9076e4125c427387818853b97ddd6eb9fd83e723
[deliverable/binutils-gdb.git] / gas / config / tc-d30v.c
1 /* tc-d30v.c -- Assembler code for the Mitsubishi D30V
2 Copyright (C) 1997-2014 Free Software Foundation, Inc.
3
4 This file is part of GAS, the GNU Assembler.
5
6 GAS is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
10
11 GAS is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GAS; see the file COPYING. If not, write to
18 the Free Software Foundation, 51 Franklin Street - Fifth Floor,
19 Boston, MA 02110-1301, USA. */
20
21 #include "as.h"
22 #include "safe-ctype.h"
23 #include "subsegs.h"
24 #include "opcode/d30v.h"
25 #include "dwarf2dbg.h"
26
27 const char comment_chars[] = ";";
28 const char line_comment_chars[] = "#";
29 const char line_separator_chars[] = "";
30 const char *md_shortopts = "OnNcC";
31 const char EXP_CHARS[] = "eE";
32 const char FLT_CHARS[] = "dD";
33
34 #if HAVE_LIMITS_H
35 #include <limits.h>
36 #endif
37
38 #ifndef CHAR_BIT
39 #define CHAR_BIT 8
40 #endif
41
42 #define NOP_MULTIPLY 1
43 #define NOP_ALL 2
44 static int warn_nops = 0;
45 static int Optimizing = 0;
46 static int warn_register_name_conflicts = 1;
47
48 #define FORCE_SHORT 1
49 #define FORCE_LONG 2
50
51 /* EXEC types. */
52 typedef enum _exec_type
53 {
54 EXEC_UNKNOWN, /* No order specified. */
55 EXEC_PARALLEL, /* Done in parallel (FM=00). */
56 EXEC_SEQ, /* Sequential (FM=01). */
57 EXEC_REVSEQ /* Reverse sequential (FM=10). */
58 } exec_type_enum;
59
60 /* Fixups. */
61 #define MAX_INSN_FIXUPS 5
62
63 struct d30v_fixup
64 {
65 expressionS exp;
66 int operand;
67 int pcrel;
68 int size;
69 bfd_reloc_code_real_type reloc;
70 };
71
72 typedef struct _fixups
73 {
74 int fc;
75 struct d30v_fixup fix[MAX_INSN_FIXUPS];
76 struct _fixups *next;
77 } Fixups;
78
79 static Fixups FixUps[2];
80 static Fixups *fixups;
81
82 /* Whether current and previous instruction are word multiply insns. */
83 static int cur_mul32_p = 0;
84 static int prev_mul32_p = 0;
85
86 /* The flag_explicitly_parallel is true iff the instruction being assembled
87 has been explicitly written as a parallel short-instruction pair by the
88 human programmer. It is used in parallel_ok () to distinguish between
89 those dangerous parallelizations attempted by the human, which are to be
90 allowed, and those attempted by the assembler, which are not. It is set
91 from md_assemble (). */
92 static int flag_explicitly_parallel = 0;
93 static int flag_xp_state = 0;
94
95 /* Whether current and previous left sub-instruction disables
96 execution of right sub-instruction. */
97 static int cur_left_kills_right_p = 0;
98 static int prev_left_kills_right_p = 0;
99
100 /* The known current alignment of the current section. */
101 static int d30v_current_align;
102 static segT d30v_current_align_seg;
103
104 /* The last seen label in the current section. This is used to auto-align
105 labels preceding instructions. */
106 static symbolS *d30v_last_label;
107
108 /* Two nops. */
109 #define NOP_LEFT ((long long) NOP << 32)
110 #define NOP_RIGHT ((long long) NOP)
111 #define NOP2 (FM00 | NOP_LEFT | NOP_RIGHT)
112
113 struct option md_longopts[] =
114 {
115 {NULL, no_argument, NULL, 0}
116 };
117
118 size_t md_longopts_size = sizeof (md_longopts);
119
120 /* Opcode hash table. */
121 static struct hash_control *d30v_hash;
122
123 /* Do a binary search of the pre_defined_registers array to see if
124 NAME is a valid regiter name. Return the register number from the
125 array on success, or -1 on failure. */
126
127 static int
128 reg_name_search (char *name)
129 {
130 int middle, low, high;
131 int cmp;
132
133 low = 0;
134 high = reg_name_cnt () - 1;
135
136 do
137 {
138 middle = (low + high) / 2;
139 cmp = strcasecmp (name, pre_defined_registers[middle].name);
140 if (cmp < 0)
141 high = middle - 1;
142 else if (cmp > 0)
143 low = middle + 1;
144 else
145 {
146 if (symbol_find (name) != NULL)
147 {
148 if (warn_register_name_conflicts)
149 as_warn (_("Register name %s conflicts with symbol of the same name"),
150 name);
151 }
152
153 return pre_defined_registers[middle].value;
154 }
155 }
156 while (low <= high);
157
158 return -1;
159 }
160
161 /* Check the string at input_line_pointer to see if it is a valid
162 register name. */
163
164 static int
165 register_name (expressionS *expressionP)
166 {
167 int reg_number;
168 char c, *p = input_line_pointer;
169
170 while (*p && *p != '\n' && *p != '\r' && *p != ',' && *p != ' ' && *p != ')')
171 p++;
172
173 c = *p;
174 if (c)
175 *p++ = 0;
176
177 /* Look to see if it's in the register table. */
178 reg_number = reg_name_search (input_line_pointer);
179 if (reg_number >= 0)
180 {
181 expressionP->X_op = O_register;
182 /* Temporarily store a pointer to the string here. */
183 expressionP->X_op_symbol = (symbolS *) input_line_pointer;
184 expressionP->X_add_number = reg_number;
185 input_line_pointer = p;
186 return 1;
187 }
188 if (c)
189 *(p - 1) = c;
190 return 0;
191 }
192
193 static int
194 check_range (unsigned long num, int bits, int flags)
195 {
196 long min, max;
197
198 /* Don't bother checking 32-bit values. */
199 if (bits == 32)
200 {
201 if (sizeof (unsigned long) * CHAR_BIT == 32)
202 return 0;
203
204 /* We don't record signed or unsigned for 32-bit quantities.
205 Allow either. */
206 min = -((unsigned long) 1 << (bits - 1));
207 max = ((unsigned long) 1 << bits) - 1;
208 return (long) num < min || (long) num > max;
209 }
210
211 if (flags & OPERAND_SHIFT)
212 {
213 /* We know that all shifts are right by three bits. */
214 num >>= 3;
215
216 if (flags & OPERAND_SIGNED)
217 {
218 unsigned long sign_bit = ((unsigned long) -1L >> 4) + 1;
219 num = (num ^ sign_bit) - sign_bit;
220 }
221 }
222
223 if (flags & OPERAND_SIGNED)
224 {
225 max = ((unsigned long) 1 << (bits - 1)) - 1;
226 min = - ((unsigned long) 1 << (bits - 1));
227 return (long) num > max || (long) num < min;
228 }
229 else
230 {
231 max = ((unsigned long) 1 << bits) - 1;
232 return num > (unsigned long) max;
233 }
234 }
235
236 void
237 md_show_usage (FILE *stream)
238 {
239 fprintf (stream, _("\nD30V options:\n\
240 -O Make adjacent short instructions parallel if possible.\n\
241 -n Warn about all NOPs inserted by the assembler.\n\
242 -N Warn about NOPs inserted after word multiplies.\n\
243 -c Warn about symbols whoes names match register names.\n\
244 -C Opposite of -C. -c is the default.\n"));
245 }
246
247 int
248 md_parse_option (int c, char *arg ATTRIBUTE_UNUSED)
249 {
250 switch (c)
251 {
252 /* Optimize. Will attempt to parallelize operations. */
253 case 'O':
254 Optimizing = 1;
255 break;
256
257 /* Warn about all NOPS that the assembler inserts. */
258 case 'n':
259 warn_nops = NOP_ALL;
260 break;
261
262 /* Warn about the NOPS that the assembler inserts because of the
263 multiply hazard. */
264 case 'N':
265 warn_nops = NOP_MULTIPLY;
266 break;
267
268 case 'c':
269 warn_register_name_conflicts = 1;
270 break;
271
272 case 'C':
273 warn_register_name_conflicts = 0;
274 break;
275
276 default:
277 return 0;
278 }
279 return 1;
280 }
281
282 symbolS *
283 md_undefined_symbol (char *name ATTRIBUTE_UNUSED)
284 {
285 return 0;
286 }
287
288 char *
289 md_atof (int type, char *litP, int *sizeP)
290 {
291 return ieee_md_atof (type, litP, sizeP, TRUE);
292 }
293
294 void
295 md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED,
296 asection *sec ATTRIBUTE_UNUSED,
297 fragS *fragP ATTRIBUTE_UNUSED)
298 {
299 abort ();
300 }
301
302 valueT
303 md_section_align (asection *seg, valueT addr)
304 {
305 int align = bfd_get_section_alignment (stdoutput, seg);
306 return ((addr + (1 << align) - 1) & (-1 << align));
307 }
308
309 void
310 md_begin (void)
311 {
312 struct d30v_opcode *opcode;
313 d30v_hash = hash_new ();
314
315 /* Insert opcode names into a hash table. */
316 for (opcode = (struct d30v_opcode *) d30v_opcode_table; opcode->name; opcode++)
317 hash_insert (d30v_hash, opcode->name, (char *) opcode);
318
319 fixups = &FixUps[0];
320 FixUps[0].next = &FixUps[1];
321 FixUps[1].next = &FixUps[0];
322
323 d30v_current_align_seg = now_seg;
324 }
325
326 /* Remove the postincrement or postdecrement operator ( '+' or '-' )
327 from an expression. */
328
329 static int
330 postfix (char *p)
331 {
332 while (*p != '-' && *p != '+')
333 {
334 if (*p == 0 || *p == '\n' || *p == '\r' || *p == ' ' || *p == ',')
335 break;
336 p++;
337 }
338
339 if (*p == '-')
340 {
341 *p = ' ';
342 return -1;
343 }
344
345 if (*p == '+')
346 {
347 *p = ' ';
348 return 1;
349 }
350
351 return 0;
352 }
353
354 static bfd_reloc_code_real_type
355 get_reloc (const struct d30v_operand *op, int rel_flag)
356 {
357 switch (op->bits)
358 {
359 case 6:
360 if (op->flags & OPERAND_SHIFT)
361 return BFD_RELOC_D30V_9_PCREL;
362 else
363 return BFD_RELOC_D30V_6;
364 break;
365 case 12:
366 if (!(op->flags & OPERAND_SHIFT))
367 as_warn (_("unexpected 12-bit reloc type"));
368 if (rel_flag == RELOC_PCREL)
369 return BFD_RELOC_D30V_15_PCREL;
370 else
371 return BFD_RELOC_D30V_15;
372 case 18:
373 if (!(op->flags & OPERAND_SHIFT))
374 as_warn (_("unexpected 18-bit reloc type"));
375 if (rel_flag == RELOC_PCREL)
376 return BFD_RELOC_D30V_21_PCREL;
377 else
378 return BFD_RELOC_D30V_21;
379 case 32:
380 if (rel_flag == RELOC_PCREL)
381 return BFD_RELOC_D30V_32_PCREL;
382 else
383 return BFD_RELOC_D30V_32;
384 default:
385 return 0;
386 }
387 }
388
389 /* Parse a string of operands and return an array of expressions. */
390
391 static int
392 get_operands (expressionS exp[], int cmp_hack)
393 {
394 char *p = input_line_pointer;
395 int numops = 0;
396 int post = 0;
397
398 if (cmp_hack)
399 {
400 exp[numops].X_op = O_absent;
401 exp[numops++].X_add_number = cmp_hack - 1;
402 }
403
404 while (*p)
405 {
406 while (*p == ' ' || *p == '\t' || *p == ',')
407 p++;
408
409 if (*p == 0 || *p == '\n' || *p == '\r')
410 break;
411
412 if (*p == '@')
413 {
414 p++;
415 exp[numops].X_op = O_absent;
416 if (*p == '(')
417 {
418 p++;
419 exp[numops].X_add_number = OPERAND_ATPAR;
420 post = postfix (p);
421 }
422 else if (*p == '-')
423 {
424 p++;
425 exp[numops].X_add_number = OPERAND_ATMINUS;
426 }
427 else
428 {
429 exp[numops].X_add_number = OPERAND_ATSIGN;
430 post = postfix (p);
431 }
432 numops++;
433 continue;
434 }
435
436 if (*p == ')')
437 {
438 /* Just skip the trailing paren. */
439 p++;
440 continue;
441 }
442
443 input_line_pointer = p;
444
445 /* Check to see if it might be a register name. */
446 if (!register_name (&exp[numops]))
447 {
448 /* Parse as an expression. */
449 expression (&exp[numops]);
450 }
451
452 if (exp[numops].X_op == O_illegal)
453 as_bad (_("illegal operand"));
454 else if (exp[numops].X_op == O_absent)
455 as_bad (_("missing operand"));
456
457 numops++;
458 p = input_line_pointer;
459
460 switch (post)
461 {
462 case -1:
463 /* Postdecrement mode. */
464 exp[numops].X_op = O_absent;
465 exp[numops++].X_add_number = OPERAND_MINUS;
466 break;
467 case 1:
468 /* Postincrement mode. */
469 exp[numops].X_op = O_absent;
470 exp[numops++].X_add_number = OPERAND_PLUS;
471 break;
472 }
473 post = 0;
474 }
475
476 exp[numops].X_op = 0;
477
478 return numops;
479 }
480
481 /* Generate the instruction.
482 It does everything but write the FM bits. */
483
484 static long long
485 build_insn (struct d30v_insn *opcode, expressionS *opers)
486 {
487 int i, bits, shift, flags;
488 unsigned long number, id = 0;
489 long long insn;
490 struct d30v_opcode *op = opcode->op;
491 struct d30v_format *form = opcode->form;
492
493 insn =
494 opcode->ecc << 28 | op->op1 << 25 | op->op2 << 20 | form->modifier << 18;
495
496 for (i = 0; form->operands[i]; i++)
497 {
498 flags = d30v_operand_table[form->operands[i]].flags;
499
500 /* Must be a register or number. */
501 if (!(flags & OPERAND_REG) && !(flags & OPERAND_NUM)
502 && !(flags & OPERAND_NAME) && !(flags & OPERAND_SPECIAL))
503 continue;
504
505 bits = d30v_operand_table[form->operands[i]].bits;
506 if (flags & OPERAND_SHIFT)
507 bits += 3;
508
509 shift = 12 - d30v_operand_table[form->operands[i]].position;
510 if (opers[i].X_op != O_symbol)
511 number = opers[i].X_add_number;
512 else
513 number = 0;
514 if (flags & OPERAND_REG)
515 {
516 /* Check for mvfsys or mvtsys control registers. */
517 if (flags & OPERAND_CONTROL && (number & 0x7f) > MAX_CONTROL_REG)
518 {
519 /* PSWL or PSWH. */
520 id = (number & 0x7f) - MAX_CONTROL_REG;
521 number = 0;
522 }
523 else if (number & OPERAND_FLAG)
524 /* NUMBER is a flag register. */
525 id = 3;
526
527 number &= 0x7F;
528 }
529 else if (flags & OPERAND_SPECIAL)
530 number = id;
531
532 if (opers[i].X_op != O_register && opers[i].X_op != O_constant
533 && !(flags & OPERAND_NAME))
534 {
535 /* Now create a fixup. */
536 if (fixups->fc >= MAX_INSN_FIXUPS)
537 as_fatal (_("too many fixups"));
538
539 fixups->fix[fixups->fc].reloc =
540 get_reloc (d30v_operand_table + form->operands[i], op->reloc_flag);
541 fixups->fix[fixups->fc].size = 4;
542 fixups->fix[fixups->fc].exp = opers[i];
543 fixups->fix[fixups->fc].operand = form->operands[i];
544 if (fixups->fix[fixups->fc].reloc == BFD_RELOC_D30V_9_PCREL)
545 fixups->fix[fixups->fc].pcrel = RELOC_PCREL;
546 else
547 fixups->fix[fixups->fc].pcrel = op->reloc_flag;
548 (fixups->fc)++;
549 }
550
551 /* Truncate to the proper number of bits. */
552 if ((opers[i].X_op == O_constant) && check_range (number, bits, flags))
553 as_bad (_("operand out of range: %ld"), number);
554 if (bits < 31)
555 number &= 0x7FFFFFFF >> (31 - bits);
556 if (flags & OPERAND_SHIFT)
557 number >>= 3;
558 if (bits == 32)
559 {
560 /* It's a LONG instruction. */
561 insn |= ((number & 0xffffffff) >> 26); /* Top 6 bits. */
562 insn <<= 32; /* Shift the first word over. */
563 insn |= ((number & 0x03FC0000) << 2); /* Next 8 bits. */
564 insn |= number & 0x0003FFFF; /* Bottom 18 bits. */
565 }
566 else
567 insn |= number << shift;
568 }
569
570 return insn;
571 }
572
573 static void
574 d30v_number_to_chars (char *buf, /* Return 'nbytes' of chars here. */
575 long long value, /* The value of the bits. */
576 int n) /* Number of bytes in the output. */
577 {
578 while (n--)
579 {
580 buf[n] = value & 0xff;
581 value >>= 8;
582 }
583 }
584
585 /* Write out a long form instruction. */
586
587 static void
588 write_long (struct d30v_insn *opcode ATTRIBUTE_UNUSED,
589 long long insn,
590 Fixups *fx)
591 {
592 int i, where;
593 char *f = frag_more (8);
594
595 dwarf2_emit_insn (8);
596 insn |= FM11;
597 d30v_number_to_chars (f, insn, 8);
598
599 for (i = 0; i < fx->fc; i++)
600 {
601 if (fx->fix[i].reloc)
602 {
603 where = f - frag_now->fr_literal;
604 fix_new_exp (frag_now, where, fx->fix[i].size, &(fx->fix[i].exp),
605 fx->fix[i].pcrel, fx->fix[i].reloc);
606 }
607 }
608
609 fx->fc = 0;
610 }
611
612 /* Write out a short form instruction by itself. */
613
614 static void
615 write_1_short (struct d30v_insn *opcode,
616 long long insn,
617 Fixups *fx,
618 int use_sequential)
619 {
620 char *f = frag_more (8);
621 int i, where;
622
623 dwarf2_emit_insn (8);
624 if (warn_nops == NOP_ALL)
625 as_warn (_("%s NOP inserted"), use_sequential ?
626 _("sequential") : _("parallel"));
627
628 /* The other container needs to be NOP. */
629 if (use_sequential)
630 {
631 /* Use a sequential NOP rather than a parallel one,
632 as the current instruction is a FLAG_MUL32 type one
633 and the next instruction is a load. */
634
635 /* According to 4.3.1: for FM=01, sub-instructions performed
636 only by IU cannot be encoded in L-container. */
637 if (opcode->op->unit == IU)
638 /* Right then left. */
639 insn |= FM10 | NOP_LEFT;
640 else
641 /* Left then right. */
642 insn = FM01 | (insn << 32) | NOP_RIGHT;
643 }
644 else
645 {
646 /* According to 4.3.1: for FM=00, sub-instructions performed
647 only by IU cannot be encoded in L-container. */
648 if (opcode->op->unit == IU)
649 /* Right container. */
650 insn |= FM00 | NOP_LEFT;
651 else
652 /* Left container. */
653 insn = FM00 | (insn << 32) | NOP_RIGHT;
654 }
655
656 d30v_number_to_chars (f, insn, 8);
657
658 for (i = 0; i < fx->fc; i++)
659 {
660 if (fx->fix[i].reloc)
661 {
662 where = f - frag_now->fr_literal;
663 fix_new_exp (frag_now,
664 where,
665 fx->fix[i].size,
666 &(fx->fix[i].exp),
667 fx->fix[i].pcrel,
668 fx->fix[i].reloc);
669 }
670 }
671
672 fx->fc = 0;
673 }
674
675 /* Check 2 instructions and determine if they can be safely
676 executed in parallel. Return 1 if they can be. */
677
678 static int
679 parallel_ok (struct d30v_insn *op1,
680 unsigned long insn1,
681 struct d30v_insn *op2,
682 unsigned long insn2,
683 exec_type_enum exec_type)
684 {
685 int i, j, shift, regno, bits, ecc;
686 unsigned long flags, mask, flags_set1, flags_set2, flags_used1, flags_used2;
687 unsigned long ins, mod_reg[2][3], used_reg[2][3], flag_reg[2];
688 struct d30v_format *f;
689 struct d30v_opcode *op;
690
691 /* Section 4.3: Both instructions must not be IU or MU only. */
692 if ((op1->op->unit == IU && op2->op->unit == IU)
693 || (op1->op->unit == MU && op2->op->unit == MU))
694 return 0;
695
696 /* First instruction must not be a jump to safely optimize, unless this
697 is an explicit parallel operation. */
698 if (exec_type != EXEC_PARALLEL
699 && (op1->op->flags_used & (FLAG_JMP | FLAG_JSR)))
700 return 0;
701
702 /* If one instruction is /TX or /XT and the other is /FX or /XF respectively,
703 then it is safe to allow the two to be done as parallel ops, since only
704 one will ever be executed at a time. */
705 if ((op1->ecc == ECC_TX && op2->ecc == ECC_FX)
706 || (op1->ecc == ECC_FX && op2->ecc == ECC_TX)
707 || (op1->ecc == ECC_XT && op2->ecc == ECC_XF)
708 || (op1->ecc == ECC_XF && op2->ecc == ECC_XT))
709 return 1;
710
711 /* [0] r0-r31
712 [1] r32-r63
713 [2] a0, a1, flag registers. */
714 for (j = 0; j < 2; j++)
715 {
716 if (j == 0)
717 {
718 f = op1->form;
719 op = op1->op;
720 ecc = op1->ecc;
721 ins = insn1;
722 }
723 else
724 {
725 f = op2->form;
726 op = op2->op;
727 ecc = op2->ecc;
728 ins = insn2;
729 }
730
731 flag_reg[j] = 0;
732 mod_reg[j][0] = mod_reg[j][1] = 0;
733 used_reg[j][0] = used_reg[j][1] = 0;
734
735 if (flag_explicitly_parallel)
736 {
737 /* For human specified parallel instructions we have been asked
738 to ignore the possibility that both instructions could modify
739 bits in the PSW, so we initialise the mod & used arrays to 0.
740 We have been asked, however, to refuse to allow parallel
741 instructions which explicitly set the same flag register,
742 eg "cmpne f0,r1,0x10 || cmpeq f0, r5, 0x2", so further on we test
743 for the use of a flag register and set a bit in the mod or used
744 array appropriately. */
745 mod_reg[j][2] = 0;
746 used_reg[j][2] = 0;
747 }
748 else
749 {
750 mod_reg[j][2] = (op->flags_set & FLAG_ALL);
751 used_reg[j][2] = (op->flags_used & FLAG_ALL);
752 }
753
754 /* BSR/JSR always sets R62. */
755 if (op->flags_used & FLAG_JSR)
756 mod_reg[j][1] = (1L << (62 - 32));
757
758 /* Conditional execution affects the flags_used. */
759 switch (ecc)
760 {
761 case ECC_TX:
762 case ECC_FX:
763 used_reg[j][2] |= flag_reg[j] = FLAG_0;
764 break;
765
766 case ECC_XT:
767 case ECC_XF:
768 used_reg[j][2] |= flag_reg[j] = FLAG_1;
769 break;
770
771 case ECC_TT:
772 case ECC_TF:
773 used_reg[j][2] |= flag_reg[j] = (FLAG_0 | FLAG_1);
774 break;
775 }
776
777 for (i = 0; f->operands[i]; i++)
778 {
779 flags = d30v_operand_table[f->operands[i]].flags;
780 shift = 12 - d30v_operand_table[f->operands[i]].position;
781 bits = d30v_operand_table[f->operands[i]].bits;
782 if (bits == 32)
783 mask = 0xffffffff;
784 else
785 mask = 0x7FFFFFFF >> (31 - bits);
786
787 if ((flags & OPERAND_PLUS) || (flags & OPERAND_MINUS))
788 {
789 /* This is a post-increment or post-decrement.
790 The previous register needs to be marked as modified. */
791 shift = 12 - d30v_operand_table[f->operands[i - 1]].position;
792 regno = (ins >> shift) & 0x3f;
793 if (regno >= 32)
794 mod_reg[j][1] |= 1L << (regno - 32);
795 else
796 mod_reg[j][0] |= 1L << regno;
797 }
798 else if (flags & OPERAND_REG)
799 {
800 regno = (ins >> shift) & mask;
801 /* The memory write functions don't have a destination
802 register. */
803 if ((flags & OPERAND_DEST) && !(op->flags_set & FLAG_MEM))
804 {
805 /* MODIFIED registers and flags. */
806 if (flags & OPERAND_ACC)
807 {
808 if (regno == 0)
809 mod_reg[j][2] |= FLAG_A0;
810 else if (regno == 1)
811 mod_reg[j][2] |= FLAG_A1;
812 else
813 abort ();
814 }
815 else if (flags & OPERAND_FLAG)
816 mod_reg[j][2] |= 1L << regno;
817 else if (!(flags & OPERAND_CONTROL))
818 {
819 int r, z;
820
821 /* Need to check if there are two destination
822 registers, for example ld2w. */
823 if (flags & OPERAND_2REG)
824 z = 1;
825 else
826 z = 0;
827
828 for (r = regno; r <= regno + z; r++)
829 {
830 if (r >= 32)
831 mod_reg[j][1] |= 1L << (r - 32);
832 else
833 mod_reg[j][0] |= 1L << r;
834 }
835 }
836 }
837 else
838 {
839 /* USED, but not modified registers and flags. */
840 if (flags & OPERAND_ACC)
841 {
842 if (regno == 0)
843 used_reg[j][2] |= FLAG_A0;
844 else if (regno == 1)
845 used_reg[j][2] |= FLAG_A1;
846 else
847 abort ();
848 }
849 else if (flags & OPERAND_FLAG)
850 used_reg[j][2] |= 1L << regno;
851 else if (!(flags & OPERAND_CONTROL))
852 {
853 int r, z;
854
855 /* Need to check if there are two source
856 registers, for example st2w. */
857 if (flags & OPERAND_2REG)
858 z = 1;
859 else
860 z = 0;
861
862 for (r = regno; r <= regno + z; r++)
863 {
864 if (r >= 32)
865 used_reg[j][1] |= 1L << (r - 32);
866 else
867 used_reg[j][0] |= 1L << r;
868 }
869 }
870 }
871 }
872 }
873 }
874
875 flags_set1 = op1->op->flags_set;
876 flags_set2 = op2->op->flags_set;
877 flags_used1 = op1->op->flags_used;
878 flags_used2 = op2->op->flags_used;
879
880 /* Check for illegal combinations with ADDppp/SUBppp. */
881 if (((flags_set1 & FLAG_NOT_WITH_ADDSUBppp) != 0
882 && (flags_used2 & FLAG_ADDSUBppp) != 0)
883 || ((flags_set2 & FLAG_NOT_WITH_ADDSUBppp) != 0
884 && (flags_used1 & FLAG_ADDSUBppp) != 0))
885 return 0;
886
887 /* Load instruction combined with half-word multiply is illegal. */
888 if (((flags_used1 & FLAG_MEM) != 0 && (flags_used2 & FLAG_MUL16))
889 || ((flags_used2 & FLAG_MEM) != 0 && (flags_used1 & FLAG_MUL16)))
890 return 0;
891
892 /* Specifically allow add || add by removing carry, overflow bits dependency.
893 This is safe, even if an addc follows since the IU takes the argument in
894 the right container, and it writes its results last.
895 However, don't paralellize add followed by addc or sub followed by
896 subb. */
897 if (mod_reg[0][2] == FLAG_CVVA && mod_reg[1][2] == FLAG_CVVA
898 && (used_reg[0][2] & ~flag_reg[0]) == 0
899 && (used_reg[1][2] & ~flag_reg[1]) == 0
900 && op1->op->unit == EITHER && op2->op->unit == EITHER)
901 {
902 mod_reg[0][2] = mod_reg[1][2] = 0;
903 }
904
905 for (j = 0; j < 3; j++)
906 {
907 /* If the second instruction depends on the first, we obviously
908 cannot parallelize. Note, the mod flag implies use, so
909 check that as well. */
910 /* If flag_explicitly_parallel is set, then the case of the
911 second instruction using a register the first instruction
912 modifies is assumed to be okay; we trust the human. We
913 don't trust the human if both instructions modify the same
914 register but we do trust the human if they modify the same
915 flags. */
916 /* We have now been requested not to trust the human if the
917 instructions modify the same flag registers either. */
918 if (flag_explicitly_parallel)
919 {
920 if ((mod_reg[0][j] & mod_reg[1][j]) != 0)
921 return 0;
922 }
923 else
924 if ((mod_reg[0][j] & (mod_reg[1][j] | used_reg[1][j])) != 0)
925 return 0;
926 }
927
928 return 1;
929 }
930
931 /* Write out a short form instruction if possible.
932 Return number of instructions not written out. */
933
934 static int
935 write_2_short (struct d30v_insn *opcode1,
936 long long insn1,
937 struct d30v_insn *opcode2,
938 long long insn2,
939 exec_type_enum exec_type,
940 Fixups *fx)
941 {
942 long long insn = NOP2;
943 char *f;
944 int i, j, where;
945
946 if (exec_type == EXEC_SEQ
947 && (opcode1->op->flags_used & (FLAG_JMP | FLAG_JSR))
948 && ((opcode1->op->flags_used & FLAG_DELAY) == 0)
949 && ((opcode1->ecc == ECC_AL) || ! Optimizing))
950 {
951 /* Unconditional, non-delayed branches kill instructions in
952 the right bin. Conditional branches don't always but if
953 we are not optimizing, then we have been asked to produce
954 an error about such constructs. For the purposes of this
955 test, subroutine calls are considered to be branches. */
956 write_1_short (opcode1, insn1, fx->next, FALSE);
957 return 1;
958 }
959
960 /* Note: we do not have to worry about subroutine calls occurring
961 in the right hand container. The return address is always
962 aligned to the next 64 bit boundary, be that 64 or 32 bit away. */
963 switch (exec_type)
964 {
965 case EXEC_UNKNOWN: /* Order not specified. */
966 if (Optimizing
967 && parallel_ok (opcode1, insn1, opcode2, insn2, exec_type)
968 && ! ( (opcode1->op->unit == EITHER_BUT_PREFER_MU
969 || opcode1->op->unit == MU)
970 &&
971 ( opcode2->op->unit == EITHER_BUT_PREFER_MU
972 || opcode2->op->unit == MU)))
973 {
974 /* Parallel. */
975 exec_type = EXEC_PARALLEL;
976
977 if (opcode1->op->unit == IU
978 || opcode2->op->unit == MU
979 || opcode2->op->unit == EITHER_BUT_PREFER_MU)
980 insn = FM00 | (insn2 << 32) | insn1;
981 else
982 {
983 insn = FM00 | (insn1 << 32) | insn2;
984 fx = fx->next;
985 }
986 }
987 else if ((opcode1->op->flags_used & (FLAG_JMP | FLAG_JSR)
988 && ((opcode1->op->flags_used & FLAG_DELAY) == 0))
989 || opcode1->op->flags_used & FLAG_RP)
990 {
991 /* We must emit (non-delayed) branch type instructions
992 on their own with nothing in the right container. */
993 /* We must treat repeat instructions likewise, since the
994 following instruction has to be separate from the repeat
995 in order to be repeated. */
996 write_1_short (opcode1, insn1, fx->next, FALSE);
997 return 1;
998 }
999 else if (prev_left_kills_right_p)
1000 {
1001 /* The left instruction kils the right slot, so we
1002 must leave it empty. */
1003 write_1_short (opcode1, insn1, fx->next, FALSE);
1004 return 1;
1005 }
1006 else if (opcode1->op->unit == IU)
1007 {
1008 if (opcode2->op->unit == EITHER_BUT_PREFER_MU)
1009 {
1010 /* Case 103810 is a request from Mitsubishi that opcodes
1011 with EITHER_BUT_PREFER_MU should not be executed in
1012 reverse sequential order. */
1013 write_1_short (opcode1, insn1, fx->next, FALSE);
1014 return 1;
1015 }
1016
1017 /* Reverse sequential. */
1018 insn = FM10 | (insn2 << 32) | insn1;
1019 exec_type = EXEC_REVSEQ;
1020 }
1021 else
1022 {
1023 /* Sequential. */
1024 insn = FM01 | (insn1 << 32) | insn2;
1025 fx = fx->next;
1026 exec_type = EXEC_SEQ;
1027 }
1028 break;
1029
1030 case EXEC_PARALLEL: /* Parallel. */
1031 flag_explicitly_parallel = flag_xp_state;
1032 if (! parallel_ok (opcode1, insn1, opcode2, insn2, exec_type))
1033 as_bad (_("Instructions may not be executed in parallel"));
1034 else if (opcode1->op->unit == IU)
1035 {
1036 if (opcode2->op->unit == IU)
1037 as_bad (_("Two IU instructions may not be executed in parallel"));
1038 as_warn (_("Swapping instruction order"));
1039 insn = FM00 | (insn2 << 32) | insn1;
1040 }
1041 else if (opcode2->op->unit == MU)
1042 {
1043 if (opcode1->op->unit == MU)
1044 as_bad (_("Two MU instructions may not be executed in parallel"));
1045 else if (opcode1->op->unit == EITHER_BUT_PREFER_MU)
1046 as_warn (_("Executing %s in IU may not work"), opcode1->op->name);
1047 as_warn (_("Swapping instruction order"));
1048 insn = FM00 | (insn2 << 32) | insn1;
1049 }
1050 else
1051 {
1052 if (opcode2->op->unit == EITHER_BUT_PREFER_MU)
1053 as_warn (_("Executing %s in IU may not work in parallel execution"),
1054 opcode2->op->name);
1055
1056 insn = FM00 | (insn1 << 32) | insn2;
1057 fx = fx->next;
1058 }
1059 flag_explicitly_parallel = 0;
1060 break;
1061
1062 case EXEC_SEQ: /* Sequential. */
1063 if (opcode1->op->unit == IU)
1064 as_bad (_("IU instruction may not be in the left container"));
1065 if (prev_left_kills_right_p)
1066 as_bad (_("special left instruction `%s' kills instruction "
1067 "`%s' in right container"),
1068 opcode1->op->name, opcode2->op->name);
1069 insn = FM01 | (insn1 << 32) | insn2;
1070 fx = fx->next;
1071 break;
1072
1073 case EXEC_REVSEQ: /* Reverse sequential. */
1074 if (opcode2->op->unit == MU)
1075 as_bad (_("MU instruction may not be in the right container"));
1076 if (opcode1->op->unit == EITHER_BUT_PREFER_MU)
1077 as_warn (_("Executing %s in reverse serial with %s may not work"),
1078 opcode1->op->name, opcode2->op->name);
1079 else if (opcode2->op->unit == EITHER_BUT_PREFER_MU)
1080 as_warn (_("Executing %s in IU in reverse serial may not work"),
1081 opcode2->op->name);
1082 insn = FM10 | (insn1 << 32) | insn2;
1083 fx = fx->next;
1084 break;
1085
1086 default:
1087 as_fatal (_("unknown execution type passed to write_2_short()"));
1088 }
1089
1090 f = frag_more (8);
1091 dwarf2_emit_insn (8);
1092 d30v_number_to_chars (f, insn, 8);
1093
1094 /* If the previous instruction was a 32-bit multiply but it is put into a
1095 parallel container, mark the current instruction as being a 32-bit
1096 multiply. */
1097 if (prev_mul32_p && exec_type == EXEC_PARALLEL)
1098 cur_mul32_p = 1;
1099
1100 for (j = 0; j < 2; j++)
1101 {
1102 for (i = 0; i < fx->fc; i++)
1103 {
1104 if (fx->fix[i].reloc)
1105 {
1106 where = (f - frag_now->fr_literal) + 4 * j;
1107
1108 fix_new_exp (frag_now,
1109 where,
1110 fx->fix[i].size,
1111 &(fx->fix[i].exp),
1112 fx->fix[i].pcrel,
1113 fx->fix[i].reloc);
1114 }
1115 }
1116
1117 fx->fc = 0;
1118 fx = fx->next;
1119 }
1120
1121 return 0;
1122 }
1123
1124 /* Get a pointer to an entry in the format table.
1125 It must look at all formats for an opcode and use the operands
1126 to choose the correct one. Return NULL on error. */
1127
1128 static struct d30v_format *
1129 find_format (struct d30v_opcode *opcode,
1130 expressionS myops[],
1131 int fsize,
1132 int cmp_hack)
1133 {
1134 int match, opcode_index, i = 0, j, k;
1135 struct d30v_format *fm;
1136
1137 if (opcode == NULL)
1138 return NULL;
1139
1140 /* Get all the operands and save them as expressions. */
1141 get_operands (myops, cmp_hack);
1142
1143 while ((opcode_index = opcode->format[i++]) != 0)
1144 {
1145 if (fsize == FORCE_SHORT && opcode_index >= LONG)
1146 continue;
1147
1148 if (fsize == FORCE_LONG && opcode_index < LONG)
1149 continue;
1150
1151 fm = (struct d30v_format *) &d30v_format_table[opcode_index];
1152 k = opcode_index;
1153 while (fm->form == opcode_index)
1154 {
1155 match = 1;
1156 /* Now check the operands for compatibility. */
1157 for (j = 0; match && fm->operands[j]; j++)
1158 {
1159 int flags = d30v_operand_table[fm->operands[j]].flags;
1160 int bits = d30v_operand_table[fm->operands[j]].bits;
1161 int X_op = myops[j].X_op;
1162 int num = myops[j].X_add_number;
1163
1164 if (flags & OPERAND_SPECIAL)
1165 break;
1166 else if (X_op == O_illegal)
1167 match = 0;
1168 else if (flags & OPERAND_REG)
1169 {
1170 if (X_op != O_register
1171 || ((flags & OPERAND_ACC) && !(num & OPERAND_ACC))
1172 || (!(flags & OPERAND_ACC) && (num & OPERAND_ACC))
1173 || ((flags & OPERAND_FLAG) && !(num & OPERAND_FLAG))
1174 || (!(flags & (OPERAND_FLAG | OPERAND_CONTROL)) && (num & OPERAND_FLAG))
1175 || ((flags & OPERAND_CONTROL)
1176 && !(num & (OPERAND_CONTROL | OPERAND_FLAG))))
1177 match = 0;
1178 }
1179 else if (((flags & OPERAND_MINUS)
1180 && (X_op != O_absent || num != OPERAND_MINUS))
1181 || ((flags & OPERAND_PLUS)
1182 && (X_op != O_absent || num != OPERAND_PLUS))
1183 || ((flags & OPERAND_ATMINUS)
1184 && (X_op != O_absent || num != OPERAND_ATMINUS))
1185 || ((flags & OPERAND_ATPAR)
1186 && (X_op != O_absent || num != OPERAND_ATPAR))
1187 || ((flags & OPERAND_ATSIGN)
1188 && (X_op != O_absent || num != OPERAND_ATSIGN)))
1189 match = 0;
1190 else if (flags & OPERAND_NUM)
1191 {
1192 /* A number can be a constant or symbol expression. */
1193
1194 /* If we have found a register name, but that name
1195 also matches a symbol, then re-parse the name as
1196 an expression. */
1197 if (X_op == O_register
1198 && symbol_find ((char *) myops[j].X_op_symbol))
1199 {
1200 input_line_pointer = (char *) myops[j].X_op_symbol;
1201 expression (&myops[j]);
1202 }
1203
1204 /* Turn an expression into a symbol for later resolution. */
1205 if (X_op != O_absent && X_op != O_constant
1206 && X_op != O_symbol && X_op != O_register
1207 && X_op != O_big)
1208 {
1209 symbolS *sym = make_expr_symbol (&myops[j]);
1210 myops[j].X_op = X_op = O_symbol;
1211 myops[j].X_add_symbol = sym;
1212 myops[j].X_add_number = num = 0;
1213 }
1214
1215 if (fm->form >= LONG)
1216 {
1217 /* If we're testing for a LONG format, either fits. */
1218 if (X_op != O_constant && X_op != O_symbol)
1219 match = 0;
1220 }
1221 else if (fm->form < LONG
1222 && ((fsize == FORCE_SHORT && X_op == O_symbol)
1223 || (fm->form == SHORT_D2 && j == 0)))
1224 match = 1;
1225
1226 /* This is the tricky part. Will the constant or symbol
1227 fit into the space in the current format? */
1228 else if (X_op == O_constant)
1229 {
1230 if (check_range (num, bits, flags))
1231 match = 0;
1232 }
1233 else if (X_op == O_symbol
1234 && S_IS_DEFINED (myops[j].X_add_symbol)
1235 && S_GET_SEGMENT (myops[j].X_add_symbol) == now_seg
1236 && opcode->reloc_flag == RELOC_PCREL)
1237 {
1238 /* If the symbol is defined, see if the value will fit
1239 into the form we're considering. */
1240 fragS *f;
1241 long value;
1242
1243 /* Calculate the current address by running through the
1244 previous frags and adding our current offset. */
1245 value = 0;
1246 for (f = frchain_now->frch_root; f; f = f->fr_next)
1247 value += f->fr_fix + f->fr_offset;
1248 value = (S_GET_VALUE (myops[j].X_add_symbol) - value
1249 - (obstack_next_free (&frchain_now->frch_obstack)
1250 - frag_now->fr_literal));
1251 if (check_range (value, bits, flags))
1252 match = 0;
1253 }
1254 else
1255 match = 0;
1256 }
1257 }
1258 /* We're only done if the operands matched so far AND there
1259 are no more to check. */
1260 if (match && myops[j].X_op == 0)
1261 {
1262 /* Final check - issue a warning if an odd numbered register
1263 is used as the first register in an instruction that reads
1264 or writes 2 registers. */
1265
1266 for (j = 0; fm->operands[j]; j++)
1267 if (myops[j].X_op == O_register
1268 && (myops[j].X_add_number & 1)
1269 && (d30v_operand_table[fm->operands[j]].flags & OPERAND_2REG))
1270 as_warn (_("Odd numbered register used as target of multi-register instruction"));
1271
1272 return fm;
1273 }
1274 fm = (struct d30v_format *) &d30v_format_table[++k];
1275 }
1276 }
1277 return NULL;
1278 }
1279
1280 /* Assemble a single instruction and return an opcode.
1281 Return -1 (an invalid opcode) on error. */
1282
1283 #define NAME_BUF_LEN 20
1284
1285 static long long
1286 do_assemble (char *str,
1287 struct d30v_insn *opcode,
1288 int shortp,
1289 int is_parallel)
1290 {
1291 char *op_start;
1292 char *save;
1293 char *op_end;
1294 char name[NAME_BUF_LEN];
1295 int cmp_hack;
1296 int nlen = 0;
1297 int fsize = (shortp ? FORCE_SHORT : 0);
1298 expressionS myops[6];
1299 long long insn;
1300
1301 /* Drop leading whitespace. */
1302 while (*str == ' ')
1303 str++;
1304
1305 /* Find the opcode end. */
1306 for (op_start = op_end = str;
1307 *op_end
1308 && nlen < (NAME_BUF_LEN - 1)
1309 && *op_end != '/'
1310 && !is_end_of_line[(unsigned char) *op_end] && *op_end != ' ';
1311 op_end++)
1312 {
1313 name[nlen] = TOLOWER (op_start[nlen]);
1314 nlen++;
1315 }
1316
1317 if (nlen == 0)
1318 return -1;
1319
1320 name[nlen] = 0;
1321
1322 /* If there is an execution condition code, handle it. */
1323 if (*op_end == '/')
1324 {
1325 int i = 0;
1326 while ((i < ECC_MAX) && strncasecmp (d30v_ecc_names[i], op_end + 1, 2))
1327 i++;
1328
1329 if (i == ECC_MAX)
1330 {
1331 char tmp[4];
1332 strncpy (tmp, op_end + 1, 2);
1333 tmp[2] = 0;
1334 as_bad (_("unknown condition code: %s"), tmp);
1335 return -1;
1336 }
1337 opcode->ecc = i;
1338 op_end += 3;
1339 }
1340 else
1341 opcode->ecc = ECC_AL;
1342
1343 /* CMP and CMPU change their name based on condition codes. */
1344 if (!strncmp (name, "cmp", 3))
1345 {
1346 int p, i;
1347 char **d30v_str = (char **) d30v_cc_names;
1348
1349 if (name[3] == 'u')
1350 p = 4;
1351 else
1352 p = 3;
1353
1354 for (i = 1; *d30v_str && strncmp (*d30v_str, &name[p], 2); i++, d30v_str++)
1355 ;
1356
1357 /* cmpu only supports some condition codes. */
1358 if (p == 4)
1359 {
1360 if (i < 3 || i > 6)
1361 {
1362 name[p + 2] = 0;
1363 as_bad (_("cmpu doesn't support condition code %s"), &name[p]);
1364 }
1365 }
1366
1367 if (!*d30v_str)
1368 {
1369 name[p + 2] = 0;
1370 as_bad (_("unknown condition code: %s"), &name[p]);
1371 }
1372
1373 cmp_hack = i;
1374 name[p] = 0;
1375 }
1376 else
1377 cmp_hack = 0;
1378
1379 /* Need to look for .s or .l. */
1380 if (name[nlen - 2] == '.')
1381 {
1382 switch (name[nlen - 1])
1383 {
1384 case 's':
1385 fsize = FORCE_SHORT;
1386 break;
1387 case 'l':
1388 fsize = FORCE_LONG;
1389 break;
1390 }
1391 name[nlen - 2] = 0;
1392 }
1393
1394 /* Find the first opcode with the proper name. */
1395 opcode->op = (struct d30v_opcode *) hash_find (d30v_hash, name);
1396 if (opcode->op == NULL)
1397 {
1398 as_bad (_("unknown opcode: %s"), name);
1399 return -1;
1400 }
1401
1402 save = input_line_pointer;
1403 input_line_pointer = op_end;
1404 while (!(opcode->form = find_format (opcode->op, myops, fsize, cmp_hack)))
1405 {
1406 opcode->op++;
1407 if (opcode->op->name == NULL || strcmp (opcode->op->name, name))
1408 {
1409 as_bad (_("operands for opcode `%s' do not match any valid format"),
1410 name);
1411 return -1;
1412 }
1413 }
1414 input_line_pointer = save;
1415
1416 insn = build_insn (opcode, myops);
1417
1418 /* Propagate multiply status. */
1419 if (insn != -1)
1420 {
1421 if (is_parallel && prev_mul32_p)
1422 cur_mul32_p = 1;
1423 else
1424 {
1425 prev_mul32_p = cur_mul32_p;
1426 cur_mul32_p = (opcode->op->flags_used & FLAG_MUL32) != 0;
1427 }
1428 }
1429
1430 /* Propagate left_kills_right status. */
1431 if (insn != -1)
1432 {
1433 prev_left_kills_right_p = cur_left_kills_right_p;
1434
1435 if (opcode->op->flags_set & FLAG_LKR)
1436 {
1437 cur_left_kills_right_p = 1;
1438
1439 if (strcmp (opcode->op->name, "mvtsys") == 0)
1440 {
1441 /* Left kills right for only mvtsys only for
1442 PSW/PSWH/PSWL/flags target. */
1443 if ((myops[0].X_op == O_register) &&
1444 ((myops[0].X_add_number == OPERAND_CONTROL) || /* psw */
1445 (myops[0].X_add_number == OPERAND_CONTROL+MAX_CONTROL_REG+2) || /* pswh */
1446 (myops[0].X_add_number == OPERAND_CONTROL+MAX_CONTROL_REG+1) || /* pswl */
1447 (myops[0].X_add_number == OPERAND_FLAG+0) || /* f0 */
1448 (myops[0].X_add_number == OPERAND_FLAG+1) || /* f1 */
1449 (myops[0].X_add_number == OPERAND_FLAG+2) || /* f2 */
1450 (myops[0].X_add_number == OPERAND_FLAG+3) || /* f3 */
1451 (myops[0].X_add_number == OPERAND_FLAG+4) || /* f4 */
1452 (myops[0].X_add_number == OPERAND_FLAG+5) || /* f5 */
1453 (myops[0].X_add_number == OPERAND_FLAG+6) || /* f6 */
1454 (myops[0].X_add_number == OPERAND_FLAG+7))) /* f7 */
1455 {
1456 cur_left_kills_right_p = 1;
1457 }
1458 else
1459 {
1460 /* Other mvtsys target registers don't kill right
1461 instruction. */
1462 cur_left_kills_right_p = 0;
1463 }
1464 } /* mvtsys */
1465 }
1466 else
1467 cur_left_kills_right_p = 0;
1468 }
1469
1470 return insn;
1471 }
1472
1473 /* Called internally to handle all alignment needs. This takes care
1474 of eliding calls to frag_align if'n the cached current alignment
1475 says we've already got it, as well as taking care of the auto-aligning
1476 labels wrt code. */
1477
1478 static void
1479 d30v_align (int n, char *pfill, symbolS *label)
1480 {
1481 /* The front end is prone to changing segments out from under us
1482 temporarily when -g is in effect. */
1483 int switched_seg_p = (d30v_current_align_seg != now_seg);
1484
1485 /* Do not assume that if 'd30v_current_align >= n' and
1486 '! switched_seg_p' that it is safe to avoid performing
1487 this alignment request. The alignment of the current frag
1488 can be changed under our feet, for example by a .ascii
1489 directive in the source code. cf testsuite/gas/d30v/reloc.s */
1490 d30v_cleanup (FALSE);
1491
1492 if (pfill == NULL)
1493 {
1494 if (n > 2
1495 && (bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) != 0)
1496 {
1497 static char const nop[4] = { 0x00, 0xf0, 0x00, 0x00 };
1498
1499 /* First, make sure we're on a four-byte boundary, in case
1500 someone has been putting .byte values the text section. */
1501 if (d30v_current_align < 2 || switched_seg_p)
1502 frag_align (2, 0, 0);
1503 frag_align_pattern (n, nop, sizeof nop, 0);
1504 }
1505 else
1506 frag_align (n, 0, 0);
1507 }
1508 else
1509 frag_align (n, *pfill, 0);
1510
1511 if (!switched_seg_p)
1512 d30v_current_align = n;
1513
1514 if (label != NULL)
1515 {
1516 symbolS *sym;
1517 int label_seen = FALSE;
1518 struct frag *old_frag;
1519 valueT old_value;
1520 valueT new_value;
1521
1522 gas_assert (S_GET_SEGMENT (label) == now_seg);
1523
1524 old_frag = symbol_get_frag (label);
1525 old_value = S_GET_VALUE (label);
1526 new_value = (valueT) frag_now_fix ();
1527
1528 /* It is possible to have more than one label at a particular
1529 address, especially if debugging is enabled, so we must
1530 take care to adjust all the labels at this address in this
1531 fragment. To save time we search from the end of the symbol
1532 list, backwards, since the symbols we are interested in are
1533 almost certainly the ones that were most recently added.
1534 Also to save time we stop searching once we have seen at least
1535 one matching label, and we encounter a label that is no longer
1536 in the target fragment. Note, this search is guaranteed to
1537 find at least one match when sym == label, so no special case
1538 code is necessary. */
1539 for (sym = symbol_lastP; sym != NULL; sym = symbol_previous (sym))
1540 {
1541 if (symbol_get_frag (sym) == old_frag
1542 && S_GET_VALUE (sym) == old_value)
1543 {
1544 label_seen = TRUE;
1545 symbol_set_frag (sym, frag_now);
1546 S_SET_VALUE (sym, new_value);
1547 }
1548 else if (label_seen && symbol_get_frag (sym) != old_frag)
1549 break;
1550 }
1551 }
1552
1553 record_alignment (now_seg, n);
1554 }
1555
1556 /* This is the main entry point for the machine-dependent assembler.
1557 STR points to a machine-dependent instruction. This function is
1558 supposed to emit the frags/bytes it assembles to. For the D30V, it
1559 mostly handles the special VLIW parsing and packing and leaves the
1560 difficult stuff to do_assemble (). */
1561
1562 static long long prev_insn = -1;
1563 static struct d30v_insn prev_opcode;
1564 static subsegT prev_subseg;
1565 static segT prev_seg = 0;
1566
1567 void
1568 md_assemble (char *str)
1569 {
1570 struct d30v_insn opcode;
1571 long long insn;
1572 /* Execution type; parallel, etc. */
1573 exec_type_enum extype = EXEC_UNKNOWN;
1574 /* Saved extype. Used for multiline instructions. */
1575 static exec_type_enum etype = EXEC_UNKNOWN;
1576 char *str2;
1577
1578 if ((prev_insn != -1) && prev_seg
1579 && ((prev_seg != now_seg) || (prev_subseg != now_subseg)))
1580 d30v_cleanup (FALSE);
1581
1582 if (d30v_current_align < 3)
1583 d30v_align (3, NULL, d30v_last_label);
1584 else if (d30v_current_align > 3)
1585 d30v_current_align = 3;
1586 d30v_last_label = NULL;
1587
1588 flag_explicitly_parallel = 0;
1589 flag_xp_state = 0;
1590 if (etype == EXEC_UNKNOWN)
1591 {
1592 /* Look for the special multiple instruction separators. */
1593 str2 = strstr (str, "||");
1594 if (str2)
1595 {
1596 extype = EXEC_PARALLEL;
1597 flag_xp_state = 1;
1598 }
1599 else
1600 {
1601 str2 = strstr (str, "->");
1602 if (str2)
1603 extype = EXEC_SEQ;
1604 else
1605 {
1606 str2 = strstr (str, "<-");
1607 if (str2)
1608 extype = EXEC_REVSEQ;
1609 }
1610 }
1611
1612 /* STR2 points to the separator, if one. */
1613 if (str2)
1614 {
1615 *str2 = 0;
1616
1617 /* If two instructions are present and we already have one saved,
1618 then first write it out. */
1619 d30v_cleanup (FALSE);
1620
1621 /* Assemble first instruction and save it. */
1622 prev_insn = do_assemble (str, &prev_opcode, 1, 0);
1623 if (prev_insn == -1)
1624 as_bad (_("Cannot assemble instruction"));
1625 if (prev_opcode.form != NULL && prev_opcode.form->form >= LONG)
1626 as_bad (_("First opcode is long. Unable to mix instructions as specified."));
1627 fixups = fixups->next;
1628 str = str2 + 2;
1629 prev_seg = now_seg;
1630 prev_subseg = now_subseg;
1631 }
1632 }
1633
1634 insn = do_assemble (str, &opcode,
1635 (extype != EXEC_UNKNOWN || etype != EXEC_UNKNOWN),
1636 extype == EXEC_PARALLEL);
1637 if (insn == -1)
1638 {
1639 if (extype != EXEC_UNKNOWN)
1640 etype = extype;
1641 as_bad (_("Cannot assemble instruction"));
1642 return;
1643 }
1644
1645 if (etype != EXEC_UNKNOWN)
1646 {
1647 extype = etype;
1648 etype = EXEC_UNKNOWN;
1649 }
1650
1651 /* Word multiply instructions must not be followed by either a load or a
1652 16-bit multiply instruction in the next cycle. */
1653 if ( (extype != EXEC_REVSEQ)
1654 && prev_mul32_p
1655 && (opcode.op->flags_used & (FLAG_MEM | FLAG_MUL16)))
1656 {
1657 /* However, load and multiply should able to be combined in a parallel
1658 operation, so check for that first. */
1659 if (prev_insn != -1
1660 && (opcode.op->flags_used & FLAG_MEM)
1661 && opcode.form->form < LONG
1662 && (extype == EXEC_PARALLEL || (Optimizing && extype == EXEC_UNKNOWN))
1663 && parallel_ok (&prev_opcode, (long) prev_insn,
1664 &opcode, (long) insn, extype)
1665 && write_2_short (&prev_opcode, (long) prev_insn,
1666 &opcode, (long) insn, extype, fixups) == 0)
1667 {
1668 /* No instructions saved. */
1669 prev_insn = -1;
1670 return;
1671 }
1672 else
1673 {
1674 /* Can't parallelize, flush previous instruction and emit a
1675 word of NOPS, unless the previous instruction is a NOP,
1676 in which case just flush it, as this will generate a word
1677 of NOPs for us. */
1678
1679 if (prev_insn != -1 && (strcmp (prev_opcode.op->name, "nop") == 0))
1680 d30v_cleanup (FALSE);
1681 else
1682 {
1683 char *f;
1684
1685 if (prev_insn != -1)
1686 d30v_cleanup (TRUE);
1687 else
1688 {
1689 f = frag_more (8);
1690 dwarf2_emit_insn (8);
1691 d30v_number_to_chars (f, NOP2, 8);
1692
1693 if (warn_nops == NOP_ALL || warn_nops == NOP_MULTIPLY)
1694 {
1695 if (opcode.op->flags_used & FLAG_MEM)
1696 as_warn (_("word of NOPs added between word multiply and load"));
1697 else
1698 as_warn (_("word of NOPs added between word multiply and 16-bit multiply"));
1699 }
1700 }
1701 }
1702
1703 extype = EXEC_UNKNOWN;
1704 }
1705 }
1706 else if ( (extype == EXEC_REVSEQ)
1707 && cur_mul32_p
1708 && (prev_opcode.op->flags_used & (FLAG_MEM | FLAG_MUL16)))
1709 {
1710 /* Can't parallelize, flush current instruction and add a
1711 sequential NOP. */
1712 write_1_short (&opcode, (long) insn, fixups->next->next, TRUE);
1713
1714 /* Make the previous instruction the current one. */
1715 extype = EXEC_UNKNOWN;
1716 insn = prev_insn;
1717 now_seg = prev_seg;
1718 now_subseg = prev_subseg;
1719 prev_insn = -1;
1720 cur_mul32_p = prev_mul32_p;
1721 prev_mul32_p = 0;
1722 memcpy (&opcode, &prev_opcode, sizeof (prev_opcode));
1723 }
1724
1725 /* If this is a long instruction, write it and any previous short
1726 instruction. */
1727 if (opcode.form->form >= LONG)
1728 {
1729 if (extype != EXEC_UNKNOWN)
1730 as_bad (_("Instruction uses long version, so it cannot be mixed as specified"));
1731 d30v_cleanup (FALSE);
1732 write_long (&opcode, insn, fixups);
1733 prev_insn = -1;
1734 }
1735 else if ((prev_insn != -1)
1736 && (write_2_short
1737 (&prev_opcode, (long) prev_insn, &opcode,
1738 (long) insn, extype, fixups) == 0))
1739 {
1740 /* No instructions saved. */
1741 prev_insn = -1;
1742 }
1743 else
1744 {
1745 if (extype != EXEC_UNKNOWN)
1746 as_bad (_("Unable to mix instructions as specified"));
1747
1748 /* Save off last instruction so it may be packed on next pass. */
1749 memcpy (&prev_opcode, &opcode, sizeof (prev_opcode));
1750 prev_insn = insn;
1751 prev_seg = now_seg;
1752 prev_subseg = now_subseg;
1753 fixups = fixups->next;
1754 prev_mul32_p = cur_mul32_p;
1755 }
1756 }
1757
1758 /* If while processing a fixup, a reloc really needs to be created,
1759 then it is done here. */
1760
1761 arelent *
1762 tc_gen_reloc (asection *seg ATTRIBUTE_UNUSED, fixS *fixp)
1763 {
1764 arelent *reloc;
1765 reloc = xmalloc (sizeof (arelent));
1766 reloc->sym_ptr_ptr = xmalloc (sizeof (asymbol *));
1767 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
1768 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
1769 reloc->howto = bfd_reloc_type_lookup (stdoutput, fixp->fx_r_type);
1770 if (reloc->howto == NULL)
1771 {
1772 as_bad_where (fixp->fx_file, fixp->fx_line,
1773 _("reloc %d not supported by object file format"),
1774 (int) fixp->fx_r_type);
1775 return NULL;
1776 }
1777
1778 reloc->addend = 0;
1779 return reloc;
1780 }
1781
1782 int
1783 md_estimate_size_before_relax (fragS *fragp ATTRIBUTE_UNUSED,
1784 asection *seg ATTRIBUTE_UNUSED)
1785 {
1786 abort ();
1787 return 0;
1788 }
1789
1790 long
1791 md_pcrel_from_section (fixS *fixp, segT sec)
1792 {
1793 if (fixp->fx_addsy != (symbolS *) NULL
1794 && (!S_IS_DEFINED (fixp->fx_addsy)
1795 || (S_GET_SEGMENT (fixp->fx_addsy) != sec)))
1796 return 0;
1797 return fixp->fx_frag->fr_address + fixp->fx_where;
1798 }
1799
1800 /* Called after the assembler has finished parsing the input file or
1801 after a label is defined. Because the D30V assembler sometimes
1802 saves short instructions to see if it can package them with the
1803 next instruction, there may be a short instruction that still needs
1804 written. */
1805
1806 int
1807 d30v_cleanup (int use_sequential)
1808 {
1809 segT seg;
1810 subsegT subseg;
1811
1812 if (prev_insn != -1)
1813 {
1814 seg = now_seg;
1815 subseg = now_subseg;
1816 subseg_set (prev_seg, prev_subseg);
1817 write_1_short (&prev_opcode, (long) prev_insn, fixups->next,
1818 use_sequential);
1819 subseg_set (seg, subseg);
1820 prev_insn = -1;
1821 if (use_sequential)
1822 prev_mul32_p = FALSE;
1823 }
1824
1825 return 1;
1826 }
1827
1828 /* This function is called at the start of every line. It checks to
1829 see if the first character is a '.', which indicates the start of a
1830 pseudo-op. If it is, then write out any unwritten instructions. */
1831
1832 void
1833 d30v_start_line (void)
1834 {
1835 char *c = input_line_pointer;
1836
1837 while (ISSPACE (*c))
1838 c++;
1839
1840 if (*c == '.')
1841 d30v_cleanup (FALSE);
1842 }
1843
1844 static void
1845 check_size (long value, int bits, char *file, int line)
1846 {
1847 int tmp, max;
1848
1849 if (value < 0)
1850 tmp = ~value;
1851 else
1852 tmp = value;
1853
1854 max = (1 << (bits - 1)) - 1;
1855
1856 if (tmp > max)
1857 as_bad_where (file, line, _("value too large to fit in %d bits"), bits);
1858 }
1859
1860 /* d30v_frob_label() is called when after a label is recognized. */
1861
1862 void
1863 d30v_frob_label (symbolS *lab)
1864 {
1865 /* Emit any pending instructions. */
1866 d30v_cleanup (FALSE);
1867
1868 /* Update the label's address with the current output pointer. */
1869 symbol_set_frag (lab, frag_now);
1870 S_SET_VALUE (lab, (valueT) frag_now_fix ());
1871
1872 /* Record this label for future adjustment after we find out what
1873 kind of data it references, and the required alignment therewith. */
1874 d30v_last_label = lab;
1875
1876 dwarf2_emit_label (lab);
1877 }
1878
1879 /* Hook into cons for capturing alignment changes. */
1880
1881 void
1882 d30v_cons_align (int size)
1883 {
1884 int log_size;
1885
1886 /* Don't specially align anything in debug sections. */
1887 if ((now_seg->flags & SEC_ALLOC) == 0
1888 || strcmp (now_seg->name, ".eh_frame") == 0)
1889 return;
1890
1891 log_size = 0;
1892 while ((size >>= 1) != 0)
1893 ++log_size;
1894
1895 if (d30v_current_align < log_size)
1896 d30v_align (log_size, (char *) NULL, NULL);
1897 else if (d30v_current_align > log_size)
1898 d30v_current_align = log_size;
1899 d30v_last_label = NULL;
1900 }
1901
1902 void
1903 md_apply_fix (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED)
1904 {
1905 char *where;
1906 unsigned long insn, insn2;
1907 long value = *valP;
1908
1909 if (fixP->fx_addsy == (symbolS *) NULL)
1910 fixP->fx_done = 1;
1911
1912 /* We don't support subtracting a symbol. */
1913 if (fixP->fx_subsy != (symbolS *) NULL)
1914 as_bad_where (fixP->fx_file, fixP->fx_line, _("expression too complex"));
1915
1916 /* Fetch the instruction, insert the fully resolved operand
1917 value, and stuff the instruction back again. */
1918 where = fixP->fx_frag->fr_literal + fixP->fx_where;
1919 insn = bfd_getb32 ((unsigned char *) where);
1920
1921 switch (fixP->fx_r_type)
1922 {
1923 case BFD_RELOC_8: /* Check for a bad .byte directive. */
1924 if (fixP->fx_addsy != NULL)
1925 as_bad (_("line %d: unable to place address of symbol '%s' into a byte"),
1926 fixP->fx_line, S_GET_NAME (fixP->fx_addsy));
1927 else if (((unsigned)value) > 0xff)
1928 as_bad (_("line %d: unable to place value %lx into a byte"),
1929 fixP->fx_line, value);
1930 else
1931 *(unsigned char *) where = value;
1932 break;
1933
1934 case BFD_RELOC_16: /* Check for a bad .short directive. */
1935 if (fixP->fx_addsy != NULL)
1936 as_bad (_("line %d: unable to place address of symbol '%s' into a short"),
1937 fixP->fx_line, S_GET_NAME (fixP->fx_addsy));
1938 else if (((unsigned)value) > 0xffff)
1939 as_bad (_("line %d: unable to place value %lx into a short"),
1940 fixP->fx_line, value);
1941 else
1942 bfd_putb16 ((bfd_vma) value, (unsigned char *) where);
1943 break;
1944
1945 case BFD_RELOC_64: /* Check for a bad .quad directive. */
1946 if (fixP->fx_addsy != NULL)
1947 as_bad (_("line %d: unable to place address of symbol '%s' into a quad"),
1948 fixP->fx_line, S_GET_NAME (fixP->fx_addsy));
1949 else
1950 {
1951 bfd_putb32 ((bfd_vma) value, (unsigned char *) where);
1952 bfd_putb32 (0, ((unsigned char *) where) + 4);
1953 }
1954 break;
1955
1956 case BFD_RELOC_D30V_6:
1957 check_size (value, 6, fixP->fx_file, fixP->fx_line);
1958 insn |= value & 0x3F;
1959 bfd_putb32 ((bfd_vma) insn, (unsigned char *) where);
1960 break;
1961
1962 case BFD_RELOC_D30V_9_PCREL:
1963 if (fixP->fx_where & 0x7)
1964 {
1965 if (fixP->fx_done)
1966 value += 4;
1967 else
1968 fixP->fx_r_type = BFD_RELOC_D30V_9_PCREL_R;
1969 }
1970 check_size (value, 9, fixP->fx_file, fixP->fx_line);
1971 insn |= ((value >> 3) & 0x3F) << 12;
1972 bfd_putb32 ((bfd_vma) insn, (unsigned char *) where);
1973 break;
1974
1975 case BFD_RELOC_D30V_15:
1976 check_size (value, 15, fixP->fx_file, fixP->fx_line);
1977 insn |= (value >> 3) & 0xFFF;
1978 bfd_putb32 ((bfd_vma) insn, (unsigned char *) where);
1979 break;
1980
1981 case BFD_RELOC_D30V_15_PCREL:
1982 if (fixP->fx_where & 0x7)
1983 {
1984 if (fixP->fx_done)
1985 value += 4;
1986 else
1987 fixP->fx_r_type = BFD_RELOC_D30V_15_PCREL_R;
1988 }
1989 check_size (value, 15, fixP->fx_file, fixP->fx_line);
1990 insn |= (value >> 3) & 0xFFF;
1991 bfd_putb32 ((bfd_vma) insn, (unsigned char *) where);
1992 break;
1993
1994 case BFD_RELOC_D30V_21:
1995 check_size (value, 21, fixP->fx_file, fixP->fx_line);
1996 insn |= (value >> 3) & 0x3FFFF;
1997 bfd_putb32 ((bfd_vma) insn, (unsigned char *) where);
1998 break;
1999
2000 case BFD_RELOC_D30V_21_PCREL:
2001 if (fixP->fx_where & 0x7)
2002 {
2003 if (fixP->fx_done)
2004 value += 4;
2005 else
2006 fixP->fx_r_type = BFD_RELOC_D30V_21_PCREL_R;
2007 }
2008 check_size (value, 21, fixP->fx_file, fixP->fx_line);
2009 insn |= (value >> 3) & 0x3FFFF;
2010 bfd_putb32 ((bfd_vma) insn, (unsigned char *) where);
2011 break;
2012
2013 case BFD_RELOC_D30V_32:
2014 insn2 = bfd_getb32 ((unsigned char *) where + 4);
2015 insn |= (value >> 26) & 0x3F; /* Top 6 bits. */
2016 insn2 |= ((value & 0x03FC0000) << 2); /* Next 8 bits. */
2017 insn2 |= value & 0x0003FFFF; /* Bottom 18 bits. */
2018 bfd_putb32 ((bfd_vma) insn, (unsigned char *) where);
2019 bfd_putb32 ((bfd_vma) insn2, (unsigned char *) where + 4);
2020 break;
2021
2022 case BFD_RELOC_D30V_32_PCREL:
2023 insn2 = bfd_getb32 ((unsigned char *) where + 4);
2024 insn |= (value >> 26) & 0x3F; /* Top 6 bits. */
2025 insn2 |= ((value & 0x03FC0000) << 2); /* Next 8 bits. */
2026 insn2 |= value & 0x0003FFFF; /* Bottom 18 bits. */
2027 bfd_putb32 ((bfd_vma) insn, (unsigned char *) where);
2028 bfd_putb32 ((bfd_vma) insn2, (unsigned char *) where + 4);
2029 break;
2030
2031 case BFD_RELOC_32:
2032 bfd_putb32 ((bfd_vma) value, (unsigned char *) where);
2033 break;
2034
2035 default:
2036 as_bad (_("line %d: unknown relocation type: 0x%x"),
2037 fixP->fx_line, fixP->fx_r_type);
2038 }
2039 }
2040
2041 /* Handle the .align pseudo-op. This aligns to a power of two. We
2042 hook here to latch the current alignment. */
2043
2044 static void
2045 s_d30v_align (int ignore ATTRIBUTE_UNUSED)
2046 {
2047 int align;
2048 char fill, *pfill = NULL;
2049 long max_alignment = 15;
2050
2051 align = get_absolute_expression ();
2052 if (align > max_alignment)
2053 {
2054 align = max_alignment;
2055 as_warn (_("Alignment too large: %d assumed"), align);
2056 }
2057 else if (align < 0)
2058 {
2059 as_warn (_("Alignment negative: 0 assumed"));
2060 align = 0;
2061 }
2062
2063 if (*input_line_pointer == ',')
2064 {
2065 input_line_pointer++;
2066 fill = get_absolute_expression ();
2067 pfill = &fill;
2068 }
2069
2070 d30v_last_label = NULL;
2071 d30v_align (align, pfill, NULL);
2072
2073 demand_empty_rest_of_line ();
2074 }
2075
2076 /* Handle the .text pseudo-op. This is like the usual one, but it
2077 clears the saved last label and resets known alignment. */
2078
2079 static void
2080 s_d30v_text (int i)
2081
2082 {
2083 s_text (i);
2084 d30v_last_label = NULL;
2085 d30v_current_align = 0;
2086 d30v_current_align_seg = now_seg;
2087 }
2088
2089 /* Handle the .data pseudo-op. This is like the usual one, but it
2090 clears the saved last label and resets known alignment. */
2091
2092 static void
2093 s_d30v_data (int i)
2094 {
2095 s_data (i);
2096 d30v_last_label = NULL;
2097 d30v_current_align = 0;
2098 d30v_current_align_seg = now_seg;
2099 }
2100
2101 /* Handle the .section pseudo-op. This is like the usual one, but it
2102 clears the saved last label and resets known alignment. */
2103
2104 static void
2105 s_d30v_section (int ignore)
2106 {
2107 obj_elf_section (ignore);
2108 d30v_last_label = NULL;
2109 d30v_current_align = 0;
2110 d30v_current_align_seg = now_seg;
2111 }
2112
2113 /* The target specific pseudo-ops which we support. */
2114 const pseudo_typeS md_pseudo_table[] =
2115 {
2116 { "word", cons, 4 },
2117 { "hword", cons, 2 },
2118 { "align", s_d30v_align, 0 },
2119 { "text", s_d30v_text, 0 },
2120 { "data", s_d30v_data, 0 },
2121 { "section", s_d30v_section, 0 },
2122 { "section.s", s_d30v_section, 0 },
2123 { "sect", s_d30v_section, 0 },
2124 { "sect.s", s_d30v_section, 0 },
2125 { NULL, NULL, 0 }
2126 };
This page took 0.072307 seconds and 4 git commands to generate.