Tue Aug 20 14:10:02 1996 Martin M. Hunt <hunt@pizza.cygnus.com>
[deliverable/binutils-gdb.git] / gas / config / tc-d10v.c
1 /* tc-d10v.c -- Assembler code for the Mitsubishi D10V
2
3 Copyright (C) 1996 Free Software Foundation.
4
5 This file is part of GAS, the GNU Assembler.
6
7 GAS is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GAS is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GAS; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 #include <stdio.h>
23 #include <ctype.h>
24 #include "as.h"
25 #include "subsegs.h"
26 #include "opcode/d10v.h"
27 #include "elf/ppc.h"
28
29 const char comment_chars[] = "#;";
30 const char line_comment_chars[] = "#";
31 const char line_separator_chars[] = "";
32 const char *md_shortopts = "O";
33 const char EXP_CHARS[] = "eE";
34 const char FLT_CHARS[] = "dD";
35
36 int Optimizing = 0;
37
38 /* fixups */
39 #define MAX_INSN_FIXUPS (5)
40 struct d10v_fixup
41 {
42 expressionS exp;
43 int operand;
44 int pcrel;
45 };
46
47 typedef struct _fixups
48 {
49 int fc;
50 struct d10v_fixup fix[MAX_INSN_FIXUPS];
51 struct _fixups *next;
52 } Fixups;
53
54 static Fixups FixUps[2];
55 static Fixups *fixups;
56
57 /* local functions */
58 static int reg_name_search PARAMS ((char *name));
59 static int register_name PARAMS ((expressionS *expressionP));
60 static int check_range PARAMS ((unsigned long num, int bits, int flags));
61 static int postfix PARAMS ((char *p));
62 static bfd_reloc_code_real_type get_reloc PARAMS ((struct d10v_operand *op));
63 static int get_operands PARAMS ((expressionS exp[]));
64 static struct d10v_opcode *find_opcode PARAMS ((struct d10v_opcode *opcode, expressionS ops[]));
65 static unsigned long build_insn PARAMS ((struct d10v_opcode *opcode, expressionS *opers, unsigned long insn));
66 static void write_long PARAMS ((struct d10v_opcode *opcode, unsigned long insn, Fixups *fx));
67 static void write_1_short PARAMS ((struct d10v_opcode *opcode, unsigned long insn, Fixups *fx));
68 static int write_2_short PARAMS ((struct d10v_opcode *opcode1, unsigned long insn1,
69 struct d10v_opcode *opcode2, unsigned long insn2, int exec_type, Fixups *fx));
70 static unsigned long do_assemble PARAMS ((char *str, struct d10v_opcode **opcode));
71 static unsigned long d10v_insert_operand PARAMS (( unsigned long insn, int op_type,
72 offsetT value, int left));
73 static int parallel_ok PARAMS ((struct d10v_opcode *opcode1, unsigned long insn1,
74 struct d10v_opcode *opcode2, unsigned long insn2));
75
76
77 struct option md_longopts[] = {
78 {NULL, no_argument, NULL, 0}
79 };
80 size_t md_longopts_size = sizeof(md_longopts);
81
82 /* The target specific pseudo-ops which we support. */
83 const pseudo_typeS md_pseudo_table[] =
84 {
85 { NULL, NULL, 0 }
86 };
87
88 /* Opcode hash table. */
89 static struct hash_control *d10v_hash;
90
91 /* reg_name_search does a binary search of the pre_defined_registers
92 array to see if "name" is a valid regiter name. Returns the register
93 number from the array on success, or -1 on failure. */
94
95 static int
96 reg_name_search (name)
97 char *name;
98 {
99 int middle, low, high;
100 int cmp;
101
102 low = 0;
103 high = reg_name_cnt() - 1;
104
105 do
106 {
107 middle = (low + high) / 2;
108 cmp = strcasecmp (name, pre_defined_registers[middle].name);
109 if (cmp < 0)
110 high = middle - 1;
111 else if (cmp > 0)
112 low = middle + 1;
113 else
114 return pre_defined_registers[middle].value;
115 }
116 while (low <= high);
117 return -1;
118 }
119
120 /* register_name() checks the string at input_line_pointer
121 to see if it is a valid register name */
122
123 static int
124 register_name (expressionP)
125 expressionS *expressionP;
126 {
127 int reg_number;
128 char c, *p = input_line_pointer;
129
130 while (*p && *p!='\n' && *p!='\r' && *p !=',' && *p!=' ' && *p!=')')
131 p++;
132
133 c = *p;
134 if (c)
135 *p++ = 0;
136
137 /* look to see if it's in the register table */
138 reg_number = reg_name_search (input_line_pointer);
139 if (reg_number >= 0)
140 {
141 expressionP->X_op = O_register;
142 /* temporarily store a pointer to the string here */
143 expressionP->X_op_symbol = (struct symbol *)input_line_pointer;
144 expressionP->X_add_number = reg_number;
145 input_line_pointer = p;
146 return 1;
147 }
148 if (c)
149 *(p-1) = c;
150 return 0;
151 }
152
153
154 static int
155 check_range (num, bits, flags)
156 unsigned long num;
157 int bits;
158 int flags;
159 {
160 long min, max, bit1;
161 int retval=0;
162
163 /* don't bother checking 16-bit values */
164 if (bits == 16)
165 return 0;
166
167 if (flags & OPERAND_SHIFT)
168 {
169 /* all special shift operands are unsigned */
170 /* and <= 16. We allow 0 for now. */
171 if (num>16)
172 return 1;
173 else
174 return 0;
175 }
176
177 if (flags & OPERAND_SIGNED)
178 {
179 max = (1 << (bits - 1))-1;
180 min = - (1 << (bits - 1));
181 if (((long)num > max) || ((long)num < min))
182 retval = 1;
183 }
184 else
185 {
186 max = (1 << bits) - 1;
187 min = 0;
188 if ((num > max) || (num < min))
189 retval = 1;
190 }
191 return retval;
192 }
193
194
195 void
196 md_show_usage (stream)
197 FILE *stream;
198 {
199 fprintf(stream, "D10V options:\n\
200 -O optimize. Will do some operations in parallel.\n");
201 }
202
203 int
204 md_parse_option (c, arg)
205 int c;
206 char *arg;
207 {
208 switch (c)
209 {
210 case 'O':
211 /* Optimize. Will attempt to parallelize operations */
212 Optimizing = 1;
213 break;
214 default:
215 return 0;
216 }
217 return 1;
218 }
219
220 symbolS *
221 md_undefined_symbol (name)
222 char *name;
223 {
224 return 0;
225 }
226
227 /* Turn a string in input_line_pointer into a floating point constant of type
228 type, and store the appropriate bytes in *litP. The number of LITTLENUMS
229 emitted is stored in *sizeP . An error message is returned, or NULL on OK.
230 */
231 char *
232 md_atof (type, litP, sizeP)
233 int type;
234 char *litP;
235 int *sizeP;
236 {
237 int prec;
238 LITTLENUM_TYPE words[4];
239 char *t;
240 int i;
241
242 switch (type)
243 {
244 case 'f':
245 prec = 2;
246 break;
247 case 'd':
248 prec = 4;
249 break;
250 default:
251 *sizeP = 0;
252 return "bad call to md_atof";
253 }
254
255 t = atof_ieee (input_line_pointer, type, words);
256 if (t)
257 input_line_pointer = t;
258
259 *sizeP = prec * 2;
260
261 for (i = 0; i < prec; i++)
262 {
263 md_number_to_chars (litP, (valueT) words[i], 2);
264 litP += 2;
265 }
266 return NULL;
267 }
268
269 void
270 md_convert_frag (abfd, sec, fragP)
271 bfd *abfd;
272 asection *sec;
273 fragS *fragP;
274 {
275 printf ("call to md_convert_frag \n");
276 abort ();
277 }
278
279 valueT
280 md_section_align (seg, addr)
281 asection *seg;
282 valueT addr;
283 {
284 int align = bfd_get_section_alignment (stdoutput, seg);
285 return ((addr + (1 << align) - 1) & (-1 << align));
286 }
287
288
289 void
290 md_begin ()
291 {
292 char *prev_name = "";
293 struct d10v_opcode *opcode;
294 d10v_hash = hash_new();
295
296 /* Insert unique names into hash table. The D10v instruction set
297 has many identical opcode names that have different opcodes based
298 on the operands. This hash table then provides a quick index to
299 the first opcode with a particular name in the opcode table. */
300
301 for (opcode = (struct d10v_opcode *)d10v_opcodes; opcode->name; opcode++)
302 {
303 if (strcmp (prev_name, opcode->name))
304 {
305 prev_name = (char *)opcode->name;
306 hash_insert (d10v_hash, opcode->name, (char *) opcode);
307 }
308 }
309
310 fixups = &FixUps[0];
311 FixUps[0].next = &FixUps[1];
312 FixUps[1].next = &FixUps[0];
313 }
314
315
316 /* this function removes the postincrement or postdecrement
317 operator ( '+' or '-' ) from an expression */
318
319 static int postfix (p)
320 char *p;
321 {
322 while (*p != '-' && *p != '+')
323 {
324 if (*p==0 || *p=='\n' || *p=='\r')
325 break;
326 p++;
327 }
328
329 if (*p == '-')
330 {
331 *p = ' ';
332 return (-1);
333 }
334 if (*p == '+')
335 {
336 *p = ' ';
337 return (1);
338 }
339
340 return (0);
341 }
342
343
344 static bfd_reloc_code_real_type
345 get_reloc (op)
346 struct d10v_operand *op;
347 {
348 int bits = op->bits;
349
350 /* printf("get_reloc: bits=%d address=%d\n",bits,op->flags & OPERAND_ADDR); */
351 if (bits <= 4)
352 return (0);
353
354 if (op->flags & OPERAND_ADDR)
355 {
356 if (bits == 8)
357 return (BFD_RELOC_D10V_10_PCREL_R);
358 else
359 return (BFD_RELOC_D10V_18_PCREL);
360 }
361
362 return (BFD_RELOC_16);
363 }
364
365 /* get_operands parses a string of operands and returns
366 an array of expressions */
367
368 static int
369 get_operands (exp)
370 expressionS exp[];
371 {
372 char *p = input_line_pointer;
373 int numops = 0;
374 int post = 0;
375
376 while (*p)
377 {
378 while (*p == ' ' || *p == '\t' || *p == ',')
379 p++;
380 if (*p==0 || *p=='\n' || *p=='\r')
381 break;
382
383 if (*p == '@')
384 {
385 p++;
386 exp[numops].X_op = O_absent;
387 if (*p == '(')
388 {
389 p++;
390 exp[numops].X_add_number = OPERAND_ATPAR;
391 }
392 else if (*p == '-')
393 {
394 p++;
395 exp[numops].X_add_number = OPERAND_ATMINUS;
396 }
397 else
398 {
399 exp[numops].X_add_number = OPERAND_ATSIGN;
400 post = postfix (p);
401 }
402 numops++;
403 continue;
404 }
405
406 if (*p == ')')
407 {
408 /* just skip the trailing paren */
409 p++;
410 continue;
411 }
412
413 input_line_pointer = p;
414
415
416 /* check to see if it might be a register name */
417 if (!register_name (&exp[numops]))
418 {
419 /* parse as an expression */
420 expression (&exp[numops]);
421 }
422
423 if (exp[numops].X_op == O_illegal)
424 as_bad ("illegal operand");
425 else if (exp[numops].X_op == O_absent)
426 as_bad ("missing operand");
427
428 numops++;
429 p = input_line_pointer;
430 }
431
432 switch (post)
433 {
434 case -1: /* postdecrement mode */
435 exp[numops].X_op = O_absent;
436 exp[numops++].X_add_number = OPERAND_MINUS;
437 break;
438 case 1: /* postincrement mode */
439 exp[numops].X_op = O_absent;
440 exp[numops++].X_add_number = OPERAND_PLUS;
441 break;
442 }
443
444 exp[numops].X_op = 0;
445 return (numops);
446 }
447
448 static unsigned long
449 d10v_insert_operand (insn, op_type, value, left)
450 unsigned long insn;
451 int op_type;
452 offsetT value;
453 int left;
454 {
455 int shift, bits;
456
457 shift = d10v_operands[op_type].shift;
458 if (left)
459 shift += 15;
460
461 bits = d10v_operands[op_type].bits;
462
463 /* truncate to the proper number of bits */
464 if (check_range (value, bits, d10v_operands[op_type].flags))
465 as_bad("operand out of range: %d",value);
466
467 value &= 0x7FFFFFFF >> (31 - bits);
468 insn |= (value << shift);
469
470 return insn;
471 }
472
473
474 /* build_insn takes a pointer to the opcode entry in the opcode table
475 and the array of operand expressions and returns the instruction */
476
477 static unsigned long
478 build_insn (opcode, opers, insn)
479 struct d10v_opcode *opcode;
480 expressionS *opers;
481 unsigned long insn;
482 {
483 int i, bits, shift, flags, format;
484 unsigned int number;
485
486 /* the insn argument is only used for the DIVS kludge */
487 if (insn)
488 format = LONG_R;
489 else
490 {
491 insn = opcode->opcode;
492 format = opcode->format;
493 }
494
495 for (i=0;opcode->operands[i];i++)
496 {
497 flags = d10v_operands[opcode->operands[i]].flags;
498 bits = d10v_operands[opcode->operands[i]].bits;
499 shift = d10v_operands[opcode->operands[i]].shift;
500 number = opers[i].X_add_number;
501
502 if (flags & OPERAND_REG)
503 {
504 number &= REGISTER_MASK;
505 if (format == LONG_L)
506 shift += 15;
507 }
508
509 if (opers[i].X_op != O_register && opers[i].X_op != O_constant)
510 {
511 /* now create a fixup */
512
513 /*
514 printf("need a fixup: ");
515 print_expr_1(stdout,&opers[i]);
516 printf("\n");
517 */
518
519 if (fixups->fc >= MAX_INSN_FIXUPS)
520 as_fatal ("too many fixups");
521 fixups->fix[fixups->fc].exp = opers[i];
522 fixups->fix[fixups->fc].operand = opcode->operands[i];
523 fixups->fix[fixups->fc].pcrel = (flags & OPERAND_ADDR) ? true : false;
524 (fixups->fc)++;
525 }
526
527 /* truncate to the proper number of bits */
528 if ((opers[i].X_op == O_constant) && check_range (number, bits, flags))
529 as_bad("operand out of range: %d",number);
530 number &= 0x7FFFFFFF >> (31 - bits);
531 insn = insn | (number << shift);
532 }
533
534 /* kludge: for DIVS, we need to put the operands in twice */
535 /* on the second pass, format is changed to LONG_R to force */
536 /* the second set of operands to not be shifted over 15 */
537 if ((opcode->opcode == OPCODE_DIVS) && (format==LONG_L))
538 insn = build_insn (opcode, opers, insn);
539
540 return insn;
541 }
542
543 /* write out a long form instruction */
544 static void
545 write_long (opcode, insn, fx)
546 struct d10v_opcode *opcode;
547 unsigned long insn;
548 Fixups *fx;
549 {
550 int i;
551 char *f = frag_more(4);
552
553 insn |= FM11;
554 /* printf("INSN: %08x\n",insn); */
555 number_to_chars_bigendian (f, insn, 4);
556
557 for (i=0; i < fx->fc; i++)
558 {
559 if (get_reloc((struct d10v_operand *)&d10v_operands[fx->fix[i].operand]))
560 {
561 /*
562 printf("fix_new_exp: where:%x size:4\n ",f - frag_now->fr_literal);
563 print_expr_1(stdout,&(fx->fix[i].exp));
564 printf("\n");
565 */
566
567 fix_new_exp (frag_now,
568 f - frag_now->fr_literal,
569 4,
570 &(fx->fix[i].exp),
571 fx->fix[i].pcrel,
572 fx->fix[i].operand|2048);
573 }
574 }
575 fx->fc = 0;
576 }
577
578
579 /* write out a short form instruction by itself */
580 static void
581 write_1_short (opcode, insn, fx)
582 struct d10v_opcode *opcode;
583 unsigned long insn;
584 Fixups *fx;
585 {
586 char *f = frag_more(4);
587 int i;
588
589 if (opcode->exec_type & PARONLY)
590 as_fatal ("Instruction must be executed in parallel with another instruction.");
591
592 /* the other container needs to be NOP */
593 /* according to 4.3.1: for FM=00, sub-instructions performed only
594 by IU cannot be encoded in L-container. */
595 if (opcode->unit == IU)
596 insn |= FM00 | (NOP << 15); /* right container */
597 else
598 insn = FM00 | (insn << 15) | NOP; /* left container */
599
600 /* printf("INSN: %08x\n",insn); */
601 number_to_chars_bigendian (f, insn, 4);
602 for (i=0; i < fx->fc; i++)
603 {
604 bfd_reloc_code_real_type reloc;
605 reloc = get_reloc((struct d10v_operand *)&d10v_operands[fx->fix[i].operand]);
606 if (reloc)
607 {
608 /*
609 printf("fix_new_exp: where:%x size:4\n ",f - frag_now->fr_literal);
610 print_expr_1(stdout,&(fx->fix[i].exp));
611 printf("\n");
612 */
613
614 /* if it's an R reloc, we may have to switch it to L */
615 if ( (reloc == BFD_RELOC_D10V_10_PCREL_R) && (opcode->unit != IU) )
616 fx->fix[i].operand |= 1024;
617
618 fix_new_exp (frag_now,
619 f - frag_now->fr_literal,
620 4,
621 &(fx->fix[i].exp),
622 fx->fix[i].pcrel,
623 fx->fix[i].operand|2048);
624 }
625 }
626 fx->fc = 0;
627 }
628
629 /* write out a short form instruction if possible */
630 /* return number of instructions not written out */
631 static int
632 write_2_short (opcode1, insn1, opcode2, insn2, exec_type, fx)
633 struct d10v_opcode *opcode1, *opcode2;
634 unsigned long insn1, insn2;
635 int exec_type;
636 Fixups *fx;
637 {
638 unsigned long insn;
639 char *f;
640 int i,j;
641
642 if ( (exec_type != 1) && ((opcode1->exec_type & PARONLY)
643 || (opcode2->exec_type & PARONLY)))
644 as_fatal("Instruction must be executed in parallel");
645
646 if ( (opcode1->format & LONG_OPCODE) || (opcode2->format & LONG_OPCODE))
647 as_fatal ("Long instructions may not be combined.");
648
649 if(opcode1->exec_type & BRANCH_LINK)
650 {
651 /* subroutines must be called from 32-bit boundaries */
652 /* so the return address will be correct */
653 write_1_short (opcode1, insn1, fx->next);
654 return (1);
655 }
656
657 switch (exec_type)
658 {
659 case 0: /* order not specified */
660 if ( Optimizing && parallel_ok (opcode1, insn1, opcode2, insn2))
661 {
662 /* parallel */
663 if (opcode1->unit == IU)
664 insn = FM00 | (insn2 << 15) | insn1;
665 else if (opcode2->unit == MU)
666 insn = FM00 | (insn2 << 15) | insn1;
667 else
668 {
669 insn = FM00 | (insn1 << 15) | insn2;
670 fx = fx->next;
671 }
672 }
673 else if (opcode1->unit == IU)
674 {
675 /* reverse sequential */
676 insn = FM10 | (insn2 << 15) | insn1;
677 }
678 else
679 {
680 /* sequential */
681 insn = FM01 | (insn1 << 15) | insn2;
682 fx = fx->next;
683 }
684 break;
685 case 1: /* parallel */
686 if (opcode1->exec_type & SEQ || opcode2->exec_type & SEQ)
687 as_fatal ("One of these instructions may not be executed in parallel.");
688
689 if (opcode1->unit == IU)
690 {
691 if (opcode2->unit == IU)
692 as_fatal ("Two IU instructions may not be executed in parallel");
693 as_warn ("Swapping instruction order");
694 insn = FM00 | (insn2 << 15) | insn1;
695 }
696 else if (opcode2->unit == MU)
697 {
698 if (opcode1->unit == MU)
699 as_fatal ("Two MU instructions may not be executed in parallel");
700 as_warn ("Swapping instruction order");
701 insn = FM00 | (insn2 << 15) | insn1;
702 }
703 else
704 {
705 insn = FM00 | (insn1 << 15) | insn2;
706 fx = fx->next;
707 }
708 break;
709 case 2: /* sequential */
710 if (opcode1->unit == IU)
711 as_fatal ("IU instruction may not be in the left container");
712 insn = FM01 | (insn1 << 15) | insn2;
713 fx = fx->next;
714 break;
715 case 3: /* reverse sequential */
716 if (opcode2->unit == MU)
717 as_fatal ("MU instruction may not be in the right container");
718 insn = FM10 | (insn1 << 15) | insn2;
719 fx = fx->next;
720 break;
721 default:
722 as_fatal("unknown execution type passed to write_2_short()");
723 }
724
725 /* printf("INSN: %08x\n",insn); */
726 f = frag_more(4);
727 number_to_chars_bigendian (f, insn, 4);
728
729 for (j=0; j<2; j++)
730 {
731 bfd_reloc_code_real_type reloc;
732 for (i=0; i < fx->fc; i++)
733 {
734 reloc = get_reloc((struct d10v_operand *)&d10v_operands[fx->fix[i].operand]);
735 if (reloc)
736 {
737 if ( (reloc == BFD_RELOC_D10V_10_PCREL_R) && (j == 0) )
738 fx->fix[i].operand |= 1024;
739
740 /*
741 printf("fix_new_exp: where:%x reloc:%d\n ",f - frag_now->fr_literal,fx->fix[i].operand);
742 print_expr_1(stdout,&(fx->fix[i].exp));
743 printf("\n");
744 */
745 fix_new_exp (frag_now,
746 f - frag_now->fr_literal,
747 4,
748 &(fx->fix[i].exp),
749 fx->fix[i].pcrel,
750 fx->fix[i].operand|2048);
751 }
752 }
753 fx->fc = 0;
754 fx = fx->next;
755 }
756 return (0);
757 }
758
759
760 /* Check 2 instructions and determine if they can be safely */
761 /* executed in parallel. Returns 1 if they can be. */
762 static int
763 parallel_ok (op1, insn1, op2, insn2)
764 struct d10v_opcode *op1, *op2;
765 unsigned long insn1, insn2;
766 {
767 int i, j, flags, mask, shift, regno;
768 unsigned long ins, mod[2], used[2];
769 struct d10v_opcode *op;
770
771 if (op1->exec_type & SEQ || op2->exec_type & SEQ)
772 return 0;
773
774 /* The idea here is to create two sets of bitmasks (mod and used) */
775 /* which indicate which registers are modified or used by each instruction. */
776 /* The operation can only be done in parallel if instruction 1 and instruction 2 */
777 /* modify different registers, and neither instruction modifies any registers */
778 /* the other is using. Accesses to control registers, PSW, and memory are treated */
779 /* as accesses to a single register. So if both instructions write memory or one */
780 /* instruction writes memory and the other reads, then they cannot be done in parallel. */
781 /* Likewise, if one instruction mucks with the psw and the other reads the PSW */
782 /* (which includes C, F0, and F1), then they cannot operate safely in parallel. */
783
784 /* the bitmasks (mod and used) look like this (bit 31 = MSB) */
785 /* r0-r15 0-15 */
786 /* a0-a1 16-17 */
787 /* cr (not psw) 18 */
788 /* psw 19 */
789 /* mem 20 */
790
791 for (j=0;j<2;j++)
792 {
793 if (j == 0)
794 {
795 op = op1;
796 ins = insn1;
797 }
798 else
799 {
800 op = op2;
801 ins = insn2;
802 }
803 mod[j] = used[j] = 0;
804 for (i = 0; op1->operands[i]; i++)
805 {
806 flags = d10v_operands[op->operands[i]].flags;
807 shift = d10v_operands[op->operands[i]].shift;
808 mask = 0x7FFFFFFF >> (31 - d10v_operands[op->operands[i]].bits);
809 if (flags & OPERAND_REG)
810 {
811 regno = (ins >> shift) & mask;
812 if (flags & OPERAND_ACC)
813 regno += 16;
814 else if (flags & OPERAND_CONTROL) /* mvtc or mvfc */
815 {
816 if (regno == 0)
817 regno = 19;
818 else
819 regno = 18;
820 }
821 else if (flags & OPERAND_FLAG)
822 regno = 19;
823
824 if ( flags & OPERAND_DEST )
825 {
826 mod[j] |= 1 << regno;
827 if (flags & OPERAND_EVEN)
828 mod[j] |= 1 << (regno + 1);
829 }
830 else
831 {
832 used[j] |= 1 << regno ;
833 if (flags & OPERAND_EVEN)
834 used[j] |= 1 << (regno + 1);
835 }
836 }
837 else if (op->exec_type & RMEM)
838 used[j] |= 1 << 20;
839 else if (op->exec_type & WMEM)
840 mod[j] |= 1 << 20;
841 else if (op->exec_type & RF0)
842 used[j] |= 1 << 19;
843 else if (op->exec_type & WF0)
844 mod[j] |= 1 << 19;
845 else if (op->exec_type & WCAR)
846 mod[j] |= 1 << 19;
847 }
848 }
849 if ((mod[0] & mod[1]) == 0 && (mod[0] & used[1]) == 0 && (mod[1] & used[0]) == 0)
850 return 1;
851 return 0;
852 }
853
854
855 /* This is the main entry point for the machine-dependent assembler. str points to a
856 machine-dependent instruction. This function is supposed to emit the frags/bytes
857 it assembles to. For the D10V, it mostly handles the special VLIW parsing and packing
858 and leaves the difficult stuff to do_assemble().
859 */
860
861 static unsigned long prev_insn;
862 static struct d10v_opcode *prev_opcode = 0;
863 static subsegT prev_subseg;
864 static segT prev_seg;
865
866 void
867 md_assemble (str)
868 char *str;
869 {
870 struct d10v_opcode *opcode;
871 unsigned long insn;
872 int extype=0; /* execution type; parallel, etc */
873 static int etype=0; /* saved extype. used for multiline instructions */
874 char *str2;
875
876 /* printf("md_assemble: str=%s\n",str); */
877
878 if (etype == 0)
879 {
880 /* look for the special multiple instruction separators */
881 str2 = strstr (str, "||");
882 if (str2)
883 extype = 1;
884 else
885 {
886 str2 = strstr (str, "->");
887 if (str2)
888 extype = 2;
889 else
890 {
891 str2 = strstr (str, "<-");
892 if (str2)
893 extype = 3;
894 }
895 }
896 /* str2 points to the separator, if one */
897 if (str2)
898 {
899 *str2 = 0;
900
901 /* if two instructions are present and we already have one saved
902 then first write it out */
903 if (prev_opcode)
904 write_1_short (prev_opcode, prev_insn, fixups->next);
905
906 /* assemble first instruction and save it */
907 prev_insn = do_assemble (str, &prev_opcode);
908 if (prev_insn == -1)
909 as_fatal ("can't find opcode ");
910 fixups = fixups->next;
911 str = str2 + 2;
912 }
913 }
914
915 insn = do_assemble (str, &opcode);
916 if (insn == -1)
917 {
918 if (extype)
919 {
920 etype = extype;
921 return;
922 }
923 as_fatal ("can't find opcode ");
924 }
925
926 if (etype)
927 {
928 extype = etype;
929 etype = 0;
930 }
931
932 /* if this is a long instruction, write it and any previous short instruction */
933 if (opcode->format & LONG_OPCODE)
934 {
935 if (extype)
936 as_fatal("Unable to mix instructions as specified");
937 if (prev_opcode)
938 {
939 write_1_short (prev_opcode, prev_insn, fixups->next);
940 prev_opcode = NULL;
941 }
942 write_long (opcode, insn, fixups);
943 prev_opcode = NULL;
944 return;
945 }
946
947 if (prev_opcode && (write_2_short (prev_opcode, prev_insn, opcode, insn, extype, fixups) == 0))
948 {
949 /* no instructions saved */
950 prev_opcode = NULL;
951 }
952 else
953 {
954 if (extype)
955 as_fatal("Unable to mix instructions as specified");
956 /* save off last instruction so it may be packed on next pass */
957 prev_opcode = opcode;
958 prev_insn = insn;
959 prev_seg = now_seg;
960 prev_subseg = now_subseg;
961 fixups = fixups->next;
962 }
963 }
964
965
966 /* do_assemble assembles a single instruction and returns an opcode */
967 /* it returns -1 (an invalid opcode) on error */
968
969 static unsigned long
970 do_assemble (str, opcode)
971 char *str;
972 struct d10v_opcode **opcode;
973 {
974 unsigned char *op_start, *save;
975 unsigned char *op_end;
976 char name[20];
977 int nlen = 0;
978 expressionS myops[6];
979 unsigned long insn;
980
981 /* printf("do_assemble: str=%s\n",str); */
982
983 /* Drop leading whitespace */
984 while (*str == ' ')
985 str++;
986
987 /* find the opcode end */
988 for (op_start = op_end = (unsigned char *) (str);
989 *op_end
990 && nlen < 20
991 && !is_end_of_line[*op_end] && *op_end != ' ';
992 op_end++)
993 {
994 name[nlen] = op_start[nlen];
995 nlen++;
996 }
997 name[nlen] = 0;
998
999 if (nlen == 0)
1000 return (-1);
1001
1002 /* find the first opcode with the proper name */
1003 *opcode = (struct d10v_opcode *)hash_find (d10v_hash, name);
1004 if (*opcode == NULL)
1005 as_fatal ("unknown opcode: %s",name);
1006
1007 save = input_line_pointer;
1008 input_line_pointer = op_end;
1009 *opcode = find_opcode (*opcode, myops);
1010 if (*opcode == 0)
1011 return -1;
1012 input_line_pointer = save;
1013
1014 insn = build_insn ((*opcode), myops, 0);
1015 /* printf("sub-insn = %lx\n",insn); */
1016 return (insn);
1017 }
1018
1019 /* find_opcode() gets a pointer to an entry in the opcode table. */
1020 /* It must look at all opcodes with the same name and use the operands */
1021 /* to choose the correct opcode. */
1022
1023 static struct d10v_opcode *
1024 find_opcode (opcode, myops)
1025 struct d10v_opcode *opcode;
1026 expressionS myops[];
1027 {
1028 int i, match, done, numops;
1029 struct d10v_opcode *next_opcode;
1030
1031 /* get all the operands and save them as expressions */
1032 numops = get_operands (myops);
1033
1034 /* now see if the operand is a fake. If so, find the correct size */
1035 /* instruction, if possible */
1036 if (opcode->format == OPCODE_FAKE)
1037 {
1038 int opnum = opcode->operands[0];
1039
1040 if (myops[opnum].X_op == O_register)
1041 {
1042 myops[opnum].X_op = O_symbol;
1043 myops[opnum].X_add_symbol = symbol_find_or_make ((char *)myops[opnum].X_op_symbol);
1044 myops[opnum].X_add_number = 0;
1045 myops[opnum].X_op_symbol = NULL;
1046 }
1047
1048 if (myops[opnum].X_op == O_constant || S_IS_DEFINED(myops[opnum].X_add_symbol))
1049 {
1050 next_opcode=opcode+1;
1051 for (i=0; opcode->operands[i+1]; i++)
1052 {
1053 int bits = d10v_operands[next_opcode->operands[opnum]].bits;
1054 int flags = d10v_operands[next_opcode->operands[opnum]].flags;
1055 if (!check_range (myops[opnum].X_add_number, bits, flags))
1056 return next_opcode;
1057 next_opcode++;
1058 }
1059 as_fatal ("value out of range");
1060 }
1061 else
1062 {
1063 /* not a constant, so use a long instruction */
1064 return opcode+2;
1065 }
1066 }
1067 else
1068 {
1069 match = 0;
1070 /* now search the opcode table table for one with operands */
1071 /* that matches what we've got */
1072 while (!match)
1073 {
1074 match = 1;
1075 for (i = 0; opcode->operands[i]; i++)
1076 {
1077 int flags = d10v_operands[opcode->operands[i]].flags;
1078 int X_op = myops[i].X_op;
1079 int num = myops[i].X_add_number;
1080
1081 if (X_op==0)
1082 {
1083 match=0;
1084 break;
1085 }
1086
1087 if (flags & OPERAND_REG)
1088 {
1089 if ((X_op != O_register) ||
1090 ((flags & OPERAND_ACC) != (num & OPERAND_ACC)) ||
1091 ((flags & OPERAND_FLAG) != (num & OPERAND_FLAG)) ||
1092 ((flags & OPERAND_CONTROL) != (num & OPERAND_CONTROL)))
1093 {
1094 match=0;
1095 break;
1096 }
1097 }
1098
1099 if (((flags & OPERAND_MINUS) && ((X_op != O_absent) || (num != OPERAND_MINUS))) ||
1100 ((flags & OPERAND_PLUS) && ((X_op != O_absent) || (num != OPERAND_PLUS))) ||
1101 ((flags & OPERAND_ATMINUS) && ((X_op != O_absent) || (num != OPERAND_ATMINUS))) ||
1102 ((flags & OPERAND_ATPAR) && ((X_op != O_absent) || (num != OPERAND_ATPAR))) ||
1103 ((flags & OPERAND_ATSIGN) && ((X_op != O_absent) || (num != OPERAND_ATSIGN))))
1104 {
1105 match=0;
1106 break;
1107 }
1108 }
1109
1110 /* we're only done if the operands matched so far AND there
1111 are no more to check */
1112 if (match && myops[i].X_op==0)
1113 break;
1114
1115 next_opcode = opcode+1;
1116 if (next_opcode->opcode == 0)
1117 break;
1118 if (strcmp(next_opcode->name, opcode->name))
1119 break;
1120 opcode = next_opcode;
1121 }
1122 }
1123
1124 if (!match)
1125 {
1126 as_bad ("bad opcode or operands");
1127 return (0);
1128 }
1129
1130 /* Check that all registers that are required to be even are. */
1131 /* Also, if any operands were marked as registers, but were really symbols */
1132 /* fix that here. */
1133 for (i=0; opcode->operands[i]; i++)
1134 {
1135 if ((d10v_operands[opcode->operands[i]].flags & OPERAND_EVEN) &&
1136 (myops[i].X_add_number & 1))
1137 as_fatal("Register number must be EVEN");
1138 if (myops[i].X_op == O_register)
1139 {
1140 if (!(d10v_operands[opcode->operands[i]].flags & OPERAND_REG))
1141 {
1142 myops[i].X_op = O_symbol;
1143 myops[i].X_add_symbol = symbol_find_or_make ((char *)myops[i].X_op_symbol);
1144 myops[i].X_add_number = 0;
1145 myops[i].X_op_symbol = NULL;
1146 }
1147 }
1148 }
1149 return opcode;
1150 }
1151
1152 /* if while processing a fixup, a reloc really needs to be created */
1153 /* then it is done here */
1154
1155 arelent *
1156 tc_gen_reloc (seg, fixp)
1157 asection *seg;
1158 fixS *fixp;
1159 {
1160 arelent *reloc;
1161 reloc = (arelent *) bfd_alloc_by_size_t (stdoutput, sizeof (arelent));
1162 reloc->sym_ptr_ptr = &fixp->fx_addsy->bsym;
1163 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
1164 reloc->howto = bfd_reloc_type_lookup (stdoutput, fixp->fx_r_type);
1165 if (reloc->howto == (reloc_howto_type *) NULL)
1166 {
1167 as_bad_where (fixp->fx_file, fixp->fx_line,
1168 "reloc %d not supported by object file format", (int)fixp->fx_r_type);
1169 return NULL;
1170 }
1171 reloc->addend = fixp->fx_addnumber;
1172 /* printf("tc_gen_reloc: addr=%x addend=%x\n", reloc->address, reloc->addend); */
1173 return reloc;
1174 }
1175
1176 int
1177 md_estimate_size_before_relax (fragp, seg)
1178 fragS *fragp;
1179 asection *seg;
1180 {
1181 abort ();
1182 return 0;
1183 }
1184
1185 long
1186 md_pcrel_from_section (fixp, sec)
1187 fixS *fixp;
1188 segT sec;
1189 {
1190 if (fixp->fx_addsy != (symbolS *)NULL && !S_IS_DEFINED (fixp->fx_addsy))
1191 return 0;
1192 /* printf("pcrel_from_section: %x\n", fixp->fx_frag->fr_address + fixp->fx_where); */
1193 return fixp->fx_frag->fr_address + fixp->fx_where;
1194 }
1195
1196 int
1197 md_apply_fix3 (fixp, valuep, seg)
1198 fixS *fixp;
1199 valueT *valuep;
1200 segT seg;
1201 {
1202 char *where;
1203 unsigned long insn;
1204 long value;
1205 int op_type;
1206 int left=0;
1207
1208 if (fixp->fx_addsy == (symbolS *) NULL)
1209 {
1210 value = *valuep;
1211 fixp->fx_done = 1;
1212 }
1213 else if (fixp->fx_pcrel)
1214 value = *valuep;
1215 else
1216 {
1217 value = fixp->fx_offset;
1218 if (fixp->fx_subsy != (symbolS *) NULL)
1219 {
1220 if (S_GET_SEGMENT (fixp->fx_subsy) == absolute_section)
1221 value -= S_GET_VALUE (fixp->fx_subsy);
1222 else
1223 {
1224 /* We don't actually support subtracting a symbol. */
1225 as_bad_where (fixp->fx_file, fixp->fx_line,
1226 "expression too complex");
1227 }
1228 }
1229 }
1230
1231 /* printf("md_apply_fix: value=0x%x type=0x%x where=0x%x\n", value, fixp->fx_r_type,fixp->fx_where); */
1232
1233 op_type = fixp->fx_r_type;
1234 if (op_type & 2048)
1235 {
1236 op_type -= 2048;
1237 if (op_type & 1024)
1238 {
1239 op_type -= 1024;
1240 fixp->fx_r_type = BFD_RELOC_D10V_10_PCREL_L;
1241 left = 1;
1242 }
1243 else
1244 fixp->fx_r_type = get_reloc((struct d10v_operand *)&d10v_operands[op_type]);
1245 }
1246
1247 /* Fetch the instruction, insert the fully resolved operand
1248 value, and stuff the instruction back again. */
1249 where = fixp->fx_frag->fr_literal + fixp->fx_where;
1250 insn = bfd_getb32 ((unsigned char *) where);
1251
1252 switch (fixp->fx_r_type)
1253 {
1254 case BFD_RELOC_D10V_10_PCREL_L:
1255 case BFD_RELOC_D10V_10_PCREL_R:
1256 case BFD_RELOC_D10V_18_PCREL:
1257 /* instruction addresses are always right-shifted by 2 */
1258 value >>= 2;
1259 break;
1260 case BFD_RELOC_32:
1261 bfd_putb32 ((bfd_vma) value, (unsigned char *) where);
1262 return 1;
1263 default:
1264 break;
1265 }
1266
1267 /* printf(" insn=%x value=%x where=%x pcrel=%x\n",insn,value,fixp->fx_where,fixp->fx_pcrel); */
1268 insn = d10v_insert_operand (insn, op_type, (offsetT)value, left);
1269 /* printf(" new insn=%x\n",insn); */
1270
1271 bfd_putb32 ((bfd_vma) insn, (unsigned char *) where);
1272
1273 if (fixp->fx_done)
1274 return 1;
1275
1276 fixp->fx_addnumber = value;
1277 return 1;
1278 }
1279
1280
1281 /* d10v_cleanup() is called after the assembler has finished parsing the input
1282 file or after a label is defined. Because the D10V assembler sometimes saves short
1283 instructions to see if it can package them with the next instruction, there may
1284 be a short instruction that still needs written. */
1285 int
1286 d10v_cleanup (done)
1287 int done;
1288 {
1289 segT seg;
1290 subsegT subseg;
1291
1292 if ( prev_opcode && (done || (now_seg == prev_seg) && (now_subseg == prev_subseg)))
1293 {
1294 seg = now_seg;
1295 subseg = now_subseg;
1296 subseg_set (prev_seg, prev_subseg);
1297 write_1_short (prev_opcode, prev_insn, fixups);
1298 subseg_set (seg, subseg);
1299 prev_opcode = NULL;
1300 }
1301 return 1;
1302 }
This page took 0.072363 seconds and 5 git commands to generate.