[PATCH 13/57][Arm][GAS] Add support for MVE instructions: vand, vbic, vorr, vorn...
[deliverable/binutils-gdb.git] / gas / config / tc-arm.c
1 /* tc-arm.c -- Assemble for the ARM
2 Copyright (C) 1994-2019 Free Software Foundation, Inc.
3 Contributed by Richard Earnshaw (rwe@pegasus.esprit.ec.org)
4 Modified by David Taylor (dtaylor@armltd.co.uk)
5 Cirrus coprocessor mods by Aldy Hernandez (aldyh@redhat.com)
6 Cirrus coprocessor fixes by Petko Manolov (petkan@nucleusys.com)
7 Cirrus coprocessor fixes by Vladimir Ivanov (vladitx@nucleusys.com)
8
9 This file is part of GAS, the GNU Assembler.
10
11 GAS is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 3, or (at your option)
14 any later version.
15
16 GAS is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with GAS; see the file COPYING. If not, write to the Free
23 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
24 02110-1301, USA. */
25
26 #include "as.h"
27 #include <limits.h>
28 #include <stdarg.h>
29 #define NO_RELOC 0
30 #include "safe-ctype.h"
31 #include "subsegs.h"
32 #include "obstack.h"
33 #include "libiberty.h"
34 #include "opcode/arm.h"
35
36 #ifdef OBJ_ELF
37 #include "elf/arm.h"
38 #include "dw2gencfi.h"
39 #endif
40
41 #include "dwarf2dbg.h"
42
43 #ifdef OBJ_ELF
44 /* Must be at least the size of the largest unwind opcode (currently two). */
45 #define ARM_OPCODE_CHUNK_SIZE 8
46
47 /* This structure holds the unwinding state. */
48
49 static struct
50 {
51 symbolS * proc_start;
52 symbolS * table_entry;
53 symbolS * personality_routine;
54 int personality_index;
55 /* The segment containing the function. */
56 segT saved_seg;
57 subsegT saved_subseg;
58 /* Opcodes generated from this function. */
59 unsigned char * opcodes;
60 int opcode_count;
61 int opcode_alloc;
62 /* The number of bytes pushed to the stack. */
63 offsetT frame_size;
64 /* We don't add stack adjustment opcodes immediately so that we can merge
65 multiple adjustments. We can also omit the final adjustment
66 when using a frame pointer. */
67 offsetT pending_offset;
68 /* These two fields are set by both unwind_movsp and unwind_setfp. They
69 hold the reg+offset to use when restoring sp from a frame pointer. */
70 offsetT fp_offset;
71 int fp_reg;
72 /* Nonzero if an unwind_setfp directive has been seen. */
73 unsigned fp_used:1;
74 /* Nonzero if the last opcode restores sp from fp_reg. */
75 unsigned sp_restored:1;
76 } unwind;
77
78 /* Whether --fdpic was given. */
79 static int arm_fdpic;
80
81 #endif /* OBJ_ELF */
82
83 /* Results from operand parsing worker functions. */
84
85 typedef enum
86 {
87 PARSE_OPERAND_SUCCESS,
88 PARSE_OPERAND_FAIL,
89 PARSE_OPERAND_FAIL_NO_BACKTRACK
90 } parse_operand_result;
91
92 enum arm_float_abi
93 {
94 ARM_FLOAT_ABI_HARD,
95 ARM_FLOAT_ABI_SOFTFP,
96 ARM_FLOAT_ABI_SOFT
97 };
98
99 /* Types of processor to assemble for. */
100 #ifndef CPU_DEFAULT
101 /* The code that was here used to select a default CPU depending on compiler
102 pre-defines which were only present when doing native builds, thus
103 changing gas' default behaviour depending upon the build host.
104
105 If you have a target that requires a default CPU option then the you
106 should define CPU_DEFAULT here. */
107 #endif
108
109 #ifndef FPU_DEFAULT
110 # ifdef TE_LINUX
111 # define FPU_DEFAULT FPU_ARCH_FPA
112 # elif defined (TE_NetBSD)
113 # ifdef OBJ_ELF
114 # define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, but VFP order. */
115 # else
116 /* Legacy a.out format. */
117 # define FPU_DEFAULT FPU_ARCH_FPA /* Soft-float, but FPA order. */
118 # endif
119 # elif defined (TE_VXWORKS)
120 # define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, VFP order. */
121 # else
122 /* For backwards compatibility, default to FPA. */
123 # define FPU_DEFAULT FPU_ARCH_FPA
124 # endif
125 #endif /* ifndef FPU_DEFAULT */
126
127 #define streq(a, b) (strcmp (a, b) == 0)
128
129 /* Current set of feature bits available (CPU+FPU). Different from
130 selected_cpu + selected_fpu in case of autodetection since the CPU
131 feature bits are then all set. */
132 static arm_feature_set cpu_variant;
133 /* Feature bits used in each execution state. Used to set build attribute
134 (in particular Tag_*_ISA_use) in CPU autodetection mode. */
135 static arm_feature_set arm_arch_used;
136 static arm_feature_set thumb_arch_used;
137
138 /* Flags stored in private area of BFD structure. */
139 static int uses_apcs_26 = FALSE;
140 static int atpcs = FALSE;
141 static int support_interwork = FALSE;
142 static int uses_apcs_float = FALSE;
143 static int pic_code = FALSE;
144 static int fix_v4bx = FALSE;
145 /* Warn on using deprecated features. */
146 static int warn_on_deprecated = TRUE;
147
148 /* Understand CodeComposer Studio assembly syntax. */
149 bfd_boolean codecomposer_syntax = FALSE;
150
151 /* Variables that we set while parsing command-line options. Once all
152 options have been read we re-process these values to set the real
153 assembly flags. */
154
155 /* CPU and FPU feature bits set for legacy CPU and FPU options (eg. -marm1
156 instead of -mcpu=arm1). */
157 static const arm_feature_set *legacy_cpu = NULL;
158 static const arm_feature_set *legacy_fpu = NULL;
159
160 /* CPU, extension and FPU feature bits selected by -mcpu. */
161 static const arm_feature_set *mcpu_cpu_opt = NULL;
162 static arm_feature_set *mcpu_ext_opt = NULL;
163 static const arm_feature_set *mcpu_fpu_opt = NULL;
164
165 /* CPU, extension and FPU feature bits selected by -march. */
166 static const arm_feature_set *march_cpu_opt = NULL;
167 static arm_feature_set *march_ext_opt = NULL;
168 static const arm_feature_set *march_fpu_opt = NULL;
169
170 /* Feature bits selected by -mfpu. */
171 static const arm_feature_set *mfpu_opt = NULL;
172
173 /* Constants for known architecture features. */
174 static const arm_feature_set fpu_default = FPU_DEFAULT;
175 static const arm_feature_set fpu_arch_vfp_v1 ATTRIBUTE_UNUSED = FPU_ARCH_VFP_V1;
176 static const arm_feature_set fpu_arch_vfp_v2 = FPU_ARCH_VFP_V2;
177 static const arm_feature_set fpu_arch_vfp_v3 ATTRIBUTE_UNUSED = FPU_ARCH_VFP_V3;
178 static const arm_feature_set fpu_arch_neon_v1 ATTRIBUTE_UNUSED = FPU_ARCH_NEON_V1;
179 static const arm_feature_set fpu_arch_fpa = FPU_ARCH_FPA;
180 static const arm_feature_set fpu_any_hard = FPU_ANY_HARD;
181 #ifdef OBJ_ELF
182 static const arm_feature_set fpu_arch_maverick = FPU_ARCH_MAVERICK;
183 #endif
184 static const arm_feature_set fpu_endian_pure = FPU_ARCH_ENDIAN_PURE;
185
186 #ifdef CPU_DEFAULT
187 static const arm_feature_set cpu_default = CPU_DEFAULT;
188 #endif
189
190 static const arm_feature_set arm_ext_v1 = ARM_FEATURE_CORE_LOW (ARM_EXT_V1);
191 static const arm_feature_set arm_ext_v2 = ARM_FEATURE_CORE_LOW (ARM_EXT_V2);
192 static const arm_feature_set arm_ext_v2s = ARM_FEATURE_CORE_LOW (ARM_EXT_V2S);
193 static const arm_feature_set arm_ext_v3 = ARM_FEATURE_CORE_LOW (ARM_EXT_V3);
194 static const arm_feature_set arm_ext_v3m = ARM_FEATURE_CORE_LOW (ARM_EXT_V3M);
195 static const arm_feature_set arm_ext_v4 = ARM_FEATURE_CORE_LOW (ARM_EXT_V4);
196 static const arm_feature_set arm_ext_v4t = ARM_FEATURE_CORE_LOW (ARM_EXT_V4T);
197 static const arm_feature_set arm_ext_v5 = ARM_FEATURE_CORE_LOW (ARM_EXT_V5);
198 static const arm_feature_set arm_ext_v4t_5 =
199 ARM_FEATURE_CORE_LOW (ARM_EXT_V4T | ARM_EXT_V5);
200 static const arm_feature_set arm_ext_v5t = ARM_FEATURE_CORE_LOW (ARM_EXT_V5T);
201 static const arm_feature_set arm_ext_v5e = ARM_FEATURE_CORE_LOW (ARM_EXT_V5E);
202 static const arm_feature_set arm_ext_v5exp = ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP);
203 static const arm_feature_set arm_ext_v5j = ARM_FEATURE_CORE_LOW (ARM_EXT_V5J);
204 static const arm_feature_set arm_ext_v6 = ARM_FEATURE_CORE_LOW (ARM_EXT_V6);
205 static const arm_feature_set arm_ext_v6k = ARM_FEATURE_CORE_LOW (ARM_EXT_V6K);
206 static const arm_feature_set arm_ext_v6t2 = ARM_FEATURE_CORE_LOW (ARM_EXT_V6T2);
207 /* Only for compatability of hint instructions. */
208 static const arm_feature_set arm_ext_v6k_v6t2 =
209 ARM_FEATURE_CORE_LOW (ARM_EXT_V6K | ARM_EXT_V6T2);
210 static const arm_feature_set arm_ext_v6_notm =
211 ARM_FEATURE_CORE_LOW (ARM_EXT_V6_NOTM);
212 static const arm_feature_set arm_ext_v6_dsp =
213 ARM_FEATURE_CORE_LOW (ARM_EXT_V6_DSP);
214 static const arm_feature_set arm_ext_barrier =
215 ARM_FEATURE_CORE_LOW (ARM_EXT_BARRIER);
216 static const arm_feature_set arm_ext_msr =
217 ARM_FEATURE_CORE_LOW (ARM_EXT_THUMB_MSR);
218 static const arm_feature_set arm_ext_div = ARM_FEATURE_CORE_LOW (ARM_EXT_DIV);
219 static const arm_feature_set arm_ext_v7 = ARM_FEATURE_CORE_LOW (ARM_EXT_V7);
220 static const arm_feature_set arm_ext_v7a = ARM_FEATURE_CORE_LOW (ARM_EXT_V7A);
221 static const arm_feature_set arm_ext_v7r = ARM_FEATURE_CORE_LOW (ARM_EXT_V7R);
222 #ifdef OBJ_ELF
223 static const arm_feature_set ATTRIBUTE_UNUSED arm_ext_v7m = ARM_FEATURE_CORE_LOW (ARM_EXT_V7M);
224 #endif
225 static const arm_feature_set arm_ext_v8 = ARM_FEATURE_CORE_LOW (ARM_EXT_V8);
226 static const arm_feature_set arm_ext_m =
227 ARM_FEATURE_CORE (ARM_EXT_V6M | ARM_EXT_V7M,
228 ARM_EXT2_V8M | ARM_EXT2_V8M_MAIN);
229 static const arm_feature_set arm_ext_mp = ARM_FEATURE_CORE_LOW (ARM_EXT_MP);
230 static const arm_feature_set arm_ext_sec = ARM_FEATURE_CORE_LOW (ARM_EXT_SEC);
231 static const arm_feature_set arm_ext_os = ARM_FEATURE_CORE_LOW (ARM_EXT_OS);
232 static const arm_feature_set arm_ext_adiv = ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV);
233 static const arm_feature_set arm_ext_virt = ARM_FEATURE_CORE_LOW (ARM_EXT_VIRT);
234 static const arm_feature_set arm_ext_pan = ARM_FEATURE_CORE_HIGH (ARM_EXT2_PAN);
235 static const arm_feature_set arm_ext_v8m = ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8M);
236 static const arm_feature_set arm_ext_v8m_main =
237 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8M_MAIN);
238 static const arm_feature_set arm_ext_v8_1m_main =
239 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8_1M_MAIN);
240 /* Instructions in ARMv8-M only found in M profile architectures. */
241 static const arm_feature_set arm_ext_v8m_m_only =
242 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8M | ARM_EXT2_V8M_MAIN);
243 static const arm_feature_set arm_ext_v6t2_v8m =
244 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V6T2_V8M);
245 /* Instructions shared between ARMv8-A and ARMv8-M. */
246 static const arm_feature_set arm_ext_atomics =
247 ARM_FEATURE_CORE_HIGH (ARM_EXT2_ATOMICS);
248 #ifdef OBJ_ELF
249 /* DSP instructions Tag_DSP_extension refers to. */
250 static const arm_feature_set arm_ext_dsp =
251 ARM_FEATURE_CORE_LOW (ARM_EXT_V5E | ARM_EXT_V5ExP | ARM_EXT_V6_DSP);
252 #endif
253 static const arm_feature_set arm_ext_ras =
254 ARM_FEATURE_CORE_HIGH (ARM_EXT2_RAS);
255 /* FP16 instructions. */
256 static const arm_feature_set arm_ext_fp16 =
257 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST);
258 static const arm_feature_set arm_ext_fp16_fml =
259 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_FML);
260 static const arm_feature_set arm_ext_v8_2 =
261 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8_2A);
262 static const arm_feature_set arm_ext_v8_3 =
263 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8_3A);
264 static const arm_feature_set arm_ext_sb =
265 ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB);
266 static const arm_feature_set arm_ext_predres =
267 ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES);
268
269 static const arm_feature_set arm_arch_any = ARM_ANY;
270 #ifdef OBJ_ELF
271 static const arm_feature_set fpu_any = FPU_ANY;
272 #endif
273 static const arm_feature_set arm_arch_full ATTRIBUTE_UNUSED = ARM_FEATURE (-1, -1, -1);
274 static const arm_feature_set arm_arch_t2 = ARM_ARCH_THUMB2;
275 static const arm_feature_set arm_arch_none = ARM_ARCH_NONE;
276
277 static const arm_feature_set arm_cext_iwmmxt2 =
278 ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT2);
279 static const arm_feature_set arm_cext_iwmmxt =
280 ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT);
281 static const arm_feature_set arm_cext_xscale =
282 ARM_FEATURE_COPROC (ARM_CEXT_XSCALE);
283 static const arm_feature_set arm_cext_maverick =
284 ARM_FEATURE_COPROC (ARM_CEXT_MAVERICK);
285 static const arm_feature_set fpu_fpa_ext_v1 =
286 ARM_FEATURE_COPROC (FPU_FPA_EXT_V1);
287 static const arm_feature_set fpu_fpa_ext_v2 =
288 ARM_FEATURE_COPROC (FPU_FPA_EXT_V2);
289 static const arm_feature_set fpu_vfp_ext_v1xd =
290 ARM_FEATURE_COPROC (FPU_VFP_EXT_V1xD);
291 static const arm_feature_set fpu_vfp_ext_v1 =
292 ARM_FEATURE_COPROC (FPU_VFP_EXT_V1);
293 static const arm_feature_set fpu_vfp_ext_v2 =
294 ARM_FEATURE_COPROC (FPU_VFP_EXT_V2);
295 static const arm_feature_set fpu_vfp_ext_v3xd =
296 ARM_FEATURE_COPROC (FPU_VFP_EXT_V3xD);
297 static const arm_feature_set fpu_vfp_ext_v3 =
298 ARM_FEATURE_COPROC (FPU_VFP_EXT_V3);
299 static const arm_feature_set fpu_vfp_ext_d32 =
300 ARM_FEATURE_COPROC (FPU_VFP_EXT_D32);
301 static const arm_feature_set fpu_neon_ext_v1 =
302 ARM_FEATURE_COPROC (FPU_NEON_EXT_V1);
303 static const arm_feature_set fpu_vfp_v3_or_neon_ext =
304 ARM_FEATURE_COPROC (FPU_NEON_EXT_V1 | FPU_VFP_EXT_V3);
305 static const arm_feature_set mve_ext =
306 ARM_FEATURE_COPROC (FPU_MVE);
307 static const arm_feature_set mve_fp_ext =
308 ARM_FEATURE_COPROC (FPU_MVE_FP);
309 #ifdef OBJ_ELF
310 static const arm_feature_set fpu_vfp_fp16 =
311 ARM_FEATURE_COPROC (FPU_VFP_EXT_FP16);
312 static const arm_feature_set fpu_neon_ext_fma =
313 ARM_FEATURE_COPROC (FPU_NEON_EXT_FMA);
314 #endif
315 static const arm_feature_set fpu_vfp_ext_fma =
316 ARM_FEATURE_COPROC (FPU_VFP_EXT_FMA);
317 static const arm_feature_set fpu_vfp_ext_armv8 =
318 ARM_FEATURE_COPROC (FPU_VFP_EXT_ARMV8);
319 static const arm_feature_set fpu_vfp_ext_armv8xd =
320 ARM_FEATURE_COPROC (FPU_VFP_EXT_ARMV8xD);
321 static const arm_feature_set fpu_neon_ext_armv8 =
322 ARM_FEATURE_COPROC (FPU_NEON_EXT_ARMV8);
323 static const arm_feature_set fpu_crypto_ext_armv8 =
324 ARM_FEATURE_COPROC (FPU_CRYPTO_EXT_ARMV8);
325 static const arm_feature_set crc_ext_armv8 =
326 ARM_FEATURE_COPROC (CRC_EXT_ARMV8);
327 static const arm_feature_set fpu_neon_ext_v8_1 =
328 ARM_FEATURE_COPROC (FPU_NEON_EXT_RDMA);
329 static const arm_feature_set fpu_neon_ext_dotprod =
330 ARM_FEATURE_COPROC (FPU_NEON_EXT_DOTPROD);
331
332 static int mfloat_abi_opt = -1;
333 /* Architecture feature bits selected by the last -mcpu/-march or .cpu/.arch
334 directive. */
335 static arm_feature_set selected_arch = ARM_ARCH_NONE;
336 /* Extension feature bits selected by the last -mcpu/-march or .arch_extension
337 directive. */
338 static arm_feature_set selected_ext = ARM_ARCH_NONE;
339 /* Feature bits selected by the last -mcpu/-march or by the combination of the
340 last .cpu/.arch directive .arch_extension directives since that
341 directive. */
342 static arm_feature_set selected_cpu = ARM_ARCH_NONE;
343 /* FPU feature bits selected by the last -mfpu or .fpu directive. */
344 static arm_feature_set selected_fpu = FPU_NONE;
345 /* Feature bits selected by the last .object_arch directive. */
346 static arm_feature_set selected_object_arch = ARM_ARCH_NONE;
347 /* Must be long enough to hold any of the names in arm_cpus. */
348 static char selected_cpu_name[20];
349
350 extern FLONUM_TYPE generic_floating_point_number;
351
352 /* Return if no cpu was selected on command-line. */
353 static bfd_boolean
354 no_cpu_selected (void)
355 {
356 return ARM_FEATURE_EQUAL (selected_cpu, arm_arch_none);
357 }
358
359 #ifdef OBJ_ELF
360 # ifdef EABI_DEFAULT
361 static int meabi_flags = EABI_DEFAULT;
362 # else
363 static int meabi_flags = EF_ARM_EABI_UNKNOWN;
364 # endif
365
366 static int attributes_set_explicitly[NUM_KNOWN_OBJ_ATTRIBUTES];
367
368 bfd_boolean
369 arm_is_eabi (void)
370 {
371 return (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4);
372 }
373 #endif
374
375 #ifdef OBJ_ELF
376 /* Pre-defined "_GLOBAL_OFFSET_TABLE_" */
377 symbolS * GOT_symbol;
378 #endif
379
380 /* 0: assemble for ARM,
381 1: assemble for Thumb,
382 2: assemble for Thumb even though target CPU does not support thumb
383 instructions. */
384 static int thumb_mode = 0;
385 /* A value distinct from the possible values for thumb_mode that we
386 can use to record whether thumb_mode has been copied into the
387 tc_frag_data field of a frag. */
388 #define MODE_RECORDED (1 << 4)
389
390 /* Specifies the intrinsic IT insn behavior mode. */
391 enum implicit_it_mode
392 {
393 IMPLICIT_IT_MODE_NEVER = 0x00,
394 IMPLICIT_IT_MODE_ARM = 0x01,
395 IMPLICIT_IT_MODE_THUMB = 0x02,
396 IMPLICIT_IT_MODE_ALWAYS = (IMPLICIT_IT_MODE_ARM | IMPLICIT_IT_MODE_THUMB)
397 };
398 static int implicit_it_mode = IMPLICIT_IT_MODE_ARM;
399
400 /* If unified_syntax is true, we are processing the new unified
401 ARM/Thumb syntax. Important differences from the old ARM mode:
402
403 - Immediate operands do not require a # prefix.
404 - Conditional affixes always appear at the end of the
405 instruction. (For backward compatibility, those instructions
406 that formerly had them in the middle, continue to accept them
407 there.)
408 - The IT instruction may appear, and if it does is validated
409 against subsequent conditional affixes. It does not generate
410 machine code.
411
412 Important differences from the old Thumb mode:
413
414 - Immediate operands do not require a # prefix.
415 - Most of the V6T2 instructions are only available in unified mode.
416 - The .N and .W suffixes are recognized and honored (it is an error
417 if they cannot be honored).
418 - All instructions set the flags if and only if they have an 's' affix.
419 - Conditional affixes may be used. They are validated against
420 preceding IT instructions. Unlike ARM mode, you cannot use a
421 conditional affix except in the scope of an IT instruction. */
422
423 static bfd_boolean unified_syntax = FALSE;
424
425 /* An immediate operand can start with #, and ld*, st*, pld operands
426 can contain [ and ]. We need to tell APP not to elide whitespace
427 before a [, which can appear as the first operand for pld.
428 Likewise, a { can appear as the first operand for push, pop, vld*, etc. */
429 const char arm_symbol_chars[] = "#[]{}";
430
431 enum neon_el_type
432 {
433 NT_invtype,
434 NT_untyped,
435 NT_integer,
436 NT_float,
437 NT_poly,
438 NT_signed,
439 NT_unsigned
440 };
441
442 struct neon_type_el
443 {
444 enum neon_el_type type;
445 unsigned size;
446 };
447
448 #define NEON_MAX_TYPE_ELS 4
449
450 struct neon_type
451 {
452 struct neon_type_el el[NEON_MAX_TYPE_ELS];
453 unsigned elems;
454 };
455
456 enum pred_instruction_type
457 {
458 OUTSIDE_PRED_INSN,
459 INSIDE_VPT_INSN,
460 INSIDE_IT_INSN,
461 INSIDE_IT_LAST_INSN,
462 IF_INSIDE_IT_LAST_INSN, /* Either outside or inside;
463 if inside, should be the last one. */
464 NEUTRAL_IT_INSN, /* This could be either inside or outside,
465 i.e. BKPT and NOP. */
466 IT_INSN, /* The IT insn has been parsed. */
467 VPT_INSN, /* The VPT/VPST insn has been parsed. */
468 MVE_OUTSIDE_PRED_INSN , /* Instruction to indicate a MVE instruction without
469 a predication code. */
470 MVE_UNPREDICABLE_INSN /* MVE instruction that is non-predicable. */
471 };
472
473 /* The maximum number of operands we need. */
474 #define ARM_IT_MAX_OPERANDS 6
475 #define ARM_IT_MAX_RELOCS 3
476
477 struct arm_it
478 {
479 const char * error;
480 unsigned long instruction;
481 int size;
482 int size_req;
483 int cond;
484 /* "uncond_value" is set to the value in place of the conditional field in
485 unconditional versions of the instruction, or -1 if nothing is
486 appropriate. */
487 int uncond_value;
488 struct neon_type vectype;
489 /* This does not indicate an actual NEON instruction, only that
490 the mnemonic accepts neon-style type suffixes. */
491 int is_neon;
492 /* Set to the opcode if the instruction needs relaxation.
493 Zero if the instruction is not relaxed. */
494 unsigned long relax;
495 struct
496 {
497 bfd_reloc_code_real_type type;
498 expressionS exp;
499 int pc_rel;
500 } relocs[ARM_IT_MAX_RELOCS];
501
502 enum pred_instruction_type pred_insn_type;
503
504 struct
505 {
506 unsigned reg;
507 signed int imm;
508 struct neon_type_el vectype;
509 unsigned present : 1; /* Operand present. */
510 unsigned isreg : 1; /* Operand was a register. */
511 unsigned immisreg : 2; /* .imm field is a second register.
512 0: imm, 1: gpr, 2: MVE Q-register. */
513 unsigned isscalar : 2; /* Operand is a (SIMD) scalar:
514 0) not scalar,
515 1) Neon scalar,
516 2) MVE scalar. */
517 unsigned immisalign : 1; /* Immediate is an alignment specifier. */
518 unsigned immisfloat : 1; /* Immediate was parsed as a float. */
519 /* Note: we abuse "regisimm" to mean "is Neon register" in VMOV
520 instructions. This allows us to disambiguate ARM <-> vector insns. */
521 unsigned regisimm : 1; /* 64-bit immediate, reg forms high 32 bits. */
522 unsigned isvec : 1; /* Is a single, double or quad VFP/Neon reg. */
523 unsigned isquad : 1; /* Operand is SIMD quad register. */
524 unsigned issingle : 1; /* Operand is VFP single-precision register. */
525 unsigned iszr : 1; /* Operand is ZR register. */
526 unsigned hasreloc : 1; /* Operand has relocation suffix. */
527 unsigned writeback : 1; /* Operand has trailing ! */
528 unsigned preind : 1; /* Preindexed address. */
529 unsigned postind : 1; /* Postindexed address. */
530 unsigned negative : 1; /* Index register was negated. */
531 unsigned shifted : 1; /* Shift applied to operation. */
532 unsigned shift_kind : 3; /* Shift operation (enum shift_kind). */
533 } operands[ARM_IT_MAX_OPERANDS];
534 };
535
536 static struct arm_it inst;
537
538 #define NUM_FLOAT_VALS 8
539
540 const char * fp_const[] =
541 {
542 "0.0", "1.0", "2.0", "3.0", "4.0", "5.0", "0.5", "10.0", 0
543 };
544
545 LITTLENUM_TYPE fp_values[NUM_FLOAT_VALS][MAX_LITTLENUMS];
546
547 #define FAIL (-1)
548 #define SUCCESS (0)
549
550 #define SUFF_S 1
551 #define SUFF_D 2
552 #define SUFF_E 3
553 #define SUFF_P 4
554
555 #define CP_T_X 0x00008000
556 #define CP_T_Y 0x00400000
557
558 #define CONDS_BIT 0x00100000
559 #define LOAD_BIT 0x00100000
560
561 #define DOUBLE_LOAD_FLAG 0x00000001
562
563 struct asm_cond
564 {
565 const char * template_name;
566 unsigned long value;
567 };
568
569 #define COND_ALWAYS 0xE
570
571 struct asm_psr
572 {
573 const char * template_name;
574 unsigned long field;
575 };
576
577 struct asm_barrier_opt
578 {
579 const char * template_name;
580 unsigned long value;
581 const arm_feature_set arch;
582 };
583
584 /* The bit that distinguishes CPSR and SPSR. */
585 #define SPSR_BIT (1 << 22)
586
587 /* The individual PSR flag bits. */
588 #define PSR_c (1 << 16)
589 #define PSR_x (1 << 17)
590 #define PSR_s (1 << 18)
591 #define PSR_f (1 << 19)
592
593 struct reloc_entry
594 {
595 const char * name;
596 bfd_reloc_code_real_type reloc;
597 };
598
599 enum vfp_reg_pos
600 {
601 VFP_REG_Sd, VFP_REG_Sm, VFP_REG_Sn,
602 VFP_REG_Dd, VFP_REG_Dm, VFP_REG_Dn
603 };
604
605 enum vfp_ldstm_type
606 {
607 VFP_LDSTMIA, VFP_LDSTMDB, VFP_LDSTMIAX, VFP_LDSTMDBX
608 };
609
610 /* Bits for DEFINED field in neon_typed_alias. */
611 #define NTA_HASTYPE 1
612 #define NTA_HASINDEX 2
613
614 struct neon_typed_alias
615 {
616 unsigned char defined;
617 unsigned char index;
618 struct neon_type_el eltype;
619 };
620
621 /* ARM register categories. This includes coprocessor numbers and various
622 architecture extensions' registers. Each entry should have an error message
623 in reg_expected_msgs below. */
624 enum arm_reg_type
625 {
626 REG_TYPE_RN,
627 REG_TYPE_CP,
628 REG_TYPE_CN,
629 REG_TYPE_FN,
630 REG_TYPE_VFS,
631 REG_TYPE_VFD,
632 REG_TYPE_NQ,
633 REG_TYPE_VFSD,
634 REG_TYPE_NDQ,
635 REG_TYPE_NSD,
636 REG_TYPE_NSDQ,
637 REG_TYPE_VFC,
638 REG_TYPE_MVF,
639 REG_TYPE_MVD,
640 REG_TYPE_MVFX,
641 REG_TYPE_MVDX,
642 REG_TYPE_MVAX,
643 REG_TYPE_MQ,
644 REG_TYPE_DSPSC,
645 REG_TYPE_MMXWR,
646 REG_TYPE_MMXWC,
647 REG_TYPE_MMXWCG,
648 REG_TYPE_XSCALE,
649 REG_TYPE_RNB,
650 REG_TYPE_ZR
651 };
652
653 /* Structure for a hash table entry for a register.
654 If TYPE is REG_TYPE_VFD or REG_TYPE_NQ, the NEON field can point to extra
655 information which states whether a vector type or index is specified (for a
656 register alias created with .dn or .qn). Otherwise NEON should be NULL. */
657 struct reg_entry
658 {
659 const char * name;
660 unsigned int number;
661 unsigned char type;
662 unsigned char builtin;
663 struct neon_typed_alias * neon;
664 };
665
666 /* Diagnostics used when we don't get a register of the expected type. */
667 const char * const reg_expected_msgs[] =
668 {
669 [REG_TYPE_RN] = N_("ARM register expected"),
670 [REG_TYPE_CP] = N_("bad or missing co-processor number"),
671 [REG_TYPE_CN] = N_("co-processor register expected"),
672 [REG_TYPE_FN] = N_("FPA register expected"),
673 [REG_TYPE_VFS] = N_("VFP single precision register expected"),
674 [REG_TYPE_VFD] = N_("VFP/Neon double precision register expected"),
675 [REG_TYPE_NQ] = N_("Neon quad precision register expected"),
676 [REG_TYPE_VFSD] = N_("VFP single or double precision register expected"),
677 [REG_TYPE_NDQ] = N_("Neon double or quad precision register expected"),
678 [REG_TYPE_NSD] = N_("Neon single or double precision register expected"),
679 [REG_TYPE_NSDQ] = N_("VFP single, double or Neon quad precision register"
680 " expected"),
681 [REG_TYPE_VFC] = N_("VFP system register expected"),
682 [REG_TYPE_MVF] = N_("Maverick MVF register expected"),
683 [REG_TYPE_MVD] = N_("Maverick MVD register expected"),
684 [REG_TYPE_MVFX] = N_("Maverick MVFX register expected"),
685 [REG_TYPE_MVDX] = N_("Maverick MVDX register expected"),
686 [REG_TYPE_MVAX] = N_("Maverick MVAX register expected"),
687 [REG_TYPE_DSPSC] = N_("Maverick DSPSC register expected"),
688 [REG_TYPE_MMXWR] = N_("iWMMXt data register expected"),
689 [REG_TYPE_MMXWC] = N_("iWMMXt control register expected"),
690 [REG_TYPE_MMXWCG] = N_("iWMMXt scalar register expected"),
691 [REG_TYPE_XSCALE] = N_("XScale accumulator register expected"),
692 [REG_TYPE_MQ] = N_("MVE vector register expected"),
693 [REG_TYPE_RNB] = N_("")
694 };
695
696 /* Some well known registers that we refer to directly elsewhere. */
697 #define REG_R12 12
698 #define REG_SP 13
699 #define REG_LR 14
700 #define REG_PC 15
701
702 /* ARM instructions take 4bytes in the object file, Thumb instructions
703 take 2: */
704 #define INSN_SIZE 4
705
706 struct asm_opcode
707 {
708 /* Basic string to match. */
709 const char * template_name;
710
711 /* Parameters to instruction. */
712 unsigned int operands[8];
713
714 /* Conditional tag - see opcode_lookup. */
715 unsigned int tag : 4;
716
717 /* Basic instruction code. */
718 unsigned int avalue;
719
720 /* Thumb-format instruction code. */
721 unsigned int tvalue;
722
723 /* Which architecture variant provides this instruction. */
724 const arm_feature_set * avariant;
725 const arm_feature_set * tvariant;
726
727 /* Function to call to encode instruction in ARM format. */
728 void (* aencode) (void);
729
730 /* Function to call to encode instruction in Thumb format. */
731 void (* tencode) (void);
732
733 /* Indicates whether this instruction may be vector predicated. */
734 unsigned int mayBeVecPred : 1;
735 };
736
737 /* Defines for various bits that we will want to toggle. */
738 #define INST_IMMEDIATE 0x02000000
739 #define OFFSET_REG 0x02000000
740 #define HWOFFSET_IMM 0x00400000
741 #define SHIFT_BY_REG 0x00000010
742 #define PRE_INDEX 0x01000000
743 #define INDEX_UP 0x00800000
744 #define WRITE_BACK 0x00200000
745 #define LDM_TYPE_2_OR_3 0x00400000
746 #define CPSI_MMOD 0x00020000
747
748 #define LITERAL_MASK 0xf000f000
749 #define OPCODE_MASK 0xfe1fffff
750 #define V4_STR_BIT 0x00000020
751 #define VLDR_VMOV_SAME 0x0040f000
752
753 #define T2_SUBS_PC_LR 0xf3de8f00
754
755 #define DATA_OP_SHIFT 21
756 #define SBIT_SHIFT 20
757
758 #define T2_OPCODE_MASK 0xfe1fffff
759 #define T2_DATA_OP_SHIFT 21
760 #define T2_SBIT_SHIFT 20
761
762 #define A_COND_MASK 0xf0000000
763 #define A_PUSH_POP_OP_MASK 0x0fff0000
764
765 /* Opcodes for pushing/poping registers to/from the stack. */
766 #define A1_OPCODE_PUSH 0x092d0000
767 #define A2_OPCODE_PUSH 0x052d0004
768 #define A2_OPCODE_POP 0x049d0004
769
770 /* Codes to distinguish the arithmetic instructions. */
771 #define OPCODE_AND 0
772 #define OPCODE_EOR 1
773 #define OPCODE_SUB 2
774 #define OPCODE_RSB 3
775 #define OPCODE_ADD 4
776 #define OPCODE_ADC 5
777 #define OPCODE_SBC 6
778 #define OPCODE_RSC 7
779 #define OPCODE_TST 8
780 #define OPCODE_TEQ 9
781 #define OPCODE_CMP 10
782 #define OPCODE_CMN 11
783 #define OPCODE_ORR 12
784 #define OPCODE_MOV 13
785 #define OPCODE_BIC 14
786 #define OPCODE_MVN 15
787
788 #define T2_OPCODE_AND 0
789 #define T2_OPCODE_BIC 1
790 #define T2_OPCODE_ORR 2
791 #define T2_OPCODE_ORN 3
792 #define T2_OPCODE_EOR 4
793 #define T2_OPCODE_ADD 8
794 #define T2_OPCODE_ADC 10
795 #define T2_OPCODE_SBC 11
796 #define T2_OPCODE_SUB 13
797 #define T2_OPCODE_RSB 14
798
799 #define T_OPCODE_MUL 0x4340
800 #define T_OPCODE_TST 0x4200
801 #define T_OPCODE_CMN 0x42c0
802 #define T_OPCODE_NEG 0x4240
803 #define T_OPCODE_MVN 0x43c0
804
805 #define T_OPCODE_ADD_R3 0x1800
806 #define T_OPCODE_SUB_R3 0x1a00
807 #define T_OPCODE_ADD_HI 0x4400
808 #define T_OPCODE_ADD_ST 0xb000
809 #define T_OPCODE_SUB_ST 0xb080
810 #define T_OPCODE_ADD_SP 0xa800
811 #define T_OPCODE_ADD_PC 0xa000
812 #define T_OPCODE_ADD_I8 0x3000
813 #define T_OPCODE_SUB_I8 0x3800
814 #define T_OPCODE_ADD_I3 0x1c00
815 #define T_OPCODE_SUB_I3 0x1e00
816
817 #define T_OPCODE_ASR_R 0x4100
818 #define T_OPCODE_LSL_R 0x4080
819 #define T_OPCODE_LSR_R 0x40c0
820 #define T_OPCODE_ROR_R 0x41c0
821 #define T_OPCODE_ASR_I 0x1000
822 #define T_OPCODE_LSL_I 0x0000
823 #define T_OPCODE_LSR_I 0x0800
824
825 #define T_OPCODE_MOV_I8 0x2000
826 #define T_OPCODE_CMP_I8 0x2800
827 #define T_OPCODE_CMP_LR 0x4280
828 #define T_OPCODE_MOV_HR 0x4600
829 #define T_OPCODE_CMP_HR 0x4500
830
831 #define T_OPCODE_LDR_PC 0x4800
832 #define T_OPCODE_LDR_SP 0x9800
833 #define T_OPCODE_STR_SP 0x9000
834 #define T_OPCODE_LDR_IW 0x6800
835 #define T_OPCODE_STR_IW 0x6000
836 #define T_OPCODE_LDR_IH 0x8800
837 #define T_OPCODE_STR_IH 0x8000
838 #define T_OPCODE_LDR_IB 0x7800
839 #define T_OPCODE_STR_IB 0x7000
840 #define T_OPCODE_LDR_RW 0x5800
841 #define T_OPCODE_STR_RW 0x5000
842 #define T_OPCODE_LDR_RH 0x5a00
843 #define T_OPCODE_STR_RH 0x5200
844 #define T_OPCODE_LDR_RB 0x5c00
845 #define T_OPCODE_STR_RB 0x5400
846
847 #define T_OPCODE_PUSH 0xb400
848 #define T_OPCODE_POP 0xbc00
849
850 #define T_OPCODE_BRANCH 0xe000
851
852 #define THUMB_SIZE 2 /* Size of thumb instruction. */
853 #define THUMB_PP_PC_LR 0x0100
854 #define THUMB_LOAD_BIT 0x0800
855 #define THUMB2_LOAD_BIT 0x00100000
856
857 #define BAD_SYNTAX _("syntax error")
858 #define BAD_ARGS _("bad arguments to instruction")
859 #define BAD_SP _("r13 not allowed here")
860 #define BAD_PC _("r15 not allowed here")
861 #define BAD_ODD _("Odd register not allowed here")
862 #define BAD_EVEN _("Even register not allowed here")
863 #define BAD_COND _("instruction cannot be conditional")
864 #define BAD_OVERLAP _("registers may not be the same")
865 #define BAD_HIREG _("lo register required")
866 #define BAD_THUMB32 _("instruction not supported in Thumb16 mode")
867 #define BAD_ADDR_MODE _("instruction does not accept this addressing mode")
868 #define BAD_BRANCH _("branch must be last instruction in IT block")
869 #define BAD_BRANCH_OFF _("branch out of range or not a multiple of 2")
870 #define BAD_NOT_IT _("instruction not allowed in IT block")
871 #define BAD_NOT_VPT _("instruction missing MVE vector predication code")
872 #define BAD_FPU _("selected FPU does not support instruction")
873 #define BAD_OUT_IT _("thumb conditional instruction should be in IT block")
874 #define BAD_OUT_VPT \
875 _("vector predicated instruction should be in VPT/VPST block")
876 #define BAD_IT_COND _("incorrect condition in IT block")
877 #define BAD_VPT_COND _("incorrect condition in VPT/VPST block")
878 #define BAD_IT_IT _("IT falling in the range of a previous IT block")
879 #define MISSING_FNSTART _("missing .fnstart before unwinding directive")
880 #define BAD_PC_ADDRESSING \
881 _("cannot use register index with PC-relative addressing")
882 #define BAD_PC_WRITEBACK \
883 _("cannot use writeback with PC-relative addressing")
884 #define BAD_RANGE _("branch out of range")
885 #define BAD_FP16 _("selected processor does not support fp16 instruction")
886 #define UNPRED_REG(R) _("using " R " results in unpredictable behaviour")
887 #define THUMB1_RELOC_ONLY _("relocation valid in thumb1 code only")
888 #define MVE_NOT_IT _("Warning: instruction is UNPREDICTABLE in an IT " \
889 "block")
890 #define MVE_NOT_VPT _("Warning: instruction is UNPREDICTABLE in a VPT " \
891 "block")
892 #define MVE_BAD_PC _("Warning: instruction is UNPREDICTABLE with PC" \
893 " operand")
894 #define MVE_BAD_SP _("Warning: instruction is UNPREDICTABLE with SP" \
895 " operand")
896 #define BAD_SIMD_TYPE _("bad type in SIMD instruction")
897 #define BAD_MVE_AUTO \
898 _("GAS auto-detection mode and -march=all is deprecated for MVE, please" \
899 " use a valid -march or -mcpu option.")
900 #define BAD_MVE_SRCDEST _("Warning: 32-bit element size and same destination "\
901 "and source operands makes instruction UNPREDICTABLE")
902 #define BAD_EL_TYPE _("bad element type for instruction")
903 #define MVE_BAD_QREG _("MVE vector register Q[0..7] expected")
904
905 static struct hash_control * arm_ops_hsh;
906 static struct hash_control * arm_cond_hsh;
907 static struct hash_control * arm_vcond_hsh;
908 static struct hash_control * arm_shift_hsh;
909 static struct hash_control * arm_psr_hsh;
910 static struct hash_control * arm_v7m_psr_hsh;
911 static struct hash_control * arm_reg_hsh;
912 static struct hash_control * arm_reloc_hsh;
913 static struct hash_control * arm_barrier_opt_hsh;
914
915 /* Stuff needed to resolve the label ambiguity
916 As:
917 ...
918 label: <insn>
919 may differ from:
920 ...
921 label:
922 <insn> */
923
924 symbolS * last_label_seen;
925 static int label_is_thumb_function_name = FALSE;
926
927 /* Literal pool structure. Held on a per-section
928 and per-sub-section basis. */
929
930 #define MAX_LITERAL_POOL_SIZE 1024
931 typedef struct literal_pool
932 {
933 expressionS literals [MAX_LITERAL_POOL_SIZE];
934 unsigned int next_free_entry;
935 unsigned int id;
936 symbolS * symbol;
937 segT section;
938 subsegT sub_section;
939 #ifdef OBJ_ELF
940 struct dwarf2_line_info locs [MAX_LITERAL_POOL_SIZE];
941 #endif
942 struct literal_pool * next;
943 unsigned int alignment;
944 } literal_pool;
945
946 /* Pointer to a linked list of literal pools. */
947 literal_pool * list_of_pools = NULL;
948
949 typedef enum asmfunc_states
950 {
951 OUTSIDE_ASMFUNC,
952 WAITING_ASMFUNC_NAME,
953 WAITING_ENDASMFUNC
954 } asmfunc_states;
955
956 static asmfunc_states asmfunc_state = OUTSIDE_ASMFUNC;
957
958 #ifdef OBJ_ELF
959 # define now_pred seg_info (now_seg)->tc_segment_info_data.current_pred
960 #else
961 static struct current_pred now_pred;
962 #endif
963
964 static inline int
965 now_pred_compatible (int cond)
966 {
967 return (cond & ~1) == (now_pred.cc & ~1);
968 }
969
970 static inline int
971 conditional_insn (void)
972 {
973 return inst.cond != COND_ALWAYS;
974 }
975
976 static int in_pred_block (void);
977
978 static int handle_pred_state (void);
979
980 static void force_automatic_it_block_close (void);
981
982 static void it_fsm_post_encode (void);
983
984 #define set_pred_insn_type(type) \
985 do \
986 { \
987 inst.pred_insn_type = type; \
988 if (handle_pred_state () == FAIL) \
989 return; \
990 } \
991 while (0)
992
993 #define set_pred_insn_type_nonvoid(type, failret) \
994 do \
995 { \
996 inst.pred_insn_type = type; \
997 if (handle_pred_state () == FAIL) \
998 return failret; \
999 } \
1000 while(0)
1001
1002 #define set_pred_insn_type_last() \
1003 do \
1004 { \
1005 if (inst.cond == COND_ALWAYS) \
1006 set_pred_insn_type (IF_INSIDE_IT_LAST_INSN); \
1007 else \
1008 set_pred_insn_type (INSIDE_IT_LAST_INSN); \
1009 } \
1010 while (0)
1011
1012 /* Pure syntax. */
1013
1014 /* This array holds the chars that always start a comment. If the
1015 pre-processor is disabled, these aren't very useful. */
1016 char arm_comment_chars[] = "@";
1017
1018 /* This array holds the chars that only start a comment at the beginning of
1019 a line. If the line seems to have the form '# 123 filename'
1020 .line and .file directives will appear in the pre-processed output. */
1021 /* Note that input_file.c hand checks for '#' at the beginning of the
1022 first line of the input file. This is because the compiler outputs
1023 #NO_APP at the beginning of its output. */
1024 /* Also note that comments like this one will always work. */
1025 const char line_comment_chars[] = "#";
1026
1027 char arm_line_separator_chars[] = ";";
1028
1029 /* Chars that can be used to separate mant
1030 from exp in floating point numbers. */
1031 const char EXP_CHARS[] = "eE";
1032
1033 /* Chars that mean this number is a floating point constant. */
1034 /* As in 0f12.456 */
1035 /* or 0d1.2345e12 */
1036
1037 const char FLT_CHARS[] = "rRsSfFdDxXeEpP";
1038
1039 /* Prefix characters that indicate the start of an immediate
1040 value. */
1041 #define is_immediate_prefix(C) ((C) == '#' || (C) == '$')
1042
1043 /* Separator character handling. */
1044
1045 #define skip_whitespace(str) do { if (*(str) == ' ') ++(str); } while (0)
1046
1047 static inline int
1048 skip_past_char (char ** str, char c)
1049 {
1050 /* PR gas/14987: Allow for whitespace before the expected character. */
1051 skip_whitespace (*str);
1052
1053 if (**str == c)
1054 {
1055 (*str)++;
1056 return SUCCESS;
1057 }
1058 else
1059 return FAIL;
1060 }
1061
1062 #define skip_past_comma(str) skip_past_char (str, ',')
1063
1064 /* Arithmetic expressions (possibly involving symbols). */
1065
1066 /* Return TRUE if anything in the expression is a bignum. */
1067
1068 static bfd_boolean
1069 walk_no_bignums (symbolS * sp)
1070 {
1071 if (symbol_get_value_expression (sp)->X_op == O_big)
1072 return TRUE;
1073
1074 if (symbol_get_value_expression (sp)->X_add_symbol)
1075 {
1076 return (walk_no_bignums (symbol_get_value_expression (sp)->X_add_symbol)
1077 || (symbol_get_value_expression (sp)->X_op_symbol
1078 && walk_no_bignums (symbol_get_value_expression (sp)->X_op_symbol)));
1079 }
1080
1081 return FALSE;
1082 }
1083
1084 static bfd_boolean in_my_get_expression = FALSE;
1085
1086 /* Third argument to my_get_expression. */
1087 #define GE_NO_PREFIX 0
1088 #define GE_IMM_PREFIX 1
1089 #define GE_OPT_PREFIX 2
1090 /* This is a bit of a hack. Use an optional prefix, and also allow big (64-bit)
1091 immediates, as can be used in Neon VMVN and VMOV immediate instructions. */
1092 #define GE_OPT_PREFIX_BIG 3
1093
1094 static int
1095 my_get_expression (expressionS * ep, char ** str, int prefix_mode)
1096 {
1097 char * save_in;
1098
1099 /* In unified syntax, all prefixes are optional. */
1100 if (unified_syntax)
1101 prefix_mode = (prefix_mode == GE_OPT_PREFIX_BIG) ? prefix_mode
1102 : GE_OPT_PREFIX;
1103
1104 switch (prefix_mode)
1105 {
1106 case GE_NO_PREFIX: break;
1107 case GE_IMM_PREFIX:
1108 if (!is_immediate_prefix (**str))
1109 {
1110 inst.error = _("immediate expression requires a # prefix");
1111 return FAIL;
1112 }
1113 (*str)++;
1114 break;
1115 case GE_OPT_PREFIX:
1116 case GE_OPT_PREFIX_BIG:
1117 if (is_immediate_prefix (**str))
1118 (*str)++;
1119 break;
1120 default:
1121 abort ();
1122 }
1123
1124 memset (ep, 0, sizeof (expressionS));
1125
1126 save_in = input_line_pointer;
1127 input_line_pointer = *str;
1128 in_my_get_expression = TRUE;
1129 expression (ep);
1130 in_my_get_expression = FALSE;
1131
1132 if (ep->X_op == O_illegal || ep->X_op == O_absent)
1133 {
1134 /* We found a bad or missing expression in md_operand(). */
1135 *str = input_line_pointer;
1136 input_line_pointer = save_in;
1137 if (inst.error == NULL)
1138 inst.error = (ep->X_op == O_absent
1139 ? _("missing expression") :_("bad expression"));
1140 return 1;
1141 }
1142
1143 /* Get rid of any bignums now, so that we don't generate an error for which
1144 we can't establish a line number later on. Big numbers are never valid
1145 in instructions, which is where this routine is always called. */
1146 if (prefix_mode != GE_OPT_PREFIX_BIG
1147 && (ep->X_op == O_big
1148 || (ep->X_add_symbol
1149 && (walk_no_bignums (ep->X_add_symbol)
1150 || (ep->X_op_symbol
1151 && walk_no_bignums (ep->X_op_symbol))))))
1152 {
1153 inst.error = _("invalid constant");
1154 *str = input_line_pointer;
1155 input_line_pointer = save_in;
1156 return 1;
1157 }
1158
1159 *str = input_line_pointer;
1160 input_line_pointer = save_in;
1161 return SUCCESS;
1162 }
1163
1164 /* Turn a string in input_line_pointer into a floating point constant
1165 of type TYPE, and store the appropriate bytes in *LITP. The number
1166 of LITTLENUMS emitted is stored in *SIZEP. An error message is
1167 returned, or NULL on OK.
1168
1169 Note that fp constants aren't represent in the normal way on the ARM.
1170 In big endian mode, things are as expected. However, in little endian
1171 mode fp constants are big-endian word-wise, and little-endian byte-wise
1172 within the words. For example, (double) 1.1 in big endian mode is
1173 the byte sequence 3f f1 99 99 99 99 99 9a, and in little endian mode is
1174 the byte sequence 99 99 f1 3f 9a 99 99 99.
1175
1176 ??? The format of 12 byte floats is uncertain according to gcc's arm.h. */
1177
1178 const char *
1179 md_atof (int type, char * litP, int * sizeP)
1180 {
1181 int prec;
1182 LITTLENUM_TYPE words[MAX_LITTLENUMS];
1183 char *t;
1184 int i;
1185
1186 switch (type)
1187 {
1188 case 'f':
1189 case 'F':
1190 case 's':
1191 case 'S':
1192 prec = 2;
1193 break;
1194
1195 case 'd':
1196 case 'D':
1197 case 'r':
1198 case 'R':
1199 prec = 4;
1200 break;
1201
1202 case 'x':
1203 case 'X':
1204 prec = 5;
1205 break;
1206
1207 case 'p':
1208 case 'P':
1209 prec = 5;
1210 break;
1211
1212 default:
1213 *sizeP = 0;
1214 return _("Unrecognized or unsupported floating point constant");
1215 }
1216
1217 t = atof_ieee (input_line_pointer, type, words);
1218 if (t)
1219 input_line_pointer = t;
1220 *sizeP = prec * sizeof (LITTLENUM_TYPE);
1221
1222 if (target_big_endian)
1223 {
1224 for (i = 0; i < prec; i++)
1225 {
1226 md_number_to_chars (litP, (valueT) words[i], sizeof (LITTLENUM_TYPE));
1227 litP += sizeof (LITTLENUM_TYPE);
1228 }
1229 }
1230 else
1231 {
1232 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_endian_pure))
1233 for (i = prec - 1; i >= 0; i--)
1234 {
1235 md_number_to_chars (litP, (valueT) words[i], sizeof (LITTLENUM_TYPE));
1236 litP += sizeof (LITTLENUM_TYPE);
1237 }
1238 else
1239 /* For a 4 byte float the order of elements in `words' is 1 0.
1240 For an 8 byte float the order is 1 0 3 2. */
1241 for (i = 0; i < prec; i += 2)
1242 {
1243 md_number_to_chars (litP, (valueT) words[i + 1],
1244 sizeof (LITTLENUM_TYPE));
1245 md_number_to_chars (litP + sizeof (LITTLENUM_TYPE),
1246 (valueT) words[i], sizeof (LITTLENUM_TYPE));
1247 litP += 2 * sizeof (LITTLENUM_TYPE);
1248 }
1249 }
1250
1251 return NULL;
1252 }
1253
1254 /* We handle all bad expressions here, so that we can report the faulty
1255 instruction in the error message. */
1256
1257 void
1258 md_operand (expressionS * exp)
1259 {
1260 if (in_my_get_expression)
1261 exp->X_op = O_illegal;
1262 }
1263
1264 /* Immediate values. */
1265
1266 #ifdef OBJ_ELF
1267 /* Generic immediate-value read function for use in directives.
1268 Accepts anything that 'expression' can fold to a constant.
1269 *val receives the number. */
1270
1271 static int
1272 immediate_for_directive (int *val)
1273 {
1274 expressionS exp;
1275 exp.X_op = O_illegal;
1276
1277 if (is_immediate_prefix (*input_line_pointer))
1278 {
1279 input_line_pointer++;
1280 expression (&exp);
1281 }
1282
1283 if (exp.X_op != O_constant)
1284 {
1285 as_bad (_("expected #constant"));
1286 ignore_rest_of_line ();
1287 return FAIL;
1288 }
1289 *val = exp.X_add_number;
1290 return SUCCESS;
1291 }
1292 #endif
1293
1294 /* Register parsing. */
1295
1296 /* Generic register parser. CCP points to what should be the
1297 beginning of a register name. If it is indeed a valid register
1298 name, advance CCP over it and return the reg_entry structure;
1299 otherwise return NULL. Does not issue diagnostics. */
1300
1301 static struct reg_entry *
1302 arm_reg_parse_multi (char **ccp)
1303 {
1304 char *start = *ccp;
1305 char *p;
1306 struct reg_entry *reg;
1307
1308 skip_whitespace (start);
1309
1310 #ifdef REGISTER_PREFIX
1311 if (*start != REGISTER_PREFIX)
1312 return NULL;
1313 start++;
1314 #endif
1315 #ifdef OPTIONAL_REGISTER_PREFIX
1316 if (*start == OPTIONAL_REGISTER_PREFIX)
1317 start++;
1318 #endif
1319
1320 p = start;
1321 if (!ISALPHA (*p) || !is_name_beginner (*p))
1322 return NULL;
1323
1324 do
1325 p++;
1326 while (ISALPHA (*p) || ISDIGIT (*p) || *p == '_');
1327
1328 reg = (struct reg_entry *) hash_find_n (arm_reg_hsh, start, p - start);
1329
1330 if (!reg)
1331 return NULL;
1332
1333 *ccp = p;
1334 return reg;
1335 }
1336
1337 static int
1338 arm_reg_alt_syntax (char **ccp, char *start, struct reg_entry *reg,
1339 enum arm_reg_type type)
1340 {
1341 /* Alternative syntaxes are accepted for a few register classes. */
1342 switch (type)
1343 {
1344 case REG_TYPE_MVF:
1345 case REG_TYPE_MVD:
1346 case REG_TYPE_MVFX:
1347 case REG_TYPE_MVDX:
1348 /* Generic coprocessor register names are allowed for these. */
1349 if (reg && reg->type == REG_TYPE_CN)
1350 return reg->number;
1351 break;
1352
1353 case REG_TYPE_CP:
1354 /* For backward compatibility, a bare number is valid here. */
1355 {
1356 unsigned long processor = strtoul (start, ccp, 10);
1357 if (*ccp != start && processor <= 15)
1358 return processor;
1359 }
1360 /* Fall through. */
1361
1362 case REG_TYPE_MMXWC:
1363 /* WC includes WCG. ??? I'm not sure this is true for all
1364 instructions that take WC registers. */
1365 if (reg && reg->type == REG_TYPE_MMXWCG)
1366 return reg->number;
1367 break;
1368
1369 default:
1370 break;
1371 }
1372
1373 return FAIL;
1374 }
1375
1376 /* As arm_reg_parse_multi, but the register must be of type TYPE, and the
1377 return value is the register number or FAIL. */
1378
1379 static int
1380 arm_reg_parse (char **ccp, enum arm_reg_type type)
1381 {
1382 char *start = *ccp;
1383 struct reg_entry *reg = arm_reg_parse_multi (ccp);
1384 int ret;
1385
1386 /* Do not allow a scalar (reg+index) to parse as a register. */
1387 if (reg && reg->neon && (reg->neon->defined & NTA_HASINDEX))
1388 return FAIL;
1389
1390 if (reg && reg->type == type)
1391 return reg->number;
1392
1393 if ((ret = arm_reg_alt_syntax (ccp, start, reg, type)) != FAIL)
1394 return ret;
1395
1396 *ccp = start;
1397 return FAIL;
1398 }
1399
1400 /* Parse a Neon type specifier. *STR should point at the leading '.'
1401 character. Does no verification at this stage that the type fits the opcode
1402 properly. E.g.,
1403
1404 .i32.i32.s16
1405 .s32.f32
1406 .u16
1407
1408 Can all be legally parsed by this function.
1409
1410 Fills in neon_type struct pointer with parsed information, and updates STR
1411 to point after the parsed type specifier. Returns SUCCESS if this was a legal
1412 type, FAIL if not. */
1413
1414 static int
1415 parse_neon_type (struct neon_type *type, char **str)
1416 {
1417 char *ptr = *str;
1418
1419 if (type)
1420 type->elems = 0;
1421
1422 while (type->elems < NEON_MAX_TYPE_ELS)
1423 {
1424 enum neon_el_type thistype = NT_untyped;
1425 unsigned thissize = -1u;
1426
1427 if (*ptr != '.')
1428 break;
1429
1430 ptr++;
1431
1432 /* Just a size without an explicit type. */
1433 if (ISDIGIT (*ptr))
1434 goto parsesize;
1435
1436 switch (TOLOWER (*ptr))
1437 {
1438 case 'i': thistype = NT_integer; break;
1439 case 'f': thistype = NT_float; break;
1440 case 'p': thistype = NT_poly; break;
1441 case 's': thistype = NT_signed; break;
1442 case 'u': thistype = NT_unsigned; break;
1443 case 'd':
1444 thistype = NT_float;
1445 thissize = 64;
1446 ptr++;
1447 goto done;
1448 default:
1449 as_bad (_("unexpected character `%c' in type specifier"), *ptr);
1450 return FAIL;
1451 }
1452
1453 ptr++;
1454
1455 /* .f is an abbreviation for .f32. */
1456 if (thistype == NT_float && !ISDIGIT (*ptr))
1457 thissize = 32;
1458 else
1459 {
1460 parsesize:
1461 thissize = strtoul (ptr, &ptr, 10);
1462
1463 if (thissize != 8 && thissize != 16 && thissize != 32
1464 && thissize != 64)
1465 {
1466 as_bad (_("bad size %d in type specifier"), thissize);
1467 return FAIL;
1468 }
1469 }
1470
1471 done:
1472 if (type)
1473 {
1474 type->el[type->elems].type = thistype;
1475 type->el[type->elems].size = thissize;
1476 type->elems++;
1477 }
1478 }
1479
1480 /* Empty/missing type is not a successful parse. */
1481 if (type->elems == 0)
1482 return FAIL;
1483
1484 *str = ptr;
1485
1486 return SUCCESS;
1487 }
1488
1489 /* Errors may be set multiple times during parsing or bit encoding
1490 (particularly in the Neon bits), but usually the earliest error which is set
1491 will be the most meaningful. Avoid overwriting it with later (cascading)
1492 errors by calling this function. */
1493
1494 static void
1495 first_error (const char *err)
1496 {
1497 if (!inst.error)
1498 inst.error = err;
1499 }
1500
1501 /* Parse a single type, e.g. ".s32", leading period included. */
1502 static int
1503 parse_neon_operand_type (struct neon_type_el *vectype, char **ccp)
1504 {
1505 char *str = *ccp;
1506 struct neon_type optype;
1507
1508 if (*str == '.')
1509 {
1510 if (parse_neon_type (&optype, &str) == SUCCESS)
1511 {
1512 if (optype.elems == 1)
1513 *vectype = optype.el[0];
1514 else
1515 {
1516 first_error (_("only one type should be specified for operand"));
1517 return FAIL;
1518 }
1519 }
1520 else
1521 {
1522 first_error (_("vector type expected"));
1523 return FAIL;
1524 }
1525 }
1526 else
1527 return FAIL;
1528
1529 *ccp = str;
1530
1531 return SUCCESS;
1532 }
1533
1534 /* Special meanings for indices (which have a range of 0-7), which will fit into
1535 a 4-bit integer. */
1536
1537 #define NEON_ALL_LANES 15
1538 #define NEON_INTERLEAVE_LANES 14
1539
1540 /* Record a use of the given feature. */
1541 static void
1542 record_feature_use (const arm_feature_set *feature)
1543 {
1544 if (thumb_mode)
1545 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used, *feature);
1546 else
1547 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used, *feature);
1548 }
1549
1550 /* If the given feature available in the selected CPU, mark it as used.
1551 Returns TRUE iff feature is available. */
1552 static bfd_boolean
1553 mark_feature_used (const arm_feature_set *feature)
1554 {
1555
1556 /* Do not support the use of MVE only instructions when in auto-detection or
1557 -march=all. */
1558 if (((feature == &mve_ext) || (feature == &mve_fp_ext))
1559 && ARM_CPU_IS_ANY (cpu_variant))
1560 {
1561 first_error (BAD_MVE_AUTO);
1562 return FALSE;
1563 }
1564 /* Ensure the option is valid on the current architecture. */
1565 if (!ARM_CPU_HAS_FEATURE (cpu_variant, *feature))
1566 return FALSE;
1567
1568 /* Add the appropriate architecture feature for the barrier option used.
1569 */
1570 record_feature_use (feature);
1571
1572 return TRUE;
1573 }
1574
1575 /* Parse either a register or a scalar, with an optional type. Return the
1576 register number, and optionally fill in the actual type of the register
1577 when multiple alternatives were given (NEON_TYPE_NDQ) in *RTYPE, and
1578 type/index information in *TYPEINFO. */
1579
1580 static int
1581 parse_typed_reg_or_scalar (char **ccp, enum arm_reg_type type,
1582 enum arm_reg_type *rtype,
1583 struct neon_typed_alias *typeinfo)
1584 {
1585 char *str = *ccp;
1586 struct reg_entry *reg = arm_reg_parse_multi (&str);
1587 struct neon_typed_alias atype;
1588 struct neon_type_el parsetype;
1589
1590 atype.defined = 0;
1591 atype.index = -1;
1592 atype.eltype.type = NT_invtype;
1593 atype.eltype.size = -1;
1594
1595 /* Try alternate syntax for some types of register. Note these are mutually
1596 exclusive with the Neon syntax extensions. */
1597 if (reg == NULL)
1598 {
1599 int altreg = arm_reg_alt_syntax (&str, *ccp, reg, type);
1600 if (altreg != FAIL)
1601 *ccp = str;
1602 if (typeinfo)
1603 *typeinfo = atype;
1604 return altreg;
1605 }
1606
1607 /* Undo polymorphism when a set of register types may be accepted. */
1608 if ((type == REG_TYPE_NDQ
1609 && (reg->type == REG_TYPE_NQ || reg->type == REG_TYPE_VFD))
1610 || (type == REG_TYPE_VFSD
1611 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD))
1612 || (type == REG_TYPE_NSDQ
1613 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD
1614 || reg->type == REG_TYPE_NQ))
1615 || (type == REG_TYPE_NSD
1616 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD))
1617 || (type == REG_TYPE_MMXWC
1618 && (reg->type == REG_TYPE_MMXWCG)))
1619 type = (enum arm_reg_type) reg->type;
1620
1621 if (type == REG_TYPE_MQ)
1622 {
1623 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
1624 return FAIL;
1625
1626 if (!reg || reg->type != REG_TYPE_NQ)
1627 return FAIL;
1628
1629 if (reg->number > 14 && !mark_feature_used (&fpu_vfp_ext_d32))
1630 {
1631 first_error (_("expected MVE register [q0..q7]"));
1632 return FAIL;
1633 }
1634 type = REG_TYPE_NQ;
1635 }
1636 else if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)
1637 && (type == REG_TYPE_NQ))
1638 return FAIL;
1639
1640
1641 if (type != reg->type)
1642 return FAIL;
1643
1644 if (reg->neon)
1645 atype = *reg->neon;
1646
1647 if (parse_neon_operand_type (&parsetype, &str) == SUCCESS)
1648 {
1649 if ((atype.defined & NTA_HASTYPE) != 0)
1650 {
1651 first_error (_("can't redefine type for operand"));
1652 return FAIL;
1653 }
1654 atype.defined |= NTA_HASTYPE;
1655 atype.eltype = parsetype;
1656 }
1657
1658 if (skip_past_char (&str, '[') == SUCCESS)
1659 {
1660 if (type != REG_TYPE_VFD
1661 && !(type == REG_TYPE_VFS
1662 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8_2))
1663 && !(type == REG_TYPE_NQ
1664 && ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)))
1665 {
1666 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
1667 first_error (_("only D and Q registers may be indexed"));
1668 else
1669 first_error (_("only D registers may be indexed"));
1670 return FAIL;
1671 }
1672
1673 if ((atype.defined & NTA_HASINDEX) != 0)
1674 {
1675 first_error (_("can't change index for operand"));
1676 return FAIL;
1677 }
1678
1679 atype.defined |= NTA_HASINDEX;
1680
1681 if (skip_past_char (&str, ']') == SUCCESS)
1682 atype.index = NEON_ALL_LANES;
1683 else
1684 {
1685 expressionS exp;
1686
1687 my_get_expression (&exp, &str, GE_NO_PREFIX);
1688
1689 if (exp.X_op != O_constant)
1690 {
1691 first_error (_("constant expression required"));
1692 return FAIL;
1693 }
1694
1695 if (skip_past_char (&str, ']') == FAIL)
1696 return FAIL;
1697
1698 atype.index = exp.X_add_number;
1699 }
1700 }
1701
1702 if (typeinfo)
1703 *typeinfo = atype;
1704
1705 if (rtype)
1706 *rtype = type;
1707
1708 *ccp = str;
1709
1710 return reg->number;
1711 }
1712
1713 /* Like arm_reg_parse, but also allow the following extra features:
1714 - If RTYPE is non-zero, return the (possibly restricted) type of the
1715 register (e.g. Neon double or quad reg when either has been requested).
1716 - If this is a Neon vector type with additional type information, fill
1717 in the struct pointed to by VECTYPE (if non-NULL).
1718 This function will fault on encountering a scalar. */
1719
1720 static int
1721 arm_typed_reg_parse (char **ccp, enum arm_reg_type type,
1722 enum arm_reg_type *rtype, struct neon_type_el *vectype)
1723 {
1724 struct neon_typed_alias atype;
1725 char *str = *ccp;
1726 int reg = parse_typed_reg_or_scalar (&str, type, rtype, &atype);
1727
1728 if (reg == FAIL)
1729 return FAIL;
1730
1731 /* Do not allow regname(... to parse as a register. */
1732 if (*str == '(')
1733 return FAIL;
1734
1735 /* Do not allow a scalar (reg+index) to parse as a register. */
1736 if ((atype.defined & NTA_HASINDEX) != 0)
1737 {
1738 first_error (_("register operand expected, but got scalar"));
1739 return FAIL;
1740 }
1741
1742 if (vectype)
1743 *vectype = atype.eltype;
1744
1745 *ccp = str;
1746
1747 return reg;
1748 }
1749
1750 #define NEON_SCALAR_REG(X) ((X) >> 4)
1751 #define NEON_SCALAR_INDEX(X) ((X) & 15)
1752
1753 /* Parse a Neon scalar. Most of the time when we're parsing a scalar, we don't
1754 have enough information to be able to do a good job bounds-checking. So, we
1755 just do easy checks here, and do further checks later. */
1756
1757 static int
1758 parse_scalar (char **ccp, int elsize, struct neon_type_el *type, enum
1759 arm_reg_type reg_type)
1760 {
1761 int reg;
1762 char *str = *ccp;
1763 struct neon_typed_alias atype;
1764 unsigned reg_size;
1765
1766 reg = parse_typed_reg_or_scalar (&str, reg_type, NULL, &atype);
1767
1768 switch (reg_type)
1769 {
1770 case REG_TYPE_VFS:
1771 reg_size = 32;
1772 break;
1773 case REG_TYPE_VFD:
1774 reg_size = 64;
1775 break;
1776 case REG_TYPE_MQ:
1777 reg_size = 128;
1778 break;
1779 default:
1780 gas_assert (0);
1781 return FAIL;
1782 }
1783
1784 if (reg == FAIL || (atype.defined & NTA_HASINDEX) == 0)
1785 return FAIL;
1786
1787 if (reg_type != REG_TYPE_MQ && atype.index == NEON_ALL_LANES)
1788 {
1789 first_error (_("scalar must have an index"));
1790 return FAIL;
1791 }
1792 else if (atype.index >= reg_size / elsize)
1793 {
1794 first_error (_("scalar index out of range"));
1795 return FAIL;
1796 }
1797
1798 if (type)
1799 *type = atype.eltype;
1800
1801 *ccp = str;
1802
1803 return reg * 16 + atype.index;
1804 }
1805
1806 /* Types of registers in a list. */
1807
1808 enum reg_list_els
1809 {
1810 REGLIST_RN,
1811 REGLIST_CLRM,
1812 REGLIST_VFP_S,
1813 REGLIST_VFP_S_VPR,
1814 REGLIST_VFP_D,
1815 REGLIST_VFP_D_VPR,
1816 REGLIST_NEON_D
1817 };
1818
1819 /* Parse an ARM register list. Returns the bitmask, or FAIL. */
1820
1821 static long
1822 parse_reg_list (char ** strp, enum reg_list_els etype)
1823 {
1824 char *str = *strp;
1825 long range = 0;
1826 int another_range;
1827
1828 gas_assert (etype == REGLIST_RN || etype == REGLIST_CLRM);
1829
1830 /* We come back here if we get ranges concatenated by '+' or '|'. */
1831 do
1832 {
1833 skip_whitespace (str);
1834
1835 another_range = 0;
1836
1837 if (*str == '{')
1838 {
1839 int in_range = 0;
1840 int cur_reg = -1;
1841
1842 str++;
1843 do
1844 {
1845 int reg;
1846 const char apsr_str[] = "apsr";
1847 int apsr_str_len = strlen (apsr_str);
1848
1849 reg = arm_reg_parse (&str, REGLIST_RN);
1850 if (etype == REGLIST_CLRM)
1851 {
1852 if (reg == REG_SP || reg == REG_PC)
1853 reg = FAIL;
1854 else if (reg == FAIL
1855 && !strncasecmp (str, apsr_str, apsr_str_len)
1856 && !ISALPHA (*(str + apsr_str_len)))
1857 {
1858 reg = 15;
1859 str += apsr_str_len;
1860 }
1861
1862 if (reg == FAIL)
1863 {
1864 first_error (_("r0-r12, lr or APSR expected"));
1865 return FAIL;
1866 }
1867 }
1868 else /* etype == REGLIST_RN. */
1869 {
1870 if (reg == FAIL)
1871 {
1872 first_error (_(reg_expected_msgs[REGLIST_RN]));
1873 return FAIL;
1874 }
1875 }
1876
1877 if (in_range)
1878 {
1879 int i;
1880
1881 if (reg <= cur_reg)
1882 {
1883 first_error (_("bad range in register list"));
1884 return FAIL;
1885 }
1886
1887 for (i = cur_reg + 1; i < reg; i++)
1888 {
1889 if (range & (1 << i))
1890 as_tsktsk
1891 (_("Warning: duplicated register (r%d) in register list"),
1892 i);
1893 else
1894 range |= 1 << i;
1895 }
1896 in_range = 0;
1897 }
1898
1899 if (range & (1 << reg))
1900 as_tsktsk (_("Warning: duplicated register (r%d) in register list"),
1901 reg);
1902 else if (reg <= cur_reg)
1903 as_tsktsk (_("Warning: register range not in ascending order"));
1904
1905 range |= 1 << reg;
1906 cur_reg = reg;
1907 }
1908 while (skip_past_comma (&str) != FAIL
1909 || (in_range = 1, *str++ == '-'));
1910 str--;
1911
1912 if (skip_past_char (&str, '}') == FAIL)
1913 {
1914 first_error (_("missing `}'"));
1915 return FAIL;
1916 }
1917 }
1918 else if (etype == REGLIST_RN)
1919 {
1920 expressionS exp;
1921
1922 if (my_get_expression (&exp, &str, GE_NO_PREFIX))
1923 return FAIL;
1924
1925 if (exp.X_op == O_constant)
1926 {
1927 if (exp.X_add_number
1928 != (exp.X_add_number & 0x0000ffff))
1929 {
1930 inst.error = _("invalid register mask");
1931 return FAIL;
1932 }
1933
1934 if ((range & exp.X_add_number) != 0)
1935 {
1936 int regno = range & exp.X_add_number;
1937
1938 regno &= -regno;
1939 regno = (1 << regno) - 1;
1940 as_tsktsk
1941 (_("Warning: duplicated register (r%d) in register list"),
1942 regno);
1943 }
1944
1945 range |= exp.X_add_number;
1946 }
1947 else
1948 {
1949 if (inst.relocs[0].type != 0)
1950 {
1951 inst.error = _("expression too complex");
1952 return FAIL;
1953 }
1954
1955 memcpy (&inst.relocs[0].exp, &exp, sizeof (expressionS));
1956 inst.relocs[0].type = BFD_RELOC_ARM_MULTI;
1957 inst.relocs[0].pc_rel = 0;
1958 }
1959 }
1960
1961 if (*str == '|' || *str == '+')
1962 {
1963 str++;
1964 another_range = 1;
1965 }
1966 }
1967 while (another_range);
1968
1969 *strp = str;
1970 return range;
1971 }
1972
1973 /* Parse a VFP register list. If the string is invalid return FAIL.
1974 Otherwise return the number of registers, and set PBASE to the first
1975 register. Parses registers of type ETYPE.
1976 If REGLIST_NEON_D is used, several syntax enhancements are enabled:
1977 - Q registers can be used to specify pairs of D registers
1978 - { } can be omitted from around a singleton register list
1979 FIXME: This is not implemented, as it would require backtracking in
1980 some cases, e.g.:
1981 vtbl.8 d3,d4,d5
1982 This could be done (the meaning isn't really ambiguous), but doesn't
1983 fit in well with the current parsing framework.
1984 - 32 D registers may be used (also true for VFPv3).
1985 FIXME: Types are ignored in these register lists, which is probably a
1986 bug. */
1987
1988 static int
1989 parse_vfp_reg_list (char **ccp, unsigned int *pbase, enum reg_list_els etype,
1990 bfd_boolean *partial_match)
1991 {
1992 char *str = *ccp;
1993 int base_reg;
1994 int new_base;
1995 enum arm_reg_type regtype = (enum arm_reg_type) 0;
1996 int max_regs = 0;
1997 int count = 0;
1998 int warned = 0;
1999 unsigned long mask = 0;
2000 int i;
2001 bfd_boolean vpr_seen = FALSE;
2002 bfd_boolean expect_vpr =
2003 (etype == REGLIST_VFP_S_VPR) || (etype == REGLIST_VFP_D_VPR);
2004
2005 if (skip_past_char (&str, '{') == FAIL)
2006 {
2007 inst.error = _("expecting {");
2008 return FAIL;
2009 }
2010
2011 switch (etype)
2012 {
2013 case REGLIST_VFP_S:
2014 case REGLIST_VFP_S_VPR:
2015 regtype = REG_TYPE_VFS;
2016 max_regs = 32;
2017 break;
2018
2019 case REGLIST_VFP_D:
2020 case REGLIST_VFP_D_VPR:
2021 regtype = REG_TYPE_VFD;
2022 break;
2023
2024 case REGLIST_NEON_D:
2025 regtype = REG_TYPE_NDQ;
2026 break;
2027
2028 default:
2029 gas_assert (0);
2030 }
2031
2032 if (etype != REGLIST_VFP_S && etype != REGLIST_VFP_S_VPR)
2033 {
2034 /* VFPv3 allows 32 D registers, except for the VFPv3-D16 variant. */
2035 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_d32))
2036 {
2037 max_regs = 32;
2038 if (thumb_mode)
2039 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
2040 fpu_vfp_ext_d32);
2041 else
2042 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
2043 fpu_vfp_ext_d32);
2044 }
2045 else
2046 max_regs = 16;
2047 }
2048
2049 base_reg = max_regs;
2050 *partial_match = FALSE;
2051
2052 do
2053 {
2054 int setmask = 1, addregs = 1;
2055 const char vpr_str[] = "vpr";
2056 int vpr_str_len = strlen (vpr_str);
2057
2058 new_base = arm_typed_reg_parse (&str, regtype, &regtype, NULL);
2059
2060 if (expect_vpr)
2061 {
2062 if (new_base == FAIL
2063 && !strncasecmp (str, vpr_str, vpr_str_len)
2064 && !ISALPHA (*(str + vpr_str_len))
2065 && !vpr_seen)
2066 {
2067 vpr_seen = TRUE;
2068 str += vpr_str_len;
2069 if (count == 0)
2070 base_reg = 0; /* Canonicalize VPR only on d0 with 0 regs. */
2071 }
2072 else if (vpr_seen)
2073 {
2074 first_error (_("VPR expected last"));
2075 return FAIL;
2076 }
2077 else if (new_base == FAIL)
2078 {
2079 if (regtype == REG_TYPE_VFS)
2080 first_error (_("VFP single precision register or VPR "
2081 "expected"));
2082 else /* regtype == REG_TYPE_VFD. */
2083 first_error (_("VFP/Neon double precision register or VPR "
2084 "expected"));
2085 return FAIL;
2086 }
2087 }
2088 else if (new_base == FAIL)
2089 {
2090 first_error (_(reg_expected_msgs[regtype]));
2091 return FAIL;
2092 }
2093
2094 *partial_match = TRUE;
2095 if (vpr_seen)
2096 continue;
2097
2098 if (new_base >= max_regs)
2099 {
2100 first_error (_("register out of range in list"));
2101 return FAIL;
2102 }
2103
2104 /* Note: a value of 2 * n is returned for the register Q<n>. */
2105 if (regtype == REG_TYPE_NQ)
2106 {
2107 setmask = 3;
2108 addregs = 2;
2109 }
2110
2111 if (new_base < base_reg)
2112 base_reg = new_base;
2113
2114 if (mask & (setmask << new_base))
2115 {
2116 first_error (_("invalid register list"));
2117 return FAIL;
2118 }
2119
2120 if ((mask >> new_base) != 0 && ! warned && !vpr_seen)
2121 {
2122 as_tsktsk (_("register list not in ascending order"));
2123 warned = 1;
2124 }
2125
2126 mask |= setmask << new_base;
2127 count += addregs;
2128
2129 if (*str == '-') /* We have the start of a range expression */
2130 {
2131 int high_range;
2132
2133 str++;
2134
2135 if ((high_range = arm_typed_reg_parse (&str, regtype, NULL, NULL))
2136 == FAIL)
2137 {
2138 inst.error = gettext (reg_expected_msgs[regtype]);
2139 return FAIL;
2140 }
2141
2142 if (high_range >= max_regs)
2143 {
2144 first_error (_("register out of range in list"));
2145 return FAIL;
2146 }
2147
2148 if (regtype == REG_TYPE_NQ)
2149 high_range = high_range + 1;
2150
2151 if (high_range <= new_base)
2152 {
2153 inst.error = _("register range not in ascending order");
2154 return FAIL;
2155 }
2156
2157 for (new_base += addregs; new_base <= high_range; new_base += addregs)
2158 {
2159 if (mask & (setmask << new_base))
2160 {
2161 inst.error = _("invalid register list");
2162 return FAIL;
2163 }
2164
2165 mask |= setmask << new_base;
2166 count += addregs;
2167 }
2168 }
2169 }
2170 while (skip_past_comma (&str) != FAIL);
2171
2172 str++;
2173
2174 /* Sanity check -- should have raised a parse error above. */
2175 if ((!vpr_seen && count == 0) || count > max_regs)
2176 abort ();
2177
2178 *pbase = base_reg;
2179
2180 if (expect_vpr && !vpr_seen)
2181 {
2182 first_error (_("VPR expected last"));
2183 return FAIL;
2184 }
2185
2186 /* Final test -- the registers must be consecutive. */
2187 mask >>= base_reg;
2188 for (i = 0; i < count; i++)
2189 {
2190 if ((mask & (1u << i)) == 0)
2191 {
2192 inst.error = _("non-contiguous register range");
2193 return FAIL;
2194 }
2195 }
2196
2197 *ccp = str;
2198
2199 return count;
2200 }
2201
2202 /* True if two alias types are the same. */
2203
2204 static bfd_boolean
2205 neon_alias_types_same (struct neon_typed_alias *a, struct neon_typed_alias *b)
2206 {
2207 if (!a && !b)
2208 return TRUE;
2209
2210 if (!a || !b)
2211 return FALSE;
2212
2213 if (a->defined != b->defined)
2214 return FALSE;
2215
2216 if ((a->defined & NTA_HASTYPE) != 0
2217 && (a->eltype.type != b->eltype.type
2218 || a->eltype.size != b->eltype.size))
2219 return FALSE;
2220
2221 if ((a->defined & NTA_HASINDEX) != 0
2222 && (a->index != b->index))
2223 return FALSE;
2224
2225 return TRUE;
2226 }
2227
2228 /* Parse element/structure lists for Neon VLD<n> and VST<n> instructions.
2229 The base register is put in *PBASE.
2230 The lane (or one of the NEON_*_LANES constants) is placed in bits [3:0] of
2231 the return value.
2232 The register stride (minus one) is put in bit 4 of the return value.
2233 Bits [6:5] encode the list length (minus one).
2234 The type of the list elements is put in *ELTYPE, if non-NULL. */
2235
2236 #define NEON_LANE(X) ((X) & 0xf)
2237 #define NEON_REG_STRIDE(X) ((((X) >> 4) & 1) + 1)
2238 #define NEON_REGLIST_LENGTH(X) ((((X) >> 5) & 3) + 1)
2239
2240 static int
2241 parse_neon_el_struct_list (char **str, unsigned *pbase,
2242 int mve,
2243 struct neon_type_el *eltype)
2244 {
2245 char *ptr = *str;
2246 int base_reg = -1;
2247 int reg_incr = -1;
2248 int count = 0;
2249 int lane = -1;
2250 int leading_brace = 0;
2251 enum arm_reg_type rtype = REG_TYPE_NDQ;
2252 const char *const incr_error = mve ? _("register stride must be 1") :
2253 _("register stride must be 1 or 2");
2254 const char *const type_error = _("mismatched element/structure types in list");
2255 struct neon_typed_alias firsttype;
2256 firsttype.defined = 0;
2257 firsttype.eltype.type = NT_invtype;
2258 firsttype.eltype.size = -1;
2259 firsttype.index = -1;
2260
2261 if (skip_past_char (&ptr, '{') == SUCCESS)
2262 leading_brace = 1;
2263
2264 do
2265 {
2266 struct neon_typed_alias atype;
2267 if (mve)
2268 rtype = REG_TYPE_MQ;
2269 int getreg = parse_typed_reg_or_scalar (&ptr, rtype, &rtype, &atype);
2270
2271 if (getreg == FAIL)
2272 {
2273 first_error (_(reg_expected_msgs[rtype]));
2274 return FAIL;
2275 }
2276
2277 if (base_reg == -1)
2278 {
2279 base_reg = getreg;
2280 if (rtype == REG_TYPE_NQ)
2281 {
2282 reg_incr = 1;
2283 }
2284 firsttype = atype;
2285 }
2286 else if (reg_incr == -1)
2287 {
2288 reg_incr = getreg - base_reg;
2289 if (reg_incr < 1 || reg_incr > 2)
2290 {
2291 first_error (_(incr_error));
2292 return FAIL;
2293 }
2294 }
2295 else if (getreg != base_reg + reg_incr * count)
2296 {
2297 first_error (_(incr_error));
2298 return FAIL;
2299 }
2300
2301 if (! neon_alias_types_same (&atype, &firsttype))
2302 {
2303 first_error (_(type_error));
2304 return FAIL;
2305 }
2306
2307 /* Handle Dn-Dm or Qn-Qm syntax. Can only be used with non-indexed list
2308 modes. */
2309 if (ptr[0] == '-')
2310 {
2311 struct neon_typed_alias htype;
2312 int hireg, dregs = (rtype == REG_TYPE_NQ) ? 2 : 1;
2313 if (lane == -1)
2314 lane = NEON_INTERLEAVE_LANES;
2315 else if (lane != NEON_INTERLEAVE_LANES)
2316 {
2317 first_error (_(type_error));
2318 return FAIL;
2319 }
2320 if (reg_incr == -1)
2321 reg_incr = 1;
2322 else if (reg_incr != 1)
2323 {
2324 first_error (_("don't use Rn-Rm syntax with non-unit stride"));
2325 return FAIL;
2326 }
2327 ptr++;
2328 hireg = parse_typed_reg_or_scalar (&ptr, rtype, NULL, &htype);
2329 if (hireg == FAIL)
2330 {
2331 first_error (_(reg_expected_msgs[rtype]));
2332 return FAIL;
2333 }
2334 if (! neon_alias_types_same (&htype, &firsttype))
2335 {
2336 first_error (_(type_error));
2337 return FAIL;
2338 }
2339 count += hireg + dregs - getreg;
2340 continue;
2341 }
2342
2343 /* If we're using Q registers, we can't use [] or [n] syntax. */
2344 if (rtype == REG_TYPE_NQ)
2345 {
2346 count += 2;
2347 continue;
2348 }
2349
2350 if ((atype.defined & NTA_HASINDEX) != 0)
2351 {
2352 if (lane == -1)
2353 lane = atype.index;
2354 else if (lane != atype.index)
2355 {
2356 first_error (_(type_error));
2357 return FAIL;
2358 }
2359 }
2360 else if (lane == -1)
2361 lane = NEON_INTERLEAVE_LANES;
2362 else if (lane != NEON_INTERLEAVE_LANES)
2363 {
2364 first_error (_(type_error));
2365 return FAIL;
2366 }
2367 count++;
2368 }
2369 while ((count != 1 || leading_brace) && skip_past_comma (&ptr) != FAIL);
2370
2371 /* No lane set by [x]. We must be interleaving structures. */
2372 if (lane == -1)
2373 lane = NEON_INTERLEAVE_LANES;
2374
2375 /* Sanity check. */
2376 if (lane == -1 || base_reg == -1 || count < 1 || (!mve && count > 4)
2377 || (count > 1 && reg_incr == -1))
2378 {
2379 first_error (_("error parsing element/structure list"));
2380 return FAIL;
2381 }
2382
2383 if ((count > 1 || leading_brace) && skip_past_char (&ptr, '}') == FAIL)
2384 {
2385 first_error (_("expected }"));
2386 return FAIL;
2387 }
2388
2389 if (reg_incr == -1)
2390 reg_incr = 1;
2391
2392 if (eltype)
2393 *eltype = firsttype.eltype;
2394
2395 *pbase = base_reg;
2396 *str = ptr;
2397
2398 return lane | ((reg_incr - 1) << 4) | ((count - 1) << 5);
2399 }
2400
2401 /* Parse an explicit relocation suffix on an expression. This is
2402 either nothing, or a word in parentheses. Note that if !OBJ_ELF,
2403 arm_reloc_hsh contains no entries, so this function can only
2404 succeed if there is no () after the word. Returns -1 on error,
2405 BFD_RELOC_UNUSED if there wasn't any suffix. */
2406
2407 static int
2408 parse_reloc (char **str)
2409 {
2410 struct reloc_entry *r;
2411 char *p, *q;
2412
2413 if (**str != '(')
2414 return BFD_RELOC_UNUSED;
2415
2416 p = *str + 1;
2417 q = p;
2418
2419 while (*q && *q != ')' && *q != ',')
2420 q++;
2421 if (*q != ')')
2422 return -1;
2423
2424 if ((r = (struct reloc_entry *)
2425 hash_find_n (arm_reloc_hsh, p, q - p)) == NULL)
2426 return -1;
2427
2428 *str = q + 1;
2429 return r->reloc;
2430 }
2431
2432 /* Directives: register aliases. */
2433
2434 static struct reg_entry *
2435 insert_reg_alias (char *str, unsigned number, int type)
2436 {
2437 struct reg_entry *new_reg;
2438 const char *name;
2439
2440 if ((new_reg = (struct reg_entry *) hash_find (arm_reg_hsh, str)) != 0)
2441 {
2442 if (new_reg->builtin)
2443 as_warn (_("ignoring attempt to redefine built-in register '%s'"), str);
2444
2445 /* Only warn about a redefinition if it's not defined as the
2446 same register. */
2447 else if (new_reg->number != number || new_reg->type != type)
2448 as_warn (_("ignoring redefinition of register alias '%s'"), str);
2449
2450 return NULL;
2451 }
2452
2453 name = xstrdup (str);
2454 new_reg = XNEW (struct reg_entry);
2455
2456 new_reg->name = name;
2457 new_reg->number = number;
2458 new_reg->type = type;
2459 new_reg->builtin = FALSE;
2460 new_reg->neon = NULL;
2461
2462 if (hash_insert (arm_reg_hsh, name, (void *) new_reg))
2463 abort ();
2464
2465 return new_reg;
2466 }
2467
2468 static void
2469 insert_neon_reg_alias (char *str, int number, int type,
2470 struct neon_typed_alias *atype)
2471 {
2472 struct reg_entry *reg = insert_reg_alias (str, number, type);
2473
2474 if (!reg)
2475 {
2476 first_error (_("attempt to redefine typed alias"));
2477 return;
2478 }
2479
2480 if (atype)
2481 {
2482 reg->neon = XNEW (struct neon_typed_alias);
2483 *reg->neon = *atype;
2484 }
2485 }
2486
2487 /* Look for the .req directive. This is of the form:
2488
2489 new_register_name .req existing_register_name
2490
2491 If we find one, or if it looks sufficiently like one that we want to
2492 handle any error here, return TRUE. Otherwise return FALSE. */
2493
2494 static bfd_boolean
2495 create_register_alias (char * newname, char *p)
2496 {
2497 struct reg_entry *old;
2498 char *oldname, *nbuf;
2499 size_t nlen;
2500
2501 /* The input scrubber ensures that whitespace after the mnemonic is
2502 collapsed to single spaces. */
2503 oldname = p;
2504 if (strncmp (oldname, " .req ", 6) != 0)
2505 return FALSE;
2506
2507 oldname += 6;
2508 if (*oldname == '\0')
2509 return FALSE;
2510
2511 old = (struct reg_entry *) hash_find (arm_reg_hsh, oldname);
2512 if (!old)
2513 {
2514 as_warn (_("unknown register '%s' -- .req ignored"), oldname);
2515 return TRUE;
2516 }
2517
2518 /* If TC_CASE_SENSITIVE is defined, then newname already points to
2519 the desired alias name, and p points to its end. If not, then
2520 the desired alias name is in the global original_case_string. */
2521 #ifdef TC_CASE_SENSITIVE
2522 nlen = p - newname;
2523 #else
2524 newname = original_case_string;
2525 nlen = strlen (newname);
2526 #endif
2527
2528 nbuf = xmemdup0 (newname, nlen);
2529
2530 /* Create aliases under the new name as stated; an all-lowercase
2531 version of the new name; and an all-uppercase version of the new
2532 name. */
2533 if (insert_reg_alias (nbuf, old->number, old->type) != NULL)
2534 {
2535 for (p = nbuf; *p; p++)
2536 *p = TOUPPER (*p);
2537
2538 if (strncmp (nbuf, newname, nlen))
2539 {
2540 /* If this attempt to create an additional alias fails, do not bother
2541 trying to create the all-lower case alias. We will fail and issue
2542 a second, duplicate error message. This situation arises when the
2543 programmer does something like:
2544 foo .req r0
2545 Foo .req r1
2546 The second .req creates the "Foo" alias but then fails to create
2547 the artificial FOO alias because it has already been created by the
2548 first .req. */
2549 if (insert_reg_alias (nbuf, old->number, old->type) == NULL)
2550 {
2551 free (nbuf);
2552 return TRUE;
2553 }
2554 }
2555
2556 for (p = nbuf; *p; p++)
2557 *p = TOLOWER (*p);
2558
2559 if (strncmp (nbuf, newname, nlen))
2560 insert_reg_alias (nbuf, old->number, old->type);
2561 }
2562
2563 free (nbuf);
2564 return TRUE;
2565 }
2566
2567 /* Create a Neon typed/indexed register alias using directives, e.g.:
2568 X .dn d5.s32[1]
2569 Y .qn 6.s16
2570 Z .dn d7
2571 T .dn Z[0]
2572 These typed registers can be used instead of the types specified after the
2573 Neon mnemonic, so long as all operands given have types. Types can also be
2574 specified directly, e.g.:
2575 vadd d0.s32, d1.s32, d2.s32 */
2576
2577 static bfd_boolean
2578 create_neon_reg_alias (char *newname, char *p)
2579 {
2580 enum arm_reg_type basetype;
2581 struct reg_entry *basereg;
2582 struct reg_entry mybasereg;
2583 struct neon_type ntype;
2584 struct neon_typed_alias typeinfo;
2585 char *namebuf, *nameend ATTRIBUTE_UNUSED;
2586 int namelen;
2587
2588 typeinfo.defined = 0;
2589 typeinfo.eltype.type = NT_invtype;
2590 typeinfo.eltype.size = -1;
2591 typeinfo.index = -1;
2592
2593 nameend = p;
2594
2595 if (strncmp (p, " .dn ", 5) == 0)
2596 basetype = REG_TYPE_VFD;
2597 else if (strncmp (p, " .qn ", 5) == 0)
2598 basetype = REG_TYPE_NQ;
2599 else
2600 return FALSE;
2601
2602 p += 5;
2603
2604 if (*p == '\0')
2605 return FALSE;
2606
2607 basereg = arm_reg_parse_multi (&p);
2608
2609 if (basereg && basereg->type != basetype)
2610 {
2611 as_bad (_("bad type for register"));
2612 return FALSE;
2613 }
2614
2615 if (basereg == NULL)
2616 {
2617 expressionS exp;
2618 /* Try parsing as an integer. */
2619 my_get_expression (&exp, &p, GE_NO_PREFIX);
2620 if (exp.X_op != O_constant)
2621 {
2622 as_bad (_("expression must be constant"));
2623 return FALSE;
2624 }
2625 basereg = &mybasereg;
2626 basereg->number = (basetype == REG_TYPE_NQ) ? exp.X_add_number * 2
2627 : exp.X_add_number;
2628 basereg->neon = 0;
2629 }
2630
2631 if (basereg->neon)
2632 typeinfo = *basereg->neon;
2633
2634 if (parse_neon_type (&ntype, &p) == SUCCESS)
2635 {
2636 /* We got a type. */
2637 if (typeinfo.defined & NTA_HASTYPE)
2638 {
2639 as_bad (_("can't redefine the type of a register alias"));
2640 return FALSE;
2641 }
2642
2643 typeinfo.defined |= NTA_HASTYPE;
2644 if (ntype.elems != 1)
2645 {
2646 as_bad (_("you must specify a single type only"));
2647 return FALSE;
2648 }
2649 typeinfo.eltype = ntype.el[0];
2650 }
2651
2652 if (skip_past_char (&p, '[') == SUCCESS)
2653 {
2654 expressionS exp;
2655 /* We got a scalar index. */
2656
2657 if (typeinfo.defined & NTA_HASINDEX)
2658 {
2659 as_bad (_("can't redefine the index of a scalar alias"));
2660 return FALSE;
2661 }
2662
2663 my_get_expression (&exp, &p, GE_NO_PREFIX);
2664
2665 if (exp.X_op != O_constant)
2666 {
2667 as_bad (_("scalar index must be constant"));
2668 return FALSE;
2669 }
2670
2671 typeinfo.defined |= NTA_HASINDEX;
2672 typeinfo.index = exp.X_add_number;
2673
2674 if (skip_past_char (&p, ']') == FAIL)
2675 {
2676 as_bad (_("expecting ]"));
2677 return FALSE;
2678 }
2679 }
2680
2681 /* If TC_CASE_SENSITIVE is defined, then newname already points to
2682 the desired alias name, and p points to its end. If not, then
2683 the desired alias name is in the global original_case_string. */
2684 #ifdef TC_CASE_SENSITIVE
2685 namelen = nameend - newname;
2686 #else
2687 newname = original_case_string;
2688 namelen = strlen (newname);
2689 #endif
2690
2691 namebuf = xmemdup0 (newname, namelen);
2692
2693 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2694 typeinfo.defined != 0 ? &typeinfo : NULL);
2695
2696 /* Insert name in all uppercase. */
2697 for (p = namebuf; *p; p++)
2698 *p = TOUPPER (*p);
2699
2700 if (strncmp (namebuf, newname, namelen))
2701 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2702 typeinfo.defined != 0 ? &typeinfo : NULL);
2703
2704 /* Insert name in all lowercase. */
2705 for (p = namebuf; *p; p++)
2706 *p = TOLOWER (*p);
2707
2708 if (strncmp (namebuf, newname, namelen))
2709 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2710 typeinfo.defined != 0 ? &typeinfo : NULL);
2711
2712 free (namebuf);
2713 return TRUE;
2714 }
2715
2716 /* Should never be called, as .req goes between the alias and the
2717 register name, not at the beginning of the line. */
2718
2719 static void
2720 s_req (int a ATTRIBUTE_UNUSED)
2721 {
2722 as_bad (_("invalid syntax for .req directive"));
2723 }
2724
2725 static void
2726 s_dn (int a ATTRIBUTE_UNUSED)
2727 {
2728 as_bad (_("invalid syntax for .dn directive"));
2729 }
2730
2731 static void
2732 s_qn (int a ATTRIBUTE_UNUSED)
2733 {
2734 as_bad (_("invalid syntax for .qn directive"));
2735 }
2736
2737 /* The .unreq directive deletes an alias which was previously defined
2738 by .req. For example:
2739
2740 my_alias .req r11
2741 .unreq my_alias */
2742
2743 static void
2744 s_unreq (int a ATTRIBUTE_UNUSED)
2745 {
2746 char * name;
2747 char saved_char;
2748
2749 name = input_line_pointer;
2750
2751 while (*input_line_pointer != 0
2752 && *input_line_pointer != ' '
2753 && *input_line_pointer != '\n')
2754 ++input_line_pointer;
2755
2756 saved_char = *input_line_pointer;
2757 *input_line_pointer = 0;
2758
2759 if (!*name)
2760 as_bad (_("invalid syntax for .unreq directive"));
2761 else
2762 {
2763 struct reg_entry *reg = (struct reg_entry *) hash_find (arm_reg_hsh,
2764 name);
2765
2766 if (!reg)
2767 as_bad (_("unknown register alias '%s'"), name);
2768 else if (reg->builtin)
2769 as_warn (_("ignoring attempt to use .unreq on fixed register name: '%s'"),
2770 name);
2771 else
2772 {
2773 char * p;
2774 char * nbuf;
2775
2776 hash_delete (arm_reg_hsh, name, FALSE);
2777 free ((char *) reg->name);
2778 if (reg->neon)
2779 free (reg->neon);
2780 free (reg);
2781
2782 /* Also locate the all upper case and all lower case versions.
2783 Do not complain if we cannot find one or the other as it
2784 was probably deleted above. */
2785
2786 nbuf = strdup (name);
2787 for (p = nbuf; *p; p++)
2788 *p = TOUPPER (*p);
2789 reg = (struct reg_entry *) hash_find (arm_reg_hsh, nbuf);
2790 if (reg)
2791 {
2792 hash_delete (arm_reg_hsh, nbuf, FALSE);
2793 free ((char *) reg->name);
2794 if (reg->neon)
2795 free (reg->neon);
2796 free (reg);
2797 }
2798
2799 for (p = nbuf; *p; p++)
2800 *p = TOLOWER (*p);
2801 reg = (struct reg_entry *) hash_find (arm_reg_hsh, nbuf);
2802 if (reg)
2803 {
2804 hash_delete (arm_reg_hsh, nbuf, FALSE);
2805 free ((char *) reg->name);
2806 if (reg->neon)
2807 free (reg->neon);
2808 free (reg);
2809 }
2810
2811 free (nbuf);
2812 }
2813 }
2814
2815 *input_line_pointer = saved_char;
2816 demand_empty_rest_of_line ();
2817 }
2818
2819 /* Directives: Instruction set selection. */
2820
2821 #ifdef OBJ_ELF
2822 /* This code is to handle mapping symbols as defined in the ARM ELF spec.
2823 (See "Mapping symbols", section 4.5.5, ARM AAELF version 1.0).
2824 Note that previously, $a and $t has type STT_FUNC (BSF_OBJECT flag),
2825 and $d has type STT_OBJECT (BSF_OBJECT flag). Now all three are untyped. */
2826
2827 /* Create a new mapping symbol for the transition to STATE. */
2828
2829 static void
2830 make_mapping_symbol (enum mstate state, valueT value, fragS *frag)
2831 {
2832 symbolS * symbolP;
2833 const char * symname;
2834 int type;
2835
2836 switch (state)
2837 {
2838 case MAP_DATA:
2839 symname = "$d";
2840 type = BSF_NO_FLAGS;
2841 break;
2842 case MAP_ARM:
2843 symname = "$a";
2844 type = BSF_NO_FLAGS;
2845 break;
2846 case MAP_THUMB:
2847 symname = "$t";
2848 type = BSF_NO_FLAGS;
2849 break;
2850 default:
2851 abort ();
2852 }
2853
2854 symbolP = symbol_new (symname, now_seg, value, frag);
2855 symbol_get_bfdsym (symbolP)->flags |= type | BSF_LOCAL;
2856
2857 switch (state)
2858 {
2859 case MAP_ARM:
2860 THUMB_SET_FUNC (symbolP, 0);
2861 ARM_SET_THUMB (symbolP, 0);
2862 ARM_SET_INTERWORK (symbolP, support_interwork);
2863 break;
2864
2865 case MAP_THUMB:
2866 THUMB_SET_FUNC (symbolP, 1);
2867 ARM_SET_THUMB (symbolP, 1);
2868 ARM_SET_INTERWORK (symbolP, support_interwork);
2869 break;
2870
2871 case MAP_DATA:
2872 default:
2873 break;
2874 }
2875
2876 /* Save the mapping symbols for future reference. Also check that
2877 we do not place two mapping symbols at the same offset within a
2878 frag. We'll handle overlap between frags in
2879 check_mapping_symbols.
2880
2881 If .fill or other data filling directive generates zero sized data,
2882 the mapping symbol for the following code will have the same value
2883 as the one generated for the data filling directive. In this case,
2884 we replace the old symbol with the new one at the same address. */
2885 if (value == 0)
2886 {
2887 if (frag->tc_frag_data.first_map != NULL)
2888 {
2889 know (S_GET_VALUE (frag->tc_frag_data.first_map) == 0);
2890 symbol_remove (frag->tc_frag_data.first_map, &symbol_rootP, &symbol_lastP);
2891 }
2892 frag->tc_frag_data.first_map = symbolP;
2893 }
2894 if (frag->tc_frag_data.last_map != NULL)
2895 {
2896 know (S_GET_VALUE (frag->tc_frag_data.last_map) <= S_GET_VALUE (symbolP));
2897 if (S_GET_VALUE (frag->tc_frag_data.last_map) == S_GET_VALUE (symbolP))
2898 symbol_remove (frag->tc_frag_data.last_map, &symbol_rootP, &symbol_lastP);
2899 }
2900 frag->tc_frag_data.last_map = symbolP;
2901 }
2902
2903 /* We must sometimes convert a region marked as code to data during
2904 code alignment, if an odd number of bytes have to be padded. The
2905 code mapping symbol is pushed to an aligned address. */
2906
2907 static void
2908 insert_data_mapping_symbol (enum mstate state,
2909 valueT value, fragS *frag, offsetT bytes)
2910 {
2911 /* If there was already a mapping symbol, remove it. */
2912 if (frag->tc_frag_data.last_map != NULL
2913 && S_GET_VALUE (frag->tc_frag_data.last_map) == frag->fr_address + value)
2914 {
2915 symbolS *symp = frag->tc_frag_data.last_map;
2916
2917 if (value == 0)
2918 {
2919 know (frag->tc_frag_data.first_map == symp);
2920 frag->tc_frag_data.first_map = NULL;
2921 }
2922 frag->tc_frag_data.last_map = NULL;
2923 symbol_remove (symp, &symbol_rootP, &symbol_lastP);
2924 }
2925
2926 make_mapping_symbol (MAP_DATA, value, frag);
2927 make_mapping_symbol (state, value + bytes, frag);
2928 }
2929
2930 static void mapping_state_2 (enum mstate state, int max_chars);
2931
2932 /* Set the mapping state to STATE. Only call this when about to
2933 emit some STATE bytes to the file. */
2934
2935 #define TRANSITION(from, to) (mapstate == (from) && state == (to))
2936 void
2937 mapping_state (enum mstate state)
2938 {
2939 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
2940
2941 if (mapstate == state)
2942 /* The mapping symbol has already been emitted.
2943 There is nothing else to do. */
2944 return;
2945
2946 if (state == MAP_ARM || state == MAP_THUMB)
2947 /* PR gas/12931
2948 All ARM instructions require 4-byte alignment.
2949 (Almost) all Thumb instructions require 2-byte alignment.
2950
2951 When emitting instructions into any section, mark the section
2952 appropriately.
2953
2954 Some Thumb instructions are alignment-sensitive modulo 4 bytes,
2955 but themselves require 2-byte alignment; this applies to some
2956 PC- relative forms. However, these cases will involve implicit
2957 literal pool generation or an explicit .align >=2, both of
2958 which will cause the section to me marked with sufficient
2959 alignment. Thus, we don't handle those cases here. */
2960 record_alignment (now_seg, state == MAP_ARM ? 2 : 1);
2961
2962 if (TRANSITION (MAP_UNDEFINED, MAP_DATA))
2963 /* This case will be evaluated later. */
2964 return;
2965
2966 mapping_state_2 (state, 0);
2967 }
2968
2969 /* Same as mapping_state, but MAX_CHARS bytes have already been
2970 allocated. Put the mapping symbol that far back. */
2971
2972 static void
2973 mapping_state_2 (enum mstate state, int max_chars)
2974 {
2975 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
2976
2977 if (!SEG_NORMAL (now_seg))
2978 return;
2979
2980 if (mapstate == state)
2981 /* The mapping symbol has already been emitted.
2982 There is nothing else to do. */
2983 return;
2984
2985 if (TRANSITION (MAP_UNDEFINED, MAP_ARM)
2986 || TRANSITION (MAP_UNDEFINED, MAP_THUMB))
2987 {
2988 struct frag * const frag_first = seg_info (now_seg)->frchainP->frch_root;
2989 const int add_symbol = (frag_now != frag_first) || (frag_now_fix () > 0);
2990
2991 if (add_symbol)
2992 make_mapping_symbol (MAP_DATA, (valueT) 0, frag_first);
2993 }
2994
2995 seg_info (now_seg)->tc_segment_info_data.mapstate = state;
2996 make_mapping_symbol (state, (valueT) frag_now_fix () - max_chars, frag_now);
2997 }
2998 #undef TRANSITION
2999 #else
3000 #define mapping_state(x) ((void)0)
3001 #define mapping_state_2(x, y) ((void)0)
3002 #endif
3003
3004 /* Find the real, Thumb encoded start of a Thumb function. */
3005
3006 #ifdef OBJ_COFF
3007 static symbolS *
3008 find_real_start (symbolS * symbolP)
3009 {
3010 char * real_start;
3011 const char * name = S_GET_NAME (symbolP);
3012 symbolS * new_target;
3013
3014 /* This definition must agree with the one in gcc/config/arm/thumb.c. */
3015 #define STUB_NAME ".real_start_of"
3016
3017 if (name == NULL)
3018 abort ();
3019
3020 /* The compiler may generate BL instructions to local labels because
3021 it needs to perform a branch to a far away location. These labels
3022 do not have a corresponding ".real_start_of" label. We check
3023 both for S_IS_LOCAL and for a leading dot, to give a way to bypass
3024 the ".real_start_of" convention for nonlocal branches. */
3025 if (S_IS_LOCAL (symbolP) || name[0] == '.')
3026 return symbolP;
3027
3028 real_start = concat (STUB_NAME, name, NULL);
3029 new_target = symbol_find (real_start);
3030 free (real_start);
3031
3032 if (new_target == NULL)
3033 {
3034 as_warn (_("Failed to find real start of function: %s\n"), name);
3035 new_target = symbolP;
3036 }
3037
3038 return new_target;
3039 }
3040 #endif
3041
3042 static void
3043 opcode_select (int width)
3044 {
3045 switch (width)
3046 {
3047 case 16:
3048 if (! thumb_mode)
3049 {
3050 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
3051 as_bad (_("selected processor does not support THUMB opcodes"));
3052
3053 thumb_mode = 1;
3054 /* No need to force the alignment, since we will have been
3055 coming from ARM mode, which is word-aligned. */
3056 record_alignment (now_seg, 1);
3057 }
3058 break;
3059
3060 case 32:
3061 if (thumb_mode)
3062 {
3063 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
3064 as_bad (_("selected processor does not support ARM opcodes"));
3065
3066 thumb_mode = 0;
3067
3068 if (!need_pass_2)
3069 frag_align (2, 0, 0);
3070
3071 record_alignment (now_seg, 1);
3072 }
3073 break;
3074
3075 default:
3076 as_bad (_("invalid instruction size selected (%d)"), width);
3077 }
3078 }
3079
3080 static void
3081 s_arm (int ignore ATTRIBUTE_UNUSED)
3082 {
3083 opcode_select (32);
3084 demand_empty_rest_of_line ();
3085 }
3086
3087 static void
3088 s_thumb (int ignore ATTRIBUTE_UNUSED)
3089 {
3090 opcode_select (16);
3091 demand_empty_rest_of_line ();
3092 }
3093
3094 static void
3095 s_code (int unused ATTRIBUTE_UNUSED)
3096 {
3097 int temp;
3098
3099 temp = get_absolute_expression ();
3100 switch (temp)
3101 {
3102 case 16:
3103 case 32:
3104 opcode_select (temp);
3105 break;
3106
3107 default:
3108 as_bad (_("invalid operand to .code directive (%d) (expecting 16 or 32)"), temp);
3109 }
3110 }
3111
3112 static void
3113 s_force_thumb (int ignore ATTRIBUTE_UNUSED)
3114 {
3115 /* If we are not already in thumb mode go into it, EVEN if
3116 the target processor does not support thumb instructions.
3117 This is used by gcc/config/arm/lib1funcs.asm for example
3118 to compile interworking support functions even if the
3119 target processor should not support interworking. */
3120 if (! thumb_mode)
3121 {
3122 thumb_mode = 2;
3123 record_alignment (now_seg, 1);
3124 }
3125
3126 demand_empty_rest_of_line ();
3127 }
3128
3129 static void
3130 s_thumb_func (int ignore ATTRIBUTE_UNUSED)
3131 {
3132 s_thumb (0);
3133
3134 /* The following label is the name/address of the start of a Thumb function.
3135 We need to know this for the interworking support. */
3136 label_is_thumb_function_name = TRUE;
3137 }
3138
3139 /* Perform a .set directive, but also mark the alias as
3140 being a thumb function. */
3141
3142 static void
3143 s_thumb_set (int equiv)
3144 {
3145 /* XXX the following is a duplicate of the code for s_set() in read.c
3146 We cannot just call that code as we need to get at the symbol that
3147 is created. */
3148 char * name;
3149 char delim;
3150 char * end_name;
3151 symbolS * symbolP;
3152
3153 /* Especial apologies for the random logic:
3154 This just grew, and could be parsed much more simply!
3155 Dean - in haste. */
3156 delim = get_symbol_name (& name);
3157 end_name = input_line_pointer;
3158 (void) restore_line_pointer (delim);
3159
3160 if (*input_line_pointer != ',')
3161 {
3162 *end_name = 0;
3163 as_bad (_("expected comma after name \"%s\""), name);
3164 *end_name = delim;
3165 ignore_rest_of_line ();
3166 return;
3167 }
3168
3169 input_line_pointer++;
3170 *end_name = 0;
3171
3172 if (name[0] == '.' && name[1] == '\0')
3173 {
3174 /* XXX - this should not happen to .thumb_set. */
3175 abort ();
3176 }
3177
3178 if ((symbolP = symbol_find (name)) == NULL
3179 && (symbolP = md_undefined_symbol (name)) == NULL)
3180 {
3181 #ifndef NO_LISTING
3182 /* When doing symbol listings, play games with dummy fragments living
3183 outside the normal fragment chain to record the file and line info
3184 for this symbol. */
3185 if (listing & LISTING_SYMBOLS)
3186 {
3187 extern struct list_info_struct * listing_tail;
3188 fragS * dummy_frag = (fragS * ) xmalloc (sizeof (fragS));
3189
3190 memset (dummy_frag, 0, sizeof (fragS));
3191 dummy_frag->fr_type = rs_fill;
3192 dummy_frag->line = listing_tail;
3193 symbolP = symbol_new (name, undefined_section, 0, dummy_frag);
3194 dummy_frag->fr_symbol = symbolP;
3195 }
3196 else
3197 #endif
3198 symbolP = symbol_new (name, undefined_section, 0, &zero_address_frag);
3199
3200 #ifdef OBJ_COFF
3201 /* "set" symbols are local unless otherwise specified. */
3202 SF_SET_LOCAL (symbolP);
3203 #endif /* OBJ_COFF */
3204 } /* Make a new symbol. */
3205
3206 symbol_table_insert (symbolP);
3207
3208 * end_name = delim;
3209
3210 if (equiv
3211 && S_IS_DEFINED (symbolP)
3212 && S_GET_SEGMENT (symbolP) != reg_section)
3213 as_bad (_("symbol `%s' already defined"), S_GET_NAME (symbolP));
3214
3215 pseudo_set (symbolP);
3216
3217 demand_empty_rest_of_line ();
3218
3219 /* XXX Now we come to the Thumb specific bit of code. */
3220
3221 THUMB_SET_FUNC (symbolP, 1);
3222 ARM_SET_THUMB (symbolP, 1);
3223 #if defined OBJ_ELF || defined OBJ_COFF
3224 ARM_SET_INTERWORK (symbolP, support_interwork);
3225 #endif
3226 }
3227
3228 /* Directives: Mode selection. */
3229
3230 /* .syntax [unified|divided] - choose the new unified syntax
3231 (same for Arm and Thumb encoding, modulo slight differences in what
3232 can be represented) or the old divergent syntax for each mode. */
3233 static void
3234 s_syntax (int unused ATTRIBUTE_UNUSED)
3235 {
3236 char *name, delim;
3237
3238 delim = get_symbol_name (& name);
3239
3240 if (!strcasecmp (name, "unified"))
3241 unified_syntax = TRUE;
3242 else if (!strcasecmp (name, "divided"))
3243 unified_syntax = FALSE;
3244 else
3245 {
3246 as_bad (_("unrecognized syntax mode \"%s\""), name);
3247 return;
3248 }
3249 (void) restore_line_pointer (delim);
3250 demand_empty_rest_of_line ();
3251 }
3252
3253 /* Directives: sectioning and alignment. */
3254
3255 static void
3256 s_bss (int ignore ATTRIBUTE_UNUSED)
3257 {
3258 /* We don't support putting frags in the BSS segment, we fake it by
3259 marking in_bss, then looking at s_skip for clues. */
3260 subseg_set (bss_section, 0);
3261 demand_empty_rest_of_line ();
3262
3263 #ifdef md_elf_section_change_hook
3264 md_elf_section_change_hook ();
3265 #endif
3266 }
3267
3268 static void
3269 s_even (int ignore ATTRIBUTE_UNUSED)
3270 {
3271 /* Never make frag if expect extra pass. */
3272 if (!need_pass_2)
3273 frag_align (1, 0, 0);
3274
3275 record_alignment (now_seg, 1);
3276
3277 demand_empty_rest_of_line ();
3278 }
3279
3280 /* Directives: CodeComposer Studio. */
3281
3282 /* .ref (for CodeComposer Studio syntax only). */
3283 static void
3284 s_ccs_ref (int unused ATTRIBUTE_UNUSED)
3285 {
3286 if (codecomposer_syntax)
3287 ignore_rest_of_line ();
3288 else
3289 as_bad (_(".ref pseudo-op only available with -mccs flag."));
3290 }
3291
3292 /* If name is not NULL, then it is used for marking the beginning of a
3293 function, whereas if it is NULL then it means the function end. */
3294 static void
3295 asmfunc_debug (const char * name)
3296 {
3297 static const char * last_name = NULL;
3298
3299 if (name != NULL)
3300 {
3301 gas_assert (last_name == NULL);
3302 last_name = name;
3303
3304 if (debug_type == DEBUG_STABS)
3305 stabs_generate_asm_func (name, name);
3306 }
3307 else
3308 {
3309 gas_assert (last_name != NULL);
3310
3311 if (debug_type == DEBUG_STABS)
3312 stabs_generate_asm_endfunc (last_name, last_name);
3313
3314 last_name = NULL;
3315 }
3316 }
3317
3318 static void
3319 s_ccs_asmfunc (int unused ATTRIBUTE_UNUSED)
3320 {
3321 if (codecomposer_syntax)
3322 {
3323 switch (asmfunc_state)
3324 {
3325 case OUTSIDE_ASMFUNC:
3326 asmfunc_state = WAITING_ASMFUNC_NAME;
3327 break;
3328
3329 case WAITING_ASMFUNC_NAME:
3330 as_bad (_(".asmfunc repeated."));
3331 break;
3332
3333 case WAITING_ENDASMFUNC:
3334 as_bad (_(".asmfunc without function."));
3335 break;
3336 }
3337 demand_empty_rest_of_line ();
3338 }
3339 else
3340 as_bad (_(".asmfunc pseudo-op only available with -mccs flag."));
3341 }
3342
3343 static void
3344 s_ccs_endasmfunc (int unused ATTRIBUTE_UNUSED)
3345 {
3346 if (codecomposer_syntax)
3347 {
3348 switch (asmfunc_state)
3349 {
3350 case OUTSIDE_ASMFUNC:
3351 as_bad (_(".endasmfunc without a .asmfunc."));
3352 break;
3353
3354 case WAITING_ASMFUNC_NAME:
3355 as_bad (_(".endasmfunc without function."));
3356 break;
3357
3358 case WAITING_ENDASMFUNC:
3359 asmfunc_state = OUTSIDE_ASMFUNC;
3360 asmfunc_debug (NULL);
3361 break;
3362 }
3363 demand_empty_rest_of_line ();
3364 }
3365 else
3366 as_bad (_(".endasmfunc pseudo-op only available with -mccs flag."));
3367 }
3368
3369 static void
3370 s_ccs_def (int name)
3371 {
3372 if (codecomposer_syntax)
3373 s_globl (name);
3374 else
3375 as_bad (_(".def pseudo-op only available with -mccs flag."));
3376 }
3377
3378 /* Directives: Literal pools. */
3379
3380 static literal_pool *
3381 find_literal_pool (void)
3382 {
3383 literal_pool * pool;
3384
3385 for (pool = list_of_pools; pool != NULL; pool = pool->next)
3386 {
3387 if (pool->section == now_seg
3388 && pool->sub_section == now_subseg)
3389 break;
3390 }
3391
3392 return pool;
3393 }
3394
3395 static literal_pool *
3396 find_or_make_literal_pool (void)
3397 {
3398 /* Next literal pool ID number. */
3399 static unsigned int latest_pool_num = 1;
3400 literal_pool * pool;
3401
3402 pool = find_literal_pool ();
3403
3404 if (pool == NULL)
3405 {
3406 /* Create a new pool. */
3407 pool = XNEW (literal_pool);
3408 if (! pool)
3409 return NULL;
3410
3411 pool->next_free_entry = 0;
3412 pool->section = now_seg;
3413 pool->sub_section = now_subseg;
3414 pool->next = list_of_pools;
3415 pool->symbol = NULL;
3416 pool->alignment = 2;
3417
3418 /* Add it to the list. */
3419 list_of_pools = pool;
3420 }
3421
3422 /* New pools, and emptied pools, will have a NULL symbol. */
3423 if (pool->symbol == NULL)
3424 {
3425 pool->symbol = symbol_create (FAKE_LABEL_NAME, undefined_section,
3426 (valueT) 0, &zero_address_frag);
3427 pool->id = latest_pool_num ++;
3428 }
3429
3430 /* Done. */
3431 return pool;
3432 }
3433
3434 /* Add the literal in the global 'inst'
3435 structure to the relevant literal pool. */
3436
3437 static int
3438 add_to_lit_pool (unsigned int nbytes)
3439 {
3440 #define PADDING_SLOT 0x1
3441 #define LIT_ENTRY_SIZE_MASK 0xFF
3442 literal_pool * pool;
3443 unsigned int entry, pool_size = 0;
3444 bfd_boolean padding_slot_p = FALSE;
3445 unsigned imm1 = 0;
3446 unsigned imm2 = 0;
3447
3448 if (nbytes == 8)
3449 {
3450 imm1 = inst.operands[1].imm;
3451 imm2 = (inst.operands[1].regisimm ? inst.operands[1].reg
3452 : inst.relocs[0].exp.X_unsigned ? 0
3453 : ((bfd_int64_t) inst.operands[1].imm) >> 32);
3454 if (target_big_endian)
3455 {
3456 imm1 = imm2;
3457 imm2 = inst.operands[1].imm;
3458 }
3459 }
3460
3461 pool = find_or_make_literal_pool ();
3462
3463 /* Check if this literal value is already in the pool. */
3464 for (entry = 0; entry < pool->next_free_entry; entry ++)
3465 {
3466 if (nbytes == 4)
3467 {
3468 if ((pool->literals[entry].X_op == inst.relocs[0].exp.X_op)
3469 && (inst.relocs[0].exp.X_op == O_constant)
3470 && (pool->literals[entry].X_add_number
3471 == inst.relocs[0].exp.X_add_number)
3472 && (pool->literals[entry].X_md == nbytes)
3473 && (pool->literals[entry].X_unsigned
3474 == inst.relocs[0].exp.X_unsigned))
3475 break;
3476
3477 if ((pool->literals[entry].X_op == inst.relocs[0].exp.X_op)
3478 && (inst.relocs[0].exp.X_op == O_symbol)
3479 && (pool->literals[entry].X_add_number
3480 == inst.relocs[0].exp.X_add_number)
3481 && (pool->literals[entry].X_add_symbol
3482 == inst.relocs[0].exp.X_add_symbol)
3483 && (pool->literals[entry].X_op_symbol
3484 == inst.relocs[0].exp.X_op_symbol)
3485 && (pool->literals[entry].X_md == nbytes))
3486 break;
3487 }
3488 else if ((nbytes == 8)
3489 && !(pool_size & 0x7)
3490 && ((entry + 1) != pool->next_free_entry)
3491 && (pool->literals[entry].X_op == O_constant)
3492 && (pool->literals[entry].X_add_number == (offsetT) imm1)
3493 && (pool->literals[entry].X_unsigned
3494 == inst.relocs[0].exp.X_unsigned)
3495 && (pool->literals[entry + 1].X_op == O_constant)
3496 && (pool->literals[entry + 1].X_add_number == (offsetT) imm2)
3497 && (pool->literals[entry + 1].X_unsigned
3498 == inst.relocs[0].exp.X_unsigned))
3499 break;
3500
3501 padding_slot_p = ((pool->literals[entry].X_md >> 8) == PADDING_SLOT);
3502 if (padding_slot_p && (nbytes == 4))
3503 break;
3504
3505 pool_size += 4;
3506 }
3507
3508 /* Do we need to create a new entry? */
3509 if (entry == pool->next_free_entry)
3510 {
3511 if (entry >= MAX_LITERAL_POOL_SIZE)
3512 {
3513 inst.error = _("literal pool overflow");
3514 return FAIL;
3515 }
3516
3517 if (nbytes == 8)
3518 {
3519 /* For 8-byte entries, we align to an 8-byte boundary,
3520 and split it into two 4-byte entries, because on 32-bit
3521 host, 8-byte constants are treated as big num, thus
3522 saved in "generic_bignum" which will be overwritten
3523 by later assignments.
3524
3525 We also need to make sure there is enough space for
3526 the split.
3527
3528 We also check to make sure the literal operand is a
3529 constant number. */
3530 if (!(inst.relocs[0].exp.X_op == O_constant
3531 || inst.relocs[0].exp.X_op == O_big))
3532 {
3533 inst.error = _("invalid type for literal pool");
3534 return FAIL;
3535 }
3536 else if (pool_size & 0x7)
3537 {
3538 if ((entry + 2) >= MAX_LITERAL_POOL_SIZE)
3539 {
3540 inst.error = _("literal pool overflow");
3541 return FAIL;
3542 }
3543
3544 pool->literals[entry] = inst.relocs[0].exp;
3545 pool->literals[entry].X_op = O_constant;
3546 pool->literals[entry].X_add_number = 0;
3547 pool->literals[entry++].X_md = (PADDING_SLOT << 8) | 4;
3548 pool->next_free_entry += 1;
3549 pool_size += 4;
3550 }
3551 else if ((entry + 1) >= MAX_LITERAL_POOL_SIZE)
3552 {
3553 inst.error = _("literal pool overflow");
3554 return FAIL;
3555 }
3556
3557 pool->literals[entry] = inst.relocs[0].exp;
3558 pool->literals[entry].X_op = O_constant;
3559 pool->literals[entry].X_add_number = imm1;
3560 pool->literals[entry].X_unsigned = inst.relocs[0].exp.X_unsigned;
3561 pool->literals[entry++].X_md = 4;
3562 pool->literals[entry] = inst.relocs[0].exp;
3563 pool->literals[entry].X_op = O_constant;
3564 pool->literals[entry].X_add_number = imm2;
3565 pool->literals[entry].X_unsigned = inst.relocs[0].exp.X_unsigned;
3566 pool->literals[entry].X_md = 4;
3567 pool->alignment = 3;
3568 pool->next_free_entry += 1;
3569 }
3570 else
3571 {
3572 pool->literals[entry] = inst.relocs[0].exp;
3573 pool->literals[entry].X_md = 4;
3574 }
3575
3576 #ifdef OBJ_ELF
3577 /* PR ld/12974: Record the location of the first source line to reference
3578 this entry in the literal pool. If it turns out during linking that the
3579 symbol does not exist we will be able to give an accurate line number for
3580 the (first use of the) missing reference. */
3581 if (debug_type == DEBUG_DWARF2)
3582 dwarf2_where (pool->locs + entry);
3583 #endif
3584 pool->next_free_entry += 1;
3585 }
3586 else if (padding_slot_p)
3587 {
3588 pool->literals[entry] = inst.relocs[0].exp;
3589 pool->literals[entry].X_md = nbytes;
3590 }
3591
3592 inst.relocs[0].exp.X_op = O_symbol;
3593 inst.relocs[0].exp.X_add_number = pool_size;
3594 inst.relocs[0].exp.X_add_symbol = pool->symbol;
3595
3596 return SUCCESS;
3597 }
3598
3599 bfd_boolean
3600 tc_start_label_without_colon (void)
3601 {
3602 bfd_boolean ret = TRUE;
3603
3604 if (codecomposer_syntax && asmfunc_state == WAITING_ASMFUNC_NAME)
3605 {
3606 const char *label = input_line_pointer;
3607
3608 while (!is_end_of_line[(int) label[-1]])
3609 --label;
3610
3611 if (*label == '.')
3612 {
3613 as_bad (_("Invalid label '%s'"), label);
3614 ret = FALSE;
3615 }
3616
3617 asmfunc_debug (label);
3618
3619 asmfunc_state = WAITING_ENDASMFUNC;
3620 }
3621
3622 return ret;
3623 }
3624
3625 /* Can't use symbol_new here, so have to create a symbol and then at
3626 a later date assign it a value. That's what these functions do. */
3627
3628 static void
3629 symbol_locate (symbolS * symbolP,
3630 const char * name, /* It is copied, the caller can modify. */
3631 segT segment, /* Segment identifier (SEG_<something>). */
3632 valueT valu, /* Symbol value. */
3633 fragS * frag) /* Associated fragment. */
3634 {
3635 size_t name_length;
3636 char * preserved_copy_of_name;
3637
3638 name_length = strlen (name) + 1; /* +1 for \0. */
3639 obstack_grow (&notes, name, name_length);
3640 preserved_copy_of_name = (char *) obstack_finish (&notes);
3641
3642 #ifdef tc_canonicalize_symbol_name
3643 preserved_copy_of_name =
3644 tc_canonicalize_symbol_name (preserved_copy_of_name);
3645 #endif
3646
3647 S_SET_NAME (symbolP, preserved_copy_of_name);
3648
3649 S_SET_SEGMENT (symbolP, segment);
3650 S_SET_VALUE (symbolP, valu);
3651 symbol_clear_list_pointers (symbolP);
3652
3653 symbol_set_frag (symbolP, frag);
3654
3655 /* Link to end of symbol chain. */
3656 {
3657 extern int symbol_table_frozen;
3658
3659 if (symbol_table_frozen)
3660 abort ();
3661 }
3662
3663 symbol_append (symbolP, symbol_lastP, & symbol_rootP, & symbol_lastP);
3664
3665 obj_symbol_new_hook (symbolP);
3666
3667 #ifdef tc_symbol_new_hook
3668 tc_symbol_new_hook (symbolP);
3669 #endif
3670
3671 #ifdef DEBUG_SYMS
3672 verify_symbol_chain (symbol_rootP, symbol_lastP);
3673 #endif /* DEBUG_SYMS */
3674 }
3675
3676 static void
3677 s_ltorg (int ignored ATTRIBUTE_UNUSED)
3678 {
3679 unsigned int entry;
3680 literal_pool * pool;
3681 char sym_name[20];
3682
3683 pool = find_literal_pool ();
3684 if (pool == NULL
3685 || pool->symbol == NULL
3686 || pool->next_free_entry == 0)
3687 return;
3688
3689 /* Align pool as you have word accesses.
3690 Only make a frag if we have to. */
3691 if (!need_pass_2)
3692 frag_align (pool->alignment, 0, 0);
3693
3694 record_alignment (now_seg, 2);
3695
3696 #ifdef OBJ_ELF
3697 seg_info (now_seg)->tc_segment_info_data.mapstate = MAP_DATA;
3698 make_mapping_symbol (MAP_DATA, (valueT) frag_now_fix (), frag_now);
3699 #endif
3700 sprintf (sym_name, "$$lit_\002%x", pool->id);
3701
3702 symbol_locate (pool->symbol, sym_name, now_seg,
3703 (valueT) frag_now_fix (), frag_now);
3704 symbol_table_insert (pool->symbol);
3705
3706 ARM_SET_THUMB (pool->symbol, thumb_mode);
3707
3708 #if defined OBJ_COFF || defined OBJ_ELF
3709 ARM_SET_INTERWORK (pool->symbol, support_interwork);
3710 #endif
3711
3712 for (entry = 0; entry < pool->next_free_entry; entry ++)
3713 {
3714 #ifdef OBJ_ELF
3715 if (debug_type == DEBUG_DWARF2)
3716 dwarf2_gen_line_info (frag_now_fix (), pool->locs + entry);
3717 #endif
3718 /* First output the expression in the instruction to the pool. */
3719 emit_expr (&(pool->literals[entry]),
3720 pool->literals[entry].X_md & LIT_ENTRY_SIZE_MASK);
3721 }
3722
3723 /* Mark the pool as empty. */
3724 pool->next_free_entry = 0;
3725 pool->symbol = NULL;
3726 }
3727
3728 #ifdef OBJ_ELF
3729 /* Forward declarations for functions below, in the MD interface
3730 section. */
3731 static void fix_new_arm (fragS *, int, short, expressionS *, int, int);
3732 static valueT create_unwind_entry (int);
3733 static void start_unwind_section (const segT, int);
3734 static void add_unwind_opcode (valueT, int);
3735 static void flush_pending_unwind (void);
3736
3737 /* Directives: Data. */
3738
3739 static void
3740 s_arm_elf_cons (int nbytes)
3741 {
3742 expressionS exp;
3743
3744 #ifdef md_flush_pending_output
3745 md_flush_pending_output ();
3746 #endif
3747
3748 if (is_it_end_of_statement ())
3749 {
3750 demand_empty_rest_of_line ();
3751 return;
3752 }
3753
3754 #ifdef md_cons_align
3755 md_cons_align (nbytes);
3756 #endif
3757
3758 mapping_state (MAP_DATA);
3759 do
3760 {
3761 int reloc;
3762 char *base = input_line_pointer;
3763
3764 expression (& exp);
3765
3766 if (exp.X_op != O_symbol)
3767 emit_expr (&exp, (unsigned int) nbytes);
3768 else
3769 {
3770 char *before_reloc = input_line_pointer;
3771 reloc = parse_reloc (&input_line_pointer);
3772 if (reloc == -1)
3773 {
3774 as_bad (_("unrecognized relocation suffix"));
3775 ignore_rest_of_line ();
3776 return;
3777 }
3778 else if (reloc == BFD_RELOC_UNUSED)
3779 emit_expr (&exp, (unsigned int) nbytes);
3780 else
3781 {
3782 reloc_howto_type *howto = (reloc_howto_type *)
3783 bfd_reloc_type_lookup (stdoutput,
3784 (bfd_reloc_code_real_type) reloc);
3785 int size = bfd_get_reloc_size (howto);
3786
3787 if (reloc == BFD_RELOC_ARM_PLT32)
3788 {
3789 as_bad (_("(plt) is only valid on branch targets"));
3790 reloc = BFD_RELOC_UNUSED;
3791 size = 0;
3792 }
3793
3794 if (size > nbytes)
3795 as_bad (ngettext ("%s relocations do not fit in %d byte",
3796 "%s relocations do not fit in %d bytes",
3797 nbytes),
3798 howto->name, nbytes);
3799 else
3800 {
3801 /* We've parsed an expression stopping at O_symbol.
3802 But there may be more expression left now that we
3803 have parsed the relocation marker. Parse it again.
3804 XXX Surely there is a cleaner way to do this. */
3805 char *p = input_line_pointer;
3806 int offset;
3807 char *save_buf = XNEWVEC (char, input_line_pointer - base);
3808
3809 memcpy (save_buf, base, input_line_pointer - base);
3810 memmove (base + (input_line_pointer - before_reloc),
3811 base, before_reloc - base);
3812
3813 input_line_pointer = base + (input_line_pointer-before_reloc);
3814 expression (&exp);
3815 memcpy (base, save_buf, p - base);
3816
3817 offset = nbytes - size;
3818 p = frag_more (nbytes);
3819 memset (p, 0, nbytes);
3820 fix_new_exp (frag_now, p - frag_now->fr_literal + offset,
3821 size, &exp, 0, (enum bfd_reloc_code_real) reloc);
3822 free (save_buf);
3823 }
3824 }
3825 }
3826 }
3827 while (*input_line_pointer++ == ',');
3828
3829 /* Put terminator back into stream. */
3830 input_line_pointer --;
3831 demand_empty_rest_of_line ();
3832 }
3833
3834 /* Emit an expression containing a 32-bit thumb instruction.
3835 Implementation based on put_thumb32_insn. */
3836
3837 static void
3838 emit_thumb32_expr (expressionS * exp)
3839 {
3840 expressionS exp_high = *exp;
3841
3842 exp_high.X_add_number = (unsigned long)exp_high.X_add_number >> 16;
3843 emit_expr (& exp_high, (unsigned int) THUMB_SIZE);
3844 exp->X_add_number &= 0xffff;
3845 emit_expr (exp, (unsigned int) THUMB_SIZE);
3846 }
3847
3848 /* Guess the instruction size based on the opcode. */
3849
3850 static int
3851 thumb_insn_size (int opcode)
3852 {
3853 if ((unsigned int) opcode < 0xe800u)
3854 return 2;
3855 else if ((unsigned int) opcode >= 0xe8000000u)
3856 return 4;
3857 else
3858 return 0;
3859 }
3860
3861 static bfd_boolean
3862 emit_insn (expressionS *exp, int nbytes)
3863 {
3864 int size = 0;
3865
3866 if (exp->X_op == O_constant)
3867 {
3868 size = nbytes;
3869
3870 if (size == 0)
3871 size = thumb_insn_size (exp->X_add_number);
3872
3873 if (size != 0)
3874 {
3875 if (size == 2 && (unsigned int)exp->X_add_number > 0xffffu)
3876 {
3877 as_bad (_(".inst.n operand too big. "\
3878 "Use .inst.w instead"));
3879 size = 0;
3880 }
3881 else
3882 {
3883 if (now_pred.state == AUTOMATIC_PRED_BLOCK)
3884 set_pred_insn_type_nonvoid (OUTSIDE_PRED_INSN, 0);
3885 else
3886 set_pred_insn_type_nonvoid (NEUTRAL_IT_INSN, 0);
3887
3888 if (thumb_mode && (size > THUMB_SIZE) && !target_big_endian)
3889 emit_thumb32_expr (exp);
3890 else
3891 emit_expr (exp, (unsigned int) size);
3892
3893 it_fsm_post_encode ();
3894 }
3895 }
3896 else
3897 as_bad (_("cannot determine Thumb instruction size. " \
3898 "Use .inst.n/.inst.w instead"));
3899 }
3900 else
3901 as_bad (_("constant expression required"));
3902
3903 return (size != 0);
3904 }
3905
3906 /* Like s_arm_elf_cons but do not use md_cons_align and
3907 set the mapping state to MAP_ARM/MAP_THUMB. */
3908
3909 static void
3910 s_arm_elf_inst (int nbytes)
3911 {
3912 if (is_it_end_of_statement ())
3913 {
3914 demand_empty_rest_of_line ();
3915 return;
3916 }
3917
3918 /* Calling mapping_state () here will not change ARM/THUMB,
3919 but will ensure not to be in DATA state. */
3920
3921 if (thumb_mode)
3922 mapping_state (MAP_THUMB);
3923 else
3924 {
3925 if (nbytes != 0)
3926 {
3927 as_bad (_("width suffixes are invalid in ARM mode"));
3928 ignore_rest_of_line ();
3929 return;
3930 }
3931
3932 nbytes = 4;
3933
3934 mapping_state (MAP_ARM);
3935 }
3936
3937 do
3938 {
3939 expressionS exp;
3940
3941 expression (& exp);
3942
3943 if (! emit_insn (& exp, nbytes))
3944 {
3945 ignore_rest_of_line ();
3946 return;
3947 }
3948 }
3949 while (*input_line_pointer++ == ',');
3950
3951 /* Put terminator back into stream. */
3952 input_line_pointer --;
3953 demand_empty_rest_of_line ();
3954 }
3955
3956 /* Parse a .rel31 directive. */
3957
3958 static void
3959 s_arm_rel31 (int ignored ATTRIBUTE_UNUSED)
3960 {
3961 expressionS exp;
3962 char *p;
3963 valueT highbit;
3964
3965 highbit = 0;
3966 if (*input_line_pointer == '1')
3967 highbit = 0x80000000;
3968 else if (*input_line_pointer != '0')
3969 as_bad (_("expected 0 or 1"));
3970
3971 input_line_pointer++;
3972 if (*input_line_pointer != ',')
3973 as_bad (_("missing comma"));
3974 input_line_pointer++;
3975
3976 #ifdef md_flush_pending_output
3977 md_flush_pending_output ();
3978 #endif
3979
3980 #ifdef md_cons_align
3981 md_cons_align (4);
3982 #endif
3983
3984 mapping_state (MAP_DATA);
3985
3986 expression (&exp);
3987
3988 p = frag_more (4);
3989 md_number_to_chars (p, highbit, 4);
3990 fix_new_arm (frag_now, p - frag_now->fr_literal, 4, &exp, 1,
3991 BFD_RELOC_ARM_PREL31);
3992
3993 demand_empty_rest_of_line ();
3994 }
3995
3996 /* Directives: AEABI stack-unwind tables. */
3997
3998 /* Parse an unwind_fnstart directive. Simply records the current location. */
3999
4000 static void
4001 s_arm_unwind_fnstart (int ignored ATTRIBUTE_UNUSED)
4002 {
4003 demand_empty_rest_of_line ();
4004 if (unwind.proc_start)
4005 {
4006 as_bad (_("duplicate .fnstart directive"));
4007 return;
4008 }
4009
4010 /* Mark the start of the function. */
4011 unwind.proc_start = expr_build_dot ();
4012
4013 /* Reset the rest of the unwind info. */
4014 unwind.opcode_count = 0;
4015 unwind.table_entry = NULL;
4016 unwind.personality_routine = NULL;
4017 unwind.personality_index = -1;
4018 unwind.frame_size = 0;
4019 unwind.fp_offset = 0;
4020 unwind.fp_reg = REG_SP;
4021 unwind.fp_used = 0;
4022 unwind.sp_restored = 0;
4023 }
4024
4025
4026 /* Parse a handlerdata directive. Creates the exception handling table entry
4027 for the function. */
4028
4029 static void
4030 s_arm_unwind_handlerdata (int ignored ATTRIBUTE_UNUSED)
4031 {
4032 demand_empty_rest_of_line ();
4033 if (!unwind.proc_start)
4034 as_bad (MISSING_FNSTART);
4035
4036 if (unwind.table_entry)
4037 as_bad (_("duplicate .handlerdata directive"));
4038
4039 create_unwind_entry (1);
4040 }
4041
4042 /* Parse an unwind_fnend directive. Generates the index table entry. */
4043
4044 static void
4045 s_arm_unwind_fnend (int ignored ATTRIBUTE_UNUSED)
4046 {
4047 long where;
4048 char *ptr;
4049 valueT val;
4050 unsigned int marked_pr_dependency;
4051
4052 demand_empty_rest_of_line ();
4053
4054 if (!unwind.proc_start)
4055 {
4056 as_bad (_(".fnend directive without .fnstart"));
4057 return;
4058 }
4059
4060 /* Add eh table entry. */
4061 if (unwind.table_entry == NULL)
4062 val = create_unwind_entry (0);
4063 else
4064 val = 0;
4065
4066 /* Add index table entry. This is two words. */
4067 start_unwind_section (unwind.saved_seg, 1);
4068 frag_align (2, 0, 0);
4069 record_alignment (now_seg, 2);
4070
4071 ptr = frag_more (8);
4072 memset (ptr, 0, 8);
4073 where = frag_now_fix () - 8;
4074
4075 /* Self relative offset of the function start. */
4076 fix_new (frag_now, where, 4, unwind.proc_start, 0, 1,
4077 BFD_RELOC_ARM_PREL31);
4078
4079 /* Indicate dependency on EHABI-defined personality routines to the
4080 linker, if it hasn't been done already. */
4081 marked_pr_dependency
4082 = seg_info (now_seg)->tc_segment_info_data.marked_pr_dependency;
4083 if (unwind.personality_index >= 0 && unwind.personality_index < 3
4084 && !(marked_pr_dependency & (1 << unwind.personality_index)))
4085 {
4086 static const char *const name[] =
4087 {
4088 "__aeabi_unwind_cpp_pr0",
4089 "__aeabi_unwind_cpp_pr1",
4090 "__aeabi_unwind_cpp_pr2"
4091 };
4092 symbolS *pr = symbol_find_or_make (name[unwind.personality_index]);
4093 fix_new (frag_now, where, 0, pr, 0, 1, BFD_RELOC_NONE);
4094 seg_info (now_seg)->tc_segment_info_data.marked_pr_dependency
4095 |= 1 << unwind.personality_index;
4096 }
4097
4098 if (val)
4099 /* Inline exception table entry. */
4100 md_number_to_chars (ptr + 4, val, 4);
4101 else
4102 /* Self relative offset of the table entry. */
4103 fix_new (frag_now, where + 4, 4, unwind.table_entry, 0, 1,
4104 BFD_RELOC_ARM_PREL31);
4105
4106 /* Restore the original section. */
4107 subseg_set (unwind.saved_seg, unwind.saved_subseg);
4108
4109 unwind.proc_start = NULL;
4110 }
4111
4112
4113 /* Parse an unwind_cantunwind directive. */
4114
4115 static void
4116 s_arm_unwind_cantunwind (int ignored ATTRIBUTE_UNUSED)
4117 {
4118 demand_empty_rest_of_line ();
4119 if (!unwind.proc_start)
4120 as_bad (MISSING_FNSTART);
4121
4122 if (unwind.personality_routine || unwind.personality_index != -1)
4123 as_bad (_("personality routine specified for cantunwind frame"));
4124
4125 unwind.personality_index = -2;
4126 }
4127
4128
4129 /* Parse a personalityindex directive. */
4130
4131 static void
4132 s_arm_unwind_personalityindex (int ignored ATTRIBUTE_UNUSED)
4133 {
4134 expressionS exp;
4135
4136 if (!unwind.proc_start)
4137 as_bad (MISSING_FNSTART);
4138
4139 if (unwind.personality_routine || unwind.personality_index != -1)
4140 as_bad (_("duplicate .personalityindex directive"));
4141
4142 expression (&exp);
4143
4144 if (exp.X_op != O_constant
4145 || exp.X_add_number < 0 || exp.X_add_number > 15)
4146 {
4147 as_bad (_("bad personality routine number"));
4148 ignore_rest_of_line ();
4149 return;
4150 }
4151
4152 unwind.personality_index = exp.X_add_number;
4153
4154 demand_empty_rest_of_line ();
4155 }
4156
4157
4158 /* Parse a personality directive. */
4159
4160 static void
4161 s_arm_unwind_personality (int ignored ATTRIBUTE_UNUSED)
4162 {
4163 char *name, *p, c;
4164
4165 if (!unwind.proc_start)
4166 as_bad (MISSING_FNSTART);
4167
4168 if (unwind.personality_routine || unwind.personality_index != -1)
4169 as_bad (_("duplicate .personality directive"));
4170
4171 c = get_symbol_name (& name);
4172 p = input_line_pointer;
4173 if (c == '"')
4174 ++ input_line_pointer;
4175 unwind.personality_routine = symbol_find_or_make (name);
4176 *p = c;
4177 demand_empty_rest_of_line ();
4178 }
4179
4180
4181 /* Parse a directive saving core registers. */
4182
4183 static void
4184 s_arm_unwind_save_core (void)
4185 {
4186 valueT op;
4187 long range;
4188 int n;
4189
4190 range = parse_reg_list (&input_line_pointer, REGLIST_RN);
4191 if (range == FAIL)
4192 {
4193 as_bad (_("expected register list"));
4194 ignore_rest_of_line ();
4195 return;
4196 }
4197
4198 demand_empty_rest_of_line ();
4199
4200 /* Turn .unwind_movsp ip followed by .unwind_save {..., ip, ...}
4201 into .unwind_save {..., sp...}. We aren't bothered about the value of
4202 ip because it is clobbered by calls. */
4203 if (unwind.sp_restored && unwind.fp_reg == 12
4204 && (range & 0x3000) == 0x1000)
4205 {
4206 unwind.opcode_count--;
4207 unwind.sp_restored = 0;
4208 range = (range | 0x2000) & ~0x1000;
4209 unwind.pending_offset = 0;
4210 }
4211
4212 /* Pop r4-r15. */
4213 if (range & 0xfff0)
4214 {
4215 /* See if we can use the short opcodes. These pop a block of up to 8
4216 registers starting with r4, plus maybe r14. */
4217 for (n = 0; n < 8; n++)
4218 {
4219 /* Break at the first non-saved register. */
4220 if ((range & (1 << (n + 4))) == 0)
4221 break;
4222 }
4223 /* See if there are any other bits set. */
4224 if (n == 0 || (range & (0xfff0 << n) & 0xbff0) != 0)
4225 {
4226 /* Use the long form. */
4227 op = 0x8000 | ((range >> 4) & 0xfff);
4228 add_unwind_opcode (op, 2);
4229 }
4230 else
4231 {
4232 /* Use the short form. */
4233 if (range & 0x4000)
4234 op = 0xa8; /* Pop r14. */
4235 else
4236 op = 0xa0; /* Do not pop r14. */
4237 op |= (n - 1);
4238 add_unwind_opcode (op, 1);
4239 }
4240 }
4241
4242 /* Pop r0-r3. */
4243 if (range & 0xf)
4244 {
4245 op = 0xb100 | (range & 0xf);
4246 add_unwind_opcode (op, 2);
4247 }
4248
4249 /* Record the number of bytes pushed. */
4250 for (n = 0; n < 16; n++)
4251 {
4252 if (range & (1 << n))
4253 unwind.frame_size += 4;
4254 }
4255 }
4256
4257
4258 /* Parse a directive saving FPA registers. */
4259
4260 static void
4261 s_arm_unwind_save_fpa (int reg)
4262 {
4263 expressionS exp;
4264 int num_regs;
4265 valueT op;
4266
4267 /* Get Number of registers to transfer. */
4268 if (skip_past_comma (&input_line_pointer) != FAIL)
4269 expression (&exp);
4270 else
4271 exp.X_op = O_illegal;
4272
4273 if (exp.X_op != O_constant)
4274 {
4275 as_bad (_("expected , <constant>"));
4276 ignore_rest_of_line ();
4277 return;
4278 }
4279
4280 num_regs = exp.X_add_number;
4281
4282 if (num_regs < 1 || num_regs > 4)
4283 {
4284 as_bad (_("number of registers must be in the range [1:4]"));
4285 ignore_rest_of_line ();
4286 return;
4287 }
4288
4289 demand_empty_rest_of_line ();
4290
4291 if (reg == 4)
4292 {
4293 /* Short form. */
4294 op = 0xb4 | (num_regs - 1);
4295 add_unwind_opcode (op, 1);
4296 }
4297 else
4298 {
4299 /* Long form. */
4300 op = 0xc800 | (reg << 4) | (num_regs - 1);
4301 add_unwind_opcode (op, 2);
4302 }
4303 unwind.frame_size += num_regs * 12;
4304 }
4305
4306
4307 /* Parse a directive saving VFP registers for ARMv6 and above. */
4308
4309 static void
4310 s_arm_unwind_save_vfp_armv6 (void)
4311 {
4312 int count;
4313 unsigned int start;
4314 valueT op;
4315 int num_vfpv3_regs = 0;
4316 int num_regs_below_16;
4317 bfd_boolean partial_match;
4318
4319 count = parse_vfp_reg_list (&input_line_pointer, &start, REGLIST_VFP_D,
4320 &partial_match);
4321 if (count == FAIL)
4322 {
4323 as_bad (_("expected register list"));
4324 ignore_rest_of_line ();
4325 return;
4326 }
4327
4328 demand_empty_rest_of_line ();
4329
4330 /* We always generate FSTMD/FLDMD-style unwinding opcodes (rather
4331 than FSTMX/FLDMX-style ones). */
4332
4333 /* Generate opcode for (VFPv3) registers numbered in the range 16 .. 31. */
4334 if (start >= 16)
4335 num_vfpv3_regs = count;
4336 else if (start + count > 16)
4337 num_vfpv3_regs = start + count - 16;
4338
4339 if (num_vfpv3_regs > 0)
4340 {
4341 int start_offset = start > 16 ? start - 16 : 0;
4342 op = 0xc800 | (start_offset << 4) | (num_vfpv3_regs - 1);
4343 add_unwind_opcode (op, 2);
4344 }
4345
4346 /* Generate opcode for registers numbered in the range 0 .. 15. */
4347 num_regs_below_16 = num_vfpv3_regs > 0 ? 16 - (int) start : count;
4348 gas_assert (num_regs_below_16 + num_vfpv3_regs == count);
4349 if (num_regs_below_16 > 0)
4350 {
4351 op = 0xc900 | (start << 4) | (num_regs_below_16 - 1);
4352 add_unwind_opcode (op, 2);
4353 }
4354
4355 unwind.frame_size += count * 8;
4356 }
4357
4358
4359 /* Parse a directive saving VFP registers for pre-ARMv6. */
4360
4361 static void
4362 s_arm_unwind_save_vfp (void)
4363 {
4364 int count;
4365 unsigned int reg;
4366 valueT op;
4367 bfd_boolean partial_match;
4368
4369 count = parse_vfp_reg_list (&input_line_pointer, &reg, REGLIST_VFP_D,
4370 &partial_match);
4371 if (count == FAIL)
4372 {
4373 as_bad (_("expected register list"));
4374 ignore_rest_of_line ();
4375 return;
4376 }
4377
4378 demand_empty_rest_of_line ();
4379
4380 if (reg == 8)
4381 {
4382 /* Short form. */
4383 op = 0xb8 | (count - 1);
4384 add_unwind_opcode (op, 1);
4385 }
4386 else
4387 {
4388 /* Long form. */
4389 op = 0xb300 | (reg << 4) | (count - 1);
4390 add_unwind_opcode (op, 2);
4391 }
4392 unwind.frame_size += count * 8 + 4;
4393 }
4394
4395
4396 /* Parse a directive saving iWMMXt data registers. */
4397
4398 static void
4399 s_arm_unwind_save_mmxwr (void)
4400 {
4401 int reg;
4402 int hi_reg;
4403 int i;
4404 unsigned mask = 0;
4405 valueT op;
4406
4407 if (*input_line_pointer == '{')
4408 input_line_pointer++;
4409
4410 do
4411 {
4412 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWR);
4413
4414 if (reg == FAIL)
4415 {
4416 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWR]));
4417 goto error;
4418 }
4419
4420 if (mask >> reg)
4421 as_tsktsk (_("register list not in ascending order"));
4422 mask |= 1 << reg;
4423
4424 if (*input_line_pointer == '-')
4425 {
4426 input_line_pointer++;
4427 hi_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWR);
4428 if (hi_reg == FAIL)
4429 {
4430 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWR]));
4431 goto error;
4432 }
4433 else if (reg >= hi_reg)
4434 {
4435 as_bad (_("bad register range"));
4436 goto error;
4437 }
4438 for (; reg < hi_reg; reg++)
4439 mask |= 1 << reg;
4440 }
4441 }
4442 while (skip_past_comma (&input_line_pointer) != FAIL);
4443
4444 skip_past_char (&input_line_pointer, '}');
4445
4446 demand_empty_rest_of_line ();
4447
4448 /* Generate any deferred opcodes because we're going to be looking at
4449 the list. */
4450 flush_pending_unwind ();
4451
4452 for (i = 0; i < 16; i++)
4453 {
4454 if (mask & (1 << i))
4455 unwind.frame_size += 8;
4456 }
4457
4458 /* Attempt to combine with a previous opcode. We do this because gcc
4459 likes to output separate unwind directives for a single block of
4460 registers. */
4461 if (unwind.opcode_count > 0)
4462 {
4463 i = unwind.opcodes[unwind.opcode_count - 1];
4464 if ((i & 0xf8) == 0xc0)
4465 {
4466 i &= 7;
4467 /* Only merge if the blocks are contiguous. */
4468 if (i < 6)
4469 {
4470 if ((mask & 0xfe00) == (1 << 9))
4471 {
4472 mask |= ((1 << (i + 11)) - 1) & 0xfc00;
4473 unwind.opcode_count--;
4474 }
4475 }
4476 else if (i == 6 && unwind.opcode_count >= 2)
4477 {
4478 i = unwind.opcodes[unwind.opcode_count - 2];
4479 reg = i >> 4;
4480 i &= 0xf;
4481
4482 op = 0xffff << (reg - 1);
4483 if (reg > 0
4484 && ((mask & op) == (1u << (reg - 1))))
4485 {
4486 op = (1 << (reg + i + 1)) - 1;
4487 op &= ~((1 << reg) - 1);
4488 mask |= op;
4489 unwind.opcode_count -= 2;
4490 }
4491 }
4492 }
4493 }
4494
4495 hi_reg = 15;
4496 /* We want to generate opcodes in the order the registers have been
4497 saved, ie. descending order. */
4498 for (reg = 15; reg >= -1; reg--)
4499 {
4500 /* Save registers in blocks. */
4501 if (reg < 0
4502 || !(mask & (1 << reg)))
4503 {
4504 /* We found an unsaved reg. Generate opcodes to save the
4505 preceding block. */
4506 if (reg != hi_reg)
4507 {
4508 if (reg == 9)
4509 {
4510 /* Short form. */
4511 op = 0xc0 | (hi_reg - 10);
4512 add_unwind_opcode (op, 1);
4513 }
4514 else
4515 {
4516 /* Long form. */
4517 op = 0xc600 | ((reg + 1) << 4) | ((hi_reg - reg) - 1);
4518 add_unwind_opcode (op, 2);
4519 }
4520 }
4521 hi_reg = reg - 1;
4522 }
4523 }
4524
4525 return;
4526 error:
4527 ignore_rest_of_line ();
4528 }
4529
4530 static void
4531 s_arm_unwind_save_mmxwcg (void)
4532 {
4533 int reg;
4534 int hi_reg;
4535 unsigned mask = 0;
4536 valueT op;
4537
4538 if (*input_line_pointer == '{')
4539 input_line_pointer++;
4540
4541 skip_whitespace (input_line_pointer);
4542
4543 do
4544 {
4545 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWCG);
4546
4547 if (reg == FAIL)
4548 {
4549 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWCG]));
4550 goto error;
4551 }
4552
4553 reg -= 8;
4554 if (mask >> reg)
4555 as_tsktsk (_("register list not in ascending order"));
4556 mask |= 1 << reg;
4557
4558 if (*input_line_pointer == '-')
4559 {
4560 input_line_pointer++;
4561 hi_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWCG);
4562 if (hi_reg == FAIL)
4563 {
4564 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWCG]));
4565 goto error;
4566 }
4567 else if (reg >= hi_reg)
4568 {
4569 as_bad (_("bad register range"));
4570 goto error;
4571 }
4572 for (; reg < hi_reg; reg++)
4573 mask |= 1 << reg;
4574 }
4575 }
4576 while (skip_past_comma (&input_line_pointer) != FAIL);
4577
4578 skip_past_char (&input_line_pointer, '}');
4579
4580 demand_empty_rest_of_line ();
4581
4582 /* Generate any deferred opcodes because we're going to be looking at
4583 the list. */
4584 flush_pending_unwind ();
4585
4586 for (reg = 0; reg < 16; reg++)
4587 {
4588 if (mask & (1 << reg))
4589 unwind.frame_size += 4;
4590 }
4591 op = 0xc700 | mask;
4592 add_unwind_opcode (op, 2);
4593 return;
4594 error:
4595 ignore_rest_of_line ();
4596 }
4597
4598
4599 /* Parse an unwind_save directive.
4600 If the argument is non-zero, this is a .vsave directive. */
4601
4602 static void
4603 s_arm_unwind_save (int arch_v6)
4604 {
4605 char *peek;
4606 struct reg_entry *reg;
4607 bfd_boolean had_brace = FALSE;
4608
4609 if (!unwind.proc_start)
4610 as_bad (MISSING_FNSTART);
4611
4612 /* Figure out what sort of save we have. */
4613 peek = input_line_pointer;
4614
4615 if (*peek == '{')
4616 {
4617 had_brace = TRUE;
4618 peek++;
4619 }
4620
4621 reg = arm_reg_parse_multi (&peek);
4622
4623 if (!reg)
4624 {
4625 as_bad (_("register expected"));
4626 ignore_rest_of_line ();
4627 return;
4628 }
4629
4630 switch (reg->type)
4631 {
4632 case REG_TYPE_FN:
4633 if (had_brace)
4634 {
4635 as_bad (_("FPA .unwind_save does not take a register list"));
4636 ignore_rest_of_line ();
4637 return;
4638 }
4639 input_line_pointer = peek;
4640 s_arm_unwind_save_fpa (reg->number);
4641 return;
4642
4643 case REG_TYPE_RN:
4644 s_arm_unwind_save_core ();
4645 return;
4646
4647 case REG_TYPE_VFD:
4648 if (arch_v6)
4649 s_arm_unwind_save_vfp_armv6 ();
4650 else
4651 s_arm_unwind_save_vfp ();
4652 return;
4653
4654 case REG_TYPE_MMXWR:
4655 s_arm_unwind_save_mmxwr ();
4656 return;
4657
4658 case REG_TYPE_MMXWCG:
4659 s_arm_unwind_save_mmxwcg ();
4660 return;
4661
4662 default:
4663 as_bad (_(".unwind_save does not support this kind of register"));
4664 ignore_rest_of_line ();
4665 }
4666 }
4667
4668
4669 /* Parse an unwind_movsp directive. */
4670
4671 static void
4672 s_arm_unwind_movsp (int ignored ATTRIBUTE_UNUSED)
4673 {
4674 int reg;
4675 valueT op;
4676 int offset;
4677
4678 if (!unwind.proc_start)
4679 as_bad (MISSING_FNSTART);
4680
4681 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
4682 if (reg == FAIL)
4683 {
4684 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_RN]));
4685 ignore_rest_of_line ();
4686 return;
4687 }
4688
4689 /* Optional constant. */
4690 if (skip_past_comma (&input_line_pointer) != FAIL)
4691 {
4692 if (immediate_for_directive (&offset) == FAIL)
4693 return;
4694 }
4695 else
4696 offset = 0;
4697
4698 demand_empty_rest_of_line ();
4699
4700 if (reg == REG_SP || reg == REG_PC)
4701 {
4702 as_bad (_("SP and PC not permitted in .unwind_movsp directive"));
4703 return;
4704 }
4705
4706 if (unwind.fp_reg != REG_SP)
4707 as_bad (_("unexpected .unwind_movsp directive"));
4708
4709 /* Generate opcode to restore the value. */
4710 op = 0x90 | reg;
4711 add_unwind_opcode (op, 1);
4712
4713 /* Record the information for later. */
4714 unwind.fp_reg = reg;
4715 unwind.fp_offset = unwind.frame_size - offset;
4716 unwind.sp_restored = 1;
4717 }
4718
4719 /* Parse an unwind_pad directive. */
4720
4721 static void
4722 s_arm_unwind_pad (int ignored ATTRIBUTE_UNUSED)
4723 {
4724 int offset;
4725
4726 if (!unwind.proc_start)
4727 as_bad (MISSING_FNSTART);
4728
4729 if (immediate_for_directive (&offset) == FAIL)
4730 return;
4731
4732 if (offset & 3)
4733 {
4734 as_bad (_("stack increment must be multiple of 4"));
4735 ignore_rest_of_line ();
4736 return;
4737 }
4738
4739 /* Don't generate any opcodes, just record the details for later. */
4740 unwind.frame_size += offset;
4741 unwind.pending_offset += offset;
4742
4743 demand_empty_rest_of_line ();
4744 }
4745
4746 /* Parse an unwind_setfp directive. */
4747
4748 static void
4749 s_arm_unwind_setfp (int ignored ATTRIBUTE_UNUSED)
4750 {
4751 int sp_reg;
4752 int fp_reg;
4753 int offset;
4754
4755 if (!unwind.proc_start)
4756 as_bad (MISSING_FNSTART);
4757
4758 fp_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
4759 if (skip_past_comma (&input_line_pointer) == FAIL)
4760 sp_reg = FAIL;
4761 else
4762 sp_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
4763
4764 if (fp_reg == FAIL || sp_reg == FAIL)
4765 {
4766 as_bad (_("expected <reg>, <reg>"));
4767 ignore_rest_of_line ();
4768 return;
4769 }
4770
4771 /* Optional constant. */
4772 if (skip_past_comma (&input_line_pointer) != FAIL)
4773 {
4774 if (immediate_for_directive (&offset) == FAIL)
4775 return;
4776 }
4777 else
4778 offset = 0;
4779
4780 demand_empty_rest_of_line ();
4781
4782 if (sp_reg != REG_SP && sp_reg != unwind.fp_reg)
4783 {
4784 as_bad (_("register must be either sp or set by a previous"
4785 "unwind_movsp directive"));
4786 return;
4787 }
4788
4789 /* Don't generate any opcodes, just record the information for later. */
4790 unwind.fp_reg = fp_reg;
4791 unwind.fp_used = 1;
4792 if (sp_reg == REG_SP)
4793 unwind.fp_offset = unwind.frame_size - offset;
4794 else
4795 unwind.fp_offset -= offset;
4796 }
4797
4798 /* Parse an unwind_raw directive. */
4799
4800 static void
4801 s_arm_unwind_raw (int ignored ATTRIBUTE_UNUSED)
4802 {
4803 expressionS exp;
4804 /* This is an arbitrary limit. */
4805 unsigned char op[16];
4806 int count;
4807
4808 if (!unwind.proc_start)
4809 as_bad (MISSING_FNSTART);
4810
4811 expression (&exp);
4812 if (exp.X_op == O_constant
4813 && skip_past_comma (&input_line_pointer) != FAIL)
4814 {
4815 unwind.frame_size += exp.X_add_number;
4816 expression (&exp);
4817 }
4818 else
4819 exp.X_op = O_illegal;
4820
4821 if (exp.X_op != O_constant)
4822 {
4823 as_bad (_("expected <offset>, <opcode>"));
4824 ignore_rest_of_line ();
4825 return;
4826 }
4827
4828 count = 0;
4829
4830 /* Parse the opcode. */
4831 for (;;)
4832 {
4833 if (count >= 16)
4834 {
4835 as_bad (_("unwind opcode too long"));
4836 ignore_rest_of_line ();
4837 }
4838 if (exp.X_op != O_constant || exp.X_add_number & ~0xff)
4839 {
4840 as_bad (_("invalid unwind opcode"));
4841 ignore_rest_of_line ();
4842 return;
4843 }
4844 op[count++] = exp.X_add_number;
4845
4846 /* Parse the next byte. */
4847 if (skip_past_comma (&input_line_pointer) == FAIL)
4848 break;
4849
4850 expression (&exp);
4851 }
4852
4853 /* Add the opcode bytes in reverse order. */
4854 while (count--)
4855 add_unwind_opcode (op[count], 1);
4856
4857 demand_empty_rest_of_line ();
4858 }
4859
4860
4861 /* Parse a .eabi_attribute directive. */
4862
4863 static void
4864 s_arm_eabi_attribute (int ignored ATTRIBUTE_UNUSED)
4865 {
4866 int tag = obj_elf_vendor_attribute (OBJ_ATTR_PROC);
4867
4868 if (tag >= 0 && tag < NUM_KNOWN_OBJ_ATTRIBUTES)
4869 attributes_set_explicitly[tag] = 1;
4870 }
4871
4872 /* Emit a tls fix for the symbol. */
4873
4874 static void
4875 s_arm_tls_descseq (int ignored ATTRIBUTE_UNUSED)
4876 {
4877 char *p;
4878 expressionS exp;
4879 #ifdef md_flush_pending_output
4880 md_flush_pending_output ();
4881 #endif
4882
4883 #ifdef md_cons_align
4884 md_cons_align (4);
4885 #endif
4886
4887 /* Since we're just labelling the code, there's no need to define a
4888 mapping symbol. */
4889 expression (&exp);
4890 p = obstack_next_free (&frchain_now->frch_obstack);
4891 fix_new_arm (frag_now, p - frag_now->fr_literal, 4, &exp, 0,
4892 thumb_mode ? BFD_RELOC_ARM_THM_TLS_DESCSEQ
4893 : BFD_RELOC_ARM_TLS_DESCSEQ);
4894 }
4895 #endif /* OBJ_ELF */
4896
4897 static void s_arm_arch (int);
4898 static void s_arm_object_arch (int);
4899 static void s_arm_cpu (int);
4900 static void s_arm_fpu (int);
4901 static void s_arm_arch_extension (int);
4902
4903 #ifdef TE_PE
4904
4905 static void
4906 pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
4907 {
4908 expressionS exp;
4909
4910 do
4911 {
4912 expression (&exp);
4913 if (exp.X_op == O_symbol)
4914 exp.X_op = O_secrel;
4915
4916 emit_expr (&exp, 4);
4917 }
4918 while (*input_line_pointer++ == ',');
4919
4920 input_line_pointer--;
4921 demand_empty_rest_of_line ();
4922 }
4923 #endif /* TE_PE */
4924
4925 /* This table describes all the machine specific pseudo-ops the assembler
4926 has to support. The fields are:
4927 pseudo-op name without dot
4928 function to call to execute this pseudo-op
4929 Integer arg to pass to the function. */
4930
4931 const pseudo_typeS md_pseudo_table[] =
4932 {
4933 /* Never called because '.req' does not start a line. */
4934 { "req", s_req, 0 },
4935 /* Following two are likewise never called. */
4936 { "dn", s_dn, 0 },
4937 { "qn", s_qn, 0 },
4938 { "unreq", s_unreq, 0 },
4939 { "bss", s_bss, 0 },
4940 { "align", s_align_ptwo, 2 },
4941 { "arm", s_arm, 0 },
4942 { "thumb", s_thumb, 0 },
4943 { "code", s_code, 0 },
4944 { "force_thumb", s_force_thumb, 0 },
4945 { "thumb_func", s_thumb_func, 0 },
4946 { "thumb_set", s_thumb_set, 0 },
4947 { "even", s_even, 0 },
4948 { "ltorg", s_ltorg, 0 },
4949 { "pool", s_ltorg, 0 },
4950 { "syntax", s_syntax, 0 },
4951 { "cpu", s_arm_cpu, 0 },
4952 { "arch", s_arm_arch, 0 },
4953 { "object_arch", s_arm_object_arch, 0 },
4954 { "fpu", s_arm_fpu, 0 },
4955 { "arch_extension", s_arm_arch_extension, 0 },
4956 #ifdef OBJ_ELF
4957 { "word", s_arm_elf_cons, 4 },
4958 { "long", s_arm_elf_cons, 4 },
4959 { "inst.n", s_arm_elf_inst, 2 },
4960 { "inst.w", s_arm_elf_inst, 4 },
4961 { "inst", s_arm_elf_inst, 0 },
4962 { "rel31", s_arm_rel31, 0 },
4963 { "fnstart", s_arm_unwind_fnstart, 0 },
4964 { "fnend", s_arm_unwind_fnend, 0 },
4965 { "cantunwind", s_arm_unwind_cantunwind, 0 },
4966 { "personality", s_arm_unwind_personality, 0 },
4967 { "personalityindex", s_arm_unwind_personalityindex, 0 },
4968 { "handlerdata", s_arm_unwind_handlerdata, 0 },
4969 { "save", s_arm_unwind_save, 0 },
4970 { "vsave", s_arm_unwind_save, 1 },
4971 { "movsp", s_arm_unwind_movsp, 0 },
4972 { "pad", s_arm_unwind_pad, 0 },
4973 { "setfp", s_arm_unwind_setfp, 0 },
4974 { "unwind_raw", s_arm_unwind_raw, 0 },
4975 { "eabi_attribute", s_arm_eabi_attribute, 0 },
4976 { "tlsdescseq", s_arm_tls_descseq, 0 },
4977 #else
4978 { "word", cons, 4},
4979
4980 /* These are used for dwarf. */
4981 {"2byte", cons, 2},
4982 {"4byte", cons, 4},
4983 {"8byte", cons, 8},
4984 /* These are used for dwarf2. */
4985 { "file", dwarf2_directive_file, 0 },
4986 { "loc", dwarf2_directive_loc, 0 },
4987 { "loc_mark_labels", dwarf2_directive_loc_mark_labels, 0 },
4988 #endif
4989 { "extend", float_cons, 'x' },
4990 { "ldouble", float_cons, 'x' },
4991 { "packed", float_cons, 'p' },
4992 #ifdef TE_PE
4993 {"secrel32", pe_directive_secrel, 0},
4994 #endif
4995
4996 /* These are for compatibility with CodeComposer Studio. */
4997 {"ref", s_ccs_ref, 0},
4998 {"def", s_ccs_def, 0},
4999 {"asmfunc", s_ccs_asmfunc, 0},
5000 {"endasmfunc", s_ccs_endasmfunc, 0},
5001
5002 { 0, 0, 0 }
5003 };
5004 \f
5005 /* Parser functions used exclusively in instruction operands. */
5006
5007 /* Generic immediate-value read function for use in insn parsing.
5008 STR points to the beginning of the immediate (the leading #);
5009 VAL receives the value; if the value is outside [MIN, MAX]
5010 issue an error. PREFIX_OPT is true if the immediate prefix is
5011 optional. */
5012
5013 static int
5014 parse_immediate (char **str, int *val, int min, int max,
5015 bfd_boolean prefix_opt)
5016 {
5017 expressionS exp;
5018
5019 my_get_expression (&exp, str, prefix_opt ? GE_OPT_PREFIX : GE_IMM_PREFIX);
5020 if (exp.X_op != O_constant)
5021 {
5022 inst.error = _("constant expression required");
5023 return FAIL;
5024 }
5025
5026 if (exp.X_add_number < min || exp.X_add_number > max)
5027 {
5028 inst.error = _("immediate value out of range");
5029 return FAIL;
5030 }
5031
5032 *val = exp.X_add_number;
5033 return SUCCESS;
5034 }
5035
5036 /* Less-generic immediate-value read function with the possibility of loading a
5037 big (64-bit) immediate, as required by Neon VMOV, VMVN and logic immediate
5038 instructions. Puts the result directly in inst.operands[i]. */
5039
5040 static int
5041 parse_big_immediate (char **str, int i, expressionS *in_exp,
5042 bfd_boolean allow_symbol_p)
5043 {
5044 expressionS exp;
5045 expressionS *exp_p = in_exp ? in_exp : &exp;
5046 char *ptr = *str;
5047
5048 my_get_expression (exp_p, &ptr, GE_OPT_PREFIX_BIG);
5049
5050 if (exp_p->X_op == O_constant)
5051 {
5052 inst.operands[i].imm = exp_p->X_add_number & 0xffffffff;
5053 /* If we're on a 64-bit host, then a 64-bit number can be returned using
5054 O_constant. We have to be careful not to break compilation for
5055 32-bit X_add_number, though. */
5056 if ((exp_p->X_add_number & ~(offsetT)(0xffffffffU)) != 0)
5057 {
5058 /* X >> 32 is illegal if sizeof (exp_p->X_add_number) == 4. */
5059 inst.operands[i].reg = (((exp_p->X_add_number >> 16) >> 16)
5060 & 0xffffffff);
5061 inst.operands[i].regisimm = 1;
5062 }
5063 }
5064 else if (exp_p->X_op == O_big
5065 && LITTLENUM_NUMBER_OF_BITS * exp_p->X_add_number > 32)
5066 {
5067 unsigned parts = 32 / LITTLENUM_NUMBER_OF_BITS, j, idx = 0;
5068
5069 /* Bignums have their least significant bits in
5070 generic_bignum[0]. Make sure we put 32 bits in imm and
5071 32 bits in reg, in a (hopefully) portable way. */
5072 gas_assert (parts != 0);
5073
5074 /* Make sure that the number is not too big.
5075 PR 11972: Bignums can now be sign-extended to the
5076 size of a .octa so check that the out of range bits
5077 are all zero or all one. */
5078 if (LITTLENUM_NUMBER_OF_BITS * exp_p->X_add_number > 64)
5079 {
5080 LITTLENUM_TYPE m = -1;
5081
5082 if (generic_bignum[parts * 2] != 0
5083 && generic_bignum[parts * 2] != m)
5084 return FAIL;
5085
5086 for (j = parts * 2 + 1; j < (unsigned) exp_p->X_add_number; j++)
5087 if (generic_bignum[j] != generic_bignum[j-1])
5088 return FAIL;
5089 }
5090
5091 inst.operands[i].imm = 0;
5092 for (j = 0; j < parts; j++, idx++)
5093 inst.operands[i].imm |= generic_bignum[idx]
5094 << (LITTLENUM_NUMBER_OF_BITS * j);
5095 inst.operands[i].reg = 0;
5096 for (j = 0; j < parts; j++, idx++)
5097 inst.operands[i].reg |= generic_bignum[idx]
5098 << (LITTLENUM_NUMBER_OF_BITS * j);
5099 inst.operands[i].regisimm = 1;
5100 }
5101 else if (!(exp_p->X_op == O_symbol && allow_symbol_p))
5102 return FAIL;
5103
5104 *str = ptr;
5105
5106 return SUCCESS;
5107 }
5108
5109 /* Returns the pseudo-register number of an FPA immediate constant,
5110 or FAIL if there isn't a valid constant here. */
5111
5112 static int
5113 parse_fpa_immediate (char ** str)
5114 {
5115 LITTLENUM_TYPE words[MAX_LITTLENUMS];
5116 char * save_in;
5117 expressionS exp;
5118 int i;
5119 int j;
5120
5121 /* First try and match exact strings, this is to guarantee
5122 that some formats will work even for cross assembly. */
5123
5124 for (i = 0; fp_const[i]; i++)
5125 {
5126 if (strncmp (*str, fp_const[i], strlen (fp_const[i])) == 0)
5127 {
5128 char *start = *str;
5129
5130 *str += strlen (fp_const[i]);
5131 if (is_end_of_line[(unsigned char) **str])
5132 return i + 8;
5133 *str = start;
5134 }
5135 }
5136
5137 /* Just because we didn't get a match doesn't mean that the constant
5138 isn't valid, just that it is in a format that we don't
5139 automatically recognize. Try parsing it with the standard
5140 expression routines. */
5141
5142 memset (words, 0, MAX_LITTLENUMS * sizeof (LITTLENUM_TYPE));
5143
5144 /* Look for a raw floating point number. */
5145 if ((save_in = atof_ieee (*str, 'x', words)) != NULL
5146 && is_end_of_line[(unsigned char) *save_in])
5147 {
5148 for (i = 0; i < NUM_FLOAT_VALS; i++)
5149 {
5150 for (j = 0; j < MAX_LITTLENUMS; j++)
5151 {
5152 if (words[j] != fp_values[i][j])
5153 break;
5154 }
5155
5156 if (j == MAX_LITTLENUMS)
5157 {
5158 *str = save_in;
5159 return i + 8;
5160 }
5161 }
5162 }
5163
5164 /* Try and parse a more complex expression, this will probably fail
5165 unless the code uses a floating point prefix (eg "0f"). */
5166 save_in = input_line_pointer;
5167 input_line_pointer = *str;
5168 if (expression (&exp) == absolute_section
5169 && exp.X_op == O_big
5170 && exp.X_add_number < 0)
5171 {
5172 /* FIXME: 5 = X_PRECISION, should be #define'd where we can use it.
5173 Ditto for 15. */
5174 #define X_PRECISION 5
5175 #define E_PRECISION 15L
5176 if (gen_to_words (words, X_PRECISION, E_PRECISION) == 0)
5177 {
5178 for (i = 0; i < NUM_FLOAT_VALS; i++)
5179 {
5180 for (j = 0; j < MAX_LITTLENUMS; j++)
5181 {
5182 if (words[j] != fp_values[i][j])
5183 break;
5184 }
5185
5186 if (j == MAX_LITTLENUMS)
5187 {
5188 *str = input_line_pointer;
5189 input_line_pointer = save_in;
5190 return i + 8;
5191 }
5192 }
5193 }
5194 }
5195
5196 *str = input_line_pointer;
5197 input_line_pointer = save_in;
5198 inst.error = _("invalid FPA immediate expression");
5199 return FAIL;
5200 }
5201
5202 /* Returns 1 if a number has "quarter-precision" float format
5203 0baBbbbbbc defgh000 00000000 00000000. */
5204
5205 static int
5206 is_quarter_float (unsigned imm)
5207 {
5208 int bs = (imm & 0x20000000) ? 0x3e000000 : 0x40000000;
5209 return (imm & 0x7ffff) == 0 && ((imm & 0x7e000000) ^ bs) == 0;
5210 }
5211
5212
5213 /* Detect the presence of a floating point or integer zero constant,
5214 i.e. #0.0 or #0. */
5215
5216 static bfd_boolean
5217 parse_ifimm_zero (char **in)
5218 {
5219 int error_code;
5220
5221 if (!is_immediate_prefix (**in))
5222 {
5223 /* In unified syntax, all prefixes are optional. */
5224 if (!unified_syntax)
5225 return FALSE;
5226 }
5227 else
5228 ++*in;
5229
5230 /* Accept #0x0 as a synonym for #0. */
5231 if (strncmp (*in, "0x", 2) == 0)
5232 {
5233 int val;
5234 if (parse_immediate (in, &val, 0, 0, TRUE) == FAIL)
5235 return FALSE;
5236 return TRUE;
5237 }
5238
5239 error_code = atof_generic (in, ".", EXP_CHARS,
5240 &generic_floating_point_number);
5241
5242 if (!error_code
5243 && generic_floating_point_number.sign == '+'
5244 && (generic_floating_point_number.low
5245 > generic_floating_point_number.leader))
5246 return TRUE;
5247
5248 return FALSE;
5249 }
5250
5251 /* Parse an 8-bit "quarter-precision" floating point number of the form:
5252 0baBbbbbbc defgh000 00000000 00000000.
5253 The zero and minus-zero cases need special handling, since they can't be
5254 encoded in the "quarter-precision" float format, but can nonetheless be
5255 loaded as integer constants. */
5256
5257 static unsigned
5258 parse_qfloat_immediate (char **ccp, int *immed)
5259 {
5260 char *str = *ccp;
5261 char *fpnum;
5262 LITTLENUM_TYPE words[MAX_LITTLENUMS];
5263 int found_fpchar = 0;
5264
5265 skip_past_char (&str, '#');
5266
5267 /* We must not accidentally parse an integer as a floating-point number. Make
5268 sure that the value we parse is not an integer by checking for special
5269 characters '.' or 'e'.
5270 FIXME: This is a horrible hack, but doing better is tricky because type
5271 information isn't in a very usable state at parse time. */
5272 fpnum = str;
5273 skip_whitespace (fpnum);
5274
5275 if (strncmp (fpnum, "0x", 2) == 0)
5276 return FAIL;
5277 else
5278 {
5279 for (; *fpnum != '\0' && *fpnum != ' ' && *fpnum != '\n'; fpnum++)
5280 if (*fpnum == '.' || *fpnum == 'e' || *fpnum == 'E')
5281 {
5282 found_fpchar = 1;
5283 break;
5284 }
5285
5286 if (!found_fpchar)
5287 return FAIL;
5288 }
5289
5290 if ((str = atof_ieee (str, 's', words)) != NULL)
5291 {
5292 unsigned fpword = 0;
5293 int i;
5294
5295 /* Our FP word must be 32 bits (single-precision FP). */
5296 for (i = 0; i < 32 / LITTLENUM_NUMBER_OF_BITS; i++)
5297 {
5298 fpword <<= LITTLENUM_NUMBER_OF_BITS;
5299 fpword |= words[i];
5300 }
5301
5302 if (is_quarter_float (fpword) || (fpword & 0x7fffffff) == 0)
5303 *immed = fpword;
5304 else
5305 return FAIL;
5306
5307 *ccp = str;
5308
5309 return SUCCESS;
5310 }
5311
5312 return FAIL;
5313 }
5314
5315 /* Shift operands. */
5316 enum shift_kind
5317 {
5318 SHIFT_LSL, SHIFT_LSR, SHIFT_ASR, SHIFT_ROR, SHIFT_RRX, SHIFT_UXTW
5319 };
5320
5321 struct asm_shift_name
5322 {
5323 const char *name;
5324 enum shift_kind kind;
5325 };
5326
5327 /* Third argument to parse_shift. */
5328 enum parse_shift_mode
5329 {
5330 NO_SHIFT_RESTRICT, /* Any kind of shift is accepted. */
5331 SHIFT_IMMEDIATE, /* Shift operand must be an immediate. */
5332 SHIFT_LSL_OR_ASR_IMMEDIATE, /* Shift must be LSL or ASR immediate. */
5333 SHIFT_ASR_IMMEDIATE, /* Shift must be ASR immediate. */
5334 SHIFT_LSL_IMMEDIATE, /* Shift must be LSL immediate. */
5335 SHIFT_UXTW_IMMEDIATE /* Shift must be UXTW immediate. */
5336 };
5337
5338 /* Parse a <shift> specifier on an ARM data processing instruction.
5339 This has three forms:
5340
5341 (LSL|LSR|ASL|ASR|ROR) Rs
5342 (LSL|LSR|ASL|ASR|ROR) #imm
5343 RRX
5344
5345 Note that ASL is assimilated to LSL in the instruction encoding, and
5346 RRX to ROR #0 (which cannot be written as such). */
5347
5348 static int
5349 parse_shift (char **str, int i, enum parse_shift_mode mode)
5350 {
5351 const struct asm_shift_name *shift_name;
5352 enum shift_kind shift;
5353 char *s = *str;
5354 char *p = s;
5355 int reg;
5356
5357 for (p = *str; ISALPHA (*p); p++)
5358 ;
5359
5360 if (p == *str)
5361 {
5362 inst.error = _("shift expression expected");
5363 return FAIL;
5364 }
5365
5366 shift_name = (const struct asm_shift_name *) hash_find_n (arm_shift_hsh, *str,
5367 p - *str);
5368
5369 if (shift_name == NULL)
5370 {
5371 inst.error = _("shift expression expected");
5372 return FAIL;
5373 }
5374
5375 shift = shift_name->kind;
5376
5377 switch (mode)
5378 {
5379 case NO_SHIFT_RESTRICT:
5380 case SHIFT_IMMEDIATE:
5381 if (shift == SHIFT_UXTW)
5382 {
5383 inst.error = _("'UXTW' not allowed here");
5384 return FAIL;
5385 }
5386 break;
5387
5388 case SHIFT_LSL_OR_ASR_IMMEDIATE:
5389 if (shift != SHIFT_LSL && shift != SHIFT_ASR)
5390 {
5391 inst.error = _("'LSL' or 'ASR' required");
5392 return FAIL;
5393 }
5394 break;
5395
5396 case SHIFT_LSL_IMMEDIATE:
5397 if (shift != SHIFT_LSL)
5398 {
5399 inst.error = _("'LSL' required");
5400 return FAIL;
5401 }
5402 break;
5403
5404 case SHIFT_ASR_IMMEDIATE:
5405 if (shift != SHIFT_ASR)
5406 {
5407 inst.error = _("'ASR' required");
5408 return FAIL;
5409 }
5410 break;
5411 case SHIFT_UXTW_IMMEDIATE:
5412 if (shift != SHIFT_UXTW)
5413 {
5414 inst.error = _("'UXTW' required");
5415 return FAIL;
5416 }
5417 break;
5418
5419 default: abort ();
5420 }
5421
5422 if (shift != SHIFT_RRX)
5423 {
5424 /* Whitespace can appear here if the next thing is a bare digit. */
5425 skip_whitespace (p);
5426
5427 if (mode == NO_SHIFT_RESTRICT
5428 && (reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
5429 {
5430 inst.operands[i].imm = reg;
5431 inst.operands[i].immisreg = 1;
5432 }
5433 else if (my_get_expression (&inst.relocs[0].exp, &p, GE_IMM_PREFIX))
5434 return FAIL;
5435 }
5436 inst.operands[i].shift_kind = shift;
5437 inst.operands[i].shifted = 1;
5438 *str = p;
5439 return SUCCESS;
5440 }
5441
5442 /* Parse a <shifter_operand> for an ARM data processing instruction:
5443
5444 #<immediate>
5445 #<immediate>, <rotate>
5446 <Rm>
5447 <Rm>, <shift>
5448
5449 where <shift> is defined by parse_shift above, and <rotate> is a
5450 multiple of 2 between 0 and 30. Validation of immediate operands
5451 is deferred to md_apply_fix. */
5452
5453 static int
5454 parse_shifter_operand (char **str, int i)
5455 {
5456 int value;
5457 expressionS exp;
5458
5459 if ((value = arm_reg_parse (str, REG_TYPE_RN)) != FAIL)
5460 {
5461 inst.operands[i].reg = value;
5462 inst.operands[i].isreg = 1;
5463
5464 /* parse_shift will override this if appropriate */
5465 inst.relocs[0].exp.X_op = O_constant;
5466 inst.relocs[0].exp.X_add_number = 0;
5467
5468 if (skip_past_comma (str) == FAIL)
5469 return SUCCESS;
5470
5471 /* Shift operation on register. */
5472 return parse_shift (str, i, NO_SHIFT_RESTRICT);
5473 }
5474
5475 if (my_get_expression (&inst.relocs[0].exp, str, GE_IMM_PREFIX))
5476 return FAIL;
5477
5478 if (skip_past_comma (str) == SUCCESS)
5479 {
5480 /* #x, y -- ie explicit rotation by Y. */
5481 if (my_get_expression (&exp, str, GE_NO_PREFIX))
5482 return FAIL;
5483
5484 if (exp.X_op != O_constant || inst.relocs[0].exp.X_op != O_constant)
5485 {
5486 inst.error = _("constant expression expected");
5487 return FAIL;
5488 }
5489
5490 value = exp.X_add_number;
5491 if (value < 0 || value > 30 || value % 2 != 0)
5492 {
5493 inst.error = _("invalid rotation");
5494 return FAIL;
5495 }
5496 if (inst.relocs[0].exp.X_add_number < 0
5497 || inst.relocs[0].exp.X_add_number > 255)
5498 {
5499 inst.error = _("invalid constant");
5500 return FAIL;
5501 }
5502
5503 /* Encode as specified. */
5504 inst.operands[i].imm = inst.relocs[0].exp.X_add_number | value << 7;
5505 return SUCCESS;
5506 }
5507
5508 inst.relocs[0].type = BFD_RELOC_ARM_IMMEDIATE;
5509 inst.relocs[0].pc_rel = 0;
5510 return SUCCESS;
5511 }
5512
5513 /* Group relocation information. Each entry in the table contains the
5514 textual name of the relocation as may appear in assembler source
5515 and must end with a colon.
5516 Along with this textual name are the relocation codes to be used if
5517 the corresponding instruction is an ALU instruction (ADD or SUB only),
5518 an LDR, an LDRS, or an LDC. */
5519
5520 struct group_reloc_table_entry
5521 {
5522 const char *name;
5523 int alu_code;
5524 int ldr_code;
5525 int ldrs_code;
5526 int ldc_code;
5527 };
5528
5529 typedef enum
5530 {
5531 /* Varieties of non-ALU group relocation. */
5532
5533 GROUP_LDR,
5534 GROUP_LDRS,
5535 GROUP_LDC,
5536 GROUP_MVE
5537 } group_reloc_type;
5538
5539 static struct group_reloc_table_entry group_reloc_table[] =
5540 { /* Program counter relative: */
5541 { "pc_g0_nc",
5542 BFD_RELOC_ARM_ALU_PC_G0_NC, /* ALU */
5543 0, /* LDR */
5544 0, /* LDRS */
5545 0 }, /* LDC */
5546 { "pc_g0",
5547 BFD_RELOC_ARM_ALU_PC_G0, /* ALU */
5548 BFD_RELOC_ARM_LDR_PC_G0, /* LDR */
5549 BFD_RELOC_ARM_LDRS_PC_G0, /* LDRS */
5550 BFD_RELOC_ARM_LDC_PC_G0 }, /* LDC */
5551 { "pc_g1_nc",
5552 BFD_RELOC_ARM_ALU_PC_G1_NC, /* ALU */
5553 0, /* LDR */
5554 0, /* LDRS */
5555 0 }, /* LDC */
5556 { "pc_g1",
5557 BFD_RELOC_ARM_ALU_PC_G1, /* ALU */
5558 BFD_RELOC_ARM_LDR_PC_G1, /* LDR */
5559 BFD_RELOC_ARM_LDRS_PC_G1, /* LDRS */
5560 BFD_RELOC_ARM_LDC_PC_G1 }, /* LDC */
5561 { "pc_g2",
5562 BFD_RELOC_ARM_ALU_PC_G2, /* ALU */
5563 BFD_RELOC_ARM_LDR_PC_G2, /* LDR */
5564 BFD_RELOC_ARM_LDRS_PC_G2, /* LDRS */
5565 BFD_RELOC_ARM_LDC_PC_G2 }, /* LDC */
5566 /* Section base relative */
5567 { "sb_g0_nc",
5568 BFD_RELOC_ARM_ALU_SB_G0_NC, /* ALU */
5569 0, /* LDR */
5570 0, /* LDRS */
5571 0 }, /* LDC */
5572 { "sb_g0",
5573 BFD_RELOC_ARM_ALU_SB_G0, /* ALU */
5574 BFD_RELOC_ARM_LDR_SB_G0, /* LDR */
5575 BFD_RELOC_ARM_LDRS_SB_G0, /* LDRS */
5576 BFD_RELOC_ARM_LDC_SB_G0 }, /* LDC */
5577 { "sb_g1_nc",
5578 BFD_RELOC_ARM_ALU_SB_G1_NC, /* ALU */
5579 0, /* LDR */
5580 0, /* LDRS */
5581 0 }, /* LDC */
5582 { "sb_g1",
5583 BFD_RELOC_ARM_ALU_SB_G1, /* ALU */
5584 BFD_RELOC_ARM_LDR_SB_G1, /* LDR */
5585 BFD_RELOC_ARM_LDRS_SB_G1, /* LDRS */
5586 BFD_RELOC_ARM_LDC_SB_G1 }, /* LDC */
5587 { "sb_g2",
5588 BFD_RELOC_ARM_ALU_SB_G2, /* ALU */
5589 BFD_RELOC_ARM_LDR_SB_G2, /* LDR */
5590 BFD_RELOC_ARM_LDRS_SB_G2, /* LDRS */
5591 BFD_RELOC_ARM_LDC_SB_G2 }, /* LDC */
5592 /* Absolute thumb alu relocations. */
5593 { "lower0_7",
5594 BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC,/* ALU. */
5595 0, /* LDR. */
5596 0, /* LDRS. */
5597 0 }, /* LDC. */
5598 { "lower8_15",
5599 BFD_RELOC_ARM_THUMB_ALU_ABS_G1_NC,/* ALU. */
5600 0, /* LDR. */
5601 0, /* LDRS. */
5602 0 }, /* LDC. */
5603 { "upper0_7",
5604 BFD_RELOC_ARM_THUMB_ALU_ABS_G2_NC,/* ALU. */
5605 0, /* LDR. */
5606 0, /* LDRS. */
5607 0 }, /* LDC. */
5608 { "upper8_15",
5609 BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC,/* ALU. */
5610 0, /* LDR. */
5611 0, /* LDRS. */
5612 0 } }; /* LDC. */
5613
5614 /* Given the address of a pointer pointing to the textual name of a group
5615 relocation as may appear in assembler source, attempt to find its details
5616 in group_reloc_table. The pointer will be updated to the character after
5617 the trailing colon. On failure, FAIL will be returned; SUCCESS
5618 otherwise. On success, *entry will be updated to point at the relevant
5619 group_reloc_table entry. */
5620
5621 static int
5622 find_group_reloc_table_entry (char **str, struct group_reloc_table_entry **out)
5623 {
5624 unsigned int i;
5625 for (i = 0; i < ARRAY_SIZE (group_reloc_table); i++)
5626 {
5627 int length = strlen (group_reloc_table[i].name);
5628
5629 if (strncasecmp (group_reloc_table[i].name, *str, length) == 0
5630 && (*str)[length] == ':')
5631 {
5632 *out = &group_reloc_table[i];
5633 *str += (length + 1);
5634 return SUCCESS;
5635 }
5636 }
5637
5638 return FAIL;
5639 }
5640
5641 /* Parse a <shifter_operand> for an ARM data processing instruction
5642 (as for parse_shifter_operand) where group relocations are allowed:
5643
5644 #<immediate>
5645 #<immediate>, <rotate>
5646 #:<group_reloc>:<expression>
5647 <Rm>
5648 <Rm>, <shift>
5649
5650 where <group_reloc> is one of the strings defined in group_reloc_table.
5651 The hashes are optional.
5652
5653 Everything else is as for parse_shifter_operand. */
5654
5655 static parse_operand_result
5656 parse_shifter_operand_group_reloc (char **str, int i)
5657 {
5658 /* Determine if we have the sequence of characters #: or just :
5659 coming next. If we do, then we check for a group relocation.
5660 If we don't, punt the whole lot to parse_shifter_operand. */
5661
5662 if (((*str)[0] == '#' && (*str)[1] == ':')
5663 || (*str)[0] == ':')
5664 {
5665 struct group_reloc_table_entry *entry;
5666
5667 if ((*str)[0] == '#')
5668 (*str) += 2;
5669 else
5670 (*str)++;
5671
5672 /* Try to parse a group relocation. Anything else is an error. */
5673 if (find_group_reloc_table_entry (str, &entry) == FAIL)
5674 {
5675 inst.error = _("unknown group relocation");
5676 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5677 }
5678
5679 /* We now have the group relocation table entry corresponding to
5680 the name in the assembler source. Next, we parse the expression. */
5681 if (my_get_expression (&inst.relocs[0].exp, str, GE_NO_PREFIX))
5682 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5683
5684 /* Record the relocation type (always the ALU variant here). */
5685 inst.relocs[0].type = (bfd_reloc_code_real_type) entry->alu_code;
5686 gas_assert (inst.relocs[0].type != 0);
5687
5688 return PARSE_OPERAND_SUCCESS;
5689 }
5690 else
5691 return parse_shifter_operand (str, i) == SUCCESS
5692 ? PARSE_OPERAND_SUCCESS : PARSE_OPERAND_FAIL;
5693
5694 /* Never reached. */
5695 }
5696
5697 /* Parse a Neon alignment expression. Information is written to
5698 inst.operands[i]. We assume the initial ':' has been skipped.
5699
5700 align .imm = align << 8, .immisalign=1, .preind=0 */
5701 static parse_operand_result
5702 parse_neon_alignment (char **str, int i)
5703 {
5704 char *p = *str;
5705 expressionS exp;
5706
5707 my_get_expression (&exp, &p, GE_NO_PREFIX);
5708
5709 if (exp.X_op != O_constant)
5710 {
5711 inst.error = _("alignment must be constant");
5712 return PARSE_OPERAND_FAIL;
5713 }
5714
5715 inst.operands[i].imm = exp.X_add_number << 8;
5716 inst.operands[i].immisalign = 1;
5717 /* Alignments are not pre-indexes. */
5718 inst.operands[i].preind = 0;
5719
5720 *str = p;
5721 return PARSE_OPERAND_SUCCESS;
5722 }
5723
5724 /* Parse all forms of an ARM address expression. Information is written
5725 to inst.operands[i] and/or inst.relocs[0].
5726
5727 Preindexed addressing (.preind=1):
5728
5729 [Rn, #offset] .reg=Rn .relocs[0].exp=offset
5730 [Rn, +/-Rm] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5731 [Rn, +/-Rm, shift] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5732 .shift_kind=shift .relocs[0].exp=shift_imm
5733
5734 These three may have a trailing ! which causes .writeback to be set also.
5735
5736 Postindexed addressing (.postind=1, .writeback=1):
5737
5738 [Rn], #offset .reg=Rn .relocs[0].exp=offset
5739 [Rn], +/-Rm .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5740 [Rn], +/-Rm, shift .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5741 .shift_kind=shift .relocs[0].exp=shift_imm
5742
5743 Unindexed addressing (.preind=0, .postind=0):
5744
5745 [Rn], {option} .reg=Rn .imm=option .immisreg=0
5746
5747 Other:
5748
5749 [Rn]{!} shorthand for [Rn,#0]{!}
5750 =immediate .isreg=0 .relocs[0].exp=immediate
5751 label .reg=PC .relocs[0].pc_rel=1 .relocs[0].exp=label
5752
5753 It is the caller's responsibility to check for addressing modes not
5754 supported by the instruction, and to set inst.relocs[0].type. */
5755
5756 static parse_operand_result
5757 parse_address_main (char **str, int i, int group_relocations,
5758 group_reloc_type group_type)
5759 {
5760 char *p = *str;
5761 int reg;
5762
5763 if (skip_past_char (&p, '[') == FAIL)
5764 {
5765 if (skip_past_char (&p, '=') == FAIL)
5766 {
5767 /* Bare address - translate to PC-relative offset. */
5768 inst.relocs[0].pc_rel = 1;
5769 inst.operands[i].reg = REG_PC;
5770 inst.operands[i].isreg = 1;
5771 inst.operands[i].preind = 1;
5772
5773 if (my_get_expression (&inst.relocs[0].exp, &p, GE_OPT_PREFIX_BIG))
5774 return PARSE_OPERAND_FAIL;
5775 }
5776 else if (parse_big_immediate (&p, i, &inst.relocs[0].exp,
5777 /*allow_symbol_p=*/TRUE))
5778 return PARSE_OPERAND_FAIL;
5779
5780 *str = p;
5781 return PARSE_OPERAND_SUCCESS;
5782 }
5783
5784 /* PR gas/14887: Allow for whitespace after the opening bracket. */
5785 skip_whitespace (p);
5786
5787 if (group_type == GROUP_MVE)
5788 {
5789 enum arm_reg_type rtype = REG_TYPE_MQ;
5790 struct neon_type_el et;
5791 if ((reg = arm_typed_reg_parse (&p, rtype, &rtype, &et)) != FAIL)
5792 {
5793 inst.operands[i].isquad = 1;
5794 }
5795 else if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
5796 {
5797 inst.error = BAD_ADDR_MODE;
5798 return PARSE_OPERAND_FAIL;
5799 }
5800 }
5801 else if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
5802 {
5803 if (group_type == GROUP_MVE)
5804 inst.error = BAD_ADDR_MODE;
5805 else
5806 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
5807 return PARSE_OPERAND_FAIL;
5808 }
5809 inst.operands[i].reg = reg;
5810 inst.operands[i].isreg = 1;
5811
5812 if (skip_past_comma (&p) == SUCCESS)
5813 {
5814 inst.operands[i].preind = 1;
5815
5816 if (*p == '+') p++;
5817 else if (*p == '-') p++, inst.operands[i].negative = 1;
5818
5819 enum arm_reg_type rtype = REG_TYPE_MQ;
5820 struct neon_type_el et;
5821 if (group_type == GROUP_MVE
5822 && (reg = arm_typed_reg_parse (&p, rtype, &rtype, &et)) != FAIL)
5823 {
5824 inst.operands[i].immisreg = 2;
5825 inst.operands[i].imm = reg;
5826
5827 if (skip_past_comma (&p) == SUCCESS)
5828 {
5829 if (parse_shift (&p, i, SHIFT_UXTW_IMMEDIATE) == SUCCESS)
5830 {
5831 inst.operands[i].imm |= inst.relocs[0].exp.X_add_number << 5;
5832 inst.relocs[0].exp.X_add_number = 0;
5833 }
5834 else
5835 return PARSE_OPERAND_FAIL;
5836 }
5837 }
5838 else if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
5839 {
5840 inst.operands[i].imm = reg;
5841 inst.operands[i].immisreg = 1;
5842
5843 if (skip_past_comma (&p) == SUCCESS)
5844 if (parse_shift (&p, i, SHIFT_IMMEDIATE) == FAIL)
5845 return PARSE_OPERAND_FAIL;
5846 }
5847 else if (skip_past_char (&p, ':') == SUCCESS)
5848 {
5849 /* FIXME: '@' should be used here, but it's filtered out by generic
5850 code before we get to see it here. This may be subject to
5851 change. */
5852 parse_operand_result result = parse_neon_alignment (&p, i);
5853
5854 if (result != PARSE_OPERAND_SUCCESS)
5855 return result;
5856 }
5857 else
5858 {
5859 if (inst.operands[i].negative)
5860 {
5861 inst.operands[i].negative = 0;
5862 p--;
5863 }
5864
5865 if (group_relocations
5866 && ((*p == '#' && *(p + 1) == ':') || *p == ':'))
5867 {
5868 struct group_reloc_table_entry *entry;
5869
5870 /* Skip over the #: or : sequence. */
5871 if (*p == '#')
5872 p += 2;
5873 else
5874 p++;
5875
5876 /* Try to parse a group relocation. Anything else is an
5877 error. */
5878 if (find_group_reloc_table_entry (&p, &entry) == FAIL)
5879 {
5880 inst.error = _("unknown group relocation");
5881 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5882 }
5883
5884 /* We now have the group relocation table entry corresponding to
5885 the name in the assembler source. Next, we parse the
5886 expression. */
5887 if (my_get_expression (&inst.relocs[0].exp, &p, GE_NO_PREFIX))
5888 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5889
5890 /* Record the relocation type. */
5891 switch (group_type)
5892 {
5893 case GROUP_LDR:
5894 inst.relocs[0].type
5895 = (bfd_reloc_code_real_type) entry->ldr_code;
5896 break;
5897
5898 case GROUP_LDRS:
5899 inst.relocs[0].type
5900 = (bfd_reloc_code_real_type) entry->ldrs_code;
5901 break;
5902
5903 case GROUP_LDC:
5904 inst.relocs[0].type
5905 = (bfd_reloc_code_real_type) entry->ldc_code;
5906 break;
5907
5908 default:
5909 gas_assert (0);
5910 }
5911
5912 if (inst.relocs[0].type == 0)
5913 {
5914 inst.error = _("this group relocation is not allowed on this instruction");
5915 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5916 }
5917 }
5918 else
5919 {
5920 char *q = p;
5921
5922 if (my_get_expression (&inst.relocs[0].exp, &p, GE_IMM_PREFIX))
5923 return PARSE_OPERAND_FAIL;
5924 /* If the offset is 0, find out if it's a +0 or -0. */
5925 if (inst.relocs[0].exp.X_op == O_constant
5926 && inst.relocs[0].exp.X_add_number == 0)
5927 {
5928 skip_whitespace (q);
5929 if (*q == '#')
5930 {
5931 q++;
5932 skip_whitespace (q);
5933 }
5934 if (*q == '-')
5935 inst.operands[i].negative = 1;
5936 }
5937 }
5938 }
5939 }
5940 else if (skip_past_char (&p, ':') == SUCCESS)
5941 {
5942 /* FIXME: '@' should be used here, but it's filtered out by generic code
5943 before we get to see it here. This may be subject to change. */
5944 parse_operand_result result = parse_neon_alignment (&p, i);
5945
5946 if (result != PARSE_OPERAND_SUCCESS)
5947 return result;
5948 }
5949
5950 if (skip_past_char (&p, ']') == FAIL)
5951 {
5952 inst.error = _("']' expected");
5953 return PARSE_OPERAND_FAIL;
5954 }
5955
5956 if (skip_past_char (&p, '!') == SUCCESS)
5957 inst.operands[i].writeback = 1;
5958
5959 else if (skip_past_comma (&p) == SUCCESS)
5960 {
5961 if (skip_past_char (&p, '{') == SUCCESS)
5962 {
5963 /* [Rn], {expr} - unindexed, with option */
5964 if (parse_immediate (&p, &inst.operands[i].imm,
5965 0, 255, TRUE) == FAIL)
5966 return PARSE_OPERAND_FAIL;
5967
5968 if (skip_past_char (&p, '}') == FAIL)
5969 {
5970 inst.error = _("'}' expected at end of 'option' field");
5971 return PARSE_OPERAND_FAIL;
5972 }
5973 if (inst.operands[i].preind)
5974 {
5975 inst.error = _("cannot combine index with option");
5976 return PARSE_OPERAND_FAIL;
5977 }
5978 *str = p;
5979 return PARSE_OPERAND_SUCCESS;
5980 }
5981 else
5982 {
5983 inst.operands[i].postind = 1;
5984 inst.operands[i].writeback = 1;
5985
5986 if (inst.operands[i].preind)
5987 {
5988 inst.error = _("cannot combine pre- and post-indexing");
5989 return PARSE_OPERAND_FAIL;
5990 }
5991
5992 if (*p == '+') p++;
5993 else if (*p == '-') p++, inst.operands[i].negative = 1;
5994
5995 enum arm_reg_type rtype = REG_TYPE_MQ;
5996 struct neon_type_el et;
5997 if (group_type == GROUP_MVE
5998 && (reg = arm_typed_reg_parse (&p, rtype, &rtype, &et)) != FAIL)
5999 {
6000 inst.operands[i].immisreg = 2;
6001 inst.operands[i].imm = reg;
6002 }
6003 else if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
6004 {
6005 /* We might be using the immediate for alignment already. If we
6006 are, OR the register number into the low-order bits. */
6007 if (inst.operands[i].immisalign)
6008 inst.operands[i].imm |= reg;
6009 else
6010 inst.operands[i].imm = reg;
6011 inst.operands[i].immisreg = 1;
6012
6013 if (skip_past_comma (&p) == SUCCESS)
6014 if (parse_shift (&p, i, SHIFT_IMMEDIATE) == FAIL)
6015 return PARSE_OPERAND_FAIL;
6016 }
6017 else
6018 {
6019 char *q = p;
6020
6021 if (inst.operands[i].negative)
6022 {
6023 inst.operands[i].negative = 0;
6024 p--;
6025 }
6026 if (my_get_expression (&inst.relocs[0].exp, &p, GE_IMM_PREFIX))
6027 return PARSE_OPERAND_FAIL;
6028 /* If the offset is 0, find out if it's a +0 or -0. */
6029 if (inst.relocs[0].exp.X_op == O_constant
6030 && inst.relocs[0].exp.X_add_number == 0)
6031 {
6032 skip_whitespace (q);
6033 if (*q == '#')
6034 {
6035 q++;
6036 skip_whitespace (q);
6037 }
6038 if (*q == '-')
6039 inst.operands[i].negative = 1;
6040 }
6041 }
6042 }
6043 }
6044
6045 /* If at this point neither .preind nor .postind is set, we have a
6046 bare [Rn]{!}, which is shorthand for [Rn,#0]{!}. */
6047 if (inst.operands[i].preind == 0 && inst.operands[i].postind == 0)
6048 {
6049 inst.operands[i].preind = 1;
6050 inst.relocs[0].exp.X_op = O_constant;
6051 inst.relocs[0].exp.X_add_number = 0;
6052 }
6053 *str = p;
6054 return PARSE_OPERAND_SUCCESS;
6055 }
6056
6057 static int
6058 parse_address (char **str, int i)
6059 {
6060 return parse_address_main (str, i, 0, GROUP_LDR) == PARSE_OPERAND_SUCCESS
6061 ? SUCCESS : FAIL;
6062 }
6063
6064 static parse_operand_result
6065 parse_address_group_reloc (char **str, int i, group_reloc_type type)
6066 {
6067 return parse_address_main (str, i, 1, type);
6068 }
6069
6070 /* Parse an operand for a MOVW or MOVT instruction. */
6071 static int
6072 parse_half (char **str)
6073 {
6074 char * p;
6075
6076 p = *str;
6077 skip_past_char (&p, '#');
6078 if (strncasecmp (p, ":lower16:", 9) == 0)
6079 inst.relocs[0].type = BFD_RELOC_ARM_MOVW;
6080 else if (strncasecmp (p, ":upper16:", 9) == 0)
6081 inst.relocs[0].type = BFD_RELOC_ARM_MOVT;
6082
6083 if (inst.relocs[0].type != BFD_RELOC_UNUSED)
6084 {
6085 p += 9;
6086 skip_whitespace (p);
6087 }
6088
6089 if (my_get_expression (&inst.relocs[0].exp, &p, GE_NO_PREFIX))
6090 return FAIL;
6091
6092 if (inst.relocs[0].type == BFD_RELOC_UNUSED)
6093 {
6094 if (inst.relocs[0].exp.X_op != O_constant)
6095 {
6096 inst.error = _("constant expression expected");
6097 return FAIL;
6098 }
6099 if (inst.relocs[0].exp.X_add_number < 0
6100 || inst.relocs[0].exp.X_add_number > 0xffff)
6101 {
6102 inst.error = _("immediate value out of range");
6103 return FAIL;
6104 }
6105 }
6106 *str = p;
6107 return SUCCESS;
6108 }
6109
6110 /* Miscellaneous. */
6111
6112 /* Parse a PSR flag operand. The value returned is FAIL on syntax error,
6113 or a bitmask suitable to be or-ed into the ARM msr instruction. */
6114 static int
6115 parse_psr (char **str, bfd_boolean lhs)
6116 {
6117 char *p;
6118 unsigned long psr_field;
6119 const struct asm_psr *psr;
6120 char *start;
6121 bfd_boolean is_apsr = FALSE;
6122 bfd_boolean m_profile = ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_m);
6123
6124 /* PR gas/12698: If the user has specified -march=all then m_profile will
6125 be TRUE, but we want to ignore it in this case as we are building for any
6126 CPU type, including non-m variants. */
6127 if (ARM_FEATURE_CORE_EQUAL (selected_cpu, arm_arch_any))
6128 m_profile = FALSE;
6129
6130 /* CPSR's and SPSR's can now be lowercase. This is just a convenience
6131 feature for ease of use and backwards compatibility. */
6132 p = *str;
6133 if (strncasecmp (p, "SPSR", 4) == 0)
6134 {
6135 if (m_profile)
6136 goto unsupported_psr;
6137
6138 psr_field = SPSR_BIT;
6139 }
6140 else if (strncasecmp (p, "CPSR", 4) == 0)
6141 {
6142 if (m_profile)
6143 goto unsupported_psr;
6144
6145 psr_field = 0;
6146 }
6147 else if (strncasecmp (p, "APSR", 4) == 0)
6148 {
6149 /* APSR[_<bits>] can be used as a synonym for CPSR[_<flags>] on ARMv7-A
6150 and ARMv7-R architecture CPUs. */
6151 is_apsr = TRUE;
6152 psr_field = 0;
6153 }
6154 else if (m_profile)
6155 {
6156 start = p;
6157 do
6158 p++;
6159 while (ISALNUM (*p) || *p == '_');
6160
6161 if (strncasecmp (start, "iapsr", 5) == 0
6162 || strncasecmp (start, "eapsr", 5) == 0
6163 || strncasecmp (start, "xpsr", 4) == 0
6164 || strncasecmp (start, "psr", 3) == 0)
6165 p = start + strcspn (start, "rR") + 1;
6166
6167 psr = (const struct asm_psr *) hash_find_n (arm_v7m_psr_hsh, start,
6168 p - start);
6169
6170 if (!psr)
6171 return FAIL;
6172
6173 /* If APSR is being written, a bitfield may be specified. Note that
6174 APSR itself is handled above. */
6175 if (psr->field <= 3)
6176 {
6177 psr_field = psr->field;
6178 is_apsr = TRUE;
6179 goto check_suffix;
6180 }
6181
6182 *str = p;
6183 /* M-profile MSR instructions have the mask field set to "10", except
6184 *PSR variants which modify APSR, which may use a different mask (and
6185 have been handled already). Do that by setting the PSR_f field
6186 here. */
6187 return psr->field | (lhs ? PSR_f : 0);
6188 }
6189 else
6190 goto unsupported_psr;
6191
6192 p += 4;
6193 check_suffix:
6194 if (*p == '_')
6195 {
6196 /* A suffix follows. */
6197 p++;
6198 start = p;
6199
6200 do
6201 p++;
6202 while (ISALNUM (*p) || *p == '_');
6203
6204 if (is_apsr)
6205 {
6206 /* APSR uses a notation for bits, rather than fields. */
6207 unsigned int nzcvq_bits = 0;
6208 unsigned int g_bit = 0;
6209 char *bit;
6210
6211 for (bit = start; bit != p; bit++)
6212 {
6213 switch (TOLOWER (*bit))
6214 {
6215 case 'n':
6216 nzcvq_bits |= (nzcvq_bits & 0x01) ? 0x20 : 0x01;
6217 break;
6218
6219 case 'z':
6220 nzcvq_bits |= (nzcvq_bits & 0x02) ? 0x20 : 0x02;
6221 break;
6222
6223 case 'c':
6224 nzcvq_bits |= (nzcvq_bits & 0x04) ? 0x20 : 0x04;
6225 break;
6226
6227 case 'v':
6228 nzcvq_bits |= (nzcvq_bits & 0x08) ? 0x20 : 0x08;
6229 break;
6230
6231 case 'q':
6232 nzcvq_bits |= (nzcvq_bits & 0x10) ? 0x20 : 0x10;
6233 break;
6234
6235 case 'g':
6236 g_bit |= (g_bit & 0x1) ? 0x2 : 0x1;
6237 break;
6238
6239 default:
6240 inst.error = _("unexpected bit specified after APSR");
6241 return FAIL;
6242 }
6243 }
6244
6245 if (nzcvq_bits == 0x1f)
6246 psr_field |= PSR_f;
6247
6248 if (g_bit == 0x1)
6249 {
6250 if (!ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6_dsp))
6251 {
6252 inst.error = _("selected processor does not "
6253 "support DSP extension");
6254 return FAIL;
6255 }
6256
6257 psr_field |= PSR_s;
6258 }
6259
6260 if ((nzcvq_bits & 0x20) != 0
6261 || (nzcvq_bits != 0x1f && nzcvq_bits != 0)
6262 || (g_bit & 0x2) != 0)
6263 {
6264 inst.error = _("bad bitmask specified after APSR");
6265 return FAIL;
6266 }
6267 }
6268 else
6269 {
6270 psr = (const struct asm_psr *) hash_find_n (arm_psr_hsh, start,
6271 p - start);
6272 if (!psr)
6273 goto error;
6274
6275 psr_field |= psr->field;
6276 }
6277 }
6278 else
6279 {
6280 if (ISALNUM (*p))
6281 goto error; /* Garbage after "[CS]PSR". */
6282
6283 /* Unadorned APSR is equivalent to APSR_nzcvq/CPSR_f (for writes). This
6284 is deprecated, but allow it anyway. */
6285 if (is_apsr && lhs)
6286 {
6287 psr_field |= PSR_f;
6288 as_tsktsk (_("writing to APSR without specifying a bitmask is "
6289 "deprecated"));
6290 }
6291 else if (!m_profile)
6292 /* These bits are never right for M-profile devices: don't set them
6293 (only code paths which read/write APSR reach here). */
6294 psr_field |= (PSR_c | PSR_f);
6295 }
6296 *str = p;
6297 return psr_field;
6298
6299 unsupported_psr:
6300 inst.error = _("selected processor does not support requested special "
6301 "purpose register");
6302 return FAIL;
6303
6304 error:
6305 inst.error = _("flag for {c}psr instruction expected");
6306 return FAIL;
6307 }
6308
6309 static int
6310 parse_sys_vldr_vstr (char **str)
6311 {
6312 unsigned i;
6313 int val = FAIL;
6314 struct {
6315 const char *name;
6316 int regl;
6317 int regh;
6318 } sysregs[] = {
6319 {"FPSCR", 0x1, 0x0},
6320 {"FPSCR_nzcvqc", 0x2, 0x0},
6321 {"VPR", 0x4, 0x1},
6322 {"P0", 0x5, 0x1},
6323 {"FPCXTNS", 0x6, 0x1},
6324 {"FPCXTS", 0x7, 0x1}
6325 };
6326 char *op_end = strchr (*str, ',');
6327 size_t op_strlen = op_end - *str;
6328
6329 for (i = 0; i < sizeof (sysregs) / sizeof (sysregs[0]); i++)
6330 {
6331 if (!strncmp (*str, sysregs[i].name, op_strlen))
6332 {
6333 val = sysregs[i].regl | (sysregs[i].regh << 3);
6334 *str = op_end;
6335 break;
6336 }
6337 }
6338
6339 return val;
6340 }
6341
6342 /* Parse the flags argument to CPSI[ED]. Returns FAIL on error, or a
6343 value suitable for splatting into the AIF field of the instruction. */
6344
6345 static int
6346 parse_cps_flags (char **str)
6347 {
6348 int val = 0;
6349 int saw_a_flag = 0;
6350 char *s = *str;
6351
6352 for (;;)
6353 switch (*s++)
6354 {
6355 case '\0': case ',':
6356 goto done;
6357
6358 case 'a': case 'A': saw_a_flag = 1; val |= 0x4; break;
6359 case 'i': case 'I': saw_a_flag = 1; val |= 0x2; break;
6360 case 'f': case 'F': saw_a_flag = 1; val |= 0x1; break;
6361
6362 default:
6363 inst.error = _("unrecognized CPS flag");
6364 return FAIL;
6365 }
6366
6367 done:
6368 if (saw_a_flag == 0)
6369 {
6370 inst.error = _("missing CPS flags");
6371 return FAIL;
6372 }
6373
6374 *str = s - 1;
6375 return val;
6376 }
6377
6378 /* Parse an endian specifier ("BE" or "LE", case insensitive);
6379 returns 0 for big-endian, 1 for little-endian, FAIL for an error. */
6380
6381 static int
6382 parse_endian_specifier (char **str)
6383 {
6384 int little_endian;
6385 char *s = *str;
6386
6387 if (strncasecmp (s, "BE", 2))
6388 little_endian = 0;
6389 else if (strncasecmp (s, "LE", 2))
6390 little_endian = 1;
6391 else
6392 {
6393 inst.error = _("valid endian specifiers are be or le");
6394 return FAIL;
6395 }
6396
6397 if (ISALNUM (s[2]) || s[2] == '_')
6398 {
6399 inst.error = _("valid endian specifiers are be or le");
6400 return FAIL;
6401 }
6402
6403 *str = s + 2;
6404 return little_endian;
6405 }
6406
6407 /* Parse a rotation specifier: ROR #0, #8, #16, #24. *val receives a
6408 value suitable for poking into the rotate field of an sxt or sxta
6409 instruction, or FAIL on error. */
6410
6411 static int
6412 parse_ror (char **str)
6413 {
6414 int rot;
6415 char *s = *str;
6416
6417 if (strncasecmp (s, "ROR", 3) == 0)
6418 s += 3;
6419 else
6420 {
6421 inst.error = _("missing rotation field after comma");
6422 return FAIL;
6423 }
6424
6425 if (parse_immediate (&s, &rot, 0, 24, FALSE) == FAIL)
6426 return FAIL;
6427
6428 switch (rot)
6429 {
6430 case 0: *str = s; return 0x0;
6431 case 8: *str = s; return 0x1;
6432 case 16: *str = s; return 0x2;
6433 case 24: *str = s; return 0x3;
6434
6435 default:
6436 inst.error = _("rotation can only be 0, 8, 16, or 24");
6437 return FAIL;
6438 }
6439 }
6440
6441 /* Parse a conditional code (from conds[] below). The value returned is in the
6442 range 0 .. 14, or FAIL. */
6443 static int
6444 parse_cond (char **str)
6445 {
6446 char *q;
6447 const struct asm_cond *c;
6448 int n;
6449 /* Condition codes are always 2 characters, so matching up to
6450 3 characters is sufficient. */
6451 char cond[3];
6452
6453 q = *str;
6454 n = 0;
6455 while (ISALPHA (*q) && n < 3)
6456 {
6457 cond[n] = TOLOWER (*q);
6458 q++;
6459 n++;
6460 }
6461
6462 c = (const struct asm_cond *) hash_find_n (arm_cond_hsh, cond, n);
6463 if (!c)
6464 {
6465 inst.error = _("condition required");
6466 return FAIL;
6467 }
6468
6469 *str = q;
6470 return c->value;
6471 }
6472
6473 /* Parse an option for a barrier instruction. Returns the encoding for the
6474 option, or FAIL. */
6475 static int
6476 parse_barrier (char **str)
6477 {
6478 char *p, *q;
6479 const struct asm_barrier_opt *o;
6480
6481 p = q = *str;
6482 while (ISALPHA (*q))
6483 q++;
6484
6485 o = (const struct asm_barrier_opt *) hash_find_n (arm_barrier_opt_hsh, p,
6486 q - p);
6487 if (!o)
6488 return FAIL;
6489
6490 if (!mark_feature_used (&o->arch))
6491 return FAIL;
6492
6493 *str = q;
6494 return o->value;
6495 }
6496
6497 /* Parse the operands of a table branch instruction. Similar to a memory
6498 operand. */
6499 static int
6500 parse_tb (char **str)
6501 {
6502 char * p = *str;
6503 int reg;
6504
6505 if (skip_past_char (&p, '[') == FAIL)
6506 {
6507 inst.error = _("'[' expected");
6508 return FAIL;
6509 }
6510
6511 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
6512 {
6513 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
6514 return FAIL;
6515 }
6516 inst.operands[0].reg = reg;
6517
6518 if (skip_past_comma (&p) == FAIL)
6519 {
6520 inst.error = _("',' expected");
6521 return FAIL;
6522 }
6523
6524 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
6525 {
6526 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
6527 return FAIL;
6528 }
6529 inst.operands[0].imm = reg;
6530
6531 if (skip_past_comma (&p) == SUCCESS)
6532 {
6533 if (parse_shift (&p, 0, SHIFT_LSL_IMMEDIATE) == FAIL)
6534 return FAIL;
6535 if (inst.relocs[0].exp.X_add_number != 1)
6536 {
6537 inst.error = _("invalid shift");
6538 return FAIL;
6539 }
6540 inst.operands[0].shifted = 1;
6541 }
6542
6543 if (skip_past_char (&p, ']') == FAIL)
6544 {
6545 inst.error = _("']' expected");
6546 return FAIL;
6547 }
6548 *str = p;
6549 return SUCCESS;
6550 }
6551
6552 /* Parse the operands of a Neon VMOV instruction. See do_neon_mov for more
6553 information on the types the operands can take and how they are encoded.
6554 Up to four operands may be read; this function handles setting the
6555 ".present" field for each read operand itself.
6556 Updates STR and WHICH_OPERAND if parsing is successful and returns SUCCESS,
6557 else returns FAIL. */
6558
6559 static int
6560 parse_neon_mov (char **str, int *which_operand)
6561 {
6562 int i = *which_operand, val;
6563 enum arm_reg_type rtype;
6564 char *ptr = *str;
6565 struct neon_type_el optype;
6566
6567 if ((val = parse_scalar (&ptr, 8, &optype, REG_TYPE_MQ)) != FAIL)
6568 {
6569 /* Cases 17 or 19. */
6570 inst.operands[i].reg = val;
6571 inst.operands[i].isvec = 1;
6572 inst.operands[i].isscalar = 2;
6573 inst.operands[i].vectype = optype;
6574 inst.operands[i++].present = 1;
6575
6576 if (skip_past_comma (&ptr) == FAIL)
6577 goto wanted_comma;
6578
6579 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
6580 {
6581 /* Case 17: VMOV<c>.<dt> <Qd[idx]>, <Rt> */
6582 inst.operands[i].reg = val;
6583 inst.operands[i].isreg = 1;
6584 inst.operands[i].present = 1;
6585 }
6586 else if ((val = parse_scalar (&ptr, 8, &optype, REG_TYPE_MQ)) != FAIL)
6587 {
6588 /* Case 19: VMOV<c> <Qd[idx]>, <Qd[idx2]>, <Rt>, <Rt2> */
6589 inst.operands[i].reg = val;
6590 inst.operands[i].isvec = 1;
6591 inst.operands[i].isscalar = 2;
6592 inst.operands[i].vectype = optype;
6593 inst.operands[i++].present = 1;
6594
6595 if (skip_past_comma (&ptr) == FAIL)
6596 goto wanted_comma;
6597
6598 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
6599 goto wanted_arm;
6600
6601 inst.operands[i].reg = val;
6602 inst.operands[i].isreg = 1;
6603 inst.operands[i++].present = 1;
6604
6605 if (skip_past_comma (&ptr) == FAIL)
6606 goto wanted_comma;
6607
6608 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
6609 goto wanted_arm;
6610
6611 inst.operands[i].reg = val;
6612 inst.operands[i].isreg = 1;
6613 inst.operands[i].present = 1;
6614 }
6615 else
6616 {
6617 first_error (_("expected ARM or MVE vector register"));
6618 return FAIL;
6619 }
6620 }
6621 else if ((val = parse_scalar (&ptr, 8, &optype, REG_TYPE_VFD)) != FAIL)
6622 {
6623 /* Case 4: VMOV<c><q>.<size> <Dn[x]>, <Rd>. */
6624 inst.operands[i].reg = val;
6625 inst.operands[i].isscalar = 1;
6626 inst.operands[i].vectype = optype;
6627 inst.operands[i++].present = 1;
6628
6629 if (skip_past_comma (&ptr) == FAIL)
6630 goto wanted_comma;
6631
6632 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
6633 goto wanted_arm;
6634
6635 inst.operands[i].reg = val;
6636 inst.operands[i].isreg = 1;
6637 inst.operands[i].present = 1;
6638 }
6639 else if (((val = arm_typed_reg_parse (&ptr, REG_TYPE_NSDQ, &rtype, &optype))
6640 != FAIL)
6641 || ((val = arm_typed_reg_parse (&ptr, REG_TYPE_MQ, &rtype, &optype))
6642 != FAIL))
6643 {
6644 /* Cases 0, 1, 2, 3, 5 (D only). */
6645 if (skip_past_comma (&ptr) == FAIL)
6646 goto wanted_comma;
6647
6648 inst.operands[i].reg = val;
6649 inst.operands[i].isreg = 1;
6650 inst.operands[i].isquad = (rtype == REG_TYPE_NQ);
6651 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
6652 inst.operands[i].isvec = 1;
6653 inst.operands[i].vectype = optype;
6654 inst.operands[i++].present = 1;
6655
6656 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
6657 {
6658 /* Case 5: VMOV<c><q> <Dm>, <Rd>, <Rn>.
6659 Case 13: VMOV <Sd>, <Rm> */
6660 inst.operands[i].reg = val;
6661 inst.operands[i].isreg = 1;
6662 inst.operands[i].present = 1;
6663
6664 if (rtype == REG_TYPE_NQ)
6665 {
6666 first_error (_("can't use Neon quad register here"));
6667 return FAIL;
6668 }
6669 else if (rtype != REG_TYPE_VFS)
6670 {
6671 i++;
6672 if (skip_past_comma (&ptr) == FAIL)
6673 goto wanted_comma;
6674 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
6675 goto wanted_arm;
6676 inst.operands[i].reg = val;
6677 inst.operands[i].isreg = 1;
6678 inst.operands[i].present = 1;
6679 }
6680 }
6681 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_NSDQ, &rtype,
6682 &optype)) != FAIL)
6683 {
6684 /* Case 0: VMOV<c><q> <Qd>, <Qm>
6685 Case 1: VMOV<c><q> <Dd>, <Dm>
6686 Case 8: VMOV.F32 <Sd>, <Sm>
6687 Case 15: VMOV <Sd>, <Se>, <Rn>, <Rm> */
6688
6689 inst.operands[i].reg = val;
6690 inst.operands[i].isreg = 1;
6691 inst.operands[i].isquad = (rtype == REG_TYPE_NQ);
6692 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
6693 inst.operands[i].isvec = 1;
6694 inst.operands[i].vectype = optype;
6695 inst.operands[i].present = 1;
6696
6697 if (skip_past_comma (&ptr) == SUCCESS)
6698 {
6699 /* Case 15. */
6700 i++;
6701
6702 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
6703 goto wanted_arm;
6704
6705 inst.operands[i].reg = val;
6706 inst.operands[i].isreg = 1;
6707 inst.operands[i++].present = 1;
6708
6709 if (skip_past_comma (&ptr) == FAIL)
6710 goto wanted_comma;
6711
6712 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
6713 goto wanted_arm;
6714
6715 inst.operands[i].reg = val;
6716 inst.operands[i].isreg = 1;
6717 inst.operands[i].present = 1;
6718 }
6719 }
6720 else if (parse_qfloat_immediate (&ptr, &inst.operands[i].imm) == SUCCESS)
6721 /* Case 2: VMOV<c><q>.<dt> <Qd>, #<float-imm>
6722 Case 3: VMOV<c><q>.<dt> <Dd>, #<float-imm>
6723 Case 10: VMOV.F32 <Sd>, #<imm>
6724 Case 11: VMOV.F64 <Dd>, #<imm> */
6725 inst.operands[i].immisfloat = 1;
6726 else if (parse_big_immediate (&ptr, i, NULL, /*allow_symbol_p=*/FALSE)
6727 == SUCCESS)
6728 /* Case 2: VMOV<c><q>.<dt> <Qd>, #<imm>
6729 Case 3: VMOV<c><q>.<dt> <Dd>, #<imm> */
6730 ;
6731 else
6732 {
6733 first_error (_("expected <Rm> or <Dm> or <Qm> operand"));
6734 return FAIL;
6735 }
6736 }
6737 else if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
6738 {
6739 /* Cases 6, 7, 16, 18. */
6740 inst.operands[i].reg = val;
6741 inst.operands[i].isreg = 1;
6742 inst.operands[i++].present = 1;
6743
6744 if (skip_past_comma (&ptr) == FAIL)
6745 goto wanted_comma;
6746
6747 if ((val = parse_scalar (&ptr, 8, &optype, REG_TYPE_MQ)) != FAIL)
6748 {
6749 /* Case 18: VMOV<c>.<dt> <Rt>, <Qn[idx]> */
6750 inst.operands[i].reg = val;
6751 inst.operands[i].isscalar = 2;
6752 inst.operands[i].present = 1;
6753 inst.operands[i].vectype = optype;
6754 }
6755 else if ((val = parse_scalar (&ptr, 8, &optype, REG_TYPE_VFD)) != FAIL)
6756 {
6757 /* Case 6: VMOV<c><q>.<dt> <Rd>, <Dn[x]> */
6758 inst.operands[i].reg = val;
6759 inst.operands[i].isscalar = 1;
6760 inst.operands[i].present = 1;
6761 inst.operands[i].vectype = optype;
6762 }
6763 else if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
6764 {
6765 inst.operands[i].reg = val;
6766 inst.operands[i].isreg = 1;
6767 inst.operands[i++].present = 1;
6768
6769 if (skip_past_comma (&ptr) == FAIL)
6770 goto wanted_comma;
6771
6772 if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFSD, &rtype, &optype))
6773 != FAIL)
6774 {
6775 /* Case 7: VMOV<c><q> <Rd>, <Rn>, <Dm> */
6776
6777 inst.operands[i].reg = val;
6778 inst.operands[i].isreg = 1;
6779 inst.operands[i].isvec = 1;
6780 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
6781 inst.operands[i].vectype = optype;
6782 inst.operands[i].present = 1;
6783
6784 if (rtype == REG_TYPE_VFS)
6785 {
6786 /* Case 14. */
6787 i++;
6788 if (skip_past_comma (&ptr) == FAIL)
6789 goto wanted_comma;
6790 if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFS, NULL,
6791 &optype)) == FAIL)
6792 {
6793 first_error (_(reg_expected_msgs[REG_TYPE_VFS]));
6794 return FAIL;
6795 }
6796 inst.operands[i].reg = val;
6797 inst.operands[i].isreg = 1;
6798 inst.operands[i].isvec = 1;
6799 inst.operands[i].issingle = 1;
6800 inst.operands[i].vectype = optype;
6801 inst.operands[i].present = 1;
6802 }
6803 }
6804 else
6805 {
6806 if ((val = parse_scalar (&ptr, 8, &optype, REG_TYPE_MQ))
6807 != FAIL)
6808 {
6809 /* Case 16: VMOV<c> <Rt>, <Rt2>, <Qd[idx]>, <Qd[idx2]> */
6810 inst.operands[i].reg = val;
6811 inst.operands[i].isvec = 1;
6812 inst.operands[i].isscalar = 2;
6813 inst.operands[i].vectype = optype;
6814 inst.operands[i++].present = 1;
6815
6816 if (skip_past_comma (&ptr) == FAIL)
6817 goto wanted_comma;
6818
6819 if ((val = parse_scalar (&ptr, 8, &optype, REG_TYPE_MQ))
6820 == FAIL)
6821 {
6822 first_error (_(reg_expected_msgs[REG_TYPE_MQ]));
6823 return FAIL;
6824 }
6825 inst.operands[i].reg = val;
6826 inst.operands[i].isvec = 1;
6827 inst.operands[i].isscalar = 2;
6828 inst.operands[i].vectype = optype;
6829 inst.operands[i].present = 1;
6830 }
6831 else
6832 {
6833 first_error (_("VFP single, double or MVE vector register"
6834 " expected"));
6835 return FAIL;
6836 }
6837 }
6838 }
6839 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFS, NULL, &optype))
6840 != FAIL)
6841 {
6842 /* Case 13. */
6843 inst.operands[i].reg = val;
6844 inst.operands[i].isreg = 1;
6845 inst.operands[i].isvec = 1;
6846 inst.operands[i].issingle = 1;
6847 inst.operands[i].vectype = optype;
6848 inst.operands[i].present = 1;
6849 }
6850 }
6851 else
6852 {
6853 first_error (_("parse error"));
6854 return FAIL;
6855 }
6856
6857 /* Successfully parsed the operands. Update args. */
6858 *which_operand = i;
6859 *str = ptr;
6860 return SUCCESS;
6861
6862 wanted_comma:
6863 first_error (_("expected comma"));
6864 return FAIL;
6865
6866 wanted_arm:
6867 first_error (_(reg_expected_msgs[REG_TYPE_RN]));
6868 return FAIL;
6869 }
6870
6871 /* Use this macro when the operand constraints are different
6872 for ARM and THUMB (e.g. ldrd). */
6873 #define MIX_ARM_THUMB_OPERANDS(arm_operand, thumb_operand) \
6874 ((arm_operand) | ((thumb_operand) << 16))
6875
6876 /* Matcher codes for parse_operands. */
6877 enum operand_parse_code
6878 {
6879 OP_stop, /* end of line */
6880
6881 OP_RR, /* ARM register */
6882 OP_RRnpc, /* ARM register, not r15 */
6883 OP_RRnpcsp, /* ARM register, neither r15 nor r13 (a.k.a. 'BadReg') */
6884 OP_RRnpcb, /* ARM register, not r15, in square brackets */
6885 OP_RRnpctw, /* ARM register, not r15 in Thumb-state or with writeback,
6886 optional trailing ! */
6887 OP_RRw, /* ARM register, not r15, optional trailing ! */
6888 OP_RCP, /* Coprocessor number */
6889 OP_RCN, /* Coprocessor register */
6890 OP_RF, /* FPA register */
6891 OP_RVS, /* VFP single precision register */
6892 OP_RVD, /* VFP double precision register (0..15) */
6893 OP_RND, /* Neon double precision register (0..31) */
6894 OP_RNDMQ, /* Neon double precision (0..31) or MVE vector register. */
6895 OP_RNDMQR, /* Neon double precision (0..31), MVE vector or ARM register.
6896 */
6897 OP_RNQ, /* Neon quad precision register */
6898 OP_RNQMQ, /* Neon quad or MVE vector register. */
6899 OP_RVSD, /* VFP single or double precision register */
6900 OP_RVSD_COND, /* VFP single, double precision register or condition code. */
6901 OP_RVSDMQ, /* VFP single, double precision or MVE vector register. */
6902 OP_RNSD, /* Neon single or double precision register */
6903 OP_RNDQ, /* Neon double or quad precision register */
6904 OP_RNDQMQ, /* Neon double, quad or MVE vector register. */
6905 OP_RNSDQ, /* Neon single, double or quad precision register */
6906 OP_RNSC, /* Neon scalar D[X] */
6907 OP_RVC, /* VFP control register */
6908 OP_RMF, /* Maverick F register */
6909 OP_RMD, /* Maverick D register */
6910 OP_RMFX, /* Maverick FX register */
6911 OP_RMDX, /* Maverick DX register */
6912 OP_RMAX, /* Maverick AX register */
6913 OP_RMDS, /* Maverick DSPSC register */
6914 OP_RIWR, /* iWMMXt wR register */
6915 OP_RIWC, /* iWMMXt wC register */
6916 OP_RIWG, /* iWMMXt wCG register */
6917 OP_RXA, /* XScale accumulator register */
6918
6919 OP_RNSDQMQ, /* Neon single, double or quad register or MVE vector register
6920 */
6921 OP_RNSDQMQR, /* Neon single, double or quad register, MVE vector register or
6922 GPR (no SP/SP) */
6923 OP_RMQ, /* MVE vector register. */
6924 OP_RMQRZ, /* MVE vector or ARM register including ZR. */
6925
6926 /* New operands for Armv8.1-M Mainline. */
6927 OP_LR, /* ARM LR register */
6928 OP_RRe, /* ARM register, only even numbered. */
6929 OP_RRo, /* ARM register, only odd numbered, not r13 or r15. */
6930 OP_RRnpcsp_I32, /* ARM register (no BadReg) or literal 1 .. 32 */
6931
6932 OP_REGLST, /* ARM register list */
6933 OP_CLRMLST, /* CLRM register list */
6934 OP_VRSLST, /* VFP single-precision register list */
6935 OP_VRDLST, /* VFP double-precision register list */
6936 OP_VRSDLST, /* VFP single or double-precision register list (& quad) */
6937 OP_NRDLST, /* Neon double-precision register list (d0-d31, qN aliases) */
6938 OP_NSTRLST, /* Neon element/structure list */
6939 OP_VRSDVLST, /* VFP single or double-precision register list and VPR */
6940 OP_MSTRLST2, /* MVE vector list with two elements. */
6941 OP_MSTRLST4, /* MVE vector list with four elements. */
6942
6943 OP_RNDQ_I0, /* Neon D or Q reg, or immediate zero. */
6944 OP_RVSD_I0, /* VFP S or D reg, or immediate zero. */
6945 OP_RSVD_FI0, /* VFP S or D reg, or floating point immediate zero. */
6946 OP_RSVDMQ_FI0, /* VFP S, D, MVE vector register or floating point immediate
6947 zero. */
6948 OP_RR_RNSC, /* ARM reg or Neon scalar. */
6949 OP_RNSD_RNSC, /* Neon S or D reg, or Neon scalar. */
6950 OP_RNSDQ_RNSC, /* Vector S, D or Q reg, or Neon scalar. */
6951 OP_RNSDQ_RNSC_MQ, /* Vector S, D or Q reg, Neon scalar or MVE vector register.
6952 */
6953 OP_RNDQ_RNSC, /* Neon D or Q reg, or Neon scalar. */
6954 OP_RND_RNSC, /* Neon D reg, or Neon scalar. */
6955 OP_VMOV, /* Neon VMOV operands. */
6956 OP_RNDQ_Ibig, /* Neon D or Q reg, or big immediate for logic and VMVN. */
6957 /* Neon D, Q or MVE vector register, or big immediate for logic and VMVN. */
6958 OP_RNDQMQ_Ibig,
6959 OP_RNDQ_I63b, /* Neon D or Q reg, or immediate for shift. */
6960 OP_RIWR_I32z, /* iWMMXt wR register, or immediate 0 .. 32 for iWMMXt2. */
6961 OP_VLDR, /* VLDR operand. */
6962
6963 OP_I0, /* immediate zero */
6964 OP_I7, /* immediate value 0 .. 7 */
6965 OP_I15, /* 0 .. 15 */
6966 OP_I16, /* 1 .. 16 */
6967 OP_I16z, /* 0 .. 16 */
6968 OP_I31, /* 0 .. 31 */
6969 OP_I31w, /* 0 .. 31, optional trailing ! */
6970 OP_I32, /* 1 .. 32 */
6971 OP_I32z, /* 0 .. 32 */
6972 OP_I63, /* 0 .. 63 */
6973 OP_I63s, /* -64 .. 63 */
6974 OP_I64, /* 1 .. 64 */
6975 OP_I64z, /* 0 .. 64 */
6976 OP_I255, /* 0 .. 255 */
6977
6978 OP_I4b, /* immediate, prefix optional, 1 .. 4 */
6979 OP_I7b, /* 0 .. 7 */
6980 OP_I15b, /* 0 .. 15 */
6981 OP_I31b, /* 0 .. 31 */
6982
6983 OP_SH, /* shifter operand */
6984 OP_SHG, /* shifter operand with possible group relocation */
6985 OP_ADDR, /* Memory address expression (any mode) */
6986 OP_ADDRMVE, /* Memory address expression for MVE's VSTR/VLDR. */
6987 OP_ADDRGLDR, /* Mem addr expr (any mode) with possible LDR group reloc */
6988 OP_ADDRGLDRS, /* Mem addr expr (any mode) with possible LDRS group reloc */
6989 OP_ADDRGLDC, /* Mem addr expr (any mode) with possible LDC group reloc */
6990 OP_EXP, /* arbitrary expression */
6991 OP_EXPi, /* same, with optional immediate prefix */
6992 OP_EXPr, /* same, with optional relocation suffix */
6993 OP_EXPs, /* same, with optional non-first operand relocation suffix */
6994 OP_HALF, /* 0 .. 65535 or low/high reloc. */
6995 OP_IROT1, /* VCADD rotate immediate: 90, 270. */
6996 OP_IROT2, /* VCMLA rotate immediate: 0, 90, 180, 270. */
6997
6998 OP_CPSF, /* CPS flags */
6999 OP_ENDI, /* Endianness specifier */
7000 OP_wPSR, /* CPSR/SPSR/APSR mask for msr (writing). */
7001 OP_rPSR, /* CPSR/SPSR/APSR mask for msr (reading). */
7002 OP_COND, /* conditional code */
7003 OP_TB, /* Table branch. */
7004
7005 OP_APSR_RR, /* ARM register or "APSR_nzcv". */
7006
7007 OP_RRnpc_I0, /* ARM register or literal 0 */
7008 OP_RR_EXr, /* ARM register or expression with opt. reloc stuff. */
7009 OP_RR_EXi, /* ARM register or expression with imm prefix */
7010 OP_RF_IF, /* FPA register or immediate */
7011 OP_RIWR_RIWC, /* iWMMXt R or C reg */
7012 OP_RIWC_RIWG, /* iWMMXt wC or wCG reg */
7013
7014 /* Optional operands. */
7015 OP_oI7b, /* immediate, prefix optional, 0 .. 7 */
7016 OP_oI31b, /* 0 .. 31 */
7017 OP_oI32b, /* 1 .. 32 */
7018 OP_oI32z, /* 0 .. 32 */
7019 OP_oIffffb, /* 0 .. 65535 */
7020 OP_oI255c, /* curly-brace enclosed, 0 .. 255 */
7021
7022 OP_oRR, /* ARM register */
7023 OP_oLR, /* ARM LR register */
7024 OP_oRRnpc, /* ARM register, not the PC */
7025 OP_oRRnpcsp, /* ARM register, neither the PC nor the SP (a.k.a. BadReg) */
7026 OP_oRRw, /* ARM register, not r15, optional trailing ! */
7027 OP_oRND, /* Optional Neon double precision register */
7028 OP_oRNQ, /* Optional Neon quad precision register */
7029 OP_oRNDQMQ, /* Optional Neon double, quad or MVE vector register. */
7030 OP_oRNDQ, /* Optional Neon double or quad precision register */
7031 OP_oRNSDQ, /* Optional single, double or quad precision vector register */
7032 OP_oRNSDQMQ, /* Optional single, double or quad register or MVE vector
7033 register. */
7034 OP_oSHll, /* LSL immediate */
7035 OP_oSHar, /* ASR immediate */
7036 OP_oSHllar, /* LSL or ASR immediate */
7037 OP_oROR, /* ROR 0/8/16/24 */
7038 OP_oBARRIER_I15, /* Option argument for a barrier instruction. */
7039
7040 OP_oRMQRZ, /* optional MVE vector or ARM register including ZR. */
7041
7042 /* Some pre-defined mixed (ARM/THUMB) operands. */
7043 OP_RR_npcsp = MIX_ARM_THUMB_OPERANDS (OP_RR, OP_RRnpcsp),
7044 OP_RRnpc_npcsp = MIX_ARM_THUMB_OPERANDS (OP_RRnpc, OP_RRnpcsp),
7045 OP_oRRnpc_npcsp = MIX_ARM_THUMB_OPERANDS (OP_oRRnpc, OP_oRRnpcsp),
7046
7047 OP_FIRST_OPTIONAL = OP_oI7b
7048 };
7049
7050 /* Generic instruction operand parser. This does no encoding and no
7051 semantic validation; it merely squirrels values away in the inst
7052 structure. Returns SUCCESS or FAIL depending on whether the
7053 specified grammar matched. */
7054 static int
7055 parse_operands (char *str, const unsigned int *pattern, bfd_boolean thumb)
7056 {
7057 unsigned const int *upat = pattern;
7058 char *backtrack_pos = 0;
7059 const char *backtrack_error = 0;
7060 int i, val = 0, backtrack_index = 0;
7061 enum arm_reg_type rtype;
7062 parse_operand_result result;
7063 unsigned int op_parse_code;
7064 bfd_boolean partial_match;
7065
7066 #define po_char_or_fail(chr) \
7067 do \
7068 { \
7069 if (skip_past_char (&str, chr) == FAIL) \
7070 goto bad_args; \
7071 } \
7072 while (0)
7073
7074 #define po_reg_or_fail(regtype) \
7075 do \
7076 { \
7077 val = arm_typed_reg_parse (& str, regtype, & rtype, \
7078 & inst.operands[i].vectype); \
7079 if (val == FAIL) \
7080 { \
7081 first_error (_(reg_expected_msgs[regtype])); \
7082 goto failure; \
7083 } \
7084 inst.operands[i].reg = val; \
7085 inst.operands[i].isreg = 1; \
7086 inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \
7087 inst.operands[i].issingle = (rtype == REG_TYPE_VFS); \
7088 inst.operands[i].isvec = (rtype == REG_TYPE_VFS \
7089 || rtype == REG_TYPE_VFD \
7090 || rtype == REG_TYPE_NQ); \
7091 inst.operands[i].iszr = (rtype == REG_TYPE_ZR); \
7092 } \
7093 while (0)
7094
7095 #define po_reg_or_goto(regtype, label) \
7096 do \
7097 { \
7098 val = arm_typed_reg_parse (& str, regtype, & rtype, \
7099 & inst.operands[i].vectype); \
7100 if (val == FAIL) \
7101 goto label; \
7102 \
7103 inst.operands[i].reg = val; \
7104 inst.operands[i].isreg = 1; \
7105 inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \
7106 inst.operands[i].issingle = (rtype == REG_TYPE_VFS); \
7107 inst.operands[i].isvec = (rtype == REG_TYPE_VFS \
7108 || rtype == REG_TYPE_VFD \
7109 || rtype == REG_TYPE_NQ); \
7110 inst.operands[i].iszr = (rtype == REG_TYPE_ZR); \
7111 } \
7112 while (0)
7113
7114 #define po_imm_or_fail(min, max, popt) \
7115 do \
7116 { \
7117 if (parse_immediate (&str, &val, min, max, popt) == FAIL) \
7118 goto failure; \
7119 inst.operands[i].imm = val; \
7120 } \
7121 while (0)
7122
7123 #define po_scalar_or_goto(elsz, label, reg_type) \
7124 do \
7125 { \
7126 val = parse_scalar (& str, elsz, & inst.operands[i].vectype, \
7127 reg_type); \
7128 if (val == FAIL) \
7129 goto label; \
7130 inst.operands[i].reg = val; \
7131 inst.operands[i].isscalar = 1; \
7132 } \
7133 while (0)
7134
7135 #define po_misc_or_fail(expr) \
7136 do \
7137 { \
7138 if (expr) \
7139 goto failure; \
7140 } \
7141 while (0)
7142
7143 #define po_misc_or_fail_no_backtrack(expr) \
7144 do \
7145 { \
7146 result = expr; \
7147 if (result == PARSE_OPERAND_FAIL_NO_BACKTRACK) \
7148 backtrack_pos = 0; \
7149 if (result != PARSE_OPERAND_SUCCESS) \
7150 goto failure; \
7151 } \
7152 while (0)
7153
7154 #define po_barrier_or_imm(str) \
7155 do \
7156 { \
7157 val = parse_barrier (&str); \
7158 if (val == FAIL && ! ISALPHA (*str)) \
7159 goto immediate; \
7160 if (val == FAIL \
7161 /* ISB can only take SY as an option. */ \
7162 || ((inst.instruction & 0xf0) == 0x60 \
7163 && val != 0xf)) \
7164 { \
7165 inst.error = _("invalid barrier type"); \
7166 backtrack_pos = 0; \
7167 goto failure; \
7168 } \
7169 } \
7170 while (0)
7171
7172 skip_whitespace (str);
7173
7174 for (i = 0; upat[i] != OP_stop; i++)
7175 {
7176 op_parse_code = upat[i];
7177 if (op_parse_code >= 1<<16)
7178 op_parse_code = thumb ? (op_parse_code >> 16)
7179 : (op_parse_code & ((1<<16)-1));
7180
7181 if (op_parse_code >= OP_FIRST_OPTIONAL)
7182 {
7183 /* Remember where we are in case we need to backtrack. */
7184 backtrack_pos = str;
7185 backtrack_error = inst.error;
7186 backtrack_index = i;
7187 }
7188
7189 if (i > 0 && (i > 1 || inst.operands[0].present))
7190 po_char_or_fail (',');
7191
7192 switch (op_parse_code)
7193 {
7194 /* Registers */
7195 case OP_oRRnpc:
7196 case OP_oRRnpcsp:
7197 case OP_RRnpc:
7198 case OP_RRnpcsp:
7199 case OP_oRR:
7200 case OP_RRe:
7201 case OP_RRo:
7202 case OP_LR:
7203 case OP_oLR:
7204 case OP_RR: po_reg_or_fail (REG_TYPE_RN); break;
7205 case OP_RCP: po_reg_or_fail (REG_TYPE_CP); break;
7206 case OP_RCN: po_reg_or_fail (REG_TYPE_CN); break;
7207 case OP_RF: po_reg_or_fail (REG_TYPE_FN); break;
7208 case OP_RVS: po_reg_or_fail (REG_TYPE_VFS); break;
7209 case OP_RVD: po_reg_or_fail (REG_TYPE_VFD); break;
7210 case OP_oRND:
7211 case OP_RNDMQR:
7212 po_reg_or_goto (REG_TYPE_RN, try_rndmq);
7213 break;
7214 try_rndmq:
7215 case OP_RNDMQ:
7216 po_reg_or_goto (REG_TYPE_MQ, try_rnd);
7217 break;
7218 try_rnd:
7219 case OP_RND: po_reg_or_fail (REG_TYPE_VFD); break;
7220 case OP_RVC:
7221 po_reg_or_goto (REG_TYPE_VFC, coproc_reg);
7222 break;
7223 /* Also accept generic coprocessor regs for unknown registers. */
7224 coproc_reg:
7225 po_reg_or_fail (REG_TYPE_CN);
7226 break;
7227 case OP_RMF: po_reg_or_fail (REG_TYPE_MVF); break;
7228 case OP_RMD: po_reg_or_fail (REG_TYPE_MVD); break;
7229 case OP_RMFX: po_reg_or_fail (REG_TYPE_MVFX); break;
7230 case OP_RMDX: po_reg_or_fail (REG_TYPE_MVDX); break;
7231 case OP_RMAX: po_reg_or_fail (REG_TYPE_MVAX); break;
7232 case OP_RMDS: po_reg_or_fail (REG_TYPE_DSPSC); break;
7233 case OP_RIWR: po_reg_or_fail (REG_TYPE_MMXWR); break;
7234 case OP_RIWC: po_reg_or_fail (REG_TYPE_MMXWC); break;
7235 case OP_RIWG: po_reg_or_fail (REG_TYPE_MMXWCG); break;
7236 case OP_RXA: po_reg_or_fail (REG_TYPE_XSCALE); break;
7237 case OP_oRNQ:
7238 case OP_RNQMQ:
7239 po_reg_or_goto (REG_TYPE_MQ, try_nq);
7240 break;
7241 try_nq:
7242 case OP_RNQ: po_reg_or_fail (REG_TYPE_NQ); break;
7243 case OP_RNSD: po_reg_or_fail (REG_TYPE_NSD); break;
7244 case OP_oRNDQMQ:
7245 case OP_RNDQMQ:
7246 po_reg_or_goto (REG_TYPE_MQ, try_rndq);
7247 break;
7248 try_rndq:
7249 case OP_oRNDQ:
7250 case OP_RNDQ: po_reg_or_fail (REG_TYPE_NDQ); break;
7251 case OP_RVSDMQ:
7252 po_reg_or_goto (REG_TYPE_MQ, try_rvsd);
7253 break;
7254 try_rvsd:
7255 case OP_RVSD: po_reg_or_fail (REG_TYPE_VFSD); break;
7256 case OP_RVSD_COND:
7257 po_reg_or_goto (REG_TYPE_VFSD, try_cond);
7258 break;
7259 case OP_oRNSDQ:
7260 case OP_RNSDQ: po_reg_or_fail (REG_TYPE_NSDQ); break;
7261 case OP_RNSDQMQR:
7262 po_reg_or_goto (REG_TYPE_RN, try_mq);
7263 break;
7264 try_mq:
7265 case OP_oRNSDQMQ:
7266 case OP_RNSDQMQ:
7267 po_reg_or_goto (REG_TYPE_MQ, try_nsdq2);
7268 break;
7269 try_nsdq2:
7270 po_reg_or_fail (REG_TYPE_NSDQ);
7271 inst.error = 0;
7272 break;
7273 case OP_RMQ:
7274 po_reg_or_fail (REG_TYPE_MQ);
7275 break;
7276 /* Neon scalar. Using an element size of 8 means that some invalid
7277 scalars are accepted here, so deal with those in later code. */
7278 case OP_RNSC: po_scalar_or_goto (8, failure, REG_TYPE_VFD); break;
7279
7280 case OP_RNDQ_I0:
7281 {
7282 po_reg_or_goto (REG_TYPE_NDQ, try_imm0);
7283 break;
7284 try_imm0:
7285 po_imm_or_fail (0, 0, TRUE);
7286 }
7287 break;
7288
7289 case OP_RVSD_I0:
7290 po_reg_or_goto (REG_TYPE_VFSD, try_imm0);
7291 break;
7292
7293 case OP_RSVDMQ_FI0:
7294 po_reg_or_goto (REG_TYPE_MQ, try_rsvd_fi0);
7295 break;
7296 try_rsvd_fi0:
7297 case OP_RSVD_FI0:
7298 {
7299 po_reg_or_goto (REG_TYPE_VFSD, try_ifimm0);
7300 break;
7301 try_ifimm0:
7302 if (parse_ifimm_zero (&str))
7303 inst.operands[i].imm = 0;
7304 else
7305 {
7306 inst.error
7307 = _("only floating point zero is allowed as immediate value");
7308 goto failure;
7309 }
7310 }
7311 break;
7312
7313 case OP_RR_RNSC:
7314 {
7315 po_scalar_or_goto (8, try_rr, REG_TYPE_VFD);
7316 break;
7317 try_rr:
7318 po_reg_or_fail (REG_TYPE_RN);
7319 }
7320 break;
7321
7322 case OP_RNSDQ_RNSC_MQ:
7323 po_reg_or_goto (REG_TYPE_MQ, try_rnsdq_rnsc);
7324 break;
7325 try_rnsdq_rnsc:
7326 case OP_RNSDQ_RNSC:
7327 {
7328 po_scalar_or_goto (8, try_nsdq, REG_TYPE_VFD);
7329 inst.error = 0;
7330 break;
7331 try_nsdq:
7332 po_reg_or_fail (REG_TYPE_NSDQ);
7333 inst.error = 0;
7334 }
7335 break;
7336
7337 case OP_RNSD_RNSC:
7338 {
7339 po_scalar_or_goto (8, try_s_scalar, REG_TYPE_VFD);
7340 break;
7341 try_s_scalar:
7342 po_scalar_or_goto (4, try_nsd, REG_TYPE_VFS);
7343 break;
7344 try_nsd:
7345 po_reg_or_fail (REG_TYPE_NSD);
7346 }
7347 break;
7348
7349 case OP_RNDQ_RNSC:
7350 {
7351 po_scalar_or_goto (8, try_ndq, REG_TYPE_VFD);
7352 break;
7353 try_ndq:
7354 po_reg_or_fail (REG_TYPE_NDQ);
7355 }
7356 break;
7357
7358 case OP_RND_RNSC:
7359 {
7360 po_scalar_or_goto (8, try_vfd, REG_TYPE_VFD);
7361 break;
7362 try_vfd:
7363 po_reg_or_fail (REG_TYPE_VFD);
7364 }
7365 break;
7366
7367 case OP_VMOV:
7368 /* WARNING: parse_neon_mov can move the operand counter, i. If we're
7369 not careful then bad things might happen. */
7370 po_misc_or_fail (parse_neon_mov (&str, &i) == FAIL);
7371 break;
7372
7373 case OP_RNDQMQ_Ibig:
7374 po_reg_or_goto (REG_TYPE_MQ, try_rndq_ibig);
7375 break;
7376 try_rndq_ibig:
7377 case OP_RNDQ_Ibig:
7378 {
7379 po_reg_or_goto (REG_TYPE_NDQ, try_immbig);
7380 break;
7381 try_immbig:
7382 /* There's a possibility of getting a 64-bit immediate here, so
7383 we need special handling. */
7384 if (parse_big_immediate (&str, i, NULL, /*allow_symbol_p=*/FALSE)
7385 == FAIL)
7386 {
7387 inst.error = _("immediate value is out of range");
7388 goto failure;
7389 }
7390 }
7391 break;
7392
7393 case OP_RNDQ_I63b:
7394 {
7395 po_reg_or_goto (REG_TYPE_NDQ, try_shimm);
7396 break;
7397 try_shimm:
7398 po_imm_or_fail (0, 63, TRUE);
7399 }
7400 break;
7401
7402 case OP_RRnpcb:
7403 po_char_or_fail ('[');
7404 po_reg_or_fail (REG_TYPE_RN);
7405 po_char_or_fail (']');
7406 break;
7407
7408 case OP_RRnpctw:
7409 case OP_RRw:
7410 case OP_oRRw:
7411 po_reg_or_fail (REG_TYPE_RN);
7412 if (skip_past_char (&str, '!') == SUCCESS)
7413 inst.operands[i].writeback = 1;
7414 break;
7415
7416 /* Immediates */
7417 case OP_I7: po_imm_or_fail ( 0, 7, FALSE); break;
7418 case OP_I15: po_imm_or_fail ( 0, 15, FALSE); break;
7419 case OP_I16: po_imm_or_fail ( 1, 16, FALSE); break;
7420 case OP_I16z: po_imm_or_fail ( 0, 16, FALSE); break;
7421 case OP_I31: po_imm_or_fail ( 0, 31, FALSE); break;
7422 case OP_I32: po_imm_or_fail ( 1, 32, FALSE); break;
7423 case OP_I32z: po_imm_or_fail ( 0, 32, FALSE); break;
7424 case OP_I63s: po_imm_or_fail (-64, 63, FALSE); break;
7425 case OP_I63: po_imm_or_fail ( 0, 63, FALSE); break;
7426 case OP_I64: po_imm_or_fail ( 1, 64, FALSE); break;
7427 case OP_I64z: po_imm_or_fail ( 0, 64, FALSE); break;
7428 case OP_I255: po_imm_or_fail ( 0, 255, FALSE); break;
7429
7430 case OP_I4b: po_imm_or_fail ( 1, 4, TRUE); break;
7431 case OP_oI7b:
7432 case OP_I7b: po_imm_or_fail ( 0, 7, TRUE); break;
7433 case OP_I15b: po_imm_or_fail ( 0, 15, TRUE); break;
7434 case OP_oI31b:
7435 case OP_I31b: po_imm_or_fail ( 0, 31, TRUE); break;
7436 case OP_oI32b: po_imm_or_fail ( 1, 32, TRUE); break;
7437 case OP_oI32z: po_imm_or_fail ( 0, 32, TRUE); break;
7438 case OP_oIffffb: po_imm_or_fail ( 0, 0xffff, TRUE); break;
7439
7440 /* Immediate variants */
7441 case OP_oI255c:
7442 po_char_or_fail ('{');
7443 po_imm_or_fail (0, 255, TRUE);
7444 po_char_or_fail ('}');
7445 break;
7446
7447 case OP_I31w:
7448 /* The expression parser chokes on a trailing !, so we have
7449 to find it first and zap it. */
7450 {
7451 char *s = str;
7452 while (*s && *s != ',')
7453 s++;
7454 if (s[-1] == '!')
7455 {
7456 s[-1] = '\0';
7457 inst.operands[i].writeback = 1;
7458 }
7459 po_imm_or_fail (0, 31, TRUE);
7460 if (str == s - 1)
7461 str = s;
7462 }
7463 break;
7464
7465 /* Expressions */
7466 case OP_EXPi: EXPi:
7467 po_misc_or_fail (my_get_expression (&inst.relocs[0].exp, &str,
7468 GE_OPT_PREFIX));
7469 break;
7470
7471 case OP_EXP:
7472 po_misc_or_fail (my_get_expression (&inst.relocs[0].exp, &str,
7473 GE_NO_PREFIX));
7474 break;
7475
7476 case OP_EXPr: EXPr:
7477 po_misc_or_fail (my_get_expression (&inst.relocs[0].exp, &str,
7478 GE_NO_PREFIX));
7479 if (inst.relocs[0].exp.X_op == O_symbol)
7480 {
7481 val = parse_reloc (&str);
7482 if (val == -1)
7483 {
7484 inst.error = _("unrecognized relocation suffix");
7485 goto failure;
7486 }
7487 else if (val != BFD_RELOC_UNUSED)
7488 {
7489 inst.operands[i].imm = val;
7490 inst.operands[i].hasreloc = 1;
7491 }
7492 }
7493 break;
7494
7495 case OP_EXPs:
7496 po_misc_or_fail (my_get_expression (&inst.relocs[i].exp, &str,
7497 GE_NO_PREFIX));
7498 if (inst.relocs[i].exp.X_op == O_symbol)
7499 {
7500 inst.operands[i].hasreloc = 1;
7501 }
7502 else if (inst.relocs[i].exp.X_op == O_constant)
7503 {
7504 inst.operands[i].imm = inst.relocs[i].exp.X_add_number;
7505 inst.operands[i].hasreloc = 0;
7506 }
7507 break;
7508
7509 /* Operand for MOVW or MOVT. */
7510 case OP_HALF:
7511 po_misc_or_fail (parse_half (&str));
7512 break;
7513
7514 /* Register or expression. */
7515 case OP_RR_EXr: po_reg_or_goto (REG_TYPE_RN, EXPr); break;
7516 case OP_RR_EXi: po_reg_or_goto (REG_TYPE_RN, EXPi); break;
7517
7518 /* Register or immediate. */
7519 case OP_RRnpc_I0: po_reg_or_goto (REG_TYPE_RN, I0); break;
7520 I0: po_imm_or_fail (0, 0, FALSE); break;
7521
7522 case OP_RF_IF: po_reg_or_goto (REG_TYPE_FN, IF); break;
7523 IF:
7524 if (!is_immediate_prefix (*str))
7525 goto bad_args;
7526 str++;
7527 val = parse_fpa_immediate (&str);
7528 if (val == FAIL)
7529 goto failure;
7530 /* FPA immediates are encoded as registers 8-15.
7531 parse_fpa_immediate has already applied the offset. */
7532 inst.operands[i].reg = val;
7533 inst.operands[i].isreg = 1;
7534 break;
7535
7536 case OP_RIWR_I32z: po_reg_or_goto (REG_TYPE_MMXWR, I32z); break;
7537 I32z: po_imm_or_fail (0, 32, FALSE); break;
7538
7539 /* Two kinds of register. */
7540 case OP_RIWR_RIWC:
7541 {
7542 struct reg_entry *rege = arm_reg_parse_multi (&str);
7543 if (!rege
7544 || (rege->type != REG_TYPE_MMXWR
7545 && rege->type != REG_TYPE_MMXWC
7546 && rege->type != REG_TYPE_MMXWCG))
7547 {
7548 inst.error = _("iWMMXt data or control register expected");
7549 goto failure;
7550 }
7551 inst.operands[i].reg = rege->number;
7552 inst.operands[i].isreg = (rege->type == REG_TYPE_MMXWR);
7553 }
7554 break;
7555
7556 case OP_RIWC_RIWG:
7557 {
7558 struct reg_entry *rege = arm_reg_parse_multi (&str);
7559 if (!rege
7560 || (rege->type != REG_TYPE_MMXWC
7561 && rege->type != REG_TYPE_MMXWCG))
7562 {
7563 inst.error = _("iWMMXt control register expected");
7564 goto failure;
7565 }
7566 inst.operands[i].reg = rege->number;
7567 inst.operands[i].isreg = 1;
7568 }
7569 break;
7570
7571 /* Misc */
7572 case OP_CPSF: val = parse_cps_flags (&str); break;
7573 case OP_ENDI: val = parse_endian_specifier (&str); break;
7574 case OP_oROR: val = parse_ror (&str); break;
7575 try_cond:
7576 case OP_COND: val = parse_cond (&str); break;
7577 case OP_oBARRIER_I15:
7578 po_barrier_or_imm (str); break;
7579 immediate:
7580 if (parse_immediate (&str, &val, 0, 15, TRUE) == FAIL)
7581 goto failure;
7582 break;
7583
7584 case OP_wPSR:
7585 case OP_rPSR:
7586 po_reg_or_goto (REG_TYPE_RNB, try_psr);
7587 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_virt))
7588 {
7589 inst.error = _("Banked registers are not available with this "
7590 "architecture.");
7591 goto failure;
7592 }
7593 break;
7594 try_psr:
7595 val = parse_psr (&str, op_parse_code == OP_wPSR);
7596 break;
7597
7598 case OP_VLDR:
7599 po_reg_or_goto (REG_TYPE_VFSD, try_sysreg);
7600 break;
7601 try_sysreg:
7602 val = parse_sys_vldr_vstr (&str);
7603 break;
7604
7605 case OP_APSR_RR:
7606 po_reg_or_goto (REG_TYPE_RN, try_apsr);
7607 break;
7608 try_apsr:
7609 /* Parse "APSR_nvzc" operand (for FMSTAT-equivalent MRS
7610 instruction). */
7611 if (strncasecmp (str, "APSR_", 5) == 0)
7612 {
7613 unsigned found = 0;
7614 str += 5;
7615 while (found < 15)
7616 switch (*str++)
7617 {
7618 case 'c': found = (found & 1) ? 16 : found | 1; break;
7619 case 'n': found = (found & 2) ? 16 : found | 2; break;
7620 case 'z': found = (found & 4) ? 16 : found | 4; break;
7621 case 'v': found = (found & 8) ? 16 : found | 8; break;
7622 default: found = 16;
7623 }
7624 if (found != 15)
7625 goto failure;
7626 inst.operands[i].isvec = 1;
7627 /* APSR_nzcv is encoded in instructions as if it were the REG_PC. */
7628 inst.operands[i].reg = REG_PC;
7629 }
7630 else
7631 goto failure;
7632 break;
7633
7634 case OP_TB:
7635 po_misc_or_fail (parse_tb (&str));
7636 break;
7637
7638 /* Register lists. */
7639 case OP_REGLST:
7640 val = parse_reg_list (&str, REGLIST_RN);
7641 if (*str == '^')
7642 {
7643 inst.operands[i].writeback = 1;
7644 str++;
7645 }
7646 break;
7647
7648 case OP_CLRMLST:
7649 val = parse_reg_list (&str, REGLIST_CLRM);
7650 break;
7651
7652 case OP_VRSLST:
7653 val = parse_vfp_reg_list (&str, &inst.operands[i].reg, REGLIST_VFP_S,
7654 &partial_match);
7655 break;
7656
7657 case OP_VRDLST:
7658 val = parse_vfp_reg_list (&str, &inst.operands[i].reg, REGLIST_VFP_D,
7659 &partial_match);
7660 break;
7661
7662 case OP_VRSDLST:
7663 /* Allow Q registers too. */
7664 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
7665 REGLIST_NEON_D, &partial_match);
7666 if (val == FAIL)
7667 {
7668 inst.error = NULL;
7669 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
7670 REGLIST_VFP_S, &partial_match);
7671 inst.operands[i].issingle = 1;
7672 }
7673 break;
7674
7675 case OP_VRSDVLST:
7676 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
7677 REGLIST_VFP_D_VPR, &partial_match);
7678 if (val == FAIL && !partial_match)
7679 {
7680 inst.error = NULL;
7681 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
7682 REGLIST_VFP_S_VPR, &partial_match);
7683 inst.operands[i].issingle = 1;
7684 }
7685 break;
7686
7687 case OP_NRDLST:
7688 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
7689 REGLIST_NEON_D, &partial_match);
7690 break;
7691
7692 case OP_MSTRLST4:
7693 case OP_MSTRLST2:
7694 val = parse_neon_el_struct_list (&str, &inst.operands[i].reg,
7695 1, &inst.operands[i].vectype);
7696 if (val != (((op_parse_code == OP_MSTRLST2) ? 3 : 7) << 5 | 0xe))
7697 goto failure;
7698 break;
7699 case OP_NSTRLST:
7700 val = parse_neon_el_struct_list (&str, &inst.operands[i].reg,
7701 0, &inst.operands[i].vectype);
7702 break;
7703
7704 /* Addressing modes */
7705 case OP_ADDRMVE:
7706 po_misc_or_fail (parse_address_group_reloc (&str, i, GROUP_MVE));
7707 break;
7708
7709 case OP_ADDR:
7710 po_misc_or_fail (parse_address (&str, i));
7711 break;
7712
7713 case OP_ADDRGLDR:
7714 po_misc_or_fail_no_backtrack (
7715 parse_address_group_reloc (&str, i, GROUP_LDR));
7716 break;
7717
7718 case OP_ADDRGLDRS:
7719 po_misc_or_fail_no_backtrack (
7720 parse_address_group_reloc (&str, i, GROUP_LDRS));
7721 break;
7722
7723 case OP_ADDRGLDC:
7724 po_misc_or_fail_no_backtrack (
7725 parse_address_group_reloc (&str, i, GROUP_LDC));
7726 break;
7727
7728 case OP_SH:
7729 po_misc_or_fail (parse_shifter_operand (&str, i));
7730 break;
7731
7732 case OP_SHG:
7733 po_misc_or_fail_no_backtrack (
7734 parse_shifter_operand_group_reloc (&str, i));
7735 break;
7736
7737 case OP_oSHll:
7738 po_misc_or_fail (parse_shift (&str, i, SHIFT_LSL_IMMEDIATE));
7739 break;
7740
7741 case OP_oSHar:
7742 po_misc_or_fail (parse_shift (&str, i, SHIFT_ASR_IMMEDIATE));
7743 break;
7744
7745 case OP_oSHllar:
7746 po_misc_or_fail (parse_shift (&str, i, SHIFT_LSL_OR_ASR_IMMEDIATE));
7747 break;
7748
7749 case OP_RMQRZ:
7750 case OP_oRMQRZ:
7751 po_reg_or_goto (REG_TYPE_MQ, try_rr_zr);
7752 break;
7753 try_rr_zr:
7754 po_reg_or_goto (REG_TYPE_RN, ZR);
7755 break;
7756 ZR:
7757 po_reg_or_fail (REG_TYPE_ZR);
7758 break;
7759
7760 default:
7761 as_fatal (_("unhandled operand code %d"), op_parse_code);
7762 }
7763
7764 /* Various value-based sanity checks and shared operations. We
7765 do not signal immediate failures for the register constraints;
7766 this allows a syntax error to take precedence. */
7767 switch (op_parse_code)
7768 {
7769 case OP_oRRnpc:
7770 case OP_RRnpc:
7771 case OP_RRnpcb:
7772 case OP_RRw:
7773 case OP_oRRw:
7774 case OP_RRnpc_I0:
7775 if (inst.operands[i].isreg && inst.operands[i].reg == REG_PC)
7776 inst.error = BAD_PC;
7777 break;
7778
7779 case OP_oRRnpcsp:
7780 case OP_RRnpcsp:
7781 if (inst.operands[i].isreg)
7782 {
7783 if (inst.operands[i].reg == REG_PC)
7784 inst.error = BAD_PC;
7785 else if (inst.operands[i].reg == REG_SP
7786 /* The restriction on Rd/Rt/Rt2 on Thumb mode has been
7787 relaxed since ARMv8-A. */
7788 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
7789 {
7790 gas_assert (thumb);
7791 inst.error = BAD_SP;
7792 }
7793 }
7794 break;
7795
7796 case OP_RRnpctw:
7797 if (inst.operands[i].isreg
7798 && inst.operands[i].reg == REG_PC
7799 && (inst.operands[i].writeback || thumb))
7800 inst.error = BAD_PC;
7801 break;
7802
7803 case OP_RVSD_COND:
7804 case OP_VLDR:
7805 if (inst.operands[i].isreg)
7806 break;
7807 /* fall through. */
7808
7809 case OP_CPSF:
7810 case OP_ENDI:
7811 case OP_oROR:
7812 case OP_wPSR:
7813 case OP_rPSR:
7814 case OP_COND:
7815 case OP_oBARRIER_I15:
7816 case OP_REGLST:
7817 case OP_CLRMLST:
7818 case OP_VRSLST:
7819 case OP_VRDLST:
7820 case OP_VRSDLST:
7821 case OP_VRSDVLST:
7822 case OP_NRDLST:
7823 case OP_NSTRLST:
7824 case OP_MSTRLST2:
7825 case OP_MSTRLST4:
7826 if (val == FAIL)
7827 goto failure;
7828 inst.operands[i].imm = val;
7829 break;
7830
7831 case OP_LR:
7832 case OP_oLR:
7833 if (inst.operands[i].reg != REG_LR)
7834 inst.error = _("operand must be LR register");
7835 break;
7836
7837 case OP_RMQRZ:
7838 case OP_oRMQRZ:
7839 if (!inst.operands[i].iszr && inst.operands[i].reg == REG_PC)
7840 inst.error = BAD_PC;
7841 break;
7842
7843 case OP_RRe:
7844 if (inst.operands[i].isreg
7845 && (inst.operands[i].reg & 0x00000001) != 0)
7846 inst.error = BAD_ODD;
7847 break;
7848
7849 case OP_RRo:
7850 if (inst.operands[i].isreg)
7851 {
7852 if ((inst.operands[i].reg & 0x00000001) != 1)
7853 inst.error = BAD_EVEN;
7854 else if (inst.operands[i].reg == REG_SP)
7855 as_tsktsk (MVE_BAD_SP);
7856 else if (inst.operands[i].reg == REG_PC)
7857 inst.error = BAD_PC;
7858 }
7859 break;
7860
7861 default:
7862 break;
7863 }
7864
7865 /* If we get here, this operand was successfully parsed. */
7866 inst.operands[i].present = 1;
7867 continue;
7868
7869 bad_args:
7870 inst.error = BAD_ARGS;
7871
7872 failure:
7873 if (!backtrack_pos)
7874 {
7875 /* The parse routine should already have set inst.error, but set a
7876 default here just in case. */
7877 if (!inst.error)
7878 inst.error = BAD_SYNTAX;
7879 return FAIL;
7880 }
7881
7882 /* Do not backtrack over a trailing optional argument that
7883 absorbed some text. We will only fail again, with the
7884 'garbage following instruction' error message, which is
7885 probably less helpful than the current one. */
7886 if (backtrack_index == i && backtrack_pos != str
7887 && upat[i+1] == OP_stop)
7888 {
7889 if (!inst.error)
7890 inst.error = BAD_SYNTAX;
7891 return FAIL;
7892 }
7893
7894 /* Try again, skipping the optional argument at backtrack_pos. */
7895 str = backtrack_pos;
7896 inst.error = backtrack_error;
7897 inst.operands[backtrack_index].present = 0;
7898 i = backtrack_index;
7899 backtrack_pos = 0;
7900 }
7901
7902 /* Check that we have parsed all the arguments. */
7903 if (*str != '\0' && !inst.error)
7904 inst.error = _("garbage following instruction");
7905
7906 return inst.error ? FAIL : SUCCESS;
7907 }
7908
7909 #undef po_char_or_fail
7910 #undef po_reg_or_fail
7911 #undef po_reg_or_goto
7912 #undef po_imm_or_fail
7913 #undef po_scalar_or_fail
7914 #undef po_barrier_or_imm
7915
7916 /* Shorthand macro for instruction encoding functions issuing errors. */
7917 #define constraint(expr, err) \
7918 do \
7919 { \
7920 if (expr) \
7921 { \
7922 inst.error = err; \
7923 return; \
7924 } \
7925 } \
7926 while (0)
7927
7928 /* Reject "bad registers" for Thumb-2 instructions. Many Thumb-2
7929 instructions are unpredictable if these registers are used. This
7930 is the BadReg predicate in ARM's Thumb-2 documentation.
7931
7932 Before ARMv8-A, REG_PC and REG_SP were not allowed in quite a few
7933 places, while the restriction on REG_SP was relaxed since ARMv8-A. */
7934 #define reject_bad_reg(reg) \
7935 do \
7936 if (reg == REG_PC) \
7937 { \
7938 inst.error = BAD_PC; \
7939 return; \
7940 } \
7941 else if (reg == REG_SP \
7942 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8)) \
7943 { \
7944 inst.error = BAD_SP; \
7945 return; \
7946 } \
7947 while (0)
7948
7949 /* If REG is R13 (the stack pointer), warn that its use is
7950 deprecated. */
7951 #define warn_deprecated_sp(reg) \
7952 do \
7953 if (warn_on_deprecated && reg == REG_SP) \
7954 as_tsktsk (_("use of r13 is deprecated")); \
7955 while (0)
7956
7957 /* Functions for operand encoding. ARM, then Thumb. */
7958
7959 #define rotate_left(v, n) (v << (n & 31) | v >> ((32 - n) & 31))
7960
7961 /* If the current inst is scalar ARMv8.2 fp16 instruction, do special encoding.
7962
7963 The only binary encoding difference is the Coprocessor number. Coprocessor
7964 9 is used for half-precision calculations or conversions. The format of the
7965 instruction is the same as the equivalent Coprocessor 10 instruction that
7966 exists for Single-Precision operation. */
7967
7968 static void
7969 do_scalar_fp16_v82_encode (void)
7970 {
7971 if (inst.cond < COND_ALWAYS)
7972 as_warn (_("ARMv8.2 scalar fp16 instruction cannot be conditional,"
7973 " the behaviour is UNPREDICTABLE"));
7974 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16),
7975 _(BAD_FP16));
7976
7977 inst.instruction = (inst.instruction & 0xfffff0ff) | 0x900;
7978 mark_feature_used (&arm_ext_fp16);
7979 }
7980
7981 /* If VAL can be encoded in the immediate field of an ARM instruction,
7982 return the encoded form. Otherwise, return FAIL. */
7983
7984 static unsigned int
7985 encode_arm_immediate (unsigned int val)
7986 {
7987 unsigned int a, i;
7988
7989 if (val <= 0xff)
7990 return val;
7991
7992 for (i = 2; i < 32; i += 2)
7993 if ((a = rotate_left (val, i)) <= 0xff)
7994 return a | (i << 7); /* 12-bit pack: [shift-cnt,const]. */
7995
7996 return FAIL;
7997 }
7998
7999 /* If VAL can be encoded in the immediate field of a Thumb32 instruction,
8000 return the encoded form. Otherwise, return FAIL. */
8001 static unsigned int
8002 encode_thumb32_immediate (unsigned int val)
8003 {
8004 unsigned int a, i;
8005
8006 if (val <= 0xff)
8007 return val;
8008
8009 for (i = 1; i <= 24; i++)
8010 {
8011 a = val >> i;
8012 if ((val & ~(0xff << i)) == 0)
8013 return ((val >> i) & 0x7f) | ((32 - i) << 7);
8014 }
8015
8016 a = val & 0xff;
8017 if (val == ((a << 16) | a))
8018 return 0x100 | a;
8019 if (val == ((a << 24) | (a << 16) | (a << 8) | a))
8020 return 0x300 | a;
8021
8022 a = val & 0xff00;
8023 if (val == ((a << 16) | a))
8024 return 0x200 | (a >> 8);
8025
8026 return FAIL;
8027 }
8028 /* Encode a VFP SP or DP register number into inst.instruction. */
8029
8030 static void
8031 encode_arm_vfp_reg (int reg, enum vfp_reg_pos pos)
8032 {
8033 if ((pos == VFP_REG_Dd || pos == VFP_REG_Dn || pos == VFP_REG_Dm)
8034 && reg > 15)
8035 {
8036 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_d32))
8037 {
8038 if (thumb_mode)
8039 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
8040 fpu_vfp_ext_d32);
8041 else
8042 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
8043 fpu_vfp_ext_d32);
8044 }
8045 else
8046 {
8047 first_error (_("D register out of range for selected VFP version"));
8048 return;
8049 }
8050 }
8051
8052 switch (pos)
8053 {
8054 case VFP_REG_Sd:
8055 inst.instruction |= ((reg >> 1) << 12) | ((reg & 1) << 22);
8056 break;
8057
8058 case VFP_REG_Sn:
8059 inst.instruction |= ((reg >> 1) << 16) | ((reg & 1) << 7);
8060 break;
8061
8062 case VFP_REG_Sm:
8063 inst.instruction |= ((reg >> 1) << 0) | ((reg & 1) << 5);
8064 break;
8065
8066 case VFP_REG_Dd:
8067 inst.instruction |= ((reg & 15) << 12) | ((reg >> 4) << 22);
8068 break;
8069
8070 case VFP_REG_Dn:
8071 inst.instruction |= ((reg & 15) << 16) | ((reg >> 4) << 7);
8072 break;
8073
8074 case VFP_REG_Dm:
8075 inst.instruction |= (reg & 15) | ((reg >> 4) << 5);
8076 break;
8077
8078 default:
8079 abort ();
8080 }
8081 }
8082
8083 /* Encode a <shift> in an ARM-format instruction. The immediate,
8084 if any, is handled by md_apply_fix. */
8085 static void
8086 encode_arm_shift (int i)
8087 {
8088 /* register-shifted register. */
8089 if (inst.operands[i].immisreg)
8090 {
8091 int op_index;
8092 for (op_index = 0; op_index <= i; ++op_index)
8093 {
8094 /* Check the operand only when it's presented. In pre-UAL syntax,
8095 if the destination register is the same as the first operand, two
8096 register form of the instruction can be used. */
8097 if (inst.operands[op_index].present && inst.operands[op_index].isreg
8098 && inst.operands[op_index].reg == REG_PC)
8099 as_warn (UNPRED_REG ("r15"));
8100 }
8101
8102 if (inst.operands[i].imm == REG_PC)
8103 as_warn (UNPRED_REG ("r15"));
8104 }
8105
8106 if (inst.operands[i].shift_kind == SHIFT_RRX)
8107 inst.instruction |= SHIFT_ROR << 5;
8108 else
8109 {
8110 inst.instruction |= inst.operands[i].shift_kind << 5;
8111 if (inst.operands[i].immisreg)
8112 {
8113 inst.instruction |= SHIFT_BY_REG;
8114 inst.instruction |= inst.operands[i].imm << 8;
8115 }
8116 else
8117 inst.relocs[0].type = BFD_RELOC_ARM_SHIFT_IMM;
8118 }
8119 }
8120
8121 static void
8122 encode_arm_shifter_operand (int i)
8123 {
8124 if (inst.operands[i].isreg)
8125 {
8126 inst.instruction |= inst.operands[i].reg;
8127 encode_arm_shift (i);
8128 }
8129 else
8130 {
8131 inst.instruction |= INST_IMMEDIATE;
8132 if (inst.relocs[0].type != BFD_RELOC_ARM_IMMEDIATE)
8133 inst.instruction |= inst.operands[i].imm;
8134 }
8135 }
8136
8137 /* Subroutine of encode_arm_addr_mode_2 and encode_arm_addr_mode_3. */
8138 static void
8139 encode_arm_addr_mode_common (int i, bfd_boolean is_t)
8140 {
8141 /* PR 14260:
8142 Generate an error if the operand is not a register. */
8143 constraint (!inst.operands[i].isreg,
8144 _("Instruction does not support =N addresses"));
8145
8146 inst.instruction |= inst.operands[i].reg << 16;
8147
8148 if (inst.operands[i].preind)
8149 {
8150 if (is_t)
8151 {
8152 inst.error = _("instruction does not accept preindexed addressing");
8153 return;
8154 }
8155 inst.instruction |= PRE_INDEX;
8156 if (inst.operands[i].writeback)
8157 inst.instruction |= WRITE_BACK;
8158
8159 }
8160 else if (inst.operands[i].postind)
8161 {
8162 gas_assert (inst.operands[i].writeback);
8163 if (is_t)
8164 inst.instruction |= WRITE_BACK;
8165 }
8166 else /* unindexed - only for coprocessor */
8167 {
8168 inst.error = _("instruction does not accept unindexed addressing");
8169 return;
8170 }
8171
8172 if (((inst.instruction & WRITE_BACK) || !(inst.instruction & PRE_INDEX))
8173 && (((inst.instruction & 0x000f0000) >> 16)
8174 == ((inst.instruction & 0x0000f000) >> 12)))
8175 as_warn ((inst.instruction & LOAD_BIT)
8176 ? _("destination register same as write-back base")
8177 : _("source register same as write-back base"));
8178 }
8179
8180 /* inst.operands[i] was set up by parse_address. Encode it into an
8181 ARM-format mode 2 load or store instruction. If is_t is true,
8182 reject forms that cannot be used with a T instruction (i.e. not
8183 post-indexed). */
8184 static void
8185 encode_arm_addr_mode_2 (int i, bfd_boolean is_t)
8186 {
8187 const bfd_boolean is_pc = (inst.operands[i].reg == REG_PC);
8188
8189 encode_arm_addr_mode_common (i, is_t);
8190
8191 if (inst.operands[i].immisreg)
8192 {
8193 constraint ((inst.operands[i].imm == REG_PC
8194 || (is_pc && inst.operands[i].writeback)),
8195 BAD_PC_ADDRESSING);
8196 inst.instruction |= INST_IMMEDIATE; /* yes, this is backwards */
8197 inst.instruction |= inst.operands[i].imm;
8198 if (!inst.operands[i].negative)
8199 inst.instruction |= INDEX_UP;
8200 if (inst.operands[i].shifted)
8201 {
8202 if (inst.operands[i].shift_kind == SHIFT_RRX)
8203 inst.instruction |= SHIFT_ROR << 5;
8204 else
8205 {
8206 inst.instruction |= inst.operands[i].shift_kind << 5;
8207 inst.relocs[0].type = BFD_RELOC_ARM_SHIFT_IMM;
8208 }
8209 }
8210 }
8211 else /* immediate offset in inst.relocs[0] */
8212 {
8213 if (is_pc && !inst.relocs[0].pc_rel)
8214 {
8215 const bfd_boolean is_load = ((inst.instruction & LOAD_BIT) != 0);
8216
8217 /* If is_t is TRUE, it's called from do_ldstt. ldrt/strt
8218 cannot use PC in addressing.
8219 PC cannot be used in writeback addressing, either. */
8220 constraint ((is_t || inst.operands[i].writeback),
8221 BAD_PC_ADDRESSING);
8222
8223 /* Use of PC in str is deprecated for ARMv7. */
8224 if (warn_on_deprecated
8225 && !is_load
8226 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v7))
8227 as_tsktsk (_("use of PC in this instruction is deprecated"));
8228 }
8229
8230 if (inst.relocs[0].type == BFD_RELOC_UNUSED)
8231 {
8232 /* Prefer + for zero encoded value. */
8233 if (!inst.operands[i].negative)
8234 inst.instruction |= INDEX_UP;
8235 inst.relocs[0].type = BFD_RELOC_ARM_OFFSET_IMM;
8236 }
8237 }
8238 }
8239
8240 /* inst.operands[i] was set up by parse_address. Encode it into an
8241 ARM-format mode 3 load or store instruction. Reject forms that
8242 cannot be used with such instructions. If is_t is true, reject
8243 forms that cannot be used with a T instruction (i.e. not
8244 post-indexed). */
8245 static void
8246 encode_arm_addr_mode_3 (int i, bfd_boolean is_t)
8247 {
8248 if (inst.operands[i].immisreg && inst.operands[i].shifted)
8249 {
8250 inst.error = _("instruction does not accept scaled register index");
8251 return;
8252 }
8253
8254 encode_arm_addr_mode_common (i, is_t);
8255
8256 if (inst.operands[i].immisreg)
8257 {
8258 constraint ((inst.operands[i].imm == REG_PC
8259 || (is_t && inst.operands[i].reg == REG_PC)),
8260 BAD_PC_ADDRESSING);
8261 constraint (inst.operands[i].reg == REG_PC && inst.operands[i].writeback,
8262 BAD_PC_WRITEBACK);
8263 inst.instruction |= inst.operands[i].imm;
8264 if (!inst.operands[i].negative)
8265 inst.instruction |= INDEX_UP;
8266 }
8267 else /* immediate offset in inst.relocs[0] */
8268 {
8269 constraint ((inst.operands[i].reg == REG_PC && !inst.relocs[0].pc_rel
8270 && inst.operands[i].writeback),
8271 BAD_PC_WRITEBACK);
8272 inst.instruction |= HWOFFSET_IMM;
8273 if (inst.relocs[0].type == BFD_RELOC_UNUSED)
8274 {
8275 /* Prefer + for zero encoded value. */
8276 if (!inst.operands[i].negative)
8277 inst.instruction |= INDEX_UP;
8278
8279 inst.relocs[0].type = BFD_RELOC_ARM_OFFSET_IMM8;
8280 }
8281 }
8282 }
8283
8284 /* Write immediate bits [7:0] to the following locations:
8285
8286 |28/24|23 19|18 16|15 4|3 0|
8287 | a |x x x x x|b c d|x x x x x x x x x x x x|e f g h|
8288
8289 This function is used by VMOV/VMVN/VORR/VBIC. */
8290
8291 static void
8292 neon_write_immbits (unsigned immbits)
8293 {
8294 inst.instruction |= immbits & 0xf;
8295 inst.instruction |= ((immbits >> 4) & 0x7) << 16;
8296 inst.instruction |= ((immbits >> 7) & 0x1) << (thumb_mode ? 28 : 24);
8297 }
8298
8299 /* Invert low-order SIZE bits of XHI:XLO. */
8300
8301 static void
8302 neon_invert_size (unsigned *xlo, unsigned *xhi, int size)
8303 {
8304 unsigned immlo = xlo ? *xlo : 0;
8305 unsigned immhi = xhi ? *xhi : 0;
8306
8307 switch (size)
8308 {
8309 case 8:
8310 immlo = (~immlo) & 0xff;
8311 break;
8312
8313 case 16:
8314 immlo = (~immlo) & 0xffff;
8315 break;
8316
8317 case 64:
8318 immhi = (~immhi) & 0xffffffff;
8319 /* fall through. */
8320
8321 case 32:
8322 immlo = (~immlo) & 0xffffffff;
8323 break;
8324
8325 default:
8326 abort ();
8327 }
8328
8329 if (xlo)
8330 *xlo = immlo;
8331
8332 if (xhi)
8333 *xhi = immhi;
8334 }
8335
8336 /* True if IMM has form 0bAAAAAAAABBBBBBBBCCCCCCCCDDDDDDDD for bits
8337 A, B, C, D. */
8338
8339 static int
8340 neon_bits_same_in_bytes (unsigned imm)
8341 {
8342 return ((imm & 0x000000ff) == 0 || (imm & 0x000000ff) == 0x000000ff)
8343 && ((imm & 0x0000ff00) == 0 || (imm & 0x0000ff00) == 0x0000ff00)
8344 && ((imm & 0x00ff0000) == 0 || (imm & 0x00ff0000) == 0x00ff0000)
8345 && ((imm & 0xff000000) == 0 || (imm & 0xff000000) == 0xff000000);
8346 }
8347
8348 /* For immediate of above form, return 0bABCD. */
8349
8350 static unsigned
8351 neon_squash_bits (unsigned imm)
8352 {
8353 return (imm & 0x01) | ((imm & 0x0100) >> 7) | ((imm & 0x010000) >> 14)
8354 | ((imm & 0x01000000) >> 21);
8355 }
8356
8357 /* Compress quarter-float representation to 0b...000 abcdefgh. */
8358
8359 static unsigned
8360 neon_qfloat_bits (unsigned imm)
8361 {
8362 return ((imm >> 19) & 0x7f) | ((imm >> 24) & 0x80);
8363 }
8364
8365 /* Returns CMODE. IMMBITS [7:0] is set to bits suitable for inserting into
8366 the instruction. *OP is passed as the initial value of the op field, and
8367 may be set to a different value depending on the constant (i.e.
8368 "MOV I64, 0bAAAAAAAABBBB..." which uses OP = 1 despite being MOV not
8369 MVN). If the immediate looks like a repeated pattern then also
8370 try smaller element sizes. */
8371
8372 static int
8373 neon_cmode_for_move_imm (unsigned immlo, unsigned immhi, int float_p,
8374 unsigned *immbits, int *op, int size,
8375 enum neon_el_type type)
8376 {
8377 /* Only permit float immediates (including 0.0/-0.0) if the operand type is
8378 float. */
8379 if (type == NT_float && !float_p)
8380 return FAIL;
8381
8382 if (type == NT_float && is_quarter_float (immlo) && immhi == 0)
8383 {
8384 if (size != 32 || *op == 1)
8385 return FAIL;
8386 *immbits = neon_qfloat_bits (immlo);
8387 return 0xf;
8388 }
8389
8390 if (size == 64)
8391 {
8392 if (neon_bits_same_in_bytes (immhi)
8393 && neon_bits_same_in_bytes (immlo))
8394 {
8395 if (*op == 1)
8396 return FAIL;
8397 *immbits = (neon_squash_bits (immhi) << 4)
8398 | neon_squash_bits (immlo);
8399 *op = 1;
8400 return 0xe;
8401 }
8402
8403 if (immhi != immlo)
8404 return FAIL;
8405 }
8406
8407 if (size >= 32)
8408 {
8409 if (immlo == (immlo & 0x000000ff))
8410 {
8411 *immbits = immlo;
8412 return 0x0;
8413 }
8414 else if (immlo == (immlo & 0x0000ff00))
8415 {
8416 *immbits = immlo >> 8;
8417 return 0x2;
8418 }
8419 else if (immlo == (immlo & 0x00ff0000))
8420 {
8421 *immbits = immlo >> 16;
8422 return 0x4;
8423 }
8424 else if (immlo == (immlo & 0xff000000))
8425 {
8426 *immbits = immlo >> 24;
8427 return 0x6;
8428 }
8429 else if (immlo == ((immlo & 0x0000ff00) | 0x000000ff))
8430 {
8431 *immbits = (immlo >> 8) & 0xff;
8432 return 0xc;
8433 }
8434 else if (immlo == ((immlo & 0x00ff0000) | 0x0000ffff))
8435 {
8436 *immbits = (immlo >> 16) & 0xff;
8437 return 0xd;
8438 }
8439
8440 if ((immlo & 0xffff) != (immlo >> 16))
8441 return FAIL;
8442 immlo &= 0xffff;
8443 }
8444
8445 if (size >= 16)
8446 {
8447 if (immlo == (immlo & 0x000000ff))
8448 {
8449 *immbits = immlo;
8450 return 0x8;
8451 }
8452 else if (immlo == (immlo & 0x0000ff00))
8453 {
8454 *immbits = immlo >> 8;
8455 return 0xa;
8456 }
8457
8458 if ((immlo & 0xff) != (immlo >> 8))
8459 return FAIL;
8460 immlo &= 0xff;
8461 }
8462
8463 if (immlo == (immlo & 0x000000ff))
8464 {
8465 /* Don't allow MVN with 8-bit immediate. */
8466 if (*op == 1)
8467 return FAIL;
8468 *immbits = immlo;
8469 return 0xe;
8470 }
8471
8472 return FAIL;
8473 }
8474
8475 #if defined BFD_HOST_64_BIT
8476 /* Returns TRUE if double precision value V may be cast
8477 to single precision without loss of accuracy. */
8478
8479 static bfd_boolean
8480 is_double_a_single (bfd_int64_t v)
8481 {
8482 int exp = (int)((v >> 52) & 0x7FF);
8483 bfd_int64_t mantissa = (v & (bfd_int64_t)0xFFFFFFFFFFFFFULL);
8484
8485 return (exp == 0 || exp == 0x7FF
8486 || (exp >= 1023 - 126 && exp <= 1023 + 127))
8487 && (mantissa & 0x1FFFFFFFl) == 0;
8488 }
8489
8490 /* Returns a double precision value casted to single precision
8491 (ignoring the least significant bits in exponent and mantissa). */
8492
8493 static int
8494 double_to_single (bfd_int64_t v)
8495 {
8496 int sign = (int) ((v >> 63) & 1l);
8497 int exp = (int) ((v >> 52) & 0x7FF);
8498 bfd_int64_t mantissa = (v & (bfd_int64_t)0xFFFFFFFFFFFFFULL);
8499
8500 if (exp == 0x7FF)
8501 exp = 0xFF;
8502 else
8503 {
8504 exp = exp - 1023 + 127;
8505 if (exp >= 0xFF)
8506 {
8507 /* Infinity. */
8508 exp = 0x7F;
8509 mantissa = 0;
8510 }
8511 else if (exp < 0)
8512 {
8513 /* No denormalized numbers. */
8514 exp = 0;
8515 mantissa = 0;
8516 }
8517 }
8518 mantissa >>= 29;
8519 return (sign << 31) | (exp << 23) | mantissa;
8520 }
8521 #endif /* BFD_HOST_64_BIT */
8522
8523 enum lit_type
8524 {
8525 CONST_THUMB,
8526 CONST_ARM,
8527 CONST_VEC
8528 };
8529
8530 static void do_vfp_nsyn_opcode (const char *);
8531
8532 /* inst.relocs[0].exp describes an "=expr" load pseudo-operation.
8533 Determine whether it can be performed with a move instruction; if
8534 it can, convert inst.instruction to that move instruction and
8535 return TRUE; if it can't, convert inst.instruction to a literal-pool
8536 load and return FALSE. If this is not a valid thing to do in the
8537 current context, set inst.error and return TRUE.
8538
8539 inst.operands[i] describes the destination register. */
8540
8541 static bfd_boolean
8542 move_or_literal_pool (int i, enum lit_type t, bfd_boolean mode_3)
8543 {
8544 unsigned long tbit;
8545 bfd_boolean thumb_p = (t == CONST_THUMB);
8546 bfd_boolean arm_p = (t == CONST_ARM);
8547
8548 if (thumb_p)
8549 tbit = (inst.instruction > 0xffff) ? THUMB2_LOAD_BIT : THUMB_LOAD_BIT;
8550 else
8551 tbit = LOAD_BIT;
8552
8553 if ((inst.instruction & tbit) == 0)
8554 {
8555 inst.error = _("invalid pseudo operation");
8556 return TRUE;
8557 }
8558
8559 if (inst.relocs[0].exp.X_op != O_constant
8560 && inst.relocs[0].exp.X_op != O_symbol
8561 && inst.relocs[0].exp.X_op != O_big)
8562 {
8563 inst.error = _("constant expression expected");
8564 return TRUE;
8565 }
8566
8567 if (inst.relocs[0].exp.X_op == O_constant
8568 || inst.relocs[0].exp.X_op == O_big)
8569 {
8570 #if defined BFD_HOST_64_BIT
8571 bfd_int64_t v;
8572 #else
8573 offsetT v;
8574 #endif
8575 if (inst.relocs[0].exp.X_op == O_big)
8576 {
8577 LITTLENUM_TYPE w[X_PRECISION];
8578 LITTLENUM_TYPE * l;
8579
8580 if (inst.relocs[0].exp.X_add_number == -1)
8581 {
8582 gen_to_words (w, X_PRECISION, E_PRECISION);
8583 l = w;
8584 /* FIXME: Should we check words w[2..5] ? */
8585 }
8586 else
8587 l = generic_bignum;
8588
8589 #if defined BFD_HOST_64_BIT
8590 v =
8591 ((((((((bfd_int64_t) l[3] & LITTLENUM_MASK)
8592 << LITTLENUM_NUMBER_OF_BITS)
8593 | ((bfd_int64_t) l[2] & LITTLENUM_MASK))
8594 << LITTLENUM_NUMBER_OF_BITS)
8595 | ((bfd_int64_t) l[1] & LITTLENUM_MASK))
8596 << LITTLENUM_NUMBER_OF_BITS)
8597 | ((bfd_int64_t) l[0] & LITTLENUM_MASK));
8598 #else
8599 v = ((l[1] & LITTLENUM_MASK) << LITTLENUM_NUMBER_OF_BITS)
8600 | (l[0] & LITTLENUM_MASK);
8601 #endif
8602 }
8603 else
8604 v = inst.relocs[0].exp.X_add_number;
8605
8606 if (!inst.operands[i].issingle)
8607 {
8608 if (thumb_p)
8609 {
8610 /* LDR should not use lead in a flag-setting instruction being
8611 chosen so we do not check whether movs can be used. */
8612
8613 if ((ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2)
8614 || ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2_v8m))
8615 && inst.operands[i].reg != 13
8616 && inst.operands[i].reg != 15)
8617 {
8618 /* Check if on thumb2 it can be done with a mov.w, mvn or
8619 movw instruction. */
8620 unsigned int newimm;
8621 bfd_boolean isNegated;
8622
8623 newimm = encode_thumb32_immediate (v);
8624 if (newimm != (unsigned int) FAIL)
8625 isNegated = FALSE;
8626 else
8627 {
8628 newimm = encode_thumb32_immediate (~v);
8629 if (newimm != (unsigned int) FAIL)
8630 isNegated = TRUE;
8631 }
8632
8633 /* The number can be loaded with a mov.w or mvn
8634 instruction. */
8635 if (newimm != (unsigned int) FAIL
8636 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2))
8637 {
8638 inst.instruction = (0xf04f0000 /* MOV.W. */
8639 | (inst.operands[i].reg << 8));
8640 /* Change to MOVN. */
8641 inst.instruction |= (isNegated ? 0x200000 : 0);
8642 inst.instruction |= (newimm & 0x800) << 15;
8643 inst.instruction |= (newimm & 0x700) << 4;
8644 inst.instruction |= (newimm & 0x0ff);
8645 return TRUE;
8646 }
8647 /* The number can be loaded with a movw instruction. */
8648 else if ((v & ~0xFFFF) == 0
8649 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2_v8m))
8650 {
8651 int imm = v & 0xFFFF;
8652
8653 inst.instruction = 0xf2400000; /* MOVW. */
8654 inst.instruction |= (inst.operands[i].reg << 8);
8655 inst.instruction |= (imm & 0xf000) << 4;
8656 inst.instruction |= (imm & 0x0800) << 15;
8657 inst.instruction |= (imm & 0x0700) << 4;
8658 inst.instruction |= (imm & 0x00ff);
8659 return TRUE;
8660 }
8661 }
8662 }
8663 else if (arm_p)
8664 {
8665 int value = encode_arm_immediate (v);
8666
8667 if (value != FAIL)
8668 {
8669 /* This can be done with a mov instruction. */
8670 inst.instruction &= LITERAL_MASK;
8671 inst.instruction |= INST_IMMEDIATE | (OPCODE_MOV << DATA_OP_SHIFT);
8672 inst.instruction |= value & 0xfff;
8673 return TRUE;
8674 }
8675
8676 value = encode_arm_immediate (~ v);
8677 if (value != FAIL)
8678 {
8679 /* This can be done with a mvn instruction. */
8680 inst.instruction &= LITERAL_MASK;
8681 inst.instruction |= INST_IMMEDIATE | (OPCODE_MVN << DATA_OP_SHIFT);
8682 inst.instruction |= value & 0xfff;
8683 return TRUE;
8684 }
8685 }
8686 else if (t == CONST_VEC && ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1))
8687 {
8688 int op = 0;
8689 unsigned immbits = 0;
8690 unsigned immlo = inst.operands[1].imm;
8691 unsigned immhi = inst.operands[1].regisimm
8692 ? inst.operands[1].reg
8693 : inst.relocs[0].exp.X_unsigned
8694 ? 0
8695 : ((bfd_int64_t)((int) immlo)) >> 32;
8696 int cmode = neon_cmode_for_move_imm (immlo, immhi, FALSE, &immbits,
8697 &op, 64, NT_invtype);
8698
8699 if (cmode == FAIL)
8700 {
8701 neon_invert_size (&immlo, &immhi, 64);
8702 op = !op;
8703 cmode = neon_cmode_for_move_imm (immlo, immhi, FALSE, &immbits,
8704 &op, 64, NT_invtype);
8705 }
8706
8707 if (cmode != FAIL)
8708 {
8709 inst.instruction = (inst.instruction & VLDR_VMOV_SAME)
8710 | (1 << 23)
8711 | (cmode << 8)
8712 | (op << 5)
8713 | (1 << 4);
8714
8715 /* Fill other bits in vmov encoding for both thumb and arm. */
8716 if (thumb_mode)
8717 inst.instruction |= (0x7U << 29) | (0xF << 24);
8718 else
8719 inst.instruction |= (0xFU << 28) | (0x1 << 25);
8720 neon_write_immbits (immbits);
8721 return TRUE;
8722 }
8723 }
8724 }
8725
8726 if (t == CONST_VEC)
8727 {
8728 /* Check if vldr Rx, =constant could be optimized to vmov Rx, #constant. */
8729 if (inst.operands[i].issingle
8730 && is_quarter_float (inst.operands[1].imm)
8731 && ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v3xd))
8732 {
8733 inst.operands[1].imm =
8734 neon_qfloat_bits (v);
8735 do_vfp_nsyn_opcode ("fconsts");
8736 return TRUE;
8737 }
8738
8739 /* If our host does not support a 64-bit type then we cannot perform
8740 the following optimization. This mean that there will be a
8741 discrepancy between the output produced by an assembler built for
8742 a 32-bit-only host and the output produced from a 64-bit host, but
8743 this cannot be helped. */
8744 #if defined BFD_HOST_64_BIT
8745 else if (!inst.operands[1].issingle
8746 && ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v3))
8747 {
8748 if (is_double_a_single (v)
8749 && is_quarter_float (double_to_single (v)))
8750 {
8751 inst.operands[1].imm =
8752 neon_qfloat_bits (double_to_single (v));
8753 do_vfp_nsyn_opcode ("fconstd");
8754 return TRUE;
8755 }
8756 }
8757 #endif
8758 }
8759 }
8760
8761 if (add_to_lit_pool ((!inst.operands[i].isvec
8762 || inst.operands[i].issingle) ? 4 : 8) == FAIL)
8763 return TRUE;
8764
8765 inst.operands[1].reg = REG_PC;
8766 inst.operands[1].isreg = 1;
8767 inst.operands[1].preind = 1;
8768 inst.relocs[0].pc_rel = 1;
8769 inst.relocs[0].type = (thumb_p
8770 ? BFD_RELOC_ARM_THUMB_OFFSET
8771 : (mode_3
8772 ? BFD_RELOC_ARM_HWLITERAL
8773 : BFD_RELOC_ARM_LITERAL));
8774 return FALSE;
8775 }
8776
8777 /* inst.operands[i] was set up by parse_address. Encode it into an
8778 ARM-format instruction. Reject all forms which cannot be encoded
8779 into a coprocessor load/store instruction. If wb_ok is false,
8780 reject use of writeback; if unind_ok is false, reject use of
8781 unindexed addressing. If reloc_override is not 0, use it instead
8782 of BFD_ARM_CP_OFF_IMM, unless the initial relocation is a group one
8783 (in which case it is preserved). */
8784
8785 static int
8786 encode_arm_cp_address (int i, int wb_ok, int unind_ok, int reloc_override)
8787 {
8788 if (!inst.operands[i].isreg)
8789 {
8790 /* PR 18256 */
8791 if (! inst.operands[0].isvec)
8792 {
8793 inst.error = _("invalid co-processor operand");
8794 return FAIL;
8795 }
8796 if (move_or_literal_pool (0, CONST_VEC, /*mode_3=*/FALSE))
8797 return SUCCESS;
8798 }
8799
8800 inst.instruction |= inst.operands[i].reg << 16;
8801
8802 gas_assert (!(inst.operands[i].preind && inst.operands[i].postind));
8803
8804 if (!inst.operands[i].preind && !inst.operands[i].postind) /* unindexed */
8805 {
8806 gas_assert (!inst.operands[i].writeback);
8807 if (!unind_ok)
8808 {
8809 inst.error = _("instruction does not support unindexed addressing");
8810 return FAIL;
8811 }
8812 inst.instruction |= inst.operands[i].imm;
8813 inst.instruction |= INDEX_UP;
8814 return SUCCESS;
8815 }
8816
8817 if (inst.operands[i].preind)
8818 inst.instruction |= PRE_INDEX;
8819
8820 if (inst.operands[i].writeback)
8821 {
8822 if (inst.operands[i].reg == REG_PC)
8823 {
8824 inst.error = _("pc may not be used with write-back");
8825 return FAIL;
8826 }
8827 if (!wb_ok)
8828 {
8829 inst.error = _("instruction does not support writeback");
8830 return FAIL;
8831 }
8832 inst.instruction |= WRITE_BACK;
8833 }
8834
8835 if (reloc_override)
8836 inst.relocs[0].type = (bfd_reloc_code_real_type) reloc_override;
8837 else if ((inst.relocs[0].type < BFD_RELOC_ARM_ALU_PC_G0_NC
8838 || inst.relocs[0].type > BFD_RELOC_ARM_LDC_SB_G2)
8839 && inst.relocs[0].type != BFD_RELOC_ARM_LDR_PC_G0)
8840 {
8841 if (thumb_mode)
8842 inst.relocs[0].type = BFD_RELOC_ARM_T32_CP_OFF_IMM;
8843 else
8844 inst.relocs[0].type = BFD_RELOC_ARM_CP_OFF_IMM;
8845 }
8846
8847 /* Prefer + for zero encoded value. */
8848 if (!inst.operands[i].negative)
8849 inst.instruction |= INDEX_UP;
8850
8851 return SUCCESS;
8852 }
8853
8854 /* Functions for instruction encoding, sorted by sub-architecture.
8855 First some generics; their names are taken from the conventional
8856 bit positions for register arguments in ARM format instructions. */
8857
8858 static void
8859 do_noargs (void)
8860 {
8861 }
8862
8863 static void
8864 do_rd (void)
8865 {
8866 inst.instruction |= inst.operands[0].reg << 12;
8867 }
8868
8869 static void
8870 do_rn (void)
8871 {
8872 inst.instruction |= inst.operands[0].reg << 16;
8873 }
8874
8875 static void
8876 do_rd_rm (void)
8877 {
8878 inst.instruction |= inst.operands[0].reg << 12;
8879 inst.instruction |= inst.operands[1].reg;
8880 }
8881
8882 static void
8883 do_rm_rn (void)
8884 {
8885 inst.instruction |= inst.operands[0].reg;
8886 inst.instruction |= inst.operands[1].reg << 16;
8887 }
8888
8889 static void
8890 do_rd_rn (void)
8891 {
8892 inst.instruction |= inst.operands[0].reg << 12;
8893 inst.instruction |= inst.operands[1].reg << 16;
8894 }
8895
8896 static void
8897 do_rn_rd (void)
8898 {
8899 inst.instruction |= inst.operands[0].reg << 16;
8900 inst.instruction |= inst.operands[1].reg << 12;
8901 }
8902
8903 static void
8904 do_tt (void)
8905 {
8906 inst.instruction |= inst.operands[0].reg << 8;
8907 inst.instruction |= inst.operands[1].reg << 16;
8908 }
8909
8910 static bfd_boolean
8911 check_obsolete (const arm_feature_set *feature, const char *msg)
8912 {
8913 if (ARM_CPU_IS_ANY (cpu_variant))
8914 {
8915 as_tsktsk ("%s", msg);
8916 return TRUE;
8917 }
8918 else if (ARM_CPU_HAS_FEATURE (cpu_variant, *feature))
8919 {
8920 as_bad ("%s", msg);
8921 return TRUE;
8922 }
8923
8924 return FALSE;
8925 }
8926
8927 static void
8928 do_rd_rm_rn (void)
8929 {
8930 unsigned Rn = inst.operands[2].reg;
8931 /* Enforce restrictions on SWP instruction. */
8932 if ((inst.instruction & 0x0fbfffff) == 0x01000090)
8933 {
8934 constraint (Rn == inst.operands[0].reg || Rn == inst.operands[1].reg,
8935 _("Rn must not overlap other operands"));
8936
8937 /* SWP{b} is obsolete for ARMv8-A, and deprecated for ARMv6* and ARMv7.
8938 */
8939 if (!check_obsolete (&arm_ext_v8,
8940 _("swp{b} use is obsoleted for ARMv8 and later"))
8941 && warn_on_deprecated
8942 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6))
8943 as_tsktsk (_("swp{b} use is deprecated for ARMv6 and ARMv7"));
8944 }
8945
8946 inst.instruction |= inst.operands[0].reg << 12;
8947 inst.instruction |= inst.operands[1].reg;
8948 inst.instruction |= Rn << 16;
8949 }
8950
8951 static void
8952 do_rd_rn_rm (void)
8953 {
8954 inst.instruction |= inst.operands[0].reg << 12;
8955 inst.instruction |= inst.operands[1].reg << 16;
8956 inst.instruction |= inst.operands[2].reg;
8957 }
8958
8959 static void
8960 do_rm_rd_rn (void)
8961 {
8962 constraint ((inst.operands[2].reg == REG_PC), BAD_PC);
8963 constraint (((inst.relocs[0].exp.X_op != O_constant
8964 && inst.relocs[0].exp.X_op != O_illegal)
8965 || inst.relocs[0].exp.X_add_number != 0),
8966 BAD_ADDR_MODE);
8967 inst.instruction |= inst.operands[0].reg;
8968 inst.instruction |= inst.operands[1].reg << 12;
8969 inst.instruction |= inst.operands[2].reg << 16;
8970 }
8971
8972 static void
8973 do_imm0 (void)
8974 {
8975 inst.instruction |= inst.operands[0].imm;
8976 }
8977
8978 static void
8979 do_rd_cpaddr (void)
8980 {
8981 inst.instruction |= inst.operands[0].reg << 12;
8982 encode_arm_cp_address (1, TRUE, TRUE, 0);
8983 }
8984
8985 /* ARM instructions, in alphabetical order by function name (except
8986 that wrapper functions appear immediately after the function they
8987 wrap). */
8988
8989 /* This is a pseudo-op of the form "adr rd, label" to be converted
8990 into a relative address of the form "add rd, pc, #label-.-8". */
8991
8992 static void
8993 do_adr (void)
8994 {
8995 inst.instruction |= (inst.operands[0].reg << 12); /* Rd */
8996
8997 /* Frag hacking will turn this into a sub instruction if the offset turns
8998 out to be negative. */
8999 inst.relocs[0].type = BFD_RELOC_ARM_IMMEDIATE;
9000 inst.relocs[0].pc_rel = 1;
9001 inst.relocs[0].exp.X_add_number -= 8;
9002
9003 if (support_interwork
9004 && inst.relocs[0].exp.X_op == O_symbol
9005 && inst.relocs[0].exp.X_add_symbol != NULL
9006 && S_IS_DEFINED (inst.relocs[0].exp.X_add_symbol)
9007 && THUMB_IS_FUNC (inst.relocs[0].exp.X_add_symbol))
9008 inst.relocs[0].exp.X_add_number |= 1;
9009 }
9010
9011 /* This is a pseudo-op of the form "adrl rd, label" to be converted
9012 into a relative address of the form:
9013 add rd, pc, #low(label-.-8)"
9014 add rd, rd, #high(label-.-8)" */
9015
9016 static void
9017 do_adrl (void)
9018 {
9019 inst.instruction |= (inst.operands[0].reg << 12); /* Rd */
9020
9021 /* Frag hacking will turn this into a sub instruction if the offset turns
9022 out to be negative. */
9023 inst.relocs[0].type = BFD_RELOC_ARM_ADRL_IMMEDIATE;
9024 inst.relocs[0].pc_rel = 1;
9025 inst.size = INSN_SIZE * 2;
9026 inst.relocs[0].exp.X_add_number -= 8;
9027
9028 if (support_interwork
9029 && inst.relocs[0].exp.X_op == O_symbol
9030 && inst.relocs[0].exp.X_add_symbol != NULL
9031 && S_IS_DEFINED (inst.relocs[0].exp.X_add_symbol)
9032 && THUMB_IS_FUNC (inst.relocs[0].exp.X_add_symbol))
9033 inst.relocs[0].exp.X_add_number |= 1;
9034 }
9035
9036 static void
9037 do_arit (void)
9038 {
9039 constraint (inst.relocs[0].type >= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
9040 && inst.relocs[0].type <= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC ,
9041 THUMB1_RELOC_ONLY);
9042 if (!inst.operands[1].present)
9043 inst.operands[1].reg = inst.operands[0].reg;
9044 inst.instruction |= inst.operands[0].reg << 12;
9045 inst.instruction |= inst.operands[1].reg << 16;
9046 encode_arm_shifter_operand (2);
9047 }
9048
9049 static void
9050 do_barrier (void)
9051 {
9052 if (inst.operands[0].present)
9053 inst.instruction |= inst.operands[0].imm;
9054 else
9055 inst.instruction |= 0xf;
9056 }
9057
9058 static void
9059 do_bfc (void)
9060 {
9061 unsigned int msb = inst.operands[1].imm + inst.operands[2].imm;
9062 constraint (msb > 32, _("bit-field extends past end of register"));
9063 /* The instruction encoding stores the LSB and MSB,
9064 not the LSB and width. */
9065 inst.instruction |= inst.operands[0].reg << 12;
9066 inst.instruction |= inst.operands[1].imm << 7;
9067 inst.instruction |= (msb - 1) << 16;
9068 }
9069
9070 static void
9071 do_bfi (void)
9072 {
9073 unsigned int msb;
9074
9075 /* #0 in second position is alternative syntax for bfc, which is
9076 the same instruction but with REG_PC in the Rm field. */
9077 if (!inst.operands[1].isreg)
9078 inst.operands[1].reg = REG_PC;
9079
9080 msb = inst.operands[2].imm + inst.operands[3].imm;
9081 constraint (msb > 32, _("bit-field extends past end of register"));
9082 /* The instruction encoding stores the LSB and MSB,
9083 not the LSB and width. */
9084 inst.instruction |= inst.operands[0].reg << 12;
9085 inst.instruction |= inst.operands[1].reg;
9086 inst.instruction |= inst.operands[2].imm << 7;
9087 inst.instruction |= (msb - 1) << 16;
9088 }
9089
9090 static void
9091 do_bfx (void)
9092 {
9093 constraint (inst.operands[2].imm + inst.operands[3].imm > 32,
9094 _("bit-field extends past end of register"));
9095 inst.instruction |= inst.operands[0].reg << 12;
9096 inst.instruction |= inst.operands[1].reg;
9097 inst.instruction |= inst.operands[2].imm << 7;
9098 inst.instruction |= (inst.operands[3].imm - 1) << 16;
9099 }
9100
9101 /* ARM V5 breakpoint instruction (argument parse)
9102 BKPT <16 bit unsigned immediate>
9103 Instruction is not conditional.
9104 The bit pattern given in insns[] has the COND_ALWAYS condition,
9105 and it is an error if the caller tried to override that. */
9106
9107 static void
9108 do_bkpt (void)
9109 {
9110 /* Top 12 of 16 bits to bits 19:8. */
9111 inst.instruction |= (inst.operands[0].imm & 0xfff0) << 4;
9112
9113 /* Bottom 4 of 16 bits to bits 3:0. */
9114 inst.instruction |= inst.operands[0].imm & 0xf;
9115 }
9116
9117 static void
9118 encode_branch (int default_reloc)
9119 {
9120 if (inst.operands[0].hasreloc)
9121 {
9122 constraint (inst.operands[0].imm != BFD_RELOC_ARM_PLT32
9123 && inst.operands[0].imm != BFD_RELOC_ARM_TLS_CALL,
9124 _("the only valid suffixes here are '(plt)' and '(tlscall)'"));
9125 inst.relocs[0].type = inst.operands[0].imm == BFD_RELOC_ARM_PLT32
9126 ? BFD_RELOC_ARM_PLT32
9127 : thumb_mode ? BFD_RELOC_ARM_THM_TLS_CALL : BFD_RELOC_ARM_TLS_CALL;
9128 }
9129 else
9130 inst.relocs[0].type = (bfd_reloc_code_real_type) default_reloc;
9131 inst.relocs[0].pc_rel = 1;
9132 }
9133
9134 static void
9135 do_branch (void)
9136 {
9137 #ifdef OBJ_ELF
9138 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
9139 encode_branch (BFD_RELOC_ARM_PCREL_JUMP);
9140 else
9141 #endif
9142 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH);
9143 }
9144
9145 static void
9146 do_bl (void)
9147 {
9148 #ifdef OBJ_ELF
9149 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
9150 {
9151 if (inst.cond == COND_ALWAYS)
9152 encode_branch (BFD_RELOC_ARM_PCREL_CALL);
9153 else
9154 encode_branch (BFD_RELOC_ARM_PCREL_JUMP);
9155 }
9156 else
9157 #endif
9158 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH);
9159 }
9160
9161 /* ARM V5 branch-link-exchange instruction (argument parse)
9162 BLX <target_addr> ie BLX(1)
9163 BLX{<condition>} <Rm> ie BLX(2)
9164 Unfortunately, there are two different opcodes for this mnemonic.
9165 So, the insns[].value is not used, and the code here zaps values
9166 into inst.instruction.
9167 Also, the <target_addr> can be 25 bits, hence has its own reloc. */
9168
9169 static void
9170 do_blx (void)
9171 {
9172 if (inst.operands[0].isreg)
9173 {
9174 /* Arg is a register; the opcode provided by insns[] is correct.
9175 It is not illegal to do "blx pc", just useless. */
9176 if (inst.operands[0].reg == REG_PC)
9177 as_tsktsk (_("use of r15 in blx in ARM mode is not really useful"));
9178
9179 inst.instruction |= inst.operands[0].reg;
9180 }
9181 else
9182 {
9183 /* Arg is an address; this instruction cannot be executed
9184 conditionally, and the opcode must be adjusted.
9185 We retain the BFD_RELOC_ARM_PCREL_BLX till the very end
9186 where we generate out a BFD_RELOC_ARM_PCREL_CALL instead. */
9187 constraint (inst.cond != COND_ALWAYS, BAD_COND);
9188 inst.instruction = 0xfa000000;
9189 encode_branch (BFD_RELOC_ARM_PCREL_BLX);
9190 }
9191 }
9192
9193 static void
9194 do_bx (void)
9195 {
9196 bfd_boolean want_reloc;
9197
9198 if (inst.operands[0].reg == REG_PC)
9199 as_tsktsk (_("use of r15 in bx in ARM mode is not really useful"));
9200
9201 inst.instruction |= inst.operands[0].reg;
9202 /* Output R_ARM_V4BX relocations if is an EABI object that looks like
9203 it is for ARMv4t or earlier. */
9204 want_reloc = !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5);
9205 if (!ARM_FEATURE_ZERO (selected_object_arch)
9206 && !ARM_CPU_HAS_FEATURE (selected_object_arch, arm_ext_v5))
9207 want_reloc = TRUE;
9208
9209 #ifdef OBJ_ELF
9210 if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
9211 #endif
9212 want_reloc = FALSE;
9213
9214 if (want_reloc)
9215 inst.relocs[0].type = BFD_RELOC_ARM_V4BX;
9216 }
9217
9218
9219 /* ARM v5TEJ. Jump to Jazelle code. */
9220
9221 static void
9222 do_bxj (void)
9223 {
9224 if (inst.operands[0].reg == REG_PC)
9225 as_tsktsk (_("use of r15 in bxj is not really useful"));
9226
9227 inst.instruction |= inst.operands[0].reg;
9228 }
9229
9230 /* Co-processor data operation:
9231 CDP{cond} <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>}
9232 CDP2 <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>} */
9233 static void
9234 do_cdp (void)
9235 {
9236 inst.instruction |= inst.operands[0].reg << 8;
9237 inst.instruction |= inst.operands[1].imm << 20;
9238 inst.instruction |= inst.operands[2].reg << 12;
9239 inst.instruction |= inst.operands[3].reg << 16;
9240 inst.instruction |= inst.operands[4].reg;
9241 inst.instruction |= inst.operands[5].imm << 5;
9242 }
9243
9244 static void
9245 do_cmp (void)
9246 {
9247 inst.instruction |= inst.operands[0].reg << 16;
9248 encode_arm_shifter_operand (1);
9249 }
9250
9251 /* Transfer between coprocessor and ARM registers.
9252 MRC{cond} <coproc>, <opcode_1>, <Rd>, <CRn>, <CRm>{, <opcode_2>}
9253 MRC2
9254 MCR{cond}
9255 MCR2
9256
9257 No special properties. */
9258
9259 struct deprecated_coproc_regs_s
9260 {
9261 unsigned cp;
9262 int opc1;
9263 unsigned crn;
9264 unsigned crm;
9265 int opc2;
9266 arm_feature_set deprecated;
9267 arm_feature_set obsoleted;
9268 const char *dep_msg;
9269 const char *obs_msg;
9270 };
9271
9272 #define DEPR_ACCESS_V8 \
9273 N_("This coprocessor register access is deprecated in ARMv8")
9274
9275 /* Table of all deprecated coprocessor registers. */
9276 static struct deprecated_coproc_regs_s deprecated_coproc_regs[] =
9277 {
9278 {15, 0, 7, 10, 5, /* CP15DMB. */
9279 ARM_FEATURE_CORE_LOW (ARM_EXT_V8), ARM_ARCH_NONE,
9280 DEPR_ACCESS_V8, NULL},
9281 {15, 0, 7, 10, 4, /* CP15DSB. */
9282 ARM_FEATURE_CORE_LOW (ARM_EXT_V8), ARM_ARCH_NONE,
9283 DEPR_ACCESS_V8, NULL},
9284 {15, 0, 7, 5, 4, /* CP15ISB. */
9285 ARM_FEATURE_CORE_LOW (ARM_EXT_V8), ARM_ARCH_NONE,
9286 DEPR_ACCESS_V8, NULL},
9287 {14, 6, 1, 0, 0, /* TEEHBR. */
9288 ARM_FEATURE_CORE_LOW (ARM_EXT_V8), ARM_ARCH_NONE,
9289 DEPR_ACCESS_V8, NULL},
9290 {14, 6, 0, 0, 0, /* TEECR. */
9291 ARM_FEATURE_CORE_LOW (ARM_EXT_V8), ARM_ARCH_NONE,
9292 DEPR_ACCESS_V8, NULL},
9293 };
9294
9295 #undef DEPR_ACCESS_V8
9296
9297 static const size_t deprecated_coproc_reg_count =
9298 sizeof (deprecated_coproc_regs) / sizeof (deprecated_coproc_regs[0]);
9299
9300 static void
9301 do_co_reg (void)
9302 {
9303 unsigned Rd;
9304 size_t i;
9305
9306 Rd = inst.operands[2].reg;
9307 if (thumb_mode)
9308 {
9309 if (inst.instruction == 0xee000010
9310 || inst.instruction == 0xfe000010)
9311 /* MCR, MCR2 */
9312 reject_bad_reg (Rd);
9313 else if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
9314 /* MRC, MRC2 */
9315 constraint (Rd == REG_SP, BAD_SP);
9316 }
9317 else
9318 {
9319 /* MCR */
9320 if (inst.instruction == 0xe000010)
9321 constraint (Rd == REG_PC, BAD_PC);
9322 }
9323
9324 for (i = 0; i < deprecated_coproc_reg_count; ++i)
9325 {
9326 const struct deprecated_coproc_regs_s *r =
9327 deprecated_coproc_regs + i;
9328
9329 if (inst.operands[0].reg == r->cp
9330 && inst.operands[1].imm == r->opc1
9331 && inst.operands[3].reg == r->crn
9332 && inst.operands[4].reg == r->crm
9333 && inst.operands[5].imm == r->opc2)
9334 {
9335 if (! ARM_CPU_IS_ANY (cpu_variant)
9336 && warn_on_deprecated
9337 && ARM_CPU_HAS_FEATURE (cpu_variant, r->deprecated))
9338 as_tsktsk ("%s", r->dep_msg);
9339 }
9340 }
9341
9342 inst.instruction |= inst.operands[0].reg << 8;
9343 inst.instruction |= inst.operands[1].imm << 21;
9344 inst.instruction |= Rd << 12;
9345 inst.instruction |= inst.operands[3].reg << 16;
9346 inst.instruction |= inst.operands[4].reg;
9347 inst.instruction |= inst.operands[5].imm << 5;
9348 }
9349
9350 /* Transfer between coprocessor register and pair of ARM registers.
9351 MCRR{cond} <coproc>, <opcode>, <Rd>, <Rn>, <CRm>.
9352 MCRR2
9353 MRRC{cond}
9354 MRRC2
9355
9356 Two XScale instructions are special cases of these:
9357
9358 MAR{cond} acc0, <RdLo>, <RdHi> == MCRR{cond} p0, #0, <RdLo>, <RdHi>, c0
9359 MRA{cond} acc0, <RdLo>, <RdHi> == MRRC{cond} p0, #0, <RdLo>, <RdHi>, c0
9360
9361 Result unpredictable if Rd or Rn is R15. */
9362
9363 static void
9364 do_co_reg2c (void)
9365 {
9366 unsigned Rd, Rn;
9367
9368 Rd = inst.operands[2].reg;
9369 Rn = inst.operands[3].reg;
9370
9371 if (thumb_mode)
9372 {
9373 reject_bad_reg (Rd);
9374 reject_bad_reg (Rn);
9375 }
9376 else
9377 {
9378 constraint (Rd == REG_PC, BAD_PC);
9379 constraint (Rn == REG_PC, BAD_PC);
9380 }
9381
9382 /* Only check the MRRC{2} variants. */
9383 if ((inst.instruction & 0x0FF00000) == 0x0C500000)
9384 {
9385 /* If Rd == Rn, error that the operation is
9386 unpredictable (example MRRC p3,#1,r1,r1,c4). */
9387 constraint (Rd == Rn, BAD_OVERLAP);
9388 }
9389
9390 inst.instruction |= inst.operands[0].reg << 8;
9391 inst.instruction |= inst.operands[1].imm << 4;
9392 inst.instruction |= Rd << 12;
9393 inst.instruction |= Rn << 16;
9394 inst.instruction |= inst.operands[4].reg;
9395 }
9396
9397 static void
9398 do_cpsi (void)
9399 {
9400 inst.instruction |= inst.operands[0].imm << 6;
9401 if (inst.operands[1].present)
9402 {
9403 inst.instruction |= CPSI_MMOD;
9404 inst.instruction |= inst.operands[1].imm;
9405 }
9406 }
9407
9408 static void
9409 do_dbg (void)
9410 {
9411 inst.instruction |= inst.operands[0].imm;
9412 }
9413
9414 static void
9415 do_div (void)
9416 {
9417 unsigned Rd, Rn, Rm;
9418
9419 Rd = inst.operands[0].reg;
9420 Rn = (inst.operands[1].present
9421 ? inst.operands[1].reg : Rd);
9422 Rm = inst.operands[2].reg;
9423
9424 constraint ((Rd == REG_PC), BAD_PC);
9425 constraint ((Rn == REG_PC), BAD_PC);
9426 constraint ((Rm == REG_PC), BAD_PC);
9427
9428 inst.instruction |= Rd << 16;
9429 inst.instruction |= Rn << 0;
9430 inst.instruction |= Rm << 8;
9431 }
9432
9433 static void
9434 do_it (void)
9435 {
9436 /* There is no IT instruction in ARM mode. We
9437 process it to do the validation as if in
9438 thumb mode, just in case the code gets
9439 assembled for thumb using the unified syntax. */
9440
9441 inst.size = 0;
9442 if (unified_syntax)
9443 {
9444 set_pred_insn_type (IT_INSN);
9445 now_pred.mask = (inst.instruction & 0xf) | 0x10;
9446 now_pred.cc = inst.operands[0].imm;
9447 }
9448 }
9449
9450 /* If there is only one register in the register list,
9451 then return its register number. Otherwise return -1. */
9452 static int
9453 only_one_reg_in_list (int range)
9454 {
9455 int i = ffs (range) - 1;
9456 return (i > 15 || range != (1 << i)) ? -1 : i;
9457 }
9458
9459 static void
9460 encode_ldmstm(int from_push_pop_mnem)
9461 {
9462 int base_reg = inst.operands[0].reg;
9463 int range = inst.operands[1].imm;
9464 int one_reg;
9465
9466 inst.instruction |= base_reg << 16;
9467 inst.instruction |= range;
9468
9469 if (inst.operands[1].writeback)
9470 inst.instruction |= LDM_TYPE_2_OR_3;
9471
9472 if (inst.operands[0].writeback)
9473 {
9474 inst.instruction |= WRITE_BACK;
9475 /* Check for unpredictable uses of writeback. */
9476 if (inst.instruction & LOAD_BIT)
9477 {
9478 /* Not allowed in LDM type 2. */
9479 if ((inst.instruction & LDM_TYPE_2_OR_3)
9480 && ((range & (1 << REG_PC)) == 0))
9481 as_warn (_("writeback of base register is UNPREDICTABLE"));
9482 /* Only allowed if base reg not in list for other types. */
9483 else if (range & (1 << base_reg))
9484 as_warn (_("writeback of base register when in register list is UNPREDICTABLE"));
9485 }
9486 else /* STM. */
9487 {
9488 /* Not allowed for type 2. */
9489 if (inst.instruction & LDM_TYPE_2_OR_3)
9490 as_warn (_("writeback of base register is UNPREDICTABLE"));
9491 /* Only allowed if base reg not in list, or first in list. */
9492 else if ((range & (1 << base_reg))
9493 && (range & ((1 << base_reg) - 1)))
9494 as_warn (_("if writeback register is in list, it must be the lowest reg in the list"));
9495 }
9496 }
9497
9498 /* If PUSH/POP has only one register, then use the A2 encoding. */
9499 one_reg = only_one_reg_in_list (range);
9500 if (from_push_pop_mnem && one_reg >= 0)
9501 {
9502 int is_push = (inst.instruction & A_PUSH_POP_OP_MASK) == A1_OPCODE_PUSH;
9503
9504 if (is_push && one_reg == 13 /* SP */)
9505 /* PR 22483: The A2 encoding cannot be used when
9506 pushing the stack pointer as this is UNPREDICTABLE. */
9507 return;
9508
9509 inst.instruction &= A_COND_MASK;
9510 inst.instruction |= is_push ? A2_OPCODE_PUSH : A2_OPCODE_POP;
9511 inst.instruction |= one_reg << 12;
9512 }
9513 }
9514
9515 static void
9516 do_ldmstm (void)
9517 {
9518 encode_ldmstm (/*from_push_pop_mnem=*/FALSE);
9519 }
9520
9521 /* ARMv5TE load-consecutive (argument parse)
9522 Mode is like LDRH.
9523
9524 LDRccD R, mode
9525 STRccD R, mode. */
9526
9527 static void
9528 do_ldrd (void)
9529 {
9530 constraint (inst.operands[0].reg % 2 != 0,
9531 _("first transfer register must be even"));
9532 constraint (inst.operands[1].present
9533 && inst.operands[1].reg != inst.operands[0].reg + 1,
9534 _("can only transfer two consecutive registers"));
9535 constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed here"));
9536 constraint (!inst.operands[2].isreg, _("'[' expected"));
9537
9538 if (!inst.operands[1].present)
9539 inst.operands[1].reg = inst.operands[0].reg + 1;
9540
9541 /* encode_arm_addr_mode_3 will diagnose overlap between the base
9542 register and the first register written; we have to diagnose
9543 overlap between the base and the second register written here. */
9544
9545 if (inst.operands[2].reg == inst.operands[1].reg
9546 && (inst.operands[2].writeback || inst.operands[2].postind))
9547 as_warn (_("base register written back, and overlaps "
9548 "second transfer register"));
9549
9550 if (!(inst.instruction & V4_STR_BIT))
9551 {
9552 /* For an index-register load, the index register must not overlap the
9553 destination (even if not write-back). */
9554 if (inst.operands[2].immisreg
9555 && ((unsigned) inst.operands[2].imm == inst.operands[0].reg
9556 || (unsigned) inst.operands[2].imm == inst.operands[1].reg))
9557 as_warn (_("index register overlaps transfer register"));
9558 }
9559 inst.instruction |= inst.operands[0].reg << 12;
9560 encode_arm_addr_mode_3 (2, /*is_t=*/FALSE);
9561 }
9562
9563 static void
9564 do_ldrex (void)
9565 {
9566 constraint (!inst.operands[1].isreg || !inst.operands[1].preind
9567 || inst.operands[1].postind || inst.operands[1].writeback
9568 || inst.operands[1].immisreg || inst.operands[1].shifted
9569 || inst.operands[1].negative
9570 /* This can arise if the programmer has written
9571 strex rN, rM, foo
9572 or if they have mistakenly used a register name as the last
9573 operand, eg:
9574 strex rN, rM, rX
9575 It is very difficult to distinguish between these two cases
9576 because "rX" might actually be a label. ie the register
9577 name has been occluded by a symbol of the same name. So we
9578 just generate a general 'bad addressing mode' type error
9579 message and leave it up to the programmer to discover the
9580 true cause and fix their mistake. */
9581 || (inst.operands[1].reg == REG_PC),
9582 BAD_ADDR_MODE);
9583
9584 constraint (inst.relocs[0].exp.X_op != O_constant
9585 || inst.relocs[0].exp.X_add_number != 0,
9586 _("offset must be zero in ARM encoding"));
9587
9588 constraint ((inst.operands[1].reg == REG_PC), BAD_PC);
9589
9590 inst.instruction |= inst.operands[0].reg << 12;
9591 inst.instruction |= inst.operands[1].reg << 16;
9592 inst.relocs[0].type = BFD_RELOC_UNUSED;
9593 }
9594
9595 static void
9596 do_ldrexd (void)
9597 {
9598 constraint (inst.operands[0].reg % 2 != 0,
9599 _("even register required"));
9600 constraint (inst.operands[1].present
9601 && inst.operands[1].reg != inst.operands[0].reg + 1,
9602 _("can only load two consecutive registers"));
9603 /* If op 1 were present and equal to PC, this function wouldn't
9604 have been called in the first place. */
9605 constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed here"));
9606
9607 inst.instruction |= inst.operands[0].reg << 12;
9608 inst.instruction |= inst.operands[2].reg << 16;
9609 }
9610
9611 /* In both ARM and thumb state 'ldr pc, #imm' with an immediate
9612 which is not a multiple of four is UNPREDICTABLE. */
9613 static void
9614 check_ldr_r15_aligned (void)
9615 {
9616 constraint (!(inst.operands[1].immisreg)
9617 && (inst.operands[0].reg == REG_PC
9618 && inst.operands[1].reg == REG_PC
9619 && (inst.relocs[0].exp.X_add_number & 0x3)),
9620 _("ldr to register 15 must be 4-byte aligned"));
9621 }
9622
9623 static void
9624 do_ldst (void)
9625 {
9626 inst.instruction |= inst.operands[0].reg << 12;
9627 if (!inst.operands[1].isreg)
9628 if (move_or_literal_pool (0, CONST_ARM, /*mode_3=*/FALSE))
9629 return;
9630 encode_arm_addr_mode_2 (1, /*is_t=*/FALSE);
9631 check_ldr_r15_aligned ();
9632 }
9633
9634 static void
9635 do_ldstt (void)
9636 {
9637 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
9638 reject [Rn,...]. */
9639 if (inst.operands[1].preind)
9640 {
9641 constraint (inst.relocs[0].exp.X_op != O_constant
9642 || inst.relocs[0].exp.X_add_number != 0,
9643 _("this instruction requires a post-indexed address"));
9644
9645 inst.operands[1].preind = 0;
9646 inst.operands[1].postind = 1;
9647 inst.operands[1].writeback = 1;
9648 }
9649 inst.instruction |= inst.operands[0].reg << 12;
9650 encode_arm_addr_mode_2 (1, /*is_t=*/TRUE);
9651 }
9652
9653 /* Halfword and signed-byte load/store operations. */
9654
9655 static void
9656 do_ldstv4 (void)
9657 {
9658 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
9659 inst.instruction |= inst.operands[0].reg << 12;
9660 if (!inst.operands[1].isreg)
9661 if (move_or_literal_pool (0, CONST_ARM, /*mode_3=*/TRUE))
9662 return;
9663 encode_arm_addr_mode_3 (1, /*is_t=*/FALSE);
9664 }
9665
9666 static void
9667 do_ldsttv4 (void)
9668 {
9669 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
9670 reject [Rn,...]. */
9671 if (inst.operands[1].preind)
9672 {
9673 constraint (inst.relocs[0].exp.X_op != O_constant
9674 || inst.relocs[0].exp.X_add_number != 0,
9675 _("this instruction requires a post-indexed address"));
9676
9677 inst.operands[1].preind = 0;
9678 inst.operands[1].postind = 1;
9679 inst.operands[1].writeback = 1;
9680 }
9681 inst.instruction |= inst.operands[0].reg << 12;
9682 encode_arm_addr_mode_3 (1, /*is_t=*/TRUE);
9683 }
9684
9685 /* Co-processor register load/store.
9686 Format: <LDC|STC>{cond}[L] CP#,CRd,<address> */
9687 static void
9688 do_lstc (void)
9689 {
9690 inst.instruction |= inst.operands[0].reg << 8;
9691 inst.instruction |= inst.operands[1].reg << 12;
9692 encode_arm_cp_address (2, TRUE, TRUE, 0);
9693 }
9694
9695 static void
9696 do_mlas (void)
9697 {
9698 /* This restriction does not apply to mls (nor to mla in v6 or later). */
9699 if (inst.operands[0].reg == inst.operands[1].reg
9700 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6)
9701 && !(inst.instruction & 0x00400000))
9702 as_tsktsk (_("Rd and Rm should be different in mla"));
9703
9704 inst.instruction |= inst.operands[0].reg << 16;
9705 inst.instruction |= inst.operands[1].reg;
9706 inst.instruction |= inst.operands[2].reg << 8;
9707 inst.instruction |= inst.operands[3].reg << 12;
9708 }
9709
9710 static void
9711 do_mov (void)
9712 {
9713 constraint (inst.relocs[0].type >= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
9714 && inst.relocs[0].type <= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC ,
9715 THUMB1_RELOC_ONLY);
9716 inst.instruction |= inst.operands[0].reg << 12;
9717 encode_arm_shifter_operand (1);
9718 }
9719
9720 /* ARM V6T2 16-bit immediate register load: MOV[WT]{cond} Rd, #<imm16>. */
9721 static void
9722 do_mov16 (void)
9723 {
9724 bfd_vma imm;
9725 bfd_boolean top;
9726
9727 top = (inst.instruction & 0x00400000) != 0;
9728 constraint (top && inst.relocs[0].type == BFD_RELOC_ARM_MOVW,
9729 _(":lower16: not allowed in this instruction"));
9730 constraint (!top && inst.relocs[0].type == BFD_RELOC_ARM_MOVT,
9731 _(":upper16: not allowed in this instruction"));
9732 inst.instruction |= inst.operands[0].reg << 12;
9733 if (inst.relocs[0].type == BFD_RELOC_UNUSED)
9734 {
9735 imm = inst.relocs[0].exp.X_add_number;
9736 /* The value is in two pieces: 0:11, 16:19. */
9737 inst.instruction |= (imm & 0x00000fff);
9738 inst.instruction |= (imm & 0x0000f000) << 4;
9739 }
9740 }
9741
9742 static int
9743 do_vfp_nsyn_mrs (void)
9744 {
9745 if (inst.operands[0].isvec)
9746 {
9747 if (inst.operands[1].reg != 1)
9748 first_error (_("operand 1 must be FPSCR"));
9749 memset (&inst.operands[0], '\0', sizeof (inst.operands[0]));
9750 memset (&inst.operands[1], '\0', sizeof (inst.operands[1]));
9751 do_vfp_nsyn_opcode ("fmstat");
9752 }
9753 else if (inst.operands[1].isvec)
9754 do_vfp_nsyn_opcode ("fmrx");
9755 else
9756 return FAIL;
9757
9758 return SUCCESS;
9759 }
9760
9761 static int
9762 do_vfp_nsyn_msr (void)
9763 {
9764 if (inst.operands[0].isvec)
9765 do_vfp_nsyn_opcode ("fmxr");
9766 else
9767 return FAIL;
9768
9769 return SUCCESS;
9770 }
9771
9772 static void
9773 do_vmrs (void)
9774 {
9775 unsigned Rt = inst.operands[0].reg;
9776
9777 if (thumb_mode && Rt == REG_SP)
9778 {
9779 inst.error = BAD_SP;
9780 return;
9781 }
9782
9783 /* MVFR2 is only valid at ARMv8-A. */
9784 if (inst.operands[1].reg == 5)
9785 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
9786 _(BAD_FPU));
9787
9788 /* APSR_ sets isvec. All other refs to PC are illegal. */
9789 if (!inst.operands[0].isvec && Rt == REG_PC)
9790 {
9791 inst.error = BAD_PC;
9792 return;
9793 }
9794
9795 /* If we get through parsing the register name, we just insert the number
9796 generated into the instruction without further validation. */
9797 inst.instruction |= (inst.operands[1].reg << 16);
9798 inst.instruction |= (Rt << 12);
9799 }
9800
9801 static void
9802 do_vmsr (void)
9803 {
9804 unsigned Rt = inst.operands[1].reg;
9805
9806 if (thumb_mode)
9807 reject_bad_reg (Rt);
9808 else if (Rt == REG_PC)
9809 {
9810 inst.error = BAD_PC;
9811 return;
9812 }
9813
9814 /* MVFR2 is only valid for ARMv8-A. */
9815 if (inst.operands[0].reg == 5)
9816 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
9817 _(BAD_FPU));
9818
9819 /* If we get through parsing the register name, we just insert the number
9820 generated into the instruction without further validation. */
9821 inst.instruction |= (inst.operands[0].reg << 16);
9822 inst.instruction |= (Rt << 12);
9823 }
9824
9825 static void
9826 do_mrs (void)
9827 {
9828 unsigned br;
9829
9830 if (do_vfp_nsyn_mrs () == SUCCESS)
9831 return;
9832
9833 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
9834 inst.instruction |= inst.operands[0].reg << 12;
9835
9836 if (inst.operands[1].isreg)
9837 {
9838 br = inst.operands[1].reg;
9839 if (((br & 0x200) == 0) && ((br & 0xf0000) != 0xf0000))
9840 as_bad (_("bad register for mrs"));
9841 }
9842 else
9843 {
9844 /* mrs only accepts CPSR/SPSR/CPSR_all/SPSR_all. */
9845 constraint ((inst.operands[1].imm & (PSR_c|PSR_x|PSR_s|PSR_f))
9846 != (PSR_c|PSR_f),
9847 _("'APSR', 'CPSR' or 'SPSR' expected"));
9848 br = (15<<16) | (inst.operands[1].imm & SPSR_BIT);
9849 }
9850
9851 inst.instruction |= br;
9852 }
9853
9854 /* Two possible forms:
9855 "{C|S}PSR_<field>, Rm",
9856 "{C|S}PSR_f, #expression". */
9857
9858 static void
9859 do_msr (void)
9860 {
9861 if (do_vfp_nsyn_msr () == SUCCESS)
9862 return;
9863
9864 inst.instruction |= inst.operands[0].imm;
9865 if (inst.operands[1].isreg)
9866 inst.instruction |= inst.operands[1].reg;
9867 else
9868 {
9869 inst.instruction |= INST_IMMEDIATE;
9870 inst.relocs[0].type = BFD_RELOC_ARM_IMMEDIATE;
9871 inst.relocs[0].pc_rel = 0;
9872 }
9873 }
9874
9875 static void
9876 do_mul (void)
9877 {
9878 constraint (inst.operands[2].reg == REG_PC, BAD_PC);
9879
9880 if (!inst.operands[2].present)
9881 inst.operands[2].reg = inst.operands[0].reg;
9882 inst.instruction |= inst.operands[0].reg << 16;
9883 inst.instruction |= inst.operands[1].reg;
9884 inst.instruction |= inst.operands[2].reg << 8;
9885
9886 if (inst.operands[0].reg == inst.operands[1].reg
9887 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6))
9888 as_tsktsk (_("Rd and Rm should be different in mul"));
9889 }
9890
9891 /* Long Multiply Parser
9892 UMULL RdLo, RdHi, Rm, Rs
9893 SMULL RdLo, RdHi, Rm, Rs
9894 UMLAL RdLo, RdHi, Rm, Rs
9895 SMLAL RdLo, RdHi, Rm, Rs. */
9896
9897 static void
9898 do_mull (void)
9899 {
9900 inst.instruction |= inst.operands[0].reg << 12;
9901 inst.instruction |= inst.operands[1].reg << 16;
9902 inst.instruction |= inst.operands[2].reg;
9903 inst.instruction |= inst.operands[3].reg << 8;
9904
9905 /* rdhi and rdlo must be different. */
9906 if (inst.operands[0].reg == inst.operands[1].reg)
9907 as_tsktsk (_("rdhi and rdlo must be different"));
9908
9909 /* rdhi, rdlo and rm must all be different before armv6. */
9910 if ((inst.operands[0].reg == inst.operands[2].reg
9911 || inst.operands[1].reg == inst.operands[2].reg)
9912 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6))
9913 as_tsktsk (_("rdhi, rdlo and rm must all be different"));
9914 }
9915
9916 static void
9917 do_nop (void)
9918 {
9919 if (inst.operands[0].present
9920 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6k))
9921 {
9922 /* Architectural NOP hints are CPSR sets with no bits selected. */
9923 inst.instruction &= 0xf0000000;
9924 inst.instruction |= 0x0320f000;
9925 if (inst.operands[0].present)
9926 inst.instruction |= inst.operands[0].imm;
9927 }
9928 }
9929
9930 /* ARM V6 Pack Halfword Bottom Top instruction (argument parse).
9931 PKHBT {<cond>} <Rd>, <Rn>, <Rm> {, LSL #<shift_imm>}
9932 Condition defaults to COND_ALWAYS.
9933 Error if Rd, Rn or Rm are R15. */
9934
9935 static void
9936 do_pkhbt (void)
9937 {
9938 inst.instruction |= inst.operands[0].reg << 12;
9939 inst.instruction |= inst.operands[1].reg << 16;
9940 inst.instruction |= inst.operands[2].reg;
9941 if (inst.operands[3].present)
9942 encode_arm_shift (3);
9943 }
9944
9945 /* ARM V6 PKHTB (Argument Parse). */
9946
9947 static void
9948 do_pkhtb (void)
9949 {
9950 if (!inst.operands[3].present)
9951 {
9952 /* If the shift specifier is omitted, turn the instruction
9953 into pkhbt rd, rm, rn. */
9954 inst.instruction &= 0xfff00010;
9955 inst.instruction |= inst.operands[0].reg << 12;
9956 inst.instruction |= inst.operands[1].reg;
9957 inst.instruction |= inst.operands[2].reg << 16;
9958 }
9959 else
9960 {
9961 inst.instruction |= inst.operands[0].reg << 12;
9962 inst.instruction |= inst.operands[1].reg << 16;
9963 inst.instruction |= inst.operands[2].reg;
9964 encode_arm_shift (3);
9965 }
9966 }
9967
9968 /* ARMv5TE: Preload-Cache
9969 MP Extensions: Preload for write
9970
9971 PLD(W) <addr_mode>
9972
9973 Syntactically, like LDR with B=1, W=0, L=1. */
9974
9975 static void
9976 do_pld (void)
9977 {
9978 constraint (!inst.operands[0].isreg,
9979 _("'[' expected after PLD mnemonic"));
9980 constraint (inst.operands[0].postind,
9981 _("post-indexed expression used in preload instruction"));
9982 constraint (inst.operands[0].writeback,
9983 _("writeback used in preload instruction"));
9984 constraint (!inst.operands[0].preind,
9985 _("unindexed addressing used in preload instruction"));
9986 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE);
9987 }
9988
9989 /* ARMv7: PLI <addr_mode> */
9990 static void
9991 do_pli (void)
9992 {
9993 constraint (!inst.operands[0].isreg,
9994 _("'[' expected after PLI mnemonic"));
9995 constraint (inst.operands[0].postind,
9996 _("post-indexed expression used in preload instruction"));
9997 constraint (inst.operands[0].writeback,
9998 _("writeback used in preload instruction"));
9999 constraint (!inst.operands[0].preind,
10000 _("unindexed addressing used in preload instruction"));
10001 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE);
10002 inst.instruction &= ~PRE_INDEX;
10003 }
10004
10005 static void
10006 do_push_pop (void)
10007 {
10008 constraint (inst.operands[0].writeback,
10009 _("push/pop do not support {reglist}^"));
10010 inst.operands[1] = inst.operands[0];
10011 memset (&inst.operands[0], 0, sizeof inst.operands[0]);
10012 inst.operands[0].isreg = 1;
10013 inst.operands[0].writeback = 1;
10014 inst.operands[0].reg = REG_SP;
10015 encode_ldmstm (/*from_push_pop_mnem=*/TRUE);
10016 }
10017
10018 /* ARM V6 RFE (Return from Exception) loads the PC and CPSR from the
10019 word at the specified address and the following word
10020 respectively.
10021 Unconditionally executed.
10022 Error if Rn is R15. */
10023
10024 static void
10025 do_rfe (void)
10026 {
10027 inst.instruction |= inst.operands[0].reg << 16;
10028 if (inst.operands[0].writeback)
10029 inst.instruction |= WRITE_BACK;
10030 }
10031
10032 /* ARM V6 ssat (argument parse). */
10033
10034 static void
10035 do_ssat (void)
10036 {
10037 inst.instruction |= inst.operands[0].reg << 12;
10038 inst.instruction |= (inst.operands[1].imm - 1) << 16;
10039 inst.instruction |= inst.operands[2].reg;
10040
10041 if (inst.operands[3].present)
10042 encode_arm_shift (3);
10043 }
10044
10045 /* ARM V6 usat (argument parse). */
10046
10047 static void
10048 do_usat (void)
10049 {
10050 inst.instruction |= inst.operands[0].reg << 12;
10051 inst.instruction |= inst.operands[1].imm << 16;
10052 inst.instruction |= inst.operands[2].reg;
10053
10054 if (inst.operands[3].present)
10055 encode_arm_shift (3);
10056 }
10057
10058 /* ARM V6 ssat16 (argument parse). */
10059
10060 static void
10061 do_ssat16 (void)
10062 {
10063 inst.instruction |= inst.operands[0].reg << 12;
10064 inst.instruction |= ((inst.operands[1].imm - 1) << 16);
10065 inst.instruction |= inst.operands[2].reg;
10066 }
10067
10068 static void
10069 do_usat16 (void)
10070 {
10071 inst.instruction |= inst.operands[0].reg << 12;
10072 inst.instruction |= inst.operands[1].imm << 16;
10073 inst.instruction |= inst.operands[2].reg;
10074 }
10075
10076 /* ARM V6 SETEND (argument parse). Sets the E bit in the CPSR while
10077 preserving the other bits.
10078
10079 setend <endian_specifier>, where <endian_specifier> is either
10080 BE or LE. */
10081
10082 static void
10083 do_setend (void)
10084 {
10085 if (warn_on_deprecated
10086 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
10087 as_tsktsk (_("setend use is deprecated for ARMv8"));
10088
10089 if (inst.operands[0].imm)
10090 inst.instruction |= 0x200;
10091 }
10092
10093 static void
10094 do_shift (void)
10095 {
10096 unsigned int Rm = (inst.operands[1].present
10097 ? inst.operands[1].reg
10098 : inst.operands[0].reg);
10099
10100 inst.instruction |= inst.operands[0].reg << 12;
10101 inst.instruction |= Rm;
10102 if (inst.operands[2].isreg) /* Rd, {Rm,} Rs */
10103 {
10104 inst.instruction |= inst.operands[2].reg << 8;
10105 inst.instruction |= SHIFT_BY_REG;
10106 /* PR 12854: Error on extraneous shifts. */
10107 constraint (inst.operands[2].shifted,
10108 _("extraneous shift as part of operand to shift insn"));
10109 }
10110 else
10111 inst.relocs[0].type = BFD_RELOC_ARM_SHIFT_IMM;
10112 }
10113
10114 static void
10115 do_smc (void)
10116 {
10117 inst.relocs[0].type = BFD_RELOC_ARM_SMC;
10118 inst.relocs[0].pc_rel = 0;
10119 }
10120
10121 static void
10122 do_hvc (void)
10123 {
10124 inst.relocs[0].type = BFD_RELOC_ARM_HVC;
10125 inst.relocs[0].pc_rel = 0;
10126 }
10127
10128 static void
10129 do_swi (void)
10130 {
10131 inst.relocs[0].type = BFD_RELOC_ARM_SWI;
10132 inst.relocs[0].pc_rel = 0;
10133 }
10134
10135 static void
10136 do_setpan (void)
10137 {
10138 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_pan),
10139 _("selected processor does not support SETPAN instruction"));
10140
10141 inst.instruction |= ((inst.operands[0].imm & 1) << 9);
10142 }
10143
10144 static void
10145 do_t_setpan (void)
10146 {
10147 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_pan),
10148 _("selected processor does not support SETPAN instruction"));
10149
10150 inst.instruction |= (inst.operands[0].imm << 3);
10151 }
10152
10153 /* ARM V5E (El Segundo) signed-multiply-accumulate (argument parse)
10154 SMLAxy{cond} Rd,Rm,Rs,Rn
10155 SMLAWy{cond} Rd,Rm,Rs,Rn
10156 Error if any register is R15. */
10157
10158 static void
10159 do_smla (void)
10160 {
10161 inst.instruction |= inst.operands[0].reg << 16;
10162 inst.instruction |= inst.operands[1].reg;
10163 inst.instruction |= inst.operands[2].reg << 8;
10164 inst.instruction |= inst.operands[3].reg << 12;
10165 }
10166
10167 /* ARM V5E (El Segundo) signed-multiply-accumulate-long (argument parse)
10168 SMLALxy{cond} Rdlo,Rdhi,Rm,Rs
10169 Error if any register is R15.
10170 Warning if Rdlo == Rdhi. */
10171
10172 static void
10173 do_smlal (void)
10174 {
10175 inst.instruction |= inst.operands[0].reg << 12;
10176 inst.instruction |= inst.operands[1].reg << 16;
10177 inst.instruction |= inst.operands[2].reg;
10178 inst.instruction |= inst.operands[3].reg << 8;
10179
10180 if (inst.operands[0].reg == inst.operands[1].reg)
10181 as_tsktsk (_("rdhi and rdlo must be different"));
10182 }
10183
10184 /* ARM V5E (El Segundo) signed-multiply (argument parse)
10185 SMULxy{cond} Rd,Rm,Rs
10186 Error if any register is R15. */
10187
10188 static void
10189 do_smul (void)
10190 {
10191 inst.instruction |= inst.operands[0].reg << 16;
10192 inst.instruction |= inst.operands[1].reg;
10193 inst.instruction |= inst.operands[2].reg << 8;
10194 }
10195
10196 /* ARM V6 srs (argument parse). The variable fields in the encoding are
10197 the same for both ARM and Thumb-2. */
10198
10199 static void
10200 do_srs (void)
10201 {
10202 int reg;
10203
10204 if (inst.operands[0].present)
10205 {
10206 reg = inst.operands[0].reg;
10207 constraint (reg != REG_SP, _("SRS base register must be r13"));
10208 }
10209 else
10210 reg = REG_SP;
10211
10212 inst.instruction |= reg << 16;
10213 inst.instruction |= inst.operands[1].imm;
10214 if (inst.operands[0].writeback || inst.operands[1].writeback)
10215 inst.instruction |= WRITE_BACK;
10216 }
10217
10218 /* ARM V6 strex (argument parse). */
10219
10220 static void
10221 do_strex (void)
10222 {
10223 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
10224 || inst.operands[2].postind || inst.operands[2].writeback
10225 || inst.operands[2].immisreg || inst.operands[2].shifted
10226 || inst.operands[2].negative
10227 /* See comment in do_ldrex(). */
10228 || (inst.operands[2].reg == REG_PC),
10229 BAD_ADDR_MODE);
10230
10231 constraint (inst.operands[0].reg == inst.operands[1].reg
10232 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
10233
10234 constraint (inst.relocs[0].exp.X_op != O_constant
10235 || inst.relocs[0].exp.X_add_number != 0,
10236 _("offset must be zero in ARM encoding"));
10237
10238 inst.instruction |= inst.operands[0].reg << 12;
10239 inst.instruction |= inst.operands[1].reg;
10240 inst.instruction |= inst.operands[2].reg << 16;
10241 inst.relocs[0].type = BFD_RELOC_UNUSED;
10242 }
10243
10244 static void
10245 do_t_strexbh (void)
10246 {
10247 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
10248 || inst.operands[2].postind || inst.operands[2].writeback
10249 || inst.operands[2].immisreg || inst.operands[2].shifted
10250 || inst.operands[2].negative,
10251 BAD_ADDR_MODE);
10252
10253 constraint (inst.operands[0].reg == inst.operands[1].reg
10254 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
10255
10256 do_rm_rd_rn ();
10257 }
10258
10259 static void
10260 do_strexd (void)
10261 {
10262 constraint (inst.operands[1].reg % 2 != 0,
10263 _("even register required"));
10264 constraint (inst.operands[2].present
10265 && inst.operands[2].reg != inst.operands[1].reg + 1,
10266 _("can only store two consecutive registers"));
10267 /* If op 2 were present and equal to PC, this function wouldn't
10268 have been called in the first place. */
10269 constraint (inst.operands[1].reg == REG_LR, _("r14 not allowed here"));
10270
10271 constraint (inst.operands[0].reg == inst.operands[1].reg
10272 || inst.operands[0].reg == inst.operands[1].reg + 1
10273 || inst.operands[0].reg == inst.operands[3].reg,
10274 BAD_OVERLAP);
10275
10276 inst.instruction |= inst.operands[0].reg << 12;
10277 inst.instruction |= inst.operands[1].reg;
10278 inst.instruction |= inst.operands[3].reg << 16;
10279 }
10280
10281 /* ARM V8 STRL. */
10282 static void
10283 do_stlex (void)
10284 {
10285 constraint (inst.operands[0].reg == inst.operands[1].reg
10286 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
10287
10288 do_rd_rm_rn ();
10289 }
10290
10291 static void
10292 do_t_stlex (void)
10293 {
10294 constraint (inst.operands[0].reg == inst.operands[1].reg
10295 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
10296
10297 do_rm_rd_rn ();
10298 }
10299
10300 /* ARM V6 SXTAH extracts a 16-bit value from a register, sign
10301 extends it to 32-bits, and adds the result to a value in another
10302 register. You can specify a rotation by 0, 8, 16, or 24 bits
10303 before extracting the 16-bit value.
10304 SXTAH{<cond>} <Rd>, <Rn>, <Rm>{, <rotation>}
10305 Condition defaults to COND_ALWAYS.
10306 Error if any register uses R15. */
10307
10308 static void
10309 do_sxtah (void)
10310 {
10311 inst.instruction |= inst.operands[0].reg << 12;
10312 inst.instruction |= inst.operands[1].reg << 16;
10313 inst.instruction |= inst.operands[2].reg;
10314 inst.instruction |= inst.operands[3].imm << 10;
10315 }
10316
10317 /* ARM V6 SXTH.
10318
10319 SXTH {<cond>} <Rd>, <Rm>{, <rotation>}
10320 Condition defaults to COND_ALWAYS.
10321 Error if any register uses R15. */
10322
10323 static void
10324 do_sxth (void)
10325 {
10326 inst.instruction |= inst.operands[0].reg << 12;
10327 inst.instruction |= inst.operands[1].reg;
10328 inst.instruction |= inst.operands[2].imm << 10;
10329 }
10330 \f
10331 /* VFP instructions. In a logical order: SP variant first, monad
10332 before dyad, arithmetic then move then load/store. */
10333
10334 static void
10335 do_vfp_sp_monadic (void)
10336 {
10337 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1xd)
10338 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
10339 _(BAD_FPU));
10340
10341 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
10342 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
10343 }
10344
10345 static void
10346 do_vfp_sp_dyadic (void)
10347 {
10348 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
10349 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sn);
10350 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Sm);
10351 }
10352
10353 static void
10354 do_vfp_sp_compare_z (void)
10355 {
10356 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
10357 }
10358
10359 static void
10360 do_vfp_dp_sp_cvt (void)
10361 {
10362 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10363 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
10364 }
10365
10366 static void
10367 do_vfp_sp_dp_cvt (void)
10368 {
10369 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
10370 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dm);
10371 }
10372
10373 static void
10374 do_vfp_reg_from_sp (void)
10375 {
10376 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1xd)
10377 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
10378 _(BAD_FPU));
10379
10380 inst.instruction |= inst.operands[0].reg << 12;
10381 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sn);
10382 }
10383
10384 static void
10385 do_vfp_reg2_from_sp2 (void)
10386 {
10387 constraint (inst.operands[2].imm != 2,
10388 _("only two consecutive VFP SP registers allowed here"));
10389 inst.instruction |= inst.operands[0].reg << 12;
10390 inst.instruction |= inst.operands[1].reg << 16;
10391 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Sm);
10392 }
10393
10394 static void
10395 do_vfp_sp_from_reg (void)
10396 {
10397 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1xd)
10398 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
10399 _(BAD_FPU));
10400
10401 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sn);
10402 inst.instruction |= inst.operands[1].reg << 12;
10403 }
10404
10405 static void
10406 do_vfp_sp2_from_reg2 (void)
10407 {
10408 constraint (inst.operands[0].imm != 2,
10409 _("only two consecutive VFP SP registers allowed here"));
10410 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sm);
10411 inst.instruction |= inst.operands[1].reg << 12;
10412 inst.instruction |= inst.operands[2].reg << 16;
10413 }
10414
10415 static void
10416 do_vfp_sp_ldst (void)
10417 {
10418 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
10419 encode_arm_cp_address (1, FALSE, TRUE, 0);
10420 }
10421
10422 static void
10423 do_vfp_dp_ldst (void)
10424 {
10425 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10426 encode_arm_cp_address (1, FALSE, TRUE, 0);
10427 }
10428
10429
10430 static void
10431 vfp_sp_ldstm (enum vfp_ldstm_type ldstm_type)
10432 {
10433 if (inst.operands[0].writeback)
10434 inst.instruction |= WRITE_BACK;
10435 else
10436 constraint (ldstm_type != VFP_LDSTMIA,
10437 _("this addressing mode requires base-register writeback"));
10438 inst.instruction |= inst.operands[0].reg << 16;
10439 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sd);
10440 inst.instruction |= inst.operands[1].imm;
10441 }
10442
10443 static void
10444 vfp_dp_ldstm (enum vfp_ldstm_type ldstm_type)
10445 {
10446 int count;
10447
10448 if (inst.operands[0].writeback)
10449 inst.instruction |= WRITE_BACK;
10450 else
10451 constraint (ldstm_type != VFP_LDSTMIA && ldstm_type != VFP_LDSTMIAX,
10452 _("this addressing mode requires base-register writeback"));
10453
10454 inst.instruction |= inst.operands[0].reg << 16;
10455 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
10456
10457 count = inst.operands[1].imm << 1;
10458 if (ldstm_type == VFP_LDSTMIAX || ldstm_type == VFP_LDSTMDBX)
10459 count += 1;
10460
10461 inst.instruction |= count;
10462 }
10463
10464 static void
10465 do_vfp_sp_ldstmia (void)
10466 {
10467 vfp_sp_ldstm (VFP_LDSTMIA);
10468 }
10469
10470 static void
10471 do_vfp_sp_ldstmdb (void)
10472 {
10473 vfp_sp_ldstm (VFP_LDSTMDB);
10474 }
10475
10476 static void
10477 do_vfp_dp_ldstmia (void)
10478 {
10479 vfp_dp_ldstm (VFP_LDSTMIA);
10480 }
10481
10482 static void
10483 do_vfp_dp_ldstmdb (void)
10484 {
10485 vfp_dp_ldstm (VFP_LDSTMDB);
10486 }
10487
10488 static void
10489 do_vfp_xp_ldstmia (void)
10490 {
10491 vfp_dp_ldstm (VFP_LDSTMIAX);
10492 }
10493
10494 static void
10495 do_vfp_xp_ldstmdb (void)
10496 {
10497 vfp_dp_ldstm (VFP_LDSTMDBX);
10498 }
10499
10500 static void
10501 do_vfp_dp_rd_rm (void)
10502 {
10503 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1)
10504 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
10505 _(BAD_FPU));
10506
10507 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10508 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dm);
10509 }
10510
10511 static void
10512 do_vfp_dp_rn_rd (void)
10513 {
10514 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dn);
10515 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
10516 }
10517
10518 static void
10519 do_vfp_dp_rd_rn (void)
10520 {
10521 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10522 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dn);
10523 }
10524
10525 static void
10526 do_vfp_dp_rd_rn_rm (void)
10527 {
10528 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2)
10529 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
10530 _(BAD_FPU));
10531
10532 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10533 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dn);
10534 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Dm);
10535 }
10536
10537 static void
10538 do_vfp_dp_rd (void)
10539 {
10540 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10541 }
10542
10543 static void
10544 do_vfp_dp_rm_rd_rn (void)
10545 {
10546 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2)
10547 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
10548 _(BAD_FPU));
10549
10550 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dm);
10551 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
10552 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Dn);
10553 }
10554
10555 /* VFPv3 instructions. */
10556 static void
10557 do_vfp_sp_const (void)
10558 {
10559 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
10560 inst.instruction |= (inst.operands[1].imm & 0xf0) << 12;
10561 inst.instruction |= (inst.operands[1].imm & 0x0f);
10562 }
10563
10564 static void
10565 do_vfp_dp_const (void)
10566 {
10567 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10568 inst.instruction |= (inst.operands[1].imm & 0xf0) << 12;
10569 inst.instruction |= (inst.operands[1].imm & 0x0f);
10570 }
10571
10572 static void
10573 vfp_conv (int srcsize)
10574 {
10575 int immbits = srcsize - inst.operands[1].imm;
10576
10577 if (srcsize == 16 && !(immbits >= 0 && immbits <= srcsize))
10578 {
10579 /* If srcsize is 16, inst.operands[1].imm must be in the range 0-16.
10580 i.e. immbits must be in range 0 - 16. */
10581 inst.error = _("immediate value out of range, expected range [0, 16]");
10582 return;
10583 }
10584 else if (srcsize == 32 && !(immbits >= 0 && immbits < srcsize))
10585 {
10586 /* If srcsize is 32, inst.operands[1].imm must be in the range 1-32.
10587 i.e. immbits must be in range 0 - 31. */
10588 inst.error = _("immediate value out of range, expected range [1, 32]");
10589 return;
10590 }
10591
10592 inst.instruction |= (immbits & 1) << 5;
10593 inst.instruction |= (immbits >> 1);
10594 }
10595
10596 static void
10597 do_vfp_sp_conv_16 (void)
10598 {
10599 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
10600 vfp_conv (16);
10601 }
10602
10603 static void
10604 do_vfp_dp_conv_16 (void)
10605 {
10606 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10607 vfp_conv (16);
10608 }
10609
10610 static void
10611 do_vfp_sp_conv_32 (void)
10612 {
10613 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
10614 vfp_conv (32);
10615 }
10616
10617 static void
10618 do_vfp_dp_conv_32 (void)
10619 {
10620 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10621 vfp_conv (32);
10622 }
10623 \f
10624 /* FPA instructions. Also in a logical order. */
10625
10626 static void
10627 do_fpa_cmp (void)
10628 {
10629 inst.instruction |= inst.operands[0].reg << 16;
10630 inst.instruction |= inst.operands[1].reg;
10631 }
10632
10633 static void
10634 do_fpa_ldmstm (void)
10635 {
10636 inst.instruction |= inst.operands[0].reg << 12;
10637 switch (inst.operands[1].imm)
10638 {
10639 case 1: inst.instruction |= CP_T_X; break;
10640 case 2: inst.instruction |= CP_T_Y; break;
10641 case 3: inst.instruction |= CP_T_Y | CP_T_X; break;
10642 case 4: break;
10643 default: abort ();
10644 }
10645
10646 if (inst.instruction & (PRE_INDEX | INDEX_UP))
10647 {
10648 /* The instruction specified "ea" or "fd", so we can only accept
10649 [Rn]{!}. The instruction does not really support stacking or
10650 unstacking, so we have to emulate these by setting appropriate
10651 bits and offsets. */
10652 constraint (inst.relocs[0].exp.X_op != O_constant
10653 || inst.relocs[0].exp.X_add_number != 0,
10654 _("this instruction does not support indexing"));
10655
10656 if ((inst.instruction & PRE_INDEX) || inst.operands[2].writeback)
10657 inst.relocs[0].exp.X_add_number = 12 * inst.operands[1].imm;
10658
10659 if (!(inst.instruction & INDEX_UP))
10660 inst.relocs[0].exp.X_add_number = -inst.relocs[0].exp.X_add_number;
10661
10662 if (!(inst.instruction & PRE_INDEX) && inst.operands[2].writeback)
10663 {
10664 inst.operands[2].preind = 0;
10665 inst.operands[2].postind = 1;
10666 }
10667 }
10668
10669 encode_arm_cp_address (2, TRUE, TRUE, 0);
10670 }
10671 \f
10672 /* iWMMXt instructions: strictly in alphabetical order. */
10673
10674 static void
10675 do_iwmmxt_tandorc (void)
10676 {
10677 constraint (inst.operands[0].reg != REG_PC, _("only r15 allowed here"));
10678 }
10679
10680 static void
10681 do_iwmmxt_textrc (void)
10682 {
10683 inst.instruction |= inst.operands[0].reg << 12;
10684 inst.instruction |= inst.operands[1].imm;
10685 }
10686
10687 static void
10688 do_iwmmxt_textrm (void)
10689 {
10690 inst.instruction |= inst.operands[0].reg << 12;
10691 inst.instruction |= inst.operands[1].reg << 16;
10692 inst.instruction |= inst.operands[2].imm;
10693 }
10694
10695 static void
10696 do_iwmmxt_tinsr (void)
10697 {
10698 inst.instruction |= inst.operands[0].reg << 16;
10699 inst.instruction |= inst.operands[1].reg << 12;
10700 inst.instruction |= inst.operands[2].imm;
10701 }
10702
10703 static void
10704 do_iwmmxt_tmia (void)
10705 {
10706 inst.instruction |= inst.operands[0].reg << 5;
10707 inst.instruction |= inst.operands[1].reg;
10708 inst.instruction |= inst.operands[2].reg << 12;
10709 }
10710
10711 static void
10712 do_iwmmxt_waligni (void)
10713 {
10714 inst.instruction |= inst.operands[0].reg << 12;
10715 inst.instruction |= inst.operands[1].reg << 16;
10716 inst.instruction |= inst.operands[2].reg;
10717 inst.instruction |= inst.operands[3].imm << 20;
10718 }
10719
10720 static void
10721 do_iwmmxt_wmerge (void)
10722 {
10723 inst.instruction |= inst.operands[0].reg << 12;
10724 inst.instruction |= inst.operands[1].reg << 16;
10725 inst.instruction |= inst.operands[2].reg;
10726 inst.instruction |= inst.operands[3].imm << 21;
10727 }
10728
10729 static void
10730 do_iwmmxt_wmov (void)
10731 {
10732 /* WMOV rD, rN is an alias for WOR rD, rN, rN. */
10733 inst.instruction |= inst.operands[0].reg << 12;
10734 inst.instruction |= inst.operands[1].reg << 16;
10735 inst.instruction |= inst.operands[1].reg;
10736 }
10737
10738 static void
10739 do_iwmmxt_wldstbh (void)
10740 {
10741 int reloc;
10742 inst.instruction |= inst.operands[0].reg << 12;
10743 if (thumb_mode)
10744 reloc = BFD_RELOC_ARM_T32_CP_OFF_IMM_S2;
10745 else
10746 reloc = BFD_RELOC_ARM_CP_OFF_IMM_S2;
10747 encode_arm_cp_address (1, TRUE, FALSE, reloc);
10748 }
10749
10750 static void
10751 do_iwmmxt_wldstw (void)
10752 {
10753 /* RIWR_RIWC clears .isreg for a control register. */
10754 if (!inst.operands[0].isreg)
10755 {
10756 constraint (inst.cond != COND_ALWAYS, BAD_COND);
10757 inst.instruction |= 0xf0000000;
10758 }
10759
10760 inst.instruction |= inst.operands[0].reg << 12;
10761 encode_arm_cp_address (1, TRUE, TRUE, 0);
10762 }
10763
10764 static void
10765 do_iwmmxt_wldstd (void)
10766 {
10767 inst.instruction |= inst.operands[0].reg << 12;
10768 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2)
10769 && inst.operands[1].immisreg)
10770 {
10771 inst.instruction &= ~0x1a000ff;
10772 inst.instruction |= (0xfU << 28);
10773 if (inst.operands[1].preind)
10774 inst.instruction |= PRE_INDEX;
10775 if (!inst.operands[1].negative)
10776 inst.instruction |= INDEX_UP;
10777 if (inst.operands[1].writeback)
10778 inst.instruction |= WRITE_BACK;
10779 inst.instruction |= inst.operands[1].reg << 16;
10780 inst.instruction |= inst.relocs[0].exp.X_add_number << 4;
10781 inst.instruction |= inst.operands[1].imm;
10782 }
10783 else
10784 encode_arm_cp_address (1, TRUE, FALSE, 0);
10785 }
10786
10787 static void
10788 do_iwmmxt_wshufh (void)
10789 {
10790 inst.instruction |= inst.operands[0].reg << 12;
10791 inst.instruction |= inst.operands[1].reg << 16;
10792 inst.instruction |= ((inst.operands[2].imm & 0xf0) << 16);
10793 inst.instruction |= (inst.operands[2].imm & 0x0f);
10794 }
10795
10796 static void
10797 do_iwmmxt_wzero (void)
10798 {
10799 /* WZERO reg is an alias for WANDN reg, reg, reg. */
10800 inst.instruction |= inst.operands[0].reg;
10801 inst.instruction |= inst.operands[0].reg << 12;
10802 inst.instruction |= inst.operands[0].reg << 16;
10803 }
10804
10805 static void
10806 do_iwmmxt_wrwrwr_or_imm5 (void)
10807 {
10808 if (inst.operands[2].isreg)
10809 do_rd_rn_rm ();
10810 else {
10811 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2),
10812 _("immediate operand requires iWMMXt2"));
10813 do_rd_rn ();
10814 if (inst.operands[2].imm == 0)
10815 {
10816 switch ((inst.instruction >> 20) & 0xf)
10817 {
10818 case 4:
10819 case 5:
10820 case 6:
10821 case 7:
10822 /* w...h wrd, wrn, #0 -> wrorh wrd, wrn, #16. */
10823 inst.operands[2].imm = 16;
10824 inst.instruction = (inst.instruction & 0xff0fffff) | (0x7 << 20);
10825 break;
10826 case 8:
10827 case 9:
10828 case 10:
10829 case 11:
10830 /* w...w wrd, wrn, #0 -> wrorw wrd, wrn, #32. */
10831 inst.operands[2].imm = 32;
10832 inst.instruction = (inst.instruction & 0xff0fffff) | (0xb << 20);
10833 break;
10834 case 12:
10835 case 13:
10836 case 14:
10837 case 15:
10838 {
10839 /* w...d wrd, wrn, #0 -> wor wrd, wrn, wrn. */
10840 unsigned long wrn;
10841 wrn = (inst.instruction >> 16) & 0xf;
10842 inst.instruction &= 0xff0fff0f;
10843 inst.instruction |= wrn;
10844 /* Bail out here; the instruction is now assembled. */
10845 return;
10846 }
10847 }
10848 }
10849 /* Map 32 -> 0, etc. */
10850 inst.operands[2].imm &= 0x1f;
10851 inst.instruction |= (0xfU << 28) | ((inst.operands[2].imm & 0x10) << 4) | (inst.operands[2].imm & 0xf);
10852 }
10853 }
10854 \f
10855 /* Cirrus Maverick instructions. Simple 2-, 3-, and 4-register
10856 operations first, then control, shift, and load/store. */
10857
10858 /* Insns like "foo X,Y,Z". */
10859
10860 static void
10861 do_mav_triple (void)
10862 {
10863 inst.instruction |= inst.operands[0].reg << 16;
10864 inst.instruction |= inst.operands[1].reg;
10865 inst.instruction |= inst.operands[2].reg << 12;
10866 }
10867
10868 /* Insns like "foo W,X,Y,Z".
10869 where W=MVAX[0:3] and X,Y,Z=MVFX[0:15]. */
10870
10871 static void
10872 do_mav_quad (void)
10873 {
10874 inst.instruction |= inst.operands[0].reg << 5;
10875 inst.instruction |= inst.operands[1].reg << 12;
10876 inst.instruction |= inst.operands[2].reg << 16;
10877 inst.instruction |= inst.operands[3].reg;
10878 }
10879
10880 /* cfmvsc32<cond> DSPSC,MVDX[15:0]. */
10881 static void
10882 do_mav_dspsc (void)
10883 {
10884 inst.instruction |= inst.operands[1].reg << 12;
10885 }
10886
10887 /* Maverick shift immediate instructions.
10888 cfsh32<cond> MVFX[15:0],MVFX[15:0],Shift[6:0].
10889 cfsh64<cond> MVDX[15:0],MVDX[15:0],Shift[6:0]. */
10890
10891 static void
10892 do_mav_shift (void)
10893 {
10894 int imm = inst.operands[2].imm;
10895
10896 inst.instruction |= inst.operands[0].reg << 12;
10897 inst.instruction |= inst.operands[1].reg << 16;
10898
10899 /* Bits 0-3 of the insn should have bits 0-3 of the immediate.
10900 Bits 5-7 of the insn should have bits 4-6 of the immediate.
10901 Bit 4 should be 0. */
10902 imm = (imm & 0xf) | ((imm & 0x70) << 1);
10903
10904 inst.instruction |= imm;
10905 }
10906 \f
10907 /* XScale instructions. Also sorted arithmetic before move. */
10908
10909 /* Xscale multiply-accumulate (argument parse)
10910 MIAcc acc0,Rm,Rs
10911 MIAPHcc acc0,Rm,Rs
10912 MIAxycc acc0,Rm,Rs. */
10913
10914 static void
10915 do_xsc_mia (void)
10916 {
10917 inst.instruction |= inst.operands[1].reg;
10918 inst.instruction |= inst.operands[2].reg << 12;
10919 }
10920
10921 /* Xscale move-accumulator-register (argument parse)
10922
10923 MARcc acc0,RdLo,RdHi. */
10924
10925 static void
10926 do_xsc_mar (void)
10927 {
10928 inst.instruction |= inst.operands[1].reg << 12;
10929 inst.instruction |= inst.operands[2].reg << 16;
10930 }
10931
10932 /* Xscale move-register-accumulator (argument parse)
10933
10934 MRAcc RdLo,RdHi,acc0. */
10935
10936 static void
10937 do_xsc_mra (void)
10938 {
10939 constraint (inst.operands[0].reg == inst.operands[1].reg, BAD_OVERLAP);
10940 inst.instruction |= inst.operands[0].reg << 12;
10941 inst.instruction |= inst.operands[1].reg << 16;
10942 }
10943 \f
10944 /* Encoding functions relevant only to Thumb. */
10945
10946 /* inst.operands[i] is a shifted-register operand; encode
10947 it into inst.instruction in the format used by Thumb32. */
10948
10949 static void
10950 encode_thumb32_shifted_operand (int i)
10951 {
10952 unsigned int value = inst.relocs[0].exp.X_add_number;
10953 unsigned int shift = inst.operands[i].shift_kind;
10954
10955 constraint (inst.operands[i].immisreg,
10956 _("shift by register not allowed in thumb mode"));
10957 inst.instruction |= inst.operands[i].reg;
10958 if (shift == SHIFT_RRX)
10959 inst.instruction |= SHIFT_ROR << 4;
10960 else
10961 {
10962 constraint (inst.relocs[0].exp.X_op != O_constant,
10963 _("expression too complex"));
10964
10965 constraint (value > 32
10966 || (value == 32 && (shift == SHIFT_LSL
10967 || shift == SHIFT_ROR)),
10968 _("shift expression is too large"));
10969
10970 if (value == 0)
10971 shift = SHIFT_LSL;
10972 else if (value == 32)
10973 value = 0;
10974
10975 inst.instruction |= shift << 4;
10976 inst.instruction |= (value & 0x1c) << 10;
10977 inst.instruction |= (value & 0x03) << 6;
10978 }
10979 }
10980
10981
10982 /* inst.operands[i] was set up by parse_address. Encode it into a
10983 Thumb32 format load or store instruction. Reject forms that cannot
10984 be used with such instructions. If is_t is true, reject forms that
10985 cannot be used with a T instruction; if is_d is true, reject forms
10986 that cannot be used with a D instruction. If it is a store insn,
10987 reject PC in Rn. */
10988
10989 static void
10990 encode_thumb32_addr_mode (int i, bfd_boolean is_t, bfd_boolean is_d)
10991 {
10992 const bfd_boolean is_pc = (inst.operands[i].reg == REG_PC);
10993
10994 constraint (!inst.operands[i].isreg,
10995 _("Instruction does not support =N addresses"));
10996
10997 inst.instruction |= inst.operands[i].reg << 16;
10998 if (inst.operands[i].immisreg)
10999 {
11000 constraint (is_pc, BAD_PC_ADDRESSING);
11001 constraint (is_t || is_d, _("cannot use register index with this instruction"));
11002 constraint (inst.operands[i].negative,
11003 _("Thumb does not support negative register indexing"));
11004 constraint (inst.operands[i].postind,
11005 _("Thumb does not support register post-indexing"));
11006 constraint (inst.operands[i].writeback,
11007 _("Thumb does not support register indexing with writeback"));
11008 constraint (inst.operands[i].shifted && inst.operands[i].shift_kind != SHIFT_LSL,
11009 _("Thumb supports only LSL in shifted register indexing"));
11010
11011 inst.instruction |= inst.operands[i].imm;
11012 if (inst.operands[i].shifted)
11013 {
11014 constraint (inst.relocs[0].exp.X_op != O_constant,
11015 _("expression too complex"));
11016 constraint (inst.relocs[0].exp.X_add_number < 0
11017 || inst.relocs[0].exp.X_add_number > 3,
11018 _("shift out of range"));
11019 inst.instruction |= inst.relocs[0].exp.X_add_number << 4;
11020 }
11021 inst.relocs[0].type = BFD_RELOC_UNUSED;
11022 }
11023 else if (inst.operands[i].preind)
11024 {
11025 constraint (is_pc && inst.operands[i].writeback, BAD_PC_WRITEBACK);
11026 constraint (is_t && inst.operands[i].writeback,
11027 _("cannot use writeback with this instruction"));
11028 constraint (is_pc && ((inst.instruction & THUMB2_LOAD_BIT) == 0),
11029 BAD_PC_ADDRESSING);
11030
11031 if (is_d)
11032 {
11033 inst.instruction |= 0x01000000;
11034 if (inst.operands[i].writeback)
11035 inst.instruction |= 0x00200000;
11036 }
11037 else
11038 {
11039 inst.instruction |= 0x00000c00;
11040 if (inst.operands[i].writeback)
11041 inst.instruction |= 0x00000100;
11042 }
11043 inst.relocs[0].type = BFD_RELOC_ARM_T32_OFFSET_IMM;
11044 }
11045 else if (inst.operands[i].postind)
11046 {
11047 gas_assert (inst.operands[i].writeback);
11048 constraint (is_pc, _("cannot use post-indexing with PC-relative addressing"));
11049 constraint (is_t, _("cannot use post-indexing with this instruction"));
11050
11051 if (is_d)
11052 inst.instruction |= 0x00200000;
11053 else
11054 inst.instruction |= 0x00000900;
11055 inst.relocs[0].type = BFD_RELOC_ARM_T32_OFFSET_IMM;
11056 }
11057 else /* unindexed - only for coprocessor */
11058 inst.error = _("instruction does not accept unindexed addressing");
11059 }
11060
11061 /* Table of Thumb instructions which exist in both 16- and 32-bit
11062 encodings (the latter only in post-V6T2 cores). The index is the
11063 value used in the insns table below. When there is more than one
11064 possible 16-bit encoding for the instruction, this table always
11065 holds variant (1).
11066 Also contains several pseudo-instructions used during relaxation. */
11067 #define T16_32_TAB \
11068 X(_adc, 4140, eb400000), \
11069 X(_adcs, 4140, eb500000), \
11070 X(_add, 1c00, eb000000), \
11071 X(_adds, 1c00, eb100000), \
11072 X(_addi, 0000, f1000000), \
11073 X(_addis, 0000, f1100000), \
11074 X(_add_pc,000f, f20f0000), \
11075 X(_add_sp,000d, f10d0000), \
11076 X(_adr, 000f, f20f0000), \
11077 X(_and, 4000, ea000000), \
11078 X(_ands, 4000, ea100000), \
11079 X(_asr, 1000, fa40f000), \
11080 X(_asrs, 1000, fa50f000), \
11081 X(_b, e000, f000b000), \
11082 X(_bcond, d000, f0008000), \
11083 X(_bf, 0000, f040e001), \
11084 X(_bfcsel,0000, f000e001), \
11085 X(_bfx, 0000, f060e001), \
11086 X(_bfl, 0000, f000c001), \
11087 X(_bflx, 0000, f070e001), \
11088 X(_bic, 4380, ea200000), \
11089 X(_bics, 4380, ea300000), \
11090 X(_cmn, 42c0, eb100f00), \
11091 X(_cmp, 2800, ebb00f00), \
11092 X(_cpsie, b660, f3af8400), \
11093 X(_cpsid, b670, f3af8600), \
11094 X(_cpy, 4600, ea4f0000), \
11095 X(_dec_sp,80dd, f1ad0d00), \
11096 X(_dls, 0000, f040e001), \
11097 X(_eor, 4040, ea800000), \
11098 X(_eors, 4040, ea900000), \
11099 X(_inc_sp,00dd, f10d0d00), \
11100 X(_ldmia, c800, e8900000), \
11101 X(_ldr, 6800, f8500000), \
11102 X(_ldrb, 7800, f8100000), \
11103 X(_ldrh, 8800, f8300000), \
11104 X(_ldrsb, 5600, f9100000), \
11105 X(_ldrsh, 5e00, f9300000), \
11106 X(_ldr_pc,4800, f85f0000), \
11107 X(_ldr_pc2,4800, f85f0000), \
11108 X(_ldr_sp,9800, f85d0000), \
11109 X(_le, 0000, f00fc001), \
11110 X(_lsl, 0000, fa00f000), \
11111 X(_lsls, 0000, fa10f000), \
11112 X(_lsr, 0800, fa20f000), \
11113 X(_lsrs, 0800, fa30f000), \
11114 X(_mov, 2000, ea4f0000), \
11115 X(_movs, 2000, ea5f0000), \
11116 X(_mul, 4340, fb00f000), \
11117 X(_muls, 4340, ffffffff), /* no 32b muls */ \
11118 X(_mvn, 43c0, ea6f0000), \
11119 X(_mvns, 43c0, ea7f0000), \
11120 X(_neg, 4240, f1c00000), /* rsb #0 */ \
11121 X(_negs, 4240, f1d00000), /* rsbs #0 */ \
11122 X(_orr, 4300, ea400000), \
11123 X(_orrs, 4300, ea500000), \
11124 X(_pop, bc00, e8bd0000), /* ldmia sp!,... */ \
11125 X(_push, b400, e92d0000), /* stmdb sp!,... */ \
11126 X(_rev, ba00, fa90f080), \
11127 X(_rev16, ba40, fa90f090), \
11128 X(_revsh, bac0, fa90f0b0), \
11129 X(_ror, 41c0, fa60f000), \
11130 X(_rors, 41c0, fa70f000), \
11131 X(_sbc, 4180, eb600000), \
11132 X(_sbcs, 4180, eb700000), \
11133 X(_stmia, c000, e8800000), \
11134 X(_str, 6000, f8400000), \
11135 X(_strb, 7000, f8000000), \
11136 X(_strh, 8000, f8200000), \
11137 X(_str_sp,9000, f84d0000), \
11138 X(_sub, 1e00, eba00000), \
11139 X(_subs, 1e00, ebb00000), \
11140 X(_subi, 8000, f1a00000), \
11141 X(_subis, 8000, f1b00000), \
11142 X(_sxtb, b240, fa4ff080), \
11143 X(_sxth, b200, fa0ff080), \
11144 X(_tst, 4200, ea100f00), \
11145 X(_uxtb, b2c0, fa5ff080), \
11146 X(_uxth, b280, fa1ff080), \
11147 X(_nop, bf00, f3af8000), \
11148 X(_yield, bf10, f3af8001), \
11149 X(_wfe, bf20, f3af8002), \
11150 X(_wfi, bf30, f3af8003), \
11151 X(_wls, 0000, f040c001), \
11152 X(_sev, bf40, f3af8004), \
11153 X(_sevl, bf50, f3af8005), \
11154 X(_udf, de00, f7f0a000)
11155
11156 /* To catch errors in encoding functions, the codes are all offset by
11157 0xF800, putting them in one of the 32-bit prefix ranges, ergo undefined
11158 as 16-bit instructions. */
11159 #define X(a,b,c) T_MNEM##a
11160 enum t16_32_codes { T16_32_OFFSET = 0xF7FF, T16_32_TAB };
11161 #undef X
11162
11163 #define X(a,b,c) 0x##b
11164 static const unsigned short thumb_op16[] = { T16_32_TAB };
11165 #define THUMB_OP16(n) (thumb_op16[(n) - (T16_32_OFFSET + 1)])
11166 #undef X
11167
11168 #define X(a,b,c) 0x##c
11169 static const unsigned int thumb_op32[] = { T16_32_TAB };
11170 #define THUMB_OP32(n) (thumb_op32[(n) - (T16_32_OFFSET + 1)])
11171 #define THUMB_SETS_FLAGS(n) (THUMB_OP32 (n) & 0x00100000)
11172 #undef X
11173 #undef T16_32_TAB
11174
11175 /* Thumb instruction encoders, in alphabetical order. */
11176
11177 /* ADDW or SUBW. */
11178
11179 static void
11180 do_t_add_sub_w (void)
11181 {
11182 int Rd, Rn;
11183
11184 Rd = inst.operands[0].reg;
11185 Rn = inst.operands[1].reg;
11186
11187 /* If Rn is REG_PC, this is ADR; if Rn is REG_SP, then this
11188 is the SP-{plus,minus}-immediate form of the instruction. */
11189 if (Rn == REG_SP)
11190 constraint (Rd == REG_PC, BAD_PC);
11191 else
11192 reject_bad_reg (Rd);
11193
11194 inst.instruction |= (Rn << 16) | (Rd << 8);
11195 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMM12;
11196 }
11197
11198 /* Parse an add or subtract instruction. We get here with inst.instruction
11199 equaling any of THUMB_OPCODE_add, adds, sub, or subs. */
11200
11201 static void
11202 do_t_add_sub (void)
11203 {
11204 int Rd, Rs, Rn;
11205
11206 Rd = inst.operands[0].reg;
11207 Rs = (inst.operands[1].present
11208 ? inst.operands[1].reg /* Rd, Rs, foo */
11209 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
11210
11211 if (Rd == REG_PC)
11212 set_pred_insn_type_last ();
11213
11214 if (unified_syntax)
11215 {
11216 bfd_boolean flags;
11217 bfd_boolean narrow;
11218 int opcode;
11219
11220 flags = (inst.instruction == T_MNEM_adds
11221 || inst.instruction == T_MNEM_subs);
11222 if (flags)
11223 narrow = !in_pred_block ();
11224 else
11225 narrow = in_pred_block ();
11226 if (!inst.operands[2].isreg)
11227 {
11228 int add;
11229
11230 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
11231 constraint (Rd == REG_SP && Rs != REG_SP, BAD_SP);
11232
11233 add = (inst.instruction == T_MNEM_add
11234 || inst.instruction == T_MNEM_adds);
11235 opcode = 0;
11236 if (inst.size_req != 4)
11237 {
11238 /* Attempt to use a narrow opcode, with relaxation if
11239 appropriate. */
11240 if (Rd == REG_SP && Rs == REG_SP && !flags)
11241 opcode = add ? T_MNEM_inc_sp : T_MNEM_dec_sp;
11242 else if (Rd <= 7 && Rs == REG_SP && add && !flags)
11243 opcode = T_MNEM_add_sp;
11244 else if (Rd <= 7 && Rs == REG_PC && add && !flags)
11245 opcode = T_MNEM_add_pc;
11246 else if (Rd <= 7 && Rs <= 7 && narrow)
11247 {
11248 if (flags)
11249 opcode = add ? T_MNEM_addis : T_MNEM_subis;
11250 else
11251 opcode = add ? T_MNEM_addi : T_MNEM_subi;
11252 }
11253 if (opcode)
11254 {
11255 inst.instruction = THUMB_OP16(opcode);
11256 inst.instruction |= (Rd << 4) | Rs;
11257 if (inst.relocs[0].type < BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
11258 || (inst.relocs[0].type
11259 > BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC))
11260 {
11261 if (inst.size_req == 2)
11262 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_ADD;
11263 else
11264 inst.relax = opcode;
11265 }
11266 }
11267 else
11268 constraint (inst.size_req == 2, BAD_HIREG);
11269 }
11270 if (inst.size_req == 4
11271 || (inst.size_req != 2 && !opcode))
11272 {
11273 constraint ((inst.relocs[0].type
11274 >= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC)
11275 && (inst.relocs[0].type
11276 <= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC) ,
11277 THUMB1_RELOC_ONLY);
11278 if (Rd == REG_PC)
11279 {
11280 constraint (add, BAD_PC);
11281 constraint (Rs != REG_LR || inst.instruction != T_MNEM_subs,
11282 _("only SUBS PC, LR, #const allowed"));
11283 constraint (inst.relocs[0].exp.X_op != O_constant,
11284 _("expression too complex"));
11285 constraint (inst.relocs[0].exp.X_add_number < 0
11286 || inst.relocs[0].exp.X_add_number > 0xff,
11287 _("immediate value out of range"));
11288 inst.instruction = T2_SUBS_PC_LR
11289 | inst.relocs[0].exp.X_add_number;
11290 inst.relocs[0].type = BFD_RELOC_UNUSED;
11291 return;
11292 }
11293 else if (Rs == REG_PC)
11294 {
11295 /* Always use addw/subw. */
11296 inst.instruction = add ? 0xf20f0000 : 0xf2af0000;
11297 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMM12;
11298 }
11299 else
11300 {
11301 inst.instruction = THUMB_OP32 (inst.instruction);
11302 inst.instruction = (inst.instruction & 0xe1ffffff)
11303 | 0x10000000;
11304 if (flags)
11305 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
11306 else
11307 inst.relocs[0].type = BFD_RELOC_ARM_T32_ADD_IMM;
11308 }
11309 inst.instruction |= Rd << 8;
11310 inst.instruction |= Rs << 16;
11311 }
11312 }
11313 else
11314 {
11315 unsigned int value = inst.relocs[0].exp.X_add_number;
11316 unsigned int shift = inst.operands[2].shift_kind;
11317
11318 Rn = inst.operands[2].reg;
11319 /* See if we can do this with a 16-bit instruction. */
11320 if (!inst.operands[2].shifted && inst.size_req != 4)
11321 {
11322 if (Rd > 7 || Rs > 7 || Rn > 7)
11323 narrow = FALSE;
11324
11325 if (narrow)
11326 {
11327 inst.instruction = ((inst.instruction == T_MNEM_adds
11328 || inst.instruction == T_MNEM_add)
11329 ? T_OPCODE_ADD_R3
11330 : T_OPCODE_SUB_R3);
11331 inst.instruction |= Rd | (Rs << 3) | (Rn << 6);
11332 return;
11333 }
11334
11335 if (inst.instruction == T_MNEM_add && (Rd == Rs || Rd == Rn))
11336 {
11337 /* Thumb-1 cores (except v6-M) require at least one high
11338 register in a narrow non flag setting add. */
11339 if (Rd > 7 || Rn > 7
11340 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6t2)
11341 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_msr))
11342 {
11343 if (Rd == Rn)
11344 {
11345 Rn = Rs;
11346 Rs = Rd;
11347 }
11348 inst.instruction = T_OPCODE_ADD_HI;
11349 inst.instruction |= (Rd & 8) << 4;
11350 inst.instruction |= (Rd & 7);
11351 inst.instruction |= Rn << 3;
11352 return;
11353 }
11354 }
11355 }
11356
11357 constraint (Rd == REG_PC, BAD_PC);
11358 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
11359 constraint (Rd == REG_SP && Rs != REG_SP, BAD_SP);
11360 constraint (Rs == REG_PC, BAD_PC);
11361 reject_bad_reg (Rn);
11362
11363 /* If we get here, it can't be done in 16 bits. */
11364 constraint (inst.operands[2].shifted && inst.operands[2].immisreg,
11365 _("shift must be constant"));
11366 inst.instruction = THUMB_OP32 (inst.instruction);
11367 inst.instruction |= Rd << 8;
11368 inst.instruction |= Rs << 16;
11369 constraint (Rd == REG_SP && Rs == REG_SP && value > 3,
11370 _("shift value over 3 not allowed in thumb mode"));
11371 constraint (Rd == REG_SP && Rs == REG_SP && shift != SHIFT_LSL,
11372 _("only LSL shift allowed in thumb mode"));
11373 encode_thumb32_shifted_operand (2);
11374 }
11375 }
11376 else
11377 {
11378 constraint (inst.instruction == T_MNEM_adds
11379 || inst.instruction == T_MNEM_subs,
11380 BAD_THUMB32);
11381
11382 if (!inst.operands[2].isreg) /* Rd, Rs, #imm */
11383 {
11384 constraint ((Rd > 7 && (Rd != REG_SP || Rs != REG_SP))
11385 || (Rs > 7 && Rs != REG_SP && Rs != REG_PC),
11386 BAD_HIREG);
11387
11388 inst.instruction = (inst.instruction == T_MNEM_add
11389 ? 0x0000 : 0x8000);
11390 inst.instruction |= (Rd << 4) | Rs;
11391 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_ADD;
11392 return;
11393 }
11394
11395 Rn = inst.operands[2].reg;
11396 constraint (inst.operands[2].shifted, _("unshifted register required"));
11397
11398 /* We now have Rd, Rs, and Rn set to registers. */
11399 if (Rd > 7 || Rs > 7 || Rn > 7)
11400 {
11401 /* Can't do this for SUB. */
11402 constraint (inst.instruction == T_MNEM_sub, BAD_HIREG);
11403 inst.instruction = T_OPCODE_ADD_HI;
11404 inst.instruction |= (Rd & 8) << 4;
11405 inst.instruction |= (Rd & 7);
11406 if (Rs == Rd)
11407 inst.instruction |= Rn << 3;
11408 else if (Rn == Rd)
11409 inst.instruction |= Rs << 3;
11410 else
11411 constraint (1, _("dest must overlap one source register"));
11412 }
11413 else
11414 {
11415 inst.instruction = (inst.instruction == T_MNEM_add
11416 ? T_OPCODE_ADD_R3 : T_OPCODE_SUB_R3);
11417 inst.instruction |= Rd | (Rs << 3) | (Rn << 6);
11418 }
11419 }
11420 }
11421
11422 static void
11423 do_t_adr (void)
11424 {
11425 unsigned Rd;
11426
11427 Rd = inst.operands[0].reg;
11428 reject_bad_reg (Rd);
11429
11430 if (unified_syntax && inst.size_req == 0 && Rd <= 7)
11431 {
11432 /* Defer to section relaxation. */
11433 inst.relax = inst.instruction;
11434 inst.instruction = THUMB_OP16 (inst.instruction);
11435 inst.instruction |= Rd << 4;
11436 }
11437 else if (unified_syntax && inst.size_req != 2)
11438 {
11439 /* Generate a 32-bit opcode. */
11440 inst.instruction = THUMB_OP32 (inst.instruction);
11441 inst.instruction |= Rd << 8;
11442 inst.relocs[0].type = BFD_RELOC_ARM_T32_ADD_PC12;
11443 inst.relocs[0].pc_rel = 1;
11444 }
11445 else
11446 {
11447 /* Generate a 16-bit opcode. */
11448 inst.instruction = THUMB_OP16 (inst.instruction);
11449 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_ADD;
11450 inst.relocs[0].exp.X_add_number -= 4; /* PC relative adjust. */
11451 inst.relocs[0].pc_rel = 1;
11452 inst.instruction |= Rd << 4;
11453 }
11454
11455 if (inst.relocs[0].exp.X_op == O_symbol
11456 && inst.relocs[0].exp.X_add_symbol != NULL
11457 && S_IS_DEFINED (inst.relocs[0].exp.X_add_symbol)
11458 && THUMB_IS_FUNC (inst.relocs[0].exp.X_add_symbol))
11459 inst.relocs[0].exp.X_add_number += 1;
11460 }
11461
11462 /* Arithmetic instructions for which there is just one 16-bit
11463 instruction encoding, and it allows only two low registers.
11464 For maximal compatibility with ARM syntax, we allow three register
11465 operands even when Thumb-32 instructions are not available, as long
11466 as the first two are identical. For instance, both "sbc r0,r1" and
11467 "sbc r0,r0,r1" are allowed. */
11468 static void
11469 do_t_arit3 (void)
11470 {
11471 int Rd, Rs, Rn;
11472
11473 Rd = inst.operands[0].reg;
11474 Rs = (inst.operands[1].present
11475 ? inst.operands[1].reg /* Rd, Rs, foo */
11476 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
11477 Rn = inst.operands[2].reg;
11478
11479 reject_bad_reg (Rd);
11480 reject_bad_reg (Rs);
11481 if (inst.operands[2].isreg)
11482 reject_bad_reg (Rn);
11483
11484 if (unified_syntax)
11485 {
11486 if (!inst.operands[2].isreg)
11487 {
11488 /* For an immediate, we always generate a 32-bit opcode;
11489 section relaxation will shrink it later if possible. */
11490 inst.instruction = THUMB_OP32 (inst.instruction);
11491 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
11492 inst.instruction |= Rd << 8;
11493 inst.instruction |= Rs << 16;
11494 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
11495 }
11496 else
11497 {
11498 bfd_boolean narrow;
11499
11500 /* See if we can do this with a 16-bit instruction. */
11501 if (THUMB_SETS_FLAGS (inst.instruction))
11502 narrow = !in_pred_block ();
11503 else
11504 narrow = in_pred_block ();
11505
11506 if (Rd > 7 || Rn > 7 || Rs > 7)
11507 narrow = FALSE;
11508 if (inst.operands[2].shifted)
11509 narrow = FALSE;
11510 if (inst.size_req == 4)
11511 narrow = FALSE;
11512
11513 if (narrow
11514 && Rd == Rs)
11515 {
11516 inst.instruction = THUMB_OP16 (inst.instruction);
11517 inst.instruction |= Rd;
11518 inst.instruction |= Rn << 3;
11519 return;
11520 }
11521
11522 /* If we get here, it can't be done in 16 bits. */
11523 constraint (inst.operands[2].shifted
11524 && inst.operands[2].immisreg,
11525 _("shift must be constant"));
11526 inst.instruction = THUMB_OP32 (inst.instruction);
11527 inst.instruction |= Rd << 8;
11528 inst.instruction |= Rs << 16;
11529 encode_thumb32_shifted_operand (2);
11530 }
11531 }
11532 else
11533 {
11534 /* On its face this is a lie - the instruction does set the
11535 flags. However, the only supported mnemonic in this mode
11536 says it doesn't. */
11537 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
11538
11539 constraint (!inst.operands[2].isreg || inst.operands[2].shifted,
11540 _("unshifted register required"));
11541 constraint (Rd > 7 || Rs > 7 || Rn > 7, BAD_HIREG);
11542 constraint (Rd != Rs,
11543 _("dest and source1 must be the same register"));
11544
11545 inst.instruction = THUMB_OP16 (inst.instruction);
11546 inst.instruction |= Rd;
11547 inst.instruction |= Rn << 3;
11548 }
11549 }
11550
11551 /* Similarly, but for instructions where the arithmetic operation is
11552 commutative, so we can allow either of them to be different from
11553 the destination operand in a 16-bit instruction. For instance, all
11554 three of "adc r0,r1", "adc r0,r0,r1", and "adc r0,r1,r0" are
11555 accepted. */
11556 static void
11557 do_t_arit3c (void)
11558 {
11559 int Rd, Rs, Rn;
11560
11561 Rd = inst.operands[0].reg;
11562 Rs = (inst.operands[1].present
11563 ? inst.operands[1].reg /* Rd, Rs, foo */
11564 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
11565 Rn = inst.operands[2].reg;
11566
11567 reject_bad_reg (Rd);
11568 reject_bad_reg (Rs);
11569 if (inst.operands[2].isreg)
11570 reject_bad_reg (Rn);
11571
11572 if (unified_syntax)
11573 {
11574 if (!inst.operands[2].isreg)
11575 {
11576 /* For an immediate, we always generate a 32-bit opcode;
11577 section relaxation will shrink it later if possible. */
11578 inst.instruction = THUMB_OP32 (inst.instruction);
11579 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
11580 inst.instruction |= Rd << 8;
11581 inst.instruction |= Rs << 16;
11582 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
11583 }
11584 else
11585 {
11586 bfd_boolean narrow;
11587
11588 /* See if we can do this with a 16-bit instruction. */
11589 if (THUMB_SETS_FLAGS (inst.instruction))
11590 narrow = !in_pred_block ();
11591 else
11592 narrow = in_pred_block ();
11593
11594 if (Rd > 7 || Rn > 7 || Rs > 7)
11595 narrow = FALSE;
11596 if (inst.operands[2].shifted)
11597 narrow = FALSE;
11598 if (inst.size_req == 4)
11599 narrow = FALSE;
11600
11601 if (narrow)
11602 {
11603 if (Rd == Rs)
11604 {
11605 inst.instruction = THUMB_OP16 (inst.instruction);
11606 inst.instruction |= Rd;
11607 inst.instruction |= Rn << 3;
11608 return;
11609 }
11610 if (Rd == Rn)
11611 {
11612 inst.instruction = THUMB_OP16 (inst.instruction);
11613 inst.instruction |= Rd;
11614 inst.instruction |= Rs << 3;
11615 return;
11616 }
11617 }
11618
11619 /* If we get here, it can't be done in 16 bits. */
11620 constraint (inst.operands[2].shifted
11621 && inst.operands[2].immisreg,
11622 _("shift must be constant"));
11623 inst.instruction = THUMB_OP32 (inst.instruction);
11624 inst.instruction |= Rd << 8;
11625 inst.instruction |= Rs << 16;
11626 encode_thumb32_shifted_operand (2);
11627 }
11628 }
11629 else
11630 {
11631 /* On its face this is a lie - the instruction does set the
11632 flags. However, the only supported mnemonic in this mode
11633 says it doesn't. */
11634 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
11635
11636 constraint (!inst.operands[2].isreg || inst.operands[2].shifted,
11637 _("unshifted register required"));
11638 constraint (Rd > 7 || Rs > 7 || Rn > 7, BAD_HIREG);
11639
11640 inst.instruction = THUMB_OP16 (inst.instruction);
11641 inst.instruction |= Rd;
11642
11643 if (Rd == Rs)
11644 inst.instruction |= Rn << 3;
11645 else if (Rd == Rn)
11646 inst.instruction |= Rs << 3;
11647 else
11648 constraint (1, _("dest must overlap one source register"));
11649 }
11650 }
11651
11652 static void
11653 do_t_bfc (void)
11654 {
11655 unsigned Rd;
11656 unsigned int msb = inst.operands[1].imm + inst.operands[2].imm;
11657 constraint (msb > 32, _("bit-field extends past end of register"));
11658 /* The instruction encoding stores the LSB and MSB,
11659 not the LSB and width. */
11660 Rd = inst.operands[0].reg;
11661 reject_bad_reg (Rd);
11662 inst.instruction |= Rd << 8;
11663 inst.instruction |= (inst.operands[1].imm & 0x1c) << 10;
11664 inst.instruction |= (inst.operands[1].imm & 0x03) << 6;
11665 inst.instruction |= msb - 1;
11666 }
11667
11668 static void
11669 do_t_bfi (void)
11670 {
11671 int Rd, Rn;
11672 unsigned int msb;
11673
11674 Rd = inst.operands[0].reg;
11675 reject_bad_reg (Rd);
11676
11677 /* #0 in second position is alternative syntax for bfc, which is
11678 the same instruction but with REG_PC in the Rm field. */
11679 if (!inst.operands[1].isreg)
11680 Rn = REG_PC;
11681 else
11682 {
11683 Rn = inst.operands[1].reg;
11684 reject_bad_reg (Rn);
11685 }
11686
11687 msb = inst.operands[2].imm + inst.operands[3].imm;
11688 constraint (msb > 32, _("bit-field extends past end of register"));
11689 /* The instruction encoding stores the LSB and MSB,
11690 not the LSB and width. */
11691 inst.instruction |= Rd << 8;
11692 inst.instruction |= Rn << 16;
11693 inst.instruction |= (inst.operands[2].imm & 0x1c) << 10;
11694 inst.instruction |= (inst.operands[2].imm & 0x03) << 6;
11695 inst.instruction |= msb - 1;
11696 }
11697
11698 static void
11699 do_t_bfx (void)
11700 {
11701 unsigned Rd, Rn;
11702
11703 Rd = inst.operands[0].reg;
11704 Rn = inst.operands[1].reg;
11705
11706 reject_bad_reg (Rd);
11707 reject_bad_reg (Rn);
11708
11709 constraint (inst.operands[2].imm + inst.operands[3].imm > 32,
11710 _("bit-field extends past end of register"));
11711 inst.instruction |= Rd << 8;
11712 inst.instruction |= Rn << 16;
11713 inst.instruction |= (inst.operands[2].imm & 0x1c) << 10;
11714 inst.instruction |= (inst.operands[2].imm & 0x03) << 6;
11715 inst.instruction |= inst.operands[3].imm - 1;
11716 }
11717
11718 /* ARM V5 Thumb BLX (argument parse)
11719 BLX <target_addr> which is BLX(1)
11720 BLX <Rm> which is BLX(2)
11721 Unfortunately, there are two different opcodes for this mnemonic.
11722 So, the insns[].value is not used, and the code here zaps values
11723 into inst.instruction.
11724
11725 ??? How to take advantage of the additional two bits of displacement
11726 available in Thumb32 mode? Need new relocation? */
11727
11728 static void
11729 do_t_blx (void)
11730 {
11731 set_pred_insn_type_last ();
11732
11733 if (inst.operands[0].isreg)
11734 {
11735 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
11736 /* We have a register, so this is BLX(2). */
11737 inst.instruction |= inst.operands[0].reg << 3;
11738 }
11739 else
11740 {
11741 /* No register. This must be BLX(1). */
11742 inst.instruction = 0xf000e800;
11743 encode_branch (BFD_RELOC_THUMB_PCREL_BLX);
11744 }
11745 }
11746
11747 static void
11748 do_t_branch (void)
11749 {
11750 int opcode;
11751 int cond;
11752 bfd_reloc_code_real_type reloc;
11753
11754 cond = inst.cond;
11755 set_pred_insn_type (IF_INSIDE_IT_LAST_INSN);
11756
11757 if (in_pred_block ())
11758 {
11759 /* Conditional branches inside IT blocks are encoded as unconditional
11760 branches. */
11761 cond = COND_ALWAYS;
11762 }
11763 else
11764 cond = inst.cond;
11765
11766 if (cond != COND_ALWAYS)
11767 opcode = T_MNEM_bcond;
11768 else
11769 opcode = inst.instruction;
11770
11771 if (unified_syntax
11772 && (inst.size_req == 4
11773 || (inst.size_req != 2
11774 && (inst.operands[0].hasreloc
11775 || inst.relocs[0].exp.X_op == O_constant))))
11776 {
11777 inst.instruction = THUMB_OP32(opcode);
11778 if (cond == COND_ALWAYS)
11779 reloc = BFD_RELOC_THUMB_PCREL_BRANCH25;
11780 else
11781 {
11782 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2),
11783 _("selected architecture does not support "
11784 "wide conditional branch instruction"));
11785
11786 gas_assert (cond != 0xF);
11787 inst.instruction |= cond << 22;
11788 reloc = BFD_RELOC_THUMB_PCREL_BRANCH20;
11789 }
11790 }
11791 else
11792 {
11793 inst.instruction = THUMB_OP16(opcode);
11794 if (cond == COND_ALWAYS)
11795 reloc = BFD_RELOC_THUMB_PCREL_BRANCH12;
11796 else
11797 {
11798 inst.instruction |= cond << 8;
11799 reloc = BFD_RELOC_THUMB_PCREL_BRANCH9;
11800 }
11801 /* Allow section relaxation. */
11802 if (unified_syntax && inst.size_req != 2)
11803 inst.relax = opcode;
11804 }
11805 inst.relocs[0].type = reloc;
11806 inst.relocs[0].pc_rel = 1;
11807 }
11808
11809 /* Actually do the work for Thumb state bkpt and hlt. The only difference
11810 between the two is the maximum immediate allowed - which is passed in
11811 RANGE. */
11812 static void
11813 do_t_bkpt_hlt1 (int range)
11814 {
11815 constraint (inst.cond != COND_ALWAYS,
11816 _("instruction is always unconditional"));
11817 if (inst.operands[0].present)
11818 {
11819 constraint (inst.operands[0].imm > range,
11820 _("immediate value out of range"));
11821 inst.instruction |= inst.operands[0].imm;
11822 }
11823
11824 set_pred_insn_type (NEUTRAL_IT_INSN);
11825 }
11826
11827 static void
11828 do_t_hlt (void)
11829 {
11830 do_t_bkpt_hlt1 (63);
11831 }
11832
11833 static void
11834 do_t_bkpt (void)
11835 {
11836 do_t_bkpt_hlt1 (255);
11837 }
11838
11839 static void
11840 do_t_branch23 (void)
11841 {
11842 set_pred_insn_type_last ();
11843 encode_branch (BFD_RELOC_THUMB_PCREL_BRANCH23);
11844
11845 /* md_apply_fix blows up with 'bl foo(PLT)' where foo is defined in
11846 this file. We used to simply ignore the PLT reloc type here --
11847 the branch encoding is now needed to deal with TLSCALL relocs.
11848 So if we see a PLT reloc now, put it back to how it used to be to
11849 keep the preexisting behaviour. */
11850 if (inst.relocs[0].type == BFD_RELOC_ARM_PLT32)
11851 inst.relocs[0].type = BFD_RELOC_THUMB_PCREL_BRANCH23;
11852
11853 #if defined(OBJ_COFF)
11854 /* If the destination of the branch is a defined symbol which does not have
11855 the THUMB_FUNC attribute, then we must be calling a function which has
11856 the (interfacearm) attribute. We look for the Thumb entry point to that
11857 function and change the branch to refer to that function instead. */
11858 if ( inst.relocs[0].exp.X_op == O_symbol
11859 && inst.relocs[0].exp.X_add_symbol != NULL
11860 && S_IS_DEFINED (inst.relocs[0].exp.X_add_symbol)
11861 && ! THUMB_IS_FUNC (inst.relocs[0].exp.X_add_symbol))
11862 inst.relocs[0].exp.X_add_symbol
11863 = find_real_start (inst.relocs[0].exp.X_add_symbol);
11864 #endif
11865 }
11866
11867 static void
11868 do_t_bx (void)
11869 {
11870 set_pred_insn_type_last ();
11871 inst.instruction |= inst.operands[0].reg << 3;
11872 /* ??? FIXME: Should add a hacky reloc here if reg is REG_PC. The reloc
11873 should cause the alignment to be checked once it is known. This is
11874 because BX PC only works if the instruction is word aligned. */
11875 }
11876
11877 static void
11878 do_t_bxj (void)
11879 {
11880 int Rm;
11881
11882 set_pred_insn_type_last ();
11883 Rm = inst.operands[0].reg;
11884 reject_bad_reg (Rm);
11885 inst.instruction |= Rm << 16;
11886 }
11887
11888 static void
11889 do_t_clz (void)
11890 {
11891 unsigned Rd;
11892 unsigned Rm;
11893
11894 Rd = inst.operands[0].reg;
11895 Rm = inst.operands[1].reg;
11896
11897 reject_bad_reg (Rd);
11898 reject_bad_reg (Rm);
11899
11900 inst.instruction |= Rd << 8;
11901 inst.instruction |= Rm << 16;
11902 inst.instruction |= Rm;
11903 }
11904
11905 static void
11906 do_t_csdb (void)
11907 {
11908 set_pred_insn_type (OUTSIDE_PRED_INSN);
11909 }
11910
11911 static void
11912 do_t_cps (void)
11913 {
11914 set_pred_insn_type (OUTSIDE_PRED_INSN);
11915 inst.instruction |= inst.operands[0].imm;
11916 }
11917
11918 static void
11919 do_t_cpsi (void)
11920 {
11921 set_pred_insn_type (OUTSIDE_PRED_INSN);
11922 if (unified_syntax
11923 && (inst.operands[1].present || inst.size_req == 4)
11924 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6_notm))
11925 {
11926 unsigned int imod = (inst.instruction & 0x0030) >> 4;
11927 inst.instruction = 0xf3af8000;
11928 inst.instruction |= imod << 9;
11929 inst.instruction |= inst.operands[0].imm << 5;
11930 if (inst.operands[1].present)
11931 inst.instruction |= 0x100 | inst.operands[1].imm;
11932 }
11933 else
11934 {
11935 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1)
11936 && (inst.operands[0].imm & 4),
11937 _("selected processor does not support 'A' form "
11938 "of this instruction"));
11939 constraint (inst.operands[1].present || inst.size_req == 4,
11940 _("Thumb does not support the 2-argument "
11941 "form of this instruction"));
11942 inst.instruction |= inst.operands[0].imm;
11943 }
11944 }
11945
11946 /* THUMB CPY instruction (argument parse). */
11947
11948 static void
11949 do_t_cpy (void)
11950 {
11951 if (inst.size_req == 4)
11952 {
11953 inst.instruction = THUMB_OP32 (T_MNEM_mov);
11954 inst.instruction |= inst.operands[0].reg << 8;
11955 inst.instruction |= inst.operands[1].reg;
11956 }
11957 else
11958 {
11959 inst.instruction |= (inst.operands[0].reg & 0x8) << 4;
11960 inst.instruction |= (inst.operands[0].reg & 0x7);
11961 inst.instruction |= inst.operands[1].reg << 3;
11962 }
11963 }
11964
11965 static void
11966 do_t_cbz (void)
11967 {
11968 set_pred_insn_type (OUTSIDE_PRED_INSN);
11969 constraint (inst.operands[0].reg > 7, BAD_HIREG);
11970 inst.instruction |= inst.operands[0].reg;
11971 inst.relocs[0].pc_rel = 1;
11972 inst.relocs[0].type = BFD_RELOC_THUMB_PCREL_BRANCH7;
11973 }
11974
11975 static void
11976 do_t_dbg (void)
11977 {
11978 inst.instruction |= inst.operands[0].imm;
11979 }
11980
11981 static void
11982 do_t_div (void)
11983 {
11984 unsigned Rd, Rn, Rm;
11985
11986 Rd = inst.operands[0].reg;
11987 Rn = (inst.operands[1].present
11988 ? inst.operands[1].reg : Rd);
11989 Rm = inst.operands[2].reg;
11990
11991 reject_bad_reg (Rd);
11992 reject_bad_reg (Rn);
11993 reject_bad_reg (Rm);
11994
11995 inst.instruction |= Rd << 8;
11996 inst.instruction |= Rn << 16;
11997 inst.instruction |= Rm;
11998 }
11999
12000 static void
12001 do_t_hint (void)
12002 {
12003 if (unified_syntax && inst.size_req == 4)
12004 inst.instruction = THUMB_OP32 (inst.instruction);
12005 else
12006 inst.instruction = THUMB_OP16 (inst.instruction);
12007 }
12008
12009 static void
12010 do_t_it (void)
12011 {
12012 unsigned int cond = inst.operands[0].imm;
12013
12014 set_pred_insn_type (IT_INSN);
12015 now_pred.mask = (inst.instruction & 0xf) | 0x10;
12016 now_pred.cc = cond;
12017 now_pred.warn_deprecated = FALSE;
12018 now_pred.type = SCALAR_PRED;
12019
12020 /* If the condition is a negative condition, invert the mask. */
12021 if ((cond & 0x1) == 0x0)
12022 {
12023 unsigned int mask = inst.instruction & 0x000f;
12024
12025 if ((mask & 0x7) == 0)
12026 {
12027 /* No conversion needed. */
12028 now_pred.block_length = 1;
12029 }
12030 else if ((mask & 0x3) == 0)
12031 {
12032 mask ^= 0x8;
12033 now_pred.block_length = 2;
12034 }
12035 else if ((mask & 0x1) == 0)
12036 {
12037 mask ^= 0xC;
12038 now_pred.block_length = 3;
12039 }
12040 else
12041 {
12042 mask ^= 0xE;
12043 now_pred.block_length = 4;
12044 }
12045
12046 inst.instruction &= 0xfff0;
12047 inst.instruction |= mask;
12048 }
12049
12050 inst.instruction |= cond << 4;
12051 }
12052
12053 /* Helper function used for both push/pop and ldm/stm. */
12054 static void
12055 encode_thumb2_multi (bfd_boolean do_io, int base, unsigned mask,
12056 bfd_boolean writeback)
12057 {
12058 bfd_boolean load, store;
12059
12060 gas_assert (base != -1 || !do_io);
12061 load = do_io && ((inst.instruction & (1 << 20)) != 0);
12062 store = do_io && !load;
12063
12064 if (mask & (1 << 13))
12065 inst.error = _("SP not allowed in register list");
12066
12067 if (do_io && (mask & (1 << base)) != 0
12068 && writeback)
12069 inst.error = _("having the base register in the register list when "
12070 "using write back is UNPREDICTABLE");
12071
12072 if (load)
12073 {
12074 if (mask & (1 << 15))
12075 {
12076 if (mask & (1 << 14))
12077 inst.error = _("LR and PC should not both be in register list");
12078 else
12079 set_pred_insn_type_last ();
12080 }
12081 }
12082 else if (store)
12083 {
12084 if (mask & (1 << 15))
12085 inst.error = _("PC not allowed in register list");
12086 }
12087
12088 if (do_io && ((mask & (mask - 1)) == 0))
12089 {
12090 /* Single register transfers implemented as str/ldr. */
12091 if (writeback)
12092 {
12093 if (inst.instruction & (1 << 23))
12094 inst.instruction = 0x00000b04; /* ia! -> [base], #4 */
12095 else
12096 inst.instruction = 0x00000d04; /* db! -> [base, #-4]! */
12097 }
12098 else
12099 {
12100 if (inst.instruction & (1 << 23))
12101 inst.instruction = 0x00800000; /* ia -> [base] */
12102 else
12103 inst.instruction = 0x00000c04; /* db -> [base, #-4] */
12104 }
12105
12106 inst.instruction |= 0xf8400000;
12107 if (load)
12108 inst.instruction |= 0x00100000;
12109
12110 mask = ffs (mask) - 1;
12111 mask <<= 12;
12112 }
12113 else if (writeback)
12114 inst.instruction |= WRITE_BACK;
12115
12116 inst.instruction |= mask;
12117 if (do_io)
12118 inst.instruction |= base << 16;
12119 }
12120
12121 static void
12122 do_t_ldmstm (void)
12123 {
12124 /* This really doesn't seem worth it. */
12125 constraint (inst.relocs[0].type != BFD_RELOC_UNUSED,
12126 _("expression too complex"));
12127 constraint (inst.operands[1].writeback,
12128 _("Thumb load/store multiple does not support {reglist}^"));
12129
12130 if (unified_syntax)
12131 {
12132 bfd_boolean narrow;
12133 unsigned mask;
12134
12135 narrow = FALSE;
12136 /* See if we can use a 16-bit instruction. */
12137 if (inst.instruction < 0xffff /* not ldmdb/stmdb */
12138 && inst.size_req != 4
12139 && !(inst.operands[1].imm & ~0xff))
12140 {
12141 mask = 1 << inst.operands[0].reg;
12142
12143 if (inst.operands[0].reg <= 7)
12144 {
12145 if (inst.instruction == T_MNEM_stmia
12146 ? inst.operands[0].writeback
12147 : (inst.operands[0].writeback
12148 == !(inst.operands[1].imm & mask)))
12149 {
12150 if (inst.instruction == T_MNEM_stmia
12151 && (inst.operands[1].imm & mask)
12152 && (inst.operands[1].imm & (mask - 1)))
12153 as_warn (_("value stored for r%d is UNKNOWN"),
12154 inst.operands[0].reg);
12155
12156 inst.instruction = THUMB_OP16 (inst.instruction);
12157 inst.instruction |= inst.operands[0].reg << 8;
12158 inst.instruction |= inst.operands[1].imm;
12159 narrow = TRUE;
12160 }
12161 else if ((inst.operands[1].imm & (inst.operands[1].imm-1)) == 0)
12162 {
12163 /* This means 1 register in reg list one of 3 situations:
12164 1. Instruction is stmia, but without writeback.
12165 2. lmdia without writeback, but with Rn not in
12166 reglist.
12167 3. ldmia with writeback, but with Rn in reglist.
12168 Case 3 is UNPREDICTABLE behaviour, so we handle
12169 case 1 and 2 which can be converted into a 16-bit
12170 str or ldr. The SP cases are handled below. */
12171 unsigned long opcode;
12172 /* First, record an error for Case 3. */
12173 if (inst.operands[1].imm & mask
12174 && inst.operands[0].writeback)
12175 inst.error =
12176 _("having the base register in the register list when "
12177 "using write back is UNPREDICTABLE");
12178
12179 opcode = (inst.instruction == T_MNEM_stmia ? T_MNEM_str
12180 : T_MNEM_ldr);
12181 inst.instruction = THUMB_OP16 (opcode);
12182 inst.instruction |= inst.operands[0].reg << 3;
12183 inst.instruction |= (ffs (inst.operands[1].imm)-1);
12184 narrow = TRUE;
12185 }
12186 }
12187 else if (inst.operands[0] .reg == REG_SP)
12188 {
12189 if (inst.operands[0].writeback)
12190 {
12191 inst.instruction =
12192 THUMB_OP16 (inst.instruction == T_MNEM_stmia
12193 ? T_MNEM_push : T_MNEM_pop);
12194 inst.instruction |= inst.operands[1].imm;
12195 narrow = TRUE;
12196 }
12197 else if ((inst.operands[1].imm & (inst.operands[1].imm-1)) == 0)
12198 {
12199 inst.instruction =
12200 THUMB_OP16 (inst.instruction == T_MNEM_stmia
12201 ? T_MNEM_str_sp : T_MNEM_ldr_sp);
12202 inst.instruction |= ((ffs (inst.operands[1].imm)-1) << 8);
12203 narrow = TRUE;
12204 }
12205 }
12206 }
12207
12208 if (!narrow)
12209 {
12210 if (inst.instruction < 0xffff)
12211 inst.instruction = THUMB_OP32 (inst.instruction);
12212
12213 encode_thumb2_multi (TRUE /* do_io */, inst.operands[0].reg,
12214 inst.operands[1].imm,
12215 inst.operands[0].writeback);
12216 }
12217 }
12218 else
12219 {
12220 constraint (inst.operands[0].reg > 7
12221 || (inst.operands[1].imm & ~0xff), BAD_HIREG);
12222 constraint (inst.instruction != T_MNEM_ldmia
12223 && inst.instruction != T_MNEM_stmia,
12224 _("Thumb-2 instruction only valid in unified syntax"));
12225 if (inst.instruction == T_MNEM_stmia)
12226 {
12227 if (!inst.operands[0].writeback)
12228 as_warn (_("this instruction will write back the base register"));
12229 if ((inst.operands[1].imm & (1 << inst.operands[0].reg))
12230 && (inst.operands[1].imm & ((1 << inst.operands[0].reg) - 1)))
12231 as_warn (_("value stored for r%d is UNKNOWN"),
12232 inst.operands[0].reg);
12233 }
12234 else
12235 {
12236 if (!inst.operands[0].writeback
12237 && !(inst.operands[1].imm & (1 << inst.operands[0].reg)))
12238 as_warn (_("this instruction will write back the base register"));
12239 else if (inst.operands[0].writeback
12240 && (inst.operands[1].imm & (1 << inst.operands[0].reg)))
12241 as_warn (_("this instruction will not write back the base register"));
12242 }
12243
12244 inst.instruction = THUMB_OP16 (inst.instruction);
12245 inst.instruction |= inst.operands[0].reg << 8;
12246 inst.instruction |= inst.operands[1].imm;
12247 }
12248 }
12249
12250 static void
12251 do_t_ldrex (void)
12252 {
12253 constraint (!inst.operands[1].isreg || !inst.operands[1].preind
12254 || inst.operands[1].postind || inst.operands[1].writeback
12255 || inst.operands[1].immisreg || inst.operands[1].shifted
12256 || inst.operands[1].negative,
12257 BAD_ADDR_MODE);
12258
12259 constraint ((inst.operands[1].reg == REG_PC), BAD_PC);
12260
12261 inst.instruction |= inst.operands[0].reg << 12;
12262 inst.instruction |= inst.operands[1].reg << 16;
12263 inst.relocs[0].type = BFD_RELOC_ARM_T32_OFFSET_U8;
12264 }
12265
12266 static void
12267 do_t_ldrexd (void)
12268 {
12269 if (!inst.operands[1].present)
12270 {
12271 constraint (inst.operands[0].reg == REG_LR,
12272 _("r14 not allowed as first register "
12273 "when second register is omitted"));
12274 inst.operands[1].reg = inst.operands[0].reg + 1;
12275 }
12276 constraint (inst.operands[0].reg == inst.operands[1].reg,
12277 BAD_OVERLAP);
12278
12279 inst.instruction |= inst.operands[0].reg << 12;
12280 inst.instruction |= inst.operands[1].reg << 8;
12281 inst.instruction |= inst.operands[2].reg << 16;
12282 }
12283
12284 static void
12285 do_t_ldst (void)
12286 {
12287 unsigned long opcode;
12288 int Rn;
12289
12290 if (inst.operands[0].isreg
12291 && !inst.operands[0].preind
12292 && inst.operands[0].reg == REG_PC)
12293 set_pred_insn_type_last ();
12294
12295 opcode = inst.instruction;
12296 if (unified_syntax)
12297 {
12298 if (!inst.operands[1].isreg)
12299 {
12300 if (opcode <= 0xffff)
12301 inst.instruction = THUMB_OP32 (opcode);
12302 if (move_or_literal_pool (0, CONST_THUMB, /*mode_3=*/FALSE))
12303 return;
12304 }
12305 if (inst.operands[1].isreg
12306 && !inst.operands[1].writeback
12307 && !inst.operands[1].shifted && !inst.operands[1].postind
12308 && !inst.operands[1].negative && inst.operands[0].reg <= 7
12309 && opcode <= 0xffff
12310 && inst.size_req != 4)
12311 {
12312 /* Insn may have a 16-bit form. */
12313 Rn = inst.operands[1].reg;
12314 if (inst.operands[1].immisreg)
12315 {
12316 inst.instruction = THUMB_OP16 (opcode);
12317 /* [Rn, Rik] */
12318 if (Rn <= 7 && inst.operands[1].imm <= 7)
12319 goto op16;
12320 else if (opcode != T_MNEM_ldr && opcode != T_MNEM_str)
12321 reject_bad_reg (inst.operands[1].imm);
12322 }
12323 else if ((Rn <= 7 && opcode != T_MNEM_ldrsh
12324 && opcode != T_MNEM_ldrsb)
12325 || ((Rn == REG_PC || Rn == REG_SP) && opcode == T_MNEM_ldr)
12326 || (Rn == REG_SP && opcode == T_MNEM_str))
12327 {
12328 /* [Rn, #const] */
12329 if (Rn > 7)
12330 {
12331 if (Rn == REG_PC)
12332 {
12333 if (inst.relocs[0].pc_rel)
12334 opcode = T_MNEM_ldr_pc2;
12335 else
12336 opcode = T_MNEM_ldr_pc;
12337 }
12338 else
12339 {
12340 if (opcode == T_MNEM_ldr)
12341 opcode = T_MNEM_ldr_sp;
12342 else
12343 opcode = T_MNEM_str_sp;
12344 }
12345 inst.instruction = inst.operands[0].reg << 8;
12346 }
12347 else
12348 {
12349 inst.instruction = inst.operands[0].reg;
12350 inst.instruction |= inst.operands[1].reg << 3;
12351 }
12352 inst.instruction |= THUMB_OP16 (opcode);
12353 if (inst.size_req == 2)
12354 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_OFFSET;
12355 else
12356 inst.relax = opcode;
12357 return;
12358 }
12359 }
12360 /* Definitely a 32-bit variant. */
12361
12362 /* Warning for Erratum 752419. */
12363 if (opcode == T_MNEM_ldr
12364 && inst.operands[0].reg == REG_SP
12365 && inst.operands[1].writeback == 1
12366 && !inst.operands[1].immisreg)
12367 {
12368 if (no_cpu_selected ()
12369 || (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7)
12370 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7a)
12371 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7r)))
12372 as_warn (_("This instruction may be unpredictable "
12373 "if executed on M-profile cores "
12374 "with interrupts enabled."));
12375 }
12376
12377 /* Do some validations regarding addressing modes. */
12378 if (inst.operands[1].immisreg)
12379 reject_bad_reg (inst.operands[1].imm);
12380
12381 constraint (inst.operands[1].writeback == 1
12382 && inst.operands[0].reg == inst.operands[1].reg,
12383 BAD_OVERLAP);
12384
12385 inst.instruction = THUMB_OP32 (opcode);
12386 inst.instruction |= inst.operands[0].reg << 12;
12387 encode_thumb32_addr_mode (1, /*is_t=*/FALSE, /*is_d=*/FALSE);
12388 check_ldr_r15_aligned ();
12389 return;
12390 }
12391
12392 constraint (inst.operands[0].reg > 7, BAD_HIREG);
12393
12394 if (inst.instruction == T_MNEM_ldrsh || inst.instruction == T_MNEM_ldrsb)
12395 {
12396 /* Only [Rn,Rm] is acceptable. */
12397 constraint (inst.operands[1].reg > 7 || inst.operands[1].imm > 7, BAD_HIREG);
12398 constraint (!inst.operands[1].isreg || !inst.operands[1].immisreg
12399 || inst.operands[1].postind || inst.operands[1].shifted
12400 || inst.operands[1].negative,
12401 _("Thumb does not support this addressing mode"));
12402 inst.instruction = THUMB_OP16 (inst.instruction);
12403 goto op16;
12404 }
12405
12406 inst.instruction = THUMB_OP16 (inst.instruction);
12407 if (!inst.operands[1].isreg)
12408 if (move_or_literal_pool (0, CONST_THUMB, /*mode_3=*/FALSE))
12409 return;
12410
12411 constraint (!inst.operands[1].preind
12412 || inst.operands[1].shifted
12413 || inst.operands[1].writeback,
12414 _("Thumb does not support this addressing mode"));
12415 if (inst.operands[1].reg == REG_PC || inst.operands[1].reg == REG_SP)
12416 {
12417 constraint (inst.instruction & 0x0600,
12418 _("byte or halfword not valid for base register"));
12419 constraint (inst.operands[1].reg == REG_PC
12420 && !(inst.instruction & THUMB_LOAD_BIT),
12421 _("r15 based store not allowed"));
12422 constraint (inst.operands[1].immisreg,
12423 _("invalid base register for register offset"));
12424
12425 if (inst.operands[1].reg == REG_PC)
12426 inst.instruction = T_OPCODE_LDR_PC;
12427 else if (inst.instruction & THUMB_LOAD_BIT)
12428 inst.instruction = T_OPCODE_LDR_SP;
12429 else
12430 inst.instruction = T_OPCODE_STR_SP;
12431
12432 inst.instruction |= inst.operands[0].reg << 8;
12433 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_OFFSET;
12434 return;
12435 }
12436
12437 constraint (inst.operands[1].reg > 7, BAD_HIREG);
12438 if (!inst.operands[1].immisreg)
12439 {
12440 /* Immediate offset. */
12441 inst.instruction |= inst.operands[0].reg;
12442 inst.instruction |= inst.operands[1].reg << 3;
12443 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_OFFSET;
12444 return;
12445 }
12446
12447 /* Register offset. */
12448 constraint (inst.operands[1].imm > 7, BAD_HIREG);
12449 constraint (inst.operands[1].negative,
12450 _("Thumb does not support this addressing mode"));
12451
12452 op16:
12453 switch (inst.instruction)
12454 {
12455 case T_OPCODE_STR_IW: inst.instruction = T_OPCODE_STR_RW; break;
12456 case T_OPCODE_STR_IH: inst.instruction = T_OPCODE_STR_RH; break;
12457 case T_OPCODE_STR_IB: inst.instruction = T_OPCODE_STR_RB; break;
12458 case T_OPCODE_LDR_IW: inst.instruction = T_OPCODE_LDR_RW; break;
12459 case T_OPCODE_LDR_IH: inst.instruction = T_OPCODE_LDR_RH; break;
12460 case T_OPCODE_LDR_IB: inst.instruction = T_OPCODE_LDR_RB; break;
12461 case 0x5600 /* ldrsb */:
12462 case 0x5e00 /* ldrsh */: break;
12463 default: abort ();
12464 }
12465
12466 inst.instruction |= inst.operands[0].reg;
12467 inst.instruction |= inst.operands[1].reg << 3;
12468 inst.instruction |= inst.operands[1].imm << 6;
12469 }
12470
12471 static void
12472 do_t_ldstd (void)
12473 {
12474 if (!inst.operands[1].present)
12475 {
12476 inst.operands[1].reg = inst.operands[0].reg + 1;
12477 constraint (inst.operands[0].reg == REG_LR,
12478 _("r14 not allowed here"));
12479 constraint (inst.operands[0].reg == REG_R12,
12480 _("r12 not allowed here"));
12481 }
12482
12483 if (inst.operands[2].writeback
12484 && (inst.operands[0].reg == inst.operands[2].reg
12485 || inst.operands[1].reg == inst.operands[2].reg))
12486 as_warn (_("base register written back, and overlaps "
12487 "one of transfer registers"));
12488
12489 inst.instruction |= inst.operands[0].reg << 12;
12490 inst.instruction |= inst.operands[1].reg << 8;
12491 encode_thumb32_addr_mode (2, /*is_t=*/FALSE, /*is_d=*/TRUE);
12492 }
12493
12494 static void
12495 do_t_ldstt (void)
12496 {
12497 inst.instruction |= inst.operands[0].reg << 12;
12498 encode_thumb32_addr_mode (1, /*is_t=*/TRUE, /*is_d=*/FALSE);
12499 }
12500
12501 static void
12502 do_t_mla (void)
12503 {
12504 unsigned Rd, Rn, Rm, Ra;
12505
12506 Rd = inst.operands[0].reg;
12507 Rn = inst.operands[1].reg;
12508 Rm = inst.operands[2].reg;
12509 Ra = inst.operands[3].reg;
12510
12511 reject_bad_reg (Rd);
12512 reject_bad_reg (Rn);
12513 reject_bad_reg (Rm);
12514 reject_bad_reg (Ra);
12515
12516 inst.instruction |= Rd << 8;
12517 inst.instruction |= Rn << 16;
12518 inst.instruction |= Rm;
12519 inst.instruction |= Ra << 12;
12520 }
12521
12522 static void
12523 do_t_mlal (void)
12524 {
12525 unsigned RdLo, RdHi, Rn, Rm;
12526
12527 RdLo = inst.operands[0].reg;
12528 RdHi = inst.operands[1].reg;
12529 Rn = inst.operands[2].reg;
12530 Rm = inst.operands[3].reg;
12531
12532 reject_bad_reg (RdLo);
12533 reject_bad_reg (RdHi);
12534 reject_bad_reg (Rn);
12535 reject_bad_reg (Rm);
12536
12537 inst.instruction |= RdLo << 12;
12538 inst.instruction |= RdHi << 8;
12539 inst.instruction |= Rn << 16;
12540 inst.instruction |= Rm;
12541 }
12542
12543 static void
12544 do_t_mov_cmp (void)
12545 {
12546 unsigned Rn, Rm;
12547
12548 Rn = inst.operands[0].reg;
12549 Rm = inst.operands[1].reg;
12550
12551 if (Rn == REG_PC)
12552 set_pred_insn_type_last ();
12553
12554 if (unified_syntax)
12555 {
12556 int r0off = (inst.instruction == T_MNEM_mov
12557 || inst.instruction == T_MNEM_movs) ? 8 : 16;
12558 unsigned long opcode;
12559 bfd_boolean narrow;
12560 bfd_boolean low_regs;
12561
12562 low_regs = (Rn <= 7 && Rm <= 7);
12563 opcode = inst.instruction;
12564 if (in_pred_block ())
12565 narrow = opcode != T_MNEM_movs;
12566 else
12567 narrow = opcode != T_MNEM_movs || low_regs;
12568 if (inst.size_req == 4
12569 || inst.operands[1].shifted)
12570 narrow = FALSE;
12571
12572 /* MOVS PC, LR is encoded as SUBS PC, LR, #0. */
12573 if (opcode == T_MNEM_movs && inst.operands[1].isreg
12574 && !inst.operands[1].shifted
12575 && Rn == REG_PC
12576 && Rm == REG_LR)
12577 {
12578 inst.instruction = T2_SUBS_PC_LR;
12579 return;
12580 }
12581
12582 if (opcode == T_MNEM_cmp)
12583 {
12584 constraint (Rn == REG_PC, BAD_PC);
12585 if (narrow)
12586 {
12587 /* In the Thumb-2 ISA, use of R13 as Rm is deprecated,
12588 but valid. */
12589 warn_deprecated_sp (Rm);
12590 /* R15 was documented as a valid choice for Rm in ARMv6,
12591 but as UNPREDICTABLE in ARMv7. ARM's proprietary
12592 tools reject R15, so we do too. */
12593 constraint (Rm == REG_PC, BAD_PC);
12594 }
12595 else
12596 reject_bad_reg (Rm);
12597 }
12598 else if (opcode == T_MNEM_mov
12599 || opcode == T_MNEM_movs)
12600 {
12601 if (inst.operands[1].isreg)
12602 {
12603 if (opcode == T_MNEM_movs)
12604 {
12605 reject_bad_reg (Rn);
12606 reject_bad_reg (Rm);
12607 }
12608 else if (narrow)
12609 {
12610 /* This is mov.n. */
12611 if ((Rn == REG_SP || Rn == REG_PC)
12612 && (Rm == REG_SP || Rm == REG_PC))
12613 {
12614 as_tsktsk (_("Use of r%u as a source register is "
12615 "deprecated when r%u is the destination "
12616 "register."), Rm, Rn);
12617 }
12618 }
12619 else
12620 {
12621 /* This is mov.w. */
12622 constraint (Rn == REG_PC, BAD_PC);
12623 constraint (Rm == REG_PC, BAD_PC);
12624 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
12625 constraint (Rn == REG_SP && Rm == REG_SP, BAD_SP);
12626 }
12627 }
12628 else
12629 reject_bad_reg (Rn);
12630 }
12631
12632 if (!inst.operands[1].isreg)
12633 {
12634 /* Immediate operand. */
12635 if (!in_pred_block () && opcode == T_MNEM_mov)
12636 narrow = 0;
12637 if (low_regs && narrow)
12638 {
12639 inst.instruction = THUMB_OP16 (opcode);
12640 inst.instruction |= Rn << 8;
12641 if (inst.relocs[0].type < BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
12642 || inst.relocs[0].type > BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC)
12643 {
12644 if (inst.size_req == 2)
12645 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_IMM;
12646 else
12647 inst.relax = opcode;
12648 }
12649 }
12650 else
12651 {
12652 constraint ((inst.relocs[0].type
12653 >= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC)
12654 && (inst.relocs[0].type
12655 <= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC) ,
12656 THUMB1_RELOC_ONLY);
12657
12658 inst.instruction = THUMB_OP32 (inst.instruction);
12659 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
12660 inst.instruction |= Rn << r0off;
12661 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
12662 }
12663 }
12664 else if (inst.operands[1].shifted && inst.operands[1].immisreg
12665 && (inst.instruction == T_MNEM_mov
12666 || inst.instruction == T_MNEM_movs))
12667 {
12668 /* Register shifts are encoded as separate shift instructions. */
12669 bfd_boolean flags = (inst.instruction == T_MNEM_movs);
12670
12671 if (in_pred_block ())
12672 narrow = !flags;
12673 else
12674 narrow = flags;
12675
12676 if (inst.size_req == 4)
12677 narrow = FALSE;
12678
12679 if (!low_regs || inst.operands[1].imm > 7)
12680 narrow = FALSE;
12681
12682 if (Rn != Rm)
12683 narrow = FALSE;
12684
12685 switch (inst.operands[1].shift_kind)
12686 {
12687 case SHIFT_LSL:
12688 opcode = narrow ? T_OPCODE_LSL_R : THUMB_OP32 (T_MNEM_lsl);
12689 break;
12690 case SHIFT_ASR:
12691 opcode = narrow ? T_OPCODE_ASR_R : THUMB_OP32 (T_MNEM_asr);
12692 break;
12693 case SHIFT_LSR:
12694 opcode = narrow ? T_OPCODE_LSR_R : THUMB_OP32 (T_MNEM_lsr);
12695 break;
12696 case SHIFT_ROR:
12697 opcode = narrow ? T_OPCODE_ROR_R : THUMB_OP32 (T_MNEM_ror);
12698 break;
12699 default:
12700 abort ();
12701 }
12702
12703 inst.instruction = opcode;
12704 if (narrow)
12705 {
12706 inst.instruction |= Rn;
12707 inst.instruction |= inst.operands[1].imm << 3;
12708 }
12709 else
12710 {
12711 if (flags)
12712 inst.instruction |= CONDS_BIT;
12713
12714 inst.instruction |= Rn << 8;
12715 inst.instruction |= Rm << 16;
12716 inst.instruction |= inst.operands[1].imm;
12717 }
12718 }
12719 else if (!narrow)
12720 {
12721 /* Some mov with immediate shift have narrow variants.
12722 Register shifts are handled above. */
12723 if (low_regs && inst.operands[1].shifted
12724 && (inst.instruction == T_MNEM_mov
12725 || inst.instruction == T_MNEM_movs))
12726 {
12727 if (in_pred_block ())
12728 narrow = (inst.instruction == T_MNEM_mov);
12729 else
12730 narrow = (inst.instruction == T_MNEM_movs);
12731 }
12732
12733 if (narrow)
12734 {
12735 switch (inst.operands[1].shift_kind)
12736 {
12737 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_I; break;
12738 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_I; break;
12739 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_I; break;
12740 default: narrow = FALSE; break;
12741 }
12742 }
12743
12744 if (narrow)
12745 {
12746 inst.instruction |= Rn;
12747 inst.instruction |= Rm << 3;
12748 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_SHIFT;
12749 }
12750 else
12751 {
12752 inst.instruction = THUMB_OP32 (inst.instruction);
12753 inst.instruction |= Rn << r0off;
12754 encode_thumb32_shifted_operand (1);
12755 }
12756 }
12757 else
12758 switch (inst.instruction)
12759 {
12760 case T_MNEM_mov:
12761 /* In v4t or v5t a move of two lowregs produces unpredictable
12762 results. Don't allow this. */
12763 if (low_regs)
12764 {
12765 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6),
12766 "MOV Rd, Rs with two low registers is not "
12767 "permitted on this architecture");
12768 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
12769 arm_ext_v6);
12770 }
12771
12772 inst.instruction = T_OPCODE_MOV_HR;
12773 inst.instruction |= (Rn & 0x8) << 4;
12774 inst.instruction |= (Rn & 0x7);
12775 inst.instruction |= Rm << 3;
12776 break;
12777
12778 case T_MNEM_movs:
12779 /* We know we have low registers at this point.
12780 Generate LSLS Rd, Rs, #0. */
12781 inst.instruction = T_OPCODE_LSL_I;
12782 inst.instruction |= Rn;
12783 inst.instruction |= Rm << 3;
12784 break;
12785
12786 case T_MNEM_cmp:
12787 if (low_regs)
12788 {
12789 inst.instruction = T_OPCODE_CMP_LR;
12790 inst.instruction |= Rn;
12791 inst.instruction |= Rm << 3;
12792 }
12793 else
12794 {
12795 inst.instruction = T_OPCODE_CMP_HR;
12796 inst.instruction |= (Rn & 0x8) << 4;
12797 inst.instruction |= (Rn & 0x7);
12798 inst.instruction |= Rm << 3;
12799 }
12800 break;
12801 }
12802 return;
12803 }
12804
12805 inst.instruction = THUMB_OP16 (inst.instruction);
12806
12807 /* PR 10443: Do not silently ignore shifted operands. */
12808 constraint (inst.operands[1].shifted,
12809 _("shifts in CMP/MOV instructions are only supported in unified syntax"));
12810
12811 if (inst.operands[1].isreg)
12812 {
12813 if (Rn < 8 && Rm < 8)
12814 {
12815 /* A move of two lowregs is encoded as ADD Rd, Rs, #0
12816 since a MOV instruction produces unpredictable results. */
12817 if (inst.instruction == T_OPCODE_MOV_I8)
12818 inst.instruction = T_OPCODE_ADD_I3;
12819 else
12820 inst.instruction = T_OPCODE_CMP_LR;
12821
12822 inst.instruction |= Rn;
12823 inst.instruction |= Rm << 3;
12824 }
12825 else
12826 {
12827 if (inst.instruction == T_OPCODE_MOV_I8)
12828 inst.instruction = T_OPCODE_MOV_HR;
12829 else
12830 inst.instruction = T_OPCODE_CMP_HR;
12831 do_t_cpy ();
12832 }
12833 }
12834 else
12835 {
12836 constraint (Rn > 7,
12837 _("only lo regs allowed with immediate"));
12838 inst.instruction |= Rn << 8;
12839 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_IMM;
12840 }
12841 }
12842
12843 static void
12844 do_t_mov16 (void)
12845 {
12846 unsigned Rd;
12847 bfd_vma imm;
12848 bfd_boolean top;
12849
12850 top = (inst.instruction & 0x00800000) != 0;
12851 if (inst.relocs[0].type == BFD_RELOC_ARM_MOVW)
12852 {
12853 constraint (top, _(":lower16: not allowed in this instruction"));
12854 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_MOVW;
12855 }
12856 else if (inst.relocs[0].type == BFD_RELOC_ARM_MOVT)
12857 {
12858 constraint (!top, _(":upper16: not allowed in this instruction"));
12859 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_MOVT;
12860 }
12861
12862 Rd = inst.operands[0].reg;
12863 reject_bad_reg (Rd);
12864
12865 inst.instruction |= Rd << 8;
12866 if (inst.relocs[0].type == BFD_RELOC_UNUSED)
12867 {
12868 imm = inst.relocs[0].exp.X_add_number;
12869 inst.instruction |= (imm & 0xf000) << 4;
12870 inst.instruction |= (imm & 0x0800) << 15;
12871 inst.instruction |= (imm & 0x0700) << 4;
12872 inst.instruction |= (imm & 0x00ff);
12873 }
12874 }
12875
12876 static void
12877 do_t_mvn_tst (void)
12878 {
12879 unsigned Rn, Rm;
12880
12881 Rn = inst.operands[0].reg;
12882 Rm = inst.operands[1].reg;
12883
12884 if (inst.instruction == T_MNEM_cmp
12885 || inst.instruction == T_MNEM_cmn)
12886 constraint (Rn == REG_PC, BAD_PC);
12887 else
12888 reject_bad_reg (Rn);
12889 reject_bad_reg (Rm);
12890
12891 if (unified_syntax)
12892 {
12893 int r0off = (inst.instruction == T_MNEM_mvn
12894 || inst.instruction == T_MNEM_mvns) ? 8 : 16;
12895 bfd_boolean narrow;
12896
12897 if (inst.size_req == 4
12898 || inst.instruction > 0xffff
12899 || inst.operands[1].shifted
12900 || Rn > 7 || Rm > 7)
12901 narrow = FALSE;
12902 else if (inst.instruction == T_MNEM_cmn
12903 || inst.instruction == T_MNEM_tst)
12904 narrow = TRUE;
12905 else if (THUMB_SETS_FLAGS (inst.instruction))
12906 narrow = !in_pred_block ();
12907 else
12908 narrow = in_pred_block ();
12909
12910 if (!inst.operands[1].isreg)
12911 {
12912 /* For an immediate, we always generate a 32-bit opcode;
12913 section relaxation will shrink it later if possible. */
12914 if (inst.instruction < 0xffff)
12915 inst.instruction = THUMB_OP32 (inst.instruction);
12916 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
12917 inst.instruction |= Rn << r0off;
12918 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
12919 }
12920 else
12921 {
12922 /* See if we can do this with a 16-bit instruction. */
12923 if (narrow)
12924 {
12925 inst.instruction = THUMB_OP16 (inst.instruction);
12926 inst.instruction |= Rn;
12927 inst.instruction |= Rm << 3;
12928 }
12929 else
12930 {
12931 constraint (inst.operands[1].shifted
12932 && inst.operands[1].immisreg,
12933 _("shift must be constant"));
12934 if (inst.instruction < 0xffff)
12935 inst.instruction = THUMB_OP32 (inst.instruction);
12936 inst.instruction |= Rn << r0off;
12937 encode_thumb32_shifted_operand (1);
12938 }
12939 }
12940 }
12941 else
12942 {
12943 constraint (inst.instruction > 0xffff
12944 || inst.instruction == T_MNEM_mvns, BAD_THUMB32);
12945 constraint (!inst.operands[1].isreg || inst.operands[1].shifted,
12946 _("unshifted register required"));
12947 constraint (Rn > 7 || Rm > 7,
12948 BAD_HIREG);
12949
12950 inst.instruction = THUMB_OP16 (inst.instruction);
12951 inst.instruction |= Rn;
12952 inst.instruction |= Rm << 3;
12953 }
12954 }
12955
12956 static void
12957 do_t_mrs (void)
12958 {
12959 unsigned Rd;
12960
12961 if (do_vfp_nsyn_mrs () == SUCCESS)
12962 return;
12963
12964 Rd = inst.operands[0].reg;
12965 reject_bad_reg (Rd);
12966 inst.instruction |= Rd << 8;
12967
12968 if (inst.operands[1].isreg)
12969 {
12970 unsigned br = inst.operands[1].reg;
12971 if (((br & 0x200) == 0) && ((br & 0xf000) != 0xf000))
12972 as_bad (_("bad register for mrs"));
12973
12974 inst.instruction |= br & (0xf << 16);
12975 inst.instruction |= (br & 0x300) >> 4;
12976 inst.instruction |= (br & SPSR_BIT) >> 2;
12977 }
12978 else
12979 {
12980 int flags = inst.operands[1].imm & (PSR_c|PSR_x|PSR_s|PSR_f|SPSR_BIT);
12981
12982 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_m))
12983 {
12984 /* PR gas/12698: The constraint is only applied for m_profile.
12985 If the user has specified -march=all, we want to ignore it as
12986 we are building for any CPU type, including non-m variants. */
12987 bfd_boolean m_profile =
12988 !ARM_FEATURE_CORE_EQUAL (selected_cpu, arm_arch_any);
12989 constraint ((flags != 0) && m_profile, _("selected processor does "
12990 "not support requested special purpose register"));
12991 }
12992 else
12993 /* mrs only accepts APSR/CPSR/SPSR/CPSR_all/SPSR_all (for non-M profile
12994 devices). */
12995 constraint ((flags & ~SPSR_BIT) != (PSR_c|PSR_f),
12996 _("'APSR', 'CPSR' or 'SPSR' expected"));
12997
12998 inst.instruction |= (flags & SPSR_BIT) >> 2;
12999 inst.instruction |= inst.operands[1].imm & 0xff;
13000 inst.instruction |= 0xf0000;
13001 }
13002 }
13003
13004 static void
13005 do_t_msr (void)
13006 {
13007 int flags;
13008 unsigned Rn;
13009
13010 if (do_vfp_nsyn_msr () == SUCCESS)
13011 return;
13012
13013 constraint (!inst.operands[1].isreg,
13014 _("Thumb encoding does not support an immediate here"));
13015
13016 if (inst.operands[0].isreg)
13017 flags = (int)(inst.operands[0].reg);
13018 else
13019 flags = inst.operands[0].imm;
13020
13021 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_m))
13022 {
13023 int bits = inst.operands[0].imm & (PSR_c|PSR_x|PSR_s|PSR_f|SPSR_BIT);
13024
13025 /* PR gas/12698: The constraint is only applied for m_profile.
13026 If the user has specified -march=all, we want to ignore it as
13027 we are building for any CPU type, including non-m variants. */
13028 bfd_boolean m_profile =
13029 !ARM_FEATURE_CORE_EQUAL (selected_cpu, arm_arch_any);
13030 constraint (((ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6_dsp)
13031 && (bits & ~(PSR_s | PSR_f)) != 0)
13032 || (!ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6_dsp)
13033 && bits != PSR_f)) && m_profile,
13034 _("selected processor does not support requested special "
13035 "purpose register"));
13036 }
13037 else
13038 constraint ((flags & 0xff) != 0, _("selected processor does not support "
13039 "requested special purpose register"));
13040
13041 Rn = inst.operands[1].reg;
13042 reject_bad_reg (Rn);
13043
13044 inst.instruction |= (flags & SPSR_BIT) >> 2;
13045 inst.instruction |= (flags & 0xf0000) >> 8;
13046 inst.instruction |= (flags & 0x300) >> 4;
13047 inst.instruction |= (flags & 0xff);
13048 inst.instruction |= Rn << 16;
13049 }
13050
13051 static void
13052 do_t_mul (void)
13053 {
13054 bfd_boolean narrow;
13055 unsigned Rd, Rn, Rm;
13056
13057 if (!inst.operands[2].present)
13058 inst.operands[2].reg = inst.operands[0].reg;
13059
13060 Rd = inst.operands[0].reg;
13061 Rn = inst.operands[1].reg;
13062 Rm = inst.operands[2].reg;
13063
13064 if (unified_syntax)
13065 {
13066 if (inst.size_req == 4
13067 || (Rd != Rn
13068 && Rd != Rm)
13069 || Rn > 7
13070 || Rm > 7)
13071 narrow = FALSE;
13072 else if (inst.instruction == T_MNEM_muls)
13073 narrow = !in_pred_block ();
13074 else
13075 narrow = in_pred_block ();
13076 }
13077 else
13078 {
13079 constraint (inst.instruction == T_MNEM_muls, BAD_THUMB32);
13080 constraint (Rn > 7 || Rm > 7,
13081 BAD_HIREG);
13082 narrow = TRUE;
13083 }
13084
13085 if (narrow)
13086 {
13087 /* 16-bit MULS/Conditional MUL. */
13088 inst.instruction = THUMB_OP16 (inst.instruction);
13089 inst.instruction |= Rd;
13090
13091 if (Rd == Rn)
13092 inst.instruction |= Rm << 3;
13093 else if (Rd == Rm)
13094 inst.instruction |= Rn << 3;
13095 else
13096 constraint (1, _("dest must overlap one source register"));
13097 }
13098 else
13099 {
13100 constraint (inst.instruction != T_MNEM_mul,
13101 _("Thumb-2 MUL must not set flags"));
13102 /* 32-bit MUL. */
13103 inst.instruction = THUMB_OP32 (inst.instruction);
13104 inst.instruction |= Rd << 8;
13105 inst.instruction |= Rn << 16;
13106 inst.instruction |= Rm << 0;
13107
13108 reject_bad_reg (Rd);
13109 reject_bad_reg (Rn);
13110 reject_bad_reg (Rm);
13111 }
13112 }
13113
13114 static void
13115 do_t_mull (void)
13116 {
13117 unsigned RdLo, RdHi, Rn, Rm;
13118
13119 RdLo = inst.operands[0].reg;
13120 RdHi = inst.operands[1].reg;
13121 Rn = inst.operands[2].reg;
13122 Rm = inst.operands[3].reg;
13123
13124 reject_bad_reg (RdLo);
13125 reject_bad_reg (RdHi);
13126 reject_bad_reg (Rn);
13127 reject_bad_reg (Rm);
13128
13129 inst.instruction |= RdLo << 12;
13130 inst.instruction |= RdHi << 8;
13131 inst.instruction |= Rn << 16;
13132 inst.instruction |= Rm;
13133
13134 if (RdLo == RdHi)
13135 as_tsktsk (_("rdhi and rdlo must be different"));
13136 }
13137
13138 static void
13139 do_t_nop (void)
13140 {
13141 set_pred_insn_type (NEUTRAL_IT_INSN);
13142
13143 if (unified_syntax)
13144 {
13145 if (inst.size_req == 4 || inst.operands[0].imm > 15)
13146 {
13147 inst.instruction = THUMB_OP32 (inst.instruction);
13148 inst.instruction |= inst.operands[0].imm;
13149 }
13150 else
13151 {
13152 /* PR9722: Check for Thumb2 availability before
13153 generating a thumb2 nop instruction. */
13154 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6t2))
13155 {
13156 inst.instruction = THUMB_OP16 (inst.instruction);
13157 inst.instruction |= inst.operands[0].imm << 4;
13158 }
13159 else
13160 inst.instruction = 0x46c0;
13161 }
13162 }
13163 else
13164 {
13165 constraint (inst.operands[0].present,
13166 _("Thumb does not support NOP with hints"));
13167 inst.instruction = 0x46c0;
13168 }
13169 }
13170
13171 static void
13172 do_t_neg (void)
13173 {
13174 if (unified_syntax)
13175 {
13176 bfd_boolean narrow;
13177
13178 if (THUMB_SETS_FLAGS (inst.instruction))
13179 narrow = !in_pred_block ();
13180 else
13181 narrow = in_pred_block ();
13182 if (inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
13183 narrow = FALSE;
13184 if (inst.size_req == 4)
13185 narrow = FALSE;
13186
13187 if (!narrow)
13188 {
13189 inst.instruction = THUMB_OP32 (inst.instruction);
13190 inst.instruction |= inst.operands[0].reg << 8;
13191 inst.instruction |= inst.operands[1].reg << 16;
13192 }
13193 else
13194 {
13195 inst.instruction = THUMB_OP16 (inst.instruction);
13196 inst.instruction |= inst.operands[0].reg;
13197 inst.instruction |= inst.operands[1].reg << 3;
13198 }
13199 }
13200 else
13201 {
13202 constraint (inst.operands[0].reg > 7 || inst.operands[1].reg > 7,
13203 BAD_HIREG);
13204 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
13205
13206 inst.instruction = THUMB_OP16 (inst.instruction);
13207 inst.instruction |= inst.operands[0].reg;
13208 inst.instruction |= inst.operands[1].reg << 3;
13209 }
13210 }
13211
13212 static void
13213 do_t_orn (void)
13214 {
13215 unsigned Rd, Rn;
13216
13217 Rd = inst.operands[0].reg;
13218 Rn = inst.operands[1].present ? inst.operands[1].reg : Rd;
13219
13220 reject_bad_reg (Rd);
13221 /* Rn == REG_SP is unpredictable; Rn == REG_PC is MVN. */
13222 reject_bad_reg (Rn);
13223
13224 inst.instruction |= Rd << 8;
13225 inst.instruction |= Rn << 16;
13226
13227 if (!inst.operands[2].isreg)
13228 {
13229 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
13230 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
13231 }
13232 else
13233 {
13234 unsigned Rm;
13235
13236 Rm = inst.operands[2].reg;
13237 reject_bad_reg (Rm);
13238
13239 constraint (inst.operands[2].shifted
13240 && inst.operands[2].immisreg,
13241 _("shift must be constant"));
13242 encode_thumb32_shifted_operand (2);
13243 }
13244 }
13245
13246 static void
13247 do_t_pkhbt (void)
13248 {
13249 unsigned Rd, Rn, Rm;
13250
13251 Rd = inst.operands[0].reg;
13252 Rn = inst.operands[1].reg;
13253 Rm = inst.operands[2].reg;
13254
13255 reject_bad_reg (Rd);
13256 reject_bad_reg (Rn);
13257 reject_bad_reg (Rm);
13258
13259 inst.instruction |= Rd << 8;
13260 inst.instruction |= Rn << 16;
13261 inst.instruction |= Rm;
13262 if (inst.operands[3].present)
13263 {
13264 unsigned int val = inst.relocs[0].exp.X_add_number;
13265 constraint (inst.relocs[0].exp.X_op != O_constant,
13266 _("expression too complex"));
13267 inst.instruction |= (val & 0x1c) << 10;
13268 inst.instruction |= (val & 0x03) << 6;
13269 }
13270 }
13271
13272 static void
13273 do_t_pkhtb (void)
13274 {
13275 if (!inst.operands[3].present)
13276 {
13277 unsigned Rtmp;
13278
13279 inst.instruction &= ~0x00000020;
13280
13281 /* PR 10168. Swap the Rm and Rn registers. */
13282 Rtmp = inst.operands[1].reg;
13283 inst.operands[1].reg = inst.operands[2].reg;
13284 inst.operands[2].reg = Rtmp;
13285 }
13286 do_t_pkhbt ();
13287 }
13288
13289 static void
13290 do_t_pld (void)
13291 {
13292 if (inst.operands[0].immisreg)
13293 reject_bad_reg (inst.operands[0].imm);
13294
13295 encode_thumb32_addr_mode (0, /*is_t=*/FALSE, /*is_d=*/FALSE);
13296 }
13297
13298 static void
13299 do_t_push_pop (void)
13300 {
13301 unsigned mask;
13302
13303 constraint (inst.operands[0].writeback,
13304 _("push/pop do not support {reglist}^"));
13305 constraint (inst.relocs[0].type != BFD_RELOC_UNUSED,
13306 _("expression too complex"));
13307
13308 mask = inst.operands[0].imm;
13309 if (inst.size_req != 4 && (mask & ~0xff) == 0)
13310 inst.instruction = THUMB_OP16 (inst.instruction) | mask;
13311 else if (inst.size_req != 4
13312 && (mask & ~0xff) == (1U << (inst.instruction == T_MNEM_push
13313 ? REG_LR : REG_PC)))
13314 {
13315 inst.instruction = THUMB_OP16 (inst.instruction);
13316 inst.instruction |= THUMB_PP_PC_LR;
13317 inst.instruction |= mask & 0xff;
13318 }
13319 else if (unified_syntax)
13320 {
13321 inst.instruction = THUMB_OP32 (inst.instruction);
13322 encode_thumb2_multi (TRUE /* do_io */, 13, mask, TRUE);
13323 }
13324 else
13325 {
13326 inst.error = _("invalid register list to push/pop instruction");
13327 return;
13328 }
13329 }
13330
13331 static void
13332 do_t_clrm (void)
13333 {
13334 if (unified_syntax)
13335 encode_thumb2_multi (FALSE /* do_io */, -1, inst.operands[0].imm, FALSE);
13336 else
13337 {
13338 inst.error = _("invalid register list to push/pop instruction");
13339 return;
13340 }
13341 }
13342
13343 static void
13344 do_t_vscclrm (void)
13345 {
13346 if (inst.operands[0].issingle)
13347 {
13348 inst.instruction |= (inst.operands[0].reg & 0x1) << 22;
13349 inst.instruction |= (inst.operands[0].reg & 0x1e) << 11;
13350 inst.instruction |= inst.operands[0].imm;
13351 }
13352 else
13353 {
13354 inst.instruction |= (inst.operands[0].reg & 0x10) << 18;
13355 inst.instruction |= (inst.operands[0].reg & 0xf) << 12;
13356 inst.instruction |= 1 << 8;
13357 inst.instruction |= inst.operands[0].imm << 1;
13358 }
13359 }
13360
13361 static void
13362 do_t_rbit (void)
13363 {
13364 unsigned Rd, Rm;
13365
13366 Rd = inst.operands[0].reg;
13367 Rm = inst.operands[1].reg;
13368
13369 reject_bad_reg (Rd);
13370 reject_bad_reg (Rm);
13371
13372 inst.instruction |= Rd << 8;
13373 inst.instruction |= Rm << 16;
13374 inst.instruction |= Rm;
13375 }
13376
13377 static void
13378 do_t_rev (void)
13379 {
13380 unsigned Rd, Rm;
13381
13382 Rd = inst.operands[0].reg;
13383 Rm = inst.operands[1].reg;
13384
13385 reject_bad_reg (Rd);
13386 reject_bad_reg (Rm);
13387
13388 if (Rd <= 7 && Rm <= 7
13389 && inst.size_req != 4)
13390 {
13391 inst.instruction = THUMB_OP16 (inst.instruction);
13392 inst.instruction |= Rd;
13393 inst.instruction |= Rm << 3;
13394 }
13395 else if (unified_syntax)
13396 {
13397 inst.instruction = THUMB_OP32 (inst.instruction);
13398 inst.instruction |= Rd << 8;
13399 inst.instruction |= Rm << 16;
13400 inst.instruction |= Rm;
13401 }
13402 else
13403 inst.error = BAD_HIREG;
13404 }
13405
13406 static void
13407 do_t_rrx (void)
13408 {
13409 unsigned Rd, Rm;
13410
13411 Rd = inst.operands[0].reg;
13412 Rm = inst.operands[1].reg;
13413
13414 reject_bad_reg (Rd);
13415 reject_bad_reg (Rm);
13416
13417 inst.instruction |= Rd << 8;
13418 inst.instruction |= Rm;
13419 }
13420
13421 static void
13422 do_t_rsb (void)
13423 {
13424 unsigned Rd, Rs;
13425
13426 Rd = inst.operands[0].reg;
13427 Rs = (inst.operands[1].present
13428 ? inst.operands[1].reg /* Rd, Rs, foo */
13429 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
13430
13431 reject_bad_reg (Rd);
13432 reject_bad_reg (Rs);
13433 if (inst.operands[2].isreg)
13434 reject_bad_reg (inst.operands[2].reg);
13435
13436 inst.instruction |= Rd << 8;
13437 inst.instruction |= Rs << 16;
13438 if (!inst.operands[2].isreg)
13439 {
13440 bfd_boolean narrow;
13441
13442 if ((inst.instruction & 0x00100000) != 0)
13443 narrow = !in_pred_block ();
13444 else
13445 narrow = in_pred_block ();
13446
13447 if (Rd > 7 || Rs > 7)
13448 narrow = FALSE;
13449
13450 if (inst.size_req == 4 || !unified_syntax)
13451 narrow = FALSE;
13452
13453 if (inst.relocs[0].exp.X_op != O_constant
13454 || inst.relocs[0].exp.X_add_number != 0)
13455 narrow = FALSE;
13456
13457 /* Turn rsb #0 into 16-bit neg. We should probably do this via
13458 relaxation, but it doesn't seem worth the hassle. */
13459 if (narrow)
13460 {
13461 inst.relocs[0].type = BFD_RELOC_UNUSED;
13462 inst.instruction = THUMB_OP16 (T_MNEM_negs);
13463 inst.instruction |= Rs << 3;
13464 inst.instruction |= Rd;
13465 }
13466 else
13467 {
13468 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
13469 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
13470 }
13471 }
13472 else
13473 encode_thumb32_shifted_operand (2);
13474 }
13475
13476 static void
13477 do_t_setend (void)
13478 {
13479 if (warn_on_deprecated
13480 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
13481 as_tsktsk (_("setend use is deprecated for ARMv8"));
13482
13483 set_pred_insn_type (OUTSIDE_PRED_INSN);
13484 if (inst.operands[0].imm)
13485 inst.instruction |= 0x8;
13486 }
13487
13488 static void
13489 do_t_shift (void)
13490 {
13491 if (!inst.operands[1].present)
13492 inst.operands[1].reg = inst.operands[0].reg;
13493
13494 if (unified_syntax)
13495 {
13496 bfd_boolean narrow;
13497 int shift_kind;
13498
13499 switch (inst.instruction)
13500 {
13501 case T_MNEM_asr:
13502 case T_MNEM_asrs: shift_kind = SHIFT_ASR; break;
13503 case T_MNEM_lsl:
13504 case T_MNEM_lsls: shift_kind = SHIFT_LSL; break;
13505 case T_MNEM_lsr:
13506 case T_MNEM_lsrs: shift_kind = SHIFT_LSR; break;
13507 case T_MNEM_ror:
13508 case T_MNEM_rors: shift_kind = SHIFT_ROR; break;
13509 default: abort ();
13510 }
13511
13512 if (THUMB_SETS_FLAGS (inst.instruction))
13513 narrow = !in_pred_block ();
13514 else
13515 narrow = in_pred_block ();
13516 if (inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
13517 narrow = FALSE;
13518 if (!inst.operands[2].isreg && shift_kind == SHIFT_ROR)
13519 narrow = FALSE;
13520 if (inst.operands[2].isreg
13521 && (inst.operands[1].reg != inst.operands[0].reg
13522 || inst.operands[2].reg > 7))
13523 narrow = FALSE;
13524 if (inst.size_req == 4)
13525 narrow = FALSE;
13526
13527 reject_bad_reg (inst.operands[0].reg);
13528 reject_bad_reg (inst.operands[1].reg);
13529
13530 if (!narrow)
13531 {
13532 if (inst.operands[2].isreg)
13533 {
13534 reject_bad_reg (inst.operands[2].reg);
13535 inst.instruction = THUMB_OP32 (inst.instruction);
13536 inst.instruction |= inst.operands[0].reg << 8;
13537 inst.instruction |= inst.operands[1].reg << 16;
13538 inst.instruction |= inst.operands[2].reg;
13539
13540 /* PR 12854: Error on extraneous shifts. */
13541 constraint (inst.operands[2].shifted,
13542 _("extraneous shift as part of operand to shift insn"));
13543 }
13544 else
13545 {
13546 inst.operands[1].shifted = 1;
13547 inst.operands[1].shift_kind = shift_kind;
13548 inst.instruction = THUMB_OP32 (THUMB_SETS_FLAGS (inst.instruction)
13549 ? T_MNEM_movs : T_MNEM_mov);
13550 inst.instruction |= inst.operands[0].reg << 8;
13551 encode_thumb32_shifted_operand (1);
13552 /* Prevent the incorrect generation of an ARM_IMMEDIATE fixup. */
13553 inst.relocs[0].type = BFD_RELOC_UNUSED;
13554 }
13555 }
13556 else
13557 {
13558 if (inst.operands[2].isreg)
13559 {
13560 switch (shift_kind)
13561 {
13562 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_R; break;
13563 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_R; break;
13564 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_R; break;
13565 case SHIFT_ROR: inst.instruction = T_OPCODE_ROR_R; break;
13566 default: abort ();
13567 }
13568
13569 inst.instruction |= inst.operands[0].reg;
13570 inst.instruction |= inst.operands[2].reg << 3;
13571
13572 /* PR 12854: Error on extraneous shifts. */
13573 constraint (inst.operands[2].shifted,
13574 _("extraneous shift as part of operand to shift insn"));
13575 }
13576 else
13577 {
13578 switch (shift_kind)
13579 {
13580 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_I; break;
13581 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_I; break;
13582 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_I; break;
13583 default: abort ();
13584 }
13585 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_SHIFT;
13586 inst.instruction |= inst.operands[0].reg;
13587 inst.instruction |= inst.operands[1].reg << 3;
13588 }
13589 }
13590 }
13591 else
13592 {
13593 constraint (inst.operands[0].reg > 7
13594 || inst.operands[1].reg > 7, BAD_HIREG);
13595 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
13596
13597 if (inst.operands[2].isreg) /* Rd, {Rs,} Rn */
13598 {
13599 constraint (inst.operands[2].reg > 7, BAD_HIREG);
13600 constraint (inst.operands[0].reg != inst.operands[1].reg,
13601 _("source1 and dest must be same register"));
13602
13603 switch (inst.instruction)
13604 {
13605 case T_MNEM_asr: inst.instruction = T_OPCODE_ASR_R; break;
13606 case T_MNEM_lsl: inst.instruction = T_OPCODE_LSL_R; break;
13607 case T_MNEM_lsr: inst.instruction = T_OPCODE_LSR_R; break;
13608 case T_MNEM_ror: inst.instruction = T_OPCODE_ROR_R; break;
13609 default: abort ();
13610 }
13611
13612 inst.instruction |= inst.operands[0].reg;
13613 inst.instruction |= inst.operands[2].reg << 3;
13614
13615 /* PR 12854: Error on extraneous shifts. */
13616 constraint (inst.operands[2].shifted,
13617 _("extraneous shift as part of operand to shift insn"));
13618 }
13619 else
13620 {
13621 switch (inst.instruction)
13622 {
13623 case T_MNEM_asr: inst.instruction = T_OPCODE_ASR_I; break;
13624 case T_MNEM_lsl: inst.instruction = T_OPCODE_LSL_I; break;
13625 case T_MNEM_lsr: inst.instruction = T_OPCODE_LSR_I; break;
13626 case T_MNEM_ror: inst.error = _("ror #imm not supported"); return;
13627 default: abort ();
13628 }
13629 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_SHIFT;
13630 inst.instruction |= inst.operands[0].reg;
13631 inst.instruction |= inst.operands[1].reg << 3;
13632 }
13633 }
13634 }
13635
13636 static void
13637 do_t_simd (void)
13638 {
13639 unsigned Rd, Rn, Rm;
13640
13641 Rd = inst.operands[0].reg;
13642 Rn = inst.operands[1].reg;
13643 Rm = inst.operands[2].reg;
13644
13645 reject_bad_reg (Rd);
13646 reject_bad_reg (Rn);
13647 reject_bad_reg (Rm);
13648
13649 inst.instruction |= Rd << 8;
13650 inst.instruction |= Rn << 16;
13651 inst.instruction |= Rm;
13652 }
13653
13654 static void
13655 do_t_simd2 (void)
13656 {
13657 unsigned Rd, Rn, Rm;
13658
13659 Rd = inst.operands[0].reg;
13660 Rm = inst.operands[1].reg;
13661 Rn = inst.operands[2].reg;
13662
13663 reject_bad_reg (Rd);
13664 reject_bad_reg (Rn);
13665 reject_bad_reg (Rm);
13666
13667 inst.instruction |= Rd << 8;
13668 inst.instruction |= Rn << 16;
13669 inst.instruction |= Rm;
13670 }
13671
13672 static void
13673 do_t_smc (void)
13674 {
13675 unsigned int value = inst.relocs[0].exp.X_add_number;
13676 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7a),
13677 _("SMC is not permitted on this architecture"));
13678 constraint (inst.relocs[0].exp.X_op != O_constant,
13679 _("expression too complex"));
13680 inst.relocs[0].type = BFD_RELOC_UNUSED;
13681 inst.instruction |= (value & 0xf000) >> 12;
13682 inst.instruction |= (value & 0x0ff0);
13683 inst.instruction |= (value & 0x000f) << 16;
13684 /* PR gas/15623: SMC instructions must be last in an IT block. */
13685 set_pred_insn_type_last ();
13686 }
13687
13688 static void
13689 do_t_hvc (void)
13690 {
13691 unsigned int value = inst.relocs[0].exp.X_add_number;
13692
13693 inst.relocs[0].type = BFD_RELOC_UNUSED;
13694 inst.instruction |= (value & 0x0fff);
13695 inst.instruction |= (value & 0xf000) << 4;
13696 }
13697
13698 static void
13699 do_t_ssat_usat (int bias)
13700 {
13701 unsigned Rd, Rn;
13702
13703 Rd = inst.operands[0].reg;
13704 Rn = inst.operands[2].reg;
13705
13706 reject_bad_reg (Rd);
13707 reject_bad_reg (Rn);
13708
13709 inst.instruction |= Rd << 8;
13710 inst.instruction |= inst.operands[1].imm - bias;
13711 inst.instruction |= Rn << 16;
13712
13713 if (inst.operands[3].present)
13714 {
13715 offsetT shift_amount = inst.relocs[0].exp.X_add_number;
13716
13717 inst.relocs[0].type = BFD_RELOC_UNUSED;
13718
13719 constraint (inst.relocs[0].exp.X_op != O_constant,
13720 _("expression too complex"));
13721
13722 if (shift_amount != 0)
13723 {
13724 constraint (shift_amount > 31,
13725 _("shift expression is too large"));
13726
13727 if (inst.operands[3].shift_kind == SHIFT_ASR)
13728 inst.instruction |= 0x00200000; /* sh bit. */
13729
13730 inst.instruction |= (shift_amount & 0x1c) << 10;
13731 inst.instruction |= (shift_amount & 0x03) << 6;
13732 }
13733 }
13734 }
13735
13736 static void
13737 do_t_ssat (void)
13738 {
13739 do_t_ssat_usat (1);
13740 }
13741
13742 static void
13743 do_t_ssat16 (void)
13744 {
13745 unsigned Rd, Rn;
13746
13747 Rd = inst.operands[0].reg;
13748 Rn = inst.operands[2].reg;
13749
13750 reject_bad_reg (Rd);
13751 reject_bad_reg (Rn);
13752
13753 inst.instruction |= Rd << 8;
13754 inst.instruction |= inst.operands[1].imm - 1;
13755 inst.instruction |= Rn << 16;
13756 }
13757
13758 static void
13759 do_t_strex (void)
13760 {
13761 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
13762 || inst.operands[2].postind || inst.operands[2].writeback
13763 || inst.operands[2].immisreg || inst.operands[2].shifted
13764 || inst.operands[2].negative,
13765 BAD_ADDR_MODE);
13766
13767 constraint (inst.operands[2].reg == REG_PC, BAD_PC);
13768
13769 inst.instruction |= inst.operands[0].reg << 8;
13770 inst.instruction |= inst.operands[1].reg << 12;
13771 inst.instruction |= inst.operands[2].reg << 16;
13772 inst.relocs[0].type = BFD_RELOC_ARM_T32_OFFSET_U8;
13773 }
13774
13775 static void
13776 do_t_strexd (void)
13777 {
13778 if (!inst.operands[2].present)
13779 inst.operands[2].reg = inst.operands[1].reg + 1;
13780
13781 constraint (inst.operands[0].reg == inst.operands[1].reg
13782 || inst.operands[0].reg == inst.operands[2].reg
13783 || inst.operands[0].reg == inst.operands[3].reg,
13784 BAD_OVERLAP);
13785
13786 inst.instruction |= inst.operands[0].reg;
13787 inst.instruction |= inst.operands[1].reg << 12;
13788 inst.instruction |= inst.operands[2].reg << 8;
13789 inst.instruction |= inst.operands[3].reg << 16;
13790 }
13791
13792 static void
13793 do_t_sxtah (void)
13794 {
13795 unsigned Rd, Rn, Rm;
13796
13797 Rd = inst.operands[0].reg;
13798 Rn = inst.operands[1].reg;
13799 Rm = inst.operands[2].reg;
13800
13801 reject_bad_reg (Rd);
13802 reject_bad_reg (Rn);
13803 reject_bad_reg (Rm);
13804
13805 inst.instruction |= Rd << 8;
13806 inst.instruction |= Rn << 16;
13807 inst.instruction |= Rm;
13808 inst.instruction |= inst.operands[3].imm << 4;
13809 }
13810
13811 static void
13812 do_t_sxth (void)
13813 {
13814 unsigned Rd, Rm;
13815
13816 Rd = inst.operands[0].reg;
13817 Rm = inst.operands[1].reg;
13818
13819 reject_bad_reg (Rd);
13820 reject_bad_reg (Rm);
13821
13822 if (inst.instruction <= 0xffff
13823 && inst.size_req != 4
13824 && Rd <= 7 && Rm <= 7
13825 && (!inst.operands[2].present || inst.operands[2].imm == 0))
13826 {
13827 inst.instruction = THUMB_OP16 (inst.instruction);
13828 inst.instruction |= Rd;
13829 inst.instruction |= Rm << 3;
13830 }
13831 else if (unified_syntax)
13832 {
13833 if (inst.instruction <= 0xffff)
13834 inst.instruction = THUMB_OP32 (inst.instruction);
13835 inst.instruction |= Rd << 8;
13836 inst.instruction |= Rm;
13837 inst.instruction |= inst.operands[2].imm << 4;
13838 }
13839 else
13840 {
13841 constraint (inst.operands[2].present && inst.operands[2].imm != 0,
13842 _("Thumb encoding does not support rotation"));
13843 constraint (1, BAD_HIREG);
13844 }
13845 }
13846
13847 static void
13848 do_t_swi (void)
13849 {
13850 inst.relocs[0].type = BFD_RELOC_ARM_SWI;
13851 }
13852
13853 static void
13854 do_t_tb (void)
13855 {
13856 unsigned Rn, Rm;
13857 int half;
13858
13859 half = (inst.instruction & 0x10) != 0;
13860 set_pred_insn_type_last ();
13861 constraint (inst.operands[0].immisreg,
13862 _("instruction requires register index"));
13863
13864 Rn = inst.operands[0].reg;
13865 Rm = inst.operands[0].imm;
13866
13867 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
13868 constraint (Rn == REG_SP, BAD_SP);
13869 reject_bad_reg (Rm);
13870
13871 constraint (!half && inst.operands[0].shifted,
13872 _("instruction does not allow shifted index"));
13873 inst.instruction |= (Rn << 16) | Rm;
13874 }
13875
13876 static void
13877 do_t_udf (void)
13878 {
13879 if (!inst.operands[0].present)
13880 inst.operands[0].imm = 0;
13881
13882 if ((unsigned int) inst.operands[0].imm > 255 || inst.size_req == 4)
13883 {
13884 constraint (inst.size_req == 2,
13885 _("immediate value out of range"));
13886 inst.instruction = THUMB_OP32 (inst.instruction);
13887 inst.instruction |= (inst.operands[0].imm & 0xf000u) << 4;
13888 inst.instruction |= (inst.operands[0].imm & 0x0fffu) << 0;
13889 }
13890 else
13891 {
13892 inst.instruction = THUMB_OP16 (inst.instruction);
13893 inst.instruction |= inst.operands[0].imm;
13894 }
13895
13896 set_pred_insn_type (NEUTRAL_IT_INSN);
13897 }
13898
13899
13900 static void
13901 do_t_usat (void)
13902 {
13903 do_t_ssat_usat (0);
13904 }
13905
13906 static void
13907 do_t_usat16 (void)
13908 {
13909 unsigned Rd, Rn;
13910
13911 Rd = inst.operands[0].reg;
13912 Rn = inst.operands[2].reg;
13913
13914 reject_bad_reg (Rd);
13915 reject_bad_reg (Rn);
13916
13917 inst.instruction |= Rd << 8;
13918 inst.instruction |= inst.operands[1].imm;
13919 inst.instruction |= Rn << 16;
13920 }
13921
13922 /* Checking the range of the branch offset (VAL) with NBITS bits
13923 and IS_SIGNED signedness. Also checks the LSB to be 0. */
13924 static int
13925 v8_1_branch_value_check (int val, int nbits, int is_signed)
13926 {
13927 gas_assert (nbits > 0 && nbits <= 32);
13928 if (is_signed)
13929 {
13930 int cmp = (1 << (nbits - 1));
13931 if ((val < -cmp) || (val >= cmp) || (val & 0x01))
13932 return FAIL;
13933 }
13934 else
13935 {
13936 if ((val <= 0) || (val >= (1 << nbits)) || (val & 0x1))
13937 return FAIL;
13938 }
13939 return SUCCESS;
13940 }
13941
13942 /* For branches in Armv8.1-M Mainline. */
13943 static void
13944 do_t_branch_future (void)
13945 {
13946 unsigned long insn = inst.instruction;
13947
13948 inst.instruction = THUMB_OP32 (inst.instruction);
13949 if (inst.operands[0].hasreloc == 0)
13950 {
13951 if (v8_1_branch_value_check (inst.operands[0].imm, 5, FALSE) == FAIL)
13952 as_bad (BAD_BRANCH_OFF);
13953
13954 inst.instruction |= ((inst.operands[0].imm & 0x1f) >> 1) << 23;
13955 }
13956 else
13957 {
13958 inst.relocs[0].type = BFD_RELOC_THUMB_PCREL_BRANCH5;
13959 inst.relocs[0].pc_rel = 1;
13960 }
13961
13962 switch (insn)
13963 {
13964 case T_MNEM_bf:
13965 if (inst.operands[1].hasreloc == 0)
13966 {
13967 int val = inst.operands[1].imm;
13968 if (v8_1_branch_value_check (inst.operands[1].imm, 17, TRUE) == FAIL)
13969 as_bad (BAD_BRANCH_OFF);
13970
13971 int immA = (val & 0x0001f000) >> 12;
13972 int immB = (val & 0x00000ffc) >> 2;
13973 int immC = (val & 0x00000002) >> 1;
13974 inst.instruction |= (immA << 16) | (immB << 1) | (immC << 11);
13975 }
13976 else
13977 {
13978 inst.relocs[1].type = BFD_RELOC_ARM_THUMB_BF17;
13979 inst.relocs[1].pc_rel = 1;
13980 }
13981 break;
13982
13983 case T_MNEM_bfl:
13984 if (inst.operands[1].hasreloc == 0)
13985 {
13986 int val = inst.operands[1].imm;
13987 if (v8_1_branch_value_check (inst.operands[1].imm, 19, TRUE) == FAIL)
13988 as_bad (BAD_BRANCH_OFF);
13989
13990 int immA = (val & 0x0007f000) >> 12;
13991 int immB = (val & 0x00000ffc) >> 2;
13992 int immC = (val & 0x00000002) >> 1;
13993 inst.instruction |= (immA << 16) | (immB << 1) | (immC << 11);
13994 }
13995 else
13996 {
13997 inst.relocs[1].type = BFD_RELOC_ARM_THUMB_BF19;
13998 inst.relocs[1].pc_rel = 1;
13999 }
14000 break;
14001
14002 case T_MNEM_bfcsel:
14003 /* Operand 1. */
14004 if (inst.operands[1].hasreloc == 0)
14005 {
14006 int val = inst.operands[1].imm;
14007 int immA = (val & 0x00001000) >> 12;
14008 int immB = (val & 0x00000ffc) >> 2;
14009 int immC = (val & 0x00000002) >> 1;
14010 inst.instruction |= (immA << 16) | (immB << 1) | (immC << 11);
14011 }
14012 else
14013 {
14014 inst.relocs[1].type = BFD_RELOC_ARM_THUMB_BF13;
14015 inst.relocs[1].pc_rel = 1;
14016 }
14017
14018 /* Operand 2. */
14019 if (inst.operands[2].hasreloc == 0)
14020 {
14021 constraint ((inst.operands[0].hasreloc != 0), BAD_ARGS);
14022 int val2 = inst.operands[2].imm;
14023 int val0 = inst.operands[0].imm & 0x1f;
14024 int diff = val2 - val0;
14025 if (diff == 4)
14026 inst.instruction |= 1 << 17; /* T bit. */
14027 else if (diff != 2)
14028 as_bad (_("out of range label-relative fixup value"));
14029 }
14030 else
14031 {
14032 constraint ((inst.operands[0].hasreloc == 0), BAD_ARGS);
14033 inst.relocs[2].type = BFD_RELOC_THUMB_PCREL_BFCSEL;
14034 inst.relocs[2].pc_rel = 1;
14035 }
14036
14037 /* Operand 3. */
14038 constraint (inst.cond != COND_ALWAYS, BAD_COND);
14039 inst.instruction |= (inst.operands[3].imm & 0xf) << 18;
14040 break;
14041
14042 case T_MNEM_bfx:
14043 case T_MNEM_bflx:
14044 inst.instruction |= inst.operands[1].reg << 16;
14045 break;
14046
14047 default: abort ();
14048 }
14049 }
14050
14051 /* Helper function for do_t_loloop to handle relocations. */
14052 static void
14053 v8_1_loop_reloc (int is_le)
14054 {
14055 if (inst.relocs[0].exp.X_op == O_constant)
14056 {
14057 int value = inst.relocs[0].exp.X_add_number;
14058 value = (is_le) ? -value : value;
14059
14060 if (v8_1_branch_value_check (value, 12, FALSE) == FAIL)
14061 as_bad (BAD_BRANCH_OFF);
14062
14063 int imml, immh;
14064
14065 immh = (value & 0x00000ffc) >> 2;
14066 imml = (value & 0x00000002) >> 1;
14067
14068 inst.instruction |= (imml << 11) | (immh << 1);
14069 }
14070 else
14071 {
14072 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_LOOP12;
14073 inst.relocs[0].pc_rel = 1;
14074 }
14075 }
14076
14077 /* To handle the Scalar Low Overhead Loop instructions
14078 in Armv8.1-M Mainline. */
14079 static void
14080 do_t_loloop (void)
14081 {
14082 unsigned long insn = inst.instruction;
14083
14084 set_pred_insn_type (OUTSIDE_PRED_INSN);
14085 inst.instruction = THUMB_OP32 (inst.instruction);
14086
14087 switch (insn)
14088 {
14089 case T_MNEM_le:
14090 /* le <label>. */
14091 if (!inst.operands[0].present)
14092 inst.instruction |= 1 << 21;
14093
14094 v8_1_loop_reloc (TRUE);
14095 break;
14096
14097 case T_MNEM_wls:
14098 v8_1_loop_reloc (FALSE);
14099 /* Fall through. */
14100 case T_MNEM_dls:
14101 constraint (inst.operands[1].isreg != 1, BAD_ARGS);
14102 inst.instruction |= (inst.operands[1].reg << 16);
14103 break;
14104
14105 default: abort();
14106 }
14107 }
14108
14109 /* MVE instruction encoder helpers. */
14110 #define M_MNEM_vabav 0xee800f01
14111 #define M_MNEM_vmladav 0xeef00e00
14112 #define M_MNEM_vmladava 0xeef00e20
14113 #define M_MNEM_vmladavx 0xeef01e00
14114 #define M_MNEM_vmladavax 0xeef01e20
14115 #define M_MNEM_vmlsdav 0xeef00e01
14116 #define M_MNEM_vmlsdava 0xeef00e21
14117 #define M_MNEM_vmlsdavx 0xeef01e01
14118 #define M_MNEM_vmlsdavax 0xeef01e21
14119 #define M_MNEM_vmullt 0xee011e00
14120 #define M_MNEM_vmullb 0xee010e00
14121 #define M_MNEM_vst20 0xfc801e00
14122 #define M_MNEM_vst21 0xfc801e20
14123 #define M_MNEM_vst40 0xfc801e01
14124 #define M_MNEM_vst41 0xfc801e21
14125 #define M_MNEM_vst42 0xfc801e41
14126 #define M_MNEM_vst43 0xfc801e61
14127 #define M_MNEM_vld20 0xfc901e00
14128 #define M_MNEM_vld21 0xfc901e20
14129 #define M_MNEM_vld40 0xfc901e01
14130 #define M_MNEM_vld41 0xfc901e21
14131 #define M_MNEM_vld42 0xfc901e41
14132 #define M_MNEM_vld43 0xfc901e61
14133 #define M_MNEM_vstrb 0xec000e00
14134 #define M_MNEM_vstrh 0xec000e10
14135 #define M_MNEM_vstrw 0xec000e40
14136 #define M_MNEM_vstrd 0xec000e50
14137 #define M_MNEM_vldrb 0xec100e00
14138 #define M_MNEM_vldrh 0xec100e10
14139 #define M_MNEM_vldrw 0xec100e40
14140 #define M_MNEM_vldrd 0xec100e50
14141 #define M_MNEM_vmovlt 0xeea01f40
14142 #define M_MNEM_vmovlb 0xeea00f40
14143 #define M_MNEM_vmovnt 0xfe311e81
14144 #define M_MNEM_vmovnb 0xfe310e81
14145 #define M_MNEM_vadc 0xee300f00
14146 #define M_MNEM_vadci 0xee301f00
14147 #define M_MNEM_vbrsr 0xfe011e60
14148 #define M_MNEM_vaddlv 0xee890f00
14149 #define M_MNEM_vaddlva 0xee890f20
14150 #define M_MNEM_vaddv 0xeef10f00
14151 #define M_MNEM_vaddva 0xeef10f20
14152
14153 /* Neon instruction encoder helpers. */
14154
14155 /* Encodings for the different types for various Neon opcodes. */
14156
14157 /* An "invalid" code for the following tables. */
14158 #define N_INV -1u
14159
14160 struct neon_tab_entry
14161 {
14162 unsigned integer;
14163 unsigned float_or_poly;
14164 unsigned scalar_or_imm;
14165 };
14166
14167 /* Map overloaded Neon opcodes to their respective encodings. */
14168 #define NEON_ENC_TAB \
14169 X(vabd, 0x0000700, 0x1200d00, N_INV), \
14170 X(vabdl, 0x0800700, N_INV, N_INV), \
14171 X(vmax, 0x0000600, 0x0000f00, N_INV), \
14172 X(vmin, 0x0000610, 0x0200f00, N_INV), \
14173 X(vpadd, 0x0000b10, 0x1000d00, N_INV), \
14174 X(vpmax, 0x0000a00, 0x1000f00, N_INV), \
14175 X(vpmin, 0x0000a10, 0x1200f00, N_INV), \
14176 X(vadd, 0x0000800, 0x0000d00, N_INV), \
14177 X(vaddl, 0x0800000, N_INV, N_INV), \
14178 X(vsub, 0x1000800, 0x0200d00, N_INV), \
14179 X(vsubl, 0x0800200, N_INV, N_INV), \
14180 X(vceq, 0x1000810, 0x0000e00, 0x1b10100), \
14181 X(vcge, 0x0000310, 0x1000e00, 0x1b10080), \
14182 X(vcgt, 0x0000300, 0x1200e00, 0x1b10000), \
14183 /* Register variants of the following two instructions are encoded as
14184 vcge / vcgt with the operands reversed. */ \
14185 X(vclt, 0x0000300, 0x1200e00, 0x1b10200), \
14186 X(vcle, 0x0000310, 0x1000e00, 0x1b10180), \
14187 X(vfma, N_INV, 0x0000c10, N_INV), \
14188 X(vfms, N_INV, 0x0200c10, N_INV), \
14189 X(vmla, 0x0000900, 0x0000d10, 0x0800040), \
14190 X(vmls, 0x1000900, 0x0200d10, 0x0800440), \
14191 X(vmul, 0x0000910, 0x1000d10, 0x0800840), \
14192 X(vmull, 0x0800c00, 0x0800e00, 0x0800a40), /* polynomial not float. */ \
14193 X(vmlal, 0x0800800, N_INV, 0x0800240), \
14194 X(vmlsl, 0x0800a00, N_INV, 0x0800640), \
14195 X(vqdmlal, 0x0800900, N_INV, 0x0800340), \
14196 X(vqdmlsl, 0x0800b00, N_INV, 0x0800740), \
14197 X(vqdmull, 0x0800d00, N_INV, 0x0800b40), \
14198 X(vqdmulh, 0x0000b00, N_INV, 0x0800c40), \
14199 X(vqrdmulh, 0x1000b00, N_INV, 0x0800d40), \
14200 X(vqrdmlah, 0x3000b10, N_INV, 0x0800e40), \
14201 X(vqrdmlsh, 0x3000c10, N_INV, 0x0800f40), \
14202 X(vshl, 0x0000400, N_INV, 0x0800510), \
14203 X(vqshl, 0x0000410, N_INV, 0x0800710), \
14204 X(vand, 0x0000110, N_INV, 0x0800030), \
14205 X(vbic, 0x0100110, N_INV, 0x0800030), \
14206 X(veor, 0x1000110, N_INV, N_INV), \
14207 X(vorn, 0x0300110, N_INV, 0x0800010), \
14208 X(vorr, 0x0200110, N_INV, 0x0800010), \
14209 X(vmvn, 0x1b00580, N_INV, 0x0800030), \
14210 X(vshll, 0x1b20300, N_INV, 0x0800a10), /* max shift, immediate. */ \
14211 X(vcvt, 0x1b30600, N_INV, 0x0800e10), /* integer, fixed-point. */ \
14212 X(vdup, 0xe800b10, N_INV, 0x1b00c00), /* arm, scalar. */ \
14213 X(vld1, 0x0200000, 0x0a00000, 0x0a00c00), /* interlv, lane, dup. */ \
14214 X(vst1, 0x0000000, 0x0800000, N_INV), \
14215 X(vld2, 0x0200100, 0x0a00100, 0x0a00d00), \
14216 X(vst2, 0x0000100, 0x0800100, N_INV), \
14217 X(vld3, 0x0200200, 0x0a00200, 0x0a00e00), \
14218 X(vst3, 0x0000200, 0x0800200, N_INV), \
14219 X(vld4, 0x0200300, 0x0a00300, 0x0a00f00), \
14220 X(vst4, 0x0000300, 0x0800300, N_INV), \
14221 X(vmovn, 0x1b20200, N_INV, N_INV), \
14222 X(vtrn, 0x1b20080, N_INV, N_INV), \
14223 X(vqmovn, 0x1b20200, N_INV, N_INV), \
14224 X(vqmovun, 0x1b20240, N_INV, N_INV), \
14225 X(vnmul, 0xe200a40, 0xe200b40, N_INV), \
14226 X(vnmla, 0xe100a40, 0xe100b40, N_INV), \
14227 X(vnmls, 0xe100a00, 0xe100b00, N_INV), \
14228 X(vfnma, 0xe900a40, 0xe900b40, N_INV), \
14229 X(vfnms, 0xe900a00, 0xe900b00, N_INV), \
14230 X(vcmp, 0xeb40a40, 0xeb40b40, N_INV), \
14231 X(vcmpz, 0xeb50a40, 0xeb50b40, N_INV), \
14232 X(vcmpe, 0xeb40ac0, 0xeb40bc0, N_INV), \
14233 X(vcmpez, 0xeb50ac0, 0xeb50bc0, N_INV), \
14234 X(vseleq, 0xe000a00, N_INV, N_INV), \
14235 X(vselvs, 0xe100a00, N_INV, N_INV), \
14236 X(vselge, 0xe200a00, N_INV, N_INV), \
14237 X(vselgt, 0xe300a00, N_INV, N_INV), \
14238 X(vmaxnm, 0xe800a00, 0x3000f10, N_INV), \
14239 X(vminnm, 0xe800a40, 0x3200f10, N_INV), \
14240 X(vcvta, 0xebc0a40, 0x3bb0000, N_INV), \
14241 X(vrintr, 0xeb60a40, 0x3ba0400, N_INV), \
14242 X(vrinta, 0xeb80a40, 0x3ba0400, N_INV), \
14243 X(aes, 0x3b00300, N_INV, N_INV), \
14244 X(sha3op, 0x2000c00, N_INV, N_INV), \
14245 X(sha1h, 0x3b902c0, N_INV, N_INV), \
14246 X(sha2op, 0x3ba0380, N_INV, N_INV)
14247
14248 enum neon_opc
14249 {
14250 #define X(OPC,I,F,S) N_MNEM_##OPC
14251 NEON_ENC_TAB
14252 #undef X
14253 };
14254
14255 static const struct neon_tab_entry neon_enc_tab[] =
14256 {
14257 #define X(OPC,I,F,S) { (I), (F), (S) }
14258 NEON_ENC_TAB
14259 #undef X
14260 };
14261
14262 /* Do not use these macros; instead, use NEON_ENCODE defined below. */
14263 #define NEON_ENC_INTEGER_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
14264 #define NEON_ENC_ARMREG_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
14265 #define NEON_ENC_POLY_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
14266 #define NEON_ENC_FLOAT_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
14267 #define NEON_ENC_SCALAR_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
14268 #define NEON_ENC_IMMED_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
14269 #define NEON_ENC_INTERLV_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
14270 #define NEON_ENC_LANE_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
14271 #define NEON_ENC_DUP_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
14272 #define NEON_ENC_SINGLE_(X) \
14273 ((neon_enc_tab[(X) & 0x0fffffff].integer) | ((X) & 0xf0000000))
14274 #define NEON_ENC_DOUBLE_(X) \
14275 ((neon_enc_tab[(X) & 0x0fffffff].float_or_poly) | ((X) & 0xf0000000))
14276 #define NEON_ENC_FPV8_(X) \
14277 ((neon_enc_tab[(X) & 0x0fffffff].integer) | ((X) & 0xf000000))
14278
14279 #define NEON_ENCODE(type, inst) \
14280 do \
14281 { \
14282 inst.instruction = NEON_ENC_##type##_ (inst.instruction); \
14283 inst.is_neon = 1; \
14284 } \
14285 while (0)
14286
14287 #define check_neon_suffixes \
14288 do \
14289 { \
14290 if (!inst.error && inst.vectype.elems > 0 && !inst.is_neon) \
14291 { \
14292 as_bad (_("invalid neon suffix for non neon instruction")); \
14293 return; \
14294 } \
14295 } \
14296 while (0)
14297
14298 /* Define shapes for instruction operands. The following mnemonic characters
14299 are used in this table:
14300
14301 F - VFP S<n> register
14302 D - Neon D<n> register
14303 Q - Neon Q<n> register
14304 I - Immediate
14305 S - Scalar
14306 R - ARM register
14307 L - D<n> register list
14308
14309 This table is used to generate various data:
14310 - enumerations of the form NS_DDR to be used as arguments to
14311 neon_select_shape.
14312 - a table classifying shapes into single, double, quad, mixed.
14313 - a table used to drive neon_select_shape. */
14314
14315 #define NEON_SHAPE_DEF \
14316 X(4, (R, R, S, S), QUAD), \
14317 X(4, (S, S, R, R), QUAD), \
14318 X(3, (I, Q, Q), QUAD), \
14319 X(3, (I, Q, R), QUAD), \
14320 X(3, (R, Q, Q), QUAD), \
14321 X(3, (D, D, D), DOUBLE), \
14322 X(3, (Q, Q, Q), QUAD), \
14323 X(3, (D, D, I), DOUBLE), \
14324 X(3, (Q, Q, I), QUAD), \
14325 X(3, (D, D, S), DOUBLE), \
14326 X(3, (Q, Q, S), QUAD), \
14327 X(3, (Q, Q, R), QUAD), \
14328 X(3, (R, R, Q), QUAD), \
14329 X(2, (R, Q), QUAD), \
14330 X(2, (D, D), DOUBLE), \
14331 X(2, (Q, Q), QUAD), \
14332 X(2, (D, S), DOUBLE), \
14333 X(2, (Q, S), QUAD), \
14334 X(2, (D, R), DOUBLE), \
14335 X(2, (Q, R), QUAD), \
14336 X(2, (D, I), DOUBLE), \
14337 X(2, (Q, I), QUAD), \
14338 X(3, (D, L, D), DOUBLE), \
14339 X(2, (D, Q), MIXED), \
14340 X(2, (Q, D), MIXED), \
14341 X(3, (D, Q, I), MIXED), \
14342 X(3, (Q, D, I), MIXED), \
14343 X(3, (Q, D, D), MIXED), \
14344 X(3, (D, Q, Q), MIXED), \
14345 X(3, (Q, Q, D), MIXED), \
14346 X(3, (Q, D, S), MIXED), \
14347 X(3, (D, Q, S), MIXED), \
14348 X(4, (D, D, D, I), DOUBLE), \
14349 X(4, (Q, Q, Q, I), QUAD), \
14350 X(4, (D, D, S, I), DOUBLE), \
14351 X(4, (Q, Q, S, I), QUAD), \
14352 X(2, (F, F), SINGLE), \
14353 X(3, (F, F, F), SINGLE), \
14354 X(2, (F, I), SINGLE), \
14355 X(2, (F, D), MIXED), \
14356 X(2, (D, F), MIXED), \
14357 X(3, (F, F, I), MIXED), \
14358 X(4, (R, R, F, F), SINGLE), \
14359 X(4, (F, F, R, R), SINGLE), \
14360 X(3, (D, R, R), DOUBLE), \
14361 X(3, (R, R, D), DOUBLE), \
14362 X(2, (S, R), SINGLE), \
14363 X(2, (R, S), SINGLE), \
14364 X(2, (F, R), SINGLE), \
14365 X(2, (R, F), SINGLE), \
14366 /* Half float shape supported so far. */\
14367 X (2, (H, D), MIXED), \
14368 X (2, (D, H), MIXED), \
14369 X (2, (H, F), MIXED), \
14370 X (2, (F, H), MIXED), \
14371 X (2, (H, H), HALF), \
14372 X (2, (H, R), HALF), \
14373 X (2, (R, H), HALF), \
14374 X (2, (H, I), HALF), \
14375 X (3, (H, H, H), HALF), \
14376 X (3, (H, F, I), MIXED), \
14377 X (3, (F, H, I), MIXED), \
14378 X (3, (D, H, H), MIXED), \
14379 X (3, (D, H, S), MIXED)
14380
14381 #define S2(A,B) NS_##A##B
14382 #define S3(A,B,C) NS_##A##B##C
14383 #define S4(A,B,C,D) NS_##A##B##C##D
14384
14385 #define X(N, L, C) S##N L
14386
14387 enum neon_shape
14388 {
14389 NEON_SHAPE_DEF,
14390 NS_NULL
14391 };
14392
14393 #undef X
14394 #undef S2
14395 #undef S3
14396 #undef S4
14397
14398 enum neon_shape_class
14399 {
14400 SC_HALF,
14401 SC_SINGLE,
14402 SC_DOUBLE,
14403 SC_QUAD,
14404 SC_MIXED
14405 };
14406
14407 #define X(N, L, C) SC_##C
14408
14409 static enum neon_shape_class neon_shape_class[] =
14410 {
14411 NEON_SHAPE_DEF
14412 };
14413
14414 #undef X
14415
14416 enum neon_shape_el
14417 {
14418 SE_H,
14419 SE_F,
14420 SE_D,
14421 SE_Q,
14422 SE_I,
14423 SE_S,
14424 SE_R,
14425 SE_L
14426 };
14427
14428 /* Register widths of above. */
14429 static unsigned neon_shape_el_size[] =
14430 {
14431 16,
14432 32,
14433 64,
14434 128,
14435 0,
14436 32,
14437 32,
14438 0
14439 };
14440
14441 struct neon_shape_info
14442 {
14443 unsigned els;
14444 enum neon_shape_el el[NEON_MAX_TYPE_ELS];
14445 };
14446
14447 #define S2(A,B) { SE_##A, SE_##B }
14448 #define S3(A,B,C) { SE_##A, SE_##B, SE_##C }
14449 #define S4(A,B,C,D) { SE_##A, SE_##B, SE_##C, SE_##D }
14450
14451 #define X(N, L, C) { N, S##N L }
14452
14453 static struct neon_shape_info neon_shape_tab[] =
14454 {
14455 NEON_SHAPE_DEF
14456 };
14457
14458 #undef X
14459 #undef S2
14460 #undef S3
14461 #undef S4
14462
14463 /* Bit masks used in type checking given instructions.
14464 'N_EQK' means the type must be the same as (or based on in some way) the key
14465 type, which itself is marked with the 'N_KEY' bit. If the 'N_EQK' bit is
14466 set, various other bits can be set as well in order to modify the meaning of
14467 the type constraint. */
14468
14469 enum neon_type_mask
14470 {
14471 N_S8 = 0x0000001,
14472 N_S16 = 0x0000002,
14473 N_S32 = 0x0000004,
14474 N_S64 = 0x0000008,
14475 N_U8 = 0x0000010,
14476 N_U16 = 0x0000020,
14477 N_U32 = 0x0000040,
14478 N_U64 = 0x0000080,
14479 N_I8 = 0x0000100,
14480 N_I16 = 0x0000200,
14481 N_I32 = 0x0000400,
14482 N_I64 = 0x0000800,
14483 N_8 = 0x0001000,
14484 N_16 = 0x0002000,
14485 N_32 = 0x0004000,
14486 N_64 = 0x0008000,
14487 N_P8 = 0x0010000,
14488 N_P16 = 0x0020000,
14489 N_F16 = 0x0040000,
14490 N_F32 = 0x0080000,
14491 N_F64 = 0x0100000,
14492 N_P64 = 0x0200000,
14493 N_KEY = 0x1000000, /* Key element (main type specifier). */
14494 N_EQK = 0x2000000, /* Given operand has the same type & size as the key. */
14495 N_VFP = 0x4000000, /* VFP mode: operand size must match register width. */
14496 N_UNT = 0x8000000, /* Must be explicitly untyped. */
14497 N_DBL = 0x0000001, /* If N_EQK, this operand is twice the size. */
14498 N_HLF = 0x0000002, /* If N_EQK, this operand is half the size. */
14499 N_SGN = 0x0000004, /* If N_EQK, this operand is forced to be signed. */
14500 N_UNS = 0x0000008, /* If N_EQK, this operand is forced to be unsigned. */
14501 N_INT = 0x0000010, /* If N_EQK, this operand is forced to be integer. */
14502 N_FLT = 0x0000020, /* If N_EQK, this operand is forced to be float. */
14503 N_SIZ = 0x0000040, /* If N_EQK, this operand is forced to be size-only. */
14504 N_UTYP = 0,
14505 N_MAX_NONSPECIAL = N_P64
14506 };
14507
14508 #define N_ALLMODS (N_DBL | N_HLF | N_SGN | N_UNS | N_INT | N_FLT | N_SIZ)
14509
14510 #define N_SU_ALL (N_S8 | N_S16 | N_S32 | N_S64 | N_U8 | N_U16 | N_U32 | N_U64)
14511 #define N_SU_32 (N_S8 | N_S16 | N_S32 | N_U8 | N_U16 | N_U32)
14512 #define N_SU_16_64 (N_S16 | N_S32 | N_S64 | N_U16 | N_U32 | N_U64)
14513 #define N_S_32 (N_S8 | N_S16 | N_S32)
14514 #define N_F_16_32 (N_F16 | N_F32)
14515 #define N_SUF_32 (N_SU_32 | N_F_16_32)
14516 #define N_I_ALL (N_I8 | N_I16 | N_I32 | N_I64)
14517 #define N_IF_32 (N_I8 | N_I16 | N_I32 | N_F16 | N_F32)
14518 #define N_F_ALL (N_F16 | N_F32 | N_F64)
14519 #define N_I_MVE (N_I8 | N_I16 | N_I32)
14520 #define N_F_MVE (N_F16 | N_F32)
14521 #define N_SU_MVE (N_S8 | N_S16 | N_S32 | N_U8 | N_U16 | N_U32)
14522
14523 /* Pass this as the first type argument to neon_check_type to ignore types
14524 altogether. */
14525 #define N_IGNORE_TYPE (N_KEY | N_EQK)
14526
14527 /* Select a "shape" for the current instruction (describing register types or
14528 sizes) from a list of alternatives. Return NS_NULL if the current instruction
14529 doesn't fit. For non-polymorphic shapes, checking is usually done as a
14530 function of operand parsing, so this function doesn't need to be called.
14531 Shapes should be listed in order of decreasing length. */
14532
14533 static enum neon_shape
14534 neon_select_shape (enum neon_shape shape, ...)
14535 {
14536 va_list ap;
14537 enum neon_shape first_shape = shape;
14538
14539 /* Fix missing optional operands. FIXME: we don't know at this point how
14540 many arguments we should have, so this makes the assumption that we have
14541 > 1. This is true of all current Neon opcodes, I think, but may not be
14542 true in the future. */
14543 if (!inst.operands[1].present)
14544 inst.operands[1] = inst.operands[0];
14545
14546 va_start (ap, shape);
14547
14548 for (; shape != NS_NULL; shape = (enum neon_shape) va_arg (ap, int))
14549 {
14550 unsigned j;
14551 int matches = 1;
14552
14553 for (j = 0; j < neon_shape_tab[shape].els; j++)
14554 {
14555 if (!inst.operands[j].present)
14556 {
14557 matches = 0;
14558 break;
14559 }
14560
14561 switch (neon_shape_tab[shape].el[j])
14562 {
14563 /* If a .f16, .16, .u16, .s16 type specifier is given over
14564 a VFP single precision register operand, it's essentially
14565 means only half of the register is used.
14566
14567 If the type specifier is given after the mnemonics, the
14568 information is stored in inst.vectype. If the type specifier
14569 is given after register operand, the information is stored
14570 in inst.operands[].vectype.
14571
14572 When there is only one type specifier, and all the register
14573 operands are the same type of hardware register, the type
14574 specifier applies to all register operands.
14575
14576 If no type specifier is given, the shape is inferred from
14577 operand information.
14578
14579 for example:
14580 vadd.f16 s0, s1, s2: NS_HHH
14581 vabs.f16 s0, s1: NS_HH
14582 vmov.f16 s0, r1: NS_HR
14583 vmov.f16 r0, s1: NS_RH
14584 vcvt.f16 r0, s1: NS_RH
14585 vcvt.f16.s32 s2, s2, #29: NS_HFI
14586 vcvt.f16.s32 s2, s2: NS_HF
14587 */
14588 case SE_H:
14589 if (!(inst.operands[j].isreg
14590 && inst.operands[j].isvec
14591 && inst.operands[j].issingle
14592 && !inst.operands[j].isquad
14593 && ((inst.vectype.elems == 1
14594 && inst.vectype.el[0].size == 16)
14595 || (inst.vectype.elems > 1
14596 && inst.vectype.el[j].size == 16)
14597 || (inst.vectype.elems == 0
14598 && inst.operands[j].vectype.type != NT_invtype
14599 && inst.operands[j].vectype.size == 16))))
14600 matches = 0;
14601 break;
14602
14603 case SE_F:
14604 if (!(inst.operands[j].isreg
14605 && inst.operands[j].isvec
14606 && inst.operands[j].issingle
14607 && !inst.operands[j].isquad
14608 && ((inst.vectype.elems == 1 && inst.vectype.el[0].size == 32)
14609 || (inst.vectype.elems > 1 && inst.vectype.el[j].size == 32)
14610 || (inst.vectype.elems == 0
14611 && (inst.operands[j].vectype.size == 32
14612 || inst.operands[j].vectype.type == NT_invtype)))))
14613 matches = 0;
14614 break;
14615
14616 case SE_D:
14617 if (!(inst.operands[j].isreg
14618 && inst.operands[j].isvec
14619 && !inst.operands[j].isquad
14620 && !inst.operands[j].issingle))
14621 matches = 0;
14622 break;
14623
14624 case SE_R:
14625 if (!(inst.operands[j].isreg
14626 && !inst.operands[j].isvec))
14627 matches = 0;
14628 break;
14629
14630 case SE_Q:
14631 if (!(inst.operands[j].isreg
14632 && inst.operands[j].isvec
14633 && inst.operands[j].isquad
14634 && !inst.operands[j].issingle))
14635 matches = 0;
14636 break;
14637
14638 case SE_I:
14639 if (!(!inst.operands[j].isreg
14640 && !inst.operands[j].isscalar))
14641 matches = 0;
14642 break;
14643
14644 case SE_S:
14645 if (!(!inst.operands[j].isreg
14646 && inst.operands[j].isscalar))
14647 matches = 0;
14648 break;
14649
14650 case SE_L:
14651 break;
14652 }
14653 if (!matches)
14654 break;
14655 }
14656 if (matches && (j >= ARM_IT_MAX_OPERANDS || !inst.operands[j].present))
14657 /* We've matched all the entries in the shape table, and we don't
14658 have any left over operands which have not been matched. */
14659 break;
14660 }
14661
14662 va_end (ap);
14663
14664 if (shape == NS_NULL && first_shape != NS_NULL)
14665 first_error (_("invalid instruction shape"));
14666
14667 return shape;
14668 }
14669
14670 /* True if SHAPE is predominantly a quadword operation (most of the time, this
14671 means the Q bit should be set). */
14672
14673 static int
14674 neon_quad (enum neon_shape shape)
14675 {
14676 return neon_shape_class[shape] == SC_QUAD;
14677 }
14678
14679 static void
14680 neon_modify_type_size (unsigned typebits, enum neon_el_type *g_type,
14681 unsigned *g_size)
14682 {
14683 /* Allow modification to be made to types which are constrained to be
14684 based on the key element, based on bits set alongside N_EQK. */
14685 if ((typebits & N_EQK) != 0)
14686 {
14687 if ((typebits & N_HLF) != 0)
14688 *g_size /= 2;
14689 else if ((typebits & N_DBL) != 0)
14690 *g_size *= 2;
14691 if ((typebits & N_SGN) != 0)
14692 *g_type = NT_signed;
14693 else if ((typebits & N_UNS) != 0)
14694 *g_type = NT_unsigned;
14695 else if ((typebits & N_INT) != 0)
14696 *g_type = NT_integer;
14697 else if ((typebits & N_FLT) != 0)
14698 *g_type = NT_float;
14699 else if ((typebits & N_SIZ) != 0)
14700 *g_type = NT_untyped;
14701 }
14702 }
14703
14704 /* Return operand OPNO promoted by bits set in THISARG. KEY should be the "key"
14705 operand type, i.e. the single type specified in a Neon instruction when it
14706 is the only one given. */
14707
14708 static struct neon_type_el
14709 neon_type_promote (struct neon_type_el *key, unsigned thisarg)
14710 {
14711 struct neon_type_el dest = *key;
14712
14713 gas_assert ((thisarg & N_EQK) != 0);
14714
14715 neon_modify_type_size (thisarg, &dest.type, &dest.size);
14716
14717 return dest;
14718 }
14719
14720 /* Convert Neon type and size into compact bitmask representation. */
14721
14722 static enum neon_type_mask
14723 type_chk_of_el_type (enum neon_el_type type, unsigned size)
14724 {
14725 switch (type)
14726 {
14727 case NT_untyped:
14728 switch (size)
14729 {
14730 case 8: return N_8;
14731 case 16: return N_16;
14732 case 32: return N_32;
14733 case 64: return N_64;
14734 default: ;
14735 }
14736 break;
14737
14738 case NT_integer:
14739 switch (size)
14740 {
14741 case 8: return N_I8;
14742 case 16: return N_I16;
14743 case 32: return N_I32;
14744 case 64: return N_I64;
14745 default: ;
14746 }
14747 break;
14748
14749 case NT_float:
14750 switch (size)
14751 {
14752 case 16: return N_F16;
14753 case 32: return N_F32;
14754 case 64: return N_F64;
14755 default: ;
14756 }
14757 break;
14758
14759 case NT_poly:
14760 switch (size)
14761 {
14762 case 8: return N_P8;
14763 case 16: return N_P16;
14764 case 64: return N_P64;
14765 default: ;
14766 }
14767 break;
14768
14769 case NT_signed:
14770 switch (size)
14771 {
14772 case 8: return N_S8;
14773 case 16: return N_S16;
14774 case 32: return N_S32;
14775 case 64: return N_S64;
14776 default: ;
14777 }
14778 break;
14779
14780 case NT_unsigned:
14781 switch (size)
14782 {
14783 case 8: return N_U8;
14784 case 16: return N_U16;
14785 case 32: return N_U32;
14786 case 64: return N_U64;
14787 default: ;
14788 }
14789 break;
14790
14791 default: ;
14792 }
14793
14794 return N_UTYP;
14795 }
14796
14797 /* Convert compact Neon bitmask type representation to a type and size. Only
14798 handles the case where a single bit is set in the mask. */
14799
14800 static int
14801 el_type_of_type_chk (enum neon_el_type *type, unsigned *size,
14802 enum neon_type_mask mask)
14803 {
14804 if ((mask & N_EQK) != 0)
14805 return FAIL;
14806
14807 if ((mask & (N_S8 | N_U8 | N_I8 | N_8 | N_P8)) != 0)
14808 *size = 8;
14809 else if ((mask & (N_S16 | N_U16 | N_I16 | N_16 | N_F16 | N_P16)) != 0)
14810 *size = 16;
14811 else if ((mask & (N_S32 | N_U32 | N_I32 | N_32 | N_F32)) != 0)
14812 *size = 32;
14813 else if ((mask & (N_S64 | N_U64 | N_I64 | N_64 | N_F64 | N_P64)) != 0)
14814 *size = 64;
14815 else
14816 return FAIL;
14817
14818 if ((mask & (N_S8 | N_S16 | N_S32 | N_S64)) != 0)
14819 *type = NT_signed;
14820 else if ((mask & (N_U8 | N_U16 | N_U32 | N_U64)) != 0)
14821 *type = NT_unsigned;
14822 else if ((mask & (N_I8 | N_I16 | N_I32 | N_I64)) != 0)
14823 *type = NT_integer;
14824 else if ((mask & (N_8 | N_16 | N_32 | N_64)) != 0)
14825 *type = NT_untyped;
14826 else if ((mask & (N_P8 | N_P16 | N_P64)) != 0)
14827 *type = NT_poly;
14828 else if ((mask & (N_F_ALL)) != 0)
14829 *type = NT_float;
14830 else
14831 return FAIL;
14832
14833 return SUCCESS;
14834 }
14835
14836 /* Modify a bitmask of allowed types. This is only needed for type
14837 relaxation. */
14838
14839 static unsigned
14840 modify_types_allowed (unsigned allowed, unsigned mods)
14841 {
14842 unsigned size;
14843 enum neon_el_type type;
14844 unsigned destmask;
14845 int i;
14846
14847 destmask = 0;
14848
14849 for (i = 1; i <= N_MAX_NONSPECIAL; i <<= 1)
14850 {
14851 if (el_type_of_type_chk (&type, &size,
14852 (enum neon_type_mask) (allowed & i)) == SUCCESS)
14853 {
14854 neon_modify_type_size (mods, &type, &size);
14855 destmask |= type_chk_of_el_type (type, size);
14856 }
14857 }
14858
14859 return destmask;
14860 }
14861
14862 /* Check type and return type classification.
14863 The manual states (paraphrase): If one datatype is given, it indicates the
14864 type given in:
14865 - the second operand, if there is one
14866 - the operand, if there is no second operand
14867 - the result, if there are no operands.
14868 This isn't quite good enough though, so we use a concept of a "key" datatype
14869 which is set on a per-instruction basis, which is the one which matters when
14870 only one data type is written.
14871 Note: this function has side-effects (e.g. filling in missing operands). All
14872 Neon instructions should call it before performing bit encoding. */
14873
14874 static struct neon_type_el
14875 neon_check_type (unsigned els, enum neon_shape ns, ...)
14876 {
14877 va_list ap;
14878 unsigned i, pass, key_el = 0;
14879 unsigned types[NEON_MAX_TYPE_ELS];
14880 enum neon_el_type k_type = NT_invtype;
14881 unsigned k_size = -1u;
14882 struct neon_type_el badtype = {NT_invtype, -1};
14883 unsigned key_allowed = 0;
14884
14885 /* Optional registers in Neon instructions are always (not) in operand 1.
14886 Fill in the missing operand here, if it was omitted. */
14887 if (els > 1 && !inst.operands[1].present)
14888 inst.operands[1] = inst.operands[0];
14889
14890 /* Suck up all the varargs. */
14891 va_start (ap, ns);
14892 for (i = 0; i < els; i++)
14893 {
14894 unsigned thisarg = va_arg (ap, unsigned);
14895 if (thisarg == N_IGNORE_TYPE)
14896 {
14897 va_end (ap);
14898 return badtype;
14899 }
14900 types[i] = thisarg;
14901 if ((thisarg & N_KEY) != 0)
14902 key_el = i;
14903 }
14904 va_end (ap);
14905
14906 if (inst.vectype.elems > 0)
14907 for (i = 0; i < els; i++)
14908 if (inst.operands[i].vectype.type != NT_invtype)
14909 {
14910 first_error (_("types specified in both the mnemonic and operands"));
14911 return badtype;
14912 }
14913
14914 /* Duplicate inst.vectype elements here as necessary.
14915 FIXME: No idea if this is exactly the same as the ARM assembler,
14916 particularly when an insn takes one register and one non-register
14917 operand. */
14918 if (inst.vectype.elems == 1 && els > 1)
14919 {
14920 unsigned j;
14921 inst.vectype.elems = els;
14922 inst.vectype.el[key_el] = inst.vectype.el[0];
14923 for (j = 0; j < els; j++)
14924 if (j != key_el)
14925 inst.vectype.el[j] = neon_type_promote (&inst.vectype.el[key_el],
14926 types[j]);
14927 }
14928 else if (inst.vectype.elems == 0 && els > 0)
14929 {
14930 unsigned j;
14931 /* No types were given after the mnemonic, so look for types specified
14932 after each operand. We allow some flexibility here; as long as the
14933 "key" operand has a type, we can infer the others. */
14934 for (j = 0; j < els; j++)
14935 if (inst.operands[j].vectype.type != NT_invtype)
14936 inst.vectype.el[j] = inst.operands[j].vectype;
14937
14938 if (inst.operands[key_el].vectype.type != NT_invtype)
14939 {
14940 for (j = 0; j < els; j++)
14941 if (inst.operands[j].vectype.type == NT_invtype)
14942 inst.vectype.el[j] = neon_type_promote (&inst.vectype.el[key_el],
14943 types[j]);
14944 }
14945 else
14946 {
14947 first_error (_("operand types can't be inferred"));
14948 return badtype;
14949 }
14950 }
14951 else if (inst.vectype.elems != els)
14952 {
14953 first_error (_("type specifier has the wrong number of parts"));
14954 return badtype;
14955 }
14956
14957 for (pass = 0; pass < 2; pass++)
14958 {
14959 for (i = 0; i < els; i++)
14960 {
14961 unsigned thisarg = types[i];
14962 unsigned types_allowed = ((thisarg & N_EQK) != 0 && pass != 0)
14963 ? modify_types_allowed (key_allowed, thisarg) : thisarg;
14964 enum neon_el_type g_type = inst.vectype.el[i].type;
14965 unsigned g_size = inst.vectype.el[i].size;
14966
14967 /* Decay more-specific signed & unsigned types to sign-insensitive
14968 integer types if sign-specific variants are unavailable. */
14969 if ((g_type == NT_signed || g_type == NT_unsigned)
14970 && (types_allowed & N_SU_ALL) == 0)
14971 g_type = NT_integer;
14972
14973 /* If only untyped args are allowed, decay any more specific types to
14974 them. Some instructions only care about signs for some element
14975 sizes, so handle that properly. */
14976 if (((types_allowed & N_UNT) == 0)
14977 && ((g_size == 8 && (types_allowed & N_8) != 0)
14978 || (g_size == 16 && (types_allowed & N_16) != 0)
14979 || (g_size == 32 && (types_allowed & N_32) != 0)
14980 || (g_size == 64 && (types_allowed & N_64) != 0)))
14981 g_type = NT_untyped;
14982
14983 if (pass == 0)
14984 {
14985 if ((thisarg & N_KEY) != 0)
14986 {
14987 k_type = g_type;
14988 k_size = g_size;
14989 key_allowed = thisarg & ~N_KEY;
14990
14991 /* Check architecture constraint on FP16 extension. */
14992 if (k_size == 16
14993 && k_type == NT_float
14994 && ! ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16))
14995 {
14996 inst.error = _(BAD_FP16);
14997 return badtype;
14998 }
14999 }
15000 }
15001 else
15002 {
15003 if ((thisarg & N_VFP) != 0)
15004 {
15005 enum neon_shape_el regshape;
15006 unsigned regwidth, match;
15007
15008 /* PR 11136: Catch the case where we are passed a shape of NS_NULL. */
15009 if (ns == NS_NULL)
15010 {
15011 first_error (_("invalid instruction shape"));
15012 return badtype;
15013 }
15014 regshape = neon_shape_tab[ns].el[i];
15015 regwidth = neon_shape_el_size[regshape];
15016
15017 /* In VFP mode, operands must match register widths. If we
15018 have a key operand, use its width, else use the width of
15019 the current operand. */
15020 if (k_size != -1u)
15021 match = k_size;
15022 else
15023 match = g_size;
15024
15025 /* FP16 will use a single precision register. */
15026 if (regwidth == 32 && match == 16)
15027 {
15028 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16))
15029 match = regwidth;
15030 else
15031 {
15032 inst.error = _(BAD_FP16);
15033 return badtype;
15034 }
15035 }
15036
15037 if (regwidth != match)
15038 {
15039 first_error (_("operand size must match register width"));
15040 return badtype;
15041 }
15042 }
15043
15044 if ((thisarg & N_EQK) == 0)
15045 {
15046 unsigned given_type = type_chk_of_el_type (g_type, g_size);
15047
15048 if ((given_type & types_allowed) == 0)
15049 {
15050 first_error (BAD_SIMD_TYPE);
15051 return badtype;
15052 }
15053 }
15054 else
15055 {
15056 enum neon_el_type mod_k_type = k_type;
15057 unsigned mod_k_size = k_size;
15058 neon_modify_type_size (thisarg, &mod_k_type, &mod_k_size);
15059 if (g_type != mod_k_type || g_size != mod_k_size)
15060 {
15061 first_error (_("inconsistent types in Neon instruction"));
15062 return badtype;
15063 }
15064 }
15065 }
15066 }
15067 }
15068
15069 return inst.vectype.el[key_el];
15070 }
15071
15072 /* Neon-style VFP instruction forwarding. */
15073
15074 /* Thumb VFP instructions have 0xE in the condition field. */
15075
15076 static void
15077 do_vfp_cond_or_thumb (void)
15078 {
15079 inst.is_neon = 1;
15080
15081 if (thumb_mode)
15082 inst.instruction |= 0xe0000000;
15083 else
15084 inst.instruction |= inst.cond << 28;
15085 }
15086
15087 /* Look up and encode a simple mnemonic, for use as a helper function for the
15088 Neon-style VFP syntax. This avoids duplication of bits of the insns table,
15089 etc. It is assumed that operand parsing has already been done, and that the
15090 operands are in the form expected by the given opcode (this isn't necessarily
15091 the same as the form in which they were parsed, hence some massaging must
15092 take place before this function is called).
15093 Checks current arch version against that in the looked-up opcode. */
15094
15095 static void
15096 do_vfp_nsyn_opcode (const char *opname)
15097 {
15098 const struct asm_opcode *opcode;
15099
15100 opcode = (const struct asm_opcode *) hash_find (arm_ops_hsh, opname);
15101
15102 if (!opcode)
15103 abort ();
15104
15105 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant,
15106 thumb_mode ? *opcode->tvariant : *opcode->avariant),
15107 _(BAD_FPU));
15108
15109 inst.is_neon = 1;
15110
15111 if (thumb_mode)
15112 {
15113 inst.instruction = opcode->tvalue;
15114 opcode->tencode ();
15115 }
15116 else
15117 {
15118 inst.instruction = (inst.cond << 28) | opcode->avalue;
15119 opcode->aencode ();
15120 }
15121 }
15122
15123 static void
15124 do_vfp_nsyn_add_sub (enum neon_shape rs)
15125 {
15126 int is_add = (inst.instruction & 0x0fffffff) == N_MNEM_vadd;
15127
15128 if (rs == NS_FFF || rs == NS_HHH)
15129 {
15130 if (is_add)
15131 do_vfp_nsyn_opcode ("fadds");
15132 else
15133 do_vfp_nsyn_opcode ("fsubs");
15134
15135 /* ARMv8.2 fp16 instruction. */
15136 if (rs == NS_HHH)
15137 do_scalar_fp16_v82_encode ();
15138 }
15139 else
15140 {
15141 if (is_add)
15142 do_vfp_nsyn_opcode ("faddd");
15143 else
15144 do_vfp_nsyn_opcode ("fsubd");
15145 }
15146 }
15147
15148 /* Check operand types to see if this is a VFP instruction, and if so call
15149 PFN (). */
15150
15151 static int
15152 try_vfp_nsyn (int args, void (*pfn) (enum neon_shape))
15153 {
15154 enum neon_shape rs;
15155 struct neon_type_el et;
15156
15157 switch (args)
15158 {
15159 case 2:
15160 rs = neon_select_shape (NS_HH, NS_FF, NS_DD, NS_NULL);
15161 et = neon_check_type (2, rs, N_EQK | N_VFP, N_F_ALL | N_KEY | N_VFP);
15162 break;
15163
15164 case 3:
15165 rs = neon_select_shape (NS_HHH, NS_FFF, NS_DDD, NS_NULL);
15166 et = neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
15167 N_F_ALL | N_KEY | N_VFP);
15168 break;
15169
15170 default:
15171 abort ();
15172 }
15173
15174 if (et.type != NT_invtype)
15175 {
15176 pfn (rs);
15177 return SUCCESS;
15178 }
15179
15180 inst.error = NULL;
15181 return FAIL;
15182 }
15183
15184 static void
15185 do_vfp_nsyn_mla_mls (enum neon_shape rs)
15186 {
15187 int is_mla = (inst.instruction & 0x0fffffff) == N_MNEM_vmla;
15188
15189 if (rs == NS_FFF || rs == NS_HHH)
15190 {
15191 if (is_mla)
15192 do_vfp_nsyn_opcode ("fmacs");
15193 else
15194 do_vfp_nsyn_opcode ("fnmacs");
15195
15196 /* ARMv8.2 fp16 instruction. */
15197 if (rs == NS_HHH)
15198 do_scalar_fp16_v82_encode ();
15199 }
15200 else
15201 {
15202 if (is_mla)
15203 do_vfp_nsyn_opcode ("fmacd");
15204 else
15205 do_vfp_nsyn_opcode ("fnmacd");
15206 }
15207 }
15208
15209 static void
15210 do_vfp_nsyn_fma_fms (enum neon_shape rs)
15211 {
15212 int is_fma = (inst.instruction & 0x0fffffff) == N_MNEM_vfma;
15213
15214 if (rs == NS_FFF || rs == NS_HHH)
15215 {
15216 if (is_fma)
15217 do_vfp_nsyn_opcode ("ffmas");
15218 else
15219 do_vfp_nsyn_opcode ("ffnmas");
15220
15221 /* ARMv8.2 fp16 instruction. */
15222 if (rs == NS_HHH)
15223 do_scalar_fp16_v82_encode ();
15224 }
15225 else
15226 {
15227 if (is_fma)
15228 do_vfp_nsyn_opcode ("ffmad");
15229 else
15230 do_vfp_nsyn_opcode ("ffnmad");
15231 }
15232 }
15233
15234 static void
15235 do_vfp_nsyn_mul (enum neon_shape rs)
15236 {
15237 if (rs == NS_FFF || rs == NS_HHH)
15238 {
15239 do_vfp_nsyn_opcode ("fmuls");
15240
15241 /* ARMv8.2 fp16 instruction. */
15242 if (rs == NS_HHH)
15243 do_scalar_fp16_v82_encode ();
15244 }
15245 else
15246 do_vfp_nsyn_opcode ("fmuld");
15247 }
15248
15249 static void
15250 do_vfp_nsyn_abs_neg (enum neon_shape rs)
15251 {
15252 int is_neg = (inst.instruction & 0x80) != 0;
15253 neon_check_type (2, rs, N_EQK | N_VFP, N_F_ALL | N_VFP | N_KEY);
15254
15255 if (rs == NS_FF || rs == NS_HH)
15256 {
15257 if (is_neg)
15258 do_vfp_nsyn_opcode ("fnegs");
15259 else
15260 do_vfp_nsyn_opcode ("fabss");
15261
15262 /* ARMv8.2 fp16 instruction. */
15263 if (rs == NS_HH)
15264 do_scalar_fp16_v82_encode ();
15265 }
15266 else
15267 {
15268 if (is_neg)
15269 do_vfp_nsyn_opcode ("fnegd");
15270 else
15271 do_vfp_nsyn_opcode ("fabsd");
15272 }
15273 }
15274
15275 /* Encode single-precision (only!) VFP fldm/fstm instructions. Double precision
15276 insns belong to Neon, and are handled elsewhere. */
15277
15278 static void
15279 do_vfp_nsyn_ldm_stm (int is_dbmode)
15280 {
15281 int is_ldm = (inst.instruction & (1 << 20)) != 0;
15282 if (is_ldm)
15283 {
15284 if (is_dbmode)
15285 do_vfp_nsyn_opcode ("fldmdbs");
15286 else
15287 do_vfp_nsyn_opcode ("fldmias");
15288 }
15289 else
15290 {
15291 if (is_dbmode)
15292 do_vfp_nsyn_opcode ("fstmdbs");
15293 else
15294 do_vfp_nsyn_opcode ("fstmias");
15295 }
15296 }
15297
15298 static void
15299 do_vfp_nsyn_sqrt (void)
15300 {
15301 enum neon_shape rs = neon_select_shape (NS_HH, NS_FF, NS_DD, NS_NULL);
15302 neon_check_type (2, rs, N_EQK | N_VFP, N_F_ALL | N_KEY | N_VFP);
15303
15304 if (rs == NS_FF || rs == NS_HH)
15305 {
15306 do_vfp_nsyn_opcode ("fsqrts");
15307
15308 /* ARMv8.2 fp16 instruction. */
15309 if (rs == NS_HH)
15310 do_scalar_fp16_v82_encode ();
15311 }
15312 else
15313 do_vfp_nsyn_opcode ("fsqrtd");
15314 }
15315
15316 static void
15317 do_vfp_nsyn_div (void)
15318 {
15319 enum neon_shape rs = neon_select_shape (NS_HHH, NS_FFF, NS_DDD, NS_NULL);
15320 neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
15321 N_F_ALL | N_KEY | N_VFP);
15322
15323 if (rs == NS_FFF || rs == NS_HHH)
15324 {
15325 do_vfp_nsyn_opcode ("fdivs");
15326
15327 /* ARMv8.2 fp16 instruction. */
15328 if (rs == NS_HHH)
15329 do_scalar_fp16_v82_encode ();
15330 }
15331 else
15332 do_vfp_nsyn_opcode ("fdivd");
15333 }
15334
15335 static void
15336 do_vfp_nsyn_nmul (void)
15337 {
15338 enum neon_shape rs = neon_select_shape (NS_HHH, NS_FFF, NS_DDD, NS_NULL);
15339 neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
15340 N_F_ALL | N_KEY | N_VFP);
15341
15342 if (rs == NS_FFF || rs == NS_HHH)
15343 {
15344 NEON_ENCODE (SINGLE, inst);
15345 do_vfp_sp_dyadic ();
15346
15347 /* ARMv8.2 fp16 instruction. */
15348 if (rs == NS_HHH)
15349 do_scalar_fp16_v82_encode ();
15350 }
15351 else
15352 {
15353 NEON_ENCODE (DOUBLE, inst);
15354 do_vfp_dp_rd_rn_rm ();
15355 }
15356 do_vfp_cond_or_thumb ();
15357
15358 }
15359
15360 /* Turn a size (8, 16, 32, 64) into the respective bit number minus 3
15361 (0, 1, 2, 3). */
15362
15363 static unsigned
15364 neon_logbits (unsigned x)
15365 {
15366 return ffs (x) - 4;
15367 }
15368
15369 #define LOW4(R) ((R) & 0xf)
15370 #define HI1(R) (((R) >> 4) & 1)
15371
15372 static unsigned
15373 mve_get_vcmp_vpt_cond (struct neon_type_el et)
15374 {
15375 switch (et.type)
15376 {
15377 default:
15378 first_error (BAD_EL_TYPE);
15379 return 0;
15380 case NT_float:
15381 switch (inst.operands[0].imm)
15382 {
15383 default:
15384 first_error (_("invalid condition"));
15385 return 0;
15386 case 0x0:
15387 /* eq. */
15388 return 0;
15389 case 0x1:
15390 /* ne. */
15391 return 1;
15392 case 0xa:
15393 /* ge/ */
15394 return 4;
15395 case 0xb:
15396 /* lt. */
15397 return 5;
15398 case 0xc:
15399 /* gt. */
15400 return 6;
15401 case 0xd:
15402 /* le. */
15403 return 7;
15404 }
15405 case NT_integer:
15406 /* only accept eq and ne. */
15407 if (inst.operands[0].imm > 1)
15408 {
15409 first_error (_("invalid condition"));
15410 return 0;
15411 }
15412 return inst.operands[0].imm;
15413 case NT_unsigned:
15414 if (inst.operands[0].imm == 0x2)
15415 return 2;
15416 else if (inst.operands[0].imm == 0x8)
15417 return 3;
15418 else
15419 {
15420 first_error (_("invalid condition"));
15421 return 0;
15422 }
15423 case NT_signed:
15424 switch (inst.operands[0].imm)
15425 {
15426 default:
15427 first_error (_("invalid condition"));
15428 return 0;
15429 case 0xa:
15430 /* ge. */
15431 return 4;
15432 case 0xb:
15433 /* lt. */
15434 return 5;
15435 case 0xc:
15436 /* gt. */
15437 return 6;
15438 case 0xd:
15439 /* le. */
15440 return 7;
15441 }
15442 }
15443 /* Should be unreachable. */
15444 abort ();
15445 }
15446
15447 static void
15448 do_mve_vpt (void)
15449 {
15450 /* We are dealing with a vector predicated block. */
15451 if (inst.operands[0].present)
15452 {
15453 enum neon_shape rs = neon_select_shape (NS_IQQ, NS_IQR, NS_NULL);
15454 struct neon_type_el et
15455 = neon_check_type (3, rs, N_EQK, N_KEY | N_F_MVE | N_I_MVE | N_SU_32,
15456 N_EQK);
15457
15458 unsigned fcond = mve_get_vcmp_vpt_cond (et);
15459
15460 constraint (inst.operands[1].reg > 14, MVE_BAD_QREG);
15461
15462 if (et.type == NT_invtype)
15463 return;
15464
15465 if (et.type == NT_float)
15466 {
15467 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext),
15468 BAD_FPU);
15469 constraint (et.size != 16 && et.size != 32, BAD_EL_TYPE);
15470 inst.instruction |= (et.size == 16) << 28;
15471 inst.instruction |= 0x3 << 20;
15472 }
15473 else
15474 {
15475 constraint (et.size != 8 && et.size != 16 && et.size != 32,
15476 BAD_EL_TYPE);
15477 inst.instruction |= 1 << 28;
15478 inst.instruction |= neon_logbits (et.size) << 20;
15479 }
15480
15481 if (inst.operands[2].isquad)
15482 {
15483 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
15484 inst.instruction |= LOW4 (inst.operands[2].reg);
15485 inst.instruction |= (fcond & 0x2) >> 1;
15486 }
15487 else
15488 {
15489 if (inst.operands[2].reg == REG_SP)
15490 as_tsktsk (MVE_BAD_SP);
15491 inst.instruction |= 1 << 6;
15492 inst.instruction |= (fcond & 0x2) << 4;
15493 inst.instruction |= inst.operands[2].reg;
15494 }
15495 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15496 inst.instruction |= (fcond & 0x4) << 10;
15497 inst.instruction |= (fcond & 0x1) << 7;
15498
15499 }
15500 set_pred_insn_type (VPT_INSN);
15501 now_pred.cc = 0;
15502 now_pred.mask = ((inst.instruction & 0x00400000) >> 19)
15503 | ((inst.instruction & 0xe000) >> 13);
15504 now_pred.warn_deprecated = FALSE;
15505 now_pred.type = VECTOR_PRED;
15506 inst.is_neon = 1;
15507 }
15508
15509 static void
15510 do_mve_vcmp (void)
15511 {
15512 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext), BAD_FPU);
15513 if (!inst.operands[1].isreg || !inst.operands[1].isquad)
15514 first_error (_(reg_expected_msgs[REG_TYPE_MQ]));
15515 if (!inst.operands[2].present)
15516 first_error (_("MVE vector or ARM register expected"));
15517 constraint (inst.operands[1].reg > 14, MVE_BAD_QREG);
15518
15519 /* Deal with 'else' conditional MVE's vcmp, it will be parsed as vcmpe. */
15520 if ((inst.instruction & 0xffffffff) == N_MNEM_vcmpe
15521 && inst.operands[1].isquad)
15522 {
15523 inst.instruction = N_MNEM_vcmp;
15524 inst.cond = 0x10;
15525 }
15526
15527 if (inst.cond > COND_ALWAYS)
15528 inst.pred_insn_type = INSIDE_VPT_INSN;
15529 else
15530 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
15531
15532 enum neon_shape rs = neon_select_shape (NS_IQQ, NS_IQR, NS_NULL);
15533 struct neon_type_el et
15534 = neon_check_type (3, rs, N_EQK, N_KEY | N_F_MVE | N_I_MVE | N_SU_32,
15535 N_EQK);
15536
15537 constraint (rs == NS_IQR && inst.operands[2].reg == REG_PC
15538 && !inst.operands[2].iszr, BAD_PC);
15539
15540 unsigned fcond = mve_get_vcmp_vpt_cond (et);
15541
15542 inst.instruction = 0xee010f00;
15543 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15544 inst.instruction |= (fcond & 0x4) << 10;
15545 inst.instruction |= (fcond & 0x1) << 7;
15546 if (et.type == NT_float)
15547 {
15548 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext),
15549 BAD_FPU);
15550 inst.instruction |= (et.size == 16) << 28;
15551 inst.instruction |= 0x3 << 20;
15552 }
15553 else
15554 {
15555 inst.instruction |= 1 << 28;
15556 inst.instruction |= neon_logbits (et.size) << 20;
15557 }
15558 if (inst.operands[2].isquad)
15559 {
15560 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
15561 inst.instruction |= (fcond & 0x2) >> 1;
15562 inst.instruction |= LOW4 (inst.operands[2].reg);
15563 }
15564 else
15565 {
15566 if (inst.operands[2].reg == REG_SP)
15567 as_tsktsk (MVE_BAD_SP);
15568 inst.instruction |= 1 << 6;
15569 inst.instruction |= (fcond & 0x2) << 4;
15570 inst.instruction |= inst.operands[2].reg;
15571 }
15572
15573 inst.is_neon = 1;
15574 return;
15575 }
15576
15577 static void
15578 do_vfp_nsyn_cmp (void)
15579 {
15580 enum neon_shape rs;
15581 if (!inst.operands[0].isreg)
15582 {
15583 do_mve_vcmp ();
15584 return;
15585 }
15586 else
15587 {
15588 constraint (inst.operands[2].present, BAD_SYNTAX);
15589 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1xd),
15590 BAD_FPU);
15591 }
15592
15593 if (inst.operands[1].isreg)
15594 {
15595 rs = neon_select_shape (NS_HH, NS_FF, NS_DD, NS_NULL);
15596 neon_check_type (2, rs, N_EQK | N_VFP, N_F_ALL | N_KEY | N_VFP);
15597
15598 if (rs == NS_FF || rs == NS_HH)
15599 {
15600 NEON_ENCODE (SINGLE, inst);
15601 do_vfp_sp_monadic ();
15602 }
15603 else
15604 {
15605 NEON_ENCODE (DOUBLE, inst);
15606 do_vfp_dp_rd_rm ();
15607 }
15608 }
15609 else
15610 {
15611 rs = neon_select_shape (NS_HI, NS_FI, NS_DI, NS_NULL);
15612 neon_check_type (2, rs, N_F_ALL | N_KEY | N_VFP, N_EQK);
15613
15614 switch (inst.instruction & 0x0fffffff)
15615 {
15616 case N_MNEM_vcmp:
15617 inst.instruction += N_MNEM_vcmpz - N_MNEM_vcmp;
15618 break;
15619 case N_MNEM_vcmpe:
15620 inst.instruction += N_MNEM_vcmpez - N_MNEM_vcmpe;
15621 break;
15622 default:
15623 abort ();
15624 }
15625
15626 if (rs == NS_FI || rs == NS_HI)
15627 {
15628 NEON_ENCODE (SINGLE, inst);
15629 do_vfp_sp_compare_z ();
15630 }
15631 else
15632 {
15633 NEON_ENCODE (DOUBLE, inst);
15634 do_vfp_dp_rd ();
15635 }
15636 }
15637 do_vfp_cond_or_thumb ();
15638
15639 /* ARMv8.2 fp16 instruction. */
15640 if (rs == NS_HI || rs == NS_HH)
15641 do_scalar_fp16_v82_encode ();
15642 }
15643
15644 static void
15645 nsyn_insert_sp (void)
15646 {
15647 inst.operands[1] = inst.operands[0];
15648 memset (&inst.operands[0], '\0', sizeof (inst.operands[0]));
15649 inst.operands[0].reg = REG_SP;
15650 inst.operands[0].isreg = 1;
15651 inst.operands[0].writeback = 1;
15652 inst.operands[0].present = 1;
15653 }
15654
15655 static void
15656 do_vfp_nsyn_push (void)
15657 {
15658 nsyn_insert_sp ();
15659
15660 constraint (inst.operands[1].imm < 1 || inst.operands[1].imm > 16,
15661 _("register list must contain at least 1 and at most 16 "
15662 "registers"));
15663
15664 if (inst.operands[1].issingle)
15665 do_vfp_nsyn_opcode ("fstmdbs");
15666 else
15667 do_vfp_nsyn_opcode ("fstmdbd");
15668 }
15669
15670 static void
15671 do_vfp_nsyn_pop (void)
15672 {
15673 nsyn_insert_sp ();
15674
15675 constraint (inst.operands[1].imm < 1 || inst.operands[1].imm > 16,
15676 _("register list must contain at least 1 and at most 16 "
15677 "registers"));
15678
15679 if (inst.operands[1].issingle)
15680 do_vfp_nsyn_opcode ("fldmias");
15681 else
15682 do_vfp_nsyn_opcode ("fldmiad");
15683 }
15684
15685 /* Fix up Neon data-processing instructions, ORing in the correct bits for
15686 ARM mode or Thumb mode and moving the encoded bit 24 to bit 28. */
15687
15688 static void
15689 neon_dp_fixup (struct arm_it* insn)
15690 {
15691 unsigned int i = insn->instruction;
15692 insn->is_neon = 1;
15693
15694 if (thumb_mode)
15695 {
15696 /* The U bit is at bit 24 by default. Move to bit 28 in Thumb mode. */
15697 if (i & (1 << 24))
15698 i |= 1 << 28;
15699
15700 i &= ~(1 << 24);
15701
15702 i |= 0xef000000;
15703 }
15704 else
15705 i |= 0xf2000000;
15706
15707 insn->instruction = i;
15708 }
15709
15710 static void
15711 mve_encode_qqr (int size, int fp)
15712 {
15713 if (inst.operands[2].reg == REG_SP)
15714 as_tsktsk (MVE_BAD_SP);
15715 else if (inst.operands[2].reg == REG_PC)
15716 as_tsktsk (MVE_BAD_PC);
15717
15718 if (fp)
15719 {
15720 /* vadd. */
15721 if (((unsigned)inst.instruction) == 0xd00)
15722 inst.instruction = 0xee300f40;
15723 /* vsub. */
15724 else if (((unsigned)inst.instruction) == 0x200d00)
15725 inst.instruction = 0xee301f40;
15726
15727 /* Setting size which is 1 for F16 and 0 for F32. */
15728 inst.instruction |= (size == 16) << 28;
15729 }
15730 else
15731 {
15732 /* vadd. */
15733 if (((unsigned)inst.instruction) == 0x800)
15734 inst.instruction = 0xee010f40;
15735 /* vsub. */
15736 else if (((unsigned)inst.instruction) == 0x1000800)
15737 inst.instruction = 0xee011f40;
15738 /* Setting bits for size. */
15739 inst.instruction |= neon_logbits (size) << 20;
15740 }
15741 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15742 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15743 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15744 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
15745 inst.instruction |= inst.operands[2].reg;
15746 inst.is_neon = 1;
15747 }
15748
15749 static void
15750 mve_encode_rqq (unsigned bit28, unsigned size)
15751 {
15752 inst.instruction |= bit28 << 28;
15753 inst.instruction |= neon_logbits (size) << 20;
15754 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15755 inst.instruction |= inst.operands[0].reg << 12;
15756 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
15757 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
15758 inst.instruction |= LOW4 (inst.operands[2].reg);
15759 inst.is_neon = 1;
15760 }
15761
15762 static void
15763 mve_encode_qqq (int ubit, int size)
15764 {
15765
15766 inst.instruction |= (ubit != 0) << 28;
15767 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15768 inst.instruction |= neon_logbits (size) << 20;
15769 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15770 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15771 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
15772 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
15773 inst.instruction |= LOW4 (inst.operands[2].reg);
15774
15775 inst.is_neon = 1;
15776 }
15777
15778 static void
15779 mve_encode_rq (unsigned bit28, unsigned size)
15780 {
15781 inst.instruction |= bit28 << 28;
15782 inst.instruction |= neon_logbits (size) << 18;
15783 inst.instruction |= inst.operands[0].reg << 12;
15784 inst.instruction |= LOW4 (inst.operands[1].reg);
15785 inst.is_neon = 1;
15786 }
15787
15788 /* Encode insns with bit pattern:
15789
15790 |28/24|23|22 |21 20|19 16|15 12|11 8|7|6|5|4|3 0|
15791 | U |x |D |size | Rn | Rd |x x x x|N|Q|M|x| Rm |
15792
15793 SIZE is passed in bits. -1 means size field isn't changed, in case it has a
15794 different meaning for some instruction. */
15795
15796 static void
15797 neon_three_same (int isquad, int ubit, int size)
15798 {
15799 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15800 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15801 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15802 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
15803 inst.instruction |= LOW4 (inst.operands[2].reg);
15804 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
15805 inst.instruction |= (isquad != 0) << 6;
15806 inst.instruction |= (ubit != 0) << 24;
15807 if (size != -1)
15808 inst.instruction |= neon_logbits (size) << 20;
15809
15810 neon_dp_fixup (&inst);
15811 }
15812
15813 /* Encode instructions of the form:
15814
15815 |28/24|23|22|21 20|19 18|17 16|15 12|11 7|6|5|4|3 0|
15816 | U |x |D |x x |size |x x | Rd |x x x x x|Q|M|x| Rm |
15817
15818 Don't write size if SIZE == -1. */
15819
15820 static void
15821 neon_two_same (int qbit, int ubit, int size)
15822 {
15823 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15824 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15825 inst.instruction |= LOW4 (inst.operands[1].reg);
15826 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
15827 inst.instruction |= (qbit != 0) << 6;
15828 inst.instruction |= (ubit != 0) << 24;
15829
15830 if (size != -1)
15831 inst.instruction |= neon_logbits (size) << 18;
15832
15833 neon_dp_fixup (&inst);
15834 }
15835
15836 /* Neon instruction encoders, in approximate order of appearance. */
15837
15838 static void
15839 do_neon_dyadic_i_su (void)
15840 {
15841 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
15842 struct neon_type_el et = neon_check_type (3, rs,
15843 N_EQK, N_EQK, N_SU_32 | N_KEY);
15844 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
15845 }
15846
15847 static void
15848 do_neon_dyadic_i64_su (void)
15849 {
15850 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
15851 struct neon_type_el et = neon_check_type (3, rs,
15852 N_EQK, N_EQK, N_SU_ALL | N_KEY);
15853 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
15854 }
15855
15856 static void
15857 neon_imm_shift (int write_ubit, int uval, int isquad, struct neon_type_el et,
15858 unsigned immbits)
15859 {
15860 unsigned size = et.size >> 3;
15861 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15862 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15863 inst.instruction |= LOW4 (inst.operands[1].reg);
15864 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
15865 inst.instruction |= (isquad != 0) << 6;
15866 inst.instruction |= immbits << 16;
15867 inst.instruction |= (size >> 3) << 7;
15868 inst.instruction |= (size & 0x7) << 19;
15869 if (write_ubit)
15870 inst.instruction |= (uval != 0) << 24;
15871
15872 neon_dp_fixup (&inst);
15873 }
15874
15875 static void
15876 do_neon_shl_imm (void)
15877 {
15878 if (!inst.operands[2].isreg)
15879 {
15880 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
15881 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_KEY | N_I_ALL);
15882 int imm = inst.operands[2].imm;
15883
15884 constraint (imm < 0 || (unsigned)imm >= et.size,
15885 _("immediate out of range for shift"));
15886 NEON_ENCODE (IMMED, inst);
15887 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
15888 }
15889 else
15890 {
15891 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
15892 struct neon_type_el et = neon_check_type (3, rs,
15893 N_EQK, N_SU_ALL | N_KEY, N_EQK | N_SGN);
15894 unsigned int tmp;
15895
15896 /* VSHL/VQSHL 3-register variants have syntax such as:
15897 vshl.xx Dd, Dm, Dn
15898 whereas other 3-register operations encoded by neon_three_same have
15899 syntax like:
15900 vadd.xx Dd, Dn, Dm
15901 (i.e. with Dn & Dm reversed). Swap operands[1].reg and operands[2].reg
15902 here. */
15903 tmp = inst.operands[2].reg;
15904 inst.operands[2].reg = inst.operands[1].reg;
15905 inst.operands[1].reg = tmp;
15906 NEON_ENCODE (INTEGER, inst);
15907 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
15908 }
15909 }
15910
15911 static void
15912 do_neon_qshl_imm (void)
15913 {
15914 if (!inst.operands[2].isreg)
15915 {
15916 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
15917 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_ALL | N_KEY);
15918 int imm = inst.operands[2].imm;
15919
15920 constraint (imm < 0 || (unsigned)imm >= et.size,
15921 _("immediate out of range for shift"));
15922 NEON_ENCODE (IMMED, inst);
15923 neon_imm_shift (TRUE, et.type == NT_unsigned, neon_quad (rs), et, imm);
15924 }
15925 else
15926 {
15927 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
15928 struct neon_type_el et = neon_check_type (3, rs,
15929 N_EQK, N_SU_ALL | N_KEY, N_EQK | N_SGN);
15930 unsigned int tmp;
15931
15932 /* See note in do_neon_shl_imm. */
15933 tmp = inst.operands[2].reg;
15934 inst.operands[2].reg = inst.operands[1].reg;
15935 inst.operands[1].reg = tmp;
15936 NEON_ENCODE (INTEGER, inst);
15937 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
15938 }
15939 }
15940
15941 static void
15942 do_neon_rshl (void)
15943 {
15944 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
15945 struct neon_type_el et = neon_check_type (3, rs,
15946 N_EQK, N_EQK, N_SU_ALL | N_KEY);
15947 unsigned int tmp;
15948
15949 tmp = inst.operands[2].reg;
15950 inst.operands[2].reg = inst.operands[1].reg;
15951 inst.operands[1].reg = tmp;
15952 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
15953 }
15954
15955 static int
15956 neon_cmode_for_logic_imm (unsigned immediate, unsigned *immbits, int size)
15957 {
15958 /* Handle .I8 pseudo-instructions. */
15959 if (size == 8)
15960 {
15961 /* Unfortunately, this will make everything apart from zero out-of-range.
15962 FIXME is this the intended semantics? There doesn't seem much point in
15963 accepting .I8 if so. */
15964 immediate |= immediate << 8;
15965 size = 16;
15966 }
15967
15968 if (size >= 32)
15969 {
15970 if (immediate == (immediate & 0x000000ff))
15971 {
15972 *immbits = immediate;
15973 return 0x1;
15974 }
15975 else if (immediate == (immediate & 0x0000ff00))
15976 {
15977 *immbits = immediate >> 8;
15978 return 0x3;
15979 }
15980 else if (immediate == (immediate & 0x00ff0000))
15981 {
15982 *immbits = immediate >> 16;
15983 return 0x5;
15984 }
15985 else if (immediate == (immediate & 0xff000000))
15986 {
15987 *immbits = immediate >> 24;
15988 return 0x7;
15989 }
15990 if ((immediate & 0xffff) != (immediate >> 16))
15991 goto bad_immediate;
15992 immediate &= 0xffff;
15993 }
15994
15995 if (immediate == (immediate & 0x000000ff))
15996 {
15997 *immbits = immediate;
15998 return 0x9;
15999 }
16000 else if (immediate == (immediate & 0x0000ff00))
16001 {
16002 *immbits = immediate >> 8;
16003 return 0xb;
16004 }
16005
16006 bad_immediate:
16007 first_error (_("immediate value out of range"));
16008 return FAIL;
16009 }
16010
16011 enum vfp_or_neon_is_neon_bits
16012 {
16013 NEON_CHECK_CC = 1,
16014 NEON_CHECK_ARCH = 2,
16015 NEON_CHECK_ARCH8 = 4
16016 };
16017
16018 /* Call this function if an instruction which may have belonged to the VFP or
16019 Neon instruction sets, but turned out to be a Neon instruction (due to the
16020 operand types involved, etc.). We have to check and/or fix-up a couple of
16021 things:
16022
16023 - Make sure the user hasn't attempted to make a Neon instruction
16024 conditional.
16025 - Alter the value in the condition code field if necessary.
16026 - Make sure that the arch supports Neon instructions.
16027
16028 Which of these operations take place depends on bits from enum
16029 vfp_or_neon_is_neon_bits.
16030
16031 WARNING: This function has side effects! If NEON_CHECK_CC is used and the
16032 current instruction's condition is COND_ALWAYS, the condition field is
16033 changed to inst.uncond_value. This is necessary because instructions shared
16034 between VFP and Neon may be conditional for the VFP variants only, and the
16035 unconditional Neon version must have, e.g., 0xF in the condition field. */
16036
16037 static int
16038 vfp_or_neon_is_neon (unsigned check)
16039 {
16040 /* Conditions are always legal in Thumb mode (IT blocks). */
16041 if (!thumb_mode && (check & NEON_CHECK_CC))
16042 {
16043 if (inst.cond != COND_ALWAYS)
16044 {
16045 first_error (_(BAD_COND));
16046 return FAIL;
16047 }
16048 if (inst.uncond_value != -1)
16049 inst.instruction |= inst.uncond_value << 28;
16050 }
16051
16052
16053 if (((check & NEON_CHECK_ARCH) && !mark_feature_used (&fpu_neon_ext_v1))
16054 || ((check & NEON_CHECK_ARCH8)
16055 && !mark_feature_used (&fpu_neon_ext_armv8)))
16056 {
16057 first_error (_(BAD_FPU));
16058 return FAIL;
16059 }
16060
16061 return SUCCESS;
16062 }
16063
16064 static int
16065 check_simd_pred_availability (int fp, unsigned check)
16066 {
16067 if (inst.cond > COND_ALWAYS)
16068 {
16069 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
16070 {
16071 inst.error = BAD_FPU;
16072 return 1;
16073 }
16074 inst.pred_insn_type = INSIDE_VPT_INSN;
16075 }
16076 else if (inst.cond < COND_ALWAYS)
16077 {
16078 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
16079 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
16080 else if (vfp_or_neon_is_neon (check) == FAIL)
16081 return 2;
16082 }
16083 else
16084 {
16085 if (!ARM_CPU_HAS_FEATURE (cpu_variant, fp ? mve_fp_ext : mve_ext)
16086 && vfp_or_neon_is_neon (check) == FAIL)
16087 return 3;
16088
16089 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
16090 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
16091 }
16092 return 0;
16093 }
16094
16095 static void
16096 do_neon_logic (void)
16097 {
16098 if (inst.operands[2].present && inst.operands[2].isreg)
16099 {
16100 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
16101 if (rs == NS_QQQ
16102 && check_simd_pred_availability (0, NEON_CHECK_ARCH | NEON_CHECK_CC)
16103 == FAIL)
16104 return;
16105 else if (rs != NS_QQQ
16106 && !ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1))
16107 first_error (BAD_FPU);
16108
16109 neon_check_type (3, rs, N_IGNORE_TYPE);
16110 /* U bit and size field were set as part of the bitmask. */
16111 NEON_ENCODE (INTEGER, inst);
16112 neon_three_same (neon_quad (rs), 0, -1);
16113 }
16114 else
16115 {
16116 const int three_ops_form = (inst.operands[2].present
16117 && !inst.operands[2].isreg);
16118 const int immoperand = (three_ops_form ? 2 : 1);
16119 enum neon_shape rs = (three_ops_form
16120 ? neon_select_shape (NS_DDI, NS_QQI, NS_NULL)
16121 : neon_select_shape (NS_DI, NS_QI, NS_NULL));
16122 /* Because neon_select_shape makes the second operand a copy of the first
16123 if the second operand is not present. */
16124 if (rs == NS_QQI
16125 && check_simd_pred_availability (0, NEON_CHECK_ARCH | NEON_CHECK_CC)
16126 == FAIL)
16127 return;
16128 else if (rs != NS_QQI
16129 && !ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1))
16130 first_error (BAD_FPU);
16131
16132 struct neon_type_el et;
16133 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
16134 et = neon_check_type (2, rs, N_I32 | N_I16 | N_KEY, N_EQK);
16135 else
16136 et = neon_check_type (2, rs, N_I8 | N_I16 | N_I32 | N_I64 | N_F32
16137 | N_KEY, N_EQK);
16138
16139 if (et.type == NT_invtype)
16140 return;
16141 enum neon_opc opcode = (enum neon_opc) inst.instruction & 0x0fffffff;
16142 unsigned immbits;
16143 int cmode;
16144
16145
16146 if (three_ops_form)
16147 constraint (inst.operands[0].reg != inst.operands[1].reg,
16148 _("first and second operands shall be the same register"));
16149
16150 NEON_ENCODE (IMMED, inst);
16151
16152 immbits = inst.operands[immoperand].imm;
16153 if (et.size == 64)
16154 {
16155 /* .i64 is a pseudo-op, so the immediate must be a repeating
16156 pattern. */
16157 if (immbits != (inst.operands[immoperand].regisimm ?
16158 inst.operands[immoperand].reg : 0))
16159 {
16160 /* Set immbits to an invalid constant. */
16161 immbits = 0xdeadbeef;
16162 }
16163 }
16164
16165 switch (opcode)
16166 {
16167 case N_MNEM_vbic:
16168 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
16169 break;
16170
16171 case N_MNEM_vorr:
16172 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
16173 break;
16174
16175 case N_MNEM_vand:
16176 /* Pseudo-instruction for VBIC. */
16177 neon_invert_size (&immbits, 0, et.size);
16178 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
16179 break;
16180
16181 case N_MNEM_vorn:
16182 /* Pseudo-instruction for VORR. */
16183 neon_invert_size (&immbits, 0, et.size);
16184 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
16185 break;
16186
16187 default:
16188 abort ();
16189 }
16190
16191 if (cmode == FAIL)
16192 return;
16193
16194 inst.instruction |= neon_quad (rs) << 6;
16195 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16196 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16197 inst.instruction |= cmode << 8;
16198 neon_write_immbits (immbits);
16199
16200 neon_dp_fixup (&inst);
16201 }
16202 }
16203
16204 static void
16205 do_neon_bitfield (void)
16206 {
16207 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
16208 neon_check_type (3, rs, N_IGNORE_TYPE);
16209 neon_three_same (neon_quad (rs), 0, -1);
16210 }
16211
16212 static void
16213 neon_dyadic_misc (enum neon_el_type ubit_meaning, unsigned types,
16214 unsigned destbits)
16215 {
16216 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_QQR, NS_NULL);
16217 struct neon_type_el et = neon_check_type (3, rs, N_EQK | destbits, N_EQK,
16218 types | N_KEY);
16219 if (et.type == NT_float)
16220 {
16221 NEON_ENCODE (FLOAT, inst);
16222 if (rs == NS_QQR)
16223 mve_encode_qqr (et.size, 1);
16224 else
16225 neon_three_same (neon_quad (rs), 0, et.size == 16 ? (int) et.size : -1);
16226 }
16227 else
16228 {
16229 NEON_ENCODE (INTEGER, inst);
16230 if (rs == NS_QQR)
16231 mve_encode_qqr (et.size, 0);
16232 else
16233 neon_three_same (neon_quad (rs), et.type == ubit_meaning, et.size);
16234 }
16235 }
16236
16237
16238 static void
16239 do_neon_dyadic_if_su_d (void)
16240 {
16241 /* This version only allow D registers, but that constraint is enforced during
16242 operand parsing so we don't need to do anything extra here. */
16243 neon_dyadic_misc (NT_unsigned, N_SUF_32, 0);
16244 }
16245
16246 static void
16247 do_neon_dyadic_if_i_d (void)
16248 {
16249 /* The "untyped" case can't happen. Do this to stop the "U" bit being
16250 affected if we specify unsigned args. */
16251 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
16252 }
16253
16254 static void
16255 do_mve_vstr_vldr_QI (int size, int elsize, int load)
16256 {
16257 constraint (size < 32, BAD_ADDR_MODE);
16258 constraint (size != elsize, BAD_EL_TYPE);
16259 constraint (inst.operands[1].immisreg, BAD_ADDR_MODE);
16260 constraint (!inst.operands[1].preind, BAD_ADDR_MODE);
16261 constraint (load && inst.operands[0].reg == inst.operands[1].reg,
16262 _("destination register and offset register may not be the"
16263 " same"));
16264
16265 int imm = inst.relocs[0].exp.X_add_number;
16266 int add = 1;
16267 if (imm < 0)
16268 {
16269 add = 0;
16270 imm = -imm;
16271 }
16272 constraint ((imm % (size / 8) != 0)
16273 || imm > (0x7f << neon_logbits (size)),
16274 (size == 32) ? _("immediate must be a multiple of 4 in the"
16275 " range of +/-[0,508]")
16276 : _("immediate must be a multiple of 8 in the"
16277 " range of +/-[0,1016]"));
16278 inst.instruction |= 0x11 << 24;
16279 inst.instruction |= add << 23;
16280 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16281 inst.instruction |= inst.operands[1].writeback << 21;
16282 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
16283 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16284 inst.instruction |= 1 << 12;
16285 inst.instruction |= (size == 64) << 8;
16286 inst.instruction &= 0xffffff00;
16287 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
16288 inst.instruction |= imm >> neon_logbits (size);
16289 }
16290
16291 static void
16292 do_mve_vstr_vldr_RQ (int size, int elsize, int load)
16293 {
16294 unsigned os = inst.operands[1].imm >> 5;
16295 constraint (os != 0 && size == 8,
16296 _("can not shift offsets when accessing less than half-word"));
16297 constraint (os && os != neon_logbits (size),
16298 _("shift immediate must be 1, 2 or 3 for half-word, word"
16299 " or double-word accesses respectively"));
16300 if (inst.operands[1].reg == REG_PC)
16301 as_tsktsk (MVE_BAD_PC);
16302
16303 switch (size)
16304 {
16305 case 8:
16306 constraint (elsize >= 64, BAD_EL_TYPE);
16307 break;
16308 case 16:
16309 constraint (elsize < 16 || elsize >= 64, BAD_EL_TYPE);
16310 break;
16311 case 32:
16312 case 64:
16313 constraint (elsize != size, BAD_EL_TYPE);
16314 break;
16315 default:
16316 break;
16317 }
16318 constraint (inst.operands[1].writeback || !inst.operands[1].preind,
16319 BAD_ADDR_MODE);
16320 if (load)
16321 {
16322 constraint (inst.operands[0].reg == (inst.operands[1].imm & 0x1f),
16323 _("destination register and offset register may not be"
16324 " the same"));
16325 constraint (size == elsize && inst.vectype.el[0].type != NT_unsigned,
16326 BAD_EL_TYPE);
16327 constraint (inst.vectype.el[0].type != NT_unsigned
16328 && inst.vectype.el[0].type != NT_signed, BAD_EL_TYPE);
16329 inst.instruction |= (inst.vectype.el[0].type == NT_unsigned) << 28;
16330 }
16331 else
16332 {
16333 constraint (inst.vectype.el[0].type != NT_untyped, BAD_EL_TYPE);
16334 }
16335
16336 inst.instruction |= 1 << 23;
16337 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16338 inst.instruction |= inst.operands[1].reg << 16;
16339 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16340 inst.instruction |= neon_logbits (elsize) << 7;
16341 inst.instruction |= HI1 (inst.operands[1].imm) << 5;
16342 inst.instruction |= LOW4 (inst.operands[1].imm);
16343 inst.instruction |= !!os;
16344 }
16345
16346 static void
16347 do_mve_vstr_vldr_RI (int size, int elsize, int load)
16348 {
16349 enum neon_el_type type = inst.vectype.el[0].type;
16350
16351 constraint (size >= 64, BAD_ADDR_MODE);
16352 switch (size)
16353 {
16354 case 16:
16355 constraint (elsize < 16 || elsize >= 64, BAD_EL_TYPE);
16356 break;
16357 case 32:
16358 constraint (elsize != size, BAD_EL_TYPE);
16359 break;
16360 default:
16361 break;
16362 }
16363 if (load)
16364 {
16365 constraint (elsize != size && type != NT_unsigned
16366 && type != NT_signed, BAD_EL_TYPE);
16367 }
16368 else
16369 {
16370 constraint (elsize != size && type != NT_untyped, BAD_EL_TYPE);
16371 }
16372
16373 int imm = inst.relocs[0].exp.X_add_number;
16374 int add = 1;
16375 if (imm < 0)
16376 {
16377 add = 0;
16378 imm = -imm;
16379 }
16380
16381 if ((imm % (size / 8) != 0) || imm > (0x7f << neon_logbits (size)))
16382 {
16383 switch (size)
16384 {
16385 case 8:
16386 constraint (1, _("immediate must be in the range of +/-[0,127]"));
16387 break;
16388 case 16:
16389 constraint (1, _("immediate must be a multiple of 2 in the"
16390 " range of +/-[0,254]"));
16391 break;
16392 case 32:
16393 constraint (1, _("immediate must be a multiple of 4 in the"
16394 " range of +/-[0,508]"));
16395 break;
16396 }
16397 }
16398
16399 if (size != elsize)
16400 {
16401 constraint (inst.operands[1].reg > 7, BAD_HIREG);
16402 constraint (inst.operands[0].reg > 14,
16403 _("MVE vector register in the range [Q0..Q7] expected"));
16404 inst.instruction |= (load && type == NT_unsigned) << 28;
16405 inst.instruction |= (size == 16) << 19;
16406 inst.instruction |= neon_logbits (elsize) << 7;
16407 }
16408 else
16409 {
16410 if (inst.operands[1].reg == REG_PC)
16411 as_tsktsk (MVE_BAD_PC);
16412 else if (inst.operands[1].reg == REG_SP && inst.operands[1].writeback)
16413 as_tsktsk (MVE_BAD_SP);
16414 inst.instruction |= 1 << 12;
16415 inst.instruction |= neon_logbits (size) << 7;
16416 }
16417 inst.instruction |= inst.operands[1].preind << 24;
16418 inst.instruction |= add << 23;
16419 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16420 inst.instruction |= inst.operands[1].writeback << 21;
16421 inst.instruction |= inst.operands[1].reg << 16;
16422 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16423 inst.instruction &= 0xffffff80;
16424 inst.instruction |= imm >> neon_logbits (size);
16425
16426 }
16427
16428 static void
16429 do_mve_vstr_vldr (void)
16430 {
16431 unsigned size;
16432 int load = 0;
16433
16434 if (inst.cond > COND_ALWAYS)
16435 inst.pred_insn_type = INSIDE_VPT_INSN;
16436 else
16437 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
16438
16439 switch (inst.instruction)
16440 {
16441 default:
16442 gas_assert (0);
16443 break;
16444 case M_MNEM_vldrb:
16445 load = 1;
16446 /* fall through. */
16447 case M_MNEM_vstrb:
16448 size = 8;
16449 break;
16450 case M_MNEM_vldrh:
16451 load = 1;
16452 /* fall through. */
16453 case M_MNEM_vstrh:
16454 size = 16;
16455 break;
16456 case M_MNEM_vldrw:
16457 load = 1;
16458 /* fall through. */
16459 case M_MNEM_vstrw:
16460 size = 32;
16461 break;
16462 case M_MNEM_vldrd:
16463 load = 1;
16464 /* fall through. */
16465 case M_MNEM_vstrd:
16466 size = 64;
16467 break;
16468 }
16469 unsigned elsize = inst.vectype.el[0].size;
16470
16471 if (inst.operands[1].isquad)
16472 {
16473 /* We are dealing with [Q, imm]{!} cases. */
16474 do_mve_vstr_vldr_QI (size, elsize, load);
16475 }
16476 else
16477 {
16478 if (inst.operands[1].immisreg == 2)
16479 {
16480 /* We are dealing with [R, Q, {UXTW #os}] cases. */
16481 do_mve_vstr_vldr_RQ (size, elsize, load);
16482 }
16483 else if (!inst.operands[1].immisreg)
16484 {
16485 /* We are dealing with [R, Imm]{!}/[R], Imm cases. */
16486 do_mve_vstr_vldr_RI (size, elsize, load);
16487 }
16488 else
16489 constraint (1, BAD_ADDR_MODE);
16490 }
16491
16492 inst.is_neon = 1;
16493 }
16494
16495 static void
16496 do_mve_vst_vld (void)
16497 {
16498 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
16499 return;
16500
16501 constraint (!inst.operands[1].preind || inst.relocs[0].exp.X_add_symbol != 0
16502 || inst.relocs[0].exp.X_add_number != 0
16503 || inst.operands[1].immisreg != 0,
16504 BAD_ADDR_MODE);
16505 constraint (inst.vectype.el[0].size > 32, BAD_EL_TYPE);
16506 if (inst.operands[1].reg == REG_PC)
16507 as_tsktsk (MVE_BAD_PC);
16508 else if (inst.operands[1].reg == REG_SP && inst.operands[1].writeback)
16509 as_tsktsk (MVE_BAD_SP);
16510
16511
16512 /* These instructions are one of the "exceptions" mentioned in
16513 handle_pred_state. They are MVE instructions that are not VPT compatible
16514 and do not accept a VPT code, thus appending such a code is a syntax
16515 error. */
16516 if (inst.cond > COND_ALWAYS)
16517 first_error (BAD_SYNTAX);
16518 /* If we append a scalar condition code we can set this to
16519 MVE_OUTSIDE_PRED_INSN as it will also lead to a syntax error. */
16520 else if (inst.cond < COND_ALWAYS)
16521 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
16522 else
16523 inst.pred_insn_type = MVE_UNPREDICABLE_INSN;
16524
16525 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16526 inst.instruction |= inst.operands[1].writeback << 21;
16527 inst.instruction |= inst.operands[1].reg << 16;
16528 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16529 inst.instruction |= neon_logbits (inst.vectype.el[0].size) << 7;
16530 inst.is_neon = 1;
16531 }
16532
16533 static void
16534 do_mve_vaddlv (void)
16535 {
16536 enum neon_shape rs = neon_select_shape (NS_RRQ, NS_NULL);
16537 struct neon_type_el et
16538 = neon_check_type (3, rs, N_EQK, N_EQK, N_S32 | N_U32 | N_KEY);
16539
16540 if (et.type == NT_invtype)
16541 first_error (BAD_EL_TYPE);
16542
16543 if (inst.cond > COND_ALWAYS)
16544 inst.pred_insn_type = INSIDE_VPT_INSN;
16545 else
16546 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
16547
16548 constraint (inst.operands[1].reg > 14, MVE_BAD_QREG);
16549
16550 inst.instruction |= (et.type == NT_unsigned) << 28;
16551 inst.instruction |= inst.operands[1].reg << 19;
16552 inst.instruction |= inst.operands[0].reg << 12;
16553 inst.instruction |= inst.operands[2].reg;
16554 inst.is_neon = 1;
16555 }
16556
16557 static void
16558 do_neon_dyadic_if_su (void)
16559 {
16560 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_QQR, NS_NULL);
16561 struct neon_type_el et = neon_check_type (3, rs, N_EQK , N_EQK,
16562 N_SUF_32 | N_KEY);
16563
16564 if (check_simd_pred_availability (et.type == NT_float,
16565 NEON_CHECK_ARCH | NEON_CHECK_CC))
16566 return;
16567
16568 neon_dyadic_misc (NT_unsigned, N_SUF_32, 0);
16569 }
16570
16571 static void
16572 do_neon_addsub_if_i (void)
16573 {
16574 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1xd)
16575 && try_vfp_nsyn (3, do_vfp_nsyn_add_sub) == SUCCESS)
16576 return;
16577
16578 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_QQR, NS_NULL);
16579 struct neon_type_el et = neon_check_type (3, rs, N_EQK,
16580 N_EQK, N_IF_32 | N_I64 | N_KEY);
16581
16582 constraint (rs == NS_QQR && et.size == 64, BAD_FPU);
16583 /* If we are parsing Q registers and the element types match MVE, which NEON
16584 also supports, then we must check whether this is an instruction that can
16585 be used by both MVE/NEON. This distinction can be made based on whether
16586 they are predicated or not. */
16587 if ((rs == NS_QQQ || rs == NS_QQR) && et.size != 64)
16588 {
16589 if (check_simd_pred_availability (et.type == NT_float,
16590 NEON_CHECK_ARCH | NEON_CHECK_CC))
16591 return;
16592 }
16593 else
16594 {
16595 /* If they are either in a D register or are using an unsupported. */
16596 if (rs != NS_QQR
16597 && vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
16598 return;
16599 }
16600
16601 /* The "untyped" case can't happen. Do this to stop the "U" bit being
16602 affected if we specify unsigned args. */
16603 neon_dyadic_misc (NT_untyped, N_IF_32 | N_I64, 0);
16604 }
16605
16606 /* Swaps operands 1 and 2. If operand 1 (optional arg) was omitted, we want the
16607 result to be:
16608 V<op> A,B (A is operand 0, B is operand 2)
16609 to mean:
16610 V<op> A,B,A
16611 not:
16612 V<op> A,B,B
16613 so handle that case specially. */
16614
16615 static void
16616 neon_exchange_operands (void)
16617 {
16618 if (inst.operands[1].present)
16619 {
16620 void *scratch = xmalloc (sizeof (inst.operands[0]));
16621
16622 /* Swap operands[1] and operands[2]. */
16623 memcpy (scratch, &inst.operands[1], sizeof (inst.operands[0]));
16624 inst.operands[1] = inst.operands[2];
16625 memcpy (&inst.operands[2], scratch, sizeof (inst.operands[0]));
16626 free (scratch);
16627 }
16628 else
16629 {
16630 inst.operands[1] = inst.operands[2];
16631 inst.operands[2] = inst.operands[0];
16632 }
16633 }
16634
16635 static void
16636 neon_compare (unsigned regtypes, unsigned immtypes, int invert)
16637 {
16638 if (inst.operands[2].isreg)
16639 {
16640 if (invert)
16641 neon_exchange_operands ();
16642 neon_dyadic_misc (NT_unsigned, regtypes, N_SIZ);
16643 }
16644 else
16645 {
16646 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
16647 struct neon_type_el et = neon_check_type (2, rs,
16648 N_EQK | N_SIZ, immtypes | N_KEY);
16649
16650 NEON_ENCODE (IMMED, inst);
16651 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16652 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16653 inst.instruction |= LOW4 (inst.operands[1].reg);
16654 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
16655 inst.instruction |= neon_quad (rs) << 6;
16656 inst.instruction |= (et.type == NT_float) << 10;
16657 inst.instruction |= neon_logbits (et.size) << 18;
16658
16659 neon_dp_fixup (&inst);
16660 }
16661 }
16662
16663 static void
16664 do_neon_cmp (void)
16665 {
16666 neon_compare (N_SUF_32, N_S_32 | N_F_16_32, FALSE);
16667 }
16668
16669 static void
16670 do_neon_cmp_inv (void)
16671 {
16672 neon_compare (N_SUF_32, N_S_32 | N_F_16_32, TRUE);
16673 }
16674
16675 static void
16676 do_neon_ceq (void)
16677 {
16678 neon_compare (N_IF_32, N_IF_32, FALSE);
16679 }
16680
16681 /* For multiply instructions, we have the possibility of 16-bit or 32-bit
16682 scalars, which are encoded in 5 bits, M : Rm.
16683 For 16-bit scalars, the register is encoded in Rm[2:0] and the index in
16684 M:Rm[3], and for 32-bit scalars, the register is encoded in Rm[3:0] and the
16685 index in M.
16686
16687 Dot Product instructions are similar to multiply instructions except elsize
16688 should always be 32.
16689
16690 This function translates SCALAR, which is GAS's internal encoding of indexed
16691 scalar register, to raw encoding. There is also register and index range
16692 check based on ELSIZE. */
16693
16694 static unsigned
16695 neon_scalar_for_mul (unsigned scalar, unsigned elsize)
16696 {
16697 unsigned regno = NEON_SCALAR_REG (scalar);
16698 unsigned elno = NEON_SCALAR_INDEX (scalar);
16699
16700 switch (elsize)
16701 {
16702 case 16:
16703 if (regno > 7 || elno > 3)
16704 goto bad_scalar;
16705 return regno | (elno << 3);
16706
16707 case 32:
16708 if (regno > 15 || elno > 1)
16709 goto bad_scalar;
16710 return regno | (elno << 4);
16711
16712 default:
16713 bad_scalar:
16714 first_error (_("scalar out of range for multiply instruction"));
16715 }
16716
16717 return 0;
16718 }
16719
16720 /* Encode multiply / multiply-accumulate scalar instructions. */
16721
16722 static void
16723 neon_mul_mac (struct neon_type_el et, int ubit)
16724 {
16725 unsigned scalar;
16726
16727 /* Give a more helpful error message if we have an invalid type. */
16728 if (et.type == NT_invtype)
16729 return;
16730
16731 scalar = neon_scalar_for_mul (inst.operands[2].reg, et.size);
16732 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16733 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16734 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
16735 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
16736 inst.instruction |= LOW4 (scalar);
16737 inst.instruction |= HI1 (scalar) << 5;
16738 inst.instruction |= (et.type == NT_float) << 8;
16739 inst.instruction |= neon_logbits (et.size) << 20;
16740 inst.instruction |= (ubit != 0) << 24;
16741
16742 neon_dp_fixup (&inst);
16743 }
16744
16745 static void
16746 do_neon_mac_maybe_scalar (void)
16747 {
16748 if (try_vfp_nsyn (3, do_vfp_nsyn_mla_mls) == SUCCESS)
16749 return;
16750
16751 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
16752 return;
16753
16754 if (inst.operands[2].isscalar)
16755 {
16756 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
16757 struct neon_type_el et = neon_check_type (3, rs,
16758 N_EQK, N_EQK, N_I16 | N_I32 | N_F_16_32 | N_KEY);
16759 NEON_ENCODE (SCALAR, inst);
16760 neon_mul_mac (et, neon_quad (rs));
16761 }
16762 else
16763 {
16764 /* The "untyped" case can't happen. Do this to stop the "U" bit being
16765 affected if we specify unsigned args. */
16766 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
16767 }
16768 }
16769
16770 static void
16771 do_neon_fmac (void)
16772 {
16773 if (try_vfp_nsyn (3, do_vfp_nsyn_fma_fms) == SUCCESS)
16774 return;
16775
16776 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
16777 return;
16778
16779 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
16780 }
16781
16782 static void
16783 do_neon_tst (void)
16784 {
16785 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
16786 struct neon_type_el et = neon_check_type (3, rs,
16787 N_EQK, N_EQK, N_8 | N_16 | N_32 | N_KEY);
16788 neon_three_same (neon_quad (rs), 0, et.size);
16789 }
16790
16791 /* VMUL with 3 registers allows the P8 type. The scalar version supports the
16792 same types as the MAC equivalents. The polynomial type for this instruction
16793 is encoded the same as the integer type. */
16794
16795 static void
16796 do_neon_mul (void)
16797 {
16798 if (try_vfp_nsyn (3, do_vfp_nsyn_mul) == SUCCESS)
16799 return;
16800
16801 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
16802 return;
16803
16804 if (inst.operands[2].isscalar)
16805 do_neon_mac_maybe_scalar ();
16806 else
16807 neon_dyadic_misc (NT_poly, N_I8 | N_I16 | N_I32 | N_F16 | N_F32 | N_P8, 0);
16808 }
16809
16810 static void
16811 do_neon_qdmulh (void)
16812 {
16813 if (inst.operands[2].isscalar)
16814 {
16815 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
16816 struct neon_type_el et = neon_check_type (3, rs,
16817 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
16818 NEON_ENCODE (SCALAR, inst);
16819 neon_mul_mac (et, neon_quad (rs));
16820 }
16821 else
16822 {
16823 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
16824 struct neon_type_el et = neon_check_type (3, rs,
16825 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
16826 NEON_ENCODE (INTEGER, inst);
16827 /* The U bit (rounding) comes from bit mask. */
16828 neon_three_same (neon_quad (rs), 0, et.size);
16829 }
16830 }
16831
16832 static void
16833 do_mve_vaddv (void)
16834 {
16835 enum neon_shape rs = neon_select_shape (NS_RQ, NS_NULL);
16836 struct neon_type_el et
16837 = neon_check_type (2, rs, N_EQK, N_SU_32 | N_KEY);
16838
16839 if (et.type == NT_invtype)
16840 first_error (BAD_EL_TYPE);
16841
16842 if (inst.cond > COND_ALWAYS)
16843 inst.pred_insn_type = INSIDE_VPT_INSN;
16844 else
16845 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
16846
16847 constraint (inst.operands[1].reg > 14, MVE_BAD_QREG);
16848
16849 mve_encode_rq (et.type == NT_unsigned, et.size);
16850 }
16851
16852 static void
16853 do_mve_vadc (void)
16854 {
16855 enum neon_shape rs = neon_select_shape (NS_QQQ, NS_NULL);
16856 struct neon_type_el et
16857 = neon_check_type (3, rs, N_KEY | N_I32, N_EQK, N_EQK);
16858
16859 if (et.type == NT_invtype)
16860 first_error (BAD_EL_TYPE);
16861
16862 if (inst.cond > COND_ALWAYS)
16863 inst.pred_insn_type = INSIDE_VPT_INSN;
16864 else
16865 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
16866
16867 mve_encode_qqq (0, 64);
16868 }
16869
16870 static void
16871 do_mve_vbrsr (void)
16872 {
16873 enum neon_shape rs = neon_select_shape (NS_QQR, NS_NULL);
16874 struct neon_type_el et
16875 = neon_check_type (3, rs, N_EQK, N_EQK, N_8 | N_16 | N_32 | N_KEY);
16876
16877 if (inst.cond > COND_ALWAYS)
16878 inst.pred_insn_type = INSIDE_VPT_INSN;
16879 else
16880 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
16881
16882 mve_encode_qqr (et.size, 0);
16883 }
16884
16885 static void
16886 do_mve_vsbc (void)
16887 {
16888 neon_check_type (3, NS_QQQ, N_EQK, N_EQK, N_I32 | N_KEY);
16889
16890 if (inst.cond > COND_ALWAYS)
16891 inst.pred_insn_type = INSIDE_VPT_INSN;
16892 else
16893 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
16894
16895 mve_encode_qqq (1, 64);
16896 }
16897
16898 static void
16899 do_mve_vmull (void)
16900 {
16901
16902 enum neon_shape rs = neon_select_shape (NS_HHH, NS_FFF, NS_DDD, NS_DDS,
16903 NS_QQS, NS_QQQ, NS_QQR, NS_NULL);
16904 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)
16905 && inst.cond == COND_ALWAYS
16906 && ((unsigned)inst.instruction) == M_MNEM_vmullt)
16907 {
16908 if (rs == NS_QQQ)
16909 {
16910
16911 struct neon_type_el et = neon_check_type (3, rs, N_EQK , N_EQK,
16912 N_SUF_32 | N_F64 | N_P8
16913 | N_P16 | N_I_MVE | N_KEY);
16914 if (((et.type == NT_poly) && et.size == 8
16915 && ARM_CPU_IS_ANY (cpu_variant))
16916 || (et.type == NT_integer) || (et.type == NT_float))
16917 goto neon_vmul;
16918 }
16919 else
16920 goto neon_vmul;
16921 }
16922
16923 constraint (rs != NS_QQQ, BAD_FPU);
16924 struct neon_type_el et = neon_check_type (3, rs, N_EQK , N_EQK,
16925 N_SU_32 | N_P8 | N_P16 | N_KEY);
16926
16927 /* We are dealing with MVE's vmullt. */
16928 if (et.size == 32
16929 && (inst.operands[0].reg == inst.operands[1].reg
16930 || inst.operands[0].reg == inst.operands[2].reg))
16931 as_tsktsk (BAD_MVE_SRCDEST);
16932
16933 if (inst.cond > COND_ALWAYS)
16934 inst.pred_insn_type = INSIDE_VPT_INSN;
16935 else
16936 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
16937
16938 if (et.type == NT_poly)
16939 mve_encode_qqq (neon_logbits (et.size), 64);
16940 else
16941 mve_encode_qqq (et.type == NT_unsigned, et.size);
16942
16943 return;
16944
16945 neon_vmul:
16946 inst.instruction = N_MNEM_vmul;
16947 inst.cond = 0xb;
16948 if (thumb_mode)
16949 inst.pred_insn_type = INSIDE_IT_INSN;
16950 do_neon_mul ();
16951 }
16952
16953 static void
16954 do_mve_vabav (void)
16955 {
16956 enum neon_shape rs = neon_select_shape (NS_RQQ, NS_NULL);
16957
16958 if (rs == NS_NULL)
16959 return;
16960
16961 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
16962 return;
16963
16964 struct neon_type_el et = neon_check_type (2, NS_NULL, N_EQK, N_KEY | N_S8
16965 | N_S16 | N_S32 | N_U8 | N_U16
16966 | N_U32);
16967
16968 if (inst.cond > COND_ALWAYS)
16969 inst.pred_insn_type = INSIDE_VPT_INSN;
16970 else
16971 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
16972
16973 mve_encode_rqq (et.type == NT_unsigned, et.size);
16974 }
16975
16976 static void
16977 do_mve_vmladav (void)
16978 {
16979 enum neon_shape rs = neon_select_shape (NS_RQQ, NS_NULL);
16980 struct neon_type_el et = neon_check_type (3, rs,
16981 N_EQK, N_EQK, N_SU_MVE | N_KEY);
16982
16983 if (et.type == NT_unsigned
16984 && (inst.instruction == M_MNEM_vmladavx
16985 || inst.instruction == M_MNEM_vmladavax
16986 || inst.instruction == M_MNEM_vmlsdav
16987 || inst.instruction == M_MNEM_vmlsdava
16988 || inst.instruction == M_MNEM_vmlsdavx
16989 || inst.instruction == M_MNEM_vmlsdavax))
16990 first_error (BAD_SIMD_TYPE);
16991
16992 constraint (inst.operands[2].reg > 14,
16993 _("MVE vector register in the range [Q0..Q7] expected"));
16994
16995 if (inst.cond > COND_ALWAYS)
16996 inst.pred_insn_type = INSIDE_VPT_INSN;
16997 else
16998 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
16999
17000 if (inst.instruction == M_MNEM_vmlsdav
17001 || inst.instruction == M_MNEM_vmlsdava
17002 || inst.instruction == M_MNEM_vmlsdavx
17003 || inst.instruction == M_MNEM_vmlsdavax)
17004 inst.instruction |= (et.size == 8) << 28;
17005 else
17006 inst.instruction |= (et.size == 8) << 8;
17007
17008 mve_encode_rqq (et.type == NT_unsigned, 64);
17009 inst.instruction |= (et.size == 32) << 16;
17010 }
17011
17012 static void
17013 do_neon_qrdmlah (void)
17014 {
17015 /* Check we're on the correct architecture. */
17016 if (!mark_feature_used (&fpu_neon_ext_armv8))
17017 inst.error =
17018 _("instruction form not available on this architecture.");
17019 else if (!mark_feature_used (&fpu_neon_ext_v8_1))
17020 {
17021 as_warn (_("this instruction implies use of ARMv8.1 AdvSIMD."));
17022 record_feature_use (&fpu_neon_ext_v8_1);
17023 }
17024
17025 if (inst.operands[2].isscalar)
17026 {
17027 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
17028 struct neon_type_el et = neon_check_type (3, rs,
17029 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
17030 NEON_ENCODE (SCALAR, inst);
17031 neon_mul_mac (et, neon_quad (rs));
17032 }
17033 else
17034 {
17035 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
17036 struct neon_type_el et = neon_check_type (3, rs,
17037 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
17038 NEON_ENCODE (INTEGER, inst);
17039 /* The U bit (rounding) comes from bit mask. */
17040 neon_three_same (neon_quad (rs), 0, et.size);
17041 }
17042 }
17043
17044 static void
17045 do_neon_fcmp_absolute (void)
17046 {
17047 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
17048 struct neon_type_el et = neon_check_type (3, rs, N_EQK, N_EQK,
17049 N_F_16_32 | N_KEY);
17050 /* Size field comes from bit mask. */
17051 neon_three_same (neon_quad (rs), 1, et.size == 16 ? (int) et.size : -1);
17052 }
17053
17054 static void
17055 do_neon_fcmp_absolute_inv (void)
17056 {
17057 neon_exchange_operands ();
17058 do_neon_fcmp_absolute ();
17059 }
17060
17061 static void
17062 do_neon_step (void)
17063 {
17064 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
17065 struct neon_type_el et = neon_check_type (3, rs, N_EQK, N_EQK,
17066 N_F_16_32 | N_KEY);
17067 neon_three_same (neon_quad (rs), 0, et.size == 16 ? (int) et.size : -1);
17068 }
17069
17070 static void
17071 do_neon_abs_neg (void)
17072 {
17073 enum neon_shape rs;
17074 struct neon_type_el et;
17075
17076 if (try_vfp_nsyn (2, do_vfp_nsyn_abs_neg) == SUCCESS)
17077 return;
17078
17079 rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
17080 et = neon_check_type (2, rs, N_EQK, N_S_32 | N_F_16_32 | N_KEY);
17081
17082 if (check_simd_pred_availability (et.type == NT_float,
17083 NEON_CHECK_ARCH | NEON_CHECK_CC))
17084 return;
17085
17086 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17087 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17088 inst.instruction |= LOW4 (inst.operands[1].reg);
17089 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
17090 inst.instruction |= neon_quad (rs) << 6;
17091 inst.instruction |= (et.type == NT_float) << 10;
17092 inst.instruction |= neon_logbits (et.size) << 18;
17093
17094 neon_dp_fixup (&inst);
17095 }
17096
17097 static void
17098 do_neon_sli (void)
17099 {
17100 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
17101 struct neon_type_el et = neon_check_type (2, rs,
17102 N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
17103 int imm = inst.operands[2].imm;
17104 constraint (imm < 0 || (unsigned)imm >= et.size,
17105 _("immediate out of range for insert"));
17106 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
17107 }
17108
17109 static void
17110 do_neon_sri (void)
17111 {
17112 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
17113 struct neon_type_el et = neon_check_type (2, rs,
17114 N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
17115 int imm = inst.operands[2].imm;
17116 constraint (imm < 1 || (unsigned)imm > et.size,
17117 _("immediate out of range for insert"));
17118 neon_imm_shift (FALSE, 0, neon_quad (rs), et, et.size - imm);
17119 }
17120
17121 static void
17122 do_neon_qshlu_imm (void)
17123 {
17124 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
17125 struct neon_type_el et = neon_check_type (2, rs,
17126 N_EQK | N_UNS, N_S8 | N_S16 | N_S32 | N_S64 | N_KEY);
17127 int imm = inst.operands[2].imm;
17128 constraint (imm < 0 || (unsigned)imm >= et.size,
17129 _("immediate out of range for shift"));
17130 /* Only encodes the 'U present' variant of the instruction.
17131 In this case, signed types have OP (bit 8) set to 0.
17132 Unsigned types have OP set to 1. */
17133 inst.instruction |= (et.type == NT_unsigned) << 8;
17134 /* The rest of the bits are the same as other immediate shifts. */
17135 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
17136 }
17137
17138 static void
17139 do_neon_qmovn (void)
17140 {
17141 struct neon_type_el et = neon_check_type (2, NS_DQ,
17142 N_EQK | N_HLF, N_SU_16_64 | N_KEY);
17143 /* Saturating move where operands can be signed or unsigned, and the
17144 destination has the same signedness. */
17145 NEON_ENCODE (INTEGER, inst);
17146 if (et.type == NT_unsigned)
17147 inst.instruction |= 0xc0;
17148 else
17149 inst.instruction |= 0x80;
17150 neon_two_same (0, 1, et.size / 2);
17151 }
17152
17153 static void
17154 do_neon_qmovun (void)
17155 {
17156 struct neon_type_el et = neon_check_type (2, NS_DQ,
17157 N_EQK | N_HLF | N_UNS, N_S16 | N_S32 | N_S64 | N_KEY);
17158 /* Saturating move with unsigned results. Operands must be signed. */
17159 NEON_ENCODE (INTEGER, inst);
17160 neon_two_same (0, 1, et.size / 2);
17161 }
17162
17163 static void
17164 do_neon_rshift_sat_narrow (void)
17165 {
17166 /* FIXME: Types for narrowing. If operands are signed, results can be signed
17167 or unsigned. If operands are unsigned, results must also be unsigned. */
17168 struct neon_type_el et = neon_check_type (2, NS_DQI,
17169 N_EQK | N_HLF, N_SU_16_64 | N_KEY);
17170 int imm = inst.operands[2].imm;
17171 /* This gets the bounds check, size encoding and immediate bits calculation
17172 right. */
17173 et.size /= 2;
17174
17175 /* VQ{R}SHRN.I<size> <Dd>, <Qm>, #0 is a synonym for
17176 VQMOVN.I<size> <Dd>, <Qm>. */
17177 if (imm == 0)
17178 {
17179 inst.operands[2].present = 0;
17180 inst.instruction = N_MNEM_vqmovn;
17181 do_neon_qmovn ();
17182 return;
17183 }
17184
17185 constraint (imm < 1 || (unsigned)imm > et.size,
17186 _("immediate out of range"));
17187 neon_imm_shift (TRUE, et.type == NT_unsigned, 0, et, et.size - imm);
17188 }
17189
17190 static void
17191 do_neon_rshift_sat_narrow_u (void)
17192 {
17193 /* FIXME: Types for narrowing. If operands are signed, results can be signed
17194 or unsigned. If operands are unsigned, results must also be unsigned. */
17195 struct neon_type_el et = neon_check_type (2, NS_DQI,
17196 N_EQK | N_HLF | N_UNS, N_S16 | N_S32 | N_S64 | N_KEY);
17197 int imm = inst.operands[2].imm;
17198 /* This gets the bounds check, size encoding and immediate bits calculation
17199 right. */
17200 et.size /= 2;
17201
17202 /* VQSHRUN.I<size> <Dd>, <Qm>, #0 is a synonym for
17203 VQMOVUN.I<size> <Dd>, <Qm>. */
17204 if (imm == 0)
17205 {
17206 inst.operands[2].present = 0;
17207 inst.instruction = N_MNEM_vqmovun;
17208 do_neon_qmovun ();
17209 return;
17210 }
17211
17212 constraint (imm < 1 || (unsigned)imm > et.size,
17213 _("immediate out of range"));
17214 /* FIXME: The manual is kind of unclear about what value U should have in
17215 VQ{R}SHRUN instructions, but U=0, op=0 definitely encodes VRSHR, so it
17216 must be 1. */
17217 neon_imm_shift (TRUE, 1, 0, et, et.size - imm);
17218 }
17219
17220 static void
17221 do_neon_movn (void)
17222 {
17223 struct neon_type_el et = neon_check_type (2, NS_DQ,
17224 N_EQK | N_HLF, N_I16 | N_I32 | N_I64 | N_KEY);
17225 NEON_ENCODE (INTEGER, inst);
17226 neon_two_same (0, 1, et.size / 2);
17227 }
17228
17229 static void
17230 do_neon_rshift_narrow (void)
17231 {
17232 struct neon_type_el et = neon_check_type (2, NS_DQI,
17233 N_EQK | N_HLF, N_I16 | N_I32 | N_I64 | N_KEY);
17234 int imm = inst.operands[2].imm;
17235 /* This gets the bounds check, size encoding and immediate bits calculation
17236 right. */
17237 et.size /= 2;
17238
17239 /* If immediate is zero then we are a pseudo-instruction for
17240 VMOVN.I<size> <Dd>, <Qm> */
17241 if (imm == 0)
17242 {
17243 inst.operands[2].present = 0;
17244 inst.instruction = N_MNEM_vmovn;
17245 do_neon_movn ();
17246 return;
17247 }
17248
17249 constraint (imm < 1 || (unsigned)imm > et.size,
17250 _("immediate out of range for narrowing operation"));
17251 neon_imm_shift (FALSE, 0, 0, et, et.size - imm);
17252 }
17253
17254 static void
17255 do_neon_shll (void)
17256 {
17257 /* FIXME: Type checking when lengthening. */
17258 struct neon_type_el et = neon_check_type (2, NS_QDI,
17259 N_EQK | N_DBL, N_I8 | N_I16 | N_I32 | N_KEY);
17260 unsigned imm = inst.operands[2].imm;
17261
17262 if (imm == et.size)
17263 {
17264 /* Maximum shift variant. */
17265 NEON_ENCODE (INTEGER, inst);
17266 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17267 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17268 inst.instruction |= LOW4 (inst.operands[1].reg);
17269 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
17270 inst.instruction |= neon_logbits (et.size) << 18;
17271
17272 neon_dp_fixup (&inst);
17273 }
17274 else
17275 {
17276 /* A more-specific type check for non-max versions. */
17277 et = neon_check_type (2, NS_QDI,
17278 N_EQK | N_DBL, N_SU_32 | N_KEY);
17279 NEON_ENCODE (IMMED, inst);
17280 neon_imm_shift (TRUE, et.type == NT_unsigned, 0, et, imm);
17281 }
17282 }
17283
17284 /* Check the various types for the VCVT instruction, and return which version
17285 the current instruction is. */
17286
17287 #define CVT_FLAVOUR_VAR \
17288 CVT_VAR (s32_f32, N_S32, N_F32, whole_reg, "ftosls", "ftosis", "ftosizs") \
17289 CVT_VAR (u32_f32, N_U32, N_F32, whole_reg, "ftouls", "ftouis", "ftouizs") \
17290 CVT_VAR (f32_s32, N_F32, N_S32, whole_reg, "fsltos", "fsitos", NULL) \
17291 CVT_VAR (f32_u32, N_F32, N_U32, whole_reg, "fultos", "fuitos", NULL) \
17292 /* Half-precision conversions. */ \
17293 CVT_VAR (s16_f16, N_S16, N_F16 | N_KEY, whole_reg, NULL, NULL, NULL) \
17294 CVT_VAR (u16_f16, N_U16, N_F16 | N_KEY, whole_reg, NULL, NULL, NULL) \
17295 CVT_VAR (f16_s16, N_F16 | N_KEY, N_S16, whole_reg, NULL, NULL, NULL) \
17296 CVT_VAR (f16_u16, N_F16 | N_KEY, N_U16, whole_reg, NULL, NULL, NULL) \
17297 CVT_VAR (f32_f16, N_F32, N_F16, whole_reg, NULL, NULL, NULL) \
17298 CVT_VAR (f16_f32, N_F16, N_F32, whole_reg, NULL, NULL, NULL) \
17299 /* New VCVT instructions introduced by ARMv8.2 fp16 extension. \
17300 Compared with single/double precision variants, only the co-processor \
17301 field is different, so the encoding flow is reused here. */ \
17302 CVT_VAR (f16_s32, N_F16 | N_KEY, N_S32, N_VFP, "fsltos", "fsitos", NULL) \
17303 CVT_VAR (f16_u32, N_F16 | N_KEY, N_U32, N_VFP, "fultos", "fuitos", NULL) \
17304 CVT_VAR (u32_f16, N_U32, N_F16 | N_KEY, N_VFP, "ftouls", "ftouis", "ftouizs")\
17305 CVT_VAR (s32_f16, N_S32, N_F16 | N_KEY, N_VFP, "ftosls", "ftosis", "ftosizs")\
17306 /* VFP instructions. */ \
17307 CVT_VAR (f32_f64, N_F32, N_F64, N_VFP, NULL, "fcvtsd", NULL) \
17308 CVT_VAR (f64_f32, N_F64, N_F32, N_VFP, NULL, "fcvtds", NULL) \
17309 CVT_VAR (s32_f64, N_S32, N_F64 | key, N_VFP, "ftosld", "ftosid", "ftosizd") \
17310 CVT_VAR (u32_f64, N_U32, N_F64 | key, N_VFP, "ftould", "ftouid", "ftouizd") \
17311 CVT_VAR (f64_s32, N_F64 | key, N_S32, N_VFP, "fsltod", "fsitod", NULL) \
17312 CVT_VAR (f64_u32, N_F64 | key, N_U32, N_VFP, "fultod", "fuitod", NULL) \
17313 /* VFP instructions with bitshift. */ \
17314 CVT_VAR (f32_s16, N_F32 | key, N_S16, N_VFP, "fshtos", NULL, NULL) \
17315 CVT_VAR (f32_u16, N_F32 | key, N_U16, N_VFP, "fuhtos", NULL, NULL) \
17316 CVT_VAR (f64_s16, N_F64 | key, N_S16, N_VFP, "fshtod", NULL, NULL) \
17317 CVT_VAR (f64_u16, N_F64 | key, N_U16, N_VFP, "fuhtod", NULL, NULL) \
17318 CVT_VAR (s16_f32, N_S16, N_F32 | key, N_VFP, "ftoshs", NULL, NULL) \
17319 CVT_VAR (u16_f32, N_U16, N_F32 | key, N_VFP, "ftouhs", NULL, NULL) \
17320 CVT_VAR (s16_f64, N_S16, N_F64 | key, N_VFP, "ftoshd", NULL, NULL) \
17321 CVT_VAR (u16_f64, N_U16, N_F64 | key, N_VFP, "ftouhd", NULL, NULL)
17322
17323 #define CVT_VAR(C, X, Y, R, BSN, CN, ZN) \
17324 neon_cvt_flavour_##C,
17325
17326 /* The different types of conversions we can do. */
17327 enum neon_cvt_flavour
17328 {
17329 CVT_FLAVOUR_VAR
17330 neon_cvt_flavour_invalid,
17331 neon_cvt_flavour_first_fp = neon_cvt_flavour_f32_f64
17332 };
17333
17334 #undef CVT_VAR
17335
17336 static enum neon_cvt_flavour
17337 get_neon_cvt_flavour (enum neon_shape rs)
17338 {
17339 #define CVT_VAR(C,X,Y,R,BSN,CN,ZN) \
17340 et = neon_check_type (2, rs, (R) | (X), (R) | (Y)); \
17341 if (et.type != NT_invtype) \
17342 { \
17343 inst.error = NULL; \
17344 return (neon_cvt_flavour_##C); \
17345 }
17346
17347 struct neon_type_el et;
17348 unsigned whole_reg = (rs == NS_FFI || rs == NS_FD || rs == NS_DF
17349 || rs == NS_FF) ? N_VFP : 0;
17350 /* The instruction versions which take an immediate take one register
17351 argument, which is extended to the width of the full register. Thus the
17352 "source" and "destination" registers must have the same width. Hack that
17353 here by making the size equal to the key (wider, in this case) operand. */
17354 unsigned key = (rs == NS_QQI || rs == NS_DDI || rs == NS_FFI) ? N_KEY : 0;
17355
17356 CVT_FLAVOUR_VAR;
17357
17358 return neon_cvt_flavour_invalid;
17359 #undef CVT_VAR
17360 }
17361
17362 enum neon_cvt_mode
17363 {
17364 neon_cvt_mode_a,
17365 neon_cvt_mode_n,
17366 neon_cvt_mode_p,
17367 neon_cvt_mode_m,
17368 neon_cvt_mode_z,
17369 neon_cvt_mode_x,
17370 neon_cvt_mode_r
17371 };
17372
17373 /* Neon-syntax VFP conversions. */
17374
17375 static void
17376 do_vfp_nsyn_cvt (enum neon_shape rs, enum neon_cvt_flavour flavour)
17377 {
17378 const char *opname = 0;
17379
17380 if (rs == NS_DDI || rs == NS_QQI || rs == NS_FFI
17381 || rs == NS_FHI || rs == NS_HFI)
17382 {
17383 /* Conversions with immediate bitshift. */
17384 const char *enc[] =
17385 {
17386 #define CVT_VAR(C,A,B,R,BSN,CN,ZN) BSN,
17387 CVT_FLAVOUR_VAR
17388 NULL
17389 #undef CVT_VAR
17390 };
17391
17392 if (flavour < (int) ARRAY_SIZE (enc))
17393 {
17394 opname = enc[flavour];
17395 constraint (inst.operands[0].reg != inst.operands[1].reg,
17396 _("operands 0 and 1 must be the same register"));
17397 inst.operands[1] = inst.operands[2];
17398 memset (&inst.operands[2], '\0', sizeof (inst.operands[2]));
17399 }
17400 }
17401 else
17402 {
17403 /* Conversions without bitshift. */
17404 const char *enc[] =
17405 {
17406 #define CVT_VAR(C,A,B,R,BSN,CN,ZN) CN,
17407 CVT_FLAVOUR_VAR
17408 NULL
17409 #undef CVT_VAR
17410 };
17411
17412 if (flavour < (int) ARRAY_SIZE (enc))
17413 opname = enc[flavour];
17414 }
17415
17416 if (opname)
17417 do_vfp_nsyn_opcode (opname);
17418
17419 /* ARMv8.2 fp16 VCVT instruction. */
17420 if (flavour == neon_cvt_flavour_s32_f16
17421 || flavour == neon_cvt_flavour_u32_f16
17422 || flavour == neon_cvt_flavour_f16_u32
17423 || flavour == neon_cvt_flavour_f16_s32)
17424 do_scalar_fp16_v82_encode ();
17425 }
17426
17427 static void
17428 do_vfp_nsyn_cvtz (void)
17429 {
17430 enum neon_shape rs = neon_select_shape (NS_FH, NS_FF, NS_FD, NS_NULL);
17431 enum neon_cvt_flavour flavour = get_neon_cvt_flavour (rs);
17432 const char *enc[] =
17433 {
17434 #define CVT_VAR(C,A,B,R,BSN,CN,ZN) ZN,
17435 CVT_FLAVOUR_VAR
17436 NULL
17437 #undef CVT_VAR
17438 };
17439
17440 if (flavour < (int) ARRAY_SIZE (enc) && enc[flavour])
17441 do_vfp_nsyn_opcode (enc[flavour]);
17442 }
17443
17444 static void
17445 do_vfp_nsyn_cvt_fpv8 (enum neon_cvt_flavour flavour,
17446 enum neon_cvt_mode mode)
17447 {
17448 int sz, op;
17449 int rm;
17450
17451 /* Targets like FPv5-SP-D16 don't support FP v8 instructions with
17452 D register operands. */
17453 if (flavour == neon_cvt_flavour_s32_f64
17454 || flavour == neon_cvt_flavour_u32_f64)
17455 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
17456 _(BAD_FPU));
17457
17458 if (flavour == neon_cvt_flavour_s32_f16
17459 || flavour == neon_cvt_flavour_u32_f16)
17460 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16),
17461 _(BAD_FP16));
17462
17463 set_pred_insn_type (OUTSIDE_PRED_INSN);
17464
17465 switch (flavour)
17466 {
17467 case neon_cvt_flavour_s32_f64:
17468 sz = 1;
17469 op = 1;
17470 break;
17471 case neon_cvt_flavour_s32_f32:
17472 sz = 0;
17473 op = 1;
17474 break;
17475 case neon_cvt_flavour_s32_f16:
17476 sz = 0;
17477 op = 1;
17478 break;
17479 case neon_cvt_flavour_u32_f64:
17480 sz = 1;
17481 op = 0;
17482 break;
17483 case neon_cvt_flavour_u32_f32:
17484 sz = 0;
17485 op = 0;
17486 break;
17487 case neon_cvt_flavour_u32_f16:
17488 sz = 0;
17489 op = 0;
17490 break;
17491 default:
17492 first_error (_("invalid instruction shape"));
17493 return;
17494 }
17495
17496 switch (mode)
17497 {
17498 case neon_cvt_mode_a: rm = 0; break;
17499 case neon_cvt_mode_n: rm = 1; break;
17500 case neon_cvt_mode_p: rm = 2; break;
17501 case neon_cvt_mode_m: rm = 3; break;
17502 default: first_error (_("invalid rounding mode")); return;
17503 }
17504
17505 NEON_ENCODE (FPV8, inst);
17506 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
17507 encode_arm_vfp_reg (inst.operands[1].reg, sz == 1 ? VFP_REG_Dm : VFP_REG_Sm);
17508 inst.instruction |= sz << 8;
17509
17510 /* ARMv8.2 fp16 VCVT instruction. */
17511 if (flavour == neon_cvt_flavour_s32_f16
17512 ||flavour == neon_cvt_flavour_u32_f16)
17513 do_scalar_fp16_v82_encode ();
17514 inst.instruction |= op << 7;
17515 inst.instruction |= rm << 16;
17516 inst.instruction |= 0xf0000000;
17517 inst.is_neon = TRUE;
17518 }
17519
17520 static void
17521 do_neon_cvt_1 (enum neon_cvt_mode mode)
17522 {
17523 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_FFI, NS_DD, NS_QQ,
17524 NS_FD, NS_DF, NS_FF, NS_QD, NS_DQ,
17525 NS_FH, NS_HF, NS_FHI, NS_HFI,
17526 NS_NULL);
17527 enum neon_cvt_flavour flavour = get_neon_cvt_flavour (rs);
17528
17529 if (flavour == neon_cvt_flavour_invalid)
17530 return;
17531
17532 /* PR11109: Handle round-to-zero for VCVT conversions. */
17533 if (mode == neon_cvt_mode_z
17534 && ARM_CPU_HAS_FEATURE (cpu_variant, fpu_arch_vfp_v2)
17535 && (flavour == neon_cvt_flavour_s16_f16
17536 || flavour == neon_cvt_flavour_u16_f16
17537 || flavour == neon_cvt_flavour_s32_f32
17538 || flavour == neon_cvt_flavour_u32_f32
17539 || flavour == neon_cvt_flavour_s32_f64
17540 || flavour == neon_cvt_flavour_u32_f64)
17541 && (rs == NS_FD || rs == NS_FF))
17542 {
17543 do_vfp_nsyn_cvtz ();
17544 return;
17545 }
17546
17547 /* ARMv8.2 fp16 VCVT conversions. */
17548 if (mode == neon_cvt_mode_z
17549 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16)
17550 && (flavour == neon_cvt_flavour_s32_f16
17551 || flavour == neon_cvt_flavour_u32_f16)
17552 && (rs == NS_FH))
17553 {
17554 do_vfp_nsyn_cvtz ();
17555 do_scalar_fp16_v82_encode ();
17556 return;
17557 }
17558
17559 /* VFP rather than Neon conversions. */
17560 if (flavour >= neon_cvt_flavour_first_fp)
17561 {
17562 if (mode == neon_cvt_mode_x || mode == neon_cvt_mode_z)
17563 do_vfp_nsyn_cvt (rs, flavour);
17564 else
17565 do_vfp_nsyn_cvt_fpv8 (flavour, mode);
17566
17567 return;
17568 }
17569
17570 switch (rs)
17571 {
17572 case NS_QQI:
17573 if (mode == neon_cvt_mode_z
17574 && (flavour == neon_cvt_flavour_f16_s16
17575 || flavour == neon_cvt_flavour_f16_u16
17576 || flavour == neon_cvt_flavour_s16_f16
17577 || flavour == neon_cvt_flavour_u16_f16
17578 || flavour == neon_cvt_flavour_f32_u32
17579 || flavour == neon_cvt_flavour_f32_s32
17580 || flavour == neon_cvt_flavour_s32_f32
17581 || flavour == neon_cvt_flavour_u32_f32))
17582 {
17583 if (check_simd_pred_availability (1, NEON_CHECK_CC | NEON_CHECK_ARCH))
17584 return;
17585 }
17586 else if (mode == neon_cvt_mode_n)
17587 {
17588 /* We are dealing with vcvt with the 'ne' condition. */
17589 inst.cond = 0x1;
17590 inst.instruction = N_MNEM_vcvt;
17591 do_neon_cvt_1 (neon_cvt_mode_z);
17592 return;
17593 }
17594 /* fall through. */
17595 case NS_DDI:
17596 {
17597 unsigned immbits;
17598 unsigned enctab[] = {0x0000100, 0x1000100, 0x0, 0x1000000,
17599 0x0000100, 0x1000100, 0x0, 0x1000000};
17600
17601 if ((rs != NS_QQI || !ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext))
17602 && vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
17603 return;
17604
17605 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext))
17606 {
17607 constraint (inst.operands[2].present && inst.operands[2].imm == 0,
17608 _("immediate value out of range"));
17609 switch (flavour)
17610 {
17611 case neon_cvt_flavour_f16_s16:
17612 case neon_cvt_flavour_f16_u16:
17613 case neon_cvt_flavour_s16_f16:
17614 case neon_cvt_flavour_u16_f16:
17615 constraint (inst.operands[2].imm > 16,
17616 _("immediate value out of range"));
17617 break;
17618 case neon_cvt_flavour_f32_u32:
17619 case neon_cvt_flavour_f32_s32:
17620 case neon_cvt_flavour_s32_f32:
17621 case neon_cvt_flavour_u32_f32:
17622 constraint (inst.operands[2].imm > 32,
17623 _("immediate value out of range"));
17624 break;
17625 default:
17626 inst.error = BAD_FPU;
17627 return;
17628 }
17629 }
17630
17631 /* Fixed-point conversion with #0 immediate is encoded as an
17632 integer conversion. */
17633 if (inst.operands[2].present && inst.operands[2].imm == 0)
17634 goto int_encode;
17635 NEON_ENCODE (IMMED, inst);
17636 if (flavour != neon_cvt_flavour_invalid)
17637 inst.instruction |= enctab[flavour];
17638 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17639 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17640 inst.instruction |= LOW4 (inst.operands[1].reg);
17641 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
17642 inst.instruction |= neon_quad (rs) << 6;
17643 inst.instruction |= 1 << 21;
17644 if (flavour < neon_cvt_flavour_s16_f16)
17645 {
17646 inst.instruction |= 1 << 21;
17647 immbits = 32 - inst.operands[2].imm;
17648 inst.instruction |= immbits << 16;
17649 }
17650 else
17651 {
17652 inst.instruction |= 3 << 20;
17653 immbits = 16 - inst.operands[2].imm;
17654 inst.instruction |= immbits << 16;
17655 inst.instruction &= ~(1 << 9);
17656 }
17657
17658 neon_dp_fixup (&inst);
17659 }
17660 break;
17661
17662 case NS_QQ:
17663 if ((mode == neon_cvt_mode_a || mode == neon_cvt_mode_n
17664 || mode == neon_cvt_mode_m || mode == neon_cvt_mode_p)
17665 && (flavour == neon_cvt_flavour_s16_f16
17666 || flavour == neon_cvt_flavour_u16_f16
17667 || flavour == neon_cvt_flavour_s32_f32
17668 || flavour == neon_cvt_flavour_u32_f32))
17669 {
17670 if (check_simd_pred_availability (1,
17671 NEON_CHECK_CC | NEON_CHECK_ARCH8))
17672 return;
17673 }
17674 else if (mode == neon_cvt_mode_z
17675 && (flavour == neon_cvt_flavour_f16_s16
17676 || flavour == neon_cvt_flavour_f16_u16
17677 || flavour == neon_cvt_flavour_s16_f16
17678 || flavour == neon_cvt_flavour_u16_f16
17679 || flavour == neon_cvt_flavour_f32_u32
17680 || flavour == neon_cvt_flavour_f32_s32
17681 || flavour == neon_cvt_flavour_s32_f32
17682 || flavour == neon_cvt_flavour_u32_f32))
17683 {
17684 if (check_simd_pred_availability (1,
17685 NEON_CHECK_CC | NEON_CHECK_ARCH))
17686 return;
17687 }
17688 /* fall through. */
17689 case NS_DD:
17690 if (mode != neon_cvt_mode_x && mode != neon_cvt_mode_z)
17691 {
17692
17693 NEON_ENCODE (FLOAT, inst);
17694 if (check_simd_pred_availability (1,
17695 NEON_CHECK_CC | NEON_CHECK_ARCH8))
17696 return;
17697
17698 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17699 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17700 inst.instruction |= LOW4 (inst.operands[1].reg);
17701 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
17702 inst.instruction |= neon_quad (rs) << 6;
17703 inst.instruction |= (flavour == neon_cvt_flavour_u16_f16
17704 || flavour == neon_cvt_flavour_u32_f32) << 7;
17705 inst.instruction |= mode << 8;
17706 if (flavour == neon_cvt_flavour_u16_f16
17707 || flavour == neon_cvt_flavour_s16_f16)
17708 /* Mask off the original size bits and reencode them. */
17709 inst.instruction = ((inst.instruction & 0xfff3ffff) | (1 << 18));
17710
17711 if (thumb_mode)
17712 inst.instruction |= 0xfc000000;
17713 else
17714 inst.instruction |= 0xf0000000;
17715 }
17716 else
17717 {
17718 int_encode:
17719 {
17720 unsigned enctab[] = { 0x100, 0x180, 0x0, 0x080,
17721 0x100, 0x180, 0x0, 0x080};
17722
17723 NEON_ENCODE (INTEGER, inst);
17724
17725 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext))
17726 {
17727 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
17728 return;
17729 }
17730
17731 if (flavour != neon_cvt_flavour_invalid)
17732 inst.instruction |= enctab[flavour];
17733
17734 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17735 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17736 inst.instruction |= LOW4 (inst.operands[1].reg);
17737 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
17738 inst.instruction |= neon_quad (rs) << 6;
17739 if (flavour >= neon_cvt_flavour_s16_f16
17740 && flavour <= neon_cvt_flavour_f16_u16)
17741 /* Half precision. */
17742 inst.instruction |= 1 << 18;
17743 else
17744 inst.instruction |= 2 << 18;
17745
17746 neon_dp_fixup (&inst);
17747 }
17748 }
17749 break;
17750
17751 /* Half-precision conversions for Advanced SIMD -- neon. */
17752 case NS_QD:
17753 case NS_DQ:
17754 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
17755 return;
17756
17757 if ((rs == NS_DQ)
17758 && (inst.vectype.el[0].size != 16 || inst.vectype.el[1].size != 32))
17759 {
17760 as_bad (_("operand size must match register width"));
17761 break;
17762 }
17763
17764 if ((rs == NS_QD)
17765 && ((inst.vectype.el[0].size != 32 || inst.vectype.el[1].size != 16)))
17766 {
17767 as_bad (_("operand size must match register width"));
17768 break;
17769 }
17770
17771 if (rs == NS_DQ)
17772 inst.instruction = 0x3b60600;
17773 else
17774 inst.instruction = 0x3b60700;
17775
17776 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17777 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17778 inst.instruction |= LOW4 (inst.operands[1].reg);
17779 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
17780 neon_dp_fixup (&inst);
17781 break;
17782
17783 default:
17784 /* Some VFP conversions go here (s32 <-> f32, u32 <-> f32). */
17785 if (mode == neon_cvt_mode_x || mode == neon_cvt_mode_z)
17786 do_vfp_nsyn_cvt (rs, flavour);
17787 else
17788 do_vfp_nsyn_cvt_fpv8 (flavour, mode);
17789 }
17790 }
17791
17792 static void
17793 do_neon_cvtr (void)
17794 {
17795 do_neon_cvt_1 (neon_cvt_mode_x);
17796 }
17797
17798 static void
17799 do_neon_cvt (void)
17800 {
17801 do_neon_cvt_1 (neon_cvt_mode_z);
17802 }
17803
17804 static void
17805 do_neon_cvta (void)
17806 {
17807 do_neon_cvt_1 (neon_cvt_mode_a);
17808 }
17809
17810 static void
17811 do_neon_cvtn (void)
17812 {
17813 do_neon_cvt_1 (neon_cvt_mode_n);
17814 }
17815
17816 static void
17817 do_neon_cvtp (void)
17818 {
17819 do_neon_cvt_1 (neon_cvt_mode_p);
17820 }
17821
17822 static void
17823 do_neon_cvtm (void)
17824 {
17825 do_neon_cvt_1 (neon_cvt_mode_m);
17826 }
17827
17828 static void
17829 do_neon_cvttb_2 (bfd_boolean t, bfd_boolean to, bfd_boolean is_double)
17830 {
17831 if (is_double)
17832 mark_feature_used (&fpu_vfp_ext_armv8);
17833
17834 encode_arm_vfp_reg (inst.operands[0].reg,
17835 (is_double && !to) ? VFP_REG_Dd : VFP_REG_Sd);
17836 encode_arm_vfp_reg (inst.operands[1].reg,
17837 (is_double && to) ? VFP_REG_Dm : VFP_REG_Sm);
17838 inst.instruction |= to ? 0x10000 : 0;
17839 inst.instruction |= t ? 0x80 : 0;
17840 inst.instruction |= is_double ? 0x100 : 0;
17841 do_vfp_cond_or_thumb ();
17842 }
17843
17844 static void
17845 do_neon_cvttb_1 (bfd_boolean t)
17846 {
17847 enum neon_shape rs = neon_select_shape (NS_HF, NS_HD, NS_FH, NS_FF, NS_FD,
17848 NS_DF, NS_DH, NS_QQ, NS_QQI, NS_NULL);
17849
17850 if (rs == NS_NULL)
17851 return;
17852 else if (rs == NS_QQ || rs == NS_QQI)
17853 {
17854 int single_to_half = 0;
17855 if (check_simd_pred_availability (1, NEON_CHECK_ARCH))
17856 return;
17857
17858 enum neon_cvt_flavour flavour = get_neon_cvt_flavour (rs);
17859
17860 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)
17861 && (flavour == neon_cvt_flavour_u16_f16
17862 || flavour == neon_cvt_flavour_s16_f16
17863 || flavour == neon_cvt_flavour_f16_s16
17864 || flavour == neon_cvt_flavour_f16_u16
17865 || flavour == neon_cvt_flavour_u32_f32
17866 || flavour == neon_cvt_flavour_s32_f32
17867 || flavour == neon_cvt_flavour_f32_s32
17868 || flavour == neon_cvt_flavour_f32_u32))
17869 {
17870 inst.cond = 0xf;
17871 inst.instruction = N_MNEM_vcvt;
17872 set_pred_insn_type (INSIDE_VPT_INSN);
17873 do_neon_cvt_1 (neon_cvt_mode_z);
17874 return;
17875 }
17876 else if (rs == NS_QQ && flavour == neon_cvt_flavour_f32_f16)
17877 single_to_half = 1;
17878 else if (rs == NS_QQ && flavour != neon_cvt_flavour_f16_f32)
17879 {
17880 first_error (BAD_FPU);
17881 return;
17882 }
17883
17884 inst.instruction = 0xee3f0e01;
17885 inst.instruction |= single_to_half << 28;
17886 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17887 inst.instruction |= LOW4 (inst.operands[0].reg) << 13;
17888 inst.instruction |= t << 12;
17889 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
17890 inst.instruction |= LOW4 (inst.operands[1].reg) << 1;
17891 inst.is_neon = 1;
17892 }
17893 else if (neon_check_type (2, rs, N_F16, N_F32 | N_VFP).type != NT_invtype)
17894 {
17895 inst.error = NULL;
17896 do_neon_cvttb_2 (t, /*to=*/TRUE, /*is_double=*/FALSE);
17897 }
17898 else if (neon_check_type (2, rs, N_F32 | N_VFP, N_F16).type != NT_invtype)
17899 {
17900 inst.error = NULL;
17901 do_neon_cvttb_2 (t, /*to=*/FALSE, /*is_double=*/FALSE);
17902 }
17903 else if (neon_check_type (2, rs, N_F16, N_F64 | N_VFP).type != NT_invtype)
17904 {
17905 /* The VCVTB and VCVTT instructions with D-register operands
17906 don't work for SP only targets. */
17907 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
17908 _(BAD_FPU));
17909
17910 inst.error = NULL;
17911 do_neon_cvttb_2 (t, /*to=*/TRUE, /*is_double=*/TRUE);
17912 }
17913 else if (neon_check_type (2, rs, N_F64 | N_VFP, N_F16).type != NT_invtype)
17914 {
17915 /* The VCVTB and VCVTT instructions with D-register operands
17916 don't work for SP only targets. */
17917 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
17918 _(BAD_FPU));
17919
17920 inst.error = NULL;
17921 do_neon_cvttb_2 (t, /*to=*/FALSE, /*is_double=*/TRUE);
17922 }
17923 else
17924 return;
17925 }
17926
17927 static void
17928 do_neon_cvtb (void)
17929 {
17930 do_neon_cvttb_1 (FALSE);
17931 }
17932
17933
17934 static void
17935 do_neon_cvtt (void)
17936 {
17937 do_neon_cvttb_1 (TRUE);
17938 }
17939
17940 static void
17941 neon_move_immediate (void)
17942 {
17943 enum neon_shape rs = neon_select_shape (NS_DI, NS_QI, NS_NULL);
17944 struct neon_type_el et = neon_check_type (2, rs,
17945 N_I8 | N_I16 | N_I32 | N_I64 | N_F32 | N_KEY, N_EQK);
17946 unsigned immlo, immhi = 0, immbits;
17947 int op, cmode, float_p;
17948
17949 constraint (et.type == NT_invtype,
17950 _("operand size must be specified for immediate VMOV"));
17951
17952 /* We start out as an MVN instruction if OP = 1, MOV otherwise. */
17953 op = (inst.instruction & (1 << 5)) != 0;
17954
17955 immlo = inst.operands[1].imm;
17956 if (inst.operands[1].regisimm)
17957 immhi = inst.operands[1].reg;
17958
17959 constraint (et.size < 32 && (immlo & ~((1 << et.size) - 1)) != 0,
17960 _("immediate has bits set outside the operand size"));
17961
17962 float_p = inst.operands[1].immisfloat;
17963
17964 if ((cmode = neon_cmode_for_move_imm (immlo, immhi, float_p, &immbits, &op,
17965 et.size, et.type)) == FAIL)
17966 {
17967 /* Invert relevant bits only. */
17968 neon_invert_size (&immlo, &immhi, et.size);
17969 /* Flip from VMOV/VMVN to VMVN/VMOV. Some immediate types are unavailable
17970 with one or the other; those cases are caught by
17971 neon_cmode_for_move_imm. */
17972 op = !op;
17973 if ((cmode = neon_cmode_for_move_imm (immlo, immhi, float_p, &immbits,
17974 &op, et.size, et.type)) == FAIL)
17975 {
17976 first_error (_("immediate out of range"));
17977 return;
17978 }
17979 }
17980
17981 inst.instruction &= ~(1 << 5);
17982 inst.instruction |= op << 5;
17983
17984 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17985 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17986 inst.instruction |= neon_quad (rs) << 6;
17987 inst.instruction |= cmode << 8;
17988
17989 neon_write_immbits (immbits);
17990 }
17991
17992 static void
17993 do_neon_mvn (void)
17994 {
17995 if (inst.operands[1].isreg)
17996 {
17997 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
17998
17999 NEON_ENCODE (INTEGER, inst);
18000 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
18001 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
18002 inst.instruction |= LOW4 (inst.operands[1].reg);
18003 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
18004 inst.instruction |= neon_quad (rs) << 6;
18005 }
18006 else
18007 {
18008 NEON_ENCODE (IMMED, inst);
18009 neon_move_immediate ();
18010 }
18011
18012 neon_dp_fixup (&inst);
18013 }
18014
18015 /* Encode instructions of form:
18016
18017 |28/24|23|22|21 20|19 16|15 12|11 8|7|6|5|4|3 0|
18018 | U |x |D |size | Rn | Rd |x x x x|N|x|M|x| Rm | */
18019
18020 static void
18021 neon_mixed_length (struct neon_type_el et, unsigned size)
18022 {
18023 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
18024 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
18025 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
18026 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
18027 inst.instruction |= LOW4 (inst.operands[2].reg);
18028 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
18029 inst.instruction |= (et.type == NT_unsigned) << 24;
18030 inst.instruction |= neon_logbits (size) << 20;
18031
18032 neon_dp_fixup (&inst);
18033 }
18034
18035 static void
18036 do_neon_dyadic_long (void)
18037 {
18038 enum neon_shape rs = neon_select_shape (NS_QDD, NS_QQQ, NS_QQR, NS_NULL);
18039 if (rs == NS_QDD)
18040 {
18041 if (vfp_or_neon_is_neon (NEON_CHECK_ARCH | NEON_CHECK_CC) == FAIL)
18042 return;
18043
18044 NEON_ENCODE (INTEGER, inst);
18045 /* FIXME: Type checking for lengthening op. */
18046 struct neon_type_el et = neon_check_type (3, NS_QDD,
18047 N_EQK | N_DBL, N_EQK, N_SU_32 | N_KEY);
18048 neon_mixed_length (et, et.size);
18049 }
18050 else if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)
18051 && (inst.cond == 0xf || inst.cond == 0x10))
18052 {
18053 /* If parsing for MVE, vaddl/vsubl/vabdl{e,t} can only be vadd/vsub/vabd
18054 in an IT block with le/lt conditions. */
18055
18056 if (inst.cond == 0xf)
18057 inst.cond = 0xb;
18058 else if (inst.cond == 0x10)
18059 inst.cond = 0xd;
18060
18061 inst.pred_insn_type = INSIDE_IT_INSN;
18062
18063 if (inst.instruction == N_MNEM_vaddl)
18064 {
18065 inst.instruction = N_MNEM_vadd;
18066 do_neon_addsub_if_i ();
18067 }
18068 else if (inst.instruction == N_MNEM_vsubl)
18069 {
18070 inst.instruction = N_MNEM_vsub;
18071 do_neon_addsub_if_i ();
18072 }
18073 else if (inst.instruction == N_MNEM_vabdl)
18074 {
18075 inst.instruction = N_MNEM_vabd;
18076 do_neon_dyadic_if_su ();
18077 }
18078 }
18079 else
18080 first_error (BAD_FPU);
18081 }
18082
18083 static void
18084 do_neon_abal (void)
18085 {
18086 struct neon_type_el et = neon_check_type (3, NS_QDD,
18087 N_EQK | N_INT | N_DBL, N_EQK, N_SU_32 | N_KEY);
18088 neon_mixed_length (et, et.size);
18089 }
18090
18091 static void
18092 neon_mac_reg_scalar_long (unsigned regtypes, unsigned scalartypes)
18093 {
18094 if (inst.operands[2].isscalar)
18095 {
18096 struct neon_type_el et = neon_check_type (3, NS_QDS,
18097 N_EQK | N_DBL, N_EQK, regtypes | N_KEY);
18098 NEON_ENCODE (SCALAR, inst);
18099 neon_mul_mac (et, et.type == NT_unsigned);
18100 }
18101 else
18102 {
18103 struct neon_type_el et = neon_check_type (3, NS_QDD,
18104 N_EQK | N_DBL, N_EQK, scalartypes | N_KEY);
18105 NEON_ENCODE (INTEGER, inst);
18106 neon_mixed_length (et, et.size);
18107 }
18108 }
18109
18110 static void
18111 do_neon_mac_maybe_scalar_long (void)
18112 {
18113 neon_mac_reg_scalar_long (N_S16 | N_S32 | N_U16 | N_U32, N_SU_32);
18114 }
18115
18116 /* Like neon_scalar_for_mul, this function generate Rm encoding from GAS's
18117 internal SCALAR. QUAD_P is 1 if it's for Q format, otherwise it's 0. */
18118
18119 static unsigned
18120 neon_scalar_for_fmac_fp16_long (unsigned scalar, unsigned quad_p)
18121 {
18122 unsigned regno = NEON_SCALAR_REG (scalar);
18123 unsigned elno = NEON_SCALAR_INDEX (scalar);
18124
18125 if (quad_p)
18126 {
18127 if (regno > 7 || elno > 3)
18128 goto bad_scalar;
18129
18130 return ((regno & 0x7)
18131 | ((elno & 0x1) << 3)
18132 | (((elno >> 1) & 0x1) << 5));
18133 }
18134 else
18135 {
18136 if (regno > 15 || elno > 1)
18137 goto bad_scalar;
18138
18139 return (((regno & 0x1) << 5)
18140 | ((regno >> 1) & 0x7)
18141 | ((elno & 0x1) << 3));
18142 }
18143
18144 bad_scalar:
18145 first_error (_("scalar out of range for multiply instruction"));
18146 return 0;
18147 }
18148
18149 static void
18150 do_neon_fmac_maybe_scalar_long (int subtype)
18151 {
18152 enum neon_shape rs;
18153 int high8;
18154 /* NOTE: vfmal/vfmsl use slightly different NEON three-same encoding. 'size"
18155 field (bits[21:20]) has different meaning. For scalar index variant, it's
18156 used to differentiate add and subtract, otherwise it's with fixed value
18157 0x2. */
18158 int size = -1;
18159
18160 if (inst.cond != COND_ALWAYS)
18161 as_warn (_("vfmal/vfmsl with FP16 type cannot be conditional, the "
18162 "behaviour is UNPREDICTABLE"));
18163
18164 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16_fml),
18165 _(BAD_FP16));
18166
18167 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_armv8),
18168 _(BAD_FPU));
18169
18170 /* vfmal/vfmsl are in three-same D/Q register format or the third operand can
18171 be a scalar index register. */
18172 if (inst.operands[2].isscalar)
18173 {
18174 high8 = 0xfe000000;
18175 if (subtype)
18176 size = 16;
18177 rs = neon_select_shape (NS_DHS, NS_QDS, NS_NULL);
18178 }
18179 else
18180 {
18181 high8 = 0xfc000000;
18182 size = 32;
18183 if (subtype)
18184 inst.instruction |= (0x1 << 23);
18185 rs = neon_select_shape (NS_DHH, NS_QDD, NS_NULL);
18186 }
18187
18188 neon_check_type (3, rs, N_EQK, N_EQK, N_KEY | N_F16);
18189
18190 /* "opcode" from template has included "ubit", so simply pass 0 here. Also,
18191 the "S" bit in size field has been reused to differentiate vfmal and vfmsl,
18192 so we simply pass -1 as size. */
18193 unsigned quad_p = (rs == NS_QDD || rs == NS_QDS);
18194 neon_three_same (quad_p, 0, size);
18195
18196 /* Undo neon_dp_fixup. Redo the high eight bits. */
18197 inst.instruction &= 0x00ffffff;
18198 inst.instruction |= high8;
18199
18200 #define LOW1(R) ((R) & 0x1)
18201 #define HI4(R) (((R) >> 1) & 0xf)
18202 /* Unlike usually NEON three-same, encoding for Vn and Vm will depend on
18203 whether the instruction is in Q form and whether Vm is a scalar indexed
18204 operand. */
18205 if (inst.operands[2].isscalar)
18206 {
18207 unsigned rm
18208 = neon_scalar_for_fmac_fp16_long (inst.operands[2].reg, quad_p);
18209 inst.instruction &= 0xffffffd0;
18210 inst.instruction |= rm;
18211
18212 if (!quad_p)
18213 {
18214 /* Redo Rn as well. */
18215 inst.instruction &= 0xfff0ff7f;
18216 inst.instruction |= HI4 (inst.operands[1].reg) << 16;
18217 inst.instruction |= LOW1 (inst.operands[1].reg) << 7;
18218 }
18219 }
18220 else if (!quad_p)
18221 {
18222 /* Redo Rn and Rm. */
18223 inst.instruction &= 0xfff0ff50;
18224 inst.instruction |= HI4 (inst.operands[1].reg) << 16;
18225 inst.instruction |= LOW1 (inst.operands[1].reg) << 7;
18226 inst.instruction |= HI4 (inst.operands[2].reg);
18227 inst.instruction |= LOW1 (inst.operands[2].reg) << 5;
18228 }
18229 }
18230
18231 static void
18232 do_neon_vfmal (void)
18233 {
18234 return do_neon_fmac_maybe_scalar_long (0);
18235 }
18236
18237 static void
18238 do_neon_vfmsl (void)
18239 {
18240 return do_neon_fmac_maybe_scalar_long (1);
18241 }
18242
18243 static void
18244 do_neon_dyadic_wide (void)
18245 {
18246 struct neon_type_el et = neon_check_type (3, NS_QQD,
18247 N_EQK | N_DBL, N_EQK | N_DBL, N_SU_32 | N_KEY);
18248 neon_mixed_length (et, et.size);
18249 }
18250
18251 static void
18252 do_neon_dyadic_narrow (void)
18253 {
18254 struct neon_type_el et = neon_check_type (3, NS_QDD,
18255 N_EQK | N_DBL, N_EQK, N_I16 | N_I32 | N_I64 | N_KEY);
18256 /* Operand sign is unimportant, and the U bit is part of the opcode,
18257 so force the operand type to integer. */
18258 et.type = NT_integer;
18259 neon_mixed_length (et, et.size / 2);
18260 }
18261
18262 static void
18263 do_neon_mul_sat_scalar_long (void)
18264 {
18265 neon_mac_reg_scalar_long (N_S16 | N_S32, N_S16 | N_S32);
18266 }
18267
18268 static void
18269 do_neon_vmull (void)
18270 {
18271 if (inst.operands[2].isscalar)
18272 do_neon_mac_maybe_scalar_long ();
18273 else
18274 {
18275 struct neon_type_el et = neon_check_type (3, NS_QDD,
18276 N_EQK | N_DBL, N_EQK, N_SU_32 | N_P8 | N_P64 | N_KEY);
18277
18278 if (et.type == NT_poly)
18279 NEON_ENCODE (POLY, inst);
18280 else
18281 NEON_ENCODE (INTEGER, inst);
18282
18283 /* For polynomial encoding the U bit must be zero, and the size must
18284 be 8 (encoded as 0b00) or, on ARMv8 or later 64 (encoded, non
18285 obviously, as 0b10). */
18286 if (et.size == 64)
18287 {
18288 /* Check we're on the correct architecture. */
18289 if (!mark_feature_used (&fpu_crypto_ext_armv8))
18290 inst.error =
18291 _("Instruction form not available on this architecture.");
18292
18293 et.size = 32;
18294 }
18295
18296 neon_mixed_length (et, et.size);
18297 }
18298 }
18299
18300 static void
18301 do_neon_ext (void)
18302 {
18303 enum neon_shape rs = neon_select_shape (NS_DDDI, NS_QQQI, NS_NULL);
18304 struct neon_type_el et = neon_check_type (3, rs,
18305 N_EQK, N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
18306 unsigned imm = (inst.operands[3].imm * et.size) / 8;
18307
18308 constraint (imm >= (unsigned) (neon_quad (rs) ? 16 : 8),
18309 _("shift out of range"));
18310 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
18311 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
18312 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
18313 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
18314 inst.instruction |= LOW4 (inst.operands[2].reg);
18315 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
18316 inst.instruction |= neon_quad (rs) << 6;
18317 inst.instruction |= imm << 8;
18318
18319 neon_dp_fixup (&inst);
18320 }
18321
18322 static void
18323 do_neon_rev (void)
18324 {
18325 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
18326 struct neon_type_el et = neon_check_type (2, rs,
18327 N_EQK, N_8 | N_16 | N_32 | N_KEY);
18328 unsigned op = (inst.instruction >> 7) & 3;
18329 /* N (width of reversed regions) is encoded as part of the bitmask. We
18330 extract it here to check the elements to be reversed are smaller.
18331 Otherwise we'd get a reserved instruction. */
18332 unsigned elsize = (op == 2) ? 16 : (op == 1) ? 32 : (op == 0) ? 64 : 0;
18333 gas_assert (elsize != 0);
18334 constraint (et.size >= elsize,
18335 _("elements must be smaller than reversal region"));
18336 neon_two_same (neon_quad (rs), 1, et.size);
18337 }
18338
18339 static void
18340 do_neon_dup (void)
18341 {
18342 if (inst.operands[1].isscalar)
18343 {
18344 enum neon_shape rs = neon_select_shape (NS_DS, NS_QS, NS_NULL);
18345 struct neon_type_el et = neon_check_type (2, rs,
18346 N_EQK, N_8 | N_16 | N_32 | N_KEY);
18347 unsigned sizebits = et.size >> 3;
18348 unsigned dm = NEON_SCALAR_REG (inst.operands[1].reg);
18349 int logsize = neon_logbits (et.size);
18350 unsigned x = NEON_SCALAR_INDEX (inst.operands[1].reg) << logsize;
18351
18352 if (vfp_or_neon_is_neon (NEON_CHECK_CC) == FAIL)
18353 return;
18354
18355 NEON_ENCODE (SCALAR, inst);
18356 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
18357 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
18358 inst.instruction |= LOW4 (dm);
18359 inst.instruction |= HI1 (dm) << 5;
18360 inst.instruction |= neon_quad (rs) << 6;
18361 inst.instruction |= x << 17;
18362 inst.instruction |= sizebits << 16;
18363
18364 neon_dp_fixup (&inst);
18365 }
18366 else
18367 {
18368 enum neon_shape rs = neon_select_shape (NS_DR, NS_QR, NS_NULL);
18369 struct neon_type_el et = neon_check_type (2, rs,
18370 N_8 | N_16 | N_32 | N_KEY, N_EQK);
18371 /* Duplicate ARM register to lanes of vector. */
18372 NEON_ENCODE (ARMREG, inst);
18373 switch (et.size)
18374 {
18375 case 8: inst.instruction |= 0x400000; break;
18376 case 16: inst.instruction |= 0x000020; break;
18377 case 32: inst.instruction |= 0x000000; break;
18378 default: break;
18379 }
18380 inst.instruction |= LOW4 (inst.operands[1].reg) << 12;
18381 inst.instruction |= LOW4 (inst.operands[0].reg) << 16;
18382 inst.instruction |= HI1 (inst.operands[0].reg) << 7;
18383 inst.instruction |= neon_quad (rs) << 21;
18384 /* The encoding for this instruction is identical for the ARM and Thumb
18385 variants, except for the condition field. */
18386 do_vfp_cond_or_thumb ();
18387 }
18388 }
18389
18390 static void
18391 do_mve_mov (int toQ)
18392 {
18393 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
18394 return;
18395 if (inst.cond > COND_ALWAYS)
18396 inst.pred_insn_type = MVE_UNPREDICABLE_INSN;
18397
18398 unsigned Rt = 0, Rt2 = 1, Q0 = 2, Q1 = 3;
18399 if (toQ)
18400 {
18401 Q0 = 0;
18402 Q1 = 1;
18403 Rt = 2;
18404 Rt2 = 3;
18405 }
18406
18407 constraint (inst.operands[Q0].reg != inst.operands[Q1].reg + 2,
18408 _("Index one must be [2,3] and index two must be two less than"
18409 " index one."));
18410 constraint (inst.operands[Rt].reg == inst.operands[Rt2].reg,
18411 _("General purpose registers may not be the same"));
18412 constraint (inst.operands[Rt].reg == REG_SP
18413 || inst.operands[Rt2].reg == REG_SP,
18414 BAD_SP);
18415 constraint (inst.operands[Rt].reg == REG_PC
18416 || inst.operands[Rt2].reg == REG_PC,
18417 BAD_PC);
18418
18419 inst.instruction = 0xec000f00;
18420 inst.instruction |= HI1 (inst.operands[Q1].reg / 32) << 23;
18421 inst.instruction |= !!toQ << 20;
18422 inst.instruction |= inst.operands[Rt2].reg << 16;
18423 inst.instruction |= LOW4 (inst.operands[Q1].reg / 32) << 13;
18424 inst.instruction |= (inst.operands[Q1].reg % 4) << 4;
18425 inst.instruction |= inst.operands[Rt].reg;
18426 }
18427
18428 static void
18429 do_mve_movn (void)
18430 {
18431 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
18432 return;
18433
18434 if (inst.cond > COND_ALWAYS)
18435 inst.pred_insn_type = INSIDE_VPT_INSN;
18436 else
18437 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
18438
18439 struct neon_type_el et = neon_check_type (2, NS_QQ, N_EQK, N_I16 | N_I32
18440 | N_KEY);
18441
18442 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
18443 inst.instruction |= (neon_logbits (et.size) - 1) << 18;
18444 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
18445 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
18446 inst.instruction |= LOW4 (inst.operands[1].reg);
18447 inst.is_neon = 1;
18448
18449 }
18450
18451 /* VMOV has particularly many variations. It can be one of:
18452 0. VMOV<c><q> <Qd>, <Qm>
18453 1. VMOV<c><q> <Dd>, <Dm>
18454 (Register operations, which are VORR with Rm = Rn.)
18455 2. VMOV<c><q>.<dt> <Qd>, #<imm>
18456 3. VMOV<c><q>.<dt> <Dd>, #<imm>
18457 (Immediate loads.)
18458 4. VMOV<c><q>.<size> <Dn[x]>, <Rd>
18459 (ARM register to scalar.)
18460 5. VMOV<c><q> <Dm>, <Rd>, <Rn>
18461 (Two ARM registers to vector.)
18462 6. VMOV<c><q>.<dt> <Rd>, <Dn[x]>
18463 (Scalar to ARM register.)
18464 7. VMOV<c><q> <Rd>, <Rn>, <Dm>
18465 (Vector to two ARM registers.)
18466 8. VMOV.F32 <Sd>, <Sm>
18467 9. VMOV.F64 <Dd>, <Dm>
18468 (VFP register moves.)
18469 10. VMOV.F32 <Sd>, #imm
18470 11. VMOV.F64 <Dd>, #imm
18471 (VFP float immediate load.)
18472 12. VMOV <Rd>, <Sm>
18473 (VFP single to ARM reg.)
18474 13. VMOV <Sd>, <Rm>
18475 (ARM reg to VFP single.)
18476 14. VMOV <Rd>, <Re>, <Sn>, <Sm>
18477 (Two ARM regs to two VFP singles.)
18478 15. VMOV <Sd>, <Se>, <Rn>, <Rm>
18479 (Two VFP singles to two ARM regs.)
18480 16. VMOV<c> <Rt>, <Rt2>, <Qd[idx]>, <Qd[idx2]>
18481 17. VMOV<c> <Qd[idx]>, <Qd[idx2]>, <Rt>, <Rt2>
18482 18. VMOV<c>.<dt> <Rt>, <Qn[idx]>
18483 19. VMOV<c>.<dt> <Qd[idx]>, <Rt>
18484
18485 These cases can be disambiguated using neon_select_shape, except cases 1/9
18486 and 3/11 which depend on the operand type too.
18487
18488 All the encoded bits are hardcoded by this function.
18489
18490 Cases 4, 6 may be used with VFPv1 and above (only 32-bit transfers!).
18491 Cases 5, 7 may be used with VFPv2 and above.
18492
18493 FIXME: Some of the checking may be a bit sloppy (in a couple of cases you
18494 can specify a type where it doesn't make sense to, and is ignored). */
18495
18496 static void
18497 do_neon_mov (void)
18498 {
18499 enum neon_shape rs = neon_select_shape (NS_RRSS, NS_SSRR, NS_RRFF, NS_FFRR,
18500 NS_DRR, NS_RRD, NS_QQ, NS_DD, NS_QI,
18501 NS_DI, NS_SR, NS_RS, NS_FF, NS_FI,
18502 NS_RF, NS_FR, NS_HR, NS_RH, NS_HI,
18503 NS_NULL);
18504 struct neon_type_el et;
18505 const char *ldconst = 0;
18506
18507 switch (rs)
18508 {
18509 case NS_DD: /* case 1/9. */
18510 et = neon_check_type (2, rs, N_EQK, N_F64 | N_KEY);
18511 /* It is not an error here if no type is given. */
18512 inst.error = NULL;
18513 if (et.type == NT_float && et.size == 64)
18514 {
18515 do_vfp_nsyn_opcode ("fcpyd");
18516 break;
18517 }
18518 /* fall through. */
18519
18520 case NS_QQ: /* case 0/1. */
18521 {
18522 if (check_simd_pred_availability (0, NEON_CHECK_CC | NEON_CHECK_ARCH))
18523 return;
18524 /* The architecture manual I have doesn't explicitly state which
18525 value the U bit should have for register->register moves, but
18526 the equivalent VORR instruction has U = 0, so do that. */
18527 inst.instruction = 0x0200110;
18528 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
18529 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
18530 inst.instruction |= LOW4 (inst.operands[1].reg);
18531 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
18532 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
18533 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
18534 inst.instruction |= neon_quad (rs) << 6;
18535
18536 neon_dp_fixup (&inst);
18537 }
18538 break;
18539
18540 case NS_DI: /* case 3/11. */
18541 et = neon_check_type (2, rs, N_EQK, N_F64 | N_KEY);
18542 inst.error = NULL;
18543 if (et.type == NT_float && et.size == 64)
18544 {
18545 /* case 11 (fconstd). */
18546 ldconst = "fconstd";
18547 goto encode_fconstd;
18548 }
18549 /* fall through. */
18550
18551 case NS_QI: /* case 2/3. */
18552 if (check_simd_pred_availability (0, NEON_CHECK_CC | NEON_CHECK_ARCH))
18553 return;
18554 inst.instruction = 0x0800010;
18555 neon_move_immediate ();
18556 neon_dp_fixup (&inst);
18557 break;
18558
18559 case NS_SR: /* case 4. */
18560 {
18561 unsigned bcdebits = 0;
18562 int logsize;
18563 unsigned dn = NEON_SCALAR_REG (inst.operands[0].reg);
18564 unsigned x = NEON_SCALAR_INDEX (inst.operands[0].reg);
18565
18566 /* .<size> is optional here, defaulting to .32. */
18567 if (inst.vectype.elems == 0
18568 && inst.operands[0].vectype.type == NT_invtype
18569 && inst.operands[1].vectype.type == NT_invtype)
18570 {
18571 inst.vectype.el[0].type = NT_untyped;
18572 inst.vectype.el[0].size = 32;
18573 inst.vectype.elems = 1;
18574 }
18575
18576 et = neon_check_type (2, NS_NULL, N_8 | N_16 | N_32 | N_KEY, N_EQK);
18577 logsize = neon_logbits (et.size);
18578
18579 if (et.size != 32)
18580 {
18581 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)
18582 && vfp_or_neon_is_neon (NEON_CHECK_ARCH) == FAIL)
18583 return;
18584 }
18585 else
18586 {
18587 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1)
18588 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
18589 _(BAD_FPU));
18590 }
18591
18592 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
18593 {
18594 if (inst.operands[1].reg == REG_SP)
18595 as_tsktsk (MVE_BAD_SP);
18596 else if (inst.operands[1].reg == REG_PC)
18597 as_tsktsk (MVE_BAD_PC);
18598 }
18599 unsigned size = inst.operands[0].isscalar == 1 ? 64 : 128;
18600
18601 constraint (et.type == NT_invtype, _("bad type for scalar"));
18602 constraint (x >= size / et.size, _("scalar index out of range"));
18603
18604
18605 switch (et.size)
18606 {
18607 case 8: bcdebits = 0x8; break;
18608 case 16: bcdebits = 0x1; break;
18609 case 32: bcdebits = 0x0; break;
18610 default: ;
18611 }
18612
18613 bcdebits |= (x & ((1 << (3-logsize)) - 1)) << logsize;
18614
18615 inst.instruction = 0xe000b10;
18616 do_vfp_cond_or_thumb ();
18617 inst.instruction |= LOW4 (dn) << 16;
18618 inst.instruction |= HI1 (dn) << 7;
18619 inst.instruction |= inst.operands[1].reg << 12;
18620 inst.instruction |= (bcdebits & 3) << 5;
18621 inst.instruction |= ((bcdebits >> 2) & 3) << 21;
18622 inst.instruction |= (x >> (3-logsize)) << 16;
18623 }
18624 break;
18625
18626 case NS_DRR: /* case 5 (fmdrr). */
18627 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2)
18628 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
18629 _(BAD_FPU));
18630
18631 inst.instruction = 0xc400b10;
18632 do_vfp_cond_or_thumb ();
18633 inst.instruction |= LOW4 (inst.operands[0].reg);
18634 inst.instruction |= HI1 (inst.operands[0].reg) << 5;
18635 inst.instruction |= inst.operands[1].reg << 12;
18636 inst.instruction |= inst.operands[2].reg << 16;
18637 break;
18638
18639 case NS_RS: /* case 6. */
18640 {
18641 unsigned logsize;
18642 unsigned dn = NEON_SCALAR_REG (inst.operands[1].reg);
18643 unsigned x = NEON_SCALAR_INDEX (inst.operands[1].reg);
18644 unsigned abcdebits = 0;
18645
18646 /* .<dt> is optional here, defaulting to .32. */
18647 if (inst.vectype.elems == 0
18648 && inst.operands[0].vectype.type == NT_invtype
18649 && inst.operands[1].vectype.type == NT_invtype)
18650 {
18651 inst.vectype.el[0].type = NT_untyped;
18652 inst.vectype.el[0].size = 32;
18653 inst.vectype.elems = 1;
18654 }
18655
18656 et = neon_check_type (2, NS_NULL,
18657 N_EQK, N_S8 | N_S16 | N_U8 | N_U16 | N_32 | N_KEY);
18658 logsize = neon_logbits (et.size);
18659
18660 if (et.size != 32)
18661 {
18662 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)
18663 && vfp_or_neon_is_neon (NEON_CHECK_CC
18664 | NEON_CHECK_ARCH) == FAIL)
18665 return;
18666 }
18667 else
18668 {
18669 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1)
18670 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
18671 _(BAD_FPU));
18672 }
18673
18674 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
18675 {
18676 if (inst.operands[0].reg == REG_SP)
18677 as_tsktsk (MVE_BAD_SP);
18678 else if (inst.operands[0].reg == REG_PC)
18679 as_tsktsk (MVE_BAD_PC);
18680 }
18681
18682 unsigned size = inst.operands[1].isscalar == 1 ? 64 : 128;
18683
18684 constraint (et.type == NT_invtype, _("bad type for scalar"));
18685 constraint (x >= size / et.size, _("scalar index out of range"));
18686
18687 switch (et.size)
18688 {
18689 case 8: abcdebits = (et.type == NT_signed) ? 0x08 : 0x18; break;
18690 case 16: abcdebits = (et.type == NT_signed) ? 0x01 : 0x11; break;
18691 case 32: abcdebits = 0x00; break;
18692 default: ;
18693 }
18694
18695 abcdebits |= (x & ((1 << (3-logsize)) - 1)) << logsize;
18696 inst.instruction = 0xe100b10;
18697 do_vfp_cond_or_thumb ();
18698 inst.instruction |= LOW4 (dn) << 16;
18699 inst.instruction |= HI1 (dn) << 7;
18700 inst.instruction |= inst.operands[0].reg << 12;
18701 inst.instruction |= (abcdebits & 3) << 5;
18702 inst.instruction |= (abcdebits >> 2) << 21;
18703 inst.instruction |= (x >> (3-logsize)) << 16;
18704 }
18705 break;
18706
18707 case NS_RRD: /* case 7 (fmrrd). */
18708 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2)
18709 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
18710 _(BAD_FPU));
18711
18712 inst.instruction = 0xc500b10;
18713 do_vfp_cond_or_thumb ();
18714 inst.instruction |= inst.operands[0].reg << 12;
18715 inst.instruction |= inst.operands[1].reg << 16;
18716 inst.instruction |= LOW4 (inst.operands[2].reg);
18717 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
18718 break;
18719
18720 case NS_FF: /* case 8 (fcpys). */
18721 do_vfp_nsyn_opcode ("fcpys");
18722 break;
18723
18724 case NS_HI:
18725 case NS_FI: /* case 10 (fconsts). */
18726 ldconst = "fconsts";
18727 encode_fconstd:
18728 if (!inst.operands[1].immisfloat)
18729 {
18730 unsigned new_imm;
18731 /* Immediate has to fit in 8 bits so float is enough. */
18732 float imm = (float) inst.operands[1].imm;
18733 memcpy (&new_imm, &imm, sizeof (float));
18734 /* But the assembly may have been written to provide an integer
18735 bit pattern that equates to a float, so check that the
18736 conversion has worked. */
18737 if (is_quarter_float (new_imm))
18738 {
18739 if (is_quarter_float (inst.operands[1].imm))
18740 as_warn (_("immediate constant is valid both as a bit-pattern and a floating point value (using the fp value)"));
18741
18742 inst.operands[1].imm = new_imm;
18743 inst.operands[1].immisfloat = 1;
18744 }
18745 }
18746
18747 if (is_quarter_float (inst.operands[1].imm))
18748 {
18749 inst.operands[1].imm = neon_qfloat_bits (inst.operands[1].imm);
18750 do_vfp_nsyn_opcode (ldconst);
18751
18752 /* ARMv8.2 fp16 vmov.f16 instruction. */
18753 if (rs == NS_HI)
18754 do_scalar_fp16_v82_encode ();
18755 }
18756 else
18757 first_error (_("immediate out of range"));
18758 break;
18759
18760 case NS_RH:
18761 case NS_RF: /* case 12 (fmrs). */
18762 do_vfp_nsyn_opcode ("fmrs");
18763 /* ARMv8.2 fp16 vmov.f16 instruction. */
18764 if (rs == NS_RH)
18765 do_scalar_fp16_v82_encode ();
18766 break;
18767
18768 case NS_HR:
18769 case NS_FR: /* case 13 (fmsr). */
18770 do_vfp_nsyn_opcode ("fmsr");
18771 /* ARMv8.2 fp16 vmov.f16 instruction. */
18772 if (rs == NS_HR)
18773 do_scalar_fp16_v82_encode ();
18774 break;
18775
18776 case NS_RRSS:
18777 do_mve_mov (0);
18778 break;
18779 case NS_SSRR:
18780 do_mve_mov (1);
18781 break;
18782
18783 /* The encoders for the fmrrs and fmsrr instructions expect three operands
18784 (one of which is a list), but we have parsed four. Do some fiddling to
18785 make the operands what do_vfp_reg2_from_sp2 and do_vfp_sp2_from_reg2
18786 expect. */
18787 case NS_RRFF: /* case 14 (fmrrs). */
18788 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2)
18789 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
18790 _(BAD_FPU));
18791 constraint (inst.operands[3].reg != inst.operands[2].reg + 1,
18792 _("VFP registers must be adjacent"));
18793 inst.operands[2].imm = 2;
18794 memset (&inst.operands[3], '\0', sizeof (inst.operands[3]));
18795 do_vfp_nsyn_opcode ("fmrrs");
18796 break;
18797
18798 case NS_FFRR: /* case 15 (fmsrr). */
18799 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2)
18800 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
18801 _(BAD_FPU));
18802 constraint (inst.operands[1].reg != inst.operands[0].reg + 1,
18803 _("VFP registers must be adjacent"));
18804 inst.operands[1] = inst.operands[2];
18805 inst.operands[2] = inst.operands[3];
18806 inst.operands[0].imm = 2;
18807 memset (&inst.operands[3], '\0', sizeof (inst.operands[3]));
18808 do_vfp_nsyn_opcode ("fmsrr");
18809 break;
18810
18811 case NS_NULL:
18812 /* neon_select_shape has determined that the instruction
18813 shape is wrong and has already set the error message. */
18814 break;
18815
18816 default:
18817 abort ();
18818 }
18819 }
18820
18821 static void
18822 do_mve_movl (void)
18823 {
18824 if (!(inst.operands[0].present && inst.operands[0].isquad
18825 && inst.operands[1].present && inst.operands[1].isquad
18826 && !inst.operands[2].present))
18827 {
18828 inst.instruction = 0;
18829 inst.cond = 0xb;
18830 if (thumb_mode)
18831 set_pred_insn_type (INSIDE_IT_INSN);
18832 do_neon_mov ();
18833 return;
18834 }
18835
18836 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
18837 return;
18838
18839 if (inst.cond != COND_ALWAYS)
18840 inst.pred_insn_type = INSIDE_VPT_INSN;
18841
18842 struct neon_type_el et = neon_check_type (2, NS_QQ, N_EQK, N_S8 | N_U8
18843 | N_S16 | N_U16 | N_KEY);
18844
18845 inst.instruction |= (et.type == NT_unsigned) << 28;
18846 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
18847 inst.instruction |= (neon_logbits (et.size) + 1) << 19;
18848 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
18849 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
18850 inst.instruction |= LOW4 (inst.operands[1].reg);
18851 inst.is_neon = 1;
18852 }
18853
18854 static void
18855 do_neon_rshift_round_imm (void)
18856 {
18857 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
18858 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_ALL | N_KEY);
18859 int imm = inst.operands[2].imm;
18860
18861 /* imm == 0 case is encoded as VMOV for V{R}SHR. */
18862 if (imm == 0)
18863 {
18864 inst.operands[2].present = 0;
18865 do_neon_mov ();
18866 return;
18867 }
18868
18869 constraint (imm < 1 || (unsigned)imm > et.size,
18870 _("immediate out of range for shift"));
18871 neon_imm_shift (TRUE, et.type == NT_unsigned, neon_quad (rs), et,
18872 et.size - imm);
18873 }
18874
18875 static void
18876 do_neon_movhf (void)
18877 {
18878 enum neon_shape rs = neon_select_shape (NS_HH, NS_NULL);
18879 constraint (rs != NS_HH, _("invalid suffix"));
18880
18881 if (inst.cond != COND_ALWAYS)
18882 {
18883 if (thumb_mode)
18884 {
18885 as_warn (_("ARMv8.2 scalar fp16 instruction cannot be conditional,"
18886 " the behaviour is UNPREDICTABLE"));
18887 }
18888 else
18889 {
18890 inst.error = BAD_COND;
18891 return;
18892 }
18893 }
18894
18895 do_vfp_sp_monadic ();
18896
18897 inst.is_neon = 1;
18898 inst.instruction |= 0xf0000000;
18899 }
18900
18901 static void
18902 do_neon_movl (void)
18903 {
18904 struct neon_type_el et = neon_check_type (2, NS_QD,
18905 N_EQK | N_DBL, N_SU_32 | N_KEY);
18906 unsigned sizebits = et.size >> 3;
18907 inst.instruction |= sizebits << 19;
18908 neon_two_same (0, et.type == NT_unsigned, -1);
18909 }
18910
18911 static void
18912 do_neon_trn (void)
18913 {
18914 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
18915 struct neon_type_el et = neon_check_type (2, rs,
18916 N_EQK, N_8 | N_16 | N_32 | N_KEY);
18917 NEON_ENCODE (INTEGER, inst);
18918 neon_two_same (neon_quad (rs), 1, et.size);
18919 }
18920
18921 static void
18922 do_neon_zip_uzp (void)
18923 {
18924 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
18925 struct neon_type_el et = neon_check_type (2, rs,
18926 N_EQK, N_8 | N_16 | N_32 | N_KEY);
18927 if (rs == NS_DD && et.size == 32)
18928 {
18929 /* Special case: encode as VTRN.32 <Dd>, <Dm>. */
18930 inst.instruction = N_MNEM_vtrn;
18931 do_neon_trn ();
18932 return;
18933 }
18934 neon_two_same (neon_quad (rs), 1, et.size);
18935 }
18936
18937 static void
18938 do_neon_sat_abs_neg (void)
18939 {
18940 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
18941 struct neon_type_el et = neon_check_type (2, rs,
18942 N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
18943 neon_two_same (neon_quad (rs), 1, et.size);
18944 }
18945
18946 static void
18947 do_neon_pair_long (void)
18948 {
18949 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
18950 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_32 | N_KEY);
18951 /* Unsigned is encoded in OP field (bit 7) for these instruction. */
18952 inst.instruction |= (et.type == NT_unsigned) << 7;
18953 neon_two_same (neon_quad (rs), 1, et.size);
18954 }
18955
18956 static void
18957 do_neon_recip_est (void)
18958 {
18959 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
18960 struct neon_type_el et = neon_check_type (2, rs,
18961 N_EQK | N_FLT, N_F_16_32 | N_U32 | N_KEY);
18962 inst.instruction |= (et.type == NT_float) << 8;
18963 neon_two_same (neon_quad (rs), 1, et.size);
18964 }
18965
18966 static void
18967 do_neon_cls (void)
18968 {
18969 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
18970 struct neon_type_el et = neon_check_type (2, rs,
18971 N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
18972 neon_two_same (neon_quad (rs), 1, et.size);
18973 }
18974
18975 static void
18976 do_neon_clz (void)
18977 {
18978 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
18979 struct neon_type_el et = neon_check_type (2, rs,
18980 N_EQK, N_I8 | N_I16 | N_I32 | N_KEY);
18981 neon_two_same (neon_quad (rs), 1, et.size);
18982 }
18983
18984 static void
18985 do_neon_cnt (void)
18986 {
18987 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
18988 struct neon_type_el et = neon_check_type (2, rs,
18989 N_EQK | N_INT, N_8 | N_KEY);
18990 neon_two_same (neon_quad (rs), 1, et.size);
18991 }
18992
18993 static void
18994 do_neon_swp (void)
18995 {
18996 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
18997 neon_two_same (neon_quad (rs), 1, -1);
18998 }
18999
19000 static void
19001 do_neon_tbl_tbx (void)
19002 {
19003 unsigned listlenbits;
19004 neon_check_type (3, NS_DLD, N_EQK, N_EQK, N_8 | N_KEY);
19005
19006 if (inst.operands[1].imm < 1 || inst.operands[1].imm > 4)
19007 {
19008 first_error (_("bad list length for table lookup"));
19009 return;
19010 }
19011
19012 listlenbits = inst.operands[1].imm - 1;
19013 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
19014 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
19015 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
19016 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
19017 inst.instruction |= LOW4 (inst.operands[2].reg);
19018 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
19019 inst.instruction |= listlenbits << 8;
19020
19021 neon_dp_fixup (&inst);
19022 }
19023
19024 static void
19025 do_neon_ldm_stm (void)
19026 {
19027 /* P, U and L bits are part of bitmask. */
19028 int is_dbmode = (inst.instruction & (1 << 24)) != 0;
19029 unsigned offsetbits = inst.operands[1].imm * 2;
19030
19031 if (inst.operands[1].issingle)
19032 {
19033 do_vfp_nsyn_ldm_stm (is_dbmode);
19034 return;
19035 }
19036
19037 constraint (is_dbmode && !inst.operands[0].writeback,
19038 _("writeback (!) must be used for VLDMDB and VSTMDB"));
19039
19040 constraint (inst.operands[1].imm < 1 || inst.operands[1].imm > 16,
19041 _("register list must contain at least 1 and at most 16 "
19042 "registers"));
19043
19044 inst.instruction |= inst.operands[0].reg << 16;
19045 inst.instruction |= inst.operands[0].writeback << 21;
19046 inst.instruction |= LOW4 (inst.operands[1].reg) << 12;
19047 inst.instruction |= HI1 (inst.operands[1].reg) << 22;
19048
19049 inst.instruction |= offsetbits;
19050
19051 do_vfp_cond_or_thumb ();
19052 }
19053
19054 static void
19055 do_neon_ldr_str (void)
19056 {
19057 int is_ldr = (inst.instruction & (1 << 20)) != 0;
19058
19059 /* Use of PC in vstr in ARM mode is deprecated in ARMv7.
19060 And is UNPREDICTABLE in thumb mode. */
19061 if (!is_ldr
19062 && inst.operands[1].reg == REG_PC
19063 && (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v7) || thumb_mode))
19064 {
19065 if (thumb_mode)
19066 inst.error = _("Use of PC here is UNPREDICTABLE");
19067 else if (warn_on_deprecated)
19068 as_tsktsk (_("Use of PC here is deprecated"));
19069 }
19070
19071 if (inst.operands[0].issingle)
19072 {
19073 if (is_ldr)
19074 do_vfp_nsyn_opcode ("flds");
19075 else
19076 do_vfp_nsyn_opcode ("fsts");
19077
19078 /* ARMv8.2 vldr.16/vstr.16 instruction. */
19079 if (inst.vectype.el[0].size == 16)
19080 do_scalar_fp16_v82_encode ();
19081 }
19082 else
19083 {
19084 if (is_ldr)
19085 do_vfp_nsyn_opcode ("fldd");
19086 else
19087 do_vfp_nsyn_opcode ("fstd");
19088 }
19089 }
19090
19091 static void
19092 do_t_vldr_vstr_sysreg (void)
19093 {
19094 int fp_vldr_bitno = 20, sysreg_vldr_bitno = 20;
19095 bfd_boolean is_vldr = ((inst.instruction & (1 << fp_vldr_bitno)) != 0);
19096
19097 /* Use of PC is UNPREDICTABLE. */
19098 if (inst.operands[1].reg == REG_PC)
19099 inst.error = _("Use of PC here is UNPREDICTABLE");
19100
19101 if (inst.operands[1].immisreg)
19102 inst.error = _("instruction does not accept register index");
19103
19104 if (!inst.operands[1].isreg)
19105 inst.error = _("instruction does not accept PC-relative addressing");
19106
19107 if (abs (inst.operands[1].imm) >= (1 << 7))
19108 inst.error = _("immediate value out of range");
19109
19110 inst.instruction = 0xec000f80;
19111 if (is_vldr)
19112 inst.instruction |= 1 << sysreg_vldr_bitno;
19113 encode_arm_cp_address (1, TRUE, FALSE, BFD_RELOC_ARM_T32_VLDR_VSTR_OFF_IMM);
19114 inst.instruction |= (inst.operands[0].imm & 0x7) << 13;
19115 inst.instruction |= (inst.operands[0].imm & 0x8) << 19;
19116 }
19117
19118 static void
19119 do_vldr_vstr (void)
19120 {
19121 bfd_boolean sysreg_op = !inst.operands[0].isreg;
19122
19123 /* VLDR/VSTR (System Register). */
19124 if (sysreg_op)
19125 {
19126 if (!mark_feature_used (&arm_ext_v8_1m_main))
19127 as_bad (_("Instruction not permitted on this architecture"));
19128
19129 do_t_vldr_vstr_sysreg ();
19130 }
19131 /* VLDR/VSTR. */
19132 else
19133 {
19134 if (!mark_feature_used (&fpu_vfp_ext_v1xd))
19135 as_bad (_("Instruction not permitted on this architecture"));
19136 do_neon_ldr_str ();
19137 }
19138 }
19139
19140 /* "interleave" version also handles non-interleaving register VLD1/VST1
19141 instructions. */
19142
19143 static void
19144 do_neon_ld_st_interleave (void)
19145 {
19146 struct neon_type_el et = neon_check_type (1, NS_NULL,
19147 N_8 | N_16 | N_32 | N_64);
19148 unsigned alignbits = 0;
19149 unsigned idx;
19150 /* The bits in this table go:
19151 0: register stride of one (0) or two (1)
19152 1,2: register list length, minus one (1, 2, 3, 4).
19153 3,4: <n> in instruction type, minus one (VLD<n> / VST<n>).
19154 We use -1 for invalid entries. */
19155 const int typetable[] =
19156 {
19157 0x7, -1, 0xa, -1, 0x6, -1, 0x2, -1, /* VLD1 / VST1. */
19158 -1, -1, 0x8, 0x9, -1, -1, 0x3, -1, /* VLD2 / VST2. */
19159 -1, -1, -1, -1, 0x4, 0x5, -1, -1, /* VLD3 / VST3. */
19160 -1, -1, -1, -1, -1, -1, 0x0, 0x1 /* VLD4 / VST4. */
19161 };
19162 int typebits;
19163
19164 if (et.type == NT_invtype)
19165 return;
19166
19167 if (inst.operands[1].immisalign)
19168 switch (inst.operands[1].imm >> 8)
19169 {
19170 case 64: alignbits = 1; break;
19171 case 128:
19172 if (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 2
19173 && NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4)
19174 goto bad_alignment;
19175 alignbits = 2;
19176 break;
19177 case 256:
19178 if (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4)
19179 goto bad_alignment;
19180 alignbits = 3;
19181 break;
19182 default:
19183 bad_alignment:
19184 first_error (_("bad alignment"));
19185 return;
19186 }
19187
19188 inst.instruction |= alignbits << 4;
19189 inst.instruction |= neon_logbits (et.size) << 6;
19190
19191 /* Bits [4:6] of the immediate in a list specifier encode register stride
19192 (minus 1) in bit 4, and list length in bits [5:6]. We put the <n> of
19193 VLD<n>/VST<n> in bits [9:8] of the initial bitmask. Suck it out here, look
19194 up the right value for "type" in a table based on this value and the given
19195 list style, then stick it back. */
19196 idx = ((inst.operands[0].imm >> 4) & 7)
19197 | (((inst.instruction >> 8) & 3) << 3);
19198
19199 typebits = typetable[idx];
19200
19201 constraint (typebits == -1, _("bad list type for instruction"));
19202 constraint (((inst.instruction >> 8) & 3) && et.size == 64,
19203 BAD_EL_TYPE);
19204
19205 inst.instruction &= ~0xf00;
19206 inst.instruction |= typebits << 8;
19207 }
19208
19209 /* Check alignment is valid for do_neon_ld_st_lane and do_neon_ld_dup.
19210 *DO_ALIGN is set to 1 if the relevant alignment bit should be set, 0
19211 otherwise. The variable arguments are a list of pairs of legal (size, align)
19212 values, terminated with -1. */
19213
19214 static int
19215 neon_alignment_bit (int size, int align, int *do_alignment, ...)
19216 {
19217 va_list ap;
19218 int result = FAIL, thissize, thisalign;
19219
19220 if (!inst.operands[1].immisalign)
19221 {
19222 *do_alignment = 0;
19223 return SUCCESS;
19224 }
19225
19226 va_start (ap, do_alignment);
19227
19228 do
19229 {
19230 thissize = va_arg (ap, int);
19231 if (thissize == -1)
19232 break;
19233 thisalign = va_arg (ap, int);
19234
19235 if (size == thissize && align == thisalign)
19236 result = SUCCESS;
19237 }
19238 while (result != SUCCESS);
19239
19240 va_end (ap);
19241
19242 if (result == SUCCESS)
19243 *do_alignment = 1;
19244 else
19245 first_error (_("unsupported alignment for instruction"));
19246
19247 return result;
19248 }
19249
19250 static void
19251 do_neon_ld_st_lane (void)
19252 {
19253 struct neon_type_el et = neon_check_type (1, NS_NULL, N_8 | N_16 | N_32);
19254 int align_good, do_alignment = 0;
19255 int logsize = neon_logbits (et.size);
19256 int align = inst.operands[1].imm >> 8;
19257 int n = (inst.instruction >> 8) & 3;
19258 int max_el = 64 / et.size;
19259
19260 if (et.type == NT_invtype)
19261 return;
19262
19263 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != n + 1,
19264 _("bad list length"));
19265 constraint (NEON_LANE (inst.operands[0].imm) >= max_el,
19266 _("scalar index out of range"));
19267 constraint (n != 0 && NEON_REG_STRIDE (inst.operands[0].imm) == 2
19268 && et.size == 8,
19269 _("stride of 2 unavailable when element size is 8"));
19270
19271 switch (n)
19272 {
19273 case 0: /* VLD1 / VST1. */
19274 align_good = neon_alignment_bit (et.size, align, &do_alignment, 16, 16,
19275 32, 32, -1);
19276 if (align_good == FAIL)
19277 return;
19278 if (do_alignment)
19279 {
19280 unsigned alignbits = 0;
19281 switch (et.size)
19282 {
19283 case 16: alignbits = 0x1; break;
19284 case 32: alignbits = 0x3; break;
19285 default: ;
19286 }
19287 inst.instruction |= alignbits << 4;
19288 }
19289 break;
19290
19291 case 1: /* VLD2 / VST2. */
19292 align_good = neon_alignment_bit (et.size, align, &do_alignment, 8, 16,
19293 16, 32, 32, 64, -1);
19294 if (align_good == FAIL)
19295 return;
19296 if (do_alignment)
19297 inst.instruction |= 1 << 4;
19298 break;
19299
19300 case 2: /* VLD3 / VST3. */
19301 constraint (inst.operands[1].immisalign,
19302 _("can't use alignment with this instruction"));
19303 break;
19304
19305 case 3: /* VLD4 / VST4. */
19306 align_good = neon_alignment_bit (et.size, align, &do_alignment, 8, 32,
19307 16, 64, 32, 64, 32, 128, -1);
19308 if (align_good == FAIL)
19309 return;
19310 if (do_alignment)
19311 {
19312 unsigned alignbits = 0;
19313 switch (et.size)
19314 {
19315 case 8: alignbits = 0x1; break;
19316 case 16: alignbits = 0x1; break;
19317 case 32: alignbits = (align == 64) ? 0x1 : 0x2; break;
19318 default: ;
19319 }
19320 inst.instruction |= alignbits << 4;
19321 }
19322 break;
19323
19324 default: ;
19325 }
19326
19327 /* Reg stride of 2 is encoded in bit 5 when size==16, bit 6 when size==32. */
19328 if (n != 0 && NEON_REG_STRIDE (inst.operands[0].imm) == 2)
19329 inst.instruction |= 1 << (4 + logsize);
19330
19331 inst.instruction |= NEON_LANE (inst.operands[0].imm) << (logsize + 5);
19332 inst.instruction |= logsize << 10;
19333 }
19334
19335 /* Encode single n-element structure to all lanes VLD<n> instructions. */
19336
19337 static void
19338 do_neon_ld_dup (void)
19339 {
19340 struct neon_type_el et = neon_check_type (1, NS_NULL, N_8 | N_16 | N_32);
19341 int align_good, do_alignment = 0;
19342
19343 if (et.type == NT_invtype)
19344 return;
19345
19346 switch ((inst.instruction >> 8) & 3)
19347 {
19348 case 0: /* VLD1. */
19349 gas_assert (NEON_REG_STRIDE (inst.operands[0].imm) != 2);
19350 align_good = neon_alignment_bit (et.size, inst.operands[1].imm >> 8,
19351 &do_alignment, 16, 16, 32, 32, -1);
19352 if (align_good == FAIL)
19353 return;
19354 switch (NEON_REGLIST_LENGTH (inst.operands[0].imm))
19355 {
19356 case 1: break;
19357 case 2: inst.instruction |= 1 << 5; break;
19358 default: first_error (_("bad list length")); return;
19359 }
19360 inst.instruction |= neon_logbits (et.size) << 6;
19361 break;
19362
19363 case 1: /* VLD2. */
19364 align_good = neon_alignment_bit (et.size, inst.operands[1].imm >> 8,
19365 &do_alignment, 8, 16, 16, 32, 32, 64,
19366 -1);
19367 if (align_good == FAIL)
19368 return;
19369 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 2,
19370 _("bad list length"));
19371 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
19372 inst.instruction |= 1 << 5;
19373 inst.instruction |= neon_logbits (et.size) << 6;
19374 break;
19375
19376 case 2: /* VLD3. */
19377 constraint (inst.operands[1].immisalign,
19378 _("can't use alignment with this instruction"));
19379 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 3,
19380 _("bad list length"));
19381 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
19382 inst.instruction |= 1 << 5;
19383 inst.instruction |= neon_logbits (et.size) << 6;
19384 break;
19385
19386 case 3: /* VLD4. */
19387 {
19388 int align = inst.operands[1].imm >> 8;
19389 align_good = neon_alignment_bit (et.size, align, &do_alignment, 8, 32,
19390 16, 64, 32, 64, 32, 128, -1);
19391 if (align_good == FAIL)
19392 return;
19393 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4,
19394 _("bad list length"));
19395 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
19396 inst.instruction |= 1 << 5;
19397 if (et.size == 32 && align == 128)
19398 inst.instruction |= 0x3 << 6;
19399 else
19400 inst.instruction |= neon_logbits (et.size) << 6;
19401 }
19402 break;
19403
19404 default: ;
19405 }
19406
19407 inst.instruction |= do_alignment << 4;
19408 }
19409
19410 /* Disambiguate VLD<n> and VST<n> instructions, and fill in common bits (those
19411 apart from bits [11:4]. */
19412
19413 static void
19414 do_neon_ldx_stx (void)
19415 {
19416 if (inst.operands[1].isreg)
19417 constraint (inst.operands[1].reg == REG_PC, BAD_PC);
19418
19419 switch (NEON_LANE (inst.operands[0].imm))
19420 {
19421 case NEON_INTERLEAVE_LANES:
19422 NEON_ENCODE (INTERLV, inst);
19423 do_neon_ld_st_interleave ();
19424 break;
19425
19426 case NEON_ALL_LANES:
19427 NEON_ENCODE (DUP, inst);
19428 if (inst.instruction == N_INV)
19429 {
19430 first_error ("only loads support such operands");
19431 break;
19432 }
19433 do_neon_ld_dup ();
19434 break;
19435
19436 default:
19437 NEON_ENCODE (LANE, inst);
19438 do_neon_ld_st_lane ();
19439 }
19440
19441 /* L bit comes from bit mask. */
19442 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
19443 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
19444 inst.instruction |= inst.operands[1].reg << 16;
19445
19446 if (inst.operands[1].postind)
19447 {
19448 int postreg = inst.operands[1].imm & 0xf;
19449 constraint (!inst.operands[1].immisreg,
19450 _("post-index must be a register"));
19451 constraint (postreg == 0xd || postreg == 0xf,
19452 _("bad register for post-index"));
19453 inst.instruction |= postreg;
19454 }
19455 else
19456 {
19457 constraint (inst.operands[1].immisreg, BAD_ADDR_MODE);
19458 constraint (inst.relocs[0].exp.X_op != O_constant
19459 || inst.relocs[0].exp.X_add_number != 0,
19460 BAD_ADDR_MODE);
19461
19462 if (inst.operands[1].writeback)
19463 {
19464 inst.instruction |= 0xd;
19465 }
19466 else
19467 inst.instruction |= 0xf;
19468 }
19469
19470 if (thumb_mode)
19471 inst.instruction |= 0xf9000000;
19472 else
19473 inst.instruction |= 0xf4000000;
19474 }
19475
19476 /* FP v8. */
19477 static void
19478 do_vfp_nsyn_fpv8 (enum neon_shape rs)
19479 {
19480 /* Targets like FPv5-SP-D16 don't support FP v8 instructions with
19481 D register operands. */
19482 if (neon_shape_class[rs] == SC_DOUBLE)
19483 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
19484 _(BAD_FPU));
19485
19486 NEON_ENCODE (FPV8, inst);
19487
19488 if (rs == NS_FFF || rs == NS_HHH)
19489 {
19490 do_vfp_sp_dyadic ();
19491
19492 /* ARMv8.2 fp16 instruction. */
19493 if (rs == NS_HHH)
19494 do_scalar_fp16_v82_encode ();
19495 }
19496 else
19497 do_vfp_dp_rd_rn_rm ();
19498
19499 if (rs == NS_DDD)
19500 inst.instruction |= 0x100;
19501
19502 inst.instruction |= 0xf0000000;
19503 }
19504
19505 static void
19506 do_vsel (void)
19507 {
19508 set_pred_insn_type (OUTSIDE_PRED_INSN);
19509
19510 if (try_vfp_nsyn (3, do_vfp_nsyn_fpv8) != SUCCESS)
19511 first_error (_("invalid instruction shape"));
19512 }
19513
19514 static void
19515 do_vmaxnm (void)
19516 {
19517 set_pred_insn_type (OUTSIDE_PRED_INSN);
19518
19519 if (try_vfp_nsyn (3, do_vfp_nsyn_fpv8) == SUCCESS)
19520 return;
19521
19522 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH8) == FAIL)
19523 return;
19524
19525 neon_dyadic_misc (NT_untyped, N_F_16_32, 0);
19526 }
19527
19528 static void
19529 do_vrint_1 (enum neon_cvt_mode mode)
19530 {
19531 enum neon_shape rs = neon_select_shape (NS_HH, NS_FF, NS_DD, NS_QQ, NS_NULL);
19532 struct neon_type_el et;
19533
19534 if (rs == NS_NULL)
19535 return;
19536
19537 /* Targets like FPv5-SP-D16 don't support FP v8 instructions with
19538 D register operands. */
19539 if (neon_shape_class[rs] == SC_DOUBLE)
19540 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
19541 _(BAD_FPU));
19542
19543 et = neon_check_type (2, rs, N_EQK | N_VFP, N_F_ALL | N_KEY
19544 | N_VFP);
19545 if (et.type != NT_invtype)
19546 {
19547 /* VFP encodings. */
19548 if (mode == neon_cvt_mode_a || mode == neon_cvt_mode_n
19549 || mode == neon_cvt_mode_p || mode == neon_cvt_mode_m)
19550 set_pred_insn_type (OUTSIDE_PRED_INSN);
19551
19552 NEON_ENCODE (FPV8, inst);
19553 if (rs == NS_FF || rs == NS_HH)
19554 do_vfp_sp_monadic ();
19555 else
19556 do_vfp_dp_rd_rm ();
19557
19558 switch (mode)
19559 {
19560 case neon_cvt_mode_r: inst.instruction |= 0x00000000; break;
19561 case neon_cvt_mode_z: inst.instruction |= 0x00000080; break;
19562 case neon_cvt_mode_x: inst.instruction |= 0x00010000; break;
19563 case neon_cvt_mode_a: inst.instruction |= 0xf0000000; break;
19564 case neon_cvt_mode_n: inst.instruction |= 0xf0010000; break;
19565 case neon_cvt_mode_p: inst.instruction |= 0xf0020000; break;
19566 case neon_cvt_mode_m: inst.instruction |= 0xf0030000; break;
19567 default: abort ();
19568 }
19569
19570 inst.instruction |= (rs == NS_DD) << 8;
19571 do_vfp_cond_or_thumb ();
19572
19573 /* ARMv8.2 fp16 vrint instruction. */
19574 if (rs == NS_HH)
19575 do_scalar_fp16_v82_encode ();
19576 }
19577 else
19578 {
19579 /* Neon encodings (or something broken...). */
19580 inst.error = NULL;
19581 et = neon_check_type (2, rs, N_EQK, N_F_16_32 | N_KEY);
19582
19583 if (et.type == NT_invtype)
19584 return;
19585
19586 set_pred_insn_type (OUTSIDE_PRED_INSN);
19587 NEON_ENCODE (FLOAT, inst);
19588
19589 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH8) == FAIL)
19590 return;
19591
19592 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
19593 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
19594 inst.instruction |= LOW4 (inst.operands[1].reg);
19595 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
19596 inst.instruction |= neon_quad (rs) << 6;
19597 /* Mask off the original size bits and reencode them. */
19598 inst.instruction = ((inst.instruction & 0xfff3ffff)
19599 | neon_logbits (et.size) << 18);
19600
19601 switch (mode)
19602 {
19603 case neon_cvt_mode_z: inst.instruction |= 3 << 7; break;
19604 case neon_cvt_mode_x: inst.instruction |= 1 << 7; break;
19605 case neon_cvt_mode_a: inst.instruction |= 2 << 7; break;
19606 case neon_cvt_mode_n: inst.instruction |= 0 << 7; break;
19607 case neon_cvt_mode_p: inst.instruction |= 7 << 7; break;
19608 case neon_cvt_mode_m: inst.instruction |= 5 << 7; break;
19609 case neon_cvt_mode_r: inst.error = _("invalid rounding mode"); break;
19610 default: abort ();
19611 }
19612
19613 if (thumb_mode)
19614 inst.instruction |= 0xfc000000;
19615 else
19616 inst.instruction |= 0xf0000000;
19617 }
19618 }
19619
19620 static void
19621 do_vrintx (void)
19622 {
19623 do_vrint_1 (neon_cvt_mode_x);
19624 }
19625
19626 static void
19627 do_vrintz (void)
19628 {
19629 do_vrint_1 (neon_cvt_mode_z);
19630 }
19631
19632 static void
19633 do_vrintr (void)
19634 {
19635 do_vrint_1 (neon_cvt_mode_r);
19636 }
19637
19638 static void
19639 do_vrinta (void)
19640 {
19641 do_vrint_1 (neon_cvt_mode_a);
19642 }
19643
19644 static void
19645 do_vrintn (void)
19646 {
19647 do_vrint_1 (neon_cvt_mode_n);
19648 }
19649
19650 static void
19651 do_vrintp (void)
19652 {
19653 do_vrint_1 (neon_cvt_mode_p);
19654 }
19655
19656 static void
19657 do_vrintm (void)
19658 {
19659 do_vrint_1 (neon_cvt_mode_m);
19660 }
19661
19662 static unsigned
19663 neon_scalar_for_vcmla (unsigned opnd, unsigned elsize)
19664 {
19665 unsigned regno = NEON_SCALAR_REG (opnd);
19666 unsigned elno = NEON_SCALAR_INDEX (opnd);
19667
19668 if (elsize == 16 && elno < 2 && regno < 16)
19669 return regno | (elno << 4);
19670 else if (elsize == 32 && elno == 0)
19671 return regno;
19672
19673 first_error (_("scalar out of range"));
19674 return 0;
19675 }
19676
19677 static void
19678 do_vcmla (void)
19679 {
19680 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_armv8),
19681 _(BAD_FPU));
19682 constraint (inst.relocs[0].exp.X_op != O_constant,
19683 _("expression too complex"));
19684 unsigned rot = inst.relocs[0].exp.X_add_number;
19685 constraint (rot != 0 && rot != 90 && rot != 180 && rot != 270,
19686 _("immediate out of range"));
19687 rot /= 90;
19688 if (inst.operands[2].isscalar)
19689 {
19690 enum neon_shape rs = neon_select_shape (NS_DDSI, NS_QQSI, NS_NULL);
19691 unsigned size = neon_check_type (3, rs, N_EQK, N_EQK,
19692 N_KEY | N_F16 | N_F32).size;
19693 unsigned m = neon_scalar_for_vcmla (inst.operands[2].reg, size);
19694 inst.is_neon = 1;
19695 inst.instruction = 0xfe000800;
19696 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
19697 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
19698 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
19699 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
19700 inst.instruction |= LOW4 (m);
19701 inst.instruction |= HI1 (m) << 5;
19702 inst.instruction |= neon_quad (rs) << 6;
19703 inst.instruction |= rot << 20;
19704 inst.instruction |= (size == 32) << 23;
19705 }
19706 else
19707 {
19708 enum neon_shape rs = neon_select_shape (NS_DDDI, NS_QQQI, NS_NULL);
19709 unsigned size = neon_check_type (3, rs, N_EQK, N_EQK,
19710 N_KEY | N_F16 | N_F32).size;
19711 neon_three_same (neon_quad (rs), 0, -1);
19712 inst.instruction &= 0x00ffffff; /* Undo neon_dp_fixup. */
19713 inst.instruction |= 0xfc200800;
19714 inst.instruction |= rot << 23;
19715 inst.instruction |= (size == 32) << 20;
19716 }
19717 }
19718
19719 static void
19720 do_vcadd (void)
19721 {
19722 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_armv8),
19723 _(BAD_FPU));
19724 constraint (inst.relocs[0].exp.X_op != O_constant,
19725 _("expression too complex"));
19726 unsigned rot = inst.relocs[0].exp.X_add_number;
19727 constraint (rot != 90 && rot != 270, _("immediate out of range"));
19728 enum neon_shape rs = neon_select_shape (NS_DDDI, NS_QQQI, NS_NULL);
19729 unsigned size = neon_check_type (3, rs, N_EQK, N_EQK,
19730 N_KEY | N_F16 | N_F32).size;
19731 neon_three_same (neon_quad (rs), 0, -1);
19732 inst.instruction &= 0x00ffffff; /* Undo neon_dp_fixup. */
19733 inst.instruction |= 0xfc800800;
19734 inst.instruction |= (rot == 270) << 24;
19735 inst.instruction |= (size == 32) << 20;
19736 }
19737
19738 /* Dot Product instructions encoding support. */
19739
19740 static void
19741 do_neon_dotproduct (int unsigned_p)
19742 {
19743 enum neon_shape rs;
19744 unsigned scalar_oprd2 = 0;
19745 int high8;
19746
19747 if (inst.cond != COND_ALWAYS)
19748 as_warn (_("Dot Product instructions cannot be conditional, the behaviour "
19749 "is UNPREDICTABLE"));
19750
19751 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_armv8),
19752 _(BAD_FPU));
19753
19754 /* Dot Product instructions are in three-same D/Q register format or the third
19755 operand can be a scalar index register. */
19756 if (inst.operands[2].isscalar)
19757 {
19758 scalar_oprd2 = neon_scalar_for_mul (inst.operands[2].reg, 32);
19759 high8 = 0xfe000000;
19760 rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
19761 }
19762 else
19763 {
19764 high8 = 0xfc000000;
19765 rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
19766 }
19767
19768 if (unsigned_p)
19769 neon_check_type (3, rs, N_EQK, N_EQK, N_KEY | N_U8);
19770 else
19771 neon_check_type (3, rs, N_EQK, N_EQK, N_KEY | N_S8);
19772
19773 /* The "U" bit in traditional Three Same encoding is fixed to 0 for Dot
19774 Product instruction, so we pass 0 as the "ubit" parameter. And the
19775 "Size" field are fixed to 0x2, so we pass 32 as the "size" parameter. */
19776 neon_three_same (neon_quad (rs), 0, 32);
19777
19778 /* Undo neon_dp_fixup. Dot Product instructions are using a slightly
19779 different NEON three-same encoding. */
19780 inst.instruction &= 0x00ffffff;
19781 inst.instruction |= high8;
19782 /* Encode 'U' bit which indicates signedness. */
19783 inst.instruction |= (unsigned_p ? 1 : 0) << 4;
19784 /* Re-encode operand2 if it's indexed scalar operand. What has been encoded
19785 from inst.operand[2].reg in neon_three_same is GAS's internal encoding, not
19786 the instruction encoding. */
19787 if (inst.operands[2].isscalar)
19788 {
19789 inst.instruction &= 0xffffffd0;
19790 inst.instruction |= LOW4 (scalar_oprd2);
19791 inst.instruction |= HI1 (scalar_oprd2) << 5;
19792 }
19793 }
19794
19795 /* Dot Product instructions for signed integer. */
19796
19797 static void
19798 do_neon_dotproduct_s (void)
19799 {
19800 return do_neon_dotproduct (0);
19801 }
19802
19803 /* Dot Product instructions for unsigned integer. */
19804
19805 static void
19806 do_neon_dotproduct_u (void)
19807 {
19808 return do_neon_dotproduct (1);
19809 }
19810
19811 /* Crypto v1 instructions. */
19812 static void
19813 do_crypto_2op_1 (unsigned elttype, int op)
19814 {
19815 set_pred_insn_type (OUTSIDE_PRED_INSN);
19816
19817 if (neon_check_type (2, NS_QQ, N_EQK | N_UNT, elttype | N_UNT | N_KEY).type
19818 == NT_invtype)
19819 return;
19820
19821 inst.error = NULL;
19822
19823 NEON_ENCODE (INTEGER, inst);
19824 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
19825 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
19826 inst.instruction |= LOW4 (inst.operands[1].reg);
19827 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
19828 if (op != -1)
19829 inst.instruction |= op << 6;
19830
19831 if (thumb_mode)
19832 inst.instruction |= 0xfc000000;
19833 else
19834 inst.instruction |= 0xf0000000;
19835 }
19836
19837 static void
19838 do_crypto_3op_1 (int u, int op)
19839 {
19840 set_pred_insn_type (OUTSIDE_PRED_INSN);
19841
19842 if (neon_check_type (3, NS_QQQ, N_EQK | N_UNT, N_EQK | N_UNT,
19843 N_32 | N_UNT | N_KEY).type == NT_invtype)
19844 return;
19845
19846 inst.error = NULL;
19847
19848 NEON_ENCODE (INTEGER, inst);
19849 neon_three_same (1, u, 8 << op);
19850 }
19851
19852 static void
19853 do_aese (void)
19854 {
19855 do_crypto_2op_1 (N_8, 0);
19856 }
19857
19858 static void
19859 do_aesd (void)
19860 {
19861 do_crypto_2op_1 (N_8, 1);
19862 }
19863
19864 static void
19865 do_aesmc (void)
19866 {
19867 do_crypto_2op_1 (N_8, 2);
19868 }
19869
19870 static void
19871 do_aesimc (void)
19872 {
19873 do_crypto_2op_1 (N_8, 3);
19874 }
19875
19876 static void
19877 do_sha1c (void)
19878 {
19879 do_crypto_3op_1 (0, 0);
19880 }
19881
19882 static void
19883 do_sha1p (void)
19884 {
19885 do_crypto_3op_1 (0, 1);
19886 }
19887
19888 static void
19889 do_sha1m (void)
19890 {
19891 do_crypto_3op_1 (0, 2);
19892 }
19893
19894 static void
19895 do_sha1su0 (void)
19896 {
19897 do_crypto_3op_1 (0, 3);
19898 }
19899
19900 static void
19901 do_sha256h (void)
19902 {
19903 do_crypto_3op_1 (1, 0);
19904 }
19905
19906 static void
19907 do_sha256h2 (void)
19908 {
19909 do_crypto_3op_1 (1, 1);
19910 }
19911
19912 static void
19913 do_sha256su1 (void)
19914 {
19915 do_crypto_3op_1 (1, 2);
19916 }
19917
19918 static void
19919 do_sha1h (void)
19920 {
19921 do_crypto_2op_1 (N_32, -1);
19922 }
19923
19924 static void
19925 do_sha1su1 (void)
19926 {
19927 do_crypto_2op_1 (N_32, 0);
19928 }
19929
19930 static void
19931 do_sha256su0 (void)
19932 {
19933 do_crypto_2op_1 (N_32, 1);
19934 }
19935
19936 static void
19937 do_crc32_1 (unsigned int poly, unsigned int sz)
19938 {
19939 unsigned int Rd = inst.operands[0].reg;
19940 unsigned int Rn = inst.operands[1].reg;
19941 unsigned int Rm = inst.operands[2].reg;
19942
19943 set_pred_insn_type (OUTSIDE_PRED_INSN);
19944 inst.instruction |= LOW4 (Rd) << (thumb_mode ? 8 : 12);
19945 inst.instruction |= LOW4 (Rn) << 16;
19946 inst.instruction |= LOW4 (Rm);
19947 inst.instruction |= sz << (thumb_mode ? 4 : 21);
19948 inst.instruction |= poly << (thumb_mode ? 20 : 9);
19949
19950 if (Rd == REG_PC || Rn == REG_PC || Rm == REG_PC)
19951 as_warn (UNPRED_REG ("r15"));
19952 }
19953
19954 static void
19955 do_crc32b (void)
19956 {
19957 do_crc32_1 (0, 0);
19958 }
19959
19960 static void
19961 do_crc32h (void)
19962 {
19963 do_crc32_1 (0, 1);
19964 }
19965
19966 static void
19967 do_crc32w (void)
19968 {
19969 do_crc32_1 (0, 2);
19970 }
19971
19972 static void
19973 do_crc32cb (void)
19974 {
19975 do_crc32_1 (1, 0);
19976 }
19977
19978 static void
19979 do_crc32ch (void)
19980 {
19981 do_crc32_1 (1, 1);
19982 }
19983
19984 static void
19985 do_crc32cw (void)
19986 {
19987 do_crc32_1 (1, 2);
19988 }
19989
19990 static void
19991 do_vjcvt (void)
19992 {
19993 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
19994 _(BAD_FPU));
19995 neon_check_type (2, NS_FD, N_S32, N_F64);
19996 do_vfp_sp_dp_cvt ();
19997 do_vfp_cond_or_thumb ();
19998 }
19999
20000 \f
20001 /* Overall per-instruction processing. */
20002
20003 /* We need to be able to fix up arbitrary expressions in some statements.
20004 This is so that we can handle symbols that are an arbitrary distance from
20005 the pc. The most common cases are of the form ((+/-sym -/+ . - 8) & mask),
20006 which returns part of an address in a form which will be valid for
20007 a data instruction. We do this by pushing the expression into a symbol
20008 in the expr_section, and creating a fix for that. */
20009
20010 static void
20011 fix_new_arm (fragS * frag,
20012 int where,
20013 short int size,
20014 expressionS * exp,
20015 int pc_rel,
20016 int reloc)
20017 {
20018 fixS * new_fix;
20019
20020 switch (exp->X_op)
20021 {
20022 case O_constant:
20023 if (pc_rel)
20024 {
20025 /* Create an absolute valued symbol, so we have something to
20026 refer to in the object file. Unfortunately for us, gas's
20027 generic expression parsing will already have folded out
20028 any use of .set foo/.type foo %function that may have
20029 been used to set type information of the target location,
20030 that's being specified symbolically. We have to presume
20031 the user knows what they are doing. */
20032 char name[16 + 8];
20033 symbolS *symbol;
20034
20035 sprintf (name, "*ABS*0x%lx", (unsigned long)exp->X_add_number);
20036
20037 symbol = symbol_find_or_make (name);
20038 S_SET_SEGMENT (symbol, absolute_section);
20039 symbol_set_frag (symbol, &zero_address_frag);
20040 S_SET_VALUE (symbol, exp->X_add_number);
20041 exp->X_op = O_symbol;
20042 exp->X_add_symbol = symbol;
20043 exp->X_add_number = 0;
20044 }
20045 /* FALLTHROUGH */
20046 case O_symbol:
20047 case O_add:
20048 case O_subtract:
20049 new_fix = fix_new_exp (frag, where, size, exp, pc_rel,
20050 (enum bfd_reloc_code_real) reloc);
20051 break;
20052
20053 default:
20054 new_fix = (fixS *) fix_new (frag, where, size, make_expr_symbol (exp), 0,
20055 pc_rel, (enum bfd_reloc_code_real) reloc);
20056 break;
20057 }
20058
20059 /* Mark whether the fix is to a THUMB instruction, or an ARM
20060 instruction. */
20061 new_fix->tc_fix_data = thumb_mode;
20062 }
20063
20064 /* Create a frg for an instruction requiring relaxation. */
20065 static void
20066 output_relax_insn (void)
20067 {
20068 char * to;
20069 symbolS *sym;
20070 int offset;
20071
20072 /* The size of the instruction is unknown, so tie the debug info to the
20073 start of the instruction. */
20074 dwarf2_emit_insn (0);
20075
20076 switch (inst.relocs[0].exp.X_op)
20077 {
20078 case O_symbol:
20079 sym = inst.relocs[0].exp.X_add_symbol;
20080 offset = inst.relocs[0].exp.X_add_number;
20081 break;
20082 case O_constant:
20083 sym = NULL;
20084 offset = inst.relocs[0].exp.X_add_number;
20085 break;
20086 default:
20087 sym = make_expr_symbol (&inst.relocs[0].exp);
20088 offset = 0;
20089 break;
20090 }
20091 to = frag_var (rs_machine_dependent, INSN_SIZE, THUMB_SIZE,
20092 inst.relax, sym, offset, NULL/*offset, opcode*/);
20093 md_number_to_chars (to, inst.instruction, THUMB_SIZE);
20094 }
20095
20096 /* Write a 32-bit thumb instruction to buf. */
20097 static void
20098 put_thumb32_insn (char * buf, unsigned long insn)
20099 {
20100 md_number_to_chars (buf, insn >> 16, THUMB_SIZE);
20101 md_number_to_chars (buf + THUMB_SIZE, insn, THUMB_SIZE);
20102 }
20103
20104 static void
20105 output_inst (const char * str)
20106 {
20107 char * to = NULL;
20108
20109 if (inst.error)
20110 {
20111 as_bad ("%s -- `%s'", inst.error, str);
20112 return;
20113 }
20114 if (inst.relax)
20115 {
20116 output_relax_insn ();
20117 return;
20118 }
20119 if (inst.size == 0)
20120 return;
20121
20122 to = frag_more (inst.size);
20123 /* PR 9814: Record the thumb mode into the current frag so that we know
20124 what type of NOP padding to use, if necessary. We override any previous
20125 setting so that if the mode has changed then the NOPS that we use will
20126 match the encoding of the last instruction in the frag. */
20127 frag_now->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
20128
20129 if (thumb_mode && (inst.size > THUMB_SIZE))
20130 {
20131 gas_assert (inst.size == (2 * THUMB_SIZE));
20132 put_thumb32_insn (to, inst.instruction);
20133 }
20134 else if (inst.size > INSN_SIZE)
20135 {
20136 gas_assert (inst.size == (2 * INSN_SIZE));
20137 md_number_to_chars (to, inst.instruction, INSN_SIZE);
20138 md_number_to_chars (to + INSN_SIZE, inst.instruction, INSN_SIZE);
20139 }
20140 else
20141 md_number_to_chars (to, inst.instruction, inst.size);
20142
20143 int r;
20144 for (r = 0; r < ARM_IT_MAX_RELOCS; r++)
20145 {
20146 if (inst.relocs[r].type != BFD_RELOC_UNUSED)
20147 fix_new_arm (frag_now, to - frag_now->fr_literal,
20148 inst.size, & inst.relocs[r].exp, inst.relocs[r].pc_rel,
20149 inst.relocs[r].type);
20150 }
20151
20152 dwarf2_emit_insn (inst.size);
20153 }
20154
20155 static char *
20156 output_it_inst (int cond, int mask, char * to)
20157 {
20158 unsigned long instruction = 0xbf00;
20159
20160 mask &= 0xf;
20161 instruction |= mask;
20162 instruction |= cond << 4;
20163
20164 if (to == NULL)
20165 {
20166 to = frag_more (2);
20167 #ifdef OBJ_ELF
20168 dwarf2_emit_insn (2);
20169 #endif
20170 }
20171
20172 md_number_to_chars (to, instruction, 2);
20173
20174 return to;
20175 }
20176
20177 /* Tag values used in struct asm_opcode's tag field. */
20178 enum opcode_tag
20179 {
20180 OT_unconditional, /* Instruction cannot be conditionalized.
20181 The ARM condition field is still 0xE. */
20182 OT_unconditionalF, /* Instruction cannot be conditionalized
20183 and carries 0xF in its ARM condition field. */
20184 OT_csuffix, /* Instruction takes a conditional suffix. */
20185 OT_csuffixF, /* Some forms of the instruction take a scalar
20186 conditional suffix, others place 0xF where the
20187 condition field would be, others take a vector
20188 conditional suffix. */
20189 OT_cinfix3, /* Instruction takes a conditional infix,
20190 beginning at character index 3. (In
20191 unified mode, it becomes a suffix.) */
20192 OT_cinfix3_deprecated, /* The same as OT_cinfix3. This is used for
20193 tsts, cmps, cmns, and teqs. */
20194 OT_cinfix3_legacy, /* Legacy instruction takes a conditional infix at
20195 character index 3, even in unified mode. Used for
20196 legacy instructions where suffix and infix forms
20197 may be ambiguous. */
20198 OT_csuf_or_in3, /* Instruction takes either a conditional
20199 suffix or an infix at character index 3. */
20200 OT_odd_infix_unc, /* This is the unconditional variant of an
20201 instruction that takes a conditional infix
20202 at an unusual position. In unified mode,
20203 this variant will accept a suffix. */
20204 OT_odd_infix_0 /* Values greater than or equal to OT_odd_infix_0
20205 are the conditional variants of instructions that
20206 take conditional infixes in unusual positions.
20207 The infix appears at character index
20208 (tag - OT_odd_infix_0). These are not accepted
20209 in unified mode. */
20210 };
20211
20212 /* Subroutine of md_assemble, responsible for looking up the primary
20213 opcode from the mnemonic the user wrote. STR points to the
20214 beginning of the mnemonic.
20215
20216 This is not simply a hash table lookup, because of conditional
20217 variants. Most instructions have conditional variants, which are
20218 expressed with a _conditional affix_ to the mnemonic. If we were
20219 to encode each conditional variant as a literal string in the opcode
20220 table, it would have approximately 20,000 entries.
20221
20222 Most mnemonics take this affix as a suffix, and in unified syntax,
20223 'most' is upgraded to 'all'. However, in the divided syntax, some
20224 instructions take the affix as an infix, notably the s-variants of
20225 the arithmetic instructions. Of those instructions, all but six
20226 have the infix appear after the third character of the mnemonic.
20227
20228 Accordingly, the algorithm for looking up primary opcodes given
20229 an identifier is:
20230
20231 1. Look up the identifier in the opcode table.
20232 If we find a match, go to step U.
20233
20234 2. Look up the last two characters of the identifier in the
20235 conditions table. If we find a match, look up the first N-2
20236 characters of the identifier in the opcode table. If we
20237 find a match, go to step CE.
20238
20239 3. Look up the fourth and fifth characters of the identifier in
20240 the conditions table. If we find a match, extract those
20241 characters from the identifier, and look up the remaining
20242 characters in the opcode table. If we find a match, go
20243 to step CM.
20244
20245 4. Fail.
20246
20247 U. Examine the tag field of the opcode structure, in case this is
20248 one of the six instructions with its conditional infix in an
20249 unusual place. If it is, the tag tells us where to find the
20250 infix; look it up in the conditions table and set inst.cond
20251 accordingly. Otherwise, this is an unconditional instruction.
20252 Again set inst.cond accordingly. Return the opcode structure.
20253
20254 CE. Examine the tag field to make sure this is an instruction that
20255 should receive a conditional suffix. If it is not, fail.
20256 Otherwise, set inst.cond from the suffix we already looked up,
20257 and return the opcode structure.
20258
20259 CM. Examine the tag field to make sure this is an instruction that
20260 should receive a conditional infix after the third character.
20261 If it is not, fail. Otherwise, undo the edits to the current
20262 line of input and proceed as for case CE. */
20263
20264 static const struct asm_opcode *
20265 opcode_lookup (char **str)
20266 {
20267 char *end, *base;
20268 char *affix;
20269 const struct asm_opcode *opcode;
20270 const struct asm_cond *cond;
20271 char save[2];
20272
20273 /* Scan up to the end of the mnemonic, which must end in white space,
20274 '.' (in unified mode, or for Neon/VFP instructions), or end of string. */
20275 for (base = end = *str; *end != '\0'; end++)
20276 if (*end == ' ' || *end == '.')
20277 break;
20278
20279 if (end == base)
20280 return NULL;
20281
20282 /* Handle a possible width suffix and/or Neon type suffix. */
20283 if (end[0] == '.')
20284 {
20285 int offset = 2;
20286
20287 /* The .w and .n suffixes are only valid if the unified syntax is in
20288 use. */
20289 if (unified_syntax && end[1] == 'w')
20290 inst.size_req = 4;
20291 else if (unified_syntax && end[1] == 'n')
20292 inst.size_req = 2;
20293 else
20294 offset = 0;
20295
20296 inst.vectype.elems = 0;
20297
20298 *str = end + offset;
20299
20300 if (end[offset] == '.')
20301 {
20302 /* See if we have a Neon type suffix (possible in either unified or
20303 non-unified ARM syntax mode). */
20304 if (parse_neon_type (&inst.vectype, str) == FAIL)
20305 return NULL;
20306 }
20307 else if (end[offset] != '\0' && end[offset] != ' ')
20308 return NULL;
20309 }
20310 else
20311 *str = end;
20312
20313 /* Look for unaffixed or special-case affixed mnemonic. */
20314 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
20315 end - base);
20316 if (opcode)
20317 {
20318 /* step U */
20319 if (opcode->tag < OT_odd_infix_0)
20320 {
20321 inst.cond = COND_ALWAYS;
20322 return opcode;
20323 }
20324
20325 if (warn_on_deprecated && unified_syntax)
20326 as_tsktsk (_("conditional infixes are deprecated in unified syntax"));
20327 affix = base + (opcode->tag - OT_odd_infix_0);
20328 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
20329 gas_assert (cond);
20330
20331 inst.cond = cond->value;
20332 return opcode;
20333 }
20334 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
20335 {
20336 /* Cannot have a conditional suffix on a mnemonic of less than a character.
20337 */
20338 if (end - base < 2)
20339 return NULL;
20340 affix = end - 1;
20341 cond = (const struct asm_cond *) hash_find_n (arm_vcond_hsh, affix, 1);
20342 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
20343 affix - base);
20344 /* If this opcode can not be vector predicated then don't accept it with a
20345 vector predication code. */
20346 if (opcode && !opcode->mayBeVecPred)
20347 opcode = NULL;
20348 }
20349 if (!opcode || !cond)
20350 {
20351 /* Cannot have a conditional suffix on a mnemonic of less than two
20352 characters. */
20353 if (end - base < 3)
20354 return NULL;
20355
20356 /* Look for suffixed mnemonic. */
20357 affix = end - 2;
20358 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
20359 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
20360 affix - base);
20361 }
20362
20363 if (opcode && cond)
20364 {
20365 /* step CE */
20366 switch (opcode->tag)
20367 {
20368 case OT_cinfix3_legacy:
20369 /* Ignore conditional suffixes matched on infix only mnemonics. */
20370 break;
20371
20372 case OT_cinfix3:
20373 case OT_cinfix3_deprecated:
20374 case OT_odd_infix_unc:
20375 if (!unified_syntax)
20376 return NULL;
20377 /* Fall through. */
20378
20379 case OT_csuffix:
20380 case OT_csuffixF:
20381 case OT_csuf_or_in3:
20382 inst.cond = cond->value;
20383 return opcode;
20384
20385 case OT_unconditional:
20386 case OT_unconditionalF:
20387 if (thumb_mode)
20388 inst.cond = cond->value;
20389 else
20390 {
20391 /* Delayed diagnostic. */
20392 inst.error = BAD_COND;
20393 inst.cond = COND_ALWAYS;
20394 }
20395 return opcode;
20396
20397 default:
20398 return NULL;
20399 }
20400 }
20401
20402 /* Cannot have a usual-position infix on a mnemonic of less than
20403 six characters (five would be a suffix). */
20404 if (end - base < 6)
20405 return NULL;
20406
20407 /* Look for infixed mnemonic in the usual position. */
20408 affix = base + 3;
20409 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
20410 if (!cond)
20411 return NULL;
20412
20413 memcpy (save, affix, 2);
20414 memmove (affix, affix + 2, (end - affix) - 2);
20415 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
20416 (end - base) - 2);
20417 memmove (affix + 2, affix, (end - affix) - 2);
20418 memcpy (affix, save, 2);
20419
20420 if (opcode
20421 && (opcode->tag == OT_cinfix3
20422 || opcode->tag == OT_cinfix3_deprecated
20423 || opcode->tag == OT_csuf_or_in3
20424 || opcode->tag == OT_cinfix3_legacy))
20425 {
20426 /* Step CM. */
20427 if (warn_on_deprecated && unified_syntax
20428 && (opcode->tag == OT_cinfix3
20429 || opcode->tag == OT_cinfix3_deprecated))
20430 as_tsktsk (_("conditional infixes are deprecated in unified syntax"));
20431
20432 inst.cond = cond->value;
20433 return opcode;
20434 }
20435
20436 return NULL;
20437 }
20438
20439 /* This function generates an initial IT instruction, leaving its block
20440 virtually open for the new instructions. Eventually,
20441 the mask will be updated by now_pred_add_mask () each time
20442 a new instruction needs to be included in the IT block.
20443 Finally, the block is closed with close_automatic_it_block ().
20444 The block closure can be requested either from md_assemble (),
20445 a tencode (), or due to a label hook. */
20446
20447 static void
20448 new_automatic_it_block (int cond)
20449 {
20450 now_pred.state = AUTOMATIC_PRED_BLOCK;
20451 now_pred.mask = 0x18;
20452 now_pred.cc = cond;
20453 now_pred.block_length = 1;
20454 mapping_state (MAP_THUMB);
20455 now_pred.insn = output_it_inst (cond, now_pred.mask, NULL);
20456 now_pred.warn_deprecated = FALSE;
20457 now_pred.insn_cond = TRUE;
20458 }
20459
20460 /* Close an automatic IT block.
20461 See comments in new_automatic_it_block (). */
20462
20463 static void
20464 close_automatic_it_block (void)
20465 {
20466 now_pred.mask = 0x10;
20467 now_pred.block_length = 0;
20468 }
20469
20470 /* Update the mask of the current automatically-generated IT
20471 instruction. See comments in new_automatic_it_block (). */
20472
20473 static void
20474 now_pred_add_mask (int cond)
20475 {
20476 #define CLEAR_BIT(value, nbit) ((value) & ~(1 << (nbit)))
20477 #define SET_BIT_VALUE(value, bitvalue, nbit) (CLEAR_BIT (value, nbit) \
20478 | ((bitvalue) << (nbit)))
20479 const int resulting_bit = (cond & 1);
20480
20481 now_pred.mask &= 0xf;
20482 now_pred.mask = SET_BIT_VALUE (now_pred.mask,
20483 resulting_bit,
20484 (5 - now_pred.block_length));
20485 now_pred.mask = SET_BIT_VALUE (now_pred.mask,
20486 1,
20487 ((5 - now_pred.block_length) - 1));
20488 output_it_inst (now_pred.cc, now_pred.mask, now_pred.insn);
20489
20490 #undef CLEAR_BIT
20491 #undef SET_BIT_VALUE
20492 }
20493
20494 /* The IT blocks handling machinery is accessed through the these functions:
20495 it_fsm_pre_encode () from md_assemble ()
20496 set_pred_insn_type () optional, from the tencode functions
20497 set_pred_insn_type_last () ditto
20498 in_pred_block () ditto
20499 it_fsm_post_encode () from md_assemble ()
20500 force_automatic_it_block_close () from label handling functions
20501
20502 Rationale:
20503 1) md_assemble () calls it_fsm_pre_encode () before calling tencode (),
20504 initializing the IT insn type with a generic initial value depending
20505 on the inst.condition.
20506 2) During the tencode function, two things may happen:
20507 a) The tencode function overrides the IT insn type by
20508 calling either set_pred_insn_type (type) or
20509 set_pred_insn_type_last ().
20510 b) The tencode function queries the IT block state by
20511 calling in_pred_block () (i.e. to determine narrow/not narrow mode).
20512
20513 Both set_pred_insn_type and in_pred_block run the internal FSM state
20514 handling function (handle_pred_state), because: a) setting the IT insn
20515 type may incur in an invalid state (exiting the function),
20516 and b) querying the state requires the FSM to be updated.
20517 Specifically we want to avoid creating an IT block for conditional
20518 branches, so it_fsm_pre_encode is actually a guess and we can't
20519 determine whether an IT block is required until the tencode () routine
20520 has decided what type of instruction this actually it.
20521 Because of this, if set_pred_insn_type and in_pred_block have to be
20522 used, set_pred_insn_type has to be called first.
20523
20524 set_pred_insn_type_last () is a wrapper of set_pred_insn_type (type),
20525 that determines the insn IT type depending on the inst.cond code.
20526 When a tencode () routine encodes an instruction that can be
20527 either outside an IT block, or, in the case of being inside, has to be
20528 the last one, set_pred_insn_type_last () will determine the proper
20529 IT instruction type based on the inst.cond code. Otherwise,
20530 set_pred_insn_type can be called for overriding that logic or
20531 for covering other cases.
20532
20533 Calling handle_pred_state () may not transition the IT block state to
20534 OUTSIDE_PRED_BLOCK immediately, since the (current) state could be
20535 still queried. Instead, if the FSM determines that the state should
20536 be transitioned to OUTSIDE_PRED_BLOCK, a flag is marked to be closed
20537 after the tencode () function: that's what it_fsm_post_encode () does.
20538
20539 Since in_pred_block () calls the state handling function to get an
20540 updated state, an error may occur (due to invalid insns combination).
20541 In that case, inst.error is set.
20542 Therefore, inst.error has to be checked after the execution of
20543 the tencode () routine.
20544
20545 3) Back in md_assemble(), it_fsm_post_encode () is called to commit
20546 any pending state change (if any) that didn't take place in
20547 handle_pred_state () as explained above. */
20548
20549 static void
20550 it_fsm_pre_encode (void)
20551 {
20552 if (inst.cond != COND_ALWAYS)
20553 inst.pred_insn_type = INSIDE_IT_INSN;
20554 else
20555 inst.pred_insn_type = OUTSIDE_PRED_INSN;
20556
20557 now_pred.state_handled = 0;
20558 }
20559
20560 /* IT state FSM handling function. */
20561 /* MVE instructions and non-MVE instructions are handled differently because of
20562 the introduction of VPT blocks.
20563 Specifications say that any non-MVE instruction inside a VPT block is
20564 UNPREDICTABLE, with the exception of the BKPT instruction. Whereas most MVE
20565 instructions are deemed to be UNPREDICTABLE if inside an IT block. For the
20566 few exceptions we have MVE_UNPREDICABLE_INSN.
20567 The error messages provided depending on the different combinations possible
20568 are described in the cases below:
20569 For 'most' MVE instructions:
20570 1) In an IT block, with an IT code: syntax error
20571 2) In an IT block, with a VPT code: error: must be in a VPT block
20572 3) In an IT block, with no code: warning: UNPREDICTABLE
20573 4) In a VPT block, with an IT code: syntax error
20574 5) In a VPT block, with a VPT code: OK!
20575 6) In a VPT block, with no code: error: missing code
20576 7) Outside a pred block, with an IT code: error: syntax error
20577 8) Outside a pred block, with a VPT code: error: should be in a VPT block
20578 9) Outside a pred block, with no code: OK!
20579 For non-MVE instructions:
20580 10) In an IT block, with an IT code: OK!
20581 11) In an IT block, with a VPT code: syntax error
20582 12) In an IT block, with no code: error: missing code
20583 13) In a VPT block, with an IT code: error: should be in an IT block
20584 14) In a VPT block, with a VPT code: syntax error
20585 15) In a VPT block, with no code: UNPREDICTABLE
20586 16) Outside a pred block, with an IT code: error: should be in an IT block
20587 17) Outside a pred block, with a VPT code: syntax error
20588 18) Outside a pred block, with no code: OK!
20589 */
20590
20591
20592 static int
20593 handle_pred_state (void)
20594 {
20595 now_pred.state_handled = 1;
20596 now_pred.insn_cond = FALSE;
20597
20598 switch (now_pred.state)
20599 {
20600 case OUTSIDE_PRED_BLOCK:
20601 switch (inst.pred_insn_type)
20602 {
20603 case MVE_UNPREDICABLE_INSN:
20604 case MVE_OUTSIDE_PRED_INSN:
20605 if (inst.cond < COND_ALWAYS)
20606 {
20607 /* Case 7: Outside a pred block, with an IT code: error: syntax
20608 error. */
20609 inst.error = BAD_SYNTAX;
20610 return FAIL;
20611 }
20612 /* Case 9: Outside a pred block, with no code: OK! */
20613 break;
20614 case OUTSIDE_PRED_INSN:
20615 if (inst.cond > COND_ALWAYS)
20616 {
20617 /* Case 17: Outside a pred block, with a VPT code: syntax error.
20618 */
20619 inst.error = BAD_SYNTAX;
20620 return FAIL;
20621 }
20622 /* Case 18: Outside a pred block, with no code: OK! */
20623 break;
20624
20625 case INSIDE_VPT_INSN:
20626 /* Case 8: Outside a pred block, with a VPT code: error: should be in
20627 a VPT block. */
20628 inst.error = BAD_OUT_VPT;
20629 return FAIL;
20630
20631 case INSIDE_IT_INSN:
20632 case INSIDE_IT_LAST_INSN:
20633 if (inst.cond < COND_ALWAYS)
20634 {
20635 /* Case 16: Outside a pred block, with an IT code: error: should
20636 be in an IT block. */
20637 if (thumb_mode == 0)
20638 {
20639 if (unified_syntax
20640 && !(implicit_it_mode & IMPLICIT_IT_MODE_ARM))
20641 as_tsktsk (_("Warning: conditional outside an IT block"\
20642 " for Thumb."));
20643 }
20644 else
20645 {
20646 if ((implicit_it_mode & IMPLICIT_IT_MODE_THUMB)
20647 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2))
20648 {
20649 /* Automatically generate the IT instruction. */
20650 new_automatic_it_block (inst.cond);
20651 if (inst.pred_insn_type == INSIDE_IT_LAST_INSN)
20652 close_automatic_it_block ();
20653 }
20654 else
20655 {
20656 inst.error = BAD_OUT_IT;
20657 return FAIL;
20658 }
20659 }
20660 break;
20661 }
20662 else if (inst.cond > COND_ALWAYS)
20663 {
20664 /* Case 17: Outside a pred block, with a VPT code: syntax error.
20665 */
20666 inst.error = BAD_SYNTAX;
20667 return FAIL;
20668 }
20669 else
20670 gas_assert (0);
20671 case IF_INSIDE_IT_LAST_INSN:
20672 case NEUTRAL_IT_INSN:
20673 break;
20674
20675 case VPT_INSN:
20676 if (inst.cond != COND_ALWAYS)
20677 first_error (BAD_SYNTAX);
20678 now_pred.state = MANUAL_PRED_BLOCK;
20679 now_pred.block_length = 0;
20680 now_pred.type = VECTOR_PRED;
20681 now_pred.cc = 0;
20682 break;
20683 case IT_INSN:
20684 now_pred.state = MANUAL_PRED_BLOCK;
20685 now_pred.block_length = 0;
20686 now_pred.type = SCALAR_PRED;
20687 break;
20688 }
20689 break;
20690
20691 case AUTOMATIC_PRED_BLOCK:
20692 /* Three things may happen now:
20693 a) We should increment current it block size;
20694 b) We should close current it block (closing insn or 4 insns);
20695 c) We should close current it block and start a new one (due
20696 to incompatible conditions or
20697 4 insns-length block reached). */
20698
20699 switch (inst.pred_insn_type)
20700 {
20701 case INSIDE_VPT_INSN:
20702 case VPT_INSN:
20703 case MVE_UNPREDICABLE_INSN:
20704 case MVE_OUTSIDE_PRED_INSN:
20705 gas_assert (0);
20706 case OUTSIDE_PRED_INSN:
20707 /* The closure of the block shall happen immediately,
20708 so any in_pred_block () call reports the block as closed. */
20709 force_automatic_it_block_close ();
20710 break;
20711
20712 case INSIDE_IT_INSN:
20713 case INSIDE_IT_LAST_INSN:
20714 case IF_INSIDE_IT_LAST_INSN:
20715 now_pred.block_length++;
20716
20717 if (now_pred.block_length > 4
20718 || !now_pred_compatible (inst.cond))
20719 {
20720 force_automatic_it_block_close ();
20721 if (inst.pred_insn_type != IF_INSIDE_IT_LAST_INSN)
20722 new_automatic_it_block (inst.cond);
20723 }
20724 else
20725 {
20726 now_pred.insn_cond = TRUE;
20727 now_pred_add_mask (inst.cond);
20728 }
20729
20730 if (now_pred.state == AUTOMATIC_PRED_BLOCK
20731 && (inst.pred_insn_type == INSIDE_IT_LAST_INSN
20732 || inst.pred_insn_type == IF_INSIDE_IT_LAST_INSN))
20733 close_automatic_it_block ();
20734 break;
20735
20736 case NEUTRAL_IT_INSN:
20737 now_pred.block_length++;
20738 now_pred.insn_cond = TRUE;
20739
20740 if (now_pred.block_length > 4)
20741 force_automatic_it_block_close ();
20742 else
20743 now_pred_add_mask (now_pred.cc & 1);
20744 break;
20745
20746 case IT_INSN:
20747 close_automatic_it_block ();
20748 now_pred.state = MANUAL_PRED_BLOCK;
20749 break;
20750 }
20751 break;
20752
20753 case MANUAL_PRED_BLOCK:
20754 {
20755 int cond, is_last;
20756 if (now_pred.type == SCALAR_PRED)
20757 {
20758 /* Check conditional suffixes. */
20759 cond = now_pred.cc ^ ((now_pred.mask >> 4) & 1) ^ 1;
20760 now_pred.mask <<= 1;
20761 now_pred.mask &= 0x1f;
20762 is_last = (now_pred.mask == 0x10);
20763 }
20764 else
20765 {
20766 now_pred.cc ^= (now_pred.mask >> 4);
20767 cond = now_pred.cc + 0xf;
20768 now_pred.mask <<= 1;
20769 now_pred.mask &= 0x1f;
20770 is_last = now_pred.mask == 0x10;
20771 }
20772 now_pred.insn_cond = TRUE;
20773
20774 switch (inst.pred_insn_type)
20775 {
20776 case OUTSIDE_PRED_INSN:
20777 if (now_pred.type == SCALAR_PRED)
20778 {
20779 if (inst.cond == COND_ALWAYS)
20780 {
20781 /* Case 12: In an IT block, with no code: error: missing
20782 code. */
20783 inst.error = BAD_NOT_IT;
20784 return FAIL;
20785 }
20786 else if (inst.cond > COND_ALWAYS)
20787 {
20788 /* Case 11: In an IT block, with a VPT code: syntax error.
20789 */
20790 inst.error = BAD_SYNTAX;
20791 return FAIL;
20792 }
20793 else if (thumb_mode)
20794 {
20795 /* This is for some special cases where a non-MVE
20796 instruction is not allowed in an IT block, such as cbz,
20797 but are put into one with a condition code.
20798 You could argue this should be a syntax error, but we
20799 gave the 'not allowed in IT block' diagnostic in the
20800 past so we will keep doing so. */
20801 inst.error = BAD_NOT_IT;
20802 return FAIL;
20803 }
20804 break;
20805 }
20806 else
20807 {
20808 /* Case 15: In a VPT block, with no code: UNPREDICTABLE. */
20809 as_tsktsk (MVE_NOT_VPT);
20810 return SUCCESS;
20811 }
20812 case MVE_OUTSIDE_PRED_INSN:
20813 if (now_pred.type == SCALAR_PRED)
20814 {
20815 if (inst.cond == COND_ALWAYS)
20816 {
20817 /* Case 3: In an IT block, with no code: warning:
20818 UNPREDICTABLE. */
20819 as_tsktsk (MVE_NOT_IT);
20820 return SUCCESS;
20821 }
20822 else if (inst.cond < COND_ALWAYS)
20823 {
20824 /* Case 1: In an IT block, with an IT code: syntax error.
20825 */
20826 inst.error = BAD_SYNTAX;
20827 return FAIL;
20828 }
20829 else
20830 gas_assert (0);
20831 }
20832 else
20833 {
20834 if (inst.cond < COND_ALWAYS)
20835 {
20836 /* Case 4: In a VPT block, with an IT code: syntax error.
20837 */
20838 inst.error = BAD_SYNTAX;
20839 return FAIL;
20840 }
20841 else if (inst.cond == COND_ALWAYS)
20842 {
20843 /* Case 6: In a VPT block, with no code: error: missing
20844 code. */
20845 inst.error = BAD_NOT_VPT;
20846 return FAIL;
20847 }
20848 else
20849 {
20850 gas_assert (0);
20851 }
20852 }
20853 case MVE_UNPREDICABLE_INSN:
20854 as_tsktsk (now_pred.type == SCALAR_PRED ? MVE_NOT_IT : MVE_NOT_VPT);
20855 return SUCCESS;
20856 case INSIDE_IT_INSN:
20857 if (inst.cond > COND_ALWAYS)
20858 {
20859 /* Case 11: In an IT block, with a VPT code: syntax error. */
20860 /* Case 14: In a VPT block, with a VPT code: syntax error. */
20861 inst.error = BAD_SYNTAX;
20862 return FAIL;
20863 }
20864 else if (now_pred.type == SCALAR_PRED)
20865 {
20866 /* Case 10: In an IT block, with an IT code: OK! */
20867 if (cond != inst.cond)
20868 {
20869 inst.error = now_pred.type == SCALAR_PRED ? BAD_IT_COND :
20870 BAD_VPT_COND;
20871 return FAIL;
20872 }
20873 }
20874 else
20875 {
20876 /* Case 13: In a VPT block, with an IT code: error: should be
20877 in an IT block. */
20878 inst.error = BAD_OUT_IT;
20879 return FAIL;
20880 }
20881 break;
20882
20883 case INSIDE_VPT_INSN:
20884 if (now_pred.type == SCALAR_PRED)
20885 {
20886 /* Case 2: In an IT block, with a VPT code: error: must be in a
20887 VPT block. */
20888 inst.error = BAD_OUT_VPT;
20889 return FAIL;
20890 }
20891 /* Case 5: In a VPT block, with a VPT code: OK! */
20892 else if (cond != inst.cond)
20893 {
20894 inst.error = BAD_VPT_COND;
20895 return FAIL;
20896 }
20897 break;
20898 case INSIDE_IT_LAST_INSN:
20899 case IF_INSIDE_IT_LAST_INSN:
20900 if (now_pred.type == VECTOR_PRED || inst.cond > COND_ALWAYS)
20901 {
20902 /* Case 4: In a VPT block, with an IT code: syntax error. */
20903 /* Case 11: In an IT block, with a VPT code: syntax error. */
20904 inst.error = BAD_SYNTAX;
20905 return FAIL;
20906 }
20907 else if (cond != inst.cond)
20908 {
20909 inst.error = BAD_IT_COND;
20910 return FAIL;
20911 }
20912 if (!is_last)
20913 {
20914 inst.error = BAD_BRANCH;
20915 return FAIL;
20916 }
20917 break;
20918
20919 case NEUTRAL_IT_INSN:
20920 /* The BKPT instruction is unconditional even in a IT or VPT
20921 block. */
20922 break;
20923
20924 case IT_INSN:
20925 if (now_pred.type == SCALAR_PRED)
20926 {
20927 inst.error = BAD_IT_IT;
20928 return FAIL;
20929 }
20930 /* fall through. */
20931 case VPT_INSN:
20932 if (inst.cond == COND_ALWAYS)
20933 {
20934 /* Executing a VPT/VPST instruction inside an IT block or a
20935 VPT/VPST/IT instruction inside a VPT block is UNPREDICTABLE.
20936 */
20937 if (now_pred.type == SCALAR_PRED)
20938 as_tsktsk (MVE_NOT_IT);
20939 else
20940 as_tsktsk (MVE_NOT_VPT);
20941 return SUCCESS;
20942 }
20943 else
20944 {
20945 /* VPT/VPST do not accept condition codes. */
20946 inst.error = BAD_SYNTAX;
20947 return FAIL;
20948 }
20949 }
20950 }
20951 break;
20952 }
20953
20954 return SUCCESS;
20955 }
20956
20957 struct depr_insn_mask
20958 {
20959 unsigned long pattern;
20960 unsigned long mask;
20961 const char* description;
20962 };
20963
20964 /* List of 16-bit instruction patterns deprecated in an IT block in
20965 ARMv8. */
20966 static const struct depr_insn_mask depr_it_insns[] = {
20967 { 0xc000, 0xc000, N_("Short branches, Undefined, SVC, LDM/STM") },
20968 { 0xb000, 0xb000, N_("Miscellaneous 16-bit instructions") },
20969 { 0xa000, 0xb800, N_("ADR") },
20970 { 0x4800, 0xf800, N_("Literal loads") },
20971 { 0x4478, 0xf478, N_("Hi-register ADD, MOV, CMP, BX, BLX using pc") },
20972 { 0x4487, 0xfc87, N_("Hi-register ADD, MOV, CMP using pc") },
20973 /* NOTE: 0x00dd is not the real encoding, instead, it is the 'tvalue'
20974 field in asm_opcode. 'tvalue' is used at the stage this check happen. */
20975 { 0x00dd, 0x7fff, N_("ADD/SUB sp, sp #imm") },
20976 { 0, 0, NULL }
20977 };
20978
20979 static void
20980 it_fsm_post_encode (void)
20981 {
20982 int is_last;
20983
20984 if (!now_pred.state_handled)
20985 handle_pred_state ();
20986
20987 if (now_pred.insn_cond
20988 && !now_pred.warn_deprecated
20989 && warn_on_deprecated
20990 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8)
20991 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_m))
20992 {
20993 if (inst.instruction >= 0x10000)
20994 {
20995 as_tsktsk (_("IT blocks containing 32-bit Thumb instructions are "
20996 "performance deprecated in ARMv8-A and ARMv8-R"));
20997 now_pred.warn_deprecated = TRUE;
20998 }
20999 else
21000 {
21001 const struct depr_insn_mask *p = depr_it_insns;
21002
21003 while (p->mask != 0)
21004 {
21005 if ((inst.instruction & p->mask) == p->pattern)
21006 {
21007 as_tsktsk (_("IT blocks containing 16-bit Thumb "
21008 "instructions of the following class are "
21009 "performance deprecated in ARMv8-A and "
21010 "ARMv8-R: %s"), p->description);
21011 now_pred.warn_deprecated = TRUE;
21012 break;
21013 }
21014
21015 ++p;
21016 }
21017 }
21018
21019 if (now_pred.block_length > 1)
21020 {
21021 as_tsktsk (_("IT blocks containing more than one conditional "
21022 "instruction are performance deprecated in ARMv8-A and "
21023 "ARMv8-R"));
21024 now_pred.warn_deprecated = TRUE;
21025 }
21026 }
21027
21028 is_last = (now_pred.mask == 0x10);
21029 if (is_last)
21030 {
21031 now_pred.state = OUTSIDE_PRED_BLOCK;
21032 now_pred.mask = 0;
21033 }
21034 }
21035
21036 static void
21037 force_automatic_it_block_close (void)
21038 {
21039 if (now_pred.state == AUTOMATIC_PRED_BLOCK)
21040 {
21041 close_automatic_it_block ();
21042 now_pred.state = OUTSIDE_PRED_BLOCK;
21043 now_pred.mask = 0;
21044 }
21045 }
21046
21047 static int
21048 in_pred_block (void)
21049 {
21050 if (!now_pred.state_handled)
21051 handle_pred_state ();
21052
21053 return now_pred.state != OUTSIDE_PRED_BLOCK;
21054 }
21055
21056 /* Whether OPCODE only has T32 encoding. Since this function is only used by
21057 t32_insn_ok, OPCODE enabled by v6t2 extension bit do not need to be listed
21058 here, hence the "known" in the function name. */
21059
21060 static bfd_boolean
21061 known_t32_only_insn (const struct asm_opcode *opcode)
21062 {
21063 /* Original Thumb-1 wide instruction. */
21064 if (opcode->tencode == do_t_blx
21065 || opcode->tencode == do_t_branch23
21066 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_msr)
21067 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_barrier))
21068 return TRUE;
21069
21070 /* Wide-only instruction added to ARMv8-M Baseline. */
21071 if (ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_v8m_m_only)
21072 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_atomics)
21073 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_v6t2_v8m)
21074 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_div))
21075 return TRUE;
21076
21077 return FALSE;
21078 }
21079
21080 /* Whether wide instruction variant can be used if available for a valid OPCODE
21081 in ARCH. */
21082
21083 static bfd_boolean
21084 t32_insn_ok (arm_feature_set arch, const struct asm_opcode *opcode)
21085 {
21086 if (known_t32_only_insn (opcode))
21087 return TRUE;
21088
21089 /* Instruction with narrow and wide encoding added to ARMv8-M. Availability
21090 of variant T3 of B.W is checked in do_t_branch. */
21091 if (ARM_CPU_HAS_FEATURE (arch, arm_ext_v8m)
21092 && opcode->tencode == do_t_branch)
21093 return TRUE;
21094
21095 /* MOV accepts T1/T3 encodings under Baseline, T3 encoding is 32bit. */
21096 if (ARM_CPU_HAS_FEATURE (arch, arm_ext_v8m)
21097 && opcode->tencode == do_t_mov_cmp
21098 /* Make sure CMP instruction is not affected. */
21099 && opcode->aencode == do_mov)
21100 return TRUE;
21101
21102 /* Wide instruction variants of all instructions with narrow *and* wide
21103 variants become available with ARMv6t2. Other opcodes are either
21104 narrow-only or wide-only and are thus available if OPCODE is valid. */
21105 if (ARM_CPU_HAS_FEATURE (arch, arm_ext_v6t2))
21106 return TRUE;
21107
21108 /* OPCODE with narrow only instruction variant or wide variant not
21109 available. */
21110 return FALSE;
21111 }
21112
21113 void
21114 md_assemble (char *str)
21115 {
21116 char *p = str;
21117 const struct asm_opcode * opcode;
21118
21119 /* Align the previous label if needed. */
21120 if (last_label_seen != NULL)
21121 {
21122 symbol_set_frag (last_label_seen, frag_now);
21123 S_SET_VALUE (last_label_seen, (valueT) frag_now_fix ());
21124 S_SET_SEGMENT (last_label_seen, now_seg);
21125 }
21126
21127 memset (&inst, '\0', sizeof (inst));
21128 int r;
21129 for (r = 0; r < ARM_IT_MAX_RELOCS; r++)
21130 inst.relocs[r].type = BFD_RELOC_UNUSED;
21131
21132 opcode = opcode_lookup (&p);
21133 if (!opcode)
21134 {
21135 /* It wasn't an instruction, but it might be a register alias of
21136 the form alias .req reg, or a Neon .dn/.qn directive. */
21137 if (! create_register_alias (str, p)
21138 && ! create_neon_reg_alias (str, p))
21139 as_bad (_("bad instruction `%s'"), str);
21140
21141 return;
21142 }
21143
21144 if (warn_on_deprecated && opcode->tag == OT_cinfix3_deprecated)
21145 as_tsktsk (_("s suffix on comparison instruction is deprecated"));
21146
21147 /* The value which unconditional instructions should have in place of the
21148 condition field. */
21149 inst.uncond_value = (opcode->tag == OT_csuffixF) ? 0xf : -1;
21150
21151 if (thumb_mode)
21152 {
21153 arm_feature_set variant;
21154
21155 variant = cpu_variant;
21156 /* Only allow coprocessor instructions on Thumb-2 capable devices. */
21157 if (!ARM_CPU_HAS_FEATURE (variant, arm_arch_t2))
21158 ARM_CLEAR_FEATURE (variant, variant, fpu_any_hard);
21159 /* Check that this instruction is supported for this CPU. */
21160 if (!opcode->tvariant
21161 || (thumb_mode == 1
21162 && !ARM_CPU_HAS_FEATURE (variant, *opcode->tvariant)))
21163 {
21164 if (opcode->tencode == do_t_swi)
21165 as_bad (_("SVC is not permitted on this architecture"));
21166 else
21167 as_bad (_("selected processor does not support `%s' in Thumb mode"), str);
21168 return;
21169 }
21170 if (inst.cond != COND_ALWAYS && !unified_syntax
21171 && opcode->tencode != do_t_branch)
21172 {
21173 as_bad (_("Thumb does not support conditional execution"));
21174 return;
21175 }
21176
21177 /* Two things are addressed here:
21178 1) Implicit require narrow instructions on Thumb-1.
21179 This avoids relaxation accidentally introducing Thumb-2
21180 instructions.
21181 2) Reject wide instructions in non Thumb-2 cores.
21182
21183 Only instructions with narrow and wide variants need to be handled
21184 but selecting all non wide-only instructions is easier. */
21185 if (!ARM_CPU_HAS_FEATURE (variant, arm_ext_v6t2)
21186 && !t32_insn_ok (variant, opcode))
21187 {
21188 if (inst.size_req == 0)
21189 inst.size_req = 2;
21190 else if (inst.size_req == 4)
21191 {
21192 if (ARM_CPU_HAS_FEATURE (variant, arm_ext_v8m))
21193 as_bad (_("selected processor does not support 32bit wide "
21194 "variant of instruction `%s'"), str);
21195 else
21196 as_bad (_("selected processor does not support `%s' in "
21197 "Thumb-2 mode"), str);
21198 return;
21199 }
21200 }
21201
21202 inst.instruction = opcode->tvalue;
21203
21204 if (!parse_operands (p, opcode->operands, /*thumb=*/TRUE))
21205 {
21206 /* Prepare the pred_insn_type for those encodings that don't set
21207 it. */
21208 it_fsm_pre_encode ();
21209
21210 opcode->tencode ();
21211
21212 it_fsm_post_encode ();
21213 }
21214
21215 if (!(inst.error || inst.relax))
21216 {
21217 gas_assert (inst.instruction < 0xe800 || inst.instruction > 0xffff);
21218 inst.size = (inst.instruction > 0xffff ? 4 : 2);
21219 if (inst.size_req && inst.size_req != inst.size)
21220 {
21221 as_bad (_("cannot honor width suffix -- `%s'"), str);
21222 return;
21223 }
21224 }
21225
21226 /* Something has gone badly wrong if we try to relax a fixed size
21227 instruction. */
21228 gas_assert (inst.size_req == 0 || !inst.relax);
21229
21230 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
21231 *opcode->tvariant);
21232 /* Many Thumb-2 instructions also have Thumb-1 variants, so explicitly
21233 set those bits when Thumb-2 32-bit instructions are seen. The impact
21234 of relaxable instructions will be considered later after we finish all
21235 relaxation. */
21236 if (ARM_FEATURE_CORE_EQUAL (cpu_variant, arm_arch_any))
21237 variant = arm_arch_none;
21238 else
21239 variant = cpu_variant;
21240 if (inst.size == 4 && !t32_insn_ok (variant, opcode))
21241 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
21242 arm_ext_v6t2);
21243
21244 check_neon_suffixes;
21245
21246 if (!inst.error)
21247 {
21248 mapping_state (MAP_THUMB);
21249 }
21250 }
21251 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
21252 {
21253 bfd_boolean is_bx;
21254
21255 /* bx is allowed on v5 cores, and sometimes on v4 cores. */
21256 is_bx = (opcode->aencode == do_bx);
21257
21258 /* Check that this instruction is supported for this CPU. */
21259 if (!(is_bx && fix_v4bx)
21260 && !(opcode->avariant &&
21261 ARM_CPU_HAS_FEATURE (cpu_variant, *opcode->avariant)))
21262 {
21263 as_bad (_("selected processor does not support `%s' in ARM mode"), str);
21264 return;
21265 }
21266 if (inst.size_req)
21267 {
21268 as_bad (_("width suffixes are invalid in ARM mode -- `%s'"), str);
21269 return;
21270 }
21271
21272 inst.instruction = opcode->avalue;
21273 if (opcode->tag == OT_unconditionalF)
21274 inst.instruction |= 0xFU << 28;
21275 else
21276 inst.instruction |= inst.cond << 28;
21277 inst.size = INSN_SIZE;
21278 if (!parse_operands (p, opcode->operands, /*thumb=*/FALSE))
21279 {
21280 it_fsm_pre_encode ();
21281 opcode->aencode ();
21282 it_fsm_post_encode ();
21283 }
21284 /* Arm mode bx is marked as both v4T and v5 because it's still required
21285 on a hypothetical non-thumb v5 core. */
21286 if (is_bx)
21287 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used, arm_ext_v4t);
21288 else
21289 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
21290 *opcode->avariant);
21291
21292 check_neon_suffixes;
21293
21294 if (!inst.error)
21295 {
21296 mapping_state (MAP_ARM);
21297 }
21298 }
21299 else
21300 {
21301 as_bad (_("attempt to use an ARM instruction on a Thumb-only processor "
21302 "-- `%s'"), str);
21303 return;
21304 }
21305 output_inst (str);
21306 }
21307
21308 static void
21309 check_pred_blocks_finished (void)
21310 {
21311 #ifdef OBJ_ELF
21312 asection *sect;
21313
21314 for (sect = stdoutput->sections; sect != NULL; sect = sect->next)
21315 if (seg_info (sect)->tc_segment_info_data.current_pred.state
21316 == MANUAL_PRED_BLOCK)
21317 {
21318 if (now_pred.type == SCALAR_PRED)
21319 as_warn (_("section '%s' finished with an open IT block."),
21320 sect->name);
21321 else
21322 as_warn (_("section '%s' finished with an open VPT/VPST block."),
21323 sect->name);
21324 }
21325 #else
21326 if (now_pred.state == MANUAL_PRED_BLOCK)
21327 {
21328 if (now_pred.type == SCALAR_PRED)
21329 as_warn (_("file finished with an open IT block."));
21330 else
21331 as_warn (_("file finished with an open VPT/VPST block."));
21332 }
21333 #endif
21334 }
21335
21336 /* Various frobbings of labels and their addresses. */
21337
21338 void
21339 arm_start_line_hook (void)
21340 {
21341 last_label_seen = NULL;
21342 }
21343
21344 void
21345 arm_frob_label (symbolS * sym)
21346 {
21347 last_label_seen = sym;
21348
21349 ARM_SET_THUMB (sym, thumb_mode);
21350
21351 #if defined OBJ_COFF || defined OBJ_ELF
21352 ARM_SET_INTERWORK (sym, support_interwork);
21353 #endif
21354
21355 force_automatic_it_block_close ();
21356
21357 /* Note - do not allow local symbols (.Lxxx) to be labelled
21358 as Thumb functions. This is because these labels, whilst
21359 they exist inside Thumb code, are not the entry points for
21360 possible ARM->Thumb calls. Also, these labels can be used
21361 as part of a computed goto or switch statement. eg gcc
21362 can generate code that looks like this:
21363
21364 ldr r2, [pc, .Laaa]
21365 lsl r3, r3, #2
21366 ldr r2, [r3, r2]
21367 mov pc, r2
21368
21369 .Lbbb: .word .Lxxx
21370 .Lccc: .word .Lyyy
21371 ..etc...
21372 .Laaa: .word Lbbb
21373
21374 The first instruction loads the address of the jump table.
21375 The second instruction converts a table index into a byte offset.
21376 The third instruction gets the jump address out of the table.
21377 The fourth instruction performs the jump.
21378
21379 If the address stored at .Laaa is that of a symbol which has the
21380 Thumb_Func bit set, then the linker will arrange for this address
21381 to have the bottom bit set, which in turn would mean that the
21382 address computation performed by the third instruction would end
21383 up with the bottom bit set. Since the ARM is capable of unaligned
21384 word loads, the instruction would then load the incorrect address
21385 out of the jump table, and chaos would ensue. */
21386 if (label_is_thumb_function_name
21387 && (S_GET_NAME (sym)[0] != '.' || S_GET_NAME (sym)[1] != 'L')
21388 && (bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) != 0)
21389 {
21390 /* When the address of a Thumb function is taken the bottom
21391 bit of that address should be set. This will allow
21392 interworking between Arm and Thumb functions to work
21393 correctly. */
21394
21395 THUMB_SET_FUNC (sym, 1);
21396
21397 label_is_thumb_function_name = FALSE;
21398 }
21399
21400 dwarf2_emit_label (sym);
21401 }
21402
21403 bfd_boolean
21404 arm_data_in_code (void)
21405 {
21406 if (thumb_mode && ! strncmp (input_line_pointer + 1, "data:", 5))
21407 {
21408 *input_line_pointer = '/';
21409 input_line_pointer += 5;
21410 *input_line_pointer = 0;
21411 return TRUE;
21412 }
21413
21414 return FALSE;
21415 }
21416
21417 char *
21418 arm_canonicalize_symbol_name (char * name)
21419 {
21420 int len;
21421
21422 if (thumb_mode && (len = strlen (name)) > 5
21423 && streq (name + len - 5, "/data"))
21424 *(name + len - 5) = 0;
21425
21426 return name;
21427 }
21428 \f
21429 /* Table of all register names defined by default. The user can
21430 define additional names with .req. Note that all register names
21431 should appear in both upper and lowercase variants. Some registers
21432 also have mixed-case names. */
21433
21434 #define REGDEF(s,n,t) { #s, n, REG_TYPE_##t, TRUE, 0 }
21435 #define REGNUM(p,n,t) REGDEF(p##n, n, t)
21436 #define REGNUM2(p,n,t) REGDEF(p##n, 2 * n, t)
21437 #define REGSET(p,t) \
21438 REGNUM(p, 0,t), REGNUM(p, 1,t), REGNUM(p, 2,t), REGNUM(p, 3,t), \
21439 REGNUM(p, 4,t), REGNUM(p, 5,t), REGNUM(p, 6,t), REGNUM(p, 7,t), \
21440 REGNUM(p, 8,t), REGNUM(p, 9,t), REGNUM(p,10,t), REGNUM(p,11,t), \
21441 REGNUM(p,12,t), REGNUM(p,13,t), REGNUM(p,14,t), REGNUM(p,15,t)
21442 #define REGSETH(p,t) \
21443 REGNUM(p,16,t), REGNUM(p,17,t), REGNUM(p,18,t), REGNUM(p,19,t), \
21444 REGNUM(p,20,t), REGNUM(p,21,t), REGNUM(p,22,t), REGNUM(p,23,t), \
21445 REGNUM(p,24,t), REGNUM(p,25,t), REGNUM(p,26,t), REGNUM(p,27,t), \
21446 REGNUM(p,28,t), REGNUM(p,29,t), REGNUM(p,30,t), REGNUM(p,31,t)
21447 #define REGSET2(p,t) \
21448 REGNUM2(p, 0,t), REGNUM2(p, 1,t), REGNUM2(p, 2,t), REGNUM2(p, 3,t), \
21449 REGNUM2(p, 4,t), REGNUM2(p, 5,t), REGNUM2(p, 6,t), REGNUM2(p, 7,t), \
21450 REGNUM2(p, 8,t), REGNUM2(p, 9,t), REGNUM2(p,10,t), REGNUM2(p,11,t), \
21451 REGNUM2(p,12,t), REGNUM2(p,13,t), REGNUM2(p,14,t), REGNUM2(p,15,t)
21452 #define SPLRBANK(base,bank,t) \
21453 REGDEF(lr_##bank, 768|((base+0)<<16), t), \
21454 REGDEF(sp_##bank, 768|((base+1)<<16), t), \
21455 REGDEF(spsr_##bank, 768|(base<<16)|SPSR_BIT, t), \
21456 REGDEF(LR_##bank, 768|((base+0)<<16), t), \
21457 REGDEF(SP_##bank, 768|((base+1)<<16), t), \
21458 REGDEF(SPSR_##bank, 768|(base<<16)|SPSR_BIT, t)
21459
21460 static const struct reg_entry reg_names[] =
21461 {
21462 /* ARM integer registers. */
21463 REGSET(r, RN), REGSET(R, RN),
21464
21465 /* ATPCS synonyms. */
21466 REGDEF(a1,0,RN), REGDEF(a2,1,RN), REGDEF(a3, 2,RN), REGDEF(a4, 3,RN),
21467 REGDEF(v1,4,RN), REGDEF(v2,5,RN), REGDEF(v3, 6,RN), REGDEF(v4, 7,RN),
21468 REGDEF(v5,8,RN), REGDEF(v6,9,RN), REGDEF(v7,10,RN), REGDEF(v8,11,RN),
21469
21470 REGDEF(A1,0,RN), REGDEF(A2,1,RN), REGDEF(A3, 2,RN), REGDEF(A4, 3,RN),
21471 REGDEF(V1,4,RN), REGDEF(V2,5,RN), REGDEF(V3, 6,RN), REGDEF(V4, 7,RN),
21472 REGDEF(V5,8,RN), REGDEF(V6,9,RN), REGDEF(V7,10,RN), REGDEF(V8,11,RN),
21473
21474 /* Well-known aliases. */
21475 REGDEF(wr, 7,RN), REGDEF(sb, 9,RN), REGDEF(sl,10,RN), REGDEF(fp,11,RN),
21476 REGDEF(ip,12,RN), REGDEF(sp,13,RN), REGDEF(lr,14,RN), REGDEF(pc,15,RN),
21477
21478 REGDEF(WR, 7,RN), REGDEF(SB, 9,RN), REGDEF(SL,10,RN), REGDEF(FP,11,RN),
21479 REGDEF(IP,12,RN), REGDEF(SP,13,RN), REGDEF(LR,14,RN), REGDEF(PC,15,RN),
21480
21481 /* Defining the new Zero register from ARMv8.1-M. */
21482 REGDEF(zr,15,ZR),
21483 REGDEF(ZR,15,ZR),
21484
21485 /* Coprocessor numbers. */
21486 REGSET(p, CP), REGSET(P, CP),
21487
21488 /* Coprocessor register numbers. The "cr" variants are for backward
21489 compatibility. */
21490 REGSET(c, CN), REGSET(C, CN),
21491 REGSET(cr, CN), REGSET(CR, CN),
21492
21493 /* ARM banked registers. */
21494 REGDEF(R8_usr,512|(0<<16),RNB), REGDEF(r8_usr,512|(0<<16),RNB),
21495 REGDEF(R9_usr,512|(1<<16),RNB), REGDEF(r9_usr,512|(1<<16),RNB),
21496 REGDEF(R10_usr,512|(2<<16),RNB), REGDEF(r10_usr,512|(2<<16),RNB),
21497 REGDEF(R11_usr,512|(3<<16),RNB), REGDEF(r11_usr,512|(3<<16),RNB),
21498 REGDEF(R12_usr,512|(4<<16),RNB), REGDEF(r12_usr,512|(4<<16),RNB),
21499 REGDEF(SP_usr,512|(5<<16),RNB), REGDEF(sp_usr,512|(5<<16),RNB),
21500 REGDEF(LR_usr,512|(6<<16),RNB), REGDEF(lr_usr,512|(6<<16),RNB),
21501
21502 REGDEF(R8_fiq,512|(8<<16),RNB), REGDEF(r8_fiq,512|(8<<16),RNB),
21503 REGDEF(R9_fiq,512|(9<<16),RNB), REGDEF(r9_fiq,512|(9<<16),RNB),
21504 REGDEF(R10_fiq,512|(10<<16),RNB), REGDEF(r10_fiq,512|(10<<16),RNB),
21505 REGDEF(R11_fiq,512|(11<<16),RNB), REGDEF(r11_fiq,512|(11<<16),RNB),
21506 REGDEF(R12_fiq,512|(12<<16),RNB), REGDEF(r12_fiq,512|(12<<16),RNB),
21507 REGDEF(SP_fiq,512|(13<<16),RNB), REGDEF(sp_fiq,512|(13<<16),RNB),
21508 REGDEF(LR_fiq,512|(14<<16),RNB), REGDEF(lr_fiq,512|(14<<16),RNB),
21509 REGDEF(SPSR_fiq,512|(14<<16)|SPSR_BIT,RNB), REGDEF(spsr_fiq,512|(14<<16)|SPSR_BIT,RNB),
21510
21511 SPLRBANK(0,IRQ,RNB), SPLRBANK(0,irq,RNB),
21512 SPLRBANK(2,SVC,RNB), SPLRBANK(2,svc,RNB),
21513 SPLRBANK(4,ABT,RNB), SPLRBANK(4,abt,RNB),
21514 SPLRBANK(6,UND,RNB), SPLRBANK(6,und,RNB),
21515 SPLRBANK(12,MON,RNB), SPLRBANK(12,mon,RNB),
21516 REGDEF(elr_hyp,768|(14<<16),RNB), REGDEF(ELR_hyp,768|(14<<16),RNB),
21517 REGDEF(sp_hyp,768|(15<<16),RNB), REGDEF(SP_hyp,768|(15<<16),RNB),
21518 REGDEF(spsr_hyp,768|(14<<16)|SPSR_BIT,RNB),
21519 REGDEF(SPSR_hyp,768|(14<<16)|SPSR_BIT,RNB),
21520
21521 /* FPA registers. */
21522 REGNUM(f,0,FN), REGNUM(f,1,FN), REGNUM(f,2,FN), REGNUM(f,3,FN),
21523 REGNUM(f,4,FN), REGNUM(f,5,FN), REGNUM(f,6,FN), REGNUM(f,7, FN),
21524
21525 REGNUM(F,0,FN), REGNUM(F,1,FN), REGNUM(F,2,FN), REGNUM(F,3,FN),
21526 REGNUM(F,4,FN), REGNUM(F,5,FN), REGNUM(F,6,FN), REGNUM(F,7, FN),
21527
21528 /* VFP SP registers. */
21529 REGSET(s,VFS), REGSET(S,VFS),
21530 REGSETH(s,VFS), REGSETH(S,VFS),
21531
21532 /* VFP DP Registers. */
21533 REGSET(d,VFD), REGSET(D,VFD),
21534 /* Extra Neon DP registers. */
21535 REGSETH(d,VFD), REGSETH(D,VFD),
21536
21537 /* Neon QP registers. */
21538 REGSET2(q,NQ), REGSET2(Q,NQ),
21539
21540 /* VFP control registers. */
21541 REGDEF(fpsid,0,VFC), REGDEF(fpscr,1,VFC), REGDEF(fpexc,8,VFC),
21542 REGDEF(FPSID,0,VFC), REGDEF(FPSCR,1,VFC), REGDEF(FPEXC,8,VFC),
21543 REGDEF(fpinst,9,VFC), REGDEF(fpinst2,10,VFC),
21544 REGDEF(FPINST,9,VFC), REGDEF(FPINST2,10,VFC),
21545 REGDEF(mvfr0,7,VFC), REGDEF(mvfr1,6,VFC),
21546 REGDEF(MVFR0,7,VFC), REGDEF(MVFR1,6,VFC),
21547 REGDEF(mvfr2,5,VFC), REGDEF(MVFR2,5,VFC),
21548
21549 /* Maverick DSP coprocessor registers. */
21550 REGSET(mvf,MVF), REGSET(mvd,MVD), REGSET(mvfx,MVFX), REGSET(mvdx,MVDX),
21551 REGSET(MVF,MVF), REGSET(MVD,MVD), REGSET(MVFX,MVFX), REGSET(MVDX,MVDX),
21552
21553 REGNUM(mvax,0,MVAX), REGNUM(mvax,1,MVAX),
21554 REGNUM(mvax,2,MVAX), REGNUM(mvax,3,MVAX),
21555 REGDEF(dspsc,0,DSPSC),
21556
21557 REGNUM(MVAX,0,MVAX), REGNUM(MVAX,1,MVAX),
21558 REGNUM(MVAX,2,MVAX), REGNUM(MVAX,3,MVAX),
21559 REGDEF(DSPSC,0,DSPSC),
21560
21561 /* iWMMXt data registers - p0, c0-15. */
21562 REGSET(wr,MMXWR), REGSET(wR,MMXWR), REGSET(WR, MMXWR),
21563
21564 /* iWMMXt control registers - p1, c0-3. */
21565 REGDEF(wcid, 0,MMXWC), REGDEF(wCID, 0,MMXWC), REGDEF(WCID, 0,MMXWC),
21566 REGDEF(wcon, 1,MMXWC), REGDEF(wCon, 1,MMXWC), REGDEF(WCON, 1,MMXWC),
21567 REGDEF(wcssf, 2,MMXWC), REGDEF(wCSSF, 2,MMXWC), REGDEF(WCSSF, 2,MMXWC),
21568 REGDEF(wcasf, 3,MMXWC), REGDEF(wCASF, 3,MMXWC), REGDEF(WCASF, 3,MMXWC),
21569
21570 /* iWMMXt scalar (constant/offset) registers - p1, c8-11. */
21571 REGDEF(wcgr0, 8,MMXWCG), REGDEF(wCGR0, 8,MMXWCG), REGDEF(WCGR0, 8,MMXWCG),
21572 REGDEF(wcgr1, 9,MMXWCG), REGDEF(wCGR1, 9,MMXWCG), REGDEF(WCGR1, 9,MMXWCG),
21573 REGDEF(wcgr2,10,MMXWCG), REGDEF(wCGR2,10,MMXWCG), REGDEF(WCGR2,10,MMXWCG),
21574 REGDEF(wcgr3,11,MMXWCG), REGDEF(wCGR3,11,MMXWCG), REGDEF(WCGR3,11,MMXWCG),
21575
21576 /* XScale accumulator registers. */
21577 REGNUM(acc,0,XSCALE), REGNUM(ACC,0,XSCALE),
21578 };
21579 #undef REGDEF
21580 #undef REGNUM
21581 #undef REGSET
21582
21583 /* Table of all PSR suffixes. Bare "CPSR" and "SPSR" are handled
21584 within psr_required_here. */
21585 static const struct asm_psr psrs[] =
21586 {
21587 /* Backward compatibility notation. Note that "all" is no longer
21588 truly all possible PSR bits. */
21589 {"all", PSR_c | PSR_f},
21590 {"flg", PSR_f},
21591 {"ctl", PSR_c},
21592
21593 /* Individual flags. */
21594 {"f", PSR_f},
21595 {"c", PSR_c},
21596 {"x", PSR_x},
21597 {"s", PSR_s},
21598
21599 /* Combinations of flags. */
21600 {"fs", PSR_f | PSR_s},
21601 {"fx", PSR_f | PSR_x},
21602 {"fc", PSR_f | PSR_c},
21603 {"sf", PSR_s | PSR_f},
21604 {"sx", PSR_s | PSR_x},
21605 {"sc", PSR_s | PSR_c},
21606 {"xf", PSR_x | PSR_f},
21607 {"xs", PSR_x | PSR_s},
21608 {"xc", PSR_x | PSR_c},
21609 {"cf", PSR_c | PSR_f},
21610 {"cs", PSR_c | PSR_s},
21611 {"cx", PSR_c | PSR_x},
21612 {"fsx", PSR_f | PSR_s | PSR_x},
21613 {"fsc", PSR_f | PSR_s | PSR_c},
21614 {"fxs", PSR_f | PSR_x | PSR_s},
21615 {"fxc", PSR_f | PSR_x | PSR_c},
21616 {"fcs", PSR_f | PSR_c | PSR_s},
21617 {"fcx", PSR_f | PSR_c | PSR_x},
21618 {"sfx", PSR_s | PSR_f | PSR_x},
21619 {"sfc", PSR_s | PSR_f | PSR_c},
21620 {"sxf", PSR_s | PSR_x | PSR_f},
21621 {"sxc", PSR_s | PSR_x | PSR_c},
21622 {"scf", PSR_s | PSR_c | PSR_f},
21623 {"scx", PSR_s | PSR_c | PSR_x},
21624 {"xfs", PSR_x | PSR_f | PSR_s},
21625 {"xfc", PSR_x | PSR_f | PSR_c},
21626 {"xsf", PSR_x | PSR_s | PSR_f},
21627 {"xsc", PSR_x | PSR_s | PSR_c},
21628 {"xcf", PSR_x | PSR_c | PSR_f},
21629 {"xcs", PSR_x | PSR_c | PSR_s},
21630 {"cfs", PSR_c | PSR_f | PSR_s},
21631 {"cfx", PSR_c | PSR_f | PSR_x},
21632 {"csf", PSR_c | PSR_s | PSR_f},
21633 {"csx", PSR_c | PSR_s | PSR_x},
21634 {"cxf", PSR_c | PSR_x | PSR_f},
21635 {"cxs", PSR_c | PSR_x | PSR_s},
21636 {"fsxc", PSR_f | PSR_s | PSR_x | PSR_c},
21637 {"fscx", PSR_f | PSR_s | PSR_c | PSR_x},
21638 {"fxsc", PSR_f | PSR_x | PSR_s | PSR_c},
21639 {"fxcs", PSR_f | PSR_x | PSR_c | PSR_s},
21640 {"fcsx", PSR_f | PSR_c | PSR_s | PSR_x},
21641 {"fcxs", PSR_f | PSR_c | PSR_x | PSR_s},
21642 {"sfxc", PSR_s | PSR_f | PSR_x | PSR_c},
21643 {"sfcx", PSR_s | PSR_f | PSR_c | PSR_x},
21644 {"sxfc", PSR_s | PSR_x | PSR_f | PSR_c},
21645 {"sxcf", PSR_s | PSR_x | PSR_c | PSR_f},
21646 {"scfx", PSR_s | PSR_c | PSR_f | PSR_x},
21647 {"scxf", PSR_s | PSR_c | PSR_x | PSR_f},
21648 {"xfsc", PSR_x | PSR_f | PSR_s | PSR_c},
21649 {"xfcs", PSR_x | PSR_f | PSR_c | PSR_s},
21650 {"xsfc", PSR_x | PSR_s | PSR_f | PSR_c},
21651 {"xscf", PSR_x | PSR_s | PSR_c | PSR_f},
21652 {"xcfs", PSR_x | PSR_c | PSR_f | PSR_s},
21653 {"xcsf", PSR_x | PSR_c | PSR_s | PSR_f},
21654 {"cfsx", PSR_c | PSR_f | PSR_s | PSR_x},
21655 {"cfxs", PSR_c | PSR_f | PSR_x | PSR_s},
21656 {"csfx", PSR_c | PSR_s | PSR_f | PSR_x},
21657 {"csxf", PSR_c | PSR_s | PSR_x | PSR_f},
21658 {"cxfs", PSR_c | PSR_x | PSR_f | PSR_s},
21659 {"cxsf", PSR_c | PSR_x | PSR_s | PSR_f},
21660 };
21661
21662 /* Table of V7M psr names. */
21663 static const struct asm_psr v7m_psrs[] =
21664 {
21665 {"apsr", 0x0 }, {"APSR", 0x0 },
21666 {"iapsr", 0x1 }, {"IAPSR", 0x1 },
21667 {"eapsr", 0x2 }, {"EAPSR", 0x2 },
21668 {"psr", 0x3 }, {"PSR", 0x3 },
21669 {"xpsr", 0x3 }, {"XPSR", 0x3 }, {"xPSR", 3 },
21670 {"ipsr", 0x5 }, {"IPSR", 0x5 },
21671 {"epsr", 0x6 }, {"EPSR", 0x6 },
21672 {"iepsr", 0x7 }, {"IEPSR", 0x7 },
21673 {"msp", 0x8 }, {"MSP", 0x8 },
21674 {"psp", 0x9 }, {"PSP", 0x9 },
21675 {"msplim", 0xa }, {"MSPLIM", 0xa },
21676 {"psplim", 0xb }, {"PSPLIM", 0xb },
21677 {"primask", 0x10}, {"PRIMASK", 0x10},
21678 {"basepri", 0x11}, {"BASEPRI", 0x11},
21679 {"basepri_max", 0x12}, {"BASEPRI_MAX", 0x12},
21680 {"faultmask", 0x13}, {"FAULTMASK", 0x13},
21681 {"control", 0x14}, {"CONTROL", 0x14},
21682 {"msp_ns", 0x88}, {"MSP_NS", 0x88},
21683 {"psp_ns", 0x89}, {"PSP_NS", 0x89},
21684 {"msplim_ns", 0x8a}, {"MSPLIM_NS", 0x8a},
21685 {"psplim_ns", 0x8b}, {"PSPLIM_NS", 0x8b},
21686 {"primask_ns", 0x90}, {"PRIMASK_NS", 0x90},
21687 {"basepri_ns", 0x91}, {"BASEPRI_NS", 0x91},
21688 {"faultmask_ns", 0x93}, {"FAULTMASK_NS", 0x93},
21689 {"control_ns", 0x94}, {"CONTROL_NS", 0x94},
21690 {"sp_ns", 0x98}, {"SP_NS", 0x98 }
21691 };
21692
21693 /* Table of all shift-in-operand names. */
21694 static const struct asm_shift_name shift_names [] =
21695 {
21696 { "asl", SHIFT_LSL }, { "ASL", SHIFT_LSL },
21697 { "lsl", SHIFT_LSL }, { "LSL", SHIFT_LSL },
21698 { "lsr", SHIFT_LSR }, { "LSR", SHIFT_LSR },
21699 { "asr", SHIFT_ASR }, { "ASR", SHIFT_ASR },
21700 { "ror", SHIFT_ROR }, { "ROR", SHIFT_ROR },
21701 { "rrx", SHIFT_RRX }, { "RRX", SHIFT_RRX },
21702 { "uxtw", SHIFT_UXTW}, { "UXTW", SHIFT_UXTW}
21703 };
21704
21705 /* Table of all explicit relocation names. */
21706 #ifdef OBJ_ELF
21707 static struct reloc_entry reloc_names[] =
21708 {
21709 { "got", BFD_RELOC_ARM_GOT32 }, { "GOT", BFD_RELOC_ARM_GOT32 },
21710 { "gotoff", BFD_RELOC_ARM_GOTOFF }, { "GOTOFF", BFD_RELOC_ARM_GOTOFF },
21711 { "plt", BFD_RELOC_ARM_PLT32 }, { "PLT", BFD_RELOC_ARM_PLT32 },
21712 { "target1", BFD_RELOC_ARM_TARGET1 }, { "TARGET1", BFD_RELOC_ARM_TARGET1 },
21713 { "target2", BFD_RELOC_ARM_TARGET2 }, { "TARGET2", BFD_RELOC_ARM_TARGET2 },
21714 { "sbrel", BFD_RELOC_ARM_SBREL32 }, { "SBREL", BFD_RELOC_ARM_SBREL32 },
21715 { "tlsgd", BFD_RELOC_ARM_TLS_GD32}, { "TLSGD", BFD_RELOC_ARM_TLS_GD32},
21716 { "tlsldm", BFD_RELOC_ARM_TLS_LDM32}, { "TLSLDM", BFD_RELOC_ARM_TLS_LDM32},
21717 { "tlsldo", BFD_RELOC_ARM_TLS_LDO32}, { "TLSLDO", BFD_RELOC_ARM_TLS_LDO32},
21718 { "gottpoff",BFD_RELOC_ARM_TLS_IE32}, { "GOTTPOFF",BFD_RELOC_ARM_TLS_IE32},
21719 { "tpoff", BFD_RELOC_ARM_TLS_LE32}, { "TPOFF", BFD_RELOC_ARM_TLS_LE32},
21720 { "got_prel", BFD_RELOC_ARM_GOT_PREL}, { "GOT_PREL", BFD_RELOC_ARM_GOT_PREL},
21721 { "tlsdesc", BFD_RELOC_ARM_TLS_GOTDESC},
21722 { "TLSDESC", BFD_RELOC_ARM_TLS_GOTDESC},
21723 { "tlscall", BFD_RELOC_ARM_TLS_CALL},
21724 { "TLSCALL", BFD_RELOC_ARM_TLS_CALL},
21725 { "tlsdescseq", BFD_RELOC_ARM_TLS_DESCSEQ},
21726 { "TLSDESCSEQ", BFD_RELOC_ARM_TLS_DESCSEQ},
21727 { "gotfuncdesc", BFD_RELOC_ARM_GOTFUNCDESC },
21728 { "GOTFUNCDESC", BFD_RELOC_ARM_GOTFUNCDESC },
21729 { "gotofffuncdesc", BFD_RELOC_ARM_GOTOFFFUNCDESC },
21730 { "GOTOFFFUNCDESC", BFD_RELOC_ARM_GOTOFFFUNCDESC },
21731 { "funcdesc", BFD_RELOC_ARM_FUNCDESC },
21732 { "FUNCDESC", BFD_RELOC_ARM_FUNCDESC },
21733 { "tlsgd_fdpic", BFD_RELOC_ARM_TLS_GD32_FDPIC }, { "TLSGD_FDPIC", BFD_RELOC_ARM_TLS_GD32_FDPIC },
21734 { "tlsldm_fdpic", BFD_RELOC_ARM_TLS_LDM32_FDPIC }, { "TLSLDM_FDPIC", BFD_RELOC_ARM_TLS_LDM32_FDPIC },
21735 { "gottpoff_fdpic", BFD_RELOC_ARM_TLS_IE32_FDPIC }, { "GOTTPOFF_FDIC", BFD_RELOC_ARM_TLS_IE32_FDPIC },
21736 };
21737 #endif
21738
21739 /* Table of all conditional affixes. */
21740 static const struct asm_cond conds[] =
21741 {
21742 {"eq", 0x0},
21743 {"ne", 0x1},
21744 {"cs", 0x2}, {"hs", 0x2},
21745 {"cc", 0x3}, {"ul", 0x3}, {"lo", 0x3},
21746 {"mi", 0x4},
21747 {"pl", 0x5},
21748 {"vs", 0x6},
21749 {"vc", 0x7},
21750 {"hi", 0x8},
21751 {"ls", 0x9},
21752 {"ge", 0xa},
21753 {"lt", 0xb},
21754 {"gt", 0xc},
21755 {"le", 0xd},
21756 {"al", 0xe}
21757 };
21758 static const struct asm_cond vconds[] =
21759 {
21760 {"t", 0xf},
21761 {"e", 0x10}
21762 };
21763
21764 #define UL_BARRIER(L,U,CODE,FEAT) \
21765 { L, CODE, ARM_FEATURE_CORE_LOW (FEAT) }, \
21766 { U, CODE, ARM_FEATURE_CORE_LOW (FEAT) }
21767
21768 static struct asm_barrier_opt barrier_opt_names[] =
21769 {
21770 UL_BARRIER ("sy", "SY", 0xf, ARM_EXT_BARRIER),
21771 UL_BARRIER ("st", "ST", 0xe, ARM_EXT_BARRIER),
21772 UL_BARRIER ("ld", "LD", 0xd, ARM_EXT_V8),
21773 UL_BARRIER ("ish", "ISH", 0xb, ARM_EXT_BARRIER),
21774 UL_BARRIER ("sh", "SH", 0xb, ARM_EXT_BARRIER),
21775 UL_BARRIER ("ishst", "ISHST", 0xa, ARM_EXT_BARRIER),
21776 UL_BARRIER ("shst", "SHST", 0xa, ARM_EXT_BARRIER),
21777 UL_BARRIER ("ishld", "ISHLD", 0x9, ARM_EXT_V8),
21778 UL_BARRIER ("un", "UN", 0x7, ARM_EXT_BARRIER),
21779 UL_BARRIER ("nsh", "NSH", 0x7, ARM_EXT_BARRIER),
21780 UL_BARRIER ("unst", "UNST", 0x6, ARM_EXT_BARRIER),
21781 UL_BARRIER ("nshst", "NSHST", 0x6, ARM_EXT_BARRIER),
21782 UL_BARRIER ("nshld", "NSHLD", 0x5, ARM_EXT_V8),
21783 UL_BARRIER ("osh", "OSH", 0x3, ARM_EXT_BARRIER),
21784 UL_BARRIER ("oshst", "OSHST", 0x2, ARM_EXT_BARRIER),
21785 UL_BARRIER ("oshld", "OSHLD", 0x1, ARM_EXT_V8)
21786 };
21787
21788 #undef UL_BARRIER
21789
21790 /* Table of ARM-format instructions. */
21791
21792 /* Macros for gluing together operand strings. N.B. In all cases
21793 other than OPS0, the trailing OP_stop comes from default
21794 zero-initialization of the unspecified elements of the array. */
21795 #define OPS0() { OP_stop, }
21796 #define OPS1(a) { OP_##a, }
21797 #define OPS2(a,b) { OP_##a,OP_##b, }
21798 #define OPS3(a,b,c) { OP_##a,OP_##b,OP_##c, }
21799 #define OPS4(a,b,c,d) { OP_##a,OP_##b,OP_##c,OP_##d, }
21800 #define OPS5(a,b,c,d,e) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e, }
21801 #define OPS6(a,b,c,d,e,f) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e,OP_##f, }
21802
21803 /* These macros are similar to the OPSn, but do not prepend the OP_ prefix.
21804 This is useful when mixing operands for ARM and THUMB, i.e. using the
21805 MIX_ARM_THUMB_OPERANDS macro.
21806 In order to use these macros, prefix the number of operands with _
21807 e.g. _3. */
21808 #define OPS_1(a) { a, }
21809 #define OPS_2(a,b) { a,b, }
21810 #define OPS_3(a,b,c) { a,b,c, }
21811 #define OPS_4(a,b,c,d) { a,b,c,d, }
21812 #define OPS_5(a,b,c,d,e) { a,b,c,d,e, }
21813 #define OPS_6(a,b,c,d,e,f) { a,b,c,d,e,f, }
21814
21815 /* These macros abstract out the exact format of the mnemonic table and
21816 save some repeated characters. */
21817
21818 /* The normal sort of mnemonic; has a Thumb variant; takes a conditional suffix. */
21819 #define TxCE(mnem, op, top, nops, ops, ae, te) \
21820 { mnem, OPS##nops ops, OT_csuffix, 0x##op, top, ARM_VARIANT, \
21821 THUMB_VARIANT, do_##ae, do_##te, 0 }
21822
21823 /* Two variants of the above - TCE for a numeric Thumb opcode, tCE for
21824 a T_MNEM_xyz enumerator. */
21825 #define TCE(mnem, aop, top, nops, ops, ae, te) \
21826 TxCE (mnem, aop, 0x##top, nops, ops, ae, te)
21827 #define tCE(mnem, aop, top, nops, ops, ae, te) \
21828 TxCE (mnem, aop, T_MNEM##top, nops, ops, ae, te)
21829
21830 /* Second most common sort of mnemonic: has a Thumb variant, takes a conditional
21831 infix after the third character. */
21832 #define TxC3(mnem, op, top, nops, ops, ae, te) \
21833 { mnem, OPS##nops ops, OT_cinfix3, 0x##op, top, ARM_VARIANT, \
21834 THUMB_VARIANT, do_##ae, do_##te, 0 }
21835 #define TxC3w(mnem, op, top, nops, ops, ae, te) \
21836 { mnem, OPS##nops ops, OT_cinfix3_deprecated, 0x##op, top, ARM_VARIANT, \
21837 THUMB_VARIANT, do_##ae, do_##te, 0 }
21838 #define TC3(mnem, aop, top, nops, ops, ae, te) \
21839 TxC3 (mnem, aop, 0x##top, nops, ops, ae, te)
21840 #define TC3w(mnem, aop, top, nops, ops, ae, te) \
21841 TxC3w (mnem, aop, 0x##top, nops, ops, ae, te)
21842 #define tC3(mnem, aop, top, nops, ops, ae, te) \
21843 TxC3 (mnem, aop, T_MNEM##top, nops, ops, ae, te)
21844 #define tC3w(mnem, aop, top, nops, ops, ae, te) \
21845 TxC3w (mnem, aop, T_MNEM##top, nops, ops, ae, te)
21846
21847 /* Mnemonic that cannot be conditionalized. The ARM condition-code
21848 field is still 0xE. Many of the Thumb variants can be executed
21849 conditionally, so this is checked separately. */
21850 #define TUE(mnem, op, top, nops, ops, ae, te) \
21851 { mnem, OPS##nops ops, OT_unconditional, 0x##op, 0x##top, ARM_VARIANT, \
21852 THUMB_VARIANT, do_##ae, do_##te, 0 }
21853
21854 /* Same as TUE but the encoding function for ARM and Thumb modes is the same.
21855 Used by mnemonics that have very minimal differences in the encoding for
21856 ARM and Thumb variants and can be handled in a common function. */
21857 #define TUEc(mnem, op, top, nops, ops, en) \
21858 { mnem, OPS##nops ops, OT_unconditional, 0x##op, 0x##top, ARM_VARIANT, \
21859 THUMB_VARIANT, do_##en, do_##en, 0 }
21860
21861 /* Mnemonic that cannot be conditionalized, and bears 0xF in its ARM
21862 condition code field. */
21863 #define TUF(mnem, op, top, nops, ops, ae, te) \
21864 { mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##top, ARM_VARIANT, \
21865 THUMB_VARIANT, do_##ae, do_##te, 0 }
21866
21867 /* ARM-only variants of all the above. */
21868 #define CE(mnem, op, nops, ops, ae) \
21869 { mnem, OPS##nops ops, OT_csuffix, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL, 0 }
21870
21871 #define C3(mnem, op, nops, ops, ae) \
21872 { #mnem, OPS##nops ops, OT_cinfix3, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL, 0 }
21873
21874 /* Thumb-only variants of TCE and TUE. */
21875 #define ToC(mnem, top, nops, ops, te) \
21876 { mnem, OPS##nops ops, OT_csuffix, 0x0, 0x##top, 0, THUMB_VARIANT, NULL, \
21877 do_##te, 0 }
21878
21879 #define ToU(mnem, top, nops, ops, te) \
21880 { mnem, OPS##nops ops, OT_unconditional, 0x0, 0x##top, 0, THUMB_VARIANT, \
21881 NULL, do_##te, 0 }
21882
21883 /* T_MNEM_xyz enumerator variants of ToC. */
21884 #define toC(mnem, top, nops, ops, te) \
21885 { mnem, OPS##nops ops, OT_csuffix, 0x0, T_MNEM##top, 0, THUMB_VARIANT, NULL, \
21886 do_##te, 0 }
21887
21888 /* T_MNEM_xyz enumerator variants of ToU. */
21889 #define toU(mnem, top, nops, ops, te) \
21890 { mnem, OPS##nops ops, OT_unconditional, 0x0, T_MNEM##top, 0, THUMB_VARIANT, \
21891 NULL, do_##te, 0 }
21892
21893 /* Legacy mnemonics that always have conditional infix after the third
21894 character. */
21895 #define CL(mnem, op, nops, ops, ae) \
21896 { mnem, OPS##nops ops, OT_cinfix3_legacy, \
21897 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL, 0 }
21898
21899 /* Coprocessor instructions. Isomorphic between Arm and Thumb-2. */
21900 #define cCE(mnem, op, nops, ops, ae) \
21901 { mnem, OPS##nops ops, OT_csuffix, 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae, 0 }
21902
21903 /* mov instructions that are shared between coprocessor and MVE. */
21904 #define mcCE(mnem, op, nops, ops, ae) \
21905 { #mnem, OPS##nops ops, OT_csuffix, 0x##op, 0xe##op, ARM_VARIANT, THUMB_VARIANT, do_##ae, do_##ae, 0 }
21906
21907 /* Legacy coprocessor instructions where conditional infix and conditional
21908 suffix are ambiguous. For consistency this includes all FPA instructions,
21909 not just the potentially ambiguous ones. */
21910 #define cCL(mnem, op, nops, ops, ae) \
21911 { mnem, OPS##nops ops, OT_cinfix3_legacy, \
21912 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae, 0 }
21913
21914 /* Coprocessor, takes either a suffix or a position-3 infix
21915 (for an FPA corner case). */
21916 #define C3E(mnem, op, nops, ops, ae) \
21917 { mnem, OPS##nops ops, OT_csuf_or_in3, \
21918 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae, 0 }
21919
21920 #define xCM_(m1, m2, m3, op, nops, ops, ae) \
21921 { m1 #m2 m3, OPS##nops ops, \
21922 sizeof (#m2) == 1 ? OT_odd_infix_unc : OT_odd_infix_0 + sizeof (m1) - 1, \
21923 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL, 0 }
21924
21925 #define CM(m1, m2, op, nops, ops, ae) \
21926 xCM_ (m1, , m2, op, nops, ops, ae), \
21927 xCM_ (m1, eq, m2, op, nops, ops, ae), \
21928 xCM_ (m1, ne, m2, op, nops, ops, ae), \
21929 xCM_ (m1, cs, m2, op, nops, ops, ae), \
21930 xCM_ (m1, hs, m2, op, nops, ops, ae), \
21931 xCM_ (m1, cc, m2, op, nops, ops, ae), \
21932 xCM_ (m1, ul, m2, op, nops, ops, ae), \
21933 xCM_ (m1, lo, m2, op, nops, ops, ae), \
21934 xCM_ (m1, mi, m2, op, nops, ops, ae), \
21935 xCM_ (m1, pl, m2, op, nops, ops, ae), \
21936 xCM_ (m1, vs, m2, op, nops, ops, ae), \
21937 xCM_ (m1, vc, m2, op, nops, ops, ae), \
21938 xCM_ (m1, hi, m2, op, nops, ops, ae), \
21939 xCM_ (m1, ls, m2, op, nops, ops, ae), \
21940 xCM_ (m1, ge, m2, op, nops, ops, ae), \
21941 xCM_ (m1, lt, m2, op, nops, ops, ae), \
21942 xCM_ (m1, gt, m2, op, nops, ops, ae), \
21943 xCM_ (m1, le, m2, op, nops, ops, ae), \
21944 xCM_ (m1, al, m2, op, nops, ops, ae)
21945
21946 #define UE(mnem, op, nops, ops, ae) \
21947 { #mnem, OPS##nops ops, OT_unconditional, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL, 0 }
21948
21949 #define UF(mnem, op, nops, ops, ae) \
21950 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL, 0 }
21951
21952 /* Neon data-processing. ARM versions are unconditional with cond=0xf.
21953 The Thumb and ARM variants are mostly the same (bits 0-23 and 24/28), so we
21954 use the same encoding function for each. */
21955 #define NUF(mnem, op, nops, ops, enc) \
21956 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##op, \
21957 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc, 0 }
21958
21959 /* Neon data processing, version which indirects through neon_enc_tab for
21960 the various overloaded versions of opcodes. */
21961 #define nUF(mnem, op, nops, ops, enc) \
21962 { #mnem, OPS##nops ops, OT_unconditionalF, N_MNEM##op, N_MNEM##op, \
21963 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc, 0 }
21964
21965 /* Neon insn with conditional suffix for the ARM version, non-overloaded
21966 version. */
21967 #define NCE_tag(mnem, op, nops, ops, enc, tag, mve_p) \
21968 { #mnem, OPS##nops ops, tag, 0x##op, 0x##op, ARM_VARIANT, \
21969 THUMB_VARIANT, do_##enc, do_##enc, mve_p }
21970
21971 #define NCE(mnem, op, nops, ops, enc) \
21972 NCE_tag (mnem, op, nops, ops, enc, OT_csuffix, 0)
21973
21974 #define NCEF(mnem, op, nops, ops, enc) \
21975 NCE_tag (mnem, op, nops, ops, enc, OT_csuffixF, 0)
21976
21977 /* Neon insn with conditional suffix for the ARM version, overloaded types. */
21978 #define nCE_tag(mnem, op, nops, ops, enc, tag, mve_p) \
21979 { #mnem, OPS##nops ops, tag, N_MNEM##op, N_MNEM##op, \
21980 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc, mve_p }
21981
21982 #define nCE(mnem, op, nops, ops, enc) \
21983 nCE_tag (mnem, op, nops, ops, enc, OT_csuffix, 0)
21984
21985 #define nCEF(mnem, op, nops, ops, enc) \
21986 nCE_tag (mnem, op, nops, ops, enc, OT_csuffixF, 0)
21987
21988 /* */
21989 #define mCEF(mnem, op, nops, ops, enc) \
21990 { #mnem, OPS##nops ops, OT_csuffixF, M_MNEM##op, M_MNEM##op, \
21991 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc, 1 }
21992
21993
21994 /* nCEF but for MVE predicated instructions. */
21995 #define mnCEF(mnem, op, nops, ops, enc) \
21996 nCE_tag (mnem, op, nops, ops, enc, OT_csuffixF, 1)
21997
21998 /* nCE but for MVE predicated instructions. */
21999 #define mnCE(mnem, op, nops, ops, enc) \
22000 nCE_tag (mnem, op, nops, ops, enc, OT_csuffix, 1)
22001
22002 /* NUF but for potentially MVE predicated instructions. */
22003 #define MNUF(mnem, op, nops, ops, enc) \
22004 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##op, \
22005 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc, 1 }
22006
22007 /* nUF but for potentially MVE predicated instructions. */
22008 #define mnUF(mnem, op, nops, ops, enc) \
22009 { #mnem, OPS##nops ops, OT_unconditionalF, N_MNEM##op, N_MNEM##op, \
22010 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc, 1 }
22011
22012 /* ToC but for potentially MVE predicated instructions. */
22013 #define mToC(mnem, top, nops, ops, te) \
22014 { mnem, OPS##nops ops, OT_csuffix, 0x0, 0x##top, 0, THUMB_VARIANT, NULL, \
22015 do_##te, 1 }
22016
22017 /* NCE but for MVE predicated instructions. */
22018 #define MNCE(mnem, op, nops, ops, enc) \
22019 NCE_tag (mnem, op, nops, ops, enc, OT_csuffix, 1)
22020
22021 /* NCEF but for MVE predicated instructions. */
22022 #define MNCEF(mnem, op, nops, ops, enc) \
22023 NCE_tag (mnem, op, nops, ops, enc, OT_csuffixF, 1)
22024 #define do_0 0
22025
22026 static const struct asm_opcode insns[] =
22027 {
22028 #define ARM_VARIANT & arm_ext_v1 /* Core ARM Instructions. */
22029 #define THUMB_VARIANT & arm_ext_v4t
22030 tCE("and", 0000000, _and, 3, (RR, oRR, SH), arit, t_arit3c),
22031 tC3("ands", 0100000, _ands, 3, (RR, oRR, SH), arit, t_arit3c),
22032 tCE("eor", 0200000, _eor, 3, (RR, oRR, SH), arit, t_arit3c),
22033 tC3("eors", 0300000, _eors, 3, (RR, oRR, SH), arit, t_arit3c),
22034 tCE("sub", 0400000, _sub, 3, (RR, oRR, SH), arit, t_add_sub),
22035 tC3("subs", 0500000, _subs, 3, (RR, oRR, SH), arit, t_add_sub),
22036 tCE("add", 0800000, _add, 3, (RR, oRR, SHG), arit, t_add_sub),
22037 tC3("adds", 0900000, _adds, 3, (RR, oRR, SHG), arit, t_add_sub),
22038 tCE("adc", 0a00000, _adc, 3, (RR, oRR, SH), arit, t_arit3c),
22039 tC3("adcs", 0b00000, _adcs, 3, (RR, oRR, SH), arit, t_arit3c),
22040 tCE("sbc", 0c00000, _sbc, 3, (RR, oRR, SH), arit, t_arit3),
22041 tC3("sbcs", 0d00000, _sbcs, 3, (RR, oRR, SH), arit, t_arit3),
22042 tCE("orr", 1800000, _orr, 3, (RR, oRR, SH), arit, t_arit3c),
22043 tC3("orrs", 1900000, _orrs, 3, (RR, oRR, SH), arit, t_arit3c),
22044 tCE("bic", 1c00000, _bic, 3, (RR, oRR, SH), arit, t_arit3),
22045 tC3("bics", 1d00000, _bics, 3, (RR, oRR, SH), arit, t_arit3),
22046
22047 /* The p-variants of tst/cmp/cmn/teq (below) are the pre-V6 mechanism
22048 for setting PSR flag bits. They are obsolete in V6 and do not
22049 have Thumb equivalents. */
22050 tCE("tst", 1100000, _tst, 2, (RR, SH), cmp, t_mvn_tst),
22051 tC3w("tsts", 1100000, _tst, 2, (RR, SH), cmp, t_mvn_tst),
22052 CL("tstp", 110f000, 2, (RR, SH), cmp),
22053 tCE("cmp", 1500000, _cmp, 2, (RR, SH), cmp, t_mov_cmp),
22054 tC3w("cmps", 1500000, _cmp, 2, (RR, SH), cmp, t_mov_cmp),
22055 CL("cmpp", 150f000, 2, (RR, SH), cmp),
22056 tCE("cmn", 1700000, _cmn, 2, (RR, SH), cmp, t_mvn_tst),
22057 tC3w("cmns", 1700000, _cmn, 2, (RR, SH), cmp, t_mvn_tst),
22058 CL("cmnp", 170f000, 2, (RR, SH), cmp),
22059
22060 tCE("mov", 1a00000, _mov, 2, (RR, SH), mov, t_mov_cmp),
22061 tC3("movs", 1b00000, _movs, 2, (RR, SHG), mov, t_mov_cmp),
22062 tCE("mvn", 1e00000, _mvn, 2, (RR, SH), mov, t_mvn_tst),
22063 tC3("mvns", 1f00000, _mvns, 2, (RR, SH), mov, t_mvn_tst),
22064
22065 tCE("ldr", 4100000, _ldr, 2, (RR, ADDRGLDR),ldst, t_ldst),
22066 tC3("ldrb", 4500000, _ldrb, 2, (RRnpc_npcsp, ADDRGLDR),ldst, t_ldst),
22067 tCE("str", 4000000, _str, _2, (MIX_ARM_THUMB_OPERANDS (OP_RR,
22068 OP_RRnpc),
22069 OP_ADDRGLDR),ldst, t_ldst),
22070 tC3("strb", 4400000, _strb, 2, (RRnpc_npcsp, ADDRGLDR),ldst, t_ldst),
22071
22072 tCE("stm", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
22073 tC3("stmia", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
22074 tC3("stmea", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
22075 tCE("ldm", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
22076 tC3("ldmia", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
22077 tC3("ldmfd", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
22078
22079 tCE("b", a000000, _b, 1, (EXPr), branch, t_branch),
22080 TCE("bl", b000000, f000f800, 1, (EXPr), bl, t_branch23),
22081
22082 /* Pseudo ops. */
22083 tCE("adr", 28f0000, _adr, 2, (RR, EXP), adr, t_adr),
22084 C3(adrl, 28f0000, 2, (RR, EXP), adrl),
22085 tCE("nop", 1a00000, _nop, 1, (oI255c), nop, t_nop),
22086 tCE("udf", 7f000f0, _udf, 1, (oIffffb), bkpt, t_udf),
22087
22088 /* Thumb-compatibility pseudo ops. */
22089 tCE("lsl", 1a00000, _lsl, 3, (RR, oRR, SH), shift, t_shift),
22090 tC3("lsls", 1b00000, _lsls, 3, (RR, oRR, SH), shift, t_shift),
22091 tCE("lsr", 1a00020, _lsr, 3, (RR, oRR, SH), shift, t_shift),
22092 tC3("lsrs", 1b00020, _lsrs, 3, (RR, oRR, SH), shift, t_shift),
22093 tCE("asr", 1a00040, _asr, 3, (RR, oRR, SH), shift, t_shift),
22094 tC3("asrs", 1b00040, _asrs, 3, (RR, oRR, SH), shift, t_shift),
22095 tCE("ror", 1a00060, _ror, 3, (RR, oRR, SH), shift, t_shift),
22096 tC3("rors", 1b00060, _rors, 3, (RR, oRR, SH), shift, t_shift),
22097 tCE("neg", 2600000, _neg, 2, (RR, RR), rd_rn, t_neg),
22098 tC3("negs", 2700000, _negs, 2, (RR, RR), rd_rn, t_neg),
22099 tCE("push", 92d0000, _push, 1, (REGLST), push_pop, t_push_pop),
22100 tCE("pop", 8bd0000, _pop, 1, (REGLST), push_pop, t_push_pop),
22101
22102 /* These may simplify to neg. */
22103 TCE("rsb", 0600000, ebc00000, 3, (RR, oRR, SH), arit, t_rsb),
22104 TC3("rsbs", 0700000, ebd00000, 3, (RR, oRR, SH), arit, t_rsb),
22105
22106 #undef THUMB_VARIANT
22107 #define THUMB_VARIANT & arm_ext_os
22108
22109 TCE("swi", f000000, df00, 1, (EXPi), swi, t_swi),
22110 TCE("svc", f000000, df00, 1, (EXPi), swi, t_swi),
22111
22112 #undef THUMB_VARIANT
22113 #define THUMB_VARIANT & arm_ext_v6
22114
22115 TCE("cpy", 1a00000, 4600, 2, (RR, RR), rd_rm, t_cpy),
22116
22117 /* V1 instructions with no Thumb analogue prior to V6T2. */
22118 #undef THUMB_VARIANT
22119 #define THUMB_VARIANT & arm_ext_v6t2
22120
22121 TCE("teq", 1300000, ea900f00, 2, (RR, SH), cmp, t_mvn_tst),
22122 TC3w("teqs", 1300000, ea900f00, 2, (RR, SH), cmp, t_mvn_tst),
22123 CL("teqp", 130f000, 2, (RR, SH), cmp),
22124
22125 TC3("ldrt", 4300000, f8500e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
22126 TC3("ldrbt", 4700000, f8100e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
22127 TC3("strt", 4200000, f8400e00, 2, (RR_npcsp, ADDR), ldstt, t_ldstt),
22128 TC3("strbt", 4600000, f8000e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
22129
22130 TC3("stmdb", 9000000, e9000000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
22131 TC3("stmfd", 9000000, e9000000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
22132
22133 TC3("ldmdb", 9100000, e9100000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
22134 TC3("ldmea", 9100000, e9100000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
22135
22136 /* V1 instructions with no Thumb analogue at all. */
22137 CE("rsc", 0e00000, 3, (RR, oRR, SH), arit),
22138 C3(rscs, 0f00000, 3, (RR, oRR, SH), arit),
22139
22140 C3(stmib, 9800000, 2, (RRw, REGLST), ldmstm),
22141 C3(stmfa, 9800000, 2, (RRw, REGLST), ldmstm),
22142 C3(stmda, 8000000, 2, (RRw, REGLST), ldmstm),
22143 C3(stmed, 8000000, 2, (RRw, REGLST), ldmstm),
22144 C3(ldmib, 9900000, 2, (RRw, REGLST), ldmstm),
22145 C3(ldmed, 9900000, 2, (RRw, REGLST), ldmstm),
22146 C3(ldmda, 8100000, 2, (RRw, REGLST), ldmstm),
22147 C3(ldmfa, 8100000, 2, (RRw, REGLST), ldmstm),
22148
22149 #undef ARM_VARIANT
22150 #define ARM_VARIANT & arm_ext_v2 /* ARM 2 - multiplies. */
22151 #undef THUMB_VARIANT
22152 #define THUMB_VARIANT & arm_ext_v4t
22153
22154 tCE("mul", 0000090, _mul, 3, (RRnpc, RRnpc, oRR), mul, t_mul),
22155 tC3("muls", 0100090, _muls, 3, (RRnpc, RRnpc, oRR), mul, t_mul),
22156
22157 #undef THUMB_VARIANT
22158 #define THUMB_VARIANT & arm_ext_v6t2
22159
22160 TCE("mla", 0200090, fb000000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas, t_mla),
22161 C3(mlas, 0300090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas),
22162
22163 /* Generic coprocessor instructions. */
22164 TCE("cdp", e000000, ee000000, 6, (RCP, I15b, RCN, RCN, RCN, oI7b), cdp, cdp),
22165 TCE("ldc", c100000, ec100000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
22166 TC3("ldcl", c500000, ec500000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
22167 TCE("stc", c000000, ec000000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
22168 TC3("stcl", c400000, ec400000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
22169 TCE("mcr", e000010, ee000010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
22170 TCE("mrc", e100010, ee100010, 6, (RCP, I7b, APSR_RR, RCN, RCN, oI7b), co_reg, co_reg),
22171
22172 #undef ARM_VARIANT
22173 #define ARM_VARIANT & arm_ext_v2s /* ARM 3 - swp instructions. */
22174
22175 CE("swp", 1000090, 3, (RRnpc, RRnpc, RRnpcb), rd_rm_rn),
22176 C3(swpb, 1400090, 3, (RRnpc, RRnpc, RRnpcb), rd_rm_rn),
22177
22178 #undef ARM_VARIANT
22179 #define ARM_VARIANT & arm_ext_v3 /* ARM 6 Status register instructions. */
22180 #undef THUMB_VARIANT
22181 #define THUMB_VARIANT & arm_ext_msr
22182
22183 TCE("mrs", 1000000, f3e08000, 2, (RRnpc, rPSR), mrs, t_mrs),
22184 TCE("msr", 120f000, f3808000, 2, (wPSR, RR_EXi), msr, t_msr),
22185
22186 #undef ARM_VARIANT
22187 #define ARM_VARIANT & arm_ext_v3m /* ARM 7M long multiplies. */
22188 #undef THUMB_VARIANT
22189 #define THUMB_VARIANT & arm_ext_v6t2
22190
22191 TCE("smull", 0c00090, fb800000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
22192 CM("smull","s", 0d00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
22193 TCE("umull", 0800090, fba00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
22194 CM("umull","s", 0900090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
22195 TCE("smlal", 0e00090, fbc00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
22196 CM("smlal","s", 0f00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
22197 TCE("umlal", 0a00090, fbe00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
22198 CM("umlal","s", 0b00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
22199
22200 #undef ARM_VARIANT
22201 #define ARM_VARIANT & arm_ext_v4 /* ARM Architecture 4. */
22202 #undef THUMB_VARIANT
22203 #define THUMB_VARIANT & arm_ext_v4t
22204
22205 tC3("ldrh", 01000b0, _ldrh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
22206 tC3("strh", 00000b0, _strh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
22207 tC3("ldrsh", 01000f0, _ldrsh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
22208 tC3("ldrsb", 01000d0, _ldrsb, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
22209 tC3("ldsh", 01000f0, _ldrsh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
22210 tC3("ldsb", 01000d0, _ldrsb, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
22211
22212 #undef ARM_VARIANT
22213 #define ARM_VARIANT & arm_ext_v4t_5
22214
22215 /* ARM Architecture 4T. */
22216 /* Note: bx (and blx) are required on V5, even if the processor does
22217 not support Thumb. */
22218 TCE("bx", 12fff10, 4700, 1, (RR), bx, t_bx),
22219
22220 #undef ARM_VARIANT
22221 #define ARM_VARIANT & arm_ext_v5 /* ARM Architecture 5T. */
22222 #undef THUMB_VARIANT
22223 #define THUMB_VARIANT & arm_ext_v5t
22224
22225 /* Note: blx has 2 variants; the .value coded here is for
22226 BLX(2). Only this variant has conditional execution. */
22227 TCE("blx", 12fff30, 4780, 1, (RR_EXr), blx, t_blx),
22228 TUE("bkpt", 1200070, be00, 1, (oIffffb), bkpt, t_bkpt),
22229
22230 #undef THUMB_VARIANT
22231 #define THUMB_VARIANT & arm_ext_v6t2
22232
22233 TCE("clz", 16f0f10, fab0f080, 2, (RRnpc, RRnpc), rd_rm, t_clz),
22234 TUF("ldc2", c100000, fc100000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
22235 TUF("ldc2l", c500000, fc500000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
22236 TUF("stc2", c000000, fc000000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
22237 TUF("stc2l", c400000, fc400000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
22238 TUF("cdp2", e000000, fe000000, 6, (RCP, I15b, RCN, RCN, RCN, oI7b), cdp, cdp),
22239 TUF("mcr2", e000010, fe000010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
22240 TUF("mrc2", e100010, fe100010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
22241
22242 #undef ARM_VARIANT
22243 #define ARM_VARIANT & arm_ext_v5exp /* ARM Architecture 5TExP. */
22244 #undef THUMB_VARIANT
22245 #define THUMB_VARIANT & arm_ext_v5exp
22246
22247 TCE("smlabb", 1000080, fb100000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
22248 TCE("smlatb", 10000a0, fb100020, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
22249 TCE("smlabt", 10000c0, fb100010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
22250 TCE("smlatt", 10000e0, fb100030, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
22251
22252 TCE("smlawb", 1200080, fb300000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
22253 TCE("smlawt", 12000c0, fb300010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
22254
22255 TCE("smlalbb", 1400080, fbc00080, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
22256 TCE("smlaltb", 14000a0, fbc000a0, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
22257 TCE("smlalbt", 14000c0, fbc00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
22258 TCE("smlaltt", 14000e0, fbc000b0, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
22259
22260 TCE("smulbb", 1600080, fb10f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
22261 TCE("smultb", 16000a0, fb10f020, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
22262 TCE("smulbt", 16000c0, fb10f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
22263 TCE("smultt", 16000e0, fb10f030, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
22264
22265 TCE("smulwb", 12000a0, fb30f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
22266 TCE("smulwt", 12000e0, fb30f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
22267
22268 TCE("qadd", 1000050, fa80f080, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
22269 TCE("qdadd", 1400050, fa80f090, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
22270 TCE("qsub", 1200050, fa80f0a0, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
22271 TCE("qdsub", 1600050, fa80f0b0, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
22272
22273 #undef ARM_VARIANT
22274 #define ARM_VARIANT & arm_ext_v5e /* ARM Architecture 5TE. */
22275 #undef THUMB_VARIANT
22276 #define THUMB_VARIANT & arm_ext_v6t2
22277
22278 TUF("pld", 450f000, f810f000, 1, (ADDR), pld, t_pld),
22279 TC3("ldrd", 00000d0, e8500000, 3, (RRnpc_npcsp, oRRnpc_npcsp, ADDRGLDRS),
22280 ldrd, t_ldstd),
22281 TC3("strd", 00000f0, e8400000, 3, (RRnpc_npcsp, oRRnpc_npcsp,
22282 ADDRGLDRS), ldrd, t_ldstd),
22283
22284 TCE("mcrr", c400000, ec400000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
22285 TCE("mrrc", c500000, ec500000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
22286
22287 #undef ARM_VARIANT
22288 #define ARM_VARIANT & arm_ext_v5j /* ARM Architecture 5TEJ. */
22289
22290 TCE("bxj", 12fff20, f3c08f00, 1, (RR), bxj, t_bxj),
22291
22292 #undef ARM_VARIANT
22293 #define ARM_VARIANT & arm_ext_v6 /* ARM V6. */
22294 #undef THUMB_VARIANT
22295 #define THUMB_VARIANT & arm_ext_v6
22296
22297 TUF("cpsie", 1080000, b660, 2, (CPSF, oI31b), cpsi, t_cpsi),
22298 TUF("cpsid", 10c0000, b670, 2, (CPSF, oI31b), cpsi, t_cpsi),
22299 tCE("rev", 6bf0f30, _rev, 2, (RRnpc, RRnpc), rd_rm, t_rev),
22300 tCE("rev16", 6bf0fb0, _rev16, 2, (RRnpc, RRnpc), rd_rm, t_rev),
22301 tCE("revsh", 6ff0fb0, _revsh, 2, (RRnpc, RRnpc), rd_rm, t_rev),
22302 tCE("sxth", 6bf0070, _sxth, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
22303 tCE("uxth", 6ff0070, _uxth, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
22304 tCE("sxtb", 6af0070, _sxtb, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
22305 tCE("uxtb", 6ef0070, _uxtb, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
22306 TUF("setend", 1010000, b650, 1, (ENDI), setend, t_setend),
22307
22308 #undef THUMB_VARIANT
22309 #define THUMB_VARIANT & arm_ext_v6t2_v8m
22310
22311 TCE("ldrex", 1900f9f, e8500f00, 2, (RRnpc_npcsp, ADDR), ldrex, t_ldrex),
22312 TCE("strex", 1800f90, e8400000, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
22313 strex, t_strex),
22314 #undef THUMB_VARIANT
22315 #define THUMB_VARIANT & arm_ext_v6t2
22316
22317 TUF("mcrr2", c400000, fc400000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
22318 TUF("mrrc2", c500000, fc500000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
22319
22320 TCE("ssat", 6a00010, f3000000, 4, (RRnpc, I32, RRnpc, oSHllar),ssat, t_ssat),
22321 TCE("usat", 6e00010, f3800000, 4, (RRnpc, I31, RRnpc, oSHllar),usat, t_usat),
22322
22323 /* ARM V6 not included in V7M. */
22324 #undef THUMB_VARIANT
22325 #define THUMB_VARIANT & arm_ext_v6_notm
22326 TUF("rfeia", 8900a00, e990c000, 1, (RRw), rfe, rfe),
22327 TUF("rfe", 8900a00, e990c000, 1, (RRw), rfe, rfe),
22328 UF(rfeib, 9900a00, 1, (RRw), rfe),
22329 UF(rfeda, 8100a00, 1, (RRw), rfe),
22330 TUF("rfedb", 9100a00, e810c000, 1, (RRw), rfe, rfe),
22331 TUF("rfefd", 8900a00, e990c000, 1, (RRw), rfe, rfe),
22332 UF(rfefa, 8100a00, 1, (RRw), rfe),
22333 TUF("rfeea", 9100a00, e810c000, 1, (RRw), rfe, rfe),
22334 UF(rfeed, 9900a00, 1, (RRw), rfe),
22335 TUF("srsia", 8c00500, e980c000, 2, (oRRw, I31w), srs, srs),
22336 TUF("srs", 8c00500, e980c000, 2, (oRRw, I31w), srs, srs),
22337 TUF("srsea", 8c00500, e980c000, 2, (oRRw, I31w), srs, srs),
22338 UF(srsib, 9c00500, 2, (oRRw, I31w), srs),
22339 UF(srsfa, 9c00500, 2, (oRRw, I31w), srs),
22340 UF(srsda, 8400500, 2, (oRRw, I31w), srs),
22341 UF(srsed, 8400500, 2, (oRRw, I31w), srs),
22342 TUF("srsdb", 9400500, e800c000, 2, (oRRw, I31w), srs, srs),
22343 TUF("srsfd", 9400500, e800c000, 2, (oRRw, I31w), srs, srs),
22344 TUF("cps", 1020000, f3af8100, 1, (I31b), imm0, t_cps),
22345
22346 /* ARM V6 not included in V7M (eg. integer SIMD). */
22347 #undef THUMB_VARIANT
22348 #define THUMB_VARIANT & arm_ext_v6_dsp
22349 TCE("pkhbt", 6800010, eac00000, 4, (RRnpc, RRnpc, RRnpc, oSHll), pkhbt, t_pkhbt),
22350 TCE("pkhtb", 6800050, eac00020, 4, (RRnpc, RRnpc, RRnpc, oSHar), pkhtb, t_pkhtb),
22351 TCE("qadd16", 6200f10, fa90f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22352 TCE("qadd8", 6200f90, fa80f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22353 TCE("qasx", 6200f30, faa0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22354 /* Old name for QASX. */
22355 TCE("qaddsubx",6200f30, faa0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22356 TCE("qsax", 6200f50, fae0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22357 /* Old name for QSAX. */
22358 TCE("qsubaddx",6200f50, fae0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22359 TCE("qsub16", 6200f70, fad0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22360 TCE("qsub8", 6200ff0, fac0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22361 TCE("sadd16", 6100f10, fa90f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22362 TCE("sadd8", 6100f90, fa80f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22363 TCE("sasx", 6100f30, faa0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22364 /* Old name for SASX. */
22365 TCE("saddsubx",6100f30, faa0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22366 TCE("shadd16", 6300f10, fa90f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22367 TCE("shadd8", 6300f90, fa80f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22368 TCE("shasx", 6300f30, faa0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22369 /* Old name for SHASX. */
22370 TCE("shaddsubx", 6300f30, faa0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22371 TCE("shsax", 6300f50, fae0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22372 /* Old name for SHSAX. */
22373 TCE("shsubaddx", 6300f50, fae0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22374 TCE("shsub16", 6300f70, fad0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22375 TCE("shsub8", 6300ff0, fac0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22376 TCE("ssax", 6100f50, fae0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22377 /* Old name for SSAX. */
22378 TCE("ssubaddx",6100f50, fae0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22379 TCE("ssub16", 6100f70, fad0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22380 TCE("ssub8", 6100ff0, fac0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22381 TCE("uadd16", 6500f10, fa90f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22382 TCE("uadd8", 6500f90, fa80f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22383 TCE("uasx", 6500f30, faa0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22384 /* Old name for UASX. */
22385 TCE("uaddsubx",6500f30, faa0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22386 TCE("uhadd16", 6700f10, fa90f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22387 TCE("uhadd8", 6700f90, fa80f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22388 TCE("uhasx", 6700f30, faa0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22389 /* Old name for UHASX. */
22390 TCE("uhaddsubx", 6700f30, faa0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22391 TCE("uhsax", 6700f50, fae0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22392 /* Old name for UHSAX. */
22393 TCE("uhsubaddx", 6700f50, fae0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22394 TCE("uhsub16", 6700f70, fad0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22395 TCE("uhsub8", 6700ff0, fac0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22396 TCE("uqadd16", 6600f10, fa90f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22397 TCE("uqadd8", 6600f90, fa80f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22398 TCE("uqasx", 6600f30, faa0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22399 /* Old name for UQASX. */
22400 TCE("uqaddsubx", 6600f30, faa0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22401 TCE("uqsax", 6600f50, fae0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22402 /* Old name for UQSAX. */
22403 TCE("uqsubaddx", 6600f50, fae0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22404 TCE("uqsub16", 6600f70, fad0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22405 TCE("uqsub8", 6600ff0, fac0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22406 TCE("usub16", 6500f70, fad0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22407 TCE("usax", 6500f50, fae0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22408 /* Old name for USAX. */
22409 TCE("usubaddx",6500f50, fae0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22410 TCE("usub8", 6500ff0, fac0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22411 TCE("sxtah", 6b00070, fa00f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
22412 TCE("sxtab16", 6800070, fa20f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
22413 TCE("sxtab", 6a00070, fa40f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
22414 TCE("sxtb16", 68f0070, fa2ff080, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
22415 TCE("uxtah", 6f00070, fa10f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
22416 TCE("uxtab16", 6c00070, fa30f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
22417 TCE("uxtab", 6e00070, fa50f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
22418 TCE("uxtb16", 6cf0070, fa3ff080, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
22419 TCE("sel", 6800fb0, faa0f080, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22420 TCE("smlad", 7000010, fb200000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
22421 TCE("smladx", 7000030, fb200010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
22422 TCE("smlald", 7400010, fbc000c0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
22423 TCE("smlaldx", 7400030, fbc000d0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
22424 TCE("smlsd", 7000050, fb400000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
22425 TCE("smlsdx", 7000070, fb400010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
22426 TCE("smlsld", 7400050, fbd000c0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
22427 TCE("smlsldx", 7400070, fbd000d0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
22428 TCE("smmla", 7500010, fb500000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
22429 TCE("smmlar", 7500030, fb500010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
22430 TCE("smmls", 75000d0, fb600000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
22431 TCE("smmlsr", 75000f0, fb600010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
22432 TCE("smmul", 750f010, fb50f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
22433 TCE("smmulr", 750f030, fb50f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
22434 TCE("smuad", 700f010, fb20f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
22435 TCE("smuadx", 700f030, fb20f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
22436 TCE("smusd", 700f050, fb40f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
22437 TCE("smusdx", 700f070, fb40f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
22438 TCE("ssat16", 6a00f30, f3200000, 3, (RRnpc, I16, RRnpc), ssat16, t_ssat16),
22439 TCE("umaal", 0400090, fbe00060, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal, t_mlal),
22440 TCE("usad8", 780f010, fb70f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
22441 TCE("usada8", 7800010, fb700000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
22442 TCE("usat16", 6e00f30, f3a00000, 3, (RRnpc, I15, RRnpc), usat16, t_usat16),
22443
22444 #undef ARM_VARIANT
22445 #define ARM_VARIANT & arm_ext_v6k_v6t2
22446 #undef THUMB_VARIANT
22447 #define THUMB_VARIANT & arm_ext_v6k_v6t2
22448
22449 tCE("yield", 320f001, _yield, 0, (), noargs, t_hint),
22450 tCE("wfe", 320f002, _wfe, 0, (), noargs, t_hint),
22451 tCE("wfi", 320f003, _wfi, 0, (), noargs, t_hint),
22452 tCE("sev", 320f004, _sev, 0, (), noargs, t_hint),
22453
22454 #undef THUMB_VARIANT
22455 #define THUMB_VARIANT & arm_ext_v6_notm
22456 TCE("ldrexd", 1b00f9f, e8d0007f, 3, (RRnpc_npcsp, oRRnpc_npcsp, RRnpcb),
22457 ldrexd, t_ldrexd),
22458 TCE("strexd", 1a00f90, e8c00070, 4, (RRnpc_npcsp, RRnpc_npcsp, oRRnpc_npcsp,
22459 RRnpcb), strexd, t_strexd),
22460
22461 #undef THUMB_VARIANT
22462 #define THUMB_VARIANT & arm_ext_v6t2_v8m
22463 TCE("ldrexb", 1d00f9f, e8d00f4f, 2, (RRnpc_npcsp,RRnpcb),
22464 rd_rn, rd_rn),
22465 TCE("ldrexh", 1f00f9f, e8d00f5f, 2, (RRnpc_npcsp, RRnpcb),
22466 rd_rn, rd_rn),
22467 TCE("strexb", 1c00f90, e8c00f40, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
22468 strex, t_strexbh),
22469 TCE("strexh", 1e00f90, e8c00f50, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
22470 strex, t_strexbh),
22471 TUF("clrex", 57ff01f, f3bf8f2f, 0, (), noargs, noargs),
22472
22473 #undef ARM_VARIANT
22474 #define ARM_VARIANT & arm_ext_sec
22475 #undef THUMB_VARIANT
22476 #define THUMB_VARIANT & arm_ext_sec
22477
22478 TCE("smc", 1600070, f7f08000, 1, (EXPi), smc, t_smc),
22479
22480 #undef ARM_VARIANT
22481 #define ARM_VARIANT & arm_ext_virt
22482 #undef THUMB_VARIANT
22483 #define THUMB_VARIANT & arm_ext_virt
22484
22485 TCE("hvc", 1400070, f7e08000, 1, (EXPi), hvc, t_hvc),
22486 TCE("eret", 160006e, f3de8f00, 0, (), noargs, noargs),
22487
22488 #undef ARM_VARIANT
22489 #define ARM_VARIANT & arm_ext_pan
22490 #undef THUMB_VARIANT
22491 #define THUMB_VARIANT & arm_ext_pan
22492
22493 TUF("setpan", 1100000, b610, 1, (I7), setpan, t_setpan),
22494
22495 #undef ARM_VARIANT
22496 #define ARM_VARIANT & arm_ext_v6t2
22497 #undef THUMB_VARIANT
22498 #define THUMB_VARIANT & arm_ext_v6t2
22499
22500 TCE("bfc", 7c0001f, f36f0000, 3, (RRnpc, I31, I32), bfc, t_bfc),
22501 TCE("bfi", 7c00010, f3600000, 4, (RRnpc, RRnpc_I0, I31, I32), bfi, t_bfi),
22502 TCE("sbfx", 7a00050, f3400000, 4, (RR, RR, I31, I32), bfx, t_bfx),
22503 TCE("ubfx", 7e00050, f3c00000, 4, (RR, RR, I31, I32), bfx, t_bfx),
22504
22505 TCE("mls", 0600090, fb000010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas, t_mla),
22506 TCE("rbit", 6ff0f30, fa90f0a0, 2, (RR, RR), rd_rm, t_rbit),
22507
22508 TC3("ldrht", 03000b0, f8300e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
22509 TC3("ldrsht", 03000f0, f9300e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
22510 TC3("ldrsbt", 03000d0, f9100e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
22511 TC3("strht", 02000b0, f8200e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
22512
22513 #undef ARM_VARIANT
22514 #define ARM_VARIANT & arm_ext_v3
22515 #undef THUMB_VARIANT
22516 #define THUMB_VARIANT & arm_ext_v6t2
22517
22518 TUE("csdb", 320f014, f3af8014, 0, (), noargs, t_csdb),
22519 TUF("ssbb", 57ff040, f3bf8f40, 0, (), noargs, t_csdb),
22520 TUF("pssbb", 57ff044, f3bf8f44, 0, (), noargs, t_csdb),
22521
22522 #undef ARM_VARIANT
22523 #define ARM_VARIANT & arm_ext_v6t2
22524 #undef THUMB_VARIANT
22525 #define THUMB_VARIANT & arm_ext_v6t2_v8m
22526 TCE("movw", 3000000, f2400000, 2, (RRnpc, HALF), mov16, t_mov16),
22527 TCE("movt", 3400000, f2c00000, 2, (RRnpc, HALF), mov16, t_mov16),
22528
22529 /* Thumb-only instructions. */
22530 #undef ARM_VARIANT
22531 #define ARM_VARIANT NULL
22532 TUE("cbnz", 0, b900, 2, (RR, EXP), 0, t_cbz),
22533 TUE("cbz", 0, b100, 2, (RR, EXP), 0, t_cbz),
22534
22535 /* ARM does not really have an IT instruction, so always allow it.
22536 The opcode is copied from Thumb in order to allow warnings in
22537 -mimplicit-it=[never | arm] modes. */
22538 #undef ARM_VARIANT
22539 #define ARM_VARIANT & arm_ext_v1
22540 #undef THUMB_VARIANT
22541 #define THUMB_VARIANT & arm_ext_v6t2
22542
22543 TUE("it", bf08, bf08, 1, (COND), it, t_it),
22544 TUE("itt", bf0c, bf0c, 1, (COND), it, t_it),
22545 TUE("ite", bf04, bf04, 1, (COND), it, t_it),
22546 TUE("ittt", bf0e, bf0e, 1, (COND), it, t_it),
22547 TUE("itet", bf06, bf06, 1, (COND), it, t_it),
22548 TUE("itte", bf0a, bf0a, 1, (COND), it, t_it),
22549 TUE("itee", bf02, bf02, 1, (COND), it, t_it),
22550 TUE("itttt", bf0f, bf0f, 1, (COND), it, t_it),
22551 TUE("itett", bf07, bf07, 1, (COND), it, t_it),
22552 TUE("ittet", bf0b, bf0b, 1, (COND), it, t_it),
22553 TUE("iteet", bf03, bf03, 1, (COND), it, t_it),
22554 TUE("ittte", bf0d, bf0d, 1, (COND), it, t_it),
22555 TUE("itete", bf05, bf05, 1, (COND), it, t_it),
22556 TUE("ittee", bf09, bf09, 1, (COND), it, t_it),
22557 TUE("iteee", bf01, bf01, 1, (COND), it, t_it),
22558 /* ARM/Thumb-2 instructions with no Thumb-1 equivalent. */
22559 TC3("rrx", 01a00060, ea4f0030, 2, (RR, RR), rd_rm, t_rrx),
22560 TC3("rrxs", 01b00060, ea5f0030, 2, (RR, RR), rd_rm, t_rrx),
22561
22562 /* Thumb2 only instructions. */
22563 #undef ARM_VARIANT
22564 #define ARM_VARIANT NULL
22565
22566 TCE("addw", 0, f2000000, 3, (RR, RR, EXPi), 0, t_add_sub_w),
22567 TCE("subw", 0, f2a00000, 3, (RR, RR, EXPi), 0, t_add_sub_w),
22568 TCE("orn", 0, ea600000, 3, (RR, oRR, SH), 0, t_orn),
22569 TCE("orns", 0, ea700000, 3, (RR, oRR, SH), 0, t_orn),
22570 TCE("tbb", 0, e8d0f000, 1, (TB), 0, t_tb),
22571 TCE("tbh", 0, e8d0f010, 1, (TB), 0, t_tb),
22572
22573 /* Hardware division instructions. */
22574 #undef ARM_VARIANT
22575 #define ARM_VARIANT & arm_ext_adiv
22576 #undef THUMB_VARIANT
22577 #define THUMB_VARIANT & arm_ext_div
22578
22579 TCE("sdiv", 710f010, fb90f0f0, 3, (RR, oRR, RR), div, t_div),
22580 TCE("udiv", 730f010, fbb0f0f0, 3, (RR, oRR, RR), div, t_div),
22581
22582 /* ARM V6M/V7 instructions. */
22583 #undef ARM_VARIANT
22584 #define ARM_VARIANT & arm_ext_barrier
22585 #undef THUMB_VARIANT
22586 #define THUMB_VARIANT & arm_ext_barrier
22587
22588 TUF("dmb", 57ff050, f3bf8f50, 1, (oBARRIER_I15), barrier, barrier),
22589 TUF("dsb", 57ff040, f3bf8f40, 1, (oBARRIER_I15), barrier, barrier),
22590 TUF("isb", 57ff060, f3bf8f60, 1, (oBARRIER_I15), barrier, barrier),
22591
22592 /* ARM V7 instructions. */
22593 #undef ARM_VARIANT
22594 #define ARM_VARIANT & arm_ext_v7
22595 #undef THUMB_VARIANT
22596 #define THUMB_VARIANT & arm_ext_v7
22597
22598 TUF("pli", 450f000, f910f000, 1, (ADDR), pli, t_pld),
22599 TCE("dbg", 320f0f0, f3af80f0, 1, (I15), dbg, t_dbg),
22600
22601 #undef ARM_VARIANT
22602 #define ARM_VARIANT & arm_ext_mp
22603 #undef THUMB_VARIANT
22604 #define THUMB_VARIANT & arm_ext_mp
22605
22606 TUF("pldw", 410f000, f830f000, 1, (ADDR), pld, t_pld),
22607
22608 /* AArchv8 instructions. */
22609 #undef ARM_VARIANT
22610 #define ARM_VARIANT & arm_ext_v8
22611
22612 /* Instructions shared between armv8-a and armv8-m. */
22613 #undef THUMB_VARIANT
22614 #define THUMB_VARIANT & arm_ext_atomics
22615
22616 TCE("lda", 1900c9f, e8d00faf, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
22617 TCE("ldab", 1d00c9f, e8d00f8f, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
22618 TCE("ldah", 1f00c9f, e8d00f9f, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
22619 TCE("stl", 180fc90, e8c00faf, 2, (RRnpc, RRnpcb), rm_rn, rd_rn),
22620 TCE("stlb", 1c0fc90, e8c00f8f, 2, (RRnpc, RRnpcb), rm_rn, rd_rn),
22621 TCE("stlh", 1e0fc90, e8c00f9f, 2, (RRnpc, RRnpcb), rm_rn, rd_rn),
22622 TCE("ldaex", 1900e9f, e8d00fef, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
22623 TCE("ldaexb", 1d00e9f, e8d00fcf, 2, (RRnpc,RRnpcb), rd_rn, rd_rn),
22624 TCE("ldaexh", 1f00e9f, e8d00fdf, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
22625 TCE("stlex", 1800e90, e8c00fe0, 3, (RRnpc, RRnpc, RRnpcb),
22626 stlex, t_stlex),
22627 TCE("stlexb", 1c00e90, e8c00fc0, 3, (RRnpc, RRnpc, RRnpcb),
22628 stlex, t_stlex),
22629 TCE("stlexh", 1e00e90, e8c00fd0, 3, (RRnpc, RRnpc, RRnpcb),
22630 stlex, t_stlex),
22631 #undef THUMB_VARIANT
22632 #define THUMB_VARIANT & arm_ext_v8
22633
22634 tCE("sevl", 320f005, _sevl, 0, (), noargs, t_hint),
22635 TCE("ldaexd", 1b00e9f, e8d000ff, 3, (RRnpc, oRRnpc, RRnpcb),
22636 ldrexd, t_ldrexd),
22637 TCE("stlexd", 1a00e90, e8c000f0, 4, (RRnpc, RRnpc, oRRnpc, RRnpcb),
22638 strexd, t_strexd),
22639
22640 /* Defined in V8 but is in undefined encoding space for earlier
22641 architectures. However earlier architectures are required to treat
22642 this instuction as a semihosting trap as well. Hence while not explicitly
22643 defined as such, it is in fact correct to define the instruction for all
22644 architectures. */
22645 #undef THUMB_VARIANT
22646 #define THUMB_VARIANT & arm_ext_v1
22647 #undef ARM_VARIANT
22648 #define ARM_VARIANT & arm_ext_v1
22649 TUE("hlt", 1000070, ba80, 1, (oIffffb), bkpt, t_hlt),
22650
22651 /* ARMv8 T32 only. */
22652 #undef ARM_VARIANT
22653 #define ARM_VARIANT NULL
22654 TUF("dcps1", 0, f78f8001, 0, (), noargs, noargs),
22655 TUF("dcps2", 0, f78f8002, 0, (), noargs, noargs),
22656 TUF("dcps3", 0, f78f8003, 0, (), noargs, noargs),
22657
22658 /* FP for ARMv8. */
22659 #undef ARM_VARIANT
22660 #define ARM_VARIANT & fpu_vfp_ext_armv8xd
22661 #undef THUMB_VARIANT
22662 #define THUMB_VARIANT & fpu_vfp_ext_armv8xd
22663
22664 nUF(vseleq, _vseleq, 3, (RVSD, RVSD, RVSD), vsel),
22665 nUF(vselvs, _vselvs, 3, (RVSD, RVSD, RVSD), vsel),
22666 nUF(vselge, _vselge, 3, (RVSD, RVSD, RVSD), vsel),
22667 nUF(vselgt, _vselgt, 3, (RVSD, RVSD, RVSD), vsel),
22668 nUF(vmaxnm, _vmaxnm, 3, (RNSDQ, oRNSDQ, RNSDQ), vmaxnm),
22669 nUF(vminnm, _vminnm, 3, (RNSDQ, oRNSDQ, RNSDQ), vmaxnm),
22670 nCE(vrintr, _vrintr, 2, (RNSDQ, oRNSDQ), vrintr),
22671 nCE(vrintz, _vrintr, 2, (RNSDQ, oRNSDQ), vrintz),
22672 nCE(vrintx, _vrintr, 2, (RNSDQ, oRNSDQ), vrintx),
22673 nUF(vrinta, _vrinta, 2, (RNSDQ, oRNSDQ), vrinta),
22674 nUF(vrintn, _vrinta, 2, (RNSDQ, oRNSDQ), vrintn),
22675 nUF(vrintp, _vrinta, 2, (RNSDQ, oRNSDQ), vrintp),
22676 nUF(vrintm, _vrinta, 2, (RNSDQ, oRNSDQ), vrintm),
22677
22678 /* Crypto v1 extensions. */
22679 #undef ARM_VARIANT
22680 #define ARM_VARIANT & fpu_crypto_ext_armv8
22681 #undef THUMB_VARIANT
22682 #define THUMB_VARIANT & fpu_crypto_ext_armv8
22683
22684 nUF(aese, _aes, 2, (RNQ, RNQ), aese),
22685 nUF(aesd, _aes, 2, (RNQ, RNQ), aesd),
22686 nUF(aesmc, _aes, 2, (RNQ, RNQ), aesmc),
22687 nUF(aesimc, _aes, 2, (RNQ, RNQ), aesimc),
22688 nUF(sha1c, _sha3op, 3, (RNQ, RNQ, RNQ), sha1c),
22689 nUF(sha1p, _sha3op, 3, (RNQ, RNQ, RNQ), sha1p),
22690 nUF(sha1m, _sha3op, 3, (RNQ, RNQ, RNQ), sha1m),
22691 nUF(sha1su0, _sha3op, 3, (RNQ, RNQ, RNQ), sha1su0),
22692 nUF(sha256h, _sha3op, 3, (RNQ, RNQ, RNQ), sha256h),
22693 nUF(sha256h2, _sha3op, 3, (RNQ, RNQ, RNQ), sha256h2),
22694 nUF(sha256su1, _sha3op, 3, (RNQ, RNQ, RNQ), sha256su1),
22695 nUF(sha1h, _sha1h, 2, (RNQ, RNQ), sha1h),
22696 nUF(sha1su1, _sha2op, 2, (RNQ, RNQ), sha1su1),
22697 nUF(sha256su0, _sha2op, 2, (RNQ, RNQ), sha256su0),
22698
22699 #undef ARM_VARIANT
22700 #define ARM_VARIANT & crc_ext_armv8
22701 #undef THUMB_VARIANT
22702 #define THUMB_VARIANT & crc_ext_armv8
22703 TUEc("crc32b", 1000040, fac0f080, 3, (RR, oRR, RR), crc32b),
22704 TUEc("crc32h", 1200040, fac0f090, 3, (RR, oRR, RR), crc32h),
22705 TUEc("crc32w", 1400040, fac0f0a0, 3, (RR, oRR, RR), crc32w),
22706 TUEc("crc32cb",1000240, fad0f080, 3, (RR, oRR, RR), crc32cb),
22707 TUEc("crc32ch",1200240, fad0f090, 3, (RR, oRR, RR), crc32ch),
22708 TUEc("crc32cw",1400240, fad0f0a0, 3, (RR, oRR, RR), crc32cw),
22709
22710 /* ARMv8.2 RAS extension. */
22711 #undef ARM_VARIANT
22712 #define ARM_VARIANT & arm_ext_ras
22713 #undef THUMB_VARIANT
22714 #define THUMB_VARIANT & arm_ext_ras
22715 TUE ("esb", 320f010, f3af8010, 0, (), noargs, noargs),
22716
22717 #undef ARM_VARIANT
22718 #define ARM_VARIANT & arm_ext_v8_3
22719 #undef THUMB_VARIANT
22720 #define THUMB_VARIANT & arm_ext_v8_3
22721 NCE (vjcvt, eb90bc0, 2, (RVS, RVD), vjcvt),
22722 NUF (vcmla, 0, 4, (RNDQ, RNDQ, RNDQ_RNSC, EXPi), vcmla),
22723 NUF (vcadd, 0, 4, (RNDQ, RNDQ, RNDQ, EXPi), vcadd),
22724
22725 #undef ARM_VARIANT
22726 #define ARM_VARIANT & fpu_neon_ext_dotprod
22727 #undef THUMB_VARIANT
22728 #define THUMB_VARIANT & fpu_neon_ext_dotprod
22729 NUF (vsdot, d00, 3, (RNDQ, RNDQ, RNDQ_RNSC), neon_dotproduct_s),
22730 NUF (vudot, d00, 3, (RNDQ, RNDQ, RNDQ_RNSC), neon_dotproduct_u),
22731
22732 #undef ARM_VARIANT
22733 #define ARM_VARIANT & fpu_fpa_ext_v1 /* Core FPA instruction set (V1). */
22734 #undef THUMB_VARIANT
22735 #define THUMB_VARIANT NULL
22736
22737 cCE("wfs", e200110, 1, (RR), rd),
22738 cCE("rfs", e300110, 1, (RR), rd),
22739 cCE("wfc", e400110, 1, (RR), rd),
22740 cCE("rfc", e500110, 1, (RR), rd),
22741
22742 cCL("ldfs", c100100, 2, (RF, ADDRGLDC), rd_cpaddr),
22743 cCL("ldfd", c108100, 2, (RF, ADDRGLDC), rd_cpaddr),
22744 cCL("ldfe", c500100, 2, (RF, ADDRGLDC), rd_cpaddr),
22745 cCL("ldfp", c508100, 2, (RF, ADDRGLDC), rd_cpaddr),
22746
22747 cCL("stfs", c000100, 2, (RF, ADDRGLDC), rd_cpaddr),
22748 cCL("stfd", c008100, 2, (RF, ADDRGLDC), rd_cpaddr),
22749 cCL("stfe", c400100, 2, (RF, ADDRGLDC), rd_cpaddr),
22750 cCL("stfp", c408100, 2, (RF, ADDRGLDC), rd_cpaddr),
22751
22752 cCL("mvfs", e008100, 2, (RF, RF_IF), rd_rm),
22753 cCL("mvfsp", e008120, 2, (RF, RF_IF), rd_rm),
22754 cCL("mvfsm", e008140, 2, (RF, RF_IF), rd_rm),
22755 cCL("mvfsz", e008160, 2, (RF, RF_IF), rd_rm),
22756 cCL("mvfd", e008180, 2, (RF, RF_IF), rd_rm),
22757 cCL("mvfdp", e0081a0, 2, (RF, RF_IF), rd_rm),
22758 cCL("mvfdm", e0081c0, 2, (RF, RF_IF), rd_rm),
22759 cCL("mvfdz", e0081e0, 2, (RF, RF_IF), rd_rm),
22760 cCL("mvfe", e088100, 2, (RF, RF_IF), rd_rm),
22761 cCL("mvfep", e088120, 2, (RF, RF_IF), rd_rm),
22762 cCL("mvfem", e088140, 2, (RF, RF_IF), rd_rm),
22763 cCL("mvfez", e088160, 2, (RF, RF_IF), rd_rm),
22764
22765 cCL("mnfs", e108100, 2, (RF, RF_IF), rd_rm),
22766 cCL("mnfsp", e108120, 2, (RF, RF_IF), rd_rm),
22767 cCL("mnfsm", e108140, 2, (RF, RF_IF), rd_rm),
22768 cCL("mnfsz", e108160, 2, (RF, RF_IF), rd_rm),
22769 cCL("mnfd", e108180, 2, (RF, RF_IF), rd_rm),
22770 cCL("mnfdp", e1081a0, 2, (RF, RF_IF), rd_rm),
22771 cCL("mnfdm", e1081c0, 2, (RF, RF_IF), rd_rm),
22772 cCL("mnfdz", e1081e0, 2, (RF, RF_IF), rd_rm),
22773 cCL("mnfe", e188100, 2, (RF, RF_IF), rd_rm),
22774 cCL("mnfep", e188120, 2, (RF, RF_IF), rd_rm),
22775 cCL("mnfem", e188140, 2, (RF, RF_IF), rd_rm),
22776 cCL("mnfez", e188160, 2, (RF, RF_IF), rd_rm),
22777
22778 cCL("abss", e208100, 2, (RF, RF_IF), rd_rm),
22779 cCL("abssp", e208120, 2, (RF, RF_IF), rd_rm),
22780 cCL("abssm", e208140, 2, (RF, RF_IF), rd_rm),
22781 cCL("abssz", e208160, 2, (RF, RF_IF), rd_rm),
22782 cCL("absd", e208180, 2, (RF, RF_IF), rd_rm),
22783 cCL("absdp", e2081a0, 2, (RF, RF_IF), rd_rm),
22784 cCL("absdm", e2081c0, 2, (RF, RF_IF), rd_rm),
22785 cCL("absdz", e2081e0, 2, (RF, RF_IF), rd_rm),
22786 cCL("abse", e288100, 2, (RF, RF_IF), rd_rm),
22787 cCL("absep", e288120, 2, (RF, RF_IF), rd_rm),
22788 cCL("absem", e288140, 2, (RF, RF_IF), rd_rm),
22789 cCL("absez", e288160, 2, (RF, RF_IF), rd_rm),
22790
22791 cCL("rnds", e308100, 2, (RF, RF_IF), rd_rm),
22792 cCL("rndsp", e308120, 2, (RF, RF_IF), rd_rm),
22793 cCL("rndsm", e308140, 2, (RF, RF_IF), rd_rm),
22794 cCL("rndsz", e308160, 2, (RF, RF_IF), rd_rm),
22795 cCL("rndd", e308180, 2, (RF, RF_IF), rd_rm),
22796 cCL("rnddp", e3081a0, 2, (RF, RF_IF), rd_rm),
22797 cCL("rnddm", e3081c0, 2, (RF, RF_IF), rd_rm),
22798 cCL("rnddz", e3081e0, 2, (RF, RF_IF), rd_rm),
22799 cCL("rnde", e388100, 2, (RF, RF_IF), rd_rm),
22800 cCL("rndep", e388120, 2, (RF, RF_IF), rd_rm),
22801 cCL("rndem", e388140, 2, (RF, RF_IF), rd_rm),
22802 cCL("rndez", e388160, 2, (RF, RF_IF), rd_rm),
22803
22804 cCL("sqts", e408100, 2, (RF, RF_IF), rd_rm),
22805 cCL("sqtsp", e408120, 2, (RF, RF_IF), rd_rm),
22806 cCL("sqtsm", e408140, 2, (RF, RF_IF), rd_rm),
22807 cCL("sqtsz", e408160, 2, (RF, RF_IF), rd_rm),
22808 cCL("sqtd", e408180, 2, (RF, RF_IF), rd_rm),
22809 cCL("sqtdp", e4081a0, 2, (RF, RF_IF), rd_rm),
22810 cCL("sqtdm", e4081c0, 2, (RF, RF_IF), rd_rm),
22811 cCL("sqtdz", e4081e0, 2, (RF, RF_IF), rd_rm),
22812 cCL("sqte", e488100, 2, (RF, RF_IF), rd_rm),
22813 cCL("sqtep", e488120, 2, (RF, RF_IF), rd_rm),
22814 cCL("sqtem", e488140, 2, (RF, RF_IF), rd_rm),
22815 cCL("sqtez", e488160, 2, (RF, RF_IF), rd_rm),
22816
22817 cCL("logs", e508100, 2, (RF, RF_IF), rd_rm),
22818 cCL("logsp", e508120, 2, (RF, RF_IF), rd_rm),
22819 cCL("logsm", e508140, 2, (RF, RF_IF), rd_rm),
22820 cCL("logsz", e508160, 2, (RF, RF_IF), rd_rm),
22821 cCL("logd", e508180, 2, (RF, RF_IF), rd_rm),
22822 cCL("logdp", e5081a0, 2, (RF, RF_IF), rd_rm),
22823 cCL("logdm", e5081c0, 2, (RF, RF_IF), rd_rm),
22824 cCL("logdz", e5081e0, 2, (RF, RF_IF), rd_rm),
22825 cCL("loge", e588100, 2, (RF, RF_IF), rd_rm),
22826 cCL("logep", e588120, 2, (RF, RF_IF), rd_rm),
22827 cCL("logem", e588140, 2, (RF, RF_IF), rd_rm),
22828 cCL("logez", e588160, 2, (RF, RF_IF), rd_rm),
22829
22830 cCL("lgns", e608100, 2, (RF, RF_IF), rd_rm),
22831 cCL("lgnsp", e608120, 2, (RF, RF_IF), rd_rm),
22832 cCL("lgnsm", e608140, 2, (RF, RF_IF), rd_rm),
22833 cCL("lgnsz", e608160, 2, (RF, RF_IF), rd_rm),
22834 cCL("lgnd", e608180, 2, (RF, RF_IF), rd_rm),
22835 cCL("lgndp", e6081a0, 2, (RF, RF_IF), rd_rm),
22836 cCL("lgndm", e6081c0, 2, (RF, RF_IF), rd_rm),
22837 cCL("lgndz", e6081e0, 2, (RF, RF_IF), rd_rm),
22838 cCL("lgne", e688100, 2, (RF, RF_IF), rd_rm),
22839 cCL("lgnep", e688120, 2, (RF, RF_IF), rd_rm),
22840 cCL("lgnem", e688140, 2, (RF, RF_IF), rd_rm),
22841 cCL("lgnez", e688160, 2, (RF, RF_IF), rd_rm),
22842
22843 cCL("exps", e708100, 2, (RF, RF_IF), rd_rm),
22844 cCL("expsp", e708120, 2, (RF, RF_IF), rd_rm),
22845 cCL("expsm", e708140, 2, (RF, RF_IF), rd_rm),
22846 cCL("expsz", e708160, 2, (RF, RF_IF), rd_rm),
22847 cCL("expd", e708180, 2, (RF, RF_IF), rd_rm),
22848 cCL("expdp", e7081a0, 2, (RF, RF_IF), rd_rm),
22849 cCL("expdm", e7081c0, 2, (RF, RF_IF), rd_rm),
22850 cCL("expdz", e7081e0, 2, (RF, RF_IF), rd_rm),
22851 cCL("expe", e788100, 2, (RF, RF_IF), rd_rm),
22852 cCL("expep", e788120, 2, (RF, RF_IF), rd_rm),
22853 cCL("expem", e788140, 2, (RF, RF_IF), rd_rm),
22854 cCL("expdz", e788160, 2, (RF, RF_IF), rd_rm),
22855
22856 cCL("sins", e808100, 2, (RF, RF_IF), rd_rm),
22857 cCL("sinsp", e808120, 2, (RF, RF_IF), rd_rm),
22858 cCL("sinsm", e808140, 2, (RF, RF_IF), rd_rm),
22859 cCL("sinsz", e808160, 2, (RF, RF_IF), rd_rm),
22860 cCL("sind", e808180, 2, (RF, RF_IF), rd_rm),
22861 cCL("sindp", e8081a0, 2, (RF, RF_IF), rd_rm),
22862 cCL("sindm", e8081c0, 2, (RF, RF_IF), rd_rm),
22863 cCL("sindz", e8081e0, 2, (RF, RF_IF), rd_rm),
22864 cCL("sine", e888100, 2, (RF, RF_IF), rd_rm),
22865 cCL("sinep", e888120, 2, (RF, RF_IF), rd_rm),
22866 cCL("sinem", e888140, 2, (RF, RF_IF), rd_rm),
22867 cCL("sinez", e888160, 2, (RF, RF_IF), rd_rm),
22868
22869 cCL("coss", e908100, 2, (RF, RF_IF), rd_rm),
22870 cCL("cossp", e908120, 2, (RF, RF_IF), rd_rm),
22871 cCL("cossm", e908140, 2, (RF, RF_IF), rd_rm),
22872 cCL("cossz", e908160, 2, (RF, RF_IF), rd_rm),
22873 cCL("cosd", e908180, 2, (RF, RF_IF), rd_rm),
22874 cCL("cosdp", e9081a0, 2, (RF, RF_IF), rd_rm),
22875 cCL("cosdm", e9081c0, 2, (RF, RF_IF), rd_rm),
22876 cCL("cosdz", e9081e0, 2, (RF, RF_IF), rd_rm),
22877 cCL("cose", e988100, 2, (RF, RF_IF), rd_rm),
22878 cCL("cosep", e988120, 2, (RF, RF_IF), rd_rm),
22879 cCL("cosem", e988140, 2, (RF, RF_IF), rd_rm),
22880 cCL("cosez", e988160, 2, (RF, RF_IF), rd_rm),
22881
22882 cCL("tans", ea08100, 2, (RF, RF_IF), rd_rm),
22883 cCL("tansp", ea08120, 2, (RF, RF_IF), rd_rm),
22884 cCL("tansm", ea08140, 2, (RF, RF_IF), rd_rm),
22885 cCL("tansz", ea08160, 2, (RF, RF_IF), rd_rm),
22886 cCL("tand", ea08180, 2, (RF, RF_IF), rd_rm),
22887 cCL("tandp", ea081a0, 2, (RF, RF_IF), rd_rm),
22888 cCL("tandm", ea081c0, 2, (RF, RF_IF), rd_rm),
22889 cCL("tandz", ea081e0, 2, (RF, RF_IF), rd_rm),
22890 cCL("tane", ea88100, 2, (RF, RF_IF), rd_rm),
22891 cCL("tanep", ea88120, 2, (RF, RF_IF), rd_rm),
22892 cCL("tanem", ea88140, 2, (RF, RF_IF), rd_rm),
22893 cCL("tanez", ea88160, 2, (RF, RF_IF), rd_rm),
22894
22895 cCL("asns", eb08100, 2, (RF, RF_IF), rd_rm),
22896 cCL("asnsp", eb08120, 2, (RF, RF_IF), rd_rm),
22897 cCL("asnsm", eb08140, 2, (RF, RF_IF), rd_rm),
22898 cCL("asnsz", eb08160, 2, (RF, RF_IF), rd_rm),
22899 cCL("asnd", eb08180, 2, (RF, RF_IF), rd_rm),
22900 cCL("asndp", eb081a0, 2, (RF, RF_IF), rd_rm),
22901 cCL("asndm", eb081c0, 2, (RF, RF_IF), rd_rm),
22902 cCL("asndz", eb081e0, 2, (RF, RF_IF), rd_rm),
22903 cCL("asne", eb88100, 2, (RF, RF_IF), rd_rm),
22904 cCL("asnep", eb88120, 2, (RF, RF_IF), rd_rm),
22905 cCL("asnem", eb88140, 2, (RF, RF_IF), rd_rm),
22906 cCL("asnez", eb88160, 2, (RF, RF_IF), rd_rm),
22907
22908 cCL("acss", ec08100, 2, (RF, RF_IF), rd_rm),
22909 cCL("acssp", ec08120, 2, (RF, RF_IF), rd_rm),
22910 cCL("acssm", ec08140, 2, (RF, RF_IF), rd_rm),
22911 cCL("acssz", ec08160, 2, (RF, RF_IF), rd_rm),
22912 cCL("acsd", ec08180, 2, (RF, RF_IF), rd_rm),
22913 cCL("acsdp", ec081a0, 2, (RF, RF_IF), rd_rm),
22914 cCL("acsdm", ec081c0, 2, (RF, RF_IF), rd_rm),
22915 cCL("acsdz", ec081e0, 2, (RF, RF_IF), rd_rm),
22916 cCL("acse", ec88100, 2, (RF, RF_IF), rd_rm),
22917 cCL("acsep", ec88120, 2, (RF, RF_IF), rd_rm),
22918 cCL("acsem", ec88140, 2, (RF, RF_IF), rd_rm),
22919 cCL("acsez", ec88160, 2, (RF, RF_IF), rd_rm),
22920
22921 cCL("atns", ed08100, 2, (RF, RF_IF), rd_rm),
22922 cCL("atnsp", ed08120, 2, (RF, RF_IF), rd_rm),
22923 cCL("atnsm", ed08140, 2, (RF, RF_IF), rd_rm),
22924 cCL("atnsz", ed08160, 2, (RF, RF_IF), rd_rm),
22925 cCL("atnd", ed08180, 2, (RF, RF_IF), rd_rm),
22926 cCL("atndp", ed081a0, 2, (RF, RF_IF), rd_rm),
22927 cCL("atndm", ed081c0, 2, (RF, RF_IF), rd_rm),
22928 cCL("atndz", ed081e0, 2, (RF, RF_IF), rd_rm),
22929 cCL("atne", ed88100, 2, (RF, RF_IF), rd_rm),
22930 cCL("atnep", ed88120, 2, (RF, RF_IF), rd_rm),
22931 cCL("atnem", ed88140, 2, (RF, RF_IF), rd_rm),
22932 cCL("atnez", ed88160, 2, (RF, RF_IF), rd_rm),
22933
22934 cCL("urds", ee08100, 2, (RF, RF_IF), rd_rm),
22935 cCL("urdsp", ee08120, 2, (RF, RF_IF), rd_rm),
22936 cCL("urdsm", ee08140, 2, (RF, RF_IF), rd_rm),
22937 cCL("urdsz", ee08160, 2, (RF, RF_IF), rd_rm),
22938 cCL("urdd", ee08180, 2, (RF, RF_IF), rd_rm),
22939 cCL("urddp", ee081a0, 2, (RF, RF_IF), rd_rm),
22940 cCL("urddm", ee081c0, 2, (RF, RF_IF), rd_rm),
22941 cCL("urddz", ee081e0, 2, (RF, RF_IF), rd_rm),
22942 cCL("urde", ee88100, 2, (RF, RF_IF), rd_rm),
22943 cCL("urdep", ee88120, 2, (RF, RF_IF), rd_rm),
22944 cCL("urdem", ee88140, 2, (RF, RF_IF), rd_rm),
22945 cCL("urdez", ee88160, 2, (RF, RF_IF), rd_rm),
22946
22947 cCL("nrms", ef08100, 2, (RF, RF_IF), rd_rm),
22948 cCL("nrmsp", ef08120, 2, (RF, RF_IF), rd_rm),
22949 cCL("nrmsm", ef08140, 2, (RF, RF_IF), rd_rm),
22950 cCL("nrmsz", ef08160, 2, (RF, RF_IF), rd_rm),
22951 cCL("nrmd", ef08180, 2, (RF, RF_IF), rd_rm),
22952 cCL("nrmdp", ef081a0, 2, (RF, RF_IF), rd_rm),
22953 cCL("nrmdm", ef081c0, 2, (RF, RF_IF), rd_rm),
22954 cCL("nrmdz", ef081e0, 2, (RF, RF_IF), rd_rm),
22955 cCL("nrme", ef88100, 2, (RF, RF_IF), rd_rm),
22956 cCL("nrmep", ef88120, 2, (RF, RF_IF), rd_rm),
22957 cCL("nrmem", ef88140, 2, (RF, RF_IF), rd_rm),
22958 cCL("nrmez", ef88160, 2, (RF, RF_IF), rd_rm),
22959
22960 cCL("adfs", e000100, 3, (RF, RF, RF_IF), rd_rn_rm),
22961 cCL("adfsp", e000120, 3, (RF, RF, RF_IF), rd_rn_rm),
22962 cCL("adfsm", e000140, 3, (RF, RF, RF_IF), rd_rn_rm),
22963 cCL("adfsz", e000160, 3, (RF, RF, RF_IF), rd_rn_rm),
22964 cCL("adfd", e000180, 3, (RF, RF, RF_IF), rd_rn_rm),
22965 cCL("adfdp", e0001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
22966 cCL("adfdm", e0001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
22967 cCL("adfdz", e0001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
22968 cCL("adfe", e080100, 3, (RF, RF, RF_IF), rd_rn_rm),
22969 cCL("adfep", e080120, 3, (RF, RF, RF_IF), rd_rn_rm),
22970 cCL("adfem", e080140, 3, (RF, RF, RF_IF), rd_rn_rm),
22971 cCL("adfez", e080160, 3, (RF, RF, RF_IF), rd_rn_rm),
22972
22973 cCL("sufs", e200100, 3, (RF, RF, RF_IF), rd_rn_rm),
22974 cCL("sufsp", e200120, 3, (RF, RF, RF_IF), rd_rn_rm),
22975 cCL("sufsm", e200140, 3, (RF, RF, RF_IF), rd_rn_rm),
22976 cCL("sufsz", e200160, 3, (RF, RF, RF_IF), rd_rn_rm),
22977 cCL("sufd", e200180, 3, (RF, RF, RF_IF), rd_rn_rm),
22978 cCL("sufdp", e2001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
22979 cCL("sufdm", e2001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
22980 cCL("sufdz", e2001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
22981 cCL("sufe", e280100, 3, (RF, RF, RF_IF), rd_rn_rm),
22982 cCL("sufep", e280120, 3, (RF, RF, RF_IF), rd_rn_rm),
22983 cCL("sufem", e280140, 3, (RF, RF, RF_IF), rd_rn_rm),
22984 cCL("sufez", e280160, 3, (RF, RF, RF_IF), rd_rn_rm),
22985
22986 cCL("rsfs", e300100, 3, (RF, RF, RF_IF), rd_rn_rm),
22987 cCL("rsfsp", e300120, 3, (RF, RF, RF_IF), rd_rn_rm),
22988 cCL("rsfsm", e300140, 3, (RF, RF, RF_IF), rd_rn_rm),
22989 cCL("rsfsz", e300160, 3, (RF, RF, RF_IF), rd_rn_rm),
22990 cCL("rsfd", e300180, 3, (RF, RF, RF_IF), rd_rn_rm),
22991 cCL("rsfdp", e3001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
22992 cCL("rsfdm", e3001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
22993 cCL("rsfdz", e3001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
22994 cCL("rsfe", e380100, 3, (RF, RF, RF_IF), rd_rn_rm),
22995 cCL("rsfep", e380120, 3, (RF, RF, RF_IF), rd_rn_rm),
22996 cCL("rsfem", e380140, 3, (RF, RF, RF_IF), rd_rn_rm),
22997 cCL("rsfez", e380160, 3, (RF, RF, RF_IF), rd_rn_rm),
22998
22999 cCL("mufs", e100100, 3, (RF, RF, RF_IF), rd_rn_rm),
23000 cCL("mufsp", e100120, 3, (RF, RF, RF_IF), rd_rn_rm),
23001 cCL("mufsm", e100140, 3, (RF, RF, RF_IF), rd_rn_rm),
23002 cCL("mufsz", e100160, 3, (RF, RF, RF_IF), rd_rn_rm),
23003 cCL("mufd", e100180, 3, (RF, RF, RF_IF), rd_rn_rm),
23004 cCL("mufdp", e1001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
23005 cCL("mufdm", e1001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
23006 cCL("mufdz", e1001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
23007 cCL("mufe", e180100, 3, (RF, RF, RF_IF), rd_rn_rm),
23008 cCL("mufep", e180120, 3, (RF, RF, RF_IF), rd_rn_rm),
23009 cCL("mufem", e180140, 3, (RF, RF, RF_IF), rd_rn_rm),
23010 cCL("mufez", e180160, 3, (RF, RF, RF_IF), rd_rn_rm),
23011
23012 cCL("dvfs", e400100, 3, (RF, RF, RF_IF), rd_rn_rm),
23013 cCL("dvfsp", e400120, 3, (RF, RF, RF_IF), rd_rn_rm),
23014 cCL("dvfsm", e400140, 3, (RF, RF, RF_IF), rd_rn_rm),
23015 cCL("dvfsz", e400160, 3, (RF, RF, RF_IF), rd_rn_rm),
23016 cCL("dvfd", e400180, 3, (RF, RF, RF_IF), rd_rn_rm),
23017 cCL("dvfdp", e4001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
23018 cCL("dvfdm", e4001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
23019 cCL("dvfdz", e4001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
23020 cCL("dvfe", e480100, 3, (RF, RF, RF_IF), rd_rn_rm),
23021 cCL("dvfep", e480120, 3, (RF, RF, RF_IF), rd_rn_rm),
23022 cCL("dvfem", e480140, 3, (RF, RF, RF_IF), rd_rn_rm),
23023 cCL("dvfez", e480160, 3, (RF, RF, RF_IF), rd_rn_rm),
23024
23025 cCL("rdfs", e500100, 3, (RF, RF, RF_IF), rd_rn_rm),
23026 cCL("rdfsp", e500120, 3, (RF, RF, RF_IF), rd_rn_rm),
23027 cCL("rdfsm", e500140, 3, (RF, RF, RF_IF), rd_rn_rm),
23028 cCL("rdfsz", e500160, 3, (RF, RF, RF_IF), rd_rn_rm),
23029 cCL("rdfd", e500180, 3, (RF, RF, RF_IF), rd_rn_rm),
23030 cCL("rdfdp", e5001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
23031 cCL("rdfdm", e5001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
23032 cCL("rdfdz", e5001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
23033 cCL("rdfe", e580100, 3, (RF, RF, RF_IF), rd_rn_rm),
23034 cCL("rdfep", e580120, 3, (RF, RF, RF_IF), rd_rn_rm),
23035 cCL("rdfem", e580140, 3, (RF, RF, RF_IF), rd_rn_rm),
23036 cCL("rdfez", e580160, 3, (RF, RF, RF_IF), rd_rn_rm),
23037
23038 cCL("pows", e600100, 3, (RF, RF, RF_IF), rd_rn_rm),
23039 cCL("powsp", e600120, 3, (RF, RF, RF_IF), rd_rn_rm),
23040 cCL("powsm", e600140, 3, (RF, RF, RF_IF), rd_rn_rm),
23041 cCL("powsz", e600160, 3, (RF, RF, RF_IF), rd_rn_rm),
23042 cCL("powd", e600180, 3, (RF, RF, RF_IF), rd_rn_rm),
23043 cCL("powdp", e6001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
23044 cCL("powdm", e6001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
23045 cCL("powdz", e6001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
23046 cCL("powe", e680100, 3, (RF, RF, RF_IF), rd_rn_rm),
23047 cCL("powep", e680120, 3, (RF, RF, RF_IF), rd_rn_rm),
23048 cCL("powem", e680140, 3, (RF, RF, RF_IF), rd_rn_rm),
23049 cCL("powez", e680160, 3, (RF, RF, RF_IF), rd_rn_rm),
23050
23051 cCL("rpws", e700100, 3, (RF, RF, RF_IF), rd_rn_rm),
23052 cCL("rpwsp", e700120, 3, (RF, RF, RF_IF), rd_rn_rm),
23053 cCL("rpwsm", e700140, 3, (RF, RF, RF_IF), rd_rn_rm),
23054 cCL("rpwsz", e700160, 3, (RF, RF, RF_IF), rd_rn_rm),
23055 cCL("rpwd", e700180, 3, (RF, RF, RF_IF), rd_rn_rm),
23056 cCL("rpwdp", e7001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
23057 cCL("rpwdm", e7001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
23058 cCL("rpwdz", e7001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
23059 cCL("rpwe", e780100, 3, (RF, RF, RF_IF), rd_rn_rm),
23060 cCL("rpwep", e780120, 3, (RF, RF, RF_IF), rd_rn_rm),
23061 cCL("rpwem", e780140, 3, (RF, RF, RF_IF), rd_rn_rm),
23062 cCL("rpwez", e780160, 3, (RF, RF, RF_IF), rd_rn_rm),
23063
23064 cCL("rmfs", e800100, 3, (RF, RF, RF_IF), rd_rn_rm),
23065 cCL("rmfsp", e800120, 3, (RF, RF, RF_IF), rd_rn_rm),
23066 cCL("rmfsm", e800140, 3, (RF, RF, RF_IF), rd_rn_rm),
23067 cCL("rmfsz", e800160, 3, (RF, RF, RF_IF), rd_rn_rm),
23068 cCL("rmfd", e800180, 3, (RF, RF, RF_IF), rd_rn_rm),
23069 cCL("rmfdp", e8001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
23070 cCL("rmfdm", e8001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
23071 cCL("rmfdz", e8001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
23072 cCL("rmfe", e880100, 3, (RF, RF, RF_IF), rd_rn_rm),
23073 cCL("rmfep", e880120, 3, (RF, RF, RF_IF), rd_rn_rm),
23074 cCL("rmfem", e880140, 3, (RF, RF, RF_IF), rd_rn_rm),
23075 cCL("rmfez", e880160, 3, (RF, RF, RF_IF), rd_rn_rm),
23076
23077 cCL("fmls", e900100, 3, (RF, RF, RF_IF), rd_rn_rm),
23078 cCL("fmlsp", e900120, 3, (RF, RF, RF_IF), rd_rn_rm),
23079 cCL("fmlsm", e900140, 3, (RF, RF, RF_IF), rd_rn_rm),
23080 cCL("fmlsz", e900160, 3, (RF, RF, RF_IF), rd_rn_rm),
23081 cCL("fmld", e900180, 3, (RF, RF, RF_IF), rd_rn_rm),
23082 cCL("fmldp", e9001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
23083 cCL("fmldm", e9001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
23084 cCL("fmldz", e9001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
23085 cCL("fmle", e980100, 3, (RF, RF, RF_IF), rd_rn_rm),
23086 cCL("fmlep", e980120, 3, (RF, RF, RF_IF), rd_rn_rm),
23087 cCL("fmlem", e980140, 3, (RF, RF, RF_IF), rd_rn_rm),
23088 cCL("fmlez", e980160, 3, (RF, RF, RF_IF), rd_rn_rm),
23089
23090 cCL("fdvs", ea00100, 3, (RF, RF, RF_IF), rd_rn_rm),
23091 cCL("fdvsp", ea00120, 3, (RF, RF, RF_IF), rd_rn_rm),
23092 cCL("fdvsm", ea00140, 3, (RF, RF, RF_IF), rd_rn_rm),
23093 cCL("fdvsz", ea00160, 3, (RF, RF, RF_IF), rd_rn_rm),
23094 cCL("fdvd", ea00180, 3, (RF, RF, RF_IF), rd_rn_rm),
23095 cCL("fdvdp", ea001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
23096 cCL("fdvdm", ea001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
23097 cCL("fdvdz", ea001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
23098 cCL("fdve", ea80100, 3, (RF, RF, RF_IF), rd_rn_rm),
23099 cCL("fdvep", ea80120, 3, (RF, RF, RF_IF), rd_rn_rm),
23100 cCL("fdvem", ea80140, 3, (RF, RF, RF_IF), rd_rn_rm),
23101 cCL("fdvez", ea80160, 3, (RF, RF, RF_IF), rd_rn_rm),
23102
23103 cCL("frds", eb00100, 3, (RF, RF, RF_IF), rd_rn_rm),
23104 cCL("frdsp", eb00120, 3, (RF, RF, RF_IF), rd_rn_rm),
23105 cCL("frdsm", eb00140, 3, (RF, RF, RF_IF), rd_rn_rm),
23106 cCL("frdsz", eb00160, 3, (RF, RF, RF_IF), rd_rn_rm),
23107 cCL("frdd", eb00180, 3, (RF, RF, RF_IF), rd_rn_rm),
23108 cCL("frddp", eb001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
23109 cCL("frddm", eb001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
23110 cCL("frddz", eb001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
23111 cCL("frde", eb80100, 3, (RF, RF, RF_IF), rd_rn_rm),
23112 cCL("frdep", eb80120, 3, (RF, RF, RF_IF), rd_rn_rm),
23113 cCL("frdem", eb80140, 3, (RF, RF, RF_IF), rd_rn_rm),
23114 cCL("frdez", eb80160, 3, (RF, RF, RF_IF), rd_rn_rm),
23115
23116 cCL("pols", ec00100, 3, (RF, RF, RF_IF), rd_rn_rm),
23117 cCL("polsp", ec00120, 3, (RF, RF, RF_IF), rd_rn_rm),
23118 cCL("polsm", ec00140, 3, (RF, RF, RF_IF), rd_rn_rm),
23119 cCL("polsz", ec00160, 3, (RF, RF, RF_IF), rd_rn_rm),
23120 cCL("pold", ec00180, 3, (RF, RF, RF_IF), rd_rn_rm),
23121 cCL("poldp", ec001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
23122 cCL("poldm", ec001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
23123 cCL("poldz", ec001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
23124 cCL("pole", ec80100, 3, (RF, RF, RF_IF), rd_rn_rm),
23125 cCL("polep", ec80120, 3, (RF, RF, RF_IF), rd_rn_rm),
23126 cCL("polem", ec80140, 3, (RF, RF, RF_IF), rd_rn_rm),
23127 cCL("polez", ec80160, 3, (RF, RF, RF_IF), rd_rn_rm),
23128
23129 cCE("cmf", e90f110, 2, (RF, RF_IF), fpa_cmp),
23130 C3E("cmfe", ed0f110, 2, (RF, RF_IF), fpa_cmp),
23131 cCE("cnf", eb0f110, 2, (RF, RF_IF), fpa_cmp),
23132 C3E("cnfe", ef0f110, 2, (RF, RF_IF), fpa_cmp),
23133
23134 cCL("flts", e000110, 2, (RF, RR), rn_rd),
23135 cCL("fltsp", e000130, 2, (RF, RR), rn_rd),
23136 cCL("fltsm", e000150, 2, (RF, RR), rn_rd),
23137 cCL("fltsz", e000170, 2, (RF, RR), rn_rd),
23138 cCL("fltd", e000190, 2, (RF, RR), rn_rd),
23139 cCL("fltdp", e0001b0, 2, (RF, RR), rn_rd),
23140 cCL("fltdm", e0001d0, 2, (RF, RR), rn_rd),
23141 cCL("fltdz", e0001f0, 2, (RF, RR), rn_rd),
23142 cCL("flte", e080110, 2, (RF, RR), rn_rd),
23143 cCL("fltep", e080130, 2, (RF, RR), rn_rd),
23144 cCL("fltem", e080150, 2, (RF, RR), rn_rd),
23145 cCL("fltez", e080170, 2, (RF, RR), rn_rd),
23146
23147 /* The implementation of the FIX instruction is broken on some
23148 assemblers, in that it accepts a precision specifier as well as a
23149 rounding specifier, despite the fact that this is meaningless.
23150 To be more compatible, we accept it as well, though of course it
23151 does not set any bits. */
23152 cCE("fix", e100110, 2, (RR, RF), rd_rm),
23153 cCL("fixp", e100130, 2, (RR, RF), rd_rm),
23154 cCL("fixm", e100150, 2, (RR, RF), rd_rm),
23155 cCL("fixz", e100170, 2, (RR, RF), rd_rm),
23156 cCL("fixsp", e100130, 2, (RR, RF), rd_rm),
23157 cCL("fixsm", e100150, 2, (RR, RF), rd_rm),
23158 cCL("fixsz", e100170, 2, (RR, RF), rd_rm),
23159 cCL("fixdp", e100130, 2, (RR, RF), rd_rm),
23160 cCL("fixdm", e100150, 2, (RR, RF), rd_rm),
23161 cCL("fixdz", e100170, 2, (RR, RF), rd_rm),
23162 cCL("fixep", e100130, 2, (RR, RF), rd_rm),
23163 cCL("fixem", e100150, 2, (RR, RF), rd_rm),
23164 cCL("fixez", e100170, 2, (RR, RF), rd_rm),
23165
23166 /* Instructions that were new with the real FPA, call them V2. */
23167 #undef ARM_VARIANT
23168 #define ARM_VARIANT & fpu_fpa_ext_v2
23169
23170 cCE("lfm", c100200, 3, (RF, I4b, ADDR), fpa_ldmstm),
23171 cCL("lfmfd", c900200, 3, (RF, I4b, ADDR), fpa_ldmstm),
23172 cCL("lfmea", d100200, 3, (RF, I4b, ADDR), fpa_ldmstm),
23173 cCE("sfm", c000200, 3, (RF, I4b, ADDR), fpa_ldmstm),
23174 cCL("sfmfd", d000200, 3, (RF, I4b, ADDR), fpa_ldmstm),
23175 cCL("sfmea", c800200, 3, (RF, I4b, ADDR), fpa_ldmstm),
23176
23177 #undef ARM_VARIANT
23178 #define ARM_VARIANT & fpu_vfp_ext_v1xd /* VFP V1xD (single precision). */
23179
23180 /* Moves and type conversions. */
23181 cCE("fmstat", ef1fa10, 0, (), noargs),
23182 cCE("vmrs", ef00a10, 2, (APSR_RR, RVC), vmrs),
23183 cCE("vmsr", ee00a10, 2, (RVC, RR), vmsr),
23184 cCE("fsitos", eb80ac0, 2, (RVS, RVS), vfp_sp_monadic),
23185 cCE("fuitos", eb80a40, 2, (RVS, RVS), vfp_sp_monadic),
23186 cCE("ftosis", ebd0a40, 2, (RVS, RVS), vfp_sp_monadic),
23187 cCE("ftosizs", ebd0ac0, 2, (RVS, RVS), vfp_sp_monadic),
23188 cCE("ftouis", ebc0a40, 2, (RVS, RVS), vfp_sp_monadic),
23189 cCE("ftouizs", ebc0ac0, 2, (RVS, RVS), vfp_sp_monadic),
23190 cCE("fmrx", ef00a10, 2, (RR, RVC), rd_rn),
23191 cCE("fmxr", ee00a10, 2, (RVC, RR), rn_rd),
23192
23193 /* Memory operations. */
23194 cCE("flds", d100a00, 2, (RVS, ADDRGLDC), vfp_sp_ldst),
23195 cCE("fsts", d000a00, 2, (RVS, ADDRGLDC), vfp_sp_ldst),
23196 cCE("fldmias", c900a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
23197 cCE("fldmfds", c900a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
23198 cCE("fldmdbs", d300a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
23199 cCE("fldmeas", d300a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
23200 cCE("fldmiax", c900b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
23201 cCE("fldmfdx", c900b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
23202 cCE("fldmdbx", d300b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
23203 cCE("fldmeax", d300b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
23204 cCE("fstmias", c800a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
23205 cCE("fstmeas", c800a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
23206 cCE("fstmdbs", d200a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
23207 cCE("fstmfds", d200a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
23208 cCE("fstmiax", c800b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
23209 cCE("fstmeax", c800b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
23210 cCE("fstmdbx", d200b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
23211 cCE("fstmfdx", d200b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
23212
23213 /* Monadic operations. */
23214 cCE("fabss", eb00ac0, 2, (RVS, RVS), vfp_sp_monadic),
23215 cCE("fnegs", eb10a40, 2, (RVS, RVS), vfp_sp_monadic),
23216 cCE("fsqrts", eb10ac0, 2, (RVS, RVS), vfp_sp_monadic),
23217
23218 /* Dyadic operations. */
23219 cCE("fadds", e300a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
23220 cCE("fsubs", e300a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
23221 cCE("fmuls", e200a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
23222 cCE("fdivs", e800a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
23223 cCE("fmacs", e000a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
23224 cCE("fmscs", e100a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
23225 cCE("fnmuls", e200a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
23226 cCE("fnmacs", e000a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
23227 cCE("fnmscs", e100a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
23228
23229 /* Comparisons. */
23230 cCE("fcmps", eb40a40, 2, (RVS, RVS), vfp_sp_monadic),
23231 cCE("fcmpzs", eb50a40, 1, (RVS), vfp_sp_compare_z),
23232 cCE("fcmpes", eb40ac0, 2, (RVS, RVS), vfp_sp_monadic),
23233 cCE("fcmpezs", eb50ac0, 1, (RVS), vfp_sp_compare_z),
23234
23235 /* Double precision load/store are still present on single precision
23236 implementations. */
23237 cCE("fldd", d100b00, 2, (RVD, ADDRGLDC), vfp_dp_ldst),
23238 cCE("fstd", d000b00, 2, (RVD, ADDRGLDC), vfp_dp_ldst),
23239 cCE("fldmiad", c900b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
23240 cCE("fldmfdd", c900b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
23241 cCE("fldmdbd", d300b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
23242 cCE("fldmead", d300b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
23243 cCE("fstmiad", c800b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
23244 cCE("fstmead", c800b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
23245 cCE("fstmdbd", d200b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
23246 cCE("fstmfdd", d200b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
23247
23248 #undef ARM_VARIANT
23249 #define ARM_VARIANT & fpu_vfp_ext_v1 /* VFP V1 (Double precision). */
23250
23251 /* Moves and type conversions. */
23252 cCE("fcvtds", eb70ac0, 2, (RVD, RVS), vfp_dp_sp_cvt),
23253 cCE("fcvtsd", eb70bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
23254 cCE("fmdhr", e200b10, 2, (RVD, RR), vfp_dp_rn_rd),
23255 cCE("fmdlr", e000b10, 2, (RVD, RR), vfp_dp_rn_rd),
23256 cCE("fmrdh", e300b10, 2, (RR, RVD), vfp_dp_rd_rn),
23257 cCE("fmrdl", e100b10, 2, (RR, RVD), vfp_dp_rd_rn),
23258 cCE("fsitod", eb80bc0, 2, (RVD, RVS), vfp_dp_sp_cvt),
23259 cCE("fuitod", eb80b40, 2, (RVD, RVS), vfp_dp_sp_cvt),
23260 cCE("ftosid", ebd0b40, 2, (RVS, RVD), vfp_sp_dp_cvt),
23261 cCE("ftosizd", ebd0bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
23262 cCE("ftouid", ebc0b40, 2, (RVS, RVD), vfp_sp_dp_cvt),
23263 cCE("ftouizd", ebc0bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
23264
23265 /* Monadic operations. */
23266 cCE("fabsd", eb00bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
23267 cCE("fnegd", eb10b40, 2, (RVD, RVD), vfp_dp_rd_rm),
23268 cCE("fsqrtd", eb10bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
23269
23270 /* Dyadic operations. */
23271 cCE("faddd", e300b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
23272 cCE("fsubd", e300b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
23273 cCE("fmuld", e200b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
23274 cCE("fdivd", e800b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
23275 cCE("fmacd", e000b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
23276 cCE("fmscd", e100b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
23277 cCE("fnmuld", e200b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
23278 cCE("fnmacd", e000b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
23279 cCE("fnmscd", e100b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
23280
23281 /* Comparisons. */
23282 cCE("fcmpd", eb40b40, 2, (RVD, RVD), vfp_dp_rd_rm),
23283 cCE("fcmpzd", eb50b40, 1, (RVD), vfp_dp_rd),
23284 cCE("fcmped", eb40bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
23285 cCE("fcmpezd", eb50bc0, 1, (RVD), vfp_dp_rd),
23286
23287 /* Instructions which may belong to either the Neon or VFP instruction sets.
23288 Individual encoder functions perform additional architecture checks. */
23289 #undef ARM_VARIANT
23290 #define ARM_VARIANT & fpu_vfp_ext_v1xd
23291 #undef THUMB_VARIANT
23292 #define THUMB_VARIANT & fpu_vfp_ext_v1xd
23293
23294 /* These mnemonics are unique to VFP. */
23295 NCE(vsqrt, 0, 2, (RVSD, RVSD), vfp_nsyn_sqrt),
23296 NCE(vdiv, 0, 3, (RVSD, RVSD, RVSD), vfp_nsyn_div),
23297 nCE(vnmul, _vnmul, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
23298 nCE(vnmla, _vnmla, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
23299 nCE(vnmls, _vnmls, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
23300 NCE(vpush, 0, 1, (VRSDLST), vfp_nsyn_push),
23301 NCE(vpop, 0, 1, (VRSDLST), vfp_nsyn_pop),
23302 NCE(vcvtz, 0, 2, (RVSD, RVSD), vfp_nsyn_cvtz),
23303
23304 /* Mnemonics shared by Neon and VFP. */
23305 nCEF(vmul, _vmul, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mul),
23306 nCEF(vmla, _vmla, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mac_maybe_scalar),
23307 nCEF(vmls, _vmls, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mac_maybe_scalar),
23308
23309 NCE(vldm, c900b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
23310 NCE(vldmia, c900b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
23311 NCE(vldmdb, d100b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
23312 NCE(vstm, c800b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
23313 NCE(vstmia, c800b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
23314 NCE(vstmdb, d000b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
23315
23316 mnCEF(vcvt, _vcvt, 3, (RNSDQMQ, RNSDQMQ, oI32z), neon_cvt),
23317 nCEF(vcvtr, _vcvt, 2, (RNSDQ, RNSDQ), neon_cvtr),
23318 MNCEF(vcvtb, eb20a40, 3, (RVSDMQ, RVSDMQ, oI32b), neon_cvtb),
23319 MNCEF(vcvtt, eb20a40, 3, (RVSDMQ, RVSDMQ, oI32b), neon_cvtt),
23320
23321
23322 /* NOTE: All VMOV encoding is special-cased! */
23323 NCE(vmovq, 0, 1, (VMOV), neon_mov),
23324
23325 #undef THUMB_VARIANT
23326 /* Could be either VLDR/VSTR or VLDR/VSTR (system register) which are guarded
23327 by different feature bits. Since we are setting the Thumb guard, we can
23328 require Thumb-1 which makes it a nop guard and set the right feature bit in
23329 do_vldr_vstr (). */
23330 #define THUMB_VARIANT & arm_ext_v4t
23331 NCE(vldr, d100b00, 2, (VLDR, ADDRGLDC), vldr_vstr),
23332 NCE(vstr, d000b00, 2, (VLDR, ADDRGLDC), vldr_vstr),
23333
23334 #undef ARM_VARIANT
23335 #define ARM_VARIANT & arm_ext_fp16
23336 #undef THUMB_VARIANT
23337 #define THUMB_VARIANT & arm_ext_fp16
23338 /* New instructions added from v8.2, allowing the extraction and insertion of
23339 the upper 16 bits of a 32-bit vector register. */
23340 NCE (vmovx, eb00a40, 2, (RVS, RVS), neon_movhf),
23341 NCE (vins, eb00ac0, 2, (RVS, RVS), neon_movhf),
23342
23343 /* New backported fma/fms instructions optional in v8.2. */
23344 NCE (vfmal, 810, 3, (RNDQ, RNSD, RNSD_RNSC), neon_vfmal),
23345 NCE (vfmsl, 810, 3, (RNDQ, RNSD, RNSD_RNSC), neon_vfmsl),
23346
23347 #undef THUMB_VARIANT
23348 #define THUMB_VARIANT & fpu_neon_ext_v1
23349 #undef ARM_VARIANT
23350 #define ARM_VARIANT & fpu_neon_ext_v1
23351
23352 /* Data processing with three registers of the same length. */
23353 /* integer ops, valid types S8 S16 S32 U8 U16 U32. */
23354 NUF(vaba, 0000710, 3, (RNDQ, RNDQ, RNDQ), neon_dyadic_i_su),
23355 NUF(vabaq, 0000710, 3, (RNQ, RNQ, RNQ), neon_dyadic_i_su),
23356 NUF(vhadd, 0000000, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
23357 NUF(vhaddq, 0000000, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
23358 NUF(vrhadd, 0000100, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
23359 NUF(vrhaddq, 0000100, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
23360 NUF(vhsub, 0000200, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
23361 NUF(vhsubq, 0000200, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
23362 /* integer ops, valid types S8 S16 S32 S64 U8 U16 U32 U64. */
23363 NUF(vqadd, 0000010, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i64_su),
23364 NUF(vqaddq, 0000010, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i64_su),
23365 NUF(vqsub, 0000210, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i64_su),
23366 NUF(vqsubq, 0000210, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i64_su),
23367 NUF(vrshl, 0000500, 3, (RNDQ, oRNDQ, RNDQ), neon_rshl),
23368 NUF(vrshlq, 0000500, 3, (RNQ, oRNQ, RNQ), neon_rshl),
23369 NUF(vqrshl, 0000510, 3, (RNDQ, oRNDQ, RNDQ), neon_rshl),
23370 NUF(vqrshlq, 0000510, 3, (RNQ, oRNQ, RNQ), neon_rshl),
23371 /* If not immediate, fall back to neon_dyadic_i64_su.
23372 shl_imm should accept I8 I16 I32 I64,
23373 qshl_imm should accept S8 S16 S32 S64 U8 U16 U32 U64. */
23374 nUF(vshl, _vshl, 3, (RNDQ, oRNDQ, RNDQ_I63b), neon_shl_imm),
23375 nUF(vshlq, _vshl, 3, (RNQ, oRNQ, RNDQ_I63b), neon_shl_imm),
23376 nUF(vqshl, _vqshl, 3, (RNDQ, oRNDQ, RNDQ_I63b), neon_qshl_imm),
23377 nUF(vqshlq, _vqshl, 3, (RNQ, oRNQ, RNDQ_I63b), neon_qshl_imm),
23378 /* Logic ops, types optional & ignored. */
23379 nUF(vandq, _vand, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
23380 nUF(vbicq, _vbic, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
23381 nUF(vorrq, _vorr, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
23382 nUF(vornq, _vorn, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
23383 nUF(veorq, _veor, 3, (RNQ, oRNQ, RNQ), neon_logic),
23384 /* Bitfield ops, untyped. */
23385 NUF(vbsl, 1100110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
23386 NUF(vbslq, 1100110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
23387 NUF(vbit, 1200110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
23388 NUF(vbitq, 1200110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
23389 NUF(vbif, 1300110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
23390 NUF(vbifq, 1300110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
23391 /* Int and float variants, types S8 S16 S32 U8 U16 U32 F16 F32. */
23392 nUF(vabdq, _vabd, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
23393 nUF(vmax, _vmax, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
23394 nUF(vmaxq, _vmax, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
23395 nUF(vmin, _vmin, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
23396 nUF(vminq, _vmin, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
23397 /* Comparisons. Types S8 S16 S32 U8 U16 U32 F32. Non-immediate versions fall
23398 back to neon_dyadic_if_su. */
23399 nUF(vcge, _vcge, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp),
23400 nUF(vcgeq, _vcge, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp),
23401 nUF(vcgt, _vcgt, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp),
23402 nUF(vcgtq, _vcgt, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp),
23403 nUF(vclt, _vclt, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp_inv),
23404 nUF(vcltq, _vclt, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp_inv),
23405 nUF(vcle, _vcle, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp_inv),
23406 nUF(vcleq, _vcle, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp_inv),
23407 /* Comparison. Type I8 I16 I32 F32. */
23408 nUF(vceq, _vceq, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_ceq),
23409 nUF(vceqq, _vceq, 3, (RNQ, oRNQ, RNDQ_I0), neon_ceq),
23410 /* As above, D registers only. */
23411 nUF(vpmax, _vpmax, 3, (RND, oRND, RND), neon_dyadic_if_su_d),
23412 nUF(vpmin, _vpmin, 3, (RND, oRND, RND), neon_dyadic_if_su_d),
23413 /* Int and float variants, signedness unimportant. */
23414 nUF(vmlaq, _vmla, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mac_maybe_scalar),
23415 nUF(vmlsq, _vmls, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mac_maybe_scalar),
23416 nUF(vpadd, _vpadd, 3, (RND, oRND, RND), neon_dyadic_if_i_d),
23417 /* Add/sub take types I8 I16 I32 I64 F32. */
23418 nUF(vaddq, _vadd, 3, (RNQ, oRNQ, RNQ), neon_addsub_if_i),
23419 nUF(vsubq, _vsub, 3, (RNQ, oRNQ, RNQ), neon_addsub_if_i),
23420 /* vtst takes sizes 8, 16, 32. */
23421 NUF(vtst, 0000810, 3, (RNDQ, oRNDQ, RNDQ), neon_tst),
23422 NUF(vtstq, 0000810, 3, (RNQ, oRNQ, RNQ), neon_tst),
23423 /* VMUL takes I8 I16 I32 F32 P8. */
23424 nUF(vmulq, _vmul, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mul),
23425 /* VQD{R}MULH takes S16 S32. */
23426 nUF(vqdmulh, _vqdmulh, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qdmulh),
23427 nUF(vqdmulhq, _vqdmulh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qdmulh),
23428 nUF(vqrdmulh, _vqrdmulh, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qdmulh),
23429 nUF(vqrdmulhq, _vqrdmulh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qdmulh),
23430 NUF(vacge, 0000e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute),
23431 NUF(vacgeq, 0000e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute),
23432 NUF(vacgt, 0200e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute),
23433 NUF(vacgtq, 0200e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute),
23434 NUF(vaclt, 0200e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute_inv),
23435 NUF(vacltq, 0200e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute_inv),
23436 NUF(vacle, 0000e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute_inv),
23437 NUF(vacleq, 0000e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute_inv),
23438 NUF(vrecps, 0000f10, 3, (RNDQ, oRNDQ, RNDQ), neon_step),
23439 NUF(vrecpsq, 0000f10, 3, (RNQ, oRNQ, RNQ), neon_step),
23440 NUF(vrsqrts, 0200f10, 3, (RNDQ, oRNDQ, RNDQ), neon_step),
23441 NUF(vrsqrtsq, 0200f10, 3, (RNQ, oRNQ, RNQ), neon_step),
23442 /* ARM v8.1 extension. */
23443 nUF (vqrdmlah, _vqrdmlah, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qrdmlah),
23444 nUF (vqrdmlahq, _vqrdmlah, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qrdmlah),
23445 nUF (vqrdmlsh, _vqrdmlsh, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qrdmlah),
23446 nUF (vqrdmlshq, _vqrdmlsh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qrdmlah),
23447
23448 /* Two address, int/float. Types S8 S16 S32 F32. */
23449 NUF(vabsq, 1b10300, 2, (RNQ, RNQ), neon_abs_neg),
23450 NUF(vnegq, 1b10380, 2, (RNQ, RNQ), neon_abs_neg),
23451
23452 /* Data processing with two registers and a shift amount. */
23453 /* Right shifts, and variants with rounding.
23454 Types accepted S8 S16 S32 S64 U8 U16 U32 U64. */
23455 NUF(vshr, 0800010, 3, (RNDQ, oRNDQ, I64z), neon_rshift_round_imm),
23456 NUF(vshrq, 0800010, 3, (RNQ, oRNQ, I64z), neon_rshift_round_imm),
23457 NUF(vrshr, 0800210, 3, (RNDQ, oRNDQ, I64z), neon_rshift_round_imm),
23458 NUF(vrshrq, 0800210, 3, (RNQ, oRNQ, I64z), neon_rshift_round_imm),
23459 NUF(vsra, 0800110, 3, (RNDQ, oRNDQ, I64), neon_rshift_round_imm),
23460 NUF(vsraq, 0800110, 3, (RNQ, oRNQ, I64), neon_rshift_round_imm),
23461 NUF(vrsra, 0800310, 3, (RNDQ, oRNDQ, I64), neon_rshift_round_imm),
23462 NUF(vrsraq, 0800310, 3, (RNQ, oRNQ, I64), neon_rshift_round_imm),
23463 /* Shift and insert. Sizes accepted 8 16 32 64. */
23464 NUF(vsli, 1800510, 3, (RNDQ, oRNDQ, I63), neon_sli),
23465 NUF(vsliq, 1800510, 3, (RNQ, oRNQ, I63), neon_sli),
23466 NUF(vsri, 1800410, 3, (RNDQ, oRNDQ, I64), neon_sri),
23467 NUF(vsriq, 1800410, 3, (RNQ, oRNQ, I64), neon_sri),
23468 /* QSHL{U} immediate accepts S8 S16 S32 S64 U8 U16 U32 U64. */
23469 NUF(vqshlu, 1800610, 3, (RNDQ, oRNDQ, I63), neon_qshlu_imm),
23470 NUF(vqshluq, 1800610, 3, (RNQ, oRNQ, I63), neon_qshlu_imm),
23471 /* Right shift immediate, saturating & narrowing, with rounding variants.
23472 Types accepted S16 S32 S64 U16 U32 U64. */
23473 NUF(vqshrn, 0800910, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow),
23474 NUF(vqrshrn, 0800950, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow),
23475 /* As above, unsigned. Types accepted S16 S32 S64. */
23476 NUF(vqshrun, 0800810, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow_u),
23477 NUF(vqrshrun, 0800850, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow_u),
23478 /* Right shift narrowing. Types accepted I16 I32 I64. */
23479 NUF(vshrn, 0800810, 3, (RND, RNQ, I32z), neon_rshift_narrow),
23480 NUF(vrshrn, 0800850, 3, (RND, RNQ, I32z), neon_rshift_narrow),
23481 /* Special case. Types S8 S16 S32 U8 U16 U32. Handles max shift variant. */
23482 nUF(vshll, _vshll, 3, (RNQ, RND, I32), neon_shll),
23483 /* CVT with optional immediate for fixed-point variant. */
23484 nUF(vcvtq, _vcvt, 3, (RNQ, RNQ, oI32b), neon_cvt),
23485
23486 nUF(vmvn, _vmvn, 2, (RNDQ, RNDQ_Ibig), neon_mvn),
23487 nUF(vmvnq, _vmvn, 2, (RNQ, RNDQ_Ibig), neon_mvn),
23488
23489 /* Data processing, three registers of different lengths. */
23490 /* Dyadic, long insns. Types S8 S16 S32 U8 U16 U32. */
23491 NUF(vabal, 0800500, 3, (RNQ, RND, RND), neon_abal),
23492 /* If not scalar, fall back to neon_dyadic_long.
23493 Vector types as above, scalar types S16 S32 U16 U32. */
23494 nUF(vmlal, _vmlal, 3, (RNQ, RND, RND_RNSC), neon_mac_maybe_scalar_long),
23495 nUF(vmlsl, _vmlsl, 3, (RNQ, RND, RND_RNSC), neon_mac_maybe_scalar_long),
23496 /* Dyadic, widening insns. Types S8 S16 S32 U8 U16 U32. */
23497 NUF(vaddw, 0800100, 3, (RNQ, oRNQ, RND), neon_dyadic_wide),
23498 NUF(vsubw, 0800300, 3, (RNQ, oRNQ, RND), neon_dyadic_wide),
23499 /* Dyadic, narrowing insns. Types I16 I32 I64. */
23500 NUF(vaddhn, 0800400, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
23501 NUF(vraddhn, 1800400, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
23502 NUF(vsubhn, 0800600, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
23503 NUF(vrsubhn, 1800600, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
23504 /* Saturating doubling multiplies. Types S16 S32. */
23505 nUF(vqdmlal, _vqdmlal, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
23506 nUF(vqdmlsl, _vqdmlsl, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
23507 nUF(vqdmull, _vqdmull, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
23508 /* VMULL. Vector types S8 S16 S32 U8 U16 U32 P8, scalar types
23509 S16 S32 U16 U32. */
23510 nUF(vmull, _vmull, 3, (RNQ, RND, RND_RNSC), neon_vmull),
23511
23512 /* Extract. Size 8. */
23513 NUF(vext, 0b00000, 4, (RNDQ, oRNDQ, RNDQ, I15), neon_ext),
23514 NUF(vextq, 0b00000, 4, (RNQ, oRNQ, RNQ, I15), neon_ext),
23515
23516 /* Two registers, miscellaneous. */
23517 /* Reverse. Sizes 8 16 32 (must be < size in opcode). */
23518 NUF(vrev64, 1b00000, 2, (RNDQ, RNDQ), neon_rev),
23519 NUF(vrev64q, 1b00000, 2, (RNQ, RNQ), neon_rev),
23520 NUF(vrev32, 1b00080, 2, (RNDQ, RNDQ), neon_rev),
23521 NUF(vrev32q, 1b00080, 2, (RNQ, RNQ), neon_rev),
23522 NUF(vrev16, 1b00100, 2, (RNDQ, RNDQ), neon_rev),
23523 NUF(vrev16q, 1b00100, 2, (RNQ, RNQ), neon_rev),
23524 /* Vector replicate. Sizes 8 16 32. */
23525 nCE(vdup, _vdup, 2, (RNDQ, RR_RNSC), neon_dup),
23526 nCE(vdupq, _vdup, 2, (RNQ, RR_RNSC), neon_dup),
23527 /* VMOVL. Types S8 S16 S32 U8 U16 U32. */
23528 NUF(vmovl, 0800a10, 2, (RNQ, RND), neon_movl),
23529 /* VMOVN. Types I16 I32 I64. */
23530 nUF(vmovn, _vmovn, 2, (RND, RNQ), neon_movn),
23531 /* VQMOVN. Types S16 S32 S64 U16 U32 U64. */
23532 nUF(vqmovn, _vqmovn, 2, (RND, RNQ), neon_qmovn),
23533 /* VQMOVUN. Types S16 S32 S64. */
23534 nUF(vqmovun, _vqmovun, 2, (RND, RNQ), neon_qmovun),
23535 /* VZIP / VUZP. Sizes 8 16 32. */
23536 NUF(vzip, 1b20180, 2, (RNDQ, RNDQ), neon_zip_uzp),
23537 NUF(vzipq, 1b20180, 2, (RNQ, RNQ), neon_zip_uzp),
23538 NUF(vuzp, 1b20100, 2, (RNDQ, RNDQ), neon_zip_uzp),
23539 NUF(vuzpq, 1b20100, 2, (RNQ, RNQ), neon_zip_uzp),
23540 /* VQABS / VQNEG. Types S8 S16 S32. */
23541 NUF(vqabs, 1b00700, 2, (RNDQ, RNDQ), neon_sat_abs_neg),
23542 NUF(vqabsq, 1b00700, 2, (RNQ, RNQ), neon_sat_abs_neg),
23543 NUF(vqneg, 1b00780, 2, (RNDQ, RNDQ), neon_sat_abs_neg),
23544 NUF(vqnegq, 1b00780, 2, (RNQ, RNQ), neon_sat_abs_neg),
23545 /* Pairwise, lengthening. Types S8 S16 S32 U8 U16 U32. */
23546 NUF(vpadal, 1b00600, 2, (RNDQ, RNDQ), neon_pair_long),
23547 NUF(vpadalq, 1b00600, 2, (RNQ, RNQ), neon_pair_long),
23548 NUF(vpaddl, 1b00200, 2, (RNDQ, RNDQ), neon_pair_long),
23549 NUF(vpaddlq, 1b00200, 2, (RNQ, RNQ), neon_pair_long),
23550 /* Reciprocal estimates. Types U32 F16 F32. */
23551 NUF(vrecpe, 1b30400, 2, (RNDQ, RNDQ), neon_recip_est),
23552 NUF(vrecpeq, 1b30400, 2, (RNQ, RNQ), neon_recip_est),
23553 NUF(vrsqrte, 1b30480, 2, (RNDQ, RNDQ), neon_recip_est),
23554 NUF(vrsqrteq, 1b30480, 2, (RNQ, RNQ), neon_recip_est),
23555 /* VCLS. Types S8 S16 S32. */
23556 NUF(vcls, 1b00400, 2, (RNDQ, RNDQ), neon_cls),
23557 NUF(vclsq, 1b00400, 2, (RNQ, RNQ), neon_cls),
23558 /* VCLZ. Types I8 I16 I32. */
23559 NUF(vclz, 1b00480, 2, (RNDQ, RNDQ), neon_clz),
23560 NUF(vclzq, 1b00480, 2, (RNQ, RNQ), neon_clz),
23561 /* VCNT. Size 8. */
23562 NUF(vcnt, 1b00500, 2, (RNDQ, RNDQ), neon_cnt),
23563 NUF(vcntq, 1b00500, 2, (RNQ, RNQ), neon_cnt),
23564 /* Two address, untyped. */
23565 NUF(vswp, 1b20000, 2, (RNDQ, RNDQ), neon_swp),
23566 NUF(vswpq, 1b20000, 2, (RNQ, RNQ), neon_swp),
23567 /* VTRN. Sizes 8 16 32. */
23568 nUF(vtrn, _vtrn, 2, (RNDQ, RNDQ), neon_trn),
23569 nUF(vtrnq, _vtrn, 2, (RNQ, RNQ), neon_trn),
23570
23571 /* Table lookup. Size 8. */
23572 NUF(vtbl, 1b00800, 3, (RND, NRDLST, RND), neon_tbl_tbx),
23573 NUF(vtbx, 1b00840, 3, (RND, NRDLST, RND), neon_tbl_tbx),
23574
23575 #undef THUMB_VARIANT
23576 #define THUMB_VARIANT & fpu_vfp_v3_or_neon_ext
23577 #undef ARM_VARIANT
23578 #define ARM_VARIANT & fpu_vfp_v3_or_neon_ext
23579
23580 /* Neon element/structure load/store. */
23581 nUF(vld1, _vld1, 2, (NSTRLST, ADDR), neon_ldx_stx),
23582 nUF(vst1, _vst1, 2, (NSTRLST, ADDR), neon_ldx_stx),
23583 nUF(vld2, _vld2, 2, (NSTRLST, ADDR), neon_ldx_stx),
23584 nUF(vst2, _vst2, 2, (NSTRLST, ADDR), neon_ldx_stx),
23585 nUF(vld3, _vld3, 2, (NSTRLST, ADDR), neon_ldx_stx),
23586 nUF(vst3, _vst3, 2, (NSTRLST, ADDR), neon_ldx_stx),
23587 nUF(vld4, _vld4, 2, (NSTRLST, ADDR), neon_ldx_stx),
23588 nUF(vst4, _vst4, 2, (NSTRLST, ADDR), neon_ldx_stx),
23589
23590 #undef THUMB_VARIANT
23591 #define THUMB_VARIANT & fpu_vfp_ext_v3xd
23592 #undef ARM_VARIANT
23593 #define ARM_VARIANT & fpu_vfp_ext_v3xd
23594 cCE("fconsts", eb00a00, 2, (RVS, I255), vfp_sp_const),
23595 cCE("fshtos", eba0a40, 2, (RVS, I16z), vfp_sp_conv_16),
23596 cCE("fsltos", eba0ac0, 2, (RVS, I32), vfp_sp_conv_32),
23597 cCE("fuhtos", ebb0a40, 2, (RVS, I16z), vfp_sp_conv_16),
23598 cCE("fultos", ebb0ac0, 2, (RVS, I32), vfp_sp_conv_32),
23599 cCE("ftoshs", ebe0a40, 2, (RVS, I16z), vfp_sp_conv_16),
23600 cCE("ftosls", ebe0ac0, 2, (RVS, I32), vfp_sp_conv_32),
23601 cCE("ftouhs", ebf0a40, 2, (RVS, I16z), vfp_sp_conv_16),
23602 cCE("ftouls", ebf0ac0, 2, (RVS, I32), vfp_sp_conv_32),
23603
23604 #undef THUMB_VARIANT
23605 #define THUMB_VARIANT & fpu_vfp_ext_v3
23606 #undef ARM_VARIANT
23607 #define ARM_VARIANT & fpu_vfp_ext_v3
23608
23609 cCE("fconstd", eb00b00, 2, (RVD, I255), vfp_dp_const),
23610 cCE("fshtod", eba0b40, 2, (RVD, I16z), vfp_dp_conv_16),
23611 cCE("fsltod", eba0bc0, 2, (RVD, I32), vfp_dp_conv_32),
23612 cCE("fuhtod", ebb0b40, 2, (RVD, I16z), vfp_dp_conv_16),
23613 cCE("fultod", ebb0bc0, 2, (RVD, I32), vfp_dp_conv_32),
23614 cCE("ftoshd", ebe0b40, 2, (RVD, I16z), vfp_dp_conv_16),
23615 cCE("ftosld", ebe0bc0, 2, (RVD, I32), vfp_dp_conv_32),
23616 cCE("ftouhd", ebf0b40, 2, (RVD, I16z), vfp_dp_conv_16),
23617 cCE("ftould", ebf0bc0, 2, (RVD, I32), vfp_dp_conv_32),
23618
23619 #undef ARM_VARIANT
23620 #define ARM_VARIANT & fpu_vfp_ext_fma
23621 #undef THUMB_VARIANT
23622 #define THUMB_VARIANT & fpu_vfp_ext_fma
23623 /* Mnemonics shared by Neon and VFP. These are included in the
23624 VFP FMA variant; NEON and VFP FMA always includes the NEON
23625 FMA instructions. */
23626 nCEF(vfma, _vfma, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_fmac),
23627 nCEF(vfms, _vfms, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_fmac),
23628 /* ffmas/ffmad/ffmss/ffmsd are dummy mnemonics to satisfy gas;
23629 the v form should always be used. */
23630 cCE("ffmas", ea00a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
23631 cCE("ffnmas", ea00a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
23632 cCE("ffmad", ea00b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
23633 cCE("ffnmad", ea00b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
23634 nCE(vfnma, _vfnma, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
23635 nCE(vfnms, _vfnms, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
23636
23637 #undef THUMB_VARIANT
23638 #undef ARM_VARIANT
23639 #define ARM_VARIANT & arm_cext_xscale /* Intel XScale extensions. */
23640
23641 cCE("mia", e200010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
23642 cCE("miaph", e280010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
23643 cCE("miabb", e2c0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
23644 cCE("miabt", e2d0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
23645 cCE("miatb", e2e0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
23646 cCE("miatt", e2f0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
23647 cCE("mar", c400000, 3, (RXA, RRnpc, RRnpc), xsc_mar),
23648 cCE("mra", c500000, 3, (RRnpc, RRnpc, RXA), xsc_mra),
23649
23650 #undef ARM_VARIANT
23651 #define ARM_VARIANT & arm_cext_iwmmxt /* Intel Wireless MMX technology. */
23652
23653 cCE("tandcb", e13f130, 1, (RR), iwmmxt_tandorc),
23654 cCE("tandch", e53f130, 1, (RR), iwmmxt_tandorc),
23655 cCE("tandcw", e93f130, 1, (RR), iwmmxt_tandorc),
23656 cCE("tbcstb", e400010, 2, (RIWR, RR), rn_rd),
23657 cCE("tbcsth", e400050, 2, (RIWR, RR), rn_rd),
23658 cCE("tbcstw", e400090, 2, (RIWR, RR), rn_rd),
23659 cCE("textrcb", e130170, 2, (RR, I7), iwmmxt_textrc),
23660 cCE("textrch", e530170, 2, (RR, I7), iwmmxt_textrc),
23661 cCE("textrcw", e930170, 2, (RR, I7), iwmmxt_textrc),
23662 cCE("textrmub",e100070, 3, (RR, RIWR, I7), iwmmxt_textrm),
23663 cCE("textrmuh",e500070, 3, (RR, RIWR, I7), iwmmxt_textrm),
23664 cCE("textrmuw",e900070, 3, (RR, RIWR, I7), iwmmxt_textrm),
23665 cCE("textrmsb",e100078, 3, (RR, RIWR, I7), iwmmxt_textrm),
23666 cCE("textrmsh",e500078, 3, (RR, RIWR, I7), iwmmxt_textrm),
23667 cCE("textrmsw",e900078, 3, (RR, RIWR, I7), iwmmxt_textrm),
23668 cCE("tinsrb", e600010, 3, (RIWR, RR, I7), iwmmxt_tinsr),
23669 cCE("tinsrh", e600050, 3, (RIWR, RR, I7), iwmmxt_tinsr),
23670 cCE("tinsrw", e600090, 3, (RIWR, RR, I7), iwmmxt_tinsr),
23671 cCE("tmcr", e000110, 2, (RIWC_RIWG, RR), rn_rd),
23672 cCE("tmcrr", c400000, 3, (RIWR, RR, RR), rm_rd_rn),
23673 cCE("tmia", e200010, 3, (RIWR, RR, RR), iwmmxt_tmia),
23674 cCE("tmiaph", e280010, 3, (RIWR, RR, RR), iwmmxt_tmia),
23675 cCE("tmiabb", e2c0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
23676 cCE("tmiabt", e2d0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
23677 cCE("tmiatb", e2e0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
23678 cCE("tmiatt", e2f0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
23679 cCE("tmovmskb",e100030, 2, (RR, RIWR), rd_rn),
23680 cCE("tmovmskh",e500030, 2, (RR, RIWR), rd_rn),
23681 cCE("tmovmskw",e900030, 2, (RR, RIWR), rd_rn),
23682 cCE("tmrc", e100110, 2, (RR, RIWC_RIWG), rd_rn),
23683 cCE("tmrrc", c500000, 3, (RR, RR, RIWR), rd_rn_rm),
23684 cCE("torcb", e13f150, 1, (RR), iwmmxt_tandorc),
23685 cCE("torch", e53f150, 1, (RR), iwmmxt_tandorc),
23686 cCE("torcw", e93f150, 1, (RR), iwmmxt_tandorc),
23687 cCE("waccb", e0001c0, 2, (RIWR, RIWR), rd_rn),
23688 cCE("wacch", e4001c0, 2, (RIWR, RIWR), rd_rn),
23689 cCE("waccw", e8001c0, 2, (RIWR, RIWR), rd_rn),
23690 cCE("waddbss", e300180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23691 cCE("waddb", e000180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23692 cCE("waddbus", e100180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23693 cCE("waddhss", e700180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23694 cCE("waddh", e400180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23695 cCE("waddhus", e500180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23696 cCE("waddwss", eb00180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23697 cCE("waddw", e800180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23698 cCE("waddwus", e900180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23699 cCE("waligni", e000020, 4, (RIWR, RIWR, RIWR, I7), iwmmxt_waligni),
23700 cCE("walignr0",e800020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23701 cCE("walignr1",e900020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23702 cCE("walignr2",ea00020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23703 cCE("walignr3",eb00020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23704 cCE("wand", e200000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23705 cCE("wandn", e300000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23706 cCE("wavg2b", e800000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23707 cCE("wavg2br", e900000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23708 cCE("wavg2h", ec00000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23709 cCE("wavg2hr", ed00000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23710 cCE("wcmpeqb", e000060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23711 cCE("wcmpeqh", e400060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23712 cCE("wcmpeqw", e800060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23713 cCE("wcmpgtub",e100060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23714 cCE("wcmpgtuh",e500060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23715 cCE("wcmpgtuw",e900060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23716 cCE("wcmpgtsb",e300060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23717 cCE("wcmpgtsh",e700060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23718 cCE("wcmpgtsw",eb00060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23719 cCE("wldrb", c100000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
23720 cCE("wldrh", c500000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
23721 cCE("wldrw", c100100, 2, (RIWR_RIWC, ADDR), iwmmxt_wldstw),
23722 cCE("wldrd", c500100, 2, (RIWR, ADDR), iwmmxt_wldstd),
23723 cCE("wmacs", e600100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23724 cCE("wmacsz", e700100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23725 cCE("wmacu", e400100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23726 cCE("wmacuz", e500100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23727 cCE("wmadds", ea00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23728 cCE("wmaddu", e800100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23729 cCE("wmaxsb", e200160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23730 cCE("wmaxsh", e600160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23731 cCE("wmaxsw", ea00160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23732 cCE("wmaxub", e000160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23733 cCE("wmaxuh", e400160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23734 cCE("wmaxuw", e800160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23735 cCE("wminsb", e300160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23736 cCE("wminsh", e700160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23737 cCE("wminsw", eb00160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23738 cCE("wminub", e100160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23739 cCE("wminuh", e500160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23740 cCE("wminuw", e900160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23741 cCE("wmov", e000000, 2, (RIWR, RIWR), iwmmxt_wmov),
23742 cCE("wmulsm", e300100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23743 cCE("wmulsl", e200100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23744 cCE("wmulum", e100100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23745 cCE("wmulul", e000100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23746 cCE("wor", e000000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23747 cCE("wpackhss",e700080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23748 cCE("wpackhus",e500080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23749 cCE("wpackwss",eb00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23750 cCE("wpackwus",e900080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23751 cCE("wpackdss",ef00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23752 cCE("wpackdus",ed00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23753 cCE("wrorh", e700040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
23754 cCE("wrorhg", e700148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
23755 cCE("wrorw", eb00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
23756 cCE("wrorwg", eb00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
23757 cCE("wrord", ef00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
23758 cCE("wrordg", ef00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
23759 cCE("wsadb", e000120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23760 cCE("wsadbz", e100120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23761 cCE("wsadh", e400120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23762 cCE("wsadhz", e500120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23763 cCE("wshufh", e0001e0, 3, (RIWR, RIWR, I255), iwmmxt_wshufh),
23764 cCE("wsllh", e500040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
23765 cCE("wsllhg", e500148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
23766 cCE("wsllw", e900040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
23767 cCE("wsllwg", e900148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
23768 cCE("wslld", ed00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
23769 cCE("wslldg", ed00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
23770 cCE("wsrah", e400040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
23771 cCE("wsrahg", e400148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
23772 cCE("wsraw", e800040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
23773 cCE("wsrawg", e800148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
23774 cCE("wsrad", ec00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
23775 cCE("wsradg", ec00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
23776 cCE("wsrlh", e600040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
23777 cCE("wsrlhg", e600148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
23778 cCE("wsrlw", ea00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
23779 cCE("wsrlwg", ea00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
23780 cCE("wsrld", ee00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
23781 cCE("wsrldg", ee00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
23782 cCE("wstrb", c000000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
23783 cCE("wstrh", c400000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
23784 cCE("wstrw", c000100, 2, (RIWR_RIWC, ADDR), iwmmxt_wldstw),
23785 cCE("wstrd", c400100, 2, (RIWR, ADDR), iwmmxt_wldstd),
23786 cCE("wsubbss", e3001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23787 cCE("wsubb", e0001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23788 cCE("wsubbus", e1001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23789 cCE("wsubhss", e7001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23790 cCE("wsubh", e4001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23791 cCE("wsubhus", e5001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23792 cCE("wsubwss", eb001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23793 cCE("wsubw", e8001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23794 cCE("wsubwus", e9001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23795 cCE("wunpckehub",e0000c0, 2, (RIWR, RIWR), rd_rn),
23796 cCE("wunpckehuh",e4000c0, 2, (RIWR, RIWR), rd_rn),
23797 cCE("wunpckehuw",e8000c0, 2, (RIWR, RIWR), rd_rn),
23798 cCE("wunpckehsb",e2000c0, 2, (RIWR, RIWR), rd_rn),
23799 cCE("wunpckehsh",e6000c0, 2, (RIWR, RIWR), rd_rn),
23800 cCE("wunpckehsw",ea000c0, 2, (RIWR, RIWR), rd_rn),
23801 cCE("wunpckihb", e1000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23802 cCE("wunpckihh", e5000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23803 cCE("wunpckihw", e9000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23804 cCE("wunpckelub",e0000e0, 2, (RIWR, RIWR), rd_rn),
23805 cCE("wunpckeluh",e4000e0, 2, (RIWR, RIWR), rd_rn),
23806 cCE("wunpckeluw",e8000e0, 2, (RIWR, RIWR), rd_rn),
23807 cCE("wunpckelsb",e2000e0, 2, (RIWR, RIWR), rd_rn),
23808 cCE("wunpckelsh",e6000e0, 2, (RIWR, RIWR), rd_rn),
23809 cCE("wunpckelsw",ea000e0, 2, (RIWR, RIWR), rd_rn),
23810 cCE("wunpckilb", e1000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23811 cCE("wunpckilh", e5000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23812 cCE("wunpckilw", e9000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23813 cCE("wxor", e100000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23814 cCE("wzero", e300000, 1, (RIWR), iwmmxt_wzero),
23815
23816 #undef ARM_VARIANT
23817 #define ARM_VARIANT & arm_cext_iwmmxt2 /* Intel Wireless MMX technology, version 2. */
23818
23819 cCE("torvscb", e12f190, 1, (RR), iwmmxt_tandorc),
23820 cCE("torvsch", e52f190, 1, (RR), iwmmxt_tandorc),
23821 cCE("torvscw", e92f190, 1, (RR), iwmmxt_tandorc),
23822 cCE("wabsb", e2001c0, 2, (RIWR, RIWR), rd_rn),
23823 cCE("wabsh", e6001c0, 2, (RIWR, RIWR), rd_rn),
23824 cCE("wabsw", ea001c0, 2, (RIWR, RIWR), rd_rn),
23825 cCE("wabsdiffb", e1001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23826 cCE("wabsdiffh", e5001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23827 cCE("wabsdiffw", e9001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23828 cCE("waddbhusl", e2001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23829 cCE("waddbhusm", e6001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23830 cCE("waddhc", e600180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23831 cCE("waddwc", ea00180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23832 cCE("waddsubhx", ea001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23833 cCE("wavg4", e400000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23834 cCE("wavg4r", e500000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23835 cCE("wmaddsn", ee00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23836 cCE("wmaddsx", eb00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23837 cCE("wmaddun", ec00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23838 cCE("wmaddux", e900100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23839 cCE("wmerge", e000080, 4, (RIWR, RIWR, RIWR, I7), iwmmxt_wmerge),
23840 cCE("wmiabb", e0000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23841 cCE("wmiabt", e1000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23842 cCE("wmiatb", e2000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23843 cCE("wmiatt", e3000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23844 cCE("wmiabbn", e4000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23845 cCE("wmiabtn", e5000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23846 cCE("wmiatbn", e6000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23847 cCE("wmiattn", e7000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23848 cCE("wmiawbb", e800120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23849 cCE("wmiawbt", e900120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23850 cCE("wmiawtb", ea00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23851 cCE("wmiawtt", eb00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23852 cCE("wmiawbbn", ec00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23853 cCE("wmiawbtn", ed00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23854 cCE("wmiawtbn", ee00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23855 cCE("wmiawttn", ef00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23856 cCE("wmulsmr", ef00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23857 cCE("wmulumr", ed00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23858 cCE("wmulwumr", ec000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23859 cCE("wmulwsmr", ee000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23860 cCE("wmulwum", ed000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23861 cCE("wmulwsm", ef000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23862 cCE("wmulwl", eb000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23863 cCE("wqmiabb", e8000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23864 cCE("wqmiabt", e9000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23865 cCE("wqmiatb", ea000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23866 cCE("wqmiatt", eb000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23867 cCE("wqmiabbn", ec000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23868 cCE("wqmiabtn", ed000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23869 cCE("wqmiatbn", ee000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23870 cCE("wqmiattn", ef000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23871 cCE("wqmulm", e100080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23872 cCE("wqmulmr", e300080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23873 cCE("wqmulwm", ec000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23874 cCE("wqmulwmr", ee000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23875 cCE("wsubaddhx", ed001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23876
23877 #undef ARM_VARIANT
23878 #define ARM_VARIANT & arm_cext_maverick /* Cirrus Maverick instructions. */
23879
23880 cCE("cfldrs", c100400, 2, (RMF, ADDRGLDC), rd_cpaddr),
23881 cCE("cfldrd", c500400, 2, (RMD, ADDRGLDC), rd_cpaddr),
23882 cCE("cfldr32", c100500, 2, (RMFX, ADDRGLDC), rd_cpaddr),
23883 cCE("cfldr64", c500500, 2, (RMDX, ADDRGLDC), rd_cpaddr),
23884 cCE("cfstrs", c000400, 2, (RMF, ADDRGLDC), rd_cpaddr),
23885 cCE("cfstrd", c400400, 2, (RMD, ADDRGLDC), rd_cpaddr),
23886 cCE("cfstr32", c000500, 2, (RMFX, ADDRGLDC), rd_cpaddr),
23887 cCE("cfstr64", c400500, 2, (RMDX, ADDRGLDC), rd_cpaddr),
23888 cCE("cfmvsr", e000450, 2, (RMF, RR), rn_rd),
23889 cCE("cfmvrs", e100450, 2, (RR, RMF), rd_rn),
23890 cCE("cfmvdlr", e000410, 2, (RMD, RR), rn_rd),
23891 cCE("cfmvrdl", e100410, 2, (RR, RMD), rd_rn),
23892 cCE("cfmvdhr", e000430, 2, (RMD, RR), rn_rd),
23893 cCE("cfmvrdh", e100430, 2, (RR, RMD), rd_rn),
23894 cCE("cfmv64lr",e000510, 2, (RMDX, RR), rn_rd),
23895 cCE("cfmvr64l",e100510, 2, (RR, RMDX), rd_rn),
23896 cCE("cfmv64hr",e000530, 2, (RMDX, RR), rn_rd),
23897 cCE("cfmvr64h",e100530, 2, (RR, RMDX), rd_rn),
23898 cCE("cfmval32",e200440, 2, (RMAX, RMFX), rd_rn),
23899 cCE("cfmv32al",e100440, 2, (RMFX, RMAX), rd_rn),
23900 cCE("cfmvam32",e200460, 2, (RMAX, RMFX), rd_rn),
23901 cCE("cfmv32am",e100460, 2, (RMFX, RMAX), rd_rn),
23902 cCE("cfmvah32",e200480, 2, (RMAX, RMFX), rd_rn),
23903 cCE("cfmv32ah",e100480, 2, (RMFX, RMAX), rd_rn),
23904 cCE("cfmva32", e2004a0, 2, (RMAX, RMFX), rd_rn),
23905 cCE("cfmv32a", e1004a0, 2, (RMFX, RMAX), rd_rn),
23906 cCE("cfmva64", e2004c0, 2, (RMAX, RMDX), rd_rn),
23907 cCE("cfmv64a", e1004c0, 2, (RMDX, RMAX), rd_rn),
23908 cCE("cfmvsc32",e2004e0, 2, (RMDS, RMDX), mav_dspsc),
23909 cCE("cfmv32sc",e1004e0, 2, (RMDX, RMDS), rd),
23910 cCE("cfcpys", e000400, 2, (RMF, RMF), rd_rn),
23911 cCE("cfcpyd", e000420, 2, (RMD, RMD), rd_rn),
23912 cCE("cfcvtsd", e000460, 2, (RMD, RMF), rd_rn),
23913 cCE("cfcvtds", e000440, 2, (RMF, RMD), rd_rn),
23914 cCE("cfcvt32s",e000480, 2, (RMF, RMFX), rd_rn),
23915 cCE("cfcvt32d",e0004a0, 2, (RMD, RMFX), rd_rn),
23916 cCE("cfcvt64s",e0004c0, 2, (RMF, RMDX), rd_rn),
23917 cCE("cfcvt64d",e0004e0, 2, (RMD, RMDX), rd_rn),
23918 cCE("cfcvts32",e100580, 2, (RMFX, RMF), rd_rn),
23919 cCE("cfcvtd32",e1005a0, 2, (RMFX, RMD), rd_rn),
23920 cCE("cftruncs32",e1005c0, 2, (RMFX, RMF), rd_rn),
23921 cCE("cftruncd32",e1005e0, 2, (RMFX, RMD), rd_rn),
23922 cCE("cfrshl32",e000550, 3, (RMFX, RMFX, RR), mav_triple),
23923 cCE("cfrshl64",e000570, 3, (RMDX, RMDX, RR), mav_triple),
23924 cCE("cfsh32", e000500, 3, (RMFX, RMFX, I63s), mav_shift),
23925 cCE("cfsh64", e200500, 3, (RMDX, RMDX, I63s), mav_shift),
23926 cCE("cfcmps", e100490, 3, (RR, RMF, RMF), rd_rn_rm),
23927 cCE("cfcmpd", e1004b0, 3, (RR, RMD, RMD), rd_rn_rm),
23928 cCE("cfcmp32", e100590, 3, (RR, RMFX, RMFX), rd_rn_rm),
23929 cCE("cfcmp64", e1005b0, 3, (RR, RMDX, RMDX), rd_rn_rm),
23930 cCE("cfabss", e300400, 2, (RMF, RMF), rd_rn),
23931 cCE("cfabsd", e300420, 2, (RMD, RMD), rd_rn),
23932 cCE("cfnegs", e300440, 2, (RMF, RMF), rd_rn),
23933 cCE("cfnegd", e300460, 2, (RMD, RMD), rd_rn),
23934 cCE("cfadds", e300480, 3, (RMF, RMF, RMF), rd_rn_rm),
23935 cCE("cfaddd", e3004a0, 3, (RMD, RMD, RMD), rd_rn_rm),
23936 cCE("cfsubs", e3004c0, 3, (RMF, RMF, RMF), rd_rn_rm),
23937 cCE("cfsubd", e3004e0, 3, (RMD, RMD, RMD), rd_rn_rm),
23938 cCE("cfmuls", e100400, 3, (RMF, RMF, RMF), rd_rn_rm),
23939 cCE("cfmuld", e100420, 3, (RMD, RMD, RMD), rd_rn_rm),
23940 cCE("cfabs32", e300500, 2, (RMFX, RMFX), rd_rn),
23941 cCE("cfabs64", e300520, 2, (RMDX, RMDX), rd_rn),
23942 cCE("cfneg32", e300540, 2, (RMFX, RMFX), rd_rn),
23943 cCE("cfneg64", e300560, 2, (RMDX, RMDX), rd_rn),
23944 cCE("cfadd32", e300580, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
23945 cCE("cfadd64", e3005a0, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
23946 cCE("cfsub32", e3005c0, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
23947 cCE("cfsub64", e3005e0, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
23948 cCE("cfmul32", e100500, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
23949 cCE("cfmul64", e100520, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
23950 cCE("cfmac32", e100540, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
23951 cCE("cfmsc32", e100560, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
23952 cCE("cfmadd32",e000600, 4, (RMAX, RMFX, RMFX, RMFX), mav_quad),
23953 cCE("cfmsub32",e100600, 4, (RMAX, RMFX, RMFX, RMFX), mav_quad),
23954 cCE("cfmadda32", e200600, 4, (RMAX, RMAX, RMFX, RMFX), mav_quad),
23955 cCE("cfmsuba32", e300600, 4, (RMAX, RMAX, RMFX, RMFX), mav_quad),
23956
23957 /* ARMv8.5-A instructions. */
23958 #undef ARM_VARIANT
23959 #define ARM_VARIANT & arm_ext_sb
23960 #undef THUMB_VARIANT
23961 #define THUMB_VARIANT & arm_ext_sb
23962 TUF("sb", 57ff070, f3bf8f70, 0, (), noargs, noargs),
23963
23964 #undef ARM_VARIANT
23965 #define ARM_VARIANT & arm_ext_predres
23966 #undef THUMB_VARIANT
23967 #define THUMB_VARIANT & arm_ext_predres
23968 CE("cfprctx", e070f93, 1, (RRnpc), rd),
23969 CE("dvprctx", e070fb3, 1, (RRnpc), rd),
23970 CE("cpprctx", e070ff3, 1, (RRnpc), rd),
23971
23972 /* ARMv8-M instructions. */
23973 #undef ARM_VARIANT
23974 #define ARM_VARIANT NULL
23975 #undef THUMB_VARIANT
23976 #define THUMB_VARIANT & arm_ext_v8m
23977 ToU("sg", e97fe97f, 0, (), noargs),
23978 ToC("blxns", 4784, 1, (RRnpc), t_blx),
23979 ToC("bxns", 4704, 1, (RRnpc), t_bx),
23980 ToC("tt", e840f000, 2, (RRnpc, RRnpc), tt),
23981 ToC("ttt", e840f040, 2, (RRnpc, RRnpc), tt),
23982 ToC("tta", e840f080, 2, (RRnpc, RRnpc), tt),
23983 ToC("ttat", e840f0c0, 2, (RRnpc, RRnpc), tt),
23984
23985 /* FP for ARMv8-M Mainline. Enabled for ARMv8-M Mainline because the
23986 instructions behave as nop if no VFP is present. */
23987 #undef THUMB_VARIANT
23988 #define THUMB_VARIANT & arm_ext_v8m_main
23989 ToC("vlldm", ec300a00, 1, (RRnpc), rn),
23990 ToC("vlstm", ec200a00, 1, (RRnpc), rn),
23991
23992 /* Armv8.1-M Mainline instructions. */
23993 #undef THUMB_VARIANT
23994 #define THUMB_VARIANT & arm_ext_v8_1m_main
23995 toC("bf", _bf, 2, (EXPs, EXPs), t_branch_future),
23996 toU("bfcsel", _bfcsel, 4, (EXPs, EXPs, EXPs, COND), t_branch_future),
23997 toC("bfx", _bfx, 2, (EXPs, RRnpcsp), t_branch_future),
23998 toC("bfl", _bfl, 2, (EXPs, EXPs), t_branch_future),
23999 toC("bflx", _bflx, 2, (EXPs, RRnpcsp), t_branch_future),
24000
24001 toU("dls", _dls, 2, (LR, RRnpcsp), t_loloop),
24002 toU("wls", _wls, 3, (LR, RRnpcsp, EXP), t_loloop),
24003 toU("le", _le, 2, (oLR, EXP), t_loloop),
24004
24005 ToC("clrm", e89f0000, 1, (CLRMLST), t_clrm),
24006 ToC("vscclrm", ec9f0a00, 1, (VRSDVLST), t_vscclrm),
24007
24008 #undef THUMB_VARIANT
24009 #define THUMB_VARIANT & mve_ext
24010
24011 ToC("vpt", ee410f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24012 ToC("vptt", ee018f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24013 ToC("vpte", ee418f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24014 ToC("vpttt", ee014f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24015 ToC("vptte", ee01cf00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24016 ToC("vptet", ee41cf00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24017 ToC("vptee", ee414f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24018 ToC("vptttt", ee012f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24019 ToC("vpttte", ee016f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24020 ToC("vpttet", ee01ef00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24021 ToC("vpttee", ee01af00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24022 ToC("vptett", ee41af00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24023 ToC("vptete", ee41ef00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24024 ToC("vpteet", ee416f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24025 ToC("vpteee", ee412f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24026
24027 ToC("vpst", fe710f4d, 0, (), mve_vpt),
24028 ToC("vpstt", fe318f4d, 0, (), mve_vpt),
24029 ToC("vpste", fe718f4d, 0, (), mve_vpt),
24030 ToC("vpsttt", fe314f4d, 0, (), mve_vpt),
24031 ToC("vpstte", fe31cf4d, 0, (), mve_vpt),
24032 ToC("vpstet", fe71cf4d, 0, (), mve_vpt),
24033 ToC("vpstee", fe714f4d, 0, (), mve_vpt),
24034 ToC("vpstttt", fe312f4d, 0, (), mve_vpt),
24035 ToC("vpsttte", fe316f4d, 0, (), mve_vpt),
24036 ToC("vpsttet", fe31ef4d, 0, (), mve_vpt),
24037 ToC("vpsttee", fe31af4d, 0, (), mve_vpt),
24038 ToC("vpstett", fe71af4d, 0, (), mve_vpt),
24039 ToC("vpstete", fe71ef4d, 0, (), mve_vpt),
24040 ToC("vpsteet", fe716f4d, 0, (), mve_vpt),
24041 ToC("vpsteee", fe712f4d, 0, (), mve_vpt),
24042
24043 /* MVE and MVE FP only. */
24044 mCEF(vadc, _vadc, 3, (RMQ, RMQ, RMQ), mve_vadc),
24045 mCEF(vadci, _vadci, 3, (RMQ, RMQ, RMQ), mve_vadc),
24046 mToC("vsbc", fe300f00, 3, (RMQ, RMQ, RMQ), mve_vsbc),
24047 mToC("vsbci", fe301f00, 3, (RMQ, RMQ, RMQ), mve_vsbc),
24048 mCEF(vmullb, _vmullb, 3, (RMQ, RMQ, RMQ), mve_vmull),
24049 mCEF(vabav, _vabav, 3, (RRnpcsp, RMQ, RMQ), mve_vabav),
24050 mCEF(vmladav, _vmladav, 3, (RRe, RMQ, RMQ), mve_vmladav),
24051 mCEF(vmladava, _vmladava, 3, (RRe, RMQ, RMQ), mve_vmladav),
24052 mCEF(vmladavx, _vmladavx, 3, (RRe, RMQ, RMQ), mve_vmladav),
24053 mCEF(vmladavax, _vmladavax, 3, (RRe, RMQ, RMQ), mve_vmladav),
24054 mCEF(vmlav, _vmladav, 3, (RRe, RMQ, RMQ), mve_vmladav),
24055 mCEF(vmlava, _vmladava, 3, (RRe, RMQ, RMQ), mve_vmladav),
24056 mCEF(vmlsdav, _vmlsdav, 3, (RRe, RMQ, RMQ), mve_vmladav),
24057 mCEF(vmlsdava, _vmlsdava, 3, (RRe, RMQ, RMQ), mve_vmladav),
24058 mCEF(vmlsdavx, _vmlsdavx, 3, (RRe, RMQ, RMQ), mve_vmladav),
24059 mCEF(vmlsdavax, _vmlsdavax, 3, (RRe, RMQ, RMQ), mve_vmladav),
24060
24061 mCEF(vst20, _vst20, 2, (MSTRLST2, ADDRMVE), mve_vst_vld),
24062 mCEF(vst21, _vst21, 2, (MSTRLST2, ADDRMVE), mve_vst_vld),
24063 mCEF(vst40, _vst40, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
24064 mCEF(vst41, _vst41, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
24065 mCEF(vst42, _vst42, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
24066 mCEF(vst43, _vst43, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
24067 mCEF(vld20, _vld20, 2, (MSTRLST2, ADDRMVE), mve_vst_vld),
24068 mCEF(vld21, _vld21, 2, (MSTRLST2, ADDRMVE), mve_vst_vld),
24069 mCEF(vld40, _vld40, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
24070 mCEF(vld41, _vld41, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
24071 mCEF(vld42, _vld42, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
24072 mCEF(vld43, _vld43, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
24073 mCEF(vstrb, _vstrb, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
24074 mCEF(vstrh, _vstrh, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
24075 mCEF(vstrw, _vstrw, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
24076 mCEF(vstrd, _vstrd, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
24077 mCEF(vldrb, _vldrb, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
24078 mCEF(vldrh, _vldrh, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
24079 mCEF(vldrw, _vldrw, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
24080 mCEF(vldrd, _vldrd, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
24081
24082 mCEF(vmovnt, _vmovnt, 2, (RMQ, RMQ), mve_movn),
24083 mCEF(vmovnb, _vmovnb, 2, (RMQ, RMQ), mve_movn),
24084 mCEF(vbrsr, _vbrsr, 3, (RMQ, RMQ, RR), mve_vbrsr),
24085 mCEF(vaddlv, _vaddlv, 3, (RRe, RRo, RMQ), mve_vaddlv),
24086 mCEF(vaddlva, _vaddlva, 3, (RRe, RRo, RMQ), mve_vaddlv),
24087 mCEF(vaddv, _vaddv, 2, (RRe, RMQ), mve_vaddv),
24088 mCEF(vaddva, _vaddva, 2, (RRe, RMQ), mve_vaddv),
24089
24090 #undef ARM_VARIANT
24091 #define ARM_VARIANT & fpu_vfp_ext_v1
24092 #undef THUMB_VARIANT
24093 #define THUMB_VARIANT & arm_ext_v6t2
24094
24095 mcCE(fcpyd, eb00b40, 2, (RVD, RVD), vfp_dp_rd_rm),
24096
24097 #undef ARM_VARIANT
24098 #define ARM_VARIANT & fpu_vfp_ext_v1xd
24099
24100 MNCE(vmov, 0, 1, (VMOV), neon_mov),
24101 mcCE(fmrs, e100a10, 2, (RR, RVS), vfp_reg_from_sp),
24102 mcCE(fmsr, e000a10, 2, (RVS, RR), vfp_sp_from_reg),
24103 mcCE(fcpys, eb00a40, 2, (RVS, RVS), vfp_sp_monadic),
24104
24105 mCEF(vmullt, _vmullt, 3, (RNSDQMQ, oRNSDQMQ, RNSDQ_RNSC_MQ), mve_vmull),
24106 mnCEF(vadd, _vadd, 3, (RNSDQMQ, oRNSDQMQ, RNSDQMQR), neon_addsub_if_i),
24107 mnCEF(vsub, _vsub, 3, (RNSDQMQ, oRNSDQMQ, RNSDQMQR), neon_addsub_if_i),
24108
24109 MNCEF(vabs, 1b10300, 2, (RNSDQMQ, RNSDQMQ), neon_abs_neg),
24110 MNCEF(vneg, 1b10380, 2, (RNSDQMQ, RNSDQMQ), neon_abs_neg),
24111
24112 mCEF(vmovlt, _vmovlt, 1, (VMOV), mve_movl),
24113 mCEF(vmovlb, _vmovlb, 1, (VMOV), mve_movl),
24114
24115 mnCE(vcmp, _vcmp, 3, (RVSD_COND, RSVDMQ_FI0, oRMQRZ), vfp_nsyn_cmp),
24116 mnCE(vcmpe, _vcmpe, 3, (RVSD_COND, RSVDMQ_FI0, oRMQRZ), vfp_nsyn_cmp),
24117
24118 #undef ARM_VARIANT
24119 #define ARM_VARIANT & fpu_vfp_ext_v2
24120
24121 mcCE(fmsrr, c400a10, 3, (VRSLST, RR, RR), vfp_sp2_from_reg2),
24122 mcCE(fmrrs, c500a10, 3, (RR, RR, VRSLST), vfp_reg2_from_sp2),
24123 mcCE(fmdrr, c400b10, 3, (RVD, RR, RR), vfp_dp_rm_rd_rn),
24124 mcCE(fmrrd, c500b10, 3, (RR, RR, RVD), vfp_dp_rd_rn_rm),
24125
24126 #undef ARM_VARIANT
24127 #define ARM_VARIANT & fpu_vfp_ext_armv8xd
24128 mnUF(vcvta, _vcvta, 2, (RNSDQMQ, oRNSDQMQ), neon_cvta),
24129 mnUF(vcvtp, _vcvta, 2, (RNSDQMQ, oRNSDQMQ), neon_cvtp),
24130 mnUF(vcvtn, _vcvta, 3, (RNSDQMQ, oRNSDQMQ, oI32z), neon_cvtn),
24131 mnUF(vcvtm, _vcvta, 2, (RNSDQMQ, oRNSDQMQ), neon_cvtm),
24132
24133 #undef ARM_VARIANT
24134 #define ARM_VARIANT & fpu_neon_ext_v1
24135 mnUF(vabd, _vabd, 3, (RNDQMQ, oRNDQMQ, RNDQMQ), neon_dyadic_if_su),
24136 mnUF(vabdl, _vabdl, 3, (RNQMQ, RNDMQ, RNDMQ), neon_dyadic_long),
24137 mnUF(vaddl, _vaddl, 3, (RNQMQ, RNDMQ, RNDMQR), neon_dyadic_long),
24138 mnUF(vsubl, _vsubl, 3, (RNQMQ, RNDMQ, RNDMQR), neon_dyadic_long),
24139 mnUF(vand, _vand, 3, (RNDQMQ, oRNDQMQ, RNDQMQ_Ibig), neon_logic),
24140 mnUF(vbic, _vbic, 3, (RNDQMQ, oRNDQMQ, RNDQMQ_Ibig), neon_logic),
24141 mnUF(vorr, _vorr, 3, (RNDQMQ, oRNDQMQ, RNDQMQ_Ibig), neon_logic),
24142 mnUF(vorn, _vorn, 3, (RNDQMQ, oRNDQMQ, RNDQMQ_Ibig), neon_logic),
24143 mnUF(veor, _veor, 3, (RNDQMQ, oRNDQMQ, RNDQMQ), neon_logic),
24144 };
24145 #undef ARM_VARIANT
24146 #undef THUMB_VARIANT
24147 #undef TCE
24148 #undef TUE
24149 #undef TUF
24150 #undef TCC
24151 #undef cCE
24152 #undef cCL
24153 #undef C3E
24154 #undef C3
24155 #undef CE
24156 #undef CM
24157 #undef CL
24158 #undef UE
24159 #undef UF
24160 #undef UT
24161 #undef NUF
24162 #undef nUF
24163 #undef NCE
24164 #undef nCE
24165 #undef OPS0
24166 #undef OPS1
24167 #undef OPS2
24168 #undef OPS3
24169 #undef OPS4
24170 #undef OPS5
24171 #undef OPS6
24172 #undef do_0
24173 #undef ToC
24174 #undef toC
24175 #undef ToU
24176 #undef toU
24177 \f
24178 /* MD interface: bits in the object file. */
24179
24180 /* Turn an integer of n bytes (in val) into a stream of bytes appropriate
24181 for use in the a.out file, and stores them in the array pointed to by buf.
24182 This knows about the endian-ness of the target machine and does
24183 THE RIGHT THING, whatever it is. Possible values for n are 1 (byte)
24184 2 (short) and 4 (long) Floating numbers are put out as a series of
24185 LITTLENUMS (shorts, here at least). */
24186
24187 void
24188 md_number_to_chars (char * buf, valueT val, int n)
24189 {
24190 if (target_big_endian)
24191 number_to_chars_bigendian (buf, val, n);
24192 else
24193 number_to_chars_littleendian (buf, val, n);
24194 }
24195
24196 static valueT
24197 md_chars_to_number (char * buf, int n)
24198 {
24199 valueT result = 0;
24200 unsigned char * where = (unsigned char *) buf;
24201
24202 if (target_big_endian)
24203 {
24204 while (n--)
24205 {
24206 result <<= 8;
24207 result |= (*where++ & 255);
24208 }
24209 }
24210 else
24211 {
24212 while (n--)
24213 {
24214 result <<= 8;
24215 result |= (where[n] & 255);
24216 }
24217 }
24218
24219 return result;
24220 }
24221
24222 /* MD interface: Sections. */
24223
24224 /* Calculate the maximum variable size (i.e., excluding fr_fix)
24225 that an rs_machine_dependent frag may reach. */
24226
24227 unsigned int
24228 arm_frag_max_var (fragS *fragp)
24229 {
24230 /* We only use rs_machine_dependent for variable-size Thumb instructions,
24231 which are either THUMB_SIZE (2) or INSN_SIZE (4).
24232
24233 Note that we generate relaxable instructions even for cases that don't
24234 really need it, like an immediate that's a trivial constant. So we're
24235 overestimating the instruction size for some of those cases. Rather
24236 than putting more intelligence here, it would probably be better to
24237 avoid generating a relaxation frag in the first place when it can be
24238 determined up front that a short instruction will suffice. */
24239
24240 gas_assert (fragp->fr_type == rs_machine_dependent);
24241 return INSN_SIZE;
24242 }
24243
24244 /* Estimate the size of a frag before relaxing. Assume everything fits in
24245 2 bytes. */
24246
24247 int
24248 md_estimate_size_before_relax (fragS * fragp,
24249 segT segtype ATTRIBUTE_UNUSED)
24250 {
24251 fragp->fr_var = 2;
24252 return 2;
24253 }
24254
24255 /* Convert a machine dependent frag. */
24256
24257 void
24258 md_convert_frag (bfd *abfd, segT asec ATTRIBUTE_UNUSED, fragS *fragp)
24259 {
24260 unsigned long insn;
24261 unsigned long old_op;
24262 char *buf;
24263 expressionS exp;
24264 fixS *fixp;
24265 int reloc_type;
24266 int pc_rel;
24267 int opcode;
24268
24269 buf = fragp->fr_literal + fragp->fr_fix;
24270
24271 old_op = bfd_get_16(abfd, buf);
24272 if (fragp->fr_symbol)
24273 {
24274 exp.X_op = O_symbol;
24275 exp.X_add_symbol = fragp->fr_symbol;
24276 }
24277 else
24278 {
24279 exp.X_op = O_constant;
24280 }
24281 exp.X_add_number = fragp->fr_offset;
24282 opcode = fragp->fr_subtype;
24283 switch (opcode)
24284 {
24285 case T_MNEM_ldr_pc:
24286 case T_MNEM_ldr_pc2:
24287 case T_MNEM_ldr_sp:
24288 case T_MNEM_str_sp:
24289 case T_MNEM_ldr:
24290 case T_MNEM_ldrb:
24291 case T_MNEM_ldrh:
24292 case T_MNEM_str:
24293 case T_MNEM_strb:
24294 case T_MNEM_strh:
24295 if (fragp->fr_var == 4)
24296 {
24297 insn = THUMB_OP32 (opcode);
24298 if ((old_op >> 12) == 4 || (old_op >> 12) == 9)
24299 {
24300 insn |= (old_op & 0x700) << 4;
24301 }
24302 else
24303 {
24304 insn |= (old_op & 7) << 12;
24305 insn |= (old_op & 0x38) << 13;
24306 }
24307 insn |= 0x00000c00;
24308 put_thumb32_insn (buf, insn);
24309 reloc_type = BFD_RELOC_ARM_T32_OFFSET_IMM;
24310 }
24311 else
24312 {
24313 reloc_type = BFD_RELOC_ARM_THUMB_OFFSET;
24314 }
24315 pc_rel = (opcode == T_MNEM_ldr_pc2);
24316 break;
24317 case T_MNEM_adr:
24318 if (fragp->fr_var == 4)
24319 {
24320 insn = THUMB_OP32 (opcode);
24321 insn |= (old_op & 0xf0) << 4;
24322 put_thumb32_insn (buf, insn);
24323 reloc_type = BFD_RELOC_ARM_T32_ADD_PC12;
24324 }
24325 else
24326 {
24327 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
24328 exp.X_add_number -= 4;
24329 }
24330 pc_rel = 1;
24331 break;
24332 case T_MNEM_mov:
24333 case T_MNEM_movs:
24334 case T_MNEM_cmp:
24335 case T_MNEM_cmn:
24336 if (fragp->fr_var == 4)
24337 {
24338 int r0off = (opcode == T_MNEM_mov
24339 || opcode == T_MNEM_movs) ? 0 : 8;
24340 insn = THUMB_OP32 (opcode);
24341 insn = (insn & 0xe1ffffff) | 0x10000000;
24342 insn |= (old_op & 0x700) << r0off;
24343 put_thumb32_insn (buf, insn);
24344 reloc_type = BFD_RELOC_ARM_T32_IMMEDIATE;
24345 }
24346 else
24347 {
24348 reloc_type = BFD_RELOC_ARM_THUMB_IMM;
24349 }
24350 pc_rel = 0;
24351 break;
24352 case T_MNEM_b:
24353 if (fragp->fr_var == 4)
24354 {
24355 insn = THUMB_OP32(opcode);
24356 put_thumb32_insn (buf, insn);
24357 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH25;
24358 }
24359 else
24360 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH12;
24361 pc_rel = 1;
24362 break;
24363 case T_MNEM_bcond:
24364 if (fragp->fr_var == 4)
24365 {
24366 insn = THUMB_OP32(opcode);
24367 insn |= (old_op & 0xf00) << 14;
24368 put_thumb32_insn (buf, insn);
24369 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH20;
24370 }
24371 else
24372 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH9;
24373 pc_rel = 1;
24374 break;
24375 case T_MNEM_add_sp:
24376 case T_MNEM_add_pc:
24377 case T_MNEM_inc_sp:
24378 case T_MNEM_dec_sp:
24379 if (fragp->fr_var == 4)
24380 {
24381 /* ??? Choose between add and addw. */
24382 insn = THUMB_OP32 (opcode);
24383 insn |= (old_op & 0xf0) << 4;
24384 put_thumb32_insn (buf, insn);
24385 if (opcode == T_MNEM_add_pc)
24386 reloc_type = BFD_RELOC_ARM_T32_IMM12;
24387 else
24388 reloc_type = BFD_RELOC_ARM_T32_ADD_IMM;
24389 }
24390 else
24391 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
24392 pc_rel = 0;
24393 break;
24394
24395 case T_MNEM_addi:
24396 case T_MNEM_addis:
24397 case T_MNEM_subi:
24398 case T_MNEM_subis:
24399 if (fragp->fr_var == 4)
24400 {
24401 insn = THUMB_OP32 (opcode);
24402 insn |= (old_op & 0xf0) << 4;
24403 insn |= (old_op & 0xf) << 16;
24404 put_thumb32_insn (buf, insn);
24405 if (insn & (1 << 20))
24406 reloc_type = BFD_RELOC_ARM_T32_ADD_IMM;
24407 else
24408 reloc_type = BFD_RELOC_ARM_T32_IMMEDIATE;
24409 }
24410 else
24411 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
24412 pc_rel = 0;
24413 break;
24414 default:
24415 abort ();
24416 }
24417 fixp = fix_new_exp (fragp, fragp->fr_fix, fragp->fr_var, &exp, pc_rel,
24418 (enum bfd_reloc_code_real) reloc_type);
24419 fixp->fx_file = fragp->fr_file;
24420 fixp->fx_line = fragp->fr_line;
24421 fragp->fr_fix += fragp->fr_var;
24422
24423 /* Set whether we use thumb-2 ISA based on final relaxation results. */
24424 if (thumb_mode && fragp->fr_var == 4 && no_cpu_selected ()
24425 && !ARM_CPU_HAS_FEATURE (thumb_arch_used, arm_arch_t2))
24426 ARM_MERGE_FEATURE_SETS (arm_arch_used, thumb_arch_used, arm_ext_v6t2);
24427 }
24428
24429 /* Return the size of a relaxable immediate operand instruction.
24430 SHIFT and SIZE specify the form of the allowable immediate. */
24431 static int
24432 relax_immediate (fragS *fragp, int size, int shift)
24433 {
24434 offsetT offset;
24435 offsetT mask;
24436 offsetT low;
24437
24438 /* ??? Should be able to do better than this. */
24439 if (fragp->fr_symbol)
24440 return 4;
24441
24442 low = (1 << shift) - 1;
24443 mask = (1 << (shift + size)) - (1 << shift);
24444 offset = fragp->fr_offset;
24445 /* Force misaligned offsets to 32-bit variant. */
24446 if (offset & low)
24447 return 4;
24448 if (offset & ~mask)
24449 return 4;
24450 return 2;
24451 }
24452
24453 /* Get the address of a symbol during relaxation. */
24454 static addressT
24455 relaxed_symbol_addr (fragS *fragp, long stretch)
24456 {
24457 fragS *sym_frag;
24458 addressT addr;
24459 symbolS *sym;
24460
24461 sym = fragp->fr_symbol;
24462 sym_frag = symbol_get_frag (sym);
24463 know (S_GET_SEGMENT (sym) != absolute_section
24464 || sym_frag == &zero_address_frag);
24465 addr = S_GET_VALUE (sym) + fragp->fr_offset;
24466
24467 /* If frag has yet to be reached on this pass, assume it will
24468 move by STRETCH just as we did. If this is not so, it will
24469 be because some frag between grows, and that will force
24470 another pass. */
24471
24472 if (stretch != 0
24473 && sym_frag->relax_marker != fragp->relax_marker)
24474 {
24475 fragS *f;
24476
24477 /* Adjust stretch for any alignment frag. Note that if have
24478 been expanding the earlier code, the symbol may be
24479 defined in what appears to be an earlier frag. FIXME:
24480 This doesn't handle the fr_subtype field, which specifies
24481 a maximum number of bytes to skip when doing an
24482 alignment. */
24483 for (f = fragp; f != NULL && f != sym_frag; f = f->fr_next)
24484 {
24485 if (f->fr_type == rs_align || f->fr_type == rs_align_code)
24486 {
24487 if (stretch < 0)
24488 stretch = - ((- stretch)
24489 & ~ ((1 << (int) f->fr_offset) - 1));
24490 else
24491 stretch &= ~ ((1 << (int) f->fr_offset) - 1);
24492 if (stretch == 0)
24493 break;
24494 }
24495 }
24496 if (f != NULL)
24497 addr += stretch;
24498 }
24499
24500 return addr;
24501 }
24502
24503 /* Return the size of a relaxable adr pseudo-instruction or PC-relative
24504 load. */
24505 static int
24506 relax_adr (fragS *fragp, asection *sec, long stretch)
24507 {
24508 addressT addr;
24509 offsetT val;
24510
24511 /* Assume worst case for symbols not known to be in the same section. */
24512 if (fragp->fr_symbol == NULL
24513 || !S_IS_DEFINED (fragp->fr_symbol)
24514 || sec != S_GET_SEGMENT (fragp->fr_symbol)
24515 || S_IS_WEAK (fragp->fr_symbol))
24516 return 4;
24517
24518 val = relaxed_symbol_addr (fragp, stretch);
24519 addr = fragp->fr_address + fragp->fr_fix;
24520 addr = (addr + 4) & ~3;
24521 /* Force misaligned targets to 32-bit variant. */
24522 if (val & 3)
24523 return 4;
24524 val -= addr;
24525 if (val < 0 || val > 1020)
24526 return 4;
24527 return 2;
24528 }
24529
24530 /* Return the size of a relaxable add/sub immediate instruction. */
24531 static int
24532 relax_addsub (fragS *fragp, asection *sec)
24533 {
24534 char *buf;
24535 int op;
24536
24537 buf = fragp->fr_literal + fragp->fr_fix;
24538 op = bfd_get_16(sec->owner, buf);
24539 if ((op & 0xf) == ((op >> 4) & 0xf))
24540 return relax_immediate (fragp, 8, 0);
24541 else
24542 return relax_immediate (fragp, 3, 0);
24543 }
24544
24545 /* Return TRUE iff the definition of symbol S could be pre-empted
24546 (overridden) at link or load time. */
24547 static bfd_boolean
24548 symbol_preemptible (symbolS *s)
24549 {
24550 /* Weak symbols can always be pre-empted. */
24551 if (S_IS_WEAK (s))
24552 return TRUE;
24553
24554 /* Non-global symbols cannot be pre-empted. */
24555 if (! S_IS_EXTERNAL (s))
24556 return FALSE;
24557
24558 #ifdef OBJ_ELF
24559 /* In ELF, a global symbol can be marked protected, or private. In that
24560 case it can't be pre-empted (other definitions in the same link unit
24561 would violate the ODR). */
24562 if (ELF_ST_VISIBILITY (S_GET_OTHER (s)) > STV_DEFAULT)
24563 return FALSE;
24564 #endif
24565
24566 /* Other global symbols might be pre-empted. */
24567 return TRUE;
24568 }
24569
24570 /* Return the size of a relaxable branch instruction. BITS is the
24571 size of the offset field in the narrow instruction. */
24572
24573 static int
24574 relax_branch (fragS *fragp, asection *sec, int bits, long stretch)
24575 {
24576 addressT addr;
24577 offsetT val;
24578 offsetT limit;
24579
24580 /* Assume worst case for symbols not known to be in the same section. */
24581 if (!S_IS_DEFINED (fragp->fr_symbol)
24582 || sec != S_GET_SEGMENT (fragp->fr_symbol)
24583 || S_IS_WEAK (fragp->fr_symbol))
24584 return 4;
24585
24586 #ifdef OBJ_ELF
24587 /* A branch to a function in ARM state will require interworking. */
24588 if (S_IS_DEFINED (fragp->fr_symbol)
24589 && ARM_IS_FUNC (fragp->fr_symbol))
24590 return 4;
24591 #endif
24592
24593 if (symbol_preemptible (fragp->fr_symbol))
24594 return 4;
24595
24596 val = relaxed_symbol_addr (fragp, stretch);
24597 addr = fragp->fr_address + fragp->fr_fix + 4;
24598 val -= addr;
24599
24600 /* Offset is a signed value *2 */
24601 limit = 1 << bits;
24602 if (val >= limit || val < -limit)
24603 return 4;
24604 return 2;
24605 }
24606
24607
24608 /* Relax a machine dependent frag. This returns the amount by which
24609 the current size of the frag should change. */
24610
24611 int
24612 arm_relax_frag (asection *sec, fragS *fragp, long stretch)
24613 {
24614 int oldsize;
24615 int newsize;
24616
24617 oldsize = fragp->fr_var;
24618 switch (fragp->fr_subtype)
24619 {
24620 case T_MNEM_ldr_pc2:
24621 newsize = relax_adr (fragp, sec, stretch);
24622 break;
24623 case T_MNEM_ldr_pc:
24624 case T_MNEM_ldr_sp:
24625 case T_MNEM_str_sp:
24626 newsize = relax_immediate (fragp, 8, 2);
24627 break;
24628 case T_MNEM_ldr:
24629 case T_MNEM_str:
24630 newsize = relax_immediate (fragp, 5, 2);
24631 break;
24632 case T_MNEM_ldrh:
24633 case T_MNEM_strh:
24634 newsize = relax_immediate (fragp, 5, 1);
24635 break;
24636 case T_MNEM_ldrb:
24637 case T_MNEM_strb:
24638 newsize = relax_immediate (fragp, 5, 0);
24639 break;
24640 case T_MNEM_adr:
24641 newsize = relax_adr (fragp, sec, stretch);
24642 break;
24643 case T_MNEM_mov:
24644 case T_MNEM_movs:
24645 case T_MNEM_cmp:
24646 case T_MNEM_cmn:
24647 newsize = relax_immediate (fragp, 8, 0);
24648 break;
24649 case T_MNEM_b:
24650 newsize = relax_branch (fragp, sec, 11, stretch);
24651 break;
24652 case T_MNEM_bcond:
24653 newsize = relax_branch (fragp, sec, 8, stretch);
24654 break;
24655 case T_MNEM_add_sp:
24656 case T_MNEM_add_pc:
24657 newsize = relax_immediate (fragp, 8, 2);
24658 break;
24659 case T_MNEM_inc_sp:
24660 case T_MNEM_dec_sp:
24661 newsize = relax_immediate (fragp, 7, 2);
24662 break;
24663 case T_MNEM_addi:
24664 case T_MNEM_addis:
24665 case T_MNEM_subi:
24666 case T_MNEM_subis:
24667 newsize = relax_addsub (fragp, sec);
24668 break;
24669 default:
24670 abort ();
24671 }
24672
24673 fragp->fr_var = newsize;
24674 /* Freeze wide instructions that are at or before the same location as
24675 in the previous pass. This avoids infinite loops.
24676 Don't freeze them unconditionally because targets may be artificially
24677 misaligned by the expansion of preceding frags. */
24678 if (stretch <= 0 && newsize > 2)
24679 {
24680 md_convert_frag (sec->owner, sec, fragp);
24681 frag_wane (fragp);
24682 }
24683
24684 return newsize - oldsize;
24685 }
24686
24687 /* Round up a section size to the appropriate boundary. */
24688
24689 valueT
24690 md_section_align (segT segment ATTRIBUTE_UNUSED,
24691 valueT size)
24692 {
24693 return size;
24694 }
24695
24696 /* This is called from HANDLE_ALIGN in write.c. Fill in the contents
24697 of an rs_align_code fragment. */
24698
24699 void
24700 arm_handle_align (fragS * fragP)
24701 {
24702 static unsigned char const arm_noop[2][2][4] =
24703 {
24704 { /* ARMv1 */
24705 {0x00, 0x00, 0xa0, 0xe1}, /* LE */
24706 {0xe1, 0xa0, 0x00, 0x00}, /* BE */
24707 },
24708 { /* ARMv6k */
24709 {0x00, 0xf0, 0x20, 0xe3}, /* LE */
24710 {0xe3, 0x20, 0xf0, 0x00}, /* BE */
24711 },
24712 };
24713 static unsigned char const thumb_noop[2][2][2] =
24714 {
24715 { /* Thumb-1 */
24716 {0xc0, 0x46}, /* LE */
24717 {0x46, 0xc0}, /* BE */
24718 },
24719 { /* Thumb-2 */
24720 {0x00, 0xbf}, /* LE */
24721 {0xbf, 0x00} /* BE */
24722 }
24723 };
24724 static unsigned char const wide_thumb_noop[2][4] =
24725 { /* Wide Thumb-2 */
24726 {0xaf, 0xf3, 0x00, 0x80}, /* LE */
24727 {0xf3, 0xaf, 0x80, 0x00}, /* BE */
24728 };
24729
24730 unsigned bytes, fix, noop_size;
24731 char * p;
24732 const unsigned char * noop;
24733 const unsigned char *narrow_noop = NULL;
24734 #ifdef OBJ_ELF
24735 enum mstate state;
24736 #endif
24737
24738 if (fragP->fr_type != rs_align_code)
24739 return;
24740
24741 bytes = fragP->fr_next->fr_address - fragP->fr_address - fragP->fr_fix;
24742 p = fragP->fr_literal + fragP->fr_fix;
24743 fix = 0;
24744
24745 if (bytes > MAX_MEM_FOR_RS_ALIGN_CODE)
24746 bytes &= MAX_MEM_FOR_RS_ALIGN_CODE;
24747
24748 gas_assert ((fragP->tc_frag_data.thumb_mode & MODE_RECORDED) != 0);
24749
24750 if (fragP->tc_frag_data.thumb_mode & (~ MODE_RECORDED))
24751 {
24752 if (ARM_CPU_HAS_FEATURE (selected_cpu_name[0]
24753 ? selected_cpu : arm_arch_none, arm_ext_v6t2))
24754 {
24755 narrow_noop = thumb_noop[1][target_big_endian];
24756 noop = wide_thumb_noop[target_big_endian];
24757 }
24758 else
24759 noop = thumb_noop[0][target_big_endian];
24760 noop_size = 2;
24761 #ifdef OBJ_ELF
24762 state = MAP_THUMB;
24763 #endif
24764 }
24765 else
24766 {
24767 noop = arm_noop[ARM_CPU_HAS_FEATURE (selected_cpu_name[0]
24768 ? selected_cpu : arm_arch_none,
24769 arm_ext_v6k) != 0]
24770 [target_big_endian];
24771 noop_size = 4;
24772 #ifdef OBJ_ELF
24773 state = MAP_ARM;
24774 #endif
24775 }
24776
24777 fragP->fr_var = noop_size;
24778
24779 if (bytes & (noop_size - 1))
24780 {
24781 fix = bytes & (noop_size - 1);
24782 #ifdef OBJ_ELF
24783 insert_data_mapping_symbol (state, fragP->fr_fix, fragP, fix);
24784 #endif
24785 memset (p, 0, fix);
24786 p += fix;
24787 bytes -= fix;
24788 }
24789
24790 if (narrow_noop)
24791 {
24792 if (bytes & noop_size)
24793 {
24794 /* Insert a narrow noop. */
24795 memcpy (p, narrow_noop, noop_size);
24796 p += noop_size;
24797 bytes -= noop_size;
24798 fix += noop_size;
24799 }
24800
24801 /* Use wide noops for the remainder */
24802 noop_size = 4;
24803 }
24804
24805 while (bytes >= noop_size)
24806 {
24807 memcpy (p, noop, noop_size);
24808 p += noop_size;
24809 bytes -= noop_size;
24810 fix += noop_size;
24811 }
24812
24813 fragP->fr_fix += fix;
24814 }
24815
24816 /* Called from md_do_align. Used to create an alignment
24817 frag in a code section. */
24818
24819 void
24820 arm_frag_align_code (int n, int max)
24821 {
24822 char * p;
24823
24824 /* We assume that there will never be a requirement
24825 to support alignments greater than MAX_MEM_FOR_RS_ALIGN_CODE bytes. */
24826 if (max > MAX_MEM_FOR_RS_ALIGN_CODE)
24827 {
24828 char err_msg[128];
24829
24830 sprintf (err_msg,
24831 _("alignments greater than %d bytes not supported in .text sections."),
24832 MAX_MEM_FOR_RS_ALIGN_CODE + 1);
24833 as_fatal ("%s", err_msg);
24834 }
24835
24836 p = frag_var (rs_align_code,
24837 MAX_MEM_FOR_RS_ALIGN_CODE,
24838 1,
24839 (relax_substateT) max,
24840 (symbolS *) NULL,
24841 (offsetT) n,
24842 (char *) NULL);
24843 *p = 0;
24844 }
24845
24846 /* Perform target specific initialisation of a frag.
24847 Note - despite the name this initialisation is not done when the frag
24848 is created, but only when its type is assigned. A frag can be created
24849 and used a long time before its type is set, so beware of assuming that
24850 this initialisation is performed first. */
24851
24852 #ifndef OBJ_ELF
24853 void
24854 arm_init_frag (fragS * fragP, int max_chars ATTRIBUTE_UNUSED)
24855 {
24856 /* Record whether this frag is in an ARM or a THUMB area. */
24857 fragP->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
24858 }
24859
24860 #else /* OBJ_ELF is defined. */
24861 void
24862 arm_init_frag (fragS * fragP, int max_chars)
24863 {
24864 bfd_boolean frag_thumb_mode;
24865
24866 /* If the current ARM vs THUMB mode has not already
24867 been recorded into this frag then do so now. */
24868 if ((fragP->tc_frag_data.thumb_mode & MODE_RECORDED) == 0)
24869 fragP->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
24870
24871 /* PR 21809: Do not set a mapping state for debug sections
24872 - it just confuses other tools. */
24873 if (bfd_get_section_flags (NULL, now_seg) & SEC_DEBUGGING)
24874 return;
24875
24876 frag_thumb_mode = fragP->tc_frag_data.thumb_mode ^ MODE_RECORDED;
24877
24878 /* Record a mapping symbol for alignment frags. We will delete this
24879 later if the alignment ends up empty. */
24880 switch (fragP->fr_type)
24881 {
24882 case rs_align:
24883 case rs_align_test:
24884 case rs_fill:
24885 mapping_state_2 (MAP_DATA, max_chars);
24886 break;
24887 case rs_align_code:
24888 mapping_state_2 (frag_thumb_mode ? MAP_THUMB : MAP_ARM, max_chars);
24889 break;
24890 default:
24891 break;
24892 }
24893 }
24894
24895 /* When we change sections we need to issue a new mapping symbol. */
24896
24897 void
24898 arm_elf_change_section (void)
24899 {
24900 /* Link an unlinked unwind index table section to the .text section. */
24901 if (elf_section_type (now_seg) == SHT_ARM_EXIDX
24902 && elf_linked_to_section (now_seg) == NULL)
24903 elf_linked_to_section (now_seg) = text_section;
24904 }
24905
24906 int
24907 arm_elf_section_type (const char * str, size_t len)
24908 {
24909 if (len == 5 && strncmp (str, "exidx", 5) == 0)
24910 return SHT_ARM_EXIDX;
24911
24912 return -1;
24913 }
24914 \f
24915 /* Code to deal with unwinding tables. */
24916
24917 static void add_unwind_adjustsp (offsetT);
24918
24919 /* Generate any deferred unwind frame offset. */
24920
24921 static void
24922 flush_pending_unwind (void)
24923 {
24924 offsetT offset;
24925
24926 offset = unwind.pending_offset;
24927 unwind.pending_offset = 0;
24928 if (offset != 0)
24929 add_unwind_adjustsp (offset);
24930 }
24931
24932 /* Add an opcode to this list for this function. Two-byte opcodes should
24933 be passed as op[0] << 8 | op[1]. The list of opcodes is built in reverse
24934 order. */
24935
24936 static void
24937 add_unwind_opcode (valueT op, int length)
24938 {
24939 /* Add any deferred stack adjustment. */
24940 if (unwind.pending_offset)
24941 flush_pending_unwind ();
24942
24943 unwind.sp_restored = 0;
24944
24945 if (unwind.opcode_count + length > unwind.opcode_alloc)
24946 {
24947 unwind.opcode_alloc += ARM_OPCODE_CHUNK_SIZE;
24948 if (unwind.opcodes)
24949 unwind.opcodes = XRESIZEVEC (unsigned char, unwind.opcodes,
24950 unwind.opcode_alloc);
24951 else
24952 unwind.opcodes = XNEWVEC (unsigned char, unwind.opcode_alloc);
24953 }
24954 while (length > 0)
24955 {
24956 length--;
24957 unwind.opcodes[unwind.opcode_count] = op & 0xff;
24958 op >>= 8;
24959 unwind.opcode_count++;
24960 }
24961 }
24962
24963 /* Add unwind opcodes to adjust the stack pointer. */
24964
24965 static void
24966 add_unwind_adjustsp (offsetT offset)
24967 {
24968 valueT op;
24969
24970 if (offset > 0x200)
24971 {
24972 /* We need at most 5 bytes to hold a 32-bit value in a uleb128. */
24973 char bytes[5];
24974 int n;
24975 valueT o;
24976
24977 /* Long form: 0xb2, uleb128. */
24978 /* This might not fit in a word so add the individual bytes,
24979 remembering the list is built in reverse order. */
24980 o = (valueT) ((offset - 0x204) >> 2);
24981 if (o == 0)
24982 add_unwind_opcode (0, 1);
24983
24984 /* Calculate the uleb128 encoding of the offset. */
24985 n = 0;
24986 while (o)
24987 {
24988 bytes[n] = o & 0x7f;
24989 o >>= 7;
24990 if (o)
24991 bytes[n] |= 0x80;
24992 n++;
24993 }
24994 /* Add the insn. */
24995 for (; n; n--)
24996 add_unwind_opcode (bytes[n - 1], 1);
24997 add_unwind_opcode (0xb2, 1);
24998 }
24999 else if (offset > 0x100)
25000 {
25001 /* Two short opcodes. */
25002 add_unwind_opcode (0x3f, 1);
25003 op = (offset - 0x104) >> 2;
25004 add_unwind_opcode (op, 1);
25005 }
25006 else if (offset > 0)
25007 {
25008 /* Short opcode. */
25009 op = (offset - 4) >> 2;
25010 add_unwind_opcode (op, 1);
25011 }
25012 else if (offset < 0)
25013 {
25014 offset = -offset;
25015 while (offset > 0x100)
25016 {
25017 add_unwind_opcode (0x7f, 1);
25018 offset -= 0x100;
25019 }
25020 op = ((offset - 4) >> 2) | 0x40;
25021 add_unwind_opcode (op, 1);
25022 }
25023 }
25024
25025 /* Finish the list of unwind opcodes for this function. */
25026
25027 static void
25028 finish_unwind_opcodes (void)
25029 {
25030 valueT op;
25031
25032 if (unwind.fp_used)
25033 {
25034 /* Adjust sp as necessary. */
25035 unwind.pending_offset += unwind.fp_offset - unwind.frame_size;
25036 flush_pending_unwind ();
25037
25038 /* After restoring sp from the frame pointer. */
25039 op = 0x90 | unwind.fp_reg;
25040 add_unwind_opcode (op, 1);
25041 }
25042 else
25043 flush_pending_unwind ();
25044 }
25045
25046
25047 /* Start an exception table entry. If idx is nonzero this is an index table
25048 entry. */
25049
25050 static void
25051 start_unwind_section (const segT text_seg, int idx)
25052 {
25053 const char * text_name;
25054 const char * prefix;
25055 const char * prefix_once;
25056 const char * group_name;
25057 char * sec_name;
25058 int type;
25059 int flags;
25060 int linkonce;
25061
25062 if (idx)
25063 {
25064 prefix = ELF_STRING_ARM_unwind;
25065 prefix_once = ELF_STRING_ARM_unwind_once;
25066 type = SHT_ARM_EXIDX;
25067 }
25068 else
25069 {
25070 prefix = ELF_STRING_ARM_unwind_info;
25071 prefix_once = ELF_STRING_ARM_unwind_info_once;
25072 type = SHT_PROGBITS;
25073 }
25074
25075 text_name = segment_name (text_seg);
25076 if (streq (text_name, ".text"))
25077 text_name = "";
25078
25079 if (strncmp (text_name, ".gnu.linkonce.t.",
25080 strlen (".gnu.linkonce.t.")) == 0)
25081 {
25082 prefix = prefix_once;
25083 text_name += strlen (".gnu.linkonce.t.");
25084 }
25085
25086 sec_name = concat (prefix, text_name, (char *) NULL);
25087
25088 flags = SHF_ALLOC;
25089 linkonce = 0;
25090 group_name = 0;
25091
25092 /* Handle COMDAT group. */
25093 if (prefix != prefix_once && (text_seg->flags & SEC_LINK_ONCE) != 0)
25094 {
25095 group_name = elf_group_name (text_seg);
25096 if (group_name == NULL)
25097 {
25098 as_bad (_("Group section `%s' has no group signature"),
25099 segment_name (text_seg));
25100 ignore_rest_of_line ();
25101 return;
25102 }
25103 flags |= SHF_GROUP;
25104 linkonce = 1;
25105 }
25106
25107 obj_elf_change_section (sec_name, type, 0, flags, 0, group_name,
25108 linkonce, 0);
25109
25110 /* Set the section link for index tables. */
25111 if (idx)
25112 elf_linked_to_section (now_seg) = text_seg;
25113 }
25114
25115
25116 /* Start an unwind table entry. HAVE_DATA is nonzero if we have additional
25117 personality routine data. Returns zero, or the index table value for
25118 an inline entry. */
25119
25120 static valueT
25121 create_unwind_entry (int have_data)
25122 {
25123 int size;
25124 addressT where;
25125 char *ptr;
25126 /* The current word of data. */
25127 valueT data;
25128 /* The number of bytes left in this word. */
25129 int n;
25130
25131 finish_unwind_opcodes ();
25132
25133 /* Remember the current text section. */
25134 unwind.saved_seg = now_seg;
25135 unwind.saved_subseg = now_subseg;
25136
25137 start_unwind_section (now_seg, 0);
25138
25139 if (unwind.personality_routine == NULL)
25140 {
25141 if (unwind.personality_index == -2)
25142 {
25143 if (have_data)
25144 as_bad (_("handlerdata in cantunwind frame"));
25145 return 1; /* EXIDX_CANTUNWIND. */
25146 }
25147
25148 /* Use a default personality routine if none is specified. */
25149 if (unwind.personality_index == -1)
25150 {
25151 if (unwind.opcode_count > 3)
25152 unwind.personality_index = 1;
25153 else
25154 unwind.personality_index = 0;
25155 }
25156
25157 /* Space for the personality routine entry. */
25158 if (unwind.personality_index == 0)
25159 {
25160 if (unwind.opcode_count > 3)
25161 as_bad (_("too many unwind opcodes for personality routine 0"));
25162
25163 if (!have_data)
25164 {
25165 /* All the data is inline in the index table. */
25166 data = 0x80;
25167 n = 3;
25168 while (unwind.opcode_count > 0)
25169 {
25170 unwind.opcode_count--;
25171 data = (data << 8) | unwind.opcodes[unwind.opcode_count];
25172 n--;
25173 }
25174
25175 /* Pad with "finish" opcodes. */
25176 while (n--)
25177 data = (data << 8) | 0xb0;
25178
25179 return data;
25180 }
25181 size = 0;
25182 }
25183 else
25184 /* We get two opcodes "free" in the first word. */
25185 size = unwind.opcode_count - 2;
25186 }
25187 else
25188 {
25189 /* PR 16765: Missing or misplaced unwind directives can trigger this. */
25190 if (unwind.personality_index != -1)
25191 {
25192 as_bad (_("attempt to recreate an unwind entry"));
25193 return 1;
25194 }
25195
25196 /* An extra byte is required for the opcode count. */
25197 size = unwind.opcode_count + 1;
25198 }
25199
25200 size = (size + 3) >> 2;
25201 if (size > 0xff)
25202 as_bad (_("too many unwind opcodes"));
25203
25204 frag_align (2, 0, 0);
25205 record_alignment (now_seg, 2);
25206 unwind.table_entry = expr_build_dot ();
25207
25208 /* Allocate the table entry. */
25209 ptr = frag_more ((size << 2) + 4);
25210 /* PR 13449: Zero the table entries in case some of them are not used. */
25211 memset (ptr, 0, (size << 2) + 4);
25212 where = frag_now_fix () - ((size << 2) + 4);
25213
25214 switch (unwind.personality_index)
25215 {
25216 case -1:
25217 /* ??? Should this be a PLT generating relocation? */
25218 /* Custom personality routine. */
25219 fix_new (frag_now, where, 4, unwind.personality_routine, 0, 1,
25220 BFD_RELOC_ARM_PREL31);
25221
25222 where += 4;
25223 ptr += 4;
25224
25225 /* Set the first byte to the number of additional words. */
25226 data = size > 0 ? size - 1 : 0;
25227 n = 3;
25228 break;
25229
25230 /* ABI defined personality routines. */
25231 case 0:
25232 /* Three opcodes bytes are packed into the first word. */
25233 data = 0x80;
25234 n = 3;
25235 break;
25236
25237 case 1:
25238 case 2:
25239 /* The size and first two opcode bytes go in the first word. */
25240 data = ((0x80 + unwind.personality_index) << 8) | size;
25241 n = 2;
25242 break;
25243
25244 default:
25245 /* Should never happen. */
25246 abort ();
25247 }
25248
25249 /* Pack the opcodes into words (MSB first), reversing the list at the same
25250 time. */
25251 while (unwind.opcode_count > 0)
25252 {
25253 if (n == 0)
25254 {
25255 md_number_to_chars (ptr, data, 4);
25256 ptr += 4;
25257 n = 4;
25258 data = 0;
25259 }
25260 unwind.opcode_count--;
25261 n--;
25262 data = (data << 8) | unwind.opcodes[unwind.opcode_count];
25263 }
25264
25265 /* Finish off the last word. */
25266 if (n < 4)
25267 {
25268 /* Pad with "finish" opcodes. */
25269 while (n--)
25270 data = (data << 8) | 0xb0;
25271
25272 md_number_to_chars (ptr, data, 4);
25273 }
25274
25275 if (!have_data)
25276 {
25277 /* Add an empty descriptor if there is no user-specified data. */
25278 ptr = frag_more (4);
25279 md_number_to_chars (ptr, 0, 4);
25280 }
25281
25282 return 0;
25283 }
25284
25285
25286 /* Initialize the DWARF-2 unwind information for this procedure. */
25287
25288 void
25289 tc_arm_frame_initial_instructions (void)
25290 {
25291 cfi_add_CFA_def_cfa (REG_SP, 0);
25292 }
25293 #endif /* OBJ_ELF */
25294
25295 /* Convert REGNAME to a DWARF-2 register number. */
25296
25297 int
25298 tc_arm_regname_to_dw2regnum (char *regname)
25299 {
25300 int reg = arm_reg_parse (&regname, REG_TYPE_RN);
25301 if (reg != FAIL)
25302 return reg;
25303
25304 /* PR 16694: Allow VFP registers as well. */
25305 reg = arm_reg_parse (&regname, REG_TYPE_VFS);
25306 if (reg != FAIL)
25307 return 64 + reg;
25308
25309 reg = arm_reg_parse (&regname, REG_TYPE_VFD);
25310 if (reg != FAIL)
25311 return reg + 256;
25312
25313 return FAIL;
25314 }
25315
25316 #ifdef TE_PE
25317 void
25318 tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
25319 {
25320 expressionS exp;
25321
25322 exp.X_op = O_secrel;
25323 exp.X_add_symbol = symbol;
25324 exp.X_add_number = 0;
25325 emit_expr (&exp, size);
25326 }
25327 #endif
25328
25329 /* MD interface: Symbol and relocation handling. */
25330
25331 /* Return the address within the segment that a PC-relative fixup is
25332 relative to. For ARM, PC-relative fixups applied to instructions
25333 are generally relative to the location of the fixup plus 8 bytes.
25334 Thumb branches are offset by 4, and Thumb loads relative to PC
25335 require special handling. */
25336
25337 long
25338 md_pcrel_from_section (fixS * fixP, segT seg)
25339 {
25340 offsetT base = fixP->fx_where + fixP->fx_frag->fr_address;
25341
25342 /* If this is pc-relative and we are going to emit a relocation
25343 then we just want to put out any pipeline compensation that the linker
25344 will need. Otherwise we want to use the calculated base.
25345 For WinCE we skip the bias for externals as well, since this
25346 is how the MS ARM-CE assembler behaves and we want to be compatible. */
25347 if (fixP->fx_pcrel
25348 && ((fixP->fx_addsy && S_GET_SEGMENT (fixP->fx_addsy) != seg)
25349 || (arm_force_relocation (fixP)
25350 #ifdef TE_WINCE
25351 && !S_IS_EXTERNAL (fixP->fx_addsy)
25352 #endif
25353 )))
25354 base = 0;
25355
25356
25357 switch (fixP->fx_r_type)
25358 {
25359 /* PC relative addressing on the Thumb is slightly odd as the
25360 bottom two bits of the PC are forced to zero for the
25361 calculation. This happens *after* application of the
25362 pipeline offset. However, Thumb adrl already adjusts for
25363 this, so we need not do it again. */
25364 case BFD_RELOC_ARM_THUMB_ADD:
25365 return base & ~3;
25366
25367 case BFD_RELOC_ARM_THUMB_OFFSET:
25368 case BFD_RELOC_ARM_T32_OFFSET_IMM:
25369 case BFD_RELOC_ARM_T32_ADD_PC12:
25370 case BFD_RELOC_ARM_T32_CP_OFF_IMM:
25371 return (base + 4) & ~3;
25372
25373 /* Thumb branches are simply offset by +4. */
25374 case BFD_RELOC_THUMB_PCREL_BRANCH5:
25375 case BFD_RELOC_THUMB_PCREL_BRANCH7:
25376 case BFD_RELOC_THUMB_PCREL_BRANCH9:
25377 case BFD_RELOC_THUMB_PCREL_BRANCH12:
25378 case BFD_RELOC_THUMB_PCREL_BRANCH20:
25379 case BFD_RELOC_THUMB_PCREL_BRANCH25:
25380 case BFD_RELOC_THUMB_PCREL_BFCSEL:
25381 case BFD_RELOC_ARM_THUMB_BF17:
25382 case BFD_RELOC_ARM_THUMB_BF19:
25383 case BFD_RELOC_ARM_THUMB_BF13:
25384 case BFD_RELOC_ARM_THUMB_LOOP12:
25385 return base + 4;
25386
25387 case BFD_RELOC_THUMB_PCREL_BRANCH23:
25388 if (fixP->fx_addsy
25389 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
25390 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
25391 && ARM_IS_FUNC (fixP->fx_addsy)
25392 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
25393 base = fixP->fx_where + fixP->fx_frag->fr_address;
25394 return base + 4;
25395
25396 /* BLX is like branches above, but forces the low two bits of PC to
25397 zero. */
25398 case BFD_RELOC_THUMB_PCREL_BLX:
25399 if (fixP->fx_addsy
25400 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
25401 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
25402 && THUMB_IS_FUNC (fixP->fx_addsy)
25403 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
25404 base = fixP->fx_where + fixP->fx_frag->fr_address;
25405 return (base + 4) & ~3;
25406
25407 /* ARM mode branches are offset by +8. However, the Windows CE
25408 loader expects the relocation not to take this into account. */
25409 case BFD_RELOC_ARM_PCREL_BLX:
25410 if (fixP->fx_addsy
25411 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
25412 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
25413 && ARM_IS_FUNC (fixP->fx_addsy)
25414 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
25415 base = fixP->fx_where + fixP->fx_frag->fr_address;
25416 return base + 8;
25417
25418 case BFD_RELOC_ARM_PCREL_CALL:
25419 if (fixP->fx_addsy
25420 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
25421 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
25422 && THUMB_IS_FUNC (fixP->fx_addsy)
25423 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
25424 base = fixP->fx_where + fixP->fx_frag->fr_address;
25425 return base + 8;
25426
25427 case BFD_RELOC_ARM_PCREL_BRANCH:
25428 case BFD_RELOC_ARM_PCREL_JUMP:
25429 case BFD_RELOC_ARM_PLT32:
25430 #ifdef TE_WINCE
25431 /* When handling fixups immediately, because we have already
25432 discovered the value of a symbol, or the address of the frag involved
25433 we must account for the offset by +8, as the OS loader will never see the reloc.
25434 see fixup_segment() in write.c
25435 The S_IS_EXTERNAL test handles the case of global symbols.
25436 Those need the calculated base, not just the pipe compensation the linker will need. */
25437 if (fixP->fx_pcrel
25438 && fixP->fx_addsy != NULL
25439 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
25440 && (S_IS_EXTERNAL (fixP->fx_addsy) || !arm_force_relocation (fixP)))
25441 return base + 8;
25442 return base;
25443 #else
25444 return base + 8;
25445 #endif
25446
25447
25448 /* ARM mode loads relative to PC are also offset by +8. Unlike
25449 branches, the Windows CE loader *does* expect the relocation
25450 to take this into account. */
25451 case BFD_RELOC_ARM_OFFSET_IMM:
25452 case BFD_RELOC_ARM_OFFSET_IMM8:
25453 case BFD_RELOC_ARM_HWLITERAL:
25454 case BFD_RELOC_ARM_LITERAL:
25455 case BFD_RELOC_ARM_CP_OFF_IMM:
25456 return base + 8;
25457
25458
25459 /* Other PC-relative relocations are un-offset. */
25460 default:
25461 return base;
25462 }
25463 }
25464
25465 static bfd_boolean flag_warn_syms = TRUE;
25466
25467 bfd_boolean
25468 arm_tc_equal_in_insn (int c ATTRIBUTE_UNUSED, char * name)
25469 {
25470 /* PR 18347 - Warn if the user attempts to create a symbol with the same
25471 name as an ARM instruction. Whilst strictly speaking it is allowed, it
25472 does mean that the resulting code might be very confusing to the reader.
25473 Also this warning can be triggered if the user omits an operand before
25474 an immediate address, eg:
25475
25476 LDR =foo
25477
25478 GAS treats this as an assignment of the value of the symbol foo to a
25479 symbol LDR, and so (without this code) it will not issue any kind of
25480 warning or error message.
25481
25482 Note - ARM instructions are case-insensitive but the strings in the hash
25483 table are all stored in lower case, so we must first ensure that name is
25484 lower case too. */
25485 if (flag_warn_syms && arm_ops_hsh)
25486 {
25487 char * nbuf = strdup (name);
25488 char * p;
25489
25490 for (p = nbuf; *p; p++)
25491 *p = TOLOWER (*p);
25492 if (hash_find (arm_ops_hsh, nbuf) != NULL)
25493 {
25494 static struct hash_control * already_warned = NULL;
25495
25496 if (already_warned == NULL)
25497 already_warned = hash_new ();
25498 /* Only warn about the symbol once. To keep the code
25499 simple we let hash_insert do the lookup for us. */
25500 if (hash_insert (already_warned, nbuf, NULL) == NULL)
25501 as_warn (_("[-mwarn-syms]: Assignment makes a symbol match an ARM instruction: %s"), name);
25502 }
25503 else
25504 free (nbuf);
25505 }
25506
25507 return FALSE;
25508 }
25509
25510 /* Under ELF we need to default _GLOBAL_OFFSET_TABLE.
25511 Otherwise we have no need to default values of symbols. */
25512
25513 symbolS *
25514 md_undefined_symbol (char * name ATTRIBUTE_UNUSED)
25515 {
25516 #ifdef OBJ_ELF
25517 if (name[0] == '_' && name[1] == 'G'
25518 && streq (name, GLOBAL_OFFSET_TABLE_NAME))
25519 {
25520 if (!GOT_symbol)
25521 {
25522 if (symbol_find (name))
25523 as_bad (_("GOT already in the symbol table"));
25524
25525 GOT_symbol = symbol_new (name, undefined_section,
25526 (valueT) 0, & zero_address_frag);
25527 }
25528
25529 return GOT_symbol;
25530 }
25531 #endif
25532
25533 return NULL;
25534 }
25535
25536 /* Subroutine of md_apply_fix. Check to see if an immediate can be
25537 computed as two separate immediate values, added together. We
25538 already know that this value cannot be computed by just one ARM
25539 instruction. */
25540
25541 static unsigned int
25542 validate_immediate_twopart (unsigned int val,
25543 unsigned int * highpart)
25544 {
25545 unsigned int a;
25546 unsigned int i;
25547
25548 for (i = 0; i < 32; i += 2)
25549 if (((a = rotate_left (val, i)) & 0xff) != 0)
25550 {
25551 if (a & 0xff00)
25552 {
25553 if (a & ~ 0xffff)
25554 continue;
25555 * highpart = (a >> 8) | ((i + 24) << 7);
25556 }
25557 else if (a & 0xff0000)
25558 {
25559 if (a & 0xff000000)
25560 continue;
25561 * highpart = (a >> 16) | ((i + 16) << 7);
25562 }
25563 else
25564 {
25565 gas_assert (a & 0xff000000);
25566 * highpart = (a >> 24) | ((i + 8) << 7);
25567 }
25568
25569 return (a & 0xff) | (i << 7);
25570 }
25571
25572 return FAIL;
25573 }
25574
25575 static int
25576 validate_offset_imm (unsigned int val, int hwse)
25577 {
25578 if ((hwse && val > 255) || val > 4095)
25579 return FAIL;
25580 return val;
25581 }
25582
25583 /* Subroutine of md_apply_fix. Do those data_ops which can take a
25584 negative immediate constant by altering the instruction. A bit of
25585 a hack really.
25586 MOV <-> MVN
25587 AND <-> BIC
25588 ADC <-> SBC
25589 by inverting the second operand, and
25590 ADD <-> SUB
25591 CMP <-> CMN
25592 by negating the second operand. */
25593
25594 static int
25595 negate_data_op (unsigned long * instruction,
25596 unsigned long value)
25597 {
25598 int op, new_inst;
25599 unsigned long negated, inverted;
25600
25601 negated = encode_arm_immediate (-value);
25602 inverted = encode_arm_immediate (~value);
25603
25604 op = (*instruction >> DATA_OP_SHIFT) & 0xf;
25605 switch (op)
25606 {
25607 /* First negates. */
25608 case OPCODE_SUB: /* ADD <-> SUB */
25609 new_inst = OPCODE_ADD;
25610 value = negated;
25611 break;
25612
25613 case OPCODE_ADD:
25614 new_inst = OPCODE_SUB;
25615 value = negated;
25616 break;
25617
25618 case OPCODE_CMP: /* CMP <-> CMN */
25619 new_inst = OPCODE_CMN;
25620 value = negated;
25621 break;
25622
25623 case OPCODE_CMN:
25624 new_inst = OPCODE_CMP;
25625 value = negated;
25626 break;
25627
25628 /* Now Inverted ops. */
25629 case OPCODE_MOV: /* MOV <-> MVN */
25630 new_inst = OPCODE_MVN;
25631 value = inverted;
25632 break;
25633
25634 case OPCODE_MVN:
25635 new_inst = OPCODE_MOV;
25636 value = inverted;
25637 break;
25638
25639 case OPCODE_AND: /* AND <-> BIC */
25640 new_inst = OPCODE_BIC;
25641 value = inverted;
25642 break;
25643
25644 case OPCODE_BIC:
25645 new_inst = OPCODE_AND;
25646 value = inverted;
25647 break;
25648
25649 case OPCODE_ADC: /* ADC <-> SBC */
25650 new_inst = OPCODE_SBC;
25651 value = inverted;
25652 break;
25653
25654 case OPCODE_SBC:
25655 new_inst = OPCODE_ADC;
25656 value = inverted;
25657 break;
25658
25659 /* We cannot do anything. */
25660 default:
25661 return FAIL;
25662 }
25663
25664 if (value == (unsigned) FAIL)
25665 return FAIL;
25666
25667 *instruction &= OPCODE_MASK;
25668 *instruction |= new_inst << DATA_OP_SHIFT;
25669 return value;
25670 }
25671
25672 /* Like negate_data_op, but for Thumb-2. */
25673
25674 static unsigned int
25675 thumb32_negate_data_op (offsetT *instruction, unsigned int value)
25676 {
25677 int op, new_inst;
25678 int rd;
25679 unsigned int negated, inverted;
25680
25681 negated = encode_thumb32_immediate (-value);
25682 inverted = encode_thumb32_immediate (~value);
25683
25684 rd = (*instruction >> 8) & 0xf;
25685 op = (*instruction >> T2_DATA_OP_SHIFT) & 0xf;
25686 switch (op)
25687 {
25688 /* ADD <-> SUB. Includes CMP <-> CMN. */
25689 case T2_OPCODE_SUB:
25690 new_inst = T2_OPCODE_ADD;
25691 value = negated;
25692 break;
25693
25694 case T2_OPCODE_ADD:
25695 new_inst = T2_OPCODE_SUB;
25696 value = negated;
25697 break;
25698
25699 /* ORR <-> ORN. Includes MOV <-> MVN. */
25700 case T2_OPCODE_ORR:
25701 new_inst = T2_OPCODE_ORN;
25702 value = inverted;
25703 break;
25704
25705 case T2_OPCODE_ORN:
25706 new_inst = T2_OPCODE_ORR;
25707 value = inverted;
25708 break;
25709
25710 /* AND <-> BIC. TST has no inverted equivalent. */
25711 case T2_OPCODE_AND:
25712 new_inst = T2_OPCODE_BIC;
25713 if (rd == 15)
25714 value = FAIL;
25715 else
25716 value = inverted;
25717 break;
25718
25719 case T2_OPCODE_BIC:
25720 new_inst = T2_OPCODE_AND;
25721 value = inverted;
25722 break;
25723
25724 /* ADC <-> SBC */
25725 case T2_OPCODE_ADC:
25726 new_inst = T2_OPCODE_SBC;
25727 value = inverted;
25728 break;
25729
25730 case T2_OPCODE_SBC:
25731 new_inst = T2_OPCODE_ADC;
25732 value = inverted;
25733 break;
25734
25735 /* We cannot do anything. */
25736 default:
25737 return FAIL;
25738 }
25739
25740 if (value == (unsigned int)FAIL)
25741 return FAIL;
25742
25743 *instruction &= T2_OPCODE_MASK;
25744 *instruction |= new_inst << T2_DATA_OP_SHIFT;
25745 return value;
25746 }
25747
25748 /* Read a 32-bit thumb instruction from buf. */
25749
25750 static unsigned long
25751 get_thumb32_insn (char * buf)
25752 {
25753 unsigned long insn;
25754 insn = md_chars_to_number (buf, THUMB_SIZE) << 16;
25755 insn |= md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
25756
25757 return insn;
25758 }
25759
25760 /* We usually want to set the low bit on the address of thumb function
25761 symbols. In particular .word foo - . should have the low bit set.
25762 Generic code tries to fold the difference of two symbols to
25763 a constant. Prevent this and force a relocation when the first symbols
25764 is a thumb function. */
25765
25766 bfd_boolean
25767 arm_optimize_expr (expressionS *l, operatorT op, expressionS *r)
25768 {
25769 if (op == O_subtract
25770 && l->X_op == O_symbol
25771 && r->X_op == O_symbol
25772 && THUMB_IS_FUNC (l->X_add_symbol))
25773 {
25774 l->X_op = O_subtract;
25775 l->X_op_symbol = r->X_add_symbol;
25776 l->X_add_number -= r->X_add_number;
25777 return TRUE;
25778 }
25779
25780 /* Process as normal. */
25781 return FALSE;
25782 }
25783
25784 /* Encode Thumb2 unconditional branches and calls. The encoding
25785 for the 2 are identical for the immediate values. */
25786
25787 static void
25788 encode_thumb2_b_bl_offset (char * buf, offsetT value)
25789 {
25790 #define T2I1I2MASK ((1 << 13) | (1 << 11))
25791 offsetT newval;
25792 offsetT newval2;
25793 addressT S, I1, I2, lo, hi;
25794
25795 S = (value >> 24) & 0x01;
25796 I1 = (value >> 23) & 0x01;
25797 I2 = (value >> 22) & 0x01;
25798 hi = (value >> 12) & 0x3ff;
25799 lo = (value >> 1) & 0x7ff;
25800 newval = md_chars_to_number (buf, THUMB_SIZE);
25801 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
25802 newval |= (S << 10) | hi;
25803 newval2 &= ~T2I1I2MASK;
25804 newval2 |= (((I1 ^ S) << 13) | ((I2 ^ S) << 11) | lo) ^ T2I1I2MASK;
25805 md_number_to_chars (buf, newval, THUMB_SIZE);
25806 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
25807 }
25808
25809 void
25810 md_apply_fix (fixS * fixP,
25811 valueT * valP,
25812 segT seg)
25813 {
25814 offsetT value = * valP;
25815 offsetT newval;
25816 unsigned int newimm;
25817 unsigned long temp;
25818 int sign;
25819 char * buf = fixP->fx_where + fixP->fx_frag->fr_literal;
25820
25821 gas_assert (fixP->fx_r_type <= BFD_RELOC_UNUSED);
25822
25823 /* Note whether this will delete the relocation. */
25824
25825 if (fixP->fx_addsy == 0 && !fixP->fx_pcrel)
25826 fixP->fx_done = 1;
25827
25828 /* On a 64-bit host, silently truncate 'value' to 32 bits for
25829 consistency with the behaviour on 32-bit hosts. Remember value
25830 for emit_reloc. */
25831 value &= 0xffffffff;
25832 value ^= 0x80000000;
25833 value -= 0x80000000;
25834
25835 *valP = value;
25836 fixP->fx_addnumber = value;
25837
25838 /* Same treatment for fixP->fx_offset. */
25839 fixP->fx_offset &= 0xffffffff;
25840 fixP->fx_offset ^= 0x80000000;
25841 fixP->fx_offset -= 0x80000000;
25842
25843 switch (fixP->fx_r_type)
25844 {
25845 case BFD_RELOC_NONE:
25846 /* This will need to go in the object file. */
25847 fixP->fx_done = 0;
25848 break;
25849
25850 case BFD_RELOC_ARM_IMMEDIATE:
25851 /* We claim that this fixup has been processed here,
25852 even if in fact we generate an error because we do
25853 not have a reloc for it, so tc_gen_reloc will reject it. */
25854 fixP->fx_done = 1;
25855
25856 if (fixP->fx_addsy)
25857 {
25858 const char *msg = 0;
25859
25860 if (! S_IS_DEFINED (fixP->fx_addsy))
25861 msg = _("undefined symbol %s used as an immediate value");
25862 else if (S_GET_SEGMENT (fixP->fx_addsy) != seg)
25863 msg = _("symbol %s is in a different section");
25864 else if (S_IS_WEAK (fixP->fx_addsy))
25865 msg = _("symbol %s is weak and may be overridden later");
25866
25867 if (msg)
25868 {
25869 as_bad_where (fixP->fx_file, fixP->fx_line,
25870 msg, S_GET_NAME (fixP->fx_addsy));
25871 break;
25872 }
25873 }
25874
25875 temp = md_chars_to_number (buf, INSN_SIZE);
25876
25877 /* If the offset is negative, we should use encoding A2 for ADR. */
25878 if ((temp & 0xfff0000) == 0x28f0000 && value < 0)
25879 newimm = negate_data_op (&temp, value);
25880 else
25881 {
25882 newimm = encode_arm_immediate (value);
25883
25884 /* If the instruction will fail, see if we can fix things up by
25885 changing the opcode. */
25886 if (newimm == (unsigned int) FAIL)
25887 newimm = negate_data_op (&temp, value);
25888 /* MOV accepts both ARM modified immediate (A1 encoding) and
25889 UINT16 (A2 encoding) when possible, MOVW only accepts UINT16.
25890 When disassembling, MOV is preferred when there is no encoding
25891 overlap. */
25892 if (newimm == (unsigned int) FAIL
25893 && ((temp >> DATA_OP_SHIFT) & 0xf) == OPCODE_MOV
25894 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2)
25895 && !((temp >> SBIT_SHIFT) & 0x1)
25896 && value >= 0 && value <= 0xffff)
25897 {
25898 /* Clear bits[23:20] to change encoding from A1 to A2. */
25899 temp &= 0xff0fffff;
25900 /* Encoding high 4bits imm. Code below will encode the remaining
25901 low 12bits. */
25902 temp |= (value & 0x0000f000) << 4;
25903 newimm = value & 0x00000fff;
25904 }
25905 }
25906
25907 if (newimm == (unsigned int) FAIL)
25908 {
25909 as_bad_where (fixP->fx_file, fixP->fx_line,
25910 _("invalid constant (%lx) after fixup"),
25911 (unsigned long) value);
25912 break;
25913 }
25914
25915 newimm |= (temp & 0xfffff000);
25916 md_number_to_chars (buf, (valueT) newimm, INSN_SIZE);
25917 break;
25918
25919 case BFD_RELOC_ARM_ADRL_IMMEDIATE:
25920 {
25921 unsigned int highpart = 0;
25922 unsigned int newinsn = 0xe1a00000; /* nop. */
25923
25924 if (fixP->fx_addsy)
25925 {
25926 const char *msg = 0;
25927
25928 if (! S_IS_DEFINED (fixP->fx_addsy))
25929 msg = _("undefined symbol %s used as an immediate value");
25930 else if (S_GET_SEGMENT (fixP->fx_addsy) != seg)
25931 msg = _("symbol %s is in a different section");
25932 else if (S_IS_WEAK (fixP->fx_addsy))
25933 msg = _("symbol %s is weak and may be overridden later");
25934
25935 if (msg)
25936 {
25937 as_bad_where (fixP->fx_file, fixP->fx_line,
25938 msg, S_GET_NAME (fixP->fx_addsy));
25939 break;
25940 }
25941 }
25942
25943 newimm = encode_arm_immediate (value);
25944 temp = md_chars_to_number (buf, INSN_SIZE);
25945
25946 /* If the instruction will fail, see if we can fix things up by
25947 changing the opcode. */
25948 if (newimm == (unsigned int) FAIL
25949 && (newimm = negate_data_op (& temp, value)) == (unsigned int) FAIL)
25950 {
25951 /* No ? OK - try using two ADD instructions to generate
25952 the value. */
25953 newimm = validate_immediate_twopart (value, & highpart);
25954
25955 /* Yes - then make sure that the second instruction is
25956 also an add. */
25957 if (newimm != (unsigned int) FAIL)
25958 newinsn = temp;
25959 /* Still No ? Try using a negated value. */
25960 else if ((newimm = validate_immediate_twopart (- value, & highpart)) != (unsigned int) FAIL)
25961 temp = newinsn = (temp & OPCODE_MASK) | OPCODE_SUB << DATA_OP_SHIFT;
25962 /* Otherwise - give up. */
25963 else
25964 {
25965 as_bad_where (fixP->fx_file, fixP->fx_line,
25966 _("unable to compute ADRL instructions for PC offset of 0x%lx"),
25967 (long) value);
25968 break;
25969 }
25970
25971 /* Replace the first operand in the 2nd instruction (which
25972 is the PC) with the destination register. We have
25973 already added in the PC in the first instruction and we
25974 do not want to do it again. */
25975 newinsn &= ~ 0xf0000;
25976 newinsn |= ((newinsn & 0x0f000) << 4);
25977 }
25978
25979 newimm |= (temp & 0xfffff000);
25980 md_number_to_chars (buf, (valueT) newimm, INSN_SIZE);
25981
25982 highpart |= (newinsn & 0xfffff000);
25983 md_number_to_chars (buf + INSN_SIZE, (valueT) highpart, INSN_SIZE);
25984 }
25985 break;
25986
25987 case BFD_RELOC_ARM_OFFSET_IMM:
25988 if (!fixP->fx_done && seg->use_rela_p)
25989 value = 0;
25990 /* Fall through. */
25991
25992 case BFD_RELOC_ARM_LITERAL:
25993 sign = value > 0;
25994
25995 if (value < 0)
25996 value = - value;
25997
25998 if (validate_offset_imm (value, 0) == FAIL)
25999 {
26000 if (fixP->fx_r_type == BFD_RELOC_ARM_LITERAL)
26001 as_bad_where (fixP->fx_file, fixP->fx_line,
26002 _("invalid literal constant: pool needs to be closer"));
26003 else
26004 as_bad_where (fixP->fx_file, fixP->fx_line,
26005 _("bad immediate value for offset (%ld)"),
26006 (long) value);
26007 break;
26008 }
26009
26010 newval = md_chars_to_number (buf, INSN_SIZE);
26011 if (value == 0)
26012 newval &= 0xfffff000;
26013 else
26014 {
26015 newval &= 0xff7ff000;
26016 newval |= value | (sign ? INDEX_UP : 0);
26017 }
26018 md_number_to_chars (buf, newval, INSN_SIZE);
26019 break;
26020
26021 case BFD_RELOC_ARM_OFFSET_IMM8:
26022 case BFD_RELOC_ARM_HWLITERAL:
26023 sign = value > 0;
26024
26025 if (value < 0)
26026 value = - value;
26027
26028 if (validate_offset_imm (value, 1) == FAIL)
26029 {
26030 if (fixP->fx_r_type == BFD_RELOC_ARM_HWLITERAL)
26031 as_bad_where (fixP->fx_file, fixP->fx_line,
26032 _("invalid literal constant: pool needs to be closer"));
26033 else
26034 as_bad_where (fixP->fx_file, fixP->fx_line,
26035 _("bad immediate value for 8-bit offset (%ld)"),
26036 (long) value);
26037 break;
26038 }
26039
26040 newval = md_chars_to_number (buf, INSN_SIZE);
26041 if (value == 0)
26042 newval &= 0xfffff0f0;
26043 else
26044 {
26045 newval &= 0xff7ff0f0;
26046 newval |= ((value >> 4) << 8) | (value & 0xf) | (sign ? INDEX_UP : 0);
26047 }
26048 md_number_to_chars (buf, newval, INSN_SIZE);
26049 break;
26050
26051 case BFD_RELOC_ARM_T32_OFFSET_U8:
26052 if (value < 0 || value > 1020 || value % 4 != 0)
26053 as_bad_where (fixP->fx_file, fixP->fx_line,
26054 _("bad immediate value for offset (%ld)"), (long) value);
26055 value /= 4;
26056
26057 newval = md_chars_to_number (buf+2, THUMB_SIZE);
26058 newval |= value;
26059 md_number_to_chars (buf+2, newval, THUMB_SIZE);
26060 break;
26061
26062 case BFD_RELOC_ARM_T32_OFFSET_IMM:
26063 /* This is a complicated relocation used for all varieties of Thumb32
26064 load/store instruction with immediate offset:
26065
26066 1110 100P u1WL NNNN XXXX YYYY iiii iiii - +/-(U) pre/post(P) 8-bit,
26067 *4, optional writeback(W)
26068 (doubleword load/store)
26069
26070 1111 100S uTTL 1111 XXXX iiii iiii iiii - +/-(U) 12-bit PC-rel
26071 1111 100S 0TTL NNNN XXXX 1Pu1 iiii iiii - +/-(U) pre/post(P) 8-bit
26072 1111 100S 0TTL NNNN XXXX 1110 iiii iiii - positive 8-bit (T instruction)
26073 1111 100S 1TTL NNNN XXXX iiii iiii iiii - positive 12-bit
26074 1111 100S 0TTL NNNN XXXX 1100 iiii iiii - negative 8-bit
26075
26076 Uppercase letters indicate bits that are already encoded at
26077 this point. Lowercase letters are our problem. For the
26078 second block of instructions, the secondary opcode nybble
26079 (bits 8..11) is present, and bit 23 is zero, even if this is
26080 a PC-relative operation. */
26081 newval = md_chars_to_number (buf, THUMB_SIZE);
26082 newval <<= 16;
26083 newval |= md_chars_to_number (buf+THUMB_SIZE, THUMB_SIZE);
26084
26085 if ((newval & 0xf0000000) == 0xe0000000)
26086 {
26087 /* Doubleword load/store: 8-bit offset, scaled by 4. */
26088 if (value >= 0)
26089 newval |= (1 << 23);
26090 else
26091 value = -value;
26092 if (value % 4 != 0)
26093 {
26094 as_bad_where (fixP->fx_file, fixP->fx_line,
26095 _("offset not a multiple of 4"));
26096 break;
26097 }
26098 value /= 4;
26099 if (value > 0xff)
26100 {
26101 as_bad_where (fixP->fx_file, fixP->fx_line,
26102 _("offset out of range"));
26103 break;
26104 }
26105 newval &= ~0xff;
26106 }
26107 else if ((newval & 0x000f0000) == 0x000f0000)
26108 {
26109 /* PC-relative, 12-bit offset. */
26110 if (value >= 0)
26111 newval |= (1 << 23);
26112 else
26113 value = -value;
26114 if (value > 0xfff)
26115 {
26116 as_bad_where (fixP->fx_file, fixP->fx_line,
26117 _("offset out of range"));
26118 break;
26119 }
26120 newval &= ~0xfff;
26121 }
26122 else if ((newval & 0x00000100) == 0x00000100)
26123 {
26124 /* Writeback: 8-bit, +/- offset. */
26125 if (value >= 0)
26126 newval |= (1 << 9);
26127 else
26128 value = -value;
26129 if (value > 0xff)
26130 {
26131 as_bad_where (fixP->fx_file, fixP->fx_line,
26132 _("offset out of range"));
26133 break;
26134 }
26135 newval &= ~0xff;
26136 }
26137 else if ((newval & 0x00000f00) == 0x00000e00)
26138 {
26139 /* T-instruction: positive 8-bit offset. */
26140 if (value < 0 || value > 0xff)
26141 {
26142 as_bad_where (fixP->fx_file, fixP->fx_line,
26143 _("offset out of range"));
26144 break;
26145 }
26146 newval &= ~0xff;
26147 newval |= value;
26148 }
26149 else
26150 {
26151 /* Positive 12-bit or negative 8-bit offset. */
26152 int limit;
26153 if (value >= 0)
26154 {
26155 newval |= (1 << 23);
26156 limit = 0xfff;
26157 }
26158 else
26159 {
26160 value = -value;
26161 limit = 0xff;
26162 }
26163 if (value > limit)
26164 {
26165 as_bad_where (fixP->fx_file, fixP->fx_line,
26166 _("offset out of range"));
26167 break;
26168 }
26169 newval &= ~limit;
26170 }
26171
26172 newval |= value;
26173 md_number_to_chars (buf, (newval >> 16) & 0xffff, THUMB_SIZE);
26174 md_number_to_chars (buf + THUMB_SIZE, newval & 0xffff, THUMB_SIZE);
26175 break;
26176
26177 case BFD_RELOC_ARM_SHIFT_IMM:
26178 newval = md_chars_to_number (buf, INSN_SIZE);
26179 if (((unsigned long) value) > 32
26180 || (value == 32
26181 && (((newval & 0x60) == 0) || (newval & 0x60) == 0x60)))
26182 {
26183 as_bad_where (fixP->fx_file, fixP->fx_line,
26184 _("shift expression is too large"));
26185 break;
26186 }
26187
26188 if (value == 0)
26189 /* Shifts of zero must be done as lsl. */
26190 newval &= ~0x60;
26191 else if (value == 32)
26192 value = 0;
26193 newval &= 0xfffff07f;
26194 newval |= (value & 0x1f) << 7;
26195 md_number_to_chars (buf, newval, INSN_SIZE);
26196 break;
26197
26198 case BFD_RELOC_ARM_T32_IMMEDIATE:
26199 case BFD_RELOC_ARM_T32_ADD_IMM:
26200 case BFD_RELOC_ARM_T32_IMM12:
26201 case BFD_RELOC_ARM_T32_ADD_PC12:
26202 /* We claim that this fixup has been processed here,
26203 even if in fact we generate an error because we do
26204 not have a reloc for it, so tc_gen_reloc will reject it. */
26205 fixP->fx_done = 1;
26206
26207 if (fixP->fx_addsy
26208 && ! S_IS_DEFINED (fixP->fx_addsy))
26209 {
26210 as_bad_where (fixP->fx_file, fixP->fx_line,
26211 _("undefined symbol %s used as an immediate value"),
26212 S_GET_NAME (fixP->fx_addsy));
26213 break;
26214 }
26215
26216 newval = md_chars_to_number (buf, THUMB_SIZE);
26217 newval <<= 16;
26218 newval |= md_chars_to_number (buf+2, THUMB_SIZE);
26219
26220 newimm = FAIL;
26221 if ((fixP->fx_r_type == BFD_RELOC_ARM_T32_IMMEDIATE
26222 /* ARMv8-M Baseline MOV will reach here, but it doesn't support
26223 Thumb2 modified immediate encoding (T2). */
26224 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2))
26225 || fixP->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM)
26226 {
26227 newimm = encode_thumb32_immediate (value);
26228 if (newimm == (unsigned int) FAIL)
26229 newimm = thumb32_negate_data_op (&newval, value);
26230 }
26231 if (newimm == (unsigned int) FAIL)
26232 {
26233 if (fixP->fx_r_type != BFD_RELOC_ARM_T32_IMMEDIATE)
26234 {
26235 /* Turn add/sum into addw/subw. */
26236 if (fixP->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM)
26237 newval = (newval & 0xfeffffff) | 0x02000000;
26238 /* No flat 12-bit imm encoding for addsw/subsw. */
26239 if ((newval & 0x00100000) == 0)
26240 {
26241 /* 12 bit immediate for addw/subw. */
26242 if (value < 0)
26243 {
26244 value = -value;
26245 newval ^= 0x00a00000;
26246 }
26247 if (value > 0xfff)
26248 newimm = (unsigned int) FAIL;
26249 else
26250 newimm = value;
26251 }
26252 }
26253 else
26254 {
26255 /* MOV accepts both Thumb2 modified immediate (T2 encoding) and
26256 UINT16 (T3 encoding), MOVW only accepts UINT16. When
26257 disassembling, MOV is preferred when there is no encoding
26258 overlap. */
26259 if (((newval >> T2_DATA_OP_SHIFT) & 0xf) == T2_OPCODE_ORR
26260 /* NOTE: MOV uses the ORR opcode in Thumb 2 mode
26261 but with the Rn field [19:16] set to 1111. */
26262 && (((newval >> 16) & 0xf) == 0xf)
26263 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2_v8m)
26264 && !((newval >> T2_SBIT_SHIFT) & 0x1)
26265 && value >= 0 && value <= 0xffff)
26266 {
26267 /* Toggle bit[25] to change encoding from T2 to T3. */
26268 newval ^= 1 << 25;
26269 /* Clear bits[19:16]. */
26270 newval &= 0xfff0ffff;
26271 /* Encoding high 4bits imm. Code below will encode the
26272 remaining low 12bits. */
26273 newval |= (value & 0x0000f000) << 4;
26274 newimm = value & 0x00000fff;
26275 }
26276 }
26277 }
26278
26279 if (newimm == (unsigned int)FAIL)
26280 {
26281 as_bad_where (fixP->fx_file, fixP->fx_line,
26282 _("invalid constant (%lx) after fixup"),
26283 (unsigned long) value);
26284 break;
26285 }
26286
26287 newval |= (newimm & 0x800) << 15;
26288 newval |= (newimm & 0x700) << 4;
26289 newval |= (newimm & 0x0ff);
26290
26291 md_number_to_chars (buf, (valueT) ((newval >> 16) & 0xffff), THUMB_SIZE);
26292 md_number_to_chars (buf+2, (valueT) (newval & 0xffff), THUMB_SIZE);
26293 break;
26294
26295 case BFD_RELOC_ARM_SMC:
26296 if (((unsigned long) value) > 0xffff)
26297 as_bad_where (fixP->fx_file, fixP->fx_line,
26298 _("invalid smc expression"));
26299 newval = md_chars_to_number (buf, INSN_SIZE);
26300 newval |= (value & 0xf) | ((value & 0xfff0) << 4);
26301 md_number_to_chars (buf, newval, INSN_SIZE);
26302 break;
26303
26304 case BFD_RELOC_ARM_HVC:
26305 if (((unsigned long) value) > 0xffff)
26306 as_bad_where (fixP->fx_file, fixP->fx_line,
26307 _("invalid hvc expression"));
26308 newval = md_chars_to_number (buf, INSN_SIZE);
26309 newval |= (value & 0xf) | ((value & 0xfff0) << 4);
26310 md_number_to_chars (buf, newval, INSN_SIZE);
26311 break;
26312
26313 case BFD_RELOC_ARM_SWI:
26314 if (fixP->tc_fix_data != 0)
26315 {
26316 if (((unsigned long) value) > 0xff)
26317 as_bad_where (fixP->fx_file, fixP->fx_line,
26318 _("invalid swi expression"));
26319 newval = md_chars_to_number (buf, THUMB_SIZE);
26320 newval |= value;
26321 md_number_to_chars (buf, newval, THUMB_SIZE);
26322 }
26323 else
26324 {
26325 if (((unsigned long) value) > 0x00ffffff)
26326 as_bad_where (fixP->fx_file, fixP->fx_line,
26327 _("invalid swi expression"));
26328 newval = md_chars_to_number (buf, INSN_SIZE);
26329 newval |= value;
26330 md_number_to_chars (buf, newval, INSN_SIZE);
26331 }
26332 break;
26333
26334 case BFD_RELOC_ARM_MULTI:
26335 if (((unsigned long) value) > 0xffff)
26336 as_bad_where (fixP->fx_file, fixP->fx_line,
26337 _("invalid expression in load/store multiple"));
26338 newval = value | md_chars_to_number (buf, INSN_SIZE);
26339 md_number_to_chars (buf, newval, INSN_SIZE);
26340 break;
26341
26342 #ifdef OBJ_ELF
26343 case BFD_RELOC_ARM_PCREL_CALL:
26344
26345 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
26346 && fixP->fx_addsy
26347 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
26348 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
26349 && THUMB_IS_FUNC (fixP->fx_addsy))
26350 /* Flip the bl to blx. This is a simple flip
26351 bit here because we generate PCREL_CALL for
26352 unconditional bls. */
26353 {
26354 newval = md_chars_to_number (buf, INSN_SIZE);
26355 newval = newval | 0x10000000;
26356 md_number_to_chars (buf, newval, INSN_SIZE);
26357 temp = 1;
26358 fixP->fx_done = 1;
26359 }
26360 else
26361 temp = 3;
26362 goto arm_branch_common;
26363
26364 case BFD_RELOC_ARM_PCREL_JUMP:
26365 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
26366 && fixP->fx_addsy
26367 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
26368 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
26369 && THUMB_IS_FUNC (fixP->fx_addsy))
26370 {
26371 /* This would map to a bl<cond>, b<cond>,
26372 b<always> to a Thumb function. We
26373 need to force a relocation for this particular
26374 case. */
26375 newval = md_chars_to_number (buf, INSN_SIZE);
26376 fixP->fx_done = 0;
26377 }
26378 /* Fall through. */
26379
26380 case BFD_RELOC_ARM_PLT32:
26381 #endif
26382 case BFD_RELOC_ARM_PCREL_BRANCH:
26383 temp = 3;
26384 goto arm_branch_common;
26385
26386 case BFD_RELOC_ARM_PCREL_BLX:
26387
26388 temp = 1;
26389 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
26390 && fixP->fx_addsy
26391 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
26392 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
26393 && ARM_IS_FUNC (fixP->fx_addsy))
26394 {
26395 /* Flip the blx to a bl and warn. */
26396 const char *name = S_GET_NAME (fixP->fx_addsy);
26397 newval = 0xeb000000;
26398 as_warn_where (fixP->fx_file, fixP->fx_line,
26399 _("blx to '%s' an ARM ISA state function changed to bl"),
26400 name);
26401 md_number_to_chars (buf, newval, INSN_SIZE);
26402 temp = 3;
26403 fixP->fx_done = 1;
26404 }
26405
26406 #ifdef OBJ_ELF
26407 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
26408 fixP->fx_r_type = BFD_RELOC_ARM_PCREL_CALL;
26409 #endif
26410
26411 arm_branch_common:
26412 /* We are going to store value (shifted right by two) in the
26413 instruction, in a 24 bit, signed field. Bits 26 through 32 either
26414 all clear or all set and bit 0 must be clear. For B/BL bit 1 must
26415 also be clear. */
26416 if (value & temp)
26417 as_bad_where (fixP->fx_file, fixP->fx_line,
26418 _("misaligned branch destination"));
26419 if ((value & (offsetT)0xfe000000) != (offsetT)0
26420 && (value & (offsetT)0xfe000000) != (offsetT)0xfe000000)
26421 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
26422
26423 if (fixP->fx_done || !seg->use_rela_p)
26424 {
26425 newval = md_chars_to_number (buf, INSN_SIZE);
26426 newval |= (value >> 2) & 0x00ffffff;
26427 /* Set the H bit on BLX instructions. */
26428 if (temp == 1)
26429 {
26430 if (value & 2)
26431 newval |= 0x01000000;
26432 else
26433 newval &= ~0x01000000;
26434 }
26435 md_number_to_chars (buf, newval, INSN_SIZE);
26436 }
26437 break;
26438
26439 case BFD_RELOC_THUMB_PCREL_BRANCH7: /* CBZ */
26440 /* CBZ can only branch forward. */
26441
26442 /* Attempts to use CBZ to branch to the next instruction
26443 (which, strictly speaking, are prohibited) will be turned into
26444 no-ops.
26445
26446 FIXME: It may be better to remove the instruction completely and
26447 perform relaxation. */
26448 if (value == -2)
26449 {
26450 newval = md_chars_to_number (buf, THUMB_SIZE);
26451 newval = 0xbf00; /* NOP encoding T1 */
26452 md_number_to_chars (buf, newval, THUMB_SIZE);
26453 }
26454 else
26455 {
26456 if (value & ~0x7e)
26457 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
26458
26459 if (fixP->fx_done || !seg->use_rela_p)
26460 {
26461 newval = md_chars_to_number (buf, THUMB_SIZE);
26462 newval |= ((value & 0x3e) << 2) | ((value & 0x40) << 3);
26463 md_number_to_chars (buf, newval, THUMB_SIZE);
26464 }
26465 }
26466 break;
26467
26468 case BFD_RELOC_THUMB_PCREL_BRANCH9: /* Conditional branch. */
26469 if ((value & ~0xff) && ((value & ~0xff) != ~0xff))
26470 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
26471
26472 if (fixP->fx_done || !seg->use_rela_p)
26473 {
26474 newval = md_chars_to_number (buf, THUMB_SIZE);
26475 newval |= (value & 0x1ff) >> 1;
26476 md_number_to_chars (buf, newval, THUMB_SIZE);
26477 }
26478 break;
26479
26480 case BFD_RELOC_THUMB_PCREL_BRANCH12: /* Unconditional branch. */
26481 if ((value & ~0x7ff) && ((value & ~0x7ff) != ~0x7ff))
26482 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
26483
26484 if (fixP->fx_done || !seg->use_rela_p)
26485 {
26486 newval = md_chars_to_number (buf, THUMB_SIZE);
26487 newval |= (value & 0xfff) >> 1;
26488 md_number_to_chars (buf, newval, THUMB_SIZE);
26489 }
26490 break;
26491
26492 case BFD_RELOC_THUMB_PCREL_BRANCH20:
26493 if (fixP->fx_addsy
26494 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
26495 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
26496 && ARM_IS_FUNC (fixP->fx_addsy)
26497 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
26498 {
26499 /* Force a relocation for a branch 20 bits wide. */
26500 fixP->fx_done = 0;
26501 }
26502 if ((value & ~0x1fffff) && ((value & ~0x0fffff) != ~0x0fffff))
26503 as_bad_where (fixP->fx_file, fixP->fx_line,
26504 _("conditional branch out of range"));
26505
26506 if (fixP->fx_done || !seg->use_rela_p)
26507 {
26508 offsetT newval2;
26509 addressT S, J1, J2, lo, hi;
26510
26511 S = (value & 0x00100000) >> 20;
26512 J2 = (value & 0x00080000) >> 19;
26513 J1 = (value & 0x00040000) >> 18;
26514 hi = (value & 0x0003f000) >> 12;
26515 lo = (value & 0x00000ffe) >> 1;
26516
26517 newval = md_chars_to_number (buf, THUMB_SIZE);
26518 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
26519 newval |= (S << 10) | hi;
26520 newval2 |= (J1 << 13) | (J2 << 11) | lo;
26521 md_number_to_chars (buf, newval, THUMB_SIZE);
26522 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
26523 }
26524 break;
26525
26526 case BFD_RELOC_THUMB_PCREL_BLX:
26527 /* If there is a blx from a thumb state function to
26528 another thumb function flip this to a bl and warn
26529 about it. */
26530
26531 if (fixP->fx_addsy
26532 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
26533 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
26534 && THUMB_IS_FUNC (fixP->fx_addsy))
26535 {
26536 const char *name = S_GET_NAME (fixP->fx_addsy);
26537 as_warn_where (fixP->fx_file, fixP->fx_line,
26538 _("blx to Thumb func '%s' from Thumb ISA state changed to bl"),
26539 name);
26540 newval = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
26541 newval = newval | 0x1000;
26542 md_number_to_chars (buf+THUMB_SIZE, newval, THUMB_SIZE);
26543 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BRANCH23;
26544 fixP->fx_done = 1;
26545 }
26546
26547
26548 goto thumb_bl_common;
26549
26550 case BFD_RELOC_THUMB_PCREL_BRANCH23:
26551 /* A bl from Thumb state ISA to an internal ARM state function
26552 is converted to a blx. */
26553 if (fixP->fx_addsy
26554 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
26555 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
26556 && ARM_IS_FUNC (fixP->fx_addsy)
26557 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
26558 {
26559 newval = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
26560 newval = newval & ~0x1000;
26561 md_number_to_chars (buf+THUMB_SIZE, newval, THUMB_SIZE);
26562 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BLX;
26563 fixP->fx_done = 1;
26564 }
26565
26566 thumb_bl_common:
26567
26568 if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BLX)
26569 /* For a BLX instruction, make sure that the relocation is rounded up
26570 to a word boundary. This follows the semantics of the instruction
26571 which specifies that bit 1 of the target address will come from bit
26572 1 of the base address. */
26573 value = (value + 3) & ~ 3;
26574
26575 #ifdef OBJ_ELF
26576 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4
26577 && fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BLX)
26578 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BRANCH23;
26579 #endif
26580
26581 if ((value & ~0x3fffff) && ((value & ~0x3fffff) != ~0x3fffff))
26582 {
26583 if (!(ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2)))
26584 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
26585 else if ((value & ~0x1ffffff)
26586 && ((value & ~0x1ffffff) != ~0x1ffffff))
26587 as_bad_where (fixP->fx_file, fixP->fx_line,
26588 _("Thumb2 branch out of range"));
26589 }
26590
26591 if (fixP->fx_done || !seg->use_rela_p)
26592 encode_thumb2_b_bl_offset (buf, value);
26593
26594 break;
26595
26596 case BFD_RELOC_THUMB_PCREL_BRANCH25:
26597 if ((value & ~0x0ffffff) && ((value & ~0x0ffffff) != ~0x0ffffff))
26598 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
26599
26600 if (fixP->fx_done || !seg->use_rela_p)
26601 encode_thumb2_b_bl_offset (buf, value);
26602
26603 break;
26604
26605 case BFD_RELOC_8:
26606 if (fixP->fx_done || !seg->use_rela_p)
26607 *buf = value;
26608 break;
26609
26610 case BFD_RELOC_16:
26611 if (fixP->fx_done || !seg->use_rela_p)
26612 md_number_to_chars (buf, value, 2);
26613 break;
26614
26615 #ifdef OBJ_ELF
26616 case BFD_RELOC_ARM_TLS_CALL:
26617 case BFD_RELOC_ARM_THM_TLS_CALL:
26618 case BFD_RELOC_ARM_TLS_DESCSEQ:
26619 case BFD_RELOC_ARM_THM_TLS_DESCSEQ:
26620 case BFD_RELOC_ARM_TLS_GOTDESC:
26621 case BFD_RELOC_ARM_TLS_GD32:
26622 case BFD_RELOC_ARM_TLS_LE32:
26623 case BFD_RELOC_ARM_TLS_IE32:
26624 case BFD_RELOC_ARM_TLS_LDM32:
26625 case BFD_RELOC_ARM_TLS_LDO32:
26626 S_SET_THREAD_LOCAL (fixP->fx_addsy);
26627 break;
26628
26629 /* Same handling as above, but with the arm_fdpic guard. */
26630 case BFD_RELOC_ARM_TLS_GD32_FDPIC:
26631 case BFD_RELOC_ARM_TLS_IE32_FDPIC:
26632 case BFD_RELOC_ARM_TLS_LDM32_FDPIC:
26633 if (arm_fdpic)
26634 {
26635 S_SET_THREAD_LOCAL (fixP->fx_addsy);
26636 }
26637 else
26638 {
26639 as_bad_where (fixP->fx_file, fixP->fx_line,
26640 _("Relocation supported only in FDPIC mode"));
26641 }
26642 break;
26643
26644 case BFD_RELOC_ARM_GOT32:
26645 case BFD_RELOC_ARM_GOTOFF:
26646 break;
26647
26648 case BFD_RELOC_ARM_GOT_PREL:
26649 if (fixP->fx_done || !seg->use_rela_p)
26650 md_number_to_chars (buf, value, 4);
26651 break;
26652
26653 case BFD_RELOC_ARM_TARGET2:
26654 /* TARGET2 is not partial-inplace, so we need to write the
26655 addend here for REL targets, because it won't be written out
26656 during reloc processing later. */
26657 if (fixP->fx_done || !seg->use_rela_p)
26658 md_number_to_chars (buf, fixP->fx_offset, 4);
26659 break;
26660
26661 /* Relocations for FDPIC. */
26662 case BFD_RELOC_ARM_GOTFUNCDESC:
26663 case BFD_RELOC_ARM_GOTOFFFUNCDESC:
26664 case BFD_RELOC_ARM_FUNCDESC:
26665 if (arm_fdpic)
26666 {
26667 if (fixP->fx_done || !seg->use_rela_p)
26668 md_number_to_chars (buf, 0, 4);
26669 }
26670 else
26671 {
26672 as_bad_where (fixP->fx_file, fixP->fx_line,
26673 _("Relocation supported only in FDPIC mode"));
26674 }
26675 break;
26676 #endif
26677
26678 case BFD_RELOC_RVA:
26679 case BFD_RELOC_32:
26680 case BFD_RELOC_ARM_TARGET1:
26681 case BFD_RELOC_ARM_ROSEGREL32:
26682 case BFD_RELOC_ARM_SBREL32:
26683 case BFD_RELOC_32_PCREL:
26684 #ifdef TE_PE
26685 case BFD_RELOC_32_SECREL:
26686 #endif
26687 if (fixP->fx_done || !seg->use_rela_p)
26688 #ifdef TE_WINCE
26689 /* For WinCE we only do this for pcrel fixups. */
26690 if (fixP->fx_done || fixP->fx_pcrel)
26691 #endif
26692 md_number_to_chars (buf, value, 4);
26693 break;
26694
26695 #ifdef OBJ_ELF
26696 case BFD_RELOC_ARM_PREL31:
26697 if (fixP->fx_done || !seg->use_rela_p)
26698 {
26699 newval = md_chars_to_number (buf, 4) & 0x80000000;
26700 if ((value ^ (value >> 1)) & 0x40000000)
26701 {
26702 as_bad_where (fixP->fx_file, fixP->fx_line,
26703 _("rel31 relocation overflow"));
26704 }
26705 newval |= value & 0x7fffffff;
26706 md_number_to_chars (buf, newval, 4);
26707 }
26708 break;
26709 #endif
26710
26711 case BFD_RELOC_ARM_CP_OFF_IMM:
26712 case BFD_RELOC_ARM_T32_CP_OFF_IMM:
26713 case BFD_RELOC_ARM_T32_VLDR_VSTR_OFF_IMM:
26714 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM)
26715 newval = md_chars_to_number (buf, INSN_SIZE);
26716 else
26717 newval = get_thumb32_insn (buf);
26718 if ((newval & 0x0f200f00) == 0x0d000900)
26719 {
26720 /* This is a fp16 vstr/vldr. The immediate offset in the mnemonic
26721 has permitted values that are multiples of 2, in the range 0
26722 to 510. */
26723 if (value < -510 || value > 510 || (value & 1))
26724 as_bad_where (fixP->fx_file, fixP->fx_line,
26725 _("co-processor offset out of range"));
26726 }
26727 else if ((newval & 0xfe001f80) == 0xec000f80)
26728 {
26729 if (value < -511 || value > 512 || (value & 3))
26730 as_bad_where (fixP->fx_file, fixP->fx_line,
26731 _("co-processor offset out of range"));
26732 }
26733 else if (value < -1023 || value > 1023 || (value & 3))
26734 as_bad_where (fixP->fx_file, fixP->fx_line,
26735 _("co-processor offset out of range"));
26736 cp_off_common:
26737 sign = value > 0;
26738 if (value < 0)
26739 value = -value;
26740 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
26741 || fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2)
26742 newval = md_chars_to_number (buf, INSN_SIZE);
26743 else
26744 newval = get_thumb32_insn (buf);
26745 if (value == 0)
26746 {
26747 if (fixP->fx_r_type == BFD_RELOC_ARM_T32_VLDR_VSTR_OFF_IMM)
26748 newval &= 0xffffff80;
26749 else
26750 newval &= 0xffffff00;
26751 }
26752 else
26753 {
26754 if (fixP->fx_r_type == BFD_RELOC_ARM_T32_VLDR_VSTR_OFF_IMM)
26755 newval &= 0xff7fff80;
26756 else
26757 newval &= 0xff7fff00;
26758 if ((newval & 0x0f200f00) == 0x0d000900)
26759 {
26760 /* This is a fp16 vstr/vldr.
26761
26762 It requires the immediate offset in the instruction is shifted
26763 left by 1 to be a half-word offset.
26764
26765 Here, left shift by 1 first, and later right shift by 2
26766 should get the right offset. */
26767 value <<= 1;
26768 }
26769 newval |= (value >> 2) | (sign ? INDEX_UP : 0);
26770 }
26771 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
26772 || fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2)
26773 md_number_to_chars (buf, newval, INSN_SIZE);
26774 else
26775 put_thumb32_insn (buf, newval);
26776 break;
26777
26778 case BFD_RELOC_ARM_CP_OFF_IMM_S2:
26779 case BFD_RELOC_ARM_T32_CP_OFF_IMM_S2:
26780 if (value < -255 || value > 255)
26781 as_bad_where (fixP->fx_file, fixP->fx_line,
26782 _("co-processor offset out of range"));
26783 value *= 4;
26784 goto cp_off_common;
26785
26786 case BFD_RELOC_ARM_THUMB_OFFSET:
26787 newval = md_chars_to_number (buf, THUMB_SIZE);
26788 /* Exactly what ranges, and where the offset is inserted depends
26789 on the type of instruction, we can establish this from the
26790 top 4 bits. */
26791 switch (newval >> 12)
26792 {
26793 case 4: /* PC load. */
26794 /* Thumb PC loads are somewhat odd, bit 1 of the PC is
26795 forced to zero for these loads; md_pcrel_from has already
26796 compensated for this. */
26797 if (value & 3)
26798 as_bad_where (fixP->fx_file, fixP->fx_line,
26799 _("invalid offset, target not word aligned (0x%08lX)"),
26800 (((unsigned long) fixP->fx_frag->fr_address
26801 + (unsigned long) fixP->fx_where) & ~3)
26802 + (unsigned long) value);
26803
26804 if (value & ~0x3fc)
26805 as_bad_where (fixP->fx_file, fixP->fx_line,
26806 _("invalid offset, value too big (0x%08lX)"),
26807 (long) value);
26808
26809 newval |= value >> 2;
26810 break;
26811
26812 case 9: /* SP load/store. */
26813 if (value & ~0x3fc)
26814 as_bad_where (fixP->fx_file, fixP->fx_line,
26815 _("invalid offset, value too big (0x%08lX)"),
26816 (long) value);
26817 newval |= value >> 2;
26818 break;
26819
26820 case 6: /* Word load/store. */
26821 if (value & ~0x7c)
26822 as_bad_where (fixP->fx_file, fixP->fx_line,
26823 _("invalid offset, value too big (0x%08lX)"),
26824 (long) value);
26825 newval |= value << 4; /* 6 - 2. */
26826 break;
26827
26828 case 7: /* Byte load/store. */
26829 if (value & ~0x1f)
26830 as_bad_where (fixP->fx_file, fixP->fx_line,
26831 _("invalid offset, value too big (0x%08lX)"),
26832 (long) value);
26833 newval |= value << 6;
26834 break;
26835
26836 case 8: /* Halfword load/store. */
26837 if (value & ~0x3e)
26838 as_bad_where (fixP->fx_file, fixP->fx_line,
26839 _("invalid offset, value too big (0x%08lX)"),
26840 (long) value);
26841 newval |= value << 5; /* 6 - 1. */
26842 break;
26843
26844 default:
26845 as_bad_where (fixP->fx_file, fixP->fx_line,
26846 "Unable to process relocation for thumb opcode: %lx",
26847 (unsigned long) newval);
26848 break;
26849 }
26850 md_number_to_chars (buf, newval, THUMB_SIZE);
26851 break;
26852
26853 case BFD_RELOC_ARM_THUMB_ADD:
26854 /* This is a complicated relocation, since we use it for all of
26855 the following immediate relocations:
26856
26857 3bit ADD/SUB
26858 8bit ADD/SUB
26859 9bit ADD/SUB SP word-aligned
26860 10bit ADD PC/SP word-aligned
26861
26862 The type of instruction being processed is encoded in the
26863 instruction field:
26864
26865 0x8000 SUB
26866 0x00F0 Rd
26867 0x000F Rs
26868 */
26869 newval = md_chars_to_number (buf, THUMB_SIZE);
26870 {
26871 int rd = (newval >> 4) & 0xf;
26872 int rs = newval & 0xf;
26873 int subtract = !!(newval & 0x8000);
26874
26875 /* Check for HI regs, only very restricted cases allowed:
26876 Adjusting SP, and using PC or SP to get an address. */
26877 if ((rd > 7 && (rd != REG_SP || rs != REG_SP))
26878 || (rs > 7 && rs != REG_SP && rs != REG_PC))
26879 as_bad_where (fixP->fx_file, fixP->fx_line,
26880 _("invalid Hi register with immediate"));
26881
26882 /* If value is negative, choose the opposite instruction. */
26883 if (value < 0)
26884 {
26885 value = -value;
26886 subtract = !subtract;
26887 if (value < 0)
26888 as_bad_where (fixP->fx_file, fixP->fx_line,
26889 _("immediate value out of range"));
26890 }
26891
26892 if (rd == REG_SP)
26893 {
26894 if (value & ~0x1fc)
26895 as_bad_where (fixP->fx_file, fixP->fx_line,
26896 _("invalid immediate for stack address calculation"));
26897 newval = subtract ? T_OPCODE_SUB_ST : T_OPCODE_ADD_ST;
26898 newval |= value >> 2;
26899 }
26900 else if (rs == REG_PC || rs == REG_SP)
26901 {
26902 /* PR gas/18541. If the addition is for a defined symbol
26903 within range of an ADR instruction then accept it. */
26904 if (subtract
26905 && value == 4
26906 && fixP->fx_addsy != NULL)
26907 {
26908 subtract = 0;
26909
26910 if (! S_IS_DEFINED (fixP->fx_addsy)
26911 || S_GET_SEGMENT (fixP->fx_addsy) != seg
26912 || S_IS_WEAK (fixP->fx_addsy))
26913 {
26914 as_bad_where (fixP->fx_file, fixP->fx_line,
26915 _("address calculation needs a strongly defined nearby symbol"));
26916 }
26917 else
26918 {
26919 offsetT v = fixP->fx_where + fixP->fx_frag->fr_address;
26920
26921 /* Round up to the next 4-byte boundary. */
26922 if (v & 3)
26923 v = (v + 3) & ~ 3;
26924 else
26925 v += 4;
26926 v = S_GET_VALUE (fixP->fx_addsy) - v;
26927
26928 if (v & ~0x3fc)
26929 {
26930 as_bad_where (fixP->fx_file, fixP->fx_line,
26931 _("symbol too far away"));
26932 }
26933 else
26934 {
26935 fixP->fx_done = 1;
26936 value = v;
26937 }
26938 }
26939 }
26940
26941 if (subtract || value & ~0x3fc)
26942 as_bad_where (fixP->fx_file, fixP->fx_line,
26943 _("invalid immediate for address calculation (value = 0x%08lX)"),
26944 (unsigned long) (subtract ? - value : value));
26945 newval = (rs == REG_PC ? T_OPCODE_ADD_PC : T_OPCODE_ADD_SP);
26946 newval |= rd << 8;
26947 newval |= value >> 2;
26948 }
26949 else if (rs == rd)
26950 {
26951 if (value & ~0xff)
26952 as_bad_where (fixP->fx_file, fixP->fx_line,
26953 _("immediate value out of range"));
26954 newval = subtract ? T_OPCODE_SUB_I8 : T_OPCODE_ADD_I8;
26955 newval |= (rd << 8) | value;
26956 }
26957 else
26958 {
26959 if (value & ~0x7)
26960 as_bad_where (fixP->fx_file, fixP->fx_line,
26961 _("immediate value out of range"));
26962 newval = subtract ? T_OPCODE_SUB_I3 : T_OPCODE_ADD_I3;
26963 newval |= rd | (rs << 3) | (value << 6);
26964 }
26965 }
26966 md_number_to_chars (buf, newval, THUMB_SIZE);
26967 break;
26968
26969 case BFD_RELOC_ARM_THUMB_IMM:
26970 newval = md_chars_to_number (buf, THUMB_SIZE);
26971 if (value < 0 || value > 255)
26972 as_bad_where (fixP->fx_file, fixP->fx_line,
26973 _("invalid immediate: %ld is out of range"),
26974 (long) value);
26975 newval |= value;
26976 md_number_to_chars (buf, newval, THUMB_SIZE);
26977 break;
26978
26979 case BFD_RELOC_ARM_THUMB_SHIFT:
26980 /* 5bit shift value (0..32). LSL cannot take 32. */
26981 newval = md_chars_to_number (buf, THUMB_SIZE) & 0xf83f;
26982 temp = newval & 0xf800;
26983 if (value < 0 || value > 32 || (value == 32 && temp == T_OPCODE_LSL_I))
26984 as_bad_where (fixP->fx_file, fixP->fx_line,
26985 _("invalid shift value: %ld"), (long) value);
26986 /* Shifts of zero must be encoded as LSL. */
26987 if (value == 0)
26988 newval = (newval & 0x003f) | T_OPCODE_LSL_I;
26989 /* Shifts of 32 are encoded as zero. */
26990 else if (value == 32)
26991 value = 0;
26992 newval |= value << 6;
26993 md_number_to_chars (buf, newval, THUMB_SIZE);
26994 break;
26995
26996 case BFD_RELOC_VTABLE_INHERIT:
26997 case BFD_RELOC_VTABLE_ENTRY:
26998 fixP->fx_done = 0;
26999 return;
27000
27001 case BFD_RELOC_ARM_MOVW:
27002 case BFD_RELOC_ARM_MOVT:
27003 case BFD_RELOC_ARM_THUMB_MOVW:
27004 case BFD_RELOC_ARM_THUMB_MOVT:
27005 if (fixP->fx_done || !seg->use_rela_p)
27006 {
27007 /* REL format relocations are limited to a 16-bit addend. */
27008 if (!fixP->fx_done)
27009 {
27010 if (value < -0x8000 || value > 0x7fff)
27011 as_bad_where (fixP->fx_file, fixP->fx_line,
27012 _("offset out of range"));
27013 }
27014 else if (fixP->fx_r_type == BFD_RELOC_ARM_MOVT
27015 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT)
27016 {
27017 value >>= 16;
27018 }
27019
27020 if (fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW
27021 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT)
27022 {
27023 newval = get_thumb32_insn (buf);
27024 newval &= 0xfbf08f00;
27025 newval |= (value & 0xf000) << 4;
27026 newval |= (value & 0x0800) << 15;
27027 newval |= (value & 0x0700) << 4;
27028 newval |= (value & 0x00ff);
27029 put_thumb32_insn (buf, newval);
27030 }
27031 else
27032 {
27033 newval = md_chars_to_number (buf, 4);
27034 newval &= 0xfff0f000;
27035 newval |= value & 0x0fff;
27036 newval |= (value & 0xf000) << 4;
27037 md_number_to_chars (buf, newval, 4);
27038 }
27039 }
27040 return;
27041
27042 case BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC:
27043 case BFD_RELOC_ARM_THUMB_ALU_ABS_G1_NC:
27044 case BFD_RELOC_ARM_THUMB_ALU_ABS_G2_NC:
27045 case BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC:
27046 gas_assert (!fixP->fx_done);
27047 {
27048 bfd_vma insn;
27049 bfd_boolean is_mov;
27050 bfd_vma encoded_addend = value;
27051
27052 /* Check that addend can be encoded in instruction. */
27053 if (!seg->use_rela_p && (value < 0 || value > 255))
27054 as_bad_where (fixP->fx_file, fixP->fx_line,
27055 _("the offset 0x%08lX is not representable"),
27056 (unsigned long) encoded_addend);
27057
27058 /* Extract the instruction. */
27059 insn = md_chars_to_number (buf, THUMB_SIZE);
27060 is_mov = (insn & 0xf800) == 0x2000;
27061
27062 /* Encode insn. */
27063 if (is_mov)
27064 {
27065 if (!seg->use_rela_p)
27066 insn |= encoded_addend;
27067 }
27068 else
27069 {
27070 int rd, rs;
27071
27072 /* Extract the instruction. */
27073 /* Encoding is the following
27074 0x8000 SUB
27075 0x00F0 Rd
27076 0x000F Rs
27077 */
27078 /* The following conditions must be true :
27079 - ADD
27080 - Rd == Rs
27081 - Rd <= 7
27082 */
27083 rd = (insn >> 4) & 0xf;
27084 rs = insn & 0xf;
27085 if ((insn & 0x8000) || (rd != rs) || rd > 7)
27086 as_bad_where (fixP->fx_file, fixP->fx_line,
27087 _("Unable to process relocation for thumb opcode: %lx"),
27088 (unsigned long) insn);
27089
27090 /* Encode as ADD immediate8 thumb 1 code. */
27091 insn = 0x3000 | (rd << 8);
27092
27093 /* Place the encoded addend into the first 8 bits of the
27094 instruction. */
27095 if (!seg->use_rela_p)
27096 insn |= encoded_addend;
27097 }
27098
27099 /* Update the instruction. */
27100 md_number_to_chars (buf, insn, THUMB_SIZE);
27101 }
27102 break;
27103
27104 case BFD_RELOC_ARM_ALU_PC_G0_NC:
27105 case BFD_RELOC_ARM_ALU_PC_G0:
27106 case BFD_RELOC_ARM_ALU_PC_G1_NC:
27107 case BFD_RELOC_ARM_ALU_PC_G1:
27108 case BFD_RELOC_ARM_ALU_PC_G2:
27109 case BFD_RELOC_ARM_ALU_SB_G0_NC:
27110 case BFD_RELOC_ARM_ALU_SB_G0:
27111 case BFD_RELOC_ARM_ALU_SB_G1_NC:
27112 case BFD_RELOC_ARM_ALU_SB_G1:
27113 case BFD_RELOC_ARM_ALU_SB_G2:
27114 gas_assert (!fixP->fx_done);
27115 if (!seg->use_rela_p)
27116 {
27117 bfd_vma insn;
27118 bfd_vma encoded_addend;
27119 bfd_vma addend_abs = llabs (value);
27120
27121 /* Check that the absolute value of the addend can be
27122 expressed as an 8-bit constant plus a rotation. */
27123 encoded_addend = encode_arm_immediate (addend_abs);
27124 if (encoded_addend == (unsigned int) FAIL)
27125 as_bad_where (fixP->fx_file, fixP->fx_line,
27126 _("the offset 0x%08lX is not representable"),
27127 (unsigned long) addend_abs);
27128
27129 /* Extract the instruction. */
27130 insn = md_chars_to_number (buf, INSN_SIZE);
27131
27132 /* If the addend is positive, use an ADD instruction.
27133 Otherwise use a SUB. Take care not to destroy the S bit. */
27134 insn &= 0xff1fffff;
27135 if (value < 0)
27136 insn |= 1 << 22;
27137 else
27138 insn |= 1 << 23;
27139
27140 /* Place the encoded addend into the first 12 bits of the
27141 instruction. */
27142 insn &= 0xfffff000;
27143 insn |= encoded_addend;
27144
27145 /* Update the instruction. */
27146 md_number_to_chars (buf, insn, INSN_SIZE);
27147 }
27148 break;
27149
27150 case BFD_RELOC_ARM_LDR_PC_G0:
27151 case BFD_RELOC_ARM_LDR_PC_G1:
27152 case BFD_RELOC_ARM_LDR_PC_G2:
27153 case BFD_RELOC_ARM_LDR_SB_G0:
27154 case BFD_RELOC_ARM_LDR_SB_G1:
27155 case BFD_RELOC_ARM_LDR_SB_G2:
27156 gas_assert (!fixP->fx_done);
27157 if (!seg->use_rela_p)
27158 {
27159 bfd_vma insn;
27160 bfd_vma addend_abs = llabs (value);
27161
27162 /* Check that the absolute value of the addend can be
27163 encoded in 12 bits. */
27164 if (addend_abs >= 0x1000)
27165 as_bad_where (fixP->fx_file, fixP->fx_line,
27166 _("bad offset 0x%08lX (only 12 bits available for the magnitude)"),
27167 (unsigned long) addend_abs);
27168
27169 /* Extract the instruction. */
27170 insn = md_chars_to_number (buf, INSN_SIZE);
27171
27172 /* If the addend is negative, clear bit 23 of the instruction.
27173 Otherwise set it. */
27174 if (value < 0)
27175 insn &= ~(1 << 23);
27176 else
27177 insn |= 1 << 23;
27178
27179 /* Place the absolute value of the addend into the first 12 bits
27180 of the instruction. */
27181 insn &= 0xfffff000;
27182 insn |= addend_abs;
27183
27184 /* Update the instruction. */
27185 md_number_to_chars (buf, insn, INSN_SIZE);
27186 }
27187 break;
27188
27189 case BFD_RELOC_ARM_LDRS_PC_G0:
27190 case BFD_RELOC_ARM_LDRS_PC_G1:
27191 case BFD_RELOC_ARM_LDRS_PC_G2:
27192 case BFD_RELOC_ARM_LDRS_SB_G0:
27193 case BFD_RELOC_ARM_LDRS_SB_G1:
27194 case BFD_RELOC_ARM_LDRS_SB_G2:
27195 gas_assert (!fixP->fx_done);
27196 if (!seg->use_rela_p)
27197 {
27198 bfd_vma insn;
27199 bfd_vma addend_abs = llabs (value);
27200
27201 /* Check that the absolute value of the addend can be
27202 encoded in 8 bits. */
27203 if (addend_abs >= 0x100)
27204 as_bad_where (fixP->fx_file, fixP->fx_line,
27205 _("bad offset 0x%08lX (only 8 bits available for the magnitude)"),
27206 (unsigned long) addend_abs);
27207
27208 /* Extract the instruction. */
27209 insn = md_chars_to_number (buf, INSN_SIZE);
27210
27211 /* If the addend is negative, clear bit 23 of the instruction.
27212 Otherwise set it. */
27213 if (value < 0)
27214 insn &= ~(1 << 23);
27215 else
27216 insn |= 1 << 23;
27217
27218 /* Place the first four bits of the absolute value of the addend
27219 into the first 4 bits of the instruction, and the remaining
27220 four into bits 8 .. 11. */
27221 insn &= 0xfffff0f0;
27222 insn |= (addend_abs & 0xf) | ((addend_abs & 0xf0) << 4);
27223
27224 /* Update the instruction. */
27225 md_number_to_chars (buf, insn, INSN_SIZE);
27226 }
27227 break;
27228
27229 case BFD_RELOC_ARM_LDC_PC_G0:
27230 case BFD_RELOC_ARM_LDC_PC_G1:
27231 case BFD_RELOC_ARM_LDC_PC_G2:
27232 case BFD_RELOC_ARM_LDC_SB_G0:
27233 case BFD_RELOC_ARM_LDC_SB_G1:
27234 case BFD_RELOC_ARM_LDC_SB_G2:
27235 gas_assert (!fixP->fx_done);
27236 if (!seg->use_rela_p)
27237 {
27238 bfd_vma insn;
27239 bfd_vma addend_abs = llabs (value);
27240
27241 /* Check that the absolute value of the addend is a multiple of
27242 four and, when divided by four, fits in 8 bits. */
27243 if (addend_abs & 0x3)
27244 as_bad_where (fixP->fx_file, fixP->fx_line,
27245 _("bad offset 0x%08lX (must be word-aligned)"),
27246 (unsigned long) addend_abs);
27247
27248 if ((addend_abs >> 2) > 0xff)
27249 as_bad_where (fixP->fx_file, fixP->fx_line,
27250 _("bad offset 0x%08lX (must be an 8-bit number of words)"),
27251 (unsigned long) addend_abs);
27252
27253 /* Extract the instruction. */
27254 insn = md_chars_to_number (buf, INSN_SIZE);
27255
27256 /* If the addend is negative, clear bit 23 of the instruction.
27257 Otherwise set it. */
27258 if (value < 0)
27259 insn &= ~(1 << 23);
27260 else
27261 insn |= 1 << 23;
27262
27263 /* Place the addend (divided by four) into the first eight
27264 bits of the instruction. */
27265 insn &= 0xfffffff0;
27266 insn |= addend_abs >> 2;
27267
27268 /* Update the instruction. */
27269 md_number_to_chars (buf, insn, INSN_SIZE);
27270 }
27271 break;
27272
27273 case BFD_RELOC_THUMB_PCREL_BRANCH5:
27274 if (fixP->fx_addsy
27275 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
27276 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
27277 && ARM_IS_FUNC (fixP->fx_addsy)
27278 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v8_1m_main))
27279 {
27280 /* Force a relocation for a branch 5 bits wide. */
27281 fixP->fx_done = 0;
27282 }
27283 if (v8_1_branch_value_check (value, 5, FALSE) == FAIL)
27284 as_bad_where (fixP->fx_file, fixP->fx_line,
27285 BAD_BRANCH_OFF);
27286
27287 if (fixP->fx_done || !seg->use_rela_p)
27288 {
27289 addressT boff = value >> 1;
27290
27291 newval = md_chars_to_number (buf, THUMB_SIZE);
27292 newval |= (boff << 7);
27293 md_number_to_chars (buf, newval, THUMB_SIZE);
27294 }
27295 break;
27296
27297 case BFD_RELOC_THUMB_PCREL_BFCSEL:
27298 if (fixP->fx_addsy
27299 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
27300 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
27301 && ARM_IS_FUNC (fixP->fx_addsy)
27302 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v8_1m_main))
27303 {
27304 fixP->fx_done = 0;
27305 }
27306 if ((value & ~0x7f) && ((value & ~0x3f) != ~0x3f))
27307 as_bad_where (fixP->fx_file, fixP->fx_line,
27308 _("branch out of range"));
27309
27310 if (fixP->fx_done || !seg->use_rela_p)
27311 {
27312 newval = md_chars_to_number (buf, THUMB_SIZE);
27313
27314 addressT boff = ((newval & 0x0780) >> 7) << 1;
27315 addressT diff = value - boff;
27316
27317 if (diff == 4)
27318 {
27319 newval |= 1 << 1; /* T bit. */
27320 }
27321 else if (diff != 2)
27322 {
27323 as_bad_where (fixP->fx_file, fixP->fx_line,
27324 _("out of range label-relative fixup value"));
27325 }
27326 md_number_to_chars (buf, newval, THUMB_SIZE);
27327 }
27328 break;
27329
27330 case BFD_RELOC_ARM_THUMB_BF17:
27331 if (fixP->fx_addsy
27332 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
27333 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
27334 && ARM_IS_FUNC (fixP->fx_addsy)
27335 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v8_1m_main))
27336 {
27337 /* Force a relocation for a branch 17 bits wide. */
27338 fixP->fx_done = 0;
27339 }
27340
27341 if (v8_1_branch_value_check (value, 17, TRUE) == FAIL)
27342 as_bad_where (fixP->fx_file, fixP->fx_line,
27343 BAD_BRANCH_OFF);
27344
27345 if (fixP->fx_done || !seg->use_rela_p)
27346 {
27347 offsetT newval2;
27348 addressT immA, immB, immC;
27349
27350 immA = (value & 0x0001f000) >> 12;
27351 immB = (value & 0x00000ffc) >> 2;
27352 immC = (value & 0x00000002) >> 1;
27353
27354 newval = md_chars_to_number (buf, THUMB_SIZE);
27355 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
27356 newval |= immA;
27357 newval2 |= (immC << 11) | (immB << 1);
27358 md_number_to_chars (buf, newval, THUMB_SIZE);
27359 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
27360 }
27361 break;
27362
27363 case BFD_RELOC_ARM_THUMB_BF19:
27364 if (fixP->fx_addsy
27365 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
27366 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
27367 && ARM_IS_FUNC (fixP->fx_addsy)
27368 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v8_1m_main))
27369 {
27370 /* Force a relocation for a branch 19 bits wide. */
27371 fixP->fx_done = 0;
27372 }
27373
27374 if (v8_1_branch_value_check (value, 19, TRUE) == FAIL)
27375 as_bad_where (fixP->fx_file, fixP->fx_line,
27376 BAD_BRANCH_OFF);
27377
27378 if (fixP->fx_done || !seg->use_rela_p)
27379 {
27380 offsetT newval2;
27381 addressT immA, immB, immC;
27382
27383 immA = (value & 0x0007f000) >> 12;
27384 immB = (value & 0x00000ffc) >> 2;
27385 immC = (value & 0x00000002) >> 1;
27386
27387 newval = md_chars_to_number (buf, THUMB_SIZE);
27388 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
27389 newval |= immA;
27390 newval2 |= (immC << 11) | (immB << 1);
27391 md_number_to_chars (buf, newval, THUMB_SIZE);
27392 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
27393 }
27394 break;
27395
27396 case BFD_RELOC_ARM_THUMB_BF13:
27397 if (fixP->fx_addsy
27398 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
27399 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
27400 && ARM_IS_FUNC (fixP->fx_addsy)
27401 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v8_1m_main))
27402 {
27403 /* Force a relocation for a branch 13 bits wide. */
27404 fixP->fx_done = 0;
27405 }
27406
27407 if (v8_1_branch_value_check (value, 13, TRUE) == FAIL)
27408 as_bad_where (fixP->fx_file, fixP->fx_line,
27409 BAD_BRANCH_OFF);
27410
27411 if (fixP->fx_done || !seg->use_rela_p)
27412 {
27413 offsetT newval2;
27414 addressT immA, immB, immC;
27415
27416 immA = (value & 0x00001000) >> 12;
27417 immB = (value & 0x00000ffc) >> 2;
27418 immC = (value & 0x00000002) >> 1;
27419
27420 newval = md_chars_to_number (buf, THUMB_SIZE);
27421 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
27422 newval |= immA;
27423 newval2 |= (immC << 11) | (immB << 1);
27424 md_number_to_chars (buf, newval, THUMB_SIZE);
27425 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
27426 }
27427 break;
27428
27429 case BFD_RELOC_ARM_THUMB_LOOP12:
27430 if (fixP->fx_addsy
27431 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
27432 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
27433 && ARM_IS_FUNC (fixP->fx_addsy)
27434 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v8_1m_main))
27435 {
27436 /* Force a relocation for a branch 12 bits wide. */
27437 fixP->fx_done = 0;
27438 }
27439
27440 bfd_vma insn = get_thumb32_insn (buf);
27441 /* le lr, <label> or le <label> */
27442 if (((insn & 0xffffffff) == 0xf00fc001)
27443 || ((insn & 0xffffffff) == 0xf02fc001))
27444 value = -value;
27445
27446 if (v8_1_branch_value_check (value, 12, FALSE) == FAIL)
27447 as_bad_where (fixP->fx_file, fixP->fx_line,
27448 BAD_BRANCH_OFF);
27449 if (fixP->fx_done || !seg->use_rela_p)
27450 {
27451 addressT imml, immh;
27452
27453 immh = (value & 0x00000ffc) >> 2;
27454 imml = (value & 0x00000002) >> 1;
27455
27456 newval = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
27457 newval |= (imml << 11) | (immh << 1);
27458 md_number_to_chars (buf + THUMB_SIZE, newval, THUMB_SIZE);
27459 }
27460 break;
27461
27462 case BFD_RELOC_ARM_V4BX:
27463 /* This will need to go in the object file. */
27464 fixP->fx_done = 0;
27465 break;
27466
27467 case BFD_RELOC_UNUSED:
27468 default:
27469 as_bad_where (fixP->fx_file, fixP->fx_line,
27470 _("bad relocation fixup type (%d)"), fixP->fx_r_type);
27471 }
27472 }
27473
27474 /* Translate internal representation of relocation info to BFD target
27475 format. */
27476
27477 arelent *
27478 tc_gen_reloc (asection *section, fixS *fixp)
27479 {
27480 arelent * reloc;
27481 bfd_reloc_code_real_type code;
27482
27483 reloc = XNEW (arelent);
27484
27485 reloc->sym_ptr_ptr = XNEW (asymbol *);
27486 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
27487 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
27488
27489 if (fixp->fx_pcrel)
27490 {
27491 if (section->use_rela_p)
27492 fixp->fx_offset -= md_pcrel_from_section (fixp, section);
27493 else
27494 fixp->fx_offset = reloc->address;
27495 }
27496 reloc->addend = fixp->fx_offset;
27497
27498 switch (fixp->fx_r_type)
27499 {
27500 case BFD_RELOC_8:
27501 if (fixp->fx_pcrel)
27502 {
27503 code = BFD_RELOC_8_PCREL;
27504 break;
27505 }
27506 /* Fall through. */
27507
27508 case BFD_RELOC_16:
27509 if (fixp->fx_pcrel)
27510 {
27511 code = BFD_RELOC_16_PCREL;
27512 break;
27513 }
27514 /* Fall through. */
27515
27516 case BFD_RELOC_32:
27517 if (fixp->fx_pcrel)
27518 {
27519 code = BFD_RELOC_32_PCREL;
27520 break;
27521 }
27522 /* Fall through. */
27523
27524 case BFD_RELOC_ARM_MOVW:
27525 if (fixp->fx_pcrel)
27526 {
27527 code = BFD_RELOC_ARM_MOVW_PCREL;
27528 break;
27529 }
27530 /* Fall through. */
27531
27532 case BFD_RELOC_ARM_MOVT:
27533 if (fixp->fx_pcrel)
27534 {
27535 code = BFD_RELOC_ARM_MOVT_PCREL;
27536 break;
27537 }
27538 /* Fall through. */
27539
27540 case BFD_RELOC_ARM_THUMB_MOVW:
27541 if (fixp->fx_pcrel)
27542 {
27543 code = BFD_RELOC_ARM_THUMB_MOVW_PCREL;
27544 break;
27545 }
27546 /* Fall through. */
27547
27548 case BFD_RELOC_ARM_THUMB_MOVT:
27549 if (fixp->fx_pcrel)
27550 {
27551 code = BFD_RELOC_ARM_THUMB_MOVT_PCREL;
27552 break;
27553 }
27554 /* Fall through. */
27555
27556 case BFD_RELOC_NONE:
27557 case BFD_RELOC_ARM_PCREL_BRANCH:
27558 case BFD_RELOC_ARM_PCREL_BLX:
27559 case BFD_RELOC_RVA:
27560 case BFD_RELOC_THUMB_PCREL_BRANCH7:
27561 case BFD_RELOC_THUMB_PCREL_BRANCH9:
27562 case BFD_RELOC_THUMB_PCREL_BRANCH12:
27563 case BFD_RELOC_THUMB_PCREL_BRANCH20:
27564 case BFD_RELOC_THUMB_PCREL_BRANCH23:
27565 case BFD_RELOC_THUMB_PCREL_BRANCH25:
27566 case BFD_RELOC_VTABLE_ENTRY:
27567 case BFD_RELOC_VTABLE_INHERIT:
27568 #ifdef TE_PE
27569 case BFD_RELOC_32_SECREL:
27570 #endif
27571 code = fixp->fx_r_type;
27572 break;
27573
27574 case BFD_RELOC_THUMB_PCREL_BLX:
27575 #ifdef OBJ_ELF
27576 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
27577 code = BFD_RELOC_THUMB_PCREL_BRANCH23;
27578 else
27579 #endif
27580 code = BFD_RELOC_THUMB_PCREL_BLX;
27581 break;
27582
27583 case BFD_RELOC_ARM_LITERAL:
27584 case BFD_RELOC_ARM_HWLITERAL:
27585 /* If this is called then the a literal has
27586 been referenced across a section boundary. */
27587 as_bad_where (fixp->fx_file, fixp->fx_line,
27588 _("literal referenced across section boundary"));
27589 return NULL;
27590
27591 #ifdef OBJ_ELF
27592 case BFD_RELOC_ARM_TLS_CALL:
27593 case BFD_RELOC_ARM_THM_TLS_CALL:
27594 case BFD_RELOC_ARM_TLS_DESCSEQ:
27595 case BFD_RELOC_ARM_THM_TLS_DESCSEQ:
27596 case BFD_RELOC_ARM_GOT32:
27597 case BFD_RELOC_ARM_GOTOFF:
27598 case BFD_RELOC_ARM_GOT_PREL:
27599 case BFD_RELOC_ARM_PLT32:
27600 case BFD_RELOC_ARM_TARGET1:
27601 case BFD_RELOC_ARM_ROSEGREL32:
27602 case BFD_RELOC_ARM_SBREL32:
27603 case BFD_RELOC_ARM_PREL31:
27604 case BFD_RELOC_ARM_TARGET2:
27605 case BFD_RELOC_ARM_TLS_LDO32:
27606 case BFD_RELOC_ARM_PCREL_CALL:
27607 case BFD_RELOC_ARM_PCREL_JUMP:
27608 case BFD_RELOC_ARM_ALU_PC_G0_NC:
27609 case BFD_RELOC_ARM_ALU_PC_G0:
27610 case BFD_RELOC_ARM_ALU_PC_G1_NC:
27611 case BFD_RELOC_ARM_ALU_PC_G1:
27612 case BFD_RELOC_ARM_ALU_PC_G2:
27613 case BFD_RELOC_ARM_LDR_PC_G0:
27614 case BFD_RELOC_ARM_LDR_PC_G1:
27615 case BFD_RELOC_ARM_LDR_PC_G2:
27616 case BFD_RELOC_ARM_LDRS_PC_G0:
27617 case BFD_RELOC_ARM_LDRS_PC_G1:
27618 case BFD_RELOC_ARM_LDRS_PC_G2:
27619 case BFD_RELOC_ARM_LDC_PC_G0:
27620 case BFD_RELOC_ARM_LDC_PC_G1:
27621 case BFD_RELOC_ARM_LDC_PC_G2:
27622 case BFD_RELOC_ARM_ALU_SB_G0_NC:
27623 case BFD_RELOC_ARM_ALU_SB_G0:
27624 case BFD_RELOC_ARM_ALU_SB_G1_NC:
27625 case BFD_RELOC_ARM_ALU_SB_G1:
27626 case BFD_RELOC_ARM_ALU_SB_G2:
27627 case BFD_RELOC_ARM_LDR_SB_G0:
27628 case BFD_RELOC_ARM_LDR_SB_G1:
27629 case BFD_RELOC_ARM_LDR_SB_G2:
27630 case BFD_RELOC_ARM_LDRS_SB_G0:
27631 case BFD_RELOC_ARM_LDRS_SB_G1:
27632 case BFD_RELOC_ARM_LDRS_SB_G2:
27633 case BFD_RELOC_ARM_LDC_SB_G0:
27634 case BFD_RELOC_ARM_LDC_SB_G1:
27635 case BFD_RELOC_ARM_LDC_SB_G2:
27636 case BFD_RELOC_ARM_V4BX:
27637 case BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC:
27638 case BFD_RELOC_ARM_THUMB_ALU_ABS_G1_NC:
27639 case BFD_RELOC_ARM_THUMB_ALU_ABS_G2_NC:
27640 case BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC:
27641 case BFD_RELOC_ARM_GOTFUNCDESC:
27642 case BFD_RELOC_ARM_GOTOFFFUNCDESC:
27643 case BFD_RELOC_ARM_FUNCDESC:
27644 case BFD_RELOC_ARM_THUMB_BF17:
27645 case BFD_RELOC_ARM_THUMB_BF19:
27646 case BFD_RELOC_ARM_THUMB_BF13:
27647 code = fixp->fx_r_type;
27648 break;
27649
27650 case BFD_RELOC_ARM_TLS_GOTDESC:
27651 case BFD_RELOC_ARM_TLS_GD32:
27652 case BFD_RELOC_ARM_TLS_GD32_FDPIC:
27653 case BFD_RELOC_ARM_TLS_LE32:
27654 case BFD_RELOC_ARM_TLS_IE32:
27655 case BFD_RELOC_ARM_TLS_IE32_FDPIC:
27656 case BFD_RELOC_ARM_TLS_LDM32:
27657 case BFD_RELOC_ARM_TLS_LDM32_FDPIC:
27658 /* BFD will include the symbol's address in the addend.
27659 But we don't want that, so subtract it out again here. */
27660 if (!S_IS_COMMON (fixp->fx_addsy))
27661 reloc->addend -= (*reloc->sym_ptr_ptr)->value;
27662 code = fixp->fx_r_type;
27663 break;
27664 #endif
27665
27666 case BFD_RELOC_ARM_IMMEDIATE:
27667 as_bad_where (fixp->fx_file, fixp->fx_line,
27668 _("internal relocation (type: IMMEDIATE) not fixed up"));
27669 return NULL;
27670
27671 case BFD_RELOC_ARM_ADRL_IMMEDIATE:
27672 as_bad_where (fixp->fx_file, fixp->fx_line,
27673 _("ADRL used for a symbol not defined in the same file"));
27674 return NULL;
27675
27676 case BFD_RELOC_THUMB_PCREL_BRANCH5:
27677 case BFD_RELOC_THUMB_PCREL_BFCSEL:
27678 case BFD_RELOC_ARM_THUMB_LOOP12:
27679 as_bad_where (fixp->fx_file, fixp->fx_line,
27680 _("%s used for a symbol not defined in the same file"),
27681 bfd_get_reloc_code_name (fixp->fx_r_type));
27682 return NULL;
27683
27684 case BFD_RELOC_ARM_OFFSET_IMM:
27685 if (section->use_rela_p)
27686 {
27687 code = fixp->fx_r_type;
27688 break;
27689 }
27690
27691 if (fixp->fx_addsy != NULL
27692 && !S_IS_DEFINED (fixp->fx_addsy)
27693 && S_IS_LOCAL (fixp->fx_addsy))
27694 {
27695 as_bad_where (fixp->fx_file, fixp->fx_line,
27696 _("undefined local label `%s'"),
27697 S_GET_NAME (fixp->fx_addsy));
27698 return NULL;
27699 }
27700
27701 as_bad_where (fixp->fx_file, fixp->fx_line,
27702 _("internal_relocation (type: OFFSET_IMM) not fixed up"));
27703 return NULL;
27704
27705 default:
27706 {
27707 const char * type;
27708
27709 switch (fixp->fx_r_type)
27710 {
27711 case BFD_RELOC_NONE: type = "NONE"; break;
27712 case BFD_RELOC_ARM_OFFSET_IMM8: type = "OFFSET_IMM8"; break;
27713 case BFD_RELOC_ARM_SHIFT_IMM: type = "SHIFT_IMM"; break;
27714 case BFD_RELOC_ARM_SMC: type = "SMC"; break;
27715 case BFD_RELOC_ARM_SWI: type = "SWI"; break;
27716 case BFD_RELOC_ARM_MULTI: type = "MULTI"; break;
27717 case BFD_RELOC_ARM_CP_OFF_IMM: type = "CP_OFF_IMM"; break;
27718 case BFD_RELOC_ARM_T32_OFFSET_IMM: type = "T32_OFFSET_IMM"; break;
27719 case BFD_RELOC_ARM_T32_CP_OFF_IMM: type = "T32_CP_OFF_IMM"; break;
27720 case BFD_RELOC_ARM_THUMB_ADD: type = "THUMB_ADD"; break;
27721 case BFD_RELOC_ARM_THUMB_SHIFT: type = "THUMB_SHIFT"; break;
27722 case BFD_RELOC_ARM_THUMB_IMM: type = "THUMB_IMM"; break;
27723 case BFD_RELOC_ARM_THUMB_OFFSET: type = "THUMB_OFFSET"; break;
27724 default: type = _("<unknown>"); break;
27725 }
27726 as_bad_where (fixp->fx_file, fixp->fx_line,
27727 _("cannot represent %s relocation in this object file format"),
27728 type);
27729 return NULL;
27730 }
27731 }
27732
27733 #ifdef OBJ_ELF
27734 if ((code == BFD_RELOC_32_PCREL || code == BFD_RELOC_32)
27735 && GOT_symbol
27736 && fixp->fx_addsy == GOT_symbol)
27737 {
27738 code = BFD_RELOC_ARM_GOTPC;
27739 reloc->addend = fixp->fx_offset = reloc->address;
27740 }
27741 #endif
27742
27743 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
27744
27745 if (reloc->howto == NULL)
27746 {
27747 as_bad_where (fixp->fx_file, fixp->fx_line,
27748 _("cannot represent %s relocation in this object file format"),
27749 bfd_get_reloc_code_name (code));
27750 return NULL;
27751 }
27752
27753 /* HACK: Since arm ELF uses Rel instead of Rela, encode the
27754 vtable entry to be used in the relocation's section offset. */
27755 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
27756 reloc->address = fixp->fx_offset;
27757
27758 return reloc;
27759 }
27760
27761 /* This fix_new is called by cons via TC_CONS_FIX_NEW. */
27762
27763 void
27764 cons_fix_new_arm (fragS * frag,
27765 int where,
27766 int size,
27767 expressionS * exp,
27768 bfd_reloc_code_real_type reloc)
27769 {
27770 int pcrel = 0;
27771
27772 /* Pick a reloc.
27773 FIXME: @@ Should look at CPU word size. */
27774 switch (size)
27775 {
27776 case 1:
27777 reloc = BFD_RELOC_8;
27778 break;
27779 case 2:
27780 reloc = BFD_RELOC_16;
27781 break;
27782 case 4:
27783 default:
27784 reloc = BFD_RELOC_32;
27785 break;
27786 case 8:
27787 reloc = BFD_RELOC_64;
27788 break;
27789 }
27790
27791 #ifdef TE_PE
27792 if (exp->X_op == O_secrel)
27793 {
27794 exp->X_op = O_symbol;
27795 reloc = BFD_RELOC_32_SECREL;
27796 }
27797 #endif
27798
27799 fix_new_exp (frag, where, size, exp, pcrel, reloc);
27800 }
27801
27802 #if defined (OBJ_COFF)
27803 void
27804 arm_validate_fix (fixS * fixP)
27805 {
27806 /* If the destination of the branch is a defined symbol which does not have
27807 the THUMB_FUNC attribute, then we must be calling a function which has
27808 the (interfacearm) attribute. We look for the Thumb entry point to that
27809 function and change the branch to refer to that function instead. */
27810 if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BRANCH23
27811 && fixP->fx_addsy != NULL
27812 && S_IS_DEFINED (fixP->fx_addsy)
27813 && ! THUMB_IS_FUNC (fixP->fx_addsy))
27814 {
27815 fixP->fx_addsy = find_real_start (fixP->fx_addsy);
27816 }
27817 }
27818 #endif
27819
27820
27821 int
27822 arm_force_relocation (struct fix * fixp)
27823 {
27824 #if defined (OBJ_COFF) && defined (TE_PE)
27825 if (fixp->fx_r_type == BFD_RELOC_RVA)
27826 return 1;
27827 #endif
27828
27829 /* In case we have a call or a branch to a function in ARM ISA mode from
27830 a thumb function or vice-versa force the relocation. These relocations
27831 are cleared off for some cores that might have blx and simple transformations
27832 are possible. */
27833
27834 #ifdef OBJ_ELF
27835 switch (fixp->fx_r_type)
27836 {
27837 case BFD_RELOC_ARM_PCREL_JUMP:
27838 case BFD_RELOC_ARM_PCREL_CALL:
27839 case BFD_RELOC_THUMB_PCREL_BLX:
27840 if (THUMB_IS_FUNC (fixp->fx_addsy))
27841 return 1;
27842 break;
27843
27844 case BFD_RELOC_ARM_PCREL_BLX:
27845 case BFD_RELOC_THUMB_PCREL_BRANCH25:
27846 case BFD_RELOC_THUMB_PCREL_BRANCH20:
27847 case BFD_RELOC_THUMB_PCREL_BRANCH23:
27848 if (ARM_IS_FUNC (fixp->fx_addsy))
27849 return 1;
27850 break;
27851
27852 default:
27853 break;
27854 }
27855 #endif
27856
27857 /* Resolve these relocations even if the symbol is extern or weak.
27858 Technically this is probably wrong due to symbol preemption.
27859 In practice these relocations do not have enough range to be useful
27860 at dynamic link time, and some code (e.g. in the Linux kernel)
27861 expects these references to be resolved. */
27862 if (fixp->fx_r_type == BFD_RELOC_ARM_IMMEDIATE
27863 || fixp->fx_r_type == BFD_RELOC_ARM_OFFSET_IMM
27864 || fixp->fx_r_type == BFD_RELOC_ARM_OFFSET_IMM8
27865 || fixp->fx_r_type == BFD_RELOC_ARM_ADRL_IMMEDIATE
27866 || fixp->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
27867 || fixp->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2
27868 || fixp->fx_r_type == BFD_RELOC_ARM_THUMB_OFFSET
27869 || fixp->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM
27870 || fixp->fx_r_type == BFD_RELOC_ARM_T32_IMMEDIATE
27871 || fixp->fx_r_type == BFD_RELOC_ARM_T32_IMM12
27872 || fixp->fx_r_type == BFD_RELOC_ARM_T32_OFFSET_IMM
27873 || fixp->fx_r_type == BFD_RELOC_ARM_T32_ADD_PC12
27874 || fixp->fx_r_type == BFD_RELOC_ARM_T32_CP_OFF_IMM
27875 || fixp->fx_r_type == BFD_RELOC_ARM_T32_CP_OFF_IMM_S2)
27876 return 0;
27877
27878 /* Always leave these relocations for the linker. */
27879 if ((fixp->fx_r_type >= BFD_RELOC_ARM_ALU_PC_G0_NC
27880 && fixp->fx_r_type <= BFD_RELOC_ARM_LDC_SB_G2)
27881 || fixp->fx_r_type == BFD_RELOC_ARM_LDR_PC_G0)
27882 return 1;
27883
27884 /* Always generate relocations against function symbols. */
27885 if (fixp->fx_r_type == BFD_RELOC_32
27886 && fixp->fx_addsy
27887 && (symbol_get_bfdsym (fixp->fx_addsy)->flags & BSF_FUNCTION))
27888 return 1;
27889
27890 return generic_force_reloc (fixp);
27891 }
27892
27893 #if defined (OBJ_ELF) || defined (OBJ_COFF)
27894 /* Relocations against function names must be left unadjusted,
27895 so that the linker can use this information to generate interworking
27896 stubs. The MIPS version of this function
27897 also prevents relocations that are mips-16 specific, but I do not
27898 know why it does this.
27899
27900 FIXME:
27901 There is one other problem that ought to be addressed here, but
27902 which currently is not: Taking the address of a label (rather
27903 than a function) and then later jumping to that address. Such
27904 addresses also ought to have their bottom bit set (assuming that
27905 they reside in Thumb code), but at the moment they will not. */
27906
27907 bfd_boolean
27908 arm_fix_adjustable (fixS * fixP)
27909 {
27910 if (fixP->fx_addsy == NULL)
27911 return 1;
27912
27913 /* Preserve relocations against symbols with function type. */
27914 if (symbol_get_bfdsym (fixP->fx_addsy)->flags & BSF_FUNCTION)
27915 return FALSE;
27916
27917 if (THUMB_IS_FUNC (fixP->fx_addsy)
27918 && fixP->fx_subsy == NULL)
27919 return FALSE;
27920
27921 /* We need the symbol name for the VTABLE entries. */
27922 if ( fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
27923 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
27924 return FALSE;
27925
27926 /* Don't allow symbols to be discarded on GOT related relocs. */
27927 if (fixP->fx_r_type == BFD_RELOC_ARM_PLT32
27928 || fixP->fx_r_type == BFD_RELOC_ARM_GOT32
27929 || fixP->fx_r_type == BFD_RELOC_ARM_GOTOFF
27930 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_GD32
27931 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_GD32_FDPIC
27932 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LE32
27933 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_IE32
27934 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_IE32_FDPIC
27935 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDM32
27936 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDM32_FDPIC
27937 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDO32
27938 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_GOTDESC
27939 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_CALL
27940 || fixP->fx_r_type == BFD_RELOC_ARM_THM_TLS_CALL
27941 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_DESCSEQ
27942 || fixP->fx_r_type == BFD_RELOC_ARM_THM_TLS_DESCSEQ
27943 || fixP->fx_r_type == BFD_RELOC_ARM_TARGET2)
27944 return FALSE;
27945
27946 /* Similarly for group relocations. */
27947 if ((fixP->fx_r_type >= BFD_RELOC_ARM_ALU_PC_G0_NC
27948 && fixP->fx_r_type <= BFD_RELOC_ARM_LDC_SB_G2)
27949 || fixP->fx_r_type == BFD_RELOC_ARM_LDR_PC_G0)
27950 return FALSE;
27951
27952 /* MOVW/MOVT REL relocations have limited offsets, so keep the symbols. */
27953 if (fixP->fx_r_type == BFD_RELOC_ARM_MOVW
27954 || fixP->fx_r_type == BFD_RELOC_ARM_MOVT
27955 || fixP->fx_r_type == BFD_RELOC_ARM_MOVW_PCREL
27956 || fixP->fx_r_type == BFD_RELOC_ARM_MOVT_PCREL
27957 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW
27958 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT
27959 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW_PCREL
27960 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT_PCREL)
27961 return FALSE;
27962
27963 /* BFD_RELOC_ARM_THUMB_ALU_ABS_Gx_NC relocations have VERY limited
27964 offsets, so keep these symbols. */
27965 if (fixP->fx_r_type >= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
27966 && fixP->fx_r_type <= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC)
27967 return FALSE;
27968
27969 return TRUE;
27970 }
27971 #endif /* defined (OBJ_ELF) || defined (OBJ_COFF) */
27972
27973 #ifdef OBJ_ELF
27974 const char *
27975 elf32_arm_target_format (void)
27976 {
27977 #ifdef TE_SYMBIAN
27978 return (target_big_endian
27979 ? "elf32-bigarm-symbian"
27980 : "elf32-littlearm-symbian");
27981 #elif defined (TE_VXWORKS)
27982 return (target_big_endian
27983 ? "elf32-bigarm-vxworks"
27984 : "elf32-littlearm-vxworks");
27985 #elif defined (TE_NACL)
27986 return (target_big_endian
27987 ? "elf32-bigarm-nacl"
27988 : "elf32-littlearm-nacl");
27989 #else
27990 if (arm_fdpic)
27991 {
27992 if (target_big_endian)
27993 return "elf32-bigarm-fdpic";
27994 else
27995 return "elf32-littlearm-fdpic";
27996 }
27997 else
27998 {
27999 if (target_big_endian)
28000 return "elf32-bigarm";
28001 else
28002 return "elf32-littlearm";
28003 }
28004 #endif
28005 }
28006
28007 void
28008 armelf_frob_symbol (symbolS * symp,
28009 int * puntp)
28010 {
28011 elf_frob_symbol (symp, puntp);
28012 }
28013 #endif
28014
28015 /* MD interface: Finalization. */
28016
28017 void
28018 arm_cleanup (void)
28019 {
28020 literal_pool * pool;
28021
28022 /* Ensure that all the predication blocks are properly closed. */
28023 check_pred_blocks_finished ();
28024
28025 for (pool = list_of_pools; pool; pool = pool->next)
28026 {
28027 /* Put it at the end of the relevant section. */
28028 subseg_set (pool->section, pool->sub_section);
28029 #ifdef OBJ_ELF
28030 arm_elf_change_section ();
28031 #endif
28032 s_ltorg (0);
28033 }
28034 }
28035
28036 #ifdef OBJ_ELF
28037 /* Remove any excess mapping symbols generated for alignment frags in
28038 SEC. We may have created a mapping symbol before a zero byte
28039 alignment; remove it if there's a mapping symbol after the
28040 alignment. */
28041 static void
28042 check_mapping_symbols (bfd *abfd ATTRIBUTE_UNUSED, asection *sec,
28043 void *dummy ATTRIBUTE_UNUSED)
28044 {
28045 segment_info_type *seginfo = seg_info (sec);
28046 fragS *fragp;
28047
28048 if (seginfo == NULL || seginfo->frchainP == NULL)
28049 return;
28050
28051 for (fragp = seginfo->frchainP->frch_root;
28052 fragp != NULL;
28053 fragp = fragp->fr_next)
28054 {
28055 symbolS *sym = fragp->tc_frag_data.last_map;
28056 fragS *next = fragp->fr_next;
28057
28058 /* Variable-sized frags have been converted to fixed size by
28059 this point. But if this was variable-sized to start with,
28060 there will be a fixed-size frag after it. So don't handle
28061 next == NULL. */
28062 if (sym == NULL || next == NULL)
28063 continue;
28064
28065 if (S_GET_VALUE (sym) < next->fr_address)
28066 /* Not at the end of this frag. */
28067 continue;
28068 know (S_GET_VALUE (sym) == next->fr_address);
28069
28070 do
28071 {
28072 if (next->tc_frag_data.first_map != NULL)
28073 {
28074 /* Next frag starts with a mapping symbol. Discard this
28075 one. */
28076 symbol_remove (sym, &symbol_rootP, &symbol_lastP);
28077 break;
28078 }
28079
28080 if (next->fr_next == NULL)
28081 {
28082 /* This mapping symbol is at the end of the section. Discard
28083 it. */
28084 know (next->fr_fix == 0 && next->fr_var == 0);
28085 symbol_remove (sym, &symbol_rootP, &symbol_lastP);
28086 break;
28087 }
28088
28089 /* As long as we have empty frags without any mapping symbols,
28090 keep looking. */
28091 /* If the next frag is non-empty and does not start with a
28092 mapping symbol, then this mapping symbol is required. */
28093 if (next->fr_address != next->fr_next->fr_address)
28094 break;
28095
28096 next = next->fr_next;
28097 }
28098 while (next != NULL);
28099 }
28100 }
28101 #endif
28102
28103 /* Adjust the symbol table. This marks Thumb symbols as distinct from
28104 ARM ones. */
28105
28106 void
28107 arm_adjust_symtab (void)
28108 {
28109 #ifdef OBJ_COFF
28110 symbolS * sym;
28111
28112 for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym))
28113 {
28114 if (ARM_IS_THUMB (sym))
28115 {
28116 if (THUMB_IS_FUNC (sym))
28117 {
28118 /* Mark the symbol as a Thumb function. */
28119 if ( S_GET_STORAGE_CLASS (sym) == C_STAT
28120 || S_GET_STORAGE_CLASS (sym) == C_LABEL) /* This can happen! */
28121 S_SET_STORAGE_CLASS (sym, C_THUMBSTATFUNC);
28122
28123 else if (S_GET_STORAGE_CLASS (sym) == C_EXT)
28124 S_SET_STORAGE_CLASS (sym, C_THUMBEXTFUNC);
28125 else
28126 as_bad (_("%s: unexpected function type: %d"),
28127 S_GET_NAME (sym), S_GET_STORAGE_CLASS (sym));
28128 }
28129 else switch (S_GET_STORAGE_CLASS (sym))
28130 {
28131 case C_EXT:
28132 S_SET_STORAGE_CLASS (sym, C_THUMBEXT);
28133 break;
28134 case C_STAT:
28135 S_SET_STORAGE_CLASS (sym, C_THUMBSTAT);
28136 break;
28137 case C_LABEL:
28138 S_SET_STORAGE_CLASS (sym, C_THUMBLABEL);
28139 break;
28140 default:
28141 /* Do nothing. */
28142 break;
28143 }
28144 }
28145
28146 if (ARM_IS_INTERWORK (sym))
28147 coffsymbol (symbol_get_bfdsym (sym))->native->u.syment.n_flags = 0xFF;
28148 }
28149 #endif
28150 #ifdef OBJ_ELF
28151 symbolS * sym;
28152 char bind;
28153
28154 for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym))
28155 {
28156 if (ARM_IS_THUMB (sym))
28157 {
28158 elf_symbol_type * elf_sym;
28159
28160 elf_sym = elf_symbol (symbol_get_bfdsym (sym));
28161 bind = ELF_ST_BIND (elf_sym->internal_elf_sym.st_info);
28162
28163 if (! bfd_is_arm_special_symbol_name (elf_sym->symbol.name,
28164 BFD_ARM_SPECIAL_SYM_TYPE_ANY))
28165 {
28166 /* If it's a .thumb_func, declare it as so,
28167 otherwise tag label as .code 16. */
28168 if (THUMB_IS_FUNC (sym))
28169 ARM_SET_SYM_BRANCH_TYPE (elf_sym->internal_elf_sym.st_target_internal,
28170 ST_BRANCH_TO_THUMB);
28171 else if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
28172 elf_sym->internal_elf_sym.st_info =
28173 ELF_ST_INFO (bind, STT_ARM_16BIT);
28174 }
28175 }
28176 }
28177
28178 /* Remove any overlapping mapping symbols generated by alignment frags. */
28179 bfd_map_over_sections (stdoutput, check_mapping_symbols, (char *) 0);
28180 /* Now do generic ELF adjustments. */
28181 elf_adjust_symtab ();
28182 #endif
28183 }
28184
28185 /* MD interface: Initialization. */
28186
28187 static void
28188 set_constant_flonums (void)
28189 {
28190 int i;
28191
28192 for (i = 0; i < NUM_FLOAT_VALS; i++)
28193 if (atof_ieee ((char *) fp_const[i], 'x', fp_values[i]) == NULL)
28194 abort ();
28195 }
28196
28197 /* Auto-select Thumb mode if it's the only available instruction set for the
28198 given architecture. */
28199
28200 static void
28201 autoselect_thumb_from_cpu_variant (void)
28202 {
28203 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
28204 opcode_select (16);
28205 }
28206
28207 void
28208 md_begin (void)
28209 {
28210 unsigned mach;
28211 unsigned int i;
28212
28213 if ( (arm_ops_hsh = hash_new ()) == NULL
28214 || (arm_cond_hsh = hash_new ()) == NULL
28215 || (arm_vcond_hsh = hash_new ()) == NULL
28216 || (arm_shift_hsh = hash_new ()) == NULL
28217 || (arm_psr_hsh = hash_new ()) == NULL
28218 || (arm_v7m_psr_hsh = hash_new ()) == NULL
28219 || (arm_reg_hsh = hash_new ()) == NULL
28220 || (arm_reloc_hsh = hash_new ()) == NULL
28221 || (arm_barrier_opt_hsh = hash_new ()) == NULL)
28222 as_fatal (_("virtual memory exhausted"));
28223
28224 for (i = 0; i < sizeof (insns) / sizeof (struct asm_opcode); i++)
28225 hash_insert (arm_ops_hsh, insns[i].template_name, (void *) (insns + i));
28226 for (i = 0; i < sizeof (conds) / sizeof (struct asm_cond); i++)
28227 hash_insert (arm_cond_hsh, conds[i].template_name, (void *) (conds + i));
28228 for (i = 0; i < sizeof (vconds) / sizeof (struct asm_cond); i++)
28229 hash_insert (arm_vcond_hsh, vconds[i].template_name, (void *) (vconds + i));
28230 for (i = 0; i < sizeof (shift_names) / sizeof (struct asm_shift_name); i++)
28231 hash_insert (arm_shift_hsh, shift_names[i].name, (void *) (shift_names + i));
28232 for (i = 0; i < sizeof (psrs) / sizeof (struct asm_psr); i++)
28233 hash_insert (arm_psr_hsh, psrs[i].template_name, (void *) (psrs + i));
28234 for (i = 0; i < sizeof (v7m_psrs) / sizeof (struct asm_psr); i++)
28235 hash_insert (arm_v7m_psr_hsh, v7m_psrs[i].template_name,
28236 (void *) (v7m_psrs + i));
28237 for (i = 0; i < sizeof (reg_names) / sizeof (struct reg_entry); i++)
28238 hash_insert (arm_reg_hsh, reg_names[i].name, (void *) (reg_names + i));
28239 for (i = 0;
28240 i < sizeof (barrier_opt_names) / sizeof (struct asm_barrier_opt);
28241 i++)
28242 hash_insert (arm_barrier_opt_hsh, barrier_opt_names[i].template_name,
28243 (void *) (barrier_opt_names + i));
28244 #ifdef OBJ_ELF
28245 for (i = 0; i < ARRAY_SIZE (reloc_names); i++)
28246 {
28247 struct reloc_entry * entry = reloc_names + i;
28248
28249 if (arm_is_eabi() && entry->reloc == BFD_RELOC_ARM_PLT32)
28250 /* This makes encode_branch() use the EABI versions of this relocation. */
28251 entry->reloc = BFD_RELOC_UNUSED;
28252
28253 hash_insert (arm_reloc_hsh, entry->name, (void *) entry);
28254 }
28255 #endif
28256
28257 set_constant_flonums ();
28258
28259 /* Set the cpu variant based on the command-line options. We prefer
28260 -mcpu= over -march= if both are set (as for GCC); and we prefer
28261 -mfpu= over any other way of setting the floating point unit.
28262 Use of legacy options with new options are faulted. */
28263 if (legacy_cpu)
28264 {
28265 if (mcpu_cpu_opt || march_cpu_opt)
28266 as_bad (_("use of old and new-style options to set CPU type"));
28267
28268 selected_arch = *legacy_cpu;
28269 }
28270 else if (mcpu_cpu_opt)
28271 {
28272 selected_arch = *mcpu_cpu_opt;
28273 selected_ext = *mcpu_ext_opt;
28274 }
28275 else if (march_cpu_opt)
28276 {
28277 selected_arch = *march_cpu_opt;
28278 selected_ext = *march_ext_opt;
28279 }
28280 ARM_MERGE_FEATURE_SETS (selected_cpu, selected_arch, selected_ext);
28281
28282 if (legacy_fpu)
28283 {
28284 if (mfpu_opt)
28285 as_bad (_("use of old and new-style options to set FPU type"));
28286
28287 selected_fpu = *legacy_fpu;
28288 }
28289 else if (mfpu_opt)
28290 selected_fpu = *mfpu_opt;
28291 else
28292 {
28293 #if !(defined (EABI_DEFAULT) || defined (TE_LINUX) \
28294 || defined (TE_NetBSD) || defined (TE_VXWORKS))
28295 /* Some environments specify a default FPU. If they don't, infer it
28296 from the processor. */
28297 if (mcpu_fpu_opt)
28298 selected_fpu = *mcpu_fpu_opt;
28299 else if (march_fpu_opt)
28300 selected_fpu = *march_fpu_opt;
28301 #else
28302 selected_fpu = fpu_default;
28303 #endif
28304 }
28305
28306 if (ARM_FEATURE_ZERO (selected_fpu))
28307 {
28308 if (!no_cpu_selected ())
28309 selected_fpu = fpu_default;
28310 else
28311 selected_fpu = fpu_arch_fpa;
28312 }
28313
28314 #ifdef CPU_DEFAULT
28315 if (ARM_FEATURE_ZERO (selected_arch))
28316 {
28317 selected_arch = cpu_default;
28318 selected_cpu = selected_arch;
28319 }
28320 ARM_MERGE_FEATURE_SETS (cpu_variant, selected_cpu, selected_fpu);
28321 #else
28322 /* Autodection of feature mode: allow all features in cpu_variant but leave
28323 selected_cpu unset. It will be set in aeabi_set_public_attributes ()
28324 after all instruction have been processed and we can decide what CPU
28325 should be selected. */
28326 if (ARM_FEATURE_ZERO (selected_arch))
28327 ARM_MERGE_FEATURE_SETS (cpu_variant, arm_arch_any, selected_fpu);
28328 else
28329 ARM_MERGE_FEATURE_SETS (cpu_variant, selected_cpu, selected_fpu);
28330 #endif
28331
28332 autoselect_thumb_from_cpu_variant ();
28333
28334 arm_arch_used = thumb_arch_used = arm_arch_none;
28335
28336 #if defined OBJ_COFF || defined OBJ_ELF
28337 {
28338 unsigned int flags = 0;
28339
28340 #if defined OBJ_ELF
28341 flags = meabi_flags;
28342
28343 switch (meabi_flags)
28344 {
28345 case EF_ARM_EABI_UNKNOWN:
28346 #endif
28347 /* Set the flags in the private structure. */
28348 if (uses_apcs_26) flags |= F_APCS26;
28349 if (support_interwork) flags |= F_INTERWORK;
28350 if (uses_apcs_float) flags |= F_APCS_FLOAT;
28351 if (pic_code) flags |= F_PIC;
28352 if (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_any_hard))
28353 flags |= F_SOFT_FLOAT;
28354
28355 switch (mfloat_abi_opt)
28356 {
28357 case ARM_FLOAT_ABI_SOFT:
28358 case ARM_FLOAT_ABI_SOFTFP:
28359 flags |= F_SOFT_FLOAT;
28360 break;
28361
28362 case ARM_FLOAT_ABI_HARD:
28363 if (flags & F_SOFT_FLOAT)
28364 as_bad (_("hard-float conflicts with specified fpu"));
28365 break;
28366 }
28367
28368 /* Using pure-endian doubles (even if soft-float). */
28369 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_endian_pure))
28370 flags |= F_VFP_FLOAT;
28371
28372 #if defined OBJ_ELF
28373 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_arch_maverick))
28374 flags |= EF_ARM_MAVERICK_FLOAT;
28375 break;
28376
28377 case EF_ARM_EABI_VER4:
28378 case EF_ARM_EABI_VER5:
28379 /* No additional flags to set. */
28380 break;
28381
28382 default:
28383 abort ();
28384 }
28385 #endif
28386 bfd_set_private_flags (stdoutput, flags);
28387
28388 /* We have run out flags in the COFF header to encode the
28389 status of ATPCS support, so instead we create a dummy,
28390 empty, debug section called .arm.atpcs. */
28391 if (atpcs)
28392 {
28393 asection * sec;
28394
28395 sec = bfd_make_section (stdoutput, ".arm.atpcs");
28396
28397 if (sec != NULL)
28398 {
28399 bfd_set_section_flags
28400 (stdoutput, sec, SEC_READONLY | SEC_DEBUGGING /* | SEC_HAS_CONTENTS */);
28401 bfd_set_section_size (stdoutput, sec, 0);
28402 bfd_set_section_contents (stdoutput, sec, NULL, 0, 0);
28403 }
28404 }
28405 }
28406 #endif
28407
28408 /* Record the CPU type as well. */
28409 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2))
28410 mach = bfd_mach_arm_iWMMXt2;
28411 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt))
28412 mach = bfd_mach_arm_iWMMXt;
28413 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_xscale))
28414 mach = bfd_mach_arm_XScale;
28415 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_maverick))
28416 mach = bfd_mach_arm_ep9312;
28417 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v5e))
28418 mach = bfd_mach_arm_5TE;
28419 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v5))
28420 {
28421 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
28422 mach = bfd_mach_arm_5T;
28423 else
28424 mach = bfd_mach_arm_5;
28425 }
28426 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4))
28427 {
28428 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
28429 mach = bfd_mach_arm_4T;
28430 else
28431 mach = bfd_mach_arm_4;
28432 }
28433 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v3m))
28434 mach = bfd_mach_arm_3M;
28435 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v3))
28436 mach = bfd_mach_arm_3;
28437 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v2s))
28438 mach = bfd_mach_arm_2a;
28439 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v2))
28440 mach = bfd_mach_arm_2;
28441 else
28442 mach = bfd_mach_arm_unknown;
28443
28444 bfd_set_arch_mach (stdoutput, TARGET_ARCH, mach);
28445 }
28446
28447 /* Command line processing. */
28448
28449 /* md_parse_option
28450 Invocation line includes a switch not recognized by the base assembler.
28451 See if it's a processor-specific option.
28452
28453 This routine is somewhat complicated by the need for backwards
28454 compatibility (since older releases of gcc can't be changed).
28455 The new options try to make the interface as compatible as
28456 possible with GCC.
28457
28458 New options (supported) are:
28459
28460 -mcpu=<cpu name> Assemble for selected processor
28461 -march=<architecture name> Assemble for selected architecture
28462 -mfpu=<fpu architecture> Assemble for selected FPU.
28463 -EB/-mbig-endian Big-endian
28464 -EL/-mlittle-endian Little-endian
28465 -k Generate PIC code
28466 -mthumb Start in Thumb mode
28467 -mthumb-interwork Code supports ARM/Thumb interworking
28468
28469 -m[no-]warn-deprecated Warn about deprecated features
28470 -m[no-]warn-syms Warn when symbols match instructions
28471
28472 For now we will also provide support for:
28473
28474 -mapcs-32 32-bit Program counter
28475 -mapcs-26 26-bit Program counter
28476 -macps-float Floats passed in FP registers
28477 -mapcs-reentrant Reentrant code
28478 -matpcs
28479 (sometime these will probably be replaced with -mapcs=<list of options>
28480 and -matpcs=<list of options>)
28481
28482 The remaining options are only supported for back-wards compatibility.
28483 Cpu variants, the arm part is optional:
28484 -m[arm]1 Currently not supported.
28485 -m[arm]2, -m[arm]250 Arm 2 and Arm 250 processor
28486 -m[arm]3 Arm 3 processor
28487 -m[arm]6[xx], Arm 6 processors
28488 -m[arm]7[xx][t][[d]m] Arm 7 processors
28489 -m[arm]8[10] Arm 8 processors
28490 -m[arm]9[20][tdmi] Arm 9 processors
28491 -mstrongarm[110[0]] StrongARM processors
28492 -mxscale XScale processors
28493 -m[arm]v[2345[t[e]]] Arm architectures
28494 -mall All (except the ARM1)
28495 FP variants:
28496 -mfpa10, -mfpa11 FPA10 and 11 co-processor instructions
28497 -mfpe-old (No float load/store multiples)
28498 -mvfpxd VFP Single precision
28499 -mvfp All VFP
28500 -mno-fpu Disable all floating point instructions
28501
28502 The following CPU names are recognized:
28503 arm1, arm2, arm250, arm3, arm6, arm600, arm610, arm620,
28504 arm7, arm7m, arm7d, arm7dm, arm7di, arm7dmi, arm70, arm700,
28505 arm700i, arm710 arm710t, arm720, arm720t, arm740t, arm710c,
28506 arm7100, arm7500, arm7500fe, arm7tdmi, arm8, arm810, arm9,
28507 arm920, arm920t, arm940t, arm946, arm966, arm9tdmi, arm9e,
28508 arm10t arm10e, arm1020t, arm1020e, arm10200e,
28509 strongarm, strongarm110, strongarm1100, strongarm1110, xscale.
28510
28511 */
28512
28513 const char * md_shortopts = "m:k";
28514
28515 #ifdef ARM_BI_ENDIAN
28516 #define OPTION_EB (OPTION_MD_BASE + 0)
28517 #define OPTION_EL (OPTION_MD_BASE + 1)
28518 #else
28519 #if TARGET_BYTES_BIG_ENDIAN
28520 #define OPTION_EB (OPTION_MD_BASE + 0)
28521 #else
28522 #define OPTION_EL (OPTION_MD_BASE + 1)
28523 #endif
28524 #endif
28525 #define OPTION_FIX_V4BX (OPTION_MD_BASE + 2)
28526 #define OPTION_FDPIC (OPTION_MD_BASE + 3)
28527
28528 struct option md_longopts[] =
28529 {
28530 #ifdef OPTION_EB
28531 {"EB", no_argument, NULL, OPTION_EB},
28532 #endif
28533 #ifdef OPTION_EL
28534 {"EL", no_argument, NULL, OPTION_EL},
28535 #endif
28536 {"fix-v4bx", no_argument, NULL, OPTION_FIX_V4BX},
28537 #ifdef OBJ_ELF
28538 {"fdpic", no_argument, NULL, OPTION_FDPIC},
28539 #endif
28540 {NULL, no_argument, NULL, 0}
28541 };
28542
28543 size_t md_longopts_size = sizeof (md_longopts);
28544
28545 struct arm_option_table
28546 {
28547 const char * option; /* Option name to match. */
28548 const char * help; /* Help information. */
28549 int * var; /* Variable to change. */
28550 int value; /* What to change it to. */
28551 const char * deprecated; /* If non-null, print this message. */
28552 };
28553
28554 struct arm_option_table arm_opts[] =
28555 {
28556 {"k", N_("generate PIC code"), &pic_code, 1, NULL},
28557 {"mthumb", N_("assemble Thumb code"), &thumb_mode, 1, NULL},
28558 {"mthumb-interwork", N_("support ARM/Thumb interworking"),
28559 &support_interwork, 1, NULL},
28560 {"mapcs-32", N_("code uses 32-bit program counter"), &uses_apcs_26, 0, NULL},
28561 {"mapcs-26", N_("code uses 26-bit program counter"), &uses_apcs_26, 1, NULL},
28562 {"mapcs-float", N_("floating point args are in fp regs"), &uses_apcs_float,
28563 1, NULL},
28564 {"mapcs-reentrant", N_("re-entrant code"), &pic_code, 1, NULL},
28565 {"matpcs", N_("code is ATPCS conformant"), &atpcs, 1, NULL},
28566 {"mbig-endian", N_("assemble for big-endian"), &target_big_endian, 1, NULL},
28567 {"mlittle-endian", N_("assemble for little-endian"), &target_big_endian, 0,
28568 NULL},
28569
28570 /* These are recognized by the assembler, but have no affect on code. */
28571 {"mapcs-frame", N_("use frame pointer"), NULL, 0, NULL},
28572 {"mapcs-stack-check", N_("use stack size checking"), NULL, 0, NULL},
28573
28574 {"mwarn-deprecated", NULL, &warn_on_deprecated, 1, NULL},
28575 {"mno-warn-deprecated", N_("do not warn on use of deprecated feature"),
28576 &warn_on_deprecated, 0, NULL},
28577 {"mwarn-syms", N_("warn about symbols that match instruction names [default]"), (int *) (& flag_warn_syms), TRUE, NULL},
28578 {"mno-warn-syms", N_("disable warnings about symobls that match instructions"), (int *) (& flag_warn_syms), FALSE, NULL},
28579 {NULL, NULL, NULL, 0, NULL}
28580 };
28581
28582 struct arm_legacy_option_table
28583 {
28584 const char * option; /* Option name to match. */
28585 const arm_feature_set ** var; /* Variable to change. */
28586 const arm_feature_set value; /* What to change it to. */
28587 const char * deprecated; /* If non-null, print this message. */
28588 };
28589
28590 const struct arm_legacy_option_table arm_legacy_opts[] =
28591 {
28592 /* DON'T add any new processors to this list -- we want the whole list
28593 to go away... Add them to the processors table instead. */
28594 {"marm1", &legacy_cpu, ARM_ARCH_V1, N_("use -mcpu=arm1")},
28595 {"m1", &legacy_cpu, ARM_ARCH_V1, N_("use -mcpu=arm1")},
28596 {"marm2", &legacy_cpu, ARM_ARCH_V2, N_("use -mcpu=arm2")},
28597 {"m2", &legacy_cpu, ARM_ARCH_V2, N_("use -mcpu=arm2")},
28598 {"marm250", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm250")},
28599 {"m250", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm250")},
28600 {"marm3", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm3")},
28601 {"m3", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm3")},
28602 {"marm6", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm6")},
28603 {"m6", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm6")},
28604 {"marm600", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm600")},
28605 {"m600", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm600")},
28606 {"marm610", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm610")},
28607 {"m610", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm610")},
28608 {"marm620", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm620")},
28609 {"m620", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm620")},
28610 {"marm7", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7")},
28611 {"m7", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7")},
28612 {"marm70", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm70")},
28613 {"m70", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm70")},
28614 {"marm700", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700")},
28615 {"m700", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700")},
28616 {"marm700i", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700i")},
28617 {"m700i", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700i")},
28618 {"marm710", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710")},
28619 {"m710", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710")},
28620 {"marm710c", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710c")},
28621 {"m710c", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710c")},
28622 {"marm720", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm720")},
28623 {"m720", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm720")},
28624 {"marm7d", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7d")},
28625 {"m7d", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7d")},
28626 {"marm7di", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7di")},
28627 {"m7di", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7di")},
28628 {"marm7m", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7m")},
28629 {"m7m", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7m")},
28630 {"marm7dm", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dm")},
28631 {"m7dm", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dm")},
28632 {"marm7dmi", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dmi")},
28633 {"m7dmi", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dmi")},
28634 {"marm7100", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7100")},
28635 {"m7100", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7100")},
28636 {"marm7500", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500")},
28637 {"m7500", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500")},
28638 {"marm7500fe", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500fe")},
28639 {"m7500fe", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500fe")},
28640 {"marm7t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
28641 {"m7t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
28642 {"marm7tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
28643 {"m7tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
28644 {"marm710t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm710t")},
28645 {"m710t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm710t")},
28646 {"marm720t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm720t")},
28647 {"m720t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm720t")},
28648 {"marm740t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm740t")},
28649 {"m740t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm740t")},
28650 {"marm8", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm8")},
28651 {"m8", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm8")},
28652 {"marm810", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm810")},
28653 {"m810", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm810")},
28654 {"marm9", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9")},
28655 {"m9", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9")},
28656 {"marm9tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9tdmi")},
28657 {"m9tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9tdmi")},
28658 {"marm920", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm920")},
28659 {"m920", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm920")},
28660 {"marm940", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm940")},
28661 {"m940", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm940")},
28662 {"mstrongarm", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=strongarm")},
28663 {"mstrongarm110", &legacy_cpu, ARM_ARCH_V4,
28664 N_("use -mcpu=strongarm110")},
28665 {"mstrongarm1100", &legacy_cpu, ARM_ARCH_V4,
28666 N_("use -mcpu=strongarm1100")},
28667 {"mstrongarm1110", &legacy_cpu, ARM_ARCH_V4,
28668 N_("use -mcpu=strongarm1110")},
28669 {"mxscale", &legacy_cpu, ARM_ARCH_XSCALE, N_("use -mcpu=xscale")},
28670 {"miwmmxt", &legacy_cpu, ARM_ARCH_IWMMXT, N_("use -mcpu=iwmmxt")},
28671 {"mall", &legacy_cpu, ARM_ANY, N_("use -mcpu=all")},
28672
28673 /* Architecture variants -- don't add any more to this list either. */
28674 {"mv2", &legacy_cpu, ARM_ARCH_V2, N_("use -march=armv2")},
28675 {"marmv2", &legacy_cpu, ARM_ARCH_V2, N_("use -march=armv2")},
28676 {"mv2a", &legacy_cpu, ARM_ARCH_V2S, N_("use -march=armv2a")},
28677 {"marmv2a", &legacy_cpu, ARM_ARCH_V2S, N_("use -march=armv2a")},
28678 {"mv3", &legacy_cpu, ARM_ARCH_V3, N_("use -march=armv3")},
28679 {"marmv3", &legacy_cpu, ARM_ARCH_V3, N_("use -march=armv3")},
28680 {"mv3m", &legacy_cpu, ARM_ARCH_V3M, N_("use -march=armv3m")},
28681 {"marmv3m", &legacy_cpu, ARM_ARCH_V3M, N_("use -march=armv3m")},
28682 {"mv4", &legacy_cpu, ARM_ARCH_V4, N_("use -march=armv4")},
28683 {"marmv4", &legacy_cpu, ARM_ARCH_V4, N_("use -march=armv4")},
28684 {"mv4t", &legacy_cpu, ARM_ARCH_V4T, N_("use -march=armv4t")},
28685 {"marmv4t", &legacy_cpu, ARM_ARCH_V4T, N_("use -march=armv4t")},
28686 {"mv5", &legacy_cpu, ARM_ARCH_V5, N_("use -march=armv5")},
28687 {"marmv5", &legacy_cpu, ARM_ARCH_V5, N_("use -march=armv5")},
28688 {"mv5t", &legacy_cpu, ARM_ARCH_V5T, N_("use -march=armv5t")},
28689 {"marmv5t", &legacy_cpu, ARM_ARCH_V5T, N_("use -march=armv5t")},
28690 {"mv5e", &legacy_cpu, ARM_ARCH_V5TE, N_("use -march=armv5te")},
28691 {"marmv5e", &legacy_cpu, ARM_ARCH_V5TE, N_("use -march=armv5te")},
28692
28693 /* Floating point variants -- don't add any more to this list either. */
28694 {"mfpe-old", &legacy_fpu, FPU_ARCH_FPE, N_("use -mfpu=fpe")},
28695 {"mfpa10", &legacy_fpu, FPU_ARCH_FPA, N_("use -mfpu=fpa10")},
28696 {"mfpa11", &legacy_fpu, FPU_ARCH_FPA, N_("use -mfpu=fpa11")},
28697 {"mno-fpu", &legacy_fpu, ARM_ARCH_NONE,
28698 N_("use either -mfpu=softfpa or -mfpu=softvfp")},
28699
28700 {NULL, NULL, ARM_ARCH_NONE, NULL}
28701 };
28702
28703 struct arm_cpu_option_table
28704 {
28705 const char * name;
28706 size_t name_len;
28707 const arm_feature_set value;
28708 const arm_feature_set ext;
28709 /* For some CPUs we assume an FPU unless the user explicitly sets
28710 -mfpu=... */
28711 const arm_feature_set default_fpu;
28712 /* The canonical name of the CPU, or NULL to use NAME converted to upper
28713 case. */
28714 const char * canonical_name;
28715 };
28716
28717 /* This list should, at a minimum, contain all the cpu names
28718 recognized by GCC. */
28719 #define ARM_CPU_OPT(N, CN, V, E, DF) { N, sizeof (N) - 1, V, E, DF, CN }
28720
28721 static const struct arm_cpu_option_table arm_cpus[] =
28722 {
28723 ARM_CPU_OPT ("all", NULL, ARM_ANY,
28724 ARM_ARCH_NONE,
28725 FPU_ARCH_FPA),
28726 ARM_CPU_OPT ("arm1", NULL, ARM_ARCH_V1,
28727 ARM_ARCH_NONE,
28728 FPU_ARCH_FPA),
28729 ARM_CPU_OPT ("arm2", NULL, ARM_ARCH_V2,
28730 ARM_ARCH_NONE,
28731 FPU_ARCH_FPA),
28732 ARM_CPU_OPT ("arm250", NULL, ARM_ARCH_V2S,
28733 ARM_ARCH_NONE,
28734 FPU_ARCH_FPA),
28735 ARM_CPU_OPT ("arm3", NULL, ARM_ARCH_V2S,
28736 ARM_ARCH_NONE,
28737 FPU_ARCH_FPA),
28738 ARM_CPU_OPT ("arm6", NULL, ARM_ARCH_V3,
28739 ARM_ARCH_NONE,
28740 FPU_ARCH_FPA),
28741 ARM_CPU_OPT ("arm60", NULL, ARM_ARCH_V3,
28742 ARM_ARCH_NONE,
28743 FPU_ARCH_FPA),
28744 ARM_CPU_OPT ("arm600", NULL, ARM_ARCH_V3,
28745 ARM_ARCH_NONE,
28746 FPU_ARCH_FPA),
28747 ARM_CPU_OPT ("arm610", NULL, ARM_ARCH_V3,
28748 ARM_ARCH_NONE,
28749 FPU_ARCH_FPA),
28750 ARM_CPU_OPT ("arm620", NULL, ARM_ARCH_V3,
28751 ARM_ARCH_NONE,
28752 FPU_ARCH_FPA),
28753 ARM_CPU_OPT ("arm7", NULL, ARM_ARCH_V3,
28754 ARM_ARCH_NONE,
28755 FPU_ARCH_FPA),
28756 ARM_CPU_OPT ("arm7m", NULL, ARM_ARCH_V3M,
28757 ARM_ARCH_NONE,
28758 FPU_ARCH_FPA),
28759 ARM_CPU_OPT ("arm7d", NULL, ARM_ARCH_V3,
28760 ARM_ARCH_NONE,
28761 FPU_ARCH_FPA),
28762 ARM_CPU_OPT ("arm7dm", NULL, ARM_ARCH_V3M,
28763 ARM_ARCH_NONE,
28764 FPU_ARCH_FPA),
28765 ARM_CPU_OPT ("arm7di", NULL, ARM_ARCH_V3,
28766 ARM_ARCH_NONE,
28767 FPU_ARCH_FPA),
28768 ARM_CPU_OPT ("arm7dmi", NULL, ARM_ARCH_V3M,
28769 ARM_ARCH_NONE,
28770 FPU_ARCH_FPA),
28771 ARM_CPU_OPT ("arm70", NULL, ARM_ARCH_V3,
28772 ARM_ARCH_NONE,
28773 FPU_ARCH_FPA),
28774 ARM_CPU_OPT ("arm700", NULL, ARM_ARCH_V3,
28775 ARM_ARCH_NONE,
28776 FPU_ARCH_FPA),
28777 ARM_CPU_OPT ("arm700i", NULL, ARM_ARCH_V3,
28778 ARM_ARCH_NONE,
28779 FPU_ARCH_FPA),
28780 ARM_CPU_OPT ("arm710", NULL, ARM_ARCH_V3,
28781 ARM_ARCH_NONE,
28782 FPU_ARCH_FPA),
28783 ARM_CPU_OPT ("arm710t", NULL, ARM_ARCH_V4T,
28784 ARM_ARCH_NONE,
28785 FPU_ARCH_FPA),
28786 ARM_CPU_OPT ("arm720", NULL, ARM_ARCH_V3,
28787 ARM_ARCH_NONE,
28788 FPU_ARCH_FPA),
28789 ARM_CPU_OPT ("arm720t", NULL, ARM_ARCH_V4T,
28790 ARM_ARCH_NONE,
28791 FPU_ARCH_FPA),
28792 ARM_CPU_OPT ("arm740t", NULL, ARM_ARCH_V4T,
28793 ARM_ARCH_NONE,
28794 FPU_ARCH_FPA),
28795 ARM_CPU_OPT ("arm710c", NULL, ARM_ARCH_V3,
28796 ARM_ARCH_NONE,
28797 FPU_ARCH_FPA),
28798 ARM_CPU_OPT ("arm7100", NULL, ARM_ARCH_V3,
28799 ARM_ARCH_NONE,
28800 FPU_ARCH_FPA),
28801 ARM_CPU_OPT ("arm7500", NULL, ARM_ARCH_V3,
28802 ARM_ARCH_NONE,
28803 FPU_ARCH_FPA),
28804 ARM_CPU_OPT ("arm7500fe", NULL, ARM_ARCH_V3,
28805 ARM_ARCH_NONE,
28806 FPU_ARCH_FPA),
28807 ARM_CPU_OPT ("arm7t", NULL, ARM_ARCH_V4T,
28808 ARM_ARCH_NONE,
28809 FPU_ARCH_FPA),
28810 ARM_CPU_OPT ("arm7tdmi", NULL, ARM_ARCH_V4T,
28811 ARM_ARCH_NONE,
28812 FPU_ARCH_FPA),
28813 ARM_CPU_OPT ("arm7tdmi-s", NULL, ARM_ARCH_V4T,
28814 ARM_ARCH_NONE,
28815 FPU_ARCH_FPA),
28816 ARM_CPU_OPT ("arm8", NULL, ARM_ARCH_V4,
28817 ARM_ARCH_NONE,
28818 FPU_ARCH_FPA),
28819 ARM_CPU_OPT ("arm810", NULL, ARM_ARCH_V4,
28820 ARM_ARCH_NONE,
28821 FPU_ARCH_FPA),
28822 ARM_CPU_OPT ("strongarm", NULL, ARM_ARCH_V4,
28823 ARM_ARCH_NONE,
28824 FPU_ARCH_FPA),
28825 ARM_CPU_OPT ("strongarm1", NULL, ARM_ARCH_V4,
28826 ARM_ARCH_NONE,
28827 FPU_ARCH_FPA),
28828 ARM_CPU_OPT ("strongarm110", NULL, ARM_ARCH_V4,
28829 ARM_ARCH_NONE,
28830 FPU_ARCH_FPA),
28831 ARM_CPU_OPT ("strongarm1100", NULL, ARM_ARCH_V4,
28832 ARM_ARCH_NONE,
28833 FPU_ARCH_FPA),
28834 ARM_CPU_OPT ("strongarm1110", NULL, ARM_ARCH_V4,
28835 ARM_ARCH_NONE,
28836 FPU_ARCH_FPA),
28837 ARM_CPU_OPT ("arm9", NULL, ARM_ARCH_V4T,
28838 ARM_ARCH_NONE,
28839 FPU_ARCH_FPA),
28840 ARM_CPU_OPT ("arm920", "ARM920T", ARM_ARCH_V4T,
28841 ARM_ARCH_NONE,
28842 FPU_ARCH_FPA),
28843 ARM_CPU_OPT ("arm920t", NULL, ARM_ARCH_V4T,
28844 ARM_ARCH_NONE,
28845 FPU_ARCH_FPA),
28846 ARM_CPU_OPT ("arm922t", NULL, ARM_ARCH_V4T,
28847 ARM_ARCH_NONE,
28848 FPU_ARCH_FPA),
28849 ARM_CPU_OPT ("arm940t", NULL, ARM_ARCH_V4T,
28850 ARM_ARCH_NONE,
28851 FPU_ARCH_FPA),
28852 ARM_CPU_OPT ("arm9tdmi", NULL, ARM_ARCH_V4T,
28853 ARM_ARCH_NONE,
28854 FPU_ARCH_FPA),
28855 ARM_CPU_OPT ("fa526", NULL, ARM_ARCH_V4,
28856 ARM_ARCH_NONE,
28857 FPU_ARCH_FPA),
28858 ARM_CPU_OPT ("fa626", NULL, ARM_ARCH_V4,
28859 ARM_ARCH_NONE,
28860 FPU_ARCH_FPA),
28861
28862 /* For V5 or later processors we default to using VFP; but the user
28863 should really set the FPU type explicitly. */
28864 ARM_CPU_OPT ("arm9e-r0", NULL, ARM_ARCH_V5TExP,
28865 ARM_ARCH_NONE,
28866 FPU_ARCH_VFP_V2),
28867 ARM_CPU_OPT ("arm9e", NULL, ARM_ARCH_V5TE,
28868 ARM_ARCH_NONE,
28869 FPU_ARCH_VFP_V2),
28870 ARM_CPU_OPT ("arm926ej", "ARM926EJ-S", ARM_ARCH_V5TEJ,
28871 ARM_ARCH_NONE,
28872 FPU_ARCH_VFP_V2),
28873 ARM_CPU_OPT ("arm926ejs", "ARM926EJ-S", ARM_ARCH_V5TEJ,
28874 ARM_ARCH_NONE,
28875 FPU_ARCH_VFP_V2),
28876 ARM_CPU_OPT ("arm926ej-s", NULL, ARM_ARCH_V5TEJ,
28877 ARM_ARCH_NONE,
28878 FPU_ARCH_VFP_V2),
28879 ARM_CPU_OPT ("arm946e-r0", NULL, ARM_ARCH_V5TExP,
28880 ARM_ARCH_NONE,
28881 FPU_ARCH_VFP_V2),
28882 ARM_CPU_OPT ("arm946e", "ARM946E-S", ARM_ARCH_V5TE,
28883 ARM_ARCH_NONE,
28884 FPU_ARCH_VFP_V2),
28885 ARM_CPU_OPT ("arm946e-s", NULL, ARM_ARCH_V5TE,
28886 ARM_ARCH_NONE,
28887 FPU_ARCH_VFP_V2),
28888 ARM_CPU_OPT ("arm966e-r0", NULL, ARM_ARCH_V5TExP,
28889 ARM_ARCH_NONE,
28890 FPU_ARCH_VFP_V2),
28891 ARM_CPU_OPT ("arm966e", "ARM966E-S", ARM_ARCH_V5TE,
28892 ARM_ARCH_NONE,
28893 FPU_ARCH_VFP_V2),
28894 ARM_CPU_OPT ("arm966e-s", NULL, ARM_ARCH_V5TE,
28895 ARM_ARCH_NONE,
28896 FPU_ARCH_VFP_V2),
28897 ARM_CPU_OPT ("arm968e-s", NULL, ARM_ARCH_V5TE,
28898 ARM_ARCH_NONE,
28899 FPU_ARCH_VFP_V2),
28900 ARM_CPU_OPT ("arm10t", NULL, ARM_ARCH_V5T,
28901 ARM_ARCH_NONE,
28902 FPU_ARCH_VFP_V1),
28903 ARM_CPU_OPT ("arm10tdmi", NULL, ARM_ARCH_V5T,
28904 ARM_ARCH_NONE,
28905 FPU_ARCH_VFP_V1),
28906 ARM_CPU_OPT ("arm10e", NULL, ARM_ARCH_V5TE,
28907 ARM_ARCH_NONE,
28908 FPU_ARCH_VFP_V2),
28909 ARM_CPU_OPT ("arm1020", "ARM1020E", ARM_ARCH_V5TE,
28910 ARM_ARCH_NONE,
28911 FPU_ARCH_VFP_V2),
28912 ARM_CPU_OPT ("arm1020t", NULL, ARM_ARCH_V5T,
28913 ARM_ARCH_NONE,
28914 FPU_ARCH_VFP_V1),
28915 ARM_CPU_OPT ("arm1020e", NULL, ARM_ARCH_V5TE,
28916 ARM_ARCH_NONE,
28917 FPU_ARCH_VFP_V2),
28918 ARM_CPU_OPT ("arm1022e", NULL, ARM_ARCH_V5TE,
28919 ARM_ARCH_NONE,
28920 FPU_ARCH_VFP_V2),
28921 ARM_CPU_OPT ("arm1026ejs", "ARM1026EJ-S", ARM_ARCH_V5TEJ,
28922 ARM_ARCH_NONE,
28923 FPU_ARCH_VFP_V2),
28924 ARM_CPU_OPT ("arm1026ej-s", NULL, ARM_ARCH_V5TEJ,
28925 ARM_ARCH_NONE,
28926 FPU_ARCH_VFP_V2),
28927 ARM_CPU_OPT ("fa606te", NULL, ARM_ARCH_V5TE,
28928 ARM_ARCH_NONE,
28929 FPU_ARCH_VFP_V2),
28930 ARM_CPU_OPT ("fa616te", NULL, ARM_ARCH_V5TE,
28931 ARM_ARCH_NONE,
28932 FPU_ARCH_VFP_V2),
28933 ARM_CPU_OPT ("fa626te", NULL, ARM_ARCH_V5TE,
28934 ARM_ARCH_NONE,
28935 FPU_ARCH_VFP_V2),
28936 ARM_CPU_OPT ("fmp626", NULL, ARM_ARCH_V5TE,
28937 ARM_ARCH_NONE,
28938 FPU_ARCH_VFP_V2),
28939 ARM_CPU_OPT ("fa726te", NULL, ARM_ARCH_V5TE,
28940 ARM_ARCH_NONE,
28941 FPU_ARCH_VFP_V2),
28942 ARM_CPU_OPT ("arm1136js", "ARM1136J-S", ARM_ARCH_V6,
28943 ARM_ARCH_NONE,
28944 FPU_NONE),
28945 ARM_CPU_OPT ("arm1136j-s", NULL, ARM_ARCH_V6,
28946 ARM_ARCH_NONE,
28947 FPU_NONE),
28948 ARM_CPU_OPT ("arm1136jfs", "ARM1136JF-S", ARM_ARCH_V6,
28949 ARM_ARCH_NONE,
28950 FPU_ARCH_VFP_V2),
28951 ARM_CPU_OPT ("arm1136jf-s", NULL, ARM_ARCH_V6,
28952 ARM_ARCH_NONE,
28953 FPU_ARCH_VFP_V2),
28954 ARM_CPU_OPT ("mpcore", "MPCore", ARM_ARCH_V6K,
28955 ARM_ARCH_NONE,
28956 FPU_ARCH_VFP_V2),
28957 ARM_CPU_OPT ("mpcorenovfp", "MPCore", ARM_ARCH_V6K,
28958 ARM_ARCH_NONE,
28959 FPU_NONE),
28960 ARM_CPU_OPT ("arm1156t2-s", NULL, ARM_ARCH_V6T2,
28961 ARM_ARCH_NONE,
28962 FPU_NONE),
28963 ARM_CPU_OPT ("arm1156t2f-s", NULL, ARM_ARCH_V6T2,
28964 ARM_ARCH_NONE,
28965 FPU_ARCH_VFP_V2),
28966 ARM_CPU_OPT ("arm1176jz-s", NULL, ARM_ARCH_V6KZ,
28967 ARM_ARCH_NONE,
28968 FPU_NONE),
28969 ARM_CPU_OPT ("arm1176jzf-s", NULL, ARM_ARCH_V6KZ,
28970 ARM_ARCH_NONE,
28971 FPU_ARCH_VFP_V2),
28972 ARM_CPU_OPT ("cortex-a5", "Cortex-A5", ARM_ARCH_V7A,
28973 ARM_FEATURE_CORE_LOW (ARM_EXT_MP | ARM_EXT_SEC),
28974 FPU_NONE),
28975 ARM_CPU_OPT ("cortex-a7", "Cortex-A7", ARM_ARCH_V7VE,
28976 ARM_ARCH_NONE,
28977 FPU_ARCH_NEON_VFP_V4),
28978 ARM_CPU_OPT ("cortex-a8", "Cortex-A8", ARM_ARCH_V7A,
28979 ARM_FEATURE_CORE_LOW (ARM_EXT_SEC),
28980 ARM_FEATURE_COPROC (FPU_VFP_V3 | FPU_NEON_EXT_V1)),
28981 ARM_CPU_OPT ("cortex-a9", "Cortex-A9", ARM_ARCH_V7A,
28982 ARM_FEATURE_CORE_LOW (ARM_EXT_MP | ARM_EXT_SEC),
28983 ARM_FEATURE_COPROC (FPU_VFP_V3 | FPU_NEON_EXT_V1)),
28984 ARM_CPU_OPT ("cortex-a12", "Cortex-A12", ARM_ARCH_V7VE,
28985 ARM_ARCH_NONE,
28986 FPU_ARCH_NEON_VFP_V4),
28987 ARM_CPU_OPT ("cortex-a15", "Cortex-A15", ARM_ARCH_V7VE,
28988 ARM_ARCH_NONE,
28989 FPU_ARCH_NEON_VFP_V4),
28990 ARM_CPU_OPT ("cortex-a17", "Cortex-A17", ARM_ARCH_V7VE,
28991 ARM_ARCH_NONE,
28992 FPU_ARCH_NEON_VFP_V4),
28993 ARM_CPU_OPT ("cortex-a32", "Cortex-A32", ARM_ARCH_V8A,
28994 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
28995 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
28996 ARM_CPU_OPT ("cortex-a35", "Cortex-A35", ARM_ARCH_V8A,
28997 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
28998 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
28999 ARM_CPU_OPT ("cortex-a53", "Cortex-A53", ARM_ARCH_V8A,
29000 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
29001 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
29002 ARM_CPU_OPT ("cortex-a55", "Cortex-A55", ARM_ARCH_V8_2A,
29003 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
29004 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_DOTPROD),
29005 ARM_CPU_OPT ("cortex-a57", "Cortex-A57", ARM_ARCH_V8A,
29006 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
29007 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
29008 ARM_CPU_OPT ("cortex-a72", "Cortex-A72", ARM_ARCH_V8A,
29009 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
29010 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
29011 ARM_CPU_OPT ("cortex-a73", "Cortex-A73", ARM_ARCH_V8A,
29012 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
29013 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
29014 ARM_CPU_OPT ("cortex-a75", "Cortex-A75", ARM_ARCH_V8_2A,
29015 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
29016 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_DOTPROD),
29017 ARM_CPU_OPT ("cortex-a76", "Cortex-A76", ARM_ARCH_V8_2A,
29018 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
29019 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_DOTPROD),
29020 ARM_CPU_OPT ("ares", "Ares", ARM_ARCH_V8_2A,
29021 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
29022 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_DOTPROD),
29023 ARM_CPU_OPT ("cortex-r4", "Cortex-R4", ARM_ARCH_V7R,
29024 ARM_ARCH_NONE,
29025 FPU_NONE),
29026 ARM_CPU_OPT ("cortex-r4f", "Cortex-R4F", ARM_ARCH_V7R,
29027 ARM_ARCH_NONE,
29028 FPU_ARCH_VFP_V3D16),
29029 ARM_CPU_OPT ("cortex-r5", "Cortex-R5", ARM_ARCH_V7R,
29030 ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV),
29031 FPU_NONE),
29032 ARM_CPU_OPT ("cortex-r7", "Cortex-R7", ARM_ARCH_V7R,
29033 ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV),
29034 FPU_ARCH_VFP_V3D16),
29035 ARM_CPU_OPT ("cortex-r8", "Cortex-R8", ARM_ARCH_V7R,
29036 ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV),
29037 FPU_ARCH_VFP_V3D16),
29038 ARM_CPU_OPT ("cortex-r52", "Cortex-R52", ARM_ARCH_V8R,
29039 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
29040 FPU_ARCH_NEON_VFP_ARMV8),
29041 ARM_CPU_OPT ("cortex-m33", "Cortex-M33", ARM_ARCH_V8M_MAIN,
29042 ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP),
29043 FPU_NONE),
29044 ARM_CPU_OPT ("cortex-m23", "Cortex-M23", ARM_ARCH_V8M_BASE,
29045 ARM_ARCH_NONE,
29046 FPU_NONE),
29047 ARM_CPU_OPT ("cortex-m7", "Cortex-M7", ARM_ARCH_V7EM,
29048 ARM_ARCH_NONE,
29049 FPU_NONE),
29050 ARM_CPU_OPT ("cortex-m4", "Cortex-M4", ARM_ARCH_V7EM,
29051 ARM_ARCH_NONE,
29052 FPU_NONE),
29053 ARM_CPU_OPT ("cortex-m3", "Cortex-M3", ARM_ARCH_V7M,
29054 ARM_ARCH_NONE,
29055 FPU_NONE),
29056 ARM_CPU_OPT ("cortex-m1", "Cortex-M1", ARM_ARCH_V6SM,
29057 ARM_ARCH_NONE,
29058 FPU_NONE),
29059 ARM_CPU_OPT ("cortex-m0", "Cortex-M0", ARM_ARCH_V6SM,
29060 ARM_ARCH_NONE,
29061 FPU_NONE),
29062 ARM_CPU_OPT ("cortex-m0plus", "Cortex-M0+", ARM_ARCH_V6SM,
29063 ARM_ARCH_NONE,
29064 FPU_NONE),
29065 ARM_CPU_OPT ("exynos-m1", "Samsung Exynos M1", ARM_ARCH_V8A,
29066 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
29067 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
29068 ARM_CPU_OPT ("neoverse-n1", "Neoverse N1", ARM_ARCH_V8_2A,
29069 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
29070 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_DOTPROD),
29071 /* ??? XSCALE is really an architecture. */
29072 ARM_CPU_OPT ("xscale", NULL, ARM_ARCH_XSCALE,
29073 ARM_ARCH_NONE,
29074 FPU_ARCH_VFP_V2),
29075
29076 /* ??? iwmmxt is not a processor. */
29077 ARM_CPU_OPT ("iwmmxt", NULL, ARM_ARCH_IWMMXT,
29078 ARM_ARCH_NONE,
29079 FPU_ARCH_VFP_V2),
29080 ARM_CPU_OPT ("iwmmxt2", NULL, ARM_ARCH_IWMMXT2,
29081 ARM_ARCH_NONE,
29082 FPU_ARCH_VFP_V2),
29083 ARM_CPU_OPT ("i80200", NULL, ARM_ARCH_XSCALE,
29084 ARM_ARCH_NONE,
29085 FPU_ARCH_VFP_V2),
29086
29087 /* Maverick. */
29088 ARM_CPU_OPT ("ep9312", "ARM920T",
29089 ARM_FEATURE_LOW (ARM_AEXT_V4T, ARM_CEXT_MAVERICK),
29090 ARM_ARCH_NONE, FPU_ARCH_MAVERICK),
29091
29092 /* Marvell processors. */
29093 ARM_CPU_OPT ("marvell-pj4", NULL, ARM_ARCH_V7A,
29094 ARM_FEATURE_CORE_LOW (ARM_EXT_MP | ARM_EXT_SEC),
29095 FPU_ARCH_VFP_V3D16),
29096 ARM_CPU_OPT ("marvell-whitney", NULL, ARM_ARCH_V7A,
29097 ARM_FEATURE_CORE_LOW (ARM_EXT_MP | ARM_EXT_SEC),
29098 FPU_ARCH_NEON_VFP_V4),
29099
29100 /* APM X-Gene family. */
29101 ARM_CPU_OPT ("xgene1", "APM X-Gene 1", ARM_ARCH_V8A,
29102 ARM_ARCH_NONE,
29103 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
29104 ARM_CPU_OPT ("xgene2", "APM X-Gene 2", ARM_ARCH_V8A,
29105 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
29106 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
29107
29108 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE, ARM_ARCH_NONE, NULL }
29109 };
29110 #undef ARM_CPU_OPT
29111
29112 struct arm_ext_table
29113 {
29114 const char * name;
29115 size_t name_len;
29116 const arm_feature_set merge;
29117 const arm_feature_set clear;
29118 };
29119
29120 struct arm_arch_option_table
29121 {
29122 const char * name;
29123 size_t name_len;
29124 const arm_feature_set value;
29125 const arm_feature_set default_fpu;
29126 const struct arm_ext_table * ext_table;
29127 };
29128
29129 /* Used to add support for +E and +noE extension. */
29130 #define ARM_EXT(E, M, C) { E, sizeof (E) - 1, M, C }
29131 /* Used to add support for a +E extension. */
29132 #define ARM_ADD(E, M) { E, sizeof(E) - 1, M, ARM_ARCH_NONE }
29133 /* Used to add support for a +noE extension. */
29134 #define ARM_REMOVE(E, C) { E, sizeof(E) -1, ARM_ARCH_NONE, C }
29135
29136 #define ALL_FP ARM_FEATURE (0, ARM_EXT2_FP16_INST | ARM_EXT2_FP16_FML, \
29137 ~0 & ~FPU_ENDIAN_PURE)
29138
29139 static const struct arm_ext_table armv5te_ext_table[] =
29140 {
29141 ARM_EXT ("fp", FPU_ARCH_VFP_V2, ALL_FP),
29142 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
29143 };
29144
29145 static const struct arm_ext_table armv7_ext_table[] =
29146 {
29147 ARM_EXT ("fp", FPU_ARCH_VFP_V3D16, ALL_FP),
29148 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
29149 };
29150
29151 static const struct arm_ext_table armv7ve_ext_table[] =
29152 {
29153 ARM_EXT ("fp", FPU_ARCH_VFP_V4D16, ALL_FP),
29154 ARM_ADD ("vfpv3-d16", FPU_ARCH_VFP_V3D16),
29155 ARM_ADD ("vfpv3", FPU_ARCH_VFP_V3),
29156 ARM_ADD ("vfpv3-d16-fp16", FPU_ARCH_VFP_V3D16_FP16),
29157 ARM_ADD ("vfpv3-fp16", FPU_ARCH_VFP_V3_FP16),
29158 ARM_ADD ("vfpv4-d16", FPU_ARCH_VFP_V4D16), /* Alias for +fp. */
29159 ARM_ADD ("vfpv4", FPU_ARCH_VFP_V4),
29160
29161 ARM_EXT ("simd", FPU_ARCH_NEON_VFP_V4,
29162 ARM_FEATURE_COPROC (FPU_NEON_EXT_V1 | FPU_NEON_EXT_FMA)),
29163
29164 /* Aliases for +simd. */
29165 ARM_ADD ("neon-vfpv4", FPU_ARCH_NEON_VFP_V4),
29166
29167 ARM_ADD ("neon", FPU_ARCH_VFP_V3_PLUS_NEON_V1),
29168 ARM_ADD ("neon-vfpv3", FPU_ARCH_VFP_V3_PLUS_NEON_V1),
29169 ARM_ADD ("neon-fp16", FPU_ARCH_NEON_FP16),
29170
29171 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
29172 };
29173
29174 static const struct arm_ext_table armv7a_ext_table[] =
29175 {
29176 ARM_EXT ("fp", FPU_ARCH_VFP_V3D16, ALL_FP),
29177 ARM_ADD ("vfpv3-d16", FPU_ARCH_VFP_V3D16), /* Alias for +fp. */
29178 ARM_ADD ("vfpv3", FPU_ARCH_VFP_V3),
29179 ARM_ADD ("vfpv3-d16-fp16", FPU_ARCH_VFP_V3D16_FP16),
29180 ARM_ADD ("vfpv3-fp16", FPU_ARCH_VFP_V3_FP16),
29181 ARM_ADD ("vfpv4-d16", FPU_ARCH_VFP_V4D16),
29182 ARM_ADD ("vfpv4", FPU_ARCH_VFP_V4),
29183
29184 ARM_EXT ("simd", FPU_ARCH_VFP_V3_PLUS_NEON_V1,
29185 ARM_FEATURE_COPROC (FPU_NEON_EXT_V1 | FPU_NEON_EXT_FMA)),
29186
29187 /* Aliases for +simd. */
29188 ARM_ADD ("neon", FPU_ARCH_VFP_V3_PLUS_NEON_V1),
29189 ARM_ADD ("neon-vfpv3", FPU_ARCH_VFP_V3_PLUS_NEON_V1),
29190
29191 ARM_ADD ("neon-fp16", FPU_ARCH_NEON_FP16),
29192 ARM_ADD ("neon-vfpv4", FPU_ARCH_NEON_VFP_V4),
29193
29194 ARM_ADD ("mp", ARM_FEATURE_CORE_LOW (ARM_EXT_MP)),
29195 ARM_ADD ("sec", ARM_FEATURE_CORE_LOW (ARM_EXT_SEC)),
29196 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
29197 };
29198
29199 static const struct arm_ext_table armv7r_ext_table[] =
29200 {
29201 ARM_ADD ("fp.sp", FPU_ARCH_VFP_V3xD),
29202 ARM_ADD ("vfpv3xd", FPU_ARCH_VFP_V3xD), /* Alias for +fp.sp. */
29203 ARM_EXT ("fp", FPU_ARCH_VFP_V3D16, ALL_FP),
29204 ARM_ADD ("vfpv3-d16", FPU_ARCH_VFP_V3D16), /* Alias for +fp. */
29205 ARM_ADD ("vfpv3xd-fp16", FPU_ARCH_VFP_V3xD_FP16),
29206 ARM_ADD ("vfpv3-d16-fp16", FPU_ARCH_VFP_V3D16_FP16),
29207 ARM_EXT ("idiv", ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV | ARM_EXT_DIV),
29208 ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV | ARM_EXT_DIV)),
29209 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
29210 };
29211
29212 static const struct arm_ext_table armv7em_ext_table[] =
29213 {
29214 ARM_EXT ("fp", FPU_ARCH_VFP_V4_SP_D16, ALL_FP),
29215 /* Alias for +fp, used to be known as fpv4-sp-d16. */
29216 ARM_ADD ("vfpv4-sp-d16", FPU_ARCH_VFP_V4_SP_D16),
29217 ARM_ADD ("fpv5", FPU_ARCH_VFP_V5_SP_D16),
29218 ARM_ADD ("fp.dp", FPU_ARCH_VFP_V5D16),
29219 ARM_ADD ("fpv5-d16", FPU_ARCH_VFP_V5D16),
29220 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
29221 };
29222
29223 static const struct arm_ext_table armv8a_ext_table[] =
29224 {
29225 ARM_ADD ("crc", ARCH_CRC_ARMV8),
29226 ARM_ADD ("simd", FPU_ARCH_NEON_VFP_ARMV8),
29227 ARM_EXT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8,
29228 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8)),
29229
29230 /* Armv8-a does not allow an FP implementation without SIMD, so the user
29231 should use the +simd option to turn on FP. */
29232 ARM_REMOVE ("fp", ALL_FP),
29233 ARM_ADD ("sb", ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB)),
29234 ARM_ADD ("predres", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES)),
29235 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
29236 };
29237
29238
29239 static const struct arm_ext_table armv81a_ext_table[] =
29240 {
29241 ARM_ADD ("simd", FPU_ARCH_NEON_VFP_ARMV8_1),
29242 ARM_EXT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_1,
29243 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8)),
29244
29245 /* Armv8-a does not allow an FP implementation without SIMD, so the user
29246 should use the +simd option to turn on FP. */
29247 ARM_REMOVE ("fp", ALL_FP),
29248 ARM_ADD ("sb", ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB)),
29249 ARM_ADD ("predres", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES)),
29250 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
29251 };
29252
29253 static const struct arm_ext_table armv82a_ext_table[] =
29254 {
29255 ARM_ADD ("simd", FPU_ARCH_NEON_VFP_ARMV8_1),
29256 ARM_ADD ("fp16", FPU_ARCH_NEON_VFP_ARMV8_2_FP16),
29257 ARM_ADD ("fp16fml", FPU_ARCH_NEON_VFP_ARMV8_2_FP16FML),
29258 ARM_EXT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_1,
29259 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8)),
29260 ARM_ADD ("dotprod", FPU_ARCH_DOTPROD_NEON_VFP_ARMV8),
29261
29262 /* Armv8-a does not allow an FP implementation without SIMD, so the user
29263 should use the +simd option to turn on FP. */
29264 ARM_REMOVE ("fp", ALL_FP),
29265 ARM_ADD ("sb", ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB)),
29266 ARM_ADD ("predres", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES)),
29267 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
29268 };
29269
29270 static const struct arm_ext_table armv84a_ext_table[] =
29271 {
29272 ARM_ADD ("simd", FPU_ARCH_DOTPROD_NEON_VFP_ARMV8),
29273 ARM_ADD ("fp16", FPU_ARCH_NEON_VFP_ARMV8_4_FP16FML),
29274 ARM_EXT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_4,
29275 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8)),
29276
29277 /* Armv8-a does not allow an FP implementation without SIMD, so the user
29278 should use the +simd option to turn on FP. */
29279 ARM_REMOVE ("fp", ALL_FP),
29280 ARM_ADD ("sb", ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB)),
29281 ARM_ADD ("predres", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES)),
29282 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
29283 };
29284
29285 static const struct arm_ext_table armv85a_ext_table[] =
29286 {
29287 ARM_ADD ("simd", FPU_ARCH_DOTPROD_NEON_VFP_ARMV8),
29288 ARM_ADD ("fp16", FPU_ARCH_NEON_VFP_ARMV8_4_FP16FML),
29289 ARM_EXT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_4,
29290 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8)),
29291
29292 /* Armv8-a does not allow an FP implementation without SIMD, so the user
29293 should use the +simd option to turn on FP. */
29294 ARM_REMOVE ("fp", ALL_FP),
29295 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
29296 };
29297
29298 static const struct arm_ext_table armv8m_main_ext_table[] =
29299 {
29300 ARM_EXT ("dsp", ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP),
29301 ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP)),
29302 ARM_EXT ("fp", FPU_ARCH_VFP_V5_SP_D16, ALL_FP),
29303 ARM_ADD ("fp.dp", FPU_ARCH_VFP_V5D16),
29304 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
29305 };
29306
29307 static const struct arm_ext_table armv8_1m_main_ext_table[] =
29308 {
29309 ARM_EXT ("dsp", ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP),
29310 ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP)),
29311 ARM_EXT ("fp",
29312 ARM_FEATURE (0, ARM_EXT2_FP16_INST,
29313 FPU_VFP_V5_SP_D16 | FPU_VFP_EXT_FP16 | FPU_VFP_EXT_FMA),
29314 ALL_FP),
29315 ARM_ADD ("fp.dp",
29316 ARM_FEATURE (0, ARM_EXT2_FP16_INST,
29317 FPU_VFP_V5D16 | FPU_VFP_EXT_FP16 | FPU_VFP_EXT_FMA)),
29318 ARM_EXT ("mve", ARM_FEATURE_COPROC (FPU_MVE),
29319 ARM_FEATURE_COPROC (FPU_MVE | FPU_MVE_FP)),
29320 ARM_ADD ("mve.fp",
29321 ARM_FEATURE (0, ARM_EXT2_FP16_INST,
29322 FPU_MVE | FPU_MVE_FP | FPU_VFP_V5_SP_D16 |
29323 FPU_VFP_EXT_FP16 | FPU_VFP_EXT_FMA)),
29324 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
29325 };
29326
29327 static const struct arm_ext_table armv8r_ext_table[] =
29328 {
29329 ARM_ADD ("crc", ARCH_CRC_ARMV8),
29330 ARM_ADD ("simd", FPU_ARCH_NEON_VFP_ARMV8),
29331 ARM_EXT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8,
29332 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8)),
29333 ARM_REMOVE ("fp", ALL_FP),
29334 ARM_ADD ("fp.sp", FPU_ARCH_VFP_V5_SP_D16),
29335 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
29336 };
29337
29338 /* This list should, at a minimum, contain all the architecture names
29339 recognized by GCC. */
29340 #define ARM_ARCH_OPT(N, V, DF) { N, sizeof (N) - 1, V, DF, NULL }
29341 #define ARM_ARCH_OPT2(N, V, DF, ext) \
29342 { N, sizeof (N) - 1, V, DF, ext##_ext_table }
29343
29344 static const struct arm_arch_option_table arm_archs[] =
29345 {
29346 ARM_ARCH_OPT ("all", ARM_ANY, FPU_ARCH_FPA),
29347 ARM_ARCH_OPT ("armv1", ARM_ARCH_V1, FPU_ARCH_FPA),
29348 ARM_ARCH_OPT ("armv2", ARM_ARCH_V2, FPU_ARCH_FPA),
29349 ARM_ARCH_OPT ("armv2a", ARM_ARCH_V2S, FPU_ARCH_FPA),
29350 ARM_ARCH_OPT ("armv2s", ARM_ARCH_V2S, FPU_ARCH_FPA),
29351 ARM_ARCH_OPT ("armv3", ARM_ARCH_V3, FPU_ARCH_FPA),
29352 ARM_ARCH_OPT ("armv3m", ARM_ARCH_V3M, FPU_ARCH_FPA),
29353 ARM_ARCH_OPT ("armv4", ARM_ARCH_V4, FPU_ARCH_FPA),
29354 ARM_ARCH_OPT ("armv4xm", ARM_ARCH_V4xM, FPU_ARCH_FPA),
29355 ARM_ARCH_OPT ("armv4t", ARM_ARCH_V4T, FPU_ARCH_FPA),
29356 ARM_ARCH_OPT ("armv4txm", ARM_ARCH_V4TxM, FPU_ARCH_FPA),
29357 ARM_ARCH_OPT ("armv5", ARM_ARCH_V5, FPU_ARCH_VFP),
29358 ARM_ARCH_OPT ("armv5t", ARM_ARCH_V5T, FPU_ARCH_VFP),
29359 ARM_ARCH_OPT ("armv5txm", ARM_ARCH_V5TxM, FPU_ARCH_VFP),
29360 ARM_ARCH_OPT2 ("armv5te", ARM_ARCH_V5TE, FPU_ARCH_VFP, armv5te),
29361 ARM_ARCH_OPT2 ("armv5texp", ARM_ARCH_V5TExP, FPU_ARCH_VFP, armv5te),
29362 ARM_ARCH_OPT2 ("armv5tej", ARM_ARCH_V5TEJ, FPU_ARCH_VFP, armv5te),
29363 ARM_ARCH_OPT2 ("armv6", ARM_ARCH_V6, FPU_ARCH_VFP, armv5te),
29364 ARM_ARCH_OPT2 ("armv6j", ARM_ARCH_V6, FPU_ARCH_VFP, armv5te),
29365 ARM_ARCH_OPT2 ("armv6k", ARM_ARCH_V6K, FPU_ARCH_VFP, armv5te),
29366 ARM_ARCH_OPT2 ("armv6z", ARM_ARCH_V6Z, FPU_ARCH_VFP, armv5te),
29367 /* The official spelling of this variant is ARMv6KZ, the name "armv6zk" is
29368 kept to preserve existing behaviour. */
29369 ARM_ARCH_OPT2 ("armv6kz", ARM_ARCH_V6KZ, FPU_ARCH_VFP, armv5te),
29370 ARM_ARCH_OPT2 ("armv6zk", ARM_ARCH_V6KZ, FPU_ARCH_VFP, armv5te),
29371 ARM_ARCH_OPT2 ("armv6t2", ARM_ARCH_V6T2, FPU_ARCH_VFP, armv5te),
29372 ARM_ARCH_OPT2 ("armv6kt2", ARM_ARCH_V6KT2, FPU_ARCH_VFP, armv5te),
29373 ARM_ARCH_OPT2 ("armv6zt2", ARM_ARCH_V6ZT2, FPU_ARCH_VFP, armv5te),
29374 /* The official spelling of this variant is ARMv6KZ, the name "armv6zkt2" is
29375 kept to preserve existing behaviour. */
29376 ARM_ARCH_OPT2 ("armv6kzt2", ARM_ARCH_V6KZT2, FPU_ARCH_VFP, armv5te),
29377 ARM_ARCH_OPT2 ("armv6zkt2", ARM_ARCH_V6KZT2, FPU_ARCH_VFP, armv5te),
29378 ARM_ARCH_OPT ("armv6-m", ARM_ARCH_V6M, FPU_ARCH_VFP),
29379 ARM_ARCH_OPT ("armv6s-m", ARM_ARCH_V6SM, FPU_ARCH_VFP),
29380 ARM_ARCH_OPT2 ("armv7", ARM_ARCH_V7, FPU_ARCH_VFP, armv7),
29381 /* The official spelling of the ARMv7 profile variants is the dashed form.
29382 Accept the non-dashed form for compatibility with old toolchains. */
29383 ARM_ARCH_OPT2 ("armv7a", ARM_ARCH_V7A, FPU_ARCH_VFP, armv7a),
29384 ARM_ARCH_OPT2 ("armv7ve", ARM_ARCH_V7VE, FPU_ARCH_VFP, armv7ve),
29385 ARM_ARCH_OPT2 ("armv7r", ARM_ARCH_V7R, FPU_ARCH_VFP, armv7r),
29386 ARM_ARCH_OPT ("armv7m", ARM_ARCH_V7M, FPU_ARCH_VFP),
29387 ARM_ARCH_OPT2 ("armv7-a", ARM_ARCH_V7A, FPU_ARCH_VFP, armv7a),
29388 ARM_ARCH_OPT2 ("armv7-r", ARM_ARCH_V7R, FPU_ARCH_VFP, armv7r),
29389 ARM_ARCH_OPT ("armv7-m", ARM_ARCH_V7M, FPU_ARCH_VFP),
29390 ARM_ARCH_OPT2 ("armv7e-m", ARM_ARCH_V7EM, FPU_ARCH_VFP, armv7em),
29391 ARM_ARCH_OPT ("armv8-m.base", ARM_ARCH_V8M_BASE, FPU_ARCH_VFP),
29392 ARM_ARCH_OPT2 ("armv8-m.main", ARM_ARCH_V8M_MAIN, FPU_ARCH_VFP,
29393 armv8m_main),
29394 ARM_ARCH_OPT2 ("armv8.1-m.main", ARM_ARCH_V8_1M_MAIN, FPU_ARCH_VFP,
29395 armv8_1m_main),
29396 ARM_ARCH_OPT2 ("armv8-a", ARM_ARCH_V8A, FPU_ARCH_VFP, armv8a),
29397 ARM_ARCH_OPT2 ("armv8.1-a", ARM_ARCH_V8_1A, FPU_ARCH_VFP, armv81a),
29398 ARM_ARCH_OPT2 ("armv8.2-a", ARM_ARCH_V8_2A, FPU_ARCH_VFP, armv82a),
29399 ARM_ARCH_OPT2 ("armv8.3-a", ARM_ARCH_V8_3A, FPU_ARCH_VFP, armv82a),
29400 ARM_ARCH_OPT2 ("armv8-r", ARM_ARCH_V8R, FPU_ARCH_VFP, armv8r),
29401 ARM_ARCH_OPT2 ("armv8.4-a", ARM_ARCH_V8_4A, FPU_ARCH_VFP, armv84a),
29402 ARM_ARCH_OPT2 ("armv8.5-a", ARM_ARCH_V8_5A, FPU_ARCH_VFP, armv85a),
29403 ARM_ARCH_OPT ("xscale", ARM_ARCH_XSCALE, FPU_ARCH_VFP),
29404 ARM_ARCH_OPT ("iwmmxt", ARM_ARCH_IWMMXT, FPU_ARCH_VFP),
29405 ARM_ARCH_OPT ("iwmmxt2", ARM_ARCH_IWMMXT2, FPU_ARCH_VFP),
29406 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE, NULL }
29407 };
29408 #undef ARM_ARCH_OPT
29409
29410 /* ISA extensions in the co-processor and main instruction set space. */
29411
29412 struct arm_option_extension_value_table
29413 {
29414 const char * name;
29415 size_t name_len;
29416 const arm_feature_set merge_value;
29417 const arm_feature_set clear_value;
29418 /* List of architectures for which an extension is available. ARM_ARCH_NONE
29419 indicates that an extension is available for all architectures while
29420 ARM_ANY marks an empty entry. */
29421 const arm_feature_set allowed_archs[2];
29422 };
29423
29424 /* The following table must be in alphabetical order with a NULL last entry. */
29425
29426 #define ARM_EXT_OPT(N, M, C, AA) { N, sizeof (N) - 1, M, C, { AA, ARM_ANY } }
29427 #define ARM_EXT_OPT2(N, M, C, AA1, AA2) { N, sizeof (N) - 1, M, C, {AA1, AA2} }
29428
29429 /* DEPRECATED: Refrain from using this table to add any new extensions, instead
29430 use the context sensitive approach using arm_ext_table's. */
29431 static const struct arm_option_extension_value_table arm_extensions[] =
29432 {
29433 ARM_EXT_OPT ("crc", ARCH_CRC_ARMV8, ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
29434 ARM_FEATURE_CORE_LOW (ARM_EXT_V8)),
29435 ARM_EXT_OPT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8,
29436 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8),
29437 ARM_FEATURE_CORE_LOW (ARM_EXT_V8)),
29438 ARM_EXT_OPT ("dotprod", FPU_ARCH_DOTPROD_NEON_VFP_ARMV8,
29439 ARM_FEATURE_COPROC (FPU_NEON_EXT_DOTPROD),
29440 ARM_ARCH_V8_2A),
29441 ARM_EXT_OPT ("dsp", ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP),
29442 ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP),
29443 ARM_FEATURE_CORE (ARM_EXT_V7M, ARM_EXT2_V8M)),
29444 ARM_EXT_OPT ("fp", FPU_ARCH_VFP_ARMV8, ARM_FEATURE_COPROC (FPU_VFP_ARMV8),
29445 ARM_FEATURE_CORE_LOW (ARM_EXT_V8)),
29446 ARM_EXT_OPT ("fp16", ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
29447 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
29448 ARM_ARCH_V8_2A),
29449 ARM_EXT_OPT ("fp16fml", ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST
29450 | ARM_EXT2_FP16_FML),
29451 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST
29452 | ARM_EXT2_FP16_FML),
29453 ARM_ARCH_V8_2A),
29454 ARM_EXT_OPT2 ("idiv", ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV | ARM_EXT_DIV),
29455 ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV | ARM_EXT_DIV),
29456 ARM_FEATURE_CORE_LOW (ARM_EXT_V7A),
29457 ARM_FEATURE_CORE_LOW (ARM_EXT_V7R)),
29458 /* Duplicate entry for the purpose of allowing ARMv7 to match in presence of
29459 Thumb divide instruction. Due to this having the same name as the
29460 previous entry, this will be ignored when doing command-line parsing and
29461 only considered by build attribute selection code. */
29462 ARM_EXT_OPT ("idiv", ARM_FEATURE_CORE_LOW (ARM_EXT_DIV),
29463 ARM_FEATURE_CORE_LOW (ARM_EXT_DIV),
29464 ARM_FEATURE_CORE_LOW (ARM_EXT_V7)),
29465 ARM_EXT_OPT ("iwmmxt",ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT),
29466 ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT), ARM_ARCH_NONE),
29467 ARM_EXT_OPT ("iwmmxt2", ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT2),
29468 ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT2), ARM_ARCH_NONE),
29469 ARM_EXT_OPT ("maverick", ARM_FEATURE_COPROC (ARM_CEXT_MAVERICK),
29470 ARM_FEATURE_COPROC (ARM_CEXT_MAVERICK), ARM_ARCH_NONE),
29471 ARM_EXT_OPT2 ("mp", ARM_FEATURE_CORE_LOW (ARM_EXT_MP),
29472 ARM_FEATURE_CORE_LOW (ARM_EXT_MP),
29473 ARM_FEATURE_CORE_LOW (ARM_EXT_V7A),
29474 ARM_FEATURE_CORE_LOW (ARM_EXT_V7R)),
29475 ARM_EXT_OPT ("os", ARM_FEATURE_CORE_LOW (ARM_EXT_OS),
29476 ARM_FEATURE_CORE_LOW (ARM_EXT_OS),
29477 ARM_FEATURE_CORE_LOW (ARM_EXT_V6M)),
29478 ARM_EXT_OPT ("pan", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PAN),
29479 ARM_FEATURE (ARM_EXT_V8, ARM_EXT2_PAN, 0),
29480 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8A)),
29481 ARM_EXT_OPT ("predres", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES),
29482 ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES),
29483 ARM_ARCH_V8A),
29484 ARM_EXT_OPT ("ras", ARM_FEATURE_CORE_HIGH (ARM_EXT2_RAS),
29485 ARM_FEATURE (ARM_EXT_V8, ARM_EXT2_RAS, 0),
29486 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8A)),
29487 ARM_EXT_OPT ("rdma", FPU_ARCH_NEON_VFP_ARMV8_1,
29488 ARM_FEATURE_COPROC (FPU_NEON_ARMV8 | FPU_NEON_EXT_RDMA),
29489 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8A)),
29490 ARM_EXT_OPT ("sb", ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB),
29491 ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB),
29492 ARM_ARCH_V8A),
29493 ARM_EXT_OPT2 ("sec", ARM_FEATURE_CORE_LOW (ARM_EXT_SEC),
29494 ARM_FEATURE_CORE_LOW (ARM_EXT_SEC),
29495 ARM_FEATURE_CORE_LOW (ARM_EXT_V6K),
29496 ARM_FEATURE_CORE_LOW (ARM_EXT_V7A)),
29497 ARM_EXT_OPT ("simd", FPU_ARCH_NEON_VFP_ARMV8,
29498 ARM_FEATURE_COPROC (FPU_NEON_ARMV8),
29499 ARM_FEATURE_CORE_LOW (ARM_EXT_V8)),
29500 ARM_EXT_OPT ("virt", ARM_FEATURE_CORE_LOW (ARM_EXT_VIRT | ARM_EXT_ADIV
29501 | ARM_EXT_DIV),
29502 ARM_FEATURE_CORE_LOW (ARM_EXT_VIRT),
29503 ARM_FEATURE_CORE_LOW (ARM_EXT_V7A)),
29504 ARM_EXT_OPT ("xscale",ARM_FEATURE_COPROC (ARM_CEXT_XSCALE),
29505 ARM_FEATURE_COPROC (ARM_CEXT_XSCALE), ARM_ARCH_NONE),
29506 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE, { ARM_ARCH_NONE, ARM_ARCH_NONE } }
29507 };
29508 #undef ARM_EXT_OPT
29509
29510 /* ISA floating-point and Advanced SIMD extensions. */
29511 struct arm_option_fpu_value_table
29512 {
29513 const char * name;
29514 const arm_feature_set value;
29515 };
29516
29517 /* This list should, at a minimum, contain all the fpu names
29518 recognized by GCC. */
29519 static const struct arm_option_fpu_value_table arm_fpus[] =
29520 {
29521 {"softfpa", FPU_NONE},
29522 {"fpe", FPU_ARCH_FPE},
29523 {"fpe2", FPU_ARCH_FPE},
29524 {"fpe3", FPU_ARCH_FPA}, /* Third release supports LFM/SFM. */
29525 {"fpa", FPU_ARCH_FPA},
29526 {"fpa10", FPU_ARCH_FPA},
29527 {"fpa11", FPU_ARCH_FPA},
29528 {"arm7500fe", FPU_ARCH_FPA},
29529 {"softvfp", FPU_ARCH_VFP},
29530 {"softvfp+vfp", FPU_ARCH_VFP_V2},
29531 {"vfp", FPU_ARCH_VFP_V2},
29532 {"vfp9", FPU_ARCH_VFP_V2},
29533 {"vfp3", FPU_ARCH_VFP_V3}, /* Undocumented, use vfpv3. */
29534 {"vfp10", FPU_ARCH_VFP_V2},
29535 {"vfp10-r0", FPU_ARCH_VFP_V1},
29536 {"vfpxd", FPU_ARCH_VFP_V1xD},
29537 {"vfpv2", FPU_ARCH_VFP_V2},
29538 {"vfpv3", FPU_ARCH_VFP_V3},
29539 {"vfpv3-fp16", FPU_ARCH_VFP_V3_FP16},
29540 {"vfpv3-d16", FPU_ARCH_VFP_V3D16},
29541 {"vfpv3-d16-fp16", FPU_ARCH_VFP_V3D16_FP16},
29542 {"vfpv3xd", FPU_ARCH_VFP_V3xD},
29543 {"vfpv3xd-fp16", FPU_ARCH_VFP_V3xD_FP16},
29544 {"arm1020t", FPU_ARCH_VFP_V1},
29545 {"arm1020e", FPU_ARCH_VFP_V2},
29546 {"arm1136jfs", FPU_ARCH_VFP_V2}, /* Undocumented, use arm1136jf-s. */
29547 {"arm1136jf-s", FPU_ARCH_VFP_V2},
29548 {"maverick", FPU_ARCH_MAVERICK},
29549 {"neon", FPU_ARCH_VFP_V3_PLUS_NEON_V1},
29550 {"neon-vfpv3", FPU_ARCH_VFP_V3_PLUS_NEON_V1},
29551 {"neon-fp16", FPU_ARCH_NEON_FP16},
29552 {"vfpv4", FPU_ARCH_VFP_V4},
29553 {"vfpv4-d16", FPU_ARCH_VFP_V4D16},
29554 {"fpv4-sp-d16", FPU_ARCH_VFP_V4_SP_D16},
29555 {"fpv5-d16", FPU_ARCH_VFP_V5D16},
29556 {"fpv5-sp-d16", FPU_ARCH_VFP_V5_SP_D16},
29557 {"neon-vfpv4", FPU_ARCH_NEON_VFP_V4},
29558 {"fp-armv8", FPU_ARCH_VFP_ARMV8},
29559 {"neon-fp-armv8", FPU_ARCH_NEON_VFP_ARMV8},
29560 {"crypto-neon-fp-armv8",
29561 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8},
29562 {"neon-fp-armv8.1", FPU_ARCH_NEON_VFP_ARMV8_1},
29563 {"crypto-neon-fp-armv8.1",
29564 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_1},
29565 {NULL, ARM_ARCH_NONE}
29566 };
29567
29568 struct arm_option_value_table
29569 {
29570 const char *name;
29571 long value;
29572 };
29573
29574 static const struct arm_option_value_table arm_float_abis[] =
29575 {
29576 {"hard", ARM_FLOAT_ABI_HARD},
29577 {"softfp", ARM_FLOAT_ABI_SOFTFP},
29578 {"soft", ARM_FLOAT_ABI_SOFT},
29579 {NULL, 0}
29580 };
29581
29582 #ifdef OBJ_ELF
29583 /* We only know how to output GNU and ver 4/5 (AAELF) formats. */
29584 static const struct arm_option_value_table arm_eabis[] =
29585 {
29586 {"gnu", EF_ARM_EABI_UNKNOWN},
29587 {"4", EF_ARM_EABI_VER4},
29588 {"5", EF_ARM_EABI_VER5},
29589 {NULL, 0}
29590 };
29591 #endif
29592
29593 struct arm_long_option_table
29594 {
29595 const char * option; /* Substring to match. */
29596 const char * help; /* Help information. */
29597 int (* func) (const char * subopt); /* Function to decode sub-option. */
29598 const char * deprecated; /* If non-null, print this message. */
29599 };
29600
29601 static bfd_boolean
29602 arm_parse_extension (const char *str, const arm_feature_set *opt_set,
29603 arm_feature_set *ext_set,
29604 const struct arm_ext_table *ext_table)
29605 {
29606 /* We insist on extensions being specified in alphabetical order, and with
29607 extensions being added before being removed. We achieve this by having
29608 the global ARM_EXTENSIONS table in alphabetical order, and using the
29609 ADDING_VALUE variable to indicate whether we are adding an extension (1)
29610 or removing it (0) and only allowing it to change in the order
29611 -1 -> 1 -> 0. */
29612 const struct arm_option_extension_value_table * opt = NULL;
29613 const arm_feature_set arm_any = ARM_ANY;
29614 int adding_value = -1;
29615
29616 while (str != NULL && *str != 0)
29617 {
29618 const char *ext;
29619 size_t len;
29620
29621 if (*str != '+')
29622 {
29623 as_bad (_("invalid architectural extension"));
29624 return FALSE;
29625 }
29626
29627 str++;
29628 ext = strchr (str, '+');
29629
29630 if (ext != NULL)
29631 len = ext - str;
29632 else
29633 len = strlen (str);
29634
29635 if (len >= 2 && strncmp (str, "no", 2) == 0)
29636 {
29637 if (adding_value != 0)
29638 {
29639 adding_value = 0;
29640 opt = arm_extensions;
29641 }
29642
29643 len -= 2;
29644 str += 2;
29645 }
29646 else if (len > 0)
29647 {
29648 if (adding_value == -1)
29649 {
29650 adding_value = 1;
29651 opt = arm_extensions;
29652 }
29653 else if (adding_value != 1)
29654 {
29655 as_bad (_("must specify extensions to add before specifying "
29656 "those to remove"));
29657 return FALSE;
29658 }
29659 }
29660
29661 if (len == 0)
29662 {
29663 as_bad (_("missing architectural extension"));
29664 return FALSE;
29665 }
29666
29667 gas_assert (adding_value != -1);
29668 gas_assert (opt != NULL);
29669
29670 if (ext_table != NULL)
29671 {
29672 const struct arm_ext_table * ext_opt = ext_table;
29673 bfd_boolean found = FALSE;
29674 for (; ext_opt->name != NULL; ext_opt++)
29675 if (ext_opt->name_len == len
29676 && strncmp (ext_opt->name, str, len) == 0)
29677 {
29678 if (adding_value)
29679 {
29680 if (ARM_FEATURE_ZERO (ext_opt->merge))
29681 /* TODO: Option not supported. When we remove the
29682 legacy table this case should error out. */
29683 continue;
29684
29685 ARM_MERGE_FEATURE_SETS (*ext_set, *ext_set, ext_opt->merge);
29686 }
29687 else
29688 {
29689 if (ARM_FEATURE_ZERO (ext_opt->clear))
29690 /* TODO: Option not supported. When we remove the
29691 legacy table this case should error out. */
29692 continue;
29693 ARM_CLEAR_FEATURE (*ext_set, *ext_set, ext_opt->clear);
29694 }
29695 found = TRUE;
29696 break;
29697 }
29698 if (found)
29699 {
29700 str = ext;
29701 continue;
29702 }
29703 }
29704
29705 /* Scan over the options table trying to find an exact match. */
29706 for (; opt->name != NULL; opt++)
29707 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
29708 {
29709 int i, nb_allowed_archs =
29710 sizeof (opt->allowed_archs) / sizeof (opt->allowed_archs[0]);
29711 /* Check we can apply the extension to this architecture. */
29712 for (i = 0; i < nb_allowed_archs; i++)
29713 {
29714 /* Empty entry. */
29715 if (ARM_FEATURE_EQUAL (opt->allowed_archs[i], arm_any))
29716 continue;
29717 if (ARM_FSET_CPU_SUBSET (opt->allowed_archs[i], *opt_set))
29718 break;
29719 }
29720 if (i == nb_allowed_archs)
29721 {
29722 as_bad (_("extension does not apply to the base architecture"));
29723 return FALSE;
29724 }
29725
29726 /* Add or remove the extension. */
29727 if (adding_value)
29728 ARM_MERGE_FEATURE_SETS (*ext_set, *ext_set, opt->merge_value);
29729 else
29730 ARM_CLEAR_FEATURE (*ext_set, *ext_set, opt->clear_value);
29731
29732 /* Allowing Thumb division instructions for ARMv7 in autodetection
29733 rely on this break so that duplicate extensions (extensions
29734 with the same name as a previous extension in the list) are not
29735 considered for command-line parsing. */
29736 break;
29737 }
29738
29739 if (opt->name == NULL)
29740 {
29741 /* Did we fail to find an extension because it wasn't specified in
29742 alphabetical order, or because it does not exist? */
29743
29744 for (opt = arm_extensions; opt->name != NULL; opt++)
29745 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
29746 break;
29747
29748 if (opt->name == NULL)
29749 as_bad (_("unknown architectural extension `%s'"), str);
29750 else
29751 as_bad (_("architectural extensions must be specified in "
29752 "alphabetical order"));
29753
29754 return FALSE;
29755 }
29756 else
29757 {
29758 /* We should skip the extension we've just matched the next time
29759 round. */
29760 opt++;
29761 }
29762
29763 str = ext;
29764 };
29765
29766 return TRUE;
29767 }
29768
29769 static bfd_boolean
29770 arm_parse_cpu (const char *str)
29771 {
29772 const struct arm_cpu_option_table *opt;
29773 const char *ext = strchr (str, '+');
29774 size_t len;
29775
29776 if (ext != NULL)
29777 len = ext - str;
29778 else
29779 len = strlen (str);
29780
29781 if (len == 0)
29782 {
29783 as_bad (_("missing cpu name `%s'"), str);
29784 return FALSE;
29785 }
29786
29787 for (opt = arm_cpus; opt->name != NULL; opt++)
29788 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
29789 {
29790 mcpu_cpu_opt = &opt->value;
29791 if (mcpu_ext_opt == NULL)
29792 mcpu_ext_opt = XNEW (arm_feature_set);
29793 *mcpu_ext_opt = opt->ext;
29794 mcpu_fpu_opt = &opt->default_fpu;
29795 if (opt->canonical_name)
29796 {
29797 gas_assert (sizeof selected_cpu_name > strlen (opt->canonical_name));
29798 strcpy (selected_cpu_name, opt->canonical_name);
29799 }
29800 else
29801 {
29802 size_t i;
29803
29804 if (len >= sizeof selected_cpu_name)
29805 len = (sizeof selected_cpu_name) - 1;
29806
29807 for (i = 0; i < len; i++)
29808 selected_cpu_name[i] = TOUPPER (opt->name[i]);
29809 selected_cpu_name[i] = 0;
29810 }
29811
29812 if (ext != NULL)
29813 return arm_parse_extension (ext, mcpu_cpu_opt, mcpu_ext_opt, NULL);
29814
29815 return TRUE;
29816 }
29817
29818 as_bad (_("unknown cpu `%s'"), str);
29819 return FALSE;
29820 }
29821
29822 static bfd_boolean
29823 arm_parse_arch (const char *str)
29824 {
29825 const struct arm_arch_option_table *opt;
29826 const char *ext = strchr (str, '+');
29827 size_t len;
29828
29829 if (ext != NULL)
29830 len = ext - str;
29831 else
29832 len = strlen (str);
29833
29834 if (len == 0)
29835 {
29836 as_bad (_("missing architecture name `%s'"), str);
29837 return FALSE;
29838 }
29839
29840 for (opt = arm_archs; opt->name != NULL; opt++)
29841 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
29842 {
29843 march_cpu_opt = &opt->value;
29844 if (march_ext_opt == NULL)
29845 march_ext_opt = XNEW (arm_feature_set);
29846 *march_ext_opt = arm_arch_none;
29847 march_fpu_opt = &opt->default_fpu;
29848 strcpy (selected_cpu_name, opt->name);
29849
29850 if (ext != NULL)
29851 return arm_parse_extension (ext, march_cpu_opt, march_ext_opt,
29852 opt->ext_table);
29853
29854 return TRUE;
29855 }
29856
29857 as_bad (_("unknown architecture `%s'\n"), str);
29858 return FALSE;
29859 }
29860
29861 static bfd_boolean
29862 arm_parse_fpu (const char * str)
29863 {
29864 const struct arm_option_fpu_value_table * opt;
29865
29866 for (opt = arm_fpus; opt->name != NULL; opt++)
29867 if (streq (opt->name, str))
29868 {
29869 mfpu_opt = &opt->value;
29870 return TRUE;
29871 }
29872
29873 as_bad (_("unknown floating point format `%s'\n"), str);
29874 return FALSE;
29875 }
29876
29877 static bfd_boolean
29878 arm_parse_float_abi (const char * str)
29879 {
29880 const struct arm_option_value_table * opt;
29881
29882 for (opt = arm_float_abis; opt->name != NULL; opt++)
29883 if (streq (opt->name, str))
29884 {
29885 mfloat_abi_opt = opt->value;
29886 return TRUE;
29887 }
29888
29889 as_bad (_("unknown floating point abi `%s'\n"), str);
29890 return FALSE;
29891 }
29892
29893 #ifdef OBJ_ELF
29894 static bfd_boolean
29895 arm_parse_eabi (const char * str)
29896 {
29897 const struct arm_option_value_table *opt;
29898
29899 for (opt = arm_eabis; opt->name != NULL; opt++)
29900 if (streq (opt->name, str))
29901 {
29902 meabi_flags = opt->value;
29903 return TRUE;
29904 }
29905 as_bad (_("unknown EABI `%s'\n"), str);
29906 return FALSE;
29907 }
29908 #endif
29909
29910 static bfd_boolean
29911 arm_parse_it_mode (const char * str)
29912 {
29913 bfd_boolean ret = TRUE;
29914
29915 if (streq ("arm", str))
29916 implicit_it_mode = IMPLICIT_IT_MODE_ARM;
29917 else if (streq ("thumb", str))
29918 implicit_it_mode = IMPLICIT_IT_MODE_THUMB;
29919 else if (streq ("always", str))
29920 implicit_it_mode = IMPLICIT_IT_MODE_ALWAYS;
29921 else if (streq ("never", str))
29922 implicit_it_mode = IMPLICIT_IT_MODE_NEVER;
29923 else
29924 {
29925 as_bad (_("unknown implicit IT mode `%s', should be "\
29926 "arm, thumb, always, or never."), str);
29927 ret = FALSE;
29928 }
29929
29930 return ret;
29931 }
29932
29933 static bfd_boolean
29934 arm_ccs_mode (const char * unused ATTRIBUTE_UNUSED)
29935 {
29936 codecomposer_syntax = TRUE;
29937 arm_comment_chars[0] = ';';
29938 arm_line_separator_chars[0] = 0;
29939 return TRUE;
29940 }
29941
29942 struct arm_long_option_table arm_long_opts[] =
29943 {
29944 {"mcpu=", N_("<cpu name>\t assemble for CPU <cpu name>"),
29945 arm_parse_cpu, NULL},
29946 {"march=", N_("<arch name>\t assemble for architecture <arch name>"),
29947 arm_parse_arch, NULL},
29948 {"mfpu=", N_("<fpu name>\t assemble for FPU architecture <fpu name>"),
29949 arm_parse_fpu, NULL},
29950 {"mfloat-abi=", N_("<abi>\t assemble for floating point ABI <abi>"),
29951 arm_parse_float_abi, NULL},
29952 #ifdef OBJ_ELF
29953 {"meabi=", N_("<ver>\t\t assemble for eabi version <ver>"),
29954 arm_parse_eabi, NULL},
29955 #endif
29956 {"mimplicit-it=", N_("<mode>\t controls implicit insertion of IT instructions"),
29957 arm_parse_it_mode, NULL},
29958 {"mccs", N_("\t\t\t TI CodeComposer Studio syntax compatibility mode"),
29959 arm_ccs_mode, NULL},
29960 {NULL, NULL, 0, NULL}
29961 };
29962
29963 int
29964 md_parse_option (int c, const char * arg)
29965 {
29966 struct arm_option_table *opt;
29967 const struct arm_legacy_option_table *fopt;
29968 struct arm_long_option_table *lopt;
29969
29970 switch (c)
29971 {
29972 #ifdef OPTION_EB
29973 case OPTION_EB:
29974 target_big_endian = 1;
29975 break;
29976 #endif
29977
29978 #ifdef OPTION_EL
29979 case OPTION_EL:
29980 target_big_endian = 0;
29981 break;
29982 #endif
29983
29984 case OPTION_FIX_V4BX:
29985 fix_v4bx = TRUE;
29986 break;
29987
29988 #ifdef OBJ_ELF
29989 case OPTION_FDPIC:
29990 arm_fdpic = TRUE;
29991 break;
29992 #endif /* OBJ_ELF */
29993
29994 case 'a':
29995 /* Listing option. Just ignore these, we don't support additional
29996 ones. */
29997 return 0;
29998
29999 default:
30000 for (opt = arm_opts; opt->option != NULL; opt++)
30001 {
30002 if (c == opt->option[0]
30003 && ((arg == NULL && opt->option[1] == 0)
30004 || streq (arg, opt->option + 1)))
30005 {
30006 /* If the option is deprecated, tell the user. */
30007 if (warn_on_deprecated && opt->deprecated != NULL)
30008 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
30009 arg ? arg : "", _(opt->deprecated));
30010
30011 if (opt->var != NULL)
30012 *opt->var = opt->value;
30013
30014 return 1;
30015 }
30016 }
30017
30018 for (fopt = arm_legacy_opts; fopt->option != NULL; fopt++)
30019 {
30020 if (c == fopt->option[0]
30021 && ((arg == NULL && fopt->option[1] == 0)
30022 || streq (arg, fopt->option + 1)))
30023 {
30024 /* If the option is deprecated, tell the user. */
30025 if (warn_on_deprecated && fopt->deprecated != NULL)
30026 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
30027 arg ? arg : "", _(fopt->deprecated));
30028
30029 if (fopt->var != NULL)
30030 *fopt->var = &fopt->value;
30031
30032 return 1;
30033 }
30034 }
30035
30036 for (lopt = arm_long_opts; lopt->option != NULL; lopt++)
30037 {
30038 /* These options are expected to have an argument. */
30039 if (c == lopt->option[0]
30040 && arg != NULL
30041 && strncmp (arg, lopt->option + 1,
30042 strlen (lopt->option + 1)) == 0)
30043 {
30044 /* If the option is deprecated, tell the user. */
30045 if (warn_on_deprecated && lopt->deprecated != NULL)
30046 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c, arg,
30047 _(lopt->deprecated));
30048
30049 /* Call the sup-option parser. */
30050 return lopt->func (arg + strlen (lopt->option) - 1);
30051 }
30052 }
30053
30054 return 0;
30055 }
30056
30057 return 1;
30058 }
30059
30060 void
30061 md_show_usage (FILE * fp)
30062 {
30063 struct arm_option_table *opt;
30064 struct arm_long_option_table *lopt;
30065
30066 fprintf (fp, _(" ARM-specific assembler options:\n"));
30067
30068 for (opt = arm_opts; opt->option != NULL; opt++)
30069 if (opt->help != NULL)
30070 fprintf (fp, " -%-23s%s\n", opt->option, _(opt->help));
30071
30072 for (lopt = arm_long_opts; lopt->option != NULL; lopt++)
30073 if (lopt->help != NULL)
30074 fprintf (fp, " -%s%s\n", lopt->option, _(lopt->help));
30075
30076 #ifdef OPTION_EB
30077 fprintf (fp, _("\
30078 -EB assemble code for a big-endian cpu\n"));
30079 #endif
30080
30081 #ifdef OPTION_EL
30082 fprintf (fp, _("\
30083 -EL assemble code for a little-endian cpu\n"));
30084 #endif
30085
30086 fprintf (fp, _("\
30087 --fix-v4bx Allow BX in ARMv4 code\n"));
30088
30089 #ifdef OBJ_ELF
30090 fprintf (fp, _("\
30091 --fdpic generate an FDPIC object file\n"));
30092 #endif /* OBJ_ELF */
30093 }
30094
30095 #ifdef OBJ_ELF
30096
30097 typedef struct
30098 {
30099 int val;
30100 arm_feature_set flags;
30101 } cpu_arch_ver_table;
30102
30103 /* Mapping from CPU features to EABI CPU arch values. Table must be sorted
30104 chronologically for architectures, with an exception for ARMv6-M and
30105 ARMv6S-M due to legacy reasons. No new architecture should have a
30106 special case. This allows for build attribute selection results to be
30107 stable when new architectures are added. */
30108 static const cpu_arch_ver_table cpu_arch_ver[] =
30109 {
30110 {TAG_CPU_ARCH_PRE_V4, ARM_ARCH_V1},
30111 {TAG_CPU_ARCH_PRE_V4, ARM_ARCH_V2},
30112 {TAG_CPU_ARCH_PRE_V4, ARM_ARCH_V2S},
30113 {TAG_CPU_ARCH_PRE_V4, ARM_ARCH_V3},
30114 {TAG_CPU_ARCH_PRE_V4, ARM_ARCH_V3M},
30115 {TAG_CPU_ARCH_V4, ARM_ARCH_V4xM},
30116 {TAG_CPU_ARCH_V4, ARM_ARCH_V4},
30117 {TAG_CPU_ARCH_V4T, ARM_ARCH_V4TxM},
30118 {TAG_CPU_ARCH_V4T, ARM_ARCH_V4T},
30119 {TAG_CPU_ARCH_V5T, ARM_ARCH_V5xM},
30120 {TAG_CPU_ARCH_V5T, ARM_ARCH_V5},
30121 {TAG_CPU_ARCH_V5T, ARM_ARCH_V5TxM},
30122 {TAG_CPU_ARCH_V5T, ARM_ARCH_V5T},
30123 {TAG_CPU_ARCH_V5TE, ARM_ARCH_V5TExP},
30124 {TAG_CPU_ARCH_V5TE, ARM_ARCH_V5TE},
30125 {TAG_CPU_ARCH_V5TEJ, ARM_ARCH_V5TEJ},
30126 {TAG_CPU_ARCH_V6, ARM_ARCH_V6},
30127 {TAG_CPU_ARCH_V6KZ, ARM_ARCH_V6Z},
30128 {TAG_CPU_ARCH_V6KZ, ARM_ARCH_V6KZ},
30129 {TAG_CPU_ARCH_V6K, ARM_ARCH_V6K},
30130 {TAG_CPU_ARCH_V6T2, ARM_ARCH_V6T2},
30131 {TAG_CPU_ARCH_V6T2, ARM_ARCH_V6KT2},
30132 {TAG_CPU_ARCH_V6T2, ARM_ARCH_V6ZT2},
30133 {TAG_CPU_ARCH_V6T2, ARM_ARCH_V6KZT2},
30134
30135 /* When assembling a file with only ARMv6-M or ARMv6S-M instruction, GNU as
30136 always selected build attributes to match those of ARMv6-M
30137 (resp. ARMv6S-M). However, due to these architectures being a strict
30138 subset of ARMv7-M in terms of instructions available, ARMv7-M attributes
30139 would be selected when fully respecting chronology of architectures.
30140 It is thus necessary to make a special case of ARMv6-M and ARMv6S-M and
30141 move them before ARMv7 architectures. */
30142 {TAG_CPU_ARCH_V6_M, ARM_ARCH_V6M},
30143 {TAG_CPU_ARCH_V6S_M, ARM_ARCH_V6SM},
30144
30145 {TAG_CPU_ARCH_V7, ARM_ARCH_V7},
30146 {TAG_CPU_ARCH_V7, ARM_ARCH_V7A},
30147 {TAG_CPU_ARCH_V7, ARM_ARCH_V7R},
30148 {TAG_CPU_ARCH_V7, ARM_ARCH_V7M},
30149 {TAG_CPU_ARCH_V7, ARM_ARCH_V7VE},
30150 {TAG_CPU_ARCH_V7E_M, ARM_ARCH_V7EM},
30151 {TAG_CPU_ARCH_V8, ARM_ARCH_V8A},
30152 {TAG_CPU_ARCH_V8, ARM_ARCH_V8_1A},
30153 {TAG_CPU_ARCH_V8, ARM_ARCH_V8_2A},
30154 {TAG_CPU_ARCH_V8, ARM_ARCH_V8_3A},
30155 {TAG_CPU_ARCH_V8M_BASE, ARM_ARCH_V8M_BASE},
30156 {TAG_CPU_ARCH_V8M_MAIN, ARM_ARCH_V8M_MAIN},
30157 {TAG_CPU_ARCH_V8R, ARM_ARCH_V8R},
30158 {TAG_CPU_ARCH_V8, ARM_ARCH_V8_4A},
30159 {TAG_CPU_ARCH_V8, ARM_ARCH_V8_5A},
30160 {TAG_CPU_ARCH_V8_1M_MAIN, ARM_ARCH_V8_1M_MAIN},
30161 {-1, ARM_ARCH_NONE}
30162 };
30163
30164 /* Set an attribute if it has not already been set by the user. */
30165
30166 static void
30167 aeabi_set_attribute_int (int tag, int value)
30168 {
30169 if (tag < 1
30170 || tag >= NUM_KNOWN_OBJ_ATTRIBUTES
30171 || !attributes_set_explicitly[tag])
30172 bfd_elf_add_proc_attr_int (stdoutput, tag, value);
30173 }
30174
30175 static void
30176 aeabi_set_attribute_string (int tag, const char *value)
30177 {
30178 if (tag < 1
30179 || tag >= NUM_KNOWN_OBJ_ATTRIBUTES
30180 || !attributes_set_explicitly[tag])
30181 bfd_elf_add_proc_attr_string (stdoutput, tag, value);
30182 }
30183
30184 /* Return whether features in the *NEEDED feature set are available via
30185 extensions for the architecture whose feature set is *ARCH_FSET. */
30186
30187 static bfd_boolean
30188 have_ext_for_needed_feat_p (const arm_feature_set *arch_fset,
30189 const arm_feature_set *needed)
30190 {
30191 int i, nb_allowed_archs;
30192 arm_feature_set ext_fset;
30193 const struct arm_option_extension_value_table *opt;
30194
30195 ext_fset = arm_arch_none;
30196 for (opt = arm_extensions; opt->name != NULL; opt++)
30197 {
30198 /* Extension does not provide any feature we need. */
30199 if (!ARM_CPU_HAS_FEATURE (*needed, opt->merge_value))
30200 continue;
30201
30202 nb_allowed_archs =
30203 sizeof (opt->allowed_archs) / sizeof (opt->allowed_archs[0]);
30204 for (i = 0; i < nb_allowed_archs; i++)
30205 {
30206 /* Empty entry. */
30207 if (ARM_FEATURE_EQUAL (opt->allowed_archs[i], arm_arch_any))
30208 break;
30209
30210 /* Extension is available, add it. */
30211 if (ARM_FSET_CPU_SUBSET (opt->allowed_archs[i], *arch_fset))
30212 ARM_MERGE_FEATURE_SETS (ext_fset, ext_fset, opt->merge_value);
30213 }
30214 }
30215
30216 /* Can we enable all features in *needed? */
30217 return ARM_FSET_CPU_SUBSET (*needed, ext_fset);
30218 }
30219
30220 /* Select value for Tag_CPU_arch and Tag_CPU_arch_profile build attributes for
30221 a given architecture feature set *ARCH_EXT_FSET including extension feature
30222 set *EXT_FSET. Selection logic used depend on EXACT_MATCH:
30223 - if true, check for an exact match of the architecture modulo extensions;
30224 - otherwise, select build attribute value of the first superset
30225 architecture released so that results remains stable when new architectures
30226 are added.
30227 For -march/-mcpu=all the build attribute value of the most featureful
30228 architecture is returned. Tag_CPU_arch_profile result is returned in
30229 PROFILE. */
30230
30231 static int
30232 get_aeabi_cpu_arch_from_fset (const arm_feature_set *arch_ext_fset,
30233 const arm_feature_set *ext_fset,
30234 char *profile, int exact_match)
30235 {
30236 arm_feature_set arch_fset;
30237 const cpu_arch_ver_table *p_ver, *p_ver_ret = NULL;
30238
30239 /* Select most featureful architecture with all its extensions if building
30240 for -march=all as the feature sets used to set build attributes. */
30241 if (ARM_FEATURE_EQUAL (*arch_ext_fset, arm_arch_any))
30242 {
30243 /* Force revisiting of decision for each new architecture. */
30244 gas_assert (MAX_TAG_CPU_ARCH <= TAG_CPU_ARCH_V8_1M_MAIN);
30245 *profile = 'A';
30246 return TAG_CPU_ARCH_V8;
30247 }
30248
30249 ARM_CLEAR_FEATURE (arch_fset, *arch_ext_fset, *ext_fset);
30250
30251 for (p_ver = cpu_arch_ver; p_ver->val != -1; p_ver++)
30252 {
30253 arm_feature_set known_arch_fset;
30254
30255 ARM_CLEAR_FEATURE (known_arch_fset, p_ver->flags, fpu_any);
30256 if (exact_match)
30257 {
30258 /* Base architecture match user-specified architecture and
30259 extensions, eg. ARMv6S-M matching -march=armv6-m+os. */
30260 if (ARM_FEATURE_EQUAL (*arch_ext_fset, known_arch_fset))
30261 {
30262 p_ver_ret = p_ver;
30263 goto found;
30264 }
30265 /* Base architecture match user-specified architecture only
30266 (eg. ARMv6-M in the same case as above). Record it in case we
30267 find a match with above condition. */
30268 else if (p_ver_ret == NULL
30269 && ARM_FEATURE_EQUAL (arch_fset, known_arch_fset))
30270 p_ver_ret = p_ver;
30271 }
30272 else
30273 {
30274
30275 /* Architecture has all features wanted. */
30276 if (ARM_FSET_CPU_SUBSET (arch_fset, known_arch_fset))
30277 {
30278 arm_feature_set added_fset;
30279
30280 /* Compute features added by this architecture over the one
30281 recorded in p_ver_ret. */
30282 if (p_ver_ret != NULL)
30283 ARM_CLEAR_FEATURE (added_fset, known_arch_fset,
30284 p_ver_ret->flags);
30285 /* First architecture that match incl. with extensions, or the
30286 only difference in features over the recorded match is
30287 features that were optional and are now mandatory. */
30288 if (p_ver_ret == NULL
30289 || ARM_FSET_CPU_SUBSET (added_fset, arch_fset))
30290 {
30291 p_ver_ret = p_ver;
30292 goto found;
30293 }
30294 }
30295 else if (p_ver_ret == NULL)
30296 {
30297 arm_feature_set needed_ext_fset;
30298
30299 ARM_CLEAR_FEATURE (needed_ext_fset, arch_fset, known_arch_fset);
30300
30301 /* Architecture has all features needed when using some
30302 extensions. Record it and continue searching in case there
30303 exist an architecture providing all needed features without
30304 the need for extensions (eg. ARMv6S-M Vs ARMv6-M with
30305 OS extension). */
30306 if (have_ext_for_needed_feat_p (&known_arch_fset,
30307 &needed_ext_fset))
30308 p_ver_ret = p_ver;
30309 }
30310 }
30311 }
30312
30313 if (p_ver_ret == NULL)
30314 return -1;
30315
30316 found:
30317 /* Tag_CPU_arch_profile. */
30318 if (ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_v7a)
30319 || ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_v8)
30320 || (ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_atomics)
30321 && !ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_v8m_m_only)))
30322 *profile = 'A';
30323 else if (ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_v7r))
30324 *profile = 'R';
30325 else if (ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_m))
30326 *profile = 'M';
30327 else
30328 *profile = '\0';
30329 return p_ver_ret->val;
30330 }
30331
30332 /* Set the public EABI object attributes. */
30333
30334 static void
30335 aeabi_set_public_attributes (void)
30336 {
30337 char profile = '\0';
30338 int arch = -1;
30339 int virt_sec = 0;
30340 int fp16_optional = 0;
30341 int skip_exact_match = 0;
30342 arm_feature_set flags, flags_arch, flags_ext;
30343
30344 /* Autodetection mode, choose the architecture based the instructions
30345 actually used. */
30346 if (no_cpu_selected ())
30347 {
30348 ARM_MERGE_FEATURE_SETS (flags, arm_arch_used, thumb_arch_used);
30349
30350 if (ARM_CPU_HAS_FEATURE (arm_arch_used, arm_arch_any))
30351 ARM_MERGE_FEATURE_SETS (flags, flags, arm_ext_v1);
30352
30353 if (ARM_CPU_HAS_FEATURE (thumb_arch_used, arm_arch_any))
30354 ARM_MERGE_FEATURE_SETS (flags, flags, arm_ext_v4t);
30355
30356 /* Code run during relaxation relies on selected_cpu being set. */
30357 ARM_CLEAR_FEATURE (flags_arch, flags, fpu_any);
30358 flags_ext = arm_arch_none;
30359 ARM_CLEAR_FEATURE (selected_arch, flags_arch, flags_ext);
30360 selected_ext = flags_ext;
30361 selected_cpu = flags;
30362 }
30363 /* Otherwise, choose the architecture based on the capabilities of the
30364 requested cpu. */
30365 else
30366 {
30367 ARM_MERGE_FEATURE_SETS (flags_arch, selected_arch, selected_ext);
30368 ARM_CLEAR_FEATURE (flags_arch, flags_arch, fpu_any);
30369 flags_ext = selected_ext;
30370 flags = selected_cpu;
30371 }
30372 ARM_MERGE_FEATURE_SETS (flags, flags, selected_fpu);
30373
30374 /* Allow the user to override the reported architecture. */
30375 if (!ARM_FEATURE_ZERO (selected_object_arch))
30376 {
30377 ARM_CLEAR_FEATURE (flags_arch, selected_object_arch, fpu_any);
30378 flags_ext = arm_arch_none;
30379 }
30380 else
30381 skip_exact_match = ARM_FEATURE_EQUAL (selected_cpu, arm_arch_any);
30382
30383 /* When this function is run again after relaxation has happened there is no
30384 way to determine whether an architecture or CPU was specified by the user:
30385 - selected_cpu is set above for relaxation to work;
30386 - march_cpu_opt is not set if only -mcpu or .cpu is used;
30387 - mcpu_cpu_opt is set to arm_arch_any for autodetection.
30388 Therefore, if not in -march=all case we first try an exact match and fall
30389 back to autodetection. */
30390 if (!skip_exact_match)
30391 arch = get_aeabi_cpu_arch_from_fset (&flags_arch, &flags_ext, &profile, 1);
30392 if (arch == -1)
30393 arch = get_aeabi_cpu_arch_from_fset (&flags_arch, &flags_ext, &profile, 0);
30394 if (arch == -1)
30395 as_bad (_("no architecture contains all the instructions used\n"));
30396
30397 /* Tag_CPU_name. */
30398 if (selected_cpu_name[0])
30399 {
30400 char *q;
30401
30402 q = selected_cpu_name;
30403 if (strncmp (q, "armv", 4) == 0)
30404 {
30405 int i;
30406
30407 q += 4;
30408 for (i = 0; q[i]; i++)
30409 q[i] = TOUPPER (q[i]);
30410 }
30411 aeabi_set_attribute_string (Tag_CPU_name, q);
30412 }
30413
30414 /* Tag_CPU_arch. */
30415 aeabi_set_attribute_int (Tag_CPU_arch, arch);
30416
30417 /* Tag_CPU_arch_profile. */
30418 if (profile != '\0')
30419 aeabi_set_attribute_int (Tag_CPU_arch_profile, profile);
30420
30421 /* Tag_DSP_extension. */
30422 if (ARM_CPU_HAS_FEATURE (selected_ext, arm_ext_dsp))
30423 aeabi_set_attribute_int (Tag_DSP_extension, 1);
30424
30425 ARM_CLEAR_FEATURE (flags_arch, flags, fpu_any);
30426 /* Tag_ARM_ISA_use. */
30427 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v1)
30428 || ARM_FEATURE_ZERO (flags_arch))
30429 aeabi_set_attribute_int (Tag_ARM_ISA_use, 1);
30430
30431 /* Tag_THUMB_ISA_use. */
30432 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v4t)
30433 || ARM_FEATURE_ZERO (flags_arch))
30434 {
30435 int thumb_isa_use;
30436
30437 if (!ARM_CPU_HAS_FEATURE (flags, arm_ext_v8)
30438 && ARM_CPU_HAS_FEATURE (flags, arm_ext_v8m_m_only))
30439 thumb_isa_use = 3;
30440 else if (ARM_CPU_HAS_FEATURE (flags, arm_arch_t2))
30441 thumb_isa_use = 2;
30442 else
30443 thumb_isa_use = 1;
30444 aeabi_set_attribute_int (Tag_THUMB_ISA_use, thumb_isa_use);
30445 }
30446
30447 /* Tag_VFP_arch. */
30448 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_armv8xd))
30449 aeabi_set_attribute_int (Tag_VFP_arch,
30450 ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_d32)
30451 ? 7 : 8);
30452 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_fma))
30453 aeabi_set_attribute_int (Tag_VFP_arch,
30454 ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_d32)
30455 ? 5 : 6);
30456 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_d32))
30457 {
30458 fp16_optional = 1;
30459 aeabi_set_attribute_int (Tag_VFP_arch, 3);
30460 }
30461 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v3xd))
30462 {
30463 aeabi_set_attribute_int (Tag_VFP_arch, 4);
30464 fp16_optional = 1;
30465 }
30466 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v2))
30467 aeabi_set_attribute_int (Tag_VFP_arch, 2);
30468 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1)
30469 || ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1xd))
30470 aeabi_set_attribute_int (Tag_VFP_arch, 1);
30471
30472 /* Tag_ABI_HardFP_use. */
30473 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1xd)
30474 && !ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1))
30475 aeabi_set_attribute_int (Tag_ABI_HardFP_use, 1);
30476
30477 /* Tag_WMMX_arch. */
30478 if (ARM_CPU_HAS_FEATURE (flags, arm_cext_iwmmxt2))
30479 aeabi_set_attribute_int (Tag_WMMX_arch, 2);
30480 else if (ARM_CPU_HAS_FEATURE (flags, arm_cext_iwmmxt))
30481 aeabi_set_attribute_int (Tag_WMMX_arch, 1);
30482
30483 /* Tag_Advanced_SIMD_arch (formerly Tag_NEON_arch). */
30484 if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_v8_1))
30485 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch, 4);
30486 else if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_armv8))
30487 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch, 3);
30488 else if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_v1))
30489 {
30490 if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_fma))
30491 {
30492 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch, 2);
30493 }
30494 else
30495 {
30496 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch, 1);
30497 fp16_optional = 1;
30498 }
30499 }
30500
30501 if (ARM_CPU_HAS_FEATURE (flags, mve_fp_ext))
30502 aeabi_set_attribute_int (Tag_MVE_arch, 2);
30503 else if (ARM_CPU_HAS_FEATURE (flags, mve_ext))
30504 aeabi_set_attribute_int (Tag_MVE_arch, 1);
30505
30506 /* Tag_VFP_HP_extension (formerly Tag_NEON_FP16_arch). */
30507 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_fp16) && fp16_optional)
30508 aeabi_set_attribute_int (Tag_VFP_HP_extension, 1);
30509
30510 /* Tag_DIV_use.
30511
30512 We set Tag_DIV_use to two when integer divide instructions have been used
30513 in ARM state, or when Thumb integer divide instructions have been used,
30514 but we have no architecture profile set, nor have we any ARM instructions.
30515
30516 For ARMv8-A and ARMv8-M we set the tag to 0 as integer divide is implied
30517 by the base architecture.
30518
30519 For new architectures we will have to check these tests. */
30520 gas_assert (arch <= TAG_CPU_ARCH_V8_1M_MAIN);
30521 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v8)
30522 || ARM_CPU_HAS_FEATURE (flags, arm_ext_v8m))
30523 aeabi_set_attribute_int (Tag_DIV_use, 0);
30524 else if (ARM_CPU_HAS_FEATURE (flags, arm_ext_adiv)
30525 || (profile == '\0'
30526 && ARM_CPU_HAS_FEATURE (flags, arm_ext_div)
30527 && !ARM_CPU_HAS_FEATURE (arm_arch_used, arm_arch_any)))
30528 aeabi_set_attribute_int (Tag_DIV_use, 2);
30529
30530 /* Tag_MP_extension_use. */
30531 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_mp))
30532 aeabi_set_attribute_int (Tag_MPextension_use, 1);
30533
30534 /* Tag Virtualization_use. */
30535 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_sec))
30536 virt_sec |= 1;
30537 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_virt))
30538 virt_sec |= 2;
30539 if (virt_sec != 0)
30540 aeabi_set_attribute_int (Tag_Virtualization_use, virt_sec);
30541 }
30542
30543 /* Post relaxation hook. Recompute ARM attributes now that relaxation is
30544 finished and free extension feature bits which will not be used anymore. */
30545
30546 void
30547 arm_md_post_relax (void)
30548 {
30549 aeabi_set_public_attributes ();
30550 XDELETE (mcpu_ext_opt);
30551 mcpu_ext_opt = NULL;
30552 XDELETE (march_ext_opt);
30553 march_ext_opt = NULL;
30554 }
30555
30556 /* Add the default contents for the .ARM.attributes section. */
30557
30558 void
30559 arm_md_end (void)
30560 {
30561 if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
30562 return;
30563
30564 aeabi_set_public_attributes ();
30565 }
30566 #endif /* OBJ_ELF */
30567
30568 /* Parse a .cpu directive. */
30569
30570 static void
30571 s_arm_cpu (int ignored ATTRIBUTE_UNUSED)
30572 {
30573 const struct arm_cpu_option_table *opt;
30574 char *name;
30575 char saved_char;
30576
30577 name = input_line_pointer;
30578 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
30579 input_line_pointer++;
30580 saved_char = *input_line_pointer;
30581 *input_line_pointer = 0;
30582
30583 /* Skip the first "all" entry. */
30584 for (opt = arm_cpus + 1; opt->name != NULL; opt++)
30585 if (streq (opt->name, name))
30586 {
30587 selected_arch = opt->value;
30588 selected_ext = opt->ext;
30589 ARM_MERGE_FEATURE_SETS (selected_cpu, selected_arch, selected_ext);
30590 if (opt->canonical_name)
30591 strcpy (selected_cpu_name, opt->canonical_name);
30592 else
30593 {
30594 int i;
30595 for (i = 0; opt->name[i]; i++)
30596 selected_cpu_name[i] = TOUPPER (opt->name[i]);
30597
30598 selected_cpu_name[i] = 0;
30599 }
30600 ARM_MERGE_FEATURE_SETS (cpu_variant, selected_cpu, selected_fpu);
30601
30602 *input_line_pointer = saved_char;
30603 demand_empty_rest_of_line ();
30604 return;
30605 }
30606 as_bad (_("unknown cpu `%s'"), name);
30607 *input_line_pointer = saved_char;
30608 ignore_rest_of_line ();
30609 }
30610
30611 /* Parse a .arch directive. */
30612
30613 static void
30614 s_arm_arch (int ignored ATTRIBUTE_UNUSED)
30615 {
30616 const struct arm_arch_option_table *opt;
30617 char saved_char;
30618 char *name;
30619
30620 name = input_line_pointer;
30621 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
30622 input_line_pointer++;
30623 saved_char = *input_line_pointer;
30624 *input_line_pointer = 0;
30625
30626 /* Skip the first "all" entry. */
30627 for (opt = arm_archs + 1; opt->name != NULL; opt++)
30628 if (streq (opt->name, name))
30629 {
30630 selected_arch = opt->value;
30631 selected_ext = arm_arch_none;
30632 selected_cpu = selected_arch;
30633 strcpy (selected_cpu_name, opt->name);
30634 ARM_MERGE_FEATURE_SETS (cpu_variant, selected_cpu, selected_fpu);
30635 *input_line_pointer = saved_char;
30636 demand_empty_rest_of_line ();
30637 return;
30638 }
30639
30640 as_bad (_("unknown architecture `%s'\n"), name);
30641 *input_line_pointer = saved_char;
30642 ignore_rest_of_line ();
30643 }
30644
30645 /* Parse a .object_arch directive. */
30646
30647 static void
30648 s_arm_object_arch (int ignored ATTRIBUTE_UNUSED)
30649 {
30650 const struct arm_arch_option_table *opt;
30651 char saved_char;
30652 char *name;
30653
30654 name = input_line_pointer;
30655 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
30656 input_line_pointer++;
30657 saved_char = *input_line_pointer;
30658 *input_line_pointer = 0;
30659
30660 /* Skip the first "all" entry. */
30661 for (opt = arm_archs + 1; opt->name != NULL; opt++)
30662 if (streq (opt->name, name))
30663 {
30664 selected_object_arch = opt->value;
30665 *input_line_pointer = saved_char;
30666 demand_empty_rest_of_line ();
30667 return;
30668 }
30669
30670 as_bad (_("unknown architecture `%s'\n"), name);
30671 *input_line_pointer = saved_char;
30672 ignore_rest_of_line ();
30673 }
30674
30675 /* Parse a .arch_extension directive. */
30676
30677 static void
30678 s_arm_arch_extension (int ignored ATTRIBUTE_UNUSED)
30679 {
30680 const struct arm_option_extension_value_table *opt;
30681 char saved_char;
30682 char *name;
30683 int adding_value = 1;
30684
30685 name = input_line_pointer;
30686 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
30687 input_line_pointer++;
30688 saved_char = *input_line_pointer;
30689 *input_line_pointer = 0;
30690
30691 if (strlen (name) >= 2
30692 && strncmp (name, "no", 2) == 0)
30693 {
30694 adding_value = 0;
30695 name += 2;
30696 }
30697
30698 for (opt = arm_extensions; opt->name != NULL; opt++)
30699 if (streq (opt->name, name))
30700 {
30701 int i, nb_allowed_archs =
30702 sizeof (opt->allowed_archs) / sizeof (opt->allowed_archs[i]);
30703 for (i = 0; i < nb_allowed_archs; i++)
30704 {
30705 /* Empty entry. */
30706 if (ARM_CPU_IS_ANY (opt->allowed_archs[i]))
30707 continue;
30708 if (ARM_FSET_CPU_SUBSET (opt->allowed_archs[i], selected_arch))
30709 break;
30710 }
30711
30712 if (i == nb_allowed_archs)
30713 {
30714 as_bad (_("architectural extension `%s' is not allowed for the "
30715 "current base architecture"), name);
30716 break;
30717 }
30718
30719 if (adding_value)
30720 ARM_MERGE_FEATURE_SETS (selected_ext, selected_ext,
30721 opt->merge_value);
30722 else
30723 ARM_CLEAR_FEATURE (selected_ext, selected_ext, opt->clear_value);
30724
30725 ARM_MERGE_FEATURE_SETS (selected_cpu, selected_arch, selected_ext);
30726 ARM_MERGE_FEATURE_SETS (cpu_variant, selected_cpu, selected_fpu);
30727 *input_line_pointer = saved_char;
30728 demand_empty_rest_of_line ();
30729 /* Allowing Thumb division instructions for ARMv7 in autodetection rely
30730 on this return so that duplicate extensions (extensions with the
30731 same name as a previous extension in the list) are not considered
30732 for command-line parsing. */
30733 return;
30734 }
30735
30736 if (opt->name == NULL)
30737 as_bad (_("unknown architecture extension `%s'\n"), name);
30738
30739 *input_line_pointer = saved_char;
30740 ignore_rest_of_line ();
30741 }
30742
30743 /* Parse a .fpu directive. */
30744
30745 static void
30746 s_arm_fpu (int ignored ATTRIBUTE_UNUSED)
30747 {
30748 const struct arm_option_fpu_value_table *opt;
30749 char saved_char;
30750 char *name;
30751
30752 name = input_line_pointer;
30753 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
30754 input_line_pointer++;
30755 saved_char = *input_line_pointer;
30756 *input_line_pointer = 0;
30757
30758 for (opt = arm_fpus; opt->name != NULL; opt++)
30759 if (streq (opt->name, name))
30760 {
30761 selected_fpu = opt->value;
30762 #ifndef CPU_DEFAULT
30763 if (no_cpu_selected ())
30764 ARM_MERGE_FEATURE_SETS (cpu_variant, arm_arch_any, selected_fpu);
30765 else
30766 #endif
30767 ARM_MERGE_FEATURE_SETS (cpu_variant, selected_cpu, selected_fpu);
30768 *input_line_pointer = saved_char;
30769 demand_empty_rest_of_line ();
30770 return;
30771 }
30772
30773 as_bad (_("unknown floating point format `%s'\n"), name);
30774 *input_line_pointer = saved_char;
30775 ignore_rest_of_line ();
30776 }
30777
30778 /* Copy symbol information. */
30779
30780 void
30781 arm_copy_symbol_attributes (symbolS *dest, symbolS *src)
30782 {
30783 ARM_GET_FLAG (dest) = ARM_GET_FLAG (src);
30784 }
30785
30786 #ifdef OBJ_ELF
30787 /* Given a symbolic attribute NAME, return the proper integer value.
30788 Returns -1 if the attribute is not known. */
30789
30790 int
30791 arm_convert_symbolic_attribute (const char *name)
30792 {
30793 static const struct
30794 {
30795 const char * name;
30796 const int tag;
30797 }
30798 attribute_table[] =
30799 {
30800 /* When you modify this table you should
30801 also modify the list in doc/c-arm.texi. */
30802 #define T(tag) {#tag, tag}
30803 T (Tag_CPU_raw_name),
30804 T (Tag_CPU_name),
30805 T (Tag_CPU_arch),
30806 T (Tag_CPU_arch_profile),
30807 T (Tag_ARM_ISA_use),
30808 T (Tag_THUMB_ISA_use),
30809 T (Tag_FP_arch),
30810 T (Tag_VFP_arch),
30811 T (Tag_WMMX_arch),
30812 T (Tag_Advanced_SIMD_arch),
30813 T (Tag_PCS_config),
30814 T (Tag_ABI_PCS_R9_use),
30815 T (Tag_ABI_PCS_RW_data),
30816 T (Tag_ABI_PCS_RO_data),
30817 T (Tag_ABI_PCS_GOT_use),
30818 T (Tag_ABI_PCS_wchar_t),
30819 T (Tag_ABI_FP_rounding),
30820 T (Tag_ABI_FP_denormal),
30821 T (Tag_ABI_FP_exceptions),
30822 T (Tag_ABI_FP_user_exceptions),
30823 T (Tag_ABI_FP_number_model),
30824 T (Tag_ABI_align_needed),
30825 T (Tag_ABI_align8_needed),
30826 T (Tag_ABI_align_preserved),
30827 T (Tag_ABI_align8_preserved),
30828 T (Tag_ABI_enum_size),
30829 T (Tag_ABI_HardFP_use),
30830 T (Tag_ABI_VFP_args),
30831 T (Tag_ABI_WMMX_args),
30832 T (Tag_ABI_optimization_goals),
30833 T (Tag_ABI_FP_optimization_goals),
30834 T (Tag_compatibility),
30835 T (Tag_CPU_unaligned_access),
30836 T (Tag_FP_HP_extension),
30837 T (Tag_VFP_HP_extension),
30838 T (Tag_ABI_FP_16bit_format),
30839 T (Tag_MPextension_use),
30840 T (Tag_DIV_use),
30841 T (Tag_nodefaults),
30842 T (Tag_also_compatible_with),
30843 T (Tag_conformance),
30844 T (Tag_T2EE_use),
30845 T (Tag_Virtualization_use),
30846 T (Tag_DSP_extension),
30847 T (Tag_MVE_arch),
30848 /* We deliberately do not include Tag_MPextension_use_legacy. */
30849 #undef T
30850 };
30851 unsigned int i;
30852
30853 if (name == NULL)
30854 return -1;
30855
30856 for (i = 0; i < ARRAY_SIZE (attribute_table); i++)
30857 if (streq (name, attribute_table[i].name))
30858 return attribute_table[i].tag;
30859
30860 return -1;
30861 }
30862
30863 /* Apply sym value for relocations only in the case that they are for
30864 local symbols in the same segment as the fixup and you have the
30865 respective architectural feature for blx and simple switches. */
30866
30867 int
30868 arm_apply_sym_value (struct fix * fixP, segT this_seg)
30869 {
30870 if (fixP->fx_addsy
30871 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
30872 /* PR 17444: If the local symbol is in a different section then a reloc
30873 will always be generated for it, so applying the symbol value now
30874 will result in a double offset being stored in the relocation. */
30875 && (S_GET_SEGMENT (fixP->fx_addsy) == this_seg)
30876 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE))
30877 {
30878 switch (fixP->fx_r_type)
30879 {
30880 case BFD_RELOC_ARM_PCREL_BLX:
30881 case BFD_RELOC_THUMB_PCREL_BRANCH23:
30882 if (ARM_IS_FUNC (fixP->fx_addsy))
30883 return 1;
30884 break;
30885
30886 case BFD_RELOC_ARM_PCREL_CALL:
30887 case BFD_RELOC_THUMB_PCREL_BLX:
30888 if (THUMB_IS_FUNC (fixP->fx_addsy))
30889 return 1;
30890 break;
30891
30892 default:
30893 break;
30894 }
30895
30896 }
30897 return 0;
30898 }
30899 #endif /* OBJ_ELF */
This page took 0.865882 seconds and 5 git commands to generate.