2010-10-23 Mark Mitchell <mark@codesourcery.com>
[deliverable/binutils-gdb.git] / gas / config / tc-arm.c
1 /* tc-arm.c -- Assemble for the ARM
2 Copyright 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003,
3 2004, 2005, 2006, 2007, 2008, 2009, 2010
4 Free Software Foundation, Inc.
5 Contributed by Richard Earnshaw (rwe@pegasus.esprit.ec.org)
6 Modified by David Taylor (dtaylor@armltd.co.uk)
7 Cirrus coprocessor mods by Aldy Hernandez (aldyh@redhat.com)
8 Cirrus coprocessor fixes by Petko Manolov (petkan@nucleusys.com)
9 Cirrus coprocessor fixes by Vladimir Ivanov (vladitx@nucleusys.com)
10
11 This file is part of GAS, the GNU Assembler.
12
13 GAS is free software; you can redistribute it and/or modify
14 it under the terms of the GNU General Public License as published by
15 the Free Software Foundation; either version 3, or (at your option)
16 any later version.
17
18 GAS is distributed in the hope that it will be useful,
19 but WITHOUT ANY WARRANTY; without even the implied warranty of
20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 GNU General Public License for more details.
22
23 You should have received a copy of the GNU General Public License
24 along with GAS; see the file COPYING. If not, write to the Free
25 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
26 02110-1301, USA. */
27
28 #include "as.h"
29 #include <limits.h>
30 #include <stdarg.h>
31 #define NO_RELOC 0
32 #include "safe-ctype.h"
33 #include "subsegs.h"
34 #include "obstack.h"
35
36 #include "opcode/arm.h"
37
38 #ifdef OBJ_ELF
39 #include "elf/arm.h"
40 #include "dw2gencfi.h"
41 #endif
42
43 #include "dwarf2dbg.h"
44
45 #ifdef OBJ_ELF
46 /* Must be at least the size of the largest unwind opcode (currently two). */
47 #define ARM_OPCODE_CHUNK_SIZE 8
48
49 /* This structure holds the unwinding state. */
50
51 static struct
52 {
53 symbolS * proc_start;
54 symbolS * table_entry;
55 symbolS * personality_routine;
56 int personality_index;
57 /* The segment containing the function. */
58 segT saved_seg;
59 subsegT saved_subseg;
60 /* Opcodes generated from this function. */
61 unsigned char * opcodes;
62 int opcode_count;
63 int opcode_alloc;
64 /* The number of bytes pushed to the stack. */
65 offsetT frame_size;
66 /* We don't add stack adjustment opcodes immediately so that we can merge
67 multiple adjustments. We can also omit the final adjustment
68 when using a frame pointer. */
69 offsetT pending_offset;
70 /* These two fields are set by both unwind_movsp and unwind_setfp. They
71 hold the reg+offset to use when restoring sp from a frame pointer. */
72 offsetT fp_offset;
73 int fp_reg;
74 /* Nonzero if an unwind_setfp directive has been seen. */
75 unsigned fp_used:1;
76 /* Nonzero if the last opcode restores sp from fp_reg. */
77 unsigned sp_restored:1;
78 } unwind;
79
80 #endif /* OBJ_ELF */
81
82 /* Results from operand parsing worker functions. */
83
84 typedef enum
85 {
86 PARSE_OPERAND_SUCCESS,
87 PARSE_OPERAND_FAIL,
88 PARSE_OPERAND_FAIL_NO_BACKTRACK
89 } parse_operand_result;
90
91 enum arm_float_abi
92 {
93 ARM_FLOAT_ABI_HARD,
94 ARM_FLOAT_ABI_SOFTFP,
95 ARM_FLOAT_ABI_SOFT
96 };
97
98 /* Types of processor to assemble for. */
99 #ifndef CPU_DEFAULT
100 /* The code that was here used to select a default CPU depending on compiler
101 pre-defines which were only present when doing native builds, thus
102 changing gas' default behaviour depending upon the build host.
103
104 If you have a target that requires a default CPU option then the you
105 should define CPU_DEFAULT here. */
106 #endif
107
108 #ifndef FPU_DEFAULT
109 # ifdef TE_LINUX
110 # define FPU_DEFAULT FPU_ARCH_FPA
111 # elif defined (TE_NetBSD)
112 # ifdef OBJ_ELF
113 # define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, but VFP order. */
114 # else
115 /* Legacy a.out format. */
116 # define FPU_DEFAULT FPU_ARCH_FPA /* Soft-float, but FPA order. */
117 # endif
118 # elif defined (TE_VXWORKS)
119 # define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, VFP order. */
120 # else
121 /* For backwards compatibility, default to FPA. */
122 # define FPU_DEFAULT FPU_ARCH_FPA
123 # endif
124 #endif /* ifndef FPU_DEFAULT */
125
126 #define streq(a, b) (strcmp (a, b) == 0)
127
128 static arm_feature_set cpu_variant;
129 static arm_feature_set arm_arch_used;
130 static arm_feature_set thumb_arch_used;
131
132 /* Flags stored in private area of BFD structure. */
133 static int uses_apcs_26 = FALSE;
134 static int atpcs = FALSE;
135 static int support_interwork = FALSE;
136 static int uses_apcs_float = FALSE;
137 static int pic_code = FALSE;
138 static int fix_v4bx = FALSE;
139 /* Warn on using deprecated features. */
140 static int warn_on_deprecated = TRUE;
141
142
143 /* Variables that we set while parsing command-line options. Once all
144 options have been read we re-process these values to set the real
145 assembly flags. */
146 static const arm_feature_set *legacy_cpu = NULL;
147 static const arm_feature_set *legacy_fpu = NULL;
148
149 static const arm_feature_set *mcpu_cpu_opt = NULL;
150 static const arm_feature_set *mcpu_fpu_opt = NULL;
151 static const arm_feature_set *march_cpu_opt = NULL;
152 static const arm_feature_set *march_fpu_opt = NULL;
153 static const arm_feature_set *mfpu_opt = NULL;
154 static const arm_feature_set *object_arch = NULL;
155
156 /* Constants for known architecture features. */
157 static const arm_feature_set fpu_default = FPU_DEFAULT;
158 static const arm_feature_set fpu_arch_vfp_v1 = FPU_ARCH_VFP_V1;
159 static const arm_feature_set fpu_arch_vfp_v2 = FPU_ARCH_VFP_V2;
160 static const arm_feature_set fpu_arch_vfp_v3 = FPU_ARCH_VFP_V3;
161 static const arm_feature_set fpu_arch_neon_v1 = FPU_ARCH_NEON_V1;
162 static const arm_feature_set fpu_arch_fpa = FPU_ARCH_FPA;
163 static const arm_feature_set fpu_any_hard = FPU_ANY_HARD;
164 static const arm_feature_set fpu_arch_maverick = FPU_ARCH_MAVERICK;
165 static const arm_feature_set fpu_endian_pure = FPU_ARCH_ENDIAN_PURE;
166
167 #ifdef CPU_DEFAULT
168 static const arm_feature_set cpu_default = CPU_DEFAULT;
169 #endif
170
171 static const arm_feature_set arm_ext_v1 = ARM_FEATURE (ARM_EXT_V1, 0);
172 static const arm_feature_set arm_ext_v2 = ARM_FEATURE (ARM_EXT_V1, 0);
173 static const arm_feature_set arm_ext_v2s = ARM_FEATURE (ARM_EXT_V2S, 0);
174 static const arm_feature_set arm_ext_v3 = ARM_FEATURE (ARM_EXT_V3, 0);
175 static const arm_feature_set arm_ext_v3m = ARM_FEATURE (ARM_EXT_V3M, 0);
176 static const arm_feature_set arm_ext_v4 = ARM_FEATURE (ARM_EXT_V4, 0);
177 static const arm_feature_set arm_ext_v4t = ARM_FEATURE (ARM_EXT_V4T, 0);
178 static const arm_feature_set arm_ext_v5 = ARM_FEATURE (ARM_EXT_V5, 0);
179 static const arm_feature_set arm_ext_v4t_5 =
180 ARM_FEATURE (ARM_EXT_V4T | ARM_EXT_V5, 0);
181 static const arm_feature_set arm_ext_v5t = ARM_FEATURE (ARM_EXT_V5T, 0);
182 static const arm_feature_set arm_ext_v5e = ARM_FEATURE (ARM_EXT_V5E, 0);
183 static const arm_feature_set arm_ext_v5exp = ARM_FEATURE (ARM_EXT_V5ExP, 0);
184 static const arm_feature_set arm_ext_v5j = ARM_FEATURE (ARM_EXT_V5J, 0);
185 static const arm_feature_set arm_ext_v6 = ARM_FEATURE (ARM_EXT_V6, 0);
186 static const arm_feature_set arm_ext_v6k = ARM_FEATURE (ARM_EXT_V6K, 0);
187 static const arm_feature_set arm_ext_v6t2 = ARM_FEATURE (ARM_EXT_V6T2, 0);
188 static const arm_feature_set arm_ext_v6m = ARM_FEATURE (ARM_EXT_V6M, 0);
189 static const arm_feature_set arm_ext_v6_notm = ARM_FEATURE (ARM_EXT_V6_NOTM, 0);
190 static const arm_feature_set arm_ext_v6_dsp = ARM_FEATURE (ARM_EXT_V6_DSP, 0);
191 static const arm_feature_set arm_ext_barrier = ARM_FEATURE (ARM_EXT_BARRIER, 0);
192 static const arm_feature_set arm_ext_msr = ARM_FEATURE (ARM_EXT_THUMB_MSR, 0);
193 static const arm_feature_set arm_ext_div = ARM_FEATURE (ARM_EXT_DIV, 0);
194 static const arm_feature_set arm_ext_v7 = ARM_FEATURE (ARM_EXT_V7, 0);
195 static const arm_feature_set arm_ext_v7a = ARM_FEATURE (ARM_EXT_V7A, 0);
196 static const arm_feature_set arm_ext_v7r = ARM_FEATURE (ARM_EXT_V7R, 0);
197 static const arm_feature_set arm_ext_v7m = ARM_FEATURE (ARM_EXT_V7M, 0);
198 static const arm_feature_set arm_ext_m =
199 ARM_FEATURE (ARM_EXT_V6M | ARM_EXT_OS | ARM_EXT_V7M, 0);
200 static const arm_feature_set arm_ext_mp = ARM_FEATURE (ARM_EXT_MP, 0);
201 static const arm_feature_set arm_ext_sec = ARM_FEATURE (ARM_EXT_SEC, 0);
202 static const arm_feature_set arm_ext_os = ARM_FEATURE (ARM_EXT_OS, 0);
203 static const arm_feature_set arm_ext_adiv = ARM_FEATURE (ARM_EXT_ADIV, 0);
204 static const arm_feature_set arm_ext_virt = ARM_FEATURE (ARM_EXT_VIRT, 0);
205
206 static const arm_feature_set arm_arch_any = ARM_ANY;
207 static const arm_feature_set arm_arch_full = ARM_FEATURE (-1, -1);
208 static const arm_feature_set arm_arch_t2 = ARM_ARCH_THUMB2;
209 static const arm_feature_set arm_arch_none = ARM_ARCH_NONE;
210
211 static const arm_feature_set arm_cext_iwmmxt2 =
212 ARM_FEATURE (0, ARM_CEXT_IWMMXT2);
213 static const arm_feature_set arm_cext_iwmmxt =
214 ARM_FEATURE (0, ARM_CEXT_IWMMXT);
215 static const arm_feature_set arm_cext_xscale =
216 ARM_FEATURE (0, ARM_CEXT_XSCALE);
217 static const arm_feature_set arm_cext_maverick =
218 ARM_FEATURE (0, ARM_CEXT_MAVERICK);
219 static const arm_feature_set fpu_fpa_ext_v1 = ARM_FEATURE (0, FPU_FPA_EXT_V1);
220 static const arm_feature_set fpu_fpa_ext_v2 = ARM_FEATURE (0, FPU_FPA_EXT_V2);
221 static const arm_feature_set fpu_vfp_ext_v1xd =
222 ARM_FEATURE (0, FPU_VFP_EXT_V1xD);
223 static const arm_feature_set fpu_vfp_ext_v1 = ARM_FEATURE (0, FPU_VFP_EXT_V1);
224 static const arm_feature_set fpu_vfp_ext_v2 = ARM_FEATURE (0, FPU_VFP_EXT_V2);
225 static const arm_feature_set fpu_vfp_ext_v3xd = ARM_FEATURE (0, FPU_VFP_EXT_V3xD);
226 static const arm_feature_set fpu_vfp_ext_v3 = ARM_FEATURE (0, FPU_VFP_EXT_V3);
227 static const arm_feature_set fpu_vfp_ext_d32 =
228 ARM_FEATURE (0, FPU_VFP_EXT_D32);
229 static const arm_feature_set fpu_neon_ext_v1 = ARM_FEATURE (0, FPU_NEON_EXT_V1);
230 static const arm_feature_set fpu_vfp_v3_or_neon_ext =
231 ARM_FEATURE (0, FPU_NEON_EXT_V1 | FPU_VFP_EXT_V3);
232 static const arm_feature_set fpu_vfp_fp16 = ARM_FEATURE (0, FPU_VFP_EXT_FP16);
233 static const arm_feature_set fpu_neon_ext_fma = ARM_FEATURE (0, FPU_NEON_EXT_FMA);
234 static const arm_feature_set fpu_vfp_ext_fma = ARM_FEATURE (0, FPU_VFP_EXT_FMA);
235
236 static int mfloat_abi_opt = -1;
237 /* Record user cpu selection for object attributes. */
238 static arm_feature_set selected_cpu = ARM_ARCH_NONE;
239 /* Must be long enough to hold any of the names in arm_cpus. */
240 static char selected_cpu_name[16];
241 #ifdef OBJ_ELF
242 # ifdef EABI_DEFAULT
243 static int meabi_flags = EABI_DEFAULT;
244 # else
245 static int meabi_flags = EF_ARM_EABI_UNKNOWN;
246 # endif
247
248 static int attributes_set_explicitly[NUM_KNOWN_OBJ_ATTRIBUTES];
249
250 bfd_boolean
251 arm_is_eabi (void)
252 {
253 return (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4);
254 }
255 #endif
256
257 #ifdef OBJ_ELF
258 /* Pre-defined "_GLOBAL_OFFSET_TABLE_" */
259 symbolS * GOT_symbol;
260 #endif
261
262 /* 0: assemble for ARM,
263 1: assemble for Thumb,
264 2: assemble for Thumb even though target CPU does not support thumb
265 instructions. */
266 static int thumb_mode = 0;
267 /* A value distinct from the possible values for thumb_mode that we
268 can use to record whether thumb_mode has been copied into the
269 tc_frag_data field of a frag. */
270 #define MODE_RECORDED (1 << 4)
271
272 /* Specifies the intrinsic IT insn behavior mode. */
273 enum implicit_it_mode
274 {
275 IMPLICIT_IT_MODE_NEVER = 0x00,
276 IMPLICIT_IT_MODE_ARM = 0x01,
277 IMPLICIT_IT_MODE_THUMB = 0x02,
278 IMPLICIT_IT_MODE_ALWAYS = (IMPLICIT_IT_MODE_ARM | IMPLICIT_IT_MODE_THUMB)
279 };
280 static int implicit_it_mode = IMPLICIT_IT_MODE_ARM;
281
282 /* If unified_syntax is true, we are processing the new unified
283 ARM/Thumb syntax. Important differences from the old ARM mode:
284
285 - Immediate operands do not require a # prefix.
286 - Conditional affixes always appear at the end of the
287 instruction. (For backward compatibility, those instructions
288 that formerly had them in the middle, continue to accept them
289 there.)
290 - The IT instruction may appear, and if it does is validated
291 against subsequent conditional affixes. It does not generate
292 machine code.
293
294 Important differences from the old Thumb mode:
295
296 - Immediate operands do not require a # prefix.
297 - Most of the V6T2 instructions are only available in unified mode.
298 - The .N and .W suffixes are recognized and honored (it is an error
299 if they cannot be honored).
300 - All instructions set the flags if and only if they have an 's' affix.
301 - Conditional affixes may be used. They are validated against
302 preceding IT instructions. Unlike ARM mode, you cannot use a
303 conditional affix except in the scope of an IT instruction. */
304
305 static bfd_boolean unified_syntax = FALSE;
306
307 enum neon_el_type
308 {
309 NT_invtype,
310 NT_untyped,
311 NT_integer,
312 NT_float,
313 NT_poly,
314 NT_signed,
315 NT_unsigned
316 };
317
318 struct neon_type_el
319 {
320 enum neon_el_type type;
321 unsigned size;
322 };
323
324 #define NEON_MAX_TYPE_ELS 4
325
326 struct neon_type
327 {
328 struct neon_type_el el[NEON_MAX_TYPE_ELS];
329 unsigned elems;
330 };
331
332 enum it_instruction_type
333 {
334 OUTSIDE_IT_INSN,
335 INSIDE_IT_INSN,
336 INSIDE_IT_LAST_INSN,
337 IF_INSIDE_IT_LAST_INSN, /* Either outside or inside;
338 if inside, should be the last one. */
339 NEUTRAL_IT_INSN, /* This could be either inside or outside,
340 i.e. BKPT and NOP. */
341 IT_INSN /* The IT insn has been parsed. */
342 };
343
344 struct arm_it
345 {
346 const char * error;
347 unsigned long instruction;
348 int size;
349 int size_req;
350 int cond;
351 /* "uncond_value" is set to the value in place of the conditional field in
352 unconditional versions of the instruction, or -1 if nothing is
353 appropriate. */
354 int uncond_value;
355 struct neon_type vectype;
356 /* This does not indicate an actual NEON instruction, only that
357 the mnemonic accepts neon-style type suffixes. */
358 int is_neon;
359 /* Set to the opcode if the instruction needs relaxation.
360 Zero if the instruction is not relaxed. */
361 unsigned long relax;
362 struct
363 {
364 bfd_reloc_code_real_type type;
365 expressionS exp;
366 int pc_rel;
367 } reloc;
368
369 enum it_instruction_type it_insn_type;
370
371 struct
372 {
373 unsigned reg;
374 signed int imm;
375 struct neon_type_el vectype;
376 unsigned present : 1; /* Operand present. */
377 unsigned isreg : 1; /* Operand was a register. */
378 unsigned immisreg : 1; /* .imm field is a second register. */
379 unsigned isscalar : 1; /* Operand is a (Neon) scalar. */
380 unsigned immisalign : 1; /* Immediate is an alignment specifier. */
381 unsigned immisfloat : 1; /* Immediate was parsed as a float. */
382 /* Note: we abuse "regisimm" to mean "is Neon register" in VMOV
383 instructions. This allows us to disambiguate ARM <-> vector insns. */
384 unsigned regisimm : 1; /* 64-bit immediate, reg forms high 32 bits. */
385 unsigned isvec : 1; /* Is a single, double or quad VFP/Neon reg. */
386 unsigned isquad : 1; /* Operand is Neon quad-precision register. */
387 unsigned issingle : 1; /* Operand is VFP single-precision register. */
388 unsigned hasreloc : 1; /* Operand has relocation suffix. */
389 unsigned writeback : 1; /* Operand has trailing ! */
390 unsigned preind : 1; /* Preindexed address. */
391 unsigned postind : 1; /* Postindexed address. */
392 unsigned negative : 1; /* Index register was negated. */
393 unsigned shifted : 1; /* Shift applied to operation. */
394 unsigned shift_kind : 3; /* Shift operation (enum shift_kind). */
395 } operands[6];
396 };
397
398 static struct arm_it inst;
399
400 #define NUM_FLOAT_VALS 8
401
402 const char * fp_const[] =
403 {
404 "0.0", "1.0", "2.0", "3.0", "4.0", "5.0", "0.5", "10.0", 0
405 };
406
407 /* Number of littlenums required to hold an extended precision number. */
408 #define MAX_LITTLENUMS 6
409
410 LITTLENUM_TYPE fp_values[NUM_FLOAT_VALS][MAX_LITTLENUMS];
411
412 #define FAIL (-1)
413 #define SUCCESS (0)
414
415 #define SUFF_S 1
416 #define SUFF_D 2
417 #define SUFF_E 3
418 #define SUFF_P 4
419
420 #define CP_T_X 0x00008000
421 #define CP_T_Y 0x00400000
422
423 #define CONDS_BIT 0x00100000
424 #define LOAD_BIT 0x00100000
425
426 #define DOUBLE_LOAD_FLAG 0x00000001
427
428 struct asm_cond
429 {
430 const char * template_name;
431 unsigned long value;
432 };
433
434 #define COND_ALWAYS 0xE
435
436 struct asm_psr
437 {
438 const char * template_name;
439 unsigned long field;
440 };
441
442 struct asm_barrier_opt
443 {
444 const char * template_name;
445 unsigned long value;
446 };
447
448 /* The bit that distinguishes CPSR and SPSR. */
449 #define SPSR_BIT (1 << 22)
450
451 /* The individual PSR flag bits. */
452 #define PSR_c (1 << 16)
453 #define PSR_x (1 << 17)
454 #define PSR_s (1 << 18)
455 #define PSR_f (1 << 19)
456
457 struct reloc_entry
458 {
459 char * name;
460 bfd_reloc_code_real_type reloc;
461 };
462
463 enum vfp_reg_pos
464 {
465 VFP_REG_Sd, VFP_REG_Sm, VFP_REG_Sn,
466 VFP_REG_Dd, VFP_REG_Dm, VFP_REG_Dn
467 };
468
469 enum vfp_ldstm_type
470 {
471 VFP_LDSTMIA, VFP_LDSTMDB, VFP_LDSTMIAX, VFP_LDSTMDBX
472 };
473
474 /* Bits for DEFINED field in neon_typed_alias. */
475 #define NTA_HASTYPE 1
476 #define NTA_HASINDEX 2
477
478 struct neon_typed_alias
479 {
480 unsigned char defined;
481 unsigned char index;
482 struct neon_type_el eltype;
483 };
484
485 /* ARM register categories. This includes coprocessor numbers and various
486 architecture extensions' registers. */
487 enum arm_reg_type
488 {
489 REG_TYPE_RN,
490 REG_TYPE_CP,
491 REG_TYPE_CN,
492 REG_TYPE_FN,
493 REG_TYPE_VFS,
494 REG_TYPE_VFD,
495 REG_TYPE_NQ,
496 REG_TYPE_VFSD,
497 REG_TYPE_NDQ,
498 REG_TYPE_NSDQ,
499 REG_TYPE_VFC,
500 REG_TYPE_MVF,
501 REG_TYPE_MVD,
502 REG_TYPE_MVFX,
503 REG_TYPE_MVDX,
504 REG_TYPE_MVAX,
505 REG_TYPE_DSPSC,
506 REG_TYPE_MMXWR,
507 REG_TYPE_MMXWC,
508 REG_TYPE_MMXWCG,
509 REG_TYPE_XSCALE,
510 REG_TYPE_RNB
511 };
512
513 /* Structure for a hash table entry for a register.
514 If TYPE is REG_TYPE_VFD or REG_TYPE_NQ, the NEON field can point to extra
515 information which states whether a vector type or index is specified (for a
516 register alias created with .dn or .qn). Otherwise NEON should be NULL. */
517 struct reg_entry
518 {
519 const char * name;
520 unsigned int number;
521 unsigned char type;
522 unsigned char builtin;
523 struct neon_typed_alias * neon;
524 };
525
526 /* Diagnostics used when we don't get a register of the expected type. */
527 const char * const reg_expected_msgs[] =
528 {
529 N_("ARM register expected"),
530 N_("bad or missing co-processor number"),
531 N_("co-processor register expected"),
532 N_("FPA register expected"),
533 N_("VFP single precision register expected"),
534 N_("VFP/Neon double precision register expected"),
535 N_("Neon quad precision register expected"),
536 N_("VFP single or double precision register expected"),
537 N_("Neon double or quad precision register expected"),
538 N_("VFP single, double or Neon quad precision register expected"),
539 N_("VFP system register expected"),
540 N_("Maverick MVF register expected"),
541 N_("Maverick MVD register expected"),
542 N_("Maverick MVFX register expected"),
543 N_("Maverick MVDX register expected"),
544 N_("Maverick MVAX register expected"),
545 N_("Maverick DSPSC register expected"),
546 N_("iWMMXt data register expected"),
547 N_("iWMMXt control register expected"),
548 N_("iWMMXt scalar register expected"),
549 N_("XScale accumulator register expected"),
550 };
551
552 /* Some well known registers that we refer to directly elsewhere. */
553 #define REG_SP 13
554 #define REG_LR 14
555 #define REG_PC 15
556
557 /* ARM instructions take 4bytes in the object file, Thumb instructions
558 take 2: */
559 #define INSN_SIZE 4
560
561 struct asm_opcode
562 {
563 /* Basic string to match. */
564 const char * template_name;
565
566 /* Parameters to instruction. */
567 unsigned int operands[8];
568
569 /* Conditional tag - see opcode_lookup. */
570 unsigned int tag : 4;
571
572 /* Basic instruction code. */
573 unsigned int avalue : 28;
574
575 /* Thumb-format instruction code. */
576 unsigned int tvalue;
577
578 /* Which architecture variant provides this instruction. */
579 const arm_feature_set * avariant;
580 const arm_feature_set * tvariant;
581
582 /* Function to call to encode instruction in ARM format. */
583 void (* aencode) (void);
584
585 /* Function to call to encode instruction in Thumb format. */
586 void (* tencode) (void);
587 };
588
589 /* Defines for various bits that we will want to toggle. */
590 #define INST_IMMEDIATE 0x02000000
591 #define OFFSET_REG 0x02000000
592 #define HWOFFSET_IMM 0x00400000
593 #define SHIFT_BY_REG 0x00000010
594 #define PRE_INDEX 0x01000000
595 #define INDEX_UP 0x00800000
596 #define WRITE_BACK 0x00200000
597 #define LDM_TYPE_2_OR_3 0x00400000
598 #define CPSI_MMOD 0x00020000
599
600 #define LITERAL_MASK 0xf000f000
601 #define OPCODE_MASK 0xfe1fffff
602 #define V4_STR_BIT 0x00000020
603
604 #define T2_SUBS_PC_LR 0xf3de8f00
605
606 #define DATA_OP_SHIFT 21
607
608 #define T2_OPCODE_MASK 0xfe1fffff
609 #define T2_DATA_OP_SHIFT 21
610
611 /* Codes to distinguish the arithmetic instructions. */
612 #define OPCODE_AND 0
613 #define OPCODE_EOR 1
614 #define OPCODE_SUB 2
615 #define OPCODE_RSB 3
616 #define OPCODE_ADD 4
617 #define OPCODE_ADC 5
618 #define OPCODE_SBC 6
619 #define OPCODE_RSC 7
620 #define OPCODE_TST 8
621 #define OPCODE_TEQ 9
622 #define OPCODE_CMP 10
623 #define OPCODE_CMN 11
624 #define OPCODE_ORR 12
625 #define OPCODE_MOV 13
626 #define OPCODE_BIC 14
627 #define OPCODE_MVN 15
628
629 #define T2_OPCODE_AND 0
630 #define T2_OPCODE_BIC 1
631 #define T2_OPCODE_ORR 2
632 #define T2_OPCODE_ORN 3
633 #define T2_OPCODE_EOR 4
634 #define T2_OPCODE_ADD 8
635 #define T2_OPCODE_ADC 10
636 #define T2_OPCODE_SBC 11
637 #define T2_OPCODE_SUB 13
638 #define T2_OPCODE_RSB 14
639
640 #define T_OPCODE_MUL 0x4340
641 #define T_OPCODE_TST 0x4200
642 #define T_OPCODE_CMN 0x42c0
643 #define T_OPCODE_NEG 0x4240
644 #define T_OPCODE_MVN 0x43c0
645
646 #define T_OPCODE_ADD_R3 0x1800
647 #define T_OPCODE_SUB_R3 0x1a00
648 #define T_OPCODE_ADD_HI 0x4400
649 #define T_OPCODE_ADD_ST 0xb000
650 #define T_OPCODE_SUB_ST 0xb080
651 #define T_OPCODE_ADD_SP 0xa800
652 #define T_OPCODE_ADD_PC 0xa000
653 #define T_OPCODE_ADD_I8 0x3000
654 #define T_OPCODE_SUB_I8 0x3800
655 #define T_OPCODE_ADD_I3 0x1c00
656 #define T_OPCODE_SUB_I3 0x1e00
657
658 #define T_OPCODE_ASR_R 0x4100
659 #define T_OPCODE_LSL_R 0x4080
660 #define T_OPCODE_LSR_R 0x40c0
661 #define T_OPCODE_ROR_R 0x41c0
662 #define T_OPCODE_ASR_I 0x1000
663 #define T_OPCODE_LSL_I 0x0000
664 #define T_OPCODE_LSR_I 0x0800
665
666 #define T_OPCODE_MOV_I8 0x2000
667 #define T_OPCODE_CMP_I8 0x2800
668 #define T_OPCODE_CMP_LR 0x4280
669 #define T_OPCODE_MOV_HR 0x4600
670 #define T_OPCODE_CMP_HR 0x4500
671
672 #define T_OPCODE_LDR_PC 0x4800
673 #define T_OPCODE_LDR_SP 0x9800
674 #define T_OPCODE_STR_SP 0x9000
675 #define T_OPCODE_LDR_IW 0x6800
676 #define T_OPCODE_STR_IW 0x6000
677 #define T_OPCODE_LDR_IH 0x8800
678 #define T_OPCODE_STR_IH 0x8000
679 #define T_OPCODE_LDR_IB 0x7800
680 #define T_OPCODE_STR_IB 0x7000
681 #define T_OPCODE_LDR_RW 0x5800
682 #define T_OPCODE_STR_RW 0x5000
683 #define T_OPCODE_LDR_RH 0x5a00
684 #define T_OPCODE_STR_RH 0x5200
685 #define T_OPCODE_LDR_RB 0x5c00
686 #define T_OPCODE_STR_RB 0x5400
687
688 #define T_OPCODE_PUSH 0xb400
689 #define T_OPCODE_POP 0xbc00
690
691 #define T_OPCODE_BRANCH 0xe000
692
693 #define THUMB_SIZE 2 /* Size of thumb instruction. */
694 #define THUMB_PP_PC_LR 0x0100
695 #define THUMB_LOAD_BIT 0x0800
696 #define THUMB2_LOAD_BIT 0x00100000
697
698 #define BAD_ARGS _("bad arguments to instruction")
699 #define BAD_SP _("r13 not allowed here")
700 #define BAD_PC _("r15 not allowed here")
701 #define BAD_COND _("instruction cannot be conditional")
702 #define BAD_OVERLAP _("registers may not be the same")
703 #define BAD_HIREG _("lo register required")
704 #define BAD_THUMB32 _("instruction not supported in Thumb16 mode")
705 #define BAD_ADDR_MODE _("instruction does not accept this addressing mode");
706 #define BAD_BRANCH _("branch must be last instruction in IT block")
707 #define BAD_NOT_IT _("instruction not allowed in IT block")
708 #define BAD_FPU _("selected FPU does not support instruction")
709 #define BAD_OUT_IT _("thumb conditional instruction should be in IT block")
710 #define BAD_IT_COND _("incorrect condition in IT block")
711 #define BAD_IT_IT _("IT falling in the range of a previous IT block")
712 #define MISSING_FNSTART _("missing .fnstart before unwinding directive")
713 #define BAD_PC_ADDRESSING \
714 _("cannot use register index with PC-relative addressing")
715 #define BAD_PC_WRITEBACK \
716 _("cannot use writeback with PC-relative addressing")
717
718 static struct hash_control * arm_ops_hsh;
719 static struct hash_control * arm_cond_hsh;
720 static struct hash_control * arm_shift_hsh;
721 static struct hash_control * arm_psr_hsh;
722 static struct hash_control * arm_v7m_psr_hsh;
723 static struct hash_control * arm_reg_hsh;
724 static struct hash_control * arm_reloc_hsh;
725 static struct hash_control * arm_barrier_opt_hsh;
726
727 /* Stuff needed to resolve the label ambiguity
728 As:
729 ...
730 label: <insn>
731 may differ from:
732 ...
733 label:
734 <insn> */
735
736 symbolS * last_label_seen;
737 static int label_is_thumb_function_name = FALSE;
738
739 /* Literal pool structure. Held on a per-section
740 and per-sub-section basis. */
741
742 #define MAX_LITERAL_POOL_SIZE 1024
743 typedef struct literal_pool
744 {
745 expressionS literals [MAX_LITERAL_POOL_SIZE];
746 unsigned int next_free_entry;
747 unsigned int id;
748 symbolS * symbol;
749 segT section;
750 subsegT sub_section;
751 struct literal_pool * next;
752 } literal_pool;
753
754 /* Pointer to a linked list of literal pools. */
755 literal_pool * list_of_pools = NULL;
756
757 #ifdef OBJ_ELF
758 # define now_it seg_info (now_seg)->tc_segment_info_data.current_it
759 #else
760 static struct current_it now_it;
761 #endif
762
763 static inline int
764 now_it_compatible (int cond)
765 {
766 return (cond & ~1) == (now_it.cc & ~1);
767 }
768
769 static inline int
770 conditional_insn (void)
771 {
772 return inst.cond != COND_ALWAYS;
773 }
774
775 static int in_it_block (void);
776
777 static int handle_it_state (void);
778
779 static void force_automatic_it_block_close (void);
780
781 static void it_fsm_post_encode (void);
782
783 #define set_it_insn_type(type) \
784 do \
785 { \
786 inst.it_insn_type = type; \
787 if (handle_it_state () == FAIL) \
788 return; \
789 } \
790 while (0)
791
792 #define set_it_insn_type_nonvoid(type, failret) \
793 do \
794 { \
795 inst.it_insn_type = type; \
796 if (handle_it_state () == FAIL) \
797 return failret; \
798 } \
799 while(0)
800
801 #define set_it_insn_type_last() \
802 do \
803 { \
804 if (inst.cond == COND_ALWAYS) \
805 set_it_insn_type (IF_INSIDE_IT_LAST_INSN); \
806 else \
807 set_it_insn_type (INSIDE_IT_LAST_INSN); \
808 } \
809 while (0)
810
811 /* Pure syntax. */
812
813 /* This array holds the chars that always start a comment. If the
814 pre-processor is disabled, these aren't very useful. */
815 const char comment_chars[] = "@";
816
817 /* This array holds the chars that only start a comment at the beginning of
818 a line. If the line seems to have the form '# 123 filename'
819 .line and .file directives will appear in the pre-processed output. */
820 /* Note that input_file.c hand checks for '#' at the beginning of the
821 first line of the input file. This is because the compiler outputs
822 #NO_APP at the beginning of its output. */
823 /* Also note that comments like this one will always work. */
824 const char line_comment_chars[] = "#";
825
826 const char line_separator_chars[] = ";";
827
828 /* Chars that can be used to separate mant
829 from exp in floating point numbers. */
830 const char EXP_CHARS[] = "eE";
831
832 /* Chars that mean this number is a floating point constant. */
833 /* As in 0f12.456 */
834 /* or 0d1.2345e12 */
835
836 const char FLT_CHARS[] = "rRsSfFdDxXeEpP";
837
838 /* Prefix characters that indicate the start of an immediate
839 value. */
840 #define is_immediate_prefix(C) ((C) == '#' || (C) == '$')
841
842 /* Separator character handling. */
843
844 #define skip_whitespace(str) do { if (*(str) == ' ') ++(str); } while (0)
845
846 static inline int
847 skip_past_char (char ** str, char c)
848 {
849 if (**str == c)
850 {
851 (*str)++;
852 return SUCCESS;
853 }
854 else
855 return FAIL;
856 }
857
858 #define skip_past_comma(str) skip_past_char (str, ',')
859
860 /* Arithmetic expressions (possibly involving symbols). */
861
862 /* Return TRUE if anything in the expression is a bignum. */
863
864 static int
865 walk_no_bignums (symbolS * sp)
866 {
867 if (symbol_get_value_expression (sp)->X_op == O_big)
868 return 1;
869
870 if (symbol_get_value_expression (sp)->X_add_symbol)
871 {
872 return (walk_no_bignums (symbol_get_value_expression (sp)->X_add_symbol)
873 || (symbol_get_value_expression (sp)->X_op_symbol
874 && walk_no_bignums (symbol_get_value_expression (sp)->X_op_symbol)));
875 }
876
877 return 0;
878 }
879
880 static int in_my_get_expression = 0;
881
882 /* Third argument to my_get_expression. */
883 #define GE_NO_PREFIX 0
884 #define GE_IMM_PREFIX 1
885 #define GE_OPT_PREFIX 2
886 /* This is a bit of a hack. Use an optional prefix, and also allow big (64-bit)
887 immediates, as can be used in Neon VMVN and VMOV immediate instructions. */
888 #define GE_OPT_PREFIX_BIG 3
889
890 static int
891 my_get_expression (expressionS * ep, char ** str, int prefix_mode)
892 {
893 char * save_in;
894 segT seg;
895
896 /* In unified syntax, all prefixes are optional. */
897 if (unified_syntax)
898 prefix_mode = (prefix_mode == GE_OPT_PREFIX_BIG) ? prefix_mode
899 : GE_OPT_PREFIX;
900
901 switch (prefix_mode)
902 {
903 case GE_NO_PREFIX: break;
904 case GE_IMM_PREFIX:
905 if (!is_immediate_prefix (**str))
906 {
907 inst.error = _("immediate expression requires a # prefix");
908 return FAIL;
909 }
910 (*str)++;
911 break;
912 case GE_OPT_PREFIX:
913 case GE_OPT_PREFIX_BIG:
914 if (is_immediate_prefix (**str))
915 (*str)++;
916 break;
917 default: abort ();
918 }
919
920 memset (ep, 0, sizeof (expressionS));
921
922 save_in = input_line_pointer;
923 input_line_pointer = *str;
924 in_my_get_expression = 1;
925 seg = expression (ep);
926 in_my_get_expression = 0;
927
928 if (ep->X_op == O_illegal || ep->X_op == O_absent)
929 {
930 /* We found a bad or missing expression in md_operand(). */
931 *str = input_line_pointer;
932 input_line_pointer = save_in;
933 if (inst.error == NULL)
934 inst.error = (ep->X_op == O_absent
935 ? _("missing expression") :_("bad expression"));
936 return 1;
937 }
938
939 #ifdef OBJ_AOUT
940 if (seg != absolute_section
941 && seg != text_section
942 && seg != data_section
943 && seg != bss_section
944 && seg != undefined_section)
945 {
946 inst.error = _("bad segment");
947 *str = input_line_pointer;
948 input_line_pointer = save_in;
949 return 1;
950 }
951 #else
952 (void) seg;
953 #endif
954
955 /* Get rid of any bignums now, so that we don't generate an error for which
956 we can't establish a line number later on. Big numbers are never valid
957 in instructions, which is where this routine is always called. */
958 if (prefix_mode != GE_OPT_PREFIX_BIG
959 && (ep->X_op == O_big
960 || (ep->X_add_symbol
961 && (walk_no_bignums (ep->X_add_symbol)
962 || (ep->X_op_symbol
963 && walk_no_bignums (ep->X_op_symbol))))))
964 {
965 inst.error = _("invalid constant");
966 *str = input_line_pointer;
967 input_line_pointer = save_in;
968 return 1;
969 }
970
971 *str = input_line_pointer;
972 input_line_pointer = save_in;
973 return 0;
974 }
975
976 /* Turn a string in input_line_pointer into a floating point constant
977 of type TYPE, and store the appropriate bytes in *LITP. The number
978 of LITTLENUMS emitted is stored in *SIZEP. An error message is
979 returned, or NULL on OK.
980
981 Note that fp constants aren't represent in the normal way on the ARM.
982 In big endian mode, things are as expected. However, in little endian
983 mode fp constants are big-endian word-wise, and little-endian byte-wise
984 within the words. For example, (double) 1.1 in big endian mode is
985 the byte sequence 3f f1 99 99 99 99 99 9a, and in little endian mode is
986 the byte sequence 99 99 f1 3f 9a 99 99 99.
987
988 ??? The format of 12 byte floats is uncertain according to gcc's arm.h. */
989
990 char *
991 md_atof (int type, char * litP, int * sizeP)
992 {
993 int prec;
994 LITTLENUM_TYPE words[MAX_LITTLENUMS];
995 char *t;
996 int i;
997
998 switch (type)
999 {
1000 case 'f':
1001 case 'F':
1002 case 's':
1003 case 'S':
1004 prec = 2;
1005 break;
1006
1007 case 'd':
1008 case 'D':
1009 case 'r':
1010 case 'R':
1011 prec = 4;
1012 break;
1013
1014 case 'x':
1015 case 'X':
1016 prec = 5;
1017 break;
1018
1019 case 'p':
1020 case 'P':
1021 prec = 5;
1022 break;
1023
1024 default:
1025 *sizeP = 0;
1026 return _("Unrecognized or unsupported floating point constant");
1027 }
1028
1029 t = atof_ieee (input_line_pointer, type, words);
1030 if (t)
1031 input_line_pointer = t;
1032 *sizeP = prec * sizeof (LITTLENUM_TYPE);
1033
1034 if (target_big_endian)
1035 {
1036 for (i = 0; i < prec; i++)
1037 {
1038 md_number_to_chars (litP, (valueT) words[i], sizeof (LITTLENUM_TYPE));
1039 litP += sizeof (LITTLENUM_TYPE);
1040 }
1041 }
1042 else
1043 {
1044 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_endian_pure))
1045 for (i = prec - 1; i >= 0; i--)
1046 {
1047 md_number_to_chars (litP, (valueT) words[i], sizeof (LITTLENUM_TYPE));
1048 litP += sizeof (LITTLENUM_TYPE);
1049 }
1050 else
1051 /* For a 4 byte float the order of elements in `words' is 1 0.
1052 For an 8 byte float the order is 1 0 3 2. */
1053 for (i = 0; i < prec; i += 2)
1054 {
1055 md_number_to_chars (litP, (valueT) words[i + 1],
1056 sizeof (LITTLENUM_TYPE));
1057 md_number_to_chars (litP + sizeof (LITTLENUM_TYPE),
1058 (valueT) words[i], sizeof (LITTLENUM_TYPE));
1059 litP += 2 * sizeof (LITTLENUM_TYPE);
1060 }
1061 }
1062
1063 return NULL;
1064 }
1065
1066 /* We handle all bad expressions here, so that we can report the faulty
1067 instruction in the error message. */
1068 void
1069 md_operand (expressionS * exp)
1070 {
1071 if (in_my_get_expression)
1072 exp->X_op = O_illegal;
1073 }
1074
1075 /* Immediate values. */
1076
1077 /* Generic immediate-value read function for use in directives.
1078 Accepts anything that 'expression' can fold to a constant.
1079 *val receives the number. */
1080 #ifdef OBJ_ELF
1081 static int
1082 immediate_for_directive (int *val)
1083 {
1084 expressionS exp;
1085 exp.X_op = O_illegal;
1086
1087 if (is_immediate_prefix (*input_line_pointer))
1088 {
1089 input_line_pointer++;
1090 expression (&exp);
1091 }
1092
1093 if (exp.X_op != O_constant)
1094 {
1095 as_bad (_("expected #constant"));
1096 ignore_rest_of_line ();
1097 return FAIL;
1098 }
1099 *val = exp.X_add_number;
1100 return SUCCESS;
1101 }
1102 #endif
1103
1104 /* Register parsing. */
1105
1106 /* Generic register parser. CCP points to what should be the
1107 beginning of a register name. If it is indeed a valid register
1108 name, advance CCP over it and return the reg_entry structure;
1109 otherwise return NULL. Does not issue diagnostics. */
1110
1111 static struct reg_entry *
1112 arm_reg_parse_multi (char **ccp)
1113 {
1114 char *start = *ccp;
1115 char *p;
1116 struct reg_entry *reg;
1117
1118 #ifdef REGISTER_PREFIX
1119 if (*start != REGISTER_PREFIX)
1120 return NULL;
1121 start++;
1122 #endif
1123 #ifdef OPTIONAL_REGISTER_PREFIX
1124 if (*start == OPTIONAL_REGISTER_PREFIX)
1125 start++;
1126 #endif
1127
1128 p = start;
1129 if (!ISALPHA (*p) || !is_name_beginner (*p))
1130 return NULL;
1131
1132 do
1133 p++;
1134 while (ISALPHA (*p) || ISDIGIT (*p) || *p == '_');
1135
1136 reg = (struct reg_entry *) hash_find_n (arm_reg_hsh, start, p - start);
1137
1138 if (!reg)
1139 return NULL;
1140
1141 *ccp = p;
1142 return reg;
1143 }
1144
1145 static int
1146 arm_reg_alt_syntax (char **ccp, char *start, struct reg_entry *reg,
1147 enum arm_reg_type type)
1148 {
1149 /* Alternative syntaxes are accepted for a few register classes. */
1150 switch (type)
1151 {
1152 case REG_TYPE_MVF:
1153 case REG_TYPE_MVD:
1154 case REG_TYPE_MVFX:
1155 case REG_TYPE_MVDX:
1156 /* Generic coprocessor register names are allowed for these. */
1157 if (reg && reg->type == REG_TYPE_CN)
1158 return reg->number;
1159 break;
1160
1161 case REG_TYPE_CP:
1162 /* For backward compatibility, a bare number is valid here. */
1163 {
1164 unsigned long processor = strtoul (start, ccp, 10);
1165 if (*ccp != start && processor <= 15)
1166 return processor;
1167 }
1168
1169 case REG_TYPE_MMXWC:
1170 /* WC includes WCG. ??? I'm not sure this is true for all
1171 instructions that take WC registers. */
1172 if (reg && reg->type == REG_TYPE_MMXWCG)
1173 return reg->number;
1174 break;
1175
1176 default:
1177 break;
1178 }
1179
1180 return FAIL;
1181 }
1182
1183 /* As arm_reg_parse_multi, but the register must be of type TYPE, and the
1184 return value is the register number or FAIL. */
1185
1186 static int
1187 arm_reg_parse (char **ccp, enum arm_reg_type type)
1188 {
1189 char *start = *ccp;
1190 struct reg_entry *reg = arm_reg_parse_multi (ccp);
1191 int ret;
1192
1193 /* Do not allow a scalar (reg+index) to parse as a register. */
1194 if (reg && reg->neon && (reg->neon->defined & NTA_HASINDEX))
1195 return FAIL;
1196
1197 if (reg && reg->type == type)
1198 return reg->number;
1199
1200 if ((ret = arm_reg_alt_syntax (ccp, start, reg, type)) != FAIL)
1201 return ret;
1202
1203 *ccp = start;
1204 return FAIL;
1205 }
1206
1207 /* Parse a Neon type specifier. *STR should point at the leading '.'
1208 character. Does no verification at this stage that the type fits the opcode
1209 properly. E.g.,
1210
1211 .i32.i32.s16
1212 .s32.f32
1213 .u16
1214
1215 Can all be legally parsed by this function.
1216
1217 Fills in neon_type struct pointer with parsed information, and updates STR
1218 to point after the parsed type specifier. Returns SUCCESS if this was a legal
1219 type, FAIL if not. */
1220
1221 static int
1222 parse_neon_type (struct neon_type *type, char **str)
1223 {
1224 char *ptr = *str;
1225
1226 if (type)
1227 type->elems = 0;
1228
1229 while (type->elems < NEON_MAX_TYPE_ELS)
1230 {
1231 enum neon_el_type thistype = NT_untyped;
1232 unsigned thissize = -1u;
1233
1234 if (*ptr != '.')
1235 break;
1236
1237 ptr++;
1238
1239 /* Just a size without an explicit type. */
1240 if (ISDIGIT (*ptr))
1241 goto parsesize;
1242
1243 switch (TOLOWER (*ptr))
1244 {
1245 case 'i': thistype = NT_integer; break;
1246 case 'f': thistype = NT_float; break;
1247 case 'p': thistype = NT_poly; break;
1248 case 's': thistype = NT_signed; break;
1249 case 'u': thistype = NT_unsigned; break;
1250 case 'd':
1251 thistype = NT_float;
1252 thissize = 64;
1253 ptr++;
1254 goto done;
1255 default:
1256 as_bad (_("unexpected character `%c' in type specifier"), *ptr);
1257 return FAIL;
1258 }
1259
1260 ptr++;
1261
1262 /* .f is an abbreviation for .f32. */
1263 if (thistype == NT_float && !ISDIGIT (*ptr))
1264 thissize = 32;
1265 else
1266 {
1267 parsesize:
1268 thissize = strtoul (ptr, &ptr, 10);
1269
1270 if (thissize != 8 && thissize != 16 && thissize != 32
1271 && thissize != 64)
1272 {
1273 as_bad (_("bad size %d in type specifier"), thissize);
1274 return FAIL;
1275 }
1276 }
1277
1278 done:
1279 if (type)
1280 {
1281 type->el[type->elems].type = thistype;
1282 type->el[type->elems].size = thissize;
1283 type->elems++;
1284 }
1285 }
1286
1287 /* Empty/missing type is not a successful parse. */
1288 if (type->elems == 0)
1289 return FAIL;
1290
1291 *str = ptr;
1292
1293 return SUCCESS;
1294 }
1295
1296 /* Errors may be set multiple times during parsing or bit encoding
1297 (particularly in the Neon bits), but usually the earliest error which is set
1298 will be the most meaningful. Avoid overwriting it with later (cascading)
1299 errors by calling this function. */
1300
1301 static void
1302 first_error (const char *err)
1303 {
1304 if (!inst.error)
1305 inst.error = err;
1306 }
1307
1308 /* Parse a single type, e.g. ".s32", leading period included. */
1309 static int
1310 parse_neon_operand_type (struct neon_type_el *vectype, char **ccp)
1311 {
1312 char *str = *ccp;
1313 struct neon_type optype;
1314
1315 if (*str == '.')
1316 {
1317 if (parse_neon_type (&optype, &str) == SUCCESS)
1318 {
1319 if (optype.elems == 1)
1320 *vectype = optype.el[0];
1321 else
1322 {
1323 first_error (_("only one type should be specified for operand"));
1324 return FAIL;
1325 }
1326 }
1327 else
1328 {
1329 first_error (_("vector type expected"));
1330 return FAIL;
1331 }
1332 }
1333 else
1334 return FAIL;
1335
1336 *ccp = str;
1337
1338 return SUCCESS;
1339 }
1340
1341 /* Special meanings for indices (which have a range of 0-7), which will fit into
1342 a 4-bit integer. */
1343
1344 #define NEON_ALL_LANES 15
1345 #define NEON_INTERLEAVE_LANES 14
1346
1347 /* Parse either a register or a scalar, with an optional type. Return the
1348 register number, and optionally fill in the actual type of the register
1349 when multiple alternatives were given (NEON_TYPE_NDQ) in *RTYPE, and
1350 type/index information in *TYPEINFO. */
1351
1352 static int
1353 parse_typed_reg_or_scalar (char **ccp, enum arm_reg_type type,
1354 enum arm_reg_type *rtype,
1355 struct neon_typed_alias *typeinfo)
1356 {
1357 char *str = *ccp;
1358 struct reg_entry *reg = arm_reg_parse_multi (&str);
1359 struct neon_typed_alias atype;
1360 struct neon_type_el parsetype;
1361
1362 atype.defined = 0;
1363 atype.index = -1;
1364 atype.eltype.type = NT_invtype;
1365 atype.eltype.size = -1;
1366
1367 /* Try alternate syntax for some types of register. Note these are mutually
1368 exclusive with the Neon syntax extensions. */
1369 if (reg == NULL)
1370 {
1371 int altreg = arm_reg_alt_syntax (&str, *ccp, reg, type);
1372 if (altreg != FAIL)
1373 *ccp = str;
1374 if (typeinfo)
1375 *typeinfo = atype;
1376 return altreg;
1377 }
1378
1379 /* Undo polymorphism when a set of register types may be accepted. */
1380 if ((type == REG_TYPE_NDQ
1381 && (reg->type == REG_TYPE_NQ || reg->type == REG_TYPE_VFD))
1382 || (type == REG_TYPE_VFSD
1383 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD))
1384 || (type == REG_TYPE_NSDQ
1385 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD
1386 || reg->type == REG_TYPE_NQ))
1387 || (type == REG_TYPE_MMXWC
1388 && (reg->type == REG_TYPE_MMXWCG)))
1389 type = (enum arm_reg_type) reg->type;
1390
1391 if (type != reg->type)
1392 return FAIL;
1393
1394 if (reg->neon)
1395 atype = *reg->neon;
1396
1397 if (parse_neon_operand_type (&parsetype, &str) == SUCCESS)
1398 {
1399 if ((atype.defined & NTA_HASTYPE) != 0)
1400 {
1401 first_error (_("can't redefine type for operand"));
1402 return FAIL;
1403 }
1404 atype.defined |= NTA_HASTYPE;
1405 atype.eltype = parsetype;
1406 }
1407
1408 if (skip_past_char (&str, '[') == SUCCESS)
1409 {
1410 if (type != REG_TYPE_VFD)
1411 {
1412 first_error (_("only D registers may be indexed"));
1413 return FAIL;
1414 }
1415
1416 if ((atype.defined & NTA_HASINDEX) != 0)
1417 {
1418 first_error (_("can't change index for operand"));
1419 return FAIL;
1420 }
1421
1422 atype.defined |= NTA_HASINDEX;
1423
1424 if (skip_past_char (&str, ']') == SUCCESS)
1425 atype.index = NEON_ALL_LANES;
1426 else
1427 {
1428 expressionS exp;
1429
1430 my_get_expression (&exp, &str, GE_NO_PREFIX);
1431
1432 if (exp.X_op != O_constant)
1433 {
1434 first_error (_("constant expression required"));
1435 return FAIL;
1436 }
1437
1438 if (skip_past_char (&str, ']') == FAIL)
1439 return FAIL;
1440
1441 atype.index = exp.X_add_number;
1442 }
1443 }
1444
1445 if (typeinfo)
1446 *typeinfo = atype;
1447
1448 if (rtype)
1449 *rtype = type;
1450
1451 *ccp = str;
1452
1453 return reg->number;
1454 }
1455
1456 /* Like arm_reg_parse, but allow allow the following extra features:
1457 - If RTYPE is non-zero, return the (possibly restricted) type of the
1458 register (e.g. Neon double or quad reg when either has been requested).
1459 - If this is a Neon vector type with additional type information, fill
1460 in the struct pointed to by VECTYPE (if non-NULL).
1461 This function will fault on encountering a scalar. */
1462
1463 static int
1464 arm_typed_reg_parse (char **ccp, enum arm_reg_type type,
1465 enum arm_reg_type *rtype, struct neon_type_el *vectype)
1466 {
1467 struct neon_typed_alias atype;
1468 char *str = *ccp;
1469 int reg = parse_typed_reg_or_scalar (&str, type, rtype, &atype);
1470
1471 if (reg == FAIL)
1472 return FAIL;
1473
1474 /* Do not allow a scalar (reg+index) to parse as a register. */
1475 if ((atype.defined & NTA_HASINDEX) != 0)
1476 {
1477 first_error (_("register operand expected, but got scalar"));
1478 return FAIL;
1479 }
1480
1481 if (vectype)
1482 *vectype = atype.eltype;
1483
1484 *ccp = str;
1485
1486 return reg;
1487 }
1488
1489 #define NEON_SCALAR_REG(X) ((X) >> 4)
1490 #define NEON_SCALAR_INDEX(X) ((X) & 15)
1491
1492 /* Parse a Neon scalar. Most of the time when we're parsing a scalar, we don't
1493 have enough information to be able to do a good job bounds-checking. So, we
1494 just do easy checks here, and do further checks later. */
1495
1496 static int
1497 parse_scalar (char **ccp, int elsize, struct neon_type_el *type)
1498 {
1499 int reg;
1500 char *str = *ccp;
1501 struct neon_typed_alias atype;
1502
1503 reg = parse_typed_reg_or_scalar (&str, REG_TYPE_VFD, NULL, &atype);
1504
1505 if (reg == FAIL || (atype.defined & NTA_HASINDEX) == 0)
1506 return FAIL;
1507
1508 if (atype.index == NEON_ALL_LANES)
1509 {
1510 first_error (_("scalar must have an index"));
1511 return FAIL;
1512 }
1513 else if (atype.index >= 64 / elsize)
1514 {
1515 first_error (_("scalar index out of range"));
1516 return FAIL;
1517 }
1518
1519 if (type)
1520 *type = atype.eltype;
1521
1522 *ccp = str;
1523
1524 return reg * 16 + atype.index;
1525 }
1526
1527 /* Parse an ARM register list. Returns the bitmask, or FAIL. */
1528
1529 static long
1530 parse_reg_list (char ** strp)
1531 {
1532 char * str = * strp;
1533 long range = 0;
1534 int another_range;
1535
1536 /* We come back here if we get ranges concatenated by '+' or '|'. */
1537 do
1538 {
1539 another_range = 0;
1540
1541 if (*str == '{')
1542 {
1543 int in_range = 0;
1544 int cur_reg = -1;
1545
1546 str++;
1547 do
1548 {
1549 int reg;
1550
1551 if ((reg = arm_reg_parse (&str, REG_TYPE_RN)) == FAIL)
1552 {
1553 first_error (_(reg_expected_msgs[REG_TYPE_RN]));
1554 return FAIL;
1555 }
1556
1557 if (in_range)
1558 {
1559 int i;
1560
1561 if (reg <= cur_reg)
1562 {
1563 first_error (_("bad range in register list"));
1564 return FAIL;
1565 }
1566
1567 for (i = cur_reg + 1; i < reg; i++)
1568 {
1569 if (range & (1 << i))
1570 as_tsktsk
1571 (_("Warning: duplicated register (r%d) in register list"),
1572 i);
1573 else
1574 range |= 1 << i;
1575 }
1576 in_range = 0;
1577 }
1578
1579 if (range & (1 << reg))
1580 as_tsktsk (_("Warning: duplicated register (r%d) in register list"),
1581 reg);
1582 else if (reg <= cur_reg)
1583 as_tsktsk (_("Warning: register range not in ascending order"));
1584
1585 range |= 1 << reg;
1586 cur_reg = reg;
1587 }
1588 while (skip_past_comma (&str) != FAIL
1589 || (in_range = 1, *str++ == '-'));
1590 str--;
1591
1592 if (*str++ != '}')
1593 {
1594 first_error (_("missing `}'"));
1595 return FAIL;
1596 }
1597 }
1598 else
1599 {
1600 expressionS exp;
1601
1602 if (my_get_expression (&exp, &str, GE_NO_PREFIX))
1603 return FAIL;
1604
1605 if (exp.X_op == O_constant)
1606 {
1607 if (exp.X_add_number
1608 != (exp.X_add_number & 0x0000ffff))
1609 {
1610 inst.error = _("invalid register mask");
1611 return FAIL;
1612 }
1613
1614 if ((range & exp.X_add_number) != 0)
1615 {
1616 int regno = range & exp.X_add_number;
1617
1618 regno &= -regno;
1619 regno = (1 << regno) - 1;
1620 as_tsktsk
1621 (_("Warning: duplicated register (r%d) in register list"),
1622 regno);
1623 }
1624
1625 range |= exp.X_add_number;
1626 }
1627 else
1628 {
1629 if (inst.reloc.type != 0)
1630 {
1631 inst.error = _("expression too complex");
1632 return FAIL;
1633 }
1634
1635 memcpy (&inst.reloc.exp, &exp, sizeof (expressionS));
1636 inst.reloc.type = BFD_RELOC_ARM_MULTI;
1637 inst.reloc.pc_rel = 0;
1638 }
1639 }
1640
1641 if (*str == '|' || *str == '+')
1642 {
1643 str++;
1644 another_range = 1;
1645 }
1646 }
1647 while (another_range);
1648
1649 *strp = str;
1650 return range;
1651 }
1652
1653 /* Types of registers in a list. */
1654
1655 enum reg_list_els
1656 {
1657 REGLIST_VFP_S,
1658 REGLIST_VFP_D,
1659 REGLIST_NEON_D
1660 };
1661
1662 /* Parse a VFP register list. If the string is invalid return FAIL.
1663 Otherwise return the number of registers, and set PBASE to the first
1664 register. Parses registers of type ETYPE.
1665 If REGLIST_NEON_D is used, several syntax enhancements are enabled:
1666 - Q registers can be used to specify pairs of D registers
1667 - { } can be omitted from around a singleton register list
1668 FIXME: This is not implemented, as it would require backtracking in
1669 some cases, e.g.:
1670 vtbl.8 d3,d4,d5
1671 This could be done (the meaning isn't really ambiguous), but doesn't
1672 fit in well with the current parsing framework.
1673 - 32 D registers may be used (also true for VFPv3).
1674 FIXME: Types are ignored in these register lists, which is probably a
1675 bug. */
1676
1677 static int
1678 parse_vfp_reg_list (char **ccp, unsigned int *pbase, enum reg_list_els etype)
1679 {
1680 char *str = *ccp;
1681 int base_reg;
1682 int new_base;
1683 enum arm_reg_type regtype = (enum arm_reg_type) 0;
1684 int max_regs = 0;
1685 int count = 0;
1686 int warned = 0;
1687 unsigned long mask = 0;
1688 int i;
1689
1690 if (*str != '{')
1691 {
1692 inst.error = _("expecting {");
1693 return FAIL;
1694 }
1695
1696 str++;
1697
1698 switch (etype)
1699 {
1700 case REGLIST_VFP_S:
1701 regtype = REG_TYPE_VFS;
1702 max_regs = 32;
1703 break;
1704
1705 case REGLIST_VFP_D:
1706 regtype = REG_TYPE_VFD;
1707 break;
1708
1709 case REGLIST_NEON_D:
1710 regtype = REG_TYPE_NDQ;
1711 break;
1712 }
1713
1714 if (etype != REGLIST_VFP_S)
1715 {
1716 /* VFPv3 allows 32 D registers, except for the VFPv3-D16 variant. */
1717 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_d32))
1718 {
1719 max_regs = 32;
1720 if (thumb_mode)
1721 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
1722 fpu_vfp_ext_d32);
1723 else
1724 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
1725 fpu_vfp_ext_d32);
1726 }
1727 else
1728 max_regs = 16;
1729 }
1730
1731 base_reg = max_regs;
1732
1733 do
1734 {
1735 int setmask = 1, addregs = 1;
1736
1737 new_base = arm_typed_reg_parse (&str, regtype, &regtype, NULL);
1738
1739 if (new_base == FAIL)
1740 {
1741 first_error (_(reg_expected_msgs[regtype]));
1742 return FAIL;
1743 }
1744
1745 if (new_base >= max_regs)
1746 {
1747 first_error (_("register out of range in list"));
1748 return FAIL;
1749 }
1750
1751 /* Note: a value of 2 * n is returned for the register Q<n>. */
1752 if (regtype == REG_TYPE_NQ)
1753 {
1754 setmask = 3;
1755 addregs = 2;
1756 }
1757
1758 if (new_base < base_reg)
1759 base_reg = new_base;
1760
1761 if (mask & (setmask << new_base))
1762 {
1763 first_error (_("invalid register list"));
1764 return FAIL;
1765 }
1766
1767 if ((mask >> new_base) != 0 && ! warned)
1768 {
1769 as_tsktsk (_("register list not in ascending order"));
1770 warned = 1;
1771 }
1772
1773 mask |= setmask << new_base;
1774 count += addregs;
1775
1776 if (*str == '-') /* We have the start of a range expression */
1777 {
1778 int high_range;
1779
1780 str++;
1781
1782 if ((high_range = arm_typed_reg_parse (&str, regtype, NULL, NULL))
1783 == FAIL)
1784 {
1785 inst.error = gettext (reg_expected_msgs[regtype]);
1786 return FAIL;
1787 }
1788
1789 if (high_range >= max_regs)
1790 {
1791 first_error (_("register out of range in list"));
1792 return FAIL;
1793 }
1794
1795 if (regtype == REG_TYPE_NQ)
1796 high_range = high_range + 1;
1797
1798 if (high_range <= new_base)
1799 {
1800 inst.error = _("register range not in ascending order");
1801 return FAIL;
1802 }
1803
1804 for (new_base += addregs; new_base <= high_range; new_base += addregs)
1805 {
1806 if (mask & (setmask << new_base))
1807 {
1808 inst.error = _("invalid register list");
1809 return FAIL;
1810 }
1811
1812 mask |= setmask << new_base;
1813 count += addregs;
1814 }
1815 }
1816 }
1817 while (skip_past_comma (&str) != FAIL);
1818
1819 str++;
1820
1821 /* Sanity check -- should have raised a parse error above. */
1822 if (count == 0 || count > max_regs)
1823 abort ();
1824
1825 *pbase = base_reg;
1826
1827 /* Final test -- the registers must be consecutive. */
1828 mask >>= base_reg;
1829 for (i = 0; i < count; i++)
1830 {
1831 if ((mask & (1u << i)) == 0)
1832 {
1833 inst.error = _("non-contiguous register range");
1834 return FAIL;
1835 }
1836 }
1837
1838 *ccp = str;
1839
1840 return count;
1841 }
1842
1843 /* True if two alias types are the same. */
1844
1845 static bfd_boolean
1846 neon_alias_types_same (struct neon_typed_alias *a, struct neon_typed_alias *b)
1847 {
1848 if (!a && !b)
1849 return TRUE;
1850
1851 if (!a || !b)
1852 return FALSE;
1853
1854 if (a->defined != b->defined)
1855 return FALSE;
1856
1857 if ((a->defined & NTA_HASTYPE) != 0
1858 && (a->eltype.type != b->eltype.type
1859 || a->eltype.size != b->eltype.size))
1860 return FALSE;
1861
1862 if ((a->defined & NTA_HASINDEX) != 0
1863 && (a->index != b->index))
1864 return FALSE;
1865
1866 return TRUE;
1867 }
1868
1869 /* Parse element/structure lists for Neon VLD<n> and VST<n> instructions.
1870 The base register is put in *PBASE.
1871 The lane (or one of the NEON_*_LANES constants) is placed in bits [3:0] of
1872 the return value.
1873 The register stride (minus one) is put in bit 4 of the return value.
1874 Bits [6:5] encode the list length (minus one).
1875 The type of the list elements is put in *ELTYPE, if non-NULL. */
1876
1877 #define NEON_LANE(X) ((X) & 0xf)
1878 #define NEON_REG_STRIDE(X) ((((X) >> 4) & 1) + 1)
1879 #define NEON_REGLIST_LENGTH(X) ((((X) >> 5) & 3) + 1)
1880
1881 static int
1882 parse_neon_el_struct_list (char **str, unsigned *pbase,
1883 struct neon_type_el *eltype)
1884 {
1885 char *ptr = *str;
1886 int base_reg = -1;
1887 int reg_incr = -1;
1888 int count = 0;
1889 int lane = -1;
1890 int leading_brace = 0;
1891 enum arm_reg_type rtype = REG_TYPE_NDQ;
1892 const char *const incr_error = _("register stride must be 1 or 2");
1893 const char *const type_error = _("mismatched element/structure types in list");
1894 struct neon_typed_alias firsttype;
1895
1896 if (skip_past_char (&ptr, '{') == SUCCESS)
1897 leading_brace = 1;
1898
1899 do
1900 {
1901 struct neon_typed_alias atype;
1902 int getreg = parse_typed_reg_or_scalar (&ptr, rtype, &rtype, &atype);
1903
1904 if (getreg == FAIL)
1905 {
1906 first_error (_(reg_expected_msgs[rtype]));
1907 return FAIL;
1908 }
1909
1910 if (base_reg == -1)
1911 {
1912 base_reg = getreg;
1913 if (rtype == REG_TYPE_NQ)
1914 {
1915 reg_incr = 1;
1916 }
1917 firsttype = atype;
1918 }
1919 else if (reg_incr == -1)
1920 {
1921 reg_incr = getreg - base_reg;
1922 if (reg_incr < 1 || reg_incr > 2)
1923 {
1924 first_error (_(incr_error));
1925 return FAIL;
1926 }
1927 }
1928 else if (getreg != base_reg + reg_incr * count)
1929 {
1930 first_error (_(incr_error));
1931 return FAIL;
1932 }
1933
1934 if (! neon_alias_types_same (&atype, &firsttype))
1935 {
1936 first_error (_(type_error));
1937 return FAIL;
1938 }
1939
1940 /* Handle Dn-Dm or Qn-Qm syntax. Can only be used with non-indexed list
1941 modes. */
1942 if (ptr[0] == '-')
1943 {
1944 struct neon_typed_alias htype;
1945 int hireg, dregs = (rtype == REG_TYPE_NQ) ? 2 : 1;
1946 if (lane == -1)
1947 lane = NEON_INTERLEAVE_LANES;
1948 else if (lane != NEON_INTERLEAVE_LANES)
1949 {
1950 first_error (_(type_error));
1951 return FAIL;
1952 }
1953 if (reg_incr == -1)
1954 reg_incr = 1;
1955 else if (reg_incr != 1)
1956 {
1957 first_error (_("don't use Rn-Rm syntax with non-unit stride"));
1958 return FAIL;
1959 }
1960 ptr++;
1961 hireg = parse_typed_reg_or_scalar (&ptr, rtype, NULL, &htype);
1962 if (hireg == FAIL)
1963 {
1964 first_error (_(reg_expected_msgs[rtype]));
1965 return FAIL;
1966 }
1967 if (! neon_alias_types_same (&htype, &firsttype))
1968 {
1969 first_error (_(type_error));
1970 return FAIL;
1971 }
1972 count += hireg + dregs - getreg;
1973 continue;
1974 }
1975
1976 /* If we're using Q registers, we can't use [] or [n] syntax. */
1977 if (rtype == REG_TYPE_NQ)
1978 {
1979 count += 2;
1980 continue;
1981 }
1982
1983 if ((atype.defined & NTA_HASINDEX) != 0)
1984 {
1985 if (lane == -1)
1986 lane = atype.index;
1987 else if (lane != atype.index)
1988 {
1989 first_error (_(type_error));
1990 return FAIL;
1991 }
1992 }
1993 else if (lane == -1)
1994 lane = NEON_INTERLEAVE_LANES;
1995 else if (lane != NEON_INTERLEAVE_LANES)
1996 {
1997 first_error (_(type_error));
1998 return FAIL;
1999 }
2000 count++;
2001 }
2002 while ((count != 1 || leading_brace) && skip_past_comma (&ptr) != FAIL);
2003
2004 /* No lane set by [x]. We must be interleaving structures. */
2005 if (lane == -1)
2006 lane = NEON_INTERLEAVE_LANES;
2007
2008 /* Sanity check. */
2009 if (lane == -1 || base_reg == -1 || count < 1 || count > 4
2010 || (count > 1 && reg_incr == -1))
2011 {
2012 first_error (_("error parsing element/structure list"));
2013 return FAIL;
2014 }
2015
2016 if ((count > 1 || leading_brace) && skip_past_char (&ptr, '}') == FAIL)
2017 {
2018 first_error (_("expected }"));
2019 return FAIL;
2020 }
2021
2022 if (reg_incr == -1)
2023 reg_incr = 1;
2024
2025 if (eltype)
2026 *eltype = firsttype.eltype;
2027
2028 *pbase = base_reg;
2029 *str = ptr;
2030
2031 return lane | ((reg_incr - 1) << 4) | ((count - 1) << 5);
2032 }
2033
2034 /* Parse an explicit relocation suffix on an expression. This is
2035 either nothing, or a word in parentheses. Note that if !OBJ_ELF,
2036 arm_reloc_hsh contains no entries, so this function can only
2037 succeed if there is no () after the word. Returns -1 on error,
2038 BFD_RELOC_UNUSED if there wasn't any suffix. */
2039 static int
2040 parse_reloc (char **str)
2041 {
2042 struct reloc_entry *r;
2043 char *p, *q;
2044
2045 if (**str != '(')
2046 return BFD_RELOC_UNUSED;
2047
2048 p = *str + 1;
2049 q = p;
2050
2051 while (*q && *q != ')' && *q != ',')
2052 q++;
2053 if (*q != ')')
2054 return -1;
2055
2056 if ((r = (struct reloc_entry *)
2057 hash_find_n (arm_reloc_hsh, p, q - p)) == NULL)
2058 return -1;
2059
2060 *str = q + 1;
2061 return r->reloc;
2062 }
2063
2064 /* Directives: register aliases. */
2065
2066 static struct reg_entry *
2067 insert_reg_alias (char *str, unsigned number, int type)
2068 {
2069 struct reg_entry *new_reg;
2070 const char *name;
2071
2072 if ((new_reg = (struct reg_entry *) hash_find (arm_reg_hsh, str)) != 0)
2073 {
2074 if (new_reg->builtin)
2075 as_warn (_("ignoring attempt to redefine built-in register '%s'"), str);
2076
2077 /* Only warn about a redefinition if it's not defined as the
2078 same register. */
2079 else if (new_reg->number != number || new_reg->type != type)
2080 as_warn (_("ignoring redefinition of register alias '%s'"), str);
2081
2082 return NULL;
2083 }
2084
2085 name = xstrdup (str);
2086 new_reg = (struct reg_entry *) xmalloc (sizeof (struct reg_entry));
2087
2088 new_reg->name = name;
2089 new_reg->number = number;
2090 new_reg->type = type;
2091 new_reg->builtin = FALSE;
2092 new_reg->neon = NULL;
2093
2094 if (hash_insert (arm_reg_hsh, name, (void *) new_reg))
2095 abort ();
2096
2097 return new_reg;
2098 }
2099
2100 static void
2101 insert_neon_reg_alias (char *str, int number, int type,
2102 struct neon_typed_alias *atype)
2103 {
2104 struct reg_entry *reg = insert_reg_alias (str, number, type);
2105
2106 if (!reg)
2107 {
2108 first_error (_("attempt to redefine typed alias"));
2109 return;
2110 }
2111
2112 if (atype)
2113 {
2114 reg->neon = (struct neon_typed_alias *)
2115 xmalloc (sizeof (struct neon_typed_alias));
2116 *reg->neon = *atype;
2117 }
2118 }
2119
2120 /* Look for the .req directive. This is of the form:
2121
2122 new_register_name .req existing_register_name
2123
2124 If we find one, or if it looks sufficiently like one that we want to
2125 handle any error here, return TRUE. Otherwise return FALSE. */
2126
2127 static bfd_boolean
2128 create_register_alias (char * newname, char *p)
2129 {
2130 struct reg_entry *old;
2131 char *oldname, *nbuf;
2132 size_t nlen;
2133
2134 /* The input scrubber ensures that whitespace after the mnemonic is
2135 collapsed to single spaces. */
2136 oldname = p;
2137 if (strncmp (oldname, " .req ", 6) != 0)
2138 return FALSE;
2139
2140 oldname += 6;
2141 if (*oldname == '\0')
2142 return FALSE;
2143
2144 old = (struct reg_entry *) hash_find (arm_reg_hsh, oldname);
2145 if (!old)
2146 {
2147 as_warn (_("unknown register '%s' -- .req ignored"), oldname);
2148 return TRUE;
2149 }
2150
2151 /* If TC_CASE_SENSITIVE is defined, then newname already points to
2152 the desired alias name, and p points to its end. If not, then
2153 the desired alias name is in the global original_case_string. */
2154 #ifdef TC_CASE_SENSITIVE
2155 nlen = p - newname;
2156 #else
2157 newname = original_case_string;
2158 nlen = strlen (newname);
2159 #endif
2160
2161 nbuf = (char *) alloca (nlen + 1);
2162 memcpy (nbuf, newname, nlen);
2163 nbuf[nlen] = '\0';
2164
2165 /* Create aliases under the new name as stated; an all-lowercase
2166 version of the new name; and an all-uppercase version of the new
2167 name. */
2168 if (insert_reg_alias (nbuf, old->number, old->type) != NULL)
2169 {
2170 for (p = nbuf; *p; p++)
2171 *p = TOUPPER (*p);
2172
2173 if (strncmp (nbuf, newname, nlen))
2174 {
2175 /* If this attempt to create an additional alias fails, do not bother
2176 trying to create the all-lower case alias. We will fail and issue
2177 a second, duplicate error message. This situation arises when the
2178 programmer does something like:
2179 foo .req r0
2180 Foo .req r1
2181 The second .req creates the "Foo" alias but then fails to create
2182 the artificial FOO alias because it has already been created by the
2183 first .req. */
2184 if (insert_reg_alias (nbuf, old->number, old->type) == NULL)
2185 return TRUE;
2186 }
2187
2188 for (p = nbuf; *p; p++)
2189 *p = TOLOWER (*p);
2190
2191 if (strncmp (nbuf, newname, nlen))
2192 insert_reg_alias (nbuf, old->number, old->type);
2193 }
2194
2195 return TRUE;
2196 }
2197
2198 /* Create a Neon typed/indexed register alias using directives, e.g.:
2199 X .dn d5.s32[1]
2200 Y .qn 6.s16
2201 Z .dn d7
2202 T .dn Z[0]
2203 These typed registers can be used instead of the types specified after the
2204 Neon mnemonic, so long as all operands given have types. Types can also be
2205 specified directly, e.g.:
2206 vadd d0.s32, d1.s32, d2.s32 */
2207
2208 static bfd_boolean
2209 create_neon_reg_alias (char *newname, char *p)
2210 {
2211 enum arm_reg_type basetype;
2212 struct reg_entry *basereg;
2213 struct reg_entry mybasereg;
2214 struct neon_type ntype;
2215 struct neon_typed_alias typeinfo;
2216 char *namebuf, *nameend;
2217 int namelen;
2218
2219 typeinfo.defined = 0;
2220 typeinfo.eltype.type = NT_invtype;
2221 typeinfo.eltype.size = -1;
2222 typeinfo.index = -1;
2223
2224 nameend = p;
2225
2226 if (strncmp (p, " .dn ", 5) == 0)
2227 basetype = REG_TYPE_VFD;
2228 else if (strncmp (p, " .qn ", 5) == 0)
2229 basetype = REG_TYPE_NQ;
2230 else
2231 return FALSE;
2232
2233 p += 5;
2234
2235 if (*p == '\0')
2236 return FALSE;
2237
2238 basereg = arm_reg_parse_multi (&p);
2239
2240 if (basereg && basereg->type != basetype)
2241 {
2242 as_bad (_("bad type for register"));
2243 return FALSE;
2244 }
2245
2246 if (basereg == NULL)
2247 {
2248 expressionS exp;
2249 /* Try parsing as an integer. */
2250 my_get_expression (&exp, &p, GE_NO_PREFIX);
2251 if (exp.X_op != O_constant)
2252 {
2253 as_bad (_("expression must be constant"));
2254 return FALSE;
2255 }
2256 basereg = &mybasereg;
2257 basereg->number = (basetype == REG_TYPE_NQ) ? exp.X_add_number * 2
2258 : exp.X_add_number;
2259 basereg->neon = 0;
2260 }
2261
2262 if (basereg->neon)
2263 typeinfo = *basereg->neon;
2264
2265 if (parse_neon_type (&ntype, &p) == SUCCESS)
2266 {
2267 /* We got a type. */
2268 if (typeinfo.defined & NTA_HASTYPE)
2269 {
2270 as_bad (_("can't redefine the type of a register alias"));
2271 return FALSE;
2272 }
2273
2274 typeinfo.defined |= NTA_HASTYPE;
2275 if (ntype.elems != 1)
2276 {
2277 as_bad (_("you must specify a single type only"));
2278 return FALSE;
2279 }
2280 typeinfo.eltype = ntype.el[0];
2281 }
2282
2283 if (skip_past_char (&p, '[') == SUCCESS)
2284 {
2285 expressionS exp;
2286 /* We got a scalar index. */
2287
2288 if (typeinfo.defined & NTA_HASINDEX)
2289 {
2290 as_bad (_("can't redefine the index of a scalar alias"));
2291 return FALSE;
2292 }
2293
2294 my_get_expression (&exp, &p, GE_NO_PREFIX);
2295
2296 if (exp.X_op != O_constant)
2297 {
2298 as_bad (_("scalar index must be constant"));
2299 return FALSE;
2300 }
2301
2302 typeinfo.defined |= NTA_HASINDEX;
2303 typeinfo.index = exp.X_add_number;
2304
2305 if (skip_past_char (&p, ']') == FAIL)
2306 {
2307 as_bad (_("expecting ]"));
2308 return FALSE;
2309 }
2310 }
2311
2312 /* If TC_CASE_SENSITIVE is defined, then newname already points to
2313 the desired alias name, and p points to its end. If not, then
2314 the desired alias name is in the global original_case_string. */
2315 #ifdef TC_CASE_SENSITIVE
2316 namelen = nameend - newname;
2317 #else
2318 newname = original_case_string;
2319 namelen = strlen (newname);
2320 #endif
2321
2322 namebuf = (char *) alloca (namelen + 1);
2323 strncpy (namebuf, newname, namelen);
2324 namebuf[namelen] = '\0';
2325
2326 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2327 typeinfo.defined != 0 ? &typeinfo : NULL);
2328
2329 /* Insert name in all uppercase. */
2330 for (p = namebuf; *p; p++)
2331 *p = TOUPPER (*p);
2332
2333 if (strncmp (namebuf, newname, namelen))
2334 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2335 typeinfo.defined != 0 ? &typeinfo : NULL);
2336
2337 /* Insert name in all lowercase. */
2338 for (p = namebuf; *p; p++)
2339 *p = TOLOWER (*p);
2340
2341 if (strncmp (namebuf, newname, namelen))
2342 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2343 typeinfo.defined != 0 ? &typeinfo : NULL);
2344
2345 return TRUE;
2346 }
2347
2348 /* Should never be called, as .req goes between the alias and the
2349 register name, not at the beginning of the line. */
2350
2351 static void
2352 s_req (int a ATTRIBUTE_UNUSED)
2353 {
2354 as_bad (_("invalid syntax for .req directive"));
2355 }
2356
2357 static void
2358 s_dn (int a ATTRIBUTE_UNUSED)
2359 {
2360 as_bad (_("invalid syntax for .dn directive"));
2361 }
2362
2363 static void
2364 s_qn (int a ATTRIBUTE_UNUSED)
2365 {
2366 as_bad (_("invalid syntax for .qn directive"));
2367 }
2368
2369 /* The .unreq directive deletes an alias which was previously defined
2370 by .req. For example:
2371
2372 my_alias .req r11
2373 .unreq my_alias */
2374
2375 static void
2376 s_unreq (int a ATTRIBUTE_UNUSED)
2377 {
2378 char * name;
2379 char saved_char;
2380
2381 name = input_line_pointer;
2382
2383 while (*input_line_pointer != 0
2384 && *input_line_pointer != ' '
2385 && *input_line_pointer != '\n')
2386 ++input_line_pointer;
2387
2388 saved_char = *input_line_pointer;
2389 *input_line_pointer = 0;
2390
2391 if (!*name)
2392 as_bad (_("invalid syntax for .unreq directive"));
2393 else
2394 {
2395 struct reg_entry *reg = (struct reg_entry *) hash_find (arm_reg_hsh,
2396 name);
2397
2398 if (!reg)
2399 as_bad (_("unknown register alias '%s'"), name);
2400 else if (reg->builtin)
2401 as_warn (_("ignoring attempt to undefine built-in register '%s'"),
2402 name);
2403 else
2404 {
2405 char * p;
2406 char * nbuf;
2407
2408 hash_delete (arm_reg_hsh, name, FALSE);
2409 free ((char *) reg->name);
2410 if (reg->neon)
2411 free (reg->neon);
2412 free (reg);
2413
2414 /* Also locate the all upper case and all lower case versions.
2415 Do not complain if we cannot find one or the other as it
2416 was probably deleted above. */
2417
2418 nbuf = strdup (name);
2419 for (p = nbuf; *p; p++)
2420 *p = TOUPPER (*p);
2421 reg = (struct reg_entry *) hash_find (arm_reg_hsh, nbuf);
2422 if (reg)
2423 {
2424 hash_delete (arm_reg_hsh, nbuf, FALSE);
2425 free ((char *) reg->name);
2426 if (reg->neon)
2427 free (reg->neon);
2428 free (reg);
2429 }
2430
2431 for (p = nbuf; *p; p++)
2432 *p = TOLOWER (*p);
2433 reg = (struct reg_entry *) hash_find (arm_reg_hsh, nbuf);
2434 if (reg)
2435 {
2436 hash_delete (arm_reg_hsh, nbuf, FALSE);
2437 free ((char *) reg->name);
2438 if (reg->neon)
2439 free (reg->neon);
2440 free (reg);
2441 }
2442
2443 free (nbuf);
2444 }
2445 }
2446
2447 *input_line_pointer = saved_char;
2448 demand_empty_rest_of_line ();
2449 }
2450
2451 /* Directives: Instruction set selection. */
2452
2453 #ifdef OBJ_ELF
2454 /* This code is to handle mapping symbols as defined in the ARM ELF spec.
2455 (See "Mapping symbols", section 4.5.5, ARM AAELF version 1.0).
2456 Note that previously, $a and $t has type STT_FUNC (BSF_OBJECT flag),
2457 and $d has type STT_OBJECT (BSF_OBJECT flag). Now all three are untyped. */
2458
2459 /* Create a new mapping symbol for the transition to STATE. */
2460
2461 static void
2462 make_mapping_symbol (enum mstate state, valueT value, fragS *frag)
2463 {
2464 symbolS * symbolP;
2465 const char * symname;
2466 int type;
2467
2468 switch (state)
2469 {
2470 case MAP_DATA:
2471 symname = "$d";
2472 type = BSF_NO_FLAGS;
2473 break;
2474 case MAP_ARM:
2475 symname = "$a";
2476 type = BSF_NO_FLAGS;
2477 break;
2478 case MAP_THUMB:
2479 symname = "$t";
2480 type = BSF_NO_FLAGS;
2481 break;
2482 default:
2483 abort ();
2484 }
2485
2486 symbolP = symbol_new (symname, now_seg, value, frag);
2487 symbol_get_bfdsym (symbolP)->flags |= type | BSF_LOCAL;
2488
2489 switch (state)
2490 {
2491 case MAP_ARM:
2492 THUMB_SET_FUNC (symbolP, 0);
2493 ARM_SET_THUMB (symbolP, 0);
2494 ARM_SET_INTERWORK (symbolP, support_interwork);
2495 break;
2496
2497 case MAP_THUMB:
2498 THUMB_SET_FUNC (symbolP, 1);
2499 ARM_SET_THUMB (symbolP, 1);
2500 ARM_SET_INTERWORK (symbolP, support_interwork);
2501 break;
2502
2503 case MAP_DATA:
2504 default:
2505 break;
2506 }
2507
2508 /* Save the mapping symbols for future reference. Also check that
2509 we do not place two mapping symbols at the same offset within a
2510 frag. We'll handle overlap between frags in
2511 check_mapping_symbols.
2512
2513 If .fill or other data filling directive generates zero sized data,
2514 the mapping symbol for the following code will have the same value
2515 as the one generated for the data filling directive. In this case,
2516 we replace the old symbol with the new one at the same address. */
2517 if (value == 0)
2518 {
2519 if (frag->tc_frag_data.first_map != NULL)
2520 {
2521 know (S_GET_VALUE (frag->tc_frag_data.first_map) == 0);
2522 symbol_remove (frag->tc_frag_data.first_map, &symbol_rootP, &symbol_lastP);
2523 }
2524 frag->tc_frag_data.first_map = symbolP;
2525 }
2526 if (frag->tc_frag_data.last_map != NULL)
2527 {
2528 know (S_GET_VALUE (frag->tc_frag_data.last_map) <= S_GET_VALUE (symbolP));
2529 if (S_GET_VALUE (frag->tc_frag_data.last_map) == S_GET_VALUE (symbolP))
2530 symbol_remove (frag->tc_frag_data.last_map, &symbol_rootP, &symbol_lastP);
2531 }
2532 frag->tc_frag_data.last_map = symbolP;
2533 }
2534
2535 /* We must sometimes convert a region marked as code to data during
2536 code alignment, if an odd number of bytes have to be padded. The
2537 code mapping symbol is pushed to an aligned address. */
2538
2539 static void
2540 insert_data_mapping_symbol (enum mstate state,
2541 valueT value, fragS *frag, offsetT bytes)
2542 {
2543 /* If there was already a mapping symbol, remove it. */
2544 if (frag->tc_frag_data.last_map != NULL
2545 && S_GET_VALUE (frag->tc_frag_data.last_map) == frag->fr_address + value)
2546 {
2547 symbolS *symp = frag->tc_frag_data.last_map;
2548
2549 if (value == 0)
2550 {
2551 know (frag->tc_frag_data.first_map == symp);
2552 frag->tc_frag_data.first_map = NULL;
2553 }
2554 frag->tc_frag_data.last_map = NULL;
2555 symbol_remove (symp, &symbol_rootP, &symbol_lastP);
2556 }
2557
2558 make_mapping_symbol (MAP_DATA, value, frag);
2559 make_mapping_symbol (state, value + bytes, frag);
2560 }
2561
2562 static void mapping_state_2 (enum mstate state, int max_chars);
2563
2564 /* Set the mapping state to STATE. Only call this when about to
2565 emit some STATE bytes to the file. */
2566
2567 void
2568 mapping_state (enum mstate state)
2569 {
2570 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
2571
2572 #define TRANSITION(from, to) (mapstate == (from) && state == (to))
2573
2574 if (mapstate == state)
2575 /* The mapping symbol has already been emitted.
2576 There is nothing else to do. */
2577 return;
2578 else if (TRANSITION (MAP_UNDEFINED, MAP_DATA))
2579 /* This case will be evaluated later in the next else. */
2580 return;
2581 else if (TRANSITION (MAP_UNDEFINED, MAP_ARM)
2582 || TRANSITION (MAP_UNDEFINED, MAP_THUMB))
2583 {
2584 /* Only add the symbol if the offset is > 0:
2585 if we're at the first frag, check it's size > 0;
2586 if we're not at the first frag, then for sure
2587 the offset is > 0. */
2588 struct frag * const frag_first = seg_info (now_seg)->frchainP->frch_root;
2589 const int add_symbol = (frag_now != frag_first) || (frag_now_fix () > 0);
2590
2591 if (add_symbol)
2592 make_mapping_symbol (MAP_DATA, (valueT) 0, frag_first);
2593 }
2594
2595 mapping_state_2 (state, 0);
2596 #undef TRANSITION
2597 }
2598
2599 /* Same as mapping_state, but MAX_CHARS bytes have already been
2600 allocated. Put the mapping symbol that far back. */
2601
2602 static void
2603 mapping_state_2 (enum mstate state, int max_chars)
2604 {
2605 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
2606
2607 if (!SEG_NORMAL (now_seg))
2608 return;
2609
2610 if (mapstate == state)
2611 /* The mapping symbol has already been emitted.
2612 There is nothing else to do. */
2613 return;
2614
2615 seg_info (now_seg)->tc_segment_info_data.mapstate = state;
2616 make_mapping_symbol (state, (valueT) frag_now_fix () - max_chars, frag_now);
2617 }
2618 #else
2619 #define mapping_state(x) ((void)0)
2620 #define mapping_state_2(x, y) ((void)0)
2621 #endif
2622
2623 /* Find the real, Thumb encoded start of a Thumb function. */
2624
2625 #ifdef OBJ_COFF
2626 static symbolS *
2627 find_real_start (symbolS * symbolP)
2628 {
2629 char * real_start;
2630 const char * name = S_GET_NAME (symbolP);
2631 symbolS * new_target;
2632
2633 /* This definition must agree with the one in gcc/config/arm/thumb.c. */
2634 #define STUB_NAME ".real_start_of"
2635
2636 if (name == NULL)
2637 abort ();
2638
2639 /* The compiler may generate BL instructions to local labels because
2640 it needs to perform a branch to a far away location. These labels
2641 do not have a corresponding ".real_start_of" label. We check
2642 both for S_IS_LOCAL and for a leading dot, to give a way to bypass
2643 the ".real_start_of" convention for nonlocal branches. */
2644 if (S_IS_LOCAL (symbolP) || name[0] == '.')
2645 return symbolP;
2646
2647 real_start = ACONCAT ((STUB_NAME, name, NULL));
2648 new_target = symbol_find (real_start);
2649
2650 if (new_target == NULL)
2651 {
2652 as_warn (_("Failed to find real start of function: %s\n"), name);
2653 new_target = symbolP;
2654 }
2655
2656 return new_target;
2657 }
2658 #endif
2659
2660 static void
2661 opcode_select (int width)
2662 {
2663 switch (width)
2664 {
2665 case 16:
2666 if (! thumb_mode)
2667 {
2668 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
2669 as_bad (_("selected processor does not support THUMB opcodes"));
2670
2671 thumb_mode = 1;
2672 /* No need to force the alignment, since we will have been
2673 coming from ARM mode, which is word-aligned. */
2674 record_alignment (now_seg, 1);
2675 }
2676 break;
2677
2678 case 32:
2679 if (thumb_mode)
2680 {
2681 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
2682 as_bad (_("selected processor does not support ARM opcodes"));
2683
2684 thumb_mode = 0;
2685
2686 if (!need_pass_2)
2687 frag_align (2, 0, 0);
2688
2689 record_alignment (now_seg, 1);
2690 }
2691 break;
2692
2693 default:
2694 as_bad (_("invalid instruction size selected (%d)"), width);
2695 }
2696 }
2697
2698 static void
2699 s_arm (int ignore ATTRIBUTE_UNUSED)
2700 {
2701 opcode_select (32);
2702 demand_empty_rest_of_line ();
2703 }
2704
2705 static void
2706 s_thumb (int ignore ATTRIBUTE_UNUSED)
2707 {
2708 opcode_select (16);
2709 demand_empty_rest_of_line ();
2710 }
2711
2712 static void
2713 s_code (int unused ATTRIBUTE_UNUSED)
2714 {
2715 int temp;
2716
2717 temp = get_absolute_expression ();
2718 switch (temp)
2719 {
2720 case 16:
2721 case 32:
2722 opcode_select (temp);
2723 break;
2724
2725 default:
2726 as_bad (_("invalid operand to .code directive (%d) (expecting 16 or 32)"), temp);
2727 }
2728 }
2729
2730 static void
2731 s_force_thumb (int ignore ATTRIBUTE_UNUSED)
2732 {
2733 /* If we are not already in thumb mode go into it, EVEN if
2734 the target processor does not support thumb instructions.
2735 This is used by gcc/config/arm/lib1funcs.asm for example
2736 to compile interworking support functions even if the
2737 target processor should not support interworking. */
2738 if (! thumb_mode)
2739 {
2740 thumb_mode = 2;
2741 record_alignment (now_seg, 1);
2742 }
2743
2744 demand_empty_rest_of_line ();
2745 }
2746
2747 static void
2748 s_thumb_func (int ignore ATTRIBUTE_UNUSED)
2749 {
2750 s_thumb (0);
2751
2752 /* The following label is the name/address of the start of a Thumb function.
2753 We need to know this for the interworking support. */
2754 label_is_thumb_function_name = TRUE;
2755 }
2756
2757 /* Perform a .set directive, but also mark the alias as
2758 being a thumb function. */
2759
2760 static void
2761 s_thumb_set (int equiv)
2762 {
2763 /* XXX the following is a duplicate of the code for s_set() in read.c
2764 We cannot just call that code as we need to get at the symbol that
2765 is created. */
2766 char * name;
2767 char delim;
2768 char * end_name;
2769 symbolS * symbolP;
2770
2771 /* Especial apologies for the random logic:
2772 This just grew, and could be parsed much more simply!
2773 Dean - in haste. */
2774 name = input_line_pointer;
2775 delim = get_symbol_end ();
2776 end_name = input_line_pointer;
2777 *end_name = delim;
2778
2779 if (*input_line_pointer != ',')
2780 {
2781 *end_name = 0;
2782 as_bad (_("expected comma after name \"%s\""), name);
2783 *end_name = delim;
2784 ignore_rest_of_line ();
2785 return;
2786 }
2787
2788 input_line_pointer++;
2789 *end_name = 0;
2790
2791 if (name[0] == '.' && name[1] == '\0')
2792 {
2793 /* XXX - this should not happen to .thumb_set. */
2794 abort ();
2795 }
2796
2797 if ((symbolP = symbol_find (name)) == NULL
2798 && (symbolP = md_undefined_symbol (name)) == NULL)
2799 {
2800 #ifndef NO_LISTING
2801 /* When doing symbol listings, play games with dummy fragments living
2802 outside the normal fragment chain to record the file and line info
2803 for this symbol. */
2804 if (listing & LISTING_SYMBOLS)
2805 {
2806 extern struct list_info_struct * listing_tail;
2807 fragS * dummy_frag = (fragS * ) xmalloc (sizeof (fragS));
2808
2809 memset (dummy_frag, 0, sizeof (fragS));
2810 dummy_frag->fr_type = rs_fill;
2811 dummy_frag->line = listing_tail;
2812 symbolP = symbol_new (name, undefined_section, 0, dummy_frag);
2813 dummy_frag->fr_symbol = symbolP;
2814 }
2815 else
2816 #endif
2817 symbolP = symbol_new (name, undefined_section, 0, &zero_address_frag);
2818
2819 #ifdef OBJ_COFF
2820 /* "set" symbols are local unless otherwise specified. */
2821 SF_SET_LOCAL (symbolP);
2822 #endif /* OBJ_COFF */
2823 } /* Make a new symbol. */
2824
2825 symbol_table_insert (symbolP);
2826
2827 * end_name = delim;
2828
2829 if (equiv
2830 && S_IS_DEFINED (symbolP)
2831 && S_GET_SEGMENT (symbolP) != reg_section)
2832 as_bad (_("symbol `%s' already defined"), S_GET_NAME (symbolP));
2833
2834 pseudo_set (symbolP);
2835
2836 demand_empty_rest_of_line ();
2837
2838 /* XXX Now we come to the Thumb specific bit of code. */
2839
2840 THUMB_SET_FUNC (symbolP, 1);
2841 ARM_SET_THUMB (symbolP, 1);
2842 #if defined OBJ_ELF || defined OBJ_COFF
2843 ARM_SET_INTERWORK (symbolP, support_interwork);
2844 #endif
2845 }
2846
2847 /* Directives: Mode selection. */
2848
2849 /* .syntax [unified|divided] - choose the new unified syntax
2850 (same for Arm and Thumb encoding, modulo slight differences in what
2851 can be represented) or the old divergent syntax for each mode. */
2852 static void
2853 s_syntax (int unused ATTRIBUTE_UNUSED)
2854 {
2855 char *name, delim;
2856
2857 name = input_line_pointer;
2858 delim = get_symbol_end ();
2859
2860 if (!strcasecmp (name, "unified"))
2861 unified_syntax = TRUE;
2862 else if (!strcasecmp (name, "divided"))
2863 unified_syntax = FALSE;
2864 else
2865 {
2866 as_bad (_("unrecognized syntax mode \"%s\""), name);
2867 return;
2868 }
2869 *input_line_pointer = delim;
2870 demand_empty_rest_of_line ();
2871 }
2872
2873 /* Directives: sectioning and alignment. */
2874
2875 /* Same as s_align_ptwo but align 0 => align 2. */
2876
2877 static void
2878 s_align (int unused ATTRIBUTE_UNUSED)
2879 {
2880 int temp;
2881 bfd_boolean fill_p;
2882 long temp_fill;
2883 long max_alignment = 15;
2884
2885 temp = get_absolute_expression ();
2886 if (temp > max_alignment)
2887 as_bad (_("alignment too large: %d assumed"), temp = max_alignment);
2888 else if (temp < 0)
2889 {
2890 as_bad (_("alignment negative. 0 assumed."));
2891 temp = 0;
2892 }
2893
2894 if (*input_line_pointer == ',')
2895 {
2896 input_line_pointer++;
2897 temp_fill = get_absolute_expression ();
2898 fill_p = TRUE;
2899 }
2900 else
2901 {
2902 fill_p = FALSE;
2903 temp_fill = 0;
2904 }
2905
2906 if (!temp)
2907 temp = 2;
2908
2909 /* Only make a frag if we HAVE to. */
2910 if (temp && !need_pass_2)
2911 {
2912 if (!fill_p && subseg_text_p (now_seg))
2913 frag_align_code (temp, 0);
2914 else
2915 frag_align (temp, (int) temp_fill, 0);
2916 }
2917 demand_empty_rest_of_line ();
2918
2919 record_alignment (now_seg, temp);
2920 }
2921
2922 static void
2923 s_bss (int ignore ATTRIBUTE_UNUSED)
2924 {
2925 /* We don't support putting frags in the BSS segment, we fake it by
2926 marking in_bss, then looking at s_skip for clues. */
2927 subseg_set (bss_section, 0);
2928 demand_empty_rest_of_line ();
2929
2930 #ifdef md_elf_section_change_hook
2931 md_elf_section_change_hook ();
2932 #endif
2933 }
2934
2935 static void
2936 s_even (int ignore ATTRIBUTE_UNUSED)
2937 {
2938 /* Never make frag if expect extra pass. */
2939 if (!need_pass_2)
2940 frag_align (1, 0, 0);
2941
2942 record_alignment (now_seg, 1);
2943
2944 demand_empty_rest_of_line ();
2945 }
2946
2947 /* Directives: Literal pools. */
2948
2949 static literal_pool *
2950 find_literal_pool (void)
2951 {
2952 literal_pool * pool;
2953
2954 for (pool = list_of_pools; pool != NULL; pool = pool->next)
2955 {
2956 if (pool->section == now_seg
2957 && pool->sub_section == now_subseg)
2958 break;
2959 }
2960
2961 return pool;
2962 }
2963
2964 static literal_pool *
2965 find_or_make_literal_pool (void)
2966 {
2967 /* Next literal pool ID number. */
2968 static unsigned int latest_pool_num = 1;
2969 literal_pool * pool;
2970
2971 pool = find_literal_pool ();
2972
2973 if (pool == NULL)
2974 {
2975 /* Create a new pool. */
2976 pool = (literal_pool *) xmalloc (sizeof (* pool));
2977 if (! pool)
2978 return NULL;
2979
2980 pool->next_free_entry = 0;
2981 pool->section = now_seg;
2982 pool->sub_section = now_subseg;
2983 pool->next = list_of_pools;
2984 pool->symbol = NULL;
2985
2986 /* Add it to the list. */
2987 list_of_pools = pool;
2988 }
2989
2990 /* New pools, and emptied pools, will have a NULL symbol. */
2991 if (pool->symbol == NULL)
2992 {
2993 pool->symbol = symbol_create (FAKE_LABEL_NAME, undefined_section,
2994 (valueT) 0, &zero_address_frag);
2995 pool->id = latest_pool_num ++;
2996 }
2997
2998 /* Done. */
2999 return pool;
3000 }
3001
3002 /* Add the literal in the global 'inst'
3003 structure to the relevant literal pool. */
3004
3005 static int
3006 add_to_lit_pool (void)
3007 {
3008 literal_pool * pool;
3009 unsigned int entry;
3010
3011 pool = find_or_make_literal_pool ();
3012
3013 /* Check if this literal value is already in the pool. */
3014 for (entry = 0; entry < pool->next_free_entry; entry ++)
3015 {
3016 if ((pool->literals[entry].X_op == inst.reloc.exp.X_op)
3017 && (inst.reloc.exp.X_op == O_constant)
3018 && (pool->literals[entry].X_add_number
3019 == inst.reloc.exp.X_add_number)
3020 && (pool->literals[entry].X_unsigned
3021 == inst.reloc.exp.X_unsigned))
3022 break;
3023
3024 if ((pool->literals[entry].X_op == inst.reloc.exp.X_op)
3025 && (inst.reloc.exp.X_op == O_symbol)
3026 && (pool->literals[entry].X_add_number
3027 == inst.reloc.exp.X_add_number)
3028 && (pool->literals[entry].X_add_symbol
3029 == inst.reloc.exp.X_add_symbol)
3030 && (pool->literals[entry].X_op_symbol
3031 == inst.reloc.exp.X_op_symbol))
3032 break;
3033 }
3034
3035 /* Do we need to create a new entry? */
3036 if (entry == pool->next_free_entry)
3037 {
3038 if (entry >= MAX_LITERAL_POOL_SIZE)
3039 {
3040 inst.error = _("literal pool overflow");
3041 return FAIL;
3042 }
3043
3044 pool->literals[entry] = inst.reloc.exp;
3045 pool->next_free_entry += 1;
3046 }
3047
3048 inst.reloc.exp.X_op = O_symbol;
3049 inst.reloc.exp.X_add_number = ((int) entry) * 4;
3050 inst.reloc.exp.X_add_symbol = pool->symbol;
3051
3052 return SUCCESS;
3053 }
3054
3055 /* Can't use symbol_new here, so have to create a symbol and then at
3056 a later date assign it a value. Thats what these functions do. */
3057
3058 static void
3059 symbol_locate (symbolS * symbolP,
3060 const char * name, /* It is copied, the caller can modify. */
3061 segT segment, /* Segment identifier (SEG_<something>). */
3062 valueT valu, /* Symbol value. */
3063 fragS * frag) /* Associated fragment. */
3064 {
3065 unsigned int name_length;
3066 char * preserved_copy_of_name;
3067
3068 name_length = strlen (name) + 1; /* +1 for \0. */
3069 obstack_grow (&notes, name, name_length);
3070 preserved_copy_of_name = (char *) obstack_finish (&notes);
3071
3072 #ifdef tc_canonicalize_symbol_name
3073 preserved_copy_of_name =
3074 tc_canonicalize_symbol_name (preserved_copy_of_name);
3075 #endif
3076
3077 S_SET_NAME (symbolP, preserved_copy_of_name);
3078
3079 S_SET_SEGMENT (symbolP, segment);
3080 S_SET_VALUE (symbolP, valu);
3081 symbol_clear_list_pointers (symbolP);
3082
3083 symbol_set_frag (symbolP, frag);
3084
3085 /* Link to end of symbol chain. */
3086 {
3087 extern int symbol_table_frozen;
3088
3089 if (symbol_table_frozen)
3090 abort ();
3091 }
3092
3093 symbol_append (symbolP, symbol_lastP, & symbol_rootP, & symbol_lastP);
3094
3095 obj_symbol_new_hook (symbolP);
3096
3097 #ifdef tc_symbol_new_hook
3098 tc_symbol_new_hook (symbolP);
3099 #endif
3100
3101 #ifdef DEBUG_SYMS
3102 verify_symbol_chain (symbol_rootP, symbol_lastP);
3103 #endif /* DEBUG_SYMS */
3104 }
3105
3106
3107 static void
3108 s_ltorg (int ignored ATTRIBUTE_UNUSED)
3109 {
3110 unsigned int entry;
3111 literal_pool * pool;
3112 char sym_name[20];
3113
3114 pool = find_literal_pool ();
3115 if (pool == NULL
3116 || pool->symbol == NULL
3117 || pool->next_free_entry == 0)
3118 return;
3119
3120 mapping_state (MAP_DATA);
3121
3122 /* Align pool as you have word accesses.
3123 Only make a frag if we have to. */
3124 if (!need_pass_2)
3125 frag_align (2, 0, 0);
3126
3127 record_alignment (now_seg, 2);
3128
3129 sprintf (sym_name, "$$lit_\002%x", pool->id);
3130
3131 symbol_locate (pool->symbol, sym_name, now_seg,
3132 (valueT) frag_now_fix (), frag_now);
3133 symbol_table_insert (pool->symbol);
3134
3135 ARM_SET_THUMB (pool->symbol, thumb_mode);
3136
3137 #if defined OBJ_COFF || defined OBJ_ELF
3138 ARM_SET_INTERWORK (pool->symbol, support_interwork);
3139 #endif
3140
3141 for (entry = 0; entry < pool->next_free_entry; entry ++)
3142 /* First output the expression in the instruction to the pool. */
3143 emit_expr (&(pool->literals[entry]), 4); /* .word */
3144
3145 /* Mark the pool as empty. */
3146 pool->next_free_entry = 0;
3147 pool->symbol = NULL;
3148 }
3149
3150 #ifdef OBJ_ELF
3151 /* Forward declarations for functions below, in the MD interface
3152 section. */
3153 static void fix_new_arm (fragS *, int, short, expressionS *, int, int);
3154 static valueT create_unwind_entry (int);
3155 static void start_unwind_section (const segT, int);
3156 static void add_unwind_opcode (valueT, int);
3157 static void flush_pending_unwind (void);
3158
3159 /* Directives: Data. */
3160
3161 static void
3162 s_arm_elf_cons (int nbytes)
3163 {
3164 expressionS exp;
3165
3166 #ifdef md_flush_pending_output
3167 md_flush_pending_output ();
3168 #endif
3169
3170 if (is_it_end_of_statement ())
3171 {
3172 demand_empty_rest_of_line ();
3173 return;
3174 }
3175
3176 #ifdef md_cons_align
3177 md_cons_align (nbytes);
3178 #endif
3179
3180 mapping_state (MAP_DATA);
3181 do
3182 {
3183 int reloc;
3184 char *base = input_line_pointer;
3185
3186 expression (& exp);
3187
3188 if (exp.X_op != O_symbol)
3189 emit_expr (&exp, (unsigned int) nbytes);
3190 else
3191 {
3192 char *before_reloc = input_line_pointer;
3193 reloc = parse_reloc (&input_line_pointer);
3194 if (reloc == -1)
3195 {
3196 as_bad (_("unrecognized relocation suffix"));
3197 ignore_rest_of_line ();
3198 return;
3199 }
3200 else if (reloc == BFD_RELOC_UNUSED)
3201 emit_expr (&exp, (unsigned int) nbytes);
3202 else
3203 {
3204 reloc_howto_type *howto = (reloc_howto_type *)
3205 bfd_reloc_type_lookup (stdoutput,
3206 (bfd_reloc_code_real_type) reloc);
3207 int size = bfd_get_reloc_size (howto);
3208
3209 if (reloc == BFD_RELOC_ARM_PLT32)
3210 {
3211 as_bad (_("(plt) is only valid on branch targets"));
3212 reloc = BFD_RELOC_UNUSED;
3213 size = 0;
3214 }
3215
3216 if (size > nbytes)
3217 as_bad (_("%s relocations do not fit in %d bytes"),
3218 howto->name, nbytes);
3219 else
3220 {
3221 /* We've parsed an expression stopping at O_symbol.
3222 But there may be more expression left now that we
3223 have parsed the relocation marker. Parse it again.
3224 XXX Surely there is a cleaner way to do this. */
3225 char *p = input_line_pointer;
3226 int offset;
3227 char *save_buf = (char *) alloca (input_line_pointer - base);
3228 memcpy (save_buf, base, input_line_pointer - base);
3229 memmove (base + (input_line_pointer - before_reloc),
3230 base, before_reloc - base);
3231
3232 input_line_pointer = base + (input_line_pointer-before_reloc);
3233 expression (&exp);
3234 memcpy (base, save_buf, p - base);
3235
3236 offset = nbytes - size;
3237 p = frag_more ((int) nbytes);
3238 fix_new_exp (frag_now, p - frag_now->fr_literal + offset,
3239 size, &exp, 0, (enum bfd_reloc_code_real) reloc);
3240 }
3241 }
3242 }
3243 }
3244 while (*input_line_pointer++ == ',');
3245
3246 /* Put terminator back into stream. */
3247 input_line_pointer --;
3248 demand_empty_rest_of_line ();
3249 }
3250
3251 /* Emit an expression containing a 32-bit thumb instruction.
3252 Implementation based on put_thumb32_insn. */
3253
3254 static void
3255 emit_thumb32_expr (expressionS * exp)
3256 {
3257 expressionS exp_high = *exp;
3258
3259 exp_high.X_add_number = (unsigned long)exp_high.X_add_number >> 16;
3260 emit_expr (& exp_high, (unsigned int) THUMB_SIZE);
3261 exp->X_add_number &= 0xffff;
3262 emit_expr (exp, (unsigned int) THUMB_SIZE);
3263 }
3264
3265 /* Guess the instruction size based on the opcode. */
3266
3267 static int
3268 thumb_insn_size (int opcode)
3269 {
3270 if ((unsigned int) opcode < 0xe800u)
3271 return 2;
3272 else if ((unsigned int) opcode >= 0xe8000000u)
3273 return 4;
3274 else
3275 return 0;
3276 }
3277
3278 static bfd_boolean
3279 emit_insn (expressionS *exp, int nbytes)
3280 {
3281 int size = 0;
3282
3283 if (exp->X_op == O_constant)
3284 {
3285 size = nbytes;
3286
3287 if (size == 0)
3288 size = thumb_insn_size (exp->X_add_number);
3289
3290 if (size != 0)
3291 {
3292 if (size == 2 && (unsigned int)exp->X_add_number > 0xffffu)
3293 {
3294 as_bad (_(".inst.n operand too big. "\
3295 "Use .inst.w instead"));
3296 size = 0;
3297 }
3298 else
3299 {
3300 if (now_it.state == AUTOMATIC_IT_BLOCK)
3301 set_it_insn_type_nonvoid (OUTSIDE_IT_INSN, 0);
3302 else
3303 set_it_insn_type_nonvoid (NEUTRAL_IT_INSN, 0);
3304
3305 if (thumb_mode && (size > THUMB_SIZE) && !target_big_endian)
3306 emit_thumb32_expr (exp);
3307 else
3308 emit_expr (exp, (unsigned int) size);
3309
3310 it_fsm_post_encode ();
3311 }
3312 }
3313 else
3314 as_bad (_("cannot determine Thumb instruction size. " \
3315 "Use .inst.n/.inst.w instead"));
3316 }
3317 else
3318 as_bad (_("constant expression required"));
3319
3320 return (size != 0);
3321 }
3322
3323 /* Like s_arm_elf_cons but do not use md_cons_align and
3324 set the mapping state to MAP_ARM/MAP_THUMB. */
3325
3326 static void
3327 s_arm_elf_inst (int nbytes)
3328 {
3329 if (is_it_end_of_statement ())
3330 {
3331 demand_empty_rest_of_line ();
3332 return;
3333 }
3334
3335 /* Calling mapping_state () here will not change ARM/THUMB,
3336 but will ensure not to be in DATA state. */
3337
3338 if (thumb_mode)
3339 mapping_state (MAP_THUMB);
3340 else
3341 {
3342 if (nbytes != 0)
3343 {
3344 as_bad (_("width suffixes are invalid in ARM mode"));
3345 ignore_rest_of_line ();
3346 return;
3347 }
3348
3349 nbytes = 4;
3350
3351 mapping_state (MAP_ARM);
3352 }
3353
3354 do
3355 {
3356 expressionS exp;
3357
3358 expression (& exp);
3359
3360 if (! emit_insn (& exp, nbytes))
3361 {
3362 ignore_rest_of_line ();
3363 return;
3364 }
3365 }
3366 while (*input_line_pointer++ == ',');
3367
3368 /* Put terminator back into stream. */
3369 input_line_pointer --;
3370 demand_empty_rest_of_line ();
3371 }
3372
3373 /* Parse a .rel31 directive. */
3374
3375 static void
3376 s_arm_rel31 (int ignored ATTRIBUTE_UNUSED)
3377 {
3378 expressionS exp;
3379 char *p;
3380 valueT highbit;
3381
3382 highbit = 0;
3383 if (*input_line_pointer == '1')
3384 highbit = 0x80000000;
3385 else if (*input_line_pointer != '0')
3386 as_bad (_("expected 0 or 1"));
3387
3388 input_line_pointer++;
3389 if (*input_line_pointer != ',')
3390 as_bad (_("missing comma"));
3391 input_line_pointer++;
3392
3393 #ifdef md_flush_pending_output
3394 md_flush_pending_output ();
3395 #endif
3396
3397 #ifdef md_cons_align
3398 md_cons_align (4);
3399 #endif
3400
3401 mapping_state (MAP_DATA);
3402
3403 expression (&exp);
3404
3405 p = frag_more (4);
3406 md_number_to_chars (p, highbit, 4);
3407 fix_new_arm (frag_now, p - frag_now->fr_literal, 4, &exp, 1,
3408 BFD_RELOC_ARM_PREL31);
3409
3410 demand_empty_rest_of_line ();
3411 }
3412
3413 /* Directives: AEABI stack-unwind tables. */
3414
3415 /* Parse an unwind_fnstart directive. Simply records the current location. */
3416
3417 static void
3418 s_arm_unwind_fnstart (int ignored ATTRIBUTE_UNUSED)
3419 {
3420 demand_empty_rest_of_line ();
3421 if (unwind.proc_start)
3422 {
3423 as_bad (_("duplicate .fnstart directive"));
3424 return;
3425 }
3426
3427 /* Mark the start of the function. */
3428 unwind.proc_start = expr_build_dot ();
3429
3430 /* Reset the rest of the unwind info. */
3431 unwind.opcode_count = 0;
3432 unwind.table_entry = NULL;
3433 unwind.personality_routine = NULL;
3434 unwind.personality_index = -1;
3435 unwind.frame_size = 0;
3436 unwind.fp_offset = 0;
3437 unwind.fp_reg = REG_SP;
3438 unwind.fp_used = 0;
3439 unwind.sp_restored = 0;
3440 }
3441
3442
3443 /* Parse a handlerdata directive. Creates the exception handling table entry
3444 for the function. */
3445
3446 static void
3447 s_arm_unwind_handlerdata (int ignored ATTRIBUTE_UNUSED)
3448 {
3449 demand_empty_rest_of_line ();
3450 if (!unwind.proc_start)
3451 as_bad (MISSING_FNSTART);
3452
3453 if (unwind.table_entry)
3454 as_bad (_("duplicate .handlerdata directive"));
3455
3456 create_unwind_entry (1);
3457 }
3458
3459 /* Parse an unwind_fnend directive. Generates the index table entry. */
3460
3461 static void
3462 s_arm_unwind_fnend (int ignored ATTRIBUTE_UNUSED)
3463 {
3464 long where;
3465 char *ptr;
3466 valueT val;
3467 unsigned int marked_pr_dependency;
3468
3469 demand_empty_rest_of_line ();
3470
3471 if (!unwind.proc_start)
3472 {
3473 as_bad (_(".fnend directive without .fnstart"));
3474 return;
3475 }
3476
3477 /* Add eh table entry. */
3478 if (unwind.table_entry == NULL)
3479 val = create_unwind_entry (0);
3480 else
3481 val = 0;
3482
3483 /* Add index table entry. This is two words. */
3484 start_unwind_section (unwind.saved_seg, 1);
3485 frag_align (2, 0, 0);
3486 record_alignment (now_seg, 2);
3487
3488 ptr = frag_more (8);
3489 where = frag_now_fix () - 8;
3490
3491 /* Self relative offset of the function start. */
3492 fix_new (frag_now, where, 4, unwind.proc_start, 0, 1,
3493 BFD_RELOC_ARM_PREL31);
3494
3495 /* Indicate dependency on EHABI-defined personality routines to the
3496 linker, if it hasn't been done already. */
3497 marked_pr_dependency
3498 = seg_info (now_seg)->tc_segment_info_data.marked_pr_dependency;
3499 if (unwind.personality_index >= 0 && unwind.personality_index < 3
3500 && !(marked_pr_dependency & (1 << unwind.personality_index)))
3501 {
3502 static const char *const name[] =
3503 {
3504 "__aeabi_unwind_cpp_pr0",
3505 "__aeabi_unwind_cpp_pr1",
3506 "__aeabi_unwind_cpp_pr2"
3507 };
3508 symbolS *pr = symbol_find_or_make (name[unwind.personality_index]);
3509 fix_new (frag_now, where, 0, pr, 0, 1, BFD_RELOC_NONE);
3510 seg_info (now_seg)->tc_segment_info_data.marked_pr_dependency
3511 |= 1 << unwind.personality_index;
3512 }
3513
3514 if (val)
3515 /* Inline exception table entry. */
3516 md_number_to_chars (ptr + 4, val, 4);
3517 else
3518 /* Self relative offset of the table entry. */
3519 fix_new (frag_now, where + 4, 4, unwind.table_entry, 0, 1,
3520 BFD_RELOC_ARM_PREL31);
3521
3522 /* Restore the original section. */
3523 subseg_set (unwind.saved_seg, unwind.saved_subseg);
3524
3525 unwind.proc_start = NULL;
3526 }
3527
3528
3529 /* Parse an unwind_cantunwind directive. */
3530
3531 static void
3532 s_arm_unwind_cantunwind (int ignored ATTRIBUTE_UNUSED)
3533 {
3534 demand_empty_rest_of_line ();
3535 if (!unwind.proc_start)
3536 as_bad (MISSING_FNSTART);
3537
3538 if (unwind.personality_routine || unwind.personality_index != -1)
3539 as_bad (_("personality routine specified for cantunwind frame"));
3540
3541 unwind.personality_index = -2;
3542 }
3543
3544
3545 /* Parse a personalityindex directive. */
3546
3547 static void
3548 s_arm_unwind_personalityindex (int ignored ATTRIBUTE_UNUSED)
3549 {
3550 expressionS exp;
3551
3552 if (!unwind.proc_start)
3553 as_bad (MISSING_FNSTART);
3554
3555 if (unwind.personality_routine || unwind.personality_index != -1)
3556 as_bad (_("duplicate .personalityindex directive"));
3557
3558 expression (&exp);
3559
3560 if (exp.X_op != O_constant
3561 || exp.X_add_number < 0 || exp.X_add_number > 15)
3562 {
3563 as_bad (_("bad personality routine number"));
3564 ignore_rest_of_line ();
3565 return;
3566 }
3567
3568 unwind.personality_index = exp.X_add_number;
3569
3570 demand_empty_rest_of_line ();
3571 }
3572
3573
3574 /* Parse a personality directive. */
3575
3576 static void
3577 s_arm_unwind_personality (int ignored ATTRIBUTE_UNUSED)
3578 {
3579 char *name, *p, c;
3580
3581 if (!unwind.proc_start)
3582 as_bad (MISSING_FNSTART);
3583
3584 if (unwind.personality_routine || unwind.personality_index != -1)
3585 as_bad (_("duplicate .personality directive"));
3586
3587 name = input_line_pointer;
3588 c = get_symbol_end ();
3589 p = input_line_pointer;
3590 unwind.personality_routine = symbol_find_or_make (name);
3591 *p = c;
3592 demand_empty_rest_of_line ();
3593 }
3594
3595
3596 /* Parse a directive saving core registers. */
3597
3598 static void
3599 s_arm_unwind_save_core (void)
3600 {
3601 valueT op;
3602 long range;
3603 int n;
3604
3605 range = parse_reg_list (&input_line_pointer);
3606 if (range == FAIL)
3607 {
3608 as_bad (_("expected register list"));
3609 ignore_rest_of_line ();
3610 return;
3611 }
3612
3613 demand_empty_rest_of_line ();
3614
3615 /* Turn .unwind_movsp ip followed by .unwind_save {..., ip, ...}
3616 into .unwind_save {..., sp...}. We aren't bothered about the value of
3617 ip because it is clobbered by calls. */
3618 if (unwind.sp_restored && unwind.fp_reg == 12
3619 && (range & 0x3000) == 0x1000)
3620 {
3621 unwind.opcode_count--;
3622 unwind.sp_restored = 0;
3623 range = (range | 0x2000) & ~0x1000;
3624 unwind.pending_offset = 0;
3625 }
3626
3627 /* Pop r4-r15. */
3628 if (range & 0xfff0)
3629 {
3630 /* See if we can use the short opcodes. These pop a block of up to 8
3631 registers starting with r4, plus maybe r14. */
3632 for (n = 0; n < 8; n++)
3633 {
3634 /* Break at the first non-saved register. */
3635 if ((range & (1 << (n + 4))) == 0)
3636 break;
3637 }
3638 /* See if there are any other bits set. */
3639 if (n == 0 || (range & (0xfff0 << n) & 0xbff0) != 0)
3640 {
3641 /* Use the long form. */
3642 op = 0x8000 | ((range >> 4) & 0xfff);
3643 add_unwind_opcode (op, 2);
3644 }
3645 else
3646 {
3647 /* Use the short form. */
3648 if (range & 0x4000)
3649 op = 0xa8; /* Pop r14. */
3650 else
3651 op = 0xa0; /* Do not pop r14. */
3652 op |= (n - 1);
3653 add_unwind_opcode (op, 1);
3654 }
3655 }
3656
3657 /* Pop r0-r3. */
3658 if (range & 0xf)
3659 {
3660 op = 0xb100 | (range & 0xf);
3661 add_unwind_opcode (op, 2);
3662 }
3663
3664 /* Record the number of bytes pushed. */
3665 for (n = 0; n < 16; n++)
3666 {
3667 if (range & (1 << n))
3668 unwind.frame_size += 4;
3669 }
3670 }
3671
3672
3673 /* Parse a directive saving FPA registers. */
3674
3675 static void
3676 s_arm_unwind_save_fpa (int reg)
3677 {
3678 expressionS exp;
3679 int num_regs;
3680 valueT op;
3681
3682 /* Get Number of registers to transfer. */
3683 if (skip_past_comma (&input_line_pointer) != FAIL)
3684 expression (&exp);
3685 else
3686 exp.X_op = O_illegal;
3687
3688 if (exp.X_op != O_constant)
3689 {
3690 as_bad (_("expected , <constant>"));
3691 ignore_rest_of_line ();
3692 return;
3693 }
3694
3695 num_regs = exp.X_add_number;
3696
3697 if (num_regs < 1 || num_regs > 4)
3698 {
3699 as_bad (_("number of registers must be in the range [1:4]"));
3700 ignore_rest_of_line ();
3701 return;
3702 }
3703
3704 demand_empty_rest_of_line ();
3705
3706 if (reg == 4)
3707 {
3708 /* Short form. */
3709 op = 0xb4 | (num_regs - 1);
3710 add_unwind_opcode (op, 1);
3711 }
3712 else
3713 {
3714 /* Long form. */
3715 op = 0xc800 | (reg << 4) | (num_regs - 1);
3716 add_unwind_opcode (op, 2);
3717 }
3718 unwind.frame_size += num_regs * 12;
3719 }
3720
3721
3722 /* Parse a directive saving VFP registers for ARMv6 and above. */
3723
3724 static void
3725 s_arm_unwind_save_vfp_armv6 (void)
3726 {
3727 int count;
3728 unsigned int start;
3729 valueT op;
3730 int num_vfpv3_regs = 0;
3731 int num_regs_below_16;
3732
3733 count = parse_vfp_reg_list (&input_line_pointer, &start, REGLIST_VFP_D);
3734 if (count == FAIL)
3735 {
3736 as_bad (_("expected register list"));
3737 ignore_rest_of_line ();
3738 return;
3739 }
3740
3741 demand_empty_rest_of_line ();
3742
3743 /* We always generate FSTMD/FLDMD-style unwinding opcodes (rather
3744 than FSTMX/FLDMX-style ones). */
3745
3746 /* Generate opcode for (VFPv3) registers numbered in the range 16 .. 31. */
3747 if (start >= 16)
3748 num_vfpv3_regs = count;
3749 else if (start + count > 16)
3750 num_vfpv3_regs = start + count - 16;
3751
3752 if (num_vfpv3_regs > 0)
3753 {
3754 int start_offset = start > 16 ? start - 16 : 0;
3755 op = 0xc800 | (start_offset << 4) | (num_vfpv3_regs - 1);
3756 add_unwind_opcode (op, 2);
3757 }
3758
3759 /* Generate opcode for registers numbered in the range 0 .. 15. */
3760 num_regs_below_16 = num_vfpv3_regs > 0 ? 16 - (int) start : count;
3761 gas_assert (num_regs_below_16 + num_vfpv3_regs == count);
3762 if (num_regs_below_16 > 0)
3763 {
3764 op = 0xc900 | (start << 4) | (num_regs_below_16 - 1);
3765 add_unwind_opcode (op, 2);
3766 }
3767
3768 unwind.frame_size += count * 8;
3769 }
3770
3771
3772 /* Parse a directive saving VFP registers for pre-ARMv6. */
3773
3774 static void
3775 s_arm_unwind_save_vfp (void)
3776 {
3777 int count;
3778 unsigned int reg;
3779 valueT op;
3780
3781 count = parse_vfp_reg_list (&input_line_pointer, &reg, REGLIST_VFP_D);
3782 if (count == FAIL)
3783 {
3784 as_bad (_("expected register list"));
3785 ignore_rest_of_line ();
3786 return;
3787 }
3788
3789 demand_empty_rest_of_line ();
3790
3791 if (reg == 8)
3792 {
3793 /* Short form. */
3794 op = 0xb8 | (count - 1);
3795 add_unwind_opcode (op, 1);
3796 }
3797 else
3798 {
3799 /* Long form. */
3800 op = 0xb300 | (reg << 4) | (count - 1);
3801 add_unwind_opcode (op, 2);
3802 }
3803 unwind.frame_size += count * 8 + 4;
3804 }
3805
3806
3807 /* Parse a directive saving iWMMXt data registers. */
3808
3809 static void
3810 s_arm_unwind_save_mmxwr (void)
3811 {
3812 int reg;
3813 int hi_reg;
3814 int i;
3815 unsigned mask = 0;
3816 valueT op;
3817
3818 if (*input_line_pointer == '{')
3819 input_line_pointer++;
3820
3821 do
3822 {
3823 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWR);
3824
3825 if (reg == FAIL)
3826 {
3827 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWR]));
3828 goto error;
3829 }
3830
3831 if (mask >> reg)
3832 as_tsktsk (_("register list not in ascending order"));
3833 mask |= 1 << reg;
3834
3835 if (*input_line_pointer == '-')
3836 {
3837 input_line_pointer++;
3838 hi_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWR);
3839 if (hi_reg == FAIL)
3840 {
3841 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWR]));
3842 goto error;
3843 }
3844 else if (reg >= hi_reg)
3845 {
3846 as_bad (_("bad register range"));
3847 goto error;
3848 }
3849 for (; reg < hi_reg; reg++)
3850 mask |= 1 << reg;
3851 }
3852 }
3853 while (skip_past_comma (&input_line_pointer) != FAIL);
3854
3855 if (*input_line_pointer == '}')
3856 input_line_pointer++;
3857
3858 demand_empty_rest_of_line ();
3859
3860 /* Generate any deferred opcodes because we're going to be looking at
3861 the list. */
3862 flush_pending_unwind ();
3863
3864 for (i = 0; i < 16; i++)
3865 {
3866 if (mask & (1 << i))
3867 unwind.frame_size += 8;
3868 }
3869
3870 /* Attempt to combine with a previous opcode. We do this because gcc
3871 likes to output separate unwind directives for a single block of
3872 registers. */
3873 if (unwind.opcode_count > 0)
3874 {
3875 i = unwind.opcodes[unwind.opcode_count - 1];
3876 if ((i & 0xf8) == 0xc0)
3877 {
3878 i &= 7;
3879 /* Only merge if the blocks are contiguous. */
3880 if (i < 6)
3881 {
3882 if ((mask & 0xfe00) == (1 << 9))
3883 {
3884 mask |= ((1 << (i + 11)) - 1) & 0xfc00;
3885 unwind.opcode_count--;
3886 }
3887 }
3888 else if (i == 6 && unwind.opcode_count >= 2)
3889 {
3890 i = unwind.opcodes[unwind.opcode_count - 2];
3891 reg = i >> 4;
3892 i &= 0xf;
3893
3894 op = 0xffff << (reg - 1);
3895 if (reg > 0
3896 && ((mask & op) == (1u << (reg - 1))))
3897 {
3898 op = (1 << (reg + i + 1)) - 1;
3899 op &= ~((1 << reg) - 1);
3900 mask |= op;
3901 unwind.opcode_count -= 2;
3902 }
3903 }
3904 }
3905 }
3906
3907 hi_reg = 15;
3908 /* We want to generate opcodes in the order the registers have been
3909 saved, ie. descending order. */
3910 for (reg = 15; reg >= -1; reg--)
3911 {
3912 /* Save registers in blocks. */
3913 if (reg < 0
3914 || !(mask & (1 << reg)))
3915 {
3916 /* We found an unsaved reg. Generate opcodes to save the
3917 preceding block. */
3918 if (reg != hi_reg)
3919 {
3920 if (reg == 9)
3921 {
3922 /* Short form. */
3923 op = 0xc0 | (hi_reg - 10);
3924 add_unwind_opcode (op, 1);
3925 }
3926 else
3927 {
3928 /* Long form. */
3929 op = 0xc600 | ((reg + 1) << 4) | ((hi_reg - reg) - 1);
3930 add_unwind_opcode (op, 2);
3931 }
3932 }
3933 hi_reg = reg - 1;
3934 }
3935 }
3936
3937 return;
3938 error:
3939 ignore_rest_of_line ();
3940 }
3941
3942 static void
3943 s_arm_unwind_save_mmxwcg (void)
3944 {
3945 int reg;
3946 int hi_reg;
3947 unsigned mask = 0;
3948 valueT op;
3949
3950 if (*input_line_pointer == '{')
3951 input_line_pointer++;
3952
3953 do
3954 {
3955 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWCG);
3956
3957 if (reg == FAIL)
3958 {
3959 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWCG]));
3960 goto error;
3961 }
3962
3963 reg -= 8;
3964 if (mask >> reg)
3965 as_tsktsk (_("register list not in ascending order"));
3966 mask |= 1 << reg;
3967
3968 if (*input_line_pointer == '-')
3969 {
3970 input_line_pointer++;
3971 hi_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWCG);
3972 if (hi_reg == FAIL)
3973 {
3974 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWCG]));
3975 goto error;
3976 }
3977 else if (reg >= hi_reg)
3978 {
3979 as_bad (_("bad register range"));
3980 goto error;
3981 }
3982 for (; reg < hi_reg; reg++)
3983 mask |= 1 << reg;
3984 }
3985 }
3986 while (skip_past_comma (&input_line_pointer) != FAIL);
3987
3988 if (*input_line_pointer == '}')
3989 input_line_pointer++;
3990
3991 demand_empty_rest_of_line ();
3992
3993 /* Generate any deferred opcodes because we're going to be looking at
3994 the list. */
3995 flush_pending_unwind ();
3996
3997 for (reg = 0; reg < 16; reg++)
3998 {
3999 if (mask & (1 << reg))
4000 unwind.frame_size += 4;
4001 }
4002 op = 0xc700 | mask;
4003 add_unwind_opcode (op, 2);
4004 return;
4005 error:
4006 ignore_rest_of_line ();
4007 }
4008
4009
4010 /* Parse an unwind_save directive.
4011 If the argument is non-zero, this is a .vsave directive. */
4012
4013 static void
4014 s_arm_unwind_save (int arch_v6)
4015 {
4016 char *peek;
4017 struct reg_entry *reg;
4018 bfd_boolean had_brace = FALSE;
4019
4020 if (!unwind.proc_start)
4021 as_bad (MISSING_FNSTART);
4022
4023 /* Figure out what sort of save we have. */
4024 peek = input_line_pointer;
4025
4026 if (*peek == '{')
4027 {
4028 had_brace = TRUE;
4029 peek++;
4030 }
4031
4032 reg = arm_reg_parse_multi (&peek);
4033
4034 if (!reg)
4035 {
4036 as_bad (_("register expected"));
4037 ignore_rest_of_line ();
4038 return;
4039 }
4040
4041 switch (reg->type)
4042 {
4043 case REG_TYPE_FN:
4044 if (had_brace)
4045 {
4046 as_bad (_("FPA .unwind_save does not take a register list"));
4047 ignore_rest_of_line ();
4048 return;
4049 }
4050 input_line_pointer = peek;
4051 s_arm_unwind_save_fpa (reg->number);
4052 return;
4053
4054 case REG_TYPE_RN: s_arm_unwind_save_core (); return;
4055 case REG_TYPE_VFD:
4056 if (arch_v6)
4057 s_arm_unwind_save_vfp_armv6 ();
4058 else
4059 s_arm_unwind_save_vfp ();
4060 return;
4061 case REG_TYPE_MMXWR: s_arm_unwind_save_mmxwr (); return;
4062 case REG_TYPE_MMXWCG: s_arm_unwind_save_mmxwcg (); return;
4063
4064 default:
4065 as_bad (_(".unwind_save does not support this kind of register"));
4066 ignore_rest_of_line ();
4067 }
4068 }
4069
4070
4071 /* Parse an unwind_movsp directive. */
4072
4073 static void
4074 s_arm_unwind_movsp (int ignored ATTRIBUTE_UNUSED)
4075 {
4076 int reg;
4077 valueT op;
4078 int offset;
4079
4080 if (!unwind.proc_start)
4081 as_bad (MISSING_FNSTART);
4082
4083 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
4084 if (reg == FAIL)
4085 {
4086 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_RN]));
4087 ignore_rest_of_line ();
4088 return;
4089 }
4090
4091 /* Optional constant. */
4092 if (skip_past_comma (&input_line_pointer) != FAIL)
4093 {
4094 if (immediate_for_directive (&offset) == FAIL)
4095 return;
4096 }
4097 else
4098 offset = 0;
4099
4100 demand_empty_rest_of_line ();
4101
4102 if (reg == REG_SP || reg == REG_PC)
4103 {
4104 as_bad (_("SP and PC not permitted in .unwind_movsp directive"));
4105 return;
4106 }
4107
4108 if (unwind.fp_reg != REG_SP)
4109 as_bad (_("unexpected .unwind_movsp directive"));
4110
4111 /* Generate opcode to restore the value. */
4112 op = 0x90 | reg;
4113 add_unwind_opcode (op, 1);
4114
4115 /* Record the information for later. */
4116 unwind.fp_reg = reg;
4117 unwind.fp_offset = unwind.frame_size - offset;
4118 unwind.sp_restored = 1;
4119 }
4120
4121 /* Parse an unwind_pad directive. */
4122
4123 static void
4124 s_arm_unwind_pad (int ignored ATTRIBUTE_UNUSED)
4125 {
4126 int offset;
4127
4128 if (!unwind.proc_start)
4129 as_bad (MISSING_FNSTART);
4130
4131 if (immediate_for_directive (&offset) == FAIL)
4132 return;
4133
4134 if (offset & 3)
4135 {
4136 as_bad (_("stack increment must be multiple of 4"));
4137 ignore_rest_of_line ();
4138 return;
4139 }
4140
4141 /* Don't generate any opcodes, just record the details for later. */
4142 unwind.frame_size += offset;
4143 unwind.pending_offset += offset;
4144
4145 demand_empty_rest_of_line ();
4146 }
4147
4148 /* Parse an unwind_setfp directive. */
4149
4150 static void
4151 s_arm_unwind_setfp (int ignored ATTRIBUTE_UNUSED)
4152 {
4153 int sp_reg;
4154 int fp_reg;
4155 int offset;
4156
4157 if (!unwind.proc_start)
4158 as_bad (MISSING_FNSTART);
4159
4160 fp_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
4161 if (skip_past_comma (&input_line_pointer) == FAIL)
4162 sp_reg = FAIL;
4163 else
4164 sp_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
4165
4166 if (fp_reg == FAIL || sp_reg == FAIL)
4167 {
4168 as_bad (_("expected <reg>, <reg>"));
4169 ignore_rest_of_line ();
4170 return;
4171 }
4172
4173 /* Optional constant. */
4174 if (skip_past_comma (&input_line_pointer) != FAIL)
4175 {
4176 if (immediate_for_directive (&offset) == FAIL)
4177 return;
4178 }
4179 else
4180 offset = 0;
4181
4182 demand_empty_rest_of_line ();
4183
4184 if (sp_reg != REG_SP && sp_reg != unwind.fp_reg)
4185 {
4186 as_bad (_("register must be either sp or set by a previous"
4187 "unwind_movsp directive"));
4188 return;
4189 }
4190
4191 /* Don't generate any opcodes, just record the information for later. */
4192 unwind.fp_reg = fp_reg;
4193 unwind.fp_used = 1;
4194 if (sp_reg == REG_SP)
4195 unwind.fp_offset = unwind.frame_size - offset;
4196 else
4197 unwind.fp_offset -= offset;
4198 }
4199
4200 /* Parse an unwind_raw directive. */
4201
4202 static void
4203 s_arm_unwind_raw (int ignored ATTRIBUTE_UNUSED)
4204 {
4205 expressionS exp;
4206 /* This is an arbitrary limit. */
4207 unsigned char op[16];
4208 int count;
4209
4210 if (!unwind.proc_start)
4211 as_bad (MISSING_FNSTART);
4212
4213 expression (&exp);
4214 if (exp.X_op == O_constant
4215 && skip_past_comma (&input_line_pointer) != FAIL)
4216 {
4217 unwind.frame_size += exp.X_add_number;
4218 expression (&exp);
4219 }
4220 else
4221 exp.X_op = O_illegal;
4222
4223 if (exp.X_op != O_constant)
4224 {
4225 as_bad (_("expected <offset>, <opcode>"));
4226 ignore_rest_of_line ();
4227 return;
4228 }
4229
4230 count = 0;
4231
4232 /* Parse the opcode. */
4233 for (;;)
4234 {
4235 if (count >= 16)
4236 {
4237 as_bad (_("unwind opcode too long"));
4238 ignore_rest_of_line ();
4239 }
4240 if (exp.X_op != O_constant || exp.X_add_number & ~0xff)
4241 {
4242 as_bad (_("invalid unwind opcode"));
4243 ignore_rest_of_line ();
4244 return;
4245 }
4246 op[count++] = exp.X_add_number;
4247
4248 /* Parse the next byte. */
4249 if (skip_past_comma (&input_line_pointer) == FAIL)
4250 break;
4251
4252 expression (&exp);
4253 }
4254
4255 /* Add the opcode bytes in reverse order. */
4256 while (count--)
4257 add_unwind_opcode (op[count], 1);
4258
4259 demand_empty_rest_of_line ();
4260 }
4261
4262
4263 /* Parse a .eabi_attribute directive. */
4264
4265 static void
4266 s_arm_eabi_attribute (int ignored ATTRIBUTE_UNUSED)
4267 {
4268 int tag = s_vendor_attribute (OBJ_ATTR_PROC);
4269
4270 if (tag < NUM_KNOWN_OBJ_ATTRIBUTES)
4271 attributes_set_explicitly[tag] = 1;
4272 }
4273 #endif /* OBJ_ELF */
4274
4275 static void s_arm_arch (int);
4276 static void s_arm_object_arch (int);
4277 static void s_arm_cpu (int);
4278 static void s_arm_fpu (int);
4279 static void s_arm_arch_extension (int);
4280
4281 #ifdef TE_PE
4282
4283 static void
4284 pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
4285 {
4286 expressionS exp;
4287
4288 do
4289 {
4290 expression (&exp);
4291 if (exp.X_op == O_symbol)
4292 exp.X_op = O_secrel;
4293
4294 emit_expr (&exp, 4);
4295 }
4296 while (*input_line_pointer++ == ',');
4297
4298 input_line_pointer--;
4299 demand_empty_rest_of_line ();
4300 }
4301 #endif /* TE_PE */
4302
4303 /* This table describes all the machine specific pseudo-ops the assembler
4304 has to support. The fields are:
4305 pseudo-op name without dot
4306 function to call to execute this pseudo-op
4307 Integer arg to pass to the function. */
4308
4309 const pseudo_typeS md_pseudo_table[] =
4310 {
4311 /* Never called because '.req' does not start a line. */
4312 { "req", s_req, 0 },
4313 /* Following two are likewise never called. */
4314 { "dn", s_dn, 0 },
4315 { "qn", s_qn, 0 },
4316 { "unreq", s_unreq, 0 },
4317 { "bss", s_bss, 0 },
4318 { "align", s_align, 0 },
4319 { "arm", s_arm, 0 },
4320 { "thumb", s_thumb, 0 },
4321 { "code", s_code, 0 },
4322 { "force_thumb", s_force_thumb, 0 },
4323 { "thumb_func", s_thumb_func, 0 },
4324 { "thumb_set", s_thumb_set, 0 },
4325 { "even", s_even, 0 },
4326 { "ltorg", s_ltorg, 0 },
4327 { "pool", s_ltorg, 0 },
4328 { "syntax", s_syntax, 0 },
4329 { "cpu", s_arm_cpu, 0 },
4330 { "arch", s_arm_arch, 0 },
4331 { "object_arch", s_arm_object_arch, 0 },
4332 { "fpu", s_arm_fpu, 0 },
4333 { "arch_extension", s_arm_arch_extension, 0 },
4334 #ifdef OBJ_ELF
4335 { "word", s_arm_elf_cons, 4 },
4336 { "long", s_arm_elf_cons, 4 },
4337 { "inst.n", s_arm_elf_inst, 2 },
4338 { "inst.w", s_arm_elf_inst, 4 },
4339 { "inst", s_arm_elf_inst, 0 },
4340 { "rel31", s_arm_rel31, 0 },
4341 { "fnstart", s_arm_unwind_fnstart, 0 },
4342 { "fnend", s_arm_unwind_fnend, 0 },
4343 { "cantunwind", s_arm_unwind_cantunwind, 0 },
4344 { "personality", s_arm_unwind_personality, 0 },
4345 { "personalityindex", s_arm_unwind_personalityindex, 0 },
4346 { "handlerdata", s_arm_unwind_handlerdata, 0 },
4347 { "save", s_arm_unwind_save, 0 },
4348 { "vsave", s_arm_unwind_save, 1 },
4349 { "movsp", s_arm_unwind_movsp, 0 },
4350 { "pad", s_arm_unwind_pad, 0 },
4351 { "setfp", s_arm_unwind_setfp, 0 },
4352 { "unwind_raw", s_arm_unwind_raw, 0 },
4353 { "eabi_attribute", s_arm_eabi_attribute, 0 },
4354 #else
4355 { "word", cons, 4},
4356
4357 /* These are used for dwarf. */
4358 {"2byte", cons, 2},
4359 {"4byte", cons, 4},
4360 {"8byte", cons, 8},
4361 /* These are used for dwarf2. */
4362 { "file", (void (*) (int)) dwarf2_directive_file, 0 },
4363 { "loc", dwarf2_directive_loc, 0 },
4364 { "loc_mark_labels", dwarf2_directive_loc_mark_labels, 0 },
4365 #endif
4366 { "extend", float_cons, 'x' },
4367 { "ldouble", float_cons, 'x' },
4368 { "packed", float_cons, 'p' },
4369 #ifdef TE_PE
4370 {"secrel32", pe_directive_secrel, 0},
4371 #endif
4372 { 0, 0, 0 }
4373 };
4374 \f
4375 /* Parser functions used exclusively in instruction operands. */
4376
4377 /* Generic immediate-value read function for use in insn parsing.
4378 STR points to the beginning of the immediate (the leading #);
4379 VAL receives the value; if the value is outside [MIN, MAX]
4380 issue an error. PREFIX_OPT is true if the immediate prefix is
4381 optional. */
4382
4383 static int
4384 parse_immediate (char **str, int *val, int min, int max,
4385 bfd_boolean prefix_opt)
4386 {
4387 expressionS exp;
4388 my_get_expression (&exp, str, prefix_opt ? GE_OPT_PREFIX : GE_IMM_PREFIX);
4389 if (exp.X_op != O_constant)
4390 {
4391 inst.error = _("constant expression required");
4392 return FAIL;
4393 }
4394
4395 if (exp.X_add_number < min || exp.X_add_number > max)
4396 {
4397 inst.error = _("immediate value out of range");
4398 return FAIL;
4399 }
4400
4401 *val = exp.X_add_number;
4402 return SUCCESS;
4403 }
4404
4405 /* Less-generic immediate-value read function with the possibility of loading a
4406 big (64-bit) immediate, as required by Neon VMOV, VMVN and logic immediate
4407 instructions. Puts the result directly in inst.operands[i]. */
4408
4409 static int
4410 parse_big_immediate (char **str, int i)
4411 {
4412 expressionS exp;
4413 char *ptr = *str;
4414
4415 my_get_expression (&exp, &ptr, GE_OPT_PREFIX_BIG);
4416
4417 if (exp.X_op == O_constant)
4418 {
4419 inst.operands[i].imm = exp.X_add_number & 0xffffffff;
4420 /* If we're on a 64-bit host, then a 64-bit number can be returned using
4421 O_constant. We have to be careful not to break compilation for
4422 32-bit X_add_number, though. */
4423 if ((exp.X_add_number & ~0xffffffffl) != 0)
4424 {
4425 /* X >> 32 is illegal if sizeof (exp.X_add_number) == 4. */
4426 inst.operands[i].reg = ((exp.X_add_number >> 16) >> 16) & 0xffffffff;
4427 inst.operands[i].regisimm = 1;
4428 }
4429 }
4430 else if (exp.X_op == O_big
4431 && LITTLENUM_NUMBER_OF_BITS * exp.X_add_number > 32)
4432 {
4433 unsigned parts = 32 / LITTLENUM_NUMBER_OF_BITS, j, idx = 0;
4434
4435 /* Bignums have their least significant bits in
4436 generic_bignum[0]. Make sure we put 32 bits in imm and
4437 32 bits in reg, in a (hopefully) portable way. */
4438 gas_assert (parts != 0);
4439
4440 /* Make sure that the number is not too big.
4441 PR 11972: Bignums can now be sign-extended to the
4442 size of a .octa so check that the out of range bits
4443 are all zero or all one. */
4444 if (LITTLENUM_NUMBER_OF_BITS * exp.X_add_number > 64)
4445 {
4446 LITTLENUM_TYPE m = -1;
4447
4448 if (generic_bignum[parts * 2] != 0
4449 && generic_bignum[parts * 2] != m)
4450 return FAIL;
4451
4452 for (j = parts * 2 + 1; j < (unsigned) exp.X_add_number; j++)
4453 if (generic_bignum[j] != generic_bignum[j-1])
4454 return FAIL;
4455 }
4456
4457 inst.operands[i].imm = 0;
4458 for (j = 0; j < parts; j++, idx++)
4459 inst.operands[i].imm |= generic_bignum[idx]
4460 << (LITTLENUM_NUMBER_OF_BITS * j);
4461 inst.operands[i].reg = 0;
4462 for (j = 0; j < parts; j++, idx++)
4463 inst.operands[i].reg |= generic_bignum[idx]
4464 << (LITTLENUM_NUMBER_OF_BITS * j);
4465 inst.operands[i].regisimm = 1;
4466 }
4467 else
4468 return FAIL;
4469
4470 *str = ptr;
4471
4472 return SUCCESS;
4473 }
4474
4475 /* Returns the pseudo-register number of an FPA immediate constant,
4476 or FAIL if there isn't a valid constant here. */
4477
4478 static int
4479 parse_fpa_immediate (char ** str)
4480 {
4481 LITTLENUM_TYPE words[MAX_LITTLENUMS];
4482 char * save_in;
4483 expressionS exp;
4484 int i;
4485 int j;
4486
4487 /* First try and match exact strings, this is to guarantee
4488 that some formats will work even for cross assembly. */
4489
4490 for (i = 0; fp_const[i]; i++)
4491 {
4492 if (strncmp (*str, fp_const[i], strlen (fp_const[i])) == 0)
4493 {
4494 char *start = *str;
4495
4496 *str += strlen (fp_const[i]);
4497 if (is_end_of_line[(unsigned char) **str])
4498 return i + 8;
4499 *str = start;
4500 }
4501 }
4502
4503 /* Just because we didn't get a match doesn't mean that the constant
4504 isn't valid, just that it is in a format that we don't
4505 automatically recognize. Try parsing it with the standard
4506 expression routines. */
4507
4508 memset (words, 0, MAX_LITTLENUMS * sizeof (LITTLENUM_TYPE));
4509
4510 /* Look for a raw floating point number. */
4511 if ((save_in = atof_ieee (*str, 'x', words)) != NULL
4512 && is_end_of_line[(unsigned char) *save_in])
4513 {
4514 for (i = 0; i < NUM_FLOAT_VALS; i++)
4515 {
4516 for (j = 0; j < MAX_LITTLENUMS; j++)
4517 {
4518 if (words[j] != fp_values[i][j])
4519 break;
4520 }
4521
4522 if (j == MAX_LITTLENUMS)
4523 {
4524 *str = save_in;
4525 return i + 8;
4526 }
4527 }
4528 }
4529
4530 /* Try and parse a more complex expression, this will probably fail
4531 unless the code uses a floating point prefix (eg "0f"). */
4532 save_in = input_line_pointer;
4533 input_line_pointer = *str;
4534 if (expression (&exp) == absolute_section
4535 && exp.X_op == O_big
4536 && exp.X_add_number < 0)
4537 {
4538 /* FIXME: 5 = X_PRECISION, should be #define'd where we can use it.
4539 Ditto for 15. */
4540 if (gen_to_words (words, 5, (long) 15) == 0)
4541 {
4542 for (i = 0; i < NUM_FLOAT_VALS; i++)
4543 {
4544 for (j = 0; j < MAX_LITTLENUMS; j++)
4545 {
4546 if (words[j] != fp_values[i][j])
4547 break;
4548 }
4549
4550 if (j == MAX_LITTLENUMS)
4551 {
4552 *str = input_line_pointer;
4553 input_line_pointer = save_in;
4554 return i + 8;
4555 }
4556 }
4557 }
4558 }
4559
4560 *str = input_line_pointer;
4561 input_line_pointer = save_in;
4562 inst.error = _("invalid FPA immediate expression");
4563 return FAIL;
4564 }
4565
4566 /* Returns 1 if a number has "quarter-precision" float format
4567 0baBbbbbbc defgh000 00000000 00000000. */
4568
4569 static int
4570 is_quarter_float (unsigned imm)
4571 {
4572 int bs = (imm & 0x20000000) ? 0x3e000000 : 0x40000000;
4573 return (imm & 0x7ffff) == 0 && ((imm & 0x7e000000) ^ bs) == 0;
4574 }
4575
4576 /* Parse an 8-bit "quarter-precision" floating point number of the form:
4577 0baBbbbbbc defgh000 00000000 00000000.
4578 The zero and minus-zero cases need special handling, since they can't be
4579 encoded in the "quarter-precision" float format, but can nonetheless be
4580 loaded as integer constants. */
4581
4582 static unsigned
4583 parse_qfloat_immediate (char **ccp, int *immed)
4584 {
4585 char *str = *ccp;
4586 char *fpnum;
4587 LITTLENUM_TYPE words[MAX_LITTLENUMS];
4588 int found_fpchar = 0;
4589
4590 skip_past_char (&str, '#');
4591
4592 /* We must not accidentally parse an integer as a floating-point number. Make
4593 sure that the value we parse is not an integer by checking for special
4594 characters '.' or 'e'.
4595 FIXME: This is a horrible hack, but doing better is tricky because type
4596 information isn't in a very usable state at parse time. */
4597 fpnum = str;
4598 skip_whitespace (fpnum);
4599
4600 if (strncmp (fpnum, "0x", 2) == 0)
4601 return FAIL;
4602 else
4603 {
4604 for (; *fpnum != '\0' && *fpnum != ' ' && *fpnum != '\n'; fpnum++)
4605 if (*fpnum == '.' || *fpnum == 'e' || *fpnum == 'E')
4606 {
4607 found_fpchar = 1;
4608 break;
4609 }
4610
4611 if (!found_fpchar)
4612 return FAIL;
4613 }
4614
4615 if ((str = atof_ieee (str, 's', words)) != NULL)
4616 {
4617 unsigned fpword = 0;
4618 int i;
4619
4620 /* Our FP word must be 32 bits (single-precision FP). */
4621 for (i = 0; i < 32 / LITTLENUM_NUMBER_OF_BITS; i++)
4622 {
4623 fpword <<= LITTLENUM_NUMBER_OF_BITS;
4624 fpword |= words[i];
4625 }
4626
4627 if (is_quarter_float (fpword) || (fpword & 0x7fffffff) == 0)
4628 *immed = fpword;
4629 else
4630 return FAIL;
4631
4632 *ccp = str;
4633
4634 return SUCCESS;
4635 }
4636
4637 return FAIL;
4638 }
4639
4640 /* Shift operands. */
4641 enum shift_kind
4642 {
4643 SHIFT_LSL, SHIFT_LSR, SHIFT_ASR, SHIFT_ROR, SHIFT_RRX
4644 };
4645
4646 struct asm_shift_name
4647 {
4648 const char *name;
4649 enum shift_kind kind;
4650 };
4651
4652 /* Third argument to parse_shift. */
4653 enum parse_shift_mode
4654 {
4655 NO_SHIFT_RESTRICT, /* Any kind of shift is accepted. */
4656 SHIFT_IMMEDIATE, /* Shift operand must be an immediate. */
4657 SHIFT_LSL_OR_ASR_IMMEDIATE, /* Shift must be LSL or ASR immediate. */
4658 SHIFT_ASR_IMMEDIATE, /* Shift must be ASR immediate. */
4659 SHIFT_LSL_IMMEDIATE, /* Shift must be LSL immediate. */
4660 };
4661
4662 /* Parse a <shift> specifier on an ARM data processing instruction.
4663 This has three forms:
4664
4665 (LSL|LSR|ASL|ASR|ROR) Rs
4666 (LSL|LSR|ASL|ASR|ROR) #imm
4667 RRX
4668
4669 Note that ASL is assimilated to LSL in the instruction encoding, and
4670 RRX to ROR #0 (which cannot be written as such). */
4671
4672 static int
4673 parse_shift (char **str, int i, enum parse_shift_mode mode)
4674 {
4675 const struct asm_shift_name *shift_name;
4676 enum shift_kind shift;
4677 char *s = *str;
4678 char *p = s;
4679 int reg;
4680
4681 for (p = *str; ISALPHA (*p); p++)
4682 ;
4683
4684 if (p == *str)
4685 {
4686 inst.error = _("shift expression expected");
4687 return FAIL;
4688 }
4689
4690 shift_name = (const struct asm_shift_name *) hash_find_n (arm_shift_hsh, *str,
4691 p - *str);
4692
4693 if (shift_name == NULL)
4694 {
4695 inst.error = _("shift expression expected");
4696 return FAIL;
4697 }
4698
4699 shift = shift_name->kind;
4700
4701 switch (mode)
4702 {
4703 case NO_SHIFT_RESTRICT:
4704 case SHIFT_IMMEDIATE: break;
4705
4706 case SHIFT_LSL_OR_ASR_IMMEDIATE:
4707 if (shift != SHIFT_LSL && shift != SHIFT_ASR)
4708 {
4709 inst.error = _("'LSL' or 'ASR' required");
4710 return FAIL;
4711 }
4712 break;
4713
4714 case SHIFT_LSL_IMMEDIATE:
4715 if (shift != SHIFT_LSL)
4716 {
4717 inst.error = _("'LSL' required");
4718 return FAIL;
4719 }
4720 break;
4721
4722 case SHIFT_ASR_IMMEDIATE:
4723 if (shift != SHIFT_ASR)
4724 {
4725 inst.error = _("'ASR' required");
4726 return FAIL;
4727 }
4728 break;
4729
4730 default: abort ();
4731 }
4732
4733 if (shift != SHIFT_RRX)
4734 {
4735 /* Whitespace can appear here if the next thing is a bare digit. */
4736 skip_whitespace (p);
4737
4738 if (mode == NO_SHIFT_RESTRICT
4739 && (reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
4740 {
4741 inst.operands[i].imm = reg;
4742 inst.operands[i].immisreg = 1;
4743 }
4744 else if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX))
4745 return FAIL;
4746 }
4747 inst.operands[i].shift_kind = shift;
4748 inst.operands[i].shifted = 1;
4749 *str = p;
4750 return SUCCESS;
4751 }
4752
4753 /* Parse a <shifter_operand> for an ARM data processing instruction:
4754
4755 #<immediate>
4756 #<immediate>, <rotate>
4757 <Rm>
4758 <Rm>, <shift>
4759
4760 where <shift> is defined by parse_shift above, and <rotate> is a
4761 multiple of 2 between 0 and 30. Validation of immediate operands
4762 is deferred to md_apply_fix. */
4763
4764 static int
4765 parse_shifter_operand (char **str, int i)
4766 {
4767 int value;
4768 expressionS exp;
4769
4770 if ((value = arm_reg_parse (str, REG_TYPE_RN)) != FAIL)
4771 {
4772 inst.operands[i].reg = value;
4773 inst.operands[i].isreg = 1;
4774
4775 /* parse_shift will override this if appropriate */
4776 inst.reloc.exp.X_op = O_constant;
4777 inst.reloc.exp.X_add_number = 0;
4778
4779 if (skip_past_comma (str) == FAIL)
4780 return SUCCESS;
4781
4782 /* Shift operation on register. */
4783 return parse_shift (str, i, NO_SHIFT_RESTRICT);
4784 }
4785
4786 if (my_get_expression (&inst.reloc.exp, str, GE_IMM_PREFIX))
4787 return FAIL;
4788
4789 if (skip_past_comma (str) == SUCCESS)
4790 {
4791 /* #x, y -- ie explicit rotation by Y. */
4792 if (my_get_expression (&exp, str, GE_NO_PREFIX))
4793 return FAIL;
4794
4795 if (exp.X_op != O_constant || inst.reloc.exp.X_op != O_constant)
4796 {
4797 inst.error = _("constant expression expected");
4798 return FAIL;
4799 }
4800
4801 value = exp.X_add_number;
4802 if (value < 0 || value > 30 || value % 2 != 0)
4803 {
4804 inst.error = _("invalid rotation");
4805 return FAIL;
4806 }
4807 if (inst.reloc.exp.X_add_number < 0 || inst.reloc.exp.X_add_number > 255)
4808 {
4809 inst.error = _("invalid constant");
4810 return FAIL;
4811 }
4812
4813 /* Convert to decoded value. md_apply_fix will put it back. */
4814 inst.reloc.exp.X_add_number
4815 = (((inst.reloc.exp.X_add_number << (32 - value))
4816 | (inst.reloc.exp.X_add_number >> value)) & 0xffffffff);
4817 }
4818
4819 inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
4820 inst.reloc.pc_rel = 0;
4821 return SUCCESS;
4822 }
4823
4824 /* Group relocation information. Each entry in the table contains the
4825 textual name of the relocation as may appear in assembler source
4826 and must end with a colon.
4827 Along with this textual name are the relocation codes to be used if
4828 the corresponding instruction is an ALU instruction (ADD or SUB only),
4829 an LDR, an LDRS, or an LDC. */
4830
4831 struct group_reloc_table_entry
4832 {
4833 const char *name;
4834 int alu_code;
4835 int ldr_code;
4836 int ldrs_code;
4837 int ldc_code;
4838 };
4839
4840 typedef enum
4841 {
4842 /* Varieties of non-ALU group relocation. */
4843
4844 GROUP_LDR,
4845 GROUP_LDRS,
4846 GROUP_LDC
4847 } group_reloc_type;
4848
4849 static struct group_reloc_table_entry group_reloc_table[] =
4850 { /* Program counter relative: */
4851 { "pc_g0_nc",
4852 BFD_RELOC_ARM_ALU_PC_G0_NC, /* ALU */
4853 0, /* LDR */
4854 0, /* LDRS */
4855 0 }, /* LDC */
4856 { "pc_g0",
4857 BFD_RELOC_ARM_ALU_PC_G0, /* ALU */
4858 BFD_RELOC_ARM_LDR_PC_G0, /* LDR */
4859 BFD_RELOC_ARM_LDRS_PC_G0, /* LDRS */
4860 BFD_RELOC_ARM_LDC_PC_G0 }, /* LDC */
4861 { "pc_g1_nc",
4862 BFD_RELOC_ARM_ALU_PC_G1_NC, /* ALU */
4863 0, /* LDR */
4864 0, /* LDRS */
4865 0 }, /* LDC */
4866 { "pc_g1",
4867 BFD_RELOC_ARM_ALU_PC_G1, /* ALU */
4868 BFD_RELOC_ARM_LDR_PC_G1, /* LDR */
4869 BFD_RELOC_ARM_LDRS_PC_G1, /* LDRS */
4870 BFD_RELOC_ARM_LDC_PC_G1 }, /* LDC */
4871 { "pc_g2",
4872 BFD_RELOC_ARM_ALU_PC_G2, /* ALU */
4873 BFD_RELOC_ARM_LDR_PC_G2, /* LDR */
4874 BFD_RELOC_ARM_LDRS_PC_G2, /* LDRS */
4875 BFD_RELOC_ARM_LDC_PC_G2 }, /* LDC */
4876 /* Section base relative */
4877 { "sb_g0_nc",
4878 BFD_RELOC_ARM_ALU_SB_G0_NC, /* ALU */
4879 0, /* LDR */
4880 0, /* LDRS */
4881 0 }, /* LDC */
4882 { "sb_g0",
4883 BFD_RELOC_ARM_ALU_SB_G0, /* ALU */
4884 BFD_RELOC_ARM_LDR_SB_G0, /* LDR */
4885 BFD_RELOC_ARM_LDRS_SB_G0, /* LDRS */
4886 BFD_RELOC_ARM_LDC_SB_G0 }, /* LDC */
4887 { "sb_g1_nc",
4888 BFD_RELOC_ARM_ALU_SB_G1_NC, /* ALU */
4889 0, /* LDR */
4890 0, /* LDRS */
4891 0 }, /* LDC */
4892 { "sb_g1",
4893 BFD_RELOC_ARM_ALU_SB_G1, /* ALU */
4894 BFD_RELOC_ARM_LDR_SB_G1, /* LDR */
4895 BFD_RELOC_ARM_LDRS_SB_G1, /* LDRS */
4896 BFD_RELOC_ARM_LDC_SB_G1 }, /* LDC */
4897 { "sb_g2",
4898 BFD_RELOC_ARM_ALU_SB_G2, /* ALU */
4899 BFD_RELOC_ARM_LDR_SB_G2, /* LDR */
4900 BFD_RELOC_ARM_LDRS_SB_G2, /* LDRS */
4901 BFD_RELOC_ARM_LDC_SB_G2 } }; /* LDC */
4902
4903 /* Given the address of a pointer pointing to the textual name of a group
4904 relocation as may appear in assembler source, attempt to find its details
4905 in group_reloc_table. The pointer will be updated to the character after
4906 the trailing colon. On failure, FAIL will be returned; SUCCESS
4907 otherwise. On success, *entry will be updated to point at the relevant
4908 group_reloc_table entry. */
4909
4910 static int
4911 find_group_reloc_table_entry (char **str, struct group_reloc_table_entry **out)
4912 {
4913 unsigned int i;
4914 for (i = 0; i < ARRAY_SIZE (group_reloc_table); i++)
4915 {
4916 int length = strlen (group_reloc_table[i].name);
4917
4918 if (strncasecmp (group_reloc_table[i].name, *str, length) == 0
4919 && (*str)[length] == ':')
4920 {
4921 *out = &group_reloc_table[i];
4922 *str += (length + 1);
4923 return SUCCESS;
4924 }
4925 }
4926
4927 return FAIL;
4928 }
4929
4930 /* Parse a <shifter_operand> for an ARM data processing instruction
4931 (as for parse_shifter_operand) where group relocations are allowed:
4932
4933 #<immediate>
4934 #<immediate>, <rotate>
4935 #:<group_reloc>:<expression>
4936 <Rm>
4937 <Rm>, <shift>
4938
4939 where <group_reloc> is one of the strings defined in group_reloc_table.
4940 The hashes are optional.
4941
4942 Everything else is as for parse_shifter_operand. */
4943
4944 static parse_operand_result
4945 parse_shifter_operand_group_reloc (char **str, int i)
4946 {
4947 /* Determine if we have the sequence of characters #: or just :
4948 coming next. If we do, then we check for a group relocation.
4949 If we don't, punt the whole lot to parse_shifter_operand. */
4950
4951 if (((*str)[0] == '#' && (*str)[1] == ':')
4952 || (*str)[0] == ':')
4953 {
4954 struct group_reloc_table_entry *entry;
4955
4956 if ((*str)[0] == '#')
4957 (*str) += 2;
4958 else
4959 (*str)++;
4960
4961 /* Try to parse a group relocation. Anything else is an error. */
4962 if (find_group_reloc_table_entry (str, &entry) == FAIL)
4963 {
4964 inst.error = _("unknown group relocation");
4965 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
4966 }
4967
4968 /* We now have the group relocation table entry corresponding to
4969 the name in the assembler source. Next, we parse the expression. */
4970 if (my_get_expression (&inst.reloc.exp, str, GE_NO_PREFIX))
4971 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
4972
4973 /* Record the relocation type (always the ALU variant here). */
4974 inst.reloc.type = (bfd_reloc_code_real_type) entry->alu_code;
4975 gas_assert (inst.reloc.type != 0);
4976
4977 return PARSE_OPERAND_SUCCESS;
4978 }
4979 else
4980 return parse_shifter_operand (str, i) == SUCCESS
4981 ? PARSE_OPERAND_SUCCESS : PARSE_OPERAND_FAIL;
4982
4983 /* Never reached. */
4984 }
4985
4986 /* Parse a Neon alignment expression. Information is written to
4987 inst.operands[i]. We assume the initial ':' has been skipped.
4988
4989 align .imm = align << 8, .immisalign=1, .preind=0 */
4990 static parse_operand_result
4991 parse_neon_alignment (char **str, int i)
4992 {
4993 char *p = *str;
4994 expressionS exp;
4995
4996 my_get_expression (&exp, &p, GE_NO_PREFIX);
4997
4998 if (exp.X_op != O_constant)
4999 {
5000 inst.error = _("alignment must be constant");
5001 return PARSE_OPERAND_FAIL;
5002 }
5003
5004 inst.operands[i].imm = exp.X_add_number << 8;
5005 inst.operands[i].immisalign = 1;
5006 /* Alignments are not pre-indexes. */
5007 inst.operands[i].preind = 0;
5008
5009 *str = p;
5010 return PARSE_OPERAND_SUCCESS;
5011 }
5012
5013 /* Parse all forms of an ARM address expression. Information is written
5014 to inst.operands[i] and/or inst.reloc.
5015
5016 Preindexed addressing (.preind=1):
5017
5018 [Rn, #offset] .reg=Rn .reloc.exp=offset
5019 [Rn, +/-Rm] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5020 [Rn, +/-Rm, shift] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5021 .shift_kind=shift .reloc.exp=shift_imm
5022
5023 These three may have a trailing ! which causes .writeback to be set also.
5024
5025 Postindexed addressing (.postind=1, .writeback=1):
5026
5027 [Rn], #offset .reg=Rn .reloc.exp=offset
5028 [Rn], +/-Rm .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5029 [Rn], +/-Rm, shift .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5030 .shift_kind=shift .reloc.exp=shift_imm
5031
5032 Unindexed addressing (.preind=0, .postind=0):
5033
5034 [Rn], {option} .reg=Rn .imm=option .immisreg=0
5035
5036 Other:
5037
5038 [Rn]{!} shorthand for [Rn,#0]{!}
5039 =immediate .isreg=0 .reloc.exp=immediate
5040 label .reg=PC .reloc.pc_rel=1 .reloc.exp=label
5041
5042 It is the caller's responsibility to check for addressing modes not
5043 supported by the instruction, and to set inst.reloc.type. */
5044
5045 static parse_operand_result
5046 parse_address_main (char **str, int i, int group_relocations,
5047 group_reloc_type group_type)
5048 {
5049 char *p = *str;
5050 int reg;
5051
5052 if (skip_past_char (&p, '[') == FAIL)
5053 {
5054 if (skip_past_char (&p, '=') == FAIL)
5055 {
5056 /* Bare address - translate to PC-relative offset. */
5057 inst.reloc.pc_rel = 1;
5058 inst.operands[i].reg = REG_PC;
5059 inst.operands[i].isreg = 1;
5060 inst.operands[i].preind = 1;
5061 }
5062 /* Otherwise a load-constant pseudo op, no special treatment needed here. */
5063
5064 if (my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX))
5065 return PARSE_OPERAND_FAIL;
5066
5067 *str = p;
5068 return PARSE_OPERAND_SUCCESS;
5069 }
5070
5071 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
5072 {
5073 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
5074 return PARSE_OPERAND_FAIL;
5075 }
5076 inst.operands[i].reg = reg;
5077 inst.operands[i].isreg = 1;
5078
5079 if (skip_past_comma (&p) == SUCCESS)
5080 {
5081 inst.operands[i].preind = 1;
5082
5083 if (*p == '+') p++;
5084 else if (*p == '-') p++, inst.operands[i].negative = 1;
5085
5086 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
5087 {
5088 inst.operands[i].imm = reg;
5089 inst.operands[i].immisreg = 1;
5090
5091 if (skip_past_comma (&p) == SUCCESS)
5092 if (parse_shift (&p, i, SHIFT_IMMEDIATE) == FAIL)
5093 return PARSE_OPERAND_FAIL;
5094 }
5095 else if (skip_past_char (&p, ':') == SUCCESS)
5096 {
5097 /* FIXME: '@' should be used here, but it's filtered out by generic
5098 code before we get to see it here. This may be subject to
5099 change. */
5100 parse_operand_result result = parse_neon_alignment (&p, i);
5101
5102 if (result != PARSE_OPERAND_SUCCESS)
5103 return result;
5104 }
5105 else
5106 {
5107 if (inst.operands[i].negative)
5108 {
5109 inst.operands[i].negative = 0;
5110 p--;
5111 }
5112
5113 if (group_relocations
5114 && ((*p == '#' && *(p + 1) == ':') || *p == ':'))
5115 {
5116 struct group_reloc_table_entry *entry;
5117
5118 /* Skip over the #: or : sequence. */
5119 if (*p == '#')
5120 p += 2;
5121 else
5122 p++;
5123
5124 /* Try to parse a group relocation. Anything else is an
5125 error. */
5126 if (find_group_reloc_table_entry (&p, &entry) == FAIL)
5127 {
5128 inst.error = _("unknown group relocation");
5129 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5130 }
5131
5132 /* We now have the group relocation table entry corresponding to
5133 the name in the assembler source. Next, we parse the
5134 expression. */
5135 if (my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX))
5136 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5137
5138 /* Record the relocation type. */
5139 switch (group_type)
5140 {
5141 case GROUP_LDR:
5142 inst.reloc.type = (bfd_reloc_code_real_type) entry->ldr_code;
5143 break;
5144
5145 case GROUP_LDRS:
5146 inst.reloc.type = (bfd_reloc_code_real_type) entry->ldrs_code;
5147 break;
5148
5149 case GROUP_LDC:
5150 inst.reloc.type = (bfd_reloc_code_real_type) entry->ldc_code;
5151 break;
5152
5153 default:
5154 gas_assert (0);
5155 }
5156
5157 if (inst.reloc.type == 0)
5158 {
5159 inst.error = _("this group relocation is not allowed on this instruction");
5160 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5161 }
5162 }
5163 else
5164 if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX))
5165 return PARSE_OPERAND_FAIL;
5166 }
5167 }
5168 else if (skip_past_char (&p, ':') == SUCCESS)
5169 {
5170 /* FIXME: '@' should be used here, but it's filtered out by generic code
5171 before we get to see it here. This may be subject to change. */
5172 parse_operand_result result = parse_neon_alignment (&p, i);
5173
5174 if (result != PARSE_OPERAND_SUCCESS)
5175 return result;
5176 }
5177
5178 if (skip_past_char (&p, ']') == FAIL)
5179 {
5180 inst.error = _("']' expected");
5181 return PARSE_OPERAND_FAIL;
5182 }
5183
5184 if (skip_past_char (&p, '!') == SUCCESS)
5185 inst.operands[i].writeback = 1;
5186
5187 else if (skip_past_comma (&p) == SUCCESS)
5188 {
5189 if (skip_past_char (&p, '{') == SUCCESS)
5190 {
5191 /* [Rn], {expr} - unindexed, with option */
5192 if (parse_immediate (&p, &inst.operands[i].imm,
5193 0, 255, TRUE) == FAIL)
5194 return PARSE_OPERAND_FAIL;
5195
5196 if (skip_past_char (&p, '}') == FAIL)
5197 {
5198 inst.error = _("'}' expected at end of 'option' field");
5199 return PARSE_OPERAND_FAIL;
5200 }
5201 if (inst.operands[i].preind)
5202 {
5203 inst.error = _("cannot combine index with option");
5204 return PARSE_OPERAND_FAIL;
5205 }
5206 *str = p;
5207 return PARSE_OPERAND_SUCCESS;
5208 }
5209 else
5210 {
5211 inst.operands[i].postind = 1;
5212 inst.operands[i].writeback = 1;
5213
5214 if (inst.operands[i].preind)
5215 {
5216 inst.error = _("cannot combine pre- and post-indexing");
5217 return PARSE_OPERAND_FAIL;
5218 }
5219
5220 if (*p == '+') p++;
5221 else if (*p == '-') p++, inst.operands[i].negative = 1;
5222
5223 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
5224 {
5225 /* We might be using the immediate for alignment already. If we
5226 are, OR the register number into the low-order bits. */
5227 if (inst.operands[i].immisalign)
5228 inst.operands[i].imm |= reg;
5229 else
5230 inst.operands[i].imm = reg;
5231 inst.operands[i].immisreg = 1;
5232
5233 if (skip_past_comma (&p) == SUCCESS)
5234 if (parse_shift (&p, i, SHIFT_IMMEDIATE) == FAIL)
5235 return PARSE_OPERAND_FAIL;
5236 }
5237 else
5238 {
5239 if (inst.operands[i].negative)
5240 {
5241 inst.operands[i].negative = 0;
5242 p--;
5243 }
5244 if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX))
5245 return PARSE_OPERAND_FAIL;
5246 }
5247 }
5248 }
5249
5250 /* If at this point neither .preind nor .postind is set, we have a
5251 bare [Rn]{!}, which is shorthand for [Rn,#0]{!}. */
5252 if (inst.operands[i].preind == 0 && inst.operands[i].postind == 0)
5253 {
5254 inst.operands[i].preind = 1;
5255 inst.reloc.exp.X_op = O_constant;
5256 inst.reloc.exp.X_add_number = 0;
5257 }
5258 *str = p;
5259 return PARSE_OPERAND_SUCCESS;
5260 }
5261
5262 static int
5263 parse_address (char **str, int i)
5264 {
5265 return parse_address_main (str, i, 0, GROUP_LDR) == PARSE_OPERAND_SUCCESS
5266 ? SUCCESS : FAIL;
5267 }
5268
5269 static parse_operand_result
5270 parse_address_group_reloc (char **str, int i, group_reloc_type type)
5271 {
5272 return parse_address_main (str, i, 1, type);
5273 }
5274
5275 /* Parse an operand for a MOVW or MOVT instruction. */
5276 static int
5277 parse_half (char **str)
5278 {
5279 char * p;
5280
5281 p = *str;
5282 skip_past_char (&p, '#');
5283 if (strncasecmp (p, ":lower16:", 9) == 0)
5284 inst.reloc.type = BFD_RELOC_ARM_MOVW;
5285 else if (strncasecmp (p, ":upper16:", 9) == 0)
5286 inst.reloc.type = BFD_RELOC_ARM_MOVT;
5287
5288 if (inst.reloc.type != BFD_RELOC_UNUSED)
5289 {
5290 p += 9;
5291 skip_whitespace (p);
5292 }
5293
5294 if (my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX))
5295 return FAIL;
5296
5297 if (inst.reloc.type == BFD_RELOC_UNUSED)
5298 {
5299 if (inst.reloc.exp.X_op != O_constant)
5300 {
5301 inst.error = _("constant expression expected");
5302 return FAIL;
5303 }
5304 if (inst.reloc.exp.X_add_number < 0
5305 || inst.reloc.exp.X_add_number > 0xffff)
5306 {
5307 inst.error = _("immediate value out of range");
5308 return FAIL;
5309 }
5310 }
5311 *str = p;
5312 return SUCCESS;
5313 }
5314
5315 /* Miscellaneous. */
5316
5317 /* Parse a PSR flag operand. The value returned is FAIL on syntax error,
5318 or a bitmask suitable to be or-ed into the ARM msr instruction. */
5319 static int
5320 parse_psr (char **str)
5321 {
5322 char *p;
5323 unsigned long psr_field;
5324 const struct asm_psr *psr;
5325 char *start;
5326
5327 /* CPSR's and SPSR's can now be lowercase. This is just a convenience
5328 feature for ease of use and backwards compatibility. */
5329 p = *str;
5330 if (strncasecmp (p, "SPSR", 4) == 0)
5331 psr_field = SPSR_BIT;
5332 else if (strncasecmp (p, "CPSR", 4) == 0
5333 || (strncasecmp (p, "APSR", 4) == 0
5334 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_m)))
5335 psr_field = 0;
5336 else
5337 {
5338 start = p;
5339 do
5340 p++;
5341 while (ISALNUM (*p) || *p == '_');
5342
5343 psr = (const struct asm_psr *) hash_find_n (arm_v7m_psr_hsh, start,
5344 p - start);
5345 if (!psr)
5346 return FAIL;
5347
5348 *str = p;
5349 return psr->field;
5350 }
5351
5352 p += 4;
5353 if (*p == '_')
5354 {
5355 /* A suffix follows. */
5356 p++;
5357 start = p;
5358
5359 do
5360 p++;
5361 while (ISALNUM (*p) || *p == '_');
5362
5363 psr = (const struct asm_psr *) hash_find_n (arm_psr_hsh, start,
5364 p - start);
5365 if (!psr)
5366 goto error;
5367
5368 psr_field |= psr->field;
5369 }
5370 else
5371 {
5372 if (ISALNUM (*p))
5373 goto error; /* Garbage after "[CS]PSR". */
5374
5375 psr_field |= (PSR_c | PSR_f);
5376 }
5377 *str = p;
5378 return psr_field;
5379
5380 error:
5381 inst.error = _("flag for {c}psr instruction expected");
5382 return FAIL;
5383 }
5384
5385 /* Parse the flags argument to CPSI[ED]. Returns FAIL on error, or a
5386 value suitable for splatting into the AIF field of the instruction. */
5387
5388 static int
5389 parse_cps_flags (char **str)
5390 {
5391 int val = 0;
5392 int saw_a_flag = 0;
5393 char *s = *str;
5394
5395 for (;;)
5396 switch (*s++)
5397 {
5398 case '\0': case ',':
5399 goto done;
5400
5401 case 'a': case 'A': saw_a_flag = 1; val |= 0x4; break;
5402 case 'i': case 'I': saw_a_flag = 1; val |= 0x2; break;
5403 case 'f': case 'F': saw_a_flag = 1; val |= 0x1; break;
5404
5405 default:
5406 inst.error = _("unrecognized CPS flag");
5407 return FAIL;
5408 }
5409
5410 done:
5411 if (saw_a_flag == 0)
5412 {
5413 inst.error = _("missing CPS flags");
5414 return FAIL;
5415 }
5416
5417 *str = s - 1;
5418 return val;
5419 }
5420
5421 /* Parse an endian specifier ("BE" or "LE", case insensitive);
5422 returns 0 for big-endian, 1 for little-endian, FAIL for an error. */
5423
5424 static int
5425 parse_endian_specifier (char **str)
5426 {
5427 int little_endian;
5428 char *s = *str;
5429
5430 if (strncasecmp (s, "BE", 2))
5431 little_endian = 0;
5432 else if (strncasecmp (s, "LE", 2))
5433 little_endian = 1;
5434 else
5435 {
5436 inst.error = _("valid endian specifiers are be or le");
5437 return FAIL;
5438 }
5439
5440 if (ISALNUM (s[2]) || s[2] == '_')
5441 {
5442 inst.error = _("valid endian specifiers are be or le");
5443 return FAIL;
5444 }
5445
5446 *str = s + 2;
5447 return little_endian;
5448 }
5449
5450 /* Parse a rotation specifier: ROR #0, #8, #16, #24. *val receives a
5451 value suitable for poking into the rotate field of an sxt or sxta
5452 instruction, or FAIL on error. */
5453
5454 static int
5455 parse_ror (char **str)
5456 {
5457 int rot;
5458 char *s = *str;
5459
5460 if (strncasecmp (s, "ROR", 3) == 0)
5461 s += 3;
5462 else
5463 {
5464 inst.error = _("missing rotation field after comma");
5465 return FAIL;
5466 }
5467
5468 if (parse_immediate (&s, &rot, 0, 24, FALSE) == FAIL)
5469 return FAIL;
5470
5471 switch (rot)
5472 {
5473 case 0: *str = s; return 0x0;
5474 case 8: *str = s; return 0x1;
5475 case 16: *str = s; return 0x2;
5476 case 24: *str = s; return 0x3;
5477
5478 default:
5479 inst.error = _("rotation can only be 0, 8, 16, or 24");
5480 return FAIL;
5481 }
5482 }
5483
5484 /* Parse a conditional code (from conds[] below). The value returned is in the
5485 range 0 .. 14, or FAIL. */
5486 static int
5487 parse_cond (char **str)
5488 {
5489 char *q;
5490 const struct asm_cond *c;
5491 int n;
5492 /* Condition codes are always 2 characters, so matching up to
5493 3 characters is sufficient. */
5494 char cond[3];
5495
5496 q = *str;
5497 n = 0;
5498 while (ISALPHA (*q) && n < 3)
5499 {
5500 cond[n] = TOLOWER (*q);
5501 q++;
5502 n++;
5503 }
5504
5505 c = (const struct asm_cond *) hash_find_n (arm_cond_hsh, cond, n);
5506 if (!c)
5507 {
5508 inst.error = _("condition required");
5509 return FAIL;
5510 }
5511
5512 *str = q;
5513 return c->value;
5514 }
5515
5516 /* Parse an option for a barrier instruction. Returns the encoding for the
5517 option, or FAIL. */
5518 static int
5519 parse_barrier (char **str)
5520 {
5521 char *p, *q;
5522 const struct asm_barrier_opt *o;
5523
5524 p = q = *str;
5525 while (ISALPHA (*q))
5526 q++;
5527
5528 o = (const struct asm_barrier_opt *) hash_find_n (arm_barrier_opt_hsh, p,
5529 q - p);
5530 if (!o)
5531 return FAIL;
5532
5533 *str = q;
5534 return o->value;
5535 }
5536
5537 /* Parse the operands of a table branch instruction. Similar to a memory
5538 operand. */
5539 static int
5540 parse_tb (char **str)
5541 {
5542 char * p = *str;
5543 int reg;
5544
5545 if (skip_past_char (&p, '[') == FAIL)
5546 {
5547 inst.error = _("'[' expected");
5548 return FAIL;
5549 }
5550
5551 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
5552 {
5553 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
5554 return FAIL;
5555 }
5556 inst.operands[0].reg = reg;
5557
5558 if (skip_past_comma (&p) == FAIL)
5559 {
5560 inst.error = _("',' expected");
5561 return FAIL;
5562 }
5563
5564 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
5565 {
5566 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
5567 return FAIL;
5568 }
5569 inst.operands[0].imm = reg;
5570
5571 if (skip_past_comma (&p) == SUCCESS)
5572 {
5573 if (parse_shift (&p, 0, SHIFT_LSL_IMMEDIATE) == FAIL)
5574 return FAIL;
5575 if (inst.reloc.exp.X_add_number != 1)
5576 {
5577 inst.error = _("invalid shift");
5578 return FAIL;
5579 }
5580 inst.operands[0].shifted = 1;
5581 }
5582
5583 if (skip_past_char (&p, ']') == FAIL)
5584 {
5585 inst.error = _("']' expected");
5586 return FAIL;
5587 }
5588 *str = p;
5589 return SUCCESS;
5590 }
5591
5592 /* Parse the operands of a Neon VMOV instruction. See do_neon_mov for more
5593 information on the types the operands can take and how they are encoded.
5594 Up to four operands may be read; this function handles setting the
5595 ".present" field for each read operand itself.
5596 Updates STR and WHICH_OPERAND if parsing is successful and returns SUCCESS,
5597 else returns FAIL. */
5598
5599 static int
5600 parse_neon_mov (char **str, int *which_operand)
5601 {
5602 int i = *which_operand, val;
5603 enum arm_reg_type rtype;
5604 char *ptr = *str;
5605 struct neon_type_el optype;
5606
5607 if ((val = parse_scalar (&ptr, 8, &optype)) != FAIL)
5608 {
5609 /* Case 4: VMOV<c><q>.<size> <Dn[x]>, <Rd>. */
5610 inst.operands[i].reg = val;
5611 inst.operands[i].isscalar = 1;
5612 inst.operands[i].vectype = optype;
5613 inst.operands[i++].present = 1;
5614
5615 if (skip_past_comma (&ptr) == FAIL)
5616 goto wanted_comma;
5617
5618 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5619 goto wanted_arm;
5620
5621 inst.operands[i].reg = val;
5622 inst.operands[i].isreg = 1;
5623 inst.operands[i].present = 1;
5624 }
5625 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_NSDQ, &rtype, &optype))
5626 != FAIL)
5627 {
5628 /* Cases 0, 1, 2, 3, 5 (D only). */
5629 if (skip_past_comma (&ptr) == FAIL)
5630 goto wanted_comma;
5631
5632 inst.operands[i].reg = val;
5633 inst.operands[i].isreg = 1;
5634 inst.operands[i].isquad = (rtype == REG_TYPE_NQ);
5635 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
5636 inst.operands[i].isvec = 1;
5637 inst.operands[i].vectype = optype;
5638 inst.operands[i++].present = 1;
5639
5640 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
5641 {
5642 /* Case 5: VMOV<c><q> <Dm>, <Rd>, <Rn>.
5643 Case 13: VMOV <Sd>, <Rm> */
5644 inst.operands[i].reg = val;
5645 inst.operands[i].isreg = 1;
5646 inst.operands[i].present = 1;
5647
5648 if (rtype == REG_TYPE_NQ)
5649 {
5650 first_error (_("can't use Neon quad register here"));
5651 return FAIL;
5652 }
5653 else if (rtype != REG_TYPE_VFS)
5654 {
5655 i++;
5656 if (skip_past_comma (&ptr) == FAIL)
5657 goto wanted_comma;
5658 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5659 goto wanted_arm;
5660 inst.operands[i].reg = val;
5661 inst.operands[i].isreg = 1;
5662 inst.operands[i].present = 1;
5663 }
5664 }
5665 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_NSDQ, &rtype,
5666 &optype)) != FAIL)
5667 {
5668 /* Case 0: VMOV<c><q> <Qd>, <Qm>
5669 Case 1: VMOV<c><q> <Dd>, <Dm>
5670 Case 8: VMOV.F32 <Sd>, <Sm>
5671 Case 15: VMOV <Sd>, <Se>, <Rn>, <Rm> */
5672
5673 inst.operands[i].reg = val;
5674 inst.operands[i].isreg = 1;
5675 inst.operands[i].isquad = (rtype == REG_TYPE_NQ);
5676 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
5677 inst.operands[i].isvec = 1;
5678 inst.operands[i].vectype = optype;
5679 inst.operands[i].present = 1;
5680
5681 if (skip_past_comma (&ptr) == SUCCESS)
5682 {
5683 /* Case 15. */
5684 i++;
5685
5686 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5687 goto wanted_arm;
5688
5689 inst.operands[i].reg = val;
5690 inst.operands[i].isreg = 1;
5691 inst.operands[i++].present = 1;
5692
5693 if (skip_past_comma (&ptr) == FAIL)
5694 goto wanted_comma;
5695
5696 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5697 goto wanted_arm;
5698
5699 inst.operands[i].reg = val;
5700 inst.operands[i].isreg = 1;
5701 inst.operands[i++].present = 1;
5702 }
5703 }
5704 else if (parse_qfloat_immediate (&ptr, &inst.operands[i].imm) == SUCCESS)
5705 /* Case 2: VMOV<c><q>.<dt> <Qd>, #<float-imm>
5706 Case 3: VMOV<c><q>.<dt> <Dd>, #<float-imm>
5707 Case 10: VMOV.F32 <Sd>, #<imm>
5708 Case 11: VMOV.F64 <Dd>, #<imm> */
5709 inst.operands[i].immisfloat = 1;
5710 else if (parse_big_immediate (&ptr, i) == SUCCESS)
5711 /* Case 2: VMOV<c><q>.<dt> <Qd>, #<imm>
5712 Case 3: VMOV<c><q>.<dt> <Dd>, #<imm> */
5713 ;
5714 else
5715 {
5716 first_error (_("expected <Rm> or <Dm> or <Qm> operand"));
5717 return FAIL;
5718 }
5719 }
5720 else if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
5721 {
5722 /* Cases 6, 7. */
5723 inst.operands[i].reg = val;
5724 inst.operands[i].isreg = 1;
5725 inst.operands[i++].present = 1;
5726
5727 if (skip_past_comma (&ptr) == FAIL)
5728 goto wanted_comma;
5729
5730 if ((val = parse_scalar (&ptr, 8, &optype)) != FAIL)
5731 {
5732 /* Case 6: VMOV<c><q>.<dt> <Rd>, <Dn[x]> */
5733 inst.operands[i].reg = val;
5734 inst.operands[i].isscalar = 1;
5735 inst.operands[i].present = 1;
5736 inst.operands[i].vectype = optype;
5737 }
5738 else if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
5739 {
5740 /* Case 7: VMOV<c><q> <Rd>, <Rn>, <Dm> */
5741 inst.operands[i].reg = val;
5742 inst.operands[i].isreg = 1;
5743 inst.operands[i++].present = 1;
5744
5745 if (skip_past_comma (&ptr) == FAIL)
5746 goto wanted_comma;
5747
5748 if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFSD, &rtype, &optype))
5749 == FAIL)
5750 {
5751 first_error (_(reg_expected_msgs[REG_TYPE_VFSD]));
5752 return FAIL;
5753 }
5754
5755 inst.operands[i].reg = val;
5756 inst.operands[i].isreg = 1;
5757 inst.operands[i].isvec = 1;
5758 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
5759 inst.operands[i].vectype = optype;
5760 inst.operands[i].present = 1;
5761
5762 if (rtype == REG_TYPE_VFS)
5763 {
5764 /* Case 14. */
5765 i++;
5766 if (skip_past_comma (&ptr) == FAIL)
5767 goto wanted_comma;
5768 if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFS, NULL,
5769 &optype)) == FAIL)
5770 {
5771 first_error (_(reg_expected_msgs[REG_TYPE_VFS]));
5772 return FAIL;
5773 }
5774 inst.operands[i].reg = val;
5775 inst.operands[i].isreg = 1;
5776 inst.operands[i].isvec = 1;
5777 inst.operands[i].issingle = 1;
5778 inst.operands[i].vectype = optype;
5779 inst.operands[i].present = 1;
5780 }
5781 }
5782 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFS, NULL, &optype))
5783 != FAIL)
5784 {
5785 /* Case 13. */
5786 inst.operands[i].reg = val;
5787 inst.operands[i].isreg = 1;
5788 inst.operands[i].isvec = 1;
5789 inst.operands[i].issingle = 1;
5790 inst.operands[i].vectype = optype;
5791 inst.operands[i++].present = 1;
5792 }
5793 }
5794 else
5795 {
5796 first_error (_("parse error"));
5797 return FAIL;
5798 }
5799
5800 /* Successfully parsed the operands. Update args. */
5801 *which_operand = i;
5802 *str = ptr;
5803 return SUCCESS;
5804
5805 wanted_comma:
5806 first_error (_("expected comma"));
5807 return FAIL;
5808
5809 wanted_arm:
5810 first_error (_(reg_expected_msgs[REG_TYPE_RN]));
5811 return FAIL;
5812 }
5813
5814 /* Use this macro when the operand constraints are different
5815 for ARM and THUMB (e.g. ldrd). */
5816 #define MIX_ARM_THUMB_OPERANDS(arm_operand, thumb_operand) \
5817 ((arm_operand) | ((thumb_operand) << 16))
5818
5819 /* Matcher codes for parse_operands. */
5820 enum operand_parse_code
5821 {
5822 OP_stop, /* end of line */
5823
5824 OP_RR, /* ARM register */
5825 OP_RRnpc, /* ARM register, not r15 */
5826 OP_RRnpcsp, /* ARM register, neither r15 nor r13 (a.k.a. 'BadReg') */
5827 OP_RRnpcb, /* ARM register, not r15, in square brackets */
5828 OP_RRnpctw, /* ARM register, not r15 in Thumb-state or with writeback,
5829 optional trailing ! */
5830 OP_RRw, /* ARM register, not r15, optional trailing ! */
5831 OP_RCP, /* Coprocessor number */
5832 OP_RCN, /* Coprocessor register */
5833 OP_RF, /* FPA register */
5834 OP_RVS, /* VFP single precision register */
5835 OP_RVD, /* VFP double precision register (0..15) */
5836 OP_RND, /* Neon double precision register (0..31) */
5837 OP_RNQ, /* Neon quad precision register */
5838 OP_RVSD, /* VFP single or double precision register */
5839 OP_RNDQ, /* Neon double or quad precision register */
5840 OP_RNSDQ, /* Neon single, double or quad precision register */
5841 OP_RNSC, /* Neon scalar D[X] */
5842 OP_RVC, /* VFP control register */
5843 OP_RMF, /* Maverick F register */
5844 OP_RMD, /* Maverick D register */
5845 OP_RMFX, /* Maverick FX register */
5846 OP_RMDX, /* Maverick DX register */
5847 OP_RMAX, /* Maverick AX register */
5848 OP_RMDS, /* Maverick DSPSC register */
5849 OP_RIWR, /* iWMMXt wR register */
5850 OP_RIWC, /* iWMMXt wC register */
5851 OP_RIWG, /* iWMMXt wCG register */
5852 OP_RXA, /* XScale accumulator register */
5853
5854 OP_REGLST, /* ARM register list */
5855 OP_VRSLST, /* VFP single-precision register list */
5856 OP_VRDLST, /* VFP double-precision register list */
5857 OP_VRSDLST, /* VFP single or double-precision register list (& quad) */
5858 OP_NRDLST, /* Neon double-precision register list (d0-d31, qN aliases) */
5859 OP_NSTRLST, /* Neon element/structure list */
5860
5861 OP_RNDQ_I0, /* Neon D or Q reg, or immediate zero. */
5862 OP_RVSD_I0, /* VFP S or D reg, or immediate zero. */
5863 OP_RR_RNSC, /* ARM reg or Neon scalar. */
5864 OP_RNSDQ_RNSC, /* Vector S, D or Q reg, or Neon scalar. */
5865 OP_RNDQ_RNSC, /* Neon D or Q reg, or Neon scalar. */
5866 OP_RND_RNSC, /* Neon D reg, or Neon scalar. */
5867 OP_VMOV, /* Neon VMOV operands. */
5868 OP_RNDQ_Ibig, /* Neon D or Q reg, or big immediate for logic and VMVN. */
5869 OP_RNDQ_I63b, /* Neon D or Q reg, or immediate for shift. */
5870 OP_RIWR_I32z, /* iWMMXt wR register, or immediate 0 .. 32 for iWMMXt2. */
5871
5872 OP_I0, /* immediate zero */
5873 OP_I7, /* immediate value 0 .. 7 */
5874 OP_I15, /* 0 .. 15 */
5875 OP_I16, /* 1 .. 16 */
5876 OP_I16z, /* 0 .. 16 */
5877 OP_I31, /* 0 .. 31 */
5878 OP_I31w, /* 0 .. 31, optional trailing ! */
5879 OP_I32, /* 1 .. 32 */
5880 OP_I32z, /* 0 .. 32 */
5881 OP_I63, /* 0 .. 63 */
5882 OP_I63s, /* -64 .. 63 */
5883 OP_I64, /* 1 .. 64 */
5884 OP_I64z, /* 0 .. 64 */
5885 OP_I255, /* 0 .. 255 */
5886
5887 OP_I4b, /* immediate, prefix optional, 1 .. 4 */
5888 OP_I7b, /* 0 .. 7 */
5889 OP_I15b, /* 0 .. 15 */
5890 OP_I31b, /* 0 .. 31 */
5891
5892 OP_SH, /* shifter operand */
5893 OP_SHG, /* shifter operand with possible group relocation */
5894 OP_ADDR, /* Memory address expression (any mode) */
5895 OP_ADDRGLDR, /* Mem addr expr (any mode) with possible LDR group reloc */
5896 OP_ADDRGLDRS, /* Mem addr expr (any mode) with possible LDRS group reloc */
5897 OP_ADDRGLDC, /* Mem addr expr (any mode) with possible LDC group reloc */
5898 OP_EXP, /* arbitrary expression */
5899 OP_EXPi, /* same, with optional immediate prefix */
5900 OP_EXPr, /* same, with optional relocation suffix */
5901 OP_HALF, /* 0 .. 65535 or low/high reloc. */
5902
5903 OP_CPSF, /* CPS flags */
5904 OP_ENDI, /* Endianness specifier */
5905 OP_PSR, /* CPSR/SPSR mask for msr */
5906 OP_COND, /* conditional code */
5907 OP_TB, /* Table branch. */
5908
5909 OP_RVC_PSR, /* CPSR/SPSR mask for msr, or VFP control register. */
5910 OP_APSR_RR, /* ARM register or "APSR_nzcv". */
5911
5912 OP_RRnpc_I0, /* ARM register or literal 0 */
5913 OP_RR_EXr, /* ARM register or expression with opt. reloc suff. */
5914 OP_RR_EXi, /* ARM register or expression with imm prefix */
5915 OP_RF_IF, /* FPA register or immediate */
5916 OP_RIWR_RIWC, /* iWMMXt R or C reg */
5917 OP_RIWC_RIWG, /* iWMMXt wC or wCG reg */
5918
5919 /* Optional operands. */
5920 OP_oI7b, /* immediate, prefix optional, 0 .. 7 */
5921 OP_oI31b, /* 0 .. 31 */
5922 OP_oI32b, /* 1 .. 32 */
5923 OP_oIffffb, /* 0 .. 65535 */
5924 OP_oI255c, /* curly-brace enclosed, 0 .. 255 */
5925
5926 OP_oRR, /* ARM register */
5927 OP_oRRnpc, /* ARM register, not the PC */
5928 OP_oRRnpcsp, /* ARM register, neither the PC nor the SP (a.k.a. BadReg) */
5929 OP_oRRw, /* ARM register, not r15, optional trailing ! */
5930 OP_oRND, /* Optional Neon double precision register */
5931 OP_oRNQ, /* Optional Neon quad precision register */
5932 OP_oRNDQ, /* Optional Neon double or quad precision register */
5933 OP_oRNSDQ, /* Optional single, double or quad precision vector register */
5934 OP_oSHll, /* LSL immediate */
5935 OP_oSHar, /* ASR immediate */
5936 OP_oSHllar, /* LSL or ASR immediate */
5937 OP_oROR, /* ROR 0/8/16/24 */
5938 OP_oBARRIER_I15, /* Option argument for a barrier instruction. */
5939
5940 /* Some pre-defined mixed (ARM/THUMB) operands. */
5941 OP_RR_npcsp = MIX_ARM_THUMB_OPERANDS (OP_RR, OP_RRnpcsp),
5942 OP_RRnpc_npcsp = MIX_ARM_THUMB_OPERANDS (OP_RRnpc, OP_RRnpcsp),
5943 OP_oRRnpc_npcsp = MIX_ARM_THUMB_OPERANDS (OP_oRRnpc, OP_oRRnpcsp),
5944
5945 OP_FIRST_OPTIONAL = OP_oI7b
5946 };
5947
5948 /* Generic instruction operand parser. This does no encoding and no
5949 semantic validation; it merely squirrels values away in the inst
5950 structure. Returns SUCCESS or FAIL depending on whether the
5951 specified grammar matched. */
5952 static int
5953 parse_operands (char *str, const unsigned int *pattern, bfd_boolean thumb)
5954 {
5955 unsigned const int *upat = pattern;
5956 char *backtrack_pos = 0;
5957 const char *backtrack_error = 0;
5958 int i, val, backtrack_index = 0;
5959 enum arm_reg_type rtype;
5960 parse_operand_result result;
5961 unsigned int op_parse_code;
5962
5963 #define po_char_or_fail(chr) \
5964 do \
5965 { \
5966 if (skip_past_char (&str, chr) == FAIL) \
5967 goto bad_args; \
5968 } \
5969 while (0)
5970
5971 #define po_reg_or_fail(regtype) \
5972 do \
5973 { \
5974 val = arm_typed_reg_parse (& str, regtype, & rtype, \
5975 & inst.operands[i].vectype); \
5976 if (val == FAIL) \
5977 { \
5978 first_error (_(reg_expected_msgs[regtype])); \
5979 goto failure; \
5980 } \
5981 inst.operands[i].reg = val; \
5982 inst.operands[i].isreg = 1; \
5983 inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \
5984 inst.operands[i].issingle = (rtype == REG_TYPE_VFS); \
5985 inst.operands[i].isvec = (rtype == REG_TYPE_VFS \
5986 || rtype == REG_TYPE_VFD \
5987 || rtype == REG_TYPE_NQ); \
5988 } \
5989 while (0)
5990
5991 #define po_reg_or_goto(regtype, label) \
5992 do \
5993 { \
5994 val = arm_typed_reg_parse (& str, regtype, & rtype, \
5995 & inst.operands[i].vectype); \
5996 if (val == FAIL) \
5997 goto label; \
5998 \
5999 inst.operands[i].reg = val; \
6000 inst.operands[i].isreg = 1; \
6001 inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \
6002 inst.operands[i].issingle = (rtype == REG_TYPE_VFS); \
6003 inst.operands[i].isvec = (rtype == REG_TYPE_VFS \
6004 || rtype == REG_TYPE_VFD \
6005 || rtype == REG_TYPE_NQ); \
6006 } \
6007 while (0)
6008
6009 #define po_imm_or_fail(min, max, popt) \
6010 do \
6011 { \
6012 if (parse_immediate (&str, &val, min, max, popt) == FAIL) \
6013 goto failure; \
6014 inst.operands[i].imm = val; \
6015 } \
6016 while (0)
6017
6018 #define po_scalar_or_goto(elsz, label) \
6019 do \
6020 { \
6021 val = parse_scalar (& str, elsz, & inst.operands[i].vectype); \
6022 if (val == FAIL) \
6023 goto label; \
6024 inst.operands[i].reg = val; \
6025 inst.operands[i].isscalar = 1; \
6026 } \
6027 while (0)
6028
6029 #define po_misc_or_fail(expr) \
6030 do \
6031 { \
6032 if (expr) \
6033 goto failure; \
6034 } \
6035 while (0)
6036
6037 #define po_misc_or_fail_no_backtrack(expr) \
6038 do \
6039 { \
6040 result = expr; \
6041 if (result == PARSE_OPERAND_FAIL_NO_BACKTRACK) \
6042 backtrack_pos = 0; \
6043 if (result != PARSE_OPERAND_SUCCESS) \
6044 goto failure; \
6045 } \
6046 while (0)
6047
6048 #define po_barrier_or_imm(str) \
6049 do \
6050 { \
6051 val = parse_barrier (&str); \
6052 if (val == FAIL) \
6053 { \
6054 if (ISALPHA (*str)) \
6055 goto failure; \
6056 else \
6057 goto immediate; \
6058 } \
6059 else \
6060 { \
6061 if ((inst.instruction & 0xf0) == 0x60 \
6062 && val != 0xf) \
6063 { \
6064 /* ISB can only take SY as an option. */ \
6065 inst.error = _("invalid barrier type"); \
6066 goto failure; \
6067 } \
6068 } \
6069 } \
6070 while (0)
6071
6072 skip_whitespace (str);
6073
6074 for (i = 0; upat[i] != OP_stop; i++)
6075 {
6076 op_parse_code = upat[i];
6077 if (op_parse_code >= 1<<16)
6078 op_parse_code = thumb ? (op_parse_code >> 16)
6079 : (op_parse_code & ((1<<16)-1));
6080
6081 if (op_parse_code >= OP_FIRST_OPTIONAL)
6082 {
6083 /* Remember where we are in case we need to backtrack. */
6084 gas_assert (!backtrack_pos);
6085 backtrack_pos = str;
6086 backtrack_error = inst.error;
6087 backtrack_index = i;
6088 }
6089
6090 if (i > 0 && (i > 1 || inst.operands[0].present))
6091 po_char_or_fail (',');
6092
6093 switch (op_parse_code)
6094 {
6095 /* Registers */
6096 case OP_oRRnpc:
6097 case OP_oRRnpcsp:
6098 case OP_RRnpc:
6099 case OP_RRnpcsp:
6100 case OP_oRR:
6101 case OP_RR: po_reg_or_fail (REG_TYPE_RN); break;
6102 case OP_RCP: po_reg_or_fail (REG_TYPE_CP); break;
6103 case OP_RCN: po_reg_or_fail (REG_TYPE_CN); break;
6104 case OP_RF: po_reg_or_fail (REG_TYPE_FN); break;
6105 case OP_RVS: po_reg_or_fail (REG_TYPE_VFS); break;
6106 case OP_RVD: po_reg_or_fail (REG_TYPE_VFD); break;
6107 case OP_oRND:
6108 case OP_RND: po_reg_or_fail (REG_TYPE_VFD); break;
6109 case OP_RVC:
6110 po_reg_or_goto (REG_TYPE_VFC, coproc_reg);
6111 break;
6112 /* Also accept generic coprocessor regs for unknown registers. */
6113 coproc_reg:
6114 po_reg_or_fail (REG_TYPE_CN);
6115 break;
6116 case OP_RMF: po_reg_or_fail (REG_TYPE_MVF); break;
6117 case OP_RMD: po_reg_or_fail (REG_TYPE_MVD); break;
6118 case OP_RMFX: po_reg_or_fail (REG_TYPE_MVFX); break;
6119 case OP_RMDX: po_reg_or_fail (REG_TYPE_MVDX); break;
6120 case OP_RMAX: po_reg_or_fail (REG_TYPE_MVAX); break;
6121 case OP_RMDS: po_reg_or_fail (REG_TYPE_DSPSC); break;
6122 case OP_RIWR: po_reg_or_fail (REG_TYPE_MMXWR); break;
6123 case OP_RIWC: po_reg_or_fail (REG_TYPE_MMXWC); break;
6124 case OP_RIWG: po_reg_or_fail (REG_TYPE_MMXWCG); break;
6125 case OP_RXA: po_reg_or_fail (REG_TYPE_XSCALE); break;
6126 case OP_oRNQ:
6127 case OP_RNQ: po_reg_or_fail (REG_TYPE_NQ); break;
6128 case OP_oRNDQ:
6129 case OP_RNDQ: po_reg_or_fail (REG_TYPE_NDQ); break;
6130 case OP_RVSD: po_reg_or_fail (REG_TYPE_VFSD); break;
6131 case OP_oRNSDQ:
6132 case OP_RNSDQ: po_reg_or_fail (REG_TYPE_NSDQ); break;
6133
6134 /* Neon scalar. Using an element size of 8 means that some invalid
6135 scalars are accepted here, so deal with those in later code. */
6136 case OP_RNSC: po_scalar_or_goto (8, failure); break;
6137
6138 case OP_RNDQ_I0:
6139 {
6140 po_reg_or_goto (REG_TYPE_NDQ, try_imm0);
6141 break;
6142 try_imm0:
6143 po_imm_or_fail (0, 0, TRUE);
6144 }
6145 break;
6146
6147 case OP_RVSD_I0:
6148 po_reg_or_goto (REG_TYPE_VFSD, try_imm0);
6149 break;
6150
6151 case OP_RR_RNSC:
6152 {
6153 po_scalar_or_goto (8, try_rr);
6154 break;
6155 try_rr:
6156 po_reg_or_fail (REG_TYPE_RN);
6157 }
6158 break;
6159
6160 case OP_RNSDQ_RNSC:
6161 {
6162 po_scalar_or_goto (8, try_nsdq);
6163 break;
6164 try_nsdq:
6165 po_reg_or_fail (REG_TYPE_NSDQ);
6166 }
6167 break;
6168
6169 case OP_RNDQ_RNSC:
6170 {
6171 po_scalar_or_goto (8, try_ndq);
6172 break;
6173 try_ndq:
6174 po_reg_or_fail (REG_TYPE_NDQ);
6175 }
6176 break;
6177
6178 case OP_RND_RNSC:
6179 {
6180 po_scalar_or_goto (8, try_vfd);
6181 break;
6182 try_vfd:
6183 po_reg_or_fail (REG_TYPE_VFD);
6184 }
6185 break;
6186
6187 case OP_VMOV:
6188 /* WARNING: parse_neon_mov can move the operand counter, i. If we're
6189 not careful then bad things might happen. */
6190 po_misc_or_fail (parse_neon_mov (&str, &i) == FAIL);
6191 break;
6192
6193 case OP_RNDQ_Ibig:
6194 {
6195 po_reg_or_goto (REG_TYPE_NDQ, try_immbig);
6196 break;
6197 try_immbig:
6198 /* There's a possibility of getting a 64-bit immediate here, so
6199 we need special handling. */
6200 if (parse_big_immediate (&str, i) == FAIL)
6201 {
6202 inst.error = _("immediate value is out of range");
6203 goto failure;
6204 }
6205 }
6206 break;
6207
6208 case OP_RNDQ_I63b:
6209 {
6210 po_reg_or_goto (REG_TYPE_NDQ, try_shimm);
6211 break;
6212 try_shimm:
6213 po_imm_or_fail (0, 63, TRUE);
6214 }
6215 break;
6216
6217 case OP_RRnpcb:
6218 po_char_or_fail ('[');
6219 po_reg_or_fail (REG_TYPE_RN);
6220 po_char_or_fail (']');
6221 break;
6222
6223 case OP_RRnpctw:
6224 case OP_RRw:
6225 case OP_oRRw:
6226 po_reg_or_fail (REG_TYPE_RN);
6227 if (skip_past_char (&str, '!') == SUCCESS)
6228 inst.operands[i].writeback = 1;
6229 break;
6230
6231 /* Immediates */
6232 case OP_I7: po_imm_or_fail ( 0, 7, FALSE); break;
6233 case OP_I15: po_imm_or_fail ( 0, 15, FALSE); break;
6234 case OP_I16: po_imm_or_fail ( 1, 16, FALSE); break;
6235 case OP_I16z: po_imm_or_fail ( 0, 16, FALSE); break;
6236 case OP_I31: po_imm_or_fail ( 0, 31, FALSE); break;
6237 case OP_I32: po_imm_or_fail ( 1, 32, FALSE); break;
6238 case OP_I32z: po_imm_or_fail ( 0, 32, FALSE); break;
6239 case OP_I63s: po_imm_or_fail (-64, 63, FALSE); break;
6240 case OP_I63: po_imm_or_fail ( 0, 63, FALSE); break;
6241 case OP_I64: po_imm_or_fail ( 1, 64, FALSE); break;
6242 case OP_I64z: po_imm_or_fail ( 0, 64, FALSE); break;
6243 case OP_I255: po_imm_or_fail ( 0, 255, FALSE); break;
6244
6245 case OP_I4b: po_imm_or_fail ( 1, 4, TRUE); break;
6246 case OP_oI7b:
6247 case OP_I7b: po_imm_or_fail ( 0, 7, TRUE); break;
6248 case OP_I15b: po_imm_or_fail ( 0, 15, TRUE); break;
6249 case OP_oI31b:
6250 case OP_I31b: po_imm_or_fail ( 0, 31, TRUE); break;
6251 case OP_oI32b: po_imm_or_fail ( 1, 32, TRUE); break;
6252 case OP_oIffffb: po_imm_or_fail ( 0, 0xffff, TRUE); break;
6253
6254 /* Immediate variants */
6255 case OP_oI255c:
6256 po_char_or_fail ('{');
6257 po_imm_or_fail (0, 255, TRUE);
6258 po_char_or_fail ('}');
6259 break;
6260
6261 case OP_I31w:
6262 /* The expression parser chokes on a trailing !, so we have
6263 to find it first and zap it. */
6264 {
6265 char *s = str;
6266 while (*s && *s != ',')
6267 s++;
6268 if (s[-1] == '!')
6269 {
6270 s[-1] = '\0';
6271 inst.operands[i].writeback = 1;
6272 }
6273 po_imm_or_fail (0, 31, TRUE);
6274 if (str == s - 1)
6275 str = s;
6276 }
6277 break;
6278
6279 /* Expressions */
6280 case OP_EXPi: EXPi:
6281 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
6282 GE_OPT_PREFIX));
6283 break;
6284
6285 case OP_EXP:
6286 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
6287 GE_NO_PREFIX));
6288 break;
6289
6290 case OP_EXPr: EXPr:
6291 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
6292 GE_NO_PREFIX));
6293 if (inst.reloc.exp.X_op == O_symbol)
6294 {
6295 val = parse_reloc (&str);
6296 if (val == -1)
6297 {
6298 inst.error = _("unrecognized relocation suffix");
6299 goto failure;
6300 }
6301 else if (val != BFD_RELOC_UNUSED)
6302 {
6303 inst.operands[i].imm = val;
6304 inst.operands[i].hasreloc = 1;
6305 }
6306 }
6307 break;
6308
6309 /* Operand for MOVW or MOVT. */
6310 case OP_HALF:
6311 po_misc_or_fail (parse_half (&str));
6312 break;
6313
6314 /* Register or expression. */
6315 case OP_RR_EXr: po_reg_or_goto (REG_TYPE_RN, EXPr); break;
6316 case OP_RR_EXi: po_reg_or_goto (REG_TYPE_RN, EXPi); break;
6317
6318 /* Register or immediate. */
6319 case OP_RRnpc_I0: po_reg_or_goto (REG_TYPE_RN, I0); break;
6320 I0: po_imm_or_fail (0, 0, FALSE); break;
6321
6322 case OP_RF_IF: po_reg_or_goto (REG_TYPE_FN, IF); break;
6323 IF:
6324 if (!is_immediate_prefix (*str))
6325 goto bad_args;
6326 str++;
6327 val = parse_fpa_immediate (&str);
6328 if (val == FAIL)
6329 goto failure;
6330 /* FPA immediates are encoded as registers 8-15.
6331 parse_fpa_immediate has already applied the offset. */
6332 inst.operands[i].reg = val;
6333 inst.operands[i].isreg = 1;
6334 break;
6335
6336 case OP_RIWR_I32z: po_reg_or_goto (REG_TYPE_MMXWR, I32z); break;
6337 I32z: po_imm_or_fail (0, 32, FALSE); break;
6338
6339 /* Two kinds of register. */
6340 case OP_RIWR_RIWC:
6341 {
6342 struct reg_entry *rege = arm_reg_parse_multi (&str);
6343 if (!rege
6344 || (rege->type != REG_TYPE_MMXWR
6345 && rege->type != REG_TYPE_MMXWC
6346 && rege->type != REG_TYPE_MMXWCG))
6347 {
6348 inst.error = _("iWMMXt data or control register expected");
6349 goto failure;
6350 }
6351 inst.operands[i].reg = rege->number;
6352 inst.operands[i].isreg = (rege->type == REG_TYPE_MMXWR);
6353 }
6354 break;
6355
6356 case OP_RIWC_RIWG:
6357 {
6358 struct reg_entry *rege = arm_reg_parse_multi (&str);
6359 if (!rege
6360 || (rege->type != REG_TYPE_MMXWC
6361 && rege->type != REG_TYPE_MMXWCG))
6362 {
6363 inst.error = _("iWMMXt control register expected");
6364 goto failure;
6365 }
6366 inst.operands[i].reg = rege->number;
6367 inst.operands[i].isreg = 1;
6368 }
6369 break;
6370
6371 /* Misc */
6372 case OP_CPSF: val = parse_cps_flags (&str); break;
6373 case OP_ENDI: val = parse_endian_specifier (&str); break;
6374 case OP_oROR: val = parse_ror (&str); break;
6375 case OP_PSR: val = parse_psr (&str); break;
6376 case OP_COND: val = parse_cond (&str); break;
6377 case OP_oBARRIER_I15:
6378 po_barrier_or_imm (str); break;
6379 immediate:
6380 if (parse_immediate (&str, &val, 0, 15, TRUE) == FAIL)
6381 goto failure;
6382 break;
6383
6384 case OP_RVC_PSR:
6385 po_reg_or_goto (REG_TYPE_VFC, try_banked_reg);
6386 inst.operands[i].isvec = 1; /* Mark VFP control reg as vector. */
6387 break;
6388 try_banked_reg:
6389 po_reg_or_goto (REG_TYPE_RNB, try_psr);
6390 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_virt))
6391 {
6392 inst.error = _("Banked registers are not available with this "
6393 "architecture.");
6394 goto failure;
6395 }
6396 break;
6397 try_psr:
6398 val = parse_psr (&str);
6399 break;
6400
6401 case OP_APSR_RR:
6402 po_reg_or_goto (REG_TYPE_RN, try_apsr);
6403 break;
6404 try_apsr:
6405 /* Parse "APSR_nvzc" operand (for FMSTAT-equivalent MRS
6406 instruction). */
6407 if (strncasecmp (str, "APSR_", 5) == 0)
6408 {
6409 unsigned found = 0;
6410 str += 5;
6411 while (found < 15)
6412 switch (*str++)
6413 {
6414 case 'c': found = (found & 1) ? 16 : found | 1; break;
6415 case 'n': found = (found & 2) ? 16 : found | 2; break;
6416 case 'z': found = (found & 4) ? 16 : found | 4; break;
6417 case 'v': found = (found & 8) ? 16 : found | 8; break;
6418 default: found = 16;
6419 }
6420 if (found != 15)
6421 goto failure;
6422 inst.operands[i].isvec = 1;
6423 /* APSR_nzcv is encoded in instructions as if it were the REG_PC. */
6424 inst.operands[i].reg = REG_PC;
6425 }
6426 else
6427 goto failure;
6428 break;
6429
6430 case OP_TB:
6431 po_misc_or_fail (parse_tb (&str));
6432 break;
6433
6434 /* Register lists. */
6435 case OP_REGLST:
6436 val = parse_reg_list (&str);
6437 if (*str == '^')
6438 {
6439 inst.operands[1].writeback = 1;
6440 str++;
6441 }
6442 break;
6443
6444 case OP_VRSLST:
6445 val = parse_vfp_reg_list (&str, &inst.operands[i].reg, REGLIST_VFP_S);
6446 break;
6447
6448 case OP_VRDLST:
6449 val = parse_vfp_reg_list (&str, &inst.operands[i].reg, REGLIST_VFP_D);
6450 break;
6451
6452 case OP_VRSDLST:
6453 /* Allow Q registers too. */
6454 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
6455 REGLIST_NEON_D);
6456 if (val == FAIL)
6457 {
6458 inst.error = NULL;
6459 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
6460 REGLIST_VFP_S);
6461 inst.operands[i].issingle = 1;
6462 }
6463 break;
6464
6465 case OP_NRDLST:
6466 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
6467 REGLIST_NEON_D);
6468 break;
6469
6470 case OP_NSTRLST:
6471 val = parse_neon_el_struct_list (&str, &inst.operands[i].reg,
6472 &inst.operands[i].vectype);
6473 break;
6474
6475 /* Addressing modes */
6476 case OP_ADDR:
6477 po_misc_or_fail (parse_address (&str, i));
6478 break;
6479
6480 case OP_ADDRGLDR:
6481 po_misc_or_fail_no_backtrack (
6482 parse_address_group_reloc (&str, i, GROUP_LDR));
6483 break;
6484
6485 case OP_ADDRGLDRS:
6486 po_misc_or_fail_no_backtrack (
6487 parse_address_group_reloc (&str, i, GROUP_LDRS));
6488 break;
6489
6490 case OP_ADDRGLDC:
6491 po_misc_or_fail_no_backtrack (
6492 parse_address_group_reloc (&str, i, GROUP_LDC));
6493 break;
6494
6495 case OP_SH:
6496 po_misc_or_fail (parse_shifter_operand (&str, i));
6497 break;
6498
6499 case OP_SHG:
6500 po_misc_or_fail_no_backtrack (
6501 parse_shifter_operand_group_reloc (&str, i));
6502 break;
6503
6504 case OP_oSHll:
6505 po_misc_or_fail (parse_shift (&str, i, SHIFT_LSL_IMMEDIATE));
6506 break;
6507
6508 case OP_oSHar:
6509 po_misc_or_fail (parse_shift (&str, i, SHIFT_ASR_IMMEDIATE));
6510 break;
6511
6512 case OP_oSHllar:
6513 po_misc_or_fail (parse_shift (&str, i, SHIFT_LSL_OR_ASR_IMMEDIATE));
6514 break;
6515
6516 default:
6517 as_fatal (_("unhandled operand code %d"), op_parse_code);
6518 }
6519
6520 /* Various value-based sanity checks and shared operations. We
6521 do not signal immediate failures for the register constraints;
6522 this allows a syntax error to take precedence. */
6523 switch (op_parse_code)
6524 {
6525 case OP_oRRnpc:
6526 case OP_RRnpc:
6527 case OP_RRnpcb:
6528 case OP_RRw:
6529 case OP_oRRw:
6530 case OP_RRnpc_I0:
6531 if (inst.operands[i].isreg && inst.operands[i].reg == REG_PC)
6532 inst.error = BAD_PC;
6533 break;
6534
6535 case OP_oRRnpcsp:
6536 case OP_RRnpcsp:
6537 if (inst.operands[i].isreg)
6538 {
6539 if (inst.operands[i].reg == REG_PC)
6540 inst.error = BAD_PC;
6541 else if (inst.operands[i].reg == REG_SP)
6542 inst.error = BAD_SP;
6543 }
6544 break;
6545
6546 case OP_RRnpctw:
6547 if (inst.operands[i].isreg
6548 && inst.operands[i].reg == REG_PC
6549 && (inst.operands[i].writeback || thumb))
6550 inst.error = BAD_PC;
6551 break;
6552
6553 case OP_CPSF:
6554 case OP_ENDI:
6555 case OP_oROR:
6556 case OP_PSR:
6557 case OP_RVC_PSR:
6558 case OP_COND:
6559 case OP_oBARRIER_I15:
6560 case OP_REGLST:
6561 case OP_VRSLST:
6562 case OP_VRDLST:
6563 case OP_VRSDLST:
6564 case OP_NRDLST:
6565 case OP_NSTRLST:
6566 if (val == FAIL)
6567 goto failure;
6568 inst.operands[i].imm = val;
6569 break;
6570
6571 default:
6572 break;
6573 }
6574
6575 /* If we get here, this operand was successfully parsed. */
6576 inst.operands[i].present = 1;
6577 continue;
6578
6579 bad_args:
6580 inst.error = BAD_ARGS;
6581
6582 failure:
6583 if (!backtrack_pos)
6584 {
6585 /* The parse routine should already have set inst.error, but set a
6586 default here just in case. */
6587 if (!inst.error)
6588 inst.error = _("syntax error");
6589 return FAIL;
6590 }
6591
6592 /* Do not backtrack over a trailing optional argument that
6593 absorbed some text. We will only fail again, with the
6594 'garbage following instruction' error message, which is
6595 probably less helpful than the current one. */
6596 if (backtrack_index == i && backtrack_pos != str
6597 && upat[i+1] == OP_stop)
6598 {
6599 if (!inst.error)
6600 inst.error = _("syntax error");
6601 return FAIL;
6602 }
6603
6604 /* Try again, skipping the optional argument at backtrack_pos. */
6605 str = backtrack_pos;
6606 inst.error = backtrack_error;
6607 inst.operands[backtrack_index].present = 0;
6608 i = backtrack_index;
6609 backtrack_pos = 0;
6610 }
6611
6612 /* Check that we have parsed all the arguments. */
6613 if (*str != '\0' && !inst.error)
6614 inst.error = _("garbage following instruction");
6615
6616 return inst.error ? FAIL : SUCCESS;
6617 }
6618
6619 #undef po_char_or_fail
6620 #undef po_reg_or_fail
6621 #undef po_reg_or_goto
6622 #undef po_imm_or_fail
6623 #undef po_scalar_or_fail
6624 #undef po_barrier_or_imm
6625
6626 /* Shorthand macro for instruction encoding functions issuing errors. */
6627 #define constraint(expr, err) \
6628 do \
6629 { \
6630 if (expr) \
6631 { \
6632 inst.error = err; \
6633 return; \
6634 } \
6635 } \
6636 while (0)
6637
6638 /* Reject "bad registers" for Thumb-2 instructions. Many Thumb-2
6639 instructions are unpredictable if these registers are used. This
6640 is the BadReg predicate in ARM's Thumb-2 documentation. */
6641 #define reject_bad_reg(reg) \
6642 do \
6643 if (reg == REG_SP || reg == REG_PC) \
6644 { \
6645 inst.error = (reg == REG_SP) ? BAD_SP : BAD_PC; \
6646 return; \
6647 } \
6648 while (0)
6649
6650 /* If REG is R13 (the stack pointer), warn that its use is
6651 deprecated. */
6652 #define warn_deprecated_sp(reg) \
6653 do \
6654 if (warn_on_deprecated && reg == REG_SP) \
6655 as_warn (_("use of r13 is deprecated")); \
6656 while (0)
6657
6658 /* Functions for operand encoding. ARM, then Thumb. */
6659
6660 #define rotate_left(v, n) (v << n | v >> (32 - n))
6661
6662 /* If VAL can be encoded in the immediate field of an ARM instruction,
6663 return the encoded form. Otherwise, return FAIL. */
6664
6665 static unsigned int
6666 encode_arm_immediate (unsigned int val)
6667 {
6668 unsigned int a, i;
6669
6670 for (i = 0; i < 32; i += 2)
6671 if ((a = rotate_left (val, i)) <= 0xff)
6672 return a | (i << 7); /* 12-bit pack: [shift-cnt,const]. */
6673
6674 return FAIL;
6675 }
6676
6677 /* If VAL can be encoded in the immediate field of a Thumb32 instruction,
6678 return the encoded form. Otherwise, return FAIL. */
6679 static unsigned int
6680 encode_thumb32_immediate (unsigned int val)
6681 {
6682 unsigned int a, i;
6683
6684 if (val <= 0xff)
6685 return val;
6686
6687 for (i = 1; i <= 24; i++)
6688 {
6689 a = val >> i;
6690 if ((val & ~(0xff << i)) == 0)
6691 return ((val >> i) & 0x7f) | ((32 - i) << 7);
6692 }
6693
6694 a = val & 0xff;
6695 if (val == ((a << 16) | a))
6696 return 0x100 | a;
6697 if (val == ((a << 24) | (a << 16) | (a << 8) | a))
6698 return 0x300 | a;
6699
6700 a = val & 0xff00;
6701 if (val == ((a << 16) | a))
6702 return 0x200 | (a >> 8);
6703
6704 return FAIL;
6705 }
6706 /* Encode a VFP SP or DP register number into inst.instruction. */
6707
6708 static void
6709 encode_arm_vfp_reg (int reg, enum vfp_reg_pos pos)
6710 {
6711 if ((pos == VFP_REG_Dd || pos == VFP_REG_Dn || pos == VFP_REG_Dm)
6712 && reg > 15)
6713 {
6714 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_d32))
6715 {
6716 if (thumb_mode)
6717 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
6718 fpu_vfp_ext_d32);
6719 else
6720 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
6721 fpu_vfp_ext_d32);
6722 }
6723 else
6724 {
6725 first_error (_("D register out of range for selected VFP version"));
6726 return;
6727 }
6728 }
6729
6730 switch (pos)
6731 {
6732 case VFP_REG_Sd:
6733 inst.instruction |= ((reg >> 1) << 12) | ((reg & 1) << 22);
6734 break;
6735
6736 case VFP_REG_Sn:
6737 inst.instruction |= ((reg >> 1) << 16) | ((reg & 1) << 7);
6738 break;
6739
6740 case VFP_REG_Sm:
6741 inst.instruction |= ((reg >> 1) << 0) | ((reg & 1) << 5);
6742 break;
6743
6744 case VFP_REG_Dd:
6745 inst.instruction |= ((reg & 15) << 12) | ((reg >> 4) << 22);
6746 break;
6747
6748 case VFP_REG_Dn:
6749 inst.instruction |= ((reg & 15) << 16) | ((reg >> 4) << 7);
6750 break;
6751
6752 case VFP_REG_Dm:
6753 inst.instruction |= (reg & 15) | ((reg >> 4) << 5);
6754 break;
6755
6756 default:
6757 abort ();
6758 }
6759 }
6760
6761 /* Encode a <shift> in an ARM-format instruction. The immediate,
6762 if any, is handled by md_apply_fix. */
6763 static void
6764 encode_arm_shift (int i)
6765 {
6766 if (inst.operands[i].shift_kind == SHIFT_RRX)
6767 inst.instruction |= SHIFT_ROR << 5;
6768 else
6769 {
6770 inst.instruction |= inst.operands[i].shift_kind << 5;
6771 if (inst.operands[i].immisreg)
6772 {
6773 inst.instruction |= SHIFT_BY_REG;
6774 inst.instruction |= inst.operands[i].imm << 8;
6775 }
6776 else
6777 inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
6778 }
6779 }
6780
6781 static void
6782 encode_arm_shifter_operand (int i)
6783 {
6784 if (inst.operands[i].isreg)
6785 {
6786 inst.instruction |= inst.operands[i].reg;
6787 encode_arm_shift (i);
6788 }
6789 else
6790 inst.instruction |= INST_IMMEDIATE;
6791 }
6792
6793 /* Subroutine of encode_arm_addr_mode_2 and encode_arm_addr_mode_3. */
6794 static void
6795 encode_arm_addr_mode_common (int i, bfd_boolean is_t)
6796 {
6797 gas_assert (inst.operands[i].isreg);
6798 inst.instruction |= inst.operands[i].reg << 16;
6799
6800 if (inst.operands[i].preind)
6801 {
6802 if (is_t)
6803 {
6804 inst.error = _("instruction does not accept preindexed addressing");
6805 return;
6806 }
6807 inst.instruction |= PRE_INDEX;
6808 if (inst.operands[i].writeback)
6809 inst.instruction |= WRITE_BACK;
6810
6811 }
6812 else if (inst.operands[i].postind)
6813 {
6814 gas_assert (inst.operands[i].writeback);
6815 if (is_t)
6816 inst.instruction |= WRITE_BACK;
6817 }
6818 else /* unindexed - only for coprocessor */
6819 {
6820 inst.error = _("instruction does not accept unindexed addressing");
6821 return;
6822 }
6823
6824 if (((inst.instruction & WRITE_BACK) || !(inst.instruction & PRE_INDEX))
6825 && (((inst.instruction & 0x000f0000) >> 16)
6826 == ((inst.instruction & 0x0000f000) >> 12)))
6827 as_warn ((inst.instruction & LOAD_BIT)
6828 ? _("destination register same as write-back base")
6829 : _("source register same as write-back base"));
6830 }
6831
6832 /* inst.operands[i] was set up by parse_address. Encode it into an
6833 ARM-format mode 2 load or store instruction. If is_t is true,
6834 reject forms that cannot be used with a T instruction (i.e. not
6835 post-indexed). */
6836 static void
6837 encode_arm_addr_mode_2 (int i, bfd_boolean is_t)
6838 {
6839 const bfd_boolean is_pc = (inst.operands[i].reg == REG_PC);
6840
6841 encode_arm_addr_mode_common (i, is_t);
6842
6843 if (inst.operands[i].immisreg)
6844 {
6845 constraint ((inst.operands[i].imm == REG_PC
6846 || (is_pc && inst.operands[i].writeback)),
6847 BAD_PC_ADDRESSING);
6848 inst.instruction |= INST_IMMEDIATE; /* yes, this is backwards */
6849 inst.instruction |= inst.operands[i].imm;
6850 if (!inst.operands[i].negative)
6851 inst.instruction |= INDEX_UP;
6852 if (inst.operands[i].shifted)
6853 {
6854 if (inst.operands[i].shift_kind == SHIFT_RRX)
6855 inst.instruction |= SHIFT_ROR << 5;
6856 else
6857 {
6858 inst.instruction |= inst.operands[i].shift_kind << 5;
6859 inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
6860 }
6861 }
6862 }
6863 else /* immediate offset in inst.reloc */
6864 {
6865 if (is_pc && !inst.reloc.pc_rel)
6866 {
6867 const bfd_boolean is_load = ((inst.instruction & LOAD_BIT) != 0);
6868
6869 /* If is_t is TRUE, it's called from do_ldstt. ldrt/strt
6870 cannot use PC in addressing.
6871 PC cannot be used in writeback addressing, either. */
6872 constraint ((is_t || inst.operands[i].writeback),
6873 BAD_PC_ADDRESSING);
6874
6875 /* Use of PC in str is deprecated for ARMv7. */
6876 if (warn_on_deprecated
6877 && !is_load
6878 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v7))
6879 as_warn (_("use of PC in this instruction is deprecated"));
6880 }
6881
6882 if (inst.reloc.type == BFD_RELOC_UNUSED)
6883 inst.reloc.type = BFD_RELOC_ARM_OFFSET_IMM;
6884 }
6885 }
6886
6887 /* inst.operands[i] was set up by parse_address. Encode it into an
6888 ARM-format mode 3 load or store instruction. Reject forms that
6889 cannot be used with such instructions. If is_t is true, reject
6890 forms that cannot be used with a T instruction (i.e. not
6891 post-indexed). */
6892 static void
6893 encode_arm_addr_mode_3 (int i, bfd_boolean is_t)
6894 {
6895 if (inst.operands[i].immisreg && inst.operands[i].shifted)
6896 {
6897 inst.error = _("instruction does not accept scaled register index");
6898 return;
6899 }
6900
6901 encode_arm_addr_mode_common (i, is_t);
6902
6903 if (inst.operands[i].immisreg)
6904 {
6905 constraint ((inst.operands[i].imm == REG_PC
6906 || inst.operands[i].reg == REG_PC),
6907 BAD_PC_ADDRESSING);
6908 inst.instruction |= inst.operands[i].imm;
6909 if (!inst.operands[i].negative)
6910 inst.instruction |= INDEX_UP;
6911 }
6912 else /* immediate offset in inst.reloc */
6913 {
6914 constraint ((inst.operands[i].reg == REG_PC && !inst.reloc.pc_rel
6915 && inst.operands[i].writeback),
6916 BAD_PC_WRITEBACK);
6917 inst.instruction |= HWOFFSET_IMM;
6918 if (inst.reloc.type == BFD_RELOC_UNUSED)
6919 inst.reloc.type = BFD_RELOC_ARM_OFFSET_IMM8;
6920 }
6921 }
6922
6923 /* inst.operands[i] was set up by parse_address. Encode it into an
6924 ARM-format instruction. Reject all forms which cannot be encoded
6925 into a coprocessor load/store instruction. If wb_ok is false,
6926 reject use of writeback; if unind_ok is false, reject use of
6927 unindexed addressing. If reloc_override is not 0, use it instead
6928 of BFD_ARM_CP_OFF_IMM, unless the initial relocation is a group one
6929 (in which case it is preserved). */
6930
6931 static int
6932 encode_arm_cp_address (int i, int wb_ok, int unind_ok, int reloc_override)
6933 {
6934 inst.instruction |= inst.operands[i].reg << 16;
6935
6936 gas_assert (!(inst.operands[i].preind && inst.operands[i].postind));
6937
6938 if (!inst.operands[i].preind && !inst.operands[i].postind) /* unindexed */
6939 {
6940 gas_assert (!inst.operands[i].writeback);
6941 if (!unind_ok)
6942 {
6943 inst.error = _("instruction does not support unindexed addressing");
6944 return FAIL;
6945 }
6946 inst.instruction |= inst.operands[i].imm;
6947 inst.instruction |= INDEX_UP;
6948 return SUCCESS;
6949 }
6950
6951 if (inst.operands[i].preind)
6952 inst.instruction |= PRE_INDEX;
6953
6954 if (inst.operands[i].writeback)
6955 {
6956 if (inst.operands[i].reg == REG_PC)
6957 {
6958 inst.error = _("pc may not be used with write-back");
6959 return FAIL;
6960 }
6961 if (!wb_ok)
6962 {
6963 inst.error = _("instruction does not support writeback");
6964 return FAIL;
6965 }
6966 inst.instruction |= WRITE_BACK;
6967 }
6968
6969 if (reloc_override)
6970 inst.reloc.type = (bfd_reloc_code_real_type) reloc_override;
6971 else if ((inst.reloc.type < BFD_RELOC_ARM_ALU_PC_G0_NC
6972 || inst.reloc.type > BFD_RELOC_ARM_LDC_SB_G2)
6973 && inst.reloc.type != BFD_RELOC_ARM_LDR_PC_G0)
6974 {
6975 if (thumb_mode)
6976 inst.reloc.type = BFD_RELOC_ARM_T32_CP_OFF_IMM;
6977 else
6978 inst.reloc.type = BFD_RELOC_ARM_CP_OFF_IMM;
6979 }
6980
6981 return SUCCESS;
6982 }
6983
6984 /* inst.reloc.exp describes an "=expr" load pseudo-operation.
6985 Determine whether it can be performed with a move instruction; if
6986 it can, convert inst.instruction to that move instruction and
6987 return TRUE; if it can't, convert inst.instruction to a literal-pool
6988 load and return FALSE. If this is not a valid thing to do in the
6989 current context, set inst.error and return TRUE.
6990
6991 inst.operands[i] describes the destination register. */
6992
6993 static bfd_boolean
6994 move_or_literal_pool (int i, bfd_boolean thumb_p, bfd_boolean mode_3)
6995 {
6996 unsigned long tbit;
6997
6998 if (thumb_p)
6999 tbit = (inst.instruction > 0xffff) ? THUMB2_LOAD_BIT : THUMB_LOAD_BIT;
7000 else
7001 tbit = LOAD_BIT;
7002
7003 if ((inst.instruction & tbit) == 0)
7004 {
7005 inst.error = _("invalid pseudo operation");
7006 return TRUE;
7007 }
7008 if (inst.reloc.exp.X_op != O_constant && inst.reloc.exp.X_op != O_symbol)
7009 {
7010 inst.error = _("constant expression expected");
7011 return TRUE;
7012 }
7013 if (inst.reloc.exp.X_op == O_constant)
7014 {
7015 if (thumb_p)
7016 {
7017 if (!unified_syntax && (inst.reloc.exp.X_add_number & ~0xFF) == 0)
7018 {
7019 /* This can be done with a mov(1) instruction. */
7020 inst.instruction = T_OPCODE_MOV_I8 | (inst.operands[i].reg << 8);
7021 inst.instruction |= inst.reloc.exp.X_add_number;
7022 return TRUE;
7023 }
7024 }
7025 else
7026 {
7027 int value = encode_arm_immediate (inst.reloc.exp.X_add_number);
7028 if (value != FAIL)
7029 {
7030 /* This can be done with a mov instruction. */
7031 inst.instruction &= LITERAL_MASK;
7032 inst.instruction |= INST_IMMEDIATE | (OPCODE_MOV << DATA_OP_SHIFT);
7033 inst.instruction |= value & 0xfff;
7034 return TRUE;
7035 }
7036
7037 value = encode_arm_immediate (~inst.reloc.exp.X_add_number);
7038 if (value != FAIL)
7039 {
7040 /* This can be done with a mvn instruction. */
7041 inst.instruction &= LITERAL_MASK;
7042 inst.instruction |= INST_IMMEDIATE | (OPCODE_MVN << DATA_OP_SHIFT);
7043 inst.instruction |= value & 0xfff;
7044 return TRUE;
7045 }
7046 }
7047 }
7048
7049 if (add_to_lit_pool () == FAIL)
7050 {
7051 inst.error = _("literal pool insertion failed");
7052 return TRUE;
7053 }
7054 inst.operands[1].reg = REG_PC;
7055 inst.operands[1].isreg = 1;
7056 inst.operands[1].preind = 1;
7057 inst.reloc.pc_rel = 1;
7058 inst.reloc.type = (thumb_p
7059 ? BFD_RELOC_ARM_THUMB_OFFSET
7060 : (mode_3
7061 ? BFD_RELOC_ARM_HWLITERAL
7062 : BFD_RELOC_ARM_LITERAL));
7063 return FALSE;
7064 }
7065
7066 /* Functions for instruction encoding, sorted by sub-architecture.
7067 First some generics; their names are taken from the conventional
7068 bit positions for register arguments in ARM format instructions. */
7069
7070 static void
7071 do_noargs (void)
7072 {
7073 }
7074
7075 static void
7076 do_rd (void)
7077 {
7078 inst.instruction |= inst.operands[0].reg << 12;
7079 }
7080
7081 static void
7082 do_rd_rm (void)
7083 {
7084 inst.instruction |= inst.operands[0].reg << 12;
7085 inst.instruction |= inst.operands[1].reg;
7086 }
7087
7088 static void
7089 do_rd_rn (void)
7090 {
7091 inst.instruction |= inst.operands[0].reg << 12;
7092 inst.instruction |= inst.operands[1].reg << 16;
7093 }
7094
7095 static void
7096 do_rn_rd (void)
7097 {
7098 inst.instruction |= inst.operands[0].reg << 16;
7099 inst.instruction |= inst.operands[1].reg << 12;
7100 }
7101
7102 static void
7103 do_rd_rm_rn (void)
7104 {
7105 unsigned Rn = inst.operands[2].reg;
7106 /* Enforce restrictions on SWP instruction. */
7107 if ((inst.instruction & 0x0fbfffff) == 0x01000090)
7108 {
7109 constraint (Rn == inst.operands[0].reg || Rn == inst.operands[1].reg,
7110 _("Rn must not overlap other operands"));
7111
7112 /* SWP{b} is deprecated for ARMv6* and ARMv7. */
7113 if (warn_on_deprecated
7114 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6))
7115 as_warn (_("swp{b} use is deprecated for this architecture"));
7116
7117 }
7118 inst.instruction |= inst.operands[0].reg << 12;
7119 inst.instruction |= inst.operands[1].reg;
7120 inst.instruction |= Rn << 16;
7121 }
7122
7123 static void
7124 do_rd_rn_rm (void)
7125 {
7126 inst.instruction |= inst.operands[0].reg << 12;
7127 inst.instruction |= inst.operands[1].reg << 16;
7128 inst.instruction |= inst.operands[2].reg;
7129 }
7130
7131 static void
7132 do_rm_rd_rn (void)
7133 {
7134 constraint ((inst.operands[2].reg == REG_PC), BAD_PC);
7135 constraint (((inst.reloc.exp.X_op != O_constant
7136 && inst.reloc.exp.X_op != O_illegal)
7137 || inst.reloc.exp.X_add_number != 0),
7138 BAD_ADDR_MODE);
7139 inst.instruction |= inst.operands[0].reg;
7140 inst.instruction |= inst.operands[1].reg << 12;
7141 inst.instruction |= inst.operands[2].reg << 16;
7142 }
7143
7144 static void
7145 do_imm0 (void)
7146 {
7147 inst.instruction |= inst.operands[0].imm;
7148 }
7149
7150 static void
7151 do_rd_cpaddr (void)
7152 {
7153 inst.instruction |= inst.operands[0].reg << 12;
7154 encode_arm_cp_address (1, TRUE, TRUE, 0);
7155 }
7156
7157 /* ARM instructions, in alphabetical order by function name (except
7158 that wrapper functions appear immediately after the function they
7159 wrap). */
7160
7161 /* This is a pseudo-op of the form "adr rd, label" to be converted
7162 into a relative address of the form "add rd, pc, #label-.-8". */
7163
7164 static void
7165 do_adr (void)
7166 {
7167 inst.instruction |= (inst.operands[0].reg << 12); /* Rd */
7168
7169 /* Frag hacking will turn this into a sub instruction if the offset turns
7170 out to be negative. */
7171 inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
7172 inst.reloc.pc_rel = 1;
7173 inst.reloc.exp.X_add_number -= 8;
7174 }
7175
7176 /* This is a pseudo-op of the form "adrl rd, label" to be converted
7177 into a relative address of the form:
7178 add rd, pc, #low(label-.-8)"
7179 add rd, rd, #high(label-.-8)" */
7180
7181 static void
7182 do_adrl (void)
7183 {
7184 inst.instruction |= (inst.operands[0].reg << 12); /* Rd */
7185
7186 /* Frag hacking will turn this into a sub instruction if the offset turns
7187 out to be negative. */
7188 inst.reloc.type = BFD_RELOC_ARM_ADRL_IMMEDIATE;
7189 inst.reloc.pc_rel = 1;
7190 inst.size = INSN_SIZE * 2;
7191 inst.reloc.exp.X_add_number -= 8;
7192 }
7193
7194 static void
7195 do_arit (void)
7196 {
7197 if (!inst.operands[1].present)
7198 inst.operands[1].reg = inst.operands[0].reg;
7199 inst.instruction |= inst.operands[0].reg << 12;
7200 inst.instruction |= inst.operands[1].reg << 16;
7201 encode_arm_shifter_operand (2);
7202 }
7203
7204 static void
7205 do_barrier (void)
7206 {
7207 if (inst.operands[0].present)
7208 {
7209 constraint ((inst.instruction & 0xf0) != 0x40
7210 && inst.operands[0].imm > 0xf
7211 && inst.operands[0].imm < 0x0,
7212 _("bad barrier type"));
7213 inst.instruction |= inst.operands[0].imm;
7214 }
7215 else
7216 inst.instruction |= 0xf;
7217 }
7218
7219 static void
7220 do_bfc (void)
7221 {
7222 unsigned int msb = inst.operands[1].imm + inst.operands[2].imm;
7223 constraint (msb > 32, _("bit-field extends past end of register"));
7224 /* The instruction encoding stores the LSB and MSB,
7225 not the LSB and width. */
7226 inst.instruction |= inst.operands[0].reg << 12;
7227 inst.instruction |= inst.operands[1].imm << 7;
7228 inst.instruction |= (msb - 1) << 16;
7229 }
7230
7231 static void
7232 do_bfi (void)
7233 {
7234 unsigned int msb;
7235
7236 /* #0 in second position is alternative syntax for bfc, which is
7237 the same instruction but with REG_PC in the Rm field. */
7238 if (!inst.operands[1].isreg)
7239 inst.operands[1].reg = REG_PC;
7240
7241 msb = inst.operands[2].imm + inst.operands[3].imm;
7242 constraint (msb > 32, _("bit-field extends past end of register"));
7243 /* The instruction encoding stores the LSB and MSB,
7244 not the LSB and width. */
7245 inst.instruction |= inst.operands[0].reg << 12;
7246 inst.instruction |= inst.operands[1].reg;
7247 inst.instruction |= inst.operands[2].imm << 7;
7248 inst.instruction |= (msb - 1) << 16;
7249 }
7250
7251 static void
7252 do_bfx (void)
7253 {
7254 constraint (inst.operands[2].imm + inst.operands[3].imm > 32,
7255 _("bit-field extends past end of register"));
7256 inst.instruction |= inst.operands[0].reg << 12;
7257 inst.instruction |= inst.operands[1].reg;
7258 inst.instruction |= inst.operands[2].imm << 7;
7259 inst.instruction |= (inst.operands[3].imm - 1) << 16;
7260 }
7261
7262 /* ARM V5 breakpoint instruction (argument parse)
7263 BKPT <16 bit unsigned immediate>
7264 Instruction is not conditional.
7265 The bit pattern given in insns[] has the COND_ALWAYS condition,
7266 and it is an error if the caller tried to override that. */
7267
7268 static void
7269 do_bkpt (void)
7270 {
7271 /* Top 12 of 16 bits to bits 19:8. */
7272 inst.instruction |= (inst.operands[0].imm & 0xfff0) << 4;
7273
7274 /* Bottom 4 of 16 bits to bits 3:0. */
7275 inst.instruction |= inst.operands[0].imm & 0xf;
7276 }
7277
7278 static void
7279 encode_branch (int default_reloc)
7280 {
7281 if (inst.operands[0].hasreloc)
7282 {
7283 constraint (inst.operands[0].imm != BFD_RELOC_ARM_PLT32,
7284 _("the only suffix valid here is '(plt)'"));
7285 inst.reloc.type = BFD_RELOC_ARM_PLT32;
7286 }
7287 else
7288 inst.reloc.type = (bfd_reloc_code_real_type) default_reloc;
7289 inst.reloc.pc_rel = 1;
7290 }
7291
7292 static void
7293 do_branch (void)
7294 {
7295 #ifdef OBJ_ELF
7296 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
7297 encode_branch (BFD_RELOC_ARM_PCREL_JUMP);
7298 else
7299 #endif
7300 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH);
7301 }
7302
7303 static void
7304 do_bl (void)
7305 {
7306 #ifdef OBJ_ELF
7307 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
7308 {
7309 if (inst.cond == COND_ALWAYS)
7310 encode_branch (BFD_RELOC_ARM_PCREL_CALL);
7311 else
7312 encode_branch (BFD_RELOC_ARM_PCREL_JUMP);
7313 }
7314 else
7315 #endif
7316 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH);
7317 }
7318
7319 /* ARM V5 branch-link-exchange instruction (argument parse)
7320 BLX <target_addr> ie BLX(1)
7321 BLX{<condition>} <Rm> ie BLX(2)
7322 Unfortunately, there are two different opcodes for this mnemonic.
7323 So, the insns[].value is not used, and the code here zaps values
7324 into inst.instruction.
7325 Also, the <target_addr> can be 25 bits, hence has its own reloc. */
7326
7327 static void
7328 do_blx (void)
7329 {
7330 if (inst.operands[0].isreg)
7331 {
7332 /* Arg is a register; the opcode provided by insns[] is correct.
7333 It is not illegal to do "blx pc", just useless. */
7334 if (inst.operands[0].reg == REG_PC)
7335 as_tsktsk (_("use of r15 in blx in ARM mode is not really useful"));
7336
7337 inst.instruction |= inst.operands[0].reg;
7338 }
7339 else
7340 {
7341 /* Arg is an address; this instruction cannot be executed
7342 conditionally, and the opcode must be adjusted.
7343 We retain the BFD_RELOC_ARM_PCREL_BLX till the very end
7344 where we generate out a BFD_RELOC_ARM_PCREL_CALL instead. */
7345 constraint (inst.cond != COND_ALWAYS, BAD_COND);
7346 inst.instruction = 0xfa000000;
7347 encode_branch (BFD_RELOC_ARM_PCREL_BLX);
7348 }
7349 }
7350
7351 static void
7352 do_bx (void)
7353 {
7354 bfd_boolean want_reloc;
7355
7356 if (inst.operands[0].reg == REG_PC)
7357 as_tsktsk (_("use of r15 in bx in ARM mode is not really useful"));
7358
7359 inst.instruction |= inst.operands[0].reg;
7360 /* Output R_ARM_V4BX relocations if is an EABI object that looks like
7361 it is for ARMv4t or earlier. */
7362 want_reloc = !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5);
7363 if (object_arch && !ARM_CPU_HAS_FEATURE (*object_arch, arm_ext_v5))
7364 want_reloc = TRUE;
7365
7366 #ifdef OBJ_ELF
7367 if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
7368 #endif
7369 want_reloc = FALSE;
7370
7371 if (want_reloc)
7372 inst.reloc.type = BFD_RELOC_ARM_V4BX;
7373 }
7374
7375
7376 /* ARM v5TEJ. Jump to Jazelle code. */
7377
7378 static void
7379 do_bxj (void)
7380 {
7381 if (inst.operands[0].reg == REG_PC)
7382 as_tsktsk (_("use of r15 in bxj is not really useful"));
7383
7384 inst.instruction |= inst.operands[0].reg;
7385 }
7386
7387 /* Co-processor data operation:
7388 CDP{cond} <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>}
7389 CDP2 <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>} */
7390 static void
7391 do_cdp (void)
7392 {
7393 inst.instruction |= inst.operands[0].reg << 8;
7394 inst.instruction |= inst.operands[1].imm << 20;
7395 inst.instruction |= inst.operands[2].reg << 12;
7396 inst.instruction |= inst.operands[3].reg << 16;
7397 inst.instruction |= inst.operands[4].reg;
7398 inst.instruction |= inst.operands[5].imm << 5;
7399 }
7400
7401 static void
7402 do_cmp (void)
7403 {
7404 inst.instruction |= inst.operands[0].reg << 16;
7405 encode_arm_shifter_operand (1);
7406 }
7407
7408 /* Transfer between coprocessor and ARM registers.
7409 MRC{cond} <coproc>, <opcode_1>, <Rd>, <CRn>, <CRm>{, <opcode_2>}
7410 MRC2
7411 MCR{cond}
7412 MCR2
7413
7414 No special properties. */
7415
7416 static void
7417 do_co_reg (void)
7418 {
7419 unsigned Rd;
7420
7421 Rd = inst.operands[2].reg;
7422 if (thumb_mode)
7423 {
7424 if (inst.instruction == 0xee000010
7425 || inst.instruction == 0xfe000010)
7426 /* MCR, MCR2 */
7427 reject_bad_reg (Rd);
7428 else
7429 /* MRC, MRC2 */
7430 constraint (Rd == REG_SP, BAD_SP);
7431 }
7432 else
7433 {
7434 /* MCR */
7435 if (inst.instruction == 0xe000010)
7436 constraint (Rd == REG_PC, BAD_PC);
7437 }
7438
7439
7440 inst.instruction |= inst.operands[0].reg << 8;
7441 inst.instruction |= inst.operands[1].imm << 21;
7442 inst.instruction |= Rd << 12;
7443 inst.instruction |= inst.operands[3].reg << 16;
7444 inst.instruction |= inst.operands[4].reg;
7445 inst.instruction |= inst.operands[5].imm << 5;
7446 }
7447
7448 /* Transfer between coprocessor register and pair of ARM registers.
7449 MCRR{cond} <coproc>, <opcode>, <Rd>, <Rn>, <CRm>.
7450 MCRR2
7451 MRRC{cond}
7452 MRRC2
7453
7454 Two XScale instructions are special cases of these:
7455
7456 MAR{cond} acc0, <RdLo>, <RdHi> == MCRR{cond} p0, #0, <RdLo>, <RdHi>, c0
7457 MRA{cond} acc0, <RdLo>, <RdHi> == MRRC{cond} p0, #0, <RdLo>, <RdHi>, c0
7458
7459 Result unpredictable if Rd or Rn is R15. */
7460
7461 static void
7462 do_co_reg2c (void)
7463 {
7464 unsigned Rd, Rn;
7465
7466 Rd = inst.operands[2].reg;
7467 Rn = inst.operands[3].reg;
7468
7469 if (thumb_mode)
7470 {
7471 reject_bad_reg (Rd);
7472 reject_bad_reg (Rn);
7473 }
7474 else
7475 {
7476 constraint (Rd == REG_PC, BAD_PC);
7477 constraint (Rn == REG_PC, BAD_PC);
7478 }
7479
7480 inst.instruction |= inst.operands[0].reg << 8;
7481 inst.instruction |= inst.operands[1].imm << 4;
7482 inst.instruction |= Rd << 12;
7483 inst.instruction |= Rn << 16;
7484 inst.instruction |= inst.operands[4].reg;
7485 }
7486
7487 static void
7488 do_cpsi (void)
7489 {
7490 inst.instruction |= inst.operands[0].imm << 6;
7491 if (inst.operands[1].present)
7492 {
7493 inst.instruction |= CPSI_MMOD;
7494 inst.instruction |= inst.operands[1].imm;
7495 }
7496 }
7497
7498 static void
7499 do_dbg (void)
7500 {
7501 inst.instruction |= inst.operands[0].imm;
7502 }
7503
7504 static void
7505 do_div (void)
7506 {
7507 unsigned Rd, Rn, Rm;
7508
7509 Rd = inst.operands[0].reg;
7510 Rn = (inst.operands[1].present
7511 ? inst.operands[1].reg : Rd);
7512 Rm = inst.operands[2].reg;
7513
7514 constraint ((Rd == REG_PC), BAD_PC);
7515 constraint ((Rn == REG_PC), BAD_PC);
7516 constraint ((Rm == REG_PC), BAD_PC);
7517
7518 inst.instruction |= Rd << 16;
7519 inst.instruction |= Rn << 0;
7520 inst.instruction |= Rm << 8;
7521 }
7522
7523 static void
7524 do_it (void)
7525 {
7526 /* There is no IT instruction in ARM mode. We
7527 process it to do the validation as if in
7528 thumb mode, just in case the code gets
7529 assembled for thumb using the unified syntax. */
7530
7531 inst.size = 0;
7532 if (unified_syntax)
7533 {
7534 set_it_insn_type (IT_INSN);
7535 now_it.mask = (inst.instruction & 0xf) | 0x10;
7536 now_it.cc = inst.operands[0].imm;
7537 }
7538 }
7539
7540 static void
7541 do_ldmstm (void)
7542 {
7543 int base_reg = inst.operands[0].reg;
7544 int range = inst.operands[1].imm;
7545
7546 inst.instruction |= base_reg << 16;
7547 inst.instruction |= range;
7548
7549 if (inst.operands[1].writeback)
7550 inst.instruction |= LDM_TYPE_2_OR_3;
7551
7552 if (inst.operands[0].writeback)
7553 {
7554 inst.instruction |= WRITE_BACK;
7555 /* Check for unpredictable uses of writeback. */
7556 if (inst.instruction & LOAD_BIT)
7557 {
7558 /* Not allowed in LDM type 2. */
7559 if ((inst.instruction & LDM_TYPE_2_OR_3)
7560 && ((range & (1 << REG_PC)) == 0))
7561 as_warn (_("writeback of base register is UNPREDICTABLE"));
7562 /* Only allowed if base reg not in list for other types. */
7563 else if (range & (1 << base_reg))
7564 as_warn (_("writeback of base register when in register list is UNPREDICTABLE"));
7565 }
7566 else /* STM. */
7567 {
7568 /* Not allowed for type 2. */
7569 if (inst.instruction & LDM_TYPE_2_OR_3)
7570 as_warn (_("writeback of base register is UNPREDICTABLE"));
7571 /* Only allowed if base reg not in list, or first in list. */
7572 else if ((range & (1 << base_reg))
7573 && (range & ((1 << base_reg) - 1)))
7574 as_warn (_("if writeback register is in list, it must be the lowest reg in the list"));
7575 }
7576 }
7577 }
7578
7579 /* ARMv5TE load-consecutive (argument parse)
7580 Mode is like LDRH.
7581
7582 LDRccD R, mode
7583 STRccD R, mode. */
7584
7585 static void
7586 do_ldrd (void)
7587 {
7588 constraint (inst.operands[0].reg % 2 != 0,
7589 _("first destination register must be even"));
7590 constraint (inst.operands[1].present
7591 && inst.operands[1].reg != inst.operands[0].reg + 1,
7592 _("can only load two consecutive registers"));
7593 constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed here"));
7594 constraint (!inst.operands[2].isreg, _("'[' expected"));
7595
7596 if (!inst.operands[1].present)
7597 inst.operands[1].reg = inst.operands[0].reg + 1;
7598
7599 if (inst.instruction & LOAD_BIT)
7600 {
7601 /* encode_arm_addr_mode_3 will diagnose overlap between the base
7602 register and the first register written; we have to diagnose
7603 overlap between the base and the second register written here. */
7604
7605 if (inst.operands[2].reg == inst.operands[1].reg
7606 && (inst.operands[2].writeback || inst.operands[2].postind))
7607 as_warn (_("base register written back, and overlaps "
7608 "second destination register"));
7609
7610 /* For an index-register load, the index register must not overlap the
7611 destination (even if not write-back). */
7612 else if (inst.operands[2].immisreg
7613 && ((unsigned) inst.operands[2].imm == inst.operands[0].reg
7614 || (unsigned) inst.operands[2].imm == inst.operands[1].reg))
7615 as_warn (_("index register overlaps destination register"));
7616 }
7617
7618 inst.instruction |= inst.operands[0].reg << 12;
7619 encode_arm_addr_mode_3 (2, /*is_t=*/FALSE);
7620 }
7621
7622 static void
7623 do_ldrex (void)
7624 {
7625 constraint (!inst.operands[1].isreg || !inst.operands[1].preind
7626 || inst.operands[1].postind || inst.operands[1].writeback
7627 || inst.operands[1].immisreg || inst.operands[1].shifted
7628 || inst.operands[1].negative
7629 /* This can arise if the programmer has written
7630 strex rN, rM, foo
7631 or if they have mistakenly used a register name as the last
7632 operand, eg:
7633 strex rN, rM, rX
7634 It is very difficult to distinguish between these two cases
7635 because "rX" might actually be a label. ie the register
7636 name has been occluded by a symbol of the same name. So we
7637 just generate a general 'bad addressing mode' type error
7638 message and leave it up to the programmer to discover the
7639 true cause and fix their mistake. */
7640 || (inst.operands[1].reg == REG_PC),
7641 BAD_ADDR_MODE);
7642
7643 constraint (inst.reloc.exp.X_op != O_constant
7644 || inst.reloc.exp.X_add_number != 0,
7645 _("offset must be zero in ARM encoding"));
7646
7647 constraint ((inst.operands[1].reg == REG_PC), BAD_PC);
7648
7649 inst.instruction |= inst.operands[0].reg << 12;
7650 inst.instruction |= inst.operands[1].reg << 16;
7651 inst.reloc.type = BFD_RELOC_UNUSED;
7652 }
7653
7654 static void
7655 do_ldrexd (void)
7656 {
7657 constraint (inst.operands[0].reg % 2 != 0,
7658 _("even register required"));
7659 constraint (inst.operands[1].present
7660 && inst.operands[1].reg != inst.operands[0].reg + 1,
7661 _("can only load two consecutive registers"));
7662 /* If op 1 were present and equal to PC, this function wouldn't
7663 have been called in the first place. */
7664 constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed here"));
7665
7666 inst.instruction |= inst.operands[0].reg << 12;
7667 inst.instruction |= inst.operands[2].reg << 16;
7668 }
7669
7670 static void
7671 do_ldst (void)
7672 {
7673 inst.instruction |= inst.operands[0].reg << 12;
7674 if (!inst.operands[1].isreg)
7675 if (move_or_literal_pool (0, /*thumb_p=*/FALSE, /*mode_3=*/FALSE))
7676 return;
7677 encode_arm_addr_mode_2 (1, /*is_t=*/FALSE);
7678 }
7679
7680 static void
7681 do_ldstt (void)
7682 {
7683 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
7684 reject [Rn,...]. */
7685 if (inst.operands[1].preind)
7686 {
7687 constraint (inst.reloc.exp.X_op != O_constant
7688 || inst.reloc.exp.X_add_number != 0,
7689 _("this instruction requires a post-indexed address"));
7690
7691 inst.operands[1].preind = 0;
7692 inst.operands[1].postind = 1;
7693 inst.operands[1].writeback = 1;
7694 }
7695 inst.instruction |= inst.operands[0].reg << 12;
7696 encode_arm_addr_mode_2 (1, /*is_t=*/TRUE);
7697 }
7698
7699 /* Halfword and signed-byte load/store operations. */
7700
7701 static void
7702 do_ldstv4 (void)
7703 {
7704 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
7705 inst.instruction |= inst.operands[0].reg << 12;
7706 if (!inst.operands[1].isreg)
7707 if (move_or_literal_pool (0, /*thumb_p=*/FALSE, /*mode_3=*/TRUE))
7708 return;
7709 encode_arm_addr_mode_3 (1, /*is_t=*/FALSE);
7710 }
7711
7712 static void
7713 do_ldsttv4 (void)
7714 {
7715 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
7716 reject [Rn,...]. */
7717 if (inst.operands[1].preind)
7718 {
7719 constraint (inst.reloc.exp.X_op != O_constant
7720 || inst.reloc.exp.X_add_number != 0,
7721 _("this instruction requires a post-indexed address"));
7722
7723 inst.operands[1].preind = 0;
7724 inst.operands[1].postind = 1;
7725 inst.operands[1].writeback = 1;
7726 }
7727 inst.instruction |= inst.operands[0].reg << 12;
7728 encode_arm_addr_mode_3 (1, /*is_t=*/TRUE);
7729 }
7730
7731 /* Co-processor register load/store.
7732 Format: <LDC|STC>{cond}[L] CP#,CRd,<address> */
7733 static void
7734 do_lstc (void)
7735 {
7736 inst.instruction |= inst.operands[0].reg << 8;
7737 inst.instruction |= inst.operands[1].reg << 12;
7738 encode_arm_cp_address (2, TRUE, TRUE, 0);
7739 }
7740
7741 static void
7742 do_mlas (void)
7743 {
7744 /* This restriction does not apply to mls (nor to mla in v6 or later). */
7745 if (inst.operands[0].reg == inst.operands[1].reg
7746 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6)
7747 && !(inst.instruction & 0x00400000))
7748 as_tsktsk (_("Rd and Rm should be different in mla"));
7749
7750 inst.instruction |= inst.operands[0].reg << 16;
7751 inst.instruction |= inst.operands[1].reg;
7752 inst.instruction |= inst.operands[2].reg << 8;
7753 inst.instruction |= inst.operands[3].reg << 12;
7754 }
7755
7756 static void
7757 do_mov (void)
7758 {
7759 inst.instruction |= inst.operands[0].reg << 12;
7760 encode_arm_shifter_operand (1);
7761 }
7762
7763 /* ARM V6T2 16-bit immediate register load: MOV[WT]{cond} Rd, #<imm16>. */
7764 static void
7765 do_mov16 (void)
7766 {
7767 bfd_vma imm;
7768 bfd_boolean top;
7769
7770 top = (inst.instruction & 0x00400000) != 0;
7771 constraint (top && inst.reloc.type == BFD_RELOC_ARM_MOVW,
7772 _(":lower16: not allowed this instruction"));
7773 constraint (!top && inst.reloc.type == BFD_RELOC_ARM_MOVT,
7774 _(":upper16: not allowed instruction"));
7775 inst.instruction |= inst.operands[0].reg << 12;
7776 if (inst.reloc.type == BFD_RELOC_UNUSED)
7777 {
7778 imm = inst.reloc.exp.X_add_number;
7779 /* The value is in two pieces: 0:11, 16:19. */
7780 inst.instruction |= (imm & 0x00000fff);
7781 inst.instruction |= (imm & 0x0000f000) << 4;
7782 }
7783 }
7784
7785 static void do_vfp_nsyn_opcode (const char *);
7786
7787 static int
7788 do_vfp_nsyn_mrs (void)
7789 {
7790 if (inst.operands[0].isvec)
7791 {
7792 if (inst.operands[1].reg != 1)
7793 first_error (_("operand 1 must be FPSCR"));
7794 memset (&inst.operands[0], '\0', sizeof (inst.operands[0]));
7795 memset (&inst.operands[1], '\0', sizeof (inst.operands[1]));
7796 do_vfp_nsyn_opcode ("fmstat");
7797 }
7798 else if (inst.operands[1].isvec)
7799 do_vfp_nsyn_opcode ("fmrx");
7800 else
7801 return FAIL;
7802
7803 return SUCCESS;
7804 }
7805
7806 static int
7807 do_vfp_nsyn_msr (void)
7808 {
7809 if (inst.operands[0].isvec)
7810 do_vfp_nsyn_opcode ("fmxr");
7811 else
7812 return FAIL;
7813
7814 return SUCCESS;
7815 }
7816
7817 static void
7818 do_vmrs (void)
7819 {
7820 unsigned Rt = inst.operands[0].reg;
7821
7822 if (thumb_mode && inst.operands[0].reg == REG_SP)
7823 {
7824 inst.error = BAD_SP;
7825 return;
7826 }
7827
7828 /* APSR_ sets isvec. All other refs to PC are illegal. */
7829 if (!inst.operands[0].isvec && inst.operands[0].reg == REG_PC)
7830 {
7831 inst.error = BAD_PC;
7832 return;
7833 }
7834
7835 if (inst.operands[1].reg != 1)
7836 first_error (_("operand 1 must be FPSCR"));
7837
7838 inst.instruction |= (Rt << 12);
7839 }
7840
7841 static void
7842 do_vmsr (void)
7843 {
7844 unsigned Rt = inst.operands[1].reg;
7845
7846 if (thumb_mode)
7847 reject_bad_reg (Rt);
7848 else if (Rt == REG_PC)
7849 {
7850 inst.error = BAD_PC;
7851 return;
7852 }
7853
7854 if (inst.operands[0].reg != 1)
7855 first_error (_("operand 0 must be FPSCR"));
7856
7857 inst.instruction |= (Rt << 12);
7858 }
7859
7860 static void
7861 do_mrs (void)
7862 {
7863 unsigned br;
7864
7865 if (do_vfp_nsyn_mrs () == SUCCESS)
7866 return;
7867
7868 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
7869 inst.instruction |= inst.operands[0].reg << 12;
7870
7871 if (inst.operands[1].isreg)
7872 {
7873 br = inst.operands[1].reg;
7874 if (((br & 0x200) == 0) && ((br & 0xf0000) != 0xf000))
7875 as_bad (_("bad register for mrs"));
7876 }
7877 else
7878 {
7879 /* mrs only accepts CPSR/SPSR/CPSR_all/SPSR_all. */
7880 constraint ((inst.operands[1].imm & (PSR_c|PSR_x|PSR_s|PSR_f))
7881 != (PSR_c|PSR_f),
7882 _("'CPSR' or 'SPSR' expected"));
7883 br = (15<<16) | (inst.operands[1].imm & SPSR_BIT);
7884 }
7885
7886 inst.instruction |= br;
7887 }
7888
7889 /* Two possible forms:
7890 "{C|S}PSR_<field>, Rm",
7891 "{C|S}PSR_f, #expression". */
7892
7893 static void
7894 do_msr (void)
7895 {
7896 if (do_vfp_nsyn_msr () == SUCCESS)
7897 return;
7898
7899 inst.instruction |= inst.operands[0].imm;
7900 if (inst.operands[1].isreg)
7901 inst.instruction |= inst.operands[1].reg;
7902 else
7903 {
7904 inst.instruction |= INST_IMMEDIATE;
7905 inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
7906 inst.reloc.pc_rel = 0;
7907 }
7908 }
7909
7910 static void
7911 do_mul (void)
7912 {
7913 constraint (inst.operands[2].reg == REG_PC, BAD_PC);
7914
7915 if (!inst.operands[2].present)
7916 inst.operands[2].reg = inst.operands[0].reg;
7917 inst.instruction |= inst.operands[0].reg << 16;
7918 inst.instruction |= inst.operands[1].reg;
7919 inst.instruction |= inst.operands[2].reg << 8;
7920
7921 if (inst.operands[0].reg == inst.operands[1].reg
7922 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6))
7923 as_tsktsk (_("Rd and Rm should be different in mul"));
7924 }
7925
7926 /* Long Multiply Parser
7927 UMULL RdLo, RdHi, Rm, Rs
7928 SMULL RdLo, RdHi, Rm, Rs
7929 UMLAL RdLo, RdHi, Rm, Rs
7930 SMLAL RdLo, RdHi, Rm, Rs. */
7931
7932 static void
7933 do_mull (void)
7934 {
7935 inst.instruction |= inst.operands[0].reg << 12;
7936 inst.instruction |= inst.operands[1].reg << 16;
7937 inst.instruction |= inst.operands[2].reg;
7938 inst.instruction |= inst.operands[3].reg << 8;
7939
7940 /* rdhi and rdlo must be different. */
7941 if (inst.operands[0].reg == inst.operands[1].reg)
7942 as_tsktsk (_("rdhi and rdlo must be different"));
7943
7944 /* rdhi, rdlo and rm must all be different before armv6. */
7945 if ((inst.operands[0].reg == inst.operands[2].reg
7946 || inst.operands[1].reg == inst.operands[2].reg)
7947 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6))
7948 as_tsktsk (_("rdhi, rdlo and rm must all be different"));
7949 }
7950
7951 static void
7952 do_nop (void)
7953 {
7954 if (inst.operands[0].present
7955 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6k))
7956 {
7957 /* Architectural NOP hints are CPSR sets with no bits selected. */
7958 inst.instruction &= 0xf0000000;
7959 inst.instruction |= 0x0320f000;
7960 if (inst.operands[0].present)
7961 inst.instruction |= inst.operands[0].imm;
7962 }
7963 }
7964
7965 /* ARM V6 Pack Halfword Bottom Top instruction (argument parse).
7966 PKHBT {<cond>} <Rd>, <Rn>, <Rm> {, LSL #<shift_imm>}
7967 Condition defaults to COND_ALWAYS.
7968 Error if Rd, Rn or Rm are R15. */
7969
7970 static void
7971 do_pkhbt (void)
7972 {
7973 inst.instruction |= inst.operands[0].reg << 12;
7974 inst.instruction |= inst.operands[1].reg << 16;
7975 inst.instruction |= inst.operands[2].reg;
7976 if (inst.operands[3].present)
7977 encode_arm_shift (3);
7978 }
7979
7980 /* ARM V6 PKHTB (Argument Parse). */
7981
7982 static void
7983 do_pkhtb (void)
7984 {
7985 if (!inst.operands[3].present)
7986 {
7987 /* If the shift specifier is omitted, turn the instruction
7988 into pkhbt rd, rm, rn. */
7989 inst.instruction &= 0xfff00010;
7990 inst.instruction |= inst.operands[0].reg << 12;
7991 inst.instruction |= inst.operands[1].reg;
7992 inst.instruction |= inst.operands[2].reg << 16;
7993 }
7994 else
7995 {
7996 inst.instruction |= inst.operands[0].reg << 12;
7997 inst.instruction |= inst.operands[1].reg << 16;
7998 inst.instruction |= inst.operands[2].reg;
7999 encode_arm_shift (3);
8000 }
8001 }
8002
8003 /* ARMv5TE: Preload-Cache
8004 MP Extensions: Preload for write
8005
8006 PLD(W) <addr_mode>
8007
8008 Syntactically, like LDR with B=1, W=0, L=1. */
8009
8010 static void
8011 do_pld (void)
8012 {
8013 constraint (!inst.operands[0].isreg,
8014 _("'[' expected after PLD mnemonic"));
8015 constraint (inst.operands[0].postind,
8016 _("post-indexed expression used in preload instruction"));
8017 constraint (inst.operands[0].writeback,
8018 _("writeback used in preload instruction"));
8019 constraint (!inst.operands[0].preind,
8020 _("unindexed addressing used in preload instruction"));
8021 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE);
8022 }
8023
8024 /* ARMv7: PLI <addr_mode> */
8025 static void
8026 do_pli (void)
8027 {
8028 constraint (!inst.operands[0].isreg,
8029 _("'[' expected after PLI mnemonic"));
8030 constraint (inst.operands[0].postind,
8031 _("post-indexed expression used in preload instruction"));
8032 constraint (inst.operands[0].writeback,
8033 _("writeback used in preload instruction"));
8034 constraint (!inst.operands[0].preind,
8035 _("unindexed addressing used in preload instruction"));
8036 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE);
8037 inst.instruction &= ~PRE_INDEX;
8038 }
8039
8040 static void
8041 do_push_pop (void)
8042 {
8043 inst.operands[1] = inst.operands[0];
8044 memset (&inst.operands[0], 0, sizeof inst.operands[0]);
8045 inst.operands[0].isreg = 1;
8046 inst.operands[0].writeback = 1;
8047 inst.operands[0].reg = REG_SP;
8048 do_ldmstm ();
8049 }
8050
8051 /* ARM V6 RFE (Return from Exception) loads the PC and CPSR from the
8052 word at the specified address and the following word
8053 respectively.
8054 Unconditionally executed.
8055 Error if Rn is R15. */
8056
8057 static void
8058 do_rfe (void)
8059 {
8060 inst.instruction |= inst.operands[0].reg << 16;
8061 if (inst.operands[0].writeback)
8062 inst.instruction |= WRITE_BACK;
8063 }
8064
8065 /* ARM V6 ssat (argument parse). */
8066
8067 static void
8068 do_ssat (void)
8069 {
8070 inst.instruction |= inst.operands[0].reg << 12;
8071 inst.instruction |= (inst.operands[1].imm - 1) << 16;
8072 inst.instruction |= inst.operands[2].reg;
8073
8074 if (inst.operands[3].present)
8075 encode_arm_shift (3);
8076 }
8077
8078 /* ARM V6 usat (argument parse). */
8079
8080 static void
8081 do_usat (void)
8082 {
8083 inst.instruction |= inst.operands[0].reg << 12;
8084 inst.instruction |= inst.operands[1].imm << 16;
8085 inst.instruction |= inst.operands[2].reg;
8086
8087 if (inst.operands[3].present)
8088 encode_arm_shift (3);
8089 }
8090
8091 /* ARM V6 ssat16 (argument parse). */
8092
8093 static void
8094 do_ssat16 (void)
8095 {
8096 inst.instruction |= inst.operands[0].reg << 12;
8097 inst.instruction |= ((inst.operands[1].imm - 1) << 16);
8098 inst.instruction |= inst.operands[2].reg;
8099 }
8100
8101 static void
8102 do_usat16 (void)
8103 {
8104 inst.instruction |= inst.operands[0].reg << 12;
8105 inst.instruction |= inst.operands[1].imm << 16;
8106 inst.instruction |= inst.operands[2].reg;
8107 }
8108
8109 /* ARM V6 SETEND (argument parse). Sets the E bit in the CPSR while
8110 preserving the other bits.
8111
8112 setend <endian_specifier>, where <endian_specifier> is either
8113 BE or LE. */
8114
8115 static void
8116 do_setend (void)
8117 {
8118 if (inst.operands[0].imm)
8119 inst.instruction |= 0x200;
8120 }
8121
8122 static void
8123 do_shift (void)
8124 {
8125 unsigned int Rm = (inst.operands[1].present
8126 ? inst.operands[1].reg
8127 : inst.operands[0].reg);
8128
8129 inst.instruction |= inst.operands[0].reg << 12;
8130 inst.instruction |= Rm;
8131 if (inst.operands[2].isreg) /* Rd, {Rm,} Rs */
8132 {
8133 inst.instruction |= inst.operands[2].reg << 8;
8134 inst.instruction |= SHIFT_BY_REG;
8135 }
8136 else
8137 inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
8138 }
8139
8140 static void
8141 do_smc (void)
8142 {
8143 inst.reloc.type = BFD_RELOC_ARM_SMC;
8144 inst.reloc.pc_rel = 0;
8145 }
8146
8147 static void
8148 do_hvc (void)
8149 {
8150 inst.reloc.type = BFD_RELOC_ARM_HVC;
8151 inst.reloc.pc_rel = 0;
8152 }
8153
8154 static void
8155 do_swi (void)
8156 {
8157 inst.reloc.type = BFD_RELOC_ARM_SWI;
8158 inst.reloc.pc_rel = 0;
8159 }
8160
8161 /* ARM V5E (El Segundo) signed-multiply-accumulate (argument parse)
8162 SMLAxy{cond} Rd,Rm,Rs,Rn
8163 SMLAWy{cond} Rd,Rm,Rs,Rn
8164 Error if any register is R15. */
8165
8166 static void
8167 do_smla (void)
8168 {
8169 inst.instruction |= inst.operands[0].reg << 16;
8170 inst.instruction |= inst.operands[1].reg;
8171 inst.instruction |= inst.operands[2].reg << 8;
8172 inst.instruction |= inst.operands[3].reg << 12;
8173 }
8174
8175 /* ARM V5E (El Segundo) signed-multiply-accumulate-long (argument parse)
8176 SMLALxy{cond} Rdlo,Rdhi,Rm,Rs
8177 Error if any register is R15.
8178 Warning if Rdlo == Rdhi. */
8179
8180 static void
8181 do_smlal (void)
8182 {
8183 inst.instruction |= inst.operands[0].reg << 12;
8184 inst.instruction |= inst.operands[1].reg << 16;
8185 inst.instruction |= inst.operands[2].reg;
8186 inst.instruction |= inst.operands[3].reg << 8;
8187
8188 if (inst.operands[0].reg == inst.operands[1].reg)
8189 as_tsktsk (_("rdhi and rdlo must be different"));
8190 }
8191
8192 /* ARM V5E (El Segundo) signed-multiply (argument parse)
8193 SMULxy{cond} Rd,Rm,Rs
8194 Error if any register is R15. */
8195
8196 static void
8197 do_smul (void)
8198 {
8199 inst.instruction |= inst.operands[0].reg << 16;
8200 inst.instruction |= inst.operands[1].reg;
8201 inst.instruction |= inst.operands[2].reg << 8;
8202 }
8203
8204 /* ARM V6 srs (argument parse). The variable fields in the encoding are
8205 the same for both ARM and Thumb-2. */
8206
8207 static void
8208 do_srs (void)
8209 {
8210 int reg;
8211
8212 if (inst.operands[0].present)
8213 {
8214 reg = inst.operands[0].reg;
8215 constraint (reg != REG_SP, _("SRS base register must be r13"));
8216 }
8217 else
8218 reg = REG_SP;
8219
8220 inst.instruction |= reg << 16;
8221 inst.instruction |= inst.operands[1].imm;
8222 if (inst.operands[0].writeback || inst.operands[1].writeback)
8223 inst.instruction |= WRITE_BACK;
8224 }
8225
8226 /* ARM V6 strex (argument parse). */
8227
8228 static void
8229 do_strex (void)
8230 {
8231 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
8232 || inst.operands[2].postind || inst.operands[2].writeback
8233 || inst.operands[2].immisreg || inst.operands[2].shifted
8234 || inst.operands[2].negative
8235 /* See comment in do_ldrex(). */
8236 || (inst.operands[2].reg == REG_PC),
8237 BAD_ADDR_MODE);
8238
8239 constraint (inst.operands[0].reg == inst.operands[1].reg
8240 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
8241
8242 constraint (inst.reloc.exp.X_op != O_constant
8243 || inst.reloc.exp.X_add_number != 0,
8244 _("offset must be zero in ARM encoding"));
8245
8246 inst.instruction |= inst.operands[0].reg << 12;
8247 inst.instruction |= inst.operands[1].reg;
8248 inst.instruction |= inst.operands[2].reg << 16;
8249 inst.reloc.type = BFD_RELOC_UNUSED;
8250 }
8251
8252 static void
8253 do_strexd (void)
8254 {
8255 constraint (inst.operands[1].reg % 2 != 0,
8256 _("even register required"));
8257 constraint (inst.operands[2].present
8258 && inst.operands[2].reg != inst.operands[1].reg + 1,
8259 _("can only store two consecutive registers"));
8260 /* If op 2 were present and equal to PC, this function wouldn't
8261 have been called in the first place. */
8262 constraint (inst.operands[1].reg == REG_LR, _("r14 not allowed here"));
8263
8264 constraint (inst.operands[0].reg == inst.operands[1].reg
8265 || inst.operands[0].reg == inst.operands[1].reg + 1
8266 || inst.operands[0].reg == inst.operands[3].reg,
8267 BAD_OVERLAP);
8268
8269 inst.instruction |= inst.operands[0].reg << 12;
8270 inst.instruction |= inst.operands[1].reg;
8271 inst.instruction |= inst.operands[3].reg << 16;
8272 }
8273
8274 /* ARM V6 SXTAH extracts a 16-bit value from a register, sign
8275 extends it to 32-bits, and adds the result to a value in another
8276 register. You can specify a rotation by 0, 8, 16, or 24 bits
8277 before extracting the 16-bit value.
8278 SXTAH{<cond>} <Rd>, <Rn>, <Rm>{, <rotation>}
8279 Condition defaults to COND_ALWAYS.
8280 Error if any register uses R15. */
8281
8282 static void
8283 do_sxtah (void)
8284 {
8285 inst.instruction |= inst.operands[0].reg << 12;
8286 inst.instruction |= inst.operands[1].reg << 16;
8287 inst.instruction |= inst.operands[2].reg;
8288 inst.instruction |= inst.operands[3].imm << 10;
8289 }
8290
8291 /* ARM V6 SXTH.
8292
8293 SXTH {<cond>} <Rd>, <Rm>{, <rotation>}
8294 Condition defaults to COND_ALWAYS.
8295 Error if any register uses R15. */
8296
8297 static void
8298 do_sxth (void)
8299 {
8300 inst.instruction |= inst.operands[0].reg << 12;
8301 inst.instruction |= inst.operands[1].reg;
8302 inst.instruction |= inst.operands[2].imm << 10;
8303 }
8304 \f
8305 /* VFP instructions. In a logical order: SP variant first, monad
8306 before dyad, arithmetic then move then load/store. */
8307
8308 static void
8309 do_vfp_sp_monadic (void)
8310 {
8311 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8312 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
8313 }
8314
8315 static void
8316 do_vfp_sp_dyadic (void)
8317 {
8318 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8319 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sn);
8320 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Sm);
8321 }
8322
8323 static void
8324 do_vfp_sp_compare_z (void)
8325 {
8326 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8327 }
8328
8329 static void
8330 do_vfp_dp_sp_cvt (void)
8331 {
8332 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8333 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
8334 }
8335
8336 static void
8337 do_vfp_sp_dp_cvt (void)
8338 {
8339 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8340 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dm);
8341 }
8342
8343 static void
8344 do_vfp_reg_from_sp (void)
8345 {
8346 inst.instruction |= inst.operands[0].reg << 12;
8347 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sn);
8348 }
8349
8350 static void
8351 do_vfp_reg2_from_sp2 (void)
8352 {
8353 constraint (inst.operands[2].imm != 2,
8354 _("only two consecutive VFP SP registers allowed here"));
8355 inst.instruction |= inst.operands[0].reg << 12;
8356 inst.instruction |= inst.operands[1].reg << 16;
8357 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Sm);
8358 }
8359
8360 static void
8361 do_vfp_sp_from_reg (void)
8362 {
8363 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sn);
8364 inst.instruction |= inst.operands[1].reg << 12;
8365 }
8366
8367 static void
8368 do_vfp_sp2_from_reg2 (void)
8369 {
8370 constraint (inst.operands[0].imm != 2,
8371 _("only two consecutive VFP SP registers allowed here"));
8372 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sm);
8373 inst.instruction |= inst.operands[1].reg << 12;
8374 inst.instruction |= inst.operands[2].reg << 16;
8375 }
8376
8377 static void
8378 do_vfp_sp_ldst (void)
8379 {
8380 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8381 encode_arm_cp_address (1, FALSE, TRUE, 0);
8382 }
8383
8384 static void
8385 do_vfp_dp_ldst (void)
8386 {
8387 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8388 encode_arm_cp_address (1, FALSE, TRUE, 0);
8389 }
8390
8391
8392 static void
8393 vfp_sp_ldstm (enum vfp_ldstm_type ldstm_type)
8394 {
8395 if (inst.operands[0].writeback)
8396 inst.instruction |= WRITE_BACK;
8397 else
8398 constraint (ldstm_type != VFP_LDSTMIA,
8399 _("this addressing mode requires base-register writeback"));
8400 inst.instruction |= inst.operands[0].reg << 16;
8401 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sd);
8402 inst.instruction |= inst.operands[1].imm;
8403 }
8404
8405 static void
8406 vfp_dp_ldstm (enum vfp_ldstm_type ldstm_type)
8407 {
8408 int count;
8409
8410 if (inst.operands[0].writeback)
8411 inst.instruction |= WRITE_BACK;
8412 else
8413 constraint (ldstm_type != VFP_LDSTMIA && ldstm_type != VFP_LDSTMIAX,
8414 _("this addressing mode requires base-register writeback"));
8415
8416 inst.instruction |= inst.operands[0].reg << 16;
8417 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
8418
8419 count = inst.operands[1].imm << 1;
8420 if (ldstm_type == VFP_LDSTMIAX || ldstm_type == VFP_LDSTMDBX)
8421 count += 1;
8422
8423 inst.instruction |= count;
8424 }
8425
8426 static void
8427 do_vfp_sp_ldstmia (void)
8428 {
8429 vfp_sp_ldstm (VFP_LDSTMIA);
8430 }
8431
8432 static void
8433 do_vfp_sp_ldstmdb (void)
8434 {
8435 vfp_sp_ldstm (VFP_LDSTMDB);
8436 }
8437
8438 static void
8439 do_vfp_dp_ldstmia (void)
8440 {
8441 vfp_dp_ldstm (VFP_LDSTMIA);
8442 }
8443
8444 static void
8445 do_vfp_dp_ldstmdb (void)
8446 {
8447 vfp_dp_ldstm (VFP_LDSTMDB);
8448 }
8449
8450 static void
8451 do_vfp_xp_ldstmia (void)
8452 {
8453 vfp_dp_ldstm (VFP_LDSTMIAX);
8454 }
8455
8456 static void
8457 do_vfp_xp_ldstmdb (void)
8458 {
8459 vfp_dp_ldstm (VFP_LDSTMDBX);
8460 }
8461
8462 static void
8463 do_vfp_dp_rd_rm (void)
8464 {
8465 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8466 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dm);
8467 }
8468
8469 static void
8470 do_vfp_dp_rn_rd (void)
8471 {
8472 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dn);
8473 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
8474 }
8475
8476 static void
8477 do_vfp_dp_rd_rn (void)
8478 {
8479 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8480 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dn);
8481 }
8482
8483 static void
8484 do_vfp_dp_rd_rn_rm (void)
8485 {
8486 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8487 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dn);
8488 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Dm);
8489 }
8490
8491 static void
8492 do_vfp_dp_rd (void)
8493 {
8494 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8495 }
8496
8497 static void
8498 do_vfp_dp_rm_rd_rn (void)
8499 {
8500 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dm);
8501 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
8502 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Dn);
8503 }
8504
8505 /* VFPv3 instructions. */
8506 static void
8507 do_vfp_sp_const (void)
8508 {
8509 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8510 inst.instruction |= (inst.operands[1].imm & 0xf0) << 12;
8511 inst.instruction |= (inst.operands[1].imm & 0x0f);
8512 }
8513
8514 static void
8515 do_vfp_dp_const (void)
8516 {
8517 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8518 inst.instruction |= (inst.operands[1].imm & 0xf0) << 12;
8519 inst.instruction |= (inst.operands[1].imm & 0x0f);
8520 }
8521
8522 static void
8523 vfp_conv (int srcsize)
8524 {
8525 unsigned immbits = srcsize - inst.operands[1].imm;
8526 inst.instruction |= (immbits & 1) << 5;
8527 inst.instruction |= (immbits >> 1);
8528 }
8529
8530 static void
8531 do_vfp_sp_conv_16 (void)
8532 {
8533 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8534 vfp_conv (16);
8535 }
8536
8537 static void
8538 do_vfp_dp_conv_16 (void)
8539 {
8540 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8541 vfp_conv (16);
8542 }
8543
8544 static void
8545 do_vfp_sp_conv_32 (void)
8546 {
8547 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8548 vfp_conv (32);
8549 }
8550
8551 static void
8552 do_vfp_dp_conv_32 (void)
8553 {
8554 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8555 vfp_conv (32);
8556 }
8557 \f
8558 /* FPA instructions. Also in a logical order. */
8559
8560 static void
8561 do_fpa_cmp (void)
8562 {
8563 inst.instruction |= inst.operands[0].reg << 16;
8564 inst.instruction |= inst.operands[1].reg;
8565 }
8566
8567 static void
8568 do_fpa_ldmstm (void)
8569 {
8570 inst.instruction |= inst.operands[0].reg << 12;
8571 switch (inst.operands[1].imm)
8572 {
8573 case 1: inst.instruction |= CP_T_X; break;
8574 case 2: inst.instruction |= CP_T_Y; break;
8575 case 3: inst.instruction |= CP_T_Y | CP_T_X; break;
8576 case 4: break;
8577 default: abort ();
8578 }
8579
8580 if (inst.instruction & (PRE_INDEX | INDEX_UP))
8581 {
8582 /* The instruction specified "ea" or "fd", so we can only accept
8583 [Rn]{!}. The instruction does not really support stacking or
8584 unstacking, so we have to emulate these by setting appropriate
8585 bits and offsets. */
8586 constraint (inst.reloc.exp.X_op != O_constant
8587 || inst.reloc.exp.X_add_number != 0,
8588 _("this instruction does not support indexing"));
8589
8590 if ((inst.instruction & PRE_INDEX) || inst.operands[2].writeback)
8591 inst.reloc.exp.X_add_number = 12 * inst.operands[1].imm;
8592
8593 if (!(inst.instruction & INDEX_UP))
8594 inst.reloc.exp.X_add_number = -inst.reloc.exp.X_add_number;
8595
8596 if (!(inst.instruction & PRE_INDEX) && inst.operands[2].writeback)
8597 {
8598 inst.operands[2].preind = 0;
8599 inst.operands[2].postind = 1;
8600 }
8601 }
8602
8603 encode_arm_cp_address (2, TRUE, TRUE, 0);
8604 }
8605 \f
8606 /* iWMMXt instructions: strictly in alphabetical order. */
8607
8608 static void
8609 do_iwmmxt_tandorc (void)
8610 {
8611 constraint (inst.operands[0].reg != REG_PC, _("only r15 allowed here"));
8612 }
8613
8614 static void
8615 do_iwmmxt_textrc (void)
8616 {
8617 inst.instruction |= inst.operands[0].reg << 12;
8618 inst.instruction |= inst.operands[1].imm;
8619 }
8620
8621 static void
8622 do_iwmmxt_textrm (void)
8623 {
8624 inst.instruction |= inst.operands[0].reg << 12;
8625 inst.instruction |= inst.operands[1].reg << 16;
8626 inst.instruction |= inst.operands[2].imm;
8627 }
8628
8629 static void
8630 do_iwmmxt_tinsr (void)
8631 {
8632 inst.instruction |= inst.operands[0].reg << 16;
8633 inst.instruction |= inst.operands[1].reg << 12;
8634 inst.instruction |= inst.operands[2].imm;
8635 }
8636
8637 static void
8638 do_iwmmxt_tmia (void)
8639 {
8640 inst.instruction |= inst.operands[0].reg << 5;
8641 inst.instruction |= inst.operands[1].reg;
8642 inst.instruction |= inst.operands[2].reg << 12;
8643 }
8644
8645 static void
8646 do_iwmmxt_waligni (void)
8647 {
8648 inst.instruction |= inst.operands[0].reg << 12;
8649 inst.instruction |= inst.operands[1].reg << 16;
8650 inst.instruction |= inst.operands[2].reg;
8651 inst.instruction |= inst.operands[3].imm << 20;
8652 }
8653
8654 static void
8655 do_iwmmxt_wmerge (void)
8656 {
8657 inst.instruction |= inst.operands[0].reg << 12;
8658 inst.instruction |= inst.operands[1].reg << 16;
8659 inst.instruction |= inst.operands[2].reg;
8660 inst.instruction |= inst.operands[3].imm << 21;
8661 }
8662
8663 static void
8664 do_iwmmxt_wmov (void)
8665 {
8666 /* WMOV rD, rN is an alias for WOR rD, rN, rN. */
8667 inst.instruction |= inst.operands[0].reg << 12;
8668 inst.instruction |= inst.operands[1].reg << 16;
8669 inst.instruction |= inst.operands[1].reg;
8670 }
8671
8672 static void
8673 do_iwmmxt_wldstbh (void)
8674 {
8675 int reloc;
8676 inst.instruction |= inst.operands[0].reg << 12;
8677 if (thumb_mode)
8678 reloc = BFD_RELOC_ARM_T32_CP_OFF_IMM_S2;
8679 else
8680 reloc = BFD_RELOC_ARM_CP_OFF_IMM_S2;
8681 encode_arm_cp_address (1, TRUE, FALSE, reloc);
8682 }
8683
8684 static void
8685 do_iwmmxt_wldstw (void)
8686 {
8687 /* RIWR_RIWC clears .isreg for a control register. */
8688 if (!inst.operands[0].isreg)
8689 {
8690 constraint (inst.cond != COND_ALWAYS, BAD_COND);
8691 inst.instruction |= 0xf0000000;
8692 }
8693
8694 inst.instruction |= inst.operands[0].reg << 12;
8695 encode_arm_cp_address (1, TRUE, TRUE, 0);
8696 }
8697
8698 static void
8699 do_iwmmxt_wldstd (void)
8700 {
8701 inst.instruction |= inst.operands[0].reg << 12;
8702 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2)
8703 && inst.operands[1].immisreg)
8704 {
8705 inst.instruction &= ~0x1a000ff;
8706 inst.instruction |= (0xf << 28);
8707 if (inst.operands[1].preind)
8708 inst.instruction |= PRE_INDEX;
8709 if (!inst.operands[1].negative)
8710 inst.instruction |= INDEX_UP;
8711 if (inst.operands[1].writeback)
8712 inst.instruction |= WRITE_BACK;
8713 inst.instruction |= inst.operands[1].reg << 16;
8714 inst.instruction |= inst.reloc.exp.X_add_number << 4;
8715 inst.instruction |= inst.operands[1].imm;
8716 }
8717 else
8718 encode_arm_cp_address (1, TRUE, FALSE, 0);
8719 }
8720
8721 static void
8722 do_iwmmxt_wshufh (void)
8723 {
8724 inst.instruction |= inst.operands[0].reg << 12;
8725 inst.instruction |= inst.operands[1].reg << 16;
8726 inst.instruction |= ((inst.operands[2].imm & 0xf0) << 16);
8727 inst.instruction |= (inst.operands[2].imm & 0x0f);
8728 }
8729
8730 static void
8731 do_iwmmxt_wzero (void)
8732 {
8733 /* WZERO reg is an alias for WANDN reg, reg, reg. */
8734 inst.instruction |= inst.operands[0].reg;
8735 inst.instruction |= inst.operands[0].reg << 12;
8736 inst.instruction |= inst.operands[0].reg << 16;
8737 }
8738
8739 static void
8740 do_iwmmxt_wrwrwr_or_imm5 (void)
8741 {
8742 if (inst.operands[2].isreg)
8743 do_rd_rn_rm ();
8744 else {
8745 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2),
8746 _("immediate operand requires iWMMXt2"));
8747 do_rd_rn ();
8748 if (inst.operands[2].imm == 0)
8749 {
8750 switch ((inst.instruction >> 20) & 0xf)
8751 {
8752 case 4:
8753 case 5:
8754 case 6:
8755 case 7:
8756 /* w...h wrd, wrn, #0 -> wrorh wrd, wrn, #16. */
8757 inst.operands[2].imm = 16;
8758 inst.instruction = (inst.instruction & 0xff0fffff) | (0x7 << 20);
8759 break;
8760 case 8:
8761 case 9:
8762 case 10:
8763 case 11:
8764 /* w...w wrd, wrn, #0 -> wrorw wrd, wrn, #32. */
8765 inst.operands[2].imm = 32;
8766 inst.instruction = (inst.instruction & 0xff0fffff) | (0xb << 20);
8767 break;
8768 case 12:
8769 case 13:
8770 case 14:
8771 case 15:
8772 {
8773 /* w...d wrd, wrn, #0 -> wor wrd, wrn, wrn. */
8774 unsigned long wrn;
8775 wrn = (inst.instruction >> 16) & 0xf;
8776 inst.instruction &= 0xff0fff0f;
8777 inst.instruction |= wrn;
8778 /* Bail out here; the instruction is now assembled. */
8779 return;
8780 }
8781 }
8782 }
8783 /* Map 32 -> 0, etc. */
8784 inst.operands[2].imm &= 0x1f;
8785 inst.instruction |= (0xf << 28) | ((inst.operands[2].imm & 0x10) << 4) | (inst.operands[2].imm & 0xf);
8786 }
8787 }
8788 \f
8789 /* Cirrus Maverick instructions. Simple 2-, 3-, and 4-register
8790 operations first, then control, shift, and load/store. */
8791
8792 /* Insns like "foo X,Y,Z". */
8793
8794 static void
8795 do_mav_triple (void)
8796 {
8797 inst.instruction |= inst.operands[0].reg << 16;
8798 inst.instruction |= inst.operands[1].reg;
8799 inst.instruction |= inst.operands[2].reg << 12;
8800 }
8801
8802 /* Insns like "foo W,X,Y,Z".
8803 where W=MVAX[0:3] and X,Y,Z=MVFX[0:15]. */
8804
8805 static void
8806 do_mav_quad (void)
8807 {
8808 inst.instruction |= inst.operands[0].reg << 5;
8809 inst.instruction |= inst.operands[1].reg << 12;
8810 inst.instruction |= inst.operands[2].reg << 16;
8811 inst.instruction |= inst.operands[3].reg;
8812 }
8813
8814 /* cfmvsc32<cond> DSPSC,MVDX[15:0]. */
8815 static void
8816 do_mav_dspsc (void)
8817 {
8818 inst.instruction |= inst.operands[1].reg << 12;
8819 }
8820
8821 /* Maverick shift immediate instructions.
8822 cfsh32<cond> MVFX[15:0],MVFX[15:0],Shift[6:0].
8823 cfsh64<cond> MVDX[15:0],MVDX[15:0],Shift[6:0]. */
8824
8825 static void
8826 do_mav_shift (void)
8827 {
8828 int imm = inst.operands[2].imm;
8829
8830 inst.instruction |= inst.operands[0].reg << 12;
8831 inst.instruction |= inst.operands[1].reg << 16;
8832
8833 /* Bits 0-3 of the insn should have bits 0-3 of the immediate.
8834 Bits 5-7 of the insn should have bits 4-6 of the immediate.
8835 Bit 4 should be 0. */
8836 imm = (imm & 0xf) | ((imm & 0x70) << 1);
8837
8838 inst.instruction |= imm;
8839 }
8840 \f
8841 /* XScale instructions. Also sorted arithmetic before move. */
8842
8843 /* Xscale multiply-accumulate (argument parse)
8844 MIAcc acc0,Rm,Rs
8845 MIAPHcc acc0,Rm,Rs
8846 MIAxycc acc0,Rm,Rs. */
8847
8848 static void
8849 do_xsc_mia (void)
8850 {
8851 inst.instruction |= inst.operands[1].reg;
8852 inst.instruction |= inst.operands[2].reg << 12;
8853 }
8854
8855 /* Xscale move-accumulator-register (argument parse)
8856
8857 MARcc acc0,RdLo,RdHi. */
8858
8859 static void
8860 do_xsc_mar (void)
8861 {
8862 inst.instruction |= inst.operands[1].reg << 12;
8863 inst.instruction |= inst.operands[2].reg << 16;
8864 }
8865
8866 /* Xscale move-register-accumulator (argument parse)
8867
8868 MRAcc RdLo,RdHi,acc0. */
8869
8870 static void
8871 do_xsc_mra (void)
8872 {
8873 constraint (inst.operands[0].reg == inst.operands[1].reg, BAD_OVERLAP);
8874 inst.instruction |= inst.operands[0].reg << 12;
8875 inst.instruction |= inst.operands[1].reg << 16;
8876 }
8877 \f
8878 /* Encoding functions relevant only to Thumb. */
8879
8880 /* inst.operands[i] is a shifted-register operand; encode
8881 it into inst.instruction in the format used by Thumb32. */
8882
8883 static void
8884 encode_thumb32_shifted_operand (int i)
8885 {
8886 unsigned int value = inst.reloc.exp.X_add_number;
8887 unsigned int shift = inst.operands[i].shift_kind;
8888
8889 constraint (inst.operands[i].immisreg,
8890 _("shift by register not allowed in thumb mode"));
8891 inst.instruction |= inst.operands[i].reg;
8892 if (shift == SHIFT_RRX)
8893 inst.instruction |= SHIFT_ROR << 4;
8894 else
8895 {
8896 constraint (inst.reloc.exp.X_op != O_constant,
8897 _("expression too complex"));
8898
8899 constraint (value > 32
8900 || (value == 32 && (shift == SHIFT_LSL
8901 || shift == SHIFT_ROR)),
8902 _("shift expression is too large"));
8903
8904 if (value == 0)
8905 shift = SHIFT_LSL;
8906 else if (value == 32)
8907 value = 0;
8908
8909 inst.instruction |= shift << 4;
8910 inst.instruction |= (value & 0x1c) << 10;
8911 inst.instruction |= (value & 0x03) << 6;
8912 }
8913 }
8914
8915
8916 /* inst.operands[i] was set up by parse_address. Encode it into a
8917 Thumb32 format load or store instruction. Reject forms that cannot
8918 be used with such instructions. If is_t is true, reject forms that
8919 cannot be used with a T instruction; if is_d is true, reject forms
8920 that cannot be used with a D instruction. If it is a store insn,
8921 reject PC in Rn. */
8922
8923 static void
8924 encode_thumb32_addr_mode (int i, bfd_boolean is_t, bfd_boolean is_d)
8925 {
8926 const bfd_boolean is_pc = (inst.operands[i].reg == REG_PC);
8927
8928 constraint (!inst.operands[i].isreg,
8929 _("Instruction does not support =N addresses"));
8930
8931 inst.instruction |= inst.operands[i].reg << 16;
8932 if (inst.operands[i].immisreg)
8933 {
8934 constraint (is_pc, BAD_PC_ADDRESSING);
8935 constraint (is_t || is_d, _("cannot use register index with this instruction"));
8936 constraint (inst.operands[i].negative,
8937 _("Thumb does not support negative register indexing"));
8938 constraint (inst.operands[i].postind,
8939 _("Thumb does not support register post-indexing"));
8940 constraint (inst.operands[i].writeback,
8941 _("Thumb does not support register indexing with writeback"));
8942 constraint (inst.operands[i].shifted && inst.operands[i].shift_kind != SHIFT_LSL,
8943 _("Thumb supports only LSL in shifted register indexing"));
8944
8945 inst.instruction |= inst.operands[i].imm;
8946 if (inst.operands[i].shifted)
8947 {
8948 constraint (inst.reloc.exp.X_op != O_constant,
8949 _("expression too complex"));
8950 constraint (inst.reloc.exp.X_add_number < 0
8951 || inst.reloc.exp.X_add_number > 3,
8952 _("shift out of range"));
8953 inst.instruction |= inst.reloc.exp.X_add_number << 4;
8954 }
8955 inst.reloc.type = BFD_RELOC_UNUSED;
8956 }
8957 else if (inst.operands[i].preind)
8958 {
8959 constraint (is_pc && inst.operands[i].writeback, BAD_PC_WRITEBACK);
8960 constraint (is_t && inst.operands[i].writeback,
8961 _("cannot use writeback with this instruction"));
8962 constraint (is_pc && ((inst.instruction & THUMB2_LOAD_BIT) == 0)
8963 && !inst.reloc.pc_rel, BAD_PC_ADDRESSING);
8964
8965 if (is_d)
8966 {
8967 inst.instruction |= 0x01000000;
8968 if (inst.operands[i].writeback)
8969 inst.instruction |= 0x00200000;
8970 }
8971 else
8972 {
8973 inst.instruction |= 0x00000c00;
8974 if (inst.operands[i].writeback)
8975 inst.instruction |= 0x00000100;
8976 }
8977 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_IMM;
8978 }
8979 else if (inst.operands[i].postind)
8980 {
8981 gas_assert (inst.operands[i].writeback);
8982 constraint (is_pc, _("cannot use post-indexing with PC-relative addressing"));
8983 constraint (is_t, _("cannot use post-indexing with this instruction"));
8984
8985 if (is_d)
8986 inst.instruction |= 0x00200000;
8987 else
8988 inst.instruction |= 0x00000900;
8989 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_IMM;
8990 }
8991 else /* unindexed - only for coprocessor */
8992 inst.error = _("instruction does not accept unindexed addressing");
8993 }
8994
8995 /* Table of Thumb instructions which exist in both 16- and 32-bit
8996 encodings (the latter only in post-V6T2 cores). The index is the
8997 value used in the insns table below. When there is more than one
8998 possible 16-bit encoding for the instruction, this table always
8999 holds variant (1).
9000 Also contains several pseudo-instructions used during relaxation. */
9001 #define T16_32_TAB \
9002 X(_adc, 4140, eb400000), \
9003 X(_adcs, 4140, eb500000), \
9004 X(_add, 1c00, eb000000), \
9005 X(_adds, 1c00, eb100000), \
9006 X(_addi, 0000, f1000000), \
9007 X(_addis, 0000, f1100000), \
9008 X(_add_pc,000f, f20f0000), \
9009 X(_add_sp,000d, f10d0000), \
9010 X(_adr, 000f, f20f0000), \
9011 X(_and, 4000, ea000000), \
9012 X(_ands, 4000, ea100000), \
9013 X(_asr, 1000, fa40f000), \
9014 X(_asrs, 1000, fa50f000), \
9015 X(_b, e000, f000b000), \
9016 X(_bcond, d000, f0008000), \
9017 X(_bic, 4380, ea200000), \
9018 X(_bics, 4380, ea300000), \
9019 X(_cmn, 42c0, eb100f00), \
9020 X(_cmp, 2800, ebb00f00), \
9021 X(_cpsie, b660, f3af8400), \
9022 X(_cpsid, b670, f3af8600), \
9023 X(_cpy, 4600, ea4f0000), \
9024 X(_dec_sp,80dd, f1ad0d00), \
9025 X(_eor, 4040, ea800000), \
9026 X(_eors, 4040, ea900000), \
9027 X(_inc_sp,00dd, f10d0d00), \
9028 X(_ldmia, c800, e8900000), \
9029 X(_ldr, 6800, f8500000), \
9030 X(_ldrb, 7800, f8100000), \
9031 X(_ldrh, 8800, f8300000), \
9032 X(_ldrsb, 5600, f9100000), \
9033 X(_ldrsh, 5e00, f9300000), \
9034 X(_ldr_pc,4800, f85f0000), \
9035 X(_ldr_pc2,4800, f85f0000), \
9036 X(_ldr_sp,9800, f85d0000), \
9037 X(_lsl, 0000, fa00f000), \
9038 X(_lsls, 0000, fa10f000), \
9039 X(_lsr, 0800, fa20f000), \
9040 X(_lsrs, 0800, fa30f000), \
9041 X(_mov, 2000, ea4f0000), \
9042 X(_movs, 2000, ea5f0000), \
9043 X(_mul, 4340, fb00f000), \
9044 X(_muls, 4340, ffffffff), /* no 32b muls */ \
9045 X(_mvn, 43c0, ea6f0000), \
9046 X(_mvns, 43c0, ea7f0000), \
9047 X(_neg, 4240, f1c00000), /* rsb #0 */ \
9048 X(_negs, 4240, f1d00000), /* rsbs #0 */ \
9049 X(_orr, 4300, ea400000), \
9050 X(_orrs, 4300, ea500000), \
9051 X(_pop, bc00, e8bd0000), /* ldmia sp!,... */ \
9052 X(_push, b400, e92d0000), /* stmdb sp!,... */ \
9053 X(_rev, ba00, fa90f080), \
9054 X(_rev16, ba40, fa90f090), \
9055 X(_revsh, bac0, fa90f0b0), \
9056 X(_ror, 41c0, fa60f000), \
9057 X(_rors, 41c0, fa70f000), \
9058 X(_sbc, 4180, eb600000), \
9059 X(_sbcs, 4180, eb700000), \
9060 X(_stmia, c000, e8800000), \
9061 X(_str, 6000, f8400000), \
9062 X(_strb, 7000, f8000000), \
9063 X(_strh, 8000, f8200000), \
9064 X(_str_sp,9000, f84d0000), \
9065 X(_sub, 1e00, eba00000), \
9066 X(_subs, 1e00, ebb00000), \
9067 X(_subi, 8000, f1a00000), \
9068 X(_subis, 8000, f1b00000), \
9069 X(_sxtb, b240, fa4ff080), \
9070 X(_sxth, b200, fa0ff080), \
9071 X(_tst, 4200, ea100f00), \
9072 X(_uxtb, b2c0, fa5ff080), \
9073 X(_uxth, b280, fa1ff080), \
9074 X(_nop, bf00, f3af8000), \
9075 X(_yield, bf10, f3af8001), \
9076 X(_wfe, bf20, f3af8002), \
9077 X(_wfi, bf30, f3af8003), \
9078 X(_sev, bf40, f3af8004),
9079
9080 /* To catch errors in encoding functions, the codes are all offset by
9081 0xF800, putting them in one of the 32-bit prefix ranges, ergo undefined
9082 as 16-bit instructions. */
9083 #define X(a,b,c) T_MNEM##a
9084 enum t16_32_codes { T16_32_OFFSET = 0xF7FF, T16_32_TAB };
9085 #undef X
9086
9087 #define X(a,b,c) 0x##b
9088 static const unsigned short thumb_op16[] = { T16_32_TAB };
9089 #define THUMB_OP16(n) (thumb_op16[(n) - (T16_32_OFFSET + 1)])
9090 #undef X
9091
9092 #define X(a,b,c) 0x##c
9093 static const unsigned int thumb_op32[] = { T16_32_TAB };
9094 #define THUMB_OP32(n) (thumb_op32[(n) - (T16_32_OFFSET + 1)])
9095 #define THUMB_SETS_FLAGS(n) (THUMB_OP32 (n) & 0x00100000)
9096 #undef X
9097 #undef T16_32_TAB
9098
9099 /* Thumb instruction encoders, in alphabetical order. */
9100
9101 /* ADDW or SUBW. */
9102
9103 static void
9104 do_t_add_sub_w (void)
9105 {
9106 int Rd, Rn;
9107
9108 Rd = inst.operands[0].reg;
9109 Rn = inst.operands[1].reg;
9110
9111 /* If Rn is REG_PC, this is ADR; if Rn is REG_SP, then this
9112 is the SP-{plus,minus}-immediate form of the instruction. */
9113 if (Rn == REG_SP)
9114 constraint (Rd == REG_PC, BAD_PC);
9115 else
9116 reject_bad_reg (Rd);
9117
9118 inst.instruction |= (Rn << 16) | (Rd << 8);
9119 inst.reloc.type = BFD_RELOC_ARM_T32_IMM12;
9120 }
9121
9122 /* Parse an add or subtract instruction. We get here with inst.instruction
9123 equalling any of THUMB_OPCODE_add, adds, sub, or subs. */
9124
9125 static void
9126 do_t_add_sub (void)
9127 {
9128 int Rd, Rs, Rn;
9129
9130 Rd = inst.operands[0].reg;
9131 Rs = (inst.operands[1].present
9132 ? inst.operands[1].reg /* Rd, Rs, foo */
9133 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
9134
9135 if (Rd == REG_PC)
9136 set_it_insn_type_last ();
9137
9138 if (unified_syntax)
9139 {
9140 bfd_boolean flags;
9141 bfd_boolean narrow;
9142 int opcode;
9143
9144 flags = (inst.instruction == T_MNEM_adds
9145 || inst.instruction == T_MNEM_subs);
9146 if (flags)
9147 narrow = !in_it_block ();
9148 else
9149 narrow = in_it_block ();
9150 if (!inst.operands[2].isreg)
9151 {
9152 int add;
9153
9154 constraint (Rd == REG_SP && Rs != REG_SP, BAD_SP);
9155
9156 add = (inst.instruction == T_MNEM_add
9157 || inst.instruction == T_MNEM_adds);
9158 opcode = 0;
9159 if (inst.size_req != 4)
9160 {
9161 /* Attempt to use a narrow opcode, with relaxation if
9162 appropriate. */
9163 if (Rd == REG_SP && Rs == REG_SP && !flags)
9164 opcode = add ? T_MNEM_inc_sp : T_MNEM_dec_sp;
9165 else if (Rd <= 7 && Rs == REG_SP && add && !flags)
9166 opcode = T_MNEM_add_sp;
9167 else if (Rd <= 7 && Rs == REG_PC && add && !flags)
9168 opcode = T_MNEM_add_pc;
9169 else if (Rd <= 7 && Rs <= 7 && narrow)
9170 {
9171 if (flags)
9172 opcode = add ? T_MNEM_addis : T_MNEM_subis;
9173 else
9174 opcode = add ? T_MNEM_addi : T_MNEM_subi;
9175 }
9176 if (opcode)
9177 {
9178 inst.instruction = THUMB_OP16(opcode);
9179 inst.instruction |= (Rd << 4) | Rs;
9180 inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
9181 if (inst.size_req != 2)
9182 inst.relax = opcode;
9183 }
9184 else
9185 constraint (inst.size_req == 2, BAD_HIREG);
9186 }
9187 if (inst.size_req == 4
9188 || (inst.size_req != 2 && !opcode))
9189 {
9190 if (Rd == REG_PC)
9191 {
9192 constraint (add, BAD_PC);
9193 constraint (Rs != REG_LR || inst.instruction != T_MNEM_subs,
9194 _("only SUBS PC, LR, #const allowed"));
9195 constraint (inst.reloc.exp.X_op != O_constant,
9196 _("expression too complex"));
9197 constraint (inst.reloc.exp.X_add_number < 0
9198 || inst.reloc.exp.X_add_number > 0xff,
9199 _("immediate value out of range"));
9200 inst.instruction = T2_SUBS_PC_LR
9201 | inst.reloc.exp.X_add_number;
9202 inst.reloc.type = BFD_RELOC_UNUSED;
9203 return;
9204 }
9205 else if (Rs == REG_PC)
9206 {
9207 /* Always use addw/subw. */
9208 inst.instruction = add ? 0xf20f0000 : 0xf2af0000;
9209 inst.reloc.type = BFD_RELOC_ARM_T32_IMM12;
9210 }
9211 else
9212 {
9213 inst.instruction = THUMB_OP32 (inst.instruction);
9214 inst.instruction = (inst.instruction & 0xe1ffffff)
9215 | 0x10000000;
9216 if (flags)
9217 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
9218 else
9219 inst.reloc.type = BFD_RELOC_ARM_T32_ADD_IMM;
9220 }
9221 inst.instruction |= Rd << 8;
9222 inst.instruction |= Rs << 16;
9223 }
9224 }
9225 else
9226 {
9227 Rn = inst.operands[2].reg;
9228 /* See if we can do this with a 16-bit instruction. */
9229 if (!inst.operands[2].shifted && inst.size_req != 4)
9230 {
9231 if (Rd > 7 || Rs > 7 || Rn > 7)
9232 narrow = FALSE;
9233
9234 if (narrow)
9235 {
9236 inst.instruction = ((inst.instruction == T_MNEM_adds
9237 || inst.instruction == T_MNEM_add)
9238 ? T_OPCODE_ADD_R3
9239 : T_OPCODE_SUB_R3);
9240 inst.instruction |= Rd | (Rs << 3) | (Rn << 6);
9241 return;
9242 }
9243
9244 if (inst.instruction == T_MNEM_add && (Rd == Rs || Rd == Rn))
9245 {
9246 /* Thumb-1 cores (except v6-M) require at least one high
9247 register in a narrow non flag setting add. */
9248 if (Rd > 7 || Rn > 7
9249 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6t2)
9250 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_msr))
9251 {
9252 if (Rd == Rn)
9253 {
9254 Rn = Rs;
9255 Rs = Rd;
9256 }
9257 inst.instruction = T_OPCODE_ADD_HI;
9258 inst.instruction |= (Rd & 8) << 4;
9259 inst.instruction |= (Rd & 7);
9260 inst.instruction |= Rn << 3;
9261 return;
9262 }
9263 }
9264 }
9265
9266 constraint (Rd == REG_PC, BAD_PC);
9267 constraint (Rd == REG_SP && Rs != REG_SP, BAD_SP);
9268 constraint (Rs == REG_PC, BAD_PC);
9269 reject_bad_reg (Rn);
9270
9271 /* If we get here, it can't be done in 16 bits. */
9272 constraint (inst.operands[2].shifted && inst.operands[2].immisreg,
9273 _("shift must be constant"));
9274 inst.instruction = THUMB_OP32 (inst.instruction);
9275 inst.instruction |= Rd << 8;
9276 inst.instruction |= Rs << 16;
9277 encode_thumb32_shifted_operand (2);
9278 }
9279 }
9280 else
9281 {
9282 constraint (inst.instruction == T_MNEM_adds
9283 || inst.instruction == T_MNEM_subs,
9284 BAD_THUMB32);
9285
9286 if (!inst.operands[2].isreg) /* Rd, Rs, #imm */
9287 {
9288 constraint ((Rd > 7 && (Rd != REG_SP || Rs != REG_SP))
9289 || (Rs > 7 && Rs != REG_SP && Rs != REG_PC),
9290 BAD_HIREG);
9291
9292 inst.instruction = (inst.instruction == T_MNEM_add
9293 ? 0x0000 : 0x8000);
9294 inst.instruction |= (Rd << 4) | Rs;
9295 inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
9296 return;
9297 }
9298
9299 Rn = inst.operands[2].reg;
9300 constraint (inst.operands[2].shifted, _("unshifted register required"));
9301
9302 /* We now have Rd, Rs, and Rn set to registers. */
9303 if (Rd > 7 || Rs > 7 || Rn > 7)
9304 {
9305 /* Can't do this for SUB. */
9306 constraint (inst.instruction == T_MNEM_sub, BAD_HIREG);
9307 inst.instruction = T_OPCODE_ADD_HI;
9308 inst.instruction |= (Rd & 8) << 4;
9309 inst.instruction |= (Rd & 7);
9310 if (Rs == Rd)
9311 inst.instruction |= Rn << 3;
9312 else if (Rn == Rd)
9313 inst.instruction |= Rs << 3;
9314 else
9315 constraint (1, _("dest must overlap one source register"));
9316 }
9317 else
9318 {
9319 inst.instruction = (inst.instruction == T_MNEM_add
9320 ? T_OPCODE_ADD_R3 : T_OPCODE_SUB_R3);
9321 inst.instruction |= Rd | (Rs << 3) | (Rn << 6);
9322 }
9323 }
9324 }
9325
9326 static void
9327 do_t_adr (void)
9328 {
9329 unsigned Rd;
9330
9331 Rd = inst.operands[0].reg;
9332 reject_bad_reg (Rd);
9333
9334 if (unified_syntax && inst.size_req == 0 && Rd <= 7)
9335 {
9336 /* Defer to section relaxation. */
9337 inst.relax = inst.instruction;
9338 inst.instruction = THUMB_OP16 (inst.instruction);
9339 inst.instruction |= Rd << 4;
9340 }
9341 else if (unified_syntax && inst.size_req != 2)
9342 {
9343 /* Generate a 32-bit opcode. */
9344 inst.instruction = THUMB_OP32 (inst.instruction);
9345 inst.instruction |= Rd << 8;
9346 inst.reloc.type = BFD_RELOC_ARM_T32_ADD_PC12;
9347 inst.reloc.pc_rel = 1;
9348 }
9349 else
9350 {
9351 /* Generate a 16-bit opcode. */
9352 inst.instruction = THUMB_OP16 (inst.instruction);
9353 inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
9354 inst.reloc.exp.X_add_number -= 4; /* PC relative adjust. */
9355 inst.reloc.pc_rel = 1;
9356
9357 inst.instruction |= Rd << 4;
9358 }
9359 }
9360
9361 /* Arithmetic instructions for which there is just one 16-bit
9362 instruction encoding, and it allows only two low registers.
9363 For maximal compatibility with ARM syntax, we allow three register
9364 operands even when Thumb-32 instructions are not available, as long
9365 as the first two are identical. For instance, both "sbc r0,r1" and
9366 "sbc r0,r0,r1" are allowed. */
9367 static void
9368 do_t_arit3 (void)
9369 {
9370 int Rd, Rs, Rn;
9371
9372 Rd = inst.operands[0].reg;
9373 Rs = (inst.operands[1].present
9374 ? inst.operands[1].reg /* Rd, Rs, foo */
9375 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
9376 Rn = inst.operands[2].reg;
9377
9378 reject_bad_reg (Rd);
9379 reject_bad_reg (Rs);
9380 if (inst.operands[2].isreg)
9381 reject_bad_reg (Rn);
9382
9383 if (unified_syntax)
9384 {
9385 if (!inst.operands[2].isreg)
9386 {
9387 /* For an immediate, we always generate a 32-bit opcode;
9388 section relaxation will shrink it later if possible. */
9389 inst.instruction = THUMB_OP32 (inst.instruction);
9390 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
9391 inst.instruction |= Rd << 8;
9392 inst.instruction |= Rs << 16;
9393 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
9394 }
9395 else
9396 {
9397 bfd_boolean narrow;
9398
9399 /* See if we can do this with a 16-bit instruction. */
9400 if (THUMB_SETS_FLAGS (inst.instruction))
9401 narrow = !in_it_block ();
9402 else
9403 narrow = in_it_block ();
9404
9405 if (Rd > 7 || Rn > 7 || Rs > 7)
9406 narrow = FALSE;
9407 if (inst.operands[2].shifted)
9408 narrow = FALSE;
9409 if (inst.size_req == 4)
9410 narrow = FALSE;
9411
9412 if (narrow
9413 && Rd == Rs)
9414 {
9415 inst.instruction = THUMB_OP16 (inst.instruction);
9416 inst.instruction |= Rd;
9417 inst.instruction |= Rn << 3;
9418 return;
9419 }
9420
9421 /* If we get here, it can't be done in 16 bits. */
9422 constraint (inst.operands[2].shifted
9423 && inst.operands[2].immisreg,
9424 _("shift must be constant"));
9425 inst.instruction = THUMB_OP32 (inst.instruction);
9426 inst.instruction |= Rd << 8;
9427 inst.instruction |= Rs << 16;
9428 encode_thumb32_shifted_operand (2);
9429 }
9430 }
9431 else
9432 {
9433 /* On its face this is a lie - the instruction does set the
9434 flags. However, the only supported mnemonic in this mode
9435 says it doesn't. */
9436 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
9437
9438 constraint (!inst.operands[2].isreg || inst.operands[2].shifted,
9439 _("unshifted register required"));
9440 constraint (Rd > 7 || Rs > 7 || Rn > 7, BAD_HIREG);
9441 constraint (Rd != Rs,
9442 _("dest and source1 must be the same register"));
9443
9444 inst.instruction = THUMB_OP16 (inst.instruction);
9445 inst.instruction |= Rd;
9446 inst.instruction |= Rn << 3;
9447 }
9448 }
9449
9450 /* Similarly, but for instructions where the arithmetic operation is
9451 commutative, so we can allow either of them to be different from
9452 the destination operand in a 16-bit instruction. For instance, all
9453 three of "adc r0,r1", "adc r0,r0,r1", and "adc r0,r1,r0" are
9454 accepted. */
9455 static void
9456 do_t_arit3c (void)
9457 {
9458 int Rd, Rs, Rn;
9459
9460 Rd = inst.operands[0].reg;
9461 Rs = (inst.operands[1].present
9462 ? inst.operands[1].reg /* Rd, Rs, foo */
9463 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
9464 Rn = inst.operands[2].reg;
9465
9466 reject_bad_reg (Rd);
9467 reject_bad_reg (Rs);
9468 if (inst.operands[2].isreg)
9469 reject_bad_reg (Rn);
9470
9471 if (unified_syntax)
9472 {
9473 if (!inst.operands[2].isreg)
9474 {
9475 /* For an immediate, we always generate a 32-bit opcode;
9476 section relaxation will shrink it later if possible. */
9477 inst.instruction = THUMB_OP32 (inst.instruction);
9478 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
9479 inst.instruction |= Rd << 8;
9480 inst.instruction |= Rs << 16;
9481 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
9482 }
9483 else
9484 {
9485 bfd_boolean narrow;
9486
9487 /* See if we can do this with a 16-bit instruction. */
9488 if (THUMB_SETS_FLAGS (inst.instruction))
9489 narrow = !in_it_block ();
9490 else
9491 narrow = in_it_block ();
9492
9493 if (Rd > 7 || Rn > 7 || Rs > 7)
9494 narrow = FALSE;
9495 if (inst.operands[2].shifted)
9496 narrow = FALSE;
9497 if (inst.size_req == 4)
9498 narrow = FALSE;
9499
9500 if (narrow)
9501 {
9502 if (Rd == Rs)
9503 {
9504 inst.instruction = THUMB_OP16 (inst.instruction);
9505 inst.instruction |= Rd;
9506 inst.instruction |= Rn << 3;
9507 return;
9508 }
9509 if (Rd == Rn)
9510 {
9511 inst.instruction = THUMB_OP16 (inst.instruction);
9512 inst.instruction |= Rd;
9513 inst.instruction |= Rs << 3;
9514 return;
9515 }
9516 }
9517
9518 /* If we get here, it can't be done in 16 bits. */
9519 constraint (inst.operands[2].shifted
9520 && inst.operands[2].immisreg,
9521 _("shift must be constant"));
9522 inst.instruction = THUMB_OP32 (inst.instruction);
9523 inst.instruction |= Rd << 8;
9524 inst.instruction |= Rs << 16;
9525 encode_thumb32_shifted_operand (2);
9526 }
9527 }
9528 else
9529 {
9530 /* On its face this is a lie - the instruction does set the
9531 flags. However, the only supported mnemonic in this mode
9532 says it doesn't. */
9533 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
9534
9535 constraint (!inst.operands[2].isreg || inst.operands[2].shifted,
9536 _("unshifted register required"));
9537 constraint (Rd > 7 || Rs > 7 || Rn > 7, BAD_HIREG);
9538
9539 inst.instruction = THUMB_OP16 (inst.instruction);
9540 inst.instruction |= Rd;
9541
9542 if (Rd == Rs)
9543 inst.instruction |= Rn << 3;
9544 else if (Rd == Rn)
9545 inst.instruction |= Rs << 3;
9546 else
9547 constraint (1, _("dest must overlap one source register"));
9548 }
9549 }
9550
9551 static void
9552 do_t_barrier (void)
9553 {
9554 if (inst.operands[0].present)
9555 {
9556 constraint ((inst.instruction & 0xf0) != 0x40
9557 && inst.operands[0].imm > 0xf
9558 && inst.operands[0].imm < 0x0,
9559 _("bad barrier type"));
9560 inst.instruction |= inst.operands[0].imm;
9561 }
9562 else
9563 inst.instruction |= 0xf;
9564 }
9565
9566 static void
9567 do_t_bfc (void)
9568 {
9569 unsigned Rd;
9570 unsigned int msb = inst.operands[1].imm + inst.operands[2].imm;
9571 constraint (msb > 32, _("bit-field extends past end of register"));
9572 /* The instruction encoding stores the LSB and MSB,
9573 not the LSB and width. */
9574 Rd = inst.operands[0].reg;
9575 reject_bad_reg (Rd);
9576 inst.instruction |= Rd << 8;
9577 inst.instruction |= (inst.operands[1].imm & 0x1c) << 10;
9578 inst.instruction |= (inst.operands[1].imm & 0x03) << 6;
9579 inst.instruction |= msb - 1;
9580 }
9581
9582 static void
9583 do_t_bfi (void)
9584 {
9585 int Rd, Rn;
9586 unsigned int msb;
9587
9588 Rd = inst.operands[0].reg;
9589 reject_bad_reg (Rd);
9590
9591 /* #0 in second position is alternative syntax for bfc, which is
9592 the same instruction but with REG_PC in the Rm field. */
9593 if (!inst.operands[1].isreg)
9594 Rn = REG_PC;
9595 else
9596 {
9597 Rn = inst.operands[1].reg;
9598 reject_bad_reg (Rn);
9599 }
9600
9601 msb = inst.operands[2].imm + inst.operands[3].imm;
9602 constraint (msb > 32, _("bit-field extends past end of register"));
9603 /* The instruction encoding stores the LSB and MSB,
9604 not the LSB and width. */
9605 inst.instruction |= Rd << 8;
9606 inst.instruction |= Rn << 16;
9607 inst.instruction |= (inst.operands[2].imm & 0x1c) << 10;
9608 inst.instruction |= (inst.operands[2].imm & 0x03) << 6;
9609 inst.instruction |= msb - 1;
9610 }
9611
9612 static void
9613 do_t_bfx (void)
9614 {
9615 unsigned Rd, Rn;
9616
9617 Rd = inst.operands[0].reg;
9618 Rn = inst.operands[1].reg;
9619
9620 reject_bad_reg (Rd);
9621 reject_bad_reg (Rn);
9622
9623 constraint (inst.operands[2].imm + inst.operands[3].imm > 32,
9624 _("bit-field extends past end of register"));
9625 inst.instruction |= Rd << 8;
9626 inst.instruction |= Rn << 16;
9627 inst.instruction |= (inst.operands[2].imm & 0x1c) << 10;
9628 inst.instruction |= (inst.operands[2].imm & 0x03) << 6;
9629 inst.instruction |= inst.operands[3].imm - 1;
9630 }
9631
9632 /* ARM V5 Thumb BLX (argument parse)
9633 BLX <target_addr> which is BLX(1)
9634 BLX <Rm> which is BLX(2)
9635 Unfortunately, there are two different opcodes for this mnemonic.
9636 So, the insns[].value is not used, and the code here zaps values
9637 into inst.instruction.
9638
9639 ??? How to take advantage of the additional two bits of displacement
9640 available in Thumb32 mode? Need new relocation? */
9641
9642 static void
9643 do_t_blx (void)
9644 {
9645 set_it_insn_type_last ();
9646
9647 if (inst.operands[0].isreg)
9648 {
9649 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
9650 /* We have a register, so this is BLX(2). */
9651 inst.instruction |= inst.operands[0].reg << 3;
9652 }
9653 else
9654 {
9655 /* No register. This must be BLX(1). */
9656 inst.instruction = 0xf000e800;
9657 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BLX;
9658 inst.reloc.pc_rel = 1;
9659 }
9660 }
9661
9662 static void
9663 do_t_branch (void)
9664 {
9665 int opcode;
9666 int cond;
9667 int reloc;
9668
9669 cond = inst.cond;
9670 set_it_insn_type (IF_INSIDE_IT_LAST_INSN);
9671
9672 if (in_it_block ())
9673 {
9674 /* Conditional branches inside IT blocks are encoded as unconditional
9675 branches. */
9676 cond = COND_ALWAYS;
9677 }
9678 else
9679 cond = inst.cond;
9680
9681 if (cond != COND_ALWAYS)
9682 opcode = T_MNEM_bcond;
9683 else
9684 opcode = inst.instruction;
9685
9686 if (unified_syntax && inst.size_req == 4)
9687 {
9688 inst.instruction = THUMB_OP32(opcode);
9689 if (cond == COND_ALWAYS)
9690 reloc = BFD_RELOC_THUMB_PCREL_BRANCH25;
9691 else
9692 {
9693 gas_assert (cond != 0xF);
9694 inst.instruction |= cond << 22;
9695 reloc = BFD_RELOC_THUMB_PCREL_BRANCH20;
9696 }
9697 }
9698 else
9699 {
9700 inst.instruction = THUMB_OP16(opcode);
9701 if (cond == COND_ALWAYS)
9702 reloc = BFD_RELOC_THUMB_PCREL_BRANCH12;
9703 else
9704 {
9705 inst.instruction |= cond << 8;
9706 reloc = BFD_RELOC_THUMB_PCREL_BRANCH9;
9707 }
9708 /* Allow section relaxation. */
9709 if (unified_syntax && inst.size_req != 2)
9710 inst.relax = opcode;
9711 }
9712 inst.reloc.type = reloc;
9713 inst.reloc.pc_rel = 1;
9714 }
9715
9716 static void
9717 do_t_bkpt (void)
9718 {
9719 constraint (inst.cond != COND_ALWAYS,
9720 _("instruction is always unconditional"));
9721 if (inst.operands[0].present)
9722 {
9723 constraint (inst.operands[0].imm > 255,
9724 _("immediate value out of range"));
9725 inst.instruction |= inst.operands[0].imm;
9726 set_it_insn_type (NEUTRAL_IT_INSN);
9727 }
9728 }
9729
9730 static void
9731 do_t_branch23 (void)
9732 {
9733 set_it_insn_type_last ();
9734 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH23;
9735 inst.reloc.pc_rel = 1;
9736
9737 #if defined(OBJ_COFF)
9738 /* If the destination of the branch is a defined symbol which does not have
9739 the THUMB_FUNC attribute, then we must be calling a function which has
9740 the (interfacearm) attribute. We look for the Thumb entry point to that
9741 function and change the branch to refer to that function instead. */
9742 if ( inst.reloc.exp.X_op == O_symbol
9743 && inst.reloc.exp.X_add_symbol != NULL
9744 && S_IS_DEFINED (inst.reloc.exp.X_add_symbol)
9745 && ! THUMB_IS_FUNC (inst.reloc.exp.X_add_symbol))
9746 inst.reloc.exp.X_add_symbol =
9747 find_real_start (inst.reloc.exp.X_add_symbol);
9748 #endif
9749 }
9750
9751 static void
9752 do_t_bx (void)
9753 {
9754 set_it_insn_type_last ();
9755 inst.instruction |= inst.operands[0].reg << 3;
9756 /* ??? FIXME: Should add a hacky reloc here if reg is REG_PC. The reloc
9757 should cause the alignment to be checked once it is known. This is
9758 because BX PC only works if the instruction is word aligned. */
9759 }
9760
9761 static void
9762 do_t_bxj (void)
9763 {
9764 int Rm;
9765
9766 set_it_insn_type_last ();
9767 Rm = inst.operands[0].reg;
9768 reject_bad_reg (Rm);
9769 inst.instruction |= Rm << 16;
9770 }
9771
9772 static void
9773 do_t_clz (void)
9774 {
9775 unsigned Rd;
9776 unsigned Rm;
9777
9778 Rd = inst.operands[0].reg;
9779 Rm = inst.operands[1].reg;
9780
9781 reject_bad_reg (Rd);
9782 reject_bad_reg (Rm);
9783
9784 inst.instruction |= Rd << 8;
9785 inst.instruction |= Rm << 16;
9786 inst.instruction |= Rm;
9787 }
9788
9789 static void
9790 do_t_cps (void)
9791 {
9792 set_it_insn_type (OUTSIDE_IT_INSN);
9793 inst.instruction |= inst.operands[0].imm;
9794 }
9795
9796 static void
9797 do_t_cpsi (void)
9798 {
9799 set_it_insn_type (OUTSIDE_IT_INSN);
9800 if (unified_syntax
9801 && (inst.operands[1].present || inst.size_req == 4)
9802 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6_notm))
9803 {
9804 unsigned int imod = (inst.instruction & 0x0030) >> 4;
9805 inst.instruction = 0xf3af8000;
9806 inst.instruction |= imod << 9;
9807 inst.instruction |= inst.operands[0].imm << 5;
9808 if (inst.operands[1].present)
9809 inst.instruction |= 0x100 | inst.operands[1].imm;
9810 }
9811 else
9812 {
9813 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1)
9814 && (inst.operands[0].imm & 4),
9815 _("selected processor does not support 'A' form "
9816 "of this instruction"));
9817 constraint (inst.operands[1].present || inst.size_req == 4,
9818 _("Thumb does not support the 2-argument "
9819 "form of this instruction"));
9820 inst.instruction |= inst.operands[0].imm;
9821 }
9822 }
9823
9824 /* THUMB CPY instruction (argument parse). */
9825
9826 static void
9827 do_t_cpy (void)
9828 {
9829 if (inst.size_req == 4)
9830 {
9831 inst.instruction = THUMB_OP32 (T_MNEM_mov);
9832 inst.instruction |= inst.operands[0].reg << 8;
9833 inst.instruction |= inst.operands[1].reg;
9834 }
9835 else
9836 {
9837 inst.instruction |= (inst.operands[0].reg & 0x8) << 4;
9838 inst.instruction |= (inst.operands[0].reg & 0x7);
9839 inst.instruction |= inst.operands[1].reg << 3;
9840 }
9841 }
9842
9843 static void
9844 do_t_cbz (void)
9845 {
9846 set_it_insn_type (OUTSIDE_IT_INSN);
9847 constraint (inst.operands[0].reg > 7, BAD_HIREG);
9848 inst.instruction |= inst.operands[0].reg;
9849 inst.reloc.pc_rel = 1;
9850 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH7;
9851 }
9852
9853 static void
9854 do_t_dbg (void)
9855 {
9856 inst.instruction |= inst.operands[0].imm;
9857 }
9858
9859 static void
9860 do_t_div (void)
9861 {
9862 unsigned Rd, Rn, Rm;
9863
9864 Rd = inst.operands[0].reg;
9865 Rn = (inst.operands[1].present
9866 ? inst.operands[1].reg : Rd);
9867 Rm = inst.operands[2].reg;
9868
9869 reject_bad_reg (Rd);
9870 reject_bad_reg (Rn);
9871 reject_bad_reg (Rm);
9872
9873 inst.instruction |= Rd << 8;
9874 inst.instruction |= Rn << 16;
9875 inst.instruction |= Rm;
9876 }
9877
9878 static void
9879 do_t_hint (void)
9880 {
9881 if (unified_syntax && inst.size_req == 4)
9882 inst.instruction = THUMB_OP32 (inst.instruction);
9883 else
9884 inst.instruction = THUMB_OP16 (inst.instruction);
9885 }
9886
9887 static void
9888 do_t_it (void)
9889 {
9890 unsigned int cond = inst.operands[0].imm;
9891
9892 set_it_insn_type (IT_INSN);
9893 now_it.mask = (inst.instruction & 0xf) | 0x10;
9894 now_it.cc = cond;
9895
9896 /* If the condition is a negative condition, invert the mask. */
9897 if ((cond & 0x1) == 0x0)
9898 {
9899 unsigned int mask = inst.instruction & 0x000f;
9900
9901 if ((mask & 0x7) == 0)
9902 /* no conversion needed */;
9903 else if ((mask & 0x3) == 0)
9904 mask ^= 0x8;
9905 else if ((mask & 0x1) == 0)
9906 mask ^= 0xC;
9907 else
9908 mask ^= 0xE;
9909
9910 inst.instruction &= 0xfff0;
9911 inst.instruction |= mask;
9912 }
9913
9914 inst.instruction |= cond << 4;
9915 }
9916
9917 /* Helper function used for both push/pop and ldm/stm. */
9918 static void
9919 encode_thumb2_ldmstm (int base, unsigned mask, bfd_boolean writeback)
9920 {
9921 bfd_boolean load;
9922
9923 load = (inst.instruction & (1 << 20)) != 0;
9924
9925 if (mask & (1 << 13))
9926 inst.error = _("SP not allowed in register list");
9927
9928 if ((mask & (1 << base)) != 0
9929 && writeback)
9930 inst.error = _("having the base register in the register list when "
9931 "using write back is UNPREDICTABLE");
9932
9933 if (load)
9934 {
9935 if (mask & (1 << 15))
9936 {
9937 if (mask & (1 << 14))
9938 inst.error = _("LR and PC should not both be in register list");
9939 else
9940 set_it_insn_type_last ();
9941 }
9942 }
9943 else
9944 {
9945 if (mask & (1 << 15))
9946 inst.error = _("PC not allowed in register list");
9947 }
9948
9949 if ((mask & (mask - 1)) == 0)
9950 {
9951 /* Single register transfers implemented as str/ldr. */
9952 if (writeback)
9953 {
9954 if (inst.instruction & (1 << 23))
9955 inst.instruction = 0x00000b04; /* ia! -> [base], #4 */
9956 else
9957 inst.instruction = 0x00000d04; /* db! -> [base, #-4]! */
9958 }
9959 else
9960 {
9961 if (inst.instruction & (1 << 23))
9962 inst.instruction = 0x00800000; /* ia -> [base] */
9963 else
9964 inst.instruction = 0x00000c04; /* db -> [base, #-4] */
9965 }
9966
9967 inst.instruction |= 0xf8400000;
9968 if (load)
9969 inst.instruction |= 0x00100000;
9970
9971 mask = ffs (mask) - 1;
9972 mask <<= 12;
9973 }
9974 else if (writeback)
9975 inst.instruction |= WRITE_BACK;
9976
9977 inst.instruction |= mask;
9978 inst.instruction |= base << 16;
9979 }
9980
9981 static void
9982 do_t_ldmstm (void)
9983 {
9984 /* This really doesn't seem worth it. */
9985 constraint (inst.reloc.type != BFD_RELOC_UNUSED,
9986 _("expression too complex"));
9987 constraint (inst.operands[1].writeback,
9988 _("Thumb load/store multiple does not support {reglist}^"));
9989
9990 if (unified_syntax)
9991 {
9992 bfd_boolean narrow;
9993 unsigned mask;
9994
9995 narrow = FALSE;
9996 /* See if we can use a 16-bit instruction. */
9997 if (inst.instruction < 0xffff /* not ldmdb/stmdb */
9998 && inst.size_req != 4
9999 && !(inst.operands[1].imm & ~0xff))
10000 {
10001 mask = 1 << inst.operands[0].reg;
10002
10003 if (inst.operands[0].reg <= 7)
10004 {
10005 if (inst.instruction == T_MNEM_stmia
10006 ? inst.operands[0].writeback
10007 : (inst.operands[0].writeback
10008 == !(inst.operands[1].imm & mask)))
10009 {
10010 if (inst.instruction == T_MNEM_stmia
10011 && (inst.operands[1].imm & mask)
10012 && (inst.operands[1].imm & (mask - 1)))
10013 as_warn (_("value stored for r%d is UNKNOWN"),
10014 inst.operands[0].reg);
10015
10016 inst.instruction = THUMB_OP16 (inst.instruction);
10017 inst.instruction |= inst.operands[0].reg << 8;
10018 inst.instruction |= inst.operands[1].imm;
10019 narrow = TRUE;
10020 }
10021 else if ((inst.operands[1].imm & (inst.operands[1].imm-1)) == 0)
10022 {
10023 /* This means 1 register in reg list one of 3 situations:
10024 1. Instruction is stmia, but without writeback.
10025 2. lmdia without writeback, but with Rn not in
10026 reglist.
10027 3. ldmia with writeback, but with Rn in reglist.
10028 Case 3 is UNPREDICTABLE behaviour, so we handle
10029 case 1 and 2 which can be converted into a 16-bit
10030 str or ldr. The SP cases are handled below. */
10031 unsigned long opcode;
10032 /* First, record an error for Case 3. */
10033 if (inst.operands[1].imm & mask
10034 && inst.operands[0].writeback)
10035 inst.error =
10036 _("having the base register in the register list when "
10037 "using write back is UNPREDICTABLE");
10038
10039 opcode = (inst.instruction == T_MNEM_stmia ? T_MNEM_str
10040 : T_MNEM_ldr);
10041 inst.instruction = THUMB_OP16 (opcode);
10042 inst.instruction |= inst.operands[0].reg << 3;
10043 inst.instruction |= (ffs (inst.operands[1].imm)-1);
10044 narrow = TRUE;
10045 }
10046 }
10047 else if (inst.operands[0] .reg == REG_SP)
10048 {
10049 if (inst.operands[0].writeback)
10050 {
10051 inst.instruction =
10052 THUMB_OP16 (inst.instruction == T_MNEM_stmia
10053 ? T_MNEM_push : T_MNEM_pop);
10054 inst.instruction |= inst.operands[1].imm;
10055 narrow = TRUE;
10056 }
10057 else if ((inst.operands[1].imm & (inst.operands[1].imm-1)) == 0)
10058 {
10059 inst.instruction =
10060 THUMB_OP16 (inst.instruction == T_MNEM_stmia
10061 ? T_MNEM_str_sp : T_MNEM_ldr_sp);
10062 inst.instruction |= ((ffs (inst.operands[1].imm)-1) << 8);
10063 narrow = TRUE;
10064 }
10065 }
10066 }
10067
10068 if (!narrow)
10069 {
10070 if (inst.instruction < 0xffff)
10071 inst.instruction = THUMB_OP32 (inst.instruction);
10072
10073 encode_thumb2_ldmstm (inst.operands[0].reg, inst.operands[1].imm,
10074 inst.operands[0].writeback);
10075 }
10076 }
10077 else
10078 {
10079 constraint (inst.operands[0].reg > 7
10080 || (inst.operands[1].imm & ~0xff), BAD_HIREG);
10081 constraint (inst.instruction != T_MNEM_ldmia
10082 && inst.instruction != T_MNEM_stmia,
10083 _("Thumb-2 instruction only valid in unified syntax"));
10084 if (inst.instruction == T_MNEM_stmia)
10085 {
10086 if (!inst.operands[0].writeback)
10087 as_warn (_("this instruction will write back the base register"));
10088 if ((inst.operands[1].imm & (1 << inst.operands[0].reg))
10089 && (inst.operands[1].imm & ((1 << inst.operands[0].reg) - 1)))
10090 as_warn (_("value stored for r%d is UNKNOWN"),
10091 inst.operands[0].reg);
10092 }
10093 else
10094 {
10095 if (!inst.operands[0].writeback
10096 && !(inst.operands[1].imm & (1 << inst.operands[0].reg)))
10097 as_warn (_("this instruction will write back the base register"));
10098 else if (inst.operands[0].writeback
10099 && (inst.operands[1].imm & (1 << inst.operands[0].reg)))
10100 as_warn (_("this instruction will not write back the base register"));
10101 }
10102
10103 inst.instruction = THUMB_OP16 (inst.instruction);
10104 inst.instruction |= inst.operands[0].reg << 8;
10105 inst.instruction |= inst.operands[1].imm;
10106 }
10107 }
10108
10109 static void
10110 do_t_ldrex (void)
10111 {
10112 constraint (!inst.operands[1].isreg || !inst.operands[1].preind
10113 || inst.operands[1].postind || inst.operands[1].writeback
10114 || inst.operands[1].immisreg || inst.operands[1].shifted
10115 || inst.operands[1].negative,
10116 BAD_ADDR_MODE);
10117
10118 constraint ((inst.operands[1].reg == REG_PC), BAD_PC);
10119
10120 inst.instruction |= inst.operands[0].reg << 12;
10121 inst.instruction |= inst.operands[1].reg << 16;
10122 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_U8;
10123 }
10124
10125 static void
10126 do_t_ldrexd (void)
10127 {
10128 if (!inst.operands[1].present)
10129 {
10130 constraint (inst.operands[0].reg == REG_LR,
10131 _("r14 not allowed as first register "
10132 "when second register is omitted"));
10133 inst.operands[1].reg = inst.operands[0].reg + 1;
10134 }
10135 constraint (inst.operands[0].reg == inst.operands[1].reg,
10136 BAD_OVERLAP);
10137
10138 inst.instruction |= inst.operands[0].reg << 12;
10139 inst.instruction |= inst.operands[1].reg << 8;
10140 inst.instruction |= inst.operands[2].reg << 16;
10141 }
10142
10143 static void
10144 do_t_ldst (void)
10145 {
10146 unsigned long opcode;
10147 int Rn;
10148
10149 if (inst.operands[0].isreg
10150 && !inst.operands[0].preind
10151 && inst.operands[0].reg == REG_PC)
10152 set_it_insn_type_last ();
10153
10154 opcode = inst.instruction;
10155 if (unified_syntax)
10156 {
10157 if (!inst.operands[1].isreg)
10158 {
10159 if (opcode <= 0xffff)
10160 inst.instruction = THUMB_OP32 (opcode);
10161 if (move_or_literal_pool (0, /*thumb_p=*/TRUE, /*mode_3=*/FALSE))
10162 return;
10163 }
10164 if (inst.operands[1].isreg
10165 && !inst.operands[1].writeback
10166 && !inst.operands[1].shifted && !inst.operands[1].postind
10167 && !inst.operands[1].negative && inst.operands[0].reg <= 7
10168 && opcode <= 0xffff
10169 && inst.size_req != 4)
10170 {
10171 /* Insn may have a 16-bit form. */
10172 Rn = inst.operands[1].reg;
10173 if (inst.operands[1].immisreg)
10174 {
10175 inst.instruction = THUMB_OP16 (opcode);
10176 /* [Rn, Rik] */
10177 if (Rn <= 7 && inst.operands[1].imm <= 7)
10178 goto op16;
10179 else if (opcode != T_MNEM_ldr && opcode != T_MNEM_str)
10180 reject_bad_reg (inst.operands[1].imm);
10181 }
10182 else if ((Rn <= 7 && opcode != T_MNEM_ldrsh
10183 && opcode != T_MNEM_ldrsb)
10184 || ((Rn == REG_PC || Rn == REG_SP) && opcode == T_MNEM_ldr)
10185 || (Rn == REG_SP && opcode == T_MNEM_str))
10186 {
10187 /* [Rn, #const] */
10188 if (Rn > 7)
10189 {
10190 if (Rn == REG_PC)
10191 {
10192 if (inst.reloc.pc_rel)
10193 opcode = T_MNEM_ldr_pc2;
10194 else
10195 opcode = T_MNEM_ldr_pc;
10196 }
10197 else
10198 {
10199 if (opcode == T_MNEM_ldr)
10200 opcode = T_MNEM_ldr_sp;
10201 else
10202 opcode = T_MNEM_str_sp;
10203 }
10204 inst.instruction = inst.operands[0].reg << 8;
10205 }
10206 else
10207 {
10208 inst.instruction = inst.operands[0].reg;
10209 inst.instruction |= inst.operands[1].reg << 3;
10210 }
10211 inst.instruction |= THUMB_OP16 (opcode);
10212 if (inst.size_req == 2)
10213 inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
10214 else
10215 inst.relax = opcode;
10216 return;
10217 }
10218 }
10219 /* Definitely a 32-bit variant. */
10220
10221 /* Do some validations regarding addressing modes. */
10222 if (inst.operands[1].immisreg && opcode != T_MNEM_ldr
10223 && opcode != T_MNEM_str)
10224 reject_bad_reg (inst.operands[1].imm);
10225
10226 inst.instruction = THUMB_OP32 (opcode);
10227 inst.instruction |= inst.operands[0].reg << 12;
10228 encode_thumb32_addr_mode (1, /*is_t=*/FALSE, /*is_d=*/FALSE);
10229 return;
10230 }
10231
10232 constraint (inst.operands[0].reg > 7, BAD_HIREG);
10233
10234 if (inst.instruction == T_MNEM_ldrsh || inst.instruction == T_MNEM_ldrsb)
10235 {
10236 /* Only [Rn,Rm] is acceptable. */
10237 constraint (inst.operands[1].reg > 7 || inst.operands[1].imm > 7, BAD_HIREG);
10238 constraint (!inst.operands[1].isreg || !inst.operands[1].immisreg
10239 || inst.operands[1].postind || inst.operands[1].shifted
10240 || inst.operands[1].negative,
10241 _("Thumb does not support this addressing mode"));
10242 inst.instruction = THUMB_OP16 (inst.instruction);
10243 goto op16;
10244 }
10245
10246 inst.instruction = THUMB_OP16 (inst.instruction);
10247 if (!inst.operands[1].isreg)
10248 if (move_or_literal_pool (0, /*thumb_p=*/TRUE, /*mode_3=*/FALSE))
10249 return;
10250
10251 constraint (!inst.operands[1].preind
10252 || inst.operands[1].shifted
10253 || inst.operands[1].writeback,
10254 _("Thumb does not support this addressing mode"));
10255 if (inst.operands[1].reg == REG_PC || inst.operands[1].reg == REG_SP)
10256 {
10257 constraint (inst.instruction & 0x0600,
10258 _("byte or halfword not valid for base register"));
10259 constraint (inst.operands[1].reg == REG_PC
10260 && !(inst.instruction & THUMB_LOAD_BIT),
10261 _("r15 based store not allowed"));
10262 constraint (inst.operands[1].immisreg,
10263 _("invalid base register for register offset"));
10264
10265 if (inst.operands[1].reg == REG_PC)
10266 inst.instruction = T_OPCODE_LDR_PC;
10267 else if (inst.instruction & THUMB_LOAD_BIT)
10268 inst.instruction = T_OPCODE_LDR_SP;
10269 else
10270 inst.instruction = T_OPCODE_STR_SP;
10271
10272 inst.instruction |= inst.operands[0].reg << 8;
10273 inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
10274 return;
10275 }
10276
10277 constraint (inst.operands[1].reg > 7, BAD_HIREG);
10278 if (!inst.operands[1].immisreg)
10279 {
10280 /* Immediate offset. */
10281 inst.instruction |= inst.operands[0].reg;
10282 inst.instruction |= inst.operands[1].reg << 3;
10283 inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
10284 return;
10285 }
10286
10287 /* Register offset. */
10288 constraint (inst.operands[1].imm > 7, BAD_HIREG);
10289 constraint (inst.operands[1].negative,
10290 _("Thumb does not support this addressing mode"));
10291
10292 op16:
10293 switch (inst.instruction)
10294 {
10295 case T_OPCODE_STR_IW: inst.instruction = T_OPCODE_STR_RW; break;
10296 case T_OPCODE_STR_IH: inst.instruction = T_OPCODE_STR_RH; break;
10297 case T_OPCODE_STR_IB: inst.instruction = T_OPCODE_STR_RB; break;
10298 case T_OPCODE_LDR_IW: inst.instruction = T_OPCODE_LDR_RW; break;
10299 case T_OPCODE_LDR_IH: inst.instruction = T_OPCODE_LDR_RH; break;
10300 case T_OPCODE_LDR_IB: inst.instruction = T_OPCODE_LDR_RB; break;
10301 case 0x5600 /* ldrsb */:
10302 case 0x5e00 /* ldrsh */: break;
10303 default: abort ();
10304 }
10305
10306 inst.instruction |= inst.operands[0].reg;
10307 inst.instruction |= inst.operands[1].reg << 3;
10308 inst.instruction |= inst.operands[1].imm << 6;
10309 }
10310
10311 static void
10312 do_t_ldstd (void)
10313 {
10314 if (!inst.operands[1].present)
10315 {
10316 inst.operands[1].reg = inst.operands[0].reg + 1;
10317 constraint (inst.operands[0].reg == REG_LR,
10318 _("r14 not allowed here"));
10319 }
10320 inst.instruction |= inst.operands[0].reg << 12;
10321 inst.instruction |= inst.operands[1].reg << 8;
10322 encode_thumb32_addr_mode (2, /*is_t=*/FALSE, /*is_d=*/TRUE);
10323 }
10324
10325 static void
10326 do_t_ldstt (void)
10327 {
10328 inst.instruction |= inst.operands[0].reg << 12;
10329 encode_thumb32_addr_mode (1, /*is_t=*/TRUE, /*is_d=*/FALSE);
10330 }
10331
10332 static void
10333 do_t_mla (void)
10334 {
10335 unsigned Rd, Rn, Rm, Ra;
10336
10337 Rd = inst.operands[0].reg;
10338 Rn = inst.operands[1].reg;
10339 Rm = inst.operands[2].reg;
10340 Ra = inst.operands[3].reg;
10341
10342 reject_bad_reg (Rd);
10343 reject_bad_reg (Rn);
10344 reject_bad_reg (Rm);
10345 reject_bad_reg (Ra);
10346
10347 inst.instruction |= Rd << 8;
10348 inst.instruction |= Rn << 16;
10349 inst.instruction |= Rm;
10350 inst.instruction |= Ra << 12;
10351 }
10352
10353 static void
10354 do_t_mlal (void)
10355 {
10356 unsigned RdLo, RdHi, Rn, Rm;
10357
10358 RdLo = inst.operands[0].reg;
10359 RdHi = inst.operands[1].reg;
10360 Rn = inst.operands[2].reg;
10361 Rm = inst.operands[3].reg;
10362
10363 reject_bad_reg (RdLo);
10364 reject_bad_reg (RdHi);
10365 reject_bad_reg (Rn);
10366 reject_bad_reg (Rm);
10367
10368 inst.instruction |= RdLo << 12;
10369 inst.instruction |= RdHi << 8;
10370 inst.instruction |= Rn << 16;
10371 inst.instruction |= Rm;
10372 }
10373
10374 static void
10375 do_t_mov_cmp (void)
10376 {
10377 unsigned Rn, Rm;
10378
10379 Rn = inst.operands[0].reg;
10380 Rm = inst.operands[1].reg;
10381
10382 if (Rn == REG_PC)
10383 set_it_insn_type_last ();
10384
10385 if (unified_syntax)
10386 {
10387 int r0off = (inst.instruction == T_MNEM_mov
10388 || inst.instruction == T_MNEM_movs) ? 8 : 16;
10389 unsigned long opcode;
10390 bfd_boolean narrow;
10391 bfd_boolean low_regs;
10392
10393 low_regs = (Rn <= 7 && Rm <= 7);
10394 opcode = inst.instruction;
10395 if (in_it_block ())
10396 narrow = opcode != T_MNEM_movs;
10397 else
10398 narrow = opcode != T_MNEM_movs || low_regs;
10399 if (inst.size_req == 4
10400 || inst.operands[1].shifted)
10401 narrow = FALSE;
10402
10403 /* MOVS PC, LR is encoded as SUBS PC, LR, #0. */
10404 if (opcode == T_MNEM_movs && inst.operands[1].isreg
10405 && !inst.operands[1].shifted
10406 && Rn == REG_PC
10407 && Rm == REG_LR)
10408 {
10409 inst.instruction = T2_SUBS_PC_LR;
10410 return;
10411 }
10412
10413 if (opcode == T_MNEM_cmp)
10414 {
10415 constraint (Rn == REG_PC, BAD_PC);
10416 if (narrow)
10417 {
10418 /* In the Thumb-2 ISA, use of R13 as Rm is deprecated,
10419 but valid. */
10420 warn_deprecated_sp (Rm);
10421 /* R15 was documented as a valid choice for Rm in ARMv6,
10422 but as UNPREDICTABLE in ARMv7. ARM's proprietary
10423 tools reject R15, so we do too. */
10424 constraint (Rm == REG_PC, BAD_PC);
10425 }
10426 else
10427 reject_bad_reg (Rm);
10428 }
10429 else if (opcode == T_MNEM_mov
10430 || opcode == T_MNEM_movs)
10431 {
10432 if (inst.operands[1].isreg)
10433 {
10434 if (opcode == T_MNEM_movs)
10435 {
10436 reject_bad_reg (Rn);
10437 reject_bad_reg (Rm);
10438 }
10439 else if (narrow)
10440 {
10441 /* This is mov.n. */
10442 if ((Rn == REG_SP || Rn == REG_PC)
10443 && (Rm == REG_SP || Rm == REG_PC))
10444 {
10445 as_warn (_("Use of r%u as a source register is "
10446 "deprecated when r%u is the destination "
10447 "register."), Rm, Rn);
10448 }
10449 }
10450 else
10451 {
10452 /* This is mov.w. */
10453 constraint (Rn == REG_PC, BAD_PC);
10454 constraint (Rm == REG_PC, BAD_PC);
10455 constraint (Rn == REG_SP && Rm == REG_SP, BAD_SP);
10456 }
10457 }
10458 else
10459 reject_bad_reg (Rn);
10460 }
10461
10462 if (!inst.operands[1].isreg)
10463 {
10464 /* Immediate operand. */
10465 if (!in_it_block () && opcode == T_MNEM_mov)
10466 narrow = 0;
10467 if (low_regs && narrow)
10468 {
10469 inst.instruction = THUMB_OP16 (opcode);
10470 inst.instruction |= Rn << 8;
10471 if (inst.size_req == 2)
10472 inst.reloc.type = BFD_RELOC_ARM_THUMB_IMM;
10473 else
10474 inst.relax = opcode;
10475 }
10476 else
10477 {
10478 inst.instruction = THUMB_OP32 (inst.instruction);
10479 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
10480 inst.instruction |= Rn << r0off;
10481 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
10482 }
10483 }
10484 else if (inst.operands[1].shifted && inst.operands[1].immisreg
10485 && (inst.instruction == T_MNEM_mov
10486 || inst.instruction == T_MNEM_movs))
10487 {
10488 /* Register shifts are encoded as separate shift instructions. */
10489 bfd_boolean flags = (inst.instruction == T_MNEM_movs);
10490
10491 if (in_it_block ())
10492 narrow = !flags;
10493 else
10494 narrow = flags;
10495
10496 if (inst.size_req == 4)
10497 narrow = FALSE;
10498
10499 if (!low_regs || inst.operands[1].imm > 7)
10500 narrow = FALSE;
10501
10502 if (Rn != Rm)
10503 narrow = FALSE;
10504
10505 switch (inst.operands[1].shift_kind)
10506 {
10507 case SHIFT_LSL:
10508 opcode = narrow ? T_OPCODE_LSL_R : THUMB_OP32 (T_MNEM_lsl);
10509 break;
10510 case SHIFT_ASR:
10511 opcode = narrow ? T_OPCODE_ASR_R : THUMB_OP32 (T_MNEM_asr);
10512 break;
10513 case SHIFT_LSR:
10514 opcode = narrow ? T_OPCODE_LSR_R : THUMB_OP32 (T_MNEM_lsr);
10515 break;
10516 case SHIFT_ROR:
10517 opcode = narrow ? T_OPCODE_ROR_R : THUMB_OP32 (T_MNEM_ror);
10518 break;
10519 default:
10520 abort ();
10521 }
10522
10523 inst.instruction = opcode;
10524 if (narrow)
10525 {
10526 inst.instruction |= Rn;
10527 inst.instruction |= inst.operands[1].imm << 3;
10528 }
10529 else
10530 {
10531 if (flags)
10532 inst.instruction |= CONDS_BIT;
10533
10534 inst.instruction |= Rn << 8;
10535 inst.instruction |= Rm << 16;
10536 inst.instruction |= inst.operands[1].imm;
10537 }
10538 }
10539 else if (!narrow)
10540 {
10541 /* Some mov with immediate shift have narrow variants.
10542 Register shifts are handled above. */
10543 if (low_regs && inst.operands[1].shifted
10544 && (inst.instruction == T_MNEM_mov
10545 || inst.instruction == T_MNEM_movs))
10546 {
10547 if (in_it_block ())
10548 narrow = (inst.instruction == T_MNEM_mov);
10549 else
10550 narrow = (inst.instruction == T_MNEM_movs);
10551 }
10552
10553 if (narrow)
10554 {
10555 switch (inst.operands[1].shift_kind)
10556 {
10557 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_I; break;
10558 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_I; break;
10559 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_I; break;
10560 default: narrow = FALSE; break;
10561 }
10562 }
10563
10564 if (narrow)
10565 {
10566 inst.instruction |= Rn;
10567 inst.instruction |= Rm << 3;
10568 inst.reloc.type = BFD_RELOC_ARM_THUMB_SHIFT;
10569 }
10570 else
10571 {
10572 inst.instruction = THUMB_OP32 (inst.instruction);
10573 inst.instruction |= Rn << r0off;
10574 encode_thumb32_shifted_operand (1);
10575 }
10576 }
10577 else
10578 switch (inst.instruction)
10579 {
10580 case T_MNEM_mov:
10581 inst.instruction = T_OPCODE_MOV_HR;
10582 inst.instruction |= (Rn & 0x8) << 4;
10583 inst.instruction |= (Rn & 0x7);
10584 inst.instruction |= Rm << 3;
10585 break;
10586
10587 case T_MNEM_movs:
10588 /* We know we have low registers at this point.
10589 Generate LSLS Rd, Rs, #0. */
10590 inst.instruction = T_OPCODE_LSL_I;
10591 inst.instruction |= Rn;
10592 inst.instruction |= Rm << 3;
10593 break;
10594
10595 case T_MNEM_cmp:
10596 if (low_regs)
10597 {
10598 inst.instruction = T_OPCODE_CMP_LR;
10599 inst.instruction |= Rn;
10600 inst.instruction |= Rm << 3;
10601 }
10602 else
10603 {
10604 inst.instruction = T_OPCODE_CMP_HR;
10605 inst.instruction |= (Rn & 0x8) << 4;
10606 inst.instruction |= (Rn & 0x7);
10607 inst.instruction |= Rm << 3;
10608 }
10609 break;
10610 }
10611 return;
10612 }
10613
10614 inst.instruction = THUMB_OP16 (inst.instruction);
10615
10616 /* PR 10443: Do not silently ignore shifted operands. */
10617 constraint (inst.operands[1].shifted,
10618 _("shifts in CMP/MOV instructions are only supported in unified syntax"));
10619
10620 if (inst.operands[1].isreg)
10621 {
10622 if (Rn < 8 && Rm < 8)
10623 {
10624 /* A move of two lowregs is encoded as ADD Rd, Rs, #0
10625 since a MOV instruction produces unpredictable results. */
10626 if (inst.instruction == T_OPCODE_MOV_I8)
10627 inst.instruction = T_OPCODE_ADD_I3;
10628 else
10629 inst.instruction = T_OPCODE_CMP_LR;
10630
10631 inst.instruction |= Rn;
10632 inst.instruction |= Rm << 3;
10633 }
10634 else
10635 {
10636 if (inst.instruction == T_OPCODE_MOV_I8)
10637 inst.instruction = T_OPCODE_MOV_HR;
10638 else
10639 inst.instruction = T_OPCODE_CMP_HR;
10640 do_t_cpy ();
10641 }
10642 }
10643 else
10644 {
10645 constraint (Rn > 7,
10646 _("only lo regs allowed with immediate"));
10647 inst.instruction |= Rn << 8;
10648 inst.reloc.type = BFD_RELOC_ARM_THUMB_IMM;
10649 }
10650 }
10651
10652 static void
10653 do_t_mov16 (void)
10654 {
10655 unsigned Rd;
10656 bfd_vma imm;
10657 bfd_boolean top;
10658
10659 top = (inst.instruction & 0x00800000) != 0;
10660 if (inst.reloc.type == BFD_RELOC_ARM_MOVW)
10661 {
10662 constraint (top, _(":lower16: not allowed this instruction"));
10663 inst.reloc.type = BFD_RELOC_ARM_THUMB_MOVW;
10664 }
10665 else if (inst.reloc.type == BFD_RELOC_ARM_MOVT)
10666 {
10667 constraint (!top, _(":upper16: not allowed this instruction"));
10668 inst.reloc.type = BFD_RELOC_ARM_THUMB_MOVT;
10669 }
10670
10671 Rd = inst.operands[0].reg;
10672 reject_bad_reg (Rd);
10673
10674 inst.instruction |= Rd << 8;
10675 if (inst.reloc.type == BFD_RELOC_UNUSED)
10676 {
10677 imm = inst.reloc.exp.X_add_number;
10678 inst.instruction |= (imm & 0xf000) << 4;
10679 inst.instruction |= (imm & 0x0800) << 15;
10680 inst.instruction |= (imm & 0x0700) << 4;
10681 inst.instruction |= (imm & 0x00ff);
10682 }
10683 }
10684
10685 static void
10686 do_t_mvn_tst (void)
10687 {
10688 unsigned Rn, Rm;
10689
10690 Rn = inst.operands[0].reg;
10691 Rm = inst.operands[1].reg;
10692
10693 if (inst.instruction == T_MNEM_cmp
10694 || inst.instruction == T_MNEM_cmn)
10695 constraint (Rn == REG_PC, BAD_PC);
10696 else
10697 reject_bad_reg (Rn);
10698 reject_bad_reg (Rm);
10699
10700 if (unified_syntax)
10701 {
10702 int r0off = (inst.instruction == T_MNEM_mvn
10703 || inst.instruction == T_MNEM_mvns) ? 8 : 16;
10704 bfd_boolean narrow;
10705
10706 if (inst.size_req == 4
10707 || inst.instruction > 0xffff
10708 || inst.operands[1].shifted
10709 || Rn > 7 || Rm > 7)
10710 narrow = FALSE;
10711 else if (inst.instruction == T_MNEM_cmn)
10712 narrow = TRUE;
10713 else if (THUMB_SETS_FLAGS (inst.instruction))
10714 narrow = !in_it_block ();
10715 else
10716 narrow = in_it_block ();
10717
10718 if (!inst.operands[1].isreg)
10719 {
10720 /* For an immediate, we always generate a 32-bit opcode;
10721 section relaxation will shrink it later if possible. */
10722 if (inst.instruction < 0xffff)
10723 inst.instruction = THUMB_OP32 (inst.instruction);
10724 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
10725 inst.instruction |= Rn << r0off;
10726 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
10727 }
10728 else
10729 {
10730 /* See if we can do this with a 16-bit instruction. */
10731 if (narrow)
10732 {
10733 inst.instruction = THUMB_OP16 (inst.instruction);
10734 inst.instruction |= Rn;
10735 inst.instruction |= Rm << 3;
10736 }
10737 else
10738 {
10739 constraint (inst.operands[1].shifted
10740 && inst.operands[1].immisreg,
10741 _("shift must be constant"));
10742 if (inst.instruction < 0xffff)
10743 inst.instruction = THUMB_OP32 (inst.instruction);
10744 inst.instruction |= Rn << r0off;
10745 encode_thumb32_shifted_operand (1);
10746 }
10747 }
10748 }
10749 else
10750 {
10751 constraint (inst.instruction > 0xffff
10752 || inst.instruction == T_MNEM_mvns, BAD_THUMB32);
10753 constraint (!inst.operands[1].isreg || inst.operands[1].shifted,
10754 _("unshifted register required"));
10755 constraint (Rn > 7 || Rm > 7,
10756 BAD_HIREG);
10757
10758 inst.instruction = THUMB_OP16 (inst.instruction);
10759 inst.instruction |= Rn;
10760 inst.instruction |= Rm << 3;
10761 }
10762 }
10763
10764 static void
10765 do_t_mrs (void)
10766 {
10767 unsigned Rd;
10768
10769 if (do_vfp_nsyn_mrs () == SUCCESS)
10770 return;
10771
10772 Rd = inst.operands[0].reg;
10773 reject_bad_reg (Rd);
10774 inst.instruction |= Rd << 8;
10775
10776 if (inst.operands[1].isreg)
10777 {
10778 unsigned br = inst.operands[1].reg;
10779 if (((br & 0x200) == 0) && ((br & 0xf000) != 0xf000))
10780 as_bad (_("bad register for mrs"));
10781
10782 inst.instruction |= br & (0xf << 16);
10783 inst.instruction |= (br & 0x300) >> 4;
10784 inst.instruction |= (br & SPSR_BIT) >> 2;
10785 }
10786 else
10787 {
10788 int flags = inst.operands[1].imm & (PSR_c|PSR_x|PSR_s|PSR_f|SPSR_BIT);
10789
10790 if (flags == 0)
10791 {
10792 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_m),
10793 _("selected processor does not support "
10794 "requested special purpose register"));
10795 }
10796 else
10797 {
10798 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1),
10799 _("selected processor does not support "
10800 "requested special purpose register"));
10801 /* mrs only accepts CPSR/SPSR/CPSR_all/SPSR_all. */
10802 constraint ((flags & ~SPSR_BIT) != (PSR_c|PSR_f),
10803 _("'CPSR' or 'SPSR' expected"));
10804 }
10805
10806 inst.instruction |= (flags & SPSR_BIT) >> 2;
10807 inst.instruction |= inst.operands[1].imm & 0xff;
10808 inst.instruction |= 0xf0000;
10809 }
10810 }
10811
10812 static void
10813 do_t_msr (void)
10814 {
10815 int flags;
10816 unsigned Rn;
10817
10818 if (do_vfp_nsyn_msr () == SUCCESS)
10819 return;
10820
10821 constraint (!inst.operands[1].isreg,
10822 _("Thumb encoding does not support an immediate here"));
10823
10824 if (inst.operands[0].isreg)
10825 flags = (int)(inst.operands[0].reg);
10826 else
10827 flags = inst.operands[0].imm;
10828
10829 if (flags & ~0xff)
10830 {
10831 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1),
10832 _("selected processor does not support "
10833 "requested special purpose register"));
10834 }
10835 else
10836 {
10837 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_m),
10838 _("selected processor does not support "
10839 "requested special purpose register"));
10840 flags |= PSR_f;
10841 }
10842
10843 Rn = inst.operands[1].reg;
10844 reject_bad_reg (Rn);
10845
10846 inst.instruction |= (flags & SPSR_BIT) >> 2;
10847 inst.instruction |= (flags & 0xf0000) >> 8;
10848 inst.instruction |= (flags & 0x300) >> 4;
10849 inst.instruction |= (flags & 0xff);
10850 inst.instruction |= Rn << 16;
10851 }
10852
10853 static void
10854 do_t_mul (void)
10855 {
10856 bfd_boolean narrow;
10857 unsigned Rd, Rn, Rm;
10858
10859 if (!inst.operands[2].present)
10860 inst.operands[2].reg = inst.operands[0].reg;
10861
10862 Rd = inst.operands[0].reg;
10863 Rn = inst.operands[1].reg;
10864 Rm = inst.operands[2].reg;
10865
10866 if (unified_syntax)
10867 {
10868 if (inst.size_req == 4
10869 || (Rd != Rn
10870 && Rd != Rm)
10871 || Rn > 7
10872 || Rm > 7)
10873 narrow = FALSE;
10874 else if (inst.instruction == T_MNEM_muls)
10875 narrow = !in_it_block ();
10876 else
10877 narrow = in_it_block ();
10878 }
10879 else
10880 {
10881 constraint (inst.instruction == T_MNEM_muls, BAD_THUMB32);
10882 constraint (Rn > 7 || Rm > 7,
10883 BAD_HIREG);
10884 narrow = TRUE;
10885 }
10886
10887 if (narrow)
10888 {
10889 /* 16-bit MULS/Conditional MUL. */
10890 inst.instruction = THUMB_OP16 (inst.instruction);
10891 inst.instruction |= Rd;
10892
10893 if (Rd == Rn)
10894 inst.instruction |= Rm << 3;
10895 else if (Rd == Rm)
10896 inst.instruction |= Rn << 3;
10897 else
10898 constraint (1, _("dest must overlap one source register"));
10899 }
10900 else
10901 {
10902 constraint (inst.instruction != T_MNEM_mul,
10903 _("Thumb-2 MUL must not set flags"));
10904 /* 32-bit MUL. */
10905 inst.instruction = THUMB_OP32 (inst.instruction);
10906 inst.instruction |= Rd << 8;
10907 inst.instruction |= Rn << 16;
10908 inst.instruction |= Rm << 0;
10909
10910 reject_bad_reg (Rd);
10911 reject_bad_reg (Rn);
10912 reject_bad_reg (Rm);
10913 }
10914 }
10915
10916 static void
10917 do_t_mull (void)
10918 {
10919 unsigned RdLo, RdHi, Rn, Rm;
10920
10921 RdLo = inst.operands[0].reg;
10922 RdHi = inst.operands[1].reg;
10923 Rn = inst.operands[2].reg;
10924 Rm = inst.operands[3].reg;
10925
10926 reject_bad_reg (RdLo);
10927 reject_bad_reg (RdHi);
10928 reject_bad_reg (Rn);
10929 reject_bad_reg (Rm);
10930
10931 inst.instruction |= RdLo << 12;
10932 inst.instruction |= RdHi << 8;
10933 inst.instruction |= Rn << 16;
10934 inst.instruction |= Rm;
10935
10936 if (RdLo == RdHi)
10937 as_tsktsk (_("rdhi and rdlo must be different"));
10938 }
10939
10940 static void
10941 do_t_nop (void)
10942 {
10943 set_it_insn_type (NEUTRAL_IT_INSN);
10944
10945 if (unified_syntax)
10946 {
10947 if (inst.size_req == 4 || inst.operands[0].imm > 15)
10948 {
10949 inst.instruction = THUMB_OP32 (inst.instruction);
10950 inst.instruction |= inst.operands[0].imm;
10951 }
10952 else
10953 {
10954 /* PR9722: Check for Thumb2 availability before
10955 generating a thumb2 nop instruction. */
10956 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6t2))
10957 {
10958 inst.instruction = THUMB_OP16 (inst.instruction);
10959 inst.instruction |= inst.operands[0].imm << 4;
10960 }
10961 else
10962 inst.instruction = 0x46c0;
10963 }
10964 }
10965 else
10966 {
10967 constraint (inst.operands[0].present,
10968 _("Thumb does not support NOP with hints"));
10969 inst.instruction = 0x46c0;
10970 }
10971 }
10972
10973 static void
10974 do_t_neg (void)
10975 {
10976 if (unified_syntax)
10977 {
10978 bfd_boolean narrow;
10979
10980 if (THUMB_SETS_FLAGS (inst.instruction))
10981 narrow = !in_it_block ();
10982 else
10983 narrow = in_it_block ();
10984 if (inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
10985 narrow = FALSE;
10986 if (inst.size_req == 4)
10987 narrow = FALSE;
10988
10989 if (!narrow)
10990 {
10991 inst.instruction = THUMB_OP32 (inst.instruction);
10992 inst.instruction |= inst.operands[0].reg << 8;
10993 inst.instruction |= inst.operands[1].reg << 16;
10994 }
10995 else
10996 {
10997 inst.instruction = THUMB_OP16 (inst.instruction);
10998 inst.instruction |= inst.operands[0].reg;
10999 inst.instruction |= inst.operands[1].reg << 3;
11000 }
11001 }
11002 else
11003 {
11004 constraint (inst.operands[0].reg > 7 || inst.operands[1].reg > 7,
11005 BAD_HIREG);
11006 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
11007
11008 inst.instruction = THUMB_OP16 (inst.instruction);
11009 inst.instruction |= inst.operands[0].reg;
11010 inst.instruction |= inst.operands[1].reg << 3;
11011 }
11012 }
11013
11014 static void
11015 do_t_orn (void)
11016 {
11017 unsigned Rd, Rn;
11018
11019 Rd = inst.operands[0].reg;
11020 Rn = inst.operands[1].present ? inst.operands[1].reg : Rd;
11021
11022 reject_bad_reg (Rd);
11023 /* Rn == REG_SP is unpredictable; Rn == REG_PC is MVN. */
11024 reject_bad_reg (Rn);
11025
11026 inst.instruction |= Rd << 8;
11027 inst.instruction |= Rn << 16;
11028
11029 if (!inst.operands[2].isreg)
11030 {
11031 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
11032 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
11033 }
11034 else
11035 {
11036 unsigned Rm;
11037
11038 Rm = inst.operands[2].reg;
11039 reject_bad_reg (Rm);
11040
11041 constraint (inst.operands[2].shifted
11042 && inst.operands[2].immisreg,
11043 _("shift must be constant"));
11044 encode_thumb32_shifted_operand (2);
11045 }
11046 }
11047
11048 static void
11049 do_t_pkhbt (void)
11050 {
11051 unsigned Rd, Rn, Rm;
11052
11053 Rd = inst.operands[0].reg;
11054 Rn = inst.operands[1].reg;
11055 Rm = inst.operands[2].reg;
11056
11057 reject_bad_reg (Rd);
11058 reject_bad_reg (Rn);
11059 reject_bad_reg (Rm);
11060
11061 inst.instruction |= Rd << 8;
11062 inst.instruction |= Rn << 16;
11063 inst.instruction |= Rm;
11064 if (inst.operands[3].present)
11065 {
11066 unsigned int val = inst.reloc.exp.X_add_number;
11067 constraint (inst.reloc.exp.X_op != O_constant,
11068 _("expression too complex"));
11069 inst.instruction |= (val & 0x1c) << 10;
11070 inst.instruction |= (val & 0x03) << 6;
11071 }
11072 }
11073
11074 static void
11075 do_t_pkhtb (void)
11076 {
11077 if (!inst.operands[3].present)
11078 {
11079 unsigned Rtmp;
11080
11081 inst.instruction &= ~0x00000020;
11082
11083 /* PR 10168. Swap the Rm and Rn registers. */
11084 Rtmp = inst.operands[1].reg;
11085 inst.operands[1].reg = inst.operands[2].reg;
11086 inst.operands[2].reg = Rtmp;
11087 }
11088 do_t_pkhbt ();
11089 }
11090
11091 static void
11092 do_t_pld (void)
11093 {
11094 if (inst.operands[0].immisreg)
11095 reject_bad_reg (inst.operands[0].imm);
11096
11097 encode_thumb32_addr_mode (0, /*is_t=*/FALSE, /*is_d=*/FALSE);
11098 }
11099
11100 static void
11101 do_t_push_pop (void)
11102 {
11103 unsigned mask;
11104
11105 constraint (inst.operands[0].writeback,
11106 _("push/pop do not support {reglist}^"));
11107 constraint (inst.reloc.type != BFD_RELOC_UNUSED,
11108 _("expression too complex"));
11109
11110 mask = inst.operands[0].imm;
11111 if ((mask & ~0xff) == 0)
11112 inst.instruction = THUMB_OP16 (inst.instruction) | mask;
11113 else if ((inst.instruction == T_MNEM_push
11114 && (mask & ~0xff) == 1 << REG_LR)
11115 || (inst.instruction == T_MNEM_pop
11116 && (mask & ~0xff) == 1 << REG_PC))
11117 {
11118 inst.instruction = THUMB_OP16 (inst.instruction);
11119 inst.instruction |= THUMB_PP_PC_LR;
11120 inst.instruction |= mask & 0xff;
11121 }
11122 else if (unified_syntax)
11123 {
11124 inst.instruction = THUMB_OP32 (inst.instruction);
11125 encode_thumb2_ldmstm (13, mask, TRUE);
11126 }
11127 else
11128 {
11129 inst.error = _("invalid register list to push/pop instruction");
11130 return;
11131 }
11132 }
11133
11134 static void
11135 do_t_rbit (void)
11136 {
11137 unsigned Rd, Rm;
11138
11139 Rd = inst.operands[0].reg;
11140 Rm = inst.operands[1].reg;
11141
11142 reject_bad_reg (Rd);
11143 reject_bad_reg (Rm);
11144
11145 inst.instruction |= Rd << 8;
11146 inst.instruction |= Rm << 16;
11147 inst.instruction |= Rm;
11148 }
11149
11150 static void
11151 do_t_rev (void)
11152 {
11153 unsigned Rd, Rm;
11154
11155 Rd = inst.operands[0].reg;
11156 Rm = inst.operands[1].reg;
11157
11158 reject_bad_reg (Rd);
11159 reject_bad_reg (Rm);
11160
11161 if (Rd <= 7 && Rm <= 7
11162 && inst.size_req != 4)
11163 {
11164 inst.instruction = THUMB_OP16 (inst.instruction);
11165 inst.instruction |= Rd;
11166 inst.instruction |= Rm << 3;
11167 }
11168 else if (unified_syntax)
11169 {
11170 inst.instruction = THUMB_OP32 (inst.instruction);
11171 inst.instruction |= Rd << 8;
11172 inst.instruction |= Rm << 16;
11173 inst.instruction |= Rm;
11174 }
11175 else
11176 inst.error = BAD_HIREG;
11177 }
11178
11179 static void
11180 do_t_rrx (void)
11181 {
11182 unsigned Rd, Rm;
11183
11184 Rd = inst.operands[0].reg;
11185 Rm = inst.operands[1].reg;
11186
11187 reject_bad_reg (Rd);
11188 reject_bad_reg (Rm);
11189
11190 inst.instruction |= Rd << 8;
11191 inst.instruction |= Rm;
11192 }
11193
11194 static void
11195 do_t_rsb (void)
11196 {
11197 unsigned Rd, Rs;
11198
11199 Rd = inst.operands[0].reg;
11200 Rs = (inst.operands[1].present
11201 ? inst.operands[1].reg /* Rd, Rs, foo */
11202 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
11203
11204 reject_bad_reg (Rd);
11205 reject_bad_reg (Rs);
11206 if (inst.operands[2].isreg)
11207 reject_bad_reg (inst.operands[2].reg);
11208
11209 inst.instruction |= Rd << 8;
11210 inst.instruction |= Rs << 16;
11211 if (!inst.operands[2].isreg)
11212 {
11213 bfd_boolean narrow;
11214
11215 if ((inst.instruction & 0x00100000) != 0)
11216 narrow = !in_it_block ();
11217 else
11218 narrow = in_it_block ();
11219
11220 if (Rd > 7 || Rs > 7)
11221 narrow = FALSE;
11222
11223 if (inst.size_req == 4 || !unified_syntax)
11224 narrow = FALSE;
11225
11226 if (inst.reloc.exp.X_op != O_constant
11227 || inst.reloc.exp.X_add_number != 0)
11228 narrow = FALSE;
11229
11230 /* Turn rsb #0 into 16-bit neg. We should probably do this via
11231 relaxation, but it doesn't seem worth the hassle. */
11232 if (narrow)
11233 {
11234 inst.reloc.type = BFD_RELOC_UNUSED;
11235 inst.instruction = THUMB_OP16 (T_MNEM_negs);
11236 inst.instruction |= Rs << 3;
11237 inst.instruction |= Rd;
11238 }
11239 else
11240 {
11241 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
11242 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
11243 }
11244 }
11245 else
11246 encode_thumb32_shifted_operand (2);
11247 }
11248
11249 static void
11250 do_t_setend (void)
11251 {
11252 set_it_insn_type (OUTSIDE_IT_INSN);
11253 if (inst.operands[0].imm)
11254 inst.instruction |= 0x8;
11255 }
11256
11257 static void
11258 do_t_shift (void)
11259 {
11260 if (!inst.operands[1].present)
11261 inst.operands[1].reg = inst.operands[0].reg;
11262
11263 if (unified_syntax)
11264 {
11265 bfd_boolean narrow;
11266 int shift_kind;
11267
11268 switch (inst.instruction)
11269 {
11270 case T_MNEM_asr:
11271 case T_MNEM_asrs: shift_kind = SHIFT_ASR; break;
11272 case T_MNEM_lsl:
11273 case T_MNEM_lsls: shift_kind = SHIFT_LSL; break;
11274 case T_MNEM_lsr:
11275 case T_MNEM_lsrs: shift_kind = SHIFT_LSR; break;
11276 case T_MNEM_ror:
11277 case T_MNEM_rors: shift_kind = SHIFT_ROR; break;
11278 default: abort ();
11279 }
11280
11281 if (THUMB_SETS_FLAGS (inst.instruction))
11282 narrow = !in_it_block ();
11283 else
11284 narrow = in_it_block ();
11285 if (inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
11286 narrow = FALSE;
11287 if (!inst.operands[2].isreg && shift_kind == SHIFT_ROR)
11288 narrow = FALSE;
11289 if (inst.operands[2].isreg
11290 && (inst.operands[1].reg != inst.operands[0].reg
11291 || inst.operands[2].reg > 7))
11292 narrow = FALSE;
11293 if (inst.size_req == 4)
11294 narrow = FALSE;
11295
11296 reject_bad_reg (inst.operands[0].reg);
11297 reject_bad_reg (inst.operands[1].reg);
11298
11299 if (!narrow)
11300 {
11301 if (inst.operands[2].isreg)
11302 {
11303 reject_bad_reg (inst.operands[2].reg);
11304 inst.instruction = THUMB_OP32 (inst.instruction);
11305 inst.instruction |= inst.operands[0].reg << 8;
11306 inst.instruction |= inst.operands[1].reg << 16;
11307 inst.instruction |= inst.operands[2].reg;
11308 }
11309 else
11310 {
11311 inst.operands[1].shifted = 1;
11312 inst.operands[1].shift_kind = shift_kind;
11313 inst.instruction = THUMB_OP32 (THUMB_SETS_FLAGS (inst.instruction)
11314 ? T_MNEM_movs : T_MNEM_mov);
11315 inst.instruction |= inst.operands[0].reg << 8;
11316 encode_thumb32_shifted_operand (1);
11317 /* Prevent the incorrect generation of an ARM_IMMEDIATE fixup. */
11318 inst.reloc.type = BFD_RELOC_UNUSED;
11319 }
11320 }
11321 else
11322 {
11323 if (inst.operands[2].isreg)
11324 {
11325 switch (shift_kind)
11326 {
11327 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_R; break;
11328 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_R; break;
11329 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_R; break;
11330 case SHIFT_ROR: inst.instruction = T_OPCODE_ROR_R; break;
11331 default: abort ();
11332 }
11333
11334 inst.instruction |= inst.operands[0].reg;
11335 inst.instruction |= inst.operands[2].reg << 3;
11336 }
11337 else
11338 {
11339 switch (shift_kind)
11340 {
11341 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_I; break;
11342 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_I; break;
11343 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_I; break;
11344 default: abort ();
11345 }
11346 inst.reloc.type = BFD_RELOC_ARM_THUMB_SHIFT;
11347 inst.instruction |= inst.operands[0].reg;
11348 inst.instruction |= inst.operands[1].reg << 3;
11349 }
11350 }
11351 }
11352 else
11353 {
11354 constraint (inst.operands[0].reg > 7
11355 || inst.operands[1].reg > 7, BAD_HIREG);
11356 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
11357
11358 if (inst.operands[2].isreg) /* Rd, {Rs,} Rn */
11359 {
11360 constraint (inst.operands[2].reg > 7, BAD_HIREG);
11361 constraint (inst.operands[0].reg != inst.operands[1].reg,
11362 _("source1 and dest must be same register"));
11363
11364 switch (inst.instruction)
11365 {
11366 case T_MNEM_asr: inst.instruction = T_OPCODE_ASR_R; break;
11367 case T_MNEM_lsl: inst.instruction = T_OPCODE_LSL_R; break;
11368 case T_MNEM_lsr: inst.instruction = T_OPCODE_LSR_R; break;
11369 case T_MNEM_ror: inst.instruction = T_OPCODE_ROR_R; break;
11370 default: abort ();
11371 }
11372
11373 inst.instruction |= inst.operands[0].reg;
11374 inst.instruction |= inst.operands[2].reg << 3;
11375 }
11376 else
11377 {
11378 switch (inst.instruction)
11379 {
11380 case T_MNEM_asr: inst.instruction = T_OPCODE_ASR_I; break;
11381 case T_MNEM_lsl: inst.instruction = T_OPCODE_LSL_I; break;
11382 case T_MNEM_lsr: inst.instruction = T_OPCODE_LSR_I; break;
11383 case T_MNEM_ror: inst.error = _("ror #imm not supported"); return;
11384 default: abort ();
11385 }
11386 inst.reloc.type = BFD_RELOC_ARM_THUMB_SHIFT;
11387 inst.instruction |= inst.operands[0].reg;
11388 inst.instruction |= inst.operands[1].reg << 3;
11389 }
11390 }
11391 }
11392
11393 static void
11394 do_t_simd (void)
11395 {
11396 unsigned Rd, Rn, Rm;
11397
11398 Rd = inst.operands[0].reg;
11399 Rn = inst.operands[1].reg;
11400 Rm = inst.operands[2].reg;
11401
11402 reject_bad_reg (Rd);
11403 reject_bad_reg (Rn);
11404 reject_bad_reg (Rm);
11405
11406 inst.instruction |= Rd << 8;
11407 inst.instruction |= Rn << 16;
11408 inst.instruction |= Rm;
11409 }
11410
11411 static void
11412 do_t_simd2 (void)
11413 {
11414 unsigned Rd, Rn, Rm;
11415
11416 Rd = inst.operands[0].reg;
11417 Rm = inst.operands[1].reg;
11418 Rn = inst.operands[2].reg;
11419
11420 reject_bad_reg (Rd);
11421 reject_bad_reg (Rn);
11422 reject_bad_reg (Rm);
11423
11424 inst.instruction |= Rd << 8;
11425 inst.instruction |= Rn << 16;
11426 inst.instruction |= Rm;
11427 }
11428
11429 static void
11430 do_t_smc (void)
11431 {
11432 unsigned int value = inst.reloc.exp.X_add_number;
11433 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7a),
11434 _("SMC is not permitted on this architecture"));
11435 constraint (inst.reloc.exp.X_op != O_constant,
11436 _("expression too complex"));
11437 inst.reloc.type = BFD_RELOC_UNUSED;
11438 inst.instruction |= (value & 0xf000) >> 12;
11439 inst.instruction |= (value & 0x0ff0);
11440 inst.instruction |= (value & 0x000f) << 16;
11441 }
11442
11443 static void
11444 do_t_hvc (void)
11445 {
11446 unsigned int value = inst.reloc.exp.X_add_number;
11447
11448 inst.reloc.type = BFD_RELOC_UNUSED;
11449 inst.instruction |= (value & 0x0fff);
11450 inst.instruction |= (value & 0xf000) << 4;
11451 }
11452
11453 static void
11454 do_t_ssat_usat (int bias)
11455 {
11456 unsigned Rd, Rn;
11457
11458 Rd = inst.operands[0].reg;
11459 Rn = inst.operands[2].reg;
11460
11461 reject_bad_reg (Rd);
11462 reject_bad_reg (Rn);
11463
11464 inst.instruction |= Rd << 8;
11465 inst.instruction |= inst.operands[1].imm - bias;
11466 inst.instruction |= Rn << 16;
11467
11468 if (inst.operands[3].present)
11469 {
11470 offsetT shift_amount = inst.reloc.exp.X_add_number;
11471
11472 inst.reloc.type = BFD_RELOC_UNUSED;
11473
11474 constraint (inst.reloc.exp.X_op != O_constant,
11475 _("expression too complex"));
11476
11477 if (shift_amount != 0)
11478 {
11479 constraint (shift_amount > 31,
11480 _("shift expression is too large"));
11481
11482 if (inst.operands[3].shift_kind == SHIFT_ASR)
11483 inst.instruction |= 0x00200000; /* sh bit. */
11484
11485 inst.instruction |= (shift_amount & 0x1c) << 10;
11486 inst.instruction |= (shift_amount & 0x03) << 6;
11487 }
11488 }
11489 }
11490
11491 static void
11492 do_t_ssat (void)
11493 {
11494 do_t_ssat_usat (1);
11495 }
11496
11497 static void
11498 do_t_ssat16 (void)
11499 {
11500 unsigned Rd, Rn;
11501
11502 Rd = inst.operands[0].reg;
11503 Rn = inst.operands[2].reg;
11504
11505 reject_bad_reg (Rd);
11506 reject_bad_reg (Rn);
11507
11508 inst.instruction |= Rd << 8;
11509 inst.instruction |= inst.operands[1].imm - 1;
11510 inst.instruction |= Rn << 16;
11511 }
11512
11513 static void
11514 do_t_strex (void)
11515 {
11516 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
11517 || inst.operands[2].postind || inst.operands[2].writeback
11518 || inst.operands[2].immisreg || inst.operands[2].shifted
11519 || inst.operands[2].negative,
11520 BAD_ADDR_MODE);
11521
11522 constraint (inst.operands[2].reg == REG_PC, BAD_PC);
11523
11524 inst.instruction |= inst.operands[0].reg << 8;
11525 inst.instruction |= inst.operands[1].reg << 12;
11526 inst.instruction |= inst.operands[2].reg << 16;
11527 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_U8;
11528 }
11529
11530 static void
11531 do_t_strexd (void)
11532 {
11533 if (!inst.operands[2].present)
11534 inst.operands[2].reg = inst.operands[1].reg + 1;
11535
11536 constraint (inst.operands[0].reg == inst.operands[1].reg
11537 || inst.operands[0].reg == inst.operands[2].reg
11538 || inst.operands[0].reg == inst.operands[3].reg,
11539 BAD_OVERLAP);
11540
11541 inst.instruction |= inst.operands[0].reg;
11542 inst.instruction |= inst.operands[1].reg << 12;
11543 inst.instruction |= inst.operands[2].reg << 8;
11544 inst.instruction |= inst.operands[3].reg << 16;
11545 }
11546
11547 static void
11548 do_t_sxtah (void)
11549 {
11550 unsigned Rd, Rn, Rm;
11551
11552 Rd = inst.operands[0].reg;
11553 Rn = inst.operands[1].reg;
11554 Rm = inst.operands[2].reg;
11555
11556 reject_bad_reg (Rd);
11557 reject_bad_reg (Rn);
11558 reject_bad_reg (Rm);
11559
11560 inst.instruction |= Rd << 8;
11561 inst.instruction |= Rn << 16;
11562 inst.instruction |= Rm;
11563 inst.instruction |= inst.operands[3].imm << 4;
11564 }
11565
11566 static void
11567 do_t_sxth (void)
11568 {
11569 unsigned Rd, Rm;
11570
11571 Rd = inst.operands[0].reg;
11572 Rm = inst.operands[1].reg;
11573
11574 reject_bad_reg (Rd);
11575 reject_bad_reg (Rm);
11576
11577 if (inst.instruction <= 0xffff
11578 && inst.size_req != 4
11579 && Rd <= 7 && Rm <= 7
11580 && (!inst.operands[2].present || inst.operands[2].imm == 0))
11581 {
11582 inst.instruction = THUMB_OP16 (inst.instruction);
11583 inst.instruction |= Rd;
11584 inst.instruction |= Rm << 3;
11585 }
11586 else if (unified_syntax)
11587 {
11588 if (inst.instruction <= 0xffff)
11589 inst.instruction = THUMB_OP32 (inst.instruction);
11590 inst.instruction |= Rd << 8;
11591 inst.instruction |= Rm;
11592 inst.instruction |= inst.operands[2].imm << 4;
11593 }
11594 else
11595 {
11596 constraint (inst.operands[2].present && inst.operands[2].imm != 0,
11597 _("Thumb encoding does not support rotation"));
11598 constraint (1, BAD_HIREG);
11599 }
11600 }
11601
11602 static void
11603 do_t_swi (void)
11604 {
11605 /* We have to do the following check manually as ARM_EXT_OS only applies
11606 to ARM_EXT_V6M. */
11607 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6m))
11608 {
11609 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_os))
11610 as_bad (_("SVC is not permitted on this architecture"));
11611 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used, arm_ext_os);
11612 }
11613
11614 inst.reloc.type = BFD_RELOC_ARM_SWI;
11615 }
11616
11617 static void
11618 do_t_tb (void)
11619 {
11620 unsigned Rn, Rm;
11621 int half;
11622
11623 half = (inst.instruction & 0x10) != 0;
11624 set_it_insn_type_last ();
11625 constraint (inst.operands[0].immisreg,
11626 _("instruction requires register index"));
11627
11628 Rn = inst.operands[0].reg;
11629 Rm = inst.operands[0].imm;
11630
11631 constraint (Rn == REG_SP, BAD_SP);
11632 reject_bad_reg (Rm);
11633
11634 constraint (!half && inst.operands[0].shifted,
11635 _("instruction does not allow shifted index"));
11636 inst.instruction |= (Rn << 16) | Rm;
11637 }
11638
11639 static void
11640 do_t_usat (void)
11641 {
11642 do_t_ssat_usat (0);
11643 }
11644
11645 static void
11646 do_t_usat16 (void)
11647 {
11648 unsigned Rd, Rn;
11649
11650 Rd = inst.operands[0].reg;
11651 Rn = inst.operands[2].reg;
11652
11653 reject_bad_reg (Rd);
11654 reject_bad_reg (Rn);
11655
11656 inst.instruction |= Rd << 8;
11657 inst.instruction |= inst.operands[1].imm;
11658 inst.instruction |= Rn << 16;
11659 }
11660
11661 /* Neon instruction encoder helpers. */
11662
11663 /* Encodings for the different types for various Neon opcodes. */
11664
11665 /* An "invalid" code for the following tables. */
11666 #define N_INV -1u
11667
11668 struct neon_tab_entry
11669 {
11670 unsigned integer;
11671 unsigned float_or_poly;
11672 unsigned scalar_or_imm;
11673 };
11674
11675 /* Map overloaded Neon opcodes to their respective encodings. */
11676 #define NEON_ENC_TAB \
11677 X(vabd, 0x0000700, 0x1200d00, N_INV), \
11678 X(vmax, 0x0000600, 0x0000f00, N_INV), \
11679 X(vmin, 0x0000610, 0x0200f00, N_INV), \
11680 X(vpadd, 0x0000b10, 0x1000d00, N_INV), \
11681 X(vpmax, 0x0000a00, 0x1000f00, N_INV), \
11682 X(vpmin, 0x0000a10, 0x1200f00, N_INV), \
11683 X(vadd, 0x0000800, 0x0000d00, N_INV), \
11684 X(vsub, 0x1000800, 0x0200d00, N_INV), \
11685 X(vceq, 0x1000810, 0x0000e00, 0x1b10100), \
11686 X(vcge, 0x0000310, 0x1000e00, 0x1b10080), \
11687 X(vcgt, 0x0000300, 0x1200e00, 0x1b10000), \
11688 /* Register variants of the following two instructions are encoded as
11689 vcge / vcgt with the operands reversed. */ \
11690 X(vclt, 0x0000300, 0x1200e00, 0x1b10200), \
11691 X(vcle, 0x0000310, 0x1000e00, 0x1b10180), \
11692 X(vfma, N_INV, 0x0000c10, N_INV), \
11693 X(vfms, N_INV, 0x0200c10, N_INV), \
11694 X(vmla, 0x0000900, 0x0000d10, 0x0800040), \
11695 X(vmls, 0x1000900, 0x0200d10, 0x0800440), \
11696 X(vmul, 0x0000910, 0x1000d10, 0x0800840), \
11697 X(vmull, 0x0800c00, 0x0800e00, 0x0800a40), /* polynomial not float. */ \
11698 X(vmlal, 0x0800800, N_INV, 0x0800240), \
11699 X(vmlsl, 0x0800a00, N_INV, 0x0800640), \
11700 X(vqdmlal, 0x0800900, N_INV, 0x0800340), \
11701 X(vqdmlsl, 0x0800b00, N_INV, 0x0800740), \
11702 X(vqdmull, 0x0800d00, N_INV, 0x0800b40), \
11703 X(vqdmulh, 0x0000b00, N_INV, 0x0800c40), \
11704 X(vqrdmulh, 0x1000b00, N_INV, 0x0800d40), \
11705 X(vshl, 0x0000400, N_INV, 0x0800510), \
11706 X(vqshl, 0x0000410, N_INV, 0x0800710), \
11707 X(vand, 0x0000110, N_INV, 0x0800030), \
11708 X(vbic, 0x0100110, N_INV, 0x0800030), \
11709 X(veor, 0x1000110, N_INV, N_INV), \
11710 X(vorn, 0x0300110, N_INV, 0x0800010), \
11711 X(vorr, 0x0200110, N_INV, 0x0800010), \
11712 X(vmvn, 0x1b00580, N_INV, 0x0800030), \
11713 X(vshll, 0x1b20300, N_INV, 0x0800a10), /* max shift, immediate. */ \
11714 X(vcvt, 0x1b30600, N_INV, 0x0800e10), /* integer, fixed-point. */ \
11715 X(vdup, 0xe800b10, N_INV, 0x1b00c00), /* arm, scalar. */ \
11716 X(vld1, 0x0200000, 0x0a00000, 0x0a00c00), /* interlv, lane, dup. */ \
11717 X(vst1, 0x0000000, 0x0800000, N_INV), \
11718 X(vld2, 0x0200100, 0x0a00100, 0x0a00d00), \
11719 X(vst2, 0x0000100, 0x0800100, N_INV), \
11720 X(vld3, 0x0200200, 0x0a00200, 0x0a00e00), \
11721 X(vst3, 0x0000200, 0x0800200, N_INV), \
11722 X(vld4, 0x0200300, 0x0a00300, 0x0a00f00), \
11723 X(vst4, 0x0000300, 0x0800300, N_INV), \
11724 X(vmovn, 0x1b20200, N_INV, N_INV), \
11725 X(vtrn, 0x1b20080, N_INV, N_INV), \
11726 X(vqmovn, 0x1b20200, N_INV, N_INV), \
11727 X(vqmovun, 0x1b20240, N_INV, N_INV), \
11728 X(vnmul, 0xe200a40, 0xe200b40, N_INV), \
11729 X(vnmla, 0xe100a40, 0xe100b40, N_INV), \
11730 X(vnmls, 0xe100a00, 0xe100b00, N_INV), \
11731 X(vfnma, 0xe900a40, 0xe900b40, N_INV), \
11732 X(vfnms, 0xe900a00, 0xe900b00, N_INV), \
11733 X(vcmp, 0xeb40a40, 0xeb40b40, N_INV), \
11734 X(vcmpz, 0xeb50a40, 0xeb50b40, N_INV), \
11735 X(vcmpe, 0xeb40ac0, 0xeb40bc0, N_INV), \
11736 X(vcmpez, 0xeb50ac0, 0xeb50bc0, N_INV)
11737
11738 enum neon_opc
11739 {
11740 #define X(OPC,I,F,S) N_MNEM_##OPC
11741 NEON_ENC_TAB
11742 #undef X
11743 };
11744
11745 static const struct neon_tab_entry neon_enc_tab[] =
11746 {
11747 #define X(OPC,I,F,S) { (I), (F), (S) }
11748 NEON_ENC_TAB
11749 #undef X
11750 };
11751
11752 /* Do not use these macros; instead, use NEON_ENCODE defined below. */
11753 #define NEON_ENC_INTEGER_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
11754 #define NEON_ENC_ARMREG_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
11755 #define NEON_ENC_POLY_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
11756 #define NEON_ENC_FLOAT_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
11757 #define NEON_ENC_SCALAR_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
11758 #define NEON_ENC_IMMED_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
11759 #define NEON_ENC_INTERLV_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
11760 #define NEON_ENC_LANE_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
11761 #define NEON_ENC_DUP_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
11762 #define NEON_ENC_SINGLE_(X) \
11763 ((neon_enc_tab[(X) & 0x0fffffff].integer) | ((X) & 0xf0000000))
11764 #define NEON_ENC_DOUBLE_(X) \
11765 ((neon_enc_tab[(X) & 0x0fffffff].float_or_poly) | ((X) & 0xf0000000))
11766
11767 #define NEON_ENCODE(type, inst) \
11768 do \
11769 { \
11770 inst.instruction = NEON_ENC_##type##_ (inst.instruction); \
11771 inst.is_neon = 1; \
11772 } \
11773 while (0)
11774
11775 #define check_neon_suffixes \
11776 do \
11777 { \
11778 if (!inst.error && inst.vectype.elems > 0 && !inst.is_neon) \
11779 { \
11780 as_bad (_("invalid neon suffix for non neon instruction")); \
11781 return; \
11782 } \
11783 } \
11784 while (0)
11785
11786 /* Define shapes for instruction operands. The following mnemonic characters
11787 are used in this table:
11788
11789 F - VFP S<n> register
11790 D - Neon D<n> register
11791 Q - Neon Q<n> register
11792 I - Immediate
11793 S - Scalar
11794 R - ARM register
11795 L - D<n> register list
11796
11797 This table is used to generate various data:
11798 - enumerations of the form NS_DDR to be used as arguments to
11799 neon_select_shape.
11800 - a table classifying shapes into single, double, quad, mixed.
11801 - a table used to drive neon_select_shape. */
11802
11803 #define NEON_SHAPE_DEF \
11804 X(3, (D, D, D), DOUBLE), \
11805 X(3, (Q, Q, Q), QUAD), \
11806 X(3, (D, D, I), DOUBLE), \
11807 X(3, (Q, Q, I), QUAD), \
11808 X(3, (D, D, S), DOUBLE), \
11809 X(3, (Q, Q, S), QUAD), \
11810 X(2, (D, D), DOUBLE), \
11811 X(2, (Q, Q), QUAD), \
11812 X(2, (D, S), DOUBLE), \
11813 X(2, (Q, S), QUAD), \
11814 X(2, (D, R), DOUBLE), \
11815 X(2, (Q, R), QUAD), \
11816 X(2, (D, I), DOUBLE), \
11817 X(2, (Q, I), QUAD), \
11818 X(3, (D, L, D), DOUBLE), \
11819 X(2, (D, Q), MIXED), \
11820 X(2, (Q, D), MIXED), \
11821 X(3, (D, Q, I), MIXED), \
11822 X(3, (Q, D, I), MIXED), \
11823 X(3, (Q, D, D), MIXED), \
11824 X(3, (D, Q, Q), MIXED), \
11825 X(3, (Q, Q, D), MIXED), \
11826 X(3, (Q, D, S), MIXED), \
11827 X(3, (D, Q, S), MIXED), \
11828 X(4, (D, D, D, I), DOUBLE), \
11829 X(4, (Q, Q, Q, I), QUAD), \
11830 X(2, (F, F), SINGLE), \
11831 X(3, (F, F, F), SINGLE), \
11832 X(2, (F, I), SINGLE), \
11833 X(2, (F, D), MIXED), \
11834 X(2, (D, F), MIXED), \
11835 X(3, (F, F, I), MIXED), \
11836 X(4, (R, R, F, F), SINGLE), \
11837 X(4, (F, F, R, R), SINGLE), \
11838 X(3, (D, R, R), DOUBLE), \
11839 X(3, (R, R, D), DOUBLE), \
11840 X(2, (S, R), SINGLE), \
11841 X(2, (R, S), SINGLE), \
11842 X(2, (F, R), SINGLE), \
11843 X(2, (R, F), SINGLE)
11844
11845 #define S2(A,B) NS_##A##B
11846 #define S3(A,B,C) NS_##A##B##C
11847 #define S4(A,B,C,D) NS_##A##B##C##D
11848
11849 #define X(N, L, C) S##N L
11850
11851 enum neon_shape
11852 {
11853 NEON_SHAPE_DEF,
11854 NS_NULL
11855 };
11856
11857 #undef X
11858 #undef S2
11859 #undef S3
11860 #undef S4
11861
11862 enum neon_shape_class
11863 {
11864 SC_SINGLE,
11865 SC_DOUBLE,
11866 SC_QUAD,
11867 SC_MIXED
11868 };
11869
11870 #define X(N, L, C) SC_##C
11871
11872 static enum neon_shape_class neon_shape_class[] =
11873 {
11874 NEON_SHAPE_DEF
11875 };
11876
11877 #undef X
11878
11879 enum neon_shape_el
11880 {
11881 SE_F,
11882 SE_D,
11883 SE_Q,
11884 SE_I,
11885 SE_S,
11886 SE_R,
11887 SE_L
11888 };
11889
11890 /* Register widths of above. */
11891 static unsigned neon_shape_el_size[] =
11892 {
11893 32,
11894 64,
11895 128,
11896 0,
11897 32,
11898 32,
11899 0
11900 };
11901
11902 struct neon_shape_info
11903 {
11904 unsigned els;
11905 enum neon_shape_el el[NEON_MAX_TYPE_ELS];
11906 };
11907
11908 #define S2(A,B) { SE_##A, SE_##B }
11909 #define S3(A,B,C) { SE_##A, SE_##B, SE_##C }
11910 #define S4(A,B,C,D) { SE_##A, SE_##B, SE_##C, SE_##D }
11911
11912 #define X(N, L, C) { N, S##N L }
11913
11914 static struct neon_shape_info neon_shape_tab[] =
11915 {
11916 NEON_SHAPE_DEF
11917 };
11918
11919 #undef X
11920 #undef S2
11921 #undef S3
11922 #undef S4
11923
11924 /* Bit masks used in type checking given instructions.
11925 'N_EQK' means the type must be the same as (or based on in some way) the key
11926 type, which itself is marked with the 'N_KEY' bit. If the 'N_EQK' bit is
11927 set, various other bits can be set as well in order to modify the meaning of
11928 the type constraint. */
11929
11930 enum neon_type_mask
11931 {
11932 N_S8 = 0x0000001,
11933 N_S16 = 0x0000002,
11934 N_S32 = 0x0000004,
11935 N_S64 = 0x0000008,
11936 N_U8 = 0x0000010,
11937 N_U16 = 0x0000020,
11938 N_U32 = 0x0000040,
11939 N_U64 = 0x0000080,
11940 N_I8 = 0x0000100,
11941 N_I16 = 0x0000200,
11942 N_I32 = 0x0000400,
11943 N_I64 = 0x0000800,
11944 N_8 = 0x0001000,
11945 N_16 = 0x0002000,
11946 N_32 = 0x0004000,
11947 N_64 = 0x0008000,
11948 N_P8 = 0x0010000,
11949 N_P16 = 0x0020000,
11950 N_F16 = 0x0040000,
11951 N_F32 = 0x0080000,
11952 N_F64 = 0x0100000,
11953 N_KEY = 0x1000000, /* Key element (main type specifier). */
11954 N_EQK = 0x2000000, /* Given operand has the same type & size as the key. */
11955 N_VFP = 0x4000000, /* VFP mode: operand size must match register width. */
11956 N_DBL = 0x0000001, /* If N_EQK, this operand is twice the size. */
11957 N_HLF = 0x0000002, /* If N_EQK, this operand is half the size. */
11958 N_SGN = 0x0000004, /* If N_EQK, this operand is forced to be signed. */
11959 N_UNS = 0x0000008, /* If N_EQK, this operand is forced to be unsigned. */
11960 N_INT = 0x0000010, /* If N_EQK, this operand is forced to be integer. */
11961 N_FLT = 0x0000020, /* If N_EQK, this operand is forced to be float. */
11962 N_SIZ = 0x0000040, /* If N_EQK, this operand is forced to be size-only. */
11963 N_UTYP = 0,
11964 N_MAX_NONSPECIAL = N_F64
11965 };
11966
11967 #define N_ALLMODS (N_DBL | N_HLF | N_SGN | N_UNS | N_INT | N_FLT | N_SIZ)
11968
11969 #define N_SU_ALL (N_S8 | N_S16 | N_S32 | N_S64 | N_U8 | N_U16 | N_U32 | N_U64)
11970 #define N_SU_32 (N_S8 | N_S16 | N_S32 | N_U8 | N_U16 | N_U32)
11971 #define N_SU_16_64 (N_S16 | N_S32 | N_S64 | N_U16 | N_U32 | N_U64)
11972 #define N_SUF_32 (N_SU_32 | N_F32)
11973 #define N_I_ALL (N_I8 | N_I16 | N_I32 | N_I64)
11974 #define N_IF_32 (N_I8 | N_I16 | N_I32 | N_F32)
11975
11976 /* Pass this as the first type argument to neon_check_type to ignore types
11977 altogether. */
11978 #define N_IGNORE_TYPE (N_KEY | N_EQK)
11979
11980 /* Select a "shape" for the current instruction (describing register types or
11981 sizes) from a list of alternatives. Return NS_NULL if the current instruction
11982 doesn't fit. For non-polymorphic shapes, checking is usually done as a
11983 function of operand parsing, so this function doesn't need to be called.
11984 Shapes should be listed in order of decreasing length. */
11985
11986 static enum neon_shape
11987 neon_select_shape (enum neon_shape shape, ...)
11988 {
11989 va_list ap;
11990 enum neon_shape first_shape = shape;
11991
11992 /* Fix missing optional operands. FIXME: we don't know at this point how
11993 many arguments we should have, so this makes the assumption that we have
11994 > 1. This is true of all current Neon opcodes, I think, but may not be
11995 true in the future. */
11996 if (!inst.operands[1].present)
11997 inst.operands[1] = inst.operands[0];
11998
11999 va_start (ap, shape);
12000
12001 for (; shape != NS_NULL; shape = (enum neon_shape) va_arg (ap, int))
12002 {
12003 unsigned j;
12004 int matches = 1;
12005
12006 for (j = 0; j < neon_shape_tab[shape].els; j++)
12007 {
12008 if (!inst.operands[j].present)
12009 {
12010 matches = 0;
12011 break;
12012 }
12013
12014 switch (neon_shape_tab[shape].el[j])
12015 {
12016 case SE_F:
12017 if (!(inst.operands[j].isreg
12018 && inst.operands[j].isvec
12019 && inst.operands[j].issingle
12020 && !inst.operands[j].isquad))
12021 matches = 0;
12022 break;
12023
12024 case SE_D:
12025 if (!(inst.operands[j].isreg
12026 && inst.operands[j].isvec
12027 && !inst.operands[j].isquad
12028 && !inst.operands[j].issingle))
12029 matches = 0;
12030 break;
12031
12032 case SE_R:
12033 if (!(inst.operands[j].isreg
12034 && !inst.operands[j].isvec))
12035 matches = 0;
12036 break;
12037
12038 case SE_Q:
12039 if (!(inst.operands[j].isreg
12040 && inst.operands[j].isvec
12041 && inst.operands[j].isquad
12042 && !inst.operands[j].issingle))
12043 matches = 0;
12044 break;
12045
12046 case SE_I:
12047 if (!(!inst.operands[j].isreg
12048 && !inst.operands[j].isscalar))
12049 matches = 0;
12050 break;
12051
12052 case SE_S:
12053 if (!(!inst.operands[j].isreg
12054 && inst.operands[j].isscalar))
12055 matches = 0;
12056 break;
12057
12058 case SE_L:
12059 break;
12060 }
12061 if (!matches)
12062 break;
12063 }
12064 if (matches)
12065 break;
12066 }
12067
12068 va_end (ap);
12069
12070 if (shape == NS_NULL && first_shape != NS_NULL)
12071 first_error (_("invalid instruction shape"));
12072
12073 return shape;
12074 }
12075
12076 /* True if SHAPE is predominantly a quadword operation (most of the time, this
12077 means the Q bit should be set). */
12078
12079 static int
12080 neon_quad (enum neon_shape shape)
12081 {
12082 return neon_shape_class[shape] == SC_QUAD;
12083 }
12084
12085 static void
12086 neon_modify_type_size (unsigned typebits, enum neon_el_type *g_type,
12087 unsigned *g_size)
12088 {
12089 /* Allow modification to be made to types which are constrained to be
12090 based on the key element, based on bits set alongside N_EQK. */
12091 if ((typebits & N_EQK) != 0)
12092 {
12093 if ((typebits & N_HLF) != 0)
12094 *g_size /= 2;
12095 else if ((typebits & N_DBL) != 0)
12096 *g_size *= 2;
12097 if ((typebits & N_SGN) != 0)
12098 *g_type = NT_signed;
12099 else if ((typebits & N_UNS) != 0)
12100 *g_type = NT_unsigned;
12101 else if ((typebits & N_INT) != 0)
12102 *g_type = NT_integer;
12103 else if ((typebits & N_FLT) != 0)
12104 *g_type = NT_float;
12105 else if ((typebits & N_SIZ) != 0)
12106 *g_type = NT_untyped;
12107 }
12108 }
12109
12110 /* Return operand OPNO promoted by bits set in THISARG. KEY should be the "key"
12111 operand type, i.e. the single type specified in a Neon instruction when it
12112 is the only one given. */
12113
12114 static struct neon_type_el
12115 neon_type_promote (struct neon_type_el *key, unsigned thisarg)
12116 {
12117 struct neon_type_el dest = *key;
12118
12119 gas_assert ((thisarg & N_EQK) != 0);
12120
12121 neon_modify_type_size (thisarg, &dest.type, &dest.size);
12122
12123 return dest;
12124 }
12125
12126 /* Convert Neon type and size into compact bitmask representation. */
12127
12128 static enum neon_type_mask
12129 type_chk_of_el_type (enum neon_el_type type, unsigned size)
12130 {
12131 switch (type)
12132 {
12133 case NT_untyped:
12134 switch (size)
12135 {
12136 case 8: return N_8;
12137 case 16: return N_16;
12138 case 32: return N_32;
12139 case 64: return N_64;
12140 default: ;
12141 }
12142 break;
12143
12144 case NT_integer:
12145 switch (size)
12146 {
12147 case 8: return N_I8;
12148 case 16: return N_I16;
12149 case 32: return N_I32;
12150 case 64: return N_I64;
12151 default: ;
12152 }
12153 break;
12154
12155 case NT_float:
12156 switch (size)
12157 {
12158 case 16: return N_F16;
12159 case 32: return N_F32;
12160 case 64: return N_F64;
12161 default: ;
12162 }
12163 break;
12164
12165 case NT_poly:
12166 switch (size)
12167 {
12168 case 8: return N_P8;
12169 case 16: return N_P16;
12170 default: ;
12171 }
12172 break;
12173
12174 case NT_signed:
12175 switch (size)
12176 {
12177 case 8: return N_S8;
12178 case 16: return N_S16;
12179 case 32: return N_S32;
12180 case 64: return N_S64;
12181 default: ;
12182 }
12183 break;
12184
12185 case NT_unsigned:
12186 switch (size)
12187 {
12188 case 8: return N_U8;
12189 case 16: return N_U16;
12190 case 32: return N_U32;
12191 case 64: return N_U64;
12192 default: ;
12193 }
12194 break;
12195
12196 default: ;
12197 }
12198
12199 return N_UTYP;
12200 }
12201
12202 /* Convert compact Neon bitmask type representation to a type and size. Only
12203 handles the case where a single bit is set in the mask. */
12204
12205 static int
12206 el_type_of_type_chk (enum neon_el_type *type, unsigned *size,
12207 enum neon_type_mask mask)
12208 {
12209 if ((mask & N_EQK) != 0)
12210 return FAIL;
12211
12212 if ((mask & (N_S8 | N_U8 | N_I8 | N_8 | N_P8)) != 0)
12213 *size = 8;
12214 else if ((mask & (N_S16 | N_U16 | N_I16 | N_16 | N_P16)) != 0)
12215 *size = 16;
12216 else if ((mask & (N_S32 | N_U32 | N_I32 | N_32 | N_F32)) != 0)
12217 *size = 32;
12218 else if ((mask & (N_S64 | N_U64 | N_I64 | N_64 | N_F64)) != 0)
12219 *size = 64;
12220 else
12221 return FAIL;
12222
12223 if ((mask & (N_S8 | N_S16 | N_S32 | N_S64)) != 0)
12224 *type = NT_signed;
12225 else if ((mask & (N_U8 | N_U16 | N_U32 | N_U64)) != 0)
12226 *type = NT_unsigned;
12227 else if ((mask & (N_I8 | N_I16 | N_I32 | N_I64)) != 0)
12228 *type = NT_integer;
12229 else if ((mask & (N_8 | N_16 | N_32 | N_64)) != 0)
12230 *type = NT_untyped;
12231 else if ((mask & (N_P8 | N_P16)) != 0)
12232 *type = NT_poly;
12233 else if ((mask & (N_F32 | N_F64)) != 0)
12234 *type = NT_float;
12235 else
12236 return FAIL;
12237
12238 return SUCCESS;
12239 }
12240
12241 /* Modify a bitmask of allowed types. This is only needed for type
12242 relaxation. */
12243
12244 static unsigned
12245 modify_types_allowed (unsigned allowed, unsigned mods)
12246 {
12247 unsigned size;
12248 enum neon_el_type type;
12249 unsigned destmask;
12250 int i;
12251
12252 destmask = 0;
12253
12254 for (i = 1; i <= N_MAX_NONSPECIAL; i <<= 1)
12255 {
12256 if (el_type_of_type_chk (&type, &size,
12257 (enum neon_type_mask) (allowed & i)) == SUCCESS)
12258 {
12259 neon_modify_type_size (mods, &type, &size);
12260 destmask |= type_chk_of_el_type (type, size);
12261 }
12262 }
12263
12264 return destmask;
12265 }
12266
12267 /* Check type and return type classification.
12268 The manual states (paraphrase): If one datatype is given, it indicates the
12269 type given in:
12270 - the second operand, if there is one
12271 - the operand, if there is no second operand
12272 - the result, if there are no operands.
12273 This isn't quite good enough though, so we use a concept of a "key" datatype
12274 which is set on a per-instruction basis, which is the one which matters when
12275 only one data type is written.
12276 Note: this function has side-effects (e.g. filling in missing operands). All
12277 Neon instructions should call it before performing bit encoding. */
12278
12279 static struct neon_type_el
12280 neon_check_type (unsigned els, enum neon_shape ns, ...)
12281 {
12282 va_list ap;
12283 unsigned i, pass, key_el = 0;
12284 unsigned types[NEON_MAX_TYPE_ELS];
12285 enum neon_el_type k_type = NT_invtype;
12286 unsigned k_size = -1u;
12287 struct neon_type_el badtype = {NT_invtype, -1};
12288 unsigned key_allowed = 0;
12289
12290 /* Optional registers in Neon instructions are always (not) in operand 1.
12291 Fill in the missing operand here, if it was omitted. */
12292 if (els > 1 && !inst.operands[1].present)
12293 inst.operands[1] = inst.operands[0];
12294
12295 /* Suck up all the varargs. */
12296 va_start (ap, ns);
12297 for (i = 0; i < els; i++)
12298 {
12299 unsigned thisarg = va_arg (ap, unsigned);
12300 if (thisarg == N_IGNORE_TYPE)
12301 {
12302 va_end (ap);
12303 return badtype;
12304 }
12305 types[i] = thisarg;
12306 if ((thisarg & N_KEY) != 0)
12307 key_el = i;
12308 }
12309 va_end (ap);
12310
12311 if (inst.vectype.elems > 0)
12312 for (i = 0; i < els; i++)
12313 if (inst.operands[i].vectype.type != NT_invtype)
12314 {
12315 first_error (_("types specified in both the mnemonic and operands"));
12316 return badtype;
12317 }
12318
12319 /* Duplicate inst.vectype elements here as necessary.
12320 FIXME: No idea if this is exactly the same as the ARM assembler,
12321 particularly when an insn takes one register and one non-register
12322 operand. */
12323 if (inst.vectype.elems == 1 && els > 1)
12324 {
12325 unsigned j;
12326 inst.vectype.elems = els;
12327 inst.vectype.el[key_el] = inst.vectype.el[0];
12328 for (j = 0; j < els; j++)
12329 if (j != key_el)
12330 inst.vectype.el[j] = neon_type_promote (&inst.vectype.el[key_el],
12331 types[j]);
12332 }
12333 else if (inst.vectype.elems == 0 && els > 0)
12334 {
12335 unsigned j;
12336 /* No types were given after the mnemonic, so look for types specified
12337 after each operand. We allow some flexibility here; as long as the
12338 "key" operand has a type, we can infer the others. */
12339 for (j = 0; j < els; j++)
12340 if (inst.operands[j].vectype.type != NT_invtype)
12341 inst.vectype.el[j] = inst.operands[j].vectype;
12342
12343 if (inst.operands[key_el].vectype.type != NT_invtype)
12344 {
12345 for (j = 0; j < els; j++)
12346 if (inst.operands[j].vectype.type == NT_invtype)
12347 inst.vectype.el[j] = neon_type_promote (&inst.vectype.el[key_el],
12348 types[j]);
12349 }
12350 else
12351 {
12352 first_error (_("operand types can't be inferred"));
12353 return badtype;
12354 }
12355 }
12356 else if (inst.vectype.elems != els)
12357 {
12358 first_error (_("type specifier has the wrong number of parts"));
12359 return badtype;
12360 }
12361
12362 for (pass = 0; pass < 2; pass++)
12363 {
12364 for (i = 0; i < els; i++)
12365 {
12366 unsigned thisarg = types[i];
12367 unsigned types_allowed = ((thisarg & N_EQK) != 0 && pass != 0)
12368 ? modify_types_allowed (key_allowed, thisarg) : thisarg;
12369 enum neon_el_type g_type = inst.vectype.el[i].type;
12370 unsigned g_size = inst.vectype.el[i].size;
12371
12372 /* Decay more-specific signed & unsigned types to sign-insensitive
12373 integer types if sign-specific variants are unavailable. */
12374 if ((g_type == NT_signed || g_type == NT_unsigned)
12375 && (types_allowed & N_SU_ALL) == 0)
12376 g_type = NT_integer;
12377
12378 /* If only untyped args are allowed, decay any more specific types to
12379 them. Some instructions only care about signs for some element
12380 sizes, so handle that properly. */
12381 if ((g_size == 8 && (types_allowed & N_8) != 0)
12382 || (g_size == 16 && (types_allowed & N_16) != 0)
12383 || (g_size == 32 && (types_allowed & N_32) != 0)
12384 || (g_size == 64 && (types_allowed & N_64) != 0))
12385 g_type = NT_untyped;
12386
12387 if (pass == 0)
12388 {
12389 if ((thisarg & N_KEY) != 0)
12390 {
12391 k_type = g_type;
12392 k_size = g_size;
12393 key_allowed = thisarg & ~N_KEY;
12394 }
12395 }
12396 else
12397 {
12398 if ((thisarg & N_VFP) != 0)
12399 {
12400 enum neon_shape_el regshape;
12401 unsigned regwidth, match;
12402
12403 /* PR 11136: Catch the case where we are passed a shape of NS_NULL. */
12404 if (ns == NS_NULL)
12405 {
12406 first_error (_("invalid instruction shape"));
12407 return badtype;
12408 }
12409 regshape = neon_shape_tab[ns].el[i];
12410 regwidth = neon_shape_el_size[regshape];
12411
12412 /* In VFP mode, operands must match register widths. If we
12413 have a key operand, use its width, else use the width of
12414 the current operand. */
12415 if (k_size != -1u)
12416 match = k_size;
12417 else
12418 match = g_size;
12419
12420 if (regwidth != match)
12421 {
12422 first_error (_("operand size must match register width"));
12423 return badtype;
12424 }
12425 }
12426
12427 if ((thisarg & N_EQK) == 0)
12428 {
12429 unsigned given_type = type_chk_of_el_type (g_type, g_size);
12430
12431 if ((given_type & types_allowed) == 0)
12432 {
12433 first_error (_("bad type in Neon instruction"));
12434 return badtype;
12435 }
12436 }
12437 else
12438 {
12439 enum neon_el_type mod_k_type = k_type;
12440 unsigned mod_k_size = k_size;
12441 neon_modify_type_size (thisarg, &mod_k_type, &mod_k_size);
12442 if (g_type != mod_k_type || g_size != mod_k_size)
12443 {
12444 first_error (_("inconsistent types in Neon instruction"));
12445 return badtype;
12446 }
12447 }
12448 }
12449 }
12450 }
12451
12452 return inst.vectype.el[key_el];
12453 }
12454
12455 /* Neon-style VFP instruction forwarding. */
12456
12457 /* Thumb VFP instructions have 0xE in the condition field. */
12458
12459 static void
12460 do_vfp_cond_or_thumb (void)
12461 {
12462 inst.is_neon = 1;
12463
12464 if (thumb_mode)
12465 inst.instruction |= 0xe0000000;
12466 else
12467 inst.instruction |= inst.cond << 28;
12468 }
12469
12470 /* Look up and encode a simple mnemonic, for use as a helper function for the
12471 Neon-style VFP syntax. This avoids duplication of bits of the insns table,
12472 etc. It is assumed that operand parsing has already been done, and that the
12473 operands are in the form expected by the given opcode (this isn't necessarily
12474 the same as the form in which they were parsed, hence some massaging must
12475 take place before this function is called).
12476 Checks current arch version against that in the looked-up opcode. */
12477
12478 static void
12479 do_vfp_nsyn_opcode (const char *opname)
12480 {
12481 const struct asm_opcode *opcode;
12482
12483 opcode = (const struct asm_opcode *) hash_find (arm_ops_hsh, opname);
12484
12485 if (!opcode)
12486 abort ();
12487
12488 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant,
12489 thumb_mode ? *opcode->tvariant : *opcode->avariant),
12490 _(BAD_FPU));
12491
12492 inst.is_neon = 1;
12493
12494 if (thumb_mode)
12495 {
12496 inst.instruction = opcode->tvalue;
12497 opcode->tencode ();
12498 }
12499 else
12500 {
12501 inst.instruction = (inst.cond << 28) | opcode->avalue;
12502 opcode->aencode ();
12503 }
12504 }
12505
12506 static void
12507 do_vfp_nsyn_add_sub (enum neon_shape rs)
12508 {
12509 int is_add = (inst.instruction & 0x0fffffff) == N_MNEM_vadd;
12510
12511 if (rs == NS_FFF)
12512 {
12513 if (is_add)
12514 do_vfp_nsyn_opcode ("fadds");
12515 else
12516 do_vfp_nsyn_opcode ("fsubs");
12517 }
12518 else
12519 {
12520 if (is_add)
12521 do_vfp_nsyn_opcode ("faddd");
12522 else
12523 do_vfp_nsyn_opcode ("fsubd");
12524 }
12525 }
12526
12527 /* Check operand types to see if this is a VFP instruction, and if so call
12528 PFN (). */
12529
12530 static int
12531 try_vfp_nsyn (int args, void (*pfn) (enum neon_shape))
12532 {
12533 enum neon_shape rs;
12534 struct neon_type_el et;
12535
12536 switch (args)
12537 {
12538 case 2:
12539 rs = neon_select_shape (NS_FF, NS_DD, NS_NULL);
12540 et = neon_check_type (2, rs,
12541 N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
12542 break;
12543
12544 case 3:
12545 rs = neon_select_shape (NS_FFF, NS_DDD, NS_NULL);
12546 et = neon_check_type (3, rs,
12547 N_EQK | N_VFP, N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
12548 break;
12549
12550 default:
12551 abort ();
12552 }
12553
12554 if (et.type != NT_invtype)
12555 {
12556 pfn (rs);
12557 return SUCCESS;
12558 }
12559
12560 inst.error = NULL;
12561 return FAIL;
12562 }
12563
12564 static void
12565 do_vfp_nsyn_mla_mls (enum neon_shape rs)
12566 {
12567 int is_mla = (inst.instruction & 0x0fffffff) == N_MNEM_vmla;
12568
12569 if (rs == NS_FFF)
12570 {
12571 if (is_mla)
12572 do_vfp_nsyn_opcode ("fmacs");
12573 else
12574 do_vfp_nsyn_opcode ("fnmacs");
12575 }
12576 else
12577 {
12578 if (is_mla)
12579 do_vfp_nsyn_opcode ("fmacd");
12580 else
12581 do_vfp_nsyn_opcode ("fnmacd");
12582 }
12583 }
12584
12585 static void
12586 do_vfp_nsyn_fma_fms (enum neon_shape rs)
12587 {
12588 int is_fma = (inst.instruction & 0x0fffffff) == N_MNEM_vfma;
12589
12590 if (rs == NS_FFF)
12591 {
12592 if (is_fma)
12593 do_vfp_nsyn_opcode ("ffmas");
12594 else
12595 do_vfp_nsyn_opcode ("ffnmas");
12596 }
12597 else
12598 {
12599 if (is_fma)
12600 do_vfp_nsyn_opcode ("ffmad");
12601 else
12602 do_vfp_nsyn_opcode ("ffnmad");
12603 }
12604 }
12605
12606 static void
12607 do_vfp_nsyn_mul (enum neon_shape rs)
12608 {
12609 if (rs == NS_FFF)
12610 do_vfp_nsyn_opcode ("fmuls");
12611 else
12612 do_vfp_nsyn_opcode ("fmuld");
12613 }
12614
12615 static void
12616 do_vfp_nsyn_abs_neg (enum neon_shape rs)
12617 {
12618 int is_neg = (inst.instruction & 0x80) != 0;
12619 neon_check_type (2, rs, N_EQK | N_VFP, N_F32 | N_F64 | N_VFP | N_KEY);
12620
12621 if (rs == NS_FF)
12622 {
12623 if (is_neg)
12624 do_vfp_nsyn_opcode ("fnegs");
12625 else
12626 do_vfp_nsyn_opcode ("fabss");
12627 }
12628 else
12629 {
12630 if (is_neg)
12631 do_vfp_nsyn_opcode ("fnegd");
12632 else
12633 do_vfp_nsyn_opcode ("fabsd");
12634 }
12635 }
12636
12637 /* Encode single-precision (only!) VFP fldm/fstm instructions. Double precision
12638 insns belong to Neon, and are handled elsewhere. */
12639
12640 static void
12641 do_vfp_nsyn_ldm_stm (int is_dbmode)
12642 {
12643 int is_ldm = (inst.instruction & (1 << 20)) != 0;
12644 if (is_ldm)
12645 {
12646 if (is_dbmode)
12647 do_vfp_nsyn_opcode ("fldmdbs");
12648 else
12649 do_vfp_nsyn_opcode ("fldmias");
12650 }
12651 else
12652 {
12653 if (is_dbmode)
12654 do_vfp_nsyn_opcode ("fstmdbs");
12655 else
12656 do_vfp_nsyn_opcode ("fstmias");
12657 }
12658 }
12659
12660 static void
12661 do_vfp_nsyn_sqrt (void)
12662 {
12663 enum neon_shape rs = neon_select_shape (NS_FF, NS_DD, NS_NULL);
12664 neon_check_type (2, rs, N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
12665
12666 if (rs == NS_FF)
12667 do_vfp_nsyn_opcode ("fsqrts");
12668 else
12669 do_vfp_nsyn_opcode ("fsqrtd");
12670 }
12671
12672 static void
12673 do_vfp_nsyn_div (void)
12674 {
12675 enum neon_shape rs = neon_select_shape (NS_FFF, NS_DDD, NS_NULL);
12676 neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
12677 N_F32 | N_F64 | N_KEY | N_VFP);
12678
12679 if (rs == NS_FFF)
12680 do_vfp_nsyn_opcode ("fdivs");
12681 else
12682 do_vfp_nsyn_opcode ("fdivd");
12683 }
12684
12685 static void
12686 do_vfp_nsyn_nmul (void)
12687 {
12688 enum neon_shape rs = neon_select_shape (NS_FFF, NS_DDD, NS_NULL);
12689 neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
12690 N_F32 | N_F64 | N_KEY | N_VFP);
12691
12692 if (rs == NS_FFF)
12693 {
12694 NEON_ENCODE (SINGLE, inst);
12695 do_vfp_sp_dyadic ();
12696 }
12697 else
12698 {
12699 NEON_ENCODE (DOUBLE, inst);
12700 do_vfp_dp_rd_rn_rm ();
12701 }
12702 do_vfp_cond_or_thumb ();
12703 }
12704
12705 static void
12706 do_vfp_nsyn_cmp (void)
12707 {
12708 if (inst.operands[1].isreg)
12709 {
12710 enum neon_shape rs = neon_select_shape (NS_FF, NS_DD, NS_NULL);
12711 neon_check_type (2, rs, N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
12712
12713 if (rs == NS_FF)
12714 {
12715 NEON_ENCODE (SINGLE, inst);
12716 do_vfp_sp_monadic ();
12717 }
12718 else
12719 {
12720 NEON_ENCODE (DOUBLE, inst);
12721 do_vfp_dp_rd_rm ();
12722 }
12723 }
12724 else
12725 {
12726 enum neon_shape rs = neon_select_shape (NS_FI, NS_DI, NS_NULL);
12727 neon_check_type (2, rs, N_F32 | N_F64 | N_KEY | N_VFP, N_EQK);
12728
12729 switch (inst.instruction & 0x0fffffff)
12730 {
12731 case N_MNEM_vcmp:
12732 inst.instruction += N_MNEM_vcmpz - N_MNEM_vcmp;
12733 break;
12734 case N_MNEM_vcmpe:
12735 inst.instruction += N_MNEM_vcmpez - N_MNEM_vcmpe;
12736 break;
12737 default:
12738 abort ();
12739 }
12740
12741 if (rs == NS_FI)
12742 {
12743 NEON_ENCODE (SINGLE, inst);
12744 do_vfp_sp_compare_z ();
12745 }
12746 else
12747 {
12748 NEON_ENCODE (DOUBLE, inst);
12749 do_vfp_dp_rd ();
12750 }
12751 }
12752 do_vfp_cond_or_thumb ();
12753 }
12754
12755 static void
12756 nsyn_insert_sp (void)
12757 {
12758 inst.operands[1] = inst.operands[0];
12759 memset (&inst.operands[0], '\0', sizeof (inst.operands[0]));
12760 inst.operands[0].reg = REG_SP;
12761 inst.operands[0].isreg = 1;
12762 inst.operands[0].writeback = 1;
12763 inst.operands[0].present = 1;
12764 }
12765
12766 static void
12767 do_vfp_nsyn_push (void)
12768 {
12769 nsyn_insert_sp ();
12770 if (inst.operands[1].issingle)
12771 do_vfp_nsyn_opcode ("fstmdbs");
12772 else
12773 do_vfp_nsyn_opcode ("fstmdbd");
12774 }
12775
12776 static void
12777 do_vfp_nsyn_pop (void)
12778 {
12779 nsyn_insert_sp ();
12780 if (inst.operands[1].issingle)
12781 do_vfp_nsyn_opcode ("fldmias");
12782 else
12783 do_vfp_nsyn_opcode ("fldmiad");
12784 }
12785
12786 /* Fix up Neon data-processing instructions, ORing in the correct bits for
12787 ARM mode or Thumb mode and moving the encoded bit 24 to bit 28. */
12788
12789 static void
12790 neon_dp_fixup (struct arm_it* insn)
12791 {
12792 unsigned int i = insn->instruction;
12793 insn->is_neon = 1;
12794
12795 if (thumb_mode)
12796 {
12797 /* The U bit is at bit 24 by default. Move to bit 28 in Thumb mode. */
12798 if (i & (1 << 24))
12799 i |= 1 << 28;
12800
12801 i &= ~(1 << 24);
12802
12803 i |= 0xef000000;
12804 }
12805 else
12806 i |= 0xf2000000;
12807
12808 insn->instruction = i;
12809 }
12810
12811 /* Turn a size (8, 16, 32, 64) into the respective bit number minus 3
12812 (0, 1, 2, 3). */
12813
12814 static unsigned
12815 neon_logbits (unsigned x)
12816 {
12817 return ffs (x) - 4;
12818 }
12819
12820 #define LOW4(R) ((R) & 0xf)
12821 #define HI1(R) (((R) >> 4) & 1)
12822
12823 /* Encode insns with bit pattern:
12824
12825 |28/24|23|22 |21 20|19 16|15 12|11 8|7|6|5|4|3 0|
12826 | U |x |D |size | Rn | Rd |x x x x|N|Q|M|x| Rm |
12827
12828 SIZE is passed in bits. -1 means size field isn't changed, in case it has a
12829 different meaning for some instruction. */
12830
12831 static void
12832 neon_three_same (int isquad, int ubit, int size)
12833 {
12834 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12835 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12836 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
12837 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
12838 inst.instruction |= LOW4 (inst.operands[2].reg);
12839 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
12840 inst.instruction |= (isquad != 0) << 6;
12841 inst.instruction |= (ubit != 0) << 24;
12842 if (size != -1)
12843 inst.instruction |= neon_logbits (size) << 20;
12844
12845 neon_dp_fixup (&inst);
12846 }
12847
12848 /* Encode instructions of the form:
12849
12850 |28/24|23|22|21 20|19 18|17 16|15 12|11 7|6|5|4|3 0|
12851 | U |x |D |x x |size |x x | Rd |x x x x x|Q|M|x| Rm |
12852
12853 Don't write size if SIZE == -1. */
12854
12855 static void
12856 neon_two_same (int qbit, int ubit, int size)
12857 {
12858 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12859 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12860 inst.instruction |= LOW4 (inst.operands[1].reg);
12861 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
12862 inst.instruction |= (qbit != 0) << 6;
12863 inst.instruction |= (ubit != 0) << 24;
12864
12865 if (size != -1)
12866 inst.instruction |= neon_logbits (size) << 18;
12867
12868 neon_dp_fixup (&inst);
12869 }
12870
12871 /* Neon instruction encoders, in approximate order of appearance. */
12872
12873 static void
12874 do_neon_dyadic_i_su (void)
12875 {
12876 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
12877 struct neon_type_el et = neon_check_type (3, rs,
12878 N_EQK, N_EQK, N_SU_32 | N_KEY);
12879 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
12880 }
12881
12882 static void
12883 do_neon_dyadic_i64_su (void)
12884 {
12885 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
12886 struct neon_type_el et = neon_check_type (3, rs,
12887 N_EQK, N_EQK, N_SU_ALL | N_KEY);
12888 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
12889 }
12890
12891 static void
12892 neon_imm_shift (int write_ubit, int uval, int isquad, struct neon_type_el et,
12893 unsigned immbits)
12894 {
12895 unsigned size = et.size >> 3;
12896 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12897 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12898 inst.instruction |= LOW4 (inst.operands[1].reg);
12899 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
12900 inst.instruction |= (isquad != 0) << 6;
12901 inst.instruction |= immbits << 16;
12902 inst.instruction |= (size >> 3) << 7;
12903 inst.instruction |= (size & 0x7) << 19;
12904 if (write_ubit)
12905 inst.instruction |= (uval != 0) << 24;
12906
12907 neon_dp_fixup (&inst);
12908 }
12909
12910 static void
12911 do_neon_shl_imm (void)
12912 {
12913 if (!inst.operands[2].isreg)
12914 {
12915 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
12916 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_KEY | N_I_ALL);
12917 NEON_ENCODE (IMMED, inst);
12918 neon_imm_shift (FALSE, 0, neon_quad (rs), et, inst.operands[2].imm);
12919 }
12920 else
12921 {
12922 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
12923 struct neon_type_el et = neon_check_type (3, rs,
12924 N_EQK, N_SU_ALL | N_KEY, N_EQK | N_SGN);
12925 unsigned int tmp;
12926
12927 /* VSHL/VQSHL 3-register variants have syntax such as:
12928 vshl.xx Dd, Dm, Dn
12929 whereas other 3-register operations encoded by neon_three_same have
12930 syntax like:
12931 vadd.xx Dd, Dn, Dm
12932 (i.e. with Dn & Dm reversed). Swap operands[1].reg and operands[2].reg
12933 here. */
12934 tmp = inst.operands[2].reg;
12935 inst.operands[2].reg = inst.operands[1].reg;
12936 inst.operands[1].reg = tmp;
12937 NEON_ENCODE (INTEGER, inst);
12938 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
12939 }
12940 }
12941
12942 static void
12943 do_neon_qshl_imm (void)
12944 {
12945 if (!inst.operands[2].isreg)
12946 {
12947 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
12948 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_ALL | N_KEY);
12949
12950 NEON_ENCODE (IMMED, inst);
12951 neon_imm_shift (TRUE, et.type == NT_unsigned, neon_quad (rs), et,
12952 inst.operands[2].imm);
12953 }
12954 else
12955 {
12956 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
12957 struct neon_type_el et = neon_check_type (3, rs,
12958 N_EQK, N_SU_ALL | N_KEY, N_EQK | N_SGN);
12959 unsigned int tmp;
12960
12961 /* See note in do_neon_shl_imm. */
12962 tmp = inst.operands[2].reg;
12963 inst.operands[2].reg = inst.operands[1].reg;
12964 inst.operands[1].reg = tmp;
12965 NEON_ENCODE (INTEGER, inst);
12966 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
12967 }
12968 }
12969
12970 static void
12971 do_neon_rshl (void)
12972 {
12973 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
12974 struct neon_type_el et = neon_check_type (3, rs,
12975 N_EQK, N_EQK, N_SU_ALL | N_KEY);
12976 unsigned int tmp;
12977
12978 tmp = inst.operands[2].reg;
12979 inst.operands[2].reg = inst.operands[1].reg;
12980 inst.operands[1].reg = tmp;
12981 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
12982 }
12983
12984 static int
12985 neon_cmode_for_logic_imm (unsigned immediate, unsigned *immbits, int size)
12986 {
12987 /* Handle .I8 pseudo-instructions. */
12988 if (size == 8)
12989 {
12990 /* Unfortunately, this will make everything apart from zero out-of-range.
12991 FIXME is this the intended semantics? There doesn't seem much point in
12992 accepting .I8 if so. */
12993 immediate |= immediate << 8;
12994 size = 16;
12995 }
12996
12997 if (size >= 32)
12998 {
12999 if (immediate == (immediate & 0x000000ff))
13000 {
13001 *immbits = immediate;
13002 return 0x1;
13003 }
13004 else if (immediate == (immediate & 0x0000ff00))
13005 {
13006 *immbits = immediate >> 8;
13007 return 0x3;
13008 }
13009 else if (immediate == (immediate & 0x00ff0000))
13010 {
13011 *immbits = immediate >> 16;
13012 return 0x5;
13013 }
13014 else if (immediate == (immediate & 0xff000000))
13015 {
13016 *immbits = immediate >> 24;
13017 return 0x7;
13018 }
13019 if ((immediate & 0xffff) != (immediate >> 16))
13020 goto bad_immediate;
13021 immediate &= 0xffff;
13022 }
13023
13024 if (immediate == (immediate & 0x000000ff))
13025 {
13026 *immbits = immediate;
13027 return 0x9;
13028 }
13029 else if (immediate == (immediate & 0x0000ff00))
13030 {
13031 *immbits = immediate >> 8;
13032 return 0xb;
13033 }
13034
13035 bad_immediate:
13036 first_error (_("immediate value out of range"));
13037 return FAIL;
13038 }
13039
13040 /* True if IMM has form 0bAAAAAAAABBBBBBBBCCCCCCCCDDDDDDDD for bits
13041 A, B, C, D. */
13042
13043 static int
13044 neon_bits_same_in_bytes (unsigned imm)
13045 {
13046 return ((imm & 0x000000ff) == 0 || (imm & 0x000000ff) == 0x000000ff)
13047 && ((imm & 0x0000ff00) == 0 || (imm & 0x0000ff00) == 0x0000ff00)
13048 && ((imm & 0x00ff0000) == 0 || (imm & 0x00ff0000) == 0x00ff0000)
13049 && ((imm & 0xff000000) == 0 || (imm & 0xff000000) == 0xff000000);
13050 }
13051
13052 /* For immediate of above form, return 0bABCD. */
13053
13054 static unsigned
13055 neon_squash_bits (unsigned imm)
13056 {
13057 return (imm & 0x01) | ((imm & 0x0100) >> 7) | ((imm & 0x010000) >> 14)
13058 | ((imm & 0x01000000) >> 21);
13059 }
13060
13061 /* Compress quarter-float representation to 0b...000 abcdefgh. */
13062
13063 static unsigned
13064 neon_qfloat_bits (unsigned imm)
13065 {
13066 return ((imm >> 19) & 0x7f) | ((imm >> 24) & 0x80);
13067 }
13068
13069 /* Returns CMODE. IMMBITS [7:0] is set to bits suitable for inserting into
13070 the instruction. *OP is passed as the initial value of the op field, and
13071 may be set to a different value depending on the constant (i.e.
13072 "MOV I64, 0bAAAAAAAABBBB..." which uses OP = 1 despite being MOV not
13073 MVN). If the immediate looks like a repeated pattern then also
13074 try smaller element sizes. */
13075
13076 static int
13077 neon_cmode_for_move_imm (unsigned immlo, unsigned immhi, int float_p,
13078 unsigned *immbits, int *op, int size,
13079 enum neon_el_type type)
13080 {
13081 /* Only permit float immediates (including 0.0/-0.0) if the operand type is
13082 float. */
13083 if (type == NT_float && !float_p)
13084 return FAIL;
13085
13086 if (type == NT_float && is_quarter_float (immlo) && immhi == 0)
13087 {
13088 if (size != 32 || *op == 1)
13089 return FAIL;
13090 *immbits = neon_qfloat_bits (immlo);
13091 return 0xf;
13092 }
13093
13094 if (size == 64)
13095 {
13096 if (neon_bits_same_in_bytes (immhi)
13097 && neon_bits_same_in_bytes (immlo))
13098 {
13099 if (*op == 1)
13100 return FAIL;
13101 *immbits = (neon_squash_bits (immhi) << 4)
13102 | neon_squash_bits (immlo);
13103 *op = 1;
13104 return 0xe;
13105 }
13106
13107 if (immhi != immlo)
13108 return FAIL;
13109 }
13110
13111 if (size >= 32)
13112 {
13113 if (immlo == (immlo & 0x000000ff))
13114 {
13115 *immbits = immlo;
13116 return 0x0;
13117 }
13118 else if (immlo == (immlo & 0x0000ff00))
13119 {
13120 *immbits = immlo >> 8;
13121 return 0x2;
13122 }
13123 else if (immlo == (immlo & 0x00ff0000))
13124 {
13125 *immbits = immlo >> 16;
13126 return 0x4;
13127 }
13128 else if (immlo == (immlo & 0xff000000))
13129 {
13130 *immbits = immlo >> 24;
13131 return 0x6;
13132 }
13133 else if (immlo == ((immlo & 0x0000ff00) | 0x000000ff))
13134 {
13135 *immbits = (immlo >> 8) & 0xff;
13136 return 0xc;
13137 }
13138 else if (immlo == ((immlo & 0x00ff0000) | 0x0000ffff))
13139 {
13140 *immbits = (immlo >> 16) & 0xff;
13141 return 0xd;
13142 }
13143
13144 if ((immlo & 0xffff) != (immlo >> 16))
13145 return FAIL;
13146 immlo &= 0xffff;
13147 }
13148
13149 if (size >= 16)
13150 {
13151 if (immlo == (immlo & 0x000000ff))
13152 {
13153 *immbits = immlo;
13154 return 0x8;
13155 }
13156 else if (immlo == (immlo & 0x0000ff00))
13157 {
13158 *immbits = immlo >> 8;
13159 return 0xa;
13160 }
13161
13162 if ((immlo & 0xff) != (immlo >> 8))
13163 return FAIL;
13164 immlo &= 0xff;
13165 }
13166
13167 if (immlo == (immlo & 0x000000ff))
13168 {
13169 /* Don't allow MVN with 8-bit immediate. */
13170 if (*op == 1)
13171 return FAIL;
13172 *immbits = immlo;
13173 return 0xe;
13174 }
13175
13176 return FAIL;
13177 }
13178
13179 /* Write immediate bits [7:0] to the following locations:
13180
13181 |28/24|23 19|18 16|15 4|3 0|
13182 | a |x x x x x|b c d|x x x x x x x x x x x x|e f g h|
13183
13184 This function is used by VMOV/VMVN/VORR/VBIC. */
13185
13186 static void
13187 neon_write_immbits (unsigned immbits)
13188 {
13189 inst.instruction |= immbits & 0xf;
13190 inst.instruction |= ((immbits >> 4) & 0x7) << 16;
13191 inst.instruction |= ((immbits >> 7) & 0x1) << 24;
13192 }
13193
13194 /* Invert low-order SIZE bits of XHI:XLO. */
13195
13196 static void
13197 neon_invert_size (unsigned *xlo, unsigned *xhi, int size)
13198 {
13199 unsigned immlo = xlo ? *xlo : 0;
13200 unsigned immhi = xhi ? *xhi : 0;
13201
13202 switch (size)
13203 {
13204 case 8:
13205 immlo = (~immlo) & 0xff;
13206 break;
13207
13208 case 16:
13209 immlo = (~immlo) & 0xffff;
13210 break;
13211
13212 case 64:
13213 immhi = (~immhi) & 0xffffffff;
13214 /* fall through. */
13215
13216 case 32:
13217 immlo = (~immlo) & 0xffffffff;
13218 break;
13219
13220 default:
13221 abort ();
13222 }
13223
13224 if (xlo)
13225 *xlo = immlo;
13226
13227 if (xhi)
13228 *xhi = immhi;
13229 }
13230
13231 static void
13232 do_neon_logic (void)
13233 {
13234 if (inst.operands[2].present && inst.operands[2].isreg)
13235 {
13236 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
13237 neon_check_type (3, rs, N_IGNORE_TYPE);
13238 /* U bit and size field were set as part of the bitmask. */
13239 NEON_ENCODE (INTEGER, inst);
13240 neon_three_same (neon_quad (rs), 0, -1);
13241 }
13242 else
13243 {
13244 const int three_ops_form = (inst.operands[2].present
13245 && !inst.operands[2].isreg);
13246 const int immoperand = (three_ops_form ? 2 : 1);
13247 enum neon_shape rs = (three_ops_form
13248 ? neon_select_shape (NS_DDI, NS_QQI, NS_NULL)
13249 : neon_select_shape (NS_DI, NS_QI, NS_NULL));
13250 struct neon_type_el et = neon_check_type (2, rs,
13251 N_I8 | N_I16 | N_I32 | N_I64 | N_F32 | N_KEY, N_EQK);
13252 enum neon_opc opcode = (enum neon_opc) inst.instruction & 0x0fffffff;
13253 unsigned immbits;
13254 int cmode;
13255
13256 if (et.type == NT_invtype)
13257 return;
13258
13259 if (three_ops_form)
13260 constraint (inst.operands[0].reg != inst.operands[1].reg,
13261 _("first and second operands shall be the same register"));
13262
13263 NEON_ENCODE (IMMED, inst);
13264
13265 immbits = inst.operands[immoperand].imm;
13266 if (et.size == 64)
13267 {
13268 /* .i64 is a pseudo-op, so the immediate must be a repeating
13269 pattern. */
13270 if (immbits != (inst.operands[immoperand].regisimm ?
13271 inst.operands[immoperand].reg : 0))
13272 {
13273 /* Set immbits to an invalid constant. */
13274 immbits = 0xdeadbeef;
13275 }
13276 }
13277
13278 switch (opcode)
13279 {
13280 case N_MNEM_vbic:
13281 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
13282 break;
13283
13284 case N_MNEM_vorr:
13285 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
13286 break;
13287
13288 case N_MNEM_vand:
13289 /* Pseudo-instruction for VBIC. */
13290 neon_invert_size (&immbits, 0, et.size);
13291 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
13292 break;
13293
13294 case N_MNEM_vorn:
13295 /* Pseudo-instruction for VORR. */
13296 neon_invert_size (&immbits, 0, et.size);
13297 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
13298 break;
13299
13300 default:
13301 abort ();
13302 }
13303
13304 if (cmode == FAIL)
13305 return;
13306
13307 inst.instruction |= neon_quad (rs) << 6;
13308 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13309 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13310 inst.instruction |= cmode << 8;
13311 neon_write_immbits (immbits);
13312
13313 neon_dp_fixup (&inst);
13314 }
13315 }
13316
13317 static void
13318 do_neon_bitfield (void)
13319 {
13320 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
13321 neon_check_type (3, rs, N_IGNORE_TYPE);
13322 neon_three_same (neon_quad (rs), 0, -1);
13323 }
13324
13325 static void
13326 neon_dyadic_misc (enum neon_el_type ubit_meaning, unsigned types,
13327 unsigned destbits)
13328 {
13329 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
13330 struct neon_type_el et = neon_check_type (3, rs, N_EQK | destbits, N_EQK,
13331 types | N_KEY);
13332 if (et.type == NT_float)
13333 {
13334 NEON_ENCODE (FLOAT, inst);
13335 neon_three_same (neon_quad (rs), 0, -1);
13336 }
13337 else
13338 {
13339 NEON_ENCODE (INTEGER, inst);
13340 neon_three_same (neon_quad (rs), et.type == ubit_meaning, et.size);
13341 }
13342 }
13343
13344 static void
13345 do_neon_dyadic_if_su (void)
13346 {
13347 neon_dyadic_misc (NT_unsigned, N_SUF_32, 0);
13348 }
13349
13350 static void
13351 do_neon_dyadic_if_su_d (void)
13352 {
13353 /* This version only allow D registers, but that constraint is enforced during
13354 operand parsing so we don't need to do anything extra here. */
13355 neon_dyadic_misc (NT_unsigned, N_SUF_32, 0);
13356 }
13357
13358 static void
13359 do_neon_dyadic_if_i_d (void)
13360 {
13361 /* The "untyped" case can't happen. Do this to stop the "U" bit being
13362 affected if we specify unsigned args. */
13363 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
13364 }
13365
13366 enum vfp_or_neon_is_neon_bits
13367 {
13368 NEON_CHECK_CC = 1,
13369 NEON_CHECK_ARCH = 2
13370 };
13371
13372 /* Call this function if an instruction which may have belonged to the VFP or
13373 Neon instruction sets, but turned out to be a Neon instruction (due to the
13374 operand types involved, etc.). We have to check and/or fix-up a couple of
13375 things:
13376
13377 - Make sure the user hasn't attempted to make a Neon instruction
13378 conditional.
13379 - Alter the value in the condition code field if necessary.
13380 - Make sure that the arch supports Neon instructions.
13381
13382 Which of these operations take place depends on bits from enum
13383 vfp_or_neon_is_neon_bits.
13384
13385 WARNING: This function has side effects! If NEON_CHECK_CC is used and the
13386 current instruction's condition is COND_ALWAYS, the condition field is
13387 changed to inst.uncond_value. This is necessary because instructions shared
13388 between VFP and Neon may be conditional for the VFP variants only, and the
13389 unconditional Neon version must have, e.g., 0xF in the condition field. */
13390
13391 static int
13392 vfp_or_neon_is_neon (unsigned check)
13393 {
13394 /* Conditions are always legal in Thumb mode (IT blocks). */
13395 if (!thumb_mode && (check & NEON_CHECK_CC))
13396 {
13397 if (inst.cond != COND_ALWAYS)
13398 {
13399 first_error (_(BAD_COND));
13400 return FAIL;
13401 }
13402 if (inst.uncond_value != -1)
13403 inst.instruction |= inst.uncond_value << 28;
13404 }
13405
13406 if ((check & NEON_CHECK_ARCH)
13407 && !ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1))
13408 {
13409 first_error (_(BAD_FPU));
13410 return FAIL;
13411 }
13412
13413 return SUCCESS;
13414 }
13415
13416 static void
13417 do_neon_addsub_if_i (void)
13418 {
13419 if (try_vfp_nsyn (3, do_vfp_nsyn_add_sub) == SUCCESS)
13420 return;
13421
13422 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
13423 return;
13424
13425 /* The "untyped" case can't happen. Do this to stop the "U" bit being
13426 affected if we specify unsigned args. */
13427 neon_dyadic_misc (NT_untyped, N_IF_32 | N_I64, 0);
13428 }
13429
13430 /* Swaps operands 1 and 2. If operand 1 (optional arg) was omitted, we want the
13431 result to be:
13432 V<op> A,B (A is operand 0, B is operand 2)
13433 to mean:
13434 V<op> A,B,A
13435 not:
13436 V<op> A,B,B
13437 so handle that case specially. */
13438
13439 static void
13440 neon_exchange_operands (void)
13441 {
13442 void *scratch = alloca (sizeof (inst.operands[0]));
13443 if (inst.operands[1].present)
13444 {
13445 /* Swap operands[1] and operands[2]. */
13446 memcpy (scratch, &inst.operands[1], sizeof (inst.operands[0]));
13447 inst.operands[1] = inst.operands[2];
13448 memcpy (&inst.operands[2], scratch, sizeof (inst.operands[0]));
13449 }
13450 else
13451 {
13452 inst.operands[1] = inst.operands[2];
13453 inst.operands[2] = inst.operands[0];
13454 }
13455 }
13456
13457 static void
13458 neon_compare (unsigned regtypes, unsigned immtypes, int invert)
13459 {
13460 if (inst.operands[2].isreg)
13461 {
13462 if (invert)
13463 neon_exchange_operands ();
13464 neon_dyadic_misc (NT_unsigned, regtypes, N_SIZ);
13465 }
13466 else
13467 {
13468 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
13469 struct neon_type_el et = neon_check_type (2, rs,
13470 N_EQK | N_SIZ, immtypes | N_KEY);
13471
13472 NEON_ENCODE (IMMED, inst);
13473 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13474 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13475 inst.instruction |= LOW4 (inst.operands[1].reg);
13476 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
13477 inst.instruction |= neon_quad (rs) << 6;
13478 inst.instruction |= (et.type == NT_float) << 10;
13479 inst.instruction |= neon_logbits (et.size) << 18;
13480
13481 neon_dp_fixup (&inst);
13482 }
13483 }
13484
13485 static void
13486 do_neon_cmp (void)
13487 {
13488 neon_compare (N_SUF_32, N_S8 | N_S16 | N_S32 | N_F32, FALSE);
13489 }
13490
13491 static void
13492 do_neon_cmp_inv (void)
13493 {
13494 neon_compare (N_SUF_32, N_S8 | N_S16 | N_S32 | N_F32, TRUE);
13495 }
13496
13497 static void
13498 do_neon_ceq (void)
13499 {
13500 neon_compare (N_IF_32, N_IF_32, FALSE);
13501 }
13502
13503 /* For multiply instructions, we have the possibility of 16-bit or 32-bit
13504 scalars, which are encoded in 5 bits, M : Rm.
13505 For 16-bit scalars, the register is encoded in Rm[2:0] and the index in
13506 M:Rm[3], and for 32-bit scalars, the register is encoded in Rm[3:0] and the
13507 index in M. */
13508
13509 static unsigned
13510 neon_scalar_for_mul (unsigned scalar, unsigned elsize)
13511 {
13512 unsigned regno = NEON_SCALAR_REG (scalar);
13513 unsigned elno = NEON_SCALAR_INDEX (scalar);
13514
13515 switch (elsize)
13516 {
13517 case 16:
13518 if (regno > 7 || elno > 3)
13519 goto bad_scalar;
13520 return regno | (elno << 3);
13521
13522 case 32:
13523 if (regno > 15 || elno > 1)
13524 goto bad_scalar;
13525 return regno | (elno << 4);
13526
13527 default:
13528 bad_scalar:
13529 first_error (_("scalar out of range for multiply instruction"));
13530 }
13531
13532 return 0;
13533 }
13534
13535 /* Encode multiply / multiply-accumulate scalar instructions. */
13536
13537 static void
13538 neon_mul_mac (struct neon_type_el et, int ubit)
13539 {
13540 unsigned scalar;
13541
13542 /* Give a more helpful error message if we have an invalid type. */
13543 if (et.type == NT_invtype)
13544 return;
13545
13546 scalar = neon_scalar_for_mul (inst.operands[2].reg, et.size);
13547 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13548 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13549 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
13550 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
13551 inst.instruction |= LOW4 (scalar);
13552 inst.instruction |= HI1 (scalar) << 5;
13553 inst.instruction |= (et.type == NT_float) << 8;
13554 inst.instruction |= neon_logbits (et.size) << 20;
13555 inst.instruction |= (ubit != 0) << 24;
13556
13557 neon_dp_fixup (&inst);
13558 }
13559
13560 static void
13561 do_neon_mac_maybe_scalar (void)
13562 {
13563 if (try_vfp_nsyn (3, do_vfp_nsyn_mla_mls) == SUCCESS)
13564 return;
13565
13566 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
13567 return;
13568
13569 if (inst.operands[2].isscalar)
13570 {
13571 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
13572 struct neon_type_el et = neon_check_type (3, rs,
13573 N_EQK, N_EQK, N_I16 | N_I32 | N_F32 | N_KEY);
13574 NEON_ENCODE (SCALAR, inst);
13575 neon_mul_mac (et, neon_quad (rs));
13576 }
13577 else
13578 {
13579 /* The "untyped" case can't happen. Do this to stop the "U" bit being
13580 affected if we specify unsigned args. */
13581 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
13582 }
13583 }
13584
13585 static void
13586 do_neon_fmac (void)
13587 {
13588 if (try_vfp_nsyn (3, do_vfp_nsyn_fma_fms) == SUCCESS)
13589 return;
13590
13591 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
13592 return;
13593
13594 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
13595 }
13596
13597 static void
13598 do_neon_tst (void)
13599 {
13600 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
13601 struct neon_type_el et = neon_check_type (3, rs,
13602 N_EQK, N_EQK, N_8 | N_16 | N_32 | N_KEY);
13603 neon_three_same (neon_quad (rs), 0, et.size);
13604 }
13605
13606 /* VMUL with 3 registers allows the P8 type. The scalar version supports the
13607 same types as the MAC equivalents. The polynomial type for this instruction
13608 is encoded the same as the integer type. */
13609
13610 static void
13611 do_neon_mul (void)
13612 {
13613 if (try_vfp_nsyn (3, do_vfp_nsyn_mul) == SUCCESS)
13614 return;
13615
13616 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
13617 return;
13618
13619 if (inst.operands[2].isscalar)
13620 do_neon_mac_maybe_scalar ();
13621 else
13622 neon_dyadic_misc (NT_poly, N_I8 | N_I16 | N_I32 | N_F32 | N_P8, 0);
13623 }
13624
13625 static void
13626 do_neon_qdmulh (void)
13627 {
13628 if (inst.operands[2].isscalar)
13629 {
13630 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
13631 struct neon_type_el et = neon_check_type (3, rs,
13632 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
13633 NEON_ENCODE (SCALAR, inst);
13634 neon_mul_mac (et, neon_quad (rs));
13635 }
13636 else
13637 {
13638 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
13639 struct neon_type_el et = neon_check_type (3, rs,
13640 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
13641 NEON_ENCODE (INTEGER, inst);
13642 /* The U bit (rounding) comes from bit mask. */
13643 neon_three_same (neon_quad (rs), 0, et.size);
13644 }
13645 }
13646
13647 static void
13648 do_neon_fcmp_absolute (void)
13649 {
13650 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
13651 neon_check_type (3, rs, N_EQK, N_EQK, N_F32 | N_KEY);
13652 /* Size field comes from bit mask. */
13653 neon_three_same (neon_quad (rs), 1, -1);
13654 }
13655
13656 static void
13657 do_neon_fcmp_absolute_inv (void)
13658 {
13659 neon_exchange_operands ();
13660 do_neon_fcmp_absolute ();
13661 }
13662
13663 static void
13664 do_neon_step (void)
13665 {
13666 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
13667 neon_check_type (3, rs, N_EQK, N_EQK, N_F32 | N_KEY);
13668 neon_three_same (neon_quad (rs), 0, -1);
13669 }
13670
13671 static void
13672 do_neon_abs_neg (void)
13673 {
13674 enum neon_shape rs;
13675 struct neon_type_el et;
13676
13677 if (try_vfp_nsyn (2, do_vfp_nsyn_abs_neg) == SUCCESS)
13678 return;
13679
13680 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
13681 return;
13682
13683 rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
13684 et = neon_check_type (2, rs, N_EQK, N_S8 | N_S16 | N_S32 | N_F32 | N_KEY);
13685
13686 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13687 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13688 inst.instruction |= LOW4 (inst.operands[1].reg);
13689 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
13690 inst.instruction |= neon_quad (rs) << 6;
13691 inst.instruction |= (et.type == NT_float) << 10;
13692 inst.instruction |= neon_logbits (et.size) << 18;
13693
13694 neon_dp_fixup (&inst);
13695 }
13696
13697 static void
13698 do_neon_sli (void)
13699 {
13700 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
13701 struct neon_type_el et = neon_check_type (2, rs,
13702 N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
13703 int imm = inst.operands[2].imm;
13704 constraint (imm < 0 || (unsigned)imm >= et.size,
13705 _("immediate out of range for insert"));
13706 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
13707 }
13708
13709 static void
13710 do_neon_sri (void)
13711 {
13712 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
13713 struct neon_type_el et = neon_check_type (2, rs,
13714 N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
13715 int imm = inst.operands[2].imm;
13716 constraint (imm < 1 || (unsigned)imm > et.size,
13717 _("immediate out of range for insert"));
13718 neon_imm_shift (FALSE, 0, neon_quad (rs), et, et.size - imm);
13719 }
13720
13721 static void
13722 do_neon_qshlu_imm (void)
13723 {
13724 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
13725 struct neon_type_el et = neon_check_type (2, rs,
13726 N_EQK | N_UNS, N_S8 | N_S16 | N_S32 | N_S64 | N_KEY);
13727 int imm = inst.operands[2].imm;
13728 constraint (imm < 0 || (unsigned)imm >= et.size,
13729 _("immediate out of range for shift"));
13730 /* Only encodes the 'U present' variant of the instruction.
13731 In this case, signed types have OP (bit 8) set to 0.
13732 Unsigned types have OP set to 1. */
13733 inst.instruction |= (et.type == NT_unsigned) << 8;
13734 /* The rest of the bits are the same as other immediate shifts. */
13735 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
13736 }
13737
13738 static void
13739 do_neon_qmovn (void)
13740 {
13741 struct neon_type_el et = neon_check_type (2, NS_DQ,
13742 N_EQK | N_HLF, N_SU_16_64 | N_KEY);
13743 /* Saturating move where operands can be signed or unsigned, and the
13744 destination has the same signedness. */
13745 NEON_ENCODE (INTEGER, inst);
13746 if (et.type == NT_unsigned)
13747 inst.instruction |= 0xc0;
13748 else
13749 inst.instruction |= 0x80;
13750 neon_two_same (0, 1, et.size / 2);
13751 }
13752
13753 static void
13754 do_neon_qmovun (void)
13755 {
13756 struct neon_type_el et = neon_check_type (2, NS_DQ,
13757 N_EQK | N_HLF | N_UNS, N_S16 | N_S32 | N_S64 | N_KEY);
13758 /* Saturating move with unsigned results. Operands must be signed. */
13759 NEON_ENCODE (INTEGER, inst);
13760 neon_two_same (0, 1, et.size / 2);
13761 }
13762
13763 static void
13764 do_neon_rshift_sat_narrow (void)
13765 {
13766 /* FIXME: Types for narrowing. If operands are signed, results can be signed
13767 or unsigned. If operands are unsigned, results must also be unsigned. */
13768 struct neon_type_el et = neon_check_type (2, NS_DQI,
13769 N_EQK | N_HLF, N_SU_16_64 | N_KEY);
13770 int imm = inst.operands[2].imm;
13771 /* This gets the bounds check, size encoding and immediate bits calculation
13772 right. */
13773 et.size /= 2;
13774
13775 /* VQ{R}SHRN.I<size> <Dd>, <Qm>, #0 is a synonym for
13776 VQMOVN.I<size> <Dd>, <Qm>. */
13777 if (imm == 0)
13778 {
13779 inst.operands[2].present = 0;
13780 inst.instruction = N_MNEM_vqmovn;
13781 do_neon_qmovn ();
13782 return;
13783 }
13784
13785 constraint (imm < 1 || (unsigned)imm > et.size,
13786 _("immediate out of range"));
13787 neon_imm_shift (TRUE, et.type == NT_unsigned, 0, et, et.size - imm);
13788 }
13789
13790 static void
13791 do_neon_rshift_sat_narrow_u (void)
13792 {
13793 /* FIXME: Types for narrowing. If operands are signed, results can be signed
13794 or unsigned. If operands are unsigned, results must also be unsigned. */
13795 struct neon_type_el et = neon_check_type (2, NS_DQI,
13796 N_EQK | N_HLF | N_UNS, N_S16 | N_S32 | N_S64 | N_KEY);
13797 int imm = inst.operands[2].imm;
13798 /* This gets the bounds check, size encoding and immediate bits calculation
13799 right. */
13800 et.size /= 2;
13801
13802 /* VQSHRUN.I<size> <Dd>, <Qm>, #0 is a synonym for
13803 VQMOVUN.I<size> <Dd>, <Qm>. */
13804 if (imm == 0)
13805 {
13806 inst.operands[2].present = 0;
13807 inst.instruction = N_MNEM_vqmovun;
13808 do_neon_qmovun ();
13809 return;
13810 }
13811
13812 constraint (imm < 1 || (unsigned)imm > et.size,
13813 _("immediate out of range"));
13814 /* FIXME: The manual is kind of unclear about what value U should have in
13815 VQ{R}SHRUN instructions, but U=0, op=0 definitely encodes VRSHR, so it
13816 must be 1. */
13817 neon_imm_shift (TRUE, 1, 0, et, et.size - imm);
13818 }
13819
13820 static void
13821 do_neon_movn (void)
13822 {
13823 struct neon_type_el et = neon_check_type (2, NS_DQ,
13824 N_EQK | N_HLF, N_I16 | N_I32 | N_I64 | N_KEY);
13825 NEON_ENCODE (INTEGER, inst);
13826 neon_two_same (0, 1, et.size / 2);
13827 }
13828
13829 static void
13830 do_neon_rshift_narrow (void)
13831 {
13832 struct neon_type_el et = neon_check_type (2, NS_DQI,
13833 N_EQK | N_HLF, N_I16 | N_I32 | N_I64 | N_KEY);
13834 int imm = inst.operands[2].imm;
13835 /* This gets the bounds check, size encoding and immediate bits calculation
13836 right. */
13837 et.size /= 2;
13838
13839 /* If immediate is zero then we are a pseudo-instruction for
13840 VMOVN.I<size> <Dd>, <Qm> */
13841 if (imm == 0)
13842 {
13843 inst.operands[2].present = 0;
13844 inst.instruction = N_MNEM_vmovn;
13845 do_neon_movn ();
13846 return;
13847 }
13848
13849 constraint (imm < 1 || (unsigned)imm > et.size,
13850 _("immediate out of range for narrowing operation"));
13851 neon_imm_shift (FALSE, 0, 0, et, et.size - imm);
13852 }
13853
13854 static void
13855 do_neon_shll (void)
13856 {
13857 /* FIXME: Type checking when lengthening. */
13858 struct neon_type_el et = neon_check_type (2, NS_QDI,
13859 N_EQK | N_DBL, N_I8 | N_I16 | N_I32 | N_KEY);
13860 unsigned imm = inst.operands[2].imm;
13861
13862 if (imm == et.size)
13863 {
13864 /* Maximum shift variant. */
13865 NEON_ENCODE (INTEGER, inst);
13866 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13867 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13868 inst.instruction |= LOW4 (inst.operands[1].reg);
13869 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
13870 inst.instruction |= neon_logbits (et.size) << 18;
13871
13872 neon_dp_fixup (&inst);
13873 }
13874 else
13875 {
13876 /* A more-specific type check for non-max versions. */
13877 et = neon_check_type (2, NS_QDI,
13878 N_EQK | N_DBL, N_SU_32 | N_KEY);
13879 NEON_ENCODE (IMMED, inst);
13880 neon_imm_shift (TRUE, et.type == NT_unsigned, 0, et, imm);
13881 }
13882 }
13883
13884 /* Check the various types for the VCVT instruction, and return which version
13885 the current instruction is. */
13886
13887 static int
13888 neon_cvt_flavour (enum neon_shape rs)
13889 {
13890 #define CVT_VAR(C,X,Y) \
13891 et = neon_check_type (2, rs, whole_reg | (X), whole_reg | (Y)); \
13892 if (et.type != NT_invtype) \
13893 { \
13894 inst.error = NULL; \
13895 return (C); \
13896 }
13897 struct neon_type_el et;
13898 unsigned whole_reg = (rs == NS_FFI || rs == NS_FD || rs == NS_DF
13899 || rs == NS_FF) ? N_VFP : 0;
13900 /* The instruction versions which take an immediate take one register
13901 argument, which is extended to the width of the full register. Thus the
13902 "source" and "destination" registers must have the same width. Hack that
13903 here by making the size equal to the key (wider, in this case) operand. */
13904 unsigned key = (rs == NS_QQI || rs == NS_DDI || rs == NS_FFI) ? N_KEY : 0;
13905
13906 CVT_VAR (0, N_S32, N_F32);
13907 CVT_VAR (1, N_U32, N_F32);
13908 CVT_VAR (2, N_F32, N_S32);
13909 CVT_VAR (3, N_F32, N_U32);
13910 /* Half-precision conversions. */
13911 CVT_VAR (4, N_F32, N_F16);
13912 CVT_VAR (5, N_F16, N_F32);
13913
13914 whole_reg = N_VFP;
13915
13916 /* VFP instructions. */
13917 CVT_VAR (6, N_F32, N_F64);
13918 CVT_VAR (7, N_F64, N_F32);
13919 CVT_VAR (8, N_S32, N_F64 | key);
13920 CVT_VAR (9, N_U32, N_F64 | key);
13921 CVT_VAR (10, N_F64 | key, N_S32);
13922 CVT_VAR (11, N_F64 | key, N_U32);
13923 /* VFP instructions with bitshift. */
13924 CVT_VAR (12, N_F32 | key, N_S16);
13925 CVT_VAR (13, N_F32 | key, N_U16);
13926 CVT_VAR (14, N_F64 | key, N_S16);
13927 CVT_VAR (15, N_F64 | key, N_U16);
13928 CVT_VAR (16, N_S16, N_F32 | key);
13929 CVT_VAR (17, N_U16, N_F32 | key);
13930 CVT_VAR (18, N_S16, N_F64 | key);
13931 CVT_VAR (19, N_U16, N_F64 | key);
13932
13933 return -1;
13934 #undef CVT_VAR
13935 }
13936
13937 /* Neon-syntax VFP conversions. */
13938
13939 static void
13940 do_vfp_nsyn_cvt (enum neon_shape rs, int flavour)
13941 {
13942 const char *opname = 0;
13943
13944 if (rs == NS_DDI || rs == NS_QQI || rs == NS_FFI)
13945 {
13946 /* Conversions with immediate bitshift. */
13947 const char *enc[] =
13948 {
13949 "ftosls",
13950 "ftouls",
13951 "fsltos",
13952 "fultos",
13953 NULL,
13954 NULL,
13955 NULL,
13956 NULL,
13957 "ftosld",
13958 "ftould",
13959 "fsltod",
13960 "fultod",
13961 "fshtos",
13962 "fuhtos",
13963 "fshtod",
13964 "fuhtod",
13965 "ftoshs",
13966 "ftouhs",
13967 "ftoshd",
13968 "ftouhd"
13969 };
13970
13971 if (flavour >= 0 && flavour < (int) ARRAY_SIZE (enc))
13972 {
13973 opname = enc[flavour];
13974 constraint (inst.operands[0].reg != inst.operands[1].reg,
13975 _("operands 0 and 1 must be the same register"));
13976 inst.operands[1] = inst.operands[2];
13977 memset (&inst.operands[2], '\0', sizeof (inst.operands[2]));
13978 }
13979 }
13980 else
13981 {
13982 /* Conversions without bitshift. */
13983 const char *enc[] =
13984 {
13985 "ftosis",
13986 "ftouis",
13987 "fsitos",
13988 "fuitos",
13989 "NULL",
13990 "NULL",
13991 "fcvtsd",
13992 "fcvtds",
13993 "ftosid",
13994 "ftouid",
13995 "fsitod",
13996 "fuitod"
13997 };
13998
13999 if (flavour >= 0 && flavour < (int) ARRAY_SIZE (enc))
14000 opname = enc[flavour];
14001 }
14002
14003 if (opname)
14004 do_vfp_nsyn_opcode (opname);
14005 }
14006
14007 static void
14008 do_vfp_nsyn_cvtz (void)
14009 {
14010 enum neon_shape rs = neon_select_shape (NS_FF, NS_FD, NS_NULL);
14011 int flavour = neon_cvt_flavour (rs);
14012 const char *enc[] =
14013 {
14014 "ftosizs",
14015 "ftouizs",
14016 NULL,
14017 NULL,
14018 NULL,
14019 NULL,
14020 NULL,
14021 NULL,
14022 "ftosizd",
14023 "ftouizd"
14024 };
14025
14026 if (flavour >= 0 && flavour < (int) ARRAY_SIZE (enc) && enc[flavour])
14027 do_vfp_nsyn_opcode (enc[flavour]);
14028 }
14029
14030 static void
14031 do_neon_cvt_1 (bfd_boolean round_to_zero ATTRIBUTE_UNUSED)
14032 {
14033 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_FFI, NS_DD, NS_QQ,
14034 NS_FD, NS_DF, NS_FF, NS_QD, NS_DQ, NS_NULL);
14035 int flavour = neon_cvt_flavour (rs);
14036
14037 /* PR11109: Handle round-to-zero for VCVT conversions. */
14038 if (round_to_zero
14039 && ARM_CPU_HAS_FEATURE (cpu_variant, fpu_arch_vfp_v2)
14040 && (flavour == 0 || flavour == 1 || flavour == 8 || flavour == 9)
14041 && (rs == NS_FD || rs == NS_FF))
14042 {
14043 do_vfp_nsyn_cvtz ();
14044 return;
14045 }
14046
14047 /* VFP rather than Neon conversions. */
14048 if (flavour >= 6)
14049 {
14050 do_vfp_nsyn_cvt (rs, flavour);
14051 return;
14052 }
14053
14054 switch (rs)
14055 {
14056 case NS_DDI:
14057 case NS_QQI:
14058 {
14059 unsigned immbits;
14060 unsigned enctab[] = { 0x0000100, 0x1000100, 0x0, 0x1000000 };
14061
14062 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
14063 return;
14064
14065 /* Fixed-point conversion with #0 immediate is encoded as an
14066 integer conversion. */
14067 if (inst.operands[2].present && inst.operands[2].imm == 0)
14068 goto int_encode;
14069 immbits = 32 - inst.operands[2].imm;
14070 NEON_ENCODE (IMMED, inst);
14071 if (flavour != -1)
14072 inst.instruction |= enctab[flavour];
14073 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14074 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14075 inst.instruction |= LOW4 (inst.operands[1].reg);
14076 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
14077 inst.instruction |= neon_quad (rs) << 6;
14078 inst.instruction |= 1 << 21;
14079 inst.instruction |= immbits << 16;
14080
14081 neon_dp_fixup (&inst);
14082 }
14083 break;
14084
14085 case NS_DD:
14086 case NS_QQ:
14087 int_encode:
14088 {
14089 unsigned enctab[] = { 0x100, 0x180, 0x0, 0x080 };
14090
14091 NEON_ENCODE (INTEGER, inst);
14092
14093 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
14094 return;
14095
14096 if (flavour != -1)
14097 inst.instruction |= enctab[flavour];
14098
14099 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14100 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14101 inst.instruction |= LOW4 (inst.operands[1].reg);
14102 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
14103 inst.instruction |= neon_quad (rs) << 6;
14104 inst.instruction |= 2 << 18;
14105
14106 neon_dp_fixup (&inst);
14107 }
14108 break;
14109
14110 /* Half-precision conversions for Advanced SIMD -- neon. */
14111 case NS_QD:
14112 case NS_DQ:
14113
14114 if ((rs == NS_DQ)
14115 && (inst.vectype.el[0].size != 16 || inst.vectype.el[1].size != 32))
14116 {
14117 as_bad (_("operand size must match register width"));
14118 break;
14119 }
14120
14121 if ((rs == NS_QD)
14122 && ((inst.vectype.el[0].size != 32 || inst.vectype.el[1].size != 16)))
14123 {
14124 as_bad (_("operand size must match register width"));
14125 break;
14126 }
14127
14128 if (rs == NS_DQ)
14129 inst.instruction = 0x3b60600;
14130 else
14131 inst.instruction = 0x3b60700;
14132
14133 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14134 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14135 inst.instruction |= LOW4 (inst.operands[1].reg);
14136 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
14137 neon_dp_fixup (&inst);
14138 break;
14139
14140 default:
14141 /* Some VFP conversions go here (s32 <-> f32, u32 <-> f32). */
14142 do_vfp_nsyn_cvt (rs, flavour);
14143 }
14144 }
14145
14146 static void
14147 do_neon_cvtr (void)
14148 {
14149 do_neon_cvt_1 (FALSE);
14150 }
14151
14152 static void
14153 do_neon_cvt (void)
14154 {
14155 do_neon_cvt_1 (TRUE);
14156 }
14157
14158 static void
14159 do_neon_cvtb (void)
14160 {
14161 inst.instruction = 0xeb20a40;
14162
14163 /* The sizes are attached to the mnemonic. */
14164 if (inst.vectype.el[0].type != NT_invtype
14165 && inst.vectype.el[0].size == 16)
14166 inst.instruction |= 0x00010000;
14167
14168 /* Programmer's syntax: the sizes are attached to the operands. */
14169 else if (inst.operands[0].vectype.type != NT_invtype
14170 && inst.operands[0].vectype.size == 16)
14171 inst.instruction |= 0x00010000;
14172
14173 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
14174 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
14175 do_vfp_cond_or_thumb ();
14176 }
14177
14178
14179 static void
14180 do_neon_cvtt (void)
14181 {
14182 do_neon_cvtb ();
14183 inst.instruction |= 0x80;
14184 }
14185
14186 static void
14187 neon_move_immediate (void)
14188 {
14189 enum neon_shape rs = neon_select_shape (NS_DI, NS_QI, NS_NULL);
14190 struct neon_type_el et = neon_check_type (2, rs,
14191 N_I8 | N_I16 | N_I32 | N_I64 | N_F32 | N_KEY, N_EQK);
14192 unsigned immlo, immhi = 0, immbits;
14193 int op, cmode, float_p;
14194
14195 constraint (et.type == NT_invtype,
14196 _("operand size must be specified for immediate VMOV"));
14197
14198 /* We start out as an MVN instruction if OP = 1, MOV otherwise. */
14199 op = (inst.instruction & (1 << 5)) != 0;
14200
14201 immlo = inst.operands[1].imm;
14202 if (inst.operands[1].regisimm)
14203 immhi = inst.operands[1].reg;
14204
14205 constraint (et.size < 32 && (immlo & ~((1 << et.size) - 1)) != 0,
14206 _("immediate has bits set outside the operand size"));
14207
14208 float_p = inst.operands[1].immisfloat;
14209
14210 if ((cmode = neon_cmode_for_move_imm (immlo, immhi, float_p, &immbits, &op,
14211 et.size, et.type)) == FAIL)
14212 {
14213 /* Invert relevant bits only. */
14214 neon_invert_size (&immlo, &immhi, et.size);
14215 /* Flip from VMOV/VMVN to VMVN/VMOV. Some immediate types are unavailable
14216 with one or the other; those cases are caught by
14217 neon_cmode_for_move_imm. */
14218 op = !op;
14219 if ((cmode = neon_cmode_for_move_imm (immlo, immhi, float_p, &immbits,
14220 &op, et.size, et.type)) == FAIL)
14221 {
14222 first_error (_("immediate out of range"));
14223 return;
14224 }
14225 }
14226
14227 inst.instruction &= ~(1 << 5);
14228 inst.instruction |= op << 5;
14229
14230 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14231 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14232 inst.instruction |= neon_quad (rs) << 6;
14233 inst.instruction |= cmode << 8;
14234
14235 neon_write_immbits (immbits);
14236 }
14237
14238 static void
14239 do_neon_mvn (void)
14240 {
14241 if (inst.operands[1].isreg)
14242 {
14243 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
14244
14245 NEON_ENCODE (INTEGER, inst);
14246 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14247 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14248 inst.instruction |= LOW4 (inst.operands[1].reg);
14249 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
14250 inst.instruction |= neon_quad (rs) << 6;
14251 }
14252 else
14253 {
14254 NEON_ENCODE (IMMED, inst);
14255 neon_move_immediate ();
14256 }
14257
14258 neon_dp_fixup (&inst);
14259 }
14260
14261 /* Encode instructions of form:
14262
14263 |28/24|23|22|21 20|19 16|15 12|11 8|7|6|5|4|3 0|
14264 | U |x |D |size | Rn | Rd |x x x x|N|x|M|x| Rm | */
14265
14266 static void
14267 neon_mixed_length (struct neon_type_el et, unsigned size)
14268 {
14269 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14270 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14271 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
14272 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
14273 inst.instruction |= LOW4 (inst.operands[2].reg);
14274 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
14275 inst.instruction |= (et.type == NT_unsigned) << 24;
14276 inst.instruction |= neon_logbits (size) << 20;
14277
14278 neon_dp_fixup (&inst);
14279 }
14280
14281 static void
14282 do_neon_dyadic_long (void)
14283 {
14284 /* FIXME: Type checking for lengthening op. */
14285 struct neon_type_el et = neon_check_type (3, NS_QDD,
14286 N_EQK | N_DBL, N_EQK, N_SU_32 | N_KEY);
14287 neon_mixed_length (et, et.size);
14288 }
14289
14290 static void
14291 do_neon_abal (void)
14292 {
14293 struct neon_type_el et = neon_check_type (3, NS_QDD,
14294 N_EQK | N_INT | N_DBL, N_EQK, N_SU_32 | N_KEY);
14295 neon_mixed_length (et, et.size);
14296 }
14297
14298 static void
14299 neon_mac_reg_scalar_long (unsigned regtypes, unsigned scalartypes)
14300 {
14301 if (inst.operands[2].isscalar)
14302 {
14303 struct neon_type_el et = neon_check_type (3, NS_QDS,
14304 N_EQK | N_DBL, N_EQK, regtypes | N_KEY);
14305 NEON_ENCODE (SCALAR, inst);
14306 neon_mul_mac (et, et.type == NT_unsigned);
14307 }
14308 else
14309 {
14310 struct neon_type_el et = neon_check_type (3, NS_QDD,
14311 N_EQK | N_DBL, N_EQK, scalartypes | N_KEY);
14312 NEON_ENCODE (INTEGER, inst);
14313 neon_mixed_length (et, et.size);
14314 }
14315 }
14316
14317 static void
14318 do_neon_mac_maybe_scalar_long (void)
14319 {
14320 neon_mac_reg_scalar_long (N_S16 | N_S32 | N_U16 | N_U32, N_SU_32);
14321 }
14322
14323 static void
14324 do_neon_dyadic_wide (void)
14325 {
14326 struct neon_type_el et = neon_check_type (3, NS_QQD,
14327 N_EQK | N_DBL, N_EQK | N_DBL, N_SU_32 | N_KEY);
14328 neon_mixed_length (et, et.size);
14329 }
14330
14331 static void
14332 do_neon_dyadic_narrow (void)
14333 {
14334 struct neon_type_el et = neon_check_type (3, NS_QDD,
14335 N_EQK | N_DBL, N_EQK, N_I16 | N_I32 | N_I64 | N_KEY);
14336 /* Operand sign is unimportant, and the U bit is part of the opcode,
14337 so force the operand type to integer. */
14338 et.type = NT_integer;
14339 neon_mixed_length (et, et.size / 2);
14340 }
14341
14342 static void
14343 do_neon_mul_sat_scalar_long (void)
14344 {
14345 neon_mac_reg_scalar_long (N_S16 | N_S32, N_S16 | N_S32);
14346 }
14347
14348 static void
14349 do_neon_vmull (void)
14350 {
14351 if (inst.operands[2].isscalar)
14352 do_neon_mac_maybe_scalar_long ();
14353 else
14354 {
14355 struct neon_type_el et = neon_check_type (3, NS_QDD,
14356 N_EQK | N_DBL, N_EQK, N_SU_32 | N_P8 | N_KEY);
14357 if (et.type == NT_poly)
14358 NEON_ENCODE (POLY, inst);
14359 else
14360 NEON_ENCODE (INTEGER, inst);
14361 /* For polynomial encoding, size field must be 0b00 and the U bit must be
14362 zero. Should be OK as-is. */
14363 neon_mixed_length (et, et.size);
14364 }
14365 }
14366
14367 static void
14368 do_neon_ext (void)
14369 {
14370 enum neon_shape rs = neon_select_shape (NS_DDDI, NS_QQQI, NS_NULL);
14371 struct neon_type_el et = neon_check_type (3, rs,
14372 N_EQK, N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
14373 unsigned imm = (inst.operands[3].imm * et.size) / 8;
14374
14375 constraint (imm >= (unsigned) (neon_quad (rs) ? 16 : 8),
14376 _("shift out of range"));
14377 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14378 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14379 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
14380 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
14381 inst.instruction |= LOW4 (inst.operands[2].reg);
14382 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
14383 inst.instruction |= neon_quad (rs) << 6;
14384 inst.instruction |= imm << 8;
14385
14386 neon_dp_fixup (&inst);
14387 }
14388
14389 static void
14390 do_neon_rev (void)
14391 {
14392 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
14393 struct neon_type_el et = neon_check_type (2, rs,
14394 N_EQK, N_8 | N_16 | N_32 | N_KEY);
14395 unsigned op = (inst.instruction >> 7) & 3;
14396 /* N (width of reversed regions) is encoded as part of the bitmask. We
14397 extract it here to check the elements to be reversed are smaller.
14398 Otherwise we'd get a reserved instruction. */
14399 unsigned elsize = (op == 2) ? 16 : (op == 1) ? 32 : (op == 0) ? 64 : 0;
14400 gas_assert (elsize != 0);
14401 constraint (et.size >= elsize,
14402 _("elements must be smaller than reversal region"));
14403 neon_two_same (neon_quad (rs), 1, et.size);
14404 }
14405
14406 static void
14407 do_neon_dup (void)
14408 {
14409 if (inst.operands[1].isscalar)
14410 {
14411 enum neon_shape rs = neon_select_shape (NS_DS, NS_QS, NS_NULL);
14412 struct neon_type_el et = neon_check_type (2, rs,
14413 N_EQK, N_8 | N_16 | N_32 | N_KEY);
14414 unsigned sizebits = et.size >> 3;
14415 unsigned dm = NEON_SCALAR_REG (inst.operands[1].reg);
14416 int logsize = neon_logbits (et.size);
14417 unsigned x = NEON_SCALAR_INDEX (inst.operands[1].reg) << logsize;
14418
14419 if (vfp_or_neon_is_neon (NEON_CHECK_CC) == FAIL)
14420 return;
14421
14422 NEON_ENCODE (SCALAR, inst);
14423 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14424 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14425 inst.instruction |= LOW4 (dm);
14426 inst.instruction |= HI1 (dm) << 5;
14427 inst.instruction |= neon_quad (rs) << 6;
14428 inst.instruction |= x << 17;
14429 inst.instruction |= sizebits << 16;
14430
14431 neon_dp_fixup (&inst);
14432 }
14433 else
14434 {
14435 enum neon_shape rs = neon_select_shape (NS_DR, NS_QR, NS_NULL);
14436 struct neon_type_el et = neon_check_type (2, rs,
14437 N_8 | N_16 | N_32 | N_KEY, N_EQK);
14438 /* Duplicate ARM register to lanes of vector. */
14439 NEON_ENCODE (ARMREG, inst);
14440 switch (et.size)
14441 {
14442 case 8: inst.instruction |= 0x400000; break;
14443 case 16: inst.instruction |= 0x000020; break;
14444 case 32: inst.instruction |= 0x000000; break;
14445 default: break;
14446 }
14447 inst.instruction |= LOW4 (inst.operands[1].reg) << 12;
14448 inst.instruction |= LOW4 (inst.operands[0].reg) << 16;
14449 inst.instruction |= HI1 (inst.operands[0].reg) << 7;
14450 inst.instruction |= neon_quad (rs) << 21;
14451 /* The encoding for this instruction is identical for the ARM and Thumb
14452 variants, except for the condition field. */
14453 do_vfp_cond_or_thumb ();
14454 }
14455 }
14456
14457 /* VMOV has particularly many variations. It can be one of:
14458 0. VMOV<c><q> <Qd>, <Qm>
14459 1. VMOV<c><q> <Dd>, <Dm>
14460 (Register operations, which are VORR with Rm = Rn.)
14461 2. VMOV<c><q>.<dt> <Qd>, #<imm>
14462 3. VMOV<c><q>.<dt> <Dd>, #<imm>
14463 (Immediate loads.)
14464 4. VMOV<c><q>.<size> <Dn[x]>, <Rd>
14465 (ARM register to scalar.)
14466 5. VMOV<c><q> <Dm>, <Rd>, <Rn>
14467 (Two ARM registers to vector.)
14468 6. VMOV<c><q>.<dt> <Rd>, <Dn[x]>
14469 (Scalar to ARM register.)
14470 7. VMOV<c><q> <Rd>, <Rn>, <Dm>
14471 (Vector to two ARM registers.)
14472 8. VMOV.F32 <Sd>, <Sm>
14473 9. VMOV.F64 <Dd>, <Dm>
14474 (VFP register moves.)
14475 10. VMOV.F32 <Sd>, #imm
14476 11. VMOV.F64 <Dd>, #imm
14477 (VFP float immediate load.)
14478 12. VMOV <Rd>, <Sm>
14479 (VFP single to ARM reg.)
14480 13. VMOV <Sd>, <Rm>
14481 (ARM reg to VFP single.)
14482 14. VMOV <Rd>, <Re>, <Sn>, <Sm>
14483 (Two ARM regs to two VFP singles.)
14484 15. VMOV <Sd>, <Se>, <Rn>, <Rm>
14485 (Two VFP singles to two ARM regs.)
14486
14487 These cases can be disambiguated using neon_select_shape, except cases 1/9
14488 and 3/11 which depend on the operand type too.
14489
14490 All the encoded bits are hardcoded by this function.
14491
14492 Cases 4, 6 may be used with VFPv1 and above (only 32-bit transfers!).
14493 Cases 5, 7 may be used with VFPv2 and above.
14494
14495 FIXME: Some of the checking may be a bit sloppy (in a couple of cases you
14496 can specify a type where it doesn't make sense to, and is ignored). */
14497
14498 static void
14499 do_neon_mov (void)
14500 {
14501 enum neon_shape rs = neon_select_shape (NS_RRFF, NS_FFRR, NS_DRR, NS_RRD,
14502 NS_QQ, NS_DD, NS_QI, NS_DI, NS_SR, NS_RS, NS_FF, NS_FI, NS_RF, NS_FR,
14503 NS_NULL);
14504 struct neon_type_el et;
14505 const char *ldconst = 0;
14506
14507 switch (rs)
14508 {
14509 case NS_DD: /* case 1/9. */
14510 et = neon_check_type (2, rs, N_EQK, N_F64 | N_KEY);
14511 /* It is not an error here if no type is given. */
14512 inst.error = NULL;
14513 if (et.type == NT_float && et.size == 64)
14514 {
14515 do_vfp_nsyn_opcode ("fcpyd");
14516 break;
14517 }
14518 /* fall through. */
14519
14520 case NS_QQ: /* case 0/1. */
14521 {
14522 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
14523 return;
14524 /* The architecture manual I have doesn't explicitly state which
14525 value the U bit should have for register->register moves, but
14526 the equivalent VORR instruction has U = 0, so do that. */
14527 inst.instruction = 0x0200110;
14528 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14529 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14530 inst.instruction |= LOW4 (inst.operands[1].reg);
14531 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
14532 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
14533 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
14534 inst.instruction |= neon_quad (rs) << 6;
14535
14536 neon_dp_fixup (&inst);
14537 }
14538 break;
14539
14540 case NS_DI: /* case 3/11. */
14541 et = neon_check_type (2, rs, N_EQK, N_F64 | N_KEY);
14542 inst.error = NULL;
14543 if (et.type == NT_float && et.size == 64)
14544 {
14545 /* case 11 (fconstd). */
14546 ldconst = "fconstd";
14547 goto encode_fconstd;
14548 }
14549 /* fall through. */
14550
14551 case NS_QI: /* case 2/3. */
14552 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
14553 return;
14554 inst.instruction = 0x0800010;
14555 neon_move_immediate ();
14556 neon_dp_fixup (&inst);
14557 break;
14558
14559 case NS_SR: /* case 4. */
14560 {
14561 unsigned bcdebits = 0;
14562 int logsize;
14563 unsigned dn = NEON_SCALAR_REG (inst.operands[0].reg);
14564 unsigned x = NEON_SCALAR_INDEX (inst.operands[0].reg);
14565
14566 et = neon_check_type (2, NS_NULL, N_8 | N_16 | N_32 | N_KEY, N_EQK);
14567 logsize = neon_logbits (et.size);
14568
14569 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1),
14570 _(BAD_FPU));
14571 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1)
14572 && et.size != 32, _(BAD_FPU));
14573 constraint (et.type == NT_invtype, _("bad type for scalar"));
14574 constraint (x >= 64 / et.size, _("scalar index out of range"));
14575
14576 switch (et.size)
14577 {
14578 case 8: bcdebits = 0x8; break;
14579 case 16: bcdebits = 0x1; break;
14580 case 32: bcdebits = 0x0; break;
14581 default: ;
14582 }
14583
14584 bcdebits |= x << logsize;
14585
14586 inst.instruction = 0xe000b10;
14587 do_vfp_cond_or_thumb ();
14588 inst.instruction |= LOW4 (dn) << 16;
14589 inst.instruction |= HI1 (dn) << 7;
14590 inst.instruction |= inst.operands[1].reg << 12;
14591 inst.instruction |= (bcdebits & 3) << 5;
14592 inst.instruction |= (bcdebits >> 2) << 21;
14593 }
14594 break;
14595
14596 case NS_DRR: /* case 5 (fmdrr). */
14597 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2),
14598 _(BAD_FPU));
14599
14600 inst.instruction = 0xc400b10;
14601 do_vfp_cond_or_thumb ();
14602 inst.instruction |= LOW4 (inst.operands[0].reg);
14603 inst.instruction |= HI1 (inst.operands[0].reg) << 5;
14604 inst.instruction |= inst.operands[1].reg << 12;
14605 inst.instruction |= inst.operands[2].reg << 16;
14606 break;
14607
14608 case NS_RS: /* case 6. */
14609 {
14610 unsigned logsize;
14611 unsigned dn = NEON_SCALAR_REG (inst.operands[1].reg);
14612 unsigned x = NEON_SCALAR_INDEX (inst.operands[1].reg);
14613 unsigned abcdebits = 0;
14614
14615 et = neon_check_type (2, NS_NULL,
14616 N_EQK, N_S8 | N_S16 | N_U8 | N_U16 | N_32 | N_KEY);
14617 logsize = neon_logbits (et.size);
14618
14619 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1),
14620 _(BAD_FPU));
14621 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1)
14622 && et.size != 32, _(BAD_FPU));
14623 constraint (et.type == NT_invtype, _("bad type for scalar"));
14624 constraint (x >= 64 / et.size, _("scalar index out of range"));
14625
14626 switch (et.size)
14627 {
14628 case 8: abcdebits = (et.type == NT_signed) ? 0x08 : 0x18; break;
14629 case 16: abcdebits = (et.type == NT_signed) ? 0x01 : 0x11; break;
14630 case 32: abcdebits = 0x00; break;
14631 default: ;
14632 }
14633
14634 abcdebits |= x << logsize;
14635 inst.instruction = 0xe100b10;
14636 do_vfp_cond_or_thumb ();
14637 inst.instruction |= LOW4 (dn) << 16;
14638 inst.instruction |= HI1 (dn) << 7;
14639 inst.instruction |= inst.operands[0].reg << 12;
14640 inst.instruction |= (abcdebits & 3) << 5;
14641 inst.instruction |= (abcdebits >> 2) << 21;
14642 }
14643 break;
14644
14645 case NS_RRD: /* case 7 (fmrrd). */
14646 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2),
14647 _(BAD_FPU));
14648
14649 inst.instruction = 0xc500b10;
14650 do_vfp_cond_or_thumb ();
14651 inst.instruction |= inst.operands[0].reg << 12;
14652 inst.instruction |= inst.operands[1].reg << 16;
14653 inst.instruction |= LOW4 (inst.operands[2].reg);
14654 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
14655 break;
14656
14657 case NS_FF: /* case 8 (fcpys). */
14658 do_vfp_nsyn_opcode ("fcpys");
14659 break;
14660
14661 case NS_FI: /* case 10 (fconsts). */
14662 ldconst = "fconsts";
14663 encode_fconstd:
14664 if (is_quarter_float (inst.operands[1].imm))
14665 {
14666 inst.operands[1].imm = neon_qfloat_bits (inst.operands[1].imm);
14667 do_vfp_nsyn_opcode (ldconst);
14668 }
14669 else
14670 first_error (_("immediate out of range"));
14671 break;
14672
14673 case NS_RF: /* case 12 (fmrs). */
14674 do_vfp_nsyn_opcode ("fmrs");
14675 break;
14676
14677 case NS_FR: /* case 13 (fmsr). */
14678 do_vfp_nsyn_opcode ("fmsr");
14679 break;
14680
14681 /* The encoders for the fmrrs and fmsrr instructions expect three operands
14682 (one of which is a list), but we have parsed four. Do some fiddling to
14683 make the operands what do_vfp_reg2_from_sp2 and do_vfp_sp2_from_reg2
14684 expect. */
14685 case NS_RRFF: /* case 14 (fmrrs). */
14686 constraint (inst.operands[3].reg != inst.operands[2].reg + 1,
14687 _("VFP registers must be adjacent"));
14688 inst.operands[2].imm = 2;
14689 memset (&inst.operands[3], '\0', sizeof (inst.operands[3]));
14690 do_vfp_nsyn_opcode ("fmrrs");
14691 break;
14692
14693 case NS_FFRR: /* case 15 (fmsrr). */
14694 constraint (inst.operands[1].reg != inst.operands[0].reg + 1,
14695 _("VFP registers must be adjacent"));
14696 inst.operands[1] = inst.operands[2];
14697 inst.operands[2] = inst.operands[3];
14698 inst.operands[0].imm = 2;
14699 memset (&inst.operands[3], '\0', sizeof (inst.operands[3]));
14700 do_vfp_nsyn_opcode ("fmsrr");
14701 break;
14702
14703 default:
14704 abort ();
14705 }
14706 }
14707
14708 static void
14709 do_neon_rshift_round_imm (void)
14710 {
14711 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
14712 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_ALL | N_KEY);
14713 int imm = inst.operands[2].imm;
14714
14715 /* imm == 0 case is encoded as VMOV for V{R}SHR. */
14716 if (imm == 0)
14717 {
14718 inst.operands[2].present = 0;
14719 do_neon_mov ();
14720 return;
14721 }
14722
14723 constraint (imm < 1 || (unsigned)imm > et.size,
14724 _("immediate out of range for shift"));
14725 neon_imm_shift (TRUE, et.type == NT_unsigned, neon_quad (rs), et,
14726 et.size - imm);
14727 }
14728
14729 static void
14730 do_neon_movl (void)
14731 {
14732 struct neon_type_el et = neon_check_type (2, NS_QD,
14733 N_EQK | N_DBL, N_SU_32 | N_KEY);
14734 unsigned sizebits = et.size >> 3;
14735 inst.instruction |= sizebits << 19;
14736 neon_two_same (0, et.type == NT_unsigned, -1);
14737 }
14738
14739 static void
14740 do_neon_trn (void)
14741 {
14742 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
14743 struct neon_type_el et = neon_check_type (2, rs,
14744 N_EQK, N_8 | N_16 | N_32 | N_KEY);
14745 NEON_ENCODE (INTEGER, inst);
14746 neon_two_same (neon_quad (rs), 1, et.size);
14747 }
14748
14749 static void
14750 do_neon_zip_uzp (void)
14751 {
14752 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
14753 struct neon_type_el et = neon_check_type (2, rs,
14754 N_EQK, N_8 | N_16 | N_32 | N_KEY);
14755 if (rs == NS_DD && et.size == 32)
14756 {
14757 /* Special case: encode as VTRN.32 <Dd>, <Dm>. */
14758 inst.instruction = N_MNEM_vtrn;
14759 do_neon_trn ();
14760 return;
14761 }
14762 neon_two_same (neon_quad (rs), 1, et.size);
14763 }
14764
14765 static void
14766 do_neon_sat_abs_neg (void)
14767 {
14768 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
14769 struct neon_type_el et = neon_check_type (2, rs,
14770 N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
14771 neon_two_same (neon_quad (rs), 1, et.size);
14772 }
14773
14774 static void
14775 do_neon_pair_long (void)
14776 {
14777 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
14778 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_32 | N_KEY);
14779 /* Unsigned is encoded in OP field (bit 7) for these instruction. */
14780 inst.instruction |= (et.type == NT_unsigned) << 7;
14781 neon_two_same (neon_quad (rs), 1, et.size);
14782 }
14783
14784 static void
14785 do_neon_recip_est (void)
14786 {
14787 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
14788 struct neon_type_el et = neon_check_type (2, rs,
14789 N_EQK | N_FLT, N_F32 | N_U32 | N_KEY);
14790 inst.instruction |= (et.type == NT_float) << 8;
14791 neon_two_same (neon_quad (rs), 1, et.size);
14792 }
14793
14794 static void
14795 do_neon_cls (void)
14796 {
14797 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
14798 struct neon_type_el et = neon_check_type (2, rs,
14799 N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
14800 neon_two_same (neon_quad (rs), 1, et.size);
14801 }
14802
14803 static void
14804 do_neon_clz (void)
14805 {
14806 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
14807 struct neon_type_el et = neon_check_type (2, rs,
14808 N_EQK, N_I8 | N_I16 | N_I32 | N_KEY);
14809 neon_two_same (neon_quad (rs), 1, et.size);
14810 }
14811
14812 static void
14813 do_neon_cnt (void)
14814 {
14815 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
14816 struct neon_type_el et = neon_check_type (2, rs,
14817 N_EQK | N_INT, N_8 | N_KEY);
14818 neon_two_same (neon_quad (rs), 1, et.size);
14819 }
14820
14821 static void
14822 do_neon_swp (void)
14823 {
14824 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
14825 neon_two_same (neon_quad (rs), 1, -1);
14826 }
14827
14828 static void
14829 do_neon_tbl_tbx (void)
14830 {
14831 unsigned listlenbits;
14832 neon_check_type (3, NS_DLD, N_EQK, N_EQK, N_8 | N_KEY);
14833
14834 if (inst.operands[1].imm < 1 || inst.operands[1].imm > 4)
14835 {
14836 first_error (_("bad list length for table lookup"));
14837 return;
14838 }
14839
14840 listlenbits = inst.operands[1].imm - 1;
14841 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14842 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14843 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
14844 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
14845 inst.instruction |= LOW4 (inst.operands[2].reg);
14846 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
14847 inst.instruction |= listlenbits << 8;
14848
14849 neon_dp_fixup (&inst);
14850 }
14851
14852 static void
14853 do_neon_ldm_stm (void)
14854 {
14855 /* P, U and L bits are part of bitmask. */
14856 int is_dbmode = (inst.instruction & (1 << 24)) != 0;
14857 unsigned offsetbits = inst.operands[1].imm * 2;
14858
14859 if (inst.operands[1].issingle)
14860 {
14861 do_vfp_nsyn_ldm_stm (is_dbmode);
14862 return;
14863 }
14864
14865 constraint (is_dbmode && !inst.operands[0].writeback,
14866 _("writeback (!) must be used for VLDMDB and VSTMDB"));
14867
14868 constraint (inst.operands[1].imm < 1 || inst.operands[1].imm > 16,
14869 _("register list must contain at least 1 and at most 16 "
14870 "registers"));
14871
14872 inst.instruction |= inst.operands[0].reg << 16;
14873 inst.instruction |= inst.operands[0].writeback << 21;
14874 inst.instruction |= LOW4 (inst.operands[1].reg) << 12;
14875 inst.instruction |= HI1 (inst.operands[1].reg) << 22;
14876
14877 inst.instruction |= offsetbits;
14878
14879 do_vfp_cond_or_thumb ();
14880 }
14881
14882 static void
14883 do_neon_ldr_str (void)
14884 {
14885 int is_ldr = (inst.instruction & (1 << 20)) != 0;
14886
14887 /* Use of PC in vstr in ARM mode is deprecated in ARMv7.
14888 And is UNPREDICTABLE in thumb mode. */
14889 if (!is_ldr
14890 && inst.operands[1].reg == REG_PC
14891 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v7))
14892 {
14893 if (!thumb_mode && warn_on_deprecated)
14894 as_warn (_("Use of PC here is deprecated"));
14895 else
14896 inst.error = _("Use of PC here is UNPREDICTABLE");
14897 }
14898
14899 if (inst.operands[0].issingle)
14900 {
14901 if (is_ldr)
14902 do_vfp_nsyn_opcode ("flds");
14903 else
14904 do_vfp_nsyn_opcode ("fsts");
14905 }
14906 else
14907 {
14908 if (is_ldr)
14909 do_vfp_nsyn_opcode ("fldd");
14910 else
14911 do_vfp_nsyn_opcode ("fstd");
14912 }
14913 }
14914
14915 /* "interleave" version also handles non-interleaving register VLD1/VST1
14916 instructions. */
14917
14918 static void
14919 do_neon_ld_st_interleave (void)
14920 {
14921 struct neon_type_el et = neon_check_type (1, NS_NULL,
14922 N_8 | N_16 | N_32 | N_64);
14923 unsigned alignbits = 0;
14924 unsigned idx;
14925 /* The bits in this table go:
14926 0: register stride of one (0) or two (1)
14927 1,2: register list length, minus one (1, 2, 3, 4).
14928 3,4: <n> in instruction type, minus one (VLD<n> / VST<n>).
14929 We use -1 for invalid entries. */
14930 const int typetable[] =
14931 {
14932 0x7, -1, 0xa, -1, 0x6, -1, 0x2, -1, /* VLD1 / VST1. */
14933 -1, -1, 0x8, 0x9, -1, -1, 0x3, -1, /* VLD2 / VST2. */
14934 -1, -1, -1, -1, 0x4, 0x5, -1, -1, /* VLD3 / VST3. */
14935 -1, -1, -1, -1, -1, -1, 0x0, 0x1 /* VLD4 / VST4. */
14936 };
14937 int typebits;
14938
14939 if (et.type == NT_invtype)
14940 return;
14941
14942 if (inst.operands[1].immisalign)
14943 switch (inst.operands[1].imm >> 8)
14944 {
14945 case 64: alignbits = 1; break;
14946 case 128:
14947 if (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 2
14948 && NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4)
14949 goto bad_alignment;
14950 alignbits = 2;
14951 break;
14952 case 256:
14953 if (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4)
14954 goto bad_alignment;
14955 alignbits = 3;
14956 break;
14957 default:
14958 bad_alignment:
14959 first_error (_("bad alignment"));
14960 return;
14961 }
14962
14963 inst.instruction |= alignbits << 4;
14964 inst.instruction |= neon_logbits (et.size) << 6;
14965
14966 /* Bits [4:6] of the immediate in a list specifier encode register stride
14967 (minus 1) in bit 4, and list length in bits [5:6]. We put the <n> of
14968 VLD<n>/VST<n> in bits [9:8] of the initial bitmask. Suck it out here, look
14969 up the right value for "type" in a table based on this value and the given
14970 list style, then stick it back. */
14971 idx = ((inst.operands[0].imm >> 4) & 7)
14972 | (((inst.instruction >> 8) & 3) << 3);
14973
14974 typebits = typetable[idx];
14975
14976 constraint (typebits == -1, _("bad list type for instruction"));
14977
14978 inst.instruction &= ~0xf00;
14979 inst.instruction |= typebits << 8;
14980 }
14981
14982 /* Check alignment is valid for do_neon_ld_st_lane and do_neon_ld_dup.
14983 *DO_ALIGN is set to 1 if the relevant alignment bit should be set, 0
14984 otherwise. The variable arguments are a list of pairs of legal (size, align)
14985 values, terminated with -1. */
14986
14987 static int
14988 neon_alignment_bit (int size, int align, int *do_align, ...)
14989 {
14990 va_list ap;
14991 int result = FAIL, thissize, thisalign;
14992
14993 if (!inst.operands[1].immisalign)
14994 {
14995 *do_align = 0;
14996 return SUCCESS;
14997 }
14998
14999 va_start (ap, do_align);
15000
15001 do
15002 {
15003 thissize = va_arg (ap, int);
15004 if (thissize == -1)
15005 break;
15006 thisalign = va_arg (ap, int);
15007
15008 if (size == thissize && align == thisalign)
15009 result = SUCCESS;
15010 }
15011 while (result != SUCCESS);
15012
15013 va_end (ap);
15014
15015 if (result == SUCCESS)
15016 *do_align = 1;
15017 else
15018 first_error (_("unsupported alignment for instruction"));
15019
15020 return result;
15021 }
15022
15023 static void
15024 do_neon_ld_st_lane (void)
15025 {
15026 struct neon_type_el et = neon_check_type (1, NS_NULL, N_8 | N_16 | N_32);
15027 int align_good, do_align = 0;
15028 int logsize = neon_logbits (et.size);
15029 int align = inst.operands[1].imm >> 8;
15030 int n = (inst.instruction >> 8) & 3;
15031 int max_el = 64 / et.size;
15032
15033 if (et.type == NT_invtype)
15034 return;
15035
15036 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != n + 1,
15037 _("bad list length"));
15038 constraint (NEON_LANE (inst.operands[0].imm) >= max_el,
15039 _("scalar index out of range"));
15040 constraint (n != 0 && NEON_REG_STRIDE (inst.operands[0].imm) == 2
15041 && et.size == 8,
15042 _("stride of 2 unavailable when element size is 8"));
15043
15044 switch (n)
15045 {
15046 case 0: /* VLD1 / VST1. */
15047 align_good = neon_alignment_bit (et.size, align, &do_align, 16, 16,
15048 32, 32, -1);
15049 if (align_good == FAIL)
15050 return;
15051 if (do_align)
15052 {
15053 unsigned alignbits = 0;
15054 switch (et.size)
15055 {
15056 case 16: alignbits = 0x1; break;
15057 case 32: alignbits = 0x3; break;
15058 default: ;
15059 }
15060 inst.instruction |= alignbits << 4;
15061 }
15062 break;
15063
15064 case 1: /* VLD2 / VST2. */
15065 align_good = neon_alignment_bit (et.size, align, &do_align, 8, 16, 16, 32,
15066 32, 64, -1);
15067 if (align_good == FAIL)
15068 return;
15069 if (do_align)
15070 inst.instruction |= 1 << 4;
15071 break;
15072
15073 case 2: /* VLD3 / VST3. */
15074 constraint (inst.operands[1].immisalign,
15075 _("can't use alignment with this instruction"));
15076 break;
15077
15078 case 3: /* VLD4 / VST4. */
15079 align_good = neon_alignment_bit (et.size, align, &do_align, 8, 32,
15080 16, 64, 32, 64, 32, 128, -1);
15081 if (align_good == FAIL)
15082 return;
15083 if (do_align)
15084 {
15085 unsigned alignbits = 0;
15086 switch (et.size)
15087 {
15088 case 8: alignbits = 0x1; break;
15089 case 16: alignbits = 0x1; break;
15090 case 32: alignbits = (align == 64) ? 0x1 : 0x2; break;
15091 default: ;
15092 }
15093 inst.instruction |= alignbits << 4;
15094 }
15095 break;
15096
15097 default: ;
15098 }
15099
15100 /* Reg stride of 2 is encoded in bit 5 when size==16, bit 6 when size==32. */
15101 if (n != 0 && NEON_REG_STRIDE (inst.operands[0].imm) == 2)
15102 inst.instruction |= 1 << (4 + logsize);
15103
15104 inst.instruction |= NEON_LANE (inst.operands[0].imm) << (logsize + 5);
15105 inst.instruction |= logsize << 10;
15106 }
15107
15108 /* Encode single n-element structure to all lanes VLD<n> instructions. */
15109
15110 static void
15111 do_neon_ld_dup (void)
15112 {
15113 struct neon_type_el et = neon_check_type (1, NS_NULL, N_8 | N_16 | N_32);
15114 int align_good, do_align = 0;
15115
15116 if (et.type == NT_invtype)
15117 return;
15118
15119 switch ((inst.instruction >> 8) & 3)
15120 {
15121 case 0: /* VLD1. */
15122 gas_assert (NEON_REG_STRIDE (inst.operands[0].imm) != 2);
15123 align_good = neon_alignment_bit (et.size, inst.operands[1].imm >> 8,
15124 &do_align, 16, 16, 32, 32, -1);
15125 if (align_good == FAIL)
15126 return;
15127 switch (NEON_REGLIST_LENGTH (inst.operands[0].imm))
15128 {
15129 case 1: break;
15130 case 2: inst.instruction |= 1 << 5; break;
15131 default: first_error (_("bad list length")); return;
15132 }
15133 inst.instruction |= neon_logbits (et.size) << 6;
15134 break;
15135
15136 case 1: /* VLD2. */
15137 align_good = neon_alignment_bit (et.size, inst.operands[1].imm >> 8,
15138 &do_align, 8, 16, 16, 32, 32, 64, -1);
15139 if (align_good == FAIL)
15140 return;
15141 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 2,
15142 _("bad list length"));
15143 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
15144 inst.instruction |= 1 << 5;
15145 inst.instruction |= neon_logbits (et.size) << 6;
15146 break;
15147
15148 case 2: /* VLD3. */
15149 constraint (inst.operands[1].immisalign,
15150 _("can't use alignment with this instruction"));
15151 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 3,
15152 _("bad list length"));
15153 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
15154 inst.instruction |= 1 << 5;
15155 inst.instruction |= neon_logbits (et.size) << 6;
15156 break;
15157
15158 case 3: /* VLD4. */
15159 {
15160 int align = inst.operands[1].imm >> 8;
15161 align_good = neon_alignment_bit (et.size, align, &do_align, 8, 32,
15162 16, 64, 32, 64, 32, 128, -1);
15163 if (align_good == FAIL)
15164 return;
15165 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4,
15166 _("bad list length"));
15167 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
15168 inst.instruction |= 1 << 5;
15169 if (et.size == 32 && align == 128)
15170 inst.instruction |= 0x3 << 6;
15171 else
15172 inst.instruction |= neon_logbits (et.size) << 6;
15173 }
15174 break;
15175
15176 default: ;
15177 }
15178
15179 inst.instruction |= do_align << 4;
15180 }
15181
15182 /* Disambiguate VLD<n> and VST<n> instructions, and fill in common bits (those
15183 apart from bits [11:4]. */
15184
15185 static void
15186 do_neon_ldx_stx (void)
15187 {
15188 if (inst.operands[1].isreg)
15189 constraint (inst.operands[1].reg == REG_PC, BAD_PC);
15190
15191 switch (NEON_LANE (inst.operands[0].imm))
15192 {
15193 case NEON_INTERLEAVE_LANES:
15194 NEON_ENCODE (INTERLV, inst);
15195 do_neon_ld_st_interleave ();
15196 break;
15197
15198 case NEON_ALL_LANES:
15199 NEON_ENCODE (DUP, inst);
15200 do_neon_ld_dup ();
15201 break;
15202
15203 default:
15204 NEON_ENCODE (LANE, inst);
15205 do_neon_ld_st_lane ();
15206 }
15207
15208 /* L bit comes from bit mask. */
15209 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15210 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15211 inst.instruction |= inst.operands[1].reg << 16;
15212
15213 if (inst.operands[1].postind)
15214 {
15215 int postreg = inst.operands[1].imm & 0xf;
15216 constraint (!inst.operands[1].immisreg,
15217 _("post-index must be a register"));
15218 constraint (postreg == 0xd || postreg == 0xf,
15219 _("bad register for post-index"));
15220 inst.instruction |= postreg;
15221 }
15222 else if (inst.operands[1].writeback)
15223 {
15224 inst.instruction |= 0xd;
15225 }
15226 else
15227 inst.instruction |= 0xf;
15228
15229 if (thumb_mode)
15230 inst.instruction |= 0xf9000000;
15231 else
15232 inst.instruction |= 0xf4000000;
15233 }
15234 \f
15235 /* Overall per-instruction processing. */
15236
15237 /* We need to be able to fix up arbitrary expressions in some statements.
15238 This is so that we can handle symbols that are an arbitrary distance from
15239 the pc. The most common cases are of the form ((+/-sym -/+ . - 8) & mask),
15240 which returns part of an address in a form which will be valid for
15241 a data instruction. We do this by pushing the expression into a symbol
15242 in the expr_section, and creating a fix for that. */
15243
15244 static void
15245 fix_new_arm (fragS * frag,
15246 int where,
15247 short int size,
15248 expressionS * exp,
15249 int pc_rel,
15250 int reloc)
15251 {
15252 fixS * new_fix;
15253
15254 switch (exp->X_op)
15255 {
15256 case O_constant:
15257 case O_symbol:
15258 case O_add:
15259 case O_subtract:
15260 new_fix = fix_new_exp (frag, where, size, exp, pc_rel,
15261 (enum bfd_reloc_code_real) reloc);
15262 break;
15263
15264 default:
15265 new_fix = (fixS *) fix_new (frag, where, size, make_expr_symbol (exp), 0,
15266 pc_rel, (enum bfd_reloc_code_real) reloc);
15267 break;
15268 }
15269
15270 /* Mark whether the fix is to a THUMB instruction, or an ARM
15271 instruction. */
15272 new_fix->tc_fix_data = thumb_mode;
15273 }
15274
15275 /* Create a frg for an instruction requiring relaxation. */
15276 static void
15277 output_relax_insn (void)
15278 {
15279 char * to;
15280 symbolS *sym;
15281 int offset;
15282
15283 /* The size of the instruction is unknown, so tie the debug info to the
15284 start of the instruction. */
15285 dwarf2_emit_insn (0);
15286
15287 switch (inst.reloc.exp.X_op)
15288 {
15289 case O_symbol:
15290 sym = inst.reloc.exp.X_add_symbol;
15291 offset = inst.reloc.exp.X_add_number;
15292 break;
15293 case O_constant:
15294 sym = NULL;
15295 offset = inst.reloc.exp.X_add_number;
15296 break;
15297 default:
15298 sym = make_expr_symbol (&inst.reloc.exp);
15299 offset = 0;
15300 break;
15301 }
15302 to = frag_var (rs_machine_dependent, INSN_SIZE, THUMB_SIZE,
15303 inst.relax, sym, offset, NULL/*offset, opcode*/);
15304 md_number_to_chars (to, inst.instruction, THUMB_SIZE);
15305 }
15306
15307 /* Write a 32-bit thumb instruction to buf. */
15308 static void
15309 put_thumb32_insn (char * buf, unsigned long insn)
15310 {
15311 md_number_to_chars (buf, insn >> 16, THUMB_SIZE);
15312 md_number_to_chars (buf + THUMB_SIZE, insn, THUMB_SIZE);
15313 }
15314
15315 static void
15316 output_inst (const char * str)
15317 {
15318 char * to = NULL;
15319
15320 if (inst.error)
15321 {
15322 as_bad ("%s -- `%s'", inst.error, str);
15323 return;
15324 }
15325 if (inst.relax)
15326 {
15327 output_relax_insn ();
15328 return;
15329 }
15330 if (inst.size == 0)
15331 return;
15332
15333 to = frag_more (inst.size);
15334 /* PR 9814: Record the thumb mode into the current frag so that we know
15335 what type of NOP padding to use, if necessary. We override any previous
15336 setting so that if the mode has changed then the NOPS that we use will
15337 match the encoding of the last instruction in the frag. */
15338 frag_now->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
15339
15340 if (thumb_mode && (inst.size > THUMB_SIZE))
15341 {
15342 gas_assert (inst.size == (2 * THUMB_SIZE));
15343 put_thumb32_insn (to, inst.instruction);
15344 }
15345 else if (inst.size > INSN_SIZE)
15346 {
15347 gas_assert (inst.size == (2 * INSN_SIZE));
15348 md_number_to_chars (to, inst.instruction, INSN_SIZE);
15349 md_number_to_chars (to + INSN_SIZE, inst.instruction, INSN_SIZE);
15350 }
15351 else
15352 md_number_to_chars (to, inst.instruction, inst.size);
15353
15354 if (inst.reloc.type != BFD_RELOC_UNUSED)
15355 fix_new_arm (frag_now, to - frag_now->fr_literal,
15356 inst.size, & inst.reloc.exp, inst.reloc.pc_rel,
15357 inst.reloc.type);
15358
15359 dwarf2_emit_insn (inst.size);
15360 }
15361
15362 static char *
15363 output_it_inst (int cond, int mask, char * to)
15364 {
15365 unsigned long instruction = 0xbf00;
15366
15367 mask &= 0xf;
15368 instruction |= mask;
15369 instruction |= cond << 4;
15370
15371 if (to == NULL)
15372 {
15373 to = frag_more (2);
15374 #ifdef OBJ_ELF
15375 dwarf2_emit_insn (2);
15376 #endif
15377 }
15378
15379 md_number_to_chars (to, instruction, 2);
15380
15381 return to;
15382 }
15383
15384 /* Tag values used in struct asm_opcode's tag field. */
15385 enum opcode_tag
15386 {
15387 OT_unconditional, /* Instruction cannot be conditionalized.
15388 The ARM condition field is still 0xE. */
15389 OT_unconditionalF, /* Instruction cannot be conditionalized
15390 and carries 0xF in its ARM condition field. */
15391 OT_csuffix, /* Instruction takes a conditional suffix. */
15392 OT_csuffixF, /* Some forms of the instruction take a conditional
15393 suffix, others place 0xF where the condition field
15394 would be. */
15395 OT_cinfix3, /* Instruction takes a conditional infix,
15396 beginning at character index 3. (In
15397 unified mode, it becomes a suffix.) */
15398 OT_cinfix3_deprecated, /* The same as OT_cinfix3. This is used for
15399 tsts, cmps, cmns, and teqs. */
15400 OT_cinfix3_legacy, /* Legacy instruction takes a conditional infix at
15401 character index 3, even in unified mode. Used for
15402 legacy instructions where suffix and infix forms
15403 may be ambiguous. */
15404 OT_csuf_or_in3, /* Instruction takes either a conditional
15405 suffix or an infix at character index 3. */
15406 OT_odd_infix_unc, /* This is the unconditional variant of an
15407 instruction that takes a conditional infix
15408 at an unusual position. In unified mode,
15409 this variant will accept a suffix. */
15410 OT_odd_infix_0 /* Values greater than or equal to OT_odd_infix_0
15411 are the conditional variants of instructions that
15412 take conditional infixes in unusual positions.
15413 The infix appears at character index
15414 (tag - OT_odd_infix_0). These are not accepted
15415 in unified mode. */
15416 };
15417
15418 /* Subroutine of md_assemble, responsible for looking up the primary
15419 opcode from the mnemonic the user wrote. STR points to the
15420 beginning of the mnemonic.
15421
15422 This is not simply a hash table lookup, because of conditional
15423 variants. Most instructions have conditional variants, which are
15424 expressed with a _conditional affix_ to the mnemonic. If we were
15425 to encode each conditional variant as a literal string in the opcode
15426 table, it would have approximately 20,000 entries.
15427
15428 Most mnemonics take this affix as a suffix, and in unified syntax,
15429 'most' is upgraded to 'all'. However, in the divided syntax, some
15430 instructions take the affix as an infix, notably the s-variants of
15431 the arithmetic instructions. Of those instructions, all but six
15432 have the infix appear after the third character of the mnemonic.
15433
15434 Accordingly, the algorithm for looking up primary opcodes given
15435 an identifier is:
15436
15437 1. Look up the identifier in the opcode table.
15438 If we find a match, go to step U.
15439
15440 2. Look up the last two characters of the identifier in the
15441 conditions table. If we find a match, look up the first N-2
15442 characters of the identifier in the opcode table. If we
15443 find a match, go to step CE.
15444
15445 3. Look up the fourth and fifth characters of the identifier in
15446 the conditions table. If we find a match, extract those
15447 characters from the identifier, and look up the remaining
15448 characters in the opcode table. If we find a match, go
15449 to step CM.
15450
15451 4. Fail.
15452
15453 U. Examine the tag field of the opcode structure, in case this is
15454 one of the six instructions with its conditional infix in an
15455 unusual place. If it is, the tag tells us where to find the
15456 infix; look it up in the conditions table and set inst.cond
15457 accordingly. Otherwise, this is an unconditional instruction.
15458 Again set inst.cond accordingly. Return the opcode structure.
15459
15460 CE. Examine the tag field to make sure this is an instruction that
15461 should receive a conditional suffix. If it is not, fail.
15462 Otherwise, set inst.cond from the suffix we already looked up,
15463 and return the opcode structure.
15464
15465 CM. Examine the tag field to make sure this is an instruction that
15466 should receive a conditional infix after the third character.
15467 If it is not, fail. Otherwise, undo the edits to the current
15468 line of input and proceed as for case CE. */
15469
15470 static const struct asm_opcode *
15471 opcode_lookup (char **str)
15472 {
15473 char *end, *base;
15474 char *affix;
15475 const struct asm_opcode *opcode;
15476 const struct asm_cond *cond;
15477 char save[2];
15478
15479 /* Scan up to the end of the mnemonic, which must end in white space,
15480 '.' (in unified mode, or for Neon/VFP instructions), or end of string. */
15481 for (base = end = *str; *end != '\0'; end++)
15482 if (*end == ' ' || *end == '.')
15483 break;
15484
15485 if (end == base)
15486 return NULL;
15487
15488 /* Handle a possible width suffix and/or Neon type suffix. */
15489 if (end[0] == '.')
15490 {
15491 int offset = 2;
15492
15493 /* The .w and .n suffixes are only valid if the unified syntax is in
15494 use. */
15495 if (unified_syntax && end[1] == 'w')
15496 inst.size_req = 4;
15497 else if (unified_syntax && end[1] == 'n')
15498 inst.size_req = 2;
15499 else
15500 offset = 0;
15501
15502 inst.vectype.elems = 0;
15503
15504 *str = end + offset;
15505
15506 if (end[offset] == '.')
15507 {
15508 /* See if we have a Neon type suffix (possible in either unified or
15509 non-unified ARM syntax mode). */
15510 if (parse_neon_type (&inst.vectype, str) == FAIL)
15511 return NULL;
15512 }
15513 else if (end[offset] != '\0' && end[offset] != ' ')
15514 return NULL;
15515 }
15516 else
15517 *str = end;
15518
15519 /* Look for unaffixed or special-case affixed mnemonic. */
15520 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
15521 end - base);
15522 if (opcode)
15523 {
15524 /* step U */
15525 if (opcode->tag < OT_odd_infix_0)
15526 {
15527 inst.cond = COND_ALWAYS;
15528 return opcode;
15529 }
15530
15531 if (warn_on_deprecated && unified_syntax)
15532 as_warn (_("conditional infixes are deprecated in unified syntax"));
15533 affix = base + (opcode->tag - OT_odd_infix_0);
15534 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
15535 gas_assert (cond);
15536
15537 inst.cond = cond->value;
15538 return opcode;
15539 }
15540
15541 /* Cannot have a conditional suffix on a mnemonic of less than two
15542 characters. */
15543 if (end - base < 3)
15544 return NULL;
15545
15546 /* Look for suffixed mnemonic. */
15547 affix = end - 2;
15548 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
15549 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
15550 affix - base);
15551 if (opcode && cond)
15552 {
15553 /* step CE */
15554 switch (opcode->tag)
15555 {
15556 case OT_cinfix3_legacy:
15557 /* Ignore conditional suffixes matched on infix only mnemonics. */
15558 break;
15559
15560 case OT_cinfix3:
15561 case OT_cinfix3_deprecated:
15562 case OT_odd_infix_unc:
15563 if (!unified_syntax)
15564 return 0;
15565 /* else fall through */
15566
15567 case OT_csuffix:
15568 case OT_csuffixF:
15569 case OT_csuf_or_in3:
15570 inst.cond = cond->value;
15571 return opcode;
15572
15573 case OT_unconditional:
15574 case OT_unconditionalF:
15575 if (thumb_mode)
15576 inst.cond = cond->value;
15577 else
15578 {
15579 /* Delayed diagnostic. */
15580 inst.error = BAD_COND;
15581 inst.cond = COND_ALWAYS;
15582 }
15583 return opcode;
15584
15585 default:
15586 return NULL;
15587 }
15588 }
15589
15590 /* Cannot have a usual-position infix on a mnemonic of less than
15591 six characters (five would be a suffix). */
15592 if (end - base < 6)
15593 return NULL;
15594
15595 /* Look for infixed mnemonic in the usual position. */
15596 affix = base + 3;
15597 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
15598 if (!cond)
15599 return NULL;
15600
15601 memcpy (save, affix, 2);
15602 memmove (affix, affix + 2, (end - affix) - 2);
15603 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
15604 (end - base) - 2);
15605 memmove (affix + 2, affix, (end - affix) - 2);
15606 memcpy (affix, save, 2);
15607
15608 if (opcode
15609 && (opcode->tag == OT_cinfix3
15610 || opcode->tag == OT_cinfix3_deprecated
15611 || opcode->tag == OT_csuf_or_in3
15612 || opcode->tag == OT_cinfix3_legacy))
15613 {
15614 /* Step CM. */
15615 if (warn_on_deprecated && unified_syntax
15616 && (opcode->tag == OT_cinfix3
15617 || opcode->tag == OT_cinfix3_deprecated))
15618 as_warn (_("conditional infixes are deprecated in unified syntax"));
15619
15620 inst.cond = cond->value;
15621 return opcode;
15622 }
15623
15624 return NULL;
15625 }
15626
15627 /* This function generates an initial IT instruction, leaving its block
15628 virtually open for the new instructions. Eventually,
15629 the mask will be updated by now_it_add_mask () each time
15630 a new instruction needs to be included in the IT block.
15631 Finally, the block is closed with close_automatic_it_block ().
15632 The block closure can be requested either from md_assemble (),
15633 a tencode (), or due to a label hook. */
15634
15635 static void
15636 new_automatic_it_block (int cond)
15637 {
15638 now_it.state = AUTOMATIC_IT_BLOCK;
15639 now_it.mask = 0x18;
15640 now_it.cc = cond;
15641 now_it.block_length = 1;
15642 mapping_state (MAP_THUMB);
15643 now_it.insn = output_it_inst (cond, now_it.mask, NULL);
15644 }
15645
15646 /* Close an automatic IT block.
15647 See comments in new_automatic_it_block (). */
15648
15649 static void
15650 close_automatic_it_block (void)
15651 {
15652 now_it.mask = 0x10;
15653 now_it.block_length = 0;
15654 }
15655
15656 /* Update the mask of the current automatically-generated IT
15657 instruction. See comments in new_automatic_it_block (). */
15658
15659 static void
15660 now_it_add_mask (int cond)
15661 {
15662 #define CLEAR_BIT(value, nbit) ((value) & ~(1 << (nbit)))
15663 #define SET_BIT_VALUE(value, bitvalue, nbit) (CLEAR_BIT (value, nbit) \
15664 | ((bitvalue) << (nbit)))
15665 const int resulting_bit = (cond & 1);
15666
15667 now_it.mask &= 0xf;
15668 now_it.mask = SET_BIT_VALUE (now_it.mask,
15669 resulting_bit,
15670 (5 - now_it.block_length));
15671 now_it.mask = SET_BIT_VALUE (now_it.mask,
15672 1,
15673 ((5 - now_it.block_length) - 1) );
15674 output_it_inst (now_it.cc, now_it.mask, now_it.insn);
15675
15676 #undef CLEAR_BIT
15677 #undef SET_BIT_VALUE
15678 }
15679
15680 /* The IT blocks handling machinery is accessed through the these functions:
15681 it_fsm_pre_encode () from md_assemble ()
15682 set_it_insn_type () optional, from the tencode functions
15683 set_it_insn_type_last () ditto
15684 in_it_block () ditto
15685 it_fsm_post_encode () from md_assemble ()
15686 force_automatic_it_block_close () from label habdling functions
15687
15688 Rationale:
15689 1) md_assemble () calls it_fsm_pre_encode () before calling tencode (),
15690 initializing the IT insn type with a generic initial value depending
15691 on the inst.condition.
15692 2) During the tencode function, two things may happen:
15693 a) The tencode function overrides the IT insn type by
15694 calling either set_it_insn_type (type) or set_it_insn_type_last ().
15695 b) The tencode function queries the IT block state by
15696 calling in_it_block () (i.e. to determine narrow/not narrow mode).
15697
15698 Both set_it_insn_type and in_it_block run the internal FSM state
15699 handling function (handle_it_state), because: a) setting the IT insn
15700 type may incur in an invalid state (exiting the function),
15701 and b) querying the state requires the FSM to be updated.
15702 Specifically we want to avoid creating an IT block for conditional
15703 branches, so it_fsm_pre_encode is actually a guess and we can't
15704 determine whether an IT block is required until the tencode () routine
15705 has decided what type of instruction this actually it.
15706 Because of this, if set_it_insn_type and in_it_block have to be used,
15707 set_it_insn_type has to be called first.
15708
15709 set_it_insn_type_last () is a wrapper of set_it_insn_type (type), that
15710 determines the insn IT type depending on the inst.cond code.
15711 When a tencode () routine encodes an instruction that can be
15712 either outside an IT block, or, in the case of being inside, has to be
15713 the last one, set_it_insn_type_last () will determine the proper
15714 IT instruction type based on the inst.cond code. Otherwise,
15715 set_it_insn_type can be called for overriding that logic or
15716 for covering other cases.
15717
15718 Calling handle_it_state () may not transition the IT block state to
15719 OUTSIDE_IT_BLOCK immediatelly, since the (current) state could be
15720 still queried. Instead, if the FSM determines that the state should
15721 be transitioned to OUTSIDE_IT_BLOCK, a flag is marked to be closed
15722 after the tencode () function: that's what it_fsm_post_encode () does.
15723
15724 Since in_it_block () calls the state handling function to get an
15725 updated state, an error may occur (due to invalid insns combination).
15726 In that case, inst.error is set.
15727 Therefore, inst.error has to be checked after the execution of
15728 the tencode () routine.
15729
15730 3) Back in md_assemble(), it_fsm_post_encode () is called to commit
15731 any pending state change (if any) that didn't take place in
15732 handle_it_state () as explained above. */
15733
15734 static void
15735 it_fsm_pre_encode (void)
15736 {
15737 if (inst.cond != COND_ALWAYS)
15738 inst.it_insn_type = INSIDE_IT_INSN;
15739 else
15740 inst.it_insn_type = OUTSIDE_IT_INSN;
15741
15742 now_it.state_handled = 0;
15743 }
15744
15745 /* IT state FSM handling function. */
15746
15747 static int
15748 handle_it_state (void)
15749 {
15750 now_it.state_handled = 1;
15751
15752 switch (now_it.state)
15753 {
15754 case OUTSIDE_IT_BLOCK:
15755 switch (inst.it_insn_type)
15756 {
15757 case OUTSIDE_IT_INSN:
15758 break;
15759
15760 case INSIDE_IT_INSN:
15761 case INSIDE_IT_LAST_INSN:
15762 if (thumb_mode == 0)
15763 {
15764 if (unified_syntax
15765 && !(implicit_it_mode & IMPLICIT_IT_MODE_ARM))
15766 as_tsktsk (_("Warning: conditional outside an IT block"\
15767 " for Thumb."));
15768 }
15769 else
15770 {
15771 if ((implicit_it_mode & IMPLICIT_IT_MODE_THUMB)
15772 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_arch_t2))
15773 {
15774 /* Automatically generate the IT instruction. */
15775 new_automatic_it_block (inst.cond);
15776 if (inst.it_insn_type == INSIDE_IT_LAST_INSN)
15777 close_automatic_it_block ();
15778 }
15779 else
15780 {
15781 inst.error = BAD_OUT_IT;
15782 return FAIL;
15783 }
15784 }
15785 break;
15786
15787 case IF_INSIDE_IT_LAST_INSN:
15788 case NEUTRAL_IT_INSN:
15789 break;
15790
15791 case IT_INSN:
15792 now_it.state = MANUAL_IT_BLOCK;
15793 now_it.block_length = 0;
15794 break;
15795 }
15796 break;
15797
15798 case AUTOMATIC_IT_BLOCK:
15799 /* Three things may happen now:
15800 a) We should increment current it block size;
15801 b) We should close current it block (closing insn or 4 insns);
15802 c) We should close current it block and start a new one (due
15803 to incompatible conditions or
15804 4 insns-length block reached). */
15805
15806 switch (inst.it_insn_type)
15807 {
15808 case OUTSIDE_IT_INSN:
15809 /* The closure of the block shall happen immediatelly,
15810 so any in_it_block () call reports the block as closed. */
15811 force_automatic_it_block_close ();
15812 break;
15813
15814 case INSIDE_IT_INSN:
15815 case INSIDE_IT_LAST_INSN:
15816 case IF_INSIDE_IT_LAST_INSN:
15817 now_it.block_length++;
15818
15819 if (now_it.block_length > 4
15820 || !now_it_compatible (inst.cond))
15821 {
15822 force_automatic_it_block_close ();
15823 if (inst.it_insn_type != IF_INSIDE_IT_LAST_INSN)
15824 new_automatic_it_block (inst.cond);
15825 }
15826 else
15827 {
15828 now_it_add_mask (inst.cond);
15829 }
15830
15831 if (now_it.state == AUTOMATIC_IT_BLOCK
15832 && (inst.it_insn_type == INSIDE_IT_LAST_INSN
15833 || inst.it_insn_type == IF_INSIDE_IT_LAST_INSN))
15834 close_automatic_it_block ();
15835 break;
15836
15837 case NEUTRAL_IT_INSN:
15838 now_it.block_length++;
15839
15840 if (now_it.block_length > 4)
15841 force_automatic_it_block_close ();
15842 else
15843 now_it_add_mask (now_it.cc & 1);
15844 break;
15845
15846 case IT_INSN:
15847 close_automatic_it_block ();
15848 now_it.state = MANUAL_IT_BLOCK;
15849 break;
15850 }
15851 break;
15852
15853 case MANUAL_IT_BLOCK:
15854 {
15855 /* Check conditional suffixes. */
15856 const int cond = now_it.cc ^ ((now_it.mask >> 4) & 1) ^ 1;
15857 int is_last;
15858 now_it.mask <<= 1;
15859 now_it.mask &= 0x1f;
15860 is_last = (now_it.mask == 0x10);
15861
15862 switch (inst.it_insn_type)
15863 {
15864 case OUTSIDE_IT_INSN:
15865 inst.error = BAD_NOT_IT;
15866 return FAIL;
15867
15868 case INSIDE_IT_INSN:
15869 if (cond != inst.cond)
15870 {
15871 inst.error = BAD_IT_COND;
15872 return FAIL;
15873 }
15874 break;
15875
15876 case INSIDE_IT_LAST_INSN:
15877 case IF_INSIDE_IT_LAST_INSN:
15878 if (cond != inst.cond)
15879 {
15880 inst.error = BAD_IT_COND;
15881 return FAIL;
15882 }
15883 if (!is_last)
15884 {
15885 inst.error = BAD_BRANCH;
15886 return FAIL;
15887 }
15888 break;
15889
15890 case NEUTRAL_IT_INSN:
15891 /* The BKPT instruction is unconditional even in an IT block. */
15892 break;
15893
15894 case IT_INSN:
15895 inst.error = BAD_IT_IT;
15896 return FAIL;
15897 }
15898 }
15899 break;
15900 }
15901
15902 return SUCCESS;
15903 }
15904
15905 static void
15906 it_fsm_post_encode (void)
15907 {
15908 int is_last;
15909
15910 if (!now_it.state_handled)
15911 handle_it_state ();
15912
15913 is_last = (now_it.mask == 0x10);
15914 if (is_last)
15915 {
15916 now_it.state = OUTSIDE_IT_BLOCK;
15917 now_it.mask = 0;
15918 }
15919 }
15920
15921 static void
15922 force_automatic_it_block_close (void)
15923 {
15924 if (now_it.state == AUTOMATIC_IT_BLOCK)
15925 {
15926 close_automatic_it_block ();
15927 now_it.state = OUTSIDE_IT_BLOCK;
15928 now_it.mask = 0;
15929 }
15930 }
15931
15932 static int
15933 in_it_block (void)
15934 {
15935 if (!now_it.state_handled)
15936 handle_it_state ();
15937
15938 return now_it.state != OUTSIDE_IT_BLOCK;
15939 }
15940
15941 void
15942 md_assemble (char *str)
15943 {
15944 char *p = str;
15945 const struct asm_opcode * opcode;
15946
15947 /* Align the previous label if needed. */
15948 if (last_label_seen != NULL)
15949 {
15950 symbol_set_frag (last_label_seen, frag_now);
15951 S_SET_VALUE (last_label_seen, (valueT) frag_now_fix ());
15952 S_SET_SEGMENT (last_label_seen, now_seg);
15953 }
15954
15955 memset (&inst, '\0', sizeof (inst));
15956 inst.reloc.type = BFD_RELOC_UNUSED;
15957
15958 opcode = opcode_lookup (&p);
15959 if (!opcode)
15960 {
15961 /* It wasn't an instruction, but it might be a register alias of
15962 the form alias .req reg, or a Neon .dn/.qn directive. */
15963 if (! create_register_alias (str, p)
15964 && ! create_neon_reg_alias (str, p))
15965 as_bad (_("bad instruction `%s'"), str);
15966
15967 return;
15968 }
15969
15970 if (warn_on_deprecated && opcode->tag == OT_cinfix3_deprecated)
15971 as_warn (_("s suffix on comparison instruction is deprecated"));
15972
15973 /* The value which unconditional instructions should have in place of the
15974 condition field. */
15975 inst.uncond_value = (opcode->tag == OT_csuffixF) ? 0xf : -1;
15976
15977 if (thumb_mode)
15978 {
15979 arm_feature_set variant;
15980
15981 variant = cpu_variant;
15982 /* Only allow coprocessor instructions on Thumb-2 capable devices. */
15983 if (!ARM_CPU_HAS_FEATURE (variant, arm_arch_t2))
15984 ARM_CLEAR_FEATURE (variant, variant, fpu_any_hard);
15985 /* Check that this instruction is supported for this CPU. */
15986 if (!opcode->tvariant
15987 || (thumb_mode == 1
15988 && !ARM_CPU_HAS_FEATURE (variant, *opcode->tvariant)))
15989 {
15990 as_bad (_("selected processor does not support Thumb mode `%s'"), str);
15991 return;
15992 }
15993 if (inst.cond != COND_ALWAYS && !unified_syntax
15994 && opcode->tencode != do_t_branch)
15995 {
15996 as_bad (_("Thumb does not support conditional execution"));
15997 return;
15998 }
15999
16000 if (!ARM_CPU_HAS_FEATURE (variant, arm_ext_v6t2))
16001 {
16002 if (opcode->tencode != do_t_blx && opcode->tencode != do_t_branch23
16003 && !(ARM_CPU_HAS_FEATURE(*opcode->tvariant, arm_ext_msr)
16004 || ARM_CPU_HAS_FEATURE(*opcode->tvariant, arm_ext_barrier)))
16005 {
16006 /* Two things are addressed here.
16007 1) Implicit require narrow instructions on Thumb-1.
16008 This avoids relaxation accidentally introducing Thumb-2
16009 instructions.
16010 2) Reject wide instructions in non Thumb-2 cores. */
16011 if (inst.size_req == 0)
16012 inst.size_req = 2;
16013 else if (inst.size_req == 4)
16014 {
16015 as_bad (_("selected processor does not support Thumb-2 mode `%s'"), str);
16016 return;
16017 }
16018 }
16019 }
16020
16021 inst.instruction = opcode->tvalue;
16022
16023 if (!parse_operands (p, opcode->operands, /*thumb=*/TRUE))
16024 {
16025 /* Prepare the it_insn_type for those encodings that don't set
16026 it. */
16027 it_fsm_pre_encode ();
16028
16029 opcode->tencode ();
16030
16031 it_fsm_post_encode ();
16032 }
16033
16034 if (!(inst.error || inst.relax))
16035 {
16036 gas_assert (inst.instruction < 0xe800 || inst.instruction > 0xffff);
16037 inst.size = (inst.instruction > 0xffff ? 4 : 2);
16038 if (inst.size_req && inst.size_req != inst.size)
16039 {
16040 as_bad (_("cannot honor width suffix -- `%s'"), str);
16041 return;
16042 }
16043 }
16044
16045 /* Something has gone badly wrong if we try to relax a fixed size
16046 instruction. */
16047 gas_assert (inst.size_req == 0 || !inst.relax);
16048
16049 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
16050 *opcode->tvariant);
16051 /* Many Thumb-2 instructions also have Thumb-1 variants, so explicitly
16052 set those bits when Thumb-2 32-bit instructions are seen. ie.
16053 anything other than bl/blx and v6-M instructions.
16054 This is overly pessimistic for relaxable instructions. */
16055 if (((inst.size == 4 && (inst.instruction & 0xf800e800) != 0xf000e800)
16056 || inst.relax)
16057 && !(ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_msr)
16058 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_barrier)))
16059 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
16060 arm_ext_v6t2);
16061
16062 check_neon_suffixes;
16063
16064 if (!inst.error)
16065 {
16066 mapping_state (MAP_THUMB);
16067 }
16068 }
16069 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
16070 {
16071 bfd_boolean is_bx;
16072
16073 /* bx is allowed on v5 cores, and sometimes on v4 cores. */
16074 is_bx = (opcode->aencode == do_bx);
16075
16076 /* Check that this instruction is supported for this CPU. */
16077 if (!(is_bx && fix_v4bx)
16078 && !(opcode->avariant &&
16079 ARM_CPU_HAS_FEATURE (cpu_variant, *opcode->avariant)))
16080 {
16081 as_bad (_("selected processor does not support ARM mode `%s'"), str);
16082 return;
16083 }
16084 if (inst.size_req)
16085 {
16086 as_bad (_("width suffixes are invalid in ARM mode -- `%s'"), str);
16087 return;
16088 }
16089
16090 inst.instruction = opcode->avalue;
16091 if (opcode->tag == OT_unconditionalF)
16092 inst.instruction |= 0xF << 28;
16093 else
16094 inst.instruction |= inst.cond << 28;
16095 inst.size = INSN_SIZE;
16096 if (!parse_operands (p, opcode->operands, /*thumb=*/FALSE))
16097 {
16098 it_fsm_pre_encode ();
16099 opcode->aencode ();
16100 it_fsm_post_encode ();
16101 }
16102 /* Arm mode bx is marked as both v4T and v5 because it's still required
16103 on a hypothetical non-thumb v5 core. */
16104 if (is_bx)
16105 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used, arm_ext_v4t);
16106 else
16107 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
16108 *opcode->avariant);
16109
16110 check_neon_suffixes;
16111
16112 if (!inst.error)
16113 {
16114 mapping_state (MAP_ARM);
16115 }
16116 }
16117 else
16118 {
16119 as_bad (_("attempt to use an ARM instruction on a Thumb-only processor "
16120 "-- `%s'"), str);
16121 return;
16122 }
16123 output_inst (str);
16124 }
16125
16126 static void
16127 check_it_blocks_finished (void)
16128 {
16129 #ifdef OBJ_ELF
16130 asection *sect;
16131
16132 for (sect = stdoutput->sections; sect != NULL; sect = sect->next)
16133 if (seg_info (sect)->tc_segment_info_data.current_it.state
16134 == MANUAL_IT_BLOCK)
16135 {
16136 as_warn (_("section '%s' finished with an open IT block."),
16137 sect->name);
16138 }
16139 #else
16140 if (now_it.state == MANUAL_IT_BLOCK)
16141 as_warn (_("file finished with an open IT block."));
16142 #endif
16143 }
16144
16145 /* Various frobbings of labels and their addresses. */
16146
16147 void
16148 arm_start_line_hook (void)
16149 {
16150 last_label_seen = NULL;
16151 }
16152
16153 void
16154 arm_frob_label (symbolS * sym)
16155 {
16156 last_label_seen = sym;
16157
16158 ARM_SET_THUMB (sym, thumb_mode);
16159
16160 #if defined OBJ_COFF || defined OBJ_ELF
16161 ARM_SET_INTERWORK (sym, support_interwork);
16162 #endif
16163
16164 force_automatic_it_block_close ();
16165
16166 /* Note - do not allow local symbols (.Lxxx) to be labelled
16167 as Thumb functions. This is because these labels, whilst
16168 they exist inside Thumb code, are not the entry points for
16169 possible ARM->Thumb calls. Also, these labels can be used
16170 as part of a computed goto or switch statement. eg gcc
16171 can generate code that looks like this:
16172
16173 ldr r2, [pc, .Laaa]
16174 lsl r3, r3, #2
16175 ldr r2, [r3, r2]
16176 mov pc, r2
16177
16178 .Lbbb: .word .Lxxx
16179 .Lccc: .word .Lyyy
16180 ..etc...
16181 .Laaa: .word Lbbb
16182
16183 The first instruction loads the address of the jump table.
16184 The second instruction converts a table index into a byte offset.
16185 The third instruction gets the jump address out of the table.
16186 The fourth instruction performs the jump.
16187
16188 If the address stored at .Laaa is that of a symbol which has the
16189 Thumb_Func bit set, then the linker will arrange for this address
16190 to have the bottom bit set, which in turn would mean that the
16191 address computation performed by the third instruction would end
16192 up with the bottom bit set. Since the ARM is capable of unaligned
16193 word loads, the instruction would then load the incorrect address
16194 out of the jump table, and chaos would ensue. */
16195 if (label_is_thumb_function_name
16196 && (S_GET_NAME (sym)[0] != '.' || S_GET_NAME (sym)[1] != 'L')
16197 && (bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) != 0)
16198 {
16199 /* When the address of a Thumb function is taken the bottom
16200 bit of that address should be set. This will allow
16201 interworking between Arm and Thumb functions to work
16202 correctly. */
16203
16204 THUMB_SET_FUNC (sym, 1);
16205
16206 label_is_thumb_function_name = FALSE;
16207 }
16208
16209 dwarf2_emit_label (sym);
16210 }
16211
16212 bfd_boolean
16213 arm_data_in_code (void)
16214 {
16215 if (thumb_mode && ! strncmp (input_line_pointer + 1, "data:", 5))
16216 {
16217 *input_line_pointer = '/';
16218 input_line_pointer += 5;
16219 *input_line_pointer = 0;
16220 return TRUE;
16221 }
16222
16223 return FALSE;
16224 }
16225
16226 char *
16227 arm_canonicalize_symbol_name (char * name)
16228 {
16229 int len;
16230
16231 if (thumb_mode && (len = strlen (name)) > 5
16232 && streq (name + len - 5, "/data"))
16233 *(name + len - 5) = 0;
16234
16235 return name;
16236 }
16237 \f
16238 /* Table of all register names defined by default. The user can
16239 define additional names with .req. Note that all register names
16240 should appear in both upper and lowercase variants. Some registers
16241 also have mixed-case names. */
16242
16243 #define REGDEF(s,n,t) { #s, n, REG_TYPE_##t, TRUE, 0 }
16244 #define REGNUM(p,n,t) REGDEF(p##n, n, t)
16245 #define REGNUM2(p,n,t) REGDEF(p##n, 2 * n, t)
16246 #define REGSET(p,t) \
16247 REGNUM(p, 0,t), REGNUM(p, 1,t), REGNUM(p, 2,t), REGNUM(p, 3,t), \
16248 REGNUM(p, 4,t), REGNUM(p, 5,t), REGNUM(p, 6,t), REGNUM(p, 7,t), \
16249 REGNUM(p, 8,t), REGNUM(p, 9,t), REGNUM(p,10,t), REGNUM(p,11,t), \
16250 REGNUM(p,12,t), REGNUM(p,13,t), REGNUM(p,14,t), REGNUM(p,15,t)
16251 #define REGSETH(p,t) \
16252 REGNUM(p,16,t), REGNUM(p,17,t), REGNUM(p,18,t), REGNUM(p,19,t), \
16253 REGNUM(p,20,t), REGNUM(p,21,t), REGNUM(p,22,t), REGNUM(p,23,t), \
16254 REGNUM(p,24,t), REGNUM(p,25,t), REGNUM(p,26,t), REGNUM(p,27,t), \
16255 REGNUM(p,28,t), REGNUM(p,29,t), REGNUM(p,30,t), REGNUM(p,31,t)
16256 #define REGSET2(p,t) \
16257 REGNUM2(p, 0,t), REGNUM2(p, 1,t), REGNUM2(p, 2,t), REGNUM2(p, 3,t), \
16258 REGNUM2(p, 4,t), REGNUM2(p, 5,t), REGNUM2(p, 6,t), REGNUM2(p, 7,t), \
16259 REGNUM2(p, 8,t), REGNUM2(p, 9,t), REGNUM2(p,10,t), REGNUM2(p,11,t), \
16260 REGNUM2(p,12,t), REGNUM2(p,13,t), REGNUM2(p,14,t), REGNUM2(p,15,t)
16261 #define SPLRBANK(base,bank,t) \
16262 REGDEF(lr_##bank, 768|((base+0)<<16), t), \
16263 REGDEF(sp_##bank, 768|((base+1)<<16), t), \
16264 REGDEF(spsr_##bank, 768|(base<<16)|SPSR_BIT, t), \
16265 REGDEF(LR_##bank, 768|((base+0)<<16), t), \
16266 REGDEF(SP_##bank, 768|((base+1)<<16), t), \
16267 REGDEF(SPSR_##bank, 768|(base<<16)|SPSR_BIT, t)
16268
16269 static const struct reg_entry reg_names[] =
16270 {
16271 /* ARM integer registers. */
16272 REGSET(r, RN), REGSET(R, RN),
16273
16274 /* ATPCS synonyms. */
16275 REGDEF(a1,0,RN), REGDEF(a2,1,RN), REGDEF(a3, 2,RN), REGDEF(a4, 3,RN),
16276 REGDEF(v1,4,RN), REGDEF(v2,5,RN), REGDEF(v3, 6,RN), REGDEF(v4, 7,RN),
16277 REGDEF(v5,8,RN), REGDEF(v6,9,RN), REGDEF(v7,10,RN), REGDEF(v8,11,RN),
16278
16279 REGDEF(A1,0,RN), REGDEF(A2,1,RN), REGDEF(A3, 2,RN), REGDEF(A4, 3,RN),
16280 REGDEF(V1,4,RN), REGDEF(V2,5,RN), REGDEF(V3, 6,RN), REGDEF(V4, 7,RN),
16281 REGDEF(V5,8,RN), REGDEF(V6,9,RN), REGDEF(V7,10,RN), REGDEF(V8,11,RN),
16282
16283 /* Well-known aliases. */
16284 REGDEF(wr, 7,RN), REGDEF(sb, 9,RN), REGDEF(sl,10,RN), REGDEF(fp,11,RN),
16285 REGDEF(ip,12,RN), REGDEF(sp,13,RN), REGDEF(lr,14,RN), REGDEF(pc,15,RN),
16286
16287 REGDEF(WR, 7,RN), REGDEF(SB, 9,RN), REGDEF(SL,10,RN), REGDEF(FP,11,RN),
16288 REGDEF(IP,12,RN), REGDEF(SP,13,RN), REGDEF(LR,14,RN), REGDEF(PC,15,RN),
16289
16290 /* Coprocessor numbers. */
16291 REGSET(p, CP), REGSET(P, CP),
16292
16293 /* Coprocessor register numbers. The "cr" variants are for backward
16294 compatibility. */
16295 REGSET(c, CN), REGSET(C, CN),
16296 REGSET(cr, CN), REGSET(CR, CN),
16297
16298 /* ARM banked registers. */
16299 REGDEF(R8_usr,512|(0<<16),RNB), REGDEF(r8_usr,512|(0<<16),RNB),
16300 REGDEF(R9_usr,512|(1<<16),RNB), REGDEF(r9_usr,512|(1<<16),RNB),
16301 REGDEF(R10_usr,512|(2<<16),RNB), REGDEF(r10_usr,512|(2<<16),RNB),
16302 REGDEF(R11_usr,512|(3<<16),RNB), REGDEF(r11_usr,512|(3<<16),RNB),
16303 REGDEF(R12_usr,512|(4<<16),RNB), REGDEF(r12_usr,512|(4<<16),RNB),
16304 REGDEF(SP_usr,512|(5<<16),RNB), REGDEF(sp_usr,512|(5<<16),RNB),
16305 REGDEF(LR_usr,512|(6<<16),RNB), REGDEF(lr_usr,512|(6<<16),RNB),
16306
16307 REGDEF(R8_fiq,512|(8<<16),RNB), REGDEF(r8_fiq,512|(8<<16),RNB),
16308 REGDEF(R9_fiq,512|(9<<16),RNB), REGDEF(r9_fiq,512|(9<<16),RNB),
16309 REGDEF(R10_fiq,512|(10<<16),RNB), REGDEF(r10_fiq,512|(10<<16),RNB),
16310 REGDEF(R11_fiq,512|(11<<16),RNB), REGDEF(r11_fiq,512|(11<<16),RNB),
16311 REGDEF(R12_fiq,512|(12<<16),RNB), REGDEF(r12_fiq,512|(12<<16),RNB),
16312 REGDEF(SP_fiq,512|(13<<16),RNB), REGDEF(SP_fiq,512|(13<<16),RNB),
16313 REGDEF(LR_fiq,512|(14<<16),RNB), REGDEF(lr_fiq,512|(14<<16),RNB),
16314 REGDEF(SPSR_fiq,512|(14<<16)|SPSR_BIT,RNB), REGDEF(spsr_fiq,512|(14<<16)|SPSR_BIT,RNB),
16315
16316 SPLRBANK(0,IRQ,RNB), SPLRBANK(0,irq,RNB),
16317 SPLRBANK(2,SVC,RNB), SPLRBANK(2,svc,RNB),
16318 SPLRBANK(4,ABT,RNB), SPLRBANK(4,abt,RNB),
16319 SPLRBANK(6,UND,RNB), SPLRBANK(6,und,RNB),
16320 SPLRBANK(12,MON,RNB), SPLRBANK(12,mon,RNB),
16321 REGDEF(elr_hyp,768|(14<<16),RNB), REGDEF(ELR_hyp,768|(14<<16),RNB),
16322 REGDEF(sp_hyp,768|(15<<16),RNB), REGDEF(SP_hyp,768|(15<<16),RNB),
16323 REGDEF(spsr_hyp,768|(14<<16)|SPSR_BIT,RNB),
16324 REGDEF(SPSR_hyp,768|(14<<16)|SPSR_BIT,RNB),
16325
16326 /* FPA registers. */
16327 REGNUM(f,0,FN), REGNUM(f,1,FN), REGNUM(f,2,FN), REGNUM(f,3,FN),
16328 REGNUM(f,4,FN), REGNUM(f,5,FN), REGNUM(f,6,FN), REGNUM(f,7, FN),
16329
16330 REGNUM(F,0,FN), REGNUM(F,1,FN), REGNUM(F,2,FN), REGNUM(F,3,FN),
16331 REGNUM(F,4,FN), REGNUM(F,5,FN), REGNUM(F,6,FN), REGNUM(F,7, FN),
16332
16333 /* VFP SP registers. */
16334 REGSET(s,VFS), REGSET(S,VFS),
16335 REGSETH(s,VFS), REGSETH(S,VFS),
16336
16337 /* VFP DP Registers. */
16338 REGSET(d,VFD), REGSET(D,VFD),
16339 /* Extra Neon DP registers. */
16340 REGSETH(d,VFD), REGSETH(D,VFD),
16341
16342 /* Neon QP registers. */
16343 REGSET2(q,NQ), REGSET2(Q,NQ),
16344
16345 /* VFP control registers. */
16346 REGDEF(fpsid,0,VFC), REGDEF(fpscr,1,VFC), REGDEF(fpexc,8,VFC),
16347 REGDEF(FPSID,0,VFC), REGDEF(FPSCR,1,VFC), REGDEF(FPEXC,8,VFC),
16348 REGDEF(fpinst,9,VFC), REGDEF(fpinst2,10,VFC),
16349 REGDEF(FPINST,9,VFC), REGDEF(FPINST2,10,VFC),
16350 REGDEF(mvfr0,7,VFC), REGDEF(mvfr1,6,VFC),
16351 REGDEF(MVFR0,7,VFC), REGDEF(MVFR1,6,VFC),
16352
16353 /* Maverick DSP coprocessor registers. */
16354 REGSET(mvf,MVF), REGSET(mvd,MVD), REGSET(mvfx,MVFX), REGSET(mvdx,MVDX),
16355 REGSET(MVF,MVF), REGSET(MVD,MVD), REGSET(MVFX,MVFX), REGSET(MVDX,MVDX),
16356
16357 REGNUM(mvax,0,MVAX), REGNUM(mvax,1,MVAX),
16358 REGNUM(mvax,2,MVAX), REGNUM(mvax,3,MVAX),
16359 REGDEF(dspsc,0,DSPSC),
16360
16361 REGNUM(MVAX,0,MVAX), REGNUM(MVAX,1,MVAX),
16362 REGNUM(MVAX,2,MVAX), REGNUM(MVAX,3,MVAX),
16363 REGDEF(DSPSC,0,DSPSC),
16364
16365 /* iWMMXt data registers - p0, c0-15. */
16366 REGSET(wr,MMXWR), REGSET(wR,MMXWR), REGSET(WR, MMXWR),
16367
16368 /* iWMMXt control registers - p1, c0-3. */
16369 REGDEF(wcid, 0,MMXWC), REGDEF(wCID, 0,MMXWC), REGDEF(WCID, 0,MMXWC),
16370 REGDEF(wcon, 1,MMXWC), REGDEF(wCon, 1,MMXWC), REGDEF(WCON, 1,MMXWC),
16371 REGDEF(wcssf, 2,MMXWC), REGDEF(wCSSF, 2,MMXWC), REGDEF(WCSSF, 2,MMXWC),
16372 REGDEF(wcasf, 3,MMXWC), REGDEF(wCASF, 3,MMXWC), REGDEF(WCASF, 3,MMXWC),
16373
16374 /* iWMMXt scalar (constant/offset) registers - p1, c8-11. */
16375 REGDEF(wcgr0, 8,MMXWCG), REGDEF(wCGR0, 8,MMXWCG), REGDEF(WCGR0, 8,MMXWCG),
16376 REGDEF(wcgr1, 9,MMXWCG), REGDEF(wCGR1, 9,MMXWCG), REGDEF(WCGR1, 9,MMXWCG),
16377 REGDEF(wcgr2,10,MMXWCG), REGDEF(wCGR2,10,MMXWCG), REGDEF(WCGR2,10,MMXWCG),
16378 REGDEF(wcgr3,11,MMXWCG), REGDEF(wCGR3,11,MMXWCG), REGDEF(WCGR3,11,MMXWCG),
16379
16380 /* XScale accumulator registers. */
16381 REGNUM(acc,0,XSCALE), REGNUM(ACC,0,XSCALE),
16382 };
16383 #undef REGDEF
16384 #undef REGNUM
16385 #undef REGSET
16386
16387 /* Table of all PSR suffixes. Bare "CPSR" and "SPSR" are handled
16388 within psr_required_here. */
16389 static const struct asm_psr psrs[] =
16390 {
16391 /* Backward compatibility notation. Note that "all" is no longer
16392 truly all possible PSR bits. */
16393 {"all", PSR_c | PSR_f},
16394 {"flg", PSR_f},
16395 {"ctl", PSR_c},
16396
16397 /* Individual flags. */
16398 {"f", PSR_f},
16399 {"c", PSR_c},
16400 {"x", PSR_x},
16401 {"s", PSR_s},
16402 {"g", PSR_s},
16403
16404 /* Combinations of flags. */
16405 {"fs", PSR_f | PSR_s},
16406 {"fx", PSR_f | PSR_x},
16407 {"fc", PSR_f | PSR_c},
16408 {"sf", PSR_s | PSR_f},
16409 {"sx", PSR_s | PSR_x},
16410 {"sc", PSR_s | PSR_c},
16411 {"xf", PSR_x | PSR_f},
16412 {"xs", PSR_x | PSR_s},
16413 {"xc", PSR_x | PSR_c},
16414 {"cf", PSR_c | PSR_f},
16415 {"cs", PSR_c | PSR_s},
16416 {"cx", PSR_c | PSR_x},
16417 {"fsx", PSR_f | PSR_s | PSR_x},
16418 {"fsc", PSR_f | PSR_s | PSR_c},
16419 {"fxs", PSR_f | PSR_x | PSR_s},
16420 {"fxc", PSR_f | PSR_x | PSR_c},
16421 {"fcs", PSR_f | PSR_c | PSR_s},
16422 {"fcx", PSR_f | PSR_c | PSR_x},
16423 {"sfx", PSR_s | PSR_f | PSR_x},
16424 {"sfc", PSR_s | PSR_f | PSR_c},
16425 {"sxf", PSR_s | PSR_x | PSR_f},
16426 {"sxc", PSR_s | PSR_x | PSR_c},
16427 {"scf", PSR_s | PSR_c | PSR_f},
16428 {"scx", PSR_s | PSR_c | PSR_x},
16429 {"xfs", PSR_x | PSR_f | PSR_s},
16430 {"xfc", PSR_x | PSR_f | PSR_c},
16431 {"xsf", PSR_x | PSR_s | PSR_f},
16432 {"xsc", PSR_x | PSR_s | PSR_c},
16433 {"xcf", PSR_x | PSR_c | PSR_f},
16434 {"xcs", PSR_x | PSR_c | PSR_s},
16435 {"cfs", PSR_c | PSR_f | PSR_s},
16436 {"cfx", PSR_c | PSR_f | PSR_x},
16437 {"csf", PSR_c | PSR_s | PSR_f},
16438 {"csx", PSR_c | PSR_s | PSR_x},
16439 {"cxf", PSR_c | PSR_x | PSR_f},
16440 {"cxs", PSR_c | PSR_x | PSR_s},
16441 {"fsxc", PSR_f | PSR_s | PSR_x | PSR_c},
16442 {"fscx", PSR_f | PSR_s | PSR_c | PSR_x},
16443 {"fxsc", PSR_f | PSR_x | PSR_s | PSR_c},
16444 {"fxcs", PSR_f | PSR_x | PSR_c | PSR_s},
16445 {"fcsx", PSR_f | PSR_c | PSR_s | PSR_x},
16446 {"fcxs", PSR_f | PSR_c | PSR_x | PSR_s},
16447 {"sfxc", PSR_s | PSR_f | PSR_x | PSR_c},
16448 {"sfcx", PSR_s | PSR_f | PSR_c | PSR_x},
16449 {"sxfc", PSR_s | PSR_x | PSR_f | PSR_c},
16450 {"sxcf", PSR_s | PSR_x | PSR_c | PSR_f},
16451 {"scfx", PSR_s | PSR_c | PSR_f | PSR_x},
16452 {"scxf", PSR_s | PSR_c | PSR_x | PSR_f},
16453 {"xfsc", PSR_x | PSR_f | PSR_s | PSR_c},
16454 {"xfcs", PSR_x | PSR_f | PSR_c | PSR_s},
16455 {"xsfc", PSR_x | PSR_s | PSR_f | PSR_c},
16456 {"xscf", PSR_x | PSR_s | PSR_c | PSR_f},
16457 {"xcfs", PSR_x | PSR_c | PSR_f | PSR_s},
16458 {"xcsf", PSR_x | PSR_c | PSR_s | PSR_f},
16459 {"cfsx", PSR_c | PSR_f | PSR_s | PSR_x},
16460 {"cfxs", PSR_c | PSR_f | PSR_x | PSR_s},
16461 {"csfx", PSR_c | PSR_s | PSR_f | PSR_x},
16462 {"csxf", PSR_c | PSR_s | PSR_x | PSR_f},
16463 {"cxfs", PSR_c | PSR_x | PSR_f | PSR_s},
16464 {"cxsf", PSR_c | PSR_x | PSR_s | PSR_f},
16465
16466 /* APSR flags */
16467 {"nzcvq", PSR_f},
16468 {"nzcvqg", PSR_s | PSR_f}
16469 };
16470
16471 /* Table of V7M psr names. */
16472 static const struct asm_psr v7m_psrs[] =
16473 {
16474 {"apsr", 0 }, {"APSR", 0 },
16475 {"iapsr", 1 }, {"IAPSR", 1 },
16476 {"eapsr", 2 }, {"EAPSR", 2 },
16477 {"psr", 3 }, {"PSR", 3 },
16478 {"xpsr", 3 }, {"XPSR", 3 }, {"xPSR", 3 },
16479 {"ipsr", 5 }, {"IPSR", 5 },
16480 {"epsr", 6 }, {"EPSR", 6 },
16481 {"iepsr", 7 }, {"IEPSR", 7 },
16482 {"msp", 8 }, {"MSP", 8 },
16483 {"psp", 9 }, {"PSP", 9 },
16484 {"primask", 16}, {"PRIMASK", 16},
16485 {"basepri", 17}, {"BASEPRI", 17},
16486 {"basepri_max", 18}, {"BASEPRI_MAX", 18},
16487 {"faultmask", 19}, {"FAULTMASK", 19},
16488 {"control", 20}, {"CONTROL", 20}
16489 };
16490
16491 /* Table of all shift-in-operand names. */
16492 static const struct asm_shift_name shift_names [] =
16493 {
16494 { "asl", SHIFT_LSL }, { "ASL", SHIFT_LSL },
16495 { "lsl", SHIFT_LSL }, { "LSL", SHIFT_LSL },
16496 { "lsr", SHIFT_LSR }, { "LSR", SHIFT_LSR },
16497 { "asr", SHIFT_ASR }, { "ASR", SHIFT_ASR },
16498 { "ror", SHIFT_ROR }, { "ROR", SHIFT_ROR },
16499 { "rrx", SHIFT_RRX }, { "RRX", SHIFT_RRX }
16500 };
16501
16502 /* Table of all explicit relocation names. */
16503 #ifdef OBJ_ELF
16504 static struct reloc_entry reloc_names[] =
16505 {
16506 { "got", BFD_RELOC_ARM_GOT32 }, { "GOT", BFD_RELOC_ARM_GOT32 },
16507 { "gotoff", BFD_RELOC_ARM_GOTOFF }, { "GOTOFF", BFD_RELOC_ARM_GOTOFF },
16508 { "plt", BFD_RELOC_ARM_PLT32 }, { "PLT", BFD_RELOC_ARM_PLT32 },
16509 { "target1", BFD_RELOC_ARM_TARGET1 }, { "TARGET1", BFD_RELOC_ARM_TARGET1 },
16510 { "target2", BFD_RELOC_ARM_TARGET2 }, { "TARGET2", BFD_RELOC_ARM_TARGET2 },
16511 { "sbrel", BFD_RELOC_ARM_SBREL32 }, { "SBREL", BFD_RELOC_ARM_SBREL32 },
16512 { "tlsgd", BFD_RELOC_ARM_TLS_GD32}, { "TLSGD", BFD_RELOC_ARM_TLS_GD32},
16513 { "tlsldm", BFD_RELOC_ARM_TLS_LDM32}, { "TLSLDM", BFD_RELOC_ARM_TLS_LDM32},
16514 { "tlsldo", BFD_RELOC_ARM_TLS_LDO32}, { "TLSLDO", BFD_RELOC_ARM_TLS_LDO32},
16515 { "gottpoff",BFD_RELOC_ARM_TLS_IE32}, { "GOTTPOFF",BFD_RELOC_ARM_TLS_IE32},
16516 { "tpoff", BFD_RELOC_ARM_TLS_LE32}, { "TPOFF", BFD_RELOC_ARM_TLS_LE32},
16517 { "got_prel", BFD_RELOC_ARM_GOT_PREL}, { "GOT_PREL", BFD_RELOC_ARM_GOT_PREL}
16518 };
16519 #endif
16520
16521 /* Table of all conditional affixes. 0xF is not defined as a condition code. */
16522 static const struct asm_cond conds[] =
16523 {
16524 {"eq", 0x0},
16525 {"ne", 0x1},
16526 {"cs", 0x2}, {"hs", 0x2},
16527 {"cc", 0x3}, {"ul", 0x3}, {"lo", 0x3},
16528 {"mi", 0x4},
16529 {"pl", 0x5},
16530 {"vs", 0x6},
16531 {"vc", 0x7},
16532 {"hi", 0x8},
16533 {"ls", 0x9},
16534 {"ge", 0xa},
16535 {"lt", 0xb},
16536 {"gt", 0xc},
16537 {"le", 0xd},
16538 {"al", 0xe}
16539 };
16540
16541 static struct asm_barrier_opt barrier_opt_names[] =
16542 {
16543 { "sy", 0xf }, { "SY", 0xf },
16544 { "un", 0x7 }, { "UN", 0x7 },
16545 { "st", 0xe }, { "ST", 0xe },
16546 { "unst", 0x6 }, { "UNST", 0x6 },
16547 { "ish", 0xb }, { "ISH", 0xb },
16548 { "sh", 0xb }, { "SH", 0xb },
16549 { "ishst", 0xa }, { "ISHST", 0xa },
16550 { "shst", 0xa }, { "SHST", 0xa },
16551 { "nsh", 0x7 }, { "NSH", 0x7 },
16552 { "nshst", 0x6 }, { "NSHST", 0x6 },
16553 { "osh", 0x3 }, { "OSH", 0x3 },
16554 { "oshst", 0x2 }, { "OSHST", 0x2 }
16555 };
16556
16557 /* Table of ARM-format instructions. */
16558
16559 /* Macros for gluing together operand strings. N.B. In all cases
16560 other than OPS0, the trailing OP_stop comes from default
16561 zero-initialization of the unspecified elements of the array. */
16562 #define OPS0() { OP_stop, }
16563 #define OPS1(a) { OP_##a, }
16564 #define OPS2(a,b) { OP_##a,OP_##b, }
16565 #define OPS3(a,b,c) { OP_##a,OP_##b,OP_##c, }
16566 #define OPS4(a,b,c,d) { OP_##a,OP_##b,OP_##c,OP_##d, }
16567 #define OPS5(a,b,c,d,e) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e, }
16568 #define OPS6(a,b,c,d,e,f) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e,OP_##f, }
16569
16570 /* These macros are similar to the OPSn, but do not prepend the OP_ prefix.
16571 This is useful when mixing operands for ARM and THUMB, i.e. using the
16572 MIX_ARM_THUMB_OPERANDS macro.
16573 In order to use these macros, prefix the number of operands with _
16574 e.g. _3. */
16575 #define OPS_1(a) { a, }
16576 #define OPS_2(a,b) { a,b, }
16577 #define OPS_3(a,b,c) { a,b,c, }
16578 #define OPS_4(a,b,c,d) { a,b,c,d, }
16579 #define OPS_5(a,b,c,d,e) { a,b,c,d,e, }
16580 #define OPS_6(a,b,c,d,e,f) { a,b,c,d,e,f, }
16581
16582 /* These macros abstract out the exact format of the mnemonic table and
16583 save some repeated characters. */
16584
16585 /* The normal sort of mnemonic; has a Thumb variant; takes a conditional suffix. */
16586 #define TxCE(mnem, op, top, nops, ops, ae, te) \
16587 { mnem, OPS##nops ops, OT_csuffix, 0x##op, top, ARM_VARIANT, \
16588 THUMB_VARIANT, do_##ae, do_##te }
16589
16590 /* Two variants of the above - TCE for a numeric Thumb opcode, tCE for
16591 a T_MNEM_xyz enumerator. */
16592 #define TCE(mnem, aop, top, nops, ops, ae, te) \
16593 TxCE (mnem, aop, 0x##top, nops, ops, ae, te)
16594 #define tCE(mnem, aop, top, nops, ops, ae, te) \
16595 TxCE (mnem, aop, T_MNEM##top, nops, ops, ae, te)
16596
16597 /* Second most common sort of mnemonic: has a Thumb variant, takes a conditional
16598 infix after the third character. */
16599 #define TxC3(mnem, op, top, nops, ops, ae, te) \
16600 { mnem, OPS##nops ops, OT_cinfix3, 0x##op, top, ARM_VARIANT, \
16601 THUMB_VARIANT, do_##ae, do_##te }
16602 #define TxC3w(mnem, op, top, nops, ops, ae, te) \
16603 { mnem, OPS##nops ops, OT_cinfix3_deprecated, 0x##op, top, ARM_VARIANT, \
16604 THUMB_VARIANT, do_##ae, do_##te }
16605 #define TC3(mnem, aop, top, nops, ops, ae, te) \
16606 TxC3 (mnem, aop, 0x##top, nops, ops, ae, te)
16607 #define TC3w(mnem, aop, top, nops, ops, ae, te) \
16608 TxC3w (mnem, aop, 0x##top, nops, ops, ae, te)
16609 #define tC3(mnem, aop, top, nops, ops, ae, te) \
16610 TxC3 (mnem, aop, T_MNEM##top, nops, ops, ae, te)
16611 #define tC3w(mnem, aop, top, nops, ops, ae, te) \
16612 TxC3w (mnem, aop, T_MNEM##top, nops, ops, ae, te)
16613
16614 /* Mnemonic with a conditional infix in an unusual place. Each and every variant has to
16615 appear in the condition table. */
16616 #define TxCM_(m1, m2, m3, op, top, nops, ops, ae, te) \
16617 { m1 #m2 m3, OPS##nops ops, sizeof (#m2) == 1 ? OT_odd_infix_unc : OT_odd_infix_0 + sizeof (m1) - 1, \
16618 0x##op, top, ARM_VARIANT, THUMB_VARIANT, do_##ae, do_##te }
16619
16620 #define TxCM(m1, m2, op, top, nops, ops, ae, te) \
16621 TxCM_ (m1, , m2, op, top, nops, ops, ae, te), \
16622 TxCM_ (m1, eq, m2, op, top, nops, ops, ae, te), \
16623 TxCM_ (m1, ne, m2, op, top, nops, ops, ae, te), \
16624 TxCM_ (m1, cs, m2, op, top, nops, ops, ae, te), \
16625 TxCM_ (m1, hs, m2, op, top, nops, ops, ae, te), \
16626 TxCM_ (m1, cc, m2, op, top, nops, ops, ae, te), \
16627 TxCM_ (m1, ul, m2, op, top, nops, ops, ae, te), \
16628 TxCM_ (m1, lo, m2, op, top, nops, ops, ae, te), \
16629 TxCM_ (m1, mi, m2, op, top, nops, ops, ae, te), \
16630 TxCM_ (m1, pl, m2, op, top, nops, ops, ae, te), \
16631 TxCM_ (m1, vs, m2, op, top, nops, ops, ae, te), \
16632 TxCM_ (m1, vc, m2, op, top, nops, ops, ae, te), \
16633 TxCM_ (m1, hi, m2, op, top, nops, ops, ae, te), \
16634 TxCM_ (m1, ls, m2, op, top, nops, ops, ae, te), \
16635 TxCM_ (m1, ge, m2, op, top, nops, ops, ae, te), \
16636 TxCM_ (m1, lt, m2, op, top, nops, ops, ae, te), \
16637 TxCM_ (m1, gt, m2, op, top, nops, ops, ae, te), \
16638 TxCM_ (m1, le, m2, op, top, nops, ops, ae, te), \
16639 TxCM_ (m1, al, m2, op, top, nops, ops, ae, te)
16640
16641 #define TCM(m1,m2, aop, top, nops, ops, ae, te) \
16642 TxCM (m1,m2, aop, 0x##top, nops, ops, ae, te)
16643 #define tCM(m1,m2, aop, top, nops, ops, ae, te) \
16644 TxCM (m1,m2, aop, T_MNEM##top, nops, ops, ae, te)
16645
16646 /* Mnemonic that cannot be conditionalized. The ARM condition-code
16647 field is still 0xE. Many of the Thumb variants can be executed
16648 conditionally, so this is checked separately. */
16649 #define TUE(mnem, op, top, nops, ops, ae, te) \
16650 { mnem, OPS##nops ops, OT_unconditional, 0x##op, 0x##top, ARM_VARIANT, \
16651 THUMB_VARIANT, do_##ae, do_##te }
16652
16653 /* Mnemonic that cannot be conditionalized, and bears 0xF in its ARM
16654 condition code field. */
16655 #define TUF(mnem, op, top, nops, ops, ae, te) \
16656 { mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##top, ARM_VARIANT, \
16657 THUMB_VARIANT, do_##ae, do_##te }
16658
16659 /* ARM-only variants of all the above. */
16660 #define CE(mnem, op, nops, ops, ae) \
16661 { mnem, OPS##nops ops, OT_csuffix, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
16662
16663 #define C3(mnem, op, nops, ops, ae) \
16664 { #mnem, OPS##nops ops, OT_cinfix3, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
16665
16666 /* Legacy mnemonics that always have conditional infix after the third
16667 character. */
16668 #define CL(mnem, op, nops, ops, ae) \
16669 { mnem, OPS##nops ops, OT_cinfix3_legacy, \
16670 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
16671
16672 /* Coprocessor instructions. Isomorphic between Arm and Thumb-2. */
16673 #define cCE(mnem, op, nops, ops, ae) \
16674 { mnem, OPS##nops ops, OT_csuffix, 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
16675
16676 /* Legacy coprocessor instructions where conditional infix and conditional
16677 suffix are ambiguous. For consistency this includes all FPA instructions,
16678 not just the potentially ambiguous ones. */
16679 #define cCL(mnem, op, nops, ops, ae) \
16680 { mnem, OPS##nops ops, OT_cinfix3_legacy, \
16681 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
16682
16683 /* Coprocessor, takes either a suffix or a position-3 infix
16684 (for an FPA corner case). */
16685 #define C3E(mnem, op, nops, ops, ae) \
16686 { mnem, OPS##nops ops, OT_csuf_or_in3, \
16687 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
16688
16689 #define xCM_(m1, m2, m3, op, nops, ops, ae) \
16690 { m1 #m2 m3, OPS##nops ops, \
16691 sizeof (#m2) == 1 ? OT_odd_infix_unc : OT_odd_infix_0 + sizeof (m1) - 1, \
16692 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
16693
16694 #define CM(m1, m2, op, nops, ops, ae) \
16695 xCM_ (m1, , m2, op, nops, ops, ae), \
16696 xCM_ (m1, eq, m2, op, nops, ops, ae), \
16697 xCM_ (m1, ne, m2, op, nops, ops, ae), \
16698 xCM_ (m1, cs, m2, op, nops, ops, ae), \
16699 xCM_ (m1, hs, m2, op, nops, ops, ae), \
16700 xCM_ (m1, cc, m2, op, nops, ops, ae), \
16701 xCM_ (m1, ul, m2, op, nops, ops, ae), \
16702 xCM_ (m1, lo, m2, op, nops, ops, ae), \
16703 xCM_ (m1, mi, m2, op, nops, ops, ae), \
16704 xCM_ (m1, pl, m2, op, nops, ops, ae), \
16705 xCM_ (m1, vs, m2, op, nops, ops, ae), \
16706 xCM_ (m1, vc, m2, op, nops, ops, ae), \
16707 xCM_ (m1, hi, m2, op, nops, ops, ae), \
16708 xCM_ (m1, ls, m2, op, nops, ops, ae), \
16709 xCM_ (m1, ge, m2, op, nops, ops, ae), \
16710 xCM_ (m1, lt, m2, op, nops, ops, ae), \
16711 xCM_ (m1, gt, m2, op, nops, ops, ae), \
16712 xCM_ (m1, le, m2, op, nops, ops, ae), \
16713 xCM_ (m1, al, m2, op, nops, ops, ae)
16714
16715 #define UE(mnem, op, nops, ops, ae) \
16716 { #mnem, OPS##nops ops, OT_unconditional, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL }
16717
16718 #define UF(mnem, op, nops, ops, ae) \
16719 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL }
16720
16721 /* Neon data-processing. ARM versions are unconditional with cond=0xf.
16722 The Thumb and ARM variants are mostly the same (bits 0-23 and 24/28), so we
16723 use the same encoding function for each. */
16724 #define NUF(mnem, op, nops, ops, enc) \
16725 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##op, \
16726 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
16727
16728 /* Neon data processing, version which indirects through neon_enc_tab for
16729 the various overloaded versions of opcodes. */
16730 #define nUF(mnem, op, nops, ops, enc) \
16731 { #mnem, OPS##nops ops, OT_unconditionalF, N_MNEM##op, N_MNEM##op, \
16732 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
16733
16734 /* Neon insn with conditional suffix for the ARM version, non-overloaded
16735 version. */
16736 #define NCE_tag(mnem, op, nops, ops, enc, tag) \
16737 { #mnem, OPS##nops ops, tag, 0x##op, 0x##op, ARM_VARIANT, \
16738 THUMB_VARIANT, do_##enc, do_##enc }
16739
16740 #define NCE(mnem, op, nops, ops, enc) \
16741 NCE_tag (mnem, op, nops, ops, enc, OT_csuffix)
16742
16743 #define NCEF(mnem, op, nops, ops, enc) \
16744 NCE_tag (mnem, op, nops, ops, enc, OT_csuffixF)
16745
16746 /* Neon insn with conditional suffix for the ARM version, overloaded types. */
16747 #define nCE_tag(mnem, op, nops, ops, enc, tag) \
16748 { #mnem, OPS##nops ops, tag, N_MNEM##op, N_MNEM##op, \
16749 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
16750
16751 #define nCE(mnem, op, nops, ops, enc) \
16752 nCE_tag (mnem, op, nops, ops, enc, OT_csuffix)
16753
16754 #define nCEF(mnem, op, nops, ops, enc) \
16755 nCE_tag (mnem, op, nops, ops, enc, OT_csuffixF)
16756
16757 #define do_0 0
16758
16759 static const struct asm_opcode insns[] =
16760 {
16761 #define ARM_VARIANT &arm_ext_v1 /* Core ARM Instructions. */
16762 #define THUMB_VARIANT &arm_ext_v4t
16763 tCE("and", 0000000, _and, 3, (RR, oRR, SH), arit, t_arit3c),
16764 tC3("ands", 0100000, _ands, 3, (RR, oRR, SH), arit, t_arit3c),
16765 tCE("eor", 0200000, _eor, 3, (RR, oRR, SH), arit, t_arit3c),
16766 tC3("eors", 0300000, _eors, 3, (RR, oRR, SH), arit, t_arit3c),
16767 tCE("sub", 0400000, _sub, 3, (RR, oRR, SH), arit, t_add_sub),
16768 tC3("subs", 0500000, _subs, 3, (RR, oRR, SH), arit, t_add_sub),
16769 tCE("add", 0800000, _add, 3, (RR, oRR, SHG), arit, t_add_sub),
16770 tC3("adds", 0900000, _adds, 3, (RR, oRR, SHG), arit, t_add_sub),
16771 tCE("adc", 0a00000, _adc, 3, (RR, oRR, SH), arit, t_arit3c),
16772 tC3("adcs", 0b00000, _adcs, 3, (RR, oRR, SH), arit, t_arit3c),
16773 tCE("sbc", 0c00000, _sbc, 3, (RR, oRR, SH), arit, t_arit3),
16774 tC3("sbcs", 0d00000, _sbcs, 3, (RR, oRR, SH), arit, t_arit3),
16775 tCE("orr", 1800000, _orr, 3, (RR, oRR, SH), arit, t_arit3c),
16776 tC3("orrs", 1900000, _orrs, 3, (RR, oRR, SH), arit, t_arit3c),
16777 tCE("bic", 1c00000, _bic, 3, (RR, oRR, SH), arit, t_arit3),
16778 tC3("bics", 1d00000, _bics, 3, (RR, oRR, SH), arit, t_arit3),
16779
16780 /* The p-variants of tst/cmp/cmn/teq (below) are the pre-V6 mechanism
16781 for setting PSR flag bits. They are obsolete in V6 and do not
16782 have Thumb equivalents. */
16783 tCE("tst", 1100000, _tst, 2, (RR, SH), cmp, t_mvn_tst),
16784 tC3w("tsts", 1100000, _tst, 2, (RR, SH), cmp, t_mvn_tst),
16785 CL("tstp", 110f000, 2, (RR, SH), cmp),
16786 tCE("cmp", 1500000, _cmp, 2, (RR, SH), cmp, t_mov_cmp),
16787 tC3w("cmps", 1500000, _cmp, 2, (RR, SH), cmp, t_mov_cmp),
16788 CL("cmpp", 150f000, 2, (RR, SH), cmp),
16789 tCE("cmn", 1700000, _cmn, 2, (RR, SH), cmp, t_mvn_tst),
16790 tC3w("cmns", 1700000, _cmn, 2, (RR, SH), cmp, t_mvn_tst),
16791 CL("cmnp", 170f000, 2, (RR, SH), cmp),
16792
16793 tCE("mov", 1a00000, _mov, 2, (RR, SH), mov, t_mov_cmp),
16794 tC3("movs", 1b00000, _movs, 2, (RR, SH), mov, t_mov_cmp),
16795 tCE("mvn", 1e00000, _mvn, 2, (RR, SH), mov, t_mvn_tst),
16796 tC3("mvns", 1f00000, _mvns, 2, (RR, SH), mov, t_mvn_tst),
16797
16798 tCE("ldr", 4100000, _ldr, 2, (RR, ADDRGLDR),ldst, t_ldst),
16799 tC3("ldrb", 4500000, _ldrb, 2, (RRnpc_npcsp, ADDRGLDR),ldst, t_ldst),
16800 tCE("str", 4000000, _str, _2, (MIX_ARM_THUMB_OPERANDS (OP_RR,
16801 OP_RRnpc),
16802 OP_ADDRGLDR),ldst, t_ldst),
16803 tC3("strb", 4400000, _strb, 2, (RRnpc_npcsp, ADDRGLDR),ldst, t_ldst),
16804
16805 tCE("stm", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
16806 tC3("stmia", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
16807 tC3("stmea", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
16808 tCE("ldm", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
16809 tC3("ldmia", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
16810 tC3("ldmfd", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
16811
16812 TCE("swi", f000000, df00, 1, (EXPi), swi, t_swi),
16813 TCE("svc", f000000, df00, 1, (EXPi), swi, t_swi),
16814 tCE("b", a000000, _b, 1, (EXPr), branch, t_branch),
16815 TCE("bl", b000000, f000f800, 1, (EXPr), bl, t_branch23),
16816
16817 /* Pseudo ops. */
16818 tCE("adr", 28f0000, _adr, 2, (RR, EXP), adr, t_adr),
16819 C3(adrl, 28f0000, 2, (RR, EXP), adrl),
16820 tCE("nop", 1a00000, _nop, 1, (oI255c), nop, t_nop),
16821
16822 /* Thumb-compatibility pseudo ops. */
16823 tCE("lsl", 1a00000, _lsl, 3, (RR, oRR, SH), shift, t_shift),
16824 tC3("lsls", 1b00000, _lsls, 3, (RR, oRR, SH), shift, t_shift),
16825 tCE("lsr", 1a00020, _lsr, 3, (RR, oRR, SH), shift, t_shift),
16826 tC3("lsrs", 1b00020, _lsrs, 3, (RR, oRR, SH), shift, t_shift),
16827 tCE("asr", 1a00040, _asr, 3, (RR, oRR, SH), shift, t_shift),
16828 tC3("asrs", 1b00040, _asrs, 3, (RR, oRR, SH), shift, t_shift),
16829 tCE("ror", 1a00060, _ror, 3, (RR, oRR, SH), shift, t_shift),
16830 tC3("rors", 1b00060, _rors, 3, (RR, oRR, SH), shift, t_shift),
16831 tCE("neg", 2600000, _neg, 2, (RR, RR), rd_rn, t_neg),
16832 tC3("negs", 2700000, _negs, 2, (RR, RR), rd_rn, t_neg),
16833 tCE("push", 92d0000, _push, 1, (REGLST), push_pop, t_push_pop),
16834 tCE("pop", 8bd0000, _pop, 1, (REGLST), push_pop, t_push_pop),
16835
16836 /* These may simplify to neg. */
16837 TCE("rsb", 0600000, ebc00000, 3, (RR, oRR, SH), arit, t_rsb),
16838 TC3("rsbs", 0700000, ebd00000, 3, (RR, oRR, SH), arit, t_rsb),
16839
16840 #undef THUMB_VARIANT
16841 #define THUMB_VARIANT & arm_ext_v6
16842
16843 TCE("cpy", 1a00000, 4600, 2, (RR, RR), rd_rm, t_cpy),
16844
16845 /* V1 instructions with no Thumb analogue prior to V6T2. */
16846 #undef THUMB_VARIANT
16847 #define THUMB_VARIANT & arm_ext_v6t2
16848
16849 TCE("teq", 1300000, ea900f00, 2, (RR, SH), cmp, t_mvn_tst),
16850 TC3w("teqs", 1300000, ea900f00, 2, (RR, SH), cmp, t_mvn_tst),
16851 CL("teqp", 130f000, 2, (RR, SH), cmp),
16852
16853 TC3("ldrt", 4300000, f8500e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
16854 TC3("ldrbt", 4700000, f8100e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
16855 TC3("strt", 4200000, f8400e00, 2, (RR_npcsp, ADDR), ldstt, t_ldstt),
16856 TC3("strbt", 4600000, f8000e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
16857
16858 TC3("stmdb", 9000000, e9000000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
16859 TC3("stmfd", 9000000, e9000000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
16860
16861 TC3("ldmdb", 9100000, e9100000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
16862 TC3("ldmea", 9100000, e9100000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
16863
16864 /* V1 instructions with no Thumb analogue at all. */
16865 CE("rsc", 0e00000, 3, (RR, oRR, SH), arit),
16866 C3(rscs, 0f00000, 3, (RR, oRR, SH), arit),
16867
16868 C3(stmib, 9800000, 2, (RRw, REGLST), ldmstm),
16869 C3(stmfa, 9800000, 2, (RRw, REGLST), ldmstm),
16870 C3(stmda, 8000000, 2, (RRw, REGLST), ldmstm),
16871 C3(stmed, 8000000, 2, (RRw, REGLST), ldmstm),
16872 C3(ldmib, 9900000, 2, (RRw, REGLST), ldmstm),
16873 C3(ldmed, 9900000, 2, (RRw, REGLST), ldmstm),
16874 C3(ldmda, 8100000, 2, (RRw, REGLST), ldmstm),
16875 C3(ldmfa, 8100000, 2, (RRw, REGLST), ldmstm),
16876
16877 #undef ARM_VARIANT
16878 #define ARM_VARIANT & arm_ext_v2 /* ARM 2 - multiplies. */
16879 #undef THUMB_VARIANT
16880 #define THUMB_VARIANT & arm_ext_v4t
16881
16882 tCE("mul", 0000090, _mul, 3, (RRnpc, RRnpc, oRR), mul, t_mul),
16883 tC3("muls", 0100090, _muls, 3, (RRnpc, RRnpc, oRR), mul, t_mul),
16884
16885 #undef THUMB_VARIANT
16886 #define THUMB_VARIANT & arm_ext_v6t2
16887
16888 TCE("mla", 0200090, fb000000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas, t_mla),
16889 C3(mlas, 0300090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas),
16890
16891 /* Generic coprocessor instructions. */
16892 TCE("cdp", e000000, ee000000, 6, (RCP, I15b, RCN, RCN, RCN, oI7b), cdp, cdp),
16893 TCE("ldc", c100000, ec100000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
16894 TC3("ldcl", c500000, ec500000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
16895 TCE("stc", c000000, ec000000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
16896 TC3("stcl", c400000, ec400000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
16897 TCE("mcr", e000010, ee000010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
16898 TCE("mrc", e100010, ee100010, 6, (RCP, I7b, APSR_RR, RCN, RCN, oI7b), co_reg, co_reg),
16899
16900 #undef ARM_VARIANT
16901 #define ARM_VARIANT & arm_ext_v2s /* ARM 3 - swp instructions. */
16902
16903 CE("swp", 1000090, 3, (RRnpc, RRnpc, RRnpcb), rd_rm_rn),
16904 C3(swpb, 1400090, 3, (RRnpc, RRnpc, RRnpcb), rd_rm_rn),
16905
16906 #undef ARM_VARIANT
16907 #define ARM_VARIANT & arm_ext_v3 /* ARM 6 Status register instructions. */
16908 #undef THUMB_VARIANT
16909 #define THUMB_VARIANT & arm_ext_msr
16910
16911 TCE("mrs", 1000000, f3e08000, 2, (APSR_RR, RVC_PSR), mrs, t_mrs),
16912 TCE("msr", 120f000, f3808000, 2, (RVC_PSR, RR_EXi), msr, t_msr),
16913
16914 #undef ARM_VARIANT
16915 #define ARM_VARIANT & arm_ext_v3m /* ARM 7M long multiplies. */
16916 #undef THUMB_VARIANT
16917 #define THUMB_VARIANT & arm_ext_v6t2
16918
16919 TCE("smull", 0c00090, fb800000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
16920 CM("smull","s", 0d00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
16921 TCE("umull", 0800090, fba00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
16922 CM("umull","s", 0900090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
16923 TCE("smlal", 0e00090, fbc00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
16924 CM("smlal","s", 0f00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
16925 TCE("umlal", 0a00090, fbe00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
16926 CM("umlal","s", 0b00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
16927
16928 #undef ARM_VARIANT
16929 #define ARM_VARIANT & arm_ext_v4 /* ARM Architecture 4. */
16930 #undef THUMB_VARIANT
16931 #define THUMB_VARIANT & arm_ext_v4t
16932
16933 tC3("ldrh", 01000b0, _ldrh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
16934 tC3("strh", 00000b0, _strh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
16935 tC3("ldrsh", 01000f0, _ldrsh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
16936 tC3("ldrsb", 01000d0, _ldrsb, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
16937 tCM("ld","sh", 01000f0, _ldrsh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
16938 tCM("ld","sb", 01000d0, _ldrsb, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
16939
16940 #undef ARM_VARIANT
16941 #define ARM_VARIANT & arm_ext_v4t_5
16942
16943 /* ARM Architecture 4T. */
16944 /* Note: bx (and blx) are required on V5, even if the processor does
16945 not support Thumb. */
16946 TCE("bx", 12fff10, 4700, 1, (RR), bx, t_bx),
16947
16948 #undef ARM_VARIANT
16949 #define ARM_VARIANT & arm_ext_v5 /* ARM Architecture 5T. */
16950 #undef THUMB_VARIANT
16951 #define THUMB_VARIANT & arm_ext_v5t
16952
16953 /* Note: blx has 2 variants; the .value coded here is for
16954 BLX(2). Only this variant has conditional execution. */
16955 TCE("blx", 12fff30, 4780, 1, (RR_EXr), blx, t_blx),
16956 TUE("bkpt", 1200070, be00, 1, (oIffffb), bkpt, t_bkpt),
16957
16958 #undef THUMB_VARIANT
16959 #define THUMB_VARIANT & arm_ext_v6t2
16960
16961 TCE("clz", 16f0f10, fab0f080, 2, (RRnpc, RRnpc), rd_rm, t_clz),
16962 TUF("ldc2", c100000, fc100000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
16963 TUF("ldc2l", c500000, fc500000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
16964 TUF("stc2", c000000, fc000000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
16965 TUF("stc2l", c400000, fc400000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
16966 TUF("cdp2", e000000, fe000000, 6, (RCP, I15b, RCN, RCN, RCN, oI7b), cdp, cdp),
16967 TUF("mcr2", e000010, fe000010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
16968 TUF("mrc2", e100010, fe100010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
16969
16970 #undef ARM_VARIANT
16971 #define ARM_VARIANT & arm_ext_v5exp /* ARM Architecture 5TExP. */
16972 #undef THUMB_VARIANT
16973 #define THUMB_VARIANT &arm_ext_v5exp
16974
16975 TCE("smlabb", 1000080, fb100000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
16976 TCE("smlatb", 10000a0, fb100020, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
16977 TCE("smlabt", 10000c0, fb100010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
16978 TCE("smlatt", 10000e0, fb100030, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
16979
16980 TCE("smlawb", 1200080, fb300000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
16981 TCE("smlawt", 12000c0, fb300010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
16982
16983 TCE("smlalbb", 1400080, fbc00080, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
16984 TCE("smlaltb", 14000a0, fbc000a0, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
16985 TCE("smlalbt", 14000c0, fbc00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
16986 TCE("smlaltt", 14000e0, fbc000b0, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
16987
16988 TCE("smulbb", 1600080, fb10f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
16989 TCE("smultb", 16000a0, fb10f020, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
16990 TCE("smulbt", 16000c0, fb10f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
16991 TCE("smultt", 16000e0, fb10f030, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
16992
16993 TCE("smulwb", 12000a0, fb30f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
16994 TCE("smulwt", 12000e0, fb30f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
16995
16996 TCE("qadd", 1000050, fa80f080, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
16997 TCE("qdadd", 1400050, fa80f090, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
16998 TCE("qsub", 1200050, fa80f0a0, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
16999 TCE("qdsub", 1600050, fa80f0b0, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
17000
17001 #undef ARM_VARIANT
17002 #define ARM_VARIANT & arm_ext_v5e /* ARM Architecture 5TE. */
17003 #undef THUMB_VARIANT
17004 #define THUMB_VARIANT &arm_ext_v6t2
17005
17006 TUF("pld", 450f000, f810f000, 1, (ADDR), pld, t_pld),
17007 TC3("ldrd", 00000d0, e8500000, 3, (RRnpc_npcsp, oRRnpc_npcsp, ADDRGLDRS),
17008 ldrd, t_ldstd),
17009 TC3("strd", 00000f0, e8400000, 3, (RRnpc_npcsp, oRRnpc_npcsp,
17010 ADDRGLDRS), ldrd, t_ldstd),
17011
17012 TCE("mcrr", c400000, ec400000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
17013 TCE("mrrc", c500000, ec500000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
17014
17015 #undef ARM_VARIANT
17016 #define ARM_VARIANT & arm_ext_v5j /* ARM Architecture 5TEJ. */
17017
17018 TCE("bxj", 12fff20, f3c08f00, 1, (RR), bxj, t_bxj),
17019
17020 #undef ARM_VARIANT
17021 #define ARM_VARIANT & arm_ext_v6 /* ARM V6. */
17022 #undef THUMB_VARIANT
17023 #define THUMB_VARIANT & arm_ext_v6
17024
17025 TUF("cpsie", 1080000, b660, 2, (CPSF, oI31b), cpsi, t_cpsi),
17026 TUF("cpsid", 10c0000, b670, 2, (CPSF, oI31b), cpsi, t_cpsi),
17027 tCE("rev", 6bf0f30, _rev, 2, (RRnpc, RRnpc), rd_rm, t_rev),
17028 tCE("rev16", 6bf0fb0, _rev16, 2, (RRnpc, RRnpc), rd_rm, t_rev),
17029 tCE("revsh", 6ff0fb0, _revsh, 2, (RRnpc, RRnpc), rd_rm, t_rev),
17030 tCE("sxth", 6bf0070, _sxth, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
17031 tCE("uxth", 6ff0070, _uxth, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
17032 tCE("sxtb", 6af0070, _sxtb, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
17033 tCE("uxtb", 6ef0070, _uxtb, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
17034 TUF("setend", 1010000, b650, 1, (ENDI), setend, t_setend),
17035
17036 #undef THUMB_VARIANT
17037 #define THUMB_VARIANT & arm_ext_v6t2
17038
17039 TCE("ldrex", 1900f9f, e8500f00, 2, (RRnpc_npcsp, ADDR), ldrex, t_ldrex),
17040 TCE("strex", 1800f90, e8400000, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
17041 strex, t_strex),
17042 TUF("mcrr2", c400000, fc400000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
17043 TUF("mrrc2", c500000, fc500000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
17044
17045 TCE("ssat", 6a00010, f3000000, 4, (RRnpc, I32, RRnpc, oSHllar),ssat, t_ssat),
17046 TCE("usat", 6e00010, f3800000, 4, (RRnpc, I31, RRnpc, oSHllar),usat, t_usat),
17047
17048 /* ARM V6 not included in V7M. */
17049 #undef THUMB_VARIANT
17050 #define THUMB_VARIANT & arm_ext_v6_notm
17051 TUF("rfeia", 8900a00, e990c000, 1, (RRw), rfe, rfe),
17052 UF(rfeib, 9900a00, 1, (RRw), rfe),
17053 UF(rfeda, 8100a00, 1, (RRw), rfe),
17054 TUF("rfedb", 9100a00, e810c000, 1, (RRw), rfe, rfe),
17055 TUF("rfefd", 8900a00, e990c000, 1, (RRw), rfe, rfe),
17056 UF(rfefa, 9900a00, 1, (RRw), rfe),
17057 UF(rfeea, 8100a00, 1, (RRw), rfe),
17058 TUF("rfeed", 9100a00, e810c000, 1, (RRw), rfe, rfe),
17059 TUF("srsia", 8c00500, e980c000, 2, (oRRw, I31w), srs, srs),
17060 UF(srsib, 9c00500, 2, (oRRw, I31w), srs),
17061 UF(srsda, 8400500, 2, (oRRw, I31w), srs),
17062 TUF("srsdb", 9400500, e800c000, 2, (oRRw, I31w), srs, srs),
17063
17064 /* ARM V6 not included in V7M (eg. integer SIMD). */
17065 #undef THUMB_VARIANT
17066 #define THUMB_VARIANT & arm_ext_v6_dsp
17067 TUF("cps", 1020000, f3af8100, 1, (I31b), imm0, t_cps),
17068 TCE("pkhbt", 6800010, eac00000, 4, (RRnpc, RRnpc, RRnpc, oSHll), pkhbt, t_pkhbt),
17069 TCE("pkhtb", 6800050, eac00020, 4, (RRnpc, RRnpc, RRnpc, oSHar), pkhtb, t_pkhtb),
17070 TCE("qadd16", 6200f10, fa90f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17071 TCE("qadd8", 6200f90, fa80f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17072 TCE("qasx", 6200f30, faa0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17073 /* Old name for QASX. */
17074 TCE("qaddsubx", 6200f30, faa0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17075 TCE("qsax", 6200f50, fae0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17076 /* Old name for QSAX. */
17077 TCE("qsubaddx", 6200f50, fae0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17078 TCE("qsub16", 6200f70, fad0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17079 TCE("qsub8", 6200ff0, fac0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17080 TCE("sadd16", 6100f10, fa90f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17081 TCE("sadd8", 6100f90, fa80f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17082 TCE("sasx", 6100f30, faa0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17083 /* Old name for SASX. */
17084 TCE("saddsubx", 6100f30, faa0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17085 TCE("shadd16", 6300f10, fa90f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17086 TCE("shadd8", 6300f90, fa80f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17087 TCE("shasx", 6300f30, faa0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17088 /* Old name for SHASX. */
17089 TCE("shaddsubx", 6300f30, faa0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17090 TCE("shsax", 6300f50, fae0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17091 /* Old name for SHSAX. */
17092 TCE("shsubaddx", 6300f50, fae0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17093 TCE("shsub16", 6300f70, fad0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17094 TCE("shsub8", 6300ff0, fac0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17095 TCE("ssax", 6100f50, fae0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17096 /* Old name for SSAX. */
17097 TCE("ssubaddx", 6100f50, fae0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17098 TCE("ssub16", 6100f70, fad0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17099 TCE("ssub8", 6100ff0, fac0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17100 TCE("uadd16", 6500f10, fa90f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17101 TCE("uadd8", 6500f90, fa80f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17102 TCE("uasx", 6500f30, faa0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17103 /* Old name for UASX. */
17104 TCE("uaddsubx", 6500f30, faa0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17105 TCE("uhadd16", 6700f10, fa90f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17106 TCE("uhadd8", 6700f90, fa80f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17107 TCE("uhasx", 6700f30, faa0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17108 /* Old name for UHASX. */
17109 TCE("uhaddsubx", 6700f30, faa0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17110 TCE("uhsax", 6700f50, fae0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17111 /* Old name for UHSAX. */
17112 TCE("uhsubaddx", 6700f50, fae0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17113 TCE("uhsub16", 6700f70, fad0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17114 TCE("uhsub8", 6700ff0, fac0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17115 TCE("uqadd16", 6600f10, fa90f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17116 TCE("uqadd8", 6600f90, fa80f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17117 TCE("uqasx", 6600f30, faa0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17118 /* Old name for UQASX. */
17119 TCE("uqaddsubx", 6600f30, faa0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17120 TCE("uqsax", 6600f50, fae0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17121 /* Old name for UQSAX. */
17122 TCE("uqsubaddx", 6600f50, fae0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17123 TCE("uqsub16", 6600f70, fad0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17124 TCE("uqsub8", 6600ff0, fac0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17125 TCE("usub16", 6500f70, fad0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17126 TCE("usax", 6500f50, fae0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17127 /* Old name for USAX. */
17128 TCE("usubaddx", 6500f50, fae0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17129 TCE("usub8", 6500ff0, fac0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17130 TCE("sxtah", 6b00070, fa00f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
17131 TCE("sxtab16", 6800070, fa20f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
17132 TCE("sxtab", 6a00070, fa40f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
17133 TCE("sxtb16", 68f0070, fa2ff080, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
17134 TCE("uxtah", 6f00070, fa10f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
17135 TCE("uxtab16", 6c00070, fa30f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
17136 TCE("uxtab", 6e00070, fa50f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
17137 TCE("uxtb16", 6cf0070, fa3ff080, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
17138 TCE("sel", 6800fb0, faa0f080, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17139 TCE("smlad", 7000010, fb200000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
17140 TCE("smladx", 7000030, fb200010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
17141 TCE("smlald", 7400010, fbc000c0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
17142 TCE("smlaldx", 7400030, fbc000d0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
17143 TCE("smlsd", 7000050, fb400000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
17144 TCE("smlsdx", 7000070, fb400010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
17145 TCE("smlsld", 7400050, fbd000c0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
17146 TCE("smlsldx", 7400070, fbd000d0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
17147 TCE("smmla", 7500010, fb500000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
17148 TCE("smmlar", 7500030, fb500010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
17149 TCE("smmls", 75000d0, fb600000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
17150 TCE("smmlsr", 75000f0, fb600010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
17151 TCE("smmul", 750f010, fb50f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17152 TCE("smmulr", 750f030, fb50f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17153 TCE("smuad", 700f010, fb20f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17154 TCE("smuadx", 700f030, fb20f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17155 TCE("smusd", 700f050, fb40f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17156 TCE("smusdx", 700f070, fb40f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17157 TCE("ssat16", 6a00f30, f3200000, 3, (RRnpc, I16, RRnpc), ssat16, t_ssat16),
17158 TCE("umaal", 0400090, fbe00060, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal, t_mlal),
17159 TCE("usad8", 780f010, fb70f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17160 TCE("usada8", 7800010, fb700000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
17161 TCE("usat16", 6e00f30, f3a00000, 3, (RRnpc, I15, RRnpc), usat16, t_usat16),
17162
17163 #undef ARM_VARIANT
17164 #define ARM_VARIANT & arm_ext_v6k
17165 #undef THUMB_VARIANT
17166 #define THUMB_VARIANT & arm_ext_v6k
17167
17168 tCE("yield", 320f001, _yield, 0, (), noargs, t_hint),
17169 tCE("wfe", 320f002, _wfe, 0, (), noargs, t_hint),
17170 tCE("wfi", 320f003, _wfi, 0, (), noargs, t_hint),
17171 tCE("sev", 320f004, _sev, 0, (), noargs, t_hint),
17172
17173 #undef THUMB_VARIANT
17174 #define THUMB_VARIANT & arm_ext_v6_notm
17175 TCE("ldrexd", 1b00f9f, e8d0007f, 3, (RRnpc_npcsp, oRRnpc_npcsp, RRnpcb),
17176 ldrexd, t_ldrexd),
17177 TCE("strexd", 1a00f90, e8c00070, 4, (RRnpc_npcsp, RRnpc_npcsp, oRRnpc_npcsp,
17178 RRnpcb), strexd, t_strexd),
17179
17180 #undef THUMB_VARIANT
17181 #define THUMB_VARIANT & arm_ext_v6t2
17182 TCE("ldrexb", 1d00f9f, e8d00f4f, 2, (RRnpc_npcsp,RRnpcb),
17183 rd_rn, rd_rn),
17184 TCE("ldrexh", 1f00f9f, e8d00f5f, 2, (RRnpc_npcsp, RRnpcb),
17185 rd_rn, rd_rn),
17186 TCE("strexb", 1c00f90, e8c00f40, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
17187 strex, rm_rd_rn),
17188 TCE("strexh", 1e00f90, e8c00f50, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
17189 strex, rm_rd_rn),
17190 TUF("clrex", 57ff01f, f3bf8f2f, 0, (), noargs, noargs),
17191
17192 #undef ARM_VARIANT
17193 #define ARM_VARIANT & arm_ext_sec
17194 #undef THUMB_VARIANT
17195 #define THUMB_VARIANT & arm_ext_sec
17196
17197 TCE("smc", 1600070, f7f08000, 1, (EXPi), smc, t_smc),
17198
17199 #undef ARM_VARIANT
17200 #define ARM_VARIANT & arm_ext_virt
17201 #undef THUMB_VARIANT
17202 #define THUMB_VARIANT & arm_ext_virt
17203
17204 TCE("hvc", 1400070, f7e08000, 1, (EXPi), hvc, t_hvc),
17205 TCE("eret", 160006e, f3de8f00, 0, (), noargs, noargs),
17206
17207 #undef ARM_VARIANT
17208 #define ARM_VARIANT & arm_ext_v6t2
17209 #undef THUMB_VARIANT
17210 #define THUMB_VARIANT & arm_ext_v6t2
17211
17212 TCE("bfc", 7c0001f, f36f0000, 3, (RRnpc, I31, I32), bfc, t_bfc),
17213 TCE("bfi", 7c00010, f3600000, 4, (RRnpc, RRnpc_I0, I31, I32), bfi, t_bfi),
17214 TCE("sbfx", 7a00050, f3400000, 4, (RR, RR, I31, I32), bfx, t_bfx),
17215 TCE("ubfx", 7e00050, f3c00000, 4, (RR, RR, I31, I32), bfx, t_bfx),
17216
17217 TCE("mls", 0600090, fb000010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas, t_mla),
17218 TCE("movw", 3000000, f2400000, 2, (RRnpc, HALF), mov16, t_mov16),
17219 TCE("movt", 3400000, f2c00000, 2, (RRnpc, HALF), mov16, t_mov16),
17220 TCE("rbit", 6ff0f30, fa90f0a0, 2, (RR, RR), rd_rm, t_rbit),
17221
17222 TC3("ldrht", 03000b0, f8300e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
17223 TC3("ldrsht", 03000f0, f9300e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
17224 TC3("ldrsbt", 03000d0, f9100e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
17225 TC3("strht", 02000b0, f8200e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
17226
17227 /* Thumb-only instructions. */
17228 #undef ARM_VARIANT
17229 #define ARM_VARIANT NULL
17230 TUE("cbnz", 0, b900, 2, (RR, EXP), 0, t_cbz),
17231 TUE("cbz", 0, b100, 2, (RR, EXP), 0, t_cbz),
17232
17233 /* ARM does not really have an IT instruction, so always allow it.
17234 The opcode is copied from Thumb in order to allow warnings in
17235 -mimplicit-it=[never | arm] modes. */
17236 #undef ARM_VARIANT
17237 #define ARM_VARIANT & arm_ext_v1
17238
17239 TUE("it", bf08, bf08, 1, (COND), it, t_it),
17240 TUE("itt", bf0c, bf0c, 1, (COND), it, t_it),
17241 TUE("ite", bf04, bf04, 1, (COND), it, t_it),
17242 TUE("ittt", bf0e, bf0e, 1, (COND), it, t_it),
17243 TUE("itet", bf06, bf06, 1, (COND), it, t_it),
17244 TUE("itte", bf0a, bf0a, 1, (COND), it, t_it),
17245 TUE("itee", bf02, bf02, 1, (COND), it, t_it),
17246 TUE("itttt", bf0f, bf0f, 1, (COND), it, t_it),
17247 TUE("itett", bf07, bf07, 1, (COND), it, t_it),
17248 TUE("ittet", bf0b, bf0b, 1, (COND), it, t_it),
17249 TUE("iteet", bf03, bf03, 1, (COND), it, t_it),
17250 TUE("ittte", bf0d, bf0d, 1, (COND), it, t_it),
17251 TUE("itete", bf05, bf05, 1, (COND), it, t_it),
17252 TUE("ittee", bf09, bf09, 1, (COND), it, t_it),
17253 TUE("iteee", bf01, bf01, 1, (COND), it, t_it),
17254 /* ARM/Thumb-2 instructions with no Thumb-1 equivalent. */
17255 TC3("rrx", 01a00060, ea4f0030, 2, (RR, RR), rd_rm, t_rrx),
17256 TC3("rrxs", 01b00060, ea5f0030, 2, (RR, RR), rd_rm, t_rrx),
17257
17258 /* Thumb2 only instructions. */
17259 #undef ARM_VARIANT
17260 #define ARM_VARIANT NULL
17261
17262 TCE("addw", 0, f2000000, 3, (RR, RR, EXPi), 0, t_add_sub_w),
17263 TCE("subw", 0, f2a00000, 3, (RR, RR, EXPi), 0, t_add_sub_w),
17264 TCE("orn", 0, ea600000, 3, (RR, oRR, SH), 0, t_orn),
17265 TCE("orns", 0, ea700000, 3, (RR, oRR, SH), 0, t_orn),
17266 TCE("tbb", 0, e8d0f000, 1, (TB), 0, t_tb),
17267 TCE("tbh", 0, e8d0f010, 1, (TB), 0, t_tb),
17268
17269 /* Hardware division instructions. */
17270 #undef ARM_VARIANT
17271 #define ARM_VARIANT & arm_ext_adiv
17272 #undef THUMB_VARIANT
17273 #define THUMB_VARIANT & arm_ext_div
17274
17275 TCE("sdiv", 710f010, fb90f0f0, 3, (RR, oRR, RR), div, t_div),
17276 TCE("udiv", 730f010, fbb0f0f0, 3, (RR, oRR, RR), div, t_div),
17277
17278 /* ARM V6M/V7 instructions. */
17279 #undef ARM_VARIANT
17280 #define ARM_VARIANT & arm_ext_barrier
17281 #undef THUMB_VARIANT
17282 #define THUMB_VARIANT & arm_ext_barrier
17283
17284 TUF("dmb", 57ff050, f3bf8f50, 1, (oBARRIER_I15), barrier, t_barrier),
17285 TUF("dsb", 57ff040, f3bf8f40, 1, (oBARRIER_I15), barrier, t_barrier),
17286 TUF("isb", 57ff060, f3bf8f60, 1, (oBARRIER_I15), barrier, t_barrier),
17287
17288 /* ARM V7 instructions. */
17289 #undef ARM_VARIANT
17290 #define ARM_VARIANT & arm_ext_v7
17291 #undef THUMB_VARIANT
17292 #define THUMB_VARIANT & arm_ext_v7
17293
17294 TUF("pli", 450f000, f910f000, 1, (ADDR), pli, t_pld),
17295 TCE("dbg", 320f0f0, f3af80f0, 1, (I15), dbg, t_dbg),
17296
17297 #undef ARM_VARIANT
17298 #define ARM_VARIANT & arm_ext_mp
17299 #undef THUMB_VARIANT
17300 #define THUMB_VARIANT & arm_ext_mp
17301
17302 TUF("pldw", 410f000, f830f000, 1, (ADDR), pld, t_pld),
17303
17304 #undef ARM_VARIANT
17305 #define ARM_VARIANT & fpu_fpa_ext_v1 /* Core FPA instruction set (V1). */
17306
17307 cCE("wfs", e200110, 1, (RR), rd),
17308 cCE("rfs", e300110, 1, (RR), rd),
17309 cCE("wfc", e400110, 1, (RR), rd),
17310 cCE("rfc", e500110, 1, (RR), rd),
17311
17312 cCL("ldfs", c100100, 2, (RF, ADDRGLDC), rd_cpaddr),
17313 cCL("ldfd", c108100, 2, (RF, ADDRGLDC), rd_cpaddr),
17314 cCL("ldfe", c500100, 2, (RF, ADDRGLDC), rd_cpaddr),
17315 cCL("ldfp", c508100, 2, (RF, ADDRGLDC), rd_cpaddr),
17316
17317 cCL("stfs", c000100, 2, (RF, ADDRGLDC), rd_cpaddr),
17318 cCL("stfd", c008100, 2, (RF, ADDRGLDC), rd_cpaddr),
17319 cCL("stfe", c400100, 2, (RF, ADDRGLDC), rd_cpaddr),
17320 cCL("stfp", c408100, 2, (RF, ADDRGLDC), rd_cpaddr),
17321
17322 cCL("mvfs", e008100, 2, (RF, RF_IF), rd_rm),
17323 cCL("mvfsp", e008120, 2, (RF, RF_IF), rd_rm),
17324 cCL("mvfsm", e008140, 2, (RF, RF_IF), rd_rm),
17325 cCL("mvfsz", e008160, 2, (RF, RF_IF), rd_rm),
17326 cCL("mvfd", e008180, 2, (RF, RF_IF), rd_rm),
17327 cCL("mvfdp", e0081a0, 2, (RF, RF_IF), rd_rm),
17328 cCL("mvfdm", e0081c0, 2, (RF, RF_IF), rd_rm),
17329 cCL("mvfdz", e0081e0, 2, (RF, RF_IF), rd_rm),
17330 cCL("mvfe", e088100, 2, (RF, RF_IF), rd_rm),
17331 cCL("mvfep", e088120, 2, (RF, RF_IF), rd_rm),
17332 cCL("mvfem", e088140, 2, (RF, RF_IF), rd_rm),
17333 cCL("mvfez", e088160, 2, (RF, RF_IF), rd_rm),
17334
17335 cCL("mnfs", e108100, 2, (RF, RF_IF), rd_rm),
17336 cCL("mnfsp", e108120, 2, (RF, RF_IF), rd_rm),
17337 cCL("mnfsm", e108140, 2, (RF, RF_IF), rd_rm),
17338 cCL("mnfsz", e108160, 2, (RF, RF_IF), rd_rm),
17339 cCL("mnfd", e108180, 2, (RF, RF_IF), rd_rm),
17340 cCL("mnfdp", e1081a0, 2, (RF, RF_IF), rd_rm),
17341 cCL("mnfdm", e1081c0, 2, (RF, RF_IF), rd_rm),
17342 cCL("mnfdz", e1081e0, 2, (RF, RF_IF), rd_rm),
17343 cCL("mnfe", e188100, 2, (RF, RF_IF), rd_rm),
17344 cCL("mnfep", e188120, 2, (RF, RF_IF), rd_rm),
17345 cCL("mnfem", e188140, 2, (RF, RF_IF), rd_rm),
17346 cCL("mnfez", e188160, 2, (RF, RF_IF), rd_rm),
17347
17348 cCL("abss", e208100, 2, (RF, RF_IF), rd_rm),
17349 cCL("abssp", e208120, 2, (RF, RF_IF), rd_rm),
17350 cCL("abssm", e208140, 2, (RF, RF_IF), rd_rm),
17351 cCL("abssz", e208160, 2, (RF, RF_IF), rd_rm),
17352 cCL("absd", e208180, 2, (RF, RF_IF), rd_rm),
17353 cCL("absdp", e2081a0, 2, (RF, RF_IF), rd_rm),
17354 cCL("absdm", e2081c0, 2, (RF, RF_IF), rd_rm),
17355 cCL("absdz", e2081e0, 2, (RF, RF_IF), rd_rm),
17356 cCL("abse", e288100, 2, (RF, RF_IF), rd_rm),
17357 cCL("absep", e288120, 2, (RF, RF_IF), rd_rm),
17358 cCL("absem", e288140, 2, (RF, RF_IF), rd_rm),
17359 cCL("absez", e288160, 2, (RF, RF_IF), rd_rm),
17360
17361 cCL("rnds", e308100, 2, (RF, RF_IF), rd_rm),
17362 cCL("rndsp", e308120, 2, (RF, RF_IF), rd_rm),
17363 cCL("rndsm", e308140, 2, (RF, RF_IF), rd_rm),
17364 cCL("rndsz", e308160, 2, (RF, RF_IF), rd_rm),
17365 cCL("rndd", e308180, 2, (RF, RF_IF), rd_rm),
17366 cCL("rnddp", e3081a0, 2, (RF, RF_IF), rd_rm),
17367 cCL("rnddm", e3081c0, 2, (RF, RF_IF), rd_rm),
17368 cCL("rnddz", e3081e0, 2, (RF, RF_IF), rd_rm),
17369 cCL("rnde", e388100, 2, (RF, RF_IF), rd_rm),
17370 cCL("rndep", e388120, 2, (RF, RF_IF), rd_rm),
17371 cCL("rndem", e388140, 2, (RF, RF_IF), rd_rm),
17372 cCL("rndez", e388160, 2, (RF, RF_IF), rd_rm),
17373
17374 cCL("sqts", e408100, 2, (RF, RF_IF), rd_rm),
17375 cCL("sqtsp", e408120, 2, (RF, RF_IF), rd_rm),
17376 cCL("sqtsm", e408140, 2, (RF, RF_IF), rd_rm),
17377 cCL("sqtsz", e408160, 2, (RF, RF_IF), rd_rm),
17378 cCL("sqtd", e408180, 2, (RF, RF_IF), rd_rm),
17379 cCL("sqtdp", e4081a0, 2, (RF, RF_IF), rd_rm),
17380 cCL("sqtdm", e4081c0, 2, (RF, RF_IF), rd_rm),
17381 cCL("sqtdz", e4081e0, 2, (RF, RF_IF), rd_rm),
17382 cCL("sqte", e488100, 2, (RF, RF_IF), rd_rm),
17383 cCL("sqtep", e488120, 2, (RF, RF_IF), rd_rm),
17384 cCL("sqtem", e488140, 2, (RF, RF_IF), rd_rm),
17385 cCL("sqtez", e488160, 2, (RF, RF_IF), rd_rm),
17386
17387 cCL("logs", e508100, 2, (RF, RF_IF), rd_rm),
17388 cCL("logsp", e508120, 2, (RF, RF_IF), rd_rm),
17389 cCL("logsm", e508140, 2, (RF, RF_IF), rd_rm),
17390 cCL("logsz", e508160, 2, (RF, RF_IF), rd_rm),
17391 cCL("logd", e508180, 2, (RF, RF_IF), rd_rm),
17392 cCL("logdp", e5081a0, 2, (RF, RF_IF), rd_rm),
17393 cCL("logdm", e5081c0, 2, (RF, RF_IF), rd_rm),
17394 cCL("logdz", e5081e0, 2, (RF, RF_IF), rd_rm),
17395 cCL("loge", e588100, 2, (RF, RF_IF), rd_rm),
17396 cCL("logep", e588120, 2, (RF, RF_IF), rd_rm),
17397 cCL("logem", e588140, 2, (RF, RF_IF), rd_rm),
17398 cCL("logez", e588160, 2, (RF, RF_IF), rd_rm),
17399
17400 cCL("lgns", e608100, 2, (RF, RF_IF), rd_rm),
17401 cCL("lgnsp", e608120, 2, (RF, RF_IF), rd_rm),
17402 cCL("lgnsm", e608140, 2, (RF, RF_IF), rd_rm),
17403 cCL("lgnsz", e608160, 2, (RF, RF_IF), rd_rm),
17404 cCL("lgnd", e608180, 2, (RF, RF_IF), rd_rm),
17405 cCL("lgndp", e6081a0, 2, (RF, RF_IF), rd_rm),
17406 cCL("lgndm", e6081c0, 2, (RF, RF_IF), rd_rm),
17407 cCL("lgndz", e6081e0, 2, (RF, RF_IF), rd_rm),
17408 cCL("lgne", e688100, 2, (RF, RF_IF), rd_rm),
17409 cCL("lgnep", e688120, 2, (RF, RF_IF), rd_rm),
17410 cCL("lgnem", e688140, 2, (RF, RF_IF), rd_rm),
17411 cCL("lgnez", e688160, 2, (RF, RF_IF), rd_rm),
17412
17413 cCL("exps", e708100, 2, (RF, RF_IF), rd_rm),
17414 cCL("expsp", e708120, 2, (RF, RF_IF), rd_rm),
17415 cCL("expsm", e708140, 2, (RF, RF_IF), rd_rm),
17416 cCL("expsz", e708160, 2, (RF, RF_IF), rd_rm),
17417 cCL("expd", e708180, 2, (RF, RF_IF), rd_rm),
17418 cCL("expdp", e7081a0, 2, (RF, RF_IF), rd_rm),
17419 cCL("expdm", e7081c0, 2, (RF, RF_IF), rd_rm),
17420 cCL("expdz", e7081e0, 2, (RF, RF_IF), rd_rm),
17421 cCL("expe", e788100, 2, (RF, RF_IF), rd_rm),
17422 cCL("expep", e788120, 2, (RF, RF_IF), rd_rm),
17423 cCL("expem", e788140, 2, (RF, RF_IF), rd_rm),
17424 cCL("expdz", e788160, 2, (RF, RF_IF), rd_rm),
17425
17426 cCL("sins", e808100, 2, (RF, RF_IF), rd_rm),
17427 cCL("sinsp", e808120, 2, (RF, RF_IF), rd_rm),
17428 cCL("sinsm", e808140, 2, (RF, RF_IF), rd_rm),
17429 cCL("sinsz", e808160, 2, (RF, RF_IF), rd_rm),
17430 cCL("sind", e808180, 2, (RF, RF_IF), rd_rm),
17431 cCL("sindp", e8081a0, 2, (RF, RF_IF), rd_rm),
17432 cCL("sindm", e8081c0, 2, (RF, RF_IF), rd_rm),
17433 cCL("sindz", e8081e0, 2, (RF, RF_IF), rd_rm),
17434 cCL("sine", e888100, 2, (RF, RF_IF), rd_rm),
17435 cCL("sinep", e888120, 2, (RF, RF_IF), rd_rm),
17436 cCL("sinem", e888140, 2, (RF, RF_IF), rd_rm),
17437 cCL("sinez", e888160, 2, (RF, RF_IF), rd_rm),
17438
17439 cCL("coss", e908100, 2, (RF, RF_IF), rd_rm),
17440 cCL("cossp", e908120, 2, (RF, RF_IF), rd_rm),
17441 cCL("cossm", e908140, 2, (RF, RF_IF), rd_rm),
17442 cCL("cossz", e908160, 2, (RF, RF_IF), rd_rm),
17443 cCL("cosd", e908180, 2, (RF, RF_IF), rd_rm),
17444 cCL("cosdp", e9081a0, 2, (RF, RF_IF), rd_rm),
17445 cCL("cosdm", e9081c0, 2, (RF, RF_IF), rd_rm),
17446 cCL("cosdz", e9081e0, 2, (RF, RF_IF), rd_rm),
17447 cCL("cose", e988100, 2, (RF, RF_IF), rd_rm),
17448 cCL("cosep", e988120, 2, (RF, RF_IF), rd_rm),
17449 cCL("cosem", e988140, 2, (RF, RF_IF), rd_rm),
17450 cCL("cosez", e988160, 2, (RF, RF_IF), rd_rm),
17451
17452 cCL("tans", ea08100, 2, (RF, RF_IF), rd_rm),
17453 cCL("tansp", ea08120, 2, (RF, RF_IF), rd_rm),
17454 cCL("tansm", ea08140, 2, (RF, RF_IF), rd_rm),
17455 cCL("tansz", ea08160, 2, (RF, RF_IF), rd_rm),
17456 cCL("tand", ea08180, 2, (RF, RF_IF), rd_rm),
17457 cCL("tandp", ea081a0, 2, (RF, RF_IF), rd_rm),
17458 cCL("tandm", ea081c0, 2, (RF, RF_IF), rd_rm),
17459 cCL("tandz", ea081e0, 2, (RF, RF_IF), rd_rm),
17460 cCL("tane", ea88100, 2, (RF, RF_IF), rd_rm),
17461 cCL("tanep", ea88120, 2, (RF, RF_IF), rd_rm),
17462 cCL("tanem", ea88140, 2, (RF, RF_IF), rd_rm),
17463 cCL("tanez", ea88160, 2, (RF, RF_IF), rd_rm),
17464
17465 cCL("asns", eb08100, 2, (RF, RF_IF), rd_rm),
17466 cCL("asnsp", eb08120, 2, (RF, RF_IF), rd_rm),
17467 cCL("asnsm", eb08140, 2, (RF, RF_IF), rd_rm),
17468 cCL("asnsz", eb08160, 2, (RF, RF_IF), rd_rm),
17469 cCL("asnd", eb08180, 2, (RF, RF_IF), rd_rm),
17470 cCL("asndp", eb081a0, 2, (RF, RF_IF), rd_rm),
17471 cCL("asndm", eb081c0, 2, (RF, RF_IF), rd_rm),
17472 cCL("asndz", eb081e0, 2, (RF, RF_IF), rd_rm),
17473 cCL("asne", eb88100, 2, (RF, RF_IF), rd_rm),
17474 cCL("asnep", eb88120, 2, (RF, RF_IF), rd_rm),
17475 cCL("asnem", eb88140, 2, (RF, RF_IF), rd_rm),
17476 cCL("asnez", eb88160, 2, (RF, RF_IF), rd_rm),
17477
17478 cCL("acss", ec08100, 2, (RF, RF_IF), rd_rm),
17479 cCL("acssp", ec08120, 2, (RF, RF_IF), rd_rm),
17480 cCL("acssm", ec08140, 2, (RF, RF_IF), rd_rm),
17481 cCL("acssz", ec08160, 2, (RF, RF_IF), rd_rm),
17482 cCL("acsd", ec08180, 2, (RF, RF_IF), rd_rm),
17483 cCL("acsdp", ec081a0, 2, (RF, RF_IF), rd_rm),
17484 cCL("acsdm", ec081c0, 2, (RF, RF_IF), rd_rm),
17485 cCL("acsdz", ec081e0, 2, (RF, RF_IF), rd_rm),
17486 cCL("acse", ec88100, 2, (RF, RF_IF), rd_rm),
17487 cCL("acsep", ec88120, 2, (RF, RF_IF), rd_rm),
17488 cCL("acsem", ec88140, 2, (RF, RF_IF), rd_rm),
17489 cCL("acsez", ec88160, 2, (RF, RF_IF), rd_rm),
17490
17491 cCL("atns", ed08100, 2, (RF, RF_IF), rd_rm),
17492 cCL("atnsp", ed08120, 2, (RF, RF_IF), rd_rm),
17493 cCL("atnsm", ed08140, 2, (RF, RF_IF), rd_rm),
17494 cCL("atnsz", ed08160, 2, (RF, RF_IF), rd_rm),
17495 cCL("atnd", ed08180, 2, (RF, RF_IF), rd_rm),
17496 cCL("atndp", ed081a0, 2, (RF, RF_IF), rd_rm),
17497 cCL("atndm", ed081c0, 2, (RF, RF_IF), rd_rm),
17498 cCL("atndz", ed081e0, 2, (RF, RF_IF), rd_rm),
17499 cCL("atne", ed88100, 2, (RF, RF_IF), rd_rm),
17500 cCL("atnep", ed88120, 2, (RF, RF_IF), rd_rm),
17501 cCL("atnem", ed88140, 2, (RF, RF_IF), rd_rm),
17502 cCL("atnez", ed88160, 2, (RF, RF_IF), rd_rm),
17503
17504 cCL("urds", ee08100, 2, (RF, RF_IF), rd_rm),
17505 cCL("urdsp", ee08120, 2, (RF, RF_IF), rd_rm),
17506 cCL("urdsm", ee08140, 2, (RF, RF_IF), rd_rm),
17507 cCL("urdsz", ee08160, 2, (RF, RF_IF), rd_rm),
17508 cCL("urdd", ee08180, 2, (RF, RF_IF), rd_rm),
17509 cCL("urddp", ee081a0, 2, (RF, RF_IF), rd_rm),
17510 cCL("urddm", ee081c0, 2, (RF, RF_IF), rd_rm),
17511 cCL("urddz", ee081e0, 2, (RF, RF_IF), rd_rm),
17512 cCL("urde", ee88100, 2, (RF, RF_IF), rd_rm),
17513 cCL("urdep", ee88120, 2, (RF, RF_IF), rd_rm),
17514 cCL("urdem", ee88140, 2, (RF, RF_IF), rd_rm),
17515 cCL("urdez", ee88160, 2, (RF, RF_IF), rd_rm),
17516
17517 cCL("nrms", ef08100, 2, (RF, RF_IF), rd_rm),
17518 cCL("nrmsp", ef08120, 2, (RF, RF_IF), rd_rm),
17519 cCL("nrmsm", ef08140, 2, (RF, RF_IF), rd_rm),
17520 cCL("nrmsz", ef08160, 2, (RF, RF_IF), rd_rm),
17521 cCL("nrmd", ef08180, 2, (RF, RF_IF), rd_rm),
17522 cCL("nrmdp", ef081a0, 2, (RF, RF_IF), rd_rm),
17523 cCL("nrmdm", ef081c0, 2, (RF, RF_IF), rd_rm),
17524 cCL("nrmdz", ef081e0, 2, (RF, RF_IF), rd_rm),
17525 cCL("nrme", ef88100, 2, (RF, RF_IF), rd_rm),
17526 cCL("nrmep", ef88120, 2, (RF, RF_IF), rd_rm),
17527 cCL("nrmem", ef88140, 2, (RF, RF_IF), rd_rm),
17528 cCL("nrmez", ef88160, 2, (RF, RF_IF), rd_rm),
17529
17530 cCL("adfs", e000100, 3, (RF, RF, RF_IF), rd_rn_rm),
17531 cCL("adfsp", e000120, 3, (RF, RF, RF_IF), rd_rn_rm),
17532 cCL("adfsm", e000140, 3, (RF, RF, RF_IF), rd_rn_rm),
17533 cCL("adfsz", e000160, 3, (RF, RF, RF_IF), rd_rn_rm),
17534 cCL("adfd", e000180, 3, (RF, RF, RF_IF), rd_rn_rm),
17535 cCL("adfdp", e0001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17536 cCL("adfdm", e0001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17537 cCL("adfdz", e0001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17538 cCL("adfe", e080100, 3, (RF, RF, RF_IF), rd_rn_rm),
17539 cCL("adfep", e080120, 3, (RF, RF, RF_IF), rd_rn_rm),
17540 cCL("adfem", e080140, 3, (RF, RF, RF_IF), rd_rn_rm),
17541 cCL("adfez", e080160, 3, (RF, RF, RF_IF), rd_rn_rm),
17542
17543 cCL("sufs", e200100, 3, (RF, RF, RF_IF), rd_rn_rm),
17544 cCL("sufsp", e200120, 3, (RF, RF, RF_IF), rd_rn_rm),
17545 cCL("sufsm", e200140, 3, (RF, RF, RF_IF), rd_rn_rm),
17546 cCL("sufsz", e200160, 3, (RF, RF, RF_IF), rd_rn_rm),
17547 cCL("sufd", e200180, 3, (RF, RF, RF_IF), rd_rn_rm),
17548 cCL("sufdp", e2001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17549 cCL("sufdm", e2001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17550 cCL("sufdz", e2001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17551 cCL("sufe", e280100, 3, (RF, RF, RF_IF), rd_rn_rm),
17552 cCL("sufep", e280120, 3, (RF, RF, RF_IF), rd_rn_rm),
17553 cCL("sufem", e280140, 3, (RF, RF, RF_IF), rd_rn_rm),
17554 cCL("sufez", e280160, 3, (RF, RF, RF_IF), rd_rn_rm),
17555
17556 cCL("rsfs", e300100, 3, (RF, RF, RF_IF), rd_rn_rm),
17557 cCL("rsfsp", e300120, 3, (RF, RF, RF_IF), rd_rn_rm),
17558 cCL("rsfsm", e300140, 3, (RF, RF, RF_IF), rd_rn_rm),
17559 cCL("rsfsz", e300160, 3, (RF, RF, RF_IF), rd_rn_rm),
17560 cCL("rsfd", e300180, 3, (RF, RF, RF_IF), rd_rn_rm),
17561 cCL("rsfdp", e3001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17562 cCL("rsfdm", e3001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17563 cCL("rsfdz", e3001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17564 cCL("rsfe", e380100, 3, (RF, RF, RF_IF), rd_rn_rm),
17565 cCL("rsfep", e380120, 3, (RF, RF, RF_IF), rd_rn_rm),
17566 cCL("rsfem", e380140, 3, (RF, RF, RF_IF), rd_rn_rm),
17567 cCL("rsfez", e380160, 3, (RF, RF, RF_IF), rd_rn_rm),
17568
17569 cCL("mufs", e100100, 3, (RF, RF, RF_IF), rd_rn_rm),
17570 cCL("mufsp", e100120, 3, (RF, RF, RF_IF), rd_rn_rm),
17571 cCL("mufsm", e100140, 3, (RF, RF, RF_IF), rd_rn_rm),
17572 cCL("mufsz", e100160, 3, (RF, RF, RF_IF), rd_rn_rm),
17573 cCL("mufd", e100180, 3, (RF, RF, RF_IF), rd_rn_rm),
17574 cCL("mufdp", e1001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17575 cCL("mufdm", e1001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17576 cCL("mufdz", e1001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17577 cCL("mufe", e180100, 3, (RF, RF, RF_IF), rd_rn_rm),
17578 cCL("mufep", e180120, 3, (RF, RF, RF_IF), rd_rn_rm),
17579 cCL("mufem", e180140, 3, (RF, RF, RF_IF), rd_rn_rm),
17580 cCL("mufez", e180160, 3, (RF, RF, RF_IF), rd_rn_rm),
17581
17582 cCL("dvfs", e400100, 3, (RF, RF, RF_IF), rd_rn_rm),
17583 cCL("dvfsp", e400120, 3, (RF, RF, RF_IF), rd_rn_rm),
17584 cCL("dvfsm", e400140, 3, (RF, RF, RF_IF), rd_rn_rm),
17585 cCL("dvfsz", e400160, 3, (RF, RF, RF_IF), rd_rn_rm),
17586 cCL("dvfd", e400180, 3, (RF, RF, RF_IF), rd_rn_rm),
17587 cCL("dvfdp", e4001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17588 cCL("dvfdm", e4001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17589 cCL("dvfdz", e4001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17590 cCL("dvfe", e480100, 3, (RF, RF, RF_IF), rd_rn_rm),
17591 cCL("dvfep", e480120, 3, (RF, RF, RF_IF), rd_rn_rm),
17592 cCL("dvfem", e480140, 3, (RF, RF, RF_IF), rd_rn_rm),
17593 cCL("dvfez", e480160, 3, (RF, RF, RF_IF), rd_rn_rm),
17594
17595 cCL("rdfs", e500100, 3, (RF, RF, RF_IF), rd_rn_rm),
17596 cCL("rdfsp", e500120, 3, (RF, RF, RF_IF), rd_rn_rm),
17597 cCL("rdfsm", e500140, 3, (RF, RF, RF_IF), rd_rn_rm),
17598 cCL("rdfsz", e500160, 3, (RF, RF, RF_IF), rd_rn_rm),
17599 cCL("rdfd", e500180, 3, (RF, RF, RF_IF), rd_rn_rm),
17600 cCL("rdfdp", e5001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17601 cCL("rdfdm", e5001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17602 cCL("rdfdz", e5001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17603 cCL("rdfe", e580100, 3, (RF, RF, RF_IF), rd_rn_rm),
17604 cCL("rdfep", e580120, 3, (RF, RF, RF_IF), rd_rn_rm),
17605 cCL("rdfem", e580140, 3, (RF, RF, RF_IF), rd_rn_rm),
17606 cCL("rdfez", e580160, 3, (RF, RF, RF_IF), rd_rn_rm),
17607
17608 cCL("pows", e600100, 3, (RF, RF, RF_IF), rd_rn_rm),
17609 cCL("powsp", e600120, 3, (RF, RF, RF_IF), rd_rn_rm),
17610 cCL("powsm", e600140, 3, (RF, RF, RF_IF), rd_rn_rm),
17611 cCL("powsz", e600160, 3, (RF, RF, RF_IF), rd_rn_rm),
17612 cCL("powd", e600180, 3, (RF, RF, RF_IF), rd_rn_rm),
17613 cCL("powdp", e6001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17614 cCL("powdm", e6001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17615 cCL("powdz", e6001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17616 cCL("powe", e680100, 3, (RF, RF, RF_IF), rd_rn_rm),
17617 cCL("powep", e680120, 3, (RF, RF, RF_IF), rd_rn_rm),
17618 cCL("powem", e680140, 3, (RF, RF, RF_IF), rd_rn_rm),
17619 cCL("powez", e680160, 3, (RF, RF, RF_IF), rd_rn_rm),
17620
17621 cCL("rpws", e700100, 3, (RF, RF, RF_IF), rd_rn_rm),
17622 cCL("rpwsp", e700120, 3, (RF, RF, RF_IF), rd_rn_rm),
17623 cCL("rpwsm", e700140, 3, (RF, RF, RF_IF), rd_rn_rm),
17624 cCL("rpwsz", e700160, 3, (RF, RF, RF_IF), rd_rn_rm),
17625 cCL("rpwd", e700180, 3, (RF, RF, RF_IF), rd_rn_rm),
17626 cCL("rpwdp", e7001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17627 cCL("rpwdm", e7001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17628 cCL("rpwdz", e7001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17629 cCL("rpwe", e780100, 3, (RF, RF, RF_IF), rd_rn_rm),
17630 cCL("rpwep", e780120, 3, (RF, RF, RF_IF), rd_rn_rm),
17631 cCL("rpwem", e780140, 3, (RF, RF, RF_IF), rd_rn_rm),
17632 cCL("rpwez", e780160, 3, (RF, RF, RF_IF), rd_rn_rm),
17633
17634 cCL("rmfs", e800100, 3, (RF, RF, RF_IF), rd_rn_rm),
17635 cCL("rmfsp", e800120, 3, (RF, RF, RF_IF), rd_rn_rm),
17636 cCL("rmfsm", e800140, 3, (RF, RF, RF_IF), rd_rn_rm),
17637 cCL("rmfsz", e800160, 3, (RF, RF, RF_IF), rd_rn_rm),
17638 cCL("rmfd", e800180, 3, (RF, RF, RF_IF), rd_rn_rm),
17639 cCL("rmfdp", e8001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17640 cCL("rmfdm", e8001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17641 cCL("rmfdz", e8001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17642 cCL("rmfe", e880100, 3, (RF, RF, RF_IF), rd_rn_rm),
17643 cCL("rmfep", e880120, 3, (RF, RF, RF_IF), rd_rn_rm),
17644 cCL("rmfem", e880140, 3, (RF, RF, RF_IF), rd_rn_rm),
17645 cCL("rmfez", e880160, 3, (RF, RF, RF_IF), rd_rn_rm),
17646
17647 cCL("fmls", e900100, 3, (RF, RF, RF_IF), rd_rn_rm),
17648 cCL("fmlsp", e900120, 3, (RF, RF, RF_IF), rd_rn_rm),
17649 cCL("fmlsm", e900140, 3, (RF, RF, RF_IF), rd_rn_rm),
17650 cCL("fmlsz", e900160, 3, (RF, RF, RF_IF), rd_rn_rm),
17651 cCL("fmld", e900180, 3, (RF, RF, RF_IF), rd_rn_rm),
17652 cCL("fmldp", e9001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17653 cCL("fmldm", e9001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17654 cCL("fmldz", e9001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17655 cCL("fmle", e980100, 3, (RF, RF, RF_IF), rd_rn_rm),
17656 cCL("fmlep", e980120, 3, (RF, RF, RF_IF), rd_rn_rm),
17657 cCL("fmlem", e980140, 3, (RF, RF, RF_IF), rd_rn_rm),
17658 cCL("fmlez", e980160, 3, (RF, RF, RF_IF), rd_rn_rm),
17659
17660 cCL("fdvs", ea00100, 3, (RF, RF, RF_IF), rd_rn_rm),
17661 cCL("fdvsp", ea00120, 3, (RF, RF, RF_IF), rd_rn_rm),
17662 cCL("fdvsm", ea00140, 3, (RF, RF, RF_IF), rd_rn_rm),
17663 cCL("fdvsz", ea00160, 3, (RF, RF, RF_IF), rd_rn_rm),
17664 cCL("fdvd", ea00180, 3, (RF, RF, RF_IF), rd_rn_rm),
17665 cCL("fdvdp", ea001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17666 cCL("fdvdm", ea001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17667 cCL("fdvdz", ea001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17668 cCL("fdve", ea80100, 3, (RF, RF, RF_IF), rd_rn_rm),
17669 cCL("fdvep", ea80120, 3, (RF, RF, RF_IF), rd_rn_rm),
17670 cCL("fdvem", ea80140, 3, (RF, RF, RF_IF), rd_rn_rm),
17671 cCL("fdvez", ea80160, 3, (RF, RF, RF_IF), rd_rn_rm),
17672
17673 cCL("frds", eb00100, 3, (RF, RF, RF_IF), rd_rn_rm),
17674 cCL("frdsp", eb00120, 3, (RF, RF, RF_IF), rd_rn_rm),
17675 cCL("frdsm", eb00140, 3, (RF, RF, RF_IF), rd_rn_rm),
17676 cCL("frdsz", eb00160, 3, (RF, RF, RF_IF), rd_rn_rm),
17677 cCL("frdd", eb00180, 3, (RF, RF, RF_IF), rd_rn_rm),
17678 cCL("frddp", eb001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17679 cCL("frddm", eb001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17680 cCL("frddz", eb001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17681 cCL("frde", eb80100, 3, (RF, RF, RF_IF), rd_rn_rm),
17682 cCL("frdep", eb80120, 3, (RF, RF, RF_IF), rd_rn_rm),
17683 cCL("frdem", eb80140, 3, (RF, RF, RF_IF), rd_rn_rm),
17684 cCL("frdez", eb80160, 3, (RF, RF, RF_IF), rd_rn_rm),
17685
17686 cCL("pols", ec00100, 3, (RF, RF, RF_IF), rd_rn_rm),
17687 cCL("polsp", ec00120, 3, (RF, RF, RF_IF), rd_rn_rm),
17688 cCL("polsm", ec00140, 3, (RF, RF, RF_IF), rd_rn_rm),
17689 cCL("polsz", ec00160, 3, (RF, RF, RF_IF), rd_rn_rm),
17690 cCL("pold", ec00180, 3, (RF, RF, RF_IF), rd_rn_rm),
17691 cCL("poldp", ec001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17692 cCL("poldm", ec001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17693 cCL("poldz", ec001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17694 cCL("pole", ec80100, 3, (RF, RF, RF_IF), rd_rn_rm),
17695 cCL("polep", ec80120, 3, (RF, RF, RF_IF), rd_rn_rm),
17696 cCL("polem", ec80140, 3, (RF, RF, RF_IF), rd_rn_rm),
17697 cCL("polez", ec80160, 3, (RF, RF, RF_IF), rd_rn_rm),
17698
17699 cCE("cmf", e90f110, 2, (RF, RF_IF), fpa_cmp),
17700 C3E("cmfe", ed0f110, 2, (RF, RF_IF), fpa_cmp),
17701 cCE("cnf", eb0f110, 2, (RF, RF_IF), fpa_cmp),
17702 C3E("cnfe", ef0f110, 2, (RF, RF_IF), fpa_cmp),
17703
17704 cCL("flts", e000110, 2, (RF, RR), rn_rd),
17705 cCL("fltsp", e000130, 2, (RF, RR), rn_rd),
17706 cCL("fltsm", e000150, 2, (RF, RR), rn_rd),
17707 cCL("fltsz", e000170, 2, (RF, RR), rn_rd),
17708 cCL("fltd", e000190, 2, (RF, RR), rn_rd),
17709 cCL("fltdp", e0001b0, 2, (RF, RR), rn_rd),
17710 cCL("fltdm", e0001d0, 2, (RF, RR), rn_rd),
17711 cCL("fltdz", e0001f0, 2, (RF, RR), rn_rd),
17712 cCL("flte", e080110, 2, (RF, RR), rn_rd),
17713 cCL("fltep", e080130, 2, (RF, RR), rn_rd),
17714 cCL("fltem", e080150, 2, (RF, RR), rn_rd),
17715 cCL("fltez", e080170, 2, (RF, RR), rn_rd),
17716
17717 /* The implementation of the FIX instruction is broken on some
17718 assemblers, in that it accepts a precision specifier as well as a
17719 rounding specifier, despite the fact that this is meaningless.
17720 To be more compatible, we accept it as well, though of course it
17721 does not set any bits. */
17722 cCE("fix", e100110, 2, (RR, RF), rd_rm),
17723 cCL("fixp", e100130, 2, (RR, RF), rd_rm),
17724 cCL("fixm", e100150, 2, (RR, RF), rd_rm),
17725 cCL("fixz", e100170, 2, (RR, RF), rd_rm),
17726 cCL("fixsp", e100130, 2, (RR, RF), rd_rm),
17727 cCL("fixsm", e100150, 2, (RR, RF), rd_rm),
17728 cCL("fixsz", e100170, 2, (RR, RF), rd_rm),
17729 cCL("fixdp", e100130, 2, (RR, RF), rd_rm),
17730 cCL("fixdm", e100150, 2, (RR, RF), rd_rm),
17731 cCL("fixdz", e100170, 2, (RR, RF), rd_rm),
17732 cCL("fixep", e100130, 2, (RR, RF), rd_rm),
17733 cCL("fixem", e100150, 2, (RR, RF), rd_rm),
17734 cCL("fixez", e100170, 2, (RR, RF), rd_rm),
17735
17736 /* Instructions that were new with the real FPA, call them V2. */
17737 #undef ARM_VARIANT
17738 #define ARM_VARIANT & fpu_fpa_ext_v2
17739
17740 cCE("lfm", c100200, 3, (RF, I4b, ADDR), fpa_ldmstm),
17741 cCL("lfmfd", c900200, 3, (RF, I4b, ADDR), fpa_ldmstm),
17742 cCL("lfmea", d100200, 3, (RF, I4b, ADDR), fpa_ldmstm),
17743 cCE("sfm", c000200, 3, (RF, I4b, ADDR), fpa_ldmstm),
17744 cCL("sfmfd", d000200, 3, (RF, I4b, ADDR), fpa_ldmstm),
17745 cCL("sfmea", c800200, 3, (RF, I4b, ADDR), fpa_ldmstm),
17746
17747 #undef ARM_VARIANT
17748 #define ARM_VARIANT & fpu_vfp_ext_v1xd /* VFP V1xD (single precision). */
17749
17750 /* Moves and type conversions. */
17751 cCE("fcpys", eb00a40, 2, (RVS, RVS), vfp_sp_monadic),
17752 cCE("fmrs", e100a10, 2, (RR, RVS), vfp_reg_from_sp),
17753 cCE("fmsr", e000a10, 2, (RVS, RR), vfp_sp_from_reg),
17754 cCE("fmstat", ef1fa10, 0, (), noargs),
17755 cCE("vmrs", ef10a10, 2, (APSR_RR, RVC), vmrs),
17756 cCE("vmsr", ee10a10, 2, (RVC, RR), vmsr),
17757 cCE("fsitos", eb80ac0, 2, (RVS, RVS), vfp_sp_monadic),
17758 cCE("fuitos", eb80a40, 2, (RVS, RVS), vfp_sp_monadic),
17759 cCE("ftosis", ebd0a40, 2, (RVS, RVS), vfp_sp_monadic),
17760 cCE("ftosizs", ebd0ac0, 2, (RVS, RVS), vfp_sp_monadic),
17761 cCE("ftouis", ebc0a40, 2, (RVS, RVS), vfp_sp_monadic),
17762 cCE("ftouizs", ebc0ac0, 2, (RVS, RVS), vfp_sp_monadic),
17763 cCE("fmrx", ef00a10, 2, (RR, RVC), rd_rn),
17764 cCE("fmxr", ee00a10, 2, (RVC, RR), rn_rd),
17765
17766 /* Memory operations. */
17767 cCE("flds", d100a00, 2, (RVS, ADDRGLDC), vfp_sp_ldst),
17768 cCE("fsts", d000a00, 2, (RVS, ADDRGLDC), vfp_sp_ldst),
17769 cCE("fldmias", c900a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
17770 cCE("fldmfds", c900a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
17771 cCE("fldmdbs", d300a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
17772 cCE("fldmeas", d300a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
17773 cCE("fldmiax", c900b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
17774 cCE("fldmfdx", c900b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
17775 cCE("fldmdbx", d300b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
17776 cCE("fldmeax", d300b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
17777 cCE("fstmias", c800a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
17778 cCE("fstmeas", c800a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
17779 cCE("fstmdbs", d200a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
17780 cCE("fstmfds", d200a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
17781 cCE("fstmiax", c800b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
17782 cCE("fstmeax", c800b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
17783 cCE("fstmdbx", d200b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
17784 cCE("fstmfdx", d200b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
17785
17786 /* Monadic operations. */
17787 cCE("fabss", eb00ac0, 2, (RVS, RVS), vfp_sp_monadic),
17788 cCE("fnegs", eb10a40, 2, (RVS, RVS), vfp_sp_monadic),
17789 cCE("fsqrts", eb10ac0, 2, (RVS, RVS), vfp_sp_monadic),
17790
17791 /* Dyadic operations. */
17792 cCE("fadds", e300a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
17793 cCE("fsubs", e300a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
17794 cCE("fmuls", e200a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
17795 cCE("fdivs", e800a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
17796 cCE("fmacs", e000a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
17797 cCE("fmscs", e100a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
17798 cCE("fnmuls", e200a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
17799 cCE("fnmacs", e000a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
17800 cCE("fnmscs", e100a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
17801
17802 /* Comparisons. */
17803 cCE("fcmps", eb40a40, 2, (RVS, RVS), vfp_sp_monadic),
17804 cCE("fcmpzs", eb50a40, 1, (RVS), vfp_sp_compare_z),
17805 cCE("fcmpes", eb40ac0, 2, (RVS, RVS), vfp_sp_monadic),
17806 cCE("fcmpezs", eb50ac0, 1, (RVS), vfp_sp_compare_z),
17807
17808 /* Double precision load/store are still present on single precision
17809 implementations. */
17810 cCE("fldd", d100b00, 2, (RVD, ADDRGLDC), vfp_dp_ldst),
17811 cCE("fstd", d000b00, 2, (RVD, ADDRGLDC), vfp_dp_ldst),
17812 cCE("fldmiad", c900b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
17813 cCE("fldmfdd", c900b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
17814 cCE("fldmdbd", d300b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
17815 cCE("fldmead", d300b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
17816 cCE("fstmiad", c800b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
17817 cCE("fstmead", c800b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
17818 cCE("fstmdbd", d200b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
17819 cCE("fstmfdd", d200b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
17820
17821 #undef ARM_VARIANT
17822 #define ARM_VARIANT & fpu_vfp_ext_v1 /* VFP V1 (Double precision). */
17823
17824 /* Moves and type conversions. */
17825 cCE("fcpyd", eb00b40, 2, (RVD, RVD), vfp_dp_rd_rm),
17826 cCE("fcvtds", eb70ac0, 2, (RVD, RVS), vfp_dp_sp_cvt),
17827 cCE("fcvtsd", eb70bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
17828 cCE("fmdhr", e200b10, 2, (RVD, RR), vfp_dp_rn_rd),
17829 cCE("fmdlr", e000b10, 2, (RVD, RR), vfp_dp_rn_rd),
17830 cCE("fmrdh", e300b10, 2, (RR, RVD), vfp_dp_rd_rn),
17831 cCE("fmrdl", e100b10, 2, (RR, RVD), vfp_dp_rd_rn),
17832 cCE("fsitod", eb80bc0, 2, (RVD, RVS), vfp_dp_sp_cvt),
17833 cCE("fuitod", eb80b40, 2, (RVD, RVS), vfp_dp_sp_cvt),
17834 cCE("ftosid", ebd0b40, 2, (RVS, RVD), vfp_sp_dp_cvt),
17835 cCE("ftosizd", ebd0bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
17836 cCE("ftouid", ebc0b40, 2, (RVS, RVD), vfp_sp_dp_cvt),
17837 cCE("ftouizd", ebc0bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
17838
17839 /* Monadic operations. */
17840 cCE("fabsd", eb00bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
17841 cCE("fnegd", eb10b40, 2, (RVD, RVD), vfp_dp_rd_rm),
17842 cCE("fsqrtd", eb10bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
17843
17844 /* Dyadic operations. */
17845 cCE("faddd", e300b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
17846 cCE("fsubd", e300b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
17847 cCE("fmuld", e200b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
17848 cCE("fdivd", e800b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
17849 cCE("fmacd", e000b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
17850 cCE("fmscd", e100b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
17851 cCE("fnmuld", e200b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
17852 cCE("fnmacd", e000b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
17853 cCE("fnmscd", e100b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
17854
17855 /* Comparisons. */
17856 cCE("fcmpd", eb40b40, 2, (RVD, RVD), vfp_dp_rd_rm),
17857 cCE("fcmpzd", eb50b40, 1, (RVD), vfp_dp_rd),
17858 cCE("fcmped", eb40bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
17859 cCE("fcmpezd", eb50bc0, 1, (RVD), vfp_dp_rd),
17860
17861 #undef ARM_VARIANT
17862 #define ARM_VARIANT & fpu_vfp_ext_v2
17863
17864 cCE("fmsrr", c400a10, 3, (VRSLST, RR, RR), vfp_sp2_from_reg2),
17865 cCE("fmrrs", c500a10, 3, (RR, RR, VRSLST), vfp_reg2_from_sp2),
17866 cCE("fmdrr", c400b10, 3, (RVD, RR, RR), vfp_dp_rm_rd_rn),
17867 cCE("fmrrd", c500b10, 3, (RR, RR, RVD), vfp_dp_rd_rn_rm),
17868
17869 /* Instructions which may belong to either the Neon or VFP instruction sets.
17870 Individual encoder functions perform additional architecture checks. */
17871 #undef ARM_VARIANT
17872 #define ARM_VARIANT & fpu_vfp_ext_v1xd
17873 #undef THUMB_VARIANT
17874 #define THUMB_VARIANT & fpu_vfp_ext_v1xd
17875
17876 /* These mnemonics are unique to VFP. */
17877 NCE(vsqrt, 0, 2, (RVSD, RVSD), vfp_nsyn_sqrt),
17878 NCE(vdiv, 0, 3, (RVSD, RVSD, RVSD), vfp_nsyn_div),
17879 nCE(vnmul, _vnmul, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
17880 nCE(vnmla, _vnmla, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
17881 nCE(vnmls, _vnmls, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
17882 nCE(vcmp, _vcmp, 2, (RVSD, RVSD_I0), vfp_nsyn_cmp),
17883 nCE(vcmpe, _vcmpe, 2, (RVSD, RVSD_I0), vfp_nsyn_cmp),
17884 NCE(vpush, 0, 1, (VRSDLST), vfp_nsyn_push),
17885 NCE(vpop, 0, 1, (VRSDLST), vfp_nsyn_pop),
17886 NCE(vcvtz, 0, 2, (RVSD, RVSD), vfp_nsyn_cvtz),
17887
17888 /* Mnemonics shared by Neon and VFP. */
17889 nCEF(vmul, _vmul, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mul),
17890 nCEF(vmla, _vmla, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mac_maybe_scalar),
17891 nCEF(vmls, _vmls, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mac_maybe_scalar),
17892
17893 nCEF(vadd, _vadd, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_addsub_if_i),
17894 nCEF(vsub, _vsub, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_addsub_if_i),
17895
17896 NCEF(vabs, 1b10300, 2, (RNSDQ, RNSDQ), neon_abs_neg),
17897 NCEF(vneg, 1b10380, 2, (RNSDQ, RNSDQ), neon_abs_neg),
17898
17899 NCE(vldm, c900b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
17900 NCE(vldmia, c900b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
17901 NCE(vldmdb, d100b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
17902 NCE(vstm, c800b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
17903 NCE(vstmia, c800b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
17904 NCE(vstmdb, d000b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
17905 NCE(vldr, d100b00, 2, (RVSD, ADDRGLDC), neon_ldr_str),
17906 NCE(vstr, d000b00, 2, (RVSD, ADDRGLDC), neon_ldr_str),
17907
17908 nCEF(vcvt, _vcvt, 3, (RNSDQ, RNSDQ, oI32b), neon_cvt),
17909 nCEF(vcvtr, _vcvt, 2, (RNSDQ, RNSDQ), neon_cvtr),
17910 nCEF(vcvtb, _vcvt, 2, (RVS, RVS), neon_cvtb),
17911 nCEF(vcvtt, _vcvt, 2, (RVS, RVS), neon_cvtt),
17912
17913
17914 /* NOTE: All VMOV encoding is special-cased! */
17915 NCE(vmov, 0, 1, (VMOV), neon_mov),
17916 NCE(vmovq, 0, 1, (VMOV), neon_mov),
17917
17918 #undef THUMB_VARIANT
17919 #define THUMB_VARIANT & fpu_neon_ext_v1
17920 #undef ARM_VARIANT
17921 #define ARM_VARIANT & fpu_neon_ext_v1
17922
17923 /* Data processing with three registers of the same length. */
17924 /* integer ops, valid types S8 S16 S32 U8 U16 U32. */
17925 NUF(vaba, 0000710, 3, (RNDQ, RNDQ, RNDQ), neon_dyadic_i_su),
17926 NUF(vabaq, 0000710, 3, (RNQ, RNQ, RNQ), neon_dyadic_i_su),
17927 NUF(vhadd, 0000000, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
17928 NUF(vhaddq, 0000000, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
17929 NUF(vrhadd, 0000100, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
17930 NUF(vrhaddq, 0000100, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
17931 NUF(vhsub, 0000200, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
17932 NUF(vhsubq, 0000200, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
17933 /* integer ops, valid types S8 S16 S32 S64 U8 U16 U32 U64. */
17934 NUF(vqadd, 0000010, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i64_su),
17935 NUF(vqaddq, 0000010, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i64_su),
17936 NUF(vqsub, 0000210, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i64_su),
17937 NUF(vqsubq, 0000210, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i64_su),
17938 NUF(vrshl, 0000500, 3, (RNDQ, oRNDQ, RNDQ), neon_rshl),
17939 NUF(vrshlq, 0000500, 3, (RNQ, oRNQ, RNQ), neon_rshl),
17940 NUF(vqrshl, 0000510, 3, (RNDQ, oRNDQ, RNDQ), neon_rshl),
17941 NUF(vqrshlq, 0000510, 3, (RNQ, oRNQ, RNQ), neon_rshl),
17942 /* If not immediate, fall back to neon_dyadic_i64_su.
17943 shl_imm should accept I8 I16 I32 I64,
17944 qshl_imm should accept S8 S16 S32 S64 U8 U16 U32 U64. */
17945 nUF(vshl, _vshl, 3, (RNDQ, oRNDQ, RNDQ_I63b), neon_shl_imm),
17946 nUF(vshlq, _vshl, 3, (RNQ, oRNQ, RNDQ_I63b), neon_shl_imm),
17947 nUF(vqshl, _vqshl, 3, (RNDQ, oRNDQ, RNDQ_I63b), neon_qshl_imm),
17948 nUF(vqshlq, _vqshl, 3, (RNQ, oRNQ, RNDQ_I63b), neon_qshl_imm),
17949 /* Logic ops, types optional & ignored. */
17950 nUF(vand, _vand, 3, (RNDQ, oRNDQ, RNDQ_Ibig), neon_logic),
17951 nUF(vandq, _vand, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
17952 nUF(vbic, _vbic, 3, (RNDQ, oRNDQ, RNDQ_Ibig), neon_logic),
17953 nUF(vbicq, _vbic, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
17954 nUF(vorr, _vorr, 3, (RNDQ, oRNDQ, RNDQ_Ibig), neon_logic),
17955 nUF(vorrq, _vorr, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
17956 nUF(vorn, _vorn, 3, (RNDQ, oRNDQ, RNDQ_Ibig), neon_logic),
17957 nUF(vornq, _vorn, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
17958 nUF(veor, _veor, 3, (RNDQ, oRNDQ, RNDQ), neon_logic),
17959 nUF(veorq, _veor, 3, (RNQ, oRNQ, RNQ), neon_logic),
17960 /* Bitfield ops, untyped. */
17961 NUF(vbsl, 1100110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
17962 NUF(vbslq, 1100110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
17963 NUF(vbit, 1200110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
17964 NUF(vbitq, 1200110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
17965 NUF(vbif, 1300110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
17966 NUF(vbifq, 1300110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
17967 /* Int and float variants, types S8 S16 S32 U8 U16 U32 F32. */
17968 nUF(vabd, _vabd, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
17969 nUF(vabdq, _vabd, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
17970 nUF(vmax, _vmax, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
17971 nUF(vmaxq, _vmax, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
17972 nUF(vmin, _vmin, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
17973 nUF(vminq, _vmin, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
17974 /* Comparisons. Types S8 S16 S32 U8 U16 U32 F32. Non-immediate versions fall
17975 back to neon_dyadic_if_su. */
17976 nUF(vcge, _vcge, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp),
17977 nUF(vcgeq, _vcge, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp),
17978 nUF(vcgt, _vcgt, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp),
17979 nUF(vcgtq, _vcgt, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp),
17980 nUF(vclt, _vclt, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp_inv),
17981 nUF(vcltq, _vclt, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp_inv),
17982 nUF(vcle, _vcle, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp_inv),
17983 nUF(vcleq, _vcle, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp_inv),
17984 /* Comparison. Type I8 I16 I32 F32. */
17985 nUF(vceq, _vceq, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_ceq),
17986 nUF(vceqq, _vceq, 3, (RNQ, oRNQ, RNDQ_I0), neon_ceq),
17987 /* As above, D registers only. */
17988 nUF(vpmax, _vpmax, 3, (RND, oRND, RND), neon_dyadic_if_su_d),
17989 nUF(vpmin, _vpmin, 3, (RND, oRND, RND), neon_dyadic_if_su_d),
17990 /* Int and float variants, signedness unimportant. */
17991 nUF(vmlaq, _vmla, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mac_maybe_scalar),
17992 nUF(vmlsq, _vmls, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mac_maybe_scalar),
17993 nUF(vpadd, _vpadd, 3, (RND, oRND, RND), neon_dyadic_if_i_d),
17994 /* Add/sub take types I8 I16 I32 I64 F32. */
17995 nUF(vaddq, _vadd, 3, (RNQ, oRNQ, RNQ), neon_addsub_if_i),
17996 nUF(vsubq, _vsub, 3, (RNQ, oRNQ, RNQ), neon_addsub_if_i),
17997 /* vtst takes sizes 8, 16, 32. */
17998 NUF(vtst, 0000810, 3, (RNDQ, oRNDQ, RNDQ), neon_tst),
17999 NUF(vtstq, 0000810, 3, (RNQ, oRNQ, RNQ), neon_tst),
18000 /* VMUL takes I8 I16 I32 F32 P8. */
18001 nUF(vmulq, _vmul, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mul),
18002 /* VQD{R}MULH takes S16 S32. */
18003 nUF(vqdmulh, _vqdmulh, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qdmulh),
18004 nUF(vqdmulhq, _vqdmulh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qdmulh),
18005 nUF(vqrdmulh, _vqrdmulh, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qdmulh),
18006 nUF(vqrdmulhq, _vqrdmulh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qdmulh),
18007 NUF(vacge, 0000e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute),
18008 NUF(vacgeq, 0000e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute),
18009 NUF(vacgt, 0200e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute),
18010 NUF(vacgtq, 0200e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute),
18011 NUF(vaclt, 0200e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute_inv),
18012 NUF(vacltq, 0200e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute_inv),
18013 NUF(vacle, 0000e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute_inv),
18014 NUF(vacleq, 0000e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute_inv),
18015 NUF(vrecps, 0000f10, 3, (RNDQ, oRNDQ, RNDQ), neon_step),
18016 NUF(vrecpsq, 0000f10, 3, (RNQ, oRNQ, RNQ), neon_step),
18017 NUF(vrsqrts, 0200f10, 3, (RNDQ, oRNDQ, RNDQ), neon_step),
18018 NUF(vrsqrtsq, 0200f10, 3, (RNQ, oRNQ, RNQ), neon_step),
18019
18020 /* Two address, int/float. Types S8 S16 S32 F32. */
18021 NUF(vabsq, 1b10300, 2, (RNQ, RNQ), neon_abs_neg),
18022 NUF(vnegq, 1b10380, 2, (RNQ, RNQ), neon_abs_neg),
18023
18024 /* Data processing with two registers and a shift amount. */
18025 /* Right shifts, and variants with rounding.
18026 Types accepted S8 S16 S32 S64 U8 U16 U32 U64. */
18027 NUF(vshr, 0800010, 3, (RNDQ, oRNDQ, I64z), neon_rshift_round_imm),
18028 NUF(vshrq, 0800010, 3, (RNQ, oRNQ, I64z), neon_rshift_round_imm),
18029 NUF(vrshr, 0800210, 3, (RNDQ, oRNDQ, I64z), neon_rshift_round_imm),
18030 NUF(vrshrq, 0800210, 3, (RNQ, oRNQ, I64z), neon_rshift_round_imm),
18031 NUF(vsra, 0800110, 3, (RNDQ, oRNDQ, I64), neon_rshift_round_imm),
18032 NUF(vsraq, 0800110, 3, (RNQ, oRNQ, I64), neon_rshift_round_imm),
18033 NUF(vrsra, 0800310, 3, (RNDQ, oRNDQ, I64), neon_rshift_round_imm),
18034 NUF(vrsraq, 0800310, 3, (RNQ, oRNQ, I64), neon_rshift_round_imm),
18035 /* Shift and insert. Sizes accepted 8 16 32 64. */
18036 NUF(vsli, 1800510, 3, (RNDQ, oRNDQ, I63), neon_sli),
18037 NUF(vsliq, 1800510, 3, (RNQ, oRNQ, I63), neon_sli),
18038 NUF(vsri, 1800410, 3, (RNDQ, oRNDQ, I64), neon_sri),
18039 NUF(vsriq, 1800410, 3, (RNQ, oRNQ, I64), neon_sri),
18040 /* QSHL{U} immediate accepts S8 S16 S32 S64 U8 U16 U32 U64. */
18041 NUF(vqshlu, 1800610, 3, (RNDQ, oRNDQ, I63), neon_qshlu_imm),
18042 NUF(vqshluq, 1800610, 3, (RNQ, oRNQ, I63), neon_qshlu_imm),
18043 /* Right shift immediate, saturating & narrowing, with rounding variants.
18044 Types accepted S16 S32 S64 U16 U32 U64. */
18045 NUF(vqshrn, 0800910, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow),
18046 NUF(vqrshrn, 0800950, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow),
18047 /* As above, unsigned. Types accepted S16 S32 S64. */
18048 NUF(vqshrun, 0800810, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow_u),
18049 NUF(vqrshrun, 0800850, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow_u),
18050 /* Right shift narrowing. Types accepted I16 I32 I64. */
18051 NUF(vshrn, 0800810, 3, (RND, RNQ, I32z), neon_rshift_narrow),
18052 NUF(vrshrn, 0800850, 3, (RND, RNQ, I32z), neon_rshift_narrow),
18053 /* Special case. Types S8 S16 S32 U8 U16 U32. Handles max shift variant. */
18054 nUF(vshll, _vshll, 3, (RNQ, RND, I32), neon_shll),
18055 /* CVT with optional immediate for fixed-point variant. */
18056 nUF(vcvtq, _vcvt, 3, (RNQ, RNQ, oI32b), neon_cvt),
18057
18058 nUF(vmvn, _vmvn, 2, (RNDQ, RNDQ_Ibig), neon_mvn),
18059 nUF(vmvnq, _vmvn, 2, (RNQ, RNDQ_Ibig), neon_mvn),
18060
18061 /* Data processing, three registers of different lengths. */
18062 /* Dyadic, long insns. Types S8 S16 S32 U8 U16 U32. */
18063 NUF(vabal, 0800500, 3, (RNQ, RND, RND), neon_abal),
18064 NUF(vabdl, 0800700, 3, (RNQ, RND, RND), neon_dyadic_long),
18065 NUF(vaddl, 0800000, 3, (RNQ, RND, RND), neon_dyadic_long),
18066 NUF(vsubl, 0800200, 3, (RNQ, RND, RND), neon_dyadic_long),
18067 /* If not scalar, fall back to neon_dyadic_long.
18068 Vector types as above, scalar types S16 S32 U16 U32. */
18069 nUF(vmlal, _vmlal, 3, (RNQ, RND, RND_RNSC), neon_mac_maybe_scalar_long),
18070 nUF(vmlsl, _vmlsl, 3, (RNQ, RND, RND_RNSC), neon_mac_maybe_scalar_long),
18071 /* Dyadic, widening insns. Types S8 S16 S32 U8 U16 U32. */
18072 NUF(vaddw, 0800100, 3, (RNQ, oRNQ, RND), neon_dyadic_wide),
18073 NUF(vsubw, 0800300, 3, (RNQ, oRNQ, RND), neon_dyadic_wide),
18074 /* Dyadic, narrowing insns. Types I16 I32 I64. */
18075 NUF(vaddhn, 0800400, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
18076 NUF(vraddhn, 1800400, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
18077 NUF(vsubhn, 0800600, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
18078 NUF(vrsubhn, 1800600, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
18079 /* Saturating doubling multiplies. Types S16 S32. */
18080 nUF(vqdmlal, _vqdmlal, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
18081 nUF(vqdmlsl, _vqdmlsl, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
18082 nUF(vqdmull, _vqdmull, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
18083 /* VMULL. Vector types S8 S16 S32 U8 U16 U32 P8, scalar types
18084 S16 S32 U16 U32. */
18085 nUF(vmull, _vmull, 3, (RNQ, RND, RND_RNSC), neon_vmull),
18086
18087 /* Extract. Size 8. */
18088 NUF(vext, 0b00000, 4, (RNDQ, oRNDQ, RNDQ, I15), neon_ext),
18089 NUF(vextq, 0b00000, 4, (RNQ, oRNQ, RNQ, I15), neon_ext),
18090
18091 /* Two registers, miscellaneous. */
18092 /* Reverse. Sizes 8 16 32 (must be < size in opcode). */
18093 NUF(vrev64, 1b00000, 2, (RNDQ, RNDQ), neon_rev),
18094 NUF(vrev64q, 1b00000, 2, (RNQ, RNQ), neon_rev),
18095 NUF(vrev32, 1b00080, 2, (RNDQ, RNDQ), neon_rev),
18096 NUF(vrev32q, 1b00080, 2, (RNQ, RNQ), neon_rev),
18097 NUF(vrev16, 1b00100, 2, (RNDQ, RNDQ), neon_rev),
18098 NUF(vrev16q, 1b00100, 2, (RNQ, RNQ), neon_rev),
18099 /* Vector replicate. Sizes 8 16 32. */
18100 nCE(vdup, _vdup, 2, (RNDQ, RR_RNSC), neon_dup),
18101 nCE(vdupq, _vdup, 2, (RNQ, RR_RNSC), neon_dup),
18102 /* VMOVL. Types S8 S16 S32 U8 U16 U32. */
18103 NUF(vmovl, 0800a10, 2, (RNQ, RND), neon_movl),
18104 /* VMOVN. Types I16 I32 I64. */
18105 nUF(vmovn, _vmovn, 2, (RND, RNQ), neon_movn),
18106 /* VQMOVN. Types S16 S32 S64 U16 U32 U64. */
18107 nUF(vqmovn, _vqmovn, 2, (RND, RNQ), neon_qmovn),
18108 /* VQMOVUN. Types S16 S32 S64. */
18109 nUF(vqmovun, _vqmovun, 2, (RND, RNQ), neon_qmovun),
18110 /* VZIP / VUZP. Sizes 8 16 32. */
18111 NUF(vzip, 1b20180, 2, (RNDQ, RNDQ), neon_zip_uzp),
18112 NUF(vzipq, 1b20180, 2, (RNQ, RNQ), neon_zip_uzp),
18113 NUF(vuzp, 1b20100, 2, (RNDQ, RNDQ), neon_zip_uzp),
18114 NUF(vuzpq, 1b20100, 2, (RNQ, RNQ), neon_zip_uzp),
18115 /* VQABS / VQNEG. Types S8 S16 S32. */
18116 NUF(vqabs, 1b00700, 2, (RNDQ, RNDQ), neon_sat_abs_neg),
18117 NUF(vqabsq, 1b00700, 2, (RNQ, RNQ), neon_sat_abs_neg),
18118 NUF(vqneg, 1b00780, 2, (RNDQ, RNDQ), neon_sat_abs_neg),
18119 NUF(vqnegq, 1b00780, 2, (RNQ, RNQ), neon_sat_abs_neg),
18120 /* Pairwise, lengthening. Types S8 S16 S32 U8 U16 U32. */
18121 NUF(vpadal, 1b00600, 2, (RNDQ, RNDQ), neon_pair_long),
18122 NUF(vpadalq, 1b00600, 2, (RNQ, RNQ), neon_pair_long),
18123 NUF(vpaddl, 1b00200, 2, (RNDQ, RNDQ), neon_pair_long),
18124 NUF(vpaddlq, 1b00200, 2, (RNQ, RNQ), neon_pair_long),
18125 /* Reciprocal estimates. Types U32 F32. */
18126 NUF(vrecpe, 1b30400, 2, (RNDQ, RNDQ), neon_recip_est),
18127 NUF(vrecpeq, 1b30400, 2, (RNQ, RNQ), neon_recip_est),
18128 NUF(vrsqrte, 1b30480, 2, (RNDQ, RNDQ), neon_recip_est),
18129 NUF(vrsqrteq, 1b30480, 2, (RNQ, RNQ), neon_recip_est),
18130 /* VCLS. Types S8 S16 S32. */
18131 NUF(vcls, 1b00400, 2, (RNDQ, RNDQ), neon_cls),
18132 NUF(vclsq, 1b00400, 2, (RNQ, RNQ), neon_cls),
18133 /* VCLZ. Types I8 I16 I32. */
18134 NUF(vclz, 1b00480, 2, (RNDQ, RNDQ), neon_clz),
18135 NUF(vclzq, 1b00480, 2, (RNQ, RNQ), neon_clz),
18136 /* VCNT. Size 8. */
18137 NUF(vcnt, 1b00500, 2, (RNDQ, RNDQ), neon_cnt),
18138 NUF(vcntq, 1b00500, 2, (RNQ, RNQ), neon_cnt),
18139 /* Two address, untyped. */
18140 NUF(vswp, 1b20000, 2, (RNDQ, RNDQ), neon_swp),
18141 NUF(vswpq, 1b20000, 2, (RNQ, RNQ), neon_swp),
18142 /* VTRN. Sizes 8 16 32. */
18143 nUF(vtrn, _vtrn, 2, (RNDQ, RNDQ), neon_trn),
18144 nUF(vtrnq, _vtrn, 2, (RNQ, RNQ), neon_trn),
18145
18146 /* Table lookup. Size 8. */
18147 NUF(vtbl, 1b00800, 3, (RND, NRDLST, RND), neon_tbl_tbx),
18148 NUF(vtbx, 1b00840, 3, (RND, NRDLST, RND), neon_tbl_tbx),
18149
18150 #undef THUMB_VARIANT
18151 #define THUMB_VARIANT & fpu_vfp_v3_or_neon_ext
18152 #undef ARM_VARIANT
18153 #define ARM_VARIANT & fpu_vfp_v3_or_neon_ext
18154
18155 /* Neon element/structure load/store. */
18156 nUF(vld1, _vld1, 2, (NSTRLST, ADDR), neon_ldx_stx),
18157 nUF(vst1, _vst1, 2, (NSTRLST, ADDR), neon_ldx_stx),
18158 nUF(vld2, _vld2, 2, (NSTRLST, ADDR), neon_ldx_stx),
18159 nUF(vst2, _vst2, 2, (NSTRLST, ADDR), neon_ldx_stx),
18160 nUF(vld3, _vld3, 2, (NSTRLST, ADDR), neon_ldx_stx),
18161 nUF(vst3, _vst3, 2, (NSTRLST, ADDR), neon_ldx_stx),
18162 nUF(vld4, _vld4, 2, (NSTRLST, ADDR), neon_ldx_stx),
18163 nUF(vst4, _vst4, 2, (NSTRLST, ADDR), neon_ldx_stx),
18164
18165 #undef THUMB_VARIANT
18166 #define THUMB_VARIANT &fpu_vfp_ext_v3xd
18167 #undef ARM_VARIANT
18168 #define ARM_VARIANT &fpu_vfp_ext_v3xd
18169 cCE("fconsts", eb00a00, 2, (RVS, I255), vfp_sp_const),
18170 cCE("fshtos", eba0a40, 2, (RVS, I16z), vfp_sp_conv_16),
18171 cCE("fsltos", eba0ac0, 2, (RVS, I32), vfp_sp_conv_32),
18172 cCE("fuhtos", ebb0a40, 2, (RVS, I16z), vfp_sp_conv_16),
18173 cCE("fultos", ebb0ac0, 2, (RVS, I32), vfp_sp_conv_32),
18174 cCE("ftoshs", ebe0a40, 2, (RVS, I16z), vfp_sp_conv_16),
18175 cCE("ftosls", ebe0ac0, 2, (RVS, I32), vfp_sp_conv_32),
18176 cCE("ftouhs", ebf0a40, 2, (RVS, I16z), vfp_sp_conv_16),
18177 cCE("ftouls", ebf0ac0, 2, (RVS, I32), vfp_sp_conv_32),
18178
18179 #undef THUMB_VARIANT
18180 #define THUMB_VARIANT & fpu_vfp_ext_v3
18181 #undef ARM_VARIANT
18182 #define ARM_VARIANT & fpu_vfp_ext_v3
18183
18184 cCE("fconstd", eb00b00, 2, (RVD, I255), vfp_dp_const),
18185 cCE("fshtod", eba0b40, 2, (RVD, I16z), vfp_dp_conv_16),
18186 cCE("fsltod", eba0bc0, 2, (RVD, I32), vfp_dp_conv_32),
18187 cCE("fuhtod", ebb0b40, 2, (RVD, I16z), vfp_dp_conv_16),
18188 cCE("fultod", ebb0bc0, 2, (RVD, I32), vfp_dp_conv_32),
18189 cCE("ftoshd", ebe0b40, 2, (RVD, I16z), vfp_dp_conv_16),
18190 cCE("ftosld", ebe0bc0, 2, (RVD, I32), vfp_dp_conv_32),
18191 cCE("ftouhd", ebf0b40, 2, (RVD, I16z), vfp_dp_conv_16),
18192 cCE("ftould", ebf0bc0, 2, (RVD, I32), vfp_dp_conv_32),
18193
18194 #undef ARM_VARIANT
18195 #define ARM_VARIANT &fpu_vfp_ext_fma
18196 #undef THUMB_VARIANT
18197 #define THUMB_VARIANT &fpu_vfp_ext_fma
18198 /* Mnemonics shared by Neon and VFP. These are included in the
18199 VFP FMA variant; NEON and VFP FMA always includes the NEON
18200 FMA instructions. */
18201 nCEF(vfma, _vfma, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_fmac),
18202 nCEF(vfms, _vfms, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_fmac),
18203 /* ffmas/ffmad/ffmss/ffmsd are dummy mnemonics to satisfy gas;
18204 the v form should always be used. */
18205 cCE("ffmas", ea00a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18206 cCE("ffnmas", ea00a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18207 cCE("ffmad", ea00b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18208 cCE("ffnmad", ea00b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18209 nCE(vfnma, _vfnma, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
18210 nCE(vfnms, _vfnms, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
18211
18212 #undef THUMB_VARIANT
18213 #undef ARM_VARIANT
18214 #define ARM_VARIANT & arm_cext_xscale /* Intel XScale extensions. */
18215
18216 cCE("mia", e200010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
18217 cCE("miaph", e280010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
18218 cCE("miabb", e2c0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
18219 cCE("miabt", e2d0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
18220 cCE("miatb", e2e0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
18221 cCE("miatt", e2f0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
18222 cCE("mar", c400000, 3, (RXA, RRnpc, RRnpc), xsc_mar),
18223 cCE("mra", c500000, 3, (RRnpc, RRnpc, RXA), xsc_mra),
18224
18225 #undef ARM_VARIANT
18226 #define ARM_VARIANT & arm_cext_iwmmxt /* Intel Wireless MMX technology. */
18227
18228 cCE("tandcb", e13f130, 1, (RR), iwmmxt_tandorc),
18229 cCE("tandch", e53f130, 1, (RR), iwmmxt_tandorc),
18230 cCE("tandcw", e93f130, 1, (RR), iwmmxt_tandorc),
18231 cCE("tbcstb", e400010, 2, (RIWR, RR), rn_rd),
18232 cCE("tbcsth", e400050, 2, (RIWR, RR), rn_rd),
18233 cCE("tbcstw", e400090, 2, (RIWR, RR), rn_rd),
18234 cCE("textrcb", e130170, 2, (RR, I7), iwmmxt_textrc),
18235 cCE("textrch", e530170, 2, (RR, I7), iwmmxt_textrc),
18236 cCE("textrcw", e930170, 2, (RR, I7), iwmmxt_textrc),
18237 cCE("textrmub", e100070, 3, (RR, RIWR, I7), iwmmxt_textrm),
18238 cCE("textrmuh", e500070, 3, (RR, RIWR, I7), iwmmxt_textrm),
18239 cCE("textrmuw", e900070, 3, (RR, RIWR, I7), iwmmxt_textrm),
18240 cCE("textrmsb", e100078, 3, (RR, RIWR, I7), iwmmxt_textrm),
18241 cCE("textrmsh", e500078, 3, (RR, RIWR, I7), iwmmxt_textrm),
18242 cCE("textrmsw", e900078, 3, (RR, RIWR, I7), iwmmxt_textrm),
18243 cCE("tinsrb", e600010, 3, (RIWR, RR, I7), iwmmxt_tinsr),
18244 cCE("tinsrh", e600050, 3, (RIWR, RR, I7), iwmmxt_tinsr),
18245 cCE("tinsrw", e600090, 3, (RIWR, RR, I7), iwmmxt_tinsr),
18246 cCE("tmcr", e000110, 2, (RIWC_RIWG, RR), rn_rd),
18247 cCE("tmcrr", c400000, 3, (RIWR, RR, RR), rm_rd_rn),
18248 cCE("tmia", e200010, 3, (RIWR, RR, RR), iwmmxt_tmia),
18249 cCE("tmiaph", e280010, 3, (RIWR, RR, RR), iwmmxt_tmia),
18250 cCE("tmiabb", e2c0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
18251 cCE("tmiabt", e2d0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
18252 cCE("tmiatb", e2e0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
18253 cCE("tmiatt", e2f0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
18254 cCE("tmovmskb", e100030, 2, (RR, RIWR), rd_rn),
18255 cCE("tmovmskh", e500030, 2, (RR, RIWR), rd_rn),
18256 cCE("tmovmskw", e900030, 2, (RR, RIWR), rd_rn),
18257 cCE("tmrc", e100110, 2, (RR, RIWC_RIWG), rd_rn),
18258 cCE("tmrrc", c500000, 3, (RR, RR, RIWR), rd_rn_rm),
18259 cCE("torcb", e13f150, 1, (RR), iwmmxt_tandorc),
18260 cCE("torch", e53f150, 1, (RR), iwmmxt_tandorc),
18261 cCE("torcw", e93f150, 1, (RR), iwmmxt_tandorc),
18262 cCE("waccb", e0001c0, 2, (RIWR, RIWR), rd_rn),
18263 cCE("wacch", e4001c0, 2, (RIWR, RIWR), rd_rn),
18264 cCE("waccw", e8001c0, 2, (RIWR, RIWR), rd_rn),
18265 cCE("waddbss", e300180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18266 cCE("waddb", e000180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18267 cCE("waddbus", e100180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18268 cCE("waddhss", e700180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18269 cCE("waddh", e400180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18270 cCE("waddhus", e500180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18271 cCE("waddwss", eb00180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18272 cCE("waddw", e800180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18273 cCE("waddwus", e900180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18274 cCE("waligni", e000020, 4, (RIWR, RIWR, RIWR, I7), iwmmxt_waligni),
18275 cCE("walignr0", e800020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18276 cCE("walignr1", e900020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18277 cCE("walignr2", ea00020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18278 cCE("walignr3", eb00020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18279 cCE("wand", e200000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18280 cCE("wandn", e300000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18281 cCE("wavg2b", e800000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18282 cCE("wavg2br", e900000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18283 cCE("wavg2h", ec00000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18284 cCE("wavg2hr", ed00000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18285 cCE("wcmpeqb", e000060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18286 cCE("wcmpeqh", e400060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18287 cCE("wcmpeqw", e800060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18288 cCE("wcmpgtub", e100060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18289 cCE("wcmpgtuh", e500060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18290 cCE("wcmpgtuw", e900060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18291 cCE("wcmpgtsb", e300060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18292 cCE("wcmpgtsh", e700060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18293 cCE("wcmpgtsw", eb00060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18294 cCE("wldrb", c100000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
18295 cCE("wldrh", c500000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
18296 cCE("wldrw", c100100, 2, (RIWR_RIWC, ADDR), iwmmxt_wldstw),
18297 cCE("wldrd", c500100, 2, (RIWR, ADDR), iwmmxt_wldstd),
18298 cCE("wmacs", e600100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18299 cCE("wmacsz", e700100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18300 cCE("wmacu", e400100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18301 cCE("wmacuz", e500100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18302 cCE("wmadds", ea00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18303 cCE("wmaddu", e800100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18304 cCE("wmaxsb", e200160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18305 cCE("wmaxsh", e600160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18306 cCE("wmaxsw", ea00160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18307 cCE("wmaxub", e000160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18308 cCE("wmaxuh", e400160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18309 cCE("wmaxuw", e800160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18310 cCE("wminsb", e300160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18311 cCE("wminsh", e700160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18312 cCE("wminsw", eb00160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18313 cCE("wminub", e100160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18314 cCE("wminuh", e500160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18315 cCE("wminuw", e900160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18316 cCE("wmov", e000000, 2, (RIWR, RIWR), iwmmxt_wmov),
18317 cCE("wmulsm", e300100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18318 cCE("wmulsl", e200100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18319 cCE("wmulum", e100100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18320 cCE("wmulul", e000100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18321 cCE("wor", e000000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18322 cCE("wpackhss", e700080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18323 cCE("wpackhus", e500080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18324 cCE("wpackwss", eb00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18325 cCE("wpackwus", e900080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18326 cCE("wpackdss", ef00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18327 cCE("wpackdus", ed00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18328 cCE("wrorh", e700040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18329 cCE("wrorhg", e700148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18330 cCE("wrorw", eb00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18331 cCE("wrorwg", eb00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18332 cCE("wrord", ef00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18333 cCE("wrordg", ef00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18334 cCE("wsadb", e000120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18335 cCE("wsadbz", e100120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18336 cCE("wsadh", e400120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18337 cCE("wsadhz", e500120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18338 cCE("wshufh", e0001e0, 3, (RIWR, RIWR, I255), iwmmxt_wshufh),
18339 cCE("wsllh", e500040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18340 cCE("wsllhg", e500148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18341 cCE("wsllw", e900040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18342 cCE("wsllwg", e900148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18343 cCE("wslld", ed00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18344 cCE("wslldg", ed00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18345 cCE("wsrah", e400040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18346 cCE("wsrahg", e400148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18347 cCE("wsraw", e800040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18348 cCE("wsrawg", e800148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18349 cCE("wsrad", ec00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18350 cCE("wsradg", ec00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18351 cCE("wsrlh", e600040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18352 cCE("wsrlhg", e600148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18353 cCE("wsrlw", ea00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18354 cCE("wsrlwg", ea00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18355 cCE("wsrld", ee00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18356 cCE("wsrldg", ee00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18357 cCE("wstrb", c000000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
18358 cCE("wstrh", c400000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
18359 cCE("wstrw", c000100, 2, (RIWR_RIWC, ADDR), iwmmxt_wldstw),
18360 cCE("wstrd", c400100, 2, (RIWR, ADDR), iwmmxt_wldstd),
18361 cCE("wsubbss", e3001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18362 cCE("wsubb", e0001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18363 cCE("wsubbus", e1001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18364 cCE("wsubhss", e7001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18365 cCE("wsubh", e4001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18366 cCE("wsubhus", e5001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18367 cCE("wsubwss", eb001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18368 cCE("wsubw", e8001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18369 cCE("wsubwus", e9001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18370 cCE("wunpckehub",e0000c0, 2, (RIWR, RIWR), rd_rn),
18371 cCE("wunpckehuh",e4000c0, 2, (RIWR, RIWR), rd_rn),
18372 cCE("wunpckehuw",e8000c0, 2, (RIWR, RIWR), rd_rn),
18373 cCE("wunpckehsb",e2000c0, 2, (RIWR, RIWR), rd_rn),
18374 cCE("wunpckehsh",e6000c0, 2, (RIWR, RIWR), rd_rn),
18375 cCE("wunpckehsw",ea000c0, 2, (RIWR, RIWR), rd_rn),
18376 cCE("wunpckihb", e1000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18377 cCE("wunpckihh", e5000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18378 cCE("wunpckihw", e9000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18379 cCE("wunpckelub",e0000e0, 2, (RIWR, RIWR), rd_rn),
18380 cCE("wunpckeluh",e4000e0, 2, (RIWR, RIWR), rd_rn),
18381 cCE("wunpckeluw",e8000e0, 2, (RIWR, RIWR), rd_rn),
18382 cCE("wunpckelsb",e2000e0, 2, (RIWR, RIWR), rd_rn),
18383 cCE("wunpckelsh",e6000e0, 2, (RIWR, RIWR), rd_rn),
18384 cCE("wunpckelsw",ea000e0, 2, (RIWR, RIWR), rd_rn),
18385 cCE("wunpckilb", e1000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18386 cCE("wunpckilh", e5000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18387 cCE("wunpckilw", e9000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18388 cCE("wxor", e100000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18389 cCE("wzero", e300000, 1, (RIWR), iwmmxt_wzero),
18390
18391 #undef ARM_VARIANT
18392 #define ARM_VARIANT & arm_cext_iwmmxt2 /* Intel Wireless MMX technology, version 2. */
18393
18394 cCE("torvscb", e12f190, 1, (RR), iwmmxt_tandorc),
18395 cCE("torvsch", e52f190, 1, (RR), iwmmxt_tandorc),
18396 cCE("torvscw", e92f190, 1, (RR), iwmmxt_tandorc),
18397 cCE("wabsb", e2001c0, 2, (RIWR, RIWR), rd_rn),
18398 cCE("wabsh", e6001c0, 2, (RIWR, RIWR), rd_rn),
18399 cCE("wabsw", ea001c0, 2, (RIWR, RIWR), rd_rn),
18400 cCE("wabsdiffb", e1001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18401 cCE("wabsdiffh", e5001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18402 cCE("wabsdiffw", e9001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18403 cCE("waddbhusl", e2001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18404 cCE("waddbhusm", e6001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18405 cCE("waddhc", e600180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18406 cCE("waddwc", ea00180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18407 cCE("waddsubhx", ea001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18408 cCE("wavg4", e400000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18409 cCE("wavg4r", e500000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18410 cCE("wmaddsn", ee00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18411 cCE("wmaddsx", eb00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18412 cCE("wmaddun", ec00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18413 cCE("wmaddux", e900100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18414 cCE("wmerge", e000080, 4, (RIWR, RIWR, RIWR, I7), iwmmxt_wmerge),
18415 cCE("wmiabb", e0000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18416 cCE("wmiabt", e1000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18417 cCE("wmiatb", e2000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18418 cCE("wmiatt", e3000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18419 cCE("wmiabbn", e4000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18420 cCE("wmiabtn", e5000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18421 cCE("wmiatbn", e6000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18422 cCE("wmiattn", e7000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18423 cCE("wmiawbb", e800120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18424 cCE("wmiawbt", e900120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18425 cCE("wmiawtb", ea00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18426 cCE("wmiawtt", eb00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18427 cCE("wmiawbbn", ec00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18428 cCE("wmiawbtn", ed00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18429 cCE("wmiawtbn", ee00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18430 cCE("wmiawttn", ef00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18431 cCE("wmulsmr", ef00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18432 cCE("wmulumr", ed00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18433 cCE("wmulwumr", ec000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18434 cCE("wmulwsmr", ee000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18435 cCE("wmulwum", ed000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18436 cCE("wmulwsm", ef000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18437 cCE("wmulwl", eb000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18438 cCE("wqmiabb", e8000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18439 cCE("wqmiabt", e9000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18440 cCE("wqmiatb", ea000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18441 cCE("wqmiatt", eb000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18442 cCE("wqmiabbn", ec000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18443 cCE("wqmiabtn", ed000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18444 cCE("wqmiatbn", ee000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18445 cCE("wqmiattn", ef000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18446 cCE("wqmulm", e100080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18447 cCE("wqmulmr", e300080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18448 cCE("wqmulwm", ec000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18449 cCE("wqmulwmr", ee000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18450 cCE("wsubaddhx", ed001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18451
18452 #undef ARM_VARIANT
18453 #define ARM_VARIANT & arm_cext_maverick /* Cirrus Maverick instructions. */
18454
18455 cCE("cfldrs", c100400, 2, (RMF, ADDRGLDC), rd_cpaddr),
18456 cCE("cfldrd", c500400, 2, (RMD, ADDRGLDC), rd_cpaddr),
18457 cCE("cfldr32", c100500, 2, (RMFX, ADDRGLDC), rd_cpaddr),
18458 cCE("cfldr64", c500500, 2, (RMDX, ADDRGLDC), rd_cpaddr),
18459 cCE("cfstrs", c000400, 2, (RMF, ADDRGLDC), rd_cpaddr),
18460 cCE("cfstrd", c400400, 2, (RMD, ADDRGLDC), rd_cpaddr),
18461 cCE("cfstr32", c000500, 2, (RMFX, ADDRGLDC), rd_cpaddr),
18462 cCE("cfstr64", c400500, 2, (RMDX, ADDRGLDC), rd_cpaddr),
18463 cCE("cfmvsr", e000450, 2, (RMF, RR), rn_rd),
18464 cCE("cfmvrs", e100450, 2, (RR, RMF), rd_rn),
18465 cCE("cfmvdlr", e000410, 2, (RMD, RR), rn_rd),
18466 cCE("cfmvrdl", e100410, 2, (RR, RMD), rd_rn),
18467 cCE("cfmvdhr", e000430, 2, (RMD, RR), rn_rd),
18468 cCE("cfmvrdh", e100430, 2, (RR, RMD), rd_rn),
18469 cCE("cfmv64lr", e000510, 2, (RMDX, RR), rn_rd),
18470 cCE("cfmvr64l", e100510, 2, (RR, RMDX), rd_rn),
18471 cCE("cfmv64hr", e000530, 2, (RMDX, RR), rn_rd),
18472 cCE("cfmvr64h", e100530, 2, (RR, RMDX), rd_rn),
18473 cCE("cfmval32", e200440, 2, (RMAX, RMFX), rd_rn),
18474 cCE("cfmv32al", e100440, 2, (RMFX, RMAX), rd_rn),
18475 cCE("cfmvam32", e200460, 2, (RMAX, RMFX), rd_rn),
18476 cCE("cfmv32am", e100460, 2, (RMFX, RMAX), rd_rn),
18477 cCE("cfmvah32", e200480, 2, (RMAX, RMFX), rd_rn),
18478 cCE("cfmv32ah", e100480, 2, (RMFX, RMAX), rd_rn),
18479 cCE("cfmva32", e2004a0, 2, (RMAX, RMFX), rd_rn),
18480 cCE("cfmv32a", e1004a0, 2, (RMFX, RMAX), rd_rn),
18481 cCE("cfmva64", e2004c0, 2, (RMAX, RMDX), rd_rn),
18482 cCE("cfmv64a", e1004c0, 2, (RMDX, RMAX), rd_rn),
18483 cCE("cfmvsc32", e2004e0, 2, (RMDS, RMDX), mav_dspsc),
18484 cCE("cfmv32sc", e1004e0, 2, (RMDX, RMDS), rd),
18485 cCE("cfcpys", e000400, 2, (RMF, RMF), rd_rn),
18486 cCE("cfcpyd", e000420, 2, (RMD, RMD), rd_rn),
18487 cCE("cfcvtsd", e000460, 2, (RMD, RMF), rd_rn),
18488 cCE("cfcvtds", e000440, 2, (RMF, RMD), rd_rn),
18489 cCE("cfcvt32s", e000480, 2, (RMF, RMFX), rd_rn),
18490 cCE("cfcvt32d", e0004a0, 2, (RMD, RMFX), rd_rn),
18491 cCE("cfcvt64s", e0004c0, 2, (RMF, RMDX), rd_rn),
18492 cCE("cfcvt64d", e0004e0, 2, (RMD, RMDX), rd_rn),
18493 cCE("cfcvts32", e100580, 2, (RMFX, RMF), rd_rn),
18494 cCE("cfcvtd32", e1005a0, 2, (RMFX, RMD), rd_rn),
18495 cCE("cftruncs32",e1005c0, 2, (RMFX, RMF), rd_rn),
18496 cCE("cftruncd32",e1005e0, 2, (RMFX, RMD), rd_rn),
18497 cCE("cfrshl32", e000550, 3, (RMFX, RMFX, RR), mav_triple),
18498 cCE("cfrshl64", e000570, 3, (RMDX, RMDX, RR), mav_triple),
18499 cCE("cfsh32", e000500, 3, (RMFX, RMFX, I63s), mav_shift),
18500 cCE("cfsh64", e200500, 3, (RMDX, RMDX, I63s), mav_shift),
18501 cCE("cfcmps", e100490, 3, (RR, RMF, RMF), rd_rn_rm),
18502 cCE("cfcmpd", e1004b0, 3, (RR, RMD, RMD), rd_rn_rm),
18503 cCE("cfcmp32", e100590, 3, (RR, RMFX, RMFX), rd_rn_rm),
18504 cCE("cfcmp64", e1005b0, 3, (RR, RMDX, RMDX), rd_rn_rm),
18505 cCE("cfabss", e300400, 2, (RMF, RMF), rd_rn),
18506 cCE("cfabsd", e300420, 2, (RMD, RMD), rd_rn),
18507 cCE("cfnegs", e300440, 2, (RMF, RMF), rd_rn),
18508 cCE("cfnegd", e300460, 2, (RMD, RMD), rd_rn),
18509 cCE("cfadds", e300480, 3, (RMF, RMF, RMF), rd_rn_rm),
18510 cCE("cfaddd", e3004a0, 3, (RMD, RMD, RMD), rd_rn_rm),
18511 cCE("cfsubs", e3004c0, 3, (RMF, RMF, RMF), rd_rn_rm),
18512 cCE("cfsubd", e3004e0, 3, (RMD, RMD, RMD), rd_rn_rm),
18513 cCE("cfmuls", e100400, 3, (RMF, RMF, RMF), rd_rn_rm),
18514 cCE("cfmuld", e100420, 3, (RMD, RMD, RMD), rd_rn_rm),
18515 cCE("cfabs32", e300500, 2, (RMFX, RMFX), rd_rn),
18516 cCE("cfabs64", e300520, 2, (RMDX, RMDX), rd_rn),
18517 cCE("cfneg32", e300540, 2, (RMFX, RMFX), rd_rn),
18518 cCE("cfneg64", e300560, 2, (RMDX, RMDX), rd_rn),
18519 cCE("cfadd32", e300580, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
18520 cCE("cfadd64", e3005a0, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
18521 cCE("cfsub32", e3005c0, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
18522 cCE("cfsub64", e3005e0, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
18523 cCE("cfmul32", e100500, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
18524 cCE("cfmul64", e100520, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
18525 cCE("cfmac32", e100540, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
18526 cCE("cfmsc32", e100560, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
18527 cCE("cfmadd32", e000600, 4, (RMAX, RMFX, RMFX, RMFX), mav_quad),
18528 cCE("cfmsub32", e100600, 4, (RMAX, RMFX, RMFX, RMFX), mav_quad),
18529 cCE("cfmadda32", e200600, 4, (RMAX, RMAX, RMFX, RMFX), mav_quad),
18530 cCE("cfmsuba32", e300600, 4, (RMAX, RMAX, RMFX, RMFX), mav_quad),
18531 };
18532 #undef ARM_VARIANT
18533 #undef THUMB_VARIANT
18534 #undef TCE
18535 #undef TCM
18536 #undef TUE
18537 #undef TUF
18538 #undef TCC
18539 #undef cCE
18540 #undef cCL
18541 #undef C3E
18542 #undef CE
18543 #undef CM
18544 #undef UE
18545 #undef UF
18546 #undef UT
18547 #undef NUF
18548 #undef nUF
18549 #undef NCE
18550 #undef nCE
18551 #undef OPS0
18552 #undef OPS1
18553 #undef OPS2
18554 #undef OPS3
18555 #undef OPS4
18556 #undef OPS5
18557 #undef OPS6
18558 #undef do_0
18559 \f
18560 /* MD interface: bits in the object file. */
18561
18562 /* Turn an integer of n bytes (in val) into a stream of bytes appropriate
18563 for use in the a.out file, and stores them in the array pointed to by buf.
18564 This knows about the endian-ness of the target machine and does
18565 THE RIGHT THING, whatever it is. Possible values for n are 1 (byte)
18566 2 (short) and 4 (long) Floating numbers are put out as a series of
18567 LITTLENUMS (shorts, here at least). */
18568
18569 void
18570 md_number_to_chars (char * buf, valueT val, int n)
18571 {
18572 if (target_big_endian)
18573 number_to_chars_bigendian (buf, val, n);
18574 else
18575 number_to_chars_littleendian (buf, val, n);
18576 }
18577
18578 static valueT
18579 md_chars_to_number (char * buf, int n)
18580 {
18581 valueT result = 0;
18582 unsigned char * where = (unsigned char *) buf;
18583
18584 if (target_big_endian)
18585 {
18586 while (n--)
18587 {
18588 result <<= 8;
18589 result |= (*where++ & 255);
18590 }
18591 }
18592 else
18593 {
18594 while (n--)
18595 {
18596 result <<= 8;
18597 result |= (where[n] & 255);
18598 }
18599 }
18600
18601 return result;
18602 }
18603
18604 /* MD interface: Sections. */
18605
18606 /* Estimate the size of a frag before relaxing. Assume everything fits in
18607 2 bytes. */
18608
18609 int
18610 md_estimate_size_before_relax (fragS * fragp,
18611 segT segtype ATTRIBUTE_UNUSED)
18612 {
18613 fragp->fr_var = 2;
18614 return 2;
18615 }
18616
18617 /* Convert a machine dependent frag. */
18618
18619 void
18620 md_convert_frag (bfd *abfd, segT asec ATTRIBUTE_UNUSED, fragS *fragp)
18621 {
18622 unsigned long insn;
18623 unsigned long old_op;
18624 char *buf;
18625 expressionS exp;
18626 fixS *fixp;
18627 int reloc_type;
18628 int pc_rel;
18629 int opcode;
18630
18631 buf = fragp->fr_literal + fragp->fr_fix;
18632
18633 old_op = bfd_get_16(abfd, buf);
18634 if (fragp->fr_symbol)
18635 {
18636 exp.X_op = O_symbol;
18637 exp.X_add_symbol = fragp->fr_symbol;
18638 }
18639 else
18640 {
18641 exp.X_op = O_constant;
18642 }
18643 exp.X_add_number = fragp->fr_offset;
18644 opcode = fragp->fr_subtype;
18645 switch (opcode)
18646 {
18647 case T_MNEM_ldr_pc:
18648 case T_MNEM_ldr_pc2:
18649 case T_MNEM_ldr_sp:
18650 case T_MNEM_str_sp:
18651 case T_MNEM_ldr:
18652 case T_MNEM_ldrb:
18653 case T_MNEM_ldrh:
18654 case T_MNEM_str:
18655 case T_MNEM_strb:
18656 case T_MNEM_strh:
18657 if (fragp->fr_var == 4)
18658 {
18659 insn = THUMB_OP32 (opcode);
18660 if ((old_op >> 12) == 4 || (old_op >> 12) == 9)
18661 {
18662 insn |= (old_op & 0x700) << 4;
18663 }
18664 else
18665 {
18666 insn |= (old_op & 7) << 12;
18667 insn |= (old_op & 0x38) << 13;
18668 }
18669 insn |= 0x00000c00;
18670 put_thumb32_insn (buf, insn);
18671 reloc_type = BFD_RELOC_ARM_T32_OFFSET_IMM;
18672 }
18673 else
18674 {
18675 reloc_type = BFD_RELOC_ARM_THUMB_OFFSET;
18676 }
18677 pc_rel = (opcode == T_MNEM_ldr_pc2);
18678 break;
18679 case T_MNEM_adr:
18680 if (fragp->fr_var == 4)
18681 {
18682 insn = THUMB_OP32 (opcode);
18683 insn |= (old_op & 0xf0) << 4;
18684 put_thumb32_insn (buf, insn);
18685 reloc_type = BFD_RELOC_ARM_T32_ADD_PC12;
18686 }
18687 else
18688 {
18689 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
18690 exp.X_add_number -= 4;
18691 }
18692 pc_rel = 1;
18693 break;
18694 case T_MNEM_mov:
18695 case T_MNEM_movs:
18696 case T_MNEM_cmp:
18697 case T_MNEM_cmn:
18698 if (fragp->fr_var == 4)
18699 {
18700 int r0off = (opcode == T_MNEM_mov
18701 || opcode == T_MNEM_movs) ? 0 : 8;
18702 insn = THUMB_OP32 (opcode);
18703 insn = (insn & 0xe1ffffff) | 0x10000000;
18704 insn |= (old_op & 0x700) << r0off;
18705 put_thumb32_insn (buf, insn);
18706 reloc_type = BFD_RELOC_ARM_T32_IMMEDIATE;
18707 }
18708 else
18709 {
18710 reloc_type = BFD_RELOC_ARM_THUMB_IMM;
18711 }
18712 pc_rel = 0;
18713 break;
18714 case T_MNEM_b:
18715 if (fragp->fr_var == 4)
18716 {
18717 insn = THUMB_OP32(opcode);
18718 put_thumb32_insn (buf, insn);
18719 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH25;
18720 }
18721 else
18722 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH12;
18723 pc_rel = 1;
18724 break;
18725 case T_MNEM_bcond:
18726 if (fragp->fr_var == 4)
18727 {
18728 insn = THUMB_OP32(opcode);
18729 insn |= (old_op & 0xf00) << 14;
18730 put_thumb32_insn (buf, insn);
18731 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH20;
18732 }
18733 else
18734 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH9;
18735 pc_rel = 1;
18736 break;
18737 case T_MNEM_add_sp:
18738 case T_MNEM_add_pc:
18739 case T_MNEM_inc_sp:
18740 case T_MNEM_dec_sp:
18741 if (fragp->fr_var == 4)
18742 {
18743 /* ??? Choose between add and addw. */
18744 insn = THUMB_OP32 (opcode);
18745 insn |= (old_op & 0xf0) << 4;
18746 put_thumb32_insn (buf, insn);
18747 if (opcode == T_MNEM_add_pc)
18748 reloc_type = BFD_RELOC_ARM_T32_IMM12;
18749 else
18750 reloc_type = BFD_RELOC_ARM_T32_ADD_IMM;
18751 }
18752 else
18753 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
18754 pc_rel = 0;
18755 break;
18756
18757 case T_MNEM_addi:
18758 case T_MNEM_addis:
18759 case T_MNEM_subi:
18760 case T_MNEM_subis:
18761 if (fragp->fr_var == 4)
18762 {
18763 insn = THUMB_OP32 (opcode);
18764 insn |= (old_op & 0xf0) << 4;
18765 insn |= (old_op & 0xf) << 16;
18766 put_thumb32_insn (buf, insn);
18767 if (insn & (1 << 20))
18768 reloc_type = BFD_RELOC_ARM_T32_ADD_IMM;
18769 else
18770 reloc_type = BFD_RELOC_ARM_T32_IMMEDIATE;
18771 }
18772 else
18773 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
18774 pc_rel = 0;
18775 break;
18776 default:
18777 abort ();
18778 }
18779 fixp = fix_new_exp (fragp, fragp->fr_fix, fragp->fr_var, &exp, pc_rel,
18780 (enum bfd_reloc_code_real) reloc_type);
18781 fixp->fx_file = fragp->fr_file;
18782 fixp->fx_line = fragp->fr_line;
18783 fragp->fr_fix += fragp->fr_var;
18784 }
18785
18786 /* Return the size of a relaxable immediate operand instruction.
18787 SHIFT and SIZE specify the form of the allowable immediate. */
18788 static int
18789 relax_immediate (fragS *fragp, int size, int shift)
18790 {
18791 offsetT offset;
18792 offsetT mask;
18793 offsetT low;
18794
18795 /* ??? Should be able to do better than this. */
18796 if (fragp->fr_symbol)
18797 return 4;
18798
18799 low = (1 << shift) - 1;
18800 mask = (1 << (shift + size)) - (1 << shift);
18801 offset = fragp->fr_offset;
18802 /* Force misaligned offsets to 32-bit variant. */
18803 if (offset & low)
18804 return 4;
18805 if (offset & ~mask)
18806 return 4;
18807 return 2;
18808 }
18809
18810 /* Get the address of a symbol during relaxation. */
18811 static addressT
18812 relaxed_symbol_addr (fragS *fragp, long stretch)
18813 {
18814 fragS *sym_frag;
18815 addressT addr;
18816 symbolS *sym;
18817
18818 sym = fragp->fr_symbol;
18819 sym_frag = symbol_get_frag (sym);
18820 know (S_GET_SEGMENT (sym) != absolute_section
18821 || sym_frag == &zero_address_frag);
18822 addr = S_GET_VALUE (sym) + fragp->fr_offset;
18823
18824 /* If frag has yet to be reached on this pass, assume it will
18825 move by STRETCH just as we did. If this is not so, it will
18826 be because some frag between grows, and that will force
18827 another pass. */
18828
18829 if (stretch != 0
18830 && sym_frag->relax_marker != fragp->relax_marker)
18831 {
18832 fragS *f;
18833
18834 /* Adjust stretch for any alignment frag. Note that if have
18835 been expanding the earlier code, the symbol may be
18836 defined in what appears to be an earlier frag. FIXME:
18837 This doesn't handle the fr_subtype field, which specifies
18838 a maximum number of bytes to skip when doing an
18839 alignment. */
18840 for (f = fragp; f != NULL && f != sym_frag; f = f->fr_next)
18841 {
18842 if (f->fr_type == rs_align || f->fr_type == rs_align_code)
18843 {
18844 if (stretch < 0)
18845 stretch = - ((- stretch)
18846 & ~ ((1 << (int) f->fr_offset) - 1));
18847 else
18848 stretch &= ~ ((1 << (int) f->fr_offset) - 1);
18849 if (stretch == 0)
18850 break;
18851 }
18852 }
18853 if (f != NULL)
18854 addr += stretch;
18855 }
18856
18857 return addr;
18858 }
18859
18860 /* Return the size of a relaxable adr pseudo-instruction or PC-relative
18861 load. */
18862 static int
18863 relax_adr (fragS *fragp, asection *sec, long stretch)
18864 {
18865 addressT addr;
18866 offsetT val;
18867
18868 /* Assume worst case for symbols not known to be in the same section. */
18869 if (fragp->fr_symbol == NULL
18870 || !S_IS_DEFINED (fragp->fr_symbol)
18871 || sec != S_GET_SEGMENT (fragp->fr_symbol)
18872 || S_IS_WEAK (fragp->fr_symbol))
18873 return 4;
18874
18875 val = relaxed_symbol_addr (fragp, stretch);
18876 addr = fragp->fr_address + fragp->fr_fix;
18877 addr = (addr + 4) & ~3;
18878 /* Force misaligned targets to 32-bit variant. */
18879 if (val & 3)
18880 return 4;
18881 val -= addr;
18882 if (val < 0 || val > 1020)
18883 return 4;
18884 return 2;
18885 }
18886
18887 /* Return the size of a relaxable add/sub immediate instruction. */
18888 static int
18889 relax_addsub (fragS *fragp, asection *sec)
18890 {
18891 char *buf;
18892 int op;
18893
18894 buf = fragp->fr_literal + fragp->fr_fix;
18895 op = bfd_get_16(sec->owner, buf);
18896 if ((op & 0xf) == ((op >> 4) & 0xf))
18897 return relax_immediate (fragp, 8, 0);
18898 else
18899 return relax_immediate (fragp, 3, 0);
18900 }
18901
18902
18903 /* Return the size of a relaxable branch instruction. BITS is the
18904 size of the offset field in the narrow instruction. */
18905
18906 static int
18907 relax_branch (fragS *fragp, asection *sec, int bits, long stretch)
18908 {
18909 addressT addr;
18910 offsetT val;
18911 offsetT limit;
18912
18913 /* Assume worst case for symbols not known to be in the same section. */
18914 if (!S_IS_DEFINED (fragp->fr_symbol)
18915 || sec != S_GET_SEGMENT (fragp->fr_symbol)
18916 || S_IS_WEAK (fragp->fr_symbol))
18917 return 4;
18918
18919 #ifdef OBJ_ELF
18920 if (S_IS_DEFINED (fragp->fr_symbol)
18921 && ARM_IS_FUNC (fragp->fr_symbol))
18922 return 4;
18923 #endif
18924
18925 val = relaxed_symbol_addr (fragp, stretch);
18926 addr = fragp->fr_address + fragp->fr_fix + 4;
18927 val -= addr;
18928
18929 /* Offset is a signed value *2 */
18930 limit = 1 << bits;
18931 if (val >= limit || val < -limit)
18932 return 4;
18933 return 2;
18934 }
18935
18936
18937 /* Relax a machine dependent frag. This returns the amount by which
18938 the current size of the frag should change. */
18939
18940 int
18941 arm_relax_frag (asection *sec, fragS *fragp, long stretch)
18942 {
18943 int oldsize;
18944 int newsize;
18945
18946 oldsize = fragp->fr_var;
18947 switch (fragp->fr_subtype)
18948 {
18949 case T_MNEM_ldr_pc2:
18950 newsize = relax_adr (fragp, sec, stretch);
18951 break;
18952 case T_MNEM_ldr_pc:
18953 case T_MNEM_ldr_sp:
18954 case T_MNEM_str_sp:
18955 newsize = relax_immediate (fragp, 8, 2);
18956 break;
18957 case T_MNEM_ldr:
18958 case T_MNEM_str:
18959 newsize = relax_immediate (fragp, 5, 2);
18960 break;
18961 case T_MNEM_ldrh:
18962 case T_MNEM_strh:
18963 newsize = relax_immediate (fragp, 5, 1);
18964 break;
18965 case T_MNEM_ldrb:
18966 case T_MNEM_strb:
18967 newsize = relax_immediate (fragp, 5, 0);
18968 break;
18969 case T_MNEM_adr:
18970 newsize = relax_adr (fragp, sec, stretch);
18971 break;
18972 case T_MNEM_mov:
18973 case T_MNEM_movs:
18974 case T_MNEM_cmp:
18975 case T_MNEM_cmn:
18976 newsize = relax_immediate (fragp, 8, 0);
18977 break;
18978 case T_MNEM_b:
18979 newsize = relax_branch (fragp, sec, 11, stretch);
18980 break;
18981 case T_MNEM_bcond:
18982 newsize = relax_branch (fragp, sec, 8, stretch);
18983 break;
18984 case T_MNEM_add_sp:
18985 case T_MNEM_add_pc:
18986 newsize = relax_immediate (fragp, 8, 2);
18987 break;
18988 case T_MNEM_inc_sp:
18989 case T_MNEM_dec_sp:
18990 newsize = relax_immediate (fragp, 7, 2);
18991 break;
18992 case T_MNEM_addi:
18993 case T_MNEM_addis:
18994 case T_MNEM_subi:
18995 case T_MNEM_subis:
18996 newsize = relax_addsub (fragp, sec);
18997 break;
18998 default:
18999 abort ();
19000 }
19001
19002 fragp->fr_var = newsize;
19003 /* Freeze wide instructions that are at or before the same location as
19004 in the previous pass. This avoids infinite loops.
19005 Don't freeze them unconditionally because targets may be artificially
19006 misaligned by the expansion of preceding frags. */
19007 if (stretch <= 0 && newsize > 2)
19008 {
19009 md_convert_frag (sec->owner, sec, fragp);
19010 frag_wane (fragp);
19011 }
19012
19013 return newsize - oldsize;
19014 }
19015
19016 /* Round up a section size to the appropriate boundary. */
19017
19018 valueT
19019 md_section_align (segT segment ATTRIBUTE_UNUSED,
19020 valueT size)
19021 {
19022 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
19023 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
19024 {
19025 /* For a.out, force the section size to be aligned. If we don't do
19026 this, BFD will align it for us, but it will not write out the
19027 final bytes of the section. This may be a bug in BFD, but it is
19028 easier to fix it here since that is how the other a.out targets
19029 work. */
19030 int align;
19031
19032 align = bfd_get_section_alignment (stdoutput, segment);
19033 size = ((size + (1 << align) - 1) & ((valueT) -1 << align));
19034 }
19035 #endif
19036
19037 return size;
19038 }
19039
19040 /* This is called from HANDLE_ALIGN in write.c. Fill in the contents
19041 of an rs_align_code fragment. */
19042
19043 void
19044 arm_handle_align (fragS * fragP)
19045 {
19046 static char const arm_noop[2][2][4] =
19047 {
19048 { /* ARMv1 */
19049 {0x00, 0x00, 0xa0, 0xe1}, /* LE */
19050 {0xe1, 0xa0, 0x00, 0x00}, /* BE */
19051 },
19052 { /* ARMv6k */
19053 {0x00, 0xf0, 0x20, 0xe3}, /* LE */
19054 {0xe3, 0x20, 0xf0, 0x00}, /* BE */
19055 },
19056 };
19057 static char const thumb_noop[2][2][2] =
19058 {
19059 { /* Thumb-1 */
19060 {0xc0, 0x46}, /* LE */
19061 {0x46, 0xc0}, /* BE */
19062 },
19063 { /* Thumb-2 */
19064 {0x00, 0xbf}, /* LE */
19065 {0xbf, 0x00} /* BE */
19066 }
19067 };
19068 static char const wide_thumb_noop[2][4] =
19069 { /* Wide Thumb-2 */
19070 {0xaf, 0xf3, 0x00, 0x80}, /* LE */
19071 {0xf3, 0xaf, 0x80, 0x00}, /* BE */
19072 };
19073
19074 unsigned bytes, fix, noop_size;
19075 char * p;
19076 const char * noop;
19077 const char *narrow_noop = NULL;
19078 #ifdef OBJ_ELF
19079 enum mstate state;
19080 #endif
19081
19082 if (fragP->fr_type != rs_align_code)
19083 return;
19084
19085 bytes = fragP->fr_next->fr_address - fragP->fr_address - fragP->fr_fix;
19086 p = fragP->fr_literal + fragP->fr_fix;
19087 fix = 0;
19088
19089 if (bytes > MAX_MEM_FOR_RS_ALIGN_CODE)
19090 bytes &= MAX_MEM_FOR_RS_ALIGN_CODE;
19091
19092 gas_assert ((fragP->tc_frag_data.thumb_mode & MODE_RECORDED) != 0);
19093
19094 if (fragP->tc_frag_data.thumb_mode & (~ MODE_RECORDED))
19095 {
19096 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6t2))
19097 {
19098 narrow_noop = thumb_noop[1][target_big_endian];
19099 noop = wide_thumb_noop[target_big_endian];
19100 }
19101 else
19102 noop = thumb_noop[0][target_big_endian];
19103 noop_size = 2;
19104 #ifdef OBJ_ELF
19105 state = MAP_THUMB;
19106 #endif
19107 }
19108 else
19109 {
19110 noop = arm_noop[ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6k) != 0]
19111 [target_big_endian];
19112 noop_size = 4;
19113 #ifdef OBJ_ELF
19114 state = MAP_ARM;
19115 #endif
19116 }
19117
19118 fragP->fr_var = noop_size;
19119
19120 if (bytes & (noop_size - 1))
19121 {
19122 fix = bytes & (noop_size - 1);
19123 #ifdef OBJ_ELF
19124 insert_data_mapping_symbol (state, fragP->fr_fix, fragP, fix);
19125 #endif
19126 memset (p, 0, fix);
19127 p += fix;
19128 bytes -= fix;
19129 }
19130
19131 if (narrow_noop)
19132 {
19133 if (bytes & noop_size)
19134 {
19135 /* Insert a narrow noop. */
19136 memcpy (p, narrow_noop, noop_size);
19137 p += noop_size;
19138 bytes -= noop_size;
19139 fix += noop_size;
19140 }
19141
19142 /* Use wide noops for the remainder */
19143 noop_size = 4;
19144 }
19145
19146 while (bytes >= noop_size)
19147 {
19148 memcpy (p, noop, noop_size);
19149 p += noop_size;
19150 bytes -= noop_size;
19151 fix += noop_size;
19152 }
19153
19154 fragP->fr_fix += fix;
19155 }
19156
19157 /* Called from md_do_align. Used to create an alignment
19158 frag in a code section. */
19159
19160 void
19161 arm_frag_align_code (int n, int max)
19162 {
19163 char * p;
19164
19165 /* We assume that there will never be a requirement
19166 to support alignments greater than MAX_MEM_FOR_RS_ALIGN_CODE bytes. */
19167 if (max > MAX_MEM_FOR_RS_ALIGN_CODE)
19168 {
19169 char err_msg[128];
19170
19171 sprintf (err_msg,
19172 _("alignments greater than %d bytes not supported in .text sections."),
19173 MAX_MEM_FOR_RS_ALIGN_CODE + 1);
19174 as_fatal ("%s", err_msg);
19175 }
19176
19177 p = frag_var (rs_align_code,
19178 MAX_MEM_FOR_RS_ALIGN_CODE,
19179 1,
19180 (relax_substateT) max,
19181 (symbolS *) NULL,
19182 (offsetT) n,
19183 (char *) NULL);
19184 *p = 0;
19185 }
19186
19187 /* Perform target specific initialisation of a frag.
19188 Note - despite the name this initialisation is not done when the frag
19189 is created, but only when its type is assigned. A frag can be created
19190 and used a long time before its type is set, so beware of assuming that
19191 this initialisationis performed first. */
19192
19193 #ifndef OBJ_ELF
19194 void
19195 arm_init_frag (fragS * fragP, int max_chars ATTRIBUTE_UNUSED)
19196 {
19197 /* Record whether this frag is in an ARM or a THUMB area. */
19198 fragP->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
19199 }
19200
19201 #else /* OBJ_ELF is defined. */
19202 void
19203 arm_init_frag (fragS * fragP, int max_chars)
19204 {
19205 /* If the current ARM vs THUMB mode has not already
19206 been recorded into this frag then do so now. */
19207 if ((fragP->tc_frag_data.thumb_mode & MODE_RECORDED) == 0)
19208 {
19209 fragP->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
19210
19211 /* Record a mapping symbol for alignment frags. We will delete this
19212 later if the alignment ends up empty. */
19213 switch (fragP->fr_type)
19214 {
19215 case rs_align:
19216 case rs_align_test:
19217 case rs_fill:
19218 mapping_state_2 (MAP_DATA, max_chars);
19219 break;
19220 case rs_align_code:
19221 mapping_state_2 (thumb_mode ? MAP_THUMB : MAP_ARM, max_chars);
19222 break;
19223 default:
19224 break;
19225 }
19226 }
19227 }
19228
19229 /* When we change sections we need to issue a new mapping symbol. */
19230
19231 void
19232 arm_elf_change_section (void)
19233 {
19234 /* Link an unlinked unwind index table section to the .text section. */
19235 if (elf_section_type (now_seg) == SHT_ARM_EXIDX
19236 && elf_linked_to_section (now_seg) == NULL)
19237 elf_linked_to_section (now_seg) = text_section;
19238 }
19239
19240 int
19241 arm_elf_section_type (const char * str, size_t len)
19242 {
19243 if (len == 5 && strncmp (str, "exidx", 5) == 0)
19244 return SHT_ARM_EXIDX;
19245
19246 return -1;
19247 }
19248 \f
19249 /* Code to deal with unwinding tables. */
19250
19251 static void add_unwind_adjustsp (offsetT);
19252
19253 /* Generate any deferred unwind frame offset. */
19254
19255 static void
19256 flush_pending_unwind (void)
19257 {
19258 offsetT offset;
19259
19260 offset = unwind.pending_offset;
19261 unwind.pending_offset = 0;
19262 if (offset != 0)
19263 add_unwind_adjustsp (offset);
19264 }
19265
19266 /* Add an opcode to this list for this function. Two-byte opcodes should
19267 be passed as op[0] << 8 | op[1]. The list of opcodes is built in reverse
19268 order. */
19269
19270 static void
19271 add_unwind_opcode (valueT op, int length)
19272 {
19273 /* Add any deferred stack adjustment. */
19274 if (unwind.pending_offset)
19275 flush_pending_unwind ();
19276
19277 unwind.sp_restored = 0;
19278
19279 if (unwind.opcode_count + length > unwind.opcode_alloc)
19280 {
19281 unwind.opcode_alloc += ARM_OPCODE_CHUNK_SIZE;
19282 if (unwind.opcodes)
19283 unwind.opcodes = (unsigned char *) xrealloc (unwind.opcodes,
19284 unwind.opcode_alloc);
19285 else
19286 unwind.opcodes = (unsigned char *) xmalloc (unwind.opcode_alloc);
19287 }
19288 while (length > 0)
19289 {
19290 length--;
19291 unwind.opcodes[unwind.opcode_count] = op & 0xff;
19292 op >>= 8;
19293 unwind.opcode_count++;
19294 }
19295 }
19296
19297 /* Add unwind opcodes to adjust the stack pointer. */
19298
19299 static void
19300 add_unwind_adjustsp (offsetT offset)
19301 {
19302 valueT op;
19303
19304 if (offset > 0x200)
19305 {
19306 /* We need at most 5 bytes to hold a 32-bit value in a uleb128. */
19307 char bytes[5];
19308 int n;
19309 valueT o;
19310
19311 /* Long form: 0xb2, uleb128. */
19312 /* This might not fit in a word so add the individual bytes,
19313 remembering the list is built in reverse order. */
19314 o = (valueT) ((offset - 0x204) >> 2);
19315 if (o == 0)
19316 add_unwind_opcode (0, 1);
19317
19318 /* Calculate the uleb128 encoding of the offset. */
19319 n = 0;
19320 while (o)
19321 {
19322 bytes[n] = o & 0x7f;
19323 o >>= 7;
19324 if (o)
19325 bytes[n] |= 0x80;
19326 n++;
19327 }
19328 /* Add the insn. */
19329 for (; n; n--)
19330 add_unwind_opcode (bytes[n - 1], 1);
19331 add_unwind_opcode (0xb2, 1);
19332 }
19333 else if (offset > 0x100)
19334 {
19335 /* Two short opcodes. */
19336 add_unwind_opcode (0x3f, 1);
19337 op = (offset - 0x104) >> 2;
19338 add_unwind_opcode (op, 1);
19339 }
19340 else if (offset > 0)
19341 {
19342 /* Short opcode. */
19343 op = (offset - 4) >> 2;
19344 add_unwind_opcode (op, 1);
19345 }
19346 else if (offset < 0)
19347 {
19348 offset = -offset;
19349 while (offset > 0x100)
19350 {
19351 add_unwind_opcode (0x7f, 1);
19352 offset -= 0x100;
19353 }
19354 op = ((offset - 4) >> 2) | 0x40;
19355 add_unwind_opcode (op, 1);
19356 }
19357 }
19358
19359 /* Finish the list of unwind opcodes for this function. */
19360 static void
19361 finish_unwind_opcodes (void)
19362 {
19363 valueT op;
19364
19365 if (unwind.fp_used)
19366 {
19367 /* Adjust sp as necessary. */
19368 unwind.pending_offset += unwind.fp_offset - unwind.frame_size;
19369 flush_pending_unwind ();
19370
19371 /* After restoring sp from the frame pointer. */
19372 op = 0x90 | unwind.fp_reg;
19373 add_unwind_opcode (op, 1);
19374 }
19375 else
19376 flush_pending_unwind ();
19377 }
19378
19379
19380 /* Start an exception table entry. If idx is nonzero this is an index table
19381 entry. */
19382
19383 static void
19384 start_unwind_section (const segT text_seg, int idx)
19385 {
19386 const char * text_name;
19387 const char * prefix;
19388 const char * prefix_once;
19389 const char * group_name;
19390 size_t prefix_len;
19391 size_t text_len;
19392 char * sec_name;
19393 size_t sec_name_len;
19394 int type;
19395 int flags;
19396 int linkonce;
19397
19398 if (idx)
19399 {
19400 prefix = ELF_STRING_ARM_unwind;
19401 prefix_once = ELF_STRING_ARM_unwind_once;
19402 type = SHT_ARM_EXIDX;
19403 }
19404 else
19405 {
19406 prefix = ELF_STRING_ARM_unwind_info;
19407 prefix_once = ELF_STRING_ARM_unwind_info_once;
19408 type = SHT_PROGBITS;
19409 }
19410
19411 text_name = segment_name (text_seg);
19412 if (streq (text_name, ".text"))
19413 text_name = "";
19414
19415 if (strncmp (text_name, ".gnu.linkonce.t.",
19416 strlen (".gnu.linkonce.t.")) == 0)
19417 {
19418 prefix = prefix_once;
19419 text_name += strlen (".gnu.linkonce.t.");
19420 }
19421
19422 prefix_len = strlen (prefix);
19423 text_len = strlen (text_name);
19424 sec_name_len = prefix_len + text_len;
19425 sec_name = (char *) xmalloc (sec_name_len + 1);
19426 memcpy (sec_name, prefix, prefix_len);
19427 memcpy (sec_name + prefix_len, text_name, text_len);
19428 sec_name[prefix_len + text_len] = '\0';
19429
19430 flags = SHF_ALLOC;
19431 linkonce = 0;
19432 group_name = 0;
19433
19434 /* Handle COMDAT group. */
19435 if (prefix != prefix_once && (text_seg->flags & SEC_LINK_ONCE) != 0)
19436 {
19437 group_name = elf_group_name (text_seg);
19438 if (group_name == NULL)
19439 {
19440 as_bad (_("Group section `%s' has no group signature"),
19441 segment_name (text_seg));
19442 ignore_rest_of_line ();
19443 return;
19444 }
19445 flags |= SHF_GROUP;
19446 linkonce = 1;
19447 }
19448
19449 obj_elf_change_section (sec_name, type, flags, 0, group_name, linkonce, 0);
19450
19451 /* Set the section link for index tables. */
19452 if (idx)
19453 elf_linked_to_section (now_seg) = text_seg;
19454 }
19455
19456
19457 /* Start an unwind table entry. HAVE_DATA is nonzero if we have additional
19458 personality routine data. Returns zero, or the index table value for
19459 and inline entry. */
19460
19461 static valueT
19462 create_unwind_entry (int have_data)
19463 {
19464 int size;
19465 addressT where;
19466 char *ptr;
19467 /* The current word of data. */
19468 valueT data;
19469 /* The number of bytes left in this word. */
19470 int n;
19471
19472 finish_unwind_opcodes ();
19473
19474 /* Remember the current text section. */
19475 unwind.saved_seg = now_seg;
19476 unwind.saved_subseg = now_subseg;
19477
19478 start_unwind_section (now_seg, 0);
19479
19480 if (unwind.personality_routine == NULL)
19481 {
19482 if (unwind.personality_index == -2)
19483 {
19484 if (have_data)
19485 as_bad (_("handlerdata in cantunwind frame"));
19486 return 1; /* EXIDX_CANTUNWIND. */
19487 }
19488
19489 /* Use a default personality routine if none is specified. */
19490 if (unwind.personality_index == -1)
19491 {
19492 if (unwind.opcode_count > 3)
19493 unwind.personality_index = 1;
19494 else
19495 unwind.personality_index = 0;
19496 }
19497
19498 /* Space for the personality routine entry. */
19499 if (unwind.personality_index == 0)
19500 {
19501 if (unwind.opcode_count > 3)
19502 as_bad (_("too many unwind opcodes for personality routine 0"));
19503
19504 if (!have_data)
19505 {
19506 /* All the data is inline in the index table. */
19507 data = 0x80;
19508 n = 3;
19509 while (unwind.opcode_count > 0)
19510 {
19511 unwind.opcode_count--;
19512 data = (data << 8) | unwind.opcodes[unwind.opcode_count];
19513 n--;
19514 }
19515
19516 /* Pad with "finish" opcodes. */
19517 while (n--)
19518 data = (data << 8) | 0xb0;
19519
19520 return data;
19521 }
19522 size = 0;
19523 }
19524 else
19525 /* We get two opcodes "free" in the first word. */
19526 size = unwind.opcode_count - 2;
19527 }
19528 else
19529 /* An extra byte is required for the opcode count. */
19530 size = unwind.opcode_count + 1;
19531
19532 size = (size + 3) >> 2;
19533 if (size > 0xff)
19534 as_bad (_("too many unwind opcodes"));
19535
19536 frag_align (2, 0, 0);
19537 record_alignment (now_seg, 2);
19538 unwind.table_entry = expr_build_dot ();
19539
19540 /* Allocate the table entry. */
19541 ptr = frag_more ((size << 2) + 4);
19542 where = frag_now_fix () - ((size << 2) + 4);
19543
19544 switch (unwind.personality_index)
19545 {
19546 case -1:
19547 /* ??? Should this be a PLT generating relocation? */
19548 /* Custom personality routine. */
19549 fix_new (frag_now, where, 4, unwind.personality_routine, 0, 1,
19550 BFD_RELOC_ARM_PREL31);
19551
19552 where += 4;
19553 ptr += 4;
19554
19555 /* Set the first byte to the number of additional words. */
19556 data = size - 1;
19557 n = 3;
19558 break;
19559
19560 /* ABI defined personality routines. */
19561 case 0:
19562 /* Three opcodes bytes are packed into the first word. */
19563 data = 0x80;
19564 n = 3;
19565 break;
19566
19567 case 1:
19568 case 2:
19569 /* The size and first two opcode bytes go in the first word. */
19570 data = ((0x80 + unwind.personality_index) << 8) | size;
19571 n = 2;
19572 break;
19573
19574 default:
19575 /* Should never happen. */
19576 abort ();
19577 }
19578
19579 /* Pack the opcodes into words (MSB first), reversing the list at the same
19580 time. */
19581 while (unwind.opcode_count > 0)
19582 {
19583 if (n == 0)
19584 {
19585 md_number_to_chars (ptr, data, 4);
19586 ptr += 4;
19587 n = 4;
19588 data = 0;
19589 }
19590 unwind.opcode_count--;
19591 n--;
19592 data = (data << 8) | unwind.opcodes[unwind.opcode_count];
19593 }
19594
19595 /* Finish off the last word. */
19596 if (n < 4)
19597 {
19598 /* Pad with "finish" opcodes. */
19599 while (n--)
19600 data = (data << 8) | 0xb0;
19601
19602 md_number_to_chars (ptr, data, 4);
19603 }
19604
19605 if (!have_data)
19606 {
19607 /* Add an empty descriptor if there is no user-specified data. */
19608 ptr = frag_more (4);
19609 md_number_to_chars (ptr, 0, 4);
19610 }
19611
19612 return 0;
19613 }
19614
19615
19616 /* Initialize the DWARF-2 unwind information for this procedure. */
19617
19618 void
19619 tc_arm_frame_initial_instructions (void)
19620 {
19621 cfi_add_CFA_def_cfa (REG_SP, 0);
19622 }
19623 #endif /* OBJ_ELF */
19624
19625 /* Convert REGNAME to a DWARF-2 register number. */
19626
19627 int
19628 tc_arm_regname_to_dw2regnum (char *regname)
19629 {
19630 int reg = arm_reg_parse (&regname, REG_TYPE_RN);
19631
19632 if (reg == FAIL)
19633 return -1;
19634
19635 return reg;
19636 }
19637
19638 #ifdef TE_PE
19639 void
19640 tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
19641 {
19642 expressionS exp;
19643
19644 exp.X_op = O_secrel;
19645 exp.X_add_symbol = symbol;
19646 exp.X_add_number = 0;
19647 emit_expr (&exp, size);
19648 }
19649 #endif
19650
19651 /* MD interface: Symbol and relocation handling. */
19652
19653 /* Return the address within the segment that a PC-relative fixup is
19654 relative to. For ARM, PC-relative fixups applied to instructions
19655 are generally relative to the location of the fixup plus 8 bytes.
19656 Thumb branches are offset by 4, and Thumb loads relative to PC
19657 require special handling. */
19658
19659 long
19660 md_pcrel_from_section (fixS * fixP, segT seg)
19661 {
19662 offsetT base = fixP->fx_where + fixP->fx_frag->fr_address;
19663
19664 /* If this is pc-relative and we are going to emit a relocation
19665 then we just want to put out any pipeline compensation that the linker
19666 will need. Otherwise we want to use the calculated base.
19667 For WinCE we skip the bias for externals as well, since this
19668 is how the MS ARM-CE assembler behaves and we want to be compatible. */
19669 if (fixP->fx_pcrel
19670 && ((fixP->fx_addsy && S_GET_SEGMENT (fixP->fx_addsy) != seg)
19671 || (arm_force_relocation (fixP)
19672 #ifdef TE_WINCE
19673 && !S_IS_EXTERNAL (fixP->fx_addsy)
19674 #endif
19675 )))
19676 base = 0;
19677
19678
19679 switch (fixP->fx_r_type)
19680 {
19681 /* PC relative addressing on the Thumb is slightly odd as the
19682 bottom two bits of the PC are forced to zero for the
19683 calculation. This happens *after* application of the
19684 pipeline offset. However, Thumb adrl already adjusts for
19685 this, so we need not do it again. */
19686 case BFD_RELOC_ARM_THUMB_ADD:
19687 return base & ~3;
19688
19689 case BFD_RELOC_ARM_THUMB_OFFSET:
19690 case BFD_RELOC_ARM_T32_OFFSET_IMM:
19691 case BFD_RELOC_ARM_T32_ADD_PC12:
19692 case BFD_RELOC_ARM_T32_CP_OFF_IMM:
19693 return (base + 4) & ~3;
19694
19695 /* Thumb branches are simply offset by +4. */
19696 case BFD_RELOC_THUMB_PCREL_BRANCH7:
19697 case BFD_RELOC_THUMB_PCREL_BRANCH9:
19698 case BFD_RELOC_THUMB_PCREL_BRANCH12:
19699 case BFD_RELOC_THUMB_PCREL_BRANCH20:
19700 case BFD_RELOC_THUMB_PCREL_BRANCH25:
19701 return base + 4;
19702
19703 case BFD_RELOC_THUMB_PCREL_BRANCH23:
19704 if (fixP->fx_addsy
19705 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
19706 && (!S_IS_EXTERNAL (fixP->fx_addsy))
19707 && ARM_IS_FUNC (fixP->fx_addsy)
19708 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
19709 base = fixP->fx_where + fixP->fx_frag->fr_address;
19710 return base + 4;
19711
19712 /* BLX is like branches above, but forces the low two bits of PC to
19713 zero. */
19714 case BFD_RELOC_THUMB_PCREL_BLX:
19715 if (fixP->fx_addsy
19716 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
19717 && (!S_IS_EXTERNAL (fixP->fx_addsy))
19718 && THUMB_IS_FUNC (fixP->fx_addsy)
19719 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
19720 base = fixP->fx_where + fixP->fx_frag->fr_address;
19721 return (base + 4) & ~3;
19722
19723 /* ARM mode branches are offset by +8. However, the Windows CE
19724 loader expects the relocation not to take this into account. */
19725 case BFD_RELOC_ARM_PCREL_BLX:
19726 if (fixP->fx_addsy
19727 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
19728 && (!S_IS_EXTERNAL (fixP->fx_addsy))
19729 && ARM_IS_FUNC (fixP->fx_addsy)
19730 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
19731 base = fixP->fx_where + fixP->fx_frag->fr_address;
19732 return base + 8;
19733
19734 case BFD_RELOC_ARM_PCREL_CALL:
19735 if (fixP->fx_addsy
19736 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
19737 && (!S_IS_EXTERNAL (fixP->fx_addsy))
19738 && THUMB_IS_FUNC (fixP->fx_addsy)
19739 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
19740 base = fixP->fx_where + fixP->fx_frag->fr_address;
19741 return base + 8;
19742
19743 case BFD_RELOC_ARM_PCREL_BRANCH:
19744 case BFD_RELOC_ARM_PCREL_JUMP:
19745 case BFD_RELOC_ARM_PLT32:
19746 #ifdef TE_WINCE
19747 /* When handling fixups immediately, because we have already
19748 discovered the value of a symbol, or the address of the frag involved
19749 we must account for the offset by +8, as the OS loader will never see the reloc.
19750 see fixup_segment() in write.c
19751 The S_IS_EXTERNAL test handles the case of global symbols.
19752 Those need the calculated base, not just the pipe compensation the linker will need. */
19753 if (fixP->fx_pcrel
19754 && fixP->fx_addsy != NULL
19755 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
19756 && (S_IS_EXTERNAL (fixP->fx_addsy) || !arm_force_relocation (fixP)))
19757 return base + 8;
19758 return base;
19759 #else
19760 return base + 8;
19761 #endif
19762
19763
19764 /* ARM mode loads relative to PC are also offset by +8. Unlike
19765 branches, the Windows CE loader *does* expect the relocation
19766 to take this into account. */
19767 case BFD_RELOC_ARM_OFFSET_IMM:
19768 case BFD_RELOC_ARM_OFFSET_IMM8:
19769 case BFD_RELOC_ARM_HWLITERAL:
19770 case BFD_RELOC_ARM_LITERAL:
19771 case BFD_RELOC_ARM_CP_OFF_IMM:
19772 return base + 8;
19773
19774
19775 /* Other PC-relative relocations are un-offset. */
19776 default:
19777 return base;
19778 }
19779 }
19780
19781 /* Under ELF we need to default _GLOBAL_OFFSET_TABLE.
19782 Otherwise we have no need to default values of symbols. */
19783
19784 symbolS *
19785 md_undefined_symbol (char * name ATTRIBUTE_UNUSED)
19786 {
19787 #ifdef OBJ_ELF
19788 if (name[0] == '_' && name[1] == 'G'
19789 && streq (name, GLOBAL_OFFSET_TABLE_NAME))
19790 {
19791 if (!GOT_symbol)
19792 {
19793 if (symbol_find (name))
19794 as_bad (_("GOT already in the symbol table"));
19795
19796 GOT_symbol = symbol_new (name, undefined_section,
19797 (valueT) 0, & zero_address_frag);
19798 }
19799
19800 return GOT_symbol;
19801 }
19802 #endif
19803
19804 return NULL;
19805 }
19806
19807 /* Subroutine of md_apply_fix. Check to see if an immediate can be
19808 computed as two separate immediate values, added together. We
19809 already know that this value cannot be computed by just one ARM
19810 instruction. */
19811
19812 static unsigned int
19813 validate_immediate_twopart (unsigned int val,
19814 unsigned int * highpart)
19815 {
19816 unsigned int a;
19817 unsigned int i;
19818
19819 for (i = 0; i < 32; i += 2)
19820 if (((a = rotate_left (val, i)) & 0xff) != 0)
19821 {
19822 if (a & 0xff00)
19823 {
19824 if (a & ~ 0xffff)
19825 continue;
19826 * highpart = (a >> 8) | ((i + 24) << 7);
19827 }
19828 else if (a & 0xff0000)
19829 {
19830 if (a & 0xff000000)
19831 continue;
19832 * highpart = (a >> 16) | ((i + 16) << 7);
19833 }
19834 else
19835 {
19836 gas_assert (a & 0xff000000);
19837 * highpart = (a >> 24) | ((i + 8) << 7);
19838 }
19839
19840 return (a & 0xff) | (i << 7);
19841 }
19842
19843 return FAIL;
19844 }
19845
19846 static int
19847 validate_offset_imm (unsigned int val, int hwse)
19848 {
19849 if ((hwse && val > 255) || val > 4095)
19850 return FAIL;
19851 return val;
19852 }
19853
19854 /* Subroutine of md_apply_fix. Do those data_ops which can take a
19855 negative immediate constant by altering the instruction. A bit of
19856 a hack really.
19857 MOV <-> MVN
19858 AND <-> BIC
19859 ADC <-> SBC
19860 by inverting the second operand, and
19861 ADD <-> SUB
19862 CMP <-> CMN
19863 by negating the second operand. */
19864
19865 static int
19866 negate_data_op (unsigned long * instruction,
19867 unsigned long value)
19868 {
19869 int op, new_inst;
19870 unsigned long negated, inverted;
19871
19872 negated = encode_arm_immediate (-value);
19873 inverted = encode_arm_immediate (~value);
19874
19875 op = (*instruction >> DATA_OP_SHIFT) & 0xf;
19876 switch (op)
19877 {
19878 /* First negates. */
19879 case OPCODE_SUB: /* ADD <-> SUB */
19880 new_inst = OPCODE_ADD;
19881 value = negated;
19882 break;
19883
19884 case OPCODE_ADD:
19885 new_inst = OPCODE_SUB;
19886 value = negated;
19887 break;
19888
19889 case OPCODE_CMP: /* CMP <-> CMN */
19890 new_inst = OPCODE_CMN;
19891 value = negated;
19892 break;
19893
19894 case OPCODE_CMN:
19895 new_inst = OPCODE_CMP;
19896 value = negated;
19897 break;
19898
19899 /* Now Inverted ops. */
19900 case OPCODE_MOV: /* MOV <-> MVN */
19901 new_inst = OPCODE_MVN;
19902 value = inverted;
19903 break;
19904
19905 case OPCODE_MVN:
19906 new_inst = OPCODE_MOV;
19907 value = inverted;
19908 break;
19909
19910 case OPCODE_AND: /* AND <-> BIC */
19911 new_inst = OPCODE_BIC;
19912 value = inverted;
19913 break;
19914
19915 case OPCODE_BIC:
19916 new_inst = OPCODE_AND;
19917 value = inverted;
19918 break;
19919
19920 case OPCODE_ADC: /* ADC <-> SBC */
19921 new_inst = OPCODE_SBC;
19922 value = inverted;
19923 break;
19924
19925 case OPCODE_SBC:
19926 new_inst = OPCODE_ADC;
19927 value = inverted;
19928 break;
19929
19930 /* We cannot do anything. */
19931 default:
19932 return FAIL;
19933 }
19934
19935 if (value == (unsigned) FAIL)
19936 return FAIL;
19937
19938 *instruction &= OPCODE_MASK;
19939 *instruction |= new_inst << DATA_OP_SHIFT;
19940 return value;
19941 }
19942
19943 /* Like negate_data_op, but for Thumb-2. */
19944
19945 static unsigned int
19946 thumb32_negate_data_op (offsetT *instruction, unsigned int value)
19947 {
19948 int op, new_inst;
19949 int rd;
19950 unsigned int negated, inverted;
19951
19952 negated = encode_thumb32_immediate (-value);
19953 inverted = encode_thumb32_immediate (~value);
19954
19955 rd = (*instruction >> 8) & 0xf;
19956 op = (*instruction >> T2_DATA_OP_SHIFT) & 0xf;
19957 switch (op)
19958 {
19959 /* ADD <-> SUB. Includes CMP <-> CMN. */
19960 case T2_OPCODE_SUB:
19961 new_inst = T2_OPCODE_ADD;
19962 value = negated;
19963 break;
19964
19965 case T2_OPCODE_ADD:
19966 new_inst = T2_OPCODE_SUB;
19967 value = negated;
19968 break;
19969
19970 /* ORR <-> ORN. Includes MOV <-> MVN. */
19971 case T2_OPCODE_ORR:
19972 new_inst = T2_OPCODE_ORN;
19973 value = inverted;
19974 break;
19975
19976 case T2_OPCODE_ORN:
19977 new_inst = T2_OPCODE_ORR;
19978 value = inverted;
19979 break;
19980
19981 /* AND <-> BIC. TST has no inverted equivalent. */
19982 case T2_OPCODE_AND:
19983 new_inst = T2_OPCODE_BIC;
19984 if (rd == 15)
19985 value = FAIL;
19986 else
19987 value = inverted;
19988 break;
19989
19990 case T2_OPCODE_BIC:
19991 new_inst = T2_OPCODE_AND;
19992 value = inverted;
19993 break;
19994
19995 /* ADC <-> SBC */
19996 case T2_OPCODE_ADC:
19997 new_inst = T2_OPCODE_SBC;
19998 value = inverted;
19999 break;
20000
20001 case T2_OPCODE_SBC:
20002 new_inst = T2_OPCODE_ADC;
20003 value = inverted;
20004 break;
20005
20006 /* We cannot do anything. */
20007 default:
20008 return FAIL;
20009 }
20010
20011 if (value == (unsigned int)FAIL)
20012 return FAIL;
20013
20014 *instruction &= T2_OPCODE_MASK;
20015 *instruction |= new_inst << T2_DATA_OP_SHIFT;
20016 return value;
20017 }
20018
20019 /* Read a 32-bit thumb instruction from buf. */
20020 static unsigned long
20021 get_thumb32_insn (char * buf)
20022 {
20023 unsigned long insn;
20024 insn = md_chars_to_number (buf, THUMB_SIZE) << 16;
20025 insn |= md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
20026
20027 return insn;
20028 }
20029
20030
20031 /* We usually want to set the low bit on the address of thumb function
20032 symbols. In particular .word foo - . should have the low bit set.
20033 Generic code tries to fold the difference of two symbols to
20034 a constant. Prevent this and force a relocation when the first symbols
20035 is a thumb function. */
20036
20037 bfd_boolean
20038 arm_optimize_expr (expressionS *l, operatorT op, expressionS *r)
20039 {
20040 if (op == O_subtract
20041 && l->X_op == O_symbol
20042 && r->X_op == O_symbol
20043 && THUMB_IS_FUNC (l->X_add_symbol))
20044 {
20045 l->X_op = O_subtract;
20046 l->X_op_symbol = r->X_add_symbol;
20047 l->X_add_number -= r->X_add_number;
20048 return TRUE;
20049 }
20050
20051 /* Process as normal. */
20052 return FALSE;
20053 }
20054
20055 /* Encode Thumb2 unconditional branches and calls. The encoding
20056 for the 2 are identical for the immediate values. */
20057
20058 static void
20059 encode_thumb2_b_bl_offset (char * buf, offsetT value)
20060 {
20061 #define T2I1I2MASK ((1 << 13) | (1 << 11))
20062 offsetT newval;
20063 offsetT newval2;
20064 addressT S, I1, I2, lo, hi;
20065
20066 S = (value >> 24) & 0x01;
20067 I1 = (value >> 23) & 0x01;
20068 I2 = (value >> 22) & 0x01;
20069 hi = (value >> 12) & 0x3ff;
20070 lo = (value >> 1) & 0x7ff;
20071 newval = md_chars_to_number (buf, THUMB_SIZE);
20072 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
20073 newval |= (S << 10) | hi;
20074 newval2 &= ~T2I1I2MASK;
20075 newval2 |= (((I1 ^ S) << 13) | ((I2 ^ S) << 11) | lo) ^ T2I1I2MASK;
20076 md_number_to_chars (buf, newval, THUMB_SIZE);
20077 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
20078 }
20079
20080 void
20081 md_apply_fix (fixS * fixP,
20082 valueT * valP,
20083 segT seg)
20084 {
20085 offsetT value = * valP;
20086 offsetT newval;
20087 unsigned int newimm;
20088 unsigned long temp;
20089 int sign;
20090 char * buf = fixP->fx_where + fixP->fx_frag->fr_literal;
20091
20092 gas_assert (fixP->fx_r_type <= BFD_RELOC_UNUSED);
20093
20094 /* Note whether this will delete the relocation. */
20095
20096 if (fixP->fx_addsy == 0 && !fixP->fx_pcrel)
20097 fixP->fx_done = 1;
20098
20099 /* On a 64-bit host, silently truncate 'value' to 32 bits for
20100 consistency with the behaviour on 32-bit hosts. Remember value
20101 for emit_reloc. */
20102 value &= 0xffffffff;
20103 value ^= 0x80000000;
20104 value -= 0x80000000;
20105
20106 *valP = value;
20107 fixP->fx_addnumber = value;
20108
20109 /* Same treatment for fixP->fx_offset. */
20110 fixP->fx_offset &= 0xffffffff;
20111 fixP->fx_offset ^= 0x80000000;
20112 fixP->fx_offset -= 0x80000000;
20113
20114 switch (fixP->fx_r_type)
20115 {
20116 case BFD_RELOC_NONE:
20117 /* This will need to go in the object file. */
20118 fixP->fx_done = 0;
20119 break;
20120
20121 case BFD_RELOC_ARM_IMMEDIATE:
20122 /* We claim that this fixup has been processed here,
20123 even if in fact we generate an error because we do
20124 not have a reloc for it, so tc_gen_reloc will reject it. */
20125 fixP->fx_done = 1;
20126
20127 if (fixP->fx_addsy)
20128 {
20129 const char *msg = 0;
20130
20131 if (! S_IS_DEFINED (fixP->fx_addsy))
20132 msg = _("undefined symbol %s used as an immediate value");
20133 else if (S_GET_SEGMENT (fixP->fx_addsy) != seg)
20134 msg = _("symbol %s is in a different section");
20135 else if (S_IS_WEAK (fixP->fx_addsy))
20136 msg = _("symbol %s is weak and may be overridden later");
20137
20138 if (msg)
20139 {
20140 as_bad_where (fixP->fx_file, fixP->fx_line,
20141 msg, S_GET_NAME (fixP->fx_addsy));
20142 break;
20143 }
20144 }
20145
20146 newimm = encode_arm_immediate (value);
20147 temp = md_chars_to_number (buf, INSN_SIZE);
20148
20149 /* If the instruction will fail, see if we can fix things up by
20150 changing the opcode. */
20151 if (newimm == (unsigned int) FAIL
20152 && (newimm = negate_data_op (&temp, value)) == (unsigned int) FAIL)
20153 {
20154 as_bad_where (fixP->fx_file, fixP->fx_line,
20155 _("invalid constant (%lx) after fixup"),
20156 (unsigned long) value);
20157 break;
20158 }
20159
20160 newimm |= (temp & 0xfffff000);
20161 md_number_to_chars (buf, (valueT) newimm, INSN_SIZE);
20162 break;
20163
20164 case BFD_RELOC_ARM_ADRL_IMMEDIATE:
20165 {
20166 unsigned int highpart = 0;
20167 unsigned int newinsn = 0xe1a00000; /* nop. */
20168
20169 if (fixP->fx_addsy)
20170 {
20171 const char *msg = 0;
20172
20173 if (! S_IS_DEFINED (fixP->fx_addsy))
20174 msg = _("undefined symbol %s used as an immediate value");
20175 else if (S_GET_SEGMENT (fixP->fx_addsy) != seg)
20176 msg = _("symbol %s is in a different section");
20177 else if (S_IS_WEAK (fixP->fx_addsy))
20178 msg = _("symbol %s is weak and may be overridden later");
20179
20180 if (msg)
20181 {
20182 as_bad_where (fixP->fx_file, fixP->fx_line,
20183 msg, S_GET_NAME (fixP->fx_addsy));
20184 break;
20185 }
20186 }
20187
20188 newimm = encode_arm_immediate (value);
20189 temp = md_chars_to_number (buf, INSN_SIZE);
20190
20191 /* If the instruction will fail, see if we can fix things up by
20192 changing the opcode. */
20193 if (newimm == (unsigned int) FAIL
20194 && (newimm = negate_data_op (& temp, value)) == (unsigned int) FAIL)
20195 {
20196 /* No ? OK - try using two ADD instructions to generate
20197 the value. */
20198 newimm = validate_immediate_twopart (value, & highpart);
20199
20200 /* Yes - then make sure that the second instruction is
20201 also an add. */
20202 if (newimm != (unsigned int) FAIL)
20203 newinsn = temp;
20204 /* Still No ? Try using a negated value. */
20205 else if ((newimm = validate_immediate_twopart (- value, & highpart)) != (unsigned int) FAIL)
20206 temp = newinsn = (temp & OPCODE_MASK) | OPCODE_SUB << DATA_OP_SHIFT;
20207 /* Otherwise - give up. */
20208 else
20209 {
20210 as_bad_where (fixP->fx_file, fixP->fx_line,
20211 _("unable to compute ADRL instructions for PC offset of 0x%lx"),
20212 (long) value);
20213 break;
20214 }
20215
20216 /* Replace the first operand in the 2nd instruction (which
20217 is the PC) with the destination register. We have
20218 already added in the PC in the first instruction and we
20219 do not want to do it again. */
20220 newinsn &= ~ 0xf0000;
20221 newinsn |= ((newinsn & 0x0f000) << 4);
20222 }
20223
20224 newimm |= (temp & 0xfffff000);
20225 md_number_to_chars (buf, (valueT) newimm, INSN_SIZE);
20226
20227 highpart |= (newinsn & 0xfffff000);
20228 md_number_to_chars (buf + INSN_SIZE, (valueT) highpart, INSN_SIZE);
20229 }
20230 break;
20231
20232 case BFD_RELOC_ARM_OFFSET_IMM:
20233 if (!fixP->fx_done && seg->use_rela_p)
20234 value = 0;
20235
20236 case BFD_RELOC_ARM_LITERAL:
20237 sign = value >= 0;
20238
20239 if (value < 0)
20240 value = - value;
20241
20242 if (validate_offset_imm (value, 0) == FAIL)
20243 {
20244 if (fixP->fx_r_type == BFD_RELOC_ARM_LITERAL)
20245 as_bad_where (fixP->fx_file, fixP->fx_line,
20246 _("invalid literal constant: pool needs to be closer"));
20247 else
20248 as_bad_where (fixP->fx_file, fixP->fx_line,
20249 _("bad immediate value for offset (%ld)"),
20250 (long) value);
20251 break;
20252 }
20253
20254 newval = md_chars_to_number (buf, INSN_SIZE);
20255 newval &= 0xff7ff000;
20256 newval |= value | (sign ? INDEX_UP : 0);
20257 md_number_to_chars (buf, newval, INSN_SIZE);
20258 break;
20259
20260 case BFD_RELOC_ARM_OFFSET_IMM8:
20261 case BFD_RELOC_ARM_HWLITERAL:
20262 sign = value >= 0;
20263
20264 if (value < 0)
20265 value = - value;
20266
20267 if (validate_offset_imm (value, 1) == FAIL)
20268 {
20269 if (fixP->fx_r_type == BFD_RELOC_ARM_HWLITERAL)
20270 as_bad_where (fixP->fx_file, fixP->fx_line,
20271 _("invalid literal constant: pool needs to be closer"));
20272 else
20273 as_bad (_("bad immediate value for 8-bit offset (%ld)"),
20274 (long) value);
20275 break;
20276 }
20277
20278 newval = md_chars_to_number (buf, INSN_SIZE);
20279 newval &= 0xff7ff0f0;
20280 newval |= ((value >> 4) << 8) | (value & 0xf) | (sign ? INDEX_UP : 0);
20281 md_number_to_chars (buf, newval, INSN_SIZE);
20282 break;
20283
20284 case BFD_RELOC_ARM_T32_OFFSET_U8:
20285 if (value < 0 || value > 1020 || value % 4 != 0)
20286 as_bad_where (fixP->fx_file, fixP->fx_line,
20287 _("bad immediate value for offset (%ld)"), (long) value);
20288 value /= 4;
20289
20290 newval = md_chars_to_number (buf+2, THUMB_SIZE);
20291 newval |= value;
20292 md_number_to_chars (buf+2, newval, THUMB_SIZE);
20293 break;
20294
20295 case BFD_RELOC_ARM_T32_OFFSET_IMM:
20296 /* This is a complicated relocation used for all varieties of Thumb32
20297 load/store instruction with immediate offset:
20298
20299 1110 100P u1WL NNNN XXXX YYYY iiii iiii - +/-(U) pre/post(P) 8-bit,
20300 *4, optional writeback(W)
20301 (doubleword load/store)
20302
20303 1111 100S uTTL 1111 XXXX iiii iiii iiii - +/-(U) 12-bit PC-rel
20304 1111 100S 0TTL NNNN XXXX 1Pu1 iiii iiii - +/-(U) pre/post(P) 8-bit
20305 1111 100S 0TTL NNNN XXXX 1110 iiii iiii - positive 8-bit (T instruction)
20306 1111 100S 1TTL NNNN XXXX iiii iiii iiii - positive 12-bit
20307 1111 100S 0TTL NNNN XXXX 1100 iiii iiii - negative 8-bit
20308
20309 Uppercase letters indicate bits that are already encoded at
20310 this point. Lowercase letters are our problem. For the
20311 second block of instructions, the secondary opcode nybble
20312 (bits 8..11) is present, and bit 23 is zero, even if this is
20313 a PC-relative operation. */
20314 newval = md_chars_to_number (buf, THUMB_SIZE);
20315 newval <<= 16;
20316 newval |= md_chars_to_number (buf+THUMB_SIZE, THUMB_SIZE);
20317
20318 if ((newval & 0xf0000000) == 0xe0000000)
20319 {
20320 /* Doubleword load/store: 8-bit offset, scaled by 4. */
20321 if (value >= 0)
20322 newval |= (1 << 23);
20323 else
20324 value = -value;
20325 if (value % 4 != 0)
20326 {
20327 as_bad_where (fixP->fx_file, fixP->fx_line,
20328 _("offset not a multiple of 4"));
20329 break;
20330 }
20331 value /= 4;
20332 if (value > 0xff)
20333 {
20334 as_bad_where (fixP->fx_file, fixP->fx_line,
20335 _("offset out of range"));
20336 break;
20337 }
20338 newval &= ~0xff;
20339 }
20340 else if ((newval & 0x000f0000) == 0x000f0000)
20341 {
20342 /* PC-relative, 12-bit offset. */
20343 if (value >= 0)
20344 newval |= (1 << 23);
20345 else
20346 value = -value;
20347 if (value > 0xfff)
20348 {
20349 as_bad_where (fixP->fx_file, fixP->fx_line,
20350 _("offset out of range"));
20351 break;
20352 }
20353 newval &= ~0xfff;
20354 }
20355 else if ((newval & 0x00000100) == 0x00000100)
20356 {
20357 /* Writeback: 8-bit, +/- offset. */
20358 if (value >= 0)
20359 newval |= (1 << 9);
20360 else
20361 value = -value;
20362 if (value > 0xff)
20363 {
20364 as_bad_where (fixP->fx_file, fixP->fx_line,
20365 _("offset out of range"));
20366 break;
20367 }
20368 newval &= ~0xff;
20369 }
20370 else if ((newval & 0x00000f00) == 0x00000e00)
20371 {
20372 /* T-instruction: positive 8-bit offset. */
20373 if (value < 0 || value > 0xff)
20374 {
20375 as_bad_where (fixP->fx_file, fixP->fx_line,
20376 _("offset out of range"));
20377 break;
20378 }
20379 newval &= ~0xff;
20380 newval |= value;
20381 }
20382 else
20383 {
20384 /* Positive 12-bit or negative 8-bit offset. */
20385 int limit;
20386 if (value >= 0)
20387 {
20388 newval |= (1 << 23);
20389 limit = 0xfff;
20390 }
20391 else
20392 {
20393 value = -value;
20394 limit = 0xff;
20395 }
20396 if (value > limit)
20397 {
20398 as_bad_where (fixP->fx_file, fixP->fx_line,
20399 _("offset out of range"));
20400 break;
20401 }
20402 newval &= ~limit;
20403 }
20404
20405 newval |= value;
20406 md_number_to_chars (buf, (newval >> 16) & 0xffff, THUMB_SIZE);
20407 md_number_to_chars (buf + THUMB_SIZE, newval & 0xffff, THUMB_SIZE);
20408 break;
20409
20410 case BFD_RELOC_ARM_SHIFT_IMM:
20411 newval = md_chars_to_number (buf, INSN_SIZE);
20412 if (((unsigned long) value) > 32
20413 || (value == 32
20414 && (((newval & 0x60) == 0) || (newval & 0x60) == 0x60)))
20415 {
20416 as_bad_where (fixP->fx_file, fixP->fx_line,
20417 _("shift expression is too large"));
20418 break;
20419 }
20420
20421 if (value == 0)
20422 /* Shifts of zero must be done as lsl. */
20423 newval &= ~0x60;
20424 else if (value == 32)
20425 value = 0;
20426 newval &= 0xfffff07f;
20427 newval |= (value & 0x1f) << 7;
20428 md_number_to_chars (buf, newval, INSN_SIZE);
20429 break;
20430
20431 case BFD_RELOC_ARM_T32_IMMEDIATE:
20432 case BFD_RELOC_ARM_T32_ADD_IMM:
20433 case BFD_RELOC_ARM_T32_IMM12:
20434 case BFD_RELOC_ARM_T32_ADD_PC12:
20435 /* We claim that this fixup has been processed here,
20436 even if in fact we generate an error because we do
20437 not have a reloc for it, so tc_gen_reloc will reject it. */
20438 fixP->fx_done = 1;
20439
20440 if (fixP->fx_addsy
20441 && ! S_IS_DEFINED (fixP->fx_addsy))
20442 {
20443 as_bad_where (fixP->fx_file, fixP->fx_line,
20444 _("undefined symbol %s used as an immediate value"),
20445 S_GET_NAME (fixP->fx_addsy));
20446 break;
20447 }
20448
20449 newval = md_chars_to_number (buf, THUMB_SIZE);
20450 newval <<= 16;
20451 newval |= md_chars_to_number (buf+2, THUMB_SIZE);
20452
20453 newimm = FAIL;
20454 if (fixP->fx_r_type == BFD_RELOC_ARM_T32_IMMEDIATE
20455 || fixP->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM)
20456 {
20457 newimm = encode_thumb32_immediate (value);
20458 if (newimm == (unsigned int) FAIL)
20459 newimm = thumb32_negate_data_op (&newval, value);
20460 }
20461 if (fixP->fx_r_type != BFD_RELOC_ARM_T32_IMMEDIATE
20462 && newimm == (unsigned int) FAIL)
20463 {
20464 /* Turn add/sum into addw/subw. */
20465 if (fixP->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM)
20466 newval = (newval & 0xfeffffff) | 0x02000000;
20467 /* No flat 12-bit imm encoding for addsw/subsw. */
20468 if ((newval & 0x00100000) == 0)
20469 {
20470 /* 12 bit immediate for addw/subw. */
20471 if (value < 0)
20472 {
20473 value = -value;
20474 newval ^= 0x00a00000;
20475 }
20476 if (value > 0xfff)
20477 newimm = (unsigned int) FAIL;
20478 else
20479 newimm = value;
20480 }
20481 }
20482
20483 if (newimm == (unsigned int)FAIL)
20484 {
20485 as_bad_where (fixP->fx_file, fixP->fx_line,
20486 _("invalid constant (%lx) after fixup"),
20487 (unsigned long) value);
20488 break;
20489 }
20490
20491 newval |= (newimm & 0x800) << 15;
20492 newval |= (newimm & 0x700) << 4;
20493 newval |= (newimm & 0x0ff);
20494
20495 md_number_to_chars (buf, (valueT) ((newval >> 16) & 0xffff), THUMB_SIZE);
20496 md_number_to_chars (buf+2, (valueT) (newval & 0xffff), THUMB_SIZE);
20497 break;
20498
20499 case BFD_RELOC_ARM_SMC:
20500 if (((unsigned long) value) > 0xffff)
20501 as_bad_where (fixP->fx_file, fixP->fx_line,
20502 _("invalid smc expression"));
20503 newval = md_chars_to_number (buf, INSN_SIZE);
20504 newval |= (value & 0xf) | ((value & 0xfff0) << 4);
20505 md_number_to_chars (buf, newval, INSN_SIZE);
20506 break;
20507
20508 case BFD_RELOC_ARM_HVC:
20509 if (((unsigned long) value) > 0xffff)
20510 as_bad_where (fixP->fx_file, fixP->fx_line,
20511 _("invalid hvc expression"));
20512 newval = md_chars_to_number (buf, INSN_SIZE);
20513 newval |= (value & 0xf) | ((value & 0xfff0) << 4);
20514 md_number_to_chars (buf, newval, INSN_SIZE);
20515 break;
20516
20517 case BFD_RELOC_ARM_SWI:
20518 if (fixP->tc_fix_data != 0)
20519 {
20520 if (((unsigned long) value) > 0xff)
20521 as_bad_where (fixP->fx_file, fixP->fx_line,
20522 _("invalid swi expression"));
20523 newval = md_chars_to_number (buf, THUMB_SIZE);
20524 newval |= value;
20525 md_number_to_chars (buf, newval, THUMB_SIZE);
20526 }
20527 else
20528 {
20529 if (((unsigned long) value) > 0x00ffffff)
20530 as_bad_where (fixP->fx_file, fixP->fx_line,
20531 _("invalid swi expression"));
20532 newval = md_chars_to_number (buf, INSN_SIZE);
20533 newval |= value;
20534 md_number_to_chars (buf, newval, INSN_SIZE);
20535 }
20536 break;
20537
20538 case BFD_RELOC_ARM_MULTI:
20539 if (((unsigned long) value) > 0xffff)
20540 as_bad_where (fixP->fx_file, fixP->fx_line,
20541 _("invalid expression in load/store multiple"));
20542 newval = value | md_chars_to_number (buf, INSN_SIZE);
20543 md_number_to_chars (buf, newval, INSN_SIZE);
20544 break;
20545
20546 #ifdef OBJ_ELF
20547 case BFD_RELOC_ARM_PCREL_CALL:
20548
20549 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
20550 && fixP->fx_addsy
20551 && !S_IS_EXTERNAL (fixP->fx_addsy)
20552 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
20553 && THUMB_IS_FUNC (fixP->fx_addsy))
20554 /* Flip the bl to blx. This is a simple flip
20555 bit here because we generate PCREL_CALL for
20556 unconditional bls. */
20557 {
20558 newval = md_chars_to_number (buf, INSN_SIZE);
20559 newval = newval | 0x10000000;
20560 md_number_to_chars (buf, newval, INSN_SIZE);
20561 temp = 1;
20562 fixP->fx_done = 1;
20563 }
20564 else
20565 temp = 3;
20566 goto arm_branch_common;
20567
20568 case BFD_RELOC_ARM_PCREL_JUMP:
20569 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
20570 && fixP->fx_addsy
20571 && !S_IS_EXTERNAL (fixP->fx_addsy)
20572 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
20573 && THUMB_IS_FUNC (fixP->fx_addsy))
20574 {
20575 /* This would map to a bl<cond>, b<cond>,
20576 b<always> to a Thumb function. We
20577 need to force a relocation for this particular
20578 case. */
20579 newval = md_chars_to_number (buf, INSN_SIZE);
20580 fixP->fx_done = 0;
20581 }
20582
20583 case BFD_RELOC_ARM_PLT32:
20584 #endif
20585 case BFD_RELOC_ARM_PCREL_BRANCH:
20586 temp = 3;
20587 goto arm_branch_common;
20588
20589 case BFD_RELOC_ARM_PCREL_BLX:
20590
20591 temp = 1;
20592 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
20593 && fixP->fx_addsy
20594 && !S_IS_EXTERNAL (fixP->fx_addsy)
20595 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
20596 && ARM_IS_FUNC (fixP->fx_addsy))
20597 {
20598 /* Flip the blx to a bl and warn. */
20599 const char *name = S_GET_NAME (fixP->fx_addsy);
20600 newval = 0xeb000000;
20601 as_warn_where (fixP->fx_file, fixP->fx_line,
20602 _("blx to '%s' an ARM ISA state function changed to bl"),
20603 name);
20604 md_number_to_chars (buf, newval, INSN_SIZE);
20605 temp = 3;
20606 fixP->fx_done = 1;
20607 }
20608
20609 #ifdef OBJ_ELF
20610 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
20611 fixP->fx_r_type = BFD_RELOC_ARM_PCREL_CALL;
20612 #endif
20613
20614 arm_branch_common:
20615 /* We are going to store value (shifted right by two) in the
20616 instruction, in a 24 bit, signed field. Bits 26 through 32 either
20617 all clear or all set and bit 0 must be clear. For B/BL bit 1 must
20618 also be be clear. */
20619 if (value & temp)
20620 as_bad_where (fixP->fx_file, fixP->fx_line,
20621 _("misaligned branch destination"));
20622 if ((value & (offsetT)0xfe000000) != (offsetT)0
20623 && (value & (offsetT)0xfe000000) != (offsetT)0xfe000000)
20624 as_bad_where (fixP->fx_file, fixP->fx_line,
20625 _("branch out of range"));
20626
20627 if (fixP->fx_done || !seg->use_rela_p)
20628 {
20629 newval = md_chars_to_number (buf, INSN_SIZE);
20630 newval |= (value >> 2) & 0x00ffffff;
20631 /* Set the H bit on BLX instructions. */
20632 if (temp == 1)
20633 {
20634 if (value & 2)
20635 newval |= 0x01000000;
20636 else
20637 newval &= ~0x01000000;
20638 }
20639 md_number_to_chars (buf, newval, INSN_SIZE);
20640 }
20641 break;
20642
20643 case BFD_RELOC_THUMB_PCREL_BRANCH7: /* CBZ */
20644 /* CBZ can only branch forward. */
20645
20646 /* Attempts to use CBZ to branch to the next instruction
20647 (which, strictly speaking, are prohibited) will be turned into
20648 no-ops.
20649
20650 FIXME: It may be better to remove the instruction completely and
20651 perform relaxation. */
20652 if (value == -2)
20653 {
20654 newval = md_chars_to_number (buf, THUMB_SIZE);
20655 newval = 0xbf00; /* NOP encoding T1 */
20656 md_number_to_chars (buf, newval, THUMB_SIZE);
20657 }
20658 else
20659 {
20660 if (value & ~0x7e)
20661 as_bad_where (fixP->fx_file, fixP->fx_line,
20662 _("branch out of range"));
20663
20664 if (fixP->fx_done || !seg->use_rela_p)
20665 {
20666 newval = md_chars_to_number (buf, THUMB_SIZE);
20667 newval |= ((value & 0x3e) << 2) | ((value & 0x40) << 3);
20668 md_number_to_chars (buf, newval, THUMB_SIZE);
20669 }
20670 }
20671 break;
20672
20673 case BFD_RELOC_THUMB_PCREL_BRANCH9: /* Conditional branch. */
20674 if ((value & ~0xff) && ((value & ~0xff) != ~0xff))
20675 as_bad_where (fixP->fx_file, fixP->fx_line,
20676 _("branch out of range"));
20677
20678 if (fixP->fx_done || !seg->use_rela_p)
20679 {
20680 newval = md_chars_to_number (buf, THUMB_SIZE);
20681 newval |= (value & 0x1ff) >> 1;
20682 md_number_to_chars (buf, newval, THUMB_SIZE);
20683 }
20684 break;
20685
20686 case BFD_RELOC_THUMB_PCREL_BRANCH12: /* Unconditional branch. */
20687 if ((value & ~0x7ff) && ((value & ~0x7ff) != ~0x7ff))
20688 as_bad_where (fixP->fx_file, fixP->fx_line,
20689 _("branch out of range"));
20690
20691 if (fixP->fx_done || !seg->use_rela_p)
20692 {
20693 newval = md_chars_to_number (buf, THUMB_SIZE);
20694 newval |= (value & 0xfff) >> 1;
20695 md_number_to_chars (buf, newval, THUMB_SIZE);
20696 }
20697 break;
20698
20699 case BFD_RELOC_THUMB_PCREL_BRANCH20:
20700 if (fixP->fx_addsy
20701 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
20702 && !S_IS_EXTERNAL (fixP->fx_addsy)
20703 && S_IS_DEFINED (fixP->fx_addsy)
20704 && ARM_IS_FUNC (fixP->fx_addsy)
20705 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
20706 {
20707 /* Force a relocation for a branch 20 bits wide. */
20708 fixP->fx_done = 0;
20709 }
20710 if ((value & ~0x1fffff) && ((value & ~0x1fffff) != ~0x1fffff))
20711 as_bad_where (fixP->fx_file, fixP->fx_line,
20712 _("conditional branch out of range"));
20713
20714 if (fixP->fx_done || !seg->use_rela_p)
20715 {
20716 offsetT newval2;
20717 addressT S, J1, J2, lo, hi;
20718
20719 S = (value & 0x00100000) >> 20;
20720 J2 = (value & 0x00080000) >> 19;
20721 J1 = (value & 0x00040000) >> 18;
20722 hi = (value & 0x0003f000) >> 12;
20723 lo = (value & 0x00000ffe) >> 1;
20724
20725 newval = md_chars_to_number (buf, THUMB_SIZE);
20726 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
20727 newval |= (S << 10) | hi;
20728 newval2 |= (J1 << 13) | (J2 << 11) | lo;
20729 md_number_to_chars (buf, newval, THUMB_SIZE);
20730 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
20731 }
20732 break;
20733
20734 case BFD_RELOC_THUMB_PCREL_BLX:
20735
20736 /* If there is a blx from a thumb state function to
20737 another thumb function flip this to a bl and warn
20738 about it. */
20739
20740 if (fixP->fx_addsy
20741 && S_IS_DEFINED (fixP->fx_addsy)
20742 && !S_IS_EXTERNAL (fixP->fx_addsy)
20743 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
20744 && THUMB_IS_FUNC (fixP->fx_addsy))
20745 {
20746 const char *name = S_GET_NAME (fixP->fx_addsy);
20747 as_warn_where (fixP->fx_file, fixP->fx_line,
20748 _("blx to Thumb func '%s' from Thumb ISA state changed to bl"),
20749 name);
20750 newval = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
20751 newval = newval | 0x1000;
20752 md_number_to_chars (buf+THUMB_SIZE, newval, THUMB_SIZE);
20753 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BRANCH23;
20754 fixP->fx_done = 1;
20755 }
20756
20757
20758 goto thumb_bl_common;
20759
20760 case BFD_RELOC_THUMB_PCREL_BRANCH23:
20761
20762 /* A bl from Thumb state ISA to an internal ARM state function
20763 is converted to a blx. */
20764 if (fixP->fx_addsy
20765 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
20766 && !S_IS_EXTERNAL (fixP->fx_addsy)
20767 && S_IS_DEFINED (fixP->fx_addsy)
20768 && ARM_IS_FUNC (fixP->fx_addsy)
20769 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
20770 {
20771 newval = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
20772 newval = newval & ~0x1000;
20773 md_number_to_chars (buf+THUMB_SIZE, newval, THUMB_SIZE);
20774 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BLX;
20775 fixP->fx_done = 1;
20776 }
20777
20778 thumb_bl_common:
20779
20780 #ifdef OBJ_ELF
20781 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4 &&
20782 fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BLX)
20783 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BRANCH23;
20784 #endif
20785
20786 if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BLX)
20787 /* For a BLX instruction, make sure that the relocation is rounded up
20788 to a word boundary. This follows the semantics of the instruction
20789 which specifies that bit 1 of the target address will come from bit
20790 1 of the base address. */
20791 value = (value + 1) & ~ 1;
20792
20793
20794 if ((value & ~0x3fffff) && ((value & ~0x3fffff) != ~0x3fffff))
20795 {
20796 if (!(ARM_CPU_HAS_FEATURE (cpu_variant, arm_arch_t2)))
20797 {
20798 as_bad_where (fixP->fx_file, fixP->fx_line,
20799 _("branch out of range"));
20800 }
20801 else if ((value & ~0x1ffffff)
20802 && ((value & ~0x1ffffff) != ~0x1ffffff))
20803 {
20804 as_bad_where (fixP->fx_file, fixP->fx_line,
20805 _("Thumb2 branch out of range"));
20806 }
20807 }
20808
20809 if (fixP->fx_done || !seg->use_rela_p)
20810 encode_thumb2_b_bl_offset (buf, value);
20811
20812 break;
20813
20814 case BFD_RELOC_THUMB_PCREL_BRANCH25:
20815 if ((value & ~0x1ffffff) && ((value & ~0x1ffffff) != ~0x1ffffff))
20816 as_bad_where (fixP->fx_file, fixP->fx_line,
20817 _("branch out of range"));
20818
20819 if (fixP->fx_done || !seg->use_rela_p)
20820 encode_thumb2_b_bl_offset (buf, value);
20821
20822 break;
20823
20824 case BFD_RELOC_8:
20825 if (fixP->fx_done || !seg->use_rela_p)
20826 md_number_to_chars (buf, value, 1);
20827 break;
20828
20829 case BFD_RELOC_16:
20830 if (fixP->fx_done || !seg->use_rela_p)
20831 md_number_to_chars (buf, value, 2);
20832 break;
20833
20834 #ifdef OBJ_ELF
20835 case BFD_RELOC_ARM_TLS_GD32:
20836 case BFD_RELOC_ARM_TLS_LE32:
20837 case BFD_RELOC_ARM_TLS_IE32:
20838 case BFD_RELOC_ARM_TLS_LDM32:
20839 case BFD_RELOC_ARM_TLS_LDO32:
20840 S_SET_THREAD_LOCAL (fixP->fx_addsy);
20841 /* fall through */
20842
20843 case BFD_RELOC_ARM_GOT32:
20844 case BFD_RELOC_ARM_GOTOFF:
20845 if (fixP->fx_done || !seg->use_rela_p)
20846 md_number_to_chars (buf, 0, 4);
20847 break;
20848
20849 case BFD_RELOC_ARM_GOT_PREL:
20850 if (fixP->fx_done || !seg->use_rela_p)
20851 md_number_to_chars (buf, value, 4);
20852 break;
20853
20854 case BFD_RELOC_ARM_TARGET2:
20855 /* TARGET2 is not partial-inplace, so we need to write the
20856 addend here for REL targets, because it won't be written out
20857 during reloc processing later. */
20858 if (fixP->fx_done || !seg->use_rela_p)
20859 md_number_to_chars (buf, fixP->fx_offset, 4);
20860 break;
20861 #endif
20862
20863 case BFD_RELOC_RVA:
20864 case BFD_RELOC_32:
20865 case BFD_RELOC_ARM_TARGET1:
20866 case BFD_RELOC_ARM_ROSEGREL32:
20867 case BFD_RELOC_ARM_SBREL32:
20868 case BFD_RELOC_32_PCREL:
20869 #ifdef TE_PE
20870 case BFD_RELOC_32_SECREL:
20871 #endif
20872 if (fixP->fx_done || !seg->use_rela_p)
20873 #ifdef TE_WINCE
20874 /* For WinCE we only do this for pcrel fixups. */
20875 if (fixP->fx_done || fixP->fx_pcrel)
20876 #endif
20877 md_number_to_chars (buf, value, 4);
20878 break;
20879
20880 #ifdef OBJ_ELF
20881 case BFD_RELOC_ARM_PREL31:
20882 if (fixP->fx_done || !seg->use_rela_p)
20883 {
20884 newval = md_chars_to_number (buf, 4) & 0x80000000;
20885 if ((value ^ (value >> 1)) & 0x40000000)
20886 {
20887 as_bad_where (fixP->fx_file, fixP->fx_line,
20888 _("rel31 relocation overflow"));
20889 }
20890 newval |= value & 0x7fffffff;
20891 md_number_to_chars (buf, newval, 4);
20892 }
20893 break;
20894 #endif
20895
20896 case BFD_RELOC_ARM_CP_OFF_IMM:
20897 case BFD_RELOC_ARM_T32_CP_OFF_IMM:
20898 if (value < -1023 || value > 1023 || (value & 3))
20899 as_bad_where (fixP->fx_file, fixP->fx_line,
20900 _("co-processor offset out of range"));
20901 cp_off_common:
20902 sign = value >= 0;
20903 if (value < 0)
20904 value = -value;
20905 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
20906 || fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2)
20907 newval = md_chars_to_number (buf, INSN_SIZE);
20908 else
20909 newval = get_thumb32_insn (buf);
20910 newval &= 0xff7fff00;
20911 newval |= (value >> 2) | (sign ? INDEX_UP : 0);
20912 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
20913 || fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2)
20914 md_number_to_chars (buf, newval, INSN_SIZE);
20915 else
20916 put_thumb32_insn (buf, newval);
20917 break;
20918
20919 case BFD_RELOC_ARM_CP_OFF_IMM_S2:
20920 case BFD_RELOC_ARM_T32_CP_OFF_IMM_S2:
20921 if (value < -255 || value > 255)
20922 as_bad_where (fixP->fx_file, fixP->fx_line,
20923 _("co-processor offset out of range"));
20924 value *= 4;
20925 goto cp_off_common;
20926
20927 case BFD_RELOC_ARM_THUMB_OFFSET:
20928 newval = md_chars_to_number (buf, THUMB_SIZE);
20929 /* Exactly what ranges, and where the offset is inserted depends
20930 on the type of instruction, we can establish this from the
20931 top 4 bits. */
20932 switch (newval >> 12)
20933 {
20934 case 4: /* PC load. */
20935 /* Thumb PC loads are somewhat odd, bit 1 of the PC is
20936 forced to zero for these loads; md_pcrel_from has already
20937 compensated for this. */
20938 if (value & 3)
20939 as_bad_where (fixP->fx_file, fixP->fx_line,
20940 _("invalid offset, target not word aligned (0x%08lX)"),
20941 (((unsigned long) fixP->fx_frag->fr_address
20942 + (unsigned long) fixP->fx_where) & ~3)
20943 + (unsigned long) value);
20944
20945 if (value & ~0x3fc)
20946 as_bad_where (fixP->fx_file, fixP->fx_line,
20947 _("invalid offset, value too big (0x%08lX)"),
20948 (long) value);
20949
20950 newval |= value >> 2;
20951 break;
20952
20953 case 9: /* SP load/store. */
20954 if (value & ~0x3fc)
20955 as_bad_where (fixP->fx_file, fixP->fx_line,
20956 _("invalid offset, value too big (0x%08lX)"),
20957 (long) value);
20958 newval |= value >> 2;
20959 break;
20960
20961 case 6: /* Word load/store. */
20962 if (value & ~0x7c)
20963 as_bad_where (fixP->fx_file, fixP->fx_line,
20964 _("invalid offset, value too big (0x%08lX)"),
20965 (long) value);
20966 newval |= value << 4; /* 6 - 2. */
20967 break;
20968
20969 case 7: /* Byte load/store. */
20970 if (value & ~0x1f)
20971 as_bad_where (fixP->fx_file, fixP->fx_line,
20972 _("invalid offset, value too big (0x%08lX)"),
20973 (long) value);
20974 newval |= value << 6;
20975 break;
20976
20977 case 8: /* Halfword load/store. */
20978 if (value & ~0x3e)
20979 as_bad_where (fixP->fx_file, fixP->fx_line,
20980 _("invalid offset, value too big (0x%08lX)"),
20981 (long) value);
20982 newval |= value << 5; /* 6 - 1. */
20983 break;
20984
20985 default:
20986 as_bad_where (fixP->fx_file, fixP->fx_line,
20987 "Unable to process relocation for thumb opcode: %lx",
20988 (unsigned long) newval);
20989 break;
20990 }
20991 md_number_to_chars (buf, newval, THUMB_SIZE);
20992 break;
20993
20994 case BFD_RELOC_ARM_THUMB_ADD:
20995 /* This is a complicated relocation, since we use it for all of
20996 the following immediate relocations:
20997
20998 3bit ADD/SUB
20999 8bit ADD/SUB
21000 9bit ADD/SUB SP word-aligned
21001 10bit ADD PC/SP word-aligned
21002
21003 The type of instruction being processed is encoded in the
21004 instruction field:
21005
21006 0x8000 SUB
21007 0x00F0 Rd
21008 0x000F Rs
21009 */
21010 newval = md_chars_to_number (buf, THUMB_SIZE);
21011 {
21012 int rd = (newval >> 4) & 0xf;
21013 int rs = newval & 0xf;
21014 int subtract = !!(newval & 0x8000);
21015
21016 /* Check for HI regs, only very restricted cases allowed:
21017 Adjusting SP, and using PC or SP to get an address. */
21018 if ((rd > 7 && (rd != REG_SP || rs != REG_SP))
21019 || (rs > 7 && rs != REG_SP && rs != REG_PC))
21020 as_bad_where (fixP->fx_file, fixP->fx_line,
21021 _("invalid Hi register with immediate"));
21022
21023 /* If value is negative, choose the opposite instruction. */
21024 if (value < 0)
21025 {
21026 value = -value;
21027 subtract = !subtract;
21028 if (value < 0)
21029 as_bad_where (fixP->fx_file, fixP->fx_line,
21030 _("immediate value out of range"));
21031 }
21032
21033 if (rd == REG_SP)
21034 {
21035 if (value & ~0x1fc)
21036 as_bad_where (fixP->fx_file, fixP->fx_line,
21037 _("invalid immediate for stack address calculation"));
21038 newval = subtract ? T_OPCODE_SUB_ST : T_OPCODE_ADD_ST;
21039 newval |= value >> 2;
21040 }
21041 else if (rs == REG_PC || rs == REG_SP)
21042 {
21043 if (subtract || value & ~0x3fc)
21044 as_bad_where (fixP->fx_file, fixP->fx_line,
21045 _("invalid immediate for address calculation (value = 0x%08lX)"),
21046 (unsigned long) value);
21047 newval = (rs == REG_PC ? T_OPCODE_ADD_PC : T_OPCODE_ADD_SP);
21048 newval |= rd << 8;
21049 newval |= value >> 2;
21050 }
21051 else if (rs == rd)
21052 {
21053 if (value & ~0xff)
21054 as_bad_where (fixP->fx_file, fixP->fx_line,
21055 _("immediate value out of range"));
21056 newval = subtract ? T_OPCODE_SUB_I8 : T_OPCODE_ADD_I8;
21057 newval |= (rd << 8) | value;
21058 }
21059 else
21060 {
21061 if (value & ~0x7)
21062 as_bad_where (fixP->fx_file, fixP->fx_line,
21063 _("immediate value out of range"));
21064 newval = subtract ? T_OPCODE_SUB_I3 : T_OPCODE_ADD_I3;
21065 newval |= rd | (rs << 3) | (value << 6);
21066 }
21067 }
21068 md_number_to_chars (buf, newval, THUMB_SIZE);
21069 break;
21070
21071 case BFD_RELOC_ARM_THUMB_IMM:
21072 newval = md_chars_to_number (buf, THUMB_SIZE);
21073 if (value < 0 || value > 255)
21074 as_bad_where (fixP->fx_file, fixP->fx_line,
21075 _("invalid immediate: %ld is out of range"),
21076 (long) value);
21077 newval |= value;
21078 md_number_to_chars (buf, newval, THUMB_SIZE);
21079 break;
21080
21081 case BFD_RELOC_ARM_THUMB_SHIFT:
21082 /* 5bit shift value (0..32). LSL cannot take 32. */
21083 newval = md_chars_to_number (buf, THUMB_SIZE) & 0xf83f;
21084 temp = newval & 0xf800;
21085 if (value < 0 || value > 32 || (value == 32 && temp == T_OPCODE_LSL_I))
21086 as_bad_where (fixP->fx_file, fixP->fx_line,
21087 _("invalid shift value: %ld"), (long) value);
21088 /* Shifts of zero must be encoded as LSL. */
21089 if (value == 0)
21090 newval = (newval & 0x003f) | T_OPCODE_LSL_I;
21091 /* Shifts of 32 are encoded as zero. */
21092 else if (value == 32)
21093 value = 0;
21094 newval |= value << 6;
21095 md_number_to_chars (buf, newval, THUMB_SIZE);
21096 break;
21097
21098 case BFD_RELOC_VTABLE_INHERIT:
21099 case BFD_RELOC_VTABLE_ENTRY:
21100 fixP->fx_done = 0;
21101 return;
21102
21103 case BFD_RELOC_ARM_MOVW:
21104 case BFD_RELOC_ARM_MOVT:
21105 case BFD_RELOC_ARM_THUMB_MOVW:
21106 case BFD_RELOC_ARM_THUMB_MOVT:
21107 if (fixP->fx_done || !seg->use_rela_p)
21108 {
21109 /* REL format relocations are limited to a 16-bit addend. */
21110 if (!fixP->fx_done)
21111 {
21112 if (value < -0x8000 || value > 0x7fff)
21113 as_bad_where (fixP->fx_file, fixP->fx_line,
21114 _("offset out of range"));
21115 }
21116 else if (fixP->fx_r_type == BFD_RELOC_ARM_MOVT
21117 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT)
21118 {
21119 value >>= 16;
21120 }
21121
21122 if (fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW
21123 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT)
21124 {
21125 newval = get_thumb32_insn (buf);
21126 newval &= 0xfbf08f00;
21127 newval |= (value & 0xf000) << 4;
21128 newval |= (value & 0x0800) << 15;
21129 newval |= (value & 0x0700) << 4;
21130 newval |= (value & 0x00ff);
21131 put_thumb32_insn (buf, newval);
21132 }
21133 else
21134 {
21135 newval = md_chars_to_number (buf, 4);
21136 newval &= 0xfff0f000;
21137 newval |= value & 0x0fff;
21138 newval |= (value & 0xf000) << 4;
21139 md_number_to_chars (buf, newval, 4);
21140 }
21141 }
21142 return;
21143
21144 case BFD_RELOC_ARM_ALU_PC_G0_NC:
21145 case BFD_RELOC_ARM_ALU_PC_G0:
21146 case BFD_RELOC_ARM_ALU_PC_G1_NC:
21147 case BFD_RELOC_ARM_ALU_PC_G1:
21148 case BFD_RELOC_ARM_ALU_PC_G2:
21149 case BFD_RELOC_ARM_ALU_SB_G0_NC:
21150 case BFD_RELOC_ARM_ALU_SB_G0:
21151 case BFD_RELOC_ARM_ALU_SB_G1_NC:
21152 case BFD_RELOC_ARM_ALU_SB_G1:
21153 case BFD_RELOC_ARM_ALU_SB_G2:
21154 gas_assert (!fixP->fx_done);
21155 if (!seg->use_rela_p)
21156 {
21157 bfd_vma insn;
21158 bfd_vma encoded_addend;
21159 bfd_vma addend_abs = abs (value);
21160
21161 /* Check that the absolute value of the addend can be
21162 expressed as an 8-bit constant plus a rotation. */
21163 encoded_addend = encode_arm_immediate (addend_abs);
21164 if (encoded_addend == (unsigned int) FAIL)
21165 as_bad_where (fixP->fx_file, fixP->fx_line,
21166 _("the offset 0x%08lX is not representable"),
21167 (unsigned long) addend_abs);
21168
21169 /* Extract the instruction. */
21170 insn = md_chars_to_number (buf, INSN_SIZE);
21171
21172 /* If the addend is positive, use an ADD instruction.
21173 Otherwise use a SUB. Take care not to destroy the S bit. */
21174 insn &= 0xff1fffff;
21175 if (value < 0)
21176 insn |= 1 << 22;
21177 else
21178 insn |= 1 << 23;
21179
21180 /* Place the encoded addend into the first 12 bits of the
21181 instruction. */
21182 insn &= 0xfffff000;
21183 insn |= encoded_addend;
21184
21185 /* Update the instruction. */
21186 md_number_to_chars (buf, insn, INSN_SIZE);
21187 }
21188 break;
21189
21190 case BFD_RELOC_ARM_LDR_PC_G0:
21191 case BFD_RELOC_ARM_LDR_PC_G1:
21192 case BFD_RELOC_ARM_LDR_PC_G2:
21193 case BFD_RELOC_ARM_LDR_SB_G0:
21194 case BFD_RELOC_ARM_LDR_SB_G1:
21195 case BFD_RELOC_ARM_LDR_SB_G2:
21196 gas_assert (!fixP->fx_done);
21197 if (!seg->use_rela_p)
21198 {
21199 bfd_vma insn;
21200 bfd_vma addend_abs = abs (value);
21201
21202 /* Check that the absolute value of the addend can be
21203 encoded in 12 bits. */
21204 if (addend_abs >= 0x1000)
21205 as_bad_where (fixP->fx_file, fixP->fx_line,
21206 _("bad offset 0x%08lX (only 12 bits available for the magnitude)"),
21207 (unsigned long) addend_abs);
21208
21209 /* Extract the instruction. */
21210 insn = md_chars_to_number (buf, INSN_SIZE);
21211
21212 /* If the addend is negative, clear bit 23 of the instruction.
21213 Otherwise set it. */
21214 if (value < 0)
21215 insn &= ~(1 << 23);
21216 else
21217 insn |= 1 << 23;
21218
21219 /* Place the absolute value of the addend into the first 12 bits
21220 of the instruction. */
21221 insn &= 0xfffff000;
21222 insn |= addend_abs;
21223
21224 /* Update the instruction. */
21225 md_number_to_chars (buf, insn, INSN_SIZE);
21226 }
21227 break;
21228
21229 case BFD_RELOC_ARM_LDRS_PC_G0:
21230 case BFD_RELOC_ARM_LDRS_PC_G1:
21231 case BFD_RELOC_ARM_LDRS_PC_G2:
21232 case BFD_RELOC_ARM_LDRS_SB_G0:
21233 case BFD_RELOC_ARM_LDRS_SB_G1:
21234 case BFD_RELOC_ARM_LDRS_SB_G2:
21235 gas_assert (!fixP->fx_done);
21236 if (!seg->use_rela_p)
21237 {
21238 bfd_vma insn;
21239 bfd_vma addend_abs = abs (value);
21240
21241 /* Check that the absolute value of the addend can be
21242 encoded in 8 bits. */
21243 if (addend_abs >= 0x100)
21244 as_bad_where (fixP->fx_file, fixP->fx_line,
21245 _("bad offset 0x%08lX (only 8 bits available for the magnitude)"),
21246 (unsigned long) addend_abs);
21247
21248 /* Extract the instruction. */
21249 insn = md_chars_to_number (buf, INSN_SIZE);
21250
21251 /* If the addend is negative, clear bit 23 of the instruction.
21252 Otherwise set it. */
21253 if (value < 0)
21254 insn &= ~(1 << 23);
21255 else
21256 insn |= 1 << 23;
21257
21258 /* Place the first four bits of the absolute value of the addend
21259 into the first 4 bits of the instruction, and the remaining
21260 four into bits 8 .. 11. */
21261 insn &= 0xfffff0f0;
21262 insn |= (addend_abs & 0xf) | ((addend_abs & 0xf0) << 4);
21263
21264 /* Update the instruction. */
21265 md_number_to_chars (buf, insn, INSN_SIZE);
21266 }
21267 break;
21268
21269 case BFD_RELOC_ARM_LDC_PC_G0:
21270 case BFD_RELOC_ARM_LDC_PC_G1:
21271 case BFD_RELOC_ARM_LDC_PC_G2:
21272 case BFD_RELOC_ARM_LDC_SB_G0:
21273 case BFD_RELOC_ARM_LDC_SB_G1:
21274 case BFD_RELOC_ARM_LDC_SB_G2:
21275 gas_assert (!fixP->fx_done);
21276 if (!seg->use_rela_p)
21277 {
21278 bfd_vma insn;
21279 bfd_vma addend_abs = abs (value);
21280
21281 /* Check that the absolute value of the addend is a multiple of
21282 four and, when divided by four, fits in 8 bits. */
21283 if (addend_abs & 0x3)
21284 as_bad_where (fixP->fx_file, fixP->fx_line,
21285 _("bad offset 0x%08lX (must be word-aligned)"),
21286 (unsigned long) addend_abs);
21287
21288 if ((addend_abs >> 2) > 0xff)
21289 as_bad_where (fixP->fx_file, fixP->fx_line,
21290 _("bad offset 0x%08lX (must be an 8-bit number of words)"),
21291 (unsigned long) addend_abs);
21292
21293 /* Extract the instruction. */
21294 insn = md_chars_to_number (buf, INSN_SIZE);
21295
21296 /* If the addend is negative, clear bit 23 of the instruction.
21297 Otherwise set it. */
21298 if (value < 0)
21299 insn &= ~(1 << 23);
21300 else
21301 insn |= 1 << 23;
21302
21303 /* Place the addend (divided by four) into the first eight
21304 bits of the instruction. */
21305 insn &= 0xfffffff0;
21306 insn |= addend_abs >> 2;
21307
21308 /* Update the instruction. */
21309 md_number_to_chars (buf, insn, INSN_SIZE);
21310 }
21311 break;
21312
21313 case BFD_RELOC_ARM_V4BX:
21314 /* This will need to go in the object file. */
21315 fixP->fx_done = 0;
21316 break;
21317
21318 case BFD_RELOC_UNUSED:
21319 default:
21320 as_bad_where (fixP->fx_file, fixP->fx_line,
21321 _("bad relocation fixup type (%d)"), fixP->fx_r_type);
21322 }
21323 }
21324
21325 /* Translate internal representation of relocation info to BFD target
21326 format. */
21327
21328 arelent *
21329 tc_gen_reloc (asection *section, fixS *fixp)
21330 {
21331 arelent * reloc;
21332 bfd_reloc_code_real_type code;
21333
21334 reloc = (arelent *) xmalloc (sizeof (arelent));
21335
21336 reloc->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
21337 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
21338 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
21339
21340 if (fixp->fx_pcrel)
21341 {
21342 if (section->use_rela_p)
21343 fixp->fx_offset -= md_pcrel_from_section (fixp, section);
21344 else
21345 fixp->fx_offset = reloc->address;
21346 }
21347 reloc->addend = fixp->fx_offset;
21348
21349 switch (fixp->fx_r_type)
21350 {
21351 case BFD_RELOC_8:
21352 if (fixp->fx_pcrel)
21353 {
21354 code = BFD_RELOC_8_PCREL;
21355 break;
21356 }
21357
21358 case BFD_RELOC_16:
21359 if (fixp->fx_pcrel)
21360 {
21361 code = BFD_RELOC_16_PCREL;
21362 break;
21363 }
21364
21365 case BFD_RELOC_32:
21366 if (fixp->fx_pcrel)
21367 {
21368 code = BFD_RELOC_32_PCREL;
21369 break;
21370 }
21371
21372 case BFD_RELOC_ARM_MOVW:
21373 if (fixp->fx_pcrel)
21374 {
21375 code = BFD_RELOC_ARM_MOVW_PCREL;
21376 break;
21377 }
21378
21379 case BFD_RELOC_ARM_MOVT:
21380 if (fixp->fx_pcrel)
21381 {
21382 code = BFD_RELOC_ARM_MOVT_PCREL;
21383 break;
21384 }
21385
21386 case BFD_RELOC_ARM_THUMB_MOVW:
21387 if (fixp->fx_pcrel)
21388 {
21389 code = BFD_RELOC_ARM_THUMB_MOVW_PCREL;
21390 break;
21391 }
21392
21393 case BFD_RELOC_ARM_THUMB_MOVT:
21394 if (fixp->fx_pcrel)
21395 {
21396 code = BFD_RELOC_ARM_THUMB_MOVT_PCREL;
21397 break;
21398 }
21399
21400 case BFD_RELOC_NONE:
21401 case BFD_RELOC_ARM_PCREL_BRANCH:
21402 case BFD_RELOC_ARM_PCREL_BLX:
21403 case BFD_RELOC_RVA:
21404 case BFD_RELOC_THUMB_PCREL_BRANCH7:
21405 case BFD_RELOC_THUMB_PCREL_BRANCH9:
21406 case BFD_RELOC_THUMB_PCREL_BRANCH12:
21407 case BFD_RELOC_THUMB_PCREL_BRANCH20:
21408 case BFD_RELOC_THUMB_PCREL_BRANCH23:
21409 case BFD_RELOC_THUMB_PCREL_BRANCH25:
21410 case BFD_RELOC_VTABLE_ENTRY:
21411 case BFD_RELOC_VTABLE_INHERIT:
21412 #ifdef TE_PE
21413 case BFD_RELOC_32_SECREL:
21414 #endif
21415 code = fixp->fx_r_type;
21416 break;
21417
21418 case BFD_RELOC_THUMB_PCREL_BLX:
21419 #ifdef OBJ_ELF
21420 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
21421 code = BFD_RELOC_THUMB_PCREL_BRANCH23;
21422 else
21423 #endif
21424 code = BFD_RELOC_THUMB_PCREL_BLX;
21425 break;
21426
21427 case BFD_RELOC_ARM_LITERAL:
21428 case BFD_RELOC_ARM_HWLITERAL:
21429 /* If this is called then the a literal has
21430 been referenced across a section boundary. */
21431 as_bad_where (fixp->fx_file, fixp->fx_line,
21432 _("literal referenced across section boundary"));
21433 return NULL;
21434
21435 #ifdef OBJ_ELF
21436 case BFD_RELOC_ARM_GOT32:
21437 case BFD_RELOC_ARM_GOTOFF:
21438 case BFD_RELOC_ARM_GOT_PREL:
21439 case BFD_RELOC_ARM_PLT32:
21440 case BFD_RELOC_ARM_TARGET1:
21441 case BFD_RELOC_ARM_ROSEGREL32:
21442 case BFD_RELOC_ARM_SBREL32:
21443 case BFD_RELOC_ARM_PREL31:
21444 case BFD_RELOC_ARM_TARGET2:
21445 case BFD_RELOC_ARM_TLS_LE32:
21446 case BFD_RELOC_ARM_TLS_LDO32:
21447 case BFD_RELOC_ARM_PCREL_CALL:
21448 case BFD_RELOC_ARM_PCREL_JUMP:
21449 case BFD_RELOC_ARM_ALU_PC_G0_NC:
21450 case BFD_RELOC_ARM_ALU_PC_G0:
21451 case BFD_RELOC_ARM_ALU_PC_G1_NC:
21452 case BFD_RELOC_ARM_ALU_PC_G1:
21453 case BFD_RELOC_ARM_ALU_PC_G2:
21454 case BFD_RELOC_ARM_LDR_PC_G0:
21455 case BFD_RELOC_ARM_LDR_PC_G1:
21456 case BFD_RELOC_ARM_LDR_PC_G2:
21457 case BFD_RELOC_ARM_LDRS_PC_G0:
21458 case BFD_RELOC_ARM_LDRS_PC_G1:
21459 case BFD_RELOC_ARM_LDRS_PC_G2:
21460 case BFD_RELOC_ARM_LDC_PC_G0:
21461 case BFD_RELOC_ARM_LDC_PC_G1:
21462 case BFD_RELOC_ARM_LDC_PC_G2:
21463 case BFD_RELOC_ARM_ALU_SB_G0_NC:
21464 case BFD_RELOC_ARM_ALU_SB_G0:
21465 case BFD_RELOC_ARM_ALU_SB_G1_NC:
21466 case BFD_RELOC_ARM_ALU_SB_G1:
21467 case BFD_RELOC_ARM_ALU_SB_G2:
21468 case BFD_RELOC_ARM_LDR_SB_G0:
21469 case BFD_RELOC_ARM_LDR_SB_G1:
21470 case BFD_RELOC_ARM_LDR_SB_G2:
21471 case BFD_RELOC_ARM_LDRS_SB_G0:
21472 case BFD_RELOC_ARM_LDRS_SB_G1:
21473 case BFD_RELOC_ARM_LDRS_SB_G2:
21474 case BFD_RELOC_ARM_LDC_SB_G0:
21475 case BFD_RELOC_ARM_LDC_SB_G1:
21476 case BFD_RELOC_ARM_LDC_SB_G2:
21477 case BFD_RELOC_ARM_V4BX:
21478 code = fixp->fx_r_type;
21479 break;
21480
21481 case BFD_RELOC_ARM_TLS_GD32:
21482 case BFD_RELOC_ARM_TLS_IE32:
21483 case BFD_RELOC_ARM_TLS_LDM32:
21484 /* BFD will include the symbol's address in the addend.
21485 But we don't want that, so subtract it out again here. */
21486 if (!S_IS_COMMON (fixp->fx_addsy))
21487 reloc->addend -= (*reloc->sym_ptr_ptr)->value;
21488 code = fixp->fx_r_type;
21489 break;
21490 #endif
21491
21492 case BFD_RELOC_ARM_IMMEDIATE:
21493 as_bad_where (fixp->fx_file, fixp->fx_line,
21494 _("internal relocation (type: IMMEDIATE) not fixed up"));
21495 return NULL;
21496
21497 case BFD_RELOC_ARM_ADRL_IMMEDIATE:
21498 as_bad_where (fixp->fx_file, fixp->fx_line,
21499 _("ADRL used for a symbol not defined in the same file"));
21500 return NULL;
21501
21502 case BFD_RELOC_ARM_OFFSET_IMM:
21503 if (section->use_rela_p)
21504 {
21505 code = fixp->fx_r_type;
21506 break;
21507 }
21508
21509 if (fixp->fx_addsy != NULL
21510 && !S_IS_DEFINED (fixp->fx_addsy)
21511 && S_IS_LOCAL (fixp->fx_addsy))
21512 {
21513 as_bad_where (fixp->fx_file, fixp->fx_line,
21514 _("undefined local label `%s'"),
21515 S_GET_NAME (fixp->fx_addsy));
21516 return NULL;
21517 }
21518
21519 as_bad_where (fixp->fx_file, fixp->fx_line,
21520 _("internal_relocation (type: OFFSET_IMM) not fixed up"));
21521 return NULL;
21522
21523 default:
21524 {
21525 char * type;
21526
21527 switch (fixp->fx_r_type)
21528 {
21529 case BFD_RELOC_NONE: type = "NONE"; break;
21530 case BFD_RELOC_ARM_OFFSET_IMM8: type = "OFFSET_IMM8"; break;
21531 case BFD_RELOC_ARM_SHIFT_IMM: type = "SHIFT_IMM"; break;
21532 case BFD_RELOC_ARM_SMC: type = "SMC"; break;
21533 case BFD_RELOC_ARM_SWI: type = "SWI"; break;
21534 case BFD_RELOC_ARM_MULTI: type = "MULTI"; break;
21535 case BFD_RELOC_ARM_CP_OFF_IMM: type = "CP_OFF_IMM"; break;
21536 case BFD_RELOC_ARM_T32_OFFSET_IMM: type = "T32_OFFSET_IMM"; break;
21537 case BFD_RELOC_ARM_T32_CP_OFF_IMM: type = "T32_CP_OFF_IMM"; break;
21538 case BFD_RELOC_ARM_THUMB_ADD: type = "THUMB_ADD"; break;
21539 case BFD_RELOC_ARM_THUMB_SHIFT: type = "THUMB_SHIFT"; break;
21540 case BFD_RELOC_ARM_THUMB_IMM: type = "THUMB_IMM"; break;
21541 case BFD_RELOC_ARM_THUMB_OFFSET: type = "THUMB_OFFSET"; break;
21542 default: type = _("<unknown>"); break;
21543 }
21544 as_bad_where (fixp->fx_file, fixp->fx_line,
21545 _("cannot represent %s relocation in this object file format"),
21546 type);
21547 return NULL;
21548 }
21549 }
21550
21551 #ifdef OBJ_ELF
21552 if ((code == BFD_RELOC_32_PCREL || code == BFD_RELOC_32)
21553 && GOT_symbol
21554 && fixp->fx_addsy == GOT_symbol)
21555 {
21556 code = BFD_RELOC_ARM_GOTPC;
21557 reloc->addend = fixp->fx_offset = reloc->address;
21558 }
21559 #endif
21560
21561 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
21562
21563 if (reloc->howto == NULL)
21564 {
21565 as_bad_where (fixp->fx_file, fixp->fx_line,
21566 _("cannot represent %s relocation in this object file format"),
21567 bfd_get_reloc_code_name (code));
21568 return NULL;
21569 }
21570
21571 /* HACK: Since arm ELF uses Rel instead of Rela, encode the
21572 vtable entry to be used in the relocation's section offset. */
21573 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
21574 reloc->address = fixp->fx_offset;
21575
21576 return reloc;
21577 }
21578
21579 /* This fix_new is called by cons via TC_CONS_FIX_NEW. */
21580
21581 void
21582 cons_fix_new_arm (fragS * frag,
21583 int where,
21584 int size,
21585 expressionS * exp)
21586 {
21587 bfd_reloc_code_real_type type;
21588 int pcrel = 0;
21589
21590 /* Pick a reloc.
21591 FIXME: @@ Should look at CPU word size. */
21592 switch (size)
21593 {
21594 case 1:
21595 type = BFD_RELOC_8;
21596 break;
21597 case 2:
21598 type = BFD_RELOC_16;
21599 break;
21600 case 4:
21601 default:
21602 type = BFD_RELOC_32;
21603 break;
21604 case 8:
21605 type = BFD_RELOC_64;
21606 break;
21607 }
21608
21609 #ifdef TE_PE
21610 if (exp->X_op == O_secrel)
21611 {
21612 exp->X_op = O_symbol;
21613 type = BFD_RELOC_32_SECREL;
21614 }
21615 #endif
21616
21617 fix_new_exp (frag, where, (int) size, exp, pcrel, type);
21618 }
21619
21620 #if defined (OBJ_COFF)
21621 void
21622 arm_validate_fix (fixS * fixP)
21623 {
21624 /* If the destination of the branch is a defined symbol which does not have
21625 the THUMB_FUNC attribute, then we must be calling a function which has
21626 the (interfacearm) attribute. We look for the Thumb entry point to that
21627 function and change the branch to refer to that function instead. */
21628 if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BRANCH23
21629 && fixP->fx_addsy != NULL
21630 && S_IS_DEFINED (fixP->fx_addsy)
21631 && ! THUMB_IS_FUNC (fixP->fx_addsy))
21632 {
21633 fixP->fx_addsy = find_real_start (fixP->fx_addsy);
21634 }
21635 }
21636 #endif
21637
21638
21639 int
21640 arm_force_relocation (struct fix * fixp)
21641 {
21642 #if defined (OBJ_COFF) && defined (TE_PE)
21643 if (fixp->fx_r_type == BFD_RELOC_RVA)
21644 return 1;
21645 #endif
21646
21647 /* In case we have a call or a branch to a function in ARM ISA mode from
21648 a thumb function or vice-versa force the relocation. These relocations
21649 are cleared off for some cores that might have blx and simple transformations
21650 are possible. */
21651
21652 #ifdef OBJ_ELF
21653 switch (fixp->fx_r_type)
21654 {
21655 case BFD_RELOC_ARM_PCREL_JUMP:
21656 case BFD_RELOC_ARM_PCREL_CALL:
21657 case BFD_RELOC_THUMB_PCREL_BLX:
21658 if (THUMB_IS_FUNC (fixp->fx_addsy))
21659 return 1;
21660 break;
21661
21662 case BFD_RELOC_ARM_PCREL_BLX:
21663 case BFD_RELOC_THUMB_PCREL_BRANCH25:
21664 case BFD_RELOC_THUMB_PCREL_BRANCH20:
21665 case BFD_RELOC_THUMB_PCREL_BRANCH23:
21666 if (ARM_IS_FUNC (fixp->fx_addsy))
21667 return 1;
21668 break;
21669
21670 default:
21671 break;
21672 }
21673 #endif
21674
21675 /* Resolve these relocations even if the symbol is extern or weak. */
21676 if (fixp->fx_r_type == BFD_RELOC_ARM_IMMEDIATE
21677 || fixp->fx_r_type == BFD_RELOC_ARM_OFFSET_IMM
21678 || fixp->fx_r_type == BFD_RELOC_ARM_ADRL_IMMEDIATE
21679 || fixp->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM
21680 || fixp->fx_r_type == BFD_RELOC_ARM_T32_IMMEDIATE
21681 || fixp->fx_r_type == BFD_RELOC_ARM_T32_IMM12
21682 || fixp->fx_r_type == BFD_RELOC_ARM_T32_ADD_PC12)
21683 return 0;
21684
21685 /* Always leave these relocations for the linker. */
21686 if ((fixp->fx_r_type >= BFD_RELOC_ARM_ALU_PC_G0_NC
21687 && fixp->fx_r_type <= BFD_RELOC_ARM_LDC_SB_G2)
21688 || fixp->fx_r_type == BFD_RELOC_ARM_LDR_PC_G0)
21689 return 1;
21690
21691 /* Always generate relocations against function symbols. */
21692 if (fixp->fx_r_type == BFD_RELOC_32
21693 && fixp->fx_addsy
21694 && (symbol_get_bfdsym (fixp->fx_addsy)->flags & BSF_FUNCTION))
21695 return 1;
21696
21697 return generic_force_reloc (fixp);
21698 }
21699
21700 #if defined (OBJ_ELF) || defined (OBJ_COFF)
21701 /* Relocations against function names must be left unadjusted,
21702 so that the linker can use this information to generate interworking
21703 stubs. The MIPS version of this function
21704 also prevents relocations that are mips-16 specific, but I do not
21705 know why it does this.
21706
21707 FIXME:
21708 There is one other problem that ought to be addressed here, but
21709 which currently is not: Taking the address of a label (rather
21710 than a function) and then later jumping to that address. Such
21711 addresses also ought to have their bottom bit set (assuming that
21712 they reside in Thumb code), but at the moment they will not. */
21713
21714 bfd_boolean
21715 arm_fix_adjustable (fixS * fixP)
21716 {
21717 if (fixP->fx_addsy == NULL)
21718 return 1;
21719
21720 /* Preserve relocations against symbols with function type. */
21721 if (symbol_get_bfdsym (fixP->fx_addsy)->flags & BSF_FUNCTION)
21722 return FALSE;
21723
21724 if (THUMB_IS_FUNC (fixP->fx_addsy)
21725 && fixP->fx_subsy == NULL)
21726 return FALSE;
21727
21728 /* We need the symbol name for the VTABLE entries. */
21729 if ( fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
21730 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
21731 return FALSE;
21732
21733 /* Don't allow symbols to be discarded on GOT related relocs. */
21734 if (fixP->fx_r_type == BFD_RELOC_ARM_PLT32
21735 || fixP->fx_r_type == BFD_RELOC_ARM_GOT32
21736 || fixP->fx_r_type == BFD_RELOC_ARM_GOTOFF
21737 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_GD32
21738 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LE32
21739 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_IE32
21740 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDM32
21741 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDO32
21742 || fixP->fx_r_type == BFD_RELOC_ARM_TARGET2)
21743 return FALSE;
21744
21745 /* Similarly for group relocations. */
21746 if ((fixP->fx_r_type >= BFD_RELOC_ARM_ALU_PC_G0_NC
21747 && fixP->fx_r_type <= BFD_RELOC_ARM_LDC_SB_G2)
21748 || fixP->fx_r_type == BFD_RELOC_ARM_LDR_PC_G0)
21749 return FALSE;
21750
21751 /* MOVW/MOVT REL relocations have limited offsets, so keep the symbols. */
21752 if (fixP->fx_r_type == BFD_RELOC_ARM_MOVW
21753 || fixP->fx_r_type == BFD_RELOC_ARM_MOVT
21754 || fixP->fx_r_type == BFD_RELOC_ARM_MOVW_PCREL
21755 || fixP->fx_r_type == BFD_RELOC_ARM_MOVT_PCREL
21756 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW
21757 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT
21758 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW_PCREL
21759 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT_PCREL)
21760 return FALSE;
21761
21762 return TRUE;
21763 }
21764 #endif /* defined (OBJ_ELF) || defined (OBJ_COFF) */
21765
21766 #ifdef OBJ_ELF
21767
21768 const char *
21769 elf32_arm_target_format (void)
21770 {
21771 #ifdef TE_SYMBIAN
21772 return (target_big_endian
21773 ? "elf32-bigarm-symbian"
21774 : "elf32-littlearm-symbian");
21775 #elif defined (TE_VXWORKS)
21776 return (target_big_endian
21777 ? "elf32-bigarm-vxworks"
21778 : "elf32-littlearm-vxworks");
21779 #else
21780 if (target_big_endian)
21781 return "elf32-bigarm";
21782 else
21783 return "elf32-littlearm";
21784 #endif
21785 }
21786
21787 void
21788 armelf_frob_symbol (symbolS * symp,
21789 int * puntp)
21790 {
21791 elf_frob_symbol (symp, puntp);
21792 }
21793 #endif
21794
21795 /* MD interface: Finalization. */
21796
21797 void
21798 arm_cleanup (void)
21799 {
21800 literal_pool * pool;
21801
21802 /* Ensure that all the IT blocks are properly closed. */
21803 check_it_blocks_finished ();
21804
21805 for (pool = list_of_pools; pool; pool = pool->next)
21806 {
21807 /* Put it at the end of the relevant section. */
21808 subseg_set (pool->section, pool->sub_section);
21809 #ifdef OBJ_ELF
21810 arm_elf_change_section ();
21811 #endif
21812 s_ltorg (0);
21813 }
21814 }
21815
21816 #ifdef OBJ_ELF
21817 /* Remove any excess mapping symbols generated for alignment frags in
21818 SEC. We may have created a mapping symbol before a zero byte
21819 alignment; remove it if there's a mapping symbol after the
21820 alignment. */
21821 static void
21822 check_mapping_symbols (bfd *abfd ATTRIBUTE_UNUSED, asection *sec,
21823 void *dummy ATTRIBUTE_UNUSED)
21824 {
21825 segment_info_type *seginfo = seg_info (sec);
21826 fragS *fragp;
21827
21828 if (seginfo == NULL || seginfo->frchainP == NULL)
21829 return;
21830
21831 for (fragp = seginfo->frchainP->frch_root;
21832 fragp != NULL;
21833 fragp = fragp->fr_next)
21834 {
21835 symbolS *sym = fragp->tc_frag_data.last_map;
21836 fragS *next = fragp->fr_next;
21837
21838 /* Variable-sized frags have been converted to fixed size by
21839 this point. But if this was variable-sized to start with,
21840 there will be a fixed-size frag after it. So don't handle
21841 next == NULL. */
21842 if (sym == NULL || next == NULL)
21843 continue;
21844
21845 if (S_GET_VALUE (sym) < next->fr_address)
21846 /* Not at the end of this frag. */
21847 continue;
21848 know (S_GET_VALUE (sym) == next->fr_address);
21849
21850 do
21851 {
21852 if (next->tc_frag_data.first_map != NULL)
21853 {
21854 /* Next frag starts with a mapping symbol. Discard this
21855 one. */
21856 symbol_remove (sym, &symbol_rootP, &symbol_lastP);
21857 break;
21858 }
21859
21860 if (next->fr_next == NULL)
21861 {
21862 /* This mapping symbol is at the end of the section. Discard
21863 it. */
21864 know (next->fr_fix == 0 && next->fr_var == 0);
21865 symbol_remove (sym, &symbol_rootP, &symbol_lastP);
21866 break;
21867 }
21868
21869 /* As long as we have empty frags without any mapping symbols,
21870 keep looking. */
21871 /* If the next frag is non-empty and does not start with a
21872 mapping symbol, then this mapping symbol is required. */
21873 if (next->fr_address != next->fr_next->fr_address)
21874 break;
21875
21876 next = next->fr_next;
21877 }
21878 while (next != NULL);
21879 }
21880 }
21881 #endif
21882
21883 /* Adjust the symbol table. This marks Thumb symbols as distinct from
21884 ARM ones. */
21885
21886 void
21887 arm_adjust_symtab (void)
21888 {
21889 #ifdef OBJ_COFF
21890 symbolS * sym;
21891
21892 for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym))
21893 {
21894 if (ARM_IS_THUMB (sym))
21895 {
21896 if (THUMB_IS_FUNC (sym))
21897 {
21898 /* Mark the symbol as a Thumb function. */
21899 if ( S_GET_STORAGE_CLASS (sym) == C_STAT
21900 || S_GET_STORAGE_CLASS (sym) == C_LABEL) /* This can happen! */
21901 S_SET_STORAGE_CLASS (sym, C_THUMBSTATFUNC);
21902
21903 else if (S_GET_STORAGE_CLASS (sym) == C_EXT)
21904 S_SET_STORAGE_CLASS (sym, C_THUMBEXTFUNC);
21905 else
21906 as_bad (_("%s: unexpected function type: %d"),
21907 S_GET_NAME (sym), S_GET_STORAGE_CLASS (sym));
21908 }
21909 else switch (S_GET_STORAGE_CLASS (sym))
21910 {
21911 case C_EXT:
21912 S_SET_STORAGE_CLASS (sym, C_THUMBEXT);
21913 break;
21914 case C_STAT:
21915 S_SET_STORAGE_CLASS (sym, C_THUMBSTAT);
21916 break;
21917 case C_LABEL:
21918 S_SET_STORAGE_CLASS (sym, C_THUMBLABEL);
21919 break;
21920 default:
21921 /* Do nothing. */
21922 break;
21923 }
21924 }
21925
21926 if (ARM_IS_INTERWORK (sym))
21927 coffsymbol (symbol_get_bfdsym (sym))->native->u.syment.n_flags = 0xFF;
21928 }
21929 #endif
21930 #ifdef OBJ_ELF
21931 symbolS * sym;
21932 char bind;
21933
21934 for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym))
21935 {
21936 if (ARM_IS_THUMB (sym))
21937 {
21938 elf_symbol_type * elf_sym;
21939
21940 elf_sym = elf_symbol (symbol_get_bfdsym (sym));
21941 bind = ELF_ST_BIND (elf_sym->internal_elf_sym.st_info);
21942
21943 if (! bfd_is_arm_special_symbol_name (elf_sym->symbol.name,
21944 BFD_ARM_SPECIAL_SYM_TYPE_ANY))
21945 {
21946 /* If it's a .thumb_func, declare it as so,
21947 otherwise tag label as .code 16. */
21948 if (THUMB_IS_FUNC (sym))
21949 elf_sym->internal_elf_sym.st_info =
21950 ELF_ST_INFO (bind, STT_ARM_TFUNC);
21951 else if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
21952 elf_sym->internal_elf_sym.st_info =
21953 ELF_ST_INFO (bind, STT_ARM_16BIT);
21954 }
21955 }
21956 }
21957
21958 /* Remove any overlapping mapping symbols generated by alignment frags. */
21959 bfd_map_over_sections (stdoutput, check_mapping_symbols, (char *) 0);
21960 /* Now do generic ELF adjustments. */
21961 elf_adjust_symtab ();
21962 #endif
21963 }
21964
21965 /* MD interface: Initialization. */
21966
21967 static void
21968 set_constant_flonums (void)
21969 {
21970 int i;
21971
21972 for (i = 0; i < NUM_FLOAT_VALS; i++)
21973 if (atof_ieee ((char *) fp_const[i], 'x', fp_values[i]) == NULL)
21974 abort ();
21975 }
21976
21977 /* Auto-select Thumb mode if it's the only available instruction set for the
21978 given architecture. */
21979
21980 static void
21981 autoselect_thumb_from_cpu_variant (void)
21982 {
21983 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
21984 opcode_select (16);
21985 }
21986
21987 void
21988 md_begin (void)
21989 {
21990 unsigned mach;
21991 unsigned int i;
21992
21993 if ( (arm_ops_hsh = hash_new ()) == NULL
21994 || (arm_cond_hsh = hash_new ()) == NULL
21995 || (arm_shift_hsh = hash_new ()) == NULL
21996 || (arm_psr_hsh = hash_new ()) == NULL
21997 || (arm_v7m_psr_hsh = hash_new ()) == NULL
21998 || (arm_reg_hsh = hash_new ()) == NULL
21999 || (arm_reloc_hsh = hash_new ()) == NULL
22000 || (arm_barrier_opt_hsh = hash_new ()) == NULL)
22001 as_fatal (_("virtual memory exhausted"));
22002
22003 for (i = 0; i < sizeof (insns) / sizeof (struct asm_opcode); i++)
22004 hash_insert (arm_ops_hsh, insns[i].template_name, (void *) (insns + i));
22005 for (i = 0; i < sizeof (conds) / sizeof (struct asm_cond); i++)
22006 hash_insert (arm_cond_hsh, conds[i].template_name, (void *) (conds + i));
22007 for (i = 0; i < sizeof (shift_names) / sizeof (struct asm_shift_name); i++)
22008 hash_insert (arm_shift_hsh, shift_names[i].name, (void *) (shift_names + i));
22009 for (i = 0; i < sizeof (psrs) / sizeof (struct asm_psr); i++)
22010 hash_insert (arm_psr_hsh, psrs[i].template_name, (void *) (psrs + i));
22011 for (i = 0; i < sizeof (v7m_psrs) / sizeof (struct asm_psr); i++)
22012 hash_insert (arm_v7m_psr_hsh, v7m_psrs[i].template_name,
22013 (void *) (v7m_psrs + i));
22014 for (i = 0; i < sizeof (reg_names) / sizeof (struct reg_entry); i++)
22015 hash_insert (arm_reg_hsh, reg_names[i].name, (void *) (reg_names + i));
22016 for (i = 0;
22017 i < sizeof (barrier_opt_names) / sizeof (struct asm_barrier_opt);
22018 i++)
22019 hash_insert (arm_barrier_opt_hsh, barrier_opt_names[i].template_name,
22020 (void *) (barrier_opt_names + i));
22021 #ifdef OBJ_ELF
22022 for (i = 0; i < sizeof (reloc_names) / sizeof (struct reloc_entry); i++)
22023 hash_insert (arm_reloc_hsh, reloc_names[i].name, (void *) (reloc_names + i));
22024 #endif
22025
22026 set_constant_flonums ();
22027
22028 /* Set the cpu variant based on the command-line options. We prefer
22029 -mcpu= over -march= if both are set (as for GCC); and we prefer
22030 -mfpu= over any other way of setting the floating point unit.
22031 Use of legacy options with new options are faulted. */
22032 if (legacy_cpu)
22033 {
22034 if (mcpu_cpu_opt || march_cpu_opt)
22035 as_bad (_("use of old and new-style options to set CPU type"));
22036
22037 mcpu_cpu_opt = legacy_cpu;
22038 }
22039 else if (!mcpu_cpu_opt)
22040 mcpu_cpu_opt = march_cpu_opt;
22041
22042 if (legacy_fpu)
22043 {
22044 if (mfpu_opt)
22045 as_bad (_("use of old and new-style options to set FPU type"));
22046
22047 mfpu_opt = legacy_fpu;
22048 }
22049 else if (!mfpu_opt)
22050 {
22051 #if !(defined (EABI_DEFAULT) || defined (TE_LINUX) \
22052 || defined (TE_NetBSD) || defined (TE_VXWORKS))
22053 /* Some environments specify a default FPU. If they don't, infer it
22054 from the processor. */
22055 if (mcpu_fpu_opt)
22056 mfpu_opt = mcpu_fpu_opt;
22057 else
22058 mfpu_opt = march_fpu_opt;
22059 #else
22060 mfpu_opt = &fpu_default;
22061 #endif
22062 }
22063
22064 if (!mfpu_opt)
22065 {
22066 if (mcpu_cpu_opt != NULL)
22067 mfpu_opt = &fpu_default;
22068 else if (mcpu_fpu_opt != NULL && ARM_CPU_HAS_FEATURE (*mcpu_fpu_opt, arm_ext_v5))
22069 mfpu_opt = &fpu_arch_vfp_v2;
22070 else
22071 mfpu_opt = &fpu_arch_fpa;
22072 }
22073
22074 #ifdef CPU_DEFAULT
22075 if (!mcpu_cpu_opt)
22076 {
22077 mcpu_cpu_opt = &cpu_default;
22078 selected_cpu = cpu_default;
22079 }
22080 #else
22081 if (mcpu_cpu_opt)
22082 selected_cpu = *mcpu_cpu_opt;
22083 else
22084 mcpu_cpu_opt = &arm_arch_any;
22085 #endif
22086
22087 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
22088
22089 autoselect_thumb_from_cpu_variant ();
22090
22091 arm_arch_used = thumb_arch_used = arm_arch_none;
22092
22093 #if defined OBJ_COFF || defined OBJ_ELF
22094 {
22095 unsigned int flags = 0;
22096
22097 #if defined OBJ_ELF
22098 flags = meabi_flags;
22099
22100 switch (meabi_flags)
22101 {
22102 case EF_ARM_EABI_UNKNOWN:
22103 #endif
22104 /* Set the flags in the private structure. */
22105 if (uses_apcs_26) flags |= F_APCS26;
22106 if (support_interwork) flags |= F_INTERWORK;
22107 if (uses_apcs_float) flags |= F_APCS_FLOAT;
22108 if (pic_code) flags |= F_PIC;
22109 if (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_any_hard))
22110 flags |= F_SOFT_FLOAT;
22111
22112 switch (mfloat_abi_opt)
22113 {
22114 case ARM_FLOAT_ABI_SOFT:
22115 case ARM_FLOAT_ABI_SOFTFP:
22116 flags |= F_SOFT_FLOAT;
22117 break;
22118
22119 case ARM_FLOAT_ABI_HARD:
22120 if (flags & F_SOFT_FLOAT)
22121 as_bad (_("hard-float conflicts with specified fpu"));
22122 break;
22123 }
22124
22125 /* Using pure-endian doubles (even if soft-float). */
22126 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_endian_pure))
22127 flags |= F_VFP_FLOAT;
22128
22129 #if defined OBJ_ELF
22130 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_arch_maverick))
22131 flags |= EF_ARM_MAVERICK_FLOAT;
22132 break;
22133
22134 case EF_ARM_EABI_VER4:
22135 case EF_ARM_EABI_VER5:
22136 /* No additional flags to set. */
22137 break;
22138
22139 default:
22140 abort ();
22141 }
22142 #endif
22143 bfd_set_private_flags (stdoutput, flags);
22144
22145 /* We have run out flags in the COFF header to encode the
22146 status of ATPCS support, so instead we create a dummy,
22147 empty, debug section called .arm.atpcs. */
22148 if (atpcs)
22149 {
22150 asection * sec;
22151
22152 sec = bfd_make_section (stdoutput, ".arm.atpcs");
22153
22154 if (sec != NULL)
22155 {
22156 bfd_set_section_flags
22157 (stdoutput, sec, SEC_READONLY | SEC_DEBUGGING /* | SEC_HAS_CONTENTS */);
22158 bfd_set_section_size (stdoutput, sec, 0);
22159 bfd_set_section_contents (stdoutput, sec, NULL, 0, 0);
22160 }
22161 }
22162 }
22163 #endif
22164
22165 /* Record the CPU type as well. */
22166 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2))
22167 mach = bfd_mach_arm_iWMMXt2;
22168 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt))
22169 mach = bfd_mach_arm_iWMMXt;
22170 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_xscale))
22171 mach = bfd_mach_arm_XScale;
22172 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_maverick))
22173 mach = bfd_mach_arm_ep9312;
22174 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v5e))
22175 mach = bfd_mach_arm_5TE;
22176 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v5))
22177 {
22178 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
22179 mach = bfd_mach_arm_5T;
22180 else
22181 mach = bfd_mach_arm_5;
22182 }
22183 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4))
22184 {
22185 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
22186 mach = bfd_mach_arm_4T;
22187 else
22188 mach = bfd_mach_arm_4;
22189 }
22190 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v3m))
22191 mach = bfd_mach_arm_3M;
22192 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v3))
22193 mach = bfd_mach_arm_3;
22194 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v2s))
22195 mach = bfd_mach_arm_2a;
22196 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v2))
22197 mach = bfd_mach_arm_2;
22198 else
22199 mach = bfd_mach_arm_unknown;
22200
22201 bfd_set_arch_mach (stdoutput, TARGET_ARCH, mach);
22202 }
22203
22204 /* Command line processing. */
22205
22206 /* md_parse_option
22207 Invocation line includes a switch not recognized by the base assembler.
22208 See if it's a processor-specific option.
22209
22210 This routine is somewhat complicated by the need for backwards
22211 compatibility (since older releases of gcc can't be changed).
22212 The new options try to make the interface as compatible as
22213 possible with GCC.
22214
22215 New options (supported) are:
22216
22217 -mcpu=<cpu name> Assemble for selected processor
22218 -march=<architecture name> Assemble for selected architecture
22219 -mfpu=<fpu architecture> Assemble for selected FPU.
22220 -EB/-mbig-endian Big-endian
22221 -EL/-mlittle-endian Little-endian
22222 -k Generate PIC code
22223 -mthumb Start in Thumb mode
22224 -mthumb-interwork Code supports ARM/Thumb interworking
22225
22226 -m[no-]warn-deprecated Warn about deprecated features
22227
22228 For now we will also provide support for:
22229
22230 -mapcs-32 32-bit Program counter
22231 -mapcs-26 26-bit Program counter
22232 -macps-float Floats passed in FP registers
22233 -mapcs-reentrant Reentrant code
22234 -matpcs
22235 (sometime these will probably be replaced with -mapcs=<list of options>
22236 and -matpcs=<list of options>)
22237
22238 The remaining options are only supported for back-wards compatibility.
22239 Cpu variants, the arm part is optional:
22240 -m[arm]1 Currently not supported.
22241 -m[arm]2, -m[arm]250 Arm 2 and Arm 250 processor
22242 -m[arm]3 Arm 3 processor
22243 -m[arm]6[xx], Arm 6 processors
22244 -m[arm]7[xx][t][[d]m] Arm 7 processors
22245 -m[arm]8[10] Arm 8 processors
22246 -m[arm]9[20][tdmi] Arm 9 processors
22247 -mstrongarm[110[0]] StrongARM processors
22248 -mxscale XScale processors
22249 -m[arm]v[2345[t[e]]] Arm architectures
22250 -mall All (except the ARM1)
22251 FP variants:
22252 -mfpa10, -mfpa11 FPA10 and 11 co-processor instructions
22253 -mfpe-old (No float load/store multiples)
22254 -mvfpxd VFP Single precision
22255 -mvfp All VFP
22256 -mno-fpu Disable all floating point instructions
22257
22258 The following CPU names are recognized:
22259 arm1, arm2, arm250, arm3, arm6, arm600, arm610, arm620,
22260 arm7, arm7m, arm7d, arm7dm, arm7di, arm7dmi, arm70, arm700,
22261 arm700i, arm710 arm710t, arm720, arm720t, arm740t, arm710c,
22262 arm7100, arm7500, arm7500fe, arm7tdmi, arm8, arm810, arm9,
22263 arm920, arm920t, arm940t, arm946, arm966, arm9tdmi, arm9e,
22264 arm10t arm10e, arm1020t, arm1020e, arm10200e,
22265 strongarm, strongarm110, strongarm1100, strongarm1110, xscale.
22266
22267 */
22268
22269 const char * md_shortopts = "m:k";
22270
22271 #ifdef ARM_BI_ENDIAN
22272 #define OPTION_EB (OPTION_MD_BASE + 0)
22273 #define OPTION_EL (OPTION_MD_BASE + 1)
22274 #else
22275 #if TARGET_BYTES_BIG_ENDIAN
22276 #define OPTION_EB (OPTION_MD_BASE + 0)
22277 #else
22278 #define OPTION_EL (OPTION_MD_BASE + 1)
22279 #endif
22280 #endif
22281 #define OPTION_FIX_V4BX (OPTION_MD_BASE + 2)
22282
22283 struct option md_longopts[] =
22284 {
22285 #ifdef OPTION_EB
22286 {"EB", no_argument, NULL, OPTION_EB},
22287 #endif
22288 #ifdef OPTION_EL
22289 {"EL", no_argument, NULL, OPTION_EL},
22290 #endif
22291 {"fix-v4bx", no_argument, NULL, OPTION_FIX_V4BX},
22292 {NULL, no_argument, NULL, 0}
22293 };
22294
22295 size_t md_longopts_size = sizeof (md_longopts);
22296
22297 struct arm_option_table
22298 {
22299 char *option; /* Option name to match. */
22300 char *help; /* Help information. */
22301 int *var; /* Variable to change. */
22302 int value; /* What to change it to. */
22303 char *deprecated; /* If non-null, print this message. */
22304 };
22305
22306 struct arm_option_table arm_opts[] =
22307 {
22308 {"k", N_("generate PIC code"), &pic_code, 1, NULL},
22309 {"mthumb", N_("assemble Thumb code"), &thumb_mode, 1, NULL},
22310 {"mthumb-interwork", N_("support ARM/Thumb interworking"),
22311 &support_interwork, 1, NULL},
22312 {"mapcs-32", N_("code uses 32-bit program counter"), &uses_apcs_26, 0, NULL},
22313 {"mapcs-26", N_("code uses 26-bit program counter"), &uses_apcs_26, 1, NULL},
22314 {"mapcs-float", N_("floating point args are in fp regs"), &uses_apcs_float,
22315 1, NULL},
22316 {"mapcs-reentrant", N_("re-entrant code"), &pic_code, 1, NULL},
22317 {"matpcs", N_("code is ATPCS conformant"), &atpcs, 1, NULL},
22318 {"mbig-endian", N_("assemble for big-endian"), &target_big_endian, 1, NULL},
22319 {"mlittle-endian", N_("assemble for little-endian"), &target_big_endian, 0,
22320 NULL},
22321
22322 /* These are recognized by the assembler, but have no affect on code. */
22323 {"mapcs-frame", N_("use frame pointer"), NULL, 0, NULL},
22324 {"mapcs-stack-check", N_("use stack size checking"), NULL, 0, NULL},
22325
22326 {"mwarn-deprecated", NULL, &warn_on_deprecated, 1, NULL},
22327 {"mno-warn-deprecated", N_("do not warn on use of deprecated feature"),
22328 &warn_on_deprecated, 0, NULL},
22329 {NULL, NULL, NULL, 0, NULL}
22330 };
22331
22332 struct arm_legacy_option_table
22333 {
22334 char *option; /* Option name to match. */
22335 const arm_feature_set **var; /* Variable to change. */
22336 const arm_feature_set value; /* What to change it to. */
22337 char *deprecated; /* If non-null, print this message. */
22338 };
22339
22340 const struct arm_legacy_option_table arm_legacy_opts[] =
22341 {
22342 /* DON'T add any new processors to this list -- we want the whole list
22343 to go away... Add them to the processors table instead. */
22344 {"marm1", &legacy_cpu, ARM_ARCH_V1, N_("use -mcpu=arm1")},
22345 {"m1", &legacy_cpu, ARM_ARCH_V1, N_("use -mcpu=arm1")},
22346 {"marm2", &legacy_cpu, ARM_ARCH_V2, N_("use -mcpu=arm2")},
22347 {"m2", &legacy_cpu, ARM_ARCH_V2, N_("use -mcpu=arm2")},
22348 {"marm250", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm250")},
22349 {"m250", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm250")},
22350 {"marm3", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm3")},
22351 {"m3", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm3")},
22352 {"marm6", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm6")},
22353 {"m6", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm6")},
22354 {"marm600", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm600")},
22355 {"m600", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm600")},
22356 {"marm610", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm610")},
22357 {"m610", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm610")},
22358 {"marm620", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm620")},
22359 {"m620", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm620")},
22360 {"marm7", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7")},
22361 {"m7", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7")},
22362 {"marm70", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm70")},
22363 {"m70", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm70")},
22364 {"marm700", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700")},
22365 {"m700", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700")},
22366 {"marm700i", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700i")},
22367 {"m700i", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700i")},
22368 {"marm710", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710")},
22369 {"m710", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710")},
22370 {"marm710c", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710c")},
22371 {"m710c", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710c")},
22372 {"marm720", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm720")},
22373 {"m720", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm720")},
22374 {"marm7d", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7d")},
22375 {"m7d", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7d")},
22376 {"marm7di", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7di")},
22377 {"m7di", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7di")},
22378 {"marm7m", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7m")},
22379 {"m7m", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7m")},
22380 {"marm7dm", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dm")},
22381 {"m7dm", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dm")},
22382 {"marm7dmi", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dmi")},
22383 {"m7dmi", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dmi")},
22384 {"marm7100", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7100")},
22385 {"m7100", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7100")},
22386 {"marm7500", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500")},
22387 {"m7500", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500")},
22388 {"marm7500fe", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500fe")},
22389 {"m7500fe", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500fe")},
22390 {"marm7t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
22391 {"m7t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
22392 {"marm7tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
22393 {"m7tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
22394 {"marm710t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm710t")},
22395 {"m710t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm710t")},
22396 {"marm720t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm720t")},
22397 {"m720t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm720t")},
22398 {"marm740t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm740t")},
22399 {"m740t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm740t")},
22400 {"marm8", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm8")},
22401 {"m8", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm8")},
22402 {"marm810", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm810")},
22403 {"m810", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm810")},
22404 {"marm9", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9")},
22405 {"m9", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9")},
22406 {"marm9tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9tdmi")},
22407 {"m9tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9tdmi")},
22408 {"marm920", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm920")},
22409 {"m920", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm920")},
22410 {"marm940", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm940")},
22411 {"m940", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm940")},
22412 {"mstrongarm", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=strongarm")},
22413 {"mstrongarm110", &legacy_cpu, ARM_ARCH_V4,
22414 N_("use -mcpu=strongarm110")},
22415 {"mstrongarm1100", &legacy_cpu, ARM_ARCH_V4,
22416 N_("use -mcpu=strongarm1100")},
22417 {"mstrongarm1110", &legacy_cpu, ARM_ARCH_V4,
22418 N_("use -mcpu=strongarm1110")},
22419 {"mxscale", &legacy_cpu, ARM_ARCH_XSCALE, N_("use -mcpu=xscale")},
22420 {"miwmmxt", &legacy_cpu, ARM_ARCH_IWMMXT, N_("use -mcpu=iwmmxt")},
22421 {"mall", &legacy_cpu, ARM_ANY, N_("use -mcpu=all")},
22422
22423 /* Architecture variants -- don't add any more to this list either. */
22424 {"mv2", &legacy_cpu, ARM_ARCH_V2, N_("use -march=armv2")},
22425 {"marmv2", &legacy_cpu, ARM_ARCH_V2, N_("use -march=armv2")},
22426 {"mv2a", &legacy_cpu, ARM_ARCH_V2S, N_("use -march=armv2a")},
22427 {"marmv2a", &legacy_cpu, ARM_ARCH_V2S, N_("use -march=armv2a")},
22428 {"mv3", &legacy_cpu, ARM_ARCH_V3, N_("use -march=armv3")},
22429 {"marmv3", &legacy_cpu, ARM_ARCH_V3, N_("use -march=armv3")},
22430 {"mv3m", &legacy_cpu, ARM_ARCH_V3M, N_("use -march=armv3m")},
22431 {"marmv3m", &legacy_cpu, ARM_ARCH_V3M, N_("use -march=armv3m")},
22432 {"mv4", &legacy_cpu, ARM_ARCH_V4, N_("use -march=armv4")},
22433 {"marmv4", &legacy_cpu, ARM_ARCH_V4, N_("use -march=armv4")},
22434 {"mv4t", &legacy_cpu, ARM_ARCH_V4T, N_("use -march=armv4t")},
22435 {"marmv4t", &legacy_cpu, ARM_ARCH_V4T, N_("use -march=armv4t")},
22436 {"mv5", &legacy_cpu, ARM_ARCH_V5, N_("use -march=armv5")},
22437 {"marmv5", &legacy_cpu, ARM_ARCH_V5, N_("use -march=armv5")},
22438 {"mv5t", &legacy_cpu, ARM_ARCH_V5T, N_("use -march=armv5t")},
22439 {"marmv5t", &legacy_cpu, ARM_ARCH_V5T, N_("use -march=armv5t")},
22440 {"mv5e", &legacy_cpu, ARM_ARCH_V5TE, N_("use -march=armv5te")},
22441 {"marmv5e", &legacy_cpu, ARM_ARCH_V5TE, N_("use -march=armv5te")},
22442
22443 /* Floating point variants -- don't add any more to this list either. */
22444 {"mfpe-old", &legacy_fpu, FPU_ARCH_FPE, N_("use -mfpu=fpe")},
22445 {"mfpa10", &legacy_fpu, FPU_ARCH_FPA, N_("use -mfpu=fpa10")},
22446 {"mfpa11", &legacy_fpu, FPU_ARCH_FPA, N_("use -mfpu=fpa11")},
22447 {"mno-fpu", &legacy_fpu, ARM_ARCH_NONE,
22448 N_("use either -mfpu=softfpa or -mfpu=softvfp")},
22449
22450 {NULL, NULL, ARM_ARCH_NONE, NULL}
22451 };
22452
22453 struct arm_cpu_option_table
22454 {
22455 char *name;
22456 const arm_feature_set value;
22457 /* For some CPUs we assume an FPU unless the user explicitly sets
22458 -mfpu=... */
22459 const arm_feature_set default_fpu;
22460 /* The canonical name of the CPU, or NULL to use NAME converted to upper
22461 case. */
22462 const char *canonical_name;
22463 };
22464
22465 /* This list should, at a minimum, contain all the cpu names
22466 recognized by GCC. */
22467 static const struct arm_cpu_option_table arm_cpus[] =
22468 {
22469 {"all", ARM_ANY, FPU_ARCH_FPA, NULL},
22470 {"arm1", ARM_ARCH_V1, FPU_ARCH_FPA, NULL},
22471 {"arm2", ARM_ARCH_V2, FPU_ARCH_FPA, NULL},
22472 {"arm250", ARM_ARCH_V2S, FPU_ARCH_FPA, NULL},
22473 {"arm3", ARM_ARCH_V2S, FPU_ARCH_FPA, NULL},
22474 {"arm6", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22475 {"arm60", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22476 {"arm600", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22477 {"arm610", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22478 {"arm620", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22479 {"arm7", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22480 {"arm7m", ARM_ARCH_V3M, FPU_ARCH_FPA, NULL},
22481 {"arm7d", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22482 {"arm7dm", ARM_ARCH_V3M, FPU_ARCH_FPA, NULL},
22483 {"arm7di", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22484 {"arm7dmi", ARM_ARCH_V3M, FPU_ARCH_FPA, NULL},
22485 {"arm70", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22486 {"arm700", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22487 {"arm700i", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22488 {"arm710", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22489 {"arm710t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
22490 {"arm720", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22491 {"arm720t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
22492 {"arm740t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
22493 {"arm710c", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22494 {"arm7100", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22495 {"arm7500", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22496 {"arm7500fe", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22497 {"arm7t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
22498 {"arm7tdmi", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
22499 {"arm7tdmi-s", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
22500 {"arm8", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
22501 {"arm810", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
22502 {"strongarm", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
22503 {"strongarm1", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
22504 {"strongarm110", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
22505 {"strongarm1100", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
22506 {"strongarm1110", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
22507 {"arm9", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
22508 {"arm920", ARM_ARCH_V4T, FPU_ARCH_FPA, "ARM920T"},
22509 {"arm920t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
22510 {"arm922t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
22511 {"arm940t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
22512 {"arm9tdmi", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
22513 {"fa526", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
22514 {"fa626", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
22515 /* For V5 or later processors we default to using VFP; but the user
22516 should really set the FPU type explicitly. */
22517 {"arm9e-r0", ARM_ARCH_V5TExP, FPU_ARCH_VFP_V2, NULL},
22518 {"arm9e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
22519 {"arm926ej", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, "ARM926EJ-S"},
22520 {"arm926ejs", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, "ARM926EJ-S"},
22521 {"arm926ej-s", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, NULL},
22522 {"arm946e-r0", ARM_ARCH_V5TExP, FPU_ARCH_VFP_V2, NULL},
22523 {"arm946e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, "ARM946E-S"},
22524 {"arm946e-s", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
22525 {"arm966e-r0", ARM_ARCH_V5TExP, FPU_ARCH_VFP_V2, NULL},
22526 {"arm966e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, "ARM966E-S"},
22527 {"arm966e-s", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
22528 {"arm968e-s", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
22529 {"arm10t", ARM_ARCH_V5T, FPU_ARCH_VFP_V1, NULL},
22530 {"arm10tdmi", ARM_ARCH_V5T, FPU_ARCH_VFP_V1, NULL},
22531 {"arm10e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
22532 {"arm1020", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, "ARM1020E"},
22533 {"arm1020t", ARM_ARCH_V5T, FPU_ARCH_VFP_V1, NULL},
22534 {"arm1020e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
22535 {"arm1022e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
22536 {"arm1026ejs", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, "ARM1026EJ-S"},
22537 {"arm1026ej-s", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, NULL},
22538 {"fa626te", ARM_ARCH_V5TE, FPU_NONE, NULL},
22539 {"fa726te", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
22540 {"arm1136js", ARM_ARCH_V6, FPU_NONE, "ARM1136J-S"},
22541 {"arm1136j-s", ARM_ARCH_V6, FPU_NONE, NULL},
22542 {"arm1136jfs", ARM_ARCH_V6, FPU_ARCH_VFP_V2, "ARM1136JF-S"},
22543 {"arm1136jf-s", ARM_ARCH_V6, FPU_ARCH_VFP_V2, NULL},
22544 {"mpcore", ARM_ARCH_V6K, FPU_ARCH_VFP_V2, "MPCore"},
22545 {"mpcorenovfp", ARM_ARCH_V6K, FPU_NONE, "MPCore"},
22546 {"arm1156t2-s", ARM_ARCH_V6T2, FPU_NONE, NULL},
22547 {"arm1156t2f-s", ARM_ARCH_V6T2, FPU_ARCH_VFP_V2, NULL},
22548 {"arm1176jz-s", ARM_ARCH_V6ZK, FPU_NONE, NULL},
22549 {"arm1176jzf-s", ARM_ARCH_V6ZK, FPU_ARCH_VFP_V2, NULL},
22550 {"cortex-a5", ARM_ARCH_V7A_MP_SEC,
22551 FPU_NONE, "Cortex-A5"},
22552 {"cortex-a8", ARM_ARCH_V7A_SEC,
22553 ARM_FEATURE (0, FPU_VFP_V3
22554 | FPU_NEON_EXT_V1),
22555 "Cortex-A8"},
22556 {"cortex-a9", ARM_ARCH_V7A_MP_SEC,
22557 ARM_FEATURE (0, FPU_VFP_V3
22558 | FPU_NEON_EXT_V1),
22559 "Cortex-A9"},
22560 {"cortex-a15", ARM_ARCH_V7A_IDIV_MP_SEC_VIRT,
22561 FPU_ARCH_NEON_VFP_V4,
22562 "Cortex-A15"},
22563 {"cortex-r4", ARM_ARCH_V7R, FPU_NONE, "Cortex-R4"},
22564 {"cortex-r4f", ARM_ARCH_V7R, FPU_ARCH_VFP_V3D16,
22565 "Cortex-R4F"},
22566 {"cortex-m4", ARM_ARCH_V7EM, FPU_NONE, "Cortex-M4"},
22567 {"cortex-m3", ARM_ARCH_V7M, FPU_NONE, "Cortex-M3"},
22568 {"cortex-m1", ARM_ARCH_V6SM, FPU_NONE, "Cortex-M1"},
22569 {"cortex-m0", ARM_ARCH_V6SM, FPU_NONE, "Cortex-M0"},
22570 /* ??? XSCALE is really an architecture. */
22571 {"xscale", ARM_ARCH_XSCALE, FPU_ARCH_VFP_V2, NULL},
22572 /* ??? iwmmxt is not a processor. */
22573 {"iwmmxt", ARM_ARCH_IWMMXT, FPU_ARCH_VFP_V2, NULL},
22574 {"iwmmxt2", ARM_ARCH_IWMMXT2,FPU_ARCH_VFP_V2, NULL},
22575 {"i80200", ARM_ARCH_XSCALE, FPU_ARCH_VFP_V2, NULL},
22576 /* Maverick */
22577 {"ep9312", ARM_FEATURE (ARM_AEXT_V4T, ARM_CEXT_MAVERICK), FPU_ARCH_MAVERICK, "ARM920T"},
22578 {NULL, ARM_ARCH_NONE, ARM_ARCH_NONE, NULL}
22579 };
22580
22581 struct arm_arch_option_table
22582 {
22583 char *name;
22584 const arm_feature_set value;
22585 const arm_feature_set default_fpu;
22586 };
22587
22588 /* This list should, at a minimum, contain all the architecture names
22589 recognized by GCC. */
22590 static const struct arm_arch_option_table arm_archs[] =
22591 {
22592 {"all", ARM_ANY, FPU_ARCH_FPA},
22593 {"armv1", ARM_ARCH_V1, FPU_ARCH_FPA},
22594 {"armv2", ARM_ARCH_V2, FPU_ARCH_FPA},
22595 {"armv2a", ARM_ARCH_V2S, FPU_ARCH_FPA},
22596 {"armv2s", ARM_ARCH_V2S, FPU_ARCH_FPA},
22597 {"armv3", ARM_ARCH_V3, FPU_ARCH_FPA},
22598 {"armv3m", ARM_ARCH_V3M, FPU_ARCH_FPA},
22599 {"armv4", ARM_ARCH_V4, FPU_ARCH_FPA},
22600 {"armv4xm", ARM_ARCH_V4xM, FPU_ARCH_FPA},
22601 {"armv4t", ARM_ARCH_V4T, FPU_ARCH_FPA},
22602 {"armv4txm", ARM_ARCH_V4TxM, FPU_ARCH_FPA},
22603 {"armv5", ARM_ARCH_V5, FPU_ARCH_VFP},
22604 {"armv5t", ARM_ARCH_V5T, FPU_ARCH_VFP},
22605 {"armv5txm", ARM_ARCH_V5TxM, FPU_ARCH_VFP},
22606 {"armv5te", ARM_ARCH_V5TE, FPU_ARCH_VFP},
22607 {"armv5texp", ARM_ARCH_V5TExP, FPU_ARCH_VFP},
22608 {"armv5tej", ARM_ARCH_V5TEJ, FPU_ARCH_VFP},
22609 {"armv6", ARM_ARCH_V6, FPU_ARCH_VFP},
22610 {"armv6j", ARM_ARCH_V6, FPU_ARCH_VFP},
22611 {"armv6k", ARM_ARCH_V6K, FPU_ARCH_VFP},
22612 {"armv6z", ARM_ARCH_V6Z, FPU_ARCH_VFP},
22613 {"armv6zk", ARM_ARCH_V6ZK, FPU_ARCH_VFP},
22614 {"armv6t2", ARM_ARCH_V6T2, FPU_ARCH_VFP},
22615 {"armv6kt2", ARM_ARCH_V6KT2, FPU_ARCH_VFP},
22616 {"armv6zt2", ARM_ARCH_V6ZT2, FPU_ARCH_VFP},
22617 {"armv6zkt2", ARM_ARCH_V6ZKT2, FPU_ARCH_VFP},
22618 {"armv6-m", ARM_ARCH_V6M, FPU_ARCH_VFP},
22619 {"armv6s-m", ARM_ARCH_V6SM, FPU_ARCH_VFP},
22620 {"armv7", ARM_ARCH_V7, FPU_ARCH_VFP},
22621 /* The official spelling of the ARMv7 profile variants is the dashed form.
22622 Accept the non-dashed form for compatibility with old toolchains. */
22623 {"armv7a", ARM_ARCH_V7A, FPU_ARCH_VFP},
22624 {"armv7r", ARM_ARCH_V7R, FPU_ARCH_VFP},
22625 {"armv7m", ARM_ARCH_V7M, FPU_ARCH_VFP},
22626 {"armv7-a", ARM_ARCH_V7A, FPU_ARCH_VFP},
22627 {"armv7-r", ARM_ARCH_V7R, FPU_ARCH_VFP},
22628 {"armv7-m", ARM_ARCH_V7M, FPU_ARCH_VFP},
22629 {"armv7e-m", ARM_ARCH_V7EM, FPU_ARCH_VFP},
22630 {"xscale", ARM_ARCH_XSCALE, FPU_ARCH_VFP},
22631 {"iwmmxt", ARM_ARCH_IWMMXT, FPU_ARCH_VFP},
22632 {"iwmmxt2", ARM_ARCH_IWMMXT2,FPU_ARCH_VFP},
22633 {NULL, ARM_ARCH_NONE, ARM_ARCH_NONE}
22634 };
22635
22636 /* ISA extensions in the co-processor and main instruction set space. */
22637 struct arm_option_extension_value_table
22638 {
22639 char *name;
22640 const arm_feature_set value;
22641 const arm_feature_set allowed_archs;
22642 };
22643
22644 /* The following table must be in alphabetical order with a NULL last entry.
22645 */
22646 static const struct arm_option_extension_value_table arm_extensions[] =
22647 {
22648 {"idiv", ARM_FEATURE (ARM_EXT_ADIV | ARM_EXT_DIV, 0),
22649 ARM_FEATURE (ARM_EXT_V7A, 0)},
22650 {"iwmmxt", ARM_FEATURE (0, ARM_CEXT_IWMMXT), ARM_ANY},
22651 {"iwmmxt2", ARM_FEATURE (0, ARM_CEXT_IWMMXT2), ARM_ANY},
22652 {"maverick", ARM_FEATURE (0, ARM_CEXT_MAVERICK), ARM_ANY},
22653 {"mp", ARM_FEATURE (ARM_EXT_MP, 0),
22654 ARM_FEATURE (ARM_EXT_V7A | ARM_EXT_V7R, 0)},
22655 {"os", ARM_FEATURE (ARM_EXT_OS, 0),
22656 ARM_FEATURE (ARM_EXT_V6M, 0)},
22657 {"sec", ARM_FEATURE (ARM_EXT_SEC, 0),
22658 ARM_FEATURE (ARM_EXT_V6K | ARM_EXT_V7A, 0)},
22659 {"virt", ARM_FEATURE (ARM_EXT_VIRT | ARM_EXT_ADIV | ARM_EXT_DIV, 0),
22660 ARM_FEATURE (ARM_EXT_V7A, 0)},
22661 {"xscale", ARM_FEATURE (0, ARM_CEXT_XSCALE), ARM_ANY},
22662 {NULL, ARM_ARCH_NONE, ARM_ARCH_NONE}
22663 };
22664
22665 /* ISA floating-point and Advanced SIMD extensions. */
22666 struct arm_option_fpu_value_table
22667 {
22668 char *name;
22669 const arm_feature_set value;
22670 };
22671
22672 /* This list should, at a minimum, contain all the fpu names
22673 recognized by GCC. */
22674 static const struct arm_option_fpu_value_table arm_fpus[] =
22675 {
22676 {"softfpa", FPU_NONE},
22677 {"fpe", FPU_ARCH_FPE},
22678 {"fpe2", FPU_ARCH_FPE},
22679 {"fpe3", FPU_ARCH_FPA}, /* Third release supports LFM/SFM. */
22680 {"fpa", FPU_ARCH_FPA},
22681 {"fpa10", FPU_ARCH_FPA},
22682 {"fpa11", FPU_ARCH_FPA},
22683 {"arm7500fe", FPU_ARCH_FPA},
22684 {"softvfp", FPU_ARCH_VFP},
22685 {"softvfp+vfp", FPU_ARCH_VFP_V2},
22686 {"vfp", FPU_ARCH_VFP_V2},
22687 {"vfp9", FPU_ARCH_VFP_V2},
22688 {"vfp3", FPU_ARCH_VFP_V3}, /* For backwards compatbility. */
22689 {"vfp10", FPU_ARCH_VFP_V2},
22690 {"vfp10-r0", FPU_ARCH_VFP_V1},
22691 {"vfpxd", FPU_ARCH_VFP_V1xD},
22692 {"vfpv2", FPU_ARCH_VFP_V2},
22693 {"vfpv3", FPU_ARCH_VFP_V3},
22694 {"vfpv3-fp16", FPU_ARCH_VFP_V3_FP16},
22695 {"vfpv3-d16", FPU_ARCH_VFP_V3D16},
22696 {"vfpv3-d16-fp16", FPU_ARCH_VFP_V3D16_FP16},
22697 {"vfpv3xd", FPU_ARCH_VFP_V3xD},
22698 {"vfpv3xd-fp16", FPU_ARCH_VFP_V3xD_FP16},
22699 {"arm1020t", FPU_ARCH_VFP_V1},
22700 {"arm1020e", FPU_ARCH_VFP_V2},
22701 {"arm1136jfs", FPU_ARCH_VFP_V2},
22702 {"arm1136jf-s", FPU_ARCH_VFP_V2},
22703 {"maverick", FPU_ARCH_MAVERICK},
22704 {"neon", FPU_ARCH_VFP_V3_PLUS_NEON_V1},
22705 {"neon-fp16", FPU_ARCH_NEON_FP16},
22706 {"vfpv4", FPU_ARCH_VFP_V4},
22707 {"vfpv4-d16", FPU_ARCH_VFP_V4D16},
22708 {"fpv4-sp-d16", FPU_ARCH_VFP_V4_SP_D16},
22709 {"neon-vfpv4", FPU_ARCH_NEON_VFP_V4},
22710 {NULL, ARM_ARCH_NONE}
22711 };
22712
22713 struct arm_option_value_table
22714 {
22715 char *name;
22716 long value;
22717 };
22718
22719 static const struct arm_option_value_table arm_float_abis[] =
22720 {
22721 {"hard", ARM_FLOAT_ABI_HARD},
22722 {"softfp", ARM_FLOAT_ABI_SOFTFP},
22723 {"soft", ARM_FLOAT_ABI_SOFT},
22724 {NULL, 0}
22725 };
22726
22727 #ifdef OBJ_ELF
22728 /* We only know how to output GNU and ver 4/5 (AAELF) formats. */
22729 static const struct arm_option_value_table arm_eabis[] =
22730 {
22731 {"gnu", EF_ARM_EABI_UNKNOWN},
22732 {"4", EF_ARM_EABI_VER4},
22733 {"5", EF_ARM_EABI_VER5},
22734 {NULL, 0}
22735 };
22736 #endif
22737
22738 struct arm_long_option_table
22739 {
22740 char * option; /* Substring to match. */
22741 char * help; /* Help information. */
22742 int (* func) (char * subopt); /* Function to decode sub-option. */
22743 char * deprecated; /* If non-null, print this message. */
22744 };
22745
22746 static bfd_boolean
22747 arm_parse_extension (char * str, const arm_feature_set **opt_p)
22748 {
22749 arm_feature_set *ext_set = (arm_feature_set *)
22750 xmalloc (sizeof (arm_feature_set));
22751
22752 /* We insist on extensions being specified in alphabetical order, and with
22753 extensions being added before being removed. We achieve this by having
22754 the global ARM_EXTENSIONS table in alphabetical order, and using the
22755 ADDING_VALUE variable to indicate whether we are adding an extension (1)
22756 or removing it (0) and only allowing it to change in the order
22757 -1 -> 1 -> 0. */
22758 const struct arm_option_extension_value_table * opt = NULL;
22759 int adding_value = -1;
22760
22761 /* Copy the feature set, so that we can modify it. */
22762 *ext_set = **opt_p;
22763 *opt_p = ext_set;
22764
22765 while (str != NULL && *str != 0)
22766 {
22767 char * ext;
22768 size_t optlen;
22769
22770 if (*str != '+')
22771 {
22772 as_bad (_("invalid architectural extension"));
22773 return FALSE;
22774 }
22775
22776 str++;
22777 ext = strchr (str, '+');
22778
22779 if (ext != NULL)
22780 optlen = ext - str;
22781 else
22782 optlen = strlen (str);
22783
22784 if (optlen >= 2
22785 && strncmp (str, "no", 2) == 0)
22786 {
22787 if (adding_value != 0)
22788 {
22789 adding_value = 0;
22790 opt = arm_extensions;
22791 }
22792
22793 optlen -= 2;
22794 str += 2;
22795 }
22796 else if (optlen > 0)
22797 {
22798 if (adding_value == -1)
22799 {
22800 adding_value = 1;
22801 opt = arm_extensions;
22802 }
22803 else if (adding_value != 1)
22804 {
22805 as_bad (_("must specify extensions to add before specifying "
22806 "those to remove"));
22807 return FALSE;
22808 }
22809 }
22810
22811 if (optlen == 0)
22812 {
22813 as_bad (_("missing architectural extension"));
22814 return FALSE;
22815 }
22816
22817 gas_assert (adding_value != -1);
22818 gas_assert (opt != NULL);
22819
22820 /* Scan over the options table trying to find an exact match. */
22821 for (; opt->name != NULL; opt++)
22822 if (strncmp (opt->name, str, optlen) == 0
22823 && strlen (opt->name) == optlen)
22824 {
22825 /* Check we can apply the extension to this architecture. */
22826 if (!ARM_CPU_HAS_FEATURE (*ext_set, opt->allowed_archs))
22827 {
22828 as_bad (_("extension does not apply to the base architecture"));
22829 return FALSE;
22830 }
22831
22832 /* Add or remove the extension. */
22833 if (adding_value)
22834 ARM_MERGE_FEATURE_SETS (*ext_set, *ext_set, opt->value);
22835 else
22836 ARM_CLEAR_FEATURE (*ext_set, *ext_set, opt->value);
22837
22838 break;
22839 }
22840
22841 if (opt->name == NULL)
22842 {
22843 /* Did we fail to find an extension because it wasn't specified in
22844 alphabetical order, or because it does not exist? */
22845
22846 for (opt = arm_extensions; opt->name != NULL; opt++)
22847 if (strncmp (opt->name, str, optlen) == 0)
22848 break;
22849
22850 if (opt->name == NULL)
22851 as_bad (_("unknown architectural extension `%s'"), str);
22852 else
22853 as_bad (_("architectural extensions must be specified in "
22854 "alphabetical order"));
22855
22856 return FALSE;
22857 }
22858 else
22859 {
22860 /* We should skip the extension we've just matched the next time
22861 round. */
22862 opt++;
22863 }
22864
22865 str = ext;
22866 };
22867
22868 return TRUE;
22869 }
22870
22871 static bfd_boolean
22872 arm_parse_cpu (char * str)
22873 {
22874 const struct arm_cpu_option_table * opt;
22875 char * ext = strchr (str, '+');
22876 int optlen;
22877
22878 if (ext != NULL)
22879 optlen = ext - str;
22880 else
22881 optlen = strlen (str);
22882
22883 if (optlen == 0)
22884 {
22885 as_bad (_("missing cpu name `%s'"), str);
22886 return FALSE;
22887 }
22888
22889 for (opt = arm_cpus; opt->name != NULL; opt++)
22890 if (strncmp (opt->name, str, optlen) == 0)
22891 {
22892 mcpu_cpu_opt = &opt->value;
22893 mcpu_fpu_opt = &opt->default_fpu;
22894 if (opt->canonical_name)
22895 strcpy (selected_cpu_name, opt->canonical_name);
22896 else
22897 {
22898 int i;
22899
22900 for (i = 0; i < optlen; i++)
22901 selected_cpu_name[i] = TOUPPER (opt->name[i]);
22902 selected_cpu_name[i] = 0;
22903 }
22904
22905 if (ext != NULL)
22906 return arm_parse_extension (ext, &mcpu_cpu_opt);
22907
22908 return TRUE;
22909 }
22910
22911 as_bad (_("unknown cpu `%s'"), str);
22912 return FALSE;
22913 }
22914
22915 static bfd_boolean
22916 arm_parse_arch (char * str)
22917 {
22918 const struct arm_arch_option_table *opt;
22919 char *ext = strchr (str, '+');
22920 int optlen;
22921
22922 if (ext != NULL)
22923 optlen = ext - str;
22924 else
22925 optlen = strlen (str);
22926
22927 if (optlen == 0)
22928 {
22929 as_bad (_("missing architecture name `%s'"), str);
22930 return FALSE;
22931 }
22932
22933 for (opt = arm_archs; opt->name != NULL; opt++)
22934 if (strncmp (opt->name, str, optlen) == 0)
22935 {
22936 march_cpu_opt = &opt->value;
22937 march_fpu_opt = &opt->default_fpu;
22938 strcpy (selected_cpu_name, opt->name);
22939
22940 if (ext != NULL)
22941 return arm_parse_extension (ext, &march_cpu_opt);
22942
22943 return TRUE;
22944 }
22945
22946 as_bad (_("unknown architecture `%s'\n"), str);
22947 return FALSE;
22948 }
22949
22950 static bfd_boolean
22951 arm_parse_fpu (char * str)
22952 {
22953 const struct arm_option_fpu_value_table * opt;
22954
22955 for (opt = arm_fpus; opt->name != NULL; opt++)
22956 if (streq (opt->name, str))
22957 {
22958 mfpu_opt = &opt->value;
22959 return TRUE;
22960 }
22961
22962 as_bad (_("unknown floating point format `%s'\n"), str);
22963 return FALSE;
22964 }
22965
22966 static bfd_boolean
22967 arm_parse_float_abi (char * str)
22968 {
22969 const struct arm_option_value_table * opt;
22970
22971 for (opt = arm_float_abis; opt->name != NULL; opt++)
22972 if (streq (opt->name, str))
22973 {
22974 mfloat_abi_opt = opt->value;
22975 return TRUE;
22976 }
22977
22978 as_bad (_("unknown floating point abi `%s'\n"), str);
22979 return FALSE;
22980 }
22981
22982 #ifdef OBJ_ELF
22983 static bfd_boolean
22984 arm_parse_eabi (char * str)
22985 {
22986 const struct arm_option_value_table *opt;
22987
22988 for (opt = arm_eabis; opt->name != NULL; opt++)
22989 if (streq (opt->name, str))
22990 {
22991 meabi_flags = opt->value;
22992 return TRUE;
22993 }
22994 as_bad (_("unknown EABI `%s'\n"), str);
22995 return FALSE;
22996 }
22997 #endif
22998
22999 static bfd_boolean
23000 arm_parse_it_mode (char * str)
23001 {
23002 bfd_boolean ret = TRUE;
23003
23004 if (streq ("arm", str))
23005 implicit_it_mode = IMPLICIT_IT_MODE_ARM;
23006 else if (streq ("thumb", str))
23007 implicit_it_mode = IMPLICIT_IT_MODE_THUMB;
23008 else if (streq ("always", str))
23009 implicit_it_mode = IMPLICIT_IT_MODE_ALWAYS;
23010 else if (streq ("never", str))
23011 implicit_it_mode = IMPLICIT_IT_MODE_NEVER;
23012 else
23013 {
23014 as_bad (_("unknown implicit IT mode `%s', should be "\
23015 "arm, thumb, always, or never."), str);
23016 ret = FALSE;
23017 }
23018
23019 return ret;
23020 }
23021
23022 struct arm_long_option_table arm_long_opts[] =
23023 {
23024 {"mcpu=", N_("<cpu name>\t assemble for CPU <cpu name>"),
23025 arm_parse_cpu, NULL},
23026 {"march=", N_("<arch name>\t assemble for architecture <arch name>"),
23027 arm_parse_arch, NULL},
23028 {"mfpu=", N_("<fpu name>\t assemble for FPU architecture <fpu name>"),
23029 arm_parse_fpu, NULL},
23030 {"mfloat-abi=", N_("<abi>\t assemble for floating point ABI <abi>"),
23031 arm_parse_float_abi, NULL},
23032 #ifdef OBJ_ELF
23033 {"meabi=", N_("<ver>\t\t assemble for eabi version <ver>"),
23034 arm_parse_eabi, NULL},
23035 #endif
23036 {"mimplicit-it=", N_("<mode>\t controls implicit insertion of IT instructions"),
23037 arm_parse_it_mode, NULL},
23038 {NULL, NULL, 0, NULL}
23039 };
23040
23041 int
23042 md_parse_option (int c, char * arg)
23043 {
23044 struct arm_option_table *opt;
23045 const struct arm_legacy_option_table *fopt;
23046 struct arm_long_option_table *lopt;
23047
23048 switch (c)
23049 {
23050 #ifdef OPTION_EB
23051 case OPTION_EB:
23052 target_big_endian = 1;
23053 break;
23054 #endif
23055
23056 #ifdef OPTION_EL
23057 case OPTION_EL:
23058 target_big_endian = 0;
23059 break;
23060 #endif
23061
23062 case OPTION_FIX_V4BX:
23063 fix_v4bx = TRUE;
23064 break;
23065
23066 case 'a':
23067 /* Listing option. Just ignore these, we don't support additional
23068 ones. */
23069 return 0;
23070
23071 default:
23072 for (opt = arm_opts; opt->option != NULL; opt++)
23073 {
23074 if (c == opt->option[0]
23075 && ((arg == NULL && opt->option[1] == 0)
23076 || streq (arg, opt->option + 1)))
23077 {
23078 /* If the option is deprecated, tell the user. */
23079 if (warn_on_deprecated && opt->deprecated != NULL)
23080 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
23081 arg ? arg : "", _(opt->deprecated));
23082
23083 if (opt->var != NULL)
23084 *opt->var = opt->value;
23085
23086 return 1;
23087 }
23088 }
23089
23090 for (fopt = arm_legacy_opts; fopt->option != NULL; fopt++)
23091 {
23092 if (c == fopt->option[0]
23093 && ((arg == NULL && fopt->option[1] == 0)
23094 || streq (arg, fopt->option + 1)))
23095 {
23096 /* If the option is deprecated, tell the user. */
23097 if (warn_on_deprecated && fopt->deprecated != NULL)
23098 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
23099 arg ? arg : "", _(fopt->deprecated));
23100
23101 if (fopt->var != NULL)
23102 *fopt->var = &fopt->value;
23103
23104 return 1;
23105 }
23106 }
23107
23108 for (lopt = arm_long_opts; lopt->option != NULL; lopt++)
23109 {
23110 /* These options are expected to have an argument. */
23111 if (c == lopt->option[0]
23112 && arg != NULL
23113 && strncmp (arg, lopt->option + 1,
23114 strlen (lopt->option + 1)) == 0)
23115 {
23116 /* If the option is deprecated, tell the user. */
23117 if (warn_on_deprecated && lopt->deprecated != NULL)
23118 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c, arg,
23119 _(lopt->deprecated));
23120
23121 /* Call the sup-option parser. */
23122 return lopt->func (arg + strlen (lopt->option) - 1);
23123 }
23124 }
23125
23126 return 0;
23127 }
23128
23129 return 1;
23130 }
23131
23132 void
23133 md_show_usage (FILE * fp)
23134 {
23135 struct arm_option_table *opt;
23136 struct arm_long_option_table *lopt;
23137
23138 fprintf (fp, _(" ARM-specific assembler options:\n"));
23139
23140 for (opt = arm_opts; opt->option != NULL; opt++)
23141 if (opt->help != NULL)
23142 fprintf (fp, " -%-23s%s\n", opt->option, _(opt->help));
23143
23144 for (lopt = arm_long_opts; lopt->option != NULL; lopt++)
23145 if (lopt->help != NULL)
23146 fprintf (fp, " -%s%s\n", lopt->option, _(lopt->help));
23147
23148 #ifdef OPTION_EB
23149 fprintf (fp, _("\
23150 -EB assemble code for a big-endian cpu\n"));
23151 #endif
23152
23153 #ifdef OPTION_EL
23154 fprintf (fp, _("\
23155 -EL assemble code for a little-endian cpu\n"));
23156 #endif
23157
23158 fprintf (fp, _("\
23159 --fix-v4bx Allow BX in ARMv4 code\n"));
23160 }
23161
23162
23163 #ifdef OBJ_ELF
23164 typedef struct
23165 {
23166 int val;
23167 arm_feature_set flags;
23168 } cpu_arch_ver_table;
23169
23170 /* Mapping from CPU features to EABI CPU arch values. Table must be sorted
23171 least features first. */
23172 static const cpu_arch_ver_table cpu_arch_ver[] =
23173 {
23174 {1, ARM_ARCH_V4},
23175 {2, ARM_ARCH_V4T},
23176 {3, ARM_ARCH_V5},
23177 {3, ARM_ARCH_V5T},
23178 {4, ARM_ARCH_V5TE},
23179 {5, ARM_ARCH_V5TEJ},
23180 {6, ARM_ARCH_V6},
23181 {9, ARM_ARCH_V6K},
23182 {7, ARM_ARCH_V6Z},
23183 {11, ARM_ARCH_V6M},
23184 {12, ARM_ARCH_V6SM},
23185 {8, ARM_ARCH_V6T2},
23186 {10, ARM_ARCH_V7A},
23187 {10, ARM_ARCH_V7R},
23188 {10, ARM_ARCH_V7M},
23189 {0, ARM_ARCH_NONE}
23190 };
23191
23192 /* Set an attribute if it has not already been set by the user. */
23193 static void
23194 aeabi_set_attribute_int (int tag, int value)
23195 {
23196 if (tag < 1
23197 || tag >= NUM_KNOWN_OBJ_ATTRIBUTES
23198 || !attributes_set_explicitly[tag])
23199 bfd_elf_add_proc_attr_int (stdoutput, tag, value);
23200 }
23201
23202 static void
23203 aeabi_set_attribute_string (int tag, const char *value)
23204 {
23205 if (tag < 1
23206 || tag >= NUM_KNOWN_OBJ_ATTRIBUTES
23207 || !attributes_set_explicitly[tag])
23208 bfd_elf_add_proc_attr_string (stdoutput, tag, value);
23209 }
23210
23211 /* Set the public EABI object attributes. */
23212 static void
23213 aeabi_set_public_attributes (void)
23214 {
23215 int arch;
23216 int virt_sec = 0;
23217 arm_feature_set flags;
23218 arm_feature_set tmp;
23219 const cpu_arch_ver_table *p;
23220
23221 /* Choose the architecture based on the capabilities of the requested cpu
23222 (if any) and/or the instructions actually used. */
23223 ARM_MERGE_FEATURE_SETS (flags, arm_arch_used, thumb_arch_used);
23224 ARM_MERGE_FEATURE_SETS (flags, flags, *mfpu_opt);
23225 ARM_MERGE_FEATURE_SETS (flags, flags, selected_cpu);
23226 /*Allow the user to override the reported architecture. */
23227 if (object_arch)
23228 {
23229 ARM_CLEAR_FEATURE (flags, flags, arm_arch_any);
23230 ARM_MERGE_FEATURE_SETS (flags, flags, *object_arch);
23231 }
23232
23233 tmp = flags;
23234 arch = 0;
23235 for (p = cpu_arch_ver; p->val; p++)
23236 {
23237 if (ARM_CPU_HAS_FEATURE (tmp, p->flags))
23238 {
23239 arch = p->val;
23240 ARM_CLEAR_FEATURE (tmp, tmp, p->flags);
23241 }
23242 }
23243
23244 /* The table lookup above finds the last architecture to contribute
23245 a new feature. Unfortunately, Tag13 is a subset of the union of
23246 v6T2 and v7-M, so it is never seen as contributing a new feature.
23247 We can not search for the last entry which is entirely used,
23248 because if no CPU is specified we build up only those flags
23249 actually used. Perhaps we should separate out the specified
23250 and implicit cases. Avoid taking this path for -march=all by
23251 checking for contradictory v7-A / v7-M features. */
23252 if (arch == 10
23253 && !ARM_CPU_HAS_FEATURE (flags, arm_ext_v7a)
23254 && ARM_CPU_HAS_FEATURE (flags, arm_ext_v7m)
23255 && ARM_CPU_HAS_FEATURE (flags, arm_ext_v6_dsp))
23256 arch = 13;
23257
23258 /* Tag_CPU_name. */
23259 if (selected_cpu_name[0])
23260 {
23261 char *q;
23262
23263 q = selected_cpu_name;
23264 if (strncmp (q, "armv", 4) == 0)
23265 {
23266 int i;
23267
23268 q += 4;
23269 for (i = 0; q[i]; i++)
23270 q[i] = TOUPPER (q[i]);
23271 }
23272 aeabi_set_attribute_string (Tag_CPU_name, q);
23273 }
23274
23275 /* Tag_CPU_arch. */
23276 aeabi_set_attribute_int (Tag_CPU_arch, arch);
23277
23278 /* Tag_CPU_arch_profile. */
23279 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v7a))
23280 aeabi_set_attribute_int (Tag_CPU_arch_profile, 'A');
23281 else if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v7r))
23282 aeabi_set_attribute_int (Tag_CPU_arch_profile, 'R');
23283 else if (ARM_CPU_HAS_FEATURE (flags, arm_ext_m))
23284 aeabi_set_attribute_int (Tag_CPU_arch_profile, 'M');
23285
23286 /* Tag_ARM_ISA_use. */
23287 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v1)
23288 || arch == 0)
23289 aeabi_set_attribute_int (Tag_ARM_ISA_use, 1);
23290
23291 /* Tag_THUMB_ISA_use. */
23292 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v4t)
23293 || arch == 0)
23294 aeabi_set_attribute_int (Tag_THUMB_ISA_use,
23295 ARM_CPU_HAS_FEATURE (flags, arm_arch_t2) ? 2 : 1);
23296
23297 /* Tag_VFP_arch. */
23298 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_fma))
23299 aeabi_set_attribute_int (Tag_VFP_arch,
23300 ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_d32)
23301 ? 5 : 6);
23302 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_d32))
23303 aeabi_set_attribute_int (Tag_VFP_arch, 3);
23304 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v3xd))
23305 aeabi_set_attribute_int (Tag_VFP_arch, 4);
23306 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v2))
23307 aeabi_set_attribute_int (Tag_VFP_arch, 2);
23308 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1)
23309 || ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1xd))
23310 aeabi_set_attribute_int (Tag_VFP_arch, 1);
23311
23312 /* Tag_ABI_HardFP_use. */
23313 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1xd)
23314 && !ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1))
23315 aeabi_set_attribute_int (Tag_ABI_HardFP_use, 1);
23316
23317 /* Tag_WMMX_arch. */
23318 if (ARM_CPU_HAS_FEATURE (flags, arm_cext_iwmmxt2))
23319 aeabi_set_attribute_int (Tag_WMMX_arch, 2);
23320 else if (ARM_CPU_HAS_FEATURE (flags, arm_cext_iwmmxt))
23321 aeabi_set_attribute_int (Tag_WMMX_arch, 1);
23322
23323 /* Tag_Advanced_SIMD_arch (formerly Tag_NEON_arch). */
23324 if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_v1))
23325 aeabi_set_attribute_int
23326 (Tag_Advanced_SIMD_arch, (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_fma)
23327 ? 2 : 1));
23328
23329 /* Tag_VFP_HP_extension (formerly Tag_NEON_FP16_arch). */
23330 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_fp16))
23331 aeabi_set_attribute_int (Tag_VFP_HP_extension, 1);
23332
23333 /* Tag_DIV_use. */
23334 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_adiv))
23335 aeabi_set_attribute_int (Tag_DIV_use, 2);
23336 else if (ARM_CPU_HAS_FEATURE (flags, arm_ext_div))
23337 aeabi_set_attribute_int (Tag_DIV_use, 0);
23338 else
23339 aeabi_set_attribute_int (Tag_DIV_use, 1);
23340
23341 /* Tag_MP_extension_use. */
23342 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_mp))
23343 aeabi_set_attribute_int (Tag_MPextension_use, 1);
23344
23345 /* Tag Virtualization_use. */
23346 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_sec))
23347 virt_sec |= 1;
23348 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_virt))
23349 virt_sec |= 2;
23350 if (virt_sec != 0)
23351 aeabi_set_attribute_int (Tag_Virtualization_use, virt_sec);
23352 }
23353
23354 /* Add the default contents for the .ARM.attributes section. */
23355 void
23356 arm_md_end (void)
23357 {
23358 if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
23359 return;
23360
23361 aeabi_set_public_attributes ();
23362 }
23363 #endif /* OBJ_ELF */
23364
23365
23366 /* Parse a .cpu directive. */
23367
23368 static void
23369 s_arm_cpu (int ignored ATTRIBUTE_UNUSED)
23370 {
23371 const struct arm_cpu_option_table *opt;
23372 char *name;
23373 char saved_char;
23374
23375 name = input_line_pointer;
23376 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
23377 input_line_pointer++;
23378 saved_char = *input_line_pointer;
23379 *input_line_pointer = 0;
23380
23381 /* Skip the first "all" entry. */
23382 for (opt = arm_cpus + 1; opt->name != NULL; opt++)
23383 if (streq (opt->name, name))
23384 {
23385 mcpu_cpu_opt = &opt->value;
23386 selected_cpu = opt->value;
23387 if (opt->canonical_name)
23388 strcpy (selected_cpu_name, opt->canonical_name);
23389 else
23390 {
23391 int i;
23392 for (i = 0; opt->name[i]; i++)
23393 selected_cpu_name[i] = TOUPPER (opt->name[i]);
23394 selected_cpu_name[i] = 0;
23395 }
23396 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
23397 *input_line_pointer = saved_char;
23398 demand_empty_rest_of_line ();
23399 return;
23400 }
23401 as_bad (_("unknown cpu `%s'"), name);
23402 *input_line_pointer = saved_char;
23403 ignore_rest_of_line ();
23404 }
23405
23406
23407 /* Parse a .arch directive. */
23408
23409 static void
23410 s_arm_arch (int ignored ATTRIBUTE_UNUSED)
23411 {
23412 const struct arm_arch_option_table *opt;
23413 char saved_char;
23414 char *name;
23415
23416 name = input_line_pointer;
23417 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
23418 input_line_pointer++;
23419 saved_char = *input_line_pointer;
23420 *input_line_pointer = 0;
23421
23422 /* Skip the first "all" entry. */
23423 for (opt = arm_archs + 1; opt->name != NULL; opt++)
23424 if (streq (opt->name, name))
23425 {
23426 mcpu_cpu_opt = &opt->value;
23427 selected_cpu = opt->value;
23428 strcpy (selected_cpu_name, opt->name);
23429 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
23430 *input_line_pointer = saved_char;
23431 demand_empty_rest_of_line ();
23432 return;
23433 }
23434
23435 as_bad (_("unknown architecture `%s'\n"), name);
23436 *input_line_pointer = saved_char;
23437 ignore_rest_of_line ();
23438 }
23439
23440
23441 /* Parse a .object_arch directive. */
23442
23443 static void
23444 s_arm_object_arch (int ignored ATTRIBUTE_UNUSED)
23445 {
23446 const struct arm_arch_option_table *opt;
23447 char saved_char;
23448 char *name;
23449
23450 name = input_line_pointer;
23451 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
23452 input_line_pointer++;
23453 saved_char = *input_line_pointer;
23454 *input_line_pointer = 0;
23455
23456 /* Skip the first "all" entry. */
23457 for (opt = arm_archs + 1; opt->name != NULL; opt++)
23458 if (streq (opt->name, name))
23459 {
23460 object_arch = &opt->value;
23461 *input_line_pointer = saved_char;
23462 demand_empty_rest_of_line ();
23463 return;
23464 }
23465
23466 as_bad (_("unknown architecture `%s'\n"), name);
23467 *input_line_pointer = saved_char;
23468 ignore_rest_of_line ();
23469 }
23470
23471 /* Parse a .arch_extension directive. */
23472
23473 static void
23474 s_arm_arch_extension (int ignored ATTRIBUTE_UNUSED)
23475 {
23476 const struct arm_option_extension_value_table *opt;
23477 char saved_char;
23478 char *name;
23479 int adding_value = 1;
23480
23481 name = input_line_pointer;
23482 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
23483 input_line_pointer++;
23484 saved_char = *input_line_pointer;
23485 *input_line_pointer = 0;
23486
23487 if (strlen (name) >= 2
23488 && strncmp (name, "no", 2) == 0)
23489 {
23490 adding_value = 0;
23491 name += 2;
23492 }
23493
23494 for (opt = arm_extensions; opt->name != NULL; opt++)
23495 if (streq (opt->name, name))
23496 {
23497 if (!ARM_CPU_HAS_FEATURE (*mcpu_cpu_opt, opt->allowed_archs))
23498 {
23499 as_bad (_("architectural extension `%s' is not allowed for the "
23500 "current base architecture"), name);
23501 break;
23502 }
23503
23504 if (adding_value)
23505 ARM_MERGE_FEATURE_SETS (selected_cpu, selected_cpu, opt->value);
23506 else
23507 ARM_CLEAR_FEATURE (selected_cpu, selected_cpu, opt->value);
23508
23509 mcpu_cpu_opt = &selected_cpu;
23510 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
23511 *input_line_pointer = saved_char;
23512 demand_empty_rest_of_line ();
23513 return;
23514 }
23515
23516 if (opt->name == NULL)
23517 as_bad (_("unknown architecture `%s'\n"), name);
23518
23519 *input_line_pointer = saved_char;
23520 ignore_rest_of_line ();
23521 }
23522
23523 /* Parse a .fpu directive. */
23524
23525 static void
23526 s_arm_fpu (int ignored ATTRIBUTE_UNUSED)
23527 {
23528 const struct arm_option_fpu_value_table *opt;
23529 char saved_char;
23530 char *name;
23531
23532 name = input_line_pointer;
23533 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
23534 input_line_pointer++;
23535 saved_char = *input_line_pointer;
23536 *input_line_pointer = 0;
23537
23538 for (opt = arm_fpus; opt->name != NULL; opt++)
23539 if (streq (opt->name, name))
23540 {
23541 mfpu_opt = &opt->value;
23542 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
23543 *input_line_pointer = saved_char;
23544 demand_empty_rest_of_line ();
23545 return;
23546 }
23547
23548 as_bad (_("unknown floating point format `%s'\n"), name);
23549 *input_line_pointer = saved_char;
23550 ignore_rest_of_line ();
23551 }
23552
23553 /* Copy symbol information. */
23554
23555 void
23556 arm_copy_symbol_attributes (symbolS *dest, symbolS *src)
23557 {
23558 ARM_GET_FLAG (dest) = ARM_GET_FLAG (src);
23559 }
23560
23561 #ifdef OBJ_ELF
23562 /* Given a symbolic attribute NAME, return the proper integer value.
23563 Returns -1 if the attribute is not known. */
23564
23565 int
23566 arm_convert_symbolic_attribute (const char *name)
23567 {
23568 static const struct
23569 {
23570 const char * name;
23571 const int tag;
23572 }
23573 attribute_table[] =
23574 {
23575 /* When you modify this table you should
23576 also modify the list in doc/c-arm.texi. */
23577 #define T(tag) {#tag, tag}
23578 T (Tag_CPU_raw_name),
23579 T (Tag_CPU_name),
23580 T (Tag_CPU_arch),
23581 T (Tag_CPU_arch_profile),
23582 T (Tag_ARM_ISA_use),
23583 T (Tag_THUMB_ISA_use),
23584 T (Tag_FP_arch),
23585 T (Tag_VFP_arch),
23586 T (Tag_WMMX_arch),
23587 T (Tag_Advanced_SIMD_arch),
23588 T (Tag_PCS_config),
23589 T (Tag_ABI_PCS_R9_use),
23590 T (Tag_ABI_PCS_RW_data),
23591 T (Tag_ABI_PCS_RO_data),
23592 T (Tag_ABI_PCS_GOT_use),
23593 T (Tag_ABI_PCS_wchar_t),
23594 T (Tag_ABI_FP_rounding),
23595 T (Tag_ABI_FP_denormal),
23596 T (Tag_ABI_FP_exceptions),
23597 T (Tag_ABI_FP_user_exceptions),
23598 T (Tag_ABI_FP_number_model),
23599 T (Tag_ABI_align_needed),
23600 T (Tag_ABI_align8_needed),
23601 T (Tag_ABI_align_preserved),
23602 T (Tag_ABI_align8_preserved),
23603 T (Tag_ABI_enum_size),
23604 T (Tag_ABI_HardFP_use),
23605 T (Tag_ABI_VFP_args),
23606 T (Tag_ABI_WMMX_args),
23607 T (Tag_ABI_optimization_goals),
23608 T (Tag_ABI_FP_optimization_goals),
23609 T (Tag_compatibility),
23610 T (Tag_CPU_unaligned_access),
23611 T (Tag_FP_HP_extension),
23612 T (Tag_VFP_HP_extension),
23613 T (Tag_ABI_FP_16bit_format),
23614 T (Tag_MPextension_use),
23615 T (Tag_DIV_use),
23616 T (Tag_nodefaults),
23617 T (Tag_also_compatible_with),
23618 T (Tag_conformance),
23619 T (Tag_T2EE_use),
23620 T (Tag_Virtualization_use),
23621 /* We deliberately do not include Tag_MPextension_use_legacy. */
23622 #undef T
23623 };
23624 unsigned int i;
23625
23626 if (name == NULL)
23627 return -1;
23628
23629 for (i = 0; i < ARRAY_SIZE (attribute_table); i++)
23630 if (streq (name, attribute_table[i].name))
23631 return attribute_table[i].tag;
23632
23633 return -1;
23634 }
23635
23636
23637 /* Apply sym value for relocations only in the case that
23638 they are for local symbols and you have the respective
23639 architectural feature for blx and simple switches. */
23640 int
23641 arm_apply_sym_value (struct fix * fixP)
23642 {
23643 if (fixP->fx_addsy
23644 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
23645 && !S_IS_EXTERNAL (fixP->fx_addsy))
23646 {
23647 switch (fixP->fx_r_type)
23648 {
23649 case BFD_RELOC_ARM_PCREL_BLX:
23650 case BFD_RELOC_THUMB_PCREL_BRANCH23:
23651 if (ARM_IS_FUNC (fixP->fx_addsy))
23652 return 1;
23653 break;
23654
23655 case BFD_RELOC_ARM_PCREL_CALL:
23656 case BFD_RELOC_THUMB_PCREL_BLX:
23657 if (THUMB_IS_FUNC (fixP->fx_addsy))
23658 return 1;
23659 break;
23660
23661 default:
23662 break;
23663 }
23664
23665 }
23666 return 0;
23667 }
23668 #endif /* OBJ_ELF */
This page took 3.019956 seconds and 5 git commands to generate.