Do not remove the symbol's value from the addend for fixups against local
[deliverable/binutils-gdb.git] / gas / config / tc-i386.c
1 /* i386.c -- Assemble code for the Intel 80386
2 Copyright 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001
4 Free Software Foundation, Inc.
5
6 This file is part of GAS, the GNU Assembler.
7
8 GAS is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2, or (at your option)
11 any later version.
12
13 GAS is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GAS; see the file COPYING. If not, write to the Free
20 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
21 02111-1307, USA. */
22
23 /* Intel 80386 machine specific gas.
24 Written by Eliot Dresselhaus (eliot@mgm.mit.edu).
25 x86_64 support by Jan Hubicka (jh@suse.cz)
26 Bugs & suggestions are completely welcome. This is free software.
27 Please help us make it better. */
28
29 #include "as.h"
30 #include "safe-ctype.h"
31 #include "subsegs.h"
32 #include "dwarf2dbg.h"
33 #include "opcode/i386.h"
34
35 #ifndef REGISTER_WARNINGS
36 #define REGISTER_WARNINGS 1
37 #endif
38
39 #ifndef INFER_ADDR_PREFIX
40 #define INFER_ADDR_PREFIX 1
41 #endif
42
43 #ifndef SCALE1_WHEN_NO_INDEX
44 /* Specifying a scale factor besides 1 when there is no index is
45 futile. eg. `mov (%ebx,2),%al' does exactly the same as
46 `mov (%ebx),%al'. To slavishly follow what the programmer
47 specified, set SCALE1_WHEN_NO_INDEX to 0. */
48 #define SCALE1_WHEN_NO_INDEX 1
49 #endif
50
51 #define true 1
52 #define false 0
53
54 static unsigned int mode_from_disp_size PARAMS ((unsigned int));
55 static int fits_in_signed_byte PARAMS ((offsetT));
56 static int fits_in_unsigned_byte PARAMS ((offsetT));
57 static int fits_in_unsigned_word PARAMS ((offsetT));
58 static int fits_in_signed_word PARAMS ((offsetT));
59 static int fits_in_unsigned_long PARAMS ((offsetT));
60 static int fits_in_signed_long PARAMS ((offsetT));
61 static int smallest_imm_type PARAMS ((offsetT));
62 static offsetT offset_in_range PARAMS ((offsetT, int));
63 static int add_prefix PARAMS ((unsigned int));
64 static void set_code_flag PARAMS ((int));
65 static void set_16bit_gcc_code_flag PARAMS ((int));
66 static void set_intel_syntax PARAMS ((int));
67 static void set_cpu_arch PARAMS ((int));
68
69 #ifdef BFD_ASSEMBLER
70 static bfd_reloc_code_real_type reloc
71 PARAMS ((int, int, int, bfd_reloc_code_real_type));
72 #define RELOC_ENUM enum bfd_reloc_code_real
73 #else
74 #define RELOC_ENUM int
75 #endif
76
77 #ifndef DEFAULT_ARCH
78 #define DEFAULT_ARCH "i386"
79 #endif
80 static char *default_arch = DEFAULT_ARCH;
81
82 /* 'md_assemble ()' gathers together information and puts it into a
83 i386_insn. */
84
85 union i386_op
86 {
87 expressionS *disps;
88 expressionS *imms;
89 const reg_entry *regs;
90 };
91
92 struct _i386_insn
93 {
94 /* TM holds the template for the insn were currently assembling. */
95 template tm;
96
97 /* SUFFIX holds the instruction mnemonic suffix if given.
98 (e.g. 'l' for 'movl') */
99 char suffix;
100
101 /* OPERANDS gives the number of given operands. */
102 unsigned int operands;
103
104 /* REG_OPERANDS, DISP_OPERANDS, MEM_OPERANDS, IMM_OPERANDS give the number
105 of given register, displacement, memory operands and immediate
106 operands. */
107 unsigned int reg_operands, disp_operands, mem_operands, imm_operands;
108
109 /* TYPES [i] is the type (see above #defines) which tells us how to
110 use OP[i] for the corresponding operand. */
111 unsigned int types[MAX_OPERANDS];
112
113 /* Displacement expression, immediate expression, or register for each
114 operand. */
115 union i386_op op[MAX_OPERANDS];
116
117 /* Flags for operands. */
118 unsigned int flags[MAX_OPERANDS];
119 #define Operand_PCrel 1
120
121 /* Relocation type for operand */
122 RELOC_ENUM reloc[MAX_OPERANDS];
123
124 /* BASE_REG, INDEX_REG, and LOG2_SCALE_FACTOR are used to encode
125 the base index byte below. */
126 const reg_entry *base_reg;
127 const reg_entry *index_reg;
128 unsigned int log2_scale_factor;
129
130 /* SEG gives the seg_entries of this insn. They are zero unless
131 explicit segment overrides are given. */
132 const seg_entry *seg[2];
133
134 /* PREFIX holds all the given prefix opcodes (usually null).
135 PREFIXES is the number of prefix opcodes. */
136 unsigned int prefixes;
137 unsigned char prefix[MAX_PREFIXES];
138
139 /* RM and SIB are the modrm byte and the sib byte where the
140 addressing modes of this insn are encoded. */
141
142 modrm_byte rm;
143 rex_byte rex;
144 sib_byte sib;
145 };
146
147 typedef struct _i386_insn i386_insn;
148
149 /* List of chars besides those in app.c:symbol_chars that can start an
150 operand. Used to prevent the scrubber eating vital white-space. */
151 #ifdef LEX_AT
152 const char extra_symbol_chars[] = "*%-(@";
153 #else
154 const char extra_symbol_chars[] = "*%-(";
155 #endif
156
157 /* This array holds the chars that always start a comment. If the
158 pre-processor is disabled, these aren't very useful. */
159 #if defined (TE_I386AIX) || ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) && ! defined (TE_LINUX) && !defined(TE_FreeBSD) && !defined(TE_NetBSD))
160 /* Putting '/' here makes it impossible to use the divide operator.
161 However, we need it for compatibility with SVR4 systems. */
162 const char comment_chars[] = "#/";
163 #define PREFIX_SEPARATOR '\\'
164 #else
165 const char comment_chars[] = "#";
166 #define PREFIX_SEPARATOR '/'
167 #endif
168
169 /* This array holds the chars that only start a comment at the beginning of
170 a line. If the line seems to have the form '# 123 filename'
171 .line and .file directives will appear in the pre-processed output.
172 Note that input_file.c hand checks for '#' at the beginning of the
173 first line of the input file. This is because the compiler outputs
174 #NO_APP at the beginning of its output.
175 Also note that comments started like this one will always work if
176 '/' isn't otherwise defined. */
177 #if defined (TE_I386AIX) || ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) && ! defined (TE_LINUX) && !defined(TE_FreeBSD) && !defined(TE_NetBSD))
178 const char line_comment_chars[] = "";
179 #else
180 const char line_comment_chars[] = "/";
181 #endif
182
183 const char line_separator_chars[] = ";";
184
185 /* Chars that can be used to separate mant from exp in floating point
186 nums. */
187 const char EXP_CHARS[] = "eE";
188
189 /* Chars that mean this number is a floating point constant
190 As in 0f12.456
191 or 0d1.2345e12. */
192 const char FLT_CHARS[] = "fFdDxX";
193
194 /* Tables for lexical analysis. */
195 static char mnemonic_chars[256];
196 static char register_chars[256];
197 static char operand_chars[256];
198 static char identifier_chars[256];
199 static char digit_chars[256];
200
201 /* Lexical macros. */
202 #define is_mnemonic_char(x) (mnemonic_chars[(unsigned char) x])
203 #define is_operand_char(x) (operand_chars[(unsigned char) x])
204 #define is_register_char(x) (register_chars[(unsigned char) x])
205 #define is_space_char(x) ((x) == ' ')
206 #define is_identifier_char(x) (identifier_chars[(unsigned char) x])
207 #define is_digit_char(x) (digit_chars[(unsigned char) x])
208
209 /* All non-digit non-letter charcters that may occur in an operand. */
210 static char operand_special_chars[] = "%$-+(,)*._~/<>|&^!:[@]";
211
212 /* md_assemble() always leaves the strings it's passed unaltered. To
213 effect this we maintain a stack of saved characters that we've smashed
214 with '\0's (indicating end of strings for various sub-fields of the
215 assembler instruction). */
216 static char save_stack[32];
217 static char *save_stack_p;
218 #define END_STRING_AND_SAVE(s) \
219 do { *save_stack_p++ = *(s); *(s) = '\0'; } while (0)
220 #define RESTORE_END_STRING(s) \
221 do { *(s) = *--save_stack_p; } while (0)
222
223 /* The instruction we're assembling. */
224 static i386_insn i;
225
226 /* Possible templates for current insn. */
227 static const templates *current_templates;
228
229 /* Per instruction expressionS buffers: 2 displacements & 2 immediate max. */
230 static expressionS disp_expressions[2], im_expressions[2];
231
232 /* Current operand we are working on. */
233 static int this_operand;
234
235 /* We support four different modes. FLAG_CODE variable is used to distinguish
236 these. */
237
238 enum flag_code {
239 CODE_32BIT,
240 CODE_16BIT,
241 CODE_64BIT };
242 #define NUM_FLAG_CODE ((int) CODE_64BIT + 1)
243
244 static enum flag_code flag_code;
245 static int use_rela_relocations = 0;
246
247 /* The names used to print error messages. */
248 static const char *flag_code_names[] =
249 {
250 "32",
251 "16",
252 "64"
253 };
254
255 /* 1 for intel syntax,
256 0 if att syntax. */
257 static int intel_syntax = 0;
258
259 /* 1 if register prefix % not required. */
260 static int allow_naked_reg = 0;
261
262 /* Used in 16 bit gcc mode to add an l suffix to call, ret, enter,
263 leave, push, and pop instructions so that gcc has the same stack
264 frame as in 32 bit mode. */
265 static char stackop_size = '\0';
266
267 /* Non-zero to quieten some warnings. */
268 static int quiet_warnings = 0;
269
270 /* CPU name. */
271 static const char *cpu_arch_name = NULL;
272
273 /* CPU feature flags. */
274 static unsigned int cpu_arch_flags = CpuUnknownFlags|CpuNo64;
275
276 /* If set, conditional jumps are not automatically promoted to handle
277 larger than a byte offset. */
278 static unsigned int no_cond_jump_promotion = 0;
279
280 /* Interface to relax_segment.
281 There are 3 major relax states for 386 jump insns because the
282 different types of jumps add different sizes to frags when we're
283 figuring out what sort of jump to choose to reach a given label. */
284
285 /* Types. */
286 #define UNCOND_JUMP 0
287 #define COND_JUMP 1
288 #define COND_JUMP86 2
289
290 /* Sizes. */
291 #define CODE16 1
292 #define SMALL 0
293 #define SMALL16 (SMALL|CODE16)
294 #define BIG 2
295 #define BIG16 (BIG|CODE16)
296
297 #ifndef INLINE
298 #ifdef __GNUC__
299 #define INLINE __inline__
300 #else
301 #define INLINE
302 #endif
303 #endif
304
305 #define ENCODE_RELAX_STATE(type, size) \
306 ((relax_substateT) (((type) << 2) | (size)))
307 #define TYPE_FROM_RELAX_STATE(s) \
308 ((s) >> 2)
309 #define DISP_SIZE_FROM_RELAX_STATE(s) \
310 ((((s) & 3) == BIG ? 4 : (((s) & 3) == BIG16 ? 2 : 1)))
311
312 /* This table is used by relax_frag to promote short jumps to long
313 ones where necessary. SMALL (short) jumps may be promoted to BIG
314 (32 bit long) ones, and SMALL16 jumps to BIG16 (16 bit long). We
315 don't allow a short jump in a 32 bit code segment to be promoted to
316 a 16 bit offset jump because it's slower (requires data size
317 prefix), and doesn't work, unless the destination is in the bottom
318 64k of the code segment (The top 16 bits of eip are zeroed). */
319
320 const relax_typeS md_relax_table[] =
321 {
322 /* The fields are:
323 1) most positive reach of this state,
324 2) most negative reach of this state,
325 3) how many bytes this mode will have in the variable part of the frag
326 4) which index into the table to try if we can't fit into this one. */
327
328 /* UNCOND_JUMP states. */
329 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG)},
330 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16)},
331 /* dword jmp adds 4 bytes to frag:
332 0 extra opcode bytes, 4 displacement bytes. */
333 {0, 0, 4, 0},
334 /* word jmp adds 2 byte2 to frag:
335 0 extra opcode bytes, 2 displacement bytes. */
336 {0, 0, 2, 0},
337
338 /* COND_JUMP states. */
339 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG)},
340 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG16)},
341 /* dword conditionals adds 5 bytes to frag:
342 1 extra opcode byte, 4 displacement bytes. */
343 {0, 0, 5, 0},
344 /* word conditionals add 3 bytes to frag:
345 1 extra opcode byte, 2 displacement bytes. */
346 {0, 0, 3, 0},
347
348 /* COND_JUMP86 states. */
349 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG)},
350 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG16)},
351 /* dword conditionals adds 5 bytes to frag:
352 1 extra opcode byte, 4 displacement bytes. */
353 {0, 0, 5, 0},
354 /* word conditionals add 4 bytes to frag:
355 1 displacement byte and a 3 byte long branch insn. */
356 {0, 0, 4, 0}
357 };
358
359 static const arch_entry cpu_arch[] = {
360 {"i8086", Cpu086 },
361 {"i186", Cpu086|Cpu186 },
362 {"i286", Cpu086|Cpu186|Cpu286 },
363 {"i386", Cpu086|Cpu186|Cpu286|Cpu386 },
364 {"i486", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486 },
365 {"i586", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|CpuMMX },
366 {"i686", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuMMX|CpuSSE },
367 {"pentium", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|CpuMMX },
368 {"pentiumpro",Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuMMX|CpuSSE },
369 {"pentium4", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuP4|CpuMMX|CpuSSE|CpuSSE2 },
370 {"k6", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|CpuK6|CpuMMX|Cpu3dnow },
371 {"athlon", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuK6|CpuAthlon|CpuMMX|Cpu3dnow },
372 {"sledgehammer",Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuK6|CpuAthlon|CpuSledgehammer|CpuMMX|Cpu3dnow|CpuSSE|CpuSSE2 },
373 {NULL, 0 }
374 };
375
376 void
377 i386_align_code (fragP, count)
378 fragS *fragP;
379 int count;
380 {
381 /* Various efficient no-op patterns for aligning code labels.
382 Note: Don't try to assemble the instructions in the comments.
383 0L and 0w are not legal. */
384 static const char f32_1[] =
385 {0x90}; /* nop */
386 static const char f32_2[] =
387 {0x89,0xf6}; /* movl %esi,%esi */
388 static const char f32_3[] =
389 {0x8d,0x76,0x00}; /* leal 0(%esi),%esi */
390 static const char f32_4[] =
391 {0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
392 static const char f32_5[] =
393 {0x90, /* nop */
394 0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
395 static const char f32_6[] =
396 {0x8d,0xb6,0x00,0x00,0x00,0x00}; /* leal 0L(%esi),%esi */
397 static const char f32_7[] =
398 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
399 static const char f32_8[] =
400 {0x90, /* nop */
401 0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
402 static const char f32_9[] =
403 {0x89,0xf6, /* movl %esi,%esi */
404 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
405 static const char f32_10[] =
406 {0x8d,0x76,0x00, /* leal 0(%esi),%esi */
407 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
408 static const char f32_11[] =
409 {0x8d,0x74,0x26,0x00, /* leal 0(%esi,1),%esi */
410 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
411 static const char f32_12[] =
412 {0x8d,0xb6,0x00,0x00,0x00,0x00, /* leal 0L(%esi),%esi */
413 0x8d,0xbf,0x00,0x00,0x00,0x00}; /* leal 0L(%edi),%edi */
414 static const char f32_13[] =
415 {0x8d,0xb6,0x00,0x00,0x00,0x00, /* leal 0L(%esi),%esi */
416 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
417 static const char f32_14[] =
418 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00, /* leal 0L(%esi,1),%esi */
419 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
420 static const char f32_15[] =
421 {0xeb,0x0d,0x90,0x90,0x90,0x90,0x90, /* jmp .+15; lotsa nops */
422 0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90};
423 static const char f16_3[] =
424 {0x8d,0x74,0x00}; /* lea 0(%esi),%esi */
425 static const char f16_4[] =
426 {0x8d,0xb4,0x00,0x00}; /* lea 0w(%si),%si */
427 static const char f16_5[] =
428 {0x90, /* nop */
429 0x8d,0xb4,0x00,0x00}; /* lea 0w(%si),%si */
430 static const char f16_6[] =
431 {0x89,0xf6, /* mov %si,%si */
432 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
433 static const char f16_7[] =
434 {0x8d,0x74,0x00, /* lea 0(%si),%si */
435 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
436 static const char f16_8[] =
437 {0x8d,0xb4,0x00,0x00, /* lea 0w(%si),%si */
438 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
439 static const char *const f32_patt[] = {
440 f32_1, f32_2, f32_3, f32_4, f32_5, f32_6, f32_7, f32_8,
441 f32_9, f32_10, f32_11, f32_12, f32_13, f32_14, f32_15
442 };
443 static const char *const f16_patt[] = {
444 f32_1, f32_2, f16_3, f16_4, f16_5, f16_6, f16_7, f16_8,
445 f32_15, f32_15, f32_15, f32_15, f32_15, f32_15, f32_15
446 };
447
448 /* ??? We can't use these fillers for x86_64, since they often kills the
449 upper halves. Solve later. */
450 if (flag_code == CODE_64BIT)
451 count = 1;
452
453 if (count > 0 && count <= 15)
454 {
455 if (flag_code == CODE_16BIT)
456 {
457 memcpy (fragP->fr_literal + fragP->fr_fix,
458 f16_patt[count - 1], count);
459 if (count > 8)
460 /* Adjust jump offset. */
461 fragP->fr_literal[fragP->fr_fix + 1] = count - 2;
462 }
463 else
464 memcpy (fragP->fr_literal + fragP->fr_fix,
465 f32_patt[count - 1], count);
466 fragP->fr_var = count;
467 }
468 }
469
470 static char *output_invalid PARAMS ((int c));
471 static int i386_operand PARAMS ((char *operand_string));
472 static int i386_intel_operand PARAMS ((char *operand_string, int got_a_float));
473 static const reg_entry *parse_register PARAMS ((char *reg_string,
474 char **end_op));
475
476 #ifndef I386COFF
477 static void s_bss PARAMS ((int));
478 #endif
479
480 symbolS *GOT_symbol; /* Pre-defined "_GLOBAL_OFFSET_TABLE_". */
481
482 static INLINE unsigned int
483 mode_from_disp_size (t)
484 unsigned int t;
485 {
486 return (t & Disp8) ? 1 : (t & (Disp16 | Disp32 | Disp32S)) ? 2 : 0;
487 }
488
489 static INLINE int
490 fits_in_signed_byte (num)
491 offsetT num;
492 {
493 return (num >= -128) && (num <= 127);
494 }
495
496 static INLINE int
497 fits_in_unsigned_byte (num)
498 offsetT num;
499 {
500 return (num & 0xff) == num;
501 }
502
503 static INLINE int
504 fits_in_unsigned_word (num)
505 offsetT num;
506 {
507 return (num & 0xffff) == num;
508 }
509
510 static INLINE int
511 fits_in_signed_word (num)
512 offsetT num;
513 {
514 return (-32768 <= num) && (num <= 32767);
515 }
516 static INLINE int
517 fits_in_signed_long (num)
518 offsetT num ATTRIBUTE_UNUSED;
519 {
520 #ifndef BFD64
521 return 1;
522 #else
523 return (!(((offsetT) -1 << 31) & num)
524 || (((offsetT) -1 << 31) & num) == ((offsetT) -1 << 31));
525 #endif
526 } /* fits_in_signed_long() */
527 static INLINE int
528 fits_in_unsigned_long (num)
529 offsetT num ATTRIBUTE_UNUSED;
530 {
531 #ifndef BFD64
532 return 1;
533 #else
534 return (num & (((offsetT) 2 << 31) - 1)) == num;
535 #endif
536 } /* fits_in_unsigned_long() */
537
538 static int
539 smallest_imm_type (num)
540 offsetT num;
541 {
542 if (cpu_arch_flags != (Cpu086 | Cpu186 | Cpu286 | Cpu386 | Cpu486 | CpuNo64)
543 && !(cpu_arch_flags & (CpuUnknown)))
544 {
545 /* This code is disabled on the 486 because all the Imm1 forms
546 in the opcode table are slower on the i486. They're the
547 versions with the implicitly specified single-position
548 displacement, which has another syntax if you really want to
549 use that form. */
550 if (num == 1)
551 return Imm1 | Imm8 | Imm8S | Imm16 | Imm32 | Imm32S | Imm64;
552 }
553 return (fits_in_signed_byte (num)
554 ? (Imm8S | Imm8 | Imm16 | Imm32 | Imm32S | Imm64)
555 : fits_in_unsigned_byte (num)
556 ? (Imm8 | Imm16 | Imm32 | Imm32S | Imm64)
557 : (fits_in_signed_word (num) || fits_in_unsigned_word (num))
558 ? (Imm16 | Imm32 | Imm32S | Imm64)
559 : fits_in_signed_long (num)
560 ? (Imm32 | Imm32S | Imm64)
561 : fits_in_unsigned_long (num)
562 ? (Imm32 | Imm64)
563 : Imm64);
564 }
565
566 static offsetT
567 offset_in_range (val, size)
568 offsetT val;
569 int size;
570 {
571 addressT mask;
572
573 switch (size)
574 {
575 case 1: mask = ((addressT) 1 << 8) - 1; break;
576 case 2: mask = ((addressT) 1 << 16) - 1; break;
577 case 4: mask = ((addressT) 2 << 31) - 1; break;
578 #ifdef BFD64
579 case 8: mask = ((addressT) 2 << 63) - 1; break;
580 #endif
581 default: abort ();
582 }
583
584 /* If BFD64, sign extend val. */
585 if (!use_rela_relocations)
586 if ((val & ~(((addressT) 2 << 31) - 1)) == 0)
587 val = (val ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
588
589 if ((val & ~mask) != 0 && (val & ~mask) != ~mask)
590 {
591 char buf1[40], buf2[40];
592
593 sprint_value (buf1, val);
594 sprint_value (buf2, val & mask);
595 as_warn (_("%s shortened to %s"), buf1, buf2);
596 }
597 return val & mask;
598 }
599
600 /* Returns 0 if attempting to add a prefix where one from the same
601 class already exists, 1 if non rep/repne added, 2 if rep/repne
602 added. */
603 static int
604 add_prefix (prefix)
605 unsigned int prefix;
606 {
607 int ret = 1;
608 int q;
609
610 if (prefix >= 0x40 && prefix < 0x50 && flag_code == CODE_64BIT)
611 q = REX_PREFIX;
612 else
613 switch (prefix)
614 {
615 default:
616 abort ();
617
618 case CS_PREFIX_OPCODE:
619 case DS_PREFIX_OPCODE:
620 case ES_PREFIX_OPCODE:
621 case FS_PREFIX_OPCODE:
622 case GS_PREFIX_OPCODE:
623 case SS_PREFIX_OPCODE:
624 q = SEG_PREFIX;
625 break;
626
627 case REPNE_PREFIX_OPCODE:
628 case REPE_PREFIX_OPCODE:
629 ret = 2;
630 /* fall thru */
631 case LOCK_PREFIX_OPCODE:
632 q = LOCKREP_PREFIX;
633 break;
634
635 case FWAIT_OPCODE:
636 q = WAIT_PREFIX;
637 break;
638
639 case ADDR_PREFIX_OPCODE:
640 q = ADDR_PREFIX;
641 break;
642
643 case DATA_PREFIX_OPCODE:
644 q = DATA_PREFIX;
645 break;
646 }
647
648 if (i.prefix[q])
649 {
650 as_bad (_("same type of prefix used twice"));
651 return 0;
652 }
653
654 i.prefixes += 1;
655 i.prefix[q] = prefix;
656 return ret;
657 }
658
659 static void
660 set_code_flag (value)
661 int value;
662 {
663 flag_code = value;
664 cpu_arch_flags &= ~(Cpu64 | CpuNo64);
665 cpu_arch_flags |= (flag_code == CODE_64BIT ? Cpu64 : CpuNo64);
666 if (value == CODE_64BIT && !(cpu_arch_flags & CpuSledgehammer))
667 {
668 as_bad (_("64bit mode not supported on this CPU."));
669 }
670 if (value == CODE_32BIT && !(cpu_arch_flags & Cpu386))
671 {
672 as_bad (_("32bit mode not supported on this CPU."));
673 }
674 stackop_size = '\0';
675 }
676
677 static void
678 set_16bit_gcc_code_flag (new_code_flag)
679 int new_code_flag;
680 {
681 flag_code = new_code_flag;
682 cpu_arch_flags &= ~(Cpu64 | CpuNo64);
683 cpu_arch_flags |= (flag_code == CODE_64BIT ? Cpu64 : CpuNo64);
684 stackop_size = 'l';
685 }
686
687 static void
688 set_intel_syntax (syntax_flag)
689 int syntax_flag;
690 {
691 /* Find out if register prefixing is specified. */
692 int ask_naked_reg = 0;
693
694 SKIP_WHITESPACE ();
695 if (! is_end_of_line[(unsigned char) *input_line_pointer])
696 {
697 char *string = input_line_pointer;
698 int e = get_symbol_end ();
699
700 if (strcmp (string, "prefix") == 0)
701 ask_naked_reg = 1;
702 else if (strcmp (string, "noprefix") == 0)
703 ask_naked_reg = -1;
704 else
705 as_bad (_("bad argument to syntax directive."));
706 *input_line_pointer = e;
707 }
708 demand_empty_rest_of_line ();
709
710 intel_syntax = syntax_flag;
711
712 if (ask_naked_reg == 0)
713 {
714 #ifdef BFD_ASSEMBLER
715 allow_naked_reg = (intel_syntax
716 && (bfd_get_symbol_leading_char (stdoutput) != '\0'));
717 #else
718 /* Conservative default. */
719 allow_naked_reg = 0;
720 #endif
721 }
722 else
723 allow_naked_reg = (ask_naked_reg < 0);
724 }
725
726 static void
727 set_cpu_arch (dummy)
728 int dummy ATTRIBUTE_UNUSED;
729 {
730 SKIP_WHITESPACE ();
731
732 if (! is_end_of_line[(unsigned char) *input_line_pointer])
733 {
734 char *string = input_line_pointer;
735 int e = get_symbol_end ();
736 int i;
737
738 for (i = 0; cpu_arch[i].name; i++)
739 {
740 if (strcmp (string, cpu_arch[i].name) == 0)
741 {
742 cpu_arch_name = cpu_arch[i].name;
743 cpu_arch_flags = (cpu_arch[i].flags
744 | (flag_code == CODE_64BIT ? Cpu64 : CpuNo64));
745 break;
746 }
747 }
748 if (!cpu_arch[i].name)
749 as_bad (_("no such architecture: `%s'"), string);
750
751 *input_line_pointer = e;
752 }
753 else
754 as_bad (_("missing cpu architecture"));
755
756 no_cond_jump_promotion = 0;
757 if (*input_line_pointer == ','
758 && ! is_end_of_line[(unsigned char) input_line_pointer[1]])
759 {
760 char *string = ++input_line_pointer;
761 int e = get_symbol_end ();
762
763 if (strcmp (string, "nojumps") == 0)
764 no_cond_jump_promotion = 1;
765 else if (strcmp (string, "jumps") == 0)
766 ;
767 else
768 as_bad (_("no such architecture modifier: `%s'"), string);
769
770 *input_line_pointer = e;
771 }
772
773 demand_empty_rest_of_line ();
774 }
775
776 const pseudo_typeS md_pseudo_table[] =
777 {
778 #if !defined(OBJ_AOUT) && !defined(USE_ALIGN_PTWO)
779 {"align", s_align_bytes, 0},
780 #else
781 {"align", s_align_ptwo, 0},
782 #endif
783 {"arch", set_cpu_arch, 0},
784 #ifndef I386COFF
785 {"bss", s_bss, 0},
786 #endif
787 {"ffloat", float_cons, 'f'},
788 {"dfloat", float_cons, 'd'},
789 {"tfloat", float_cons, 'x'},
790 {"value", cons, 2},
791 {"noopt", s_ignore, 0},
792 {"optim", s_ignore, 0},
793 {"code16gcc", set_16bit_gcc_code_flag, CODE_16BIT},
794 {"code16", set_code_flag, CODE_16BIT},
795 {"code32", set_code_flag, CODE_32BIT},
796 {"code64", set_code_flag, CODE_64BIT},
797 {"intel_syntax", set_intel_syntax, 1},
798 {"att_syntax", set_intel_syntax, 0},
799 {"file", dwarf2_directive_file, 0},
800 {"loc", dwarf2_directive_loc, 0},
801 {0, 0, 0}
802 };
803
804 /* For interface with expression (). */
805 extern char *input_line_pointer;
806
807 /* Hash table for instruction mnemonic lookup. */
808 static struct hash_control *op_hash;
809
810 /* Hash table for register lookup. */
811 static struct hash_control *reg_hash;
812 \f
813 #ifdef BFD_ASSEMBLER
814 unsigned long
815 i386_mach ()
816 {
817 if (!strcmp (default_arch, "x86_64"))
818 return bfd_mach_x86_64;
819 else if (!strcmp (default_arch, "i386"))
820 return bfd_mach_i386_i386;
821 else
822 as_fatal (_("Unknown architecture"));
823 }
824 #endif
825 \f
826 void
827 md_begin ()
828 {
829 const char *hash_err;
830
831 /* Initialize op_hash hash table. */
832 op_hash = hash_new ();
833
834 {
835 register const template *optab;
836 register templates *core_optab;
837
838 /* Setup for loop. */
839 optab = i386_optab;
840 core_optab = (templates *) xmalloc (sizeof (templates));
841 core_optab->start = optab;
842
843 while (1)
844 {
845 ++optab;
846 if (optab->name == NULL
847 || strcmp (optab->name, (optab - 1)->name) != 0)
848 {
849 /* different name --> ship out current template list;
850 add to hash table; & begin anew. */
851 core_optab->end = optab;
852 hash_err = hash_insert (op_hash,
853 (optab - 1)->name,
854 (PTR) core_optab);
855 if (hash_err)
856 {
857 as_fatal (_("Internal Error: Can't hash %s: %s"),
858 (optab - 1)->name,
859 hash_err);
860 }
861 if (optab->name == NULL)
862 break;
863 core_optab = (templates *) xmalloc (sizeof (templates));
864 core_optab->start = optab;
865 }
866 }
867 }
868
869 /* Initialize reg_hash hash table. */
870 reg_hash = hash_new ();
871 {
872 register const reg_entry *regtab;
873
874 for (regtab = i386_regtab;
875 regtab < i386_regtab + sizeof (i386_regtab) / sizeof (i386_regtab[0]);
876 regtab++)
877 {
878 hash_err = hash_insert (reg_hash, regtab->reg_name, (PTR) regtab);
879 if (hash_err)
880 as_fatal (_("Internal Error: Can't hash %s: %s"),
881 regtab->reg_name,
882 hash_err);
883 }
884 }
885
886 /* Fill in lexical tables: mnemonic_chars, operand_chars. */
887 {
888 register int c;
889 register char *p;
890
891 for (c = 0; c < 256; c++)
892 {
893 if (ISDIGIT (c))
894 {
895 digit_chars[c] = c;
896 mnemonic_chars[c] = c;
897 register_chars[c] = c;
898 operand_chars[c] = c;
899 }
900 else if (ISLOWER (c))
901 {
902 mnemonic_chars[c] = c;
903 register_chars[c] = c;
904 operand_chars[c] = c;
905 }
906 else if (ISUPPER (c))
907 {
908 mnemonic_chars[c] = TOLOWER (c);
909 register_chars[c] = mnemonic_chars[c];
910 operand_chars[c] = c;
911 }
912
913 if (ISALPHA (c) || ISDIGIT (c))
914 identifier_chars[c] = c;
915 else if (c >= 128)
916 {
917 identifier_chars[c] = c;
918 operand_chars[c] = c;
919 }
920 }
921
922 #ifdef LEX_AT
923 identifier_chars['@'] = '@';
924 #endif
925 digit_chars['-'] = '-';
926 identifier_chars['_'] = '_';
927 identifier_chars['.'] = '.';
928
929 for (p = operand_special_chars; *p != '\0'; p++)
930 operand_chars[(unsigned char) *p] = *p;
931 }
932
933 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
934 if (OUTPUT_FLAVOR == bfd_target_elf_flavour)
935 {
936 record_alignment (text_section, 2);
937 record_alignment (data_section, 2);
938 record_alignment (bss_section, 2);
939 }
940 #endif
941 }
942
943 void
944 i386_print_statistics (file)
945 FILE *file;
946 {
947 hash_print_statistics (file, "i386 opcode", op_hash);
948 hash_print_statistics (file, "i386 register", reg_hash);
949 }
950 \f
951 #ifdef DEBUG386
952
953 /* Debugging routines for md_assemble. */
954 static void pi PARAMS ((char *, i386_insn *));
955 static void pte PARAMS ((template *));
956 static void pt PARAMS ((unsigned int));
957 static void pe PARAMS ((expressionS *));
958 static void ps PARAMS ((symbolS *));
959
960 static void
961 pi (line, x)
962 char *line;
963 i386_insn *x;
964 {
965 unsigned int i;
966
967 fprintf (stdout, "%s: template ", line);
968 pte (&x->tm);
969 fprintf (stdout, " address: base %s index %s scale %x\n",
970 x->base_reg ? x->base_reg->reg_name : "none",
971 x->index_reg ? x->index_reg->reg_name : "none",
972 x->log2_scale_factor);
973 fprintf (stdout, " modrm: mode %x reg %x reg/mem %x\n",
974 x->rm.mode, x->rm.reg, x->rm.regmem);
975 fprintf (stdout, " sib: base %x index %x scale %x\n",
976 x->sib.base, x->sib.index, x->sib.scale);
977 fprintf (stdout, " rex: 64bit %x extX %x extY %x extZ %x\n",
978 x->rex.mode64, x->rex.extX, x->rex.extY, x->rex.extZ);
979 for (i = 0; i < x->operands; i++)
980 {
981 fprintf (stdout, " #%d: ", i + 1);
982 pt (x->types[i]);
983 fprintf (stdout, "\n");
984 if (x->types[i]
985 & (Reg | SReg2 | SReg3 | Control | Debug | Test | RegMMX | RegXMM))
986 fprintf (stdout, "%s\n", x->op[i].regs->reg_name);
987 if (x->types[i] & Imm)
988 pe (x->op[i].imms);
989 if (x->types[i] & Disp)
990 pe (x->op[i].disps);
991 }
992 }
993
994 static void
995 pte (t)
996 template *t;
997 {
998 unsigned int i;
999 fprintf (stdout, " %d operands ", t->operands);
1000 fprintf (stdout, "opcode %x ", t->base_opcode);
1001 if (t->extension_opcode != None)
1002 fprintf (stdout, "ext %x ", t->extension_opcode);
1003 if (t->opcode_modifier & D)
1004 fprintf (stdout, "D");
1005 if (t->opcode_modifier & W)
1006 fprintf (stdout, "W");
1007 fprintf (stdout, "\n");
1008 for (i = 0; i < t->operands; i++)
1009 {
1010 fprintf (stdout, " #%d type ", i + 1);
1011 pt (t->operand_types[i]);
1012 fprintf (stdout, "\n");
1013 }
1014 }
1015
1016 static void
1017 pe (e)
1018 expressionS *e;
1019 {
1020 fprintf (stdout, " operation %d\n", e->X_op);
1021 fprintf (stdout, " add_number %ld (%lx)\n",
1022 (long) e->X_add_number, (long) e->X_add_number);
1023 if (e->X_add_symbol)
1024 {
1025 fprintf (stdout, " add_symbol ");
1026 ps (e->X_add_symbol);
1027 fprintf (stdout, "\n");
1028 }
1029 if (e->X_op_symbol)
1030 {
1031 fprintf (stdout, " op_symbol ");
1032 ps (e->X_op_symbol);
1033 fprintf (stdout, "\n");
1034 }
1035 }
1036
1037 static void
1038 ps (s)
1039 symbolS *s;
1040 {
1041 fprintf (stdout, "%s type %s%s",
1042 S_GET_NAME (s),
1043 S_IS_EXTERNAL (s) ? "EXTERNAL " : "",
1044 segment_name (S_GET_SEGMENT (s)));
1045 }
1046
1047 struct type_name
1048 {
1049 unsigned int mask;
1050 char *tname;
1051 }
1052
1053 type_names[] =
1054 {
1055 { Reg8, "r8" },
1056 { Reg16, "r16" },
1057 { Reg32, "r32" },
1058 { Reg64, "r64" },
1059 { Imm8, "i8" },
1060 { Imm8S, "i8s" },
1061 { Imm16, "i16" },
1062 { Imm32, "i32" },
1063 { Imm32S, "i32s" },
1064 { Imm64, "i64" },
1065 { Imm1, "i1" },
1066 { BaseIndex, "BaseIndex" },
1067 { Disp8, "d8" },
1068 { Disp16, "d16" },
1069 { Disp32, "d32" },
1070 { Disp32S, "d32s" },
1071 { Disp64, "d64" },
1072 { InOutPortReg, "InOutPortReg" },
1073 { ShiftCount, "ShiftCount" },
1074 { Control, "control reg" },
1075 { Test, "test reg" },
1076 { Debug, "debug reg" },
1077 { FloatReg, "FReg" },
1078 { FloatAcc, "FAcc" },
1079 { SReg2, "SReg2" },
1080 { SReg3, "SReg3" },
1081 { Acc, "Acc" },
1082 { JumpAbsolute, "Jump Absolute" },
1083 { RegMMX, "rMMX" },
1084 { RegXMM, "rXMM" },
1085 { EsSeg, "es" },
1086 { 0, "" }
1087 };
1088
1089 static void
1090 pt (t)
1091 unsigned int t;
1092 {
1093 register struct type_name *ty;
1094
1095 for (ty = type_names; ty->mask; ty++)
1096 if (t & ty->mask)
1097 fprintf (stdout, "%s, ", ty->tname);
1098 fflush (stdout);
1099 }
1100
1101 #endif /* DEBUG386 */
1102 \f
1103 int
1104 tc_i386_force_relocation (fixp)
1105 struct fix *fixp;
1106 {
1107 #ifdef BFD_ASSEMBLER
1108 if (fixp->fx_r_type == BFD_RELOC_VTABLE_INHERIT
1109 || fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
1110 return 1;
1111 return 0;
1112 #else
1113 /* For COFF. */
1114 return fixp->fx_r_type == 7;
1115 #endif
1116 }
1117
1118 #ifdef BFD_ASSEMBLER
1119
1120 static bfd_reloc_code_real_type
1121 reloc (size, pcrel, sign, other)
1122 int size;
1123 int pcrel;
1124 int sign;
1125 bfd_reloc_code_real_type other;
1126 {
1127 if (other != NO_RELOC)
1128 return other;
1129
1130 if (pcrel)
1131 {
1132 if (!sign)
1133 as_bad (_("There are no unsigned pc-relative relocations"));
1134 switch (size)
1135 {
1136 case 1: return BFD_RELOC_8_PCREL;
1137 case 2: return BFD_RELOC_16_PCREL;
1138 case 4: return BFD_RELOC_32_PCREL;
1139 }
1140 as_bad (_("can not do %d byte pc-relative relocation"), size);
1141 }
1142 else
1143 {
1144 if (sign)
1145 switch (size)
1146 {
1147 case 4: return BFD_RELOC_X86_64_32S;
1148 }
1149 else
1150 switch (size)
1151 {
1152 case 1: return BFD_RELOC_8;
1153 case 2: return BFD_RELOC_16;
1154 case 4: return BFD_RELOC_32;
1155 case 8: return BFD_RELOC_64;
1156 }
1157 as_bad (_("can not do %s %d byte relocation"),
1158 sign ? "signed" : "unsigned", size);
1159 }
1160
1161 abort ();
1162 return BFD_RELOC_NONE;
1163 }
1164
1165 /* Here we decide which fixups can be adjusted to make them relative to
1166 the beginning of the section instead of the symbol. Basically we need
1167 to make sure that the dynamic relocations are done correctly, so in
1168 some cases we force the original symbol to be used. */
1169
1170 int
1171 tc_i386_fix_adjustable (fixP)
1172 fixS *fixP;
1173 {
1174 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
1175 /* Prevent all adjustments to global symbols, or else dynamic
1176 linking will not work correctly. */
1177 if (S_IS_EXTERNAL (fixP->fx_addsy)
1178 || S_IS_WEAK (fixP->fx_addsy))
1179 return 0;
1180 #endif
1181 /* adjust_reloc_syms doesn't know about the GOT. */
1182 if (fixP->fx_r_type == BFD_RELOC_386_GOTOFF
1183 || fixP->fx_r_type == BFD_RELOC_386_PLT32
1184 || fixP->fx_r_type == BFD_RELOC_386_GOT32
1185 || fixP->fx_r_type == BFD_RELOC_X86_64_PLT32
1186 || fixP->fx_r_type == BFD_RELOC_X86_64_GOT32
1187 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCREL
1188 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
1189 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
1190 return 0;
1191 return 1;
1192 }
1193 #else
1194 #define reloc(SIZE,PCREL,SIGN,OTHER) 0
1195 #define BFD_RELOC_16 0
1196 #define BFD_RELOC_32 0
1197 #define BFD_RELOC_16_PCREL 0
1198 #define BFD_RELOC_32_PCREL 0
1199 #define BFD_RELOC_386_PLT32 0
1200 #define BFD_RELOC_386_GOT32 0
1201 #define BFD_RELOC_386_GOTOFF 0
1202 #define BFD_RELOC_X86_64_PLT32 0
1203 #define BFD_RELOC_X86_64_GOT32 0
1204 #define BFD_RELOC_X86_64_GOTPCREL 0
1205 #endif
1206
1207 static int intel_float_operand PARAMS ((char *mnemonic));
1208
1209 static int
1210 intel_float_operand (mnemonic)
1211 char *mnemonic;
1212 {
1213 if (mnemonic[0] == 'f' && mnemonic[1] == 'i')
1214 return 2;
1215
1216 if (mnemonic[0] == 'f')
1217 return 1;
1218
1219 return 0;
1220 }
1221
1222 /* This is the guts of the machine-dependent assembler. LINE points to a
1223 machine dependent instruction. This function is supposed to emit
1224 the frags/bytes it assembles to. */
1225
1226 void
1227 md_assemble (line)
1228 char *line;
1229 {
1230 /* Points to template once we've found it. */
1231 const template *t;
1232
1233 int j;
1234
1235 char mnemonic[MAX_MNEM_SIZE];
1236
1237 /* Initialize globals. */
1238 memset (&i, '\0', sizeof (i));
1239 for (j = 0; j < MAX_OPERANDS; j++)
1240 i.reloc[j] = NO_RELOC;
1241 memset (disp_expressions, '\0', sizeof (disp_expressions));
1242 memset (im_expressions, '\0', sizeof (im_expressions));
1243 save_stack_p = save_stack;
1244
1245 /* First parse an instruction mnemonic & call i386_operand for the operands.
1246 We assume that the scrubber has arranged it so that line[0] is the valid
1247 start of a (possibly prefixed) mnemonic. */
1248 {
1249 char *l = line;
1250 char *token_start = l;
1251 char *mnem_p;
1252
1253 /* Non-zero if we found a prefix only acceptable with string insns. */
1254 const char *expecting_string_instruction = NULL;
1255
1256 while (1)
1257 {
1258 mnem_p = mnemonic;
1259 while ((*mnem_p = mnemonic_chars[(unsigned char) *l]) != 0)
1260 {
1261 mnem_p++;
1262 if (mnem_p >= mnemonic + sizeof (mnemonic))
1263 {
1264 as_bad (_("no such instruction: `%s'"), token_start);
1265 return;
1266 }
1267 l++;
1268 }
1269 if (!is_space_char (*l)
1270 && *l != END_OF_INSN
1271 && *l != PREFIX_SEPARATOR
1272 && *l != ',')
1273 {
1274 as_bad (_("invalid character %s in mnemonic"),
1275 output_invalid (*l));
1276 return;
1277 }
1278 if (token_start == l)
1279 {
1280 if (*l == PREFIX_SEPARATOR)
1281 as_bad (_("expecting prefix; got nothing"));
1282 else
1283 as_bad (_("expecting mnemonic; got nothing"));
1284 return;
1285 }
1286
1287 /* Look up instruction (or prefix) via hash table. */
1288 current_templates = hash_find (op_hash, mnemonic);
1289
1290 if (*l != END_OF_INSN
1291 && (! is_space_char (*l) || l[1] != END_OF_INSN)
1292 && current_templates
1293 && (current_templates->start->opcode_modifier & IsPrefix))
1294 {
1295 /* If we are in 16-bit mode, do not allow addr16 or data16.
1296 Similarly, in 32-bit mode, do not allow addr32 or data32. */
1297 if ((current_templates->start->opcode_modifier & (Size16 | Size32))
1298 && (((current_templates->start->opcode_modifier & Size32) != 0)
1299 ^ (flag_code == CODE_16BIT)))
1300 {
1301 as_bad (_("redundant %s prefix"),
1302 current_templates->start->name);
1303 return;
1304 }
1305 /* Add prefix, checking for repeated prefixes. */
1306 switch (add_prefix (current_templates->start->base_opcode))
1307 {
1308 case 0:
1309 return;
1310 case 2:
1311 expecting_string_instruction = current_templates->start->name;
1312 break;
1313 }
1314 /* Skip past PREFIX_SEPARATOR and reset token_start. */
1315 token_start = ++l;
1316 }
1317 else
1318 break;
1319 }
1320
1321 if (!current_templates)
1322 {
1323 /* See if we can get a match by trimming off a suffix. */
1324 switch (mnem_p[-1])
1325 {
1326 case WORD_MNEM_SUFFIX:
1327 case BYTE_MNEM_SUFFIX:
1328 case QWORD_MNEM_SUFFIX:
1329 i.suffix = mnem_p[-1];
1330 mnem_p[-1] = '\0';
1331 current_templates = hash_find (op_hash, mnemonic);
1332 break;
1333 case SHORT_MNEM_SUFFIX:
1334 case LONG_MNEM_SUFFIX:
1335 if (!intel_syntax)
1336 {
1337 i.suffix = mnem_p[-1];
1338 mnem_p[-1] = '\0';
1339 current_templates = hash_find (op_hash, mnemonic);
1340 }
1341 break;
1342
1343 /* Intel Syntax. */
1344 case 'd':
1345 if (intel_syntax)
1346 {
1347 if (intel_float_operand (mnemonic))
1348 i.suffix = SHORT_MNEM_SUFFIX;
1349 else
1350 i.suffix = LONG_MNEM_SUFFIX;
1351 mnem_p[-1] = '\0';
1352 current_templates = hash_find (op_hash, mnemonic);
1353 }
1354 break;
1355 }
1356 if (!current_templates)
1357 {
1358 as_bad (_("no such instruction: `%s'"), token_start);
1359 return;
1360 }
1361 }
1362
1363 if (current_templates->start->opcode_modifier & (Jump | JumpByte))
1364 {
1365 /* Check for a branch hint. We allow ",pt" and ",pn" for
1366 predict taken and predict not taken respectively.
1367 I'm not sure that branch hints actually do anything on loop
1368 and jcxz insns (JumpByte) for current Pentium4 chips. They
1369 may work in the future and it doesn't hurt to accept them
1370 now. */
1371 if (l[0] == ',' && l[1] == 'p')
1372 {
1373 if (l[2] == 't')
1374 {
1375 if (! add_prefix (DS_PREFIX_OPCODE))
1376 return;
1377 l += 3;
1378 }
1379 else if (l[2] == 'n')
1380 {
1381 if (! add_prefix (CS_PREFIX_OPCODE))
1382 return;
1383 l += 3;
1384 }
1385 }
1386 }
1387 /* Any other comma loses. */
1388 if (*l == ',')
1389 {
1390 as_bad (_("invalid character %s in mnemonic"),
1391 output_invalid (*l));
1392 return;
1393 }
1394
1395 /* Check if instruction is supported on specified architecture. */
1396 if (cpu_arch_flags != 0)
1397 {
1398 if ((current_templates->start->cpu_flags & ~(Cpu64 | CpuNo64))
1399 & ~(cpu_arch_flags & ~(Cpu64 | CpuNo64)))
1400 {
1401 as_warn (_("`%s' is not supported on `%s'"),
1402 current_templates->start->name, cpu_arch_name);
1403 }
1404 else if ((Cpu386 & ~cpu_arch_flags) && (flag_code != CODE_16BIT))
1405 {
1406 as_warn (_("use .code16 to ensure correct addressing mode"));
1407 }
1408 }
1409
1410 /* Check for rep/repne without a string instruction. */
1411 if (expecting_string_instruction
1412 && !(current_templates->start->opcode_modifier & IsString))
1413 {
1414 as_bad (_("expecting string instruction after `%s'"),
1415 expecting_string_instruction);
1416 return;
1417 }
1418
1419 /* There may be operands to parse. */
1420 if (*l != END_OF_INSN)
1421 {
1422 /* 1 if operand is pending after ','. */
1423 unsigned int expecting_operand = 0;
1424
1425 /* Non-zero if operand parens not balanced. */
1426 unsigned int paren_not_balanced;
1427
1428 do
1429 {
1430 /* Skip optional white space before operand. */
1431 if (is_space_char (*l))
1432 ++l;
1433 if (!is_operand_char (*l) && *l != END_OF_INSN)
1434 {
1435 as_bad (_("invalid character %s before operand %d"),
1436 output_invalid (*l),
1437 i.operands + 1);
1438 return;
1439 }
1440 token_start = l; /* after white space */
1441 paren_not_balanced = 0;
1442 while (paren_not_balanced || *l != ',')
1443 {
1444 if (*l == END_OF_INSN)
1445 {
1446 if (paren_not_balanced)
1447 {
1448 if (!intel_syntax)
1449 as_bad (_("unbalanced parenthesis in operand %d."),
1450 i.operands + 1);
1451 else
1452 as_bad (_("unbalanced brackets in operand %d."),
1453 i.operands + 1);
1454 return;
1455 }
1456 else
1457 break; /* we are done */
1458 }
1459 else if (!is_operand_char (*l) && !is_space_char (*l))
1460 {
1461 as_bad (_("invalid character %s in operand %d"),
1462 output_invalid (*l),
1463 i.operands + 1);
1464 return;
1465 }
1466 if (!intel_syntax)
1467 {
1468 if (*l == '(')
1469 ++paren_not_balanced;
1470 if (*l == ')')
1471 --paren_not_balanced;
1472 }
1473 else
1474 {
1475 if (*l == '[')
1476 ++paren_not_balanced;
1477 if (*l == ']')
1478 --paren_not_balanced;
1479 }
1480 l++;
1481 }
1482 if (l != token_start)
1483 { /* Yes, we've read in another operand. */
1484 unsigned int operand_ok;
1485 this_operand = i.operands++;
1486 if (i.operands > MAX_OPERANDS)
1487 {
1488 as_bad (_("spurious operands; (%d operands/instruction max)"),
1489 MAX_OPERANDS);
1490 return;
1491 }
1492 /* Now parse operand adding info to 'i' as we go along. */
1493 END_STRING_AND_SAVE (l);
1494
1495 if (intel_syntax)
1496 operand_ok =
1497 i386_intel_operand (token_start,
1498 intel_float_operand (mnemonic));
1499 else
1500 operand_ok = i386_operand (token_start);
1501
1502 RESTORE_END_STRING (l);
1503 if (!operand_ok)
1504 return;
1505 }
1506 else
1507 {
1508 if (expecting_operand)
1509 {
1510 expecting_operand_after_comma:
1511 as_bad (_("expecting operand after ','; got nothing"));
1512 return;
1513 }
1514 if (*l == ',')
1515 {
1516 as_bad (_("expecting operand before ','; got nothing"));
1517 return;
1518 }
1519 }
1520
1521 /* Now *l must be either ',' or END_OF_INSN. */
1522 if (*l == ',')
1523 {
1524 if (*++l == END_OF_INSN)
1525 {
1526 /* Just skip it, if it's \n complain. */
1527 goto expecting_operand_after_comma;
1528 }
1529 expecting_operand = 1;
1530 }
1531 }
1532 while (*l != END_OF_INSN);
1533 }
1534 }
1535
1536 /* Now we've parsed the mnemonic into a set of templates, and have the
1537 operands at hand.
1538
1539 Next, we find a template that matches the given insn,
1540 making sure the overlap of the given operands types is consistent
1541 with the template operand types. */
1542
1543 #define MATCH(overlap, given, template) \
1544 ((overlap & ~JumpAbsolute) \
1545 && ((given) & (BaseIndex|JumpAbsolute)) == ((overlap) & (BaseIndex|JumpAbsolute)))
1546
1547 /* If given types r0 and r1 are registers they must be of the same type
1548 unless the expected operand type register overlap is null.
1549 Note that Acc in a template matches every size of reg. */
1550 #define CONSISTENT_REGISTER_MATCH(m0, g0, t0, m1, g1, t1) \
1551 ( ((g0) & Reg) == 0 || ((g1) & Reg) == 0 || \
1552 ((g0) & Reg) == ((g1) & Reg) || \
1553 ((((m0) & Acc) ? Reg : (t0)) & (((m1) & Acc) ? Reg : (t1)) & Reg) == 0 )
1554
1555 {
1556 register unsigned int overlap0, overlap1;
1557 unsigned int overlap2;
1558 unsigned int found_reverse_match;
1559 int suffix_check;
1560
1561 /* All intel opcodes have reversed operands except for "bound" and
1562 "enter". We also don't reverse intersegment "jmp" and "call"
1563 instructions with 2 immediate operands so that the immediate segment
1564 precedes the offset, as it does when in AT&T mode. "enter" and the
1565 intersegment "jmp" and "call" instructions are the only ones that
1566 have two immediate operands. */
1567 if (intel_syntax && i.operands > 1
1568 && (strcmp (mnemonic, "bound") != 0)
1569 && !((i.types[0] & Imm) && (i.types[1] & Imm)))
1570 {
1571 union i386_op temp_op;
1572 unsigned int temp_type;
1573 RELOC_ENUM temp_reloc;
1574 int xchg1 = 0;
1575 int xchg2 = 0;
1576
1577 if (i.operands == 2)
1578 {
1579 xchg1 = 0;
1580 xchg2 = 1;
1581 }
1582 else if (i.operands == 3)
1583 {
1584 xchg1 = 0;
1585 xchg2 = 2;
1586 }
1587 temp_type = i.types[xchg2];
1588 i.types[xchg2] = i.types[xchg1];
1589 i.types[xchg1] = temp_type;
1590 temp_op = i.op[xchg2];
1591 i.op[xchg2] = i.op[xchg1];
1592 i.op[xchg1] = temp_op;
1593 temp_reloc = i.reloc[xchg2];
1594 i.reloc[xchg2] = i.reloc[xchg1];
1595 i.reloc[xchg1] = temp_reloc;
1596
1597 if (i.mem_operands == 2)
1598 {
1599 const seg_entry *temp_seg;
1600 temp_seg = i.seg[0];
1601 i.seg[0] = i.seg[1];
1602 i.seg[1] = temp_seg;
1603 }
1604 }
1605
1606 if (i.imm_operands)
1607 {
1608 /* Try to ensure constant immediates are represented in the smallest
1609 opcode possible. */
1610 char guess_suffix = 0;
1611 int op;
1612
1613 if (i.suffix)
1614 guess_suffix = i.suffix;
1615 else if (i.reg_operands)
1616 {
1617 /* Figure out a suffix from the last register operand specified.
1618 We can't do this properly yet, ie. excluding InOutPortReg,
1619 but the following works for instructions with immediates.
1620 In any case, we can't set i.suffix yet. */
1621 for (op = i.operands; --op >= 0;)
1622 if (i.types[op] & Reg)
1623 {
1624 if (i.types[op] & Reg8)
1625 guess_suffix = BYTE_MNEM_SUFFIX;
1626 else if (i.types[op] & Reg16)
1627 guess_suffix = WORD_MNEM_SUFFIX;
1628 else if (i.types[op] & Reg32)
1629 guess_suffix = LONG_MNEM_SUFFIX;
1630 else if (i.types[op] & Reg64)
1631 guess_suffix = QWORD_MNEM_SUFFIX;
1632 break;
1633 }
1634 }
1635 else if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
1636 guess_suffix = WORD_MNEM_SUFFIX;
1637
1638 for (op = i.operands; --op >= 0;)
1639 if (i.types[op] & Imm)
1640 {
1641 switch (i.op[op].imms->X_op)
1642 {
1643 case O_constant:
1644 /* If a suffix is given, this operand may be shortened. */
1645 switch (guess_suffix)
1646 {
1647 case LONG_MNEM_SUFFIX:
1648 i.types[op] |= Imm32 | Imm64;
1649 break;
1650 case WORD_MNEM_SUFFIX:
1651 i.types[op] |= Imm16 | Imm32S | Imm32 | Imm64;
1652 break;
1653 case BYTE_MNEM_SUFFIX:
1654 i.types[op] |= Imm16 | Imm8 | Imm8S | Imm32S | Imm32 | Imm64;
1655 break;
1656 }
1657
1658 /* If this operand is at most 16 bits, convert it
1659 to a signed 16 bit number before trying to see
1660 whether it will fit in an even smaller size.
1661 This allows a 16-bit operand such as $0xffe0 to
1662 be recognised as within Imm8S range. */
1663 if ((i.types[op] & Imm16)
1664 && (i.op[op].imms->X_add_number & ~(offsetT) 0xffff) == 0)
1665 {
1666 i.op[op].imms->X_add_number =
1667 (((i.op[op].imms->X_add_number & 0xffff) ^ 0x8000) - 0x8000);
1668 }
1669 if ((i.types[op] & Imm32)
1670 && (i.op[op].imms->X_add_number & ~(((offsetT) 2 << 31) - 1)) == 0)
1671 {
1672 i.op[op].imms->X_add_number =
1673 (i.op[op].imms->X_add_number ^ ((offsetT) 1 << 31)) - ((addressT) 1 << 31);
1674 }
1675 i.types[op] |= smallest_imm_type (i.op[op].imms->X_add_number);
1676 /* We must avoid matching of Imm32 templates when 64bit only immediate is available. */
1677 if (guess_suffix == QWORD_MNEM_SUFFIX)
1678 i.types[op] &= ~Imm32;
1679 break;
1680 case O_absent:
1681 case O_register:
1682 abort ();
1683 /* Symbols and expressions. */
1684 default:
1685 /* Convert symbolic operand to proper sizes for matching. */
1686 switch (guess_suffix)
1687 {
1688 case QWORD_MNEM_SUFFIX:
1689 i.types[op] = Imm64 | Imm32S;
1690 break;
1691 case LONG_MNEM_SUFFIX:
1692 i.types[op] = Imm32 | Imm64;
1693 break;
1694 case WORD_MNEM_SUFFIX:
1695 i.types[op] = Imm16 | Imm32 | Imm64;
1696 break;
1697 break;
1698 case BYTE_MNEM_SUFFIX:
1699 i.types[op] = Imm8 | Imm8S | Imm16 | Imm32S | Imm32;
1700 break;
1701 break;
1702 }
1703 break;
1704 }
1705 }
1706 }
1707
1708 if (i.disp_operands)
1709 {
1710 /* Try to use the smallest displacement type too. */
1711 int op;
1712
1713 for (op = i.operands; --op >= 0;)
1714 if ((i.types[op] & Disp)
1715 && i.op[op].disps->X_op == O_constant)
1716 {
1717 offsetT disp = i.op[op].disps->X_add_number;
1718
1719 if (i.types[op] & Disp16)
1720 {
1721 /* We know this operand is at most 16 bits, so
1722 convert to a signed 16 bit number before trying
1723 to see whether it will fit in an even smaller
1724 size. */
1725
1726 disp = (((disp & 0xffff) ^ 0x8000) - 0x8000);
1727 }
1728 else if (i.types[op] & Disp32)
1729 {
1730 /* We know this operand is at most 32 bits, so convert to a
1731 signed 32 bit number before trying to see whether it will
1732 fit in an even smaller size. */
1733 disp &= (((offsetT) 2 << 31) - 1);
1734 disp = (disp ^ ((offsetT) 1 << 31)) - ((addressT) 1 << 31);
1735 }
1736 if (flag_code == CODE_64BIT)
1737 {
1738 if (fits_in_signed_long (disp))
1739 i.types[op] |= Disp32S;
1740 if (fits_in_unsigned_long (disp))
1741 i.types[op] |= Disp32;
1742 }
1743 if ((i.types[op] & (Disp32 | Disp32S | Disp16))
1744 && fits_in_signed_byte (disp))
1745 i.types[op] |= Disp8;
1746 }
1747 }
1748
1749 overlap0 = 0;
1750 overlap1 = 0;
1751 overlap2 = 0;
1752 found_reverse_match = 0;
1753 suffix_check = (i.suffix == BYTE_MNEM_SUFFIX
1754 ? No_bSuf
1755 : (i.suffix == WORD_MNEM_SUFFIX
1756 ? No_wSuf
1757 : (i.suffix == SHORT_MNEM_SUFFIX
1758 ? No_sSuf
1759 : (i.suffix == LONG_MNEM_SUFFIX
1760 ? No_lSuf
1761 : (i.suffix == QWORD_MNEM_SUFFIX
1762 ? No_qSuf
1763 : (i.suffix == LONG_DOUBLE_MNEM_SUFFIX ? No_xSuf : 0))))));
1764
1765 for (t = current_templates->start;
1766 t < current_templates->end;
1767 t++)
1768 {
1769 /* Must have right number of operands. */
1770 if (i.operands != t->operands)
1771 continue;
1772
1773 /* Check the suffix, except for some instructions in intel mode. */
1774 if ((t->opcode_modifier & suffix_check)
1775 && !(intel_syntax
1776 && (t->opcode_modifier & IgnoreSize))
1777 && !(intel_syntax
1778 && t->base_opcode == 0xd9
1779 && (t->extension_opcode == 5 /* 0xd9,5 "fldcw" */
1780 || t->extension_opcode == 7))) /* 0xd9,7 "f{n}stcw" */
1781 continue;
1782
1783 /* Do not verify operands when there are none. */
1784 else if (!t->operands)
1785 {
1786 if (t->cpu_flags & ~cpu_arch_flags)
1787 continue;
1788 /* We've found a match; break out of loop. */
1789 break;
1790 }
1791
1792 overlap0 = i.types[0] & t->operand_types[0];
1793 switch (t->operands)
1794 {
1795 case 1:
1796 if (!MATCH (overlap0, i.types[0], t->operand_types[0]))
1797 continue;
1798 break;
1799 case 2:
1800 case 3:
1801 overlap1 = i.types[1] & t->operand_types[1];
1802 if (!MATCH (overlap0, i.types[0], t->operand_types[0])
1803 || !MATCH (overlap1, i.types[1], t->operand_types[1])
1804 || !CONSISTENT_REGISTER_MATCH (overlap0, i.types[0],
1805 t->operand_types[0],
1806 overlap1, i.types[1],
1807 t->operand_types[1]))
1808 {
1809 /* Check if other direction is valid ... */
1810 if ((t->opcode_modifier & (D|FloatD)) == 0)
1811 continue;
1812
1813 /* Try reversing direction of operands. */
1814 overlap0 = i.types[0] & t->operand_types[1];
1815 overlap1 = i.types[1] & t->operand_types[0];
1816 if (!MATCH (overlap0, i.types[0], t->operand_types[1])
1817 || !MATCH (overlap1, i.types[1], t->operand_types[0])
1818 || !CONSISTENT_REGISTER_MATCH (overlap0, i.types[0],
1819 t->operand_types[1],
1820 overlap1, i.types[1],
1821 t->operand_types[0]))
1822 {
1823 /* Does not match either direction. */
1824 continue;
1825 }
1826 /* found_reverse_match holds which of D or FloatDR
1827 we've found. */
1828 found_reverse_match = t->opcode_modifier & (D|FloatDR);
1829 }
1830 /* Found a forward 2 operand match here. */
1831 else if (t->operands == 3)
1832 {
1833 /* Here we make use of the fact that there are no
1834 reverse match 3 operand instructions, and all 3
1835 operand instructions only need to be checked for
1836 register consistency between operands 2 and 3. */
1837 overlap2 = i.types[2] & t->operand_types[2];
1838 if (!MATCH (overlap2, i.types[2], t->operand_types[2])
1839 || !CONSISTENT_REGISTER_MATCH (overlap1, i.types[1],
1840 t->operand_types[1],
1841 overlap2, i.types[2],
1842 t->operand_types[2]))
1843
1844 continue;
1845 }
1846 /* Found either forward/reverse 2 or 3 operand match here:
1847 slip through to break. */
1848 }
1849 if (t->cpu_flags & ~cpu_arch_flags)
1850 {
1851 found_reverse_match = 0;
1852 continue;
1853 }
1854 /* We've found a match; break out of loop. */
1855 break;
1856 }
1857 if (t == current_templates->end)
1858 {
1859 /* We found no match. */
1860 as_bad (_("suffix or operands invalid for `%s'"),
1861 current_templates->start->name);
1862 return;
1863 }
1864
1865 if (!quiet_warnings)
1866 {
1867 if (!intel_syntax
1868 && ((i.types[0] & JumpAbsolute)
1869 != (t->operand_types[0] & JumpAbsolute)))
1870 {
1871 as_warn (_("indirect %s without `*'"), t->name);
1872 }
1873
1874 if ((t->opcode_modifier & (IsPrefix|IgnoreSize))
1875 == (IsPrefix|IgnoreSize))
1876 {
1877 /* Warn them that a data or address size prefix doesn't
1878 affect assembly of the next line of code. */
1879 as_warn (_("stand-alone `%s' prefix"), t->name);
1880 }
1881 }
1882
1883 /* Copy the template we found. */
1884 i.tm = *t;
1885 if (found_reverse_match)
1886 {
1887 /* If we found a reverse match we must alter the opcode
1888 direction bit. found_reverse_match holds bits to change
1889 (different for int & float insns). */
1890
1891 i.tm.base_opcode ^= found_reverse_match;
1892
1893 i.tm.operand_types[0] = t->operand_types[1];
1894 i.tm.operand_types[1] = t->operand_types[0];
1895 }
1896
1897 /* Undo SYSV386_COMPAT brokenness when in Intel mode. See i386.h */
1898 if (SYSV386_COMPAT
1899 && intel_syntax
1900 && (i.tm.base_opcode & 0xfffffde0) == 0xdce0)
1901 i.tm.base_opcode ^= FloatR;
1902
1903 if (i.tm.opcode_modifier & FWait)
1904 if (! add_prefix (FWAIT_OPCODE))
1905 return;
1906
1907 /* Check string instruction segment overrides. */
1908 if ((i.tm.opcode_modifier & IsString) != 0 && i.mem_operands != 0)
1909 {
1910 int mem_op = (i.types[0] & AnyMem) ? 0 : 1;
1911 if ((i.tm.operand_types[mem_op] & EsSeg) != 0)
1912 {
1913 if (i.seg[0] != NULL && i.seg[0] != &es)
1914 {
1915 as_bad (_("`%s' operand %d must use `%%es' segment"),
1916 i.tm.name,
1917 mem_op + 1);
1918 return;
1919 }
1920 /* There's only ever one segment override allowed per instruction.
1921 This instruction possibly has a legal segment override on the
1922 second operand, so copy the segment to where non-string
1923 instructions store it, allowing common code. */
1924 i.seg[0] = i.seg[1];
1925 }
1926 else if ((i.tm.operand_types[mem_op + 1] & EsSeg) != 0)
1927 {
1928 if (i.seg[1] != NULL && i.seg[1] != &es)
1929 {
1930 as_bad (_("`%s' operand %d must use `%%es' segment"),
1931 i.tm.name,
1932 mem_op + 2);
1933 return;
1934 }
1935 }
1936 }
1937
1938 /* If matched instruction specifies an explicit instruction mnemonic
1939 suffix, use it. */
1940 if (i.tm.opcode_modifier & (Size16 | Size32 | Size64))
1941 {
1942 if (i.tm.opcode_modifier & Size16)
1943 i.suffix = WORD_MNEM_SUFFIX;
1944 else if (i.tm.opcode_modifier & Size64)
1945 i.suffix = QWORD_MNEM_SUFFIX;
1946 else
1947 i.suffix = LONG_MNEM_SUFFIX;
1948 }
1949 else if (i.reg_operands)
1950 {
1951 /* If there's no instruction mnemonic suffix we try to invent one
1952 based on register operands. */
1953 if (!i.suffix)
1954 {
1955 /* We take i.suffix from the last register operand specified,
1956 Destination register type is more significant than source
1957 register type. */
1958 int op;
1959 for (op = i.operands; --op >= 0;)
1960 if ((i.types[op] & Reg)
1961 && !(i.tm.operand_types[op] & InOutPortReg))
1962 {
1963 i.suffix = ((i.types[op] & Reg8) ? BYTE_MNEM_SUFFIX :
1964 (i.types[op] & Reg16) ? WORD_MNEM_SUFFIX :
1965 (i.types[op] & Reg64) ? QWORD_MNEM_SUFFIX :
1966 LONG_MNEM_SUFFIX);
1967 break;
1968 }
1969 }
1970 else if (i.suffix == BYTE_MNEM_SUFFIX)
1971 {
1972 int op;
1973 for (op = i.operands; --op >= 0;)
1974 {
1975 /* If this is an eight bit register, it's OK. If it's
1976 the 16 or 32 bit version of an eight bit register,
1977 we will just use the low portion, and that's OK too. */
1978 if (i.types[op] & Reg8)
1979 continue;
1980
1981 /* movzx and movsx should not generate this warning. */
1982 if (intel_syntax
1983 && (i.tm.base_opcode == 0xfb7
1984 || i.tm.base_opcode == 0xfb6
1985 || i.tm.base_opcode == 0x63
1986 || i.tm.base_opcode == 0xfbe
1987 || i.tm.base_opcode == 0xfbf))
1988 continue;
1989
1990 if ((i.types[op] & WordReg) && i.op[op].regs->reg_num < 4
1991 #if 0
1992 /* Check that the template allows eight bit regs
1993 This kills insns such as `orb $1,%edx', which
1994 maybe should be allowed. */
1995 && (i.tm.operand_types[op] & (Reg8|InOutPortReg))
1996 #endif
1997 )
1998 {
1999 /* Prohibit these changes in the 64bit mode, since
2000 the lowering is more complicated. */
2001 if (flag_code == CODE_64BIT
2002 && (i.tm.operand_types[op] & InOutPortReg) == 0)
2003 as_bad (_("Incorrect register `%%%s' used with`%c' suffix"),
2004 i.op[op].regs->reg_name,
2005 i.suffix);
2006 #if REGISTER_WARNINGS
2007 if (!quiet_warnings
2008 && (i.tm.operand_types[op] & InOutPortReg) == 0)
2009 as_warn (_("using `%%%s' instead of `%%%s' due to `%c' suffix"),
2010 (i.op[op].regs
2011 + (i.types[op] & Reg16
2012 ? REGNAM_AL - REGNAM_AX
2013 : REGNAM_AL - REGNAM_EAX))->reg_name,
2014 i.op[op].regs->reg_name,
2015 i.suffix);
2016 #endif
2017 continue;
2018 }
2019 /* Any other register is bad. */
2020 if (i.types[op] & (Reg | RegMMX | RegXMM
2021 | SReg2 | SReg3
2022 | Control | Debug | Test
2023 | FloatReg | FloatAcc))
2024 {
2025 as_bad (_("`%%%s' not allowed with `%s%c'"),
2026 i.op[op].regs->reg_name,
2027 i.tm.name,
2028 i.suffix);
2029 return;
2030 }
2031 }
2032 }
2033 else if (i.suffix == LONG_MNEM_SUFFIX)
2034 {
2035 int op;
2036
2037 for (op = i.operands; --op >= 0;)
2038 /* Reject eight bit registers, except where the template
2039 requires them. (eg. movzb) */
2040 if ((i.types[op] & Reg8) != 0
2041 && (i.tm.operand_types[op] & (Reg16 | Reg32 | Acc)) != 0)
2042 {
2043 as_bad (_("`%%%s' not allowed with `%s%c'"),
2044 i.op[op].regs->reg_name,
2045 i.tm.name,
2046 i.suffix);
2047 return;
2048 }
2049 /* Warn if the e prefix on a general reg is missing. */
2050 else if ((!quiet_warnings || flag_code == CODE_64BIT)
2051 && (i.types[op] & Reg16) != 0
2052 && (i.tm.operand_types[op] & (Reg32|Acc)) != 0)
2053 {
2054 /* Prohibit these changes in the 64bit mode, since
2055 the lowering is more complicated. */
2056 if (flag_code == CODE_64BIT)
2057 as_bad (_("Incorrect register `%%%s' used with`%c' suffix"),
2058 i.op[op].regs->reg_name,
2059 i.suffix);
2060 #if REGISTER_WARNINGS
2061 else
2062 as_warn (_("using `%%%s' instead of `%%%s' due to `%c' suffix"),
2063 (i.op[op].regs + REGNAM_EAX - REGNAM_AX)->reg_name,
2064 i.op[op].regs->reg_name,
2065 i.suffix);
2066 #endif
2067 }
2068 /* Warn if the r prefix on a general reg is missing. */
2069 else if ((i.types[op] & Reg64) != 0
2070 && (i.tm.operand_types[op] & (Reg32|Acc)) != 0)
2071 {
2072 as_bad (_("Incorrect register `%%%s' used with`%c' suffix"),
2073 i.op[op].regs->reg_name,
2074 i.suffix);
2075 }
2076 }
2077 else if (i.suffix == QWORD_MNEM_SUFFIX)
2078 {
2079 int op;
2080
2081 for (op = i.operands; --op >= 0; )
2082 /* Reject eight bit registers, except where the template
2083 requires them. (eg. movzb) */
2084 if ((i.types[op] & Reg8) != 0
2085 && (i.tm.operand_types[op] & (Reg16|Reg32|Acc)) != 0)
2086 {
2087 as_bad (_("`%%%s' not allowed with `%s%c'"),
2088 i.op[op].regs->reg_name,
2089 i.tm.name,
2090 i.suffix);
2091 return;
2092 }
2093 /* Warn if the e prefix on a general reg is missing. */
2094 else if (((i.types[op] & Reg16) != 0
2095 || (i.types[op] & Reg32) != 0)
2096 && (i.tm.operand_types[op] & (Reg32|Acc)) != 0)
2097 {
2098 /* Prohibit these changes in the 64bit mode, since
2099 the lowering is more complicated. */
2100 as_bad (_("Incorrect register `%%%s' used with`%c' suffix"),
2101 i.op[op].regs->reg_name,
2102 i.suffix);
2103 }
2104 }
2105 else if (i.suffix == WORD_MNEM_SUFFIX)
2106 {
2107 int op;
2108 for (op = i.operands; --op >= 0;)
2109 /* Reject eight bit registers, except where the template
2110 requires them. (eg. movzb) */
2111 if ((i.types[op] & Reg8) != 0
2112 && (i.tm.operand_types[op] & (Reg16|Reg32|Acc)) != 0)
2113 {
2114 as_bad (_("`%%%s' not allowed with `%s%c'"),
2115 i.op[op].regs->reg_name,
2116 i.tm.name,
2117 i.suffix);
2118 return;
2119 }
2120 /* Warn if the e prefix on a general reg is present. */
2121 else if ((!quiet_warnings || flag_code == CODE_64BIT)
2122 && (i.types[op] & Reg32) != 0
2123 && (i.tm.operand_types[op] & (Reg16|Acc)) != 0)
2124 {
2125 /* Prohibit these changes in the 64bit mode, since
2126 the lowering is more complicated. */
2127 if (flag_code == CODE_64BIT)
2128 as_bad (_("Incorrect register `%%%s' used with`%c' suffix"),
2129 i.op[op].regs->reg_name,
2130 i.suffix);
2131 else
2132 #if REGISTER_WARNINGS
2133 as_warn (_("using `%%%s' instead of `%%%s' due to `%c' suffix"),
2134 (i.op[op].regs + REGNAM_AX - REGNAM_EAX)->reg_name,
2135 i.op[op].regs->reg_name,
2136 i.suffix);
2137 #endif
2138 }
2139 }
2140 else if (intel_syntax && (i.tm.opcode_modifier & IgnoreSize))
2141 /* Do nothing if the instruction is going to ignore the prefix. */
2142 ;
2143 else
2144 abort ();
2145 }
2146 else if ((i.tm.opcode_modifier & DefaultSize) && !i.suffix)
2147 {
2148 i.suffix = stackop_size;
2149 }
2150 /* Make still unresolved immediate matches conform to size of immediate
2151 given in i.suffix. Note: overlap2 cannot be an immediate! */
2152 if ((overlap0 & (Imm8 | Imm8S | Imm16 | Imm32 | Imm32S))
2153 && overlap0 != Imm8 && overlap0 != Imm8S
2154 && overlap0 != Imm16 && overlap0 != Imm32S
2155 && overlap0 != Imm32 && overlap0 != Imm64)
2156 {
2157 if (i.suffix)
2158 {
2159 overlap0 &= (i.suffix == BYTE_MNEM_SUFFIX ? (Imm8 | Imm8S) :
2160 (i.suffix == WORD_MNEM_SUFFIX ? Imm16 :
2161 (i.suffix == QWORD_MNEM_SUFFIX ? Imm64 | Imm32S : Imm32)));
2162 }
2163 else if (overlap0 == (Imm16 | Imm32S | Imm32)
2164 || overlap0 == (Imm16 | Imm32)
2165 || overlap0 == (Imm16 | Imm32S))
2166 {
2167 overlap0 =
2168 ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0)) ? Imm16 : Imm32S;
2169 }
2170 if (overlap0 != Imm8 && overlap0 != Imm8S
2171 && overlap0 != Imm16 && overlap0 != Imm32S
2172 && overlap0 != Imm32 && overlap0 != Imm64)
2173 {
2174 as_bad (_("no instruction mnemonic suffix given; can't determine immediate size"));
2175 return;
2176 }
2177 }
2178 if ((overlap1 & (Imm8 | Imm8S | Imm16 | Imm32S | Imm32))
2179 && overlap1 != Imm8 && overlap1 != Imm8S
2180 && overlap1 != Imm16 && overlap1 != Imm32S
2181 && overlap1 != Imm32 && overlap1 != Imm64)
2182 {
2183 if (i.suffix)
2184 {
2185 overlap1 &= (i.suffix == BYTE_MNEM_SUFFIX ? (Imm8 | Imm8S) :
2186 (i.suffix == WORD_MNEM_SUFFIX ? Imm16 :
2187 (i.suffix == QWORD_MNEM_SUFFIX ? Imm64 | Imm32S : Imm32)));
2188 }
2189 else if (overlap1 == (Imm16 | Imm32 | Imm32S)
2190 || overlap1 == (Imm16 | Imm32)
2191 || overlap1 == (Imm16 | Imm32S))
2192 {
2193 overlap1 =
2194 ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0)) ? Imm16 : Imm32S;
2195 }
2196 if (overlap1 != Imm8 && overlap1 != Imm8S
2197 && overlap1 != Imm16 && overlap1 != Imm32S
2198 && overlap1 != Imm32 && overlap1 != Imm64)
2199 {
2200 as_bad (_("no instruction mnemonic suffix given; can't determine immediate size %x %c"),overlap1, i.suffix);
2201 return;
2202 }
2203 }
2204 assert ((overlap2 & Imm) == 0);
2205
2206 i.types[0] = overlap0;
2207 if (overlap0 & ImplicitRegister)
2208 i.reg_operands--;
2209 if (overlap0 & Imm1)
2210 i.imm_operands = 0; /* kludge for shift insns. */
2211
2212 i.types[1] = overlap1;
2213 if (overlap1 & ImplicitRegister)
2214 i.reg_operands--;
2215
2216 i.types[2] = overlap2;
2217 if (overlap2 & ImplicitRegister)
2218 i.reg_operands--;
2219
2220 /* Finalize opcode. First, we change the opcode based on the operand
2221 size given by i.suffix: We need not change things for byte insns. */
2222
2223 if (!i.suffix && (i.tm.opcode_modifier & W))
2224 {
2225 as_bad (_("no instruction mnemonic suffix given and no register operands; can't size instruction"));
2226 return;
2227 }
2228
2229 /* For movzx and movsx, need to check the register type. */
2230 if (intel_syntax
2231 && (i.tm.base_opcode == 0xfb6 || i.tm.base_opcode == 0xfbe))
2232 if (i.suffix && i.suffix == BYTE_MNEM_SUFFIX)
2233 {
2234 unsigned int prefix = DATA_PREFIX_OPCODE;
2235
2236 if ((i.op[1].regs->reg_type & Reg16) != 0)
2237 if (!add_prefix (prefix))
2238 return;
2239 }
2240
2241 if (i.suffix && i.suffix != BYTE_MNEM_SUFFIX)
2242 {
2243 /* It's not a byte, select word/dword operation. */
2244 if (i.tm.opcode_modifier & W)
2245 {
2246 if (i.tm.opcode_modifier & ShortForm)
2247 i.tm.base_opcode |= 8;
2248 else
2249 i.tm.base_opcode |= 1;
2250 }
2251 /* Now select between word & dword operations via the operand
2252 size prefix, except for instructions that will ignore this
2253 prefix anyway. */
2254 if (i.suffix != QWORD_MNEM_SUFFIX
2255 && (i.suffix == LONG_MNEM_SUFFIX) == (flag_code == CODE_16BIT)
2256 && !(i.tm.opcode_modifier & IgnoreSize))
2257 {
2258 unsigned int prefix = DATA_PREFIX_OPCODE;
2259 if (i.tm.opcode_modifier & JumpByte) /* jcxz, loop */
2260 prefix = ADDR_PREFIX_OPCODE;
2261
2262 if (! add_prefix (prefix))
2263 return;
2264 }
2265
2266 /* Set mode64 for an operand. */
2267 if (i.suffix == QWORD_MNEM_SUFFIX
2268 && !(i.tm.opcode_modifier & NoRex64))
2269 {
2270 i.rex.mode64 = 1;
2271 if (flag_code < CODE_64BIT)
2272 {
2273 as_bad (_("64bit operations available only in 64bit modes."));
2274 return;
2275 }
2276 }
2277
2278 /* Size floating point instruction. */
2279 if (i.suffix == LONG_MNEM_SUFFIX)
2280 {
2281 if (i.tm.opcode_modifier & FloatMF)
2282 i.tm.base_opcode ^= 4;
2283 }
2284 }
2285
2286 if (i.tm.opcode_modifier & ImmExt)
2287 {
2288 /* These AMD 3DNow! and Intel Katmai New Instructions have an
2289 opcode suffix which is coded in the same place as an 8-bit
2290 immediate field would be. Here we fake an 8-bit immediate
2291 operand from the opcode suffix stored in tm.extension_opcode. */
2292
2293 expressionS *exp;
2294
2295 assert (i.imm_operands == 0 && i.operands <= 2 && 2 < MAX_OPERANDS);
2296
2297 exp = &im_expressions[i.imm_operands++];
2298 i.op[i.operands].imms = exp;
2299 i.types[i.operands++] = Imm8;
2300 exp->X_op = O_constant;
2301 exp->X_add_number = i.tm.extension_opcode;
2302 i.tm.extension_opcode = None;
2303 }
2304
2305 /* For insns with operands there are more diddles to do to the opcode. */
2306 if (i.operands)
2307 {
2308 /* Default segment register this instruction will use
2309 for memory accesses. 0 means unknown.
2310 This is only for optimizing out unnecessary segment overrides. */
2311 const seg_entry *default_seg = 0;
2312
2313 /* The imul $imm, %reg instruction is converted into
2314 imul $imm, %reg, %reg, and the clr %reg instruction
2315 is converted into xor %reg, %reg. */
2316 if (i.tm.opcode_modifier & regKludge)
2317 {
2318 unsigned int first_reg_op = (i.types[0] & Reg) ? 0 : 1;
2319 /* Pretend we saw the extra register operand. */
2320 assert (i.op[first_reg_op + 1].regs == 0);
2321 i.op[first_reg_op + 1].regs = i.op[first_reg_op].regs;
2322 i.types[first_reg_op + 1] = i.types[first_reg_op];
2323 i.reg_operands = 2;
2324 }
2325
2326 if (i.tm.opcode_modifier & ShortForm)
2327 {
2328 /* The register or float register operand is in operand 0 or 1. */
2329 unsigned int op = (i.types[0] & (Reg | FloatReg)) ? 0 : 1;
2330 /* Register goes in low 3 bits of opcode. */
2331 i.tm.base_opcode |= i.op[op].regs->reg_num;
2332 if (i.op[op].regs->reg_flags & RegRex)
2333 i.rex.extZ = 1;
2334 if (!quiet_warnings && (i.tm.opcode_modifier & Ugh) != 0)
2335 {
2336 /* Warn about some common errors, but press on regardless.
2337 The first case can be generated by gcc (<= 2.8.1). */
2338 if (i.operands == 2)
2339 {
2340 /* Reversed arguments on faddp, fsubp, etc. */
2341 as_warn (_("translating to `%s %%%s,%%%s'"), i.tm.name,
2342 i.op[1].regs->reg_name,
2343 i.op[0].regs->reg_name);
2344 }
2345 else
2346 {
2347 /* Extraneous `l' suffix on fp insn. */
2348 as_warn (_("translating to `%s %%%s'"), i.tm.name,
2349 i.op[0].regs->reg_name);
2350 }
2351 }
2352 }
2353 else if (i.tm.opcode_modifier & Modrm)
2354 {
2355 /* The opcode is completed (modulo i.tm.extension_opcode which
2356 must be put into the modrm byte).
2357 Now, we make the modrm & index base bytes based on all the
2358 info we've collected. */
2359
2360 /* i.reg_operands MUST be the number of real register operands;
2361 implicit registers do not count. */
2362 if (i.reg_operands == 2)
2363 {
2364 unsigned int source, dest;
2365 source = ((i.types[0]
2366 & (Reg | RegMMX | RegXMM
2367 | SReg2 | SReg3
2368 | Control | Debug | Test))
2369 ? 0 : 1);
2370 dest = source + 1;
2371
2372 i.rm.mode = 3;
2373 /* One of the register operands will be encoded in the
2374 i.tm.reg field, the other in the combined i.tm.mode
2375 and i.tm.regmem fields. If no form of this
2376 instruction supports a memory destination operand,
2377 then we assume the source operand may sometimes be
2378 a memory operand and so we need to store the
2379 destination in the i.rm.reg field. */
2380 if ((i.tm.operand_types[dest] & AnyMem) == 0)
2381 {
2382 i.rm.reg = i.op[dest].regs->reg_num;
2383 i.rm.regmem = i.op[source].regs->reg_num;
2384 if (i.op[dest].regs->reg_flags & RegRex)
2385 i.rex.extX = 1;
2386 if (i.op[source].regs->reg_flags & RegRex)
2387 i.rex.extZ = 1;
2388 }
2389 else
2390 {
2391 i.rm.reg = i.op[source].regs->reg_num;
2392 i.rm.regmem = i.op[dest].regs->reg_num;
2393 if (i.op[dest].regs->reg_flags & RegRex)
2394 i.rex.extZ = 1;
2395 if (i.op[source].regs->reg_flags & RegRex)
2396 i.rex.extX = 1;
2397 }
2398 }
2399 else
2400 { /* If it's not 2 reg operands... */
2401 if (i.mem_operands)
2402 {
2403 unsigned int fake_zero_displacement = 0;
2404 unsigned int op = ((i.types[0] & AnyMem)
2405 ? 0
2406 : (i.types[1] & AnyMem) ? 1 : 2);
2407
2408 default_seg = &ds;
2409
2410 if (! i.base_reg)
2411 {
2412 i.rm.mode = 0;
2413 if (! i.disp_operands)
2414 fake_zero_displacement = 1;
2415 if (! i.index_reg)
2416 {
2417 /* Operand is just <disp> */
2418 if ((flag_code == CODE_16BIT) ^ (i.prefix[ADDR_PREFIX] != 0))
2419 {
2420 i.rm.regmem = NO_BASE_REGISTER_16;
2421 i.types[op] &= ~Disp;
2422 i.types[op] |= Disp16;
2423 }
2424 else if (flag_code != CODE_64BIT)
2425 {
2426 i.rm.regmem = NO_BASE_REGISTER;
2427 i.types[op] &= ~Disp;
2428 i.types[op] |= Disp32;
2429 }
2430 else
2431 {
2432 /* 64bit mode overwrites the 32bit
2433 absolute addressing by RIP relative
2434 addressing and absolute addressing
2435 is encoded by one of the redundant
2436 SIB forms. */
2437
2438 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
2439 i.sib.base = NO_BASE_REGISTER;
2440 i.sib.index = NO_INDEX_REGISTER;
2441 i.types[op] &= ~Disp;
2442 i.types[op] |= Disp32S;
2443 }
2444 }
2445 else /* ! i.base_reg && i.index_reg */
2446 {
2447 i.sib.index = i.index_reg->reg_num;
2448 i.sib.base = NO_BASE_REGISTER;
2449 i.sib.scale = i.log2_scale_factor;
2450 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
2451 i.types[op] &= ~Disp;
2452 if (flag_code != CODE_64BIT)
2453 i.types[op] |= Disp32; /* Must be 32 bit */
2454 else
2455 i.types[op] |= Disp32S;
2456 if (i.index_reg->reg_flags & RegRex)
2457 i.rex.extY = 1;
2458 }
2459 }
2460 /* RIP addressing for 64bit mode. */
2461 else if (i.base_reg->reg_type == BaseIndex)
2462 {
2463 i.rm.regmem = NO_BASE_REGISTER;
2464 i.types[op] &= ~Disp;
2465 i.types[op] |= Disp32S;
2466 i.flags[op] = Operand_PCrel;
2467 }
2468 else if (i.base_reg->reg_type & Reg16)
2469 {
2470 switch (i.base_reg->reg_num)
2471 {
2472 case 3: /* (%bx) */
2473 if (! i.index_reg)
2474 i.rm.regmem = 7;
2475 else /* (%bx,%si) -> 0, or (%bx,%di) -> 1 */
2476 i.rm.regmem = i.index_reg->reg_num - 6;
2477 break;
2478 case 5: /* (%bp) */
2479 default_seg = &ss;
2480 if (! i.index_reg)
2481 {
2482 i.rm.regmem = 6;
2483 if ((i.types[op] & Disp) == 0)
2484 {
2485 /* fake (%bp) into 0(%bp) */
2486 i.types[op] |= Disp8;
2487 fake_zero_displacement = 1;
2488 }
2489 }
2490 else /* (%bp,%si) -> 2, or (%bp,%di) -> 3 */
2491 i.rm.regmem = i.index_reg->reg_num - 6 + 2;
2492 break;
2493 default: /* (%si) -> 4 or (%di) -> 5 */
2494 i.rm.regmem = i.base_reg->reg_num - 6 + 4;
2495 }
2496 i.rm.mode = mode_from_disp_size (i.types[op]);
2497 }
2498 else /* i.base_reg and 32/64 bit mode */
2499 {
2500 if (flag_code == CODE_64BIT
2501 && (i.types[op] & Disp))
2502 {
2503 if (i.types[op] & Disp8)
2504 i.types[op] = Disp8 | Disp32S;
2505 else
2506 i.types[op] = Disp32S;
2507 }
2508 i.rm.regmem = i.base_reg->reg_num;
2509 if (i.base_reg->reg_flags & RegRex)
2510 i.rex.extZ = 1;
2511 i.sib.base = i.base_reg->reg_num;
2512 /* x86-64 ignores REX prefix bit here to avoid
2513 decoder complications. */
2514 if ((i.base_reg->reg_num & 7) == EBP_REG_NUM)
2515 {
2516 default_seg = &ss;
2517 if (i.disp_operands == 0)
2518 {
2519 fake_zero_displacement = 1;
2520 i.types[op] |= Disp8;
2521 }
2522 }
2523 else if (i.base_reg->reg_num == ESP_REG_NUM)
2524 {
2525 default_seg = &ss;
2526 }
2527 i.sib.scale = i.log2_scale_factor;
2528 if (! i.index_reg)
2529 {
2530 /* <disp>(%esp) becomes two byte modrm
2531 with no index register. We've already
2532 stored the code for esp in i.rm.regmem
2533 ie. ESCAPE_TO_TWO_BYTE_ADDRESSING. Any
2534 base register besides %esp will not use
2535 the extra modrm byte. */
2536 i.sib.index = NO_INDEX_REGISTER;
2537 #if ! SCALE1_WHEN_NO_INDEX
2538 /* Another case where we force the second
2539 modrm byte. */
2540 if (i.log2_scale_factor)
2541 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
2542 #endif
2543 }
2544 else
2545 {
2546 i.sib.index = i.index_reg->reg_num;
2547 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
2548 if (i.index_reg->reg_flags & RegRex)
2549 i.rex.extY = 1;
2550 }
2551 i.rm.mode = mode_from_disp_size (i.types[op]);
2552 }
2553
2554 if (fake_zero_displacement)
2555 {
2556 /* Fakes a zero displacement assuming that i.types[op]
2557 holds the correct displacement size. */
2558 expressionS *exp;
2559
2560 assert (i.op[op].disps == 0);
2561 exp = &disp_expressions[i.disp_operands++];
2562 i.op[op].disps = exp;
2563 exp->X_op = O_constant;
2564 exp->X_add_number = 0;
2565 exp->X_add_symbol = (symbolS *) 0;
2566 exp->X_op_symbol = (symbolS *) 0;
2567 }
2568 }
2569
2570 /* Fill in i.rm.reg or i.rm.regmem field with register
2571 operand (if any) based on i.tm.extension_opcode.
2572 Again, we must be careful to make sure that
2573 segment/control/debug/test/MMX registers are coded
2574 into the i.rm.reg field. */
2575 if (i.reg_operands)
2576 {
2577 unsigned int op =
2578 ((i.types[0]
2579 & (Reg | RegMMX | RegXMM
2580 | SReg2 | SReg3
2581 | Control | Debug | Test))
2582 ? 0
2583 : ((i.types[1]
2584 & (Reg | RegMMX | RegXMM
2585 | SReg2 | SReg3
2586 | Control | Debug | Test))
2587 ? 1
2588 : 2));
2589 /* If there is an extension opcode to put here, the
2590 register number must be put into the regmem field. */
2591 if (i.tm.extension_opcode != None)
2592 {
2593 i.rm.regmem = i.op[op].regs->reg_num;
2594 if (i.op[op].regs->reg_flags & RegRex)
2595 i.rex.extZ = 1;
2596 }
2597 else
2598 {
2599 i.rm.reg = i.op[op].regs->reg_num;
2600 if (i.op[op].regs->reg_flags & RegRex)
2601 i.rex.extX = 1;
2602 }
2603
2604 /* Now, if no memory operand has set i.rm.mode = 0, 1, 2
2605 we must set it to 3 to indicate this is a register
2606 operand in the regmem field. */
2607 if (!i.mem_operands)
2608 i.rm.mode = 3;
2609 }
2610
2611 /* Fill in i.rm.reg field with extension opcode (if any). */
2612 if (i.tm.extension_opcode != None)
2613 i.rm.reg = i.tm.extension_opcode;
2614 }
2615 }
2616 else if (i.tm.opcode_modifier & (Seg2ShortForm | Seg3ShortForm))
2617 {
2618 if (i.tm.base_opcode == POP_SEG_SHORT
2619 && i.op[0].regs->reg_num == 1)
2620 {
2621 as_bad (_("you can't `pop %%cs'"));
2622 return;
2623 }
2624 i.tm.base_opcode |= (i.op[0].regs->reg_num << 3);
2625 if (i.op[0].regs->reg_flags & RegRex)
2626 i.rex.extZ = 1;
2627 }
2628 else if ((i.tm.base_opcode & ~(D|W)) == MOV_AX_DISP32)
2629 {
2630 default_seg = &ds;
2631 }
2632 else if ((i.tm.opcode_modifier & IsString) != 0)
2633 {
2634 /* For the string instructions that allow a segment override
2635 on one of their operands, the default segment is ds. */
2636 default_seg = &ds;
2637 }
2638
2639 /* If a segment was explicitly specified,
2640 and the specified segment is not the default,
2641 use an opcode prefix to select it.
2642 If we never figured out what the default segment is,
2643 then default_seg will be zero at this point,
2644 and the specified segment prefix will always be used. */
2645 if ((i.seg[0]) && (i.seg[0] != default_seg))
2646 {
2647 if (! add_prefix (i.seg[0]->seg_prefix))
2648 return;
2649 }
2650 }
2651 else if (!quiet_warnings && (i.tm.opcode_modifier & Ugh) != 0)
2652 {
2653 /* UnixWare fsub no args is alias for fsubp, fadd -> faddp, etc. */
2654 as_warn (_("translating to `%sp'"), i.tm.name);
2655 }
2656 }
2657
2658 /* Handle conversion of 'int $3' --> special int3 insn. */
2659 if (i.tm.base_opcode == INT_OPCODE && i.op[0].imms->X_add_number == 3)
2660 {
2661 i.tm.base_opcode = INT3_OPCODE;
2662 i.imm_operands = 0;
2663 }
2664
2665 if ((i.tm.opcode_modifier & (Jump | JumpByte | JumpDword))
2666 && i.op[0].disps->X_op == O_constant)
2667 {
2668 /* Convert "jmp constant" (and "call constant") to a jump (call) to
2669 the absolute address given by the constant. Since ix86 jumps and
2670 calls are pc relative, we need to generate a reloc. */
2671 i.op[0].disps->X_add_symbol = &abs_symbol;
2672 i.op[0].disps->X_op = O_symbol;
2673 }
2674
2675 if (i.tm.opcode_modifier & Rex64)
2676 i.rex.mode64 = 1;
2677
2678 /* For 8bit registers we would need an empty rex prefix.
2679 Also in the case instruction is already having prefix,
2680 we need to convert old registers to new ones. */
2681
2682 if (((i.types[0] & Reg8) && (i.op[0].regs->reg_flags & RegRex64))
2683 || ((i.types[1] & Reg8) && (i.op[1].regs->reg_flags & RegRex64))
2684 || ((i.rex.mode64 || i.rex.extX || i.rex.extY || i.rex.extZ || i.rex.empty)
2685 && ((i.types[0] & Reg8) || (i.types[1] & Reg8))))
2686 {
2687 int x;
2688 i.rex.empty = 1;
2689 for (x = 0; x < 2; x++)
2690 {
2691 /* Look for 8bit operand that does use old registers. */
2692 if (i.types[x] & Reg8
2693 && !(i.op[x].regs->reg_flags & RegRex64))
2694 {
2695 /* In case it is "hi" register, give up. */
2696 if (i.op[x].regs->reg_num > 3)
2697 as_bad (_("Can't encode registers '%%%s' in the instruction requiring REX prefix.\n"),
2698 i.op[x].regs->reg_name);
2699
2700 /* Otherwise it is equivalent to the extended register.
2701 Since the encoding don't change this is merely cosmetical
2702 cleanup for debug output. */
2703
2704 i.op[x].regs = i.op[x].regs + 8;
2705 }
2706 }
2707 }
2708
2709 if (i.rex.mode64 || i.rex.extX || i.rex.extY || i.rex.extZ || i.rex.empty)
2710 add_prefix (0x40
2711 | (i.rex.mode64 ? 8 : 0)
2712 | (i.rex.extX ? 4 : 0)
2713 | (i.rex.extY ? 2 : 0)
2714 | (i.rex.extZ ? 1 : 0));
2715
2716 /* We are ready to output the insn. */
2717 {
2718 register char *p;
2719
2720 /* Tie dwarf2 debug info to the address at the start of the insn.
2721 We can't do this after the insn has been output as the current
2722 frag may have been closed off. eg. by frag_var. */
2723 dwarf2_emit_insn (0);
2724
2725 /* Output jumps. */
2726 if (i.tm.opcode_modifier & Jump)
2727 {
2728 int code16;
2729 int prefix;
2730 relax_substateT subtype;
2731 symbolS *sym;
2732 offsetT off;
2733
2734 code16 = 0;
2735 if (flag_code == CODE_16BIT)
2736 code16 = CODE16;
2737
2738 prefix = 0;
2739 if (i.prefix[DATA_PREFIX])
2740 {
2741 prefix = 1;
2742 i.prefixes -= 1;
2743 code16 ^= CODE16;
2744 }
2745 /* Pentium4 branch hints. */
2746 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
2747 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
2748 {
2749 prefix++;
2750 i.prefixes--;
2751 }
2752 if (i.prefix[REX_PREFIX])
2753 {
2754 prefix++;
2755 i.prefixes--;
2756 }
2757
2758 if (i.prefixes != 0 && !intel_syntax)
2759 as_warn (_("skipping prefixes on this instruction"));
2760
2761 /* It's always a symbol; End frag & setup for relax.
2762 Make sure there is enough room in this frag for the largest
2763 instruction we may generate in md_convert_frag. This is 2
2764 bytes for the opcode and room for the prefix and largest
2765 displacement. */
2766 frag_grow (prefix + 2 + 4);
2767 /* Prefix and 1 opcode byte go in fr_fix. */
2768 p = frag_more (prefix + 1);
2769 if (i.prefix[DATA_PREFIX])
2770 *p++ = DATA_PREFIX_OPCODE;
2771 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE
2772 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE)
2773 *p++ = i.prefix[SEG_PREFIX];
2774 if (i.prefix[REX_PREFIX])
2775 *p++ = i.prefix[REX_PREFIX];
2776 *p = i.tm.base_opcode;
2777
2778 if ((unsigned char) *p == JUMP_PC_RELATIVE)
2779 subtype = ENCODE_RELAX_STATE (UNCOND_JUMP, SMALL);
2780 else if ((cpu_arch_flags & Cpu386) != 0)
2781 subtype = ENCODE_RELAX_STATE (COND_JUMP, SMALL);
2782 else
2783 subtype = ENCODE_RELAX_STATE (COND_JUMP86, SMALL);
2784 subtype |= code16;
2785
2786 sym = i.op[0].disps->X_add_symbol;
2787 off = i.op[0].disps->X_add_number;
2788
2789 if (i.op[0].disps->X_op != O_constant
2790 && i.op[0].disps->X_op != O_symbol)
2791 {
2792 /* Handle complex expressions. */
2793 sym = make_expr_symbol (i.op[0].disps);
2794 off = 0;
2795 }
2796
2797 /* 1 possible extra opcode + 4 byte displacement go in var part.
2798 Pass reloc in fr_var. */
2799 frag_var (rs_machine_dependent, 5, i.reloc[0], subtype, sym, off, p);
2800 }
2801 else if (i.tm.opcode_modifier & (JumpByte | JumpDword))
2802 {
2803 int size;
2804
2805 if (i.tm.opcode_modifier & JumpByte)
2806 {
2807 /* This is a loop or jecxz type instruction. */
2808 size = 1;
2809 if (i.prefix[ADDR_PREFIX])
2810 {
2811 FRAG_APPEND_1_CHAR (ADDR_PREFIX_OPCODE);
2812 i.prefixes -= 1;
2813 }
2814 /* Pentium4 branch hints. */
2815 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
2816 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
2817 {
2818 FRAG_APPEND_1_CHAR (i.prefix[SEG_PREFIX]);
2819 i.prefixes--;
2820 }
2821 }
2822 else
2823 {
2824 int code16;
2825
2826 code16 = 0;
2827 if (flag_code == CODE_16BIT)
2828 code16 = CODE16;
2829
2830 if (i.prefix[DATA_PREFIX])
2831 {
2832 FRAG_APPEND_1_CHAR (DATA_PREFIX_OPCODE);
2833 i.prefixes -= 1;
2834 code16 ^= CODE16;
2835 }
2836
2837 size = 4;
2838 if (code16)
2839 size = 2;
2840 }
2841
2842 if (i.prefix[REX_PREFIX])
2843 {
2844 FRAG_APPEND_1_CHAR (i.prefix[REX_PREFIX]);
2845 i.prefixes -= 1;
2846 }
2847
2848 if (i.prefixes != 0 && !intel_syntax)
2849 as_warn (_("skipping prefixes on this instruction"));
2850
2851 p = frag_more (1 + size);
2852 *p++ = i.tm.base_opcode;
2853
2854 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
2855 i.op[0].disps, 1, reloc (size, 1, 1, i.reloc[0]));
2856 }
2857 else if (i.tm.opcode_modifier & JumpInterSegment)
2858 {
2859 int size;
2860 int prefix;
2861 int code16;
2862
2863 code16 = 0;
2864 if (flag_code == CODE_16BIT)
2865 code16 = CODE16;
2866
2867 prefix = 0;
2868 if (i.prefix[DATA_PREFIX])
2869 {
2870 prefix = 1;
2871 i.prefixes -= 1;
2872 code16 ^= CODE16;
2873 }
2874 if (i.prefix[REX_PREFIX])
2875 {
2876 prefix++;
2877 i.prefixes -= 1;
2878 }
2879
2880 size = 4;
2881 if (code16)
2882 size = 2;
2883
2884 if (i.prefixes != 0 && !intel_syntax)
2885 as_warn (_("skipping prefixes on this instruction"));
2886
2887 /* 1 opcode; 2 segment; offset */
2888 p = frag_more (prefix + 1 + 2 + size);
2889
2890 if (i.prefix[DATA_PREFIX])
2891 *p++ = DATA_PREFIX_OPCODE;
2892
2893 if (i.prefix[REX_PREFIX])
2894 *p++ = i.prefix[REX_PREFIX];
2895
2896 *p++ = i.tm.base_opcode;
2897 if (i.op[1].imms->X_op == O_constant)
2898 {
2899 offsetT n = i.op[1].imms->X_add_number;
2900
2901 if (size == 2
2902 && !fits_in_unsigned_word (n)
2903 && !fits_in_signed_word (n))
2904 {
2905 as_bad (_("16-bit jump out of range"));
2906 return;
2907 }
2908 md_number_to_chars (p, n, size);
2909 }
2910 else
2911 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
2912 i.op[1].imms, 0, reloc (size, 0, 0, i.reloc[1]));
2913 if (i.op[0].imms->X_op != O_constant)
2914 as_bad (_("can't handle non absolute segment in `%s'"),
2915 i.tm.name);
2916 md_number_to_chars (p + size, (valueT) i.op[0].imms->X_add_number, 2);
2917 }
2918 else
2919 {
2920 /* Output normal instructions here. */
2921 unsigned char *q;
2922
2923 /* All opcodes on i386 have eighter 1 or 2 bytes. We may use third
2924 byte for the SSE instructions to specify prefix they require. */
2925 if (i.tm.base_opcode & 0xff0000)
2926 add_prefix ((i.tm.base_opcode >> 16) & 0xff);
2927
2928 /* The prefix bytes. */
2929 for (q = i.prefix;
2930 q < i.prefix + sizeof (i.prefix) / sizeof (i.prefix[0]);
2931 q++)
2932 {
2933 if (*q)
2934 {
2935 p = frag_more (1);
2936 md_number_to_chars (p, (valueT) *q, 1);
2937 }
2938 }
2939
2940 /* Now the opcode; be careful about word order here! */
2941 if (fits_in_unsigned_byte (i.tm.base_opcode))
2942 {
2943 FRAG_APPEND_1_CHAR (i.tm.base_opcode);
2944 }
2945 else
2946 {
2947 p = frag_more (2);
2948 /* Put out high byte first: can't use md_number_to_chars! */
2949 *p++ = (i.tm.base_opcode >> 8) & 0xff;
2950 *p = i.tm.base_opcode & 0xff;
2951 }
2952
2953 /* Now the modrm byte and sib byte (if present). */
2954 if (i.tm.opcode_modifier & Modrm)
2955 {
2956 p = frag_more (1);
2957 md_number_to_chars (p,
2958 (valueT) (i.rm.regmem << 0
2959 | i.rm.reg << 3
2960 | i.rm.mode << 6),
2961 1);
2962 /* If i.rm.regmem == ESP (4)
2963 && i.rm.mode != (Register mode)
2964 && not 16 bit
2965 ==> need second modrm byte. */
2966 if (i.rm.regmem == ESCAPE_TO_TWO_BYTE_ADDRESSING
2967 && i.rm.mode != 3
2968 && !(i.base_reg && (i.base_reg->reg_type & Reg16) != 0))
2969 {
2970 p = frag_more (1);
2971 md_number_to_chars (p,
2972 (valueT) (i.sib.base << 0
2973 | i.sib.index << 3
2974 | i.sib.scale << 6),
2975 1);
2976 }
2977 }
2978
2979 if (i.disp_operands)
2980 {
2981 register unsigned int n;
2982
2983 for (n = 0; n < i.operands; n++)
2984 {
2985 if (i.types[n] & Disp)
2986 {
2987 if (i.op[n].disps->X_op == O_constant)
2988 {
2989 int size;
2990 offsetT val;
2991
2992 size = 4;
2993 if (i.types[n] & (Disp8 | Disp16 | Disp64))
2994 {
2995 size = 2;
2996 if (i.types[n] & Disp8)
2997 size = 1;
2998 if (i.types[n] & Disp64)
2999 size = 8;
3000 }
3001 val = offset_in_range (i.op[n].disps->X_add_number,
3002 size);
3003 p = frag_more (size);
3004 md_number_to_chars (p, val, size);
3005 }
3006 else
3007 {
3008 int size = 4;
3009 int sign = 0;
3010 int pcrel = (i.flags[n] & Operand_PCrel) != 0;
3011
3012 /* The PC relative address is computed relative
3013 to the instruction boundary, so in case immediate
3014 fields follows, we need to adjust the value. */
3015 if (pcrel && i.imm_operands)
3016 {
3017 int imm_size = 4;
3018 register unsigned int n1;
3019
3020 for (n1 = 0; n1 < i.operands; n1++)
3021 if (i.types[n1] & Imm)
3022 {
3023 if (i.types[n1] & (Imm8 | Imm8S | Imm16 | Imm64))
3024 {
3025 imm_size = 2;
3026 if (i.types[n1] & (Imm8 | Imm8S))
3027 imm_size = 1;
3028 if (i.types[n1] & Imm64)
3029 imm_size = 8;
3030 }
3031 break;
3032 }
3033 /* We should find the immediate. */
3034 if (n1 == i.operands)
3035 abort ();
3036 i.op[n].disps->X_add_number -= imm_size;
3037 }
3038
3039 if (i.types[n] & Disp32S)
3040 sign = 1;
3041
3042 if (i.types[n] & (Disp16 | Disp64))
3043 {
3044 size = 2;
3045 if (i.types[n] & Disp64)
3046 size = 8;
3047 }
3048
3049 p = frag_more (size);
3050 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
3051 i.op[n].disps, pcrel,
3052 reloc (size, pcrel, sign, i.reloc[n]));
3053 }
3054 }
3055 }
3056 }
3057
3058 /* Output immediate. */
3059 if (i.imm_operands)
3060 {
3061 register unsigned int n;
3062
3063 for (n = 0; n < i.operands; n++)
3064 {
3065 if (i.types[n] & Imm)
3066 {
3067 if (i.op[n].imms->X_op == O_constant)
3068 {
3069 int size;
3070 offsetT val;
3071
3072 size = 4;
3073 if (i.types[n] & (Imm8 | Imm8S | Imm16 | Imm64))
3074 {
3075 size = 2;
3076 if (i.types[n] & (Imm8 | Imm8S))
3077 size = 1;
3078 else if (i.types[n] & Imm64)
3079 size = 8;
3080 }
3081 val = offset_in_range (i.op[n].imms->X_add_number,
3082 size);
3083 p = frag_more (size);
3084 md_number_to_chars (p, val, size);
3085 }
3086 else
3087 {
3088 /* Not absolute_section.
3089 Need a 32-bit fixup (don't support 8bit
3090 non-absolute imms). Try to support other
3091 sizes ... */
3092 RELOC_ENUM reloc_type;
3093 int size = 4;
3094 int sign = 0;
3095
3096 if ((i.types[n] & (Imm32S))
3097 && i.suffix == QWORD_MNEM_SUFFIX)
3098 sign = 1;
3099 if (i.types[n] & (Imm8 | Imm8S | Imm16 | Imm64))
3100 {
3101 size = 2;
3102 if (i.types[n] & (Imm8 | Imm8S))
3103 size = 1;
3104 if (i.types[n] & Imm64)
3105 size = 8;
3106 }
3107
3108 p = frag_more (size);
3109 reloc_type = reloc (size, 0, sign, i.reloc[n]);
3110 #ifdef BFD_ASSEMBLER
3111 if (reloc_type == BFD_RELOC_32
3112 && GOT_symbol
3113 && GOT_symbol == i.op[n].imms->X_add_symbol
3114 && (i.op[n].imms->X_op == O_symbol
3115 || (i.op[n].imms->X_op == O_add
3116 && ((symbol_get_value_expression
3117 (i.op[n].imms->X_op_symbol)->X_op)
3118 == O_subtract))))
3119 {
3120 /* We don't support dynamic linking on x86-64 yet. */
3121 if (flag_code == CODE_64BIT)
3122 abort ();
3123 reloc_type = BFD_RELOC_386_GOTPC;
3124 i.op[n].imms->X_add_number += 3;
3125 }
3126 #endif
3127 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
3128 i.op[n].imms, 0, reloc_type);
3129 }
3130 }
3131 }
3132 }
3133 }
3134
3135 #ifdef DEBUG386
3136 if (flag_debug)
3137 {
3138 pi (line, &i);
3139 }
3140 #endif /* DEBUG386 */
3141 }
3142 }
3143 \f
3144 #ifndef LEX_AT
3145 static char *lex_got PARAMS ((RELOC_ENUM *, int *));
3146
3147 /* Parse operands of the form
3148 <symbol>@GOTOFF+<nnn>
3149 and similar .plt or .got references.
3150
3151 If we find one, set up the correct relocation in RELOC and copy the
3152 input string, minus the `@GOTOFF' into a malloc'd buffer for
3153 parsing by the calling routine. Return this buffer, and if ADJUST
3154 is non-null set it to the length of the string we removed from the
3155 input line. Otherwise return NULL. */
3156 static char *
3157 lex_got (reloc, adjust)
3158 RELOC_ENUM *reloc;
3159 int *adjust;
3160 {
3161 static const char * const mode_name[NUM_FLAG_CODE] = { "32", "16", "64" };
3162 static const struct {
3163 const char *str;
3164 const RELOC_ENUM rel[NUM_FLAG_CODE];
3165 } gotrel[] = {
3166 { "PLT", { BFD_RELOC_386_PLT32, 0, BFD_RELOC_X86_64_PLT32 } },
3167 { "GOTOFF", { BFD_RELOC_386_GOTOFF, 0, 0 } },
3168 { "GOTPCREL", { 0, 0, BFD_RELOC_X86_64_GOTPCREL } },
3169 { "GOT", { BFD_RELOC_386_GOT32, 0, BFD_RELOC_X86_64_GOT32 } }
3170 };
3171 char *cp;
3172 unsigned int j;
3173
3174 for (cp = input_line_pointer; *cp != '@'; cp++)
3175 if (is_end_of_line[(unsigned char) *cp])
3176 return NULL;
3177
3178 for (j = 0; j < sizeof (gotrel) / sizeof (gotrel[0]); j++)
3179 {
3180 int len;
3181
3182 len = strlen (gotrel[j].str);
3183 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
3184 {
3185 if (gotrel[j].rel[(unsigned int) flag_code] != 0)
3186 {
3187 int first, second;
3188 char *tmpbuf, *past_reloc;
3189
3190 *reloc = gotrel[j].rel[(unsigned int) flag_code];
3191 if (adjust)
3192 *adjust = len;
3193
3194 if (GOT_symbol == NULL)
3195 GOT_symbol = symbol_find_or_make (GLOBAL_OFFSET_TABLE_NAME);
3196
3197 /* Replace the relocation token with ' ', so that
3198 errors like foo@GOTOFF1 will be detected. */
3199
3200 /* The length of the first part of our input line. */
3201 first = cp - input_line_pointer;
3202
3203 /* The second part goes from after the reloc token until
3204 (and including) an end_of_line char. Don't use strlen
3205 here as the end_of_line char may not be a NUL. */
3206 past_reloc = cp + 1 + len;
3207 for (cp = past_reloc; !is_end_of_line[(unsigned char) *cp++]; )
3208 ;
3209 second = cp - past_reloc;
3210
3211 /* Allocate and copy string. The trailing NUL shouldn't
3212 be necessary, but be safe. */
3213 tmpbuf = xmalloc (first + second + 2);
3214 memcpy (tmpbuf, input_line_pointer, first);
3215 tmpbuf[first] = ' ';
3216 memcpy (tmpbuf + first + 1, past_reloc, second);
3217 tmpbuf[first + second + 1] = '\0';
3218 return tmpbuf;
3219 }
3220
3221 as_bad (_("@%s reloc is not supported in %s bit mode"),
3222 gotrel[j].str, mode_name[(unsigned int) flag_code]);
3223 return NULL;
3224 }
3225 }
3226
3227 /* Might be a symbol version string. Don't as_bad here. */
3228 return NULL;
3229 }
3230
3231 /* x86_cons_fix_new is called via the expression parsing code when a
3232 reloc is needed. We use this hook to get the correct .got reloc. */
3233 static RELOC_ENUM got_reloc = NO_RELOC;
3234
3235 void
3236 x86_cons_fix_new (frag, off, len, exp)
3237 fragS *frag;
3238 unsigned int off;
3239 unsigned int len;
3240 expressionS *exp;
3241 {
3242 RELOC_ENUM r = reloc (len, 0, 0, got_reloc);
3243 got_reloc = NO_RELOC;
3244 fix_new_exp (frag, off, len, exp, 0, r);
3245 }
3246
3247 void
3248 x86_cons (exp, size)
3249 expressionS *exp;
3250 int size;
3251 {
3252 if (size == 4)
3253 {
3254 /* Handle @GOTOFF and the like in an expression. */
3255 char *save;
3256 char *gotfree_input_line;
3257 int adjust;
3258
3259 save = input_line_pointer;
3260 gotfree_input_line = lex_got (&got_reloc, &adjust);
3261 if (gotfree_input_line)
3262 input_line_pointer = gotfree_input_line;
3263
3264 expression (exp);
3265
3266 if (gotfree_input_line)
3267 {
3268 /* expression () has merrily parsed up to the end of line,
3269 or a comma - in the wrong buffer. Transfer how far
3270 input_line_pointer has moved to the right buffer. */
3271 input_line_pointer = (save
3272 + (input_line_pointer - gotfree_input_line)
3273 + adjust);
3274 free (gotfree_input_line);
3275 }
3276 }
3277 else
3278 expression (exp);
3279 }
3280 #endif
3281
3282 static int i386_immediate PARAMS ((char *));
3283
3284 static int
3285 i386_immediate (imm_start)
3286 char *imm_start;
3287 {
3288 char *save_input_line_pointer;
3289 #ifndef LEX_AT
3290 char *gotfree_input_line;
3291 #endif
3292 segT exp_seg = 0;
3293 expressionS *exp;
3294
3295 if (i.imm_operands == MAX_IMMEDIATE_OPERANDS)
3296 {
3297 as_bad (_("only 1 or 2 immediate operands are allowed"));
3298 return 0;
3299 }
3300
3301 exp = &im_expressions[i.imm_operands++];
3302 i.op[this_operand].imms = exp;
3303
3304 if (is_space_char (*imm_start))
3305 ++imm_start;
3306
3307 save_input_line_pointer = input_line_pointer;
3308 input_line_pointer = imm_start;
3309
3310 #ifndef LEX_AT
3311 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL);
3312 if (gotfree_input_line)
3313 input_line_pointer = gotfree_input_line;
3314 #endif
3315
3316 exp_seg = expression (exp);
3317
3318 SKIP_WHITESPACE ();
3319 if (*input_line_pointer)
3320 as_bad (_("junk `%s' after expression"), input_line_pointer);
3321
3322 input_line_pointer = save_input_line_pointer;
3323 #ifndef LEX_AT
3324 if (gotfree_input_line)
3325 free (gotfree_input_line);
3326 #endif
3327
3328 if (exp->X_op == O_absent || exp->X_op == O_big)
3329 {
3330 /* Missing or bad expr becomes absolute 0. */
3331 as_bad (_("missing or invalid immediate expression `%s' taken as 0"),
3332 imm_start);
3333 exp->X_op = O_constant;
3334 exp->X_add_number = 0;
3335 exp->X_add_symbol = (symbolS *) 0;
3336 exp->X_op_symbol = (symbolS *) 0;
3337 }
3338 else if (exp->X_op == O_constant)
3339 {
3340 /* Size it properly later. */
3341 i.types[this_operand] |= Imm64;
3342 /* If BFD64, sign extend val. */
3343 if (!use_rela_relocations)
3344 if ((exp->X_add_number & ~(((addressT) 2 << 31) - 1)) == 0)
3345 exp->X_add_number = (exp->X_add_number ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
3346 }
3347 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
3348 else if (1
3349 #ifdef BFD_ASSEMBLER
3350 && OUTPUT_FLAVOR == bfd_target_aout_flavour
3351 #endif
3352 && exp_seg != text_section
3353 && exp_seg != data_section
3354 && exp_seg != bss_section
3355 && exp_seg != undefined_section
3356 #ifdef BFD_ASSEMBLER
3357 && !bfd_is_com_section (exp_seg)
3358 #endif
3359 )
3360 {
3361 #ifdef BFD_ASSEMBLER
3362 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
3363 #else
3364 as_bad (_("unimplemented segment type %d in operand"), exp_seg);
3365 #endif
3366 return 0;
3367 }
3368 #endif
3369 else
3370 {
3371 /* This is an address. The size of the address will be
3372 determined later, depending on destination register,
3373 suffix, or the default for the section. */
3374 i.types[this_operand] |= Imm8 | Imm16 | Imm32 | Imm32S | Imm64;
3375 }
3376
3377 return 1;
3378 }
3379
3380 static char *i386_scale PARAMS ((char *));
3381
3382 static char *
3383 i386_scale (scale)
3384 char *scale;
3385 {
3386 offsetT val;
3387 char *save = input_line_pointer;
3388
3389 input_line_pointer = scale;
3390 val = get_absolute_expression ();
3391
3392 switch (val)
3393 {
3394 case 0:
3395 case 1:
3396 i.log2_scale_factor = 0;
3397 break;
3398 case 2:
3399 i.log2_scale_factor = 1;
3400 break;
3401 case 4:
3402 i.log2_scale_factor = 2;
3403 break;
3404 case 8:
3405 i.log2_scale_factor = 3;
3406 break;
3407 default:
3408 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
3409 scale);
3410 input_line_pointer = save;
3411 return NULL;
3412 }
3413 if (i.log2_scale_factor != 0 && ! i.index_reg)
3414 {
3415 as_warn (_("scale factor of %d without an index register"),
3416 1 << i.log2_scale_factor);
3417 #if SCALE1_WHEN_NO_INDEX
3418 i.log2_scale_factor = 0;
3419 #endif
3420 }
3421 scale = input_line_pointer;
3422 input_line_pointer = save;
3423 return scale;
3424 }
3425
3426 static int i386_displacement PARAMS ((char *, char *));
3427
3428 static int
3429 i386_displacement (disp_start, disp_end)
3430 char *disp_start;
3431 char *disp_end;
3432 {
3433 register expressionS *exp;
3434 segT exp_seg = 0;
3435 char *save_input_line_pointer;
3436 #ifndef LEX_AT
3437 char *gotfree_input_line;
3438 #endif
3439 int bigdisp = Disp32;
3440
3441 if ((flag_code == CODE_16BIT) ^ (i.prefix[ADDR_PREFIX] != 0))
3442 bigdisp = Disp16;
3443 if (flag_code == CODE_64BIT)
3444 bigdisp = Disp64;
3445 i.types[this_operand] |= bigdisp;
3446
3447 exp = &disp_expressions[i.disp_operands];
3448 i.op[this_operand].disps = exp;
3449 i.disp_operands++;
3450 save_input_line_pointer = input_line_pointer;
3451 input_line_pointer = disp_start;
3452 END_STRING_AND_SAVE (disp_end);
3453
3454 #ifndef GCC_ASM_O_HACK
3455 #define GCC_ASM_O_HACK 0
3456 #endif
3457 #if GCC_ASM_O_HACK
3458 END_STRING_AND_SAVE (disp_end + 1);
3459 if ((i.types[this_operand] & BaseIndex) != 0
3460 && displacement_string_end[-1] == '+')
3461 {
3462 /* This hack is to avoid a warning when using the "o"
3463 constraint within gcc asm statements.
3464 For instance:
3465
3466 #define _set_tssldt_desc(n,addr,limit,type) \
3467 __asm__ __volatile__ ( \
3468 "movw %w2,%0\n\t" \
3469 "movw %w1,2+%0\n\t" \
3470 "rorl $16,%1\n\t" \
3471 "movb %b1,4+%0\n\t" \
3472 "movb %4,5+%0\n\t" \
3473 "movb $0,6+%0\n\t" \
3474 "movb %h1,7+%0\n\t" \
3475 "rorl $16,%1" \
3476 : "=o"(*(n)) : "q" (addr), "ri"(limit), "i"(type))
3477
3478 This works great except that the output assembler ends
3479 up looking a bit weird if it turns out that there is
3480 no offset. You end up producing code that looks like:
3481
3482 #APP
3483 movw $235,(%eax)
3484 movw %dx,2+(%eax)
3485 rorl $16,%edx
3486 movb %dl,4+(%eax)
3487 movb $137,5+(%eax)
3488 movb $0,6+(%eax)
3489 movb %dh,7+(%eax)
3490 rorl $16,%edx
3491 #NO_APP
3492
3493 So here we provide the missing zero. */
3494
3495 *displacement_string_end = '0';
3496 }
3497 #endif
3498 #ifndef LEX_AT
3499 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL);
3500 if (gotfree_input_line)
3501 input_line_pointer = gotfree_input_line;
3502 #endif
3503
3504 exp_seg = expression (exp);
3505
3506 SKIP_WHITESPACE ();
3507 if (*input_line_pointer)
3508 as_bad (_("junk `%s' after expression"), input_line_pointer);
3509 #if GCC_ASM_O_HACK
3510 RESTORE_END_STRING (disp_end + 1);
3511 #endif
3512 RESTORE_END_STRING (disp_end);
3513 input_line_pointer = save_input_line_pointer;
3514 #ifndef LEX_AT
3515 if (gotfree_input_line)
3516 free (gotfree_input_line);
3517 #endif
3518
3519 #ifdef BFD_ASSEMBLER
3520 /* We do this to make sure that the section symbol is in
3521 the symbol table. We will ultimately change the relocation
3522 to be relative to the beginning of the section. */
3523 if (i.reloc[this_operand] == BFD_RELOC_386_GOTOFF
3524 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
3525 {
3526 if (exp->X_op != O_symbol)
3527 {
3528 as_bad (_("bad expression used with @%s"),
3529 (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL
3530 ? "GOTPCREL"
3531 : "GOTOFF"));
3532 return 0;
3533 }
3534
3535 if (S_IS_LOCAL (exp->X_add_symbol)
3536 && S_GET_SEGMENT (exp->X_add_symbol) != undefined_section)
3537 section_symbol (S_GET_SEGMENT (exp->X_add_symbol));
3538 exp->X_op = O_subtract;
3539 exp->X_op_symbol = GOT_symbol;
3540 if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
3541 i.reloc[this_operand] = BFD_RELOC_32_PCREL;
3542 else
3543 i.reloc[this_operand] = BFD_RELOC_32;
3544 }
3545 #endif
3546
3547 if (exp->X_op == O_absent || exp->X_op == O_big)
3548 {
3549 /* Missing or bad expr becomes absolute 0. */
3550 as_bad (_("missing or invalid displacement expression `%s' taken as 0"),
3551 disp_start);
3552 exp->X_op = O_constant;
3553 exp->X_add_number = 0;
3554 exp->X_add_symbol = (symbolS *) 0;
3555 exp->X_op_symbol = (symbolS *) 0;
3556 }
3557
3558 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
3559 if (exp->X_op != O_constant
3560 #ifdef BFD_ASSEMBLER
3561 && OUTPUT_FLAVOR == bfd_target_aout_flavour
3562 #endif
3563 && exp_seg != text_section
3564 && exp_seg != data_section
3565 && exp_seg != bss_section
3566 && exp_seg != undefined_section)
3567 {
3568 #ifdef BFD_ASSEMBLER
3569 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
3570 #else
3571 as_bad (_("unimplemented segment type %d in operand"), exp_seg);
3572 #endif
3573 return 0;
3574 }
3575 #endif
3576 else if (flag_code == CODE_64BIT)
3577 i.types[this_operand] |= Disp32S | Disp32;
3578 return 1;
3579 }
3580
3581 static int i386_index_check PARAMS ((const char *));
3582
3583 /* Make sure the memory operand we've been dealt is valid.
3584 Return 1 on success, 0 on a failure. */
3585
3586 static int
3587 i386_index_check (operand_string)
3588 const char *operand_string;
3589 {
3590 int ok;
3591 #if INFER_ADDR_PREFIX
3592 int fudged = 0;
3593
3594 tryprefix:
3595 #endif
3596 ok = 1;
3597 if (flag_code == CODE_64BIT)
3598 {
3599 /* 64bit checks. */
3600 if ((i.base_reg
3601 && ((i.base_reg->reg_type & Reg64) == 0)
3602 && (i.base_reg->reg_type != BaseIndex
3603 || i.index_reg))
3604 || (i.index_reg
3605 && ((i.index_reg->reg_type & (Reg64|BaseIndex))
3606 != (Reg64|BaseIndex))))
3607 ok = 0;
3608 }
3609 else
3610 {
3611 if ((flag_code == CODE_16BIT) ^ (i.prefix[ADDR_PREFIX] != 0))
3612 {
3613 /* 16bit checks. */
3614 if ((i.base_reg
3615 && ((i.base_reg->reg_type & (Reg16|BaseIndex|RegRex))
3616 != (Reg16|BaseIndex)))
3617 || (i.index_reg
3618 && (((i.index_reg->reg_type & (Reg16|BaseIndex))
3619 != (Reg16|BaseIndex))
3620 || ! (i.base_reg
3621 && i.base_reg->reg_num < 6
3622 && i.index_reg->reg_num >= 6
3623 && i.log2_scale_factor == 0))))
3624 ok = 0;
3625 }
3626 else
3627 {
3628 /* 32bit checks. */
3629 if ((i.base_reg
3630 && (i.base_reg->reg_type & (Reg32 | RegRex)) != Reg32)
3631 || (i.index_reg
3632 && ((i.index_reg->reg_type & (Reg32|BaseIndex|RegRex))
3633 != (Reg32|BaseIndex))))
3634 ok = 0;
3635 }
3636 }
3637 if (!ok)
3638 {
3639 #if INFER_ADDR_PREFIX
3640 if (flag_code != CODE_64BIT
3641 && i.prefix[ADDR_PREFIX] == 0 && stackop_size != '\0')
3642 {
3643 i.prefix[ADDR_PREFIX] = ADDR_PREFIX_OPCODE;
3644 i.prefixes += 1;
3645 /* Change the size of any displacement too. At most one of
3646 Disp16 or Disp32 is set.
3647 FIXME. There doesn't seem to be any real need for separate
3648 Disp16 and Disp32 flags. The same goes for Imm16 and Imm32.
3649 Removing them would probably clean up the code quite a lot. */
3650 if (i.types[this_operand] & (Disp16|Disp32))
3651 i.types[this_operand] ^= (Disp16|Disp32);
3652 fudged = 1;
3653 goto tryprefix;
3654 }
3655 if (fudged)
3656 as_bad (_("`%s' is not a valid base/index expression"),
3657 operand_string);
3658 else
3659 #endif
3660 as_bad (_("`%s' is not a valid %s bit base/index expression"),
3661 operand_string,
3662 flag_code_names[flag_code]);
3663 return 0;
3664 }
3665 return 1;
3666 }
3667
3668 /* Parse OPERAND_STRING into the i386_insn structure I. Returns non-zero
3669 on error. */
3670
3671 static int
3672 i386_operand (operand_string)
3673 char *operand_string;
3674 {
3675 const reg_entry *r;
3676 char *end_op;
3677 char *op_string = operand_string;
3678
3679 if (is_space_char (*op_string))
3680 ++op_string;
3681
3682 /* We check for an absolute prefix (differentiating,
3683 for example, 'jmp pc_relative_label' from 'jmp *absolute_label'. */
3684 if (*op_string == ABSOLUTE_PREFIX)
3685 {
3686 ++op_string;
3687 if (is_space_char (*op_string))
3688 ++op_string;
3689 i.types[this_operand] |= JumpAbsolute;
3690 }
3691
3692 /* Check if operand is a register. */
3693 if ((*op_string == REGISTER_PREFIX || allow_naked_reg)
3694 && (r = parse_register (op_string, &end_op)) != NULL)
3695 {
3696 /* Check for a segment override by searching for ':' after a
3697 segment register. */
3698 op_string = end_op;
3699 if (is_space_char (*op_string))
3700 ++op_string;
3701 if (*op_string == ':' && (r->reg_type & (SReg2 | SReg3)))
3702 {
3703 switch (r->reg_num)
3704 {
3705 case 0:
3706 i.seg[i.mem_operands] = &es;
3707 break;
3708 case 1:
3709 i.seg[i.mem_operands] = &cs;
3710 break;
3711 case 2:
3712 i.seg[i.mem_operands] = &ss;
3713 break;
3714 case 3:
3715 i.seg[i.mem_operands] = &ds;
3716 break;
3717 case 4:
3718 i.seg[i.mem_operands] = &fs;
3719 break;
3720 case 5:
3721 i.seg[i.mem_operands] = &gs;
3722 break;
3723 }
3724
3725 /* Skip the ':' and whitespace. */
3726 ++op_string;
3727 if (is_space_char (*op_string))
3728 ++op_string;
3729
3730 if (!is_digit_char (*op_string)
3731 && !is_identifier_char (*op_string)
3732 && *op_string != '('
3733 && *op_string != ABSOLUTE_PREFIX)
3734 {
3735 as_bad (_("bad memory operand `%s'"), op_string);
3736 return 0;
3737 }
3738 /* Handle case of %es:*foo. */
3739 if (*op_string == ABSOLUTE_PREFIX)
3740 {
3741 ++op_string;
3742 if (is_space_char (*op_string))
3743 ++op_string;
3744 i.types[this_operand] |= JumpAbsolute;
3745 }
3746 goto do_memory_reference;
3747 }
3748 if (*op_string)
3749 {
3750 as_bad (_("junk `%s' after register"), op_string);
3751 return 0;
3752 }
3753 i.types[this_operand] |= r->reg_type & ~BaseIndex;
3754 i.op[this_operand].regs = r;
3755 i.reg_operands++;
3756 }
3757 else if (*op_string == REGISTER_PREFIX)
3758 {
3759 as_bad (_("bad register name `%s'"), op_string);
3760 return 0;
3761 }
3762 else if (*op_string == IMMEDIATE_PREFIX)
3763 {
3764 ++op_string;
3765 if (i.types[this_operand] & JumpAbsolute)
3766 {
3767 as_bad (_("immediate operand illegal with absolute jump"));
3768 return 0;
3769 }
3770 if (!i386_immediate (op_string))
3771 return 0;
3772 }
3773 else if (is_digit_char (*op_string)
3774 || is_identifier_char (*op_string)
3775 || *op_string == '(')
3776 {
3777 /* This is a memory reference of some sort. */
3778 char *base_string;
3779
3780 /* Start and end of displacement string expression (if found). */
3781 char *displacement_string_start;
3782 char *displacement_string_end;
3783
3784 do_memory_reference:
3785 if ((i.mem_operands == 1
3786 && (current_templates->start->opcode_modifier & IsString) == 0)
3787 || i.mem_operands == 2)
3788 {
3789 as_bad (_("too many memory references for `%s'"),
3790 current_templates->start->name);
3791 return 0;
3792 }
3793
3794 /* Check for base index form. We detect the base index form by
3795 looking for an ')' at the end of the operand, searching
3796 for the '(' matching it, and finding a REGISTER_PREFIX or ','
3797 after the '('. */
3798 base_string = op_string + strlen (op_string);
3799
3800 --base_string;
3801 if (is_space_char (*base_string))
3802 --base_string;
3803
3804 /* If we only have a displacement, set-up for it to be parsed later. */
3805 displacement_string_start = op_string;
3806 displacement_string_end = base_string + 1;
3807
3808 if (*base_string == ')')
3809 {
3810 char *temp_string;
3811 unsigned int parens_balanced = 1;
3812 /* We've already checked that the number of left & right ()'s are
3813 equal, so this loop will not be infinite. */
3814 do
3815 {
3816 base_string--;
3817 if (*base_string == ')')
3818 parens_balanced++;
3819 if (*base_string == '(')
3820 parens_balanced--;
3821 }
3822 while (parens_balanced);
3823
3824 temp_string = base_string;
3825
3826 /* Skip past '(' and whitespace. */
3827 ++base_string;
3828 if (is_space_char (*base_string))
3829 ++base_string;
3830
3831 if (*base_string == ','
3832 || ((*base_string == REGISTER_PREFIX || allow_naked_reg)
3833 && (i.base_reg = parse_register (base_string, &end_op)) != NULL))
3834 {
3835 displacement_string_end = temp_string;
3836
3837 i.types[this_operand] |= BaseIndex;
3838
3839 if (i.base_reg)
3840 {
3841 base_string = end_op;
3842 if (is_space_char (*base_string))
3843 ++base_string;
3844 }
3845
3846 /* There may be an index reg or scale factor here. */
3847 if (*base_string == ',')
3848 {
3849 ++base_string;
3850 if (is_space_char (*base_string))
3851 ++base_string;
3852
3853 if ((*base_string == REGISTER_PREFIX || allow_naked_reg)
3854 && (i.index_reg = parse_register (base_string, &end_op)) != NULL)
3855 {
3856 base_string = end_op;
3857 if (is_space_char (*base_string))
3858 ++base_string;
3859 if (*base_string == ',')
3860 {
3861 ++base_string;
3862 if (is_space_char (*base_string))
3863 ++base_string;
3864 }
3865 else if (*base_string != ')')
3866 {
3867 as_bad (_("expecting `,' or `)' after index register in `%s'"),
3868 operand_string);
3869 return 0;
3870 }
3871 }
3872 else if (*base_string == REGISTER_PREFIX)
3873 {
3874 as_bad (_("bad register name `%s'"), base_string);
3875 return 0;
3876 }
3877
3878 /* Check for scale factor. */
3879 if (*base_string != ')')
3880 {
3881 char *end_scale = i386_scale (base_string);
3882
3883 if (!end_scale)
3884 return 0;
3885
3886 base_string = end_scale;
3887 if (is_space_char (*base_string))
3888 ++base_string;
3889 if (*base_string != ')')
3890 {
3891 as_bad (_("expecting `)' after scale factor in `%s'"),
3892 operand_string);
3893 return 0;
3894 }
3895 }
3896 else if (!i.index_reg)
3897 {
3898 as_bad (_("expecting index register or scale factor after `,'; got '%c'"),
3899 *base_string);
3900 return 0;
3901 }
3902 }
3903 else if (*base_string != ')')
3904 {
3905 as_bad (_("expecting `,' or `)' after base register in `%s'"),
3906 operand_string);
3907 return 0;
3908 }
3909 }
3910 else if (*base_string == REGISTER_PREFIX)
3911 {
3912 as_bad (_("bad register name `%s'"), base_string);
3913 return 0;
3914 }
3915 }
3916
3917 /* If there's an expression beginning the operand, parse it,
3918 assuming displacement_string_start and
3919 displacement_string_end are meaningful. */
3920 if (displacement_string_start != displacement_string_end)
3921 {
3922 if (!i386_displacement (displacement_string_start,
3923 displacement_string_end))
3924 return 0;
3925 }
3926
3927 /* Special case for (%dx) while doing input/output op. */
3928 if (i.base_reg
3929 && i.base_reg->reg_type == (Reg16 | InOutPortReg)
3930 && i.index_reg == 0
3931 && i.log2_scale_factor == 0
3932 && i.seg[i.mem_operands] == 0
3933 && (i.types[this_operand] & Disp) == 0)
3934 {
3935 i.types[this_operand] = InOutPortReg;
3936 return 1;
3937 }
3938
3939 if (i386_index_check (operand_string) == 0)
3940 return 0;
3941 i.mem_operands++;
3942 }
3943 else
3944 {
3945 /* It's not a memory operand; argh! */
3946 as_bad (_("invalid char %s beginning operand %d `%s'"),
3947 output_invalid (*op_string),
3948 this_operand + 1,
3949 op_string);
3950 return 0;
3951 }
3952 return 1; /* Normal return. */
3953 }
3954 \f
3955 /* md_estimate_size_before_relax()
3956
3957 Called just before relax() for rs_machine_dependent frags. The x86
3958 assembler uses these frags to handle variable size jump
3959 instructions.
3960
3961 Any symbol that is now undefined will not become defined.
3962 Return the correct fr_subtype in the frag.
3963 Return the initial "guess for variable size of frag" to caller.
3964 The guess is actually the growth beyond the fixed part. Whatever
3965 we do to grow the fixed or variable part contributes to our
3966 returned value. */
3967
3968 int
3969 md_estimate_size_before_relax (fragP, segment)
3970 register fragS *fragP;
3971 register segT segment;
3972 {
3973 /* We've already got fragP->fr_subtype right; all we have to do is
3974 check for un-relaxable symbols. On an ELF system, we can't relax
3975 an externally visible symbol, because it may be overridden by a
3976 shared library. */
3977 if (S_GET_SEGMENT (fragP->fr_symbol) != segment
3978 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
3979 || S_IS_EXTERNAL (fragP->fr_symbol)
3980 || S_IS_WEAK (fragP->fr_symbol)
3981 #endif
3982 )
3983 {
3984 /* Symbol is undefined in this segment, or we need to keep a
3985 reloc so that weak symbols can be overridden. */
3986 int size = (fragP->fr_subtype & CODE16) ? 2 : 4;
3987 RELOC_ENUM reloc_type;
3988 unsigned char *opcode;
3989 int old_fr_fix;
3990
3991 if (fragP->fr_var != NO_RELOC)
3992 reloc_type = fragP->fr_var;
3993 else if (size == 2)
3994 reloc_type = BFD_RELOC_16_PCREL;
3995 else
3996 reloc_type = BFD_RELOC_32_PCREL;
3997
3998 old_fr_fix = fragP->fr_fix;
3999 opcode = (unsigned char *) fragP->fr_opcode;
4000
4001 switch (TYPE_FROM_RELAX_STATE (fragP->fr_subtype))
4002 {
4003 case UNCOND_JUMP:
4004 /* Make jmp (0xeb) a (d)word displacement jump. */
4005 opcode[0] = 0xe9;
4006 fragP->fr_fix += size;
4007 fix_new (fragP, old_fr_fix, size,
4008 fragP->fr_symbol,
4009 fragP->fr_offset, 1,
4010 reloc_type);
4011 break;
4012
4013 case COND_JUMP86:
4014 if (no_cond_jump_promotion)
4015 goto relax_guess;
4016
4017 if (size == 2)
4018 {
4019 /* Negate the condition, and branch past an
4020 unconditional jump. */
4021 opcode[0] ^= 1;
4022 opcode[1] = 3;
4023 /* Insert an unconditional jump. */
4024 opcode[2] = 0xe9;
4025 /* We added two extra opcode bytes, and have a two byte
4026 offset. */
4027 fragP->fr_fix += 2 + 2;
4028 fix_new (fragP, old_fr_fix + 2, 2,
4029 fragP->fr_symbol,
4030 fragP->fr_offset, 1,
4031 reloc_type);
4032 break;
4033 }
4034 /* Fall through. */
4035
4036 case COND_JUMP:
4037 if (no_cond_jump_promotion)
4038 goto relax_guess;
4039
4040 /* This changes the byte-displacement jump 0x7N
4041 to the (d)word-displacement jump 0x0f,0x8N. */
4042 opcode[1] = opcode[0] + 0x10;
4043 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
4044 /* We've added an opcode byte. */
4045 fragP->fr_fix += 1 + size;
4046 fix_new (fragP, old_fr_fix + 1, size,
4047 fragP->fr_symbol,
4048 fragP->fr_offset, 1,
4049 reloc_type);
4050 break;
4051
4052 default:
4053 BAD_CASE (fragP->fr_subtype);
4054 break;
4055 }
4056 frag_wane (fragP);
4057 return fragP->fr_fix - old_fr_fix;
4058 }
4059
4060 relax_guess:
4061 /* Guess size depending on current relax state. Initially the relax
4062 state will correspond to a short jump and we return 1, because
4063 the variable part of the frag (the branch offset) is one byte
4064 long. However, we can relax a section more than once and in that
4065 case we must either set fr_subtype back to the unrelaxed state,
4066 or return the value for the appropriate branch. */
4067 return md_relax_table[fragP->fr_subtype].rlx_length;
4068 }
4069
4070 /* Called after relax() is finished.
4071
4072 In: Address of frag.
4073 fr_type == rs_machine_dependent.
4074 fr_subtype is what the address relaxed to.
4075
4076 Out: Any fixSs and constants are set up.
4077 Caller will turn frag into a ".space 0". */
4078
4079 #ifndef BFD_ASSEMBLER
4080 void
4081 md_convert_frag (headers, sec, fragP)
4082 object_headers *headers ATTRIBUTE_UNUSED;
4083 segT sec ATTRIBUTE_UNUSED;
4084 register fragS *fragP;
4085 #else
4086 void
4087 md_convert_frag (abfd, sec, fragP)
4088 bfd *abfd ATTRIBUTE_UNUSED;
4089 segT sec ATTRIBUTE_UNUSED;
4090 register fragS *fragP;
4091 #endif
4092 {
4093 register unsigned char *opcode;
4094 unsigned char *where_to_put_displacement = NULL;
4095 offsetT target_address;
4096 offsetT opcode_address;
4097 unsigned int extension = 0;
4098 offsetT displacement_from_opcode_start;
4099
4100 opcode = (unsigned char *) fragP->fr_opcode;
4101
4102 /* Address we want to reach in file space. */
4103 target_address = S_GET_VALUE (fragP->fr_symbol) + fragP->fr_offset;
4104
4105 /* Address opcode resides at in file space. */
4106 opcode_address = fragP->fr_address + fragP->fr_fix;
4107
4108 /* Displacement from opcode start to fill into instruction. */
4109 displacement_from_opcode_start = target_address - opcode_address;
4110
4111 if ((fragP->fr_subtype & BIG) == 0)
4112 {
4113 /* Don't have to change opcode. */
4114 extension = 1; /* 1 opcode + 1 displacement */
4115 where_to_put_displacement = &opcode[1];
4116 }
4117 else
4118 {
4119 if (no_cond_jump_promotion
4120 && TYPE_FROM_RELAX_STATE (fragP->fr_subtype) != UNCOND_JUMP)
4121 as_warn_where (fragP->fr_file, fragP->fr_line, _("long jump required"));
4122
4123 switch (fragP->fr_subtype)
4124 {
4125 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG):
4126 extension = 4; /* 1 opcode + 4 displacement */
4127 opcode[0] = 0xe9;
4128 where_to_put_displacement = &opcode[1];
4129 break;
4130
4131 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16):
4132 extension = 2; /* 1 opcode + 2 displacement */
4133 opcode[0] = 0xe9;
4134 where_to_put_displacement = &opcode[1];
4135 break;
4136
4137 case ENCODE_RELAX_STATE (COND_JUMP, BIG):
4138 case ENCODE_RELAX_STATE (COND_JUMP86, BIG):
4139 extension = 5; /* 2 opcode + 4 displacement */
4140 opcode[1] = opcode[0] + 0x10;
4141 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
4142 where_to_put_displacement = &opcode[2];
4143 break;
4144
4145 case ENCODE_RELAX_STATE (COND_JUMP, BIG16):
4146 extension = 3; /* 2 opcode + 2 displacement */
4147 opcode[1] = opcode[0] + 0x10;
4148 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
4149 where_to_put_displacement = &opcode[2];
4150 break;
4151
4152 case ENCODE_RELAX_STATE (COND_JUMP86, BIG16):
4153 extension = 4;
4154 opcode[0] ^= 1;
4155 opcode[1] = 3;
4156 opcode[2] = 0xe9;
4157 where_to_put_displacement = &opcode[3];
4158 break;
4159
4160 default:
4161 BAD_CASE (fragP->fr_subtype);
4162 break;
4163 }
4164 }
4165
4166 /* Now put displacement after opcode. */
4167 md_number_to_chars ((char *) where_to_put_displacement,
4168 (valueT) (displacement_from_opcode_start - extension),
4169 DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype));
4170 fragP->fr_fix += extension;
4171 }
4172 \f
4173 /* Size of byte displacement jmp. */
4174 int md_short_jump_size = 2;
4175
4176 /* Size of dword displacement jmp. */
4177 int md_long_jump_size = 5;
4178
4179 /* Size of relocation record. */
4180 const int md_reloc_size = 8;
4181
4182 void
4183 md_create_short_jump (ptr, from_addr, to_addr, frag, to_symbol)
4184 char *ptr;
4185 addressT from_addr, to_addr;
4186 fragS *frag ATTRIBUTE_UNUSED;
4187 symbolS *to_symbol ATTRIBUTE_UNUSED;
4188 {
4189 offsetT offset;
4190
4191 offset = to_addr - (from_addr + 2);
4192 /* Opcode for byte-disp jump. */
4193 md_number_to_chars (ptr, (valueT) 0xeb, 1);
4194 md_number_to_chars (ptr + 1, (valueT) offset, 1);
4195 }
4196
4197 void
4198 md_create_long_jump (ptr, from_addr, to_addr, frag, to_symbol)
4199 char *ptr;
4200 addressT from_addr, to_addr;
4201 fragS *frag ATTRIBUTE_UNUSED;
4202 symbolS *to_symbol ATTRIBUTE_UNUSED;
4203 {
4204 offsetT offset;
4205
4206 offset = to_addr - (from_addr + 5);
4207 md_number_to_chars (ptr, (valueT) 0xe9, 1);
4208 md_number_to_chars (ptr + 1, (valueT) offset, 4);
4209 }
4210 \f
4211 /* Apply a fixup (fixS) to segment data, once it has been determined
4212 by our caller that we have all the info we need to fix it up.
4213
4214 On the 386, immediates, displacements, and data pointers are all in
4215 the same (little-endian) format, so we don't need to care about which
4216 we are handling. */
4217
4218 int
4219 md_apply_fix3 (fixP, valp, seg)
4220 /* The fix we're to put in. */
4221 fixS *fixP;
4222
4223 /* Pointer to the value of the bits. */
4224 valueT *valp;
4225
4226 /* Segment fix is from. */
4227 segT seg ATTRIBUTE_UNUSED;
4228 {
4229 register char *p = fixP->fx_where + fixP->fx_frag->fr_literal;
4230 valueT value = *valp;
4231
4232 #if defined (BFD_ASSEMBLER) && !defined (TE_Mach)
4233 if (fixP->fx_pcrel)
4234 {
4235 switch (fixP->fx_r_type)
4236 {
4237 default:
4238 break;
4239
4240 case BFD_RELOC_32:
4241 fixP->fx_r_type = BFD_RELOC_32_PCREL;
4242 break;
4243 case BFD_RELOC_16:
4244 fixP->fx_r_type = BFD_RELOC_16_PCREL;
4245 break;
4246 case BFD_RELOC_8:
4247 fixP->fx_r_type = BFD_RELOC_8_PCREL;
4248 break;
4249 }
4250 }
4251
4252 /* This is a hack. There should be a better way to handle this.
4253 This covers for the fact that bfd_install_relocation will
4254 subtract the current location (for partial_inplace, PC relative
4255 relocations); see more below. */
4256 if ((fixP->fx_r_type == BFD_RELOC_32_PCREL
4257 || fixP->fx_r_type == BFD_RELOC_16_PCREL
4258 || fixP->fx_r_type == BFD_RELOC_8_PCREL)
4259 && fixP->fx_addsy && !use_rela_relocations)
4260 {
4261 #ifndef OBJ_AOUT
4262 if (OUTPUT_FLAVOR == bfd_target_elf_flavour
4263 #ifdef TE_PE
4264 || OUTPUT_FLAVOR == bfd_target_coff_flavour
4265 #endif
4266 )
4267 value += fixP->fx_where + fixP->fx_frag->fr_address;
4268 #endif
4269 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
4270 if (OUTPUT_FLAVOR == bfd_target_elf_flavour)
4271 {
4272 segT fseg = S_GET_SEGMENT (fixP->fx_addsy);
4273
4274 if ((fseg == seg
4275 || (symbol_section_p (fixP->fx_addsy)
4276 && fseg != absolute_section))
4277 && ! S_IS_EXTERNAL (fixP->fx_addsy)
4278 && ! S_IS_WEAK (fixP->fx_addsy)
4279 && S_IS_DEFINED (fixP->fx_addsy)
4280 && ! S_IS_COMMON (fixP->fx_addsy))
4281 {
4282 /* Yes, we add the values in twice. This is because
4283 bfd_perform_relocation subtracts them out again. I think
4284 bfd_perform_relocation is broken, but I don't dare change
4285 it. FIXME. */
4286 value += fixP->fx_where + fixP->fx_frag->fr_address;
4287 }
4288 }
4289 #endif
4290 #if defined (OBJ_COFF) && defined (TE_PE)
4291 /* For some reason, the PE format does not store a section
4292 address offset for a PC relative symbol. */
4293 if (S_GET_SEGMENT (fixP->fx_addsy) != seg)
4294 value += md_pcrel_from (fixP);
4295 #endif
4296 }
4297
4298 /* Fix a few things - the dynamic linker expects certain values here,
4299 and we must not dissappoint it. */
4300 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
4301 if (OUTPUT_FLAVOR == bfd_target_elf_flavour
4302 && fixP->fx_addsy)
4303 switch (fixP->fx_r_type)
4304 {
4305 case BFD_RELOC_386_PLT32:
4306 case BFD_RELOC_X86_64_PLT32:
4307 /* Make the jump instruction point to the address of the operand. At
4308 runtime we merely add the offset to the actual PLT entry. */
4309 value = -4;
4310 break;
4311 case BFD_RELOC_386_GOTPC:
4312
4313 /* This is tough to explain. We end up with this one if we have
4314 * operands that look like "_GLOBAL_OFFSET_TABLE_+[.-.L284]". The goal
4315 * here is to obtain the absolute address of the GOT, and it is strongly
4316 * preferable from a performance point of view to avoid using a runtime
4317 * relocation for this. The actual sequence of instructions often look
4318 * something like:
4319 *
4320 * call .L66
4321 * .L66:
4322 * popl %ebx
4323 * addl $_GLOBAL_OFFSET_TABLE_+[.-.L66],%ebx
4324 *
4325 * The call and pop essentially return the absolute address of
4326 * the label .L66 and store it in %ebx. The linker itself will
4327 * ultimately change the first operand of the addl so that %ebx points to
4328 * the GOT, but to keep things simple, the .o file must have this operand
4329 * set so that it generates not the absolute address of .L66, but the
4330 * absolute address of itself. This allows the linker itself simply
4331 * treat a GOTPC relocation as asking for a pcrel offset to the GOT to be
4332 * added in, and the addend of the relocation is stored in the operand
4333 * field for the instruction itself.
4334 *
4335 * Our job here is to fix the operand so that it would add the correct
4336 * offset so that %ebx would point to itself. The thing that is tricky is
4337 * that .-.L66 will point to the beginning of the instruction, so we need
4338 * to further modify the operand so that it will point to itself.
4339 * There are other cases where you have something like:
4340 *
4341 * .long $_GLOBAL_OFFSET_TABLE_+[.-.L66]
4342 *
4343 * and here no correction would be required. Internally in the assembler
4344 * we treat operands of this form as not being pcrel since the '.' is
4345 * explicitly mentioned, and I wonder whether it would simplify matters
4346 * to do it this way. Who knows. In earlier versions of the PIC patches,
4347 * the pcrel_adjust field was used to store the correction, but since the
4348 * expression is not pcrel, I felt it would be confusing to do it this
4349 * way. */
4350
4351 value -= 1;
4352 break;
4353 case BFD_RELOC_386_GOT32:
4354 case BFD_RELOC_X86_64_GOT32:
4355 value = 0; /* Fully resolved at runtime. No addend. */
4356 break;
4357 case BFD_RELOC_386_GOTOFF:
4358 case BFD_RELOC_X86_64_GOTPCREL:
4359 break;
4360
4361 case BFD_RELOC_VTABLE_INHERIT:
4362 case BFD_RELOC_VTABLE_ENTRY:
4363 fixP->fx_done = 0;
4364 return 1;
4365
4366 default:
4367 break;
4368 }
4369 #endif /* defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) */
4370 *valp = value;
4371 #endif /* defined (BFD_ASSEMBLER) && !defined (TE_Mach) */
4372
4373 #ifndef BFD_ASSEMBLER
4374 md_number_to_chars (p, value, fixP->fx_size);
4375 #else
4376 /* Are we finished with this relocation now? */
4377 if (fixP->fx_addsy == 0 && fixP->fx_pcrel == 0)
4378 fixP->fx_done = 1;
4379 else if (use_rela_relocations)
4380 {
4381 fixP->fx_no_overflow = 1;
4382 value = 0;
4383 }
4384 md_number_to_chars (p, value, fixP->fx_size);
4385 #endif
4386
4387 return 1;
4388 }
4389 \f
4390 #define MAX_LITTLENUMS 6
4391
4392 /* Turn the string pointed to by litP into a floating point constant
4393 of type TYPE, and emit the appropriate bytes. The number of
4394 LITTLENUMS emitted is stored in *SIZEP. An error message is
4395 returned, or NULL on OK. */
4396
4397 char *
4398 md_atof (type, litP, sizeP)
4399 int type;
4400 char *litP;
4401 int *sizeP;
4402 {
4403 int prec;
4404 LITTLENUM_TYPE words[MAX_LITTLENUMS];
4405 LITTLENUM_TYPE *wordP;
4406 char *t;
4407
4408 switch (type)
4409 {
4410 case 'f':
4411 case 'F':
4412 prec = 2;
4413 break;
4414
4415 case 'd':
4416 case 'D':
4417 prec = 4;
4418 break;
4419
4420 case 'x':
4421 case 'X':
4422 prec = 5;
4423 break;
4424
4425 default:
4426 *sizeP = 0;
4427 return _("Bad call to md_atof ()");
4428 }
4429 t = atof_ieee (input_line_pointer, type, words);
4430 if (t)
4431 input_line_pointer = t;
4432
4433 *sizeP = prec * sizeof (LITTLENUM_TYPE);
4434 /* This loops outputs the LITTLENUMs in REVERSE order; in accord with
4435 the bigendian 386. */
4436 for (wordP = words + prec - 1; prec--;)
4437 {
4438 md_number_to_chars (litP, (valueT) (*wordP--), sizeof (LITTLENUM_TYPE));
4439 litP += sizeof (LITTLENUM_TYPE);
4440 }
4441 return 0;
4442 }
4443 \f
4444 char output_invalid_buf[8];
4445
4446 static char *
4447 output_invalid (c)
4448 int c;
4449 {
4450 if (ISPRINT (c))
4451 sprintf (output_invalid_buf, "'%c'", c);
4452 else
4453 sprintf (output_invalid_buf, "(0x%x)", (unsigned) c);
4454 return output_invalid_buf;
4455 }
4456
4457 /* REG_STRING starts *before* REGISTER_PREFIX. */
4458
4459 static const reg_entry *
4460 parse_register (reg_string, end_op)
4461 char *reg_string;
4462 char **end_op;
4463 {
4464 char *s = reg_string;
4465 char *p;
4466 char reg_name_given[MAX_REG_NAME_SIZE + 1];
4467 const reg_entry *r;
4468
4469 /* Skip possible REGISTER_PREFIX and possible whitespace. */
4470 if (*s == REGISTER_PREFIX)
4471 ++s;
4472
4473 if (is_space_char (*s))
4474 ++s;
4475
4476 p = reg_name_given;
4477 while ((*p++ = register_chars[(unsigned char) *s]) != '\0')
4478 {
4479 if (p >= reg_name_given + MAX_REG_NAME_SIZE)
4480 return (const reg_entry *) NULL;
4481 s++;
4482 }
4483
4484 /* For naked regs, make sure that we are not dealing with an identifier.
4485 This prevents confusing an identifier like `eax_var' with register
4486 `eax'. */
4487 if (allow_naked_reg && identifier_chars[(unsigned char) *s])
4488 return (const reg_entry *) NULL;
4489
4490 *end_op = s;
4491
4492 r = (const reg_entry *) hash_find (reg_hash, reg_name_given);
4493
4494 /* Handle floating point regs, allowing spaces in the (i) part. */
4495 if (r == i386_regtab /* %st is first entry of table */)
4496 {
4497 if (is_space_char (*s))
4498 ++s;
4499 if (*s == '(')
4500 {
4501 ++s;
4502 if (is_space_char (*s))
4503 ++s;
4504 if (*s >= '0' && *s <= '7')
4505 {
4506 r = &i386_float_regtab[*s - '0'];
4507 ++s;
4508 if (is_space_char (*s))
4509 ++s;
4510 if (*s == ')')
4511 {
4512 *end_op = s + 1;
4513 return r;
4514 }
4515 }
4516 /* We have "%st(" then garbage. */
4517 return (const reg_entry *) NULL;
4518 }
4519 }
4520
4521 if (r != NULL
4522 && r->reg_flags & (RegRex64|RegRex)
4523 && flag_code != CODE_64BIT)
4524 {
4525 return (const reg_entry *) NULL;
4526 }
4527
4528 return r;
4529 }
4530 \f
4531 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
4532 const char *md_shortopts = "kVQ:sq";
4533 #else
4534 const char *md_shortopts = "q";
4535 #endif
4536
4537 struct option md_longopts[] = {
4538 #define OPTION_32 (OPTION_MD_BASE + 0)
4539 {"32", no_argument, NULL, OPTION_32},
4540 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
4541 #define OPTION_64 (OPTION_MD_BASE + 1)
4542 {"64", no_argument, NULL, OPTION_64},
4543 #endif
4544 {NULL, no_argument, NULL, 0}
4545 };
4546 size_t md_longopts_size = sizeof (md_longopts);
4547
4548 int
4549 md_parse_option (c, arg)
4550 int c;
4551 char *arg ATTRIBUTE_UNUSED;
4552 {
4553 switch (c)
4554 {
4555 case 'q':
4556 quiet_warnings = 1;
4557 break;
4558
4559 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
4560 /* -Qy, -Qn: SVR4 arguments controlling whether a .comment section
4561 should be emitted or not. FIXME: Not implemented. */
4562 case 'Q':
4563 break;
4564
4565 /* -V: SVR4 argument to print version ID. */
4566 case 'V':
4567 print_version_id ();
4568 break;
4569
4570 /* -k: Ignore for FreeBSD compatibility. */
4571 case 'k':
4572 break;
4573
4574 case 's':
4575 /* -s: On i386 Solaris, this tells the native assembler to use
4576 .stab instead of .stab.excl. We always use .stab anyhow. */
4577 break;
4578
4579 case OPTION_64:
4580 {
4581 const char **list, **l;
4582
4583 list = bfd_target_list ();
4584 for (l = list; *l != NULL; l++)
4585 if (strcmp (*l, "elf64-x86-64") == 0)
4586 {
4587 default_arch = "x86_64";
4588 break;
4589 }
4590 if (*l == NULL)
4591 as_fatal (_("No compiled in support for x86_64"));
4592 free (list);
4593 }
4594 break;
4595 #endif
4596
4597 case OPTION_32:
4598 default_arch = "i386";
4599 break;
4600
4601 default:
4602 return 0;
4603 }
4604 return 1;
4605 }
4606
4607 void
4608 md_show_usage (stream)
4609 FILE *stream;
4610 {
4611 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
4612 fprintf (stream, _("\
4613 -Q ignored\n\
4614 -V print assembler version number\n\
4615 -k ignored\n\
4616 -q quieten some warnings\n\
4617 -s ignored\n"));
4618 #else
4619 fprintf (stream, _("\
4620 -q quieten some warnings\n"));
4621 #endif
4622 }
4623
4624 #ifdef BFD_ASSEMBLER
4625 #if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
4626 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF))
4627
4628 /* Pick the target format to use. */
4629
4630 const char *
4631 i386_target_format ()
4632 {
4633 if (!strcmp (default_arch, "x86_64"))
4634 set_code_flag (CODE_64BIT);
4635 else if (!strcmp (default_arch, "i386"))
4636 set_code_flag (CODE_32BIT);
4637 else
4638 as_fatal (_("Unknown architecture"));
4639 switch (OUTPUT_FLAVOR)
4640 {
4641 #ifdef OBJ_MAYBE_AOUT
4642 case bfd_target_aout_flavour:
4643 return AOUT_TARGET_FORMAT;
4644 #endif
4645 #ifdef OBJ_MAYBE_COFF
4646 case bfd_target_coff_flavour:
4647 return "coff-i386";
4648 #endif
4649 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
4650 case bfd_target_elf_flavour:
4651 {
4652 if (flag_code == CODE_64BIT)
4653 use_rela_relocations = 1;
4654 return flag_code == CODE_64BIT ? "elf64-x86-64" : "elf32-i386";
4655 }
4656 #endif
4657 default:
4658 abort ();
4659 return NULL;
4660 }
4661 }
4662
4663 #endif /* OBJ_MAYBE_ more than one */
4664 #endif /* BFD_ASSEMBLER */
4665 \f
4666 symbolS *
4667 md_undefined_symbol (name)
4668 char *name;
4669 {
4670 if (name[0] == GLOBAL_OFFSET_TABLE_NAME[0]
4671 && name[1] == GLOBAL_OFFSET_TABLE_NAME[1]
4672 && name[2] == GLOBAL_OFFSET_TABLE_NAME[2]
4673 && strcmp (name, GLOBAL_OFFSET_TABLE_NAME) == 0)
4674 {
4675 if (!GOT_symbol)
4676 {
4677 if (symbol_find (name))
4678 as_bad (_("GOT already in symbol table"));
4679 GOT_symbol = symbol_new (name, undefined_section,
4680 (valueT) 0, &zero_address_frag);
4681 };
4682 return GOT_symbol;
4683 }
4684 return 0;
4685 }
4686
4687 /* Round up a section size to the appropriate boundary. */
4688
4689 valueT
4690 md_section_align (segment, size)
4691 segT segment ATTRIBUTE_UNUSED;
4692 valueT size;
4693 {
4694 #ifdef BFD_ASSEMBLER
4695 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
4696 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
4697 {
4698 /* For a.out, force the section size to be aligned. If we don't do
4699 this, BFD will align it for us, but it will not write out the
4700 final bytes of the section. This may be a bug in BFD, but it is
4701 easier to fix it here since that is how the other a.out targets
4702 work. */
4703 int align;
4704
4705 align = bfd_get_section_alignment (stdoutput, segment);
4706 size = ((size + (1 << align) - 1) & ((valueT) -1 << align));
4707 }
4708 #endif
4709 #endif
4710
4711 return size;
4712 }
4713
4714 /* On the i386, PC-relative offsets are relative to the start of the
4715 next instruction. That is, the address of the offset, plus its
4716 size, since the offset is always the last part of the insn. */
4717
4718 long
4719 md_pcrel_from (fixP)
4720 fixS *fixP;
4721 {
4722 return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address;
4723 }
4724
4725 #ifndef I386COFF
4726
4727 static void
4728 s_bss (ignore)
4729 int ignore ATTRIBUTE_UNUSED;
4730 {
4731 register int temp;
4732
4733 temp = get_absolute_expression ();
4734 subseg_set (bss_section, (subsegT) temp);
4735 demand_empty_rest_of_line ();
4736 }
4737
4738 #endif
4739
4740 #ifdef BFD_ASSEMBLER
4741
4742 void
4743 i386_validate_fix (fixp)
4744 fixS *fixp;
4745 {
4746 if (fixp->fx_subsy && fixp->fx_subsy == GOT_symbol)
4747 {
4748 /* GOTOFF relocation are nonsense in 64bit mode. */
4749 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
4750 {
4751 if (flag_code != CODE_64BIT)
4752 abort ();
4753 fixp->fx_r_type = BFD_RELOC_X86_64_GOTPCREL;
4754 }
4755 else
4756 {
4757 if (flag_code == CODE_64BIT)
4758 abort ();
4759 fixp->fx_r_type = BFD_RELOC_386_GOTOFF;
4760 }
4761 fixp->fx_subsy = 0;
4762 }
4763 }
4764
4765 arelent *
4766 tc_gen_reloc (section, fixp)
4767 asection *section ATTRIBUTE_UNUSED;
4768 fixS *fixp;
4769 {
4770 arelent *rel;
4771 bfd_reloc_code_real_type code;
4772
4773 switch (fixp->fx_r_type)
4774 {
4775 case BFD_RELOC_X86_64_PLT32:
4776 case BFD_RELOC_X86_64_GOT32:
4777 case BFD_RELOC_X86_64_GOTPCREL:
4778 case BFD_RELOC_386_PLT32:
4779 case BFD_RELOC_386_GOT32:
4780 case BFD_RELOC_386_GOTOFF:
4781 case BFD_RELOC_386_GOTPC:
4782 case BFD_RELOC_X86_64_32S:
4783 case BFD_RELOC_RVA:
4784 case BFD_RELOC_VTABLE_ENTRY:
4785 case BFD_RELOC_VTABLE_INHERIT:
4786 code = fixp->fx_r_type;
4787 break;
4788 default:
4789 if (fixp->fx_pcrel)
4790 {
4791 switch (fixp->fx_size)
4792 {
4793 default:
4794 as_bad_where (fixp->fx_file, fixp->fx_line,
4795 _("can not do %d byte pc-relative relocation"),
4796 fixp->fx_size);
4797 code = BFD_RELOC_32_PCREL;
4798 break;
4799 case 1: code = BFD_RELOC_8_PCREL; break;
4800 case 2: code = BFD_RELOC_16_PCREL; break;
4801 case 4: code = BFD_RELOC_32_PCREL; break;
4802 }
4803 }
4804 else
4805 {
4806 switch (fixp->fx_size)
4807 {
4808 default:
4809 as_bad_where (fixp->fx_file, fixp->fx_line,
4810 _("can not do %d byte relocation"),
4811 fixp->fx_size);
4812 code = BFD_RELOC_32;
4813 break;
4814 case 1: code = BFD_RELOC_8; break;
4815 case 2: code = BFD_RELOC_16; break;
4816 case 4: code = BFD_RELOC_32; break;
4817 case 8: code = BFD_RELOC_64; break;
4818 }
4819 }
4820 break;
4821 }
4822
4823 if (code == BFD_RELOC_32
4824 && GOT_symbol
4825 && fixp->fx_addsy == GOT_symbol)
4826 {
4827 /* We don't support GOTPC on 64bit targets. */
4828 if (flag_code == CODE_64BIT)
4829 abort ();
4830 code = BFD_RELOC_386_GOTPC;
4831 }
4832
4833 rel = (arelent *) xmalloc (sizeof (arelent));
4834 rel->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
4835 *rel->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
4836
4837 rel->address = fixp->fx_frag->fr_address + fixp->fx_where;
4838 if (!use_rela_relocations)
4839 {
4840 /* HACK: Since i386 ELF uses Rel instead of Rela, encode the
4841 vtable entry to be used in the relocation's section offset. */
4842 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
4843 rel->address = fixp->fx_offset;
4844
4845 if (fixp->fx_pcrel)
4846 rel->addend = fixp->fx_addnumber;
4847 else
4848 rel->addend = 0;
4849 }
4850 /* Use the rela in 64bit mode. */
4851 else
4852 {
4853 rel->addend = fixp->fx_offset;
4854 if (fixp->fx_pcrel)
4855 rel->addend -= fixp->fx_size;
4856 }
4857
4858 rel->howto = bfd_reloc_type_lookup (stdoutput, code);
4859 if (rel->howto == NULL)
4860 {
4861 as_bad_where (fixp->fx_file, fixp->fx_line,
4862 _("cannot represent relocation type %s"),
4863 bfd_get_reloc_code_name (code));
4864 /* Set howto to a garbage value so that we can keep going. */
4865 rel->howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_32);
4866 assert (rel->howto != NULL);
4867 }
4868
4869 return rel;
4870 }
4871
4872 #else /* ! BFD_ASSEMBLER */
4873
4874 #if (defined(OBJ_AOUT) | defined(OBJ_BOUT))
4875 void
4876 tc_aout_fix_to_chars (where, fixP, segment_address_in_file)
4877 char *where;
4878 fixS *fixP;
4879 relax_addressT segment_address_in_file;
4880 {
4881 /* In: length of relocation (or of address) in chars: 1, 2 or 4.
4882 Out: GNU LD relocation length code: 0, 1, or 2. */
4883
4884 static const unsigned char nbytes_r_length[] = { 42, 0, 1, 42, 2 };
4885 long r_symbolnum;
4886
4887 know (fixP->fx_addsy != NULL);
4888
4889 md_number_to_chars (where,
4890 (valueT) (fixP->fx_frag->fr_address
4891 + fixP->fx_where - segment_address_in_file),
4892 4);
4893
4894 r_symbolnum = (S_IS_DEFINED (fixP->fx_addsy)
4895 ? S_GET_TYPE (fixP->fx_addsy)
4896 : fixP->fx_addsy->sy_number);
4897
4898 where[6] = (r_symbolnum >> 16) & 0x0ff;
4899 where[5] = (r_symbolnum >> 8) & 0x0ff;
4900 where[4] = r_symbolnum & 0x0ff;
4901 where[7] = ((((!S_IS_DEFINED (fixP->fx_addsy)) << 3) & 0x08)
4902 | ((nbytes_r_length[fixP->fx_size] << 1) & 0x06)
4903 | (((fixP->fx_pcrel << 0) & 0x01) & 0x0f));
4904 }
4905
4906 #endif /* OBJ_AOUT or OBJ_BOUT. */
4907
4908 #if defined (I386COFF)
4909
4910 short
4911 tc_coff_fix2rtype (fixP)
4912 fixS *fixP;
4913 {
4914 if (fixP->fx_r_type == R_IMAGEBASE)
4915 return R_IMAGEBASE;
4916
4917 return (fixP->fx_pcrel ?
4918 (fixP->fx_size == 1 ? R_PCRBYTE :
4919 fixP->fx_size == 2 ? R_PCRWORD :
4920 R_PCRLONG) :
4921 (fixP->fx_size == 1 ? R_RELBYTE :
4922 fixP->fx_size == 2 ? R_RELWORD :
4923 R_DIR32));
4924 }
4925
4926 int
4927 tc_coff_sizemachdep (frag)
4928 fragS *frag;
4929 {
4930 if (frag->fr_next)
4931 return (frag->fr_next->fr_address - frag->fr_address);
4932 else
4933 return 0;
4934 }
4935
4936 #endif /* I386COFF */
4937
4938 #endif /* ! BFD_ASSEMBLER */
4939 \f
4940 /* Parse operands using Intel syntax. This implements a recursive descent
4941 parser based on the BNF grammar published in Appendix B of the MASM 6.1
4942 Programmer's Guide.
4943
4944 FIXME: We do not recognize the full operand grammar defined in the MASM
4945 documentation. In particular, all the structure/union and
4946 high-level macro operands are missing.
4947
4948 Uppercase words are terminals, lower case words are non-terminals.
4949 Objects surrounded by double brackets '[[' ']]' are optional. Vertical
4950 bars '|' denote choices. Most grammar productions are implemented in
4951 functions called 'intel_<production>'.
4952
4953 Initial production is 'expr'.
4954
4955 addOp + | -
4956
4957 alpha [a-zA-Z]
4958
4959 byteRegister AL | AH | BL | BH | CL | CH | DL | DH
4960
4961 constant digits [[ radixOverride ]]
4962
4963 dataType BYTE | WORD | DWORD | QWORD | XWORD
4964
4965 digits decdigit
4966 | digits decdigit
4967 | digits hexdigit
4968
4969 decdigit [0-9]
4970
4971 e05 e05 addOp e06
4972 | e06
4973
4974 e06 e06 mulOp e09
4975 | e09
4976
4977 e09 OFFSET e10
4978 | e09 PTR e10
4979 | e09 : e10
4980 | e10
4981
4982 e10 e10 [ expr ]
4983 | e11
4984
4985 e11 ( expr )
4986 | [ expr ]
4987 | constant
4988 | dataType
4989 | id
4990 | $
4991 | register
4992
4993 => expr SHORT e05
4994 | e05
4995
4996 gpRegister AX | EAX | BX | EBX | CX | ECX | DX | EDX
4997 | BP | EBP | SP | ESP | DI | EDI | SI | ESI
4998
4999 hexdigit a | b | c | d | e | f
5000 | A | B | C | D | E | F
5001
5002 id alpha
5003 | id alpha
5004 | id decdigit
5005
5006 mulOp * | / | MOD
5007
5008 quote " | '
5009
5010 register specialRegister
5011 | gpRegister
5012 | byteRegister
5013
5014 segmentRegister CS | DS | ES | FS | GS | SS
5015
5016 specialRegister CR0 | CR2 | CR3
5017 | DR0 | DR1 | DR2 | DR3 | DR6 | DR7
5018 | TR3 | TR4 | TR5 | TR6 | TR7
5019
5020 We simplify the grammar in obvious places (e.g., register parsing is
5021 done by calling parse_register) and eliminate immediate left recursion
5022 to implement a recursive-descent parser.
5023
5024 expr SHORT e05
5025 | e05
5026
5027 e05 e06 e05'
5028
5029 e05' addOp e06 e05'
5030 | Empty
5031
5032 e06 e09 e06'
5033
5034 e06' mulOp e09 e06'
5035 | Empty
5036
5037 e09 OFFSET e10 e09'
5038 | e10 e09'
5039
5040 e09' PTR e10 e09'
5041 | : e10 e09'
5042 | Empty
5043
5044 e10 e11 e10'
5045
5046 e10' [ expr ] e10'
5047 | Empty
5048
5049 e11 ( expr )
5050 | [ expr ]
5051 | BYTE
5052 | WORD
5053 | DWORD
5054 | QWORD
5055 | XWORD
5056 | .
5057 | $
5058 | register
5059 | id
5060 | constant */
5061
5062 /* Parsing structure for the intel syntax parser. Used to implement the
5063 semantic actions for the operand grammar. */
5064 struct intel_parser_s
5065 {
5066 char *op_string; /* The string being parsed. */
5067 int got_a_float; /* Whether the operand is a float. */
5068 int op_modifier; /* Operand modifier. */
5069 int is_mem; /* 1 if operand is memory reference. */
5070 const reg_entry *reg; /* Last register reference found. */
5071 char *disp; /* Displacement string being built. */
5072 };
5073
5074 static struct intel_parser_s intel_parser;
5075
5076 /* Token structure for parsing intel syntax. */
5077 struct intel_token
5078 {
5079 int code; /* Token code. */
5080 const reg_entry *reg; /* Register entry for register tokens. */
5081 char *str; /* String representation. */
5082 };
5083
5084 static struct intel_token cur_token, prev_token;
5085
5086 /* Token codes for the intel parser. Since T_SHORT is already used
5087 by COFF, undefine it first to prevent a warning. */
5088 #define T_NIL -1
5089 #define T_CONST 1
5090 #define T_REG 2
5091 #define T_BYTE 3
5092 #define T_WORD 4
5093 #define T_DWORD 5
5094 #define T_QWORD 6
5095 #define T_XWORD 7
5096 #undef T_SHORT
5097 #define T_SHORT 8
5098 #define T_OFFSET 9
5099 #define T_PTR 10
5100 #define T_ID 11
5101
5102 /* Prototypes for intel parser functions. */
5103 static int intel_match_token PARAMS ((int code));
5104 static void intel_get_token PARAMS ((void));
5105 static void intel_putback_token PARAMS ((void));
5106 static int intel_expr PARAMS ((void));
5107 static int intel_e05 PARAMS ((void));
5108 static int intel_e05_1 PARAMS ((void));
5109 static int intel_e06 PARAMS ((void));
5110 static int intel_e06_1 PARAMS ((void));
5111 static int intel_e09 PARAMS ((void));
5112 static int intel_e09_1 PARAMS ((void));
5113 static int intel_e10 PARAMS ((void));
5114 static int intel_e10_1 PARAMS ((void));
5115 static int intel_e11 PARAMS ((void));
5116
5117 static int
5118 i386_intel_operand (operand_string, got_a_float)
5119 char *operand_string;
5120 int got_a_float;
5121 {
5122 int ret;
5123 char *p;
5124
5125 /* Initialize token holders. */
5126 cur_token.code = prev_token.code = T_NIL;
5127 cur_token.reg = prev_token.reg = NULL;
5128 cur_token.str = prev_token.str = NULL;
5129
5130 /* Initialize parser structure. */
5131 p = intel_parser.op_string = (char *) malloc (strlen (operand_string) + 1);
5132 if (p == NULL)
5133 abort ();
5134 strcpy (intel_parser.op_string, operand_string);
5135 intel_parser.got_a_float = got_a_float;
5136 intel_parser.op_modifier = -1;
5137 intel_parser.is_mem = 0;
5138 intel_parser.reg = NULL;
5139 intel_parser.disp = (char *) malloc (strlen (operand_string) + 1);
5140 if (intel_parser.disp == NULL)
5141 abort ();
5142 intel_parser.disp[0] = '\0';
5143
5144 /* Read the first token and start the parser. */
5145 intel_get_token ();
5146 ret = intel_expr ();
5147
5148 if (ret)
5149 {
5150 /* If we found a memory reference, hand it over to i386_displacement
5151 to fill in the rest of the operand fields. */
5152 if (intel_parser.is_mem)
5153 {
5154 if ((i.mem_operands == 1
5155 && (current_templates->start->opcode_modifier & IsString) == 0)
5156 || i.mem_operands == 2)
5157 {
5158 as_bad (_("too many memory references for '%s'"),
5159 current_templates->start->name);
5160 ret = 0;
5161 }
5162 else
5163 {
5164 char *s = intel_parser.disp;
5165 i.mem_operands++;
5166
5167 /* Add the displacement expression. */
5168 if (*s != '\0')
5169 ret = i386_displacement (s, s + strlen (s))
5170 && i386_index_check (s);
5171 }
5172 }
5173
5174 /* Constant and OFFSET expressions are handled by i386_immediate. */
5175 else if (intel_parser.op_modifier == OFFSET_FLAT
5176 || intel_parser.reg == NULL)
5177 ret = i386_immediate (intel_parser.disp);
5178 }
5179
5180 free (p);
5181 free (intel_parser.disp);
5182
5183 return ret;
5184 }
5185
5186 /* expr SHORT e05
5187 | e05 */
5188 static int
5189 intel_expr ()
5190 {
5191 /* expr SHORT e05 */
5192 if (cur_token.code == T_SHORT)
5193 {
5194 intel_parser.op_modifier = SHORT;
5195 intel_match_token (T_SHORT);
5196
5197 return (intel_e05 ());
5198 }
5199
5200 /* expr e05 */
5201 else
5202 return intel_e05 ();
5203 }
5204
5205 /* e05 e06 e05'
5206
5207 e05' addOp e06 e05'
5208 | Empty */
5209 static int
5210 intel_e05 ()
5211 {
5212 return (intel_e06 () && intel_e05_1 ());
5213 }
5214
5215 static int
5216 intel_e05_1 ()
5217 {
5218 /* e05' addOp e06 e05' */
5219 if (cur_token.code == '+' || cur_token.code == '-')
5220 {
5221 strcat (intel_parser.disp, cur_token.str);
5222 intel_match_token (cur_token.code);
5223
5224 return (intel_e06 () && intel_e05_1 ());
5225 }
5226
5227 /* e05' Empty */
5228 else
5229 return 1;
5230 }
5231
5232 /* e06 e09 e06'
5233
5234 e06' mulOp e09 e06'
5235 | Empty */
5236 static int
5237 intel_e06 ()
5238 {
5239 return (intel_e09 () && intel_e06_1 ());
5240 }
5241
5242 static int
5243 intel_e06_1 ()
5244 {
5245 /* e06' mulOp e09 e06' */
5246 if (cur_token.code == '*' || cur_token.code == '/')
5247 {
5248 strcat (intel_parser.disp, cur_token.str);
5249 intel_match_token (cur_token.code);
5250
5251 return (intel_e09 () && intel_e06_1 ());
5252 }
5253
5254 /* e06' Empty */
5255 else
5256 return 1;
5257 }
5258
5259 /* e09 OFFSET e10 e09'
5260 | e10 e09'
5261
5262 e09' PTR e10 e09'
5263 | : e10 e09'
5264 | Empty */
5265 static int
5266 intel_e09 ()
5267 {
5268 /* e09 OFFSET e10 e09' */
5269 if (cur_token.code == T_OFFSET)
5270 {
5271 intel_parser.is_mem = 0;
5272 intel_parser.op_modifier = OFFSET_FLAT;
5273 intel_match_token (T_OFFSET);
5274
5275 return (intel_e10 () && intel_e09_1 ());
5276 }
5277
5278 /* e09 e10 e09' */
5279 else
5280 return (intel_e10 () && intel_e09_1 ());
5281 }
5282
5283 static int
5284 intel_e09_1 ()
5285 {
5286 /* e09' PTR e10 e09' */
5287 if (cur_token.code == T_PTR)
5288 {
5289 if (prev_token.code == T_BYTE)
5290 i.suffix = BYTE_MNEM_SUFFIX;
5291
5292 else if (prev_token.code == T_WORD)
5293 {
5294 if (intel_parser.got_a_float == 2) /* "fi..." */
5295 i.suffix = SHORT_MNEM_SUFFIX;
5296 else
5297 i.suffix = WORD_MNEM_SUFFIX;
5298 }
5299
5300 else if (prev_token.code == T_DWORD)
5301 {
5302 if (intel_parser.got_a_float == 1) /* "f..." */
5303 i.suffix = SHORT_MNEM_SUFFIX;
5304 else
5305 i.suffix = LONG_MNEM_SUFFIX;
5306 }
5307
5308 else if (prev_token.code == T_QWORD)
5309 {
5310 if (intel_parser.got_a_float == 1) /* "f..." */
5311 i.suffix = LONG_MNEM_SUFFIX;
5312 else
5313 i.suffix = QWORD_MNEM_SUFFIX;
5314 }
5315
5316 else if (prev_token.code == T_XWORD)
5317 i.suffix = LONG_DOUBLE_MNEM_SUFFIX;
5318
5319 else
5320 {
5321 as_bad (_("Unknown operand modifier `%s'\n"), prev_token.str);
5322 return 0;
5323 }
5324
5325 intel_match_token (T_PTR);
5326
5327 return (intel_e10 () && intel_e09_1 ());
5328 }
5329
5330 /* e09 : e10 e09' */
5331 else if (cur_token.code == ':')
5332 {
5333 /* Mark as a memory operand only if it's not already known to be an
5334 offset expression. */
5335 if (intel_parser.op_modifier != OFFSET_FLAT)
5336 intel_parser.is_mem = 1;
5337
5338 return (intel_match_token (':') && intel_e10 () && intel_e09_1 ());
5339 }
5340
5341 /* e09' Empty */
5342 else
5343 return 1;
5344 }
5345
5346 /* e10 e11 e10'
5347
5348 e10' [ expr ] e10'
5349 | Empty */
5350 static int
5351 intel_e10 ()
5352 {
5353 return (intel_e11 () && intel_e10_1 ());
5354 }
5355
5356 static int
5357 intel_e10_1 ()
5358 {
5359 /* e10' [ expr ] e10' */
5360 if (cur_token.code == '[')
5361 {
5362 intel_match_token ('[');
5363
5364 /* Mark as a memory operand only if it's not already known to be an
5365 offset expression. If it's an offset expression, we need to keep
5366 the brace in. */
5367 if (intel_parser.op_modifier != OFFSET_FLAT)
5368 intel_parser.is_mem = 1;
5369 else
5370 strcat (intel_parser.disp, "[");
5371
5372 /* Add a '+' to the displacement string if necessary. */
5373 if (*intel_parser.disp != '\0'
5374 && *(intel_parser.disp + strlen (intel_parser.disp) - 1) != '+')
5375 strcat (intel_parser.disp, "+");
5376
5377 if (intel_expr () && intel_match_token (']'))
5378 {
5379 /* Preserve brackets when the operand is an offset expression. */
5380 if (intel_parser.op_modifier == OFFSET_FLAT)
5381 strcat (intel_parser.disp, "]");
5382
5383 return intel_e10_1 ();
5384 }
5385 else
5386 return 0;
5387 }
5388
5389 /* e10' Empty */
5390 else
5391 return 1;
5392 }
5393
5394 /* e11 ( expr )
5395 | [ expr ]
5396 | BYTE
5397 | WORD
5398 | DWORD
5399 | QWORD
5400 | XWORD
5401 | $
5402 | .
5403 | register
5404 | id
5405 | constant */
5406 static int
5407 intel_e11 ()
5408 {
5409 /* e11 ( expr ) */
5410 if (cur_token.code == '(')
5411 {
5412 intel_match_token ('(');
5413 strcat (intel_parser.disp, "(");
5414
5415 if (intel_expr () && intel_match_token (')'))
5416 {
5417 strcat (intel_parser.disp, ")");
5418 return 1;
5419 }
5420 else
5421 return 0;
5422 }
5423
5424 /* e11 [ expr ] */
5425 else if (cur_token.code == '[')
5426 {
5427 intel_match_token ('[');
5428
5429 /* Mark as a memory operand only if it's not already known to be an
5430 offset expression. If it's an offset expression, we need to keep
5431 the brace in. */
5432 if (intel_parser.op_modifier != OFFSET_FLAT)
5433 intel_parser.is_mem = 1;
5434 else
5435 strcat (intel_parser.disp, "[");
5436
5437 /* Operands for jump/call inside brackets denote absolute addresses. */
5438 if (current_templates->start->opcode_modifier & Jump
5439 || current_templates->start->opcode_modifier & JumpDword
5440 || current_templates->start->opcode_modifier & JumpByte
5441 || current_templates->start->opcode_modifier & JumpInterSegment)
5442 i.types[this_operand] |= JumpAbsolute;
5443
5444 /* Add a '+' to the displacement string if necessary. */
5445 if (*intel_parser.disp != '\0'
5446 && *(intel_parser.disp + strlen (intel_parser.disp) - 1) != '+')
5447 strcat (intel_parser.disp, "+");
5448
5449 if (intel_expr () && intel_match_token (']'))
5450 {
5451 /* Preserve brackets when the operand is an offset expression. */
5452 if (intel_parser.op_modifier == OFFSET_FLAT)
5453 strcat (intel_parser.disp, "]");
5454
5455 return 1;
5456 }
5457 else
5458 return 0;
5459 }
5460
5461 /* e11 BYTE
5462 | WORD
5463 | DWORD
5464 | QWORD
5465 | XWORD */
5466 else if (cur_token.code == T_BYTE
5467 || cur_token.code == T_WORD
5468 || cur_token.code == T_DWORD
5469 || cur_token.code == T_QWORD
5470 || cur_token.code == T_XWORD)
5471 {
5472 intel_match_token (cur_token.code);
5473
5474 return 1;
5475 }
5476
5477 /* e11 $
5478 | . */
5479 else if (cur_token.code == '$' || cur_token.code == '.')
5480 {
5481 strcat (intel_parser.disp, cur_token.str);
5482 intel_match_token (cur_token.code);
5483
5484 /* Mark as a memory operand only if it's not already known to be an
5485 offset expression. */
5486 if (intel_parser.op_modifier != OFFSET_FLAT)
5487 intel_parser.is_mem = 1;
5488
5489 return 1;
5490 }
5491
5492 /* e11 register */
5493 else if (cur_token.code == T_REG)
5494 {
5495 const reg_entry *reg = intel_parser.reg = cur_token.reg;
5496
5497 intel_match_token (T_REG);
5498
5499 /* Check for segment change. */
5500 if (cur_token.code == ':')
5501 {
5502 if (reg->reg_type & (SReg2 | SReg3))
5503 {
5504 switch (reg->reg_num)
5505 {
5506 case 0:
5507 i.seg[i.mem_operands] = &es;
5508 break;
5509 case 1:
5510 i.seg[i.mem_operands] = &cs;
5511 break;
5512 case 2:
5513 i.seg[i.mem_operands] = &ss;
5514 break;
5515 case 3:
5516 i.seg[i.mem_operands] = &ds;
5517 break;
5518 case 4:
5519 i.seg[i.mem_operands] = &fs;
5520 break;
5521 case 5:
5522 i.seg[i.mem_operands] = &gs;
5523 break;
5524 }
5525 }
5526 else
5527 {
5528 as_bad (_("`%s' is not a valid segment register"), reg->reg_name);
5529 return 0;
5530 }
5531 }
5532
5533 /* Not a segment register. Check for register scaling. */
5534 else if (cur_token.code == '*')
5535 {
5536 if (!intel_parser.is_mem)
5537 {
5538 as_bad (_("Register scaling only allowed in memory operands."));
5539 return 0;
5540 }
5541
5542 /* What follows must be a valid scale. */
5543 if (intel_match_token ('*')
5544 && strchr ("01248", *cur_token.str))
5545 {
5546 i.index_reg = reg;
5547 i.types[this_operand] |= BaseIndex;
5548
5549 /* Set the scale after setting the register (otherwise,
5550 i386_scale will complain) */
5551 i386_scale (cur_token.str);
5552 intel_match_token (T_CONST);
5553 }
5554 else
5555 {
5556 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
5557 cur_token.str);
5558 return 0;
5559 }
5560 }
5561
5562 /* No scaling. If this is a memory operand, the register is either a
5563 base register (first occurrence) or an index register (second
5564 occurrence). */
5565 else if (intel_parser.is_mem && !(reg->reg_type & (SReg2 | SReg3)))
5566 {
5567 if (i.base_reg && i.index_reg)
5568 {
5569 as_bad (_("Too many register references in memory operand.\n"));
5570 return 0;
5571 }
5572
5573 if (i.base_reg == NULL)
5574 i.base_reg = reg;
5575 else
5576 i.index_reg = reg;
5577
5578 i.types[this_operand] |= BaseIndex;
5579 }
5580
5581 /* Offset modifier. Add the register to the displacement string to be
5582 parsed as an immediate expression after we're done. */
5583 else if (intel_parser.op_modifier == OFFSET_FLAT)
5584 strcat (intel_parser.disp, reg->reg_name);
5585
5586 /* It's neither base nor index nor offset. */
5587 else
5588 {
5589 i.types[this_operand] |= reg->reg_type & ~BaseIndex;
5590 i.op[this_operand].regs = reg;
5591 i.reg_operands++;
5592 }
5593
5594 /* Since registers are not part of the displacement string (except
5595 when we're parsing offset operands), we may need to remove any
5596 preceding '+' from the displacement string. */
5597 if (*intel_parser.disp != '\0'
5598 && intel_parser.op_modifier != OFFSET_FLAT)
5599 {
5600 char *s = intel_parser.disp;
5601 s += strlen (s) - 1;
5602 if (*s == '+')
5603 *s = '\0';
5604 }
5605
5606 return 1;
5607 }
5608
5609 /* e11 id */
5610 else if (cur_token.code == T_ID)
5611 {
5612 /* Add the identifier to the displacement string. */
5613 strcat (intel_parser.disp, cur_token.str);
5614 intel_match_token (T_ID);
5615
5616 /* The identifier represents a memory reference only if it's not
5617 preceded by an offset modifier. */
5618 if (intel_parser.op_modifier != OFFSET_FLAT)
5619 intel_parser.is_mem = 1;
5620
5621 return 1;
5622 }
5623
5624 /* e11 constant */
5625 else if (cur_token.code == T_CONST
5626 || cur_token.code == '-'
5627 || cur_token.code == '+')
5628 {
5629 char *save_str;
5630
5631 /* Allow constants that start with `+' or `-'. */
5632 if (cur_token.code == '-' || cur_token.code == '+')
5633 {
5634 strcat (intel_parser.disp, cur_token.str);
5635 intel_match_token (cur_token.code);
5636 if (cur_token.code != T_CONST)
5637 {
5638 as_bad (_("Syntax error. Expecting a constant. Got `%s'.\n"),
5639 cur_token.str);
5640 return 0;
5641 }
5642 }
5643
5644 save_str = (char *) malloc (strlen (cur_token.str) + 1);
5645 if (save_str == NULL)
5646 abort ();
5647 strcpy (save_str, cur_token.str);
5648
5649 /* Get the next token to check for register scaling. */
5650 intel_match_token (cur_token.code);
5651
5652 /* Check if this constant is a scaling factor for an index register. */
5653 if (cur_token.code == '*')
5654 {
5655 if (intel_match_token ('*') && cur_token.code == T_REG)
5656 {
5657 if (!intel_parser.is_mem)
5658 {
5659 as_bad (_("Register scaling only allowed in memory operands."));
5660 return 0;
5661 }
5662
5663 /* The constant is followed by `* reg', so it must be
5664 a valid scale. */
5665 if (strchr ("01248", *save_str))
5666 {
5667 i.index_reg = cur_token.reg;
5668 i.types[this_operand] |= BaseIndex;
5669
5670 /* Set the scale after setting the register (otherwise,
5671 i386_scale will complain) */
5672 i386_scale (save_str);
5673 intel_match_token (T_REG);
5674
5675 /* Since registers are not part of the displacement
5676 string, we may need to remove any preceding '+' from
5677 the displacement string. */
5678 if (*intel_parser.disp != '\0')
5679 {
5680 char *s = intel_parser.disp;
5681 s += strlen (s) - 1;
5682 if (*s == '+')
5683 *s = '\0';
5684 }
5685
5686 free (save_str);
5687
5688 return 1;
5689 }
5690 else
5691 return 0;
5692 }
5693
5694 /* The constant was not used for register scaling. Since we have
5695 already consumed the token following `*' we now need to put it
5696 back in the stream. */
5697 else
5698 intel_putback_token ();
5699 }
5700
5701 /* Add the constant to the displacement string. */
5702 strcat (intel_parser.disp, save_str);
5703 free (save_str);
5704
5705 return 1;
5706 }
5707
5708 as_bad (_("Unrecognized token '%s'"), cur_token.str);
5709 return 0;
5710 }
5711
5712 /* Match the given token against cur_token. If they match, read the next
5713 token from the operand string. */
5714 static int
5715 intel_match_token (code)
5716 int code;
5717 {
5718 if (cur_token.code == code)
5719 {
5720 intel_get_token ();
5721 return 1;
5722 }
5723 else
5724 {
5725 as_bad (_("Unexpected token `%s'\n"), cur_token.str);
5726 return 0;
5727 }
5728 }
5729
5730 /* Read a new token from intel_parser.op_string and store it in cur_token. */
5731 static void
5732 intel_get_token ()
5733 {
5734 char *end_op;
5735 const reg_entry *reg;
5736 struct intel_token new_token;
5737
5738 new_token.code = T_NIL;
5739 new_token.reg = NULL;
5740 new_token.str = NULL;
5741
5742 /* Free the memory allocated to the previous token and move
5743 cur_token to prev_token. */
5744 if (prev_token.str)
5745 free (prev_token.str);
5746
5747 prev_token = cur_token;
5748
5749 /* Skip whitespace. */
5750 while (is_space_char (*intel_parser.op_string))
5751 intel_parser.op_string++;
5752
5753 /* Return an empty token if we find nothing else on the line. */
5754 if (*intel_parser.op_string == '\0')
5755 {
5756 cur_token = new_token;
5757 return;
5758 }
5759
5760 /* The new token cannot be larger than the remainder of the operand
5761 string. */
5762 new_token.str = (char *) malloc (strlen (intel_parser.op_string) + 1);
5763 if (new_token.str == NULL)
5764 abort ();
5765 new_token.str[0] = '\0';
5766
5767 if (strchr ("0123456789", *intel_parser.op_string))
5768 {
5769 char *p = new_token.str;
5770 char *q = intel_parser.op_string;
5771 new_token.code = T_CONST;
5772
5773 /* Allow any kind of identifier char to encompass floating point and
5774 hexadecimal numbers. */
5775 while (is_identifier_char (*q))
5776 *p++ = *q++;
5777 *p = '\0';
5778
5779 /* Recognize special symbol names [0-9][bf]. */
5780 if (strlen (intel_parser.op_string) == 2
5781 && (intel_parser.op_string[1] == 'b'
5782 || intel_parser.op_string[1] == 'f'))
5783 new_token.code = T_ID;
5784 }
5785
5786 else if (strchr ("+-/*:[]()", *intel_parser.op_string))
5787 {
5788 new_token.code = *intel_parser.op_string;
5789 new_token.str[0] = *intel_parser.op_string;
5790 new_token.str[1] = '\0';
5791 }
5792
5793 else if ((*intel_parser.op_string == REGISTER_PREFIX || allow_naked_reg)
5794 && ((reg = parse_register (intel_parser.op_string, &end_op)) != NULL))
5795 {
5796 new_token.code = T_REG;
5797 new_token.reg = reg;
5798
5799 if (*intel_parser.op_string == REGISTER_PREFIX)
5800 {
5801 new_token.str[0] = REGISTER_PREFIX;
5802 new_token.str[1] = '\0';
5803 }
5804
5805 strcat (new_token.str, reg->reg_name);
5806 }
5807
5808 else if (is_identifier_char (*intel_parser.op_string))
5809 {
5810 char *p = new_token.str;
5811 char *q = intel_parser.op_string;
5812
5813 /* A '.' or '$' followed by an identifier char is an identifier.
5814 Otherwise, it's operator '.' followed by an expression. */
5815 if ((*q == '.' || *q == '$') && !is_identifier_char (*(q + 1)))
5816 {
5817 new_token.code = *q;
5818 new_token.str[0] = *q;
5819 new_token.str[1] = '\0';
5820 }
5821 else
5822 {
5823 while (is_identifier_char (*q) || *q == '@')
5824 *p++ = *q++;
5825 *p = '\0';
5826
5827 if (strcasecmp (new_token.str, "BYTE") == 0)
5828 new_token.code = T_BYTE;
5829
5830 else if (strcasecmp (new_token.str, "WORD") == 0)
5831 new_token.code = T_WORD;
5832
5833 else if (strcasecmp (new_token.str, "DWORD") == 0)
5834 new_token.code = T_DWORD;
5835
5836 else if (strcasecmp (new_token.str, "QWORD") == 0)
5837 new_token.code = T_QWORD;
5838
5839 else if (strcasecmp (new_token.str, "XWORD") == 0)
5840 new_token.code = T_XWORD;
5841
5842 else if (strcasecmp (new_token.str, "PTR") == 0)
5843 new_token.code = T_PTR;
5844
5845 else if (strcasecmp (new_token.str, "SHORT") == 0)
5846 new_token.code = T_SHORT;
5847
5848 else if (strcasecmp (new_token.str, "OFFSET") == 0)
5849 {
5850 new_token.code = T_OFFSET;
5851
5852 /* ??? This is not mentioned in the MASM grammar but gcc
5853 makes use of it with -mintel-syntax. OFFSET may be
5854 followed by FLAT: */
5855 if (strncasecmp (q, " FLAT:", 6) == 0)
5856 strcat (new_token.str, " FLAT:");
5857 }
5858
5859 /* ??? This is not mentioned in the MASM grammar. */
5860 else if (strcasecmp (new_token.str, "FLAT") == 0)
5861 new_token.code = T_OFFSET;
5862
5863 else
5864 new_token.code = T_ID;
5865 }
5866 }
5867
5868 else
5869 as_bad (_("Unrecognized token `%s'\n"), intel_parser.op_string);
5870
5871 intel_parser.op_string += strlen (new_token.str);
5872 cur_token = new_token;
5873 }
5874
5875 /* Put cur_token back into the token stream and make cur_token point to
5876 prev_token. */
5877 static void
5878 intel_putback_token ()
5879 {
5880 intel_parser.op_string -= strlen (cur_token.str);
5881 free (cur_token.str);
5882 cur_token = prev_token;
5883
5884 /* Forget prev_token. */
5885 prev_token.code = T_NIL;
5886 prev_token.reg = NULL;
5887 prev_token.str = NULL;
5888 }
This page took 0.166636 seconds and 4 git commands to generate.