i386: Don't add 0x66 prefix to IRET for .code16gcc
[deliverable/binutils-gdb.git] / gas / config / tc-i386.c
1 /* tc-i386.c -- Assemble code for the Intel 80386
2 Copyright (C) 1989-2019 Free Software Foundation, Inc.
3
4 This file is part of GAS, the GNU Assembler.
5
6 GAS is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
10
11 GAS is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GAS; see the file COPYING. If not, write to the Free
18 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
19 02110-1301, USA. */
20
21 /* Intel 80386 machine specific gas.
22 Written by Eliot Dresselhaus (eliot@mgm.mit.edu).
23 x86_64 support by Jan Hubicka (jh@suse.cz)
24 VIA PadLock support by Michal Ludvig (mludvig@suse.cz)
25 Bugs & suggestions are completely welcome. This is free software.
26 Please help us make it better. */
27
28 #include "as.h"
29 #include "safe-ctype.h"
30 #include "subsegs.h"
31 #include "dwarf2dbg.h"
32 #include "dw2gencfi.h"
33 #include "elf/x86-64.h"
34 #include "opcodes/i386-init.h"
35
36 #ifdef HAVE_LIMITS_H
37 #include <limits.h>
38 #else
39 #ifdef HAVE_SYS_PARAM_H
40 #include <sys/param.h>
41 #endif
42 #ifndef INT_MAX
43 #define INT_MAX (int) (((unsigned) (-1)) >> 1)
44 #endif
45 #endif
46
47 #ifndef REGISTER_WARNINGS
48 #define REGISTER_WARNINGS 1
49 #endif
50
51 #ifndef INFER_ADDR_PREFIX
52 #define INFER_ADDR_PREFIX 1
53 #endif
54
55 #ifndef DEFAULT_ARCH
56 #define DEFAULT_ARCH "i386"
57 #endif
58
59 #ifndef INLINE
60 #if __GNUC__ >= 2
61 #define INLINE __inline__
62 #else
63 #define INLINE
64 #endif
65 #endif
66
67 /* Prefixes will be emitted in the order defined below.
68 WAIT_PREFIX must be the first prefix since FWAIT is really is an
69 instruction, and so must come before any prefixes.
70 The preferred prefix order is SEG_PREFIX, ADDR_PREFIX, DATA_PREFIX,
71 REP_PREFIX/HLE_PREFIX, LOCK_PREFIX. */
72 #define WAIT_PREFIX 0
73 #define SEG_PREFIX 1
74 #define ADDR_PREFIX 2
75 #define DATA_PREFIX 3
76 #define REP_PREFIX 4
77 #define HLE_PREFIX REP_PREFIX
78 #define BND_PREFIX REP_PREFIX
79 #define LOCK_PREFIX 5
80 #define REX_PREFIX 6 /* must come last. */
81 #define MAX_PREFIXES 7 /* max prefixes per opcode */
82
83 /* we define the syntax here (modulo base,index,scale syntax) */
84 #define REGISTER_PREFIX '%'
85 #define IMMEDIATE_PREFIX '$'
86 #define ABSOLUTE_PREFIX '*'
87
88 /* these are the instruction mnemonic suffixes in AT&T syntax or
89 memory operand size in Intel syntax. */
90 #define WORD_MNEM_SUFFIX 'w'
91 #define BYTE_MNEM_SUFFIX 'b'
92 #define SHORT_MNEM_SUFFIX 's'
93 #define LONG_MNEM_SUFFIX 'l'
94 #define QWORD_MNEM_SUFFIX 'q'
95 /* Intel Syntax. Use a non-ascii letter since since it never appears
96 in instructions. */
97 #define LONG_DOUBLE_MNEM_SUFFIX '\1'
98
99 #define END_OF_INSN '\0'
100
101 /*
102 'templates' is for grouping together 'template' structures for opcodes
103 of the same name. This is only used for storing the insns in the grand
104 ole hash table of insns.
105 The templates themselves start at START and range up to (but not including)
106 END.
107 */
108 typedef struct
109 {
110 const insn_template *start;
111 const insn_template *end;
112 }
113 templates;
114
115 /* 386 operand encoding bytes: see 386 book for details of this. */
116 typedef struct
117 {
118 unsigned int regmem; /* codes register or memory operand */
119 unsigned int reg; /* codes register operand (or extended opcode) */
120 unsigned int mode; /* how to interpret regmem & reg */
121 }
122 modrm_byte;
123
124 /* x86-64 extension prefix. */
125 typedef int rex_byte;
126
127 /* 386 opcode byte to code indirect addressing. */
128 typedef struct
129 {
130 unsigned base;
131 unsigned index;
132 unsigned scale;
133 }
134 sib_byte;
135
136 /* x86 arch names, types and features */
137 typedef struct
138 {
139 const char *name; /* arch name */
140 unsigned int len; /* arch string length */
141 enum processor_type type; /* arch type */
142 i386_cpu_flags flags; /* cpu feature flags */
143 unsigned int skip; /* show_arch should skip this. */
144 }
145 arch_entry;
146
147 /* Used to turn off indicated flags. */
148 typedef struct
149 {
150 const char *name; /* arch name */
151 unsigned int len; /* arch string length */
152 i386_cpu_flags flags; /* cpu feature flags */
153 }
154 noarch_entry;
155
156 static void update_code_flag (int, int);
157 static void set_code_flag (int);
158 static void set_16bit_gcc_code_flag (int);
159 static void set_intel_syntax (int);
160 static void set_intel_mnemonic (int);
161 static void set_allow_index_reg (int);
162 static void set_check (int);
163 static void set_cpu_arch (int);
164 #ifdef TE_PE
165 static void pe_directive_secrel (int);
166 #endif
167 static void signed_cons (int);
168 static char *output_invalid (int c);
169 static int i386_finalize_immediate (segT, expressionS *, i386_operand_type,
170 const char *);
171 static int i386_finalize_displacement (segT, expressionS *, i386_operand_type,
172 const char *);
173 static int i386_att_operand (char *);
174 static int i386_intel_operand (char *, int);
175 static int i386_intel_simplify (expressionS *);
176 static int i386_intel_parse_name (const char *, expressionS *);
177 static const reg_entry *parse_register (char *, char **);
178 static char *parse_insn (char *, char *);
179 static char *parse_operands (char *, const char *);
180 static void swap_operands (void);
181 static void swap_2_operands (int, int);
182 static void optimize_imm (void);
183 static void optimize_disp (void);
184 static const insn_template *match_template (char);
185 static int check_string (void);
186 static int process_suffix (void);
187 static int check_byte_reg (void);
188 static int check_long_reg (void);
189 static int check_qword_reg (void);
190 static int check_word_reg (void);
191 static int finalize_imm (void);
192 static int process_operands (void);
193 static const seg_entry *build_modrm_byte (void);
194 static void output_insn (void);
195 static void output_imm (fragS *, offsetT);
196 static void output_disp (fragS *, offsetT);
197 #ifndef I386COFF
198 static void s_bss (int);
199 #endif
200 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
201 static void handle_large_common (int small ATTRIBUTE_UNUSED);
202
203 /* GNU_PROPERTY_X86_ISA_1_USED. */
204 static unsigned int x86_isa_1_used;
205 /* GNU_PROPERTY_X86_FEATURE_2_USED. */
206 static unsigned int x86_feature_2_used;
207 /* Generate x86 used ISA and feature properties. */
208 static unsigned int x86_used_note = DEFAULT_X86_USED_NOTE;
209 #endif
210
211 static const char *default_arch = DEFAULT_ARCH;
212
213 /* This struct describes rounding control and SAE in the instruction. */
214 struct RC_Operation
215 {
216 enum rc_type
217 {
218 rne = 0,
219 rd,
220 ru,
221 rz,
222 saeonly
223 } type;
224 int operand;
225 };
226
227 static struct RC_Operation rc_op;
228
229 /* The struct describes masking, applied to OPERAND in the instruction.
230 MASK is a pointer to the corresponding mask register. ZEROING tells
231 whether merging or zeroing mask is used. */
232 struct Mask_Operation
233 {
234 const reg_entry *mask;
235 unsigned int zeroing;
236 /* The operand where this operation is associated. */
237 int operand;
238 };
239
240 static struct Mask_Operation mask_op;
241
242 /* The struct describes broadcasting, applied to OPERAND. FACTOR is
243 broadcast factor. */
244 struct Broadcast_Operation
245 {
246 /* Type of broadcast: {1to2}, {1to4}, {1to8}, or {1to16}. */
247 int type;
248
249 /* Index of broadcasted operand. */
250 int operand;
251
252 /* Number of bytes to broadcast. */
253 int bytes;
254 };
255
256 static struct Broadcast_Operation broadcast_op;
257
258 /* VEX prefix. */
259 typedef struct
260 {
261 /* VEX prefix is either 2 byte or 3 byte. EVEX is 4 byte. */
262 unsigned char bytes[4];
263 unsigned int length;
264 /* Destination or source register specifier. */
265 const reg_entry *register_specifier;
266 } vex_prefix;
267
268 /* 'md_assemble ()' gathers together information and puts it into a
269 i386_insn. */
270
271 union i386_op
272 {
273 expressionS *disps;
274 expressionS *imms;
275 const reg_entry *regs;
276 };
277
278 enum i386_error
279 {
280 operand_size_mismatch,
281 operand_type_mismatch,
282 register_type_mismatch,
283 number_of_operands_mismatch,
284 invalid_instruction_suffix,
285 bad_imm4,
286 unsupported_with_intel_mnemonic,
287 unsupported_syntax,
288 unsupported,
289 invalid_vsib_address,
290 invalid_vector_register_set,
291 unsupported_vector_index_register,
292 unsupported_broadcast,
293 broadcast_needed,
294 unsupported_masking,
295 mask_not_on_destination,
296 no_default_mask,
297 unsupported_rc_sae,
298 rc_sae_operand_not_last_imm,
299 invalid_register_operand,
300 };
301
302 struct _i386_insn
303 {
304 /* TM holds the template for the insn were currently assembling. */
305 insn_template tm;
306
307 /* SUFFIX holds the instruction size suffix for byte, word, dword
308 or qword, if given. */
309 char suffix;
310
311 /* OPERANDS gives the number of given operands. */
312 unsigned int operands;
313
314 /* REG_OPERANDS, DISP_OPERANDS, MEM_OPERANDS, IMM_OPERANDS give the number
315 of given register, displacement, memory operands and immediate
316 operands. */
317 unsigned int reg_operands, disp_operands, mem_operands, imm_operands;
318
319 /* TYPES [i] is the type (see above #defines) which tells us how to
320 use OP[i] for the corresponding operand. */
321 i386_operand_type types[MAX_OPERANDS];
322
323 /* Displacement expression, immediate expression, or register for each
324 operand. */
325 union i386_op op[MAX_OPERANDS];
326
327 /* Flags for operands. */
328 unsigned int flags[MAX_OPERANDS];
329 #define Operand_PCrel 1
330 #define Operand_Mem 2
331
332 /* Relocation type for operand */
333 enum bfd_reloc_code_real reloc[MAX_OPERANDS];
334
335 /* BASE_REG, INDEX_REG, and LOG2_SCALE_FACTOR are used to encode
336 the base index byte below. */
337 const reg_entry *base_reg;
338 const reg_entry *index_reg;
339 unsigned int log2_scale_factor;
340
341 /* SEG gives the seg_entries of this insn. They are zero unless
342 explicit segment overrides are given. */
343 const seg_entry *seg[2];
344
345 /* Copied first memory operand string, for re-checking. */
346 char *memop1_string;
347
348 /* PREFIX holds all the given prefix opcodes (usually null).
349 PREFIXES is the number of prefix opcodes. */
350 unsigned int prefixes;
351 unsigned char prefix[MAX_PREFIXES];
352
353 /* Has MMX register operands. */
354 bfd_boolean has_regmmx;
355
356 /* Has XMM register operands. */
357 bfd_boolean has_regxmm;
358
359 /* Has YMM register operands. */
360 bfd_boolean has_regymm;
361
362 /* Has ZMM register operands. */
363 bfd_boolean has_regzmm;
364
365 /* RM and SIB are the modrm byte and the sib byte where the
366 addressing modes of this insn are encoded. */
367 modrm_byte rm;
368 rex_byte rex;
369 rex_byte vrex;
370 sib_byte sib;
371 vex_prefix vex;
372
373 /* Masking attributes. */
374 struct Mask_Operation *mask;
375
376 /* Rounding control and SAE attributes. */
377 struct RC_Operation *rounding;
378
379 /* Broadcasting attributes. */
380 struct Broadcast_Operation *broadcast;
381
382 /* Compressed disp8*N attribute. */
383 unsigned int memshift;
384
385 /* Prefer load or store in encoding. */
386 enum
387 {
388 dir_encoding_default = 0,
389 dir_encoding_load,
390 dir_encoding_store,
391 dir_encoding_swap
392 } dir_encoding;
393
394 /* Prefer 8bit or 32bit displacement in encoding. */
395 enum
396 {
397 disp_encoding_default = 0,
398 disp_encoding_8bit,
399 disp_encoding_32bit
400 } disp_encoding;
401
402 /* Prefer the REX byte in encoding. */
403 bfd_boolean rex_encoding;
404
405 /* Disable instruction size optimization. */
406 bfd_boolean no_optimize;
407
408 /* How to encode vector instructions. */
409 enum
410 {
411 vex_encoding_default = 0,
412 vex_encoding_vex2,
413 vex_encoding_vex3,
414 vex_encoding_evex
415 } vec_encoding;
416
417 /* REP prefix. */
418 const char *rep_prefix;
419
420 /* HLE prefix. */
421 const char *hle_prefix;
422
423 /* Have BND prefix. */
424 const char *bnd_prefix;
425
426 /* Have NOTRACK prefix. */
427 const char *notrack_prefix;
428
429 /* Error message. */
430 enum i386_error error;
431 };
432
433 typedef struct _i386_insn i386_insn;
434
435 /* Link RC type with corresponding string, that'll be looked for in
436 asm. */
437 struct RC_name
438 {
439 enum rc_type type;
440 const char *name;
441 unsigned int len;
442 };
443
444 static const struct RC_name RC_NamesTable[] =
445 {
446 { rne, STRING_COMMA_LEN ("rn-sae") },
447 { rd, STRING_COMMA_LEN ("rd-sae") },
448 { ru, STRING_COMMA_LEN ("ru-sae") },
449 { rz, STRING_COMMA_LEN ("rz-sae") },
450 { saeonly, STRING_COMMA_LEN ("sae") },
451 };
452
453 /* List of chars besides those in app.c:symbol_chars that can start an
454 operand. Used to prevent the scrubber eating vital white-space. */
455 const char extra_symbol_chars[] = "*%-([{}"
456 #ifdef LEX_AT
457 "@"
458 #endif
459 #ifdef LEX_QM
460 "?"
461 #endif
462 ;
463
464 #if (defined (TE_I386AIX) \
465 || ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) \
466 && !defined (TE_GNU) \
467 && !defined (TE_LINUX) \
468 && !defined (TE_NACL) \
469 && !defined (TE_FreeBSD) \
470 && !defined (TE_DragonFly) \
471 && !defined (TE_NetBSD)))
472 /* This array holds the chars that always start a comment. If the
473 pre-processor is disabled, these aren't very useful. The option
474 --divide will remove '/' from this list. */
475 const char *i386_comment_chars = "#/";
476 #define SVR4_COMMENT_CHARS 1
477 #define PREFIX_SEPARATOR '\\'
478
479 #else
480 const char *i386_comment_chars = "#";
481 #define PREFIX_SEPARATOR '/'
482 #endif
483
484 /* This array holds the chars that only start a comment at the beginning of
485 a line. If the line seems to have the form '# 123 filename'
486 .line and .file directives will appear in the pre-processed output.
487 Note that input_file.c hand checks for '#' at the beginning of the
488 first line of the input file. This is because the compiler outputs
489 #NO_APP at the beginning of its output.
490 Also note that comments started like this one will always work if
491 '/' isn't otherwise defined. */
492 const char line_comment_chars[] = "#/";
493
494 const char line_separator_chars[] = ";";
495
496 /* Chars that can be used to separate mant from exp in floating point
497 nums. */
498 const char EXP_CHARS[] = "eE";
499
500 /* Chars that mean this number is a floating point constant
501 As in 0f12.456
502 or 0d1.2345e12. */
503 const char FLT_CHARS[] = "fFdDxX";
504
505 /* Tables for lexical analysis. */
506 static char mnemonic_chars[256];
507 static char register_chars[256];
508 static char operand_chars[256];
509 static char identifier_chars[256];
510 static char digit_chars[256];
511
512 /* Lexical macros. */
513 #define is_mnemonic_char(x) (mnemonic_chars[(unsigned char) x])
514 #define is_operand_char(x) (operand_chars[(unsigned char) x])
515 #define is_register_char(x) (register_chars[(unsigned char) x])
516 #define is_space_char(x) ((x) == ' ')
517 #define is_identifier_char(x) (identifier_chars[(unsigned char) x])
518 #define is_digit_char(x) (digit_chars[(unsigned char) x])
519
520 /* All non-digit non-letter characters that may occur in an operand. */
521 static char operand_special_chars[] = "%$-+(,)*._~/<>|&^!:[@]";
522
523 /* md_assemble() always leaves the strings it's passed unaltered. To
524 effect this we maintain a stack of saved characters that we've smashed
525 with '\0's (indicating end of strings for various sub-fields of the
526 assembler instruction). */
527 static char save_stack[32];
528 static char *save_stack_p;
529 #define END_STRING_AND_SAVE(s) \
530 do { *save_stack_p++ = *(s); *(s) = '\0'; } while (0)
531 #define RESTORE_END_STRING(s) \
532 do { *(s) = *--save_stack_p; } while (0)
533
534 /* The instruction we're assembling. */
535 static i386_insn i;
536
537 /* Possible templates for current insn. */
538 static const templates *current_templates;
539
540 /* Per instruction expressionS buffers: max displacements & immediates. */
541 static expressionS disp_expressions[MAX_MEMORY_OPERANDS];
542 static expressionS im_expressions[MAX_IMMEDIATE_OPERANDS];
543
544 /* Current operand we are working on. */
545 static int this_operand = -1;
546
547 /* We support four different modes. FLAG_CODE variable is used to distinguish
548 these. */
549
550 enum flag_code {
551 CODE_32BIT,
552 CODE_16BIT,
553 CODE_64BIT };
554
555 static enum flag_code flag_code;
556 static unsigned int object_64bit;
557 static unsigned int disallow_64bit_reloc;
558 static int use_rela_relocations = 0;
559
560 #if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
561 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
562 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
563
564 /* The ELF ABI to use. */
565 enum x86_elf_abi
566 {
567 I386_ABI,
568 X86_64_ABI,
569 X86_64_X32_ABI
570 };
571
572 static enum x86_elf_abi x86_elf_abi = I386_ABI;
573 #endif
574
575 #if defined (TE_PE) || defined (TE_PEP)
576 /* Use big object file format. */
577 static int use_big_obj = 0;
578 #endif
579
580 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
581 /* 1 if generating code for a shared library. */
582 static int shared = 0;
583 #endif
584
585 /* 1 for intel syntax,
586 0 if att syntax. */
587 static int intel_syntax = 0;
588
589 /* 1 for Intel64 ISA,
590 0 if AMD64 ISA. */
591 static int intel64;
592
593 /* 1 for intel mnemonic,
594 0 if att mnemonic. */
595 static int intel_mnemonic = !SYSV386_COMPAT;
596
597 /* 1 if pseudo registers are permitted. */
598 static int allow_pseudo_reg = 0;
599
600 /* 1 if register prefix % not required. */
601 static int allow_naked_reg = 0;
602
603 /* 1 if the assembler should add BND prefix for all control-transferring
604 instructions supporting it, even if this prefix wasn't specified
605 explicitly. */
606 static int add_bnd_prefix = 0;
607
608 /* 1 if pseudo index register, eiz/riz, is allowed . */
609 static int allow_index_reg = 0;
610
611 /* 1 if the assembler should ignore LOCK prefix, even if it was
612 specified explicitly. */
613 static int omit_lock_prefix = 0;
614
615 /* 1 if the assembler should encode lfence, mfence, and sfence as
616 "lock addl $0, (%{re}sp)". */
617 static int avoid_fence = 0;
618
619 /* 1 if the assembler should generate relax relocations. */
620
621 static int generate_relax_relocations
622 = DEFAULT_GENERATE_X86_RELAX_RELOCATIONS;
623
624 static enum check_kind
625 {
626 check_none = 0,
627 check_warning,
628 check_error
629 }
630 sse_check, operand_check = check_warning;
631
632 /* Optimization:
633 1. Clear the REX_W bit with register operand if possible.
634 2. Above plus use 128bit vector instruction to clear the full vector
635 register.
636 */
637 static int optimize = 0;
638
639 /* Optimization:
640 1. Clear the REX_W bit with register operand if possible.
641 2. Above plus use 128bit vector instruction to clear the full vector
642 register.
643 3. Above plus optimize "test{q,l,w} $imm8,%r{64,32,16}" to
644 "testb $imm7,%r8".
645 */
646 static int optimize_for_space = 0;
647
648 /* Register prefix used for error message. */
649 static const char *register_prefix = "%";
650
651 /* Used in 16 bit gcc mode to add an l suffix to call, ret, enter,
652 leave, push, and pop instructions so that gcc has the same stack
653 frame as in 32 bit mode. */
654 static char stackop_size = '\0';
655
656 /* Non-zero to optimize code alignment. */
657 int optimize_align_code = 1;
658
659 /* Non-zero to quieten some warnings. */
660 static int quiet_warnings = 0;
661
662 /* CPU name. */
663 static const char *cpu_arch_name = NULL;
664 static char *cpu_sub_arch_name = NULL;
665
666 /* CPU feature flags. */
667 static i386_cpu_flags cpu_arch_flags = CPU_UNKNOWN_FLAGS;
668
669 /* If we have selected a cpu we are generating instructions for. */
670 static int cpu_arch_tune_set = 0;
671
672 /* Cpu we are generating instructions for. */
673 enum processor_type cpu_arch_tune = PROCESSOR_UNKNOWN;
674
675 /* CPU feature flags of cpu we are generating instructions for. */
676 static i386_cpu_flags cpu_arch_tune_flags;
677
678 /* CPU instruction set architecture used. */
679 enum processor_type cpu_arch_isa = PROCESSOR_UNKNOWN;
680
681 /* CPU feature flags of instruction set architecture used. */
682 i386_cpu_flags cpu_arch_isa_flags;
683
684 /* If set, conditional jumps are not automatically promoted to handle
685 larger than a byte offset. */
686 static unsigned int no_cond_jump_promotion = 0;
687
688 /* Encode SSE instructions with VEX prefix. */
689 static unsigned int sse2avx;
690
691 /* Encode scalar AVX instructions with specific vector length. */
692 static enum
693 {
694 vex128 = 0,
695 vex256
696 } avxscalar;
697
698 /* Encode VEX WIG instructions with specific vex.w. */
699 static enum
700 {
701 vexw0 = 0,
702 vexw1
703 } vexwig;
704
705 /* Encode scalar EVEX LIG instructions with specific vector length. */
706 static enum
707 {
708 evexl128 = 0,
709 evexl256,
710 evexl512
711 } evexlig;
712
713 /* Encode EVEX WIG instructions with specific evex.w. */
714 static enum
715 {
716 evexw0 = 0,
717 evexw1
718 } evexwig;
719
720 /* Value to encode in EVEX RC bits, for SAE-only instructions. */
721 static enum rc_type evexrcig = rne;
722
723 /* Pre-defined "_GLOBAL_OFFSET_TABLE_". */
724 static symbolS *GOT_symbol;
725
726 /* The dwarf2 return column, adjusted for 32 or 64 bit. */
727 unsigned int x86_dwarf2_return_column;
728
729 /* The dwarf2 data alignment, adjusted for 32 or 64 bit. */
730 int x86_cie_data_alignment;
731
732 /* Interface to relax_segment.
733 There are 3 major relax states for 386 jump insns because the
734 different types of jumps add different sizes to frags when we're
735 figuring out what sort of jump to choose to reach a given label. */
736
737 /* Types. */
738 #define UNCOND_JUMP 0
739 #define COND_JUMP 1
740 #define COND_JUMP86 2
741
742 /* Sizes. */
743 #define CODE16 1
744 #define SMALL 0
745 #define SMALL16 (SMALL | CODE16)
746 #define BIG 2
747 #define BIG16 (BIG | CODE16)
748
749 #ifndef INLINE
750 #ifdef __GNUC__
751 #define INLINE __inline__
752 #else
753 #define INLINE
754 #endif
755 #endif
756
757 #define ENCODE_RELAX_STATE(type, size) \
758 ((relax_substateT) (((type) << 2) | (size)))
759 #define TYPE_FROM_RELAX_STATE(s) \
760 ((s) >> 2)
761 #define DISP_SIZE_FROM_RELAX_STATE(s) \
762 ((((s) & 3) == BIG ? 4 : (((s) & 3) == BIG16 ? 2 : 1)))
763
764 /* This table is used by relax_frag to promote short jumps to long
765 ones where necessary. SMALL (short) jumps may be promoted to BIG
766 (32 bit long) ones, and SMALL16 jumps to BIG16 (16 bit long). We
767 don't allow a short jump in a 32 bit code segment to be promoted to
768 a 16 bit offset jump because it's slower (requires data size
769 prefix), and doesn't work, unless the destination is in the bottom
770 64k of the code segment (The top 16 bits of eip are zeroed). */
771
772 const relax_typeS md_relax_table[] =
773 {
774 /* The fields are:
775 1) most positive reach of this state,
776 2) most negative reach of this state,
777 3) how many bytes this mode will have in the variable part of the frag
778 4) which index into the table to try if we can't fit into this one. */
779
780 /* UNCOND_JUMP states. */
781 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG)},
782 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16)},
783 /* dword jmp adds 4 bytes to frag:
784 0 extra opcode bytes, 4 displacement bytes. */
785 {0, 0, 4, 0},
786 /* word jmp adds 2 byte2 to frag:
787 0 extra opcode bytes, 2 displacement bytes. */
788 {0, 0, 2, 0},
789
790 /* COND_JUMP states. */
791 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG)},
792 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG16)},
793 /* dword conditionals adds 5 bytes to frag:
794 1 extra opcode byte, 4 displacement bytes. */
795 {0, 0, 5, 0},
796 /* word conditionals add 3 bytes to frag:
797 1 extra opcode byte, 2 displacement bytes. */
798 {0, 0, 3, 0},
799
800 /* COND_JUMP86 states. */
801 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG)},
802 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG16)},
803 /* dword conditionals adds 5 bytes to frag:
804 1 extra opcode byte, 4 displacement bytes. */
805 {0, 0, 5, 0},
806 /* word conditionals add 4 bytes to frag:
807 1 displacement byte and a 3 byte long branch insn. */
808 {0, 0, 4, 0}
809 };
810
811 static const arch_entry cpu_arch[] =
812 {
813 /* Do not replace the first two entries - i386_target_format()
814 relies on them being there in this order. */
815 { STRING_COMMA_LEN ("generic32"), PROCESSOR_GENERIC32,
816 CPU_GENERIC32_FLAGS, 0 },
817 { STRING_COMMA_LEN ("generic64"), PROCESSOR_GENERIC64,
818 CPU_GENERIC64_FLAGS, 0 },
819 { STRING_COMMA_LEN ("i8086"), PROCESSOR_UNKNOWN,
820 CPU_NONE_FLAGS, 0 },
821 { STRING_COMMA_LEN ("i186"), PROCESSOR_UNKNOWN,
822 CPU_I186_FLAGS, 0 },
823 { STRING_COMMA_LEN ("i286"), PROCESSOR_UNKNOWN,
824 CPU_I286_FLAGS, 0 },
825 { STRING_COMMA_LEN ("i386"), PROCESSOR_I386,
826 CPU_I386_FLAGS, 0 },
827 { STRING_COMMA_LEN ("i486"), PROCESSOR_I486,
828 CPU_I486_FLAGS, 0 },
829 { STRING_COMMA_LEN ("i586"), PROCESSOR_PENTIUM,
830 CPU_I586_FLAGS, 0 },
831 { STRING_COMMA_LEN ("i686"), PROCESSOR_PENTIUMPRO,
832 CPU_I686_FLAGS, 0 },
833 { STRING_COMMA_LEN ("pentium"), PROCESSOR_PENTIUM,
834 CPU_I586_FLAGS, 0 },
835 { STRING_COMMA_LEN ("pentiumpro"), PROCESSOR_PENTIUMPRO,
836 CPU_PENTIUMPRO_FLAGS, 0 },
837 { STRING_COMMA_LEN ("pentiumii"), PROCESSOR_PENTIUMPRO,
838 CPU_P2_FLAGS, 0 },
839 { STRING_COMMA_LEN ("pentiumiii"),PROCESSOR_PENTIUMPRO,
840 CPU_P3_FLAGS, 0 },
841 { STRING_COMMA_LEN ("pentium4"), PROCESSOR_PENTIUM4,
842 CPU_P4_FLAGS, 0 },
843 { STRING_COMMA_LEN ("prescott"), PROCESSOR_NOCONA,
844 CPU_CORE_FLAGS, 0 },
845 { STRING_COMMA_LEN ("nocona"), PROCESSOR_NOCONA,
846 CPU_NOCONA_FLAGS, 0 },
847 { STRING_COMMA_LEN ("yonah"), PROCESSOR_CORE,
848 CPU_CORE_FLAGS, 1 },
849 { STRING_COMMA_LEN ("core"), PROCESSOR_CORE,
850 CPU_CORE_FLAGS, 0 },
851 { STRING_COMMA_LEN ("merom"), PROCESSOR_CORE2,
852 CPU_CORE2_FLAGS, 1 },
853 { STRING_COMMA_LEN ("core2"), PROCESSOR_CORE2,
854 CPU_CORE2_FLAGS, 0 },
855 { STRING_COMMA_LEN ("corei7"), PROCESSOR_COREI7,
856 CPU_COREI7_FLAGS, 0 },
857 { STRING_COMMA_LEN ("l1om"), PROCESSOR_L1OM,
858 CPU_L1OM_FLAGS, 0 },
859 { STRING_COMMA_LEN ("k1om"), PROCESSOR_K1OM,
860 CPU_K1OM_FLAGS, 0 },
861 { STRING_COMMA_LEN ("iamcu"), PROCESSOR_IAMCU,
862 CPU_IAMCU_FLAGS, 0 },
863 { STRING_COMMA_LEN ("k6"), PROCESSOR_K6,
864 CPU_K6_FLAGS, 0 },
865 { STRING_COMMA_LEN ("k6_2"), PROCESSOR_K6,
866 CPU_K6_2_FLAGS, 0 },
867 { STRING_COMMA_LEN ("athlon"), PROCESSOR_ATHLON,
868 CPU_ATHLON_FLAGS, 0 },
869 { STRING_COMMA_LEN ("sledgehammer"), PROCESSOR_K8,
870 CPU_K8_FLAGS, 1 },
871 { STRING_COMMA_LEN ("opteron"), PROCESSOR_K8,
872 CPU_K8_FLAGS, 0 },
873 { STRING_COMMA_LEN ("k8"), PROCESSOR_K8,
874 CPU_K8_FLAGS, 0 },
875 { STRING_COMMA_LEN ("amdfam10"), PROCESSOR_AMDFAM10,
876 CPU_AMDFAM10_FLAGS, 0 },
877 { STRING_COMMA_LEN ("bdver1"), PROCESSOR_BD,
878 CPU_BDVER1_FLAGS, 0 },
879 { STRING_COMMA_LEN ("bdver2"), PROCESSOR_BD,
880 CPU_BDVER2_FLAGS, 0 },
881 { STRING_COMMA_LEN ("bdver3"), PROCESSOR_BD,
882 CPU_BDVER3_FLAGS, 0 },
883 { STRING_COMMA_LEN ("bdver4"), PROCESSOR_BD,
884 CPU_BDVER4_FLAGS, 0 },
885 { STRING_COMMA_LEN ("znver1"), PROCESSOR_ZNVER,
886 CPU_ZNVER1_FLAGS, 0 },
887 { STRING_COMMA_LEN ("znver2"), PROCESSOR_ZNVER,
888 CPU_ZNVER2_FLAGS, 0 },
889 { STRING_COMMA_LEN ("btver1"), PROCESSOR_BT,
890 CPU_BTVER1_FLAGS, 0 },
891 { STRING_COMMA_LEN ("btver2"), PROCESSOR_BT,
892 CPU_BTVER2_FLAGS, 0 },
893 { STRING_COMMA_LEN (".8087"), PROCESSOR_UNKNOWN,
894 CPU_8087_FLAGS, 0 },
895 { STRING_COMMA_LEN (".287"), PROCESSOR_UNKNOWN,
896 CPU_287_FLAGS, 0 },
897 { STRING_COMMA_LEN (".387"), PROCESSOR_UNKNOWN,
898 CPU_387_FLAGS, 0 },
899 { STRING_COMMA_LEN (".687"), PROCESSOR_UNKNOWN,
900 CPU_687_FLAGS, 0 },
901 { STRING_COMMA_LEN (".cmov"), PROCESSOR_UNKNOWN,
902 CPU_CMOV_FLAGS, 0 },
903 { STRING_COMMA_LEN (".fxsr"), PROCESSOR_UNKNOWN,
904 CPU_FXSR_FLAGS, 0 },
905 { STRING_COMMA_LEN (".mmx"), PROCESSOR_UNKNOWN,
906 CPU_MMX_FLAGS, 0 },
907 { STRING_COMMA_LEN (".sse"), PROCESSOR_UNKNOWN,
908 CPU_SSE_FLAGS, 0 },
909 { STRING_COMMA_LEN (".sse2"), PROCESSOR_UNKNOWN,
910 CPU_SSE2_FLAGS, 0 },
911 { STRING_COMMA_LEN (".sse3"), PROCESSOR_UNKNOWN,
912 CPU_SSE3_FLAGS, 0 },
913 { STRING_COMMA_LEN (".ssse3"), PROCESSOR_UNKNOWN,
914 CPU_SSSE3_FLAGS, 0 },
915 { STRING_COMMA_LEN (".sse4.1"), PROCESSOR_UNKNOWN,
916 CPU_SSE4_1_FLAGS, 0 },
917 { STRING_COMMA_LEN (".sse4.2"), PROCESSOR_UNKNOWN,
918 CPU_SSE4_2_FLAGS, 0 },
919 { STRING_COMMA_LEN (".sse4"), PROCESSOR_UNKNOWN,
920 CPU_SSE4_2_FLAGS, 0 },
921 { STRING_COMMA_LEN (".avx"), PROCESSOR_UNKNOWN,
922 CPU_AVX_FLAGS, 0 },
923 { STRING_COMMA_LEN (".avx2"), PROCESSOR_UNKNOWN,
924 CPU_AVX2_FLAGS, 0 },
925 { STRING_COMMA_LEN (".avx512f"), PROCESSOR_UNKNOWN,
926 CPU_AVX512F_FLAGS, 0 },
927 { STRING_COMMA_LEN (".avx512cd"), PROCESSOR_UNKNOWN,
928 CPU_AVX512CD_FLAGS, 0 },
929 { STRING_COMMA_LEN (".avx512er"), PROCESSOR_UNKNOWN,
930 CPU_AVX512ER_FLAGS, 0 },
931 { STRING_COMMA_LEN (".avx512pf"), PROCESSOR_UNKNOWN,
932 CPU_AVX512PF_FLAGS, 0 },
933 { STRING_COMMA_LEN (".avx512dq"), PROCESSOR_UNKNOWN,
934 CPU_AVX512DQ_FLAGS, 0 },
935 { STRING_COMMA_LEN (".avx512bw"), PROCESSOR_UNKNOWN,
936 CPU_AVX512BW_FLAGS, 0 },
937 { STRING_COMMA_LEN (".avx512vl"), PROCESSOR_UNKNOWN,
938 CPU_AVX512VL_FLAGS, 0 },
939 { STRING_COMMA_LEN (".vmx"), PROCESSOR_UNKNOWN,
940 CPU_VMX_FLAGS, 0 },
941 { STRING_COMMA_LEN (".vmfunc"), PROCESSOR_UNKNOWN,
942 CPU_VMFUNC_FLAGS, 0 },
943 { STRING_COMMA_LEN (".smx"), PROCESSOR_UNKNOWN,
944 CPU_SMX_FLAGS, 0 },
945 { STRING_COMMA_LEN (".xsave"), PROCESSOR_UNKNOWN,
946 CPU_XSAVE_FLAGS, 0 },
947 { STRING_COMMA_LEN (".xsaveopt"), PROCESSOR_UNKNOWN,
948 CPU_XSAVEOPT_FLAGS, 0 },
949 { STRING_COMMA_LEN (".xsavec"), PROCESSOR_UNKNOWN,
950 CPU_XSAVEC_FLAGS, 0 },
951 { STRING_COMMA_LEN (".xsaves"), PROCESSOR_UNKNOWN,
952 CPU_XSAVES_FLAGS, 0 },
953 { STRING_COMMA_LEN (".aes"), PROCESSOR_UNKNOWN,
954 CPU_AES_FLAGS, 0 },
955 { STRING_COMMA_LEN (".pclmul"), PROCESSOR_UNKNOWN,
956 CPU_PCLMUL_FLAGS, 0 },
957 { STRING_COMMA_LEN (".clmul"), PROCESSOR_UNKNOWN,
958 CPU_PCLMUL_FLAGS, 1 },
959 { STRING_COMMA_LEN (".fsgsbase"), PROCESSOR_UNKNOWN,
960 CPU_FSGSBASE_FLAGS, 0 },
961 { STRING_COMMA_LEN (".rdrnd"), PROCESSOR_UNKNOWN,
962 CPU_RDRND_FLAGS, 0 },
963 { STRING_COMMA_LEN (".f16c"), PROCESSOR_UNKNOWN,
964 CPU_F16C_FLAGS, 0 },
965 { STRING_COMMA_LEN (".bmi2"), PROCESSOR_UNKNOWN,
966 CPU_BMI2_FLAGS, 0 },
967 { STRING_COMMA_LEN (".fma"), PROCESSOR_UNKNOWN,
968 CPU_FMA_FLAGS, 0 },
969 { STRING_COMMA_LEN (".fma4"), PROCESSOR_UNKNOWN,
970 CPU_FMA4_FLAGS, 0 },
971 { STRING_COMMA_LEN (".xop"), PROCESSOR_UNKNOWN,
972 CPU_XOP_FLAGS, 0 },
973 { STRING_COMMA_LEN (".lwp"), PROCESSOR_UNKNOWN,
974 CPU_LWP_FLAGS, 0 },
975 { STRING_COMMA_LEN (".movbe"), PROCESSOR_UNKNOWN,
976 CPU_MOVBE_FLAGS, 0 },
977 { STRING_COMMA_LEN (".cx16"), PROCESSOR_UNKNOWN,
978 CPU_CX16_FLAGS, 0 },
979 { STRING_COMMA_LEN (".ept"), PROCESSOR_UNKNOWN,
980 CPU_EPT_FLAGS, 0 },
981 { STRING_COMMA_LEN (".lzcnt"), PROCESSOR_UNKNOWN,
982 CPU_LZCNT_FLAGS, 0 },
983 { STRING_COMMA_LEN (".hle"), PROCESSOR_UNKNOWN,
984 CPU_HLE_FLAGS, 0 },
985 { STRING_COMMA_LEN (".rtm"), PROCESSOR_UNKNOWN,
986 CPU_RTM_FLAGS, 0 },
987 { STRING_COMMA_LEN (".invpcid"), PROCESSOR_UNKNOWN,
988 CPU_INVPCID_FLAGS, 0 },
989 { STRING_COMMA_LEN (".clflush"), PROCESSOR_UNKNOWN,
990 CPU_CLFLUSH_FLAGS, 0 },
991 { STRING_COMMA_LEN (".nop"), PROCESSOR_UNKNOWN,
992 CPU_NOP_FLAGS, 0 },
993 { STRING_COMMA_LEN (".syscall"), PROCESSOR_UNKNOWN,
994 CPU_SYSCALL_FLAGS, 0 },
995 { STRING_COMMA_LEN (".rdtscp"), PROCESSOR_UNKNOWN,
996 CPU_RDTSCP_FLAGS, 0 },
997 { STRING_COMMA_LEN (".3dnow"), PROCESSOR_UNKNOWN,
998 CPU_3DNOW_FLAGS, 0 },
999 { STRING_COMMA_LEN (".3dnowa"), PROCESSOR_UNKNOWN,
1000 CPU_3DNOWA_FLAGS, 0 },
1001 { STRING_COMMA_LEN (".padlock"), PROCESSOR_UNKNOWN,
1002 CPU_PADLOCK_FLAGS, 0 },
1003 { STRING_COMMA_LEN (".pacifica"), PROCESSOR_UNKNOWN,
1004 CPU_SVME_FLAGS, 1 },
1005 { STRING_COMMA_LEN (".svme"), PROCESSOR_UNKNOWN,
1006 CPU_SVME_FLAGS, 0 },
1007 { STRING_COMMA_LEN (".sse4a"), PROCESSOR_UNKNOWN,
1008 CPU_SSE4A_FLAGS, 0 },
1009 { STRING_COMMA_LEN (".abm"), PROCESSOR_UNKNOWN,
1010 CPU_ABM_FLAGS, 0 },
1011 { STRING_COMMA_LEN (".bmi"), PROCESSOR_UNKNOWN,
1012 CPU_BMI_FLAGS, 0 },
1013 { STRING_COMMA_LEN (".tbm"), PROCESSOR_UNKNOWN,
1014 CPU_TBM_FLAGS, 0 },
1015 { STRING_COMMA_LEN (".adx"), PROCESSOR_UNKNOWN,
1016 CPU_ADX_FLAGS, 0 },
1017 { STRING_COMMA_LEN (".rdseed"), PROCESSOR_UNKNOWN,
1018 CPU_RDSEED_FLAGS, 0 },
1019 { STRING_COMMA_LEN (".prfchw"), PROCESSOR_UNKNOWN,
1020 CPU_PRFCHW_FLAGS, 0 },
1021 { STRING_COMMA_LEN (".smap"), PROCESSOR_UNKNOWN,
1022 CPU_SMAP_FLAGS, 0 },
1023 { STRING_COMMA_LEN (".mpx"), PROCESSOR_UNKNOWN,
1024 CPU_MPX_FLAGS, 0 },
1025 { STRING_COMMA_LEN (".sha"), PROCESSOR_UNKNOWN,
1026 CPU_SHA_FLAGS, 0 },
1027 { STRING_COMMA_LEN (".clflushopt"), PROCESSOR_UNKNOWN,
1028 CPU_CLFLUSHOPT_FLAGS, 0 },
1029 { STRING_COMMA_LEN (".prefetchwt1"), PROCESSOR_UNKNOWN,
1030 CPU_PREFETCHWT1_FLAGS, 0 },
1031 { STRING_COMMA_LEN (".se1"), PROCESSOR_UNKNOWN,
1032 CPU_SE1_FLAGS, 0 },
1033 { STRING_COMMA_LEN (".clwb"), PROCESSOR_UNKNOWN,
1034 CPU_CLWB_FLAGS, 0 },
1035 { STRING_COMMA_LEN (".avx512ifma"), PROCESSOR_UNKNOWN,
1036 CPU_AVX512IFMA_FLAGS, 0 },
1037 { STRING_COMMA_LEN (".avx512vbmi"), PROCESSOR_UNKNOWN,
1038 CPU_AVX512VBMI_FLAGS, 0 },
1039 { STRING_COMMA_LEN (".avx512_4fmaps"), PROCESSOR_UNKNOWN,
1040 CPU_AVX512_4FMAPS_FLAGS, 0 },
1041 { STRING_COMMA_LEN (".avx512_4vnniw"), PROCESSOR_UNKNOWN,
1042 CPU_AVX512_4VNNIW_FLAGS, 0 },
1043 { STRING_COMMA_LEN (".avx512_vpopcntdq"), PROCESSOR_UNKNOWN,
1044 CPU_AVX512_VPOPCNTDQ_FLAGS, 0 },
1045 { STRING_COMMA_LEN (".avx512_vbmi2"), PROCESSOR_UNKNOWN,
1046 CPU_AVX512_VBMI2_FLAGS, 0 },
1047 { STRING_COMMA_LEN (".avx512_vnni"), PROCESSOR_UNKNOWN,
1048 CPU_AVX512_VNNI_FLAGS, 0 },
1049 { STRING_COMMA_LEN (".avx512_bitalg"), PROCESSOR_UNKNOWN,
1050 CPU_AVX512_BITALG_FLAGS, 0 },
1051 { STRING_COMMA_LEN (".clzero"), PROCESSOR_UNKNOWN,
1052 CPU_CLZERO_FLAGS, 0 },
1053 { STRING_COMMA_LEN (".mwaitx"), PROCESSOR_UNKNOWN,
1054 CPU_MWAITX_FLAGS, 0 },
1055 { STRING_COMMA_LEN (".ospke"), PROCESSOR_UNKNOWN,
1056 CPU_OSPKE_FLAGS, 0 },
1057 { STRING_COMMA_LEN (".rdpid"), PROCESSOR_UNKNOWN,
1058 CPU_RDPID_FLAGS, 0 },
1059 { STRING_COMMA_LEN (".ptwrite"), PROCESSOR_UNKNOWN,
1060 CPU_PTWRITE_FLAGS, 0 },
1061 { STRING_COMMA_LEN (".ibt"), PROCESSOR_UNKNOWN,
1062 CPU_IBT_FLAGS, 0 },
1063 { STRING_COMMA_LEN (".shstk"), PROCESSOR_UNKNOWN,
1064 CPU_SHSTK_FLAGS, 0 },
1065 { STRING_COMMA_LEN (".gfni"), PROCESSOR_UNKNOWN,
1066 CPU_GFNI_FLAGS, 0 },
1067 { STRING_COMMA_LEN (".vaes"), PROCESSOR_UNKNOWN,
1068 CPU_VAES_FLAGS, 0 },
1069 { STRING_COMMA_LEN (".vpclmulqdq"), PROCESSOR_UNKNOWN,
1070 CPU_VPCLMULQDQ_FLAGS, 0 },
1071 { STRING_COMMA_LEN (".wbnoinvd"), PROCESSOR_UNKNOWN,
1072 CPU_WBNOINVD_FLAGS, 0 },
1073 { STRING_COMMA_LEN (".pconfig"), PROCESSOR_UNKNOWN,
1074 CPU_PCONFIG_FLAGS, 0 },
1075 { STRING_COMMA_LEN (".waitpkg"), PROCESSOR_UNKNOWN,
1076 CPU_WAITPKG_FLAGS, 0 },
1077 { STRING_COMMA_LEN (".cldemote"), PROCESSOR_UNKNOWN,
1078 CPU_CLDEMOTE_FLAGS, 0 },
1079 { STRING_COMMA_LEN (".movdiri"), PROCESSOR_UNKNOWN,
1080 CPU_MOVDIRI_FLAGS, 0 },
1081 { STRING_COMMA_LEN (".movdir64b"), PROCESSOR_UNKNOWN,
1082 CPU_MOVDIR64B_FLAGS, 0 },
1083 { STRING_COMMA_LEN (".avx512_bf16"), PROCESSOR_UNKNOWN,
1084 CPU_AVX512_BF16_FLAGS, 0 },
1085 };
1086
1087 static const noarch_entry cpu_noarch[] =
1088 {
1089 { STRING_COMMA_LEN ("no87"), CPU_ANY_X87_FLAGS },
1090 { STRING_COMMA_LEN ("no287"), CPU_ANY_287_FLAGS },
1091 { STRING_COMMA_LEN ("no387"), CPU_ANY_387_FLAGS },
1092 { STRING_COMMA_LEN ("no687"), CPU_ANY_687_FLAGS },
1093 { STRING_COMMA_LEN ("nocmov"), CPU_ANY_CMOV_FLAGS },
1094 { STRING_COMMA_LEN ("nofxsr"), CPU_ANY_FXSR_FLAGS },
1095 { STRING_COMMA_LEN ("nommx"), CPU_ANY_MMX_FLAGS },
1096 { STRING_COMMA_LEN ("nosse"), CPU_ANY_SSE_FLAGS },
1097 { STRING_COMMA_LEN ("nosse2"), CPU_ANY_SSE2_FLAGS },
1098 { STRING_COMMA_LEN ("nosse3"), CPU_ANY_SSE3_FLAGS },
1099 { STRING_COMMA_LEN ("nossse3"), CPU_ANY_SSSE3_FLAGS },
1100 { STRING_COMMA_LEN ("nosse4.1"), CPU_ANY_SSE4_1_FLAGS },
1101 { STRING_COMMA_LEN ("nosse4.2"), CPU_ANY_SSE4_2_FLAGS },
1102 { STRING_COMMA_LEN ("nosse4"), CPU_ANY_SSE4_1_FLAGS },
1103 { STRING_COMMA_LEN ("noavx"), CPU_ANY_AVX_FLAGS },
1104 { STRING_COMMA_LEN ("noavx2"), CPU_ANY_AVX2_FLAGS },
1105 { STRING_COMMA_LEN ("noavx512f"), CPU_ANY_AVX512F_FLAGS },
1106 { STRING_COMMA_LEN ("noavx512cd"), CPU_ANY_AVX512CD_FLAGS },
1107 { STRING_COMMA_LEN ("noavx512er"), CPU_ANY_AVX512ER_FLAGS },
1108 { STRING_COMMA_LEN ("noavx512pf"), CPU_ANY_AVX512PF_FLAGS },
1109 { STRING_COMMA_LEN ("noavx512dq"), CPU_ANY_AVX512DQ_FLAGS },
1110 { STRING_COMMA_LEN ("noavx512bw"), CPU_ANY_AVX512BW_FLAGS },
1111 { STRING_COMMA_LEN ("noavx512vl"), CPU_ANY_AVX512VL_FLAGS },
1112 { STRING_COMMA_LEN ("noavx512ifma"), CPU_ANY_AVX512IFMA_FLAGS },
1113 { STRING_COMMA_LEN ("noavx512vbmi"), CPU_ANY_AVX512VBMI_FLAGS },
1114 { STRING_COMMA_LEN ("noavx512_4fmaps"), CPU_ANY_AVX512_4FMAPS_FLAGS },
1115 { STRING_COMMA_LEN ("noavx512_4vnniw"), CPU_ANY_AVX512_4VNNIW_FLAGS },
1116 { STRING_COMMA_LEN ("noavx512_vpopcntdq"), CPU_ANY_AVX512_VPOPCNTDQ_FLAGS },
1117 { STRING_COMMA_LEN ("noavx512_vbmi2"), CPU_ANY_AVX512_VBMI2_FLAGS },
1118 { STRING_COMMA_LEN ("noavx512_vnni"), CPU_ANY_AVX512_VNNI_FLAGS },
1119 { STRING_COMMA_LEN ("noavx512_bitalg"), CPU_ANY_AVX512_BITALG_FLAGS },
1120 { STRING_COMMA_LEN ("noibt"), CPU_ANY_IBT_FLAGS },
1121 { STRING_COMMA_LEN ("noshstk"), CPU_ANY_SHSTK_FLAGS },
1122 { STRING_COMMA_LEN ("nomovdiri"), CPU_ANY_MOVDIRI_FLAGS },
1123 { STRING_COMMA_LEN ("nomovdir64b"), CPU_ANY_MOVDIR64B_FLAGS },
1124 { STRING_COMMA_LEN ("noavx512_bf16"), CPU_ANY_AVX512_BF16_FLAGS },
1125 };
1126
1127 #ifdef I386COFF
1128 /* Like s_lcomm_internal in gas/read.c but the alignment string
1129 is allowed to be optional. */
1130
1131 static symbolS *
1132 pe_lcomm_internal (int needs_align, symbolS *symbolP, addressT size)
1133 {
1134 addressT align = 0;
1135
1136 SKIP_WHITESPACE ();
1137
1138 if (needs_align
1139 && *input_line_pointer == ',')
1140 {
1141 align = parse_align (needs_align - 1);
1142
1143 if (align == (addressT) -1)
1144 return NULL;
1145 }
1146 else
1147 {
1148 if (size >= 8)
1149 align = 3;
1150 else if (size >= 4)
1151 align = 2;
1152 else if (size >= 2)
1153 align = 1;
1154 else
1155 align = 0;
1156 }
1157
1158 bss_alloc (symbolP, size, align);
1159 return symbolP;
1160 }
1161
1162 static void
1163 pe_lcomm (int needs_align)
1164 {
1165 s_comm_internal (needs_align * 2, pe_lcomm_internal);
1166 }
1167 #endif
1168
1169 const pseudo_typeS md_pseudo_table[] =
1170 {
1171 #if !defined(OBJ_AOUT) && !defined(USE_ALIGN_PTWO)
1172 {"align", s_align_bytes, 0},
1173 #else
1174 {"align", s_align_ptwo, 0},
1175 #endif
1176 {"arch", set_cpu_arch, 0},
1177 #ifndef I386COFF
1178 {"bss", s_bss, 0},
1179 #else
1180 {"lcomm", pe_lcomm, 1},
1181 #endif
1182 {"ffloat", float_cons, 'f'},
1183 {"dfloat", float_cons, 'd'},
1184 {"tfloat", float_cons, 'x'},
1185 {"value", cons, 2},
1186 {"slong", signed_cons, 4},
1187 {"noopt", s_ignore, 0},
1188 {"optim", s_ignore, 0},
1189 {"code16gcc", set_16bit_gcc_code_flag, CODE_16BIT},
1190 {"code16", set_code_flag, CODE_16BIT},
1191 {"code32", set_code_flag, CODE_32BIT},
1192 #ifdef BFD64
1193 {"code64", set_code_flag, CODE_64BIT},
1194 #endif
1195 {"intel_syntax", set_intel_syntax, 1},
1196 {"att_syntax", set_intel_syntax, 0},
1197 {"intel_mnemonic", set_intel_mnemonic, 1},
1198 {"att_mnemonic", set_intel_mnemonic, 0},
1199 {"allow_index_reg", set_allow_index_reg, 1},
1200 {"disallow_index_reg", set_allow_index_reg, 0},
1201 {"sse_check", set_check, 0},
1202 {"operand_check", set_check, 1},
1203 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
1204 {"largecomm", handle_large_common, 0},
1205 #else
1206 {"file", dwarf2_directive_file, 0},
1207 {"loc", dwarf2_directive_loc, 0},
1208 {"loc_mark_labels", dwarf2_directive_loc_mark_labels, 0},
1209 #endif
1210 #ifdef TE_PE
1211 {"secrel32", pe_directive_secrel, 0},
1212 #endif
1213 {0, 0, 0}
1214 };
1215
1216 /* For interface with expression (). */
1217 extern char *input_line_pointer;
1218
1219 /* Hash table for instruction mnemonic lookup. */
1220 static struct hash_control *op_hash;
1221
1222 /* Hash table for register lookup. */
1223 static struct hash_control *reg_hash;
1224 \f
1225 /* Various efficient no-op patterns for aligning code labels.
1226 Note: Don't try to assemble the instructions in the comments.
1227 0L and 0w are not legal. */
1228 static const unsigned char f32_1[] =
1229 {0x90}; /* nop */
1230 static const unsigned char f32_2[] =
1231 {0x66,0x90}; /* xchg %ax,%ax */
1232 static const unsigned char f32_3[] =
1233 {0x8d,0x76,0x00}; /* leal 0(%esi),%esi */
1234 static const unsigned char f32_4[] =
1235 {0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
1236 static const unsigned char f32_6[] =
1237 {0x8d,0xb6,0x00,0x00,0x00,0x00}; /* leal 0L(%esi),%esi */
1238 static const unsigned char f32_7[] =
1239 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
1240 static const unsigned char f16_3[] =
1241 {0x8d,0x74,0x00}; /* lea 0(%si),%si */
1242 static const unsigned char f16_4[] =
1243 {0x8d,0xb4,0x00,0x00}; /* lea 0W(%si),%si */
1244 static const unsigned char jump_disp8[] =
1245 {0xeb}; /* jmp disp8 */
1246 static const unsigned char jump32_disp32[] =
1247 {0xe9}; /* jmp disp32 */
1248 static const unsigned char jump16_disp32[] =
1249 {0x66,0xe9}; /* jmp disp32 */
1250 /* 32-bit NOPs patterns. */
1251 static const unsigned char *const f32_patt[] = {
1252 f32_1, f32_2, f32_3, f32_4, NULL, f32_6, f32_7
1253 };
1254 /* 16-bit NOPs patterns. */
1255 static const unsigned char *const f16_patt[] = {
1256 f32_1, f32_2, f16_3, f16_4
1257 };
1258 /* nopl (%[re]ax) */
1259 static const unsigned char alt_3[] =
1260 {0x0f,0x1f,0x00};
1261 /* nopl 0(%[re]ax) */
1262 static const unsigned char alt_4[] =
1263 {0x0f,0x1f,0x40,0x00};
1264 /* nopl 0(%[re]ax,%[re]ax,1) */
1265 static const unsigned char alt_5[] =
1266 {0x0f,0x1f,0x44,0x00,0x00};
1267 /* nopw 0(%[re]ax,%[re]ax,1) */
1268 static const unsigned char alt_6[] =
1269 {0x66,0x0f,0x1f,0x44,0x00,0x00};
1270 /* nopl 0L(%[re]ax) */
1271 static const unsigned char alt_7[] =
1272 {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
1273 /* nopl 0L(%[re]ax,%[re]ax,1) */
1274 static const unsigned char alt_8[] =
1275 {0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1276 /* nopw 0L(%[re]ax,%[re]ax,1) */
1277 static const unsigned char alt_9[] =
1278 {0x66,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1279 /* nopw %cs:0L(%[re]ax,%[re]ax,1) */
1280 static const unsigned char alt_10[] =
1281 {0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1282 /* data16 nopw %cs:0L(%eax,%eax,1) */
1283 static const unsigned char alt_11[] =
1284 {0x66,0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1285 /* 32-bit and 64-bit NOPs patterns. */
1286 static const unsigned char *const alt_patt[] = {
1287 f32_1, f32_2, alt_3, alt_4, alt_5, alt_6, alt_7, alt_8,
1288 alt_9, alt_10, alt_11
1289 };
1290
1291 /* Genenerate COUNT bytes of NOPs to WHERE from PATT with the maximum
1292 size of a single NOP instruction MAX_SINGLE_NOP_SIZE. */
1293
1294 static void
1295 i386_output_nops (char *where, const unsigned char *const *patt,
1296 int count, int max_single_nop_size)
1297
1298 {
1299 /* Place the longer NOP first. */
1300 int last;
1301 int offset;
1302 const unsigned char *nops = patt[max_single_nop_size - 1];
1303
1304 /* Use the smaller one if the requsted one isn't available. */
1305 if (nops == NULL)
1306 {
1307 max_single_nop_size--;
1308 nops = patt[max_single_nop_size - 1];
1309 }
1310
1311 last = count % max_single_nop_size;
1312
1313 count -= last;
1314 for (offset = 0; offset < count; offset += max_single_nop_size)
1315 memcpy (where + offset, nops, max_single_nop_size);
1316
1317 if (last)
1318 {
1319 nops = patt[last - 1];
1320 if (nops == NULL)
1321 {
1322 /* Use the smaller one plus one-byte NOP if the needed one
1323 isn't available. */
1324 last--;
1325 nops = patt[last - 1];
1326 memcpy (where + offset, nops, last);
1327 where[offset + last] = *patt[0];
1328 }
1329 else
1330 memcpy (where + offset, nops, last);
1331 }
1332 }
1333
1334 static INLINE int
1335 fits_in_imm7 (offsetT num)
1336 {
1337 return (num & 0x7f) == num;
1338 }
1339
1340 static INLINE int
1341 fits_in_imm31 (offsetT num)
1342 {
1343 return (num & 0x7fffffff) == num;
1344 }
1345
1346 /* Genenerate COUNT bytes of NOPs to WHERE with the maximum size of a
1347 single NOP instruction LIMIT. */
1348
1349 void
1350 i386_generate_nops (fragS *fragP, char *where, offsetT count, int limit)
1351 {
1352 const unsigned char *const *patt = NULL;
1353 int max_single_nop_size;
1354 /* Maximum number of NOPs before switching to jump over NOPs. */
1355 int max_number_of_nops;
1356
1357 switch (fragP->fr_type)
1358 {
1359 case rs_fill_nop:
1360 case rs_align_code:
1361 break;
1362 default:
1363 return;
1364 }
1365
1366 /* We need to decide which NOP sequence to use for 32bit and
1367 64bit. When -mtune= is used:
1368
1369 1. For PROCESSOR_I386, PROCESSOR_I486, PROCESSOR_PENTIUM and
1370 PROCESSOR_GENERIC32, f32_patt will be used.
1371 2. For the rest, alt_patt will be used.
1372
1373 When -mtune= isn't used, alt_patt will be used if
1374 cpu_arch_isa_flags has CpuNop. Otherwise, f32_patt will
1375 be used.
1376
1377 When -march= or .arch is used, we can't use anything beyond
1378 cpu_arch_isa_flags. */
1379
1380 if (flag_code == CODE_16BIT)
1381 {
1382 patt = f16_patt;
1383 max_single_nop_size = sizeof (f16_patt) / sizeof (f16_patt[0]);
1384 /* Limit number of NOPs to 2 in 16-bit mode. */
1385 max_number_of_nops = 2;
1386 }
1387 else
1388 {
1389 if (fragP->tc_frag_data.isa == PROCESSOR_UNKNOWN)
1390 {
1391 /* PROCESSOR_UNKNOWN means that all ISAs may be used. */
1392 switch (cpu_arch_tune)
1393 {
1394 case PROCESSOR_UNKNOWN:
1395 /* We use cpu_arch_isa_flags to check if we SHOULD
1396 optimize with nops. */
1397 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1398 patt = alt_patt;
1399 else
1400 patt = f32_patt;
1401 break;
1402 case PROCESSOR_PENTIUM4:
1403 case PROCESSOR_NOCONA:
1404 case PROCESSOR_CORE:
1405 case PROCESSOR_CORE2:
1406 case PROCESSOR_COREI7:
1407 case PROCESSOR_L1OM:
1408 case PROCESSOR_K1OM:
1409 case PROCESSOR_GENERIC64:
1410 case PROCESSOR_K6:
1411 case PROCESSOR_ATHLON:
1412 case PROCESSOR_K8:
1413 case PROCESSOR_AMDFAM10:
1414 case PROCESSOR_BD:
1415 case PROCESSOR_ZNVER:
1416 case PROCESSOR_BT:
1417 patt = alt_patt;
1418 break;
1419 case PROCESSOR_I386:
1420 case PROCESSOR_I486:
1421 case PROCESSOR_PENTIUM:
1422 case PROCESSOR_PENTIUMPRO:
1423 case PROCESSOR_IAMCU:
1424 case PROCESSOR_GENERIC32:
1425 patt = f32_patt;
1426 break;
1427 }
1428 }
1429 else
1430 {
1431 switch (fragP->tc_frag_data.tune)
1432 {
1433 case PROCESSOR_UNKNOWN:
1434 /* When cpu_arch_isa is set, cpu_arch_tune shouldn't be
1435 PROCESSOR_UNKNOWN. */
1436 abort ();
1437 break;
1438
1439 case PROCESSOR_I386:
1440 case PROCESSOR_I486:
1441 case PROCESSOR_PENTIUM:
1442 case PROCESSOR_IAMCU:
1443 case PROCESSOR_K6:
1444 case PROCESSOR_ATHLON:
1445 case PROCESSOR_K8:
1446 case PROCESSOR_AMDFAM10:
1447 case PROCESSOR_BD:
1448 case PROCESSOR_ZNVER:
1449 case PROCESSOR_BT:
1450 case PROCESSOR_GENERIC32:
1451 /* We use cpu_arch_isa_flags to check if we CAN optimize
1452 with nops. */
1453 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1454 patt = alt_patt;
1455 else
1456 patt = f32_patt;
1457 break;
1458 case PROCESSOR_PENTIUMPRO:
1459 case PROCESSOR_PENTIUM4:
1460 case PROCESSOR_NOCONA:
1461 case PROCESSOR_CORE:
1462 case PROCESSOR_CORE2:
1463 case PROCESSOR_COREI7:
1464 case PROCESSOR_L1OM:
1465 case PROCESSOR_K1OM:
1466 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1467 patt = alt_patt;
1468 else
1469 patt = f32_patt;
1470 break;
1471 case PROCESSOR_GENERIC64:
1472 patt = alt_patt;
1473 break;
1474 }
1475 }
1476
1477 if (patt == f32_patt)
1478 {
1479 max_single_nop_size = sizeof (f32_patt) / sizeof (f32_patt[0]);
1480 /* Limit number of NOPs to 2 for older processors. */
1481 max_number_of_nops = 2;
1482 }
1483 else
1484 {
1485 max_single_nop_size = sizeof (alt_patt) / sizeof (alt_patt[0]);
1486 /* Limit number of NOPs to 7 for newer processors. */
1487 max_number_of_nops = 7;
1488 }
1489 }
1490
1491 if (limit == 0)
1492 limit = max_single_nop_size;
1493
1494 if (fragP->fr_type == rs_fill_nop)
1495 {
1496 /* Output NOPs for .nop directive. */
1497 if (limit > max_single_nop_size)
1498 {
1499 as_bad_where (fragP->fr_file, fragP->fr_line,
1500 _("invalid single nop size: %d "
1501 "(expect within [0, %d])"),
1502 limit, max_single_nop_size);
1503 return;
1504 }
1505 }
1506 else
1507 fragP->fr_var = count;
1508
1509 if ((count / max_single_nop_size) > max_number_of_nops)
1510 {
1511 /* Generate jump over NOPs. */
1512 offsetT disp = count - 2;
1513 if (fits_in_imm7 (disp))
1514 {
1515 /* Use "jmp disp8" if possible. */
1516 count = disp;
1517 where[0] = jump_disp8[0];
1518 where[1] = count;
1519 where += 2;
1520 }
1521 else
1522 {
1523 unsigned int size_of_jump;
1524
1525 if (flag_code == CODE_16BIT)
1526 {
1527 where[0] = jump16_disp32[0];
1528 where[1] = jump16_disp32[1];
1529 size_of_jump = 2;
1530 }
1531 else
1532 {
1533 where[0] = jump32_disp32[0];
1534 size_of_jump = 1;
1535 }
1536
1537 count -= size_of_jump + 4;
1538 if (!fits_in_imm31 (count))
1539 {
1540 as_bad_where (fragP->fr_file, fragP->fr_line,
1541 _("jump over nop padding out of range"));
1542 return;
1543 }
1544
1545 md_number_to_chars (where + size_of_jump, count, 4);
1546 where += size_of_jump + 4;
1547 }
1548 }
1549
1550 /* Generate multiple NOPs. */
1551 i386_output_nops (where, patt, count, limit);
1552 }
1553
1554 static INLINE int
1555 operand_type_all_zero (const union i386_operand_type *x)
1556 {
1557 switch (ARRAY_SIZE(x->array))
1558 {
1559 case 3:
1560 if (x->array[2])
1561 return 0;
1562 /* Fall through. */
1563 case 2:
1564 if (x->array[1])
1565 return 0;
1566 /* Fall through. */
1567 case 1:
1568 return !x->array[0];
1569 default:
1570 abort ();
1571 }
1572 }
1573
1574 static INLINE void
1575 operand_type_set (union i386_operand_type *x, unsigned int v)
1576 {
1577 switch (ARRAY_SIZE(x->array))
1578 {
1579 case 3:
1580 x->array[2] = v;
1581 /* Fall through. */
1582 case 2:
1583 x->array[1] = v;
1584 /* Fall through. */
1585 case 1:
1586 x->array[0] = v;
1587 /* Fall through. */
1588 break;
1589 default:
1590 abort ();
1591 }
1592 }
1593
1594 static INLINE int
1595 operand_type_equal (const union i386_operand_type *x,
1596 const union i386_operand_type *y)
1597 {
1598 switch (ARRAY_SIZE(x->array))
1599 {
1600 case 3:
1601 if (x->array[2] != y->array[2])
1602 return 0;
1603 /* Fall through. */
1604 case 2:
1605 if (x->array[1] != y->array[1])
1606 return 0;
1607 /* Fall through. */
1608 case 1:
1609 return x->array[0] == y->array[0];
1610 break;
1611 default:
1612 abort ();
1613 }
1614 }
1615
1616 static INLINE int
1617 cpu_flags_all_zero (const union i386_cpu_flags *x)
1618 {
1619 switch (ARRAY_SIZE(x->array))
1620 {
1621 case 4:
1622 if (x->array[3])
1623 return 0;
1624 /* Fall through. */
1625 case 3:
1626 if (x->array[2])
1627 return 0;
1628 /* Fall through. */
1629 case 2:
1630 if (x->array[1])
1631 return 0;
1632 /* Fall through. */
1633 case 1:
1634 return !x->array[0];
1635 default:
1636 abort ();
1637 }
1638 }
1639
1640 static INLINE int
1641 cpu_flags_equal (const union i386_cpu_flags *x,
1642 const union i386_cpu_flags *y)
1643 {
1644 switch (ARRAY_SIZE(x->array))
1645 {
1646 case 4:
1647 if (x->array[3] != y->array[3])
1648 return 0;
1649 /* Fall through. */
1650 case 3:
1651 if (x->array[2] != y->array[2])
1652 return 0;
1653 /* Fall through. */
1654 case 2:
1655 if (x->array[1] != y->array[1])
1656 return 0;
1657 /* Fall through. */
1658 case 1:
1659 return x->array[0] == y->array[0];
1660 break;
1661 default:
1662 abort ();
1663 }
1664 }
1665
1666 static INLINE int
1667 cpu_flags_check_cpu64 (i386_cpu_flags f)
1668 {
1669 return !((flag_code == CODE_64BIT && f.bitfield.cpuno64)
1670 || (flag_code != CODE_64BIT && f.bitfield.cpu64));
1671 }
1672
1673 static INLINE i386_cpu_flags
1674 cpu_flags_and (i386_cpu_flags x, i386_cpu_flags y)
1675 {
1676 switch (ARRAY_SIZE (x.array))
1677 {
1678 case 4:
1679 x.array [3] &= y.array [3];
1680 /* Fall through. */
1681 case 3:
1682 x.array [2] &= y.array [2];
1683 /* Fall through. */
1684 case 2:
1685 x.array [1] &= y.array [1];
1686 /* Fall through. */
1687 case 1:
1688 x.array [0] &= y.array [0];
1689 break;
1690 default:
1691 abort ();
1692 }
1693 return x;
1694 }
1695
1696 static INLINE i386_cpu_flags
1697 cpu_flags_or (i386_cpu_flags x, i386_cpu_flags y)
1698 {
1699 switch (ARRAY_SIZE (x.array))
1700 {
1701 case 4:
1702 x.array [3] |= y.array [3];
1703 /* Fall through. */
1704 case 3:
1705 x.array [2] |= y.array [2];
1706 /* Fall through. */
1707 case 2:
1708 x.array [1] |= y.array [1];
1709 /* Fall through. */
1710 case 1:
1711 x.array [0] |= y.array [0];
1712 break;
1713 default:
1714 abort ();
1715 }
1716 return x;
1717 }
1718
1719 static INLINE i386_cpu_flags
1720 cpu_flags_and_not (i386_cpu_flags x, i386_cpu_flags y)
1721 {
1722 switch (ARRAY_SIZE (x.array))
1723 {
1724 case 4:
1725 x.array [3] &= ~y.array [3];
1726 /* Fall through. */
1727 case 3:
1728 x.array [2] &= ~y.array [2];
1729 /* Fall through. */
1730 case 2:
1731 x.array [1] &= ~y.array [1];
1732 /* Fall through. */
1733 case 1:
1734 x.array [0] &= ~y.array [0];
1735 break;
1736 default:
1737 abort ();
1738 }
1739 return x;
1740 }
1741
1742 #define CPU_FLAGS_ARCH_MATCH 0x1
1743 #define CPU_FLAGS_64BIT_MATCH 0x2
1744
1745 #define CPU_FLAGS_PERFECT_MATCH \
1746 (CPU_FLAGS_ARCH_MATCH | CPU_FLAGS_64BIT_MATCH)
1747
1748 /* Return CPU flags match bits. */
1749
1750 static int
1751 cpu_flags_match (const insn_template *t)
1752 {
1753 i386_cpu_flags x = t->cpu_flags;
1754 int match = cpu_flags_check_cpu64 (x) ? CPU_FLAGS_64BIT_MATCH : 0;
1755
1756 x.bitfield.cpu64 = 0;
1757 x.bitfield.cpuno64 = 0;
1758
1759 if (cpu_flags_all_zero (&x))
1760 {
1761 /* This instruction is available on all archs. */
1762 match |= CPU_FLAGS_ARCH_MATCH;
1763 }
1764 else
1765 {
1766 /* This instruction is available only on some archs. */
1767 i386_cpu_flags cpu = cpu_arch_flags;
1768
1769 /* AVX512VL is no standalone feature - match it and then strip it. */
1770 if (x.bitfield.cpuavx512vl && !cpu.bitfield.cpuavx512vl)
1771 return match;
1772 x.bitfield.cpuavx512vl = 0;
1773
1774 cpu = cpu_flags_and (x, cpu);
1775 if (!cpu_flags_all_zero (&cpu))
1776 {
1777 if (x.bitfield.cpuavx)
1778 {
1779 /* We need to check a few extra flags with AVX. */
1780 if (cpu.bitfield.cpuavx
1781 && (!t->opcode_modifier.sse2avx || sse2avx)
1782 && (!x.bitfield.cpuaes || cpu.bitfield.cpuaes)
1783 && (!x.bitfield.cpugfni || cpu.bitfield.cpugfni)
1784 && (!x.bitfield.cpupclmul || cpu.bitfield.cpupclmul))
1785 match |= CPU_FLAGS_ARCH_MATCH;
1786 }
1787 else if (x.bitfield.cpuavx512f)
1788 {
1789 /* We need to check a few extra flags with AVX512F. */
1790 if (cpu.bitfield.cpuavx512f
1791 && (!x.bitfield.cpugfni || cpu.bitfield.cpugfni)
1792 && (!x.bitfield.cpuvaes || cpu.bitfield.cpuvaes)
1793 && (!x.bitfield.cpuvpclmulqdq || cpu.bitfield.cpuvpclmulqdq))
1794 match |= CPU_FLAGS_ARCH_MATCH;
1795 }
1796 else
1797 match |= CPU_FLAGS_ARCH_MATCH;
1798 }
1799 }
1800 return match;
1801 }
1802
1803 static INLINE i386_operand_type
1804 operand_type_and (i386_operand_type x, i386_operand_type y)
1805 {
1806 switch (ARRAY_SIZE (x.array))
1807 {
1808 case 3:
1809 x.array [2] &= y.array [2];
1810 /* Fall through. */
1811 case 2:
1812 x.array [1] &= y.array [1];
1813 /* Fall through. */
1814 case 1:
1815 x.array [0] &= y.array [0];
1816 break;
1817 default:
1818 abort ();
1819 }
1820 return x;
1821 }
1822
1823 static INLINE i386_operand_type
1824 operand_type_and_not (i386_operand_type x, i386_operand_type y)
1825 {
1826 switch (ARRAY_SIZE (x.array))
1827 {
1828 case 3:
1829 x.array [2] &= ~y.array [2];
1830 /* Fall through. */
1831 case 2:
1832 x.array [1] &= ~y.array [1];
1833 /* Fall through. */
1834 case 1:
1835 x.array [0] &= ~y.array [0];
1836 break;
1837 default:
1838 abort ();
1839 }
1840 return x;
1841 }
1842
1843 static INLINE i386_operand_type
1844 operand_type_or (i386_operand_type x, i386_operand_type y)
1845 {
1846 switch (ARRAY_SIZE (x.array))
1847 {
1848 case 3:
1849 x.array [2] |= y.array [2];
1850 /* Fall through. */
1851 case 2:
1852 x.array [1] |= y.array [1];
1853 /* Fall through. */
1854 case 1:
1855 x.array [0] |= y.array [0];
1856 break;
1857 default:
1858 abort ();
1859 }
1860 return x;
1861 }
1862
1863 static INLINE i386_operand_type
1864 operand_type_xor (i386_operand_type x, i386_operand_type y)
1865 {
1866 switch (ARRAY_SIZE (x.array))
1867 {
1868 case 3:
1869 x.array [2] ^= y.array [2];
1870 /* Fall through. */
1871 case 2:
1872 x.array [1] ^= y.array [1];
1873 /* Fall through. */
1874 case 1:
1875 x.array [0] ^= y.array [0];
1876 break;
1877 default:
1878 abort ();
1879 }
1880 return x;
1881 }
1882
1883 static const i386_operand_type acc32 = OPERAND_TYPE_ACC32;
1884 static const i386_operand_type acc64 = OPERAND_TYPE_ACC64;
1885 static const i386_operand_type disp16 = OPERAND_TYPE_DISP16;
1886 static const i386_operand_type disp32 = OPERAND_TYPE_DISP32;
1887 static const i386_operand_type disp32s = OPERAND_TYPE_DISP32S;
1888 static const i386_operand_type disp16_32 = OPERAND_TYPE_DISP16_32;
1889 static const i386_operand_type anydisp
1890 = OPERAND_TYPE_ANYDISP;
1891 static const i386_operand_type regxmm = OPERAND_TYPE_REGXMM;
1892 static const i386_operand_type regmask = OPERAND_TYPE_REGMASK;
1893 static const i386_operand_type imm8 = OPERAND_TYPE_IMM8;
1894 static const i386_operand_type imm8s = OPERAND_TYPE_IMM8S;
1895 static const i386_operand_type imm16 = OPERAND_TYPE_IMM16;
1896 static const i386_operand_type imm32 = OPERAND_TYPE_IMM32;
1897 static const i386_operand_type imm32s = OPERAND_TYPE_IMM32S;
1898 static const i386_operand_type imm64 = OPERAND_TYPE_IMM64;
1899 static const i386_operand_type imm16_32 = OPERAND_TYPE_IMM16_32;
1900 static const i386_operand_type imm16_32s = OPERAND_TYPE_IMM16_32S;
1901 static const i386_operand_type imm16_32_32s = OPERAND_TYPE_IMM16_32_32S;
1902 static const i386_operand_type vec_imm4 = OPERAND_TYPE_VEC_IMM4;
1903
1904 enum operand_type
1905 {
1906 reg,
1907 imm,
1908 disp,
1909 anymem
1910 };
1911
1912 static INLINE int
1913 operand_type_check (i386_operand_type t, enum operand_type c)
1914 {
1915 switch (c)
1916 {
1917 case reg:
1918 return t.bitfield.reg;
1919
1920 case imm:
1921 return (t.bitfield.imm8
1922 || t.bitfield.imm8s
1923 || t.bitfield.imm16
1924 || t.bitfield.imm32
1925 || t.bitfield.imm32s
1926 || t.bitfield.imm64);
1927
1928 case disp:
1929 return (t.bitfield.disp8
1930 || t.bitfield.disp16
1931 || t.bitfield.disp32
1932 || t.bitfield.disp32s
1933 || t.bitfield.disp64);
1934
1935 case anymem:
1936 return (t.bitfield.disp8
1937 || t.bitfield.disp16
1938 || t.bitfield.disp32
1939 || t.bitfield.disp32s
1940 || t.bitfield.disp64
1941 || t.bitfield.baseindex);
1942
1943 default:
1944 abort ();
1945 }
1946
1947 return 0;
1948 }
1949
1950 /* Return 1 if there is no conflict in 8bit/16bit/32bit/64bit/80bit size
1951 between operand GIVEN and opeand WANTED for instruction template T. */
1952
1953 static INLINE int
1954 match_operand_size (const insn_template *t, unsigned int wanted,
1955 unsigned int given)
1956 {
1957 return !((i.types[given].bitfield.byte
1958 && !t->operand_types[wanted].bitfield.byte)
1959 || (i.types[given].bitfield.word
1960 && !t->operand_types[wanted].bitfield.word)
1961 || (i.types[given].bitfield.dword
1962 && !t->operand_types[wanted].bitfield.dword)
1963 || (i.types[given].bitfield.qword
1964 && !t->operand_types[wanted].bitfield.qword)
1965 || (i.types[given].bitfield.tbyte
1966 && !t->operand_types[wanted].bitfield.tbyte));
1967 }
1968
1969 /* Return 1 if there is no conflict in SIMD register between operand
1970 GIVEN and opeand WANTED for instruction template T. */
1971
1972 static INLINE int
1973 match_simd_size (const insn_template *t, unsigned int wanted,
1974 unsigned int given)
1975 {
1976 return !((i.types[given].bitfield.xmmword
1977 && !t->operand_types[wanted].bitfield.xmmword)
1978 || (i.types[given].bitfield.ymmword
1979 && !t->operand_types[wanted].bitfield.ymmword)
1980 || (i.types[given].bitfield.zmmword
1981 && !t->operand_types[wanted].bitfield.zmmword));
1982 }
1983
1984 /* Return 1 if there is no conflict in any size between operand GIVEN
1985 and opeand WANTED for instruction template T. */
1986
1987 static INLINE int
1988 match_mem_size (const insn_template *t, unsigned int wanted,
1989 unsigned int given)
1990 {
1991 return (match_operand_size (t, wanted, given)
1992 && !((i.types[given].bitfield.unspecified
1993 && !i.broadcast
1994 && !t->operand_types[wanted].bitfield.unspecified)
1995 || (i.types[given].bitfield.fword
1996 && !t->operand_types[wanted].bitfield.fword)
1997 /* For scalar opcode templates to allow register and memory
1998 operands at the same time, some special casing is needed
1999 here. Also for v{,p}broadcast*, {,v}pmov{s,z}*, and
2000 down-conversion vpmov*. */
2001 || ((t->operand_types[wanted].bitfield.regsimd
2002 && !t->opcode_modifier.broadcast
2003 && (t->operand_types[wanted].bitfield.byte
2004 || t->operand_types[wanted].bitfield.word
2005 || t->operand_types[wanted].bitfield.dword
2006 || t->operand_types[wanted].bitfield.qword))
2007 ? (i.types[given].bitfield.xmmword
2008 || i.types[given].bitfield.ymmword
2009 || i.types[given].bitfield.zmmword)
2010 : !match_simd_size(t, wanted, given))));
2011 }
2012
2013 /* Return value has MATCH_STRAIGHT set if there is no size conflict on any
2014 operands for instruction template T, and it has MATCH_REVERSE set if there
2015 is no size conflict on any operands for the template with operands reversed
2016 (and the template allows for reversing in the first place). */
2017
2018 #define MATCH_STRAIGHT 1
2019 #define MATCH_REVERSE 2
2020
2021 static INLINE unsigned int
2022 operand_size_match (const insn_template *t)
2023 {
2024 unsigned int j, match = MATCH_STRAIGHT;
2025
2026 /* Don't check jump instructions. */
2027 if (t->opcode_modifier.jump
2028 || t->opcode_modifier.jumpbyte
2029 || t->opcode_modifier.jumpdword
2030 || t->opcode_modifier.jumpintersegment)
2031 return match;
2032
2033 /* Check memory and accumulator operand size. */
2034 for (j = 0; j < i.operands; j++)
2035 {
2036 if (!i.types[j].bitfield.reg && !i.types[j].bitfield.regsimd
2037 && t->operand_types[j].bitfield.anysize)
2038 continue;
2039
2040 if (t->operand_types[j].bitfield.reg
2041 && !match_operand_size (t, j, j))
2042 {
2043 match = 0;
2044 break;
2045 }
2046
2047 if (t->operand_types[j].bitfield.regsimd
2048 && !match_simd_size (t, j, j))
2049 {
2050 match = 0;
2051 break;
2052 }
2053
2054 if (t->operand_types[j].bitfield.acc
2055 && (!match_operand_size (t, j, j) || !match_simd_size (t, j, j)))
2056 {
2057 match = 0;
2058 break;
2059 }
2060
2061 if ((i.flags[j] & Operand_Mem) && !match_mem_size (t, j, j))
2062 {
2063 match = 0;
2064 break;
2065 }
2066 }
2067
2068 if (!t->opcode_modifier.d)
2069 {
2070 mismatch:
2071 if (!match)
2072 i.error = operand_size_mismatch;
2073 return match;
2074 }
2075
2076 /* Check reverse. */
2077 gas_assert (i.operands >= 2 && i.operands <= 3);
2078
2079 for (j = 0; j < i.operands; j++)
2080 {
2081 unsigned int given = i.operands - j - 1;
2082
2083 if (t->operand_types[j].bitfield.reg
2084 && !match_operand_size (t, j, given))
2085 goto mismatch;
2086
2087 if (t->operand_types[j].bitfield.regsimd
2088 && !match_simd_size (t, j, given))
2089 goto mismatch;
2090
2091 if (t->operand_types[j].bitfield.acc
2092 && (!match_operand_size (t, j, given)
2093 || !match_simd_size (t, j, given)))
2094 goto mismatch;
2095
2096 if ((i.flags[given] & Operand_Mem) && !match_mem_size (t, j, given))
2097 goto mismatch;
2098 }
2099
2100 return match | MATCH_REVERSE;
2101 }
2102
2103 static INLINE int
2104 operand_type_match (i386_operand_type overlap,
2105 i386_operand_type given)
2106 {
2107 i386_operand_type temp = overlap;
2108
2109 temp.bitfield.jumpabsolute = 0;
2110 temp.bitfield.unspecified = 0;
2111 temp.bitfield.byte = 0;
2112 temp.bitfield.word = 0;
2113 temp.bitfield.dword = 0;
2114 temp.bitfield.fword = 0;
2115 temp.bitfield.qword = 0;
2116 temp.bitfield.tbyte = 0;
2117 temp.bitfield.xmmword = 0;
2118 temp.bitfield.ymmword = 0;
2119 temp.bitfield.zmmword = 0;
2120 if (operand_type_all_zero (&temp))
2121 goto mismatch;
2122
2123 if (given.bitfield.baseindex == overlap.bitfield.baseindex
2124 && given.bitfield.jumpabsolute == overlap.bitfield.jumpabsolute)
2125 return 1;
2126
2127 mismatch:
2128 i.error = operand_type_mismatch;
2129 return 0;
2130 }
2131
2132 /* If given types g0 and g1 are registers they must be of the same type
2133 unless the expected operand type register overlap is null.
2134 Memory operand size of certain SIMD instructions is also being checked
2135 here. */
2136
2137 static INLINE int
2138 operand_type_register_match (i386_operand_type g0,
2139 i386_operand_type t0,
2140 i386_operand_type g1,
2141 i386_operand_type t1)
2142 {
2143 if (!g0.bitfield.reg
2144 && !g0.bitfield.regsimd
2145 && (!operand_type_check (g0, anymem)
2146 || g0.bitfield.unspecified
2147 || !t0.bitfield.regsimd))
2148 return 1;
2149
2150 if (!g1.bitfield.reg
2151 && !g1.bitfield.regsimd
2152 && (!operand_type_check (g1, anymem)
2153 || g1.bitfield.unspecified
2154 || !t1.bitfield.regsimd))
2155 return 1;
2156
2157 if (g0.bitfield.byte == g1.bitfield.byte
2158 && g0.bitfield.word == g1.bitfield.word
2159 && g0.bitfield.dword == g1.bitfield.dword
2160 && g0.bitfield.qword == g1.bitfield.qword
2161 && g0.bitfield.xmmword == g1.bitfield.xmmword
2162 && g0.bitfield.ymmword == g1.bitfield.ymmword
2163 && g0.bitfield.zmmword == g1.bitfield.zmmword)
2164 return 1;
2165
2166 if (!(t0.bitfield.byte & t1.bitfield.byte)
2167 && !(t0.bitfield.word & t1.bitfield.word)
2168 && !(t0.bitfield.dword & t1.bitfield.dword)
2169 && !(t0.bitfield.qword & t1.bitfield.qword)
2170 && !(t0.bitfield.xmmword & t1.bitfield.xmmword)
2171 && !(t0.bitfield.ymmword & t1.bitfield.ymmword)
2172 && !(t0.bitfield.zmmword & t1.bitfield.zmmword))
2173 return 1;
2174
2175 i.error = register_type_mismatch;
2176
2177 return 0;
2178 }
2179
2180 static INLINE unsigned int
2181 register_number (const reg_entry *r)
2182 {
2183 unsigned int nr = r->reg_num;
2184
2185 if (r->reg_flags & RegRex)
2186 nr += 8;
2187
2188 if (r->reg_flags & RegVRex)
2189 nr += 16;
2190
2191 return nr;
2192 }
2193
2194 static INLINE unsigned int
2195 mode_from_disp_size (i386_operand_type t)
2196 {
2197 if (t.bitfield.disp8)
2198 return 1;
2199 else if (t.bitfield.disp16
2200 || t.bitfield.disp32
2201 || t.bitfield.disp32s)
2202 return 2;
2203 else
2204 return 0;
2205 }
2206
2207 static INLINE int
2208 fits_in_signed_byte (addressT num)
2209 {
2210 return num + 0x80 <= 0xff;
2211 }
2212
2213 static INLINE int
2214 fits_in_unsigned_byte (addressT num)
2215 {
2216 return num <= 0xff;
2217 }
2218
2219 static INLINE int
2220 fits_in_unsigned_word (addressT num)
2221 {
2222 return num <= 0xffff;
2223 }
2224
2225 static INLINE int
2226 fits_in_signed_word (addressT num)
2227 {
2228 return num + 0x8000 <= 0xffff;
2229 }
2230
2231 static INLINE int
2232 fits_in_signed_long (addressT num ATTRIBUTE_UNUSED)
2233 {
2234 #ifndef BFD64
2235 return 1;
2236 #else
2237 return num + 0x80000000 <= 0xffffffff;
2238 #endif
2239 } /* fits_in_signed_long() */
2240
2241 static INLINE int
2242 fits_in_unsigned_long (addressT num ATTRIBUTE_UNUSED)
2243 {
2244 #ifndef BFD64
2245 return 1;
2246 #else
2247 return num <= 0xffffffff;
2248 #endif
2249 } /* fits_in_unsigned_long() */
2250
2251 static INLINE int
2252 fits_in_disp8 (offsetT num)
2253 {
2254 int shift = i.memshift;
2255 unsigned int mask;
2256
2257 if (shift == -1)
2258 abort ();
2259
2260 mask = (1 << shift) - 1;
2261
2262 /* Return 0 if NUM isn't properly aligned. */
2263 if ((num & mask))
2264 return 0;
2265
2266 /* Check if NUM will fit in 8bit after shift. */
2267 return fits_in_signed_byte (num >> shift);
2268 }
2269
2270 static INLINE int
2271 fits_in_imm4 (offsetT num)
2272 {
2273 return (num & 0xf) == num;
2274 }
2275
2276 static i386_operand_type
2277 smallest_imm_type (offsetT num)
2278 {
2279 i386_operand_type t;
2280
2281 operand_type_set (&t, 0);
2282 t.bitfield.imm64 = 1;
2283
2284 if (cpu_arch_tune != PROCESSOR_I486 && num == 1)
2285 {
2286 /* This code is disabled on the 486 because all the Imm1 forms
2287 in the opcode table are slower on the i486. They're the
2288 versions with the implicitly specified single-position
2289 displacement, which has another syntax if you really want to
2290 use that form. */
2291 t.bitfield.imm1 = 1;
2292 t.bitfield.imm8 = 1;
2293 t.bitfield.imm8s = 1;
2294 t.bitfield.imm16 = 1;
2295 t.bitfield.imm32 = 1;
2296 t.bitfield.imm32s = 1;
2297 }
2298 else if (fits_in_signed_byte (num))
2299 {
2300 t.bitfield.imm8 = 1;
2301 t.bitfield.imm8s = 1;
2302 t.bitfield.imm16 = 1;
2303 t.bitfield.imm32 = 1;
2304 t.bitfield.imm32s = 1;
2305 }
2306 else if (fits_in_unsigned_byte (num))
2307 {
2308 t.bitfield.imm8 = 1;
2309 t.bitfield.imm16 = 1;
2310 t.bitfield.imm32 = 1;
2311 t.bitfield.imm32s = 1;
2312 }
2313 else if (fits_in_signed_word (num) || fits_in_unsigned_word (num))
2314 {
2315 t.bitfield.imm16 = 1;
2316 t.bitfield.imm32 = 1;
2317 t.bitfield.imm32s = 1;
2318 }
2319 else if (fits_in_signed_long (num))
2320 {
2321 t.bitfield.imm32 = 1;
2322 t.bitfield.imm32s = 1;
2323 }
2324 else if (fits_in_unsigned_long (num))
2325 t.bitfield.imm32 = 1;
2326
2327 return t;
2328 }
2329
2330 static offsetT
2331 offset_in_range (offsetT val, int size)
2332 {
2333 addressT mask;
2334
2335 switch (size)
2336 {
2337 case 1: mask = ((addressT) 1 << 8) - 1; break;
2338 case 2: mask = ((addressT) 1 << 16) - 1; break;
2339 case 4: mask = ((addressT) 2 << 31) - 1; break;
2340 #ifdef BFD64
2341 case 8: mask = ((addressT) 2 << 63) - 1; break;
2342 #endif
2343 default: abort ();
2344 }
2345
2346 #ifdef BFD64
2347 /* If BFD64, sign extend val for 32bit address mode. */
2348 if (flag_code != CODE_64BIT
2349 || i.prefix[ADDR_PREFIX])
2350 if ((val & ~(((addressT) 2 << 31) - 1)) == 0)
2351 val = (val ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
2352 #endif
2353
2354 if ((val & ~mask) != 0 && (val & ~mask) != ~mask)
2355 {
2356 char buf1[40], buf2[40];
2357
2358 sprint_value (buf1, val);
2359 sprint_value (buf2, val & mask);
2360 as_warn (_("%s shortened to %s"), buf1, buf2);
2361 }
2362 return val & mask;
2363 }
2364
2365 enum PREFIX_GROUP
2366 {
2367 PREFIX_EXIST = 0,
2368 PREFIX_LOCK,
2369 PREFIX_REP,
2370 PREFIX_DS,
2371 PREFIX_OTHER
2372 };
2373
2374 /* Returns
2375 a. PREFIX_EXIST if attempting to add a prefix where one from the
2376 same class already exists.
2377 b. PREFIX_LOCK if lock prefix is added.
2378 c. PREFIX_REP if rep/repne prefix is added.
2379 d. PREFIX_DS if ds prefix is added.
2380 e. PREFIX_OTHER if other prefix is added.
2381 */
2382
2383 static enum PREFIX_GROUP
2384 add_prefix (unsigned int prefix)
2385 {
2386 enum PREFIX_GROUP ret = PREFIX_OTHER;
2387 unsigned int q;
2388
2389 if (prefix >= REX_OPCODE && prefix < REX_OPCODE + 16
2390 && flag_code == CODE_64BIT)
2391 {
2392 if ((i.prefix[REX_PREFIX] & prefix & REX_W)
2393 || (i.prefix[REX_PREFIX] & prefix & REX_R)
2394 || (i.prefix[REX_PREFIX] & prefix & REX_X)
2395 || (i.prefix[REX_PREFIX] & prefix & REX_B))
2396 ret = PREFIX_EXIST;
2397 q = REX_PREFIX;
2398 }
2399 else
2400 {
2401 switch (prefix)
2402 {
2403 default:
2404 abort ();
2405
2406 case DS_PREFIX_OPCODE:
2407 ret = PREFIX_DS;
2408 /* Fall through. */
2409 case CS_PREFIX_OPCODE:
2410 case ES_PREFIX_OPCODE:
2411 case FS_PREFIX_OPCODE:
2412 case GS_PREFIX_OPCODE:
2413 case SS_PREFIX_OPCODE:
2414 q = SEG_PREFIX;
2415 break;
2416
2417 case REPNE_PREFIX_OPCODE:
2418 case REPE_PREFIX_OPCODE:
2419 q = REP_PREFIX;
2420 ret = PREFIX_REP;
2421 break;
2422
2423 case LOCK_PREFIX_OPCODE:
2424 q = LOCK_PREFIX;
2425 ret = PREFIX_LOCK;
2426 break;
2427
2428 case FWAIT_OPCODE:
2429 q = WAIT_PREFIX;
2430 break;
2431
2432 case ADDR_PREFIX_OPCODE:
2433 q = ADDR_PREFIX;
2434 break;
2435
2436 case DATA_PREFIX_OPCODE:
2437 q = DATA_PREFIX;
2438 break;
2439 }
2440 if (i.prefix[q] != 0)
2441 ret = PREFIX_EXIST;
2442 }
2443
2444 if (ret)
2445 {
2446 if (!i.prefix[q])
2447 ++i.prefixes;
2448 i.prefix[q] |= prefix;
2449 }
2450 else
2451 as_bad (_("same type of prefix used twice"));
2452
2453 return ret;
2454 }
2455
2456 static void
2457 update_code_flag (int value, int check)
2458 {
2459 PRINTF_LIKE ((*as_error));
2460
2461 flag_code = (enum flag_code) value;
2462 if (flag_code == CODE_64BIT)
2463 {
2464 cpu_arch_flags.bitfield.cpu64 = 1;
2465 cpu_arch_flags.bitfield.cpuno64 = 0;
2466 }
2467 else
2468 {
2469 cpu_arch_flags.bitfield.cpu64 = 0;
2470 cpu_arch_flags.bitfield.cpuno64 = 1;
2471 }
2472 if (value == CODE_64BIT && !cpu_arch_flags.bitfield.cpulm )
2473 {
2474 if (check)
2475 as_error = as_fatal;
2476 else
2477 as_error = as_bad;
2478 (*as_error) (_("64bit mode not supported on `%s'."),
2479 cpu_arch_name ? cpu_arch_name : default_arch);
2480 }
2481 if (value == CODE_32BIT && !cpu_arch_flags.bitfield.cpui386)
2482 {
2483 if (check)
2484 as_error = as_fatal;
2485 else
2486 as_error = as_bad;
2487 (*as_error) (_("32bit mode not supported on `%s'."),
2488 cpu_arch_name ? cpu_arch_name : default_arch);
2489 }
2490 stackop_size = '\0';
2491 }
2492
2493 static void
2494 set_code_flag (int value)
2495 {
2496 update_code_flag (value, 0);
2497 }
2498
2499 static void
2500 set_16bit_gcc_code_flag (int new_code_flag)
2501 {
2502 flag_code = (enum flag_code) new_code_flag;
2503 if (flag_code != CODE_16BIT)
2504 abort ();
2505 cpu_arch_flags.bitfield.cpu64 = 0;
2506 cpu_arch_flags.bitfield.cpuno64 = 1;
2507 stackop_size = LONG_MNEM_SUFFIX;
2508 }
2509
2510 static void
2511 set_intel_syntax (int syntax_flag)
2512 {
2513 /* Find out if register prefixing is specified. */
2514 int ask_naked_reg = 0;
2515
2516 SKIP_WHITESPACE ();
2517 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2518 {
2519 char *string;
2520 int e = get_symbol_name (&string);
2521
2522 if (strcmp (string, "prefix") == 0)
2523 ask_naked_reg = 1;
2524 else if (strcmp (string, "noprefix") == 0)
2525 ask_naked_reg = -1;
2526 else
2527 as_bad (_("bad argument to syntax directive."));
2528 (void) restore_line_pointer (e);
2529 }
2530 demand_empty_rest_of_line ();
2531
2532 intel_syntax = syntax_flag;
2533
2534 if (ask_naked_reg == 0)
2535 allow_naked_reg = (intel_syntax
2536 && (bfd_get_symbol_leading_char (stdoutput) != '\0'));
2537 else
2538 allow_naked_reg = (ask_naked_reg < 0);
2539
2540 expr_set_rank (O_full_ptr, syntax_flag ? 10 : 0);
2541
2542 identifier_chars['%'] = intel_syntax && allow_naked_reg ? '%' : 0;
2543 identifier_chars['$'] = intel_syntax ? '$' : 0;
2544 register_prefix = allow_naked_reg ? "" : "%";
2545 }
2546
2547 static void
2548 set_intel_mnemonic (int mnemonic_flag)
2549 {
2550 intel_mnemonic = mnemonic_flag;
2551 }
2552
2553 static void
2554 set_allow_index_reg (int flag)
2555 {
2556 allow_index_reg = flag;
2557 }
2558
2559 static void
2560 set_check (int what)
2561 {
2562 enum check_kind *kind;
2563 const char *str;
2564
2565 if (what)
2566 {
2567 kind = &operand_check;
2568 str = "operand";
2569 }
2570 else
2571 {
2572 kind = &sse_check;
2573 str = "sse";
2574 }
2575
2576 SKIP_WHITESPACE ();
2577
2578 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2579 {
2580 char *string;
2581 int e = get_symbol_name (&string);
2582
2583 if (strcmp (string, "none") == 0)
2584 *kind = check_none;
2585 else if (strcmp (string, "warning") == 0)
2586 *kind = check_warning;
2587 else if (strcmp (string, "error") == 0)
2588 *kind = check_error;
2589 else
2590 as_bad (_("bad argument to %s_check directive."), str);
2591 (void) restore_line_pointer (e);
2592 }
2593 else
2594 as_bad (_("missing argument for %s_check directive"), str);
2595
2596 demand_empty_rest_of_line ();
2597 }
2598
2599 static void
2600 check_cpu_arch_compatible (const char *name ATTRIBUTE_UNUSED,
2601 i386_cpu_flags new_flag ATTRIBUTE_UNUSED)
2602 {
2603 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
2604 static const char *arch;
2605
2606 /* Intel LIOM is only supported on ELF. */
2607 if (!IS_ELF)
2608 return;
2609
2610 if (!arch)
2611 {
2612 /* Use cpu_arch_name if it is set in md_parse_option. Otherwise
2613 use default_arch. */
2614 arch = cpu_arch_name;
2615 if (!arch)
2616 arch = default_arch;
2617 }
2618
2619 /* If we are targeting Intel MCU, we must enable it. */
2620 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_IAMCU
2621 || new_flag.bitfield.cpuiamcu)
2622 return;
2623
2624 /* If we are targeting Intel L1OM, we must enable it. */
2625 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_L1OM
2626 || new_flag.bitfield.cpul1om)
2627 return;
2628
2629 /* If we are targeting Intel K1OM, we must enable it. */
2630 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_K1OM
2631 || new_flag.bitfield.cpuk1om)
2632 return;
2633
2634 as_bad (_("`%s' is not supported on `%s'"), name, arch);
2635 #endif
2636 }
2637
2638 static void
2639 set_cpu_arch (int dummy ATTRIBUTE_UNUSED)
2640 {
2641 SKIP_WHITESPACE ();
2642
2643 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2644 {
2645 char *string;
2646 int e = get_symbol_name (&string);
2647 unsigned int j;
2648 i386_cpu_flags flags;
2649
2650 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
2651 {
2652 if (strcmp (string, cpu_arch[j].name) == 0)
2653 {
2654 check_cpu_arch_compatible (string, cpu_arch[j].flags);
2655
2656 if (*string != '.')
2657 {
2658 cpu_arch_name = cpu_arch[j].name;
2659 cpu_sub_arch_name = NULL;
2660 cpu_arch_flags = cpu_arch[j].flags;
2661 if (flag_code == CODE_64BIT)
2662 {
2663 cpu_arch_flags.bitfield.cpu64 = 1;
2664 cpu_arch_flags.bitfield.cpuno64 = 0;
2665 }
2666 else
2667 {
2668 cpu_arch_flags.bitfield.cpu64 = 0;
2669 cpu_arch_flags.bitfield.cpuno64 = 1;
2670 }
2671 cpu_arch_isa = cpu_arch[j].type;
2672 cpu_arch_isa_flags = cpu_arch[j].flags;
2673 if (!cpu_arch_tune_set)
2674 {
2675 cpu_arch_tune = cpu_arch_isa;
2676 cpu_arch_tune_flags = cpu_arch_isa_flags;
2677 }
2678 break;
2679 }
2680
2681 flags = cpu_flags_or (cpu_arch_flags,
2682 cpu_arch[j].flags);
2683
2684 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
2685 {
2686 if (cpu_sub_arch_name)
2687 {
2688 char *name = cpu_sub_arch_name;
2689 cpu_sub_arch_name = concat (name,
2690 cpu_arch[j].name,
2691 (const char *) NULL);
2692 free (name);
2693 }
2694 else
2695 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
2696 cpu_arch_flags = flags;
2697 cpu_arch_isa_flags = flags;
2698 }
2699 else
2700 cpu_arch_isa_flags
2701 = cpu_flags_or (cpu_arch_isa_flags,
2702 cpu_arch[j].flags);
2703 (void) restore_line_pointer (e);
2704 demand_empty_rest_of_line ();
2705 return;
2706 }
2707 }
2708
2709 if (*string == '.' && j >= ARRAY_SIZE (cpu_arch))
2710 {
2711 /* Disable an ISA extension. */
2712 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
2713 if (strcmp (string + 1, cpu_noarch [j].name) == 0)
2714 {
2715 flags = cpu_flags_and_not (cpu_arch_flags,
2716 cpu_noarch[j].flags);
2717 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
2718 {
2719 if (cpu_sub_arch_name)
2720 {
2721 char *name = cpu_sub_arch_name;
2722 cpu_sub_arch_name = concat (name, string,
2723 (const char *) NULL);
2724 free (name);
2725 }
2726 else
2727 cpu_sub_arch_name = xstrdup (string);
2728 cpu_arch_flags = flags;
2729 cpu_arch_isa_flags = flags;
2730 }
2731 (void) restore_line_pointer (e);
2732 demand_empty_rest_of_line ();
2733 return;
2734 }
2735
2736 j = ARRAY_SIZE (cpu_arch);
2737 }
2738
2739 if (j >= ARRAY_SIZE (cpu_arch))
2740 as_bad (_("no such architecture: `%s'"), string);
2741
2742 *input_line_pointer = e;
2743 }
2744 else
2745 as_bad (_("missing cpu architecture"));
2746
2747 no_cond_jump_promotion = 0;
2748 if (*input_line_pointer == ','
2749 && !is_end_of_line[(unsigned char) input_line_pointer[1]])
2750 {
2751 char *string;
2752 char e;
2753
2754 ++input_line_pointer;
2755 e = get_symbol_name (&string);
2756
2757 if (strcmp (string, "nojumps") == 0)
2758 no_cond_jump_promotion = 1;
2759 else if (strcmp (string, "jumps") == 0)
2760 ;
2761 else
2762 as_bad (_("no such architecture modifier: `%s'"), string);
2763
2764 (void) restore_line_pointer (e);
2765 }
2766
2767 demand_empty_rest_of_line ();
2768 }
2769
2770 enum bfd_architecture
2771 i386_arch (void)
2772 {
2773 if (cpu_arch_isa == PROCESSOR_L1OM)
2774 {
2775 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2776 || flag_code != CODE_64BIT)
2777 as_fatal (_("Intel L1OM is 64bit ELF only"));
2778 return bfd_arch_l1om;
2779 }
2780 else if (cpu_arch_isa == PROCESSOR_K1OM)
2781 {
2782 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2783 || flag_code != CODE_64BIT)
2784 as_fatal (_("Intel K1OM is 64bit ELF only"));
2785 return bfd_arch_k1om;
2786 }
2787 else if (cpu_arch_isa == PROCESSOR_IAMCU)
2788 {
2789 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2790 || flag_code == CODE_64BIT)
2791 as_fatal (_("Intel MCU is 32bit ELF only"));
2792 return bfd_arch_iamcu;
2793 }
2794 else
2795 return bfd_arch_i386;
2796 }
2797
2798 unsigned long
2799 i386_mach (void)
2800 {
2801 if (!strncmp (default_arch, "x86_64", 6))
2802 {
2803 if (cpu_arch_isa == PROCESSOR_L1OM)
2804 {
2805 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2806 || default_arch[6] != '\0')
2807 as_fatal (_("Intel L1OM is 64bit ELF only"));
2808 return bfd_mach_l1om;
2809 }
2810 else if (cpu_arch_isa == PROCESSOR_K1OM)
2811 {
2812 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2813 || default_arch[6] != '\0')
2814 as_fatal (_("Intel K1OM is 64bit ELF only"));
2815 return bfd_mach_k1om;
2816 }
2817 else if (default_arch[6] == '\0')
2818 return bfd_mach_x86_64;
2819 else
2820 return bfd_mach_x64_32;
2821 }
2822 else if (!strcmp (default_arch, "i386")
2823 || !strcmp (default_arch, "iamcu"))
2824 {
2825 if (cpu_arch_isa == PROCESSOR_IAMCU)
2826 {
2827 if (OUTPUT_FLAVOR != bfd_target_elf_flavour)
2828 as_fatal (_("Intel MCU is 32bit ELF only"));
2829 return bfd_mach_i386_iamcu;
2830 }
2831 else
2832 return bfd_mach_i386_i386;
2833 }
2834 else
2835 as_fatal (_("unknown architecture"));
2836 }
2837 \f
2838 void
2839 md_begin (void)
2840 {
2841 const char *hash_err;
2842
2843 /* Support pseudo prefixes like {disp32}. */
2844 lex_type ['{'] = LEX_BEGIN_NAME;
2845
2846 /* Initialize op_hash hash table. */
2847 op_hash = hash_new ();
2848
2849 {
2850 const insn_template *optab;
2851 templates *core_optab;
2852
2853 /* Setup for loop. */
2854 optab = i386_optab;
2855 core_optab = XNEW (templates);
2856 core_optab->start = optab;
2857
2858 while (1)
2859 {
2860 ++optab;
2861 if (optab->name == NULL
2862 || strcmp (optab->name, (optab - 1)->name) != 0)
2863 {
2864 /* different name --> ship out current template list;
2865 add to hash table; & begin anew. */
2866 core_optab->end = optab;
2867 hash_err = hash_insert (op_hash,
2868 (optab - 1)->name,
2869 (void *) core_optab);
2870 if (hash_err)
2871 {
2872 as_fatal (_("can't hash %s: %s"),
2873 (optab - 1)->name,
2874 hash_err);
2875 }
2876 if (optab->name == NULL)
2877 break;
2878 core_optab = XNEW (templates);
2879 core_optab->start = optab;
2880 }
2881 }
2882 }
2883
2884 /* Initialize reg_hash hash table. */
2885 reg_hash = hash_new ();
2886 {
2887 const reg_entry *regtab;
2888 unsigned int regtab_size = i386_regtab_size;
2889
2890 for (regtab = i386_regtab; regtab_size--; regtab++)
2891 {
2892 hash_err = hash_insert (reg_hash, regtab->reg_name, (void *) regtab);
2893 if (hash_err)
2894 as_fatal (_("can't hash %s: %s"),
2895 regtab->reg_name,
2896 hash_err);
2897 }
2898 }
2899
2900 /* Fill in lexical tables: mnemonic_chars, operand_chars. */
2901 {
2902 int c;
2903 char *p;
2904
2905 for (c = 0; c < 256; c++)
2906 {
2907 if (ISDIGIT (c))
2908 {
2909 digit_chars[c] = c;
2910 mnemonic_chars[c] = c;
2911 register_chars[c] = c;
2912 operand_chars[c] = c;
2913 }
2914 else if (ISLOWER (c))
2915 {
2916 mnemonic_chars[c] = c;
2917 register_chars[c] = c;
2918 operand_chars[c] = c;
2919 }
2920 else if (ISUPPER (c))
2921 {
2922 mnemonic_chars[c] = TOLOWER (c);
2923 register_chars[c] = mnemonic_chars[c];
2924 operand_chars[c] = c;
2925 }
2926 else if (c == '{' || c == '}')
2927 {
2928 mnemonic_chars[c] = c;
2929 operand_chars[c] = c;
2930 }
2931
2932 if (ISALPHA (c) || ISDIGIT (c))
2933 identifier_chars[c] = c;
2934 else if (c >= 128)
2935 {
2936 identifier_chars[c] = c;
2937 operand_chars[c] = c;
2938 }
2939 }
2940
2941 #ifdef LEX_AT
2942 identifier_chars['@'] = '@';
2943 #endif
2944 #ifdef LEX_QM
2945 identifier_chars['?'] = '?';
2946 operand_chars['?'] = '?';
2947 #endif
2948 digit_chars['-'] = '-';
2949 mnemonic_chars['_'] = '_';
2950 mnemonic_chars['-'] = '-';
2951 mnemonic_chars['.'] = '.';
2952 identifier_chars['_'] = '_';
2953 identifier_chars['.'] = '.';
2954
2955 for (p = operand_special_chars; *p != '\0'; p++)
2956 operand_chars[(unsigned char) *p] = *p;
2957 }
2958
2959 if (flag_code == CODE_64BIT)
2960 {
2961 #if defined (OBJ_COFF) && defined (TE_PE)
2962 x86_dwarf2_return_column = (OUTPUT_FLAVOR == bfd_target_coff_flavour
2963 ? 32 : 16);
2964 #else
2965 x86_dwarf2_return_column = 16;
2966 #endif
2967 x86_cie_data_alignment = -8;
2968 }
2969 else
2970 {
2971 x86_dwarf2_return_column = 8;
2972 x86_cie_data_alignment = -4;
2973 }
2974 }
2975
2976 void
2977 i386_print_statistics (FILE *file)
2978 {
2979 hash_print_statistics (file, "i386 opcode", op_hash);
2980 hash_print_statistics (file, "i386 register", reg_hash);
2981 }
2982 \f
2983 #ifdef DEBUG386
2984
2985 /* Debugging routines for md_assemble. */
2986 static void pte (insn_template *);
2987 static void pt (i386_operand_type);
2988 static void pe (expressionS *);
2989 static void ps (symbolS *);
2990
2991 static void
2992 pi (char *line, i386_insn *x)
2993 {
2994 unsigned int j;
2995
2996 fprintf (stdout, "%s: template ", line);
2997 pte (&x->tm);
2998 fprintf (stdout, " address: base %s index %s scale %x\n",
2999 x->base_reg ? x->base_reg->reg_name : "none",
3000 x->index_reg ? x->index_reg->reg_name : "none",
3001 x->log2_scale_factor);
3002 fprintf (stdout, " modrm: mode %x reg %x reg/mem %x\n",
3003 x->rm.mode, x->rm.reg, x->rm.regmem);
3004 fprintf (stdout, " sib: base %x index %x scale %x\n",
3005 x->sib.base, x->sib.index, x->sib.scale);
3006 fprintf (stdout, " rex: 64bit %x extX %x extY %x extZ %x\n",
3007 (x->rex & REX_W) != 0,
3008 (x->rex & REX_R) != 0,
3009 (x->rex & REX_X) != 0,
3010 (x->rex & REX_B) != 0);
3011 for (j = 0; j < x->operands; j++)
3012 {
3013 fprintf (stdout, " #%d: ", j + 1);
3014 pt (x->types[j]);
3015 fprintf (stdout, "\n");
3016 if (x->types[j].bitfield.reg
3017 || x->types[j].bitfield.regmmx
3018 || x->types[j].bitfield.regsimd
3019 || x->types[j].bitfield.sreg2
3020 || x->types[j].bitfield.sreg3
3021 || x->types[j].bitfield.control
3022 || x->types[j].bitfield.debug
3023 || x->types[j].bitfield.test)
3024 fprintf (stdout, "%s\n", x->op[j].regs->reg_name);
3025 if (operand_type_check (x->types[j], imm))
3026 pe (x->op[j].imms);
3027 if (operand_type_check (x->types[j], disp))
3028 pe (x->op[j].disps);
3029 }
3030 }
3031
3032 static void
3033 pte (insn_template *t)
3034 {
3035 unsigned int j;
3036 fprintf (stdout, " %d operands ", t->operands);
3037 fprintf (stdout, "opcode %x ", t->base_opcode);
3038 if (t->extension_opcode != None)
3039 fprintf (stdout, "ext %x ", t->extension_opcode);
3040 if (t->opcode_modifier.d)
3041 fprintf (stdout, "D");
3042 if (t->opcode_modifier.w)
3043 fprintf (stdout, "W");
3044 fprintf (stdout, "\n");
3045 for (j = 0; j < t->operands; j++)
3046 {
3047 fprintf (stdout, " #%d type ", j + 1);
3048 pt (t->operand_types[j]);
3049 fprintf (stdout, "\n");
3050 }
3051 }
3052
3053 static void
3054 pe (expressionS *e)
3055 {
3056 fprintf (stdout, " operation %d\n", e->X_op);
3057 fprintf (stdout, " add_number %ld (%lx)\n",
3058 (long) e->X_add_number, (long) e->X_add_number);
3059 if (e->X_add_symbol)
3060 {
3061 fprintf (stdout, " add_symbol ");
3062 ps (e->X_add_symbol);
3063 fprintf (stdout, "\n");
3064 }
3065 if (e->X_op_symbol)
3066 {
3067 fprintf (stdout, " op_symbol ");
3068 ps (e->X_op_symbol);
3069 fprintf (stdout, "\n");
3070 }
3071 }
3072
3073 static void
3074 ps (symbolS *s)
3075 {
3076 fprintf (stdout, "%s type %s%s",
3077 S_GET_NAME (s),
3078 S_IS_EXTERNAL (s) ? "EXTERNAL " : "",
3079 segment_name (S_GET_SEGMENT (s)));
3080 }
3081
3082 static struct type_name
3083 {
3084 i386_operand_type mask;
3085 const char *name;
3086 }
3087 const type_names[] =
3088 {
3089 { OPERAND_TYPE_REG8, "r8" },
3090 { OPERAND_TYPE_REG16, "r16" },
3091 { OPERAND_TYPE_REG32, "r32" },
3092 { OPERAND_TYPE_REG64, "r64" },
3093 { OPERAND_TYPE_IMM8, "i8" },
3094 { OPERAND_TYPE_IMM8, "i8s" },
3095 { OPERAND_TYPE_IMM16, "i16" },
3096 { OPERAND_TYPE_IMM32, "i32" },
3097 { OPERAND_TYPE_IMM32S, "i32s" },
3098 { OPERAND_TYPE_IMM64, "i64" },
3099 { OPERAND_TYPE_IMM1, "i1" },
3100 { OPERAND_TYPE_BASEINDEX, "BaseIndex" },
3101 { OPERAND_TYPE_DISP8, "d8" },
3102 { OPERAND_TYPE_DISP16, "d16" },
3103 { OPERAND_TYPE_DISP32, "d32" },
3104 { OPERAND_TYPE_DISP32S, "d32s" },
3105 { OPERAND_TYPE_DISP64, "d64" },
3106 { OPERAND_TYPE_INOUTPORTREG, "InOutPortReg" },
3107 { OPERAND_TYPE_SHIFTCOUNT, "ShiftCount" },
3108 { OPERAND_TYPE_CONTROL, "control reg" },
3109 { OPERAND_TYPE_TEST, "test reg" },
3110 { OPERAND_TYPE_DEBUG, "debug reg" },
3111 { OPERAND_TYPE_FLOATREG, "FReg" },
3112 { OPERAND_TYPE_FLOATACC, "FAcc" },
3113 { OPERAND_TYPE_SREG2, "SReg2" },
3114 { OPERAND_TYPE_SREG3, "SReg3" },
3115 { OPERAND_TYPE_ACC, "Acc" },
3116 { OPERAND_TYPE_JUMPABSOLUTE, "Jump Absolute" },
3117 { OPERAND_TYPE_REGMMX, "rMMX" },
3118 { OPERAND_TYPE_REGXMM, "rXMM" },
3119 { OPERAND_TYPE_REGYMM, "rYMM" },
3120 { OPERAND_TYPE_REGZMM, "rZMM" },
3121 { OPERAND_TYPE_REGMASK, "Mask reg" },
3122 { OPERAND_TYPE_ESSEG, "es" },
3123 };
3124
3125 static void
3126 pt (i386_operand_type t)
3127 {
3128 unsigned int j;
3129 i386_operand_type a;
3130
3131 for (j = 0; j < ARRAY_SIZE (type_names); j++)
3132 {
3133 a = operand_type_and (t, type_names[j].mask);
3134 if (!operand_type_all_zero (&a))
3135 fprintf (stdout, "%s, ", type_names[j].name);
3136 }
3137 fflush (stdout);
3138 }
3139
3140 #endif /* DEBUG386 */
3141 \f
3142 static bfd_reloc_code_real_type
3143 reloc (unsigned int size,
3144 int pcrel,
3145 int sign,
3146 bfd_reloc_code_real_type other)
3147 {
3148 if (other != NO_RELOC)
3149 {
3150 reloc_howto_type *rel;
3151
3152 if (size == 8)
3153 switch (other)
3154 {
3155 case BFD_RELOC_X86_64_GOT32:
3156 return BFD_RELOC_X86_64_GOT64;
3157 break;
3158 case BFD_RELOC_X86_64_GOTPLT64:
3159 return BFD_RELOC_X86_64_GOTPLT64;
3160 break;
3161 case BFD_RELOC_X86_64_PLTOFF64:
3162 return BFD_RELOC_X86_64_PLTOFF64;
3163 break;
3164 case BFD_RELOC_X86_64_GOTPC32:
3165 other = BFD_RELOC_X86_64_GOTPC64;
3166 break;
3167 case BFD_RELOC_X86_64_GOTPCREL:
3168 other = BFD_RELOC_X86_64_GOTPCREL64;
3169 break;
3170 case BFD_RELOC_X86_64_TPOFF32:
3171 other = BFD_RELOC_X86_64_TPOFF64;
3172 break;
3173 case BFD_RELOC_X86_64_DTPOFF32:
3174 other = BFD_RELOC_X86_64_DTPOFF64;
3175 break;
3176 default:
3177 break;
3178 }
3179
3180 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
3181 if (other == BFD_RELOC_SIZE32)
3182 {
3183 if (size == 8)
3184 other = BFD_RELOC_SIZE64;
3185 if (pcrel)
3186 {
3187 as_bad (_("there are no pc-relative size relocations"));
3188 return NO_RELOC;
3189 }
3190 }
3191 #endif
3192
3193 /* Sign-checking 4-byte relocations in 16-/32-bit code is pointless. */
3194 if (size == 4 && (flag_code != CODE_64BIT || disallow_64bit_reloc))
3195 sign = -1;
3196
3197 rel = bfd_reloc_type_lookup (stdoutput, other);
3198 if (!rel)
3199 as_bad (_("unknown relocation (%u)"), other);
3200 else if (size != bfd_get_reloc_size (rel))
3201 as_bad (_("%u-byte relocation cannot be applied to %u-byte field"),
3202 bfd_get_reloc_size (rel),
3203 size);
3204 else if (pcrel && !rel->pc_relative)
3205 as_bad (_("non-pc-relative relocation for pc-relative field"));
3206 else if ((rel->complain_on_overflow == complain_overflow_signed
3207 && !sign)
3208 || (rel->complain_on_overflow == complain_overflow_unsigned
3209 && sign > 0))
3210 as_bad (_("relocated field and relocation type differ in signedness"));
3211 else
3212 return other;
3213 return NO_RELOC;
3214 }
3215
3216 if (pcrel)
3217 {
3218 if (!sign)
3219 as_bad (_("there are no unsigned pc-relative relocations"));
3220 switch (size)
3221 {
3222 case 1: return BFD_RELOC_8_PCREL;
3223 case 2: return BFD_RELOC_16_PCREL;
3224 case 4: return BFD_RELOC_32_PCREL;
3225 case 8: return BFD_RELOC_64_PCREL;
3226 }
3227 as_bad (_("cannot do %u byte pc-relative relocation"), size);
3228 }
3229 else
3230 {
3231 if (sign > 0)
3232 switch (size)
3233 {
3234 case 4: return BFD_RELOC_X86_64_32S;
3235 }
3236 else
3237 switch (size)
3238 {
3239 case 1: return BFD_RELOC_8;
3240 case 2: return BFD_RELOC_16;
3241 case 4: return BFD_RELOC_32;
3242 case 8: return BFD_RELOC_64;
3243 }
3244 as_bad (_("cannot do %s %u byte relocation"),
3245 sign > 0 ? "signed" : "unsigned", size);
3246 }
3247
3248 return NO_RELOC;
3249 }
3250
3251 /* Here we decide which fixups can be adjusted to make them relative to
3252 the beginning of the section instead of the symbol. Basically we need
3253 to make sure that the dynamic relocations are done correctly, so in
3254 some cases we force the original symbol to be used. */
3255
3256 int
3257 tc_i386_fix_adjustable (fixS *fixP ATTRIBUTE_UNUSED)
3258 {
3259 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
3260 if (!IS_ELF)
3261 return 1;
3262
3263 /* Don't adjust pc-relative references to merge sections in 64-bit
3264 mode. */
3265 if (use_rela_relocations
3266 && (S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_MERGE) != 0
3267 && fixP->fx_pcrel)
3268 return 0;
3269
3270 /* The x86_64 GOTPCREL are represented as 32bit PCrel relocations
3271 and changed later by validate_fix. */
3272 if (GOT_symbol && fixP->fx_subsy == GOT_symbol
3273 && fixP->fx_r_type == BFD_RELOC_32_PCREL)
3274 return 0;
3275
3276 /* Adjust_reloc_syms doesn't know about the GOT. Need to keep symbol
3277 for size relocations. */
3278 if (fixP->fx_r_type == BFD_RELOC_SIZE32
3279 || fixP->fx_r_type == BFD_RELOC_SIZE64
3280 || fixP->fx_r_type == BFD_RELOC_386_GOTOFF
3281 || fixP->fx_r_type == BFD_RELOC_386_PLT32
3282 || fixP->fx_r_type == BFD_RELOC_386_GOT32
3283 || fixP->fx_r_type == BFD_RELOC_386_GOT32X
3284 || fixP->fx_r_type == BFD_RELOC_386_TLS_GD
3285 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDM
3286 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDO_32
3287 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE_32
3288 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE
3289 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTIE
3290 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE_32
3291 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE
3292 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTDESC
3293 || fixP->fx_r_type == BFD_RELOC_386_TLS_DESC_CALL
3294 || fixP->fx_r_type == BFD_RELOC_X86_64_PLT32
3295 || fixP->fx_r_type == BFD_RELOC_X86_64_GOT32
3296 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCREL
3297 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCRELX
3298 || fixP->fx_r_type == BFD_RELOC_X86_64_REX_GOTPCRELX
3299 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSGD
3300 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSLD
3301 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF32
3302 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF64
3303 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTTPOFF
3304 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF32
3305 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF64
3306 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTOFF64
3307 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPC32_TLSDESC
3308 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSDESC_CALL
3309 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
3310 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
3311 return 0;
3312 #endif
3313 return 1;
3314 }
3315
3316 static int
3317 intel_float_operand (const char *mnemonic)
3318 {
3319 /* Note that the value returned is meaningful only for opcodes with (memory)
3320 operands, hence the code here is free to improperly handle opcodes that
3321 have no operands (for better performance and smaller code). */
3322
3323 if (mnemonic[0] != 'f')
3324 return 0; /* non-math */
3325
3326 switch (mnemonic[1])
3327 {
3328 /* fclex, fdecstp, fdisi, femms, feni, fincstp, finit, fsetpm, and
3329 the fs segment override prefix not currently handled because no
3330 call path can make opcodes without operands get here */
3331 case 'i':
3332 return 2 /* integer op */;
3333 case 'l':
3334 if (mnemonic[2] == 'd' && (mnemonic[3] == 'c' || mnemonic[3] == 'e'))
3335 return 3; /* fldcw/fldenv */
3336 break;
3337 case 'n':
3338 if (mnemonic[2] != 'o' /* fnop */)
3339 return 3; /* non-waiting control op */
3340 break;
3341 case 'r':
3342 if (mnemonic[2] == 's')
3343 return 3; /* frstor/frstpm */
3344 break;
3345 case 's':
3346 if (mnemonic[2] == 'a')
3347 return 3; /* fsave */
3348 if (mnemonic[2] == 't')
3349 {
3350 switch (mnemonic[3])
3351 {
3352 case 'c': /* fstcw */
3353 case 'd': /* fstdw */
3354 case 'e': /* fstenv */
3355 case 's': /* fsts[gw] */
3356 return 3;
3357 }
3358 }
3359 break;
3360 case 'x':
3361 if (mnemonic[2] == 'r' || mnemonic[2] == 's')
3362 return 0; /* fxsave/fxrstor are not really math ops */
3363 break;
3364 }
3365
3366 return 1;
3367 }
3368
3369 /* Build the VEX prefix. */
3370
3371 static void
3372 build_vex_prefix (const insn_template *t)
3373 {
3374 unsigned int register_specifier;
3375 unsigned int implied_prefix;
3376 unsigned int vector_length;
3377 unsigned int w;
3378
3379 /* Check register specifier. */
3380 if (i.vex.register_specifier)
3381 {
3382 register_specifier =
3383 ~register_number (i.vex.register_specifier) & 0xf;
3384 gas_assert ((i.vex.register_specifier->reg_flags & RegVRex) == 0);
3385 }
3386 else
3387 register_specifier = 0xf;
3388
3389 /* Use 2-byte VEX prefix by swapping destination and source operand
3390 if there are more than 1 register operand. */
3391 if (i.reg_operands > 1
3392 && i.vec_encoding != vex_encoding_vex3
3393 && i.dir_encoding == dir_encoding_default
3394 && i.operands == i.reg_operands
3395 && operand_type_equal (&i.types[0], &i.types[i.operands - 1])
3396 && i.tm.opcode_modifier.vexopcode == VEX0F
3397 && (i.tm.opcode_modifier.load || i.tm.opcode_modifier.d)
3398 && i.rex == REX_B)
3399 {
3400 unsigned int xchg = i.operands - 1;
3401 union i386_op temp_op;
3402 i386_operand_type temp_type;
3403
3404 temp_type = i.types[xchg];
3405 i.types[xchg] = i.types[0];
3406 i.types[0] = temp_type;
3407 temp_op = i.op[xchg];
3408 i.op[xchg] = i.op[0];
3409 i.op[0] = temp_op;
3410
3411 gas_assert (i.rm.mode == 3);
3412
3413 i.rex = REX_R;
3414 xchg = i.rm.regmem;
3415 i.rm.regmem = i.rm.reg;
3416 i.rm.reg = xchg;
3417
3418 if (i.tm.opcode_modifier.d)
3419 i.tm.base_opcode ^= (i.tm.base_opcode & 0xee) != 0x6e
3420 ? Opcode_SIMD_FloatD : Opcode_SIMD_IntD;
3421 else /* Use the next insn. */
3422 i.tm = t[1];
3423 }
3424
3425 if (i.tm.opcode_modifier.vex == VEXScalar)
3426 vector_length = avxscalar;
3427 else if (i.tm.opcode_modifier.vex == VEX256)
3428 vector_length = 1;
3429 else
3430 {
3431 unsigned int op;
3432
3433 /* Determine vector length from the last multi-length vector
3434 operand. */
3435 vector_length = 0;
3436 for (op = t->operands; op--;)
3437 if (t->operand_types[op].bitfield.xmmword
3438 && t->operand_types[op].bitfield.ymmword
3439 && i.types[op].bitfield.ymmword)
3440 {
3441 vector_length = 1;
3442 break;
3443 }
3444 }
3445
3446 switch ((i.tm.base_opcode >> 8) & 0xff)
3447 {
3448 case 0:
3449 implied_prefix = 0;
3450 break;
3451 case DATA_PREFIX_OPCODE:
3452 implied_prefix = 1;
3453 break;
3454 case REPE_PREFIX_OPCODE:
3455 implied_prefix = 2;
3456 break;
3457 case REPNE_PREFIX_OPCODE:
3458 implied_prefix = 3;
3459 break;
3460 default:
3461 abort ();
3462 }
3463
3464 /* Check the REX.W bit and VEXW. */
3465 if (i.tm.opcode_modifier.vexw == VEXWIG)
3466 w = (vexwig == vexw1 || (i.rex & REX_W)) ? 1 : 0;
3467 else if (i.tm.opcode_modifier.vexw)
3468 w = i.tm.opcode_modifier.vexw == VEXW1 ? 1 : 0;
3469 else
3470 w = (flag_code == CODE_64BIT ? i.rex & REX_W : vexwig == vexw1) ? 1 : 0;
3471
3472 /* Use 2-byte VEX prefix if possible. */
3473 if (w == 0
3474 && i.vec_encoding != vex_encoding_vex3
3475 && i.tm.opcode_modifier.vexopcode == VEX0F
3476 && (i.rex & (REX_W | REX_X | REX_B)) == 0)
3477 {
3478 /* 2-byte VEX prefix. */
3479 unsigned int r;
3480
3481 i.vex.length = 2;
3482 i.vex.bytes[0] = 0xc5;
3483
3484 /* Check the REX.R bit. */
3485 r = (i.rex & REX_R) ? 0 : 1;
3486 i.vex.bytes[1] = (r << 7
3487 | register_specifier << 3
3488 | vector_length << 2
3489 | implied_prefix);
3490 }
3491 else
3492 {
3493 /* 3-byte VEX prefix. */
3494 unsigned int m;
3495
3496 i.vex.length = 3;
3497
3498 switch (i.tm.opcode_modifier.vexopcode)
3499 {
3500 case VEX0F:
3501 m = 0x1;
3502 i.vex.bytes[0] = 0xc4;
3503 break;
3504 case VEX0F38:
3505 m = 0x2;
3506 i.vex.bytes[0] = 0xc4;
3507 break;
3508 case VEX0F3A:
3509 m = 0x3;
3510 i.vex.bytes[0] = 0xc4;
3511 break;
3512 case XOP08:
3513 m = 0x8;
3514 i.vex.bytes[0] = 0x8f;
3515 break;
3516 case XOP09:
3517 m = 0x9;
3518 i.vex.bytes[0] = 0x8f;
3519 break;
3520 case XOP0A:
3521 m = 0xa;
3522 i.vex.bytes[0] = 0x8f;
3523 break;
3524 default:
3525 abort ();
3526 }
3527
3528 /* The high 3 bits of the second VEX byte are 1's compliment
3529 of RXB bits from REX. */
3530 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3531
3532 i.vex.bytes[2] = (w << 7
3533 | register_specifier << 3
3534 | vector_length << 2
3535 | implied_prefix);
3536 }
3537 }
3538
3539 static INLINE bfd_boolean
3540 is_evex_encoding (const insn_template *t)
3541 {
3542 return t->opcode_modifier.evex || t->opcode_modifier.disp8memshift
3543 || t->opcode_modifier.broadcast || t->opcode_modifier.masking
3544 || t->opcode_modifier.staticrounding || t->opcode_modifier.sae;
3545 }
3546
3547 static INLINE bfd_boolean
3548 is_any_vex_encoding (const insn_template *t)
3549 {
3550 return t->opcode_modifier.vex || t->opcode_modifier.vexopcode
3551 || is_evex_encoding (t);
3552 }
3553
3554 /* Build the EVEX prefix. */
3555
3556 static void
3557 build_evex_prefix (void)
3558 {
3559 unsigned int register_specifier;
3560 unsigned int implied_prefix;
3561 unsigned int m, w;
3562 rex_byte vrex_used = 0;
3563
3564 /* Check register specifier. */
3565 if (i.vex.register_specifier)
3566 {
3567 gas_assert ((i.vrex & REX_X) == 0);
3568
3569 register_specifier = i.vex.register_specifier->reg_num;
3570 if ((i.vex.register_specifier->reg_flags & RegRex))
3571 register_specifier += 8;
3572 /* The upper 16 registers are encoded in the fourth byte of the
3573 EVEX prefix. */
3574 if (!(i.vex.register_specifier->reg_flags & RegVRex))
3575 i.vex.bytes[3] = 0x8;
3576 register_specifier = ~register_specifier & 0xf;
3577 }
3578 else
3579 {
3580 register_specifier = 0xf;
3581
3582 /* Encode upper 16 vector index register in the fourth byte of
3583 the EVEX prefix. */
3584 if (!(i.vrex & REX_X))
3585 i.vex.bytes[3] = 0x8;
3586 else
3587 vrex_used |= REX_X;
3588 }
3589
3590 switch ((i.tm.base_opcode >> 8) & 0xff)
3591 {
3592 case 0:
3593 implied_prefix = 0;
3594 break;
3595 case DATA_PREFIX_OPCODE:
3596 implied_prefix = 1;
3597 break;
3598 case REPE_PREFIX_OPCODE:
3599 implied_prefix = 2;
3600 break;
3601 case REPNE_PREFIX_OPCODE:
3602 implied_prefix = 3;
3603 break;
3604 default:
3605 abort ();
3606 }
3607
3608 /* 4 byte EVEX prefix. */
3609 i.vex.length = 4;
3610 i.vex.bytes[0] = 0x62;
3611
3612 /* mmmm bits. */
3613 switch (i.tm.opcode_modifier.vexopcode)
3614 {
3615 case VEX0F:
3616 m = 1;
3617 break;
3618 case VEX0F38:
3619 m = 2;
3620 break;
3621 case VEX0F3A:
3622 m = 3;
3623 break;
3624 default:
3625 abort ();
3626 break;
3627 }
3628
3629 /* The high 3 bits of the second EVEX byte are 1's compliment of RXB
3630 bits from REX. */
3631 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3632
3633 /* The fifth bit of the second EVEX byte is 1's compliment of the
3634 REX_R bit in VREX. */
3635 if (!(i.vrex & REX_R))
3636 i.vex.bytes[1] |= 0x10;
3637 else
3638 vrex_used |= REX_R;
3639
3640 if ((i.reg_operands + i.imm_operands) == i.operands)
3641 {
3642 /* When all operands are registers, the REX_X bit in REX is not
3643 used. We reuse it to encode the upper 16 registers, which is
3644 indicated by the REX_B bit in VREX. The REX_X bit is encoded
3645 as 1's compliment. */
3646 if ((i.vrex & REX_B))
3647 {
3648 vrex_used |= REX_B;
3649 i.vex.bytes[1] &= ~0x40;
3650 }
3651 }
3652
3653 /* EVEX instructions shouldn't need the REX prefix. */
3654 i.vrex &= ~vrex_used;
3655 gas_assert (i.vrex == 0);
3656
3657 /* Check the REX.W bit and VEXW. */
3658 if (i.tm.opcode_modifier.vexw == VEXWIG)
3659 w = (evexwig == evexw1 || (i.rex & REX_W)) ? 1 : 0;
3660 else if (i.tm.opcode_modifier.vexw)
3661 w = i.tm.opcode_modifier.vexw == VEXW1 ? 1 : 0;
3662 else
3663 w = (flag_code == CODE_64BIT ? i.rex & REX_W : evexwig == evexw1) ? 1 : 0;
3664
3665 /* Encode the U bit. */
3666 implied_prefix |= 0x4;
3667
3668 /* The third byte of the EVEX prefix. */
3669 i.vex.bytes[2] = (w << 7 | register_specifier << 3 | implied_prefix);
3670
3671 /* The fourth byte of the EVEX prefix. */
3672 /* The zeroing-masking bit. */
3673 if (i.mask && i.mask->zeroing)
3674 i.vex.bytes[3] |= 0x80;
3675
3676 /* Don't always set the broadcast bit if there is no RC. */
3677 if (!i.rounding)
3678 {
3679 /* Encode the vector length. */
3680 unsigned int vec_length;
3681
3682 if (!i.tm.opcode_modifier.evex
3683 || i.tm.opcode_modifier.evex == EVEXDYN)
3684 {
3685 unsigned int op;
3686
3687 /* Determine vector length from the last multi-length vector
3688 operand. */
3689 vec_length = 0;
3690 for (op = i.operands; op--;)
3691 if (i.tm.operand_types[op].bitfield.xmmword
3692 + i.tm.operand_types[op].bitfield.ymmword
3693 + i.tm.operand_types[op].bitfield.zmmword > 1)
3694 {
3695 if (i.types[op].bitfield.zmmword)
3696 {
3697 i.tm.opcode_modifier.evex = EVEX512;
3698 break;
3699 }
3700 else if (i.types[op].bitfield.ymmword)
3701 {
3702 i.tm.opcode_modifier.evex = EVEX256;
3703 break;
3704 }
3705 else if (i.types[op].bitfield.xmmword)
3706 {
3707 i.tm.opcode_modifier.evex = EVEX128;
3708 break;
3709 }
3710 else if (i.broadcast && (int) op == i.broadcast->operand)
3711 {
3712 switch (i.broadcast->bytes)
3713 {
3714 case 64:
3715 i.tm.opcode_modifier.evex = EVEX512;
3716 break;
3717 case 32:
3718 i.tm.opcode_modifier.evex = EVEX256;
3719 break;
3720 case 16:
3721 i.tm.opcode_modifier.evex = EVEX128;
3722 break;
3723 default:
3724 abort ();
3725 }
3726 break;
3727 }
3728 }
3729
3730 if (op >= MAX_OPERANDS)
3731 abort ();
3732 }
3733
3734 switch (i.tm.opcode_modifier.evex)
3735 {
3736 case EVEXLIG: /* LL' is ignored */
3737 vec_length = evexlig << 5;
3738 break;
3739 case EVEX128:
3740 vec_length = 0 << 5;
3741 break;
3742 case EVEX256:
3743 vec_length = 1 << 5;
3744 break;
3745 case EVEX512:
3746 vec_length = 2 << 5;
3747 break;
3748 default:
3749 abort ();
3750 break;
3751 }
3752 i.vex.bytes[3] |= vec_length;
3753 /* Encode the broadcast bit. */
3754 if (i.broadcast)
3755 i.vex.bytes[3] |= 0x10;
3756 }
3757 else
3758 {
3759 if (i.rounding->type != saeonly)
3760 i.vex.bytes[3] |= 0x10 | (i.rounding->type << 5);
3761 else
3762 i.vex.bytes[3] |= 0x10 | (evexrcig << 5);
3763 }
3764
3765 if (i.mask && i.mask->mask)
3766 i.vex.bytes[3] |= i.mask->mask->reg_num;
3767 }
3768
3769 static void
3770 process_immext (void)
3771 {
3772 expressionS *exp;
3773
3774 if ((i.tm.cpu_flags.bitfield.cpusse3 || i.tm.cpu_flags.bitfield.cpusvme)
3775 && i.operands > 0)
3776 {
3777 /* MONITOR/MWAIT as well as SVME instructions have fixed operands
3778 with an opcode suffix which is coded in the same place as an
3779 8-bit immediate field would be.
3780 Here we check those operands and remove them afterwards. */
3781 unsigned int x;
3782
3783 for (x = 0; x < i.operands; x++)
3784 if (register_number (i.op[x].regs) != x)
3785 as_bad (_("can't use register '%s%s' as operand %d in '%s'."),
3786 register_prefix, i.op[x].regs->reg_name, x + 1,
3787 i.tm.name);
3788
3789 i.operands = 0;
3790 }
3791
3792 if (i.tm.cpu_flags.bitfield.cpumwaitx && i.operands > 0)
3793 {
3794 /* MONITORX/MWAITX instructions have fixed operands with an opcode
3795 suffix which is coded in the same place as an 8-bit immediate
3796 field would be.
3797 Here we check those operands and remove them afterwards. */
3798 unsigned int x;
3799
3800 if (i.operands != 3)
3801 abort();
3802
3803 for (x = 0; x < 2; x++)
3804 if (register_number (i.op[x].regs) != x)
3805 goto bad_register_operand;
3806
3807 /* Check for third operand for mwaitx/monitorx insn. */
3808 if (register_number (i.op[x].regs)
3809 != (x + (i.tm.extension_opcode == 0xfb)))
3810 {
3811 bad_register_operand:
3812 as_bad (_("can't use register '%s%s' as operand %d in '%s'."),
3813 register_prefix, i.op[x].regs->reg_name, x+1,
3814 i.tm.name);
3815 }
3816
3817 i.operands = 0;
3818 }
3819
3820 /* These AMD 3DNow! and SSE2 instructions have an opcode suffix
3821 which is coded in the same place as an 8-bit immediate field
3822 would be. Here we fake an 8-bit immediate operand from the
3823 opcode suffix stored in tm.extension_opcode.
3824
3825 AVX instructions also use this encoding, for some of
3826 3 argument instructions. */
3827
3828 gas_assert (i.imm_operands <= 1
3829 && (i.operands <= 2
3830 || (is_any_vex_encoding (&i.tm)
3831 && i.operands <= 4)));
3832
3833 exp = &im_expressions[i.imm_operands++];
3834 i.op[i.operands].imms = exp;
3835 i.types[i.operands] = imm8;
3836 i.operands++;
3837 exp->X_op = O_constant;
3838 exp->X_add_number = i.tm.extension_opcode;
3839 i.tm.extension_opcode = None;
3840 }
3841
3842
3843 static int
3844 check_hle (void)
3845 {
3846 switch (i.tm.opcode_modifier.hleprefixok)
3847 {
3848 default:
3849 abort ();
3850 case HLEPrefixNone:
3851 as_bad (_("invalid instruction `%s' after `%s'"),
3852 i.tm.name, i.hle_prefix);
3853 return 0;
3854 case HLEPrefixLock:
3855 if (i.prefix[LOCK_PREFIX])
3856 return 1;
3857 as_bad (_("missing `lock' with `%s'"), i.hle_prefix);
3858 return 0;
3859 case HLEPrefixAny:
3860 return 1;
3861 case HLEPrefixRelease:
3862 if (i.prefix[HLE_PREFIX] != XRELEASE_PREFIX_OPCODE)
3863 {
3864 as_bad (_("instruction `%s' after `xacquire' not allowed"),
3865 i.tm.name);
3866 return 0;
3867 }
3868 if (i.mem_operands == 0
3869 || !operand_type_check (i.types[i.operands - 1], anymem))
3870 {
3871 as_bad (_("memory destination needed for instruction `%s'"
3872 " after `xrelease'"), i.tm.name);
3873 return 0;
3874 }
3875 return 1;
3876 }
3877 }
3878
3879 /* Try the shortest encoding by shortening operand size. */
3880
3881 static void
3882 optimize_encoding (void)
3883 {
3884 int j;
3885
3886 if (optimize_for_space
3887 && i.reg_operands == 1
3888 && i.imm_operands == 1
3889 && !i.types[1].bitfield.byte
3890 && i.op[0].imms->X_op == O_constant
3891 && fits_in_imm7 (i.op[0].imms->X_add_number)
3892 && ((i.tm.base_opcode == 0xa8
3893 && i.tm.extension_opcode == None)
3894 || (i.tm.base_opcode == 0xf6
3895 && i.tm.extension_opcode == 0x0)))
3896 {
3897 /* Optimize: -Os:
3898 test $imm7, %r64/%r32/%r16 -> test $imm7, %r8
3899 */
3900 unsigned int base_regnum = i.op[1].regs->reg_num;
3901 if (flag_code == CODE_64BIT || base_regnum < 4)
3902 {
3903 i.types[1].bitfield.byte = 1;
3904 /* Ignore the suffix. */
3905 i.suffix = 0;
3906 if (base_regnum >= 4
3907 && !(i.op[1].regs->reg_flags & RegRex))
3908 {
3909 /* Handle SP, BP, SI and DI registers. */
3910 if (i.types[1].bitfield.word)
3911 j = 16;
3912 else if (i.types[1].bitfield.dword)
3913 j = 32;
3914 else
3915 j = 48;
3916 i.op[1].regs -= j;
3917 }
3918 }
3919 }
3920 else if (flag_code == CODE_64BIT
3921 && ((i.types[1].bitfield.qword
3922 && i.reg_operands == 1
3923 && i.imm_operands == 1
3924 && i.op[0].imms->X_op == O_constant
3925 && ((i.tm.base_opcode == 0xb0
3926 && i.tm.extension_opcode == None
3927 && fits_in_unsigned_long (i.op[0].imms->X_add_number))
3928 || (fits_in_imm31 (i.op[0].imms->X_add_number)
3929 && (((i.tm.base_opcode == 0x24
3930 || i.tm.base_opcode == 0xa8)
3931 && i.tm.extension_opcode == None)
3932 || (i.tm.base_opcode == 0x80
3933 && i.tm.extension_opcode == 0x4)
3934 || ((i.tm.base_opcode == 0xf6
3935 || i.tm.base_opcode == 0xc6)
3936 && i.tm.extension_opcode == 0x0)))))
3937 || (i.types[0].bitfield.qword
3938 && ((i.reg_operands == 2
3939 && i.op[0].regs == i.op[1].regs
3940 && ((i.tm.base_opcode == 0x30
3941 || i.tm.base_opcode == 0x28)
3942 && i.tm.extension_opcode == None))
3943 || (i.reg_operands == 1
3944 && i.operands == 1
3945 && i.tm.base_opcode == 0x30
3946 && i.tm.extension_opcode == None)))))
3947 {
3948 /* Optimize: -O:
3949 andq $imm31, %r64 -> andl $imm31, %r32
3950 testq $imm31, %r64 -> testl $imm31, %r32
3951 xorq %r64, %r64 -> xorl %r32, %r32
3952 subq %r64, %r64 -> subl %r32, %r32
3953 movq $imm31, %r64 -> movl $imm31, %r32
3954 movq $imm32, %r64 -> movl $imm32, %r32
3955 */
3956 i.tm.opcode_modifier.norex64 = 1;
3957 if (i.tm.base_opcode == 0xb0 || i.tm.base_opcode == 0xc6)
3958 {
3959 /* Handle
3960 movq $imm31, %r64 -> movl $imm31, %r32
3961 movq $imm32, %r64 -> movl $imm32, %r32
3962 */
3963 i.tm.operand_types[0].bitfield.imm32 = 1;
3964 i.tm.operand_types[0].bitfield.imm32s = 0;
3965 i.tm.operand_types[0].bitfield.imm64 = 0;
3966 i.types[0].bitfield.imm32 = 1;
3967 i.types[0].bitfield.imm32s = 0;
3968 i.types[0].bitfield.imm64 = 0;
3969 i.types[1].bitfield.dword = 1;
3970 i.types[1].bitfield.qword = 0;
3971 if (i.tm.base_opcode == 0xc6)
3972 {
3973 /* Handle
3974 movq $imm31, %r64 -> movl $imm31, %r32
3975 */
3976 i.tm.base_opcode = 0xb0;
3977 i.tm.extension_opcode = None;
3978 i.tm.opcode_modifier.shortform = 1;
3979 i.tm.opcode_modifier.modrm = 0;
3980 }
3981 }
3982 }
3983 else if (i.reg_operands == 3
3984 && i.op[0].regs == i.op[1].regs
3985 && !i.types[2].bitfield.xmmword
3986 && (i.tm.opcode_modifier.vex
3987 || ((!i.mask || i.mask->zeroing)
3988 && !i.rounding
3989 && is_evex_encoding (&i.tm)
3990 && (i.vec_encoding != vex_encoding_evex
3991 || cpu_arch_isa_flags.bitfield.cpuavx512vl
3992 || i.tm.cpu_flags.bitfield.cpuavx512vl
3993 || (i.tm.operand_types[2].bitfield.zmmword
3994 && i.types[2].bitfield.ymmword))))
3995 && ((i.tm.base_opcode == 0x55
3996 || i.tm.base_opcode == 0x6655
3997 || i.tm.base_opcode == 0x66df
3998 || i.tm.base_opcode == 0x57
3999 || i.tm.base_opcode == 0x6657
4000 || i.tm.base_opcode == 0x66ef
4001 || i.tm.base_opcode == 0x66f8
4002 || i.tm.base_opcode == 0x66f9
4003 || i.tm.base_opcode == 0x66fa
4004 || i.tm.base_opcode == 0x66fb
4005 || i.tm.base_opcode == 0x42
4006 || i.tm.base_opcode == 0x6642
4007 || i.tm.base_opcode == 0x47
4008 || i.tm.base_opcode == 0x6647)
4009 && i.tm.extension_opcode == None))
4010 {
4011 /* Optimize: -O1:
4012 VOP, one of vandnps, vandnpd, vxorps, vxorpd, vpsubb, vpsubd,
4013 vpsubq and vpsubw:
4014 EVEX VOP %zmmM, %zmmM, %zmmN
4015 -> VEX VOP %xmmM, %xmmM, %xmmN (M and N < 16)
4016 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
4017 EVEX VOP %ymmM, %ymmM, %ymmN
4018 -> VEX VOP %xmmM, %xmmM, %xmmN (M and N < 16)
4019 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
4020 VEX VOP %ymmM, %ymmM, %ymmN
4021 -> VEX VOP %xmmM, %xmmM, %xmmN
4022 VOP, one of vpandn and vpxor:
4023 VEX VOP %ymmM, %ymmM, %ymmN
4024 -> VEX VOP %xmmM, %xmmM, %xmmN
4025 VOP, one of vpandnd and vpandnq:
4026 EVEX VOP %zmmM, %zmmM, %zmmN
4027 -> VEX vpandn %xmmM, %xmmM, %xmmN (M and N < 16)
4028 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
4029 EVEX VOP %ymmM, %ymmM, %ymmN
4030 -> VEX vpandn %xmmM, %xmmM, %xmmN (M and N < 16)
4031 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
4032 VOP, one of vpxord and vpxorq:
4033 EVEX VOP %zmmM, %zmmM, %zmmN
4034 -> VEX vpxor %xmmM, %xmmM, %xmmN (M and N < 16)
4035 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
4036 EVEX VOP %ymmM, %ymmM, %ymmN
4037 -> VEX vpxor %xmmM, %xmmM, %xmmN (M and N < 16)
4038 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
4039 VOP, one of kxord and kxorq:
4040 VEX VOP %kM, %kM, %kN
4041 -> VEX kxorw %kM, %kM, %kN
4042 VOP, one of kandnd and kandnq:
4043 VEX VOP %kM, %kM, %kN
4044 -> VEX kandnw %kM, %kM, %kN
4045 */
4046 if (is_evex_encoding (&i.tm))
4047 {
4048 if (i.vec_encoding != vex_encoding_evex)
4049 {
4050 i.tm.opcode_modifier.vex = VEX128;
4051 i.tm.opcode_modifier.vexw = VEXW0;
4052 i.tm.opcode_modifier.evex = 0;
4053 }
4054 else if (optimize > 1)
4055 i.tm.opcode_modifier.evex = EVEX128;
4056 else
4057 return;
4058 }
4059 else if (i.tm.operand_types[0].bitfield.regmask)
4060 {
4061 i.tm.base_opcode &= 0xff;
4062 i.tm.opcode_modifier.vexw = VEXW0;
4063 }
4064 else
4065 i.tm.opcode_modifier.vex = VEX128;
4066
4067 if (i.tm.opcode_modifier.vex)
4068 for (j = 0; j < 3; j++)
4069 {
4070 i.types[j].bitfield.xmmword = 1;
4071 i.types[j].bitfield.ymmword = 0;
4072 }
4073 }
4074 else if (i.vec_encoding != vex_encoding_evex
4075 && !i.types[0].bitfield.zmmword
4076 && !i.types[1].bitfield.zmmword
4077 && !i.mask
4078 && is_evex_encoding (&i.tm)
4079 && ((i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0x666f
4080 || (i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0xf36f
4081 || (i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0xf26f)
4082 && i.tm.extension_opcode == None)
4083 {
4084 /* Optimize: -O1:
4085 VOP, one of vmovdqa32, vmovdqa64, vmovdqu8, vmovdqu16,
4086 vmovdqu32 and vmovdqu64:
4087 EVEX VOP %xmmM, %xmmN
4088 -> VEX vmovdqa|vmovdqu %xmmM, %xmmN (M and N < 16)
4089 EVEX VOP %ymmM, %ymmN
4090 -> VEX vmovdqa|vmovdqu %ymmM, %ymmN (M and N < 16)
4091 EVEX VOP %xmmM, mem
4092 -> VEX vmovdqa|vmovdqu %xmmM, mem (M < 16)
4093 EVEX VOP %ymmM, mem
4094 -> VEX vmovdqa|vmovdqu %ymmM, mem (M < 16)
4095 EVEX VOP mem, %xmmN
4096 -> VEX mvmovdqa|vmovdquem, %xmmN (N < 16)
4097 EVEX VOP mem, %ymmN
4098 -> VEX vmovdqa|vmovdqu mem, %ymmN (N < 16)
4099 */
4100 for (j = 0; j < 2; j++)
4101 if (operand_type_check (i.types[j], disp)
4102 && i.op[j].disps->X_op == O_constant)
4103 {
4104 /* Since the VEX prefix has 2 or 3 bytes, the EVEX prefix
4105 has 4 bytes, EVEX Disp8 has 1 byte and VEX Disp32 has 4
4106 bytes, we choose EVEX Disp8 over VEX Disp32. */
4107 int evex_disp8, vex_disp8;
4108 unsigned int memshift = i.memshift;
4109 offsetT n = i.op[j].disps->X_add_number;
4110
4111 evex_disp8 = fits_in_disp8 (n);
4112 i.memshift = 0;
4113 vex_disp8 = fits_in_disp8 (n);
4114 if (evex_disp8 != vex_disp8)
4115 {
4116 i.memshift = memshift;
4117 return;
4118 }
4119
4120 i.types[j].bitfield.disp8 = vex_disp8;
4121 break;
4122 }
4123 if ((i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0xf26f)
4124 i.tm.base_opcode ^= 0xf36f ^ 0xf26f;
4125 i.tm.opcode_modifier.vex
4126 = i.types[0].bitfield.ymmword ? VEX256 : VEX128;
4127 i.tm.opcode_modifier.vexw = VEXW0;
4128 i.tm.opcode_modifier.evex = 0;
4129 i.tm.opcode_modifier.masking = 0;
4130 i.tm.opcode_modifier.disp8memshift = 0;
4131 i.memshift = 0;
4132 for (j = 0; j < 2; j++)
4133 if (operand_type_check (i.types[j], disp)
4134 && i.op[j].disps->X_op == O_constant)
4135 {
4136 i.types[j].bitfield.disp8
4137 = fits_in_disp8 (i.op[j].disps->X_add_number);
4138 break;
4139 }
4140 }
4141 }
4142
4143 /* This is the guts of the machine-dependent assembler. LINE points to a
4144 machine dependent instruction. This function is supposed to emit
4145 the frags/bytes it assembles to. */
4146
4147 void
4148 md_assemble (char *line)
4149 {
4150 unsigned int j;
4151 char mnemonic[MAX_MNEM_SIZE], mnem_suffix;
4152 const insn_template *t;
4153
4154 /* Initialize globals. */
4155 memset (&i, '\0', sizeof (i));
4156 for (j = 0; j < MAX_OPERANDS; j++)
4157 i.reloc[j] = NO_RELOC;
4158 memset (disp_expressions, '\0', sizeof (disp_expressions));
4159 memset (im_expressions, '\0', sizeof (im_expressions));
4160 save_stack_p = save_stack;
4161
4162 /* First parse an instruction mnemonic & call i386_operand for the operands.
4163 We assume that the scrubber has arranged it so that line[0] is the valid
4164 start of a (possibly prefixed) mnemonic. */
4165
4166 line = parse_insn (line, mnemonic);
4167 if (line == NULL)
4168 return;
4169 mnem_suffix = i.suffix;
4170
4171 line = parse_operands (line, mnemonic);
4172 this_operand = -1;
4173 xfree (i.memop1_string);
4174 i.memop1_string = NULL;
4175 if (line == NULL)
4176 return;
4177
4178 /* Now we've parsed the mnemonic into a set of templates, and have the
4179 operands at hand. */
4180
4181 /* All intel opcodes have reversed operands except for "bound" and
4182 "enter". We also don't reverse intersegment "jmp" and "call"
4183 instructions with 2 immediate operands so that the immediate segment
4184 precedes the offset, as it does when in AT&T mode. */
4185 if (intel_syntax
4186 && i.operands > 1
4187 && (strcmp (mnemonic, "bound") != 0)
4188 && (strcmp (mnemonic, "invlpga") != 0)
4189 && !(operand_type_check (i.types[0], imm)
4190 && operand_type_check (i.types[1], imm)))
4191 swap_operands ();
4192
4193 /* The order of the immediates should be reversed
4194 for 2 immediates extrq and insertq instructions */
4195 if (i.imm_operands == 2
4196 && (strcmp (mnemonic, "extrq") == 0
4197 || strcmp (mnemonic, "insertq") == 0))
4198 swap_2_operands (0, 1);
4199
4200 if (i.imm_operands)
4201 optimize_imm ();
4202
4203 /* Don't optimize displacement for movabs since it only takes 64bit
4204 displacement. */
4205 if (i.disp_operands
4206 && i.disp_encoding != disp_encoding_32bit
4207 && (flag_code != CODE_64BIT
4208 || strcmp (mnemonic, "movabs") != 0))
4209 optimize_disp ();
4210
4211 /* Next, we find a template that matches the given insn,
4212 making sure the overlap of the given operands types is consistent
4213 with the template operand types. */
4214
4215 if (!(t = match_template (mnem_suffix)))
4216 return;
4217
4218 if (sse_check != check_none
4219 && !i.tm.opcode_modifier.noavx
4220 && !i.tm.cpu_flags.bitfield.cpuavx
4221 && (i.tm.cpu_flags.bitfield.cpusse
4222 || i.tm.cpu_flags.bitfield.cpusse2
4223 || i.tm.cpu_flags.bitfield.cpusse3
4224 || i.tm.cpu_flags.bitfield.cpussse3
4225 || i.tm.cpu_flags.bitfield.cpusse4_1
4226 || i.tm.cpu_flags.bitfield.cpusse4_2
4227 || i.tm.cpu_flags.bitfield.cpupclmul
4228 || i.tm.cpu_flags.bitfield.cpuaes
4229 || i.tm.cpu_flags.bitfield.cpugfni))
4230 {
4231 (sse_check == check_warning
4232 ? as_warn
4233 : as_bad) (_("SSE instruction `%s' is used"), i.tm.name);
4234 }
4235
4236 /* Zap movzx and movsx suffix. The suffix has been set from
4237 "word ptr" or "byte ptr" on the source operand in Intel syntax
4238 or extracted from mnemonic in AT&T syntax. But we'll use
4239 the destination register to choose the suffix for encoding. */
4240 if ((i.tm.base_opcode & ~9) == 0x0fb6)
4241 {
4242 /* In Intel syntax, there must be a suffix. In AT&T syntax, if
4243 there is no suffix, the default will be byte extension. */
4244 if (i.reg_operands != 2
4245 && !i.suffix
4246 && intel_syntax)
4247 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
4248
4249 i.suffix = 0;
4250 }
4251
4252 if (i.tm.opcode_modifier.fwait)
4253 if (!add_prefix (FWAIT_OPCODE))
4254 return;
4255
4256 /* Check if REP prefix is OK. */
4257 if (i.rep_prefix && !i.tm.opcode_modifier.repprefixok)
4258 {
4259 as_bad (_("invalid instruction `%s' after `%s'"),
4260 i.tm.name, i.rep_prefix);
4261 return;
4262 }
4263
4264 /* Check for lock without a lockable instruction. Destination operand
4265 must be memory unless it is xchg (0x86). */
4266 if (i.prefix[LOCK_PREFIX]
4267 && (!i.tm.opcode_modifier.islockable
4268 || i.mem_operands == 0
4269 || (i.tm.base_opcode != 0x86
4270 && !operand_type_check (i.types[i.operands - 1], anymem))))
4271 {
4272 as_bad (_("expecting lockable instruction after `lock'"));
4273 return;
4274 }
4275
4276 /* Check for data size prefix on VEX/XOP/EVEX encoded insns. */
4277 if (i.prefix[DATA_PREFIX] && is_any_vex_encoding (&i.tm))
4278 {
4279 as_bad (_("data size prefix invalid with `%s'"), i.tm.name);
4280 return;
4281 }
4282
4283 /* Check if HLE prefix is OK. */
4284 if (i.hle_prefix && !check_hle ())
4285 return;
4286
4287 /* Check BND prefix. */
4288 if (i.bnd_prefix && !i.tm.opcode_modifier.bndprefixok)
4289 as_bad (_("expecting valid branch instruction after `bnd'"));
4290
4291 /* Check NOTRACK prefix. */
4292 if (i.notrack_prefix && !i.tm.opcode_modifier.notrackprefixok)
4293 as_bad (_("expecting indirect branch instruction after `notrack'"));
4294
4295 if (i.tm.cpu_flags.bitfield.cpumpx)
4296 {
4297 if (flag_code == CODE_64BIT && i.prefix[ADDR_PREFIX])
4298 as_bad (_("32-bit address isn't allowed in 64-bit MPX instructions."));
4299 else if (flag_code != CODE_16BIT
4300 ? i.prefix[ADDR_PREFIX]
4301 : i.mem_operands && !i.prefix[ADDR_PREFIX])
4302 as_bad (_("16-bit address isn't allowed in MPX instructions"));
4303 }
4304
4305 /* Insert BND prefix. */
4306 if (add_bnd_prefix && i.tm.opcode_modifier.bndprefixok)
4307 {
4308 if (!i.prefix[BND_PREFIX])
4309 add_prefix (BND_PREFIX_OPCODE);
4310 else if (i.prefix[BND_PREFIX] != BND_PREFIX_OPCODE)
4311 {
4312 as_warn (_("replacing `rep'/`repe' prefix by `bnd'"));
4313 i.prefix[BND_PREFIX] = BND_PREFIX_OPCODE;
4314 }
4315 }
4316
4317 /* Check string instruction segment overrides. */
4318 if (i.tm.opcode_modifier.isstring && i.mem_operands != 0)
4319 {
4320 if (!check_string ())
4321 return;
4322 i.disp_operands = 0;
4323 }
4324
4325 if (optimize && !i.no_optimize && i.tm.opcode_modifier.optimize)
4326 optimize_encoding ();
4327
4328 if (!process_suffix ())
4329 return;
4330
4331 /* Update operand types. */
4332 for (j = 0; j < i.operands; j++)
4333 i.types[j] = operand_type_and (i.types[j], i.tm.operand_types[j]);
4334
4335 /* Make still unresolved immediate matches conform to size of immediate
4336 given in i.suffix. */
4337 if (!finalize_imm ())
4338 return;
4339
4340 if (i.types[0].bitfield.imm1)
4341 i.imm_operands = 0; /* kludge for shift insns. */
4342
4343 /* We only need to check those implicit registers for instructions
4344 with 3 operands or less. */
4345 if (i.operands <= 3)
4346 for (j = 0; j < i.operands; j++)
4347 if (i.types[j].bitfield.inoutportreg
4348 || i.types[j].bitfield.shiftcount
4349 || (i.types[j].bitfield.acc && !i.types[j].bitfield.xmmword))
4350 i.reg_operands--;
4351
4352 /* ImmExt should be processed after SSE2AVX. */
4353 if (!i.tm.opcode_modifier.sse2avx
4354 && i.tm.opcode_modifier.immext)
4355 process_immext ();
4356
4357 /* For insns with operands there are more diddles to do to the opcode. */
4358 if (i.operands)
4359 {
4360 if (!process_operands ())
4361 return;
4362 }
4363 else if (!quiet_warnings && i.tm.opcode_modifier.ugh)
4364 {
4365 /* UnixWare fsub no args is alias for fsubp, fadd -> faddp, etc. */
4366 as_warn (_("translating to `%sp'"), i.tm.name);
4367 }
4368
4369 if (is_any_vex_encoding (&i.tm))
4370 {
4371 if (flag_code == CODE_16BIT)
4372 {
4373 as_bad (_("instruction `%s' isn't supported in 16-bit mode."),
4374 i.tm.name);
4375 return;
4376 }
4377
4378 if (i.tm.opcode_modifier.vex)
4379 build_vex_prefix (t);
4380 else
4381 build_evex_prefix ();
4382 }
4383
4384 /* Handle conversion of 'int $3' --> special int3 insn. XOP or FMA4
4385 instructions may define INT_OPCODE as well, so avoid this corner
4386 case for those instructions that use MODRM. */
4387 if (i.tm.base_opcode == INT_OPCODE
4388 && !i.tm.opcode_modifier.modrm
4389 && i.op[0].imms->X_add_number == 3)
4390 {
4391 i.tm.base_opcode = INT3_OPCODE;
4392 i.imm_operands = 0;
4393 }
4394
4395 if ((i.tm.opcode_modifier.jump
4396 || i.tm.opcode_modifier.jumpbyte
4397 || i.tm.opcode_modifier.jumpdword)
4398 && i.op[0].disps->X_op == O_constant)
4399 {
4400 /* Convert "jmp constant" (and "call constant") to a jump (call) to
4401 the absolute address given by the constant. Since ix86 jumps and
4402 calls are pc relative, we need to generate a reloc. */
4403 i.op[0].disps->X_add_symbol = &abs_symbol;
4404 i.op[0].disps->X_op = O_symbol;
4405 }
4406
4407 if (i.tm.opcode_modifier.rex64)
4408 i.rex |= REX_W;
4409
4410 /* For 8 bit registers we need an empty rex prefix. Also if the
4411 instruction already has a prefix, we need to convert old
4412 registers to new ones. */
4413
4414 if ((i.types[0].bitfield.reg && i.types[0].bitfield.byte
4415 && (i.op[0].regs->reg_flags & RegRex64) != 0)
4416 || (i.types[1].bitfield.reg && i.types[1].bitfield.byte
4417 && (i.op[1].regs->reg_flags & RegRex64) != 0)
4418 || (((i.types[0].bitfield.reg && i.types[0].bitfield.byte)
4419 || (i.types[1].bitfield.reg && i.types[1].bitfield.byte))
4420 && i.rex != 0))
4421 {
4422 int x;
4423
4424 i.rex |= REX_OPCODE;
4425 for (x = 0; x < 2; x++)
4426 {
4427 /* Look for 8 bit operand that uses old registers. */
4428 if (i.types[x].bitfield.reg && i.types[x].bitfield.byte
4429 && (i.op[x].regs->reg_flags & RegRex64) == 0)
4430 {
4431 /* In case it is "hi" register, give up. */
4432 if (i.op[x].regs->reg_num > 3)
4433 as_bad (_("can't encode register '%s%s' in an "
4434 "instruction requiring REX prefix."),
4435 register_prefix, i.op[x].regs->reg_name);
4436
4437 /* Otherwise it is equivalent to the extended register.
4438 Since the encoding doesn't change this is merely
4439 cosmetic cleanup for debug output. */
4440
4441 i.op[x].regs = i.op[x].regs + 8;
4442 }
4443 }
4444 }
4445
4446 if (i.rex == 0 && i.rex_encoding)
4447 {
4448 /* Check if we can add a REX_OPCODE byte. Look for 8 bit operand
4449 that uses legacy register. If it is "hi" register, don't add
4450 the REX_OPCODE byte. */
4451 int x;
4452 for (x = 0; x < 2; x++)
4453 if (i.types[x].bitfield.reg
4454 && i.types[x].bitfield.byte
4455 && (i.op[x].regs->reg_flags & RegRex64) == 0
4456 && i.op[x].regs->reg_num > 3)
4457 {
4458 i.rex_encoding = FALSE;
4459 break;
4460 }
4461
4462 if (i.rex_encoding)
4463 i.rex = REX_OPCODE;
4464 }
4465
4466 if (i.rex != 0)
4467 add_prefix (REX_OPCODE | i.rex);
4468
4469 /* We are ready to output the insn. */
4470 output_insn ();
4471 }
4472
4473 static char *
4474 parse_insn (char *line, char *mnemonic)
4475 {
4476 char *l = line;
4477 char *token_start = l;
4478 char *mnem_p;
4479 int supported;
4480 const insn_template *t;
4481 char *dot_p = NULL;
4482
4483 while (1)
4484 {
4485 mnem_p = mnemonic;
4486 while ((*mnem_p = mnemonic_chars[(unsigned char) *l]) != 0)
4487 {
4488 if (*mnem_p == '.')
4489 dot_p = mnem_p;
4490 mnem_p++;
4491 if (mnem_p >= mnemonic + MAX_MNEM_SIZE)
4492 {
4493 as_bad (_("no such instruction: `%s'"), token_start);
4494 return NULL;
4495 }
4496 l++;
4497 }
4498 if (!is_space_char (*l)
4499 && *l != END_OF_INSN
4500 && (intel_syntax
4501 || (*l != PREFIX_SEPARATOR
4502 && *l != ',')))
4503 {
4504 as_bad (_("invalid character %s in mnemonic"),
4505 output_invalid (*l));
4506 return NULL;
4507 }
4508 if (token_start == l)
4509 {
4510 if (!intel_syntax && *l == PREFIX_SEPARATOR)
4511 as_bad (_("expecting prefix; got nothing"));
4512 else
4513 as_bad (_("expecting mnemonic; got nothing"));
4514 return NULL;
4515 }
4516
4517 /* Look up instruction (or prefix) via hash table. */
4518 current_templates = (const templates *) hash_find (op_hash, mnemonic);
4519
4520 if (*l != END_OF_INSN
4521 && (!is_space_char (*l) || l[1] != END_OF_INSN)
4522 && current_templates
4523 && current_templates->start->opcode_modifier.isprefix)
4524 {
4525 if (!cpu_flags_check_cpu64 (current_templates->start->cpu_flags))
4526 {
4527 as_bad ((flag_code != CODE_64BIT
4528 ? _("`%s' is only supported in 64-bit mode")
4529 : _("`%s' is not supported in 64-bit mode")),
4530 current_templates->start->name);
4531 return NULL;
4532 }
4533 /* If we are in 16-bit mode, do not allow addr16 or data16.
4534 Similarly, in 32-bit mode, do not allow addr32 or data32. */
4535 if ((current_templates->start->opcode_modifier.size == SIZE16
4536 || current_templates->start->opcode_modifier.size == SIZE32)
4537 && flag_code != CODE_64BIT
4538 && ((current_templates->start->opcode_modifier.size == SIZE32)
4539 ^ (flag_code == CODE_16BIT)))
4540 {
4541 as_bad (_("redundant %s prefix"),
4542 current_templates->start->name);
4543 return NULL;
4544 }
4545 if (current_templates->start->opcode_length == 0)
4546 {
4547 /* Handle pseudo prefixes. */
4548 switch (current_templates->start->base_opcode)
4549 {
4550 case 0x0:
4551 /* {disp8} */
4552 i.disp_encoding = disp_encoding_8bit;
4553 break;
4554 case 0x1:
4555 /* {disp32} */
4556 i.disp_encoding = disp_encoding_32bit;
4557 break;
4558 case 0x2:
4559 /* {load} */
4560 i.dir_encoding = dir_encoding_load;
4561 break;
4562 case 0x3:
4563 /* {store} */
4564 i.dir_encoding = dir_encoding_store;
4565 break;
4566 case 0x4:
4567 /* {vex2} */
4568 i.vec_encoding = vex_encoding_vex2;
4569 break;
4570 case 0x5:
4571 /* {vex3} */
4572 i.vec_encoding = vex_encoding_vex3;
4573 break;
4574 case 0x6:
4575 /* {evex} */
4576 i.vec_encoding = vex_encoding_evex;
4577 break;
4578 case 0x7:
4579 /* {rex} */
4580 i.rex_encoding = TRUE;
4581 break;
4582 case 0x8:
4583 /* {nooptimize} */
4584 i.no_optimize = TRUE;
4585 break;
4586 default:
4587 abort ();
4588 }
4589 }
4590 else
4591 {
4592 /* Add prefix, checking for repeated prefixes. */
4593 switch (add_prefix (current_templates->start->base_opcode))
4594 {
4595 case PREFIX_EXIST:
4596 return NULL;
4597 case PREFIX_DS:
4598 if (current_templates->start->cpu_flags.bitfield.cpuibt)
4599 i.notrack_prefix = current_templates->start->name;
4600 break;
4601 case PREFIX_REP:
4602 if (current_templates->start->cpu_flags.bitfield.cpuhle)
4603 i.hle_prefix = current_templates->start->name;
4604 else if (current_templates->start->cpu_flags.bitfield.cpumpx)
4605 i.bnd_prefix = current_templates->start->name;
4606 else
4607 i.rep_prefix = current_templates->start->name;
4608 break;
4609 default:
4610 break;
4611 }
4612 }
4613 /* Skip past PREFIX_SEPARATOR and reset token_start. */
4614 token_start = ++l;
4615 }
4616 else
4617 break;
4618 }
4619
4620 if (!current_templates)
4621 {
4622 /* Deprecated functionality (new code should use pseudo-prefixes instead):
4623 Check if we should swap operand or force 32bit displacement in
4624 encoding. */
4625 if (mnem_p - 2 == dot_p && dot_p[1] == 's')
4626 i.dir_encoding = dir_encoding_swap;
4627 else if (mnem_p - 3 == dot_p
4628 && dot_p[1] == 'd'
4629 && dot_p[2] == '8')
4630 i.disp_encoding = disp_encoding_8bit;
4631 else if (mnem_p - 4 == dot_p
4632 && dot_p[1] == 'd'
4633 && dot_p[2] == '3'
4634 && dot_p[3] == '2')
4635 i.disp_encoding = disp_encoding_32bit;
4636 else
4637 goto check_suffix;
4638 mnem_p = dot_p;
4639 *dot_p = '\0';
4640 current_templates = (const templates *) hash_find (op_hash, mnemonic);
4641 }
4642
4643 if (!current_templates)
4644 {
4645 check_suffix:
4646 if (mnem_p > mnemonic)
4647 {
4648 /* See if we can get a match by trimming off a suffix. */
4649 switch (mnem_p[-1])
4650 {
4651 case WORD_MNEM_SUFFIX:
4652 if (intel_syntax && (intel_float_operand (mnemonic) & 2))
4653 i.suffix = SHORT_MNEM_SUFFIX;
4654 else
4655 /* Fall through. */
4656 case BYTE_MNEM_SUFFIX:
4657 case QWORD_MNEM_SUFFIX:
4658 i.suffix = mnem_p[-1];
4659 mnem_p[-1] = '\0';
4660 current_templates = (const templates *) hash_find (op_hash,
4661 mnemonic);
4662 break;
4663 case SHORT_MNEM_SUFFIX:
4664 case LONG_MNEM_SUFFIX:
4665 if (!intel_syntax)
4666 {
4667 i.suffix = mnem_p[-1];
4668 mnem_p[-1] = '\0';
4669 current_templates = (const templates *) hash_find (op_hash,
4670 mnemonic);
4671 }
4672 break;
4673
4674 /* Intel Syntax. */
4675 case 'd':
4676 if (intel_syntax)
4677 {
4678 if (intel_float_operand (mnemonic) == 1)
4679 i.suffix = SHORT_MNEM_SUFFIX;
4680 else
4681 i.suffix = LONG_MNEM_SUFFIX;
4682 mnem_p[-1] = '\0';
4683 current_templates = (const templates *) hash_find (op_hash,
4684 mnemonic);
4685 }
4686 break;
4687 }
4688 }
4689
4690 if (!current_templates)
4691 {
4692 as_bad (_("no such instruction: `%s'"), token_start);
4693 return NULL;
4694 }
4695 }
4696
4697 if (current_templates->start->opcode_modifier.jump
4698 || current_templates->start->opcode_modifier.jumpbyte)
4699 {
4700 /* Check for a branch hint. We allow ",pt" and ",pn" for
4701 predict taken and predict not taken respectively.
4702 I'm not sure that branch hints actually do anything on loop
4703 and jcxz insns (JumpByte) for current Pentium4 chips. They
4704 may work in the future and it doesn't hurt to accept them
4705 now. */
4706 if (l[0] == ',' && l[1] == 'p')
4707 {
4708 if (l[2] == 't')
4709 {
4710 if (!add_prefix (DS_PREFIX_OPCODE))
4711 return NULL;
4712 l += 3;
4713 }
4714 else if (l[2] == 'n')
4715 {
4716 if (!add_prefix (CS_PREFIX_OPCODE))
4717 return NULL;
4718 l += 3;
4719 }
4720 }
4721 }
4722 /* Any other comma loses. */
4723 if (*l == ',')
4724 {
4725 as_bad (_("invalid character %s in mnemonic"),
4726 output_invalid (*l));
4727 return NULL;
4728 }
4729
4730 /* Check if instruction is supported on specified architecture. */
4731 supported = 0;
4732 for (t = current_templates->start; t < current_templates->end; ++t)
4733 {
4734 supported |= cpu_flags_match (t);
4735 if (supported == CPU_FLAGS_PERFECT_MATCH)
4736 {
4737 if (!cpu_arch_flags.bitfield.cpui386 && (flag_code != CODE_16BIT))
4738 as_warn (_("use .code16 to ensure correct addressing mode"));
4739
4740 return l;
4741 }
4742 }
4743
4744 if (!(supported & CPU_FLAGS_64BIT_MATCH))
4745 as_bad (flag_code == CODE_64BIT
4746 ? _("`%s' is not supported in 64-bit mode")
4747 : _("`%s' is only supported in 64-bit mode"),
4748 current_templates->start->name);
4749 else
4750 as_bad (_("`%s' is not supported on `%s%s'"),
4751 current_templates->start->name,
4752 cpu_arch_name ? cpu_arch_name : default_arch,
4753 cpu_sub_arch_name ? cpu_sub_arch_name : "");
4754
4755 return NULL;
4756 }
4757
4758 static char *
4759 parse_operands (char *l, const char *mnemonic)
4760 {
4761 char *token_start;
4762
4763 /* 1 if operand is pending after ','. */
4764 unsigned int expecting_operand = 0;
4765
4766 /* Non-zero if operand parens not balanced. */
4767 unsigned int paren_not_balanced;
4768
4769 while (*l != END_OF_INSN)
4770 {
4771 /* Skip optional white space before operand. */
4772 if (is_space_char (*l))
4773 ++l;
4774 if (!is_operand_char (*l) && *l != END_OF_INSN && *l != '"')
4775 {
4776 as_bad (_("invalid character %s before operand %d"),
4777 output_invalid (*l),
4778 i.operands + 1);
4779 return NULL;
4780 }
4781 token_start = l; /* After white space. */
4782 paren_not_balanced = 0;
4783 while (paren_not_balanced || *l != ',')
4784 {
4785 if (*l == END_OF_INSN)
4786 {
4787 if (paren_not_balanced)
4788 {
4789 if (!intel_syntax)
4790 as_bad (_("unbalanced parenthesis in operand %d."),
4791 i.operands + 1);
4792 else
4793 as_bad (_("unbalanced brackets in operand %d."),
4794 i.operands + 1);
4795 return NULL;
4796 }
4797 else
4798 break; /* we are done */
4799 }
4800 else if (!is_operand_char (*l) && !is_space_char (*l) && *l != '"')
4801 {
4802 as_bad (_("invalid character %s in operand %d"),
4803 output_invalid (*l),
4804 i.operands + 1);
4805 return NULL;
4806 }
4807 if (!intel_syntax)
4808 {
4809 if (*l == '(')
4810 ++paren_not_balanced;
4811 if (*l == ')')
4812 --paren_not_balanced;
4813 }
4814 else
4815 {
4816 if (*l == '[')
4817 ++paren_not_balanced;
4818 if (*l == ']')
4819 --paren_not_balanced;
4820 }
4821 l++;
4822 }
4823 if (l != token_start)
4824 { /* Yes, we've read in another operand. */
4825 unsigned int operand_ok;
4826 this_operand = i.operands++;
4827 if (i.operands > MAX_OPERANDS)
4828 {
4829 as_bad (_("spurious operands; (%d operands/instruction max)"),
4830 MAX_OPERANDS);
4831 return NULL;
4832 }
4833 i.types[this_operand].bitfield.unspecified = 1;
4834 /* Now parse operand adding info to 'i' as we go along. */
4835 END_STRING_AND_SAVE (l);
4836
4837 if (i.mem_operands > 1)
4838 {
4839 as_bad (_("too many memory references for `%s'"),
4840 mnemonic);
4841 return 0;
4842 }
4843
4844 if (intel_syntax)
4845 operand_ok =
4846 i386_intel_operand (token_start,
4847 intel_float_operand (mnemonic));
4848 else
4849 operand_ok = i386_att_operand (token_start);
4850
4851 RESTORE_END_STRING (l);
4852 if (!operand_ok)
4853 return NULL;
4854 }
4855 else
4856 {
4857 if (expecting_operand)
4858 {
4859 expecting_operand_after_comma:
4860 as_bad (_("expecting operand after ','; got nothing"));
4861 return NULL;
4862 }
4863 if (*l == ',')
4864 {
4865 as_bad (_("expecting operand before ','; got nothing"));
4866 return NULL;
4867 }
4868 }
4869
4870 /* Now *l must be either ',' or END_OF_INSN. */
4871 if (*l == ',')
4872 {
4873 if (*++l == END_OF_INSN)
4874 {
4875 /* Just skip it, if it's \n complain. */
4876 goto expecting_operand_after_comma;
4877 }
4878 expecting_operand = 1;
4879 }
4880 }
4881 return l;
4882 }
4883
4884 static void
4885 swap_2_operands (int xchg1, int xchg2)
4886 {
4887 union i386_op temp_op;
4888 i386_operand_type temp_type;
4889 unsigned int temp_flags;
4890 enum bfd_reloc_code_real temp_reloc;
4891
4892 temp_type = i.types[xchg2];
4893 i.types[xchg2] = i.types[xchg1];
4894 i.types[xchg1] = temp_type;
4895
4896 temp_flags = i.flags[xchg2];
4897 i.flags[xchg2] = i.flags[xchg1];
4898 i.flags[xchg1] = temp_flags;
4899
4900 temp_op = i.op[xchg2];
4901 i.op[xchg2] = i.op[xchg1];
4902 i.op[xchg1] = temp_op;
4903
4904 temp_reloc = i.reloc[xchg2];
4905 i.reloc[xchg2] = i.reloc[xchg1];
4906 i.reloc[xchg1] = temp_reloc;
4907
4908 if (i.mask)
4909 {
4910 if (i.mask->operand == xchg1)
4911 i.mask->operand = xchg2;
4912 else if (i.mask->operand == xchg2)
4913 i.mask->operand = xchg1;
4914 }
4915 if (i.broadcast)
4916 {
4917 if (i.broadcast->operand == xchg1)
4918 i.broadcast->operand = xchg2;
4919 else if (i.broadcast->operand == xchg2)
4920 i.broadcast->operand = xchg1;
4921 }
4922 if (i.rounding)
4923 {
4924 if (i.rounding->operand == xchg1)
4925 i.rounding->operand = xchg2;
4926 else if (i.rounding->operand == xchg2)
4927 i.rounding->operand = xchg1;
4928 }
4929 }
4930
4931 static void
4932 swap_operands (void)
4933 {
4934 switch (i.operands)
4935 {
4936 case 5:
4937 case 4:
4938 swap_2_operands (1, i.operands - 2);
4939 /* Fall through. */
4940 case 3:
4941 case 2:
4942 swap_2_operands (0, i.operands - 1);
4943 break;
4944 default:
4945 abort ();
4946 }
4947
4948 if (i.mem_operands == 2)
4949 {
4950 const seg_entry *temp_seg;
4951 temp_seg = i.seg[0];
4952 i.seg[0] = i.seg[1];
4953 i.seg[1] = temp_seg;
4954 }
4955 }
4956
4957 /* Try to ensure constant immediates are represented in the smallest
4958 opcode possible. */
4959 static void
4960 optimize_imm (void)
4961 {
4962 char guess_suffix = 0;
4963 int op;
4964
4965 if (i.suffix)
4966 guess_suffix = i.suffix;
4967 else if (i.reg_operands)
4968 {
4969 /* Figure out a suffix from the last register operand specified.
4970 We can't do this properly yet, ie. excluding InOutPortReg,
4971 but the following works for instructions with immediates.
4972 In any case, we can't set i.suffix yet. */
4973 for (op = i.operands; --op >= 0;)
4974 if (i.types[op].bitfield.reg && i.types[op].bitfield.byte)
4975 {
4976 guess_suffix = BYTE_MNEM_SUFFIX;
4977 break;
4978 }
4979 else if (i.types[op].bitfield.reg && i.types[op].bitfield.word)
4980 {
4981 guess_suffix = WORD_MNEM_SUFFIX;
4982 break;
4983 }
4984 else if (i.types[op].bitfield.reg && i.types[op].bitfield.dword)
4985 {
4986 guess_suffix = LONG_MNEM_SUFFIX;
4987 break;
4988 }
4989 else if (i.types[op].bitfield.reg && i.types[op].bitfield.qword)
4990 {
4991 guess_suffix = QWORD_MNEM_SUFFIX;
4992 break;
4993 }
4994 }
4995 else if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
4996 guess_suffix = WORD_MNEM_SUFFIX;
4997
4998 for (op = i.operands; --op >= 0;)
4999 if (operand_type_check (i.types[op], imm))
5000 {
5001 switch (i.op[op].imms->X_op)
5002 {
5003 case O_constant:
5004 /* If a suffix is given, this operand may be shortened. */
5005 switch (guess_suffix)
5006 {
5007 case LONG_MNEM_SUFFIX:
5008 i.types[op].bitfield.imm32 = 1;
5009 i.types[op].bitfield.imm64 = 1;
5010 break;
5011 case WORD_MNEM_SUFFIX:
5012 i.types[op].bitfield.imm16 = 1;
5013 i.types[op].bitfield.imm32 = 1;
5014 i.types[op].bitfield.imm32s = 1;
5015 i.types[op].bitfield.imm64 = 1;
5016 break;
5017 case BYTE_MNEM_SUFFIX:
5018 i.types[op].bitfield.imm8 = 1;
5019 i.types[op].bitfield.imm8s = 1;
5020 i.types[op].bitfield.imm16 = 1;
5021 i.types[op].bitfield.imm32 = 1;
5022 i.types[op].bitfield.imm32s = 1;
5023 i.types[op].bitfield.imm64 = 1;
5024 break;
5025 }
5026
5027 /* If this operand is at most 16 bits, convert it
5028 to a signed 16 bit number before trying to see
5029 whether it will fit in an even smaller size.
5030 This allows a 16-bit operand such as $0xffe0 to
5031 be recognised as within Imm8S range. */
5032 if ((i.types[op].bitfield.imm16)
5033 && (i.op[op].imms->X_add_number & ~(offsetT) 0xffff) == 0)
5034 {
5035 i.op[op].imms->X_add_number =
5036 (((i.op[op].imms->X_add_number & 0xffff) ^ 0x8000) - 0x8000);
5037 }
5038 #ifdef BFD64
5039 /* Store 32-bit immediate in 64-bit for 64-bit BFD. */
5040 if ((i.types[op].bitfield.imm32)
5041 && ((i.op[op].imms->X_add_number & ~(((offsetT) 2 << 31) - 1))
5042 == 0))
5043 {
5044 i.op[op].imms->X_add_number = ((i.op[op].imms->X_add_number
5045 ^ ((offsetT) 1 << 31))
5046 - ((offsetT) 1 << 31));
5047 }
5048 #endif
5049 i.types[op]
5050 = operand_type_or (i.types[op],
5051 smallest_imm_type (i.op[op].imms->X_add_number));
5052
5053 /* We must avoid matching of Imm32 templates when 64bit
5054 only immediate is available. */
5055 if (guess_suffix == QWORD_MNEM_SUFFIX)
5056 i.types[op].bitfield.imm32 = 0;
5057 break;
5058
5059 case O_absent:
5060 case O_register:
5061 abort ();
5062
5063 /* Symbols and expressions. */
5064 default:
5065 /* Convert symbolic operand to proper sizes for matching, but don't
5066 prevent matching a set of insns that only supports sizes other
5067 than those matching the insn suffix. */
5068 {
5069 i386_operand_type mask, allowed;
5070 const insn_template *t;
5071
5072 operand_type_set (&mask, 0);
5073 operand_type_set (&allowed, 0);
5074
5075 for (t = current_templates->start;
5076 t < current_templates->end;
5077 ++t)
5078 allowed = operand_type_or (allowed,
5079 t->operand_types[op]);
5080 switch (guess_suffix)
5081 {
5082 case QWORD_MNEM_SUFFIX:
5083 mask.bitfield.imm64 = 1;
5084 mask.bitfield.imm32s = 1;
5085 break;
5086 case LONG_MNEM_SUFFIX:
5087 mask.bitfield.imm32 = 1;
5088 break;
5089 case WORD_MNEM_SUFFIX:
5090 mask.bitfield.imm16 = 1;
5091 break;
5092 case BYTE_MNEM_SUFFIX:
5093 mask.bitfield.imm8 = 1;
5094 break;
5095 default:
5096 break;
5097 }
5098 allowed = operand_type_and (mask, allowed);
5099 if (!operand_type_all_zero (&allowed))
5100 i.types[op] = operand_type_and (i.types[op], mask);
5101 }
5102 break;
5103 }
5104 }
5105 }
5106
5107 /* Try to use the smallest displacement type too. */
5108 static void
5109 optimize_disp (void)
5110 {
5111 int op;
5112
5113 for (op = i.operands; --op >= 0;)
5114 if (operand_type_check (i.types[op], disp))
5115 {
5116 if (i.op[op].disps->X_op == O_constant)
5117 {
5118 offsetT op_disp = i.op[op].disps->X_add_number;
5119
5120 if (i.types[op].bitfield.disp16
5121 && (op_disp & ~(offsetT) 0xffff) == 0)
5122 {
5123 /* If this operand is at most 16 bits, convert
5124 to a signed 16 bit number and don't use 64bit
5125 displacement. */
5126 op_disp = (((op_disp & 0xffff) ^ 0x8000) - 0x8000);
5127 i.types[op].bitfield.disp64 = 0;
5128 }
5129 #ifdef BFD64
5130 /* Optimize 64-bit displacement to 32-bit for 64-bit BFD. */
5131 if (i.types[op].bitfield.disp32
5132 && (op_disp & ~(((offsetT) 2 << 31) - 1)) == 0)
5133 {
5134 /* If this operand is at most 32 bits, convert
5135 to a signed 32 bit number and don't use 64bit
5136 displacement. */
5137 op_disp &= (((offsetT) 2 << 31) - 1);
5138 op_disp = (op_disp ^ ((offsetT) 1 << 31)) - ((addressT) 1 << 31);
5139 i.types[op].bitfield.disp64 = 0;
5140 }
5141 #endif
5142 if (!op_disp && i.types[op].bitfield.baseindex)
5143 {
5144 i.types[op].bitfield.disp8 = 0;
5145 i.types[op].bitfield.disp16 = 0;
5146 i.types[op].bitfield.disp32 = 0;
5147 i.types[op].bitfield.disp32s = 0;
5148 i.types[op].bitfield.disp64 = 0;
5149 i.op[op].disps = 0;
5150 i.disp_operands--;
5151 }
5152 else if (flag_code == CODE_64BIT)
5153 {
5154 if (fits_in_signed_long (op_disp))
5155 {
5156 i.types[op].bitfield.disp64 = 0;
5157 i.types[op].bitfield.disp32s = 1;
5158 }
5159 if (i.prefix[ADDR_PREFIX]
5160 && fits_in_unsigned_long (op_disp))
5161 i.types[op].bitfield.disp32 = 1;
5162 }
5163 if ((i.types[op].bitfield.disp32
5164 || i.types[op].bitfield.disp32s
5165 || i.types[op].bitfield.disp16)
5166 && fits_in_disp8 (op_disp))
5167 i.types[op].bitfield.disp8 = 1;
5168 }
5169 else if (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
5170 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL)
5171 {
5172 fix_new_exp (frag_now, frag_more (0) - frag_now->fr_literal, 0,
5173 i.op[op].disps, 0, i.reloc[op]);
5174 i.types[op].bitfield.disp8 = 0;
5175 i.types[op].bitfield.disp16 = 0;
5176 i.types[op].bitfield.disp32 = 0;
5177 i.types[op].bitfield.disp32s = 0;
5178 i.types[op].bitfield.disp64 = 0;
5179 }
5180 else
5181 /* We only support 64bit displacement on constants. */
5182 i.types[op].bitfield.disp64 = 0;
5183 }
5184 }
5185
5186 /* Return 1 if there is a match in broadcast bytes between operand
5187 GIVEN and instruction template T. */
5188
5189 static INLINE int
5190 match_broadcast_size (const insn_template *t, unsigned int given)
5191 {
5192 return ((t->opcode_modifier.broadcast == BYTE_BROADCAST
5193 && i.types[given].bitfield.byte)
5194 || (t->opcode_modifier.broadcast == WORD_BROADCAST
5195 && i.types[given].bitfield.word)
5196 || (t->opcode_modifier.broadcast == DWORD_BROADCAST
5197 && i.types[given].bitfield.dword)
5198 || (t->opcode_modifier.broadcast == QWORD_BROADCAST
5199 && i.types[given].bitfield.qword));
5200 }
5201
5202 /* Check if operands are valid for the instruction. */
5203
5204 static int
5205 check_VecOperands (const insn_template *t)
5206 {
5207 unsigned int op;
5208 i386_cpu_flags cpu;
5209 static const i386_cpu_flags avx512 = CPU_ANY_AVX512F_FLAGS;
5210
5211 /* Templates allowing for ZMMword as well as YMMword and/or XMMword for
5212 any one operand are implicity requiring AVX512VL support if the actual
5213 operand size is YMMword or XMMword. Since this function runs after
5214 template matching, there's no need to check for YMMword/XMMword in
5215 the template. */
5216 cpu = cpu_flags_and (t->cpu_flags, avx512);
5217 if (!cpu_flags_all_zero (&cpu)
5218 && !t->cpu_flags.bitfield.cpuavx512vl
5219 && !cpu_arch_flags.bitfield.cpuavx512vl)
5220 {
5221 for (op = 0; op < t->operands; ++op)
5222 {
5223 if (t->operand_types[op].bitfield.zmmword
5224 && (i.types[op].bitfield.ymmword
5225 || i.types[op].bitfield.xmmword))
5226 {
5227 i.error = unsupported;
5228 return 1;
5229 }
5230 }
5231 }
5232
5233 /* Without VSIB byte, we can't have a vector register for index. */
5234 if (!t->opcode_modifier.vecsib
5235 && i.index_reg
5236 && (i.index_reg->reg_type.bitfield.xmmword
5237 || i.index_reg->reg_type.bitfield.ymmword
5238 || i.index_reg->reg_type.bitfield.zmmword))
5239 {
5240 i.error = unsupported_vector_index_register;
5241 return 1;
5242 }
5243
5244 /* Check if default mask is allowed. */
5245 if (t->opcode_modifier.nodefmask
5246 && (!i.mask || i.mask->mask->reg_num == 0))
5247 {
5248 i.error = no_default_mask;
5249 return 1;
5250 }
5251
5252 /* For VSIB byte, we need a vector register for index, and all vector
5253 registers must be distinct. */
5254 if (t->opcode_modifier.vecsib)
5255 {
5256 if (!i.index_reg
5257 || !((t->opcode_modifier.vecsib == VecSIB128
5258 && i.index_reg->reg_type.bitfield.xmmword)
5259 || (t->opcode_modifier.vecsib == VecSIB256
5260 && i.index_reg->reg_type.bitfield.ymmword)
5261 || (t->opcode_modifier.vecsib == VecSIB512
5262 && i.index_reg->reg_type.bitfield.zmmword)))
5263 {
5264 i.error = invalid_vsib_address;
5265 return 1;
5266 }
5267
5268 gas_assert (i.reg_operands == 2 || i.mask);
5269 if (i.reg_operands == 2 && !i.mask)
5270 {
5271 gas_assert (i.types[0].bitfield.regsimd);
5272 gas_assert (i.types[0].bitfield.xmmword
5273 || i.types[0].bitfield.ymmword);
5274 gas_assert (i.types[2].bitfield.regsimd);
5275 gas_assert (i.types[2].bitfield.xmmword
5276 || i.types[2].bitfield.ymmword);
5277 if (operand_check == check_none)
5278 return 0;
5279 if (register_number (i.op[0].regs)
5280 != register_number (i.index_reg)
5281 && register_number (i.op[2].regs)
5282 != register_number (i.index_reg)
5283 && register_number (i.op[0].regs)
5284 != register_number (i.op[2].regs))
5285 return 0;
5286 if (operand_check == check_error)
5287 {
5288 i.error = invalid_vector_register_set;
5289 return 1;
5290 }
5291 as_warn (_("mask, index, and destination registers should be distinct"));
5292 }
5293 else if (i.reg_operands == 1 && i.mask)
5294 {
5295 if (i.types[1].bitfield.regsimd
5296 && (i.types[1].bitfield.xmmword
5297 || i.types[1].bitfield.ymmword
5298 || i.types[1].bitfield.zmmword)
5299 && (register_number (i.op[1].regs)
5300 == register_number (i.index_reg)))
5301 {
5302 if (operand_check == check_error)
5303 {
5304 i.error = invalid_vector_register_set;
5305 return 1;
5306 }
5307 if (operand_check != check_none)
5308 as_warn (_("index and destination registers should be distinct"));
5309 }
5310 }
5311 }
5312
5313 /* Check if broadcast is supported by the instruction and is applied
5314 to the memory operand. */
5315 if (i.broadcast)
5316 {
5317 i386_operand_type type, overlap;
5318
5319 /* Check if specified broadcast is supported in this instruction,
5320 and its broadcast bytes match the memory operand. */
5321 op = i.broadcast->operand;
5322 if (!t->opcode_modifier.broadcast
5323 || !(i.flags[op] & Operand_Mem)
5324 || (!i.types[op].bitfield.unspecified
5325 && !match_broadcast_size (t, op)))
5326 {
5327 bad_broadcast:
5328 i.error = unsupported_broadcast;
5329 return 1;
5330 }
5331
5332 i.broadcast->bytes = ((1 << (t->opcode_modifier.broadcast - 1))
5333 * i.broadcast->type);
5334 operand_type_set (&type, 0);
5335 switch (i.broadcast->bytes)
5336 {
5337 case 2:
5338 type.bitfield.word = 1;
5339 break;
5340 case 4:
5341 type.bitfield.dword = 1;
5342 break;
5343 case 8:
5344 type.bitfield.qword = 1;
5345 break;
5346 case 16:
5347 type.bitfield.xmmword = 1;
5348 break;
5349 case 32:
5350 type.bitfield.ymmword = 1;
5351 break;
5352 case 64:
5353 type.bitfield.zmmword = 1;
5354 break;
5355 default:
5356 goto bad_broadcast;
5357 }
5358
5359 overlap = operand_type_and (type, t->operand_types[op]);
5360 if (operand_type_all_zero (&overlap))
5361 goto bad_broadcast;
5362
5363 if (t->opcode_modifier.checkregsize)
5364 {
5365 unsigned int j;
5366
5367 type.bitfield.baseindex = 1;
5368 for (j = 0; j < i.operands; ++j)
5369 {
5370 if (j != op
5371 && !operand_type_register_match(i.types[j],
5372 t->operand_types[j],
5373 type,
5374 t->operand_types[op]))
5375 goto bad_broadcast;
5376 }
5377 }
5378 }
5379 /* If broadcast is supported in this instruction, we need to check if
5380 operand of one-element size isn't specified without broadcast. */
5381 else if (t->opcode_modifier.broadcast && i.mem_operands)
5382 {
5383 /* Find memory operand. */
5384 for (op = 0; op < i.operands; op++)
5385 if (operand_type_check (i.types[op], anymem))
5386 break;
5387 gas_assert (op < i.operands);
5388 /* Check size of the memory operand. */
5389 if (match_broadcast_size (t, op))
5390 {
5391 i.error = broadcast_needed;
5392 return 1;
5393 }
5394 }
5395 else
5396 op = MAX_OPERANDS - 1; /* Avoid uninitialized variable warning. */
5397
5398 /* Check if requested masking is supported. */
5399 if (i.mask)
5400 {
5401 switch (t->opcode_modifier.masking)
5402 {
5403 case BOTH_MASKING:
5404 break;
5405 case MERGING_MASKING:
5406 if (i.mask->zeroing)
5407 {
5408 case 0:
5409 i.error = unsupported_masking;
5410 return 1;
5411 }
5412 break;
5413 case DYNAMIC_MASKING:
5414 /* Memory destinations allow only merging masking. */
5415 if (i.mask->zeroing && i.mem_operands)
5416 {
5417 /* Find memory operand. */
5418 for (op = 0; op < i.operands; op++)
5419 if (i.flags[op] & Operand_Mem)
5420 break;
5421 gas_assert (op < i.operands);
5422 if (op == i.operands - 1)
5423 {
5424 i.error = unsupported_masking;
5425 return 1;
5426 }
5427 }
5428 break;
5429 default:
5430 abort ();
5431 }
5432 }
5433
5434 /* Check if masking is applied to dest operand. */
5435 if (i.mask && (i.mask->operand != (int) (i.operands - 1)))
5436 {
5437 i.error = mask_not_on_destination;
5438 return 1;
5439 }
5440
5441 /* Check RC/SAE. */
5442 if (i.rounding)
5443 {
5444 if ((i.rounding->type != saeonly
5445 && !t->opcode_modifier.staticrounding)
5446 || (i.rounding->type == saeonly
5447 && (t->opcode_modifier.staticrounding
5448 || !t->opcode_modifier.sae)))
5449 {
5450 i.error = unsupported_rc_sae;
5451 return 1;
5452 }
5453 /* If the instruction has several immediate operands and one of
5454 them is rounding, the rounding operand should be the last
5455 immediate operand. */
5456 if (i.imm_operands > 1
5457 && i.rounding->operand != (int) (i.imm_operands - 1))
5458 {
5459 i.error = rc_sae_operand_not_last_imm;
5460 return 1;
5461 }
5462 }
5463
5464 /* Check vector Disp8 operand. */
5465 if (t->opcode_modifier.disp8memshift
5466 && i.disp_encoding != disp_encoding_32bit)
5467 {
5468 if (i.broadcast)
5469 i.memshift = t->opcode_modifier.broadcast - 1;
5470 else if (t->opcode_modifier.disp8memshift != DISP8_SHIFT_VL)
5471 i.memshift = t->opcode_modifier.disp8memshift;
5472 else
5473 {
5474 const i386_operand_type *type = NULL;
5475
5476 i.memshift = 0;
5477 for (op = 0; op < i.operands; op++)
5478 if (operand_type_check (i.types[op], anymem))
5479 {
5480 if (t->opcode_modifier.evex == EVEXLIG)
5481 i.memshift = 2 + (i.suffix == QWORD_MNEM_SUFFIX);
5482 else if (t->operand_types[op].bitfield.xmmword
5483 + t->operand_types[op].bitfield.ymmword
5484 + t->operand_types[op].bitfield.zmmword <= 1)
5485 type = &t->operand_types[op];
5486 else if (!i.types[op].bitfield.unspecified)
5487 type = &i.types[op];
5488 }
5489 else if (i.types[op].bitfield.regsimd
5490 && t->opcode_modifier.evex != EVEXLIG)
5491 {
5492 if (i.types[op].bitfield.zmmword)
5493 i.memshift = 6;
5494 else if (i.types[op].bitfield.ymmword && i.memshift < 5)
5495 i.memshift = 5;
5496 else if (i.types[op].bitfield.xmmword && i.memshift < 4)
5497 i.memshift = 4;
5498 }
5499
5500 if (type)
5501 {
5502 if (type->bitfield.zmmword)
5503 i.memshift = 6;
5504 else if (type->bitfield.ymmword)
5505 i.memshift = 5;
5506 else if (type->bitfield.xmmword)
5507 i.memshift = 4;
5508 }
5509
5510 /* For the check in fits_in_disp8(). */
5511 if (i.memshift == 0)
5512 i.memshift = -1;
5513 }
5514
5515 for (op = 0; op < i.operands; op++)
5516 if (operand_type_check (i.types[op], disp)
5517 && i.op[op].disps->X_op == O_constant)
5518 {
5519 if (fits_in_disp8 (i.op[op].disps->X_add_number))
5520 {
5521 i.types[op].bitfield.disp8 = 1;
5522 return 0;
5523 }
5524 i.types[op].bitfield.disp8 = 0;
5525 }
5526 }
5527
5528 i.memshift = 0;
5529
5530 return 0;
5531 }
5532
5533 /* Check if operands are valid for the instruction. Update VEX
5534 operand types. */
5535
5536 static int
5537 VEX_check_operands (const insn_template *t)
5538 {
5539 if (i.vec_encoding == vex_encoding_evex)
5540 {
5541 /* This instruction must be encoded with EVEX prefix. */
5542 if (!is_evex_encoding (t))
5543 {
5544 i.error = unsupported;
5545 return 1;
5546 }
5547 return 0;
5548 }
5549
5550 if (!t->opcode_modifier.vex)
5551 {
5552 /* This instruction template doesn't have VEX prefix. */
5553 if (i.vec_encoding != vex_encoding_default)
5554 {
5555 i.error = unsupported;
5556 return 1;
5557 }
5558 return 0;
5559 }
5560
5561 /* Only check VEX_Imm4, which must be the first operand. */
5562 if (t->operand_types[0].bitfield.vec_imm4)
5563 {
5564 if (i.op[0].imms->X_op != O_constant
5565 || !fits_in_imm4 (i.op[0].imms->X_add_number))
5566 {
5567 i.error = bad_imm4;
5568 return 1;
5569 }
5570
5571 /* Turn off Imm8 so that update_imm won't complain. */
5572 i.types[0] = vec_imm4;
5573 }
5574
5575 return 0;
5576 }
5577
5578 static const insn_template *
5579 match_template (char mnem_suffix)
5580 {
5581 /* Points to template once we've found it. */
5582 const insn_template *t;
5583 i386_operand_type overlap0, overlap1, overlap2, overlap3;
5584 i386_operand_type overlap4;
5585 unsigned int found_reverse_match;
5586 i386_opcode_modifier suffix_check, mnemsuf_check;
5587 i386_operand_type operand_types [MAX_OPERANDS];
5588 int addr_prefix_disp;
5589 unsigned int j;
5590 unsigned int found_cpu_match, size_match;
5591 unsigned int check_register;
5592 enum i386_error specific_error = 0;
5593
5594 #if MAX_OPERANDS != 5
5595 # error "MAX_OPERANDS must be 5."
5596 #endif
5597
5598 found_reverse_match = 0;
5599 addr_prefix_disp = -1;
5600
5601 memset (&suffix_check, 0, sizeof (suffix_check));
5602 if (intel_syntax && i.broadcast)
5603 /* nothing */;
5604 else if (i.suffix == BYTE_MNEM_SUFFIX)
5605 suffix_check.no_bsuf = 1;
5606 else if (i.suffix == WORD_MNEM_SUFFIX)
5607 suffix_check.no_wsuf = 1;
5608 else if (i.suffix == SHORT_MNEM_SUFFIX)
5609 suffix_check.no_ssuf = 1;
5610 else if (i.suffix == LONG_MNEM_SUFFIX)
5611 suffix_check.no_lsuf = 1;
5612 else if (i.suffix == QWORD_MNEM_SUFFIX)
5613 suffix_check.no_qsuf = 1;
5614 else if (i.suffix == LONG_DOUBLE_MNEM_SUFFIX)
5615 suffix_check.no_ldsuf = 1;
5616
5617 memset (&mnemsuf_check, 0, sizeof (mnemsuf_check));
5618 if (intel_syntax)
5619 {
5620 switch (mnem_suffix)
5621 {
5622 case BYTE_MNEM_SUFFIX: mnemsuf_check.no_bsuf = 1; break;
5623 case WORD_MNEM_SUFFIX: mnemsuf_check.no_wsuf = 1; break;
5624 case SHORT_MNEM_SUFFIX: mnemsuf_check.no_ssuf = 1; break;
5625 case LONG_MNEM_SUFFIX: mnemsuf_check.no_lsuf = 1; break;
5626 case QWORD_MNEM_SUFFIX: mnemsuf_check.no_qsuf = 1; break;
5627 }
5628 }
5629
5630 /* Must have right number of operands. */
5631 i.error = number_of_operands_mismatch;
5632
5633 for (t = current_templates->start; t < current_templates->end; t++)
5634 {
5635 addr_prefix_disp = -1;
5636 found_reverse_match = 0;
5637
5638 if (i.operands != t->operands)
5639 continue;
5640
5641 /* Check processor support. */
5642 i.error = unsupported;
5643 found_cpu_match = (cpu_flags_match (t)
5644 == CPU_FLAGS_PERFECT_MATCH);
5645 if (!found_cpu_match)
5646 continue;
5647
5648 /* Check AT&T mnemonic. */
5649 i.error = unsupported_with_intel_mnemonic;
5650 if (intel_mnemonic && t->opcode_modifier.attmnemonic)
5651 continue;
5652
5653 /* Check AT&T/Intel syntax and Intel64/AMD64 ISA. */
5654 i.error = unsupported_syntax;
5655 if ((intel_syntax && t->opcode_modifier.attsyntax)
5656 || (!intel_syntax && t->opcode_modifier.intelsyntax)
5657 || (intel64 && t->opcode_modifier.amd64)
5658 || (!intel64 && t->opcode_modifier.intel64))
5659 continue;
5660
5661 /* Check the suffix, except for some instructions in intel mode. */
5662 i.error = invalid_instruction_suffix;
5663 if ((!intel_syntax || !t->opcode_modifier.ignoresize)
5664 && ((t->opcode_modifier.no_bsuf && suffix_check.no_bsuf)
5665 || (t->opcode_modifier.no_wsuf && suffix_check.no_wsuf)
5666 || (t->opcode_modifier.no_lsuf && suffix_check.no_lsuf)
5667 || (t->opcode_modifier.no_ssuf && suffix_check.no_ssuf)
5668 || (t->opcode_modifier.no_qsuf && suffix_check.no_qsuf)
5669 || (t->opcode_modifier.no_ldsuf && suffix_check.no_ldsuf)))
5670 continue;
5671 /* In Intel mode all mnemonic suffixes must be explicitly allowed. */
5672 if ((t->opcode_modifier.no_bsuf && mnemsuf_check.no_bsuf)
5673 || (t->opcode_modifier.no_wsuf && mnemsuf_check.no_wsuf)
5674 || (t->opcode_modifier.no_lsuf && mnemsuf_check.no_lsuf)
5675 || (t->opcode_modifier.no_ssuf && mnemsuf_check.no_ssuf)
5676 || (t->opcode_modifier.no_qsuf && mnemsuf_check.no_qsuf)
5677 || (t->opcode_modifier.no_ldsuf && mnemsuf_check.no_ldsuf))
5678 continue;
5679
5680 size_match = operand_size_match (t);
5681 if (!size_match)
5682 continue;
5683
5684 for (j = 0; j < MAX_OPERANDS; j++)
5685 operand_types[j] = t->operand_types[j];
5686
5687 /* In general, don't allow 64-bit operands in 32-bit mode. */
5688 if (i.suffix == QWORD_MNEM_SUFFIX
5689 && flag_code != CODE_64BIT
5690 && (intel_syntax
5691 ? (!t->opcode_modifier.ignoresize
5692 && !t->opcode_modifier.broadcast
5693 && !intel_float_operand (t->name))
5694 : intel_float_operand (t->name) != 2)
5695 && ((!operand_types[0].bitfield.regmmx
5696 && !operand_types[0].bitfield.regsimd)
5697 || (!operand_types[t->operands > 1].bitfield.regmmx
5698 && !operand_types[t->operands > 1].bitfield.regsimd))
5699 && (t->base_opcode != 0x0fc7
5700 || t->extension_opcode != 1 /* cmpxchg8b */))
5701 continue;
5702
5703 /* In general, don't allow 32-bit operands on pre-386. */
5704 else if (i.suffix == LONG_MNEM_SUFFIX
5705 && !cpu_arch_flags.bitfield.cpui386
5706 && (intel_syntax
5707 ? (!t->opcode_modifier.ignoresize
5708 && !intel_float_operand (t->name))
5709 : intel_float_operand (t->name) != 2)
5710 && ((!operand_types[0].bitfield.regmmx
5711 && !operand_types[0].bitfield.regsimd)
5712 || (!operand_types[t->operands > 1].bitfield.regmmx
5713 && !operand_types[t->operands > 1].bitfield.regsimd)))
5714 continue;
5715
5716 /* Do not verify operands when there are none. */
5717 else
5718 {
5719 if (!t->operands)
5720 /* We've found a match; break out of loop. */
5721 break;
5722 }
5723
5724 /* Address size prefix will turn Disp64/Disp32/Disp16 operand
5725 into Disp32/Disp16/Disp32 operand. */
5726 if (i.prefix[ADDR_PREFIX] != 0)
5727 {
5728 /* There should be only one Disp operand. */
5729 switch (flag_code)
5730 {
5731 case CODE_16BIT:
5732 for (j = 0; j < MAX_OPERANDS; j++)
5733 {
5734 if (operand_types[j].bitfield.disp16)
5735 {
5736 addr_prefix_disp = j;
5737 operand_types[j].bitfield.disp32 = 1;
5738 operand_types[j].bitfield.disp16 = 0;
5739 break;
5740 }
5741 }
5742 break;
5743 case CODE_32BIT:
5744 for (j = 0; j < MAX_OPERANDS; j++)
5745 {
5746 if (operand_types[j].bitfield.disp32)
5747 {
5748 addr_prefix_disp = j;
5749 operand_types[j].bitfield.disp32 = 0;
5750 operand_types[j].bitfield.disp16 = 1;
5751 break;
5752 }
5753 }
5754 break;
5755 case CODE_64BIT:
5756 for (j = 0; j < MAX_OPERANDS; j++)
5757 {
5758 if (operand_types[j].bitfield.disp64)
5759 {
5760 addr_prefix_disp = j;
5761 operand_types[j].bitfield.disp64 = 0;
5762 operand_types[j].bitfield.disp32 = 1;
5763 break;
5764 }
5765 }
5766 break;
5767 }
5768 }
5769
5770 /* Force 0x8b encoding for "mov foo@GOT, %eax". */
5771 if (i.reloc[0] == BFD_RELOC_386_GOT32 && t->base_opcode == 0xa0)
5772 continue;
5773
5774 /* We check register size if needed. */
5775 if (t->opcode_modifier.checkregsize)
5776 {
5777 check_register = (1 << t->operands) - 1;
5778 if (i.broadcast)
5779 check_register &= ~(1 << i.broadcast->operand);
5780 }
5781 else
5782 check_register = 0;
5783
5784 overlap0 = operand_type_and (i.types[0], operand_types[0]);
5785 switch (t->operands)
5786 {
5787 case 1:
5788 if (!operand_type_match (overlap0, i.types[0]))
5789 continue;
5790 break;
5791 case 2:
5792 /* xchg %eax, %eax is a special case. It is an alias for nop
5793 only in 32bit mode and we can use opcode 0x90. In 64bit
5794 mode, we can't use 0x90 for xchg %eax, %eax since it should
5795 zero-extend %eax to %rax. */
5796 if (flag_code == CODE_64BIT
5797 && t->base_opcode == 0x90
5798 && operand_type_equal (&i.types [0], &acc32)
5799 && operand_type_equal (&i.types [1], &acc32))
5800 continue;
5801 /* xrelease mov %eax, <disp> is another special case. It must not
5802 match the accumulator-only encoding of mov. */
5803 if (flag_code != CODE_64BIT
5804 && i.hle_prefix
5805 && t->base_opcode == 0xa0
5806 && i.types[0].bitfield.acc
5807 && operand_type_check (i.types[1], anymem))
5808 continue;
5809 /* Fall through. */
5810
5811 case 3:
5812 if (!(size_match & MATCH_STRAIGHT))
5813 goto check_reverse;
5814 /* Reverse direction of operands if swapping is possible in the first
5815 place (operands need to be symmetric) and
5816 - the load form is requested, and the template is a store form,
5817 - the store form is requested, and the template is a load form,
5818 - the non-default (swapped) form is requested. */
5819 overlap1 = operand_type_and (operand_types[0], operand_types[1]);
5820 if (t->opcode_modifier.d && i.reg_operands == i.operands
5821 && !operand_type_all_zero (&overlap1))
5822 switch (i.dir_encoding)
5823 {
5824 case dir_encoding_load:
5825 if (operand_type_check (operand_types[i.operands - 1], anymem)
5826 || operand_types[i.operands - 1].bitfield.regmem)
5827 goto check_reverse;
5828 break;
5829
5830 case dir_encoding_store:
5831 if (!operand_type_check (operand_types[i.operands - 1], anymem)
5832 && !operand_types[i.operands - 1].bitfield.regmem)
5833 goto check_reverse;
5834 break;
5835
5836 case dir_encoding_swap:
5837 goto check_reverse;
5838
5839 case dir_encoding_default:
5840 break;
5841 }
5842 /* If we want store form, we skip the current load. */
5843 if ((i.dir_encoding == dir_encoding_store
5844 || i.dir_encoding == dir_encoding_swap)
5845 && i.mem_operands == 0
5846 && t->opcode_modifier.load)
5847 continue;
5848 /* Fall through. */
5849 case 4:
5850 case 5:
5851 overlap1 = operand_type_and (i.types[1], operand_types[1]);
5852 if (!operand_type_match (overlap0, i.types[0])
5853 || !operand_type_match (overlap1, i.types[1])
5854 || ((check_register & 3) == 3
5855 && !operand_type_register_match (i.types[0],
5856 operand_types[0],
5857 i.types[1],
5858 operand_types[1])))
5859 {
5860 /* Check if other direction is valid ... */
5861 if (!t->opcode_modifier.d)
5862 continue;
5863
5864 check_reverse:
5865 if (!(size_match & MATCH_REVERSE))
5866 continue;
5867 /* Try reversing direction of operands. */
5868 overlap0 = operand_type_and (i.types[0], operand_types[i.operands - 1]);
5869 overlap1 = operand_type_and (i.types[i.operands - 1], operand_types[0]);
5870 if (!operand_type_match (overlap0, i.types[0])
5871 || !operand_type_match (overlap1, i.types[i.operands - 1])
5872 || (check_register
5873 && !operand_type_register_match (i.types[0],
5874 operand_types[i.operands - 1],
5875 i.types[i.operands - 1],
5876 operand_types[0])))
5877 {
5878 /* Does not match either direction. */
5879 continue;
5880 }
5881 /* found_reverse_match holds which of D or FloatR
5882 we've found. */
5883 if (!t->opcode_modifier.d)
5884 found_reverse_match = 0;
5885 else if (operand_types[0].bitfield.tbyte)
5886 found_reverse_match = Opcode_FloatD;
5887 else if (operand_types[0].bitfield.xmmword
5888 || operand_types[i.operands - 1].bitfield.xmmword
5889 || operand_types[0].bitfield.regmmx
5890 || operand_types[i.operands - 1].bitfield.regmmx
5891 || is_any_vex_encoding(t))
5892 found_reverse_match = (t->base_opcode & 0xee) != 0x6e
5893 ? Opcode_SIMD_FloatD : Opcode_SIMD_IntD;
5894 else
5895 found_reverse_match = Opcode_D;
5896 if (t->opcode_modifier.floatr)
5897 found_reverse_match |= Opcode_FloatR;
5898 }
5899 else
5900 {
5901 /* Found a forward 2 operand match here. */
5902 switch (t->operands)
5903 {
5904 case 5:
5905 overlap4 = operand_type_and (i.types[4],
5906 operand_types[4]);
5907 /* Fall through. */
5908 case 4:
5909 overlap3 = operand_type_and (i.types[3],
5910 operand_types[3]);
5911 /* Fall through. */
5912 case 3:
5913 overlap2 = operand_type_and (i.types[2],
5914 operand_types[2]);
5915 break;
5916 }
5917
5918 switch (t->operands)
5919 {
5920 case 5:
5921 if (!operand_type_match (overlap4, i.types[4])
5922 || !operand_type_register_match (i.types[3],
5923 operand_types[3],
5924 i.types[4],
5925 operand_types[4]))
5926 continue;
5927 /* Fall through. */
5928 case 4:
5929 if (!operand_type_match (overlap3, i.types[3])
5930 || ((check_register & 0xa) == 0xa
5931 && !operand_type_register_match (i.types[1],
5932 operand_types[1],
5933 i.types[3],
5934 operand_types[3]))
5935 || ((check_register & 0xc) == 0xc
5936 && !operand_type_register_match (i.types[2],
5937 operand_types[2],
5938 i.types[3],
5939 operand_types[3])))
5940 continue;
5941 /* Fall through. */
5942 case 3:
5943 /* Here we make use of the fact that there are no
5944 reverse match 3 operand instructions. */
5945 if (!operand_type_match (overlap2, i.types[2])
5946 || ((check_register & 5) == 5
5947 && !operand_type_register_match (i.types[0],
5948 operand_types[0],
5949 i.types[2],
5950 operand_types[2]))
5951 || ((check_register & 6) == 6
5952 && !operand_type_register_match (i.types[1],
5953 operand_types[1],
5954 i.types[2],
5955 operand_types[2])))
5956 continue;
5957 break;
5958 }
5959 }
5960 /* Found either forward/reverse 2, 3 or 4 operand match here:
5961 slip through to break. */
5962 }
5963 if (!found_cpu_match)
5964 continue;
5965
5966 /* Check if vector and VEX operands are valid. */
5967 if (check_VecOperands (t) || VEX_check_operands (t))
5968 {
5969 specific_error = i.error;
5970 continue;
5971 }
5972
5973 /* We've found a match; break out of loop. */
5974 break;
5975 }
5976
5977 if (t == current_templates->end)
5978 {
5979 /* We found no match. */
5980 const char *err_msg;
5981 switch (specific_error ? specific_error : i.error)
5982 {
5983 default:
5984 abort ();
5985 case operand_size_mismatch:
5986 err_msg = _("operand size mismatch");
5987 break;
5988 case operand_type_mismatch:
5989 err_msg = _("operand type mismatch");
5990 break;
5991 case register_type_mismatch:
5992 err_msg = _("register type mismatch");
5993 break;
5994 case number_of_operands_mismatch:
5995 err_msg = _("number of operands mismatch");
5996 break;
5997 case invalid_instruction_suffix:
5998 err_msg = _("invalid instruction suffix");
5999 break;
6000 case bad_imm4:
6001 err_msg = _("constant doesn't fit in 4 bits");
6002 break;
6003 case unsupported_with_intel_mnemonic:
6004 err_msg = _("unsupported with Intel mnemonic");
6005 break;
6006 case unsupported_syntax:
6007 err_msg = _("unsupported syntax");
6008 break;
6009 case unsupported:
6010 as_bad (_("unsupported instruction `%s'"),
6011 current_templates->start->name);
6012 return NULL;
6013 case invalid_vsib_address:
6014 err_msg = _("invalid VSIB address");
6015 break;
6016 case invalid_vector_register_set:
6017 err_msg = _("mask, index, and destination registers must be distinct");
6018 break;
6019 case unsupported_vector_index_register:
6020 err_msg = _("unsupported vector index register");
6021 break;
6022 case unsupported_broadcast:
6023 err_msg = _("unsupported broadcast");
6024 break;
6025 case broadcast_needed:
6026 err_msg = _("broadcast is needed for operand of such type");
6027 break;
6028 case unsupported_masking:
6029 err_msg = _("unsupported masking");
6030 break;
6031 case mask_not_on_destination:
6032 err_msg = _("mask not on destination operand");
6033 break;
6034 case no_default_mask:
6035 err_msg = _("default mask isn't allowed");
6036 break;
6037 case unsupported_rc_sae:
6038 err_msg = _("unsupported static rounding/sae");
6039 break;
6040 case rc_sae_operand_not_last_imm:
6041 if (intel_syntax)
6042 err_msg = _("RC/SAE operand must precede immediate operands");
6043 else
6044 err_msg = _("RC/SAE operand must follow immediate operands");
6045 break;
6046 case invalid_register_operand:
6047 err_msg = _("invalid register operand");
6048 break;
6049 }
6050 as_bad (_("%s for `%s'"), err_msg,
6051 current_templates->start->name);
6052 return NULL;
6053 }
6054
6055 if (!quiet_warnings)
6056 {
6057 if (!intel_syntax
6058 && (i.types[0].bitfield.jumpabsolute
6059 != operand_types[0].bitfield.jumpabsolute))
6060 {
6061 as_warn (_("indirect %s without `*'"), t->name);
6062 }
6063
6064 if (t->opcode_modifier.isprefix
6065 && t->opcode_modifier.ignoresize)
6066 {
6067 /* Warn them that a data or address size prefix doesn't
6068 affect assembly of the next line of code. */
6069 as_warn (_("stand-alone `%s' prefix"), t->name);
6070 }
6071 }
6072
6073 /* Copy the template we found. */
6074 i.tm = *t;
6075
6076 if (addr_prefix_disp != -1)
6077 i.tm.operand_types[addr_prefix_disp]
6078 = operand_types[addr_prefix_disp];
6079
6080 if (found_reverse_match)
6081 {
6082 /* If we found a reverse match we must alter the opcode
6083 direction bit. found_reverse_match holds bits to change
6084 (different for int & float insns). */
6085
6086 i.tm.base_opcode ^= found_reverse_match;
6087
6088 i.tm.operand_types[0] = operand_types[i.operands - 1];
6089 i.tm.operand_types[i.operands - 1] = operand_types[0];
6090 }
6091
6092 return t;
6093 }
6094
6095 static int
6096 check_string (void)
6097 {
6098 int mem_op = operand_type_check (i.types[0], anymem) ? 0 : 1;
6099 if (i.tm.operand_types[mem_op].bitfield.esseg)
6100 {
6101 if (i.seg[0] != NULL && i.seg[0] != &es)
6102 {
6103 as_bad (_("`%s' operand %d must use `%ses' segment"),
6104 i.tm.name,
6105 mem_op + 1,
6106 register_prefix);
6107 return 0;
6108 }
6109 /* There's only ever one segment override allowed per instruction.
6110 This instruction possibly has a legal segment override on the
6111 second operand, so copy the segment to where non-string
6112 instructions store it, allowing common code. */
6113 i.seg[0] = i.seg[1];
6114 }
6115 else if (i.tm.operand_types[mem_op + 1].bitfield.esseg)
6116 {
6117 if (i.seg[1] != NULL && i.seg[1] != &es)
6118 {
6119 as_bad (_("`%s' operand %d must use `%ses' segment"),
6120 i.tm.name,
6121 mem_op + 2,
6122 register_prefix);
6123 return 0;
6124 }
6125 }
6126 return 1;
6127 }
6128
6129 static int
6130 process_suffix (void)
6131 {
6132 /* If matched instruction specifies an explicit instruction mnemonic
6133 suffix, use it. */
6134 if (i.tm.opcode_modifier.size == SIZE16)
6135 i.suffix = WORD_MNEM_SUFFIX;
6136 else if (i.tm.opcode_modifier.size == SIZE32)
6137 i.suffix = LONG_MNEM_SUFFIX;
6138 else if (i.tm.opcode_modifier.size == SIZE64)
6139 i.suffix = QWORD_MNEM_SUFFIX;
6140 else if (i.reg_operands)
6141 {
6142 /* If there's no instruction mnemonic suffix we try to invent one
6143 based on register operands. */
6144 if (!i.suffix)
6145 {
6146 /* We take i.suffix from the last register operand specified,
6147 Destination register type is more significant than source
6148 register type. crc32 in SSE4.2 prefers source register
6149 type. */
6150 if (i.tm.base_opcode == 0xf20f38f0 && i.types[0].bitfield.reg)
6151 {
6152 if (i.types[0].bitfield.byte)
6153 i.suffix = BYTE_MNEM_SUFFIX;
6154 else if (i.types[0].bitfield.word)
6155 i.suffix = WORD_MNEM_SUFFIX;
6156 else if (i.types[0].bitfield.dword)
6157 i.suffix = LONG_MNEM_SUFFIX;
6158 else if (i.types[0].bitfield.qword)
6159 i.suffix = QWORD_MNEM_SUFFIX;
6160 }
6161
6162 if (!i.suffix)
6163 {
6164 int op;
6165
6166 if (i.tm.base_opcode == 0xf20f38f0)
6167 {
6168 /* We have to know the operand size for crc32. */
6169 as_bad (_("ambiguous memory operand size for `%s`"),
6170 i.tm.name);
6171 return 0;
6172 }
6173
6174 for (op = i.operands; --op >= 0;)
6175 if (!i.tm.operand_types[op].bitfield.inoutportreg
6176 && !i.tm.operand_types[op].bitfield.shiftcount)
6177 {
6178 if (!i.types[op].bitfield.reg)
6179 continue;
6180 if (i.types[op].bitfield.byte)
6181 i.suffix = BYTE_MNEM_SUFFIX;
6182 else if (i.types[op].bitfield.word)
6183 i.suffix = WORD_MNEM_SUFFIX;
6184 else if (i.types[op].bitfield.dword)
6185 i.suffix = LONG_MNEM_SUFFIX;
6186 else if (i.types[op].bitfield.qword)
6187 i.suffix = QWORD_MNEM_SUFFIX;
6188 else
6189 continue;
6190 break;
6191 }
6192 }
6193 }
6194 else if (i.suffix == BYTE_MNEM_SUFFIX)
6195 {
6196 if (intel_syntax
6197 && i.tm.opcode_modifier.ignoresize
6198 && i.tm.opcode_modifier.no_bsuf)
6199 i.suffix = 0;
6200 else if (!check_byte_reg ())
6201 return 0;
6202 }
6203 else if (i.suffix == LONG_MNEM_SUFFIX)
6204 {
6205 if (intel_syntax
6206 && i.tm.opcode_modifier.ignoresize
6207 && i.tm.opcode_modifier.no_lsuf
6208 && !i.tm.opcode_modifier.todword
6209 && !i.tm.opcode_modifier.toqword)
6210 i.suffix = 0;
6211 else if (!check_long_reg ())
6212 return 0;
6213 }
6214 else if (i.suffix == QWORD_MNEM_SUFFIX)
6215 {
6216 if (intel_syntax
6217 && i.tm.opcode_modifier.ignoresize
6218 && i.tm.opcode_modifier.no_qsuf
6219 && !i.tm.opcode_modifier.todword
6220 && !i.tm.opcode_modifier.toqword)
6221 i.suffix = 0;
6222 else if (!check_qword_reg ())
6223 return 0;
6224 }
6225 else if (i.suffix == WORD_MNEM_SUFFIX)
6226 {
6227 if (intel_syntax
6228 && i.tm.opcode_modifier.ignoresize
6229 && i.tm.opcode_modifier.no_wsuf)
6230 i.suffix = 0;
6231 else if (!check_word_reg ())
6232 return 0;
6233 }
6234 else if (intel_syntax && i.tm.opcode_modifier.ignoresize)
6235 /* Do nothing if the instruction is going to ignore the prefix. */
6236 ;
6237 else
6238 abort ();
6239 }
6240 else if (i.tm.opcode_modifier.defaultsize
6241 && !i.suffix
6242 /* exclude fldenv/frstor/fsave/fstenv */
6243 && i.tm.opcode_modifier.no_ssuf)
6244 {
6245 i.suffix = stackop_size;
6246 }
6247 else if (intel_syntax
6248 && !i.suffix
6249 && (i.tm.operand_types[0].bitfield.jumpabsolute
6250 || i.tm.opcode_modifier.jumpbyte
6251 || i.tm.opcode_modifier.jumpintersegment
6252 || (i.tm.base_opcode == 0x0f01 /* [ls][gi]dt */
6253 && i.tm.extension_opcode <= 3)))
6254 {
6255 switch (flag_code)
6256 {
6257 case CODE_64BIT:
6258 if (!i.tm.opcode_modifier.no_qsuf)
6259 {
6260 i.suffix = QWORD_MNEM_SUFFIX;
6261 break;
6262 }
6263 /* Fall through. */
6264 case CODE_32BIT:
6265 if (!i.tm.opcode_modifier.no_lsuf)
6266 i.suffix = LONG_MNEM_SUFFIX;
6267 break;
6268 case CODE_16BIT:
6269 if (!i.tm.opcode_modifier.no_wsuf)
6270 i.suffix = WORD_MNEM_SUFFIX;
6271 break;
6272 }
6273 }
6274
6275 if (!i.suffix)
6276 {
6277 if (!intel_syntax)
6278 {
6279 if (i.tm.opcode_modifier.w)
6280 {
6281 as_bad (_("no instruction mnemonic suffix given and "
6282 "no register operands; can't size instruction"));
6283 return 0;
6284 }
6285 }
6286 else
6287 {
6288 unsigned int suffixes;
6289
6290 suffixes = !i.tm.opcode_modifier.no_bsuf;
6291 if (!i.tm.opcode_modifier.no_wsuf)
6292 suffixes |= 1 << 1;
6293 if (!i.tm.opcode_modifier.no_lsuf)
6294 suffixes |= 1 << 2;
6295 if (!i.tm.opcode_modifier.no_ldsuf)
6296 suffixes |= 1 << 3;
6297 if (!i.tm.opcode_modifier.no_ssuf)
6298 suffixes |= 1 << 4;
6299 if (flag_code == CODE_64BIT && !i.tm.opcode_modifier.no_qsuf)
6300 suffixes |= 1 << 5;
6301
6302 /* There are more than suffix matches. */
6303 if (i.tm.opcode_modifier.w
6304 || ((suffixes & (suffixes - 1))
6305 && !i.tm.opcode_modifier.defaultsize
6306 && !i.tm.opcode_modifier.ignoresize))
6307 {
6308 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
6309 return 0;
6310 }
6311 }
6312 }
6313
6314 /* Change the opcode based on the operand size given by i.suffix. */
6315 switch (i.suffix)
6316 {
6317 /* Size floating point instruction. */
6318 case LONG_MNEM_SUFFIX:
6319 if (i.tm.opcode_modifier.floatmf)
6320 {
6321 i.tm.base_opcode ^= 4;
6322 break;
6323 }
6324 /* fall through */
6325 case WORD_MNEM_SUFFIX:
6326 case QWORD_MNEM_SUFFIX:
6327 /* It's not a byte, select word/dword operation. */
6328 if (i.tm.opcode_modifier.w)
6329 {
6330 if (i.tm.opcode_modifier.shortform)
6331 i.tm.base_opcode |= 8;
6332 else
6333 i.tm.base_opcode |= 1;
6334 }
6335 /* fall through */
6336 case SHORT_MNEM_SUFFIX:
6337 /* Now select between word & dword operations via the operand
6338 size prefix, except for instructions that will ignore this
6339 prefix anyway. */
6340 if (i.reg_operands > 0
6341 && i.types[0].bitfield.reg
6342 && i.tm.opcode_modifier.addrprefixopreg
6343 && (i.tm.opcode_modifier.immext
6344 || i.operands == 1))
6345 {
6346 /* The address size override prefix changes the size of the
6347 first operand. */
6348 if ((flag_code == CODE_32BIT
6349 && i.op[0].regs->reg_type.bitfield.word)
6350 || (flag_code != CODE_32BIT
6351 && i.op[0].regs->reg_type.bitfield.dword))
6352 if (!add_prefix (ADDR_PREFIX_OPCODE))
6353 return 0;
6354 }
6355 /* stackop_size is set to LONG_MNEM_SUFFIX for the .code16gcc
6356 directive to support 16bit mode with 32-bit address. Since
6357 IRET (opcode 0xcf) in 16bit mode returns from an interrupt
6358 in 16bit mode, we shouldn't add DATA_PREFIX_OPCODE here. */
6359 else if (i.suffix != QWORD_MNEM_SUFFIX
6360 && (stackop_size != LONG_MNEM_SUFFIX
6361 || i.tm.base_opcode != 0xcf)
6362 && !i.tm.opcode_modifier.ignoresize
6363 && !i.tm.opcode_modifier.floatmf
6364 && !i.tm.opcode_modifier.vex
6365 && !i.tm.opcode_modifier.vexopcode
6366 && !is_evex_encoding (&i.tm)
6367 && ((i.suffix == LONG_MNEM_SUFFIX) == (flag_code == CODE_16BIT)
6368 || (flag_code == CODE_64BIT
6369 && i.tm.opcode_modifier.jumpbyte)))
6370 {
6371 unsigned int prefix = DATA_PREFIX_OPCODE;
6372
6373 if (i.tm.opcode_modifier.jumpbyte) /* jcxz, loop */
6374 prefix = ADDR_PREFIX_OPCODE;
6375
6376 if (!add_prefix (prefix))
6377 return 0;
6378 }
6379
6380 /* Set mode64 for an operand. */
6381 if (i.suffix == QWORD_MNEM_SUFFIX
6382 && flag_code == CODE_64BIT
6383 && !i.tm.opcode_modifier.norex64
6384 /* Special case for xchg %rax,%rax. It is NOP and doesn't
6385 need rex64. */
6386 && ! (i.operands == 2
6387 && i.tm.base_opcode == 0x90
6388 && i.tm.extension_opcode == None
6389 && operand_type_equal (&i.types [0], &acc64)
6390 && operand_type_equal (&i.types [1], &acc64)))
6391 i.rex |= REX_W;
6392
6393 break;
6394 }
6395
6396 if (i.reg_operands != 0
6397 && i.operands > 1
6398 && i.tm.opcode_modifier.addrprefixopreg
6399 && !i.tm.opcode_modifier.immext)
6400 {
6401 /* Check invalid register operand when the address size override
6402 prefix changes the size of register operands. */
6403 unsigned int op;
6404 enum { need_word, need_dword, need_qword } need;
6405
6406 if (flag_code == CODE_32BIT)
6407 need = i.prefix[ADDR_PREFIX] ? need_word : need_dword;
6408 else
6409 {
6410 if (i.prefix[ADDR_PREFIX])
6411 need = need_dword;
6412 else
6413 need = flag_code == CODE_64BIT ? need_qword : need_word;
6414 }
6415
6416 for (op = 0; op < i.operands; op++)
6417 if (i.types[op].bitfield.reg
6418 && ((need == need_word
6419 && !i.op[op].regs->reg_type.bitfield.word)
6420 || (need == need_dword
6421 && !i.op[op].regs->reg_type.bitfield.dword)
6422 || (need == need_qword
6423 && !i.op[op].regs->reg_type.bitfield.qword)))
6424 {
6425 as_bad (_("invalid register operand size for `%s'"),
6426 i.tm.name);
6427 return 0;
6428 }
6429 }
6430
6431 return 1;
6432 }
6433
6434 static int
6435 check_byte_reg (void)
6436 {
6437 int op;
6438
6439 for (op = i.operands; --op >= 0;)
6440 {
6441 /* Skip non-register operands. */
6442 if (!i.types[op].bitfield.reg)
6443 continue;
6444
6445 /* If this is an eight bit register, it's OK. If it's the 16 or
6446 32 bit version of an eight bit register, we will just use the
6447 low portion, and that's OK too. */
6448 if (i.types[op].bitfield.byte)
6449 continue;
6450
6451 /* I/O port address operands are OK too. */
6452 if (i.tm.operand_types[op].bitfield.inoutportreg)
6453 continue;
6454
6455 /* crc32 doesn't generate this warning. */
6456 if (i.tm.base_opcode == 0xf20f38f0)
6457 continue;
6458
6459 if ((i.types[op].bitfield.word
6460 || i.types[op].bitfield.dword
6461 || i.types[op].bitfield.qword)
6462 && i.op[op].regs->reg_num < 4
6463 /* Prohibit these changes in 64bit mode, since the lowering
6464 would be more complicated. */
6465 && flag_code != CODE_64BIT)
6466 {
6467 #if REGISTER_WARNINGS
6468 if (!quiet_warnings)
6469 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
6470 register_prefix,
6471 (i.op[op].regs + (i.types[op].bitfield.word
6472 ? REGNAM_AL - REGNAM_AX
6473 : REGNAM_AL - REGNAM_EAX))->reg_name,
6474 register_prefix,
6475 i.op[op].regs->reg_name,
6476 i.suffix);
6477 #endif
6478 continue;
6479 }
6480 /* Any other register is bad. */
6481 if (i.types[op].bitfield.reg
6482 || i.types[op].bitfield.regmmx
6483 || i.types[op].bitfield.regsimd
6484 || i.types[op].bitfield.sreg2
6485 || i.types[op].bitfield.sreg3
6486 || i.types[op].bitfield.control
6487 || i.types[op].bitfield.debug
6488 || i.types[op].bitfield.test)
6489 {
6490 as_bad (_("`%s%s' not allowed with `%s%c'"),
6491 register_prefix,
6492 i.op[op].regs->reg_name,
6493 i.tm.name,
6494 i.suffix);
6495 return 0;
6496 }
6497 }
6498 return 1;
6499 }
6500
6501 static int
6502 check_long_reg (void)
6503 {
6504 int op;
6505
6506 for (op = i.operands; --op >= 0;)
6507 /* Skip non-register operands. */
6508 if (!i.types[op].bitfield.reg)
6509 continue;
6510 /* Reject eight bit registers, except where the template requires
6511 them. (eg. movzb) */
6512 else if (i.types[op].bitfield.byte
6513 && (i.tm.operand_types[op].bitfield.reg
6514 || i.tm.operand_types[op].bitfield.acc)
6515 && (i.tm.operand_types[op].bitfield.word
6516 || i.tm.operand_types[op].bitfield.dword))
6517 {
6518 as_bad (_("`%s%s' not allowed with `%s%c'"),
6519 register_prefix,
6520 i.op[op].regs->reg_name,
6521 i.tm.name,
6522 i.suffix);
6523 return 0;
6524 }
6525 /* Warn if the e prefix on a general reg is missing. */
6526 else if ((!quiet_warnings || flag_code == CODE_64BIT)
6527 && i.types[op].bitfield.word
6528 && (i.tm.operand_types[op].bitfield.reg
6529 || i.tm.operand_types[op].bitfield.acc)
6530 && i.tm.operand_types[op].bitfield.dword)
6531 {
6532 /* Prohibit these changes in the 64bit mode, since the
6533 lowering is more complicated. */
6534 if (flag_code == CODE_64BIT)
6535 {
6536 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
6537 register_prefix, i.op[op].regs->reg_name,
6538 i.suffix);
6539 return 0;
6540 }
6541 #if REGISTER_WARNINGS
6542 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
6543 register_prefix,
6544 (i.op[op].regs + REGNAM_EAX - REGNAM_AX)->reg_name,
6545 register_prefix, i.op[op].regs->reg_name, i.suffix);
6546 #endif
6547 }
6548 /* Warn if the r prefix on a general reg is present. */
6549 else if (i.types[op].bitfield.qword
6550 && (i.tm.operand_types[op].bitfield.reg
6551 || i.tm.operand_types[op].bitfield.acc)
6552 && i.tm.operand_types[op].bitfield.dword)
6553 {
6554 if (intel_syntax
6555 && i.tm.opcode_modifier.toqword
6556 && !i.types[0].bitfield.regsimd)
6557 {
6558 /* Convert to QWORD. We want REX byte. */
6559 i.suffix = QWORD_MNEM_SUFFIX;
6560 }
6561 else
6562 {
6563 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
6564 register_prefix, i.op[op].regs->reg_name,
6565 i.suffix);
6566 return 0;
6567 }
6568 }
6569 return 1;
6570 }
6571
6572 static int
6573 check_qword_reg (void)
6574 {
6575 int op;
6576
6577 for (op = i.operands; --op >= 0; )
6578 /* Skip non-register operands. */
6579 if (!i.types[op].bitfield.reg)
6580 continue;
6581 /* Reject eight bit registers, except where the template requires
6582 them. (eg. movzb) */
6583 else if (i.types[op].bitfield.byte
6584 && (i.tm.operand_types[op].bitfield.reg
6585 || i.tm.operand_types[op].bitfield.acc)
6586 && (i.tm.operand_types[op].bitfield.word
6587 || i.tm.operand_types[op].bitfield.dword))
6588 {
6589 as_bad (_("`%s%s' not allowed with `%s%c'"),
6590 register_prefix,
6591 i.op[op].regs->reg_name,
6592 i.tm.name,
6593 i.suffix);
6594 return 0;
6595 }
6596 /* Warn if the r prefix on a general reg is missing. */
6597 else if ((i.types[op].bitfield.word
6598 || i.types[op].bitfield.dword)
6599 && (i.tm.operand_types[op].bitfield.reg
6600 || i.tm.operand_types[op].bitfield.acc)
6601 && i.tm.operand_types[op].bitfield.qword)
6602 {
6603 /* Prohibit these changes in the 64bit mode, since the
6604 lowering is more complicated. */
6605 if (intel_syntax
6606 && i.tm.opcode_modifier.todword
6607 && !i.types[0].bitfield.regsimd)
6608 {
6609 /* Convert to DWORD. We don't want REX byte. */
6610 i.suffix = LONG_MNEM_SUFFIX;
6611 }
6612 else
6613 {
6614 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
6615 register_prefix, i.op[op].regs->reg_name,
6616 i.suffix);
6617 return 0;
6618 }
6619 }
6620 return 1;
6621 }
6622
6623 static int
6624 check_word_reg (void)
6625 {
6626 int op;
6627 for (op = i.operands; --op >= 0;)
6628 /* Skip non-register operands. */
6629 if (!i.types[op].bitfield.reg)
6630 continue;
6631 /* Reject eight bit registers, except where the template requires
6632 them. (eg. movzb) */
6633 else if (i.types[op].bitfield.byte
6634 && (i.tm.operand_types[op].bitfield.reg
6635 || i.tm.operand_types[op].bitfield.acc)
6636 && (i.tm.operand_types[op].bitfield.word
6637 || i.tm.operand_types[op].bitfield.dword))
6638 {
6639 as_bad (_("`%s%s' not allowed with `%s%c'"),
6640 register_prefix,
6641 i.op[op].regs->reg_name,
6642 i.tm.name,
6643 i.suffix);
6644 return 0;
6645 }
6646 /* Warn if the e or r prefix on a general reg is present. */
6647 else if ((!quiet_warnings || flag_code == CODE_64BIT)
6648 && (i.types[op].bitfield.dword
6649 || i.types[op].bitfield.qword)
6650 && (i.tm.operand_types[op].bitfield.reg
6651 || i.tm.operand_types[op].bitfield.acc)
6652 && i.tm.operand_types[op].bitfield.word)
6653 {
6654 /* Prohibit these changes in the 64bit mode, since the
6655 lowering is more complicated. */
6656 if (flag_code == CODE_64BIT)
6657 {
6658 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
6659 register_prefix, i.op[op].regs->reg_name,
6660 i.suffix);
6661 return 0;
6662 }
6663 #if REGISTER_WARNINGS
6664 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
6665 register_prefix,
6666 (i.op[op].regs + REGNAM_AX - REGNAM_EAX)->reg_name,
6667 register_prefix, i.op[op].regs->reg_name, i.suffix);
6668 #endif
6669 }
6670 return 1;
6671 }
6672
6673 static int
6674 update_imm (unsigned int j)
6675 {
6676 i386_operand_type overlap = i.types[j];
6677 if ((overlap.bitfield.imm8
6678 || overlap.bitfield.imm8s
6679 || overlap.bitfield.imm16
6680 || overlap.bitfield.imm32
6681 || overlap.bitfield.imm32s
6682 || overlap.bitfield.imm64)
6683 && !operand_type_equal (&overlap, &imm8)
6684 && !operand_type_equal (&overlap, &imm8s)
6685 && !operand_type_equal (&overlap, &imm16)
6686 && !operand_type_equal (&overlap, &imm32)
6687 && !operand_type_equal (&overlap, &imm32s)
6688 && !operand_type_equal (&overlap, &imm64))
6689 {
6690 if (i.suffix)
6691 {
6692 i386_operand_type temp;
6693
6694 operand_type_set (&temp, 0);
6695 if (i.suffix == BYTE_MNEM_SUFFIX)
6696 {
6697 temp.bitfield.imm8 = overlap.bitfield.imm8;
6698 temp.bitfield.imm8s = overlap.bitfield.imm8s;
6699 }
6700 else if (i.suffix == WORD_MNEM_SUFFIX)
6701 temp.bitfield.imm16 = overlap.bitfield.imm16;
6702 else if (i.suffix == QWORD_MNEM_SUFFIX)
6703 {
6704 temp.bitfield.imm64 = overlap.bitfield.imm64;
6705 temp.bitfield.imm32s = overlap.bitfield.imm32s;
6706 }
6707 else
6708 temp.bitfield.imm32 = overlap.bitfield.imm32;
6709 overlap = temp;
6710 }
6711 else if (operand_type_equal (&overlap, &imm16_32_32s)
6712 || operand_type_equal (&overlap, &imm16_32)
6713 || operand_type_equal (&overlap, &imm16_32s))
6714 {
6715 if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
6716 overlap = imm16;
6717 else
6718 overlap = imm32s;
6719 }
6720 if (!operand_type_equal (&overlap, &imm8)
6721 && !operand_type_equal (&overlap, &imm8s)
6722 && !operand_type_equal (&overlap, &imm16)
6723 && !operand_type_equal (&overlap, &imm32)
6724 && !operand_type_equal (&overlap, &imm32s)
6725 && !operand_type_equal (&overlap, &imm64))
6726 {
6727 as_bad (_("no instruction mnemonic suffix given; "
6728 "can't determine immediate size"));
6729 return 0;
6730 }
6731 }
6732 i.types[j] = overlap;
6733
6734 return 1;
6735 }
6736
6737 static int
6738 finalize_imm (void)
6739 {
6740 unsigned int j, n;
6741
6742 /* Update the first 2 immediate operands. */
6743 n = i.operands > 2 ? 2 : i.operands;
6744 if (n)
6745 {
6746 for (j = 0; j < n; j++)
6747 if (update_imm (j) == 0)
6748 return 0;
6749
6750 /* The 3rd operand can't be immediate operand. */
6751 gas_assert (operand_type_check (i.types[2], imm) == 0);
6752 }
6753
6754 return 1;
6755 }
6756
6757 static int
6758 process_operands (void)
6759 {
6760 /* Default segment register this instruction will use for memory
6761 accesses. 0 means unknown. This is only for optimizing out
6762 unnecessary segment overrides. */
6763 const seg_entry *default_seg = 0;
6764
6765 if (i.tm.opcode_modifier.sse2avx && i.tm.opcode_modifier.vexvvvv)
6766 {
6767 unsigned int dupl = i.operands;
6768 unsigned int dest = dupl - 1;
6769 unsigned int j;
6770
6771 /* The destination must be an xmm register. */
6772 gas_assert (i.reg_operands
6773 && MAX_OPERANDS > dupl
6774 && operand_type_equal (&i.types[dest], &regxmm));
6775
6776 if (i.tm.operand_types[0].bitfield.acc
6777 && i.tm.operand_types[0].bitfield.xmmword)
6778 {
6779 if (i.tm.opcode_modifier.vexsources == VEX3SOURCES)
6780 {
6781 /* Keep xmm0 for instructions with VEX prefix and 3
6782 sources. */
6783 i.tm.operand_types[0].bitfield.acc = 0;
6784 i.tm.operand_types[0].bitfield.regsimd = 1;
6785 goto duplicate;
6786 }
6787 else
6788 {
6789 /* We remove the first xmm0 and keep the number of
6790 operands unchanged, which in fact duplicates the
6791 destination. */
6792 for (j = 1; j < i.operands; j++)
6793 {
6794 i.op[j - 1] = i.op[j];
6795 i.types[j - 1] = i.types[j];
6796 i.tm.operand_types[j - 1] = i.tm.operand_types[j];
6797 }
6798 }
6799 }
6800 else if (i.tm.opcode_modifier.implicit1stxmm0)
6801 {
6802 gas_assert ((MAX_OPERANDS - 1) > dupl
6803 && (i.tm.opcode_modifier.vexsources
6804 == VEX3SOURCES));
6805
6806 /* Add the implicit xmm0 for instructions with VEX prefix
6807 and 3 sources. */
6808 for (j = i.operands; j > 0; j--)
6809 {
6810 i.op[j] = i.op[j - 1];
6811 i.types[j] = i.types[j - 1];
6812 i.tm.operand_types[j] = i.tm.operand_types[j - 1];
6813 }
6814 i.op[0].regs
6815 = (const reg_entry *) hash_find (reg_hash, "xmm0");
6816 i.types[0] = regxmm;
6817 i.tm.operand_types[0] = regxmm;
6818
6819 i.operands += 2;
6820 i.reg_operands += 2;
6821 i.tm.operands += 2;
6822
6823 dupl++;
6824 dest++;
6825 i.op[dupl] = i.op[dest];
6826 i.types[dupl] = i.types[dest];
6827 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
6828 }
6829 else
6830 {
6831 duplicate:
6832 i.operands++;
6833 i.reg_operands++;
6834 i.tm.operands++;
6835
6836 i.op[dupl] = i.op[dest];
6837 i.types[dupl] = i.types[dest];
6838 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
6839 }
6840
6841 if (i.tm.opcode_modifier.immext)
6842 process_immext ();
6843 }
6844 else if (i.tm.operand_types[0].bitfield.acc
6845 && i.tm.operand_types[0].bitfield.xmmword)
6846 {
6847 unsigned int j;
6848
6849 for (j = 1; j < i.operands; j++)
6850 {
6851 i.op[j - 1] = i.op[j];
6852 i.types[j - 1] = i.types[j];
6853
6854 /* We need to adjust fields in i.tm since they are used by
6855 build_modrm_byte. */
6856 i.tm.operand_types [j - 1] = i.tm.operand_types [j];
6857 }
6858
6859 i.operands--;
6860 i.reg_operands--;
6861 i.tm.operands--;
6862 }
6863 else if (i.tm.opcode_modifier.implicitquadgroup)
6864 {
6865 unsigned int regnum, first_reg_in_group, last_reg_in_group;
6866
6867 /* The second operand must be {x,y,z}mmN, where N is a multiple of 4. */
6868 gas_assert (i.operands >= 2 && i.types[1].bitfield.regsimd);
6869 regnum = register_number (i.op[1].regs);
6870 first_reg_in_group = regnum & ~3;
6871 last_reg_in_group = first_reg_in_group + 3;
6872 if (regnum != first_reg_in_group)
6873 as_warn (_("source register `%s%s' implicitly denotes"
6874 " `%s%.3s%u' to `%s%.3s%u' source group in `%s'"),
6875 register_prefix, i.op[1].regs->reg_name,
6876 register_prefix, i.op[1].regs->reg_name, first_reg_in_group,
6877 register_prefix, i.op[1].regs->reg_name, last_reg_in_group,
6878 i.tm.name);
6879 }
6880 else if (i.tm.opcode_modifier.regkludge)
6881 {
6882 /* The imul $imm, %reg instruction is converted into
6883 imul $imm, %reg, %reg, and the clr %reg instruction
6884 is converted into xor %reg, %reg. */
6885
6886 unsigned int first_reg_op;
6887
6888 if (operand_type_check (i.types[0], reg))
6889 first_reg_op = 0;
6890 else
6891 first_reg_op = 1;
6892 /* Pretend we saw the extra register operand. */
6893 gas_assert (i.reg_operands == 1
6894 && i.op[first_reg_op + 1].regs == 0);
6895 i.op[first_reg_op + 1].regs = i.op[first_reg_op].regs;
6896 i.types[first_reg_op + 1] = i.types[first_reg_op];
6897 i.operands++;
6898 i.reg_operands++;
6899 }
6900
6901 if (i.tm.opcode_modifier.shortform)
6902 {
6903 if (i.types[0].bitfield.sreg2
6904 || i.types[0].bitfield.sreg3)
6905 {
6906 if (i.tm.base_opcode == POP_SEG_SHORT
6907 && i.op[0].regs->reg_num == 1)
6908 {
6909 as_bad (_("you can't `pop %scs'"), register_prefix);
6910 return 0;
6911 }
6912 i.tm.base_opcode |= (i.op[0].regs->reg_num << 3);
6913 if ((i.op[0].regs->reg_flags & RegRex) != 0)
6914 i.rex |= REX_B;
6915 }
6916 else
6917 {
6918 /* The register or float register operand is in operand
6919 0 or 1. */
6920 unsigned int op;
6921
6922 if ((i.types[0].bitfield.reg && i.types[0].bitfield.tbyte)
6923 || operand_type_check (i.types[0], reg))
6924 op = 0;
6925 else
6926 op = 1;
6927 /* Register goes in low 3 bits of opcode. */
6928 i.tm.base_opcode |= i.op[op].regs->reg_num;
6929 if ((i.op[op].regs->reg_flags & RegRex) != 0)
6930 i.rex |= REX_B;
6931 if (!quiet_warnings && i.tm.opcode_modifier.ugh)
6932 {
6933 /* Warn about some common errors, but press on regardless.
6934 The first case can be generated by gcc (<= 2.8.1). */
6935 if (i.operands == 2)
6936 {
6937 /* Reversed arguments on faddp, fsubp, etc. */
6938 as_warn (_("translating to `%s %s%s,%s%s'"), i.tm.name,
6939 register_prefix, i.op[!intel_syntax].regs->reg_name,
6940 register_prefix, i.op[intel_syntax].regs->reg_name);
6941 }
6942 else
6943 {
6944 /* Extraneous `l' suffix on fp insn. */
6945 as_warn (_("translating to `%s %s%s'"), i.tm.name,
6946 register_prefix, i.op[0].regs->reg_name);
6947 }
6948 }
6949 }
6950 }
6951 else if (i.tm.opcode_modifier.modrm)
6952 {
6953 /* The opcode is completed (modulo i.tm.extension_opcode which
6954 must be put into the modrm byte). Now, we make the modrm and
6955 index base bytes based on all the info we've collected. */
6956
6957 default_seg = build_modrm_byte ();
6958 }
6959 else if ((i.tm.base_opcode & ~0x3) == MOV_AX_DISP32)
6960 {
6961 default_seg = &ds;
6962 }
6963 else if (i.tm.opcode_modifier.isstring)
6964 {
6965 /* For the string instructions that allow a segment override
6966 on one of their operands, the default segment is ds. */
6967 default_seg = &ds;
6968 }
6969
6970 if (i.tm.base_opcode == 0x8d /* lea */
6971 && i.seg[0]
6972 && !quiet_warnings)
6973 as_warn (_("segment override on `%s' is ineffectual"), i.tm.name);
6974
6975 /* If a segment was explicitly specified, and the specified segment
6976 is not the default, use an opcode prefix to select it. If we
6977 never figured out what the default segment is, then default_seg
6978 will be zero at this point, and the specified segment prefix will
6979 always be used. */
6980 if ((i.seg[0]) && (i.seg[0] != default_seg))
6981 {
6982 if (!add_prefix (i.seg[0]->seg_prefix))
6983 return 0;
6984 }
6985 return 1;
6986 }
6987
6988 static const seg_entry *
6989 build_modrm_byte (void)
6990 {
6991 const seg_entry *default_seg = 0;
6992 unsigned int source, dest;
6993 int vex_3_sources;
6994
6995 vex_3_sources = i.tm.opcode_modifier.vexsources == VEX3SOURCES;
6996 if (vex_3_sources)
6997 {
6998 unsigned int nds, reg_slot;
6999 expressionS *exp;
7000
7001 dest = i.operands - 1;
7002 nds = dest - 1;
7003
7004 /* There are 2 kinds of instructions:
7005 1. 5 operands: 4 register operands or 3 register operands
7006 plus 1 memory operand plus one Vec_Imm4 operand, VexXDS, and
7007 VexW0 or VexW1. The destination must be either XMM, YMM or
7008 ZMM register.
7009 2. 4 operands: 4 register operands or 3 register operands
7010 plus 1 memory operand, with VexXDS. */
7011 gas_assert ((i.reg_operands == 4
7012 || (i.reg_operands == 3 && i.mem_operands == 1))
7013 && i.tm.opcode_modifier.vexvvvv == VEXXDS
7014 && i.tm.opcode_modifier.vexw
7015 && i.tm.operand_types[dest].bitfield.regsimd);
7016
7017 /* If VexW1 is set, the first non-immediate operand is the source and
7018 the second non-immediate one is encoded in the immediate operand. */
7019 if (i.tm.opcode_modifier.vexw == VEXW1)
7020 {
7021 source = i.imm_operands;
7022 reg_slot = i.imm_operands + 1;
7023 }
7024 else
7025 {
7026 source = i.imm_operands + 1;
7027 reg_slot = i.imm_operands;
7028 }
7029
7030 if (i.imm_operands == 0)
7031 {
7032 /* When there is no immediate operand, generate an 8bit
7033 immediate operand to encode the first operand. */
7034 exp = &im_expressions[i.imm_operands++];
7035 i.op[i.operands].imms = exp;
7036 i.types[i.operands] = imm8;
7037 i.operands++;
7038
7039 gas_assert (i.tm.operand_types[reg_slot].bitfield.regsimd);
7040 exp->X_op = O_constant;
7041 exp->X_add_number = register_number (i.op[reg_slot].regs) << 4;
7042 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
7043 }
7044 else
7045 {
7046 unsigned int imm_slot;
7047
7048 gas_assert (i.imm_operands == 1 && i.types[0].bitfield.vec_imm4);
7049
7050 if (i.tm.opcode_modifier.immext)
7051 {
7052 /* When ImmExt is set, the immediate byte is the last
7053 operand. */
7054 imm_slot = i.operands - 1;
7055 source--;
7056 reg_slot--;
7057 }
7058 else
7059 {
7060 imm_slot = 0;
7061
7062 /* Turn on Imm8 so that output_imm will generate it. */
7063 i.types[imm_slot].bitfield.imm8 = 1;
7064 }
7065
7066 gas_assert (i.tm.operand_types[reg_slot].bitfield.regsimd);
7067 i.op[imm_slot].imms->X_add_number
7068 |= register_number (i.op[reg_slot].regs) << 4;
7069 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
7070 }
7071
7072 gas_assert (i.tm.operand_types[nds].bitfield.regsimd);
7073 i.vex.register_specifier = i.op[nds].regs;
7074 }
7075 else
7076 source = dest = 0;
7077
7078 /* i.reg_operands MUST be the number of real register operands;
7079 implicit registers do not count. If there are 3 register
7080 operands, it must be a instruction with VexNDS. For a
7081 instruction with VexNDD, the destination register is encoded
7082 in VEX prefix. If there are 4 register operands, it must be
7083 a instruction with VEX prefix and 3 sources. */
7084 if (i.mem_operands == 0
7085 && ((i.reg_operands == 2
7086 && i.tm.opcode_modifier.vexvvvv <= VEXXDS)
7087 || (i.reg_operands == 3
7088 && i.tm.opcode_modifier.vexvvvv == VEXXDS)
7089 || (i.reg_operands == 4 && vex_3_sources)))
7090 {
7091 switch (i.operands)
7092 {
7093 case 2:
7094 source = 0;
7095 break;
7096 case 3:
7097 /* When there are 3 operands, one of them may be immediate,
7098 which may be the first or the last operand. Otherwise,
7099 the first operand must be shift count register (cl) or it
7100 is an instruction with VexNDS. */
7101 gas_assert (i.imm_operands == 1
7102 || (i.imm_operands == 0
7103 && (i.tm.opcode_modifier.vexvvvv == VEXXDS
7104 || i.types[0].bitfield.shiftcount)));
7105 if (operand_type_check (i.types[0], imm)
7106 || i.types[0].bitfield.shiftcount)
7107 source = 1;
7108 else
7109 source = 0;
7110 break;
7111 case 4:
7112 /* When there are 4 operands, the first two must be 8bit
7113 immediate operands. The source operand will be the 3rd
7114 one.
7115
7116 For instructions with VexNDS, if the first operand
7117 an imm8, the source operand is the 2nd one. If the last
7118 operand is imm8, the source operand is the first one. */
7119 gas_assert ((i.imm_operands == 2
7120 && i.types[0].bitfield.imm8
7121 && i.types[1].bitfield.imm8)
7122 || (i.tm.opcode_modifier.vexvvvv == VEXXDS
7123 && i.imm_operands == 1
7124 && (i.types[0].bitfield.imm8
7125 || i.types[i.operands - 1].bitfield.imm8
7126 || i.rounding)));
7127 if (i.imm_operands == 2)
7128 source = 2;
7129 else
7130 {
7131 if (i.types[0].bitfield.imm8)
7132 source = 1;
7133 else
7134 source = 0;
7135 }
7136 break;
7137 case 5:
7138 if (is_evex_encoding (&i.tm))
7139 {
7140 /* For EVEX instructions, when there are 5 operands, the
7141 first one must be immediate operand. If the second one
7142 is immediate operand, the source operand is the 3th
7143 one. If the last one is immediate operand, the source
7144 operand is the 2nd one. */
7145 gas_assert (i.imm_operands == 2
7146 && i.tm.opcode_modifier.sae
7147 && operand_type_check (i.types[0], imm));
7148 if (operand_type_check (i.types[1], imm))
7149 source = 2;
7150 else if (operand_type_check (i.types[4], imm))
7151 source = 1;
7152 else
7153 abort ();
7154 }
7155 break;
7156 default:
7157 abort ();
7158 }
7159
7160 if (!vex_3_sources)
7161 {
7162 dest = source + 1;
7163
7164 /* RC/SAE operand could be between DEST and SRC. That happens
7165 when one operand is GPR and the other one is XMM/YMM/ZMM
7166 register. */
7167 if (i.rounding && i.rounding->operand == (int) dest)
7168 dest++;
7169
7170 if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
7171 {
7172 /* For instructions with VexNDS, the register-only source
7173 operand must be a 32/64bit integer, XMM, YMM, ZMM, or mask
7174 register. It is encoded in VEX prefix. We need to
7175 clear RegMem bit before calling operand_type_equal. */
7176
7177 i386_operand_type op;
7178 unsigned int vvvv;
7179
7180 /* Check register-only source operand when two source
7181 operands are swapped. */
7182 if (!i.tm.operand_types[source].bitfield.baseindex
7183 && i.tm.operand_types[dest].bitfield.baseindex)
7184 {
7185 vvvv = source;
7186 source = dest;
7187 }
7188 else
7189 vvvv = dest;
7190
7191 op = i.tm.operand_types[vvvv];
7192 op.bitfield.regmem = 0;
7193 if ((dest + 1) >= i.operands
7194 || ((!op.bitfield.reg
7195 || (!op.bitfield.dword && !op.bitfield.qword))
7196 && !op.bitfield.regsimd
7197 && !operand_type_equal (&op, &regmask)))
7198 abort ();
7199 i.vex.register_specifier = i.op[vvvv].regs;
7200 dest++;
7201 }
7202 }
7203
7204 i.rm.mode = 3;
7205 /* One of the register operands will be encoded in the i.tm.reg
7206 field, the other in the combined i.tm.mode and i.tm.regmem
7207 fields. If no form of this instruction supports a memory
7208 destination operand, then we assume the source operand may
7209 sometimes be a memory operand and so we need to store the
7210 destination in the i.rm.reg field. */
7211 if (!i.tm.operand_types[dest].bitfield.regmem
7212 && operand_type_check (i.tm.operand_types[dest], anymem) == 0)
7213 {
7214 i.rm.reg = i.op[dest].regs->reg_num;
7215 i.rm.regmem = i.op[source].regs->reg_num;
7216 if (i.op[dest].regs->reg_type.bitfield.regmmx
7217 || i.op[source].regs->reg_type.bitfield.regmmx)
7218 i.has_regmmx = TRUE;
7219 else if (i.op[dest].regs->reg_type.bitfield.regsimd
7220 || i.op[source].regs->reg_type.bitfield.regsimd)
7221 {
7222 if (i.types[dest].bitfield.zmmword
7223 || i.types[source].bitfield.zmmword)
7224 i.has_regzmm = TRUE;
7225 else if (i.types[dest].bitfield.ymmword
7226 || i.types[source].bitfield.ymmword)
7227 i.has_regymm = TRUE;
7228 else
7229 i.has_regxmm = TRUE;
7230 }
7231 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
7232 i.rex |= REX_R;
7233 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
7234 i.vrex |= REX_R;
7235 if ((i.op[source].regs->reg_flags & RegRex) != 0)
7236 i.rex |= REX_B;
7237 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
7238 i.vrex |= REX_B;
7239 }
7240 else
7241 {
7242 i.rm.reg = i.op[source].regs->reg_num;
7243 i.rm.regmem = i.op[dest].regs->reg_num;
7244 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
7245 i.rex |= REX_B;
7246 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
7247 i.vrex |= REX_B;
7248 if ((i.op[source].regs->reg_flags & RegRex) != 0)
7249 i.rex |= REX_R;
7250 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
7251 i.vrex |= REX_R;
7252 }
7253 if (flag_code != CODE_64BIT && (i.rex & REX_R))
7254 {
7255 if (!i.types[i.tm.operand_types[0].bitfield.regmem].bitfield.control)
7256 abort ();
7257 i.rex &= ~REX_R;
7258 add_prefix (LOCK_PREFIX_OPCODE);
7259 }
7260 }
7261 else
7262 { /* If it's not 2 reg operands... */
7263 unsigned int mem;
7264
7265 if (i.mem_operands)
7266 {
7267 unsigned int fake_zero_displacement = 0;
7268 unsigned int op;
7269
7270 for (op = 0; op < i.operands; op++)
7271 if (operand_type_check (i.types[op], anymem))
7272 break;
7273 gas_assert (op < i.operands);
7274
7275 if (i.tm.opcode_modifier.vecsib)
7276 {
7277 if (i.index_reg->reg_num == RegIZ)
7278 abort ();
7279
7280 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7281 if (!i.base_reg)
7282 {
7283 i.sib.base = NO_BASE_REGISTER;
7284 i.sib.scale = i.log2_scale_factor;
7285 i.types[op].bitfield.disp8 = 0;
7286 i.types[op].bitfield.disp16 = 0;
7287 i.types[op].bitfield.disp64 = 0;
7288 if (flag_code != CODE_64BIT || i.prefix[ADDR_PREFIX])
7289 {
7290 /* Must be 32 bit */
7291 i.types[op].bitfield.disp32 = 1;
7292 i.types[op].bitfield.disp32s = 0;
7293 }
7294 else
7295 {
7296 i.types[op].bitfield.disp32 = 0;
7297 i.types[op].bitfield.disp32s = 1;
7298 }
7299 }
7300 i.sib.index = i.index_reg->reg_num;
7301 if ((i.index_reg->reg_flags & RegRex) != 0)
7302 i.rex |= REX_X;
7303 if ((i.index_reg->reg_flags & RegVRex) != 0)
7304 i.vrex |= REX_X;
7305 }
7306
7307 default_seg = &ds;
7308
7309 if (i.base_reg == 0)
7310 {
7311 i.rm.mode = 0;
7312 if (!i.disp_operands)
7313 fake_zero_displacement = 1;
7314 if (i.index_reg == 0)
7315 {
7316 i386_operand_type newdisp;
7317
7318 gas_assert (!i.tm.opcode_modifier.vecsib);
7319 /* Operand is just <disp> */
7320 if (flag_code == CODE_64BIT)
7321 {
7322 /* 64bit mode overwrites the 32bit absolute
7323 addressing by RIP relative addressing and
7324 absolute addressing is encoded by one of the
7325 redundant SIB forms. */
7326 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7327 i.sib.base = NO_BASE_REGISTER;
7328 i.sib.index = NO_INDEX_REGISTER;
7329 newdisp = (!i.prefix[ADDR_PREFIX] ? disp32s : disp32);
7330 }
7331 else if ((flag_code == CODE_16BIT)
7332 ^ (i.prefix[ADDR_PREFIX] != 0))
7333 {
7334 i.rm.regmem = NO_BASE_REGISTER_16;
7335 newdisp = disp16;
7336 }
7337 else
7338 {
7339 i.rm.regmem = NO_BASE_REGISTER;
7340 newdisp = disp32;
7341 }
7342 i.types[op] = operand_type_and_not (i.types[op], anydisp);
7343 i.types[op] = operand_type_or (i.types[op], newdisp);
7344 }
7345 else if (!i.tm.opcode_modifier.vecsib)
7346 {
7347 /* !i.base_reg && i.index_reg */
7348 if (i.index_reg->reg_num == RegIZ)
7349 i.sib.index = NO_INDEX_REGISTER;
7350 else
7351 i.sib.index = i.index_reg->reg_num;
7352 i.sib.base = NO_BASE_REGISTER;
7353 i.sib.scale = i.log2_scale_factor;
7354 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7355 i.types[op].bitfield.disp8 = 0;
7356 i.types[op].bitfield.disp16 = 0;
7357 i.types[op].bitfield.disp64 = 0;
7358 if (flag_code != CODE_64BIT || i.prefix[ADDR_PREFIX])
7359 {
7360 /* Must be 32 bit */
7361 i.types[op].bitfield.disp32 = 1;
7362 i.types[op].bitfield.disp32s = 0;
7363 }
7364 else
7365 {
7366 i.types[op].bitfield.disp32 = 0;
7367 i.types[op].bitfield.disp32s = 1;
7368 }
7369 if ((i.index_reg->reg_flags & RegRex) != 0)
7370 i.rex |= REX_X;
7371 }
7372 }
7373 /* RIP addressing for 64bit mode. */
7374 else if (i.base_reg->reg_num == RegIP)
7375 {
7376 gas_assert (!i.tm.opcode_modifier.vecsib);
7377 i.rm.regmem = NO_BASE_REGISTER;
7378 i.types[op].bitfield.disp8 = 0;
7379 i.types[op].bitfield.disp16 = 0;
7380 i.types[op].bitfield.disp32 = 0;
7381 i.types[op].bitfield.disp32s = 1;
7382 i.types[op].bitfield.disp64 = 0;
7383 i.flags[op] |= Operand_PCrel;
7384 if (! i.disp_operands)
7385 fake_zero_displacement = 1;
7386 }
7387 else if (i.base_reg->reg_type.bitfield.word)
7388 {
7389 gas_assert (!i.tm.opcode_modifier.vecsib);
7390 switch (i.base_reg->reg_num)
7391 {
7392 case 3: /* (%bx) */
7393 if (i.index_reg == 0)
7394 i.rm.regmem = 7;
7395 else /* (%bx,%si) -> 0, or (%bx,%di) -> 1 */
7396 i.rm.regmem = i.index_reg->reg_num - 6;
7397 break;
7398 case 5: /* (%bp) */
7399 default_seg = &ss;
7400 if (i.index_reg == 0)
7401 {
7402 i.rm.regmem = 6;
7403 if (operand_type_check (i.types[op], disp) == 0)
7404 {
7405 /* fake (%bp) into 0(%bp) */
7406 i.types[op].bitfield.disp8 = 1;
7407 fake_zero_displacement = 1;
7408 }
7409 }
7410 else /* (%bp,%si) -> 2, or (%bp,%di) -> 3 */
7411 i.rm.regmem = i.index_reg->reg_num - 6 + 2;
7412 break;
7413 default: /* (%si) -> 4 or (%di) -> 5 */
7414 i.rm.regmem = i.base_reg->reg_num - 6 + 4;
7415 }
7416 i.rm.mode = mode_from_disp_size (i.types[op]);
7417 }
7418 else /* i.base_reg and 32/64 bit mode */
7419 {
7420 if (flag_code == CODE_64BIT
7421 && operand_type_check (i.types[op], disp))
7422 {
7423 i.types[op].bitfield.disp16 = 0;
7424 i.types[op].bitfield.disp64 = 0;
7425 if (i.prefix[ADDR_PREFIX] == 0)
7426 {
7427 i.types[op].bitfield.disp32 = 0;
7428 i.types[op].bitfield.disp32s = 1;
7429 }
7430 else
7431 {
7432 i.types[op].bitfield.disp32 = 1;
7433 i.types[op].bitfield.disp32s = 0;
7434 }
7435 }
7436
7437 if (!i.tm.opcode_modifier.vecsib)
7438 i.rm.regmem = i.base_reg->reg_num;
7439 if ((i.base_reg->reg_flags & RegRex) != 0)
7440 i.rex |= REX_B;
7441 i.sib.base = i.base_reg->reg_num;
7442 /* x86-64 ignores REX prefix bit here to avoid decoder
7443 complications. */
7444 if (!(i.base_reg->reg_flags & RegRex)
7445 && (i.base_reg->reg_num == EBP_REG_NUM
7446 || i.base_reg->reg_num == ESP_REG_NUM))
7447 default_seg = &ss;
7448 if (i.base_reg->reg_num == 5 && i.disp_operands == 0)
7449 {
7450 fake_zero_displacement = 1;
7451 i.types[op].bitfield.disp8 = 1;
7452 }
7453 i.sib.scale = i.log2_scale_factor;
7454 if (i.index_reg == 0)
7455 {
7456 gas_assert (!i.tm.opcode_modifier.vecsib);
7457 /* <disp>(%esp) becomes two byte modrm with no index
7458 register. We've already stored the code for esp
7459 in i.rm.regmem ie. ESCAPE_TO_TWO_BYTE_ADDRESSING.
7460 Any base register besides %esp will not use the
7461 extra modrm byte. */
7462 i.sib.index = NO_INDEX_REGISTER;
7463 }
7464 else if (!i.tm.opcode_modifier.vecsib)
7465 {
7466 if (i.index_reg->reg_num == RegIZ)
7467 i.sib.index = NO_INDEX_REGISTER;
7468 else
7469 i.sib.index = i.index_reg->reg_num;
7470 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7471 if ((i.index_reg->reg_flags & RegRex) != 0)
7472 i.rex |= REX_X;
7473 }
7474
7475 if (i.disp_operands
7476 && (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
7477 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL))
7478 i.rm.mode = 0;
7479 else
7480 {
7481 if (!fake_zero_displacement
7482 && !i.disp_operands
7483 && i.disp_encoding)
7484 {
7485 fake_zero_displacement = 1;
7486 if (i.disp_encoding == disp_encoding_8bit)
7487 i.types[op].bitfield.disp8 = 1;
7488 else
7489 i.types[op].bitfield.disp32 = 1;
7490 }
7491 i.rm.mode = mode_from_disp_size (i.types[op]);
7492 }
7493 }
7494
7495 if (fake_zero_displacement)
7496 {
7497 /* Fakes a zero displacement assuming that i.types[op]
7498 holds the correct displacement size. */
7499 expressionS *exp;
7500
7501 gas_assert (i.op[op].disps == 0);
7502 exp = &disp_expressions[i.disp_operands++];
7503 i.op[op].disps = exp;
7504 exp->X_op = O_constant;
7505 exp->X_add_number = 0;
7506 exp->X_add_symbol = (symbolS *) 0;
7507 exp->X_op_symbol = (symbolS *) 0;
7508 }
7509
7510 mem = op;
7511 }
7512 else
7513 mem = ~0;
7514
7515 if (i.tm.opcode_modifier.vexsources == XOP2SOURCES)
7516 {
7517 if (operand_type_check (i.types[0], imm))
7518 i.vex.register_specifier = NULL;
7519 else
7520 {
7521 /* VEX.vvvv encodes one of the sources when the first
7522 operand is not an immediate. */
7523 if (i.tm.opcode_modifier.vexw == VEXW0)
7524 i.vex.register_specifier = i.op[0].regs;
7525 else
7526 i.vex.register_specifier = i.op[1].regs;
7527 }
7528
7529 /* Destination is a XMM register encoded in the ModRM.reg
7530 and VEX.R bit. */
7531 i.rm.reg = i.op[2].regs->reg_num;
7532 if ((i.op[2].regs->reg_flags & RegRex) != 0)
7533 i.rex |= REX_R;
7534
7535 /* ModRM.rm and VEX.B encodes the other source. */
7536 if (!i.mem_operands)
7537 {
7538 i.rm.mode = 3;
7539
7540 if (i.tm.opcode_modifier.vexw == VEXW0)
7541 i.rm.regmem = i.op[1].regs->reg_num;
7542 else
7543 i.rm.regmem = i.op[0].regs->reg_num;
7544
7545 if ((i.op[1].regs->reg_flags & RegRex) != 0)
7546 i.rex |= REX_B;
7547 }
7548 }
7549 else if (i.tm.opcode_modifier.vexvvvv == VEXLWP)
7550 {
7551 i.vex.register_specifier = i.op[2].regs;
7552 if (!i.mem_operands)
7553 {
7554 i.rm.mode = 3;
7555 i.rm.regmem = i.op[1].regs->reg_num;
7556 if ((i.op[1].regs->reg_flags & RegRex) != 0)
7557 i.rex |= REX_B;
7558 }
7559 }
7560 /* Fill in i.rm.reg or i.rm.regmem field with register operand
7561 (if any) based on i.tm.extension_opcode. Again, we must be
7562 careful to make sure that segment/control/debug/test/MMX
7563 registers are coded into the i.rm.reg field. */
7564 else if (i.reg_operands)
7565 {
7566 unsigned int op;
7567 unsigned int vex_reg = ~0;
7568
7569 for (op = 0; op < i.operands; op++)
7570 {
7571 if (i.types[op].bitfield.reg
7572 || i.types[op].bitfield.regbnd
7573 || i.types[op].bitfield.regmask
7574 || i.types[op].bitfield.sreg2
7575 || i.types[op].bitfield.sreg3
7576 || i.types[op].bitfield.control
7577 || i.types[op].bitfield.debug
7578 || i.types[op].bitfield.test)
7579 break;
7580 if (i.types[op].bitfield.regsimd)
7581 {
7582 if (i.types[op].bitfield.zmmword)
7583 i.has_regzmm = TRUE;
7584 else if (i.types[op].bitfield.ymmword)
7585 i.has_regymm = TRUE;
7586 else
7587 i.has_regxmm = TRUE;
7588 break;
7589 }
7590 if (i.types[op].bitfield.regmmx)
7591 {
7592 i.has_regmmx = TRUE;
7593 break;
7594 }
7595 }
7596
7597 if (vex_3_sources)
7598 op = dest;
7599 else if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
7600 {
7601 /* For instructions with VexNDS, the register-only
7602 source operand is encoded in VEX prefix. */
7603 gas_assert (mem != (unsigned int) ~0);
7604
7605 if (op > mem)
7606 {
7607 vex_reg = op++;
7608 gas_assert (op < i.operands);
7609 }
7610 else
7611 {
7612 /* Check register-only source operand when two source
7613 operands are swapped. */
7614 if (!i.tm.operand_types[op].bitfield.baseindex
7615 && i.tm.operand_types[op + 1].bitfield.baseindex)
7616 {
7617 vex_reg = op;
7618 op += 2;
7619 gas_assert (mem == (vex_reg + 1)
7620 && op < i.operands);
7621 }
7622 else
7623 {
7624 vex_reg = op + 1;
7625 gas_assert (vex_reg < i.operands);
7626 }
7627 }
7628 }
7629 else if (i.tm.opcode_modifier.vexvvvv == VEXNDD)
7630 {
7631 /* For instructions with VexNDD, the register destination
7632 is encoded in VEX prefix. */
7633 if (i.mem_operands == 0)
7634 {
7635 /* There is no memory operand. */
7636 gas_assert ((op + 2) == i.operands);
7637 vex_reg = op + 1;
7638 }
7639 else
7640 {
7641 /* There are only 2 non-immediate operands. */
7642 gas_assert (op < i.imm_operands + 2
7643 && i.operands == i.imm_operands + 2);
7644 vex_reg = i.imm_operands + 1;
7645 }
7646 }
7647 else
7648 gas_assert (op < i.operands);
7649
7650 if (vex_reg != (unsigned int) ~0)
7651 {
7652 i386_operand_type *type = &i.tm.operand_types[vex_reg];
7653
7654 if ((!type->bitfield.reg
7655 || (!type->bitfield.dword && !type->bitfield.qword))
7656 && !type->bitfield.regsimd
7657 && !operand_type_equal (type, &regmask))
7658 abort ();
7659
7660 i.vex.register_specifier = i.op[vex_reg].regs;
7661 }
7662
7663 /* Don't set OP operand twice. */
7664 if (vex_reg != op)
7665 {
7666 /* If there is an extension opcode to put here, the
7667 register number must be put into the regmem field. */
7668 if (i.tm.extension_opcode != None)
7669 {
7670 i.rm.regmem = i.op[op].regs->reg_num;
7671 if ((i.op[op].regs->reg_flags & RegRex) != 0)
7672 i.rex |= REX_B;
7673 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
7674 i.vrex |= REX_B;
7675 }
7676 else
7677 {
7678 i.rm.reg = i.op[op].regs->reg_num;
7679 if ((i.op[op].regs->reg_flags & RegRex) != 0)
7680 i.rex |= REX_R;
7681 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
7682 i.vrex |= REX_R;
7683 }
7684 }
7685
7686 /* Now, if no memory operand has set i.rm.mode = 0, 1, 2 we
7687 must set it to 3 to indicate this is a register operand
7688 in the regmem field. */
7689 if (!i.mem_operands)
7690 i.rm.mode = 3;
7691 }
7692
7693 /* Fill in i.rm.reg field with extension opcode (if any). */
7694 if (i.tm.extension_opcode != None)
7695 i.rm.reg = i.tm.extension_opcode;
7696 }
7697 return default_seg;
7698 }
7699
7700 static void
7701 output_branch (void)
7702 {
7703 char *p;
7704 int size;
7705 int code16;
7706 int prefix;
7707 relax_substateT subtype;
7708 symbolS *sym;
7709 offsetT off;
7710
7711 code16 = flag_code == CODE_16BIT ? CODE16 : 0;
7712 size = i.disp_encoding == disp_encoding_32bit ? BIG : SMALL;
7713
7714 prefix = 0;
7715 if (i.prefix[DATA_PREFIX] != 0)
7716 {
7717 prefix = 1;
7718 i.prefixes -= 1;
7719 code16 ^= CODE16;
7720 }
7721 /* Pentium4 branch hints. */
7722 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
7723 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
7724 {
7725 prefix++;
7726 i.prefixes--;
7727 }
7728 if (i.prefix[REX_PREFIX] != 0)
7729 {
7730 prefix++;
7731 i.prefixes--;
7732 }
7733
7734 /* BND prefixed jump. */
7735 if (i.prefix[BND_PREFIX] != 0)
7736 {
7737 FRAG_APPEND_1_CHAR (i.prefix[BND_PREFIX]);
7738 i.prefixes -= 1;
7739 }
7740
7741 if (i.prefixes != 0 && !intel_syntax)
7742 as_warn (_("skipping prefixes on this instruction"));
7743
7744 /* It's always a symbol; End frag & setup for relax.
7745 Make sure there is enough room in this frag for the largest
7746 instruction we may generate in md_convert_frag. This is 2
7747 bytes for the opcode and room for the prefix and largest
7748 displacement. */
7749 frag_grow (prefix + 2 + 4);
7750 /* Prefix and 1 opcode byte go in fr_fix. */
7751 p = frag_more (prefix + 1);
7752 if (i.prefix[DATA_PREFIX] != 0)
7753 *p++ = DATA_PREFIX_OPCODE;
7754 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE
7755 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE)
7756 *p++ = i.prefix[SEG_PREFIX];
7757 if (i.prefix[REX_PREFIX] != 0)
7758 *p++ = i.prefix[REX_PREFIX];
7759 *p = i.tm.base_opcode;
7760
7761 if ((unsigned char) *p == JUMP_PC_RELATIVE)
7762 subtype = ENCODE_RELAX_STATE (UNCOND_JUMP, size);
7763 else if (cpu_arch_flags.bitfield.cpui386)
7764 subtype = ENCODE_RELAX_STATE (COND_JUMP, size);
7765 else
7766 subtype = ENCODE_RELAX_STATE (COND_JUMP86, size);
7767 subtype |= code16;
7768
7769 sym = i.op[0].disps->X_add_symbol;
7770 off = i.op[0].disps->X_add_number;
7771
7772 if (i.op[0].disps->X_op != O_constant
7773 && i.op[0].disps->X_op != O_symbol)
7774 {
7775 /* Handle complex expressions. */
7776 sym = make_expr_symbol (i.op[0].disps);
7777 off = 0;
7778 }
7779
7780 /* 1 possible extra opcode + 4 byte displacement go in var part.
7781 Pass reloc in fr_var. */
7782 frag_var (rs_machine_dependent, 5, i.reloc[0], subtype, sym, off, p);
7783 }
7784
7785 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7786 /* Return TRUE iff PLT32 relocation should be used for branching to
7787 symbol S. */
7788
7789 static bfd_boolean
7790 need_plt32_p (symbolS *s)
7791 {
7792 /* PLT32 relocation is ELF only. */
7793 if (!IS_ELF)
7794 return FALSE;
7795
7796 #ifdef TE_SOLARIS
7797 /* Don't emit PLT32 relocation on Solaris: neither native linker nor
7798 krtld support it. */
7799 return FALSE;
7800 #endif
7801
7802 /* Since there is no need to prepare for PLT branch on x86-64, we
7803 can generate R_X86_64_PLT32, instead of R_X86_64_PC32, which can
7804 be used as a marker for 32-bit PC-relative branches. */
7805 if (!object_64bit)
7806 return FALSE;
7807
7808 /* Weak or undefined symbol need PLT32 relocation. */
7809 if (S_IS_WEAK (s) || !S_IS_DEFINED (s))
7810 return TRUE;
7811
7812 /* Non-global symbol doesn't need PLT32 relocation. */
7813 if (! S_IS_EXTERNAL (s))
7814 return FALSE;
7815
7816 /* Other global symbols need PLT32 relocation. NB: Symbol with
7817 non-default visibilities are treated as normal global symbol
7818 so that PLT32 relocation can be used as a marker for 32-bit
7819 PC-relative branches. It is useful for linker relaxation. */
7820 return TRUE;
7821 }
7822 #endif
7823
7824 static void
7825 output_jump (void)
7826 {
7827 char *p;
7828 int size;
7829 fixS *fixP;
7830 bfd_reloc_code_real_type jump_reloc = i.reloc[0];
7831
7832 if (i.tm.opcode_modifier.jumpbyte)
7833 {
7834 /* This is a loop or jecxz type instruction. */
7835 size = 1;
7836 if (i.prefix[ADDR_PREFIX] != 0)
7837 {
7838 FRAG_APPEND_1_CHAR (ADDR_PREFIX_OPCODE);
7839 i.prefixes -= 1;
7840 }
7841 /* Pentium4 branch hints. */
7842 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
7843 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
7844 {
7845 FRAG_APPEND_1_CHAR (i.prefix[SEG_PREFIX]);
7846 i.prefixes--;
7847 }
7848 }
7849 else
7850 {
7851 int code16;
7852
7853 code16 = 0;
7854 if (flag_code == CODE_16BIT)
7855 code16 = CODE16;
7856
7857 if (i.prefix[DATA_PREFIX] != 0)
7858 {
7859 FRAG_APPEND_1_CHAR (DATA_PREFIX_OPCODE);
7860 i.prefixes -= 1;
7861 code16 ^= CODE16;
7862 }
7863
7864 size = 4;
7865 if (code16)
7866 size = 2;
7867 }
7868
7869 if (i.prefix[REX_PREFIX] != 0)
7870 {
7871 FRAG_APPEND_1_CHAR (i.prefix[REX_PREFIX]);
7872 i.prefixes -= 1;
7873 }
7874
7875 /* BND prefixed jump. */
7876 if (i.prefix[BND_PREFIX] != 0)
7877 {
7878 FRAG_APPEND_1_CHAR (i.prefix[BND_PREFIX]);
7879 i.prefixes -= 1;
7880 }
7881
7882 if (i.prefixes != 0 && !intel_syntax)
7883 as_warn (_("skipping prefixes on this instruction"));
7884
7885 p = frag_more (i.tm.opcode_length + size);
7886 switch (i.tm.opcode_length)
7887 {
7888 case 2:
7889 *p++ = i.tm.base_opcode >> 8;
7890 /* Fall through. */
7891 case 1:
7892 *p++ = i.tm.base_opcode;
7893 break;
7894 default:
7895 abort ();
7896 }
7897
7898 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7899 if (size == 4
7900 && jump_reloc == NO_RELOC
7901 && need_plt32_p (i.op[0].disps->X_add_symbol))
7902 jump_reloc = BFD_RELOC_X86_64_PLT32;
7903 #endif
7904
7905 jump_reloc = reloc (size, 1, 1, jump_reloc);
7906
7907 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal, size,
7908 i.op[0].disps, 1, jump_reloc);
7909
7910 /* All jumps handled here are signed, but don't use a signed limit
7911 check for 32 and 16 bit jumps as we want to allow wrap around at
7912 4G and 64k respectively. */
7913 if (size == 1)
7914 fixP->fx_signed = 1;
7915 }
7916
7917 static void
7918 output_interseg_jump (void)
7919 {
7920 char *p;
7921 int size;
7922 int prefix;
7923 int code16;
7924
7925 code16 = 0;
7926 if (flag_code == CODE_16BIT)
7927 code16 = CODE16;
7928
7929 prefix = 0;
7930 if (i.prefix[DATA_PREFIX] != 0)
7931 {
7932 prefix = 1;
7933 i.prefixes -= 1;
7934 code16 ^= CODE16;
7935 }
7936 if (i.prefix[REX_PREFIX] != 0)
7937 {
7938 prefix++;
7939 i.prefixes -= 1;
7940 }
7941
7942 size = 4;
7943 if (code16)
7944 size = 2;
7945
7946 if (i.prefixes != 0 && !intel_syntax)
7947 as_warn (_("skipping prefixes on this instruction"));
7948
7949 /* 1 opcode; 2 segment; offset */
7950 p = frag_more (prefix + 1 + 2 + size);
7951
7952 if (i.prefix[DATA_PREFIX] != 0)
7953 *p++ = DATA_PREFIX_OPCODE;
7954
7955 if (i.prefix[REX_PREFIX] != 0)
7956 *p++ = i.prefix[REX_PREFIX];
7957
7958 *p++ = i.tm.base_opcode;
7959 if (i.op[1].imms->X_op == O_constant)
7960 {
7961 offsetT n = i.op[1].imms->X_add_number;
7962
7963 if (size == 2
7964 && !fits_in_unsigned_word (n)
7965 && !fits_in_signed_word (n))
7966 {
7967 as_bad (_("16-bit jump out of range"));
7968 return;
7969 }
7970 md_number_to_chars (p, n, size);
7971 }
7972 else
7973 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
7974 i.op[1].imms, 0, reloc (size, 0, 0, i.reloc[1]));
7975 if (i.op[0].imms->X_op != O_constant)
7976 as_bad (_("can't handle non absolute segment in `%s'"),
7977 i.tm.name);
7978 md_number_to_chars (p + size, (valueT) i.op[0].imms->X_add_number, 2);
7979 }
7980
7981 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7982 void
7983 x86_cleanup (void)
7984 {
7985 char *p;
7986 asection *seg = now_seg;
7987 subsegT subseg = now_subseg;
7988 asection *sec;
7989 unsigned int alignment, align_size_1;
7990 unsigned int isa_1_descsz, feature_2_descsz, descsz;
7991 unsigned int isa_1_descsz_raw, feature_2_descsz_raw;
7992 unsigned int padding;
7993
7994 if (!IS_ELF || !x86_used_note)
7995 return;
7996
7997 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_X86;
7998
7999 /* The .note.gnu.property section layout:
8000
8001 Field Length Contents
8002 ---- ---- ----
8003 n_namsz 4 4
8004 n_descsz 4 The note descriptor size
8005 n_type 4 NT_GNU_PROPERTY_TYPE_0
8006 n_name 4 "GNU"
8007 n_desc n_descsz The program property array
8008 .... .... ....
8009 */
8010
8011 /* Create the .note.gnu.property section. */
8012 sec = subseg_new (NOTE_GNU_PROPERTY_SECTION_NAME, 0);
8013 bfd_set_section_flags (stdoutput, sec,
8014 (SEC_ALLOC
8015 | SEC_LOAD
8016 | SEC_DATA
8017 | SEC_HAS_CONTENTS
8018 | SEC_READONLY));
8019
8020 if (get_elf_backend_data (stdoutput)->s->elfclass == ELFCLASS64)
8021 {
8022 align_size_1 = 7;
8023 alignment = 3;
8024 }
8025 else
8026 {
8027 align_size_1 = 3;
8028 alignment = 2;
8029 }
8030
8031 bfd_set_section_alignment (stdoutput, sec, alignment);
8032 elf_section_type (sec) = SHT_NOTE;
8033
8034 /* GNU_PROPERTY_X86_ISA_1_USED: 4-byte type + 4-byte data size
8035 + 4-byte data */
8036 isa_1_descsz_raw = 4 + 4 + 4;
8037 /* Align GNU_PROPERTY_X86_ISA_1_USED. */
8038 isa_1_descsz = (isa_1_descsz_raw + align_size_1) & ~align_size_1;
8039
8040 feature_2_descsz_raw = isa_1_descsz;
8041 /* GNU_PROPERTY_X86_FEATURE_2_USED: 4-byte type + 4-byte data size
8042 + 4-byte data */
8043 feature_2_descsz_raw += 4 + 4 + 4;
8044 /* Align GNU_PROPERTY_X86_FEATURE_2_USED. */
8045 feature_2_descsz = ((feature_2_descsz_raw + align_size_1)
8046 & ~align_size_1);
8047
8048 descsz = feature_2_descsz;
8049 /* Section size: n_namsz + n_descsz + n_type + n_name + n_descsz. */
8050 p = frag_more (4 + 4 + 4 + 4 + descsz);
8051
8052 /* Write n_namsz. */
8053 md_number_to_chars (p, (valueT) 4, 4);
8054
8055 /* Write n_descsz. */
8056 md_number_to_chars (p + 4, (valueT) descsz, 4);
8057
8058 /* Write n_type. */
8059 md_number_to_chars (p + 4 * 2, (valueT) NT_GNU_PROPERTY_TYPE_0, 4);
8060
8061 /* Write n_name. */
8062 memcpy (p + 4 * 3, "GNU", 4);
8063
8064 /* Write 4-byte type. */
8065 md_number_to_chars (p + 4 * 4,
8066 (valueT) GNU_PROPERTY_X86_ISA_1_USED, 4);
8067
8068 /* Write 4-byte data size. */
8069 md_number_to_chars (p + 4 * 5, (valueT) 4, 4);
8070
8071 /* Write 4-byte data. */
8072 md_number_to_chars (p + 4 * 6, (valueT) x86_isa_1_used, 4);
8073
8074 /* Zero out paddings. */
8075 padding = isa_1_descsz - isa_1_descsz_raw;
8076 if (padding)
8077 memset (p + 4 * 7, 0, padding);
8078
8079 /* Write 4-byte type. */
8080 md_number_to_chars (p + isa_1_descsz + 4 * 4,
8081 (valueT) GNU_PROPERTY_X86_FEATURE_2_USED, 4);
8082
8083 /* Write 4-byte data size. */
8084 md_number_to_chars (p + isa_1_descsz + 4 * 5, (valueT) 4, 4);
8085
8086 /* Write 4-byte data. */
8087 md_number_to_chars (p + isa_1_descsz + 4 * 6,
8088 (valueT) x86_feature_2_used, 4);
8089
8090 /* Zero out paddings. */
8091 padding = feature_2_descsz - feature_2_descsz_raw;
8092 if (padding)
8093 memset (p + isa_1_descsz + 4 * 7, 0, padding);
8094
8095 /* We probably can't restore the current segment, for there likely
8096 isn't one yet... */
8097 if (seg && subseg)
8098 subseg_set (seg, subseg);
8099 }
8100 #endif
8101
8102 static void
8103 output_insn (void)
8104 {
8105 fragS *insn_start_frag;
8106 offsetT insn_start_off;
8107
8108 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8109 if (IS_ELF && x86_used_note)
8110 {
8111 if (i.tm.cpu_flags.bitfield.cpucmov)
8112 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_CMOV;
8113 if (i.tm.cpu_flags.bitfield.cpusse)
8114 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE;
8115 if (i.tm.cpu_flags.bitfield.cpusse2)
8116 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE2;
8117 if (i.tm.cpu_flags.bitfield.cpusse3)
8118 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE3;
8119 if (i.tm.cpu_flags.bitfield.cpussse3)
8120 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSSE3;
8121 if (i.tm.cpu_flags.bitfield.cpusse4_1)
8122 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE4_1;
8123 if (i.tm.cpu_flags.bitfield.cpusse4_2)
8124 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE4_2;
8125 if (i.tm.cpu_flags.bitfield.cpuavx)
8126 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX;
8127 if (i.tm.cpu_flags.bitfield.cpuavx2)
8128 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX2;
8129 if (i.tm.cpu_flags.bitfield.cpufma)
8130 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_FMA;
8131 if (i.tm.cpu_flags.bitfield.cpuavx512f)
8132 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512F;
8133 if (i.tm.cpu_flags.bitfield.cpuavx512cd)
8134 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512CD;
8135 if (i.tm.cpu_flags.bitfield.cpuavx512er)
8136 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512ER;
8137 if (i.tm.cpu_flags.bitfield.cpuavx512pf)
8138 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512PF;
8139 if (i.tm.cpu_flags.bitfield.cpuavx512vl)
8140 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512VL;
8141 if (i.tm.cpu_flags.bitfield.cpuavx512dq)
8142 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512DQ;
8143 if (i.tm.cpu_flags.bitfield.cpuavx512bw)
8144 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512BW;
8145 if (i.tm.cpu_flags.bitfield.cpuavx512_4fmaps)
8146 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_4FMAPS;
8147 if (i.tm.cpu_flags.bitfield.cpuavx512_4vnniw)
8148 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_4VNNIW;
8149 if (i.tm.cpu_flags.bitfield.cpuavx512_bitalg)
8150 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_BITALG;
8151 if (i.tm.cpu_flags.bitfield.cpuavx512ifma)
8152 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_IFMA;
8153 if (i.tm.cpu_flags.bitfield.cpuavx512vbmi)
8154 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_VBMI;
8155 if (i.tm.cpu_flags.bitfield.cpuavx512_vbmi2)
8156 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_VBMI2;
8157 if (i.tm.cpu_flags.bitfield.cpuavx512_vnni)
8158 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_VNNI;
8159 if (i.tm.cpu_flags.bitfield.cpuavx512_bf16)
8160 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_BF16;
8161
8162 if (i.tm.cpu_flags.bitfield.cpu8087
8163 || i.tm.cpu_flags.bitfield.cpu287
8164 || i.tm.cpu_flags.bitfield.cpu387
8165 || i.tm.cpu_flags.bitfield.cpu687
8166 || i.tm.cpu_flags.bitfield.cpufisttp)
8167 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_X87;
8168 /* Don't set GNU_PROPERTY_X86_FEATURE_2_MMX for prefetchtXXX nor
8169 Xfence instructions. */
8170 if (i.tm.base_opcode != 0xf18
8171 && i.tm.base_opcode != 0xf0d
8172 && i.tm.base_opcode != 0xfae
8173 && (i.has_regmmx
8174 || i.tm.cpu_flags.bitfield.cpummx
8175 || i.tm.cpu_flags.bitfield.cpua3dnow
8176 || i.tm.cpu_flags.bitfield.cpua3dnowa))
8177 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_MMX;
8178 if (i.has_regxmm)
8179 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XMM;
8180 if (i.has_regymm)
8181 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_YMM;
8182 if (i.has_regzmm)
8183 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_ZMM;
8184 if (i.tm.cpu_flags.bitfield.cpufxsr)
8185 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_FXSR;
8186 if (i.tm.cpu_flags.bitfield.cpuxsave)
8187 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XSAVE;
8188 if (i.tm.cpu_flags.bitfield.cpuxsaveopt)
8189 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XSAVEOPT;
8190 if (i.tm.cpu_flags.bitfield.cpuxsavec)
8191 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XSAVEC;
8192 }
8193 #endif
8194
8195 /* Tie dwarf2 debug info to the address at the start of the insn.
8196 We can't do this after the insn has been output as the current
8197 frag may have been closed off. eg. by frag_var. */
8198 dwarf2_emit_insn (0);
8199
8200 insn_start_frag = frag_now;
8201 insn_start_off = frag_now_fix ();
8202
8203 /* Output jumps. */
8204 if (i.tm.opcode_modifier.jump)
8205 output_branch ();
8206 else if (i.tm.opcode_modifier.jumpbyte
8207 || i.tm.opcode_modifier.jumpdword)
8208 output_jump ();
8209 else if (i.tm.opcode_modifier.jumpintersegment)
8210 output_interseg_jump ();
8211 else
8212 {
8213 /* Output normal instructions here. */
8214 char *p;
8215 unsigned char *q;
8216 unsigned int j;
8217 unsigned int prefix;
8218
8219 if (avoid_fence
8220 && i.tm.base_opcode == 0xfae
8221 && i.operands == 1
8222 && i.imm_operands == 1
8223 && (i.op[0].imms->X_add_number == 0xe8
8224 || i.op[0].imms->X_add_number == 0xf0
8225 || i.op[0].imms->X_add_number == 0xf8))
8226 {
8227 /* Encode lfence, mfence, and sfence as
8228 f0 83 04 24 00 lock addl $0x0, (%{re}sp). */
8229 offsetT val = 0x240483f0ULL;
8230 p = frag_more (5);
8231 md_number_to_chars (p, val, 5);
8232 return;
8233 }
8234
8235 /* Some processors fail on LOCK prefix. This options makes
8236 assembler ignore LOCK prefix and serves as a workaround. */
8237 if (omit_lock_prefix)
8238 {
8239 if (i.tm.base_opcode == LOCK_PREFIX_OPCODE)
8240 return;
8241 i.prefix[LOCK_PREFIX] = 0;
8242 }
8243
8244 /* Since the VEX/EVEX prefix contains the implicit prefix, we
8245 don't need the explicit prefix. */
8246 if (!i.tm.opcode_modifier.vex && !i.tm.opcode_modifier.evex)
8247 {
8248 switch (i.tm.opcode_length)
8249 {
8250 case 3:
8251 if (i.tm.base_opcode & 0xff000000)
8252 {
8253 prefix = (i.tm.base_opcode >> 24) & 0xff;
8254 add_prefix (prefix);
8255 }
8256 break;
8257 case 2:
8258 if ((i.tm.base_opcode & 0xff0000) != 0)
8259 {
8260 prefix = (i.tm.base_opcode >> 16) & 0xff;
8261 if (!i.tm.cpu_flags.bitfield.cpupadlock
8262 || prefix != REPE_PREFIX_OPCODE
8263 || (i.prefix[REP_PREFIX] != REPE_PREFIX_OPCODE))
8264 add_prefix (prefix);
8265 }
8266 break;
8267 case 1:
8268 break;
8269 case 0:
8270 /* Check for pseudo prefixes. */
8271 as_bad_where (insn_start_frag->fr_file,
8272 insn_start_frag->fr_line,
8273 _("pseudo prefix without instruction"));
8274 return;
8275 default:
8276 abort ();
8277 }
8278
8279 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
8280 /* For x32, add a dummy REX_OPCODE prefix for mov/add with
8281 R_X86_64_GOTTPOFF relocation so that linker can safely
8282 perform IE->LE optimization. */
8283 if (x86_elf_abi == X86_64_X32_ABI
8284 && i.operands == 2
8285 && i.reloc[0] == BFD_RELOC_X86_64_GOTTPOFF
8286 && i.prefix[REX_PREFIX] == 0)
8287 add_prefix (REX_OPCODE);
8288 #endif
8289
8290 /* The prefix bytes. */
8291 for (j = ARRAY_SIZE (i.prefix), q = i.prefix; j > 0; j--, q++)
8292 if (*q)
8293 FRAG_APPEND_1_CHAR (*q);
8294 }
8295 else
8296 {
8297 for (j = 0, q = i.prefix; j < ARRAY_SIZE (i.prefix); j++, q++)
8298 if (*q)
8299 switch (j)
8300 {
8301 case REX_PREFIX:
8302 /* REX byte is encoded in VEX prefix. */
8303 break;
8304 case SEG_PREFIX:
8305 case ADDR_PREFIX:
8306 FRAG_APPEND_1_CHAR (*q);
8307 break;
8308 default:
8309 /* There should be no other prefixes for instructions
8310 with VEX prefix. */
8311 abort ();
8312 }
8313
8314 /* For EVEX instructions i.vrex should become 0 after
8315 build_evex_prefix. For VEX instructions upper 16 registers
8316 aren't available, so VREX should be 0. */
8317 if (i.vrex)
8318 abort ();
8319 /* Now the VEX prefix. */
8320 p = frag_more (i.vex.length);
8321 for (j = 0; j < i.vex.length; j++)
8322 p[j] = i.vex.bytes[j];
8323 }
8324
8325 /* Now the opcode; be careful about word order here! */
8326 if (i.tm.opcode_length == 1)
8327 {
8328 FRAG_APPEND_1_CHAR (i.tm.base_opcode);
8329 }
8330 else
8331 {
8332 switch (i.tm.opcode_length)
8333 {
8334 case 4:
8335 p = frag_more (4);
8336 *p++ = (i.tm.base_opcode >> 24) & 0xff;
8337 *p++ = (i.tm.base_opcode >> 16) & 0xff;
8338 break;
8339 case 3:
8340 p = frag_more (3);
8341 *p++ = (i.tm.base_opcode >> 16) & 0xff;
8342 break;
8343 case 2:
8344 p = frag_more (2);
8345 break;
8346 default:
8347 abort ();
8348 break;
8349 }
8350
8351 /* Put out high byte first: can't use md_number_to_chars! */
8352 *p++ = (i.tm.base_opcode >> 8) & 0xff;
8353 *p = i.tm.base_opcode & 0xff;
8354 }
8355
8356 /* Now the modrm byte and sib byte (if present). */
8357 if (i.tm.opcode_modifier.modrm)
8358 {
8359 FRAG_APPEND_1_CHAR ((i.rm.regmem << 0
8360 | i.rm.reg << 3
8361 | i.rm.mode << 6));
8362 /* If i.rm.regmem == ESP (4)
8363 && i.rm.mode != (Register mode)
8364 && not 16 bit
8365 ==> need second modrm byte. */
8366 if (i.rm.regmem == ESCAPE_TO_TWO_BYTE_ADDRESSING
8367 && i.rm.mode != 3
8368 && !(i.base_reg && i.base_reg->reg_type.bitfield.word))
8369 FRAG_APPEND_1_CHAR ((i.sib.base << 0
8370 | i.sib.index << 3
8371 | i.sib.scale << 6));
8372 }
8373
8374 if (i.disp_operands)
8375 output_disp (insn_start_frag, insn_start_off);
8376
8377 if (i.imm_operands)
8378 output_imm (insn_start_frag, insn_start_off);
8379 }
8380
8381 #ifdef DEBUG386
8382 if (flag_debug)
8383 {
8384 pi ("" /*line*/, &i);
8385 }
8386 #endif /* DEBUG386 */
8387 }
8388
8389 /* Return the size of the displacement operand N. */
8390
8391 static int
8392 disp_size (unsigned int n)
8393 {
8394 int size = 4;
8395
8396 if (i.types[n].bitfield.disp64)
8397 size = 8;
8398 else if (i.types[n].bitfield.disp8)
8399 size = 1;
8400 else if (i.types[n].bitfield.disp16)
8401 size = 2;
8402 return size;
8403 }
8404
8405 /* Return the size of the immediate operand N. */
8406
8407 static int
8408 imm_size (unsigned int n)
8409 {
8410 int size = 4;
8411 if (i.types[n].bitfield.imm64)
8412 size = 8;
8413 else if (i.types[n].bitfield.imm8 || i.types[n].bitfield.imm8s)
8414 size = 1;
8415 else if (i.types[n].bitfield.imm16)
8416 size = 2;
8417 return size;
8418 }
8419
8420 static void
8421 output_disp (fragS *insn_start_frag, offsetT insn_start_off)
8422 {
8423 char *p;
8424 unsigned int n;
8425
8426 for (n = 0; n < i.operands; n++)
8427 {
8428 if (operand_type_check (i.types[n], disp))
8429 {
8430 if (i.op[n].disps->X_op == O_constant)
8431 {
8432 int size = disp_size (n);
8433 offsetT val = i.op[n].disps->X_add_number;
8434
8435 val = offset_in_range (val >> (size == 1 ? i.memshift : 0),
8436 size);
8437 p = frag_more (size);
8438 md_number_to_chars (p, val, size);
8439 }
8440 else
8441 {
8442 enum bfd_reloc_code_real reloc_type;
8443 int size = disp_size (n);
8444 int sign = i.types[n].bitfield.disp32s;
8445 int pcrel = (i.flags[n] & Operand_PCrel) != 0;
8446 fixS *fixP;
8447
8448 /* We can't have 8 bit displacement here. */
8449 gas_assert (!i.types[n].bitfield.disp8);
8450
8451 /* The PC relative address is computed relative
8452 to the instruction boundary, so in case immediate
8453 fields follows, we need to adjust the value. */
8454 if (pcrel && i.imm_operands)
8455 {
8456 unsigned int n1;
8457 int sz = 0;
8458
8459 for (n1 = 0; n1 < i.operands; n1++)
8460 if (operand_type_check (i.types[n1], imm))
8461 {
8462 /* Only one immediate is allowed for PC
8463 relative address. */
8464 gas_assert (sz == 0);
8465 sz = imm_size (n1);
8466 i.op[n].disps->X_add_number -= sz;
8467 }
8468 /* We should find the immediate. */
8469 gas_assert (sz != 0);
8470 }
8471
8472 p = frag_more (size);
8473 reloc_type = reloc (size, pcrel, sign, i.reloc[n]);
8474 if (GOT_symbol
8475 && GOT_symbol == i.op[n].disps->X_add_symbol
8476 && (((reloc_type == BFD_RELOC_32
8477 || reloc_type == BFD_RELOC_X86_64_32S
8478 || (reloc_type == BFD_RELOC_64
8479 && object_64bit))
8480 && (i.op[n].disps->X_op == O_symbol
8481 || (i.op[n].disps->X_op == O_add
8482 && ((symbol_get_value_expression
8483 (i.op[n].disps->X_op_symbol)->X_op)
8484 == O_subtract))))
8485 || reloc_type == BFD_RELOC_32_PCREL))
8486 {
8487 offsetT add;
8488
8489 if (insn_start_frag == frag_now)
8490 add = (p - frag_now->fr_literal) - insn_start_off;
8491 else
8492 {
8493 fragS *fr;
8494
8495 add = insn_start_frag->fr_fix - insn_start_off;
8496 for (fr = insn_start_frag->fr_next;
8497 fr && fr != frag_now; fr = fr->fr_next)
8498 add += fr->fr_fix;
8499 add += p - frag_now->fr_literal;
8500 }
8501
8502 if (!object_64bit)
8503 {
8504 reloc_type = BFD_RELOC_386_GOTPC;
8505 i.op[n].imms->X_add_number += add;
8506 }
8507 else if (reloc_type == BFD_RELOC_64)
8508 reloc_type = BFD_RELOC_X86_64_GOTPC64;
8509 else
8510 /* Don't do the adjustment for x86-64, as there
8511 the pcrel addressing is relative to the _next_
8512 insn, and that is taken care of in other code. */
8513 reloc_type = BFD_RELOC_X86_64_GOTPC32;
8514 }
8515 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal,
8516 size, i.op[n].disps, pcrel,
8517 reloc_type);
8518 /* Check for "call/jmp *mem", "mov mem, %reg",
8519 "test %reg, mem" and "binop mem, %reg" where binop
8520 is one of adc, add, and, cmp, or, sbb, sub, xor
8521 instructions without data prefix. Always generate
8522 R_386_GOT32X for "sym*GOT" operand in 32-bit mode. */
8523 if (i.prefix[DATA_PREFIX] == 0
8524 && (generate_relax_relocations
8525 || (!object_64bit
8526 && i.rm.mode == 0
8527 && i.rm.regmem == 5))
8528 && (i.rm.mode == 2
8529 || (i.rm.mode == 0 && i.rm.regmem == 5))
8530 && ((i.operands == 1
8531 && i.tm.base_opcode == 0xff
8532 && (i.rm.reg == 2 || i.rm.reg == 4))
8533 || (i.operands == 2
8534 && (i.tm.base_opcode == 0x8b
8535 || i.tm.base_opcode == 0x85
8536 || (i.tm.base_opcode & 0xc7) == 0x03))))
8537 {
8538 if (object_64bit)
8539 {
8540 fixP->fx_tcbit = i.rex != 0;
8541 if (i.base_reg
8542 && (i.base_reg->reg_num == RegIP))
8543 fixP->fx_tcbit2 = 1;
8544 }
8545 else
8546 fixP->fx_tcbit2 = 1;
8547 }
8548 }
8549 }
8550 }
8551 }
8552
8553 static void
8554 output_imm (fragS *insn_start_frag, offsetT insn_start_off)
8555 {
8556 char *p;
8557 unsigned int n;
8558
8559 for (n = 0; n < i.operands; n++)
8560 {
8561 /* Skip SAE/RC Imm operand in EVEX. They are already handled. */
8562 if (i.rounding && (int) n == i.rounding->operand)
8563 continue;
8564
8565 if (operand_type_check (i.types[n], imm))
8566 {
8567 if (i.op[n].imms->X_op == O_constant)
8568 {
8569 int size = imm_size (n);
8570 offsetT val;
8571
8572 val = offset_in_range (i.op[n].imms->X_add_number,
8573 size);
8574 p = frag_more (size);
8575 md_number_to_chars (p, val, size);
8576 }
8577 else
8578 {
8579 /* Not absolute_section.
8580 Need a 32-bit fixup (don't support 8bit
8581 non-absolute imms). Try to support other
8582 sizes ... */
8583 enum bfd_reloc_code_real reloc_type;
8584 int size = imm_size (n);
8585 int sign;
8586
8587 if (i.types[n].bitfield.imm32s
8588 && (i.suffix == QWORD_MNEM_SUFFIX
8589 || (!i.suffix && i.tm.opcode_modifier.no_lsuf)))
8590 sign = 1;
8591 else
8592 sign = 0;
8593
8594 p = frag_more (size);
8595 reloc_type = reloc (size, 0, sign, i.reloc[n]);
8596
8597 /* This is tough to explain. We end up with this one if we
8598 * have operands that look like
8599 * "_GLOBAL_OFFSET_TABLE_+[.-.L284]". The goal here is to
8600 * obtain the absolute address of the GOT, and it is strongly
8601 * preferable from a performance point of view to avoid using
8602 * a runtime relocation for this. The actual sequence of
8603 * instructions often look something like:
8604 *
8605 * call .L66
8606 * .L66:
8607 * popl %ebx
8608 * addl $_GLOBAL_OFFSET_TABLE_+[.-.L66],%ebx
8609 *
8610 * The call and pop essentially return the absolute address
8611 * of the label .L66 and store it in %ebx. The linker itself
8612 * will ultimately change the first operand of the addl so
8613 * that %ebx points to the GOT, but to keep things simple, the
8614 * .o file must have this operand set so that it generates not
8615 * the absolute address of .L66, but the absolute address of
8616 * itself. This allows the linker itself simply treat a GOTPC
8617 * relocation as asking for a pcrel offset to the GOT to be
8618 * added in, and the addend of the relocation is stored in the
8619 * operand field for the instruction itself.
8620 *
8621 * Our job here is to fix the operand so that it would add
8622 * the correct offset so that %ebx would point to itself. The
8623 * thing that is tricky is that .-.L66 will point to the
8624 * beginning of the instruction, so we need to further modify
8625 * the operand so that it will point to itself. There are
8626 * other cases where you have something like:
8627 *
8628 * .long $_GLOBAL_OFFSET_TABLE_+[.-.L66]
8629 *
8630 * and here no correction would be required. Internally in
8631 * the assembler we treat operands of this form as not being
8632 * pcrel since the '.' is explicitly mentioned, and I wonder
8633 * whether it would simplify matters to do it this way. Who
8634 * knows. In earlier versions of the PIC patches, the
8635 * pcrel_adjust field was used to store the correction, but
8636 * since the expression is not pcrel, I felt it would be
8637 * confusing to do it this way. */
8638
8639 if ((reloc_type == BFD_RELOC_32
8640 || reloc_type == BFD_RELOC_X86_64_32S
8641 || reloc_type == BFD_RELOC_64)
8642 && GOT_symbol
8643 && GOT_symbol == i.op[n].imms->X_add_symbol
8644 && (i.op[n].imms->X_op == O_symbol
8645 || (i.op[n].imms->X_op == O_add
8646 && ((symbol_get_value_expression
8647 (i.op[n].imms->X_op_symbol)->X_op)
8648 == O_subtract))))
8649 {
8650 offsetT add;
8651
8652 if (insn_start_frag == frag_now)
8653 add = (p - frag_now->fr_literal) - insn_start_off;
8654 else
8655 {
8656 fragS *fr;
8657
8658 add = insn_start_frag->fr_fix - insn_start_off;
8659 for (fr = insn_start_frag->fr_next;
8660 fr && fr != frag_now; fr = fr->fr_next)
8661 add += fr->fr_fix;
8662 add += p - frag_now->fr_literal;
8663 }
8664
8665 if (!object_64bit)
8666 reloc_type = BFD_RELOC_386_GOTPC;
8667 else if (size == 4)
8668 reloc_type = BFD_RELOC_X86_64_GOTPC32;
8669 else if (size == 8)
8670 reloc_type = BFD_RELOC_X86_64_GOTPC64;
8671 i.op[n].imms->X_add_number += add;
8672 }
8673 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
8674 i.op[n].imms, 0, reloc_type);
8675 }
8676 }
8677 }
8678 }
8679 \f
8680 /* x86_cons_fix_new is called via the expression parsing code when a
8681 reloc is needed. We use this hook to get the correct .got reloc. */
8682 static int cons_sign = -1;
8683
8684 void
8685 x86_cons_fix_new (fragS *frag, unsigned int off, unsigned int len,
8686 expressionS *exp, bfd_reloc_code_real_type r)
8687 {
8688 r = reloc (len, 0, cons_sign, r);
8689
8690 #ifdef TE_PE
8691 if (exp->X_op == O_secrel)
8692 {
8693 exp->X_op = O_symbol;
8694 r = BFD_RELOC_32_SECREL;
8695 }
8696 #endif
8697
8698 fix_new_exp (frag, off, len, exp, 0, r);
8699 }
8700
8701 /* Export the ABI address size for use by TC_ADDRESS_BYTES for the
8702 purpose of the `.dc.a' internal pseudo-op. */
8703
8704 int
8705 x86_address_bytes (void)
8706 {
8707 if ((stdoutput->arch_info->mach & bfd_mach_x64_32))
8708 return 4;
8709 return stdoutput->arch_info->bits_per_address / 8;
8710 }
8711
8712 #if !(defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) || defined (OBJ_MACH_O)) \
8713 || defined (LEX_AT)
8714 # define lex_got(reloc, adjust, types) NULL
8715 #else
8716 /* Parse operands of the form
8717 <symbol>@GOTOFF+<nnn>
8718 and similar .plt or .got references.
8719
8720 If we find one, set up the correct relocation in RELOC and copy the
8721 input string, minus the `@GOTOFF' into a malloc'd buffer for
8722 parsing by the calling routine. Return this buffer, and if ADJUST
8723 is non-null set it to the length of the string we removed from the
8724 input line. Otherwise return NULL. */
8725 static char *
8726 lex_got (enum bfd_reloc_code_real *rel,
8727 int *adjust,
8728 i386_operand_type *types)
8729 {
8730 /* Some of the relocations depend on the size of what field is to
8731 be relocated. But in our callers i386_immediate and i386_displacement
8732 we don't yet know the operand size (this will be set by insn
8733 matching). Hence we record the word32 relocation here,
8734 and adjust the reloc according to the real size in reloc(). */
8735 static const struct {
8736 const char *str;
8737 int len;
8738 const enum bfd_reloc_code_real rel[2];
8739 const i386_operand_type types64;
8740 } gotrel[] = {
8741 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8742 { STRING_COMMA_LEN ("SIZE"), { BFD_RELOC_SIZE32,
8743 BFD_RELOC_SIZE32 },
8744 OPERAND_TYPE_IMM32_64 },
8745 #endif
8746 { STRING_COMMA_LEN ("PLTOFF"), { _dummy_first_bfd_reloc_code_real,
8747 BFD_RELOC_X86_64_PLTOFF64 },
8748 OPERAND_TYPE_IMM64 },
8749 { STRING_COMMA_LEN ("PLT"), { BFD_RELOC_386_PLT32,
8750 BFD_RELOC_X86_64_PLT32 },
8751 OPERAND_TYPE_IMM32_32S_DISP32 },
8752 { STRING_COMMA_LEN ("GOTPLT"), { _dummy_first_bfd_reloc_code_real,
8753 BFD_RELOC_X86_64_GOTPLT64 },
8754 OPERAND_TYPE_IMM64_DISP64 },
8755 { STRING_COMMA_LEN ("GOTOFF"), { BFD_RELOC_386_GOTOFF,
8756 BFD_RELOC_X86_64_GOTOFF64 },
8757 OPERAND_TYPE_IMM64_DISP64 },
8758 { STRING_COMMA_LEN ("GOTPCREL"), { _dummy_first_bfd_reloc_code_real,
8759 BFD_RELOC_X86_64_GOTPCREL },
8760 OPERAND_TYPE_IMM32_32S_DISP32 },
8761 { STRING_COMMA_LEN ("TLSGD"), { BFD_RELOC_386_TLS_GD,
8762 BFD_RELOC_X86_64_TLSGD },
8763 OPERAND_TYPE_IMM32_32S_DISP32 },
8764 { STRING_COMMA_LEN ("TLSLDM"), { BFD_RELOC_386_TLS_LDM,
8765 _dummy_first_bfd_reloc_code_real },
8766 OPERAND_TYPE_NONE },
8767 { STRING_COMMA_LEN ("TLSLD"), { _dummy_first_bfd_reloc_code_real,
8768 BFD_RELOC_X86_64_TLSLD },
8769 OPERAND_TYPE_IMM32_32S_DISP32 },
8770 { STRING_COMMA_LEN ("GOTTPOFF"), { BFD_RELOC_386_TLS_IE_32,
8771 BFD_RELOC_X86_64_GOTTPOFF },
8772 OPERAND_TYPE_IMM32_32S_DISP32 },
8773 { STRING_COMMA_LEN ("TPOFF"), { BFD_RELOC_386_TLS_LE_32,
8774 BFD_RELOC_X86_64_TPOFF32 },
8775 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
8776 { STRING_COMMA_LEN ("NTPOFF"), { BFD_RELOC_386_TLS_LE,
8777 _dummy_first_bfd_reloc_code_real },
8778 OPERAND_TYPE_NONE },
8779 { STRING_COMMA_LEN ("DTPOFF"), { BFD_RELOC_386_TLS_LDO_32,
8780 BFD_RELOC_X86_64_DTPOFF32 },
8781 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
8782 { STRING_COMMA_LEN ("GOTNTPOFF"),{ BFD_RELOC_386_TLS_GOTIE,
8783 _dummy_first_bfd_reloc_code_real },
8784 OPERAND_TYPE_NONE },
8785 { STRING_COMMA_LEN ("INDNTPOFF"),{ BFD_RELOC_386_TLS_IE,
8786 _dummy_first_bfd_reloc_code_real },
8787 OPERAND_TYPE_NONE },
8788 { STRING_COMMA_LEN ("GOT"), { BFD_RELOC_386_GOT32,
8789 BFD_RELOC_X86_64_GOT32 },
8790 OPERAND_TYPE_IMM32_32S_64_DISP32 },
8791 { STRING_COMMA_LEN ("TLSDESC"), { BFD_RELOC_386_TLS_GOTDESC,
8792 BFD_RELOC_X86_64_GOTPC32_TLSDESC },
8793 OPERAND_TYPE_IMM32_32S_DISP32 },
8794 { STRING_COMMA_LEN ("TLSCALL"), { BFD_RELOC_386_TLS_DESC_CALL,
8795 BFD_RELOC_X86_64_TLSDESC_CALL },
8796 OPERAND_TYPE_IMM32_32S_DISP32 },
8797 };
8798 char *cp;
8799 unsigned int j;
8800
8801 #if defined (OBJ_MAYBE_ELF)
8802 if (!IS_ELF)
8803 return NULL;
8804 #endif
8805
8806 for (cp = input_line_pointer; *cp != '@'; cp++)
8807 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
8808 return NULL;
8809
8810 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
8811 {
8812 int len = gotrel[j].len;
8813 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
8814 {
8815 if (gotrel[j].rel[object_64bit] != 0)
8816 {
8817 int first, second;
8818 char *tmpbuf, *past_reloc;
8819
8820 *rel = gotrel[j].rel[object_64bit];
8821
8822 if (types)
8823 {
8824 if (flag_code != CODE_64BIT)
8825 {
8826 types->bitfield.imm32 = 1;
8827 types->bitfield.disp32 = 1;
8828 }
8829 else
8830 *types = gotrel[j].types64;
8831 }
8832
8833 if (j != 0 && GOT_symbol == NULL)
8834 GOT_symbol = symbol_find_or_make (GLOBAL_OFFSET_TABLE_NAME);
8835
8836 /* The length of the first part of our input line. */
8837 first = cp - input_line_pointer;
8838
8839 /* The second part goes from after the reloc token until
8840 (and including) an end_of_line char or comma. */
8841 past_reloc = cp + 1 + len;
8842 cp = past_reloc;
8843 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
8844 ++cp;
8845 second = cp + 1 - past_reloc;
8846
8847 /* Allocate and copy string. The trailing NUL shouldn't
8848 be necessary, but be safe. */
8849 tmpbuf = XNEWVEC (char, first + second + 2);
8850 memcpy (tmpbuf, input_line_pointer, first);
8851 if (second != 0 && *past_reloc != ' ')
8852 /* Replace the relocation token with ' ', so that
8853 errors like foo@GOTOFF1 will be detected. */
8854 tmpbuf[first++] = ' ';
8855 else
8856 /* Increment length by 1 if the relocation token is
8857 removed. */
8858 len++;
8859 if (adjust)
8860 *adjust = len;
8861 memcpy (tmpbuf + first, past_reloc, second);
8862 tmpbuf[first + second] = '\0';
8863 return tmpbuf;
8864 }
8865
8866 as_bad (_("@%s reloc is not supported with %d-bit output format"),
8867 gotrel[j].str, 1 << (5 + object_64bit));
8868 return NULL;
8869 }
8870 }
8871
8872 /* Might be a symbol version string. Don't as_bad here. */
8873 return NULL;
8874 }
8875 #endif
8876
8877 #ifdef TE_PE
8878 #ifdef lex_got
8879 #undef lex_got
8880 #endif
8881 /* Parse operands of the form
8882 <symbol>@SECREL32+<nnn>
8883
8884 If we find one, set up the correct relocation in RELOC and copy the
8885 input string, minus the `@SECREL32' into a malloc'd buffer for
8886 parsing by the calling routine. Return this buffer, and if ADJUST
8887 is non-null set it to the length of the string we removed from the
8888 input line. Otherwise return NULL.
8889
8890 This function is copied from the ELF version above adjusted for PE targets. */
8891
8892 static char *
8893 lex_got (enum bfd_reloc_code_real *rel ATTRIBUTE_UNUSED,
8894 int *adjust ATTRIBUTE_UNUSED,
8895 i386_operand_type *types)
8896 {
8897 static const struct
8898 {
8899 const char *str;
8900 int len;
8901 const enum bfd_reloc_code_real rel[2];
8902 const i386_operand_type types64;
8903 }
8904 gotrel[] =
8905 {
8906 { STRING_COMMA_LEN ("SECREL32"), { BFD_RELOC_32_SECREL,
8907 BFD_RELOC_32_SECREL },
8908 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
8909 };
8910
8911 char *cp;
8912 unsigned j;
8913
8914 for (cp = input_line_pointer; *cp != '@'; cp++)
8915 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
8916 return NULL;
8917
8918 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
8919 {
8920 int len = gotrel[j].len;
8921
8922 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
8923 {
8924 if (gotrel[j].rel[object_64bit] != 0)
8925 {
8926 int first, second;
8927 char *tmpbuf, *past_reloc;
8928
8929 *rel = gotrel[j].rel[object_64bit];
8930 if (adjust)
8931 *adjust = len;
8932
8933 if (types)
8934 {
8935 if (flag_code != CODE_64BIT)
8936 {
8937 types->bitfield.imm32 = 1;
8938 types->bitfield.disp32 = 1;
8939 }
8940 else
8941 *types = gotrel[j].types64;
8942 }
8943
8944 /* The length of the first part of our input line. */
8945 first = cp - input_line_pointer;
8946
8947 /* The second part goes from after the reloc token until
8948 (and including) an end_of_line char or comma. */
8949 past_reloc = cp + 1 + len;
8950 cp = past_reloc;
8951 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
8952 ++cp;
8953 second = cp + 1 - past_reloc;
8954
8955 /* Allocate and copy string. The trailing NUL shouldn't
8956 be necessary, but be safe. */
8957 tmpbuf = XNEWVEC (char, first + second + 2);
8958 memcpy (tmpbuf, input_line_pointer, first);
8959 if (second != 0 && *past_reloc != ' ')
8960 /* Replace the relocation token with ' ', so that
8961 errors like foo@SECLREL321 will be detected. */
8962 tmpbuf[first++] = ' ';
8963 memcpy (tmpbuf + first, past_reloc, second);
8964 tmpbuf[first + second] = '\0';
8965 return tmpbuf;
8966 }
8967
8968 as_bad (_("@%s reloc is not supported with %d-bit output format"),
8969 gotrel[j].str, 1 << (5 + object_64bit));
8970 return NULL;
8971 }
8972 }
8973
8974 /* Might be a symbol version string. Don't as_bad here. */
8975 return NULL;
8976 }
8977
8978 #endif /* TE_PE */
8979
8980 bfd_reloc_code_real_type
8981 x86_cons (expressionS *exp, int size)
8982 {
8983 bfd_reloc_code_real_type got_reloc = NO_RELOC;
8984
8985 intel_syntax = -intel_syntax;
8986
8987 exp->X_md = 0;
8988 if (size == 4 || (object_64bit && size == 8))
8989 {
8990 /* Handle @GOTOFF and the like in an expression. */
8991 char *save;
8992 char *gotfree_input_line;
8993 int adjust = 0;
8994
8995 save = input_line_pointer;
8996 gotfree_input_line = lex_got (&got_reloc, &adjust, NULL);
8997 if (gotfree_input_line)
8998 input_line_pointer = gotfree_input_line;
8999
9000 expression (exp);
9001
9002 if (gotfree_input_line)
9003 {
9004 /* expression () has merrily parsed up to the end of line,
9005 or a comma - in the wrong buffer. Transfer how far
9006 input_line_pointer has moved to the right buffer. */
9007 input_line_pointer = (save
9008 + (input_line_pointer - gotfree_input_line)
9009 + adjust);
9010 free (gotfree_input_line);
9011 if (exp->X_op == O_constant
9012 || exp->X_op == O_absent
9013 || exp->X_op == O_illegal
9014 || exp->X_op == O_register
9015 || exp->X_op == O_big)
9016 {
9017 char c = *input_line_pointer;
9018 *input_line_pointer = 0;
9019 as_bad (_("missing or invalid expression `%s'"), save);
9020 *input_line_pointer = c;
9021 }
9022 else if ((got_reloc == BFD_RELOC_386_PLT32
9023 || got_reloc == BFD_RELOC_X86_64_PLT32)
9024 && exp->X_op != O_symbol)
9025 {
9026 char c = *input_line_pointer;
9027 *input_line_pointer = 0;
9028 as_bad (_("invalid PLT expression `%s'"), save);
9029 *input_line_pointer = c;
9030 }
9031 }
9032 }
9033 else
9034 expression (exp);
9035
9036 intel_syntax = -intel_syntax;
9037
9038 if (intel_syntax)
9039 i386_intel_simplify (exp);
9040
9041 return got_reloc;
9042 }
9043
9044 static void
9045 signed_cons (int size)
9046 {
9047 if (flag_code == CODE_64BIT)
9048 cons_sign = 1;
9049 cons (size);
9050 cons_sign = -1;
9051 }
9052
9053 #ifdef TE_PE
9054 static void
9055 pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
9056 {
9057 expressionS exp;
9058
9059 do
9060 {
9061 expression (&exp);
9062 if (exp.X_op == O_symbol)
9063 exp.X_op = O_secrel;
9064
9065 emit_expr (&exp, 4);
9066 }
9067 while (*input_line_pointer++ == ',');
9068
9069 input_line_pointer--;
9070 demand_empty_rest_of_line ();
9071 }
9072 #endif
9073
9074 /* Handle Vector operations. */
9075
9076 static char *
9077 check_VecOperations (char *op_string, char *op_end)
9078 {
9079 const reg_entry *mask;
9080 const char *saved;
9081 char *end_op;
9082
9083 while (*op_string
9084 && (op_end == NULL || op_string < op_end))
9085 {
9086 saved = op_string;
9087 if (*op_string == '{')
9088 {
9089 op_string++;
9090
9091 /* Check broadcasts. */
9092 if (strncmp (op_string, "1to", 3) == 0)
9093 {
9094 int bcst_type;
9095
9096 if (i.broadcast)
9097 goto duplicated_vec_op;
9098
9099 op_string += 3;
9100 if (*op_string == '8')
9101 bcst_type = 8;
9102 else if (*op_string == '4')
9103 bcst_type = 4;
9104 else if (*op_string == '2')
9105 bcst_type = 2;
9106 else if (*op_string == '1'
9107 && *(op_string+1) == '6')
9108 {
9109 bcst_type = 16;
9110 op_string++;
9111 }
9112 else
9113 {
9114 as_bad (_("Unsupported broadcast: `%s'"), saved);
9115 return NULL;
9116 }
9117 op_string++;
9118
9119 broadcast_op.type = bcst_type;
9120 broadcast_op.operand = this_operand;
9121 broadcast_op.bytes = 0;
9122 i.broadcast = &broadcast_op;
9123 }
9124 /* Check masking operation. */
9125 else if ((mask = parse_register (op_string, &end_op)) != NULL)
9126 {
9127 /* k0 can't be used for write mask. */
9128 if (!mask->reg_type.bitfield.regmask || mask->reg_num == 0)
9129 {
9130 as_bad (_("`%s%s' can't be used for write mask"),
9131 register_prefix, mask->reg_name);
9132 return NULL;
9133 }
9134
9135 if (!i.mask)
9136 {
9137 mask_op.mask = mask;
9138 mask_op.zeroing = 0;
9139 mask_op.operand = this_operand;
9140 i.mask = &mask_op;
9141 }
9142 else
9143 {
9144 if (i.mask->mask)
9145 goto duplicated_vec_op;
9146
9147 i.mask->mask = mask;
9148
9149 /* Only "{z}" is allowed here. No need to check
9150 zeroing mask explicitly. */
9151 if (i.mask->operand != this_operand)
9152 {
9153 as_bad (_("invalid write mask `%s'"), saved);
9154 return NULL;
9155 }
9156 }
9157
9158 op_string = end_op;
9159 }
9160 /* Check zeroing-flag for masking operation. */
9161 else if (*op_string == 'z')
9162 {
9163 if (!i.mask)
9164 {
9165 mask_op.mask = NULL;
9166 mask_op.zeroing = 1;
9167 mask_op.operand = this_operand;
9168 i.mask = &mask_op;
9169 }
9170 else
9171 {
9172 if (i.mask->zeroing)
9173 {
9174 duplicated_vec_op:
9175 as_bad (_("duplicated `%s'"), saved);
9176 return NULL;
9177 }
9178
9179 i.mask->zeroing = 1;
9180
9181 /* Only "{%k}" is allowed here. No need to check mask
9182 register explicitly. */
9183 if (i.mask->operand != this_operand)
9184 {
9185 as_bad (_("invalid zeroing-masking `%s'"),
9186 saved);
9187 return NULL;
9188 }
9189 }
9190
9191 op_string++;
9192 }
9193 else
9194 goto unknown_vec_op;
9195
9196 if (*op_string != '}')
9197 {
9198 as_bad (_("missing `}' in `%s'"), saved);
9199 return NULL;
9200 }
9201 op_string++;
9202
9203 /* Strip whitespace since the addition of pseudo prefixes
9204 changed how the scrubber treats '{'. */
9205 if (is_space_char (*op_string))
9206 ++op_string;
9207
9208 continue;
9209 }
9210 unknown_vec_op:
9211 /* We don't know this one. */
9212 as_bad (_("unknown vector operation: `%s'"), saved);
9213 return NULL;
9214 }
9215
9216 if (i.mask && i.mask->zeroing && !i.mask->mask)
9217 {
9218 as_bad (_("zeroing-masking only allowed with write mask"));
9219 return NULL;
9220 }
9221
9222 return op_string;
9223 }
9224
9225 static int
9226 i386_immediate (char *imm_start)
9227 {
9228 char *save_input_line_pointer;
9229 char *gotfree_input_line;
9230 segT exp_seg = 0;
9231 expressionS *exp;
9232 i386_operand_type types;
9233
9234 operand_type_set (&types, ~0);
9235
9236 if (i.imm_operands == MAX_IMMEDIATE_OPERANDS)
9237 {
9238 as_bad (_("at most %d immediate operands are allowed"),
9239 MAX_IMMEDIATE_OPERANDS);
9240 return 0;
9241 }
9242
9243 exp = &im_expressions[i.imm_operands++];
9244 i.op[this_operand].imms = exp;
9245
9246 if (is_space_char (*imm_start))
9247 ++imm_start;
9248
9249 save_input_line_pointer = input_line_pointer;
9250 input_line_pointer = imm_start;
9251
9252 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
9253 if (gotfree_input_line)
9254 input_line_pointer = gotfree_input_line;
9255
9256 exp_seg = expression (exp);
9257
9258 SKIP_WHITESPACE ();
9259
9260 /* Handle vector operations. */
9261 if (*input_line_pointer == '{')
9262 {
9263 input_line_pointer = check_VecOperations (input_line_pointer,
9264 NULL);
9265 if (input_line_pointer == NULL)
9266 return 0;
9267 }
9268
9269 if (*input_line_pointer)
9270 as_bad (_("junk `%s' after expression"), input_line_pointer);
9271
9272 input_line_pointer = save_input_line_pointer;
9273 if (gotfree_input_line)
9274 {
9275 free (gotfree_input_line);
9276
9277 if (exp->X_op == O_constant || exp->X_op == O_register)
9278 exp->X_op = O_illegal;
9279 }
9280
9281 return i386_finalize_immediate (exp_seg, exp, types, imm_start);
9282 }
9283
9284 static int
9285 i386_finalize_immediate (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
9286 i386_operand_type types, const char *imm_start)
9287 {
9288 if (exp->X_op == O_absent || exp->X_op == O_illegal || exp->X_op == O_big)
9289 {
9290 if (imm_start)
9291 as_bad (_("missing or invalid immediate expression `%s'"),
9292 imm_start);
9293 return 0;
9294 }
9295 else if (exp->X_op == O_constant)
9296 {
9297 /* Size it properly later. */
9298 i.types[this_operand].bitfield.imm64 = 1;
9299 /* If not 64bit, sign extend val. */
9300 if (flag_code != CODE_64BIT
9301 && (exp->X_add_number & ~(((addressT) 2 << 31) - 1)) == 0)
9302 exp->X_add_number
9303 = (exp->X_add_number ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
9304 }
9305 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
9306 else if (OUTPUT_FLAVOR == bfd_target_aout_flavour
9307 && exp_seg != absolute_section
9308 && exp_seg != text_section
9309 && exp_seg != data_section
9310 && exp_seg != bss_section
9311 && exp_seg != undefined_section
9312 && !bfd_is_com_section (exp_seg))
9313 {
9314 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
9315 return 0;
9316 }
9317 #endif
9318 else if (!intel_syntax && exp_seg == reg_section)
9319 {
9320 if (imm_start)
9321 as_bad (_("illegal immediate register operand %s"), imm_start);
9322 return 0;
9323 }
9324 else
9325 {
9326 /* This is an address. The size of the address will be
9327 determined later, depending on destination register,
9328 suffix, or the default for the section. */
9329 i.types[this_operand].bitfield.imm8 = 1;
9330 i.types[this_operand].bitfield.imm16 = 1;
9331 i.types[this_operand].bitfield.imm32 = 1;
9332 i.types[this_operand].bitfield.imm32s = 1;
9333 i.types[this_operand].bitfield.imm64 = 1;
9334 i.types[this_operand] = operand_type_and (i.types[this_operand],
9335 types);
9336 }
9337
9338 return 1;
9339 }
9340
9341 static char *
9342 i386_scale (char *scale)
9343 {
9344 offsetT val;
9345 char *save = input_line_pointer;
9346
9347 input_line_pointer = scale;
9348 val = get_absolute_expression ();
9349
9350 switch (val)
9351 {
9352 case 1:
9353 i.log2_scale_factor = 0;
9354 break;
9355 case 2:
9356 i.log2_scale_factor = 1;
9357 break;
9358 case 4:
9359 i.log2_scale_factor = 2;
9360 break;
9361 case 8:
9362 i.log2_scale_factor = 3;
9363 break;
9364 default:
9365 {
9366 char sep = *input_line_pointer;
9367
9368 *input_line_pointer = '\0';
9369 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
9370 scale);
9371 *input_line_pointer = sep;
9372 input_line_pointer = save;
9373 return NULL;
9374 }
9375 }
9376 if (i.log2_scale_factor != 0 && i.index_reg == 0)
9377 {
9378 as_warn (_("scale factor of %d without an index register"),
9379 1 << i.log2_scale_factor);
9380 i.log2_scale_factor = 0;
9381 }
9382 scale = input_line_pointer;
9383 input_line_pointer = save;
9384 return scale;
9385 }
9386
9387 static int
9388 i386_displacement (char *disp_start, char *disp_end)
9389 {
9390 expressionS *exp;
9391 segT exp_seg = 0;
9392 char *save_input_line_pointer;
9393 char *gotfree_input_line;
9394 int override;
9395 i386_operand_type bigdisp, types = anydisp;
9396 int ret;
9397
9398 if (i.disp_operands == MAX_MEMORY_OPERANDS)
9399 {
9400 as_bad (_("at most %d displacement operands are allowed"),
9401 MAX_MEMORY_OPERANDS);
9402 return 0;
9403 }
9404
9405 operand_type_set (&bigdisp, 0);
9406 if ((i.types[this_operand].bitfield.jumpabsolute)
9407 || (!current_templates->start->opcode_modifier.jump
9408 && !current_templates->start->opcode_modifier.jumpdword))
9409 {
9410 bigdisp.bitfield.disp32 = 1;
9411 override = (i.prefix[ADDR_PREFIX] != 0);
9412 if (flag_code == CODE_64BIT)
9413 {
9414 if (!override)
9415 {
9416 bigdisp.bitfield.disp32s = 1;
9417 bigdisp.bitfield.disp64 = 1;
9418 }
9419 }
9420 else if ((flag_code == CODE_16BIT) ^ override)
9421 {
9422 bigdisp.bitfield.disp32 = 0;
9423 bigdisp.bitfield.disp16 = 1;
9424 }
9425 }
9426 else
9427 {
9428 /* For PC-relative branches, the width of the displacement
9429 is dependent upon data size, not address size. */
9430 override = (i.prefix[DATA_PREFIX] != 0);
9431 if (flag_code == CODE_64BIT)
9432 {
9433 if (override || i.suffix == WORD_MNEM_SUFFIX)
9434 bigdisp.bitfield.disp16 = 1;
9435 else
9436 {
9437 bigdisp.bitfield.disp32 = 1;
9438 bigdisp.bitfield.disp32s = 1;
9439 }
9440 }
9441 else
9442 {
9443 if (!override)
9444 override = (i.suffix == (flag_code != CODE_16BIT
9445 ? WORD_MNEM_SUFFIX
9446 : LONG_MNEM_SUFFIX));
9447 bigdisp.bitfield.disp32 = 1;
9448 if ((flag_code == CODE_16BIT) ^ override)
9449 {
9450 bigdisp.bitfield.disp32 = 0;
9451 bigdisp.bitfield.disp16 = 1;
9452 }
9453 }
9454 }
9455 i.types[this_operand] = operand_type_or (i.types[this_operand],
9456 bigdisp);
9457
9458 exp = &disp_expressions[i.disp_operands];
9459 i.op[this_operand].disps = exp;
9460 i.disp_operands++;
9461 save_input_line_pointer = input_line_pointer;
9462 input_line_pointer = disp_start;
9463 END_STRING_AND_SAVE (disp_end);
9464
9465 #ifndef GCC_ASM_O_HACK
9466 #define GCC_ASM_O_HACK 0
9467 #endif
9468 #if GCC_ASM_O_HACK
9469 END_STRING_AND_SAVE (disp_end + 1);
9470 if (i.types[this_operand].bitfield.baseIndex
9471 && displacement_string_end[-1] == '+')
9472 {
9473 /* This hack is to avoid a warning when using the "o"
9474 constraint within gcc asm statements.
9475 For instance:
9476
9477 #define _set_tssldt_desc(n,addr,limit,type) \
9478 __asm__ __volatile__ ( \
9479 "movw %w2,%0\n\t" \
9480 "movw %w1,2+%0\n\t" \
9481 "rorl $16,%1\n\t" \
9482 "movb %b1,4+%0\n\t" \
9483 "movb %4,5+%0\n\t" \
9484 "movb $0,6+%0\n\t" \
9485 "movb %h1,7+%0\n\t" \
9486 "rorl $16,%1" \
9487 : "=o"(*(n)) : "q" (addr), "ri"(limit), "i"(type))
9488
9489 This works great except that the output assembler ends
9490 up looking a bit weird if it turns out that there is
9491 no offset. You end up producing code that looks like:
9492
9493 #APP
9494 movw $235,(%eax)
9495 movw %dx,2+(%eax)
9496 rorl $16,%edx
9497 movb %dl,4+(%eax)
9498 movb $137,5+(%eax)
9499 movb $0,6+(%eax)
9500 movb %dh,7+(%eax)
9501 rorl $16,%edx
9502 #NO_APP
9503
9504 So here we provide the missing zero. */
9505
9506 *displacement_string_end = '0';
9507 }
9508 #endif
9509 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
9510 if (gotfree_input_line)
9511 input_line_pointer = gotfree_input_line;
9512
9513 exp_seg = expression (exp);
9514
9515 SKIP_WHITESPACE ();
9516 if (*input_line_pointer)
9517 as_bad (_("junk `%s' after expression"), input_line_pointer);
9518 #if GCC_ASM_O_HACK
9519 RESTORE_END_STRING (disp_end + 1);
9520 #endif
9521 input_line_pointer = save_input_line_pointer;
9522 if (gotfree_input_line)
9523 {
9524 free (gotfree_input_line);
9525
9526 if (exp->X_op == O_constant || exp->X_op == O_register)
9527 exp->X_op = O_illegal;
9528 }
9529
9530 ret = i386_finalize_displacement (exp_seg, exp, types, disp_start);
9531
9532 RESTORE_END_STRING (disp_end);
9533
9534 return ret;
9535 }
9536
9537 static int
9538 i386_finalize_displacement (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
9539 i386_operand_type types, const char *disp_start)
9540 {
9541 i386_operand_type bigdisp;
9542 int ret = 1;
9543
9544 /* We do this to make sure that the section symbol is in
9545 the symbol table. We will ultimately change the relocation
9546 to be relative to the beginning of the section. */
9547 if (i.reloc[this_operand] == BFD_RELOC_386_GOTOFF
9548 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL
9549 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
9550 {
9551 if (exp->X_op != O_symbol)
9552 goto inv_disp;
9553
9554 if (S_IS_LOCAL (exp->X_add_symbol)
9555 && S_GET_SEGMENT (exp->X_add_symbol) != undefined_section
9556 && S_GET_SEGMENT (exp->X_add_symbol) != expr_section)
9557 section_symbol (S_GET_SEGMENT (exp->X_add_symbol));
9558 exp->X_op = O_subtract;
9559 exp->X_op_symbol = GOT_symbol;
9560 if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
9561 i.reloc[this_operand] = BFD_RELOC_32_PCREL;
9562 else if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
9563 i.reloc[this_operand] = BFD_RELOC_64;
9564 else
9565 i.reloc[this_operand] = BFD_RELOC_32;
9566 }
9567
9568 else if (exp->X_op == O_absent
9569 || exp->X_op == O_illegal
9570 || exp->X_op == O_big)
9571 {
9572 inv_disp:
9573 as_bad (_("missing or invalid displacement expression `%s'"),
9574 disp_start);
9575 ret = 0;
9576 }
9577
9578 else if (flag_code == CODE_64BIT
9579 && !i.prefix[ADDR_PREFIX]
9580 && exp->X_op == O_constant)
9581 {
9582 /* Since displacement is signed extended to 64bit, don't allow
9583 disp32 and turn off disp32s if they are out of range. */
9584 i.types[this_operand].bitfield.disp32 = 0;
9585 if (!fits_in_signed_long (exp->X_add_number))
9586 {
9587 i.types[this_operand].bitfield.disp32s = 0;
9588 if (i.types[this_operand].bitfield.baseindex)
9589 {
9590 as_bad (_("0x%lx out range of signed 32bit displacement"),
9591 (long) exp->X_add_number);
9592 ret = 0;
9593 }
9594 }
9595 }
9596
9597 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
9598 else if (exp->X_op != O_constant
9599 && OUTPUT_FLAVOR == bfd_target_aout_flavour
9600 && exp_seg != absolute_section
9601 && exp_seg != text_section
9602 && exp_seg != data_section
9603 && exp_seg != bss_section
9604 && exp_seg != undefined_section
9605 && !bfd_is_com_section (exp_seg))
9606 {
9607 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
9608 ret = 0;
9609 }
9610 #endif
9611
9612 /* Check if this is a displacement only operand. */
9613 bigdisp = i.types[this_operand];
9614 bigdisp.bitfield.disp8 = 0;
9615 bigdisp.bitfield.disp16 = 0;
9616 bigdisp.bitfield.disp32 = 0;
9617 bigdisp.bitfield.disp32s = 0;
9618 bigdisp.bitfield.disp64 = 0;
9619 if (operand_type_all_zero (&bigdisp))
9620 i.types[this_operand] = operand_type_and (i.types[this_operand],
9621 types);
9622
9623 return ret;
9624 }
9625
9626 /* Return the active addressing mode, taking address override and
9627 registers forming the address into consideration. Update the
9628 address override prefix if necessary. */
9629
9630 static enum flag_code
9631 i386_addressing_mode (void)
9632 {
9633 enum flag_code addr_mode;
9634
9635 if (i.prefix[ADDR_PREFIX])
9636 addr_mode = flag_code == CODE_32BIT ? CODE_16BIT : CODE_32BIT;
9637 else
9638 {
9639 addr_mode = flag_code;
9640
9641 #if INFER_ADDR_PREFIX
9642 if (i.mem_operands == 0)
9643 {
9644 /* Infer address prefix from the first memory operand. */
9645 const reg_entry *addr_reg = i.base_reg;
9646
9647 if (addr_reg == NULL)
9648 addr_reg = i.index_reg;
9649
9650 if (addr_reg)
9651 {
9652 if (addr_reg->reg_type.bitfield.dword)
9653 addr_mode = CODE_32BIT;
9654 else if (flag_code != CODE_64BIT
9655 && addr_reg->reg_type.bitfield.word)
9656 addr_mode = CODE_16BIT;
9657
9658 if (addr_mode != flag_code)
9659 {
9660 i.prefix[ADDR_PREFIX] = ADDR_PREFIX_OPCODE;
9661 i.prefixes += 1;
9662 /* Change the size of any displacement too. At most one
9663 of Disp16 or Disp32 is set.
9664 FIXME. There doesn't seem to be any real need for
9665 separate Disp16 and Disp32 flags. The same goes for
9666 Imm16 and Imm32. Removing them would probably clean
9667 up the code quite a lot. */
9668 if (flag_code != CODE_64BIT
9669 && (i.types[this_operand].bitfield.disp16
9670 || i.types[this_operand].bitfield.disp32))
9671 i.types[this_operand]
9672 = operand_type_xor (i.types[this_operand], disp16_32);
9673 }
9674 }
9675 }
9676 #endif
9677 }
9678
9679 return addr_mode;
9680 }
9681
9682 /* Make sure the memory operand we've been dealt is valid.
9683 Return 1 on success, 0 on a failure. */
9684
9685 static int
9686 i386_index_check (const char *operand_string)
9687 {
9688 const char *kind = "base/index";
9689 enum flag_code addr_mode = i386_addressing_mode ();
9690
9691 if (current_templates->start->opcode_modifier.isstring
9692 && !current_templates->start->opcode_modifier.immext
9693 && (current_templates->end[-1].opcode_modifier.isstring
9694 || i.mem_operands))
9695 {
9696 /* Memory operands of string insns are special in that they only allow
9697 a single register (rDI, rSI, or rBX) as their memory address. */
9698 const reg_entry *expected_reg;
9699 static const char *di_si[][2] =
9700 {
9701 { "esi", "edi" },
9702 { "si", "di" },
9703 { "rsi", "rdi" }
9704 };
9705 static const char *bx[] = { "ebx", "bx", "rbx" };
9706
9707 kind = "string address";
9708
9709 if (current_templates->start->opcode_modifier.repprefixok)
9710 {
9711 i386_operand_type type = current_templates->end[-1].operand_types[0];
9712
9713 if (!type.bitfield.baseindex
9714 || ((!i.mem_operands != !intel_syntax)
9715 && current_templates->end[-1].operand_types[1]
9716 .bitfield.baseindex))
9717 type = current_templates->end[-1].operand_types[1];
9718 expected_reg = hash_find (reg_hash,
9719 di_si[addr_mode][type.bitfield.esseg]);
9720
9721 }
9722 else
9723 expected_reg = hash_find (reg_hash, bx[addr_mode]);
9724
9725 if (i.base_reg != expected_reg
9726 || i.index_reg
9727 || operand_type_check (i.types[this_operand], disp))
9728 {
9729 /* The second memory operand must have the same size as
9730 the first one. */
9731 if (i.mem_operands
9732 && i.base_reg
9733 && !((addr_mode == CODE_64BIT
9734 && i.base_reg->reg_type.bitfield.qword)
9735 || (addr_mode == CODE_32BIT
9736 ? i.base_reg->reg_type.bitfield.dword
9737 : i.base_reg->reg_type.bitfield.word)))
9738 goto bad_address;
9739
9740 as_warn (_("`%s' is not valid here (expected `%c%s%s%c')"),
9741 operand_string,
9742 intel_syntax ? '[' : '(',
9743 register_prefix,
9744 expected_reg->reg_name,
9745 intel_syntax ? ']' : ')');
9746 return 1;
9747 }
9748 else
9749 return 1;
9750
9751 bad_address:
9752 as_bad (_("`%s' is not a valid %s expression"),
9753 operand_string, kind);
9754 return 0;
9755 }
9756 else
9757 {
9758 if (addr_mode != CODE_16BIT)
9759 {
9760 /* 32-bit/64-bit checks. */
9761 if ((i.base_reg
9762 && ((addr_mode == CODE_64BIT
9763 ? !i.base_reg->reg_type.bitfield.qword
9764 : !i.base_reg->reg_type.bitfield.dword)
9765 || (i.index_reg && i.base_reg->reg_num == RegIP)
9766 || i.base_reg->reg_num == RegIZ))
9767 || (i.index_reg
9768 && !i.index_reg->reg_type.bitfield.xmmword
9769 && !i.index_reg->reg_type.bitfield.ymmword
9770 && !i.index_reg->reg_type.bitfield.zmmword
9771 && ((addr_mode == CODE_64BIT
9772 ? !i.index_reg->reg_type.bitfield.qword
9773 : !i.index_reg->reg_type.bitfield.dword)
9774 || !i.index_reg->reg_type.bitfield.baseindex)))
9775 goto bad_address;
9776
9777 /* bndmk, bndldx, and bndstx have special restrictions. */
9778 if (current_templates->start->base_opcode == 0xf30f1b
9779 || (current_templates->start->base_opcode & ~1) == 0x0f1a)
9780 {
9781 /* They cannot use RIP-relative addressing. */
9782 if (i.base_reg && i.base_reg->reg_num == RegIP)
9783 {
9784 as_bad (_("`%s' cannot be used here"), operand_string);
9785 return 0;
9786 }
9787
9788 /* bndldx and bndstx ignore their scale factor. */
9789 if (current_templates->start->base_opcode != 0xf30f1b
9790 && i.log2_scale_factor)
9791 as_warn (_("register scaling is being ignored here"));
9792 }
9793 }
9794 else
9795 {
9796 /* 16-bit checks. */
9797 if ((i.base_reg
9798 && (!i.base_reg->reg_type.bitfield.word
9799 || !i.base_reg->reg_type.bitfield.baseindex))
9800 || (i.index_reg
9801 && (!i.index_reg->reg_type.bitfield.word
9802 || !i.index_reg->reg_type.bitfield.baseindex
9803 || !(i.base_reg
9804 && i.base_reg->reg_num < 6
9805 && i.index_reg->reg_num >= 6
9806 && i.log2_scale_factor == 0))))
9807 goto bad_address;
9808 }
9809 }
9810 return 1;
9811 }
9812
9813 /* Handle vector immediates. */
9814
9815 static int
9816 RC_SAE_immediate (const char *imm_start)
9817 {
9818 unsigned int match_found, j;
9819 const char *pstr = imm_start;
9820 expressionS *exp;
9821
9822 if (*pstr != '{')
9823 return 0;
9824
9825 pstr++;
9826 match_found = 0;
9827 for (j = 0; j < ARRAY_SIZE (RC_NamesTable); j++)
9828 {
9829 if (!strncmp (pstr, RC_NamesTable[j].name, RC_NamesTable[j].len))
9830 {
9831 if (!i.rounding)
9832 {
9833 rc_op.type = RC_NamesTable[j].type;
9834 rc_op.operand = this_operand;
9835 i.rounding = &rc_op;
9836 }
9837 else
9838 {
9839 as_bad (_("duplicated `%s'"), imm_start);
9840 return 0;
9841 }
9842 pstr += RC_NamesTable[j].len;
9843 match_found = 1;
9844 break;
9845 }
9846 }
9847 if (!match_found)
9848 return 0;
9849
9850 if (*pstr++ != '}')
9851 {
9852 as_bad (_("Missing '}': '%s'"), imm_start);
9853 return 0;
9854 }
9855 /* RC/SAE immediate string should contain nothing more. */;
9856 if (*pstr != 0)
9857 {
9858 as_bad (_("Junk after '}': '%s'"), imm_start);
9859 return 0;
9860 }
9861
9862 exp = &im_expressions[i.imm_operands++];
9863 i.op[this_operand].imms = exp;
9864
9865 exp->X_op = O_constant;
9866 exp->X_add_number = 0;
9867 exp->X_add_symbol = (symbolS *) 0;
9868 exp->X_op_symbol = (symbolS *) 0;
9869
9870 i.types[this_operand].bitfield.imm8 = 1;
9871 return 1;
9872 }
9873
9874 /* Only string instructions can have a second memory operand, so
9875 reduce current_templates to just those if it contains any. */
9876 static int
9877 maybe_adjust_templates (void)
9878 {
9879 const insn_template *t;
9880
9881 gas_assert (i.mem_operands == 1);
9882
9883 for (t = current_templates->start; t < current_templates->end; ++t)
9884 if (t->opcode_modifier.isstring)
9885 break;
9886
9887 if (t < current_templates->end)
9888 {
9889 static templates aux_templates;
9890 bfd_boolean recheck;
9891
9892 aux_templates.start = t;
9893 for (; t < current_templates->end; ++t)
9894 if (!t->opcode_modifier.isstring)
9895 break;
9896 aux_templates.end = t;
9897
9898 /* Determine whether to re-check the first memory operand. */
9899 recheck = (aux_templates.start != current_templates->start
9900 || t != current_templates->end);
9901
9902 current_templates = &aux_templates;
9903
9904 if (recheck)
9905 {
9906 i.mem_operands = 0;
9907 if (i.memop1_string != NULL
9908 && i386_index_check (i.memop1_string) == 0)
9909 return 0;
9910 i.mem_operands = 1;
9911 }
9912 }
9913
9914 return 1;
9915 }
9916
9917 /* Parse OPERAND_STRING into the i386_insn structure I. Returns zero
9918 on error. */
9919
9920 static int
9921 i386_att_operand (char *operand_string)
9922 {
9923 const reg_entry *r;
9924 char *end_op;
9925 char *op_string = operand_string;
9926
9927 if (is_space_char (*op_string))
9928 ++op_string;
9929
9930 /* We check for an absolute prefix (differentiating,
9931 for example, 'jmp pc_relative_label' from 'jmp *absolute_label'. */
9932 if (*op_string == ABSOLUTE_PREFIX)
9933 {
9934 ++op_string;
9935 if (is_space_char (*op_string))
9936 ++op_string;
9937 i.types[this_operand].bitfield.jumpabsolute = 1;
9938 }
9939
9940 /* Check if operand is a register. */
9941 if ((r = parse_register (op_string, &end_op)) != NULL)
9942 {
9943 i386_operand_type temp;
9944
9945 /* Check for a segment override by searching for ':' after a
9946 segment register. */
9947 op_string = end_op;
9948 if (is_space_char (*op_string))
9949 ++op_string;
9950 if (*op_string == ':'
9951 && (r->reg_type.bitfield.sreg2
9952 || r->reg_type.bitfield.sreg3))
9953 {
9954 switch (r->reg_num)
9955 {
9956 case 0:
9957 i.seg[i.mem_operands] = &es;
9958 break;
9959 case 1:
9960 i.seg[i.mem_operands] = &cs;
9961 break;
9962 case 2:
9963 i.seg[i.mem_operands] = &ss;
9964 break;
9965 case 3:
9966 i.seg[i.mem_operands] = &ds;
9967 break;
9968 case 4:
9969 i.seg[i.mem_operands] = &fs;
9970 break;
9971 case 5:
9972 i.seg[i.mem_operands] = &gs;
9973 break;
9974 }
9975
9976 /* Skip the ':' and whitespace. */
9977 ++op_string;
9978 if (is_space_char (*op_string))
9979 ++op_string;
9980
9981 if (!is_digit_char (*op_string)
9982 && !is_identifier_char (*op_string)
9983 && *op_string != '('
9984 && *op_string != ABSOLUTE_PREFIX)
9985 {
9986 as_bad (_("bad memory operand `%s'"), op_string);
9987 return 0;
9988 }
9989 /* Handle case of %es:*foo. */
9990 if (*op_string == ABSOLUTE_PREFIX)
9991 {
9992 ++op_string;
9993 if (is_space_char (*op_string))
9994 ++op_string;
9995 i.types[this_operand].bitfield.jumpabsolute = 1;
9996 }
9997 goto do_memory_reference;
9998 }
9999
10000 /* Handle vector operations. */
10001 if (*op_string == '{')
10002 {
10003 op_string = check_VecOperations (op_string, NULL);
10004 if (op_string == NULL)
10005 return 0;
10006 }
10007
10008 if (*op_string)
10009 {
10010 as_bad (_("junk `%s' after register"), op_string);
10011 return 0;
10012 }
10013 temp = r->reg_type;
10014 temp.bitfield.baseindex = 0;
10015 i.types[this_operand] = operand_type_or (i.types[this_operand],
10016 temp);
10017 i.types[this_operand].bitfield.unspecified = 0;
10018 i.op[this_operand].regs = r;
10019 i.reg_operands++;
10020 }
10021 else if (*op_string == REGISTER_PREFIX)
10022 {
10023 as_bad (_("bad register name `%s'"), op_string);
10024 return 0;
10025 }
10026 else if (*op_string == IMMEDIATE_PREFIX)
10027 {
10028 ++op_string;
10029 if (i.types[this_operand].bitfield.jumpabsolute)
10030 {
10031 as_bad (_("immediate operand illegal with absolute jump"));
10032 return 0;
10033 }
10034 if (!i386_immediate (op_string))
10035 return 0;
10036 }
10037 else if (RC_SAE_immediate (operand_string))
10038 {
10039 /* If it is a RC or SAE immediate, do nothing. */
10040 ;
10041 }
10042 else if (is_digit_char (*op_string)
10043 || is_identifier_char (*op_string)
10044 || *op_string == '"'
10045 || *op_string == '(')
10046 {
10047 /* This is a memory reference of some sort. */
10048 char *base_string;
10049
10050 /* Start and end of displacement string expression (if found). */
10051 char *displacement_string_start;
10052 char *displacement_string_end;
10053 char *vop_start;
10054
10055 do_memory_reference:
10056 if (i.mem_operands == 1 && !maybe_adjust_templates ())
10057 return 0;
10058 if ((i.mem_operands == 1
10059 && !current_templates->start->opcode_modifier.isstring)
10060 || i.mem_operands == 2)
10061 {
10062 as_bad (_("too many memory references for `%s'"),
10063 current_templates->start->name);
10064 return 0;
10065 }
10066
10067 /* Check for base index form. We detect the base index form by
10068 looking for an ')' at the end of the operand, searching
10069 for the '(' matching it, and finding a REGISTER_PREFIX or ','
10070 after the '('. */
10071 base_string = op_string + strlen (op_string);
10072
10073 /* Handle vector operations. */
10074 vop_start = strchr (op_string, '{');
10075 if (vop_start && vop_start < base_string)
10076 {
10077 if (check_VecOperations (vop_start, base_string) == NULL)
10078 return 0;
10079 base_string = vop_start;
10080 }
10081
10082 --base_string;
10083 if (is_space_char (*base_string))
10084 --base_string;
10085
10086 /* If we only have a displacement, set-up for it to be parsed later. */
10087 displacement_string_start = op_string;
10088 displacement_string_end = base_string + 1;
10089
10090 if (*base_string == ')')
10091 {
10092 char *temp_string;
10093 unsigned int parens_balanced = 1;
10094 /* We've already checked that the number of left & right ()'s are
10095 equal, so this loop will not be infinite. */
10096 do
10097 {
10098 base_string--;
10099 if (*base_string == ')')
10100 parens_balanced++;
10101 if (*base_string == '(')
10102 parens_balanced--;
10103 }
10104 while (parens_balanced);
10105
10106 temp_string = base_string;
10107
10108 /* Skip past '(' and whitespace. */
10109 ++base_string;
10110 if (is_space_char (*base_string))
10111 ++base_string;
10112
10113 if (*base_string == ','
10114 || ((i.base_reg = parse_register (base_string, &end_op))
10115 != NULL))
10116 {
10117 displacement_string_end = temp_string;
10118
10119 i.types[this_operand].bitfield.baseindex = 1;
10120
10121 if (i.base_reg)
10122 {
10123 base_string = end_op;
10124 if (is_space_char (*base_string))
10125 ++base_string;
10126 }
10127
10128 /* There may be an index reg or scale factor here. */
10129 if (*base_string == ',')
10130 {
10131 ++base_string;
10132 if (is_space_char (*base_string))
10133 ++base_string;
10134
10135 if ((i.index_reg = parse_register (base_string, &end_op))
10136 != NULL)
10137 {
10138 base_string = end_op;
10139 if (is_space_char (*base_string))
10140 ++base_string;
10141 if (*base_string == ',')
10142 {
10143 ++base_string;
10144 if (is_space_char (*base_string))
10145 ++base_string;
10146 }
10147 else if (*base_string != ')')
10148 {
10149 as_bad (_("expecting `,' or `)' "
10150 "after index register in `%s'"),
10151 operand_string);
10152 return 0;
10153 }
10154 }
10155 else if (*base_string == REGISTER_PREFIX)
10156 {
10157 end_op = strchr (base_string, ',');
10158 if (end_op)
10159 *end_op = '\0';
10160 as_bad (_("bad register name `%s'"), base_string);
10161 return 0;
10162 }
10163
10164 /* Check for scale factor. */
10165 if (*base_string != ')')
10166 {
10167 char *end_scale = i386_scale (base_string);
10168
10169 if (!end_scale)
10170 return 0;
10171
10172 base_string = end_scale;
10173 if (is_space_char (*base_string))
10174 ++base_string;
10175 if (*base_string != ')')
10176 {
10177 as_bad (_("expecting `)' "
10178 "after scale factor in `%s'"),
10179 operand_string);
10180 return 0;
10181 }
10182 }
10183 else if (!i.index_reg)
10184 {
10185 as_bad (_("expecting index register or scale factor "
10186 "after `,'; got '%c'"),
10187 *base_string);
10188 return 0;
10189 }
10190 }
10191 else if (*base_string != ')')
10192 {
10193 as_bad (_("expecting `,' or `)' "
10194 "after base register in `%s'"),
10195 operand_string);
10196 return 0;
10197 }
10198 }
10199 else if (*base_string == REGISTER_PREFIX)
10200 {
10201 end_op = strchr (base_string, ',');
10202 if (end_op)
10203 *end_op = '\0';
10204 as_bad (_("bad register name `%s'"), base_string);
10205 return 0;
10206 }
10207 }
10208
10209 /* If there's an expression beginning the operand, parse it,
10210 assuming displacement_string_start and
10211 displacement_string_end are meaningful. */
10212 if (displacement_string_start != displacement_string_end)
10213 {
10214 if (!i386_displacement (displacement_string_start,
10215 displacement_string_end))
10216 return 0;
10217 }
10218
10219 /* Special case for (%dx) while doing input/output op. */
10220 if (i.base_reg
10221 && i.base_reg->reg_type.bitfield.inoutportreg
10222 && i.index_reg == 0
10223 && i.log2_scale_factor == 0
10224 && i.seg[i.mem_operands] == 0
10225 && !operand_type_check (i.types[this_operand], disp))
10226 {
10227 i.types[this_operand] = i.base_reg->reg_type;
10228 return 1;
10229 }
10230
10231 if (i386_index_check (operand_string) == 0)
10232 return 0;
10233 i.flags[this_operand] |= Operand_Mem;
10234 if (i.mem_operands == 0)
10235 i.memop1_string = xstrdup (operand_string);
10236 i.mem_operands++;
10237 }
10238 else
10239 {
10240 /* It's not a memory operand; argh! */
10241 as_bad (_("invalid char %s beginning operand %d `%s'"),
10242 output_invalid (*op_string),
10243 this_operand + 1,
10244 op_string);
10245 return 0;
10246 }
10247 return 1; /* Normal return. */
10248 }
10249 \f
10250 /* Calculate the maximum variable size (i.e., excluding fr_fix)
10251 that an rs_machine_dependent frag may reach. */
10252
10253 unsigned int
10254 i386_frag_max_var (fragS *frag)
10255 {
10256 /* The only relaxable frags are for jumps.
10257 Unconditional jumps can grow by 4 bytes and others by 5 bytes. */
10258 gas_assert (frag->fr_type == rs_machine_dependent);
10259 return TYPE_FROM_RELAX_STATE (frag->fr_subtype) == UNCOND_JUMP ? 4 : 5;
10260 }
10261
10262 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10263 static int
10264 elf_symbol_resolved_in_segment_p (symbolS *fr_symbol, offsetT fr_var)
10265 {
10266 /* STT_GNU_IFUNC symbol must go through PLT. */
10267 if ((symbol_get_bfdsym (fr_symbol)->flags
10268 & BSF_GNU_INDIRECT_FUNCTION) != 0)
10269 return 0;
10270
10271 if (!S_IS_EXTERNAL (fr_symbol))
10272 /* Symbol may be weak or local. */
10273 return !S_IS_WEAK (fr_symbol);
10274
10275 /* Global symbols with non-default visibility can't be preempted. */
10276 if (ELF_ST_VISIBILITY (S_GET_OTHER (fr_symbol)) != STV_DEFAULT)
10277 return 1;
10278
10279 if (fr_var != NO_RELOC)
10280 switch ((enum bfd_reloc_code_real) fr_var)
10281 {
10282 case BFD_RELOC_386_PLT32:
10283 case BFD_RELOC_X86_64_PLT32:
10284 /* Symbol with PLT relocation may be preempted. */
10285 return 0;
10286 default:
10287 abort ();
10288 }
10289
10290 /* Global symbols with default visibility in a shared library may be
10291 preempted by another definition. */
10292 return !shared;
10293 }
10294 #endif
10295
10296 /* md_estimate_size_before_relax()
10297
10298 Called just before relax() for rs_machine_dependent frags. The x86
10299 assembler uses these frags to handle variable size jump
10300 instructions.
10301
10302 Any symbol that is now undefined will not become defined.
10303 Return the correct fr_subtype in the frag.
10304 Return the initial "guess for variable size of frag" to caller.
10305 The guess is actually the growth beyond the fixed part. Whatever
10306 we do to grow the fixed or variable part contributes to our
10307 returned value. */
10308
10309 int
10310 md_estimate_size_before_relax (fragS *fragP, segT segment)
10311 {
10312 /* We've already got fragP->fr_subtype right; all we have to do is
10313 check for un-relaxable symbols. On an ELF system, we can't relax
10314 an externally visible symbol, because it may be overridden by a
10315 shared library. */
10316 if (S_GET_SEGMENT (fragP->fr_symbol) != segment
10317 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10318 || (IS_ELF
10319 && !elf_symbol_resolved_in_segment_p (fragP->fr_symbol,
10320 fragP->fr_var))
10321 #endif
10322 #if defined (OBJ_COFF) && defined (TE_PE)
10323 || (OUTPUT_FLAVOR == bfd_target_coff_flavour
10324 && S_IS_WEAK (fragP->fr_symbol))
10325 #endif
10326 )
10327 {
10328 /* Symbol is undefined in this segment, or we need to keep a
10329 reloc so that weak symbols can be overridden. */
10330 int size = (fragP->fr_subtype & CODE16) ? 2 : 4;
10331 enum bfd_reloc_code_real reloc_type;
10332 unsigned char *opcode;
10333 int old_fr_fix;
10334
10335 if (fragP->fr_var != NO_RELOC)
10336 reloc_type = (enum bfd_reloc_code_real) fragP->fr_var;
10337 else if (size == 2)
10338 reloc_type = BFD_RELOC_16_PCREL;
10339 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10340 else if (need_plt32_p (fragP->fr_symbol))
10341 reloc_type = BFD_RELOC_X86_64_PLT32;
10342 #endif
10343 else
10344 reloc_type = BFD_RELOC_32_PCREL;
10345
10346 old_fr_fix = fragP->fr_fix;
10347 opcode = (unsigned char *) fragP->fr_opcode;
10348
10349 switch (TYPE_FROM_RELAX_STATE (fragP->fr_subtype))
10350 {
10351 case UNCOND_JUMP:
10352 /* Make jmp (0xeb) a (d)word displacement jump. */
10353 opcode[0] = 0xe9;
10354 fragP->fr_fix += size;
10355 fix_new (fragP, old_fr_fix, size,
10356 fragP->fr_symbol,
10357 fragP->fr_offset, 1,
10358 reloc_type);
10359 break;
10360
10361 case COND_JUMP86:
10362 if (size == 2
10363 && (!no_cond_jump_promotion || fragP->fr_var != NO_RELOC))
10364 {
10365 /* Negate the condition, and branch past an
10366 unconditional jump. */
10367 opcode[0] ^= 1;
10368 opcode[1] = 3;
10369 /* Insert an unconditional jump. */
10370 opcode[2] = 0xe9;
10371 /* We added two extra opcode bytes, and have a two byte
10372 offset. */
10373 fragP->fr_fix += 2 + 2;
10374 fix_new (fragP, old_fr_fix + 2, 2,
10375 fragP->fr_symbol,
10376 fragP->fr_offset, 1,
10377 reloc_type);
10378 break;
10379 }
10380 /* Fall through. */
10381
10382 case COND_JUMP:
10383 if (no_cond_jump_promotion && fragP->fr_var == NO_RELOC)
10384 {
10385 fixS *fixP;
10386
10387 fragP->fr_fix += 1;
10388 fixP = fix_new (fragP, old_fr_fix, 1,
10389 fragP->fr_symbol,
10390 fragP->fr_offset, 1,
10391 BFD_RELOC_8_PCREL);
10392 fixP->fx_signed = 1;
10393 break;
10394 }
10395
10396 /* This changes the byte-displacement jump 0x7N
10397 to the (d)word-displacement jump 0x0f,0x8N. */
10398 opcode[1] = opcode[0] + 0x10;
10399 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
10400 /* We've added an opcode byte. */
10401 fragP->fr_fix += 1 + size;
10402 fix_new (fragP, old_fr_fix + 1, size,
10403 fragP->fr_symbol,
10404 fragP->fr_offset, 1,
10405 reloc_type);
10406 break;
10407
10408 default:
10409 BAD_CASE (fragP->fr_subtype);
10410 break;
10411 }
10412 frag_wane (fragP);
10413 return fragP->fr_fix - old_fr_fix;
10414 }
10415
10416 /* Guess size depending on current relax state. Initially the relax
10417 state will correspond to a short jump and we return 1, because
10418 the variable part of the frag (the branch offset) is one byte
10419 long. However, we can relax a section more than once and in that
10420 case we must either set fr_subtype back to the unrelaxed state,
10421 or return the value for the appropriate branch. */
10422 return md_relax_table[fragP->fr_subtype].rlx_length;
10423 }
10424
10425 /* Called after relax() is finished.
10426
10427 In: Address of frag.
10428 fr_type == rs_machine_dependent.
10429 fr_subtype is what the address relaxed to.
10430
10431 Out: Any fixSs and constants are set up.
10432 Caller will turn frag into a ".space 0". */
10433
10434 void
10435 md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT sec ATTRIBUTE_UNUSED,
10436 fragS *fragP)
10437 {
10438 unsigned char *opcode;
10439 unsigned char *where_to_put_displacement = NULL;
10440 offsetT target_address;
10441 offsetT opcode_address;
10442 unsigned int extension = 0;
10443 offsetT displacement_from_opcode_start;
10444
10445 opcode = (unsigned char *) fragP->fr_opcode;
10446
10447 /* Address we want to reach in file space. */
10448 target_address = S_GET_VALUE (fragP->fr_symbol) + fragP->fr_offset;
10449
10450 /* Address opcode resides at in file space. */
10451 opcode_address = fragP->fr_address + fragP->fr_fix;
10452
10453 /* Displacement from opcode start to fill into instruction. */
10454 displacement_from_opcode_start = target_address - opcode_address;
10455
10456 if ((fragP->fr_subtype & BIG) == 0)
10457 {
10458 /* Don't have to change opcode. */
10459 extension = 1; /* 1 opcode + 1 displacement */
10460 where_to_put_displacement = &opcode[1];
10461 }
10462 else
10463 {
10464 if (no_cond_jump_promotion
10465 && TYPE_FROM_RELAX_STATE (fragP->fr_subtype) != UNCOND_JUMP)
10466 as_warn_where (fragP->fr_file, fragP->fr_line,
10467 _("long jump required"));
10468
10469 switch (fragP->fr_subtype)
10470 {
10471 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG):
10472 extension = 4; /* 1 opcode + 4 displacement */
10473 opcode[0] = 0xe9;
10474 where_to_put_displacement = &opcode[1];
10475 break;
10476
10477 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16):
10478 extension = 2; /* 1 opcode + 2 displacement */
10479 opcode[0] = 0xe9;
10480 where_to_put_displacement = &opcode[1];
10481 break;
10482
10483 case ENCODE_RELAX_STATE (COND_JUMP, BIG):
10484 case ENCODE_RELAX_STATE (COND_JUMP86, BIG):
10485 extension = 5; /* 2 opcode + 4 displacement */
10486 opcode[1] = opcode[0] + 0x10;
10487 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
10488 where_to_put_displacement = &opcode[2];
10489 break;
10490
10491 case ENCODE_RELAX_STATE (COND_JUMP, BIG16):
10492 extension = 3; /* 2 opcode + 2 displacement */
10493 opcode[1] = opcode[0] + 0x10;
10494 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
10495 where_to_put_displacement = &opcode[2];
10496 break;
10497
10498 case ENCODE_RELAX_STATE (COND_JUMP86, BIG16):
10499 extension = 4;
10500 opcode[0] ^= 1;
10501 opcode[1] = 3;
10502 opcode[2] = 0xe9;
10503 where_to_put_displacement = &opcode[3];
10504 break;
10505
10506 default:
10507 BAD_CASE (fragP->fr_subtype);
10508 break;
10509 }
10510 }
10511
10512 /* If size if less then four we are sure that the operand fits,
10513 but if it's 4, then it could be that the displacement is larger
10514 then -/+ 2GB. */
10515 if (DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype) == 4
10516 && object_64bit
10517 && ((addressT) (displacement_from_opcode_start - extension
10518 + ((addressT) 1 << 31))
10519 > (((addressT) 2 << 31) - 1)))
10520 {
10521 as_bad_where (fragP->fr_file, fragP->fr_line,
10522 _("jump target out of range"));
10523 /* Make us emit 0. */
10524 displacement_from_opcode_start = extension;
10525 }
10526 /* Now put displacement after opcode. */
10527 md_number_to_chars ((char *) where_to_put_displacement,
10528 (valueT) (displacement_from_opcode_start - extension),
10529 DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype));
10530 fragP->fr_fix += extension;
10531 }
10532 \f
10533 /* Apply a fixup (fixP) to segment data, once it has been determined
10534 by our caller that we have all the info we need to fix it up.
10535
10536 Parameter valP is the pointer to the value of the bits.
10537
10538 On the 386, immediates, displacements, and data pointers are all in
10539 the same (little-endian) format, so we don't need to care about which
10540 we are handling. */
10541
10542 void
10543 md_apply_fix (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED)
10544 {
10545 char *p = fixP->fx_where + fixP->fx_frag->fr_literal;
10546 valueT value = *valP;
10547
10548 #if !defined (TE_Mach)
10549 if (fixP->fx_pcrel)
10550 {
10551 switch (fixP->fx_r_type)
10552 {
10553 default:
10554 break;
10555
10556 case BFD_RELOC_64:
10557 fixP->fx_r_type = BFD_RELOC_64_PCREL;
10558 break;
10559 case BFD_RELOC_32:
10560 case BFD_RELOC_X86_64_32S:
10561 fixP->fx_r_type = BFD_RELOC_32_PCREL;
10562 break;
10563 case BFD_RELOC_16:
10564 fixP->fx_r_type = BFD_RELOC_16_PCREL;
10565 break;
10566 case BFD_RELOC_8:
10567 fixP->fx_r_type = BFD_RELOC_8_PCREL;
10568 break;
10569 }
10570 }
10571
10572 if (fixP->fx_addsy != NULL
10573 && (fixP->fx_r_type == BFD_RELOC_32_PCREL
10574 || fixP->fx_r_type == BFD_RELOC_64_PCREL
10575 || fixP->fx_r_type == BFD_RELOC_16_PCREL
10576 || fixP->fx_r_type == BFD_RELOC_8_PCREL)
10577 && !use_rela_relocations)
10578 {
10579 /* This is a hack. There should be a better way to handle this.
10580 This covers for the fact that bfd_install_relocation will
10581 subtract the current location (for partial_inplace, PC relative
10582 relocations); see more below. */
10583 #ifndef OBJ_AOUT
10584 if (IS_ELF
10585 #ifdef TE_PE
10586 || OUTPUT_FLAVOR == bfd_target_coff_flavour
10587 #endif
10588 )
10589 value += fixP->fx_where + fixP->fx_frag->fr_address;
10590 #endif
10591 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10592 if (IS_ELF)
10593 {
10594 segT sym_seg = S_GET_SEGMENT (fixP->fx_addsy);
10595
10596 if ((sym_seg == seg
10597 || (symbol_section_p (fixP->fx_addsy)
10598 && sym_seg != absolute_section))
10599 && !generic_force_reloc (fixP))
10600 {
10601 /* Yes, we add the values in twice. This is because
10602 bfd_install_relocation subtracts them out again. I think
10603 bfd_install_relocation is broken, but I don't dare change
10604 it. FIXME. */
10605 value += fixP->fx_where + fixP->fx_frag->fr_address;
10606 }
10607 }
10608 #endif
10609 #if defined (OBJ_COFF) && defined (TE_PE)
10610 /* For some reason, the PE format does not store a
10611 section address offset for a PC relative symbol. */
10612 if (S_GET_SEGMENT (fixP->fx_addsy) != seg
10613 || S_IS_WEAK (fixP->fx_addsy))
10614 value += md_pcrel_from (fixP);
10615 #endif
10616 }
10617 #if defined (OBJ_COFF) && defined (TE_PE)
10618 if (fixP->fx_addsy != NULL
10619 && S_IS_WEAK (fixP->fx_addsy)
10620 /* PR 16858: Do not modify weak function references. */
10621 && ! fixP->fx_pcrel)
10622 {
10623 #if !defined (TE_PEP)
10624 /* For x86 PE weak function symbols are neither PC-relative
10625 nor do they set S_IS_FUNCTION. So the only reliable way
10626 to detect them is to check the flags of their containing
10627 section. */
10628 if (S_GET_SEGMENT (fixP->fx_addsy) != NULL
10629 && S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_CODE)
10630 ;
10631 else
10632 #endif
10633 value -= S_GET_VALUE (fixP->fx_addsy);
10634 }
10635 #endif
10636
10637 /* Fix a few things - the dynamic linker expects certain values here,
10638 and we must not disappoint it. */
10639 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10640 if (IS_ELF && fixP->fx_addsy)
10641 switch (fixP->fx_r_type)
10642 {
10643 case BFD_RELOC_386_PLT32:
10644 case BFD_RELOC_X86_64_PLT32:
10645 /* Make the jump instruction point to the address of the operand.
10646 At runtime we merely add the offset to the actual PLT entry.
10647 NB: Subtract the offset size only for jump instructions. */
10648 if (fixP->fx_pcrel)
10649 value = -4;
10650 break;
10651
10652 case BFD_RELOC_386_TLS_GD:
10653 case BFD_RELOC_386_TLS_LDM:
10654 case BFD_RELOC_386_TLS_IE_32:
10655 case BFD_RELOC_386_TLS_IE:
10656 case BFD_RELOC_386_TLS_GOTIE:
10657 case BFD_RELOC_386_TLS_GOTDESC:
10658 case BFD_RELOC_X86_64_TLSGD:
10659 case BFD_RELOC_X86_64_TLSLD:
10660 case BFD_RELOC_X86_64_GOTTPOFF:
10661 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
10662 value = 0; /* Fully resolved at runtime. No addend. */
10663 /* Fallthrough */
10664 case BFD_RELOC_386_TLS_LE:
10665 case BFD_RELOC_386_TLS_LDO_32:
10666 case BFD_RELOC_386_TLS_LE_32:
10667 case BFD_RELOC_X86_64_DTPOFF32:
10668 case BFD_RELOC_X86_64_DTPOFF64:
10669 case BFD_RELOC_X86_64_TPOFF32:
10670 case BFD_RELOC_X86_64_TPOFF64:
10671 S_SET_THREAD_LOCAL (fixP->fx_addsy);
10672 break;
10673
10674 case BFD_RELOC_386_TLS_DESC_CALL:
10675 case BFD_RELOC_X86_64_TLSDESC_CALL:
10676 value = 0; /* Fully resolved at runtime. No addend. */
10677 S_SET_THREAD_LOCAL (fixP->fx_addsy);
10678 fixP->fx_done = 0;
10679 return;
10680
10681 case BFD_RELOC_VTABLE_INHERIT:
10682 case BFD_RELOC_VTABLE_ENTRY:
10683 fixP->fx_done = 0;
10684 return;
10685
10686 default:
10687 break;
10688 }
10689 #endif /* defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) */
10690 *valP = value;
10691 #endif /* !defined (TE_Mach) */
10692
10693 /* Are we finished with this relocation now? */
10694 if (fixP->fx_addsy == NULL)
10695 fixP->fx_done = 1;
10696 #if defined (OBJ_COFF) && defined (TE_PE)
10697 else if (fixP->fx_addsy != NULL && S_IS_WEAK (fixP->fx_addsy))
10698 {
10699 fixP->fx_done = 0;
10700 /* Remember value for tc_gen_reloc. */
10701 fixP->fx_addnumber = value;
10702 /* Clear out the frag for now. */
10703 value = 0;
10704 }
10705 #endif
10706 else if (use_rela_relocations)
10707 {
10708 fixP->fx_no_overflow = 1;
10709 /* Remember value for tc_gen_reloc. */
10710 fixP->fx_addnumber = value;
10711 value = 0;
10712 }
10713
10714 md_number_to_chars (p, value, fixP->fx_size);
10715 }
10716 \f
10717 const char *
10718 md_atof (int type, char *litP, int *sizeP)
10719 {
10720 /* This outputs the LITTLENUMs in REVERSE order;
10721 in accord with the bigendian 386. */
10722 return ieee_md_atof (type, litP, sizeP, FALSE);
10723 }
10724 \f
10725 static char output_invalid_buf[sizeof (unsigned char) * 2 + 6];
10726
10727 static char *
10728 output_invalid (int c)
10729 {
10730 if (ISPRINT (c))
10731 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
10732 "'%c'", c);
10733 else
10734 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
10735 "(0x%x)", (unsigned char) c);
10736 return output_invalid_buf;
10737 }
10738
10739 /* REG_STRING starts *before* REGISTER_PREFIX. */
10740
10741 static const reg_entry *
10742 parse_real_register (char *reg_string, char **end_op)
10743 {
10744 char *s = reg_string;
10745 char *p;
10746 char reg_name_given[MAX_REG_NAME_SIZE + 1];
10747 const reg_entry *r;
10748
10749 /* Skip possible REGISTER_PREFIX and possible whitespace. */
10750 if (*s == REGISTER_PREFIX)
10751 ++s;
10752
10753 if (is_space_char (*s))
10754 ++s;
10755
10756 p = reg_name_given;
10757 while ((*p++ = register_chars[(unsigned char) *s]) != '\0')
10758 {
10759 if (p >= reg_name_given + MAX_REG_NAME_SIZE)
10760 return (const reg_entry *) NULL;
10761 s++;
10762 }
10763
10764 /* For naked regs, make sure that we are not dealing with an identifier.
10765 This prevents confusing an identifier like `eax_var' with register
10766 `eax'. */
10767 if (allow_naked_reg && identifier_chars[(unsigned char) *s])
10768 return (const reg_entry *) NULL;
10769
10770 *end_op = s;
10771
10772 r = (const reg_entry *) hash_find (reg_hash, reg_name_given);
10773
10774 /* Handle floating point regs, allowing spaces in the (i) part. */
10775 if (r == i386_regtab /* %st is first entry of table */)
10776 {
10777 if (!cpu_arch_flags.bitfield.cpu8087
10778 && !cpu_arch_flags.bitfield.cpu287
10779 && !cpu_arch_flags.bitfield.cpu387)
10780 return (const reg_entry *) NULL;
10781
10782 if (is_space_char (*s))
10783 ++s;
10784 if (*s == '(')
10785 {
10786 ++s;
10787 if (is_space_char (*s))
10788 ++s;
10789 if (*s >= '0' && *s <= '7')
10790 {
10791 int fpr = *s - '0';
10792 ++s;
10793 if (is_space_char (*s))
10794 ++s;
10795 if (*s == ')')
10796 {
10797 *end_op = s + 1;
10798 r = (const reg_entry *) hash_find (reg_hash, "st(0)");
10799 know (r);
10800 return r + fpr;
10801 }
10802 }
10803 /* We have "%st(" then garbage. */
10804 return (const reg_entry *) NULL;
10805 }
10806 }
10807
10808 if (r == NULL || allow_pseudo_reg)
10809 return r;
10810
10811 if (operand_type_all_zero (&r->reg_type))
10812 return (const reg_entry *) NULL;
10813
10814 if ((r->reg_type.bitfield.dword
10815 || r->reg_type.bitfield.sreg3
10816 || r->reg_type.bitfield.control
10817 || r->reg_type.bitfield.debug
10818 || r->reg_type.bitfield.test)
10819 && !cpu_arch_flags.bitfield.cpui386)
10820 return (const reg_entry *) NULL;
10821
10822 if (r->reg_type.bitfield.regmmx && !cpu_arch_flags.bitfield.cpummx)
10823 return (const reg_entry *) NULL;
10824
10825 if (!cpu_arch_flags.bitfield.cpuavx512f)
10826 {
10827 if (r->reg_type.bitfield.zmmword || r->reg_type.bitfield.regmask)
10828 return (const reg_entry *) NULL;
10829
10830 if (!cpu_arch_flags.bitfield.cpuavx)
10831 {
10832 if (r->reg_type.bitfield.ymmword)
10833 return (const reg_entry *) NULL;
10834
10835 if (!cpu_arch_flags.bitfield.cpusse && r->reg_type.bitfield.xmmword)
10836 return (const reg_entry *) NULL;
10837 }
10838 }
10839
10840 if (r->reg_type.bitfield.regbnd && !cpu_arch_flags.bitfield.cpumpx)
10841 return (const reg_entry *) NULL;
10842
10843 /* Don't allow fake index register unless allow_index_reg isn't 0. */
10844 if (!allow_index_reg && r->reg_num == RegIZ)
10845 return (const reg_entry *) NULL;
10846
10847 /* Upper 16 vector registers are only available with VREX in 64bit
10848 mode, and require EVEX encoding. */
10849 if (r->reg_flags & RegVRex)
10850 {
10851 if (!cpu_arch_flags.bitfield.cpuavx512f
10852 || flag_code != CODE_64BIT)
10853 return (const reg_entry *) NULL;
10854
10855 i.vec_encoding = vex_encoding_evex;
10856 }
10857
10858 if (((r->reg_flags & (RegRex64 | RegRex)) || r->reg_type.bitfield.qword)
10859 && (!cpu_arch_flags.bitfield.cpulm || !r->reg_type.bitfield.control)
10860 && flag_code != CODE_64BIT)
10861 return (const reg_entry *) NULL;
10862
10863 if (r->reg_type.bitfield.sreg3 && r->reg_num == RegFlat && !intel_syntax)
10864 return (const reg_entry *) NULL;
10865
10866 return r;
10867 }
10868
10869 /* REG_STRING starts *before* REGISTER_PREFIX. */
10870
10871 static const reg_entry *
10872 parse_register (char *reg_string, char **end_op)
10873 {
10874 const reg_entry *r;
10875
10876 if (*reg_string == REGISTER_PREFIX || allow_naked_reg)
10877 r = parse_real_register (reg_string, end_op);
10878 else
10879 r = NULL;
10880 if (!r)
10881 {
10882 char *save = input_line_pointer;
10883 char c;
10884 symbolS *symbolP;
10885
10886 input_line_pointer = reg_string;
10887 c = get_symbol_name (&reg_string);
10888 symbolP = symbol_find (reg_string);
10889 if (symbolP && S_GET_SEGMENT (symbolP) == reg_section)
10890 {
10891 const expressionS *e = symbol_get_value_expression (symbolP);
10892
10893 know (e->X_op == O_register);
10894 know (e->X_add_number >= 0
10895 && (valueT) e->X_add_number < i386_regtab_size);
10896 r = i386_regtab + e->X_add_number;
10897 if ((r->reg_flags & RegVRex))
10898 i.vec_encoding = vex_encoding_evex;
10899 *end_op = input_line_pointer;
10900 }
10901 *input_line_pointer = c;
10902 input_line_pointer = save;
10903 }
10904 return r;
10905 }
10906
10907 int
10908 i386_parse_name (char *name, expressionS *e, char *nextcharP)
10909 {
10910 const reg_entry *r;
10911 char *end = input_line_pointer;
10912
10913 *end = *nextcharP;
10914 r = parse_register (name, &input_line_pointer);
10915 if (r && end <= input_line_pointer)
10916 {
10917 *nextcharP = *input_line_pointer;
10918 *input_line_pointer = 0;
10919 e->X_op = O_register;
10920 e->X_add_number = r - i386_regtab;
10921 return 1;
10922 }
10923 input_line_pointer = end;
10924 *end = 0;
10925 return intel_syntax ? i386_intel_parse_name (name, e) : 0;
10926 }
10927
10928 void
10929 md_operand (expressionS *e)
10930 {
10931 char *end;
10932 const reg_entry *r;
10933
10934 switch (*input_line_pointer)
10935 {
10936 case REGISTER_PREFIX:
10937 r = parse_real_register (input_line_pointer, &end);
10938 if (r)
10939 {
10940 e->X_op = O_register;
10941 e->X_add_number = r - i386_regtab;
10942 input_line_pointer = end;
10943 }
10944 break;
10945
10946 case '[':
10947 gas_assert (intel_syntax);
10948 end = input_line_pointer++;
10949 expression (e);
10950 if (*input_line_pointer == ']')
10951 {
10952 ++input_line_pointer;
10953 e->X_op_symbol = make_expr_symbol (e);
10954 e->X_add_symbol = NULL;
10955 e->X_add_number = 0;
10956 e->X_op = O_index;
10957 }
10958 else
10959 {
10960 e->X_op = O_absent;
10961 input_line_pointer = end;
10962 }
10963 break;
10964 }
10965 }
10966
10967 \f
10968 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10969 const char *md_shortopts = "kVQ:sqnO::";
10970 #else
10971 const char *md_shortopts = "qnO::";
10972 #endif
10973
10974 #define OPTION_32 (OPTION_MD_BASE + 0)
10975 #define OPTION_64 (OPTION_MD_BASE + 1)
10976 #define OPTION_DIVIDE (OPTION_MD_BASE + 2)
10977 #define OPTION_MARCH (OPTION_MD_BASE + 3)
10978 #define OPTION_MTUNE (OPTION_MD_BASE + 4)
10979 #define OPTION_MMNEMONIC (OPTION_MD_BASE + 5)
10980 #define OPTION_MSYNTAX (OPTION_MD_BASE + 6)
10981 #define OPTION_MINDEX_REG (OPTION_MD_BASE + 7)
10982 #define OPTION_MNAKED_REG (OPTION_MD_BASE + 8)
10983 #define OPTION_MRELAX_RELOCATIONS (OPTION_MD_BASE + 9)
10984 #define OPTION_MSSE2AVX (OPTION_MD_BASE + 10)
10985 #define OPTION_MSSE_CHECK (OPTION_MD_BASE + 11)
10986 #define OPTION_MOPERAND_CHECK (OPTION_MD_BASE + 12)
10987 #define OPTION_MAVXSCALAR (OPTION_MD_BASE + 13)
10988 #define OPTION_X32 (OPTION_MD_BASE + 14)
10989 #define OPTION_MADD_BND_PREFIX (OPTION_MD_BASE + 15)
10990 #define OPTION_MEVEXLIG (OPTION_MD_BASE + 16)
10991 #define OPTION_MEVEXWIG (OPTION_MD_BASE + 17)
10992 #define OPTION_MBIG_OBJ (OPTION_MD_BASE + 18)
10993 #define OPTION_MOMIT_LOCK_PREFIX (OPTION_MD_BASE + 19)
10994 #define OPTION_MEVEXRCIG (OPTION_MD_BASE + 20)
10995 #define OPTION_MSHARED (OPTION_MD_BASE + 21)
10996 #define OPTION_MAMD64 (OPTION_MD_BASE + 22)
10997 #define OPTION_MINTEL64 (OPTION_MD_BASE + 23)
10998 #define OPTION_MFENCE_AS_LOCK_ADD (OPTION_MD_BASE + 24)
10999 #define OPTION_X86_USED_NOTE (OPTION_MD_BASE + 25)
11000 #define OPTION_MVEXWIG (OPTION_MD_BASE + 26)
11001
11002 struct option md_longopts[] =
11003 {
11004 {"32", no_argument, NULL, OPTION_32},
11005 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
11006 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
11007 {"64", no_argument, NULL, OPTION_64},
11008 #endif
11009 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11010 {"x32", no_argument, NULL, OPTION_X32},
11011 {"mshared", no_argument, NULL, OPTION_MSHARED},
11012 {"mx86-used-note", required_argument, NULL, OPTION_X86_USED_NOTE},
11013 #endif
11014 {"divide", no_argument, NULL, OPTION_DIVIDE},
11015 {"march", required_argument, NULL, OPTION_MARCH},
11016 {"mtune", required_argument, NULL, OPTION_MTUNE},
11017 {"mmnemonic", required_argument, NULL, OPTION_MMNEMONIC},
11018 {"msyntax", required_argument, NULL, OPTION_MSYNTAX},
11019 {"mindex-reg", no_argument, NULL, OPTION_MINDEX_REG},
11020 {"mnaked-reg", no_argument, NULL, OPTION_MNAKED_REG},
11021 {"msse2avx", no_argument, NULL, OPTION_MSSE2AVX},
11022 {"msse-check", required_argument, NULL, OPTION_MSSE_CHECK},
11023 {"moperand-check", required_argument, NULL, OPTION_MOPERAND_CHECK},
11024 {"mavxscalar", required_argument, NULL, OPTION_MAVXSCALAR},
11025 {"mvexwig", required_argument, NULL, OPTION_MVEXWIG},
11026 {"madd-bnd-prefix", no_argument, NULL, OPTION_MADD_BND_PREFIX},
11027 {"mevexlig", required_argument, NULL, OPTION_MEVEXLIG},
11028 {"mevexwig", required_argument, NULL, OPTION_MEVEXWIG},
11029 # if defined (TE_PE) || defined (TE_PEP)
11030 {"mbig-obj", no_argument, NULL, OPTION_MBIG_OBJ},
11031 #endif
11032 {"momit-lock-prefix", required_argument, NULL, OPTION_MOMIT_LOCK_PREFIX},
11033 {"mfence-as-lock-add", required_argument, NULL, OPTION_MFENCE_AS_LOCK_ADD},
11034 {"mrelax-relocations", required_argument, NULL, OPTION_MRELAX_RELOCATIONS},
11035 {"mevexrcig", required_argument, NULL, OPTION_MEVEXRCIG},
11036 {"mamd64", no_argument, NULL, OPTION_MAMD64},
11037 {"mintel64", no_argument, NULL, OPTION_MINTEL64},
11038 {NULL, no_argument, NULL, 0}
11039 };
11040 size_t md_longopts_size = sizeof (md_longopts);
11041
11042 int
11043 md_parse_option (int c, const char *arg)
11044 {
11045 unsigned int j;
11046 char *arch, *next, *saved;
11047
11048 switch (c)
11049 {
11050 case 'n':
11051 optimize_align_code = 0;
11052 break;
11053
11054 case 'q':
11055 quiet_warnings = 1;
11056 break;
11057
11058 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11059 /* -Qy, -Qn: SVR4 arguments controlling whether a .comment section
11060 should be emitted or not. FIXME: Not implemented. */
11061 case 'Q':
11062 break;
11063
11064 /* -V: SVR4 argument to print version ID. */
11065 case 'V':
11066 print_version_id ();
11067 break;
11068
11069 /* -k: Ignore for FreeBSD compatibility. */
11070 case 'k':
11071 break;
11072
11073 case 's':
11074 /* -s: On i386 Solaris, this tells the native assembler to use
11075 .stab instead of .stab.excl. We always use .stab anyhow. */
11076 break;
11077
11078 case OPTION_MSHARED:
11079 shared = 1;
11080 break;
11081
11082 case OPTION_X86_USED_NOTE:
11083 if (strcasecmp (arg, "yes") == 0)
11084 x86_used_note = 1;
11085 else if (strcasecmp (arg, "no") == 0)
11086 x86_used_note = 0;
11087 else
11088 as_fatal (_("invalid -mx86-used-note= option: `%s'"), arg);
11089 break;
11090
11091
11092 #endif
11093 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
11094 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
11095 case OPTION_64:
11096 {
11097 const char **list, **l;
11098
11099 list = bfd_target_list ();
11100 for (l = list; *l != NULL; l++)
11101 if (CONST_STRNEQ (*l, "elf64-x86-64")
11102 || strcmp (*l, "coff-x86-64") == 0
11103 || strcmp (*l, "pe-x86-64") == 0
11104 || strcmp (*l, "pei-x86-64") == 0
11105 || strcmp (*l, "mach-o-x86-64") == 0)
11106 {
11107 default_arch = "x86_64";
11108 break;
11109 }
11110 if (*l == NULL)
11111 as_fatal (_("no compiled in support for x86_64"));
11112 free (list);
11113 }
11114 break;
11115 #endif
11116
11117 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11118 case OPTION_X32:
11119 if (IS_ELF)
11120 {
11121 const char **list, **l;
11122
11123 list = bfd_target_list ();
11124 for (l = list; *l != NULL; l++)
11125 if (CONST_STRNEQ (*l, "elf32-x86-64"))
11126 {
11127 default_arch = "x86_64:32";
11128 break;
11129 }
11130 if (*l == NULL)
11131 as_fatal (_("no compiled in support for 32bit x86_64"));
11132 free (list);
11133 }
11134 else
11135 as_fatal (_("32bit x86_64 is only supported for ELF"));
11136 break;
11137 #endif
11138
11139 case OPTION_32:
11140 default_arch = "i386";
11141 break;
11142
11143 case OPTION_DIVIDE:
11144 #ifdef SVR4_COMMENT_CHARS
11145 {
11146 char *n, *t;
11147 const char *s;
11148
11149 n = XNEWVEC (char, strlen (i386_comment_chars) + 1);
11150 t = n;
11151 for (s = i386_comment_chars; *s != '\0'; s++)
11152 if (*s != '/')
11153 *t++ = *s;
11154 *t = '\0';
11155 i386_comment_chars = n;
11156 }
11157 #endif
11158 break;
11159
11160 case OPTION_MARCH:
11161 saved = xstrdup (arg);
11162 arch = saved;
11163 /* Allow -march=+nosse. */
11164 if (*arch == '+')
11165 arch++;
11166 do
11167 {
11168 if (*arch == '.')
11169 as_fatal (_("invalid -march= option: `%s'"), arg);
11170 next = strchr (arch, '+');
11171 if (next)
11172 *next++ = '\0';
11173 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
11174 {
11175 if (strcmp (arch, cpu_arch [j].name) == 0)
11176 {
11177 /* Processor. */
11178 if (! cpu_arch[j].flags.bitfield.cpui386)
11179 continue;
11180
11181 cpu_arch_name = cpu_arch[j].name;
11182 cpu_sub_arch_name = NULL;
11183 cpu_arch_flags = cpu_arch[j].flags;
11184 cpu_arch_isa = cpu_arch[j].type;
11185 cpu_arch_isa_flags = cpu_arch[j].flags;
11186 if (!cpu_arch_tune_set)
11187 {
11188 cpu_arch_tune = cpu_arch_isa;
11189 cpu_arch_tune_flags = cpu_arch_isa_flags;
11190 }
11191 break;
11192 }
11193 else if (*cpu_arch [j].name == '.'
11194 && strcmp (arch, cpu_arch [j].name + 1) == 0)
11195 {
11196 /* ISA extension. */
11197 i386_cpu_flags flags;
11198
11199 flags = cpu_flags_or (cpu_arch_flags,
11200 cpu_arch[j].flags);
11201
11202 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
11203 {
11204 if (cpu_sub_arch_name)
11205 {
11206 char *name = cpu_sub_arch_name;
11207 cpu_sub_arch_name = concat (name,
11208 cpu_arch[j].name,
11209 (const char *) NULL);
11210 free (name);
11211 }
11212 else
11213 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
11214 cpu_arch_flags = flags;
11215 cpu_arch_isa_flags = flags;
11216 }
11217 else
11218 cpu_arch_isa_flags
11219 = cpu_flags_or (cpu_arch_isa_flags,
11220 cpu_arch[j].flags);
11221 break;
11222 }
11223 }
11224
11225 if (j >= ARRAY_SIZE (cpu_arch))
11226 {
11227 /* Disable an ISA extension. */
11228 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
11229 if (strcmp (arch, cpu_noarch [j].name) == 0)
11230 {
11231 i386_cpu_flags flags;
11232
11233 flags = cpu_flags_and_not (cpu_arch_flags,
11234 cpu_noarch[j].flags);
11235 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
11236 {
11237 if (cpu_sub_arch_name)
11238 {
11239 char *name = cpu_sub_arch_name;
11240 cpu_sub_arch_name = concat (arch,
11241 (const char *) NULL);
11242 free (name);
11243 }
11244 else
11245 cpu_sub_arch_name = xstrdup (arch);
11246 cpu_arch_flags = flags;
11247 cpu_arch_isa_flags = flags;
11248 }
11249 break;
11250 }
11251
11252 if (j >= ARRAY_SIZE (cpu_noarch))
11253 j = ARRAY_SIZE (cpu_arch);
11254 }
11255
11256 if (j >= ARRAY_SIZE (cpu_arch))
11257 as_fatal (_("invalid -march= option: `%s'"), arg);
11258
11259 arch = next;
11260 }
11261 while (next != NULL);
11262 free (saved);
11263 break;
11264
11265 case OPTION_MTUNE:
11266 if (*arg == '.')
11267 as_fatal (_("invalid -mtune= option: `%s'"), arg);
11268 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
11269 {
11270 if (strcmp (arg, cpu_arch [j].name) == 0)
11271 {
11272 cpu_arch_tune_set = 1;
11273 cpu_arch_tune = cpu_arch [j].type;
11274 cpu_arch_tune_flags = cpu_arch[j].flags;
11275 break;
11276 }
11277 }
11278 if (j >= ARRAY_SIZE (cpu_arch))
11279 as_fatal (_("invalid -mtune= option: `%s'"), arg);
11280 break;
11281
11282 case OPTION_MMNEMONIC:
11283 if (strcasecmp (arg, "att") == 0)
11284 intel_mnemonic = 0;
11285 else if (strcasecmp (arg, "intel") == 0)
11286 intel_mnemonic = 1;
11287 else
11288 as_fatal (_("invalid -mmnemonic= option: `%s'"), arg);
11289 break;
11290
11291 case OPTION_MSYNTAX:
11292 if (strcasecmp (arg, "att") == 0)
11293 intel_syntax = 0;
11294 else if (strcasecmp (arg, "intel") == 0)
11295 intel_syntax = 1;
11296 else
11297 as_fatal (_("invalid -msyntax= option: `%s'"), arg);
11298 break;
11299
11300 case OPTION_MINDEX_REG:
11301 allow_index_reg = 1;
11302 break;
11303
11304 case OPTION_MNAKED_REG:
11305 allow_naked_reg = 1;
11306 break;
11307
11308 case OPTION_MSSE2AVX:
11309 sse2avx = 1;
11310 break;
11311
11312 case OPTION_MSSE_CHECK:
11313 if (strcasecmp (arg, "error") == 0)
11314 sse_check = check_error;
11315 else if (strcasecmp (arg, "warning") == 0)
11316 sse_check = check_warning;
11317 else if (strcasecmp (arg, "none") == 0)
11318 sse_check = check_none;
11319 else
11320 as_fatal (_("invalid -msse-check= option: `%s'"), arg);
11321 break;
11322
11323 case OPTION_MOPERAND_CHECK:
11324 if (strcasecmp (arg, "error") == 0)
11325 operand_check = check_error;
11326 else if (strcasecmp (arg, "warning") == 0)
11327 operand_check = check_warning;
11328 else if (strcasecmp (arg, "none") == 0)
11329 operand_check = check_none;
11330 else
11331 as_fatal (_("invalid -moperand-check= option: `%s'"), arg);
11332 break;
11333
11334 case OPTION_MAVXSCALAR:
11335 if (strcasecmp (arg, "128") == 0)
11336 avxscalar = vex128;
11337 else if (strcasecmp (arg, "256") == 0)
11338 avxscalar = vex256;
11339 else
11340 as_fatal (_("invalid -mavxscalar= option: `%s'"), arg);
11341 break;
11342
11343 case OPTION_MVEXWIG:
11344 if (strcmp (arg, "0") == 0)
11345 vexwig = evexw0;
11346 else if (strcmp (arg, "1") == 0)
11347 vexwig = evexw1;
11348 else
11349 as_fatal (_("invalid -mvexwig= option: `%s'"), arg);
11350 break;
11351
11352 case OPTION_MADD_BND_PREFIX:
11353 add_bnd_prefix = 1;
11354 break;
11355
11356 case OPTION_MEVEXLIG:
11357 if (strcmp (arg, "128") == 0)
11358 evexlig = evexl128;
11359 else if (strcmp (arg, "256") == 0)
11360 evexlig = evexl256;
11361 else if (strcmp (arg, "512") == 0)
11362 evexlig = evexl512;
11363 else
11364 as_fatal (_("invalid -mevexlig= option: `%s'"), arg);
11365 break;
11366
11367 case OPTION_MEVEXRCIG:
11368 if (strcmp (arg, "rne") == 0)
11369 evexrcig = rne;
11370 else if (strcmp (arg, "rd") == 0)
11371 evexrcig = rd;
11372 else if (strcmp (arg, "ru") == 0)
11373 evexrcig = ru;
11374 else if (strcmp (arg, "rz") == 0)
11375 evexrcig = rz;
11376 else
11377 as_fatal (_("invalid -mevexrcig= option: `%s'"), arg);
11378 break;
11379
11380 case OPTION_MEVEXWIG:
11381 if (strcmp (arg, "0") == 0)
11382 evexwig = evexw0;
11383 else if (strcmp (arg, "1") == 0)
11384 evexwig = evexw1;
11385 else
11386 as_fatal (_("invalid -mevexwig= option: `%s'"), arg);
11387 break;
11388
11389 # if defined (TE_PE) || defined (TE_PEP)
11390 case OPTION_MBIG_OBJ:
11391 use_big_obj = 1;
11392 break;
11393 #endif
11394
11395 case OPTION_MOMIT_LOCK_PREFIX:
11396 if (strcasecmp (arg, "yes") == 0)
11397 omit_lock_prefix = 1;
11398 else if (strcasecmp (arg, "no") == 0)
11399 omit_lock_prefix = 0;
11400 else
11401 as_fatal (_("invalid -momit-lock-prefix= option: `%s'"), arg);
11402 break;
11403
11404 case OPTION_MFENCE_AS_LOCK_ADD:
11405 if (strcasecmp (arg, "yes") == 0)
11406 avoid_fence = 1;
11407 else if (strcasecmp (arg, "no") == 0)
11408 avoid_fence = 0;
11409 else
11410 as_fatal (_("invalid -mfence-as-lock-add= option: `%s'"), arg);
11411 break;
11412
11413 case OPTION_MRELAX_RELOCATIONS:
11414 if (strcasecmp (arg, "yes") == 0)
11415 generate_relax_relocations = 1;
11416 else if (strcasecmp (arg, "no") == 0)
11417 generate_relax_relocations = 0;
11418 else
11419 as_fatal (_("invalid -mrelax-relocations= option: `%s'"), arg);
11420 break;
11421
11422 case OPTION_MAMD64:
11423 intel64 = 0;
11424 break;
11425
11426 case OPTION_MINTEL64:
11427 intel64 = 1;
11428 break;
11429
11430 case 'O':
11431 if (arg == NULL)
11432 {
11433 optimize = 1;
11434 /* Turn off -Os. */
11435 optimize_for_space = 0;
11436 }
11437 else if (*arg == 's')
11438 {
11439 optimize_for_space = 1;
11440 /* Turn on all encoding optimizations. */
11441 optimize = INT_MAX;
11442 }
11443 else
11444 {
11445 optimize = atoi (arg);
11446 /* Turn off -Os. */
11447 optimize_for_space = 0;
11448 }
11449 break;
11450
11451 default:
11452 return 0;
11453 }
11454 return 1;
11455 }
11456
11457 #define MESSAGE_TEMPLATE \
11458 " "
11459
11460 static char *
11461 output_message (FILE *stream, char *p, char *message, char *start,
11462 int *left_p, const char *name, int len)
11463 {
11464 int size = sizeof (MESSAGE_TEMPLATE);
11465 int left = *left_p;
11466
11467 /* Reserve 2 spaces for ", " or ",\0" */
11468 left -= len + 2;
11469
11470 /* Check if there is any room. */
11471 if (left >= 0)
11472 {
11473 if (p != start)
11474 {
11475 *p++ = ',';
11476 *p++ = ' ';
11477 }
11478 p = mempcpy (p, name, len);
11479 }
11480 else
11481 {
11482 /* Output the current message now and start a new one. */
11483 *p++ = ',';
11484 *p = '\0';
11485 fprintf (stream, "%s\n", message);
11486 p = start;
11487 left = size - (start - message) - len - 2;
11488
11489 gas_assert (left >= 0);
11490
11491 p = mempcpy (p, name, len);
11492 }
11493
11494 *left_p = left;
11495 return p;
11496 }
11497
11498 static void
11499 show_arch (FILE *stream, int ext, int check)
11500 {
11501 static char message[] = MESSAGE_TEMPLATE;
11502 char *start = message + 27;
11503 char *p;
11504 int size = sizeof (MESSAGE_TEMPLATE);
11505 int left;
11506 const char *name;
11507 int len;
11508 unsigned int j;
11509
11510 p = start;
11511 left = size - (start - message);
11512 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
11513 {
11514 /* Should it be skipped? */
11515 if (cpu_arch [j].skip)
11516 continue;
11517
11518 name = cpu_arch [j].name;
11519 len = cpu_arch [j].len;
11520 if (*name == '.')
11521 {
11522 /* It is an extension. Skip if we aren't asked to show it. */
11523 if (ext)
11524 {
11525 name++;
11526 len--;
11527 }
11528 else
11529 continue;
11530 }
11531 else if (ext)
11532 {
11533 /* It is an processor. Skip if we show only extension. */
11534 continue;
11535 }
11536 else if (check && ! cpu_arch[j].flags.bitfield.cpui386)
11537 {
11538 /* It is an impossible processor - skip. */
11539 continue;
11540 }
11541
11542 p = output_message (stream, p, message, start, &left, name, len);
11543 }
11544
11545 /* Display disabled extensions. */
11546 if (ext)
11547 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
11548 {
11549 name = cpu_noarch [j].name;
11550 len = cpu_noarch [j].len;
11551 p = output_message (stream, p, message, start, &left, name,
11552 len);
11553 }
11554
11555 *p = '\0';
11556 fprintf (stream, "%s\n", message);
11557 }
11558
11559 void
11560 md_show_usage (FILE *stream)
11561 {
11562 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11563 fprintf (stream, _("\
11564 -Q ignored\n\
11565 -V print assembler version number\n\
11566 -k ignored\n"));
11567 #endif
11568 fprintf (stream, _("\
11569 -n Do not optimize code alignment\n\
11570 -q quieten some warnings\n"));
11571 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11572 fprintf (stream, _("\
11573 -s ignored\n"));
11574 #endif
11575 #if defined BFD64 && (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
11576 || defined (TE_PE) || defined (TE_PEP))
11577 fprintf (stream, _("\
11578 --32/--64/--x32 generate 32bit/64bit/x32 code\n"));
11579 #endif
11580 #ifdef SVR4_COMMENT_CHARS
11581 fprintf (stream, _("\
11582 --divide do not treat `/' as a comment character\n"));
11583 #else
11584 fprintf (stream, _("\
11585 --divide ignored\n"));
11586 #endif
11587 fprintf (stream, _("\
11588 -march=CPU[,+EXTENSION...]\n\
11589 generate code for CPU and EXTENSION, CPU is one of:\n"));
11590 show_arch (stream, 0, 1);
11591 fprintf (stream, _("\
11592 EXTENSION is combination of:\n"));
11593 show_arch (stream, 1, 0);
11594 fprintf (stream, _("\
11595 -mtune=CPU optimize for CPU, CPU is one of:\n"));
11596 show_arch (stream, 0, 0);
11597 fprintf (stream, _("\
11598 -msse2avx encode SSE instructions with VEX prefix\n"));
11599 fprintf (stream, _("\
11600 -msse-check=[none|error|warning] (default: warning)\n\
11601 check SSE instructions\n"));
11602 fprintf (stream, _("\
11603 -moperand-check=[none|error|warning] (default: warning)\n\
11604 check operand combinations for validity\n"));
11605 fprintf (stream, _("\
11606 -mavxscalar=[128|256] (default: 128)\n\
11607 encode scalar AVX instructions with specific vector\n\
11608 length\n"));
11609 fprintf (stream, _("\
11610 -mvexwig=[0|1] (default: 0)\n\
11611 encode VEX instructions with specific VEX.W value\n\
11612 for VEX.W bit ignored instructions\n"));
11613 fprintf (stream, _("\
11614 -mevexlig=[128|256|512] (default: 128)\n\
11615 encode scalar EVEX instructions with specific vector\n\
11616 length\n"));
11617 fprintf (stream, _("\
11618 -mevexwig=[0|1] (default: 0)\n\
11619 encode EVEX instructions with specific EVEX.W value\n\
11620 for EVEX.W bit ignored instructions\n"));
11621 fprintf (stream, _("\
11622 -mevexrcig=[rne|rd|ru|rz] (default: rne)\n\
11623 encode EVEX instructions with specific EVEX.RC value\n\
11624 for SAE-only ignored instructions\n"));
11625 fprintf (stream, _("\
11626 -mmnemonic=[att|intel] "));
11627 if (SYSV386_COMPAT)
11628 fprintf (stream, _("(default: att)\n"));
11629 else
11630 fprintf (stream, _("(default: intel)\n"));
11631 fprintf (stream, _("\
11632 use AT&T/Intel mnemonic\n"));
11633 fprintf (stream, _("\
11634 -msyntax=[att|intel] (default: att)\n\
11635 use AT&T/Intel syntax\n"));
11636 fprintf (stream, _("\
11637 -mindex-reg support pseudo index registers\n"));
11638 fprintf (stream, _("\
11639 -mnaked-reg don't require `%%' prefix for registers\n"));
11640 fprintf (stream, _("\
11641 -madd-bnd-prefix add BND prefix for all valid branches\n"));
11642 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11643 fprintf (stream, _("\
11644 -mshared disable branch optimization for shared code\n"));
11645 fprintf (stream, _("\
11646 -mx86-used-note=[no|yes] "));
11647 if (DEFAULT_X86_USED_NOTE)
11648 fprintf (stream, _("(default: yes)\n"));
11649 else
11650 fprintf (stream, _("(default: no)\n"));
11651 fprintf (stream, _("\
11652 generate x86 used ISA and feature properties\n"));
11653 #endif
11654 #if defined (TE_PE) || defined (TE_PEP)
11655 fprintf (stream, _("\
11656 -mbig-obj generate big object files\n"));
11657 #endif
11658 fprintf (stream, _("\
11659 -momit-lock-prefix=[no|yes] (default: no)\n\
11660 strip all lock prefixes\n"));
11661 fprintf (stream, _("\
11662 -mfence-as-lock-add=[no|yes] (default: no)\n\
11663 encode lfence, mfence and sfence as\n\
11664 lock addl $0x0, (%%{re}sp)\n"));
11665 fprintf (stream, _("\
11666 -mrelax-relocations=[no|yes] "));
11667 if (DEFAULT_GENERATE_X86_RELAX_RELOCATIONS)
11668 fprintf (stream, _("(default: yes)\n"));
11669 else
11670 fprintf (stream, _("(default: no)\n"));
11671 fprintf (stream, _("\
11672 generate relax relocations\n"));
11673 fprintf (stream, _("\
11674 -mamd64 accept only AMD64 ISA [default]\n"));
11675 fprintf (stream, _("\
11676 -mintel64 accept only Intel64 ISA\n"));
11677 }
11678
11679 #if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
11680 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
11681 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
11682
11683 /* Pick the target format to use. */
11684
11685 const char *
11686 i386_target_format (void)
11687 {
11688 if (!strncmp (default_arch, "x86_64", 6))
11689 {
11690 update_code_flag (CODE_64BIT, 1);
11691 if (default_arch[6] == '\0')
11692 x86_elf_abi = X86_64_ABI;
11693 else
11694 x86_elf_abi = X86_64_X32_ABI;
11695 }
11696 else if (!strcmp (default_arch, "i386"))
11697 update_code_flag (CODE_32BIT, 1);
11698 else if (!strcmp (default_arch, "iamcu"))
11699 {
11700 update_code_flag (CODE_32BIT, 1);
11701 if (cpu_arch_isa == PROCESSOR_UNKNOWN)
11702 {
11703 static const i386_cpu_flags iamcu_flags = CPU_IAMCU_FLAGS;
11704 cpu_arch_name = "iamcu";
11705 cpu_sub_arch_name = NULL;
11706 cpu_arch_flags = iamcu_flags;
11707 cpu_arch_isa = PROCESSOR_IAMCU;
11708 cpu_arch_isa_flags = iamcu_flags;
11709 if (!cpu_arch_tune_set)
11710 {
11711 cpu_arch_tune = cpu_arch_isa;
11712 cpu_arch_tune_flags = cpu_arch_isa_flags;
11713 }
11714 }
11715 else if (cpu_arch_isa != PROCESSOR_IAMCU)
11716 as_fatal (_("Intel MCU doesn't support `%s' architecture"),
11717 cpu_arch_name);
11718 }
11719 else
11720 as_fatal (_("unknown architecture"));
11721
11722 if (cpu_flags_all_zero (&cpu_arch_isa_flags))
11723 cpu_arch_isa_flags = cpu_arch[flag_code == CODE_64BIT].flags;
11724 if (cpu_flags_all_zero (&cpu_arch_tune_flags))
11725 cpu_arch_tune_flags = cpu_arch[flag_code == CODE_64BIT].flags;
11726
11727 switch (OUTPUT_FLAVOR)
11728 {
11729 #if defined (OBJ_MAYBE_AOUT) || defined (OBJ_AOUT)
11730 case bfd_target_aout_flavour:
11731 return AOUT_TARGET_FORMAT;
11732 #endif
11733 #if defined (OBJ_MAYBE_COFF) || defined (OBJ_COFF)
11734 # if defined (TE_PE) || defined (TE_PEP)
11735 case bfd_target_coff_flavour:
11736 if (flag_code == CODE_64BIT)
11737 return use_big_obj ? "pe-bigobj-x86-64" : "pe-x86-64";
11738 else
11739 return "pe-i386";
11740 # elif defined (TE_GO32)
11741 case bfd_target_coff_flavour:
11742 return "coff-go32";
11743 # else
11744 case bfd_target_coff_flavour:
11745 return "coff-i386";
11746 # endif
11747 #endif
11748 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
11749 case bfd_target_elf_flavour:
11750 {
11751 const char *format;
11752
11753 switch (x86_elf_abi)
11754 {
11755 default:
11756 format = ELF_TARGET_FORMAT;
11757 break;
11758 case X86_64_ABI:
11759 use_rela_relocations = 1;
11760 object_64bit = 1;
11761 format = ELF_TARGET_FORMAT64;
11762 break;
11763 case X86_64_X32_ABI:
11764 use_rela_relocations = 1;
11765 object_64bit = 1;
11766 disallow_64bit_reloc = 1;
11767 format = ELF_TARGET_FORMAT32;
11768 break;
11769 }
11770 if (cpu_arch_isa == PROCESSOR_L1OM)
11771 {
11772 if (x86_elf_abi != X86_64_ABI)
11773 as_fatal (_("Intel L1OM is 64bit only"));
11774 return ELF_TARGET_L1OM_FORMAT;
11775 }
11776 else if (cpu_arch_isa == PROCESSOR_K1OM)
11777 {
11778 if (x86_elf_abi != X86_64_ABI)
11779 as_fatal (_("Intel K1OM is 64bit only"));
11780 return ELF_TARGET_K1OM_FORMAT;
11781 }
11782 else if (cpu_arch_isa == PROCESSOR_IAMCU)
11783 {
11784 if (x86_elf_abi != I386_ABI)
11785 as_fatal (_("Intel MCU is 32bit only"));
11786 return ELF_TARGET_IAMCU_FORMAT;
11787 }
11788 else
11789 return format;
11790 }
11791 #endif
11792 #if defined (OBJ_MACH_O)
11793 case bfd_target_mach_o_flavour:
11794 if (flag_code == CODE_64BIT)
11795 {
11796 use_rela_relocations = 1;
11797 object_64bit = 1;
11798 return "mach-o-x86-64";
11799 }
11800 else
11801 return "mach-o-i386";
11802 #endif
11803 default:
11804 abort ();
11805 return NULL;
11806 }
11807 }
11808
11809 #endif /* OBJ_MAYBE_ more than one */
11810 \f
11811 symbolS *
11812 md_undefined_symbol (char *name)
11813 {
11814 if (name[0] == GLOBAL_OFFSET_TABLE_NAME[0]
11815 && name[1] == GLOBAL_OFFSET_TABLE_NAME[1]
11816 && name[2] == GLOBAL_OFFSET_TABLE_NAME[2]
11817 && strcmp (name, GLOBAL_OFFSET_TABLE_NAME) == 0)
11818 {
11819 if (!GOT_symbol)
11820 {
11821 if (symbol_find (name))
11822 as_bad (_("GOT already in symbol table"));
11823 GOT_symbol = symbol_new (name, undefined_section,
11824 (valueT) 0, &zero_address_frag);
11825 };
11826 return GOT_symbol;
11827 }
11828 return 0;
11829 }
11830
11831 /* Round up a section size to the appropriate boundary. */
11832
11833 valueT
11834 md_section_align (segT segment ATTRIBUTE_UNUSED, valueT size)
11835 {
11836 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
11837 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
11838 {
11839 /* For a.out, force the section size to be aligned. If we don't do
11840 this, BFD will align it for us, but it will not write out the
11841 final bytes of the section. This may be a bug in BFD, but it is
11842 easier to fix it here since that is how the other a.out targets
11843 work. */
11844 int align;
11845
11846 align = bfd_get_section_alignment (stdoutput, segment);
11847 size = ((size + (1 << align) - 1) & (-((valueT) 1 << align)));
11848 }
11849 #endif
11850
11851 return size;
11852 }
11853
11854 /* On the i386, PC-relative offsets are relative to the start of the
11855 next instruction. That is, the address of the offset, plus its
11856 size, since the offset is always the last part of the insn. */
11857
11858 long
11859 md_pcrel_from (fixS *fixP)
11860 {
11861 return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address;
11862 }
11863
11864 #ifndef I386COFF
11865
11866 static void
11867 s_bss (int ignore ATTRIBUTE_UNUSED)
11868 {
11869 int temp;
11870
11871 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11872 if (IS_ELF)
11873 obj_elf_section_change_hook ();
11874 #endif
11875 temp = get_absolute_expression ();
11876 subseg_set (bss_section, (subsegT) temp);
11877 demand_empty_rest_of_line ();
11878 }
11879
11880 #endif
11881
11882 void
11883 i386_validate_fix (fixS *fixp)
11884 {
11885 if (fixp->fx_subsy)
11886 {
11887 if (fixp->fx_subsy == GOT_symbol)
11888 {
11889 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
11890 {
11891 if (!object_64bit)
11892 abort ();
11893 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11894 if (fixp->fx_tcbit2)
11895 fixp->fx_r_type = (fixp->fx_tcbit
11896 ? BFD_RELOC_X86_64_REX_GOTPCRELX
11897 : BFD_RELOC_X86_64_GOTPCRELX);
11898 else
11899 #endif
11900 fixp->fx_r_type = BFD_RELOC_X86_64_GOTPCREL;
11901 }
11902 else
11903 {
11904 if (!object_64bit)
11905 fixp->fx_r_type = BFD_RELOC_386_GOTOFF;
11906 else
11907 fixp->fx_r_type = BFD_RELOC_X86_64_GOTOFF64;
11908 }
11909 fixp->fx_subsy = 0;
11910 }
11911 }
11912 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11913 else if (!object_64bit)
11914 {
11915 if (fixp->fx_r_type == BFD_RELOC_386_GOT32
11916 && fixp->fx_tcbit2)
11917 fixp->fx_r_type = BFD_RELOC_386_GOT32X;
11918 }
11919 #endif
11920 }
11921
11922 arelent *
11923 tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
11924 {
11925 arelent *rel;
11926 bfd_reloc_code_real_type code;
11927
11928 switch (fixp->fx_r_type)
11929 {
11930 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11931 case BFD_RELOC_SIZE32:
11932 case BFD_RELOC_SIZE64:
11933 if (S_IS_DEFINED (fixp->fx_addsy)
11934 && !S_IS_EXTERNAL (fixp->fx_addsy))
11935 {
11936 /* Resolve size relocation against local symbol to size of
11937 the symbol plus addend. */
11938 valueT value = S_GET_SIZE (fixp->fx_addsy) + fixp->fx_offset;
11939 if (fixp->fx_r_type == BFD_RELOC_SIZE32
11940 && !fits_in_unsigned_long (value))
11941 as_bad_where (fixp->fx_file, fixp->fx_line,
11942 _("symbol size computation overflow"));
11943 fixp->fx_addsy = NULL;
11944 fixp->fx_subsy = NULL;
11945 md_apply_fix (fixp, (valueT *) &value, NULL);
11946 return NULL;
11947 }
11948 #endif
11949 /* Fall through. */
11950
11951 case BFD_RELOC_X86_64_PLT32:
11952 case BFD_RELOC_X86_64_GOT32:
11953 case BFD_RELOC_X86_64_GOTPCREL:
11954 case BFD_RELOC_X86_64_GOTPCRELX:
11955 case BFD_RELOC_X86_64_REX_GOTPCRELX:
11956 case BFD_RELOC_386_PLT32:
11957 case BFD_RELOC_386_GOT32:
11958 case BFD_RELOC_386_GOT32X:
11959 case BFD_RELOC_386_GOTOFF:
11960 case BFD_RELOC_386_GOTPC:
11961 case BFD_RELOC_386_TLS_GD:
11962 case BFD_RELOC_386_TLS_LDM:
11963 case BFD_RELOC_386_TLS_LDO_32:
11964 case BFD_RELOC_386_TLS_IE_32:
11965 case BFD_RELOC_386_TLS_IE:
11966 case BFD_RELOC_386_TLS_GOTIE:
11967 case BFD_RELOC_386_TLS_LE_32:
11968 case BFD_RELOC_386_TLS_LE:
11969 case BFD_RELOC_386_TLS_GOTDESC:
11970 case BFD_RELOC_386_TLS_DESC_CALL:
11971 case BFD_RELOC_X86_64_TLSGD:
11972 case BFD_RELOC_X86_64_TLSLD:
11973 case BFD_RELOC_X86_64_DTPOFF32:
11974 case BFD_RELOC_X86_64_DTPOFF64:
11975 case BFD_RELOC_X86_64_GOTTPOFF:
11976 case BFD_RELOC_X86_64_TPOFF32:
11977 case BFD_RELOC_X86_64_TPOFF64:
11978 case BFD_RELOC_X86_64_GOTOFF64:
11979 case BFD_RELOC_X86_64_GOTPC32:
11980 case BFD_RELOC_X86_64_GOT64:
11981 case BFD_RELOC_X86_64_GOTPCREL64:
11982 case BFD_RELOC_X86_64_GOTPC64:
11983 case BFD_RELOC_X86_64_GOTPLT64:
11984 case BFD_RELOC_X86_64_PLTOFF64:
11985 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
11986 case BFD_RELOC_X86_64_TLSDESC_CALL:
11987 case BFD_RELOC_RVA:
11988 case BFD_RELOC_VTABLE_ENTRY:
11989 case BFD_RELOC_VTABLE_INHERIT:
11990 #ifdef TE_PE
11991 case BFD_RELOC_32_SECREL:
11992 #endif
11993 code = fixp->fx_r_type;
11994 break;
11995 case BFD_RELOC_X86_64_32S:
11996 if (!fixp->fx_pcrel)
11997 {
11998 /* Don't turn BFD_RELOC_X86_64_32S into BFD_RELOC_32. */
11999 code = fixp->fx_r_type;
12000 break;
12001 }
12002 /* Fall through. */
12003 default:
12004 if (fixp->fx_pcrel)
12005 {
12006 switch (fixp->fx_size)
12007 {
12008 default:
12009 as_bad_where (fixp->fx_file, fixp->fx_line,
12010 _("can not do %d byte pc-relative relocation"),
12011 fixp->fx_size);
12012 code = BFD_RELOC_32_PCREL;
12013 break;
12014 case 1: code = BFD_RELOC_8_PCREL; break;
12015 case 2: code = BFD_RELOC_16_PCREL; break;
12016 case 4: code = BFD_RELOC_32_PCREL; break;
12017 #ifdef BFD64
12018 case 8: code = BFD_RELOC_64_PCREL; break;
12019 #endif
12020 }
12021 }
12022 else
12023 {
12024 switch (fixp->fx_size)
12025 {
12026 default:
12027 as_bad_where (fixp->fx_file, fixp->fx_line,
12028 _("can not do %d byte relocation"),
12029 fixp->fx_size);
12030 code = BFD_RELOC_32;
12031 break;
12032 case 1: code = BFD_RELOC_8; break;
12033 case 2: code = BFD_RELOC_16; break;
12034 case 4: code = BFD_RELOC_32; break;
12035 #ifdef BFD64
12036 case 8: code = BFD_RELOC_64; break;
12037 #endif
12038 }
12039 }
12040 break;
12041 }
12042
12043 if ((code == BFD_RELOC_32
12044 || code == BFD_RELOC_32_PCREL
12045 || code == BFD_RELOC_X86_64_32S)
12046 && GOT_symbol
12047 && fixp->fx_addsy == GOT_symbol)
12048 {
12049 if (!object_64bit)
12050 code = BFD_RELOC_386_GOTPC;
12051 else
12052 code = BFD_RELOC_X86_64_GOTPC32;
12053 }
12054 if ((code == BFD_RELOC_64 || code == BFD_RELOC_64_PCREL)
12055 && GOT_symbol
12056 && fixp->fx_addsy == GOT_symbol)
12057 {
12058 code = BFD_RELOC_X86_64_GOTPC64;
12059 }
12060
12061 rel = XNEW (arelent);
12062 rel->sym_ptr_ptr = XNEW (asymbol *);
12063 *rel->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
12064
12065 rel->address = fixp->fx_frag->fr_address + fixp->fx_where;
12066
12067 if (!use_rela_relocations)
12068 {
12069 /* HACK: Since i386 ELF uses Rel instead of Rela, encode the
12070 vtable entry to be used in the relocation's section offset. */
12071 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
12072 rel->address = fixp->fx_offset;
12073 #if defined (OBJ_COFF) && defined (TE_PE)
12074 else if (fixp->fx_addsy && S_IS_WEAK (fixp->fx_addsy))
12075 rel->addend = fixp->fx_addnumber - (S_GET_VALUE (fixp->fx_addsy) * 2);
12076 else
12077 #endif
12078 rel->addend = 0;
12079 }
12080 /* Use the rela in 64bit mode. */
12081 else
12082 {
12083 if (disallow_64bit_reloc)
12084 switch (code)
12085 {
12086 case BFD_RELOC_X86_64_DTPOFF64:
12087 case BFD_RELOC_X86_64_TPOFF64:
12088 case BFD_RELOC_64_PCREL:
12089 case BFD_RELOC_X86_64_GOTOFF64:
12090 case BFD_RELOC_X86_64_GOT64:
12091 case BFD_RELOC_X86_64_GOTPCREL64:
12092 case BFD_RELOC_X86_64_GOTPC64:
12093 case BFD_RELOC_X86_64_GOTPLT64:
12094 case BFD_RELOC_X86_64_PLTOFF64:
12095 as_bad_where (fixp->fx_file, fixp->fx_line,
12096 _("cannot represent relocation type %s in x32 mode"),
12097 bfd_get_reloc_code_name (code));
12098 break;
12099 default:
12100 break;
12101 }
12102
12103 if (!fixp->fx_pcrel)
12104 rel->addend = fixp->fx_offset;
12105 else
12106 switch (code)
12107 {
12108 case BFD_RELOC_X86_64_PLT32:
12109 case BFD_RELOC_X86_64_GOT32:
12110 case BFD_RELOC_X86_64_GOTPCREL:
12111 case BFD_RELOC_X86_64_GOTPCRELX:
12112 case BFD_RELOC_X86_64_REX_GOTPCRELX:
12113 case BFD_RELOC_X86_64_TLSGD:
12114 case BFD_RELOC_X86_64_TLSLD:
12115 case BFD_RELOC_X86_64_GOTTPOFF:
12116 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
12117 case BFD_RELOC_X86_64_TLSDESC_CALL:
12118 rel->addend = fixp->fx_offset - fixp->fx_size;
12119 break;
12120 default:
12121 rel->addend = (section->vma
12122 - fixp->fx_size
12123 + fixp->fx_addnumber
12124 + md_pcrel_from (fixp));
12125 break;
12126 }
12127 }
12128
12129 rel->howto = bfd_reloc_type_lookup (stdoutput, code);
12130 if (rel->howto == NULL)
12131 {
12132 as_bad_where (fixp->fx_file, fixp->fx_line,
12133 _("cannot represent relocation type %s"),
12134 bfd_get_reloc_code_name (code));
12135 /* Set howto to a garbage value so that we can keep going. */
12136 rel->howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_32);
12137 gas_assert (rel->howto != NULL);
12138 }
12139
12140 return rel;
12141 }
12142
12143 #include "tc-i386-intel.c"
12144
12145 void
12146 tc_x86_parse_to_dw2regnum (expressionS *exp)
12147 {
12148 int saved_naked_reg;
12149 char saved_register_dot;
12150
12151 saved_naked_reg = allow_naked_reg;
12152 allow_naked_reg = 1;
12153 saved_register_dot = register_chars['.'];
12154 register_chars['.'] = '.';
12155 allow_pseudo_reg = 1;
12156 expression_and_evaluate (exp);
12157 allow_pseudo_reg = 0;
12158 register_chars['.'] = saved_register_dot;
12159 allow_naked_reg = saved_naked_reg;
12160
12161 if (exp->X_op == O_register && exp->X_add_number >= 0)
12162 {
12163 if ((addressT) exp->X_add_number < i386_regtab_size)
12164 {
12165 exp->X_op = O_constant;
12166 exp->X_add_number = i386_regtab[exp->X_add_number]
12167 .dw2_regnum[flag_code >> 1];
12168 }
12169 else
12170 exp->X_op = O_illegal;
12171 }
12172 }
12173
12174 void
12175 tc_x86_frame_initial_instructions (void)
12176 {
12177 static unsigned int sp_regno[2];
12178
12179 if (!sp_regno[flag_code >> 1])
12180 {
12181 char *saved_input = input_line_pointer;
12182 char sp[][4] = {"esp", "rsp"};
12183 expressionS exp;
12184
12185 input_line_pointer = sp[flag_code >> 1];
12186 tc_x86_parse_to_dw2regnum (&exp);
12187 gas_assert (exp.X_op == O_constant);
12188 sp_regno[flag_code >> 1] = exp.X_add_number;
12189 input_line_pointer = saved_input;
12190 }
12191
12192 cfi_add_CFA_def_cfa (sp_regno[flag_code >> 1], -x86_cie_data_alignment);
12193 cfi_add_CFA_offset (x86_dwarf2_return_column, x86_cie_data_alignment);
12194 }
12195
12196 int
12197 x86_dwarf2_addr_size (void)
12198 {
12199 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
12200 if (x86_elf_abi == X86_64_X32_ABI)
12201 return 4;
12202 #endif
12203 return bfd_arch_bits_per_address (stdoutput) / 8;
12204 }
12205
12206 int
12207 i386_elf_section_type (const char *str, size_t len)
12208 {
12209 if (flag_code == CODE_64BIT
12210 && len == sizeof ("unwind") - 1
12211 && strncmp (str, "unwind", 6) == 0)
12212 return SHT_X86_64_UNWIND;
12213
12214 return -1;
12215 }
12216
12217 #ifdef TE_SOLARIS
12218 void
12219 i386_solaris_fix_up_eh_frame (segT sec)
12220 {
12221 if (flag_code == CODE_64BIT)
12222 elf_section_type (sec) = SHT_X86_64_UNWIND;
12223 }
12224 #endif
12225
12226 #ifdef TE_PE
12227 void
12228 tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
12229 {
12230 expressionS exp;
12231
12232 exp.X_op = O_secrel;
12233 exp.X_add_symbol = symbol;
12234 exp.X_add_number = 0;
12235 emit_expr (&exp, size);
12236 }
12237 #endif
12238
12239 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12240 /* For ELF on x86-64, add support for SHF_X86_64_LARGE. */
12241
12242 bfd_vma
12243 x86_64_section_letter (int letter, const char **ptr_msg)
12244 {
12245 if (flag_code == CODE_64BIT)
12246 {
12247 if (letter == 'l')
12248 return SHF_X86_64_LARGE;
12249
12250 *ptr_msg = _("bad .section directive: want a,l,w,x,M,S,G,T in string");
12251 }
12252 else
12253 *ptr_msg = _("bad .section directive: want a,w,x,M,S,G,T in string");
12254 return -1;
12255 }
12256
12257 bfd_vma
12258 x86_64_section_word (char *str, size_t len)
12259 {
12260 if (len == 5 && flag_code == CODE_64BIT && CONST_STRNEQ (str, "large"))
12261 return SHF_X86_64_LARGE;
12262
12263 return -1;
12264 }
12265
12266 static void
12267 handle_large_common (int small ATTRIBUTE_UNUSED)
12268 {
12269 if (flag_code != CODE_64BIT)
12270 {
12271 s_comm_internal (0, elf_common_parse);
12272 as_warn (_(".largecomm supported only in 64bit mode, producing .comm"));
12273 }
12274 else
12275 {
12276 static segT lbss_section;
12277 asection *saved_com_section_ptr = elf_com_section_ptr;
12278 asection *saved_bss_section = bss_section;
12279
12280 if (lbss_section == NULL)
12281 {
12282 flagword applicable;
12283 segT seg = now_seg;
12284 subsegT subseg = now_subseg;
12285
12286 /* The .lbss section is for local .largecomm symbols. */
12287 lbss_section = subseg_new (".lbss", 0);
12288 applicable = bfd_applicable_section_flags (stdoutput);
12289 bfd_set_section_flags (stdoutput, lbss_section,
12290 applicable & SEC_ALLOC);
12291 seg_info (lbss_section)->bss = 1;
12292
12293 subseg_set (seg, subseg);
12294 }
12295
12296 elf_com_section_ptr = &_bfd_elf_large_com_section;
12297 bss_section = lbss_section;
12298
12299 s_comm_internal (0, elf_common_parse);
12300
12301 elf_com_section_ptr = saved_com_section_ptr;
12302 bss_section = saved_bss_section;
12303 }
12304 }
12305 #endif /* OBJ_ELF || OBJ_MAYBE_ELF */
This page took 0.431188 seconds and 4 git commands to generate.