* config/tc-hppa.c (pa_ip): Fix thinko in 21bit range check.
[deliverable/binutils-gdb.git] / gas / config / tc-hppa.c
1 /* tc-hppa.c -- Assemble for the PA
2 Copyright (C) 1989 Free Software Foundation, Inc.
3
4 This file is part of GAS, the GNU Assembler.
5
6 GAS is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 1, or (at your option)
9 any later version.
10
11 GAS is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GAS; see the file COPYING. If not, write to
18 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
19
20
21 /* HP PA-RISC support was contributed by the Center for Software Science
22 at the University of Utah. */
23
24 #include <stdio.h>
25 #include <ctype.h>
26
27 #include "as.h"
28 #include "subsegs.h"
29
30 #include "../bfd/libhppa.h"
31 #include "../bfd/libbfd.h"
32
33 /* Be careful, this file includes data *declarations*. */
34 #include "opcode/hppa.h"
35
36 /* A "convient" place to put object file dependencies which do
37 not need to be seen outside of tc-hppa.c. */
38 #ifdef OBJ_ELF
39 /* Names of various debugging spaces/subspaces. */
40 #define GDB_DEBUG_SPACE_NAME ".stab"
41 #define GDB_STRINGS_SUBSPACE_NAME ".stabstr"
42 #define GDB_SYMBOLS_SUBSPACE_NAME ".stab"
43 #define UNWIND_SECTION_NAME ".hppa_unwind"
44 /* Nonzero if CODE is a fixup code needing further processing. */
45
46 /* Object file formats specify relocation types. */
47 typedef elf32_hppa_reloc_type reloc_type;
48
49 /* Object file formats specify BFD symbol types. */
50 typedef elf_symbol_type obj_symbol_type;
51
52 /* How to generate a relocation. */
53 #define hppa_gen_reloc_type hppa_elf_gen_reloc_type
54
55 /* Who knows. */
56 #define obj_version obj_elf_version
57
58 /* Use space aliases. */
59 #define USE_ALIASES 1
60
61 /* Some local functions only used by ELF. */
62 static void pa_build_symextn_section PARAMS ((void));
63 static void hppa_tc_make_symextn_section PARAMS ((void));
64 #endif
65
66 #ifdef OBJ_SOM
67 /* Names of various debugging spaces/subspaces. */
68 #define GDB_DEBUG_SPACE_NAME "$GDB_DEBUG$"
69 #define GDB_STRINGS_SUBSPACE_NAME "$GDB_STRINGS$"
70 #define GDB_SYMBOLS_SUBSPACE_NAME "$GDB_SYMBOLS$"
71 #define UNWIND_SECTION_NAME "$UNWIND$"
72
73 /* Object file formats specify relocation types. */
74 typedef int reloc_type;
75
76 /* Who knows. */
77 #define obj_version obj_som_version
78
79 /* Do not use space aliases. */
80 #define USE_ALIASES 0
81
82 /* How to generate a relocation. */
83 #define hppa_gen_reloc_type hppa_som_gen_reloc_type
84
85 /* Object file formats specify BFD symbol types. */
86 typedef som_symbol_type obj_symbol_type;
87 #endif
88
89 /* Various structures and types used internally in tc-hppa.c. */
90
91 /* Unwind table and descriptor. FIXME: Sync this with GDB version. */
92
93 struct unwind_desc
94 {
95 unsigned int cannot_unwind:1;
96 unsigned int millicode:1;
97 unsigned int millicode_save_rest:1;
98 unsigned int region_desc:2;
99 unsigned int save_sr:2;
100 unsigned int entry_fr:4;
101 unsigned int entry_gr:5;
102 unsigned int args_stored:1;
103 unsigned int call_fr:5;
104 unsigned int call_gr:5;
105 unsigned int save_sp:1;
106 unsigned int save_rp:1;
107 unsigned int save_rp_in_frame:1;
108 unsigned int extn_ptr_defined:1;
109 unsigned int cleanup_defined:1;
110
111 unsigned int hpe_interrupt_marker:1;
112 unsigned int hpux_interrupt_marker:1;
113 unsigned int reserved:3;
114 unsigned int frame_size:27;
115 };
116
117 struct unwind_table
118 {
119 /* Starting and ending offsets of the region described by
120 descriptor. */
121 unsigned int start_offset;
122 unsigned int end_offset;
123 struct unwind_desc descriptor;
124 };
125
126 /* This structure is used by the .callinfo, .enter, .leave pseudo-ops to
127 control the entry and exit code they generate. It is also used in
128 creation of the correct stack unwind descriptors.
129
130 NOTE: GAS does not support .enter and .leave for the generation of
131 prologues and epilogues. FIXME.
132
133 The fields in structure roughly correspond to the arguments available on the
134 .callinfo pseudo-op. */
135
136 struct call_info
137 {
138 /* Should sr3 be saved in the prologue? */
139 int entry_sr;
140
141 /* Does this function make calls? */
142 int makes_calls;
143
144 /* The unwind descriptor being built. */
145 struct unwind_table ci_unwind;
146
147 /* Name of this function. */
148 symbolS *start_symbol;
149
150 /* (temporary) symbol used to mark the end of this function. */
151 symbolS *end_symbol;
152
153 /* frags associated with start and end of this function. */
154 fragS *start_frag;
155 fragS *end_frag;
156
157 /* frags for starting/ending offset of this descriptor. */
158 fragS *start_offset_frag;
159 fragS *end_offset_frag;
160
161 /* The location within {start,end}_offset_frag to find the
162 {start,end}_offset. */
163 int start_frag_where;
164 int end_frag_where;
165
166 /* Fixups (relocations) for start_offset and end_offset. */
167 fixS *start_fix;
168 fixS *end_fix;
169
170 /* Next entry in the chain. */
171 struct call_info *ci_next;
172 };
173
174 /* Operand formats for FP instructions. Note not all FP instructions
175 allow all four formats to be used (for example fmpysub only allows
176 SGL and DBL). */
177 typedef enum
178 {
179 SGL, DBL, ILLEGAL_FMT, QUAD
180 }
181 fp_operand_format;
182
183 /* This fully describes the symbol types which may be attached to
184 an EXPORT or IMPORT directive. Only SOM uses this formation
185 (ELF has no need for it). */
186 typedef enum
187 {
188 SYMBOL_TYPE_UNKNOWN,
189 SYMBOL_TYPE_ABSOLUTE,
190 SYMBOL_TYPE_CODE,
191 SYMBOL_TYPE_DATA,
192 SYMBOL_TYPE_ENTRY,
193 SYMBOL_TYPE_MILLICODE,
194 SYMBOL_TYPE_PLABEL,
195 SYMBOL_TYPE_PRI_PROG,
196 SYMBOL_TYPE_SEC_PROG,
197 }
198 pa_symbol_type;
199
200 /* This structure contains information needed to assemble
201 individual instructions. */
202 struct pa_it
203 {
204 /* Holds the opcode after parsing by pa_ip. */
205 unsigned long opcode;
206
207 /* Holds an expression associated with the current instruction. */
208 expressionS exp;
209
210 /* Does this instruction use PC-relative addressing. */
211 int pcrel;
212
213 /* Floating point formats for operand1 and operand2. */
214 fp_operand_format fpof1;
215 fp_operand_format fpof2;
216
217 /* Holds the field selector for this instruction
218 (for example L%, LR%, etc). */
219 long field_selector;
220
221 /* Holds any argument relocation bits associated with this
222 instruction. (instruction should be some sort of call). */
223 long arg_reloc;
224
225 /* The format specification for this instruction. */
226 int format;
227
228 /* The relocation (if any) associated with this instruction. */
229 reloc_type reloc;
230 };
231
232 /* PA-89 floating point registers are arranged like this:
233
234
235 +--------------+--------------+
236 | 0 or 16L | 16 or 16R |
237 +--------------+--------------+
238 | 1 or 17L | 17 or 17R |
239 +--------------+--------------+
240 | | |
241
242 . . .
243 . . .
244 . . .
245
246 | | |
247 +--------------+--------------+
248 | 14 or 30L | 30 or 30R |
249 +--------------+--------------+
250 | 15 or 31L | 31 or 31R |
251 +--------------+--------------+
252
253
254 The following is a version of pa_parse_number that
255 handles the L/R notation and returns the correct
256 value to put into the instruction register field.
257 The correct value to put into the instruction is
258 encoded in the structure 'pa_89_fp_reg_struct'. */
259
260 struct pa_89_fp_reg_struct
261 {
262 /* The register number. */
263 char number_part;
264
265 /* L/R selector. */
266 char l_r_select;
267 };
268
269 /* Additional information needed to build argument relocation stubs. */
270 struct call_desc
271 {
272 /* The argument relocation specification. */
273 unsigned int arg_reloc;
274
275 /* Number of arguments. */
276 unsigned int arg_count;
277 };
278
279 /* This structure defines an entry in the subspace dictionary
280 chain. */
281
282 struct subspace_dictionary_chain
283 {
284 /* Index of containing space. */
285 unsigned long ssd_space_index;
286
287 /* Nonzero if this space has been defined by the user code. */
288 unsigned int ssd_defined;
289
290 /* Which quadrant within the space this subspace should be loaded into. */
291 unsigned char ssd_quadrant;
292
293 /* Alignment (in bytes) for this subspace. */
294 unsigned long ssd_alignment;
295
296 /* Access control bits to determine read/write/execute permissions
297 as well as gateway privilege promotions. */
298 unsigned char ssd_access_control_bits;
299
300 /* A sorting key so that it is possible to specify ordering of
301 subspaces within a space. */
302 unsigned char ssd_sort_key;
303
304 /* Nonzero of this space should be zero filled. */
305 unsigned long ssd_zero;
306
307 /* Nonzero if this is a common subspace. */
308 unsigned char ssd_common;
309
310 /* Nonzero if this is a common subspace which allows symbols to be
311 multiply defined. */
312 unsigned char ssd_dup_common;
313
314 /* Nonzero if this subspace is loadable. Note loadable subspaces
315 must be contained within loadable spaces; unloadable subspaces
316 must be contained in unloadable spaces. */
317 unsigned char ssd_loadable;
318
319 /* Nonzero if this subspace contains only code. */
320 unsigned char ssd_code_only;
321
322 /* Starting offset of this subspace. */
323 unsigned long ssd_subspace_start;
324
325 /* Length of this subspace. */
326 unsigned long ssd_subspace_length;
327
328 /* Name of this subspace. */
329 char *ssd_name;
330
331 /* GAS segment and subsegment associated with this subspace. */
332 asection *ssd_seg;
333 int ssd_subseg;
334
335 /* Index of this subspace within the subspace dictionary of the object
336 file. Not used until object file is written. */
337 int object_file_index;
338
339 /* The size of the last alignment request for this subspace. */
340 int ssd_last_align;
341
342 /* Next space in the subspace dictionary chain. */
343 struct subspace_dictionary_chain *ssd_next;
344 };
345
346 typedef struct subspace_dictionary_chain ssd_chain_struct;
347
348 /* This structure defines an entry in the subspace dictionary
349 chain. */
350
351 struct space_dictionary_chain
352 {
353
354 /* Holds the index into the string table of the name of this
355 space. */
356 unsigned int sd_name_index;
357
358 /* Nonzero if the space is loadable. */
359 unsigned int sd_loadable;
360
361 /* Nonzero if this space has been defined by the user code or
362 as a default space. */
363 unsigned int sd_defined;
364
365 /* Nonzero if this spaces has been defined by the user code. */
366 unsigned int sd_user_defined;
367
368 /* Nonzero if this space is not sharable. */
369 unsigned int sd_private;
370
371 /* The space number (or index). */
372 unsigned int sd_spnum;
373
374 /* The sort key for this space. May be used to determine how to lay
375 out the spaces within the object file. */
376 unsigned char sd_sort_key;
377
378 /* The name of this subspace. */
379 char *sd_name;
380
381 /* GAS segment to which this subspace corresponds. */
382 asection *sd_seg;
383
384 /* Current subsegment number being used. */
385 int sd_last_subseg;
386
387 /* The chain of subspaces contained within this space. */
388 ssd_chain_struct *sd_subspaces;
389
390 /* The next entry in the space dictionary chain. */
391 struct space_dictionary_chain *sd_next;
392 };
393
394 typedef struct space_dictionary_chain sd_chain_struct;
395
396 /* Structure for previous label tracking. Needed so that alignments,
397 callinfo declarations, etc can be easily attached to a particular
398 label. */
399 typedef struct label_symbol_struct
400 {
401 struct symbol *lss_label;
402 sd_chain_struct *lss_space;
403 struct label_symbol_struct *lss_next;
404 }
405 label_symbol_struct;
406
407 /* This structure defines attributes of the default subspace
408 dictionary entries. */
409
410 struct default_subspace_dict
411 {
412 /* Name of the subspace. */
413 char *name;
414
415 /* FIXME. Is this still needed? */
416 char defined;
417
418 /* Nonzero if this subspace is loadable. */
419 char loadable;
420
421 /* Nonzero if this subspace contains only code. */
422 char code_only;
423
424 /* Nonzero if this is a common subspace. */
425 char common;
426
427 /* Nonzero if this is a common subspace which allows symbols
428 to be multiply defined. */
429 char dup_common;
430
431 /* Nonzero if this subspace should be zero filled. */
432 char zero;
433
434 /* Sort key for this subspace. */
435 unsigned char sort;
436
437 /* Access control bits for this subspace. Can represent RWX access
438 as well as privilege level changes for gateways. */
439 int access;
440
441 /* Index of containing space. */
442 int space_index;
443
444 /* Alignment (in bytes) of this subspace. */
445 int alignment;
446
447 /* Quadrant within space where this subspace should be loaded. */
448 int quadrant;
449
450 /* An index into the default spaces array. */
451 int def_space_index;
452
453 /* An alias for this section (or NULL if no alias exists). */
454 char *alias;
455
456 /* Subsegment associated with this subspace. */
457 subsegT subsegment;
458 };
459
460 /* This structure defines attributes of the default space
461 dictionary entries. */
462
463 struct default_space_dict
464 {
465 /* Name of the space. */
466 char *name;
467
468 /* Space number. It is possible to identify spaces within
469 assembly code numerically! */
470 int spnum;
471
472 /* Nonzero if this space is loadable. */
473 char loadable;
474
475 /* Nonzero if this space is "defined". FIXME is still needed */
476 char defined;
477
478 /* Nonzero if this space can not be shared. */
479 char private;
480
481 /* Sort key for this space. */
482 unsigned char sort;
483
484 /* Segment associated with this space. */
485 asection *segment;
486
487 /* An alias for this section (or NULL if no alias exists). */
488 char *alias;
489 };
490
491 /* Extra information needed to perform fixups (relocations) on the PA. */
492 struct hppa_fix_struct
493 {
494 /* The field selector. */
495 enum hppa_reloc_field_selector_type fx_r_field;
496
497 /* Type of fixup. */
498 int fx_r_type;
499
500 /* Format of fixup. */
501 int fx_r_format;
502
503 /* Argument relocation bits. */
504 long fx_arg_reloc;
505
506 /* The unwind descriptor associated with this fixup. */
507 char fx_unwind[8];
508 };
509
510 /* Structure to hold information about predefined registers. */
511
512 struct pd_reg
513 {
514 char *name;
515 int value;
516 };
517
518 /* This structure defines the mapping from a FP condition string
519 to a condition number which can be recorded in an instruction. */
520 struct fp_cond_map
521 {
522 char *string;
523 int cond;
524 };
525
526 /* This structure defines a mapping from a field selector
527 string to a field selector type. */
528 struct selector_entry
529 {
530 char *prefix;
531 int field_selector;
532 };
533
534 /* Prototypes for functions local to tc-hppa.c. */
535
536 static fp_operand_format pa_parse_fp_format PARAMS ((char **s));
537 static void pa_cons PARAMS ((int));
538 static void pa_data PARAMS ((int));
539 static void pa_desc PARAMS ((int));
540 static void pa_float_cons PARAMS ((int));
541 static void pa_fill PARAMS ((int));
542 static void pa_lcomm PARAMS ((int));
543 static void pa_lsym PARAMS ((int));
544 static void pa_stringer PARAMS ((int));
545 static void pa_text PARAMS ((int));
546 static void pa_version PARAMS ((int));
547 static int pa_parse_fp_cmp_cond PARAMS ((char **));
548 static int get_expression PARAMS ((char *));
549 static int pa_get_absolute_expression PARAMS ((struct pa_it *, char **));
550 static int evaluate_absolute PARAMS ((struct pa_it *));
551 static unsigned int pa_build_arg_reloc PARAMS ((char *));
552 static unsigned int pa_align_arg_reloc PARAMS ((unsigned int, unsigned int));
553 static int pa_parse_nullif PARAMS ((char **));
554 static int pa_parse_nonneg_cmpsub_cmpltr PARAMS ((char **, int));
555 static int pa_parse_neg_cmpsub_cmpltr PARAMS ((char **, int));
556 static int pa_parse_neg_add_cmpltr PARAMS ((char **, int));
557 static int pa_parse_nonneg_add_cmpltr PARAMS ((char **, int));
558 static void pa_block PARAMS ((int));
559 static void pa_call PARAMS ((int));
560 static void pa_call_args PARAMS ((struct call_desc *));
561 static void pa_callinfo PARAMS ((int));
562 static void pa_code PARAMS ((int));
563 static void pa_comm PARAMS ((int));
564 static void pa_copyright PARAMS ((int));
565 static void pa_end PARAMS ((int));
566 static void pa_enter PARAMS ((int));
567 static void pa_entry PARAMS ((int));
568 static void pa_equ PARAMS ((int));
569 static void pa_exit PARAMS ((int));
570 static void pa_export PARAMS ((int));
571 static void pa_type_args PARAMS ((symbolS *, int));
572 static void pa_import PARAMS ((int));
573 static void pa_label PARAMS ((int));
574 static void pa_leave PARAMS ((int));
575 static void pa_origin PARAMS ((int));
576 static void pa_proc PARAMS ((int));
577 static void pa_procend PARAMS ((int));
578 static void pa_space PARAMS ((int));
579 static void pa_spnum PARAMS ((int));
580 static void pa_subspace PARAMS ((int));
581 static void pa_param PARAMS ((int));
582 static void pa_undefine_label PARAMS ((void));
583 static int need_89_opcode PARAMS ((struct pa_it *,
584 struct pa_89_fp_reg_struct *));
585 static int pa_parse_number PARAMS ((char **, struct pa_89_fp_reg_struct *));
586 static label_symbol_struct *pa_get_label PARAMS ((void));
587 static sd_chain_struct *create_new_space PARAMS ((char *, int, char,
588 char, char, char,
589 asection *, int));
590 static ssd_chain_struct *create_new_subspace PARAMS ((sd_chain_struct *,
591 char *, char, char,
592 char, char, char,
593 char, int, int, int,
594 int, asection *));
595 static ssd_chain_struct *update_subspace PARAMS ((sd_chain_struct *,
596 char *, char, char, char,
597 char, char, char, int,
598 int, int, int,
599 asection *));
600 static sd_chain_struct *is_defined_space PARAMS ((char *));
601 static ssd_chain_struct *is_defined_subspace PARAMS ((char *));
602 static sd_chain_struct *pa_segment_to_space PARAMS ((asection *));
603 static ssd_chain_struct *pa_subsegment_to_subspace PARAMS ((asection *,
604 subsegT));
605 static sd_chain_struct *pa_find_space_by_number PARAMS ((int));
606 static unsigned int pa_subspace_start PARAMS ((sd_chain_struct *, int));
607 static void pa_ip PARAMS ((char *));
608 static void fix_new_hppa PARAMS ((fragS *, int, short int, symbolS *,
609 long, expressionS *, int,
610 bfd_reloc_code_real_type,
611 enum hppa_reloc_field_selector_type,
612 int, long, char *));
613 static void md_apply_fix_1 PARAMS ((fixS *, long));
614 static int is_end_of_statement PARAMS ((void));
615 static int reg_name_search PARAMS ((char *));
616 static int pa_chk_field_selector PARAMS ((char **));
617 static int is_same_frag PARAMS ((fragS *, fragS *));
618 static void pa_build_unwind_subspace PARAMS ((struct call_info *));
619 static void process_exit PARAMS ((void));
620 static sd_chain_struct *pa_parse_space_stmt PARAMS ((char *, int));
621 static void pa_align_subseg PARAMS ((asection *, subsegT));
622 static int log2 PARAMS ((int));
623 static int pa_next_subseg PARAMS ((sd_chain_struct *));
624 static unsigned int pa_stringer_aux PARAMS ((char *));
625 static void pa_spaces_begin PARAMS ((void));
626
627
628 /* File and gloally scoped variable declarations. */
629
630 /* Root and final entry in the space chain. */
631 static sd_chain_struct *space_dict_root;
632 static sd_chain_struct *space_dict_last;
633
634 /* The current space and subspace. */
635 static sd_chain_struct *current_space;
636 static ssd_chain_struct *current_subspace;
637
638 /* Root of the call_info chain. */
639 static struct call_info *call_info_root;
640
641 /* The last call_info (for functions) structure
642 seen so it can be associated with fixups and
643 function labels. */
644 static struct call_info *last_call_info;
645
646 /* The last call description (for actual calls). */
647 static struct call_desc last_call_desc;
648
649 /* Relaxation isn't supported for the PA yet. */
650 const relax_typeS md_relax_table[] =
651 {0};
652
653 /* Jumps are always the same size -- one instruction. */
654 int md_short_jump_size = 4;
655 int md_long_jump_size = 4;
656
657 /* handle of the OPCODE hash table */
658 static struct hash_control *op_hash = NULL;
659
660 /* This array holds the chars that always start a comment. If the
661 pre-processor is disabled, these aren't very useful. */
662 const char comment_chars[] = ";";
663
664 /* Table of pseudo ops for the PA. FIXME -- how many of these
665 are now redundant with the overall GAS and the object file
666 dependent tables? */
667 const pseudo_typeS md_pseudo_table[] =
668 {
669 /* align pseudo-ops on the PA specify the actual alignment requested,
670 not the log2 of the requested alignment. */
671 {"align", s_align_bytes, 8},
672 {"ALIGN", s_align_bytes, 8},
673 {"block", pa_block, 1},
674 {"BLOCK", pa_block, 1},
675 {"blockz", pa_block, 0},
676 {"BLOCKZ", pa_block, 0},
677 {"byte", pa_cons, 1},
678 {"BYTE", pa_cons, 1},
679 {"call", pa_call, 0},
680 {"CALL", pa_call, 0},
681 {"callinfo", pa_callinfo, 0},
682 {"CALLINFO", pa_callinfo, 0},
683 {"code", pa_code, 0},
684 {"CODE", pa_code, 0},
685 {"comm", pa_comm, 0},
686 {"COMM", pa_comm, 0},
687 {"copyright", pa_copyright, 0},
688 {"COPYRIGHT", pa_copyright, 0},
689 {"data", pa_data, 0},
690 {"DATA", pa_data, 0},
691 {"desc", pa_desc, 0},
692 {"DESC", pa_desc, 0},
693 {"double", pa_float_cons, 'd'},
694 {"DOUBLE", pa_float_cons, 'd'},
695 {"end", pa_end, 0},
696 {"END", pa_end, 0},
697 {"enter", pa_enter, 0},
698 {"ENTER", pa_enter, 0},
699 {"entry", pa_entry, 0},
700 {"ENTRY", pa_entry, 0},
701 {"equ", pa_equ, 0},
702 {"EQU", pa_equ, 0},
703 {"exit", pa_exit, 0},
704 {"EXIT", pa_exit, 0},
705 {"export", pa_export, 0},
706 {"EXPORT", pa_export, 0},
707 {"fill", pa_fill, 0},
708 {"FILL", pa_fill, 0},
709 {"float", pa_float_cons, 'f'},
710 {"FLOAT", pa_float_cons, 'f'},
711 {"half", pa_cons, 2},
712 {"HALF", pa_cons, 2},
713 {"import", pa_import, 0},
714 {"IMPORT", pa_import, 0},
715 {"int", pa_cons, 4},
716 {"INT", pa_cons, 4},
717 {"label", pa_label, 0},
718 {"LABEL", pa_label, 0},
719 {"lcomm", pa_lcomm, 0},
720 {"LCOMM", pa_lcomm, 0},
721 {"leave", pa_leave, 0},
722 {"LEAVE", pa_leave, 0},
723 {"long", pa_cons, 4},
724 {"LONG", pa_cons, 4},
725 {"lsym", pa_lsym, 0},
726 {"LSYM", pa_lsym, 0},
727 {"octa", pa_cons, 16},
728 {"OCTA", pa_cons, 16},
729 {"org", pa_origin, 0},
730 {"ORG", pa_origin, 0},
731 {"origin", pa_origin, 0},
732 {"ORIGIN", pa_origin, 0},
733 {"param", pa_param, 0},
734 {"PARAM", pa_param, 0},
735 {"proc", pa_proc, 0},
736 {"PROC", pa_proc, 0},
737 {"procend", pa_procend, 0},
738 {"PROCEND", pa_procend, 0},
739 {"quad", pa_cons, 8},
740 {"QUAD", pa_cons, 8},
741 {"reg", pa_equ, 1},
742 {"REG", pa_equ, 1},
743 {"short", pa_cons, 2},
744 {"SHORT", pa_cons, 2},
745 {"single", pa_float_cons, 'f'},
746 {"SINGLE", pa_float_cons, 'f'},
747 {"space", pa_space, 0},
748 {"SPACE", pa_space, 0},
749 {"spnum", pa_spnum, 0},
750 {"SPNUM", pa_spnum, 0},
751 {"string", pa_stringer, 0},
752 {"STRING", pa_stringer, 0},
753 {"stringz", pa_stringer, 1},
754 {"STRINGZ", pa_stringer, 1},
755 {"subspa", pa_subspace, 0},
756 {"SUBSPA", pa_subspace, 0},
757 {"text", pa_text, 0},
758 {"TEXT", pa_text, 0},
759 {"version", pa_version, 0},
760 {"VERSION", pa_version, 0},
761 {"word", pa_cons, 4},
762 {"WORD", pa_cons, 4},
763 {NULL, 0, 0}
764 };
765
766 /* This array holds the chars that only start a comment at the beginning of
767 a line. If the line seems to have the form '# 123 filename'
768 .line and .file directives will appear in the pre-processed output.
769
770 Note that input_file.c hand checks for '#' at the beginning of the
771 first line of the input file. This is because the compiler outputs
772 #NO_APP at the beginning of its output.
773
774 Also note that '/*' will always start a comment. */
775 const char line_comment_chars[] = "#";
776
777 /* This array holds the characters which act as line separators. */
778 const char line_separator_chars[] = "!";
779
780 /* Chars that can be used to separate mant from exp in floating point nums. */
781 const char EXP_CHARS[] = "eE";
782
783 /* Chars that mean this number is a floating point constant.
784 As in 0f12.456 or 0d1.2345e12.
785
786 Be aware that MAXIMUM_NUMBER_OF_CHARS_FOR_FLOAT may have to be
787 changed in read.c. Ideally it shouldn't hae to know abou it at
788 all, but nothing is ideal around here. */
789 const char FLT_CHARS[] = "rRsSfFdDxXpP";
790
791 static struct pa_it the_insn;
792
793 /* Points to the end of an expression just parsed by get_expressoin
794 and friends. FIXME. This shouldn't be handled with a file-global
795 variable. */
796 static char *expr_end;
797
798 /* Nonzero if a .callinfo appeared within the current procedure. */
799 static int callinfo_found;
800
801 /* Nonzero if the assembler is currently within a .entry/.exit pair. */
802 static int within_entry_exit;
803
804 /* Nonzero if the assembler has completed exit processing for the
805 current procedure. */
806 static int exit_processing_complete;
807
808 /* Nonzero if the assembler is currently within a procedure definition. */
809 static int within_procedure;
810
811 /* Handle on strucutre which keep track of the last symbol
812 seen in each subspace. */
813 static label_symbol_struct *label_symbols_rootp = NULL;
814
815 /* Holds the last field selector. */
816 static int hppa_field_selector;
817
818 /* Nonzero if errors are to be printed. */
819 static int print_errors = 1;
820
821 /* List of registers that are pre-defined:
822
823 Each general register has one predefined name of the form
824 %r<REGNUM> which has the value <REGNUM>.
825
826 Space and control registers are handled in a similar manner,
827 but use %sr<REGNUM> and %cr<REGNUM> as their predefined names.
828
829 Likewise for the floating point registers, but of the form
830 %fr<REGNUM>. Floating point registers have additional predefined
831 names with 'L' and 'R' suffixes (e.g. %fr19L, %fr19R) which
832 again have the value <REGNUM>.
833
834 Many registers also have synonyms:
835
836 %r26 - %r23 have %arg0 - %arg3 as synonyms
837 %r28 - %r29 have %ret0 - %ret1 as synonyms
838 %r30 has %sp as a synonym
839 %r27 has %dp as a synonym
840 %r2 has %rp as a synonym
841
842 Almost every control register has a synonym; they are not listed
843 here for brevity.
844
845 The table is sorted. Suitable for searching by a binary search. */
846
847 static const struct pd_reg pre_defined_registers[] =
848 {
849 {"%arg0", 26},
850 {"%arg1", 25},
851 {"%arg2", 24},
852 {"%arg3", 23},
853 {"%cr0", 0},
854 {"%cr10", 10},
855 {"%cr11", 11},
856 {"%cr12", 12},
857 {"%cr13", 13},
858 {"%cr14", 14},
859 {"%cr15", 15},
860 {"%cr16", 16},
861 {"%cr17", 17},
862 {"%cr18", 18},
863 {"%cr19", 19},
864 {"%cr20", 20},
865 {"%cr21", 21},
866 {"%cr22", 22},
867 {"%cr23", 23},
868 {"%cr24", 24},
869 {"%cr25", 25},
870 {"%cr26", 26},
871 {"%cr27", 27},
872 {"%cr28", 28},
873 {"%cr29", 29},
874 {"%cr30", 30},
875 {"%cr31", 31},
876 {"%cr8", 8},
877 {"%cr9", 9},
878 {"%dp", 27},
879 {"%eiem", 15},
880 {"%eirr", 23},
881 {"%fr0", 0},
882 {"%fr0L", 0},
883 {"%fr0R", 0},
884 {"%fr1", 1},
885 {"%fr10", 10},
886 {"%fr10L", 10},
887 {"%fr10R", 10},
888 {"%fr11", 11},
889 {"%fr11L", 11},
890 {"%fr11R", 11},
891 {"%fr12", 12},
892 {"%fr12L", 12},
893 {"%fr12R", 12},
894 {"%fr13", 13},
895 {"%fr13L", 13},
896 {"%fr13R", 13},
897 {"%fr14", 14},
898 {"%fr14L", 14},
899 {"%fr14R", 14},
900 {"%fr15", 15},
901 {"%fr15L", 15},
902 {"%fr15R", 15},
903 {"%fr16", 16},
904 {"%fr16L", 16},
905 {"%fr16R", 16},
906 {"%fr17", 17},
907 {"%fr17L", 17},
908 {"%fr17R", 17},
909 {"%fr18", 18},
910 {"%fr18L", 18},
911 {"%fr18R", 18},
912 {"%fr19", 19},
913 {"%fr19L", 19},
914 {"%fr19R", 19},
915 {"%fr1L", 1},
916 {"%fr1R", 1},
917 {"%fr2", 2},
918 {"%fr20", 20},
919 {"%fr20L", 20},
920 {"%fr20R", 20},
921 {"%fr21", 21},
922 {"%fr21L", 21},
923 {"%fr21R", 21},
924 {"%fr22", 22},
925 {"%fr22L", 22},
926 {"%fr22R", 22},
927 {"%fr23", 23},
928 {"%fr23L", 23},
929 {"%fr23R", 23},
930 {"%fr24", 24},
931 {"%fr24L", 24},
932 {"%fr24R", 24},
933 {"%fr25", 25},
934 {"%fr25L", 25},
935 {"%fr25R", 25},
936 {"%fr26", 26},
937 {"%fr26L", 26},
938 {"%fr26R", 26},
939 {"%fr27", 27},
940 {"%fr27L", 27},
941 {"%fr27R", 27},
942 {"%fr28", 28},
943 {"%fr28L", 28},
944 {"%fr28R", 28},
945 {"%fr29", 29},
946 {"%fr29L", 29},
947 {"%fr29R", 29},
948 {"%fr2L", 2},
949 {"%fr2R", 2},
950 {"%fr3", 3},
951 {"%fr30", 30},
952 {"%fr30L", 30},
953 {"%fr30R", 30},
954 {"%fr31", 31},
955 {"%fr31L", 31},
956 {"%fr31R", 31},
957 {"%fr3L", 3},
958 {"%fr3R", 3},
959 {"%fr4", 4},
960 {"%fr4L", 4},
961 {"%fr4R", 4},
962 {"%fr5", 5},
963 {"%fr5L", 5},
964 {"%fr5R", 5},
965 {"%fr6", 6},
966 {"%fr6L", 6},
967 {"%fr6R", 6},
968 {"%fr7", 7},
969 {"%fr7L", 7},
970 {"%fr7R", 7},
971 {"%fr8", 8},
972 {"%fr8L", 8},
973 {"%fr8R", 8},
974 {"%fr9", 9},
975 {"%fr9L", 9},
976 {"%fr9R", 9},
977 {"%hta", 25},
978 {"%iir", 19},
979 {"%ior", 21},
980 {"%ipsw", 22},
981 {"%isr", 20},
982 {"%itmr", 16},
983 {"%iva", 14},
984 {"%pcoq", 18},
985 {"%pcsq", 17},
986 {"%pidr1", 8},
987 {"%pidr2", 9},
988 {"%pidr3", 12},
989 {"%pidr4", 13},
990 {"%ppda", 24},
991 {"%r0", 0},
992 {"%r1", 1},
993 {"%r10", 10},
994 {"%r11", 11},
995 {"%r12", 12},
996 {"%r13", 13},
997 {"%r14", 14},
998 {"%r15", 15},
999 {"%r16", 16},
1000 {"%r17", 17},
1001 {"%r18", 18},
1002 {"%r19", 19},
1003 {"%r2", 2},
1004 {"%r20", 20},
1005 {"%r21", 21},
1006 {"%r22", 22},
1007 {"%r23", 23},
1008 {"%r24", 24},
1009 {"%r25", 25},
1010 {"%r26", 26},
1011 {"%r27", 27},
1012 {"%r28", 28},
1013 {"%r29", 29},
1014 {"%r3", 3},
1015 {"%r30", 30},
1016 {"%r31", 31},
1017 {"%r4", 4},
1018 {"%r4L", 4},
1019 {"%r4R", 4},
1020 {"%r5", 5},
1021 {"%r5L", 5},
1022 {"%r5R", 5},
1023 {"%r6", 6},
1024 {"%r6L", 6},
1025 {"%r6R", 6},
1026 {"%r7", 7},
1027 {"%r7L", 7},
1028 {"%r7R", 7},
1029 {"%r8", 8},
1030 {"%r8L", 8},
1031 {"%r8R", 8},
1032 {"%r9", 9},
1033 {"%r9L", 9},
1034 {"%r9R", 9},
1035 {"%rctr", 0},
1036 {"%ret0", 28},
1037 {"%ret1", 29},
1038 {"%rp", 2},
1039 {"%sar", 11},
1040 {"%sp", 30},
1041 {"%sr0", 0},
1042 {"%sr1", 1},
1043 {"%sr2", 2},
1044 {"%sr3", 3},
1045 {"%sr4", 4},
1046 {"%sr5", 5},
1047 {"%sr6", 6},
1048 {"%sr7", 7},
1049 {"%tr0", 24},
1050 {"%tr1", 25},
1051 {"%tr2", 26},
1052 {"%tr3", 27},
1053 {"%tr4", 28},
1054 {"%tr5", 29},
1055 {"%tr6", 30},
1056 {"%tr7", 31}
1057 };
1058
1059 /* This table is sorted by order of the length of the string. This is
1060 so we check for <> before we check for <. If we had a <> and checked
1061 for < first, we would get a false match. */
1062 static const struct fp_cond_map fp_cond_map[] =
1063 {
1064 {"false?", 0},
1065 {"false", 1},
1066 {"true?", 30},
1067 {"true", 31},
1068 {"!<=>", 3},
1069 {"!?>=", 8},
1070 {"!?<=", 16},
1071 {"!<>", 7},
1072 {"!>=", 11},
1073 {"!?>", 12},
1074 {"?<=", 14},
1075 {"!<=", 19},
1076 {"!?<", 20},
1077 {"?>=", 22},
1078 {"!?=", 24},
1079 {"!=t", 27},
1080 {"<=>", 29},
1081 {"=t", 5},
1082 {"?=", 6},
1083 {"?<", 10},
1084 {"<=", 13},
1085 {"!>", 15},
1086 {"?>", 18},
1087 {">=", 21},
1088 {"!<", 23},
1089 {"<>", 25},
1090 {"!=", 26},
1091 {"!?", 28},
1092 {"?", 2},
1093 {"=", 4},
1094 {"<", 9},
1095 {">", 17}
1096 };
1097
1098 static const struct selector_entry selector_table[] =
1099 {
1100 {"F'", e_fsel},
1101 {"F%", e_fsel},
1102 {"LS'", e_lssel},
1103 {"LS%", e_lssel},
1104 {"RS'", e_rssel},
1105 {"RS%", e_rssel},
1106 {"L'", e_lsel},
1107 {"L%", e_lsel},
1108 {"R'", e_rsel},
1109 {"R%", e_rsel},
1110 {"LD'", e_ldsel},
1111 {"LD%", e_ldsel},
1112 {"RD'", e_rdsel},
1113 {"RD%", e_rdsel},
1114 {"LR'", e_lrsel},
1115 {"LR%", e_lrsel},
1116 {"RR'", e_rrsel},
1117 {"RR%", e_rrsel},
1118 {"P'", e_psel},
1119 {"P%", e_psel},
1120 {"RP'", e_rpsel},
1121 {"RP%", e_rpsel},
1122 {"LP'", e_lpsel},
1123 {"LP%", e_lpsel},
1124 {"T'", e_tsel},
1125 {"T%", e_tsel},
1126 {"RT'", e_rtsel},
1127 {"RT%", e_rtsel},
1128 {"LT'", e_ltsel},
1129 {"LT%", e_ltsel},
1130 {NULL, e_fsel}
1131 };
1132
1133 /* default space and subspace dictionaries */
1134
1135 #define GDB_SYMBOLS GDB_SYMBOLS_SUBSPACE_NAME
1136 #define GDB_STRINGS GDB_STRINGS_SUBSPACE_NAME
1137
1138 /* pre-defined subsegments (subspaces) for the HPPA. */
1139 #define SUBSEG_CODE 0
1140 #define SUBSEG_DATA 0
1141 #define SUBSEG_LIT 1
1142 #define SUBSEG_BSS 2
1143 #define SUBSEG_UNWIND 3
1144 #define SUBSEG_GDB_STRINGS 0
1145 #define SUBSEG_GDB_SYMBOLS 1
1146
1147 static struct default_subspace_dict pa_def_subspaces[] =
1148 {
1149 {"$CODE$", 1, 1, 1, 0, 0, 0, 24, 0x2c, 0, 8, 0, 0, ".text", SUBSEG_CODE},
1150 {"$DATA$", 1, 1, 0, 0, 0, 0, 24, 0x1f, 1, 8, 1, 1, ".data", SUBSEG_DATA},
1151 {"$LIT$", 1, 1, 0, 0, 0, 0, 16, 0x2c, 0, 8, 0, 0, ".text", SUBSEG_LIT},
1152 {"$BSS$", 1, 1, 0, 0, 0, 1, 80, 0x1f, 1, 8, 1, 1, ".bss", SUBSEG_BSS},
1153 {"$UNWIND$", 1, 1, 0, 0, 0, 0, 64, 0x2c, 0, 4, 0, 0, ".hppa_unwind", SUBSEG_UNWIND},
1154 {NULL, 0, 1, 0, 0, 0, 0, 255, 0x1f, 0, 4, 0, 0, 0}
1155 };
1156
1157 static struct default_space_dict pa_def_spaces[] =
1158 {
1159 {"$TEXT$", 0, 1, 1, 0, 8, ASEC_NULL, ".text"},
1160 {"$PRIVATE$", 1, 1, 1, 1, 16, ASEC_NULL, ".data"},
1161 {NULL, 0, 0, 0, 0, 0, ASEC_NULL, NULL}
1162 };
1163
1164 /* Misc local definitions used by the assembler. */
1165
1166 /* Return nonzero if the string pointed to by S potentially represents
1167 a right or left half of a FP register */
1168 #define IS_R_SELECT(S) (*(S) == 'R' || *(S) == 'r')
1169 #define IS_L_SELECT(S) (*(S) == 'L' || *(S) == 'l')
1170
1171 /* These macros are used to maintain spaces/subspaces. */
1172 #define SPACE_DEFINED(space_chain) (space_chain)->sd_defined
1173 #define SPACE_USER_DEFINED(space_chain) (space_chain)->sd_user_defined
1174 #define SPACE_PRIVATE(space_chain) (space_chain)->sd_private
1175 #define SPACE_LOADABLE(space_chain) (space_chain)->sd_loadable
1176 #define SPACE_SPNUM(space_chain) (space_chain)->sd_spnum
1177 #define SPACE_SORT(space_chain) (space_chain)->sd_sort_key
1178 #define SPACE_NAME(space_chain) (space_chain)->sd_name
1179 #define SPACE_NAME_INDEX(space_chain) (space_chain)->sd_name_index
1180
1181 #define SUBSPACE_SPACE_INDEX(ss_chain) (ss_chain)->ssd_space_index
1182 #define SUBSPACE_DEFINED(ss_chain) (ss_chain)->ssd_defined
1183 #define SUBSPACE_QUADRANT(ss_chain) (ss_chain)->ssd_quadrant
1184 #define SUBSPACE_ALIGN(ss_chain) (ss_chain)->ssd_alignment
1185 #define SUBSPACE_ACCESS(ss_chain) (ss_chain)->ssd_access_control_bits
1186 #define SUBSPACE_SORT(ss_chain) (ss_chain)->ssd_sort_key
1187 #define SUBSPACE_COMMON(ss_chain) (ss_chain)->ssd_common
1188 #define SUBSPACE_ZERO(ss_chain) (ss_chain)->ssd_zero
1189 #define SUBSPACE_DUP_COMM(ss_chain) (ss_chain)->ssd_dup_common
1190 #define SUBSPACE_CODE_ONLY(ss_chain) (ss_chain)->ssd_code_only
1191 #define SUBSPACE_LOADABLE(ss_chain) (ss_chain)->ssd_loadable
1192 #define SUBSPACE_SUBSPACE_START(ss_chain) (ss_chain)->ssd_subspace_start
1193 #define SUBSPACE_SUBSPACE_LENGTH(ss_chain) (ss_chain)->ssd_subspace_length
1194 #define SUBSPACE_NAME(ss_chain) (ss_chain)->ssd_name
1195
1196 /* Insert FIELD into OPCODE starting at bit START. Continue pa_ip
1197 main loop after insertion. */
1198
1199 #define INSERT_FIELD_AND_CONTINUE(OPCODE, FIELD, START) \
1200 { \
1201 ((OPCODE) |= (FIELD) << (START)); \
1202 continue; \
1203 }
1204
1205 /* Simple range checking for FIELD againt HIGH and LOW bounds.
1206 IGNORE is used to suppress the error message. */
1207
1208 #define CHECK_FIELD(FIELD, HIGH, LOW, IGNORE) \
1209 { \
1210 if ((FIELD) > (HIGH) || (FIELD) < (LOW)) \
1211 { \
1212 if (! IGNORE) \
1213 as_bad ("Field out of range [%d..%d] (%d).", (LOW), (HIGH), \
1214 (int) (FIELD));\
1215 break; \
1216 } \
1217 }
1218
1219 #define is_DP_relative(exp) \
1220 ((exp).X_op == O_subtract \
1221 && strcmp((exp).X_op_symbol->bsym->name, "$global$") == 0)
1222
1223 #define is_PC_relative(exp) \
1224 ((exp).X_op == O_subtract \
1225 && strcmp((exp).X_op_symbol->bsym->name, "$PIC_pcrel$0") == 0)
1226
1227 #define is_complex(exp) \
1228 ((exp).X_op != O_constant && (exp).X_op != O_symbol)
1229
1230 /* Actual functions to implement the PA specific code for the assembler. */
1231
1232 /* Returns a pointer to the label_symbol_struct for the current space.
1233 or NULL if no label_symbol_struct exists for the current space. */
1234
1235 static label_symbol_struct *
1236 pa_get_label ()
1237 {
1238 label_symbol_struct *label_chain;
1239 sd_chain_struct *space_chain = current_space;
1240
1241 for (label_chain = label_symbols_rootp;
1242 label_chain;
1243 label_chain = label_chain->lss_next)
1244 if (space_chain == label_chain->lss_space && label_chain->lss_label)
1245 return label_chain;
1246
1247 return NULL;
1248 }
1249
1250 /* Defines a label for the current space. If one is already defined,
1251 this function will replace it with the new label. */
1252
1253 void
1254 pa_define_label (symbol)
1255 symbolS *symbol;
1256 {
1257 label_symbol_struct *label_chain = pa_get_label ();
1258 sd_chain_struct *space_chain = current_space;
1259
1260 if (label_chain)
1261 label_chain->lss_label = symbol;
1262 else
1263 {
1264 /* Create a new label entry and add it to the head of the chain. */
1265 label_chain
1266 = (label_symbol_struct *) xmalloc (sizeof (label_symbol_struct));
1267 label_chain->lss_label = symbol;
1268 label_chain->lss_space = space_chain;
1269 label_chain->lss_next = NULL;
1270
1271 if (label_symbols_rootp)
1272 label_chain->lss_next = label_symbols_rootp;
1273
1274 label_symbols_rootp = label_chain;
1275 }
1276 }
1277
1278 /* Removes a label definition for the current space.
1279 If there is no label_symbol_struct entry, then no action is taken. */
1280
1281 static void
1282 pa_undefine_label ()
1283 {
1284 label_symbol_struct *label_chain;
1285 label_symbol_struct *prev_label_chain = NULL;
1286 sd_chain_struct *space_chain = current_space;
1287
1288 for (label_chain = label_symbols_rootp;
1289 label_chain;
1290 label_chain = label_chain->lss_next)
1291 {
1292 if (space_chain == label_chain->lss_space && label_chain->lss_label)
1293 {
1294 /* Remove the label from the chain and free its memory. */
1295 if (prev_label_chain)
1296 prev_label_chain->lss_next = label_chain->lss_next;
1297 else
1298 label_symbols_rootp = label_chain->lss_next;
1299
1300 free (label_chain);
1301 break;
1302 }
1303 prev_label_chain = label_chain;
1304 }
1305 }
1306
1307
1308 /* An HPPA-specific version of fix_new. This is required because the HPPA
1309 code needs to keep track of some extra stuff. Each call to fix_new_hppa
1310 results in the creation of an instance of an hppa_fix_struct. An
1311 hppa_fix_struct stores the extra information along with a pointer to the
1312 original fixS. This is attached to the original fixup via the
1313 tc_fix_data field. */
1314
1315 static void
1316 fix_new_hppa (frag, where, size, add_symbol, offset, exp, pcrel,
1317 r_type, r_field, r_format, arg_reloc, unwind_desc)
1318 fragS *frag;
1319 int where;
1320 short int size;
1321 symbolS *add_symbol;
1322 long offset;
1323 expressionS *exp;
1324 int pcrel;
1325 bfd_reloc_code_real_type r_type;
1326 enum hppa_reloc_field_selector_type r_field;
1327 int r_format;
1328 long arg_reloc;
1329 char *unwind_desc;
1330 {
1331 fixS *new_fix;
1332
1333 struct hppa_fix_struct *hppa_fix = (struct hppa_fix_struct *)
1334 obstack_alloc (&notes, sizeof (struct hppa_fix_struct));
1335
1336 if (exp != NULL)
1337 new_fix = fix_new_exp (frag, where, size, exp, pcrel, r_type);
1338 else
1339 new_fix = fix_new (frag, where, size, add_symbol, offset, pcrel, r_type);
1340 new_fix->tc_fix_data = hppa_fix;
1341 hppa_fix->fx_r_type = r_type;
1342 hppa_fix->fx_r_field = r_field;
1343 hppa_fix->fx_r_format = r_format;
1344 hppa_fix->fx_arg_reloc = arg_reloc;
1345 if (unwind_desc)
1346 {
1347 bcopy (unwind_desc, hppa_fix->fx_unwind, 8);
1348
1349 /* If necessary call BFD backend function to attach the
1350 unwind bits to the target dependent parts of a BFD symbol.
1351 Yuk. */
1352 #ifdef obj_attach_unwind_info
1353 obj_attach_unwind_info (add_symbol->bsym, unwind_desc);
1354 #endif
1355 }
1356
1357 /* foo-$global$ is used to access non-automatic storage. $global$
1358 is really just a marker and has served its purpose, so eliminate
1359 it now so as not to confuse write.c. */
1360 if (!strcmp (S_GET_NAME (new_fix->fx_subsy), "$global$"))
1361 new_fix->fx_subsy = NULL;
1362 }
1363
1364 /* Parse a .byte, .word, .long expression for the HPPA. Called by
1365 cons via the TC_PARSE_CONS_EXPRESSION macro. */
1366
1367 void
1368 parse_cons_expression_hppa (exp)
1369 expressionS *exp;
1370 {
1371 hppa_field_selector = pa_chk_field_selector (&input_line_pointer);
1372 expression (exp);
1373 }
1374
1375 /* This fix_new is called by cons via TC_CONS_FIX_NEW.
1376 hppa_field_selector is set by the parse_cons_expression_hppa. */
1377
1378 void
1379 cons_fix_new_hppa (frag, where, size, exp)
1380 fragS *frag;
1381 int where;
1382 int size;
1383 expressionS *exp;
1384 {
1385 unsigned int reloc_type;
1386
1387 if (is_DP_relative (*exp))
1388 reloc_type = R_HPPA_GOTOFF;
1389 else if (is_complex (*exp))
1390 reloc_type = R_HPPA_COMPLEX;
1391 else
1392 reloc_type = R_HPPA;
1393
1394 if (hppa_field_selector != e_psel && hppa_field_selector != e_fsel)
1395 as_warn ("Invalid field selector. Assuming F%%.");
1396
1397 fix_new_hppa (frag, where, size,
1398 (symbolS *) NULL, (offsetT) 0, exp, 0, reloc_type,
1399 hppa_field_selector, 32, 0, (char *) 0);
1400
1401 /* Reset field selector to its default state. */
1402 hppa_field_selector = 0;
1403 }
1404
1405 /* This function is called once, at assembler startup time. It should
1406 set up all the tables, etc. that the MD part of the assembler will need. */
1407
1408 void
1409 md_begin ()
1410 {
1411 const char *retval = NULL;
1412 int lose = 0;
1413 unsigned int i = 0;
1414
1415 last_call_info = NULL;
1416 call_info_root = NULL;
1417
1418 /* Folding of text and data segments fails miserably on the PA.
1419 Warn user and disable "-R" option. */
1420 if (flagseen['R'])
1421 {
1422 as_warn ("-R option not supported on this target.");
1423 flag_readonly_data_in_text = 0;
1424 flagseen['R'] = 0;
1425 }
1426
1427 pa_spaces_begin ();
1428
1429 op_hash = hash_new ();
1430 if (op_hash == NULL)
1431 as_fatal ("Virtual memory exhausted");
1432
1433 while (i < NUMOPCODES)
1434 {
1435 const char *name = pa_opcodes[i].name;
1436 retval = hash_insert (op_hash, name, (struct pa_opcode *) &pa_opcodes[i]);
1437 if (retval != NULL && *retval != '\0')
1438 {
1439 as_fatal ("Internal error: can't hash `%s': %s\n", name, retval);
1440 lose = 1;
1441 }
1442 do
1443 {
1444 if ((pa_opcodes[i].match & pa_opcodes[i].mask)
1445 != pa_opcodes[i].match)
1446 {
1447 fprintf (stderr, "internal error: losing opcode: `%s' \"%s\"\n",
1448 pa_opcodes[i].name, pa_opcodes[i].args);
1449 lose = 1;
1450 }
1451 ++i;
1452 }
1453 while (i < NUMOPCODES && !strcmp (pa_opcodes[i].name, name));
1454 }
1455
1456 if (lose)
1457 as_fatal ("Broken assembler. No assembly attempted.");
1458
1459 /* SOM will change text_section. To make sure we never put
1460 anything into the old one switch to the new one now. */
1461 subseg_set (text_section, 0);
1462 }
1463
1464 /* Called at the end of assembling a source file. Nothing to do
1465 at this point on the PA. */
1466
1467 void
1468 md_end ()
1469 {
1470 return;
1471 }
1472
1473 /* Assemble a single instruction storing it into a frag. */
1474 void
1475 md_assemble (str)
1476 char *str;
1477 {
1478 char *to;
1479
1480 /* The had better be something to assemble. */
1481 assert (str);
1482
1483 /* Assemble the instruction. Results are saved into "the_insn". */
1484 pa_ip (str);
1485
1486 /* Get somewhere to put the assembled instrution. */
1487 to = frag_more (4);
1488
1489 /* Output the opcode. */
1490 md_number_to_chars (to, the_insn.opcode, 4);
1491
1492 /* If necessary output more stuff. */
1493 if (the_insn.reloc != R_HPPA_NONE)
1494 fix_new_hppa (frag_now, (to - frag_now->fr_literal), 4, NULL,
1495 (offsetT) 0, &the_insn.exp, the_insn.pcrel,
1496 the_insn.reloc, the_insn.field_selector,
1497 the_insn.format, the_insn.arg_reloc, NULL);
1498
1499 }
1500
1501 /* Do the real work for assembling a single instruction. Store results
1502 into the global "the_insn" variable.
1503
1504 FIXME: Should define and use some functions/macros to handle
1505 various common insertions of information into the opcode. */
1506
1507 static void
1508 pa_ip (str)
1509 char *str;
1510 {
1511 char *error_message = "";
1512 char *s, c, *argstart, *name, *save_s;
1513 const char *args;
1514 int match = FALSE;
1515 int comma = 0;
1516 int cmpltr, nullif, flag, cond, num;
1517 unsigned long opcode;
1518 struct pa_opcode *insn;
1519
1520 /* Skip to something interesting. */
1521 for (s = str; isupper (*s) || islower (*s) || (*s >= '0' && *s <= '3'); ++s)
1522 ;
1523
1524 switch (*s)
1525 {
1526
1527 case '\0':
1528 break;
1529
1530 case ',':
1531 comma = 1;
1532
1533 /*FALLTHROUGH */
1534
1535 case ' ':
1536 *s++ = '\0';
1537 break;
1538
1539 default:
1540 as_bad ("Unknown opcode: `%s'", str);
1541 exit (1);
1542 }
1543
1544 save_s = str;
1545
1546 /* Convert everything into lower case. */
1547 while (*save_s)
1548 {
1549 if (isupper (*save_s))
1550 *save_s = tolower (*save_s);
1551 save_s++;
1552 }
1553
1554 /* Look up the opcode in the has table. */
1555 if ((insn = (struct pa_opcode *) hash_find (op_hash, str)) == NULL)
1556 {
1557 as_bad ("Unknown opcode: `%s'", str);
1558 return;
1559 }
1560
1561 if (comma)
1562 {
1563 *--s = ',';
1564 }
1565
1566 /* Mark the location where arguments for the instruction start, then
1567 start processing them. */
1568 argstart = s;
1569 for (;;)
1570 {
1571 /* Do some initialization. */
1572 opcode = insn->match;
1573 bzero (&the_insn, sizeof (the_insn));
1574
1575 the_insn.reloc = R_HPPA_NONE;
1576
1577 /* Build the opcode, checking as we go to make
1578 sure that the operands match. */
1579 for (args = insn->args;; ++args)
1580 {
1581 switch (*args)
1582 {
1583
1584 /* End of arguments. */
1585 case '\0':
1586 if (*s == '\0')
1587 match = TRUE;
1588 break;
1589
1590 case '+':
1591 if (*s == '+')
1592 {
1593 ++s;
1594 continue;
1595 }
1596 if (*s == '-')
1597 continue;
1598 break;
1599
1600 /* These must match exactly. */
1601 case '(':
1602 case ')':
1603 case ',':
1604 case ' ':
1605 if (*s++ == *args)
1606 continue;
1607 break;
1608
1609 /* Handle a 5 bit register or control register field at 10. */
1610 case 'b':
1611 case '^':
1612 num = pa_parse_number (&s, 0);
1613 CHECK_FIELD (num, 31, 0, 0);
1614 INSERT_FIELD_AND_CONTINUE (opcode, num, 21);
1615
1616 /* Handle a 5 bit register field at 15. */
1617 case 'x':
1618 num = pa_parse_number (&s, 0);
1619 CHECK_FIELD (num, 31, 0, 0);
1620 INSERT_FIELD_AND_CONTINUE (opcode, num, 16);
1621
1622 /* Handle a 5 bit register field at 31. */
1623 case 'y':
1624 case 't':
1625 num = pa_parse_number (&s, 0);
1626 CHECK_FIELD (num, 31, 0, 0);
1627 INSERT_FIELD_AND_CONTINUE (opcode, num, 0);
1628
1629 /* Handle a 5 bit field length at 31. */
1630 case 'T':
1631 num = pa_get_absolute_expression (&the_insn, &s);
1632 s = expr_end;
1633 CHECK_FIELD (num, 32, 1, 0);
1634 INSERT_FIELD_AND_CONTINUE (opcode, 32 - num, 0);
1635
1636 /* Handle a 5 bit immediate at 15. */
1637 case '5':
1638 num = pa_get_absolute_expression (&the_insn, &s);
1639 s = expr_end;
1640 CHECK_FIELD (num, 15, -16, 0);
1641 low_sign_unext (num, 5, &num);
1642 INSERT_FIELD_AND_CONTINUE (opcode, num, 16);
1643
1644 /* Handle a 5 bit immediate at 31. */
1645 case 'V':
1646 num = pa_get_absolute_expression (&the_insn, &s);
1647 s = expr_end;
1648 CHECK_FIELD (num, 15, -16, 0)
1649 low_sign_unext (num, 5, &num);
1650 INSERT_FIELD_AND_CONTINUE (opcode, num, 0);
1651
1652 /* Handle an unsigned 5 bit immediate at 31. */
1653 case 'r':
1654 num = pa_get_absolute_expression (&the_insn, &s);
1655 s = expr_end;
1656 CHECK_FIELD (num, 31, 0, 0);
1657 INSERT_FIELD_AND_CONTINUE (opcode, num, 0);
1658
1659 /* Handle an unsigned 5 bit immediate at 15. */
1660 case 'R':
1661 num = pa_get_absolute_expression (&the_insn, &s);
1662 s = expr_end;
1663 CHECK_FIELD (num, 31, 0, 0);
1664 INSERT_FIELD_AND_CONTINUE (opcode, num, 16);
1665
1666 /* Handle a 2 bit space identifier at 17. */
1667 case 's':
1668 num = pa_parse_number (&s, 0);
1669 CHECK_FIELD (num, 3, 0, 1);
1670 INSERT_FIELD_AND_CONTINUE (opcode, num, 14);
1671
1672 /* Handle a 3 bit space identifier at 18. */
1673 case 'S':
1674 num = pa_parse_number (&s, 0);
1675 CHECK_FIELD (num, 7, 0, 1);
1676 dis_assemble_3 (num, &num);
1677 INSERT_FIELD_AND_CONTINUE (opcode, num, 13);
1678
1679 /* Handle a completer for an indexing load or store. */
1680 case 'c':
1681 {
1682 int uu = 0;
1683 int m = 0;
1684 int i = 0;
1685 while (*s == ',' && i < 2)
1686 {
1687 s++;
1688 if (strncasecmp (s, "sm", 2) == 0)
1689 {
1690 uu = 1;
1691 m = 1;
1692 s++;
1693 i++;
1694 }
1695 else if (strncasecmp (s, "m", 1) == 0)
1696 m = 1;
1697 else if (strncasecmp (s, "s", 1) == 0)
1698 uu = 1;
1699 else
1700 as_bad ("Invalid Indexed Load Completer.");
1701 s++;
1702 i++;
1703 }
1704 if (i > 2)
1705 as_bad ("Invalid Indexed Load Completer Syntax.");
1706 opcode |= m << 5;
1707 INSERT_FIELD_AND_CONTINUE (opcode, uu, 13);
1708 }
1709
1710 /* Handle a short load/store completer. */
1711 case 'C':
1712 {
1713 int a = 0;
1714 int m = 0;
1715 if (*s == ',')
1716 {
1717 s++;
1718 if (strncasecmp (s, "ma", 2) == 0)
1719 {
1720 a = 0;
1721 m = 1;
1722 }
1723 else if (strncasecmp (s, "mb", 2) == 0)
1724 {
1725 a = 1;
1726 m = 1;
1727 }
1728 else
1729 as_bad ("Invalid Short Load/Store Completer.");
1730 s += 2;
1731 }
1732 opcode |= m << 5;
1733 INSERT_FIELD_AND_CONTINUE (opcode, a, 13);
1734 }
1735
1736 /* Handle a stbys completer. */
1737 case 'Y':
1738 {
1739 int a = 0;
1740 int m = 0;
1741 int i = 0;
1742 while (*s == ',' && i < 2)
1743 {
1744 s++;
1745 if (strncasecmp (s, "m", 1) == 0)
1746 m = 1;
1747 else if (strncasecmp (s, "b", 1) == 0)
1748 a = 0;
1749 else if (strncasecmp (s, "e", 1) == 0)
1750 a = 1;
1751 else
1752 as_bad ("Invalid Store Bytes Short Completer");
1753 s++;
1754 i++;
1755 }
1756 if (i > 2)
1757 as_bad ("Invalid Store Bytes Short Completer");
1758 opcode |= m << 5;
1759 INSERT_FIELD_AND_CONTINUE (opcode, a, 13);
1760 }
1761
1762 /* Handle a non-negated compare/stubtract condition. */
1763 case '<':
1764 cmpltr = pa_parse_nonneg_cmpsub_cmpltr (&s, 1);
1765 if (cmpltr < 0)
1766 {
1767 as_bad ("Invalid Compare/Subtract Condition: %c", *s);
1768 cmpltr = 0;
1769 }
1770 INSERT_FIELD_AND_CONTINUE (opcode, cmpltr, 13);
1771
1772 /* Handle a negated or non-negated compare/subtract condition. */
1773 case '?':
1774 save_s = s;
1775 cmpltr = pa_parse_nonneg_cmpsub_cmpltr (&s, 1);
1776 if (cmpltr < 0)
1777 {
1778 s = save_s;
1779 cmpltr = pa_parse_neg_cmpsub_cmpltr (&s, 1);
1780 if (cmpltr < 0)
1781 {
1782 as_bad ("Invalid Compare/Subtract Condition.");
1783 cmpltr = 0;
1784 }
1785 else
1786 {
1787 /* Negated condition requires an opcode change. */
1788 opcode |= 1 << 27;
1789 }
1790 }
1791 INSERT_FIELD_AND_CONTINUE (opcode, cmpltr, 13);
1792
1793 /* Handle a negated or non-negated add condition. */
1794 case '!':
1795 save_s = s;
1796 cmpltr = pa_parse_nonneg_add_cmpltr (&s, 1);
1797 if (cmpltr < 0)
1798 {
1799 s = save_s;
1800 cmpltr = pa_parse_neg_add_cmpltr (&s, 1);
1801 if (cmpltr < 0)
1802 {
1803 as_bad ("Invalid Compare/Subtract Condition");
1804 cmpltr = 0;
1805 }
1806 else
1807 {
1808 /* Negated condition requires an opcode change. */
1809 opcode |= 1 << 27;
1810 }
1811 }
1812 INSERT_FIELD_AND_CONTINUE (opcode, cmpltr, 13);
1813
1814 /* Handle a compare/subtract condition. */
1815 case 'a':
1816 cmpltr = 0;
1817 flag = 0;
1818 save_s = s;
1819 if (*s == ',')
1820 {
1821 cmpltr = pa_parse_nonneg_cmpsub_cmpltr (&s, 0);
1822 if (cmpltr < 0)
1823 {
1824 flag = 1;
1825 s = save_s;
1826 cmpltr = pa_parse_neg_cmpsub_cmpltr (&s, 0);
1827 if (cmpltr < 0)
1828 {
1829 as_bad ("Invalid Compare/Subtract Condition");
1830 }
1831 }
1832 }
1833 opcode |= cmpltr << 13;
1834 INSERT_FIELD_AND_CONTINUE (opcode, flag, 12);
1835
1836 /* Handle a non-negated add condition. */
1837 case 'd':
1838 cmpltr = 0;
1839 nullif = 0;
1840 flag = 0;
1841 if (*s == ',')
1842 {
1843 s++;
1844 name = s;
1845 while (*s != ',' && *s != ' ' && *s != '\t')
1846 s += 1;
1847 c = *s;
1848 *s = 0x00;
1849 if (strcmp (name, "=") == 0)
1850 cmpltr = 1;
1851 else if (strcmp (name, "<") == 0)
1852 cmpltr = 2;
1853 else if (strcmp (name, "<=") == 0)
1854 cmpltr = 3;
1855 else if (strcasecmp (name, "nuv") == 0)
1856 cmpltr = 4;
1857 else if (strcasecmp (name, "znv") == 0)
1858 cmpltr = 5;
1859 else if (strcasecmp (name, "sv") == 0)
1860 cmpltr = 6;
1861 else if (strcasecmp (name, "od") == 0)
1862 cmpltr = 7;
1863 else if (strcasecmp (name, "n") == 0)
1864 nullif = 1;
1865 else if (strcasecmp (name, "tr") == 0)
1866 {
1867 cmpltr = 0;
1868 flag = 1;
1869 }
1870 else if (strcasecmp (name, "<>") == 0)
1871 {
1872 cmpltr = 1;
1873 flag = 1;
1874 }
1875 else if (strcasecmp (name, ">=") == 0)
1876 {
1877 cmpltr = 2;
1878 flag = 1;
1879 }
1880 else if (strcasecmp (name, ">") == 0)
1881 {
1882 cmpltr = 3;
1883 flag = 1;
1884 }
1885 else if (strcasecmp (name, "uv") == 0)
1886 {
1887 cmpltr = 4;
1888 flag = 1;
1889 }
1890 else if (strcasecmp (name, "vnz") == 0)
1891 {
1892 cmpltr = 5;
1893 flag = 1;
1894 }
1895 else if (strcasecmp (name, "nsv") == 0)
1896 {
1897 cmpltr = 6;
1898 flag = 1;
1899 }
1900 else if (strcasecmp (name, "ev") == 0)
1901 {
1902 cmpltr = 7;
1903 flag = 1;
1904 }
1905 else
1906 as_bad ("Invalid Add Condition: %s", name);
1907 *s = c;
1908 }
1909 nullif = pa_parse_nullif (&s);
1910 opcode |= nullif << 1;
1911 opcode |= cmpltr << 13;
1912 INSERT_FIELD_AND_CONTINUE (opcode, flag, 12);
1913
1914 /* HANDLE a logical instruction condition. */
1915 case '&':
1916 cmpltr = 0;
1917 flag = 0;
1918 if (*s == ',')
1919 {
1920 s++;
1921 name = s;
1922 while (*s != ',' && *s != ' ' && *s != '\t')
1923 s += 1;
1924 c = *s;
1925 *s = 0x00;
1926 if (strcmp (name, "=") == 0)
1927 cmpltr = 1;
1928 else if (strcmp (name, "<") == 0)
1929 cmpltr = 2;
1930 else if (strcmp (name, "<=") == 0)
1931 cmpltr = 3;
1932 else if (strcasecmp (name, "od") == 0)
1933 cmpltr = 7;
1934 else if (strcasecmp (name, "tr") == 0)
1935 {
1936 cmpltr = 0;
1937 flag = 1;
1938 }
1939 else if (strcmp (name, "<>") == 0)
1940 {
1941 cmpltr = 1;
1942 flag = 1;
1943 }
1944 else if (strcmp (name, ">=") == 0)
1945 {
1946 cmpltr = 2;
1947 flag = 1;
1948 }
1949 else if (strcmp (name, ">") == 0)
1950 {
1951 cmpltr = 3;
1952 flag = 1;
1953 }
1954 else if (strcasecmp (name, "ev") == 0)
1955 {
1956 cmpltr = 7;
1957 flag = 1;
1958 }
1959 else
1960 as_bad ("Invalid Logical Instruction Condition.");
1961 *s = c;
1962 }
1963 opcode |= cmpltr << 13;
1964 INSERT_FIELD_AND_CONTINUE (opcode, flag, 12);
1965
1966 /* Handle a unit instruction condition. */
1967 case 'U':
1968 cmpltr = 0;
1969 flag = 0;
1970 if (*s == ',')
1971 {
1972 s++;
1973 if (strncasecmp (s, "sbz", 3) == 0)
1974 {
1975 cmpltr = 2;
1976 s += 3;
1977 }
1978 else if (strncasecmp (s, "shz", 3) == 0)
1979 {
1980 cmpltr = 3;
1981 s += 3;
1982 }
1983 else if (strncasecmp (s, "sdc", 3) == 0)
1984 {
1985 cmpltr = 4;
1986 s += 3;
1987 }
1988 else if (strncasecmp (s, "sbc", 3) == 0)
1989 {
1990 cmpltr = 6;
1991 s += 3;
1992 }
1993 else if (strncasecmp (s, "shc", 3) == 0)
1994 {
1995 cmpltr = 7;
1996 s += 3;
1997 }
1998 else if (strncasecmp (s, "tr", 2) == 0)
1999 {
2000 cmpltr = 0;
2001 flag = 1;
2002 s += 2;
2003 }
2004 else if (strncasecmp (s, "nbz", 3) == 0)
2005 {
2006 cmpltr = 2;
2007 flag = 1;
2008 s += 3;
2009 }
2010 else if (strncasecmp (s, "nhz", 3) == 0)
2011 {
2012 cmpltr = 3;
2013 flag = 1;
2014 s += 3;
2015 }
2016 else if (strncasecmp (s, "ndc", 3) == 0)
2017 {
2018 cmpltr = 4;
2019 flag = 1;
2020 s += 3;
2021 }
2022 else if (strncasecmp (s, "nbc", 3) == 0)
2023 {
2024 cmpltr = 6;
2025 flag = 1;
2026 s += 3;
2027 }
2028 else if (strncasecmp (s, "nhc", 3) == 0)
2029 {
2030 cmpltr = 7;
2031 flag = 1;
2032 s += 3;
2033 }
2034 else
2035 as_bad ("Invalid Logical Instruction Condition.");
2036 }
2037 opcode |= cmpltr << 13;
2038 INSERT_FIELD_AND_CONTINUE (opcode, flag, 12);
2039
2040 /* Handle a shift/extract/deposit condition. */
2041 case '|':
2042 case '>':
2043 cmpltr = 0;
2044 if (*s == ',')
2045 {
2046 save_s = s++;
2047 name = s;
2048 while (*s != ',' && *s != ' ' && *s != '\t')
2049 s += 1;
2050 c = *s;
2051 *s = 0x00;
2052 if (strcmp (name, "=") == 0)
2053 cmpltr = 1;
2054 else if (strcmp (name, "<") == 0)
2055 cmpltr = 2;
2056 else if (strcasecmp (name, "od") == 0)
2057 cmpltr = 3;
2058 else if (strcasecmp (name, "tr") == 0)
2059 cmpltr = 4;
2060 else if (strcmp (name, "<>") == 0)
2061 cmpltr = 5;
2062 else if (strcmp (name, ">=") == 0)
2063 cmpltr = 6;
2064 else if (strcasecmp (name, "ev") == 0)
2065 cmpltr = 7;
2066 /* Handle movb,n. Put things back the way they were.
2067 This includes moving s back to where it started. */
2068 else if (strcasecmp (name, "n") == 0 && *args == '|')
2069 {
2070 *s = c;
2071 s = save_s;
2072 continue;
2073 }
2074 else
2075 as_bad ("Invalid Shift/Extract/Deposit Condition.");
2076 *s = c;
2077 }
2078 INSERT_FIELD_AND_CONTINUE (opcode, cmpltr, 13);
2079
2080 /* Handle bvb and bb conditions. */
2081 case '~':
2082 cmpltr = 0;
2083 if (*s == ',')
2084 {
2085 s++;
2086 if (strncmp (s, "<", 1) == 0)
2087 {
2088 cmpltr = 2;
2089 s++;
2090 }
2091 else if (strncmp (s, ">=", 2) == 0)
2092 {
2093 cmpltr = 6;
2094 s += 2;
2095 }
2096 else
2097 as_bad ("Invalid Bit Branch Condition: %c", *s);
2098 }
2099 INSERT_FIELD_AND_CONTINUE (opcode, cmpltr, 13);
2100
2101 /* Handle a system control completer. */
2102 case 'Z':
2103 if (*s == ',' && (*(s + 1) == 'm' || *(s + 1) == 'M'))
2104 {
2105 flag = 1;
2106 s += 2;
2107 }
2108 else
2109 flag = 0;
2110
2111 INSERT_FIELD_AND_CONTINUE (opcode, flag, 5);
2112
2113 /* Handle a nullification completer for branch instructions. */
2114 case 'n':
2115 nullif = pa_parse_nullif (&s);
2116 INSERT_FIELD_AND_CONTINUE (opcode, nullif, 1);
2117
2118 /* Handle a 11 bit immediate at 31. */
2119 case 'i':
2120 the_insn.field_selector = pa_chk_field_selector (&s);
2121 get_expression (s);
2122 s = expr_end;
2123 if (the_insn.exp.X_op == O_constant)
2124 {
2125 num = evaluate_absolute (&the_insn);
2126 CHECK_FIELD (num, 1023, -1024, 0);
2127 low_sign_unext (num, 11, &num);
2128 INSERT_FIELD_AND_CONTINUE (opcode, num, 0);
2129 }
2130 else
2131 {
2132 if (is_DP_relative (the_insn.exp))
2133 the_insn.reloc = R_HPPA_GOTOFF;
2134 else if (is_PC_relative (the_insn.exp))
2135 the_insn.reloc = R_HPPA_PCREL_CALL;
2136 else if (is_complex (the_insn.exp))
2137 the_insn.reloc = R_HPPA_COMPLEX;
2138 else
2139 the_insn.reloc = R_HPPA;
2140 the_insn.format = 11;
2141 continue;
2142 }
2143
2144 /* Handle a 14 bit immediate at 31. */
2145 case 'j':
2146 the_insn.field_selector = pa_chk_field_selector (&s);
2147 get_expression (s);
2148 s = expr_end;
2149 if (the_insn.exp.X_op == O_constant)
2150 {
2151 num = evaluate_absolute (&the_insn);
2152 CHECK_FIELD (num, 8191, -8192, 0);
2153 low_sign_unext (num, 14, &num);
2154 INSERT_FIELD_AND_CONTINUE (opcode, num, 0);
2155 }
2156 else
2157 {
2158 if (is_DP_relative (the_insn.exp))
2159 the_insn.reloc = R_HPPA_GOTOFF;
2160 else if (is_PC_relative (the_insn.exp))
2161 the_insn.reloc = R_HPPA_PCREL_CALL;
2162 else if (is_complex (the_insn.exp))
2163 the_insn.reloc = R_HPPA_COMPLEX;
2164 else
2165 the_insn.reloc = R_HPPA;
2166 the_insn.format = 14;
2167 continue;
2168 }
2169
2170 /* Handle a 21 bit immediate at 31. */
2171 case 'k':
2172 the_insn.field_selector = pa_chk_field_selector (&s);
2173 get_expression (s);
2174 s = expr_end;
2175 if (the_insn.exp.X_op == O_constant)
2176 {
2177 num = evaluate_absolute (&the_insn);
2178 CHECK_FIELD (num >> 11, 1048575, -1048576, 0);
2179 dis_assemble_21 (num, &num);
2180 INSERT_FIELD_AND_CONTINUE (opcode, num, 0);
2181 }
2182 else
2183 {
2184 if (is_DP_relative (the_insn.exp))
2185 the_insn.reloc = R_HPPA_GOTOFF;
2186 else if (is_PC_relative (the_insn.exp))
2187 the_insn.reloc = R_HPPA_PCREL_CALL;
2188 else if (is_complex (the_insn.exp))
2189 the_insn.reloc = R_HPPA_COMPLEX;
2190 else
2191 the_insn.reloc = R_HPPA;
2192 the_insn.format = 21;
2193 continue;
2194 }
2195
2196 /* Handle a 12 bit branch displacement. */
2197 case 'w':
2198 the_insn.field_selector = pa_chk_field_selector (&s);
2199 get_expression (s);
2200 s = expr_end;
2201 the_insn.pcrel = 1;
2202 if (!strcmp (S_GET_NAME (the_insn.exp.X_add_symbol), "L$0\001"))
2203 {
2204 unsigned int w1, w, result;
2205
2206 num = evaluate_absolute (&the_insn);
2207 if (num % 4)
2208 {
2209 as_bad ("Branch to unaligned address");
2210 break;
2211 }
2212 CHECK_FIELD (num, 8191, -8192, 0);
2213 sign_unext ((num - 8) >> 2, 12, &result);
2214 dis_assemble_12 (result, &w1, &w);
2215 INSERT_FIELD_AND_CONTINUE (opcode, ((w1 << 2) | w), 0);
2216 }
2217 else
2218 {
2219 if (is_complex (the_insn.exp))
2220 the_insn.reloc = R_HPPA_COMPLEX_PCREL_CALL;
2221 else
2222 the_insn.reloc = R_HPPA_PCREL_CALL;
2223 the_insn.format = 12;
2224 the_insn.arg_reloc = last_call_desc.arg_reloc;
2225 bzero (&last_call_desc, sizeof (struct call_desc));
2226 s = expr_end;
2227 continue;
2228 }
2229
2230 /* Handle a 17 bit branch displacement. */
2231 case 'W':
2232 the_insn.field_selector = pa_chk_field_selector (&s);
2233 get_expression (s);
2234 s = expr_end;
2235 the_insn.pcrel = 1;
2236 if (!the_insn.exp.X_add_symbol
2237 || !strcmp (S_GET_NAME (the_insn.exp.X_add_symbol),
2238 "L$0\001"))
2239 {
2240 unsigned int w2, w1, w, result;
2241
2242 num = evaluate_absolute (&the_insn);
2243 if (num % 4)
2244 {
2245 as_bad ("Branch to unaligned address");
2246 break;
2247 }
2248 CHECK_FIELD (num, 262143, -262144, 0);
2249
2250 if (the_insn.exp.X_add_symbol)
2251 num -= 8;
2252
2253 sign_unext (num >> 2, 17, &result);
2254 dis_assemble_17 (result, &w1, &w2, &w);
2255 INSERT_FIELD_AND_CONTINUE (opcode,
2256 ((w2 << 2) | (w1 << 16) | w), 0);
2257 }
2258 else
2259 {
2260 if (is_complex (the_insn.exp))
2261 the_insn.reloc = R_HPPA_COMPLEX_PCREL_CALL;
2262 else
2263 the_insn.reloc = R_HPPA_PCREL_CALL;
2264 the_insn.format = 17;
2265 the_insn.arg_reloc = last_call_desc.arg_reloc;
2266 bzero (&last_call_desc, sizeof (struct call_desc));
2267 continue;
2268 }
2269
2270 /* Handle an absolute 17 bit branch target. */
2271 case 'z':
2272 the_insn.field_selector = pa_chk_field_selector (&s);
2273 get_expression (s);
2274 s = expr_end;
2275 the_insn.pcrel = 0;
2276 if (!the_insn.exp.X_add_symbol
2277 || !strcmp (S_GET_NAME (the_insn.exp.X_add_symbol),
2278 "L$0\001"))
2279 {
2280 unsigned int w2, w1, w, result;
2281
2282 num = evaluate_absolute (&the_insn);
2283 if (num % 4)
2284 {
2285 as_bad ("Branch to unaligned address");
2286 break;
2287 }
2288 CHECK_FIELD (num, 262143, -262144, 0);
2289
2290 if (the_insn.exp.X_add_symbol)
2291 num -= 8;
2292
2293 sign_unext (num >> 2, 17, &result);
2294 dis_assemble_17 (result, &w1, &w2, &w);
2295 INSERT_FIELD_AND_CONTINUE (opcode,
2296 ((w2 << 2) | (w1 << 16) | w), 0);
2297 }
2298 else
2299 {
2300 if (is_complex (the_insn.exp))
2301 the_insn.reloc = R_HPPA_COMPLEX_ABS_CALL;
2302 else
2303 the_insn.reloc = R_HPPA_ABS_CALL;
2304 the_insn.format = 17;
2305 continue;
2306 }
2307
2308 /* Handle a 5 bit shift count at 26. */
2309 case 'p':
2310 num = pa_get_absolute_expression (&the_insn, &s);
2311 s = expr_end;
2312 CHECK_FIELD (num, 31, 0, 0);
2313 INSERT_FIELD_AND_CONTINUE (opcode, 31 - num, 5);
2314
2315 /* Handle a 5 bit bit position at 26. */
2316 case 'P':
2317 num = pa_get_absolute_expression (&the_insn, &s);
2318 s = expr_end;
2319 CHECK_FIELD (num, 31, 0, 0);
2320 INSERT_FIELD_AND_CONTINUE (opcode, num, 5);
2321
2322 /* Handle a 5 bit immediate at 10. */
2323 case 'Q':
2324 num = pa_get_absolute_expression (&the_insn, &s);
2325 s = expr_end;
2326 CHECK_FIELD (num, 31, 0, 0);
2327 INSERT_FIELD_AND_CONTINUE (opcode, num, 21);
2328
2329 /* Handle a 13 bit immediate at 18. */
2330 case 'A':
2331 num = pa_get_absolute_expression (&the_insn, &s);
2332 s = expr_end;
2333 CHECK_FIELD (num, 4095, -4096, 0);
2334 INSERT_FIELD_AND_CONTINUE (opcode, num, 13);
2335
2336 /* Handle a 26 bit immediate at 31. */
2337 case 'D':
2338 num = pa_get_absolute_expression (&the_insn, &s);
2339 s = expr_end;
2340 CHECK_FIELD (num, 671108864, 0, 0);
2341 INSERT_FIELD_AND_CONTINUE (opcode, num, 1);
2342
2343 /* Handle a 3 bit SFU identifier at 25. */
2344 case 'f':
2345 num = pa_get_absolute_expression (&the_insn, &s);
2346 s = expr_end;
2347 CHECK_FIELD (num, 7, 0, 0);
2348 INSERT_FIELD_AND_CONTINUE (opcode, num, 6);
2349
2350 /* We don't support any of these. FIXME. */
2351 case 'O':
2352 get_expression (s);
2353 s = expr_end;
2354 abort ();
2355 continue;
2356
2357 /* Handle a source FP operand format completer. */
2358 case 'F':
2359 flag = pa_parse_fp_format (&s);
2360 the_insn.fpof1 = flag;
2361 INSERT_FIELD_AND_CONTINUE (opcode, flag, 11);
2362
2363 /* Handle a destination FP operand format completer. */
2364 case 'G':
2365 /* pa_parse_format needs the ',' prefix. */
2366 s--;
2367 flag = pa_parse_fp_format (&s);
2368 the_insn.fpof2 = flag;
2369 INSERT_FIELD_AND_CONTINUE (opcode, flag, 13);
2370
2371 /* Handle FP compare conditions. */
2372 case 'M':
2373 cond = pa_parse_fp_cmp_cond (&s);
2374 INSERT_FIELD_AND_CONTINUE (opcode, cond, 0);
2375
2376 /* Handle L/R register halves like 't'. */
2377 case 'v':
2378 {
2379 struct pa_89_fp_reg_struct result;
2380
2381 pa_parse_number (&s, &result);
2382 CHECK_FIELD (result.number_part, 31, 0, 0);
2383 opcode |= result.number_part;
2384
2385 /* 0x30 opcodes are FP arithmetic operation opcodes
2386 and need to be turned into 0x38 opcodes. This
2387 is not necessary for loads/stores. */
2388 if (need_89_opcode (&the_insn, &result)
2389 && ((opcode & 0xfc000000) == 0x30000000))
2390 opcode |= 1 << 27;
2391
2392 INSERT_FIELD_AND_CONTINUE (opcode, result.l_r_select & 1, 6);
2393 }
2394
2395 /* Handle L/R register halves like 'b'. */
2396 case 'E':
2397 {
2398 struct pa_89_fp_reg_struct result;
2399
2400 pa_parse_number (&s, &result);
2401 CHECK_FIELD (result.number_part, 31, 0, 0);
2402 opcode |= result.number_part << 21;
2403 if (need_89_opcode (&the_insn, &result))
2404 {
2405 opcode |= (result.l_r_select & 1) << 7;
2406 opcode |= 1 << 27;
2407 }
2408 continue;
2409 }
2410
2411 /* Handle L/R register halves like 'x'. */
2412 case 'X':
2413 {
2414 struct pa_89_fp_reg_struct result;
2415
2416 pa_parse_number (&s, &result);
2417 CHECK_FIELD (result.number_part, 31, 0, 0);
2418 opcode |= (result.number_part & 0x1f) << 16;
2419 if (need_89_opcode (&the_insn, &result))
2420 {
2421 opcode |= (result.l_r_select & 1) << 12;
2422 opcode |= 1 << 27;
2423 }
2424 continue;
2425 }
2426
2427 /* Handle a 5 bit register field at 10. */
2428 case '4':
2429 {
2430 struct pa_89_fp_reg_struct result;
2431
2432 pa_parse_number (&s, &result);
2433 CHECK_FIELD (result.number_part, 31, 0, 0);
2434 if (the_insn.fpof1 == SGL)
2435 {
2436 result.number_part &= 0xF;
2437 result.number_part |= (result.l_r_select & 1) << 4;
2438 }
2439 INSERT_FIELD_AND_CONTINUE (opcode, result.number_part, 21);
2440 }
2441
2442 /* Handle a 5 bit register field at 15. */
2443 case '6':
2444 {
2445 struct pa_89_fp_reg_struct result;
2446
2447 pa_parse_number (&s, &result);
2448 CHECK_FIELD (result.number_part, 31, 0, 0);
2449 if (the_insn.fpof1 == SGL)
2450 {
2451 result.number_part &= 0xF;
2452 result.number_part |= (result.l_r_select & 1) << 4;
2453 }
2454 INSERT_FIELD_AND_CONTINUE (opcode, result.number_part, 16);
2455 }
2456
2457 /* Handle a 5 bit register field at 31. */
2458 case '7':
2459 {
2460 struct pa_89_fp_reg_struct result;
2461
2462 pa_parse_number (&s, &result);
2463 CHECK_FIELD (result.number_part, 31, 0, 0);
2464 if (the_insn.fpof1 == SGL)
2465 {
2466 result.number_part &= 0xF;
2467 result.number_part |= (result.l_r_select & 1) << 4;
2468 }
2469 INSERT_FIELD_AND_CONTINUE (opcode, result.number_part, 0);
2470 }
2471
2472 /* Handle a 5 bit register field at 20. */
2473 case '8':
2474 {
2475 struct pa_89_fp_reg_struct result;
2476
2477 pa_parse_number (&s, &result);
2478 CHECK_FIELD (result.number_part, 31, 0, 0);
2479 if (the_insn.fpof1 == SGL)
2480 {
2481 result.number_part &= 0xF;
2482 result.number_part |= (result.l_r_select & 1) << 4;
2483 }
2484 INSERT_FIELD_AND_CONTINUE (opcode, result.number_part, 11);
2485 }
2486
2487 /* Handle a 5 bit register field at 25. */
2488 case '9':
2489 {
2490 struct pa_89_fp_reg_struct result;
2491
2492 pa_parse_number (&s, &result);
2493 CHECK_FIELD (result.number_part, 31, 0, 0);
2494 if (the_insn.fpof1 == SGL)
2495 {
2496 result.number_part &= 0xF;
2497 result.number_part |= (result.l_r_select & 1) << 4;
2498 }
2499 INSERT_FIELD_AND_CONTINUE (opcode, result.number_part, 6);
2500 }
2501
2502 /* Handle a floating point operand format at 26.
2503 Only allows single and double precision. */
2504 case 'H':
2505 flag = pa_parse_fp_format (&s);
2506 switch (flag)
2507 {
2508 case SGL:
2509 opcode |= 0x20;
2510 case DBL:
2511 the_insn.fpof1 = flag;
2512 continue;
2513
2514 case QUAD:
2515 case ILLEGAL_FMT:
2516 default:
2517 as_bad ("Invalid Floating Point Operand Format.");
2518 }
2519 break;
2520
2521 default:
2522 abort ();
2523 }
2524 break;
2525 }
2526
2527 /* Check if the args matched. */
2528 if (match == FALSE)
2529 {
2530 if (&insn[1] - pa_opcodes < NUMOPCODES
2531 && !strcmp (insn->name, insn[1].name))
2532 {
2533 ++insn;
2534 s = argstart;
2535 continue;
2536 }
2537 else
2538 {
2539 as_bad ("Invalid operands %s", error_message);
2540 return;
2541 }
2542 }
2543 break;
2544 }
2545
2546 the_insn.opcode = opcode;
2547 return;
2548 }
2549
2550 /* Turn a string in input_line_pointer into a floating point constant of type
2551 type, and store the appropriate bytes in *litP. The number of LITTLENUMS
2552 emitted is stored in *sizeP . An error message or NULL is returned. */
2553
2554 #define MAX_LITTLENUMS 6
2555
2556 char *
2557 md_atof (type, litP, sizeP)
2558 char type;
2559 char *litP;
2560 int *sizeP;
2561 {
2562 int prec;
2563 LITTLENUM_TYPE words[MAX_LITTLENUMS];
2564 LITTLENUM_TYPE *wordP;
2565 char *t;
2566
2567 switch (type)
2568 {
2569
2570 case 'f':
2571 case 'F':
2572 case 's':
2573 case 'S':
2574 prec = 2;
2575 break;
2576
2577 case 'd':
2578 case 'D':
2579 case 'r':
2580 case 'R':
2581 prec = 4;
2582 break;
2583
2584 case 'x':
2585 case 'X':
2586 prec = 6;
2587 break;
2588
2589 case 'p':
2590 case 'P':
2591 prec = 6;
2592 break;
2593
2594 default:
2595 *sizeP = 0;
2596 return "Bad call to MD_ATOF()";
2597 }
2598 t = atof_ieee (input_line_pointer, type, words);
2599 if (t)
2600 input_line_pointer = t;
2601 *sizeP = prec * sizeof (LITTLENUM_TYPE);
2602 for (wordP = words; prec--;)
2603 {
2604 md_number_to_chars (litP, (valueT) (*wordP++), sizeof (LITTLENUM_TYPE));
2605 litP += sizeof (LITTLENUM_TYPE);
2606 }
2607 return NULL;
2608 }
2609
2610 /* Write out big-endian. */
2611
2612 void
2613 md_number_to_chars (buf, val, n)
2614 char *buf;
2615 valueT val;
2616 int n;
2617 {
2618
2619 switch (n)
2620 {
2621 case 4:
2622 *buf++ = val >> 24;
2623 *buf++ = val >> 16;
2624 case 2:
2625 *buf++ = val >> 8;
2626 case 1:
2627 *buf = val;
2628 break;
2629 default:
2630 abort ();
2631 }
2632 return;
2633 }
2634
2635 /* Translate internal representation of relocation info to BFD target
2636 format. */
2637
2638 arelent **
2639 tc_gen_reloc (section, fixp)
2640 asection *section;
2641 fixS *fixp;
2642 {
2643 arelent *reloc;
2644 struct hppa_fix_struct *hppa_fixp = fixp->tc_fix_data;
2645 bfd_reloc_code_real_type code;
2646 static int unwind_reloc_fixp_cnt = 0;
2647 static arelent *unwind_reloc_entryP = NULL;
2648 static arelent *no_relocs = NULL;
2649 arelent **relocs;
2650 bfd_reloc_code_real_type **codes;
2651 int n_relocs;
2652 int i;
2653
2654 if (fixp->fx_addsy == 0)
2655 return &no_relocs;
2656 assert (hppa_fixp != 0);
2657 assert (section != 0);
2658
2659 #ifdef OBJ_ELF
2660 /* Yuk. I would really like to push all this ELF specific unwind
2661 crud into BFD and the linker. That's how SOM does it -- and
2662 if we could make ELF emulate that then we could share more code
2663 in GAS (and potentially a gnu-linker later).
2664
2665 Unwind section relocations are handled in a special way.
2666 The relocations for the .unwind section are originally
2667 built in the usual way. That is, for each unwind table
2668 entry there are two relocations: one for the beginning of
2669 the function and one for the end.
2670
2671 The first time we enter this function we create a
2672 relocation of the type R_HPPA_UNWIND_ENTRIES. The addend
2673 of the relocation is initialized to 0. Each additional
2674 pair of times this function is called for the unwind
2675 section represents an additional unwind table entry. Thus,
2676 the addend of the relocation should end up to be the number
2677 of unwind table entries. */
2678 if (strcmp (UNWIND_SECTION_NAME, section->name) == 0)
2679 {
2680 if (unwind_reloc_entryP == NULL)
2681 {
2682 reloc = (arelent *) bfd_alloc_by_size_t (stdoutput,
2683 sizeof (arelent));
2684 assert (reloc != 0);
2685 unwind_reloc_entryP = reloc;
2686 unwind_reloc_fixp_cnt++;
2687 unwind_reloc_entryP->address
2688 = fixp->fx_frag->fr_address + fixp->fx_where;
2689 /* A pointer to any function will do. We only
2690 need one to tell us what section the unwind
2691 relocations are for. */
2692 unwind_reloc_entryP->sym_ptr_ptr = &fixp->fx_addsy->bsym;
2693 hppa_fixp->fx_r_type = code = R_HPPA_UNWIND_ENTRIES;
2694 fixp->fx_r_type = R_HPPA_UNWIND;
2695 unwind_reloc_entryP->howto = bfd_reloc_type_lookup (stdoutput, code);
2696 unwind_reloc_entryP->addend = unwind_reloc_fixp_cnt / 2;
2697 relocs = (arelent **) bfd_alloc_by_size_t (stdoutput,
2698 sizeof (arelent *) * 2);
2699 assert (relocs != 0);
2700 relocs[0] = unwind_reloc_entryP;
2701 relocs[1] = NULL;
2702 return relocs;
2703 }
2704 unwind_reloc_fixp_cnt++;
2705 unwind_reloc_entryP->addend = unwind_reloc_fixp_cnt / 2;
2706
2707 return &no_relocs;
2708 }
2709 #endif
2710
2711 reloc = (arelent *) bfd_alloc_by_size_t (stdoutput, sizeof (arelent));
2712 assert (reloc != 0);
2713
2714 reloc->sym_ptr_ptr = &fixp->fx_addsy->bsym;
2715 codes = hppa_gen_reloc_type (stdoutput,
2716 fixp->fx_r_type,
2717 hppa_fixp->fx_r_format,
2718 hppa_fixp->fx_r_field);
2719
2720 for (n_relocs = 0; codes[n_relocs]; n_relocs++)
2721 ;
2722
2723 relocs = (arelent **)
2724 bfd_alloc_by_size_t (stdoutput, sizeof (arelent *) * n_relocs + 1);
2725 assert (relocs != 0);
2726
2727 reloc = (arelent *) bfd_alloc_by_size_t (stdoutput,
2728 sizeof (arelent) * n_relocs);
2729 if (n_relocs > 0)
2730 assert (reloc != 0);
2731
2732 for (i = 0; i < n_relocs; i++)
2733 relocs[i] = &reloc[i];
2734
2735 relocs[n_relocs] = NULL;
2736
2737 #ifdef OBJ_ELF
2738 switch (fixp->fx_r_type)
2739 {
2740 case R_HPPA_COMPLEX:
2741 case R_HPPA_COMPLEX_PCREL_CALL:
2742 case R_HPPA_COMPLEX_ABS_CALL:
2743 assert (n_relocs == 5);
2744
2745 for (i = 0; i < n_relocs; i++)
2746 {
2747 reloc[i].sym_ptr_ptr = NULL;
2748 reloc[i].address = 0;
2749 reloc[i].addend = 0;
2750 reloc[i].howto = bfd_reloc_type_lookup (stdoutput, *codes[i]);
2751 assert (reloc[i].howto && *codes[i] == reloc[i].howto->type);
2752 }
2753
2754 reloc[0].sym_ptr_ptr = &fixp->fx_addsy->bsym;
2755 reloc[1].sym_ptr_ptr = &fixp->fx_subsy->bsym;
2756 reloc[4].address = fixp->fx_frag->fr_address + fixp->fx_where;
2757
2758 if (fixp->fx_r_type == R_HPPA_COMPLEX)
2759 reloc[3].addend = fixp->fx_addnumber;
2760 else if (fixp->fx_r_type == R_HPPA_COMPLEX_PCREL_CALL ||
2761 fixp->fx_r_type == R_HPPA_COMPLEX_ABS_CALL)
2762 reloc[1].addend = fixp->fx_addnumber;
2763
2764 break;
2765
2766 default:
2767 assert (n_relocs == 1);
2768
2769 code = *codes[0];
2770
2771 reloc->sym_ptr_ptr = &fixp->fx_addsy->bsym;
2772 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
2773 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
2774 reloc->addend = 0; /* default */
2775
2776 assert (reloc->howto && code == reloc->howto->type);
2777
2778 /* Now, do any processing that is dependent on the relocation type. */
2779 switch (code)
2780 {
2781 case R_HPPA_PLABEL_32:
2782 case R_HPPA_PLABEL_11:
2783 case R_HPPA_PLABEL_14:
2784 case R_HPPA_PLABEL_L21:
2785 case R_HPPA_PLABEL_R11:
2786 case R_HPPA_PLABEL_R14:
2787 /* For plabel relocations, the addend of the
2788 relocation should be either 0 (no static link) or 2
2789 (static link required).
2790
2791 FIXME: assume that fx_addnumber contains this
2792 information */
2793 reloc->addend = fixp->fx_addnumber;
2794 break;
2795
2796 case R_HPPA_ABS_CALL_11:
2797 case R_HPPA_ABS_CALL_14:
2798 case R_HPPA_ABS_CALL_17:
2799 case R_HPPA_ABS_CALL_L21:
2800 case R_HPPA_ABS_CALL_R11:
2801 case R_HPPA_ABS_CALL_R14:
2802 case R_HPPA_ABS_CALL_R17:
2803 case R_HPPA_ABS_CALL_LS21:
2804 case R_HPPA_ABS_CALL_RS11:
2805 case R_HPPA_ABS_CALL_RS14:
2806 case R_HPPA_ABS_CALL_RS17:
2807 case R_HPPA_ABS_CALL_LD21:
2808 case R_HPPA_ABS_CALL_RD11:
2809 case R_HPPA_ABS_CALL_RD14:
2810 case R_HPPA_ABS_CALL_RD17:
2811 case R_HPPA_ABS_CALL_LR21:
2812 case R_HPPA_ABS_CALL_RR14:
2813 case R_HPPA_ABS_CALL_RR17:
2814
2815 case R_HPPA_PCREL_CALL_11:
2816 case R_HPPA_PCREL_CALL_14:
2817 case R_HPPA_PCREL_CALL_17:
2818 case R_HPPA_PCREL_CALL_L21:
2819 case R_HPPA_PCREL_CALL_R11:
2820 case R_HPPA_PCREL_CALL_R14:
2821 case R_HPPA_PCREL_CALL_R17:
2822 case R_HPPA_PCREL_CALL_LS21:
2823 case R_HPPA_PCREL_CALL_RS11:
2824 case R_HPPA_PCREL_CALL_RS14:
2825 case R_HPPA_PCREL_CALL_RS17:
2826 case R_HPPA_PCREL_CALL_LD21:
2827 case R_HPPA_PCREL_CALL_RD11:
2828 case R_HPPA_PCREL_CALL_RD14:
2829 case R_HPPA_PCREL_CALL_RD17:
2830 case R_HPPA_PCREL_CALL_LR21:
2831 case R_HPPA_PCREL_CALL_RR14:
2832 case R_HPPA_PCREL_CALL_RR17:
2833 /* The constant is stored in the instruction. */
2834 reloc->addend = HPPA_R_ADDEND (hppa_fixp->fx_arg_reloc, 0);
2835 break;
2836 default:
2837 reloc->addend = fixp->fx_addnumber;
2838 break;
2839 }
2840 break;
2841 }
2842 #else /* OBJ_SOM */
2843
2844 /* Preliminary relocation handling for SOM. Needs to handle
2845 COMPLEX relocations (yes, I've seen them occur) and it will
2846 need to handle R_ENTRY/R_EXIT relocations in the very near future
2847 (for generating unwinds). */
2848 switch (fixp->fx_r_type)
2849 {
2850 case R_HPPA_COMPLEX:
2851 case R_HPPA_COMPLEX_PCREL_CALL:
2852 case R_HPPA_COMPLEX_ABS_CALL:
2853 abort ();
2854 break;
2855 default:
2856 assert (n_relocs == 1);
2857
2858 code = *codes[0];
2859
2860 reloc->sym_ptr_ptr = &fixp->fx_addsy->bsym;
2861 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
2862 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
2863
2864 switch (code)
2865 {
2866 case R_PCREL_CALL:
2867 case R_ABS_CALL:
2868 reloc->addend = HPPA_R_ADDEND (hppa_fixp->fx_arg_reloc, 0);
2869 break;
2870
2871 case R_DATA_PLABEL:
2872 case R_CODE_PLABEL:
2873 /* For plabel relocations, the addend of the
2874 relocation should be either 0 (no static link) or 2
2875 (static link required).
2876
2877 FIXME: We always assume no static link! */
2878 reloc->addend = 0;
2879 break;
2880
2881 default:
2882 reloc->addend = fixp->fx_addnumber;
2883 break;
2884 }
2885 break;
2886 }
2887 #endif
2888
2889 return relocs;
2890 }
2891
2892 /* Process any machine dependent frag types. */
2893
2894 void
2895 md_convert_frag (abfd, sec, fragP)
2896 register bfd *abfd;
2897 register asection *sec;
2898 register fragS *fragP;
2899 {
2900 unsigned int address;
2901
2902 if (fragP->fr_type == rs_machine_dependent)
2903 {
2904 switch ((int) fragP->fr_subtype)
2905 {
2906 case 0:
2907 fragP->fr_type = rs_fill;
2908 know (fragP->fr_var == 1);
2909 know (fragP->fr_next);
2910 address = fragP->fr_address + fragP->fr_fix;
2911 if (address % fragP->fr_offset)
2912 {
2913 fragP->fr_offset =
2914 fragP->fr_next->fr_address
2915 - fragP->fr_address
2916 - fragP->fr_fix;
2917 }
2918 else
2919 fragP->fr_offset = 0;
2920 break;
2921 }
2922 }
2923 }
2924
2925 /* Round up a section size to the appropriate boundary. */
2926
2927 valueT
2928 md_section_align (segment, size)
2929 asection *segment;
2930 valueT size;
2931 {
2932 int align = bfd_get_section_alignment (stdoutput, segment);
2933 int align2 = (1 << align) - 1;
2934
2935 return (size + align2) & ~align2;
2936
2937 }
2938
2939 /* Create a short jump from FROM_ADDR to TO_ADDR. Not used on the PA. */
2940 void
2941 md_create_short_jump (ptr, from_addr, to_addr, frag, to_symbol)
2942 char *ptr;
2943 addressT from_addr, to_addr;
2944 fragS *frag;
2945 symbolS *to_symbol;
2946 {
2947 fprintf (stderr, "pa_create_short_jmp\n");
2948 abort ();
2949 }
2950
2951 /* Create a long jump from FROM_ADDR to TO_ADDR. Not used on the PA. */
2952 void
2953 md_create_long_jump (ptr, from_addr, to_addr, frag, to_symbol)
2954 char *ptr;
2955 addressT from_addr, to_addr;
2956 fragS *frag;
2957 symbolS *to_symbol;
2958 {
2959 fprintf (stderr, "pa_create_long_jump\n");
2960 abort ();
2961 }
2962
2963 /* Return the approximate size of a frag before relaxation has occurred. */
2964 int
2965 md_estimate_size_before_relax (fragP, segment)
2966 register fragS *fragP;
2967 asection *segment;
2968 {
2969 int size;
2970
2971 size = 0;
2972
2973 while ((fragP->fr_fix + size) % fragP->fr_offset)
2974 size++;
2975
2976 return size;
2977 }
2978
2979 /* Parse machine dependent options. There are none on the PA. */
2980 int
2981 md_parse_option (argP, cntP, vecP)
2982 char **argP;
2983 int *cntP;
2984 char ***vecP;
2985 {
2986 return 1;
2987 }
2988
2989 /* We have no need to default values of symbols. */
2990
2991 symbolS *
2992 md_undefined_symbol (name)
2993 char *name;
2994 {
2995 return 0;
2996 }
2997
2998 /* Parse an operand that is machine-specific.
2999 We just return without modifying the expression as we have nothing
3000 to do on the PA. */
3001
3002 void
3003 md_operand (expressionP)
3004 expressionS *expressionP;
3005 {
3006 }
3007
3008 /* Helper function for md_apply_fix. Actually determine if the fix
3009 can be applied, and if so, apply it.
3010
3011 If a fix is applied, then set fx_addsy to NULL which indicates
3012 the fix was applied and need not be emitted into the object file. */
3013
3014 static void
3015 md_apply_fix_1 (fixP, val)
3016 fixS *fixP;
3017 long val;
3018 {
3019 char *buf = fixP->fx_where + fixP->fx_frag->fr_literal;
3020 struct hppa_fix_struct *hppa_fixP = fixP->tc_fix_data;
3021 long new_val, result;
3022 unsigned int w1, w2, w;
3023
3024 /* SOM uses R_HPPA_ENTRY and R_HPPA_EXIT relocations which can
3025 never be "applied". They must always be emitted. */
3026 #ifdef OBJ_SOM
3027 if (fixP->fx_r_type == R_HPPA_ENTRY
3028 || fixP->fx_r_type == R_HPPA_EXIT)
3029 return;
3030 #endif
3031
3032 /* There should have been an HPPA specific fixup associated
3033 with the GAS fixup. */
3034 if (hppa_fixP)
3035 {
3036 unsigned long buf_wd = bfd_get_32 (stdoutput, buf);
3037 unsigned char fmt = bfd_hppa_insn2fmt (buf_wd);
3038
3039 if (fixP->fx_r_type == R_HPPA_NONE)
3040 fmt = 0;
3041
3042 /* Remember this value for emit_reloc. FIXME, is this braindamage
3043 documented anywhere!?! */
3044 fixP->fx_addnumber = val;
3045
3046 /* Check if this is an undefined symbol. No relocation can
3047 possibly be performed in this case. */
3048 if ((fixP->fx_addsy && fixP->fx_addsy->bsym->section == &bfd_und_section)
3049 || (fixP->fx_subsy
3050 && fixP->fx_subsy->bsym->section == &bfd_und_section))
3051 return;
3052
3053 if (fmt != 0 && hppa_fixP->fx_r_field != R_HPPA_PSEL
3054 && hppa_fixP->fx_r_field != R_HPPA_LPSEL
3055 && hppa_fixP->fx_r_field != R_HPPA_RPSEL)
3056 new_val = hppa_field_adjust (val, 0, hppa_fixP->fx_r_field);
3057 else
3058 new_val = 0;
3059
3060 switch (fmt)
3061 {
3062 /* Handle all opcodes with the 'j' operand type. */
3063 case 14:
3064 CHECK_FIELD (new_val, 8191, -8192, 0);
3065
3066 /* Mask off 14 bits to be changed. */
3067 bfd_put_32 (stdoutput,
3068 bfd_get_32 (stdoutput, buf) & 0xffffc000,
3069 buf);
3070 low_sign_unext (new_val, 14, &result);
3071 break;
3072
3073 /* Handle all opcodes with the 'k' operand type. */
3074 case 21:
3075 CHECK_FIELD (new_val, 2097152, 0, 0);
3076
3077 /* Mask off 21 bits to be changed. */
3078 bfd_put_32 (stdoutput,
3079 bfd_get_32 (stdoutput, buf) & 0xffe00000,
3080 buf);
3081 dis_assemble_21 (new_val, &result);
3082 break;
3083
3084 /* Handle all the opcodes with the 'i' operand type. */
3085 case 11:
3086 CHECK_FIELD (new_val, 1023, -1023, 0);
3087
3088 /* Mask off 11 bits to be changed. */
3089 bfd_put_32 (stdoutput,
3090 bfd_get_32 (stdoutput, buf) & 0xffff800,
3091 buf);
3092 low_sign_unext (new_val, 11, &result);
3093 break;
3094
3095 /* Handle all the opcodes with the 'w' operand type. */
3096 case 12:
3097 CHECK_FIELD (new_val, 8191, -8192, 0)
3098
3099 /* Mask off 11 bits to be changed. */
3100 sign_unext ((new_val - 8) >> 2, 12, &result);
3101 bfd_put_32 (stdoutput,
3102 bfd_get_32 (stdoutput, buf) & 0xffffe002,
3103 buf);
3104
3105 dis_assemble_12 (result, &w1, &w);
3106 result = ((w1 << 2) | w);
3107 fixP->fx_addsy = NULL;
3108 break;
3109
3110 #define stub_needed(CALLER, CALLEE) \
3111 ((CALLEE) && (CALLER) && ((CALLEE) != (CALLER)))
3112
3113 /* Handle some of the opcodes with the 'W' operand type. */
3114 case 17:
3115 /* If a long-call stub or argument relocation stub is
3116 needed, then we can not apply this relocation, instead
3117 the linker must handle it. */
3118 if (new_val > 262143 || new_val < -262144
3119 || stub_needed (((obj_symbol_type *)
3120 fixP->fx_addsy->bsym)->tc_data.hppa_arg_reloc,
3121 hppa_fixP->fx_arg_reloc))
3122 return;
3123
3124 /* No stubs were needed, we can perform this relocation. */
3125 CHECK_FIELD (new_val, 262143, -262144, 0);
3126
3127 /* Mask off 17 bits to be changed. */
3128 bfd_put_32 (stdoutput,
3129 bfd_get_32 (stdoutput, buf) & 0xffe0e002,
3130 buf);
3131 sign_unext ((new_val - 8) >> 2, 17, &result);
3132 dis_assemble_17 (result, &w1, &w2, &w);
3133 result = ((w2 << 2) | (w1 << 16) | w);
3134 fixP->fx_addsy = NULL;
3135 break;
3136
3137 #undef too_far
3138 #undef stub_needed
3139
3140 case 32:
3141 #ifdef OBJ_ELF
3142 /* These are ELF specific relocations. ELF unfortunately
3143 handles unwinds in a completely different manner. */
3144 if (hppa_fixP->fx_r_type == R_HPPA_UNWIND_ENTRY
3145 || hppa_fixP->fx_r_type == R_HPPA_UNWIND_ENTRIES)
3146 result = fixP->fx_addnumber;
3147 else
3148 #endif
3149 {
3150 result = 0;
3151 fixP->fx_addnumber = fixP->fx_offset;
3152 bfd_put_32 (stdoutput, 0, buf);
3153 return;
3154 }
3155 break;
3156
3157 case 0:
3158 return;
3159
3160 default:
3161 as_bad ("Unknown relocation encountered in md_apply_fix.");
3162 return;
3163 }
3164
3165 /* Insert the relocation. */
3166 bfd_put_32 (stdoutput, bfd_get_32 (stdoutput, buf) | result, buf);
3167 }
3168 else
3169 printf ("no hppa_fixup entry for this fixup (fixP = 0x%x, type = 0x%x)\n",
3170 (unsigned int) fixP, fixP->fx_r_type);
3171 }
3172
3173 /* Apply a fix into a frag's data (if possible). */
3174
3175 int
3176 md_apply_fix (fixP, valp)
3177 fixS *fixP;
3178 valueT *valp;
3179 {
3180 md_apply_fix_1 (fixP, (long) *valp);
3181 return 1;
3182 }
3183
3184 /* Exactly what point is a PC-relative offset relative TO?
3185 On the PA, they're relative to the address of the offset. */
3186
3187 long
3188 md_pcrel_from (fixP)
3189 fixS *fixP;
3190 {
3191 return fixP->fx_where + fixP->fx_frag->fr_address;
3192 }
3193
3194 /* Return nonzero if the input line pointer is at the end of
3195 a statement. */
3196
3197 static int
3198 is_end_of_statement ()
3199 {
3200 return ((*input_line_pointer == '\n')
3201 || (*input_line_pointer == ';')
3202 || (*input_line_pointer == '!'));
3203 }
3204
3205 /* Read a number from S. The number might come in one of many forms,
3206 the most common will be a hex or decimal constant, but it could be
3207 a pre-defined register (Yuk!), or an absolute symbol.
3208
3209 Return a number or -1 for failure.
3210
3211 When parsing PA-89 FP register numbers RESULT will be
3212 the address of a structure to return information about
3213 L/R half of FP registers, store results there as appropriate.
3214
3215 pa_parse_number can not handle negative constants and will fail
3216 horribly if it is passed such a constant. */
3217
3218 static int
3219 pa_parse_number (s, result)
3220 char **s;
3221 struct pa_89_fp_reg_struct *result;
3222 {
3223 int num;
3224 char *name;
3225 char c;
3226 symbolS *sym;
3227 int status;
3228 char *p = *s;
3229
3230 /* Skip whitespace before the number. */
3231 while (*p == ' ' || *p == '\t')
3232 p = p + 1;
3233
3234 /* Store info in RESULT if requested by caller. */
3235 if (result)
3236 {
3237 result->number_part = -1;
3238 result->l_r_select = -1;
3239 }
3240 num = -1;
3241
3242 if (isdigit (*p))
3243 {
3244 /* Looks like a number. */
3245 num = 0;
3246
3247 if (*p == '0' && (*(p + 1) == 'x' || *(p + 1) == 'X'))
3248 {
3249 /* The number is specified in hex. */
3250 p += 2;
3251 while (isdigit (*p) || ((*p >= 'a') && (*p <= 'f'))
3252 || ((*p >= 'A') && (*p <= 'F')))
3253 {
3254 if (isdigit (*p))
3255 num = num * 16 + *p - '0';
3256 else if (*p >= 'a' && *p <= 'f')
3257 num = num * 16 + *p - 'a' + 10;
3258 else
3259 num = num * 16 + *p - 'A' + 10;
3260 ++p;
3261 }
3262 }
3263 else
3264 {
3265 /* The number is specified in decimal. */
3266 while (isdigit (*p))
3267 {
3268 num = num * 10 + *p - '0';
3269 ++p;
3270 }
3271 }
3272
3273 /* Store info in RESULT if requested by the caller. */
3274 if (result)
3275 {
3276 result->number_part = num;
3277
3278 if (IS_R_SELECT (p))
3279 {
3280 result->l_r_select = 1;
3281 ++p;
3282 }
3283 else if (IS_L_SELECT (p))
3284 {
3285 result->l_r_select = 0;
3286 ++p;
3287 }
3288 else
3289 result->l_r_select = 0;
3290 }
3291 }
3292 else if (*p == '%')
3293 {
3294 /* The number might be a predefined register. */
3295 num = 0;
3296 name = p;
3297 p++;
3298 c = *p;
3299 /* Tege hack: Special case for general registers as the general
3300 code makes a binary search with case translation, and is VERY
3301 slow. */
3302 if (c == 'r')
3303 {
3304 p++;
3305 if (*p == 'e' && *(p + 1) == 't'
3306 && (*(p + 2) == '0' || *(p + 2) == '1'))
3307 {
3308 p += 2;
3309 num = *p - '0' + 28;
3310 p++;
3311 }
3312 else if (*p == 'p')
3313 {
3314 num = 2;
3315 p++;
3316 }
3317 else if (!isdigit (*p))
3318 {
3319 if (print_errors)
3320 as_bad ("Undefined register: '%s'.", name);
3321 num = -1;
3322 }
3323 else
3324 {
3325 do
3326 num = num * 10 + *p++ - '0';
3327 while (isdigit (*p));
3328 }
3329 }
3330 else
3331 {
3332 /* Do a normal register search. */
3333 while (is_part_of_name (c))
3334 {
3335 p = p + 1;
3336 c = *p;
3337 }
3338 *p = 0;
3339 status = reg_name_search (name);
3340 if (status >= 0)
3341 num = status;
3342 else
3343 {
3344 if (print_errors)
3345 as_bad ("Undefined register: '%s'.", name);
3346 num = -1;
3347 }
3348 *p = c;
3349 }
3350
3351 /* Store info in RESULT if requested by caller. */
3352 if (result)
3353 {
3354 result->number_part = num;
3355 if (IS_R_SELECT (p - 1))
3356 result->l_r_select = 1;
3357 else if (IS_L_SELECT (p - 1))
3358 result->l_r_select = 0;
3359 else
3360 result->l_r_select = 0;
3361 }
3362 }
3363 else
3364 {
3365 /* And finally, it could be a symbol in the absolute section which
3366 is effectively a constant. */
3367 num = 0;
3368 name = p;
3369 c = *p;
3370 while (is_part_of_name (c))
3371 {
3372 p = p + 1;
3373 c = *p;
3374 }
3375 *p = 0;
3376 if ((sym = symbol_find (name)) != NULL)
3377 {
3378 if (S_GET_SEGMENT (sym) == &bfd_abs_section)
3379 num = S_GET_VALUE (sym);
3380 else
3381 {
3382 if (print_errors)
3383 as_bad ("Non-absolute symbol: '%s'.", name);
3384 num = -1;
3385 }
3386 }
3387 else
3388 {
3389 /* There is where we'd come for an undefined symbol
3390 or for an empty string. For an empty string we
3391 will return zero. That's a concession made for
3392 compatability with the braindamaged HP assemblers. */
3393 if (*name == 0)
3394 num = 0;
3395 else
3396 {
3397 if (print_errors)
3398 as_bad ("Undefined absolute constant: '%s'.", name);
3399 num = -1;
3400 }
3401 }
3402 *p = c;
3403
3404 /* Store info in RESULT if requested by caller. */
3405 if (result)
3406 {
3407 result->number_part = num;
3408 if (IS_R_SELECT (p - 1))
3409 result->l_r_select = 1;
3410 else if (IS_L_SELECT (p - 1))
3411 result->l_r_select = 0;
3412 else
3413 result->l_r_select = 0;
3414 }
3415 }
3416
3417 *s = p;
3418 return num;
3419 }
3420
3421 #define REG_NAME_CNT (sizeof(pre_defined_registers) / sizeof(struct pd_reg))
3422
3423 /* Given NAME, find the register number associated with that name, return
3424 the integer value associated with the given name or -1 on failure. */
3425
3426 static int
3427 reg_name_search (name)
3428 char *name;
3429 {
3430 int middle, low, high;
3431
3432 low = 0;
3433 high = REG_NAME_CNT - 1;
3434
3435 do
3436 {
3437 middle = (low + high) / 2;
3438 if (strcasecmp (name, pre_defined_registers[middle].name) < 0)
3439 high = middle - 1;
3440 else
3441 low = middle + 1;
3442 }
3443 while (!((strcasecmp (name, pre_defined_registers[middle].name) == 0) ||
3444 (low > high)));
3445
3446 if (strcasecmp (name, pre_defined_registers[middle].name) == 0)
3447 return (pre_defined_registers[middle].value);
3448 else
3449 return (-1);
3450 }
3451
3452
3453 /* Return nonzero if the given INSN and L/R information will require
3454 a new PA-89 opcode. */
3455
3456 static int
3457 need_89_opcode (insn, result)
3458 struct pa_it *insn;
3459 struct pa_89_fp_reg_struct *result;
3460 {
3461 if (result->l_r_select == 1 && !(insn->fpof1 == DBL && insn->fpof2 == DBL))
3462 return TRUE;
3463 else
3464 return FALSE;
3465 }
3466
3467 /* Parse a condition for a fcmp instruction. Return the numerical
3468 code associated with the condition. */
3469
3470 static int
3471 pa_parse_fp_cmp_cond (s)
3472 char **s;
3473 {
3474 int cond, i;
3475
3476 cond = 0;
3477
3478 for (i = 0; i < 32; i++)
3479 {
3480 if (strncasecmp (*s, fp_cond_map[i].string,
3481 strlen (fp_cond_map[i].string)) == 0)
3482 {
3483 cond = fp_cond_map[i].cond;
3484 *s += strlen (fp_cond_map[i].string);
3485 while (**s == ' ' || **s == '\t')
3486 *s = *s + 1;
3487 return cond;
3488 }
3489 }
3490
3491 as_bad ("Invalid FP Compare Condition: %c", **s);
3492 return 0;
3493 }
3494
3495 /* Parse an FP operand format completer returning the completer
3496 type. */
3497
3498 static fp_operand_format
3499 pa_parse_fp_format (s)
3500 char **s;
3501 {
3502 int format;
3503
3504 format = SGL;
3505 if (**s == ',')
3506 {
3507 *s += 1;
3508 if (strncasecmp (*s, "sgl", 3) == 0)
3509 {
3510 format = SGL;
3511 *s += 4;
3512 }
3513 else if (strncasecmp (*s, "dbl", 3) == 0)
3514 {
3515 format = DBL;
3516 *s += 4;
3517 }
3518 else if (strncasecmp (*s, "quad", 4) == 0)
3519 {
3520 format = QUAD;
3521 *s += 5;
3522 }
3523 else
3524 {
3525 format = ILLEGAL_FMT;
3526 as_bad ("Invalid FP Operand Format: %3s", *s);
3527 }
3528 }
3529
3530 return format;
3531 }
3532
3533 /* Convert from a selector string into a selector type. */
3534
3535 static int
3536 pa_chk_field_selector (str)
3537 char **str;
3538 {
3539 int selector;
3540 const struct selector_entry *tablep;
3541
3542 selector = e_fsel;
3543
3544 /* Read past any whitespace. */
3545 while (**str == ' ' || **str == '\t' || **str == '\n' || **str == '\f')
3546 *str = *str + 1;
3547
3548 /* Yuk. Looks like a linear search through the table. With the
3549 frequence of some selectors it might make sense to sort the
3550 table by usage. */
3551 for (tablep = selector_table; tablep->prefix; tablep++)
3552 {
3553 if (strncasecmp (tablep->prefix, *str, strlen (tablep->prefix)) == 0)
3554 {
3555 *str += strlen (tablep->prefix);
3556 selector = tablep->field_selector;
3557 break;
3558 }
3559 }
3560 return selector;
3561 }
3562
3563 /* Mark (via expr_end) the end of an expression (I think). FIXME. */
3564
3565 static int
3566 get_expression (str)
3567 char *str;
3568 {
3569 char *save_in;
3570 asection *seg;
3571
3572 save_in = input_line_pointer;
3573 input_line_pointer = str;
3574 seg = expression (&the_insn.exp);
3575 if (!(seg == absolute_section
3576 || seg == undefined_section
3577 || SEG_NORMAL (seg)))
3578 {
3579 as_warn ("Bad segment in expression.");
3580 expr_end = input_line_pointer;
3581 input_line_pointer = save_in;
3582 return 1;
3583 }
3584 expr_end = input_line_pointer;
3585 input_line_pointer = save_in;
3586 return 0;
3587 }
3588
3589 /* Mark (via expr_end) the end of an absolute expression. FIXME. */
3590 static int
3591 pa_get_absolute_expression (insn, strp)
3592 struct pa_it *insn;
3593 char **strp;
3594 {
3595 char *save_in;
3596
3597 insn->field_selector = pa_chk_field_selector (strp);
3598 save_in = input_line_pointer;
3599 input_line_pointer = *strp;
3600 expression (&insn->exp);
3601 if (insn->exp.X_op != O_constant)
3602 {
3603 as_bad ("Bad segment (should be absolute).");
3604 expr_end = input_line_pointer;
3605 input_line_pointer = save_in;
3606 return 0;
3607 }
3608 expr_end = input_line_pointer;
3609 input_line_pointer = save_in;
3610 return evaluate_absolute (insn);
3611 }
3612
3613 /* Evaluate an absolute expression EXP which may be modified by
3614 the selector FIELD_SELECTOR. Return the value of the expression. */
3615 static int
3616 evaluate_absolute (insn)
3617 struct pa_it *insn;
3618 {
3619 int value;
3620 expressionS exp;
3621 int field_selector = insn->field_selector;
3622
3623 exp = insn->exp;
3624 value = exp.X_add_number;
3625
3626 switch (field_selector)
3627 {
3628 /* No change. */
3629 case e_fsel:
3630 break;
3631
3632 /* If bit 21 is on then add 0x800 and arithmetic shift right 11 bits. */
3633 case e_lssel:
3634 if (value & 0x00000400)
3635 value += 0x800;
3636 value = (value & 0xfffff800) >> 11;
3637 break;
3638
3639 /* Sign extend from bit 21. */
3640 case e_rssel:
3641 if (value & 0x00000400)
3642 value |= 0xfffff800;
3643 else
3644 value &= 0x7ff;
3645 break;
3646
3647 /* Arithmetic shift right 11 bits. */
3648 case e_lsel:
3649 value = (value & 0xfffff800) >> 11;
3650 break;
3651
3652 /* Set bits 0-20 to zero. */
3653 case e_rsel:
3654 value = value & 0x7ff;
3655 break;
3656
3657 /* Add 0x800 and arithmetic shift right 11 bits. */
3658 case e_ldsel:
3659 value += 0x800;
3660
3661
3662 value = (value & 0xfffff800) >> 11;
3663 break;
3664
3665 /* Set bitgs 0-21 to one. */
3666 case e_rdsel:
3667 value |= 0xfffff800;
3668 break;
3669
3670 /* This had better get fixed. It looks like we're quickly moving
3671 to LR/RR. FIXME. */
3672 case e_rrsel:
3673 case e_lrsel:
3674 abort ();
3675
3676 default:
3677 BAD_CASE (field_selector);
3678 break;
3679 }
3680 return value;
3681 }
3682
3683 /* Given an argument location specification return the associated
3684 argument location number. */
3685
3686 static unsigned int
3687 pa_build_arg_reloc (type_name)
3688 char *type_name;
3689 {
3690
3691 if (strncasecmp (type_name, "no", 2) == 0)
3692 return 0;
3693 if (strncasecmp (type_name, "gr", 2) == 0)
3694 return 1;
3695 else if (strncasecmp (type_name, "fr", 2) == 0)
3696 return 2;
3697 else if (strncasecmp (type_name, "fu", 2) == 0)
3698 return 3;
3699 else
3700 as_bad ("Invalid argument location: %s\n", type_name);
3701
3702 return 0;
3703 }
3704
3705 /* Encode and return an argument relocation specification for
3706 the given register in the location specified by arg_reloc. */
3707
3708 static unsigned int
3709 pa_align_arg_reloc (reg, arg_reloc)
3710 unsigned int reg;
3711 unsigned int arg_reloc;
3712 {
3713 unsigned int new_reloc;
3714
3715 new_reloc = arg_reloc;
3716 switch (reg)
3717 {
3718 case 0:
3719 new_reloc <<= 8;
3720 break;
3721 case 1:
3722 new_reloc <<= 6;
3723 break;
3724 case 2:
3725 new_reloc <<= 4;
3726 break;
3727 case 3:
3728 new_reloc <<= 2;
3729 break;
3730 default:
3731 as_bad ("Invalid argument description: %d", reg);
3732 }
3733
3734 return new_reloc;
3735 }
3736
3737 /* Parse a PA nullification completer (,n). Return nonzero if the
3738 completer was found; return zero if no completer was found. */
3739
3740 static int
3741 pa_parse_nullif (s)
3742 char **s;
3743 {
3744 int nullif;
3745
3746 nullif = 0;
3747 if (**s == ',')
3748 {
3749 *s = *s + 1;
3750 if (strncasecmp (*s, "n", 1) == 0)
3751 nullif = 1;
3752 else
3753 {
3754 as_bad ("Invalid Nullification: (%c)", **s);
3755 nullif = 0;
3756 }
3757 *s = *s + 1;
3758 }
3759
3760 return nullif;
3761 }
3762
3763 /* Parse a non-negated compare/subtract completer returning the
3764 number (for encoding in instrutions) of the given completer.
3765
3766 ISBRANCH specifies whether or not this is parsing a condition
3767 completer for a branch (vs a nullification completer for a
3768 computational instruction. */
3769
3770 static int
3771 pa_parse_nonneg_cmpsub_cmpltr (s, isbranch)
3772 char **s;
3773 int isbranch;
3774 {
3775 int cmpltr;
3776 char *name = *s + 1;
3777 char c;
3778 char *save_s = *s;
3779
3780 cmpltr = 0;
3781 if (**s == ',')
3782 {
3783 *s += 1;
3784 while (**s != ',' && **s != ' ' && **s != '\t')
3785 *s += 1;
3786 c = **s;
3787 **s = 0x00;
3788 if (strcmp (name, "=") == 0)
3789 {
3790 cmpltr = 1;
3791 }
3792 else if (strcmp (name, "<") == 0)
3793 {
3794 cmpltr = 2;
3795 }
3796 else if (strcmp (name, "<=") == 0)
3797 {
3798 cmpltr = 3;
3799 }
3800 else if (strcmp (name, "<<") == 0)
3801 {
3802 cmpltr = 4;
3803 }
3804 else if (strcmp (name, "<<=") == 0)
3805 {
3806 cmpltr = 5;
3807 }
3808 else if (strcasecmp (name, "sv") == 0)
3809 {
3810 cmpltr = 6;
3811 }
3812 else if (strcasecmp (name, "od") == 0)
3813 {
3814 cmpltr = 7;
3815 }
3816 /* If we have something like addb,n then there is no condition
3817 completer. */
3818 else if (strcasecmp (name, "n") == 0 && isbranch)
3819 {
3820 cmpltr = 0;
3821 }
3822 else
3823 {
3824 cmpltr = -1;
3825 }
3826 **s = c;
3827 }
3828
3829 /* Reset pointers if this was really a ,n for a branch instruction. */
3830 if (cmpltr == 0 && *name == 'n' && isbranch)
3831 *s = save_s;
3832
3833 return cmpltr;
3834 }
3835
3836 /* Parse a negated compare/subtract completer returning the
3837 number (for encoding in instrutions) of the given completer.
3838
3839 ISBRANCH specifies whether or not this is parsing a condition
3840 completer for a branch (vs a nullification completer for a
3841 computational instruction. */
3842
3843 static int
3844 pa_parse_neg_cmpsub_cmpltr (s, isbranch)
3845 char **s;
3846 int isbranch;
3847 {
3848 int cmpltr;
3849 char *name = *s + 1;
3850 char c;
3851 char *save_s = *s;
3852
3853 cmpltr = 0;
3854 if (**s == ',')
3855 {
3856 *s += 1;
3857 while (**s != ',' && **s != ' ' && **s != '\t')
3858 *s += 1;
3859 c = **s;
3860 **s = 0x00;
3861 if (strcasecmp (name, "tr") == 0)
3862 {
3863 cmpltr = 0;
3864 }
3865 else if (strcmp (name, "<>") == 0)
3866 {
3867 cmpltr = 1;
3868 }
3869 else if (strcmp (name, ">=") == 0)
3870 {
3871 cmpltr = 2;
3872 }
3873 else if (strcmp (name, ">") == 0)
3874 {
3875 cmpltr = 3;
3876 }
3877 else if (strcmp (name, ">>=") == 0)
3878 {
3879 cmpltr = 4;
3880 }
3881 else if (strcmp (name, ">>") == 0)
3882 {
3883 cmpltr = 5;
3884 }
3885 else if (strcasecmp (name, "nsv") == 0)
3886 {
3887 cmpltr = 6;
3888 }
3889 else if (strcasecmp (name, "ev") == 0)
3890 {
3891 cmpltr = 7;
3892 }
3893 /* If we have something like addb,n then there is no condition
3894 completer. */
3895 else if (strcasecmp (name, "n") == 0 && isbranch)
3896 {
3897 cmpltr = 0;
3898 }
3899 else
3900 {
3901 cmpltr = -1;
3902 }
3903 **s = c;
3904 }
3905
3906 /* Reset pointers if this was really a ,n for a branch instruction. */
3907 if (cmpltr == 0 && *name == 'n' && isbranch)
3908 *s = save_s;
3909
3910 return cmpltr;
3911 }
3912
3913 /* Parse a non-negated addition completer returning the number
3914 (for encoding in instrutions) of the given completer.
3915
3916 ISBRANCH specifies whether or not this is parsing a condition
3917 completer for a branch (vs a nullification completer for a
3918 computational instruction. */
3919
3920 static int
3921 pa_parse_nonneg_add_cmpltr (s, isbranch)
3922 char **s;
3923 int isbranch;
3924 {
3925 int cmpltr;
3926 char *name = *s + 1;
3927 char c;
3928 char *save_s = *s;
3929
3930 cmpltr = 0;
3931 if (**s == ',')
3932 {
3933 *s += 1;
3934 while (**s != ',' && **s != ' ' && **s != '\t')
3935 *s += 1;
3936 c = **s;
3937 **s = 0x00;
3938 if (strcmp (name, "=") == 0)
3939 {
3940 cmpltr = 1;
3941 }
3942 else if (strcmp (name, "<") == 0)
3943 {
3944 cmpltr = 2;
3945 }
3946 else if (strcmp (name, "<=") == 0)
3947 {
3948 cmpltr = 3;
3949 }
3950 else if (strcasecmp (name, "nuv") == 0)
3951 {
3952 cmpltr = 4;
3953 }
3954 else if (strcasecmp (name, "znv") == 0)
3955 {
3956 cmpltr = 5;
3957 }
3958 else if (strcasecmp (name, "sv") == 0)
3959 {
3960 cmpltr = 6;
3961 }
3962 else if (strcasecmp (name, "od") == 0)
3963 {
3964 cmpltr = 7;
3965 }
3966 /* If we have something like addb,n then there is no condition
3967 completer. */
3968 else if (strcasecmp (name, "n") == 0 && isbranch)
3969 {
3970 cmpltr = 0;
3971 }
3972 else
3973 {
3974 cmpltr = -1;
3975 }
3976 **s = c;
3977 }
3978
3979 /* Reset pointers if this was really a ,n for a branch instruction. */
3980 if (cmpltr == 0 && *name == 'n' && isbranch)
3981 *s = save_s;
3982
3983 return cmpltr;
3984 }
3985
3986 /* Parse a negated addition completer returning the number
3987 (for encoding in instrutions) of the given completer.
3988
3989 ISBRANCH specifies whether or not this is parsing a condition
3990 completer for a branch (vs a nullification completer for a
3991 computational instruction. */
3992
3993 static int
3994 pa_parse_neg_add_cmpltr (s, isbranch)
3995 char **s;
3996 int isbranch;
3997 {
3998 int cmpltr;
3999 char *name = *s + 1;
4000 char c;
4001 char *save_s = *s;
4002
4003 cmpltr = 0;
4004 if (**s == ',')
4005 {
4006 *s += 1;
4007 while (**s != ',' && **s != ' ' && **s != '\t')
4008 *s += 1;
4009 c = **s;
4010 **s = 0x00;
4011 if (strcasecmp (name, "tr") == 0)
4012 {
4013 cmpltr = 0;
4014 }
4015 else if (strcmp (name, "<>") == 0)
4016 {
4017 cmpltr = 1;
4018 }
4019 else if (strcmp (name, ">=") == 0)
4020 {
4021 cmpltr = 2;
4022 }
4023 else if (strcmp (name, ">") == 0)
4024 {
4025 cmpltr = 3;
4026 }
4027 else if (strcmp (name, "uv") == 0)
4028 {
4029 cmpltr = 4;
4030 }
4031 else if (strcmp (name, "vnz") == 0)
4032 {
4033 cmpltr = 5;
4034 }
4035 else if (strcasecmp (name, "nsv") == 0)
4036 {
4037 cmpltr = 6;
4038 }
4039 else if (strcasecmp (name, "ev") == 0)
4040 {
4041 cmpltr = 7;
4042 }
4043 /* If we have something like addb,n then there is no condition
4044 completer. */
4045 else if (strcasecmp (name, "n") == 0 && isbranch)
4046 {
4047 cmpltr = 0;
4048 }
4049 else
4050 {
4051 cmpltr = -1;
4052 }
4053 **s = c;
4054 }
4055
4056 /* Reset pointers if this was really a ,n for a branch instruction. */
4057 if (cmpltr == 0 && *name == 'n' && isbranch)
4058 *s = save_s;
4059
4060 return cmpltr;
4061 }
4062
4063 /* Handle a .BLOCK type pseudo-op. */
4064
4065 static void
4066 pa_block (z)
4067 int z;
4068 {
4069 char *p;
4070 long int temp_fill;
4071 unsigned int temp_size;
4072 int i;
4073
4074 temp_size = get_absolute_expression ();
4075
4076 /* Always fill with zeros, that's what the HP assembler does. */
4077 temp_fill = 0;
4078
4079 p = frag_var (rs_fill, (int) temp_size, (int) temp_size,
4080 (relax_substateT) 0, (symbolS *) 0, 1, NULL);
4081 bzero (p, temp_size);
4082
4083 /* Convert 2 bytes at a time. */
4084
4085 for (i = 0; i < temp_size; i += 2)
4086 {
4087 md_number_to_chars (p + i,
4088 (valueT) temp_fill,
4089 (int) ((temp_size - i) > 2 ? 2 : (temp_size - i)));
4090 }
4091
4092 pa_undefine_label ();
4093 demand_empty_rest_of_line ();
4094 return;
4095 }
4096
4097 /* Handle a .CALL pseudo-op. This involves storing away information
4098 about where arguments are to be found so the linker can detect
4099 (and correct) argument location mismatches between caller and callee. */
4100
4101 static void
4102 pa_call (unused)
4103 int unused;
4104 {
4105 pa_call_args (&last_call_desc);
4106 demand_empty_rest_of_line ();
4107 return;
4108 }
4109
4110 /* Do the dirty work of building a call descriptor which describes
4111 where the caller placed arguments to a function call. */
4112
4113 static void
4114 pa_call_args (call_desc)
4115 struct call_desc *call_desc;
4116 {
4117 char *name, c, *p;
4118 unsigned int temp, arg_reloc;
4119
4120 while (!is_end_of_statement ())
4121 {
4122 name = input_line_pointer;
4123 c = get_symbol_end ();
4124 /* Process a source argument. */
4125 if ((strncasecmp (name, "argw", 4) == 0))
4126 {
4127 temp = atoi (name + 4);
4128 p = input_line_pointer;
4129 *p = c;
4130 input_line_pointer++;
4131 name = input_line_pointer;
4132 c = get_symbol_end ();
4133 arg_reloc = pa_build_arg_reloc (name);
4134 call_desc->arg_reloc |= pa_align_arg_reloc (temp, arg_reloc);
4135 }
4136 /* Process a return value. */
4137 else if ((strncasecmp (name, "rtnval", 6) == 0))
4138 {
4139 p = input_line_pointer;
4140 *p = c;
4141 input_line_pointer++;
4142 name = input_line_pointer;
4143 c = get_symbol_end ();
4144 arg_reloc = pa_build_arg_reloc (name);
4145 call_desc->arg_reloc |= (arg_reloc & 0x3);
4146 }
4147 else
4148 {
4149 as_bad ("Invalid .CALL argument: %s", name);
4150 }
4151 p = input_line_pointer;
4152 *p = c;
4153 if (!is_end_of_statement ())
4154 input_line_pointer++;
4155 }
4156 }
4157
4158 /* Return TRUE if FRAG1 and FRAG2 are the same. */
4159
4160 static int
4161 is_same_frag (frag1, frag2)
4162 fragS *frag1;
4163 fragS *frag2;
4164 {
4165
4166 if (frag1 == NULL)
4167 return (FALSE);
4168 else if (frag2 == NULL)
4169 return (FALSE);
4170 else if (frag1 == frag2)
4171 return (TRUE);
4172 else if (frag2->fr_type == rs_fill && frag2->fr_fix == 0)
4173 return (is_same_frag (frag1, frag2->fr_next));
4174 else
4175 return (FALSE);
4176 }
4177
4178 #ifdef OBJ_ELF
4179 /* Build an entry in the UNWIND subspace from the given function
4180 attributes in CALL_INFO. This is not needed for SOM as using
4181 R_ENTRY and R_EXIT relocations allow the linker to handle building
4182 of the unwind spaces. */
4183
4184 static void
4185 pa_build_unwind_subspace (call_info)
4186 struct call_info *call_info;
4187 {
4188 char *unwind;
4189 asection *seg, *save_seg;
4190 subsegT subseg, save_subseg;
4191 int i;
4192 char c, *p;
4193
4194 /* Get into the right seg/subseg. This may involve creating
4195 the seg the first time through. Make sure to have the
4196 old seg/subseg so that we can reset things when we are done. */
4197 subseg = SUBSEG_UNWIND;
4198 seg = bfd_get_section_by_name (stdoutput, UNWIND_SECTION_NAME);
4199 if (seg == ASEC_NULL)
4200 {
4201 seg = bfd_make_section_old_way (stdoutput, UNWIND_SECTION_NAME);
4202 bfd_set_section_flags (stdoutput, seg,
4203 SEC_READONLY | SEC_HAS_CONTENTS
4204 | SEC_LOAD | SEC_RELOC);
4205 }
4206
4207 save_seg = now_seg;
4208 save_subseg = now_subseg;
4209 subseg_set (seg, subseg);
4210
4211
4212 /* Get some space to hold relocation information for the unwind
4213 descriptor. */
4214 p = frag_more (4);
4215 call_info->start_offset_frag = frag_now;
4216 call_info->start_frag_where = p - frag_now->fr_literal;
4217
4218 /* Relocation info. for start offset of the function. */
4219 fix_new_hppa (frag_now, p - frag_now->fr_literal, 4,
4220 call_info->start_symbol, (offsetT) 0,
4221 (expressionS *) NULL, 0, R_HPPA_UNWIND, e_fsel, 32, 0,
4222 (char *) 0);
4223
4224 /* We need to search for the first relocation involving the start_symbol of
4225 this call_info descriptor. */
4226 {
4227 fixS *fixP;
4228
4229 call_info->start_fix = seg_info (now_seg)->fix_root;
4230 for (fixP = call_info->start_fix; fixP; fixP = fixP->fx_next)
4231 {
4232 if (fixP->fx_addsy == call_info->start_symbol
4233 || fixP->fx_subsy == call_info->start_symbol)
4234 {
4235 call_info->start_fix = fixP;
4236 break;
4237 }
4238 }
4239 }
4240
4241 p = frag_more (4);
4242 call_info->end_offset_frag = frag_now;
4243 call_info->end_frag_where = p - frag_now->fr_literal;
4244
4245 /* Relocation info. for end offset of the function. */
4246 fix_new_hppa (frag_now, p - frag_now->fr_literal, 4,
4247 call_info->end_symbol, (offsetT) 0,
4248 (expressionS *) NULL, 0, R_HPPA_UNWIND, e_fsel, 32, 0,
4249 (char *) 0);
4250
4251 /* We need to search for the first relocation involving the end_symbol of
4252 this call_info descriptor. */
4253 {
4254 fixS *fixP;
4255
4256 call_info->end_fix = seg_info (now_seg)->fix_root; /* the default */
4257 for (fixP = call_info->end_fix; fixP; fixP = fixP->fx_next)
4258 {
4259 if (fixP->fx_addsy == call_info->end_symbol
4260 || fixP->fx_subsy == call_info->end_symbol)
4261 {
4262 call_info->end_fix = fixP;
4263 break;
4264 }
4265 }
4266 }
4267
4268 /* Dump it. */
4269 unwind = (char *) &call_info->ci_unwind;
4270 for (i = 8; i < sizeof (struct unwind_table); i++)
4271 {
4272 c = *(unwind + i);
4273 {
4274 FRAG_APPEND_1_CHAR (c);
4275 }
4276 }
4277
4278 /* Return back to the original segment/subsegment. */
4279 subseg_set (save_seg, save_subseg);
4280 }
4281 #endif
4282
4283 /* Process a .CALLINFO pseudo-op. This information is used later
4284 to build unwind descriptors and maybe one day to support
4285 .ENTER and .LEAVE. */
4286
4287 static void
4288 pa_callinfo (unused)
4289 int unused;
4290 {
4291 char *name, c, *p;
4292 int temp;
4293
4294 /* .CALLINFO must appear within a procedure definition. */
4295 if (!within_procedure)
4296 as_bad (".callinfo is not within a procedure definition");
4297
4298 /* Mark the fact that we found the .CALLINFO for the
4299 current procedure. */
4300 callinfo_found = TRUE;
4301
4302 /* Iterate over the .CALLINFO arguments. */
4303 while (!is_end_of_statement ())
4304 {
4305 name = input_line_pointer;
4306 c = get_symbol_end ();
4307 /* Frame size specification. */
4308 if ((strncasecmp (name, "frame", 5) == 0))
4309 {
4310 p = input_line_pointer;
4311 *p = c;
4312 input_line_pointer++;
4313 temp = get_absolute_expression ();
4314 if ((temp & 0x3) != 0)
4315 {
4316 as_bad ("FRAME parameter must be a multiple of 8: %d\n", temp);
4317 temp = 0;
4318 }
4319
4320 /* callinfo is in bytes and unwind_desc is in 8 byte units. */
4321 last_call_info->ci_unwind.descriptor.frame_size = temp / 8;
4322
4323 }
4324 /* Entry register (GR, GR and SR) specifications. */
4325 else if ((strncasecmp (name, "entry_gr", 8) == 0))
4326 {
4327 p = input_line_pointer;
4328 *p = c;
4329 input_line_pointer++;
4330 temp = get_absolute_expression ();
4331 /* The HP assembler accepts 19 as the high bound for ENTRY_GR
4332 even though %r19 is caller saved. I think this is a bug in
4333 the HP assembler, and we are not going to emulate it. */
4334 if (temp < 3 || temp > 18)
4335 as_bad ("Value for ENTRY_GR must be in the range 3..18\n");
4336 last_call_info->ci_unwind.descriptor.entry_gr = temp - 2;
4337 }
4338 else if ((strncasecmp (name, "entry_fr", 8) == 0))
4339 {
4340 p = input_line_pointer;
4341 *p = c;
4342 input_line_pointer++;
4343 temp = get_absolute_expression ();
4344 /* Similarly the HP assembler takes 31 as the high bound even
4345 though %fr21 is the last callee saved floating point register. */
4346 if (temp < 12 || temp > 21)
4347 as_bad ("Value for ENTRY_FR must be in the range 12..21\n");
4348 last_call_info->ci_unwind.descriptor.entry_fr = temp - 11;
4349 }
4350 else if ((strncasecmp (name, "entry_sr", 8) == 0))
4351 {
4352 p = input_line_pointer;
4353 *p = c;
4354 input_line_pointer++;
4355 temp = get_absolute_expression ();
4356 if (temp != 3)
4357 as_bad ("Value for ENTRY_SR must be 3\n");
4358 last_call_info->entry_sr = temp - 2;
4359 }
4360 /* Note whether or not this function performs any calls. */
4361 else if ((strncasecmp (name, "calls", 5) == 0) ||
4362 (strncasecmp (name, "caller", 6) == 0))
4363 {
4364 p = input_line_pointer;
4365 *p = c;
4366 last_call_info->makes_calls = 1;
4367 }
4368 else if ((strncasecmp (name, "no_calls", 8) == 0))
4369 {
4370 p = input_line_pointer;
4371 *p = c;
4372 last_call_info->makes_calls = 0;
4373 }
4374 /* Should RP be saved into the stack. */
4375 else if ((strncasecmp (name, "save_rp", 7) == 0))
4376 {
4377 p = input_line_pointer;
4378 *p = c;
4379 last_call_info->ci_unwind.descriptor.save_rp = 1;
4380 }
4381 /* Likewise for SP. */
4382 else if ((strncasecmp (name, "save_sp", 7) == 0))
4383 {
4384 p = input_line_pointer;
4385 *p = c;
4386 last_call_info->ci_unwind.descriptor.save_sp = 1;
4387 }
4388 /* Is this an unwindable procedure. If so mark it so
4389 in the unwind descriptor. */
4390 else if ((strncasecmp (name, "no_unwind", 9) == 0))
4391 {
4392 p = input_line_pointer;
4393 *p = c;
4394 last_call_info->ci_unwind.descriptor.cannot_unwind = 1;
4395 }
4396 /* Is this an interrupt routine. If so mark it in the
4397 unwind descriptor. */
4398 else if ((strncasecmp (name, "hpux_int", 7) == 0))
4399 {
4400 p = input_line_pointer;
4401 *p = c;
4402 last_call_info->ci_unwind.descriptor.hpux_interrupt_marker = 1;
4403 }
4404 else
4405 {
4406 as_bad ("Invalid .CALLINFO argument: %s", name);
4407 }
4408 if (!is_end_of_statement ())
4409 input_line_pointer++;
4410 }
4411
4412 demand_empty_rest_of_line ();
4413 return;
4414 }
4415
4416 /* Switch into the code subspace. */
4417
4418 static void
4419 pa_code (unused)
4420 int unused;
4421 {
4422 sd_chain_struct *sdchain;
4423
4424 /* First time through it might be necessary to create the
4425 $TEXT$ space. */
4426 if ((sdchain = is_defined_space ("$TEXT$")) == NULL)
4427 {
4428 sdchain = create_new_space (pa_def_spaces[0].name,
4429 pa_def_spaces[0].spnum,
4430 pa_def_spaces[0].loadable,
4431 pa_def_spaces[0].defined,
4432 pa_def_spaces[0].private,
4433 pa_def_spaces[0].sort,
4434 pa_def_spaces[0].segment, 0);
4435 }
4436
4437 SPACE_DEFINED (sdchain) = 1;
4438 subseg_set (text_section, SUBSEG_CODE);
4439 demand_empty_rest_of_line ();
4440 return;
4441 }
4442
4443 /* This is different than the standard GAS s_comm(). On HP9000/800 machines,
4444 the .comm pseudo-op has the following symtax:
4445
4446 <label> .comm <length>
4447
4448 where <label> is optional and is a symbol whose address will be the start of
4449 a block of memory <length> bytes long. <length> must be an absolute
4450 expression. <length> bytes will be allocated in the current space
4451 and subspace. */
4452
4453 static void
4454 pa_comm (unused)
4455 int unused;
4456 {
4457 unsigned int size;
4458 symbolS *symbol;
4459 label_symbol_struct *label_symbol = pa_get_label ();
4460
4461 if (label_symbol)
4462 symbol = label_symbol->lss_label;
4463 else
4464 symbol = NULL;
4465
4466 SKIP_WHITESPACE ();
4467 size = get_absolute_expression ();
4468
4469 if (symbol)
4470 {
4471 /* It is incorrect to check S_IS_DEFINED at this point as
4472 the symbol will *always* be defined. FIXME. How to
4473 correctly determine when this label really as been
4474 defined before. */
4475 if (S_GET_VALUE (symbol))
4476 {
4477 if (S_GET_VALUE (symbol) != size)
4478 {
4479 as_warn ("Length of .comm \"%s\" is already %d. Not changed.",
4480 S_GET_NAME (symbol), S_GET_VALUE (symbol));
4481 return;
4482 }
4483 }
4484 else
4485 {
4486 S_SET_VALUE (symbol, size);
4487 S_SET_SEGMENT (symbol, &bfd_und_section);
4488 S_SET_EXTERNAL (symbol);
4489 }
4490 }
4491 demand_empty_rest_of_line ();
4492 }
4493
4494 /* Process a .COPYRIGHT pseudo-op. */
4495
4496 static void
4497 pa_copyright (unused)
4498 int unused;
4499 {
4500 char *name;
4501 char c;
4502
4503 SKIP_WHITESPACE ();
4504 if (*input_line_pointer == '\"')
4505 {
4506 ++input_line_pointer;
4507 name = input_line_pointer;
4508 while ((c = next_char_of_string ()) >= 0)
4509 ;
4510 c = *input_line_pointer;
4511 *input_line_pointer = '\0';
4512 *(input_line_pointer - 1) = '\0';
4513 {
4514 /* FIXME. Not supported */
4515 abort ();
4516 }
4517 *input_line_pointer = c;
4518 }
4519 else
4520 {
4521 as_bad ("Expected \"-ed string");
4522 }
4523 pa_undefine_label ();
4524 demand_empty_rest_of_line ();
4525 }
4526
4527 /* Process a .END pseudo-op. */
4528
4529 static void
4530 pa_end (unused)
4531 int unused;
4532 {
4533 demand_empty_rest_of_line ();
4534 return;
4535 }
4536
4537 /* Process a .ENTER pseudo-op. This is not supported. */
4538 static void
4539 pa_enter (unused)
4540 int unused;
4541 {
4542 abort ();
4543 return;
4544 }
4545
4546 /* Process a .ENTRY pseudo-op. .ENTRY marks the beginning of the
4547 procesure. */
4548 static void
4549 pa_entry (unused)
4550 int unused;
4551 {
4552 if (!within_procedure)
4553 as_bad ("Misplaced .entry. Ignored.");
4554 else
4555 {
4556 if (!callinfo_found)
4557 as_bad ("Missing .callinfo.");
4558
4559 last_call_info->start_frag = frag_now;
4560 }
4561 demand_empty_rest_of_line ();
4562 within_entry_exit = TRUE;
4563
4564 /* Go back to the last symbol and turn on the BSF_FUNCTION flag.
4565 It will not be on if no .EXPORT pseudo-op exists (static function). */
4566 last_call_info->start_symbol->bsym->flags |= BSF_FUNCTION;
4567
4568 #ifdef OBJ_SOM
4569 /* SOM defers building of unwind descriptors until the link phase.
4570 The assembler is responsible for creating an R_ENTRY relocation
4571 to mark the beginning of a region and hold the unwind bits, and
4572 for creating an R_EXIT relocation to mark the end of the region.
4573
4574 FIXME. ELF should be using the same conventions! The problem
4575 is an unwind requires too much relocation space. Hmmm. Maybe
4576 if we split the unwind bits up between the relocations which
4577 denote the entry and exit points. */
4578 {
4579 char *where = frag_more (0);
4580
4581 fix_new_hppa (frag_now, where - frag_now->fr_literal, 0,
4582 last_call_info->start_symbol, (offsetT) 0, NULL,
4583 0, R_HPPA_ENTRY, e_fsel, 0, 0,
4584 (char *) &last_call_info->ci_unwind.descriptor);
4585 }
4586 #endif
4587
4588 return;
4589 }
4590
4591 /* Handle a .EQU pseudo-op. */
4592
4593 static void
4594 pa_equ (reg)
4595 int reg;
4596 {
4597 label_symbol_struct *label_symbol = pa_get_label ();
4598 symbolS *symbol;
4599
4600 if (label_symbol)
4601 {
4602 symbol = label_symbol->lss_label;
4603 S_SET_VALUE (symbol, (unsigned int) get_absolute_expression ());
4604 S_SET_SEGMENT (symbol, &bfd_abs_section);
4605 }
4606 else
4607 {
4608 if (reg)
4609 as_bad (".REG must use a label");
4610 else
4611 as_bad (".EQU must use a label");
4612 }
4613
4614 pa_undefine_label ();
4615 demand_empty_rest_of_line ();
4616 return;
4617 }
4618
4619 /* Helper function. Does processing for the end of a function. This
4620 usually involves creating some relocations or building special
4621 symbols to mark the end of the function. */
4622
4623 static void
4624 process_exit ()
4625 {
4626 char *where;
4627
4628 where = frag_more (0);
4629
4630 #ifdef OBJ_ELF
4631 /* ELF does not have EXIT relocations. All we do is create a
4632 temporary symbol marking the end of the function. */
4633 {
4634 char *name = (char *) xmalloc (strlen ("L$\001end_") +
4635 strlen (S_GET_NAME (last_call_info->start_symbol)) + 1);
4636
4637 if (name)
4638 {
4639 symbolS *symbolP;
4640
4641 strcpy (name, "L$\001end_");
4642 strcat (name, S_GET_NAME (last_call_info->start_symbol));
4643
4644 symbolP = symbol_find (name);
4645 if (symbolP)
4646 as_warn ("Symbol '%s' already defined.", name);
4647 else
4648 {
4649 /* symbol value should be the offset of the
4650 last instruction of the function */
4651 symbolP = symbol_new (name, now_seg,
4652 (valueT) (obstack_next_free (&frags)
4653 - frag_now->fr_literal - 4),
4654 frag_now);
4655
4656 assert (symbolP);
4657 symbolP->bsym->flags = BSF_LOCAL;
4658 symbol_table_insert (symbolP);
4659 }
4660 if (symbolP)
4661 last_call_info->end_symbol = symbolP;
4662 else
4663 as_bad ("Symbol '%s' could not be created.", name);
4664
4665 }
4666 else
4667 as_bad ("No memory for symbol name.");
4668 }
4669
4670 /* Stuff away the location of the frag for the end of the function,
4671 and call pa_build_unwind_subspace to add an entry in the unwind
4672 table. */
4673 last_call_info->end_frag = frag_now;
4674 pa_build_unwind_subspace (last_call_info);
4675 #else
4676 /* SOM defers building of unwind descriptors until the link phase.
4677 The assembler is responsible for creating an R_ENTRY relocation
4678 to mark the beginning of a region and hold the unwind bits, and
4679 for creating an R_EXIT relocation to mark the end of the region.
4680
4681 FIXME. ELF should be using the same conventions! The problem
4682 is an unwind requires too much relocation space. Hmmm. Maybe
4683 if we split the unwind bits up between the relocations which
4684 denote the entry and exit points. */
4685 fix_new_hppa (frag_now, where - frag_now->fr_literal, 0,
4686 last_call_info->start_symbol, (offsetT) 0,
4687 NULL, 0, R_HPPA_EXIT, e_fsel, 0, 0, NULL);
4688 #endif
4689
4690 exit_processing_complete = TRUE;
4691 }
4692
4693 /* Process a .EXIT pseudo-op. */
4694
4695 static void
4696 pa_exit (unused)
4697 int unused;
4698 {
4699 if (!within_procedure)
4700 as_bad (".EXIT must appear within a procedure");
4701 else
4702 {
4703 if (!callinfo_found)
4704 as_bad ("Missing .callinfo");
4705 else
4706 {
4707 if (!within_entry_exit)
4708 as_bad ("No .ENTRY for this .EXIT");
4709 else
4710 {
4711 within_entry_exit = FALSE;
4712 process_exit ();
4713 }
4714 }
4715 }
4716 demand_empty_rest_of_line ();
4717 return;
4718 }
4719
4720 /* Process a .EXPORT directive. This makes functions external
4721 and provides information such as argument relocation entries
4722 to callers. */
4723
4724 static void
4725 pa_export (unused)
4726 int unused;
4727 {
4728 char *name, c, *p;
4729 symbolS *symbol;
4730
4731 name = input_line_pointer;
4732 c = get_symbol_end ();
4733 /* Make sure the given symbol exists. */
4734 if ((symbol = symbol_find_or_make (name)) == NULL)
4735 {
4736 as_bad ("Cannot define export symbol: %s\n", name);
4737 p = input_line_pointer;
4738 *p = c;
4739 input_line_pointer++;
4740 }
4741 else
4742 {
4743 /* OK. Set the external bits and process argument relocations. */
4744 S_SET_EXTERNAL (symbol);
4745 p = input_line_pointer;
4746 *p = c;
4747 if (!is_end_of_statement ())
4748 {
4749 input_line_pointer++;
4750 pa_type_args (symbol, 1);
4751 #ifdef OBJ_ELF
4752 pa_build_symextn_section ();
4753 #endif
4754 }
4755 }
4756
4757 demand_empty_rest_of_line ();
4758 return;
4759 }
4760
4761 /* Helper function to process arguments to a .EXPORT pseudo-op. */
4762
4763 static void
4764 pa_type_args (symbolP, is_export)
4765 symbolS *symbolP;
4766 int is_export;
4767 {
4768 char *name, c, *p;
4769 unsigned int temp, arg_reloc;
4770 pa_symbol_type type = SYMBOL_TYPE_UNKNOWN;
4771 obj_symbol_type *symbol = (obj_symbol_type *) symbolP->bsym;
4772
4773 if (strncasecmp (input_line_pointer, "absolute", 8) == 0)
4774
4775 {
4776 input_line_pointer += 8;
4777 symbolP->bsym->flags &= ~BSF_FUNCTION;
4778 S_SET_SEGMENT (symbolP, &bfd_abs_section);
4779 type = SYMBOL_TYPE_ABSOLUTE;
4780 }
4781 else if (strncasecmp (input_line_pointer, "code", 4) == 0)
4782 {
4783 input_line_pointer += 4;
4784 /* IMPORTing/EXPORTing CODE types for functions is meaningless for SOM,
4785 instead one should be IMPORTing/EXPORTing ENTRY types.
4786
4787 Complain if one tries to EXPORT a CODE type since that's never
4788 done. Both GCC and HP C still try to IMPORT CODE types, so
4789 silently fix them to be ENTRY types. */
4790 if (symbolP->bsym->flags & BSF_FUNCTION)
4791 {
4792 if (is_export)
4793 as_tsktsk ("Using ENTRY rather than CODE in export directive for %s", symbolP->bsym->name);
4794
4795 symbolP->bsym->flags |= BSF_FUNCTION;
4796 type = SYMBOL_TYPE_ENTRY;
4797 }
4798 else
4799 {
4800 symbolP->bsym->flags &= ~BSF_FUNCTION;
4801 type = SYMBOL_TYPE_CODE;
4802 }
4803 }
4804 else if (strncasecmp (input_line_pointer, "data", 4) == 0)
4805 {
4806 input_line_pointer += 4;
4807 symbolP->bsym->flags &= ~BSF_FUNCTION;
4808 type = SYMBOL_TYPE_DATA;
4809 }
4810 else if ((strncasecmp (input_line_pointer, "entry", 5) == 0))
4811 {
4812 input_line_pointer += 5;
4813 symbolP->bsym->flags |= BSF_FUNCTION;
4814 type = SYMBOL_TYPE_ENTRY;
4815 }
4816 else if (strncasecmp (input_line_pointer, "millicode", 9) == 0)
4817 {
4818 input_line_pointer += 9;
4819 symbolP->bsym->flags |= BSF_FUNCTION;
4820 type = SYMBOL_TYPE_MILLICODE;
4821 }
4822 else if (strncasecmp (input_line_pointer, "plabel", 6) == 0)
4823 {
4824 input_line_pointer += 6;
4825 symbolP->bsym->flags &= ~BSF_FUNCTION;
4826 type = SYMBOL_TYPE_PLABEL;
4827 }
4828 else if (strncasecmp (input_line_pointer, "pri_prog", 8) == 0)
4829 {
4830 input_line_pointer += 8;
4831 symbolP->bsym->flags |= BSF_FUNCTION;
4832 type = SYMBOL_TYPE_PRI_PROG;
4833 }
4834 else if (strncasecmp (input_line_pointer, "sec_prog", 8) == 0)
4835 {
4836 input_line_pointer += 8;
4837 symbolP->bsym->flags |= BSF_FUNCTION;
4838 type = SYMBOL_TYPE_SEC_PROG;
4839 }
4840
4841 /* SOM requires much more information about symbol types
4842 than BFD understands. This is how we get this information
4843 to the SOM BFD backend. */
4844 #ifdef obj_set_symbol_type
4845 obj_set_symbol_type (symbolP->bsym, (int) type);
4846 #endif
4847
4848 /* Now that the type of the exported symbol has been handled,
4849 handle any argument relocation information. */
4850 while (!is_end_of_statement ())
4851 {
4852 if (*input_line_pointer == ',')
4853 input_line_pointer++;
4854 name = input_line_pointer;
4855 c = get_symbol_end ();
4856 /* Argument sources. */
4857 if ((strncasecmp (name, "argw", 4) == 0))
4858 {
4859 p = input_line_pointer;
4860 *p = c;
4861 input_line_pointer++;
4862 temp = atoi (name + 4);
4863 name = input_line_pointer;
4864 c = get_symbol_end ();
4865 arg_reloc = pa_align_arg_reloc (temp, pa_build_arg_reloc (name));
4866 symbol->tc_data.hppa_arg_reloc |= arg_reloc;
4867 *input_line_pointer = c;
4868 }
4869 /* The return value. */
4870 else if ((strncasecmp (name, "rtnval", 6)) == 0)
4871 {
4872 p = input_line_pointer;
4873 *p = c;
4874 input_line_pointer++;
4875 name = input_line_pointer;
4876 c = get_symbol_end ();
4877 arg_reloc = pa_build_arg_reloc (name);
4878 symbol->tc_data.hppa_arg_reloc |= arg_reloc;
4879 *input_line_pointer = c;
4880 }
4881 /* Privelege level. */
4882 else if ((strncasecmp (name, "priv_lev", 8)) == 0)
4883 {
4884 p = input_line_pointer;
4885 *p = c;
4886 input_line_pointer++;
4887 temp = atoi (input_line_pointer);
4888 c = get_symbol_end ();
4889 *input_line_pointer = c;
4890 }
4891 else
4892 {
4893 as_bad ("Undefined .EXPORT/.IMPORT argument (ignored): %s", name);
4894 p = input_line_pointer;
4895 *p = c;
4896 }
4897 if (!is_end_of_statement ())
4898 input_line_pointer++;
4899 }
4900 }
4901
4902 /* Handle an .IMPORT pseudo-op. Any symbol referenced in a given
4903 assembly file must either be defined in the assembly file, or
4904 explicitly IMPORTED from another. */
4905
4906 static void
4907 pa_import (unused)
4908 int unused;
4909 {
4910 char *name, c, *p;
4911 symbolS *symbol;
4912
4913 name = input_line_pointer;
4914 c = get_symbol_end ();
4915
4916 symbol = symbol_find_or_make (name);
4917 p = input_line_pointer;
4918 *p = c;
4919
4920 if (!is_end_of_statement ())
4921 {
4922 input_line_pointer++;
4923 pa_type_args (symbol, 0);
4924 }
4925 else
4926 {
4927 /* Sigh. To be compatable with the HP assembler and to help
4928 poorly written assembly code, we assign a type based on
4929 the the current segment. Note only BSF_FUNCTION really
4930 matters, we do not need to set the full SYMBOL_TYPE_* info here. */
4931 if (now_seg == text_section)
4932 symbol->bsym->flags |= BSF_FUNCTION;
4933
4934 /* If the section is undefined, then the symbol is undefined
4935 Since this is an import, leave the section undefined. */
4936 S_SET_SEGMENT (symbol, &bfd_und_section);
4937 }
4938
4939 demand_empty_rest_of_line ();
4940 return;
4941 }
4942
4943 /* Handle a .LABEL pseudo-op. */
4944
4945 static void
4946 pa_label (unused)
4947 int unused;
4948 {
4949 char *name, c, *p;
4950
4951 name = input_line_pointer;
4952 c = get_symbol_end ();
4953
4954 if (strlen (name) > 0)
4955 {
4956 colon (name);
4957 p = input_line_pointer;
4958 *p = c;
4959 }
4960 else
4961 {
4962 as_warn ("Missing label name on .LABEL");
4963 }
4964
4965 if (!is_end_of_statement ())
4966 {
4967 as_warn ("extra .LABEL arguments ignored.");
4968 ignore_rest_of_line ();
4969 }
4970 demand_empty_rest_of_line ();
4971 return;
4972 }
4973
4974 /* Handle a .LEAVE pseudo-op. This is not supported yet. */
4975
4976 static void
4977 pa_leave (unused)
4978 int unused;
4979 {
4980 abort ();
4981 }
4982
4983 /* Handle a .ORIGIN pseudo-op. */
4984
4985 static void
4986 pa_origin (unused)
4987 int unused;
4988 {
4989 s_org (0);
4990 pa_undefine_label ();
4991 return;
4992 }
4993
4994 /* Handle a .PARAM pseudo-op. This is much like a .EXPORT, except it
4995 is for static functions. FIXME. Should share more code with .EXPORT. */
4996
4997 static void
4998 pa_param (unused)
4999 int unused;
5000 {
5001 char *name, c, *p;
5002 symbolS *symbol;
5003
5004 name = input_line_pointer;
5005 c = get_symbol_end ();
5006
5007 if ((symbol = symbol_find_or_make (name)) == NULL)
5008 {
5009 as_bad ("Cannot define static symbol: %s\n", name);
5010 p = input_line_pointer;
5011 *p = c;
5012 input_line_pointer++;
5013 }
5014 else
5015 {
5016 S_CLEAR_EXTERNAL (symbol);
5017 p = input_line_pointer;
5018 *p = c;
5019 if (!is_end_of_statement ())
5020 {
5021 input_line_pointer++;
5022 pa_type_args (symbol, 0);
5023 }
5024 }
5025
5026 demand_empty_rest_of_line ();
5027 return;
5028 }
5029
5030 /* Handle a .PROC pseudo-op. It is used to mark the beginning
5031 of a procedure from a syntatical point of view. */
5032
5033 static void
5034 pa_proc (unused)
5035 int unused;
5036 {
5037 struct call_info *call_info;
5038
5039 if (within_procedure)
5040 as_fatal ("Nested procedures");
5041
5042 /* Reset global variables for new procedure. */
5043 callinfo_found = FALSE;
5044 within_procedure = TRUE;
5045 exit_processing_complete = FALSE;
5046
5047 /* Create another call_info structure. */
5048 call_info = (struct call_info *) xmalloc (sizeof (struct call_info));
5049
5050 if (!call_info)
5051 as_fatal ("Cannot allocate unwind descriptor\n");
5052
5053 bzero (call_info, sizeof (struct call_info));
5054
5055 call_info->ci_next = NULL;
5056
5057 if (call_info_root == NULL)
5058 {
5059 call_info_root = call_info;
5060 last_call_info = call_info;
5061 }
5062 else
5063 {
5064 last_call_info->ci_next = call_info;
5065 last_call_info = call_info;
5066 }
5067
5068 /* set up defaults on call_info structure */
5069
5070 call_info->ci_unwind.descriptor.cannot_unwind = 0;
5071 call_info->ci_unwind.descriptor.region_desc = 1;
5072 call_info->ci_unwind.descriptor.hpux_interrupt_marker = 0;
5073 call_info->entry_sr = ~0;
5074 call_info->makes_calls = 1;
5075
5076 /* If we got a .PROC pseudo-op, we know that the function is defined
5077 locally. Make sure it gets into the symbol table. */
5078 {
5079 label_symbol_struct *label_symbol = pa_get_label ();
5080
5081 if (label_symbol)
5082 {
5083 if (label_symbol->lss_label)
5084 {
5085 last_call_info->start_symbol = label_symbol->lss_label;
5086 label_symbol->lss_label->bsym->flags |= BSF_FUNCTION;
5087 }
5088 else
5089 as_bad ("Missing function name for .PROC (corrupted label)");
5090 }
5091 else
5092 as_bad ("Missing function name for .PROC");
5093 }
5094
5095 demand_empty_rest_of_line ();
5096 return;
5097 }
5098
5099 /* Process the syntatical end of a procedure. Make sure all the
5100 appropriate pseudo-ops were found within the procedure. */
5101
5102 static void
5103 pa_procend (unused)
5104 int unused;
5105 {
5106
5107 if (!within_procedure)
5108 as_bad ("misplaced .procend");
5109
5110 if (!callinfo_found)
5111 as_bad ("Missing .callinfo for this procedure");
5112
5113 if (within_entry_exit)
5114 as_bad ("Missing .EXIT for a .ENTRY");
5115
5116 if (!exit_processing_complete)
5117 process_exit ();
5118
5119 within_procedure = FALSE;
5120 demand_empty_rest_of_line ();
5121 return;
5122 }
5123
5124 /* Parse the parameters to a .SPACE directive; if CREATE_FLAG is nonzero,
5125 then create a new space entry to hold the information specified
5126 by the parameters to the .SPACE directive. */
5127
5128 static sd_chain_struct *
5129 pa_parse_space_stmt (space_name, create_flag)
5130 char *space_name;
5131 int create_flag;
5132 {
5133 char *name, *ptemp, c;
5134 char loadable, defined, private, sort;
5135 int spnum;
5136 asection *seg = NULL;
5137 sd_chain_struct *space;
5138
5139 /* load default values */
5140 spnum = 0;
5141 sort = 0;
5142 loadable = TRUE;
5143 defined = TRUE;
5144 private = FALSE;
5145 if (strcasecmp (space_name, "$TEXT$") == 0)
5146 {
5147 seg = pa_def_spaces[0].segment;
5148 sort = pa_def_spaces[0].sort;
5149 }
5150 else if (strcasecmp (space_name, "$PRIVATE$") == 0)
5151 {
5152 seg = pa_def_spaces[1].segment;
5153 sort = pa_def_spaces[1].sort;
5154 }
5155
5156 if (!is_end_of_statement ())
5157 {
5158 print_errors = FALSE;
5159 ptemp = input_line_pointer + 1;
5160 /* First see if the space was specified as a number rather than
5161 as a name. According to the PA assembly manual the rest of
5162 the line should be ignored. */
5163 if ((spnum = pa_parse_number (&ptemp, 0)) >= 0)
5164 input_line_pointer = ptemp;
5165 else
5166 {
5167 while (!is_end_of_statement ())
5168 {
5169 input_line_pointer++;
5170 name = input_line_pointer;
5171 c = get_symbol_end ();
5172 if ((strncasecmp (name, "SPNUM", 5) == 0))
5173 {
5174 *input_line_pointer = c;
5175 input_line_pointer++;
5176 spnum = get_absolute_expression ();
5177 }
5178 else if ((strncasecmp (name, "SORT", 4) == 0))
5179 {
5180 *input_line_pointer = c;
5181 input_line_pointer++;
5182 sort = get_absolute_expression ();
5183 }
5184 else if ((strncasecmp (name, "UNLOADABLE", 10) == 0))
5185 {
5186 *input_line_pointer = c;
5187 loadable = FALSE;
5188 }
5189 else if ((strncasecmp (name, "NOTDEFINED", 10) == 0))
5190 {
5191 *input_line_pointer = c;
5192 defined = FALSE;
5193 }
5194 else if ((strncasecmp (name, "PRIVATE", 7) == 0))
5195 {
5196 *input_line_pointer = c;
5197 private = TRUE;
5198 }
5199 else
5200 {
5201 as_bad ("Invalid .SPACE argument");
5202 *input_line_pointer = c;
5203 if (!is_end_of_statement ())
5204 input_line_pointer++;
5205 }
5206 }
5207 }
5208 print_errors = TRUE;
5209 }
5210
5211 if (create_flag && seg == NULL)
5212 seg = subseg_new (space_name, 0);
5213
5214 /* If create_flag is nonzero, then create the new space with
5215 the attributes computed above. Else set the values in
5216 an already existing space -- this can only happen for
5217 the first occurence of a built-in space. */
5218 if (create_flag)
5219 space = create_new_space (space_name, spnum, loadable, defined,
5220 private, sort, seg, 1);
5221 else
5222 {
5223 space = is_defined_space (space_name);
5224 SPACE_SPNUM (space) = spnum;
5225 SPACE_LOADABLE (space) = loadable & 1;
5226 SPACE_DEFINED (space) = defined & 1;
5227 SPACE_USER_DEFINED (space) = 1;
5228 SPACE_PRIVATE (space) = private & 1;
5229 SPACE_SORT (space) = sort & 0xff;
5230 space->sd_seg = seg;
5231 }
5232
5233 #ifdef obj_set_section_attributes
5234 obj_set_section_attributes (seg, defined, private, sort, spnum);
5235 #endif
5236
5237 return space;
5238 }
5239
5240 /* Adjust the frag's alignment according to the alignment needs
5241 of the given subspace/subsegment. */
5242
5243 static void
5244 pa_align_subseg (seg, subseg)
5245 asection *seg;
5246 subsegT subseg;
5247 {
5248 ssd_chain_struct *now_subspace;
5249 int alignment;
5250 int shift = 0;
5251
5252 now_subspace = pa_subsegment_to_subspace (seg, subseg);
5253 if (now_subspace)
5254 {
5255 if (SUBSPACE_ALIGN (now_subspace) == 0)
5256 alignment = now_subspace->ssd_last_align;
5257 else if (now_subspace->ssd_last_align > SUBSPACE_ALIGN (now_subspace))
5258 alignment = now_subspace->ssd_last_align;
5259 else
5260 alignment = SUBSPACE_ALIGN (now_subspace);
5261
5262 while ((1 << shift) < alignment)
5263 shift++;
5264 }
5265 else
5266 shift = bfd_get_section_alignment (stdoutput, seg);
5267
5268 frag_align (shift, 0);
5269 }
5270
5271 /* Handle a .SPACE pseudo-op; this switches the current space to the
5272 given space, creating the new space if necessary. */
5273
5274 static void
5275 pa_space (unused)
5276 int unused;
5277 {
5278 char *name, c, *space_name, *save_s;
5279 int temp;
5280 sd_chain_struct *sd_chain;
5281
5282 if (within_procedure)
5283 {
5284 as_bad ("Can\'t change spaces within a procedure definition. Ignored");
5285 ignore_rest_of_line ();
5286 }
5287 else
5288 {
5289 /* Check for some of the predefined spaces. FIXME: most of the code
5290 below is repeated several times, can we extract the common parts
5291 and place them into a subroutine or something similar? */
5292 if (strncasecmp (input_line_pointer, "$text$", 6) == 0)
5293 {
5294 input_line_pointer += 6;
5295 sd_chain = is_defined_space ("$TEXT$");
5296 if (sd_chain == NULL)
5297 sd_chain = pa_parse_space_stmt ("$TEXT$", 1);
5298 else if (SPACE_USER_DEFINED (sd_chain) == 0)
5299 sd_chain = pa_parse_space_stmt ("$TEXT$", 0);
5300
5301 current_space = sd_chain;
5302
5303 /* No need to align if we are already there. */
5304 if (now_seg != text_section)
5305 pa_align_subseg (now_seg, now_subseg);
5306
5307 subseg_set (text_section, sd_chain->sd_last_subseg);
5308
5309 current_subspace
5310 = pa_subsegment_to_subspace (text_section,
5311 sd_chain->sd_last_subseg);
5312 demand_empty_rest_of_line ();
5313 return;
5314 }
5315 if (strncasecmp (input_line_pointer, "$private$", 9) == 0)
5316 {
5317 input_line_pointer += 9;
5318 sd_chain = is_defined_space ("$PRIVATE$");
5319 if (sd_chain == NULL)
5320 sd_chain = pa_parse_space_stmt ("$PRIVATE$", 1);
5321 else if (SPACE_USER_DEFINED (sd_chain) == 0)
5322 sd_chain = pa_parse_space_stmt ("$PRIVATE$", 0);
5323
5324 current_space = sd_chain;
5325
5326 /* No need to align if we are already there. */
5327 if (now_seg != data_section)
5328 pa_align_subseg (now_seg, now_subseg);
5329
5330 subseg_set (data_section, sd_chain->sd_last_subseg);
5331 current_subspace
5332 = pa_subsegment_to_subspace (data_section,
5333 sd_chain->sd_last_subseg);
5334 demand_empty_rest_of_line ();
5335 return;
5336 }
5337 if (!strncasecmp (input_line_pointer,
5338 GDB_DEBUG_SPACE_NAME,
5339 strlen (GDB_DEBUG_SPACE_NAME)))
5340 {
5341 input_line_pointer += strlen (GDB_DEBUG_SPACE_NAME);
5342 sd_chain = is_defined_space (GDB_DEBUG_SPACE_NAME);
5343 if (sd_chain == NULL)
5344 sd_chain = pa_parse_space_stmt (GDB_DEBUG_SPACE_NAME, 1);
5345 else if (SPACE_USER_DEFINED (sd_chain) == 0)
5346 sd_chain = pa_parse_space_stmt (GDB_DEBUG_SPACE_NAME, 0);
5347
5348 current_space = sd_chain;
5349
5350 {
5351 asection *gdb_section
5352 = bfd_make_section_old_way (stdoutput, GDB_DEBUG_SPACE_NAME);
5353
5354 /* No need to align if we are already there. */
5355 if (strcmp (segment_name (now_seg), GDB_DEBUG_SPACE_NAME) != 0)
5356 pa_align_subseg (now_seg, now_subseg);
5357
5358 subseg_set (gdb_section, sd_chain->sd_last_subseg);
5359 current_subspace
5360 = pa_subsegment_to_subspace (gdb_section,
5361 sd_chain->sd_last_subseg);
5362 }
5363 demand_empty_rest_of_line ();
5364 return;
5365 }
5366
5367 /* It could be a space specified by number. */
5368 print_errors = 0;
5369 save_s = input_line_pointer;
5370 if ((temp = pa_parse_number (&input_line_pointer, 0)) >= 0)
5371 {
5372 if (sd_chain = pa_find_space_by_number (temp))
5373 {
5374 current_space = sd_chain;
5375
5376 if (now_seg != sd_chain->sd_seg)
5377 pa_align_subseg (now_seg, now_subseg);
5378 subseg_set (sd_chain->sd_seg, sd_chain->sd_last_subseg);
5379 current_subspace
5380 = pa_subsegment_to_subspace (sd_chain->sd_seg,
5381 sd_chain->sd_last_subseg);
5382 demand_empty_rest_of_line ();
5383 return;
5384 }
5385 }
5386
5387 /* Not a number, attempt to create a new space. */
5388 print_errors = 1;
5389 input_line_pointer = save_s;
5390 name = input_line_pointer;
5391 c = get_symbol_end ();
5392 space_name = xmalloc (strlen (name) + 1);
5393 strcpy (space_name, name);
5394 *input_line_pointer = c;
5395
5396 sd_chain = pa_parse_space_stmt (space_name, 1);
5397 current_space = sd_chain;
5398
5399 if (now_seg != sd_chain->sd_seg)
5400 pa_align_subseg (now_seg, now_subseg);
5401 subseg_set (sd_chain->sd_seg, sd_chain->sd_last_subseg);
5402 current_subspace = pa_subsegment_to_subspace (sd_chain->sd_seg,
5403 sd_chain->sd_last_subseg);
5404 demand_empty_rest_of_line ();
5405 }
5406 return;
5407 }
5408
5409 /* Switch to a new space. (I think). FIXME. */
5410
5411 static void
5412 pa_spnum (unused)
5413 int unused;
5414 {
5415 char *name;
5416 char c;
5417 char *p;
5418 sd_chain_struct *space;
5419
5420 name = input_line_pointer;
5421 c = get_symbol_end ();
5422 space = is_defined_space (name);
5423 if (space)
5424 {
5425 p = frag_more (4);
5426 md_number_to_chars (p, SPACE_SPNUM (space), 4);
5427 }
5428 else
5429 as_warn ("Undefined space: '%s' Assuming space number = 0.", name);
5430
5431 *input_line_pointer = c;
5432 demand_empty_rest_of_line ();
5433 return;
5434 }
5435
5436 /* If VALUE is an exact power of two between zero and 2^31, then
5437 return log2 (VALUE). Else return -1. */
5438
5439 static int
5440 log2 (value)
5441 int value;
5442 {
5443 int shift = 0;
5444
5445 while ((1 << shift) != value && shift < 32)
5446 shift++;
5447
5448 if (shift >= 32)
5449 return -1;
5450 else
5451 return shift;
5452 }
5453
5454 /* Handle a .SUBSPACE pseudo-op; this switches the current subspace to the
5455 given subspace, creating the new subspace if necessary.
5456
5457 FIXME. Should mirror pa_space more closely, in particular how
5458 they're broken up into subroutines. */
5459
5460 static void
5461 pa_subspace (unused)
5462 int unused;
5463 {
5464 char *name, *ss_name, *alias, c;
5465 char loadable, code_only, common, dup_common, zero, sort;
5466 int i, access, space_index, alignment, quadrant, applicable, flags;
5467 sd_chain_struct *space;
5468 ssd_chain_struct *ssd;
5469 asection *section;
5470
5471 if (within_procedure)
5472 {
5473 as_bad ("Can\'t change subspaces within a procedure definition. Ignored");
5474 ignore_rest_of_line ();
5475 }
5476 else
5477 {
5478 name = input_line_pointer;
5479 c = get_symbol_end ();
5480 ss_name = xmalloc (strlen (name) + 1);
5481 strcpy (ss_name, name);
5482 *input_line_pointer = c;
5483
5484 /* Load default values. */
5485 sort = 0;
5486 access = 0x7f;
5487 loadable = 1;
5488 common = 0;
5489 dup_common = 0;
5490 code_only = 0;
5491 zero = 0;
5492 space_index = ~0;
5493 alignment = 0;
5494 quadrant = 0;
5495 alias = NULL;
5496
5497 space = current_space;
5498 ssd = is_defined_subspace (ss_name);
5499 /* Allow user to override the builtin attributes of subspaces. But
5500 only allow the attributes to be changed once! */
5501 if (ssd && SUBSPACE_DEFINED (ssd))
5502 {
5503 subseg_set (ssd->ssd_seg, ssd->ssd_subseg);
5504 if (!is_end_of_statement ())
5505 as_warn ("Parameters of an existing subspace can\'t be modified");
5506 demand_empty_rest_of_line ();
5507 return;
5508 }
5509 else
5510 {
5511 /* A new subspace. Load default values if it matches one of
5512 the builtin subspaces. */
5513 i = 0;
5514 while (pa_def_subspaces[i].name)
5515 {
5516 if (strcasecmp (pa_def_subspaces[i].name, ss_name) == 0)
5517 {
5518 loadable = pa_def_subspaces[i].loadable;
5519 common = pa_def_subspaces[i].common;
5520 dup_common = pa_def_subspaces[i].dup_common;
5521 code_only = pa_def_subspaces[i].code_only;
5522 zero = pa_def_subspaces[i].zero;
5523 space_index = pa_def_subspaces[i].space_index;
5524 alignment = pa_def_subspaces[i].alignment;
5525 quadrant = pa_def_subspaces[i].quadrant;
5526 access = pa_def_subspaces[i].access;
5527 sort = pa_def_subspaces[i].sort;
5528 if (USE_ALIASES && pa_def_subspaces[i].alias)
5529 alias = pa_def_subspaces[i].alias;
5530 break;
5531 }
5532 i++;
5533 }
5534 }
5535
5536 /* We should be working with a new subspace now. Fill in
5537 any information as specified by the user. */
5538 if (!is_end_of_statement ())
5539 {
5540 input_line_pointer++;
5541 while (!is_end_of_statement ())
5542 {
5543 name = input_line_pointer;
5544 c = get_symbol_end ();
5545 if ((strncasecmp (name, "QUAD", 4) == 0))
5546 {
5547 *input_line_pointer = c;
5548 input_line_pointer++;
5549 quadrant = get_absolute_expression ();
5550 }
5551 else if ((strncasecmp (name, "ALIGN", 5) == 0))
5552 {
5553 *input_line_pointer = c;
5554 input_line_pointer++;
5555 alignment = get_absolute_expression ();
5556 if (log2 (alignment) == -1)
5557 {
5558 as_bad ("Alignment must be a power of 2");
5559 alignment = 1;
5560 }
5561 }
5562 else if ((strncasecmp (name, "ACCESS", 6) == 0))
5563 {
5564 *input_line_pointer = c;
5565 input_line_pointer++;
5566 access = get_absolute_expression ();
5567 }
5568 else if ((strncasecmp (name, "SORT", 4) == 0))
5569 {
5570 *input_line_pointer = c;
5571 input_line_pointer++;
5572 sort = get_absolute_expression ();
5573 }
5574 else if ((strncasecmp (name, "CODE_ONLY", 9) == 0))
5575 {
5576 *input_line_pointer = c;
5577 code_only = 1;
5578 }
5579 else if ((strncasecmp (name, "UNLOADABLE", 10) == 0))
5580 {
5581 *input_line_pointer = c;
5582 loadable = 0;
5583 }
5584 else if ((strncasecmp (name, "COMMON", 6) == 0))
5585 {
5586 *input_line_pointer = c;
5587 common = 1;
5588 }
5589 else if ((strncasecmp (name, "DUP_COMM", 8) == 0))
5590 {
5591 *input_line_pointer = c;
5592 dup_common = 1;
5593 }
5594 else if ((strncasecmp (name, "ZERO", 4) == 0))
5595 {
5596 *input_line_pointer = c;
5597 zero = 1;
5598 }
5599 else if ((strncasecmp (name, "FIRST", 5) == 0))
5600 as_bad ("FIRST not supported as a .SUBSPACE argument");
5601 else
5602 as_bad ("Invalid .SUBSPACE argument");
5603 if (!is_end_of_statement ())
5604 input_line_pointer++;
5605 }
5606 }
5607
5608 /* Compute a reasonable set of BFD flags based on the information
5609 in the .subspace directive. */
5610 applicable = bfd_applicable_section_flags (stdoutput);
5611 flags = 0;
5612 if (loadable)
5613 flags |= (SEC_ALLOC | SEC_LOAD);
5614 if (code_only)
5615 flags |= SEC_CODE;
5616 if (common || dup_common)
5617 flags |= SEC_IS_COMMON;
5618
5619 /* This is a zero-filled subspace (eg BSS). */
5620 if (zero)
5621 flags &= ~SEC_LOAD;
5622
5623 flags |= SEC_RELOC | SEC_HAS_CONTENTS;
5624 applicable &= flags;
5625
5626 /* If this is an existing subspace, then we want to use the
5627 segment already associated with the subspace.
5628
5629 FIXME NOW! ELF BFD doesn't appear to be ready to deal with
5630 lots of sections. It might be a problem in the PA ELF
5631 code, I do not know yet. For now avoid creating anything
5632 but the "standard" sections for ELF. */
5633 if (ssd)
5634 section = ssd->ssd_seg;
5635 else if (alias)
5636 section = subseg_new (alias, 0);
5637 else if (!alias && USE_ALIASES)
5638 {
5639 as_warn ("Ignoring subspace decl due to ELF BFD bugs.");
5640 demand_empty_rest_of_line ();
5641 return;
5642 }
5643 else
5644 section = subseg_new (ss_name, 0);
5645
5646 /* Now set the flags. */
5647 bfd_set_section_flags (stdoutput, section, applicable);
5648
5649 /* Record any alignment request for this section. */
5650 record_alignment (section, log2 (alignment));
5651
5652 /* Set the starting offset for this section. */
5653 bfd_set_section_vma (stdoutput, section,
5654 pa_subspace_start (space, quadrant));
5655
5656 /* Now that all the flags are set, update an existing subspace,
5657 or create a new one. */
5658 if (ssd)
5659
5660 current_subspace = update_subspace (space, ss_name, loadable,
5661 code_only, common, dup_common,
5662 sort, zero, access, space_index,
5663 alignment, quadrant,
5664 section);
5665 else
5666 current_subspace = create_new_subspace (space, ss_name, loadable,
5667 code_only, common,
5668 dup_common, zero, sort,
5669 access, space_index,
5670 alignment, quadrant, section);
5671
5672 demand_empty_rest_of_line ();
5673 current_subspace->ssd_seg = section;
5674 subseg_set (current_subspace->ssd_seg, current_subspace->ssd_subseg);
5675 }
5676 SUBSPACE_DEFINED (current_subspace) = 1;
5677 return;
5678 }
5679
5680
5681 /* Create default space and subspace dictionaries. */
5682
5683 static void
5684 pa_spaces_begin ()
5685 {
5686 int i;
5687
5688 space_dict_root = NULL;
5689 space_dict_last = NULL;
5690
5691 i = 0;
5692 while (pa_def_spaces[i].name)
5693 {
5694 char *name;
5695
5696 /* Pick the right name to use for the new section. */
5697 if (pa_def_spaces[i].alias && USE_ALIASES)
5698 name = pa_def_spaces[i].alias;
5699 else
5700 name = pa_def_spaces[i].name;
5701
5702 pa_def_spaces[i].segment = subseg_new (name, 0);
5703 create_new_space (pa_def_spaces[i].name, pa_def_spaces[i].spnum,
5704 pa_def_spaces[i].loadable, pa_def_spaces[i].defined,
5705 pa_def_spaces[i].private, pa_def_spaces[i].sort,
5706 pa_def_spaces[i].segment, 0);
5707 i++;
5708 }
5709
5710 i = 0;
5711 while (pa_def_subspaces[i].name)
5712 {
5713 char *name;
5714 int applicable, subsegment;
5715 asection *segment = NULL;
5716 sd_chain_struct *space;
5717
5718 /* Pick the right name for the new section and pick the right
5719 subsegment number. */
5720 if (pa_def_subspaces[i].alias && USE_ALIASES)
5721 {
5722 name = pa_def_subspaces[i].alias;
5723 subsegment = pa_def_subspaces[i].subsegment;
5724 }
5725 else
5726 {
5727 name = pa_def_subspaces[i].name;
5728 subsegment = 0;
5729 }
5730
5731 /* Create the new section. */
5732 segment = subseg_new (name, subsegment);
5733
5734
5735 /* For SOM we want to replace the standard .text, .data, and .bss
5736 sections with our own. */
5737 if (!strcmp (pa_def_subspaces[i].name, "$CODE$") && !USE_ALIASES)
5738 {
5739 text_section = segment;
5740 applicable = bfd_applicable_section_flags (stdoutput);
5741 bfd_set_section_flags (stdoutput, text_section,
5742 applicable & (SEC_ALLOC | SEC_LOAD
5743 | SEC_RELOC | SEC_CODE
5744 | SEC_READONLY
5745 | SEC_HAS_CONTENTS));
5746 }
5747 else if (!strcmp (pa_def_subspaces[i].name, "$DATA$") && !USE_ALIASES)
5748 {
5749 data_section = segment;
5750 applicable = bfd_applicable_section_flags (stdoutput);
5751 bfd_set_section_flags (stdoutput, data_section,
5752 applicable & (SEC_ALLOC | SEC_LOAD
5753 | SEC_RELOC
5754 | SEC_HAS_CONTENTS));
5755
5756
5757 }
5758 else if (!strcmp (pa_def_subspaces[i].name, "$BSS$") && !USE_ALIASES)
5759 {
5760 bss_section = segment;
5761 applicable = bfd_applicable_section_flags (stdoutput);
5762 bfd_set_section_flags (stdoutput, bss_section,
5763 applicable & SEC_ALLOC);
5764 }
5765
5766 /* Find the space associated with this subspace. */
5767 space = pa_segment_to_space (pa_def_spaces[pa_def_subspaces[i].
5768 def_space_index].segment);
5769 if (space == NULL)
5770 {
5771 as_fatal ("Internal error: Unable to find containing space for %s.",
5772 pa_def_subspaces[i].name);
5773 }
5774
5775 create_new_subspace (space, name,
5776 pa_def_subspaces[i].loadable,
5777 pa_def_subspaces[i].code_only,
5778 pa_def_subspaces[i].common,
5779 pa_def_subspaces[i].dup_common,
5780 pa_def_subspaces[i].zero,
5781 pa_def_subspaces[i].sort,
5782 pa_def_subspaces[i].access,
5783 pa_def_subspaces[i].space_index,
5784 pa_def_subspaces[i].alignment,
5785 pa_def_subspaces[i].quadrant,
5786 segment);
5787 i++;
5788 }
5789 }
5790
5791
5792
5793 /* Create a new space NAME, with the appropriate flags as defined
5794 by the given parameters.
5795
5796 Add the new space to the space dictionary chain in numerical
5797 order as defined by the SORT entries. */
5798
5799 static sd_chain_struct *
5800 create_new_space (name, spnum, loadable, defined, private,
5801 sort, seg, user_defined)
5802 char *name;
5803 int spnum;
5804 char loadable;
5805 char defined;
5806 char private;
5807 char sort;
5808 asection *seg;
5809 int user_defined;
5810 {
5811 sd_chain_struct *chain_entry;
5812
5813 chain_entry = (sd_chain_struct *) xmalloc (sizeof (sd_chain_struct));
5814 if (!chain_entry)
5815 as_fatal ("Out of memory: could not allocate new space chain entry: %s\n",
5816 name);
5817
5818 SPACE_NAME (chain_entry) = (char *) xmalloc (strlen (name) + 1);
5819 strcpy (SPACE_NAME (chain_entry), name);
5820 SPACE_NAME_INDEX (chain_entry) = 0;
5821 SPACE_LOADABLE (chain_entry) = loadable;
5822 SPACE_DEFINED (chain_entry) = defined;
5823 SPACE_USER_DEFINED (chain_entry) = user_defined;
5824 SPACE_PRIVATE (chain_entry) = private;
5825 SPACE_SPNUM (chain_entry) = spnum;
5826 SPACE_SORT (chain_entry) = sort;
5827
5828 chain_entry->sd_seg = seg;
5829 chain_entry->sd_last_subseg = -1;
5830 chain_entry->sd_next = NULL;
5831
5832 /* Find spot for the new space based on its sort key. */
5833 if (!space_dict_last)
5834 space_dict_last = chain_entry;
5835
5836 if (space_dict_root == NULL)
5837 space_dict_root = chain_entry;
5838 else
5839 {
5840 sd_chain_struct *chain_pointer;
5841 sd_chain_struct *prev_chain_pointer;
5842
5843 chain_pointer = space_dict_root;
5844 prev_chain_pointer = NULL;
5845
5846 while (chain_pointer)
5847 {
5848 if (SPACE_SORT (chain_pointer) <= SPACE_SORT (chain_entry))
5849 {
5850 prev_chain_pointer = chain_pointer;
5851 chain_pointer = chain_pointer->sd_next;
5852 }
5853 else
5854 break;
5855 }
5856
5857 /* At this point we've found the correct place to add the new
5858 entry. So add it and update the linked lists as appropriate. */
5859 if (prev_chain_pointer)
5860 {
5861 chain_entry->sd_next = chain_pointer;
5862 prev_chain_pointer->sd_next = chain_entry;
5863 }
5864 else
5865 {
5866 space_dict_root = chain_entry;
5867 chain_entry->sd_next = chain_pointer;
5868 }
5869
5870 if (chain_entry->sd_next == NULL)
5871 space_dict_last = chain_entry;
5872 }
5873
5874 /* This is here to catch predefined spaces which do not get
5875 modified by the user's input. Another call is found at
5876 the bottom of pa_parse_space_stmt to handle cases where
5877 the user modifies a predefined space. */
5878 #ifdef obj_set_section_attributes
5879 obj_set_section_attributes (seg, defined, private, sort, spnum);
5880 #endif
5881
5882 return chain_entry;
5883 }
5884
5885 /* Create a new subspace NAME, with the appropriate flags as defined
5886 by the given parameters.
5887
5888 Add the new subspace to the subspace dictionary chain in numerical
5889 order as defined by the SORT entries. */
5890
5891 static ssd_chain_struct *
5892 create_new_subspace (space, name, loadable, code_only, common,
5893 dup_common, is_zero, sort, access, space_index,
5894 alignment, quadrant, seg)
5895 sd_chain_struct *space;
5896 char *name;
5897 char loadable, code_only, common, dup_common, is_zero;
5898 char sort;
5899 int access;
5900 int space_index;
5901 int alignment;
5902 int quadrant;
5903 asection *seg;
5904 {
5905 ssd_chain_struct *chain_entry;
5906
5907 chain_entry = (ssd_chain_struct *) xmalloc (sizeof (ssd_chain_struct));
5908 if (!chain_entry)
5909 as_fatal ("Out of memory: could not allocate new subspace chain entry: %s\n", name);
5910
5911 SUBSPACE_NAME (chain_entry) = (char *) xmalloc (strlen (name) + 1);
5912 strcpy (SUBSPACE_NAME (chain_entry), name);
5913
5914 SUBSPACE_ACCESS (chain_entry) = access;
5915 SUBSPACE_LOADABLE (chain_entry) = loadable;
5916 SUBSPACE_COMMON (chain_entry) = common;
5917 SUBSPACE_DUP_COMM (chain_entry) = dup_common;
5918 SUBSPACE_SORT (chain_entry) = sort;
5919 SUBSPACE_CODE_ONLY (chain_entry) = code_only;
5920 SUBSPACE_ALIGN (chain_entry) = alignment;
5921 SUBSPACE_QUADRANT (chain_entry) = quadrant;
5922 SUBSPACE_SUBSPACE_START (chain_entry) = pa_subspace_start (space, quadrant);
5923 SUBSPACE_SPACE_INDEX (chain_entry) = space_index;
5924 SUBSPACE_ZERO (chain_entry) = is_zero;
5925
5926 /* Initialize subspace_defined. When we hit a .subspace directive
5927 we'll set it to 1 which "locks-in" the subspace attributes. */
5928 SUBSPACE_DEFINED (chain_entry) = 0;
5929
5930 chain_entry->ssd_subseg = USE_ALIASES ? pa_next_subseg (space) : 0;
5931 chain_entry->ssd_seg = seg;
5932 chain_entry->ssd_last_align = 1;
5933 chain_entry->ssd_next = NULL;
5934
5935 /* Find spot for the new subspace based on its sort key. */
5936 if (space->sd_subspaces == NULL)
5937 space->sd_subspaces = chain_entry;
5938 else
5939 {
5940 ssd_chain_struct *chain_pointer;
5941 ssd_chain_struct *prev_chain_pointer;
5942
5943 chain_pointer = space->sd_subspaces;
5944 prev_chain_pointer = NULL;
5945
5946 while (chain_pointer)
5947 {
5948 if (SUBSPACE_SORT (chain_pointer) <= SUBSPACE_SORT (chain_entry))
5949 {
5950 prev_chain_pointer = chain_pointer;
5951 chain_pointer = chain_pointer->ssd_next;
5952 }
5953 else
5954 break;
5955
5956 }
5957
5958 /* Now we have somewhere to put the new entry. Insert it and update
5959 the links. */
5960 if (prev_chain_pointer)
5961 {
5962 chain_entry->ssd_next = chain_pointer;
5963 prev_chain_pointer->ssd_next = chain_entry;
5964 }
5965 else
5966 {
5967 space->sd_subspaces = chain_entry;
5968 chain_entry->ssd_next = chain_pointer;
5969 }
5970 }
5971
5972 #ifdef obj_set_subsection_attributes
5973 obj_set_subsection_attributes (seg, space->sd_seg, access,
5974 sort, quadrant);
5975 #endif
5976
5977 return chain_entry;
5978
5979 }
5980
5981 /* Update the information for the given subspace based upon the
5982 various arguments. Return the modified subspace chain entry. */
5983
5984 static ssd_chain_struct *
5985 update_subspace (space, name, loadable, code_only, common, dup_common, sort,
5986 zero, access, space_index, alignment, quadrant, section)
5987 sd_chain_struct *space;
5988 char *name;
5989 char loadable;
5990 char code_only;
5991 char common;
5992 char dup_common;
5993 char zero;
5994 char sort;
5995 int access;
5996 int space_index;
5997 int alignment;
5998 int quadrant;
5999 asection *section;
6000 {
6001 ssd_chain_struct *chain_entry;
6002
6003 if ((chain_entry = is_defined_subspace (name)))
6004 {
6005 SUBSPACE_ACCESS (chain_entry) = access;
6006 SUBSPACE_LOADABLE (chain_entry) = loadable;
6007 SUBSPACE_COMMON (chain_entry) = common;
6008 SUBSPACE_DUP_COMM (chain_entry) = dup_common;
6009 SUBSPACE_CODE_ONLY (chain_entry) = 1;
6010 SUBSPACE_SORT (chain_entry) = sort;
6011 SUBSPACE_ALIGN (chain_entry) = alignment;
6012 SUBSPACE_QUADRANT (chain_entry) = quadrant;
6013 SUBSPACE_SPACE_INDEX (chain_entry) = space_index;
6014 SUBSPACE_ZERO (chain_entry) = zero;
6015 }
6016 else
6017 chain_entry = NULL;
6018
6019 #ifdef obj_set_subsection_attributes
6020 obj_set_subsection_attributes (section, space->sd_seg, access,
6021 sort, quadrant);
6022 #endif
6023
6024 return chain_entry;
6025
6026 }
6027
6028 /* Return the space chain entry for the space with the name NAME or
6029 NULL if no such space exists. */
6030
6031 static sd_chain_struct *
6032 is_defined_space (name)
6033 char *name;
6034 {
6035 sd_chain_struct *chain_pointer;
6036
6037 for (chain_pointer = space_dict_root;
6038 chain_pointer;
6039 chain_pointer = chain_pointer->sd_next)
6040 {
6041 if (strcmp (SPACE_NAME (chain_pointer), name) == 0)
6042 return chain_pointer;
6043 }
6044
6045 /* No mapping from segment to space was found. Return NULL. */
6046 return NULL;
6047 }
6048
6049 /* Find and return the space associated with the given seg. If no mapping
6050 from the given seg to a space is found, then return NULL.
6051
6052 Unlike subspaces, the number of spaces is not expected to grow much,
6053 so a linear exhaustive search is OK here. */
6054
6055 static sd_chain_struct *
6056 pa_segment_to_space (seg)
6057 asection *seg;
6058 {
6059 sd_chain_struct *space_chain;
6060
6061 /* Walk through each space looking for the correct mapping. */
6062 for (space_chain = space_dict_root;
6063 space_chain;
6064 space_chain = space_chain->sd_next)
6065 {
6066 if (space_chain->sd_seg == seg)
6067 return space_chain;
6068 }
6069
6070 /* Mapping was not found. Return NULL. */
6071 return NULL;
6072 }
6073
6074 /* Return the space chain entry for the subspace with the name NAME or
6075 NULL if no such subspace exists.
6076
6077 Uses a linear search through all the spaces and subspaces, this may
6078 not be appropriate if we ever being placing each function in its
6079 own subspace. */
6080
6081 static ssd_chain_struct *
6082 is_defined_subspace (name)
6083 char *name;
6084 {
6085 sd_chain_struct *space_chain;
6086 ssd_chain_struct *subspace_chain;
6087
6088 /* Walk through each space. */
6089 for (space_chain = space_dict_root;
6090 space_chain;
6091 space_chain = space_chain->sd_next)
6092 {
6093 /* Walk through each subspace looking for a name which matches. */
6094 for (subspace_chain = space_chain->sd_subspaces;
6095 subspace_chain;
6096 subspace_chain = subspace_chain->ssd_next)
6097 if (strcmp (SUBSPACE_NAME (subspace_chain), name) == 0)
6098 return subspace_chain;
6099 }
6100
6101 /* Subspace wasn't found. Return NULL. */
6102 return NULL;
6103 }
6104
6105 /* Find and return the subspace associated with the given seg. If no
6106 mapping from the given seg to a subspace is found, then return NULL.
6107
6108 If we ever put each procedure/function within its own subspace
6109 (to make life easier on the compiler and linker), then this will have
6110 to become more efficient. */
6111
6112 static ssd_chain_struct *
6113 pa_subsegment_to_subspace (seg, subseg)
6114 asection *seg;
6115 subsegT subseg;
6116 {
6117 sd_chain_struct *space_chain;
6118 ssd_chain_struct *subspace_chain;
6119
6120 /* Walk through each space. */
6121 for (space_chain = space_dict_root;
6122 space_chain;
6123 space_chain = space_chain->sd_next)
6124 {
6125 if (space_chain->sd_seg == seg)
6126 {
6127 /* Walk through each subspace within each space looking for
6128 the correct mapping. */
6129 for (subspace_chain = space_chain->sd_subspaces;
6130 subspace_chain;
6131 subspace_chain = subspace_chain->ssd_next)
6132 if (subspace_chain->ssd_subseg == (int) subseg)
6133 return subspace_chain;
6134 }
6135 }
6136
6137 /* No mapping from subsegment to subspace found. Return NULL. */
6138 return NULL;
6139 }
6140
6141 /* Given a number, try and find a space with the name number.
6142
6143 Return a pointer to a space dictionary chain entry for the space
6144 that was found or NULL on failure. */
6145
6146 static sd_chain_struct *
6147 pa_find_space_by_number (number)
6148 int number;
6149 {
6150 sd_chain_struct *space_chain;
6151
6152 for (space_chain = space_dict_root;
6153 space_chain;
6154 space_chain = space_chain->sd_next)
6155 {
6156 if (SPACE_SPNUM (space_chain) == number)
6157 return space_chain;
6158 }
6159
6160 /* No appropriate space found. Return NULL. */
6161 return NULL;
6162 }
6163
6164 /* Return the starting address for the given subspace. If the starting
6165 address is unknown then return zero. */
6166
6167 static unsigned int
6168 pa_subspace_start (space, quadrant)
6169 sd_chain_struct *space;
6170 int quadrant;
6171 {
6172 /* FIXME. Assumes everyone puts read/write data at 0x4000000, this
6173 is not correct for the PA OSF1 port. */
6174 if ((strcasecmp (SPACE_NAME (space), "$PRIVATE$") == 0) && quadrant == 1)
6175 return 0x40000000;
6176 else if (space->sd_seg == data_section && quadrant == 1)
6177 return 0x40000000;
6178 else
6179 return 0;
6180 }
6181
6182 /* FIXME. Needs documentation. */
6183 static int
6184 pa_next_subseg (space)
6185 sd_chain_struct *space;
6186 {
6187
6188 space->sd_last_subseg++;
6189 return space->sd_last_subseg;
6190 }
6191
6192 /* Helper function for pa_stringer. Used to find the end of
6193 a string. */
6194
6195 static unsigned int
6196 pa_stringer_aux (s)
6197 char *s;
6198 {
6199 unsigned int c = *s & CHAR_MASK;
6200 switch (c)
6201 {
6202 case '\"':
6203 c = NOT_A_CHAR;
6204 break;
6205 default:
6206 break;
6207 }
6208 return c;
6209 }
6210
6211 /* Handle a .STRING type pseudo-op. */
6212
6213 static void
6214 pa_stringer (append_zero)
6215 int append_zero;
6216 {
6217 char *s, num_buf[4];
6218 unsigned int c;
6219 int i;
6220
6221 /* Preprocess the string to handle PA-specific escape sequences.
6222 For example, \xDD where DD is a hexidecimal number should be
6223 changed to \OOO where OOO is an octal number. */
6224
6225 /* Skip the opening quote. */
6226 s = input_line_pointer + 1;
6227
6228 while (is_a_char (c = pa_stringer_aux (s++)))
6229 {
6230 if (c == '\\')
6231 {
6232 c = *s;
6233 switch (c)
6234 {
6235 /* Handle \x<num>. */
6236 case 'x':
6237 {
6238 unsigned int number;
6239 int num_digit;
6240 char dg;
6241 char *s_start = s;
6242
6243 /* Get pas the 'x'. */
6244 s++;
6245 for (num_digit = 0, number = 0, dg = *s;
6246 num_digit < 2
6247 && (isdigit (dg) || (dg >= 'a' && dg <= 'f')
6248 || (dg >= 'A' && dg <= 'F'));
6249 num_digit++)
6250 {
6251 if (isdigit (dg))
6252 number = number * 16 + dg - '0';
6253 else if (dg >= 'a' && dg <= 'f')
6254 number = number * 16 + dg - 'a' + 10;
6255 else
6256 number = number * 16 + dg - 'A' + 10;
6257
6258 s++;
6259 dg = *s;
6260 }
6261 if (num_digit > 0)
6262 {
6263 switch (num_digit)
6264 {
6265 case 1:
6266 sprintf (num_buf, "%02o", number);
6267 break;
6268 case 2:
6269 sprintf (num_buf, "%03o", number);
6270 break;
6271 }
6272 for (i = 0; i <= num_digit; i++)
6273 s_start[i] = num_buf[i];
6274 }
6275 break;
6276 }
6277 /* This might be a "\"", skip over the escaped char. */
6278 default:
6279 s++;
6280 break;
6281 }
6282 }
6283 }
6284 stringer (append_zero);
6285 pa_undefine_label ();
6286 }
6287
6288 /* Handle a .VERSION pseudo-op. */
6289
6290 static void
6291 pa_version (unused)
6292 int unused;
6293 {
6294 obj_version (0);
6295 pa_undefine_label ();
6296 }
6297
6298 /* Just like a normal cons, but when finished we have to undefine
6299 the latest space label. */
6300
6301 static void
6302 pa_cons (nbytes)
6303 int nbytes;
6304 {
6305 cons (nbytes);
6306 pa_undefine_label ();
6307 }
6308
6309 /* Switch to the data space. As usual delete our label. */
6310
6311 static void
6312 pa_data (unused)
6313 int unused;
6314 {
6315 s_data (0);
6316 pa_undefine_label ();
6317 }
6318
6319 /* FIXME. What's the purpose of this pseudo-op? */
6320
6321 static void
6322 pa_desc (unused)
6323 int unused;
6324 {
6325 pa_undefine_label ();
6326 }
6327
6328 /* Like float_cons, but we need to undefine our label. */
6329
6330 static void
6331 pa_float_cons (float_type)
6332 int float_type;
6333 {
6334 float_cons (float_type);
6335 pa_undefine_label ();
6336 }
6337
6338 /* Like s_fill, but delete our label when finished. */
6339
6340 static void
6341 pa_fill (unused)
6342 int unused;
6343 {
6344 s_fill (0);
6345 pa_undefine_label ();
6346 }
6347
6348 /* Like lcomm, but delete our label when finished. */
6349
6350 static void
6351 pa_lcomm (needs_align)
6352 int needs_align;
6353 {
6354 s_lcomm (needs_align);
6355 pa_undefine_label ();
6356 }
6357
6358 /* Like lsym, but delete our label when finished. */
6359
6360 static void
6361 pa_lsym (unused)
6362 int unused;
6363 {
6364 s_lsym (0);
6365 pa_undefine_label ();
6366 }
6367
6368 /* Switch to the text space. Like s_text, but delete our
6369 label when finished. */
6370 static void
6371 pa_text (unused)
6372 int unused;
6373 {
6374 s_text (0);
6375 pa_undefine_label ();
6376 }
6377
6378 /* On the PA relocations which involve function symbols must not be
6379 adjusted. This so that the linker can know when/how to create argument
6380 relocation stubs for indirect calls and calls to static functions.
6381
6382 FIXME. Also reject R_HPPA relocations which are 32 bits
6383 wide. Helps with code lables in arrays for SOM. (SOM BFD code
6384 needs to generate relocations to push the addend and symbol value
6385 onto the stack, add them, then pop the value off the stack and
6386 use it in a relocation -- yuk. */
6387
6388 int
6389 hppa_fix_adjustable (fixp)
6390 fixS *fixp;
6391 {
6392 struct hppa_fix_struct *hppa_fix;
6393
6394 hppa_fix = fixp->tc_fix_data;
6395
6396 if (fixp->fx_r_type == R_HPPA && hppa_fix->fx_r_format == 32)
6397 return 0;
6398
6399 if (fixp->fx_addsy == 0
6400 || (fixp->fx_addsy->bsym->flags & BSF_FUNCTION) == 0)
6401 return 1;
6402
6403 return 0;
6404 }
6405
6406 /* Now for some ELF specific code. FIXME. */
6407 #ifdef OBJ_ELF
6408 static symext_chainS *symext_rootP;
6409 static symext_chainS *symext_lastP;
6410
6411 /* Do any symbol processing requested by the target-cpu or target-format. */
6412
6413 void
6414 hppa_tc_symbol (abfd, symbolP, sym_idx)
6415 bfd *abfd;
6416 elf_symbol_type *symbolP;
6417 int sym_idx;
6418 {
6419 symext_chainS *symextP;
6420 unsigned int arg_reloc;
6421
6422 /* Only functions can have argument relocations. */
6423 if (!(symbolP->symbol.flags & BSF_FUNCTION))
6424 return;
6425
6426 arg_reloc = symbolP->tc_data.hppa_arg_reloc;
6427
6428 /* If there are no argument relocation bits, then no relocation is
6429 necessary. Do not add this to the symextn section. */
6430 if (arg_reloc == 0)
6431 return;
6432
6433 symextP = (symext_chainS *) bfd_alloc (abfd, sizeof (symext_chainS) * 2);
6434
6435 symextP[0].entry = ELF32_HPPA_SX_WORD (HPPA_SXT_SYMNDX, sym_idx);
6436 symextP[0].next = &symextP[1];
6437
6438 symextP[1].entry = ELF32_HPPA_SX_WORD (HPPA_SXT_ARG_RELOC, arg_reloc);
6439 symextP[1].next = NULL;
6440
6441 if (symext_rootP == NULL)
6442 {
6443 symext_rootP = &symextP[0];
6444 symext_lastP = &symextP[1];
6445 }
6446 else
6447 {
6448 symext_lastP->next = &symextP[0];
6449 symext_lastP = &symextP[1];
6450 }
6451 }
6452
6453 /* Make sections needed by the target cpu and/or target format. */
6454 void
6455 hppa_tc_make_sections (abfd)
6456 bfd *abfd;
6457 {
6458 symext_chainS *symextP;
6459 int size, n;
6460 asection *symextn_sec;
6461 segT save_seg = now_seg;
6462 subsegT save_subseg = now_subseg;
6463
6464 /* Build the symbol extension section. */
6465 hppa_tc_make_symextn_section ();
6466
6467 /* Force some calculation to occur. */
6468 bfd_set_section_contents (stdoutput, stdoutput->sections, "", 0, 0);
6469
6470 hppa_elf_stub_finish (abfd);
6471
6472 /* If no symbols for the symbol extension section, then stop now. */
6473 if (symext_rootP == NULL)
6474 return;
6475
6476 /* Count the number of symbols for the symbol extension section. */
6477 for (n = 0, symextP = symext_rootP; symextP; symextP = symextP->next, ++n)
6478 ;
6479
6480 size = sizeof (symext_entryS) * n;
6481
6482 /* Switch to the symbol extension section. */
6483 symextn_sec = subseg_new (SYMEXTN_SECTION_NAME, 0);
6484
6485 frag_wane (frag_now);
6486 frag_new (0);
6487
6488 for (symextP = symext_rootP; symextP; symextP = symextP->next)
6489 {
6490 char *ptr;
6491 int *symtab_map = elf_sym_extra (abfd);
6492 int idx;
6493
6494 /* First, patch the symbol extension record to reflect the true
6495 symbol table index. */
6496
6497 if (ELF32_HPPA_SX_TYPE (symextP->entry) == HPPA_SXT_SYMNDX)
6498 {
6499 idx = ELF32_HPPA_SX_VAL (symextP->entry) - 1;
6500 symextP->entry = ELF32_HPPA_SX_WORD (HPPA_SXT_SYMNDX,
6501 symtab_map[idx]);
6502 }
6503
6504 ptr = frag_more (sizeof (symextP->entry));
6505 md_number_to_chars (ptr, symextP->entry, sizeof (symextP->entry));
6506 }
6507
6508 frag_now->fr_fix = obstack_next_free (&frags) - frag_now->fr_literal;
6509 frag_wane (frag_now);
6510
6511 /* Switch back to the original segment. */
6512 subseg_set (save_seg, save_subseg);
6513
6514 return;
6515 }
6516
6517 /* Make the symbol extension section. */
6518
6519 static void
6520 hppa_tc_make_symextn_section ()
6521 {
6522 if (symext_rootP)
6523 {
6524 symext_chainS *symextP;
6525 int n;
6526 unsigned int size;
6527 segT symextn_sec;
6528 segT save_seg = now_seg;
6529 subsegT save_subseg = now_subseg;
6530
6531 for (n = 0, symextP = symext_rootP; symextP; symextP = symextP->next, ++n)
6532 ;
6533
6534 size = sizeof (symext_entryS) * n;
6535
6536 symextn_sec = subseg_new (SYMEXTN_SECTION_NAME, 0);
6537
6538 bfd_set_section_flags (stdoutput, symextn_sec,
6539 SEC_LOAD | SEC_HAS_CONTENTS | SEC_DATA);
6540 bfd_set_section_size (stdoutput, symextn_sec, size);
6541
6542 /* Now, switch back to the original segment. */
6543 subseg_set (save_seg, save_subseg);
6544 }
6545 }
6546
6547 /* Build the symbol extension section. */
6548
6549 static void
6550 pa_build_symextn_section ()
6551 {
6552 segT seg;
6553 asection *save_seg = now_seg;
6554 subsegT subseg = (subsegT) 0;
6555 subsegT save_subseg = now_subseg;
6556
6557 seg = subseg_new (".hppa_symextn", subseg);
6558 bfd_set_section_flags (stdoutput,
6559 seg,
6560 SEC_HAS_CONTENTS | SEC_READONLY
6561 | SEC_ALLOC | SEC_LOAD);
6562
6563 subseg_set (save_seg, save_subseg);
6564
6565 }
6566
6567 /* For ELF, this function serves one purpose: to setup the st_size
6568 field of STT_FUNC symbols. To do this, we need to scan the
6569 call_info structure list, determining st_size in one of two possible
6570 ways:
6571
6572 1. call_info->start_frag->fr_fix has the size of the fragment.
6573 This approach assumes that the function was built into a
6574 single fragment. This works for most cases, but might fail.
6575 For example, if there was a segment change in the middle of
6576 the function.
6577
6578 2. The st_size field is the difference in the addresses of the
6579 call_info->start_frag->fr_address field and the fr_address
6580 field of the next fragment with fr_type == rs_fill and
6581 fr_fix != 0. */
6582
6583 void
6584 elf_hppa_final_processing ()
6585 {
6586 struct call_info *call_info_pointer;
6587
6588 for (call_info_pointer = call_info_root;
6589 call_info_pointer;
6590 call_info_pointer = call_info_pointer->ci_next)
6591 {
6592 elf_symbol_type *esym
6593 = (elf_symbol_type *) call_info_pointer->start_symbol->bsym;
6594 esym->internal_elf_sym.st_size =
6595 S_GET_VALUE (call_info_pointer->end_symbol)
6596 - S_GET_VALUE (call_info_pointer->start_symbol) + 4;
6597 }
6598 }
6599 #endif
This page took 0.166143 seconds and 5 git commands to generate.