
25528 return base + 8;
25529
25530 case BFD_RELOC_ARM_PCREL_BRANCH:
25531 case BFD_RELOC_ARM_PCREL_JUMP:
25532 case BFD_RELOC_ARM_PLT32:
25533 #ifdef TE_WINCE
25534 /* When handling fixups immediately, because we have already
25535 discovered the value of a symbol, or the address of the frag involved
25536 we must account for the offset by +8, as the OS loader will never see the reloc.
25537 see fixup_segment() in write.c
25538 The S_IS_EXTERNAL test handles the case of global symbols.
25539 Those need the calculated base, not just the pipe compensation the linker will need. */
25540 if (fixP->fx_pcrel
25541 && fixP->fx_addsy != NULL
25542 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
25543 && (S_IS_EXTERNAL (fixP->fx_addsy) || !arm_force_relocation (fixP)))
25544 return base + 8;
25545 return base;
25546 #else
25547 return base + 8;
25548 #endif
25549
25550
25551 /* ARM mode loads relative to PC are also offset by +8. Unlike
25552 branches, the Windows CE loader *does* expect the relocation
25553 to take this into account. */
25554 case BFD_RELOC_ARM_OFFSET_IMM:
25555 case BFD_RELOC_ARM_OFFSET_IMM8:
25556 case BFD_RELOC_ARM_HWLITERAL:
25557 case BFD_RELOC_ARM_LITERAL:
25558 case BFD_RELOC_ARM_CP_OFF_IMM:
25559 return base + 8;
25560
25561
25562 /* Other PC-relative relocations are un-offset. */
25563 default:
25564 return base;
25565 }
25566 }
25567
25568 static bfd_boolean flag_warn_syms = TRUE;
25569
25570 bfd_boolean
25571 arm_tc_equal_in_insn (int c ATTRIBUTE_UNUSED, char * name)
25572 {
25573 /* PR 18347 - Warn if the user attempts to create a symbol with the same
25574 name as an ARM instruction. Whilst strictly speaking it is allowed, it
25575 does mean that the resulting code might be very confusing to the reader.
25576 Also this warning can be triggered if the user omits an operand before
25577 an immediate address, eg:
25578
25579 LDR =foo
25580
25581 GAS treats this as an assignment of the value of the symbol foo to a
25582 symbol LDR, and so (without this code) it will not issue any kind of
25583 warning or error message.
25584
25585 Note - ARM instructions are case-insensitive but the strings in the hash
25586 table are all stored in lower case, so we must first ensure that name is
25587 lower case too. */
25588 if (flag_warn_syms && arm_ops_hsh)
25589 {
25590 char * nbuf = strdup (name);
25591 char * p;
25592
25593 for (p = nbuf; *p; p++)
25594 *p = TOLOWER (*p);
25595 if (hash_find (arm_ops_hsh, nbuf) != NULL)
25596 {
25597 static struct hash_control * already_warned = NULL;
25598
25599 if (already_warned == NULL)
25600 already_warned = hash_new ();
25601 /* Only warn about the symbol once. To keep the code
25602 simple we let hash_insert do the lookup for us. */
25603 if (hash_insert (already_warned, nbuf, NULL) == NULL)
25604 as_warn (_("[-mwarn-syms]: Assignment makes a symbol match an ARM instruction: %s"), name);
25605 }
25606 else
25607 free (nbuf);
25608 }
25609
25610 return FALSE;
25611 }
25612
25613 /* Under ELF we need to default _GLOBAL_OFFSET_TABLE.
25614 Otherwise we have no need to default values of symbols. */
25615
25616 symbolS *
25617 md_undefined_symbol (char * name ATTRIBUTE_UNUSED)
25618 {
25619 #ifdef OBJ_ELF
25620 if (name[0] == '_' && name[1] == 'G'
25621 && streq (name, GLOBAL_OFFSET_TABLE_NAME))
25622 {
25623 if (!GOT_symbol)
25624 {
25625 if (symbol_find (name))
25626 as_bad (_("GOT already in the symbol table"));
25627
25628 GOT_symbol = symbol_new (name, undefined_section,
25629 (valueT) 0, & zero_address_frag);
25630 }
25631
25632 return GOT_symbol;
25633 }
25634 #endif
25635
25636 return NULL;
25637 }
25638
25639 /* Subroutine of md_apply_fix. Check to see if an immediate can be
25640 computed as two separate immediate values, added together. We
25641 already know that this value cannot be computed by just one ARM
25642 instruction. */
25643
25644 static unsigned int
25645 validate_immediate_twopart (unsigned int val,
25646 unsigned int * highpart)
25647 {
25648 unsigned int a;
25649 unsigned int i;
25650
25651 for (i = 0; i < 32; i += 2)
25652 if (((a = rotate_left (val, i)) & 0xff) != 0)
25653 {
25654 if (a & 0xff00)
25655 {
25656 if (a & ~ 0xffff)
25657 continue;
25658 * highpart = (a >> 8) | ((i + 24) << 7);
25659 }
25660 else if (a & 0xff0000)
25661 {
25662 if (a & 0xff000000)
25663 continue;
25664 * highpart = (a >> 16) | ((i + 16) << 7);
25665 }
25666 else
25667 {
25668 gas_assert (a & 0xff000000);
25669 * highpart = (a >> 24) | ((i + 8) << 7);
25670 }
25671
25672 return (a & 0xff) | (i << 7);
25673 }
25674
25675 return FAIL;
25676 }
25677
25678 static int
25679 validate_offset_imm (unsigned int val, int hwse)
25680 {
25681 if ((hwse && val > 255) || val > 4095)
25682 return FAIL;
25683 return val;
25684 }
25685
25686 /* Subroutine of md_apply_fix. Do those data_ops which can take a
25687 negative immediate constant by altering the instruction. A bit of
25688 a hack really.
25689 MOV <-> MVN
25690 AND <-> BIC
25691 ADC <-> SBC
25692 by inverting the second operand, and
25693 ADD <-> SUB
25694 CMP <-> CMN
25695 by negating the second operand. */
25696
25697 static int
25698 negate_data_op (unsigned long * instruction,
25699 unsigned long value)
25700 {
25701 int op, new_inst;
25702 unsigned long negated, inverted;
25703
25704 negated = encode_arm_immediate (-value);
25705 inverted = encode_arm_immediate (~value);
25706
25707 op = (*instruction >> DATA_OP_SHIFT) & 0xf;
25708 switch (op)
25709 {
25710 /* First negates. */
25711 case OPCODE_SUB: /* ADD <-> SUB */
25712 new_inst = OPCODE_ADD;
25713 value = negated;
25714 break;
25715
25716 case OPCODE_ADD:
25717 new_inst = OPCODE_SUB;
25718 value = negated;
25719 break;
25720
25721 case OPCODE_CMP: /* CMP <-> CMN */
25722 new_inst = OPCODE_CMN;
25723 value = negated;
25724 break;
25725
25726 case OPCODE_CMN:
25727 new_inst = OPCODE_CMP;
25728 value = negated;
25729 break;
25730
25731 /* Now Inverted ops. */
25732 case OPCODE_MOV: /* MOV <-> MVN */
25733 new_inst = OPCODE_MVN;
25734 value = inverted;
25735 break;
25736
25737 case OPCODE_MVN:
25738 new_inst = OPCODE_MOV;
25739 value = inverted;
25740 break;
25741
25742 case OPCODE_AND: /* AND <-> BIC */
25743 new_inst = OPCODE_BIC;
25744 value = inverted;
25745 break;
25746
25747 case OPCODE_BIC:
25748 new_inst = OPCODE_AND;
25749 value = inverted;
25750 break;
25751
25752 case OPCODE_ADC: /* ADC <-> SBC */
25753 new_inst = OPCODE_SBC;
25754 value = inverted;
25755 break;
25756
25757 case OPCODE_SBC:
25758 new_inst = OPCODE_ADC;
25759 value = inverted;
25760 break;
25761
25762 /* We cannot do anything. */
25763 default:
25764 return FAIL;
25765 }
25766
25767 if (value == (unsigned) FAIL)
25768 return FAIL;
25769
25770 *instruction &= OPCODE_MASK;
25771 *instruction |= new_inst << DATA_OP_SHIFT;
25772 return value;
25773 }
25774
25775 /* Like negate_data_op, but for Thumb-2. */
25776
25777 static unsigned int
25778 thumb32_negate_data_op (offsetT *instruction, unsigned int value)
25779 {
25780 int op, new_inst;
25781 int rd;
25782 unsigned int negated, inverted;
25783
25784 negated = encode_thumb32_immediate (-value);
25785 inverted = encode_thumb32_immediate (~value);
25786
25787 rd = (*instruction >> 8) & 0xf;
25788 op = (*instruction >> T2_DATA_OP_SHIFT) & 0xf;
25789 switch (op)
25790 {
25791 /* ADD <-> SUB. Includes CMP <-> CMN. */
25792 case T2_OPCODE_SUB:
25793 new_inst = T2_OPCODE_ADD;
25794 value = negated;
25795 break;
25796
25797 case T2_OPCODE_ADD:
25798 new_inst = T2_OPCODE_SUB;
25799 value = negated;
25800 break;
25801
25802 /* ORR <-> ORN. Includes MOV <-> MVN. */
25803 case T2_OPCODE_ORR:
25804 new_inst = T2_OPCODE_ORN;
25805 value = inverted;
25806 break;
25807
25808 case T2_OPCODE_ORN:
25809 new_inst = T2_OPCODE_ORR;
25810 value = inverted;
25811 break;
25812
25813 /* AND <-> BIC. TST has no inverted equivalent. */
25814 case T2_OPCODE_AND:
25815 new_inst = T2_OPCODE_BIC;
25816 if (rd == 15)
25817 value = FAIL;
25818 else
25819 value = inverted;
25820 break;
25821
25822 case T2_OPCODE_BIC:
25823 new_inst = T2_OPCODE_AND;
25824 value = inverted;
25825 break;
25826
25827 /* ADC <-> SBC */
25828 case T2_OPCODE_ADC:
25829 new_inst = T2_OPCODE_SBC;
25830 value = inverted;
25831 break;
25832
25833 case T2_OPCODE_SBC:
25834 new_inst = T2_OPCODE_ADC;
25835 value = inverted;
25836 break;
25837
25838 /* We cannot do anything. */
25839 default:
25840 return FAIL;
25841 }
25842
25843 if (value == (unsigned int)FAIL)
25844 return FAIL;
25845
25846 *instruction &= T2_OPCODE_MASK;
25847 *instruction |= new_inst << T2_DATA_OP_SHIFT;
25848 return value;
25849 }
25850
25851 /* Read a 32-bit thumb instruction from buf. */
25852
25853 static unsigned long
25854 get_thumb32_insn (char * buf)
25855 {
25856 unsigned long insn;
25857 insn = md_chars_to_number (buf, THUMB_SIZE) << 16;
25858 insn |= md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
25859
25860 return insn;
25861 }
25862
25863 /* We usually want to set the low bit on the address of thumb function
25864 symbols. In particular .word foo - . should have the low bit set.
25865 Generic code tries to fold the difference of two symbols to
25866 a constant. Prevent this and force a relocation when the first symbols
25867 is a thumb function. */
25868
25869 bfd_boolean
25870 arm_optimize_expr (expressionS *l, operatorT op, expressionS *r)
25871 {
25872 if (op == O_subtract
25873 && l->X_op == O_symbol
25874 && r->X_op == O_symbol
25875 && THUMB_IS_FUNC (l->X_add_symbol))
25876 {
25877 l->X_op = O_subtract;
25878 l->X_op_symbol = r->X_add_symbol;
25879 l->X_add_number -= r->X_add_number;
25880 return TRUE;
25881 }
25882
25883 /* Process as normal. */
25884 return FALSE;
25885 }
25886
25887 /* Encode Thumb2 unconditional branches and calls. The encoding
25888 for the 2 are identical for the immediate values. */
25889
25890 static void
25891 encode_thumb2_b_bl_offset (char * buf, offsetT value)
25892 {
25893 #define T2I1I2MASK ((1 << 13) | (1 << 11))
25894 offsetT newval;
25895 offsetT newval2;
25896 addressT S, I1, I2, lo, hi;
25897
25898 S = (value >> 24) & 0x01;
25899 I1 = (value >> 23) & 0x01;
25900 I2 = (value >> 22) & 0x01;
25901 hi = (value >> 12) & 0x3ff;
25902 lo = (value >> 1) & 0x7ff;
25903 newval = md_chars_to_number (buf, THUMB_SIZE);
25904 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
25905 newval |= (S << 10) | hi;
25906 newval2 &= ~T2I1I2MASK;
25907 newval2 |= (((I1 ^ S) << 13) | ((I2 ^ S) << 11) | lo) ^ T2I1I2MASK;
25908 md_number_to_chars (buf, newval, THUMB_SIZE);
25909 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
25910 }
25911
25912 void
25913 md_apply_fix (fixS * fixP,
25914 valueT * valP,
25915 segT seg)
25916 {
25917 offsetT value = * valP;
25918 offsetT newval;
25919 unsigned int newimm;
25920 unsigned long temp;
25921 int sign;
25922 char * buf = fixP->fx_where + fixP->fx_frag->fr_literal;
25923
25924 gas_assert (fixP->fx_r_type <= BFD_RELOC_UNUSED);
25925
25926 /* Note whether this will delete the relocation. */
25927
25928 if (fixP->fx_addsy == 0 && !fixP->fx_pcrel)
25929 fixP->fx_done = 1;
25930
25931 /* On a 64-bit host, silently truncate 'value' to 32 bits for
25932 consistency with the behaviour on 32-bit hosts. Remember value
25933 for emit_reloc. */
25934 value &= 0xffffffff;
25935 value ^= 0x80000000;
25936 value -= 0x80000000;
25937
25938 *valP = value;
25939 fixP->fx_addnumber = value;
25940
25941 /* Same treatment for fixP->fx_offset. */
25942 fixP->fx_offset &= 0xffffffff;
25943 fixP->fx_offset ^= 0x80000000;
25944 fixP->fx_offset -= 0x80000000;
25945
25946 switch (fixP->fx_r_type)
25947 {
25948 case BFD_RELOC_NONE:
25949 /* This will need to go in the object file. */
25950 fixP->fx_done = 0;
25951 break;
25952
25953 case BFD_RELOC_ARM_IMMEDIATE:
25954 /* We claim that this fixup has been processed here,
25955 even if in fact we generate an error because we do
25956 not have a reloc for it, so tc_gen_reloc will reject it. */
25957 fixP->fx_done = 1;
25958
25959 if (fixP->fx_addsy)
25960 {
25961 const char *msg = 0;
25962
25963 if (! S_IS_DEFINED (fixP->fx_addsy))
25964 msg = _("undefined symbol %s used as an immediate value");
25965 else if (S_GET_SEGMENT (fixP->fx_addsy) != seg)
25966 msg = _("symbol %s is in a different section");
25967 else if (S_IS_WEAK (fixP->fx_addsy))
25968 msg = _("symbol %s is weak and may be overridden later");
25969
25970 if (msg)
25971 {
25972 as_bad_where (fixP->fx_file, fixP->fx_line,
25973 msg, S_GET_NAME (fixP->fx_addsy));
25974 break;
25975 }
25976 }
25977
25978 temp = md_chars_to_number (buf, INSN_SIZE);
25979
25980 /* If the offset is negative, we should use encoding A2 for ADR. */
25981 if ((temp & 0xfff0000) == 0x28f0000 && value < 0)
25982 newimm = negate_data_op (&temp, value);
25983 else
25984 {
25985 newimm = encode_arm_immediate (value);
25986
25987 /* If the instruction will fail, see if we can fix things up by
25988 changing the opcode. */
25989 if (newimm == (unsigned int) FAIL)
25990 newimm = negate_data_op (&temp, value);
25991 /* MOV accepts both ARM modified immediate (A1 encoding) and
25992 UINT16 (A2 encoding) when possible, MOVW only accepts UINT16.
25993 When disassembling, MOV is preferred when there is no encoding
25994 overlap. */
25995 if (newimm == (unsigned int) FAIL
25996 && ((temp >> DATA_OP_SHIFT) & 0xf) == OPCODE_MOV
25997 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2)
25998 && !((temp >> SBIT_SHIFT) & 0x1)
25999 && value >= 0 && value <= 0xffff)
26000 {
26001 /* Clear bits[23:20] to change encoding from A1 to A2. */
26002 temp &= 0xff0fffff;
26003 /* Encoding high 4bits imm. Code below will encode the remaining
26004 low 12bits. */
26005 temp |= (value & 0x0000f000) << 4;
26006 newimm = value & 0x00000fff;
26007 }
26008 }
26009
26010 if (newimm == (unsigned int) FAIL)
26011 {
26012 as_bad_where (fixP->fx_file, fixP->fx_line,
26013 _("invalid constant (%lx) after fixup"),
26014 (unsigned long) value);
26015 break;
26016 }
26017
26018 newimm |= (temp & 0xfffff000);
26019 md_number_to_chars (buf, (valueT) newimm, INSN_SIZE);
26020 break;
26021
26022 case BFD_RELOC_ARM_ADRL_IMMEDIATE:
26023 {
26024 unsigned int highpart = 0;
26025 unsigned int newinsn = 0xe1a00000; /* nop. */
26026
26027 if (fixP->fx_addsy)
26028 {
26029 const char *msg = 0;
26030
26031 if (! S_IS_DEFINED (fixP->fx_addsy))
26032 msg = _("undefined symbol %s used as an immediate value");
26033 else if (S_GET_SEGMENT (fixP->fx_addsy) != seg)
26034 msg = _("symbol %s is in a different section");
26035 else if (S_IS_WEAK (fixP->fx_addsy))
26036 msg = _("symbol %s is weak and may be overridden later");
26037
26038 if (msg)
26039 {
26040 as_bad_where (fixP->fx_file, fixP->fx_line,
26041 msg, S_GET_NAME (fixP->fx_addsy));
26042 break;
26043 }
26044 }
26045
26046 newimm = encode_arm_immediate (value);
26047 temp = md_chars_to_number (buf, INSN_SIZE);
26048
26049 /* If the instruction will fail, see if we can fix things up by
26050 changing the opcode. */
26051 if (newimm == (unsigned int) FAIL
26052 && (newimm = negate_data_op (& temp, value)) == (unsigned int) FAIL)
26053 {
26054 /* No ? OK - try using two ADD instructions to generate
26055 the value. */
26056 newimm = validate_immediate_twopart (value, & highpart);
26057
26058 /* Yes - then make sure that the second instruction is
26059 also an add. */
26060 if (newimm != (unsigned int) FAIL)
26061 newinsn = temp;
26062 /* Still No ? Try using a negated value. */
26063 else if ((newimm = validate_immediate_twopart (- value, & highpart)) != (unsigned int) FAIL)
26064 temp = newinsn = (temp & OPCODE_MASK) | OPCODE_SUB << DATA_OP_SHIFT;
26065 /* Otherwise - give up. */
26066 else
26067 {
26068 as_bad_where (fixP->fx_file, fixP->fx_line,
26069 _("unable to compute ADRL instructions for PC offset of 0x%lx"),
26070 (long) value);
26071 break;
26072 }
26073
26074 /* Replace the first operand in the 2nd instruction (which
26075 is the PC) with the destination register. We have
26076 already added in the PC in the first instruction and we
26077 do not want to do it again. */
26078 newinsn &= ~ 0xf0000;
26079 newinsn |= ((newinsn & 0x0f000) << 4);
26080 }
26081
26082 newimm |= (temp & 0xfffff000);
26083 md_number_to_chars (buf, (valueT) newimm, INSN_SIZE);
26084
26085 highpart |= (newinsn & 0xfffff000);
26086 md_number_to_chars (buf + INSN_SIZE, (valueT) highpart, INSN_SIZE);
26087 }
26088 break;
26089
26090 case BFD_RELOC_ARM_OFFSET_IMM:
26091 if (!fixP->fx_done && seg->use_rela_p)
26092 value = 0;
26093 /* Fall through. */
26094
26095 case BFD_RELOC_ARM_LITERAL:
26096 sign = value > 0;
26097
26098 if (value < 0)
26099 value = - value;
26100
26101 if (validate_offset_imm (value, 0) == FAIL)
26102 {
26103 if (fixP->fx_r_type == BFD_RELOC_ARM_LITERAL)
26104 as_bad_where (fixP->fx_file, fixP->fx_line,
26105 _("invalid literal constant: pool needs to be closer"));
26106 else
26107 as_bad_where (fixP->fx_file, fixP->fx_line,
26108 _("bad immediate value for offset (%ld)"),
26109 (long) value);
26110 break;
26111 }
26112
26113 newval = md_chars_to_number (buf, INSN_SIZE);
26114 if (value == 0)
26115 newval &= 0xfffff000;
26116 else
26117 {
26118 newval &= 0xff7ff000;
26119 newval |= value | (sign ? INDEX_UP : 0);
26120 }
26121 md_number_to_chars (buf, newval, INSN_SIZE);
26122 break;
26123
26124 case BFD_RELOC_ARM_OFFSET_IMM8:
26125 case BFD_RELOC_ARM_HWLITERAL:
26126 sign = value > 0;
26127
26128 if (value < 0)
26129 value = - value;
26130
26131 if (validate_offset_imm (value, 1) == FAIL)
26132 {
26133 if (fixP->fx_r_type == BFD_RELOC_ARM_HWLITERAL)
26134 as_bad_where (fixP->fx_file, fixP->fx_line,
26135 _("invalid literal constant: pool needs to be closer"));
26136 else
26137 as_bad_where (fixP->fx_file, fixP->fx_line,
26138 _("bad immediate value for 8-bit offset (%ld)"),
26139 (long) value);
26140 break;
26141 }
26142
26143 newval = md_chars_to_number (buf, INSN_SIZE);
26144 if (value == 0)
26145 newval &= 0xfffff0f0;
26146 else
26147 {
26148 newval &= 0xff7ff0f0;
26149 newval |= ((value >> 4) << 8) | (value & 0xf) | (sign ? INDEX_UP : 0);
26150 }
26151 md_number_to_chars (buf, newval, INSN_SIZE);
26152 break;
26153
26154 case BFD_RELOC_ARM_T32_OFFSET_U8:
26155 if (value < 0 || value > 1020 || value % 4 != 0)
26156 as_bad_where (fixP->fx_file, fixP->fx_line,
26157 _("bad immediate value for offset (%ld)"), (long) value);
26158 value /= 4;
26159
26160 newval = md_chars_to_number (buf+2, THUMB_SIZE);
26161 newval |= value;
26162 md_number_to_chars (buf+2, newval, THUMB_SIZE);
26163 break;
26164
26165 case BFD_RELOC_ARM_T32_OFFSET_IMM:
26166 /* This is a complicated relocation used for all varieties of Thumb32
26167 load/store instruction with immediate offset:
26168
26169 1110 100P u1WL NNNN XXXX YYYY iiii iiii - +/-(U) pre/post(P) 8-bit,
26170 *4, optional writeback(W)
26171 (doubleword load/store)
26172
26173 1111 100S uTTL 1111 XXXX iiii iiii iiii - +/-(U) 12-bit PC-rel
26174 1111 100S 0TTL NNNN XXXX 1Pu1 iiii iiii - +/-(U) pre/post(P) 8-bit
26175 1111 100S 0TTL NNNN XXXX 1110 iiii iiii - positive 8-bit (T instruction)
26176 1111 100S 1TTL NNNN XXXX iiii iiii iiii - positive 12-bit
26177 1111 100S 0TTL NNNN XXXX 1100 iiii iiii - negative 8-bit
26178
26179 Uppercase letters indicate bits that are already encoded at
26180 this point. Lowercase letters are our problem. For the
26181 second block of instructions, the secondary opcode nybble
26182 (bits 8..11) is present, and bit 23 is zero, even if this is
26183 a PC-relative operation. */
26184 newval = md_chars_to_number (buf, THUMB_SIZE);
26185 newval <<= 16;
26186 newval |= md_chars_to_number (buf+THUMB_SIZE, THUMB_SIZE);
26187
26188 if ((newval & 0xf0000000) == 0xe0000000)
26189 {
26190 /* Doubleword load/store: 8-bit offset, scaled by 4. */
26191 if (value >= 0)
26192 newval |= (1 << 23);
26193 else
26194 value = -value;
26195 if (value % 4 != 0)
26196 {
26197 as_bad_where (fixP->fx_file, fixP->fx_line,
26198 _("offset not a multiple of 4"));
26199 break;
26200 }
26201 value /= 4;
26202 if (value > 0xff)
26203 {
26204 as_bad_where (fixP->fx_file, fixP->fx_line,
26205 _("offset out of range"));
26206 break;
26207 }
26208 newval &= ~0xff;
26209 }
26210 else if ((newval & 0x000f0000) == 0x000f0000)
26211 {
26212 /* PC-relative, 12-bit offset. */
26213 if (value >= 0)
26214 newval |= (1 << 23);
26215 else
26216 value = -value;
26217 if (value > 0xfff)
26218 {
26219 as_bad_where (fixP->fx_file, fixP->fx_line,
26220 _("offset out of range"));
26221 break;
26222 }
26223 newval &= ~0xfff;
26224 }
26225 else if ((newval & 0x00000100) == 0x00000100)
26226 {
26227 /* Writeback: 8-bit, +/- offset. */
26228 if (value >= 0)
26229 newval |= (1 << 9);
26230 else
26231 value = -value;
26232 if (value > 0xff)
26233 {
26234 as_bad_where (fixP->fx_file, fixP->fx_line,
26235 _("offset out of range"));
26236 break;
26237 }
26238 newval &= ~0xff;
26239 }
26240 else if ((newval & 0x00000f00) == 0x00000e00)
26241 {
26242 /* T-instruction: positive 8-bit offset. */
26243 if (value < 0 || value > 0xff)
26244 {
26245 as_bad_where (fixP->fx_file, fixP->fx_line,
26246 _("offset out of range"));
26247 break;
26248 }
26249 newval &= ~0xff;
26250 newval |= value;
26251 }
26252 else
26253 {
26254 /* Positive 12-bit or negative 8-bit offset. */
26255 int limit;
26256 if (value >= 0)
26257 {
26258 newval |= (1 << 23);
26259 limit = 0xfff;
26260 }
26261 else
26262 {
26263 value = -value;
26264 limit = 0xff;
26265 }
26266 if (value > limit)
26267 {
26268 as_bad_where (fixP->fx_file, fixP->fx_line,
26269 _("offset out of range"));
26270 break;
26271 }
26272 newval &= ~limit;
26273 }
26274
26275 newval |= value;
26276 md_number_to_chars (buf, (newval >> 16) & 0xffff, THUMB_SIZE);
26277 md_number_to_chars (buf + THUMB_SIZE, newval & 0xffff, THUMB_SIZE);
26278 break;
26279
26280 case BFD_RELOC_ARM_SHIFT_IMM:
26281 newval = md_chars_to_number (buf, INSN_SIZE);
26282 if (((unsigned long) value) > 32
26283 || (value == 32
26284 && (((newval & 0x60) == 0) || (newval & 0x60) == 0x60)))
26285 {
26286 as_bad_where (fixP->fx_file, fixP->fx_line,
26287 _("shift expression is too large"));
26288 break;
26289 }
26290
26291 if (value == 0)
26292 /* Shifts of zero must be done as lsl. */
26293 newval &= ~0x60;
26294 else if (value == 32)
26295 value = 0;
26296 newval &= 0xfffff07f;
26297 newval |= (value & 0x1f) << 7;
26298 md_number_to_chars (buf, newval, INSN_SIZE);
26299 break;
26300
26301 case BFD_RELOC_ARM_T32_IMMEDIATE:
26302 case BFD_RELOC_ARM_T32_ADD_IMM:
26303 case BFD_RELOC_ARM_T32_IMM12:
26304 case BFD_RELOC_ARM_T32_ADD_PC12:
26305 /* We claim that this fixup has been processed here,
26306 even if in fact we generate an error because we do
26307 not have a reloc for it, so tc_gen_reloc will reject it. */
26308 fixP->fx_done = 1;
26309
26310 if (fixP->fx_addsy
26311 && ! S_IS_DEFINED (fixP->fx_addsy))
26312 {
26313 as_bad_where (fixP->fx_file, fixP->fx_line,
26314 _("undefined symbol %s used as an immediate value"),
26315 S_GET_NAME (fixP->fx_addsy));
26316 break;
26317 }
26318
26319 newval = md_chars_to_number (buf, THUMB_SIZE);
26320 newval <<= 16;
26321 newval |= md_chars_to_number (buf+2, THUMB_SIZE);
26322
26323 newimm = FAIL;
26324 if ((fixP->fx_r_type == BFD_RELOC_ARM_T32_IMMEDIATE
26325 /* ARMv8-M Baseline MOV will reach here, but it doesn't support
26326 Thumb2 modified immediate encoding (T2). */
26327 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2))
26328 || fixP->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM)
26329 {
26330 newimm = encode_thumb32_immediate (value);
26331 if (newimm == (unsigned int) FAIL)
26332 newimm = thumb32_negate_data_op (&newval, value);
26333 }
26334 if (newimm == (unsigned int) FAIL)
26335 {
26336 if (fixP->fx_r_type != BFD_RELOC_ARM_T32_IMMEDIATE)
26337 {
26338 /* Turn add/sum into addw/subw. */
26339 if (fixP->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM)
26340 newval = (newval & 0xfeffffff) | 0x02000000;
26341 /* No flat 12-bit imm encoding for addsw/subsw. */
26342 if ((newval & 0x00100000) == 0)
26343 {
26344 /* 12 bit immediate for addw/subw. */
26345 if (value < 0)
26346 {
26347 value = -value;
26348 newval ^= 0x00a00000;
26349 }
26350 if (value > 0xfff)
26351 newimm = (unsigned int) FAIL;
26352 else
26353 newimm = value;
26354 }
26355 }
26356 else
26357 {
26358 /* MOV accepts both Thumb2 modified immediate (T2 encoding) and
26359 UINT16 (T3 encoding), MOVW only accepts UINT16. When
26360 disassembling, MOV is preferred when there is no encoding
26361 overlap. */
26362 if (((newval >> T2_DATA_OP_SHIFT) & 0xf) == T2_OPCODE_ORR
26363 /* NOTE: MOV uses the ORR opcode in Thumb 2 mode
26364 but with the Rn field [19:16] set to 1111. */
26365 && (((newval >> 16) & 0xf) == 0xf)
26366 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2_v8m)
26367 && !((newval >> T2_SBIT_SHIFT) & 0x1)
26368 && value >= 0 && value <= 0xffff)
26369 {
26370 /* Toggle bit[25] to change encoding from T2 to T3. */
26371 newval ^= 1 << 25;
26372 /* Clear bits[19:16]. */
26373 newval &= 0xfff0ffff;
26374 /* Encoding high 4bits imm. Code below will encode the
26375 remaining low 12bits. */
26376 newval |= (value & 0x0000f000) << 4;
26377 newimm = value & 0x00000fff;
26378 }
26379 }
26380 }
26381
26382 if (newimm == (unsigned int)FAIL)
26383 {
26384 as_bad_where (fixP->fx_file, fixP->fx_line,
26385 _("invalid constant (%lx) after fixup"),
26386 (unsigned long) value);
26387 break;
26388 }
26389
26390 newval |= (newimm & 0x800) << 15;
26391 newval |= (newimm & 0x700) << 4;
26392 newval |= (newimm & 0x0ff);
26393
26394 md_number_to_chars (buf, (valueT) ((newval >> 16) & 0xffff), THUMB_SIZE);
26395 md_number_to_chars (buf+2, (valueT) (newval & 0xffff), THUMB_SIZE);
26396 break;
26397
26398 case BFD_RELOC_ARM_SMC:
26399 if (((unsigned long) value) > 0xffff)
26400 as_bad_where (fixP->fx_file, fixP->fx_line,
26401 _("invalid smc expression"));
26402 newval = md_chars_to_number (buf, INSN_SIZE);
26403 newval |= (value & 0xf) | ((value & 0xfff0) << 4);
26404 md_number_to_chars (buf, newval, INSN_SIZE);
26405 break;
26406
26407 case BFD_RELOC_ARM_HVC:
26408 if (((unsigned long) value) > 0xffff)
26409 as_bad_where (fixP->fx_file, fixP->fx_line,
26410 _("invalid hvc expression"));
26411 newval = md_chars_to_number (buf, INSN_SIZE);
26412 newval |= (value & 0xf) | ((value & 0xfff0) << 4);
26413 md_number_to_chars (buf, newval, INSN_SIZE);
26414 break;
26415
26416 case BFD_RELOC_ARM_SWI:
26417 if (fixP->tc_fix_data != 0)
26418 {
26419 if (((unsigned long) value) > 0xff)
26420 as_bad_where (fixP->fx_file, fixP->fx_line,
26421 _("invalid swi expression"));
26422 newval = md_chars_to_number (buf, THUMB_SIZE);
26423 newval |= value;
26424 md_number_to_chars (buf, newval, THUMB_SIZE);
26425 }
26426 else
26427 {
26428 if (((unsigned long) value) > 0x00ffffff)
26429 as_bad_where (fixP->fx_file, fixP->fx_line,
26430 _("invalid swi expression"));
26431 newval = md_chars_to_number (buf, INSN_SIZE);
26432 newval |= value;
26433 md_number_to_chars (buf, newval, INSN_SIZE);
26434 }
26435 break;
26436
26437 case BFD_RELOC_ARM_MULTI:
26438 if (((unsigned long) value) > 0xffff)
26439 as_bad_where (fixP->fx_file, fixP->fx_line,
26440 _("invalid expression in load/store multiple"));
26441 newval = value | md_chars_to_number (buf, INSN_SIZE);
26442 md_number_to_chars (buf, newval, INSN_SIZE);
26443 break;
26444
26445 #ifdef OBJ_ELF
26446 case BFD_RELOC_ARM_PCREL_CALL:
26447
26448 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
26449 && fixP->fx_addsy
26450 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
26451 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
26452 && THUMB_IS_FUNC (fixP->fx_addsy))
26453 /* Flip the bl to blx. This is a simple flip
26454 bit here because we generate PCREL_CALL for
26455 unconditional bls. */
26456 {
26457 newval = md_chars_to_number (buf, INSN_SIZE);
26458 newval = newval | 0x10000000;
26459 md_number_to_chars (buf, newval, INSN_SIZE);
26460 temp = 1;
26461 fixP->fx_done = 1;
26462 }
26463 else
26464 temp = 3;
26465 goto arm_branch_common;
26466
26467 case BFD_RELOC_ARM_PCREL_JUMP:
26468 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
26469 && fixP->fx_addsy
26470 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
26471 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
26472 && THUMB_IS_FUNC (fixP->fx_addsy))
26473 {
26474 /* This would map to a bl<cond>, b<cond>,
26475 b<always> to a Thumb function. We
26476 need to force a relocation for this particular
26477 case. */
26478 newval = md_chars_to_number (buf, INSN_SIZE);
26479 fixP->fx_done = 0;
26480 }
26481 /* Fall through. */
26482
26483 case BFD_RELOC_ARM_PLT32:
26484 #endif
26485 case BFD_RELOC_ARM_PCREL_BRANCH:
26486 temp = 3;
26487 goto arm_branch_common;
26488
26489 case BFD_RELOC_ARM_PCREL_BLX:
26490
26491 temp = 1;
26492 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
26493 && fixP->fx_addsy
26494 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
26495 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
26496 && ARM_IS_FUNC (fixP->fx_addsy))
26497 {
26498 /* Flip the blx to a bl and warn. */
26499 const char *name = S_GET_NAME (fixP->fx_addsy);
26500 newval = 0xeb000000;
26501 as_warn_where (fixP->fx_file, fixP->fx_line,
26502 _("blx to '%s' an ARM ISA state function changed to bl"),
26503 name);
26504 md_number_to_chars (buf, newval, INSN_SIZE);
26505 temp = 3;
26506 fixP->fx_done = 1;
26507 }
26508
26509 #ifdef OBJ_ELF
26510 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
26511 fixP->fx_r_type = BFD_RELOC_ARM_PCREL_CALL;
26512 #endif
26513
26514 arm_branch_common:
26515 /* We are going to store value (shifted right by two) in the
26516 instruction, in a 24 bit, signed field. Bits 26 through 32 either
26517 all clear or all set and bit 0 must be clear. For B/BL bit 1 must
26518 also be clear. */
26519 if (value & temp)
26520 as_bad_where (fixP->fx_file, fixP->fx_line,
26521 _("misaligned branch destination"));
26522 if ((value & (offsetT)0xfe000000) != (offsetT)0
26523 && (value & (offsetT)0xfe000000) != (offsetT)0xfe000000)
26524 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
26525
26526 if (fixP->fx_done || !seg->use_rela_p)
26527 {
26528 newval = md_chars_to_number (buf, INSN_SIZE);
26529 newval |= (value >> 2) & 0x00ffffff;
26530 /* Set the H bit on BLX instructions. */
26531 if (temp == 1)
26532 {
26533 if (value & 2)
26534 newval |= 0x01000000;
26535 else
26536 newval &= ~0x01000000;
26537 }
26538 md_number_to_chars (buf, newval, INSN_SIZE);
26539 }
26540 break;
26541
26542 case BFD_RELOC_THUMB_PCREL_BRANCH7: /* CBZ */
26543 /* CBZ can only branch forward. */
26544
26545 /* Attempts to use CBZ to branch to the next instruction
26546 (which, strictly speaking, are prohibited) will be turned into
26547 no-ops.
26548
26549 FIXME: It may be better to remove the instruction completely and
26550 perform relaxation. */
26551 if (value == -2)
26552 {
26553 newval = md_chars_to_number (buf, THUMB_SIZE);
26554 newval = 0xbf00; /* NOP encoding T1 */
26555 md_number_to_chars (buf, newval, THUMB_SIZE);
26556 }
26557 else
26558 {
26559 if (value & ~0x7e)
26560 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
26561
26562 if (fixP->fx_done || !seg->use_rela_p)
26563 {
26564 newval = md_chars_to_number (buf, THUMB_SIZE);
26565 newval |= ((value & 0x3e) << 2) | ((value & 0x40) << 3);
26566 md_number_to_chars (buf, newval, THUMB_SIZE);
26567 }
26568 }
26569 break;
26570
26571 case BFD_RELOC_THUMB_PCREL_BRANCH9: /* Conditional branch. */
26572 if ((value & ~0xff) && ((value & ~0xff) != ~0xff))
26573 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
26574
26575 if (fixP->fx_done || !seg->use_rela_p)
26576 {
26577 newval = md_chars_to_number (buf, THUMB_SIZE);
26578 newval |= (value & 0x1ff) >> 1;
26579 md_number_to_chars (buf, newval, THUMB_SIZE);
26580 }
26581 break;
26582
26583 case BFD_RELOC_THUMB_PCREL_BRANCH12: /* Unconditional branch. */
26584 if ((value & ~0x7ff) && ((value & ~0x7ff) != ~0x7ff))
26585 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
26586
26587 if (fixP->fx_done || !seg->use_rela_p)
26588 {
26589 newval = md_chars_to_number (buf, THUMB_SIZE);
26590 newval |= (value & 0xfff) >> 1;
26591 md_number_to_chars (buf, newval, THUMB_SIZE);
26592 }
26593 break;
26594
26595 case BFD_RELOC_THUMB_PCREL_BRANCH20:
26596 if (fixP->fx_addsy
26597 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
26598 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
26599 && ARM_IS_FUNC (fixP->fx_addsy)
26600 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
26601 {
26602 /* Force a relocation for a branch 20 bits wide. */
26603 fixP->fx_done = 0;
26604 }
26605 if ((value & ~0x1fffff) && ((value & ~0x0fffff) != ~0x0fffff))
26606 as_bad_where (fixP->fx_file, fixP->fx_line,
26607 _("conditional branch out of range"));
26608
26609 if (fixP->fx_done || !seg->use_rela_p)
26610 {
26611 offsetT newval2;
26612 addressT S, J1, J2, lo, hi;
26613
26614 S = (value & 0x00100000) >> 20;
26615 J2 = (value & 0x00080000) >> 19;
26616 J1 = (value & 0x00040000) >> 18;
26617 hi = (value & 0x0003f000) >> 12;
26618 lo = (value & 0x00000ffe) >> 1;
26619
26620 newval = md_chars_to_number (buf, THUMB_SIZE);
26621 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
26622 newval |= (S << 10) | hi;
26623 newval2 |= (J1 << 13) | (J2 << 11) | lo;
26624 md_number_to_chars (buf, newval, THUMB_SIZE);
26625 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
26626 }
26627 break;
26628
26629 case BFD_RELOC_THUMB_PCREL_BLX:
26630 /* If there is a blx from a thumb state function to
26631 another thumb function flip this to a bl and warn
26632 about it. */
26633
26634 if (fixP->fx_addsy
26635 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
26636 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
26637 && THUMB_IS_FUNC (fixP->fx_addsy))
26638 {
26639 const char *name = S_GET_NAME (fixP->fx_addsy);
26640 as_warn_where (fixP->fx_file, fixP->fx_line,
26641 _("blx to Thumb func '%s' from Thumb ISA state changed to bl"),
26642 name);
26643 newval = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
26644 newval = newval | 0x1000;
26645 md_number_to_chars (buf+THUMB_SIZE, newval, THUMB_SIZE);
26646 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BRANCH23;
26647 fixP->fx_done = 1;
26648 }
26649
26650
26651 goto thumb_bl_common;
26652
26653 case BFD_RELOC_THUMB_PCREL_BRANCH23:
26654 /* A bl from Thumb state ISA to an internal ARM state function
26655 is converted to a blx. */
26656 if (fixP->fx_addsy
26657 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
26658 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
26659 && ARM_IS_FUNC (fixP->fx_addsy)
26660 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
26661 {
26662 newval = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
26663 newval = newval & ~0x1000;
26664 md_number_to_chars (buf+THUMB_SIZE, newval, THUMB_SIZE);
26665 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BLX;
26666 fixP->fx_done = 1;
26667 }
26668
26669 thumb_bl_common:
26670
26671 if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BLX)
26672 /* For a BLX instruction, make sure that the relocation is rounded up
26673 to a word boundary. This follows the semantics of the instruction
26674 which specifies that bit 1 of the target address will come from bit
26675 1 of the base address. */
26676 value = (value + 3) & ~ 3;
26677
26678 #ifdef OBJ_ELF
26679 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4
26680 && fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BLX)
26681 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BRANCH23;
26682 #endif
26683
26684 if ((value & ~0x3fffff) && ((value & ~0x3fffff) != ~0x3fffff))
26685 {
26686 if (!(ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2)))
26687 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
26688 else if ((value & ~0x1ffffff)
26689 && ((value & ~0x1ffffff) != ~0x1ffffff))
26690 as_bad_where (fixP->fx_file, fixP->fx_line,
26691 _("Thumb2 branch out of range"));
26692 }
26693
26694 if (fixP->fx_done || !seg->use_rela_p)
26695 encode_thumb2_b_bl_offset (buf, value);
26696
26697 break;
26698
26699 case BFD_RELOC_THUMB_PCREL_BRANCH25:
26700 if ((value & ~0x0ffffff) && ((value & ~0x0ffffff) != ~0x0ffffff))
26701 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
26702
26703 if (fixP->fx_done || !seg->use_rela_p)
26704 encode_thumb2_b_bl_offset (buf, value);
26705
26706 break;
26707
26708 case BFD_RELOC_8:
26709 if (fixP->fx_done || !seg->use_rela_p)
26710 *buf = value;
26711 break;
26712
26713 case BFD_RELOC_16:
26714 if (fixP->fx_done || !seg->use_rela_p)
26715 md_number_to_chars (buf, value, 2);
26716 break;
26717
26718 #ifdef OBJ_ELF
26719 case BFD_RELOC_ARM_TLS_CALL:
26720 case BFD_RELOC_ARM_THM_TLS_CALL:
26721 case BFD_RELOC_ARM_TLS_DESCSEQ:
26722 case BFD_RELOC_ARM_THM_TLS_DESCSEQ:
26723 case BFD_RELOC_ARM_TLS_GOTDESC:
26724 case BFD_RELOC_ARM_TLS_GD32:
26725 case BFD_RELOC_ARM_TLS_LE32:
26726 case BFD_RELOC_ARM_TLS_IE32:
26727 case BFD_RELOC_ARM_TLS_LDM32:
26728 case BFD_RELOC_ARM_TLS_LDO32:
26729 S_SET_THREAD_LOCAL (fixP->fx_addsy);
26730 break;
26731
26732 /* Same handling as above, but with the arm_fdpic guard. */
26733 case BFD_RELOC_ARM_TLS_GD32_FDPIC:
26734 case BFD_RELOC_ARM_TLS_IE32_FDPIC:
26735 case BFD_RELOC_ARM_TLS_LDM32_FDPIC:
26736 if (arm_fdpic)
26737 {
26738 S_SET_THREAD_LOCAL (fixP->fx_addsy);
26739 }
26740 else
26741 {
26742 as_bad_where (fixP->fx_file, fixP->fx_line,
26743 _("Relocation supported only in FDPIC mode"));
26744 }
26745 break;
26746
26747 case BFD_RELOC_ARM_GOT32:
26748 case BFD_RELOC_ARM_GOTOFF:
26749 break;
26750
26751 case BFD_RELOC_ARM_GOT_PREL:
26752 if (fixP->fx_done || !seg->use_rela_p)
26753 md_number_to_chars (buf, value, 4);
26754 break;
26755
26756 case BFD_RELOC_ARM_TARGET2:
26757 /* TARGET2 is not partial-inplace, so we need to write the
26758 addend here for REL targets, because it won't be written out
26759 during reloc processing later. */
26760 if (fixP->fx_done || !seg->use_rela_p)
26761 md_number_to_chars (buf, fixP->fx_offset, 4);
26762 break;
26763
26764 /* Relocations for FDPIC. */
26765 case BFD_RELOC_ARM_GOTFUNCDESC:
26766 case BFD_RELOC_ARM_GOTOFFFUNCDESC:
26767 case BFD_RELOC_ARM_FUNCDESC:
26768 if (arm_fdpic)
26769 {
26770 if (fixP->fx_done || !seg->use_rela_p)
26771 md_number_to_chars (buf, 0, 4);
26772 }
26773 else
26774 {
26775 as_bad_where (fixP->fx_file, fixP->fx_line,
26776 _("Relocation supported only in FDPIC mode"));
26777 }
26778 break;
26779 #endif
26780
26781 case BFD_RELOC_RVA:
26782 case BFD_RELOC_32:
26783 case BFD_RELOC_ARM_TARGET1:
26784 case BFD_RELOC_ARM_ROSEGREL32:
26785 case BFD_RELOC_ARM_SBREL32:
26786 case BFD_RELOC_32_PCREL:
26787 #ifdef TE_PE
26788 case BFD_RELOC_32_SECREL:
26789 #endif
26790 if (fixP->fx_done || !seg->use_rela_p)
26791 #ifdef TE_WINCE
26792 /* For WinCE we only do this for pcrel fixups. */
26793 if (fixP->fx_done || fixP->fx_pcrel)
26794 #endif
26795 md_number_to_chars (buf, value, 4);
26796 break;
26797
26798 #ifdef OBJ_ELF
26799 case BFD_RELOC_ARM_PREL31:
26800 if (fixP->fx_done || !seg->use_rela_p)
26801 {
26802 newval = md_chars_to_number (buf, 4) & 0x80000000;
26803 if ((value ^ (value >> 1)) & 0x40000000)
26804 {
26805 as_bad_where (fixP->fx_file, fixP->fx_line,
26806 _("rel31 relocation overflow"));
26807 }
26808 newval |= value & 0x7fffffff;
26809 md_number_to_chars (buf, newval, 4);
26810 }
26811 break;
26812 #endif
26813
26814 case BFD_RELOC_ARM_CP_OFF_IMM:
26815 case BFD_RELOC_ARM_T32_CP_OFF_IMM:
26816 case BFD_RELOC_ARM_T32_VLDR_VSTR_OFF_IMM:
26817 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM)
26818 newval = md_chars_to_number (buf, INSN_SIZE);
26819 else
26820 newval = get_thumb32_insn (buf);
26821 if ((newval & 0x0f200f00) == 0x0d000900)
26822 {
26823 /* This is a fp16 vstr/vldr. The immediate offset in the mnemonic
26824 has permitted values that are multiples of 2, in the range 0
26825 to 510. */
26826 if (value < -510 || value > 510 || (value & 1))
26827 as_bad_where (fixP->fx_file, fixP->fx_line,
26828 _("co-processor offset out of range"));
26829 }
26830 else if ((newval & 0xfe001f80) == 0xec000f80)
26831 {
26832 if (value < -511 || value > 512 || (value & 3))
26833 as_bad_where (fixP->fx_file, fixP->fx_line,
26834 _("co-processor offset out of range"));
26835 }
26836 else if (value < -1023 || value > 1023 || (value & 3))
26837 as_bad_where (fixP->fx_file, fixP->fx_line,
26838 _("co-processor offset out of range"));
26839 cp_off_common:
26840 sign = value > 0;
26841 if (value < 0)
26842 value = -value;
26843 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
26844 || fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2)
26845 newval = md_chars_to_number (buf, INSN_SIZE);
26846 else
26847 newval = get_thumb32_insn (buf);
26848 if (value == 0)
26849 {
26850 if (fixP->fx_r_type == BFD_RELOC_ARM_T32_VLDR_VSTR_OFF_IMM)
26851 newval &= 0xffffff80;
26852 else
26853 newval &= 0xffffff00;
26854 }
26855 else
26856 {
26857 if (fixP->fx_r_type == BFD_RELOC_ARM_T32_VLDR_VSTR_OFF_IMM)
26858 newval &= 0xff7fff80;
26859 else
26860 newval &= 0xff7fff00;
26861 if ((newval & 0x0f200f00) == 0x0d000900)
26862 {
26863 /* This is a fp16 vstr/vldr.
26864
26865 It requires the immediate offset in the instruction is shifted
26866 left by 1 to be a half-word offset.
26867
26868 Here, left shift by 1 first, and later right shift by 2
26869 should get the right offset. */
26870 value <<= 1;
26871 }
26872 newval |= (value >> 2) | (sign ? INDEX_UP : 0);
26873 }
26874 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
26875 || fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2)
26876 md_number_to_chars (buf, newval, INSN_SIZE);
26877 else
26878 put_thumb32_insn (buf, newval);
26879 break;
26880
26881 case BFD_RELOC_ARM_CP_OFF_IMM_S2:
26882 case BFD_RELOC_ARM_T32_CP_OFF_IMM_S2:
26883 if (value < -255 || value > 255)
26884 as_bad_where (fixP->fx_file, fixP->fx_line,
26885 _("co-processor offset out of range"));
26886 value *= 4;
26887 goto cp_off_common;
26888
26889 case BFD_RELOC_ARM_THUMB_OFFSET:
26890 newval = md_chars_to_number (buf, THUMB_SIZE);
26891 /* Exactly what ranges, and where the offset is inserted depends
26892 on the type of instruction, we can establish this from the
26893 top 4 bits. */
26894 switch (newval >> 12)
26895 {
26896 case 4: /* PC load. */
26897 /* Thumb PC loads are somewhat odd, bit 1 of the PC is
26898 forced to zero for these loads; md_pcrel_from has already
26899 compensated for this. */
26900 if (value & 3)
26901 as_bad_where (fixP->fx_file, fixP->fx_line,
26902 _("invalid offset, target not word aligned (0x%08lX)"),
26903 (((unsigned long) fixP->fx_frag->fr_address
26904 + (unsigned long) fixP->fx_where) & ~3)
26905 + (unsigned long) value);
26906
26907 if (value & ~0x3fc)
26908 as_bad_where (fixP->fx_file, fixP->fx_line,
26909 _("invalid offset, value too big (0x%08lX)"),
26910 (long) value);
26911
26912 newval |= value >> 2;
26913 break;
26914
26915 case 9: /* SP load/store. */
26916 if (value & ~0x3fc)
26917 as_bad_where (fixP->fx_file, fixP->fx_line,
26918 _("invalid offset, value too big (0x%08lX)"),
26919 (long) value);
26920 newval |= value >> 2;
26921 break;
26922
26923 case 6: /* Word load/store. */
26924 if (value & ~0x7c)
26925 as_bad_where (fixP->fx_file, fixP->fx_line,
26926 _("invalid offset, value too big (0x%08lX)"),
26927 (long) value);
26928 newval |= value << 4; /* 6 - 2. */
26929 break;
26930
26931 case 7: /* Byte load/store. */
26932 if (value & ~0x1f)
26933 as_bad_where (fixP->fx_file, fixP->fx_line,
26934 _("invalid offset, value too big (0x%08lX)"),
26935 (long) value);
26936 newval |= value << 6;
26937 break;
26938
26939 case 8: /* Halfword load/store. */
26940 if (value & ~0x3e)
26941 as_bad_where (fixP->fx_file, fixP->fx_line,
26942 _("invalid offset, value too big (0x%08lX)"),
26943 (long) value);
26944 newval |= value << 5; /* 6 - 1. */
26945 break;
26946
26947 default:
26948 as_bad_where (fixP->fx_file, fixP->fx_line,
26949 "Unable to process relocation for thumb opcode: %lx",
26950 (unsigned long) newval);
26951 break;
26952 }
26953 md_number_to_chars (buf, newval, THUMB_SIZE);
26954 break;
26955
26956 case BFD_RELOC_ARM_THUMB_ADD:
26957 /* This is a complicated relocation, since we use it for all of
26958 the following immediate relocations:
26959
26960 3bit ADD/SUB
26961 8bit ADD/SUB
26962 9bit ADD/SUB SP word-aligned
26963 10bit ADD PC/SP word-aligned
26964
26965 The type of instruction being processed is encoded in the
26966 instruction field:
26967
26968 0x8000 SUB
26969 0x00F0 Rd
26970 0x000F Rs
26971 */
26972 newval = md_chars_to_number (buf, THUMB_SIZE);
26973 {
26974 int rd = (newval >> 4) & 0xf;
26975 int rs = newval & 0xf;
26976 int subtract = !!(newval & 0x8000);
26977
26978 /* Check for HI regs, only very restricted cases allowed:
26979 Adjusting SP, and using PC or SP to get an address. */
26980 if ((rd > 7 && (rd != REG_SP || rs != REG_SP))
26981 || (rs > 7 && rs != REG_SP && rs != REG_PC))
26982 as_bad_where (fixP->fx_file, fixP->fx_line,
26983 _("invalid Hi register with immediate"));
26984
26985 /* If value is negative, choose the opposite instruction. */
26986 if (value < 0)
26987 {
26988 value = -value;
26989 subtract = !subtract;
26990 if (value < 0)
26991 as_bad_where (fixP->fx_file, fixP->fx_line,
26992 _("immediate value out of range"));
26993 }
26994
26995 if (rd == REG_SP)
26996 {
26997 if (value & ~0x1fc)
26998 as_bad_where (fixP->fx_file, fixP->fx_line,
26999 _("invalid immediate for stack address calculation"));
27000 newval = subtract ? T_OPCODE_SUB_ST : T_OPCODE_ADD_ST;
27001 newval |= value >> 2;
27002 }
27003 else if (rs == REG_PC || rs == REG_SP)
27004 {
27005 /* PR gas/18541. If the addition is for a defined symbol
27006 within range of an ADR instruction then accept it. */
27007 if (subtract
27008 && value == 4
27009 && fixP->fx_addsy != NULL)
27010 {
27011 subtract = 0;
27012
27013 if (! S_IS_DEFINED (fixP->fx_addsy)
27014 || S_GET_SEGMENT (fixP->fx_addsy) != seg
27015 || S_IS_WEAK (fixP->fx_addsy))
27016 {
27017 as_bad_where (fixP->fx_file, fixP->fx_line,
27018 _("address calculation needs a strongly defined nearby symbol"));
27019 }
27020 else
27021 {
27022 offsetT v = fixP->fx_where + fixP->fx_frag->fr_address;
27023
27024 /* Round up to the next 4-byte boundary. */
27025 if (v & 3)
27026 v = (v + 3) & ~ 3;
27027 else
27028 v += 4;
27029 v = S_GET_VALUE (fixP->fx_addsy) - v;
27030
27031 if (v & ~0x3fc)
27032 {
27033 as_bad_where (fixP->fx_file, fixP->fx_line,
27034 _("symbol too far away"));
27035 }
27036 else
27037 {
27038 fixP->fx_done = 1;
27039 value = v;
27040 }
27041 }
27042 }
27043
27044 if (subtract || value & ~0x3fc)
27045 as_bad_where (fixP->fx_file, fixP->fx_line,
27046 _("invalid immediate for address calculation (value = 0x%08lX)"),
27047 (unsigned long) (subtract ? - value : value));
27048 newval = (rs == REG_PC ? T_OPCODE_ADD_PC : T_OPCODE_ADD_SP);
27049 newval |= rd << 8;
27050 newval |= value >> 2;
27051 }
27052 else if (rs == rd)
27053 {
27054 if (value & ~0xff)
27055 as_bad_where (fixP->fx_file, fixP->fx_line,
27056 _("immediate value out of range"));
27057 newval = subtract ? T_OPCODE_SUB_I8 : T_OPCODE_ADD_I8;
27058 newval |= (rd << 8) | value;
27059 }
27060 else
27061 {
27062 if (value & ~0x7)
27063 as_bad_where (fixP->fx_file, fixP->fx_line,
27064 _("immediate value out of range"));
27065 newval = subtract ? T_OPCODE_SUB_I3 : T_OPCODE_ADD_I3;
27066 newval |= rd | (rs << 3) | (value << 6);
27067 }
27068 }
27069 md_number_to_chars (buf, newval, THUMB_SIZE);
27070 break;
27071
27072 case BFD_RELOC_ARM_THUMB_IMM:
27073 newval = md_chars_to_number (buf, THUMB_SIZE);
27074 if (value < 0 || value > 255)
27075 as_bad_where (fixP->fx_file, fixP->fx_line,
27076 _("invalid immediate: %ld is out of range"),
27077 (long) value);
27078 newval |= value;
27079 md_number_to_chars (buf, newval, THUMB_SIZE);
27080 break;
27081
27082 case BFD_RELOC_ARM_THUMB_SHIFT:
27083 /* 5bit shift value (0..32). LSL cannot take 32. */
27084 newval = md_chars_to_number (buf, THUMB_SIZE) & 0xf83f;
27085 temp = newval & 0xf800;
27086 if (value < 0 || value > 32 || (value == 32 && temp == T_OPCODE_LSL_I))
27087 as_bad_where (fixP->fx_file, fixP->fx_line,
27088 _("invalid shift value: %ld"), (long) value);
27089 /* Shifts of zero must be encoded as LSL. */
27090 if (value == 0)
27091 newval = (newval & 0x003f) | T_OPCODE_LSL_I;
27092 /* Shifts of 32 are encoded as zero. */
27093 else if (value == 32)
27094 value = 0;
27095 newval |= value << 6;
27096 md_number_to_chars (buf, newval, THUMB_SIZE);
27097 break;
27098
27099 case BFD_RELOC_VTABLE_INHERIT:
27100 case BFD_RELOC_VTABLE_ENTRY:
27101 fixP->fx_done = 0;
27102 return;
27103
27104 case BFD_RELOC_ARM_MOVW:
27105 case BFD_RELOC_ARM_MOVT:
27106 case BFD_RELOC_ARM_THUMB_MOVW:
27107 case BFD_RELOC_ARM_THUMB_MOVT:
27108 if (fixP->fx_done || !seg->use_rela_p)
27109 {
27110 /* REL format relocations are limited to a 16-bit addend. */
27111 if (!fixP->fx_done)
27112 {
27113 if (value < -0x8000 || value > 0x7fff)
27114 as_bad_where (fixP->fx_file, fixP->fx_line,
27115 _("offset out of range"));
27116 }
27117 else if (fixP->fx_r_type == BFD_RELOC_ARM_MOVT
27118 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT)
27119 {
27120 value >>= 16;
27121 }
27122
27123 if (fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW
27124 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT)
27125 {
27126 newval = get_thumb32_insn (buf);
27127 newval &= 0xfbf08f00;
27128 newval |= (value & 0xf000) << 4;
27129 newval |= (value & 0x0800) << 15;
27130 newval |= (value & 0x0700) << 4;
27131 newval |= (value & 0x00ff);
27132 put_thumb32_insn (buf, newval);
27133 }
27134 else
27135 {
27136 newval = md_chars_to_number (buf, 4);
27137 newval &= 0xfff0f000;
27138 newval |= value & 0x0fff;
27139 newval |= (value & 0xf000) << 4;
27140 md_number_to_chars (buf, newval, 4);
27141 }
27142 }
27143 return;
27144
27145 case BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC:
27146 case BFD_RELOC_ARM_THUMB_ALU_ABS_G1_NC:
27147 case BFD_RELOC_ARM_THUMB_ALU_ABS_G2_NC:
27148 case BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC:
27149 gas_assert (!fixP->fx_done);
27150 {
27151 bfd_vma insn;
27152 bfd_boolean is_mov;
27153 bfd_vma encoded_addend = value;
27154
27155 /* Check that addend can be encoded in instruction. */
27156 if (!seg->use_rela_p && (value < 0 || value > 255))
27157 as_bad_where (fixP->fx_file, fixP->fx_line,
27158 _("the offset 0x%08lX is not representable"),
27159 (unsigned long) encoded_addend);
27160
27161 /* Extract the instruction. */
27162 insn = md_chars_to_number (buf, THUMB_SIZE);
27163 is_mov = (insn & 0xf800) == 0x2000;
27164
27165 /* Encode insn. */
27166 if (is_mov)
27167 {
27168 if (!seg->use_rela_p)
27169 insn |= encoded_addend;
27170 }
27171 else
27172 {
27173 int rd, rs;
27174
27175 /* Extract the instruction. */
27176 /* Encoding is the following
27177 0x8000 SUB
27178 0x00F0 Rd
27179 0x000F Rs
27180 */
27181 /* The following conditions must be true :
27182 - ADD
27183 - Rd == Rs
27184 - Rd <= 7
27185 */
27186 rd = (insn >> 4) & 0xf;
27187 rs = insn & 0xf;
27188 if ((insn & 0x8000) || (rd != rs) || rd > 7)
27189 as_bad_where (fixP->fx_file, fixP->fx_line,
27190 _("Unable to process relocation for thumb opcode: %lx"),
27191 (unsigned long) insn);
27192
27193 /* Encode as ADD immediate8 thumb 1 code. */
27194 insn = 0x3000 | (rd << 8);
27195
27196 /* Place the encoded addend into the first 8 bits of the
27197 instruction. */
27198 if (!seg->use_rela_p)
27199 insn |= encoded_addend;
27200 }
27201
27202 /* Update the instruction. */
27203 md_number_to_chars (buf, insn, THUMB_SIZE);
27204 }
27205 break;
27206
27207 case BFD_RELOC_ARM_ALU_PC_G0_NC:
27208 case BFD_RELOC_ARM_ALU_PC_G0:
27209 case BFD_RELOC_ARM_ALU_PC_G1_NC:
27210 case BFD_RELOC_ARM_ALU_PC_G1:
27211 case BFD_RELOC_ARM_ALU_PC_G2:
27212 case BFD_RELOC_ARM_ALU_SB_G0_NC:
27213 case BFD_RELOC_ARM_ALU_SB_G0:
27214 case BFD_RELOC_ARM_ALU_SB_G1_NC:
27215 case BFD_RELOC_ARM_ALU_SB_G1:
27216 case BFD_RELOC_ARM_ALU_SB_G2:
27217 gas_assert (!fixP->fx_done);
27218 if (!seg->use_rela_p)
27219 {
27220 bfd_vma insn;
27221 bfd_vma encoded_addend;
27222 bfd_vma addend_abs = llabs (value);
27223
27224 /* Check that the absolute value of the addend can be
27225 expressed as an 8-bit constant plus a rotation. */
27226 encoded_addend = encode_arm_immediate (addend_abs);
27227 if (encoded_addend == (unsigned int) FAIL)
27228 as_bad_where (fixP->fx_file, fixP->fx_line,
27229 _("the offset 0x%08lX is not representable"),
27230 (unsigned long) addend_abs);
27231
27232 /* Extract the instruction. */
27233 insn = md_chars_to_number (buf, INSN_SIZE);
27234
27235 /* If the addend is positive, use an ADD instruction.
27236 Otherwise use a SUB. Take care not to destroy the S bit. */
27237 insn &= 0xff1fffff;
27238 if (value < 0)
27239 insn |= 1 << 22;
27240 else
27241 insn |= 1 << 23;
27242
27243 /* Place the encoded addend into the first 12 bits of the
27244 instruction. */
27245 insn &= 0xfffff000;
27246 insn |= encoded_addend;
27247
27248 /* Update the instruction. */
27249 md_number_to_chars (buf, insn, INSN_SIZE);
27250 }
27251 break;
27252
27253 case BFD_RELOC_ARM_LDR_PC_G0:
27254 case BFD_RELOC_ARM_LDR_PC_G1:
27255 case BFD_RELOC_ARM_LDR_PC_G2:
27256 case BFD_RELOC_ARM_LDR_SB_G0:
27257 case BFD_RELOC_ARM_LDR_SB_G1:
27258 case BFD_RELOC_ARM_LDR_SB_G2:
27259 gas_assert (!fixP->fx_done);
27260 if (!seg->use_rela_p)
27261 {
27262 bfd_vma insn;
27263 bfd_vma addend_abs = llabs (value);
27264
27265 /* Check that the absolute value of the addend can be
27266 encoded in 12 bits. */
27267 if (addend_abs >= 0x1000)
27268 as_bad_where (fixP->fx_file, fixP->fx_line,
27269 _("bad offset 0x%08lX (only 12 bits available for the magnitude)"),
27270 (unsigned long) addend_abs);
27271
27272 /* Extract the instruction. */
27273 insn = md_chars_to_number (buf, INSN_SIZE);
27274
27275 /* If the addend is negative, clear bit 23 of the instruction.
27276 Otherwise set it. */
27277 if (value < 0)
27278 insn &= ~(1 << 23);
27279 else
27280 insn |= 1 << 23;
27281
27282 /* Place the absolute value of the addend into the first 12 bits
27283 of the instruction. */
27284 insn &= 0xfffff000;
27285 insn |= addend_abs;
27286
27287 /* Update the instruction. */
27288 md_number_to_chars (buf, insn, INSN_SIZE);
27289 }
27290 break;
27291
27292 case BFD_RELOC_ARM_LDRS_PC_G0:
27293 case BFD_RELOC_ARM_LDRS_PC_G1:
27294 case BFD_RELOC_ARM_LDRS_PC_G2:
27295 case BFD_RELOC_ARM_LDRS_SB_G0:
27296 case BFD_RELOC_ARM_LDRS_SB_G1:
27297 case BFD_RELOC_ARM_LDRS_SB_G2:
27298 gas_assert (!fixP->fx_done);
27299 if (!seg->use_rela_p)
27300 {
27301 bfd_vma insn;
27302 bfd_vma addend_abs = llabs (value);
27303
27304 /* Check that the absolute value of the addend can be
27305 encoded in 8 bits. */
27306 if (addend_abs >= 0x100)
27307 as_bad_where (fixP->fx_file, fixP->fx_line,
27308 _("bad offset 0x%08lX (only 8 bits available for the magnitude)"),
27309 (unsigned long) addend_abs);
27310
27311 /* Extract the instruction. */
27312 insn = md_chars_to_number (buf, INSN_SIZE);
27313
27314 /* If the addend is negative, clear bit 23 of the instruction.
27315 Otherwise set it. */
27316 if (value < 0)
27317 insn &= ~(1 << 23);
27318 else
27319 insn |= 1 << 23;
27320
27321 /* Place the first four bits of the absolute value of the addend
27322 into the first 4 bits of the instruction, and the remaining
27323 four into bits 8 .. 11. */
27324 insn &= 0xfffff0f0;
27325 insn |= (addend_abs & 0xf) | ((addend_abs & 0xf0) << 4);
27326
27327 /* Update the instruction. */
27328 md_number_to_chars (buf, insn, INSN_SIZE);
27329 }
27330 break;
27331
27332 case BFD_RELOC_ARM_LDC_PC_G0:
27333 case BFD_RELOC_ARM_LDC_PC_G1:
27334 case BFD_RELOC_ARM_LDC_PC_G2:
27335 case BFD_RELOC_ARM_LDC_SB_G0:
27336 case BFD_RELOC_ARM_LDC_SB_G1:
27337 case BFD_RELOC_ARM_LDC_SB_G2:
27338 gas_assert (!fixP->fx_done);
27339 if (!seg->use_rela_p)
27340 {
27341 bfd_vma insn;
27342 bfd_vma addend_abs = llabs (value);
27343
27344 /* Check that the absolute value of the addend is a multiple of
27345 four and, when divided by four, fits in 8 bits. */
27346 if (addend_abs & 0x3)
27347 as_bad_where (fixP->fx_file, fixP->fx_line,
27348 _("bad offset 0x%08lX (must be word-aligned)"),
27349 (unsigned long) addend_abs);
27350
27351 if ((addend_abs >> 2) > 0xff)
27352 as_bad_where (fixP->fx_file, fixP->fx_line,
27353 _("bad offset 0x%08lX (must be an 8-bit number of words)"),
27354 (unsigned long) addend_abs);
27355
27356 /* Extract the instruction. */
27357 insn = md_chars_to_number (buf, INSN_SIZE);
27358
27359 /* If the addend is negative, clear bit 23 of the instruction.
27360 Otherwise set it. */
27361 if (value < 0)
27362 insn &= ~(1 << 23);
27363 else
27364 insn |= 1 << 23;
27365
27366 /* Place the addend (divided by four) into the first eight
27367 bits of the instruction. */
27368 insn &= 0xfffffff0;
27369 insn |= addend_abs >> 2;
27370
27371 /* Update the instruction. */
27372 md_number_to_chars (buf, insn, INSN_SIZE);
27373 }
27374 break;
27375
27376 case BFD_RELOC_THUMB_PCREL_BRANCH5:
27377 if (fixP->fx_addsy
27378 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
27379 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
27380 && ARM_IS_FUNC (fixP->fx_addsy)
27381 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v8_1m_main))
27382 {
27383 /* Force a relocation for a branch 5 bits wide. */
27384 fixP->fx_done = 0;
27385 }
27386 if (v8_1_branch_value_check (value, 5, FALSE) == FAIL)
27387 as_bad_where (fixP->fx_file, fixP->fx_line,
27388 BAD_BRANCH_OFF);
27389
27390 if (fixP->fx_done || !seg->use_rela_p)
27391 {
27392 addressT boff = value >> 1;
27393
27394 newval = md_chars_to_number (buf, THUMB_SIZE);
27395 newval |= (boff << 7);
27396 md_number_to_chars (buf, newval, THUMB_SIZE);
27397 }
27398 break;
27399
27400 case BFD_RELOC_THUMB_PCREL_BFCSEL:
27401 if (fixP->fx_addsy
27402 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
27403 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
27404 && ARM_IS_FUNC (fixP->fx_addsy)
27405 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v8_1m_main))
27406 {
27407 fixP->fx_done = 0;
27408 }
27409 if ((value & ~0x7f) && ((value & ~0x3f) != ~0x3f))
27410 as_bad_where (fixP->fx_file, fixP->fx_line,
27411 _("branch out of range"));
27412
27413 if (fixP->fx_done || !seg->use_rela_p)
27414 {
27415 newval = md_chars_to_number (buf, THUMB_SIZE);
27416
27417 addressT boff = ((newval & 0x0780) >> 7) << 1;
27418 addressT diff = value - boff;
27419
27420 if (diff == 4)
27421 {
27422 newval |= 1 << 1; /* T bit. */
27423 }
27424 else if (diff != 2)
27425 {
27426 as_bad_where (fixP->fx_file, fixP->fx_line,
27427 _("out of range label-relative fixup value"));
27428 }
27429 md_number_to_chars (buf, newval, THUMB_SIZE);
27430 }
27431 break;
27432
27433 case BFD_RELOC_ARM_THUMB_BF17:
27434 if (fixP->fx_addsy
27435 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
27436 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
27437 && ARM_IS_FUNC (fixP->fx_addsy)
27438 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v8_1m_main))
27439 {
27440 /* Force a relocation for a branch 17 bits wide. */
27441 fixP->fx_done = 0;
27442 }
27443
27444 if (v8_1_branch_value_check (value, 17, TRUE) == FAIL)
27445 as_bad_where (fixP->fx_file, fixP->fx_line,
27446 BAD_BRANCH_OFF);
27447
27448 if (fixP->fx_done || !seg->use_rela_p)
27449 {
27450 offsetT newval2;
27451 addressT immA, immB, immC;
27452
27453 immA = (value & 0x0001f000) >> 12;
27454 immB = (value & 0x00000ffc) >> 2;
27455 immC = (value & 0x00000002) >> 1;
27456
27457 newval = md_chars_to_number (buf, THUMB_SIZE);
27458 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
27459 newval |= immA;
27460 newval2 |= (immC << 11) | (immB << 1);
27461 md_number_to_chars (buf, newval, THUMB_SIZE);
27462 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
27463 }
27464 break;
27465
27466 case BFD_RELOC_ARM_THUMB_BF19:
27467 if (fixP->fx_addsy
27468 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
27469 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
27470 && ARM_IS_FUNC (fixP->fx_addsy)
27471 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v8_1m_main))
27472 {
27473 /* Force a relocation for a branch 19 bits wide. */
27474 fixP->fx_done = 0;
27475 }
27476
27477 if (v8_1_branch_value_check (value, 19, TRUE) == FAIL)
27478 as_bad_where (fixP->fx_file, fixP->fx_line,
27479 BAD_BRANCH_OFF);
27480
27481 if (fixP->fx_done || !seg->use_rela_p)
27482 {
27483 offsetT newval2;
27484 addressT immA, immB, immC;
27485
27486 immA = (value & 0x0007f000) >> 12;
27487 immB = (value & 0x00000ffc) >> 2;
27488 immC = (value & 0x00000002) >> 1;
27489
27490 newval = md_chars_to_number (buf, THUMB_SIZE);
27491 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
27492 newval |= immA;
27493 newval2 |= (immC << 11) | (immB << 1);
27494 md_number_to_chars (buf, newval, THUMB_SIZE);
27495 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
27496 }
27497 break;
27498
27499 case BFD_RELOC_ARM_THUMB_BF13:
27500 if (fixP->fx_addsy
27501 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
27502 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
27503 && ARM_IS_FUNC (fixP->fx_addsy)
27504 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v8_1m_main))
27505 {
27506 /* Force a relocation for a branch 13 bits wide. */
27507 fixP->fx_done = 0;
27508 }
27509
27510 if (v8_1_branch_value_check (value, 13, TRUE) == FAIL)
27511 as_bad_where (fixP->fx_file, fixP->fx_line,
27512 BAD_BRANCH_OFF);
27513
27514 if (fixP->fx_done || !seg->use_rela_p)
27515 {
27516 offsetT newval2;
27517 addressT immA, immB, immC;
27518
27519 immA = (value & 0x00001000) >> 12;
27520 immB = (value & 0x00000ffc) >> 2;
27521 immC = (value & 0x00000002) >> 1;
27522
27523 newval = md_chars_to_number (buf, THUMB_SIZE);
27524 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
27525 newval |= immA;
27526 newval2 |= (immC << 11) | (immB << 1);
27527 md_number_to_chars (buf, newval, THUMB_SIZE);
27528 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
27529 }
27530 break;
27531
27532 case BFD_RELOC_ARM_THUMB_LOOP12:
27533 if (fixP->fx_addsy
27534 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
27535 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
27536 && ARM_IS_FUNC (fixP->fx_addsy)
27537 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v8_1m_main))
27538 {
27539 /* Force a relocation for a branch 12 bits wide. */
27540 fixP->fx_done = 0;
27541 }
27542
27543 bfd_vma insn = get_thumb32_insn (buf);
27544 /* le lr, <label> or le <label> */
27545 if (((insn & 0xffffffff) == 0xf00fc001)
27546 || ((insn & 0xffffffff) == 0xf02fc001))
27547 value = -value;
27548
27549 if (v8_1_branch_value_check (value, 12, FALSE) == FAIL)
27550 as_bad_where (fixP->fx_file, fixP->fx_line,
27551 BAD_BRANCH_OFF);
27552 if (fixP->fx_done || !seg->use_rela_p)
27553 {
27554 addressT imml, immh;
27555
27556 immh = (value & 0x00000ffc) >> 2;
27557 imml = (value & 0x00000002) >> 1;
27558
27559 newval = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
27560 newval |= (imml << 11) | (immh << 1);
27561 md_number_to_chars (buf + THUMB_SIZE, newval, THUMB_SIZE);
27562 }
27563 break;
27564
27565 case BFD_RELOC_ARM_V4BX:
27566 /* This will need to go in the object file. */
27567 fixP->fx_done = 0;
27568 break;
27569
27570 case BFD_RELOC_UNUSED:
27571 default:
27572 as_bad_where (fixP->fx_file, fixP->fx_line,
27573 _("bad relocation fixup type (%d)"), fixP->fx_r_type);
27574 }
27575 }
27576
27577 /* Translate internal representation of relocation info to BFD target
27578 format. */
27579
27580 arelent *
27581 tc_gen_reloc (asection *section, fixS *fixp)
27582 {
27583 arelent * reloc;
27584 bfd_reloc_code_real_type code;
27585
27586 reloc = XNEW (arelent);
27587
27588 reloc->sym_ptr_ptr = XNEW (asymbol *);
27589 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
27590 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
27591
27592 if (fixp->fx_pcrel)
27593 {
27594 if (section->use_rela_p)
27595 fixp->fx_offset -= md_pcrel_from_section (fixp, section);
27596 else
27597 fixp->fx_offset = reloc->address;
27598 }
27599 reloc->addend = fixp->fx_offset;
27600
27601 switch (fixp->fx_r_type)
27602 {
27603 case BFD_RELOC_8:
27604 if (fixp->fx_pcrel)
27605 {
27606 code = BFD_RELOC_8_PCREL;
27607 break;
27608 }
27609 /* Fall through. */
27610
27611 case BFD_RELOC_16:
27612 if (fixp->fx_pcrel)
27613 {
27614 code = BFD_RELOC_16_PCREL;
27615 break;
27616 }
27617 /* Fall through. */
27618
27619 case BFD_RELOC_32:
27620 if (fixp->fx_pcrel)
27621 {
27622 code = BFD_RELOC_32_PCREL;
27623 break;
27624 }
27625 /* Fall through. */
27626
27627 case BFD_RELOC_ARM_MOVW:
27628 if (fixp->fx_pcrel)
27629 {
27630 code = BFD_RELOC_ARM_MOVW_PCREL;
27631 break;
27632 }
27633 /* Fall through. */
27634
27635 case BFD_RELOC_ARM_MOVT:
27636 if (fixp->fx_pcrel)
27637 {
27638 code = BFD_RELOC_ARM_MOVT_PCREL;
27639 break;
27640 }
27641 /* Fall through. */
27642
27643 case BFD_RELOC_ARM_THUMB_MOVW:
27644 if (fixp->fx_pcrel)
27645 {
27646 code = BFD_RELOC_ARM_THUMB_MOVW_PCREL;
27647 break;
27648 }
27649 /* Fall through. */
27650
27651 case BFD_RELOC_ARM_THUMB_MOVT:
27652 if (fixp->fx_pcrel)
27653 {
27654 code = BFD_RELOC_ARM_THUMB_MOVT_PCREL;
27655 break;
27656 }
27657 /* Fall through. */
27658
27659 case BFD_RELOC_NONE:
27660 case BFD_RELOC_ARM_PCREL_BRANCH:
27661 case BFD_RELOC_ARM_PCREL_BLX:
27662 case BFD_RELOC_RVA:
27663 case BFD_RELOC_THUMB_PCREL_BRANCH7:
27664 case BFD_RELOC_THUMB_PCREL_BRANCH9:
27665 case BFD_RELOC_THUMB_PCREL_BRANCH12:
27666 case BFD_RELOC_THUMB_PCREL_BRANCH20:
27667 case BFD_RELOC_THUMB_PCREL_BRANCH23:
27668 case BFD_RELOC_THUMB_PCREL_BRANCH25:
27669 case BFD_RELOC_VTABLE_ENTRY:
27670 case BFD_RELOC_VTABLE_INHERIT:
27671 #ifdef TE_PE
27672 case BFD_RELOC_32_SECREL:
27673 #endif
27674 code = fixp->fx_r_type;
27675 break;
27676
27677 case BFD_RELOC_THUMB_PCREL_BLX:
27678 #ifdef OBJ_ELF
27679 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
27680 code = BFD_RELOC_THUMB_PCREL_BRANCH23;
27681 else
27682 #endif
27683 code = BFD_RELOC_THUMB_PCREL_BLX;
27684 break;
27685
27686 case BFD_RELOC_ARM_LITERAL:
27687 case BFD_RELOC_ARM_HWLITERAL:
27688 /* If this is called then the a literal has
27689 been referenced across a section boundary. */
27690 as_bad_where (fixp->fx_file, fixp->fx_line,
27691 _("literal referenced across section boundary"));
27692 return NULL;
27693
27694 #ifdef OBJ_ELF
27695 case BFD_RELOC_ARM_TLS_CALL:
27696 case BFD_RELOC_ARM_THM_TLS_CALL:
27697 case BFD_RELOC_ARM_TLS_DESCSEQ:
27698 case BFD_RELOC_ARM_THM_TLS_DESCSEQ:
27699 case BFD_RELOC_ARM_GOT32:
27700 case BFD_RELOC_ARM_GOTOFF:
27701 case BFD_RELOC_ARM_GOT_PREL:
27702 case BFD_RELOC_ARM_PLT32:
27703 case BFD_RELOC_ARM_TARGET1:
27704 case BFD_RELOC_ARM_ROSEGREL32:
27705 case BFD_RELOC_ARM_SBREL32:
27706 case BFD_RELOC_ARM_PREL31:
27707 case BFD_RELOC_ARM_TARGET2:
27708 case BFD_RELOC_ARM_TLS_LDO32:
27709 case BFD_RELOC_ARM_PCREL_CALL:
27710 case BFD_RELOC_ARM_PCREL_JUMP:
27711 case BFD_RELOC_ARM_ALU_PC_G0_NC:
27712 case BFD_RELOC_ARM_ALU_PC_G0:
27713 case BFD_RELOC_ARM_ALU_PC_G1_NC:
27714 case BFD_RELOC_ARM_ALU_PC_G1:
27715 case BFD_RELOC_ARM_ALU_PC_G2:
27716 case BFD_RELOC_ARM_LDR_PC_G0:
27717 case BFD_RELOC_ARM_LDR_PC_G1:
27718 case BFD_RELOC_ARM_LDR_PC_G2:
27719 case BFD_RELOC_ARM_LDRS_PC_G0:
27720 case BFD_RELOC_ARM_LDRS_PC_G1:
27721 case BFD_RELOC_ARM_LDRS_PC_G2:
27722 case BFD_RELOC_ARM_LDC_PC_G0:
27723 case BFD_RELOC_ARM_LDC_PC_G1:
27724 case BFD_RELOC_ARM_LDC_PC_G2:
27725 case BFD_RELOC_ARM_ALU_SB_G0_NC:
27726 case BFD_RELOC_ARM_ALU_SB_G0:
27727 case BFD_RELOC_ARM_ALU_SB_G1_NC:
27728 case BFD_RELOC_ARM_ALU_SB_G1:
27729 case BFD_RELOC_ARM_ALU_SB_G2:
27730 case BFD_RELOC_ARM_LDR_SB_G0:
27731 case BFD_RELOC_ARM_LDR_SB_G1:
27732 case BFD_RELOC_ARM_LDR_SB_G2:
27733 case BFD_RELOC_ARM_LDRS_SB_G0:
27734 case BFD_RELOC_ARM_LDRS_SB_G1:
27735 case BFD_RELOC_ARM_LDRS_SB_G2:
27736 case BFD_RELOC_ARM_LDC_SB_G0:
27737 case BFD_RELOC_ARM_LDC_SB_G1:
27738 case BFD_RELOC_ARM_LDC_SB_G2:
27739 case BFD_RELOC_ARM_V4BX:
27740 case BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC:
27741 case BFD_RELOC_ARM_THUMB_ALU_ABS_G1_NC:
27742 case BFD_RELOC_ARM_THUMB_ALU_ABS_G2_NC:
27743 case BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC:
27744 case BFD_RELOC_ARM_GOTFUNCDESC:
27745 case BFD_RELOC_ARM_GOTOFFFUNCDESC:
27746 case BFD_RELOC_ARM_FUNCDESC:
27747 case BFD_RELOC_ARM_THUMB_BF17:
27748 case BFD_RELOC_ARM_THUMB_BF19:
27749 case BFD_RELOC_ARM_THUMB_BF13:
27750 code = fixp->fx_r_type;
27751 break;
27752
27753 case BFD_RELOC_ARM_TLS_GOTDESC:
27754 case BFD_RELOC_ARM_TLS_GD32:
27755 case BFD_RELOC_ARM_TLS_GD32_FDPIC:
27756 case BFD_RELOC_ARM_TLS_LE32:
27757 case BFD_RELOC_ARM_TLS_IE32:
27758 case BFD_RELOC_ARM_TLS_IE32_FDPIC:
27759 case BFD_RELOC_ARM_TLS_LDM32:
27760 case BFD_RELOC_ARM_TLS_LDM32_FDPIC:
27761 /* BFD will include the symbol's address in the addend.
27762 But we don't want that, so subtract it out again here. */
27763 if (!S_IS_COMMON (fixp->fx_addsy))
27764 reloc->addend -= (*reloc->sym_ptr_ptr)->value;
27765 code = fixp->fx_r_type;
27766 break;
27767 #endif
27768
27769 case BFD_RELOC_ARM_IMMEDIATE:
27770 as_bad_where (fixp->fx_file, fixp->fx_line,
27771 _("internal relocation (type: IMMEDIATE) not fixed up"));
27772 return NULL;
27773
27774 case BFD_RELOC_ARM_ADRL_IMMEDIATE:
27775 as_bad_where (fixp->fx_file, fixp->fx_line,
27776 _("ADRL used for a symbol not defined in the same file"));
27777 return NULL;
27778
27779 case BFD_RELOC_THUMB_PCREL_BRANCH5:
27780 case BFD_RELOC_THUMB_PCREL_BFCSEL:
27781 case BFD_RELOC_ARM_THUMB_LOOP12:
27782 as_bad_where (fixp->fx_file, fixp->fx_line,
27783 _("%s used for a symbol not defined in the same file"),
27784 bfd_get_reloc_code_name (fixp->fx_r_type));
27785 return NULL;
27786
27787 case BFD_RELOC_ARM_OFFSET_IMM:
27788 if (section->use_rela_p)
27789 {
27790 code = fixp->fx_r_type;
27791 break;
27792 }
27793
27794 if (fixp->fx_addsy != NULL
27795 && !S_IS_DEFINED (fixp->fx_addsy)
27796 && S_IS_LOCAL (fixp->fx_addsy))
27797 {
27798 as_bad_where (fixp->fx_file, fixp->fx_line,
27799 _("undefined local label `%s'"),
27800 S_GET_NAME (fixp->fx_addsy));
27801 return NULL;
27802 }
27803
27804 as_bad_where (fixp->fx_file, fixp->fx_line,
27805 _("internal_relocation (type: OFFSET_IMM) not fixed up"));
27806 return NULL;
27807
27808 default:
27809 {
27810 const char * type;
27811
27812 switch (fixp->fx_r_type)
27813 {
27814 case BFD_RELOC_NONE: type = "NONE"; break;
27815 case BFD_RELOC_ARM_OFFSET_IMM8: type = "OFFSET_IMM8"; break;
27816 case BFD_RELOC_ARM_SHIFT_IMM: type = "SHIFT_IMM"; break;
27817 case BFD_RELOC_ARM_SMC: type = "SMC"; break;
27818 case BFD_RELOC_ARM_SWI: type = "SWI"; break;
27819 case BFD_RELOC_ARM_MULTI: type = "MULTI"; break;
27820 case BFD_RELOC_ARM_CP_OFF_IMM: type = "CP_OFF_IMM"; break;
27821 case BFD_RELOC_ARM_T32_OFFSET_IMM: type = "T32_OFFSET_IMM"; break;
27822 case BFD_RELOC_ARM_T32_CP_OFF_IMM: type = "T32_CP_OFF_IMM"; break;
27823 case BFD_RELOC_ARM_THUMB_ADD: type = "THUMB_ADD"; break;
27824 case BFD_RELOC_ARM_THUMB_SHIFT: type = "THUMB_SHIFT"; break;
27825 case BFD_RELOC_ARM_THUMB_IMM: type = "THUMB_IMM"; break;
27826 case BFD_RELOC_ARM_THUMB_OFFSET: type = "THUMB_OFFSET"; break;
27827 default: type = _("<unknown>"); break;
27828 }
27829 as_bad_where (fixp->fx_file, fixp->fx_line,
27830 _("cannot represent %s relocation in this object file format"),
27831 type);
27832 return NULL;
27833 }
27834 }
27835
27836 #ifdef OBJ_ELF
27837 if ((code == BFD_RELOC_32_PCREL || code == BFD_RELOC_32)
27838 && GOT_symbol
27839 && fixp->fx_addsy == GOT_symbol)
27840 {
27841 code = BFD_RELOC_ARM_GOTPC;
27842 reloc->addend = fixp->fx_offset = reloc->address;
27843 }
27844 #endif
27845
27846 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
27847
27848 if (reloc->howto == NULL)
27849 {
27850 as_bad_where (fixp->fx_file, fixp->fx_line,
27851 _("cannot represent %s relocation in this object file format"),
27852 bfd_get_reloc_code_name (code));
27853 return NULL;
27854 }
27855
27856 /* HACK: Since arm ELF uses Rel instead of Rela, encode the
27857 vtable entry to be used in the relocation's section offset. */
27858 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
27859 reloc->address = fixp->fx_offset;
27860
27861 return reloc;
27862 }
27863
27864 /* This fix_new is called by cons via TC_CONS_FIX_NEW. */
27865
27866 void
27867 cons_fix_new_arm (fragS * frag,
27868 int where,
27869 int size,
27870 expressionS * exp,
27871 bfd_reloc_code_real_type reloc)
27872 {
27873 int pcrel = 0;
27874
27875 /* Pick a reloc.
27876 FIXME: @@ Should look at CPU word size. */
27877 switch (size)
27878 {
27879 case 1:
27880 reloc = BFD_RELOC_8;
27881 break;
27882 case 2:
27883 reloc = BFD_RELOC_16;
27884 break;
27885 case 4:
27886 default:
27887 reloc = BFD_RELOC_32;
27888 break;
27889 case 8:
27890 reloc = BFD_RELOC_64;
27891 break;
27892 }
27893
27894 #ifdef TE_PE
27895 if (exp->X_op == O_secrel)
27896 {
27897 exp->X_op = O_symbol;
27898 reloc = BFD_RELOC_32_SECREL;
27899 }
27900 #endif
27901
27902 fix_new_exp (frag, where, size, exp, pcrel, reloc);
27903 }
27904
27905 #if defined (OBJ_COFF)
27906 void
27907 arm_validate_fix (fixS * fixP)
27908 {
27909 /* If the destination of the branch is a defined symbol which does not have
27910 the THUMB_FUNC attribute, then we must be calling a function which has
27911 the (interfacearm) attribute. We look for the Thumb entry point to that
27912 function and change the branch to refer to that function instead. */
27913 if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BRANCH23
27914 && fixP->fx_addsy != NULL
27915 && S_IS_DEFINED (fixP->fx_addsy)
27916 && ! THUMB_IS_FUNC (fixP->fx_addsy))
27917 {
27918 fixP->fx_addsy = find_real_start (fixP->fx_addsy);
27919 }
27920 }
27921 #endif
27922
27923
27924 int
27925 arm_force_relocation (struct fix * fixp)
27926 {
27927 #if defined (OBJ_COFF) && defined (TE_PE)
27928 if (fixp->fx_r_type == BFD_RELOC_RVA)
27929 return 1;
27930 #endif
27931
27932 /* In case we have a call or a branch to a function in ARM ISA mode from
27933 a thumb function or vice-versa force the relocation. These relocations
27934 are cleared off for some cores that might have blx and simple transformations
27935 are possible. */
27936
27937 #ifdef OBJ_ELF
27938 switch (fixp->fx_r_type)
27939 {
27940 case BFD_RELOC_ARM_PCREL_JUMP:
27941 case BFD_RELOC_ARM_PCREL_CALL:
27942 case BFD_RELOC_THUMB_PCREL_BLX:
27943 if (THUMB_IS_FUNC (fixp->fx_addsy))
27944 return 1;
27945 break;
27946
27947 case BFD_RELOC_ARM_PCREL_BLX:
27948 case BFD_RELOC_THUMB_PCREL_BRANCH25:
27949 case BFD_RELOC_THUMB_PCREL_BRANCH20:
27950 case BFD_RELOC_THUMB_PCREL_BRANCH23:
27951 if (ARM_IS_FUNC (fixp->fx_addsy))
27952 return 1;
27953 break;
27954
27955 default:
27956 break;
27957 }
27958 #endif
27959
27960 /* Resolve these relocations even if the symbol is extern or weak.
27961 Technically this is probably wrong due to symbol preemption.
27962 In practice these relocations do not have enough range to be useful
27963 at dynamic link time, and some code (e.g. in the Linux kernel)
27964 expects these references to be resolved. */
27965 if (fixp->fx_r_type == BFD_RELOC_ARM_IMMEDIATE
27966 || fixp->fx_r_type == BFD_RELOC_ARM_OFFSET_IMM
27967 || fixp->fx_r_type == BFD_RELOC_ARM_OFFSET_IMM8
27968 || fixp->fx_r_type == BFD_RELOC_ARM_ADRL_IMMEDIATE
27969 || fixp->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
27970 || fixp->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2
27971 || fixp->fx_r_type == BFD_RELOC_ARM_THUMB_OFFSET
27972 || fixp->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM
27973 || fixp->fx_r_type == BFD_RELOC_ARM_T32_IMMEDIATE
27974 || fixp->fx_r_type == BFD_RELOC_ARM_T32_IMM12
27975 || fixp->fx_r_type == BFD_RELOC_ARM_T32_OFFSET_IMM
27976 || fixp->fx_r_type == BFD_RELOC_ARM_T32_ADD_PC12
27977 || fixp->fx_r_type == BFD_RELOC_ARM_T32_CP_OFF_IMM
27978 || fixp->fx_r_type == BFD_RELOC_ARM_T32_CP_OFF_IMM_S2)
27979 return 0;
27980
27981 /* Always leave these relocations for the linker. */
27982 if ((fixp->fx_r_type >= BFD_RELOC_ARM_ALU_PC_G0_NC
27983 && fixp->fx_r_type <= BFD_RELOC_ARM_LDC_SB_G2)
27984 || fixp->fx_r_type == BFD_RELOC_ARM_LDR_PC_G0)
27985 return 1;
27986
27987 /* Always generate relocations against function symbols. */
27988 if (fixp->fx_r_type == BFD_RELOC_32
27989 && fixp->fx_addsy
27990 && (symbol_get_bfdsym (fixp->fx_addsy)->flags & BSF_FUNCTION))
27991 return 1;
27992
27993 return generic_force_reloc (fixp);
27994 }
27995
27996 #if defined (OBJ_ELF) || defined (OBJ_COFF)
27997 /* Relocations against function names must be left unadjusted,
27998 so that the linker can use this information to generate interworking
27999 stubs. The MIPS version of this function
28000 also prevents relocations that are mips-16 specific, but I do not
28001 know why it does this.
28002
28003 FIXME:
28004 There is one other problem that ought to be addressed here, but
28005 which currently is not: Taking the address of a label (rather
28006 than a function) and then later jumping to that address. Such
28007 addresses also ought to have their bottom bit set (assuming that
28008 they reside in Thumb code), but at the moment they will not. */
28009
28010 bfd_boolean
28011 arm_fix_adjustable (fixS * fixP)
28012 {
28013 if (fixP->fx_addsy == NULL)
28014 return 1;
28015
28016 /* Preserve relocations against symbols with function type. */
28017 if (symbol_get_bfdsym (fixP->fx_addsy)->flags & BSF_FUNCTION)
28018 return FALSE;
28019
28020 if (THUMB_IS_FUNC (fixP->fx_addsy)
28021 && fixP->fx_subsy == NULL)
28022 return FALSE;
28023
28024 /* We need the symbol name for the VTABLE entries. */
28025 if ( fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
28026 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
28027 return FALSE;
28028
28029 /* Don't allow symbols to be discarded on GOT related relocs. */
28030 if (fixP->fx_r_type == BFD_RELOC_ARM_PLT32
28031 || fixP->fx_r_type == BFD_RELOC_ARM_GOT32
28032 || fixP->fx_r_type == BFD_RELOC_ARM_GOTOFF
28033 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_GD32
28034 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_GD32_FDPIC
28035 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LE32
28036 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_IE32
28037 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_IE32_FDPIC
28038 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDM32
28039 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDM32_FDPIC
28040 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDO32
28041 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_GOTDESC
28042 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_CALL
28043 || fixP->fx_r_type == BFD_RELOC_ARM_THM_TLS_CALL
28044 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_DESCSEQ
28045 || fixP->fx_r_type == BFD_RELOC_ARM_THM_TLS_DESCSEQ
28046 || fixP->fx_r_type == BFD_RELOC_ARM_TARGET2)
28047 return FALSE;
28048
28049 /* Similarly for group relocations. */
28050 if ((fixP->fx_r_type >= BFD_RELOC_ARM_ALU_PC_G0_NC
28051 && fixP->fx_r_type <= BFD_RELOC_ARM_LDC_SB_G2)
28052 || fixP->fx_r_type == BFD_RELOC_ARM_LDR_PC_G0)
28053 return FALSE;
28054
28055 /* MOVW/MOVT REL relocations have limited offsets, so keep the symbols. */
28056 if (fixP->fx_r_type == BFD_RELOC_ARM_MOVW
28057 || fixP->fx_r_type == BFD_RELOC_ARM_MOVT
28058 || fixP->fx_r_type == BFD_RELOC_ARM_MOVW_PCREL
28059 || fixP->fx_r_type == BFD_RELOC_ARM_MOVT_PCREL
28060 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW
28061 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT
28062 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW_PCREL
28063 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT_PCREL)
28064 return FALSE;
28065
28066 /* BFD_RELOC_ARM_THUMB_ALU_ABS_Gx_NC relocations have VERY limited
28067 offsets, so keep these symbols. */
28068 if (fixP->fx_r_type >= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
28069 && fixP->fx_r_type <= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC)
28070 return FALSE;
28071
28072 return TRUE;
28073 }
28074 #endif /* defined (OBJ_ELF) || defined (OBJ_COFF) */
28075
28076 #ifdef OBJ_ELF
28077 const char *
28078 elf32_arm_target_format (void)
28079 {
28080 #ifdef TE_SYMBIAN
28081 return (target_big_endian
28082 ? "elf32-bigarm-symbian"
28083 : "elf32-littlearm-symbian");
28084 #elif defined (TE_VXWORKS)
28085 return (target_big_endian
28086 ? "elf32-bigarm-vxworks"
28087 : "elf32-littlearm-vxworks");
28088 #elif defined (TE_NACL)
28089 return (target_big_endian
28090 ? "elf32-bigarm-nacl"
28091 : "elf32-littlearm-nacl");
28092 #else
28093 if (arm_fdpic)
28094 {
28095 if (target_big_endian)
28096 return "elf32-bigarm-fdpic";
28097 else
28098 return "elf32-littlearm-fdpic";
28099 }
28100 else
28101 {
28102 if (target_big_endian)
28103 return "elf32-bigarm";
28104 else
28105 return "elf32-littlearm";
28106 }
28107 #endif
28108 }
28109
28110 void
28111 armelf_frob_symbol (symbolS * symp,
28112 int * puntp)
28113 {
28114 elf_frob_symbol (symp, puntp);
28115 }
28116 #endif
28117
28118 /* MD interface: Finalization. */
28119
28120 void
28121 arm_cleanup (void)
28122 {
28123 literal_pool * pool;
28124
28125 /* Ensure that all the predication blocks are properly closed. */
28126 check_pred_blocks_finished ();
28127
28128 for (pool = list_of_pools; pool; pool = pool->next)
28129 {
28130 /* Put it at the end of the relevant section. */
28131 subseg_set (pool->section, pool->sub_section);
28132 #ifdef OBJ_ELF
28133 arm_elf_change_section ();
28134 #endif
28135 s_ltorg (0);
28136 }
28137 }
28138
28139 #ifdef OBJ_ELF
28140 /* Remove any excess mapping symbols generated for alignment frags in
28141 SEC. We may have created a mapping symbol before a zero byte
28142 alignment; remove it if there's a mapping symbol after the
28143 alignment. */
28144 static void
28145 check_mapping_symbols (bfd *abfd ATTRIBUTE_UNUSED, asection *sec,
28146 void *dummy ATTRIBUTE_UNUSED)
28147 {
28148 segment_info_type *seginfo = seg_info (sec);
28149 fragS *fragp;
28150
28151 if (seginfo == NULL || seginfo->frchainP == NULL)
28152 return;
28153
28154 for (fragp = seginfo->frchainP->frch_root;
28155 fragp != NULL;
28156 fragp = fragp->fr_next)
28157 {
28158 symbolS *sym = fragp->tc_frag_data.last_map;
28159 fragS *next = fragp->fr_next;
28160
28161 /* Variable-sized frags have been converted to fixed size by
28162 this point. But if this was variable-sized to start with,
28163 there will be a fixed-size frag after it. So don't handle
28164 next == NULL. */
28165 if (sym == NULL || next == NULL)
28166 continue;
28167
28168 if (S_GET_VALUE (sym) < next->fr_address)
28169 /* Not at the end of this frag. */
28170 continue;
28171 know (S_GET_VALUE (sym) == next->fr_address);
28172
28173 do
28174 {
28175 if (next->tc_frag_data.first_map != NULL)
28176 {
28177 /* Next frag starts with a mapping symbol. Discard this
28178 one. */
28179 symbol_remove (sym, &symbol_rootP, &symbol_lastP);
28180 break;
28181 }
28182
28183 if (next->fr_next == NULL)
28184 {
28185 /* This mapping symbol is at the end of the section. Discard
28186 it. */
28187 know (next->fr_fix == 0 && next->fr_var == 0);
28188 symbol_remove (sym, &symbol_rootP, &symbol_lastP);
28189 break;
28190 }
28191
28192 /* As long as we have empty frags without any mapping symbols,
28193 keep looking. */
28194 /* If the next frag is non-empty and does not start with a
28195 mapping symbol, then this mapping symbol is required. */
28196 if (next->fr_address != next->fr_next->fr_address)
28197 break;
28198
28199 next = next->fr_next;
28200 }
28201 while (next != NULL);
28202 }
28203 }
28204 #endif
28205
28206 /* Adjust the symbol table. This marks Thumb symbols as distinct from
28207 ARM ones. */
28208
28209 void
28210 arm_adjust_symtab (void)
28211 {
28212 #ifdef OBJ_COFF
28213 symbolS * sym;
28214
28215 for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym))
28216 {
28217 if (ARM_IS_THUMB (sym))
28218 {
28219 if (THUMB_IS_FUNC (sym))
28220 {
28221 /* Mark the symbol as a Thumb function. */
28222 if ( S_GET_STORAGE_CLASS (sym) == C_STAT
28223 || S_GET_STORAGE_CLASS (sym) == C_LABEL) /* This can happen! */
28224 S_SET_STORAGE_CLASS (sym, C_THUMBSTATFUNC);
28225
28226 else if (S_GET_STORAGE_CLASS (sym) == C_EXT)
28227 S_SET_STORAGE_CLASS (sym, C_THUMBEXTFUNC);
28228 else
28229 as_bad (_("%s: unexpected function type: %d"),
28230 S_GET_NAME (sym), S_GET_STORAGE_CLASS (sym));
28231 }
28232 else switch (S_GET_STORAGE_CLASS (sym))
28233 {
28234 case C_EXT:
28235 S_SET_STORAGE_CLASS (sym, C_THUMBEXT);
28236 break;
28237 case C_STAT:
28238 S_SET_STORAGE_CLASS (sym, C_THUMBSTAT);
28239 break;
28240 case C_LABEL:
28241 S_SET_STORAGE_CLASS (sym, C_THUMBLABEL);
28242 break;
28243 default:
28244 /* Do nothing. */
28245 break;
28246 }
28247 }
28248
28249 if (ARM_IS_INTERWORK (sym))
28250 coffsymbol (symbol_get_bfdsym (sym))->native->u.syment.n_flags = 0xFF;
28251 }
28252 #endif
28253 #ifdef OBJ_ELF
28254 symbolS * sym;
28255 char bind;
28256
28257 for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym))
28258 {
28259 if (ARM_IS_THUMB (sym))
28260 {
28261 elf_symbol_type * elf_sym;
28262
28263 elf_sym = elf_symbol (symbol_get_bfdsym (sym));
28264 bind = ELF_ST_BIND (elf_sym->internal_elf_sym.st_info);
28265
28266 if (! bfd_is_arm_special_symbol_name (elf_sym->symbol.name,
28267 BFD_ARM_SPECIAL_SYM_TYPE_ANY))
28268 {
28269 /* If it's a .thumb_func, declare it as so,
28270 otherwise tag label as .code 16. */
28271 if (THUMB_IS_FUNC (sym))
28272 ARM_SET_SYM_BRANCH_TYPE (elf_sym->internal_elf_sym.st_target_internal,
28273 ST_BRANCH_TO_THUMB);
28274 else if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
28275 elf_sym->internal_elf_sym.st_info =
28276 ELF_ST_INFO (bind, STT_ARM_16BIT);
28277 }
28278 }
28279 }
28280
28281 /* Remove any overlapping mapping symbols generated by alignment frags. */
28282 bfd_map_over_sections (stdoutput, check_mapping_symbols, (char *) 0);
28283 /* Now do generic ELF adjustments. */
28284 elf_adjust_symtab ();
28285 #endif
28286 }
28287
28288 /* MD interface: Initialization. */
28289
28290 static void
28291 set_constant_flonums (void)
28292 {
28293 int i;
28294
28295 for (i = 0; i < NUM_FLOAT_VALS; i++)
28296 if (atof_ieee ((char *) fp_const[i], 'x', fp_values[i]) == NULL)
28297 abort ();
28298 }
28299
28300 /* Auto-select Thumb mode if it's the only available instruction set for the
28301 given architecture. */
28302
28303 static void
28304 autoselect_thumb_from_cpu_variant (void)
28305 {
28306 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
28307 opcode_select (16);
28308 }
28309
28310 void
28311 md_begin (void)
28312 {
28313 unsigned mach;
28314 unsigned int i;
28315
28316 if ( (arm_ops_hsh = hash_new ()) == NULL
28317 || (arm_cond_hsh = hash_new ()) == NULL
28318 || (arm_vcond_hsh = hash_new ()) == NULL
28319 || (arm_shift_hsh = hash_new ()) == NULL
28320 || (arm_psr_hsh = hash_new ()) == NULL
28321 || (arm_v7m_psr_hsh = hash_new ()) == NULL
28322 || (arm_reg_hsh = hash_new ()) == NULL
28323 || (arm_reloc_hsh = hash_new ()) == NULL
28324 || (arm_barrier_opt_hsh = hash_new ()) == NULL)
28325 as_fatal (_("virtual memory exhausted"));
28326
28327 for (i = 0; i < sizeof (insns) / sizeof (struct asm_opcode); i++)
28328 hash_insert (arm_ops_hsh, insns[i].template_name, (void *) (insns + i));
28329 for (i = 0; i < sizeof (conds) / sizeof (struct asm_cond); i++)
28330 hash_insert (arm_cond_hsh, conds[i].template_name, (void *) (conds + i));
28331 for (i = 0; i < sizeof (vconds) / sizeof (struct asm_cond); i++)
28332 hash_insert (arm_vcond_hsh, vconds[i].template_name, (void *) (vconds + i));
28333 for (i = 0; i < sizeof (shift_names) / sizeof (struct asm_shift_name); i++)
28334 hash_insert (arm_shift_hsh, shift_names[i].name, (void *) (shift_names + i));
28335 for (i = 0; i < sizeof (psrs) / sizeof (struct asm_psr); i++)
28336 hash_insert (arm_psr_hsh, psrs[i].template_name, (void *) (psrs + i));
28337 for (i = 0; i < sizeof (v7m_psrs) / sizeof (struct asm_psr); i++)
28338 hash_insert (arm_v7m_psr_hsh, v7m_psrs[i].template_name,
28339 (void *) (v7m_psrs + i));
28340 for (i = 0; i < sizeof (reg_names) / sizeof (struct reg_entry); i++)
28341 hash_insert (arm_reg_hsh, reg_names[i].name, (void *) (reg_names + i));
28342 for (i = 0;
28343 i < sizeof (barrier_opt_names) / sizeof (struct asm_barrier_opt);
28344 i++)
28345 hash_insert (arm_barrier_opt_hsh, barrier_opt_names[i].template_name,
28346 (void *) (barrier_opt_names + i));
28347 #ifdef OBJ_ELF
28348 for (i = 0; i < ARRAY_SIZE (reloc_names); i++)
28349 {
28350 struct reloc_entry * entry = reloc_names + i;
28351
28352 if (arm_is_eabi() && entry->reloc == BFD_RELOC_ARM_PLT32)
28353 /* This makes encode_branch() use the EABI versions of this relocation. */
28354 entry->reloc = BFD_RELOC_UNUSED;
28355
28356 hash_insert (arm_reloc_hsh, entry->name, (void *) entry);
28357 }
28358 #endif
28359
28360 set_constant_flonums ();
28361
28362 /* Set the cpu variant based on the command-line options. We prefer
28363 -mcpu= over -march= if both are set (as for GCC); and we prefer
28364 -mfpu= over any other way of setting the floating point unit.
28365 Use of legacy options with new options are faulted. */
28366 if (legacy_cpu)
28367 {
28368 if (mcpu_cpu_opt || march_cpu_opt)
28369 as_bad (_("use of old and new-style options to set CPU type"));
28370
28371 selected_arch = *legacy_cpu;
28372 }
28373 else if (mcpu_cpu_opt)
28374 {
28375 selected_arch = *mcpu_cpu_opt;
28376 selected_ext = *mcpu_ext_opt;
28377 }
28378 else if (march_cpu_opt)
28379 {
28380 selected_arch = *march_cpu_opt;
28381 selected_ext = *march_ext_opt;
28382 }
28383 ARM_MERGE_FEATURE_SETS (selected_cpu, selected_arch, selected_ext);
28384
28385 if (legacy_fpu)
28386 {
28387 if (mfpu_opt)
28388 as_bad (_("use of old and new-style options to set FPU type"));
28389
28390 selected_fpu = *legacy_fpu;
28391 }
28392 else if (mfpu_opt)
28393 selected_fpu = *mfpu_opt;
28394 else
28395 {
28396 #if !(defined (EABI_DEFAULT) || defined (TE_LINUX) \
28397 || defined (TE_NetBSD) || defined (TE_VXWORKS))
28398 /* Some environments specify a default FPU. If they don't, infer it
28399 from the processor. */
28400 if (mcpu_fpu_opt)
28401 selected_fpu = *mcpu_fpu_opt;
28402 else if (march_fpu_opt)
28403 selected_fpu = *march_fpu_opt;
28404 #else
28405 selected_fpu = fpu_default;
28406 #endif
28407 }
28408
28409 if (ARM_FEATURE_ZERO (selected_fpu))
28410 {
28411 if (!no_cpu_selected ())
28412 selected_fpu = fpu_default;
28413 else
28414 selected_fpu = fpu_arch_fpa;
28415 }
28416
28417 #ifdef CPU_DEFAULT
28418 if (ARM_FEATURE_ZERO (selected_arch))
28419 {
28420 selected_arch = cpu_default;
28421 selected_cpu = selected_arch;
28422 }
28423 ARM_MERGE_FEATURE_SETS (cpu_variant, selected_cpu, selected_fpu);
28424 #else
28425 /* Autodection of feature mode: allow all features in cpu_variant but leave
28426 selected_cpu unset. It will be set in aeabi_set_public_attributes ()
28427 after all instruction have been processed and we can decide what CPU
28428 should be selected. */
28429 if (ARM_FEATURE_ZERO (selected_arch))
28430 ARM_MERGE_FEATURE_SETS (cpu_variant, arm_arch_any, selected_fpu);
28431 else
28432 ARM_MERGE_FEATURE_SETS (cpu_variant, selected_cpu, selected_fpu);
28433 #endif
28434
28435 autoselect_thumb_from_cpu_variant ();
28436
28437 arm_arch_used = thumb_arch_used = arm_arch_none;
28438
28439 #if defined OBJ_COFF || defined OBJ_ELF
28440 {
28441 unsigned int flags = 0;
28442
28443 #if defined OBJ_ELF
28444 flags = meabi_flags;
28445
28446 switch (meabi_flags)
28447 {
28448 case EF_ARM_EABI_UNKNOWN:
28449 #endif
28450 /* Set the flags in the private structure. */
28451 if (uses_apcs_26) flags |= F_APCS26;
28452 if (support_interwork) flags |= F_INTERWORK;
28453 if (uses_apcs_float) flags |= F_APCS_FLOAT;
28454 if (pic_code) flags |= F_PIC;
28455 if (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_any_hard))
28456 flags |= F_SOFT_FLOAT;
28457
28458 switch (mfloat_abi_opt)
28459 {
28460 case ARM_FLOAT_ABI_SOFT:
28461 case ARM_FLOAT_ABI_SOFTFP:
28462 flags |= F_SOFT_FLOAT;
28463 break;
28464
28465 case ARM_FLOAT_ABI_HARD:
28466 if (flags & F_SOFT_FLOAT)
28467 as_bad (_("hard-float conflicts with specified fpu"));
28468 break;
28469 }
28470
28471 /* Using pure-endian doubles (even if soft-float). */
28472 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_endian_pure))
28473 flags |= F_VFP_FLOAT;
28474
28475 #if defined OBJ_ELF
28476 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_arch_maverick))
28477 flags |= EF_ARM_MAVERICK_FLOAT;
28478 break;
28479
28480 case EF_ARM_EABI_VER4:
28481 case EF_ARM_EABI_VER5:
28482 /* No additional flags to set. */
28483 break;
28484
28485 default:
28486 abort ();
28487 }
28488 #endif
28489 bfd_set_private_flags (stdoutput, flags);
28490
28491 /* We have run out flags in the COFF header to encode the
28492 status of ATPCS support, so instead we create a dummy,
28493 empty, debug section called .arm.atpcs. */
28494 if (atpcs)
28495 {
28496 asection * sec;
28497
28498 sec = bfd_make_section (stdoutput, ".arm.atpcs");
28499
28500 if (sec != NULL)
28501 {
28502 bfd_set_section_flags
28503 (stdoutput, sec, SEC_READONLY | SEC_DEBUGGING /* | SEC_HAS_CONTENTS */);
28504 bfd_set_section_size (stdoutput, sec, 0);
28505 bfd_set_section_contents (stdoutput, sec, NULL, 0, 0);
28506 }
28507 }
28508 }
28509 #endif
28510
28511 /* Record the CPU type as well. */
28512 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2))
28513 mach = bfd_mach_arm_iWMMXt2;
28514 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt))
28515 mach = bfd_mach_arm_iWMMXt;
28516 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_xscale))
28517 mach = bfd_mach_arm_XScale;
28518 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_maverick))
28519 mach = bfd_mach_arm_ep9312;
28520 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v5e))
28521 mach = bfd_mach_arm_5TE;
28522 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v5))
28523 {
28524 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
28525 mach = bfd_mach_arm_5T;
28526 else
28527 mach = bfd_mach_arm_5;
28528 }
28529 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4))
28530 {
28531 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
28532 mach = bfd_mach_arm_4T;
28533 else
28534 mach = bfd_mach_arm_4;
28535 }
28536 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v3m))
28537 mach = bfd_mach_arm_3M;
28538 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v3))
28539 mach = bfd_mach_arm_3;
28540 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v2s))
28541 mach = bfd_mach_arm_2a;
28542 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v2))
28543 mach = bfd_mach_arm_2;
28544 else
28545 mach = bfd_mach_arm_unknown;
28546
28547 bfd_set_arch_mach (stdoutput, TARGET_ARCH, mach);
28548 }
28549
28550 /* Command line processing. */
28551
28552 /* md_parse_option
28553 Invocation line includes a switch not recognized by the base assembler.
28554 See if it's a processor-specific option.
28555
28556 This routine is somewhat complicated by the need for backwards
28557 compatibility (since older releases of gcc can't be changed).
28558 The new options try to make the interface as compatible as
28559 possible with GCC.
28560
28561 New options (supported) are:
28562
28563 -mcpu=<cpu name> Assemble for selected processor
28564 -march=<architecture name> Assemble for selected architecture
28565 -mfpu=<fpu architecture> Assemble for selected FPU.
28566 -EB/-mbig-endian Big-endian
28567 -EL/-mlittle-endian Little-endian
28568 -k Generate PIC code
28569 -mthumb Start in Thumb mode
28570 -mthumb-interwork Code supports ARM/Thumb interworking
28571
28572 -m[no-]warn-deprecated Warn about deprecated features
28573 -m[no-]warn-syms Warn when symbols match instructions
28574
28575 For now we will also provide support for:
28576
28577 -mapcs-32 32-bit Program counter
28578 -mapcs-26 26-bit Program counter
28579 -macps-float Floats passed in FP registers
28580 -mapcs-reentrant Reentrant code
28581 -matpcs
28582 (sometime these will probably be replaced with -mapcs=<list of options>
28583 and -matpcs=<list of options>)
28584
28585 The remaining options are only supported for back-wards compatibility.
28586 Cpu variants, the arm part is optional:
28587 -m[arm]1 Currently not supported.
28588 -m[arm]2, -m[arm]250 Arm 2 and Arm 250 processor
28589 -m[arm]3 Arm 3 processor
28590 -m[arm]6[xx], Arm 6 processors
28591 -m[arm]7[xx][t][[d]m] Arm 7 processors
28592 -m[arm]8[10] Arm 8 processors
28593 -m[arm]9[20][tdmi] Arm 9 processors
28594 -mstrongarm[110[0]] StrongARM processors
28595 -mxscale XScale processors
28596 -m[arm]v[2345[t[e]]] Arm architectures
28597 -mall All (except the ARM1)
28598 FP variants:
28599 -mfpa10, -mfpa11 FPA10 and 11 co-processor instructions
28600 -mfpe-old (No float load/store multiples)
28601 -mvfpxd VFP Single precision
28602 -mvfp All VFP
28603 -mno-fpu Disable all floating point instructions
28604
28605 The following CPU names are recognized:
28606 arm1, arm2, arm250, arm3, arm6, arm600, arm610, arm620,
28607 arm7, arm7m, arm7d, arm7dm, arm7di, arm7dmi, arm70, arm700,
28608 arm700i, arm710 arm710t, arm720, arm720t, arm740t, arm710c,
28609 arm7100, arm7500, arm7500fe, arm7tdmi, arm8, arm810, arm9,
28610 arm920, arm920t, arm940t, arm946, arm966, arm9tdmi, arm9e,
28611 arm10t arm10e, arm1020t, arm1020e, arm10200e,
28612 strongarm, strongarm110, strongarm1100, strongarm1110, xscale.
28613
28614 */
28615
28616 const char * md_shortopts = "m:k";
28617
28618 #ifdef ARM_BI_ENDIAN
28619 #define OPTION_EB (OPTION_MD_BASE + 0)
28620 #define OPTION_EL (OPTION_MD_BASE + 1)
28621 #else
28622 #if TARGET_BYTES_BIG_ENDIAN
28623 #define OPTION_EB (OPTION_MD_BASE + 0)
28624 #else
28625 #define OPTION_EL (OPTION_MD_BASE + 1)
28626 #endif
28627 #endif
28628 #define OPTION_FIX_V4BX (OPTION_MD_BASE + 2)
28629 #define OPTION_FDPIC (OPTION_MD_BASE + 3)
28630
28631 struct option md_longopts[] =
28632 {
28633 #ifdef OPTION_EB
28634 {"EB", no_argument, NULL, OPTION_EB},
28635 #endif
28636 #ifdef OPTION_EL
28637 {"EL", no_argument, NULL, OPTION_EL},
28638 #endif
28639 {"fix-v4bx", no_argument, NULL, OPTION_FIX_V4BX},
28640 #ifdef OBJ_ELF
28641 {"fdpic", no_argument, NULL, OPTION_FDPIC},
28642 #endif
28643 {NULL, no_argument, NULL, 0}
28644 };
28645
28646 size_t md_longopts_size = sizeof (md_longopts);
28647
28648 struct arm_option_table
28649 {
28650 const char * option; /* Option name to match. */
28651 const char * help; /* Help information. */
28652 int * var; /* Variable to change. */
28653 int value; /* What to change it to. */
28654 const char * deprecated; /* If non-null, print this message. */
28655 };
28656
28657 struct arm_option_table arm_opts[] =
28658 {
28659 {"k", N_("generate PIC code"), &pic_code, 1, NULL},
28660 {"mthumb", N_("assemble Thumb code"), &thumb_mode, 1, NULL},
28661 {"mthumb-interwork", N_("support ARM/Thumb interworking"),
28662 &support_interwork, 1, NULL},
28663 {"mapcs-32", N_("code uses 32-bit program counter"), &uses_apcs_26, 0, NULL},
28664 {"mapcs-26", N_("code uses 26-bit program counter"), &uses_apcs_26, 1, NULL},
28665 {"mapcs-float", N_("floating point args are in fp regs"), &uses_apcs_float,
28666 1, NULL},
28667 {"mapcs-reentrant", N_("re-entrant code"), &pic_code, 1, NULL},
28668 {"matpcs", N_("code is ATPCS conformant"), &atpcs, 1, NULL},
28669 {"mbig-endian", N_("assemble for big-endian"), &target_big_endian, 1, NULL},
28670 {"mlittle-endian", N_("assemble for little-endian"), &target_big_endian, 0,
28671 NULL},
28672
28673 /* These are recognized by the assembler, but have no affect on code. */
28674 {"mapcs-frame", N_("use frame pointer"), NULL, 0, NULL},
28675 {"mapcs-stack-check", N_("use stack size checking"), NULL, 0, NULL},
28676
28677 {"mwarn-deprecated", NULL, &warn_on_deprecated, 1, NULL},
28678 {"mno-warn-deprecated", N_("do not warn on use of deprecated feature"),
28679 &warn_on_deprecated, 0, NULL},
28680 {"mwarn-syms", N_("warn about symbols that match instruction names [default]"), (int *) (& flag_warn_syms), TRUE, NULL},
28681 {"mno-warn-syms", N_("disable warnings about symobls that match instructions"), (int *) (& flag_warn_syms), FALSE, NULL},
28682 {NULL, NULL, NULL, 0, NULL}
28683 };
28684
28685 struct arm_legacy_option_table
28686 {
28687 const char * option; /* Option name to match. */
28688 const arm_feature_set ** var; /* Variable to change. */
28689 const arm_feature_set value; /* What to change it to. */
28690 const char * deprecated; /* If non-null, print this message. */
28691 };
28692
28693 const struct arm_legacy_option_table arm_legacy_opts[] =
28694 {
28695 /* DON'T add any new processors to this list -- we want the whole list
28696 to go away... Add them to the processors table instead. */
28697 {"marm1", &legacy_cpu, ARM_ARCH_V1, N_("use -mcpu=arm1")},
28698 {"m1", &legacy_cpu, ARM_ARCH_V1, N_("use -mcpu=arm1")},
28699 {"marm2", &legacy_cpu, ARM_ARCH_V2, N_("use -mcpu=arm2")},
28700 {"m2", &legacy_cpu, ARM_ARCH_V2, N_("use -mcpu=arm2")},
28701 {"marm250", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm250")},
28702 {"m250", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm250")},
28703 {"marm3", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm3")},
28704 {"m3", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm3")},
28705 {"marm6", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm6")},
28706 {"m6", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm6")},
28707 {"marm600", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm600")},
28708 {"m600", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm600")},
28709 {"marm610", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm610")},
28710 {"m610", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm610")},
28711 {"marm620", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm620")},
28712 {"m620", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm620")},
28713 {"marm7", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7")},
28714 {"m7", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7")},
28715 {"marm70", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm70")},
28716 {"m70", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm70")},
28717 {"marm700", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700")},
28718 {"m700", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700")},
28719 {"marm700i", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700i")},
28720 {"m700i", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700i")},
28721 {"marm710", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710")},
28722 {"m710", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710")},
28723 {"marm710c", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710c")},
28724 {"m710c", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710c")},
28725 {"marm720", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm720")},
28726 {"m720", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm720")},
28727 {"marm7d", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7d")},
28728 {"m7d", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7d")},
28729 {"marm7di", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7di")},
28730 {"m7di", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7di")},
28731 {"marm7m", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7m")},
28732 {"m7m", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7m")},
28733 {"marm7dm", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dm")},
28734 {"m7dm", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dm")},
28735 {"marm7dmi", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dmi")},
28736 {"m7dmi", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dmi")},
28737 {"marm7100", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7100")},
28738 {"m7100", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7100")},
28739 {"marm7500", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500")},
28740 {"m7500", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500")},
28741 {"marm7500fe", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500fe")},
28742 {"m7500fe", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500fe")},
28743 {"marm7t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
28744 {"m7t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
28745 {"marm7tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
28746 {"m7tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
28747 {"marm710t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm710t")},
28748 {"m710t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm710t")},
28749 {"marm720t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm720t")},
28750 {"m720t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm720t")},
28751 {"marm740t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm740t")},
28752 {"m740t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm740t")},
28753 {"marm8", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm8")},
28754 {"m8", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm8")},
28755 {"marm810", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm810")},
28756 {"m810", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm810")},
28757 {"marm9", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9")},
28758 {"m9", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9")},
28759 {"marm9tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9tdmi")},
28760 {"m9tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9tdmi")},
28761 {"marm920", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm920")},
28762 {"m920", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm920")},
28763 {"marm940", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm940")},
28764 {"m940", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm940")},
28765 {"mstrongarm", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=strongarm")},
28766 {"mstrongarm110", &legacy_cpu, ARM_ARCH_V4,
28767 N_("use -mcpu=strongarm110")},
28768 {"mstrongarm1100", &legacy_cpu, ARM_ARCH_V4,
28769 N_("use -mcpu=strongarm1100")},
28770 {"mstrongarm1110", &legacy_cpu, ARM_ARCH_V4,
28771 N_("use -mcpu=strongarm1110")},
28772 {"mxscale", &legacy_cpu, ARM_ARCH_XSCALE, N_("use -mcpu=xscale")},
28773 {"miwmmxt", &legacy_cpu, ARM_ARCH_IWMMXT, N_("use -mcpu=iwmmxt")},
28774 {"mall", &legacy_cpu, ARM_ANY, N_("use -mcpu=all")},
28775
28776 /* Architecture variants -- don't add any more to this list either. */
28777 {"mv2", &legacy_cpu, ARM_ARCH_V2, N_("use -march=armv2")},
28778 {"marmv2", &legacy_cpu, ARM_ARCH_V2, N_("use -march=armv2")},
28779 {"mv2a", &legacy_cpu, ARM_ARCH_V2S, N_("use -march=armv2a")},
28780 {"marmv2a", &legacy_cpu, ARM_ARCH_V2S, N_("use -march=armv2a")},
28781 {"mv3", &legacy_cpu, ARM_ARCH_V3, N_("use -march=armv3")},
28782 {"marmv3", &legacy_cpu, ARM_ARCH_V3, N_("use -march=armv3")},
28783 {"mv3m", &legacy_cpu, ARM_ARCH_V3M, N_("use -march=armv3m")},
28784 {"marmv3m", &legacy_cpu, ARM_ARCH_V3M, N_("use -march=armv3m")},
28785 {"mv4", &legacy_cpu, ARM_ARCH_V4, N_("use -march=armv4")},
28786 {"marmv4", &legacy_cpu, ARM_ARCH_V4, N_("use -march=armv4")},
28787 {"mv4t", &legacy_cpu, ARM_ARCH_V4T, N_("use -march=armv4t")},
28788 {"marmv4t", &legacy_cpu, ARM_ARCH_V4T, N_("use -march=armv4t")},
28789 {"mv5", &legacy_cpu, ARM_ARCH_V5, N_("use -march=armv5")},
28790 {"marmv5", &legacy_cpu, ARM_ARCH_V5, N_("use -march=armv5")},
28791 {"mv5t", &legacy_cpu, ARM_ARCH_V5T, N_("use -march=armv5t")},
28792 {"marmv5t", &legacy_cpu, ARM_ARCH_V5T, N_("use -march=armv5t")},
28793 {"mv5e", &legacy_cpu, ARM_ARCH_V5TE, N_("use -march=armv5te")},
28794 {"marmv5e", &legacy_cpu, ARM_ARCH_V5TE, N_("use -march=armv5te")},
28795
28796 /* Floating point variants -- don't add any more to this list either. */
28797 {"mfpe-old", &legacy_fpu, FPU_ARCH_FPE, N_("use -mfpu=fpe")},
28798 {"mfpa10", &legacy_fpu, FPU_ARCH_FPA, N_("use -mfpu=fpa10")},
28799 {"mfpa11", &legacy_fpu, FPU_ARCH_FPA, N_("use -mfpu=fpa11")},
28800 {"mno-fpu", &legacy_fpu, ARM_ARCH_NONE,
28801 N_("use either -mfpu=softfpa or -mfpu=softvfp")},
28802
28803 {NULL, NULL, ARM_ARCH_NONE, NULL}
28804 };
28805
28806 struct arm_cpu_option_table
28807 {
28808 const char * name;
28809 size_t name_len;
28810 const arm_feature_set value;
28811 const arm_feature_set ext;
28812 /* For some CPUs we assume an FPU unless the user explicitly sets
28813 -mfpu=... */
28814 const arm_feature_set default_fpu;
28815 /* The canonical name of the CPU, or NULL to use NAME converted to upper
28816 case. */
28817 const char * canonical_name;
28818 };
28819
28820 /* This list should, at a minimum, contain all the cpu names
28821 recognized by GCC. */
28822 #define ARM_CPU_OPT(N, CN, V, E, DF) { N, sizeof (N) - 1, V, E, DF, CN }
28823
28824 static const struct arm_cpu_option_table arm_cpus[] =
28825 {
28826 ARM_CPU_OPT ("all", NULL, ARM_ANY,
28827 ARM_ARCH_NONE,
28828 FPU_ARCH_FPA),
28829 ARM_CPU_OPT ("arm1", NULL, ARM_ARCH_V1,
28830 ARM_ARCH_NONE,
28831 FPU_ARCH_FPA),
28832 ARM_CPU_OPT ("arm2", NULL, ARM_ARCH_V2,
28833 ARM_ARCH_NONE,
28834 FPU_ARCH_FPA),
28835 ARM_CPU_OPT ("arm250", NULL, ARM_ARCH_V2S,
28836 ARM_ARCH_NONE,
28837 FPU_ARCH_FPA),
28838 ARM_CPU_OPT ("arm3", NULL, ARM_ARCH_V2S,
28839 ARM_ARCH_NONE,
28840 FPU_ARCH_FPA),
28841 ARM_CPU_OPT ("arm6", NULL, ARM_ARCH_V3,
28842 ARM_ARCH_NONE,
28843 FPU_ARCH_FPA),
28844 ARM_CPU_OPT ("arm60", NULL, ARM_ARCH_V3,
28845 ARM_ARCH_NONE,
28846 FPU_ARCH_FPA),
28847 ARM_CPU_OPT ("arm600", NULL, ARM_ARCH_V3,
28848 ARM_ARCH_NONE,
28849 FPU_ARCH_FPA),
28850 ARM_CPU_OPT ("arm610", NULL, ARM_ARCH_V3,
28851 ARM_ARCH_NONE,
28852 FPU_ARCH_FPA),
28853 ARM_CPU_OPT ("arm620", NULL, ARM_ARCH_V3,
28854 ARM_ARCH_NONE,
28855 FPU_ARCH_FPA),
28856 ARM_CPU_OPT ("arm7", NULL, ARM_ARCH_V3,
28857 ARM_ARCH_NONE,
28858 FPU_ARCH_FPA),
28859 ARM_CPU_OPT ("arm7m", NULL, ARM_ARCH_V3M,
28860 ARM_ARCH_NONE,
28861 FPU_ARCH_FPA),
28862 ARM_CPU_OPT ("arm7d", NULL, ARM_ARCH_V3,
28863 ARM_ARCH_NONE,
28864 FPU_ARCH_FPA),
28865 ARM_CPU_OPT ("arm7dm", NULL, ARM_ARCH_V3M,
28866 ARM_ARCH_NONE,
28867 FPU_ARCH_FPA),
28868 ARM_CPU_OPT ("arm7di", NULL, ARM_ARCH_V3,
28869 ARM_ARCH_NONE,
28870 FPU_ARCH_FPA),
28871 ARM_CPU_OPT ("arm7dmi", NULL, ARM_ARCH_V3M,
28872 ARM_ARCH_NONE,
28873 FPU_ARCH_FPA),
28874 ARM_CPU_OPT ("arm70", NULL, ARM_ARCH_V3,
28875 ARM_ARCH_NONE,
28876 FPU_ARCH_FPA),
28877 ARM_CPU_OPT ("arm700", NULL, ARM_ARCH_V3,
28878 ARM_ARCH_NONE,
28879 FPU_ARCH_FPA),
28880 ARM_CPU_OPT ("arm700i", NULL, ARM_ARCH_V3,
28881 ARM_ARCH_NONE,
28882 FPU_ARCH_FPA),
28883 ARM_CPU_OPT ("arm710", NULL, ARM_ARCH_V3,
28884 ARM_ARCH_NONE,
28885 FPU_ARCH_FPA),
28886 ARM_CPU_OPT ("arm710t", NULL, ARM_ARCH_V4T,
28887 ARM_ARCH_NONE,
28888 FPU_ARCH_FPA),
28889 ARM_CPU_OPT ("arm720", NULL, ARM_ARCH_V3,
28890 ARM_ARCH_NONE,
28891 FPU_ARCH_FPA),
28892 ARM_CPU_OPT ("arm720t", NULL, ARM_ARCH_V4T,
28893 ARM_ARCH_NONE,
28894 FPU_ARCH_FPA),
28895 ARM_CPU_OPT ("arm740t", NULL, ARM_ARCH_V4T,
28896 ARM_ARCH_NONE,
28897 FPU_ARCH_FPA),
28898 ARM_CPU_OPT ("arm710c", NULL, ARM_ARCH_V3,
28899 ARM_ARCH_NONE,
28900 FPU_ARCH_FPA),
28901 ARM_CPU_OPT ("arm7100", NULL, ARM_ARCH_V3,
28902 ARM_ARCH_NONE,
28903 FPU_ARCH_FPA),
28904 ARM_CPU_OPT ("arm7500", NULL, ARM_ARCH_V3,
28905 ARM_ARCH_NONE,
28906 FPU_ARCH_FPA),
28907 ARM_CPU_OPT ("arm7500fe", NULL, ARM_ARCH_V3,
28908 ARM_ARCH_NONE,
28909 FPU_ARCH_FPA),
28910 ARM_CPU_OPT ("arm7t", NULL, ARM_ARCH_V4T,
28911 ARM_ARCH_NONE,
28912 FPU_ARCH_FPA),
28913 ARM_CPU_OPT ("arm7tdmi", NULL, ARM_ARCH_V4T,
28914 ARM_ARCH_NONE,
28915 FPU_ARCH_FPA),
28916 ARM_CPU_OPT ("arm7tdmi-s", NULL, ARM_ARCH_V4T,
28917 ARM_ARCH_NONE,
28918 FPU_ARCH_FPA),
28919 ARM_CPU_OPT ("arm8", NULL, ARM_ARCH_V4,
28920 ARM_ARCH_NONE,
28921 FPU_ARCH_FPA),
28922 ARM_CPU_OPT ("arm810", NULL, ARM_ARCH_V4,
28923 ARM_ARCH_NONE,
28924 FPU_ARCH_FPA),
28925 ARM_CPU_OPT ("strongarm", NULL, ARM_ARCH_V4,
28926 ARM_ARCH_NONE,
28927 FPU_ARCH_FPA),
28928 ARM_CPU_OPT ("strongarm1", NULL, ARM_ARCH_V4,
28929 ARM_ARCH_NONE,
28930 FPU_ARCH_FPA),
28931 ARM_CPU_OPT ("strongarm110", NULL, ARM_ARCH_V4,
28932 ARM_ARCH_NONE,
28933 FPU_ARCH_FPA),
28934 ARM_CPU_OPT ("strongarm1100", NULL, ARM_ARCH_V4,
28935 ARM_ARCH_NONE,
28936 FPU_ARCH_FPA),
28937 ARM_CPU_OPT ("strongarm1110", NULL, ARM_ARCH_V4,
28938 ARM_ARCH_NONE,
28939 FPU_ARCH_FPA),
28940 ARM_CPU_OPT ("arm9", NULL, ARM_ARCH_V4T,
28941 ARM_ARCH_NONE,
28942 FPU_ARCH_FPA),
28943 ARM_CPU_OPT ("arm920", "ARM920T", ARM_ARCH_V4T,
28944 ARM_ARCH_NONE,
28945 FPU_ARCH_FPA),
28946 ARM_CPU_OPT ("arm920t", NULL, ARM_ARCH_V4T,
28947 ARM_ARCH_NONE,
28948 FPU_ARCH_FPA),
28949 ARM_CPU_OPT ("arm922t", NULL, ARM_ARCH_V4T,
28950 ARM_ARCH_NONE,
28951 FPU_ARCH_FPA),
28952 ARM_CPU_OPT ("arm940t", NULL, ARM_ARCH_V4T,
28953 ARM_ARCH_NONE,
28954 FPU_ARCH_FPA),
28955 ARM_CPU_OPT ("arm9tdmi", NULL, ARM_ARCH_V4T,
28956 ARM_ARCH_NONE,
28957 FPU_ARCH_FPA),
28958 ARM_CPU_OPT ("fa526", NULL, ARM_ARCH_V4,
28959 ARM_ARCH_NONE,
28960 FPU_ARCH_FPA),
28961 ARM_CPU_OPT ("fa626", NULL, ARM_ARCH_V4,
28962 ARM_ARCH_NONE,
28963 FPU_ARCH_FPA),
28964
28965 /* For V5 or later processors we default to using VFP; but the user
28966 should really set the FPU type explicitly. */
28967 ARM_CPU_OPT ("arm9e-r0", NULL, ARM_ARCH_V5TExP,
28968 ARM_ARCH_NONE,
28969 FPU_ARCH_VFP_V2),
28970 ARM_CPU_OPT ("arm9e", NULL, ARM_ARCH_V5TE,
28971 ARM_ARCH_NONE,
28972 FPU_ARCH_VFP_V2),
28973 ARM_CPU_OPT ("arm926ej", "ARM926EJ-S", ARM_ARCH_V5TEJ,
28974 ARM_ARCH_NONE,
28975 FPU_ARCH_VFP_V2),
28976 ARM_CPU_OPT ("arm926ejs", "ARM926EJ-S", ARM_ARCH_V5TEJ,
28977 ARM_ARCH_NONE,
28978 FPU_ARCH_VFP_V2),
28979 ARM_CPU_OPT ("arm926ej-s", NULL, ARM_ARCH_V5TEJ,
28980 ARM_ARCH_NONE,
28981 FPU_ARCH_VFP_V2),
28982 ARM_CPU_OPT ("arm946e-r0", NULL, ARM_ARCH_V5TExP,
28983 ARM_ARCH_NONE,
28984 FPU_ARCH_VFP_V2),
28985 ARM_CPU_OPT ("arm946e", "ARM946E-S", ARM_ARCH_V5TE,
28986 ARM_ARCH_NONE,
28987 FPU_ARCH_VFP_V2),
28988 ARM_CPU_OPT ("arm946e-s", NULL, ARM_ARCH_V5TE,
28989 ARM_ARCH_NONE,
28990 FPU_ARCH_VFP_V2),
28991 ARM_CPU_OPT ("arm966e-r0", NULL, ARM_ARCH_V5TExP,
28992 ARM_ARCH_NONE,
28993 FPU_ARCH_VFP_V2),
28994 ARM_CPU_OPT ("arm966e", "ARM966E-S", ARM_ARCH_V5TE,
28995 ARM_ARCH_NONE,
28996 FPU_ARCH_VFP_V2),
28997 ARM_CPU_OPT ("arm966e-s", NULL, ARM_ARCH_V5TE,
28998 ARM_ARCH_NONE,
28999 FPU_ARCH_VFP_V2),
29000 ARM_CPU_OPT ("arm968e-s", NULL, ARM_ARCH_V5TE,
29001 ARM_ARCH_NONE,
29002 FPU_ARCH_VFP_V2),
29003 ARM_CPU_OPT ("arm10t", NULL, ARM_ARCH_V5T,
29004 ARM_ARCH_NONE,
29005 FPU_ARCH_VFP_V1),
29006 ARM_CPU_OPT ("arm10tdmi", NULL, ARM_ARCH_V5T,
29007 ARM_ARCH_NONE,
29008 FPU_ARCH_VFP_V1),
29009 ARM_CPU_OPT ("arm10e", NULL, ARM_ARCH_V5TE,
29010 ARM_ARCH_NONE,
29011 FPU_ARCH_VFP_V2),
29012 ARM_CPU_OPT ("arm1020", "ARM1020E", ARM_ARCH_V5TE,
29013 ARM_ARCH_NONE,
29014 FPU_ARCH_VFP_V2),
29015 ARM_CPU_OPT ("arm1020t", NULL, ARM_ARCH_V5T,
29016 ARM_ARCH_NONE,
29017 FPU_ARCH_VFP_V1),
29018 ARM_CPU_OPT ("arm1020e", NULL, ARM_ARCH_V5TE,
29019 ARM_ARCH_NONE,
29020 FPU_ARCH_VFP_V2),
29021 ARM_CPU_OPT ("arm1022e", NULL, ARM_ARCH_V5TE,
29022 ARM_ARCH_NONE,
29023 FPU_ARCH_VFP_V2),
29024 ARM_CPU_OPT ("arm1026ejs", "ARM1026EJ-S", ARM_ARCH_V5TEJ,
29025 ARM_ARCH_NONE,
29026 FPU_ARCH_VFP_V2),
29027 ARM_CPU_OPT ("arm1026ej-s", NULL, ARM_ARCH_V5TEJ,
29028 ARM_ARCH_NONE,
29029 FPU_ARCH_VFP_V2),
29030 ARM_CPU_OPT ("fa606te", NULL, ARM_ARCH_V5TE,
29031 ARM_ARCH_NONE,
29032 FPU_ARCH_VFP_V2),
29033 ARM_CPU_OPT ("fa616te", NULL, ARM_ARCH_V5TE,
29034 ARM_ARCH_NONE,
29035 FPU_ARCH_VFP_V2),
29036 ARM_CPU_OPT ("fa626te", NULL, ARM_ARCH_V5TE,
29037 ARM_ARCH_NONE,
29038 FPU_ARCH_VFP_V2),
29039 ARM_CPU_OPT ("fmp626", NULL, ARM_ARCH_V5TE,
29040 ARM_ARCH_NONE,
29041 FPU_ARCH_VFP_V2),
29042 ARM_CPU_OPT ("fa726te", NULL, ARM_ARCH_V5TE,
29043 ARM_ARCH_NONE,
29044 FPU_ARCH_VFP_V2),
29045 ARM_CPU_OPT ("arm1136js", "ARM1136J-S", ARM_ARCH_V6,
29046 ARM_ARCH_NONE,
29047 FPU_NONE),
29048 ARM_CPU_OPT ("arm1136j-s", NULL, ARM_ARCH_V6,
29049 ARM_ARCH_NONE,
29050 FPU_NONE),
29051 ARM_CPU_OPT ("arm1136jfs", "ARM1136JF-S", ARM_ARCH_V6,
29052 ARM_ARCH_NONE,
29053 FPU_ARCH_VFP_V2),
29054 ARM_CPU_OPT ("arm1136jf-s", NULL, ARM_ARCH_V6,
29055 ARM_ARCH_NONE,
29056 FPU_ARCH_VFP_V2),
29057 ARM_CPU_OPT ("mpcore", "MPCore", ARM_ARCH_V6K,
29058 ARM_ARCH_NONE,
29059 FPU_ARCH_VFP_V2),
29060 ARM_CPU_OPT ("mpcorenovfp", "MPCore", ARM_ARCH_V6K,
29061 ARM_ARCH_NONE,
29062 FPU_NONE),
29063 ARM_CPU_OPT ("arm1156t2-s", NULL, ARM_ARCH_V6T2,
29064 ARM_ARCH_NONE,
29065 FPU_NONE),
29066 ARM_CPU_OPT ("arm1156t2f-s", NULL, ARM_ARCH_V6T2,
29067 ARM_ARCH_NONE,
29068 FPU_ARCH_VFP_V2),
29069 ARM_CPU_OPT ("arm1176jz-s", NULL, ARM_ARCH_V6KZ,
29070 ARM_ARCH_NONE,
29071 FPU_NONE),
29072 ARM_CPU_OPT ("arm1176jzf-s", NULL, ARM_ARCH_V6KZ,
29073 ARM_ARCH_NONE,
29074 FPU_ARCH_VFP_V2),
29075 ARM_CPU_OPT ("cortex-a5", "Cortex-A5", ARM_ARCH_V7A,
29076 ARM_FEATURE_CORE_LOW (ARM_EXT_MP | ARM_EXT_SEC),
29077 FPU_NONE),
29078 ARM_CPU_OPT ("cortex-a7", "Cortex-A7", ARM_ARCH_V7VE,
29079 ARM_ARCH_NONE,
29080 FPU_ARCH_NEON_VFP_V4),
29081 ARM_CPU_OPT ("cortex-a8", "Cortex-A8", ARM_ARCH_V7A,
29082 ARM_FEATURE_CORE_LOW (ARM_EXT_SEC),
29083 ARM_FEATURE_COPROC (FPU_VFP_V3 | FPU_NEON_EXT_V1)),
29084 ARM_CPU_OPT ("cortex-a9", "Cortex-A9", ARM_ARCH_V7A,
29085 ARM_FEATURE_CORE_LOW (ARM_EXT_MP | ARM_EXT_SEC),
29086 ARM_FEATURE_COPROC (FPU_VFP_V3 | FPU_NEON_EXT_V1)),
29087 ARM_CPU_OPT ("cortex-a12", "Cortex-A12", ARM_ARCH_V7VE,
29088 ARM_ARCH_NONE,
29089 FPU_ARCH_NEON_VFP_V4),
29090 ARM_CPU_OPT ("cortex-a15", "Cortex-A15", ARM_ARCH_V7VE,
29091 ARM_ARCH_NONE,
29092 FPU_ARCH_NEON_VFP_V4),
29093 ARM_CPU_OPT ("cortex-a17", "Cortex-A17", ARM_ARCH_V7VE,
29094 ARM_ARCH_NONE,
29095 FPU_ARCH_NEON_VFP_V4),
29096 ARM_CPU_OPT ("cortex-a32", "Cortex-A32", ARM_ARCH_V8A,
29097 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
29098 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
29099 ARM_CPU_OPT ("cortex-a35", "Cortex-A35", ARM_ARCH_V8A,
29100 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
29101 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
29102 ARM_CPU_OPT ("cortex-a53", "Cortex-A53", ARM_ARCH_V8A,
29103 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
29104 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
29105 ARM_CPU_OPT ("cortex-a55", "Cortex-A55", ARM_ARCH_V8_2A,
29106 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
29107 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_DOTPROD),
29108 ARM_CPU_OPT ("cortex-a57", "Cortex-A57", ARM_ARCH_V8A,
29109 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
29110 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
29111 ARM_CPU_OPT ("cortex-a72", "Cortex-A72", ARM_ARCH_V8A,
29112 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
29113 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
29114 ARM_CPU_OPT ("cortex-a73", "Cortex-A73", ARM_ARCH_V8A,
29115 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
29116 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
29117 ARM_CPU_OPT ("cortex-a75", "Cortex-A75", ARM_ARCH_V8_2A,
29118 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
29119 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_DOTPROD),
29120 ARM_CPU_OPT ("cortex-a76", "Cortex-A76", ARM_ARCH_V8_2A,
29121 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
29122 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_DOTPROD),
29123 ARM_CPU_OPT ("ares", "Ares", ARM_ARCH_V8_2A,
29124 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
29125 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_DOTPROD),
29126 ARM_CPU_OPT ("cortex-r4", "Cortex-R4", ARM_ARCH_V7R,
29127 ARM_ARCH_NONE,
29128 FPU_NONE),
29129 ARM_CPU_OPT ("cortex-r4f", "Cortex-R4F", ARM_ARCH_V7R,
29130 ARM_ARCH_NONE,
29131 FPU_ARCH_VFP_V3D16),
29132 ARM_CPU_OPT ("cortex-r5", "Cortex-R5", ARM_ARCH_V7R,
29133 ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV),
29134 FPU_NONE),
29135 ARM_CPU_OPT ("cortex-r7", "Cortex-R7", ARM_ARCH_V7R,
29136 ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV),
29137 FPU_ARCH_VFP_V3D16),
29138 ARM_CPU_OPT ("cortex-r8", "Cortex-R8", ARM_ARCH_V7R,
29139 ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV),
29140 FPU_ARCH_VFP_V3D16),
29141 ARM_CPU_OPT ("cortex-r52", "Cortex-R52", ARM_ARCH_V8R,
29142 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
29143 FPU_ARCH_NEON_VFP_ARMV8),
29144 ARM_CPU_OPT ("cortex-m33", "Cortex-M33", ARM_ARCH_V8M_MAIN,
29145 ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP),
29146 FPU_NONE),
29147 ARM_CPU_OPT ("cortex-m23", "Cortex-M23", ARM_ARCH_V8M_BASE,
29148 ARM_ARCH_NONE,
29149 FPU_NONE),
29150 ARM_CPU_OPT ("cortex-m7", "Cortex-M7", ARM_ARCH_V7EM,
29151 ARM_ARCH_NONE,
29152 FPU_NONE),
29153 ARM_CPU_OPT ("cortex-m4", "Cortex-M4", ARM_ARCH_V7EM,
29154 ARM_ARCH_NONE,
29155 FPU_NONE),
29156 ARM_CPU_OPT ("cortex-m3", "Cortex-M3", ARM_ARCH_V7M,
29157 ARM_ARCH_NONE,
29158 FPU_NONE),
29159 ARM_CPU_OPT ("cortex-m1", "Cortex-M1", ARM_ARCH_V6SM,
29160 ARM_ARCH_NONE,
29161 FPU_NONE),
29162 ARM_CPU_OPT ("cortex-m0", "Cortex-M0", ARM_ARCH_V6SM,
29163 ARM_ARCH_NONE,
29164 FPU_NONE),
29165 ARM_CPU_OPT ("cortex-m0plus", "Cortex-M0+", ARM_ARCH_V6SM,
29166 ARM_ARCH_NONE,
29167 FPU_NONE),
29168 ARM_CPU_OPT ("exynos-m1", "Samsung Exynos M1", ARM_ARCH_V8A,
29169 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
29170 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
29171 ARM_CPU_OPT ("neoverse-n1", "Neoverse N1", ARM_ARCH_V8_2A,
29172 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
29173 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_DOTPROD),
29174 /* ??? XSCALE is really an architecture. */
29175 ARM_CPU_OPT ("xscale", NULL, ARM_ARCH_XSCALE,
29176 ARM_ARCH_NONE,
29177 FPU_ARCH_VFP_V2),
29178
29179 /* ??? iwmmxt is not a processor. */
29180 ARM_CPU_OPT ("iwmmxt", NULL, ARM_ARCH_IWMMXT,
29181 ARM_ARCH_NONE,
29182 FPU_ARCH_VFP_V2),
29183 ARM_CPU_OPT ("iwmmxt2", NULL, ARM_ARCH_IWMMXT2,
29184 ARM_ARCH_NONE,
29185 FPU_ARCH_VFP_V2),
29186 ARM_CPU_OPT ("i80200", NULL, ARM_ARCH_XSCALE,
29187 ARM_ARCH_NONE,
29188 FPU_ARCH_VFP_V2),
29189
29190 /* Maverick. */
29191 ARM_CPU_OPT ("ep9312", "ARM920T",
29192 ARM_FEATURE_LOW (ARM_AEXT_V4T, ARM_CEXT_MAVERICK),
29193 ARM_ARCH_NONE, FPU_ARCH_MAVERICK),
29194
29195 /* Marvell processors. */
29196 ARM_CPU_OPT ("marvell-pj4", NULL, ARM_ARCH_V7A,
29197 ARM_FEATURE_CORE_LOW (ARM_EXT_MP | ARM_EXT_SEC),
29198 FPU_ARCH_VFP_V3D16),
29199 ARM_CPU_OPT ("marvell-whitney", NULL, ARM_ARCH_V7A,
29200 ARM_FEATURE_CORE_LOW (ARM_EXT_MP | ARM_EXT_SEC),
29201 FPU_ARCH_NEON_VFP_V4),
29202
29203 /* APM X-Gene family. */
29204 ARM_CPU_OPT ("xgene1", "APM X-Gene 1", ARM_ARCH_V8A,
29205 ARM_ARCH_NONE,
29206 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
29207 ARM_CPU_OPT ("xgene2", "APM X-Gene 2", ARM_ARCH_V8A,
29208 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
29209 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
29210
29211 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE, ARM_ARCH_NONE, NULL }
29212 };
29213 #undef ARM_CPU_OPT
29214
29215 struct arm_ext_table
29216 {
29217 const char * name;
29218 size_t name_len;
29219 const arm_feature_set merge;
29220 const arm_feature_set clear;
29221 };
29222
29223 struct arm_arch_option_table
29224 {
29225 const char * name;
29226 size_t name_len;
29227 const arm_feature_set value;
29228 const arm_feature_set default_fpu;
29229 const struct arm_ext_table * ext_table;
29230 };
29231
29232 /* Used to add support for +E and +noE extension. */
29233 #define ARM_EXT(E, M, C) { E, sizeof (E) - 1, M, C }
29234 /* Used to add support for a +E extension. */
29235 #define ARM_ADD(E, M) { E, sizeof(E) - 1, M, ARM_ARCH_NONE }
29236 /* Used to add support for a +noE extension. */
29237 #define ARM_REMOVE(E, C) { E, sizeof(E) -1, ARM_ARCH_NONE, C }
29238
29239 #define ALL_FP ARM_FEATURE (0, ARM_EXT2_FP16_INST | ARM_EXT2_FP16_FML, \
29240 ~0 & ~FPU_ENDIAN_PURE)
29241
29242 static const struct arm_ext_table armv5te_ext_table[] =
29243 {
29244 ARM_EXT ("fp", FPU_ARCH_VFP_V2, ALL_FP),
29245 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
29246 };
29247
29248 static const struct arm_ext_table armv7_ext_table[] =
29249 {
29250 ARM_EXT ("fp", FPU_ARCH_VFP_V3D16, ALL_FP),
29251 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
29252 };
29253
29254 static const struct arm_ext_table armv7ve_ext_table[] =
29255 {
29256 ARM_EXT ("fp", FPU_ARCH_VFP_V4D16, ALL_FP),
29257 ARM_ADD ("vfpv3-d16", FPU_ARCH_VFP_V3D16),
29258 ARM_ADD ("vfpv3", FPU_ARCH_VFP_V3),
29259 ARM_ADD ("vfpv3-d16-fp16", FPU_ARCH_VFP_V3D16_FP16),
29260 ARM_ADD ("vfpv3-fp16", FPU_ARCH_VFP_V3_FP16),
29261 ARM_ADD ("vfpv4-d16", FPU_ARCH_VFP_V4D16), /* Alias for +fp. */
29262 ARM_ADD ("vfpv4", FPU_ARCH_VFP_V4),
29263
29264 ARM_EXT ("simd", FPU_ARCH_NEON_VFP_V4,
29265 ARM_FEATURE_COPROC (FPU_NEON_EXT_V1 | FPU_NEON_EXT_FMA)),
29266
29267 /* Aliases for +simd. */
29268 ARM_ADD ("neon-vfpv4", FPU_ARCH_NEON_VFP_V4),
29269
29270 ARM_ADD ("neon", FPU_ARCH_VFP_V3_PLUS_NEON_V1),
29271 ARM_ADD ("neon-vfpv3", FPU_ARCH_VFP_V3_PLUS_NEON_V1),
29272 ARM_ADD ("neon-fp16", FPU_ARCH_NEON_FP16),
29273
29274 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
29275 };
29276
29277 static const struct arm_ext_table armv7a_ext_table[] =
29278 {
29279 ARM_EXT ("fp", FPU_ARCH_VFP_V3D16, ALL_FP),
29280 ARM_ADD ("vfpv3-d16", FPU_ARCH_VFP_V3D16), /* Alias for +fp. */
29281 ARM_ADD ("vfpv3", FPU_ARCH_VFP_V3),
29282 ARM_ADD ("vfpv3-d16-fp16", FPU_ARCH_VFP_V3D16_FP16),
29283 ARM_ADD ("vfpv3-fp16", FPU_ARCH_VFP_V3_FP16),
29284 ARM_ADD ("vfpv4-d16", FPU_ARCH_VFP_V4D16),
29285 ARM_ADD ("vfpv4", FPU_ARCH_VFP_V4),
29286
29287 ARM_EXT ("simd", FPU_ARCH_VFP_V3_PLUS_NEON_V1,
29288 ARM_FEATURE_COPROC (FPU_NEON_EXT_V1 | FPU_NEON_EXT_FMA)),
29289
29290 /* Aliases for +simd. */
29291 ARM_ADD ("neon", FPU_ARCH_VFP_V3_PLUS_NEON_V1),
29292 ARM_ADD ("neon-vfpv3", FPU_ARCH_VFP_V3_PLUS_NEON_V1),
29293
29294 ARM_ADD ("neon-fp16", FPU_ARCH_NEON_FP16),
29295 ARM_ADD ("neon-vfpv4", FPU_ARCH_NEON_VFP_V4),
29296
29297 ARM_ADD ("mp", ARM_FEATURE_CORE_LOW (ARM_EXT_MP)),
29298 ARM_ADD ("sec", ARM_FEATURE_CORE_LOW (ARM_EXT_SEC)),
29299 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
29300 };
29301
29302 static const struct arm_ext_table armv7r_ext_table[] =
29303 {
29304 ARM_ADD ("fp.sp", FPU_ARCH_VFP_V3xD),
29305 ARM_ADD ("vfpv3xd", FPU_ARCH_VFP_V3xD), /* Alias for +fp.sp. */
29306 ARM_EXT ("fp", FPU_ARCH_VFP_V3D16, ALL_FP),
29307 ARM_ADD ("vfpv3-d16", FPU_ARCH_VFP_V3D16), /* Alias for +fp. */
29308 ARM_ADD ("vfpv3xd-fp16", FPU_ARCH_VFP_V3xD_FP16),
29309 ARM_ADD ("vfpv3-d16-fp16", FPU_ARCH_VFP_V3D16_FP16),
29310 ARM_EXT ("idiv", ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV | ARM_EXT_DIV),
29311 ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV | ARM_EXT_DIV)),
29312 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
29313 };
29314
29315 static const struct arm_ext_table armv7em_ext_table[] =
29316 {
29317 ARM_EXT ("fp", FPU_ARCH_VFP_V4_SP_D16, ALL_FP),
29318 /* Alias for +fp, used to be known as fpv4-sp-d16. */
29319 ARM_ADD ("vfpv4-sp-d16", FPU_ARCH_VFP_V4_SP_D16),
29320 ARM_ADD ("fpv5", FPU_ARCH_VFP_V5_SP_D16),
29321 ARM_ADD ("fp.dp", FPU_ARCH_VFP_V5D16),
29322 ARM_ADD ("fpv5-d16", FPU_ARCH_VFP_V5D16),
29323 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
29324 };
29325
29326 static const struct arm_ext_table armv8a_ext_table[] =
29327 {
29328 ARM_ADD ("crc", ARCH_CRC_ARMV8),
29329 ARM_ADD ("simd", FPU_ARCH_NEON_VFP_ARMV8),
29330 ARM_EXT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8,
29331 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8)),
29332
29333 /* Armv8-a does not allow an FP implementation without SIMD, so the user
29334 should use the +simd option to turn on FP. */
29335 ARM_REMOVE ("fp", ALL_FP),
29336 ARM_ADD ("sb", ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB)),
29337 ARM_ADD ("predres", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES)),
29338 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
29339 };
29340
29341
29342 static const struct arm_ext_table armv81a_ext_table[] =
29343 {
29344 ARM_ADD ("simd", FPU_ARCH_NEON_VFP_ARMV8_1),
29345 ARM_EXT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_1,
29346 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8)),
29347
29348 /* Armv8-a does not allow an FP implementation without SIMD, so the user
29349 should use the +simd option to turn on FP. */
29350 ARM_REMOVE ("fp", ALL_FP),
29351 ARM_ADD ("sb", ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB)),
29352 ARM_ADD ("predres", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES)),
29353 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
29354 };
29355
29356 static const struct arm_ext_table armv82a_ext_table[] =
29357 {
29358 ARM_ADD ("simd", FPU_ARCH_NEON_VFP_ARMV8_1),
29359 ARM_ADD ("fp16", FPU_ARCH_NEON_VFP_ARMV8_2_FP16),
29360 ARM_ADD ("fp16fml", FPU_ARCH_NEON_VFP_ARMV8_2_FP16FML),
29361 ARM_EXT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_1,
29362 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8)),
29363 ARM_ADD ("dotprod", FPU_ARCH_DOTPROD_NEON_VFP_ARMV8),
29364
29365 /* Armv8-a does not allow an FP implementation without SIMD, so the user
29366 should use the +simd option to turn on FP. */
29367 ARM_REMOVE ("fp", ALL_FP),
29368 ARM_ADD ("sb", ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB)),
29369 ARM_ADD ("predres", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES)),
29370 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
29371 };
29372
29373 static const struct arm_ext_table armv84a_ext_table[] =
29374 {
29375 ARM_ADD ("simd", FPU_ARCH_DOTPROD_NEON_VFP_ARMV8),
29376 ARM_ADD ("fp16", FPU_ARCH_NEON_VFP_ARMV8_4_FP16FML),
29377 ARM_EXT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_4,
29378 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8)),
29379
29380 /* Armv8-a does not allow an FP implementation without SIMD, so the user
29381 should use the +simd option to turn on FP. */
29382 ARM_REMOVE ("fp", ALL_FP),
29383 ARM_ADD ("sb", ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB)),
29384 ARM_ADD ("predres", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES)),
29385 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
29386 };
29387
29388 static const struct arm_ext_table armv85a_ext_table[] =
29389 {
29390 ARM_ADD ("simd", FPU_ARCH_DOTPROD_NEON_VFP_ARMV8),
29391 ARM_ADD ("fp16", FPU_ARCH_NEON_VFP_ARMV8_4_FP16FML),
29392 ARM_EXT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_4,
29393 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8)),
29394
29395 /* Armv8-a does not allow an FP implementation without SIMD, so the user
29396 should use the +simd option to turn on FP. */
29397 ARM_REMOVE ("fp", ALL_FP),
29398 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
29399 };
29400
29401 static const struct arm_ext_table armv8m_main_ext_table[] =
29402 {
29403 ARM_EXT ("dsp", ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP),
29404 ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP)),
29405 ARM_EXT ("fp", FPU_ARCH_VFP_V5_SP_D16, ALL_FP),
29406 ARM_ADD ("fp.dp", FPU_ARCH_VFP_V5D16),
29407 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
29408 };
29409
29410 static const struct arm_ext_table armv8_1m_main_ext_table[] =
29411 {
29412 ARM_EXT ("dsp", ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP),
29413 ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP)),
29414 ARM_EXT ("fp",
29415 ARM_FEATURE (0, ARM_EXT2_FP16_INST,
29416 FPU_VFP_V5_SP_D16 | FPU_VFP_EXT_FP16 | FPU_VFP_EXT_FMA),
29417 ALL_FP),
29418 ARM_ADD ("fp.dp",
29419 ARM_FEATURE (0, ARM_EXT2_FP16_INST,
29420 FPU_VFP_V5D16 | FPU_VFP_EXT_FP16 | FPU_VFP_EXT_FMA)),
29421 ARM_EXT ("mve", ARM_FEATURE_COPROC (FPU_MVE),
29422 ARM_FEATURE_COPROC (FPU_MVE | FPU_MVE_FP)),
29423 ARM_ADD ("mve.fp",
29424 ARM_FEATURE (0, ARM_EXT2_FP16_INST,
29425 FPU_MVE | FPU_MVE_FP | FPU_VFP_V5_SP_D16 |
29426 FPU_VFP_EXT_FP16 | FPU_VFP_EXT_FMA)),
29427 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
29428 };
29429
29430 static const struct arm_ext_table armv8r_ext_table[] =
29431 {
29432 ARM_ADD ("crc", ARCH_CRC_ARMV8),
29433 ARM_ADD ("simd", FPU_ARCH_NEON_VFP_ARMV8),
29434 ARM_EXT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8,
29435 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8)),
29436 ARM_REMOVE ("fp", ALL_FP),
29437 ARM_ADD ("fp.sp", FPU_ARCH_VFP_V5_SP_D16),
29438 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
29439 };
29440
29441 /* This list should, at a minimum, contain all the architecture names
29442 recognized by GCC. */
29443 #define ARM_ARCH_OPT(N, V, DF) { N, sizeof (N) - 1, V, DF, NULL }
29444 #define ARM_ARCH_OPT2(N, V, DF, ext) \
29445 { N, sizeof (N) - 1, V, DF, ext##_ext_table }
29446
29447 static const struct arm_arch_option_table arm_archs[] =
29448 {
29449 ARM_ARCH_OPT ("all", ARM_ANY, FPU_ARCH_FPA),
29450 ARM_ARCH_OPT ("armv1", ARM_ARCH_V1, FPU_ARCH_FPA),
29451 ARM_ARCH_OPT ("armv2", ARM_ARCH_V2, FPU_ARCH_FPA),
29452 ARM_ARCH_OPT ("armv2a", ARM_ARCH_V2S, FPU_ARCH_FPA),
29453 ARM_ARCH_OPT ("armv2s", ARM_ARCH_V2S, FPU_ARCH_FPA),
29454 ARM_ARCH_OPT ("armv3", ARM_ARCH_V3, FPU_ARCH_FPA),
29455 ARM_ARCH_OPT ("armv3m", ARM_ARCH_V3M, FPU_ARCH_FPA),
29456 ARM_ARCH_OPT ("armv4", ARM_ARCH_V4, FPU_ARCH_FPA),
29457 ARM_ARCH_OPT ("armv4xm", ARM_ARCH_V4xM, FPU_ARCH_FPA),
29458 ARM_ARCH_OPT ("armv4t", ARM_ARCH_V4T, FPU_ARCH_FPA),
29459 ARM_ARCH_OPT ("armv4txm", ARM_ARCH_V4TxM, FPU_ARCH_FPA),
29460 ARM_ARCH_OPT ("armv5", ARM_ARCH_V5, FPU_ARCH_VFP),
29461 ARM_ARCH_OPT ("armv5t", ARM_ARCH_V5T, FPU_ARCH_VFP),
29462 ARM_ARCH_OPT ("armv5txm", ARM_ARCH_V5TxM, FPU_ARCH_VFP),
29463 ARM_ARCH_OPT2 ("armv5te", ARM_ARCH_V5TE, FPU_ARCH_VFP, armv5te),
29464 ARM_ARCH_OPT2 ("armv5texp", ARM_ARCH_V5TExP, FPU_ARCH_VFP, armv5te),
29465 ARM_ARCH_OPT2 ("armv5tej", ARM_ARCH_V5TEJ, FPU_ARCH_VFP, armv5te),
29466 ARM_ARCH_OPT2 ("armv6", ARM_ARCH_V6, FPU_ARCH_VFP, armv5te),
29467 ARM_ARCH_OPT2 ("armv6j", ARM_ARCH_V6, FPU_ARCH_VFP, armv5te),
29468 ARM_ARCH_OPT2 ("armv6k", ARM_ARCH_V6K, FPU_ARCH_VFP, armv5te),
29469 ARM_ARCH_OPT2 ("armv6z", ARM_ARCH_V6Z, FPU_ARCH_VFP, armv5te),
29470 /* The official spelling of this variant is ARMv6KZ, the name "armv6zk" is
29471 kept to preserve existing behaviour. */
29472 ARM_ARCH_OPT2 ("armv6kz", ARM_ARCH_V6KZ, FPU_ARCH_VFP, armv5te),
29473 ARM_ARCH_OPT2 ("armv6zk", ARM_ARCH_V6KZ, FPU_ARCH_VFP, armv5te),
29474 ARM_ARCH_OPT2 ("armv6t2", ARM_ARCH_V6T2, FPU_ARCH_VFP, armv5te),
29475 ARM_ARCH_OPT2 ("armv6kt2", ARM_ARCH_V6KT2, FPU_ARCH_VFP, armv5te),
29476 ARM_ARCH_OPT2 ("armv6zt2", ARM_ARCH_V6ZT2, FPU_ARCH_VFP, armv5te),
29477 /* The official spelling of this variant is ARMv6KZ, the name "armv6zkt2" is
29478 kept to preserve existing behaviour. */
29479 ARM_ARCH_OPT2 ("armv6kzt2", ARM_ARCH_V6KZT2, FPU_ARCH_VFP, armv5te),
29480 ARM_ARCH_OPT2 ("armv6zkt2", ARM_ARCH_V6KZT2, FPU_ARCH_VFP, armv5te),
29481 ARM_ARCH_OPT ("armv6-m", ARM_ARCH_V6M, FPU_ARCH_VFP),
29482 ARM_ARCH_OPT ("armv6s-m", ARM_ARCH_V6SM, FPU_ARCH_VFP),
29483 ARM_ARCH_OPT2 ("armv7", ARM_ARCH_V7, FPU_ARCH_VFP, armv7),
29484 /* The official spelling of the ARMv7 profile variants is the dashed form.
29485 Accept the non-dashed form for compatibility with old toolchains. */
29486 ARM_ARCH_OPT2 ("armv7a", ARM_ARCH_V7A, FPU_ARCH_VFP, armv7a),
29487 ARM_ARCH_OPT2 ("armv7ve", ARM_ARCH_V7VE, FPU_ARCH_VFP, armv7ve),
29488 ARM_ARCH_OPT2 ("armv7r", ARM_ARCH_V7R, FPU_ARCH_VFP, armv7r),
29489 ARM_ARCH_OPT ("armv7m", ARM_ARCH_V7M, FPU_ARCH_VFP),
29490 ARM_ARCH_OPT2 ("armv7-a", ARM_ARCH_V7A, FPU_ARCH_VFP, armv7a),
29491 ARM_ARCH_OPT2 ("armv7-r", ARM_ARCH_V7R, FPU_ARCH_VFP, armv7r),
29492 ARM_ARCH_OPT ("armv7-m", ARM_ARCH_V7M, FPU_ARCH_VFP),
29493 ARM_ARCH_OPT2 ("armv7e-m", ARM_ARCH_V7EM, FPU_ARCH_VFP, armv7em),
29494 ARM_ARCH_OPT ("armv8-m.base", ARM_ARCH_V8M_BASE, FPU_ARCH_VFP),
29495 ARM_ARCH_OPT2 ("armv8-m.main", ARM_ARCH_V8M_MAIN, FPU_ARCH_VFP,
29496 armv8m_main),
29497 ARM_ARCH_OPT2 ("armv8.1-m.main", ARM_ARCH_V8_1M_MAIN, FPU_ARCH_VFP,
29498 armv8_1m_main),
29499 ARM_ARCH_OPT2 ("armv8-a", ARM_ARCH_V8A, FPU_ARCH_VFP, armv8a),
29500 ARM_ARCH_OPT2 ("armv8.1-a", ARM_ARCH_V8_1A, FPU_ARCH_VFP, armv81a),
29501 ARM_ARCH_OPT2 ("armv8.2-a", ARM_ARCH_V8_2A, FPU_ARCH_VFP, armv82a),
29502 ARM_ARCH_OPT2 ("armv8.3-a", ARM_ARCH_V8_3A, FPU_ARCH_VFP, armv82a),
29503 ARM_ARCH_OPT2 ("armv8-r", ARM_ARCH_V8R, FPU_ARCH_VFP, armv8r),
29504 ARM_ARCH_OPT2 ("armv8.4-a", ARM_ARCH_V8_4A, FPU_ARCH_VFP, armv84a),
29505 ARM_ARCH_OPT2 ("armv8.5-a", ARM_ARCH_V8_5A, FPU_ARCH_VFP, armv85a),
29506 ARM_ARCH_OPT ("xscale", ARM_ARCH_XSCALE, FPU_ARCH_VFP),
29507 ARM_ARCH_OPT ("iwmmxt", ARM_ARCH_IWMMXT, FPU_ARCH_VFP),
29508 ARM_ARCH_OPT ("iwmmxt2", ARM_ARCH_IWMMXT2, FPU_ARCH_VFP),
29509 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE, NULL }
29510 };
29511 #undef ARM_ARCH_OPT
29512
29513 /* ISA extensions in the co-processor and main instruction set space. */
29514
29515 struct arm_option_extension_value_table
29516 {
29517 const char * name;
29518 size_t name_len;
29519 const arm_feature_set merge_value;
29520 const arm_feature_set clear_value;
29521 /* List of architectures for which an extension is available. ARM_ARCH_NONE
29522 indicates that an extension is available for all architectures while
29523 ARM_ANY marks an empty entry. */
29524 const arm_feature_set allowed_archs[2];
29525 };
29526
29527 /* The following table must be in alphabetical order with a NULL last entry. */
29528
29529 #define ARM_EXT_OPT(N, M, C, AA) { N, sizeof (N) - 1, M, C, { AA, ARM_ANY } }
29530 #define ARM_EXT_OPT2(N, M, C, AA1, AA2) { N, sizeof (N) - 1, M, C, {AA1, AA2} }
29531
29532 /* DEPRECATED: Refrain from using this table to add any new extensions, instead
29533 use the context sensitive approach using arm_ext_table's. */
29534 static const struct arm_option_extension_value_table arm_extensions[] =
29535 {
29536 ARM_EXT_OPT ("crc", ARCH_CRC_ARMV8, ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
29537 ARM_FEATURE_CORE_LOW (ARM_EXT_V8)),
29538 ARM_EXT_OPT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8,
29539 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8),
29540 ARM_FEATURE_CORE_LOW (ARM_EXT_V8)),
29541 ARM_EXT_OPT ("dotprod", FPU_ARCH_DOTPROD_NEON_VFP_ARMV8,
29542 ARM_FEATURE_COPROC (FPU_NEON_EXT_DOTPROD),
29543 ARM_ARCH_V8_2A),
29544 ARM_EXT_OPT ("dsp", ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP),
29545 ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP),
29546 ARM_FEATURE_CORE (ARM_EXT_V7M, ARM_EXT2_V8M)),
29547 ARM_EXT_OPT ("fp", FPU_ARCH_VFP_ARMV8, ARM_FEATURE_COPROC (FPU_VFP_ARMV8),
29548 ARM_FEATURE_CORE_LOW (ARM_EXT_V8)),
29549 ARM_EXT_OPT ("fp16", ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
29550 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
29551 ARM_ARCH_V8_2A),
29552 ARM_EXT_OPT ("fp16fml", ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST
29553 | ARM_EXT2_FP16_FML),
29554 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST
29555 | ARM_EXT2_FP16_FML),
29556 ARM_ARCH_V8_2A),
29557 ARM_EXT_OPT2 ("idiv", ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV | ARM_EXT_DIV),
29558 ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV | ARM_EXT_DIV),
29559 ARM_FEATURE_CORE_LOW (ARM_EXT_V7A),
29560 ARM_FEATURE_CORE_LOW (ARM_EXT_V7R)),
29561 /* Duplicate entry for the purpose of allowing ARMv7 to match in presence of
29562 Thumb divide instruction. Due to this having the same name as the
29563 previous entry, this will be ignored when doing command-line parsing and
29564 only considered by build attribute selection code. */
29565 ARM_EXT_OPT ("idiv", ARM_FEATURE_CORE_LOW (ARM_EXT_DIV),
29566 ARM_FEATURE_CORE_LOW (ARM_EXT_DIV),
29567 ARM_FEATURE_CORE_LOW (ARM_EXT_V7)),
29568 ARM_EXT_OPT ("iwmmxt",ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT),
29569 ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT), ARM_ARCH_NONE),
29570 ARM_EXT_OPT ("iwmmxt2", ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT2),
29571 ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT2), ARM_ARCH_NONE),
29572 ARM_EXT_OPT ("maverick", ARM_FEATURE_COPROC (ARM_CEXT_MAVERICK),
29573 ARM_FEATURE_COPROC (ARM_CEXT_MAVERICK), ARM_ARCH_NONE),
29574 ARM_EXT_OPT2 ("mp", ARM_FEATURE_CORE_LOW (ARM_EXT_MP),
29575 ARM_FEATURE_CORE_LOW (ARM_EXT_MP),
29576 ARM_FEATURE_CORE_LOW (ARM_EXT_V7A),
29577 ARM_FEATURE_CORE_LOW (ARM_EXT_V7R)),
29578 ARM_EXT_OPT ("os", ARM_FEATURE_CORE_LOW (ARM_EXT_OS),
29579 ARM_FEATURE_CORE_LOW (ARM_EXT_OS),
29580 ARM_FEATURE_CORE_LOW (ARM_EXT_V6M)),
29581 ARM_EXT_OPT ("pan", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PAN),
29582 ARM_FEATURE (ARM_EXT_V8, ARM_EXT2_PAN, 0),
29583 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8A)),
29584 ARM_EXT_OPT ("predres", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES),
29585 ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES),
29586 ARM_ARCH_V8A),
29587 ARM_EXT_OPT ("ras", ARM_FEATURE_CORE_HIGH (ARM_EXT2_RAS),
29588 ARM_FEATURE (ARM_EXT_V8, ARM_EXT2_RAS, 0),
29589 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8A)),
29590 ARM_EXT_OPT ("rdma", FPU_ARCH_NEON_VFP_ARMV8_1,
29591 ARM_FEATURE_COPROC (FPU_NEON_ARMV8 | FPU_NEON_EXT_RDMA),
29592 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8A)),
29593 ARM_EXT_OPT ("sb", ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB),
29594 ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB),
29595 ARM_ARCH_V8A),
29596 ARM_EXT_OPT2 ("sec", ARM_FEATURE_CORE_LOW (ARM_EXT_SEC),
29597 ARM_FEATURE_CORE_LOW (ARM_EXT_SEC),
29598 ARM_FEATURE_CORE_LOW (ARM_EXT_V6K),
29599 ARM_FEATURE_CORE_LOW (ARM_EXT_V7A)),
29600 ARM_EXT_OPT ("simd", FPU_ARCH_NEON_VFP_ARMV8,
29601 ARM_FEATURE_COPROC (FPU_NEON_ARMV8),
29602 ARM_FEATURE_CORE_LOW (ARM_EXT_V8)),
29603 ARM_EXT_OPT ("virt", ARM_FEATURE_CORE_LOW (ARM_EXT_VIRT | ARM_EXT_ADIV
29604 | ARM_EXT_DIV),
29605 ARM_FEATURE_CORE_LOW (ARM_EXT_VIRT),
29606 ARM_FEATURE_CORE_LOW (ARM_EXT_V7A)),
29607 ARM_EXT_OPT ("xscale",ARM_FEATURE_COPROC (ARM_CEXT_XSCALE),
29608 ARM_FEATURE_COPROC (ARM_CEXT_XSCALE), ARM_ARCH_NONE),
29609 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE, { ARM_ARCH_NONE, ARM_ARCH_NONE } }
29610 };
29611 #undef ARM_EXT_OPT
29612
29613 /* ISA floating-point and Advanced SIMD extensions. */
29614 struct arm_option_fpu_value_table
29615 {
29616 const char * name;
29617 const arm_feature_set value;
29618 };
29619
29620 /* This list should, at a minimum, contain all the fpu names
29621 recognized by GCC. */
29622 static const struct arm_option_fpu_value_table arm_fpus[] =
29623 {
29624 {"softfpa", FPU_NONE},
29625 {"fpe", FPU_ARCH_FPE},
29626 {"fpe2", FPU_ARCH_FPE},
29627 {"fpe3", FPU_ARCH_FPA}, /* Third release supports LFM/SFM. */
29628 {"fpa", FPU_ARCH_FPA},
29629 {"fpa10", FPU_ARCH_FPA},
29630 {"fpa11", FPU_ARCH_FPA},
29631 {"arm7500fe", FPU_ARCH_FPA},
29632 {"softvfp", FPU_ARCH_VFP},
29633 {"softvfp+vfp", FPU_ARCH_VFP_V2},
29634 {"vfp", FPU_ARCH_VFP_V2},
29635 {"vfp9", FPU_ARCH_VFP_V2},
29636 {"vfp3", FPU_ARCH_VFP_V3}, /* Undocumented, use vfpv3. */
29637 {"vfp10", FPU_ARCH_VFP_V2},
29638 {"vfp10-r0", FPU_ARCH_VFP_V1},
29639 {"vfpxd", FPU_ARCH_VFP_V1xD},
29640 {"vfpv2", FPU_ARCH_VFP_V2},
29641 {"vfpv3", FPU_ARCH_VFP_V3},
29642 {"vfpv3-fp16", FPU_ARCH_VFP_V3_FP16},
29643 {"vfpv3-d16", FPU_ARCH_VFP_V3D16},
29644 {"vfpv3-d16-fp16", FPU_ARCH_VFP_V3D16_FP16},
29645 {"vfpv3xd", FPU_ARCH_VFP_V3xD},
29646 {"vfpv3xd-fp16", FPU_ARCH_VFP_V3xD_FP16},
29647 {"arm1020t", FPU_ARCH_VFP_V1},
29648 {"arm1020e", FPU_ARCH_VFP_V2},
29649 {"arm1136jfs", FPU_ARCH_VFP_V2}, /* Undocumented, use arm1136jf-s. */
29650 {"arm1136jf-s", FPU_ARCH_VFP_V2},
29651 {"maverick", FPU_ARCH_MAVERICK},
29652 {"neon", FPU_ARCH_VFP_V3_PLUS_NEON_V1},
29653 {"neon-vfpv3", FPU_ARCH_VFP_V3_PLUS_NEON_V1},
29654 {"neon-fp16", FPU_ARCH_NEON_FP16},
29655 {"vfpv4", FPU_ARCH_VFP_V4},
29656 {"vfpv4-d16", FPU_ARCH_VFP_V4D16},
29657 {"fpv4-sp-d16", FPU_ARCH_VFP_V4_SP_D16},
29658 {"fpv5-d16", FPU_ARCH_VFP_V5D16},
29659 {"fpv5-sp-d16", FPU_ARCH_VFP_V5_SP_D16},
29660 {"neon-vfpv4", FPU_ARCH_NEON_VFP_V4},
29661 {"fp-armv8", FPU_ARCH_VFP_ARMV8},
29662 {"neon-fp-armv8", FPU_ARCH_NEON_VFP_ARMV8},
29663 {"crypto-neon-fp-armv8",
29664 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8},
29665 {"neon-fp-armv8.1", FPU_ARCH_NEON_VFP_ARMV8_1},
29666 {"crypto-neon-fp-armv8.1",
29667 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_1},
29668 {NULL, ARM_ARCH_NONE}
29669 };
29670
29671 struct arm_option_value_table
29672 {
29673 const char *name;
29674 long value;
29675 };
29676
29677 static const struct arm_option_value_table arm_float_abis[] =
29678 {
29679 {"hard", ARM_FLOAT_ABI_HARD},
29680 {"softfp", ARM_FLOAT_ABI_SOFTFP},
29681 {"soft", ARM_FLOAT_ABI_SOFT},
29682 {NULL, 0}
29683 };
29684
29685 #ifdef OBJ_ELF
29686 /* We only know how to output GNU and ver 4/5 (AAELF) formats. */
29687 static const struct arm_option_value_table arm_eabis[] =
29688 {
29689 {"gnu", EF_ARM_EABI_UNKNOWN},
29690 {"4", EF_ARM_EABI_VER4},
29691 {"5", EF_ARM_EABI_VER5},
29692 {NULL, 0}
29693 };
29694 #endif
29695
29696 struct arm_long_option_table
29697 {
29698 const char * option; /* Substring to match. */
29699 const char * help; /* Help information. */
29700 int (* func) (const char * subopt); /* Function to decode sub-option. */
29701 const char * deprecated; /* If non-null, print this message. */
29702 };
29703
29704 static bfd_boolean
29705 arm_parse_extension (const char *str, const arm_feature_set *opt_set,
29706 arm_feature_set *ext_set,
29707 const struct arm_ext_table *ext_table)
29708 {
29709 /* We insist on extensions being specified in alphabetical order, and with
29710 extensions being added before being removed. We achieve this by having
29711 the global ARM_EXTENSIONS table in alphabetical order, and using the
29712 ADDING_VALUE variable to indicate whether we are adding an extension (1)
29713 or removing it (0) and only allowing it to change in the order
29714 -1 -> 1 -> 0. */
29715 const struct arm_option_extension_value_table * opt = NULL;
29716 const arm_feature_set arm_any = ARM_ANY;
29717 int adding_value = -1;
29718
29719 while (str != NULL && *str != 0)
29720 {
29721 const char *ext;
29722 size_t len;
29723
29724 if (*str != '+')
29725 {
29726 as_bad (_("invalid architectural extension"));
29727 return FALSE;
29728 }
29729
29730 str++;
29731 ext = strchr (str, '+');
29732
29733 if (ext != NULL)
29734 len = ext - str;
29735 else
29736 len = strlen (str);
29737
29738 if (len >= 2 && strncmp (str, "no", 2) == 0)
29739 {
29740 if (adding_value != 0)
29741 {
29742 adding_value = 0;
29743 opt = arm_extensions;
29744 }
29745
29746 len -= 2;
29747 str += 2;
29748 }
29749 else if (len > 0)
29750 {
29751 if (adding_value == -1)
29752 {
29753 adding_value = 1;
29754 opt = arm_extensions;
29755 }
29756 else if (adding_value != 1)
29757 {
29758 as_bad (_("must specify extensions to add before specifying "
29759 "those to remove"));
29760 return FALSE;
29761 }
29762 }
29763
29764 if (len == 0)
29765 {
29766 as_bad (_("missing architectural extension"));
29767 return FALSE;
29768 }
29769
29770 gas_assert (adding_value != -1);
29771 gas_assert (opt != NULL);
29772
29773 if (ext_table != NULL)
29774 {
29775 const struct arm_ext_table * ext_opt = ext_table;
29776 bfd_boolean found = FALSE;
29777 for (; ext_opt->name != NULL; ext_opt++)
29778 if (ext_opt->name_len == len
29779 && strncmp (ext_opt->name, str, len) == 0)
29780 {
29781 if (adding_value)
29782 {
29783 if (ARM_FEATURE_ZERO (ext_opt->merge))
29784 /* TODO: Option not supported. When we remove the
29785 legacy table this case should error out. */
29786 continue;
29787
29788 ARM_MERGE_FEATURE_SETS (*ext_set, *ext_set, ext_opt->merge);
29789 }
29790 else
29791 {
29792 if (ARM_FEATURE_ZERO (ext_opt->clear))
29793 /* TODO: Option not supported. When we remove the
29794 legacy table this case should error out. */
29795 continue;
29796 ARM_CLEAR_FEATURE (*ext_set, *ext_set, ext_opt->clear);
29797 }
29798 found = TRUE;
29799 break;
29800 }
29801 if (found)
29802 {
29803 str = ext;
29804 continue;
29805 }
29806 }
29807
29808 /* Scan over the options table trying to find an exact match. */
29809 for (; opt->name != NULL; opt++)
29810 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
29811 {
29812 int i, nb_allowed_archs =
29813 sizeof (opt->allowed_archs) / sizeof (opt->allowed_archs[0]);
29814 /* Check we can apply the extension to this architecture. */
29815 for (i = 0; i < nb_allowed_archs; i++)
29816 {
29817 /* Empty entry. */
29818 if (ARM_FEATURE_EQUAL (opt->allowed_archs[i], arm_any))
29819 continue;
29820 if (ARM_FSET_CPU_SUBSET (opt->allowed_archs[i], *opt_set))
29821 break;
29822 }
29823 if (i == nb_allowed_archs)
29824 {
29825 as_bad (_("extension does not apply to the base architecture"));
29826 return FALSE;
29827 }
29828
29829 /* Add or remove the extension. */
29830 if (adding_value)
29831 ARM_MERGE_FEATURE_SETS (*ext_set, *ext_set, opt->merge_value);
29832 else
29833 ARM_CLEAR_FEATURE (*ext_set, *ext_set, opt->clear_value);
29834
29835 /* Allowing Thumb division instructions for ARMv7 in autodetection
29836 rely on this break so that duplicate extensions (extensions
29837 with the same name as a previous extension in the list) are not
29838 considered for command-line parsing. */
29839 break;
29840 }
29841
29842 if (opt->name == NULL)
29843 {
29844 /* Did we fail to find an extension because it wasn't specified in
29845 alphabetical order, or because it does not exist? */
29846
29847 for (opt = arm_extensions; opt->name != NULL; opt++)
29848 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
29849 break;
29850
29851 if (opt->name == NULL)
29852 as_bad (_("unknown architectural extension `%s'"), str);
29853 else
29854 as_bad (_("architectural extensions must be specified in "
29855 "alphabetical order"));
29856
29857 return FALSE;
29858 }
29859 else
29860 {
29861 /* We should skip the extension we've just matched the next time
29862 round. */
29863 opt++;
29864 }
29865
29866 str = ext;
29867 };
29868
29869 return TRUE;
29870 }
29871
29872 static bfd_boolean
29873 arm_parse_cpu (const char *str)
29874 {
29875 const struct arm_cpu_option_table *opt;
29876 const char *ext = strchr (str, '+');
29877 size_t len;
29878
29879 if (ext != NULL)
29880 len = ext - str;
29881 else
29882 len = strlen (str);
29883
29884 if (len == 0)
29885 {
29886 as_bad (_("missing cpu name `%s'"), str);
29887 return FALSE;
29888 }
29889
29890 for (opt = arm_cpus; opt->name != NULL; opt++)
29891 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
29892 {
29893 mcpu_cpu_opt = &opt->value;
29894 if (mcpu_ext_opt == NULL)
29895 mcpu_ext_opt = XNEW (arm_feature_set);
29896 *mcpu_ext_opt = opt->ext;
29897 mcpu_fpu_opt = &opt->default_fpu;
29898 if (opt->canonical_name)
29899 {
29900 gas_assert (sizeof selected_cpu_name > strlen (opt->canonical_name));
29901 strcpy (selected_cpu_name, opt->canonical_name);
29902 }
29903 else
29904 {
29905 size_t i;
29906
29907 if (len >= sizeof selected_cpu_name)
29908 len = (sizeof selected_cpu_name) - 1;
29909
29910 for (i = 0; i < len; i++)
29911 selected_cpu_name[i] = TOUPPER (opt->name[i]);
29912 selected_cpu_name[i] = 0;
29913 }
29914
29915 if (ext != NULL)
29916 return arm_parse_extension (ext, mcpu_cpu_opt, mcpu_ext_opt, NULL);
29917
29918 return TRUE;
29919 }
29920
29921 as_bad (_("unknown cpu `%s'"), str);
29922 return FALSE;
29923 }
29924
29925 static bfd_boolean
29926 arm_parse_arch (const char *str)
29927 {
29928 const struct arm_arch_option_table *opt;
29929 const char *ext = strchr (str, '+');
29930 size_t len;
29931
29932 if (ext != NULL)
29933 len = ext - str;
29934 else
29935 len = strlen (str);
29936
29937 if (len == 0)
29938 {
29939 as_bad (_("missing architecture name `%s'"), str);
29940 return FALSE;
29941 }
29942
29943 for (opt = arm_archs; opt->name != NULL; opt++)
29944 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
29945 {
29946 march_cpu_opt = &opt->value;
29947 if (march_ext_opt == NULL)
29948 march_ext_opt = XNEW (arm_feature_set);
29949 *march_ext_opt = arm_arch_none;
29950 march_fpu_opt = &opt->default_fpu;
29951 strcpy (selected_cpu_name, opt->name);
29952
29953 if (ext != NULL)
29954 return arm_parse_extension (ext, march_cpu_opt, march_ext_opt,
29955 opt->ext_table);
29956
29957 return TRUE;
29958 }
29959
29960 as_bad (_("unknown architecture `%s'\n"), str);
29961 return FALSE;
29962 }
29963
29964 static bfd_boolean
29965 arm_parse_fpu (const char * str)
29966 {
29967 const struct arm_option_fpu_value_table * opt;
29968
29969 for (opt = arm_fpus; opt->name != NULL; opt++)
29970 if (streq (opt->name, str))
29971 {
29972 mfpu_opt = &opt->value;
29973 return TRUE;
29974 }
29975
29976 as_bad (_("unknown floating point format `%s'\n"), str);
29977 return FALSE;
29978 }
29979
29980 static bfd_boolean
29981 arm_parse_float_abi (const char * str)
29982 {
29983 const struct arm_option_value_table * opt;
29984
29985 for (opt = arm_float_abis; opt->name != NULL; opt++)
29986 if (streq (opt->name, str))
29987 {
29988 mfloat_abi_opt = opt->value;
29989 return TRUE;
29990 }
29991
29992 as_bad (_("unknown floating point abi `%s'\n"), str);
29993 return FALSE;
29994 }
29995
29996 #ifdef OBJ_ELF
29997 static bfd_boolean
29998 arm_parse_eabi (const char * str)
29999 {
30000 const struct arm_option_value_table *opt;
30001
30002 for (opt = arm_eabis; opt->name != NULL; opt++)
30003 if (streq (opt->name, str))
30004 {
30005 meabi_flags = opt->value;
30006 return TRUE;
30007 }
30008 as_bad (_("unknown EABI `%s'\n"), str);
30009 return FALSE;
30010 }
30011 #endif
30012
30013 static bfd_boolean
30014 arm_parse_it_mode (const char * str)
30015 {
30016 bfd_boolean ret = TRUE;
30017
30018 if (streq ("arm", str))
30019 implicit_it_mode = IMPLICIT_IT_MODE_ARM;
30020 else if (streq ("thumb", str))
30021 implicit_it_mode = IMPLICIT_IT_MODE_THUMB;
30022 else if (streq ("always", str))
30023 implicit_it_mode = IMPLICIT_IT_MODE_ALWAYS;
30024 else if (streq ("never", str))
30025 implicit_it_mode = IMPLICIT_IT_MODE_NEVER;
30026 else
30027 {
30028 as_bad (_("unknown implicit IT mode `%s', should be "\
30029 "arm, thumb, always, or never."), str);
30030 ret = FALSE;
30031 }
30032
30033 return ret;
30034 }
30035
30036 static bfd_boolean
30037 arm_ccs_mode (const char * unused ATTRIBUTE_UNUSED)
30038 {
30039 codecomposer_syntax = TRUE;
30040 arm_comment_chars[0] = ';';
30041 arm_line_separator_chars[0] = 0;
30042 return TRUE;
30043 }
30044
30045 struct arm_long_option_table arm_long_opts[] =
30046 {
30047 {"mcpu=", N_("<cpu name>\t assemble for CPU <cpu name>"),
30048 arm_parse_cpu, NULL},
30049 {"march=", N_("<arch name>\t assemble for architecture <arch name>"),
30050 arm_parse_arch, NULL},
30051 {"mfpu=", N_("<fpu name>\t assemble for FPU architecture <fpu name>"),
30052 arm_parse_fpu, NULL},
30053 {"mfloat-abi=", N_("<abi>\t assemble for floating point ABI <abi>"),
30054 arm_parse_float_abi, NULL},
30055 #ifdef OBJ_ELF
30056 {"meabi=", N_("<ver>\t\t assemble for eabi version <ver>"),
30057 arm_parse_eabi, NULL},
30058 #endif
30059 {"mimplicit-it=", N_("<mode>\t controls implicit insertion of IT instructions"),
30060 arm_parse_it_mode, NULL},
30061 {"mccs", N_("\t\t\t TI CodeComposer Studio syntax compatibility mode"),
30062 arm_ccs_mode, NULL},
30063 {NULL, NULL, 0, NULL}
30064 };
30065
30066 int
30067 md_parse_option (int c, const char * arg)
30068 {
30069 struct arm_option_table *opt;
30070 const struct arm_legacy_option_table *fopt;
30071 struct arm_long_option_table *lopt;
30072
30073 switch (c)
30074 {
30075 #ifdef OPTION_EB
30076 case OPTION_EB:
30077 target_big_endian = 1;
30078 break;
30079 #endif
30080
30081 #ifdef OPTION_EL
30082 case OPTION_EL:
30083 target_big_endian = 0;
30084 break;
30085 #endif
30086
30087 case OPTION_FIX_V4BX:
30088 fix_v4bx = TRUE;
30089 break;
30090
30091 #ifdef OBJ_ELF
30092 case OPTION_FDPIC:
30093 arm_fdpic = TRUE;
30094 break;
30095 #endif /* OBJ_ELF */
30096
30097 case 'a':
30098 /* Listing option. Just ignore these, we don't support additional
30099 ones. */
30100 return 0;
30101
30102 default:
30103 for (opt = arm_opts; opt->option != NULL; opt++)
30104 {
30105 if (c == opt->option[0]
30106 && ((arg == NULL && opt->option[1] == 0)
30107 || streq (arg, opt->option + 1)))
30108 {
30109 /* If the option is deprecated, tell the user. */
30110 if (warn_on_deprecated && opt->deprecated != NULL)
30111 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
30112 arg ? arg : "", _(opt->deprecated));
30113
30114 if (opt->var != NULL)
30115 *opt->var = opt->value;
30116
30117 return 1;
30118 }
30119 }
30120
30121 for (fopt = arm_legacy_opts; fopt->option != NULL; fopt++)
30122 {
30123 if (c == fopt->option[0]
30124 && ((arg == NULL && fopt->option[1] == 0)
30125 || streq (arg, fopt->option + 1)))
30126 {
30127 /* If the option is deprecated, tell the user. */
30128 if (warn_on_deprecated && fopt->deprecated != NULL)
30129 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
30130 arg ? arg : "", _(fopt->deprecated));
30131
30132 if (fopt->var != NULL)
30133 *fopt->var = &fopt->value;
30134
30135 return 1;
30136 }
30137 }
30138
30139 for (lopt = arm_long_opts; lopt->option != NULL; lopt++)
30140 {
30141 /* These options are expected to have an argument. */
30142 if (c == lopt->option[0]
30143 && arg != NULL
30144 && strncmp (arg, lopt->option + 1,
30145 strlen (lopt->option + 1)) == 0)
30146 {
30147 /* If the option is deprecated, tell the user. */
30148 if (warn_on_deprecated && lopt->deprecated != NULL)
30149 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c, arg,
30150 _(lopt->deprecated));
30151
30152 /* Call the sup-option parser. */
30153 return lopt->func (arg + strlen (lopt->option) - 1);
30154 }
30155 }
30156
30157 return 0;
30158 }
30159
30160 return 1;
30161 }
30162
30163 void
30164 md_show_usage (FILE * fp)
30165 {
30166 struct arm_option_table *opt;
30167 struct arm_long_option_table *lopt;
30168
30169 fprintf (fp, _(" ARM-specific assembler options:\n"));
30170
30171 for (opt = arm_opts; opt->option != NULL; opt++)
30172 if (opt->help != NULL)
30173 fprintf (fp, " -%-23s%s\n", opt->option, _(opt->help));
30174
30175 for (lopt = arm_long_opts; lopt->option != NULL; lopt++)
30176 if (lopt->help != NULL)
30177 fprintf (fp, " -%s%s\n", lopt->option, _(lopt->help));
30178
30179 #ifdef OPTION_EB
30180 fprintf (fp, _("\
30181 -EB assemble code for a big-endian cpu\n"));
30182 #endif
30183
30184 #ifdef OPTION_EL
30185 fprintf (fp, _("\
30186 -EL assemble code for a little-endian cpu\n"));
30187 #endif
30188
30189 fprintf (fp, _("\
30190 --fix-v4bx Allow BX in ARMv4 code\n"));
30191
30192 #ifdef OBJ_ELF
30193 fprintf (fp, _("\
30194 --fdpic generate an FDPIC object file\n"));
30195 #endif /* OBJ_ELF */
30196 }
30197
30198 #ifdef OBJ_ELF
30199
30200 typedef struct
30201 {
30202 int val;
30203 arm_feature_set flags;
30204 } cpu_arch_ver_table;
30205
30206 /* Mapping from CPU features to EABI CPU arch values. Table must be sorted
30207 chronologically for architectures, with an exception for ARMv6-M and
30208 ARMv6S-M due to legacy reasons. No new architecture should have a
30209 special case. This allows for build attribute selection results to be
30210 stable when new architectures are added. */
30211 static const cpu_arch_ver_table cpu_arch_ver[] =
30212 {
30213 {TAG_CPU_ARCH_PRE_V4, ARM_ARCH_V1},
30214 {TAG_CPU_ARCH_PRE_V4, ARM_ARCH_V2},
30215 {TAG_CPU_ARCH_PRE_V4, ARM_ARCH_V2S},
30216 {TAG_CPU_ARCH_PRE_V4, ARM_ARCH_V3},
30217 {TAG_CPU_ARCH_PRE_V4, ARM_ARCH_V3M},
30218 {TAG_CPU_ARCH_V4, ARM_ARCH_V4xM},
30219 {TAG_CPU_ARCH_V4, ARM_ARCH_V4},
30220 {TAG_CPU_ARCH_V4T, ARM_ARCH_V4TxM},
30221 {TAG_CPU_ARCH_V4T, ARM_ARCH_V4T},
30222 {TAG_CPU_ARCH_V5T, ARM_ARCH_V5xM},
30223 {TAG_CPU_ARCH_V5T, ARM_ARCH_V5},
30224 {TAG_CPU_ARCH_V5T, ARM_ARCH_V5TxM},
30225 {TAG_CPU_ARCH_V5T, ARM_ARCH_V5T},
30226 {TAG_CPU_ARCH_V5TE, ARM_ARCH_V5TExP},
30227 {TAG_CPU_ARCH_V5TE, ARM_ARCH_V5TE},
30228 {TAG_CPU_ARCH_V5TEJ, ARM_ARCH_V5TEJ},
30229 {TAG_CPU_ARCH_V6, ARM_ARCH_V6},
30230 {TAG_CPU_ARCH_V6KZ, ARM_ARCH_V6Z},
30231 {TAG_CPU_ARCH_V6KZ, ARM_ARCH_V6KZ},
30232 {TAG_CPU_ARCH_V6K, ARM_ARCH_V6K},
30233 {TAG_CPU_ARCH_V6T2, ARM_ARCH_V6T2},
30234 {TAG_CPU_ARCH_V6T2, ARM_ARCH_V6KT2},
30235 {TAG_CPU_ARCH_V6T2, ARM_ARCH_V6ZT2},
30236 {TAG_CPU_ARCH_V6T2, ARM_ARCH_V6KZT2},
30237
30238 /* When assembling a file with only ARMv6-M or ARMv6S-M instruction, GNU as
30239 always selected build attributes to match those of ARMv6-M
30240 (resp. ARMv6S-M). However, due to these architectures being a strict
30241 subset of ARMv7-M in terms of instructions available, ARMv7-M attributes
30242 would be selected when fully respecting chronology of architectures.
30243 It is thus necessary to make a special case of ARMv6-M and ARMv6S-M and
30244 move them before ARMv7 architectures. */
30245 {TAG_CPU_ARCH_V6_M, ARM_ARCH_V6M},
30246 {TAG_CPU_ARCH_V6S_M, ARM_ARCH_V6SM},
30247
30248 {TAG_CPU_ARCH_V7, ARM_ARCH_V7},
30249 {TAG_CPU_ARCH_V7, ARM_ARCH_V7A},
30250 {TAG_CPU_ARCH_V7, ARM_ARCH_V7R},
30251 {TAG_CPU_ARCH_V7, ARM_ARCH_V7M},
30252 {TAG_CPU_ARCH_V7, ARM_ARCH_V7VE},
30253 {TAG_CPU_ARCH_V7E_M, ARM_ARCH_V7EM},
30254 {TAG_CPU_ARCH_V8, ARM_ARCH_V8A},
30255 {TAG_CPU_ARCH_V8, ARM_ARCH_V8_1A},
30256 {TAG_CPU_ARCH_V8, ARM_ARCH_V8_2A},
30257 {TAG_CPU_ARCH_V8, ARM_ARCH_V8_3A},
30258 {TAG_CPU_ARCH_V8M_BASE, ARM_ARCH_V8M_BASE},
30259 {TAG_CPU_ARCH_V8M_MAIN, ARM_ARCH_V8M_MAIN},
30260 {TAG_CPU_ARCH_V8R, ARM_ARCH_V8R},
30261 {TAG_CPU_ARCH_V8, ARM_ARCH_V8_4A},
30262 {TAG_CPU_ARCH_V8, ARM_ARCH_V8_5A},
30263 {TAG_CPU_ARCH_V8_1M_MAIN, ARM_ARCH_V8_1M_MAIN},
30264 {-1, ARM_ARCH_NONE}
30265 };
30266
30267 /* Set an attribute if it has not already been set by the user. */
30268
30269 static void
30270 aeabi_set_attribute_int (int tag, int value)
30271 {
30272 if (tag < 1
30273 || tag >= NUM_KNOWN_OBJ_ATTRIBUTES
30274 || !attributes_set_explicitly[tag])
30275 bfd_elf_add_proc_attr_int (stdoutput, tag, value);
30276 }
30277
30278 static void
30279 aeabi_set_attribute_string (int tag, const char *value)
30280 {
30281 if (tag < 1
30282 || tag >= NUM_KNOWN_OBJ_ATTRIBUTES
30283 || !attributes_set_explicitly[tag])
30284 bfd_elf_add_proc_attr_string (stdoutput, tag, value);
30285 }
30286
30287 /* Return whether features in the *NEEDED feature set are available via
30288 extensions for the architecture whose feature set is *ARCH_FSET. */
30289
30290 static bfd_boolean
30291 have_ext_for_needed_feat_p (const arm_feature_set *arch_fset,
30292 const arm_feature_set *needed)
30293 {
30294 int i, nb_allowed_archs;
30295 arm_feature_set ext_fset;
30296 const struct arm_option_extension_value_table *opt;
30297
30298 ext_fset = arm_arch_none;
30299 for (opt = arm_extensions; opt->name != NULL; opt++)
30300 {
30301 /* Extension does not provide any feature we need. */
30302 if (!ARM_CPU_HAS_FEATURE (*needed, opt->merge_value))
30303 continue;
30304
30305 nb_allowed_archs =
30306 sizeof (opt->allowed_archs) / sizeof (opt->allowed_archs[0]);
30307 for (i = 0; i < nb_allowed_archs; i++)
30308 {
30309 /* Empty entry. */
30310 if (ARM_FEATURE_EQUAL (opt->allowed_archs[i], arm_arch_any))
30311 break;
30312
30313 /* Extension is available, add it. */
30314 if (ARM_FSET_CPU_SUBSET (opt->allowed_archs[i], *arch_fset))
30315 ARM_MERGE_FEATURE_SETS (ext_fset, ext_fset, opt->merge_value);
30316 }
30317 }
30318
30319 /* Can we enable all features in *needed? */
30320 return ARM_FSET_CPU_SUBSET (*needed, ext_fset);
30321 }
30322
30323 /* Select value for Tag_CPU_arch and Tag_CPU_arch_profile build attributes for
30324 a given architecture feature set *ARCH_EXT_FSET including extension feature
30325 set *EXT_FSET. Selection logic used depend on EXACT_MATCH:
30326 - if true, check for an exact match of the architecture modulo extensions;
30327 - otherwise, select build attribute value of the first superset
30328 architecture released so that results remains stable when new architectures
30329 are added.
30330 For -march/-mcpu=all the build attribute value of the most featureful
30331 architecture is returned. Tag_CPU_arch_profile result is returned in
30332 PROFILE. */
30333
30334 static int
30335 get_aeabi_cpu_arch_from_fset (const arm_feature_set *arch_ext_fset,
30336 const arm_feature_set *ext_fset,
30337 char *profile, int exact_match)
30338 {
30339 arm_feature_set arch_fset;
30340 const cpu_arch_ver_table *p_ver, *p_ver_ret = NULL;
30341
30342 /* Select most featureful architecture with all its extensions if building
30343 for -march=all as the feature sets used to set build attributes. */
30344 if (ARM_FEATURE_EQUAL (*arch_ext_fset, arm_arch_any))
30345 {
30346 /* Force revisiting of decision for each new architecture. */
30347 gas_assert (MAX_TAG_CPU_ARCH <= TAG_CPU_ARCH_V8_1M_MAIN);
30348 *profile = 'A';
30349 return TAG_CPU_ARCH_V8;
30350 }
30351
30352 ARM_CLEAR_FEATURE (arch_fset, *arch_ext_fset, *ext_fset);
30353
30354 for (p_ver = cpu_arch_ver; p_ver->val != -1; p_ver++)
30355 {
30356 arm_feature_set known_arch_fset;
30357
30358 ARM_CLEAR_FEATURE (known_arch_fset, p_ver->flags, fpu_any);
30359 if (exact_match)
30360 {
30361 /* Base architecture match user-specified architecture and
30362 extensions, eg. ARMv6S-M matching -march=armv6-m+os. */
30363 if (ARM_FEATURE_EQUAL (*arch_ext_fset, known_arch_fset))
30364 {
30365 p_ver_ret = p_ver;
30366 goto found;
30367 }
30368 /* Base architecture match user-specified architecture only
30369 (eg. ARMv6-M in the same case as above). Record it in case we
30370 find a match with above condition. */
30371 else if (p_ver_ret == NULL
30372 && ARM_FEATURE_EQUAL (arch_fset, known_arch_fset))
30373 p_ver_ret = p_ver;
30374 }
30375 else
30376 {
30377
30378 /* Architecture has all features wanted. */
30379 if (ARM_FSET_CPU_SUBSET (arch_fset, known_arch_fset))
30380 {
30381 arm_feature_set added_fset;
30382
30383 /* Compute features added by this architecture over the one
30384 recorded in p_ver_ret. */
30385 if (p_ver_ret != NULL)
30386 ARM_CLEAR_FEATURE (added_fset, known_arch_fset,
30387 p_ver_ret->flags);
30388 /* First architecture that match incl. with extensions, or the
30389 only difference in features over the recorded match is
30390 features that were optional and are now mandatory. */
30391 if (p_ver_ret == NULL
30392 || ARM_FSET_CPU_SUBSET (added_fset, arch_fset))
30393 {
30394 p_ver_ret = p_ver;
30395 goto found;
30396 }
30397 }
30398 else if (p_ver_ret == NULL)
30399 {
30400 arm_feature_set needed_ext_fset;
30401
30402 ARM_CLEAR_FEATURE (needed_ext_fset, arch_fset, known_arch_fset);
30403
30404 /* Architecture has all features needed when using some
30405 extensions. Record it and continue searching in case there
30406 exist an architecture providing all needed features without
30407 the need for extensions (eg. ARMv6S-M Vs ARMv6-M with
30408 OS extension). */
30409 if (have_ext_for_needed_feat_p (&known_arch_fset,
30410 &needed_ext_fset))
30411 p_ver_ret = p_ver;
30412 }
30413 }
30414 }
30415
30416 if (p_ver_ret == NULL)
30417 return -1;
30418
30419 found:
30420 /* Tag_CPU_arch_profile. */
30421 if (ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_v7a)
30422 || ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_v8)
30423 || (ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_atomics)
30424 && !ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_v8m_m_only)))
30425 *profile = 'A';
30426 else if (ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_v7r))
30427 *profile = 'R';
30428 else if (ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_m))
30429 *profile = 'M';
30430 else
30431 *profile = '\0';
30432 return p_ver_ret->val;
30433 }
30434
30435 /* Set the public EABI object attributes. */
30436
30437 static void
30438 aeabi_set_public_attributes (void)
30439 {
30440 char profile = '\0';
30441 int arch = -1;
30442 int virt_sec = 0;
30443 int fp16_optional = 0;
30444 int skip_exact_match = 0;
30445 arm_feature_set flags, flags_arch, flags_ext;
30446
30447 /* Autodetection mode, choose the architecture based the instructions
30448 actually used. */
30449 if (no_cpu_selected ())
30450 {
30451 ARM_MERGE_FEATURE_SETS (flags, arm_arch_used, thumb_arch_used);
30452
30453 if (ARM_CPU_HAS_FEATURE (arm_arch_used, arm_arch_any))
30454 ARM_MERGE_FEATURE_SETS (flags, flags, arm_ext_v1);
30455
30456 if (ARM_CPU_HAS_FEATURE (thumb_arch_used, arm_arch_any))
30457 ARM_MERGE_FEATURE_SETS (flags, flags, arm_ext_v4t);
30458
30459 /* Code run during relaxation relies on selected_cpu being set. */
30460 ARM_CLEAR_FEATURE (flags_arch, flags, fpu_any);
30461 flags_ext = arm_arch_none;
30462 ARM_CLEAR_FEATURE (selected_arch, flags_arch, flags_ext);
30463 selected_ext = flags_ext;
30464 selected_cpu = flags;
30465 }
30466 /* Otherwise, choose the architecture based on the capabilities of the
30467 requested cpu. */
30468 else
30469 {
30470 ARM_MERGE_FEATURE_SETS (flags_arch, selected_arch, selected_ext);
30471 ARM_CLEAR_FEATURE (flags_arch, flags_arch, fpu_any);
30472 flags_ext = selected_ext;
30473 flags = selected_cpu;
30474 }
30475 ARM_MERGE_FEATURE_SETS (flags, flags, selected_fpu);
30476
30477 /* Allow the user to override the reported architecture. */
30478 if (!ARM_FEATURE_ZERO (selected_object_arch))
30479 {
30480 ARM_CLEAR_FEATURE (flags_arch, selected_object_arch, fpu_any);
30481 flags_ext = arm_arch_none;
30482 }
30483 else
30484 skip_exact_match = ARM_FEATURE_EQUAL (selected_cpu, arm_arch_any);
30485
30486 /* When this function is run again after relaxation has happened there is no
30487 way to determine whether an architecture or CPU was specified by the user:
30488 - selected_cpu is set above for relaxation to work;
30489 - march_cpu_opt is not set if only -mcpu or .cpu is used;
30490 - mcpu_cpu_opt is set to arm_arch_any for autodetection.
30491 Therefore, if not in -march=all case we first try an exact match and fall
30492 back to autodetection. */
30493 if (!skip_exact_match)
30494 arch = get_aeabi_cpu_arch_from_fset (&flags_arch, &flags_ext, &profile, 1);
30495 if (arch == -1)
30496 arch = get_aeabi_cpu_arch_from_fset (&flags_arch, &flags_ext, &profile, 0);
30497 if (arch == -1)
30498 as_bad (_("no architecture contains all the instructions used\n"));
30499
30500 /* Tag_CPU_name. */
30501 if (selected_cpu_name[0])
30502 {
30503 char *q;
30504
30505 q = selected_cpu_name;
30506 if (strncmp (q, "armv", 4) == 0)
30507 {
30508 int i;
30509
30510 q += 4;
30511 for (i = 0; q[i]; i++)
30512 q[i] = TOUPPER (q[i]);
30513 }
30514 aeabi_set_attribute_string (Tag_CPU_name, q);
30515 }
30516
30517 /* Tag_CPU_arch. */
30518 aeabi_set_attribute_int (Tag_CPU_arch, arch);
30519
30520 /* Tag_CPU_arch_profile. */
30521 if (profile != '\0')
30522 aeabi_set_attribute_int (Tag_CPU_arch_profile, profile);
30523
30524 /* Tag_DSP_extension. */
30525 if (ARM_CPU_HAS_FEATURE (selected_ext, arm_ext_dsp))
30526 aeabi_set_attribute_int (Tag_DSP_extension, 1);
30527
30528 ARM_CLEAR_FEATURE (flags_arch, flags, fpu_any);
30529 /* Tag_ARM_ISA_use. */
30530 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v1)
30531 || ARM_FEATURE_ZERO (flags_arch))
30532 aeabi_set_attribute_int (Tag_ARM_ISA_use, 1);
30533
30534 /* Tag_THUMB_ISA_use. */
30535 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v4t)
30536 || ARM_FEATURE_ZERO (flags_arch))
30537 {
30538 int thumb_isa_use;
30539
30540 if (!ARM_CPU_HAS_FEATURE (flags, arm_ext_v8)
30541 && ARM_CPU_HAS_FEATURE (flags, arm_ext_v8m_m_only))
30542 thumb_isa_use = 3;
30543 else if (ARM_CPU_HAS_FEATURE (flags, arm_arch_t2))
30544 thumb_isa_use = 2;
30545 else
30546 thumb_isa_use = 1;
30547 aeabi_set_attribute_int (Tag_THUMB_ISA_use, thumb_isa_use);
30548 }
30549
30550 /* Tag_VFP_arch. */
30551 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_armv8xd))
30552 aeabi_set_attribute_int (Tag_VFP_arch,
30553 ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_d32)
30554 ? 7 : 8);
30555 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_fma))
30556 aeabi_set_attribute_int (Tag_VFP_arch,
30557 ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_d32)
30558 ? 5 : 6);
30559 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_d32))
30560 {
30561 fp16_optional = 1;
30562 aeabi_set_attribute_int (Tag_VFP_arch, 3);
30563 }
30564 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v3xd))
30565 {
30566 aeabi_set_attribute_int (Tag_VFP_arch, 4);
30567 fp16_optional = 1;
30568 }
30569 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v2))
30570 aeabi_set_attribute_int (Tag_VFP_arch, 2);
30571 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1)
30572 || ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1xd))
30573 aeabi_set_attribute_int (Tag_VFP_arch, 1);
30574
30575 /* Tag_ABI_HardFP_use. */
30576 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1xd)
30577 && !ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1))
30578 aeabi_set_attribute_int (Tag_ABI_HardFP_use, 1);
30579
30580 /* Tag_WMMX_arch. */
30581 if (ARM_CPU_HAS_FEATURE (flags, arm_cext_iwmmxt2))
30582 aeabi_set_attribute_int (Tag_WMMX_arch, 2);
30583 else if (ARM_CPU_HAS_FEATURE (flags, arm_cext_iwmmxt))
30584 aeabi_set_attribute_int (Tag_WMMX_arch, 1);
30585
30586 /* Tag_Advanced_SIMD_arch (formerly Tag_NEON_arch). */
30587 if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_v8_1))
30588 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch, 4);
30589 else if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_armv8))
30590 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch, 3);
30591 else if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_v1))
30592 {
30593 if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_fma))
30594 {
30595 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch, 2);
30596 }
30597 else
30598 {
30599 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch, 1);
30600 fp16_optional = 1;
30601 }
30602 }
30603
30604 if (ARM_CPU_HAS_FEATURE (flags, mve_fp_ext))
30605 aeabi_set_attribute_int (Tag_MVE_arch, 2);
30606 else if (ARM_CPU_HAS_FEATURE (flags, mve_ext))
30607 aeabi_set_attribute_int (Tag_MVE_arch, 1);
30608
30609 /* Tag_VFP_HP_extension (formerly Tag_NEON_FP16_arch). */
30610 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_fp16) && fp16_optional)
30611 aeabi_set_attribute_int (Tag_VFP_HP_extension, 1);
30612
30613 /* Tag_DIV_use.
30614
30615 We set Tag_DIV_use to two when integer divide instructions have been used
30616 in ARM state, or when Thumb integer divide instructions have been used,
30617 but we have no architecture profile set, nor have we any ARM instructions.
30618
30619 For ARMv8-A and ARMv8-M we set the tag to 0 as integer divide is implied
30620 by the base architecture.
30621
30622 For new architectures we will have to check these tests. */
30623 gas_assert (arch <= TAG_CPU_ARCH_V8_1M_MAIN);
30624 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v8)
30625 || ARM_CPU_HAS_FEATURE (flags, arm_ext_v8m))
30626 aeabi_set_attribute_int (Tag_DIV_use, 0);
30627 else if (ARM_CPU_HAS_FEATURE (flags, arm_ext_adiv)
30628 || (profile == '\0'
30629 && ARM_CPU_HAS_FEATURE (flags, arm_ext_div)
30630 && !ARM_CPU_HAS_FEATURE (arm_arch_used, arm_arch_any)))
30631 aeabi_set_attribute_int (Tag_DIV_use, 2);
30632
30633 /* Tag_MP_extension_use. */
30634 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_mp))
30635 aeabi_set_attribute_int (Tag_MPextension_use, 1);
30636
30637 /* Tag Virtualization_use. */
30638 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_sec))
30639 virt_sec |= 1;
30640 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_virt))
30641 virt_sec |= 2;
30642 if (virt_sec != 0)
30643 aeabi_set_attribute_int (Tag_Virtualization_use, virt_sec);
30644 }
30645
30646 /* Post relaxation hook. Recompute ARM attributes now that relaxation is
30647 finished and free extension feature bits which will not be used anymore. */
30648
30649 void
30650 arm_md_post_relax (void)
30651 {
30652 aeabi_set_public_attributes ();
30653 XDELETE (mcpu_ext_opt);
30654 mcpu_ext_opt = NULL;
30655 XDELETE (march_ext_opt);
30656 march_ext_opt = NULL;
30657 }
30658
30659 /* Add the default contents for the .ARM.attributes section. */
30660
30661 void
30662 arm_md_end (void)
30663 {
30664 if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
30665 return;
30666
30667 aeabi_set_public_attributes ();
30668 }
30669 #endif /* OBJ_ELF */
30670
30671 /* Parse a .cpu directive. */
30672
30673 static void
30674 s_arm_cpu (int ignored ATTRIBUTE_UNUSED)
30675 {
30676 const struct arm_cpu_option_table *opt;
30677 char *name;
30678 char saved_char;
30679
30680 name = input_line_pointer;
30681 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
30682 input_line_pointer++;
30683 saved_char = *input_line_pointer;
30684 *input_line_pointer = 0;
30685
30686 /* Skip the first "all" entry. */
30687 for (opt = arm_cpus + 1; opt->name != NULL; opt++)
30688 if (streq (opt->name, name))
30689 {
30690 selected_arch = opt->value;
30691 selected_ext = opt->ext;
30692 ARM_MERGE_FEATURE_SETS (selected_cpu, selected_arch, selected_ext);
30693 if (opt->canonical_name)
30694 strcpy (selected_cpu_name, opt->canonical_name);
30695 else
30696 {
30697 int i;
30698 for (i = 0; opt->name[i]; i++)
30699 selected_cpu_name[i] = TOUPPER (opt->name[i]);
30700
30701 selected_cpu_name[i] = 0;
30702 }
30703 ARM_MERGE_FEATURE_SETS (cpu_variant, selected_cpu, selected_fpu);
30704
30705 *input_line_pointer = saved_char;
30706 demand_empty_rest_of_line ();
30707 return;
30708 }
30709 as_bad (_("unknown cpu `%s'"), name);
30710 *input_line_pointer = saved_char;
30711 ignore_rest_of_line ();
30712 }
30713
30714 /* Parse a .arch directive. */
30715
30716 static void
30717 s_arm_arch (int ignored ATTRIBUTE_UNUSED)
30718 {
30719 const struct arm_arch_option_table *opt;
30720 char saved_char;
30721 char *name;
30722
30723 name = input_line_pointer;
30724 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
30725 input_line_pointer++;
30726 saved_char = *input_line_pointer;
30727 *input_line_pointer = 0;
30728
30729 /* Skip the first "all" entry. */
30730 for (opt = arm_archs + 1; opt->name != NULL; opt++)
30731 if (streq (opt->name, name))
30732 {
30733 selected_arch = opt->value;
30734 selected_ext = arm_arch_none;
30735 selected_cpu = selected_arch;
30736 strcpy (selected_cpu_name, opt->name);
30737 ARM_MERGE_FEATURE_SETS (cpu_variant, selected_cpu, selected_fpu);
30738 *input_line_pointer = saved_char;
30739 demand_empty_rest_of_line ();
30740 return;
30741 }
30742
30743 as_bad (_("unknown architecture `%s'\n"), name);
30744 *input_line_pointer = saved_char;
30745 ignore_rest_of_line ();
30746 }
30747
30748 /* Parse a .object_arch directive. */
30749
30750 static void
30751 s_arm_object_arch (int ignored ATTRIBUTE_UNUSED)
30752 {
30753 const struct arm_arch_option_table *opt;
30754 char saved_char;
30755 char *name;
30756
30757 name = input_line_pointer;
30758 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
30759 input_line_pointer++;
30760 saved_char = *input_line_pointer;
30761 *input_line_pointer = 0;
30762
30763 /* Skip the first "all" entry. */
30764 for (opt = arm_archs + 1; opt->name != NULL; opt++)
30765 if (streq (opt->name, name))
30766 {
30767 selected_object_arch = opt->value;
30768 *input_line_pointer = saved_char;
30769 demand_empty_rest_of_line ();
30770 return;
30771 }
30772
30773 as_bad (_("unknown architecture `%s'\n"), name);
30774 *input_line_pointer = saved_char;
30775 ignore_rest_of_line ();
30776 }
30777
30778 /* Parse a .arch_extension directive. */
30779
30780 static void
30781 s_arm_arch_extension (int ignored ATTRIBUTE_UNUSED)
30782 {
30783 const struct arm_option_extension_value_table *opt;
30784 char saved_char;
30785 char *name;
30786 int adding_value = 1;
30787
30788 name = input_line_pointer;
30789 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
30790 input_line_pointer++;
30791 saved_char = *input_line_pointer;
30792 *input_line_pointer = 0;
30793
30794 if (strlen (name) >= 2
30795 && strncmp (name, "no", 2) == 0)
30796 {
30797 adding_value = 0;
30798 name += 2;
30799 }
30800
30801 for (opt = arm_extensions; opt->name != NULL; opt++)
30802 if (streq (opt->name, name))
30803 {
30804 int i, nb_allowed_archs =
30805 sizeof (opt->allowed_archs) / sizeof (opt->allowed_archs[i]);
30806 for (i = 0; i < nb_allowed_archs; i++)
30807 {
30808 /* Empty entry. */
30809 if (ARM_CPU_IS_ANY (opt->allowed_archs[i]))
30810 continue;
30811 if (ARM_FSET_CPU_SUBSET (opt->allowed_archs[i], selected_arch))
30812 break;
30813 }
30814
30815 if (i == nb_allowed_archs)
30816 {
30817 as_bad (_("architectural extension `%s' is not allowed for the "
30818 "current base architecture"), name);
30819 break;
30820 }
30821
30822 if (adding_value)
30823 ARM_MERGE_FEATURE_SETS (selected_ext, selected_ext,
30824 opt->merge_value);
30825 else
30826 ARM_CLEAR_FEATURE (selected_ext, selected_ext, opt->clear_value);
30827
30828 ARM_MERGE_FEATURE_SETS (selected_cpu, selected_arch, selected_ext);
30829 ARM_MERGE_FEATURE_SETS (cpu_variant, selected_cpu, selected_fpu);
30830 *input_line_pointer = saved_char;
30831 demand_empty_rest_of_line ();
30832 /* Allowing Thumb division instructions for ARMv7 in autodetection rely
30833 on this return so that duplicate extensions (extensions with the
30834 same name as a previous extension in the list) are not considered
30835 for command-line parsing. */
30836 return;
30837 }
30838
30839 if (opt->name == NULL)
30840 as_bad (_("unknown architecture extension `%s'\n"), name);
30841
30842 *input_line_pointer = saved_char;
30843 ignore_rest_of_line ();
30844 }
30845
30846 /* Parse a .fpu directive. */
30847
30848 static void
30849 s_arm_fpu (int ignored ATTRIBUTE_UNUSED)
30850 {
30851 const struct arm_option_fpu_value_table *opt;
30852 char saved_char;
30853 char *name;
30854
30855 name = input_line_pointer;
30856 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
30857 input_line_pointer++;
30858 saved_char = *input_line_pointer;
30859 *input_line_pointer = 0;
30860
30861 for (opt = arm_fpus; opt->name != NULL; opt++)
30862 if (streq (opt->name, name))
30863 {
30864 selected_fpu = opt->value;
30865 #ifndef CPU_DEFAULT
30866 if (no_cpu_selected ())
30867 ARM_MERGE_FEATURE_SETS (cpu_variant, arm_arch_any, selected_fpu);
30868 else
30869 #endif
30870 ARM_MERGE_FEATURE_SETS (cpu_variant, selected_cpu, selected_fpu);
30871 *input_line_pointer = saved_char;
30872 demand_empty_rest_of_line ();
30873 return;
30874 }
30875
30876 as_bad (_("unknown floating point format `%s'\n"), name);
30877 *input_line_pointer = saved_char;
30878 ignore_rest_of_line ();
30879 }
30880
30881 /* Copy symbol information. */
30882
30883 void
30884 arm_copy_symbol_attributes (symbolS *dest, symbolS *src)
30885 {
30886 ARM_GET_FLAG (dest) = ARM_GET_FLAG (src);
30887 }
30888
30889 #ifdef OBJ_ELF
30890 /* Given a symbolic attribute NAME, return the proper integer value.
30891 Returns -1 if the attribute is not known. */
30892
30893 int
30894 arm_convert_symbolic_attribute (const char *name)
30895 {
30896 static const struct
30897 {
30898 const char * name;
30899 const int tag;
30900 }
30901 attribute_table[] =
30902 {
30903 /* When you modify this table you should
30904 also modify the list in doc/c-arm.texi. */
30905 #define T(tag) {#tag, tag}
30906 T (Tag_CPU_raw_name),
30907 T (Tag_CPU_name),
30908 T (Tag_CPU_arch),
30909 T (Tag_CPU_arch_profile),
30910 T (Tag_ARM_ISA_use),
30911 T (Tag_THUMB_ISA_use),
30912 T (Tag_FP_arch),
30913 T (Tag_VFP_arch),
30914 T (Tag_WMMX_arch),
30915 T (Tag_Advanced_SIMD_arch),
30916 T (Tag_PCS_config),
30917 T (Tag_ABI_PCS_R9_use),
30918 T (Tag_ABI_PCS_RW_data),
30919 T (Tag_ABI_PCS_RO_data),
30920 T (Tag_ABI_PCS_GOT_use),
30921 T (Tag_ABI_PCS_wchar_t),
30922 T (Tag_ABI_FP_rounding),
30923 T (Tag_ABI_FP_denormal),
30924 T (Tag_ABI_FP_exceptions),
30925 T (Tag_ABI_FP_user_exceptions),
30926 T (Tag_ABI_FP_number_model),
30927 T (Tag_ABI_align_needed),
30928 T (Tag_ABI_align8_needed),
30929 T (Tag_ABI_align_preserved),
30930 T (Tag_ABI_align8_preserved),
30931 T (Tag_ABI_enum_size),
30932 T (Tag_ABI_HardFP_use),
30933 T (Tag_ABI_VFP_args),
30934 T (Tag_ABI_WMMX_args),
30935 T (Tag_ABI_optimization_goals),
30936 T (Tag_ABI_FP_optimization_goals),
30937 T (Tag_compatibility),
30938 T (Tag_CPU_unaligned_access),
30939 T (Tag_FP_HP_extension),
30940 T (Tag_VFP_HP_extension),
30941 T (Tag_ABI_FP_16bit_format),
30942 T (Tag_MPextension_use),
30943 T (Tag_DIV_use),
30944 T (Tag_nodefaults),
30945 T (Tag_also_compatible_with),
30946 T (Tag_conformance),
30947 T (Tag_T2EE_use),
30948 T (Tag_Virtualization_use),
30949 T (Tag_DSP_extension),
30950 T (Tag_MVE_arch),
30951 /* We deliberately do not include Tag_MPextension_use_legacy. */
30952 #undef T
30953 };
30954 unsigned int i;
30955
30956 if (name == NULL)
30957 return -1;
30958
30959 for (i = 0; i < ARRAY_SIZE (attribute_table); i++)
30960 if (streq (name, attribute_table[i].name))
30961 return attribute_table[i].tag;
30962
30963 return -1;
30964 }
30965
30966 /* Apply sym value for relocations only in the case that they are for
30967 local symbols in the same segment as the fixup and you have the
30968 respective architectural feature for blx and simple switches. */
30969
30970 int
30971 arm_apply_sym_value (struct fix * fixP, segT this_seg)
30972 {
30973 if (fixP->fx_addsy
30974 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
30975 /* PR 17444: If the local symbol is in a different section then a reloc
30976 will always be generated for it, so applying the symbol value now
30977 will result in a double offset being stored in the relocation. */
30978 && (S_GET_SEGMENT (fixP->fx_addsy) == this_seg)
30979 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE))
30980 {
30981 switch (fixP->fx_r_type)
30982 {
30983 case BFD_RELOC_ARM_PCREL_BLX:
30984 case BFD_RELOC_THUMB_PCREL_BRANCH23:
30985 if (ARM_IS_FUNC (fixP->fx_addsy))
30986 return 1;
30987 break;
30988
30989 case BFD_RELOC_ARM_PCREL_CALL:
30990 case BFD_RELOC_THUMB_PCREL_BLX:
30991 if (THUMB_IS_FUNC (fixP->fx_addsy))
30992 return 1;
30993 break;
30994
30995 default:
30996 break;
30997 }
30998
30999 }
31000 return 0;
31001 }
31002 #endif /* OBJ_ELF */
This page took 0.846883 seconds and 5 git commands to generate.