2005-09-02 Paul Brook <paul@codesourcery.com>
[deliverable/binutils-gdb.git] / gas / config / tc-arm.c
1 /* tc-arm.c -- Assemble for the ARM
2 Copyright 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003,
3 2004, 2005
4 Free Software Foundation, Inc.
5 Contributed by Richard Earnshaw (rwe@pegasus.esprit.ec.org)
6 Modified by David Taylor (dtaylor@armltd.co.uk)
7 Cirrus coprocessor mods by Aldy Hernandez (aldyh@redhat.com)
8 Cirrus coprocessor fixes by Petko Manolov (petkan@nucleusys.com)
9 Cirrus coprocessor fixes by Vladimir Ivanov (vladitx@nucleusys.com)
10
11 This file is part of GAS, the GNU Assembler.
12
13 GAS is free software; you can redistribute it and/or modify
14 it under the terms of the GNU General Public License as published by
15 the Free Software Foundation; either version 2, or (at your option)
16 any later version.
17
18 GAS is distributed in the hope that it will be useful,
19 but WITHOUT ANY WARRANTY; without even the implied warranty of
20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 GNU General Public License for more details.
22
23 You should have received a copy of the GNU General Public License
24 along with GAS; see the file COPYING. If not, write to the Free
25 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
26 02110-1301, USA. */
27
28 #include <string.h>
29 #define NO_RELOC 0
30 #include "as.h"
31 #include "safe-ctype.h"
32
33 /* Need TARGET_CPU. */
34 #include "config.h"
35 #include "subsegs.h"
36 #include "obstack.h"
37 #include "symbols.h"
38 #include "listing.h"
39
40 #include "opcode/arm.h"
41
42 #ifdef OBJ_ELF
43 #include "elf/arm.h"
44 #include "dwarf2dbg.h"
45 #include "dw2gencfi.h"
46 #endif
47
48 /* XXX Set this to 1 after the next binutils release. */
49 #define WARN_DEPRECATED 0
50
51 #ifdef OBJ_ELF
52 /* Must be at least the size of the largest unwind opcode (currently two). */
53 #define ARM_OPCODE_CHUNK_SIZE 8
54
55 /* This structure holds the unwinding state. */
56
57 static struct
58 {
59 symbolS * proc_start;
60 symbolS * table_entry;
61 symbolS * personality_routine;
62 int personality_index;
63 /* The segment containing the function. */
64 segT saved_seg;
65 subsegT saved_subseg;
66 /* Opcodes generated from this function. */
67 unsigned char * opcodes;
68 int opcode_count;
69 int opcode_alloc;
70 /* The number of bytes pushed to the stack. */
71 offsetT frame_size;
72 /* We don't add stack adjustment opcodes immediately so that we can merge
73 multiple adjustments. We can also omit the final adjustment
74 when using a frame pointer. */
75 offsetT pending_offset;
76 /* These two fields are set by both unwind_movsp and unwind_setfp. They
77 hold the reg+offset to use when restoring sp from a frame pointer. */
78 offsetT fp_offset;
79 int fp_reg;
80 /* Nonzero if an unwind_setfp directive has been seen. */
81 unsigned fp_used:1;
82 /* Nonzero if the last opcode restores sp from fp_reg. */
83 unsigned sp_restored:1;
84 } unwind;
85
86 /* Bit N indicates that an R_ARM_NONE relocation has been output for
87 __aeabi_unwind_cpp_prN already if set. This enables dependencies to be
88 emitted only once per section, to save unnecessary bloat. */
89 static unsigned int marked_pr_dependency = 0;
90
91 #endif /* OBJ_ELF */
92
93 enum arm_float_abi
94 {
95 ARM_FLOAT_ABI_HARD,
96 ARM_FLOAT_ABI_SOFTFP,
97 ARM_FLOAT_ABI_SOFT
98 };
99
100 /* Types of processor to assemble for. */
101 #define ARM_1 ARM_ARCH_V1
102 #define ARM_2 ARM_ARCH_V2
103 #define ARM_3 ARM_ARCH_V2S
104 #define ARM_250 ARM_ARCH_V2S
105 #define ARM_6 ARM_ARCH_V3
106 #define ARM_7 ARM_ARCH_V3
107 #define ARM_8 ARM_ARCH_V4
108 #define ARM_9 ARM_ARCH_V4T
109 #define ARM_STRONG ARM_ARCH_V4
110 #define ARM_CPU_MASK 0x0000000f /* XXX? */
111
112 #ifndef CPU_DEFAULT
113 #if defined __XSCALE__
114 #define CPU_DEFAULT (ARM_ARCH_XSCALE)
115 #else
116 #if defined __thumb__
117 #define CPU_DEFAULT (ARM_ARCH_V5T)
118 #else
119 #define CPU_DEFAULT ARM_ANY
120 #endif
121 #endif
122 #endif
123
124 #ifndef FPU_DEFAULT
125 # ifdef TE_LINUX
126 # define FPU_DEFAULT FPU_ARCH_FPA
127 # elif defined (TE_NetBSD)
128 # ifdef OBJ_ELF
129 # define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, but VFP order. */
130 # else
131 /* Legacy a.out format. */
132 # define FPU_DEFAULT FPU_ARCH_FPA /* Soft-float, but FPA order. */
133 # endif
134 # elif defined (TE_VXWORKS)
135 # define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, VFP order. */
136 # else
137 /* For backwards compatibility, default to FPA. */
138 # define FPU_DEFAULT FPU_ARCH_FPA
139 # endif
140 #endif /* ifndef FPU_DEFAULT */
141
142 #define streq(a, b) (strcmp (a, b) == 0)
143
144 static unsigned long cpu_variant;
145
146 /* Flags stored in private area of BFD structure. */
147 static int uses_apcs_26 = FALSE;
148 static int atpcs = FALSE;
149 static int support_interwork = FALSE;
150 static int uses_apcs_float = FALSE;
151 static int pic_code = FALSE;
152
153 /* Variables that we set while parsing command-line options. Once all
154 options have been read we re-process these values to set the real
155 assembly flags. */
156 static int legacy_cpu = -1;
157 static int legacy_fpu = -1;
158
159 static int mcpu_cpu_opt = -1;
160 static int mcpu_fpu_opt = -1;
161 static int march_cpu_opt = -1;
162 static int march_fpu_opt = -1;
163 static int mfpu_opt = -1;
164 static int mfloat_abi_opt = -1;
165 #ifdef OBJ_ELF
166 # ifdef EABI_DEFAULT
167 static int meabi_flags = EABI_DEFAULT;
168 # else
169 static int meabi_flags = EF_ARM_EABI_UNKNOWN;
170 # endif
171 #endif
172
173 #ifdef OBJ_ELF
174 /* Pre-defined "_GLOBAL_OFFSET_TABLE_" */
175 symbolS * GOT_symbol;
176 #endif
177
178 /* 0: assemble for ARM,
179 1: assemble for Thumb,
180 2: assemble for Thumb even though target CPU does not support thumb
181 instructions. */
182 static int thumb_mode = 0;
183
184 /* If unified_syntax is true, we are processing the new unified
185 ARM/Thumb syntax. Important differences from the old ARM mode:
186
187 - Immediate operands do not require a # prefix.
188 - Conditional affixes always appear at the end of the
189 instruction. (For backward compatibility, those instructions
190 that formerly had them in the middle, continue to accept them
191 there.)
192 - The IT instruction may appear, and if it does is validated
193 against subsequent conditional affixes. It does not generate
194 machine code.
195
196 Important differences from the old Thumb mode:
197
198 - Immediate operands do not require a # prefix.
199 - Most of the V6T2 instructions are only available in unified mode.
200 - The .N and .W suffixes are recognized and honored (it is an error
201 if they cannot be honored).
202 - All instructions set the flags if and only if they have an 's' affix.
203 - Conditional affixes may be used. They are validated against
204 preceding IT instructions. Unlike ARM mode, you cannot use a
205 conditional affix except in the scope of an IT instruction. */
206
207 static bfd_boolean unified_syntax = FALSE;
208
209 struct arm_it
210 {
211 const char * error;
212 unsigned long instruction;
213 int size;
214 int size_req;
215 int cond;
216 struct
217 {
218 bfd_reloc_code_real_type type;
219 expressionS exp;
220 int pc_rel;
221 } reloc;
222
223 struct
224 {
225 unsigned reg;
226 signed int imm;
227 unsigned present : 1; /* Operand present. */
228 unsigned isreg : 1; /* Operand was a register. */
229 unsigned immisreg : 1; /* .imm field is a second register. */
230 unsigned hasreloc : 1; /* Operand has relocation suffix. */
231 unsigned writeback : 1; /* Operand has trailing ! */
232 unsigned preind : 1; /* Preindexed address. */
233 unsigned postind : 1; /* Postindexed address. */
234 unsigned negative : 1; /* Index register was negated. */
235 unsigned shifted : 1; /* Shift applied to operation. */
236 unsigned shift_kind : 3; /* Shift operation (enum shift_kind). */
237 } operands[6];
238 };
239
240 static struct arm_it inst;
241
242 #define NUM_FLOAT_VALS 8
243
244 const char * fp_const[] =
245 {
246 "0.0", "1.0", "2.0", "3.0", "4.0", "5.0", "0.5", "10.0", 0
247 };
248
249 /* Number of littlenums required to hold an extended precision number. */
250 #define MAX_LITTLENUMS 6
251
252 LITTLENUM_TYPE fp_values[NUM_FLOAT_VALS][MAX_LITTLENUMS];
253
254 #define FAIL (-1)
255 #define SUCCESS (0)
256
257 #define SUFF_S 1
258 #define SUFF_D 2
259 #define SUFF_E 3
260 #define SUFF_P 4
261
262 #define CP_T_X 0x00008000
263 #define CP_T_Y 0x00400000
264
265 #define CONDS_BIT 0x00100000
266 #define LOAD_BIT 0x00100000
267
268 #define DOUBLE_LOAD_FLAG 0x00000001
269
270 struct asm_cond
271 {
272 const char * template;
273 unsigned long value;
274 };
275
276 #define COND_ALWAYS 0xE
277
278 struct asm_psr
279 {
280 const char *template;
281 unsigned long field;
282 };
283
284 /* The bit that distinguishes CPSR and SPSR. */
285 #define SPSR_BIT (1 << 22)
286
287 /* The individual PSR flag bits. */
288 #define PSR_c (1 << 16)
289 #define PSR_x (1 << 17)
290 #define PSR_s (1 << 18)
291 #define PSR_f (1 << 19)
292
293 struct reloc_entry
294 {
295 char *name;
296 bfd_reloc_code_real_type reloc;
297 };
298
299 enum vfp_sp_reg_pos
300 {
301 VFP_REG_Sd, VFP_REG_Sm, VFP_REG_Sn
302 };
303
304 enum vfp_ldstm_type
305 {
306 VFP_LDSTMIA, VFP_LDSTMDB, VFP_LDSTMIAX, VFP_LDSTMDBX
307 };
308
309 /* ARM register categories. This includes coprocessor numbers and various
310 architecture extensions' registers. */
311 enum arm_reg_type
312 {
313 REG_TYPE_RN,
314 REG_TYPE_CP,
315 REG_TYPE_CN,
316 REG_TYPE_FN,
317 REG_TYPE_VFS,
318 REG_TYPE_VFD,
319 REG_TYPE_VFC,
320 REG_TYPE_MVF,
321 REG_TYPE_MVD,
322 REG_TYPE_MVFX,
323 REG_TYPE_MVDX,
324 REG_TYPE_MVAX,
325 REG_TYPE_DSPSC,
326 REG_TYPE_MMXWR,
327 REG_TYPE_MMXWC,
328 REG_TYPE_MMXWCG,
329 REG_TYPE_XSCALE,
330 };
331
332 /* Structure for a hash table entry for a register. */
333 struct reg_entry
334 {
335 const char *name;
336 unsigned char number;
337 unsigned char type;
338 unsigned char builtin;
339 };
340
341 /* Diagnostics used when we don't get a register of the expected type. */
342 const char *const reg_expected_msgs[] =
343 {
344 N_("ARM register expected"),
345 N_("bad or missing co-processor number"),
346 N_("co-processor register expected"),
347 N_("FPA register expected"),
348 N_("VFP single precision register expected"),
349 N_("VFP double precision register expected"),
350 N_("VFP system register expected"),
351 N_("Maverick MVF register expected"),
352 N_("Maverick MVD register expected"),
353 N_("Maverick MVFX register expected"),
354 N_("Maverick MVDX register expected"),
355 N_("Maverick MVAX register expected"),
356 N_("Maverick DSPSC register expected"),
357 N_("iWMMXt data register expected"),
358 N_("iWMMXt control register expected"),
359 N_("iWMMXt scalar register expected"),
360 N_("XScale accumulator register expected"),
361 };
362
363 /* Some well known registers that we refer to directly elsewhere. */
364 #define REG_SP 13
365 #define REG_LR 14
366 #define REG_PC 15
367
368 /* ARM instructions take 4bytes in the object file, Thumb instructions
369 take 2: */
370 #define INSN_SIZE 4
371
372 struct asm_opcode
373 {
374 /* Basic string to match. */
375 const char *template;
376
377 /* Parameters to instruction. */
378 unsigned char operands[8];
379
380 /* Conditional tag - see opcode_lookup. */
381 unsigned int tag : 4;
382
383 /* Basic instruction code. */
384 unsigned int avalue : 28;
385
386 /* Thumb-format instruction code. */
387 unsigned int tvalue;
388
389 /* Which architecture variant provides this instruction. */
390 unsigned long avariant;
391 unsigned long tvariant;
392
393 /* Function to call to encode instruction in ARM format. */
394 void (* aencode) (void);
395
396 /* Function to call to encode instruction in Thumb format. */
397 void (* tencode) (void);
398 };
399
400 /* Defines for various bits that we will want to toggle. */
401 #define INST_IMMEDIATE 0x02000000
402 #define OFFSET_REG 0x02000000
403 #define HWOFFSET_IMM 0x00400000
404 #define SHIFT_BY_REG 0x00000010
405 #define PRE_INDEX 0x01000000
406 #define INDEX_UP 0x00800000
407 #define WRITE_BACK 0x00200000
408 #define LDM_TYPE_2_OR_3 0x00400000
409
410 #define LITERAL_MASK 0xf000f000
411 #define OPCODE_MASK 0xfe1fffff
412 #define V4_STR_BIT 0x00000020
413
414 #define DATA_OP_SHIFT 21
415
416 /* Codes to distinguish the arithmetic instructions. */
417 #define OPCODE_AND 0
418 #define OPCODE_EOR 1
419 #define OPCODE_SUB 2
420 #define OPCODE_RSB 3
421 #define OPCODE_ADD 4
422 #define OPCODE_ADC 5
423 #define OPCODE_SBC 6
424 #define OPCODE_RSC 7
425 #define OPCODE_TST 8
426 #define OPCODE_TEQ 9
427 #define OPCODE_CMP 10
428 #define OPCODE_CMN 11
429 #define OPCODE_ORR 12
430 #define OPCODE_MOV 13
431 #define OPCODE_BIC 14
432 #define OPCODE_MVN 15
433
434 #define T_OPCODE_MUL 0x4340
435 #define T_OPCODE_TST 0x4200
436 #define T_OPCODE_CMN 0x42c0
437 #define T_OPCODE_NEG 0x4240
438 #define T_OPCODE_MVN 0x43c0
439
440 #define T_OPCODE_ADD_R3 0x1800
441 #define T_OPCODE_SUB_R3 0x1a00
442 #define T_OPCODE_ADD_HI 0x4400
443 #define T_OPCODE_ADD_ST 0xb000
444 #define T_OPCODE_SUB_ST 0xb080
445 #define T_OPCODE_ADD_SP 0xa800
446 #define T_OPCODE_ADD_PC 0xa000
447 #define T_OPCODE_ADD_I8 0x3000
448 #define T_OPCODE_SUB_I8 0x3800
449 #define T_OPCODE_ADD_I3 0x1c00
450 #define T_OPCODE_SUB_I3 0x1e00
451
452 #define T_OPCODE_ASR_R 0x4100
453 #define T_OPCODE_LSL_R 0x4080
454 #define T_OPCODE_LSR_R 0x40c0
455 #define T_OPCODE_ROR_R 0x41c0
456 #define T_OPCODE_ASR_I 0x1000
457 #define T_OPCODE_LSL_I 0x0000
458 #define T_OPCODE_LSR_I 0x0800
459
460 #define T_OPCODE_MOV_I8 0x2000
461 #define T_OPCODE_CMP_I8 0x2800
462 #define T_OPCODE_CMP_LR 0x4280
463 #define T_OPCODE_MOV_HR 0x4600
464 #define T_OPCODE_CMP_HR 0x4500
465
466 #define T_OPCODE_LDR_PC 0x4800
467 #define T_OPCODE_LDR_SP 0x9800
468 #define T_OPCODE_STR_SP 0x9000
469 #define T_OPCODE_LDR_IW 0x6800
470 #define T_OPCODE_STR_IW 0x6000
471 #define T_OPCODE_LDR_IH 0x8800
472 #define T_OPCODE_STR_IH 0x8000
473 #define T_OPCODE_LDR_IB 0x7800
474 #define T_OPCODE_STR_IB 0x7000
475 #define T_OPCODE_LDR_RW 0x5800
476 #define T_OPCODE_STR_RW 0x5000
477 #define T_OPCODE_LDR_RH 0x5a00
478 #define T_OPCODE_STR_RH 0x5200
479 #define T_OPCODE_LDR_RB 0x5c00
480 #define T_OPCODE_STR_RB 0x5400
481
482 #define T_OPCODE_PUSH 0xb400
483 #define T_OPCODE_POP 0xbc00
484
485 #define T_OPCODE_BRANCH 0xe000
486
487 #define THUMB_SIZE 2 /* Size of thumb instruction. */
488 #define THUMB_PP_PC_LR 0x0100
489 #define THUMB_LOAD_BIT 0x0800
490
491 #define BAD_ARGS _("bad arguments to instruction")
492 #define BAD_PC _("r15 not allowed here")
493 #define BAD_COND _("instruction cannot be conditional")
494 #define BAD_OVERLAP _("registers may not be the same")
495 #define BAD_HIREG _("lo register required")
496 #define BAD_THUMB32 _("instruction not supported in Thumb16 mode")
497
498 static struct hash_control *arm_ops_hsh;
499 static struct hash_control *arm_cond_hsh;
500 static struct hash_control *arm_shift_hsh;
501 static struct hash_control *arm_psr_hsh;
502 static struct hash_control *arm_reg_hsh;
503 static struct hash_control *arm_reloc_hsh;
504
505 /* Stuff needed to resolve the label ambiguity
506 As:
507 ...
508 label: <insn>
509 may differ from:
510 ...
511 label:
512 <insn>
513 */
514
515 symbolS * last_label_seen;
516 static int label_is_thumb_function_name = FALSE;
517 \f
518 /* Literal pool structure. Held on a per-section
519 and per-sub-section basis. */
520
521 #define MAX_LITERAL_POOL_SIZE 1024
522 typedef struct literal_pool
523 {
524 expressionS literals [MAX_LITERAL_POOL_SIZE];
525 unsigned int next_free_entry;
526 unsigned int id;
527 symbolS * symbol;
528 segT section;
529 subsegT sub_section;
530 struct literal_pool * next;
531 } literal_pool;
532
533 /* Pointer to a linked list of literal pools. */
534 literal_pool * list_of_pools = NULL;
535
536 /* State variables for IT block handling. */
537 static bfd_boolean current_it_mask = 0;
538 static int current_cc;
539
540 \f
541 /* Pure syntax. */
542
543 /* This array holds the chars that always start a comment. If the
544 pre-processor is disabled, these aren't very useful. */
545 const char comment_chars[] = "@";
546
547 /* This array holds the chars that only start a comment at the beginning of
548 a line. If the line seems to have the form '# 123 filename'
549 .line and .file directives will appear in the pre-processed output. */
550 /* Note that input_file.c hand checks for '#' at the beginning of the
551 first line of the input file. This is because the compiler outputs
552 #NO_APP at the beginning of its output. */
553 /* Also note that comments like this one will always work. */
554 const char line_comment_chars[] = "#";
555
556 const char line_separator_chars[] = ";";
557
558 /* Chars that can be used to separate mant
559 from exp in floating point numbers. */
560 const char EXP_CHARS[] = "eE";
561
562 /* Chars that mean this number is a floating point constant. */
563 /* As in 0f12.456 */
564 /* or 0d1.2345e12 */
565
566 const char FLT_CHARS[] = "rRsSfFdDxXeEpP";
567
568 /* Prefix characters that indicate the start of an immediate
569 value. */
570 #define is_immediate_prefix(C) ((C) == '#' || (C) == '$')
571
572 /* Separator character handling. */
573
574 #define skip_whitespace(str) do { if (*(str) == ' ') ++(str); } while (0)
575
576 static inline int
577 skip_past_char (char ** str, char c)
578 {
579 if (**str == c)
580 {
581 (*str)++;
582 return SUCCESS;
583 }
584 else
585 return FAIL;
586 }
587 #define skip_past_comma(str) skip_past_char (str, ',')
588
589 /* Arithmetic expressions (possibly involving symbols). */
590
591 /* Return TRUE if anything in the expression is a bignum. */
592
593 static int
594 walk_no_bignums (symbolS * sp)
595 {
596 if (symbol_get_value_expression (sp)->X_op == O_big)
597 return 1;
598
599 if (symbol_get_value_expression (sp)->X_add_symbol)
600 {
601 return (walk_no_bignums (symbol_get_value_expression (sp)->X_add_symbol)
602 || (symbol_get_value_expression (sp)->X_op_symbol
603 && walk_no_bignums (symbol_get_value_expression (sp)->X_op_symbol)));
604 }
605
606 return 0;
607 }
608
609 static int in_my_get_expression = 0;
610
611 /* Third argument to my_get_expression. */
612 #define GE_NO_PREFIX 0
613 #define GE_IMM_PREFIX 1
614 #define GE_OPT_PREFIX 2
615
616 static int
617 my_get_expression (expressionS * ep, char ** str, int prefix_mode)
618 {
619 char * save_in;
620 segT seg;
621
622 /* In unified syntax, all prefixes are optional. */
623 if (unified_syntax)
624 prefix_mode = GE_OPT_PREFIX;
625
626 switch (prefix_mode)
627 {
628 case GE_NO_PREFIX: break;
629 case GE_IMM_PREFIX:
630 if (!is_immediate_prefix (**str))
631 {
632 inst.error = _("immediate expression requires a # prefix");
633 return FAIL;
634 }
635 (*str)++;
636 break;
637 case GE_OPT_PREFIX:
638 if (is_immediate_prefix (**str))
639 (*str)++;
640 break;
641 default: abort ();
642 }
643
644 memset (ep, 0, sizeof (expressionS));
645
646 save_in = input_line_pointer;
647 input_line_pointer = *str;
648 in_my_get_expression = 1;
649 seg = expression (ep);
650 in_my_get_expression = 0;
651
652 if (ep->X_op == O_illegal)
653 {
654 /* We found a bad expression in md_operand(). */
655 *str = input_line_pointer;
656 input_line_pointer = save_in;
657 if (inst.error == NULL)
658 inst.error = _("bad expression");
659 return 1;
660 }
661
662 #ifdef OBJ_AOUT
663 if (seg != absolute_section
664 && seg != text_section
665 && seg != data_section
666 && seg != bss_section
667 && seg != undefined_section)
668 {
669 inst.error = _("bad segment");
670 *str = input_line_pointer;
671 input_line_pointer = save_in;
672 return 1;
673 }
674 #endif
675
676 /* Get rid of any bignums now, so that we don't generate an error for which
677 we can't establish a line number later on. Big numbers are never valid
678 in instructions, which is where this routine is always called. */
679 if (ep->X_op == O_big
680 || (ep->X_add_symbol
681 && (walk_no_bignums (ep->X_add_symbol)
682 || (ep->X_op_symbol
683 && walk_no_bignums (ep->X_op_symbol)))))
684 {
685 inst.error = _("invalid constant");
686 *str = input_line_pointer;
687 input_line_pointer = save_in;
688 return 1;
689 }
690
691 *str = input_line_pointer;
692 input_line_pointer = save_in;
693 return 0;
694 }
695
696 /* Turn a string in input_line_pointer into a floating point constant
697 of type TYPE, and store the appropriate bytes in *LITP. The number
698 of LITTLENUMS emitted is stored in *SIZEP. An error message is
699 returned, or NULL on OK.
700
701 Note that fp constants aren't represent in the normal way on the ARM.
702 In big endian mode, things are as expected. However, in little endian
703 mode fp constants are big-endian word-wise, and little-endian byte-wise
704 within the words. For example, (double) 1.1 in big endian mode is
705 the byte sequence 3f f1 99 99 99 99 99 9a, and in little endian mode is
706 the byte sequence 99 99 f1 3f 9a 99 99 99.
707
708 ??? The format of 12 byte floats is uncertain according to gcc's arm.h. */
709
710 char *
711 md_atof (int type, char * litP, int * sizeP)
712 {
713 int prec;
714 LITTLENUM_TYPE words[MAX_LITTLENUMS];
715 char *t;
716 int i;
717
718 switch (type)
719 {
720 case 'f':
721 case 'F':
722 case 's':
723 case 'S':
724 prec = 2;
725 break;
726
727 case 'd':
728 case 'D':
729 case 'r':
730 case 'R':
731 prec = 4;
732 break;
733
734 case 'x':
735 case 'X':
736 prec = 6;
737 break;
738
739 case 'p':
740 case 'P':
741 prec = 6;
742 break;
743
744 default:
745 *sizeP = 0;
746 return _("bad call to MD_ATOF()");
747 }
748
749 t = atof_ieee (input_line_pointer, type, words);
750 if (t)
751 input_line_pointer = t;
752 *sizeP = prec * 2;
753
754 if (target_big_endian)
755 {
756 for (i = 0; i < prec; i++)
757 {
758 md_number_to_chars (litP, (valueT) words[i], 2);
759 litP += 2;
760 }
761 }
762 else
763 {
764 if (cpu_variant & FPU_ARCH_VFP)
765 for (i = prec - 1; i >= 0; i--)
766 {
767 md_number_to_chars (litP, (valueT) words[i], 2);
768 litP += 2;
769 }
770 else
771 /* For a 4 byte float the order of elements in `words' is 1 0.
772 For an 8 byte float the order is 1 0 3 2. */
773 for (i = 0; i < prec; i += 2)
774 {
775 md_number_to_chars (litP, (valueT) words[i + 1], 2);
776 md_number_to_chars (litP + 2, (valueT) words[i], 2);
777 litP += 4;
778 }
779 }
780
781 return 0;
782 }
783
784 /* We handle all bad expressions here, so that we can report the faulty
785 instruction in the error message. */
786 void
787 md_operand (expressionS * expr)
788 {
789 if (in_my_get_expression)
790 expr->X_op = O_illegal;
791 }
792
793 /* Immediate values. */
794
795 /* Generic immediate-value read function for use in directives.
796 Accepts anything that 'expression' can fold to a constant.
797 *val receives the number. */
798 #ifdef OBJ_ELF
799 static int
800 immediate_for_directive (int *val)
801 {
802 expressionS exp;
803 exp.X_op = O_illegal;
804
805 if (is_immediate_prefix (*input_line_pointer))
806 {
807 input_line_pointer++;
808 expression (&exp);
809 }
810
811 if (exp.X_op != O_constant)
812 {
813 as_bad (_("expected #constant"));
814 ignore_rest_of_line ();
815 return FAIL;
816 }
817 *val = exp.X_add_number;
818 return SUCCESS;
819 }
820 #endif
821
822 /* Register parsing. */
823
824 /* Generic register parser. CCP points to what should be the
825 beginning of a register name. If it is indeed a valid register
826 name, advance CCP over it and return the reg_entry structure;
827 otherwise return NULL. Does not issue diagnostics. */
828
829 static struct reg_entry *
830 arm_reg_parse_multi (char **ccp)
831 {
832 char *start = *ccp;
833 char *p;
834 struct reg_entry *reg;
835
836 #ifdef REGISTER_PREFIX
837 if (*start != REGISTER_PREFIX)
838 return FAIL;
839 start++;
840 #endif
841 #ifdef OPTIONAL_REGISTER_PREFIX
842 if (*start == OPTIONAL_REGISTER_PREFIX)
843 start++;
844 #endif
845
846 p = start;
847 if (!ISALPHA (*p) || !is_name_beginner (*p))
848 return NULL;
849
850 do
851 p++;
852 while (ISALPHA (*p) || ISDIGIT (*p) || *p == '_');
853
854 reg = (struct reg_entry *) hash_find_n (arm_reg_hsh, start, p - start);
855
856 if (!reg)
857 return NULL;
858
859 *ccp = p;
860 return reg;
861 }
862
863 /* As above, but the register must be of type TYPE, and the return
864 value is the register number or NULL. */
865
866 static int
867 arm_reg_parse (char **ccp, enum arm_reg_type type)
868 {
869 char *start = *ccp;
870 struct reg_entry *reg = arm_reg_parse_multi (ccp);
871
872 if (reg && reg->type == type)
873 return reg->number;
874
875 /* Alternative syntaxes are accepted for a few register classes. */
876 switch (type)
877 {
878 case REG_TYPE_MVF:
879 case REG_TYPE_MVD:
880 case REG_TYPE_MVFX:
881 case REG_TYPE_MVDX:
882 /* Generic coprocessor register names are allowed for these. */
883 if (reg->type == REG_TYPE_CN)
884 return reg->number;
885 break;
886
887 case REG_TYPE_CP:
888 /* For backward compatibility, a bare number is valid here. */
889 {
890 unsigned long processor = strtoul (start, ccp, 10);
891 if (*ccp != start && processor <= 15)
892 return processor;
893 }
894
895 case REG_TYPE_MMXWC:
896 /* WC includes WCG. ??? I'm not sure this is true for all
897 instructions that take WC registers. */
898 if (reg->type == REG_TYPE_MMXWCG)
899 return reg->number;
900 break;
901
902 default:
903 break;
904 }
905
906 *ccp = start;
907 return FAIL;
908 }
909
910 /* Parse an ARM register list. Returns the bitmask, or FAIL. */
911 static long
912 parse_reg_list (char ** strp)
913 {
914 char * str = * strp;
915 long range = 0;
916 int another_range;
917
918 /* We come back here if we get ranges concatenated by '+' or '|'. */
919 do
920 {
921 another_range = 0;
922
923 if (*str == '{')
924 {
925 int in_range = 0;
926 int cur_reg = -1;
927
928 str++;
929 do
930 {
931 int reg;
932
933 if ((reg = arm_reg_parse (&str, REG_TYPE_RN)) == FAIL)
934 {
935 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
936 return FAIL;
937 }
938
939 if (in_range)
940 {
941 int i;
942
943 if (reg <= cur_reg)
944 {
945 inst.error = _("bad range in register list");
946 return FAIL;
947 }
948
949 for (i = cur_reg + 1; i < reg; i++)
950 {
951 if (range & (1 << i))
952 as_tsktsk
953 (_("Warning: duplicated register (r%d) in register list"),
954 i);
955 else
956 range |= 1 << i;
957 }
958 in_range = 0;
959 }
960
961 if (range & (1 << reg))
962 as_tsktsk (_("Warning: duplicated register (r%d) in register list"),
963 reg);
964 else if (reg <= cur_reg)
965 as_tsktsk (_("Warning: register range not in ascending order"));
966
967 range |= 1 << reg;
968 cur_reg = reg;
969 }
970 while (skip_past_comma (&str) != FAIL
971 || (in_range = 1, *str++ == '-'));
972 str--;
973
974 if (*str++ != '}')
975 {
976 inst.error = _("missing `}'");
977 return FAIL;
978 }
979 }
980 else
981 {
982 expressionS expr;
983
984 if (my_get_expression (&expr, &str, GE_NO_PREFIX))
985 return FAIL;
986
987 if (expr.X_op == O_constant)
988 {
989 if (expr.X_add_number
990 != (expr.X_add_number & 0x0000ffff))
991 {
992 inst.error = _("invalid register mask");
993 return FAIL;
994 }
995
996 if ((range & expr.X_add_number) != 0)
997 {
998 int regno = range & expr.X_add_number;
999
1000 regno &= -regno;
1001 regno = (1 << regno) - 1;
1002 as_tsktsk
1003 (_("Warning: duplicated register (r%d) in register list"),
1004 regno);
1005 }
1006
1007 range |= expr.X_add_number;
1008 }
1009 else
1010 {
1011 if (inst.reloc.type != 0)
1012 {
1013 inst.error = _("expression too complex");
1014 return FAIL;
1015 }
1016
1017 memcpy (&inst.reloc.exp, &expr, sizeof (expressionS));
1018 inst.reloc.type = BFD_RELOC_ARM_MULTI;
1019 inst.reloc.pc_rel = 0;
1020 }
1021 }
1022
1023 if (*str == '|' || *str == '+')
1024 {
1025 str++;
1026 another_range = 1;
1027 }
1028 }
1029 while (another_range);
1030
1031 *strp = str;
1032 return range;
1033 }
1034
1035 /* Parse a VFP register list. If the string is invalid return FAIL.
1036 Otherwise return the number of registers, and set PBASE to the first
1037 register. Double precision registers are matched if DP is nonzero. */
1038
1039 static int
1040 parse_vfp_reg_list (char **str, unsigned int *pbase, int dp)
1041 {
1042 int base_reg;
1043 int new_base;
1044 int regtype;
1045 int max_regs;
1046 int count = 0;
1047 int warned = 0;
1048 unsigned long mask = 0;
1049 int i;
1050
1051 if (**str != '{')
1052 return FAIL;
1053
1054 (*str)++;
1055
1056 if (dp)
1057 {
1058 regtype = REG_TYPE_VFD;
1059 max_regs = 16;
1060 }
1061 else
1062 {
1063 regtype = REG_TYPE_VFS;
1064 max_regs = 32;
1065 }
1066
1067 base_reg = max_regs;
1068
1069 do
1070 {
1071 new_base = arm_reg_parse (str, regtype);
1072 if (new_base == FAIL)
1073 {
1074 inst.error = gettext (reg_expected_msgs[regtype]);
1075 return FAIL;
1076 }
1077
1078 if (new_base < base_reg)
1079 base_reg = new_base;
1080
1081 if (mask & (1 << new_base))
1082 {
1083 inst.error = _("invalid register list");
1084 return FAIL;
1085 }
1086
1087 if ((mask >> new_base) != 0 && ! warned)
1088 {
1089 as_tsktsk (_("register list not in ascending order"));
1090 warned = 1;
1091 }
1092
1093 mask |= 1 << new_base;
1094 count++;
1095
1096 if (**str == '-') /* We have the start of a range expression */
1097 {
1098 int high_range;
1099
1100 (*str)++;
1101
1102 if ((high_range = arm_reg_parse (str, regtype)) == FAIL)
1103 {
1104 inst.error = gettext (reg_expected_msgs[regtype]);
1105 return FAIL;
1106 }
1107
1108 if (high_range <= new_base)
1109 {
1110 inst.error = _("register range not in ascending order");
1111 return FAIL;
1112 }
1113
1114 for (new_base++; new_base <= high_range; new_base++)
1115 {
1116 if (mask & (1 << new_base))
1117 {
1118 inst.error = _("invalid register list");
1119 return FAIL;
1120 }
1121
1122 mask |= 1 << new_base;
1123 count++;
1124 }
1125 }
1126 }
1127 while (skip_past_comma (str) != FAIL);
1128
1129 (*str)++;
1130
1131 /* Sanity check -- should have raised a parse error above. */
1132 if (count == 0 || count > max_regs)
1133 abort ();
1134
1135 *pbase = base_reg;
1136
1137 /* Final test -- the registers must be consecutive. */
1138 mask >>= base_reg;
1139 for (i = 0; i < count; i++)
1140 {
1141 if ((mask & (1u << i)) == 0)
1142 {
1143 inst.error = _("non-contiguous register range");
1144 return FAIL;
1145 }
1146 }
1147
1148 return count;
1149 }
1150
1151 /* Parse an explicit relocation suffix on an expression. This is
1152 either nothing, or a word in parentheses. Note that if !OBJ_ELF,
1153 arm_reloc_hsh contains no entries, so this function can only
1154 succeed if there is no () after the word. Returns -1 on error,
1155 BFD_RELOC_UNUSED if there wasn't any suffix. */
1156 static int
1157 parse_reloc (char **str)
1158 {
1159 struct reloc_entry *r;
1160 char *p, *q;
1161
1162 if (**str != '(')
1163 return BFD_RELOC_UNUSED;
1164
1165 p = *str + 1;
1166 q = p;
1167
1168 while (*q && *q != ')' && *q != ',')
1169 q++;
1170 if (*q != ')')
1171 return -1;
1172
1173 if ((r = hash_find_n (arm_reloc_hsh, p, q - p)) == NULL)
1174 return -1;
1175
1176 *str = q + 1;
1177 return r->reloc;
1178 }
1179
1180 /* Directives: register aliases. */
1181
1182 static void
1183 insert_reg_alias (char *str, int number, int type)
1184 {
1185 struct reg_entry *new;
1186 const char *name;
1187
1188 if ((new = hash_find (arm_reg_hsh, str)) != 0)
1189 {
1190 if (new->builtin)
1191 as_warn (_("ignoring attempt to redefine built-in register '%s'"), str);
1192
1193 /* Only warn about a redefinition if it's not defined as the
1194 same register. */
1195 else if (new->number != number || new->type != type)
1196 as_warn (_("ignoring redefinition of register alias '%s'"), str);
1197
1198 return;
1199 }
1200
1201 name = xstrdup (str);
1202 new = xmalloc (sizeof (struct reg_entry));
1203
1204 new->name = name;
1205 new->number = number;
1206 new->type = type;
1207 new->builtin = FALSE;
1208
1209 if (hash_insert (arm_reg_hsh, name, (PTR) new))
1210 abort ();
1211 }
1212
1213 /* Look for the .req directive. This is of the form:
1214
1215 new_register_name .req existing_register_name
1216
1217 If we find one, or if it looks sufficiently like one that we want to
1218 handle any error here, return non-zero. Otherwise return zero. */
1219
1220 static int
1221 create_register_alias (char * newname, char *p)
1222 {
1223 struct reg_entry *old;
1224 char *oldname, *nbuf;
1225 size_t nlen;
1226
1227 /* The input scrubber ensures that whitespace after the mnemonic is
1228 collapsed to single spaces. */
1229 oldname = p;
1230 if (strncmp (oldname, " .req ", 6) != 0)
1231 return 0;
1232
1233 oldname += 6;
1234 if (*oldname == '\0')
1235 return 0;
1236
1237 old = hash_find (arm_reg_hsh, oldname);
1238 if (!old)
1239 {
1240 as_warn (_("unknown register '%s' -- .req ignored"), oldname);
1241 return 1;
1242 }
1243
1244 /* If TC_CASE_SENSITIVE is defined, then newname already points to
1245 the desired alias name, and p points to its end. If not, then
1246 the desired alias name is in the global original_case_string. */
1247 #ifdef TC_CASE_SENSITIVE
1248 nlen = p - newname;
1249 #else
1250 newname = original_case_string;
1251 nlen = strlen (newname);
1252 #endif
1253
1254 nbuf = alloca (nlen + 1);
1255 memcpy (nbuf, newname, nlen);
1256 nbuf[nlen] = '\0';
1257
1258 /* Create aliases under the new name as stated; an all-lowercase
1259 version of the new name; and an all-uppercase version of the new
1260 name. */
1261 insert_reg_alias (nbuf, old->number, old->type);
1262
1263 for (p = nbuf; *p; p++)
1264 *p = TOUPPER (*p);
1265
1266 if (strncmp (nbuf, newname, nlen))
1267 insert_reg_alias (nbuf, old->number, old->type);
1268
1269 for (p = nbuf; *p; p++)
1270 *p = TOLOWER (*p);
1271
1272 if (strncmp (nbuf, newname, nlen))
1273 insert_reg_alias (nbuf, old->number, old->type);
1274
1275 return 1;
1276 }
1277
1278 /* Should never be called, as .req goes between the alias and the
1279 register name, not at the beginning of the line. */
1280 static void
1281 s_req (int a ATTRIBUTE_UNUSED)
1282 {
1283 as_bad (_("invalid syntax for .req directive"));
1284 }
1285
1286 /* The .unreq directive deletes an alias which was previously defined
1287 by .req. For example:
1288
1289 my_alias .req r11
1290 .unreq my_alias */
1291
1292 static void
1293 s_unreq (int a ATTRIBUTE_UNUSED)
1294 {
1295 char * name;
1296 char saved_char;
1297
1298 name = input_line_pointer;
1299
1300 while (*input_line_pointer != 0
1301 && *input_line_pointer != ' '
1302 && *input_line_pointer != '\n')
1303 ++input_line_pointer;
1304
1305 saved_char = *input_line_pointer;
1306 *input_line_pointer = 0;
1307
1308 if (!*name)
1309 as_bad (_("invalid syntax for .unreq directive"));
1310 else
1311 {
1312 struct reg_entry *reg = hash_find (arm_reg_hsh, name);
1313
1314 if (!reg)
1315 as_bad (_("unknown register alias '%s'"), name);
1316 else if (reg->builtin)
1317 as_warn (_("ignoring attempt to undefine built-in register '%s'"),
1318 name);
1319 else
1320 {
1321 hash_delete (arm_reg_hsh, name);
1322 free ((char *) reg->name);
1323 free (reg);
1324 }
1325 }
1326
1327 *input_line_pointer = saved_char;
1328 demand_empty_rest_of_line ();
1329 }
1330
1331 /* Directives: Instruction set selection. */
1332
1333 #ifdef OBJ_ELF
1334 /* This code is to handle mapping symbols as defined in the ARM ELF spec.
1335 (See "Mapping symbols", section 4.5.5, ARM AAELF version 1.0).
1336 Note that previously, $a and $t has type STT_FUNC (BSF_OBJECT flag),
1337 and $d has type STT_OBJECT (BSF_OBJECT flag). Now all three are untyped. */
1338
1339 static enum mstate mapstate = MAP_UNDEFINED;
1340
1341 static void
1342 mapping_state (enum mstate state)
1343 {
1344 symbolS * symbolP;
1345 const char * symname;
1346 int type;
1347
1348 if (mapstate == state)
1349 /* The mapping symbol has already been emitted.
1350 There is nothing else to do. */
1351 return;
1352
1353 mapstate = state;
1354
1355 switch (state)
1356 {
1357 case MAP_DATA:
1358 symname = "$d";
1359 type = BSF_NO_FLAGS;
1360 break;
1361 case MAP_ARM:
1362 symname = "$a";
1363 type = BSF_NO_FLAGS;
1364 break;
1365 case MAP_THUMB:
1366 symname = "$t";
1367 type = BSF_NO_FLAGS;
1368 break;
1369 case MAP_UNDEFINED:
1370 return;
1371 default:
1372 abort ();
1373 }
1374
1375 seg_info (now_seg)->tc_segment_info_data.mapstate = state;
1376
1377 symbolP = symbol_new (symname, now_seg, (valueT) frag_now_fix (), frag_now);
1378 symbol_table_insert (symbolP);
1379 symbol_get_bfdsym (symbolP)->flags |= type | BSF_LOCAL;
1380
1381 switch (state)
1382 {
1383 case MAP_ARM:
1384 THUMB_SET_FUNC (symbolP, 0);
1385 ARM_SET_THUMB (symbolP, 0);
1386 ARM_SET_INTERWORK (symbolP, support_interwork);
1387 break;
1388
1389 case MAP_THUMB:
1390 THUMB_SET_FUNC (symbolP, 1);
1391 ARM_SET_THUMB (symbolP, 1);
1392 ARM_SET_INTERWORK (symbolP, support_interwork);
1393 break;
1394
1395 case MAP_DATA:
1396 default:
1397 return;
1398 }
1399 }
1400 #else
1401 #define mapping_state(x) /* nothing */
1402 #endif
1403
1404 /* Find the real, Thumb encoded start of a Thumb function. */
1405
1406 static symbolS *
1407 find_real_start (symbolS * symbolP)
1408 {
1409 char * real_start;
1410 const char * name = S_GET_NAME (symbolP);
1411 symbolS * new_target;
1412
1413 /* This definition must agree with the one in gcc/config/arm/thumb.c. */
1414 #define STUB_NAME ".real_start_of"
1415
1416 if (name == NULL)
1417 abort ();
1418
1419 /* The compiler may generate BL instructions to local labels because
1420 it needs to perform a branch to a far away location. These labels
1421 do not have a corresponding ".real_start_of" label. We check
1422 both for S_IS_LOCAL and for a leading dot, to give a way to bypass
1423 the ".real_start_of" convention for nonlocal branches. */
1424 if (S_IS_LOCAL (symbolP) || name[0] == '.')
1425 return symbolP;
1426
1427 real_start = ACONCAT ((STUB_NAME, name, NULL));
1428 new_target = symbol_find (real_start);
1429
1430 if (new_target == NULL)
1431 {
1432 as_warn ("Failed to find real start of function: %s\n", name);
1433 new_target = symbolP;
1434 }
1435
1436 return new_target;
1437 }
1438
1439 static void
1440 opcode_select (int width)
1441 {
1442 switch (width)
1443 {
1444 case 16:
1445 if (! thumb_mode)
1446 {
1447 if (! (cpu_variant & ARM_EXT_V4T))
1448 as_bad (_("selected processor does not support THUMB opcodes"));
1449
1450 thumb_mode = 1;
1451 /* No need to force the alignment, since we will have been
1452 coming from ARM mode, which is word-aligned. */
1453 record_alignment (now_seg, 1);
1454 }
1455 mapping_state (MAP_THUMB);
1456 break;
1457
1458 case 32:
1459 if (thumb_mode)
1460 {
1461 if ((cpu_variant & ARM_ALL) == ARM_EXT_V4T)
1462 as_bad (_("selected processor does not support ARM opcodes"));
1463
1464 thumb_mode = 0;
1465
1466 if (!need_pass_2)
1467 frag_align (2, 0, 0);
1468
1469 record_alignment (now_seg, 1);
1470 }
1471 mapping_state (MAP_ARM);
1472 break;
1473
1474 default:
1475 as_bad (_("invalid instruction size selected (%d)"), width);
1476 }
1477 }
1478
1479 static void
1480 s_arm (int ignore ATTRIBUTE_UNUSED)
1481 {
1482 opcode_select (32);
1483 demand_empty_rest_of_line ();
1484 }
1485
1486 static void
1487 s_thumb (int ignore ATTRIBUTE_UNUSED)
1488 {
1489 opcode_select (16);
1490 demand_empty_rest_of_line ();
1491 }
1492
1493 static void
1494 s_code (int unused ATTRIBUTE_UNUSED)
1495 {
1496 int temp;
1497
1498 temp = get_absolute_expression ();
1499 switch (temp)
1500 {
1501 case 16:
1502 case 32:
1503 opcode_select (temp);
1504 break;
1505
1506 default:
1507 as_bad (_("invalid operand to .code directive (%d) (expecting 16 or 32)"), temp);
1508 }
1509 }
1510
1511 static void
1512 s_force_thumb (int ignore ATTRIBUTE_UNUSED)
1513 {
1514 /* If we are not already in thumb mode go into it, EVEN if
1515 the target processor does not support thumb instructions.
1516 This is used by gcc/config/arm/lib1funcs.asm for example
1517 to compile interworking support functions even if the
1518 target processor should not support interworking. */
1519 if (! thumb_mode)
1520 {
1521 thumb_mode = 2;
1522 record_alignment (now_seg, 1);
1523 }
1524
1525 demand_empty_rest_of_line ();
1526 }
1527
1528 static void
1529 s_thumb_func (int ignore ATTRIBUTE_UNUSED)
1530 {
1531 s_thumb (0);
1532
1533 /* The following label is the name/address of the start of a Thumb function.
1534 We need to know this for the interworking support. */
1535 label_is_thumb_function_name = TRUE;
1536 }
1537
1538 /* Perform a .set directive, but also mark the alias as
1539 being a thumb function. */
1540
1541 static void
1542 s_thumb_set (int equiv)
1543 {
1544 /* XXX the following is a duplicate of the code for s_set() in read.c
1545 We cannot just call that code as we need to get at the symbol that
1546 is created. */
1547 char * name;
1548 char delim;
1549 char * end_name;
1550 symbolS * symbolP;
1551
1552 /* Especial apologies for the random logic:
1553 This just grew, and could be parsed much more simply!
1554 Dean - in haste. */
1555 name = input_line_pointer;
1556 delim = get_symbol_end ();
1557 end_name = input_line_pointer;
1558 *end_name = delim;
1559
1560 if (*input_line_pointer != ',')
1561 {
1562 *end_name = 0;
1563 as_bad (_("expected comma after name \"%s\""), name);
1564 *end_name = delim;
1565 ignore_rest_of_line ();
1566 return;
1567 }
1568
1569 input_line_pointer++;
1570 *end_name = 0;
1571
1572 if (name[0] == '.' && name[1] == '\0')
1573 {
1574 /* XXX - this should not happen to .thumb_set. */
1575 abort ();
1576 }
1577
1578 if ((symbolP = symbol_find (name)) == NULL
1579 && (symbolP = md_undefined_symbol (name)) == NULL)
1580 {
1581 #ifndef NO_LISTING
1582 /* When doing symbol listings, play games with dummy fragments living
1583 outside the normal fragment chain to record the file and line info
1584 for this symbol. */
1585 if (listing & LISTING_SYMBOLS)
1586 {
1587 extern struct list_info_struct * listing_tail;
1588 fragS * dummy_frag = xmalloc (sizeof (fragS));
1589
1590 memset (dummy_frag, 0, sizeof (fragS));
1591 dummy_frag->fr_type = rs_fill;
1592 dummy_frag->line = listing_tail;
1593 symbolP = symbol_new (name, undefined_section, 0, dummy_frag);
1594 dummy_frag->fr_symbol = symbolP;
1595 }
1596 else
1597 #endif
1598 symbolP = symbol_new (name, undefined_section, 0, &zero_address_frag);
1599
1600 #ifdef OBJ_COFF
1601 /* "set" symbols are local unless otherwise specified. */
1602 SF_SET_LOCAL (symbolP);
1603 #endif /* OBJ_COFF */
1604 } /* Make a new symbol. */
1605
1606 symbol_table_insert (symbolP);
1607
1608 * end_name = delim;
1609
1610 if (equiv
1611 && S_IS_DEFINED (symbolP)
1612 && S_GET_SEGMENT (symbolP) != reg_section)
1613 as_bad (_("symbol `%s' already defined"), S_GET_NAME (symbolP));
1614
1615 pseudo_set (symbolP);
1616
1617 demand_empty_rest_of_line ();
1618
1619 /* XXX Now we come to the Thumb specific bit of code. */
1620
1621 THUMB_SET_FUNC (symbolP, 1);
1622 ARM_SET_THUMB (symbolP, 1);
1623 #if defined OBJ_ELF || defined OBJ_COFF
1624 ARM_SET_INTERWORK (symbolP, support_interwork);
1625 #endif
1626 }
1627
1628 /* Directives: Mode selection. */
1629
1630 /* .syntax [unified|divided] - choose the new unified syntax
1631 (same for Arm and Thumb encoding, modulo slight differences in what
1632 can be represented) or the old divergent syntax for each mode. */
1633 static void
1634 s_syntax (int unused ATTRIBUTE_UNUSED)
1635 {
1636 char *name, delim;
1637
1638 name = input_line_pointer;
1639 delim = get_symbol_end ();
1640
1641 if (!strcasecmp (name, "unified"))
1642 unified_syntax = TRUE;
1643 else if (!strcasecmp (name, "divided"))
1644 unified_syntax = FALSE;
1645 else
1646 {
1647 as_bad (_("unrecognized syntax mode \"%s\""), name);
1648 return;
1649 }
1650 *input_line_pointer = delim;
1651 demand_empty_rest_of_line ();
1652 }
1653
1654 /* Directives: sectioning and alignment. */
1655
1656 /* Same as s_align_ptwo but align 0 => align 2. */
1657
1658 static void
1659 s_align (int unused ATTRIBUTE_UNUSED)
1660 {
1661 int temp;
1662 long temp_fill;
1663 long max_alignment = 15;
1664
1665 temp = get_absolute_expression ();
1666 if (temp > max_alignment)
1667 as_bad (_("alignment too large: %d assumed"), temp = max_alignment);
1668 else if (temp < 0)
1669 {
1670 as_bad (_("alignment negative. 0 assumed."));
1671 temp = 0;
1672 }
1673
1674 if (*input_line_pointer == ',')
1675 {
1676 input_line_pointer++;
1677 temp_fill = get_absolute_expression ();
1678 }
1679 else
1680 temp_fill = 0;
1681
1682 if (!temp)
1683 temp = 2;
1684
1685 /* Only make a frag if we HAVE to. */
1686 if (temp && !need_pass_2)
1687 frag_align (temp, (int) temp_fill, 0);
1688 demand_empty_rest_of_line ();
1689
1690 record_alignment (now_seg, temp);
1691 }
1692
1693 static void
1694 s_bss (int ignore ATTRIBUTE_UNUSED)
1695 {
1696 /* We don't support putting frags in the BSS segment, we fake it by
1697 marking in_bss, then looking at s_skip for clues. */
1698 subseg_set (bss_section, 0);
1699 demand_empty_rest_of_line ();
1700 mapping_state (MAP_DATA);
1701 }
1702
1703 static void
1704 s_even (int ignore ATTRIBUTE_UNUSED)
1705 {
1706 /* Never make frag if expect extra pass. */
1707 if (!need_pass_2)
1708 frag_align (1, 0, 0);
1709
1710 record_alignment (now_seg, 1);
1711
1712 demand_empty_rest_of_line ();
1713 }
1714
1715 /* Directives: Literal pools. */
1716
1717 static literal_pool *
1718 find_literal_pool (void)
1719 {
1720 literal_pool * pool;
1721
1722 for (pool = list_of_pools; pool != NULL; pool = pool->next)
1723 {
1724 if (pool->section == now_seg
1725 && pool->sub_section == now_subseg)
1726 break;
1727 }
1728
1729 return pool;
1730 }
1731
1732 static literal_pool *
1733 find_or_make_literal_pool (void)
1734 {
1735 /* Next literal pool ID number. */
1736 static unsigned int latest_pool_num = 1;
1737 literal_pool * pool;
1738
1739 pool = find_literal_pool ();
1740
1741 if (pool == NULL)
1742 {
1743 /* Create a new pool. */
1744 pool = xmalloc (sizeof (* pool));
1745 if (! pool)
1746 return NULL;
1747
1748 pool->next_free_entry = 0;
1749 pool->section = now_seg;
1750 pool->sub_section = now_subseg;
1751 pool->next = list_of_pools;
1752 pool->symbol = NULL;
1753
1754 /* Add it to the list. */
1755 list_of_pools = pool;
1756 }
1757
1758 /* New pools, and emptied pools, will have a NULL symbol. */
1759 if (pool->symbol == NULL)
1760 {
1761 pool->symbol = symbol_create (FAKE_LABEL_NAME, undefined_section,
1762 (valueT) 0, &zero_address_frag);
1763 pool->id = latest_pool_num ++;
1764 }
1765
1766 /* Done. */
1767 return pool;
1768 }
1769
1770 /* Add the literal in the global 'inst'
1771 structure to the relevent literal pool. */
1772
1773 static int
1774 add_to_lit_pool (void)
1775 {
1776 literal_pool * pool;
1777 unsigned int entry;
1778
1779 pool = find_or_make_literal_pool ();
1780
1781 /* Check if this literal value is already in the pool. */
1782 for (entry = 0; entry < pool->next_free_entry; entry ++)
1783 {
1784 if ((pool->literals[entry].X_op == inst.reloc.exp.X_op)
1785 && (inst.reloc.exp.X_op == O_constant)
1786 && (pool->literals[entry].X_add_number
1787 == inst.reloc.exp.X_add_number)
1788 && (pool->literals[entry].X_unsigned
1789 == inst.reloc.exp.X_unsigned))
1790 break;
1791
1792 if ((pool->literals[entry].X_op == inst.reloc.exp.X_op)
1793 && (inst.reloc.exp.X_op == O_symbol)
1794 && (pool->literals[entry].X_add_number
1795 == inst.reloc.exp.X_add_number)
1796 && (pool->literals[entry].X_add_symbol
1797 == inst.reloc.exp.X_add_symbol)
1798 && (pool->literals[entry].X_op_symbol
1799 == inst.reloc.exp.X_op_symbol))
1800 break;
1801 }
1802
1803 /* Do we need to create a new entry? */
1804 if (entry == pool->next_free_entry)
1805 {
1806 if (entry >= MAX_LITERAL_POOL_SIZE)
1807 {
1808 inst.error = _("literal pool overflow");
1809 return FAIL;
1810 }
1811
1812 pool->literals[entry] = inst.reloc.exp;
1813 pool->next_free_entry += 1;
1814 }
1815
1816 inst.reloc.exp.X_op = O_symbol;
1817 inst.reloc.exp.X_add_number = ((int) entry) * 4;
1818 inst.reloc.exp.X_add_symbol = pool->symbol;
1819
1820 return SUCCESS;
1821 }
1822
1823 /* Can't use symbol_new here, so have to create a symbol and then at
1824 a later date assign it a value. Thats what these functions do. */
1825
1826 static void
1827 symbol_locate (symbolS * symbolP,
1828 const char * name, /* It is copied, the caller can modify. */
1829 segT segment, /* Segment identifier (SEG_<something>). */
1830 valueT valu, /* Symbol value. */
1831 fragS * frag) /* Associated fragment. */
1832 {
1833 unsigned int name_length;
1834 char * preserved_copy_of_name;
1835
1836 name_length = strlen (name) + 1; /* +1 for \0. */
1837 obstack_grow (&notes, name, name_length);
1838 preserved_copy_of_name = obstack_finish (&notes);
1839
1840 #ifdef tc_canonicalize_symbol_name
1841 preserved_copy_of_name =
1842 tc_canonicalize_symbol_name (preserved_copy_of_name);
1843 #endif
1844
1845 S_SET_NAME (symbolP, preserved_copy_of_name);
1846
1847 S_SET_SEGMENT (symbolP, segment);
1848 S_SET_VALUE (symbolP, valu);
1849 symbol_clear_list_pointers (symbolP);
1850
1851 symbol_set_frag (symbolP, frag);
1852
1853 /* Link to end of symbol chain. */
1854 {
1855 extern int symbol_table_frozen;
1856
1857 if (symbol_table_frozen)
1858 abort ();
1859 }
1860
1861 symbol_append (symbolP, symbol_lastP, & symbol_rootP, & symbol_lastP);
1862
1863 obj_symbol_new_hook (symbolP);
1864
1865 #ifdef tc_symbol_new_hook
1866 tc_symbol_new_hook (symbolP);
1867 #endif
1868
1869 #ifdef DEBUG_SYMS
1870 verify_symbol_chain (symbol_rootP, symbol_lastP);
1871 #endif /* DEBUG_SYMS */
1872 }
1873
1874
1875 static void
1876 s_ltorg (int ignored ATTRIBUTE_UNUSED)
1877 {
1878 unsigned int entry;
1879 literal_pool * pool;
1880 char sym_name[20];
1881
1882 pool = find_literal_pool ();
1883 if (pool == NULL
1884 || pool->symbol == NULL
1885 || pool->next_free_entry == 0)
1886 return;
1887
1888 mapping_state (MAP_DATA);
1889
1890 /* Align pool as you have word accesses.
1891 Only make a frag if we have to. */
1892 if (!need_pass_2)
1893 frag_align (2, 0, 0);
1894
1895 record_alignment (now_seg, 2);
1896
1897 sprintf (sym_name, "$$lit_\002%x", pool->id);
1898
1899 symbol_locate (pool->symbol, sym_name, now_seg,
1900 (valueT) frag_now_fix (), frag_now);
1901 symbol_table_insert (pool->symbol);
1902
1903 ARM_SET_THUMB (pool->symbol, thumb_mode);
1904
1905 #if defined OBJ_COFF || defined OBJ_ELF
1906 ARM_SET_INTERWORK (pool->symbol, support_interwork);
1907 #endif
1908
1909 for (entry = 0; entry < pool->next_free_entry; entry ++)
1910 /* First output the expression in the instruction to the pool. */
1911 emit_expr (&(pool->literals[entry]), 4); /* .word */
1912
1913 /* Mark the pool as empty. */
1914 pool->next_free_entry = 0;
1915 pool->symbol = NULL;
1916 }
1917
1918 #ifdef OBJ_ELF
1919 /* Forward declarations for functions below, in the MD interface
1920 section. */
1921 static void fix_new_arm (fragS *, int, short, expressionS *, int, int);
1922 static valueT create_unwind_entry (int);
1923 static void start_unwind_section (const segT, int);
1924 static void add_unwind_opcode (valueT, int);
1925 static void flush_pending_unwind (void);
1926
1927 /* Directives: Data. */
1928
1929 static void
1930 s_arm_elf_cons (int nbytes)
1931 {
1932 expressionS exp;
1933
1934 #ifdef md_flush_pending_output
1935 md_flush_pending_output ();
1936 #endif
1937
1938 if (is_it_end_of_statement ())
1939 {
1940 demand_empty_rest_of_line ();
1941 return;
1942 }
1943
1944 #ifdef md_cons_align
1945 md_cons_align (nbytes);
1946 #endif
1947
1948 mapping_state (MAP_DATA);
1949 do
1950 {
1951 int reloc;
1952 char *base = input_line_pointer;
1953
1954 expression (& exp);
1955
1956 if (exp.X_op != O_symbol)
1957 emit_expr (&exp, (unsigned int) nbytes);
1958 else
1959 {
1960 char *before_reloc = input_line_pointer;
1961 reloc = parse_reloc (&input_line_pointer);
1962 if (reloc == -1)
1963 {
1964 as_bad (_("unrecognized relocation suffix"));
1965 ignore_rest_of_line ();
1966 return;
1967 }
1968 else if (reloc == BFD_RELOC_UNUSED)
1969 emit_expr (&exp, (unsigned int) nbytes);
1970 else
1971 {
1972 reloc_howto_type *howto = bfd_reloc_type_lookup (stdoutput, reloc);
1973 int size = bfd_get_reloc_size (howto);
1974
1975 if (reloc == BFD_RELOC_ARM_PLT32)
1976 {
1977 as_bad (_("(plt) is only valid on branch targets"));
1978 reloc = BFD_RELOC_UNUSED;
1979 size = 0;
1980 }
1981
1982 if (size > nbytes)
1983 as_bad (_("%s relocations do not fit in %d bytes"),
1984 howto->name, nbytes);
1985 else
1986 {
1987 /* We've parsed an expression stopping at O_symbol.
1988 But there may be more expression left now that we
1989 have parsed the relocation marker. Parse it again.
1990 XXX Surely there is a cleaner way to do this. */
1991 char *p = input_line_pointer;
1992 int offset;
1993 char *save_buf = alloca (input_line_pointer - base);
1994 memcpy (save_buf, base, input_line_pointer - base);
1995 memmove (base + (input_line_pointer - before_reloc),
1996 base, before_reloc - base);
1997
1998 input_line_pointer = base + (input_line_pointer-before_reloc);
1999 expression (&exp);
2000 memcpy (base, save_buf, p - base);
2001
2002 offset = nbytes - size;
2003 p = frag_more ((int) nbytes);
2004 fix_new_exp (frag_now, p - frag_now->fr_literal + offset,
2005 size, &exp, 0, reloc);
2006 }
2007 }
2008 }
2009 }
2010 while (*input_line_pointer++ == ',');
2011
2012 /* Put terminator back into stream. */
2013 input_line_pointer --;
2014 demand_empty_rest_of_line ();
2015 }
2016
2017
2018 /* Parse a .rel31 directive. */
2019
2020 static void
2021 s_arm_rel31 (int ignored ATTRIBUTE_UNUSED)
2022 {
2023 expressionS exp;
2024 char *p;
2025 valueT highbit;
2026
2027 highbit = 0;
2028 if (*input_line_pointer == '1')
2029 highbit = 0x80000000;
2030 else if (*input_line_pointer != '0')
2031 as_bad (_("expected 0 or 1"));
2032
2033 input_line_pointer++;
2034 if (*input_line_pointer != ',')
2035 as_bad (_("missing comma"));
2036 input_line_pointer++;
2037
2038 #ifdef md_flush_pending_output
2039 md_flush_pending_output ();
2040 #endif
2041
2042 #ifdef md_cons_align
2043 md_cons_align (4);
2044 #endif
2045
2046 mapping_state (MAP_DATA);
2047
2048 expression (&exp);
2049
2050 p = frag_more (4);
2051 md_number_to_chars (p, highbit, 4);
2052 fix_new_arm (frag_now, p - frag_now->fr_literal, 4, &exp, 1,
2053 BFD_RELOC_ARM_PREL31);
2054
2055 demand_empty_rest_of_line ();
2056 }
2057
2058 /* Directives: AEABI stack-unwind tables. */
2059
2060 /* Parse an unwind_fnstart directive. Simply records the current location. */
2061
2062 static void
2063 s_arm_unwind_fnstart (int ignored ATTRIBUTE_UNUSED)
2064 {
2065 demand_empty_rest_of_line ();
2066 /* Mark the start of the function. */
2067 unwind.proc_start = expr_build_dot ();
2068
2069 /* Reset the rest of the unwind info. */
2070 unwind.opcode_count = 0;
2071 unwind.table_entry = NULL;
2072 unwind.personality_routine = NULL;
2073 unwind.personality_index = -1;
2074 unwind.frame_size = 0;
2075 unwind.fp_offset = 0;
2076 unwind.fp_reg = 13;
2077 unwind.fp_used = 0;
2078 unwind.sp_restored = 0;
2079 }
2080
2081
2082 /* Parse a handlerdata directive. Creates the exception handling table entry
2083 for the function. */
2084
2085 static void
2086 s_arm_unwind_handlerdata (int ignored ATTRIBUTE_UNUSED)
2087 {
2088 demand_empty_rest_of_line ();
2089 if (unwind.table_entry)
2090 as_bad (_("dupicate .handlerdata directive"));
2091
2092 create_unwind_entry (1);
2093 }
2094
2095 /* Parse an unwind_fnend directive. Generates the index table entry. */
2096
2097 static void
2098 s_arm_unwind_fnend (int ignored ATTRIBUTE_UNUSED)
2099 {
2100 long where;
2101 char *ptr;
2102 valueT val;
2103
2104 demand_empty_rest_of_line ();
2105
2106 /* Add eh table entry. */
2107 if (unwind.table_entry == NULL)
2108 val = create_unwind_entry (0);
2109 else
2110 val = 0;
2111
2112 /* Add index table entry. This is two words. */
2113 start_unwind_section (unwind.saved_seg, 1);
2114 frag_align (2, 0, 0);
2115 record_alignment (now_seg, 2);
2116
2117 ptr = frag_more (8);
2118 where = frag_now_fix () - 8;
2119
2120 /* Self relative offset of the function start. */
2121 fix_new (frag_now, where, 4, unwind.proc_start, 0, 1,
2122 BFD_RELOC_ARM_PREL31);
2123
2124 /* Indicate dependency on EHABI-defined personality routines to the
2125 linker, if it hasn't been done already. */
2126 if (unwind.personality_index >= 0 && unwind.personality_index < 3
2127 && !(marked_pr_dependency & (1 << unwind.personality_index)))
2128 {
2129 static const char *const name[] = {
2130 "__aeabi_unwind_cpp_pr0",
2131 "__aeabi_unwind_cpp_pr1",
2132 "__aeabi_unwind_cpp_pr2"
2133 };
2134 symbolS *pr = symbol_find_or_make (name[unwind.personality_index]);
2135 fix_new (frag_now, where, 0, pr, 0, 1, BFD_RELOC_NONE);
2136 marked_pr_dependency |= 1 << unwind.personality_index;
2137 seg_info (now_seg)->tc_segment_info_data.marked_pr_dependency
2138 = marked_pr_dependency;
2139 }
2140
2141 if (val)
2142 /* Inline exception table entry. */
2143 md_number_to_chars (ptr + 4, val, 4);
2144 else
2145 /* Self relative offset of the table entry. */
2146 fix_new (frag_now, where + 4, 4, unwind.table_entry, 0, 1,
2147 BFD_RELOC_ARM_PREL31);
2148
2149 /* Restore the original section. */
2150 subseg_set (unwind.saved_seg, unwind.saved_subseg);
2151 }
2152
2153
2154 /* Parse an unwind_cantunwind directive. */
2155
2156 static void
2157 s_arm_unwind_cantunwind (int ignored ATTRIBUTE_UNUSED)
2158 {
2159 demand_empty_rest_of_line ();
2160 if (unwind.personality_routine || unwind.personality_index != -1)
2161 as_bad (_("personality routine specified for cantunwind frame"));
2162
2163 unwind.personality_index = -2;
2164 }
2165
2166
2167 /* Parse a personalityindex directive. */
2168
2169 static void
2170 s_arm_unwind_personalityindex (int ignored ATTRIBUTE_UNUSED)
2171 {
2172 expressionS exp;
2173
2174 if (unwind.personality_routine || unwind.personality_index != -1)
2175 as_bad (_("duplicate .personalityindex directive"));
2176
2177 expression (&exp);
2178
2179 if (exp.X_op != O_constant
2180 || exp.X_add_number < 0 || exp.X_add_number > 15)
2181 {
2182 as_bad (_("bad personality routine number"));
2183 ignore_rest_of_line ();
2184 return;
2185 }
2186
2187 unwind.personality_index = exp.X_add_number;
2188
2189 demand_empty_rest_of_line ();
2190 }
2191
2192
2193 /* Parse a personality directive. */
2194
2195 static void
2196 s_arm_unwind_personality (int ignored ATTRIBUTE_UNUSED)
2197 {
2198 char *name, *p, c;
2199
2200 if (unwind.personality_routine || unwind.personality_index != -1)
2201 as_bad (_("duplicate .personality directive"));
2202
2203 name = input_line_pointer;
2204 c = get_symbol_end ();
2205 p = input_line_pointer;
2206 unwind.personality_routine = symbol_find_or_make (name);
2207 *p = c;
2208 demand_empty_rest_of_line ();
2209 }
2210
2211
2212 /* Parse a directive saving core registers. */
2213
2214 static void
2215 s_arm_unwind_save_core (void)
2216 {
2217 valueT op;
2218 long range;
2219 int n;
2220
2221 range = parse_reg_list (&input_line_pointer);
2222 if (range == FAIL)
2223 {
2224 as_bad (_("expected register list"));
2225 ignore_rest_of_line ();
2226 return;
2227 }
2228
2229 demand_empty_rest_of_line ();
2230
2231 /* Turn .unwind_movsp ip followed by .unwind_save {..., ip, ...}
2232 into .unwind_save {..., sp...}. We aren't bothered about the value of
2233 ip because it is clobbered by calls. */
2234 if (unwind.sp_restored && unwind.fp_reg == 12
2235 && (range & 0x3000) == 0x1000)
2236 {
2237 unwind.opcode_count--;
2238 unwind.sp_restored = 0;
2239 range = (range | 0x2000) & ~0x1000;
2240 unwind.pending_offset = 0;
2241 }
2242
2243 /* See if we can use the short opcodes. These pop a block of upto 8
2244 registers starting with r4, plus maybe r14. */
2245 for (n = 0; n < 8; n++)
2246 {
2247 /* Break at the first non-saved register. */
2248 if ((range & (1 << (n + 4))) == 0)
2249 break;
2250 }
2251 /* See if there are any other bits set. */
2252 if (n == 0 || (range & (0xfff0 << n) & 0xbff0) != 0)
2253 {
2254 /* Use the long form. */
2255 op = 0x8000 | ((range >> 4) & 0xfff);
2256 add_unwind_opcode (op, 2);
2257 }
2258 else
2259 {
2260 /* Use the short form. */
2261 if (range & 0x4000)
2262 op = 0xa8; /* Pop r14. */
2263 else
2264 op = 0xa0; /* Do not pop r14. */
2265 op |= (n - 1);
2266 add_unwind_opcode (op, 1);
2267 }
2268
2269 /* Pop r0-r3. */
2270 if (range & 0xf)
2271 {
2272 op = 0xb100 | (range & 0xf);
2273 add_unwind_opcode (op, 2);
2274 }
2275
2276 /* Record the number of bytes pushed. */
2277 for (n = 0; n < 16; n++)
2278 {
2279 if (range & (1 << n))
2280 unwind.frame_size += 4;
2281 }
2282 }
2283
2284
2285 /* Parse a directive saving FPA registers. */
2286
2287 static void
2288 s_arm_unwind_save_fpa (int reg)
2289 {
2290 expressionS exp;
2291 int num_regs;
2292 valueT op;
2293
2294 /* Get Number of registers to transfer. */
2295 if (skip_past_comma (&input_line_pointer) != FAIL)
2296 expression (&exp);
2297 else
2298 exp.X_op = O_illegal;
2299
2300 if (exp.X_op != O_constant)
2301 {
2302 as_bad (_("expected , <constant>"));
2303 ignore_rest_of_line ();
2304 return;
2305 }
2306
2307 num_regs = exp.X_add_number;
2308
2309 if (num_regs < 1 || num_regs > 4)
2310 {
2311 as_bad (_("number of registers must be in the range [1:4]"));
2312 ignore_rest_of_line ();
2313 return;
2314 }
2315
2316 demand_empty_rest_of_line ();
2317
2318 if (reg == 4)
2319 {
2320 /* Short form. */
2321 op = 0xb4 | (num_regs - 1);
2322 add_unwind_opcode (op, 1);
2323 }
2324 else
2325 {
2326 /* Long form. */
2327 op = 0xc800 | (reg << 4) | (num_regs - 1);
2328 add_unwind_opcode (op, 2);
2329 }
2330 unwind.frame_size += num_regs * 12;
2331 }
2332
2333
2334 /* Parse a directive saving VFP registers. */
2335
2336 static void
2337 s_arm_unwind_save_vfp (void)
2338 {
2339 int count;
2340 unsigned int reg;
2341 valueT op;
2342
2343 count = parse_vfp_reg_list (&input_line_pointer, &reg, 1);
2344 if (count == FAIL)
2345 {
2346 as_bad (_("expected register list"));
2347 ignore_rest_of_line ();
2348 return;
2349 }
2350
2351 demand_empty_rest_of_line ();
2352
2353 if (reg == 8)
2354 {
2355 /* Short form. */
2356 op = 0xb8 | (count - 1);
2357 add_unwind_opcode (op, 1);
2358 }
2359 else
2360 {
2361 /* Long form. */
2362 op = 0xb300 | (reg << 4) | (count - 1);
2363 add_unwind_opcode (op, 2);
2364 }
2365 unwind.frame_size += count * 8 + 4;
2366 }
2367
2368
2369 /* Parse a directive saving iWMMXt data registers. */
2370
2371 static void
2372 s_arm_unwind_save_mmxwr (void)
2373 {
2374 int reg;
2375 int hi_reg;
2376 int i;
2377 unsigned mask = 0;
2378 valueT op;
2379
2380 if (*input_line_pointer == '{')
2381 input_line_pointer++;
2382
2383 do
2384 {
2385 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWR);
2386
2387 if (reg == FAIL)
2388 {
2389 as_bad (_(reg_expected_msgs[REG_TYPE_MMXWR]));
2390 goto error;
2391 }
2392
2393 if (mask >> reg)
2394 as_tsktsk (_("register list not in ascending order"));
2395 mask |= 1 << reg;
2396
2397 if (*input_line_pointer == '-')
2398 {
2399 input_line_pointer++;
2400 hi_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWR);
2401 if (hi_reg == FAIL)
2402 {
2403 as_bad (_(reg_expected_msgs[REG_TYPE_MMXWR]));
2404 goto error;
2405 }
2406 else if (reg >= hi_reg)
2407 {
2408 as_bad (_("bad register range"));
2409 goto error;
2410 }
2411 for (; reg < hi_reg; reg++)
2412 mask |= 1 << reg;
2413 }
2414 }
2415 while (skip_past_comma (&input_line_pointer) != FAIL);
2416
2417 if (*input_line_pointer == '}')
2418 input_line_pointer++;
2419
2420 demand_empty_rest_of_line ();
2421
2422 /* Generate any deferred opcodes becuuse we're going to be looking at
2423 the list. */
2424 flush_pending_unwind ();
2425
2426 for (i = 0; i < 16; i++)
2427 {
2428 if (mask & (1 << i))
2429 unwind.frame_size += 8;
2430 }
2431
2432 /* Attempt to combine with a previous opcode. We do this because gcc
2433 likes to output separate unwind directives for a single block of
2434 registers. */
2435 if (unwind.opcode_count > 0)
2436 {
2437 i = unwind.opcodes[unwind.opcode_count - 1];
2438 if ((i & 0xf8) == 0xc0)
2439 {
2440 i &= 7;
2441 /* Only merge if the blocks are contiguous. */
2442 if (i < 6)
2443 {
2444 if ((mask & 0xfe00) == (1 << 9))
2445 {
2446 mask |= ((1 << (i + 11)) - 1) & 0xfc00;
2447 unwind.opcode_count--;
2448 }
2449 }
2450 else if (i == 6 && unwind.opcode_count >= 2)
2451 {
2452 i = unwind.opcodes[unwind.opcode_count - 2];
2453 reg = i >> 4;
2454 i &= 0xf;
2455
2456 op = 0xffff << (reg - 1);
2457 if (reg > 0
2458 || ((mask & op) == (1u << (reg - 1))))
2459 {
2460 op = (1 << (reg + i + 1)) - 1;
2461 op &= ~((1 << reg) - 1);
2462 mask |= op;
2463 unwind.opcode_count -= 2;
2464 }
2465 }
2466 }
2467 }
2468
2469 hi_reg = 15;
2470 /* We want to generate opcodes in the order the registers have been
2471 saved, ie. descending order. */
2472 for (reg = 15; reg >= -1; reg--)
2473 {
2474 /* Save registers in blocks. */
2475 if (reg < 0
2476 || !(mask & (1 << reg)))
2477 {
2478 /* We found an unsaved reg. Generate opcodes to save the
2479 preceeding block. */
2480 if (reg != hi_reg)
2481 {
2482 if (reg == 9)
2483 {
2484 /* Short form. */
2485 op = 0xc0 | (hi_reg - 10);
2486 add_unwind_opcode (op, 1);
2487 }
2488 else
2489 {
2490 /* Long form. */
2491 op = 0xc600 | ((reg + 1) << 4) | ((hi_reg - reg) - 1);
2492 add_unwind_opcode (op, 2);
2493 }
2494 }
2495 hi_reg = reg - 1;
2496 }
2497 }
2498
2499 return;
2500 error:
2501 ignore_rest_of_line ();
2502 }
2503
2504 static void
2505 s_arm_unwind_save_mmxwcg (void)
2506 {
2507 int reg;
2508 int hi_reg;
2509 unsigned mask = 0;
2510 valueT op;
2511
2512 if (*input_line_pointer == '{')
2513 input_line_pointer++;
2514
2515 do
2516 {
2517 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWCG);
2518
2519 if (reg == FAIL)
2520 {
2521 as_bad (_(reg_expected_msgs[REG_TYPE_MMXWCG]));
2522 goto error;
2523 }
2524
2525 reg -= 8;
2526 if (mask >> reg)
2527 as_tsktsk (_("register list not in ascending order"));
2528 mask |= 1 << reg;
2529
2530 if (*input_line_pointer == '-')
2531 {
2532 input_line_pointer++;
2533 hi_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWCG);
2534 if (hi_reg == FAIL)
2535 {
2536 as_bad (_(reg_expected_msgs[REG_TYPE_MMXWCG]));
2537 goto error;
2538 }
2539 else if (reg >= hi_reg)
2540 {
2541 as_bad (_("bad register range"));
2542 goto error;
2543 }
2544 for (; reg < hi_reg; reg++)
2545 mask |= 1 << reg;
2546 }
2547 }
2548 while (skip_past_comma (&input_line_pointer) != FAIL);
2549
2550 if (*input_line_pointer == '}')
2551 input_line_pointer++;
2552
2553 demand_empty_rest_of_line ();
2554
2555 /* Generate any deferred opcodes becuuse we're going to be looking at
2556 the list. */
2557 flush_pending_unwind ();
2558
2559 for (reg = 0; reg < 16; reg++)
2560 {
2561 if (mask & (1 << reg))
2562 unwind.frame_size += 4;
2563 }
2564 op = 0xc700 | mask;
2565 add_unwind_opcode (op, 2);
2566 return;
2567 error:
2568 ignore_rest_of_line ();
2569 }
2570
2571
2572 /* Parse an unwind_save directive. */
2573
2574 static void
2575 s_arm_unwind_save (int ignored ATTRIBUTE_UNUSED)
2576 {
2577 char *peek;
2578 struct reg_entry *reg;
2579 bfd_boolean had_brace = FALSE;
2580
2581 /* Figure out what sort of save we have. */
2582 peek = input_line_pointer;
2583
2584 if (*peek == '{')
2585 {
2586 had_brace = TRUE;
2587 peek++;
2588 }
2589
2590 reg = arm_reg_parse_multi (&peek);
2591
2592 if (!reg)
2593 {
2594 as_bad (_("register expected"));
2595 ignore_rest_of_line ();
2596 return;
2597 }
2598
2599 switch (reg->type)
2600 {
2601 case REG_TYPE_FN:
2602 if (had_brace)
2603 {
2604 as_bad (_("FPA .unwind_save does not take a register list"));
2605 ignore_rest_of_line ();
2606 return;
2607 }
2608 s_arm_unwind_save_fpa (reg->number);
2609 return;
2610
2611 case REG_TYPE_RN: s_arm_unwind_save_core (); return;
2612 case REG_TYPE_VFD: s_arm_unwind_save_vfp (); return;
2613 case REG_TYPE_MMXWR: s_arm_unwind_save_mmxwr (); return;
2614 case REG_TYPE_MMXWCG: s_arm_unwind_save_mmxwcg (); return;
2615
2616 default:
2617 as_bad (_(".unwind_save does not support this kind of register"));
2618 ignore_rest_of_line ();
2619 }
2620 }
2621
2622
2623 /* Parse an unwind_movsp directive. */
2624
2625 static void
2626 s_arm_unwind_movsp (int ignored ATTRIBUTE_UNUSED)
2627 {
2628 int reg;
2629 valueT op;
2630
2631 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
2632 if (reg == FAIL)
2633 {
2634 as_bad (_(reg_expected_msgs[REG_TYPE_RN]));
2635 ignore_rest_of_line ();
2636 return;
2637 }
2638 demand_empty_rest_of_line ();
2639
2640 if (reg == REG_SP || reg == REG_PC)
2641 {
2642 as_bad (_("SP and PC not permitted in .unwind_movsp directive"));
2643 return;
2644 }
2645
2646 if (unwind.fp_reg != REG_SP)
2647 as_bad (_("unexpected .unwind_movsp directive"));
2648
2649 /* Generate opcode to restore the value. */
2650 op = 0x90 | reg;
2651 add_unwind_opcode (op, 1);
2652
2653 /* Record the information for later. */
2654 unwind.fp_reg = reg;
2655 unwind.fp_offset = unwind.frame_size;
2656 unwind.sp_restored = 1;
2657 }
2658
2659 /* Parse an unwind_pad directive. */
2660
2661 static void
2662 s_arm_unwind_pad (int ignored ATTRIBUTE_UNUSED)
2663 {
2664 int offset;
2665
2666 if (immediate_for_directive (&offset) == FAIL)
2667 return;
2668
2669 if (offset & 3)
2670 {
2671 as_bad (_("stack increment must be multiple of 4"));
2672 ignore_rest_of_line ();
2673 return;
2674 }
2675
2676 /* Don't generate any opcodes, just record the details for later. */
2677 unwind.frame_size += offset;
2678 unwind.pending_offset += offset;
2679
2680 demand_empty_rest_of_line ();
2681 }
2682
2683 /* Parse an unwind_setfp directive. */
2684
2685 static void
2686 s_arm_unwind_setfp (int ignored ATTRIBUTE_UNUSED)
2687 {
2688 int sp_reg;
2689 int fp_reg;
2690 int offset;
2691
2692 fp_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
2693 if (skip_past_comma (&input_line_pointer) == FAIL)
2694 sp_reg = FAIL;
2695 else
2696 sp_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
2697
2698 if (fp_reg == FAIL || sp_reg == FAIL)
2699 {
2700 as_bad (_("expected <reg>, <reg>"));
2701 ignore_rest_of_line ();
2702 return;
2703 }
2704
2705 /* Optional constant. */
2706 if (skip_past_comma (&input_line_pointer) != FAIL)
2707 {
2708 if (immediate_for_directive (&offset) == FAIL)
2709 return;
2710 }
2711 else
2712 offset = 0;
2713
2714 demand_empty_rest_of_line ();
2715
2716 if (sp_reg != 13 && sp_reg != unwind.fp_reg)
2717 {
2718 as_bad (_("register must be either sp or set by a previous"
2719 "unwind_movsp directive"));
2720 return;
2721 }
2722
2723 /* Don't generate any opcodes, just record the information for later. */
2724 unwind.fp_reg = fp_reg;
2725 unwind.fp_used = 1;
2726 if (sp_reg == 13)
2727 unwind.fp_offset = unwind.frame_size - offset;
2728 else
2729 unwind.fp_offset -= offset;
2730 }
2731
2732 /* Parse an unwind_raw directive. */
2733
2734 static void
2735 s_arm_unwind_raw (int ignored ATTRIBUTE_UNUSED)
2736 {
2737 expressionS exp;
2738 /* This is an arbitary limit. */
2739 unsigned char op[16];
2740 int count;
2741
2742 expression (&exp);
2743 if (exp.X_op == O_constant
2744 && skip_past_comma (&input_line_pointer) != FAIL)
2745 {
2746 unwind.frame_size += exp.X_add_number;
2747 expression (&exp);
2748 }
2749 else
2750 exp.X_op = O_illegal;
2751
2752 if (exp.X_op != O_constant)
2753 {
2754 as_bad (_("expected <offset>, <opcode>"));
2755 ignore_rest_of_line ();
2756 return;
2757 }
2758
2759 count = 0;
2760
2761 /* Parse the opcode. */
2762 for (;;)
2763 {
2764 if (count >= 16)
2765 {
2766 as_bad (_("unwind opcode too long"));
2767 ignore_rest_of_line ();
2768 }
2769 if (exp.X_op != O_constant || exp.X_add_number & ~0xff)
2770 {
2771 as_bad (_("invalid unwind opcode"));
2772 ignore_rest_of_line ();
2773 return;
2774 }
2775 op[count++] = exp.X_add_number;
2776
2777 /* Parse the next byte. */
2778 if (skip_past_comma (&input_line_pointer) == FAIL)
2779 break;
2780
2781 expression (&exp);
2782 }
2783
2784 /* Add the opcode bytes in reverse order. */
2785 while (count--)
2786 add_unwind_opcode (op[count], 1);
2787
2788 demand_empty_rest_of_line ();
2789 }
2790 #endif /* OBJ_ELF */
2791
2792 /* This table describes all the machine specific pseudo-ops the assembler
2793 has to support. The fields are:
2794 pseudo-op name without dot
2795 function to call to execute this pseudo-op
2796 Integer arg to pass to the function. */
2797
2798 const pseudo_typeS md_pseudo_table[] =
2799 {
2800 /* Never called because '.req' does not start a line. */
2801 { "req", s_req, 0 },
2802 { "unreq", s_unreq, 0 },
2803 { "bss", s_bss, 0 },
2804 { "align", s_align, 0 },
2805 { "arm", s_arm, 0 },
2806 { "thumb", s_thumb, 0 },
2807 { "code", s_code, 0 },
2808 { "force_thumb", s_force_thumb, 0 },
2809 { "thumb_func", s_thumb_func, 0 },
2810 { "thumb_set", s_thumb_set, 0 },
2811 { "even", s_even, 0 },
2812 { "ltorg", s_ltorg, 0 },
2813 { "pool", s_ltorg, 0 },
2814 { "syntax", s_syntax, 0 },
2815 #ifdef OBJ_ELF
2816 { "word", s_arm_elf_cons, 4 },
2817 { "long", s_arm_elf_cons, 4 },
2818 { "rel31", s_arm_rel31, 0 },
2819 { "fnstart", s_arm_unwind_fnstart, 0 },
2820 { "fnend", s_arm_unwind_fnend, 0 },
2821 { "cantunwind", s_arm_unwind_cantunwind, 0 },
2822 { "personality", s_arm_unwind_personality, 0 },
2823 { "personalityindex", s_arm_unwind_personalityindex, 0 },
2824 { "handlerdata", s_arm_unwind_handlerdata, 0 },
2825 { "save", s_arm_unwind_save, 0 },
2826 { "movsp", s_arm_unwind_movsp, 0 },
2827 { "pad", s_arm_unwind_pad, 0 },
2828 { "setfp", s_arm_unwind_setfp, 0 },
2829 { "unwind_raw", s_arm_unwind_raw, 0 },
2830 #else
2831 { "word", cons, 4},
2832 #endif
2833 { "extend", float_cons, 'x' },
2834 { "ldouble", float_cons, 'x' },
2835 { "packed", float_cons, 'p' },
2836 { 0, 0, 0 }
2837 };
2838 \f
2839 /* Parser functions used exclusively in instruction operands. */
2840
2841 /* Generic immediate-value read function for use in insn parsing.
2842 STR points to the beginning of the immediate (the leading #);
2843 VAL receives the value; if the value is outside [MIN, MAX]
2844 issue an error. PREFIX_OPT is true if the immediate prefix is
2845 optional. */
2846
2847 static int
2848 parse_immediate (char **str, int *val, int min, int max,
2849 bfd_boolean prefix_opt)
2850 {
2851 expressionS exp;
2852 my_get_expression (&exp, str, prefix_opt ? GE_OPT_PREFIX : GE_IMM_PREFIX);
2853 if (exp.X_op != O_constant)
2854 {
2855 inst.error = _("constant expression required");
2856 return FAIL;
2857 }
2858
2859 if (exp.X_add_number < min || exp.X_add_number > max)
2860 {
2861 inst.error = _("immediate value out of range");
2862 return FAIL;
2863 }
2864
2865 *val = exp.X_add_number;
2866 return SUCCESS;
2867 }
2868
2869 /* Returns the pseudo-register number of an FPA immediate constant,
2870 or FAIL if there isn't a valid constant here. */
2871
2872 static int
2873 parse_fpa_immediate (char ** str)
2874 {
2875 LITTLENUM_TYPE words[MAX_LITTLENUMS];
2876 char * save_in;
2877 expressionS exp;
2878 int i;
2879 int j;
2880
2881 /* First try and match exact strings, this is to guarantee
2882 that some formats will work even for cross assembly. */
2883
2884 for (i = 0; fp_const[i]; i++)
2885 {
2886 if (strncmp (*str, fp_const[i], strlen (fp_const[i])) == 0)
2887 {
2888 char *start = *str;
2889
2890 *str += strlen (fp_const[i]);
2891 if (is_end_of_line[(unsigned char) **str])
2892 return i + 8;
2893 *str = start;
2894 }
2895 }
2896
2897 /* Just because we didn't get a match doesn't mean that the constant
2898 isn't valid, just that it is in a format that we don't
2899 automatically recognize. Try parsing it with the standard
2900 expression routines. */
2901
2902 memset (words, 0, MAX_LITTLENUMS * sizeof (LITTLENUM_TYPE));
2903
2904 /* Look for a raw floating point number. */
2905 if ((save_in = atof_ieee (*str, 'x', words)) != NULL
2906 && is_end_of_line[(unsigned char) *save_in])
2907 {
2908 for (i = 0; i < NUM_FLOAT_VALS; i++)
2909 {
2910 for (j = 0; j < MAX_LITTLENUMS; j++)
2911 {
2912 if (words[j] != fp_values[i][j])
2913 break;
2914 }
2915
2916 if (j == MAX_LITTLENUMS)
2917 {
2918 *str = save_in;
2919 return i + 8;
2920 }
2921 }
2922 }
2923
2924 /* Try and parse a more complex expression, this will probably fail
2925 unless the code uses a floating point prefix (eg "0f"). */
2926 save_in = input_line_pointer;
2927 input_line_pointer = *str;
2928 if (expression (&exp) == absolute_section
2929 && exp.X_op == O_big
2930 && exp.X_add_number < 0)
2931 {
2932 /* FIXME: 5 = X_PRECISION, should be #define'd where we can use it.
2933 Ditto for 15. */
2934 if (gen_to_words (words, 5, (long) 15) == 0)
2935 {
2936 for (i = 0; i < NUM_FLOAT_VALS; i++)
2937 {
2938 for (j = 0; j < MAX_LITTLENUMS; j++)
2939 {
2940 if (words[j] != fp_values[i][j])
2941 break;
2942 }
2943
2944 if (j == MAX_LITTLENUMS)
2945 {
2946 *str = input_line_pointer;
2947 input_line_pointer = save_in;
2948 return i + 8;
2949 }
2950 }
2951 }
2952 }
2953
2954 *str = input_line_pointer;
2955 input_line_pointer = save_in;
2956 inst.error = _("invalid FPA immediate expression");
2957 return FAIL;
2958 }
2959
2960 /* Shift operands. */
2961 enum shift_kind
2962 {
2963 SHIFT_LSL, SHIFT_LSR, SHIFT_ASR, SHIFT_ROR, SHIFT_RRX
2964 };
2965
2966 struct asm_shift_name
2967 {
2968 const char *name;
2969 enum shift_kind kind;
2970 };
2971
2972 /* Third argument to parse_shift. */
2973 enum parse_shift_mode
2974 {
2975 NO_SHIFT_RESTRICT, /* Any kind of shift is accepted. */
2976 SHIFT_IMMEDIATE, /* Shift operand must be an immediate. */
2977 SHIFT_LSL_OR_ASR_IMMEDIATE, /* Shift must be LSL or ASR immediate. */
2978 SHIFT_ASR_IMMEDIATE, /* Shift must be ASR immediate. */
2979 SHIFT_LSL_IMMEDIATE, /* Shift must be LSL immediate. */
2980 };
2981
2982 /* Parse a <shift> specifier on an ARM data processing instruction.
2983 This has three forms:
2984
2985 (LSL|LSR|ASL|ASR|ROR) Rs
2986 (LSL|LSR|ASL|ASR|ROR) #imm
2987 RRX
2988
2989 Note that ASL is assimilated to LSL in the instruction encoding, and
2990 RRX to ROR #0 (which cannot be written as such). */
2991
2992 static int
2993 parse_shift (char **str, int i, enum parse_shift_mode mode)
2994 {
2995 const struct asm_shift_name *shift_name;
2996 enum shift_kind shift;
2997 char *s = *str;
2998 char *p = s;
2999 int reg;
3000
3001 for (p = *str; ISALPHA (*p); p++)
3002 ;
3003
3004 if (p == *str)
3005 {
3006 inst.error = _("shift expression expected");
3007 return FAIL;
3008 }
3009
3010 shift_name = hash_find_n (arm_shift_hsh, *str, p - *str);
3011
3012 if (shift_name == NULL)
3013 {
3014 inst.error = _("shift expression expected");
3015 return FAIL;
3016 }
3017
3018 shift = shift_name->kind;
3019
3020 switch (mode)
3021 {
3022 case NO_SHIFT_RESTRICT:
3023 case SHIFT_IMMEDIATE: break;
3024
3025 case SHIFT_LSL_OR_ASR_IMMEDIATE:
3026 if (shift != SHIFT_LSL && shift != SHIFT_ASR)
3027 {
3028 inst.error = _("'LSL' or 'ASR' required");
3029 return FAIL;
3030 }
3031 break;
3032
3033 case SHIFT_LSL_IMMEDIATE:
3034 if (shift != SHIFT_LSL)
3035 {
3036 inst.error = _("'LSL' required");
3037 return FAIL;
3038 }
3039 break;
3040
3041 case SHIFT_ASR_IMMEDIATE:
3042 if (shift != SHIFT_ASR)
3043 {
3044 inst.error = _("'ASR' required");
3045 return FAIL;
3046 }
3047 break;
3048
3049 default: abort ();
3050 }
3051
3052 if (shift != SHIFT_RRX)
3053 {
3054 /* Whitespace can appear here if the next thing is a bare digit. */
3055 skip_whitespace (p);
3056
3057 if (mode == NO_SHIFT_RESTRICT
3058 && (reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
3059 {
3060 inst.operands[i].imm = reg;
3061 inst.operands[i].immisreg = 1;
3062 }
3063 else if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX))
3064 return FAIL;
3065 }
3066 inst.operands[i].shift_kind = shift;
3067 inst.operands[i].shifted = 1;
3068 *str = p;
3069 return SUCCESS;
3070 }
3071
3072 /* Parse a <shifter_operand> for an ARM data processing instruction:
3073
3074 #<immediate>
3075 #<immediate>, <rotate>
3076 <Rm>
3077 <Rm>, <shift>
3078
3079 where <shift> is defined by parse_shift above, and <rotate> is a
3080 multiple of 2 between 0 and 30. Validation of immediate operands
3081 is deferred to md_apply_fix. */
3082
3083 static int
3084 parse_shifter_operand (char **str, int i)
3085 {
3086 int value;
3087 expressionS expr;
3088
3089 if ((value = arm_reg_parse (str, REG_TYPE_RN)) != FAIL)
3090 {
3091 inst.operands[i].reg = value;
3092 inst.operands[i].isreg = 1;
3093
3094 /* parse_shift will override this if appropriate */
3095 inst.reloc.exp.X_op = O_constant;
3096 inst.reloc.exp.X_add_number = 0;
3097
3098 if (skip_past_comma (str) == FAIL)
3099 return SUCCESS;
3100
3101 /* Shift operation on register. */
3102 return parse_shift (str, i, NO_SHIFT_RESTRICT);
3103 }
3104
3105 if (my_get_expression (&inst.reloc.exp, str, GE_IMM_PREFIX))
3106 return FAIL;
3107
3108 if (skip_past_comma (str) == SUCCESS)
3109 {
3110 /* #x, y -- ie explicit rotation by Y. */
3111 if (my_get_expression (&expr, str, GE_NO_PREFIX))
3112 return FAIL;
3113
3114 if (expr.X_op != O_constant || inst.reloc.exp.X_op != O_constant)
3115 {
3116 inst.error = _("constant expression expected");
3117 return FAIL;
3118 }
3119
3120 value = expr.X_add_number;
3121 if (value < 0 || value > 30 || value % 2 != 0)
3122 {
3123 inst.error = _("invalid rotation");
3124 return FAIL;
3125 }
3126 if (inst.reloc.exp.X_add_number < 0 || inst.reloc.exp.X_add_number > 255)
3127 {
3128 inst.error = _("invalid constant");
3129 return FAIL;
3130 }
3131
3132 /* Convert to decoded value. md_apply_fix will put it back. */
3133 inst.reloc.exp.X_add_number
3134 = (((inst.reloc.exp.X_add_number << (32 - value))
3135 | (inst.reloc.exp.X_add_number >> value)) & 0xffffffff);
3136 }
3137
3138 inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
3139 inst.reloc.pc_rel = 0;
3140 return SUCCESS;
3141 }
3142
3143 /* Parse all forms of an ARM address expression. Information is written
3144 to inst.operands[i] and/or inst.reloc.
3145
3146 Preindexed addressing (.preind=1):
3147
3148 [Rn, #offset] .reg=Rn .reloc.exp=offset
3149 [Rn, +/-Rm] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
3150 [Rn, +/-Rm, shift] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
3151 .shift_kind=shift .reloc.exp=shift_imm
3152
3153 These three may have a trailing ! which causes .writeback to be set also.
3154
3155 Postindexed addressing (.postind=1, .writeback=1):
3156
3157 [Rn], #offset .reg=Rn .reloc.exp=offset
3158 [Rn], +/-Rm .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
3159 [Rn], +/-Rm, shift .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
3160 .shift_kind=shift .reloc.exp=shift_imm
3161
3162 Unindexed addressing (.preind=0, .postind=0):
3163
3164 [Rn], {option} .reg=Rn .imm=option .immisreg=0
3165
3166 Other:
3167
3168 [Rn]{!} shorthand for [Rn,#0]{!}
3169 =immediate .isreg=0 .reloc.exp=immediate
3170 label .reg=PC .reloc.pc_rel=1 .reloc.exp=label
3171
3172 It is the caller's responsibility to check for addressing modes not
3173 supported by the instruction, and to set inst.reloc.type. */
3174
3175 static int
3176 parse_address (char **str, int i)
3177 {
3178 char *p = *str;
3179 int reg;
3180
3181 if (skip_past_char (&p, '[') == FAIL)
3182 {
3183 if (skip_past_char (&p, '=') == FAIL)
3184 {
3185 /* bare address - translate to PC-relative offset */
3186 inst.reloc.pc_rel = 1;
3187 inst.operands[i].reg = REG_PC;
3188 inst.operands[i].isreg = 1;
3189 inst.operands[i].preind = 1;
3190 }
3191 /* else a load-constant pseudo op, no special treatment needed here */
3192
3193 if (my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX))
3194 return FAIL;
3195
3196 *str = p;
3197 return SUCCESS;
3198 }
3199
3200 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
3201 {
3202 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
3203 return FAIL;
3204 }
3205 inst.operands[i].reg = reg;
3206 inst.operands[i].isreg = 1;
3207
3208 if (skip_past_comma (&p) == SUCCESS)
3209 {
3210 inst.operands[i].preind = 1;
3211
3212 if (*p == '+') p++;
3213 else if (*p == '-') p++, inst.operands[i].negative = 1;
3214
3215 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
3216 {
3217 inst.operands[i].imm = reg;
3218 inst.operands[i].immisreg = 1;
3219
3220 if (skip_past_comma (&p) == SUCCESS)
3221 if (parse_shift (&p, i, SHIFT_IMMEDIATE) == FAIL)
3222 return FAIL;
3223 }
3224 else
3225 {
3226 if (inst.operands[i].negative)
3227 {
3228 inst.operands[i].negative = 0;
3229 p--;
3230 }
3231 if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX))
3232 return FAIL;
3233 }
3234 }
3235
3236 if (skip_past_char (&p, ']') == FAIL)
3237 {
3238 inst.error = _("']' expected");
3239 return FAIL;
3240 }
3241
3242 if (skip_past_char (&p, '!') == SUCCESS)
3243 inst.operands[i].writeback = 1;
3244
3245 else if (skip_past_comma (&p) == SUCCESS)
3246 {
3247 if (skip_past_char (&p, '{') == SUCCESS)
3248 {
3249 /* [Rn], {expr} - unindexed, with option */
3250 if (parse_immediate (&p, &inst.operands[i].imm,
3251 0, 255, TRUE) == FAIL)
3252 return FAIL;
3253
3254 if (skip_past_char (&p, '}') == FAIL)
3255 {
3256 inst.error = _("'}' expected at end of 'option' field");
3257 return FAIL;
3258 }
3259 if (inst.operands[i].preind)
3260 {
3261 inst.error = _("cannot combine index with option");
3262 return FAIL;
3263 }
3264 *str = p;
3265 return SUCCESS;
3266 }
3267 else
3268 {
3269 inst.operands[i].postind = 1;
3270 inst.operands[i].writeback = 1;
3271
3272 if (inst.operands[i].preind)
3273 {
3274 inst.error = _("cannot combine pre- and post-indexing");
3275 return FAIL;
3276 }
3277
3278 if (*p == '+') p++;
3279 else if (*p == '-') p++, inst.operands[i].negative = 1;
3280
3281 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
3282 {
3283 inst.operands[i].imm = reg;
3284 inst.operands[i].immisreg = 1;
3285
3286 if (skip_past_comma (&p) == SUCCESS)
3287 if (parse_shift (&p, i, SHIFT_IMMEDIATE) == FAIL)
3288 return FAIL;
3289 }
3290 else
3291 {
3292 if (inst.operands[i].negative)
3293 {
3294 inst.operands[i].negative = 0;
3295 p--;
3296 }
3297 if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX))
3298 return FAIL;
3299 }
3300 }
3301 }
3302
3303 /* If at this point neither .preind nor .postind is set, we have a
3304 bare [Rn]{!}, which is shorthand for [Rn,#0]{!}. */
3305 if (inst.operands[i].preind == 0 && inst.operands[i].postind == 0)
3306 {
3307 inst.operands[i].preind = 1;
3308 inst.reloc.exp.X_op = O_constant;
3309 inst.reloc.exp.X_add_number = 0;
3310 }
3311 *str = p;
3312 return SUCCESS;
3313 }
3314
3315 /* Miscellaneous. */
3316
3317 /* Parse a PSR flag operand. The value returned is FAIL on syntax error,
3318 or a bitmask suitable to be or-ed into the ARM msr instruction. */
3319 static int
3320 parse_psr (char **str)
3321 {
3322 char *p;
3323 unsigned long psr_field;
3324
3325 /* CPSR's and SPSR's can now be lowercase. This is just a convenience
3326 feature for ease of use and backwards compatibility. */
3327 p = *str;
3328 if (*p == 's' || *p == 'S')
3329 psr_field = SPSR_BIT;
3330 else if (*p == 'c' || *p == 'C')
3331 psr_field = 0;
3332 else
3333 goto error;
3334
3335 p++;
3336 if (strncasecmp (p, "PSR", 3) != 0)
3337 goto error;
3338 p += 3;
3339
3340 if (*p == '_')
3341 {
3342 /* A suffix follows. */
3343 const struct asm_psr *psr;
3344 char *start;
3345
3346 p++;
3347 start = p;
3348
3349 do
3350 p++;
3351 while (ISALNUM (*p) || *p == '_');
3352
3353 psr = hash_find_n (arm_psr_hsh, start, p - start);
3354 if (!psr)
3355 goto error;
3356
3357 psr_field |= psr->field;
3358 }
3359 else
3360 {
3361 if (ISALNUM (*p))
3362 goto error; /* Garbage after "[CS]PSR". */
3363
3364 psr_field |= (PSR_c | PSR_f);
3365 }
3366 *str = p;
3367 return psr_field;
3368
3369 error:
3370 inst.error = _("flag for {c}psr instruction expected");
3371 return FAIL;
3372 }
3373
3374 /* Parse the flags argument to CPSI[ED]. Returns FAIL on error, or a
3375 value suitable for splatting into the AIF field of the instruction. */
3376
3377 static int
3378 parse_cps_flags (char **str)
3379 {
3380 int val = 0;
3381 int saw_a_flag = 0;
3382 char *s = *str;
3383
3384 for (;;)
3385 switch (*s++)
3386 {
3387 case '\0': case ',':
3388 goto done;
3389
3390 case 'a': case 'A': saw_a_flag = 1; val |= 0x4; break;
3391 case 'i': case 'I': saw_a_flag = 1; val |= 0x2; break;
3392 case 'f': case 'F': saw_a_flag = 1; val |= 0x1; break;
3393
3394 default:
3395 inst.error = _("unrecognized CPS flag");
3396 return FAIL;
3397 }
3398
3399 done:
3400 if (saw_a_flag == 0)
3401 {
3402 inst.error = _("missing CPS flags");
3403 return FAIL;
3404 }
3405
3406 *str = s - 1;
3407 return val;
3408 }
3409
3410 /* Parse an endian specifier ("BE" or "LE", case insensitive);
3411 returns 0 for big-endian, 1 for little-endian, FAIL for an error. */
3412
3413 static int
3414 parse_endian_specifier (char **str)
3415 {
3416 int little_endian;
3417 char *s = *str;
3418
3419 if (strncasecmp (s, "BE", 2))
3420 little_endian = 0;
3421 else if (strncasecmp (s, "LE", 2))
3422 little_endian = 1;
3423 else
3424 {
3425 inst.error = _("valid endian specifiers are be or le");
3426 return FAIL;
3427 }
3428
3429 if (ISALNUM (s[2]) || s[2] == '_')
3430 {
3431 inst.error = _("valid endian specifiers are be or le");
3432 return FAIL;
3433 }
3434
3435 *str = s + 2;
3436 return little_endian;
3437 }
3438
3439 /* Parse a rotation specifier: ROR #0, #8, #16, #24. *val receives a
3440 value suitable for poking into the rotate field of an sxt or sxta
3441 instruction, or FAIL on error. */
3442
3443 static int
3444 parse_ror (char **str)
3445 {
3446 int rot;
3447 char *s = *str;
3448
3449 if (strncasecmp (s, "ROR", 3) == 0)
3450 s += 3;
3451 else
3452 {
3453 inst.error = _("missing rotation field after comma");
3454 return FAIL;
3455 }
3456
3457 if (parse_immediate (&s, &rot, 0, 24, FALSE) == FAIL)
3458 return FAIL;
3459
3460 switch (rot)
3461 {
3462 case 0: *str = s; return 0x0;
3463 case 8: *str = s; return 0x1;
3464 case 16: *str = s; return 0x2;
3465 case 24: *str = s; return 0x3;
3466
3467 default:
3468 inst.error = _("rotation can only be 0, 8, 16, or 24");
3469 return FAIL;
3470 }
3471 }
3472
3473 /* Parse a conditional code (from conds[] below). The value returned is in the
3474 range 0 .. 14, or FAIL. */
3475 static int
3476 parse_cond (char **str)
3477 {
3478 char *p, *q;
3479 const struct asm_cond *c;
3480
3481 p = q = *str;
3482 while (ISALPHA (*q))
3483 q++;
3484
3485 c = hash_find_n (arm_cond_hsh, p, q - p);
3486 if (!c)
3487 {
3488 inst.error = _("condition required");
3489 return FAIL;
3490 }
3491
3492 *str = q;
3493 return c->value;
3494 }
3495
3496 /* Parse the operands of a table branch instruction. Similar to a memory
3497 operand. */
3498 static int
3499 parse_tb (char **str)
3500 {
3501 char * p = *str;
3502 int reg;
3503
3504 if (skip_past_char (&p, '[') == FAIL)
3505 return FAIL;
3506
3507 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
3508 {
3509 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
3510 return FAIL;
3511 }
3512 inst.operands[0].reg = reg;
3513
3514 if (skip_past_comma (&p) == FAIL)
3515 return FAIL;
3516
3517 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
3518 {
3519 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
3520 return FAIL;
3521 }
3522 inst.operands[0].imm = reg;
3523
3524 if (skip_past_comma (&p) == SUCCESS)
3525 {
3526 if (parse_shift (&p, 0, SHIFT_LSL_IMMEDIATE) == FAIL)
3527 return FAIL;
3528 if (inst.reloc.exp.X_add_number != 1)
3529 {
3530 inst.error = _("invalid shift");
3531 return FAIL;
3532 }
3533 inst.operands[0].shifted = 1;
3534 }
3535
3536 if (skip_past_char (&p, ']') == FAIL)
3537 {
3538 inst.error = _("']' expected");
3539 return FAIL;
3540 }
3541 *str = p;
3542 return SUCCESS;
3543 }
3544
3545 /* Matcher codes for parse_operands. */
3546 enum operand_parse_code
3547 {
3548 OP_stop, /* end of line */
3549
3550 OP_RR, /* ARM register */
3551 OP_RRnpc, /* ARM register, not r15 */
3552 OP_RRnpcb, /* ARM register, not r15, in square brackets */
3553 OP_RRw, /* ARM register, not r15, optional trailing ! */
3554 OP_RCP, /* Coprocessor number */
3555 OP_RCN, /* Coprocessor register */
3556 OP_RF, /* FPA register */
3557 OP_RVS, /* VFP single precision register */
3558 OP_RVD, /* VFP double precision register */
3559 OP_RVC, /* VFP control register */
3560 OP_RMF, /* Maverick F register */
3561 OP_RMD, /* Maverick D register */
3562 OP_RMFX, /* Maverick FX register */
3563 OP_RMDX, /* Maverick DX register */
3564 OP_RMAX, /* Maverick AX register */
3565 OP_RMDS, /* Maverick DSPSC register */
3566 OP_RIWR, /* iWMMXt wR register */
3567 OP_RIWC, /* iWMMXt wC register */
3568 OP_RIWG, /* iWMMXt wCG register */
3569 OP_RXA, /* XScale accumulator register */
3570
3571 OP_REGLST, /* ARM register list */
3572 OP_VRSLST, /* VFP single-precision register list */
3573 OP_VRDLST, /* VFP double-precision register list */
3574
3575 OP_I7, /* immediate value 0 .. 7 */
3576 OP_I15, /* 0 .. 15 */
3577 OP_I16, /* 1 .. 16 */
3578 OP_I31, /* 0 .. 31 */
3579 OP_I31w, /* 0 .. 31, optional trailing ! */
3580 OP_I32, /* 1 .. 32 */
3581 OP_I63s, /* -64 .. 63 */
3582 OP_I255, /* 0 .. 255 */
3583 OP_Iffff, /* 0 .. 65535 */
3584
3585 OP_I4b, /* immediate, prefix optional, 1 .. 4 */
3586 OP_I7b, /* 0 .. 7 */
3587 OP_I15b, /* 0 .. 15 */
3588 OP_I31b, /* 0 .. 31 */
3589
3590 OP_SH, /* shifter operand */
3591 OP_ADDR, /* Memory address expression (any mode) */
3592 OP_EXP, /* arbitrary expression */
3593 OP_EXPi, /* same, with optional immediate prefix */
3594 OP_EXPr, /* same, with optional relocation suffix */
3595
3596 OP_CPSF, /* CPS flags */
3597 OP_ENDI, /* Endianness specifier */
3598 OP_PSR, /* CPSR/SPSR mask for msr */
3599 OP_COND, /* conditional code */
3600 OP_TB, /* Table branch. */
3601
3602 OP_RRnpc_I0, /* ARM register or literal 0 */
3603 OP_RR_EXr, /* ARM register or expression with opt. reloc suff. */
3604 OP_RR_EXi, /* ARM register or expression with imm prefix */
3605 OP_RF_IF, /* FPA register or immediate */
3606 OP_RIWR_RIWC, /* iWMMXt R or C reg */
3607
3608 /* Optional operands. */
3609 OP_oI7b, /* immediate, prefix optional, 0 .. 7 */
3610 OP_oI31b, /* 0 .. 31 */
3611 OP_oIffffb, /* 0 .. 65535 */
3612 OP_oI255c, /* curly-brace enclosed, 0 .. 255 */
3613
3614 OP_oRR, /* ARM register */
3615 OP_oRRnpc, /* ARM register, not the PC */
3616 OP_oSHll, /* LSL immediate */
3617 OP_oSHar, /* ASR immediate */
3618 OP_oSHllar, /* LSL or ASR immediate */
3619 OP_oROR, /* ROR 0/8/16/24 */
3620
3621 OP_FIRST_OPTIONAL = OP_oI7b
3622 };
3623
3624 /* Generic instruction operand parser. This does no encoding and no
3625 semantic validation; it merely squirrels values away in the inst
3626 structure. Returns SUCCESS or FAIL depending on whether the
3627 specified grammar matched. */
3628 static int
3629 parse_operands (char *str, const unsigned char *pattern)
3630 {
3631 unsigned const char *upat = pattern;
3632 char *backtrack_pos = 0;
3633 const char *backtrack_error = 0;
3634 int i, val, backtrack_index = 0;
3635
3636 #define po_char_or_fail(chr) do { \
3637 if (skip_past_char (&str, chr) == FAIL) \
3638 goto bad_args; \
3639 } while (0)
3640
3641 #define po_reg_or_fail(regtype) do { \
3642 val = arm_reg_parse (&str, regtype); \
3643 if (val == FAIL) \
3644 { \
3645 inst.error = _(reg_expected_msgs[regtype]); \
3646 goto failure; \
3647 } \
3648 inst.operands[i].reg = val; \
3649 inst.operands[i].isreg = 1; \
3650 } while (0)
3651
3652 #define po_reg_or_goto(regtype, label) do { \
3653 val = arm_reg_parse (&str, regtype); \
3654 if (val == FAIL) \
3655 goto label; \
3656 \
3657 inst.operands[i].reg = val; \
3658 inst.operands[i].isreg = 1; \
3659 } while (0)
3660
3661 #define po_imm_or_fail(min, max, popt) do { \
3662 if (parse_immediate (&str, &val, min, max, popt) == FAIL) \
3663 goto failure; \
3664 inst.operands[i].imm = val; \
3665 } while (0)
3666
3667 #define po_misc_or_fail(expr) do { \
3668 if (expr) \
3669 goto failure; \
3670 } while (0)
3671
3672 skip_whitespace (str);
3673
3674 for (i = 0; upat[i] != OP_stop; i++)
3675 {
3676 if (upat[i] >= OP_FIRST_OPTIONAL)
3677 {
3678 /* Remember where we are in case we need to backtrack. */
3679 assert (!backtrack_pos);
3680 backtrack_pos = str;
3681 backtrack_error = inst.error;
3682 backtrack_index = i;
3683 }
3684
3685 if (i > 0)
3686 po_char_or_fail (',');
3687
3688 switch (upat[i])
3689 {
3690 /* Registers */
3691 case OP_oRRnpc:
3692 case OP_RRnpc:
3693 case OP_oRR:
3694 case OP_RR: po_reg_or_fail (REG_TYPE_RN); break;
3695 case OP_RCP: po_reg_or_fail (REG_TYPE_CP); break;
3696 case OP_RCN: po_reg_or_fail (REG_TYPE_CN); break;
3697 case OP_RF: po_reg_or_fail (REG_TYPE_FN); break;
3698 case OP_RVS: po_reg_or_fail (REG_TYPE_VFS); break;
3699 case OP_RVD: po_reg_or_fail (REG_TYPE_VFD); break;
3700 case OP_RVC: po_reg_or_fail (REG_TYPE_VFC); break;
3701 case OP_RMF: po_reg_or_fail (REG_TYPE_MVF); break;
3702 case OP_RMD: po_reg_or_fail (REG_TYPE_MVD); break;
3703 case OP_RMFX: po_reg_or_fail (REG_TYPE_MVFX); break;
3704 case OP_RMDX: po_reg_or_fail (REG_TYPE_MVDX); break;
3705 case OP_RMAX: po_reg_or_fail (REG_TYPE_MVAX); break;
3706 case OP_RMDS: po_reg_or_fail (REG_TYPE_DSPSC); break;
3707 case OP_RIWR: po_reg_or_fail (REG_TYPE_MMXWR); break;
3708 case OP_RIWC: po_reg_or_fail (REG_TYPE_MMXWC); break;
3709 case OP_RIWG: po_reg_or_fail (REG_TYPE_MMXWCG); break;
3710 case OP_RXA: po_reg_or_fail (REG_TYPE_XSCALE); break;
3711
3712 case OP_RRnpcb:
3713 po_char_or_fail ('[');
3714 po_reg_or_fail (REG_TYPE_RN);
3715 po_char_or_fail (']');
3716 break;
3717
3718 case OP_RRw:
3719 po_reg_or_fail (REG_TYPE_RN);
3720 if (skip_past_char (&str, '!') == SUCCESS)
3721 inst.operands[i].writeback = 1;
3722 break;
3723
3724 /* Immediates */
3725 case OP_I7: po_imm_or_fail ( 0, 7, FALSE); break;
3726 case OP_I15: po_imm_or_fail ( 0, 15, FALSE); break;
3727 case OP_I16: po_imm_or_fail ( 1, 16, FALSE); break;
3728 case OP_I31: po_imm_or_fail ( 0, 31, FALSE); break;
3729 case OP_I32: po_imm_or_fail ( 1, 32, FALSE); break;
3730 case OP_I63s: po_imm_or_fail (-64, 63, FALSE); break;
3731 case OP_I255: po_imm_or_fail ( 0, 255, FALSE); break;
3732 case OP_Iffff: po_imm_or_fail ( 0, 0xffff, FALSE); break;
3733
3734 case OP_I4b: po_imm_or_fail ( 1, 4, TRUE); break;
3735 case OP_oI7b:
3736 case OP_I7b: po_imm_or_fail ( 0, 7, TRUE); break;
3737 case OP_I15b: po_imm_or_fail ( 0, 15, TRUE); break;
3738 case OP_oI31b:
3739 case OP_I31b: po_imm_or_fail ( 0, 31, TRUE); break;
3740 case OP_oIffffb: po_imm_or_fail ( 0, 0xffff, TRUE); break;
3741
3742 /* Immediate variants */
3743 case OP_oI255c:
3744 po_char_or_fail ('{');
3745 po_imm_or_fail (0, 255, TRUE);
3746 po_char_or_fail ('}');
3747 break;
3748
3749 case OP_I31w:
3750 /* The expression parser chokes on a trailing !, so we have
3751 to find it first and zap it. */
3752 {
3753 char *s = str;
3754 while (*s && *s != ',')
3755 s++;
3756 if (s[-1] == '!')
3757 {
3758 s[-1] = '\0';
3759 inst.operands[i].writeback = 1;
3760 }
3761 po_imm_or_fail (0, 31, TRUE);
3762 if (str == s - 1)
3763 str = s;
3764 }
3765 break;
3766
3767 /* Expressions */
3768 case OP_EXPi: EXPi:
3769 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
3770 GE_OPT_PREFIX));
3771 break;
3772
3773 case OP_EXP:
3774 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
3775 GE_NO_PREFIX));
3776 break;
3777
3778 case OP_EXPr: EXPr:
3779 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
3780 GE_NO_PREFIX));
3781 if (inst.reloc.exp.X_op == O_symbol)
3782 {
3783 val = parse_reloc (&str);
3784 if (val == -1)
3785 {
3786 inst.error = _("unrecognized relocation suffix");
3787 goto failure;
3788 }
3789 else if (val != BFD_RELOC_UNUSED)
3790 {
3791 inst.operands[i].imm = val;
3792 inst.operands[i].hasreloc = 1;
3793 }
3794 }
3795 break;
3796
3797 /* Register or expression */
3798 case OP_RR_EXr: po_reg_or_goto (REG_TYPE_RN, EXPr); break;
3799 case OP_RR_EXi: po_reg_or_goto (REG_TYPE_RN, EXPi); break;
3800
3801 /* Register or immediate */
3802 case OP_RRnpc_I0: po_reg_or_goto (REG_TYPE_RN, I0); break;
3803 I0: po_imm_or_fail (0, 0, FALSE); break;
3804
3805 case OP_RF_IF: po_reg_or_goto (REG_TYPE_FN, IF); break;
3806 IF:
3807 if (!is_immediate_prefix (*str))
3808 goto bad_args;
3809 str++;
3810 val = parse_fpa_immediate (&str);
3811 if (val == FAIL)
3812 goto failure;
3813 /* FPA immediates are encoded as registers 8-15.
3814 parse_fpa_immediate has already applied the offset. */
3815 inst.operands[i].reg = val;
3816 inst.operands[i].isreg = 1;
3817 break;
3818
3819 /* Two kinds of register */
3820 case OP_RIWR_RIWC:
3821 {
3822 struct reg_entry *rege = arm_reg_parse_multi (&str);
3823 if (rege->type != REG_TYPE_MMXWR
3824 && rege->type != REG_TYPE_MMXWC
3825 && rege->type != REG_TYPE_MMXWCG)
3826 {
3827 inst.error = _("iWMMXt data or control register expected");
3828 goto failure;
3829 }
3830 inst.operands[i].reg = rege->number;
3831 inst.operands[i].isreg = (rege->type == REG_TYPE_MMXWR);
3832 }
3833 break;
3834
3835 /* Misc */
3836 case OP_CPSF: val = parse_cps_flags (&str); break;
3837 case OP_ENDI: val = parse_endian_specifier (&str); break;
3838 case OP_oROR: val = parse_ror (&str); break;
3839 case OP_PSR: val = parse_psr (&str); break;
3840 case OP_COND: val = parse_cond (&str); break;
3841
3842 case OP_TB:
3843 po_misc_or_fail (parse_tb (&str));
3844 break;
3845
3846 /* Register lists */
3847 case OP_REGLST:
3848 val = parse_reg_list (&str);
3849 if (*str == '^')
3850 {
3851 inst.operands[1].writeback = 1;
3852 str++;
3853 }
3854 break;
3855
3856 case OP_VRSLST:
3857 val = parse_vfp_reg_list (&str, &inst.operands[i].reg, 0);
3858 break;
3859
3860 case OP_VRDLST:
3861 val = parse_vfp_reg_list (&str, &inst.operands[i].reg, 1);
3862 break;
3863
3864 /* Addressing modes */
3865 case OP_ADDR:
3866 po_misc_or_fail (parse_address (&str, i));
3867 break;
3868
3869 case OP_SH:
3870 po_misc_or_fail (parse_shifter_operand (&str, i));
3871 break;
3872
3873 case OP_oSHll:
3874 po_misc_or_fail (parse_shift (&str, i, SHIFT_LSL_IMMEDIATE));
3875 break;
3876
3877 case OP_oSHar:
3878 po_misc_or_fail (parse_shift (&str, i, SHIFT_ASR_IMMEDIATE));
3879 break;
3880
3881 case OP_oSHllar:
3882 po_misc_or_fail (parse_shift (&str, i, SHIFT_LSL_OR_ASR_IMMEDIATE));
3883 break;
3884
3885 default:
3886 as_fatal ("unhandled operand code %d", upat[i]);
3887 }
3888
3889 /* Various value-based sanity checks and shared operations. We
3890 do not signal immediate failures for the register constraints;
3891 this allows a syntax error to take precedence. */
3892 switch (upat[i])
3893 {
3894 case OP_oRRnpc:
3895 case OP_RRnpc:
3896 case OP_RRnpcb:
3897 case OP_RRw:
3898 case OP_RRnpc_I0:
3899 if (inst.operands[i].isreg && inst.operands[i].reg == REG_PC)
3900 inst.error = BAD_PC;
3901 break;
3902
3903 case OP_CPSF:
3904 case OP_ENDI:
3905 case OP_oROR:
3906 case OP_PSR:
3907 case OP_COND:
3908 case OP_REGLST:
3909 case OP_VRSLST:
3910 case OP_VRDLST:
3911 if (val == FAIL)
3912 goto failure;
3913 inst.operands[i].imm = val;
3914 break;
3915
3916 default:
3917 break;
3918 }
3919
3920 /* If we get here, this operand was successfully parsed. */
3921 inst.operands[i].present = 1;
3922 continue;
3923
3924 bad_args:
3925 inst.error = BAD_ARGS;
3926
3927 failure:
3928 if (!backtrack_pos)
3929 return FAIL;
3930
3931 /* Do not backtrack over a trailing optional argument that
3932 absorbed some text. We will only fail again, with the
3933 'garbage following instruction' error message, which is
3934 probably less helpful than the current one. */
3935 if (backtrack_index == i && backtrack_pos != str
3936 && upat[i+1] == OP_stop)
3937 return FAIL;
3938
3939 /* Try again, skipping the optional argument at backtrack_pos. */
3940 str = backtrack_pos;
3941 inst.error = backtrack_error;
3942 inst.operands[backtrack_index].present = 0;
3943 i = backtrack_index;
3944 backtrack_pos = 0;
3945 }
3946
3947 /* Check that we have parsed all the arguments. */
3948 if (*str != '\0' && !inst.error)
3949 inst.error = _("garbage following instruction");
3950
3951 return inst.error ? FAIL : SUCCESS;
3952 }
3953
3954 #undef po_char_or_fail
3955 #undef po_reg_or_fail
3956 #undef po_reg_or_goto
3957 #undef po_imm_or_fail
3958 \f
3959 /* Shorthand macro for instruction encoding functions issuing errors. */
3960 #define constraint(expr, err) do { \
3961 if (expr) \
3962 { \
3963 inst.error = err; \
3964 return; \
3965 } \
3966 } while (0)
3967
3968 /* Functions for operand encoding. ARM, then Thumb. */
3969
3970 #define rotate_left(v, n) (v << n | v >> (32 - n))
3971
3972 /* If VAL can be encoded in the immediate field of an ARM instruction,
3973 return the encoded form. Otherwise, return FAIL. */
3974
3975 static unsigned int
3976 encode_arm_immediate (unsigned int val)
3977 {
3978 unsigned int a, i;
3979
3980 for (i = 0; i < 32; i += 2)
3981 if ((a = rotate_left (val, i)) <= 0xff)
3982 return a | (i << 7); /* 12-bit pack: [shift-cnt,const]. */
3983
3984 return FAIL;
3985 }
3986
3987 /* If VAL can be encoded in the immediate field of a Thumb32 instruction,
3988 return the encoded form. Otherwise, return FAIL. */
3989 static unsigned int
3990 encode_thumb32_immediate (unsigned int val)
3991 {
3992 unsigned int a, i;
3993
3994 if (val <= 0xff)
3995 return val;
3996
3997 for (i = 1; i <= 24; i++)
3998 {
3999 a = val >> i;
4000 if ((val & ~(0xff << i)) == 0)
4001 return ((val >> i) & 0x7f) | ((32 - i) << 7);
4002 }
4003
4004 a = val & 0xff;
4005 if (val == ((a << 16) | a))
4006 return 0x100 | a;
4007 if (val == ((a << 24) | (a << 16) | (a << 8) | a))
4008 return 0x300 | a;
4009
4010 a = val & 0xff00;
4011 if (val == ((a << 16) | a))
4012 return 0x200 | (a >> 8);
4013
4014 return FAIL;
4015 }
4016 /* Encode a VFP SP register number into inst.instruction. */
4017
4018 static void
4019 encode_arm_vfp_sp_reg (int reg, enum vfp_sp_reg_pos pos)
4020 {
4021 switch (pos)
4022 {
4023 case VFP_REG_Sd:
4024 inst.instruction |= ((reg >> 1) << 12) | ((reg & 1) << 22);
4025 break;
4026
4027 case VFP_REG_Sn:
4028 inst.instruction |= ((reg >> 1) << 16) | ((reg & 1) << 7);
4029 break;
4030
4031 case VFP_REG_Sm:
4032 inst.instruction |= ((reg >> 1) << 0) | ((reg & 1) << 5);
4033 break;
4034
4035 default:
4036 abort ();
4037 }
4038 }
4039
4040 /* Encode a <shift> in an ARM-format instruction. The immediate,
4041 if any, is handled by md_apply_fix. */
4042 static void
4043 encode_arm_shift (int i)
4044 {
4045 if (inst.operands[i].shift_kind == SHIFT_RRX)
4046 inst.instruction |= SHIFT_ROR << 5;
4047 else
4048 {
4049 inst.instruction |= inst.operands[i].shift_kind << 5;
4050 if (inst.operands[i].immisreg)
4051 {
4052 inst.instruction |= SHIFT_BY_REG;
4053 inst.instruction |= inst.operands[i].imm << 8;
4054 }
4055 else
4056 inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
4057 }
4058 }
4059
4060 static void
4061 encode_arm_shifter_operand (int i)
4062 {
4063 if (inst.operands[i].isreg)
4064 {
4065 inst.instruction |= inst.operands[i].reg;
4066 encode_arm_shift (i);
4067 }
4068 else
4069 inst.instruction |= INST_IMMEDIATE;
4070 }
4071
4072 /* Subroutine of encode_arm_addr_mode_2 and encode_arm_addr_mode_3. */
4073 static void
4074 encode_arm_addr_mode_common (int i, bfd_boolean is_t)
4075 {
4076 assert (inst.operands[i].isreg);
4077 inst.instruction |= inst.operands[i].reg << 16;
4078
4079 if (inst.operands[i].preind)
4080 {
4081 if (is_t)
4082 {
4083 inst.error = _("instruction does not accept preindexed addressing");
4084 return;
4085 }
4086 inst.instruction |= PRE_INDEX;
4087 if (inst.operands[i].writeback)
4088 inst.instruction |= WRITE_BACK;
4089
4090 }
4091 else if (inst.operands[i].postind)
4092 {
4093 assert (inst.operands[i].writeback);
4094 if (is_t)
4095 inst.instruction |= WRITE_BACK;
4096 }
4097 else /* unindexed - only for coprocessor */
4098 {
4099 inst.error = _("instruction does not accept unindexed addressing");
4100 return;
4101 }
4102
4103 if (((inst.instruction & WRITE_BACK) || !(inst.instruction & PRE_INDEX))
4104 && (((inst.instruction & 0x000f0000) >> 16)
4105 == ((inst.instruction & 0x0000f000) >> 12)))
4106 as_warn ((inst.instruction & LOAD_BIT)
4107 ? _("destination register same as write-back base")
4108 : _("source register same as write-back base"));
4109 }
4110
4111 /* inst.operands[i] was set up by parse_address. Encode it into an
4112 ARM-format mode 2 load or store instruction. If is_t is true,
4113 reject forms that cannot be used with a T instruction (i.e. not
4114 post-indexed). */
4115 static void
4116 encode_arm_addr_mode_2 (int i, bfd_boolean is_t)
4117 {
4118 encode_arm_addr_mode_common (i, is_t);
4119
4120 if (inst.operands[i].immisreg)
4121 {
4122 inst.instruction |= INST_IMMEDIATE; /* yes, this is backwards */
4123 inst.instruction |= inst.operands[i].imm;
4124 if (!inst.operands[i].negative)
4125 inst.instruction |= INDEX_UP;
4126 if (inst.operands[i].shifted)
4127 {
4128 if (inst.operands[i].shift_kind == SHIFT_RRX)
4129 inst.instruction |= SHIFT_ROR << 5;
4130 else
4131 {
4132 inst.instruction |= inst.operands[i].shift_kind << 5;
4133 inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
4134 }
4135 }
4136 }
4137 else /* immediate offset in inst.reloc */
4138 {
4139 if (inst.reloc.type == BFD_RELOC_UNUSED)
4140 inst.reloc.type = BFD_RELOC_ARM_OFFSET_IMM;
4141 }
4142 }
4143
4144 /* inst.operands[i] was set up by parse_address. Encode it into an
4145 ARM-format mode 3 load or store instruction. Reject forms that
4146 cannot be used with such instructions. If is_t is true, reject
4147 forms that cannot be used with a T instruction (i.e. not
4148 post-indexed). */
4149 static void
4150 encode_arm_addr_mode_3 (int i, bfd_boolean is_t)
4151 {
4152 if (inst.operands[i].immisreg && inst.operands[i].shifted)
4153 {
4154 inst.error = _("instruction does not accept scaled register index");
4155 return;
4156 }
4157
4158 encode_arm_addr_mode_common (i, is_t);
4159
4160 if (inst.operands[i].immisreg)
4161 {
4162 inst.instruction |= inst.operands[i].imm;
4163 if (!inst.operands[i].negative)
4164 inst.instruction |= INDEX_UP;
4165 }
4166 else /* immediate offset in inst.reloc */
4167 {
4168 inst.instruction |= HWOFFSET_IMM;
4169 if (inst.reloc.type == BFD_RELOC_UNUSED)
4170 inst.reloc.type = BFD_RELOC_ARM_OFFSET_IMM8;
4171 }
4172 }
4173
4174 /* inst.operands[i] was set up by parse_address. Encode it into an
4175 ARM-format instruction. Reject all forms which cannot be encoded
4176 into a coprocessor load/store instruction. If wb_ok is false,
4177 reject use of writeback; if unind_ok is false, reject use of
4178 unindexed addressing. If reloc_override is not 0, use it instead
4179 of BFD_ARM_CP_OFF_IMM. */
4180
4181 static int
4182 encode_arm_cp_address (int i, int wb_ok, int unind_ok, int reloc_override)
4183 {
4184 inst.instruction |= inst.operands[i].reg << 16;
4185
4186 assert (!(inst.operands[i].preind && inst.operands[i].postind));
4187
4188 if (!inst.operands[i].preind && !inst.operands[i].postind) /* unindexed */
4189 {
4190 assert (!inst.operands[i].writeback);
4191 if (!unind_ok)
4192 {
4193 inst.error = _("instruction does not support unindexed addressing");
4194 return FAIL;
4195 }
4196 inst.instruction |= inst.operands[i].imm;
4197 inst.instruction |= INDEX_UP;
4198 return SUCCESS;
4199 }
4200
4201 if (inst.operands[i].preind)
4202 inst.instruction |= PRE_INDEX;
4203
4204 if (inst.operands[i].writeback)
4205 {
4206 if (inst.operands[i].reg == REG_PC)
4207 {
4208 inst.error = _("pc may not be used with write-back");
4209 return FAIL;
4210 }
4211 if (!wb_ok)
4212 {
4213 inst.error = _("instruction does not support writeback");
4214 return FAIL;
4215 }
4216 inst.instruction |= WRITE_BACK;
4217 }
4218
4219 if (reloc_override)
4220 inst.reloc.type = reloc_override;
4221 else
4222 inst.reloc.type = BFD_RELOC_ARM_CP_OFF_IMM;
4223 return SUCCESS;
4224 }
4225
4226 /* inst.reloc.exp describes an "=expr" load pseudo-operation.
4227 Determine whether it can be performed with a move instruction; if
4228 it can, convert inst.instruction to that move instruction and
4229 return 1; if it can't, convert inst.instruction to a literal-pool
4230 load and return 0. If this is not a valid thing to do in the
4231 current context, set inst.error and return 1.
4232
4233 inst.operands[i] describes the destination register. */
4234
4235 static int
4236 move_or_literal_pool (int i, bfd_boolean thumb_p, bfd_boolean mode_3)
4237 {
4238 if ((inst.instruction & (thumb_p ? THUMB_LOAD_BIT : LOAD_BIT)) == 0)
4239 {
4240 inst.error = _("invalid pseudo operation");
4241 return 1;
4242 }
4243 if (inst.reloc.exp.X_op != O_constant && inst.reloc.exp.X_op != O_symbol)
4244 {
4245 inst.error = _("constant expression expected");
4246 return 1;
4247 }
4248 if (inst.reloc.exp.X_op == O_constant)
4249 {
4250 if (thumb_p)
4251 {
4252 if ((inst.reloc.exp.X_add_number & ~0xFF) == 0)
4253 {
4254 /* This can be done with a mov(1) instruction. */
4255 inst.instruction = T_OPCODE_MOV_I8 | (inst.operands[i].reg << 8);
4256 inst.instruction |= inst.reloc.exp.X_add_number;
4257 return 1;
4258 }
4259 }
4260 else
4261 {
4262 int value = encode_arm_immediate (inst.reloc.exp.X_add_number);
4263 if (value != FAIL)
4264 {
4265 /* This can be done with a mov instruction. */
4266 inst.instruction &= LITERAL_MASK;
4267 inst.instruction |= INST_IMMEDIATE | (OPCODE_MOV << DATA_OP_SHIFT);
4268 inst.instruction |= value & 0xfff;
4269 return 1;
4270 }
4271
4272 value = encode_arm_immediate (~inst.reloc.exp.X_add_number);
4273 if (value != FAIL)
4274 {
4275 /* This can be done with a mvn instruction. */
4276 inst.instruction &= LITERAL_MASK;
4277 inst.instruction |= INST_IMMEDIATE | (OPCODE_MVN << DATA_OP_SHIFT);
4278 inst.instruction |= value & 0xfff;
4279 return 1;
4280 }
4281 }
4282 }
4283
4284 if (add_to_lit_pool () == FAIL)
4285 {
4286 inst.error = _("literal pool insertion failed");
4287 return 1;
4288 }
4289 inst.operands[1].reg = REG_PC;
4290 inst.operands[1].isreg = 1;
4291 inst.operands[1].preind = 1;
4292 inst.reloc.pc_rel = 1;
4293 inst.reloc.type = (thumb_p
4294 ? BFD_RELOC_ARM_THUMB_OFFSET
4295 : (mode_3
4296 ? BFD_RELOC_ARM_HWLITERAL
4297 : BFD_RELOC_ARM_LITERAL));
4298 return 0;
4299 }
4300
4301 /* Functions for instruction encoding, sorted by subarchitecture.
4302 First some generics; their names are taken from the conventional
4303 bit positions for register arguments in ARM format instructions. */
4304
4305 static void
4306 do_noargs (void)
4307 {
4308 }
4309
4310 static void
4311 do_rd (void)
4312 {
4313 inst.instruction |= inst.operands[0].reg << 12;
4314 }
4315
4316 static void
4317 do_rd_rm (void)
4318 {
4319 inst.instruction |= inst.operands[0].reg << 12;
4320 inst.instruction |= inst.operands[1].reg;
4321 }
4322
4323 static void
4324 do_rd_rn (void)
4325 {
4326 inst.instruction |= inst.operands[0].reg << 12;
4327 inst.instruction |= inst.operands[1].reg << 16;
4328 }
4329
4330 static void
4331 do_rn_rd (void)
4332 {
4333 inst.instruction |= inst.operands[0].reg << 16;
4334 inst.instruction |= inst.operands[1].reg << 12;
4335 }
4336
4337 static void
4338 do_rd_rm_rn (void)
4339 {
4340 inst.instruction |= inst.operands[0].reg << 12;
4341 inst.instruction |= inst.operands[1].reg;
4342 inst.instruction |= inst.operands[2].reg << 16;
4343 }
4344
4345 static void
4346 do_rd_rn_rm (void)
4347 {
4348 inst.instruction |= inst.operands[0].reg << 12;
4349 inst.instruction |= inst.operands[1].reg << 16;
4350 inst.instruction |= inst.operands[2].reg;
4351 }
4352
4353 static void
4354 do_rm_rd_rn (void)
4355 {
4356 inst.instruction |= inst.operands[0].reg;
4357 inst.instruction |= inst.operands[1].reg << 12;
4358 inst.instruction |= inst.operands[2].reg << 16;
4359 }
4360
4361 static void
4362 do_imm0 (void)
4363 {
4364 inst.instruction |= inst.operands[0].imm;
4365 }
4366
4367 static void
4368 do_rd_cpaddr (void)
4369 {
4370 inst.instruction |= inst.operands[0].reg << 12;
4371 encode_arm_cp_address (1, TRUE, TRUE, 0);
4372 }
4373
4374 /* ARM instructions, in alphabetical order by function name (except
4375 that wrapper functions appear immediately after the function they
4376 wrap). */
4377
4378 /* This is a pseudo-op of the form "adr rd, label" to be converted
4379 into a relative address of the form "add rd, pc, #label-.-8". */
4380
4381 static void
4382 do_adr (void)
4383 {
4384 inst.instruction |= (inst.operands[0].reg << 12); /* Rd */
4385
4386 /* Frag hacking will turn this into a sub instruction if the offset turns
4387 out to be negative. */
4388 inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
4389 inst.reloc.pc_rel = 1;
4390 inst.reloc.exp.X_add_number -= 8;
4391 }
4392
4393 /* This is a pseudo-op of the form "adrl rd, label" to be converted
4394 into a relative address of the form:
4395 add rd, pc, #low(label-.-8)"
4396 add rd, rd, #high(label-.-8)" */
4397
4398 static void
4399 do_adrl (void)
4400 {
4401 inst.instruction |= (inst.operands[0].reg << 12); /* Rd */
4402
4403 /* Frag hacking will turn this into a sub instruction if the offset turns
4404 out to be negative. */
4405 inst.reloc.type = BFD_RELOC_ARM_ADRL_IMMEDIATE;
4406 inst.reloc.pc_rel = 1;
4407 inst.size = INSN_SIZE * 2;
4408 inst.reloc.exp.X_add_number -= 8;
4409 }
4410
4411 static void
4412 do_arit (void)
4413 {
4414 if (!inst.operands[1].present)
4415 inst.operands[1].reg = inst.operands[0].reg;
4416 inst.instruction |= inst.operands[0].reg << 12;
4417 inst.instruction |= inst.operands[1].reg << 16;
4418 encode_arm_shifter_operand (2);
4419 }
4420
4421 static void
4422 do_bfc (void)
4423 {
4424 unsigned int msb = inst.operands[1].imm + inst.operands[2].imm;
4425 constraint (msb > 32, _("bit-field extends past end of register"));
4426 /* The instruction encoding stores the LSB and MSB,
4427 not the LSB and width. */
4428 inst.instruction |= inst.operands[0].reg << 12;
4429 inst.instruction |= inst.operands[1].imm << 7;
4430 inst.instruction |= (msb - 1) << 16;
4431 }
4432
4433 static void
4434 do_bfi (void)
4435 {
4436 unsigned int msb;
4437
4438 /* #0 in second position is alternative syntax for bfc, which is
4439 the same instruction but with REG_PC in the Rm field. */
4440 if (!inst.operands[1].isreg)
4441 inst.operands[1].reg = REG_PC;
4442
4443 msb = inst.operands[2].imm + inst.operands[3].imm;
4444 constraint (msb > 32, _("bit-field extends past end of register"));
4445 /* The instruction encoding stores the LSB and MSB,
4446 not the LSB and width. */
4447 inst.instruction |= inst.operands[0].reg << 12;
4448 inst.instruction |= inst.operands[1].reg;
4449 inst.instruction |= inst.operands[2].imm << 7;
4450 inst.instruction |= (msb - 1) << 16;
4451 }
4452
4453 static void
4454 do_bfx (void)
4455 {
4456 constraint (inst.operands[2].imm + inst.operands[3].imm > 32,
4457 _("bit-field extends past end of register"));
4458 inst.instruction |= inst.operands[0].reg << 12;
4459 inst.instruction |= inst.operands[1].reg;
4460 inst.instruction |= inst.operands[2].imm << 7;
4461 inst.instruction |= (inst.operands[3].imm - 1) << 16;
4462 }
4463
4464 /* ARM V5 breakpoint instruction (argument parse)
4465 BKPT <16 bit unsigned immediate>
4466 Instruction is not conditional.
4467 The bit pattern given in insns[] has the COND_ALWAYS condition,
4468 and it is an error if the caller tried to override that. */
4469
4470 static void
4471 do_bkpt (void)
4472 {
4473 /* Top 12 of 16 bits to bits 19:8. */
4474 inst.instruction |= (inst.operands[0].imm & 0xfff0) << 4;
4475
4476 /* Bottom 4 of 16 bits to bits 3:0. */
4477 inst.instruction |= inst.operands[0].imm & 0xf;
4478 }
4479
4480 static void
4481 encode_branch (int default_reloc)
4482 {
4483 if (inst.operands[0].hasreloc)
4484 {
4485 constraint (inst.operands[0].imm != BFD_RELOC_ARM_PLT32,
4486 _("the only suffix valid here is '(plt)'"));
4487 inst.reloc.type = BFD_RELOC_ARM_PLT32;
4488 }
4489 else
4490 {
4491 inst.reloc.type = default_reloc;
4492 }
4493 inst.reloc.pc_rel = 1;
4494 }
4495
4496 static void
4497 do_branch (void)
4498 {
4499 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH);
4500 }
4501
4502 /* ARM V5 branch-link-exchange instruction (argument parse)
4503 BLX <target_addr> ie BLX(1)
4504 BLX{<condition>} <Rm> ie BLX(2)
4505 Unfortunately, there are two different opcodes for this mnemonic.
4506 So, the insns[].value is not used, and the code here zaps values
4507 into inst.instruction.
4508 Also, the <target_addr> can be 25 bits, hence has its own reloc. */
4509
4510 static void
4511 do_blx (void)
4512 {
4513 if (inst.operands[0].isreg)
4514 {
4515 /* Arg is a register; the opcode provided by insns[] is correct.
4516 It is not illegal to do "blx pc", just useless. */
4517 if (inst.operands[0].reg == REG_PC)
4518 as_tsktsk (_("use of r15 in blx in ARM mode is not really useful"));
4519
4520 inst.instruction |= inst.operands[0].reg;
4521 }
4522 else
4523 {
4524 /* Arg is an address; this instruction cannot be executed
4525 conditionally, and the opcode must be adjusted. */
4526 constraint (inst.cond != COND_ALWAYS, BAD_COND);
4527 inst.instruction = 0xfa000000;
4528 encode_branch (BFD_RELOC_ARM_PCREL_BLX);
4529 }
4530 }
4531
4532 static void
4533 do_bx (void)
4534 {
4535 if (inst.operands[0].reg == REG_PC)
4536 as_tsktsk (_("use of r15 in bx in ARM mode is not really useful"));
4537
4538 inst.instruction |= inst.operands[0].reg;
4539 }
4540
4541
4542 /* ARM v5TEJ. Jump to Jazelle code. */
4543
4544 static void
4545 do_bxj (void)
4546 {
4547 if (inst.operands[0].reg == REG_PC)
4548 as_tsktsk (_("use of r15 in bxj is not really useful"));
4549
4550 inst.instruction |= inst.operands[0].reg;
4551 }
4552
4553 /* Co-processor data operation:
4554 CDP{cond} <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>}
4555 CDP2 <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>} */
4556 static void
4557 do_cdp (void)
4558 {
4559 inst.instruction |= inst.operands[0].reg << 8;
4560 inst.instruction |= inst.operands[1].imm << 20;
4561 inst.instruction |= inst.operands[2].reg << 12;
4562 inst.instruction |= inst.operands[3].reg << 16;
4563 inst.instruction |= inst.operands[4].reg;
4564 inst.instruction |= inst.operands[5].imm << 5;
4565 }
4566
4567 static void
4568 do_cmp (void)
4569 {
4570 inst.instruction |= inst.operands[0].reg << 16;
4571 encode_arm_shifter_operand (1);
4572 }
4573
4574 /* Transfer between coprocessor and ARM registers.
4575 MRC{cond} <coproc>, <opcode_1>, <Rd>, <CRn>, <CRm>{, <opcode_2>}
4576 MRC2
4577 MCR{cond}
4578 MCR2
4579
4580 No special properties. */
4581
4582 static void
4583 do_co_reg (void)
4584 {
4585 inst.instruction |= inst.operands[0].reg << 8;
4586 inst.instruction |= inst.operands[1].imm << 21;
4587 inst.instruction |= inst.operands[2].reg << 12;
4588 inst.instruction |= inst.operands[3].reg << 16;
4589 inst.instruction |= inst.operands[4].reg;
4590 inst.instruction |= inst.operands[5].imm << 5;
4591 }
4592
4593 /* Transfer between coprocessor register and pair of ARM registers.
4594 MCRR{cond} <coproc>, <opcode>, <Rd>, <Rn>, <CRm>.
4595 MCRR2
4596 MRRC{cond}
4597 MRRC2
4598
4599 Two XScale instructions are special cases of these:
4600
4601 MAR{cond} acc0, <RdLo>, <RdHi> == MCRR{cond} p0, #0, <RdLo>, <RdHi>, c0
4602 MRA{cond} acc0, <RdLo>, <RdHi> == MRRC{cond} p0, #0, <RdLo>, <RdHi>, c0
4603
4604 Result unpredicatable if Rd or Rn is R15. */
4605
4606 static void
4607 do_co_reg2c (void)
4608 {
4609 inst.instruction |= inst.operands[0].reg << 8;
4610 inst.instruction |= inst.operands[1].imm << 4;
4611 inst.instruction |= inst.operands[2].reg << 12;
4612 inst.instruction |= inst.operands[3].reg << 16;
4613 inst.instruction |= inst.operands[4].reg;
4614 }
4615
4616 static void
4617 do_cpsi (void)
4618 {
4619 inst.instruction |= inst.operands[0].imm << 6;
4620 inst.instruction |= inst.operands[1].imm;
4621 }
4622
4623 static void
4624 do_it (void)
4625 {
4626 /* There is no IT instruction in ARM mode. We
4627 process it but do not generate code for it. */
4628 inst.size = 0;
4629 }
4630
4631 static void
4632 do_ldmstm (void)
4633 {
4634 int base_reg = inst.operands[0].reg;
4635 int range = inst.operands[1].imm;
4636
4637 inst.instruction |= base_reg << 16;
4638 inst.instruction |= range;
4639
4640 if (inst.operands[1].writeback)
4641 inst.instruction |= LDM_TYPE_2_OR_3;
4642
4643 if (inst.operands[0].writeback)
4644 {
4645 inst.instruction |= WRITE_BACK;
4646 /* Check for unpredictable uses of writeback. */
4647 if (inst.instruction & LOAD_BIT)
4648 {
4649 /* Not allowed in LDM type 2. */
4650 if ((inst.instruction & LDM_TYPE_2_OR_3)
4651 && ((range & (1 << REG_PC)) == 0))
4652 as_warn (_("writeback of base register is UNPREDICTABLE"));
4653 /* Only allowed if base reg not in list for other types. */
4654 else if (range & (1 << base_reg))
4655 as_warn (_("writeback of base register when in register list is UNPREDICTABLE"));
4656 }
4657 else /* STM. */
4658 {
4659 /* Not allowed for type 2. */
4660 if (inst.instruction & LDM_TYPE_2_OR_3)
4661 as_warn (_("writeback of base register is UNPREDICTABLE"));
4662 /* Only allowed if base reg not in list, or first in list. */
4663 else if ((range & (1 << base_reg))
4664 && (range & ((1 << base_reg) - 1)))
4665 as_warn (_("if writeback register is in list, it must be the lowest reg in the list"));
4666 }
4667 }
4668 }
4669
4670 /* ARMv5TE load-consecutive (argument parse)
4671 Mode is like LDRH.
4672
4673 LDRccD R, mode
4674 STRccD R, mode. */
4675
4676 static void
4677 do_ldrd (void)
4678 {
4679 constraint (inst.operands[0].reg % 2 != 0,
4680 _("first destination register must be even"));
4681 constraint (inst.operands[1].present
4682 && inst.operands[1].reg != inst.operands[0].reg + 1,
4683 _("can only load two consecutive registers"));
4684 constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed here"));
4685 constraint (!inst.operands[2].isreg, _("'[' expected"));
4686
4687 if (!inst.operands[1].present)
4688 inst.operands[1].reg = inst.operands[0].reg + 1;
4689
4690 if (inst.instruction & LOAD_BIT)
4691 {
4692 /* encode_arm_addr_mode_3 will diagnose overlap between the base
4693 register and the first register written; we have to diagnose
4694 overlap between the base and the second register written here. */
4695
4696 if (inst.operands[2].reg == inst.operands[1].reg
4697 && (inst.operands[2].writeback || inst.operands[2].postind))
4698 as_warn (_("base register written back, and overlaps "
4699 "second destination register"));
4700
4701 /* For an index-register load, the index register must not overlap the
4702 destination (even if not write-back). */
4703 else if (inst.operands[2].immisreg
4704 && ((unsigned) inst.operands[2].imm == inst.operands[0].reg
4705 || (unsigned) inst.operands[2].imm == inst.operands[1].reg))
4706 as_warn (_("index register overlaps destination register"));
4707 }
4708
4709 inst.instruction |= inst.operands[0].reg << 12;
4710 encode_arm_addr_mode_3 (2, /*is_t=*/FALSE);
4711 }
4712
4713 static void
4714 do_ldrex (void)
4715 {
4716 constraint (!inst.operands[1].isreg || !inst.operands[1].preind
4717 || inst.operands[1].postind || inst.operands[1].writeback
4718 || inst.operands[1].immisreg || inst.operands[1].shifted
4719 || inst.operands[1].negative,
4720 _("instruction does not accept this addressing mode"));
4721
4722 constraint (inst.operands[1].reg == REG_PC, BAD_PC);
4723
4724 constraint (inst.reloc.exp.X_op != O_constant
4725 || inst.reloc.exp.X_add_number != 0,
4726 _("offset must be zero in ARM encoding"));
4727
4728 inst.instruction |= inst.operands[0].reg << 12;
4729 inst.instruction |= inst.operands[1].reg << 16;
4730 inst.reloc.type = BFD_RELOC_UNUSED;
4731 }
4732
4733 static void
4734 do_ldrexd (void)
4735 {
4736 constraint (inst.operands[0].reg % 2 != 0,
4737 _("even register required"));
4738 constraint (inst.operands[1].present
4739 && inst.operands[1].reg != inst.operands[0].reg + 1,
4740 _("can only load two consecutive registers"));
4741 /* If op 1 were present and equal to PC, this function wouldn't
4742 have been called in the first place. */
4743 constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed here"));
4744
4745 inst.instruction |= inst.operands[0].reg << 12;
4746 inst.instruction |= inst.operands[2].reg << 16;
4747 }
4748
4749 static void
4750 do_ldst (void)
4751 {
4752 inst.instruction |= inst.operands[0].reg << 12;
4753 if (!inst.operands[1].isreg)
4754 if (move_or_literal_pool (0, /*thumb_p=*/FALSE, /*mode_3=*/FALSE))
4755 return;
4756 encode_arm_addr_mode_2 (1, /*is_t=*/FALSE);
4757 }
4758
4759 static void
4760 do_ldstt (void)
4761 {
4762 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
4763 reject [Rn,...]. */
4764 if (inst.operands[1].preind)
4765 {
4766 constraint (inst.reloc.exp.X_op != O_constant ||
4767 inst.reloc.exp.X_add_number != 0,
4768 _("this instruction requires a post-indexed address"));
4769
4770 inst.operands[1].preind = 0;
4771 inst.operands[1].postind = 1;
4772 inst.operands[1].writeback = 1;
4773 }
4774 inst.instruction |= inst.operands[0].reg << 12;
4775 encode_arm_addr_mode_2 (1, /*is_t=*/TRUE);
4776 }
4777
4778 /* Halfword and signed-byte load/store operations. */
4779
4780 static void
4781 do_ldstv4 (void)
4782 {
4783 inst.instruction |= inst.operands[0].reg << 12;
4784 if (!inst.operands[1].isreg)
4785 if (move_or_literal_pool (0, /*thumb_p=*/FALSE, /*mode_3=*/TRUE))
4786 return;
4787 encode_arm_addr_mode_3 (1, /*is_t=*/FALSE);
4788 }
4789
4790 static void
4791 do_ldsttv4 (void)
4792 {
4793 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
4794 reject [Rn,...]. */
4795 if (inst.operands[1].preind)
4796 {
4797 constraint (inst.reloc.exp.X_op != O_constant ||
4798 inst.reloc.exp.X_add_number != 0,
4799 _("this instruction requires a post-indexed address"));
4800
4801 inst.operands[1].preind = 0;
4802 inst.operands[1].postind = 1;
4803 inst.operands[1].writeback = 1;
4804 }
4805 inst.instruction |= inst.operands[0].reg << 12;
4806 encode_arm_addr_mode_3 (1, /*is_t=*/TRUE);
4807 }
4808
4809 /* Co-processor register load/store.
4810 Format: <LDC|STC>{cond}[L] CP#,CRd,<address> */
4811 static void
4812 do_lstc (void)
4813 {
4814 inst.instruction |= inst.operands[0].reg << 8;
4815 inst.instruction |= inst.operands[1].reg << 12;
4816 encode_arm_cp_address (2, TRUE, TRUE, 0);
4817 }
4818
4819 static void
4820 do_mlas (void)
4821 {
4822 /* This restriction does not apply to mls (nor to mla in v6, but
4823 that's hard to detect at present). */
4824 if (inst.operands[0].reg == inst.operands[1].reg
4825 && !(inst.instruction & 0x00400000))
4826 as_tsktsk (_("rd and rm should be different in mla"));
4827
4828 inst.instruction |= inst.operands[0].reg << 16;
4829 inst.instruction |= inst.operands[1].reg;
4830 inst.instruction |= inst.operands[2].reg << 8;
4831 inst.instruction |= inst.operands[3].reg << 12;
4832
4833 }
4834
4835 static void
4836 do_mov (void)
4837 {
4838 inst.instruction |= inst.operands[0].reg << 12;
4839 encode_arm_shifter_operand (1);
4840 }
4841
4842 /* ARM V6T2 16-bit immediate register load: MOV[WT]{cond} Rd, #<imm16>. */
4843 static void
4844 do_mov16 (void)
4845 {
4846 inst.instruction |= inst.operands[0].reg << 12;
4847 /* The value is in two pieces: 0:11, 16:19. */
4848 inst.instruction |= (inst.operands[1].imm & 0x00000fff);
4849 inst.instruction |= (inst.operands[1].imm & 0x0000f000) << 4;
4850 }
4851
4852 static void
4853 do_mrs (void)
4854 {
4855 /* mrs only accepts CPSR/SPSR/CPSR_all/SPSR_all. */
4856 constraint ((inst.operands[1].imm & (PSR_c|PSR_x|PSR_s|PSR_f))
4857 != (PSR_c|PSR_f),
4858 _("'CPSR' or 'SPSR' expected"));
4859 inst.instruction |= inst.operands[0].reg << 12;
4860 inst.instruction |= (inst.operands[1].imm & SPSR_BIT);
4861 }
4862
4863 /* Two possible forms:
4864 "{C|S}PSR_<field>, Rm",
4865 "{C|S}PSR_f, #expression". */
4866
4867 static void
4868 do_msr (void)
4869 {
4870 inst.instruction |= inst.operands[0].imm;
4871 if (inst.operands[1].isreg)
4872 inst.instruction |= inst.operands[1].reg;
4873 else
4874 {
4875 inst.instruction |= INST_IMMEDIATE;
4876 inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
4877 inst.reloc.pc_rel = 0;
4878 }
4879 }
4880
4881 static void
4882 do_mul (void)
4883 {
4884 if (!inst.operands[2].present)
4885 inst.operands[2].reg = inst.operands[0].reg;
4886 inst.instruction |= inst.operands[0].reg << 16;
4887 inst.instruction |= inst.operands[1].reg;
4888 inst.instruction |= inst.operands[2].reg << 8;
4889
4890 if (inst.operands[0].reg == inst.operands[1].reg)
4891 as_tsktsk (_("rd and rm should be different in mul"));
4892 }
4893
4894 /* Long Multiply Parser
4895 UMULL RdLo, RdHi, Rm, Rs
4896 SMULL RdLo, RdHi, Rm, Rs
4897 UMLAL RdLo, RdHi, Rm, Rs
4898 SMLAL RdLo, RdHi, Rm, Rs. */
4899
4900 static void
4901 do_mull (void)
4902 {
4903 inst.instruction |= inst.operands[0].reg << 12;
4904 inst.instruction |= inst.operands[1].reg << 16;
4905 inst.instruction |= inst.operands[2].reg;
4906 inst.instruction |= inst.operands[3].reg << 8;
4907
4908 /* rdhi, rdlo and rm must all be different. */
4909 if (inst.operands[0].reg == inst.operands[1].reg
4910 || inst.operands[0].reg == inst.operands[2].reg
4911 || inst.operands[1].reg == inst.operands[2].reg)
4912 as_tsktsk (_("rdhi, rdlo and rm must all be different"));
4913 }
4914
4915 static void
4916 do_nop (void)
4917 {
4918 if (inst.operands[0].present)
4919 {
4920 /* Architectural NOP hints are CPSR sets with no bits selected. */
4921 inst.instruction &= 0xf0000000;
4922 inst.instruction |= 0x0320f000 + inst.operands[0].imm;
4923 }
4924 }
4925
4926 /* ARM V6 Pack Halfword Bottom Top instruction (argument parse).
4927 PKHBT {<cond>} <Rd>, <Rn>, <Rm> {, LSL #<shift_imm>}
4928 Condition defaults to COND_ALWAYS.
4929 Error if Rd, Rn or Rm are R15. */
4930
4931 static void
4932 do_pkhbt (void)
4933 {
4934 inst.instruction |= inst.operands[0].reg << 12;
4935 inst.instruction |= inst.operands[1].reg << 16;
4936 inst.instruction |= inst.operands[2].reg;
4937 if (inst.operands[3].present)
4938 encode_arm_shift (3);
4939 }
4940
4941 /* ARM V6 PKHTB (Argument Parse). */
4942
4943 static void
4944 do_pkhtb (void)
4945 {
4946 if (!inst.operands[3].present)
4947 {
4948 /* If the shift specifier is omitted, turn the instruction
4949 into pkhbt rd, rm, rn. */
4950 inst.instruction &= 0xfff00010;
4951 inst.instruction |= inst.operands[0].reg << 12;
4952 inst.instruction |= inst.operands[1].reg;
4953 inst.instruction |= inst.operands[2].reg << 16;
4954 }
4955 else
4956 {
4957 inst.instruction |= inst.operands[0].reg << 12;
4958 inst.instruction |= inst.operands[1].reg << 16;
4959 inst.instruction |= inst.operands[2].reg;
4960 encode_arm_shift (3);
4961 }
4962 }
4963
4964 /* ARMv5TE: Preload-Cache
4965
4966 PLD <addr_mode>
4967
4968 Syntactically, like LDR with B=1, W=0, L=1. */
4969
4970 static void
4971 do_pld (void)
4972 {
4973 constraint (!inst.operands[0].isreg,
4974 _("'[' expected after PLD mnemonic"));
4975 constraint (inst.operands[0].postind,
4976 _("post-indexed expression used in preload instruction"));
4977 constraint (inst.operands[0].writeback,
4978 _("writeback used in preload instruction"));
4979 constraint (!inst.operands[0].preind,
4980 _("unindexed addressing used in preload instruction"));
4981 inst.instruction |= inst.operands[0].reg;
4982 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE);
4983 }
4984
4985 static void
4986 do_push_pop (void)
4987 {
4988 inst.operands[1] = inst.operands[0];
4989 memset (&inst.operands[0], 0, sizeof inst.operands[0]);
4990 inst.operands[0].isreg = 1;
4991 inst.operands[0].writeback = 1;
4992 inst.operands[0].reg = REG_SP;
4993 do_ldmstm ();
4994 }
4995
4996 /* ARM V6 RFE (Return from Exception) loads the PC and CPSR from the
4997 word at the specified address and the following word
4998 respectively.
4999 Unconditionally executed.
5000 Error if Rn is R15. */
5001
5002 static void
5003 do_rfe (void)
5004 {
5005 inst.instruction |= inst.operands[0].reg << 16;
5006 if (inst.operands[0].writeback)
5007 inst.instruction |= WRITE_BACK;
5008 }
5009
5010 /* ARM V6 ssat (argument parse). */
5011
5012 static void
5013 do_ssat (void)
5014 {
5015 inst.instruction |= inst.operands[0].reg << 12;
5016 inst.instruction |= (inst.operands[1].imm - 1) << 16;
5017 inst.instruction |= inst.operands[2].reg;
5018
5019 if (inst.operands[3].present)
5020 encode_arm_shift (3);
5021 }
5022
5023 /* ARM V6 usat (argument parse). */
5024
5025 static void
5026 do_usat (void)
5027 {
5028 inst.instruction |= inst.operands[0].reg << 12;
5029 inst.instruction |= inst.operands[1].imm << 16;
5030 inst.instruction |= inst.operands[2].reg;
5031
5032 if (inst.operands[3].present)
5033 encode_arm_shift (3);
5034 }
5035
5036 /* ARM V6 ssat16 (argument parse). */
5037
5038 static void
5039 do_ssat16 (void)
5040 {
5041 inst.instruction |= inst.operands[0].reg << 12;
5042 inst.instruction |= ((inst.operands[1].imm - 1) << 16);
5043 inst.instruction |= inst.operands[2].reg;
5044 }
5045
5046 static void
5047 do_usat16 (void)
5048 {
5049 inst.instruction |= inst.operands[0].reg << 12;
5050 inst.instruction |= inst.operands[1].imm << 16;
5051 inst.instruction |= inst.operands[2].reg;
5052 }
5053
5054 /* ARM V6 SETEND (argument parse). Sets the E bit in the CPSR while
5055 preserving the other bits.
5056
5057 setend <endian_specifier>, where <endian_specifier> is either
5058 BE or LE. */
5059
5060 static void
5061 do_setend (void)
5062 {
5063 if (inst.operands[0].imm)
5064 inst.instruction |= 0x200;
5065 }
5066
5067 static void
5068 do_shift (void)
5069 {
5070 unsigned int Rm = (inst.operands[1].present
5071 ? inst.operands[1].reg
5072 : inst.operands[0].reg);
5073
5074 inst.instruction |= inst.operands[0].reg << 12;
5075 inst.instruction |= Rm;
5076 if (inst.operands[2].isreg) /* Rd, {Rm,} Rs */
5077 {
5078 constraint (inst.operands[0].reg != Rm,
5079 _("source1 and dest must be same register"));
5080 inst.instruction |= inst.operands[2].reg << 8;
5081 inst.instruction |= SHIFT_BY_REG;
5082 }
5083 else
5084 inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
5085 }
5086
5087 static void
5088 do_smi (void)
5089 {
5090 inst.reloc.type = BFD_RELOC_ARM_SMI;
5091 inst.reloc.pc_rel = 0;
5092 }
5093
5094 static void
5095 do_swi (void)
5096 {
5097 inst.reloc.type = BFD_RELOC_ARM_SWI;
5098 inst.reloc.pc_rel = 0;
5099 }
5100
5101 /* ARM V5E (El Segundo) signed-multiply-accumulate (argument parse)
5102 SMLAxy{cond} Rd,Rm,Rs,Rn
5103 SMLAWy{cond} Rd,Rm,Rs,Rn
5104 Error if any register is R15. */
5105
5106 static void
5107 do_smla (void)
5108 {
5109 inst.instruction |= inst.operands[0].reg << 16;
5110 inst.instruction |= inst.operands[1].reg;
5111 inst.instruction |= inst.operands[2].reg << 8;
5112 inst.instruction |= inst.operands[3].reg << 12;
5113 }
5114
5115 /* ARM V5E (El Segundo) signed-multiply-accumulate-long (argument parse)
5116 SMLALxy{cond} Rdlo,Rdhi,Rm,Rs
5117 Error if any register is R15.
5118 Warning if Rdlo == Rdhi. */
5119
5120 static void
5121 do_smlal (void)
5122 {
5123 inst.instruction |= inst.operands[0].reg << 12;
5124 inst.instruction |= inst.operands[1].reg << 16;
5125 inst.instruction |= inst.operands[2].reg;
5126 inst.instruction |= inst.operands[3].reg << 8;
5127
5128 if (inst.operands[0].reg == inst.operands[1].reg)
5129 as_tsktsk (_("rdhi and rdlo must be different"));
5130 }
5131
5132 /* ARM V5E (El Segundo) signed-multiply (argument parse)
5133 SMULxy{cond} Rd,Rm,Rs
5134 Error if any register is R15. */
5135
5136 static void
5137 do_smul (void)
5138 {
5139 inst.instruction |= inst.operands[0].reg << 16;
5140 inst.instruction |= inst.operands[1].reg;
5141 inst.instruction |= inst.operands[2].reg << 8;
5142 }
5143
5144 /* ARM V6 srs (argument parse). */
5145
5146 static void
5147 do_srs (void)
5148 {
5149 inst.instruction |= inst.operands[0].imm;
5150 if (inst.operands[0].writeback)
5151 inst.instruction |= WRITE_BACK;
5152 }
5153
5154 /* ARM V6 strex (argument parse). */
5155
5156 static void
5157 do_strex (void)
5158 {
5159 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
5160 || inst.operands[2].postind || inst.operands[2].writeback
5161 || inst.operands[2].immisreg || inst.operands[2].shifted
5162 || inst.operands[2].negative,
5163 _("instruction does not accept this addressing mode"));
5164
5165 constraint (inst.operands[2].reg == REG_PC, BAD_PC);
5166
5167 constraint (inst.operands[0].reg == inst.operands[1].reg
5168 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
5169
5170 constraint (inst.reloc.exp.X_op != O_constant
5171 || inst.reloc.exp.X_add_number != 0,
5172 _("offset must be zero in ARM encoding"));
5173
5174 inst.instruction |= inst.operands[0].reg << 12;
5175 inst.instruction |= inst.operands[1].reg;
5176 inst.instruction |= inst.operands[2].reg << 16;
5177 inst.reloc.type = BFD_RELOC_UNUSED;
5178 }
5179
5180 static void
5181 do_strexd (void)
5182 {
5183 constraint (inst.operands[1].reg % 2 != 0,
5184 _("even register required"));
5185 constraint (inst.operands[2].present
5186 && inst.operands[2].reg != inst.operands[1].reg + 1,
5187 _("can only store two consecutive registers"));
5188 /* If op 2 were present and equal to PC, this function wouldn't
5189 have been called in the first place. */
5190 constraint (inst.operands[1].reg == REG_LR, _("r14 not allowed here"));
5191
5192 constraint (inst.operands[0].reg == inst.operands[1].reg
5193 || inst.operands[0].reg == inst.operands[1].reg + 1
5194 || inst.operands[0].reg == inst.operands[3].reg,
5195 BAD_OVERLAP);
5196
5197 inst.instruction |= inst.operands[0].reg << 12;
5198 inst.instruction |= inst.operands[1].reg;
5199 inst.instruction |= inst.operands[3].reg << 16;
5200 }
5201
5202 /* ARM V6 SXTAH extracts a 16-bit value from a register, sign
5203 extends it to 32-bits, and adds the result to a value in another
5204 register. You can specify a rotation by 0, 8, 16, or 24 bits
5205 before extracting the 16-bit value.
5206 SXTAH{<cond>} <Rd>, <Rn>, <Rm>{, <rotation>}
5207 Condition defaults to COND_ALWAYS.
5208 Error if any register uses R15. */
5209
5210 static void
5211 do_sxtah (void)
5212 {
5213 inst.instruction |= inst.operands[0].reg << 12;
5214 inst.instruction |= inst.operands[1].reg << 16;
5215 inst.instruction |= inst.operands[2].reg;
5216 inst.instruction |= inst.operands[3].imm << 10;
5217 }
5218
5219 /* ARM V6 SXTH.
5220
5221 SXTH {<cond>} <Rd>, <Rm>{, <rotation>}
5222 Condition defaults to COND_ALWAYS.
5223 Error if any register uses R15. */
5224
5225 static void
5226 do_sxth (void)
5227 {
5228 inst.instruction |= inst.operands[0].reg << 12;
5229 inst.instruction |= inst.operands[1].reg;
5230 inst.instruction |= inst.operands[2].imm << 10;
5231 }
5232 \f
5233 /* VFP instructions. In a logical order: SP variant first, monad
5234 before dyad, arithmetic then move then load/store. */
5235
5236 static void
5237 do_vfp_sp_monadic (void)
5238 {
5239 encode_arm_vfp_sp_reg (inst.operands[0].reg, VFP_REG_Sd);
5240 encode_arm_vfp_sp_reg (inst.operands[1].reg, VFP_REG_Sm);
5241 }
5242
5243 static void
5244 do_vfp_sp_dyadic (void)
5245 {
5246 encode_arm_vfp_sp_reg (inst.operands[0].reg, VFP_REG_Sd);
5247 encode_arm_vfp_sp_reg (inst.operands[1].reg, VFP_REG_Sn);
5248 encode_arm_vfp_sp_reg (inst.operands[2].reg, VFP_REG_Sm);
5249 }
5250
5251 static void
5252 do_vfp_sp_compare_z (void)
5253 {
5254 encode_arm_vfp_sp_reg (inst.operands[0].reg, VFP_REG_Sd);
5255 }
5256
5257 static void
5258 do_vfp_dp_sp_cvt (void)
5259 {
5260 inst.instruction |= inst.operands[0].reg << 12;
5261 encode_arm_vfp_sp_reg (inst.operands[1].reg, VFP_REG_Sm);
5262 }
5263
5264 static void
5265 do_vfp_sp_dp_cvt (void)
5266 {
5267 encode_arm_vfp_sp_reg (inst.operands[0].reg, VFP_REG_Sd);
5268 inst.instruction |= inst.operands[1].reg;
5269 }
5270
5271 static void
5272 do_vfp_reg_from_sp (void)
5273 {
5274 inst.instruction |= inst.operands[0].reg << 12;
5275 encode_arm_vfp_sp_reg (inst.operands[1].reg, VFP_REG_Sn);
5276 }
5277
5278 static void
5279 do_vfp_reg2_from_sp2 (void)
5280 {
5281 constraint (inst.operands[2].imm != 2,
5282 _("only two consecutive VFP SP registers allowed here"));
5283 inst.instruction |= inst.operands[0].reg << 12;
5284 inst.instruction |= inst.operands[1].reg << 16;
5285 encode_arm_vfp_sp_reg (inst.operands[2].reg, VFP_REG_Sm);
5286 }
5287
5288 static void
5289 do_vfp_sp_from_reg (void)
5290 {
5291 encode_arm_vfp_sp_reg (inst.operands[0].reg, VFP_REG_Sn);
5292 inst.instruction |= inst.operands[1].reg << 12;
5293 }
5294
5295 static void
5296 do_vfp_sp2_from_reg2 (void)
5297 {
5298 constraint (inst.operands[0].imm != 2,
5299 _("only two consecutive VFP SP registers allowed here"));
5300 encode_arm_vfp_sp_reg (inst.operands[0].reg, VFP_REG_Sm);
5301 inst.instruction |= inst.operands[1].reg << 12;
5302 inst.instruction |= inst.operands[2].reg << 16;
5303 }
5304
5305 static void
5306 do_vfp_sp_ldst (void)
5307 {
5308 encode_arm_vfp_sp_reg (inst.operands[0].reg, VFP_REG_Sd);
5309 encode_arm_cp_address (1, FALSE, TRUE, 0);
5310 }
5311
5312 static void
5313 do_vfp_dp_ldst (void)
5314 {
5315 inst.instruction |= inst.operands[0].reg << 12;
5316 encode_arm_cp_address (1, FALSE, TRUE, 0);
5317 }
5318
5319
5320 static void
5321 vfp_sp_ldstm (enum vfp_ldstm_type ldstm_type)
5322 {
5323 if (inst.operands[0].writeback)
5324 inst.instruction |= WRITE_BACK;
5325 else
5326 constraint (ldstm_type != VFP_LDSTMIA,
5327 _("this addressing mode requires base-register writeback"));
5328 inst.instruction |= inst.operands[0].reg << 16;
5329 encode_arm_vfp_sp_reg (inst.operands[1].reg, VFP_REG_Sd);
5330 inst.instruction |= inst.operands[1].imm;
5331 }
5332
5333 static void
5334 vfp_dp_ldstm (enum vfp_ldstm_type ldstm_type)
5335 {
5336 int count;
5337
5338 if (inst.operands[0].writeback)
5339 inst.instruction |= WRITE_BACK;
5340 else
5341 constraint (ldstm_type != VFP_LDSTMIA && ldstm_type != VFP_LDSTMIAX,
5342 _("this addressing mode requires base-register writeback"));
5343
5344 inst.instruction |= inst.operands[0].reg << 16;
5345 inst.instruction |= inst.operands[1].reg << 12;
5346
5347 count = inst.operands[1].imm << 1;
5348 if (ldstm_type == VFP_LDSTMIAX || ldstm_type == VFP_LDSTMDBX)
5349 count += 1;
5350
5351 inst.instruction |= count;
5352 }
5353
5354 static void
5355 do_vfp_sp_ldstmia (void)
5356 {
5357 vfp_sp_ldstm (VFP_LDSTMIA);
5358 }
5359
5360 static void
5361 do_vfp_sp_ldstmdb (void)
5362 {
5363 vfp_sp_ldstm (VFP_LDSTMDB);
5364 }
5365
5366 static void
5367 do_vfp_dp_ldstmia (void)
5368 {
5369 vfp_dp_ldstm (VFP_LDSTMIA);
5370 }
5371
5372 static void
5373 do_vfp_dp_ldstmdb (void)
5374 {
5375 vfp_dp_ldstm (VFP_LDSTMDB);
5376 }
5377
5378 static void
5379 do_vfp_xp_ldstmia (void)
5380 {
5381 vfp_dp_ldstm (VFP_LDSTMIAX);
5382 }
5383
5384 static void
5385 do_vfp_xp_ldstmdb (void)
5386 {
5387 vfp_dp_ldstm (VFP_LDSTMDBX);
5388 }
5389 \f
5390 /* FPA instructions. Also in a logical order. */
5391
5392 static void
5393 do_fpa_cmp (void)
5394 {
5395 inst.instruction |= inst.operands[0].reg << 16;
5396 inst.instruction |= inst.operands[1].reg;
5397 }
5398
5399 static void
5400 do_fpa_ldmstm (void)
5401 {
5402 inst.instruction |= inst.operands[0].reg << 12;
5403 switch (inst.operands[1].imm)
5404 {
5405 case 1: inst.instruction |= CP_T_X; break;
5406 case 2: inst.instruction |= CP_T_Y; break;
5407 case 3: inst.instruction |= CP_T_Y | CP_T_X; break;
5408 case 4: break;
5409 default: abort ();
5410 }
5411
5412 if (inst.instruction & (PRE_INDEX | INDEX_UP))
5413 {
5414 /* The instruction specified "ea" or "fd", so we can only accept
5415 [Rn]{!}. The instruction does not really support stacking or
5416 unstacking, so we have to emulate these by setting appropriate
5417 bits and offsets. */
5418 constraint (inst.reloc.exp.X_op != O_constant
5419 || inst.reloc.exp.X_add_number != 0,
5420 _("this instruction does not support indexing"));
5421
5422 if ((inst.instruction & PRE_INDEX) || inst.operands[2].writeback)
5423 inst.reloc.exp.X_add_number = 12 * inst.operands[1].imm;
5424
5425 if (!(inst.instruction & INDEX_UP))
5426 inst.reloc.exp.X_add_number = -inst.reloc.exp.X_add_number;
5427
5428 if (!(inst.instruction & PRE_INDEX) && inst.operands[2].writeback)
5429 {
5430 inst.operands[2].preind = 0;
5431 inst.operands[2].postind = 1;
5432 }
5433 }
5434
5435 encode_arm_cp_address (2, TRUE, TRUE, 0);
5436 }
5437 \f
5438 /* iWMMXt instructions: strictly in alphabetical order. */
5439
5440 static void
5441 do_iwmmxt_tandorc (void)
5442 {
5443 constraint (inst.operands[0].reg != REG_PC, _("only r15 allowed here"));
5444 }
5445
5446 static void
5447 do_iwmmxt_textrc (void)
5448 {
5449 inst.instruction |= inst.operands[0].reg << 12;
5450 inst.instruction |= inst.operands[1].imm;
5451 }
5452
5453 static void
5454 do_iwmmxt_textrm (void)
5455 {
5456 inst.instruction |= inst.operands[0].reg << 12;
5457 inst.instruction |= inst.operands[1].reg << 16;
5458 inst.instruction |= inst.operands[2].imm;
5459 }
5460
5461 static void
5462 do_iwmmxt_tinsr (void)
5463 {
5464 inst.instruction |= inst.operands[0].reg << 16;
5465 inst.instruction |= inst.operands[1].reg << 12;
5466 inst.instruction |= inst.operands[2].imm;
5467 }
5468
5469 static void
5470 do_iwmmxt_tmia (void)
5471 {
5472 inst.instruction |= inst.operands[0].reg << 5;
5473 inst.instruction |= inst.operands[1].reg;
5474 inst.instruction |= inst.operands[2].reg << 12;
5475 }
5476
5477 static void
5478 do_iwmmxt_waligni (void)
5479 {
5480 inst.instruction |= inst.operands[0].reg << 12;
5481 inst.instruction |= inst.operands[1].reg << 16;
5482 inst.instruction |= inst.operands[2].reg;
5483 inst.instruction |= inst.operands[3].imm << 20;
5484 }
5485
5486 static void
5487 do_iwmmxt_wmov (void)
5488 {
5489 /* WMOV rD, rN is an alias for WOR rD, rN, rN. */
5490 inst.instruction |= inst.operands[0].reg << 12;
5491 inst.instruction |= inst.operands[1].reg << 16;
5492 inst.instruction |= inst.operands[1].reg;
5493 }
5494
5495 static void
5496 do_iwmmxt_wldstbh (void)
5497 {
5498 inst.instruction |= inst.operands[0].reg << 12;
5499 inst.reloc.exp.X_add_number *= 4;
5500 encode_arm_cp_address (1, TRUE, FALSE, BFD_RELOC_ARM_CP_OFF_IMM_S2);
5501 }
5502
5503 static void
5504 do_iwmmxt_wldstw (void)
5505 {
5506 /* RIWR_RIWC clears .isreg for a control register. */
5507 if (!inst.operands[0].isreg)
5508 {
5509 constraint (inst.cond != COND_ALWAYS, BAD_COND);
5510 inst.instruction |= 0xf0000000;
5511 }
5512
5513 inst.instruction |= inst.operands[0].reg << 12;
5514 encode_arm_cp_address (1, TRUE, TRUE, 0);
5515 }
5516
5517 static void
5518 do_iwmmxt_wldstd (void)
5519 {
5520 inst.instruction |= inst.operands[0].reg << 12;
5521 encode_arm_cp_address (1, TRUE, FALSE, 0);
5522 }
5523
5524 static void
5525 do_iwmmxt_wshufh (void)
5526 {
5527 inst.instruction |= inst.operands[0].reg << 12;
5528 inst.instruction |= inst.operands[1].reg << 16;
5529 inst.instruction |= ((inst.operands[2].imm & 0xf0) << 16);
5530 inst.instruction |= (inst.operands[2].imm & 0x0f);
5531 }
5532
5533 static void
5534 do_iwmmxt_wzero (void)
5535 {
5536 /* WZERO reg is an alias for WANDN reg, reg, reg. */
5537 inst.instruction |= inst.operands[0].reg;
5538 inst.instruction |= inst.operands[0].reg << 12;
5539 inst.instruction |= inst.operands[0].reg << 16;
5540 }
5541 \f
5542 /* Cirrus Maverick instructions. Simple 2-, 3-, and 4-register
5543 operations first, then control, shift, and load/store. */
5544
5545 /* Insns like "foo X,Y,Z". */
5546
5547 static void
5548 do_mav_triple (void)
5549 {
5550 inst.instruction |= inst.operands[0].reg << 16;
5551 inst.instruction |= inst.operands[1].reg;
5552 inst.instruction |= inst.operands[2].reg << 12;
5553 }
5554
5555 /* Insns like "foo W,X,Y,Z".
5556 where W=MVAX[0:3] and X,Y,Z=MVFX[0:15]. */
5557
5558 static void
5559 do_mav_quad (void)
5560 {
5561 inst.instruction |= inst.operands[0].reg << 5;
5562 inst.instruction |= inst.operands[1].reg << 12;
5563 inst.instruction |= inst.operands[2].reg << 16;
5564 inst.instruction |= inst.operands[3].reg;
5565 }
5566
5567 /* cfmvsc32<cond> DSPSC,MVDX[15:0]. */
5568 static void
5569 do_mav_dspsc (void)
5570 {
5571 inst.instruction |= inst.operands[1].reg << 12;
5572 }
5573
5574 /* Maverick shift immediate instructions.
5575 cfsh32<cond> MVFX[15:0],MVFX[15:0],Shift[6:0].
5576 cfsh64<cond> MVDX[15:0],MVDX[15:0],Shift[6:0]. */
5577
5578 static void
5579 do_mav_shift (void)
5580 {
5581 int imm = inst.operands[2].imm;
5582
5583 inst.instruction |= inst.operands[0].reg << 12;
5584 inst.instruction |= inst.operands[1].reg << 16;
5585
5586 /* Bits 0-3 of the insn should have bits 0-3 of the immediate.
5587 Bits 5-7 of the insn should have bits 4-6 of the immediate.
5588 Bit 4 should be 0. */
5589 imm = (imm & 0xf) | ((imm & 0x70) << 1);
5590
5591 inst.instruction |= imm;
5592 }
5593 \f
5594 /* XScale instructions. Also sorted arithmetic before move. */
5595
5596 /* Xscale multiply-accumulate (argument parse)
5597 MIAcc acc0,Rm,Rs
5598 MIAPHcc acc0,Rm,Rs
5599 MIAxycc acc0,Rm,Rs. */
5600
5601 static void
5602 do_xsc_mia (void)
5603 {
5604 inst.instruction |= inst.operands[1].reg;
5605 inst.instruction |= inst.operands[2].reg << 12;
5606 }
5607
5608 /* Xscale move-accumulator-register (argument parse)
5609
5610 MARcc acc0,RdLo,RdHi. */
5611
5612 static void
5613 do_xsc_mar (void)
5614 {
5615 inst.instruction |= inst.operands[1].reg << 12;
5616 inst.instruction |= inst.operands[2].reg << 16;
5617 }
5618
5619 /* Xscale move-register-accumulator (argument parse)
5620
5621 MRAcc RdLo,RdHi,acc0. */
5622
5623 static void
5624 do_xsc_mra (void)
5625 {
5626 constraint (inst.operands[0].reg == inst.operands[1].reg, BAD_OVERLAP);
5627 inst.instruction |= inst.operands[0].reg << 12;
5628 inst.instruction |= inst.operands[1].reg << 16;
5629 }
5630 \f
5631 /* Encoding functions relevant only to Thumb. */
5632
5633 /* inst.operands[i] is a shifted-register operand; encode
5634 it into inst.instruction in the format used by Thumb32. */
5635
5636 static void
5637 encode_thumb32_shifted_operand (int i)
5638 {
5639 unsigned int value = inst.reloc.exp.X_add_number;
5640 unsigned int shift = inst.operands[i].shift_kind;
5641
5642 constraint (inst.operands[i].immisreg,
5643 _("shift by register not allowed in thumb mode"));
5644 inst.instruction |= inst.operands[i].reg;
5645 if (shift == SHIFT_RRX)
5646 inst.instruction |= SHIFT_ROR << 4;
5647 else
5648 {
5649 constraint (inst.reloc.exp.X_op != O_constant,
5650 _("expression too complex"));
5651
5652 constraint (value > 32
5653 || (value == 32 && (shift == SHIFT_LSL
5654 || shift == SHIFT_ROR)),
5655 _("shift expression is too large"));
5656
5657 if (value == 0)
5658 shift = SHIFT_LSL;
5659 else if (value == 32)
5660 value = 0;
5661
5662 inst.instruction |= shift << 4;
5663 inst.instruction |= (value & 0x1c) << 10;
5664 inst.instruction |= (value & 0x03) << 6;
5665 }
5666 }
5667
5668
5669 /* inst.operands[i] was set up by parse_address. Encode it into a
5670 Thumb32 format load or store instruction. Reject forms that cannot
5671 be used with such instructions. If is_t is true, reject forms that
5672 cannot be used with a T instruction; if is_d is true, reject forms
5673 that cannot be used with a D instruction. */
5674
5675 static void
5676 encode_thumb32_addr_mode (int i, bfd_boolean is_t, bfd_boolean is_d)
5677 {
5678 bfd_boolean is_pc = (inst.operands[i].reg == REG_PC);
5679
5680 constraint (!inst.operands[i].isreg,
5681 _("Thumb does not support the ldr =N pseudo-operation"));
5682
5683 inst.instruction |= inst.operands[i].reg << 16;
5684 if (inst.operands[i].immisreg)
5685 {
5686 constraint (is_pc, _("cannot use register index with PC-relative addressing"));
5687 constraint (is_t || is_d, _("cannot use register index with this instruction"));
5688 constraint (inst.operands[i].negative,
5689 _("Thumb does not support negative register indexing"));
5690 constraint (inst.operands[i].postind,
5691 _("Thumb does not support register post-indexing"));
5692 constraint (inst.operands[i].writeback,
5693 _("Thumb does not support register indexing with writeback"));
5694 constraint (inst.operands[i].shifted && inst.operands[i].shift_kind != SHIFT_LSL,
5695 _("Thumb supports only LSL in shifted register indexing"));
5696
5697 inst.instruction |= inst.operands[1].imm;
5698 if (inst.operands[i].shifted)
5699 {
5700 constraint (inst.reloc.exp.X_op != O_constant,
5701 _("expression too complex"));
5702 constraint (inst.reloc.exp.X_add_number < 0
5703 || inst.reloc.exp.X_add_number > 3,
5704 _("shift out of range"));
5705 inst.instruction |= inst.reloc.exp.X_add_number << 4;
5706 }
5707 inst.reloc.type = BFD_RELOC_UNUSED;
5708 }
5709 else if (inst.operands[i].preind)
5710 {
5711 constraint (is_pc && inst.operands[i].writeback,
5712 _("cannot use writeback with PC-relative addressing"));
5713 constraint (is_t && inst.operands[1].writeback,
5714 _("cannot use writeback with this instruction"));
5715
5716 if (is_d)
5717 {
5718 inst.instruction |= 0x01000000;
5719 if (inst.operands[i].writeback)
5720 inst.instruction |= 0x00200000;
5721 }
5722 else
5723 {
5724 inst.instruction |= 0x00000c00;
5725 if (inst.operands[i].writeback)
5726 inst.instruction |= 0x00000100;
5727 }
5728 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_IMM;
5729 }
5730 else if (inst.operands[i].postind)
5731 {
5732 assert (inst.operands[i].writeback);
5733 constraint (is_pc, _("cannot use post-indexing with PC-relative addressing"));
5734 constraint (is_t, _("cannot use post-indexing with this instruction"));
5735
5736 if (is_d)
5737 inst.instruction |= 0x00200000;
5738 else
5739 inst.instruction |= 0x00000900;
5740 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_IMM;
5741 }
5742 else /* unindexed - only for coprocessor */
5743 inst.error = _("instruction does not accept unindexed addressing");
5744 }
5745
5746 /* Table of Thumb instructions which exist in both 16- and 32-bit
5747 encodings (the latter only in post-V6T2 cores). The index is the
5748 value used in the insns table below. When there is more than one
5749 possible 16-bit encoding for the instruction, this table always
5750 holds variant (1). */
5751 #define T16_32_TAB \
5752 X(adc, 4140, eb400000), \
5753 X(adcs, 4140, eb500000), \
5754 X(add, 1c00, eb000000), \
5755 X(adds, 1c00, eb100000), \
5756 X(adr, 000f, f20f0000), \
5757 X(and, 4000, ea000000), \
5758 X(ands, 4000, ea100000), \
5759 X(asr, 1000, fa40f000), \
5760 X(asrs, 1000, fa50f000), \
5761 X(bic, 4380, ea200000), \
5762 X(bics, 4380, ea300000), \
5763 X(cmn, 42c0, eb100f00), \
5764 X(cmp, 2800, ebb00f00), \
5765 X(cpsie, b660, f3af8400), \
5766 X(cpsid, b670, f3af8600), \
5767 X(cpy, 4600, ea4f0000), \
5768 X(eor, 4040, ea800000), \
5769 X(eors, 4040, ea900000), \
5770 X(ldmia, c800, e8900000), \
5771 X(ldr, 6800, f8500000), \
5772 X(ldrb, 7800, f8100000), \
5773 X(ldrh, 8800, f8300000), \
5774 X(ldrsb, 5600, f9100000), \
5775 X(ldrsh, 5e00, f9300000), \
5776 X(lsl, 0000, fa00f000), \
5777 X(lsls, 0000, fa10f000), \
5778 X(lsr, 0800, fa20f000), \
5779 X(lsrs, 0800, fa30f000), \
5780 X(mov, 2000, ea4f0000), \
5781 X(movs, 2000, ea5f0000), \
5782 X(mul, 4340, fb00f000), \
5783 X(muls, 4340, ffffffff), /* no 32b muls */ \
5784 X(mvn, 43c0, ea6f0000), \
5785 X(mvns, 43c0, ea7f0000), \
5786 X(neg, 4240, f1c00000), /* rsb #0 */ \
5787 X(negs, 4240, f1d00000), /* rsbs #0 */ \
5788 X(orr, 4300, ea400000), \
5789 X(orrs, 4300, ea500000), \
5790 X(pop, bc00, e8bd0000), /* ldmia sp!,... */ \
5791 X(push, b400, e92d0000), /* stmdb sp!,... */ \
5792 X(rev, ba00, fa90f080), \
5793 X(rev16, ba40, fa90f090), \
5794 X(revsh, bac0, fa90f0b0), \
5795 X(ror, 41c0, fa60f000), \
5796 X(rors, 41c0, fa70f000), \
5797 X(sbc, 4180, eb600000), \
5798 X(sbcs, 4180, eb700000), \
5799 X(stmia, c000, e8800000), \
5800 X(str, 6000, f8400000), \
5801 X(strb, 7000, f8000000), \
5802 X(strh, 8000, f8200000), \
5803 X(sub, 1e00, eba00000), \
5804 X(subs, 1e00, ebb00000), \
5805 X(sxtb, b240, fa4ff080), \
5806 X(sxth, b200, fa0ff080), \
5807 X(tst, 4200, ea100f00), \
5808 X(uxtb, b2c0, fa5ff080), \
5809 X(uxth, b280, fa1ff080), \
5810 X(nop, bf00, f3af8000), \
5811 X(yield, bf10, f3af8001), \
5812 X(wfe, bf20, f3af8002), \
5813 X(wfi, bf30, f3af8003), \
5814 X(sev, bf40, f3af9004), /* typo, 8004? */
5815
5816 /* To catch errors in encoding functions, the codes are all offset by
5817 0xF800, putting them in one of the 32-bit prefix ranges, ergo undefined
5818 as 16-bit instructions. */
5819 #define X(a,b,c) T_MNEM_##a
5820 enum t16_32_codes { T16_32_OFFSET = 0xF7FF, T16_32_TAB };
5821 #undef X
5822
5823 #define X(a,b,c) 0x##b
5824 static const unsigned short thumb_op16[] = { T16_32_TAB };
5825 #define THUMB_OP16(n) (thumb_op16[(n) - (T16_32_OFFSET + 1)])
5826 #undef X
5827
5828 #define X(a,b,c) 0x##c
5829 static const unsigned int thumb_op32[] = { T16_32_TAB };
5830 #define THUMB_OP32(n) (thumb_op32[(n) - (T16_32_OFFSET + 1)])
5831 #define THUMB_SETS_FLAGS(n) (THUMB_OP32 (n) & 0x00100000)
5832 #undef X
5833 #undef T16_32_TAB
5834
5835 /* Thumb instruction encoders, in alphabetical order. */
5836
5837 /* ADDW or SUBW. */
5838 static void
5839 do_t_add_sub_w (void)
5840 {
5841 int Rd, Rn;
5842
5843 Rd = inst.operands[0].reg;
5844 Rn = inst.operands[1].reg;
5845
5846 constraint (Rd == 15, _("PC not allowed as destination"));
5847 inst.instruction |= (Rn << 16) | (Rd << 8);
5848 inst.reloc.type = BFD_RELOC_ARM_T32_IMM12;
5849 }
5850
5851 /* Parse an add or subtract instruction. We get here with inst.instruction
5852 equalling any of THUMB_OPCODE_add, adds, sub, or subs. */
5853
5854 static void
5855 do_t_add_sub (void)
5856 {
5857 int Rd, Rs, Rn;
5858
5859 Rd = inst.operands[0].reg;
5860 Rs = (inst.operands[1].present
5861 ? inst.operands[1].reg /* Rd, Rs, foo */
5862 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
5863
5864 if (unified_syntax)
5865 {
5866 if (!inst.operands[2].isreg)
5867 {
5868 /* ??? Convert large immediates to addw/subw. */
5869 /* ??? 16-bit adds with small immediates. */
5870 /* For an immediate, we always generate a 32-bit opcode;
5871 section relaxation will shrink it later if possible. */
5872 inst.instruction = THUMB_OP32 (inst.instruction);
5873 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
5874 inst.instruction |= inst.operands[0].reg << 8;
5875 inst.instruction |= inst.operands[1].reg << 16;
5876 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
5877 }
5878 else
5879 {
5880 Rn = inst.operands[2].reg;
5881 /* See if we can do this with a 16-bit instruction. */
5882 if (!inst.operands[2].shifted && inst.size_req != 4)
5883 {
5884 bfd_boolean narrow;
5885
5886 if (inst.instruction == T_MNEM_adds
5887 || inst.instruction == T_MNEM_subs)
5888 narrow = (current_it_mask == 0);
5889 else
5890 narrow = (current_it_mask != 0);
5891 if (Rd > 7 || Rs > 7 || Rn > 7)
5892 narrow = FALSE;
5893
5894 if (narrow)
5895 {
5896 inst.instruction = ((inst.instruction == T_MNEM_adds
5897 || inst.instruction == T_MNEM_add)
5898 ? T_OPCODE_ADD_R3
5899 : T_OPCODE_SUB_R3);
5900 inst.instruction |= Rd | (Rs << 3) | (Rn << 6);
5901 return;
5902 }
5903
5904 if (inst.instruction == T_MNEM_add)
5905 {
5906 if (Rd == Rs)
5907 {
5908 inst.instruction = T_OPCODE_ADD_HI;
5909 inst.instruction |= (Rd & 8) << 4;
5910 inst.instruction |= (Rd & 7);
5911 inst.instruction |= Rn << 3;
5912 return;
5913 }
5914 /* ... because addition is commutative! */
5915 else if (Rd == Rn)
5916 {
5917 inst.instruction = T_OPCODE_ADD_HI;
5918 inst.instruction |= (Rd & 8) << 4;
5919 inst.instruction |= (Rd & 7);
5920 inst.instruction |= Rs << 3;
5921 return;
5922 }
5923 }
5924 }
5925 /* If we get here, it can't be done in 16 bits. */
5926 constraint (inst.operands[2].shifted && inst.operands[2].immisreg,
5927 _("shift must be constant"));
5928 inst.instruction = THUMB_OP32 (inst.instruction);
5929 inst.instruction |= Rd << 8;
5930 inst.instruction |= Rs << 16;
5931 encode_thumb32_shifted_operand (2);
5932 }
5933 }
5934 else
5935 {
5936 constraint (inst.instruction == T_MNEM_adds
5937 || inst.instruction == T_MNEM_subs,
5938 BAD_THUMB32);
5939
5940 if (!inst.operands[2].isreg) /* Rd, Rs, #imm */
5941 {
5942 constraint ((Rd > 7 && (Rd != REG_SP || Rs != REG_SP))
5943 || (Rs > 7 && Rs != REG_SP && Rs != REG_PC),
5944 BAD_HIREG);
5945
5946 inst.instruction = (inst.instruction == T_MNEM_add
5947 ? 0x0000 : 0x8000);
5948 inst.instruction |= (Rd << 4) | Rs;
5949 inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
5950 return;
5951 }
5952
5953 Rn = inst.operands[2].reg;
5954 constraint (inst.operands[2].shifted, _("unshifted register required"));
5955
5956 /* We now have Rd, Rs, and Rn set to registers. */
5957 if (Rd > 7 || Rs > 7 || Rn > 7)
5958 {
5959 /* Can't do this for SUB. */
5960 constraint (inst.instruction == T_MNEM_sub, BAD_HIREG);
5961 inst.instruction = T_OPCODE_ADD_HI;
5962 inst.instruction |= (Rd & 8) << 4;
5963 inst.instruction |= (Rd & 7);
5964 if (Rs == Rd)
5965 inst.instruction |= Rn << 3;
5966 else if (Rn == Rd)
5967 inst.instruction |= Rs << 3;
5968 else
5969 constraint (1, _("dest must overlap one source register"));
5970 }
5971 else
5972 {
5973 inst.instruction = (inst.instruction == T_MNEM_add
5974 ? T_OPCODE_ADD_R3 : T_OPCODE_SUB_R3);
5975 inst.instruction |= Rd | (Rs << 3) | (Rn << 6);
5976 }
5977 }
5978 }
5979
5980 static void
5981 do_t_adr (void)
5982 {
5983 if (unified_syntax && inst.size_req != 2)
5984 {
5985 /* Always generate a 32-bit opcode;
5986 section relaxation will shrink it later if possible. */
5987 inst.instruction = THUMB_OP32 (inst.instruction);
5988 inst.instruction |= inst.operands[0].reg << 8;
5989 inst.reloc.type = BFD_RELOC_ARM_T32_ADD_PC12;
5990 inst.reloc.pc_rel = 1;
5991 }
5992 else
5993 {
5994 inst.instruction = THUMB_OP16 (inst.instruction);
5995 inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
5996 inst.reloc.exp.X_add_number -= 4; /* PC relative adjust. */
5997 inst.reloc.pc_rel = 1;
5998
5999 inst.instruction |= inst.operands[0].reg << 4;
6000 }
6001 }
6002
6003 /* Arithmetic instructions for which there is just one 16-bit
6004 instruction encoding, and it allows only two low registers.
6005 For maximal compatibility with ARM syntax, we allow three register
6006 operands even when Thumb-32 instructions are not available, as long
6007 as the first two are identical. For instance, both "sbc r0,r1" and
6008 "sbc r0,r0,r1" are allowed. */
6009 static void
6010 do_t_arit3 (void)
6011 {
6012 int Rd, Rs, Rn;
6013
6014 Rd = inst.operands[0].reg;
6015 Rs = (inst.operands[1].present
6016 ? inst.operands[1].reg /* Rd, Rs, foo */
6017 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
6018 Rn = inst.operands[2].reg;
6019
6020 if (unified_syntax)
6021 {
6022 if (!inst.operands[2].isreg)
6023 {
6024 /* For an immediate, we always generate a 32-bit opcode;
6025 section relaxation will shrink it later if possible. */
6026 inst.instruction = THUMB_OP32 (inst.instruction);
6027 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
6028 inst.instruction |= Rd << 8;
6029 inst.instruction |= Rs << 16;
6030 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
6031 }
6032 else
6033 {
6034 bfd_boolean narrow;
6035
6036 /* See if we can do this with a 16-bit instruction. */
6037 if (THUMB_SETS_FLAGS (inst.instruction))
6038 narrow = current_it_mask == 0;
6039 else
6040 narrow = current_it_mask != 0;
6041
6042 if (Rd > 7 || Rn > 7 || Rs > 7)
6043 narrow = FALSE;
6044 if (inst.operands[2].shifted)
6045 narrow = FALSE;
6046 if (inst.size_req == 4)
6047 narrow = FALSE;
6048
6049 if (narrow
6050 && Rd == Rs)
6051 {
6052 inst.instruction = THUMB_OP16 (inst.instruction);
6053 inst.instruction |= Rd;
6054 inst.instruction |= Rn << 3;
6055 return;
6056 }
6057
6058 /* If we get here, it can't be done in 16 bits. */
6059 constraint (inst.operands[2].shifted
6060 && inst.operands[2].immisreg,
6061 _("shift must be constant"));
6062 inst.instruction = THUMB_OP32 (inst.instruction);
6063 inst.instruction |= Rd << 8;
6064 inst.instruction |= Rs << 16;
6065 encode_thumb32_shifted_operand (2);
6066 }
6067 }
6068 else
6069 {
6070 /* On its face this is a lie - the instruction does set the
6071 flags. However, the only supported mnemonic in this mode
6072 says it doesn't. */
6073 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
6074
6075 constraint (!inst.operands[2].isreg || inst.operands[2].shifted,
6076 _("unshifted register required"));
6077 constraint (Rd > 7 || Rs > 7 || Rn > 7, BAD_HIREG);
6078 constraint (Rd != Rs,
6079 _("dest and source1 must be the same register"));
6080
6081 inst.instruction = THUMB_OP16 (inst.instruction);
6082 inst.instruction |= Rd;
6083 inst.instruction |= Rn << 3;
6084 }
6085 }
6086
6087 /* Similarly, but for instructions where the arithmetic operation is
6088 commutative, so we can allow either of them to be different from
6089 the destination operand in a 16-bit instruction. For instance, all
6090 three of "adc r0,r1", "adc r0,r0,r1", and "adc r0,r1,r0" are
6091 accepted. */
6092 static void
6093 do_t_arit3c (void)
6094 {
6095 int Rd, Rs, Rn;
6096
6097 Rd = inst.operands[0].reg;
6098 Rs = (inst.operands[1].present
6099 ? inst.operands[1].reg /* Rd, Rs, foo */
6100 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
6101 Rn = inst.operands[2].reg;
6102
6103 if (unified_syntax)
6104 {
6105 if (!inst.operands[2].isreg)
6106 {
6107 /* For an immediate, we always generate a 32-bit opcode;
6108 section relaxation will shrink it later if possible. */
6109 inst.instruction = THUMB_OP32 (inst.instruction);
6110 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
6111 inst.instruction |= Rd << 8;
6112 inst.instruction |= Rs << 16;
6113 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
6114 }
6115 else
6116 {
6117 bfd_boolean narrow;
6118
6119 /* See if we can do this with a 16-bit instruction. */
6120 if (THUMB_SETS_FLAGS (inst.instruction))
6121 narrow = current_it_mask == 0;
6122 else
6123 narrow = current_it_mask != 0;
6124
6125 if (Rd > 7 || Rn > 7 || Rs > 7)
6126 narrow = FALSE;
6127 if (inst.operands[2].shifted)
6128 narrow = FALSE;
6129 if (inst.size_req == 4)
6130 narrow = FALSE;
6131
6132 if (narrow)
6133 {
6134 if (Rd == Rs)
6135 {
6136 inst.instruction = THUMB_OP16 (inst.instruction);
6137 inst.instruction |= Rd;
6138 inst.instruction |= Rn << 3;
6139 return;
6140 }
6141 if (Rd == Rn)
6142 {
6143 inst.instruction = THUMB_OP16 (inst.instruction);
6144 inst.instruction |= Rd;
6145 inst.instruction |= Rs << 3;
6146 return;
6147 }
6148 }
6149
6150 /* If we get here, it can't be done in 16 bits. */
6151 constraint (inst.operands[2].shifted
6152 && inst.operands[2].immisreg,
6153 _("shift must be constant"));
6154 inst.instruction = THUMB_OP32 (inst.instruction);
6155 inst.instruction |= Rd << 8;
6156 inst.instruction |= Rs << 16;
6157 encode_thumb32_shifted_operand (2);
6158 }
6159 }
6160 else
6161 {
6162 /* On its face this is a lie - the instruction does set the
6163 flags. However, the only supported mnemonic in this mode
6164 says it doesn't. */
6165 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
6166
6167 constraint (!inst.operands[2].isreg || inst.operands[2].shifted,
6168 _("unshifted register required"));
6169 constraint (Rd > 7 || Rs > 7 || Rn > 7, BAD_HIREG);
6170
6171 inst.instruction = THUMB_OP16 (inst.instruction);
6172 inst.instruction |= Rd;
6173
6174 if (Rd == Rs)
6175 inst.instruction |= Rn << 3;
6176 else if (Rd == Rn)
6177 inst.instruction |= Rs << 3;
6178 else
6179 constraint (1, _("dest must overlap one source register"));
6180 }
6181 }
6182
6183 static void
6184 do_t_bfc (void)
6185 {
6186 unsigned int msb = inst.operands[1].imm + inst.operands[2].imm;
6187 constraint (msb > 32, _("bit-field extends past end of register"));
6188 /* The instruction encoding stores the LSB and MSB,
6189 not the LSB and width. */
6190 inst.instruction |= inst.operands[0].reg << 8;
6191 inst.instruction |= (inst.operands[1].imm & 0x1c) << 10;
6192 inst.instruction |= (inst.operands[1].imm & 0x03) << 6;
6193 inst.instruction |= msb - 1;
6194 }
6195
6196 static void
6197 do_t_bfi (void)
6198 {
6199 unsigned int msb;
6200
6201 /* #0 in second position is alternative syntax for bfc, which is
6202 the same instruction but with REG_PC in the Rm field. */
6203 if (!inst.operands[1].isreg)
6204 inst.operands[1].reg = REG_PC;
6205
6206 msb = inst.operands[2].imm + inst.operands[3].imm;
6207 constraint (msb > 32, _("bit-field extends past end of register"));
6208 /* The instruction encoding stores the LSB and MSB,
6209 not the LSB and width. */
6210 inst.instruction |= inst.operands[0].reg << 8;
6211 inst.instruction |= inst.operands[1].reg << 16;
6212 inst.instruction |= (inst.operands[2].imm & 0x1c) << 10;
6213 inst.instruction |= (inst.operands[2].imm & 0x03) << 6;
6214 inst.instruction |= msb - 1;
6215 }
6216
6217 static void
6218 do_t_bfx (void)
6219 {
6220 constraint (inst.operands[2].imm + inst.operands[3].imm > 32,
6221 _("bit-field extends past end of register"));
6222 inst.instruction |= inst.operands[0].reg << 8;
6223 inst.instruction |= inst.operands[1].reg << 16;
6224 inst.instruction |= (inst.operands[2].imm & 0x1c) << 10;
6225 inst.instruction |= (inst.operands[2].imm & 0x03) << 6;
6226 inst.instruction |= inst.operands[3].imm - 1;
6227 }
6228
6229 /* ARM V5 Thumb BLX (argument parse)
6230 BLX <target_addr> which is BLX(1)
6231 BLX <Rm> which is BLX(2)
6232 Unfortunately, there are two different opcodes for this mnemonic.
6233 So, the insns[].value is not used, and the code here zaps values
6234 into inst.instruction.
6235
6236 ??? How to take advantage of the additional two bits of displacement
6237 available in Thumb32 mode? Need new relocation? */
6238
6239 static void
6240 do_t_blx (void)
6241 {
6242 if (inst.operands[0].isreg)
6243 /* We have a register, so this is BLX(2). */
6244 inst.instruction |= inst.operands[0].reg << 3;
6245 else
6246 {
6247 /* No register. This must be BLX(1). */
6248 inst.instruction = 0xf000e800;
6249 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BLX;
6250 inst.reloc.pc_rel = 1;
6251 }
6252 }
6253
6254 static void
6255 do_t_branch (void)
6256 {
6257 if (unified_syntax && inst.size_req != 2)
6258 {
6259 if (inst.cond == COND_ALWAYS)
6260 {
6261 inst.instruction = 0xf000b000;
6262 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH25;
6263 }
6264 else
6265 {
6266 assert (inst.cond != 0xF);
6267 inst.instruction = (inst.cond << 22) | 0xf0008000;
6268 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH20;
6269 }
6270 }
6271 else
6272 {
6273 if (inst.cond == COND_ALWAYS)
6274 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH12;
6275 else
6276 {
6277 inst.instruction = 0xd000 | (inst.cond << 8);
6278 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH9;
6279 }
6280 }
6281
6282 inst.reloc.pc_rel = 1;
6283 }
6284
6285 static void
6286 do_t_bkpt (void)
6287 {
6288 if (inst.operands[0].present)
6289 {
6290 constraint (inst.operands[0].imm > 255,
6291 _("immediate value out of range"));
6292 inst.instruction |= inst.operands[0].imm;
6293 }
6294 }
6295
6296 static void
6297 do_t_branch23 (void)
6298 {
6299 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH23;
6300 inst.reloc.pc_rel = 1;
6301
6302 /* If the destination of the branch is a defined symbol which does not have
6303 the THUMB_FUNC attribute, then we must be calling a function which has
6304 the (interfacearm) attribute. We look for the Thumb entry point to that
6305 function and change the branch to refer to that function instead. */
6306 if ( inst.reloc.exp.X_op == O_symbol
6307 && inst.reloc.exp.X_add_symbol != NULL
6308 && S_IS_DEFINED (inst.reloc.exp.X_add_symbol)
6309 && ! THUMB_IS_FUNC (inst.reloc.exp.X_add_symbol))
6310 inst.reloc.exp.X_add_symbol =
6311 find_real_start (inst.reloc.exp.X_add_symbol);
6312 }
6313
6314 static void
6315 do_t_bx (void)
6316 {
6317 inst.instruction |= inst.operands[0].reg << 3;
6318 /* ??? FIXME: Should add a hacky reloc here if reg is REG_PC. The reloc
6319 should cause the alignment to be checked once it is known. This is
6320 because BX PC only works if the instruction is word aligned. */
6321 }
6322
6323 static void
6324 do_t_bxj (void)
6325 {
6326 if (inst.operands[0].reg == REG_PC)
6327 as_tsktsk (_("use of r15 in bxj is not really useful"));
6328
6329 inst.instruction |= inst.operands[0].reg << 16;
6330 }
6331
6332 static void
6333 do_t_clz (void)
6334 {
6335 inst.instruction |= inst.operands[0].reg << 8;
6336 inst.instruction |= inst.operands[1].reg << 16;
6337 inst.instruction |= inst.operands[1].reg;
6338 }
6339
6340 static void
6341 do_t_cpsi (void)
6342 {
6343 if (unified_syntax
6344 && (inst.operands[1].present || inst.size_req == 4))
6345 {
6346 unsigned int imod = (inst.instruction & 0x0030) >> 4;
6347 inst.instruction = 0xf3af8000;
6348 inst.instruction |= imod << 9;
6349 inst.instruction |= inst.operands[0].imm << 5;
6350 if (inst.operands[1].present)
6351 inst.instruction |= 0x100 | inst.operands[1].imm;
6352 }
6353 else
6354 {
6355 constraint (inst.operands[1].present,
6356 _("Thumb does not support the 2-argument "
6357 "form of this instruction"));
6358 inst.instruction |= inst.operands[0].imm;
6359 }
6360 }
6361
6362 /* THUMB CPY instruction (argument parse). */
6363
6364 static void
6365 do_t_cpy (void)
6366 {
6367 if (inst.size_req == 4)
6368 {
6369 inst.instruction = THUMB_OP32 (T_MNEM_mov);
6370 inst.instruction |= inst.operands[0].reg << 8;
6371 inst.instruction |= inst.operands[1].reg;
6372 }
6373 else
6374 {
6375 inst.instruction |= (inst.operands[0].reg & 0x8) << 4;
6376 inst.instruction |= (inst.operands[0].reg & 0x7);
6377 inst.instruction |= inst.operands[1].reg << 3;
6378 }
6379 }
6380
6381 static void
6382 do_t_czb (void)
6383 {
6384 constraint (inst.operands[0].reg > 7, BAD_HIREG);
6385 inst.instruction |= inst.operands[0].reg;
6386 inst.reloc.pc_rel = 1;
6387 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH7;
6388 }
6389
6390 static void
6391 do_t_hint (void)
6392 {
6393 if (unified_syntax && inst.size_req == 4)
6394 inst.instruction = THUMB_OP32 (inst.instruction);
6395 else
6396 inst.instruction = THUMB_OP16 (inst.instruction);
6397 }
6398
6399 static void
6400 do_t_it (void)
6401 {
6402 unsigned int cond = inst.operands[0].imm;
6403
6404 current_it_mask = (inst.instruction & 0xf) | 0x10;
6405 current_cc = cond;
6406
6407 /* If the condition is a negative condition, invert the mask. */
6408 if ((cond & 0x1) == 0x0)
6409 {
6410 unsigned int mask = inst.instruction & 0x000f;
6411
6412 if ((mask & 0x7) == 0)
6413 /* no conversion needed */;
6414 else if ((mask & 0x3) == 0)
6415 mask ^= 0x8;
6416 else if ((mask & 0x1) == 0)
6417 mask ^= 0xC;
6418 else
6419 mask ^= 0xE;
6420
6421 inst.instruction &= 0xfff0;
6422 inst.instruction |= mask;
6423 }
6424
6425 inst.instruction |= cond << 4;
6426 }
6427
6428 static void
6429 do_t_ldmstm (void)
6430 {
6431 /* This really doesn't seem worth it. */
6432 constraint (inst.reloc.type != BFD_RELOC_UNUSED,
6433 _("expression too complex"));
6434 constraint (inst.operands[1].writeback,
6435 _("Thumb load/store multiple does not support {reglist}^"));
6436
6437 if (unified_syntax)
6438 {
6439 /* See if we can use a 16-bit instruction. */
6440 if (inst.instruction < 0xffff /* not ldmdb/stmdb */
6441 && inst.size_req != 4
6442 && inst.operands[0].reg <= 7
6443 && !(inst.operands[1].imm & ~0xff)
6444 && (inst.instruction == T_MNEM_stmia
6445 ? inst.operands[0].writeback
6446 : (inst.operands[0].writeback
6447 == !(inst.operands[1].imm & (1 << inst.operands[0].reg)))))
6448 {
6449 if (inst.instruction == T_MNEM_stmia
6450 && (inst.operands[1].imm & (1 << inst.operands[0].reg))
6451 && (inst.operands[1].imm & ((1 << inst.operands[0].reg) - 1)))
6452 as_warn (_("value stored for r%d is UNPREDICTABLE"),
6453 inst.operands[0].reg);
6454
6455 inst.instruction = THUMB_OP16 (inst.instruction);
6456 inst.instruction |= inst.operands[0].reg << 8;
6457 inst.instruction |= inst.operands[1].imm;
6458 }
6459 else
6460 {
6461 if (inst.operands[1].imm & (1 << 13))
6462 as_warn (_("SP should not be in register list"));
6463 if (inst.instruction == T_MNEM_stmia)
6464 {
6465 if (inst.operands[1].imm & (1 << 15))
6466 as_warn (_("PC should not be in register list"));
6467 if (inst.operands[1].imm & (1 << inst.operands[0].reg))
6468 as_warn (_("value stored for r%d is UNPREDICTABLE"),
6469 inst.operands[0].reg);
6470 }
6471 else
6472 {
6473 if (inst.operands[1].imm & (1 << 14)
6474 && inst.operands[1].imm & (1 << 15))
6475 as_warn (_("LR and PC should not both be in register list"));
6476 if ((inst.operands[1].imm & (1 << inst.operands[0].reg))
6477 && inst.operands[0].writeback)
6478 as_warn (_("base register should not be in register list "
6479 "when written back"));
6480 }
6481 if (inst.instruction < 0xffff)
6482 inst.instruction = THUMB_OP32 (inst.instruction);
6483 inst.instruction |= inst.operands[0].reg << 16;
6484 inst.instruction |= inst.operands[1].imm;
6485 if (inst.operands[0].writeback)
6486 inst.instruction |= WRITE_BACK;
6487 }
6488 }
6489 else
6490 {
6491 constraint (inst.operands[0].reg > 7
6492 || (inst.operands[1].imm & ~0xff), BAD_HIREG);
6493 if (inst.instruction == T_MNEM_stmia)
6494 {
6495 if (!inst.operands[0].writeback)
6496 as_warn (_("this instruction will write back the base register"));
6497 if ((inst.operands[1].imm & (1 << inst.operands[0].reg))
6498 && (inst.operands[1].imm & ((1 << inst.operands[0].reg) - 1)))
6499 as_warn (_("value stored for r%d is UNPREDICTABLE"),
6500 inst.operands[0].reg);
6501 }
6502 else
6503 {
6504 if (!inst.operands[0].writeback
6505 && !(inst.operands[1].imm & (1 << inst.operands[0].reg)))
6506 as_warn (_("this instruction will write back the base register"));
6507 else if (inst.operands[0].writeback
6508 && (inst.operands[1].imm & (1 << inst.operands[0].reg)))
6509 as_warn (_("this instruction will not write back the base register"));
6510 }
6511
6512 inst.instruction = THUMB_OP16 (inst.instruction);
6513 inst.instruction |= inst.operands[0].reg << 8;
6514 inst.instruction |= inst.operands[1].imm;
6515 }
6516 }
6517
6518 static void
6519 do_t_ldrex (void)
6520 {
6521 constraint (!inst.operands[1].isreg || !inst.operands[1].preind
6522 || inst.operands[1].postind || inst.operands[1].writeback
6523 || inst.operands[1].immisreg || inst.operands[1].shifted
6524 || inst.operands[1].negative,
6525 _("instruction does not accept this addressing mode"));
6526
6527 inst.instruction |= inst.operands[0].reg << 12;
6528 inst.instruction |= inst.operands[1].reg << 16;
6529 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_U8;
6530 }
6531
6532 static void
6533 do_t_ldrexd (void)
6534 {
6535 if (!inst.operands[1].present)
6536 {
6537 constraint (inst.operands[0].reg == REG_LR,
6538 _("r14 not allowed as first register "
6539 "when second register is omitted"));
6540 inst.operands[1].reg = inst.operands[0].reg + 1;
6541 }
6542 constraint (inst.operands[0].reg == inst.operands[1].reg,
6543 BAD_OVERLAP);
6544
6545 inst.instruction |= inst.operands[0].reg << 12;
6546 inst.instruction |= inst.operands[1].reg << 8;
6547 inst.instruction |= inst.operands[2].reg << 16;
6548 }
6549
6550 static void
6551 do_t_ldst (void)
6552 {
6553 if (unified_syntax)
6554 {
6555 /* Generation of 16-bit instructions for anything other than
6556 Rd, [Rn, Ri] is deferred to section relaxation time. */
6557 if (inst.operands[1].isreg && inst.operands[1].immisreg
6558 && !inst.operands[1].shifted && !inst.operands[1].postind
6559 && !inst.operands[1].negative && inst.operands[0].reg <= 7
6560 && inst.operands[1].reg <= 7 && inst.operands[1].imm <= 7
6561 && inst.instruction <= 0xffff)
6562 {
6563 inst.instruction = THUMB_OP16 (inst.instruction);
6564 goto op16;
6565 }
6566
6567 inst.instruction = THUMB_OP32 (inst.instruction);
6568 inst.instruction |= inst.operands[0].reg << 12;
6569 encode_thumb32_addr_mode (1, /*is_t=*/FALSE, /*is_d=*/FALSE);
6570 return;
6571 }
6572
6573 constraint (inst.operands[0].reg > 7, BAD_HIREG);
6574
6575 if (inst.instruction == T_MNEM_ldrsh || inst.instruction == T_MNEM_ldrsb)
6576 {
6577 /* Only [Rn,Rm] is acceptable. */
6578 constraint (inst.operands[1].reg > 7 || inst.operands[1].imm > 7, BAD_HIREG);
6579 constraint (!inst.operands[1].isreg || !inst.operands[1].immisreg
6580 || inst.operands[1].postind || inst.operands[1].shifted
6581 || inst.operands[1].negative,
6582 _("Thumb does not support this addressing mode"));
6583 inst.instruction = THUMB_OP16 (inst.instruction);
6584 goto op16;
6585 }
6586
6587 inst.instruction = THUMB_OP16 (inst.instruction);
6588 if (!inst.operands[1].isreg)
6589 if (move_or_literal_pool (0, /*thumb_p=*/TRUE, /*mode_3=*/FALSE))
6590 return;
6591
6592 constraint (!inst.operands[1].preind
6593 || inst.operands[1].shifted
6594 || inst.operands[1].writeback,
6595 _("Thumb does not support this addressing mode"));
6596 if (inst.operands[1].reg == REG_PC || inst.operands[1].reg == REG_SP)
6597 {
6598 constraint (inst.instruction & 0x0600,
6599 _("byte or halfword not valid for base register"));
6600 constraint (inst.operands[1].reg == REG_PC
6601 && !(inst.instruction & THUMB_LOAD_BIT),
6602 _("r15 based store not allowed"));
6603 constraint (inst.operands[1].immisreg,
6604 _("invalid base register for register offset"));
6605
6606 if (inst.operands[1].reg == REG_PC)
6607 inst.instruction = T_OPCODE_LDR_PC;
6608 else if (inst.instruction & THUMB_LOAD_BIT)
6609 inst.instruction = T_OPCODE_LDR_SP;
6610 else
6611 inst.instruction = T_OPCODE_STR_SP;
6612
6613 inst.instruction |= inst.operands[0].reg << 8;
6614 inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
6615 return;
6616 }
6617
6618 constraint (inst.operands[1].reg > 7, BAD_HIREG);
6619 if (!inst.operands[1].immisreg)
6620 {
6621 /* Immediate offset. */
6622 inst.instruction |= inst.operands[0].reg;
6623 inst.instruction |= inst.operands[1].reg << 3;
6624 inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
6625 return;
6626 }
6627
6628 /* Register offset. */
6629 constraint (inst.operands[1].imm > 7, BAD_HIREG);
6630 constraint (inst.operands[1].negative,
6631 _("Thumb does not support this addressing mode"));
6632
6633 op16:
6634 switch (inst.instruction)
6635 {
6636 case T_OPCODE_STR_IW: inst.instruction = T_OPCODE_STR_RW; break;
6637 case T_OPCODE_STR_IH: inst.instruction = T_OPCODE_STR_RH; break;
6638 case T_OPCODE_STR_IB: inst.instruction = T_OPCODE_STR_RB; break;
6639 case T_OPCODE_LDR_IW: inst.instruction = T_OPCODE_LDR_RW; break;
6640 case T_OPCODE_LDR_IH: inst.instruction = T_OPCODE_LDR_RH; break;
6641 case T_OPCODE_LDR_IB: inst.instruction = T_OPCODE_LDR_RB; break;
6642 case 0x5600 /* ldrsb */:
6643 case 0x5e00 /* ldrsh */: break;
6644 default: abort ();
6645 }
6646
6647 inst.instruction |= inst.operands[0].reg;
6648 inst.instruction |= inst.operands[1].reg << 3;
6649 inst.instruction |= inst.operands[1].imm << 6;
6650 }
6651
6652 static void
6653 do_t_ldstd (void)
6654 {
6655 if (!inst.operands[1].present)
6656 {
6657 inst.operands[1].reg = inst.operands[0].reg + 1;
6658 constraint (inst.operands[0].reg == REG_LR,
6659 _("r14 not allowed here"));
6660 }
6661 inst.instruction |= inst.operands[0].reg << 12;
6662 inst.instruction |= inst.operands[1].reg << 8;
6663 encode_thumb32_addr_mode (2, /*is_t=*/FALSE, /*is_d=*/TRUE);
6664
6665 }
6666
6667 static void
6668 do_t_ldstt (void)
6669 {
6670 inst.instruction |= inst.operands[0].reg << 12;
6671 encode_thumb32_addr_mode (1, /*is_t=*/TRUE, /*is_d=*/FALSE);
6672 }
6673
6674 static void
6675 do_t_mla (void)
6676 {
6677 inst.instruction |= inst.operands[0].reg << 8;
6678 inst.instruction |= inst.operands[1].reg << 16;
6679 inst.instruction |= inst.operands[2].reg;
6680 inst.instruction |= inst.operands[3].reg << 12;
6681 }
6682
6683 static void
6684 do_t_mlal (void)
6685 {
6686 inst.instruction |= inst.operands[0].reg << 12;
6687 inst.instruction |= inst.operands[1].reg << 8;
6688 inst.instruction |= inst.operands[2].reg << 16;
6689 inst.instruction |= inst.operands[3].reg;
6690 }
6691
6692 static void
6693 do_t_mov_cmp (void)
6694 {
6695 if (unified_syntax)
6696 {
6697 int r0off = (inst.instruction == T_MNEM_mov
6698 || inst.instruction == T_MNEM_movs) ? 8 : 16;
6699 bfd_boolean narrow;
6700 bfd_boolean low_regs;
6701
6702 low_regs = (inst.operands[0].reg <= 7 && inst.operands[1].reg <= 7);
6703 if (current_it_mask)
6704 narrow = inst.instruction != T_MNEM_movs;
6705 else
6706 narrow = inst.instruction != T_MNEM_movs || low_regs;
6707 if (inst.size_req == 4
6708 || inst.operands[1].shifted)
6709 narrow = FALSE;
6710
6711 if (!inst.operands[1].isreg)
6712 {
6713 /* For an immediate, we always generate a 32-bit opcode;
6714 section relaxation will shrink it later if possible. */
6715 inst.instruction = THUMB_OP32 (inst.instruction);
6716 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
6717 inst.instruction |= inst.operands[0].reg << r0off;
6718 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
6719 }
6720 else if (!narrow)
6721 {
6722 inst.instruction = THUMB_OP32 (inst.instruction);
6723 inst.instruction |= inst.operands[0].reg << r0off;
6724 encode_thumb32_shifted_operand (1);
6725 }
6726 else
6727 switch (inst.instruction)
6728 {
6729 case T_MNEM_mov:
6730 inst.instruction = T_OPCODE_MOV_HR;
6731 inst.instruction |= (inst.operands[0].reg & 0x8) << 4;
6732 inst.instruction |= (inst.operands[0].reg & 0x7);
6733 inst.instruction |= inst.operands[1].reg << 3;
6734 break;
6735
6736 case T_MNEM_movs:
6737 /* We know we have low registers at this point.
6738 Generate ADD Rd, Rs, #0. */
6739 inst.instruction = T_OPCODE_ADD_I3;
6740 inst.instruction |= inst.operands[0].reg;
6741 inst.instruction |= inst.operands[1].reg << 3;
6742 break;
6743
6744 case T_MNEM_cmp:
6745 if (low_regs)
6746 {
6747 inst.instruction = T_OPCODE_CMP_LR;
6748 inst.instruction |= inst.operands[0].reg;
6749 inst.instruction |= inst.operands[1].reg << 3;
6750 }
6751 else
6752 {
6753 inst.instruction = T_OPCODE_CMP_HR;
6754 inst.instruction |= (inst.operands[0].reg & 0x8) << 4;
6755 inst.instruction |= (inst.operands[0].reg & 0x7);
6756 inst.instruction |= inst.operands[1].reg << 3;
6757 }
6758 break;
6759 }
6760 return;
6761 }
6762
6763 inst.instruction = THUMB_OP16 (inst.instruction);
6764 if (inst.operands[1].isreg)
6765 {
6766 if (inst.operands[0].reg < 8 && inst.operands[1].reg < 8)
6767 {
6768 /* A move of two lowregs is encoded as ADD Rd, Rs, #0
6769 since a MOV instruction produces unpredictable results. */
6770 if (inst.instruction == T_OPCODE_MOV_I8)
6771 inst.instruction = T_OPCODE_ADD_I3;
6772 else
6773 inst.instruction = T_OPCODE_CMP_LR;
6774
6775 inst.instruction |= inst.operands[0].reg;
6776 inst.instruction |= inst.operands[1].reg << 3;
6777 }
6778 else
6779 {
6780 if (inst.instruction == T_OPCODE_MOV_I8)
6781 inst.instruction = T_OPCODE_MOV_HR;
6782 else
6783 inst.instruction = T_OPCODE_CMP_HR;
6784 do_t_cpy ();
6785 }
6786 }
6787 else
6788 {
6789 constraint (inst.operands[0].reg > 7,
6790 _("only lo regs allowed with immediate"));
6791 inst.instruction |= inst.operands[0].reg << 8;
6792 inst.reloc.type = BFD_RELOC_ARM_THUMB_IMM;
6793 }
6794 }
6795
6796 static void
6797 do_t_mov16 (void)
6798 {
6799 inst.instruction |= inst.operands[0].reg << 8;
6800 inst.instruction |= (inst.operands[1].imm & 0xf000) << 4;
6801 inst.instruction |= (inst.operands[1].imm & 0x0800) << 15;
6802 inst.instruction |= (inst.operands[1].imm & 0x0700) << 4;
6803 inst.instruction |= (inst.operands[1].imm & 0x00ff);
6804 }
6805
6806 static void
6807 do_t_mvn_tst (void)
6808 {
6809 if (unified_syntax)
6810 {
6811 int r0off = (inst.instruction == T_MNEM_mvn
6812 || inst.instruction == T_MNEM_mvns) ? 8 : 16;
6813 bfd_boolean narrow;
6814
6815 if (inst.size_req == 4
6816 || inst.instruction > 0xffff
6817 || inst.operands[1].shifted
6818 || inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
6819 narrow = FALSE;
6820 else if (inst.instruction == T_MNEM_cmn)
6821 narrow = TRUE;
6822 else if (THUMB_SETS_FLAGS (inst.instruction))
6823 narrow = (current_it_mask == 0);
6824 else
6825 narrow = (current_it_mask != 0);
6826
6827 if (!inst.operands[1].isreg)
6828 {
6829 /* For an immediate, we always generate a 32-bit opcode;
6830 section relaxation will shrink it later if possible. */
6831 if (inst.instruction < 0xffff)
6832 inst.instruction = THUMB_OP32 (inst.instruction);
6833 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
6834 inst.instruction |= inst.operands[0].reg << r0off;
6835 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
6836 }
6837 else
6838 {
6839 /* See if we can do this with a 16-bit instruction. */
6840 if (narrow)
6841 {
6842 inst.instruction = THUMB_OP16 (inst.instruction);
6843 inst.instruction |= inst.operands[0].reg;
6844 inst.instruction |= inst.operands[1].reg << 3;
6845 }
6846 else
6847 {
6848 constraint (inst.operands[1].shifted
6849 && inst.operands[1].immisreg,
6850 _("shift must be constant"));
6851 if (inst.instruction < 0xffff)
6852 inst.instruction = THUMB_OP32 (inst.instruction);
6853 inst.instruction |= inst.operands[0].reg << r0off;
6854 encode_thumb32_shifted_operand (1);
6855 }
6856 }
6857 }
6858 else
6859 {
6860 constraint (inst.instruction > 0xffff
6861 || inst.instruction == T_MNEM_mvns, BAD_THUMB32);
6862 constraint (!inst.operands[1].isreg || inst.operands[1].shifted,
6863 _("unshifted register required"));
6864 constraint (inst.operands[0].reg > 7 || inst.operands[1].reg > 7,
6865 BAD_HIREG);
6866
6867 inst.instruction = THUMB_OP16 (inst.instruction);
6868 inst.instruction |= inst.operands[0].reg;
6869 inst.instruction |= inst.operands[1].reg << 3;
6870 }
6871 }
6872
6873 static void
6874 do_t_mrs (void)
6875 {
6876 /* mrs only accepts CPSR/SPSR/CPSR_all/SPSR_all. */
6877 constraint ((inst.operands[1].imm & (PSR_c|PSR_x|PSR_s|PSR_f))
6878 != (PSR_c|PSR_f),
6879 _("'CPSR' or 'SPSR' expected"));
6880 inst.instruction |= inst.operands[0].reg << 8;
6881 inst.instruction |= (inst.operands[1].imm & SPSR_BIT) >> 2;
6882 }
6883
6884 static void
6885 do_t_msr (void)
6886 {
6887 constraint (!inst.operands[1].isreg,
6888 _("Thumb encoding does not support an immediate here"));
6889 inst.instruction |= (inst.operands[0].imm & SPSR_BIT) >> 2;
6890 inst.instruction |= (inst.operands[0].imm & ~SPSR_BIT) >> 8;
6891 inst.instruction |= inst.operands[1].reg << 16;
6892 }
6893
6894 static void
6895 do_t_mul (void)
6896 {
6897 if (!inst.operands[2].present)
6898 inst.operands[2].reg = inst.operands[0].reg;
6899
6900 /* There is no 32-bit MULS and no 16-bit MUL. */
6901 if (unified_syntax && inst.instruction == T_MNEM_mul)
6902 {
6903 inst.instruction = THUMB_OP32 (inst.instruction);
6904 inst.instruction |= inst.operands[0].reg << 8;
6905 inst.instruction |= inst.operands[1].reg << 16;
6906 inst.instruction |= inst.operands[2].reg << 0;
6907 }
6908 else
6909 {
6910 constraint (!unified_syntax
6911 && inst.instruction == T_MNEM_muls, BAD_THUMB32);
6912 constraint (inst.operands[0].reg > 7 || inst.operands[1].reg > 7,
6913 BAD_HIREG);
6914
6915 inst.instruction = THUMB_OP16 (inst.instruction);
6916 inst.instruction |= inst.operands[0].reg;
6917
6918 if (inst.operands[0].reg == inst.operands[1].reg)
6919 inst.instruction |= inst.operands[2].reg << 3;
6920 else if (inst.operands[0].reg == inst.operands[2].reg)
6921 inst.instruction |= inst.operands[1].reg << 3;
6922 else
6923 constraint (1, _("dest must overlap one source register"));
6924 }
6925 }
6926
6927 static void
6928 do_t_mull (void)
6929 {
6930 inst.instruction |= inst.operands[0].reg << 12;
6931 inst.instruction |= inst.operands[1].reg << 8;
6932 inst.instruction |= inst.operands[2].reg << 16;
6933 inst.instruction |= inst.operands[3].reg;
6934
6935 if (inst.operands[0].reg == inst.operands[1].reg)
6936 as_tsktsk (_("rdhi and rdlo must be different"));
6937 }
6938
6939 static void
6940 do_t_nop (void)
6941 {
6942 if (unified_syntax)
6943 {
6944 if (inst.size_req == 4 || inst.operands[0].imm > 15)
6945 {
6946 inst.instruction = THUMB_OP32 (inst.instruction);
6947 inst.instruction |= inst.operands[0].imm;
6948 }
6949 else
6950 {
6951 inst.instruction = THUMB_OP16 (inst.instruction);
6952 inst.instruction |= inst.operands[0].imm << 4;
6953 }
6954 }
6955 else
6956 {
6957 constraint (inst.operands[0].present,
6958 _("Thumb does not support NOP with hints"));
6959 inst.instruction = 0x46c0;
6960 }
6961 }
6962
6963 static void
6964 do_t_neg (void)
6965 {
6966 if (unified_syntax)
6967 {
6968 bfd_boolean narrow;
6969
6970 if (THUMB_SETS_FLAGS (inst.instruction))
6971 narrow = (current_it_mask == 0);
6972 else
6973 narrow = (current_it_mask != 0);
6974 if (inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
6975 narrow = FALSE;
6976 if (inst.size_req == 4)
6977 narrow = FALSE;
6978
6979 if (!narrow)
6980 {
6981 inst.instruction = THUMB_OP32 (inst.instruction);
6982 inst.instruction |= inst.operands[0].reg << 8;
6983 inst.instruction |= inst.operands[1].reg << 16;
6984 }
6985 else
6986 {
6987 inst.instruction = THUMB_OP16 (inst.instruction);
6988 inst.instruction |= inst.operands[0].reg;
6989 inst.instruction |= inst.operands[1].reg << 3;
6990 }
6991 }
6992 else
6993 {
6994 constraint (inst.operands[0].reg > 7 || inst.operands[1].reg > 7,
6995 BAD_HIREG);
6996 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
6997
6998 inst.instruction = THUMB_OP16 (inst.instruction);
6999 inst.instruction |= inst.operands[0].reg;
7000 inst.instruction |= inst.operands[1].reg << 3;
7001 }
7002 }
7003
7004 static void
7005 do_t_pkhbt (void)
7006 {
7007 inst.instruction |= inst.operands[0].reg << 8;
7008 inst.instruction |= inst.operands[1].reg << 16;
7009 inst.instruction |= inst.operands[2].reg;
7010 if (inst.operands[3].present)
7011 {
7012 unsigned int val = inst.reloc.exp.X_add_number;
7013 constraint (inst.reloc.exp.X_op != O_constant,
7014 _("expression too complex"));
7015 inst.instruction |= (val & 0x1c) << 10;
7016 inst.instruction |= (val & 0x03) << 6;
7017 }
7018 }
7019
7020 static void
7021 do_t_pkhtb (void)
7022 {
7023 if (!inst.operands[3].present)
7024 inst.instruction &= ~0x00000020;
7025 do_t_pkhbt ();
7026 }
7027
7028 static void
7029 do_t_pld (void)
7030 {
7031 encode_thumb32_addr_mode (0, /*is_t=*/FALSE, /*is_d=*/FALSE);
7032 }
7033
7034 static void
7035 do_t_push_pop (void)
7036 {
7037 unsigned mask;
7038
7039 constraint (inst.operands[0].writeback,
7040 _("push/pop do not support {reglist}^"));
7041 constraint (inst.reloc.type != BFD_RELOC_UNUSED,
7042 _("expression too complex"));
7043
7044 mask = inst.operands[0].imm;
7045 if ((mask & ~0xff) == 0)
7046 inst.instruction = THUMB_OP16 (inst.instruction);
7047 else if ((inst.instruction == T_MNEM_push
7048 && (mask & ~0xff) == 1 << REG_LR)
7049 || (inst.instruction == T_MNEM_pop
7050 && (mask & ~0xff) == 1 << REG_PC))
7051 {
7052 inst.instruction = THUMB_OP16 (inst.instruction);
7053 inst.instruction |= THUMB_PP_PC_LR;
7054 mask &= 0xff;
7055 }
7056 else if (unified_syntax)
7057 {
7058 if (mask & (1 << 13))
7059 inst.error = _("SP not allowed in register list");
7060 if (inst.instruction == T_MNEM_push)
7061 {
7062 if (mask & (1 << 15))
7063 inst.error = _("PC not allowed in register list");
7064 }
7065 else
7066 {
7067 if (mask & (1 << 14)
7068 && mask & (1 << 15))
7069 inst.error = _("LR and PC should not both be in register list");
7070 }
7071 if ((mask & (mask - 1)) == 0)
7072 {
7073 /* Single register push/pop implemented as str/ldr. */
7074 if (inst.instruction == T_MNEM_push)
7075 inst.instruction = 0xf84d0d04; /* str reg, [sp, #-4]! */
7076 else
7077 inst.instruction = 0xf85d0b04; /* ldr reg, [sp], #4 */
7078 mask = ffs(mask) - 1;
7079 mask <<= 12;
7080 }
7081 else
7082 inst.instruction = THUMB_OP32 (inst.instruction);
7083 }
7084 else
7085 {
7086 inst.error = _("invalid register list to push/pop instruction");
7087 return;
7088 }
7089
7090 inst.instruction |= mask;
7091 }
7092
7093 static void
7094 do_t_rbit (void)
7095 {
7096 inst.instruction |= inst.operands[0].reg << 8;
7097 inst.instruction |= inst.operands[1].reg << 16;
7098 }
7099
7100 static void
7101 do_t_rev (void)
7102 {
7103 if (inst.operands[0].reg <= 7 && inst.operands[1].reg <= 7
7104 && inst.size_req != 4)
7105 {
7106 inst.instruction = THUMB_OP16 (inst.instruction);
7107 inst.instruction |= inst.operands[0].reg;
7108 inst.instruction |= inst.operands[1].reg << 3;
7109 }
7110 else if (unified_syntax)
7111 {
7112 inst.instruction = THUMB_OP32 (inst.instruction);
7113 inst.instruction |= inst.operands[0].reg << 8;
7114 inst.instruction |= inst.operands[1].reg << 16;
7115 inst.instruction |= inst.operands[1].reg;
7116 }
7117 else
7118 inst.error = BAD_HIREG;
7119 }
7120
7121 static void
7122 do_t_rsb (void)
7123 {
7124 int Rd, Rs;
7125
7126 Rd = inst.operands[0].reg;
7127 Rs = (inst.operands[1].present
7128 ? inst.operands[1].reg /* Rd, Rs, foo */
7129 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
7130
7131 inst.instruction |= Rd << 8;
7132 inst.instruction |= Rs << 16;
7133 if (!inst.operands[2].isreg)
7134 {
7135 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
7136 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
7137 }
7138 else
7139 encode_thumb32_shifted_operand (2);
7140 }
7141
7142 static void
7143 do_t_setend (void)
7144 {
7145 if (inst.operands[0].imm)
7146 inst.instruction |= 0x8;
7147 }
7148
7149 static void
7150 do_t_shift (void)
7151 {
7152 if (!inst.operands[1].present)
7153 inst.operands[1].reg = inst.operands[0].reg;
7154
7155 if (unified_syntax)
7156 {
7157 bfd_boolean narrow;
7158 int shift_kind;
7159
7160 switch (inst.instruction)
7161 {
7162 case T_MNEM_asr:
7163 case T_MNEM_asrs: shift_kind = SHIFT_ASR; break;
7164 case T_MNEM_lsl:
7165 case T_MNEM_lsls: shift_kind = SHIFT_LSL; break;
7166 case T_MNEM_lsr:
7167 case T_MNEM_lsrs: shift_kind = SHIFT_LSR; break;
7168 case T_MNEM_ror:
7169 case T_MNEM_rors: shift_kind = SHIFT_ROR; break;
7170 default: abort ();
7171 }
7172
7173 if (THUMB_SETS_FLAGS (inst.instruction))
7174 narrow = (current_it_mask == 0);
7175 else
7176 narrow = (current_it_mask != 0);
7177 if (inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
7178 narrow = FALSE;
7179 if (!inst.operands[2].isreg && shift_kind == SHIFT_ROR)
7180 narrow = FALSE;
7181 if (inst.operands[2].isreg
7182 && (inst.operands[1].reg != inst.operands[0].reg
7183 || inst.operands[2].reg > 7))
7184 narrow = FALSE;
7185 if (inst.size_req == 4)
7186 narrow = FALSE;
7187
7188 if (!narrow)
7189 {
7190 if (inst.operands[2].isreg)
7191 {
7192 inst.instruction = THUMB_OP32 (inst.instruction);
7193 inst.instruction |= inst.operands[0].reg << 8;
7194 inst.instruction |= inst.operands[1].reg << 16;
7195 inst.instruction |= inst.operands[2].reg;
7196 }
7197 else
7198 {
7199 inst.operands[1].shifted = 1;
7200 inst.operands[1].shift_kind = shift_kind;
7201 inst.instruction = THUMB_OP32 (THUMB_SETS_FLAGS (inst.instruction)
7202 ? T_MNEM_movs : T_MNEM_mov);
7203 inst.instruction |= inst.operands[0].reg << 8;
7204 encode_thumb32_shifted_operand (1);
7205 /* Prevent the incorrect generation of an ARM_IMMEDIATE fixup. */
7206 inst.reloc.type = BFD_RELOC_UNUSED;
7207 }
7208 }
7209 else
7210 {
7211 if (inst.operands[2].isreg)
7212 {
7213 switch (shift_kind)
7214 {
7215 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_R; break;
7216 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_R; break;
7217 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_R; break;
7218 case SHIFT_ROR: inst.instruction = T_OPCODE_ROR_R; break;
7219 default: abort ();
7220 }
7221
7222 inst.instruction |= inst.operands[0].reg;
7223 inst.instruction |= inst.operands[2].reg << 3;
7224 }
7225 else
7226 {
7227 switch (shift_kind)
7228 {
7229 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_I; break;
7230 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_I; break;
7231 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_I; break;
7232 default: abort ();
7233 }
7234 inst.reloc.type = BFD_RELOC_ARM_THUMB_SHIFT;
7235 inst.instruction |= inst.operands[0].reg;
7236 inst.instruction |= inst.operands[1].reg << 3;
7237 }
7238 }
7239 }
7240 else
7241 {
7242 constraint (inst.operands[0].reg > 7
7243 || inst.operands[1].reg > 7, BAD_HIREG);
7244 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
7245
7246 if (inst.operands[2].isreg) /* Rd, {Rs,} Rn */
7247 {
7248 constraint (inst.operands[2].reg > 7, BAD_HIREG);
7249 constraint (inst.operands[0].reg != inst.operands[1].reg,
7250 _("source1 and dest must be same register"));
7251
7252 switch (inst.instruction)
7253 {
7254 case T_MNEM_asr: inst.instruction = T_OPCODE_ASR_R; break;
7255 case T_MNEM_lsl: inst.instruction = T_OPCODE_LSL_R; break;
7256 case T_MNEM_lsr: inst.instruction = T_OPCODE_LSR_R; break;
7257 case T_MNEM_ror: inst.instruction = T_OPCODE_ROR_R; break;
7258 default: abort ();
7259 }
7260
7261 inst.instruction |= inst.operands[0].reg;
7262 inst.instruction |= inst.operands[2].reg << 3;
7263 }
7264 else
7265 {
7266 switch (inst.instruction)
7267 {
7268 case T_MNEM_asr: inst.instruction = T_OPCODE_ASR_I; break;
7269 case T_MNEM_lsl: inst.instruction = T_OPCODE_LSL_I; break;
7270 case T_MNEM_lsr: inst.instruction = T_OPCODE_LSR_I; break;
7271 case T_MNEM_ror: inst.error = _("ror #imm not supported"); return;
7272 default: abort ();
7273 }
7274 inst.reloc.type = BFD_RELOC_ARM_THUMB_SHIFT;
7275 inst.instruction |= inst.operands[0].reg;
7276 inst.instruction |= inst.operands[1].reg << 3;
7277 }
7278 }
7279 }
7280
7281 static void
7282 do_t_simd (void)
7283 {
7284 inst.instruction |= inst.operands[0].reg << 8;
7285 inst.instruction |= inst.operands[1].reg << 16;
7286 inst.instruction |= inst.operands[2].reg;
7287 }
7288
7289 static void
7290 do_t_smi (void)
7291 {
7292 unsigned int value = inst.reloc.exp.X_add_number;
7293 constraint (inst.reloc.exp.X_op != O_constant,
7294 _("expression too complex"));
7295 inst.reloc.type = BFD_RELOC_UNUSED;
7296 inst.instruction |= (value & 0xf000) >> 12;
7297 inst.instruction |= (value & 0x0ff0);
7298 inst.instruction |= (value & 0x000f) << 16;
7299 }
7300
7301 static void
7302 do_t_ssat (void)
7303 {
7304 inst.instruction |= inst.operands[0].reg << 8;
7305 inst.instruction |= inst.operands[1].imm - 1;
7306 inst.instruction |= inst.operands[2].reg << 16;
7307
7308 if (inst.operands[3].present)
7309 {
7310 constraint (inst.reloc.exp.X_op != O_constant,
7311 _("expression too complex"));
7312
7313 if (inst.reloc.exp.X_add_number != 0)
7314 {
7315 if (inst.operands[3].shift_kind == SHIFT_ASR)
7316 inst.instruction |= 0x00200000; /* sh bit */
7317 inst.instruction |= (inst.reloc.exp.X_add_number & 0x1c) << 10;
7318 inst.instruction |= (inst.reloc.exp.X_add_number & 0x03) << 6;
7319 }
7320 inst.reloc.type = BFD_RELOC_UNUSED;
7321 }
7322 }
7323
7324 static void
7325 do_t_ssat16 (void)
7326 {
7327 inst.instruction |= inst.operands[0].reg << 8;
7328 inst.instruction |= inst.operands[1].imm - 1;
7329 inst.instruction |= inst.operands[2].reg << 16;
7330 }
7331
7332 static void
7333 do_t_strex (void)
7334 {
7335 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
7336 || inst.operands[2].postind || inst.operands[2].writeback
7337 || inst.operands[2].immisreg || inst.operands[2].shifted
7338 || inst.operands[2].negative,
7339 _("instruction does not accept this addressing mode"));
7340
7341 inst.instruction |= inst.operands[0].reg << 8;
7342 inst.instruction |= inst.operands[1].reg << 12;
7343 inst.instruction |= inst.operands[2].reg << 16;
7344 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_U8;
7345 }
7346
7347 static void
7348 do_t_strexd (void)
7349 {
7350 if (!inst.operands[2].present)
7351 inst.operands[2].reg = inst.operands[1].reg + 1;
7352
7353 constraint (inst.operands[0].reg == inst.operands[1].reg
7354 || inst.operands[0].reg == inst.operands[2].reg
7355 || inst.operands[0].reg == inst.operands[3].reg
7356 || inst.operands[1].reg == inst.operands[2].reg,
7357 BAD_OVERLAP);
7358
7359 inst.instruction |= inst.operands[0].reg;
7360 inst.instruction |= inst.operands[1].reg << 12;
7361 inst.instruction |= inst.operands[2].reg << 8;
7362 inst.instruction |= inst.operands[3].reg << 16;
7363 }
7364
7365 static void
7366 do_t_sxtah (void)
7367 {
7368 inst.instruction |= inst.operands[0].reg << 8;
7369 inst.instruction |= inst.operands[1].reg << 16;
7370 inst.instruction |= inst.operands[2].reg;
7371 inst.instruction |= inst.operands[3].imm << 4;
7372 }
7373
7374 static void
7375 do_t_sxth (void)
7376 {
7377 if (inst.instruction <= 0xffff && inst.size_req != 4
7378 && inst.operands[0].reg <= 7 && inst.operands[1].reg <= 7
7379 && (!inst.operands[2].present || inst.operands[2].imm == 0))
7380 {
7381 inst.instruction = THUMB_OP16 (inst.instruction);
7382 inst.instruction |= inst.operands[0].reg;
7383 inst.instruction |= inst.operands[1].reg << 3;
7384 }
7385 else if (unified_syntax)
7386 {
7387 if (inst.instruction <= 0xffff)
7388 inst.instruction = THUMB_OP32 (inst.instruction);
7389 inst.instruction |= inst.operands[0].reg << 8;
7390 inst.instruction |= inst.operands[1].reg;
7391 inst.instruction |= inst.operands[2].imm << 4;
7392 }
7393 else
7394 {
7395 constraint (inst.operands[2].present && inst.operands[2].imm != 0,
7396 _("Thumb encoding does not support rotation"));
7397 constraint (1, BAD_HIREG);
7398 }
7399 }
7400
7401 static void
7402 do_t_swi (void)
7403 {
7404 inst.reloc.type = BFD_RELOC_ARM_SWI;
7405 }
7406
7407 static void
7408 do_t_tb (void)
7409 {
7410 int half;
7411
7412 half = (inst.instruction & 0x10) != 0;
7413 constraint (inst.operands[0].imm == 15,
7414 _("PC is not a valid index register"));
7415 constraint (!half && inst.operands[0].shifted,
7416 _("instruction does not allow shifted index"));
7417 constraint (half && !inst.operands[0].shifted,
7418 _("instruction requires shifted index"));
7419 inst.instruction |= (inst.operands[0].reg << 16) | inst.operands[0].imm;
7420 }
7421
7422 static void
7423 do_t_usat (void)
7424 {
7425 inst.instruction |= inst.operands[0].reg << 8;
7426 inst.instruction |= inst.operands[1].imm;
7427 inst.instruction |= inst.operands[2].reg << 16;
7428
7429 if (inst.operands[3].present)
7430 {
7431 constraint (inst.reloc.exp.X_op != O_constant,
7432 _("expression too complex"));
7433 if (inst.reloc.exp.X_add_number != 0)
7434 {
7435 if (inst.operands[3].shift_kind == SHIFT_ASR)
7436 inst.instruction |= 0x00200000; /* sh bit */
7437
7438 inst.instruction |= (inst.reloc.exp.X_add_number & 0x1c) << 10;
7439 inst.instruction |= (inst.reloc.exp.X_add_number & 0x03) << 6;
7440 }
7441 inst.reloc.type = BFD_RELOC_UNUSED;
7442 }
7443 }
7444
7445 static void
7446 do_t_usat16 (void)
7447 {
7448 inst.instruction |= inst.operands[0].reg << 8;
7449 inst.instruction |= inst.operands[1].imm;
7450 inst.instruction |= inst.operands[2].reg << 16;
7451 }
7452 \f
7453 /* Overall per-instruction processing. */
7454
7455 /* We need to be able to fix up arbitrary expressions in some statements.
7456 This is so that we can handle symbols that are an arbitrary distance from
7457 the pc. The most common cases are of the form ((+/-sym -/+ . - 8) & mask),
7458 which returns part of an address in a form which will be valid for
7459 a data instruction. We do this by pushing the expression into a symbol
7460 in the expr_section, and creating a fix for that. */
7461
7462 static void
7463 fix_new_arm (fragS * frag,
7464 int where,
7465 short int size,
7466 expressionS * exp,
7467 int pc_rel,
7468 int reloc)
7469 {
7470 fixS * new_fix;
7471
7472 switch (exp->X_op)
7473 {
7474 case O_constant:
7475 case O_symbol:
7476 case O_add:
7477 case O_subtract:
7478 new_fix = fix_new_exp (frag, where, size, exp, pc_rel, reloc);
7479 break;
7480
7481 default:
7482 new_fix = fix_new (frag, where, size, make_expr_symbol (exp), 0,
7483 pc_rel, reloc);
7484 break;
7485 }
7486
7487 /* Mark whether the fix is to a THUMB instruction, or an ARM
7488 instruction. */
7489 new_fix->tc_fix_data = thumb_mode;
7490 }
7491
7492 static void
7493 output_inst (const char * str)
7494 {
7495 char * to = NULL;
7496
7497 if (inst.error)
7498 {
7499 as_bad ("%s -- `%s'", inst.error, str);
7500 return;
7501 }
7502 if (inst.size == 0)
7503 return;
7504
7505 to = frag_more (inst.size);
7506
7507 if (thumb_mode && (inst.size > THUMB_SIZE))
7508 {
7509 assert (inst.size == (2 * THUMB_SIZE));
7510 md_number_to_chars (to, inst.instruction >> 16, THUMB_SIZE);
7511 md_number_to_chars (to + THUMB_SIZE, inst.instruction, THUMB_SIZE);
7512 }
7513 else if (inst.size > INSN_SIZE)
7514 {
7515 assert (inst.size == (2 * INSN_SIZE));
7516 md_number_to_chars (to, inst.instruction, INSN_SIZE);
7517 md_number_to_chars (to + INSN_SIZE, inst.instruction, INSN_SIZE);
7518 }
7519 else
7520 md_number_to_chars (to, inst.instruction, inst.size);
7521
7522 if (inst.reloc.type != BFD_RELOC_UNUSED)
7523 fix_new_arm (frag_now, to - frag_now->fr_literal,
7524 inst.size, & inst.reloc.exp, inst.reloc.pc_rel,
7525 inst.reloc.type);
7526
7527 #ifdef OBJ_ELF
7528 dwarf2_emit_insn (inst.size);
7529 #endif
7530 }
7531
7532 /* Tag values used in struct asm_opcode's tag field. */
7533 enum opcode_tag
7534 {
7535 OT_unconditional, /* Instruction cannot be conditionalized.
7536 The ARM condition field is still 0xE. */
7537 OT_unconditionalF, /* Instruction cannot be conditionalized
7538 and carries 0xF in its ARM condition field. */
7539 OT_csuffix, /* Instruction takes a conditional suffix. */
7540 OT_cinfix3, /* Instruction takes a conditional infix,
7541 beginning at character index 3. (In
7542 unified mode, it becomes a suffix.) */
7543 OT_csuf_or_in3, /* Instruction takes either a conditional
7544 suffix or an infix at character index 3.
7545 (In unified mode, a suffix only. */
7546 OT_odd_infix_unc, /* This is the unconditional variant of an
7547 instruction that takes a conditional infix
7548 at an unusual position. In unified mode,
7549 this variant will accept a suffix. */
7550 OT_odd_infix_0 /* Values greater than or equal to OT_odd_infix_0
7551 are the conditional variants of instructions that
7552 take conditional infixes in unusual positions.
7553 The infix appears at character index
7554 (tag - OT_odd_infix_0). These are not accepted
7555 in unified mode. */
7556 };
7557
7558 /* Subroutine of md_assemble, responsible for looking up the primary
7559 opcode from the mnemonic the user wrote. STR points to the
7560 beginning of the mnemonic.
7561
7562 This is not simply a hash table lookup, because of conditional
7563 variants. Most instructions have conditional variants, which are
7564 expressed with a _conditional affix_ to the mnemonic. If we were
7565 to encode each conditional variant as a literal string in the opcode
7566 table, it would have approximately 20,000 entries.
7567
7568 Most mnemonics take this affix as a suffix, and in unified syntax,
7569 'most' is upgraded to 'all'. However, in the divided syntax, some
7570 instructions take the affix as an infix, notably the s-variants of
7571 the arithmetic instructions. Of those instructions, all but six
7572 have the infix appear after the third character of the mnemonic.
7573
7574 Accordingly, the algorithm for looking up primary opcodes given
7575 an identifier is:
7576
7577 1. Look up the identifier in the opcode table.
7578 If we find a match, go to step U.
7579
7580 2. Look up the last two characters of the identifier in the
7581 conditions table. If we find a match, look up the first N-2
7582 characters of the identifier in the opcode table. If we
7583 find a match, go to step CE.
7584
7585 3. Look up the fourth and fifth characters of the identifier in
7586 the conditions table. If we find a match, extract those
7587 characters from the identifier, and look up the remaining
7588 characters in the opcode table. If we find a match, go
7589 to step CM.
7590
7591 4. Fail.
7592
7593 U. Examine the tag field of the opcode structure, in case this is
7594 one of the six instructions with its conditional infix in an
7595 unusual place. If it is, the tag tells us where to find the
7596 infix; look it up in the conditions table and set inst.cond
7597 accordingly. Otherwise, this is an unconditional instruction.
7598 Again set inst.cond accordingly. Return the opcode structure.
7599
7600 CE. Examine the tag field to make sure this is an instruction that
7601 should receive a conditional suffix. If it is not, fail.
7602 Otherwise, set inst.cond from the suffix we already looked up,
7603 and return the opcode structure.
7604
7605 CM. Examine the tag field to make sure this is an instruction that
7606 should receive a conditional infix after the third character.
7607 If it is not, fail. Otherwise, undo the edits to the current
7608 line of input and proceed as for case CE. */
7609
7610 static const struct asm_opcode *
7611 opcode_lookup (char **str)
7612 {
7613 char *end, *base;
7614 char *affix;
7615 const struct asm_opcode *opcode;
7616 const struct asm_cond *cond;
7617
7618 /* Scan up to the end of the mnemonic, which must end in white space,
7619 '.' (in unified mode only), or end of string. */
7620 for (base = end = *str; *end != '\0'; end++)
7621 if (*end == ' ' || (unified_syntax && *end == '.'))
7622 break;
7623
7624 if (end == base)
7625 return 0;
7626
7627 /* Handle a possible width suffix. */
7628 if (end[0] == '.')
7629 {
7630 if (end[1] == 'w' && (end[2] == ' ' || end[2] == '\0'))
7631 inst.size_req = 4;
7632 else if (end[1] == 'n' && (end[2] == ' ' || end[2] == '\0'))
7633 inst.size_req = 2;
7634 else
7635 return 0;
7636
7637 *str = end + 2;
7638 }
7639 else
7640 *str = end;
7641
7642 /* Look for unaffixed or special-case affixed mnemonic. */
7643 opcode = hash_find_n (arm_ops_hsh, base, end - base);
7644 if (opcode)
7645 {
7646 /* step U */
7647 if (opcode->tag < OT_odd_infix_0)
7648 {
7649 inst.cond = COND_ALWAYS;
7650 return opcode;
7651 }
7652
7653 if (unified_syntax)
7654 as_warn (_("conditional infixes are deprecated in unified syntax"));
7655 affix = base + (opcode->tag - OT_odd_infix_0);
7656 cond = hash_find_n (arm_cond_hsh, affix, 2);
7657 assert (cond);
7658
7659 inst.cond = cond->value;
7660 return opcode;
7661 }
7662
7663 /* Cannot have a conditional suffix on a mnemonic of less than two
7664 characters. */
7665 if (end - base < 3)
7666 return 0;
7667
7668 /* Look for suffixed mnemonic. */
7669 affix = end - 2;
7670 cond = hash_find_n (arm_cond_hsh, affix, 2);
7671 opcode = hash_find_n (arm_ops_hsh, base, affix - base);
7672 if (opcode && cond)
7673 {
7674 /* step CE */
7675 switch (opcode->tag)
7676 {
7677 case OT_cinfix3:
7678 case OT_odd_infix_unc:
7679 /* Some mnemonics are ambiguous between infix and suffix
7680 conditions. Disambiguate based on assembly syntax. */
7681 if (!unified_syntax)
7682 break;
7683 /* else fall through */
7684
7685 case OT_csuffix:
7686 case OT_csuf_or_in3:
7687 inst.cond = cond->value;
7688 return opcode;
7689
7690 case OT_unconditional:
7691 case OT_unconditionalF:
7692 /* delayed diagnostic */
7693 inst.error = BAD_COND;
7694 inst.cond = COND_ALWAYS;
7695 return opcode;
7696
7697 default:
7698 return 0;
7699 }
7700 }
7701
7702 /* Cannot have a usual-position infix on a mnemonic of less than
7703 six characters (five would be a suffix). */
7704 if (end - base < 6)
7705 return 0;
7706
7707 /* Look for infixed mnemonic in the usual position. */
7708 affix = base + 3;
7709 cond = hash_find_n (arm_cond_hsh, affix, 2);
7710 if (cond)
7711 {
7712 char save[2];
7713 memcpy (save, affix, 2);
7714 memmove (affix, affix + 2, (end - affix) - 2);
7715 opcode = hash_find_n (arm_ops_hsh, base, (end - base) - 2);
7716 memmove (affix + 2, affix, (end - affix) - 2);
7717 memcpy (affix, save, 2);
7718 }
7719 if (opcode && (opcode->tag == OT_cinfix3 || opcode->tag == OT_csuf_or_in3))
7720 {
7721 /* step CM */
7722 if (unified_syntax)
7723 as_warn (_("conditional infixes are deprecated in unified syntax"));
7724
7725 inst.cond = cond->value;
7726 return opcode;
7727 }
7728
7729 return 0;
7730 }
7731
7732 void
7733 md_assemble (char *str)
7734 {
7735 char *p = str;
7736 const struct asm_opcode * opcode;
7737
7738 /* Align the previous label if needed. */
7739 if (last_label_seen != NULL)
7740 {
7741 symbol_set_frag (last_label_seen, frag_now);
7742 S_SET_VALUE (last_label_seen, (valueT) frag_now_fix ());
7743 S_SET_SEGMENT (last_label_seen, now_seg);
7744 }
7745
7746 memset (&inst, '\0', sizeof (inst));
7747 inst.reloc.type = BFD_RELOC_UNUSED;
7748
7749 opcode = opcode_lookup (&p);
7750 if (!opcode)
7751 {
7752 /* It wasn't an instruction, but it might be a register alias of
7753 the form alias .req reg. */
7754 if (!create_register_alias (str, p))
7755 as_bad (_("bad instruction `%s'"), str);
7756
7757 return;
7758 }
7759
7760 if (thumb_mode)
7761 {
7762 /* Check that this instruction is supported for this CPU. */
7763 if (thumb_mode == 1 && (opcode->tvariant & cpu_variant) == 0)
7764 {
7765 as_bad (_("selected processor does not support `%s'"), str);
7766 return;
7767 }
7768 if (inst.cond != COND_ALWAYS && !unified_syntax
7769 && opcode->tencode != do_t_branch)
7770 {
7771 as_bad (_("Thumb does not support conditional execution"));
7772 return;
7773 }
7774
7775 /* Check conditional suffixes. */
7776 if (current_it_mask)
7777 {
7778 int cond;
7779 cond = current_cc ^ ((current_it_mask >> 4) & 1) ^ 1;
7780 if (cond != inst.cond)
7781 {
7782 as_bad (_("incorrect condition in IT block"));
7783 return;
7784 }
7785 current_it_mask <<= 1;
7786 current_it_mask &= 0x1f;
7787 }
7788 else if (inst.cond != COND_ALWAYS && opcode->tencode != do_t_branch)
7789 {
7790 as_bad (_("thumb conditional instrunction not in IT block"));
7791 return;
7792 }
7793
7794 mapping_state (MAP_THUMB);
7795 inst.instruction = opcode->tvalue;
7796
7797 if (!parse_operands (p, opcode->operands))
7798 opcode->tencode ();
7799
7800 /* Clear current_it_mask at the end of an IT block. */
7801 if (current_it_mask == 0x10)
7802 current_it_mask = 0;
7803
7804 if (!inst.error)
7805 {
7806 assert (inst.instruction < 0xe800 || inst.instruction > 0xffff);
7807 inst.size = (inst.instruction > 0xffff ? 4 : 2);
7808 if (inst.size_req && inst.size_req != inst.size)
7809 {
7810 as_bad (_("cannot honor width suffix -- `%s'"), str);
7811 return;
7812 }
7813 }
7814 }
7815 else
7816 {
7817 /* Check that this instruction is supported for this CPU. */
7818 if ((opcode->avariant & cpu_variant) == 0)
7819 {
7820 as_bad (_("selected processor does not support `%s'"), str);
7821 return;
7822 }
7823 if (inst.size_req)
7824 {
7825 as_bad (_("width suffixes are invalid in ARM mode -- `%s'"), str);
7826 return;
7827 }
7828
7829 mapping_state (MAP_ARM);
7830 inst.instruction = opcode->avalue;
7831 if (opcode->tag == OT_unconditionalF)
7832 inst.instruction |= 0xF << 28;
7833 else
7834 inst.instruction |= inst.cond << 28;
7835 inst.size = INSN_SIZE;
7836 if (!parse_operands (p, opcode->operands))
7837 opcode->aencode ();
7838 }
7839 output_inst (str);
7840 }
7841
7842 /* Various frobbings of labels and their addresses. */
7843
7844 void
7845 arm_start_line_hook (void)
7846 {
7847 last_label_seen = NULL;
7848 }
7849
7850 void
7851 arm_frob_label (symbolS * sym)
7852 {
7853 last_label_seen = sym;
7854
7855 ARM_SET_THUMB (sym, thumb_mode);
7856
7857 #if defined OBJ_COFF || defined OBJ_ELF
7858 ARM_SET_INTERWORK (sym, support_interwork);
7859 #endif
7860
7861 /* Note - do not allow local symbols (.Lxxx) to be labeled
7862 as Thumb functions. This is because these labels, whilst
7863 they exist inside Thumb code, are not the entry points for
7864 possible ARM->Thumb calls. Also, these labels can be used
7865 as part of a computed goto or switch statement. eg gcc
7866 can generate code that looks like this:
7867
7868 ldr r2, [pc, .Laaa]
7869 lsl r3, r3, #2
7870 ldr r2, [r3, r2]
7871 mov pc, r2
7872
7873 .Lbbb: .word .Lxxx
7874 .Lccc: .word .Lyyy
7875 ..etc...
7876 .Laaa: .word Lbbb
7877
7878 The first instruction loads the address of the jump table.
7879 The second instruction converts a table index into a byte offset.
7880 The third instruction gets the jump address out of the table.
7881 The fourth instruction performs the jump.
7882
7883 If the address stored at .Laaa is that of a symbol which has the
7884 Thumb_Func bit set, then the linker will arrange for this address
7885 to have the bottom bit set, which in turn would mean that the
7886 address computation performed by the third instruction would end
7887 up with the bottom bit set. Since the ARM is capable of unaligned
7888 word loads, the instruction would then load the incorrect address
7889 out of the jump table, and chaos would ensue. */
7890 if (label_is_thumb_function_name
7891 && (S_GET_NAME (sym)[0] != '.' || S_GET_NAME (sym)[1] != 'L')
7892 && (bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) != 0)
7893 {
7894 /* When the address of a Thumb function is taken the bottom
7895 bit of that address should be set. This will allow
7896 interworking between Arm and Thumb functions to work
7897 correctly. */
7898
7899 THUMB_SET_FUNC (sym, 1);
7900
7901 label_is_thumb_function_name = FALSE;
7902 }
7903 }
7904
7905 int
7906 arm_data_in_code (void)
7907 {
7908 if (thumb_mode && ! strncmp (input_line_pointer + 1, "data:", 5))
7909 {
7910 *input_line_pointer = '/';
7911 input_line_pointer += 5;
7912 *input_line_pointer = 0;
7913 return 1;
7914 }
7915
7916 return 0;
7917 }
7918
7919 char *
7920 arm_canonicalize_symbol_name (char * name)
7921 {
7922 int len;
7923
7924 if (thumb_mode && (len = strlen (name)) > 5
7925 && streq (name + len - 5, "/data"))
7926 *(name + len - 5) = 0;
7927
7928 return name;
7929 }
7930 \f
7931 /* Table of all register names defined by default. The user can
7932 define additional names with .req. Note that all register names
7933 should appear in both upper and lowercase variants. Some registers
7934 also have mixed-case names. */
7935
7936 #define REGDEF(s,n,t) { #s, n, REG_TYPE_##t, TRUE }
7937 #define REGNUM(p,n,t) REGDEF(p##n, n, t)
7938 #define REGSET(p,t) \
7939 REGNUM(p, 0,t), REGNUM(p, 1,t), REGNUM(p, 2,t), REGNUM(p, 3,t), \
7940 REGNUM(p, 4,t), REGNUM(p, 5,t), REGNUM(p, 6,t), REGNUM(p, 7,t), \
7941 REGNUM(p, 8,t), REGNUM(p, 9,t), REGNUM(p,10,t), REGNUM(p,11,t), \
7942 REGNUM(p,12,t), REGNUM(p,13,t), REGNUM(p,14,t), REGNUM(p,15,t)
7943
7944 static const struct reg_entry reg_names[] =
7945 {
7946 /* ARM integer registers. */
7947 REGSET(r, RN), REGSET(R, RN),
7948
7949 /* ATPCS synonyms. */
7950 REGDEF(a1,0,RN), REGDEF(a2,1,RN), REGDEF(a3, 2,RN), REGDEF(a4, 3,RN),
7951 REGDEF(v1,4,RN), REGDEF(v2,5,RN), REGDEF(v3, 6,RN), REGDEF(v4, 7,RN),
7952 REGDEF(v5,8,RN), REGDEF(v6,9,RN), REGDEF(v7,10,RN), REGDEF(v8,11,RN),
7953
7954 REGDEF(A1,0,RN), REGDEF(A2,1,RN), REGDEF(A3, 2,RN), REGDEF(A4, 3,RN),
7955 REGDEF(V1,4,RN), REGDEF(V2,5,RN), REGDEF(V3, 6,RN), REGDEF(V4, 7,RN),
7956 REGDEF(V5,8,RN), REGDEF(V6,9,RN), REGDEF(V7,10,RN), REGDEF(V8,11,RN),
7957
7958 /* Well-known aliases. */
7959 REGDEF(wr, 7,RN), REGDEF(sb, 9,RN), REGDEF(sl,10,RN), REGDEF(fp,11,RN),
7960 REGDEF(ip,12,RN), REGDEF(sp,13,RN), REGDEF(lr,14,RN), REGDEF(pc,15,RN),
7961
7962 REGDEF(WR, 7,RN), REGDEF(SB, 9,RN), REGDEF(SL,10,RN), REGDEF(FP,11,RN),
7963 REGDEF(IP,12,RN), REGDEF(SP,13,RN), REGDEF(LR,14,RN), REGDEF(PC,15,RN),
7964
7965 /* Coprocessor numbers. */
7966 REGSET(p, CP), REGSET(P, CP),
7967
7968 /* Coprocessor register numbers. The "cr" variants are for backward
7969 compatibility. */
7970 REGSET(c, CN), REGSET(C, CN),
7971 REGSET(cr, CN), REGSET(CR, CN),
7972
7973 /* FPA registers. */
7974 REGNUM(f,0,FN), REGNUM(f,1,FN), REGNUM(f,2,FN), REGNUM(f,3,FN),
7975 REGNUM(f,4,FN), REGNUM(f,5,FN), REGNUM(f,6,FN), REGNUM(f,7, FN),
7976
7977 REGNUM(F,0,FN), REGNUM(F,1,FN), REGNUM(F,2,FN), REGNUM(F,3,FN),
7978 REGNUM(F,4,FN), REGNUM(F,5,FN), REGNUM(F,6,FN), REGNUM(F,7, FN),
7979
7980 /* VFP SP registers. */
7981 REGSET(s,VFS),
7982 REGNUM(s,16,VFS), REGNUM(s,17,VFS), REGNUM(s,18,VFS), REGNUM(s,19,VFS),
7983 REGNUM(s,20,VFS), REGNUM(s,21,VFS), REGNUM(s,22,VFS), REGNUM(s,23,VFS),
7984 REGNUM(s,24,VFS), REGNUM(s,25,VFS), REGNUM(s,26,VFS), REGNUM(s,27,VFS),
7985 REGNUM(s,28,VFS), REGNUM(s,29,VFS), REGNUM(s,30,VFS), REGNUM(s,31,VFS),
7986
7987 REGSET(S,VFS),
7988 REGNUM(S,16,VFS), REGNUM(S,17,VFS), REGNUM(S,18,VFS), REGNUM(S,19,VFS),
7989 REGNUM(S,20,VFS), REGNUM(S,21,VFS), REGNUM(S,22,VFS), REGNUM(S,23,VFS),
7990 REGNUM(S,24,VFS), REGNUM(S,25,VFS), REGNUM(S,26,VFS), REGNUM(S,27,VFS),
7991 REGNUM(S,28,VFS), REGNUM(S,29,VFS), REGNUM(S,30,VFS), REGNUM(S,31,VFS),
7992
7993 /* VFP DP Registers. */
7994 REGSET(d,VFD), REGSET(D,VFS),
7995
7996 /* VFP control registers. */
7997 REGDEF(fpsid,0,VFC), REGDEF(fpscr,1,VFC), REGDEF(fpexc,8,VFC),
7998 REGDEF(FPSID,0,VFC), REGDEF(FPSCR,1,VFC), REGDEF(FPEXC,8,VFC),
7999
8000 /* Maverick DSP coprocessor registers. */
8001 REGSET(mvf,MVF), REGSET(mvd,MVD), REGSET(mvfx,MVFX), REGSET(mvdx,MVDX),
8002 REGSET(MVF,MVF), REGSET(MVD,MVD), REGSET(MVFX,MVFX), REGSET(MVDX,MVDX),
8003
8004 REGNUM(mvax,0,MVAX), REGNUM(mvax,1,MVAX),
8005 REGNUM(mvax,2,MVAX), REGNUM(mvax,3,MVAX),
8006 REGDEF(dspsc,0,DSPSC),
8007
8008 REGNUM(MVAX,0,MVAX), REGNUM(MVAX,1,MVAX),
8009 REGNUM(MVAX,2,MVAX), REGNUM(MVAX,3,MVAX),
8010 REGDEF(DSPSC,0,DSPSC),
8011
8012 /* iWMMXt data registers - p0, c0-15. */
8013 REGSET(wr,MMXWR), REGSET(wR,MMXWR), REGSET(WR, MMXWR),
8014
8015 /* iWMMXt control registers - p1, c0-3. */
8016 REGDEF(wcid, 0,MMXWC), REGDEF(wCID, 0,MMXWC), REGDEF(WCID, 0,MMXWC),
8017 REGDEF(wcon, 1,MMXWC), REGDEF(wCon, 1,MMXWC), REGDEF(WCON, 1,MMXWC),
8018 REGDEF(wcssf, 2,MMXWC), REGDEF(wCSSF, 2,MMXWC), REGDEF(WCSSF, 2,MMXWC),
8019 REGDEF(wcasf, 3,MMXWC), REGDEF(wCASF, 3,MMXWC), REGDEF(WCASF, 3,MMXWC),
8020
8021 /* iWMMXt scalar (constant/offset) registers - p1, c8-11. */
8022 REGDEF(wcgr0, 8,MMXWCG), REGDEF(wCGR0, 8,MMXWCG), REGDEF(WCGR0, 8,MMXWCG),
8023 REGDEF(wcgr1, 9,MMXWCG), REGDEF(wCGR1, 9,MMXWCG), REGDEF(WCGR1, 9,MMXWCG),
8024 REGDEF(wcgr2,10,MMXWCG), REGDEF(wCGR2,10,MMXWCG), REGDEF(WCGR2,10,MMXWCG),
8025 REGDEF(wcgr3,11,MMXWCG), REGDEF(wCGR3,11,MMXWCG), REGDEF(WCGR3,11,MMXWCG),
8026
8027 /* XScale accumulator registers. */
8028 REGNUM(acc,0,XSCALE), REGNUM(ACC,0,XSCALE),
8029 };
8030 #undef REGDEF
8031 #undef REGNUM
8032 #undef REGSET
8033
8034 /* Table of all PSR suffixes. Bare "CPSR" and "SPSR" are handled
8035 within psr_required_here. */
8036 static const struct asm_psr psrs[] =
8037 {
8038 /* Backward compatibility notation. Note that "all" is no longer
8039 truly all possible PSR bits. */
8040 {"all", PSR_c | PSR_f},
8041 {"flg", PSR_f},
8042 {"ctl", PSR_c},
8043
8044 /* Individual flags. */
8045 {"f", PSR_f},
8046 {"c", PSR_c},
8047 {"x", PSR_x},
8048 {"s", PSR_s},
8049 /* Combinations of flags. */
8050 {"fs", PSR_f | PSR_s},
8051 {"fx", PSR_f | PSR_x},
8052 {"fc", PSR_f | PSR_c},
8053 {"sf", PSR_s | PSR_f},
8054 {"sx", PSR_s | PSR_x},
8055 {"sc", PSR_s | PSR_c},
8056 {"xf", PSR_x | PSR_f},
8057 {"xs", PSR_x | PSR_s},
8058 {"xc", PSR_x | PSR_c},
8059 {"cf", PSR_c | PSR_f},
8060 {"cs", PSR_c | PSR_s},
8061 {"cx", PSR_c | PSR_x},
8062 {"fsx", PSR_f | PSR_s | PSR_x},
8063 {"fsc", PSR_f | PSR_s | PSR_c},
8064 {"fxs", PSR_f | PSR_x | PSR_s},
8065 {"fxc", PSR_f | PSR_x | PSR_c},
8066 {"fcs", PSR_f | PSR_c | PSR_s},
8067 {"fcx", PSR_f | PSR_c | PSR_x},
8068 {"sfx", PSR_s | PSR_f | PSR_x},
8069 {"sfc", PSR_s | PSR_f | PSR_c},
8070 {"sxf", PSR_s | PSR_x | PSR_f},
8071 {"sxc", PSR_s | PSR_x | PSR_c},
8072 {"scf", PSR_s | PSR_c | PSR_f},
8073 {"scx", PSR_s | PSR_c | PSR_x},
8074 {"xfs", PSR_x | PSR_f | PSR_s},
8075 {"xfc", PSR_x | PSR_f | PSR_c},
8076 {"xsf", PSR_x | PSR_s | PSR_f},
8077 {"xsc", PSR_x | PSR_s | PSR_c},
8078 {"xcf", PSR_x | PSR_c | PSR_f},
8079 {"xcs", PSR_x | PSR_c | PSR_s},
8080 {"cfs", PSR_c | PSR_f | PSR_s},
8081 {"cfx", PSR_c | PSR_f | PSR_x},
8082 {"csf", PSR_c | PSR_s | PSR_f},
8083 {"csx", PSR_c | PSR_s | PSR_x},
8084 {"cxf", PSR_c | PSR_x | PSR_f},
8085 {"cxs", PSR_c | PSR_x | PSR_s},
8086 {"fsxc", PSR_f | PSR_s | PSR_x | PSR_c},
8087 {"fscx", PSR_f | PSR_s | PSR_c | PSR_x},
8088 {"fxsc", PSR_f | PSR_x | PSR_s | PSR_c},
8089 {"fxcs", PSR_f | PSR_x | PSR_c | PSR_s},
8090 {"fcsx", PSR_f | PSR_c | PSR_s | PSR_x},
8091 {"fcxs", PSR_f | PSR_c | PSR_x | PSR_s},
8092 {"sfxc", PSR_s | PSR_f | PSR_x | PSR_c},
8093 {"sfcx", PSR_s | PSR_f | PSR_c | PSR_x},
8094 {"sxfc", PSR_s | PSR_x | PSR_f | PSR_c},
8095 {"sxcf", PSR_s | PSR_x | PSR_c | PSR_f},
8096 {"scfx", PSR_s | PSR_c | PSR_f | PSR_x},
8097 {"scxf", PSR_s | PSR_c | PSR_x | PSR_f},
8098 {"xfsc", PSR_x | PSR_f | PSR_s | PSR_c},
8099 {"xfcs", PSR_x | PSR_f | PSR_c | PSR_s},
8100 {"xsfc", PSR_x | PSR_s | PSR_f | PSR_c},
8101 {"xscf", PSR_x | PSR_s | PSR_c | PSR_f},
8102 {"xcfs", PSR_x | PSR_c | PSR_f | PSR_s},
8103 {"xcsf", PSR_x | PSR_c | PSR_s | PSR_f},
8104 {"cfsx", PSR_c | PSR_f | PSR_s | PSR_x},
8105 {"cfxs", PSR_c | PSR_f | PSR_x | PSR_s},
8106 {"csfx", PSR_c | PSR_s | PSR_f | PSR_x},
8107 {"csxf", PSR_c | PSR_s | PSR_x | PSR_f},
8108 {"cxfs", PSR_c | PSR_x | PSR_f | PSR_s},
8109 {"cxsf", PSR_c | PSR_x | PSR_s | PSR_f},
8110 };
8111
8112 /* Table of all shift-in-operand names. */
8113 static const struct asm_shift_name shift_names [] =
8114 {
8115 { "asl", SHIFT_LSL }, { "ASL", SHIFT_LSL },
8116 { "lsl", SHIFT_LSL }, { "LSL", SHIFT_LSL },
8117 { "lsr", SHIFT_LSR }, { "LSR", SHIFT_LSR },
8118 { "asr", SHIFT_ASR }, { "ASR", SHIFT_ASR },
8119 { "ror", SHIFT_ROR }, { "ROR", SHIFT_ROR },
8120 { "rrx", SHIFT_RRX }, { "RRX", SHIFT_RRX }
8121 };
8122
8123 /* Table of all explicit relocation names. */
8124 #ifdef OBJ_ELF
8125 static struct reloc_entry reloc_names[] =
8126 {
8127 { "got", BFD_RELOC_ARM_GOT32 }, { "GOT", BFD_RELOC_ARM_GOT32 },
8128 { "gotoff", BFD_RELOC_ARM_GOTOFF }, { "GOTOFF", BFD_RELOC_ARM_GOTOFF },
8129 { "plt", BFD_RELOC_ARM_PLT32 }, { "PLT", BFD_RELOC_ARM_PLT32 },
8130 { "target1", BFD_RELOC_ARM_TARGET1 }, { "TARGET1", BFD_RELOC_ARM_TARGET1 },
8131 { "target2", BFD_RELOC_ARM_TARGET2 }, { "TARGET2", BFD_RELOC_ARM_TARGET2 },
8132 { "sbrel", BFD_RELOC_ARM_SBREL32 }, { "SBREL", BFD_RELOC_ARM_SBREL32 },
8133 { "tlsgd", BFD_RELOC_ARM_TLS_GD32}, { "TLSGD", BFD_RELOC_ARM_TLS_GD32},
8134 { "tlsldm", BFD_RELOC_ARM_TLS_LDM32}, { "TLSLDM", BFD_RELOC_ARM_TLS_LDM32},
8135 { "tlsldo", BFD_RELOC_ARM_TLS_LDO32}, { "TLSLDO", BFD_RELOC_ARM_TLS_LDO32},
8136 { "gottpoff",BFD_RELOC_ARM_TLS_IE32}, { "GOTTPOFF",BFD_RELOC_ARM_TLS_IE32},
8137 { "tpoff", BFD_RELOC_ARM_TLS_LE32}, { "TPOFF", BFD_RELOC_ARM_TLS_LE32}
8138 };
8139 #endif
8140
8141 /* Table of all conditional affixes. 0xF is not defined as a condition code. */
8142 static const struct asm_cond conds[] =
8143 {
8144 {"eq", 0x0},
8145 {"ne", 0x1},
8146 {"cs", 0x2}, {"hs", 0x2},
8147 {"cc", 0x3}, {"ul", 0x3}, {"lo", 0x3},
8148 {"mi", 0x4},
8149 {"pl", 0x5},
8150 {"vs", 0x6},
8151 {"vc", 0x7},
8152 {"hi", 0x8},
8153 {"ls", 0x9},
8154 {"ge", 0xa},
8155 {"lt", 0xb},
8156 {"gt", 0xc},
8157 {"le", 0xd},
8158 {"al", 0xe}
8159 };
8160
8161 /* Table of ARM-format instructions. */
8162
8163 /* Macros for gluing together operand strings. N.B. In all cases
8164 other than OPS0, the trailing OP_stop comes from default
8165 zero-initialization of the unspecified elements of the array. */
8166 #define OPS0() { OP_stop, }
8167 #define OPS1(a) { OP_##a, }
8168 #define OPS2(a,b) { OP_##a,OP_##b, }
8169 #define OPS3(a,b,c) { OP_##a,OP_##b,OP_##c, }
8170 #define OPS4(a,b,c,d) { OP_##a,OP_##b,OP_##c,OP_##d, }
8171 #define OPS5(a,b,c,d,e) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e, }
8172 #define OPS6(a,b,c,d,e,f) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e,OP_##f, }
8173
8174 /* These macros abstract out the exact format of the mnemonic table and
8175 save some repeated characters. */
8176
8177 /* The normal sort of mnemonic; has a Thumb variant; takes a conditional suffix. */
8178 #define TxCE(mnem, op, top, nops, ops, ae, te) \
8179 { #mnem, OPS##nops ops, OT_csuffix, 0x##op, top, ARM_VARIANT, \
8180 THUMB_VARIANT, do_##ae, do_##te }
8181
8182 /* Two variants of the above - TCE for a numeric Thumb opcode, tCE for
8183 a T_MNEM_xyz enumerator. */
8184 #define TCE(mnem, aop, top, nops, ops, ae, te) \
8185 TxCE(mnem, aop, 0x##top, nops, ops, ae, te)
8186 #define tCE(mnem, aop, top, nops, ops, ae, te) \
8187 TxCE(mnem, aop, T_MNEM_##top, nops, ops, ae, te)
8188
8189 /* Second most common sort of mnemonic: has a Thumb variant, takes a conditional
8190 infix after the third character. */
8191 #define TxC3(mnem, op, top, nops, ops, ae, te) \
8192 { #mnem, OPS##nops ops, OT_cinfix3, 0x##op, top, ARM_VARIANT, \
8193 THUMB_VARIANT, do_##ae, do_##te }
8194 #define TC3(mnem, aop, top, nops, ops, ae, te) \
8195 TxC3(mnem, aop, 0x##top, nops, ops, ae, te)
8196 #define tC3(mnem, aop, top, nops, ops, ae, te) \
8197 TxC3(mnem, aop, T_MNEM_##top, nops, ops, ae, te)
8198
8199 /* Mnemonic with a conditional infix in an unusual place. Each and every variant has to
8200 appear in the condition table. */
8201 #define TxCM_(m1, m2, m3, op, top, nops, ops, ae, te) \
8202 { #m1 #m2 #m3, OPS##nops ops, sizeof(#m2) == 1 ? OT_odd_infix_unc : OT_odd_infix_0 + sizeof(#m1) - 1, \
8203 0x##op, top, ARM_VARIANT, THUMB_VARIANT, do_##ae, do_##te }
8204
8205 #define TxCM(m1, m2, op, top, nops, ops, ae, te) \
8206 TxCM_(m1, , m2, op, top, nops, ops, ae, te), \
8207 TxCM_(m1, eq, m2, op, top, nops, ops, ae, te), \
8208 TxCM_(m1, ne, m2, op, top, nops, ops, ae, te), \
8209 TxCM_(m1, cs, m2, op, top, nops, ops, ae, te), \
8210 TxCM_(m1, hs, m2, op, top, nops, ops, ae, te), \
8211 TxCM_(m1, cc, m2, op, top, nops, ops, ae, te), \
8212 TxCM_(m1, ul, m2, op, top, nops, ops, ae, te), \
8213 TxCM_(m1, lo, m2, op, top, nops, ops, ae, te), \
8214 TxCM_(m1, mi, m2, op, top, nops, ops, ae, te), \
8215 TxCM_(m1, pl, m2, op, top, nops, ops, ae, te), \
8216 TxCM_(m1, vs, m2, op, top, nops, ops, ae, te), \
8217 TxCM_(m1, vc, m2, op, top, nops, ops, ae, te), \
8218 TxCM_(m1, hi, m2, op, top, nops, ops, ae, te), \
8219 TxCM_(m1, ls, m2, op, top, nops, ops, ae, te), \
8220 TxCM_(m1, ge, m2, op, top, nops, ops, ae, te), \
8221 TxCM_(m1, lt, m2, op, top, nops, ops, ae, te), \
8222 TxCM_(m1, gt, m2, op, top, nops, ops, ae, te), \
8223 TxCM_(m1, le, m2, op, top, nops, ops, ae, te), \
8224 TxCM_(m1, al, m2, op, top, nops, ops, ae, te)
8225
8226 #define TCM(m1,m2, aop, top, nops, ops, ae, te) \
8227 TxCM(m1,m2, aop, 0x##top, nops, ops, ae, te)
8228 #define tCM(m1,m2, aop, top, nops, ops, ae, te) \
8229 TxCM(m1,m2, aop, T_MNEM_##top, nops, ops, ae, te)
8230
8231 /* Mnemonic that cannot be conditionalized. The ARM condition-code
8232 field is still 0xE. */
8233 #define TUE(mnem, op, top, nops, ops, ae, te) \
8234 { #mnem, OPS##nops ops, OT_unconditional, 0x##op, 0x##top, ARM_VARIANT, \
8235 THUMB_VARIANT, do_##ae, do_##te }
8236
8237 /* Mnemonic that cannot be conditionalized, and bears 0xF in its ARM
8238 condition code field. */
8239 #define TUF(mnem, op, top, nops, ops, ae, te) \
8240 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##top, ARM_VARIANT, \
8241 THUMB_VARIANT, do_##ae, do_##te }
8242
8243 /* ARM-only variants of all the above. */
8244 #define CE(mnem, op, nops, ops, ae) \
8245 { #mnem, OPS##nops ops, OT_csuffix, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
8246
8247 #define C3(mnem, op, nops, ops, ae) \
8248 { #mnem, OPS##nops ops, OT_cinfix3, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
8249
8250 #define xCM_(m1, m2, m3, op, nops, ops, ae) \
8251 { #m1 #m2 #m3, OPS##nops ops, \
8252 sizeof(#m2) == 1 ? OT_odd_infix_unc : OT_odd_infix_0 + sizeof(#m1) - 1, \
8253 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
8254
8255 #define CM(m1, m2, op, nops, ops, ae) \
8256 xCM_(m1, , m2, op, nops, ops, ae), \
8257 xCM_(m1, eq, m2, op, nops, ops, ae), \
8258 xCM_(m1, ne, m2, op, nops, ops, ae), \
8259 xCM_(m1, cs, m2, op, nops, ops, ae), \
8260 xCM_(m1, hs, m2, op, nops, ops, ae), \
8261 xCM_(m1, cc, m2, op, nops, ops, ae), \
8262 xCM_(m1, ul, m2, op, nops, ops, ae), \
8263 xCM_(m1, lo, m2, op, nops, ops, ae), \
8264 xCM_(m1, mi, m2, op, nops, ops, ae), \
8265 xCM_(m1, pl, m2, op, nops, ops, ae), \
8266 xCM_(m1, vs, m2, op, nops, ops, ae), \
8267 xCM_(m1, vc, m2, op, nops, ops, ae), \
8268 xCM_(m1, hi, m2, op, nops, ops, ae), \
8269 xCM_(m1, ls, m2, op, nops, ops, ae), \
8270 xCM_(m1, ge, m2, op, nops, ops, ae), \
8271 xCM_(m1, lt, m2, op, nops, ops, ae), \
8272 xCM_(m1, gt, m2, op, nops, ops, ae), \
8273 xCM_(m1, le, m2, op, nops, ops, ae), \
8274 xCM_(m1, al, m2, op, nops, ops, ae)
8275
8276 #define UE(mnem, op, nops, ops, ae) \
8277 { #mnem, OPS##nops ops, OT_unconditional, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL }
8278
8279 #define UF(mnem, op, nops, ops, ae) \
8280 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL }
8281
8282 #define do_0 0
8283
8284 /* Thumb-only, unconditional. */
8285 #define UT(mnem, op, nops, ops, te) TUE(mnem, 0, op, nops, ops, 0, te)
8286
8287 /* ARM-only, takes either a suffix or a position-3 infix
8288 (for an FPA corner case). */
8289 #define C3E(mnem, op, nops, ops, ae) \
8290 { #mnem, OPS##nops ops, OT_csuf_or_in3, 0x##op, 0, ARM_VARIANT, 0, do_##ae, 0 }
8291
8292 static const struct asm_opcode insns[] =
8293 {
8294 #define ARM_VARIANT ARM_EXT_V1 /* Core ARM Instructions. */
8295 #define THUMB_VARIANT ARM_EXT_V4T
8296 tCE(and, 0000000, and, 3, (RR, oRR, SH), arit, t_arit3c),
8297 tC3(ands, 0100000, ands, 3, (RR, oRR, SH), arit, t_arit3c),
8298 tCE(eor, 0200000, eor, 3, (RR, oRR, SH), arit, t_arit3c),
8299 tC3(eors, 0300000, eors, 3, (RR, oRR, SH), arit, t_arit3c),
8300 tCE(sub, 0400000, sub, 3, (RR, oRR, SH), arit, t_add_sub),
8301 tC3(subs, 0500000, subs, 3, (RR, oRR, SH), arit, t_add_sub),
8302 tCE(add, 0800000, add, 3, (RR, oRR, SH), arit, t_add_sub),
8303 tC3(adds, 0900000, adds, 3, (RR, oRR, SH), arit, t_add_sub),
8304 tCE(adc, 0a00000, adc, 3, (RR, oRR, SH), arit, t_arit3c),
8305 tC3(adcs, 0b00000, adcs, 3, (RR, oRR, SH), arit, t_arit3c),
8306 tCE(sbc, 0c00000, sbc, 3, (RR, oRR, SH), arit, t_arit3),
8307 tC3(sbcs, 0d00000, sbcs, 3, (RR, oRR, SH), arit, t_arit3),
8308 tCE(orr, 1800000, orr, 3, (RR, oRR, SH), arit, t_arit3c),
8309 tC3(orrs, 1900000, orrs, 3, (RR, oRR, SH), arit, t_arit3c),
8310 tCE(bic, 1c00000, bic, 3, (RR, oRR, SH), arit, t_arit3),
8311 tC3(bics, 1d00000, bics, 3, (RR, oRR, SH), arit, t_arit3),
8312
8313 /* The p-variants of tst/cmp/cmn/teq (below) are the pre-V6 mechanism
8314 for setting PSR flag bits. They are obsolete in V6 and do not
8315 have Thumb equivalents. */
8316 tCE(tst, 1100000, tst, 2, (RR, SH), cmp, t_mvn_tst),
8317 tC3(tsts, 1100000, tst, 2, (RR, SH), cmp, t_mvn_tst),
8318 C3(tstp, 110f000, 2, (RR, SH), cmp),
8319 tCE(cmp, 1500000, cmp, 2, (RR, SH), cmp, t_mov_cmp),
8320 tC3(cmps, 1500000, cmp, 2, (RR, SH), cmp, t_mov_cmp),
8321 C3(cmpp, 150f000, 2, (RR, SH), cmp),
8322 tCE(cmn, 1700000, cmn, 2, (RR, SH), cmp, t_mvn_tst),
8323 tC3(cmns, 1700000, cmn, 2, (RR, SH), cmp, t_mvn_tst),
8324 C3(cmnp, 170f000, 2, (RR, SH), cmp),
8325
8326 tCE(mov, 1a00000, mov, 2, (RR, SH), mov, t_mov_cmp),
8327 tC3(movs, 1b00000, movs, 2, (RR, SH), mov, t_mov_cmp),
8328 tCE(mvn, 1e00000, mvn, 2, (RR, SH), mov, t_mvn_tst),
8329 tC3(mvns, 1f00000, mvns, 2, (RR, SH), mov, t_mvn_tst),
8330
8331 tCE(ldr, 4100000, ldr, 2, (RR, ADDR), ldst, t_ldst),
8332 tC3(ldrb, 4500000, ldrb, 2, (RR, ADDR), ldst, t_ldst),
8333 tCE(str, 4000000, str, 2, (RR, ADDR), ldst, t_ldst),
8334 tC3(strb, 4400000, strb, 2, (RR, ADDR), ldst, t_ldst),
8335
8336 tC3(stmia, 8800000, stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
8337 tC3(stmea, 8800000, stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
8338 tC3(ldmia, 8900000, ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
8339 tC3(ldmfd, 8900000, ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
8340
8341 TCE(swi, f000000, df00, 1, (EXPi), swi, t_swi),
8342 TCE(b, a000000, e000, 1, (EXPr), branch, t_branch),
8343 TCE(bl, b000000, f000f800, 1, (EXPr), branch, t_branch23),
8344
8345 /* Pseudo ops. */
8346 tCE(adr, 28f0000, adr, 2, (RR, EXP), adr, t_adr),
8347 C3(adrl, 28f0000, 2, (RR, EXP), adrl),
8348 tCE(nop, 1a00000, nop, 1, (oI255c), nop, t_nop),
8349
8350 /* Thumb-compatibility pseudo ops. */
8351 tCE(lsl, 1a00000, lsl, 3, (RR, oRR, SH), shift, t_shift),
8352 tC3(lsls, 1b00000, lsls, 3, (RR, oRR, SH), shift, t_shift),
8353 tCE(lsr, 1a00020, lsr, 3, (RR, oRR, SH), shift, t_shift),
8354 tC3(lsrs, 1b00020, lsrs, 3, (RR, oRR, SH), shift, t_shift),
8355 tCE(asr, 1a00040, asr, 3, (RR, oRR, SH), shift, t_shift),
8356 tC3(asrs, 1b00040, asrs, 3, (RR, oRR, SH), shift, t_shift),
8357 tCE(ror, 1a00060, ror, 3, (RR, oRR, SH), shift, t_shift),
8358 tC3(rors, 1b00060, rors, 3, (RR, oRR, SH), shift, t_shift),
8359 tCE(neg, 2600000, neg, 2, (RR, RR), rd_rn, t_neg),
8360 tC3(negs, 2700000, negs, 2, (RR, RR), rd_rn, t_neg),
8361 tCE(push, 92d0000, push, 1, (REGLST), push_pop, t_push_pop),
8362 tCE(pop, 8bd0000, pop, 1, (REGLST), push_pop, t_push_pop),
8363
8364 #undef THUMB_VARIANT
8365 #define THUMB_VARIANT ARM_EXT_V6
8366 TCE(cpy, 1a00000, 4600, 2, (RR, RR), rd_rm, t_cpy),
8367
8368 /* V1 instructions with no Thumb analogue prior to V6T2. */
8369 #undef THUMB_VARIANT
8370 #define THUMB_VARIANT ARM_EXT_V6T2
8371 TCE(rsb, 0600000, ebc00000, 3, (RR, oRR, SH), arit, t_rsb),
8372 TC3(rsbs, 0700000, ebd00000, 3, (RR, oRR, SH), arit, t_rsb),
8373 TCE(teq, 1300000, ea900f00, 2, (RR, SH), cmp, t_mvn_tst),
8374 TC3(teqs, 1300000, ea900f00, 2, (RR, SH), cmp, t_mvn_tst),
8375 C3(teqp, 130f000, 2, (RR, SH), cmp),
8376
8377 TC3(ldrt, 4300000, f8500e00, 2, (RR, ADDR), ldstt, t_ldstt),
8378 TC3(ldrbt, 4700000, f8300e00, 2, (RR, ADDR), ldstt, t_ldstt),
8379 TC3(strt, 4200000, f8400e00, 2, (RR, ADDR), ldstt, t_ldstt),
8380 TC3(strbt, 4600000, f8200e00, 2, (RR, ADDR), ldstt, t_ldstt),
8381
8382 TC3(stmdb, 9000000, e9000000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
8383 TC3(stmfd, 9000000, e9000000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
8384
8385 TC3(ldmdb, 9100000, e9100000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
8386 TC3(ldmea, 9100000, e9100000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
8387
8388 /* V1 instructions with no Thumb analogue at all. */
8389 CE(rsc, 0e00000, 3, (RR, oRR, SH), arit),
8390 C3(rscs, 0f00000, 3, (RR, oRR, SH), arit),
8391
8392 C3(stmib, 9800000, 2, (RRw, REGLST), ldmstm),
8393 C3(stmfa, 9800000, 2, (RRw, REGLST), ldmstm),
8394 C3(stmda, 8000000, 2, (RRw, REGLST), ldmstm),
8395 C3(stmed, 8000000, 2, (RRw, REGLST), ldmstm),
8396 C3(ldmib, 9900000, 2, (RRw, REGLST), ldmstm),
8397 C3(ldmed, 9900000, 2, (RRw, REGLST), ldmstm),
8398 C3(ldmda, 8100000, 2, (RRw, REGLST), ldmstm),
8399 C3(ldmfa, 8100000, 2, (RRw, REGLST), ldmstm),
8400
8401 #undef ARM_VARIANT
8402 #define ARM_VARIANT ARM_EXT_V2 /* ARM 2 - multiplies. */
8403 #undef THUMB_VARIANT
8404 #define THUMB_VARIANT ARM_EXT_V4T
8405 tCE(mul, 0000090, mul, 3, (RRnpc, RRnpc, oRR), mul, t_mul),
8406 tC3(muls, 0100090, muls, 3, (RRnpc, RRnpc, oRR), mul, t_mul),
8407
8408 #undef THUMB_VARIANT
8409 #define THUMB_VARIANT ARM_EXT_V6T2
8410 TCE(mla, 0200090, fb000000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas, t_mla),
8411 C3(mlas, 0300090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas),
8412
8413 /* Generic coprocessor instructions. */
8414 TCE(cdp, e000000, ee000000, 6, (RCP, I15b, RCN, RCN, RCN, oI7b), cdp, cdp),
8415 TCE(ldc, c100000, ec100000, 3, (RCP, RCN, ADDR), lstc, lstc),
8416 TC3(ldcl, c500000, ec500000, 3, (RCP, RCN, ADDR), lstc, lstc),
8417 TCE(stc, c000000, ec000000, 3, (RCP, RCN, ADDR), lstc, lstc),
8418 TC3(stcl, c400000, ec400000, 3, (RCP, RCN, ADDR), lstc, lstc),
8419 TCE(mcr, e000010, ee000010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
8420 TCE(mrc, e100010, ee100010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
8421
8422 #undef ARM_VARIANT
8423 #define ARM_VARIANT ARM_EXT_V2S /* ARM 3 - swp instructions. */
8424 CE(swp, 1000090, 3, (RRnpc, RRnpc, RRnpcb), rd_rm_rn),
8425 C3(swpb, 1400090, 3, (RRnpc, RRnpc, RRnpcb), rd_rm_rn),
8426
8427 #undef ARM_VARIANT
8428 #define ARM_VARIANT ARM_EXT_V3 /* ARM 6 Status register instructions. */
8429 TCE(mrs, 10f0000, f3ef8000, 2, (RR, PSR), mrs, t_mrs),
8430 TCE(msr, 120f000, f3808000, 2, (PSR, RR_EXi), msr, t_msr),
8431
8432 #undef ARM_VARIANT
8433 #define ARM_VARIANT ARM_EXT_V3M /* ARM 7M long multiplies. */
8434 TCE(smull, 0c00090, fb800000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
8435 CM(smull,s, 0d00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
8436 TCE(umull, 0800090, fba00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
8437 CM(umull,s, 0900090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
8438 TCE(smlal, 0e00090, fbc00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
8439 CM(smlal,s, 0f00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
8440 TCE(umlal, 0a00090, fbe00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
8441 CM(umlal,s, 0b00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
8442
8443 #undef ARM_VARIANT
8444 #define ARM_VARIANT ARM_EXT_V4 /* ARM Architecture 4. */
8445 #undef THUMB_VARIANT
8446 #define THUMB_VARIANT ARM_EXT_V4T
8447 tC3(ldrh, 01000b0, ldrh, 2, (RR, ADDR), ldstv4, t_ldst),
8448 tC3(strh, 00000b0, strh, 2, (RR, ADDR), ldstv4, t_ldst),
8449 tC3(ldrsh, 01000f0, ldrsh, 2, (RR, ADDR), ldstv4, t_ldst),
8450 tC3(ldrsb, 01000d0, ldrsb, 2, (RR, ADDR), ldstv4, t_ldst),
8451 tCM(ld,sh, 01000f0, ldrsh, 2, (RR, ADDR), ldstv4, t_ldst),
8452 tCM(ld,sb, 01000d0, ldrsb, 2, (RR, ADDR), ldstv4, t_ldst),
8453
8454 #undef ARM_VARIANT
8455 #define ARM_VARIANT ARM_EXT_V4T|ARM_EXT_V5
8456 /* ARM Architecture 4T. */
8457 /* Note: bx (and blx) are required on V5, even if the processor does
8458 not support Thumb. */
8459 TCE(bx, 12fff10, 4700, 1, (RR), bx, t_bx),
8460
8461 #undef ARM_VARIANT
8462 #define ARM_VARIANT ARM_EXT_V5 /* ARM Architecture 5T. */
8463 #undef THUMB_VARIANT
8464 #define THUMB_VARIANT ARM_EXT_V5T
8465 /* Note: blx has 2 variants; the .value coded here is for
8466 BLX(2). Only this variant has conditional execution. */
8467 TCE(blx, 12fff30, 4780, 1, (RR_EXr), blx, t_blx),
8468 TUE(bkpt, 1200070, be00, 1, (oIffffb), bkpt, t_bkpt),
8469
8470 #undef THUMB_VARIANT
8471 #define THUMB_VARIANT ARM_EXT_V6T2
8472 TCE(clz, 16f0f10, fab0f080, 2, (RRnpc, RRnpc), rd_rm, t_clz),
8473 TUF(ldc2, c100000, fc100000, 3, (RCP, RCN, ADDR), lstc, lstc),
8474 TUF(ldc2l, c500000, fc500000, 3, (RCP, RCN, ADDR), lstc, lstc),
8475 TUF(stc2, c000000, fc000000, 3, (RCP, RCN, ADDR), lstc, lstc),
8476 TUF(stc2l, c400000, fc400000, 3, (RCP, RCN, ADDR), lstc, lstc),
8477 TUF(cdp2, e000000, fe000000, 6, (RCP, I15b, RCN, RCN, RCN, oI7b), cdp, cdp),
8478 TUF(mcr2, e000010, fe000010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
8479 TUF(mrc2, e100010, fe100010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
8480
8481 #undef ARM_VARIANT
8482 #define ARM_VARIANT ARM_EXT_V5ExP /* ARM Architecture 5TExP. */
8483 TCE(smlabb, 1000080, fb100000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
8484 TCE(smlatb, 10000a0, fb100020, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
8485 TCE(smlabt, 10000c0, fb100010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
8486 TCE(smlatt, 10000e0, fb100030, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
8487
8488 TCE(smlawb, 1200080, fb300000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
8489 TCE(smlawt, 12000c0, fb300010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
8490
8491 TCE(smlalbb, 1400080, fbc00080, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
8492 TCE(smlaltb, 14000a0, fbc000a0, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
8493 TCE(smlalbt, 14000c0, fbc00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
8494 TCE(smlaltt, 14000e0, fbc000b0, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
8495
8496 TCE(smulbb, 1600080, fb10f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
8497 TCE(smultb, 16000a0, fb10f020, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
8498 TCE(smulbt, 16000c0, fb10f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
8499 TCE(smultt, 16000e0, fb10f030, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
8500
8501 TCE(smulwb, 12000a0, fb30f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
8502 TCE(smulwt, 12000e0, fb30f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
8503
8504 TCE(qadd, 1000050, fa80f080, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, rd_rm_rn),
8505 TCE(qdadd, 1400050, fa80f090, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, rd_rm_rn),
8506 TCE(qsub, 1200050, fa80f0a0, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, rd_rm_rn),
8507 TCE(qdsub, 1600050, fa80f0b0, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, rd_rm_rn),
8508
8509 #undef ARM_VARIANT
8510 #define ARM_VARIANT ARM_EXT_V5E /* ARM Architecture 5TE. */
8511 TUF(pld, 450f000, f810f000, 1, (ADDR), pld, t_pld),
8512 TC3(ldrd, 00000d0, e9500000, 3, (RRnpc, oRRnpc, ADDR), ldrd, t_ldstd),
8513 TC3(strd, 00000f0, e9400000, 3, (RRnpc, oRRnpc, ADDR), ldrd, t_ldstd),
8514
8515 TCE(mcrr, c400000, ec400000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
8516 TCE(mrrc, c500000, ec500000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
8517
8518 #undef ARM_VARIANT
8519 #define ARM_VARIANT ARM_EXT_V5J /* ARM Architecture 5TEJ. */
8520 TCE(bxj, 12fff20, f3c08f00, 1, (RR), bxj, t_bxj),
8521
8522 #undef ARM_VARIANT
8523 #define ARM_VARIANT ARM_EXT_V6 /* ARM V6. */
8524 #undef THUMB_VARIANT
8525 #define THUMB_VARIANT ARM_EXT_V6
8526 TUF(cpsie, 1080000, b660, 2, (CPSF, oI31b), cpsi, t_cpsi),
8527 TUF(cpsid, 10c0000, b670, 2, (CPSF, oI31b), cpsi, t_cpsi),
8528 tCE(rev, 6bf0f30, rev, 2, (RRnpc, RRnpc), rd_rm, t_rev),
8529 tCE(rev16, 6bf0fb0, rev16, 2, (RRnpc, RRnpc), rd_rm, t_rev),
8530 tCE(revsh, 6ff0fb0, revsh, 2, (RRnpc, RRnpc), rd_rm, t_rev),
8531 tCE(sxth, 6bf0070, sxth, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
8532 tCE(uxth, 6ff0070, uxth, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
8533 tCE(sxtb, 6af0070, sxtb, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
8534 tCE(uxtb, 6ef0070, uxtb, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
8535 TUF(setend, 1010000, b650, 1, (ENDI), setend, t_setend),
8536
8537 #undef THUMB_VARIANT
8538 #define THUMB_VARIANT ARM_EXT_V6T2
8539 TUF(cps, 1020000, f3af8100, 1, (I31b), imm0, imm0),
8540 TCE(ldrex, 1900f9f, e8500f00, 2, (RRnpc, ADDR), ldrex, t_ldrex),
8541 TUF(mcrr2, c400000, fc400000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
8542 TUF(mrrc2, c500000, fc500000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
8543 TCE(pkhbt, 6800010, eac00000, 4, (RRnpc, RRnpc, RRnpc, oSHll), pkhbt, t_pkhbt),
8544 TCE(pkhtb, 6800050, eac00020, 4, (RRnpc, RRnpc, RRnpc, oSHar), pkhtb, t_pkhtb),
8545 TCE(qadd16, 6200f10, fa90f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
8546 TCE(qadd8, 6200f90, fa80f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
8547 TCE(qaddsubx, 6200f30, faa0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
8548 TCE(qsub16, 6200f70, fad0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
8549 TCE(qsub8, 6200ff0, fac0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
8550 TCE(qsubaddx, 6200f50, fae0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
8551 TCE(sadd16, 6100f10, fa90f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
8552 TCE(sadd8, 6100f90, fa80f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
8553 TCE(saddsubx, 6100f30, faa0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
8554 TCE(shadd16, 6300f10, fa90f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
8555 TCE(shadd8, 6300f90, fa80f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
8556 TCE(shaddsubx, 6300f30, faa0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
8557 TCE(shsub16, 6300f70, fad0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
8558 TCE(shsub8, 6300ff0, fac0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
8559 TCE(shsubaddx, 6300f50, fae0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
8560 TCE(ssub16, 6100f70, fad0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
8561 TCE(ssub8, 6100ff0, fac0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
8562 TCE(ssubaddx, 6100f50, fae0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
8563 TCE(uadd16, 6500f10, fa90f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
8564 TCE(uadd8, 6500f90, fa80f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
8565 TCE(uaddsubx, 6500f30, faa0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
8566 TCE(uhadd16, 6700f10, fa90f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
8567 TCE(uhadd8, 6700f90, fa80f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
8568 TCE(uhaddsubx, 6700f30, faa0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
8569 TCE(uhsub16, 6700f70, fad0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
8570 TCE(uhsub8, 6700ff0, fac0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
8571 TCE(uhsubaddx, 6700f50, fae0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
8572 TCE(uqadd16, 6600f10, fa90f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
8573 TCE(uqadd8, 6600f90, fa80f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
8574 TCE(uqaddsubx, 6600f30, faa0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
8575 TCE(uqsub16, 6600f70, fad0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
8576 TCE(uqsub8, 6600ff0, fac0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
8577 TCE(uqsubaddx, 6600f50, fae0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
8578 TCE(usub16, 6500f70, fad0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
8579 TCE(usub8, 6500ff0, fac0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
8580 TCE(usubaddx, 6500f50, fae0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
8581 TUF(rfeia, 8900a00, e990c000, 1, (RRw), rfe, rfe),
8582 UF(rfeib, 9900a00, 1, (RRw), rfe),
8583 UF(rfeda, 8100a00, 1, (RRw), rfe),
8584 TUF(rfedb, 9100a00, e810c000, 1, (RRw), rfe, rfe),
8585 TUF(rfefd, 8900a00, e990c000, 1, (RRw), rfe, rfe),
8586 UF(rfefa, 9900a00, 1, (RRw), rfe),
8587 UF(rfeea, 8100a00, 1, (RRw), rfe),
8588 TUF(rfeed, 9100a00, e810c000, 1, (RRw), rfe, rfe),
8589 TCE(sxtah, 6b00070, fa00f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
8590 TCE(sxtab16, 6800070, fa20f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
8591 TCE(sxtab, 6a00070, fa40f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
8592 TCE(sxtb16, 68f0070, fa2ff080, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
8593 TCE(uxtah, 6f00070, fa10f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
8594 TCE(uxtab16, 6c00070, fa30f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
8595 TCE(uxtab, 6e00070, fa50f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
8596 TCE(uxtb16, 6cf0070, fa3ff080, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
8597 TCE(sel, 68000b0, faa0f080, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
8598 TCE(smlad, 7000010, fb200000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
8599 TCE(smladx, 7000030, fb200010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
8600 TCE(smlald, 7400010, fbc000c0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
8601 TCE(smlaldx, 7400030, fbc000d0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
8602 TCE(smlsd, 7000050, fb400000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
8603 TCE(smlsdx, 7000070, fb400010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
8604 TCE(smlsld, 7400050, fbd000c0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
8605 TCE(smlsldx, 7400070, fbd000d0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
8606 TCE(smmla, 7500010, fb500000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
8607 TCE(smmlar, 7500030, fb500010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
8608 TCE(smmls, 75000d0, fb600000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
8609 TCE(smmlsr, 75000f0, fb600010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
8610 TCE(smmul, 750f010, fb50f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
8611 TCE(smmulr, 750f030, fb50f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
8612 TCE(smuad, 700f010, fb20f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
8613 TCE(smuadx, 700f030, fb20f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
8614 TCE(smusd, 700f050, fb40f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
8615 TCE(smusdx, 700f070, fb40f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
8616 TUF(srsia, 8cd0500, e980c000, 1, (I31w), srs, srs),
8617 UF(srsib, 9cd0500, 1, (I31w), srs),
8618 UF(srsda, 84d0500, 1, (I31w), srs),
8619 TUF(srsdb, 94d0500, e800c000, 1, (I31w), srs, srs),
8620 TCE(ssat, 6a00010, f3000000, 4, (RRnpc, I32, RRnpc, oSHllar),ssat, t_ssat),
8621 TCE(ssat16, 6a00f30, f3200000, 3, (RRnpc, I16, RRnpc), ssat16, t_ssat16),
8622 TCE(strex, 1800f90, e8400000, 3, (RRnpc, RRnpc, ADDR), strex, t_strex),
8623 TCE(umaal, 0400090, fbe00060, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal, t_mlal),
8624 TCE(usad8, 780f010, fb70f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
8625 TCE(usada8, 7800010, fb700000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
8626 TCE(usat, 6e00010, f3800000, 4, (RRnpc, I31, RRnpc, oSHllar),usat, t_usat),
8627 TCE(usat16, 6e00f30, f3a00000, 3, (RRnpc, I15, RRnpc), usat16, t_usat16),
8628
8629 #undef ARM_VARIANT
8630 #define ARM_VARIANT ARM_EXT_V6K
8631 #undef THUMB_VARIANT
8632 #define THUMB_VARIANT ARM_EXT_V6K
8633 tCE(yield, 320f001, yield, 0, (), noargs, t_hint),
8634 tCE(wfe, 320f002, wfe, 0, (), noargs, t_hint),
8635 tCE(wfi, 320f003, wfi, 0, (), noargs, t_hint),
8636 tCE(sev, 320f004, sev, 0, (), noargs, t_hint),
8637
8638 #undef THUMB_VARIANT
8639 #define THUMB_VARIANT ARM_EXT_V6T2
8640 TCE(ldrexb, 1d00f9f, e8d00f4f, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
8641 TCE(ldrexh, 1f00f9f, e8d00f5f, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
8642 TCE(ldrexd, 1b00f9f, e8d0007f, 3, (RRnpc, oRRnpc, RRnpcb), ldrexd, t_ldrexd),
8643 TCE(strexb, 1c00f90, e8c00f40, 3, (RRnpc, RRnpc, ADDR), strex, rm_rd_rn),
8644 TCE(strexh, 1e00f90, e8c00f50, 3, (RRnpc, RRnpc, ADDR), strex, rm_rd_rn),
8645 TCE(strexd, 1a00f90, e8c00070, 4, (RRnpc, RRnpc, oRRnpc, RRnpcb), strexd, t_strexd),
8646 TUF(clrex, 57ff01f, f3bf8f2f, 0, (), noargs, noargs),
8647
8648 #undef ARM_VARIANT
8649 #define ARM_VARIANT ARM_EXT_V6Z
8650 TCE(smi, 1600070, f7f08000, 1, (EXPi), smi, t_smi),
8651
8652 #undef ARM_VARIANT
8653 #define ARM_VARIANT ARM_EXT_V6T2
8654 TCE(bfc, 7c0001f, f36f0000, 3, (RRnpc, I31, I32), bfc, t_bfc),
8655 TCE(bfi, 7c00010, f3600000, 4, (RRnpc, RRnpc_I0, I31, I32), bfi, t_bfi),
8656 TCE(sbfx, 7a00050, f3400000, 4, (RR, RR, I31, I32), bfx, t_bfx),
8657 TCE(ubfx, 7e00050, f3c00000, 4, (RR, RR, I31, I32), bfx, t_bfx),
8658
8659 TCE(mls, 0600090, fb000010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas, t_mla),
8660 TCE(movw, 3000000, f2400000, 2, (RRnpc, Iffff), mov16, t_mov16),
8661 TCE(movt, 3400000, f2c00000, 2, (RRnpc, Iffff), mov16, t_mov16),
8662 TCE(rbit, 3ff0f30, fa90f0a0, 2, (RR, RR), rd_rm, t_rbit),
8663
8664 TC3(ldrht, 03000b0, f8300e00, 2, (RR, ADDR), ldsttv4, t_ldstt),
8665 TC3(ldrsht, 03000f0, f9300e00, 2, (RR, ADDR), ldsttv4, t_ldstt),
8666 TC3(ldrsbt, 03000d0, f9100e00, 2, (RR, ADDR), ldsttv4, t_ldstt),
8667 TC3(strht, 02000b0, f8200e00, 2, (RR, ADDR), ldsttv4, t_ldstt),
8668
8669 UT(cbnz, b900, 2, (RR, EXP), t_czb),
8670 UT(cbz, b100, 2, (RR, EXP), t_czb),
8671 /* ARM does not really have an IT instruction. */
8672 TUE(it, 0, bf08, 1, (COND), it, t_it),
8673 TUE(itt, 0, bf0c, 1, (COND), it, t_it),
8674 TUE(ite, 0, bf04, 1, (COND), it, t_it),
8675 TUE(ittt, 0, bf0e, 1, (COND), it, t_it),
8676 TUE(itet, 0, bf06, 1, (COND), it, t_it),
8677 TUE(itte, 0, bf0a, 1, (COND), it, t_it),
8678 TUE(itee, 0, bf02, 1, (COND), it, t_it),
8679 TUE(itttt, 0, bf0f, 1, (COND), it, t_it),
8680 TUE(itett, 0, bf07, 1, (COND), it, t_it),
8681 TUE(ittet, 0, bf0b, 1, (COND), it, t_it),
8682 TUE(iteet, 0, bf03, 1, (COND), it, t_it),
8683 TUE(ittte, 0, bf0d, 1, (COND), it, t_it),
8684 TUE(itete, 0, bf05, 1, (COND), it, t_it),
8685 TUE(ittee, 0, bf09, 1, (COND), it, t_it),
8686 TUE(iteee, 0, bf01, 1, (COND), it, t_it),
8687
8688 /* Thumb2 only instructions. */
8689 #undef ARM_VARIANT
8690 #define ARM_VARIANT 0
8691
8692 TCE(addw, 0, f2000000, 3, (RR, RR, EXPi), 0, t_add_sub_w),
8693 TCE(subw, 0, f2a00000, 3, (RR, RR, EXPi), 0, t_add_sub_w),
8694 TCE(tbb, 0, e8d0f000, 1, (TB), 0, t_tb),
8695 TCE(tbh, 0, e8d0f010, 1, (TB), 0, t_tb),
8696
8697 #undef ARM_VARIANT
8698 #define ARM_VARIANT FPU_FPA_EXT_V1 /* Core FPA instruction set (V1). */
8699 CE(wfs, e200110, 1, (RR), rd),
8700 CE(rfs, e300110, 1, (RR), rd),
8701 CE(wfc, e400110, 1, (RR), rd),
8702 CE(rfc, e500110, 1, (RR), rd),
8703
8704 C3(ldfs, c100100, 2, (RF, ADDR), rd_cpaddr),
8705 C3(ldfd, c108100, 2, (RF, ADDR), rd_cpaddr),
8706 C3(ldfe, c500100, 2, (RF, ADDR), rd_cpaddr),
8707 C3(ldfp, c508100, 2, (RF, ADDR), rd_cpaddr),
8708
8709 C3(stfs, c000100, 2, (RF, ADDR), rd_cpaddr),
8710 C3(stfd, c008100, 2, (RF, ADDR), rd_cpaddr),
8711 C3(stfe, c400100, 2, (RF, ADDR), rd_cpaddr),
8712 C3(stfp, c408100, 2, (RF, ADDR), rd_cpaddr),
8713
8714 C3(mvfs, e008100, 2, (RF, RF_IF), rd_rm),
8715 C3(mvfsp, e008120, 2, (RF, RF_IF), rd_rm),
8716 C3(mvfsm, e008140, 2, (RF, RF_IF), rd_rm),
8717 C3(mvfsz, e008160, 2, (RF, RF_IF), rd_rm),
8718 C3(mvfd, e008180, 2, (RF, RF_IF), rd_rm),
8719 C3(mvfdp, e0081a0, 2, (RF, RF_IF), rd_rm),
8720 C3(mvfdm, e0081c0, 2, (RF, RF_IF), rd_rm),
8721 C3(mvfdz, e0081e0, 2, (RF, RF_IF), rd_rm),
8722 C3(mvfe, e088100, 2, (RF, RF_IF), rd_rm),
8723 C3(mvfep, e088120, 2, (RF, RF_IF), rd_rm),
8724 C3(mvfem, e088140, 2, (RF, RF_IF), rd_rm),
8725 C3(mvfez, e088160, 2, (RF, RF_IF), rd_rm),
8726
8727 C3(mnfs, e108100, 2, (RF, RF_IF), rd_rm),
8728 C3(mnfsp, e108120, 2, (RF, RF_IF), rd_rm),
8729 C3(mnfsm, e108140, 2, (RF, RF_IF), rd_rm),
8730 C3(mnfsz, e108160, 2, (RF, RF_IF), rd_rm),
8731 C3(mnfd, e108180, 2, (RF, RF_IF), rd_rm),
8732 C3(mnfdp, e1081a0, 2, (RF, RF_IF), rd_rm),
8733 C3(mnfdm, e1081c0, 2, (RF, RF_IF), rd_rm),
8734 C3(mnfdz, e1081e0, 2, (RF, RF_IF), rd_rm),
8735 C3(mnfe, e188100, 2, (RF, RF_IF), rd_rm),
8736 C3(mnfep, e188120, 2, (RF, RF_IF), rd_rm),
8737 C3(mnfem, e188140, 2, (RF, RF_IF), rd_rm),
8738 C3(mnfez, e188160, 2, (RF, RF_IF), rd_rm),
8739
8740 C3(abss, e208100, 2, (RF, RF_IF), rd_rm),
8741 C3(abssp, e208120, 2, (RF, RF_IF), rd_rm),
8742 C3(abssm, e208140, 2, (RF, RF_IF), rd_rm),
8743 C3(abssz, e208160, 2, (RF, RF_IF), rd_rm),
8744 C3(absd, e208180, 2, (RF, RF_IF), rd_rm),
8745 C3(absdp, e2081a0, 2, (RF, RF_IF), rd_rm),
8746 C3(absdm, e2081c0, 2, (RF, RF_IF), rd_rm),
8747 C3(absdz, e2081e0, 2, (RF, RF_IF), rd_rm),
8748 C3(abse, e288100, 2, (RF, RF_IF), rd_rm),
8749 C3(absep, e288120, 2, (RF, RF_IF), rd_rm),
8750 C3(absem, e288140, 2, (RF, RF_IF), rd_rm),
8751 C3(absez, e288160, 2, (RF, RF_IF), rd_rm),
8752
8753 C3(rnds, e308100, 2, (RF, RF_IF), rd_rm),
8754 C3(rndsp, e308120, 2, (RF, RF_IF), rd_rm),
8755 C3(rndsm, e308140, 2, (RF, RF_IF), rd_rm),
8756 C3(rndsz, e308160, 2, (RF, RF_IF), rd_rm),
8757 C3(rndd, e308180, 2, (RF, RF_IF), rd_rm),
8758 C3(rnddp, e3081a0, 2, (RF, RF_IF), rd_rm),
8759 C3(rnddm, e3081c0, 2, (RF, RF_IF), rd_rm),
8760 C3(rnddz, e3081e0, 2, (RF, RF_IF), rd_rm),
8761 C3(rnde, e388100, 2, (RF, RF_IF), rd_rm),
8762 C3(rndep, e388120, 2, (RF, RF_IF), rd_rm),
8763 C3(rndem, e388140, 2, (RF, RF_IF), rd_rm),
8764 C3(rndez, e388160, 2, (RF, RF_IF), rd_rm),
8765
8766 C3(sqts, e408100, 2, (RF, RF_IF), rd_rm),
8767 C3(sqtsp, e408120, 2, (RF, RF_IF), rd_rm),
8768 C3(sqtsm, e408140, 2, (RF, RF_IF), rd_rm),
8769 C3(sqtsz, e408160, 2, (RF, RF_IF), rd_rm),
8770 C3(sqtd, e408180, 2, (RF, RF_IF), rd_rm),
8771 C3(sqtdp, e4081a0, 2, (RF, RF_IF), rd_rm),
8772 C3(sqtdm, e4081c0, 2, (RF, RF_IF), rd_rm),
8773 C3(sqtdz, e4081e0, 2, (RF, RF_IF), rd_rm),
8774 C3(sqte, e488100, 2, (RF, RF_IF), rd_rm),
8775 C3(sqtep, e488120, 2, (RF, RF_IF), rd_rm),
8776 C3(sqtem, e488140, 2, (RF, RF_IF), rd_rm),
8777 C3(sqtez, e488160, 2, (RF, RF_IF), rd_rm),
8778
8779 C3(logs, e508100, 2, (RF, RF_IF), rd_rm),
8780 C3(logsp, e508120, 2, (RF, RF_IF), rd_rm),
8781 C3(logsm, e508140, 2, (RF, RF_IF), rd_rm),
8782 C3(logsz, e508160, 2, (RF, RF_IF), rd_rm),
8783 C3(logd, e508180, 2, (RF, RF_IF), rd_rm),
8784 C3(logdp, e5081a0, 2, (RF, RF_IF), rd_rm),
8785 C3(logdm, e5081c0, 2, (RF, RF_IF), rd_rm),
8786 C3(logdz, e5081e0, 2, (RF, RF_IF), rd_rm),
8787 C3(loge, e588100, 2, (RF, RF_IF), rd_rm),
8788 C3(logep, e588120, 2, (RF, RF_IF), rd_rm),
8789 C3(logem, e588140, 2, (RF, RF_IF), rd_rm),
8790 C3(logez, e588160, 2, (RF, RF_IF), rd_rm),
8791
8792 C3(lgns, e608100, 2, (RF, RF_IF), rd_rm),
8793 C3(lgnsp, e608120, 2, (RF, RF_IF), rd_rm),
8794 C3(lgnsm, e608140, 2, (RF, RF_IF), rd_rm),
8795 C3(lgnsz, e608160, 2, (RF, RF_IF), rd_rm),
8796 C3(lgnd, e608180, 2, (RF, RF_IF), rd_rm),
8797 C3(lgndp, e6081a0, 2, (RF, RF_IF), rd_rm),
8798 C3(lgndm, e6081c0, 2, (RF, RF_IF), rd_rm),
8799 C3(lgndz, e6081e0, 2, (RF, RF_IF), rd_rm),
8800 C3(lgne, e688100, 2, (RF, RF_IF), rd_rm),
8801 C3(lgnep, e688120, 2, (RF, RF_IF), rd_rm),
8802 C3(lgnem, e688140, 2, (RF, RF_IF), rd_rm),
8803 C3(lgnez, e688160, 2, (RF, RF_IF), rd_rm),
8804
8805 C3(exps, e708100, 2, (RF, RF_IF), rd_rm),
8806 C3(expsp, e708120, 2, (RF, RF_IF), rd_rm),
8807 C3(expsm, e708140, 2, (RF, RF_IF), rd_rm),
8808 C3(expsz, e708160, 2, (RF, RF_IF), rd_rm),
8809 C3(expd, e708180, 2, (RF, RF_IF), rd_rm),
8810 C3(expdp, e7081a0, 2, (RF, RF_IF), rd_rm),
8811 C3(expdm, e7081c0, 2, (RF, RF_IF), rd_rm),
8812 C3(expdz, e7081e0, 2, (RF, RF_IF), rd_rm),
8813 C3(expe, e788100, 2, (RF, RF_IF), rd_rm),
8814 C3(expep, e788120, 2, (RF, RF_IF), rd_rm),
8815 C3(expem, e788140, 2, (RF, RF_IF), rd_rm),
8816 C3(expdz, e788160, 2, (RF, RF_IF), rd_rm),
8817
8818 C3(sins, e808100, 2, (RF, RF_IF), rd_rm),
8819 C3(sinsp, e808120, 2, (RF, RF_IF), rd_rm),
8820 C3(sinsm, e808140, 2, (RF, RF_IF), rd_rm),
8821 C3(sinsz, e808160, 2, (RF, RF_IF), rd_rm),
8822 C3(sind, e808180, 2, (RF, RF_IF), rd_rm),
8823 C3(sindp, e8081a0, 2, (RF, RF_IF), rd_rm),
8824 C3(sindm, e8081c0, 2, (RF, RF_IF), rd_rm),
8825 C3(sindz, e8081e0, 2, (RF, RF_IF), rd_rm),
8826 C3(sine, e888100, 2, (RF, RF_IF), rd_rm),
8827 C3(sinep, e888120, 2, (RF, RF_IF), rd_rm),
8828 C3(sinem, e888140, 2, (RF, RF_IF), rd_rm),
8829 C3(sinez, e888160, 2, (RF, RF_IF), rd_rm),
8830
8831 C3(coss, e908100, 2, (RF, RF_IF), rd_rm),
8832 C3(cossp, e908120, 2, (RF, RF_IF), rd_rm),
8833 C3(cossm, e908140, 2, (RF, RF_IF), rd_rm),
8834 C3(cossz, e908160, 2, (RF, RF_IF), rd_rm),
8835 C3(cosd, e908180, 2, (RF, RF_IF), rd_rm),
8836 C3(cosdp, e9081a0, 2, (RF, RF_IF), rd_rm),
8837 C3(cosdm, e9081c0, 2, (RF, RF_IF), rd_rm),
8838 C3(cosdz, e9081e0, 2, (RF, RF_IF), rd_rm),
8839 C3(cose, e988100, 2, (RF, RF_IF), rd_rm),
8840 C3(cosep, e988120, 2, (RF, RF_IF), rd_rm),
8841 C3(cosem, e988140, 2, (RF, RF_IF), rd_rm),
8842 C3(cosez, e988160, 2, (RF, RF_IF), rd_rm),
8843
8844 C3(tans, ea08100, 2, (RF, RF_IF), rd_rm),
8845 C3(tansp, ea08120, 2, (RF, RF_IF), rd_rm),
8846 C3(tansm, ea08140, 2, (RF, RF_IF), rd_rm),
8847 C3(tansz, ea08160, 2, (RF, RF_IF), rd_rm),
8848 C3(tand, ea08180, 2, (RF, RF_IF), rd_rm),
8849 C3(tandp, ea081a0, 2, (RF, RF_IF), rd_rm),
8850 C3(tandm, ea081c0, 2, (RF, RF_IF), rd_rm),
8851 C3(tandz, ea081e0, 2, (RF, RF_IF), rd_rm),
8852 C3(tane, ea88100, 2, (RF, RF_IF), rd_rm),
8853 C3(tanep, ea88120, 2, (RF, RF_IF), rd_rm),
8854 C3(tanem, ea88140, 2, (RF, RF_IF), rd_rm),
8855 C3(tanez, ea88160, 2, (RF, RF_IF), rd_rm),
8856
8857 C3(asns, eb08100, 2, (RF, RF_IF), rd_rm),
8858 C3(asnsp, eb08120, 2, (RF, RF_IF), rd_rm),
8859 C3(asnsm, eb08140, 2, (RF, RF_IF), rd_rm),
8860 C3(asnsz, eb08160, 2, (RF, RF_IF), rd_rm),
8861 C3(asnd, eb08180, 2, (RF, RF_IF), rd_rm),
8862 C3(asndp, eb081a0, 2, (RF, RF_IF), rd_rm),
8863 C3(asndm, eb081c0, 2, (RF, RF_IF), rd_rm),
8864 C3(asndz, eb081e0, 2, (RF, RF_IF), rd_rm),
8865 C3(asne, eb88100, 2, (RF, RF_IF), rd_rm),
8866 C3(asnep, eb88120, 2, (RF, RF_IF), rd_rm),
8867 C3(asnem, eb88140, 2, (RF, RF_IF), rd_rm),
8868 C3(asnez, eb88160, 2, (RF, RF_IF), rd_rm),
8869
8870 C3(acss, ec08100, 2, (RF, RF_IF), rd_rm),
8871 C3(acssp, ec08120, 2, (RF, RF_IF), rd_rm),
8872 C3(acssm, ec08140, 2, (RF, RF_IF), rd_rm),
8873 C3(acssz, ec08160, 2, (RF, RF_IF), rd_rm),
8874 C3(acsd, ec08180, 2, (RF, RF_IF), rd_rm),
8875 C3(acsdp, ec081a0, 2, (RF, RF_IF), rd_rm),
8876 C3(acsdm, ec081c0, 2, (RF, RF_IF), rd_rm),
8877 C3(acsdz, ec081e0, 2, (RF, RF_IF), rd_rm),
8878 C3(acse, ec88100, 2, (RF, RF_IF), rd_rm),
8879 C3(acsep, ec88120, 2, (RF, RF_IF), rd_rm),
8880 C3(acsem, ec88140, 2, (RF, RF_IF), rd_rm),
8881 C3(acsez, ec88160, 2, (RF, RF_IF), rd_rm),
8882
8883 C3(atns, ed08100, 2, (RF, RF_IF), rd_rm),
8884 C3(atnsp, ed08120, 2, (RF, RF_IF), rd_rm),
8885 C3(atnsm, ed08140, 2, (RF, RF_IF), rd_rm),
8886 C3(atnsz, ed08160, 2, (RF, RF_IF), rd_rm),
8887 C3(atnd, ed08180, 2, (RF, RF_IF), rd_rm),
8888 C3(atndp, ed081a0, 2, (RF, RF_IF), rd_rm),
8889 C3(atndm, ed081c0, 2, (RF, RF_IF), rd_rm),
8890 C3(atndz, ed081e0, 2, (RF, RF_IF), rd_rm),
8891 C3(atne, ed88100, 2, (RF, RF_IF), rd_rm),
8892 C3(atnep, ed88120, 2, (RF, RF_IF), rd_rm),
8893 C3(atnem, ed88140, 2, (RF, RF_IF), rd_rm),
8894 C3(atnez, ed88160, 2, (RF, RF_IF), rd_rm),
8895
8896 C3(urds, ee08100, 2, (RF, RF_IF), rd_rm),
8897 C3(urdsp, ee08120, 2, (RF, RF_IF), rd_rm),
8898 C3(urdsm, ee08140, 2, (RF, RF_IF), rd_rm),
8899 C3(urdsz, ee08160, 2, (RF, RF_IF), rd_rm),
8900 C3(urdd, ee08180, 2, (RF, RF_IF), rd_rm),
8901 C3(urddp, ee081a0, 2, (RF, RF_IF), rd_rm),
8902 C3(urddm, ee081c0, 2, (RF, RF_IF), rd_rm),
8903 C3(urddz, ee081e0, 2, (RF, RF_IF), rd_rm),
8904 C3(urde, ee88100, 2, (RF, RF_IF), rd_rm),
8905 C3(urdep, ee88120, 2, (RF, RF_IF), rd_rm),
8906 C3(urdem, ee88140, 2, (RF, RF_IF), rd_rm),
8907 C3(urdez, ee88160, 2, (RF, RF_IF), rd_rm),
8908
8909 C3(nrms, ef08100, 2, (RF, RF_IF), rd_rm),
8910 C3(nrmsp, ef08120, 2, (RF, RF_IF), rd_rm),
8911 C3(nrmsm, ef08140, 2, (RF, RF_IF), rd_rm),
8912 C3(nrmsz, ef08160, 2, (RF, RF_IF), rd_rm),
8913 C3(nrmd, ef08180, 2, (RF, RF_IF), rd_rm),
8914 C3(nrmdp, ef081a0, 2, (RF, RF_IF), rd_rm),
8915 C3(nrmdm, ef081c0, 2, (RF, RF_IF), rd_rm),
8916 C3(nrmdz, ef081e0, 2, (RF, RF_IF), rd_rm),
8917 C3(nrme, ef88100, 2, (RF, RF_IF), rd_rm),
8918 C3(nrmep, ef88120, 2, (RF, RF_IF), rd_rm),
8919 C3(nrmem, ef88140, 2, (RF, RF_IF), rd_rm),
8920 C3(nrmez, ef88160, 2, (RF, RF_IF), rd_rm),
8921
8922 C3(adfs, e000100, 3, (RF, RF, RF_IF), rd_rn_rm),
8923 C3(adfsp, e000120, 3, (RF, RF, RF_IF), rd_rn_rm),
8924 C3(adfsm, e000140, 3, (RF, RF, RF_IF), rd_rn_rm),
8925 C3(adfsz, e000160, 3, (RF, RF, RF_IF), rd_rn_rm),
8926 C3(adfd, e000180, 3, (RF, RF, RF_IF), rd_rn_rm),
8927 C3(adfdp, e0001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
8928 C3(adfdm, e0001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
8929 C3(adfdz, e0001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
8930 C3(adfe, e080100, 3, (RF, RF, RF_IF), rd_rn_rm),
8931 C3(adfep, e080120, 3, (RF, RF, RF_IF), rd_rn_rm),
8932 C3(adfem, e080140, 3, (RF, RF, RF_IF), rd_rn_rm),
8933 C3(adfez, e080160, 3, (RF, RF, RF_IF), rd_rn_rm),
8934
8935 C3(sufs, e200100, 3, (RF, RF, RF_IF), rd_rn_rm),
8936 C3(sufsp, e200120, 3, (RF, RF, RF_IF), rd_rn_rm),
8937 C3(sufsm, e200140, 3, (RF, RF, RF_IF), rd_rn_rm),
8938 C3(sufsz, e200160, 3, (RF, RF, RF_IF), rd_rn_rm),
8939 C3(sufd, e200180, 3, (RF, RF, RF_IF), rd_rn_rm),
8940 C3(sufdp, e2001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
8941 C3(sufdm, e2001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
8942 C3(sufdz, e2001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
8943 C3(sufe, e280100, 3, (RF, RF, RF_IF), rd_rn_rm),
8944 C3(sufep, e280120, 3, (RF, RF, RF_IF), rd_rn_rm),
8945 C3(sufem, e280140, 3, (RF, RF, RF_IF), rd_rn_rm),
8946 C3(sufez, e280160, 3, (RF, RF, RF_IF), rd_rn_rm),
8947
8948 C3(rsfs, e300100, 3, (RF, RF, RF_IF), rd_rn_rm),
8949 C3(rsfsp, e300120, 3, (RF, RF, RF_IF), rd_rn_rm),
8950 C3(rsfsm, e300140, 3, (RF, RF, RF_IF), rd_rn_rm),
8951 C3(rsfsz, e300160, 3, (RF, RF, RF_IF), rd_rn_rm),
8952 C3(rsfd, e300180, 3, (RF, RF, RF_IF), rd_rn_rm),
8953 C3(rsfdp, e3001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
8954 C3(rsfdm, e3001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
8955 C3(rsfdz, e3001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
8956 C3(rsfe, e380100, 3, (RF, RF, RF_IF), rd_rn_rm),
8957 C3(rsfep, e380120, 3, (RF, RF, RF_IF), rd_rn_rm),
8958 C3(rsfem, e380140, 3, (RF, RF, RF_IF), rd_rn_rm),
8959 C3(rsfez, e380160, 3, (RF, RF, RF_IF), rd_rn_rm),
8960
8961 C3(mufs, e100100, 3, (RF, RF, RF_IF), rd_rn_rm),
8962 C3(mufsp, e100120, 3, (RF, RF, RF_IF), rd_rn_rm),
8963 C3(mufsm, e100140, 3, (RF, RF, RF_IF), rd_rn_rm),
8964 C3(mufsz, e100160, 3, (RF, RF, RF_IF), rd_rn_rm),
8965 C3(mufd, e100180, 3, (RF, RF, RF_IF), rd_rn_rm),
8966 C3(mufdp, e1001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
8967 C3(mufdm, e1001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
8968 C3(mufdz, e1001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
8969 C3(mufe, e180100, 3, (RF, RF, RF_IF), rd_rn_rm),
8970 C3(mufep, e180120, 3, (RF, RF, RF_IF), rd_rn_rm),
8971 C3(mufem, e180140, 3, (RF, RF, RF_IF), rd_rn_rm),
8972 C3(mufez, e180160, 3, (RF, RF, RF_IF), rd_rn_rm),
8973
8974 C3(dvfs, e400100, 3, (RF, RF, RF_IF), rd_rn_rm),
8975 C3(dvfsp, e400120, 3, (RF, RF, RF_IF), rd_rn_rm),
8976 C3(dvfsm, e400140, 3, (RF, RF, RF_IF), rd_rn_rm),
8977 C3(dvfsz, e400160, 3, (RF, RF, RF_IF), rd_rn_rm),
8978 C3(dvfd, e400180, 3, (RF, RF, RF_IF), rd_rn_rm),
8979 C3(dvfdp, e4001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
8980 C3(dvfdm, e4001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
8981 C3(dvfdz, e4001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
8982 C3(dvfe, e480100, 3, (RF, RF, RF_IF), rd_rn_rm),
8983 C3(dvfep, e480120, 3, (RF, RF, RF_IF), rd_rn_rm),
8984 C3(dvfem, e480140, 3, (RF, RF, RF_IF), rd_rn_rm),
8985 C3(dvfez, e480160, 3, (RF, RF, RF_IF), rd_rn_rm),
8986
8987 C3(rdfs, e500100, 3, (RF, RF, RF_IF), rd_rn_rm),
8988 C3(rdfsp, e500120, 3, (RF, RF, RF_IF), rd_rn_rm),
8989 C3(rdfsm, e500140, 3, (RF, RF, RF_IF), rd_rn_rm),
8990 C3(rdfsz, e500160, 3, (RF, RF, RF_IF), rd_rn_rm),
8991 C3(rdfd, e500180, 3, (RF, RF, RF_IF), rd_rn_rm),
8992 C3(rdfdp, e5001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
8993 C3(rdfdm, e5001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
8994 C3(rdfdz, e5001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
8995 C3(rdfe, e580100, 3, (RF, RF, RF_IF), rd_rn_rm),
8996 C3(rdfep, e580120, 3, (RF, RF, RF_IF), rd_rn_rm),
8997 C3(rdfem, e580140, 3, (RF, RF, RF_IF), rd_rn_rm),
8998 C3(rdfez, e580160, 3, (RF, RF, RF_IF), rd_rn_rm),
8999
9000 C3(pows, e600100, 3, (RF, RF, RF_IF), rd_rn_rm),
9001 C3(powsp, e600120, 3, (RF, RF, RF_IF), rd_rn_rm),
9002 C3(powsm, e600140, 3, (RF, RF, RF_IF), rd_rn_rm),
9003 C3(powsz, e600160, 3, (RF, RF, RF_IF), rd_rn_rm),
9004 C3(powd, e600180, 3, (RF, RF, RF_IF), rd_rn_rm),
9005 C3(powdp, e6001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
9006 C3(powdm, e6001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
9007 C3(powdz, e6001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
9008 C3(powe, e680100, 3, (RF, RF, RF_IF), rd_rn_rm),
9009 C3(powep, e680120, 3, (RF, RF, RF_IF), rd_rn_rm),
9010 C3(powem, e680140, 3, (RF, RF, RF_IF), rd_rn_rm),
9011 C3(powez, e680160, 3, (RF, RF, RF_IF), rd_rn_rm),
9012
9013 C3(rpws, e700100, 3, (RF, RF, RF_IF), rd_rn_rm),
9014 C3(rpwsp, e700120, 3, (RF, RF, RF_IF), rd_rn_rm),
9015 C3(rpwsm, e700140, 3, (RF, RF, RF_IF), rd_rn_rm),
9016 C3(rpwsz, e700160, 3, (RF, RF, RF_IF), rd_rn_rm),
9017 C3(rpwd, e700180, 3, (RF, RF, RF_IF), rd_rn_rm),
9018 C3(rpwdp, e7001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
9019 C3(rpwdm, e7001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
9020 C3(rpwdz, e7001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
9021 C3(rpwe, e780100, 3, (RF, RF, RF_IF), rd_rn_rm),
9022 C3(rpwep, e780120, 3, (RF, RF, RF_IF), rd_rn_rm),
9023 C3(rpwem, e780140, 3, (RF, RF, RF_IF), rd_rn_rm),
9024 C3(rpwez, e780160, 3, (RF, RF, RF_IF), rd_rn_rm),
9025
9026 C3(rmfs, e800100, 3, (RF, RF, RF_IF), rd_rn_rm),
9027 C3(rmfsp, e800120, 3, (RF, RF, RF_IF), rd_rn_rm),
9028 C3(rmfsm, e800140, 3, (RF, RF, RF_IF), rd_rn_rm),
9029 C3(rmfsz, e800160, 3, (RF, RF, RF_IF), rd_rn_rm),
9030 C3(rmfd, e800180, 3, (RF, RF, RF_IF), rd_rn_rm),
9031 C3(rmfdp, e8001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
9032 C3(rmfdm, e8001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
9033 C3(rmfdz, e8001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
9034 C3(rmfe, e880100, 3, (RF, RF, RF_IF), rd_rn_rm),
9035 C3(rmfep, e880120, 3, (RF, RF, RF_IF), rd_rn_rm),
9036 C3(rmfem, e880140, 3, (RF, RF, RF_IF), rd_rn_rm),
9037 C3(rmfez, e880160, 3, (RF, RF, RF_IF), rd_rn_rm),
9038
9039 C3(fmls, e900100, 3, (RF, RF, RF_IF), rd_rn_rm),
9040 C3(fmlsp, e900120, 3, (RF, RF, RF_IF), rd_rn_rm),
9041 C3(fmlsm, e900140, 3, (RF, RF, RF_IF), rd_rn_rm),
9042 C3(fmlsz, e900160, 3, (RF, RF, RF_IF), rd_rn_rm),
9043 C3(fmld, e900180, 3, (RF, RF, RF_IF), rd_rn_rm),
9044 C3(fmldp, e9001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
9045 C3(fmldm, e9001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
9046 C3(fmldz, e9001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
9047 C3(fmle, e980100, 3, (RF, RF, RF_IF), rd_rn_rm),
9048 C3(fmlep, e980120, 3, (RF, RF, RF_IF), rd_rn_rm),
9049 C3(fmlem, e980140, 3, (RF, RF, RF_IF), rd_rn_rm),
9050 C3(fmlez, e980160, 3, (RF, RF, RF_IF), rd_rn_rm),
9051
9052 C3(fdvs, ea00100, 3, (RF, RF, RF_IF), rd_rn_rm),
9053 C3(fdvsp, ea00120, 3, (RF, RF, RF_IF), rd_rn_rm),
9054 C3(fdvsm, ea00140, 3, (RF, RF, RF_IF), rd_rn_rm),
9055 C3(fdvsz, ea00160, 3, (RF, RF, RF_IF), rd_rn_rm),
9056 C3(fdvd, ea00180, 3, (RF, RF, RF_IF), rd_rn_rm),
9057 C3(fdvdp, ea001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
9058 C3(fdvdm, ea001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
9059 C3(fdvdz, ea001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
9060 C3(fdve, ea80100, 3, (RF, RF, RF_IF), rd_rn_rm),
9061 C3(fdvep, ea80120, 3, (RF, RF, RF_IF), rd_rn_rm),
9062 C3(fdvem, ea80140, 3, (RF, RF, RF_IF), rd_rn_rm),
9063 C3(fdvez, ea80160, 3, (RF, RF, RF_IF), rd_rn_rm),
9064
9065 C3(frds, eb00100, 3, (RF, RF, RF_IF), rd_rn_rm),
9066 C3(frdsp, eb00120, 3, (RF, RF, RF_IF), rd_rn_rm),
9067 C3(frdsm, eb00140, 3, (RF, RF, RF_IF), rd_rn_rm),
9068 C3(frdsz, eb00160, 3, (RF, RF, RF_IF), rd_rn_rm),
9069 C3(frdd, eb00180, 3, (RF, RF, RF_IF), rd_rn_rm),
9070 C3(frddp, eb001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
9071 C3(frddm, eb001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
9072 C3(frddz, eb001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
9073 C3(frde, eb80100, 3, (RF, RF, RF_IF), rd_rn_rm),
9074 C3(frdep, eb80120, 3, (RF, RF, RF_IF), rd_rn_rm),
9075 C3(frdem, eb80140, 3, (RF, RF, RF_IF), rd_rn_rm),
9076 C3(frdez, eb80160, 3, (RF, RF, RF_IF), rd_rn_rm),
9077
9078 C3(pols, ec00100, 3, (RF, RF, RF_IF), rd_rn_rm),
9079 C3(polsp, ec00120, 3, (RF, RF, RF_IF), rd_rn_rm),
9080 C3(polsm, ec00140, 3, (RF, RF, RF_IF), rd_rn_rm),
9081 C3(polsz, ec00160, 3, (RF, RF, RF_IF), rd_rn_rm),
9082 C3(pold, ec00180, 3, (RF, RF, RF_IF), rd_rn_rm),
9083 C3(poldp, ec001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
9084 C3(poldm, ec001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
9085 C3(poldz, ec001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
9086 C3(pole, ec80100, 3, (RF, RF, RF_IF), rd_rn_rm),
9087 C3(polep, ec80120, 3, (RF, RF, RF_IF), rd_rn_rm),
9088 C3(polem, ec80140, 3, (RF, RF, RF_IF), rd_rn_rm),
9089 C3(polez, ec80160, 3, (RF, RF, RF_IF), rd_rn_rm),
9090
9091 CE(cmf, e90f110, 2, (RF, RF_IF), fpa_cmp),
9092 C3E(cmfe, ed0f110, 2, (RF, RF_IF), fpa_cmp),
9093 CE(cnf, eb0f110, 2, (RF, RF_IF), fpa_cmp),
9094 C3E(cnfe, ef0f110, 2, (RF, RF_IF), fpa_cmp),
9095
9096 C3(flts, e000110, 2, (RF, RR), rn_rd),
9097 C3(fltsp, e000130, 2, (RF, RR), rn_rd),
9098 C3(fltsm, e000150, 2, (RF, RR), rn_rd),
9099 C3(fltsz, e000170, 2, (RF, RR), rn_rd),
9100 C3(fltd, e000190, 2, (RF, RR), rn_rd),
9101 C3(fltdp, e0001b0, 2, (RF, RR), rn_rd),
9102 C3(fltdm, e0001d0, 2, (RF, RR), rn_rd),
9103 C3(fltdz, e0001f0, 2, (RF, RR), rn_rd),
9104 C3(flte, e080110, 2, (RF, RR), rn_rd),
9105 C3(fltep, e080130, 2, (RF, RR), rn_rd),
9106 C3(fltem, e080150, 2, (RF, RR), rn_rd),
9107 C3(fltez, e080170, 2, (RF, RR), rn_rd),
9108
9109 /* The implementation of the FIX instruction is broken on some
9110 assemblers, in that it accepts a precision specifier as well as a
9111 rounding specifier, despite the fact that this is meaningless.
9112 To be more compatible, we accept it as well, though of course it
9113 does not set any bits. */
9114 CE(fix, e100110, 2, (RR, RF), rd_rm),
9115 C3(fixp, e100130, 2, (RR, RF), rd_rm),
9116 C3(fixm, e100150, 2, (RR, RF), rd_rm),
9117 C3(fixz, e100170, 2, (RR, RF), rd_rm),
9118 C3(fixsp, e100130, 2, (RR, RF), rd_rm),
9119 C3(fixsm, e100150, 2, (RR, RF), rd_rm),
9120 C3(fixsz, e100170, 2, (RR, RF), rd_rm),
9121 C3(fixdp, e100130, 2, (RR, RF), rd_rm),
9122 C3(fixdm, e100150, 2, (RR, RF), rd_rm),
9123 C3(fixdz, e100170, 2, (RR, RF), rd_rm),
9124 C3(fixep, e100130, 2, (RR, RF), rd_rm),
9125 C3(fixem, e100150, 2, (RR, RF), rd_rm),
9126 C3(fixez, e100170, 2, (RR, RF), rd_rm),
9127
9128 /* Instructions that were new with the real FPA, call them V2. */
9129 #undef ARM_VARIANT
9130 #define ARM_VARIANT FPU_FPA_EXT_V2
9131 CE(lfm, c100200, 3, (RF, I4b, ADDR), fpa_ldmstm),
9132 C3(lfmfd, c900200, 3, (RF, I4b, ADDR), fpa_ldmstm),
9133 C3(lfmea, d100200, 3, (RF, I4b, ADDR), fpa_ldmstm),
9134 CE(sfm, c000200, 3, (RF, I4b, ADDR), fpa_ldmstm),
9135 C3(sfmfd, d000200, 3, (RF, I4b, ADDR), fpa_ldmstm),
9136 C3(sfmea, c800200, 3, (RF, I4b, ADDR), fpa_ldmstm),
9137
9138 #undef ARM_VARIANT
9139 #define ARM_VARIANT FPU_VFP_EXT_V1xD /* VFP V1xD (single precision). */
9140 /* Moves and type conversions. */
9141 CE(fcpys, eb00a40, 2, (RVS, RVS), vfp_sp_monadic),
9142 CE(fmrs, e100a10, 2, (RR, RVS), vfp_reg_from_sp),
9143 CE(fmsr, e000a10, 2, (RVS, RR), vfp_sp_from_reg),
9144 CE(fmstat, ef1fa10, 0, (), noargs),
9145 CE(fsitos, eb80ac0, 2, (RVS, RVS), vfp_sp_monadic),
9146 CE(fuitos, eb80a40, 2, (RVS, RVS), vfp_sp_monadic),
9147 CE(ftosis, ebd0a40, 2, (RVS, RVS), vfp_sp_monadic),
9148 CE(ftosizs, ebd0ac0, 2, (RVS, RVS), vfp_sp_monadic),
9149 CE(ftouis, ebc0a40, 2, (RVS, RVS), vfp_sp_monadic),
9150 CE(ftouizs, ebc0ac0, 2, (RVS, RVS), vfp_sp_monadic),
9151 CE(fmrx, ef00a10, 2, (RR, RVC), rd_rn),
9152 CE(fmxr, ee00a10, 2, (RVC, RR), rn_rd),
9153
9154 /* Memory operations. */
9155 CE(flds, d100a00, 2, (RVS, ADDR), vfp_sp_ldst),
9156 CE(fsts, d000a00, 2, (RVS, ADDR), vfp_sp_ldst),
9157 CE(fldmias, c900a00, 2, (RRw, VRSLST), vfp_sp_ldstmia),
9158 CE(fldmfds, c900a00, 2, (RRw, VRSLST), vfp_sp_ldstmia),
9159 CE(fldmdbs, d300a00, 2, (RRw, VRSLST), vfp_sp_ldstmdb),
9160 CE(fldmeas, d300a00, 2, (RRw, VRSLST), vfp_sp_ldstmdb),
9161 CE(fldmiax, c900b00, 2, (RRw, VRDLST), vfp_xp_ldstmia),
9162 CE(fldmfdx, c900b00, 2, (RRw, VRDLST), vfp_xp_ldstmia),
9163 CE(fldmdbx, d300b00, 2, (RRw, VRDLST), vfp_xp_ldstmdb),
9164 CE(fldmeax, d300b00, 2, (RRw, VRDLST), vfp_xp_ldstmdb),
9165 CE(fstmias, c800a00, 2, (RRw, VRSLST), vfp_sp_ldstmia),
9166 CE(fstmeas, c800a00, 2, (RRw, VRSLST), vfp_sp_ldstmia),
9167 CE(fstmdbs, d200a00, 2, (RRw, VRSLST), vfp_sp_ldstmdb),
9168 CE(fstmfds, d200a00, 2, (RRw, VRSLST), vfp_sp_ldstmdb),
9169 CE(fstmiax, c800b00, 2, (RRw, VRDLST), vfp_xp_ldstmia),
9170 CE(fstmeax, c800b00, 2, (RRw, VRDLST), vfp_xp_ldstmia),
9171 CE(fstmdbx, d200b00, 2, (RRw, VRDLST), vfp_xp_ldstmdb),
9172 CE(fstmfdx, d200b00, 2, (RRw, VRDLST), vfp_xp_ldstmdb),
9173
9174 /* Monadic operations. */
9175 CE(fabss, eb00ac0, 2, (RVS, RVS), vfp_sp_monadic),
9176 CE(fnegs, eb10a40, 2, (RVS, RVS), vfp_sp_monadic),
9177 CE(fsqrts, eb10ac0, 2, (RVS, RVS), vfp_sp_monadic),
9178
9179 /* Dyadic operations. */
9180 CE(fadds, e300a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
9181 CE(fsubs, e300a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
9182 CE(fmuls, e200a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
9183 CE(fdivs, e800a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
9184 CE(fmacs, e000a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
9185 CE(fmscs, e100a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
9186 CE(fnmuls, e200a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
9187 CE(fnmacs, e000a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
9188 CE(fnmscs, e100a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
9189
9190 /* Comparisons. */
9191 CE(fcmps, eb40a40, 2, (RVS, RVS), vfp_sp_monadic),
9192 CE(fcmpzs, eb50a40, 1, (RVS), vfp_sp_compare_z),
9193 CE(fcmpes, eb40ac0, 2, (RVS, RVS), vfp_sp_monadic),
9194 CE(fcmpezs, eb50ac0, 1, (RVS), vfp_sp_compare_z),
9195
9196 #undef ARM_VARIANT
9197 #define ARM_VARIANT FPU_VFP_EXT_V1 /* VFP V1 (Double precision). */
9198 /* Moves and type conversions. */
9199 CE(fcpyd, eb00b40, 2, (RVD, RVD), rd_rm),
9200 CE(fcvtds, eb70ac0, 2, (RVD, RVS), vfp_dp_sp_cvt),
9201 CE(fcvtsd, eb70bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
9202 CE(fmdhr, e200b10, 2, (RVD, RR), rn_rd),
9203 CE(fmdlr, e000b10, 2, (RVD, RR), rn_rd),
9204 CE(fmrdh, e300b10, 2, (RR, RVD), rd_rn),
9205 CE(fmrdl, e100b10, 2, (RR, RVD), rd_rn),
9206 CE(fsitod, eb80bc0, 2, (RVD, RVS), vfp_dp_sp_cvt),
9207 CE(fuitod, eb80b40, 2, (RVD, RVS), vfp_dp_sp_cvt),
9208 CE(ftosid, ebd0b40, 2, (RVS, RVD), vfp_sp_dp_cvt),
9209 CE(ftosizd, ebd0bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
9210 CE(ftouid, ebc0b40, 2, (RVS, RVD), vfp_sp_dp_cvt),
9211 CE(ftouizd, ebc0bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
9212
9213 /* Memory operations. */
9214 CE(fldd, d100b00, 2, (RVD, ADDR), vfp_dp_ldst),
9215 CE(fstd, d000b00, 2, (RVD, ADDR), vfp_dp_ldst),
9216 CE(fldmiad, c900b00, 2, (RRw, VRDLST), vfp_dp_ldstmia),
9217 CE(fldmfdd, c900b00, 2, (RRw, VRDLST), vfp_dp_ldstmia),
9218 CE(fldmdbd, d300b00, 2, (RRw, VRDLST), vfp_dp_ldstmdb),
9219 CE(fldmead, d300b00, 2, (RRw, VRDLST), vfp_dp_ldstmdb),
9220 CE(fstmiad, c800b00, 2, (RRw, VRDLST), vfp_dp_ldstmia),
9221 CE(fstmead, c800b00, 2, (RRw, VRDLST), vfp_dp_ldstmia),
9222 CE(fstmdbd, d200b00, 2, (RRw, VRDLST), vfp_dp_ldstmdb),
9223 CE(fstmfdd, d200b00, 2, (RRw, VRDLST), vfp_dp_ldstmdb),
9224
9225 /* Monadic operations. */
9226 CE(fabsd, eb00bc0, 2, (RVD, RVD), rd_rm),
9227 CE(fnegd, eb10b40, 2, (RVD, RVD), rd_rm),
9228 CE(fsqrtd, eb10bc0, 2, (RVD, RVD), rd_rm),
9229
9230 /* Dyadic operations. */
9231 CE(faddd, e300b00, 3, (RVD, RVD, RVD), rd_rn_rm),
9232 CE(fsubd, e300b40, 3, (RVD, RVD, RVD), rd_rn_rm),
9233 CE(fmuld, e200b00, 3, (RVD, RVD, RVD), rd_rn_rm),
9234 CE(fdivd, e800b00, 3, (RVD, RVD, RVD), rd_rn_rm),
9235 CE(fmacd, e000b00, 3, (RVD, RVD, RVD), rd_rn_rm),
9236 CE(fmscd, e100b00, 3, (RVD, RVD, RVD), rd_rn_rm),
9237 CE(fnmuld, e200b40, 3, (RVD, RVD, RVD), rd_rn_rm),
9238 CE(fnmacd, e000b40, 3, (RVD, RVD, RVD), rd_rn_rm),
9239 CE(fnmscd, e100b40, 3, (RVD, RVD, RVD), rd_rn_rm),
9240
9241 /* Comparisons. */
9242 CE(fcmpd, eb40b40, 2, (RVD, RVD), rd_rm),
9243 CE(fcmpzd, eb50b40, 1, (RVD), rd),
9244 CE(fcmped, eb40bc0, 2, (RVD, RVD), rd_rm),
9245 CE(fcmpezd, eb50bc0, 1, (RVD), rd),
9246
9247 #undef ARM_VARIANT
9248 #define ARM_VARIANT FPU_VFP_EXT_V2
9249 CE(fmsrr, c400a10, 3, (VRSLST, RR, RR), vfp_sp2_from_reg2),
9250 CE(fmrrs, c500a10, 3, (RR, RR, VRSLST), vfp_reg2_from_sp2),
9251 CE(fmdrr, c400b10, 3, (RVD, RR, RR), rm_rd_rn),
9252 CE(fmrrd, c500b10, 3, (RR, RR, RVD), rd_rn_rm),
9253
9254 #undef ARM_VARIANT
9255 #define ARM_VARIANT ARM_CEXT_XSCALE /* Intel XScale extensions. */
9256 CE(mia, e200010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
9257 CE(miaph, e280010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
9258 CE(miabb, e2c0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
9259 CE(miabt, e2d0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
9260 CE(miatb, e2e0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
9261 CE(miatt, e2f0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
9262 CE(mar, c400000, 3, (RXA, RRnpc, RRnpc), xsc_mar),
9263 CE(mra, c500000, 3, (RRnpc, RRnpc, RXA), xsc_mra),
9264
9265 #undef ARM_VARIANT
9266 #define ARM_VARIANT ARM_CEXT_IWMMXT /* Intel Wireless MMX technology. */
9267 CE(tandcb, e13f130, 1, (RR), iwmmxt_tandorc),
9268 CE(tandch, e53f130, 1, (RR), iwmmxt_tandorc),
9269 CE(tandcw, e93f130, 1, (RR), iwmmxt_tandorc),
9270 CE(tbcstb, e400010, 2, (RIWR, RR), rn_rd),
9271 CE(tbcsth, e400050, 2, (RIWR, RR), rn_rd),
9272 CE(tbcstw, e400090, 2, (RIWR, RR), rn_rd),
9273 CE(textrcb, e130170, 2, (RR, I7), iwmmxt_textrc),
9274 CE(textrch, e530170, 2, (RR, I7), iwmmxt_textrc),
9275 CE(textrcw, e930170, 2, (RR, I7), iwmmxt_textrc),
9276 CE(textrmub, e100070, 3, (RR, RIWR, I7), iwmmxt_textrm),
9277 CE(textrmuh, e500070, 3, (RR, RIWR, I7), iwmmxt_textrm),
9278 CE(textrmuw, e900070, 3, (RR, RIWR, I7), iwmmxt_textrm),
9279 CE(textrmsb, e100078, 3, (RR, RIWR, I7), iwmmxt_textrm),
9280 CE(textrmsh, e500078, 3, (RR, RIWR, I7), iwmmxt_textrm),
9281 CE(textrmsw, e900078, 3, (RR, RIWR, I7), iwmmxt_textrm),
9282 CE(tinsrb, e600010, 3, (RIWR, RR, I7), iwmmxt_tinsr),
9283 CE(tinsrh, e600050, 3, (RIWR, RR, I7), iwmmxt_tinsr),
9284 CE(tinsrw, e600090, 3, (RIWR, RR, I7), iwmmxt_tinsr),
9285 CE(tmcr, e000110, 2, (RIWC, RR), rn_rd),
9286 CE(tmcrr, c400000, 3, (RIWR, RR, RR), rm_rd_rn),
9287 CE(tmia, e200010, 3, (RIWR, RR, RR), iwmmxt_tmia),
9288 CE(tmiaph, e280010, 3, (RIWR, RR, RR), iwmmxt_tmia),
9289 CE(tmiabb, e2c0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
9290 CE(tmiabt, e2d0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
9291 CE(tmiatb, e2e0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
9292 CE(tmiatt, e2f0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
9293 CE(tmovmskb, e100030, 2, (RR, RIWR), rd_rn),
9294 CE(tmovmskh, e500030, 2, (RR, RIWR), rd_rn),
9295 CE(tmovmskw, e900030, 2, (RR, RIWR), rd_rn),
9296 CE(tmrc, e100110, 2, (RR, RIWC), rd_rn),
9297 CE(tmrrc, c500000, 3, (RR, RR, RIWR), rd_rn_rm),
9298 CE(torcb, e13f150, 1, (RR), iwmmxt_tandorc),
9299 CE(torch, e53f150, 1, (RR), iwmmxt_tandorc),
9300 CE(torcw, e93f150, 1, (RR), iwmmxt_tandorc),
9301 CE(waccb, e0001c0, 2, (RIWR, RIWR), rd_rn),
9302 CE(wacch, e4001c0, 2, (RIWR, RIWR), rd_rn),
9303 CE(waccw, e8001c0, 2, (RIWR, RIWR), rd_rn),
9304 CE(waddbss, e300180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9305 CE(waddb, e000180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9306 CE(waddbus, e100180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9307 CE(waddhss, e700180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9308 CE(waddh, e400180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9309 CE(waddhus, e500180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9310 CE(waddwss, eb00180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9311 CE(waddw, e800180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9312 CE(waddwus, e900180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9313 CE(waligni, e000020, 4, (RIWR, RIWR, RIWR, I7), iwmmxt_waligni),
9314 CE(walignr0, e800020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9315 CE(walignr1, e900020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9316 CE(walignr2, ea00020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9317 CE(walignr3, eb00020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9318 CE(wand, e200000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9319 CE(wandn, e300000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9320 CE(wavg2b, e800000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9321 CE(wavg2br, e900000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9322 CE(wavg2h, ec00000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9323 CE(wavg2hr, ed00000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9324 CE(wcmpeqb, e000060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9325 CE(wcmpeqh, e400060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9326 CE(wcmpeqw, e800060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9327 CE(wcmpgtub, e100060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9328 CE(wcmpgtuh, e500060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9329 CE(wcmpgtuw, e900060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9330 CE(wcmpgtsb, e300060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9331 CE(wcmpgtsh, e700060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9332 CE(wcmpgtsw, eb00060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9333 CE(wldrb, c100000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
9334 CE(wldrh, c500000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
9335 CE(wldrw, c100100, 2, (RIWR_RIWC, ADDR), iwmmxt_wldstw),
9336 CE(wldrd, c500100, 2, (RIWR, ADDR), iwmmxt_wldstd),
9337 CE(wmacs, e600100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9338 CE(wmacsz, e700100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9339 CE(wmacu, e400100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9340 CE(wmacuz, e500100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9341 CE(wmadds, ea00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9342 CE(wmaddu, e800100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9343 CE(wmaxsb, e200160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9344 CE(wmaxsh, e600160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9345 CE(wmaxsw, ea00160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9346 CE(wmaxub, e000160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9347 CE(wmaxuh, e400160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9348 CE(wmaxuw, e800160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9349 CE(wminsb, e300160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9350 CE(wminsh, e700160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9351 CE(wminsw, eb00160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9352 CE(wminub, e100160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9353 CE(wminuh, e500160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9354 CE(wminuw, e900160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9355 CE(wmov, e000000, 2, (RIWR, RIWR), iwmmxt_wmov),
9356 CE(wmulsm, e300100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9357 CE(wmulsl, e200100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9358 CE(wmulum, e100100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9359 CE(wmulul, e000100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9360 CE(wor, e000000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9361 CE(wpackhss, e700080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9362 CE(wpackhus, e500080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9363 CE(wpackwss, eb00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9364 CE(wpackwus, e900080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9365 CE(wpackdss, ef00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9366 CE(wpackdus, ed00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9367 CE(wrorh, e700040, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9368 CE(wrorhg, e700148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
9369 CE(wrorw, eb00040, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9370 CE(wrorwg, eb00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
9371 CE(wrord, ef00040, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9372 CE(wrordg, ef00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
9373 CE(wsadb, e000120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9374 CE(wsadbz, e100120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9375 CE(wsadh, e400120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9376 CE(wsadhz, e500120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9377 CE(wshufh, e0001e0, 3, (RIWR, RIWR, I255), iwmmxt_wshufh),
9378 CE(wsllh, e500040, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9379 CE(wsllhg, e500148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
9380 CE(wsllw, e900040, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9381 CE(wsllwg, e900148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
9382 CE(wslld, ed00040, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9383 CE(wslldg, ed00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
9384 CE(wsrah, e400040, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9385 CE(wsrahg, e400148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
9386 CE(wsraw, e800040, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9387 CE(wsrawg, e800148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
9388 CE(wsrad, ec00040, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9389 CE(wsradg, ec00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
9390 CE(wsrlh, e600040, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9391 CE(wsrlhg, e600148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
9392 CE(wsrlw, ea00040, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9393 CE(wsrlwg, ea00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
9394 CE(wsrld, ee00040, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9395 CE(wsrldg, ee00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
9396 CE(wstrb, c000000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
9397 CE(wstrh, c400000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
9398 CE(wstrw, c000100, 2, (RIWR_RIWC, ADDR), iwmmxt_wldstw),
9399 CE(wstrd, c400100, 2, (RIWR, ADDR), iwmmxt_wldstd),
9400 CE(wsubbss, e3001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9401 CE(wsubb, e0001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9402 CE(wsubbus, e1001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9403 CE(wsubhss, e7001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9404 CE(wsubh, e4001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9405 CE(wsubhus, e5001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9406 CE(wsubwss, eb001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9407 CE(wsubw, e8001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9408 CE(wsubwus, e9001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9409 CE(wunpckehub,e0000c0, 2, (RIWR, RIWR), rd_rn),
9410 CE(wunpckehuh,e4000c0, 2, (RIWR, RIWR), rd_rn),
9411 CE(wunpckehuw,e8000c0, 2, (RIWR, RIWR), rd_rn),
9412 CE(wunpckehsb,e2000c0, 2, (RIWR, RIWR), rd_rn),
9413 CE(wunpckehsh,e6000c0, 2, (RIWR, RIWR), rd_rn),
9414 CE(wunpckehsw,ea000c0, 2, (RIWR, RIWR), rd_rn),
9415 CE(wunpckihb, e1000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9416 CE(wunpckihh, e5000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9417 CE(wunpckihw, e9000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9418 CE(wunpckelub,e0000e0, 2, (RIWR, RIWR), rd_rn),
9419 CE(wunpckeluh,e4000e0, 2, (RIWR, RIWR), rd_rn),
9420 CE(wunpckeluw,e8000e0, 2, (RIWR, RIWR), rd_rn),
9421 CE(wunpckelsb,e2000e0, 2, (RIWR, RIWR), rd_rn),
9422 CE(wunpckelsh,e6000e0, 2, (RIWR, RIWR), rd_rn),
9423 CE(wunpckelsw,ea000e0, 2, (RIWR, RIWR), rd_rn),
9424 CE(wunpckilb, e1000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9425 CE(wunpckilh, e5000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9426 CE(wunpckilw, e9000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9427 CE(wxor, e100000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9428 CE(wzero, e300000, 1, (RIWR), iwmmxt_wzero),
9429
9430 #undef ARM_VARIANT
9431 #define ARM_VARIANT ARM_CEXT_MAVERICK /* Cirrus Maverick instructions. */
9432 CE(cfldrs, c100400, 2, (RMF, ADDR), rd_cpaddr),
9433 CE(cfldrd, c500400, 2, (RMD, ADDR), rd_cpaddr),
9434 CE(cfldr32, c100500, 2, (RMFX, ADDR), rd_cpaddr),
9435 CE(cfldr64, c500500, 2, (RMDX, ADDR), rd_cpaddr),
9436 CE(cfstrs, c000400, 2, (RMF, ADDR), rd_cpaddr),
9437 CE(cfstrd, c400400, 2, (RMD, ADDR), rd_cpaddr),
9438 CE(cfstr32, c000500, 2, (RMFX, ADDR), rd_cpaddr),
9439 CE(cfstr64, c400500, 2, (RMDX, ADDR), rd_cpaddr),
9440 CE(cfmvsr, e000450, 2, (RMF, RR), rn_rd),
9441 CE(cfmvrs, e100450, 2, (RR, RMF), rd_rn),
9442 CE(cfmvdlr, e000410, 2, (RMD, RR), rn_rd),
9443 CE(cfmvrdl, e100410, 2, (RR, RMD), rd_rn),
9444 CE(cfmvdhr, e000430, 2, (RMD, RR), rn_rd),
9445 CE(cfmvrdh, e100430, 2, (RR, RMD), rd_rn),
9446 CE(cfmv64lr, e000510, 2, (RMDX, RR), rn_rd),
9447 CE(cfmvr64l, e100510, 2, (RR, RMDX), rd_rn),
9448 CE(cfmv64hr, e000530, 2, (RMDX, RR), rn_rd),
9449 CE(cfmvr64h, e100530, 2, (RR, RMDX), rd_rn),
9450 CE(cfmval32, e200440, 2, (RMAX, RMFX), rd_rn),
9451 CE(cfmv32al, e100440, 2, (RMFX, RMAX), rd_rn),
9452 CE(cfmvam32, e200460, 2, (RMAX, RMFX), rd_rn),
9453 CE(cfmv32am, e100460, 2, (RMFX, RMAX), rd_rn),
9454 CE(cfmvah32, e200480, 2, (RMAX, RMFX), rd_rn),
9455 CE(cfmv32ah, e100480, 2, (RMFX, RMAX), rd_rn),
9456 CE(cfmva32, e2004a0, 2, (RMAX, RMFX), rd_rn),
9457 CE(cfmv32a, e1004a0, 2, (RMFX, RMAX), rd_rn),
9458 CE(cfmva64, e2004c0, 2, (RMAX, RMDX), rd_rn),
9459 CE(cfmv64a, e1004c0, 2, (RMDX, RMAX), rd_rn),
9460 CE(cfmvsc32, e2004e0, 2, (RMDS, RMDX), mav_dspsc),
9461 CE(cfmv32sc, e1004e0, 2, (RMDX, RMDS), rd),
9462 CE(cfcpys, e000400, 2, (RMF, RMF), rd_rn),
9463 CE(cfcpyd, e000420, 2, (RMD, RMD), rd_rn),
9464 CE(cfcvtsd, e000460, 2, (RMD, RMF), rd_rn),
9465 CE(cfcvtds, e000440, 2, (RMF, RMD), rd_rn),
9466 CE(cfcvt32s, e000480, 2, (RMF, RMFX), rd_rn),
9467 CE(cfcvt32d, e0004a0, 2, (RMD, RMFX), rd_rn),
9468 CE(cfcvt64s, e0004c0, 2, (RMF, RMDX), rd_rn),
9469 CE(cfcvt64d, e0004e0, 2, (RMD, RMDX), rd_rn),
9470 CE(cfcvts32, e100580, 2, (RMFX, RMF), rd_rn),
9471 CE(cfcvtd32, e1005a0, 2, (RMFX, RMD), rd_rn),
9472 CE(cftruncs32,e1005c0, 2, (RMFX, RMF), rd_rn),
9473 CE(cftruncd32,e1005e0, 2, (RMFX, RMD), rd_rn),
9474 CE(cfrshl32, e000550, 3, (RMFX, RMFX, RR), mav_triple),
9475 CE(cfrshl64, e000570, 3, (RMDX, RMDX, RR), mav_triple),
9476 CE(cfsh32, e000500, 3, (RMFX, RMFX, I63s), mav_shift),
9477 CE(cfsh64, e200500, 3, (RMDX, RMDX, I63s), mav_shift),
9478 CE(cfcmps, e100490, 3, (RR, RMF, RMF), rd_rn_rm),
9479 CE(cfcmpd, e1004b0, 3, (RR, RMD, RMD), rd_rn_rm),
9480 CE(cfcmp32, e100590, 3, (RR, RMFX, RMFX), rd_rn_rm),
9481 CE(cfcmp64, e1005b0, 3, (RR, RMDX, RMDX), rd_rn_rm),
9482 CE(cfabss, e300400, 2, (RMF, RMF), rd_rn),
9483 CE(cfabsd, e300420, 2, (RMD, RMD), rd_rn),
9484 CE(cfnegs, e300440, 2, (RMF, RMF), rd_rn),
9485 CE(cfnegd, e300460, 2, (RMD, RMD), rd_rn),
9486 CE(cfadds, e300480, 3, (RMF, RMF, RMF), rd_rn_rm),
9487 CE(cfaddd, e3004a0, 3, (RMD, RMD, RMD), rd_rn_rm),
9488 CE(cfsubs, e3004c0, 3, (RMF, RMF, RMF), rd_rn_rm),
9489 CE(cfsubd, e3004e0, 3, (RMD, RMD, RMD), rd_rn_rm),
9490 CE(cfmuls, e100400, 3, (RMF, RMF, RMF), rd_rn_rm),
9491 CE(cfmuld, e100420, 3, (RMD, RMD, RMD), rd_rn_rm),
9492 CE(cfabs32, e300500, 2, (RMFX, RMFX), rd_rn),
9493 CE(cfabs64, e300520, 2, (RMDX, RMDX), rd_rn),
9494 CE(cfneg32, e300540, 2, (RMFX, RMFX), rd_rn),
9495 CE(cfneg64, e300560, 2, (RMDX, RMDX), rd_rn),
9496 CE(cfadd32, e300580, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
9497 CE(cfadd64, e3005a0, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
9498 CE(cfsub32, e3005c0, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
9499 CE(cfsub64, e3005e0, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
9500 CE(cfmul32, e100500, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
9501 CE(cfmul64, e100520, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
9502 CE(cfmac32, e100540, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
9503 CE(cfmsc32, e100560, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
9504 CE(cfmadd32, e000600, 4, (RMAX, RMFX, RMFX, RMFX), mav_quad),
9505 CE(cfmsub32, e100600, 4, (RMAX, RMFX, RMFX, RMFX), mav_quad),
9506 CE(cfmadda32, e200600, 4, (RMAX, RMAX, RMFX, RMFX), mav_quad),
9507 CE(cfmsuba32, e300600, 4, (RMAX, RMAX, RMFX, RMFX), mav_quad),
9508 };
9509 #undef ARM_VARIANT
9510 #undef THUMB_VARIANT
9511 #undef TCE
9512 #undef TCM
9513 #undef TUE
9514 #undef TUF
9515 #undef TCC
9516 #undef CE
9517 #undef CM
9518 #undef UE
9519 #undef UF
9520 #undef UT
9521 #undef OPS0
9522 #undef OPS1
9523 #undef OPS2
9524 #undef OPS3
9525 #undef OPS4
9526 #undef OPS5
9527 #undef OPS6
9528 #undef do_0
9529 \f
9530 /* MD interface: bits in the object file. */
9531
9532 /* Turn an integer of n bytes (in val) into a stream of bytes appropriate
9533 for use in the a.out file, and stores them in the array pointed to by buf.
9534 This knows about the endian-ness of the target machine and does
9535 THE RIGHT THING, whatever it is. Possible values for n are 1 (byte)
9536 2 (short) and 4 (long) Floating numbers are put out as a series of
9537 LITTLENUMS (shorts, here at least). */
9538
9539 void
9540 md_number_to_chars (char * buf, valueT val, int n)
9541 {
9542 if (target_big_endian)
9543 number_to_chars_bigendian (buf, val, n);
9544 else
9545 number_to_chars_littleendian (buf, val, n);
9546 }
9547
9548 static valueT
9549 md_chars_to_number (char * buf, int n)
9550 {
9551 valueT result = 0;
9552 unsigned char * where = (unsigned char *) buf;
9553
9554 if (target_big_endian)
9555 {
9556 while (n--)
9557 {
9558 result <<= 8;
9559 result |= (*where++ & 255);
9560 }
9561 }
9562 else
9563 {
9564 while (n--)
9565 {
9566 result <<= 8;
9567 result |= (where[n] & 255);
9568 }
9569 }
9570
9571 return result;
9572 }
9573
9574 /* MD interface: Sections. */
9575
9576 int
9577 md_estimate_size_before_relax (fragS * fragP ATTRIBUTE_UNUSED,
9578 segT segtype ATTRIBUTE_UNUSED)
9579 {
9580 as_fatal (_("md_estimate_size_before_relax\n"));
9581 return 1;
9582 }
9583
9584 /* Round up a section size to the appropriate boundary. */
9585
9586 valueT
9587 md_section_align (segT segment ATTRIBUTE_UNUSED,
9588 valueT size)
9589 {
9590 #ifdef OBJ_ELF
9591 return size;
9592 #else
9593 /* Round all sects to multiple of 4. */
9594 return (size + 3) & ~3;
9595 #endif
9596 }
9597
9598 /* This is called from HANDLE_ALIGN in write.c. Fill in the contents
9599 of an rs_align_code fragment. */
9600
9601 void
9602 arm_handle_align (fragS * fragP)
9603 {
9604 static char const arm_noop[4] = { 0x00, 0x00, 0xa0, 0xe1 };
9605 static char const thumb_noop[2] = { 0xc0, 0x46 };
9606 static char const arm_bigend_noop[4] = { 0xe1, 0xa0, 0x00, 0x00 };
9607 static char const thumb_bigend_noop[2] = { 0x46, 0xc0 };
9608
9609 int bytes, fix, noop_size;
9610 char * p;
9611 const char * noop;
9612
9613 if (fragP->fr_type != rs_align_code)
9614 return;
9615
9616 bytes = fragP->fr_next->fr_address - fragP->fr_address - fragP->fr_fix;
9617 p = fragP->fr_literal + fragP->fr_fix;
9618 fix = 0;
9619
9620 if (bytes > MAX_MEM_FOR_RS_ALIGN_CODE)
9621 bytes &= MAX_MEM_FOR_RS_ALIGN_CODE;
9622
9623 if (fragP->tc_frag_data)
9624 {
9625 if (target_big_endian)
9626 noop = thumb_bigend_noop;
9627 else
9628 noop = thumb_noop;
9629 noop_size = sizeof (thumb_noop);
9630 }
9631 else
9632 {
9633 if (target_big_endian)
9634 noop = arm_bigend_noop;
9635 else
9636 noop = arm_noop;
9637 noop_size = sizeof (arm_noop);
9638 }
9639
9640 if (bytes & (noop_size - 1))
9641 {
9642 fix = bytes & (noop_size - 1);
9643 memset (p, 0, fix);
9644 p += fix;
9645 bytes -= fix;
9646 }
9647
9648 while (bytes >= noop_size)
9649 {
9650 memcpy (p, noop, noop_size);
9651 p += noop_size;
9652 bytes -= noop_size;
9653 fix += noop_size;
9654 }
9655
9656 fragP->fr_fix += fix;
9657 fragP->fr_var = noop_size;
9658 }
9659
9660 /* Called from md_do_align. Used to create an alignment
9661 frag in a code section. */
9662
9663 void
9664 arm_frag_align_code (int n, int max)
9665 {
9666 char * p;
9667
9668 /* We assume that there will never be a requirement
9669 to support alignments greater than 32 bytes. */
9670 if (max > MAX_MEM_FOR_RS_ALIGN_CODE)
9671 as_fatal (_("alignments greater than 32 bytes not supported in .text sections."));
9672
9673 p = frag_var (rs_align_code,
9674 MAX_MEM_FOR_RS_ALIGN_CODE,
9675 1,
9676 (relax_substateT) max,
9677 (symbolS *) NULL,
9678 (offsetT) n,
9679 (char *) NULL);
9680 *p = 0;
9681 }
9682
9683 /* Perform target specific initialisation of a frag. */
9684
9685 void
9686 arm_init_frag (fragS * fragP)
9687 {
9688 /* Record whether this frag is in an ARM or a THUMB area. */
9689 fragP->tc_frag_data = thumb_mode;
9690 }
9691
9692 #ifdef OBJ_ELF
9693 /* When we change sections we need to issue a new mapping symbol. */
9694
9695 void
9696 arm_elf_change_section (void)
9697 {
9698 flagword flags;
9699 segment_info_type *seginfo;
9700
9701 /* Link an unlinked unwind index table section to the .text section. */
9702 if (elf_section_type (now_seg) == SHT_ARM_EXIDX
9703 && elf_linked_to_section (now_seg) == NULL)
9704 elf_linked_to_section (now_seg) = text_section;
9705
9706 if (!SEG_NORMAL (now_seg))
9707 return;
9708
9709 flags = bfd_get_section_flags (stdoutput, now_seg);
9710
9711 /* We can ignore sections that only contain debug info. */
9712 if ((flags & SEC_ALLOC) == 0)
9713 return;
9714
9715 seginfo = seg_info (now_seg);
9716 mapstate = seginfo->tc_segment_info_data.mapstate;
9717 marked_pr_dependency = seginfo->tc_segment_info_data.marked_pr_dependency;
9718 }
9719
9720 int
9721 arm_elf_section_type (const char * str, size_t len)
9722 {
9723 if (len == 5 && strncmp (str, "exidx", 5) == 0)
9724 return SHT_ARM_EXIDX;
9725
9726 return -1;
9727 }
9728 \f
9729 /* Code to deal with unwinding tables. */
9730
9731 static void add_unwind_adjustsp (offsetT);
9732
9733 /* Cenerate and deferred unwind frame offset. */
9734
9735 static void
9736 flush_pending_unwind (void)
9737 {
9738 offsetT offset;
9739
9740 offset = unwind.pending_offset;
9741 unwind.pending_offset = 0;
9742 if (offset != 0)
9743 add_unwind_adjustsp (offset);
9744 }
9745
9746 /* Add an opcode to this list for this function. Two-byte opcodes should
9747 be passed as op[0] << 8 | op[1]. The list of opcodes is built in reverse
9748 order. */
9749
9750 static void
9751 add_unwind_opcode (valueT op, int length)
9752 {
9753 /* Add any deferred stack adjustment. */
9754 if (unwind.pending_offset)
9755 flush_pending_unwind ();
9756
9757 unwind.sp_restored = 0;
9758
9759 if (unwind.opcode_count + length > unwind.opcode_alloc)
9760 {
9761 unwind.opcode_alloc += ARM_OPCODE_CHUNK_SIZE;
9762 if (unwind.opcodes)
9763 unwind.opcodes = xrealloc (unwind.opcodes,
9764 unwind.opcode_alloc);
9765 else
9766 unwind.opcodes = xmalloc (unwind.opcode_alloc);
9767 }
9768 while (length > 0)
9769 {
9770 length--;
9771 unwind.opcodes[unwind.opcode_count] = op & 0xff;
9772 op >>= 8;
9773 unwind.opcode_count++;
9774 }
9775 }
9776
9777 /* Add unwind opcodes to adjust the stack pointer. */
9778
9779 static void
9780 add_unwind_adjustsp (offsetT offset)
9781 {
9782 valueT op;
9783
9784 if (offset > 0x200)
9785 {
9786 /* We need at most 5 bytes to hold a 32-bit value in a uleb128. */
9787 char bytes[5];
9788 int n;
9789 valueT o;
9790
9791 /* Long form: 0xb2, uleb128. */
9792 /* This might not fit in a word so add the individual bytes,
9793 remembering the list is built in reverse order. */
9794 o = (valueT) ((offset - 0x204) >> 2);
9795 if (o == 0)
9796 add_unwind_opcode (0, 1);
9797
9798 /* Calculate the uleb128 encoding of the offset. */
9799 n = 0;
9800 while (o)
9801 {
9802 bytes[n] = o & 0x7f;
9803 o >>= 7;
9804 if (o)
9805 bytes[n] |= 0x80;
9806 n++;
9807 }
9808 /* Add the insn. */
9809 for (; n; n--)
9810 add_unwind_opcode (bytes[n - 1], 1);
9811 add_unwind_opcode (0xb2, 1);
9812 }
9813 else if (offset > 0x100)
9814 {
9815 /* Two short opcodes. */
9816 add_unwind_opcode (0x3f, 1);
9817 op = (offset - 0x104) >> 2;
9818 add_unwind_opcode (op, 1);
9819 }
9820 else if (offset > 0)
9821 {
9822 /* Short opcode. */
9823 op = (offset - 4) >> 2;
9824 add_unwind_opcode (op, 1);
9825 }
9826 else if (offset < 0)
9827 {
9828 offset = -offset;
9829 while (offset > 0x100)
9830 {
9831 add_unwind_opcode (0x7f, 1);
9832 offset -= 0x100;
9833 }
9834 op = ((offset - 4) >> 2) | 0x40;
9835 add_unwind_opcode (op, 1);
9836 }
9837 }
9838
9839 /* Finish the list of unwind opcodes for this function. */
9840 static void
9841 finish_unwind_opcodes (void)
9842 {
9843 valueT op;
9844
9845 if (unwind.fp_used)
9846 {
9847 /* Adjust sp as neccessary. */
9848 unwind.pending_offset += unwind.fp_offset - unwind.frame_size;
9849 flush_pending_unwind ();
9850
9851 /* After restoring sp from the frame pointer. */
9852 op = 0x90 | unwind.fp_reg;
9853 add_unwind_opcode (op, 1);
9854 }
9855 else
9856 flush_pending_unwind ();
9857 }
9858
9859
9860 /* Start an exception table entry. If idx is nonzero this is an index table
9861 entry. */
9862
9863 static void
9864 start_unwind_section (const segT text_seg, int idx)
9865 {
9866 const char * text_name;
9867 const char * prefix;
9868 const char * prefix_once;
9869 const char * group_name;
9870 size_t prefix_len;
9871 size_t text_len;
9872 char * sec_name;
9873 size_t sec_name_len;
9874 int type;
9875 int flags;
9876 int linkonce;
9877
9878 if (idx)
9879 {
9880 prefix = ELF_STRING_ARM_unwind;
9881 prefix_once = ELF_STRING_ARM_unwind_once;
9882 type = SHT_ARM_EXIDX;
9883 }
9884 else
9885 {
9886 prefix = ELF_STRING_ARM_unwind_info;
9887 prefix_once = ELF_STRING_ARM_unwind_info_once;
9888 type = SHT_PROGBITS;
9889 }
9890
9891 text_name = segment_name (text_seg);
9892 if (streq (text_name, ".text"))
9893 text_name = "";
9894
9895 if (strncmp (text_name, ".gnu.linkonce.t.",
9896 strlen (".gnu.linkonce.t.")) == 0)
9897 {
9898 prefix = prefix_once;
9899 text_name += strlen (".gnu.linkonce.t.");
9900 }
9901
9902 prefix_len = strlen (prefix);
9903 text_len = strlen (text_name);
9904 sec_name_len = prefix_len + text_len;
9905 sec_name = xmalloc (sec_name_len + 1);
9906 memcpy (sec_name, prefix, prefix_len);
9907 memcpy (sec_name + prefix_len, text_name, text_len);
9908 sec_name[prefix_len + text_len] = '\0';
9909
9910 flags = SHF_ALLOC;
9911 linkonce = 0;
9912 group_name = 0;
9913
9914 /* Handle COMDAT group. */
9915 if (prefix != prefix_once && (text_seg->flags & SEC_LINK_ONCE) != 0)
9916 {
9917 group_name = elf_group_name (text_seg);
9918 if (group_name == NULL)
9919 {
9920 as_bad ("Group section `%s' has no group signature",
9921 segment_name (text_seg));
9922 ignore_rest_of_line ();
9923 return;
9924 }
9925 flags |= SHF_GROUP;
9926 linkonce = 1;
9927 }
9928
9929 obj_elf_change_section (sec_name, type, flags, 0, group_name, linkonce, 0);
9930
9931 /* Set the setion link for index tables. */
9932 if (idx)
9933 elf_linked_to_section (now_seg) = text_seg;
9934 }
9935
9936
9937 /* Start an unwind table entry. HAVE_DATA is nonzero if we have additional
9938 personality routine data. Returns zero, or the index table value for
9939 and inline entry. */
9940
9941 static valueT
9942 create_unwind_entry (int have_data)
9943 {
9944 int size;
9945 addressT where;
9946 char *ptr;
9947 /* The current word of data. */
9948 valueT data;
9949 /* The number of bytes left in this word. */
9950 int n;
9951
9952 finish_unwind_opcodes ();
9953
9954 /* Remember the current text section. */
9955 unwind.saved_seg = now_seg;
9956 unwind.saved_subseg = now_subseg;
9957
9958 start_unwind_section (now_seg, 0);
9959
9960 if (unwind.personality_routine == NULL)
9961 {
9962 if (unwind.personality_index == -2)
9963 {
9964 if (have_data)
9965 as_bad (_("handerdata in cantunwind frame"));
9966 return 1; /* EXIDX_CANTUNWIND. */
9967 }
9968
9969 /* Use a default personality routine if none is specified. */
9970 if (unwind.personality_index == -1)
9971 {
9972 if (unwind.opcode_count > 3)
9973 unwind.personality_index = 1;
9974 else
9975 unwind.personality_index = 0;
9976 }
9977
9978 /* Space for the personality routine entry. */
9979 if (unwind.personality_index == 0)
9980 {
9981 if (unwind.opcode_count > 3)
9982 as_bad (_("too many unwind opcodes for personality routine 0"));
9983
9984 if (!have_data)
9985 {
9986 /* All the data is inline in the index table. */
9987 data = 0x80;
9988 n = 3;
9989 while (unwind.opcode_count > 0)
9990 {
9991 unwind.opcode_count--;
9992 data = (data << 8) | unwind.opcodes[unwind.opcode_count];
9993 n--;
9994 }
9995
9996 /* Pad with "finish" opcodes. */
9997 while (n--)
9998 data = (data << 8) | 0xb0;
9999
10000 return data;
10001 }
10002 size = 0;
10003 }
10004 else
10005 /* We get two opcodes "free" in the first word. */
10006 size = unwind.opcode_count - 2;
10007 }
10008 else
10009 /* An extra byte is required for the opcode count. */
10010 size = unwind.opcode_count + 1;
10011
10012 size = (size + 3) >> 2;
10013 if (size > 0xff)
10014 as_bad (_("too many unwind opcodes"));
10015
10016 frag_align (2, 0, 0);
10017 record_alignment (now_seg, 2);
10018 unwind.table_entry = expr_build_dot ();
10019
10020 /* Allocate the table entry. */
10021 ptr = frag_more ((size << 2) + 4);
10022 where = frag_now_fix () - ((size << 2) + 4);
10023
10024 switch (unwind.personality_index)
10025 {
10026 case -1:
10027 /* ??? Should this be a PLT generating relocation? */
10028 /* Custom personality routine. */
10029 fix_new (frag_now, where, 4, unwind.personality_routine, 0, 1,
10030 BFD_RELOC_ARM_PREL31);
10031
10032 where += 4;
10033 ptr += 4;
10034
10035 /* Set the first byte to the number of additional words. */
10036 data = size - 1;
10037 n = 3;
10038 break;
10039
10040 /* ABI defined personality routines. */
10041 case 0:
10042 /* Three opcodes bytes are packed into the first word. */
10043 data = 0x80;
10044 n = 3;
10045 break;
10046
10047 case 1:
10048 case 2:
10049 /* The size and first two opcode bytes go in the first word. */
10050 data = ((0x80 + unwind.personality_index) << 8) | size;
10051 n = 2;
10052 break;
10053
10054 default:
10055 /* Should never happen. */
10056 abort ();
10057 }
10058
10059 /* Pack the opcodes into words (MSB first), reversing the list at the same
10060 time. */
10061 while (unwind.opcode_count > 0)
10062 {
10063 if (n == 0)
10064 {
10065 md_number_to_chars (ptr, data, 4);
10066 ptr += 4;
10067 n = 4;
10068 data = 0;
10069 }
10070 unwind.opcode_count--;
10071 n--;
10072 data = (data << 8) | unwind.opcodes[unwind.opcode_count];
10073 }
10074
10075 /* Finish off the last word. */
10076 if (n < 4)
10077 {
10078 /* Pad with "finish" opcodes. */
10079 while (n--)
10080 data = (data << 8) | 0xb0;
10081
10082 md_number_to_chars (ptr, data, 4);
10083 }
10084
10085 if (!have_data)
10086 {
10087 /* Add an empty descriptor if there is no user-specified data. */
10088 ptr = frag_more (4);
10089 md_number_to_chars (ptr, 0, 4);
10090 }
10091
10092 return 0;
10093 }
10094
10095 /* Convert REGNAME to a DWARF-2 register number. */
10096
10097 int
10098 tc_arm_regname_to_dw2regnum (const char *regname)
10099 {
10100 int reg = arm_reg_parse ((char **) &regname, REG_TYPE_RN);
10101
10102 if (reg == FAIL)
10103 return -1;
10104
10105 return reg;
10106 }
10107
10108 /* Initialize the DWARF-2 unwind information for this procedure. */
10109
10110 void
10111 tc_arm_frame_initial_instructions (void)
10112 {
10113 cfi_add_CFA_def_cfa (REG_SP, 0);
10114 }
10115 #endif /* OBJ_ELF */
10116
10117
10118 /* MD interface: Symbol and relocation handling. */
10119
10120 /* Return the address within the segment that a PC-relative fixup is
10121 relative to. For ARM, PC-relative fixups applied to instructions
10122 are generally relative to the location of the fixup plus 8 bytes.
10123 Thumb branches are offset by 4, and Thumb loads relative to PC
10124 require special handling. */
10125
10126 long
10127 md_pcrel_from_section (fixS * fixP, segT seg)
10128 {
10129 offsetT base = fixP->fx_where + fixP->fx_frag->fr_address;
10130
10131 /* If this is pc-relative and we are going to emit a relocation
10132 then we just want to put out any pipeline compensation that the linker
10133 will need. Otherwise we want to use the calculated base. */
10134 if (fixP->fx_pcrel
10135 && ((fixP->fx_addsy && S_GET_SEGMENT (fixP->fx_addsy) != seg)
10136 || arm_force_relocation (fixP)))
10137 base = 0;
10138
10139 switch (fixP->fx_r_type)
10140 {
10141 /* PC relative addressing on the Thumb is slightly odd as the
10142 bottom two bits of the PC are forced to zero for the
10143 calculation. This happens *after* application of the
10144 pipeline offset. However, Thumb adrl already adjusts for
10145 this, so we need not do it again. */
10146 case BFD_RELOC_ARM_THUMB_ADD:
10147 return base & ~3;
10148
10149 case BFD_RELOC_ARM_THUMB_OFFSET:
10150 case BFD_RELOC_ARM_T32_OFFSET_IMM:
10151 case BFD_RELOC_ARM_T32_ADD_PC12:
10152 return (base + 4) & ~3;
10153
10154 /* Thumb branches are simply offset by +4. */
10155 case BFD_RELOC_THUMB_PCREL_BRANCH7:
10156 case BFD_RELOC_THUMB_PCREL_BRANCH9:
10157 case BFD_RELOC_THUMB_PCREL_BRANCH12:
10158 case BFD_RELOC_THUMB_PCREL_BRANCH20:
10159 case BFD_RELOC_THUMB_PCREL_BRANCH23:
10160 case BFD_RELOC_THUMB_PCREL_BRANCH25:
10161 case BFD_RELOC_THUMB_PCREL_BLX:
10162 return base + 4;
10163
10164 /* ARM mode branches are offset by +8. However, the Windows CE
10165 loader expects the relocation not to take this into account. */
10166 case BFD_RELOC_ARM_PCREL_BRANCH:
10167 case BFD_RELOC_ARM_PCREL_BLX:
10168 case BFD_RELOC_ARM_PLT32:
10169 #ifdef TE_WINCE
10170 return base;
10171 #else
10172 return base + 8;
10173 #endif
10174
10175 /* ARM mode loads relative to PC are also offset by +8. Unlike
10176 branches, the Windows CE loader *does* expect the relocation
10177 to take this into account. */
10178 case BFD_RELOC_ARM_OFFSET_IMM:
10179 case BFD_RELOC_ARM_OFFSET_IMM8:
10180 case BFD_RELOC_ARM_HWLITERAL:
10181 case BFD_RELOC_ARM_LITERAL:
10182 case BFD_RELOC_ARM_CP_OFF_IMM:
10183 return base + 8;
10184
10185
10186 /* Other PC-relative relocations are un-offset. */
10187 default:
10188 return base;
10189 }
10190 }
10191
10192 /* Under ELF we need to default _GLOBAL_OFFSET_TABLE.
10193 Otherwise we have no need to default values of symbols. */
10194
10195 symbolS *
10196 md_undefined_symbol (char * name ATTRIBUTE_UNUSED)
10197 {
10198 #ifdef OBJ_ELF
10199 if (name[0] == '_' && name[1] == 'G'
10200 && streq (name, GLOBAL_OFFSET_TABLE_NAME))
10201 {
10202 if (!GOT_symbol)
10203 {
10204 if (symbol_find (name))
10205 as_bad ("GOT already in the symbol table");
10206
10207 GOT_symbol = symbol_new (name, undefined_section,
10208 (valueT) 0, & zero_address_frag);
10209 }
10210
10211 return GOT_symbol;
10212 }
10213 #endif
10214
10215 return 0;
10216 }
10217
10218 /* Subroutine of md_apply_fix. Check to see if an immediate can be
10219 computed as two separate immediate values, added together. We
10220 already know that this value cannot be computed by just one ARM
10221 instruction. */
10222
10223 static unsigned int
10224 validate_immediate_twopart (unsigned int val,
10225 unsigned int * highpart)
10226 {
10227 unsigned int a;
10228 unsigned int i;
10229
10230 for (i = 0; i < 32; i += 2)
10231 if (((a = rotate_left (val, i)) & 0xff) != 0)
10232 {
10233 if (a & 0xff00)
10234 {
10235 if (a & ~ 0xffff)
10236 continue;
10237 * highpart = (a >> 8) | ((i + 24) << 7);
10238 }
10239 else if (a & 0xff0000)
10240 {
10241 if (a & 0xff000000)
10242 continue;
10243 * highpart = (a >> 16) | ((i + 16) << 7);
10244 }
10245 else
10246 {
10247 assert (a & 0xff000000);
10248 * highpart = (a >> 24) | ((i + 8) << 7);
10249 }
10250
10251 return (a & 0xff) | (i << 7);
10252 }
10253
10254 return FAIL;
10255 }
10256
10257 static int
10258 validate_offset_imm (unsigned int val, int hwse)
10259 {
10260 if ((hwse && val > 255) || val > 4095)
10261 return FAIL;
10262 return val;
10263 }
10264
10265 /* Subroutine of md_apply_fix. Do those data_ops which can take a
10266 negative immediate constant by altering the instruction. A bit of
10267 a hack really.
10268 MOV <-> MVN
10269 AND <-> BIC
10270 ADC <-> SBC
10271 by inverting the second operand, and
10272 ADD <-> SUB
10273 CMP <-> CMN
10274 by negating the second operand. */
10275
10276 static int
10277 negate_data_op (unsigned long * instruction,
10278 unsigned long value)
10279 {
10280 int op, new_inst;
10281 unsigned long negated, inverted;
10282
10283 negated = encode_arm_immediate (-value);
10284 inverted = encode_arm_immediate (~value);
10285
10286 op = (*instruction >> DATA_OP_SHIFT) & 0xf;
10287 switch (op)
10288 {
10289 /* First negates. */
10290 case OPCODE_SUB: /* ADD <-> SUB */
10291 new_inst = OPCODE_ADD;
10292 value = negated;
10293 break;
10294
10295 case OPCODE_ADD:
10296 new_inst = OPCODE_SUB;
10297 value = negated;
10298 break;
10299
10300 case OPCODE_CMP: /* CMP <-> CMN */
10301 new_inst = OPCODE_CMN;
10302 value = negated;
10303 break;
10304
10305 case OPCODE_CMN:
10306 new_inst = OPCODE_CMP;
10307 value = negated;
10308 break;
10309
10310 /* Now Inverted ops. */
10311 case OPCODE_MOV: /* MOV <-> MVN */
10312 new_inst = OPCODE_MVN;
10313 value = inverted;
10314 break;
10315
10316 case OPCODE_MVN:
10317 new_inst = OPCODE_MOV;
10318 value = inverted;
10319 break;
10320
10321 case OPCODE_AND: /* AND <-> BIC */
10322 new_inst = OPCODE_BIC;
10323 value = inverted;
10324 break;
10325
10326 case OPCODE_BIC:
10327 new_inst = OPCODE_AND;
10328 value = inverted;
10329 break;
10330
10331 case OPCODE_ADC: /* ADC <-> SBC */
10332 new_inst = OPCODE_SBC;
10333 value = inverted;
10334 break;
10335
10336 case OPCODE_SBC:
10337 new_inst = OPCODE_ADC;
10338 value = inverted;
10339 break;
10340
10341 /* We cannot do anything. */
10342 default:
10343 return FAIL;
10344 }
10345
10346 if (value == (unsigned) FAIL)
10347 return FAIL;
10348
10349 *instruction &= OPCODE_MASK;
10350 *instruction |= new_inst << DATA_OP_SHIFT;
10351 return value;
10352 }
10353
10354 void
10355 md_apply_fix (fixS * fixP,
10356 valueT * valP,
10357 segT seg)
10358 {
10359 offsetT value = * valP;
10360 offsetT newval;
10361 unsigned int newimm;
10362 unsigned long temp;
10363 int sign;
10364 char * buf = fixP->fx_where + fixP->fx_frag->fr_literal;
10365
10366 assert (fixP->fx_r_type <= BFD_RELOC_UNUSED);
10367
10368 /* Note whether this will delete the relocation. */
10369 if (fixP->fx_addsy == 0 && !fixP->fx_pcrel)
10370 fixP->fx_done = 1;
10371
10372 /* On a 64-bit host, silently truncate 'value' to 32 bits for
10373 consistency with the behavior on 32-bit hosts. Remember value
10374 for emit_reloc. */
10375 value &= 0xffffffff;
10376 value ^= 0x80000000;
10377 value -= 0x80000000;
10378
10379 *valP = value;
10380 fixP->fx_addnumber = value;
10381
10382 /* Same treatment for fixP->fx_offset. */
10383 fixP->fx_offset &= 0xffffffff;
10384 fixP->fx_offset ^= 0x80000000;
10385 fixP->fx_offset -= 0x80000000;
10386
10387 switch (fixP->fx_r_type)
10388 {
10389 case BFD_RELOC_NONE:
10390 /* This will need to go in the object file. */
10391 fixP->fx_done = 0;
10392 break;
10393
10394 case BFD_RELOC_ARM_IMMEDIATE:
10395 /* We claim that this fixup has been processed here,
10396 even if in fact we generate an error because we do
10397 not have a reloc for it, so tc_gen_reloc will reject it. */
10398 fixP->fx_done = 1;
10399
10400 if (fixP->fx_addsy
10401 && ! S_IS_DEFINED (fixP->fx_addsy))
10402 {
10403 as_bad_where (fixP->fx_file, fixP->fx_line,
10404 _("undefined symbol %s used as an immediate value"),
10405 S_GET_NAME (fixP->fx_addsy));
10406 break;
10407 }
10408
10409 newimm = encode_arm_immediate (value);
10410 temp = md_chars_to_number (buf, INSN_SIZE);
10411
10412 /* If the instruction will fail, see if we can fix things up by
10413 changing the opcode. */
10414 if (newimm == (unsigned int) FAIL
10415 && (newimm = negate_data_op (&temp, value)) == (unsigned int) FAIL)
10416 {
10417 as_bad_where (fixP->fx_file, fixP->fx_line,
10418 _("invalid constant (%lx) after fixup"),
10419 (unsigned long) value);
10420 break;
10421 }
10422
10423 newimm |= (temp & 0xfffff000);
10424 md_number_to_chars (buf, (valueT) newimm, INSN_SIZE);
10425 break;
10426
10427 case BFD_RELOC_ARM_ADRL_IMMEDIATE:
10428 {
10429 unsigned int highpart = 0;
10430 unsigned int newinsn = 0xe1a00000; /* nop. */
10431
10432 newimm = encode_arm_immediate (value);
10433 temp = md_chars_to_number (buf, INSN_SIZE);
10434
10435 /* If the instruction will fail, see if we can fix things up by
10436 changing the opcode. */
10437 if (newimm == (unsigned int) FAIL
10438 && (newimm = negate_data_op (& temp, value)) == (unsigned int) FAIL)
10439 {
10440 /* No ? OK - try using two ADD instructions to generate
10441 the value. */
10442 newimm = validate_immediate_twopart (value, & highpart);
10443
10444 /* Yes - then make sure that the second instruction is
10445 also an add. */
10446 if (newimm != (unsigned int) FAIL)
10447 newinsn = temp;
10448 /* Still No ? Try using a negated value. */
10449 else if ((newimm = validate_immediate_twopart (- value, & highpart)) != (unsigned int) FAIL)
10450 temp = newinsn = (temp & OPCODE_MASK) | OPCODE_SUB << DATA_OP_SHIFT;
10451 /* Otherwise - give up. */
10452 else
10453 {
10454 as_bad_where (fixP->fx_file, fixP->fx_line,
10455 _("unable to compute ADRL instructions for PC offset of 0x%lx"),
10456 (long) value);
10457 break;
10458 }
10459
10460 /* Replace the first operand in the 2nd instruction (which
10461 is the PC) with the destination register. We have
10462 already added in the PC in the first instruction and we
10463 do not want to do it again. */
10464 newinsn &= ~ 0xf0000;
10465 newinsn |= ((newinsn & 0x0f000) << 4);
10466 }
10467
10468 newimm |= (temp & 0xfffff000);
10469 md_number_to_chars (buf, (valueT) newimm, INSN_SIZE);
10470
10471 highpart |= (newinsn & 0xfffff000);
10472 md_number_to_chars (buf + INSN_SIZE, (valueT) highpart, INSN_SIZE);
10473 }
10474 break;
10475
10476 case BFD_RELOC_ARM_OFFSET_IMM:
10477 case BFD_RELOC_ARM_LITERAL:
10478 sign = value >= 0;
10479
10480 if (value < 0)
10481 value = - value;
10482
10483 if (validate_offset_imm (value, 0) == FAIL)
10484 {
10485 if (fixP->fx_r_type == BFD_RELOC_ARM_LITERAL)
10486 as_bad_where (fixP->fx_file, fixP->fx_line,
10487 _("invalid literal constant: pool needs to be closer"));
10488 else
10489 as_bad_where (fixP->fx_file, fixP->fx_line,
10490 _("bad immediate value for offset (%ld)"),
10491 (long) value);
10492 break;
10493 }
10494
10495 newval = md_chars_to_number (buf, INSN_SIZE);
10496 newval &= 0xff7ff000;
10497 newval |= value | (sign ? INDEX_UP : 0);
10498 md_number_to_chars (buf, newval, INSN_SIZE);
10499 break;
10500
10501 case BFD_RELOC_ARM_OFFSET_IMM8:
10502 case BFD_RELOC_ARM_HWLITERAL:
10503 sign = value >= 0;
10504
10505 if (value < 0)
10506 value = - value;
10507
10508 if (validate_offset_imm (value, 1) == FAIL)
10509 {
10510 if (fixP->fx_r_type == BFD_RELOC_ARM_HWLITERAL)
10511 as_bad_where (fixP->fx_file, fixP->fx_line,
10512 _("invalid literal constant: pool needs to be closer"));
10513 else
10514 as_bad (_("bad immediate value for half-word offset (%ld)"),
10515 (long) value);
10516 break;
10517 }
10518
10519 newval = md_chars_to_number (buf, INSN_SIZE);
10520 newval &= 0xff7ff0f0;
10521 newval |= ((value >> 4) << 8) | (value & 0xf) | (sign ? INDEX_UP : 0);
10522 md_number_to_chars (buf, newval, INSN_SIZE);
10523 break;
10524
10525 case BFD_RELOC_ARM_T32_OFFSET_U8:
10526 if (value < 0 || value > 1020 || value % 4 != 0)
10527 as_bad_where (fixP->fx_file, fixP->fx_line,
10528 _("bad immediate value for offset (%ld)"), (long) value);
10529 value /= 4;
10530
10531 newval = md_chars_to_number (buf+2, THUMB_SIZE);
10532 newval |= value;
10533 md_number_to_chars (buf+2, newval, THUMB_SIZE);
10534 break;
10535
10536 case BFD_RELOC_ARM_T32_OFFSET_IMM:
10537 /* This is a complicated relocation used for all varieties of Thumb32
10538 load/store instruction with immediate offset:
10539
10540 1110 100P u1WL NNNN XXXX YYYY iiii iiii - +/-(U) pre/post(P) 8-bit,
10541 *4, optional writeback(W)
10542 (doubleword load/store)
10543
10544 1111 100S uTTL 1111 XXXX iiii iiii iiii - +/-(U) 12-bit PC-rel
10545 1111 100S 0TTL NNNN XXXX 1Pu1 iiii iiii - +/-(U) pre/post(P) 8-bit
10546 1111 100S 0TTL NNNN XXXX 1110 iiii iiii - positive 8-bit (T instruction)
10547 1111 100S 1TTL NNNN XXXX iiii iiii iiii - positive 12-bit
10548 1111 100S 0TTL NNNN XXXX 1100 iiii iiii - negative 8-bit
10549
10550 Uppercase letters indicate bits that are already encoded at
10551 this point. Lowercase letters are our problem. For the
10552 second block of instructions, the secondary opcode nybble
10553 (bits 8..11) is present, and bit 23 is zero, even if this is
10554 a PC-relative operation. */
10555 newval = md_chars_to_number (buf, THUMB_SIZE);
10556 newval <<= 16;
10557 newval |= md_chars_to_number (buf+THUMB_SIZE, THUMB_SIZE);
10558
10559 if ((newval & 0xf0000000) == 0xe0000000)
10560 {
10561 /* Doubleword load/store: 8-bit offset, scaled by 4. */
10562 if (value >= 0)
10563 newval |= (1 << 23);
10564 else
10565 value = -value;
10566 if (value % 4 != 0)
10567 {
10568 as_bad_where (fixP->fx_file, fixP->fx_line,
10569 _("offset not a multiple of 4"));
10570 break;
10571 }
10572 value /= 4;
10573 if (value >= 0xff)
10574 {
10575 as_bad_where (fixP->fx_file, fixP->fx_line,
10576 _("offset out of range"));
10577 break;
10578 }
10579 newval &= ~0xff;
10580 }
10581 else if ((newval & 0x000f0000) == 0x000f0000)
10582 {
10583 /* PC-relative, 12-bit offset. */
10584 if (value >= 0)
10585 newval |= (1 << 23);
10586 else
10587 value = -value;
10588 if (value >= 0xfff)
10589 {
10590 as_bad_where (fixP->fx_file, fixP->fx_line,
10591 _("offset out of range"));
10592 break;
10593 }
10594 newval &= ~0xfff;
10595 }
10596 else if ((newval & 0x00000100) == 0x00000100)
10597 {
10598 /* Writeback: 8-bit, +/- offset. */
10599 if (value >= 0)
10600 newval |= (1 << 9);
10601 else
10602 value = -value;
10603 if (value >= 0xff)
10604 {
10605 as_bad_where (fixP->fx_file, fixP->fx_line,
10606 _("offset out of range"));
10607 break;
10608 }
10609 newval &= ~0xff;
10610 }
10611 else if ((newval & 0x00000f00) == 0x00000e00)
10612 {
10613 /* T-instruction: positive 8-bit offset. */
10614 if (value < 0 || value >= 0xff)
10615 {
10616 as_bad_where (fixP->fx_file, fixP->fx_line,
10617 _("offset out of range"));
10618 break;
10619 }
10620 newval &= ~0xff;
10621 newval |= value;
10622 }
10623 else
10624 {
10625 /* Positive 12-bit or negative 8-bit offset. */
10626 int limit;
10627 if (value >= 0)
10628 {
10629 newval |= (1 << 23);
10630 limit = 0xfff;
10631 }
10632 else
10633 {
10634 value = -value;
10635 limit = 0xff;
10636 }
10637 if (value > limit)
10638 {
10639 as_bad_where (fixP->fx_file, fixP->fx_line,
10640 _("offset out of range"));
10641 break;
10642 }
10643 newval &= ~limit;
10644 }
10645
10646 newval |= value;
10647 md_number_to_chars (buf, (newval >> 16) & 0xffff, THUMB_SIZE);
10648 md_number_to_chars (buf + THUMB_SIZE, newval & 0xffff, THUMB_SIZE);
10649 break;
10650
10651 case BFD_RELOC_ARM_SHIFT_IMM:
10652 newval = md_chars_to_number (buf, INSN_SIZE);
10653 if (((unsigned long) value) > 32
10654 || (value == 32
10655 && (((newval & 0x60) == 0) || (newval & 0x60) == 0x60)))
10656 {
10657 as_bad_where (fixP->fx_file, fixP->fx_line,
10658 _("shift expression is too large"));
10659 break;
10660 }
10661
10662 if (value == 0)
10663 /* Shifts of zero must be done as lsl. */
10664 newval &= ~0x60;
10665 else if (value == 32)
10666 value = 0;
10667 newval &= 0xfffff07f;
10668 newval |= (value & 0x1f) << 7;
10669 md_number_to_chars (buf, newval, INSN_SIZE);
10670 break;
10671
10672 case BFD_RELOC_ARM_T32_IMMEDIATE:
10673 case BFD_RELOC_ARM_T32_IMM12:
10674 case BFD_RELOC_ARM_T32_ADD_PC12:
10675 /* We claim that this fixup has been processed here,
10676 even if in fact we generate an error because we do
10677 not have a reloc for it, so tc_gen_reloc will reject it. */
10678 fixP->fx_done = 1;
10679
10680 if (fixP->fx_addsy
10681 && ! S_IS_DEFINED (fixP->fx_addsy))
10682 {
10683 as_bad_where (fixP->fx_file, fixP->fx_line,
10684 _("undefined symbol %s used as an immediate value"),
10685 S_GET_NAME (fixP->fx_addsy));
10686 break;
10687 }
10688
10689 newval = md_chars_to_number (buf, THUMB_SIZE);
10690 newval <<= 16;
10691 newval |= md_chars_to_number (buf+2, THUMB_SIZE);
10692
10693 /* FUTURE: Implement analogue of negate_data_op for T32. */
10694 if (fixP->fx_r_type == BFD_RELOC_ARM_T32_IMMEDIATE)
10695 newimm = encode_thumb32_immediate (value);
10696 else
10697 {
10698 /* 12 bit immediate for addw/subw. */
10699 if (value < 0)
10700 {
10701 value = -value;
10702 newval ^= 0x00a00000;
10703 }
10704 if (value > 0xfff)
10705 newimm = (unsigned int) FAIL;
10706 else
10707 newimm = value;
10708 }
10709
10710 if (newimm == (unsigned int)FAIL)
10711 {
10712 as_bad_where (fixP->fx_file, fixP->fx_line,
10713 _("invalid constant (%lx) after fixup"),
10714 (unsigned long) value);
10715 break;
10716 }
10717
10718 newval |= (newimm & 0x800) << 15;
10719 newval |= (newimm & 0x700) << 4;
10720 newval |= (newimm & 0x0ff);
10721
10722 md_number_to_chars (buf, (valueT) ((newval >> 16) & 0xffff), THUMB_SIZE);
10723 md_number_to_chars (buf+2, (valueT) (newval & 0xffff), THUMB_SIZE);
10724 break;
10725
10726 case BFD_RELOC_ARM_SMI:
10727 if (((unsigned long) value) > 0xffff)
10728 as_bad_where (fixP->fx_file, fixP->fx_line,
10729 _("invalid smi expression"));
10730 newval = md_chars_to_number (buf, INSN_SIZE);
10731 newval |= (value & 0xf) | ((value & 0xfff0) << 4);
10732 md_number_to_chars (buf, newval, INSN_SIZE);
10733 break;
10734
10735 case BFD_RELOC_ARM_SWI:
10736 if (fixP->tc_fix_data != 0)
10737 {
10738 if (((unsigned long) value) > 0xff)
10739 as_bad_where (fixP->fx_file, fixP->fx_line,
10740 _("invalid swi expression"));
10741 newval = md_chars_to_number (buf, THUMB_SIZE);
10742 newval |= value;
10743 md_number_to_chars (buf, newval, THUMB_SIZE);
10744 }
10745 else
10746 {
10747 if (((unsigned long) value) > 0x00ffffff)
10748 as_bad_where (fixP->fx_file, fixP->fx_line,
10749 _("invalid swi expression"));
10750 newval = md_chars_to_number (buf, INSN_SIZE);
10751 newval |= value;
10752 md_number_to_chars (buf, newval, INSN_SIZE);
10753 }
10754 break;
10755
10756 case BFD_RELOC_ARM_MULTI:
10757 if (((unsigned long) value) > 0xffff)
10758 as_bad_where (fixP->fx_file, fixP->fx_line,
10759 _("invalid expression in load/store multiple"));
10760 newval = value | md_chars_to_number (buf, INSN_SIZE);
10761 md_number_to_chars (buf, newval, INSN_SIZE);
10762 break;
10763
10764 case BFD_RELOC_ARM_PCREL_BRANCH:
10765 #ifdef OBJ_ELF
10766 case BFD_RELOC_ARM_PLT32:
10767 #endif
10768
10769 /* We are going to store value (shifted right by two) in the
10770 instruction, in a 24 bit, signed field. Bits 0 and 1 must be
10771 clear, and bits 26 through 32 either all clear or all set. */
10772 if (value & 0x00000003)
10773 as_bad_where (fixP->fx_file, fixP->fx_line,
10774 _("misaligned branch destination"));
10775 if ((value & (offsetT)0xfe000000) != (offsetT)0
10776 && (value & (offsetT)0xfe000000) != (offsetT)0xfe000000)
10777 as_bad_where (fixP->fx_file, fixP->fx_line,
10778 _("branch out of range"));
10779
10780 if (fixP->fx_done || !seg->use_rela_p)
10781 {
10782 newval = md_chars_to_number (buf, INSN_SIZE);
10783 newval |= (value >> 2) & 0x00ffffff;
10784 md_number_to_chars (buf, newval, INSN_SIZE);
10785 }
10786 break;
10787
10788 case BFD_RELOC_ARM_PCREL_BLX:
10789 /* BLX allows bit 1 to be set in the branch destination, since
10790 it targets a Thumb instruction which is only required to be
10791 aligned modulo 2. Other constraints are as for B/BL. */
10792 if (value & 0x00000001)
10793 as_bad_where (fixP->fx_file, fixP->fx_line,
10794 _("misaligned BLX destination"));
10795 if ((value & (offsetT)0xfe000000) != (offsetT)0
10796 && (value & (offsetT)0xfe000000) != (offsetT)0xfe000000)
10797 as_bad_where (fixP->fx_file, fixP->fx_line,
10798 _("branch out of range"));
10799
10800 if (fixP->fx_done || !seg->use_rela_p)
10801 {
10802 offsetT hbit;
10803 hbit = (value >> 1) & 1;
10804 value = (value >> 2) & 0x00ffffff;
10805
10806 newval = md_chars_to_number (buf, INSN_SIZE);
10807 newval |= value | hbit << 24;
10808 md_number_to_chars (buf, newval, INSN_SIZE);
10809 }
10810 break;
10811
10812 case BFD_RELOC_THUMB_PCREL_BRANCH7: /* CZB */
10813 /* CZB can only branch forward. */
10814 if (value & ~0x7e)
10815 as_bad_where (fixP->fx_file, fixP->fx_line,
10816 _("branch out of range"));
10817
10818 if (fixP->fx_done || !seg->use_rela_p)
10819 {
10820 newval = md_chars_to_number (buf, THUMB_SIZE);
10821 newval |= ((value & 0x2e) << 2) | ((value & 0x40) << 3);
10822 md_number_to_chars (buf, newval, THUMB_SIZE);
10823 }
10824 break;
10825
10826 case BFD_RELOC_THUMB_PCREL_BRANCH9: /* Conditional branch. */
10827 if ((value & ~0xff) && ((value & ~0xff) != ~0xff))
10828 as_bad_where (fixP->fx_file, fixP->fx_line,
10829 _("branch out of range"));
10830
10831 if (fixP->fx_done || !seg->use_rela_p)
10832 {
10833 newval = md_chars_to_number (buf, THUMB_SIZE);
10834 newval |= (value & 0x1ff) >> 1;
10835 md_number_to_chars (buf, newval, THUMB_SIZE);
10836 }
10837 break;
10838
10839 case BFD_RELOC_THUMB_PCREL_BRANCH12: /* Unconditional branch. */
10840 if ((value & ~0x7ff) && ((value & ~0x7ff) != ~0x7ff))
10841 as_bad_where (fixP->fx_file, fixP->fx_line,
10842 _("branch out of range"));
10843
10844 if (fixP->fx_done || !seg->use_rela_p)
10845 {
10846 newval = md_chars_to_number (buf, THUMB_SIZE);
10847 newval |= (value & 0xfff) >> 1;
10848 md_number_to_chars (buf, newval, THUMB_SIZE);
10849 }
10850 break;
10851
10852 case BFD_RELOC_THUMB_PCREL_BRANCH20:
10853 if ((value & ~0x1fffff) && ((value & ~0x1fffff) != ~0x1fffff))
10854 as_bad_where (fixP->fx_file, fixP->fx_line,
10855 _("conditional branch out of range"));
10856
10857 if (fixP->fx_done || !seg->use_rela_p)
10858 {
10859 offsetT newval2;
10860 addressT S, J1, J2, lo, hi;
10861
10862 S = (value & 0x00100000) >> 20;
10863 J2 = (value & 0x00080000) >> 19;
10864 J1 = (value & 0x00040000) >> 18;
10865 hi = (value & 0x0003f000) >> 12;
10866 lo = (value & 0x00000ffe) >> 1;
10867
10868 newval = md_chars_to_number (buf, THUMB_SIZE);
10869 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
10870 newval |= (S << 10) | hi;
10871 newval2 |= (J1 << 13) | (J2 << 11) | lo;
10872 md_number_to_chars (buf, newval, THUMB_SIZE);
10873 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
10874 }
10875 break;
10876
10877 case BFD_RELOC_THUMB_PCREL_BLX:
10878 case BFD_RELOC_THUMB_PCREL_BRANCH23:
10879 if ((value & ~0x3fffff) && ((value & ~0x3fffff) != ~0x3fffff))
10880 as_bad_where (fixP->fx_file, fixP->fx_line,
10881 _("branch out of range"));
10882
10883 if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BLX)
10884 /* For a BLX instruction, make sure that the relocation is rounded up
10885 to a word boundary. This follows the semantics of the instruction
10886 which specifies that bit 1 of the target address will come from bit
10887 1 of the base address. */
10888 value = (value + 1) & ~ 1;
10889
10890 if (fixP->fx_done || !seg->use_rela_p)
10891 {
10892 offsetT newval2;
10893
10894 newval = md_chars_to_number (buf, THUMB_SIZE);
10895 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
10896 newval |= (value & 0x7fffff) >> 12;
10897 newval2 |= (value & 0xfff) >> 1;
10898 md_number_to_chars (buf, newval, THUMB_SIZE);
10899 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
10900 }
10901 break;
10902
10903 case BFD_RELOC_THUMB_PCREL_BRANCH25:
10904 if ((value & ~0x1ffffff) && ((value & ~0x1ffffff) != ~0x1ffffff))
10905 as_bad_where (fixP->fx_file, fixP->fx_line,
10906 _("branch out of range"));
10907
10908 if (fixP->fx_done || !seg->use_rela_p)
10909 {
10910 offsetT newval2;
10911 addressT S, I1, I2, lo, hi;
10912
10913 S = (value & 0x01000000) >> 24;
10914 I1 = (value & 0x00800000) >> 23;
10915 I2 = (value & 0x00400000) >> 22;
10916 hi = (value & 0x003ff000) >> 12;
10917 lo = (value & 0x00000ffe) >> 1;
10918
10919 I1 = !(I1 ^ S);
10920 I2 = !(I2 ^ S);
10921
10922 newval = md_chars_to_number (buf, THUMB_SIZE);
10923 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
10924 newval |= (S << 10) | hi;
10925 newval2 |= (I1 << 13) | (I2 << 11) | lo;
10926 md_number_to_chars (buf, newval, THUMB_SIZE);
10927 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
10928 }
10929 break;
10930
10931 case BFD_RELOC_8:
10932 if (fixP->fx_done || !seg->use_rela_p)
10933 md_number_to_chars (buf, value, 1);
10934 break;
10935
10936 case BFD_RELOC_16:
10937 if (fixP->fx_done || !seg->use_rela_p)
10938 md_number_to_chars (buf, value, 2);
10939 break;
10940
10941 #ifdef OBJ_ELF
10942 case BFD_RELOC_ARM_TLS_GD32:
10943 case BFD_RELOC_ARM_TLS_LE32:
10944 case BFD_RELOC_ARM_TLS_IE32:
10945 case BFD_RELOC_ARM_TLS_LDM32:
10946 case BFD_RELOC_ARM_TLS_LDO32:
10947 S_SET_THREAD_LOCAL (fixP->fx_addsy);
10948 /* fall through */
10949
10950 case BFD_RELOC_ARM_GOT32:
10951 case BFD_RELOC_ARM_GOTOFF:
10952 case BFD_RELOC_ARM_TARGET2:
10953 if (fixP->fx_done || !seg->use_rela_p)
10954 md_number_to_chars (buf, 0, 4);
10955 break;
10956 #endif
10957
10958 case BFD_RELOC_RVA:
10959 case BFD_RELOC_32:
10960 case BFD_RELOC_ARM_TARGET1:
10961 case BFD_RELOC_ARM_ROSEGREL32:
10962 case BFD_RELOC_ARM_SBREL32:
10963 case BFD_RELOC_32_PCREL:
10964 if (fixP->fx_done || !seg->use_rela_p)
10965 md_number_to_chars (buf, value, 4);
10966 break;
10967
10968 #ifdef OBJ_ELF
10969 case BFD_RELOC_ARM_PREL31:
10970 if (fixP->fx_done || !seg->use_rela_p)
10971 {
10972 newval = md_chars_to_number (buf, 4) & 0x80000000;
10973 if ((value ^ (value >> 1)) & 0x40000000)
10974 {
10975 as_bad_where (fixP->fx_file, fixP->fx_line,
10976 _("rel31 relocation overflow"));
10977 }
10978 newval |= value & 0x7fffffff;
10979 md_number_to_chars (buf, newval, 4);
10980 }
10981 break;
10982 #endif
10983
10984 case BFD_RELOC_ARM_CP_OFF_IMM:
10985 if (value < -1023 || value > 1023 || (value & 3))
10986 as_bad_where (fixP->fx_file, fixP->fx_line,
10987 _("co-processor offset out of range"));
10988 cp_off_common:
10989 sign = value >= 0;
10990 if (value < 0)
10991 value = -value;
10992 newval = md_chars_to_number (buf, INSN_SIZE) & 0xff7fff00;
10993 newval |= (value >> 2) | (sign ? INDEX_UP : 0);
10994 if (value == 0)
10995 newval &= ~WRITE_BACK;
10996 md_number_to_chars (buf, newval, INSN_SIZE);
10997 break;
10998
10999 case BFD_RELOC_ARM_CP_OFF_IMM_S2:
11000 if (value < -255 || value > 255)
11001 as_bad_where (fixP->fx_file, fixP->fx_line,
11002 _("co-processor offset out of range"));
11003 goto cp_off_common;
11004
11005 case BFD_RELOC_ARM_THUMB_OFFSET:
11006 newval = md_chars_to_number (buf, THUMB_SIZE);
11007 /* Exactly what ranges, and where the offset is inserted depends
11008 on the type of instruction, we can establish this from the
11009 top 4 bits. */
11010 switch (newval >> 12)
11011 {
11012 case 4: /* PC load. */
11013 /* Thumb PC loads are somewhat odd, bit 1 of the PC is
11014 forced to zero for these loads; md_pcrel_from has already
11015 compensated for this. */
11016 if (value & 3)
11017 as_bad_where (fixP->fx_file, fixP->fx_line,
11018 _("invalid offset, target not word aligned (0x%08lX)"),
11019 (((unsigned int) fixP->fx_frag->fr_address
11020 + (unsigned int) fixP->fx_where) & ~3) + value);
11021
11022 if (value & ~0x3fc)
11023 as_bad_where (fixP->fx_file, fixP->fx_line,
11024 _("invalid offset, value too big (0x%08lX)"),
11025 (long) value);
11026
11027 newval |= value >> 2;
11028 break;
11029
11030 case 9: /* SP load/store. */
11031 if (value & ~0x3fc)
11032 as_bad_where (fixP->fx_file, fixP->fx_line,
11033 _("invalid offset, value too big (0x%08lX)"),
11034 (long) value);
11035 newval |= value >> 2;
11036 break;
11037
11038 case 6: /* Word load/store. */
11039 if (value & ~0x7c)
11040 as_bad_where (fixP->fx_file, fixP->fx_line,
11041 _("invalid offset, value too big (0x%08lX)"),
11042 (long) value);
11043 newval |= value << 4; /* 6 - 2. */
11044 break;
11045
11046 case 7: /* Byte load/store. */
11047 if (value & ~0x1f)
11048 as_bad_where (fixP->fx_file, fixP->fx_line,
11049 _("invalid offset, value too big (0x%08lX)"),
11050 (long) value);
11051 newval |= value << 6;
11052 break;
11053
11054 case 8: /* Halfword load/store. */
11055 if (value & ~0x3e)
11056 as_bad_where (fixP->fx_file, fixP->fx_line,
11057 _("invalid offset, value too big (0x%08lX)"),
11058 (long) value);
11059 newval |= value << 5; /* 6 - 1. */
11060 break;
11061
11062 default:
11063 as_bad_where (fixP->fx_file, fixP->fx_line,
11064 "Unable to process relocation for thumb opcode: %lx",
11065 (unsigned long) newval);
11066 break;
11067 }
11068 md_number_to_chars (buf, newval, THUMB_SIZE);
11069 break;
11070
11071 case BFD_RELOC_ARM_THUMB_ADD:
11072 /* This is a complicated relocation, since we use it for all of
11073 the following immediate relocations:
11074
11075 3bit ADD/SUB
11076 8bit ADD/SUB
11077 9bit ADD/SUB SP word-aligned
11078 10bit ADD PC/SP word-aligned
11079
11080 The type of instruction being processed is encoded in the
11081 instruction field:
11082
11083 0x8000 SUB
11084 0x00F0 Rd
11085 0x000F Rs
11086 */
11087 newval = md_chars_to_number (buf, THUMB_SIZE);
11088 {
11089 int rd = (newval >> 4) & 0xf;
11090 int rs = newval & 0xf;
11091 int subtract = !!(newval & 0x8000);
11092
11093 /* Check for HI regs, only very restricted cases allowed:
11094 Adjusting SP, and using PC or SP to get an address. */
11095 if ((rd > 7 && (rd != REG_SP || rs != REG_SP))
11096 || (rs > 7 && rs != REG_SP && rs != REG_PC))
11097 as_bad_where (fixP->fx_file, fixP->fx_line,
11098 _("invalid Hi register with immediate"));
11099
11100 /* If value is negative, choose the opposite instruction. */
11101 if (value < 0)
11102 {
11103 value = -value;
11104 subtract = !subtract;
11105 if (value < 0)
11106 as_bad_where (fixP->fx_file, fixP->fx_line,
11107 _("immediate value out of range"));
11108 }
11109
11110 if (rd == REG_SP)
11111 {
11112 if (value & ~0x1fc)
11113 as_bad_where (fixP->fx_file, fixP->fx_line,
11114 _("invalid immediate for stack address calculation"));
11115 newval = subtract ? T_OPCODE_SUB_ST : T_OPCODE_ADD_ST;
11116 newval |= value >> 2;
11117 }
11118 else if (rs == REG_PC || rs == REG_SP)
11119 {
11120 if (subtract || value & ~0x3fc)
11121 as_bad_where (fixP->fx_file, fixP->fx_line,
11122 _("invalid immediate for address calculation (value = 0x%08lX)"),
11123 (unsigned long) value);
11124 newval = (rs == REG_PC ? T_OPCODE_ADD_PC : T_OPCODE_ADD_SP);
11125 newval |= rd << 8;
11126 newval |= value >> 2;
11127 }
11128 else if (rs == rd)
11129 {
11130 if (value & ~0xff)
11131 as_bad_where (fixP->fx_file, fixP->fx_line,
11132 _("immediate value out of range"));
11133 newval = subtract ? T_OPCODE_SUB_I8 : T_OPCODE_ADD_I8;
11134 newval |= (rd << 8) | value;
11135 }
11136 else
11137 {
11138 if (value & ~0x7)
11139 as_bad_where (fixP->fx_file, fixP->fx_line,
11140 _("immediate value out of range"));
11141 newval = subtract ? T_OPCODE_SUB_I3 : T_OPCODE_ADD_I3;
11142 newval |= rd | (rs << 3) | (value << 6);
11143 }
11144 }
11145 md_number_to_chars (buf, newval, THUMB_SIZE);
11146 break;
11147
11148 case BFD_RELOC_ARM_THUMB_IMM:
11149 newval = md_chars_to_number (buf, THUMB_SIZE);
11150 if (value < 0 || value > 255)
11151 as_bad_where (fixP->fx_file, fixP->fx_line,
11152 _("invalid immediate: %ld is too large"),
11153 (long) value);
11154 newval |= value;
11155 md_number_to_chars (buf, newval, THUMB_SIZE);
11156 break;
11157
11158 case BFD_RELOC_ARM_THUMB_SHIFT:
11159 /* 5bit shift value (0..32). LSL cannot take 32. */
11160 newval = md_chars_to_number (buf, THUMB_SIZE) & 0xf83f;
11161 temp = newval & 0xf800;
11162 if (value < 0 || value > 32 || (value == 32 && temp == T_OPCODE_LSL_I))
11163 as_bad_where (fixP->fx_file, fixP->fx_line,
11164 _("invalid shift value: %ld"), (long) value);
11165 /* Shifts of zero must be encoded as LSL. */
11166 if (value == 0)
11167 newval = (newval & 0x003f) | T_OPCODE_LSL_I;
11168 /* Shifts of 32 are encoded as zero. */
11169 else if (value == 32)
11170 value = 0;
11171 newval |= value << 6;
11172 md_number_to_chars (buf, newval, THUMB_SIZE);
11173 break;
11174
11175 case BFD_RELOC_VTABLE_INHERIT:
11176 case BFD_RELOC_VTABLE_ENTRY:
11177 fixP->fx_done = 0;
11178 return;
11179
11180 case BFD_RELOC_UNUSED:
11181 default:
11182 as_bad_where (fixP->fx_file, fixP->fx_line,
11183 _("bad relocation fixup type (%d)"), fixP->fx_r_type);
11184 }
11185 }
11186
11187 /* Translate internal representation of relocation info to BFD target
11188 format. */
11189
11190 arelent *
11191 tc_gen_reloc (asection * section ATTRIBUTE_UNUSED,
11192 fixS * fixp)
11193 {
11194 arelent * reloc;
11195 bfd_reloc_code_real_type code;
11196
11197 reloc = xmalloc (sizeof (arelent));
11198
11199 reloc->sym_ptr_ptr = xmalloc (sizeof (asymbol *));
11200 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
11201 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
11202
11203 if (fixp->fx_pcrel)
11204 fixp->fx_offset = reloc->address;
11205 reloc->addend = fixp->fx_offset;
11206
11207 switch (fixp->fx_r_type)
11208 {
11209 case BFD_RELOC_8:
11210 if (fixp->fx_pcrel)
11211 {
11212 code = BFD_RELOC_8_PCREL;
11213 break;
11214 }
11215
11216 case BFD_RELOC_16:
11217 if (fixp->fx_pcrel)
11218 {
11219 code = BFD_RELOC_16_PCREL;
11220 break;
11221 }
11222
11223 case BFD_RELOC_32:
11224 if (fixp->fx_pcrel)
11225 {
11226 code = BFD_RELOC_32_PCREL;
11227 break;
11228 }
11229
11230 case BFD_RELOC_NONE:
11231 case BFD_RELOC_ARM_PCREL_BRANCH:
11232 case BFD_RELOC_ARM_PCREL_BLX:
11233 case BFD_RELOC_RVA:
11234 case BFD_RELOC_THUMB_PCREL_BRANCH7:
11235 case BFD_RELOC_THUMB_PCREL_BRANCH9:
11236 case BFD_RELOC_THUMB_PCREL_BRANCH12:
11237 case BFD_RELOC_THUMB_PCREL_BRANCH20:
11238 case BFD_RELOC_THUMB_PCREL_BRANCH23:
11239 case BFD_RELOC_THUMB_PCREL_BRANCH25:
11240 case BFD_RELOC_THUMB_PCREL_BLX:
11241 case BFD_RELOC_VTABLE_ENTRY:
11242 case BFD_RELOC_VTABLE_INHERIT:
11243 code = fixp->fx_r_type;
11244 break;
11245
11246 case BFD_RELOC_ARM_LITERAL:
11247 case BFD_RELOC_ARM_HWLITERAL:
11248 /* If this is called then the a literal has
11249 been referenced across a section boundary. */
11250 as_bad_where (fixp->fx_file, fixp->fx_line,
11251 _("literal referenced across section boundary"));
11252 return NULL;
11253
11254 #ifdef OBJ_ELF
11255 case BFD_RELOC_ARM_GOT32:
11256 case BFD_RELOC_ARM_GOTOFF:
11257 case BFD_RELOC_ARM_PLT32:
11258 case BFD_RELOC_ARM_TARGET1:
11259 case BFD_RELOC_ARM_ROSEGREL32:
11260 case BFD_RELOC_ARM_SBREL32:
11261 case BFD_RELOC_ARM_PREL31:
11262 case BFD_RELOC_ARM_TARGET2:
11263 case BFD_RELOC_ARM_TLS_LE32:
11264 case BFD_RELOC_ARM_TLS_LDO32:
11265 code = fixp->fx_r_type;
11266 break;
11267
11268 case BFD_RELOC_ARM_TLS_GD32:
11269 case BFD_RELOC_ARM_TLS_IE32:
11270 case BFD_RELOC_ARM_TLS_LDM32:
11271 /* BFD will include the symbol's address in the addend.
11272 But we don't want that, so subtract it out again here. */
11273 if (!S_IS_COMMON (fixp->fx_addsy))
11274 reloc->addend -= (*reloc->sym_ptr_ptr)->value;
11275 code = fixp->fx_r_type;
11276 break;
11277 #endif
11278
11279 case BFD_RELOC_ARM_IMMEDIATE:
11280 as_bad_where (fixp->fx_file, fixp->fx_line,
11281 _("internal relocation (type: IMMEDIATE) not fixed up"));
11282 return NULL;
11283
11284 case BFD_RELOC_ARM_ADRL_IMMEDIATE:
11285 as_bad_where (fixp->fx_file, fixp->fx_line,
11286 _("ADRL used for a symbol not defined in the same file"));
11287 return NULL;
11288
11289 case BFD_RELOC_ARM_OFFSET_IMM:
11290 if (fixp->fx_addsy != NULL
11291 && !S_IS_DEFINED (fixp->fx_addsy)
11292 && S_IS_LOCAL (fixp->fx_addsy))
11293 {
11294 as_bad_where (fixp->fx_file, fixp->fx_line,
11295 _("undefined local label `%s'"),
11296 S_GET_NAME (fixp->fx_addsy));
11297 return NULL;
11298 }
11299
11300 as_bad_where (fixp->fx_file, fixp->fx_line,
11301 _("internal_relocation (type: OFFSET_IMM) not fixed up"));
11302 return NULL;
11303
11304 default:
11305 {
11306 char * type;
11307
11308 switch (fixp->fx_r_type)
11309 {
11310 case BFD_RELOC_NONE: type = "NONE"; break;
11311 case BFD_RELOC_ARM_OFFSET_IMM8: type = "OFFSET_IMM8"; break;
11312 case BFD_RELOC_ARM_SHIFT_IMM: type = "SHIFT_IMM"; break;
11313 case BFD_RELOC_ARM_SMI: type = "SMI"; break;
11314 case BFD_RELOC_ARM_SWI: type = "SWI"; break;
11315 case BFD_RELOC_ARM_MULTI: type = "MULTI"; break;
11316 case BFD_RELOC_ARM_CP_OFF_IMM: type = "CP_OFF_IMM"; break;
11317 case BFD_RELOC_ARM_THUMB_ADD: type = "THUMB_ADD"; break;
11318 case BFD_RELOC_ARM_THUMB_SHIFT: type = "THUMB_SHIFT"; break;
11319 case BFD_RELOC_ARM_THUMB_IMM: type = "THUMB_IMM"; break;
11320 case BFD_RELOC_ARM_THUMB_OFFSET: type = "THUMB_OFFSET"; break;
11321 default: type = _("<unknown>"); break;
11322 }
11323 as_bad_where (fixp->fx_file, fixp->fx_line,
11324 _("cannot represent %s relocation in this object file format"),
11325 type);
11326 return NULL;
11327 }
11328 }
11329
11330 #ifdef OBJ_ELF
11331 if ((code == BFD_RELOC_32_PCREL || code == BFD_RELOC_32)
11332 && GOT_symbol
11333 && fixp->fx_addsy == GOT_symbol)
11334 {
11335 code = BFD_RELOC_ARM_GOTPC;
11336 reloc->addend = fixp->fx_offset = reloc->address;
11337 }
11338 #endif
11339
11340 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
11341
11342 if (reloc->howto == NULL)
11343 {
11344 as_bad_where (fixp->fx_file, fixp->fx_line,
11345 _("cannot represent %s relocation in this object file format"),
11346 bfd_get_reloc_code_name (code));
11347 return NULL;
11348 }
11349
11350 /* HACK: Since arm ELF uses Rel instead of Rela, encode the
11351 vtable entry to be used in the relocation's section offset. */
11352 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
11353 reloc->address = fixp->fx_offset;
11354
11355 return reloc;
11356 }
11357
11358 /* This fix_new is called by cons via TC_CONS_FIX_NEW. */
11359
11360 void
11361 cons_fix_new_arm (fragS * frag,
11362 int where,
11363 int size,
11364 expressionS * exp)
11365 {
11366 bfd_reloc_code_real_type type;
11367 int pcrel = 0;
11368
11369 /* Pick a reloc.
11370 FIXME: @@ Should look at CPU word size. */
11371 switch (size)
11372 {
11373 case 1:
11374 type = BFD_RELOC_8;
11375 break;
11376 case 2:
11377 type = BFD_RELOC_16;
11378 break;
11379 case 4:
11380 default:
11381 type = BFD_RELOC_32;
11382 break;
11383 case 8:
11384 type = BFD_RELOC_64;
11385 break;
11386 }
11387
11388 fix_new_exp (frag, where, (int) size, exp, pcrel, type);
11389 }
11390
11391 #if defined OBJ_COFF || defined OBJ_ELF
11392 void
11393 arm_validate_fix (fixS * fixP)
11394 {
11395 /* If the destination of the branch is a defined symbol which does not have
11396 the THUMB_FUNC attribute, then we must be calling a function which has
11397 the (interfacearm) attribute. We look for the Thumb entry point to that
11398 function and change the branch to refer to that function instead. */
11399 if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BRANCH23
11400 && fixP->fx_addsy != NULL
11401 && S_IS_DEFINED (fixP->fx_addsy)
11402 && ! THUMB_IS_FUNC (fixP->fx_addsy))
11403 {
11404 fixP->fx_addsy = find_real_start (fixP->fx_addsy);
11405 }
11406 }
11407 #endif
11408
11409 int
11410 arm_force_relocation (struct fix * fixp)
11411 {
11412 #if defined (OBJ_COFF) && defined (TE_PE)
11413 if (fixp->fx_r_type == BFD_RELOC_RVA)
11414 return 1;
11415 #endif
11416
11417 /* Resolve these relocations even if the symbol is extern or weak. */
11418 if (fixp->fx_r_type == BFD_RELOC_ARM_IMMEDIATE
11419 || fixp->fx_r_type == BFD_RELOC_ARM_OFFSET_IMM
11420 || fixp->fx_r_type == BFD_RELOC_ARM_ADRL_IMMEDIATE)
11421 return 0;
11422
11423 return generic_force_reloc (fixp);
11424 }
11425
11426 #ifdef OBJ_COFF
11427 /* This is a little hack to help the gas/arm/adrl.s test. It prevents
11428 local labels from being added to the output symbol table when they
11429 are used with the ADRL pseudo op. The ADRL relocation should always
11430 be resolved before the binbary is emitted, so it is safe to say that
11431 it is adjustable. */
11432
11433 bfd_boolean
11434 arm_fix_adjustable (fixS * fixP)
11435 {
11436 if (fixP->fx_r_type == BFD_RELOC_ARM_ADRL_IMMEDIATE)
11437 return 1;
11438 return 0;
11439 }
11440 #endif
11441
11442 #ifdef OBJ_ELF
11443 /* Relocations against Thumb function names must be left unadjusted,
11444 so that the linker can use this information to correctly set the
11445 bottom bit of their addresses. The MIPS version of this function
11446 also prevents relocations that are mips-16 specific, but I do not
11447 know why it does this.
11448
11449 FIXME:
11450 There is one other problem that ought to be addressed here, but
11451 which currently is not: Taking the address of a label (rather
11452 than a function) and then later jumping to that address. Such
11453 addresses also ought to have their bottom bit set (assuming that
11454 they reside in Thumb code), but at the moment they will not. */
11455
11456 bfd_boolean
11457 arm_fix_adjustable (fixS * fixP)
11458 {
11459 if (fixP->fx_addsy == NULL)
11460 return 1;
11461
11462 if (THUMB_IS_FUNC (fixP->fx_addsy)
11463 && fixP->fx_subsy == NULL)
11464 return 0;
11465
11466 /* We need the symbol name for the VTABLE entries. */
11467 if ( fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
11468 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
11469 return 0;
11470
11471 /* Don't allow symbols to be discarded on GOT related relocs. */
11472 if (fixP->fx_r_type == BFD_RELOC_ARM_PLT32
11473 || fixP->fx_r_type == BFD_RELOC_ARM_GOT32
11474 || fixP->fx_r_type == BFD_RELOC_ARM_GOTOFF
11475 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_GD32
11476 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LE32
11477 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_IE32
11478 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDM32
11479 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDO32
11480 || fixP->fx_r_type == BFD_RELOC_ARM_TARGET2)
11481 return 0;
11482
11483 return 1;
11484 }
11485
11486 const char *
11487 elf32_arm_target_format (void)
11488 {
11489 #ifdef TE_SYMBIAN
11490 return (target_big_endian
11491 ? "elf32-bigarm-symbian"
11492 : "elf32-littlearm-symbian");
11493 #elif defined (TE_VXWORKS)
11494 return (target_big_endian
11495 ? "elf32-bigarm-vxworks"
11496 : "elf32-littlearm-vxworks");
11497 #else
11498 if (target_big_endian)
11499 return "elf32-bigarm";
11500 else
11501 return "elf32-littlearm";
11502 #endif
11503 }
11504
11505 void
11506 armelf_frob_symbol (symbolS * symp,
11507 int * puntp)
11508 {
11509 elf_frob_symbol (symp, puntp);
11510 }
11511 #endif
11512
11513 /* MD interface: Finalization. */
11514
11515 /* A good place to do this, although this was probably not intended
11516 for this kind of use. We need to dump the literal pool before
11517 references are made to a null symbol pointer. */
11518
11519 void
11520 arm_cleanup (void)
11521 {
11522 literal_pool * pool;
11523
11524 for (pool = list_of_pools; pool; pool = pool->next)
11525 {
11526 /* Put it at the end of the relevent section. */
11527 subseg_set (pool->section, pool->sub_section);
11528 #ifdef OBJ_ELF
11529 arm_elf_change_section ();
11530 #endif
11531 s_ltorg (0);
11532 }
11533 }
11534
11535 /* Adjust the symbol table. This marks Thumb symbols as distinct from
11536 ARM ones. */
11537
11538 void
11539 arm_adjust_symtab (void)
11540 {
11541 #ifdef OBJ_COFF
11542 symbolS * sym;
11543
11544 for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym))
11545 {
11546 if (ARM_IS_THUMB (sym))
11547 {
11548 if (THUMB_IS_FUNC (sym))
11549 {
11550 /* Mark the symbol as a Thumb function. */
11551 if ( S_GET_STORAGE_CLASS (sym) == C_STAT
11552 || S_GET_STORAGE_CLASS (sym) == C_LABEL) /* This can happen! */
11553 S_SET_STORAGE_CLASS (sym, C_THUMBSTATFUNC);
11554
11555 else if (S_GET_STORAGE_CLASS (sym) == C_EXT)
11556 S_SET_STORAGE_CLASS (sym, C_THUMBEXTFUNC);
11557 else
11558 as_bad (_("%s: unexpected function type: %d"),
11559 S_GET_NAME (sym), S_GET_STORAGE_CLASS (sym));
11560 }
11561 else switch (S_GET_STORAGE_CLASS (sym))
11562 {
11563 case C_EXT:
11564 S_SET_STORAGE_CLASS (sym, C_THUMBEXT);
11565 break;
11566 case C_STAT:
11567 S_SET_STORAGE_CLASS (sym, C_THUMBSTAT);
11568 break;
11569 case C_LABEL:
11570 S_SET_STORAGE_CLASS (sym, C_THUMBLABEL);
11571 break;
11572 default:
11573 /* Do nothing. */
11574 break;
11575 }
11576 }
11577
11578 if (ARM_IS_INTERWORK (sym))
11579 coffsymbol (symbol_get_bfdsym (sym))->native->u.syment.n_flags = 0xFF;
11580 }
11581 #endif
11582 #ifdef OBJ_ELF
11583 symbolS * sym;
11584 char bind;
11585
11586 for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym))
11587 {
11588 if (ARM_IS_THUMB (sym))
11589 {
11590 elf_symbol_type * elf_sym;
11591
11592 elf_sym = elf_symbol (symbol_get_bfdsym (sym));
11593 bind = ELF_ST_BIND (elf_sym->internal_elf_sym.st_info);
11594
11595 if (! bfd_is_arm_mapping_symbol_name (elf_sym->symbol.name))
11596 {
11597 /* If it's a .thumb_func, declare it as so,
11598 otherwise tag label as .code 16. */
11599 if (THUMB_IS_FUNC (sym))
11600 elf_sym->internal_elf_sym.st_info =
11601 ELF_ST_INFO (bind, STT_ARM_TFUNC);
11602 else
11603 elf_sym->internal_elf_sym.st_info =
11604 ELF_ST_INFO (bind, STT_ARM_16BIT);
11605 }
11606 }
11607 }
11608 #endif
11609 }
11610
11611 /* MD interface: Initialization. */
11612
11613 static void
11614 set_constant_flonums (void)
11615 {
11616 int i;
11617
11618 for (i = 0; i < NUM_FLOAT_VALS; i++)
11619 if (atof_ieee ((char *) fp_const[i], 'x', fp_values[i]) == NULL)
11620 abort ();
11621 }
11622
11623 void
11624 md_begin (void)
11625 {
11626 unsigned mach;
11627 unsigned int i;
11628
11629 if ( (arm_ops_hsh = hash_new ()) == NULL
11630 || (arm_cond_hsh = hash_new ()) == NULL
11631 || (arm_shift_hsh = hash_new ()) == NULL
11632 || (arm_psr_hsh = hash_new ()) == NULL
11633 || (arm_reg_hsh = hash_new ()) == NULL
11634 || (arm_reloc_hsh = hash_new ()) == NULL)
11635 as_fatal (_("virtual memory exhausted"));
11636
11637 for (i = 0; i < sizeof (insns) / sizeof (struct asm_opcode); i++)
11638 hash_insert (arm_ops_hsh, insns[i].template, (PTR) (insns + i));
11639 for (i = 0; i < sizeof (conds) / sizeof (struct asm_cond); i++)
11640 hash_insert (arm_cond_hsh, conds[i].template, (PTR) (conds + i));
11641 for (i = 0; i < sizeof (shift_names) / sizeof (struct asm_shift_name); i++)
11642 hash_insert (arm_shift_hsh, shift_names[i].name, (PTR) (shift_names + i));
11643 for (i = 0; i < sizeof (psrs) / sizeof (struct asm_psr); i++)
11644 hash_insert (arm_psr_hsh, psrs[i].template, (PTR) (psrs + i));
11645 for (i = 0; i < sizeof (reg_names) / sizeof (struct reg_entry); i++)
11646 hash_insert (arm_reg_hsh, reg_names[i].name, (PTR) (reg_names + i));
11647 #ifdef OBJ_ELF
11648 for (i = 0; i < sizeof (reloc_names) / sizeof (struct reloc_entry); i++)
11649 hash_insert (arm_reloc_hsh, reloc_names[i].name, (PTR) (reloc_names + i));
11650 #endif
11651
11652 set_constant_flonums ();
11653
11654 /* Set the cpu variant based on the command-line options. We prefer
11655 -mcpu= over -march= if both are set (as for GCC); and we prefer
11656 -mfpu= over any other way of setting the floating point unit.
11657 Use of legacy options with new options are faulted. */
11658 if (legacy_cpu != -1)
11659 {
11660 if (mcpu_cpu_opt != -1 || march_cpu_opt != -1)
11661 as_bad (_("use of old and new-style options to set CPU type"));
11662
11663 mcpu_cpu_opt = legacy_cpu;
11664 }
11665 else if (mcpu_cpu_opt == -1)
11666 mcpu_cpu_opt = march_cpu_opt;
11667
11668 if (legacy_fpu != -1)
11669 {
11670 if (mfpu_opt != -1)
11671 as_bad (_("use of old and new-style options to set FPU type"));
11672
11673 mfpu_opt = legacy_fpu;
11674 }
11675 else if (mfpu_opt == -1)
11676 {
11677 #if !(defined (TE_LINUX) || defined (TE_NetBSD) || defined (TE_VXWORKS))
11678 /* Some environments specify a default FPU. If they don't, infer it
11679 from the processor. */
11680 if (mcpu_fpu_opt != -1)
11681 mfpu_opt = mcpu_fpu_opt;
11682 else
11683 mfpu_opt = march_fpu_opt;
11684 #else
11685 mfpu_opt = FPU_DEFAULT;
11686 #endif
11687 }
11688
11689 if (mfpu_opt == -1)
11690 {
11691 if (mcpu_cpu_opt == -1)
11692 mfpu_opt = FPU_DEFAULT;
11693 else if (mcpu_cpu_opt & ARM_EXT_V5)
11694 mfpu_opt = FPU_ARCH_VFP_V2;
11695 else
11696 mfpu_opt = FPU_ARCH_FPA;
11697 }
11698
11699 if (mcpu_cpu_opt == -1)
11700 mcpu_cpu_opt = CPU_DEFAULT;
11701
11702 cpu_variant = mcpu_cpu_opt | mfpu_opt;
11703
11704 #if defined OBJ_COFF || defined OBJ_ELF
11705 {
11706 unsigned int flags = 0;
11707
11708 #if defined OBJ_ELF
11709 flags = meabi_flags;
11710
11711 switch (meabi_flags)
11712 {
11713 case EF_ARM_EABI_UNKNOWN:
11714 #endif
11715 /* Set the flags in the private structure. */
11716 if (uses_apcs_26) flags |= F_APCS26;
11717 if (support_interwork) flags |= F_INTERWORK;
11718 if (uses_apcs_float) flags |= F_APCS_FLOAT;
11719 if (pic_code) flags |= F_PIC;
11720 if ((cpu_variant & FPU_ANY) == FPU_NONE
11721 || (cpu_variant & FPU_ANY) == FPU_ARCH_VFP) /* VFP layout only. */
11722 flags |= F_SOFT_FLOAT;
11723
11724 switch (mfloat_abi_opt)
11725 {
11726 case ARM_FLOAT_ABI_SOFT:
11727 case ARM_FLOAT_ABI_SOFTFP:
11728 flags |= F_SOFT_FLOAT;
11729 break;
11730
11731 case ARM_FLOAT_ABI_HARD:
11732 if (flags & F_SOFT_FLOAT)
11733 as_bad (_("hard-float conflicts with specified fpu"));
11734 break;
11735 }
11736
11737 /* Using VFP conventions (even if soft-float). */
11738 if (cpu_variant & FPU_VFP_EXT_NONE)
11739 flags |= F_VFP_FLOAT;
11740
11741 #if defined OBJ_ELF
11742 if (cpu_variant & FPU_ARCH_MAVERICK)
11743 flags |= EF_ARM_MAVERICK_FLOAT;
11744 break;
11745
11746 case EF_ARM_EABI_VER4:
11747 /* No additional flags to set. */
11748 break;
11749
11750 default:
11751 abort ();
11752 }
11753 #endif
11754 bfd_set_private_flags (stdoutput, flags);
11755
11756 /* We have run out flags in the COFF header to encode the
11757 status of ATPCS support, so instead we create a dummy,
11758 empty, debug section called .arm.atpcs. */
11759 if (atpcs)
11760 {
11761 asection * sec;
11762
11763 sec = bfd_make_section (stdoutput, ".arm.atpcs");
11764
11765 if (sec != NULL)
11766 {
11767 bfd_set_section_flags
11768 (stdoutput, sec, SEC_READONLY | SEC_DEBUGGING /* | SEC_HAS_CONTENTS */);
11769 bfd_set_section_size (stdoutput, sec, 0);
11770 bfd_set_section_contents (stdoutput, sec, NULL, 0, 0);
11771 }
11772 }
11773 }
11774 #endif
11775
11776 /* Record the CPU type as well. */
11777 switch (cpu_variant & ARM_CPU_MASK)
11778 {
11779 case ARM_2:
11780 mach = bfd_mach_arm_2;
11781 break;
11782
11783 case ARM_3: /* Also ARM_250. */
11784 mach = bfd_mach_arm_2a;
11785 break;
11786
11787 case ARM_6: /* Also ARM_7. */
11788 mach = bfd_mach_arm_3;
11789 break;
11790
11791 default:
11792 mach = bfd_mach_arm_unknown;
11793 break;
11794 }
11795
11796 /* Catch special cases. */
11797 if (cpu_variant & ARM_CEXT_IWMMXT)
11798 mach = bfd_mach_arm_iWMMXt;
11799 else if (cpu_variant & ARM_CEXT_XSCALE)
11800 mach = bfd_mach_arm_XScale;
11801 else if (cpu_variant & ARM_CEXT_MAVERICK)
11802 mach = bfd_mach_arm_ep9312;
11803 else if (cpu_variant & ARM_EXT_V5E)
11804 mach = bfd_mach_arm_5TE;
11805 else if (cpu_variant & ARM_EXT_V5)
11806 {
11807 if (cpu_variant & ARM_EXT_V4T)
11808 mach = bfd_mach_arm_5T;
11809 else
11810 mach = bfd_mach_arm_5;
11811 }
11812 else if (cpu_variant & ARM_EXT_V4)
11813 {
11814 if (cpu_variant & ARM_EXT_V4T)
11815 mach = bfd_mach_arm_4T;
11816 else
11817 mach = bfd_mach_arm_4;
11818 }
11819 else if (cpu_variant & ARM_EXT_V3M)
11820 mach = bfd_mach_arm_3M;
11821
11822 bfd_set_arch_mach (stdoutput, TARGET_ARCH, mach);
11823 }
11824
11825 /* Command line processing. */
11826
11827 /* md_parse_option
11828 Invocation line includes a switch not recognized by the base assembler.
11829 See if it's a processor-specific option.
11830
11831 This routine is somewhat complicated by the need for backwards
11832 compatibility (since older releases of gcc can't be changed).
11833 The new options try to make the interface as compatible as
11834 possible with GCC.
11835
11836 New options (supported) are:
11837
11838 -mcpu=<cpu name> Assemble for selected processor
11839 -march=<architecture name> Assemble for selected architecture
11840 -mfpu=<fpu architecture> Assemble for selected FPU.
11841 -EB/-mbig-endian Big-endian
11842 -EL/-mlittle-endian Little-endian
11843 -k Generate PIC code
11844 -mthumb Start in Thumb mode
11845 -mthumb-interwork Code supports ARM/Thumb interworking
11846
11847 For now we will also provide support for:
11848
11849 -mapcs-32 32-bit Program counter
11850 -mapcs-26 26-bit Program counter
11851 -macps-float Floats passed in FP registers
11852 -mapcs-reentrant Reentrant code
11853 -matpcs
11854 (sometime these will probably be replaced with -mapcs=<list of options>
11855 and -matpcs=<list of options>)
11856
11857 The remaining options are only supported for back-wards compatibility.
11858 Cpu variants, the arm part is optional:
11859 -m[arm]1 Currently not supported.
11860 -m[arm]2, -m[arm]250 Arm 2 and Arm 250 processor
11861 -m[arm]3 Arm 3 processor
11862 -m[arm]6[xx], Arm 6 processors
11863 -m[arm]7[xx][t][[d]m] Arm 7 processors
11864 -m[arm]8[10] Arm 8 processors
11865 -m[arm]9[20][tdmi] Arm 9 processors
11866 -mstrongarm[110[0]] StrongARM processors
11867 -mxscale XScale processors
11868 -m[arm]v[2345[t[e]]] Arm architectures
11869 -mall All (except the ARM1)
11870 FP variants:
11871 -mfpa10, -mfpa11 FPA10 and 11 co-processor instructions
11872 -mfpe-old (No float load/store multiples)
11873 -mvfpxd VFP Single precision
11874 -mvfp All VFP
11875 -mno-fpu Disable all floating point instructions
11876
11877 The following CPU names are recognized:
11878 arm1, arm2, arm250, arm3, arm6, arm600, arm610, arm620,
11879 arm7, arm7m, arm7d, arm7dm, arm7di, arm7dmi, arm70, arm700,
11880 arm700i, arm710 arm710t, arm720, arm720t, arm740t, arm710c,
11881 arm7100, arm7500, arm7500fe, arm7tdmi, arm8, arm810, arm9,
11882 arm920, arm920t, arm940t, arm946, arm966, arm9tdmi, arm9e,
11883 arm10t arm10e, arm1020t, arm1020e, arm10200e,
11884 strongarm, strongarm110, strongarm1100, strongarm1110, xscale.
11885
11886 */
11887
11888 const char * md_shortopts = "m:k";
11889
11890 #ifdef ARM_BI_ENDIAN
11891 #define OPTION_EB (OPTION_MD_BASE + 0)
11892 #define OPTION_EL (OPTION_MD_BASE + 1)
11893 #else
11894 #if TARGET_BYTES_BIG_ENDIAN
11895 #define OPTION_EB (OPTION_MD_BASE + 0)
11896 #else
11897 #define OPTION_EL (OPTION_MD_BASE + 1)
11898 #endif
11899 #endif
11900
11901 struct option md_longopts[] =
11902 {
11903 #ifdef OPTION_EB
11904 {"EB", no_argument, NULL, OPTION_EB},
11905 #endif
11906 #ifdef OPTION_EL
11907 {"EL", no_argument, NULL, OPTION_EL},
11908 #endif
11909 {NULL, no_argument, NULL, 0}
11910 };
11911
11912 size_t md_longopts_size = sizeof (md_longopts);
11913
11914 struct arm_option_table
11915 {
11916 char *option; /* Option name to match. */
11917 char *help; /* Help information. */
11918 int *var; /* Variable to change. */
11919 int value; /* What to change it to. */
11920 char *deprecated; /* If non-null, print this message. */
11921 };
11922
11923 struct arm_option_table arm_opts[] =
11924 {
11925 {"k", N_("generate PIC code"), &pic_code, 1, NULL},
11926 {"mthumb", N_("assemble Thumb code"), &thumb_mode, 1, NULL},
11927 {"mthumb-interwork", N_("support ARM/Thumb interworking"),
11928 &support_interwork, 1, NULL},
11929 {"mapcs-32", N_("code uses 32-bit program counter"), &uses_apcs_26, 0, NULL},
11930 {"mapcs-26", N_("code uses 26-bit program counter"), &uses_apcs_26, 1, NULL},
11931 {"mapcs-float", N_("floating point args are in fp regs"), &uses_apcs_float,
11932 1, NULL},
11933 {"mapcs-reentrant", N_("re-entrant code"), &pic_code, 1, NULL},
11934 {"matpcs", N_("code is ATPCS conformant"), &atpcs, 1, NULL},
11935 {"mbig-endian", N_("assemble for big-endian"), &target_big_endian, 1, NULL},
11936 {"mlittle-endian", N_("assemble for little-endian"), &target_big_endian, 0,
11937 NULL},
11938
11939 /* These are recognized by the assembler, but have no affect on code. */
11940 {"mapcs-frame", N_("use frame pointer"), NULL, 0, NULL},
11941 {"mapcs-stack-check", N_("use stack size checking"), NULL, 0, NULL},
11942
11943 /* DON'T add any new processors to this list -- we want the whole list
11944 to go away... Add them to the processors table instead. */
11945 {"marm1", NULL, &legacy_cpu, ARM_ARCH_V1, N_("use -mcpu=arm1")},
11946 {"m1", NULL, &legacy_cpu, ARM_ARCH_V1, N_("use -mcpu=arm1")},
11947 {"marm2", NULL, &legacy_cpu, ARM_ARCH_V2, N_("use -mcpu=arm2")},
11948 {"m2", NULL, &legacy_cpu, ARM_ARCH_V2, N_("use -mcpu=arm2")},
11949 {"marm250", NULL, &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm250")},
11950 {"m250", NULL, &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm250")},
11951 {"marm3", NULL, &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm3")},
11952 {"m3", NULL, &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm3")},
11953 {"marm6", NULL, &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm6")},
11954 {"m6", NULL, &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm6")},
11955 {"marm600", NULL, &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm600")},
11956 {"m600", NULL, &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm600")},
11957 {"marm610", NULL, &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm610")},
11958 {"m610", NULL, &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm610")},
11959 {"marm620", NULL, &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm620")},
11960 {"m620", NULL, &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm620")},
11961 {"marm7", NULL, &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7")},
11962 {"m7", NULL, &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7")},
11963 {"marm70", NULL, &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm70")},
11964 {"m70", NULL, &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm70")},
11965 {"marm700", NULL, &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700")},
11966 {"m700", NULL, &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700")},
11967 {"marm700i", NULL, &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700i")},
11968 {"m700i", NULL, &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700i")},
11969 {"marm710", NULL, &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710")},
11970 {"m710", NULL, &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710")},
11971 {"marm710c", NULL, &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710c")},
11972 {"m710c", NULL, &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710c")},
11973 {"marm720", NULL, &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm720")},
11974 {"m720", NULL, &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm720")},
11975 {"marm7d", NULL, &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7d")},
11976 {"m7d", NULL, &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7d")},
11977 {"marm7di", NULL, &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7di")},
11978 {"m7di", NULL, &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7di")},
11979 {"marm7m", NULL, &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7m")},
11980 {"m7m", NULL, &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7m")},
11981 {"marm7dm", NULL, &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dm")},
11982 {"m7dm", NULL, &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dm")},
11983 {"marm7dmi", NULL, &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dmi")},
11984 {"m7dmi", NULL, &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dmi")},
11985 {"marm7100", NULL, &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7100")},
11986 {"m7100", NULL, &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7100")},
11987 {"marm7500", NULL, &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500")},
11988 {"m7500", NULL, &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500")},
11989 {"marm7500fe", NULL, &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500fe")},
11990 {"m7500fe", NULL, &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500fe")},
11991 {"marm7t", NULL, &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
11992 {"m7t", NULL, &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
11993 {"marm7tdmi", NULL, &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
11994 {"m7tdmi", NULL, &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
11995 {"marm710t", NULL, &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm710t")},
11996 {"m710t", NULL, &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm710t")},
11997 {"marm720t", NULL, &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm720t")},
11998 {"m720t", NULL, &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm720t")},
11999 {"marm740t", NULL, &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm740t")},
12000 {"m740t", NULL, &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm740t")},
12001 {"marm8", NULL, &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm8")},
12002 {"m8", NULL, &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm8")},
12003 {"marm810", NULL, &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm810")},
12004 {"m810", NULL, &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm810")},
12005 {"marm9", NULL, &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9")},
12006 {"m9", NULL, &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9")},
12007 {"marm9tdmi", NULL, &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9tdmi")},
12008 {"m9tdmi", NULL, &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9tdmi")},
12009 {"marm920", NULL, &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm920")},
12010 {"m920", NULL, &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm920")},
12011 {"marm940", NULL, &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm940")},
12012 {"m940", NULL, &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm940")},
12013 {"mstrongarm", NULL, &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=strongarm")},
12014 {"mstrongarm110", NULL, &legacy_cpu, ARM_ARCH_V4,
12015 N_("use -mcpu=strongarm110")},
12016 {"mstrongarm1100", NULL, &legacy_cpu, ARM_ARCH_V4,
12017 N_("use -mcpu=strongarm1100")},
12018 {"mstrongarm1110", NULL, &legacy_cpu, ARM_ARCH_V4,
12019 N_("use -mcpu=strongarm1110")},
12020 {"mxscale", NULL, &legacy_cpu, ARM_ARCH_XSCALE, N_("use -mcpu=xscale")},
12021 {"miwmmxt", NULL, &legacy_cpu, ARM_ARCH_IWMMXT, N_("use -mcpu=iwmmxt")},
12022 {"mall", NULL, &legacy_cpu, ARM_ANY, N_("use -mcpu=all")},
12023
12024 /* Architecture variants -- don't add any more to this list either. */
12025 {"mv2", NULL, &legacy_cpu, ARM_ARCH_V2, N_("use -march=armv2")},
12026 {"marmv2", NULL, &legacy_cpu, ARM_ARCH_V2, N_("use -march=armv2")},
12027 {"mv2a", NULL, &legacy_cpu, ARM_ARCH_V2S, N_("use -march=armv2a")},
12028 {"marmv2a", NULL, &legacy_cpu, ARM_ARCH_V2S, N_("use -march=armv2a")},
12029 {"mv3", NULL, &legacy_cpu, ARM_ARCH_V3, N_("use -march=armv3")},
12030 {"marmv3", NULL, &legacy_cpu, ARM_ARCH_V3, N_("use -march=armv3")},
12031 {"mv3m", NULL, &legacy_cpu, ARM_ARCH_V3M, N_("use -march=armv3m")},
12032 {"marmv3m", NULL, &legacy_cpu, ARM_ARCH_V3M, N_("use -march=armv3m")},
12033 {"mv4", NULL, &legacy_cpu, ARM_ARCH_V4, N_("use -march=armv4")},
12034 {"marmv4", NULL, &legacy_cpu, ARM_ARCH_V4, N_("use -march=armv4")},
12035 {"mv4t", NULL, &legacy_cpu, ARM_ARCH_V4T, N_("use -march=armv4t")},
12036 {"marmv4t", NULL, &legacy_cpu, ARM_ARCH_V4T, N_("use -march=armv4t")},
12037 {"mv5", NULL, &legacy_cpu, ARM_ARCH_V5, N_("use -march=armv5")},
12038 {"marmv5", NULL, &legacy_cpu, ARM_ARCH_V5, N_("use -march=armv5")},
12039 {"mv5t", NULL, &legacy_cpu, ARM_ARCH_V5T, N_("use -march=armv5t")},
12040 {"marmv5t", NULL, &legacy_cpu, ARM_ARCH_V5T, N_("use -march=armv5t")},
12041 {"mv5e", NULL, &legacy_cpu, ARM_ARCH_V5TE, N_("use -march=armv5te")},
12042 {"marmv5e", NULL, &legacy_cpu, ARM_ARCH_V5TE, N_("use -march=armv5te")},
12043
12044 /* Floating point variants -- don't add any more to this list either. */
12045 {"mfpe-old", NULL, &legacy_fpu, FPU_ARCH_FPE, N_("use -mfpu=fpe")},
12046 {"mfpa10", NULL, &legacy_fpu, FPU_ARCH_FPA, N_("use -mfpu=fpa10")},
12047 {"mfpa11", NULL, &legacy_fpu, FPU_ARCH_FPA, N_("use -mfpu=fpa11")},
12048 {"mno-fpu", NULL, &legacy_fpu, 0,
12049 N_("use either -mfpu=softfpa or -mfpu=softvfp")},
12050
12051 {NULL, NULL, NULL, 0, NULL}
12052 };
12053
12054 struct arm_cpu_option_table
12055 {
12056 char *name;
12057 int value;
12058 /* For some CPUs we assume an FPU unless the user explicitly sets
12059 -mfpu=... */
12060 int default_fpu;
12061 };
12062
12063 /* This list should, at a minimum, contain all the cpu names
12064 recognized by GCC. */
12065 static struct arm_cpu_option_table arm_cpus[] =
12066 {
12067 {"all", ARM_ANY, FPU_ARCH_FPA},
12068 {"arm1", ARM_ARCH_V1, FPU_ARCH_FPA},
12069 {"arm2", ARM_ARCH_V2, FPU_ARCH_FPA},
12070 {"arm250", ARM_ARCH_V2S, FPU_ARCH_FPA},
12071 {"arm3", ARM_ARCH_V2S, FPU_ARCH_FPA},
12072 {"arm6", ARM_ARCH_V3, FPU_ARCH_FPA},
12073 {"arm60", ARM_ARCH_V3, FPU_ARCH_FPA},
12074 {"arm600", ARM_ARCH_V3, FPU_ARCH_FPA},
12075 {"arm610", ARM_ARCH_V3, FPU_ARCH_FPA},
12076 {"arm620", ARM_ARCH_V3, FPU_ARCH_FPA},
12077 {"arm7", ARM_ARCH_V3, FPU_ARCH_FPA},
12078 {"arm7m", ARM_ARCH_V3M, FPU_ARCH_FPA},
12079 {"arm7d", ARM_ARCH_V3, FPU_ARCH_FPA},
12080 {"arm7dm", ARM_ARCH_V3M, FPU_ARCH_FPA},
12081 {"arm7di", ARM_ARCH_V3, FPU_ARCH_FPA},
12082 {"arm7dmi", ARM_ARCH_V3M, FPU_ARCH_FPA},
12083 {"arm70", ARM_ARCH_V3, FPU_ARCH_FPA},
12084 {"arm700", ARM_ARCH_V3, FPU_ARCH_FPA},
12085 {"arm700i", ARM_ARCH_V3, FPU_ARCH_FPA},
12086 {"arm710", ARM_ARCH_V3, FPU_ARCH_FPA},
12087 {"arm710t", ARM_ARCH_V4T, FPU_ARCH_FPA},
12088 {"arm720", ARM_ARCH_V3, FPU_ARCH_FPA},
12089 {"arm720t", ARM_ARCH_V4T, FPU_ARCH_FPA},
12090 {"arm740t", ARM_ARCH_V4T, FPU_ARCH_FPA},
12091 {"arm710c", ARM_ARCH_V3, FPU_ARCH_FPA},
12092 {"arm7100", ARM_ARCH_V3, FPU_ARCH_FPA},
12093 {"arm7500", ARM_ARCH_V3, FPU_ARCH_FPA},
12094 {"arm7500fe", ARM_ARCH_V3, FPU_ARCH_FPA},
12095 {"arm7t", ARM_ARCH_V4T, FPU_ARCH_FPA},
12096 {"arm7tdmi", ARM_ARCH_V4T, FPU_ARCH_FPA},
12097 {"arm7tdmi-s", ARM_ARCH_V4T, FPU_ARCH_FPA},
12098 {"arm8", ARM_ARCH_V4, FPU_ARCH_FPA},
12099 {"arm810", ARM_ARCH_V4, FPU_ARCH_FPA},
12100 {"strongarm", ARM_ARCH_V4, FPU_ARCH_FPA},
12101 {"strongarm1", ARM_ARCH_V4, FPU_ARCH_FPA},
12102 {"strongarm110", ARM_ARCH_V4, FPU_ARCH_FPA},
12103 {"strongarm1100", ARM_ARCH_V4, FPU_ARCH_FPA},
12104 {"strongarm1110", ARM_ARCH_V4, FPU_ARCH_FPA},
12105 {"arm9", ARM_ARCH_V4T, FPU_ARCH_FPA},
12106 {"arm920", ARM_ARCH_V4T, FPU_ARCH_FPA},
12107 {"arm920t", ARM_ARCH_V4T, FPU_ARCH_FPA},
12108 {"arm922t", ARM_ARCH_V4T, FPU_ARCH_FPA},
12109 {"arm940t", ARM_ARCH_V4T, FPU_ARCH_FPA},
12110 {"arm9tdmi", ARM_ARCH_V4T, FPU_ARCH_FPA},
12111 /* For V5 or later processors we default to using VFP; but the user
12112 should really set the FPU type explicitly. */
12113 {"arm9e-r0", ARM_ARCH_V5TExP, FPU_ARCH_VFP_V2},
12114 {"arm9e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2},
12115 {"arm926ej", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2},
12116 {"arm926ejs", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2},
12117 {"arm926ej-s", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2},
12118 {"arm946e-r0", ARM_ARCH_V5TExP, FPU_ARCH_VFP_V2},
12119 {"arm946e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2},
12120 {"arm966e-r0", ARM_ARCH_V5TExP, FPU_ARCH_VFP_V2},
12121 {"arm966e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2},
12122 {"arm10t", ARM_ARCH_V5T, FPU_ARCH_VFP_V1},
12123 {"arm10e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2},
12124 {"arm1020", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2},
12125 {"arm1020t", ARM_ARCH_V5T, FPU_ARCH_VFP_V1},
12126 {"arm1020e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2},
12127 {"arm1026ejs", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2},
12128 {"arm1026ej-s", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2},
12129 {"arm1136js", ARM_ARCH_V6, FPU_NONE},
12130 {"arm1136j-s", ARM_ARCH_V6, FPU_NONE},
12131 {"arm1136jfs", ARM_ARCH_V6, FPU_ARCH_VFP_V2},
12132 {"arm1136jf-s", ARM_ARCH_V6, FPU_ARCH_VFP_V2},
12133 {"mpcore", ARM_ARCH_V6K, FPU_ARCH_VFP_V2},
12134 {"mpcorenovfp", ARM_ARCH_V6K, FPU_NONE},
12135 {"arm1176jz-s", ARM_ARCH_V6ZK, FPU_NONE},
12136 {"arm1176jzf-s", ARM_ARCH_V6ZK, FPU_ARCH_VFP_V2},
12137 /* ??? XSCALE is really an architecture. */
12138 {"xscale", ARM_ARCH_XSCALE, FPU_ARCH_VFP_V2},
12139 /* ??? iwmmxt is not a processor. */
12140 {"iwmmxt", ARM_ARCH_IWMMXT, FPU_ARCH_VFP_V2},
12141 {"i80200", ARM_ARCH_XSCALE, FPU_ARCH_VFP_V2},
12142 /* Maverick */
12143 {"ep9312", ARM_ARCH_V4T | ARM_CEXT_MAVERICK, FPU_ARCH_MAVERICK},
12144 {NULL, 0, 0}
12145 };
12146
12147 struct arm_arch_option_table
12148 {
12149 char *name;
12150 int value;
12151 int default_fpu;
12152 };
12153
12154 /* This list should, at a minimum, contain all the architecture names
12155 recognized by GCC. */
12156 static struct arm_arch_option_table arm_archs[] =
12157 {
12158 {"all", ARM_ANY, FPU_ARCH_FPA},
12159 {"armv1", ARM_ARCH_V1, FPU_ARCH_FPA},
12160 {"armv2", ARM_ARCH_V2, FPU_ARCH_FPA},
12161 {"armv2a", ARM_ARCH_V2S, FPU_ARCH_FPA},
12162 {"armv2s", ARM_ARCH_V2S, FPU_ARCH_FPA},
12163 {"armv3", ARM_ARCH_V3, FPU_ARCH_FPA},
12164 {"armv3m", ARM_ARCH_V3M, FPU_ARCH_FPA},
12165 {"armv4", ARM_ARCH_V4, FPU_ARCH_FPA},
12166 {"armv4xm", ARM_ARCH_V4xM, FPU_ARCH_FPA},
12167 {"armv4t", ARM_ARCH_V4T, FPU_ARCH_FPA},
12168 {"armv4txm", ARM_ARCH_V4TxM, FPU_ARCH_FPA},
12169 {"armv5", ARM_ARCH_V5, FPU_ARCH_VFP},
12170 {"armv5t", ARM_ARCH_V5T, FPU_ARCH_VFP},
12171 {"armv5txm", ARM_ARCH_V5TxM, FPU_ARCH_VFP},
12172 {"armv5te", ARM_ARCH_V5TE, FPU_ARCH_VFP},
12173 {"armv5texp", ARM_ARCH_V5TExP, FPU_ARCH_VFP},
12174 {"armv5tej", ARM_ARCH_V5TEJ, FPU_ARCH_VFP},
12175 {"armv6", ARM_ARCH_V6, FPU_ARCH_VFP},
12176 {"armv6j", ARM_ARCH_V6, FPU_ARCH_VFP},
12177 {"armv6k", ARM_ARCH_V6K, FPU_ARCH_VFP},
12178 {"armv6z", ARM_ARCH_V6Z, FPU_ARCH_VFP},
12179 {"armv6zk", ARM_ARCH_V6ZK, FPU_ARCH_VFP},
12180 {"armv6t2", ARM_ARCH_V6T2, FPU_ARCH_VFP},
12181 {"armv6kt2", ARM_ARCH_V6KT2, FPU_ARCH_VFP},
12182 {"armv6zt2", ARM_ARCH_V6ZT2, FPU_ARCH_VFP},
12183 {"armv6zkt2", ARM_ARCH_V6ZKT2, FPU_ARCH_VFP},
12184 {"xscale", ARM_ARCH_XSCALE, FPU_ARCH_VFP},
12185 {"iwmmxt", ARM_ARCH_IWMMXT, FPU_ARCH_VFP},
12186 {NULL, 0, 0}
12187 };
12188
12189 /* ISA extensions in the co-processor space. */
12190 struct arm_option_value_table
12191 {
12192 char *name;
12193 int value;
12194 };
12195
12196 static struct arm_option_value_table arm_extensions[] =
12197 {
12198 {"maverick", ARM_CEXT_MAVERICK},
12199 {"xscale", ARM_CEXT_XSCALE},
12200 {"iwmmxt", ARM_CEXT_IWMMXT},
12201 {NULL, 0}
12202 };
12203
12204 /* This list should, at a minimum, contain all the fpu names
12205 recognized by GCC. */
12206 static struct arm_option_value_table arm_fpus[] =
12207 {
12208 {"softfpa", FPU_NONE},
12209 {"fpe", FPU_ARCH_FPE},
12210 {"fpe2", FPU_ARCH_FPE},
12211 {"fpe3", FPU_ARCH_FPA}, /* Third release supports LFM/SFM. */
12212 {"fpa", FPU_ARCH_FPA},
12213 {"fpa10", FPU_ARCH_FPA},
12214 {"fpa11", FPU_ARCH_FPA},
12215 {"arm7500fe", FPU_ARCH_FPA},
12216 {"softvfp", FPU_ARCH_VFP},
12217 {"softvfp+vfp", FPU_ARCH_VFP_V2},
12218 {"vfp", FPU_ARCH_VFP_V2},
12219 {"vfp9", FPU_ARCH_VFP_V2},
12220 {"vfp10", FPU_ARCH_VFP_V2},
12221 {"vfp10-r0", FPU_ARCH_VFP_V1},
12222 {"vfpxd", FPU_ARCH_VFP_V1xD},
12223 {"arm1020t", FPU_ARCH_VFP_V1},
12224 {"arm1020e", FPU_ARCH_VFP_V2},
12225 {"arm1136jfs", FPU_ARCH_VFP_V2},
12226 {"arm1136jf-s", FPU_ARCH_VFP_V2},
12227 {"maverick", FPU_ARCH_MAVERICK},
12228 {NULL, 0}
12229 };
12230
12231 static struct arm_option_value_table arm_float_abis[] =
12232 {
12233 {"hard", ARM_FLOAT_ABI_HARD},
12234 {"softfp", ARM_FLOAT_ABI_SOFTFP},
12235 {"soft", ARM_FLOAT_ABI_SOFT},
12236 {NULL, 0}
12237 };
12238
12239 #ifdef OBJ_ELF
12240 /* We only know how to output GNU and ver 4 (AAELF) formats. */
12241 static struct arm_option_value_table arm_eabis[] =
12242 {
12243 {"gnu", EF_ARM_EABI_UNKNOWN},
12244 {"4", EF_ARM_EABI_VER4},
12245 {NULL, 0}
12246 };
12247 #endif
12248
12249 struct arm_long_option_table
12250 {
12251 char * option; /* Substring to match. */
12252 char * help; /* Help information. */
12253 int (* func) (char * subopt); /* Function to decode sub-option. */
12254 char * deprecated; /* If non-null, print this message. */
12255 };
12256
12257 static int
12258 arm_parse_extension (char * str, int * opt_p)
12259 {
12260 while (str != NULL && *str != 0)
12261 {
12262 struct arm_option_value_table * opt;
12263 char * ext;
12264 int optlen;
12265
12266 if (*str != '+')
12267 {
12268 as_bad (_("invalid architectural extension"));
12269 return 0;
12270 }
12271
12272 str++;
12273 ext = strchr (str, '+');
12274
12275 if (ext != NULL)
12276 optlen = ext - str;
12277 else
12278 optlen = strlen (str);
12279
12280 if (optlen == 0)
12281 {
12282 as_bad (_("missing architectural extension"));
12283 return 0;
12284 }
12285
12286 for (opt = arm_extensions; opt->name != NULL; opt++)
12287 if (strncmp (opt->name, str, optlen) == 0)
12288 {
12289 *opt_p |= opt->value;
12290 break;
12291 }
12292
12293 if (opt->name == NULL)
12294 {
12295 as_bad (_("unknown architectural extnsion `%s'"), str);
12296 return 0;
12297 }
12298
12299 str = ext;
12300 };
12301
12302 return 1;
12303 }
12304
12305 static int
12306 arm_parse_cpu (char * str)
12307 {
12308 struct arm_cpu_option_table * opt;
12309 char * ext = strchr (str, '+');
12310 int optlen;
12311
12312 if (ext != NULL)
12313 optlen = ext - str;
12314 else
12315 optlen = strlen (str);
12316
12317 if (optlen == 0)
12318 {
12319 as_bad (_("missing cpu name `%s'"), str);
12320 return 0;
12321 }
12322
12323 for (opt = arm_cpus; opt->name != NULL; opt++)
12324 if (strncmp (opt->name, str, optlen) == 0)
12325 {
12326 mcpu_cpu_opt = opt->value;
12327 mcpu_fpu_opt = opt->default_fpu;
12328
12329 if (ext != NULL)
12330 return arm_parse_extension (ext, &mcpu_cpu_opt);
12331
12332 return 1;
12333 }
12334
12335 as_bad (_("unknown cpu `%s'"), str);
12336 return 0;
12337 }
12338
12339 static int
12340 arm_parse_arch (char * str)
12341 {
12342 struct arm_arch_option_table *opt;
12343 char *ext = strchr (str, '+');
12344 int optlen;
12345
12346 if (ext != NULL)
12347 optlen = ext - str;
12348 else
12349 optlen = strlen (str);
12350
12351 if (optlen == 0)
12352 {
12353 as_bad (_("missing architecture name `%s'"), str);
12354 return 0;
12355 }
12356
12357
12358 for (opt = arm_archs; opt->name != NULL; opt++)
12359 if (streq (opt->name, str))
12360 {
12361 march_cpu_opt = opt->value;
12362 march_fpu_opt = opt->default_fpu;
12363
12364 if (ext != NULL)
12365 return arm_parse_extension (ext, &march_cpu_opt);
12366
12367 return 1;
12368 }
12369
12370 as_bad (_("unknown architecture `%s'\n"), str);
12371 return 0;
12372 }
12373
12374 static int
12375 arm_parse_fpu (char * str)
12376 {
12377 struct arm_option_value_table * opt;
12378
12379 for (opt = arm_fpus; opt->name != NULL; opt++)
12380 if (streq (opt->name, str))
12381 {
12382 mfpu_opt = opt->value;
12383 return 1;
12384 }
12385
12386 as_bad (_("unknown floating point format `%s'\n"), str);
12387 return 0;
12388 }
12389
12390 static int
12391 arm_parse_float_abi (char * str)
12392 {
12393 struct arm_option_value_table * opt;
12394
12395 for (opt = arm_float_abis; opt->name != NULL; opt++)
12396 if (streq (opt->name, str))
12397 {
12398 mfloat_abi_opt = opt->value;
12399 return 1;
12400 }
12401
12402 as_bad (_("unknown floating point abi `%s'\n"), str);
12403 return 0;
12404 }
12405
12406 #ifdef OBJ_ELF
12407 static int
12408 arm_parse_eabi (char * str)
12409 {
12410 struct arm_option_value_table *opt;
12411
12412 for (opt = arm_eabis; opt->name != NULL; opt++)
12413 if (streq (opt->name, str))
12414 {
12415 meabi_flags = opt->value;
12416 return 1;
12417 }
12418 as_bad (_("unknown EABI `%s'\n"), str);
12419 return 0;
12420 }
12421 #endif
12422
12423 struct arm_long_option_table arm_long_opts[] =
12424 {
12425 {"mcpu=", N_("<cpu name>\t assemble for CPU <cpu name>"),
12426 arm_parse_cpu, NULL},
12427 {"march=", N_("<arch name>\t assemble for architecture <arch name>"),
12428 arm_parse_arch, NULL},
12429 {"mfpu=", N_("<fpu name>\t assemble for FPU architecture <fpu name>"),
12430 arm_parse_fpu, NULL},
12431 {"mfloat-abi=", N_("<abi>\t assemble for floating point ABI <abi>"),
12432 arm_parse_float_abi, NULL},
12433 #ifdef OBJ_ELF
12434 {"meabi=", N_("<ver>\t assemble for eabi version <ver>"),
12435 arm_parse_eabi, NULL},
12436 #endif
12437 {NULL, NULL, 0, NULL}
12438 };
12439
12440 int
12441 md_parse_option (int c, char * arg)
12442 {
12443 struct arm_option_table *opt;
12444 struct arm_long_option_table *lopt;
12445
12446 switch (c)
12447 {
12448 #ifdef OPTION_EB
12449 case OPTION_EB:
12450 target_big_endian = 1;
12451 break;
12452 #endif
12453
12454 #ifdef OPTION_EL
12455 case OPTION_EL:
12456 target_big_endian = 0;
12457 break;
12458 #endif
12459
12460 case 'a':
12461 /* Listing option. Just ignore these, we don't support additional
12462 ones. */
12463 return 0;
12464
12465 default:
12466 for (opt = arm_opts; opt->option != NULL; opt++)
12467 {
12468 if (c == opt->option[0]
12469 && ((arg == NULL && opt->option[1] == 0)
12470 || streq (arg, opt->option + 1)))
12471 {
12472 #if WARN_DEPRECATED
12473 /* If the option is deprecated, tell the user. */
12474 if (opt->deprecated != NULL)
12475 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
12476 arg ? arg : "", _(opt->deprecated));
12477 #endif
12478
12479 if (opt->var != NULL)
12480 *opt->var = opt->value;
12481
12482 return 1;
12483 }
12484 }
12485
12486 for (lopt = arm_long_opts; lopt->option != NULL; lopt++)
12487 {
12488 /* These options are expected to have an argument. */
12489 if (c == lopt->option[0]
12490 && arg != NULL
12491 && strncmp (arg, lopt->option + 1,
12492 strlen (lopt->option + 1)) == 0)
12493 {
12494 #if WARN_DEPRECATED
12495 /* If the option is deprecated, tell the user. */
12496 if (lopt->deprecated != NULL)
12497 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c, arg,
12498 _(lopt->deprecated));
12499 #endif
12500
12501 /* Call the sup-option parser. */
12502 return lopt->func (arg + strlen (lopt->option) - 1);
12503 }
12504 }
12505
12506 return 0;
12507 }
12508
12509 return 1;
12510 }
12511
12512 void
12513 md_show_usage (FILE * fp)
12514 {
12515 struct arm_option_table *opt;
12516 struct arm_long_option_table *lopt;
12517
12518 fprintf (fp, _(" ARM-specific assembler options:\n"));
12519
12520 for (opt = arm_opts; opt->option != NULL; opt++)
12521 if (opt->help != NULL)
12522 fprintf (fp, " -%-23s%s\n", opt->option, _(opt->help));
12523
12524 for (lopt = arm_long_opts; lopt->option != NULL; lopt++)
12525 if (lopt->help != NULL)
12526 fprintf (fp, " -%s%s\n", lopt->option, _(lopt->help));
12527
12528 #ifdef OPTION_EB
12529 fprintf (fp, _("\
12530 -EB assemble code for a big-endian cpu\n"));
12531 #endif
12532
12533 #ifdef OPTION_EL
12534 fprintf (fp, _("\
12535 -EL assemble code for a little-endian cpu\n"));
12536 #endif
12537 }
This page took 0.29005 seconds and 5 git commands to generate.