12b3032a0d04d180621bef5fb4d84eb7618adfe8
[deliverable/binutils-gdb.git] / gas / config / tc-i386.c
1 /* tc-i386.c -- Assemble code for the Intel 80386
2 Copyright (C) 1989-2017 Free Software Foundation, Inc.
3
4 This file is part of GAS, the GNU Assembler.
5
6 GAS is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
10
11 GAS is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GAS; see the file COPYING. If not, write to the Free
18 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
19 02110-1301, USA. */
20
21 /* Intel 80386 machine specific gas.
22 Written by Eliot Dresselhaus (eliot@mgm.mit.edu).
23 x86_64 support by Jan Hubicka (jh@suse.cz)
24 VIA PadLock support by Michal Ludvig (mludvig@suse.cz)
25 Bugs & suggestions are completely welcome. This is free software.
26 Please help us make it better. */
27
28 #include "as.h"
29 #include "safe-ctype.h"
30 #include "subsegs.h"
31 #include "dwarf2dbg.h"
32 #include "dw2gencfi.h"
33 #include "elf/x86-64.h"
34 #include "opcodes/i386-init.h"
35
36 #ifndef REGISTER_WARNINGS
37 #define REGISTER_WARNINGS 1
38 #endif
39
40 #ifndef INFER_ADDR_PREFIX
41 #define INFER_ADDR_PREFIX 1
42 #endif
43
44 #ifndef DEFAULT_ARCH
45 #define DEFAULT_ARCH "i386"
46 #endif
47
48 #ifndef INLINE
49 #if __GNUC__ >= 2
50 #define INLINE __inline__
51 #else
52 #define INLINE
53 #endif
54 #endif
55
56 /* Prefixes will be emitted in the order defined below.
57 WAIT_PREFIX must be the first prefix since FWAIT is really is an
58 instruction, and so must come before any prefixes.
59 The preferred prefix order is SEG_PREFIX, ADDR_PREFIX, DATA_PREFIX,
60 REP_PREFIX/HLE_PREFIX, LOCK_PREFIX. */
61 #define WAIT_PREFIX 0
62 #define SEG_PREFIX 1
63 #define ADDR_PREFIX 2
64 #define DATA_PREFIX 3
65 #define REP_PREFIX 4
66 #define HLE_PREFIX REP_PREFIX
67 #define BND_PREFIX REP_PREFIX
68 #define LOCK_PREFIX 5
69 #define REX_PREFIX 6 /* must come last. */
70 #define MAX_PREFIXES 7 /* max prefixes per opcode */
71
72 /* we define the syntax here (modulo base,index,scale syntax) */
73 #define REGISTER_PREFIX '%'
74 #define IMMEDIATE_PREFIX '$'
75 #define ABSOLUTE_PREFIX '*'
76
77 /* these are the instruction mnemonic suffixes in AT&T syntax or
78 memory operand size in Intel syntax. */
79 #define WORD_MNEM_SUFFIX 'w'
80 #define BYTE_MNEM_SUFFIX 'b'
81 #define SHORT_MNEM_SUFFIX 's'
82 #define LONG_MNEM_SUFFIX 'l'
83 #define QWORD_MNEM_SUFFIX 'q'
84 #define XMMWORD_MNEM_SUFFIX 'x'
85 #define YMMWORD_MNEM_SUFFIX 'y'
86 #define ZMMWORD_MNEM_SUFFIX 'z'
87 /* Intel Syntax. Use a non-ascii letter since since it never appears
88 in instructions. */
89 #define LONG_DOUBLE_MNEM_SUFFIX '\1'
90
91 #define END_OF_INSN '\0'
92
93 /*
94 'templates' is for grouping together 'template' structures for opcodes
95 of the same name. This is only used for storing the insns in the grand
96 ole hash table of insns.
97 The templates themselves start at START and range up to (but not including)
98 END.
99 */
100 typedef struct
101 {
102 const insn_template *start;
103 const insn_template *end;
104 }
105 templates;
106
107 /* 386 operand encoding bytes: see 386 book for details of this. */
108 typedef struct
109 {
110 unsigned int regmem; /* codes register or memory operand */
111 unsigned int reg; /* codes register operand (or extended opcode) */
112 unsigned int mode; /* how to interpret regmem & reg */
113 }
114 modrm_byte;
115
116 /* x86-64 extension prefix. */
117 typedef int rex_byte;
118
119 /* 386 opcode byte to code indirect addressing. */
120 typedef struct
121 {
122 unsigned base;
123 unsigned index;
124 unsigned scale;
125 }
126 sib_byte;
127
128 /* x86 arch names, types and features */
129 typedef struct
130 {
131 const char *name; /* arch name */
132 unsigned int len; /* arch string length */
133 enum processor_type type; /* arch type */
134 i386_cpu_flags flags; /* cpu feature flags */
135 unsigned int skip; /* show_arch should skip this. */
136 }
137 arch_entry;
138
139 /* Used to turn off indicated flags. */
140 typedef struct
141 {
142 const char *name; /* arch name */
143 unsigned int len; /* arch string length */
144 i386_cpu_flags flags; /* cpu feature flags */
145 }
146 noarch_entry;
147
148 static void update_code_flag (int, int);
149 static void set_code_flag (int);
150 static void set_16bit_gcc_code_flag (int);
151 static void set_intel_syntax (int);
152 static void set_intel_mnemonic (int);
153 static void set_allow_index_reg (int);
154 static void set_check (int);
155 static void set_cpu_arch (int);
156 #ifdef TE_PE
157 static void pe_directive_secrel (int);
158 #endif
159 static void signed_cons (int);
160 static char *output_invalid (int c);
161 static int i386_finalize_immediate (segT, expressionS *, i386_operand_type,
162 const char *);
163 static int i386_finalize_displacement (segT, expressionS *, i386_operand_type,
164 const char *);
165 static int i386_att_operand (char *);
166 static int i386_intel_operand (char *, int);
167 static int i386_intel_simplify (expressionS *);
168 static int i386_intel_parse_name (const char *, expressionS *);
169 static const reg_entry *parse_register (char *, char **);
170 static char *parse_insn (char *, char *);
171 static char *parse_operands (char *, const char *);
172 static void swap_operands (void);
173 static void swap_2_operands (int, int);
174 static void optimize_imm (void);
175 static void optimize_disp (void);
176 static const insn_template *match_template (char);
177 static int check_string (void);
178 static int process_suffix (void);
179 static int check_byte_reg (void);
180 static int check_long_reg (void);
181 static int check_qword_reg (void);
182 static int check_word_reg (void);
183 static int finalize_imm (void);
184 static int process_operands (void);
185 static const seg_entry *build_modrm_byte (void);
186 static void output_insn (void);
187 static void output_imm (fragS *, offsetT);
188 static void output_disp (fragS *, offsetT);
189 #ifndef I386COFF
190 static void s_bss (int);
191 #endif
192 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
193 static void handle_large_common (int small ATTRIBUTE_UNUSED);
194 #endif
195
196 static const char *default_arch = DEFAULT_ARCH;
197
198 /* This struct describes rounding control and SAE in the instruction. */
199 struct RC_Operation
200 {
201 enum rc_type
202 {
203 rne = 0,
204 rd,
205 ru,
206 rz,
207 saeonly
208 } type;
209 int operand;
210 };
211
212 static struct RC_Operation rc_op;
213
214 /* The struct describes masking, applied to OPERAND in the instruction.
215 MASK is a pointer to the corresponding mask register. ZEROING tells
216 whether merging or zeroing mask is used. */
217 struct Mask_Operation
218 {
219 const reg_entry *mask;
220 unsigned int zeroing;
221 /* The operand where this operation is associated. */
222 int operand;
223 };
224
225 static struct Mask_Operation mask_op;
226
227 /* The struct describes broadcasting, applied to OPERAND. FACTOR is
228 broadcast factor. */
229 struct Broadcast_Operation
230 {
231 /* Type of broadcast: no broadcast, {1to8}, or {1to16}. */
232 int type;
233
234 /* Index of broadcasted operand. */
235 int operand;
236 };
237
238 static struct Broadcast_Operation broadcast_op;
239
240 /* VEX prefix. */
241 typedef struct
242 {
243 /* VEX prefix is either 2 byte or 3 byte. EVEX is 4 byte. */
244 unsigned char bytes[4];
245 unsigned int length;
246 /* Destination or source register specifier. */
247 const reg_entry *register_specifier;
248 } vex_prefix;
249
250 /* 'md_assemble ()' gathers together information and puts it into a
251 i386_insn. */
252
253 union i386_op
254 {
255 expressionS *disps;
256 expressionS *imms;
257 const reg_entry *regs;
258 };
259
260 enum i386_error
261 {
262 operand_size_mismatch,
263 operand_type_mismatch,
264 register_type_mismatch,
265 number_of_operands_mismatch,
266 invalid_instruction_suffix,
267 bad_imm4,
268 old_gcc_only,
269 unsupported_with_intel_mnemonic,
270 unsupported_syntax,
271 unsupported,
272 invalid_vsib_address,
273 invalid_vector_register_set,
274 unsupported_vector_index_register,
275 unsupported_broadcast,
276 broadcast_not_on_src_operand,
277 broadcast_needed,
278 unsupported_masking,
279 mask_not_on_destination,
280 no_default_mask,
281 unsupported_rc_sae,
282 rc_sae_operand_not_last_imm,
283 invalid_register_operand,
284 try_vector_disp8
285 };
286
287 struct _i386_insn
288 {
289 /* TM holds the template for the insn were currently assembling. */
290 insn_template tm;
291
292 /* SUFFIX holds the instruction size suffix for byte, word, dword
293 or qword, if given. */
294 char suffix;
295
296 /* OPERANDS gives the number of given operands. */
297 unsigned int operands;
298
299 /* REG_OPERANDS, DISP_OPERANDS, MEM_OPERANDS, IMM_OPERANDS give the number
300 of given register, displacement, memory operands and immediate
301 operands. */
302 unsigned int reg_operands, disp_operands, mem_operands, imm_operands;
303
304 /* TYPES [i] is the type (see above #defines) which tells us how to
305 use OP[i] for the corresponding operand. */
306 i386_operand_type types[MAX_OPERANDS];
307
308 /* Displacement expression, immediate expression, or register for each
309 operand. */
310 union i386_op op[MAX_OPERANDS];
311
312 /* Flags for operands. */
313 unsigned int flags[MAX_OPERANDS];
314 #define Operand_PCrel 1
315
316 /* Relocation type for operand */
317 enum bfd_reloc_code_real reloc[MAX_OPERANDS];
318
319 /* BASE_REG, INDEX_REG, and LOG2_SCALE_FACTOR are used to encode
320 the base index byte below. */
321 const reg_entry *base_reg;
322 const reg_entry *index_reg;
323 unsigned int log2_scale_factor;
324
325 /* SEG gives the seg_entries of this insn. They are zero unless
326 explicit segment overrides are given. */
327 const seg_entry *seg[2];
328
329 /* Copied first memory operand string, for re-checking. */
330 char *memop1_string;
331
332 /* PREFIX holds all the given prefix opcodes (usually null).
333 PREFIXES is the number of prefix opcodes. */
334 unsigned int prefixes;
335 unsigned char prefix[MAX_PREFIXES];
336
337 /* RM and SIB are the modrm byte and the sib byte where the
338 addressing modes of this insn are encoded. */
339 modrm_byte rm;
340 rex_byte rex;
341 rex_byte vrex;
342 sib_byte sib;
343 vex_prefix vex;
344
345 /* Masking attributes. */
346 struct Mask_Operation *mask;
347
348 /* Rounding control and SAE attributes. */
349 struct RC_Operation *rounding;
350
351 /* Broadcasting attributes. */
352 struct Broadcast_Operation *broadcast;
353
354 /* Compressed disp8*N attribute. */
355 unsigned int memshift;
356
357 /* Swap operand in encoding. */
358 unsigned int swap_operand;
359
360 /* Prefer 8bit or 32bit displacement in encoding. */
361 enum
362 {
363 disp_encoding_default = 0,
364 disp_encoding_8bit,
365 disp_encoding_32bit
366 } disp_encoding;
367
368 /* REP prefix. */
369 const char *rep_prefix;
370
371 /* HLE prefix. */
372 const char *hle_prefix;
373
374 /* Have BND prefix. */
375 const char *bnd_prefix;
376
377 /* Need VREX to support upper 16 registers. */
378 int need_vrex;
379
380 /* Error message. */
381 enum i386_error error;
382 };
383
384 typedef struct _i386_insn i386_insn;
385
386 /* Link RC type with corresponding string, that'll be looked for in
387 asm. */
388 struct RC_name
389 {
390 enum rc_type type;
391 const char *name;
392 unsigned int len;
393 };
394
395 static const struct RC_name RC_NamesTable[] =
396 {
397 { rne, STRING_COMMA_LEN ("rn-sae") },
398 { rd, STRING_COMMA_LEN ("rd-sae") },
399 { ru, STRING_COMMA_LEN ("ru-sae") },
400 { rz, STRING_COMMA_LEN ("rz-sae") },
401 { saeonly, STRING_COMMA_LEN ("sae") },
402 };
403
404 /* List of chars besides those in app.c:symbol_chars that can start an
405 operand. Used to prevent the scrubber eating vital white-space. */
406 const char extra_symbol_chars[] = "*%-([{"
407 #ifdef LEX_AT
408 "@"
409 #endif
410 #ifdef LEX_QM
411 "?"
412 #endif
413 ;
414
415 #if (defined (TE_I386AIX) \
416 || ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) \
417 && !defined (TE_GNU) \
418 && !defined (TE_LINUX) \
419 && !defined (TE_NACL) \
420 && !defined (TE_NETWARE) \
421 && !defined (TE_FreeBSD) \
422 && !defined (TE_DragonFly) \
423 && !defined (TE_NetBSD)))
424 /* This array holds the chars that always start a comment. If the
425 pre-processor is disabled, these aren't very useful. The option
426 --divide will remove '/' from this list. */
427 const char *i386_comment_chars = "#/";
428 #define SVR4_COMMENT_CHARS 1
429 #define PREFIX_SEPARATOR '\\'
430
431 #else
432 const char *i386_comment_chars = "#";
433 #define PREFIX_SEPARATOR '/'
434 #endif
435
436 /* This array holds the chars that only start a comment at the beginning of
437 a line. If the line seems to have the form '# 123 filename'
438 .line and .file directives will appear in the pre-processed output.
439 Note that input_file.c hand checks for '#' at the beginning of the
440 first line of the input file. This is because the compiler outputs
441 #NO_APP at the beginning of its output.
442 Also note that comments started like this one will always work if
443 '/' isn't otherwise defined. */
444 const char line_comment_chars[] = "#/";
445
446 const char line_separator_chars[] = ";";
447
448 /* Chars that can be used to separate mant from exp in floating point
449 nums. */
450 const char EXP_CHARS[] = "eE";
451
452 /* Chars that mean this number is a floating point constant
453 As in 0f12.456
454 or 0d1.2345e12. */
455 const char FLT_CHARS[] = "fFdDxX";
456
457 /* Tables for lexical analysis. */
458 static char mnemonic_chars[256];
459 static char register_chars[256];
460 static char operand_chars[256];
461 static char identifier_chars[256];
462 static char digit_chars[256];
463
464 /* Lexical macros. */
465 #define is_mnemonic_char(x) (mnemonic_chars[(unsigned char) x])
466 #define is_operand_char(x) (operand_chars[(unsigned char) x])
467 #define is_register_char(x) (register_chars[(unsigned char) x])
468 #define is_space_char(x) ((x) == ' ')
469 #define is_identifier_char(x) (identifier_chars[(unsigned char) x])
470 #define is_digit_char(x) (digit_chars[(unsigned char) x])
471
472 /* All non-digit non-letter characters that may occur in an operand. */
473 static char operand_special_chars[] = "%$-+(,)*._~/<>|&^!:[@]";
474
475 /* md_assemble() always leaves the strings it's passed unaltered. To
476 effect this we maintain a stack of saved characters that we've smashed
477 with '\0's (indicating end of strings for various sub-fields of the
478 assembler instruction). */
479 static char save_stack[32];
480 static char *save_stack_p;
481 #define END_STRING_AND_SAVE(s) \
482 do { *save_stack_p++ = *(s); *(s) = '\0'; } while (0)
483 #define RESTORE_END_STRING(s) \
484 do { *(s) = *--save_stack_p; } while (0)
485
486 /* The instruction we're assembling. */
487 static i386_insn i;
488
489 /* Possible templates for current insn. */
490 static const templates *current_templates;
491
492 /* Per instruction expressionS buffers: max displacements & immediates. */
493 static expressionS disp_expressions[MAX_MEMORY_OPERANDS];
494 static expressionS im_expressions[MAX_IMMEDIATE_OPERANDS];
495
496 /* Current operand we are working on. */
497 static int this_operand = -1;
498
499 /* We support four different modes. FLAG_CODE variable is used to distinguish
500 these. */
501
502 enum flag_code {
503 CODE_32BIT,
504 CODE_16BIT,
505 CODE_64BIT };
506
507 static enum flag_code flag_code;
508 static unsigned int object_64bit;
509 static unsigned int disallow_64bit_reloc;
510 static int use_rela_relocations = 0;
511
512 #if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
513 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
514 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
515
516 /* The ELF ABI to use. */
517 enum x86_elf_abi
518 {
519 I386_ABI,
520 X86_64_ABI,
521 X86_64_X32_ABI
522 };
523
524 static enum x86_elf_abi x86_elf_abi = I386_ABI;
525 #endif
526
527 #if defined (TE_PE) || defined (TE_PEP)
528 /* Use big object file format. */
529 static int use_big_obj = 0;
530 #endif
531
532 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
533 /* 1 if generating code for a shared library. */
534 static int shared = 0;
535 #endif
536
537 /* 1 for intel syntax,
538 0 if att syntax. */
539 static int intel_syntax = 0;
540
541 /* 1 for Intel64 ISA,
542 0 if AMD64 ISA. */
543 static int intel64;
544
545 /* 1 for intel mnemonic,
546 0 if att mnemonic. */
547 static int intel_mnemonic = !SYSV386_COMPAT;
548
549 /* 1 if support old (<= 2.8.1) versions of gcc. */
550 static int old_gcc = OLDGCC_COMPAT;
551
552 /* 1 if pseudo registers are permitted. */
553 static int allow_pseudo_reg = 0;
554
555 /* 1 if register prefix % not required. */
556 static int allow_naked_reg = 0;
557
558 /* 1 if the assembler should add BND prefix for all control-transferring
559 instructions supporting it, even if this prefix wasn't specified
560 explicitly. */
561 static int add_bnd_prefix = 0;
562
563 /* 1 if pseudo index register, eiz/riz, is allowed . */
564 static int allow_index_reg = 0;
565
566 /* 1 if the assembler should ignore LOCK prefix, even if it was
567 specified explicitly. */
568 static int omit_lock_prefix = 0;
569
570 /* 1 if the assembler should encode lfence, mfence, and sfence as
571 "lock addl $0, (%{re}sp)". */
572 static int avoid_fence = 0;
573
574 /* 1 if the assembler should generate relax relocations. */
575
576 static int generate_relax_relocations
577 = DEFAULT_GENERATE_X86_RELAX_RELOCATIONS;
578
579 static enum check_kind
580 {
581 check_none = 0,
582 check_warning,
583 check_error
584 }
585 sse_check, operand_check = check_warning;
586
587 /* Register prefix used for error message. */
588 static const char *register_prefix = "%";
589
590 /* Used in 16 bit gcc mode to add an l suffix to call, ret, enter,
591 leave, push, and pop instructions so that gcc has the same stack
592 frame as in 32 bit mode. */
593 static char stackop_size = '\0';
594
595 /* Non-zero to optimize code alignment. */
596 int optimize_align_code = 1;
597
598 /* Non-zero to quieten some warnings. */
599 static int quiet_warnings = 0;
600
601 /* CPU name. */
602 static const char *cpu_arch_name = NULL;
603 static char *cpu_sub_arch_name = NULL;
604
605 /* CPU feature flags. */
606 static i386_cpu_flags cpu_arch_flags = CPU_UNKNOWN_FLAGS;
607
608 /* If we have selected a cpu we are generating instructions for. */
609 static int cpu_arch_tune_set = 0;
610
611 /* Cpu we are generating instructions for. */
612 enum processor_type cpu_arch_tune = PROCESSOR_UNKNOWN;
613
614 /* CPU feature flags of cpu we are generating instructions for. */
615 static i386_cpu_flags cpu_arch_tune_flags;
616
617 /* CPU instruction set architecture used. */
618 enum processor_type cpu_arch_isa = PROCESSOR_UNKNOWN;
619
620 /* CPU feature flags of instruction set architecture used. */
621 i386_cpu_flags cpu_arch_isa_flags;
622
623 /* If set, conditional jumps are not automatically promoted to handle
624 larger than a byte offset. */
625 static unsigned int no_cond_jump_promotion = 0;
626
627 /* Encode SSE instructions with VEX prefix. */
628 static unsigned int sse2avx;
629
630 /* Encode scalar AVX instructions with specific vector length. */
631 static enum
632 {
633 vex128 = 0,
634 vex256
635 } avxscalar;
636
637 /* Encode scalar EVEX LIG instructions with specific vector length. */
638 static enum
639 {
640 evexl128 = 0,
641 evexl256,
642 evexl512
643 } evexlig;
644
645 /* Encode EVEX WIG instructions with specific evex.w. */
646 static enum
647 {
648 evexw0 = 0,
649 evexw1
650 } evexwig;
651
652 /* Value to encode in EVEX RC bits, for SAE-only instructions. */
653 static enum rc_type evexrcig = rne;
654
655 /* Pre-defined "_GLOBAL_OFFSET_TABLE_". */
656 static symbolS *GOT_symbol;
657
658 /* The dwarf2 return column, adjusted for 32 or 64 bit. */
659 unsigned int x86_dwarf2_return_column;
660
661 /* The dwarf2 data alignment, adjusted for 32 or 64 bit. */
662 int x86_cie_data_alignment;
663
664 /* Interface to relax_segment.
665 There are 3 major relax states for 386 jump insns because the
666 different types of jumps add different sizes to frags when we're
667 figuring out what sort of jump to choose to reach a given label. */
668
669 /* Types. */
670 #define UNCOND_JUMP 0
671 #define COND_JUMP 1
672 #define COND_JUMP86 2
673
674 /* Sizes. */
675 #define CODE16 1
676 #define SMALL 0
677 #define SMALL16 (SMALL | CODE16)
678 #define BIG 2
679 #define BIG16 (BIG | CODE16)
680
681 #ifndef INLINE
682 #ifdef __GNUC__
683 #define INLINE __inline__
684 #else
685 #define INLINE
686 #endif
687 #endif
688
689 #define ENCODE_RELAX_STATE(type, size) \
690 ((relax_substateT) (((type) << 2) | (size)))
691 #define TYPE_FROM_RELAX_STATE(s) \
692 ((s) >> 2)
693 #define DISP_SIZE_FROM_RELAX_STATE(s) \
694 ((((s) & 3) == BIG ? 4 : (((s) & 3) == BIG16 ? 2 : 1)))
695
696 /* This table is used by relax_frag to promote short jumps to long
697 ones where necessary. SMALL (short) jumps may be promoted to BIG
698 (32 bit long) ones, and SMALL16 jumps to BIG16 (16 bit long). We
699 don't allow a short jump in a 32 bit code segment to be promoted to
700 a 16 bit offset jump because it's slower (requires data size
701 prefix), and doesn't work, unless the destination is in the bottom
702 64k of the code segment (The top 16 bits of eip are zeroed). */
703
704 const relax_typeS md_relax_table[] =
705 {
706 /* The fields are:
707 1) most positive reach of this state,
708 2) most negative reach of this state,
709 3) how many bytes this mode will have in the variable part of the frag
710 4) which index into the table to try if we can't fit into this one. */
711
712 /* UNCOND_JUMP states. */
713 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG)},
714 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16)},
715 /* dword jmp adds 4 bytes to frag:
716 0 extra opcode bytes, 4 displacement bytes. */
717 {0, 0, 4, 0},
718 /* word jmp adds 2 byte2 to frag:
719 0 extra opcode bytes, 2 displacement bytes. */
720 {0, 0, 2, 0},
721
722 /* COND_JUMP states. */
723 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG)},
724 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG16)},
725 /* dword conditionals adds 5 bytes to frag:
726 1 extra opcode byte, 4 displacement bytes. */
727 {0, 0, 5, 0},
728 /* word conditionals add 3 bytes to frag:
729 1 extra opcode byte, 2 displacement bytes. */
730 {0, 0, 3, 0},
731
732 /* COND_JUMP86 states. */
733 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG)},
734 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG16)},
735 /* dword conditionals adds 5 bytes to frag:
736 1 extra opcode byte, 4 displacement bytes. */
737 {0, 0, 5, 0},
738 /* word conditionals add 4 bytes to frag:
739 1 displacement byte and a 3 byte long branch insn. */
740 {0, 0, 4, 0}
741 };
742
743 static const arch_entry cpu_arch[] =
744 {
745 /* Do not replace the first two entries - i386_target_format()
746 relies on them being there in this order. */
747 { STRING_COMMA_LEN ("generic32"), PROCESSOR_GENERIC32,
748 CPU_GENERIC32_FLAGS, 0 },
749 { STRING_COMMA_LEN ("generic64"), PROCESSOR_GENERIC64,
750 CPU_GENERIC64_FLAGS, 0 },
751 { STRING_COMMA_LEN ("i8086"), PROCESSOR_UNKNOWN,
752 CPU_NONE_FLAGS, 0 },
753 { STRING_COMMA_LEN ("i186"), PROCESSOR_UNKNOWN,
754 CPU_I186_FLAGS, 0 },
755 { STRING_COMMA_LEN ("i286"), PROCESSOR_UNKNOWN,
756 CPU_I286_FLAGS, 0 },
757 { STRING_COMMA_LEN ("i386"), PROCESSOR_I386,
758 CPU_I386_FLAGS, 0 },
759 { STRING_COMMA_LEN ("i486"), PROCESSOR_I486,
760 CPU_I486_FLAGS, 0 },
761 { STRING_COMMA_LEN ("i586"), PROCESSOR_PENTIUM,
762 CPU_I586_FLAGS, 0 },
763 { STRING_COMMA_LEN ("i686"), PROCESSOR_PENTIUMPRO,
764 CPU_I686_FLAGS, 0 },
765 { STRING_COMMA_LEN ("pentium"), PROCESSOR_PENTIUM,
766 CPU_I586_FLAGS, 0 },
767 { STRING_COMMA_LEN ("pentiumpro"), PROCESSOR_PENTIUMPRO,
768 CPU_PENTIUMPRO_FLAGS, 0 },
769 { STRING_COMMA_LEN ("pentiumii"), PROCESSOR_PENTIUMPRO,
770 CPU_P2_FLAGS, 0 },
771 { STRING_COMMA_LEN ("pentiumiii"),PROCESSOR_PENTIUMPRO,
772 CPU_P3_FLAGS, 0 },
773 { STRING_COMMA_LEN ("pentium4"), PROCESSOR_PENTIUM4,
774 CPU_P4_FLAGS, 0 },
775 { STRING_COMMA_LEN ("prescott"), PROCESSOR_NOCONA,
776 CPU_CORE_FLAGS, 0 },
777 { STRING_COMMA_LEN ("nocona"), PROCESSOR_NOCONA,
778 CPU_NOCONA_FLAGS, 0 },
779 { STRING_COMMA_LEN ("yonah"), PROCESSOR_CORE,
780 CPU_CORE_FLAGS, 1 },
781 { STRING_COMMA_LEN ("core"), PROCESSOR_CORE,
782 CPU_CORE_FLAGS, 0 },
783 { STRING_COMMA_LEN ("merom"), PROCESSOR_CORE2,
784 CPU_CORE2_FLAGS, 1 },
785 { STRING_COMMA_LEN ("core2"), PROCESSOR_CORE2,
786 CPU_CORE2_FLAGS, 0 },
787 { STRING_COMMA_LEN ("corei7"), PROCESSOR_COREI7,
788 CPU_COREI7_FLAGS, 0 },
789 { STRING_COMMA_LEN ("l1om"), PROCESSOR_L1OM,
790 CPU_L1OM_FLAGS, 0 },
791 { STRING_COMMA_LEN ("k1om"), PROCESSOR_K1OM,
792 CPU_K1OM_FLAGS, 0 },
793 { STRING_COMMA_LEN ("iamcu"), PROCESSOR_IAMCU,
794 CPU_IAMCU_FLAGS, 0 },
795 { STRING_COMMA_LEN ("k6"), PROCESSOR_K6,
796 CPU_K6_FLAGS, 0 },
797 { STRING_COMMA_LEN ("k6_2"), PROCESSOR_K6,
798 CPU_K6_2_FLAGS, 0 },
799 { STRING_COMMA_LEN ("athlon"), PROCESSOR_ATHLON,
800 CPU_ATHLON_FLAGS, 0 },
801 { STRING_COMMA_LEN ("sledgehammer"), PROCESSOR_K8,
802 CPU_K8_FLAGS, 1 },
803 { STRING_COMMA_LEN ("opteron"), PROCESSOR_K8,
804 CPU_K8_FLAGS, 0 },
805 { STRING_COMMA_LEN ("k8"), PROCESSOR_K8,
806 CPU_K8_FLAGS, 0 },
807 { STRING_COMMA_LEN ("amdfam10"), PROCESSOR_AMDFAM10,
808 CPU_AMDFAM10_FLAGS, 0 },
809 { STRING_COMMA_LEN ("bdver1"), PROCESSOR_BD,
810 CPU_BDVER1_FLAGS, 0 },
811 { STRING_COMMA_LEN ("bdver2"), PROCESSOR_BD,
812 CPU_BDVER2_FLAGS, 0 },
813 { STRING_COMMA_LEN ("bdver3"), PROCESSOR_BD,
814 CPU_BDVER3_FLAGS, 0 },
815 { STRING_COMMA_LEN ("bdver4"), PROCESSOR_BD,
816 CPU_BDVER4_FLAGS, 0 },
817 { STRING_COMMA_LEN ("znver1"), PROCESSOR_ZNVER,
818 CPU_ZNVER1_FLAGS, 0 },
819 { STRING_COMMA_LEN ("btver1"), PROCESSOR_BT,
820 CPU_BTVER1_FLAGS, 0 },
821 { STRING_COMMA_LEN ("btver2"), PROCESSOR_BT,
822 CPU_BTVER2_FLAGS, 0 },
823 { STRING_COMMA_LEN (".8087"), PROCESSOR_UNKNOWN,
824 CPU_8087_FLAGS, 0 },
825 { STRING_COMMA_LEN (".287"), PROCESSOR_UNKNOWN,
826 CPU_287_FLAGS, 0 },
827 { STRING_COMMA_LEN (".387"), PROCESSOR_UNKNOWN,
828 CPU_387_FLAGS, 0 },
829 { STRING_COMMA_LEN (".687"), PROCESSOR_UNKNOWN,
830 CPU_687_FLAGS, 0 },
831 { STRING_COMMA_LEN (".mmx"), PROCESSOR_UNKNOWN,
832 CPU_MMX_FLAGS, 0 },
833 { STRING_COMMA_LEN (".sse"), PROCESSOR_UNKNOWN,
834 CPU_SSE_FLAGS, 0 },
835 { STRING_COMMA_LEN (".sse2"), PROCESSOR_UNKNOWN,
836 CPU_SSE2_FLAGS, 0 },
837 { STRING_COMMA_LEN (".sse3"), PROCESSOR_UNKNOWN,
838 CPU_SSE3_FLAGS, 0 },
839 { STRING_COMMA_LEN (".ssse3"), PROCESSOR_UNKNOWN,
840 CPU_SSSE3_FLAGS, 0 },
841 { STRING_COMMA_LEN (".sse4.1"), PROCESSOR_UNKNOWN,
842 CPU_SSE4_1_FLAGS, 0 },
843 { STRING_COMMA_LEN (".sse4.2"), PROCESSOR_UNKNOWN,
844 CPU_SSE4_2_FLAGS, 0 },
845 { STRING_COMMA_LEN (".sse4"), PROCESSOR_UNKNOWN,
846 CPU_SSE4_2_FLAGS, 0 },
847 { STRING_COMMA_LEN (".avx"), PROCESSOR_UNKNOWN,
848 CPU_AVX_FLAGS, 0 },
849 { STRING_COMMA_LEN (".avx2"), PROCESSOR_UNKNOWN,
850 CPU_AVX2_FLAGS, 0 },
851 { STRING_COMMA_LEN (".avx512f"), PROCESSOR_UNKNOWN,
852 CPU_AVX512F_FLAGS, 0 },
853 { STRING_COMMA_LEN (".avx512cd"), PROCESSOR_UNKNOWN,
854 CPU_AVX512CD_FLAGS, 0 },
855 { STRING_COMMA_LEN (".avx512er"), PROCESSOR_UNKNOWN,
856 CPU_AVX512ER_FLAGS, 0 },
857 { STRING_COMMA_LEN (".avx512pf"), PROCESSOR_UNKNOWN,
858 CPU_AVX512PF_FLAGS, 0 },
859 { STRING_COMMA_LEN (".avx512dq"), PROCESSOR_UNKNOWN,
860 CPU_AVX512DQ_FLAGS, 0 },
861 { STRING_COMMA_LEN (".avx512bw"), PROCESSOR_UNKNOWN,
862 CPU_AVX512BW_FLAGS, 0 },
863 { STRING_COMMA_LEN (".avx512vl"), PROCESSOR_UNKNOWN,
864 CPU_AVX512VL_FLAGS, 0 },
865 { STRING_COMMA_LEN (".vmx"), PROCESSOR_UNKNOWN,
866 CPU_VMX_FLAGS, 0 },
867 { STRING_COMMA_LEN (".vmfunc"), PROCESSOR_UNKNOWN,
868 CPU_VMFUNC_FLAGS, 0 },
869 { STRING_COMMA_LEN (".smx"), PROCESSOR_UNKNOWN,
870 CPU_SMX_FLAGS, 0 },
871 { STRING_COMMA_LEN (".xsave"), PROCESSOR_UNKNOWN,
872 CPU_XSAVE_FLAGS, 0 },
873 { STRING_COMMA_LEN (".xsaveopt"), PROCESSOR_UNKNOWN,
874 CPU_XSAVEOPT_FLAGS, 0 },
875 { STRING_COMMA_LEN (".xsavec"), PROCESSOR_UNKNOWN,
876 CPU_XSAVEC_FLAGS, 0 },
877 { STRING_COMMA_LEN (".xsaves"), PROCESSOR_UNKNOWN,
878 CPU_XSAVES_FLAGS, 0 },
879 { STRING_COMMA_LEN (".aes"), PROCESSOR_UNKNOWN,
880 CPU_AES_FLAGS, 0 },
881 { STRING_COMMA_LEN (".pclmul"), PROCESSOR_UNKNOWN,
882 CPU_PCLMUL_FLAGS, 0 },
883 { STRING_COMMA_LEN (".clmul"), PROCESSOR_UNKNOWN,
884 CPU_PCLMUL_FLAGS, 1 },
885 { STRING_COMMA_LEN (".fsgsbase"), PROCESSOR_UNKNOWN,
886 CPU_FSGSBASE_FLAGS, 0 },
887 { STRING_COMMA_LEN (".rdrnd"), PROCESSOR_UNKNOWN,
888 CPU_RDRND_FLAGS, 0 },
889 { STRING_COMMA_LEN (".f16c"), PROCESSOR_UNKNOWN,
890 CPU_F16C_FLAGS, 0 },
891 { STRING_COMMA_LEN (".bmi2"), PROCESSOR_UNKNOWN,
892 CPU_BMI2_FLAGS, 0 },
893 { STRING_COMMA_LEN (".fma"), PROCESSOR_UNKNOWN,
894 CPU_FMA_FLAGS, 0 },
895 { STRING_COMMA_LEN (".fma4"), PROCESSOR_UNKNOWN,
896 CPU_FMA4_FLAGS, 0 },
897 { STRING_COMMA_LEN (".xop"), PROCESSOR_UNKNOWN,
898 CPU_XOP_FLAGS, 0 },
899 { STRING_COMMA_LEN (".lwp"), PROCESSOR_UNKNOWN,
900 CPU_LWP_FLAGS, 0 },
901 { STRING_COMMA_LEN (".movbe"), PROCESSOR_UNKNOWN,
902 CPU_MOVBE_FLAGS, 0 },
903 { STRING_COMMA_LEN (".cx16"), PROCESSOR_UNKNOWN,
904 CPU_CX16_FLAGS, 0 },
905 { STRING_COMMA_LEN (".ept"), PROCESSOR_UNKNOWN,
906 CPU_EPT_FLAGS, 0 },
907 { STRING_COMMA_LEN (".lzcnt"), PROCESSOR_UNKNOWN,
908 CPU_LZCNT_FLAGS, 0 },
909 { STRING_COMMA_LEN (".hle"), PROCESSOR_UNKNOWN,
910 CPU_HLE_FLAGS, 0 },
911 { STRING_COMMA_LEN (".rtm"), PROCESSOR_UNKNOWN,
912 CPU_RTM_FLAGS, 0 },
913 { STRING_COMMA_LEN (".invpcid"), PROCESSOR_UNKNOWN,
914 CPU_INVPCID_FLAGS, 0 },
915 { STRING_COMMA_LEN (".clflush"), PROCESSOR_UNKNOWN,
916 CPU_CLFLUSH_FLAGS, 0 },
917 { STRING_COMMA_LEN (".nop"), PROCESSOR_UNKNOWN,
918 CPU_NOP_FLAGS, 0 },
919 { STRING_COMMA_LEN (".syscall"), PROCESSOR_UNKNOWN,
920 CPU_SYSCALL_FLAGS, 0 },
921 { STRING_COMMA_LEN (".rdtscp"), PROCESSOR_UNKNOWN,
922 CPU_RDTSCP_FLAGS, 0 },
923 { STRING_COMMA_LEN (".3dnow"), PROCESSOR_UNKNOWN,
924 CPU_3DNOW_FLAGS, 0 },
925 { STRING_COMMA_LEN (".3dnowa"), PROCESSOR_UNKNOWN,
926 CPU_3DNOWA_FLAGS, 0 },
927 { STRING_COMMA_LEN (".padlock"), PROCESSOR_UNKNOWN,
928 CPU_PADLOCK_FLAGS, 0 },
929 { STRING_COMMA_LEN (".pacifica"), PROCESSOR_UNKNOWN,
930 CPU_SVME_FLAGS, 1 },
931 { STRING_COMMA_LEN (".svme"), PROCESSOR_UNKNOWN,
932 CPU_SVME_FLAGS, 0 },
933 { STRING_COMMA_LEN (".sse4a"), PROCESSOR_UNKNOWN,
934 CPU_SSE4A_FLAGS, 0 },
935 { STRING_COMMA_LEN (".abm"), PROCESSOR_UNKNOWN,
936 CPU_ABM_FLAGS, 0 },
937 { STRING_COMMA_LEN (".bmi"), PROCESSOR_UNKNOWN,
938 CPU_BMI_FLAGS, 0 },
939 { STRING_COMMA_LEN (".tbm"), PROCESSOR_UNKNOWN,
940 CPU_TBM_FLAGS, 0 },
941 { STRING_COMMA_LEN (".adx"), PROCESSOR_UNKNOWN,
942 CPU_ADX_FLAGS, 0 },
943 { STRING_COMMA_LEN (".rdseed"), PROCESSOR_UNKNOWN,
944 CPU_RDSEED_FLAGS, 0 },
945 { STRING_COMMA_LEN (".prfchw"), PROCESSOR_UNKNOWN,
946 CPU_PRFCHW_FLAGS, 0 },
947 { STRING_COMMA_LEN (".smap"), PROCESSOR_UNKNOWN,
948 CPU_SMAP_FLAGS, 0 },
949 { STRING_COMMA_LEN (".mpx"), PROCESSOR_UNKNOWN,
950 CPU_MPX_FLAGS, 0 },
951 { STRING_COMMA_LEN (".sha"), PROCESSOR_UNKNOWN,
952 CPU_SHA_FLAGS, 0 },
953 { STRING_COMMA_LEN (".clflushopt"), PROCESSOR_UNKNOWN,
954 CPU_CLFLUSHOPT_FLAGS, 0 },
955 { STRING_COMMA_LEN (".prefetchwt1"), PROCESSOR_UNKNOWN,
956 CPU_PREFETCHWT1_FLAGS, 0 },
957 { STRING_COMMA_LEN (".se1"), PROCESSOR_UNKNOWN,
958 CPU_SE1_FLAGS, 0 },
959 { STRING_COMMA_LEN (".clwb"), PROCESSOR_UNKNOWN,
960 CPU_CLWB_FLAGS, 0 },
961 { STRING_COMMA_LEN (".avx512ifma"), PROCESSOR_UNKNOWN,
962 CPU_AVX512IFMA_FLAGS, 0 },
963 { STRING_COMMA_LEN (".avx512vbmi"), PROCESSOR_UNKNOWN,
964 CPU_AVX512VBMI_FLAGS, 0 },
965 { STRING_COMMA_LEN (".avx512_4fmaps"), PROCESSOR_UNKNOWN,
966 CPU_AVX512_4FMAPS_FLAGS, 0 },
967 { STRING_COMMA_LEN (".avx512_4vnniw"), PROCESSOR_UNKNOWN,
968 CPU_AVX512_4VNNIW_FLAGS, 0 },
969 { STRING_COMMA_LEN (".avx512_vpopcntdq"), PROCESSOR_UNKNOWN,
970 CPU_AVX512_VPOPCNTDQ_FLAGS, 0 },
971 { STRING_COMMA_LEN (".clzero"), PROCESSOR_UNKNOWN,
972 CPU_CLZERO_FLAGS, 0 },
973 { STRING_COMMA_LEN (".mwaitx"), PROCESSOR_UNKNOWN,
974 CPU_MWAITX_FLAGS, 0 },
975 { STRING_COMMA_LEN (".ospke"), PROCESSOR_UNKNOWN,
976 CPU_OSPKE_FLAGS, 0 },
977 { STRING_COMMA_LEN (".rdpid"), PROCESSOR_UNKNOWN,
978 CPU_RDPID_FLAGS, 0 },
979 { STRING_COMMA_LEN (".ptwrite"), PROCESSOR_UNKNOWN,
980 CPU_PTWRITE_FLAGS, 0 },
981 };
982
983 static const noarch_entry cpu_noarch[] =
984 {
985 { STRING_COMMA_LEN ("no87"), CPU_ANY_X87_FLAGS },
986 { STRING_COMMA_LEN ("no287"), CPU_ANY_287_FLAGS },
987 { STRING_COMMA_LEN ("no387"), CPU_ANY_387_FLAGS },
988 { STRING_COMMA_LEN ("no687"), CPU_ANY_687_FLAGS },
989 { STRING_COMMA_LEN ("nommx"), CPU_ANY_MMX_FLAGS },
990 { STRING_COMMA_LEN ("nosse"), CPU_ANY_SSE_FLAGS },
991 { STRING_COMMA_LEN ("nosse2"), CPU_ANY_SSE2_FLAGS },
992 { STRING_COMMA_LEN ("nosse3"), CPU_ANY_SSE3_FLAGS },
993 { STRING_COMMA_LEN ("nossse3"), CPU_ANY_SSSE3_FLAGS },
994 { STRING_COMMA_LEN ("nosse4.1"), CPU_ANY_SSE4_1_FLAGS },
995 { STRING_COMMA_LEN ("nosse4.2"), CPU_ANY_SSE4_2_FLAGS },
996 { STRING_COMMA_LEN ("nosse4"), CPU_ANY_SSE4_1_FLAGS },
997 { STRING_COMMA_LEN ("noavx"), CPU_ANY_AVX_FLAGS },
998 { STRING_COMMA_LEN ("noavx2"), CPU_ANY_AVX2_FLAGS },
999 { STRING_COMMA_LEN ("noavx512f"), CPU_ANY_AVX512F_FLAGS },
1000 { STRING_COMMA_LEN ("noavx512cd"), CPU_ANY_AVX512CD_FLAGS },
1001 { STRING_COMMA_LEN ("noavx512er"), CPU_ANY_AVX512ER_FLAGS },
1002 { STRING_COMMA_LEN ("noavx512pf"), CPU_ANY_AVX512PF_FLAGS },
1003 { STRING_COMMA_LEN ("noavx512dq"), CPU_ANY_AVX512DQ_FLAGS },
1004 { STRING_COMMA_LEN ("noavx512bw"), CPU_ANY_AVX512BW_FLAGS },
1005 { STRING_COMMA_LEN ("noavx512vl"), CPU_ANY_AVX512VL_FLAGS },
1006 { STRING_COMMA_LEN ("noavx512ifma"), CPU_ANY_AVX512IFMA_FLAGS },
1007 { STRING_COMMA_LEN ("noavx512vbmi"), CPU_ANY_AVX512VBMI_FLAGS },
1008 { STRING_COMMA_LEN ("noavx512_4fmaps"), CPU_ANY_AVX512_4FMAPS_FLAGS },
1009 { STRING_COMMA_LEN ("noavx512_4vnniw"), CPU_ANY_AVX512_4VNNIW_FLAGS },
1010 { STRING_COMMA_LEN ("noavx512_vpopcntdq"), CPU_ANY_AVX512_VPOPCNTDQ_FLAGS },
1011 };
1012
1013 #ifdef I386COFF
1014 /* Like s_lcomm_internal in gas/read.c but the alignment string
1015 is allowed to be optional. */
1016
1017 static symbolS *
1018 pe_lcomm_internal (int needs_align, symbolS *symbolP, addressT size)
1019 {
1020 addressT align = 0;
1021
1022 SKIP_WHITESPACE ();
1023
1024 if (needs_align
1025 && *input_line_pointer == ',')
1026 {
1027 align = parse_align (needs_align - 1);
1028
1029 if (align == (addressT) -1)
1030 return NULL;
1031 }
1032 else
1033 {
1034 if (size >= 8)
1035 align = 3;
1036 else if (size >= 4)
1037 align = 2;
1038 else if (size >= 2)
1039 align = 1;
1040 else
1041 align = 0;
1042 }
1043
1044 bss_alloc (symbolP, size, align);
1045 return symbolP;
1046 }
1047
1048 static void
1049 pe_lcomm (int needs_align)
1050 {
1051 s_comm_internal (needs_align * 2, pe_lcomm_internal);
1052 }
1053 #endif
1054
1055 const pseudo_typeS md_pseudo_table[] =
1056 {
1057 #if !defined(OBJ_AOUT) && !defined(USE_ALIGN_PTWO)
1058 {"align", s_align_bytes, 0},
1059 #else
1060 {"align", s_align_ptwo, 0},
1061 #endif
1062 {"arch", set_cpu_arch, 0},
1063 #ifndef I386COFF
1064 {"bss", s_bss, 0},
1065 #else
1066 {"lcomm", pe_lcomm, 1},
1067 #endif
1068 {"ffloat", float_cons, 'f'},
1069 {"dfloat", float_cons, 'd'},
1070 {"tfloat", float_cons, 'x'},
1071 {"value", cons, 2},
1072 {"slong", signed_cons, 4},
1073 {"noopt", s_ignore, 0},
1074 {"optim", s_ignore, 0},
1075 {"code16gcc", set_16bit_gcc_code_flag, CODE_16BIT},
1076 {"code16", set_code_flag, CODE_16BIT},
1077 {"code32", set_code_flag, CODE_32BIT},
1078 {"code64", set_code_flag, CODE_64BIT},
1079 {"intel_syntax", set_intel_syntax, 1},
1080 {"att_syntax", set_intel_syntax, 0},
1081 {"intel_mnemonic", set_intel_mnemonic, 1},
1082 {"att_mnemonic", set_intel_mnemonic, 0},
1083 {"allow_index_reg", set_allow_index_reg, 1},
1084 {"disallow_index_reg", set_allow_index_reg, 0},
1085 {"sse_check", set_check, 0},
1086 {"operand_check", set_check, 1},
1087 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
1088 {"largecomm", handle_large_common, 0},
1089 #else
1090 {"file", (void (*) (int)) dwarf2_directive_file, 0},
1091 {"loc", dwarf2_directive_loc, 0},
1092 {"loc_mark_labels", dwarf2_directive_loc_mark_labels, 0},
1093 #endif
1094 #ifdef TE_PE
1095 {"secrel32", pe_directive_secrel, 0},
1096 #endif
1097 {0, 0, 0}
1098 };
1099
1100 /* For interface with expression (). */
1101 extern char *input_line_pointer;
1102
1103 /* Hash table for instruction mnemonic lookup. */
1104 static struct hash_control *op_hash;
1105
1106 /* Hash table for register lookup. */
1107 static struct hash_control *reg_hash;
1108 \f
1109 void
1110 i386_align_code (fragS *fragP, int count)
1111 {
1112 /* Various efficient no-op patterns for aligning code labels.
1113 Note: Don't try to assemble the instructions in the comments.
1114 0L and 0w are not legal. */
1115 static const unsigned char f32_1[] =
1116 {0x90}; /* nop */
1117 static const unsigned char f32_2[] =
1118 {0x66,0x90}; /* xchg %ax,%ax */
1119 static const unsigned char f32_3[] =
1120 {0x8d,0x76,0x00}; /* leal 0(%esi),%esi */
1121 static const unsigned char f32_4[] =
1122 {0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
1123 static const unsigned char f32_5[] =
1124 {0x90, /* nop */
1125 0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
1126 static const unsigned char f32_6[] =
1127 {0x8d,0xb6,0x00,0x00,0x00,0x00}; /* leal 0L(%esi),%esi */
1128 static const unsigned char f32_7[] =
1129 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
1130 static const unsigned char f32_8[] =
1131 {0x90, /* nop */
1132 0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
1133 static const unsigned char f32_9[] =
1134 {0x89,0xf6, /* movl %esi,%esi */
1135 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
1136 static const unsigned char f32_10[] =
1137 {0x8d,0x76,0x00, /* leal 0(%esi),%esi */
1138 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
1139 static const unsigned char f32_11[] =
1140 {0x8d,0x74,0x26,0x00, /* leal 0(%esi,1),%esi */
1141 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
1142 static const unsigned char f32_12[] =
1143 {0x8d,0xb6,0x00,0x00,0x00,0x00, /* leal 0L(%esi),%esi */
1144 0x8d,0xbf,0x00,0x00,0x00,0x00}; /* leal 0L(%edi),%edi */
1145 static const unsigned char f32_13[] =
1146 {0x8d,0xb6,0x00,0x00,0x00,0x00, /* leal 0L(%esi),%esi */
1147 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
1148 static const unsigned char f32_14[] =
1149 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00, /* leal 0L(%esi,1),%esi */
1150 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
1151 static const unsigned char f16_3[] =
1152 {0x8d,0x74,0x00}; /* lea 0(%esi),%esi */
1153 static const unsigned char f16_4[] =
1154 {0x8d,0xb4,0x00,0x00}; /* lea 0w(%si),%si */
1155 static const unsigned char f16_5[] =
1156 {0x90, /* nop */
1157 0x8d,0xb4,0x00,0x00}; /* lea 0w(%si),%si */
1158 static const unsigned char f16_6[] =
1159 {0x89,0xf6, /* mov %si,%si */
1160 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
1161 static const unsigned char f16_7[] =
1162 {0x8d,0x74,0x00, /* lea 0(%si),%si */
1163 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
1164 static const unsigned char f16_8[] =
1165 {0x8d,0xb4,0x00,0x00, /* lea 0w(%si),%si */
1166 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
1167 static const unsigned char jump_31[] =
1168 {0xeb,0x1d,0x90,0x90,0x90,0x90,0x90, /* jmp .+31; lotsa nops */
1169 0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90,
1170 0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90,
1171 0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90};
1172 static const unsigned char *const f32_patt[] = {
1173 f32_1, f32_2, f32_3, f32_4, f32_5, f32_6, f32_7, f32_8,
1174 f32_9, f32_10, f32_11, f32_12, f32_13, f32_14
1175 };
1176 static const unsigned char *const f16_patt[] = {
1177 f32_1, f32_2, f16_3, f16_4, f16_5, f16_6, f16_7, f16_8
1178 };
1179 /* nopl (%[re]ax) */
1180 static const unsigned char alt_3[] =
1181 {0x0f,0x1f,0x00};
1182 /* nopl 0(%[re]ax) */
1183 static const unsigned char alt_4[] =
1184 {0x0f,0x1f,0x40,0x00};
1185 /* nopl 0(%[re]ax,%[re]ax,1) */
1186 static const unsigned char alt_5[] =
1187 {0x0f,0x1f,0x44,0x00,0x00};
1188 /* nopw 0(%[re]ax,%[re]ax,1) */
1189 static const unsigned char alt_6[] =
1190 {0x66,0x0f,0x1f,0x44,0x00,0x00};
1191 /* nopl 0L(%[re]ax) */
1192 static const unsigned char alt_7[] =
1193 {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
1194 /* nopl 0L(%[re]ax,%[re]ax,1) */
1195 static const unsigned char alt_8[] =
1196 {0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1197 /* nopw 0L(%[re]ax,%[re]ax,1) */
1198 static const unsigned char alt_9[] =
1199 {0x66,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1200 /* nopw %cs:0L(%[re]ax,%[re]ax,1) */
1201 static const unsigned char alt_10[] =
1202 {0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1203 static const unsigned char *const alt_patt[] = {
1204 f32_1, f32_2, alt_3, alt_4, alt_5, alt_6, alt_7, alt_8,
1205 alt_9, alt_10
1206 };
1207
1208 /* Only align for at least a positive non-zero boundary. */
1209 if (count <= 0 || count > MAX_MEM_FOR_RS_ALIGN_CODE)
1210 return;
1211
1212 /* We need to decide which NOP sequence to use for 32bit and
1213 64bit. When -mtune= is used:
1214
1215 1. For PROCESSOR_I386, PROCESSOR_I486, PROCESSOR_PENTIUM and
1216 PROCESSOR_GENERIC32, f32_patt will be used.
1217 2. For the rest, alt_patt will be used.
1218
1219 When -mtune= isn't used, alt_patt will be used if
1220 cpu_arch_isa_flags has CpuNop. Otherwise, f32_patt will
1221 be used.
1222
1223 When -march= or .arch is used, we can't use anything beyond
1224 cpu_arch_isa_flags. */
1225
1226 if (flag_code == CODE_16BIT)
1227 {
1228 if (count > 8)
1229 {
1230 memcpy (fragP->fr_literal + fragP->fr_fix,
1231 jump_31, count);
1232 /* Adjust jump offset. */
1233 fragP->fr_literal[fragP->fr_fix + 1] = count - 2;
1234 }
1235 else
1236 memcpy (fragP->fr_literal + fragP->fr_fix,
1237 f16_patt[count - 1], count);
1238 }
1239 else
1240 {
1241 const unsigned char *const *patt = NULL;
1242
1243 if (fragP->tc_frag_data.isa == PROCESSOR_UNKNOWN)
1244 {
1245 /* PROCESSOR_UNKNOWN means that all ISAs may be used. */
1246 switch (cpu_arch_tune)
1247 {
1248 case PROCESSOR_UNKNOWN:
1249 /* We use cpu_arch_isa_flags to check if we SHOULD
1250 optimize with nops. */
1251 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1252 patt = alt_patt;
1253 else
1254 patt = f32_patt;
1255 break;
1256 case PROCESSOR_PENTIUM4:
1257 case PROCESSOR_NOCONA:
1258 case PROCESSOR_CORE:
1259 case PROCESSOR_CORE2:
1260 case PROCESSOR_COREI7:
1261 case PROCESSOR_L1OM:
1262 case PROCESSOR_K1OM:
1263 case PROCESSOR_GENERIC64:
1264 case PROCESSOR_K6:
1265 case PROCESSOR_ATHLON:
1266 case PROCESSOR_K8:
1267 case PROCESSOR_AMDFAM10:
1268 case PROCESSOR_BD:
1269 case PROCESSOR_ZNVER:
1270 case PROCESSOR_BT:
1271 patt = alt_patt;
1272 break;
1273 case PROCESSOR_I386:
1274 case PROCESSOR_I486:
1275 case PROCESSOR_PENTIUM:
1276 case PROCESSOR_PENTIUMPRO:
1277 case PROCESSOR_IAMCU:
1278 case PROCESSOR_GENERIC32:
1279 patt = f32_patt;
1280 break;
1281 }
1282 }
1283 else
1284 {
1285 switch (fragP->tc_frag_data.tune)
1286 {
1287 case PROCESSOR_UNKNOWN:
1288 /* When cpu_arch_isa is set, cpu_arch_tune shouldn't be
1289 PROCESSOR_UNKNOWN. */
1290 abort ();
1291 break;
1292
1293 case PROCESSOR_I386:
1294 case PROCESSOR_I486:
1295 case PROCESSOR_PENTIUM:
1296 case PROCESSOR_IAMCU:
1297 case PROCESSOR_K6:
1298 case PROCESSOR_ATHLON:
1299 case PROCESSOR_K8:
1300 case PROCESSOR_AMDFAM10:
1301 case PROCESSOR_BD:
1302 case PROCESSOR_ZNVER:
1303 case PROCESSOR_BT:
1304 case PROCESSOR_GENERIC32:
1305 /* We use cpu_arch_isa_flags to check if we CAN optimize
1306 with nops. */
1307 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1308 patt = alt_patt;
1309 else
1310 patt = f32_patt;
1311 break;
1312 case PROCESSOR_PENTIUMPRO:
1313 case PROCESSOR_PENTIUM4:
1314 case PROCESSOR_NOCONA:
1315 case PROCESSOR_CORE:
1316 case PROCESSOR_CORE2:
1317 case PROCESSOR_COREI7:
1318 case PROCESSOR_L1OM:
1319 case PROCESSOR_K1OM:
1320 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1321 patt = alt_patt;
1322 else
1323 patt = f32_patt;
1324 break;
1325 case PROCESSOR_GENERIC64:
1326 patt = alt_patt;
1327 break;
1328 }
1329 }
1330
1331 if (patt == f32_patt)
1332 {
1333 /* If the padding is less than 15 bytes, we use the normal
1334 ones. Otherwise, we use a jump instruction and adjust
1335 its offset. */
1336 int limit;
1337
1338 /* For 64bit, the limit is 3 bytes. */
1339 if (flag_code == CODE_64BIT
1340 && fragP->tc_frag_data.isa_flags.bitfield.cpulm)
1341 limit = 3;
1342 else
1343 limit = 15;
1344 if (count < limit)
1345 memcpy (fragP->fr_literal + fragP->fr_fix,
1346 patt[count - 1], count);
1347 else
1348 {
1349 memcpy (fragP->fr_literal + fragP->fr_fix,
1350 jump_31, count);
1351 /* Adjust jump offset. */
1352 fragP->fr_literal[fragP->fr_fix + 1] = count - 2;
1353 }
1354 }
1355 else
1356 {
1357 /* Maximum length of an instruction is 10 byte. If the
1358 padding is greater than 10 bytes and we don't use jump,
1359 we have to break it into smaller pieces. */
1360 int padding = count;
1361 while (padding > 10)
1362 {
1363 padding -= 10;
1364 memcpy (fragP->fr_literal + fragP->fr_fix + padding,
1365 patt [9], 10);
1366 }
1367
1368 if (padding)
1369 memcpy (fragP->fr_literal + fragP->fr_fix,
1370 patt [padding - 1], padding);
1371 }
1372 }
1373 fragP->fr_var = count;
1374 }
1375
1376 static INLINE int
1377 operand_type_all_zero (const union i386_operand_type *x)
1378 {
1379 switch (ARRAY_SIZE(x->array))
1380 {
1381 case 3:
1382 if (x->array[2])
1383 return 0;
1384 /* Fall through. */
1385 case 2:
1386 if (x->array[1])
1387 return 0;
1388 /* Fall through. */
1389 case 1:
1390 return !x->array[0];
1391 default:
1392 abort ();
1393 }
1394 }
1395
1396 static INLINE void
1397 operand_type_set (union i386_operand_type *x, unsigned int v)
1398 {
1399 switch (ARRAY_SIZE(x->array))
1400 {
1401 case 3:
1402 x->array[2] = v;
1403 /* Fall through. */
1404 case 2:
1405 x->array[1] = v;
1406 /* Fall through. */
1407 case 1:
1408 x->array[0] = v;
1409 /* Fall through. */
1410 break;
1411 default:
1412 abort ();
1413 }
1414 }
1415
1416 static INLINE int
1417 operand_type_equal (const union i386_operand_type *x,
1418 const union i386_operand_type *y)
1419 {
1420 switch (ARRAY_SIZE(x->array))
1421 {
1422 case 3:
1423 if (x->array[2] != y->array[2])
1424 return 0;
1425 /* Fall through. */
1426 case 2:
1427 if (x->array[1] != y->array[1])
1428 return 0;
1429 /* Fall through. */
1430 case 1:
1431 return x->array[0] == y->array[0];
1432 break;
1433 default:
1434 abort ();
1435 }
1436 }
1437
1438 static INLINE int
1439 cpu_flags_all_zero (const union i386_cpu_flags *x)
1440 {
1441 switch (ARRAY_SIZE(x->array))
1442 {
1443 case 3:
1444 if (x->array[2])
1445 return 0;
1446 /* Fall through. */
1447 case 2:
1448 if (x->array[1])
1449 return 0;
1450 /* Fall through. */
1451 case 1:
1452 return !x->array[0];
1453 default:
1454 abort ();
1455 }
1456 }
1457
1458 static INLINE int
1459 cpu_flags_equal (const union i386_cpu_flags *x,
1460 const union i386_cpu_flags *y)
1461 {
1462 switch (ARRAY_SIZE(x->array))
1463 {
1464 case 3:
1465 if (x->array[2] != y->array[2])
1466 return 0;
1467 /* Fall through. */
1468 case 2:
1469 if (x->array[1] != y->array[1])
1470 return 0;
1471 /* Fall through. */
1472 case 1:
1473 return x->array[0] == y->array[0];
1474 break;
1475 default:
1476 abort ();
1477 }
1478 }
1479
1480 static INLINE int
1481 cpu_flags_check_cpu64 (i386_cpu_flags f)
1482 {
1483 return !((flag_code == CODE_64BIT && f.bitfield.cpuno64)
1484 || (flag_code != CODE_64BIT && f.bitfield.cpu64));
1485 }
1486
1487 static INLINE i386_cpu_flags
1488 cpu_flags_and (i386_cpu_flags x, i386_cpu_flags y)
1489 {
1490 switch (ARRAY_SIZE (x.array))
1491 {
1492 case 3:
1493 x.array [2] &= y.array [2];
1494 /* Fall through. */
1495 case 2:
1496 x.array [1] &= y.array [1];
1497 /* Fall through. */
1498 case 1:
1499 x.array [0] &= y.array [0];
1500 break;
1501 default:
1502 abort ();
1503 }
1504 return x;
1505 }
1506
1507 static INLINE i386_cpu_flags
1508 cpu_flags_or (i386_cpu_flags x, i386_cpu_flags y)
1509 {
1510 switch (ARRAY_SIZE (x.array))
1511 {
1512 case 3:
1513 x.array [2] |= y.array [2];
1514 /* Fall through. */
1515 case 2:
1516 x.array [1] |= y.array [1];
1517 /* Fall through. */
1518 case 1:
1519 x.array [0] |= y.array [0];
1520 break;
1521 default:
1522 abort ();
1523 }
1524 return x;
1525 }
1526
1527 static INLINE i386_cpu_flags
1528 cpu_flags_and_not (i386_cpu_flags x, i386_cpu_flags y)
1529 {
1530 switch (ARRAY_SIZE (x.array))
1531 {
1532 case 3:
1533 x.array [2] &= ~y.array [2];
1534 /* Fall through. */
1535 case 2:
1536 x.array [1] &= ~y.array [1];
1537 /* Fall through. */
1538 case 1:
1539 x.array [0] &= ~y.array [0];
1540 break;
1541 default:
1542 abort ();
1543 }
1544 return x;
1545 }
1546
1547 #define CPU_FLAGS_ARCH_MATCH 0x1
1548 #define CPU_FLAGS_64BIT_MATCH 0x2
1549 #define CPU_FLAGS_AES_MATCH 0x4
1550 #define CPU_FLAGS_PCLMUL_MATCH 0x8
1551 #define CPU_FLAGS_AVX_MATCH 0x10
1552
1553 #define CPU_FLAGS_32BIT_MATCH \
1554 (CPU_FLAGS_ARCH_MATCH | CPU_FLAGS_AES_MATCH \
1555 | CPU_FLAGS_PCLMUL_MATCH | CPU_FLAGS_AVX_MATCH)
1556 #define CPU_FLAGS_PERFECT_MATCH \
1557 (CPU_FLAGS_32BIT_MATCH | CPU_FLAGS_64BIT_MATCH)
1558
1559 /* Return CPU flags match bits. */
1560
1561 static int
1562 cpu_flags_match (const insn_template *t)
1563 {
1564 i386_cpu_flags x = t->cpu_flags;
1565 int match = cpu_flags_check_cpu64 (x) ? CPU_FLAGS_64BIT_MATCH : 0;
1566
1567 x.bitfield.cpu64 = 0;
1568 x.bitfield.cpuno64 = 0;
1569
1570 if (cpu_flags_all_zero (&x))
1571 {
1572 /* This instruction is available on all archs. */
1573 match |= CPU_FLAGS_32BIT_MATCH;
1574 }
1575 else
1576 {
1577 /* This instruction is available only on some archs. */
1578 i386_cpu_flags cpu = cpu_arch_flags;
1579
1580 cpu = cpu_flags_and (x, cpu);
1581 if (!cpu_flags_all_zero (&cpu))
1582 {
1583 if (x.bitfield.cpuavx)
1584 {
1585 /* We only need to check AES/PCLMUL/SSE2AVX with AVX. */
1586 if (cpu.bitfield.cpuavx)
1587 {
1588 /* Check SSE2AVX. */
1589 if (!t->opcode_modifier.sse2avx|| sse2avx)
1590 {
1591 match |= (CPU_FLAGS_ARCH_MATCH
1592 | CPU_FLAGS_AVX_MATCH);
1593 /* Check AES. */
1594 if (!x.bitfield.cpuaes || cpu.bitfield.cpuaes)
1595 match |= CPU_FLAGS_AES_MATCH;
1596 /* Check PCLMUL. */
1597 if (!x.bitfield.cpupclmul
1598 || cpu.bitfield.cpupclmul)
1599 match |= CPU_FLAGS_PCLMUL_MATCH;
1600 }
1601 }
1602 else
1603 match |= CPU_FLAGS_ARCH_MATCH;
1604 }
1605 else if (x.bitfield.cpuavx512vl)
1606 {
1607 /* Match AVX512VL. */
1608 if (cpu.bitfield.cpuavx512vl)
1609 {
1610 /* Need another match. */
1611 cpu.bitfield.cpuavx512vl = 0;
1612 if (!cpu_flags_all_zero (&cpu))
1613 match |= CPU_FLAGS_32BIT_MATCH;
1614 else
1615 match |= CPU_FLAGS_ARCH_MATCH;
1616 }
1617 else
1618 match |= CPU_FLAGS_ARCH_MATCH;
1619 }
1620 else
1621 match |= CPU_FLAGS_32BIT_MATCH;
1622 }
1623 }
1624 return match;
1625 }
1626
1627 static INLINE i386_operand_type
1628 operand_type_and (i386_operand_type x, i386_operand_type y)
1629 {
1630 switch (ARRAY_SIZE (x.array))
1631 {
1632 case 3:
1633 x.array [2] &= y.array [2];
1634 /* Fall through. */
1635 case 2:
1636 x.array [1] &= y.array [1];
1637 /* Fall through. */
1638 case 1:
1639 x.array [0] &= y.array [0];
1640 break;
1641 default:
1642 abort ();
1643 }
1644 return x;
1645 }
1646
1647 static INLINE i386_operand_type
1648 operand_type_or (i386_operand_type x, i386_operand_type y)
1649 {
1650 switch (ARRAY_SIZE (x.array))
1651 {
1652 case 3:
1653 x.array [2] |= y.array [2];
1654 /* Fall through. */
1655 case 2:
1656 x.array [1] |= y.array [1];
1657 /* Fall through. */
1658 case 1:
1659 x.array [0] |= y.array [0];
1660 break;
1661 default:
1662 abort ();
1663 }
1664 return x;
1665 }
1666
1667 static INLINE i386_operand_type
1668 operand_type_xor (i386_operand_type x, i386_operand_type y)
1669 {
1670 switch (ARRAY_SIZE (x.array))
1671 {
1672 case 3:
1673 x.array [2] ^= y.array [2];
1674 /* Fall through. */
1675 case 2:
1676 x.array [1] ^= y.array [1];
1677 /* Fall through. */
1678 case 1:
1679 x.array [0] ^= y.array [0];
1680 break;
1681 default:
1682 abort ();
1683 }
1684 return x;
1685 }
1686
1687 static const i386_operand_type acc32 = OPERAND_TYPE_ACC32;
1688 static const i386_operand_type acc64 = OPERAND_TYPE_ACC64;
1689 static const i386_operand_type control = OPERAND_TYPE_CONTROL;
1690 static const i386_operand_type inoutportreg
1691 = OPERAND_TYPE_INOUTPORTREG;
1692 static const i386_operand_type reg16_inoutportreg
1693 = OPERAND_TYPE_REG16_INOUTPORTREG;
1694 static const i386_operand_type disp16 = OPERAND_TYPE_DISP16;
1695 static const i386_operand_type disp32 = OPERAND_TYPE_DISP32;
1696 static const i386_operand_type disp32s = OPERAND_TYPE_DISP32S;
1697 static const i386_operand_type disp16_32 = OPERAND_TYPE_DISP16_32;
1698 static const i386_operand_type anydisp
1699 = OPERAND_TYPE_ANYDISP;
1700 static const i386_operand_type regxmm = OPERAND_TYPE_REGXMM;
1701 static const i386_operand_type regymm = OPERAND_TYPE_REGYMM;
1702 static const i386_operand_type regzmm = OPERAND_TYPE_REGZMM;
1703 static const i386_operand_type regmask = OPERAND_TYPE_REGMASK;
1704 static const i386_operand_type imm8 = OPERAND_TYPE_IMM8;
1705 static const i386_operand_type imm8s = OPERAND_TYPE_IMM8S;
1706 static const i386_operand_type imm16 = OPERAND_TYPE_IMM16;
1707 static const i386_operand_type imm32 = OPERAND_TYPE_IMM32;
1708 static const i386_operand_type imm32s = OPERAND_TYPE_IMM32S;
1709 static const i386_operand_type imm64 = OPERAND_TYPE_IMM64;
1710 static const i386_operand_type imm16_32 = OPERAND_TYPE_IMM16_32;
1711 static const i386_operand_type imm16_32s = OPERAND_TYPE_IMM16_32S;
1712 static const i386_operand_type imm16_32_32s = OPERAND_TYPE_IMM16_32_32S;
1713 static const i386_operand_type vec_imm4 = OPERAND_TYPE_VEC_IMM4;
1714
1715 enum operand_type
1716 {
1717 reg,
1718 imm,
1719 disp,
1720 anymem
1721 };
1722
1723 static INLINE int
1724 operand_type_check (i386_operand_type t, enum operand_type c)
1725 {
1726 switch (c)
1727 {
1728 case reg:
1729 return (t.bitfield.reg8
1730 || t.bitfield.reg16
1731 || t.bitfield.reg32
1732 || t.bitfield.reg64);
1733
1734 case imm:
1735 return (t.bitfield.imm8
1736 || t.bitfield.imm8s
1737 || t.bitfield.imm16
1738 || t.bitfield.imm32
1739 || t.bitfield.imm32s
1740 || t.bitfield.imm64);
1741
1742 case disp:
1743 return (t.bitfield.disp8
1744 || t.bitfield.disp16
1745 || t.bitfield.disp32
1746 || t.bitfield.disp32s
1747 || t.bitfield.disp64);
1748
1749 case anymem:
1750 return (t.bitfield.disp8
1751 || t.bitfield.disp16
1752 || t.bitfield.disp32
1753 || t.bitfield.disp32s
1754 || t.bitfield.disp64
1755 || t.bitfield.baseindex);
1756
1757 default:
1758 abort ();
1759 }
1760
1761 return 0;
1762 }
1763
1764 /* Return 1 if there is no conflict in 8bit/16bit/32bit/64bit on
1765 operand J for instruction template T. */
1766
1767 static INLINE int
1768 match_reg_size (const insn_template *t, unsigned int j)
1769 {
1770 return !((i.types[j].bitfield.byte
1771 && !t->operand_types[j].bitfield.byte)
1772 || (i.types[j].bitfield.word
1773 && !t->operand_types[j].bitfield.word)
1774 || (i.types[j].bitfield.dword
1775 && !t->operand_types[j].bitfield.dword)
1776 || (i.types[j].bitfield.qword
1777 && !t->operand_types[j].bitfield.qword));
1778 }
1779
1780 /* Return 1 if there is no conflict in any size on operand J for
1781 instruction template T. */
1782
1783 static INLINE int
1784 match_mem_size (const insn_template *t, unsigned int j)
1785 {
1786 return (match_reg_size (t, j)
1787 && !((i.types[j].bitfield.unspecified
1788 && !i.broadcast
1789 && !t->operand_types[j].bitfield.unspecified)
1790 || (i.types[j].bitfield.fword
1791 && !t->operand_types[j].bitfield.fword)
1792 || (i.types[j].bitfield.tbyte
1793 && !t->operand_types[j].bitfield.tbyte)
1794 || (i.types[j].bitfield.xmmword
1795 && !t->operand_types[j].bitfield.xmmword)
1796 || (i.types[j].bitfield.ymmword
1797 && !t->operand_types[j].bitfield.ymmword)
1798 || (i.types[j].bitfield.zmmword
1799 && !t->operand_types[j].bitfield.zmmword)));
1800 }
1801
1802 /* Return 1 if there is no size conflict on any operands for
1803 instruction template T. */
1804
1805 static INLINE int
1806 operand_size_match (const insn_template *t)
1807 {
1808 unsigned int j;
1809 int match = 1;
1810
1811 /* Don't check jump instructions. */
1812 if (t->opcode_modifier.jump
1813 || t->opcode_modifier.jumpbyte
1814 || t->opcode_modifier.jumpdword
1815 || t->opcode_modifier.jumpintersegment)
1816 return match;
1817
1818 /* Check memory and accumulator operand size. */
1819 for (j = 0; j < i.operands; j++)
1820 {
1821 if (t->operand_types[j].bitfield.anysize)
1822 continue;
1823
1824 if (t->operand_types[j].bitfield.acc && !match_reg_size (t, j))
1825 {
1826 match = 0;
1827 break;
1828 }
1829
1830 if (i.types[j].bitfield.mem && !match_mem_size (t, j))
1831 {
1832 match = 0;
1833 break;
1834 }
1835 }
1836
1837 if (match)
1838 return match;
1839 else if (!t->opcode_modifier.d && !t->opcode_modifier.floatd)
1840 {
1841 mismatch:
1842 i.error = operand_size_mismatch;
1843 return 0;
1844 }
1845
1846 /* Check reverse. */
1847 gas_assert (i.operands == 2);
1848
1849 match = 1;
1850 for (j = 0; j < 2; j++)
1851 {
1852 if (t->operand_types[j].bitfield.acc
1853 && !match_reg_size (t, j ? 0 : 1))
1854 goto mismatch;
1855
1856 if (i.types[j].bitfield.mem
1857 && !match_mem_size (t, j ? 0 : 1))
1858 goto mismatch;
1859 }
1860
1861 return match;
1862 }
1863
1864 static INLINE int
1865 operand_type_match (i386_operand_type overlap,
1866 i386_operand_type given)
1867 {
1868 i386_operand_type temp = overlap;
1869
1870 temp.bitfield.jumpabsolute = 0;
1871 temp.bitfield.unspecified = 0;
1872 temp.bitfield.byte = 0;
1873 temp.bitfield.word = 0;
1874 temp.bitfield.dword = 0;
1875 temp.bitfield.fword = 0;
1876 temp.bitfield.qword = 0;
1877 temp.bitfield.tbyte = 0;
1878 temp.bitfield.xmmword = 0;
1879 temp.bitfield.ymmword = 0;
1880 temp.bitfield.zmmword = 0;
1881 if (operand_type_all_zero (&temp))
1882 goto mismatch;
1883
1884 if (given.bitfield.baseindex == overlap.bitfield.baseindex
1885 && given.bitfield.jumpabsolute == overlap.bitfield.jumpabsolute)
1886 return 1;
1887
1888 mismatch:
1889 i.error = operand_type_mismatch;
1890 return 0;
1891 }
1892
1893 /* If given types g0 and g1 are registers they must be of the same type
1894 unless the expected operand type register overlap is null.
1895 Note that Acc in a template matches every size of reg. */
1896
1897 static INLINE int
1898 operand_type_register_match (i386_operand_type m0,
1899 i386_operand_type g0,
1900 i386_operand_type t0,
1901 i386_operand_type m1,
1902 i386_operand_type g1,
1903 i386_operand_type t1)
1904 {
1905 if (!operand_type_check (g0, reg))
1906 return 1;
1907
1908 if (!operand_type_check (g1, reg))
1909 return 1;
1910
1911 if (g0.bitfield.reg8 == g1.bitfield.reg8
1912 && g0.bitfield.reg16 == g1.bitfield.reg16
1913 && g0.bitfield.reg32 == g1.bitfield.reg32
1914 && g0.bitfield.reg64 == g1.bitfield.reg64)
1915 return 1;
1916
1917 if (m0.bitfield.acc)
1918 {
1919 t0.bitfield.reg8 = 1;
1920 t0.bitfield.reg16 = 1;
1921 t0.bitfield.reg32 = 1;
1922 t0.bitfield.reg64 = 1;
1923 }
1924
1925 if (m1.bitfield.acc)
1926 {
1927 t1.bitfield.reg8 = 1;
1928 t1.bitfield.reg16 = 1;
1929 t1.bitfield.reg32 = 1;
1930 t1.bitfield.reg64 = 1;
1931 }
1932
1933 if (!(t0.bitfield.reg8 & t1.bitfield.reg8)
1934 && !(t0.bitfield.reg16 & t1.bitfield.reg16)
1935 && !(t0.bitfield.reg32 & t1.bitfield.reg32)
1936 && !(t0.bitfield.reg64 & t1.bitfield.reg64))
1937 return 1;
1938
1939 i.error = register_type_mismatch;
1940
1941 return 0;
1942 }
1943
1944 static INLINE unsigned int
1945 register_number (const reg_entry *r)
1946 {
1947 unsigned int nr = r->reg_num;
1948
1949 if (r->reg_flags & RegRex)
1950 nr += 8;
1951
1952 if (r->reg_flags & RegVRex)
1953 nr += 16;
1954
1955 return nr;
1956 }
1957
1958 static INLINE unsigned int
1959 mode_from_disp_size (i386_operand_type t)
1960 {
1961 if (t.bitfield.disp8 || t.bitfield.vec_disp8)
1962 return 1;
1963 else if (t.bitfield.disp16
1964 || t.bitfield.disp32
1965 || t.bitfield.disp32s)
1966 return 2;
1967 else
1968 return 0;
1969 }
1970
1971 static INLINE int
1972 fits_in_signed_byte (addressT num)
1973 {
1974 return num + 0x80 <= 0xff;
1975 }
1976
1977 static INLINE int
1978 fits_in_unsigned_byte (addressT num)
1979 {
1980 return num <= 0xff;
1981 }
1982
1983 static INLINE int
1984 fits_in_unsigned_word (addressT num)
1985 {
1986 return num <= 0xffff;
1987 }
1988
1989 static INLINE int
1990 fits_in_signed_word (addressT num)
1991 {
1992 return num + 0x8000 <= 0xffff;
1993 }
1994
1995 static INLINE int
1996 fits_in_signed_long (addressT num ATTRIBUTE_UNUSED)
1997 {
1998 #ifndef BFD64
1999 return 1;
2000 #else
2001 return num + 0x80000000 <= 0xffffffff;
2002 #endif
2003 } /* fits_in_signed_long() */
2004
2005 static INLINE int
2006 fits_in_unsigned_long (addressT num ATTRIBUTE_UNUSED)
2007 {
2008 #ifndef BFD64
2009 return 1;
2010 #else
2011 return num <= 0xffffffff;
2012 #endif
2013 } /* fits_in_unsigned_long() */
2014
2015 static INLINE int
2016 fits_in_vec_disp8 (offsetT num)
2017 {
2018 int shift = i.memshift;
2019 unsigned int mask;
2020
2021 if (shift == -1)
2022 abort ();
2023
2024 mask = (1 << shift) - 1;
2025
2026 /* Return 0 if NUM isn't properly aligned. */
2027 if ((num & mask))
2028 return 0;
2029
2030 /* Check if NUM will fit in 8bit after shift. */
2031 return fits_in_signed_byte (num >> shift);
2032 }
2033
2034 static INLINE int
2035 fits_in_imm4 (offsetT num)
2036 {
2037 return (num & 0xf) == num;
2038 }
2039
2040 static i386_operand_type
2041 smallest_imm_type (offsetT num)
2042 {
2043 i386_operand_type t;
2044
2045 operand_type_set (&t, 0);
2046 t.bitfield.imm64 = 1;
2047
2048 if (cpu_arch_tune != PROCESSOR_I486 && num == 1)
2049 {
2050 /* This code is disabled on the 486 because all the Imm1 forms
2051 in the opcode table are slower on the i486. They're the
2052 versions with the implicitly specified single-position
2053 displacement, which has another syntax if you really want to
2054 use that form. */
2055 t.bitfield.imm1 = 1;
2056 t.bitfield.imm8 = 1;
2057 t.bitfield.imm8s = 1;
2058 t.bitfield.imm16 = 1;
2059 t.bitfield.imm32 = 1;
2060 t.bitfield.imm32s = 1;
2061 }
2062 else if (fits_in_signed_byte (num))
2063 {
2064 t.bitfield.imm8 = 1;
2065 t.bitfield.imm8s = 1;
2066 t.bitfield.imm16 = 1;
2067 t.bitfield.imm32 = 1;
2068 t.bitfield.imm32s = 1;
2069 }
2070 else if (fits_in_unsigned_byte (num))
2071 {
2072 t.bitfield.imm8 = 1;
2073 t.bitfield.imm16 = 1;
2074 t.bitfield.imm32 = 1;
2075 t.bitfield.imm32s = 1;
2076 }
2077 else if (fits_in_signed_word (num) || fits_in_unsigned_word (num))
2078 {
2079 t.bitfield.imm16 = 1;
2080 t.bitfield.imm32 = 1;
2081 t.bitfield.imm32s = 1;
2082 }
2083 else if (fits_in_signed_long (num))
2084 {
2085 t.bitfield.imm32 = 1;
2086 t.bitfield.imm32s = 1;
2087 }
2088 else if (fits_in_unsigned_long (num))
2089 t.bitfield.imm32 = 1;
2090
2091 return t;
2092 }
2093
2094 static offsetT
2095 offset_in_range (offsetT val, int size)
2096 {
2097 addressT mask;
2098
2099 switch (size)
2100 {
2101 case 1: mask = ((addressT) 1 << 8) - 1; break;
2102 case 2: mask = ((addressT) 1 << 16) - 1; break;
2103 case 4: mask = ((addressT) 2 << 31) - 1; break;
2104 #ifdef BFD64
2105 case 8: mask = ((addressT) 2 << 63) - 1; break;
2106 #endif
2107 default: abort ();
2108 }
2109
2110 #ifdef BFD64
2111 /* If BFD64, sign extend val for 32bit address mode. */
2112 if (flag_code != CODE_64BIT
2113 || i.prefix[ADDR_PREFIX])
2114 if ((val & ~(((addressT) 2 << 31) - 1)) == 0)
2115 val = (val ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
2116 #endif
2117
2118 if ((val & ~mask) != 0 && (val & ~mask) != ~mask)
2119 {
2120 char buf1[40], buf2[40];
2121
2122 sprint_value (buf1, val);
2123 sprint_value (buf2, val & mask);
2124 as_warn (_("%s shortened to %s"), buf1, buf2);
2125 }
2126 return val & mask;
2127 }
2128
2129 enum PREFIX_GROUP
2130 {
2131 PREFIX_EXIST = 0,
2132 PREFIX_LOCK,
2133 PREFIX_REP,
2134 PREFIX_OTHER
2135 };
2136
2137 /* Returns
2138 a. PREFIX_EXIST if attempting to add a prefix where one from the
2139 same class already exists.
2140 b. PREFIX_LOCK if lock prefix is added.
2141 c. PREFIX_REP if rep/repne prefix is added.
2142 d. PREFIX_OTHER if other prefix is added.
2143 */
2144
2145 static enum PREFIX_GROUP
2146 add_prefix (unsigned int prefix)
2147 {
2148 enum PREFIX_GROUP ret = PREFIX_OTHER;
2149 unsigned int q;
2150
2151 if (prefix >= REX_OPCODE && prefix < REX_OPCODE + 16
2152 && flag_code == CODE_64BIT)
2153 {
2154 if ((i.prefix[REX_PREFIX] & prefix & REX_W)
2155 || ((i.prefix[REX_PREFIX] & (REX_R | REX_X | REX_B))
2156 && (prefix & (REX_R | REX_X | REX_B))))
2157 ret = PREFIX_EXIST;
2158 q = REX_PREFIX;
2159 }
2160 else
2161 {
2162 switch (prefix)
2163 {
2164 default:
2165 abort ();
2166
2167 case CS_PREFIX_OPCODE:
2168 case DS_PREFIX_OPCODE:
2169 case ES_PREFIX_OPCODE:
2170 case FS_PREFIX_OPCODE:
2171 case GS_PREFIX_OPCODE:
2172 case SS_PREFIX_OPCODE:
2173 q = SEG_PREFIX;
2174 break;
2175
2176 case REPNE_PREFIX_OPCODE:
2177 case REPE_PREFIX_OPCODE:
2178 q = REP_PREFIX;
2179 ret = PREFIX_REP;
2180 break;
2181
2182 case LOCK_PREFIX_OPCODE:
2183 q = LOCK_PREFIX;
2184 ret = PREFIX_LOCK;
2185 break;
2186
2187 case FWAIT_OPCODE:
2188 q = WAIT_PREFIX;
2189 break;
2190
2191 case ADDR_PREFIX_OPCODE:
2192 q = ADDR_PREFIX;
2193 break;
2194
2195 case DATA_PREFIX_OPCODE:
2196 q = DATA_PREFIX;
2197 break;
2198 }
2199 if (i.prefix[q] != 0)
2200 ret = PREFIX_EXIST;
2201 }
2202
2203 if (ret)
2204 {
2205 if (!i.prefix[q])
2206 ++i.prefixes;
2207 i.prefix[q] |= prefix;
2208 }
2209 else
2210 as_bad (_("same type of prefix used twice"));
2211
2212 return ret;
2213 }
2214
2215 static void
2216 update_code_flag (int value, int check)
2217 {
2218 PRINTF_LIKE ((*as_error));
2219
2220 flag_code = (enum flag_code) value;
2221 if (flag_code == CODE_64BIT)
2222 {
2223 cpu_arch_flags.bitfield.cpu64 = 1;
2224 cpu_arch_flags.bitfield.cpuno64 = 0;
2225 }
2226 else
2227 {
2228 cpu_arch_flags.bitfield.cpu64 = 0;
2229 cpu_arch_flags.bitfield.cpuno64 = 1;
2230 }
2231 if (value == CODE_64BIT && !cpu_arch_flags.bitfield.cpulm )
2232 {
2233 if (check)
2234 as_error = as_fatal;
2235 else
2236 as_error = as_bad;
2237 (*as_error) (_("64bit mode not supported on `%s'."),
2238 cpu_arch_name ? cpu_arch_name : default_arch);
2239 }
2240 if (value == CODE_32BIT && !cpu_arch_flags.bitfield.cpui386)
2241 {
2242 if (check)
2243 as_error = as_fatal;
2244 else
2245 as_error = as_bad;
2246 (*as_error) (_("32bit mode not supported on `%s'."),
2247 cpu_arch_name ? cpu_arch_name : default_arch);
2248 }
2249 stackop_size = '\0';
2250 }
2251
2252 static void
2253 set_code_flag (int value)
2254 {
2255 update_code_flag (value, 0);
2256 }
2257
2258 static void
2259 set_16bit_gcc_code_flag (int new_code_flag)
2260 {
2261 flag_code = (enum flag_code) new_code_flag;
2262 if (flag_code != CODE_16BIT)
2263 abort ();
2264 cpu_arch_flags.bitfield.cpu64 = 0;
2265 cpu_arch_flags.bitfield.cpuno64 = 1;
2266 stackop_size = LONG_MNEM_SUFFIX;
2267 }
2268
2269 static void
2270 set_intel_syntax (int syntax_flag)
2271 {
2272 /* Find out if register prefixing is specified. */
2273 int ask_naked_reg = 0;
2274
2275 SKIP_WHITESPACE ();
2276 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2277 {
2278 char *string;
2279 int e = get_symbol_name (&string);
2280
2281 if (strcmp (string, "prefix") == 0)
2282 ask_naked_reg = 1;
2283 else if (strcmp (string, "noprefix") == 0)
2284 ask_naked_reg = -1;
2285 else
2286 as_bad (_("bad argument to syntax directive."));
2287 (void) restore_line_pointer (e);
2288 }
2289 demand_empty_rest_of_line ();
2290
2291 intel_syntax = syntax_flag;
2292
2293 if (ask_naked_reg == 0)
2294 allow_naked_reg = (intel_syntax
2295 && (bfd_get_symbol_leading_char (stdoutput) != '\0'));
2296 else
2297 allow_naked_reg = (ask_naked_reg < 0);
2298
2299 expr_set_rank (O_full_ptr, syntax_flag ? 10 : 0);
2300
2301 identifier_chars['%'] = intel_syntax && allow_naked_reg ? '%' : 0;
2302 identifier_chars['$'] = intel_syntax ? '$' : 0;
2303 register_prefix = allow_naked_reg ? "" : "%";
2304 }
2305
2306 static void
2307 set_intel_mnemonic (int mnemonic_flag)
2308 {
2309 intel_mnemonic = mnemonic_flag;
2310 }
2311
2312 static void
2313 set_allow_index_reg (int flag)
2314 {
2315 allow_index_reg = flag;
2316 }
2317
2318 static void
2319 set_check (int what)
2320 {
2321 enum check_kind *kind;
2322 const char *str;
2323
2324 if (what)
2325 {
2326 kind = &operand_check;
2327 str = "operand";
2328 }
2329 else
2330 {
2331 kind = &sse_check;
2332 str = "sse";
2333 }
2334
2335 SKIP_WHITESPACE ();
2336
2337 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2338 {
2339 char *string;
2340 int e = get_symbol_name (&string);
2341
2342 if (strcmp (string, "none") == 0)
2343 *kind = check_none;
2344 else if (strcmp (string, "warning") == 0)
2345 *kind = check_warning;
2346 else if (strcmp (string, "error") == 0)
2347 *kind = check_error;
2348 else
2349 as_bad (_("bad argument to %s_check directive."), str);
2350 (void) restore_line_pointer (e);
2351 }
2352 else
2353 as_bad (_("missing argument for %s_check directive"), str);
2354
2355 demand_empty_rest_of_line ();
2356 }
2357
2358 static void
2359 check_cpu_arch_compatible (const char *name ATTRIBUTE_UNUSED,
2360 i386_cpu_flags new_flag ATTRIBUTE_UNUSED)
2361 {
2362 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
2363 static const char *arch;
2364
2365 /* Intel LIOM is only supported on ELF. */
2366 if (!IS_ELF)
2367 return;
2368
2369 if (!arch)
2370 {
2371 /* Use cpu_arch_name if it is set in md_parse_option. Otherwise
2372 use default_arch. */
2373 arch = cpu_arch_name;
2374 if (!arch)
2375 arch = default_arch;
2376 }
2377
2378 /* If we are targeting Intel MCU, we must enable it. */
2379 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_IAMCU
2380 || new_flag.bitfield.cpuiamcu)
2381 return;
2382
2383 /* If we are targeting Intel L1OM, we must enable it. */
2384 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_L1OM
2385 || new_flag.bitfield.cpul1om)
2386 return;
2387
2388 /* If we are targeting Intel K1OM, we must enable it. */
2389 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_K1OM
2390 || new_flag.bitfield.cpuk1om)
2391 return;
2392
2393 as_bad (_("`%s' is not supported on `%s'"), name, arch);
2394 #endif
2395 }
2396
2397 static void
2398 set_cpu_arch (int dummy ATTRIBUTE_UNUSED)
2399 {
2400 SKIP_WHITESPACE ();
2401
2402 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2403 {
2404 char *string;
2405 int e = get_symbol_name (&string);
2406 unsigned int j;
2407 i386_cpu_flags flags;
2408
2409 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
2410 {
2411 if (strcmp (string, cpu_arch[j].name) == 0)
2412 {
2413 check_cpu_arch_compatible (string, cpu_arch[j].flags);
2414
2415 if (*string != '.')
2416 {
2417 cpu_arch_name = cpu_arch[j].name;
2418 cpu_sub_arch_name = NULL;
2419 cpu_arch_flags = cpu_arch[j].flags;
2420 if (flag_code == CODE_64BIT)
2421 {
2422 cpu_arch_flags.bitfield.cpu64 = 1;
2423 cpu_arch_flags.bitfield.cpuno64 = 0;
2424 }
2425 else
2426 {
2427 cpu_arch_flags.bitfield.cpu64 = 0;
2428 cpu_arch_flags.bitfield.cpuno64 = 1;
2429 }
2430 cpu_arch_isa = cpu_arch[j].type;
2431 cpu_arch_isa_flags = cpu_arch[j].flags;
2432 if (!cpu_arch_tune_set)
2433 {
2434 cpu_arch_tune = cpu_arch_isa;
2435 cpu_arch_tune_flags = cpu_arch_isa_flags;
2436 }
2437 break;
2438 }
2439
2440 flags = cpu_flags_or (cpu_arch_flags,
2441 cpu_arch[j].flags);
2442
2443 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
2444 {
2445 if (cpu_sub_arch_name)
2446 {
2447 char *name = cpu_sub_arch_name;
2448 cpu_sub_arch_name = concat (name,
2449 cpu_arch[j].name,
2450 (const char *) NULL);
2451 free (name);
2452 }
2453 else
2454 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
2455 cpu_arch_flags = flags;
2456 cpu_arch_isa_flags = flags;
2457 }
2458 (void) restore_line_pointer (e);
2459 demand_empty_rest_of_line ();
2460 return;
2461 }
2462 }
2463
2464 if (*string == '.' && j >= ARRAY_SIZE (cpu_arch))
2465 {
2466 /* Disable an ISA extension. */
2467 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
2468 if (strcmp (string + 1, cpu_noarch [j].name) == 0)
2469 {
2470 flags = cpu_flags_and_not (cpu_arch_flags,
2471 cpu_noarch[j].flags);
2472 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
2473 {
2474 if (cpu_sub_arch_name)
2475 {
2476 char *name = cpu_sub_arch_name;
2477 cpu_sub_arch_name = concat (name, string,
2478 (const char *) NULL);
2479 free (name);
2480 }
2481 else
2482 cpu_sub_arch_name = xstrdup (string);
2483 cpu_arch_flags = flags;
2484 cpu_arch_isa_flags = flags;
2485 }
2486 (void) restore_line_pointer (e);
2487 demand_empty_rest_of_line ();
2488 return;
2489 }
2490
2491 j = ARRAY_SIZE (cpu_arch);
2492 }
2493
2494 if (j >= ARRAY_SIZE (cpu_arch))
2495 as_bad (_("no such architecture: `%s'"), string);
2496
2497 *input_line_pointer = e;
2498 }
2499 else
2500 as_bad (_("missing cpu architecture"));
2501
2502 no_cond_jump_promotion = 0;
2503 if (*input_line_pointer == ','
2504 && !is_end_of_line[(unsigned char) input_line_pointer[1]])
2505 {
2506 char *string;
2507 char e;
2508
2509 ++input_line_pointer;
2510 e = get_symbol_name (&string);
2511
2512 if (strcmp (string, "nojumps") == 0)
2513 no_cond_jump_promotion = 1;
2514 else if (strcmp (string, "jumps") == 0)
2515 ;
2516 else
2517 as_bad (_("no such architecture modifier: `%s'"), string);
2518
2519 (void) restore_line_pointer (e);
2520 }
2521
2522 demand_empty_rest_of_line ();
2523 }
2524
2525 enum bfd_architecture
2526 i386_arch (void)
2527 {
2528 if (cpu_arch_isa == PROCESSOR_L1OM)
2529 {
2530 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2531 || flag_code != CODE_64BIT)
2532 as_fatal (_("Intel L1OM is 64bit ELF only"));
2533 return bfd_arch_l1om;
2534 }
2535 else if (cpu_arch_isa == PROCESSOR_K1OM)
2536 {
2537 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2538 || flag_code != CODE_64BIT)
2539 as_fatal (_("Intel K1OM is 64bit ELF only"));
2540 return bfd_arch_k1om;
2541 }
2542 else if (cpu_arch_isa == PROCESSOR_IAMCU)
2543 {
2544 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2545 || flag_code == CODE_64BIT)
2546 as_fatal (_("Intel MCU is 32bit ELF only"));
2547 return bfd_arch_iamcu;
2548 }
2549 else
2550 return bfd_arch_i386;
2551 }
2552
2553 unsigned long
2554 i386_mach (void)
2555 {
2556 if (!strncmp (default_arch, "x86_64", 6))
2557 {
2558 if (cpu_arch_isa == PROCESSOR_L1OM)
2559 {
2560 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2561 || default_arch[6] != '\0')
2562 as_fatal (_("Intel L1OM is 64bit ELF only"));
2563 return bfd_mach_l1om;
2564 }
2565 else if (cpu_arch_isa == PROCESSOR_K1OM)
2566 {
2567 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2568 || default_arch[6] != '\0')
2569 as_fatal (_("Intel K1OM is 64bit ELF only"));
2570 return bfd_mach_k1om;
2571 }
2572 else if (default_arch[6] == '\0')
2573 return bfd_mach_x86_64;
2574 else
2575 return bfd_mach_x64_32;
2576 }
2577 else if (!strcmp (default_arch, "i386")
2578 || !strcmp (default_arch, "iamcu"))
2579 {
2580 if (cpu_arch_isa == PROCESSOR_IAMCU)
2581 {
2582 if (OUTPUT_FLAVOR != bfd_target_elf_flavour)
2583 as_fatal (_("Intel MCU is 32bit ELF only"));
2584 return bfd_mach_i386_iamcu;
2585 }
2586 else
2587 return bfd_mach_i386_i386;
2588 }
2589 else
2590 as_fatal (_("unknown architecture"));
2591 }
2592 \f
2593 void
2594 md_begin (void)
2595 {
2596 const char *hash_err;
2597
2598 /* Initialize op_hash hash table. */
2599 op_hash = hash_new ();
2600
2601 {
2602 const insn_template *optab;
2603 templates *core_optab;
2604
2605 /* Setup for loop. */
2606 optab = i386_optab;
2607 core_optab = XNEW (templates);
2608 core_optab->start = optab;
2609
2610 while (1)
2611 {
2612 ++optab;
2613 if (optab->name == NULL
2614 || strcmp (optab->name, (optab - 1)->name) != 0)
2615 {
2616 /* different name --> ship out current template list;
2617 add to hash table; & begin anew. */
2618 core_optab->end = optab;
2619 hash_err = hash_insert (op_hash,
2620 (optab - 1)->name,
2621 (void *) core_optab);
2622 if (hash_err)
2623 {
2624 as_fatal (_("can't hash %s: %s"),
2625 (optab - 1)->name,
2626 hash_err);
2627 }
2628 if (optab->name == NULL)
2629 break;
2630 core_optab = XNEW (templates);
2631 core_optab->start = optab;
2632 }
2633 }
2634 }
2635
2636 /* Initialize reg_hash hash table. */
2637 reg_hash = hash_new ();
2638 {
2639 const reg_entry *regtab;
2640 unsigned int regtab_size = i386_regtab_size;
2641
2642 for (regtab = i386_regtab; regtab_size--; regtab++)
2643 {
2644 hash_err = hash_insert (reg_hash, regtab->reg_name, (void *) regtab);
2645 if (hash_err)
2646 as_fatal (_("can't hash %s: %s"),
2647 regtab->reg_name,
2648 hash_err);
2649 }
2650 }
2651
2652 /* Fill in lexical tables: mnemonic_chars, operand_chars. */
2653 {
2654 int c;
2655 char *p;
2656
2657 for (c = 0; c < 256; c++)
2658 {
2659 if (ISDIGIT (c))
2660 {
2661 digit_chars[c] = c;
2662 mnemonic_chars[c] = c;
2663 register_chars[c] = c;
2664 operand_chars[c] = c;
2665 }
2666 else if (ISLOWER (c))
2667 {
2668 mnemonic_chars[c] = c;
2669 register_chars[c] = c;
2670 operand_chars[c] = c;
2671 }
2672 else if (ISUPPER (c))
2673 {
2674 mnemonic_chars[c] = TOLOWER (c);
2675 register_chars[c] = mnemonic_chars[c];
2676 operand_chars[c] = c;
2677 }
2678 else if (c == '{' || c == '}')
2679 operand_chars[c] = c;
2680
2681 if (ISALPHA (c) || ISDIGIT (c))
2682 identifier_chars[c] = c;
2683 else if (c >= 128)
2684 {
2685 identifier_chars[c] = c;
2686 operand_chars[c] = c;
2687 }
2688 }
2689
2690 #ifdef LEX_AT
2691 identifier_chars['@'] = '@';
2692 #endif
2693 #ifdef LEX_QM
2694 identifier_chars['?'] = '?';
2695 operand_chars['?'] = '?';
2696 #endif
2697 digit_chars['-'] = '-';
2698 mnemonic_chars['_'] = '_';
2699 mnemonic_chars['-'] = '-';
2700 mnemonic_chars['.'] = '.';
2701 identifier_chars['_'] = '_';
2702 identifier_chars['.'] = '.';
2703
2704 for (p = operand_special_chars; *p != '\0'; p++)
2705 operand_chars[(unsigned char) *p] = *p;
2706 }
2707
2708 if (flag_code == CODE_64BIT)
2709 {
2710 #if defined (OBJ_COFF) && defined (TE_PE)
2711 x86_dwarf2_return_column = (OUTPUT_FLAVOR == bfd_target_coff_flavour
2712 ? 32 : 16);
2713 #else
2714 x86_dwarf2_return_column = 16;
2715 #endif
2716 x86_cie_data_alignment = -8;
2717 }
2718 else
2719 {
2720 x86_dwarf2_return_column = 8;
2721 x86_cie_data_alignment = -4;
2722 }
2723 }
2724
2725 void
2726 i386_print_statistics (FILE *file)
2727 {
2728 hash_print_statistics (file, "i386 opcode", op_hash);
2729 hash_print_statistics (file, "i386 register", reg_hash);
2730 }
2731 \f
2732 #ifdef DEBUG386
2733
2734 /* Debugging routines for md_assemble. */
2735 static void pte (insn_template *);
2736 static void pt (i386_operand_type);
2737 static void pe (expressionS *);
2738 static void ps (symbolS *);
2739
2740 static void
2741 pi (char *line, i386_insn *x)
2742 {
2743 unsigned int j;
2744
2745 fprintf (stdout, "%s: template ", line);
2746 pte (&x->tm);
2747 fprintf (stdout, " address: base %s index %s scale %x\n",
2748 x->base_reg ? x->base_reg->reg_name : "none",
2749 x->index_reg ? x->index_reg->reg_name : "none",
2750 x->log2_scale_factor);
2751 fprintf (stdout, " modrm: mode %x reg %x reg/mem %x\n",
2752 x->rm.mode, x->rm.reg, x->rm.regmem);
2753 fprintf (stdout, " sib: base %x index %x scale %x\n",
2754 x->sib.base, x->sib.index, x->sib.scale);
2755 fprintf (stdout, " rex: 64bit %x extX %x extY %x extZ %x\n",
2756 (x->rex & REX_W) != 0,
2757 (x->rex & REX_R) != 0,
2758 (x->rex & REX_X) != 0,
2759 (x->rex & REX_B) != 0);
2760 for (j = 0; j < x->operands; j++)
2761 {
2762 fprintf (stdout, " #%d: ", j + 1);
2763 pt (x->types[j]);
2764 fprintf (stdout, "\n");
2765 if (x->types[j].bitfield.reg8
2766 || x->types[j].bitfield.reg16
2767 || x->types[j].bitfield.reg32
2768 || x->types[j].bitfield.reg64
2769 || x->types[j].bitfield.regmmx
2770 || x->types[j].bitfield.regxmm
2771 || x->types[j].bitfield.regymm
2772 || x->types[j].bitfield.regzmm
2773 || x->types[j].bitfield.sreg2
2774 || x->types[j].bitfield.sreg3
2775 || x->types[j].bitfield.control
2776 || x->types[j].bitfield.debug
2777 || x->types[j].bitfield.test)
2778 fprintf (stdout, "%s\n", x->op[j].regs->reg_name);
2779 if (operand_type_check (x->types[j], imm))
2780 pe (x->op[j].imms);
2781 if (operand_type_check (x->types[j], disp))
2782 pe (x->op[j].disps);
2783 }
2784 }
2785
2786 static void
2787 pte (insn_template *t)
2788 {
2789 unsigned int j;
2790 fprintf (stdout, " %d operands ", t->operands);
2791 fprintf (stdout, "opcode %x ", t->base_opcode);
2792 if (t->extension_opcode != None)
2793 fprintf (stdout, "ext %x ", t->extension_opcode);
2794 if (t->opcode_modifier.d)
2795 fprintf (stdout, "D");
2796 if (t->opcode_modifier.w)
2797 fprintf (stdout, "W");
2798 fprintf (stdout, "\n");
2799 for (j = 0; j < t->operands; j++)
2800 {
2801 fprintf (stdout, " #%d type ", j + 1);
2802 pt (t->operand_types[j]);
2803 fprintf (stdout, "\n");
2804 }
2805 }
2806
2807 static void
2808 pe (expressionS *e)
2809 {
2810 fprintf (stdout, " operation %d\n", e->X_op);
2811 fprintf (stdout, " add_number %ld (%lx)\n",
2812 (long) e->X_add_number, (long) e->X_add_number);
2813 if (e->X_add_symbol)
2814 {
2815 fprintf (stdout, " add_symbol ");
2816 ps (e->X_add_symbol);
2817 fprintf (stdout, "\n");
2818 }
2819 if (e->X_op_symbol)
2820 {
2821 fprintf (stdout, " op_symbol ");
2822 ps (e->X_op_symbol);
2823 fprintf (stdout, "\n");
2824 }
2825 }
2826
2827 static void
2828 ps (symbolS *s)
2829 {
2830 fprintf (stdout, "%s type %s%s",
2831 S_GET_NAME (s),
2832 S_IS_EXTERNAL (s) ? "EXTERNAL " : "",
2833 segment_name (S_GET_SEGMENT (s)));
2834 }
2835
2836 static struct type_name
2837 {
2838 i386_operand_type mask;
2839 const char *name;
2840 }
2841 const type_names[] =
2842 {
2843 { OPERAND_TYPE_REG8, "r8" },
2844 { OPERAND_TYPE_REG16, "r16" },
2845 { OPERAND_TYPE_REG32, "r32" },
2846 { OPERAND_TYPE_REG64, "r64" },
2847 { OPERAND_TYPE_IMM8, "i8" },
2848 { OPERAND_TYPE_IMM8, "i8s" },
2849 { OPERAND_TYPE_IMM16, "i16" },
2850 { OPERAND_TYPE_IMM32, "i32" },
2851 { OPERAND_TYPE_IMM32S, "i32s" },
2852 { OPERAND_TYPE_IMM64, "i64" },
2853 { OPERAND_TYPE_IMM1, "i1" },
2854 { OPERAND_TYPE_BASEINDEX, "BaseIndex" },
2855 { OPERAND_TYPE_DISP8, "d8" },
2856 { OPERAND_TYPE_DISP16, "d16" },
2857 { OPERAND_TYPE_DISP32, "d32" },
2858 { OPERAND_TYPE_DISP32S, "d32s" },
2859 { OPERAND_TYPE_DISP64, "d64" },
2860 { OPERAND_TYPE_VEC_DISP8, "Vector d8" },
2861 { OPERAND_TYPE_INOUTPORTREG, "InOutPortReg" },
2862 { OPERAND_TYPE_SHIFTCOUNT, "ShiftCount" },
2863 { OPERAND_TYPE_CONTROL, "control reg" },
2864 { OPERAND_TYPE_TEST, "test reg" },
2865 { OPERAND_TYPE_DEBUG, "debug reg" },
2866 { OPERAND_TYPE_FLOATREG, "FReg" },
2867 { OPERAND_TYPE_FLOATACC, "FAcc" },
2868 { OPERAND_TYPE_SREG2, "SReg2" },
2869 { OPERAND_TYPE_SREG3, "SReg3" },
2870 { OPERAND_TYPE_ACC, "Acc" },
2871 { OPERAND_TYPE_JUMPABSOLUTE, "Jump Absolute" },
2872 { OPERAND_TYPE_REGMMX, "rMMX" },
2873 { OPERAND_TYPE_REGXMM, "rXMM" },
2874 { OPERAND_TYPE_REGYMM, "rYMM" },
2875 { OPERAND_TYPE_REGZMM, "rZMM" },
2876 { OPERAND_TYPE_REGMASK, "Mask reg" },
2877 { OPERAND_TYPE_ESSEG, "es" },
2878 };
2879
2880 static void
2881 pt (i386_operand_type t)
2882 {
2883 unsigned int j;
2884 i386_operand_type a;
2885
2886 for (j = 0; j < ARRAY_SIZE (type_names); j++)
2887 {
2888 a = operand_type_and (t, type_names[j].mask);
2889 if (!operand_type_all_zero (&a))
2890 fprintf (stdout, "%s, ", type_names[j].name);
2891 }
2892 fflush (stdout);
2893 }
2894
2895 #endif /* DEBUG386 */
2896 \f
2897 static bfd_reloc_code_real_type
2898 reloc (unsigned int size,
2899 int pcrel,
2900 int sign,
2901 bfd_reloc_code_real_type other)
2902 {
2903 if (other != NO_RELOC)
2904 {
2905 reloc_howto_type *rel;
2906
2907 if (size == 8)
2908 switch (other)
2909 {
2910 case BFD_RELOC_X86_64_GOT32:
2911 return BFD_RELOC_X86_64_GOT64;
2912 break;
2913 case BFD_RELOC_X86_64_GOTPLT64:
2914 return BFD_RELOC_X86_64_GOTPLT64;
2915 break;
2916 case BFD_RELOC_X86_64_PLTOFF64:
2917 return BFD_RELOC_X86_64_PLTOFF64;
2918 break;
2919 case BFD_RELOC_X86_64_GOTPC32:
2920 other = BFD_RELOC_X86_64_GOTPC64;
2921 break;
2922 case BFD_RELOC_X86_64_GOTPCREL:
2923 other = BFD_RELOC_X86_64_GOTPCREL64;
2924 break;
2925 case BFD_RELOC_X86_64_TPOFF32:
2926 other = BFD_RELOC_X86_64_TPOFF64;
2927 break;
2928 case BFD_RELOC_X86_64_DTPOFF32:
2929 other = BFD_RELOC_X86_64_DTPOFF64;
2930 break;
2931 default:
2932 break;
2933 }
2934
2935 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
2936 if (other == BFD_RELOC_SIZE32)
2937 {
2938 if (size == 8)
2939 other = BFD_RELOC_SIZE64;
2940 if (pcrel)
2941 {
2942 as_bad (_("there are no pc-relative size relocations"));
2943 return NO_RELOC;
2944 }
2945 }
2946 #endif
2947
2948 /* Sign-checking 4-byte relocations in 16-/32-bit code is pointless. */
2949 if (size == 4 && (flag_code != CODE_64BIT || disallow_64bit_reloc))
2950 sign = -1;
2951
2952 rel = bfd_reloc_type_lookup (stdoutput, other);
2953 if (!rel)
2954 as_bad (_("unknown relocation (%u)"), other);
2955 else if (size != bfd_get_reloc_size (rel))
2956 as_bad (_("%u-byte relocation cannot be applied to %u-byte field"),
2957 bfd_get_reloc_size (rel),
2958 size);
2959 else if (pcrel && !rel->pc_relative)
2960 as_bad (_("non-pc-relative relocation for pc-relative field"));
2961 else if ((rel->complain_on_overflow == complain_overflow_signed
2962 && !sign)
2963 || (rel->complain_on_overflow == complain_overflow_unsigned
2964 && sign > 0))
2965 as_bad (_("relocated field and relocation type differ in signedness"));
2966 else
2967 return other;
2968 return NO_RELOC;
2969 }
2970
2971 if (pcrel)
2972 {
2973 if (!sign)
2974 as_bad (_("there are no unsigned pc-relative relocations"));
2975 switch (size)
2976 {
2977 case 1: return BFD_RELOC_8_PCREL;
2978 case 2: return BFD_RELOC_16_PCREL;
2979 case 4: return BFD_RELOC_32_PCREL;
2980 case 8: return BFD_RELOC_64_PCREL;
2981 }
2982 as_bad (_("cannot do %u byte pc-relative relocation"), size);
2983 }
2984 else
2985 {
2986 if (sign > 0)
2987 switch (size)
2988 {
2989 case 4: return BFD_RELOC_X86_64_32S;
2990 }
2991 else
2992 switch (size)
2993 {
2994 case 1: return BFD_RELOC_8;
2995 case 2: return BFD_RELOC_16;
2996 case 4: return BFD_RELOC_32;
2997 case 8: return BFD_RELOC_64;
2998 }
2999 as_bad (_("cannot do %s %u byte relocation"),
3000 sign > 0 ? "signed" : "unsigned", size);
3001 }
3002
3003 return NO_RELOC;
3004 }
3005
3006 /* Here we decide which fixups can be adjusted to make them relative to
3007 the beginning of the section instead of the symbol. Basically we need
3008 to make sure that the dynamic relocations are done correctly, so in
3009 some cases we force the original symbol to be used. */
3010
3011 int
3012 tc_i386_fix_adjustable (fixS *fixP ATTRIBUTE_UNUSED)
3013 {
3014 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
3015 if (!IS_ELF)
3016 return 1;
3017
3018 /* Don't adjust pc-relative references to merge sections in 64-bit
3019 mode. */
3020 if (use_rela_relocations
3021 && (S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_MERGE) != 0
3022 && fixP->fx_pcrel)
3023 return 0;
3024
3025 /* The x86_64 GOTPCREL are represented as 32bit PCrel relocations
3026 and changed later by validate_fix. */
3027 if (GOT_symbol && fixP->fx_subsy == GOT_symbol
3028 && fixP->fx_r_type == BFD_RELOC_32_PCREL)
3029 return 0;
3030
3031 /* Adjust_reloc_syms doesn't know about the GOT. Need to keep symbol
3032 for size relocations. */
3033 if (fixP->fx_r_type == BFD_RELOC_SIZE32
3034 || fixP->fx_r_type == BFD_RELOC_SIZE64
3035 || fixP->fx_r_type == BFD_RELOC_386_GOTOFF
3036 || fixP->fx_r_type == BFD_RELOC_386_PLT32
3037 || fixP->fx_r_type == BFD_RELOC_386_GOT32
3038 || fixP->fx_r_type == BFD_RELOC_386_GOT32X
3039 || fixP->fx_r_type == BFD_RELOC_386_TLS_GD
3040 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDM
3041 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDO_32
3042 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE_32
3043 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE
3044 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTIE
3045 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE_32
3046 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE
3047 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTDESC
3048 || fixP->fx_r_type == BFD_RELOC_386_TLS_DESC_CALL
3049 || fixP->fx_r_type == BFD_RELOC_X86_64_PLT32
3050 || fixP->fx_r_type == BFD_RELOC_X86_64_GOT32
3051 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCREL
3052 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCRELX
3053 || fixP->fx_r_type == BFD_RELOC_X86_64_REX_GOTPCRELX
3054 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSGD
3055 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSLD
3056 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF32
3057 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF64
3058 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTTPOFF
3059 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF32
3060 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF64
3061 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTOFF64
3062 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPC32_TLSDESC
3063 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSDESC_CALL
3064 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
3065 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
3066 return 0;
3067 #endif
3068 return 1;
3069 }
3070
3071 static int
3072 intel_float_operand (const char *mnemonic)
3073 {
3074 /* Note that the value returned is meaningful only for opcodes with (memory)
3075 operands, hence the code here is free to improperly handle opcodes that
3076 have no operands (for better performance and smaller code). */
3077
3078 if (mnemonic[0] != 'f')
3079 return 0; /* non-math */
3080
3081 switch (mnemonic[1])
3082 {
3083 /* fclex, fdecstp, fdisi, femms, feni, fincstp, finit, fsetpm, and
3084 the fs segment override prefix not currently handled because no
3085 call path can make opcodes without operands get here */
3086 case 'i':
3087 return 2 /* integer op */;
3088 case 'l':
3089 if (mnemonic[2] == 'd' && (mnemonic[3] == 'c' || mnemonic[3] == 'e'))
3090 return 3; /* fldcw/fldenv */
3091 break;
3092 case 'n':
3093 if (mnemonic[2] != 'o' /* fnop */)
3094 return 3; /* non-waiting control op */
3095 break;
3096 case 'r':
3097 if (mnemonic[2] == 's')
3098 return 3; /* frstor/frstpm */
3099 break;
3100 case 's':
3101 if (mnemonic[2] == 'a')
3102 return 3; /* fsave */
3103 if (mnemonic[2] == 't')
3104 {
3105 switch (mnemonic[3])
3106 {
3107 case 'c': /* fstcw */
3108 case 'd': /* fstdw */
3109 case 'e': /* fstenv */
3110 case 's': /* fsts[gw] */
3111 return 3;
3112 }
3113 }
3114 break;
3115 case 'x':
3116 if (mnemonic[2] == 'r' || mnemonic[2] == 's')
3117 return 0; /* fxsave/fxrstor are not really math ops */
3118 break;
3119 }
3120
3121 return 1;
3122 }
3123
3124 /* Build the VEX prefix. */
3125
3126 static void
3127 build_vex_prefix (const insn_template *t)
3128 {
3129 unsigned int register_specifier;
3130 unsigned int implied_prefix;
3131 unsigned int vector_length;
3132
3133 /* Check register specifier. */
3134 if (i.vex.register_specifier)
3135 {
3136 register_specifier =
3137 ~register_number (i.vex.register_specifier) & 0xf;
3138 gas_assert ((i.vex.register_specifier->reg_flags & RegVRex) == 0);
3139 }
3140 else
3141 register_specifier = 0xf;
3142
3143 /* Use 2-byte VEX prefix by swapping destination and source
3144 operand. */
3145 if (!i.swap_operand
3146 && i.operands == i.reg_operands
3147 && i.tm.opcode_modifier.vexopcode == VEX0F
3148 && i.tm.opcode_modifier.s
3149 && i.rex == REX_B)
3150 {
3151 unsigned int xchg = i.operands - 1;
3152 union i386_op temp_op;
3153 i386_operand_type temp_type;
3154
3155 temp_type = i.types[xchg];
3156 i.types[xchg] = i.types[0];
3157 i.types[0] = temp_type;
3158 temp_op = i.op[xchg];
3159 i.op[xchg] = i.op[0];
3160 i.op[0] = temp_op;
3161
3162 gas_assert (i.rm.mode == 3);
3163
3164 i.rex = REX_R;
3165 xchg = i.rm.regmem;
3166 i.rm.regmem = i.rm.reg;
3167 i.rm.reg = xchg;
3168
3169 /* Use the next insn. */
3170 i.tm = t[1];
3171 }
3172
3173 if (i.tm.opcode_modifier.vex == VEXScalar)
3174 vector_length = avxscalar;
3175 else
3176 vector_length = i.tm.opcode_modifier.vex == VEX256 ? 1 : 0;
3177
3178 switch ((i.tm.base_opcode >> 8) & 0xff)
3179 {
3180 case 0:
3181 implied_prefix = 0;
3182 break;
3183 case DATA_PREFIX_OPCODE:
3184 implied_prefix = 1;
3185 break;
3186 case REPE_PREFIX_OPCODE:
3187 implied_prefix = 2;
3188 break;
3189 case REPNE_PREFIX_OPCODE:
3190 implied_prefix = 3;
3191 break;
3192 default:
3193 abort ();
3194 }
3195
3196 /* Use 2-byte VEX prefix if possible. */
3197 if (i.tm.opcode_modifier.vexopcode == VEX0F
3198 && i.tm.opcode_modifier.vexw != VEXW1
3199 && (i.rex & (REX_W | REX_X | REX_B)) == 0)
3200 {
3201 /* 2-byte VEX prefix. */
3202 unsigned int r;
3203
3204 i.vex.length = 2;
3205 i.vex.bytes[0] = 0xc5;
3206
3207 /* Check the REX.R bit. */
3208 r = (i.rex & REX_R) ? 0 : 1;
3209 i.vex.bytes[1] = (r << 7
3210 | register_specifier << 3
3211 | vector_length << 2
3212 | implied_prefix);
3213 }
3214 else
3215 {
3216 /* 3-byte VEX prefix. */
3217 unsigned int m, w;
3218
3219 i.vex.length = 3;
3220
3221 switch (i.tm.opcode_modifier.vexopcode)
3222 {
3223 case VEX0F:
3224 m = 0x1;
3225 i.vex.bytes[0] = 0xc4;
3226 break;
3227 case VEX0F38:
3228 m = 0x2;
3229 i.vex.bytes[0] = 0xc4;
3230 break;
3231 case VEX0F3A:
3232 m = 0x3;
3233 i.vex.bytes[0] = 0xc4;
3234 break;
3235 case XOP08:
3236 m = 0x8;
3237 i.vex.bytes[0] = 0x8f;
3238 break;
3239 case XOP09:
3240 m = 0x9;
3241 i.vex.bytes[0] = 0x8f;
3242 break;
3243 case XOP0A:
3244 m = 0xa;
3245 i.vex.bytes[0] = 0x8f;
3246 break;
3247 default:
3248 abort ();
3249 }
3250
3251 /* The high 3 bits of the second VEX byte are 1's compliment
3252 of RXB bits from REX. */
3253 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3254
3255 /* Check the REX.W bit. */
3256 w = (i.rex & REX_W) ? 1 : 0;
3257 if (i.tm.opcode_modifier.vexw == VEXW1)
3258 w = 1;
3259
3260 i.vex.bytes[2] = (w << 7
3261 | register_specifier << 3
3262 | vector_length << 2
3263 | implied_prefix);
3264 }
3265 }
3266
3267 /* Build the EVEX prefix. */
3268
3269 static void
3270 build_evex_prefix (void)
3271 {
3272 unsigned int register_specifier;
3273 unsigned int implied_prefix;
3274 unsigned int m, w;
3275 rex_byte vrex_used = 0;
3276
3277 /* Check register specifier. */
3278 if (i.vex.register_specifier)
3279 {
3280 gas_assert ((i.vrex & REX_X) == 0);
3281
3282 register_specifier = i.vex.register_specifier->reg_num;
3283 if ((i.vex.register_specifier->reg_flags & RegRex))
3284 register_specifier += 8;
3285 /* The upper 16 registers are encoded in the fourth byte of the
3286 EVEX prefix. */
3287 if (!(i.vex.register_specifier->reg_flags & RegVRex))
3288 i.vex.bytes[3] = 0x8;
3289 register_specifier = ~register_specifier & 0xf;
3290 }
3291 else
3292 {
3293 register_specifier = 0xf;
3294
3295 /* Encode upper 16 vector index register in the fourth byte of
3296 the EVEX prefix. */
3297 if (!(i.vrex & REX_X))
3298 i.vex.bytes[3] = 0x8;
3299 else
3300 vrex_used |= REX_X;
3301 }
3302
3303 switch ((i.tm.base_opcode >> 8) & 0xff)
3304 {
3305 case 0:
3306 implied_prefix = 0;
3307 break;
3308 case DATA_PREFIX_OPCODE:
3309 implied_prefix = 1;
3310 break;
3311 case REPE_PREFIX_OPCODE:
3312 implied_prefix = 2;
3313 break;
3314 case REPNE_PREFIX_OPCODE:
3315 implied_prefix = 3;
3316 break;
3317 default:
3318 abort ();
3319 }
3320
3321 /* 4 byte EVEX prefix. */
3322 i.vex.length = 4;
3323 i.vex.bytes[0] = 0x62;
3324
3325 /* mmmm bits. */
3326 switch (i.tm.opcode_modifier.vexopcode)
3327 {
3328 case VEX0F:
3329 m = 1;
3330 break;
3331 case VEX0F38:
3332 m = 2;
3333 break;
3334 case VEX0F3A:
3335 m = 3;
3336 break;
3337 default:
3338 abort ();
3339 break;
3340 }
3341
3342 /* The high 3 bits of the second EVEX byte are 1's compliment of RXB
3343 bits from REX. */
3344 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3345
3346 /* The fifth bit of the second EVEX byte is 1's compliment of the
3347 REX_R bit in VREX. */
3348 if (!(i.vrex & REX_R))
3349 i.vex.bytes[1] |= 0x10;
3350 else
3351 vrex_used |= REX_R;
3352
3353 if ((i.reg_operands + i.imm_operands) == i.operands)
3354 {
3355 /* When all operands are registers, the REX_X bit in REX is not
3356 used. We reuse it to encode the upper 16 registers, which is
3357 indicated by the REX_B bit in VREX. The REX_X bit is encoded
3358 as 1's compliment. */
3359 if ((i.vrex & REX_B))
3360 {
3361 vrex_used |= REX_B;
3362 i.vex.bytes[1] &= ~0x40;
3363 }
3364 }
3365
3366 /* EVEX instructions shouldn't need the REX prefix. */
3367 i.vrex &= ~vrex_used;
3368 gas_assert (i.vrex == 0);
3369
3370 /* Check the REX.W bit. */
3371 w = (i.rex & REX_W) ? 1 : 0;
3372 if (i.tm.opcode_modifier.vexw)
3373 {
3374 if (i.tm.opcode_modifier.vexw == VEXW1)
3375 w = 1;
3376 }
3377 /* If w is not set it means we are dealing with WIG instruction. */
3378 else if (!w)
3379 {
3380 if (evexwig == evexw1)
3381 w = 1;
3382 }
3383
3384 /* Encode the U bit. */
3385 implied_prefix |= 0x4;
3386
3387 /* The third byte of the EVEX prefix. */
3388 i.vex.bytes[2] = (w << 7 | register_specifier << 3 | implied_prefix);
3389
3390 /* The fourth byte of the EVEX prefix. */
3391 /* The zeroing-masking bit. */
3392 if (i.mask && i.mask->zeroing)
3393 i.vex.bytes[3] |= 0x80;
3394
3395 /* Don't always set the broadcast bit if there is no RC. */
3396 if (!i.rounding)
3397 {
3398 /* Encode the vector length. */
3399 unsigned int vec_length;
3400
3401 switch (i.tm.opcode_modifier.evex)
3402 {
3403 case EVEXLIG: /* LL' is ignored */
3404 vec_length = evexlig << 5;
3405 break;
3406 case EVEX128:
3407 vec_length = 0 << 5;
3408 break;
3409 case EVEX256:
3410 vec_length = 1 << 5;
3411 break;
3412 case EVEX512:
3413 vec_length = 2 << 5;
3414 break;
3415 default:
3416 abort ();
3417 break;
3418 }
3419 i.vex.bytes[3] |= vec_length;
3420 /* Encode the broadcast bit. */
3421 if (i.broadcast)
3422 i.vex.bytes[3] |= 0x10;
3423 }
3424 else
3425 {
3426 if (i.rounding->type != saeonly)
3427 i.vex.bytes[3] |= 0x10 | (i.rounding->type << 5);
3428 else
3429 i.vex.bytes[3] |= 0x10 | (evexrcig << 5);
3430 }
3431
3432 if (i.mask && i.mask->mask)
3433 i.vex.bytes[3] |= i.mask->mask->reg_num;
3434 }
3435
3436 static void
3437 process_immext (void)
3438 {
3439 expressionS *exp;
3440
3441 if ((i.tm.cpu_flags.bitfield.cpusse3 || i.tm.cpu_flags.bitfield.cpusvme)
3442 && i.operands > 0)
3443 {
3444 /* MONITOR/MWAIT as well as SVME instructions have fixed operands
3445 with an opcode suffix which is coded in the same place as an
3446 8-bit immediate field would be.
3447 Here we check those operands and remove them afterwards. */
3448 unsigned int x;
3449
3450 for (x = 0; x < i.operands; x++)
3451 if (register_number (i.op[x].regs) != x)
3452 as_bad (_("can't use register '%s%s' as operand %d in '%s'."),
3453 register_prefix, i.op[x].regs->reg_name, x + 1,
3454 i.tm.name);
3455
3456 i.operands = 0;
3457 }
3458
3459 if (i.tm.cpu_flags.bitfield.cpumwaitx && i.operands > 0)
3460 {
3461 /* MONITORX/MWAITX instructions have fixed operands with an opcode
3462 suffix which is coded in the same place as an 8-bit immediate
3463 field would be.
3464 Here we check those operands and remove them afterwards. */
3465 unsigned int x;
3466
3467 if (i.operands != 3)
3468 abort();
3469
3470 for (x = 0; x < 2; x++)
3471 if (register_number (i.op[x].regs) != x)
3472 goto bad_register_operand;
3473
3474 /* Check for third operand for mwaitx/monitorx insn. */
3475 if (register_number (i.op[x].regs)
3476 != (x + (i.tm.extension_opcode == 0xfb)))
3477 {
3478 bad_register_operand:
3479 as_bad (_("can't use register '%s%s' as operand %d in '%s'."),
3480 register_prefix, i.op[x].regs->reg_name, x+1,
3481 i.tm.name);
3482 }
3483
3484 i.operands = 0;
3485 }
3486
3487 /* These AMD 3DNow! and SSE2 instructions have an opcode suffix
3488 which is coded in the same place as an 8-bit immediate field
3489 would be. Here we fake an 8-bit immediate operand from the
3490 opcode suffix stored in tm.extension_opcode.
3491
3492 AVX instructions also use this encoding, for some of
3493 3 argument instructions. */
3494
3495 gas_assert (i.imm_operands <= 1
3496 && (i.operands <= 2
3497 || ((i.tm.opcode_modifier.vex
3498 || i.tm.opcode_modifier.evex)
3499 && i.operands <= 4)));
3500
3501 exp = &im_expressions[i.imm_operands++];
3502 i.op[i.operands].imms = exp;
3503 i.types[i.operands] = imm8;
3504 i.operands++;
3505 exp->X_op = O_constant;
3506 exp->X_add_number = i.tm.extension_opcode;
3507 i.tm.extension_opcode = None;
3508 }
3509
3510
3511 static int
3512 check_hle (void)
3513 {
3514 switch (i.tm.opcode_modifier.hleprefixok)
3515 {
3516 default:
3517 abort ();
3518 case HLEPrefixNone:
3519 as_bad (_("invalid instruction `%s' after `%s'"),
3520 i.tm.name, i.hle_prefix);
3521 return 0;
3522 case HLEPrefixLock:
3523 if (i.prefix[LOCK_PREFIX])
3524 return 1;
3525 as_bad (_("missing `lock' with `%s'"), i.hle_prefix);
3526 return 0;
3527 case HLEPrefixAny:
3528 return 1;
3529 case HLEPrefixRelease:
3530 if (i.prefix[HLE_PREFIX] != XRELEASE_PREFIX_OPCODE)
3531 {
3532 as_bad (_("instruction `%s' after `xacquire' not allowed"),
3533 i.tm.name);
3534 return 0;
3535 }
3536 if (i.mem_operands == 0
3537 || !operand_type_check (i.types[i.operands - 1], anymem))
3538 {
3539 as_bad (_("memory destination needed for instruction `%s'"
3540 " after `xrelease'"), i.tm.name);
3541 return 0;
3542 }
3543 return 1;
3544 }
3545 }
3546
3547 /* This is the guts of the machine-dependent assembler. LINE points to a
3548 machine dependent instruction. This function is supposed to emit
3549 the frags/bytes it assembles to. */
3550
3551 void
3552 md_assemble (char *line)
3553 {
3554 unsigned int j;
3555 char mnemonic[MAX_MNEM_SIZE], mnem_suffix;
3556 const insn_template *t;
3557
3558 /* Initialize globals. */
3559 memset (&i, '\0', sizeof (i));
3560 for (j = 0; j < MAX_OPERANDS; j++)
3561 i.reloc[j] = NO_RELOC;
3562 memset (disp_expressions, '\0', sizeof (disp_expressions));
3563 memset (im_expressions, '\0', sizeof (im_expressions));
3564 save_stack_p = save_stack;
3565
3566 /* First parse an instruction mnemonic & call i386_operand for the operands.
3567 We assume that the scrubber has arranged it so that line[0] is the valid
3568 start of a (possibly prefixed) mnemonic. */
3569
3570 line = parse_insn (line, mnemonic);
3571 if (line == NULL)
3572 return;
3573 mnem_suffix = i.suffix;
3574
3575 line = parse_operands (line, mnemonic);
3576 this_operand = -1;
3577 xfree (i.memop1_string);
3578 i.memop1_string = NULL;
3579 if (line == NULL)
3580 return;
3581
3582 /* Now we've parsed the mnemonic into a set of templates, and have the
3583 operands at hand. */
3584
3585 /* All intel opcodes have reversed operands except for "bound" and
3586 "enter". We also don't reverse intersegment "jmp" and "call"
3587 instructions with 2 immediate operands so that the immediate segment
3588 precedes the offset, as it does when in AT&T mode. */
3589 if (intel_syntax
3590 && i.operands > 1
3591 && (strcmp (mnemonic, "bound") != 0)
3592 && (strcmp (mnemonic, "invlpga") != 0)
3593 && !(operand_type_check (i.types[0], imm)
3594 && operand_type_check (i.types[1], imm)))
3595 swap_operands ();
3596
3597 /* The order of the immediates should be reversed
3598 for 2 immediates extrq and insertq instructions */
3599 if (i.imm_operands == 2
3600 && (strcmp (mnemonic, "extrq") == 0
3601 || strcmp (mnemonic, "insertq") == 0))
3602 swap_2_operands (0, 1);
3603
3604 if (i.imm_operands)
3605 optimize_imm ();
3606
3607 /* Don't optimize displacement for movabs since it only takes 64bit
3608 displacement. */
3609 if (i.disp_operands
3610 && i.disp_encoding != disp_encoding_32bit
3611 && (flag_code != CODE_64BIT
3612 || strcmp (mnemonic, "movabs") != 0))
3613 optimize_disp ();
3614
3615 /* Next, we find a template that matches the given insn,
3616 making sure the overlap of the given operands types is consistent
3617 with the template operand types. */
3618
3619 if (!(t = match_template (mnem_suffix)))
3620 return;
3621
3622 if (sse_check != check_none
3623 && !i.tm.opcode_modifier.noavx
3624 && (i.tm.cpu_flags.bitfield.cpusse
3625 || i.tm.cpu_flags.bitfield.cpusse2
3626 || i.tm.cpu_flags.bitfield.cpusse3
3627 || i.tm.cpu_flags.bitfield.cpussse3
3628 || i.tm.cpu_flags.bitfield.cpusse4_1
3629 || i.tm.cpu_flags.bitfield.cpusse4_2))
3630 {
3631 (sse_check == check_warning
3632 ? as_warn
3633 : as_bad) (_("SSE instruction `%s' is used"), i.tm.name);
3634 }
3635
3636 /* Zap movzx and movsx suffix. The suffix has been set from
3637 "word ptr" or "byte ptr" on the source operand in Intel syntax
3638 or extracted from mnemonic in AT&T syntax. But we'll use
3639 the destination register to choose the suffix for encoding. */
3640 if ((i.tm.base_opcode & ~9) == 0x0fb6)
3641 {
3642 /* In Intel syntax, there must be a suffix. In AT&T syntax, if
3643 there is no suffix, the default will be byte extension. */
3644 if (i.reg_operands != 2
3645 && !i.suffix
3646 && intel_syntax)
3647 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
3648
3649 i.suffix = 0;
3650 }
3651
3652 if (i.tm.opcode_modifier.fwait)
3653 if (!add_prefix (FWAIT_OPCODE))
3654 return;
3655
3656 /* Check if REP prefix is OK. */
3657 if (i.rep_prefix && !i.tm.opcode_modifier.repprefixok)
3658 {
3659 as_bad (_("invalid instruction `%s' after `%s'"),
3660 i.tm.name, i.rep_prefix);
3661 return;
3662 }
3663
3664 /* Check for lock without a lockable instruction. Destination operand
3665 must be memory unless it is xchg (0x86). */
3666 if (i.prefix[LOCK_PREFIX]
3667 && (!i.tm.opcode_modifier.islockable
3668 || i.mem_operands == 0
3669 || (i.tm.base_opcode != 0x86
3670 && !operand_type_check (i.types[i.operands - 1], anymem))))
3671 {
3672 as_bad (_("expecting lockable instruction after `lock'"));
3673 return;
3674 }
3675
3676 /* Check if HLE prefix is OK. */
3677 if (i.hle_prefix && !check_hle ())
3678 return;
3679
3680 /* Check BND prefix. */
3681 if (i.bnd_prefix && !i.tm.opcode_modifier.bndprefixok)
3682 as_bad (_("expecting valid branch instruction after `bnd'"));
3683
3684 if (i.tm.cpu_flags.bitfield.cpumpx)
3685 {
3686 if (flag_code == CODE_64BIT && i.prefix[ADDR_PREFIX])
3687 as_bad (_("32-bit address isn't allowed in 64-bit MPX instructions."));
3688 else if (flag_code != CODE_16BIT
3689 ? i.prefix[ADDR_PREFIX]
3690 : i.mem_operands && !i.prefix[ADDR_PREFIX])
3691 as_bad (_("16-bit address isn't allowed in MPX instructions"));
3692 }
3693
3694 /* Insert BND prefix. */
3695 if (add_bnd_prefix
3696 && i.tm.opcode_modifier.bndprefixok
3697 && !i.prefix[BND_PREFIX])
3698 add_prefix (BND_PREFIX_OPCODE);
3699
3700 /* Check string instruction segment overrides. */
3701 if (i.tm.opcode_modifier.isstring && i.mem_operands != 0)
3702 {
3703 if (!check_string ())
3704 return;
3705 i.disp_operands = 0;
3706 }
3707
3708 if (!process_suffix ())
3709 return;
3710
3711 /* Update operand types. */
3712 for (j = 0; j < i.operands; j++)
3713 i.types[j] = operand_type_and (i.types[j], i.tm.operand_types[j]);
3714
3715 /* Make still unresolved immediate matches conform to size of immediate
3716 given in i.suffix. */
3717 if (!finalize_imm ())
3718 return;
3719
3720 if (i.types[0].bitfield.imm1)
3721 i.imm_operands = 0; /* kludge for shift insns. */
3722
3723 /* We only need to check those implicit registers for instructions
3724 with 3 operands or less. */
3725 if (i.operands <= 3)
3726 for (j = 0; j < i.operands; j++)
3727 if (i.types[j].bitfield.inoutportreg
3728 || i.types[j].bitfield.shiftcount
3729 || i.types[j].bitfield.acc
3730 || i.types[j].bitfield.floatacc)
3731 i.reg_operands--;
3732
3733 /* ImmExt should be processed after SSE2AVX. */
3734 if (!i.tm.opcode_modifier.sse2avx
3735 && i.tm.opcode_modifier.immext)
3736 process_immext ();
3737
3738 /* For insns with operands there are more diddles to do to the opcode. */
3739 if (i.operands)
3740 {
3741 if (!process_operands ())
3742 return;
3743 }
3744 else if (!quiet_warnings && i.tm.opcode_modifier.ugh)
3745 {
3746 /* UnixWare fsub no args is alias for fsubp, fadd -> faddp, etc. */
3747 as_warn (_("translating to `%sp'"), i.tm.name);
3748 }
3749
3750 if (i.tm.opcode_modifier.vex || i.tm.opcode_modifier.evex)
3751 {
3752 if (flag_code == CODE_16BIT)
3753 {
3754 as_bad (_("instruction `%s' isn't supported in 16-bit mode."),
3755 i.tm.name);
3756 return;
3757 }
3758
3759 if (i.tm.opcode_modifier.vex)
3760 build_vex_prefix (t);
3761 else
3762 build_evex_prefix ();
3763 }
3764
3765 /* Handle conversion of 'int $3' --> special int3 insn. XOP or FMA4
3766 instructions may define INT_OPCODE as well, so avoid this corner
3767 case for those instructions that use MODRM. */
3768 if (i.tm.base_opcode == INT_OPCODE
3769 && !i.tm.opcode_modifier.modrm
3770 && i.op[0].imms->X_add_number == 3)
3771 {
3772 i.tm.base_opcode = INT3_OPCODE;
3773 i.imm_operands = 0;
3774 }
3775
3776 if ((i.tm.opcode_modifier.jump
3777 || i.tm.opcode_modifier.jumpbyte
3778 || i.tm.opcode_modifier.jumpdword)
3779 && i.op[0].disps->X_op == O_constant)
3780 {
3781 /* Convert "jmp constant" (and "call constant") to a jump (call) to
3782 the absolute address given by the constant. Since ix86 jumps and
3783 calls are pc relative, we need to generate a reloc. */
3784 i.op[0].disps->X_add_symbol = &abs_symbol;
3785 i.op[0].disps->X_op = O_symbol;
3786 }
3787
3788 if (i.tm.opcode_modifier.rex64)
3789 i.rex |= REX_W;
3790
3791 /* For 8 bit registers we need an empty rex prefix. Also if the
3792 instruction already has a prefix, we need to convert old
3793 registers to new ones. */
3794
3795 if ((i.types[0].bitfield.reg8
3796 && (i.op[0].regs->reg_flags & RegRex64) != 0)
3797 || (i.types[1].bitfield.reg8
3798 && (i.op[1].regs->reg_flags & RegRex64) != 0)
3799 || ((i.types[0].bitfield.reg8
3800 || i.types[1].bitfield.reg8)
3801 && i.rex != 0))
3802 {
3803 int x;
3804
3805 i.rex |= REX_OPCODE;
3806 for (x = 0; x < 2; x++)
3807 {
3808 /* Look for 8 bit operand that uses old registers. */
3809 if (i.types[x].bitfield.reg8
3810 && (i.op[x].regs->reg_flags & RegRex64) == 0)
3811 {
3812 /* In case it is "hi" register, give up. */
3813 if (i.op[x].regs->reg_num > 3)
3814 as_bad (_("can't encode register '%s%s' in an "
3815 "instruction requiring REX prefix."),
3816 register_prefix, i.op[x].regs->reg_name);
3817
3818 /* Otherwise it is equivalent to the extended register.
3819 Since the encoding doesn't change this is merely
3820 cosmetic cleanup for debug output. */
3821
3822 i.op[x].regs = i.op[x].regs + 8;
3823 }
3824 }
3825 }
3826
3827 if (i.rex != 0)
3828 add_prefix (REX_OPCODE | i.rex);
3829
3830 /* We are ready to output the insn. */
3831 output_insn ();
3832 }
3833
3834 static char *
3835 parse_insn (char *line, char *mnemonic)
3836 {
3837 char *l = line;
3838 char *token_start = l;
3839 char *mnem_p;
3840 int supported;
3841 const insn_template *t;
3842 char *dot_p = NULL;
3843
3844 while (1)
3845 {
3846 mnem_p = mnemonic;
3847 while ((*mnem_p = mnemonic_chars[(unsigned char) *l]) != 0)
3848 {
3849 if (*mnem_p == '.')
3850 dot_p = mnem_p;
3851 mnem_p++;
3852 if (mnem_p >= mnemonic + MAX_MNEM_SIZE)
3853 {
3854 as_bad (_("no such instruction: `%s'"), token_start);
3855 return NULL;
3856 }
3857 l++;
3858 }
3859 if (!is_space_char (*l)
3860 && *l != END_OF_INSN
3861 && (intel_syntax
3862 || (*l != PREFIX_SEPARATOR
3863 && *l != ',')))
3864 {
3865 as_bad (_("invalid character %s in mnemonic"),
3866 output_invalid (*l));
3867 return NULL;
3868 }
3869 if (token_start == l)
3870 {
3871 if (!intel_syntax && *l == PREFIX_SEPARATOR)
3872 as_bad (_("expecting prefix; got nothing"));
3873 else
3874 as_bad (_("expecting mnemonic; got nothing"));
3875 return NULL;
3876 }
3877
3878 /* Look up instruction (or prefix) via hash table. */
3879 current_templates = (const templates *) hash_find (op_hash, mnemonic);
3880
3881 if (*l != END_OF_INSN
3882 && (!is_space_char (*l) || l[1] != END_OF_INSN)
3883 && current_templates
3884 && current_templates->start->opcode_modifier.isprefix)
3885 {
3886 if (!cpu_flags_check_cpu64 (current_templates->start->cpu_flags))
3887 {
3888 as_bad ((flag_code != CODE_64BIT
3889 ? _("`%s' is only supported in 64-bit mode")
3890 : _("`%s' is not supported in 64-bit mode")),
3891 current_templates->start->name);
3892 return NULL;
3893 }
3894 /* If we are in 16-bit mode, do not allow addr16 or data16.
3895 Similarly, in 32-bit mode, do not allow addr32 or data32. */
3896 if ((current_templates->start->opcode_modifier.size16
3897 || current_templates->start->opcode_modifier.size32)
3898 && flag_code != CODE_64BIT
3899 && (current_templates->start->opcode_modifier.size32
3900 ^ (flag_code == CODE_16BIT)))
3901 {
3902 as_bad (_("redundant %s prefix"),
3903 current_templates->start->name);
3904 return NULL;
3905 }
3906 /* Add prefix, checking for repeated prefixes. */
3907 switch (add_prefix (current_templates->start->base_opcode))
3908 {
3909 case PREFIX_EXIST:
3910 return NULL;
3911 case PREFIX_REP:
3912 if (current_templates->start->cpu_flags.bitfield.cpuhle)
3913 i.hle_prefix = current_templates->start->name;
3914 else if (current_templates->start->cpu_flags.bitfield.cpumpx)
3915 i.bnd_prefix = current_templates->start->name;
3916 else
3917 i.rep_prefix = current_templates->start->name;
3918 break;
3919 default:
3920 break;
3921 }
3922 /* Skip past PREFIX_SEPARATOR and reset token_start. */
3923 token_start = ++l;
3924 }
3925 else
3926 break;
3927 }
3928
3929 if (!current_templates)
3930 {
3931 /* Check if we should swap operand or force 32bit displacement in
3932 encoding. */
3933 if (mnem_p - 2 == dot_p && dot_p[1] == 's')
3934 i.swap_operand = 1;
3935 else if (mnem_p - 3 == dot_p
3936 && dot_p[1] == 'd'
3937 && dot_p[2] == '8')
3938 i.disp_encoding = disp_encoding_8bit;
3939 else if (mnem_p - 4 == dot_p
3940 && dot_p[1] == 'd'
3941 && dot_p[2] == '3'
3942 && dot_p[3] == '2')
3943 i.disp_encoding = disp_encoding_32bit;
3944 else
3945 goto check_suffix;
3946 mnem_p = dot_p;
3947 *dot_p = '\0';
3948 current_templates = (const templates *) hash_find (op_hash, mnemonic);
3949 }
3950
3951 if (!current_templates)
3952 {
3953 check_suffix:
3954 /* See if we can get a match by trimming off a suffix. */
3955 switch (mnem_p[-1])
3956 {
3957 case WORD_MNEM_SUFFIX:
3958 if (intel_syntax && (intel_float_operand (mnemonic) & 2))
3959 i.suffix = SHORT_MNEM_SUFFIX;
3960 else
3961 /* Fall through. */
3962 case BYTE_MNEM_SUFFIX:
3963 case QWORD_MNEM_SUFFIX:
3964 i.suffix = mnem_p[-1];
3965 mnem_p[-1] = '\0';
3966 current_templates = (const templates *) hash_find (op_hash,
3967 mnemonic);
3968 break;
3969 case SHORT_MNEM_SUFFIX:
3970 case LONG_MNEM_SUFFIX:
3971 if (!intel_syntax)
3972 {
3973 i.suffix = mnem_p[-1];
3974 mnem_p[-1] = '\0';
3975 current_templates = (const templates *) hash_find (op_hash,
3976 mnemonic);
3977 }
3978 break;
3979
3980 /* Intel Syntax. */
3981 case 'd':
3982 if (intel_syntax)
3983 {
3984 if (intel_float_operand (mnemonic) == 1)
3985 i.suffix = SHORT_MNEM_SUFFIX;
3986 else
3987 i.suffix = LONG_MNEM_SUFFIX;
3988 mnem_p[-1] = '\0';
3989 current_templates = (const templates *) hash_find (op_hash,
3990 mnemonic);
3991 }
3992 break;
3993 }
3994 if (!current_templates)
3995 {
3996 as_bad (_("no such instruction: `%s'"), token_start);
3997 return NULL;
3998 }
3999 }
4000
4001 if (current_templates->start->opcode_modifier.jump
4002 || current_templates->start->opcode_modifier.jumpbyte)
4003 {
4004 /* Check for a branch hint. We allow ",pt" and ",pn" for
4005 predict taken and predict not taken respectively.
4006 I'm not sure that branch hints actually do anything on loop
4007 and jcxz insns (JumpByte) for current Pentium4 chips. They
4008 may work in the future and it doesn't hurt to accept them
4009 now. */
4010 if (l[0] == ',' && l[1] == 'p')
4011 {
4012 if (l[2] == 't')
4013 {
4014 if (!add_prefix (DS_PREFIX_OPCODE))
4015 return NULL;
4016 l += 3;
4017 }
4018 else if (l[2] == 'n')
4019 {
4020 if (!add_prefix (CS_PREFIX_OPCODE))
4021 return NULL;
4022 l += 3;
4023 }
4024 }
4025 }
4026 /* Any other comma loses. */
4027 if (*l == ',')
4028 {
4029 as_bad (_("invalid character %s in mnemonic"),
4030 output_invalid (*l));
4031 return NULL;
4032 }
4033
4034 /* Check if instruction is supported on specified architecture. */
4035 supported = 0;
4036 for (t = current_templates->start; t < current_templates->end; ++t)
4037 {
4038 supported |= cpu_flags_match (t);
4039 if (supported == CPU_FLAGS_PERFECT_MATCH)
4040 goto skip;
4041 }
4042
4043 if (!(supported & CPU_FLAGS_64BIT_MATCH))
4044 {
4045 as_bad (flag_code == CODE_64BIT
4046 ? _("`%s' is not supported in 64-bit mode")
4047 : _("`%s' is only supported in 64-bit mode"),
4048 current_templates->start->name);
4049 return NULL;
4050 }
4051 if (supported != CPU_FLAGS_PERFECT_MATCH)
4052 {
4053 as_bad (_("`%s' is not supported on `%s%s'"),
4054 current_templates->start->name,
4055 cpu_arch_name ? cpu_arch_name : default_arch,
4056 cpu_sub_arch_name ? cpu_sub_arch_name : "");
4057 return NULL;
4058 }
4059
4060 skip:
4061 if (!cpu_arch_flags.bitfield.cpui386
4062 && (flag_code != CODE_16BIT))
4063 {
4064 as_warn (_("use .code16 to ensure correct addressing mode"));
4065 }
4066
4067 return l;
4068 }
4069
4070 static char *
4071 parse_operands (char *l, const char *mnemonic)
4072 {
4073 char *token_start;
4074
4075 /* 1 if operand is pending after ','. */
4076 unsigned int expecting_operand = 0;
4077
4078 /* Non-zero if operand parens not balanced. */
4079 unsigned int paren_not_balanced;
4080
4081 while (*l != END_OF_INSN)
4082 {
4083 /* Skip optional white space before operand. */
4084 if (is_space_char (*l))
4085 ++l;
4086 if (!is_operand_char (*l) && *l != END_OF_INSN && *l != '"')
4087 {
4088 as_bad (_("invalid character %s before operand %d"),
4089 output_invalid (*l),
4090 i.operands + 1);
4091 return NULL;
4092 }
4093 token_start = l; /* After white space. */
4094 paren_not_balanced = 0;
4095 while (paren_not_balanced || *l != ',')
4096 {
4097 if (*l == END_OF_INSN)
4098 {
4099 if (paren_not_balanced)
4100 {
4101 if (!intel_syntax)
4102 as_bad (_("unbalanced parenthesis in operand %d."),
4103 i.operands + 1);
4104 else
4105 as_bad (_("unbalanced brackets in operand %d."),
4106 i.operands + 1);
4107 return NULL;
4108 }
4109 else
4110 break; /* we are done */
4111 }
4112 else if (!is_operand_char (*l) && !is_space_char (*l) && *l != '"')
4113 {
4114 as_bad (_("invalid character %s in operand %d"),
4115 output_invalid (*l),
4116 i.operands + 1);
4117 return NULL;
4118 }
4119 if (!intel_syntax)
4120 {
4121 if (*l == '(')
4122 ++paren_not_balanced;
4123 if (*l == ')')
4124 --paren_not_balanced;
4125 }
4126 else
4127 {
4128 if (*l == '[')
4129 ++paren_not_balanced;
4130 if (*l == ']')
4131 --paren_not_balanced;
4132 }
4133 l++;
4134 }
4135 if (l != token_start)
4136 { /* Yes, we've read in another operand. */
4137 unsigned int operand_ok;
4138 this_operand = i.operands++;
4139 if (i.operands > MAX_OPERANDS)
4140 {
4141 as_bad (_("spurious operands; (%d operands/instruction max)"),
4142 MAX_OPERANDS);
4143 return NULL;
4144 }
4145 i.types[this_operand].bitfield.unspecified = 1;
4146 /* Now parse operand adding info to 'i' as we go along. */
4147 END_STRING_AND_SAVE (l);
4148
4149 if (intel_syntax)
4150 operand_ok =
4151 i386_intel_operand (token_start,
4152 intel_float_operand (mnemonic));
4153 else
4154 operand_ok = i386_att_operand (token_start);
4155
4156 RESTORE_END_STRING (l);
4157 if (!operand_ok)
4158 return NULL;
4159 }
4160 else
4161 {
4162 if (expecting_operand)
4163 {
4164 expecting_operand_after_comma:
4165 as_bad (_("expecting operand after ','; got nothing"));
4166 return NULL;
4167 }
4168 if (*l == ',')
4169 {
4170 as_bad (_("expecting operand before ','; got nothing"));
4171 return NULL;
4172 }
4173 }
4174
4175 /* Now *l must be either ',' or END_OF_INSN. */
4176 if (*l == ',')
4177 {
4178 if (*++l == END_OF_INSN)
4179 {
4180 /* Just skip it, if it's \n complain. */
4181 goto expecting_operand_after_comma;
4182 }
4183 expecting_operand = 1;
4184 }
4185 }
4186 return l;
4187 }
4188
4189 static void
4190 swap_2_operands (int xchg1, int xchg2)
4191 {
4192 union i386_op temp_op;
4193 i386_operand_type temp_type;
4194 enum bfd_reloc_code_real temp_reloc;
4195
4196 temp_type = i.types[xchg2];
4197 i.types[xchg2] = i.types[xchg1];
4198 i.types[xchg1] = temp_type;
4199 temp_op = i.op[xchg2];
4200 i.op[xchg2] = i.op[xchg1];
4201 i.op[xchg1] = temp_op;
4202 temp_reloc = i.reloc[xchg2];
4203 i.reloc[xchg2] = i.reloc[xchg1];
4204 i.reloc[xchg1] = temp_reloc;
4205
4206 if (i.mask)
4207 {
4208 if (i.mask->operand == xchg1)
4209 i.mask->operand = xchg2;
4210 else if (i.mask->operand == xchg2)
4211 i.mask->operand = xchg1;
4212 }
4213 if (i.broadcast)
4214 {
4215 if (i.broadcast->operand == xchg1)
4216 i.broadcast->operand = xchg2;
4217 else if (i.broadcast->operand == xchg2)
4218 i.broadcast->operand = xchg1;
4219 }
4220 if (i.rounding)
4221 {
4222 if (i.rounding->operand == xchg1)
4223 i.rounding->operand = xchg2;
4224 else if (i.rounding->operand == xchg2)
4225 i.rounding->operand = xchg1;
4226 }
4227 }
4228
4229 static void
4230 swap_operands (void)
4231 {
4232 switch (i.operands)
4233 {
4234 case 5:
4235 case 4:
4236 swap_2_operands (1, i.operands - 2);
4237 /* Fall through. */
4238 case 3:
4239 case 2:
4240 swap_2_operands (0, i.operands - 1);
4241 break;
4242 default:
4243 abort ();
4244 }
4245
4246 if (i.mem_operands == 2)
4247 {
4248 const seg_entry *temp_seg;
4249 temp_seg = i.seg[0];
4250 i.seg[0] = i.seg[1];
4251 i.seg[1] = temp_seg;
4252 }
4253 }
4254
4255 /* Try to ensure constant immediates are represented in the smallest
4256 opcode possible. */
4257 static void
4258 optimize_imm (void)
4259 {
4260 char guess_suffix = 0;
4261 int op;
4262
4263 if (i.suffix)
4264 guess_suffix = i.suffix;
4265 else if (i.reg_operands)
4266 {
4267 /* Figure out a suffix from the last register operand specified.
4268 We can't do this properly yet, ie. excluding InOutPortReg,
4269 but the following works for instructions with immediates.
4270 In any case, we can't set i.suffix yet. */
4271 for (op = i.operands; --op >= 0;)
4272 if (i.types[op].bitfield.reg8)
4273 {
4274 guess_suffix = BYTE_MNEM_SUFFIX;
4275 break;
4276 }
4277 else if (i.types[op].bitfield.reg16)
4278 {
4279 guess_suffix = WORD_MNEM_SUFFIX;
4280 break;
4281 }
4282 else if (i.types[op].bitfield.reg32)
4283 {
4284 guess_suffix = LONG_MNEM_SUFFIX;
4285 break;
4286 }
4287 else if (i.types[op].bitfield.reg64)
4288 {
4289 guess_suffix = QWORD_MNEM_SUFFIX;
4290 break;
4291 }
4292 }
4293 else if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
4294 guess_suffix = WORD_MNEM_SUFFIX;
4295
4296 for (op = i.operands; --op >= 0;)
4297 if (operand_type_check (i.types[op], imm))
4298 {
4299 switch (i.op[op].imms->X_op)
4300 {
4301 case O_constant:
4302 /* If a suffix is given, this operand may be shortened. */
4303 switch (guess_suffix)
4304 {
4305 case LONG_MNEM_SUFFIX:
4306 i.types[op].bitfield.imm32 = 1;
4307 i.types[op].bitfield.imm64 = 1;
4308 break;
4309 case WORD_MNEM_SUFFIX:
4310 i.types[op].bitfield.imm16 = 1;
4311 i.types[op].bitfield.imm32 = 1;
4312 i.types[op].bitfield.imm32s = 1;
4313 i.types[op].bitfield.imm64 = 1;
4314 break;
4315 case BYTE_MNEM_SUFFIX:
4316 i.types[op].bitfield.imm8 = 1;
4317 i.types[op].bitfield.imm8s = 1;
4318 i.types[op].bitfield.imm16 = 1;
4319 i.types[op].bitfield.imm32 = 1;
4320 i.types[op].bitfield.imm32s = 1;
4321 i.types[op].bitfield.imm64 = 1;
4322 break;
4323 }
4324
4325 /* If this operand is at most 16 bits, convert it
4326 to a signed 16 bit number before trying to see
4327 whether it will fit in an even smaller size.
4328 This allows a 16-bit operand such as $0xffe0 to
4329 be recognised as within Imm8S range. */
4330 if ((i.types[op].bitfield.imm16)
4331 && (i.op[op].imms->X_add_number & ~(offsetT) 0xffff) == 0)
4332 {
4333 i.op[op].imms->X_add_number =
4334 (((i.op[op].imms->X_add_number & 0xffff) ^ 0x8000) - 0x8000);
4335 }
4336 #ifdef BFD64
4337 /* Store 32-bit immediate in 64-bit for 64-bit BFD. */
4338 if ((i.types[op].bitfield.imm32)
4339 && ((i.op[op].imms->X_add_number & ~(((offsetT) 2 << 31) - 1))
4340 == 0))
4341 {
4342 i.op[op].imms->X_add_number = ((i.op[op].imms->X_add_number
4343 ^ ((offsetT) 1 << 31))
4344 - ((offsetT) 1 << 31));
4345 }
4346 #endif
4347 i.types[op]
4348 = operand_type_or (i.types[op],
4349 smallest_imm_type (i.op[op].imms->X_add_number));
4350
4351 /* We must avoid matching of Imm32 templates when 64bit
4352 only immediate is available. */
4353 if (guess_suffix == QWORD_MNEM_SUFFIX)
4354 i.types[op].bitfield.imm32 = 0;
4355 break;
4356
4357 case O_absent:
4358 case O_register:
4359 abort ();
4360
4361 /* Symbols and expressions. */
4362 default:
4363 /* Convert symbolic operand to proper sizes for matching, but don't
4364 prevent matching a set of insns that only supports sizes other
4365 than those matching the insn suffix. */
4366 {
4367 i386_operand_type mask, allowed;
4368 const insn_template *t;
4369
4370 operand_type_set (&mask, 0);
4371 operand_type_set (&allowed, 0);
4372
4373 for (t = current_templates->start;
4374 t < current_templates->end;
4375 ++t)
4376 allowed = operand_type_or (allowed,
4377 t->operand_types[op]);
4378 switch (guess_suffix)
4379 {
4380 case QWORD_MNEM_SUFFIX:
4381 mask.bitfield.imm64 = 1;
4382 mask.bitfield.imm32s = 1;
4383 break;
4384 case LONG_MNEM_SUFFIX:
4385 mask.bitfield.imm32 = 1;
4386 break;
4387 case WORD_MNEM_SUFFIX:
4388 mask.bitfield.imm16 = 1;
4389 break;
4390 case BYTE_MNEM_SUFFIX:
4391 mask.bitfield.imm8 = 1;
4392 break;
4393 default:
4394 break;
4395 }
4396 allowed = operand_type_and (mask, allowed);
4397 if (!operand_type_all_zero (&allowed))
4398 i.types[op] = operand_type_and (i.types[op], mask);
4399 }
4400 break;
4401 }
4402 }
4403 }
4404
4405 /* Try to use the smallest displacement type too. */
4406 static void
4407 optimize_disp (void)
4408 {
4409 int op;
4410
4411 for (op = i.operands; --op >= 0;)
4412 if (operand_type_check (i.types[op], disp))
4413 {
4414 if (i.op[op].disps->X_op == O_constant)
4415 {
4416 offsetT op_disp = i.op[op].disps->X_add_number;
4417
4418 if (i.types[op].bitfield.disp16
4419 && (op_disp & ~(offsetT) 0xffff) == 0)
4420 {
4421 /* If this operand is at most 16 bits, convert
4422 to a signed 16 bit number and don't use 64bit
4423 displacement. */
4424 op_disp = (((op_disp & 0xffff) ^ 0x8000) - 0x8000);
4425 i.types[op].bitfield.disp64 = 0;
4426 }
4427 #ifdef BFD64
4428 /* Optimize 64-bit displacement to 32-bit for 64-bit BFD. */
4429 if (i.types[op].bitfield.disp32
4430 && (op_disp & ~(((offsetT) 2 << 31) - 1)) == 0)
4431 {
4432 /* If this operand is at most 32 bits, convert
4433 to a signed 32 bit number and don't use 64bit
4434 displacement. */
4435 op_disp &= (((offsetT) 2 << 31) - 1);
4436 op_disp = (op_disp ^ ((offsetT) 1 << 31)) - ((addressT) 1 << 31);
4437 i.types[op].bitfield.disp64 = 0;
4438 }
4439 #endif
4440 if (!op_disp && i.types[op].bitfield.baseindex)
4441 {
4442 i.types[op].bitfield.disp8 = 0;
4443 i.types[op].bitfield.disp16 = 0;
4444 i.types[op].bitfield.disp32 = 0;
4445 i.types[op].bitfield.disp32s = 0;
4446 i.types[op].bitfield.disp64 = 0;
4447 i.op[op].disps = 0;
4448 i.disp_operands--;
4449 }
4450 else if (flag_code == CODE_64BIT)
4451 {
4452 if (fits_in_signed_long (op_disp))
4453 {
4454 i.types[op].bitfield.disp64 = 0;
4455 i.types[op].bitfield.disp32s = 1;
4456 }
4457 if (i.prefix[ADDR_PREFIX]
4458 && fits_in_unsigned_long (op_disp))
4459 i.types[op].bitfield.disp32 = 1;
4460 }
4461 if ((i.types[op].bitfield.disp32
4462 || i.types[op].bitfield.disp32s
4463 || i.types[op].bitfield.disp16)
4464 && fits_in_signed_byte (op_disp))
4465 i.types[op].bitfield.disp8 = 1;
4466 }
4467 else if (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
4468 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL)
4469 {
4470 fix_new_exp (frag_now, frag_more (0) - frag_now->fr_literal, 0,
4471 i.op[op].disps, 0, i.reloc[op]);
4472 i.types[op].bitfield.disp8 = 0;
4473 i.types[op].bitfield.disp16 = 0;
4474 i.types[op].bitfield.disp32 = 0;
4475 i.types[op].bitfield.disp32s = 0;
4476 i.types[op].bitfield.disp64 = 0;
4477 }
4478 else
4479 /* We only support 64bit displacement on constants. */
4480 i.types[op].bitfield.disp64 = 0;
4481 }
4482 }
4483
4484 /* Check if operands are valid for the instruction. */
4485
4486 static int
4487 check_VecOperands (const insn_template *t)
4488 {
4489 unsigned int op;
4490
4491 /* Without VSIB byte, we can't have a vector register for index. */
4492 if (!t->opcode_modifier.vecsib
4493 && i.index_reg
4494 && (i.index_reg->reg_type.bitfield.regxmm
4495 || i.index_reg->reg_type.bitfield.regymm
4496 || i.index_reg->reg_type.bitfield.regzmm))
4497 {
4498 i.error = unsupported_vector_index_register;
4499 return 1;
4500 }
4501
4502 /* Check if default mask is allowed. */
4503 if (t->opcode_modifier.nodefmask
4504 && (!i.mask || i.mask->mask->reg_num == 0))
4505 {
4506 i.error = no_default_mask;
4507 return 1;
4508 }
4509
4510 /* For VSIB byte, we need a vector register for index, and all vector
4511 registers must be distinct. */
4512 if (t->opcode_modifier.vecsib)
4513 {
4514 if (!i.index_reg
4515 || !((t->opcode_modifier.vecsib == VecSIB128
4516 && i.index_reg->reg_type.bitfield.regxmm)
4517 || (t->opcode_modifier.vecsib == VecSIB256
4518 && i.index_reg->reg_type.bitfield.regymm)
4519 || (t->opcode_modifier.vecsib == VecSIB512
4520 && i.index_reg->reg_type.bitfield.regzmm)))
4521 {
4522 i.error = invalid_vsib_address;
4523 return 1;
4524 }
4525
4526 gas_assert (i.reg_operands == 2 || i.mask);
4527 if (i.reg_operands == 2 && !i.mask)
4528 {
4529 gas_assert (i.types[0].bitfield.regxmm
4530 || i.types[0].bitfield.regymm);
4531 gas_assert (i.types[2].bitfield.regxmm
4532 || i.types[2].bitfield.regymm);
4533 if (operand_check == check_none)
4534 return 0;
4535 if (register_number (i.op[0].regs)
4536 != register_number (i.index_reg)
4537 && register_number (i.op[2].regs)
4538 != register_number (i.index_reg)
4539 && register_number (i.op[0].regs)
4540 != register_number (i.op[2].regs))
4541 return 0;
4542 if (operand_check == check_error)
4543 {
4544 i.error = invalid_vector_register_set;
4545 return 1;
4546 }
4547 as_warn (_("mask, index, and destination registers should be distinct"));
4548 }
4549 else if (i.reg_operands == 1 && i.mask)
4550 {
4551 if ((i.types[1].bitfield.regymm
4552 || i.types[1].bitfield.regzmm)
4553 && (register_number (i.op[1].regs)
4554 == register_number (i.index_reg)))
4555 {
4556 if (operand_check == check_error)
4557 {
4558 i.error = invalid_vector_register_set;
4559 return 1;
4560 }
4561 if (operand_check != check_none)
4562 as_warn (_("index and destination registers should be distinct"));
4563 }
4564 }
4565 }
4566
4567 /* Check if broadcast is supported by the instruction and is applied
4568 to the memory operand. */
4569 if (i.broadcast)
4570 {
4571 int broadcasted_opnd_size;
4572
4573 /* Check if specified broadcast is supported in this instruction,
4574 and it's applied to memory operand of DWORD or QWORD type,
4575 depending on VecESize. */
4576 if (i.broadcast->type != t->opcode_modifier.broadcast
4577 || !i.types[i.broadcast->operand].bitfield.mem
4578 || (t->opcode_modifier.vecesize == 0
4579 && !i.types[i.broadcast->operand].bitfield.dword
4580 && !i.types[i.broadcast->operand].bitfield.unspecified)
4581 || (t->opcode_modifier.vecesize == 1
4582 && !i.types[i.broadcast->operand].bitfield.qword
4583 && !i.types[i.broadcast->operand].bitfield.unspecified))
4584 goto bad_broadcast;
4585
4586 broadcasted_opnd_size = t->opcode_modifier.vecesize ? 64 : 32;
4587 if (i.broadcast->type == BROADCAST_1TO16)
4588 broadcasted_opnd_size <<= 4; /* Broadcast 1to16. */
4589 else if (i.broadcast->type == BROADCAST_1TO8)
4590 broadcasted_opnd_size <<= 3; /* Broadcast 1to8. */
4591 else if (i.broadcast->type == BROADCAST_1TO4)
4592 broadcasted_opnd_size <<= 2; /* Broadcast 1to4. */
4593 else if (i.broadcast->type == BROADCAST_1TO2)
4594 broadcasted_opnd_size <<= 1; /* Broadcast 1to2. */
4595 else
4596 goto bad_broadcast;
4597
4598 if ((broadcasted_opnd_size == 256
4599 && !t->operand_types[i.broadcast->operand].bitfield.ymmword)
4600 || (broadcasted_opnd_size == 512
4601 && !t->operand_types[i.broadcast->operand].bitfield.zmmword))
4602 {
4603 bad_broadcast:
4604 i.error = unsupported_broadcast;
4605 return 1;
4606 }
4607 }
4608 /* If broadcast is supported in this instruction, we need to check if
4609 operand of one-element size isn't specified without broadcast. */
4610 else if (t->opcode_modifier.broadcast && i.mem_operands)
4611 {
4612 /* Find memory operand. */
4613 for (op = 0; op < i.operands; op++)
4614 if (operand_type_check (i.types[op], anymem))
4615 break;
4616 gas_assert (op < i.operands);
4617 /* Check size of the memory operand. */
4618 if ((t->opcode_modifier.vecesize == 0
4619 && i.types[op].bitfield.dword)
4620 || (t->opcode_modifier.vecesize == 1
4621 && i.types[op].bitfield.qword))
4622 {
4623 i.error = broadcast_needed;
4624 return 1;
4625 }
4626 }
4627
4628 /* Check if requested masking is supported. */
4629 if (i.mask
4630 && (!t->opcode_modifier.masking
4631 || (i.mask->zeroing
4632 && t->opcode_modifier.masking == MERGING_MASKING)))
4633 {
4634 i.error = unsupported_masking;
4635 return 1;
4636 }
4637
4638 /* Check if masking is applied to dest operand. */
4639 if (i.mask && (i.mask->operand != (int) (i.operands - 1)))
4640 {
4641 i.error = mask_not_on_destination;
4642 return 1;
4643 }
4644
4645 /* Check RC/SAE. */
4646 if (i.rounding)
4647 {
4648 if ((i.rounding->type != saeonly
4649 && !t->opcode_modifier.staticrounding)
4650 || (i.rounding->type == saeonly
4651 && (t->opcode_modifier.staticrounding
4652 || !t->opcode_modifier.sae)))
4653 {
4654 i.error = unsupported_rc_sae;
4655 return 1;
4656 }
4657 /* If the instruction has several immediate operands and one of
4658 them is rounding, the rounding operand should be the last
4659 immediate operand. */
4660 if (i.imm_operands > 1
4661 && i.rounding->operand != (int) (i.imm_operands - 1))
4662 {
4663 i.error = rc_sae_operand_not_last_imm;
4664 return 1;
4665 }
4666 }
4667
4668 /* Check vector Disp8 operand. */
4669 if (t->opcode_modifier.disp8memshift)
4670 {
4671 if (i.broadcast)
4672 i.memshift = t->opcode_modifier.vecesize ? 3 : 2;
4673 else
4674 i.memshift = t->opcode_modifier.disp8memshift;
4675
4676 for (op = 0; op < i.operands; op++)
4677 if (operand_type_check (i.types[op], disp)
4678 && i.op[op].disps->X_op == O_constant)
4679 {
4680 offsetT value = i.op[op].disps->X_add_number;
4681 int vec_disp8_ok
4682 = (i.disp_encoding != disp_encoding_32bit
4683 && fits_in_vec_disp8 (value));
4684 if (t->operand_types [op].bitfield.vec_disp8)
4685 {
4686 if (vec_disp8_ok)
4687 i.types[op].bitfield.vec_disp8 = 1;
4688 else
4689 {
4690 /* Vector insn can only have Vec_Disp8/Disp32 in
4691 32/64bit modes, and Vec_Disp8/Disp16 in 16bit
4692 mode. */
4693 i.types[op].bitfield.disp8 = 0;
4694 if (flag_code != CODE_16BIT)
4695 i.types[op].bitfield.disp16 = 0;
4696 }
4697 }
4698 else if (flag_code != CODE_16BIT)
4699 {
4700 /* One form of this instruction supports vector Disp8.
4701 Try vector Disp8 if we need to use Disp32. */
4702 if (vec_disp8_ok && !fits_in_signed_byte (value))
4703 {
4704 i.error = try_vector_disp8;
4705 return 1;
4706 }
4707 }
4708 }
4709 }
4710 else
4711 i.memshift = -1;
4712
4713 return 0;
4714 }
4715
4716 /* Check if operands are valid for the instruction. Update VEX
4717 operand types. */
4718
4719 static int
4720 VEX_check_operands (const insn_template *t)
4721 {
4722 /* VREX is only valid with EVEX prefix. */
4723 if (i.need_vrex && !t->opcode_modifier.evex)
4724 {
4725 i.error = invalid_register_operand;
4726 return 1;
4727 }
4728
4729 if (!t->opcode_modifier.vex)
4730 return 0;
4731
4732 /* Only check VEX_Imm4, which must be the first operand. */
4733 if (t->operand_types[0].bitfield.vec_imm4)
4734 {
4735 if (i.op[0].imms->X_op != O_constant
4736 || !fits_in_imm4 (i.op[0].imms->X_add_number))
4737 {
4738 i.error = bad_imm4;
4739 return 1;
4740 }
4741
4742 /* Turn off Imm8 so that update_imm won't complain. */
4743 i.types[0] = vec_imm4;
4744 }
4745
4746 return 0;
4747 }
4748
4749 static const insn_template *
4750 match_template (char mnem_suffix)
4751 {
4752 /* Points to template once we've found it. */
4753 const insn_template *t;
4754 i386_operand_type overlap0, overlap1, overlap2, overlap3;
4755 i386_operand_type overlap4;
4756 unsigned int found_reverse_match;
4757 i386_opcode_modifier suffix_check, mnemsuf_check;
4758 i386_operand_type operand_types [MAX_OPERANDS];
4759 int addr_prefix_disp;
4760 unsigned int j;
4761 unsigned int found_cpu_match;
4762 unsigned int check_register;
4763 enum i386_error specific_error = 0;
4764
4765 #if MAX_OPERANDS != 5
4766 # error "MAX_OPERANDS must be 5."
4767 #endif
4768
4769 found_reverse_match = 0;
4770 addr_prefix_disp = -1;
4771
4772 memset (&suffix_check, 0, sizeof (suffix_check));
4773 if (i.suffix == BYTE_MNEM_SUFFIX)
4774 suffix_check.no_bsuf = 1;
4775 else if (i.suffix == WORD_MNEM_SUFFIX)
4776 suffix_check.no_wsuf = 1;
4777 else if (i.suffix == SHORT_MNEM_SUFFIX)
4778 suffix_check.no_ssuf = 1;
4779 else if (i.suffix == LONG_MNEM_SUFFIX)
4780 suffix_check.no_lsuf = 1;
4781 else if (i.suffix == QWORD_MNEM_SUFFIX)
4782 suffix_check.no_qsuf = 1;
4783 else if (i.suffix == LONG_DOUBLE_MNEM_SUFFIX)
4784 suffix_check.no_ldsuf = 1;
4785
4786 memset (&mnemsuf_check, 0, sizeof (mnemsuf_check));
4787 if (intel_syntax)
4788 {
4789 switch (mnem_suffix)
4790 {
4791 case BYTE_MNEM_SUFFIX: mnemsuf_check.no_bsuf = 1; break;
4792 case WORD_MNEM_SUFFIX: mnemsuf_check.no_wsuf = 1; break;
4793 case SHORT_MNEM_SUFFIX: mnemsuf_check.no_ssuf = 1; break;
4794 case LONG_MNEM_SUFFIX: mnemsuf_check.no_lsuf = 1; break;
4795 case QWORD_MNEM_SUFFIX: mnemsuf_check.no_qsuf = 1; break;
4796 }
4797 }
4798
4799 /* Must have right number of operands. */
4800 i.error = number_of_operands_mismatch;
4801
4802 for (t = current_templates->start; t < current_templates->end; t++)
4803 {
4804 addr_prefix_disp = -1;
4805
4806 if (i.operands != t->operands)
4807 continue;
4808
4809 /* Check processor support. */
4810 i.error = unsupported;
4811 found_cpu_match = (cpu_flags_match (t)
4812 == CPU_FLAGS_PERFECT_MATCH);
4813 if (!found_cpu_match)
4814 continue;
4815
4816 /* Check old gcc support. */
4817 i.error = old_gcc_only;
4818 if (!old_gcc && t->opcode_modifier.oldgcc)
4819 continue;
4820
4821 /* Check AT&T mnemonic. */
4822 i.error = unsupported_with_intel_mnemonic;
4823 if (intel_mnemonic && t->opcode_modifier.attmnemonic)
4824 continue;
4825
4826 /* Check AT&T/Intel syntax and Intel64/AMD64 ISA. */
4827 i.error = unsupported_syntax;
4828 if ((intel_syntax && t->opcode_modifier.attsyntax)
4829 || (!intel_syntax && t->opcode_modifier.intelsyntax)
4830 || (intel64 && t->opcode_modifier.amd64)
4831 || (!intel64 && t->opcode_modifier.intel64))
4832 continue;
4833
4834 /* Check the suffix, except for some instructions in intel mode. */
4835 i.error = invalid_instruction_suffix;
4836 if ((!intel_syntax || !t->opcode_modifier.ignoresize)
4837 && ((t->opcode_modifier.no_bsuf && suffix_check.no_bsuf)
4838 || (t->opcode_modifier.no_wsuf && suffix_check.no_wsuf)
4839 || (t->opcode_modifier.no_lsuf && suffix_check.no_lsuf)
4840 || (t->opcode_modifier.no_ssuf && suffix_check.no_ssuf)
4841 || (t->opcode_modifier.no_qsuf && suffix_check.no_qsuf)
4842 || (t->opcode_modifier.no_ldsuf && suffix_check.no_ldsuf)))
4843 continue;
4844 /* In Intel mode all mnemonic suffixes must be explicitly allowed. */
4845 if ((t->opcode_modifier.no_bsuf && mnemsuf_check.no_bsuf)
4846 || (t->opcode_modifier.no_wsuf && mnemsuf_check.no_wsuf)
4847 || (t->opcode_modifier.no_lsuf && mnemsuf_check.no_lsuf)
4848 || (t->opcode_modifier.no_ssuf && mnemsuf_check.no_ssuf)
4849 || (t->opcode_modifier.no_qsuf && mnemsuf_check.no_qsuf)
4850 || (t->opcode_modifier.no_ldsuf && mnemsuf_check.no_ldsuf))
4851 continue;
4852
4853 if (!operand_size_match (t))
4854 continue;
4855
4856 for (j = 0; j < MAX_OPERANDS; j++)
4857 operand_types[j] = t->operand_types[j];
4858
4859 /* In general, don't allow 64-bit operands in 32-bit mode. */
4860 if (i.suffix == QWORD_MNEM_SUFFIX
4861 && flag_code != CODE_64BIT
4862 && (intel_syntax
4863 ? (!t->opcode_modifier.ignoresize
4864 && !intel_float_operand (t->name))
4865 : intel_float_operand (t->name) != 2)
4866 && ((!operand_types[0].bitfield.regmmx
4867 && !operand_types[0].bitfield.regxmm
4868 && !operand_types[0].bitfield.regymm
4869 && !operand_types[0].bitfield.regzmm)
4870 || (!operand_types[t->operands > 1].bitfield.regmmx
4871 && operand_types[t->operands > 1].bitfield.regxmm
4872 && operand_types[t->operands > 1].bitfield.regymm
4873 && operand_types[t->operands > 1].bitfield.regzmm))
4874 && (t->base_opcode != 0x0fc7
4875 || t->extension_opcode != 1 /* cmpxchg8b */))
4876 continue;
4877
4878 /* In general, don't allow 32-bit operands on pre-386. */
4879 else if (i.suffix == LONG_MNEM_SUFFIX
4880 && !cpu_arch_flags.bitfield.cpui386
4881 && (intel_syntax
4882 ? (!t->opcode_modifier.ignoresize
4883 && !intel_float_operand (t->name))
4884 : intel_float_operand (t->name) != 2)
4885 && ((!operand_types[0].bitfield.regmmx
4886 && !operand_types[0].bitfield.regxmm)
4887 || (!operand_types[t->operands > 1].bitfield.regmmx
4888 && operand_types[t->operands > 1].bitfield.regxmm)))
4889 continue;
4890
4891 /* Do not verify operands when there are none. */
4892 else
4893 {
4894 if (!t->operands)
4895 /* We've found a match; break out of loop. */
4896 break;
4897 }
4898
4899 /* Address size prefix will turn Disp64/Disp32/Disp16 operand
4900 into Disp32/Disp16/Disp32 operand. */
4901 if (i.prefix[ADDR_PREFIX] != 0)
4902 {
4903 /* There should be only one Disp operand. */
4904 switch (flag_code)
4905 {
4906 case CODE_16BIT:
4907 for (j = 0; j < MAX_OPERANDS; j++)
4908 {
4909 if (operand_types[j].bitfield.disp16)
4910 {
4911 addr_prefix_disp = j;
4912 operand_types[j].bitfield.disp32 = 1;
4913 operand_types[j].bitfield.disp16 = 0;
4914 break;
4915 }
4916 }
4917 break;
4918 case CODE_32BIT:
4919 for (j = 0; j < MAX_OPERANDS; j++)
4920 {
4921 if (operand_types[j].bitfield.disp32)
4922 {
4923 addr_prefix_disp = j;
4924 operand_types[j].bitfield.disp32 = 0;
4925 operand_types[j].bitfield.disp16 = 1;
4926 break;
4927 }
4928 }
4929 break;
4930 case CODE_64BIT:
4931 for (j = 0; j < MAX_OPERANDS; j++)
4932 {
4933 if (operand_types[j].bitfield.disp64)
4934 {
4935 addr_prefix_disp = j;
4936 operand_types[j].bitfield.disp64 = 0;
4937 operand_types[j].bitfield.disp32 = 1;
4938 break;
4939 }
4940 }
4941 break;
4942 }
4943 }
4944
4945 /* Force 0x8b encoding for "mov foo@GOT, %eax". */
4946 if (i.reloc[0] == BFD_RELOC_386_GOT32 && t->base_opcode == 0xa0)
4947 continue;
4948
4949 /* We check register size if needed. */
4950 check_register = t->opcode_modifier.checkregsize;
4951 overlap0 = operand_type_and (i.types[0], operand_types[0]);
4952 switch (t->operands)
4953 {
4954 case 1:
4955 if (!operand_type_match (overlap0, i.types[0]))
4956 continue;
4957 break;
4958 case 2:
4959 /* xchg %eax, %eax is a special case. It is an alias for nop
4960 only in 32bit mode and we can use opcode 0x90. In 64bit
4961 mode, we can't use 0x90 for xchg %eax, %eax since it should
4962 zero-extend %eax to %rax. */
4963 if (flag_code == CODE_64BIT
4964 && t->base_opcode == 0x90
4965 && operand_type_equal (&i.types [0], &acc32)
4966 && operand_type_equal (&i.types [1], &acc32))
4967 continue;
4968 if (i.swap_operand)
4969 {
4970 /* If we swap operand in encoding, we either match
4971 the next one or reverse direction of operands. */
4972 if (t->opcode_modifier.s)
4973 continue;
4974 else if (t->opcode_modifier.d)
4975 goto check_reverse;
4976 }
4977 /* Fall through. */
4978
4979 case 3:
4980 /* If we swap operand in encoding, we match the next one. */
4981 if (i.swap_operand && t->opcode_modifier.s)
4982 continue;
4983 /* Fall through. */
4984 case 4:
4985 case 5:
4986 overlap1 = operand_type_and (i.types[1], operand_types[1]);
4987 if (!operand_type_match (overlap0, i.types[0])
4988 || !operand_type_match (overlap1, i.types[1])
4989 || (check_register
4990 && !operand_type_register_match (overlap0, i.types[0],
4991 operand_types[0],
4992 overlap1, i.types[1],
4993 operand_types[1])))
4994 {
4995 /* Check if other direction is valid ... */
4996 if (!t->opcode_modifier.d && !t->opcode_modifier.floatd)
4997 continue;
4998
4999 check_reverse:
5000 /* Try reversing direction of operands. */
5001 overlap0 = operand_type_and (i.types[0], operand_types[1]);
5002 overlap1 = operand_type_and (i.types[1], operand_types[0]);
5003 if (!operand_type_match (overlap0, i.types[0])
5004 || !operand_type_match (overlap1, i.types[1])
5005 || (check_register
5006 && !operand_type_register_match (overlap0,
5007 i.types[0],
5008 operand_types[1],
5009 overlap1,
5010 i.types[1],
5011 operand_types[0])))
5012 {
5013 /* Does not match either direction. */
5014 continue;
5015 }
5016 /* found_reverse_match holds which of D or FloatDR
5017 we've found. */
5018 if (t->opcode_modifier.d)
5019 found_reverse_match = Opcode_D;
5020 else if (t->opcode_modifier.floatd)
5021 found_reverse_match = Opcode_FloatD;
5022 else
5023 found_reverse_match = 0;
5024 if (t->opcode_modifier.floatr)
5025 found_reverse_match |= Opcode_FloatR;
5026 }
5027 else
5028 {
5029 /* Found a forward 2 operand match here. */
5030 switch (t->operands)
5031 {
5032 case 5:
5033 overlap4 = operand_type_and (i.types[4],
5034 operand_types[4]);
5035 /* Fall through. */
5036 case 4:
5037 overlap3 = operand_type_and (i.types[3],
5038 operand_types[3]);
5039 /* Fall through. */
5040 case 3:
5041 overlap2 = operand_type_and (i.types[2],
5042 operand_types[2]);
5043 break;
5044 }
5045
5046 switch (t->operands)
5047 {
5048 case 5:
5049 if (!operand_type_match (overlap4, i.types[4])
5050 || !operand_type_register_match (overlap3,
5051 i.types[3],
5052 operand_types[3],
5053 overlap4,
5054 i.types[4],
5055 operand_types[4]))
5056 continue;
5057 /* Fall through. */
5058 case 4:
5059 if (!operand_type_match (overlap3, i.types[3])
5060 || (check_register
5061 && !operand_type_register_match (overlap2,
5062 i.types[2],
5063 operand_types[2],
5064 overlap3,
5065 i.types[3],
5066 operand_types[3])))
5067 continue;
5068 /* Fall through. */
5069 case 3:
5070 /* Here we make use of the fact that there are no
5071 reverse match 3 operand instructions, and all 3
5072 operand instructions only need to be checked for
5073 register consistency between operands 2 and 3. */
5074 if (!operand_type_match (overlap2, i.types[2])
5075 || (check_register
5076 && !operand_type_register_match (overlap1,
5077 i.types[1],
5078 operand_types[1],
5079 overlap2,
5080 i.types[2],
5081 operand_types[2])))
5082 continue;
5083 break;
5084 }
5085 }
5086 /* Found either forward/reverse 2, 3 or 4 operand match here:
5087 slip through to break. */
5088 }
5089 if (!found_cpu_match)
5090 {
5091 found_reverse_match = 0;
5092 continue;
5093 }
5094
5095 /* Check if vector and VEX operands are valid. */
5096 if (check_VecOperands (t) || VEX_check_operands (t))
5097 {
5098 specific_error = i.error;
5099 continue;
5100 }
5101
5102 /* We've found a match; break out of loop. */
5103 break;
5104 }
5105
5106 if (t == current_templates->end)
5107 {
5108 /* We found no match. */
5109 const char *err_msg;
5110 switch (specific_error ? specific_error : i.error)
5111 {
5112 default:
5113 abort ();
5114 case operand_size_mismatch:
5115 err_msg = _("operand size mismatch");
5116 break;
5117 case operand_type_mismatch:
5118 err_msg = _("operand type mismatch");
5119 break;
5120 case register_type_mismatch:
5121 err_msg = _("register type mismatch");
5122 break;
5123 case number_of_operands_mismatch:
5124 err_msg = _("number of operands mismatch");
5125 break;
5126 case invalid_instruction_suffix:
5127 err_msg = _("invalid instruction suffix");
5128 break;
5129 case bad_imm4:
5130 err_msg = _("constant doesn't fit in 4 bits");
5131 break;
5132 case old_gcc_only:
5133 err_msg = _("only supported with old gcc");
5134 break;
5135 case unsupported_with_intel_mnemonic:
5136 err_msg = _("unsupported with Intel mnemonic");
5137 break;
5138 case unsupported_syntax:
5139 err_msg = _("unsupported syntax");
5140 break;
5141 case unsupported:
5142 as_bad (_("unsupported instruction `%s'"),
5143 current_templates->start->name);
5144 return NULL;
5145 case invalid_vsib_address:
5146 err_msg = _("invalid VSIB address");
5147 break;
5148 case invalid_vector_register_set:
5149 err_msg = _("mask, index, and destination registers must be distinct");
5150 break;
5151 case unsupported_vector_index_register:
5152 err_msg = _("unsupported vector index register");
5153 break;
5154 case unsupported_broadcast:
5155 err_msg = _("unsupported broadcast");
5156 break;
5157 case broadcast_not_on_src_operand:
5158 err_msg = _("broadcast not on source memory operand");
5159 break;
5160 case broadcast_needed:
5161 err_msg = _("broadcast is needed for operand of such type");
5162 break;
5163 case unsupported_masking:
5164 err_msg = _("unsupported masking");
5165 break;
5166 case mask_not_on_destination:
5167 err_msg = _("mask not on destination operand");
5168 break;
5169 case no_default_mask:
5170 err_msg = _("default mask isn't allowed");
5171 break;
5172 case unsupported_rc_sae:
5173 err_msg = _("unsupported static rounding/sae");
5174 break;
5175 case rc_sae_operand_not_last_imm:
5176 if (intel_syntax)
5177 err_msg = _("RC/SAE operand must precede immediate operands");
5178 else
5179 err_msg = _("RC/SAE operand must follow immediate operands");
5180 break;
5181 case invalid_register_operand:
5182 err_msg = _("invalid register operand");
5183 break;
5184 }
5185 as_bad (_("%s for `%s'"), err_msg,
5186 current_templates->start->name);
5187 return NULL;
5188 }
5189
5190 if (!quiet_warnings)
5191 {
5192 if (!intel_syntax
5193 && (i.types[0].bitfield.jumpabsolute
5194 != operand_types[0].bitfield.jumpabsolute))
5195 {
5196 as_warn (_("indirect %s without `*'"), t->name);
5197 }
5198
5199 if (t->opcode_modifier.isprefix
5200 && t->opcode_modifier.ignoresize)
5201 {
5202 /* Warn them that a data or address size prefix doesn't
5203 affect assembly of the next line of code. */
5204 as_warn (_("stand-alone `%s' prefix"), t->name);
5205 }
5206 }
5207
5208 /* Copy the template we found. */
5209 i.tm = *t;
5210
5211 if (addr_prefix_disp != -1)
5212 i.tm.operand_types[addr_prefix_disp]
5213 = operand_types[addr_prefix_disp];
5214
5215 if (found_reverse_match)
5216 {
5217 /* If we found a reverse match we must alter the opcode
5218 direction bit. found_reverse_match holds bits to change
5219 (different for int & float insns). */
5220
5221 i.tm.base_opcode ^= found_reverse_match;
5222
5223 i.tm.operand_types[0] = operand_types[1];
5224 i.tm.operand_types[1] = operand_types[0];
5225 }
5226
5227 return t;
5228 }
5229
5230 static int
5231 check_string (void)
5232 {
5233 int mem_op = operand_type_check (i.types[0], anymem) ? 0 : 1;
5234 if (i.tm.operand_types[mem_op].bitfield.esseg)
5235 {
5236 if (i.seg[0] != NULL && i.seg[0] != &es)
5237 {
5238 as_bad (_("`%s' operand %d must use `%ses' segment"),
5239 i.tm.name,
5240 mem_op + 1,
5241 register_prefix);
5242 return 0;
5243 }
5244 /* There's only ever one segment override allowed per instruction.
5245 This instruction possibly has a legal segment override on the
5246 second operand, so copy the segment to where non-string
5247 instructions store it, allowing common code. */
5248 i.seg[0] = i.seg[1];
5249 }
5250 else if (i.tm.operand_types[mem_op + 1].bitfield.esseg)
5251 {
5252 if (i.seg[1] != NULL && i.seg[1] != &es)
5253 {
5254 as_bad (_("`%s' operand %d must use `%ses' segment"),
5255 i.tm.name,
5256 mem_op + 2,
5257 register_prefix);
5258 return 0;
5259 }
5260 }
5261 return 1;
5262 }
5263
5264 static int
5265 process_suffix (void)
5266 {
5267 /* If matched instruction specifies an explicit instruction mnemonic
5268 suffix, use it. */
5269 if (i.tm.opcode_modifier.size16)
5270 i.suffix = WORD_MNEM_SUFFIX;
5271 else if (i.tm.opcode_modifier.size32)
5272 i.suffix = LONG_MNEM_SUFFIX;
5273 else if (i.tm.opcode_modifier.size64)
5274 i.suffix = QWORD_MNEM_SUFFIX;
5275 else if (i.reg_operands)
5276 {
5277 /* If there's no instruction mnemonic suffix we try to invent one
5278 based on register operands. */
5279 if (!i.suffix)
5280 {
5281 /* We take i.suffix from the last register operand specified,
5282 Destination register type is more significant than source
5283 register type. crc32 in SSE4.2 prefers source register
5284 type. */
5285 if (i.tm.base_opcode == 0xf20f38f1)
5286 {
5287 if (i.types[0].bitfield.reg16)
5288 i.suffix = WORD_MNEM_SUFFIX;
5289 else if (i.types[0].bitfield.reg32)
5290 i.suffix = LONG_MNEM_SUFFIX;
5291 else if (i.types[0].bitfield.reg64)
5292 i.suffix = QWORD_MNEM_SUFFIX;
5293 }
5294 else if (i.tm.base_opcode == 0xf20f38f0)
5295 {
5296 if (i.types[0].bitfield.reg8)
5297 i.suffix = BYTE_MNEM_SUFFIX;
5298 }
5299
5300 if (!i.suffix)
5301 {
5302 int op;
5303
5304 if (i.tm.base_opcode == 0xf20f38f1
5305 || i.tm.base_opcode == 0xf20f38f0)
5306 {
5307 /* We have to know the operand size for crc32. */
5308 as_bad (_("ambiguous memory operand size for `%s`"),
5309 i.tm.name);
5310 return 0;
5311 }
5312
5313 for (op = i.operands; --op >= 0;)
5314 if (!i.tm.operand_types[op].bitfield.inoutportreg)
5315 {
5316 if (i.types[op].bitfield.reg8)
5317 {
5318 i.suffix = BYTE_MNEM_SUFFIX;
5319 break;
5320 }
5321 else if (i.types[op].bitfield.reg16)
5322 {
5323 i.suffix = WORD_MNEM_SUFFIX;
5324 break;
5325 }
5326 else if (i.types[op].bitfield.reg32)
5327 {
5328 i.suffix = LONG_MNEM_SUFFIX;
5329 break;
5330 }
5331 else if (i.types[op].bitfield.reg64)
5332 {
5333 i.suffix = QWORD_MNEM_SUFFIX;
5334 break;
5335 }
5336 }
5337 }
5338 }
5339 else if (i.suffix == BYTE_MNEM_SUFFIX)
5340 {
5341 if (intel_syntax
5342 && i.tm.opcode_modifier.ignoresize
5343 && i.tm.opcode_modifier.no_bsuf)
5344 i.suffix = 0;
5345 else if (!check_byte_reg ())
5346 return 0;
5347 }
5348 else if (i.suffix == LONG_MNEM_SUFFIX)
5349 {
5350 if (intel_syntax
5351 && i.tm.opcode_modifier.ignoresize
5352 && i.tm.opcode_modifier.no_lsuf)
5353 i.suffix = 0;
5354 else if (!check_long_reg ())
5355 return 0;
5356 }
5357 else if (i.suffix == QWORD_MNEM_SUFFIX)
5358 {
5359 if (intel_syntax
5360 && i.tm.opcode_modifier.ignoresize
5361 && i.tm.opcode_modifier.no_qsuf)
5362 i.suffix = 0;
5363 else if (!check_qword_reg ())
5364 return 0;
5365 }
5366 else if (i.suffix == WORD_MNEM_SUFFIX)
5367 {
5368 if (intel_syntax
5369 && i.tm.opcode_modifier.ignoresize
5370 && i.tm.opcode_modifier.no_wsuf)
5371 i.suffix = 0;
5372 else if (!check_word_reg ())
5373 return 0;
5374 }
5375 else if (i.suffix == XMMWORD_MNEM_SUFFIX
5376 || i.suffix == YMMWORD_MNEM_SUFFIX
5377 || i.suffix == ZMMWORD_MNEM_SUFFIX)
5378 {
5379 /* Skip if the instruction has x/y/z suffix. match_template
5380 should check if it is a valid suffix. */
5381 }
5382 else if (intel_syntax && i.tm.opcode_modifier.ignoresize)
5383 /* Do nothing if the instruction is going to ignore the prefix. */
5384 ;
5385 else
5386 abort ();
5387 }
5388 else if (i.tm.opcode_modifier.defaultsize
5389 && !i.suffix
5390 /* exclude fldenv/frstor/fsave/fstenv */
5391 && i.tm.opcode_modifier.no_ssuf)
5392 {
5393 i.suffix = stackop_size;
5394 }
5395 else if (intel_syntax
5396 && !i.suffix
5397 && (i.tm.operand_types[0].bitfield.jumpabsolute
5398 || i.tm.opcode_modifier.jumpbyte
5399 || i.tm.opcode_modifier.jumpintersegment
5400 || (i.tm.base_opcode == 0x0f01 /* [ls][gi]dt */
5401 && i.tm.extension_opcode <= 3)))
5402 {
5403 switch (flag_code)
5404 {
5405 case CODE_64BIT:
5406 if (!i.tm.opcode_modifier.no_qsuf)
5407 {
5408 i.suffix = QWORD_MNEM_SUFFIX;
5409 break;
5410 }
5411 /* Fall through. */
5412 case CODE_32BIT:
5413 if (!i.tm.opcode_modifier.no_lsuf)
5414 i.suffix = LONG_MNEM_SUFFIX;
5415 break;
5416 case CODE_16BIT:
5417 if (!i.tm.opcode_modifier.no_wsuf)
5418 i.suffix = WORD_MNEM_SUFFIX;
5419 break;
5420 }
5421 }
5422
5423 if (!i.suffix)
5424 {
5425 if (!intel_syntax)
5426 {
5427 if (i.tm.opcode_modifier.w)
5428 {
5429 as_bad (_("no instruction mnemonic suffix given and "
5430 "no register operands; can't size instruction"));
5431 return 0;
5432 }
5433 }
5434 else
5435 {
5436 unsigned int suffixes;
5437
5438 suffixes = !i.tm.opcode_modifier.no_bsuf;
5439 if (!i.tm.opcode_modifier.no_wsuf)
5440 suffixes |= 1 << 1;
5441 if (!i.tm.opcode_modifier.no_lsuf)
5442 suffixes |= 1 << 2;
5443 if (!i.tm.opcode_modifier.no_ldsuf)
5444 suffixes |= 1 << 3;
5445 if (!i.tm.opcode_modifier.no_ssuf)
5446 suffixes |= 1 << 4;
5447 if (!i.tm.opcode_modifier.no_qsuf)
5448 suffixes |= 1 << 5;
5449
5450 /* There are more than suffix matches. */
5451 if (i.tm.opcode_modifier.w
5452 || ((suffixes & (suffixes - 1))
5453 && !i.tm.opcode_modifier.defaultsize
5454 && !i.tm.opcode_modifier.ignoresize))
5455 {
5456 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
5457 return 0;
5458 }
5459 }
5460 }
5461
5462 /* Change the opcode based on the operand size given by i.suffix;
5463 We don't need to change things for byte insns. */
5464
5465 if (i.suffix
5466 && i.suffix != BYTE_MNEM_SUFFIX
5467 && i.suffix != XMMWORD_MNEM_SUFFIX
5468 && i.suffix != YMMWORD_MNEM_SUFFIX
5469 && i.suffix != ZMMWORD_MNEM_SUFFIX)
5470 {
5471 /* It's not a byte, select word/dword operation. */
5472 if (i.tm.opcode_modifier.w)
5473 {
5474 if (i.tm.opcode_modifier.shortform)
5475 i.tm.base_opcode |= 8;
5476 else
5477 i.tm.base_opcode |= 1;
5478 }
5479
5480 /* Now select between word & dword operations via the operand
5481 size prefix, except for instructions that will ignore this
5482 prefix anyway. */
5483 if (i.tm.opcode_modifier.addrprefixop0)
5484 {
5485 /* The address size override prefix changes the size of the
5486 first operand. */
5487 if ((flag_code == CODE_32BIT
5488 && i.op->regs[0].reg_type.bitfield.reg16)
5489 || (flag_code != CODE_32BIT
5490 && i.op->regs[0].reg_type.bitfield.reg32))
5491 if (!add_prefix (ADDR_PREFIX_OPCODE))
5492 return 0;
5493 }
5494 else if (i.suffix != QWORD_MNEM_SUFFIX
5495 && i.suffix != LONG_DOUBLE_MNEM_SUFFIX
5496 && !i.tm.opcode_modifier.ignoresize
5497 && !i.tm.opcode_modifier.floatmf
5498 && ((i.suffix == LONG_MNEM_SUFFIX) == (flag_code == CODE_16BIT)
5499 || (flag_code == CODE_64BIT
5500 && i.tm.opcode_modifier.jumpbyte)))
5501 {
5502 unsigned int prefix = DATA_PREFIX_OPCODE;
5503
5504 if (i.tm.opcode_modifier.jumpbyte) /* jcxz, loop */
5505 prefix = ADDR_PREFIX_OPCODE;
5506
5507 if (!add_prefix (prefix))
5508 return 0;
5509 }
5510
5511 /* Set mode64 for an operand. */
5512 if (i.suffix == QWORD_MNEM_SUFFIX
5513 && flag_code == CODE_64BIT
5514 && !i.tm.opcode_modifier.norex64)
5515 {
5516 /* Special case for xchg %rax,%rax. It is NOP and doesn't
5517 need rex64. cmpxchg8b is also a special case. */
5518 if (! (i.operands == 2
5519 && i.tm.base_opcode == 0x90
5520 && i.tm.extension_opcode == None
5521 && operand_type_equal (&i.types [0], &acc64)
5522 && operand_type_equal (&i.types [1], &acc64))
5523 && ! (i.operands == 1
5524 && i.tm.base_opcode == 0xfc7
5525 && i.tm.extension_opcode == 1
5526 && !operand_type_check (i.types [0], reg)
5527 && operand_type_check (i.types [0], anymem)))
5528 i.rex |= REX_W;
5529 }
5530
5531 /* Size floating point instruction. */
5532 if (i.suffix == LONG_MNEM_SUFFIX)
5533 if (i.tm.opcode_modifier.floatmf)
5534 i.tm.base_opcode ^= 4;
5535 }
5536
5537 return 1;
5538 }
5539
5540 static int
5541 check_byte_reg (void)
5542 {
5543 int op;
5544
5545 for (op = i.operands; --op >= 0;)
5546 {
5547 /* If this is an eight bit register, it's OK. If it's the 16 or
5548 32 bit version of an eight bit register, we will just use the
5549 low portion, and that's OK too. */
5550 if (i.types[op].bitfield.reg8)
5551 continue;
5552
5553 /* I/O port address operands are OK too. */
5554 if (i.tm.operand_types[op].bitfield.inoutportreg)
5555 continue;
5556
5557 /* crc32 doesn't generate this warning. */
5558 if (i.tm.base_opcode == 0xf20f38f0)
5559 continue;
5560
5561 if ((i.types[op].bitfield.reg16
5562 || i.types[op].bitfield.reg32
5563 || i.types[op].bitfield.reg64)
5564 && i.op[op].regs->reg_num < 4
5565 /* Prohibit these changes in 64bit mode, since the lowering
5566 would be more complicated. */
5567 && flag_code != CODE_64BIT)
5568 {
5569 #if REGISTER_WARNINGS
5570 if (!quiet_warnings)
5571 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
5572 register_prefix,
5573 (i.op[op].regs + (i.types[op].bitfield.reg16
5574 ? REGNAM_AL - REGNAM_AX
5575 : REGNAM_AL - REGNAM_EAX))->reg_name,
5576 register_prefix,
5577 i.op[op].regs->reg_name,
5578 i.suffix);
5579 #endif
5580 continue;
5581 }
5582 /* Any other register is bad. */
5583 if (i.types[op].bitfield.reg16
5584 || i.types[op].bitfield.reg32
5585 || i.types[op].bitfield.reg64
5586 || i.types[op].bitfield.regmmx
5587 || i.types[op].bitfield.regxmm
5588 || i.types[op].bitfield.regymm
5589 || i.types[op].bitfield.regzmm
5590 || i.types[op].bitfield.sreg2
5591 || i.types[op].bitfield.sreg3
5592 || i.types[op].bitfield.control
5593 || i.types[op].bitfield.debug
5594 || i.types[op].bitfield.test
5595 || i.types[op].bitfield.floatreg
5596 || i.types[op].bitfield.floatacc)
5597 {
5598 as_bad (_("`%s%s' not allowed with `%s%c'"),
5599 register_prefix,
5600 i.op[op].regs->reg_name,
5601 i.tm.name,
5602 i.suffix);
5603 return 0;
5604 }
5605 }
5606 return 1;
5607 }
5608
5609 static int
5610 check_long_reg (void)
5611 {
5612 int op;
5613
5614 for (op = i.operands; --op >= 0;)
5615 /* Reject eight bit registers, except where the template requires
5616 them. (eg. movzb) */
5617 if (i.types[op].bitfield.reg8
5618 && (i.tm.operand_types[op].bitfield.reg16
5619 || i.tm.operand_types[op].bitfield.reg32
5620 || i.tm.operand_types[op].bitfield.acc))
5621 {
5622 as_bad (_("`%s%s' not allowed with `%s%c'"),
5623 register_prefix,
5624 i.op[op].regs->reg_name,
5625 i.tm.name,
5626 i.suffix);
5627 return 0;
5628 }
5629 /* Warn if the e prefix on a general reg is missing. */
5630 else if ((!quiet_warnings || flag_code == CODE_64BIT)
5631 && i.types[op].bitfield.reg16
5632 && (i.tm.operand_types[op].bitfield.reg32
5633 || i.tm.operand_types[op].bitfield.acc))
5634 {
5635 /* Prohibit these changes in the 64bit mode, since the
5636 lowering is more complicated. */
5637 if (flag_code == CODE_64BIT)
5638 {
5639 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
5640 register_prefix, i.op[op].regs->reg_name,
5641 i.suffix);
5642 return 0;
5643 }
5644 #if REGISTER_WARNINGS
5645 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
5646 register_prefix,
5647 (i.op[op].regs + REGNAM_EAX - REGNAM_AX)->reg_name,
5648 register_prefix, i.op[op].regs->reg_name, i.suffix);
5649 #endif
5650 }
5651 /* Warn if the r prefix on a general reg is present. */
5652 else if (i.types[op].bitfield.reg64
5653 && (i.tm.operand_types[op].bitfield.reg32
5654 || i.tm.operand_types[op].bitfield.acc))
5655 {
5656 if (intel_syntax
5657 && i.tm.opcode_modifier.toqword
5658 && !i.types[0].bitfield.regxmm)
5659 {
5660 /* Convert to QWORD. We want REX byte. */
5661 i.suffix = QWORD_MNEM_SUFFIX;
5662 }
5663 else
5664 {
5665 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
5666 register_prefix, i.op[op].regs->reg_name,
5667 i.suffix);
5668 return 0;
5669 }
5670 }
5671 return 1;
5672 }
5673
5674 static int
5675 check_qword_reg (void)
5676 {
5677 int op;
5678
5679 for (op = i.operands; --op >= 0; )
5680 /* Reject eight bit registers, except where the template requires
5681 them. (eg. movzb) */
5682 if (i.types[op].bitfield.reg8
5683 && (i.tm.operand_types[op].bitfield.reg16
5684 || i.tm.operand_types[op].bitfield.reg32
5685 || i.tm.operand_types[op].bitfield.acc))
5686 {
5687 as_bad (_("`%s%s' not allowed with `%s%c'"),
5688 register_prefix,
5689 i.op[op].regs->reg_name,
5690 i.tm.name,
5691 i.suffix);
5692 return 0;
5693 }
5694 /* Warn if the r prefix on a general reg is missing. */
5695 else if ((i.types[op].bitfield.reg16
5696 || i.types[op].bitfield.reg32)
5697 && (i.tm.operand_types[op].bitfield.reg64
5698 || i.tm.operand_types[op].bitfield.acc))
5699 {
5700 /* Prohibit these changes in the 64bit mode, since the
5701 lowering is more complicated. */
5702 if (intel_syntax
5703 && i.tm.opcode_modifier.todword
5704 && !i.types[0].bitfield.regxmm)
5705 {
5706 /* Convert to DWORD. We don't want REX byte. */
5707 i.suffix = LONG_MNEM_SUFFIX;
5708 }
5709 else
5710 {
5711 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
5712 register_prefix, i.op[op].regs->reg_name,
5713 i.suffix);
5714 return 0;
5715 }
5716 }
5717 return 1;
5718 }
5719
5720 static int
5721 check_word_reg (void)
5722 {
5723 int op;
5724 for (op = i.operands; --op >= 0;)
5725 /* Reject eight bit registers, except where the template requires
5726 them. (eg. movzb) */
5727 if (i.types[op].bitfield.reg8
5728 && (i.tm.operand_types[op].bitfield.reg16
5729 || i.tm.operand_types[op].bitfield.reg32
5730 || i.tm.operand_types[op].bitfield.acc))
5731 {
5732 as_bad (_("`%s%s' not allowed with `%s%c'"),
5733 register_prefix,
5734 i.op[op].regs->reg_name,
5735 i.tm.name,
5736 i.suffix);
5737 return 0;
5738 }
5739 /* Warn if the e or r prefix on a general reg is present. */
5740 else if ((!quiet_warnings || flag_code == CODE_64BIT)
5741 && (i.types[op].bitfield.reg32
5742 || i.types[op].bitfield.reg64)
5743 && (i.tm.operand_types[op].bitfield.reg16
5744 || i.tm.operand_types[op].bitfield.acc))
5745 {
5746 /* Prohibit these changes in the 64bit mode, since the
5747 lowering is more complicated. */
5748 if (flag_code == CODE_64BIT)
5749 {
5750 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
5751 register_prefix, i.op[op].regs->reg_name,
5752 i.suffix);
5753 return 0;
5754 }
5755 #if REGISTER_WARNINGS
5756 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
5757 register_prefix,
5758 (i.op[op].regs + REGNAM_AX - REGNAM_EAX)->reg_name,
5759 register_prefix, i.op[op].regs->reg_name, i.suffix);
5760 #endif
5761 }
5762 return 1;
5763 }
5764
5765 static int
5766 update_imm (unsigned int j)
5767 {
5768 i386_operand_type overlap = i.types[j];
5769 if ((overlap.bitfield.imm8
5770 || overlap.bitfield.imm8s
5771 || overlap.bitfield.imm16
5772 || overlap.bitfield.imm32
5773 || overlap.bitfield.imm32s
5774 || overlap.bitfield.imm64)
5775 && !operand_type_equal (&overlap, &imm8)
5776 && !operand_type_equal (&overlap, &imm8s)
5777 && !operand_type_equal (&overlap, &imm16)
5778 && !operand_type_equal (&overlap, &imm32)
5779 && !operand_type_equal (&overlap, &imm32s)
5780 && !operand_type_equal (&overlap, &imm64))
5781 {
5782 if (i.suffix)
5783 {
5784 i386_operand_type temp;
5785
5786 operand_type_set (&temp, 0);
5787 if (i.suffix == BYTE_MNEM_SUFFIX)
5788 {
5789 temp.bitfield.imm8 = overlap.bitfield.imm8;
5790 temp.bitfield.imm8s = overlap.bitfield.imm8s;
5791 }
5792 else if (i.suffix == WORD_MNEM_SUFFIX)
5793 temp.bitfield.imm16 = overlap.bitfield.imm16;
5794 else if (i.suffix == QWORD_MNEM_SUFFIX)
5795 {
5796 temp.bitfield.imm64 = overlap.bitfield.imm64;
5797 temp.bitfield.imm32s = overlap.bitfield.imm32s;
5798 }
5799 else
5800 temp.bitfield.imm32 = overlap.bitfield.imm32;
5801 overlap = temp;
5802 }
5803 else if (operand_type_equal (&overlap, &imm16_32_32s)
5804 || operand_type_equal (&overlap, &imm16_32)
5805 || operand_type_equal (&overlap, &imm16_32s))
5806 {
5807 if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
5808 overlap = imm16;
5809 else
5810 overlap = imm32s;
5811 }
5812 if (!operand_type_equal (&overlap, &imm8)
5813 && !operand_type_equal (&overlap, &imm8s)
5814 && !operand_type_equal (&overlap, &imm16)
5815 && !operand_type_equal (&overlap, &imm32)
5816 && !operand_type_equal (&overlap, &imm32s)
5817 && !operand_type_equal (&overlap, &imm64))
5818 {
5819 as_bad (_("no instruction mnemonic suffix given; "
5820 "can't determine immediate size"));
5821 return 0;
5822 }
5823 }
5824 i.types[j] = overlap;
5825
5826 return 1;
5827 }
5828
5829 static int
5830 finalize_imm (void)
5831 {
5832 unsigned int j, n;
5833
5834 /* Update the first 2 immediate operands. */
5835 n = i.operands > 2 ? 2 : i.operands;
5836 if (n)
5837 {
5838 for (j = 0; j < n; j++)
5839 if (update_imm (j) == 0)
5840 return 0;
5841
5842 /* The 3rd operand can't be immediate operand. */
5843 gas_assert (operand_type_check (i.types[2], imm) == 0);
5844 }
5845
5846 return 1;
5847 }
5848
5849 static int
5850 bad_implicit_operand (int xmm)
5851 {
5852 const char *ireg = xmm ? "xmm0" : "ymm0";
5853
5854 if (intel_syntax)
5855 as_bad (_("the last operand of `%s' must be `%s%s'"),
5856 i.tm.name, register_prefix, ireg);
5857 else
5858 as_bad (_("the first operand of `%s' must be `%s%s'"),
5859 i.tm.name, register_prefix, ireg);
5860 return 0;
5861 }
5862
5863 static int
5864 process_operands (void)
5865 {
5866 /* Default segment register this instruction will use for memory
5867 accesses. 0 means unknown. This is only for optimizing out
5868 unnecessary segment overrides. */
5869 const seg_entry *default_seg = 0;
5870
5871 if (i.tm.opcode_modifier.sse2avx && i.tm.opcode_modifier.vexvvvv)
5872 {
5873 unsigned int dupl = i.operands;
5874 unsigned int dest = dupl - 1;
5875 unsigned int j;
5876
5877 /* The destination must be an xmm register. */
5878 gas_assert (i.reg_operands
5879 && MAX_OPERANDS > dupl
5880 && operand_type_equal (&i.types[dest], &regxmm));
5881
5882 if (i.tm.opcode_modifier.firstxmm0)
5883 {
5884 /* The first operand is implicit and must be xmm0. */
5885 gas_assert (operand_type_equal (&i.types[0], &regxmm));
5886 if (register_number (i.op[0].regs) != 0)
5887 return bad_implicit_operand (1);
5888
5889 if (i.tm.opcode_modifier.vexsources == VEX3SOURCES)
5890 {
5891 /* Keep xmm0 for instructions with VEX prefix and 3
5892 sources. */
5893 goto duplicate;
5894 }
5895 else
5896 {
5897 /* We remove the first xmm0 and keep the number of
5898 operands unchanged, which in fact duplicates the
5899 destination. */
5900 for (j = 1; j < i.operands; j++)
5901 {
5902 i.op[j - 1] = i.op[j];
5903 i.types[j - 1] = i.types[j];
5904 i.tm.operand_types[j - 1] = i.tm.operand_types[j];
5905 }
5906 }
5907 }
5908 else if (i.tm.opcode_modifier.implicit1stxmm0)
5909 {
5910 gas_assert ((MAX_OPERANDS - 1) > dupl
5911 && (i.tm.opcode_modifier.vexsources
5912 == VEX3SOURCES));
5913
5914 /* Add the implicit xmm0 for instructions with VEX prefix
5915 and 3 sources. */
5916 for (j = i.operands; j > 0; j--)
5917 {
5918 i.op[j] = i.op[j - 1];
5919 i.types[j] = i.types[j - 1];
5920 i.tm.operand_types[j] = i.tm.operand_types[j - 1];
5921 }
5922 i.op[0].regs
5923 = (const reg_entry *) hash_find (reg_hash, "xmm0");
5924 i.types[0] = regxmm;
5925 i.tm.operand_types[0] = regxmm;
5926
5927 i.operands += 2;
5928 i.reg_operands += 2;
5929 i.tm.operands += 2;
5930
5931 dupl++;
5932 dest++;
5933 i.op[dupl] = i.op[dest];
5934 i.types[dupl] = i.types[dest];
5935 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
5936 }
5937 else
5938 {
5939 duplicate:
5940 i.operands++;
5941 i.reg_operands++;
5942 i.tm.operands++;
5943
5944 i.op[dupl] = i.op[dest];
5945 i.types[dupl] = i.types[dest];
5946 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
5947 }
5948
5949 if (i.tm.opcode_modifier.immext)
5950 process_immext ();
5951 }
5952 else if (i.tm.opcode_modifier.firstxmm0)
5953 {
5954 unsigned int j;
5955
5956 /* The first operand is implicit and must be xmm0/ymm0/zmm0. */
5957 gas_assert (i.reg_operands
5958 && (operand_type_equal (&i.types[0], &regxmm)
5959 || operand_type_equal (&i.types[0], &regymm)
5960 || operand_type_equal (&i.types[0], &regzmm)));
5961 if (register_number (i.op[0].regs) != 0)
5962 return bad_implicit_operand (i.types[0].bitfield.regxmm);
5963
5964 for (j = 1; j < i.operands; j++)
5965 {
5966 i.op[j - 1] = i.op[j];
5967 i.types[j - 1] = i.types[j];
5968
5969 /* We need to adjust fields in i.tm since they are used by
5970 build_modrm_byte. */
5971 i.tm.operand_types [j - 1] = i.tm.operand_types [j];
5972 }
5973
5974 i.operands--;
5975 i.reg_operands--;
5976 i.tm.operands--;
5977 }
5978 else if (i.tm.opcode_modifier.implicitquadgroup)
5979 {
5980 /* The second operand must be {x,y,z}mmN, where N is a multiple of 4. */
5981 gas_assert (i.operands >= 2
5982 && (operand_type_equal (&i.types[1], &regxmm)
5983 || operand_type_equal (&i.types[1], &regymm)
5984 || operand_type_equal (&i.types[1], &regzmm)));
5985 unsigned int regnum = register_number (i.op[1].regs);
5986 unsigned int first_reg_in_group = regnum & ~3;
5987 unsigned int last_reg_in_group = first_reg_in_group + 3;
5988 if (regnum != first_reg_in_group) {
5989 as_warn (_("the second source register `%s%s' implicitly denotes"
5990 " `%s%.3s%d' to `%s%.3s%d' source group in `%s'"),
5991 register_prefix, i.op[1].regs->reg_name,
5992 register_prefix, i.op[1].regs->reg_name, first_reg_in_group,
5993 register_prefix, i.op[1].regs->reg_name, last_reg_in_group,
5994 i.tm.name);
5995 }
5996 }
5997 else if (i.tm.opcode_modifier.regkludge)
5998 {
5999 /* The imul $imm, %reg instruction is converted into
6000 imul $imm, %reg, %reg, and the clr %reg instruction
6001 is converted into xor %reg, %reg. */
6002
6003 unsigned int first_reg_op;
6004
6005 if (operand_type_check (i.types[0], reg))
6006 first_reg_op = 0;
6007 else
6008 first_reg_op = 1;
6009 /* Pretend we saw the extra register operand. */
6010 gas_assert (i.reg_operands == 1
6011 && i.op[first_reg_op + 1].regs == 0);
6012 i.op[first_reg_op + 1].regs = i.op[first_reg_op].regs;
6013 i.types[first_reg_op + 1] = i.types[first_reg_op];
6014 i.operands++;
6015 i.reg_operands++;
6016 }
6017
6018 if (i.tm.opcode_modifier.shortform)
6019 {
6020 if (i.types[0].bitfield.sreg2
6021 || i.types[0].bitfield.sreg3)
6022 {
6023 if (i.tm.base_opcode == POP_SEG_SHORT
6024 && i.op[0].regs->reg_num == 1)
6025 {
6026 as_bad (_("you can't `pop %scs'"), register_prefix);
6027 return 0;
6028 }
6029 i.tm.base_opcode |= (i.op[0].regs->reg_num << 3);
6030 if ((i.op[0].regs->reg_flags & RegRex) != 0)
6031 i.rex |= REX_B;
6032 }
6033 else
6034 {
6035 /* The register or float register operand is in operand
6036 0 or 1. */
6037 unsigned int op;
6038
6039 if (i.types[0].bitfield.floatreg
6040 || operand_type_check (i.types[0], reg))
6041 op = 0;
6042 else
6043 op = 1;
6044 /* Register goes in low 3 bits of opcode. */
6045 i.tm.base_opcode |= i.op[op].regs->reg_num;
6046 if ((i.op[op].regs->reg_flags & RegRex) != 0)
6047 i.rex |= REX_B;
6048 if (!quiet_warnings && i.tm.opcode_modifier.ugh)
6049 {
6050 /* Warn about some common errors, but press on regardless.
6051 The first case can be generated by gcc (<= 2.8.1). */
6052 if (i.operands == 2)
6053 {
6054 /* Reversed arguments on faddp, fsubp, etc. */
6055 as_warn (_("translating to `%s %s%s,%s%s'"), i.tm.name,
6056 register_prefix, i.op[!intel_syntax].regs->reg_name,
6057 register_prefix, i.op[intel_syntax].regs->reg_name);
6058 }
6059 else
6060 {
6061 /* Extraneous `l' suffix on fp insn. */
6062 as_warn (_("translating to `%s %s%s'"), i.tm.name,
6063 register_prefix, i.op[0].regs->reg_name);
6064 }
6065 }
6066 }
6067 }
6068 else if (i.tm.opcode_modifier.modrm)
6069 {
6070 /* The opcode is completed (modulo i.tm.extension_opcode which
6071 must be put into the modrm byte). Now, we make the modrm and
6072 index base bytes based on all the info we've collected. */
6073
6074 default_seg = build_modrm_byte ();
6075 }
6076 else if ((i.tm.base_opcode & ~0x3) == MOV_AX_DISP32)
6077 {
6078 default_seg = &ds;
6079 }
6080 else if (i.tm.opcode_modifier.isstring)
6081 {
6082 /* For the string instructions that allow a segment override
6083 on one of their operands, the default segment is ds. */
6084 default_seg = &ds;
6085 }
6086
6087 if (i.tm.base_opcode == 0x8d /* lea */
6088 && i.seg[0]
6089 && !quiet_warnings)
6090 as_warn (_("segment override on `%s' is ineffectual"), i.tm.name);
6091
6092 /* If a segment was explicitly specified, and the specified segment
6093 is not the default, use an opcode prefix to select it. If we
6094 never figured out what the default segment is, then default_seg
6095 will be zero at this point, and the specified segment prefix will
6096 always be used. */
6097 if ((i.seg[0]) && (i.seg[0] != default_seg))
6098 {
6099 if (!add_prefix (i.seg[0]->seg_prefix))
6100 return 0;
6101 }
6102 return 1;
6103 }
6104
6105 static const seg_entry *
6106 build_modrm_byte (void)
6107 {
6108 const seg_entry *default_seg = 0;
6109 unsigned int source, dest;
6110 int vex_3_sources;
6111
6112 /* The first operand of instructions with VEX prefix and 3 sources
6113 must be VEX_Imm4. */
6114 vex_3_sources = i.tm.opcode_modifier.vexsources == VEX3SOURCES;
6115 if (vex_3_sources)
6116 {
6117 unsigned int nds, reg_slot;
6118 expressionS *exp;
6119
6120 if (i.tm.opcode_modifier.veximmext
6121 && i.tm.opcode_modifier.immext)
6122 {
6123 dest = i.operands - 2;
6124 gas_assert (dest == 3);
6125 }
6126 else
6127 dest = i.operands - 1;
6128 nds = dest - 1;
6129
6130 /* There are 2 kinds of instructions:
6131 1. 5 operands: 4 register operands or 3 register operands
6132 plus 1 memory operand plus one Vec_Imm4 operand, VexXDS, and
6133 VexW0 or VexW1. The destination must be either XMM, YMM or
6134 ZMM register.
6135 2. 4 operands: 4 register operands or 3 register operands
6136 plus 1 memory operand, VexXDS, and VexImmExt */
6137 gas_assert ((i.reg_operands == 4
6138 || (i.reg_operands == 3 && i.mem_operands == 1))
6139 && i.tm.opcode_modifier.vexvvvv == VEXXDS
6140 && (i.tm.opcode_modifier.veximmext
6141 || (i.imm_operands == 1
6142 && i.types[0].bitfield.vec_imm4
6143 && (i.tm.opcode_modifier.vexw == VEXW0
6144 || i.tm.opcode_modifier.vexw == VEXW1)
6145 && (operand_type_equal (&i.tm.operand_types[dest], &regxmm)
6146 || operand_type_equal (&i.tm.operand_types[dest], &regymm)
6147 || operand_type_equal (&i.tm.operand_types[dest], &regzmm)))));
6148
6149 if (i.imm_operands == 0)
6150 {
6151 /* When there is no immediate operand, generate an 8bit
6152 immediate operand to encode the first operand. */
6153 exp = &im_expressions[i.imm_operands++];
6154 i.op[i.operands].imms = exp;
6155 i.types[i.operands] = imm8;
6156 i.operands++;
6157 /* If VexW1 is set, the first operand is the source and
6158 the second operand is encoded in the immediate operand. */
6159 if (i.tm.opcode_modifier.vexw == VEXW1)
6160 {
6161 source = 0;
6162 reg_slot = 1;
6163 }
6164 else
6165 {
6166 source = 1;
6167 reg_slot = 0;
6168 }
6169
6170 /* FMA swaps REG and NDS. */
6171 if (i.tm.cpu_flags.bitfield.cpufma)
6172 {
6173 unsigned int tmp;
6174 tmp = reg_slot;
6175 reg_slot = nds;
6176 nds = tmp;
6177 }
6178
6179 gas_assert (operand_type_equal (&i.tm.operand_types[reg_slot],
6180 &regxmm)
6181 || operand_type_equal (&i.tm.operand_types[reg_slot],
6182 &regymm)
6183 || operand_type_equal (&i.tm.operand_types[reg_slot],
6184 &regzmm));
6185 exp->X_op = O_constant;
6186 exp->X_add_number = register_number (i.op[reg_slot].regs) << 4;
6187 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
6188 }
6189 else
6190 {
6191 unsigned int imm_slot;
6192
6193 if (i.tm.opcode_modifier.vexw == VEXW0)
6194 {
6195 /* If VexW0 is set, the third operand is the source and
6196 the second operand is encoded in the immediate
6197 operand. */
6198 source = 2;
6199 reg_slot = 1;
6200 }
6201 else
6202 {
6203 /* VexW1 is set, the second operand is the source and
6204 the third operand is encoded in the immediate
6205 operand. */
6206 source = 1;
6207 reg_slot = 2;
6208 }
6209
6210 if (i.tm.opcode_modifier.immext)
6211 {
6212 /* When ImmExt is set, the immediate byte is the last
6213 operand. */
6214 imm_slot = i.operands - 1;
6215 source--;
6216 reg_slot--;
6217 }
6218 else
6219 {
6220 imm_slot = 0;
6221
6222 /* Turn on Imm8 so that output_imm will generate it. */
6223 i.types[imm_slot].bitfield.imm8 = 1;
6224 }
6225
6226 gas_assert (operand_type_equal (&i.tm.operand_types[reg_slot],
6227 &regxmm)
6228 || operand_type_equal (&i.tm.operand_types[reg_slot],
6229 &regymm)
6230 || operand_type_equal (&i.tm.operand_types[reg_slot],
6231 &regzmm));
6232 i.op[imm_slot].imms->X_add_number
6233 |= register_number (i.op[reg_slot].regs) << 4;
6234 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
6235 }
6236
6237 gas_assert (operand_type_equal (&i.tm.operand_types[nds], &regxmm)
6238 || operand_type_equal (&i.tm.operand_types[nds],
6239 &regymm)
6240 || operand_type_equal (&i.tm.operand_types[nds],
6241 &regzmm));
6242 i.vex.register_specifier = i.op[nds].regs;
6243 }
6244 else
6245 source = dest = 0;
6246
6247 /* i.reg_operands MUST be the number of real register operands;
6248 implicit registers do not count. If there are 3 register
6249 operands, it must be a instruction with VexNDS. For a
6250 instruction with VexNDD, the destination register is encoded
6251 in VEX prefix. If there are 4 register operands, it must be
6252 a instruction with VEX prefix and 3 sources. */
6253 if (i.mem_operands == 0
6254 && ((i.reg_operands == 2
6255 && i.tm.opcode_modifier.vexvvvv <= VEXXDS)
6256 || (i.reg_operands == 3
6257 && i.tm.opcode_modifier.vexvvvv == VEXXDS)
6258 || (i.reg_operands == 4 && vex_3_sources)))
6259 {
6260 switch (i.operands)
6261 {
6262 case 2:
6263 source = 0;
6264 break;
6265 case 3:
6266 /* When there are 3 operands, one of them may be immediate,
6267 which may be the first or the last operand. Otherwise,
6268 the first operand must be shift count register (cl) or it
6269 is an instruction with VexNDS. */
6270 gas_assert (i.imm_operands == 1
6271 || (i.imm_operands == 0
6272 && (i.tm.opcode_modifier.vexvvvv == VEXXDS
6273 || i.types[0].bitfield.shiftcount)));
6274 if (operand_type_check (i.types[0], imm)
6275 || i.types[0].bitfield.shiftcount)
6276 source = 1;
6277 else
6278 source = 0;
6279 break;
6280 case 4:
6281 /* When there are 4 operands, the first two must be 8bit
6282 immediate operands. The source operand will be the 3rd
6283 one.
6284
6285 For instructions with VexNDS, if the first operand
6286 an imm8, the source operand is the 2nd one. If the last
6287 operand is imm8, the source operand is the first one. */
6288 gas_assert ((i.imm_operands == 2
6289 && i.types[0].bitfield.imm8
6290 && i.types[1].bitfield.imm8)
6291 || (i.tm.opcode_modifier.vexvvvv == VEXXDS
6292 && i.imm_operands == 1
6293 && (i.types[0].bitfield.imm8
6294 || i.types[i.operands - 1].bitfield.imm8
6295 || i.rounding)));
6296 if (i.imm_operands == 2)
6297 source = 2;
6298 else
6299 {
6300 if (i.types[0].bitfield.imm8)
6301 source = 1;
6302 else
6303 source = 0;
6304 }
6305 break;
6306 case 5:
6307 if (i.tm.opcode_modifier.evex)
6308 {
6309 /* For EVEX instructions, when there are 5 operands, the
6310 first one must be immediate operand. If the second one
6311 is immediate operand, the source operand is the 3th
6312 one. If the last one is immediate operand, the source
6313 operand is the 2nd one. */
6314 gas_assert (i.imm_operands == 2
6315 && i.tm.opcode_modifier.sae
6316 && operand_type_check (i.types[0], imm));
6317 if (operand_type_check (i.types[1], imm))
6318 source = 2;
6319 else if (operand_type_check (i.types[4], imm))
6320 source = 1;
6321 else
6322 abort ();
6323 }
6324 break;
6325 default:
6326 abort ();
6327 }
6328
6329 if (!vex_3_sources)
6330 {
6331 dest = source + 1;
6332
6333 /* RC/SAE operand could be between DEST and SRC. That happens
6334 when one operand is GPR and the other one is XMM/YMM/ZMM
6335 register. */
6336 if (i.rounding && i.rounding->operand == (int) dest)
6337 dest++;
6338
6339 if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
6340 {
6341 /* For instructions with VexNDS, the register-only source
6342 operand must be 32/64bit integer, XMM, YMM or ZMM
6343 register. It is encoded in VEX prefix. We need to
6344 clear RegMem bit before calling operand_type_equal. */
6345
6346 i386_operand_type op;
6347 unsigned int vvvv;
6348
6349 /* Check register-only source operand when two source
6350 operands are swapped. */
6351 if (!i.tm.operand_types[source].bitfield.baseindex
6352 && i.tm.operand_types[dest].bitfield.baseindex)
6353 {
6354 vvvv = source;
6355 source = dest;
6356 }
6357 else
6358 vvvv = dest;
6359
6360 op = i.tm.operand_types[vvvv];
6361 op.bitfield.regmem = 0;
6362 if ((dest + 1) >= i.operands
6363 || (!op.bitfield.reg32
6364 && op.bitfield.reg64
6365 && !operand_type_equal (&op, &regxmm)
6366 && !operand_type_equal (&op, &regymm)
6367 && !operand_type_equal (&op, &regzmm)
6368 && !operand_type_equal (&op, &regmask)))
6369 abort ();
6370 i.vex.register_specifier = i.op[vvvv].regs;
6371 dest++;
6372 }
6373 }
6374
6375 i.rm.mode = 3;
6376 /* One of the register operands will be encoded in the i.tm.reg
6377 field, the other in the combined i.tm.mode and i.tm.regmem
6378 fields. If no form of this instruction supports a memory
6379 destination operand, then we assume the source operand may
6380 sometimes be a memory operand and so we need to store the
6381 destination in the i.rm.reg field. */
6382 if (!i.tm.operand_types[dest].bitfield.regmem
6383 && operand_type_check (i.tm.operand_types[dest], anymem) == 0)
6384 {
6385 i.rm.reg = i.op[dest].regs->reg_num;
6386 i.rm.regmem = i.op[source].regs->reg_num;
6387 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
6388 i.rex |= REX_R;
6389 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
6390 i.vrex |= REX_R;
6391 if ((i.op[source].regs->reg_flags & RegRex) != 0)
6392 i.rex |= REX_B;
6393 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
6394 i.vrex |= REX_B;
6395 }
6396 else
6397 {
6398 i.rm.reg = i.op[source].regs->reg_num;
6399 i.rm.regmem = i.op[dest].regs->reg_num;
6400 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
6401 i.rex |= REX_B;
6402 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
6403 i.vrex |= REX_B;
6404 if ((i.op[source].regs->reg_flags & RegRex) != 0)
6405 i.rex |= REX_R;
6406 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
6407 i.vrex |= REX_R;
6408 }
6409 if (flag_code != CODE_64BIT && (i.rex & (REX_R | REX_B)))
6410 {
6411 if (!i.types[0].bitfield.control
6412 && !i.types[1].bitfield.control)
6413 abort ();
6414 i.rex &= ~(REX_R | REX_B);
6415 add_prefix (LOCK_PREFIX_OPCODE);
6416 }
6417 }
6418 else
6419 { /* If it's not 2 reg operands... */
6420 unsigned int mem;
6421
6422 if (i.mem_operands)
6423 {
6424 unsigned int fake_zero_displacement = 0;
6425 unsigned int op;
6426
6427 for (op = 0; op < i.operands; op++)
6428 if (operand_type_check (i.types[op], anymem))
6429 break;
6430 gas_assert (op < i.operands);
6431
6432 if (i.tm.opcode_modifier.vecsib)
6433 {
6434 if (i.index_reg->reg_num == RegEiz
6435 || i.index_reg->reg_num == RegRiz)
6436 abort ();
6437
6438 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
6439 if (!i.base_reg)
6440 {
6441 i.sib.base = NO_BASE_REGISTER;
6442 i.sib.scale = i.log2_scale_factor;
6443 /* No Vec_Disp8 if there is no base. */
6444 i.types[op].bitfield.vec_disp8 = 0;
6445 i.types[op].bitfield.disp8 = 0;
6446 i.types[op].bitfield.disp16 = 0;
6447 i.types[op].bitfield.disp64 = 0;
6448 if (flag_code != CODE_64BIT)
6449 {
6450 /* Must be 32 bit */
6451 i.types[op].bitfield.disp32 = 1;
6452 i.types[op].bitfield.disp32s = 0;
6453 }
6454 else
6455 {
6456 i.types[op].bitfield.disp32 = 0;
6457 i.types[op].bitfield.disp32s = 1;
6458 }
6459 }
6460 i.sib.index = i.index_reg->reg_num;
6461 if ((i.index_reg->reg_flags & RegRex) != 0)
6462 i.rex |= REX_X;
6463 if ((i.index_reg->reg_flags & RegVRex) != 0)
6464 i.vrex |= REX_X;
6465 }
6466
6467 default_seg = &ds;
6468
6469 if (i.base_reg == 0)
6470 {
6471 i.rm.mode = 0;
6472 if (!i.disp_operands)
6473 {
6474 fake_zero_displacement = 1;
6475 /* Instructions with VSIB byte need 32bit displacement
6476 if there is no base register. */
6477 if (i.tm.opcode_modifier.vecsib)
6478 i.types[op].bitfield.disp32 = 1;
6479 }
6480 if (i.index_reg == 0)
6481 {
6482 gas_assert (!i.tm.opcode_modifier.vecsib);
6483 /* Operand is just <disp> */
6484 if (flag_code == CODE_64BIT)
6485 {
6486 /* 64bit mode overwrites the 32bit absolute
6487 addressing by RIP relative addressing and
6488 absolute addressing is encoded by one of the
6489 redundant SIB forms. */
6490 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
6491 i.sib.base = NO_BASE_REGISTER;
6492 i.sib.index = NO_INDEX_REGISTER;
6493 i.types[op] = ((i.prefix[ADDR_PREFIX] == 0)
6494 ? disp32s : disp32);
6495 }
6496 else if ((flag_code == CODE_16BIT)
6497 ^ (i.prefix[ADDR_PREFIX] != 0))
6498 {
6499 i.rm.regmem = NO_BASE_REGISTER_16;
6500 i.types[op] = disp16;
6501 }
6502 else
6503 {
6504 i.rm.regmem = NO_BASE_REGISTER;
6505 i.types[op] = disp32;
6506 }
6507 }
6508 else if (!i.tm.opcode_modifier.vecsib)
6509 {
6510 /* !i.base_reg && i.index_reg */
6511 if (i.index_reg->reg_num == RegEiz
6512 || i.index_reg->reg_num == RegRiz)
6513 i.sib.index = NO_INDEX_REGISTER;
6514 else
6515 i.sib.index = i.index_reg->reg_num;
6516 i.sib.base = NO_BASE_REGISTER;
6517 i.sib.scale = i.log2_scale_factor;
6518 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
6519 /* No Vec_Disp8 if there is no base. */
6520 i.types[op].bitfield.vec_disp8 = 0;
6521 i.types[op].bitfield.disp8 = 0;
6522 i.types[op].bitfield.disp16 = 0;
6523 i.types[op].bitfield.disp64 = 0;
6524 if (flag_code != CODE_64BIT)
6525 {
6526 /* Must be 32 bit */
6527 i.types[op].bitfield.disp32 = 1;
6528 i.types[op].bitfield.disp32s = 0;
6529 }
6530 else
6531 {
6532 i.types[op].bitfield.disp32 = 0;
6533 i.types[op].bitfield.disp32s = 1;
6534 }
6535 if ((i.index_reg->reg_flags & RegRex) != 0)
6536 i.rex |= REX_X;
6537 }
6538 }
6539 /* RIP addressing for 64bit mode. */
6540 else if (i.base_reg->reg_num == RegRip ||
6541 i.base_reg->reg_num == RegEip)
6542 {
6543 gas_assert (!i.tm.opcode_modifier.vecsib);
6544 i.rm.regmem = NO_BASE_REGISTER;
6545 i.types[op].bitfield.disp8 = 0;
6546 i.types[op].bitfield.disp16 = 0;
6547 i.types[op].bitfield.disp32 = 0;
6548 i.types[op].bitfield.disp32s = 1;
6549 i.types[op].bitfield.disp64 = 0;
6550 i.types[op].bitfield.vec_disp8 = 0;
6551 i.flags[op] |= Operand_PCrel;
6552 if (! i.disp_operands)
6553 fake_zero_displacement = 1;
6554 }
6555 else if (i.base_reg->reg_type.bitfield.reg16)
6556 {
6557 gas_assert (!i.tm.opcode_modifier.vecsib);
6558 switch (i.base_reg->reg_num)
6559 {
6560 case 3: /* (%bx) */
6561 if (i.index_reg == 0)
6562 i.rm.regmem = 7;
6563 else /* (%bx,%si) -> 0, or (%bx,%di) -> 1 */
6564 i.rm.regmem = i.index_reg->reg_num - 6;
6565 break;
6566 case 5: /* (%bp) */
6567 default_seg = &ss;
6568 if (i.index_reg == 0)
6569 {
6570 i.rm.regmem = 6;
6571 if (operand_type_check (i.types[op], disp) == 0)
6572 {
6573 /* fake (%bp) into 0(%bp) */
6574 if (i.tm.operand_types[op].bitfield.vec_disp8)
6575 i.types[op].bitfield.vec_disp8 = 1;
6576 else
6577 i.types[op].bitfield.disp8 = 1;
6578 fake_zero_displacement = 1;
6579 }
6580 }
6581 else /* (%bp,%si) -> 2, or (%bp,%di) -> 3 */
6582 i.rm.regmem = i.index_reg->reg_num - 6 + 2;
6583 break;
6584 default: /* (%si) -> 4 or (%di) -> 5 */
6585 i.rm.regmem = i.base_reg->reg_num - 6 + 4;
6586 }
6587 i.rm.mode = mode_from_disp_size (i.types[op]);
6588 }
6589 else /* i.base_reg and 32/64 bit mode */
6590 {
6591 if (flag_code == CODE_64BIT
6592 && operand_type_check (i.types[op], disp))
6593 {
6594 i386_operand_type temp;
6595 operand_type_set (&temp, 0);
6596 temp.bitfield.disp8 = i.types[op].bitfield.disp8;
6597 temp.bitfield.vec_disp8
6598 = i.types[op].bitfield.vec_disp8;
6599 i.types[op] = temp;
6600 if (i.prefix[ADDR_PREFIX] == 0)
6601 i.types[op].bitfield.disp32s = 1;
6602 else
6603 i.types[op].bitfield.disp32 = 1;
6604 }
6605
6606 if (!i.tm.opcode_modifier.vecsib)
6607 i.rm.regmem = i.base_reg->reg_num;
6608 if ((i.base_reg->reg_flags & RegRex) != 0)
6609 i.rex |= REX_B;
6610 i.sib.base = i.base_reg->reg_num;
6611 /* x86-64 ignores REX prefix bit here to avoid decoder
6612 complications. */
6613 if (!(i.base_reg->reg_flags & RegRex)
6614 && (i.base_reg->reg_num == EBP_REG_NUM
6615 || i.base_reg->reg_num == ESP_REG_NUM))
6616 default_seg = &ss;
6617 if (i.base_reg->reg_num == 5 && i.disp_operands == 0)
6618 {
6619 fake_zero_displacement = 1;
6620 if (i.tm.operand_types [op].bitfield.vec_disp8)
6621 i.types[op].bitfield.vec_disp8 = 1;
6622 else
6623 i.types[op].bitfield.disp8 = 1;
6624 }
6625 i.sib.scale = i.log2_scale_factor;
6626 if (i.index_reg == 0)
6627 {
6628 gas_assert (!i.tm.opcode_modifier.vecsib);
6629 /* <disp>(%esp) becomes two byte modrm with no index
6630 register. We've already stored the code for esp
6631 in i.rm.regmem ie. ESCAPE_TO_TWO_BYTE_ADDRESSING.
6632 Any base register besides %esp will not use the
6633 extra modrm byte. */
6634 i.sib.index = NO_INDEX_REGISTER;
6635 }
6636 else if (!i.tm.opcode_modifier.vecsib)
6637 {
6638 if (i.index_reg->reg_num == RegEiz
6639 || i.index_reg->reg_num == RegRiz)
6640 i.sib.index = NO_INDEX_REGISTER;
6641 else
6642 i.sib.index = i.index_reg->reg_num;
6643 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
6644 if ((i.index_reg->reg_flags & RegRex) != 0)
6645 i.rex |= REX_X;
6646 }
6647
6648 if (i.disp_operands
6649 && (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
6650 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL))
6651 i.rm.mode = 0;
6652 else
6653 {
6654 if (!fake_zero_displacement
6655 && !i.disp_operands
6656 && i.disp_encoding)
6657 {
6658 fake_zero_displacement = 1;
6659 if (i.disp_encoding == disp_encoding_8bit)
6660 i.types[op].bitfield.disp8 = 1;
6661 else
6662 i.types[op].bitfield.disp32 = 1;
6663 }
6664 i.rm.mode = mode_from_disp_size (i.types[op]);
6665 }
6666 }
6667
6668 if (fake_zero_displacement)
6669 {
6670 /* Fakes a zero displacement assuming that i.types[op]
6671 holds the correct displacement size. */
6672 expressionS *exp;
6673
6674 gas_assert (i.op[op].disps == 0);
6675 exp = &disp_expressions[i.disp_operands++];
6676 i.op[op].disps = exp;
6677 exp->X_op = O_constant;
6678 exp->X_add_number = 0;
6679 exp->X_add_symbol = (symbolS *) 0;
6680 exp->X_op_symbol = (symbolS *) 0;
6681 }
6682
6683 mem = op;
6684 }
6685 else
6686 mem = ~0;
6687
6688 if (i.tm.opcode_modifier.vexsources == XOP2SOURCES)
6689 {
6690 if (operand_type_check (i.types[0], imm))
6691 i.vex.register_specifier = NULL;
6692 else
6693 {
6694 /* VEX.vvvv encodes one of the sources when the first
6695 operand is not an immediate. */
6696 if (i.tm.opcode_modifier.vexw == VEXW0)
6697 i.vex.register_specifier = i.op[0].regs;
6698 else
6699 i.vex.register_specifier = i.op[1].regs;
6700 }
6701
6702 /* Destination is a XMM register encoded in the ModRM.reg
6703 and VEX.R bit. */
6704 i.rm.reg = i.op[2].regs->reg_num;
6705 if ((i.op[2].regs->reg_flags & RegRex) != 0)
6706 i.rex |= REX_R;
6707
6708 /* ModRM.rm and VEX.B encodes the other source. */
6709 if (!i.mem_operands)
6710 {
6711 i.rm.mode = 3;
6712
6713 if (i.tm.opcode_modifier.vexw == VEXW0)
6714 i.rm.regmem = i.op[1].regs->reg_num;
6715 else
6716 i.rm.regmem = i.op[0].regs->reg_num;
6717
6718 if ((i.op[1].regs->reg_flags & RegRex) != 0)
6719 i.rex |= REX_B;
6720 }
6721 }
6722 else if (i.tm.opcode_modifier.vexvvvv == VEXLWP)
6723 {
6724 i.vex.register_specifier = i.op[2].regs;
6725 if (!i.mem_operands)
6726 {
6727 i.rm.mode = 3;
6728 i.rm.regmem = i.op[1].regs->reg_num;
6729 if ((i.op[1].regs->reg_flags & RegRex) != 0)
6730 i.rex |= REX_B;
6731 }
6732 }
6733 /* Fill in i.rm.reg or i.rm.regmem field with register operand
6734 (if any) based on i.tm.extension_opcode. Again, we must be
6735 careful to make sure that segment/control/debug/test/MMX
6736 registers are coded into the i.rm.reg field. */
6737 else if (i.reg_operands)
6738 {
6739 unsigned int op;
6740 unsigned int vex_reg = ~0;
6741
6742 for (op = 0; op < i.operands; op++)
6743 if (i.types[op].bitfield.reg8
6744 || i.types[op].bitfield.reg16
6745 || i.types[op].bitfield.reg32
6746 || i.types[op].bitfield.reg64
6747 || i.types[op].bitfield.regmmx
6748 || i.types[op].bitfield.regxmm
6749 || i.types[op].bitfield.regymm
6750 || i.types[op].bitfield.regbnd
6751 || i.types[op].bitfield.regzmm
6752 || i.types[op].bitfield.regmask
6753 || i.types[op].bitfield.sreg2
6754 || i.types[op].bitfield.sreg3
6755 || i.types[op].bitfield.control
6756 || i.types[op].bitfield.debug
6757 || i.types[op].bitfield.test)
6758 break;
6759
6760 if (vex_3_sources)
6761 op = dest;
6762 else if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
6763 {
6764 /* For instructions with VexNDS, the register-only
6765 source operand is encoded in VEX prefix. */
6766 gas_assert (mem != (unsigned int) ~0);
6767
6768 if (op > mem)
6769 {
6770 vex_reg = op++;
6771 gas_assert (op < i.operands);
6772 }
6773 else
6774 {
6775 /* Check register-only source operand when two source
6776 operands are swapped. */
6777 if (!i.tm.operand_types[op].bitfield.baseindex
6778 && i.tm.operand_types[op + 1].bitfield.baseindex)
6779 {
6780 vex_reg = op;
6781 op += 2;
6782 gas_assert (mem == (vex_reg + 1)
6783 && op < i.operands);
6784 }
6785 else
6786 {
6787 vex_reg = op + 1;
6788 gas_assert (vex_reg < i.operands);
6789 }
6790 }
6791 }
6792 else if (i.tm.opcode_modifier.vexvvvv == VEXNDD)
6793 {
6794 /* For instructions with VexNDD, the register destination
6795 is encoded in VEX prefix. */
6796 if (i.mem_operands == 0)
6797 {
6798 /* There is no memory operand. */
6799 gas_assert ((op + 2) == i.operands);
6800 vex_reg = op + 1;
6801 }
6802 else
6803 {
6804 /* There are only 2 operands. */
6805 gas_assert (op < 2 && i.operands == 2);
6806 vex_reg = 1;
6807 }
6808 }
6809 else
6810 gas_assert (op < i.operands);
6811
6812 if (vex_reg != (unsigned int) ~0)
6813 {
6814 i386_operand_type *type = &i.tm.operand_types[vex_reg];
6815
6816 if (type->bitfield.reg32 != 1
6817 && type->bitfield.reg64 != 1
6818 && !operand_type_equal (type, &regxmm)
6819 && !operand_type_equal (type, &regymm)
6820 && !operand_type_equal (type, &regzmm)
6821 && !operand_type_equal (type, &regmask))
6822 abort ();
6823
6824 i.vex.register_specifier = i.op[vex_reg].regs;
6825 }
6826
6827 /* Don't set OP operand twice. */
6828 if (vex_reg != op)
6829 {
6830 /* If there is an extension opcode to put here, the
6831 register number must be put into the regmem field. */
6832 if (i.tm.extension_opcode != None)
6833 {
6834 i.rm.regmem = i.op[op].regs->reg_num;
6835 if ((i.op[op].regs->reg_flags & RegRex) != 0)
6836 i.rex |= REX_B;
6837 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
6838 i.vrex |= REX_B;
6839 }
6840 else
6841 {
6842 i.rm.reg = i.op[op].regs->reg_num;
6843 if ((i.op[op].regs->reg_flags & RegRex) != 0)
6844 i.rex |= REX_R;
6845 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
6846 i.vrex |= REX_R;
6847 }
6848 }
6849
6850 /* Now, if no memory operand has set i.rm.mode = 0, 1, 2 we
6851 must set it to 3 to indicate this is a register operand
6852 in the regmem field. */
6853 if (!i.mem_operands)
6854 i.rm.mode = 3;
6855 }
6856
6857 /* Fill in i.rm.reg field with extension opcode (if any). */
6858 if (i.tm.extension_opcode != None)
6859 i.rm.reg = i.tm.extension_opcode;
6860 }
6861 return default_seg;
6862 }
6863
6864 static void
6865 output_branch (void)
6866 {
6867 char *p;
6868 int size;
6869 int code16;
6870 int prefix;
6871 relax_substateT subtype;
6872 symbolS *sym;
6873 offsetT off;
6874
6875 code16 = flag_code == CODE_16BIT ? CODE16 : 0;
6876 size = i.disp_encoding == disp_encoding_32bit ? BIG : SMALL;
6877
6878 prefix = 0;
6879 if (i.prefix[DATA_PREFIX] != 0)
6880 {
6881 prefix = 1;
6882 i.prefixes -= 1;
6883 code16 ^= CODE16;
6884 }
6885 /* Pentium4 branch hints. */
6886 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
6887 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
6888 {
6889 prefix++;
6890 i.prefixes--;
6891 }
6892 if (i.prefix[REX_PREFIX] != 0)
6893 {
6894 prefix++;
6895 i.prefixes--;
6896 }
6897
6898 /* BND prefixed jump. */
6899 if (i.prefix[BND_PREFIX] != 0)
6900 {
6901 FRAG_APPEND_1_CHAR (i.prefix[BND_PREFIX]);
6902 i.prefixes -= 1;
6903 }
6904
6905 if (i.prefixes != 0 && !intel_syntax)
6906 as_warn (_("skipping prefixes on this instruction"));
6907
6908 /* It's always a symbol; End frag & setup for relax.
6909 Make sure there is enough room in this frag for the largest
6910 instruction we may generate in md_convert_frag. This is 2
6911 bytes for the opcode and room for the prefix and largest
6912 displacement. */
6913 frag_grow (prefix + 2 + 4);
6914 /* Prefix and 1 opcode byte go in fr_fix. */
6915 p = frag_more (prefix + 1);
6916 if (i.prefix[DATA_PREFIX] != 0)
6917 *p++ = DATA_PREFIX_OPCODE;
6918 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE
6919 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE)
6920 *p++ = i.prefix[SEG_PREFIX];
6921 if (i.prefix[REX_PREFIX] != 0)
6922 *p++ = i.prefix[REX_PREFIX];
6923 *p = i.tm.base_opcode;
6924
6925 if ((unsigned char) *p == JUMP_PC_RELATIVE)
6926 subtype = ENCODE_RELAX_STATE (UNCOND_JUMP, size);
6927 else if (cpu_arch_flags.bitfield.cpui386)
6928 subtype = ENCODE_RELAX_STATE (COND_JUMP, size);
6929 else
6930 subtype = ENCODE_RELAX_STATE (COND_JUMP86, size);
6931 subtype |= code16;
6932
6933 sym = i.op[0].disps->X_add_symbol;
6934 off = i.op[0].disps->X_add_number;
6935
6936 if (i.op[0].disps->X_op != O_constant
6937 && i.op[0].disps->X_op != O_symbol)
6938 {
6939 /* Handle complex expressions. */
6940 sym = make_expr_symbol (i.op[0].disps);
6941 off = 0;
6942 }
6943
6944 /* 1 possible extra opcode + 4 byte displacement go in var part.
6945 Pass reloc in fr_var. */
6946 frag_var (rs_machine_dependent, 5, i.reloc[0], subtype, sym, off, p);
6947 }
6948
6949 static void
6950 output_jump (void)
6951 {
6952 char *p;
6953 int size;
6954 fixS *fixP;
6955
6956 if (i.tm.opcode_modifier.jumpbyte)
6957 {
6958 /* This is a loop or jecxz type instruction. */
6959 size = 1;
6960 if (i.prefix[ADDR_PREFIX] != 0)
6961 {
6962 FRAG_APPEND_1_CHAR (ADDR_PREFIX_OPCODE);
6963 i.prefixes -= 1;
6964 }
6965 /* Pentium4 branch hints. */
6966 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
6967 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
6968 {
6969 FRAG_APPEND_1_CHAR (i.prefix[SEG_PREFIX]);
6970 i.prefixes--;
6971 }
6972 }
6973 else
6974 {
6975 int code16;
6976
6977 code16 = 0;
6978 if (flag_code == CODE_16BIT)
6979 code16 = CODE16;
6980
6981 if (i.prefix[DATA_PREFIX] != 0)
6982 {
6983 FRAG_APPEND_1_CHAR (DATA_PREFIX_OPCODE);
6984 i.prefixes -= 1;
6985 code16 ^= CODE16;
6986 }
6987
6988 size = 4;
6989 if (code16)
6990 size = 2;
6991 }
6992
6993 if (i.prefix[REX_PREFIX] != 0)
6994 {
6995 FRAG_APPEND_1_CHAR (i.prefix[REX_PREFIX]);
6996 i.prefixes -= 1;
6997 }
6998
6999 /* BND prefixed jump. */
7000 if (i.prefix[BND_PREFIX] != 0)
7001 {
7002 FRAG_APPEND_1_CHAR (i.prefix[BND_PREFIX]);
7003 i.prefixes -= 1;
7004 }
7005
7006 if (i.prefixes != 0 && !intel_syntax)
7007 as_warn (_("skipping prefixes on this instruction"));
7008
7009 p = frag_more (i.tm.opcode_length + size);
7010 switch (i.tm.opcode_length)
7011 {
7012 case 2:
7013 *p++ = i.tm.base_opcode >> 8;
7014 /* Fall through. */
7015 case 1:
7016 *p++ = i.tm.base_opcode;
7017 break;
7018 default:
7019 abort ();
7020 }
7021
7022 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal, size,
7023 i.op[0].disps, 1, reloc (size, 1, 1, i.reloc[0]));
7024
7025 /* All jumps handled here are signed, but don't use a signed limit
7026 check for 32 and 16 bit jumps as we want to allow wrap around at
7027 4G and 64k respectively. */
7028 if (size == 1)
7029 fixP->fx_signed = 1;
7030 }
7031
7032 static void
7033 output_interseg_jump (void)
7034 {
7035 char *p;
7036 int size;
7037 int prefix;
7038 int code16;
7039
7040 code16 = 0;
7041 if (flag_code == CODE_16BIT)
7042 code16 = CODE16;
7043
7044 prefix = 0;
7045 if (i.prefix[DATA_PREFIX] != 0)
7046 {
7047 prefix = 1;
7048 i.prefixes -= 1;
7049 code16 ^= CODE16;
7050 }
7051 if (i.prefix[REX_PREFIX] != 0)
7052 {
7053 prefix++;
7054 i.prefixes -= 1;
7055 }
7056
7057 size = 4;
7058 if (code16)
7059 size = 2;
7060
7061 if (i.prefixes != 0 && !intel_syntax)
7062 as_warn (_("skipping prefixes on this instruction"));
7063
7064 /* 1 opcode; 2 segment; offset */
7065 p = frag_more (prefix + 1 + 2 + size);
7066
7067 if (i.prefix[DATA_PREFIX] != 0)
7068 *p++ = DATA_PREFIX_OPCODE;
7069
7070 if (i.prefix[REX_PREFIX] != 0)
7071 *p++ = i.prefix[REX_PREFIX];
7072
7073 *p++ = i.tm.base_opcode;
7074 if (i.op[1].imms->X_op == O_constant)
7075 {
7076 offsetT n = i.op[1].imms->X_add_number;
7077
7078 if (size == 2
7079 && !fits_in_unsigned_word (n)
7080 && !fits_in_signed_word (n))
7081 {
7082 as_bad (_("16-bit jump out of range"));
7083 return;
7084 }
7085 md_number_to_chars (p, n, size);
7086 }
7087 else
7088 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
7089 i.op[1].imms, 0, reloc (size, 0, 0, i.reloc[1]));
7090 if (i.op[0].imms->X_op != O_constant)
7091 as_bad (_("can't handle non absolute segment in `%s'"),
7092 i.tm.name);
7093 md_number_to_chars (p + size, (valueT) i.op[0].imms->X_add_number, 2);
7094 }
7095
7096 static void
7097 output_insn (void)
7098 {
7099 fragS *insn_start_frag;
7100 offsetT insn_start_off;
7101
7102 /* Tie dwarf2 debug info to the address at the start of the insn.
7103 We can't do this after the insn has been output as the current
7104 frag may have been closed off. eg. by frag_var. */
7105 dwarf2_emit_insn (0);
7106
7107 insn_start_frag = frag_now;
7108 insn_start_off = frag_now_fix ();
7109
7110 /* Output jumps. */
7111 if (i.tm.opcode_modifier.jump)
7112 output_branch ();
7113 else if (i.tm.opcode_modifier.jumpbyte
7114 || i.tm.opcode_modifier.jumpdword)
7115 output_jump ();
7116 else if (i.tm.opcode_modifier.jumpintersegment)
7117 output_interseg_jump ();
7118 else
7119 {
7120 /* Output normal instructions here. */
7121 char *p;
7122 unsigned char *q;
7123 unsigned int j;
7124 unsigned int prefix;
7125
7126 if (avoid_fence
7127 && i.tm.base_opcode == 0xfae
7128 && i.operands == 1
7129 && i.imm_operands == 1
7130 && (i.op[0].imms->X_add_number == 0xe8
7131 || i.op[0].imms->X_add_number == 0xf0
7132 || i.op[0].imms->X_add_number == 0xf8))
7133 {
7134 /* Encode lfence, mfence, and sfence as
7135 f0 83 04 24 00 lock addl $0x0, (%{re}sp). */
7136 offsetT val = 0x240483f0ULL;
7137 p = frag_more (5);
7138 md_number_to_chars (p, val, 5);
7139 return;
7140 }
7141
7142 /* Some processors fail on LOCK prefix. This options makes
7143 assembler ignore LOCK prefix and serves as a workaround. */
7144 if (omit_lock_prefix)
7145 {
7146 if (i.tm.base_opcode == LOCK_PREFIX_OPCODE)
7147 return;
7148 i.prefix[LOCK_PREFIX] = 0;
7149 }
7150
7151 /* Since the VEX/EVEX prefix contains the implicit prefix, we
7152 don't need the explicit prefix. */
7153 if (!i.tm.opcode_modifier.vex && !i.tm.opcode_modifier.evex)
7154 {
7155 switch (i.tm.opcode_length)
7156 {
7157 case 3:
7158 if (i.tm.base_opcode & 0xff000000)
7159 {
7160 prefix = (i.tm.base_opcode >> 24) & 0xff;
7161 goto check_prefix;
7162 }
7163 break;
7164 case 2:
7165 if ((i.tm.base_opcode & 0xff0000) != 0)
7166 {
7167 prefix = (i.tm.base_opcode >> 16) & 0xff;
7168 if (i.tm.cpu_flags.bitfield.cpupadlock)
7169 {
7170 check_prefix:
7171 if (prefix != REPE_PREFIX_OPCODE
7172 || (i.prefix[REP_PREFIX]
7173 != REPE_PREFIX_OPCODE))
7174 add_prefix (prefix);
7175 }
7176 else
7177 add_prefix (prefix);
7178 }
7179 break;
7180 case 1:
7181 break;
7182 default:
7183 abort ();
7184 }
7185
7186 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
7187 /* For x32, add a dummy REX_OPCODE prefix for mov/add with
7188 R_X86_64_GOTTPOFF relocation so that linker can safely
7189 perform IE->LE optimization. */
7190 if (x86_elf_abi == X86_64_X32_ABI
7191 && i.operands == 2
7192 && i.reloc[0] == BFD_RELOC_X86_64_GOTTPOFF
7193 && i.prefix[REX_PREFIX] == 0)
7194 add_prefix (REX_OPCODE);
7195 #endif
7196
7197 /* The prefix bytes. */
7198 for (j = ARRAY_SIZE (i.prefix), q = i.prefix; j > 0; j--, q++)
7199 if (*q)
7200 FRAG_APPEND_1_CHAR (*q);
7201 }
7202 else
7203 {
7204 for (j = 0, q = i.prefix; j < ARRAY_SIZE (i.prefix); j++, q++)
7205 if (*q)
7206 switch (j)
7207 {
7208 case REX_PREFIX:
7209 /* REX byte is encoded in VEX prefix. */
7210 break;
7211 case SEG_PREFIX:
7212 case ADDR_PREFIX:
7213 FRAG_APPEND_1_CHAR (*q);
7214 break;
7215 default:
7216 /* There should be no other prefixes for instructions
7217 with VEX prefix. */
7218 abort ();
7219 }
7220
7221 /* For EVEX instructions i.vrex should become 0 after
7222 build_evex_prefix. For VEX instructions upper 16 registers
7223 aren't available, so VREX should be 0. */
7224 if (i.vrex)
7225 abort ();
7226 /* Now the VEX prefix. */
7227 p = frag_more (i.vex.length);
7228 for (j = 0; j < i.vex.length; j++)
7229 p[j] = i.vex.bytes[j];
7230 }
7231
7232 /* Now the opcode; be careful about word order here! */
7233 if (i.tm.opcode_length == 1)
7234 {
7235 FRAG_APPEND_1_CHAR (i.tm.base_opcode);
7236 }
7237 else
7238 {
7239 switch (i.tm.opcode_length)
7240 {
7241 case 4:
7242 p = frag_more (4);
7243 *p++ = (i.tm.base_opcode >> 24) & 0xff;
7244 *p++ = (i.tm.base_opcode >> 16) & 0xff;
7245 break;
7246 case 3:
7247 p = frag_more (3);
7248 *p++ = (i.tm.base_opcode >> 16) & 0xff;
7249 break;
7250 case 2:
7251 p = frag_more (2);
7252 break;
7253 default:
7254 abort ();
7255 break;
7256 }
7257
7258 /* Put out high byte first: can't use md_number_to_chars! */
7259 *p++ = (i.tm.base_opcode >> 8) & 0xff;
7260 *p = i.tm.base_opcode & 0xff;
7261 }
7262
7263 /* Now the modrm byte and sib byte (if present). */
7264 if (i.tm.opcode_modifier.modrm)
7265 {
7266 FRAG_APPEND_1_CHAR ((i.rm.regmem << 0
7267 | i.rm.reg << 3
7268 | i.rm.mode << 6));
7269 /* If i.rm.regmem == ESP (4)
7270 && i.rm.mode != (Register mode)
7271 && not 16 bit
7272 ==> need second modrm byte. */
7273 if (i.rm.regmem == ESCAPE_TO_TWO_BYTE_ADDRESSING
7274 && i.rm.mode != 3
7275 && !(i.base_reg && i.base_reg->reg_type.bitfield.reg16))
7276 FRAG_APPEND_1_CHAR ((i.sib.base << 0
7277 | i.sib.index << 3
7278 | i.sib.scale << 6));
7279 }
7280
7281 if (i.disp_operands)
7282 output_disp (insn_start_frag, insn_start_off);
7283
7284 if (i.imm_operands)
7285 output_imm (insn_start_frag, insn_start_off);
7286 }
7287
7288 #ifdef DEBUG386
7289 if (flag_debug)
7290 {
7291 pi ("" /*line*/, &i);
7292 }
7293 #endif /* DEBUG386 */
7294 }
7295
7296 /* Return the size of the displacement operand N. */
7297
7298 static int
7299 disp_size (unsigned int n)
7300 {
7301 int size = 4;
7302
7303 /* Vec_Disp8 has to be 8bit. */
7304 if (i.types[n].bitfield.vec_disp8)
7305 size = 1;
7306 else if (i.types[n].bitfield.disp64)
7307 size = 8;
7308 else if (i.types[n].bitfield.disp8)
7309 size = 1;
7310 else if (i.types[n].bitfield.disp16)
7311 size = 2;
7312 return size;
7313 }
7314
7315 /* Return the size of the immediate operand N. */
7316
7317 static int
7318 imm_size (unsigned int n)
7319 {
7320 int size = 4;
7321 if (i.types[n].bitfield.imm64)
7322 size = 8;
7323 else if (i.types[n].bitfield.imm8 || i.types[n].bitfield.imm8s)
7324 size = 1;
7325 else if (i.types[n].bitfield.imm16)
7326 size = 2;
7327 return size;
7328 }
7329
7330 static void
7331 output_disp (fragS *insn_start_frag, offsetT insn_start_off)
7332 {
7333 char *p;
7334 unsigned int n;
7335
7336 for (n = 0; n < i.operands; n++)
7337 {
7338 if (i.types[n].bitfield.vec_disp8
7339 || operand_type_check (i.types[n], disp))
7340 {
7341 if (i.op[n].disps->X_op == O_constant)
7342 {
7343 int size = disp_size (n);
7344 offsetT val = i.op[n].disps->X_add_number;
7345
7346 if (i.types[n].bitfield.vec_disp8)
7347 val >>= i.memshift;
7348 val = offset_in_range (val, size);
7349 p = frag_more (size);
7350 md_number_to_chars (p, val, size);
7351 }
7352 else
7353 {
7354 enum bfd_reloc_code_real reloc_type;
7355 int size = disp_size (n);
7356 int sign = i.types[n].bitfield.disp32s;
7357 int pcrel = (i.flags[n] & Operand_PCrel) != 0;
7358 fixS *fixP;
7359
7360 /* We can't have 8 bit displacement here. */
7361 gas_assert (!i.types[n].bitfield.disp8);
7362
7363 /* The PC relative address is computed relative
7364 to the instruction boundary, so in case immediate
7365 fields follows, we need to adjust the value. */
7366 if (pcrel && i.imm_operands)
7367 {
7368 unsigned int n1;
7369 int sz = 0;
7370
7371 for (n1 = 0; n1 < i.operands; n1++)
7372 if (operand_type_check (i.types[n1], imm))
7373 {
7374 /* Only one immediate is allowed for PC
7375 relative address. */
7376 gas_assert (sz == 0);
7377 sz = imm_size (n1);
7378 i.op[n].disps->X_add_number -= sz;
7379 }
7380 /* We should find the immediate. */
7381 gas_assert (sz != 0);
7382 }
7383
7384 p = frag_more (size);
7385 reloc_type = reloc (size, pcrel, sign, i.reloc[n]);
7386 if (GOT_symbol
7387 && GOT_symbol == i.op[n].disps->X_add_symbol
7388 && (((reloc_type == BFD_RELOC_32
7389 || reloc_type == BFD_RELOC_X86_64_32S
7390 || (reloc_type == BFD_RELOC_64
7391 && object_64bit))
7392 && (i.op[n].disps->X_op == O_symbol
7393 || (i.op[n].disps->X_op == O_add
7394 && ((symbol_get_value_expression
7395 (i.op[n].disps->X_op_symbol)->X_op)
7396 == O_subtract))))
7397 || reloc_type == BFD_RELOC_32_PCREL))
7398 {
7399 offsetT add;
7400
7401 if (insn_start_frag == frag_now)
7402 add = (p - frag_now->fr_literal) - insn_start_off;
7403 else
7404 {
7405 fragS *fr;
7406
7407 add = insn_start_frag->fr_fix - insn_start_off;
7408 for (fr = insn_start_frag->fr_next;
7409 fr && fr != frag_now; fr = fr->fr_next)
7410 add += fr->fr_fix;
7411 add += p - frag_now->fr_literal;
7412 }
7413
7414 if (!object_64bit)
7415 {
7416 reloc_type = BFD_RELOC_386_GOTPC;
7417 i.op[n].imms->X_add_number += add;
7418 }
7419 else if (reloc_type == BFD_RELOC_64)
7420 reloc_type = BFD_RELOC_X86_64_GOTPC64;
7421 else
7422 /* Don't do the adjustment for x86-64, as there
7423 the pcrel addressing is relative to the _next_
7424 insn, and that is taken care of in other code. */
7425 reloc_type = BFD_RELOC_X86_64_GOTPC32;
7426 }
7427 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal,
7428 size, i.op[n].disps, pcrel,
7429 reloc_type);
7430 /* Check for "call/jmp *mem", "mov mem, %reg",
7431 "test %reg, mem" and "binop mem, %reg" where binop
7432 is one of adc, add, and, cmp, or, sbb, sub, xor
7433 instructions. Always generate R_386_GOT32X for
7434 "sym*GOT" operand in 32-bit mode. */
7435 if ((generate_relax_relocations
7436 || (!object_64bit
7437 && i.rm.mode == 0
7438 && i.rm.regmem == 5))
7439 && (i.rm.mode == 2
7440 || (i.rm.mode == 0 && i.rm.regmem == 5))
7441 && ((i.operands == 1
7442 && i.tm.base_opcode == 0xff
7443 && (i.rm.reg == 2 || i.rm.reg == 4))
7444 || (i.operands == 2
7445 && (i.tm.base_opcode == 0x8b
7446 || i.tm.base_opcode == 0x85
7447 || (i.tm.base_opcode & 0xc7) == 0x03))))
7448 {
7449 if (object_64bit)
7450 {
7451 fixP->fx_tcbit = i.rex != 0;
7452 if (i.base_reg
7453 && (i.base_reg->reg_num == RegRip
7454 || i.base_reg->reg_num == RegEip))
7455 fixP->fx_tcbit2 = 1;
7456 }
7457 else
7458 fixP->fx_tcbit2 = 1;
7459 }
7460 }
7461 }
7462 }
7463 }
7464
7465 static void
7466 output_imm (fragS *insn_start_frag, offsetT insn_start_off)
7467 {
7468 char *p;
7469 unsigned int n;
7470
7471 for (n = 0; n < i.operands; n++)
7472 {
7473 /* Skip SAE/RC Imm operand in EVEX. They are already handled. */
7474 if (i.rounding && (int) n == i.rounding->operand)
7475 continue;
7476
7477 if (operand_type_check (i.types[n], imm))
7478 {
7479 if (i.op[n].imms->X_op == O_constant)
7480 {
7481 int size = imm_size (n);
7482 offsetT val;
7483
7484 val = offset_in_range (i.op[n].imms->X_add_number,
7485 size);
7486 p = frag_more (size);
7487 md_number_to_chars (p, val, size);
7488 }
7489 else
7490 {
7491 /* Not absolute_section.
7492 Need a 32-bit fixup (don't support 8bit
7493 non-absolute imms). Try to support other
7494 sizes ... */
7495 enum bfd_reloc_code_real reloc_type;
7496 int size = imm_size (n);
7497 int sign;
7498
7499 if (i.types[n].bitfield.imm32s
7500 && (i.suffix == QWORD_MNEM_SUFFIX
7501 || (!i.suffix && i.tm.opcode_modifier.no_lsuf)))
7502 sign = 1;
7503 else
7504 sign = 0;
7505
7506 p = frag_more (size);
7507 reloc_type = reloc (size, 0, sign, i.reloc[n]);
7508
7509 /* This is tough to explain. We end up with this one if we
7510 * have operands that look like
7511 * "_GLOBAL_OFFSET_TABLE_+[.-.L284]". The goal here is to
7512 * obtain the absolute address of the GOT, and it is strongly
7513 * preferable from a performance point of view to avoid using
7514 * a runtime relocation for this. The actual sequence of
7515 * instructions often look something like:
7516 *
7517 * call .L66
7518 * .L66:
7519 * popl %ebx
7520 * addl $_GLOBAL_OFFSET_TABLE_+[.-.L66],%ebx
7521 *
7522 * The call and pop essentially return the absolute address
7523 * of the label .L66 and store it in %ebx. The linker itself
7524 * will ultimately change the first operand of the addl so
7525 * that %ebx points to the GOT, but to keep things simple, the
7526 * .o file must have this operand set so that it generates not
7527 * the absolute address of .L66, but the absolute address of
7528 * itself. This allows the linker itself simply treat a GOTPC
7529 * relocation as asking for a pcrel offset to the GOT to be
7530 * added in, and the addend of the relocation is stored in the
7531 * operand field for the instruction itself.
7532 *
7533 * Our job here is to fix the operand so that it would add
7534 * the correct offset so that %ebx would point to itself. The
7535 * thing that is tricky is that .-.L66 will point to the
7536 * beginning of the instruction, so we need to further modify
7537 * the operand so that it will point to itself. There are
7538 * other cases where you have something like:
7539 *
7540 * .long $_GLOBAL_OFFSET_TABLE_+[.-.L66]
7541 *
7542 * and here no correction would be required. Internally in
7543 * the assembler we treat operands of this form as not being
7544 * pcrel since the '.' is explicitly mentioned, and I wonder
7545 * whether it would simplify matters to do it this way. Who
7546 * knows. In earlier versions of the PIC patches, the
7547 * pcrel_adjust field was used to store the correction, but
7548 * since the expression is not pcrel, I felt it would be
7549 * confusing to do it this way. */
7550
7551 if ((reloc_type == BFD_RELOC_32
7552 || reloc_type == BFD_RELOC_X86_64_32S
7553 || reloc_type == BFD_RELOC_64)
7554 && GOT_symbol
7555 && GOT_symbol == i.op[n].imms->X_add_symbol
7556 && (i.op[n].imms->X_op == O_symbol
7557 || (i.op[n].imms->X_op == O_add
7558 && ((symbol_get_value_expression
7559 (i.op[n].imms->X_op_symbol)->X_op)
7560 == O_subtract))))
7561 {
7562 offsetT add;
7563
7564 if (insn_start_frag == frag_now)
7565 add = (p - frag_now->fr_literal) - insn_start_off;
7566 else
7567 {
7568 fragS *fr;
7569
7570 add = insn_start_frag->fr_fix - insn_start_off;
7571 for (fr = insn_start_frag->fr_next;
7572 fr && fr != frag_now; fr = fr->fr_next)
7573 add += fr->fr_fix;
7574 add += p - frag_now->fr_literal;
7575 }
7576
7577 if (!object_64bit)
7578 reloc_type = BFD_RELOC_386_GOTPC;
7579 else if (size == 4)
7580 reloc_type = BFD_RELOC_X86_64_GOTPC32;
7581 else if (size == 8)
7582 reloc_type = BFD_RELOC_X86_64_GOTPC64;
7583 i.op[n].imms->X_add_number += add;
7584 }
7585 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
7586 i.op[n].imms, 0, reloc_type);
7587 }
7588 }
7589 }
7590 }
7591 \f
7592 /* x86_cons_fix_new is called via the expression parsing code when a
7593 reloc is needed. We use this hook to get the correct .got reloc. */
7594 static int cons_sign = -1;
7595
7596 void
7597 x86_cons_fix_new (fragS *frag, unsigned int off, unsigned int len,
7598 expressionS *exp, bfd_reloc_code_real_type r)
7599 {
7600 r = reloc (len, 0, cons_sign, r);
7601
7602 #ifdef TE_PE
7603 if (exp->X_op == O_secrel)
7604 {
7605 exp->X_op = O_symbol;
7606 r = BFD_RELOC_32_SECREL;
7607 }
7608 #endif
7609
7610 fix_new_exp (frag, off, len, exp, 0, r);
7611 }
7612
7613 /* Export the ABI address size for use by TC_ADDRESS_BYTES for the
7614 purpose of the `.dc.a' internal pseudo-op. */
7615
7616 int
7617 x86_address_bytes (void)
7618 {
7619 if ((stdoutput->arch_info->mach & bfd_mach_x64_32))
7620 return 4;
7621 return stdoutput->arch_info->bits_per_address / 8;
7622 }
7623
7624 #if !(defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) || defined (OBJ_MACH_O)) \
7625 || defined (LEX_AT)
7626 # define lex_got(reloc, adjust, types) NULL
7627 #else
7628 /* Parse operands of the form
7629 <symbol>@GOTOFF+<nnn>
7630 and similar .plt or .got references.
7631
7632 If we find one, set up the correct relocation in RELOC and copy the
7633 input string, minus the `@GOTOFF' into a malloc'd buffer for
7634 parsing by the calling routine. Return this buffer, and if ADJUST
7635 is non-null set it to the length of the string we removed from the
7636 input line. Otherwise return NULL. */
7637 static char *
7638 lex_got (enum bfd_reloc_code_real *rel,
7639 int *adjust,
7640 i386_operand_type *types)
7641 {
7642 /* Some of the relocations depend on the size of what field is to
7643 be relocated. But in our callers i386_immediate and i386_displacement
7644 we don't yet know the operand size (this will be set by insn
7645 matching). Hence we record the word32 relocation here,
7646 and adjust the reloc according to the real size in reloc(). */
7647 static const struct {
7648 const char *str;
7649 int len;
7650 const enum bfd_reloc_code_real rel[2];
7651 const i386_operand_type types64;
7652 } gotrel[] = {
7653 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7654 { STRING_COMMA_LEN ("SIZE"), { BFD_RELOC_SIZE32,
7655 BFD_RELOC_SIZE32 },
7656 OPERAND_TYPE_IMM32_64 },
7657 #endif
7658 { STRING_COMMA_LEN ("PLTOFF"), { _dummy_first_bfd_reloc_code_real,
7659 BFD_RELOC_X86_64_PLTOFF64 },
7660 OPERAND_TYPE_IMM64 },
7661 { STRING_COMMA_LEN ("PLT"), { BFD_RELOC_386_PLT32,
7662 BFD_RELOC_X86_64_PLT32 },
7663 OPERAND_TYPE_IMM32_32S_DISP32 },
7664 { STRING_COMMA_LEN ("GOTPLT"), { _dummy_first_bfd_reloc_code_real,
7665 BFD_RELOC_X86_64_GOTPLT64 },
7666 OPERAND_TYPE_IMM64_DISP64 },
7667 { STRING_COMMA_LEN ("GOTOFF"), { BFD_RELOC_386_GOTOFF,
7668 BFD_RELOC_X86_64_GOTOFF64 },
7669 OPERAND_TYPE_IMM64_DISP64 },
7670 { STRING_COMMA_LEN ("GOTPCREL"), { _dummy_first_bfd_reloc_code_real,
7671 BFD_RELOC_X86_64_GOTPCREL },
7672 OPERAND_TYPE_IMM32_32S_DISP32 },
7673 { STRING_COMMA_LEN ("TLSGD"), { BFD_RELOC_386_TLS_GD,
7674 BFD_RELOC_X86_64_TLSGD },
7675 OPERAND_TYPE_IMM32_32S_DISP32 },
7676 { STRING_COMMA_LEN ("TLSLDM"), { BFD_RELOC_386_TLS_LDM,
7677 _dummy_first_bfd_reloc_code_real },
7678 OPERAND_TYPE_NONE },
7679 { STRING_COMMA_LEN ("TLSLD"), { _dummy_first_bfd_reloc_code_real,
7680 BFD_RELOC_X86_64_TLSLD },
7681 OPERAND_TYPE_IMM32_32S_DISP32 },
7682 { STRING_COMMA_LEN ("GOTTPOFF"), { BFD_RELOC_386_TLS_IE_32,
7683 BFD_RELOC_X86_64_GOTTPOFF },
7684 OPERAND_TYPE_IMM32_32S_DISP32 },
7685 { STRING_COMMA_LEN ("TPOFF"), { BFD_RELOC_386_TLS_LE_32,
7686 BFD_RELOC_X86_64_TPOFF32 },
7687 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
7688 { STRING_COMMA_LEN ("NTPOFF"), { BFD_RELOC_386_TLS_LE,
7689 _dummy_first_bfd_reloc_code_real },
7690 OPERAND_TYPE_NONE },
7691 { STRING_COMMA_LEN ("DTPOFF"), { BFD_RELOC_386_TLS_LDO_32,
7692 BFD_RELOC_X86_64_DTPOFF32 },
7693 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
7694 { STRING_COMMA_LEN ("GOTNTPOFF"),{ BFD_RELOC_386_TLS_GOTIE,
7695 _dummy_first_bfd_reloc_code_real },
7696 OPERAND_TYPE_NONE },
7697 { STRING_COMMA_LEN ("INDNTPOFF"),{ BFD_RELOC_386_TLS_IE,
7698 _dummy_first_bfd_reloc_code_real },
7699 OPERAND_TYPE_NONE },
7700 { STRING_COMMA_LEN ("GOT"), { BFD_RELOC_386_GOT32,
7701 BFD_RELOC_X86_64_GOT32 },
7702 OPERAND_TYPE_IMM32_32S_64_DISP32 },
7703 { STRING_COMMA_LEN ("TLSDESC"), { BFD_RELOC_386_TLS_GOTDESC,
7704 BFD_RELOC_X86_64_GOTPC32_TLSDESC },
7705 OPERAND_TYPE_IMM32_32S_DISP32 },
7706 { STRING_COMMA_LEN ("TLSCALL"), { BFD_RELOC_386_TLS_DESC_CALL,
7707 BFD_RELOC_X86_64_TLSDESC_CALL },
7708 OPERAND_TYPE_IMM32_32S_DISP32 },
7709 };
7710 char *cp;
7711 unsigned int j;
7712
7713 #if defined (OBJ_MAYBE_ELF)
7714 if (!IS_ELF)
7715 return NULL;
7716 #endif
7717
7718 for (cp = input_line_pointer; *cp != '@'; cp++)
7719 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
7720 return NULL;
7721
7722 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
7723 {
7724 int len = gotrel[j].len;
7725 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
7726 {
7727 if (gotrel[j].rel[object_64bit] != 0)
7728 {
7729 int first, second;
7730 char *tmpbuf, *past_reloc;
7731
7732 *rel = gotrel[j].rel[object_64bit];
7733
7734 if (types)
7735 {
7736 if (flag_code != CODE_64BIT)
7737 {
7738 types->bitfield.imm32 = 1;
7739 types->bitfield.disp32 = 1;
7740 }
7741 else
7742 *types = gotrel[j].types64;
7743 }
7744
7745 if (j != 0 && GOT_symbol == NULL)
7746 GOT_symbol = symbol_find_or_make (GLOBAL_OFFSET_TABLE_NAME);
7747
7748 /* The length of the first part of our input line. */
7749 first = cp - input_line_pointer;
7750
7751 /* The second part goes from after the reloc token until
7752 (and including) an end_of_line char or comma. */
7753 past_reloc = cp + 1 + len;
7754 cp = past_reloc;
7755 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
7756 ++cp;
7757 second = cp + 1 - past_reloc;
7758
7759 /* Allocate and copy string. The trailing NUL shouldn't
7760 be necessary, but be safe. */
7761 tmpbuf = XNEWVEC (char, first + second + 2);
7762 memcpy (tmpbuf, input_line_pointer, first);
7763 if (second != 0 && *past_reloc != ' ')
7764 /* Replace the relocation token with ' ', so that
7765 errors like foo@GOTOFF1 will be detected. */
7766 tmpbuf[first++] = ' ';
7767 else
7768 /* Increment length by 1 if the relocation token is
7769 removed. */
7770 len++;
7771 if (adjust)
7772 *adjust = len;
7773 memcpy (tmpbuf + first, past_reloc, second);
7774 tmpbuf[first + second] = '\0';
7775 return tmpbuf;
7776 }
7777
7778 as_bad (_("@%s reloc is not supported with %d-bit output format"),
7779 gotrel[j].str, 1 << (5 + object_64bit));
7780 return NULL;
7781 }
7782 }
7783
7784 /* Might be a symbol version string. Don't as_bad here. */
7785 return NULL;
7786 }
7787 #endif
7788
7789 #ifdef TE_PE
7790 #ifdef lex_got
7791 #undef lex_got
7792 #endif
7793 /* Parse operands of the form
7794 <symbol>@SECREL32+<nnn>
7795
7796 If we find one, set up the correct relocation in RELOC and copy the
7797 input string, minus the `@SECREL32' into a malloc'd buffer for
7798 parsing by the calling routine. Return this buffer, and if ADJUST
7799 is non-null set it to the length of the string we removed from the
7800 input line. Otherwise return NULL.
7801
7802 This function is copied from the ELF version above adjusted for PE targets. */
7803
7804 static char *
7805 lex_got (enum bfd_reloc_code_real *rel ATTRIBUTE_UNUSED,
7806 int *adjust ATTRIBUTE_UNUSED,
7807 i386_operand_type *types)
7808 {
7809 static const struct
7810 {
7811 const char *str;
7812 int len;
7813 const enum bfd_reloc_code_real rel[2];
7814 const i386_operand_type types64;
7815 }
7816 gotrel[] =
7817 {
7818 { STRING_COMMA_LEN ("SECREL32"), { BFD_RELOC_32_SECREL,
7819 BFD_RELOC_32_SECREL },
7820 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
7821 };
7822
7823 char *cp;
7824 unsigned j;
7825
7826 for (cp = input_line_pointer; *cp != '@'; cp++)
7827 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
7828 return NULL;
7829
7830 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
7831 {
7832 int len = gotrel[j].len;
7833
7834 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
7835 {
7836 if (gotrel[j].rel[object_64bit] != 0)
7837 {
7838 int first, second;
7839 char *tmpbuf, *past_reloc;
7840
7841 *rel = gotrel[j].rel[object_64bit];
7842 if (adjust)
7843 *adjust = len;
7844
7845 if (types)
7846 {
7847 if (flag_code != CODE_64BIT)
7848 {
7849 types->bitfield.imm32 = 1;
7850 types->bitfield.disp32 = 1;
7851 }
7852 else
7853 *types = gotrel[j].types64;
7854 }
7855
7856 /* The length of the first part of our input line. */
7857 first = cp - input_line_pointer;
7858
7859 /* The second part goes from after the reloc token until
7860 (and including) an end_of_line char or comma. */
7861 past_reloc = cp + 1 + len;
7862 cp = past_reloc;
7863 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
7864 ++cp;
7865 second = cp + 1 - past_reloc;
7866
7867 /* Allocate and copy string. The trailing NUL shouldn't
7868 be necessary, but be safe. */
7869 tmpbuf = XNEWVEC (char, first + second + 2);
7870 memcpy (tmpbuf, input_line_pointer, first);
7871 if (second != 0 && *past_reloc != ' ')
7872 /* Replace the relocation token with ' ', so that
7873 errors like foo@SECLREL321 will be detected. */
7874 tmpbuf[first++] = ' ';
7875 memcpy (tmpbuf + first, past_reloc, second);
7876 tmpbuf[first + second] = '\0';
7877 return tmpbuf;
7878 }
7879
7880 as_bad (_("@%s reloc is not supported with %d-bit output format"),
7881 gotrel[j].str, 1 << (5 + object_64bit));
7882 return NULL;
7883 }
7884 }
7885
7886 /* Might be a symbol version string. Don't as_bad here. */
7887 return NULL;
7888 }
7889
7890 #endif /* TE_PE */
7891
7892 bfd_reloc_code_real_type
7893 x86_cons (expressionS *exp, int size)
7894 {
7895 bfd_reloc_code_real_type got_reloc = NO_RELOC;
7896
7897 intel_syntax = -intel_syntax;
7898
7899 exp->X_md = 0;
7900 if (size == 4 || (object_64bit && size == 8))
7901 {
7902 /* Handle @GOTOFF and the like in an expression. */
7903 char *save;
7904 char *gotfree_input_line;
7905 int adjust = 0;
7906
7907 save = input_line_pointer;
7908 gotfree_input_line = lex_got (&got_reloc, &adjust, NULL);
7909 if (gotfree_input_line)
7910 input_line_pointer = gotfree_input_line;
7911
7912 expression (exp);
7913
7914 if (gotfree_input_line)
7915 {
7916 /* expression () has merrily parsed up to the end of line,
7917 or a comma - in the wrong buffer. Transfer how far
7918 input_line_pointer has moved to the right buffer. */
7919 input_line_pointer = (save
7920 + (input_line_pointer - gotfree_input_line)
7921 + adjust);
7922 free (gotfree_input_line);
7923 if (exp->X_op == O_constant
7924 || exp->X_op == O_absent
7925 || exp->X_op == O_illegal
7926 || exp->X_op == O_register
7927 || exp->X_op == O_big)
7928 {
7929 char c = *input_line_pointer;
7930 *input_line_pointer = 0;
7931 as_bad (_("missing or invalid expression `%s'"), save);
7932 *input_line_pointer = c;
7933 }
7934 }
7935 }
7936 else
7937 expression (exp);
7938
7939 intel_syntax = -intel_syntax;
7940
7941 if (intel_syntax)
7942 i386_intel_simplify (exp);
7943
7944 return got_reloc;
7945 }
7946
7947 static void
7948 signed_cons (int size)
7949 {
7950 if (flag_code == CODE_64BIT)
7951 cons_sign = 1;
7952 cons (size);
7953 cons_sign = -1;
7954 }
7955
7956 #ifdef TE_PE
7957 static void
7958 pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
7959 {
7960 expressionS exp;
7961
7962 do
7963 {
7964 expression (&exp);
7965 if (exp.X_op == O_symbol)
7966 exp.X_op = O_secrel;
7967
7968 emit_expr (&exp, 4);
7969 }
7970 while (*input_line_pointer++ == ',');
7971
7972 input_line_pointer--;
7973 demand_empty_rest_of_line ();
7974 }
7975 #endif
7976
7977 /* Handle Vector operations. */
7978
7979 static char *
7980 check_VecOperations (char *op_string, char *op_end)
7981 {
7982 const reg_entry *mask;
7983 const char *saved;
7984 char *end_op;
7985
7986 while (*op_string
7987 && (op_end == NULL || op_string < op_end))
7988 {
7989 saved = op_string;
7990 if (*op_string == '{')
7991 {
7992 op_string++;
7993
7994 /* Check broadcasts. */
7995 if (strncmp (op_string, "1to", 3) == 0)
7996 {
7997 int bcst_type;
7998
7999 if (i.broadcast)
8000 goto duplicated_vec_op;
8001
8002 op_string += 3;
8003 if (*op_string == '8')
8004 bcst_type = BROADCAST_1TO8;
8005 else if (*op_string == '4')
8006 bcst_type = BROADCAST_1TO4;
8007 else if (*op_string == '2')
8008 bcst_type = BROADCAST_1TO2;
8009 else if (*op_string == '1'
8010 && *(op_string+1) == '6')
8011 {
8012 bcst_type = BROADCAST_1TO16;
8013 op_string++;
8014 }
8015 else
8016 {
8017 as_bad (_("Unsupported broadcast: `%s'"), saved);
8018 return NULL;
8019 }
8020 op_string++;
8021
8022 broadcast_op.type = bcst_type;
8023 broadcast_op.operand = this_operand;
8024 i.broadcast = &broadcast_op;
8025 }
8026 /* Check masking operation. */
8027 else if ((mask = parse_register (op_string, &end_op)) != NULL)
8028 {
8029 /* k0 can't be used for write mask. */
8030 if (mask->reg_num == 0)
8031 {
8032 as_bad (_("`%s' can't be used for write mask"),
8033 op_string);
8034 return NULL;
8035 }
8036
8037 if (!i.mask)
8038 {
8039 mask_op.mask = mask;
8040 mask_op.zeroing = 0;
8041 mask_op.operand = this_operand;
8042 i.mask = &mask_op;
8043 }
8044 else
8045 {
8046 if (i.mask->mask)
8047 goto duplicated_vec_op;
8048
8049 i.mask->mask = mask;
8050
8051 /* Only "{z}" is allowed here. No need to check
8052 zeroing mask explicitly. */
8053 if (i.mask->operand != this_operand)
8054 {
8055 as_bad (_("invalid write mask `%s'"), saved);
8056 return NULL;
8057 }
8058 }
8059
8060 op_string = end_op;
8061 }
8062 /* Check zeroing-flag for masking operation. */
8063 else if (*op_string == 'z')
8064 {
8065 if (!i.mask)
8066 {
8067 mask_op.mask = NULL;
8068 mask_op.zeroing = 1;
8069 mask_op.operand = this_operand;
8070 i.mask = &mask_op;
8071 }
8072 else
8073 {
8074 if (i.mask->zeroing)
8075 {
8076 duplicated_vec_op:
8077 as_bad (_("duplicated `%s'"), saved);
8078 return NULL;
8079 }
8080
8081 i.mask->zeroing = 1;
8082
8083 /* Only "{%k}" is allowed here. No need to check mask
8084 register explicitly. */
8085 if (i.mask->operand != this_operand)
8086 {
8087 as_bad (_("invalid zeroing-masking `%s'"),
8088 saved);
8089 return NULL;
8090 }
8091 }
8092
8093 op_string++;
8094 }
8095 else
8096 goto unknown_vec_op;
8097
8098 if (*op_string != '}')
8099 {
8100 as_bad (_("missing `}' in `%s'"), saved);
8101 return NULL;
8102 }
8103 op_string++;
8104 continue;
8105 }
8106 unknown_vec_op:
8107 /* We don't know this one. */
8108 as_bad (_("unknown vector operation: `%s'"), saved);
8109 return NULL;
8110 }
8111
8112 return op_string;
8113 }
8114
8115 static int
8116 i386_immediate (char *imm_start)
8117 {
8118 char *save_input_line_pointer;
8119 char *gotfree_input_line;
8120 segT exp_seg = 0;
8121 expressionS *exp;
8122 i386_operand_type types;
8123
8124 operand_type_set (&types, ~0);
8125
8126 if (i.imm_operands == MAX_IMMEDIATE_OPERANDS)
8127 {
8128 as_bad (_("at most %d immediate operands are allowed"),
8129 MAX_IMMEDIATE_OPERANDS);
8130 return 0;
8131 }
8132
8133 exp = &im_expressions[i.imm_operands++];
8134 i.op[this_operand].imms = exp;
8135
8136 if (is_space_char (*imm_start))
8137 ++imm_start;
8138
8139 save_input_line_pointer = input_line_pointer;
8140 input_line_pointer = imm_start;
8141
8142 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
8143 if (gotfree_input_line)
8144 input_line_pointer = gotfree_input_line;
8145
8146 exp_seg = expression (exp);
8147
8148 SKIP_WHITESPACE ();
8149
8150 /* Handle vector operations. */
8151 if (*input_line_pointer == '{')
8152 {
8153 input_line_pointer = check_VecOperations (input_line_pointer,
8154 NULL);
8155 if (input_line_pointer == NULL)
8156 return 0;
8157 }
8158
8159 if (*input_line_pointer)
8160 as_bad (_("junk `%s' after expression"), input_line_pointer);
8161
8162 input_line_pointer = save_input_line_pointer;
8163 if (gotfree_input_line)
8164 {
8165 free (gotfree_input_line);
8166
8167 if (exp->X_op == O_constant || exp->X_op == O_register)
8168 exp->X_op = O_illegal;
8169 }
8170
8171 return i386_finalize_immediate (exp_seg, exp, types, imm_start);
8172 }
8173
8174 static int
8175 i386_finalize_immediate (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
8176 i386_operand_type types, const char *imm_start)
8177 {
8178 if (exp->X_op == O_absent || exp->X_op == O_illegal || exp->X_op == O_big)
8179 {
8180 if (imm_start)
8181 as_bad (_("missing or invalid immediate expression `%s'"),
8182 imm_start);
8183 return 0;
8184 }
8185 else if (exp->X_op == O_constant)
8186 {
8187 /* Size it properly later. */
8188 i.types[this_operand].bitfield.imm64 = 1;
8189 /* If not 64bit, sign extend val. */
8190 if (flag_code != CODE_64BIT
8191 && (exp->X_add_number & ~(((addressT) 2 << 31) - 1)) == 0)
8192 exp->X_add_number
8193 = (exp->X_add_number ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
8194 }
8195 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
8196 else if (OUTPUT_FLAVOR == bfd_target_aout_flavour
8197 && exp_seg != absolute_section
8198 && exp_seg != text_section
8199 && exp_seg != data_section
8200 && exp_seg != bss_section
8201 && exp_seg != undefined_section
8202 && !bfd_is_com_section (exp_seg))
8203 {
8204 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
8205 return 0;
8206 }
8207 #endif
8208 else if (!intel_syntax && exp_seg == reg_section)
8209 {
8210 if (imm_start)
8211 as_bad (_("illegal immediate register operand %s"), imm_start);
8212 return 0;
8213 }
8214 else
8215 {
8216 /* This is an address. The size of the address will be
8217 determined later, depending on destination register,
8218 suffix, or the default for the section. */
8219 i.types[this_operand].bitfield.imm8 = 1;
8220 i.types[this_operand].bitfield.imm16 = 1;
8221 i.types[this_operand].bitfield.imm32 = 1;
8222 i.types[this_operand].bitfield.imm32s = 1;
8223 i.types[this_operand].bitfield.imm64 = 1;
8224 i.types[this_operand] = operand_type_and (i.types[this_operand],
8225 types);
8226 }
8227
8228 return 1;
8229 }
8230
8231 static char *
8232 i386_scale (char *scale)
8233 {
8234 offsetT val;
8235 char *save = input_line_pointer;
8236
8237 input_line_pointer = scale;
8238 val = get_absolute_expression ();
8239
8240 switch (val)
8241 {
8242 case 1:
8243 i.log2_scale_factor = 0;
8244 break;
8245 case 2:
8246 i.log2_scale_factor = 1;
8247 break;
8248 case 4:
8249 i.log2_scale_factor = 2;
8250 break;
8251 case 8:
8252 i.log2_scale_factor = 3;
8253 break;
8254 default:
8255 {
8256 char sep = *input_line_pointer;
8257
8258 *input_line_pointer = '\0';
8259 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
8260 scale);
8261 *input_line_pointer = sep;
8262 input_line_pointer = save;
8263 return NULL;
8264 }
8265 }
8266 if (i.log2_scale_factor != 0 && i.index_reg == 0)
8267 {
8268 as_warn (_("scale factor of %d without an index register"),
8269 1 << i.log2_scale_factor);
8270 i.log2_scale_factor = 0;
8271 }
8272 scale = input_line_pointer;
8273 input_line_pointer = save;
8274 return scale;
8275 }
8276
8277 static int
8278 i386_displacement (char *disp_start, char *disp_end)
8279 {
8280 expressionS *exp;
8281 segT exp_seg = 0;
8282 char *save_input_line_pointer;
8283 char *gotfree_input_line;
8284 int override;
8285 i386_operand_type bigdisp, types = anydisp;
8286 int ret;
8287
8288 if (i.disp_operands == MAX_MEMORY_OPERANDS)
8289 {
8290 as_bad (_("at most %d displacement operands are allowed"),
8291 MAX_MEMORY_OPERANDS);
8292 return 0;
8293 }
8294
8295 operand_type_set (&bigdisp, 0);
8296 if ((i.types[this_operand].bitfield.jumpabsolute)
8297 || (!current_templates->start->opcode_modifier.jump
8298 && !current_templates->start->opcode_modifier.jumpdword))
8299 {
8300 bigdisp.bitfield.disp32 = 1;
8301 override = (i.prefix[ADDR_PREFIX] != 0);
8302 if (flag_code == CODE_64BIT)
8303 {
8304 if (!override)
8305 {
8306 bigdisp.bitfield.disp32s = 1;
8307 bigdisp.bitfield.disp64 = 1;
8308 }
8309 }
8310 else if ((flag_code == CODE_16BIT) ^ override)
8311 {
8312 bigdisp.bitfield.disp32 = 0;
8313 bigdisp.bitfield.disp16 = 1;
8314 }
8315 }
8316 else
8317 {
8318 /* For PC-relative branches, the width of the displacement
8319 is dependent upon data size, not address size. */
8320 override = (i.prefix[DATA_PREFIX] != 0);
8321 if (flag_code == CODE_64BIT)
8322 {
8323 if (override || i.suffix == WORD_MNEM_SUFFIX)
8324 bigdisp.bitfield.disp16 = 1;
8325 else
8326 {
8327 bigdisp.bitfield.disp32 = 1;
8328 bigdisp.bitfield.disp32s = 1;
8329 }
8330 }
8331 else
8332 {
8333 if (!override)
8334 override = (i.suffix == (flag_code != CODE_16BIT
8335 ? WORD_MNEM_SUFFIX
8336 : LONG_MNEM_SUFFIX));
8337 bigdisp.bitfield.disp32 = 1;
8338 if ((flag_code == CODE_16BIT) ^ override)
8339 {
8340 bigdisp.bitfield.disp32 = 0;
8341 bigdisp.bitfield.disp16 = 1;
8342 }
8343 }
8344 }
8345 i.types[this_operand] = operand_type_or (i.types[this_operand],
8346 bigdisp);
8347
8348 exp = &disp_expressions[i.disp_operands];
8349 i.op[this_operand].disps = exp;
8350 i.disp_operands++;
8351 save_input_line_pointer = input_line_pointer;
8352 input_line_pointer = disp_start;
8353 END_STRING_AND_SAVE (disp_end);
8354
8355 #ifndef GCC_ASM_O_HACK
8356 #define GCC_ASM_O_HACK 0
8357 #endif
8358 #if GCC_ASM_O_HACK
8359 END_STRING_AND_SAVE (disp_end + 1);
8360 if (i.types[this_operand].bitfield.baseIndex
8361 && displacement_string_end[-1] == '+')
8362 {
8363 /* This hack is to avoid a warning when using the "o"
8364 constraint within gcc asm statements.
8365 For instance:
8366
8367 #define _set_tssldt_desc(n,addr,limit,type) \
8368 __asm__ __volatile__ ( \
8369 "movw %w2,%0\n\t" \
8370 "movw %w1,2+%0\n\t" \
8371 "rorl $16,%1\n\t" \
8372 "movb %b1,4+%0\n\t" \
8373 "movb %4,5+%0\n\t" \
8374 "movb $0,6+%0\n\t" \
8375 "movb %h1,7+%0\n\t" \
8376 "rorl $16,%1" \
8377 : "=o"(*(n)) : "q" (addr), "ri"(limit), "i"(type))
8378
8379 This works great except that the output assembler ends
8380 up looking a bit weird if it turns out that there is
8381 no offset. You end up producing code that looks like:
8382
8383 #APP
8384 movw $235,(%eax)
8385 movw %dx,2+(%eax)
8386 rorl $16,%edx
8387 movb %dl,4+(%eax)
8388 movb $137,5+(%eax)
8389 movb $0,6+(%eax)
8390 movb %dh,7+(%eax)
8391 rorl $16,%edx
8392 #NO_APP
8393
8394 So here we provide the missing zero. */
8395
8396 *displacement_string_end = '0';
8397 }
8398 #endif
8399 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
8400 if (gotfree_input_line)
8401 input_line_pointer = gotfree_input_line;
8402
8403 exp_seg = expression (exp);
8404
8405 SKIP_WHITESPACE ();
8406 if (*input_line_pointer)
8407 as_bad (_("junk `%s' after expression"), input_line_pointer);
8408 #if GCC_ASM_O_HACK
8409 RESTORE_END_STRING (disp_end + 1);
8410 #endif
8411 input_line_pointer = save_input_line_pointer;
8412 if (gotfree_input_line)
8413 {
8414 free (gotfree_input_line);
8415
8416 if (exp->X_op == O_constant || exp->X_op == O_register)
8417 exp->X_op = O_illegal;
8418 }
8419
8420 ret = i386_finalize_displacement (exp_seg, exp, types, disp_start);
8421
8422 RESTORE_END_STRING (disp_end);
8423
8424 return ret;
8425 }
8426
8427 static int
8428 i386_finalize_displacement (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
8429 i386_operand_type types, const char *disp_start)
8430 {
8431 i386_operand_type bigdisp;
8432 int ret = 1;
8433
8434 /* We do this to make sure that the section symbol is in
8435 the symbol table. We will ultimately change the relocation
8436 to be relative to the beginning of the section. */
8437 if (i.reloc[this_operand] == BFD_RELOC_386_GOTOFF
8438 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL
8439 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
8440 {
8441 if (exp->X_op != O_symbol)
8442 goto inv_disp;
8443
8444 if (S_IS_LOCAL (exp->X_add_symbol)
8445 && S_GET_SEGMENT (exp->X_add_symbol) != undefined_section
8446 && S_GET_SEGMENT (exp->X_add_symbol) != expr_section)
8447 section_symbol (S_GET_SEGMENT (exp->X_add_symbol));
8448 exp->X_op = O_subtract;
8449 exp->X_op_symbol = GOT_symbol;
8450 if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
8451 i.reloc[this_operand] = BFD_RELOC_32_PCREL;
8452 else if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
8453 i.reloc[this_operand] = BFD_RELOC_64;
8454 else
8455 i.reloc[this_operand] = BFD_RELOC_32;
8456 }
8457
8458 else if (exp->X_op == O_absent
8459 || exp->X_op == O_illegal
8460 || exp->X_op == O_big)
8461 {
8462 inv_disp:
8463 as_bad (_("missing or invalid displacement expression `%s'"),
8464 disp_start);
8465 ret = 0;
8466 }
8467
8468 else if (flag_code == CODE_64BIT
8469 && !i.prefix[ADDR_PREFIX]
8470 && exp->X_op == O_constant)
8471 {
8472 /* Since displacement is signed extended to 64bit, don't allow
8473 disp32 and turn off disp32s if they are out of range. */
8474 i.types[this_operand].bitfield.disp32 = 0;
8475 if (!fits_in_signed_long (exp->X_add_number))
8476 {
8477 i.types[this_operand].bitfield.disp32s = 0;
8478 if (i.types[this_operand].bitfield.baseindex)
8479 {
8480 as_bad (_("0x%lx out range of signed 32bit displacement"),
8481 (long) exp->X_add_number);
8482 ret = 0;
8483 }
8484 }
8485 }
8486
8487 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
8488 else if (exp->X_op != O_constant
8489 && OUTPUT_FLAVOR == bfd_target_aout_flavour
8490 && exp_seg != absolute_section
8491 && exp_seg != text_section
8492 && exp_seg != data_section
8493 && exp_seg != bss_section
8494 && exp_seg != undefined_section
8495 && !bfd_is_com_section (exp_seg))
8496 {
8497 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
8498 ret = 0;
8499 }
8500 #endif
8501
8502 /* Check if this is a displacement only operand. */
8503 bigdisp = i.types[this_operand];
8504 bigdisp.bitfield.disp8 = 0;
8505 bigdisp.bitfield.disp16 = 0;
8506 bigdisp.bitfield.disp32 = 0;
8507 bigdisp.bitfield.disp32s = 0;
8508 bigdisp.bitfield.disp64 = 0;
8509 if (operand_type_all_zero (&bigdisp))
8510 i.types[this_operand] = operand_type_and (i.types[this_operand],
8511 types);
8512
8513 return ret;
8514 }
8515
8516 /* Make sure the memory operand we've been dealt is valid.
8517 Return 1 on success, 0 on a failure. */
8518
8519 static int
8520 i386_index_check (const char *operand_string)
8521 {
8522 const char *kind = "base/index";
8523 enum flag_code addr_mode;
8524
8525 if (i.prefix[ADDR_PREFIX])
8526 addr_mode = flag_code == CODE_32BIT ? CODE_16BIT : CODE_32BIT;
8527 else
8528 {
8529 addr_mode = flag_code;
8530
8531 #if INFER_ADDR_PREFIX
8532 if (i.mem_operands == 0)
8533 {
8534 /* Infer address prefix from the first memory operand. */
8535 const reg_entry *addr_reg = i.base_reg;
8536
8537 if (addr_reg == NULL)
8538 addr_reg = i.index_reg;
8539
8540 if (addr_reg)
8541 {
8542 if (addr_reg->reg_num == RegEip
8543 || addr_reg->reg_num == RegEiz
8544 || addr_reg->reg_type.bitfield.reg32)
8545 addr_mode = CODE_32BIT;
8546 else if (flag_code != CODE_64BIT
8547 && addr_reg->reg_type.bitfield.reg16)
8548 addr_mode = CODE_16BIT;
8549
8550 if (addr_mode != flag_code)
8551 {
8552 i.prefix[ADDR_PREFIX] = ADDR_PREFIX_OPCODE;
8553 i.prefixes += 1;
8554 /* Change the size of any displacement too. At most one
8555 of Disp16 or Disp32 is set.
8556 FIXME. There doesn't seem to be any real need for
8557 separate Disp16 and Disp32 flags. The same goes for
8558 Imm16 and Imm32. Removing them would probably clean
8559 up the code quite a lot. */
8560 if (flag_code != CODE_64BIT
8561 && (i.types[this_operand].bitfield.disp16
8562 || i.types[this_operand].bitfield.disp32))
8563 i.types[this_operand]
8564 = operand_type_xor (i.types[this_operand], disp16_32);
8565 }
8566 }
8567 }
8568 #endif
8569 }
8570
8571 if (current_templates->start->opcode_modifier.isstring
8572 && !current_templates->start->opcode_modifier.immext
8573 && (current_templates->end[-1].opcode_modifier.isstring
8574 || i.mem_operands))
8575 {
8576 /* Memory operands of string insns are special in that they only allow
8577 a single register (rDI, rSI, or rBX) as their memory address. */
8578 const reg_entry *expected_reg;
8579 static const char *di_si[][2] =
8580 {
8581 { "esi", "edi" },
8582 { "si", "di" },
8583 { "rsi", "rdi" }
8584 };
8585 static const char *bx[] = { "ebx", "bx", "rbx" };
8586
8587 kind = "string address";
8588
8589 if (current_templates->start->opcode_modifier.repprefixok)
8590 {
8591 i386_operand_type type = current_templates->end[-1].operand_types[0];
8592
8593 if (!type.bitfield.baseindex
8594 || ((!i.mem_operands != !intel_syntax)
8595 && current_templates->end[-1].operand_types[1]
8596 .bitfield.baseindex))
8597 type = current_templates->end[-1].operand_types[1];
8598 expected_reg = hash_find (reg_hash,
8599 di_si[addr_mode][type.bitfield.esseg]);
8600
8601 }
8602 else
8603 expected_reg = hash_find (reg_hash, bx[addr_mode]);
8604
8605 if (i.base_reg != expected_reg
8606 || i.index_reg
8607 || operand_type_check (i.types[this_operand], disp))
8608 {
8609 /* The second memory operand must have the same size as
8610 the first one. */
8611 if (i.mem_operands
8612 && i.base_reg
8613 && !((addr_mode == CODE_64BIT
8614 && i.base_reg->reg_type.bitfield.reg64)
8615 || (addr_mode == CODE_32BIT
8616 ? i.base_reg->reg_type.bitfield.reg32
8617 : i.base_reg->reg_type.bitfield.reg16)))
8618 goto bad_address;
8619
8620 as_warn (_("`%s' is not valid here (expected `%c%s%s%c')"),
8621 operand_string,
8622 intel_syntax ? '[' : '(',
8623 register_prefix,
8624 expected_reg->reg_name,
8625 intel_syntax ? ']' : ')');
8626 return 1;
8627 }
8628 else
8629 return 1;
8630
8631 bad_address:
8632 as_bad (_("`%s' is not a valid %s expression"),
8633 operand_string, kind);
8634 return 0;
8635 }
8636 else
8637 {
8638 if (addr_mode != CODE_16BIT)
8639 {
8640 /* 32-bit/64-bit checks. */
8641 if ((i.base_reg
8642 && (addr_mode == CODE_64BIT
8643 ? !i.base_reg->reg_type.bitfield.reg64
8644 : !i.base_reg->reg_type.bitfield.reg32)
8645 && (i.index_reg
8646 || (i.base_reg->reg_num
8647 != (addr_mode == CODE_64BIT ? RegRip : RegEip))))
8648 || (i.index_reg
8649 && !i.index_reg->reg_type.bitfield.regxmm
8650 && !i.index_reg->reg_type.bitfield.regymm
8651 && !i.index_reg->reg_type.bitfield.regzmm
8652 && ((addr_mode == CODE_64BIT
8653 ? !(i.index_reg->reg_type.bitfield.reg64
8654 || i.index_reg->reg_num == RegRiz)
8655 : !(i.index_reg->reg_type.bitfield.reg32
8656 || i.index_reg->reg_num == RegEiz))
8657 || !i.index_reg->reg_type.bitfield.baseindex)))
8658 goto bad_address;
8659
8660 /* bndmk, bndldx, and bndstx have special restrictions. */
8661 if (current_templates->start->base_opcode == 0xf30f1b
8662 || (current_templates->start->base_opcode & ~1) == 0x0f1a)
8663 {
8664 /* They cannot use RIP-relative addressing. */
8665 if (i.base_reg && i.base_reg->reg_num == RegRip)
8666 {
8667 as_bad (_("`%s' cannot be used here"), operand_string);
8668 return 0;
8669 }
8670
8671 /* bndldx and bndstx ignore their scale factor. */
8672 if (current_templates->start->base_opcode != 0xf30f1b
8673 && i.log2_scale_factor)
8674 as_warn (_("register scaling is being ignored here"));
8675 }
8676 }
8677 else
8678 {
8679 /* 16-bit checks. */
8680 if ((i.base_reg
8681 && (!i.base_reg->reg_type.bitfield.reg16
8682 || !i.base_reg->reg_type.bitfield.baseindex))
8683 || (i.index_reg
8684 && (!i.index_reg->reg_type.bitfield.reg16
8685 || !i.index_reg->reg_type.bitfield.baseindex
8686 || !(i.base_reg
8687 && i.base_reg->reg_num < 6
8688 && i.index_reg->reg_num >= 6
8689 && i.log2_scale_factor == 0))))
8690 goto bad_address;
8691 }
8692 }
8693 return 1;
8694 }
8695
8696 /* Handle vector immediates. */
8697
8698 static int
8699 RC_SAE_immediate (const char *imm_start)
8700 {
8701 unsigned int match_found, j;
8702 const char *pstr = imm_start;
8703 expressionS *exp;
8704
8705 if (*pstr != '{')
8706 return 0;
8707
8708 pstr++;
8709 match_found = 0;
8710 for (j = 0; j < ARRAY_SIZE (RC_NamesTable); j++)
8711 {
8712 if (!strncmp (pstr, RC_NamesTable[j].name, RC_NamesTable[j].len))
8713 {
8714 if (!i.rounding)
8715 {
8716 rc_op.type = RC_NamesTable[j].type;
8717 rc_op.operand = this_operand;
8718 i.rounding = &rc_op;
8719 }
8720 else
8721 {
8722 as_bad (_("duplicated `%s'"), imm_start);
8723 return 0;
8724 }
8725 pstr += RC_NamesTable[j].len;
8726 match_found = 1;
8727 break;
8728 }
8729 }
8730 if (!match_found)
8731 return 0;
8732
8733 if (*pstr++ != '}')
8734 {
8735 as_bad (_("Missing '}': '%s'"), imm_start);
8736 return 0;
8737 }
8738 /* RC/SAE immediate string should contain nothing more. */;
8739 if (*pstr != 0)
8740 {
8741 as_bad (_("Junk after '}': '%s'"), imm_start);
8742 return 0;
8743 }
8744
8745 exp = &im_expressions[i.imm_operands++];
8746 i.op[this_operand].imms = exp;
8747
8748 exp->X_op = O_constant;
8749 exp->X_add_number = 0;
8750 exp->X_add_symbol = (symbolS *) 0;
8751 exp->X_op_symbol = (symbolS *) 0;
8752
8753 i.types[this_operand].bitfield.imm8 = 1;
8754 return 1;
8755 }
8756
8757 /* Only string instructions can have a second memory operand, so
8758 reduce current_templates to just those if it contains any. */
8759 static int
8760 maybe_adjust_templates (void)
8761 {
8762 const insn_template *t;
8763
8764 gas_assert (i.mem_operands == 1);
8765
8766 for (t = current_templates->start; t < current_templates->end; ++t)
8767 if (t->opcode_modifier.isstring)
8768 break;
8769
8770 if (t < current_templates->end)
8771 {
8772 static templates aux_templates;
8773 bfd_boolean recheck;
8774
8775 aux_templates.start = t;
8776 for (; t < current_templates->end; ++t)
8777 if (!t->opcode_modifier.isstring)
8778 break;
8779 aux_templates.end = t;
8780
8781 /* Determine whether to re-check the first memory operand. */
8782 recheck = (aux_templates.start != current_templates->start
8783 || t != current_templates->end);
8784
8785 current_templates = &aux_templates;
8786
8787 if (recheck)
8788 {
8789 i.mem_operands = 0;
8790 if (i.memop1_string != NULL
8791 && i386_index_check (i.memop1_string) == 0)
8792 return 0;
8793 i.mem_operands = 1;
8794 }
8795 }
8796
8797 return 1;
8798 }
8799
8800 /* Parse OPERAND_STRING into the i386_insn structure I. Returns zero
8801 on error. */
8802
8803 static int
8804 i386_att_operand (char *operand_string)
8805 {
8806 const reg_entry *r;
8807 char *end_op;
8808 char *op_string = operand_string;
8809
8810 if (is_space_char (*op_string))
8811 ++op_string;
8812
8813 /* We check for an absolute prefix (differentiating,
8814 for example, 'jmp pc_relative_label' from 'jmp *absolute_label'. */
8815 if (*op_string == ABSOLUTE_PREFIX)
8816 {
8817 ++op_string;
8818 if (is_space_char (*op_string))
8819 ++op_string;
8820 i.types[this_operand].bitfield.jumpabsolute = 1;
8821 }
8822
8823 /* Check if operand is a register. */
8824 if ((r = parse_register (op_string, &end_op)) != NULL)
8825 {
8826 i386_operand_type temp;
8827
8828 /* Check for a segment override by searching for ':' after a
8829 segment register. */
8830 op_string = end_op;
8831 if (is_space_char (*op_string))
8832 ++op_string;
8833 if (*op_string == ':'
8834 && (r->reg_type.bitfield.sreg2
8835 || r->reg_type.bitfield.sreg3))
8836 {
8837 switch (r->reg_num)
8838 {
8839 case 0:
8840 i.seg[i.mem_operands] = &es;
8841 break;
8842 case 1:
8843 i.seg[i.mem_operands] = &cs;
8844 break;
8845 case 2:
8846 i.seg[i.mem_operands] = &ss;
8847 break;
8848 case 3:
8849 i.seg[i.mem_operands] = &ds;
8850 break;
8851 case 4:
8852 i.seg[i.mem_operands] = &fs;
8853 break;
8854 case 5:
8855 i.seg[i.mem_operands] = &gs;
8856 break;
8857 }
8858
8859 /* Skip the ':' and whitespace. */
8860 ++op_string;
8861 if (is_space_char (*op_string))
8862 ++op_string;
8863
8864 if (!is_digit_char (*op_string)
8865 && !is_identifier_char (*op_string)
8866 && *op_string != '('
8867 && *op_string != ABSOLUTE_PREFIX)
8868 {
8869 as_bad (_("bad memory operand `%s'"), op_string);
8870 return 0;
8871 }
8872 /* Handle case of %es:*foo. */
8873 if (*op_string == ABSOLUTE_PREFIX)
8874 {
8875 ++op_string;
8876 if (is_space_char (*op_string))
8877 ++op_string;
8878 i.types[this_operand].bitfield.jumpabsolute = 1;
8879 }
8880 goto do_memory_reference;
8881 }
8882
8883 /* Handle vector operations. */
8884 if (*op_string == '{')
8885 {
8886 op_string = check_VecOperations (op_string, NULL);
8887 if (op_string == NULL)
8888 return 0;
8889 }
8890
8891 if (*op_string)
8892 {
8893 as_bad (_("junk `%s' after register"), op_string);
8894 return 0;
8895 }
8896 temp = r->reg_type;
8897 temp.bitfield.baseindex = 0;
8898 i.types[this_operand] = operand_type_or (i.types[this_operand],
8899 temp);
8900 i.types[this_operand].bitfield.unspecified = 0;
8901 i.op[this_operand].regs = r;
8902 i.reg_operands++;
8903 }
8904 else if (*op_string == REGISTER_PREFIX)
8905 {
8906 as_bad (_("bad register name `%s'"), op_string);
8907 return 0;
8908 }
8909 else if (*op_string == IMMEDIATE_PREFIX)
8910 {
8911 ++op_string;
8912 if (i.types[this_operand].bitfield.jumpabsolute)
8913 {
8914 as_bad (_("immediate operand illegal with absolute jump"));
8915 return 0;
8916 }
8917 if (!i386_immediate (op_string))
8918 return 0;
8919 }
8920 else if (RC_SAE_immediate (operand_string))
8921 {
8922 /* If it is a RC or SAE immediate, do nothing. */
8923 ;
8924 }
8925 else if (is_digit_char (*op_string)
8926 || is_identifier_char (*op_string)
8927 || *op_string == '"'
8928 || *op_string == '(')
8929 {
8930 /* This is a memory reference of some sort. */
8931 char *base_string;
8932
8933 /* Start and end of displacement string expression (if found). */
8934 char *displacement_string_start;
8935 char *displacement_string_end;
8936 char *vop_start;
8937
8938 do_memory_reference:
8939 if (i.mem_operands == 1 && !maybe_adjust_templates ())
8940 return 0;
8941 if ((i.mem_operands == 1
8942 && !current_templates->start->opcode_modifier.isstring)
8943 || i.mem_operands == 2)
8944 {
8945 as_bad (_("too many memory references for `%s'"),
8946 current_templates->start->name);
8947 return 0;
8948 }
8949
8950 /* Check for base index form. We detect the base index form by
8951 looking for an ')' at the end of the operand, searching
8952 for the '(' matching it, and finding a REGISTER_PREFIX or ','
8953 after the '('. */
8954 base_string = op_string + strlen (op_string);
8955
8956 /* Handle vector operations. */
8957 vop_start = strchr (op_string, '{');
8958 if (vop_start && vop_start < base_string)
8959 {
8960 if (check_VecOperations (vop_start, base_string) == NULL)
8961 return 0;
8962 base_string = vop_start;
8963 }
8964
8965 --base_string;
8966 if (is_space_char (*base_string))
8967 --base_string;
8968
8969 /* If we only have a displacement, set-up for it to be parsed later. */
8970 displacement_string_start = op_string;
8971 displacement_string_end = base_string + 1;
8972
8973 if (*base_string == ')')
8974 {
8975 char *temp_string;
8976 unsigned int parens_balanced = 1;
8977 /* We've already checked that the number of left & right ()'s are
8978 equal, so this loop will not be infinite. */
8979 do
8980 {
8981 base_string--;
8982 if (*base_string == ')')
8983 parens_balanced++;
8984 if (*base_string == '(')
8985 parens_balanced--;
8986 }
8987 while (parens_balanced);
8988
8989 temp_string = base_string;
8990
8991 /* Skip past '(' and whitespace. */
8992 ++base_string;
8993 if (is_space_char (*base_string))
8994 ++base_string;
8995
8996 if (*base_string == ','
8997 || ((i.base_reg = parse_register (base_string, &end_op))
8998 != NULL))
8999 {
9000 displacement_string_end = temp_string;
9001
9002 i.types[this_operand].bitfield.baseindex = 1;
9003
9004 if (i.base_reg)
9005 {
9006 base_string = end_op;
9007 if (is_space_char (*base_string))
9008 ++base_string;
9009 }
9010
9011 /* There may be an index reg or scale factor here. */
9012 if (*base_string == ',')
9013 {
9014 ++base_string;
9015 if (is_space_char (*base_string))
9016 ++base_string;
9017
9018 if ((i.index_reg = parse_register (base_string, &end_op))
9019 != NULL)
9020 {
9021 base_string = end_op;
9022 if (is_space_char (*base_string))
9023 ++base_string;
9024 if (*base_string == ',')
9025 {
9026 ++base_string;
9027 if (is_space_char (*base_string))
9028 ++base_string;
9029 }
9030 else if (*base_string != ')')
9031 {
9032 as_bad (_("expecting `,' or `)' "
9033 "after index register in `%s'"),
9034 operand_string);
9035 return 0;
9036 }
9037 }
9038 else if (*base_string == REGISTER_PREFIX)
9039 {
9040 end_op = strchr (base_string, ',');
9041 if (end_op)
9042 *end_op = '\0';
9043 as_bad (_("bad register name `%s'"), base_string);
9044 return 0;
9045 }
9046
9047 /* Check for scale factor. */
9048 if (*base_string != ')')
9049 {
9050 char *end_scale = i386_scale (base_string);
9051
9052 if (!end_scale)
9053 return 0;
9054
9055 base_string = end_scale;
9056 if (is_space_char (*base_string))
9057 ++base_string;
9058 if (*base_string != ')')
9059 {
9060 as_bad (_("expecting `)' "
9061 "after scale factor in `%s'"),
9062 operand_string);
9063 return 0;
9064 }
9065 }
9066 else if (!i.index_reg)
9067 {
9068 as_bad (_("expecting index register or scale factor "
9069 "after `,'; got '%c'"),
9070 *base_string);
9071 return 0;
9072 }
9073 }
9074 else if (*base_string != ')')
9075 {
9076 as_bad (_("expecting `,' or `)' "
9077 "after base register in `%s'"),
9078 operand_string);
9079 return 0;
9080 }
9081 }
9082 else if (*base_string == REGISTER_PREFIX)
9083 {
9084 end_op = strchr (base_string, ',');
9085 if (end_op)
9086 *end_op = '\0';
9087 as_bad (_("bad register name `%s'"), base_string);
9088 return 0;
9089 }
9090 }
9091
9092 /* If there's an expression beginning the operand, parse it,
9093 assuming displacement_string_start and
9094 displacement_string_end are meaningful. */
9095 if (displacement_string_start != displacement_string_end)
9096 {
9097 if (!i386_displacement (displacement_string_start,
9098 displacement_string_end))
9099 return 0;
9100 }
9101
9102 /* Special case for (%dx) while doing input/output op. */
9103 if (i.base_reg
9104 && operand_type_equal (&i.base_reg->reg_type,
9105 &reg16_inoutportreg)
9106 && i.index_reg == 0
9107 && i.log2_scale_factor == 0
9108 && i.seg[i.mem_operands] == 0
9109 && !operand_type_check (i.types[this_operand], disp))
9110 {
9111 i.types[this_operand] = inoutportreg;
9112 return 1;
9113 }
9114
9115 if (i386_index_check (operand_string) == 0)
9116 return 0;
9117 i.types[this_operand].bitfield.mem = 1;
9118 if (i.mem_operands == 0)
9119 i.memop1_string = xstrdup (operand_string);
9120 i.mem_operands++;
9121 }
9122 else
9123 {
9124 /* It's not a memory operand; argh! */
9125 as_bad (_("invalid char %s beginning operand %d `%s'"),
9126 output_invalid (*op_string),
9127 this_operand + 1,
9128 op_string);
9129 return 0;
9130 }
9131 return 1; /* Normal return. */
9132 }
9133 \f
9134 /* Calculate the maximum variable size (i.e., excluding fr_fix)
9135 that an rs_machine_dependent frag may reach. */
9136
9137 unsigned int
9138 i386_frag_max_var (fragS *frag)
9139 {
9140 /* The only relaxable frags are for jumps.
9141 Unconditional jumps can grow by 4 bytes and others by 5 bytes. */
9142 gas_assert (frag->fr_type == rs_machine_dependent);
9143 return TYPE_FROM_RELAX_STATE (frag->fr_subtype) == UNCOND_JUMP ? 4 : 5;
9144 }
9145
9146 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9147 static int
9148 elf_symbol_resolved_in_segment_p (symbolS *fr_symbol, offsetT fr_var)
9149 {
9150 /* STT_GNU_IFUNC symbol must go through PLT. */
9151 if ((symbol_get_bfdsym (fr_symbol)->flags
9152 & BSF_GNU_INDIRECT_FUNCTION) != 0)
9153 return 0;
9154
9155 if (!S_IS_EXTERNAL (fr_symbol))
9156 /* Symbol may be weak or local. */
9157 return !S_IS_WEAK (fr_symbol);
9158
9159 /* Global symbols with non-default visibility can't be preempted. */
9160 if (ELF_ST_VISIBILITY (S_GET_OTHER (fr_symbol)) != STV_DEFAULT)
9161 return 1;
9162
9163 if (fr_var != NO_RELOC)
9164 switch ((enum bfd_reloc_code_real) fr_var)
9165 {
9166 case BFD_RELOC_386_PLT32:
9167 case BFD_RELOC_X86_64_PLT32:
9168 /* Symbol with PLT relocation may be preempted. */
9169 return 0;
9170 default:
9171 abort ();
9172 }
9173
9174 /* Global symbols with default visibility in a shared library may be
9175 preempted by another definition. */
9176 return !shared;
9177 }
9178 #endif
9179
9180 /* md_estimate_size_before_relax()
9181
9182 Called just before relax() for rs_machine_dependent frags. The x86
9183 assembler uses these frags to handle variable size jump
9184 instructions.
9185
9186 Any symbol that is now undefined will not become defined.
9187 Return the correct fr_subtype in the frag.
9188 Return the initial "guess for variable size of frag" to caller.
9189 The guess is actually the growth beyond the fixed part. Whatever
9190 we do to grow the fixed or variable part contributes to our
9191 returned value. */
9192
9193 int
9194 md_estimate_size_before_relax (fragS *fragP, segT segment)
9195 {
9196 /* We've already got fragP->fr_subtype right; all we have to do is
9197 check for un-relaxable symbols. On an ELF system, we can't relax
9198 an externally visible symbol, because it may be overridden by a
9199 shared library. */
9200 if (S_GET_SEGMENT (fragP->fr_symbol) != segment
9201 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9202 || (IS_ELF
9203 && !elf_symbol_resolved_in_segment_p (fragP->fr_symbol,
9204 fragP->fr_var))
9205 #endif
9206 #if defined (OBJ_COFF) && defined (TE_PE)
9207 || (OUTPUT_FLAVOR == bfd_target_coff_flavour
9208 && S_IS_WEAK (fragP->fr_symbol))
9209 #endif
9210 )
9211 {
9212 /* Symbol is undefined in this segment, or we need to keep a
9213 reloc so that weak symbols can be overridden. */
9214 int size = (fragP->fr_subtype & CODE16) ? 2 : 4;
9215 enum bfd_reloc_code_real reloc_type;
9216 unsigned char *opcode;
9217 int old_fr_fix;
9218
9219 if (fragP->fr_var != NO_RELOC)
9220 reloc_type = (enum bfd_reloc_code_real) fragP->fr_var;
9221 else if (size == 2)
9222 reloc_type = BFD_RELOC_16_PCREL;
9223 else
9224 reloc_type = BFD_RELOC_32_PCREL;
9225
9226 old_fr_fix = fragP->fr_fix;
9227 opcode = (unsigned char *) fragP->fr_opcode;
9228
9229 switch (TYPE_FROM_RELAX_STATE (fragP->fr_subtype))
9230 {
9231 case UNCOND_JUMP:
9232 /* Make jmp (0xeb) a (d)word displacement jump. */
9233 opcode[0] = 0xe9;
9234 fragP->fr_fix += size;
9235 fix_new (fragP, old_fr_fix, size,
9236 fragP->fr_symbol,
9237 fragP->fr_offset, 1,
9238 reloc_type);
9239 break;
9240
9241 case COND_JUMP86:
9242 if (size == 2
9243 && (!no_cond_jump_promotion || fragP->fr_var != NO_RELOC))
9244 {
9245 /* Negate the condition, and branch past an
9246 unconditional jump. */
9247 opcode[0] ^= 1;
9248 opcode[1] = 3;
9249 /* Insert an unconditional jump. */
9250 opcode[2] = 0xe9;
9251 /* We added two extra opcode bytes, and have a two byte
9252 offset. */
9253 fragP->fr_fix += 2 + 2;
9254 fix_new (fragP, old_fr_fix + 2, 2,
9255 fragP->fr_symbol,
9256 fragP->fr_offset, 1,
9257 reloc_type);
9258 break;
9259 }
9260 /* Fall through. */
9261
9262 case COND_JUMP:
9263 if (no_cond_jump_promotion && fragP->fr_var == NO_RELOC)
9264 {
9265 fixS *fixP;
9266
9267 fragP->fr_fix += 1;
9268 fixP = fix_new (fragP, old_fr_fix, 1,
9269 fragP->fr_symbol,
9270 fragP->fr_offset, 1,
9271 BFD_RELOC_8_PCREL);
9272 fixP->fx_signed = 1;
9273 break;
9274 }
9275
9276 /* This changes the byte-displacement jump 0x7N
9277 to the (d)word-displacement jump 0x0f,0x8N. */
9278 opcode[1] = opcode[0] + 0x10;
9279 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
9280 /* We've added an opcode byte. */
9281 fragP->fr_fix += 1 + size;
9282 fix_new (fragP, old_fr_fix + 1, size,
9283 fragP->fr_symbol,
9284 fragP->fr_offset, 1,
9285 reloc_type);
9286 break;
9287
9288 default:
9289 BAD_CASE (fragP->fr_subtype);
9290 break;
9291 }
9292 frag_wane (fragP);
9293 return fragP->fr_fix - old_fr_fix;
9294 }
9295
9296 /* Guess size depending on current relax state. Initially the relax
9297 state will correspond to a short jump and we return 1, because
9298 the variable part of the frag (the branch offset) is one byte
9299 long. However, we can relax a section more than once and in that
9300 case we must either set fr_subtype back to the unrelaxed state,
9301 or return the value for the appropriate branch. */
9302 return md_relax_table[fragP->fr_subtype].rlx_length;
9303 }
9304
9305 /* Called after relax() is finished.
9306
9307 In: Address of frag.
9308 fr_type == rs_machine_dependent.
9309 fr_subtype is what the address relaxed to.
9310
9311 Out: Any fixSs and constants are set up.
9312 Caller will turn frag into a ".space 0". */
9313
9314 void
9315 md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT sec ATTRIBUTE_UNUSED,
9316 fragS *fragP)
9317 {
9318 unsigned char *opcode;
9319 unsigned char *where_to_put_displacement = NULL;
9320 offsetT target_address;
9321 offsetT opcode_address;
9322 unsigned int extension = 0;
9323 offsetT displacement_from_opcode_start;
9324
9325 opcode = (unsigned char *) fragP->fr_opcode;
9326
9327 /* Address we want to reach in file space. */
9328 target_address = S_GET_VALUE (fragP->fr_symbol) + fragP->fr_offset;
9329
9330 /* Address opcode resides at in file space. */
9331 opcode_address = fragP->fr_address + fragP->fr_fix;
9332
9333 /* Displacement from opcode start to fill into instruction. */
9334 displacement_from_opcode_start = target_address - opcode_address;
9335
9336 if ((fragP->fr_subtype & BIG) == 0)
9337 {
9338 /* Don't have to change opcode. */
9339 extension = 1; /* 1 opcode + 1 displacement */
9340 where_to_put_displacement = &opcode[1];
9341 }
9342 else
9343 {
9344 if (no_cond_jump_promotion
9345 && TYPE_FROM_RELAX_STATE (fragP->fr_subtype) != UNCOND_JUMP)
9346 as_warn_where (fragP->fr_file, fragP->fr_line,
9347 _("long jump required"));
9348
9349 switch (fragP->fr_subtype)
9350 {
9351 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG):
9352 extension = 4; /* 1 opcode + 4 displacement */
9353 opcode[0] = 0xe9;
9354 where_to_put_displacement = &opcode[1];
9355 break;
9356
9357 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16):
9358 extension = 2; /* 1 opcode + 2 displacement */
9359 opcode[0] = 0xe9;
9360 where_to_put_displacement = &opcode[1];
9361 break;
9362
9363 case ENCODE_RELAX_STATE (COND_JUMP, BIG):
9364 case ENCODE_RELAX_STATE (COND_JUMP86, BIG):
9365 extension = 5; /* 2 opcode + 4 displacement */
9366 opcode[1] = opcode[0] + 0x10;
9367 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
9368 where_to_put_displacement = &opcode[2];
9369 break;
9370
9371 case ENCODE_RELAX_STATE (COND_JUMP, BIG16):
9372 extension = 3; /* 2 opcode + 2 displacement */
9373 opcode[1] = opcode[0] + 0x10;
9374 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
9375 where_to_put_displacement = &opcode[2];
9376 break;
9377
9378 case ENCODE_RELAX_STATE (COND_JUMP86, BIG16):
9379 extension = 4;
9380 opcode[0] ^= 1;
9381 opcode[1] = 3;
9382 opcode[2] = 0xe9;
9383 where_to_put_displacement = &opcode[3];
9384 break;
9385
9386 default:
9387 BAD_CASE (fragP->fr_subtype);
9388 break;
9389 }
9390 }
9391
9392 /* If size if less then four we are sure that the operand fits,
9393 but if it's 4, then it could be that the displacement is larger
9394 then -/+ 2GB. */
9395 if (DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype) == 4
9396 && object_64bit
9397 && ((addressT) (displacement_from_opcode_start - extension
9398 + ((addressT) 1 << 31))
9399 > (((addressT) 2 << 31) - 1)))
9400 {
9401 as_bad_where (fragP->fr_file, fragP->fr_line,
9402 _("jump target out of range"));
9403 /* Make us emit 0. */
9404 displacement_from_opcode_start = extension;
9405 }
9406 /* Now put displacement after opcode. */
9407 md_number_to_chars ((char *) where_to_put_displacement,
9408 (valueT) (displacement_from_opcode_start - extension),
9409 DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype));
9410 fragP->fr_fix += extension;
9411 }
9412 \f
9413 /* Apply a fixup (fixP) to segment data, once it has been determined
9414 by our caller that we have all the info we need to fix it up.
9415
9416 Parameter valP is the pointer to the value of the bits.
9417
9418 On the 386, immediates, displacements, and data pointers are all in
9419 the same (little-endian) format, so we don't need to care about which
9420 we are handling. */
9421
9422 void
9423 md_apply_fix (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED)
9424 {
9425 char *p = fixP->fx_where + fixP->fx_frag->fr_literal;
9426 valueT value = *valP;
9427
9428 #if !defined (TE_Mach)
9429 if (fixP->fx_pcrel)
9430 {
9431 switch (fixP->fx_r_type)
9432 {
9433 default:
9434 break;
9435
9436 case BFD_RELOC_64:
9437 fixP->fx_r_type = BFD_RELOC_64_PCREL;
9438 break;
9439 case BFD_RELOC_32:
9440 case BFD_RELOC_X86_64_32S:
9441 fixP->fx_r_type = BFD_RELOC_32_PCREL;
9442 break;
9443 case BFD_RELOC_16:
9444 fixP->fx_r_type = BFD_RELOC_16_PCREL;
9445 break;
9446 case BFD_RELOC_8:
9447 fixP->fx_r_type = BFD_RELOC_8_PCREL;
9448 break;
9449 }
9450 }
9451
9452 if (fixP->fx_addsy != NULL
9453 && (fixP->fx_r_type == BFD_RELOC_32_PCREL
9454 || fixP->fx_r_type == BFD_RELOC_64_PCREL
9455 || fixP->fx_r_type == BFD_RELOC_16_PCREL
9456 || fixP->fx_r_type == BFD_RELOC_8_PCREL)
9457 && !use_rela_relocations)
9458 {
9459 /* This is a hack. There should be a better way to handle this.
9460 This covers for the fact that bfd_install_relocation will
9461 subtract the current location (for partial_inplace, PC relative
9462 relocations); see more below. */
9463 #ifndef OBJ_AOUT
9464 if (IS_ELF
9465 #ifdef TE_PE
9466 || OUTPUT_FLAVOR == bfd_target_coff_flavour
9467 #endif
9468 )
9469 value += fixP->fx_where + fixP->fx_frag->fr_address;
9470 #endif
9471 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9472 if (IS_ELF)
9473 {
9474 segT sym_seg = S_GET_SEGMENT (fixP->fx_addsy);
9475
9476 if ((sym_seg == seg
9477 || (symbol_section_p (fixP->fx_addsy)
9478 && sym_seg != absolute_section))
9479 && !generic_force_reloc (fixP))
9480 {
9481 /* Yes, we add the values in twice. This is because
9482 bfd_install_relocation subtracts them out again. I think
9483 bfd_install_relocation is broken, but I don't dare change
9484 it. FIXME. */
9485 value += fixP->fx_where + fixP->fx_frag->fr_address;
9486 }
9487 }
9488 #endif
9489 #if defined (OBJ_COFF) && defined (TE_PE)
9490 /* For some reason, the PE format does not store a
9491 section address offset for a PC relative symbol. */
9492 if (S_GET_SEGMENT (fixP->fx_addsy) != seg
9493 || S_IS_WEAK (fixP->fx_addsy))
9494 value += md_pcrel_from (fixP);
9495 #endif
9496 }
9497 #if defined (OBJ_COFF) && defined (TE_PE)
9498 if (fixP->fx_addsy != NULL
9499 && S_IS_WEAK (fixP->fx_addsy)
9500 /* PR 16858: Do not modify weak function references. */
9501 && ! fixP->fx_pcrel)
9502 {
9503 #if !defined (TE_PEP)
9504 /* For x86 PE weak function symbols are neither PC-relative
9505 nor do they set S_IS_FUNCTION. So the only reliable way
9506 to detect them is to check the flags of their containing
9507 section. */
9508 if (S_GET_SEGMENT (fixP->fx_addsy) != NULL
9509 && S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_CODE)
9510 ;
9511 else
9512 #endif
9513 value -= S_GET_VALUE (fixP->fx_addsy);
9514 }
9515 #endif
9516
9517 /* Fix a few things - the dynamic linker expects certain values here,
9518 and we must not disappoint it. */
9519 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9520 if (IS_ELF && fixP->fx_addsy)
9521 switch (fixP->fx_r_type)
9522 {
9523 case BFD_RELOC_386_PLT32:
9524 case BFD_RELOC_X86_64_PLT32:
9525 /* Make the jump instruction point to the address of the operand. At
9526 runtime we merely add the offset to the actual PLT entry. */
9527 value = -4;
9528 break;
9529
9530 case BFD_RELOC_386_TLS_GD:
9531 case BFD_RELOC_386_TLS_LDM:
9532 case BFD_RELOC_386_TLS_IE_32:
9533 case BFD_RELOC_386_TLS_IE:
9534 case BFD_RELOC_386_TLS_GOTIE:
9535 case BFD_RELOC_386_TLS_GOTDESC:
9536 case BFD_RELOC_X86_64_TLSGD:
9537 case BFD_RELOC_X86_64_TLSLD:
9538 case BFD_RELOC_X86_64_GOTTPOFF:
9539 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
9540 value = 0; /* Fully resolved at runtime. No addend. */
9541 /* Fallthrough */
9542 case BFD_RELOC_386_TLS_LE:
9543 case BFD_RELOC_386_TLS_LDO_32:
9544 case BFD_RELOC_386_TLS_LE_32:
9545 case BFD_RELOC_X86_64_DTPOFF32:
9546 case BFD_RELOC_X86_64_DTPOFF64:
9547 case BFD_RELOC_X86_64_TPOFF32:
9548 case BFD_RELOC_X86_64_TPOFF64:
9549 S_SET_THREAD_LOCAL (fixP->fx_addsy);
9550 break;
9551
9552 case BFD_RELOC_386_TLS_DESC_CALL:
9553 case BFD_RELOC_X86_64_TLSDESC_CALL:
9554 value = 0; /* Fully resolved at runtime. No addend. */
9555 S_SET_THREAD_LOCAL (fixP->fx_addsy);
9556 fixP->fx_done = 0;
9557 return;
9558
9559 case BFD_RELOC_VTABLE_INHERIT:
9560 case BFD_RELOC_VTABLE_ENTRY:
9561 fixP->fx_done = 0;
9562 return;
9563
9564 default:
9565 break;
9566 }
9567 #endif /* defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) */
9568 *valP = value;
9569 #endif /* !defined (TE_Mach) */
9570
9571 /* Are we finished with this relocation now? */
9572 if (fixP->fx_addsy == NULL)
9573 fixP->fx_done = 1;
9574 #if defined (OBJ_COFF) && defined (TE_PE)
9575 else if (fixP->fx_addsy != NULL && S_IS_WEAK (fixP->fx_addsy))
9576 {
9577 fixP->fx_done = 0;
9578 /* Remember value for tc_gen_reloc. */
9579 fixP->fx_addnumber = value;
9580 /* Clear out the frag for now. */
9581 value = 0;
9582 }
9583 #endif
9584 else if (use_rela_relocations)
9585 {
9586 fixP->fx_no_overflow = 1;
9587 /* Remember value for tc_gen_reloc. */
9588 fixP->fx_addnumber = value;
9589 value = 0;
9590 }
9591
9592 md_number_to_chars (p, value, fixP->fx_size);
9593 }
9594 \f
9595 const char *
9596 md_atof (int type, char *litP, int *sizeP)
9597 {
9598 /* This outputs the LITTLENUMs in REVERSE order;
9599 in accord with the bigendian 386. */
9600 return ieee_md_atof (type, litP, sizeP, FALSE);
9601 }
9602 \f
9603 static char output_invalid_buf[sizeof (unsigned char) * 2 + 6];
9604
9605 static char *
9606 output_invalid (int c)
9607 {
9608 if (ISPRINT (c))
9609 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
9610 "'%c'", c);
9611 else
9612 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
9613 "(0x%x)", (unsigned char) c);
9614 return output_invalid_buf;
9615 }
9616
9617 /* REG_STRING starts *before* REGISTER_PREFIX. */
9618
9619 static const reg_entry *
9620 parse_real_register (char *reg_string, char **end_op)
9621 {
9622 char *s = reg_string;
9623 char *p;
9624 char reg_name_given[MAX_REG_NAME_SIZE + 1];
9625 const reg_entry *r;
9626
9627 /* Skip possible REGISTER_PREFIX and possible whitespace. */
9628 if (*s == REGISTER_PREFIX)
9629 ++s;
9630
9631 if (is_space_char (*s))
9632 ++s;
9633
9634 p = reg_name_given;
9635 while ((*p++ = register_chars[(unsigned char) *s]) != '\0')
9636 {
9637 if (p >= reg_name_given + MAX_REG_NAME_SIZE)
9638 return (const reg_entry *) NULL;
9639 s++;
9640 }
9641
9642 /* For naked regs, make sure that we are not dealing with an identifier.
9643 This prevents confusing an identifier like `eax_var' with register
9644 `eax'. */
9645 if (allow_naked_reg && identifier_chars[(unsigned char) *s])
9646 return (const reg_entry *) NULL;
9647
9648 *end_op = s;
9649
9650 r = (const reg_entry *) hash_find (reg_hash, reg_name_given);
9651
9652 /* Handle floating point regs, allowing spaces in the (i) part. */
9653 if (r == i386_regtab /* %st is first entry of table */)
9654 {
9655 if (is_space_char (*s))
9656 ++s;
9657 if (*s == '(')
9658 {
9659 ++s;
9660 if (is_space_char (*s))
9661 ++s;
9662 if (*s >= '0' && *s <= '7')
9663 {
9664 int fpr = *s - '0';
9665 ++s;
9666 if (is_space_char (*s))
9667 ++s;
9668 if (*s == ')')
9669 {
9670 *end_op = s + 1;
9671 r = (const reg_entry *) hash_find (reg_hash, "st(0)");
9672 know (r);
9673 return r + fpr;
9674 }
9675 }
9676 /* We have "%st(" then garbage. */
9677 return (const reg_entry *) NULL;
9678 }
9679 }
9680
9681 if (r == NULL || allow_pseudo_reg)
9682 return r;
9683
9684 if (operand_type_all_zero (&r->reg_type))
9685 return (const reg_entry *) NULL;
9686
9687 if ((r->reg_type.bitfield.reg32
9688 || r->reg_type.bitfield.sreg3
9689 || r->reg_type.bitfield.control
9690 || r->reg_type.bitfield.debug
9691 || r->reg_type.bitfield.test)
9692 && !cpu_arch_flags.bitfield.cpui386)
9693 return (const reg_entry *) NULL;
9694
9695 if (r->reg_type.bitfield.floatreg
9696 && !cpu_arch_flags.bitfield.cpu8087
9697 && !cpu_arch_flags.bitfield.cpu287
9698 && !cpu_arch_flags.bitfield.cpu387)
9699 return (const reg_entry *) NULL;
9700
9701 if (r->reg_type.bitfield.regmmx && !cpu_arch_flags.bitfield.cpuregmmx)
9702 return (const reg_entry *) NULL;
9703
9704 if (r->reg_type.bitfield.regxmm && !cpu_arch_flags.bitfield.cpuregxmm)
9705 return (const reg_entry *) NULL;
9706
9707 if (r->reg_type.bitfield.regymm && !cpu_arch_flags.bitfield.cpuregymm)
9708 return (const reg_entry *) NULL;
9709
9710 if (r->reg_type.bitfield.regzmm && !cpu_arch_flags.bitfield.cpuregzmm)
9711 return (const reg_entry *) NULL;
9712
9713 if (r->reg_type.bitfield.regmask
9714 && !cpu_arch_flags.bitfield.cpuregmask)
9715 return (const reg_entry *) NULL;
9716
9717 /* Don't allow fake index register unless allow_index_reg isn't 0. */
9718 if (!allow_index_reg
9719 && (r->reg_num == RegEiz || r->reg_num == RegRiz))
9720 return (const reg_entry *) NULL;
9721
9722 /* Upper 16 vector register is only available with VREX in 64bit
9723 mode. */
9724 if ((r->reg_flags & RegVRex))
9725 {
9726 if (!cpu_arch_flags.bitfield.cpuvrex
9727 || flag_code != CODE_64BIT)
9728 return (const reg_entry *) NULL;
9729
9730 i.need_vrex = 1;
9731 }
9732
9733 if (((r->reg_flags & (RegRex64 | RegRex))
9734 || r->reg_type.bitfield.reg64)
9735 && (!cpu_arch_flags.bitfield.cpulm
9736 || !operand_type_equal (&r->reg_type, &control))
9737 && flag_code != CODE_64BIT)
9738 return (const reg_entry *) NULL;
9739
9740 if (r->reg_type.bitfield.sreg3 && r->reg_num == RegFlat && !intel_syntax)
9741 return (const reg_entry *) NULL;
9742
9743 return r;
9744 }
9745
9746 /* REG_STRING starts *before* REGISTER_PREFIX. */
9747
9748 static const reg_entry *
9749 parse_register (char *reg_string, char **end_op)
9750 {
9751 const reg_entry *r;
9752
9753 if (*reg_string == REGISTER_PREFIX || allow_naked_reg)
9754 r = parse_real_register (reg_string, end_op);
9755 else
9756 r = NULL;
9757 if (!r)
9758 {
9759 char *save = input_line_pointer;
9760 char c;
9761 symbolS *symbolP;
9762
9763 input_line_pointer = reg_string;
9764 c = get_symbol_name (&reg_string);
9765 symbolP = symbol_find (reg_string);
9766 if (symbolP && S_GET_SEGMENT (symbolP) == reg_section)
9767 {
9768 const expressionS *e = symbol_get_value_expression (symbolP);
9769
9770 know (e->X_op == O_register);
9771 know (e->X_add_number >= 0
9772 && (valueT) e->X_add_number < i386_regtab_size);
9773 r = i386_regtab + e->X_add_number;
9774 if ((r->reg_flags & RegVRex))
9775 i.need_vrex = 1;
9776 *end_op = input_line_pointer;
9777 }
9778 *input_line_pointer = c;
9779 input_line_pointer = save;
9780 }
9781 return r;
9782 }
9783
9784 int
9785 i386_parse_name (char *name, expressionS *e, char *nextcharP)
9786 {
9787 const reg_entry *r;
9788 char *end = input_line_pointer;
9789
9790 *end = *nextcharP;
9791 r = parse_register (name, &input_line_pointer);
9792 if (r && end <= input_line_pointer)
9793 {
9794 *nextcharP = *input_line_pointer;
9795 *input_line_pointer = 0;
9796 e->X_op = O_register;
9797 e->X_add_number = r - i386_regtab;
9798 return 1;
9799 }
9800 input_line_pointer = end;
9801 *end = 0;
9802 return intel_syntax ? i386_intel_parse_name (name, e) : 0;
9803 }
9804
9805 void
9806 md_operand (expressionS *e)
9807 {
9808 char *end;
9809 const reg_entry *r;
9810
9811 switch (*input_line_pointer)
9812 {
9813 case REGISTER_PREFIX:
9814 r = parse_real_register (input_line_pointer, &end);
9815 if (r)
9816 {
9817 e->X_op = O_register;
9818 e->X_add_number = r - i386_regtab;
9819 input_line_pointer = end;
9820 }
9821 break;
9822
9823 case '[':
9824 gas_assert (intel_syntax);
9825 end = input_line_pointer++;
9826 expression (e);
9827 if (*input_line_pointer == ']')
9828 {
9829 ++input_line_pointer;
9830 e->X_op_symbol = make_expr_symbol (e);
9831 e->X_add_symbol = NULL;
9832 e->X_add_number = 0;
9833 e->X_op = O_index;
9834 }
9835 else
9836 {
9837 e->X_op = O_absent;
9838 input_line_pointer = end;
9839 }
9840 break;
9841 }
9842 }
9843
9844 \f
9845 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9846 const char *md_shortopts = "kVQ:sqn";
9847 #else
9848 const char *md_shortopts = "qn";
9849 #endif
9850
9851 #define OPTION_32 (OPTION_MD_BASE + 0)
9852 #define OPTION_64 (OPTION_MD_BASE + 1)
9853 #define OPTION_DIVIDE (OPTION_MD_BASE + 2)
9854 #define OPTION_MARCH (OPTION_MD_BASE + 3)
9855 #define OPTION_MTUNE (OPTION_MD_BASE + 4)
9856 #define OPTION_MMNEMONIC (OPTION_MD_BASE + 5)
9857 #define OPTION_MSYNTAX (OPTION_MD_BASE + 6)
9858 #define OPTION_MINDEX_REG (OPTION_MD_BASE + 7)
9859 #define OPTION_MNAKED_REG (OPTION_MD_BASE + 8)
9860 #define OPTION_MOLD_GCC (OPTION_MD_BASE + 9)
9861 #define OPTION_MSSE2AVX (OPTION_MD_BASE + 10)
9862 #define OPTION_MSSE_CHECK (OPTION_MD_BASE + 11)
9863 #define OPTION_MOPERAND_CHECK (OPTION_MD_BASE + 12)
9864 #define OPTION_MAVXSCALAR (OPTION_MD_BASE + 13)
9865 #define OPTION_X32 (OPTION_MD_BASE + 14)
9866 #define OPTION_MADD_BND_PREFIX (OPTION_MD_BASE + 15)
9867 #define OPTION_MEVEXLIG (OPTION_MD_BASE + 16)
9868 #define OPTION_MEVEXWIG (OPTION_MD_BASE + 17)
9869 #define OPTION_MBIG_OBJ (OPTION_MD_BASE + 18)
9870 #define OPTION_MOMIT_LOCK_PREFIX (OPTION_MD_BASE + 19)
9871 #define OPTION_MEVEXRCIG (OPTION_MD_BASE + 20)
9872 #define OPTION_MSHARED (OPTION_MD_BASE + 21)
9873 #define OPTION_MAMD64 (OPTION_MD_BASE + 22)
9874 #define OPTION_MINTEL64 (OPTION_MD_BASE + 23)
9875 #define OPTION_MFENCE_AS_LOCK_ADD (OPTION_MD_BASE + 24)
9876 #define OPTION_MRELAX_RELOCATIONS (OPTION_MD_BASE + 25)
9877
9878 struct option md_longopts[] =
9879 {
9880 {"32", no_argument, NULL, OPTION_32},
9881 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
9882 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
9883 {"64", no_argument, NULL, OPTION_64},
9884 #endif
9885 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9886 {"x32", no_argument, NULL, OPTION_X32},
9887 {"mshared", no_argument, NULL, OPTION_MSHARED},
9888 #endif
9889 {"divide", no_argument, NULL, OPTION_DIVIDE},
9890 {"march", required_argument, NULL, OPTION_MARCH},
9891 {"mtune", required_argument, NULL, OPTION_MTUNE},
9892 {"mmnemonic", required_argument, NULL, OPTION_MMNEMONIC},
9893 {"msyntax", required_argument, NULL, OPTION_MSYNTAX},
9894 {"mindex-reg", no_argument, NULL, OPTION_MINDEX_REG},
9895 {"mnaked-reg", no_argument, NULL, OPTION_MNAKED_REG},
9896 {"mold-gcc", no_argument, NULL, OPTION_MOLD_GCC},
9897 {"msse2avx", no_argument, NULL, OPTION_MSSE2AVX},
9898 {"msse-check", required_argument, NULL, OPTION_MSSE_CHECK},
9899 {"moperand-check", required_argument, NULL, OPTION_MOPERAND_CHECK},
9900 {"mavxscalar", required_argument, NULL, OPTION_MAVXSCALAR},
9901 {"madd-bnd-prefix", no_argument, NULL, OPTION_MADD_BND_PREFIX},
9902 {"mevexlig", required_argument, NULL, OPTION_MEVEXLIG},
9903 {"mevexwig", required_argument, NULL, OPTION_MEVEXWIG},
9904 # if defined (TE_PE) || defined (TE_PEP)
9905 {"mbig-obj", no_argument, NULL, OPTION_MBIG_OBJ},
9906 #endif
9907 {"momit-lock-prefix", required_argument, NULL, OPTION_MOMIT_LOCK_PREFIX},
9908 {"mfence-as-lock-add", required_argument, NULL, OPTION_MFENCE_AS_LOCK_ADD},
9909 {"mrelax-relocations", required_argument, NULL, OPTION_MRELAX_RELOCATIONS},
9910 {"mevexrcig", required_argument, NULL, OPTION_MEVEXRCIG},
9911 {"mamd64", no_argument, NULL, OPTION_MAMD64},
9912 {"mintel64", no_argument, NULL, OPTION_MINTEL64},
9913 {NULL, no_argument, NULL, 0}
9914 };
9915 size_t md_longopts_size = sizeof (md_longopts);
9916
9917 int
9918 md_parse_option (int c, const char *arg)
9919 {
9920 unsigned int j;
9921 char *arch, *next, *saved;
9922
9923 switch (c)
9924 {
9925 case 'n':
9926 optimize_align_code = 0;
9927 break;
9928
9929 case 'q':
9930 quiet_warnings = 1;
9931 break;
9932
9933 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9934 /* -Qy, -Qn: SVR4 arguments controlling whether a .comment section
9935 should be emitted or not. FIXME: Not implemented. */
9936 case 'Q':
9937 break;
9938
9939 /* -V: SVR4 argument to print version ID. */
9940 case 'V':
9941 print_version_id ();
9942 break;
9943
9944 /* -k: Ignore for FreeBSD compatibility. */
9945 case 'k':
9946 break;
9947
9948 case 's':
9949 /* -s: On i386 Solaris, this tells the native assembler to use
9950 .stab instead of .stab.excl. We always use .stab anyhow. */
9951 break;
9952
9953 case OPTION_MSHARED:
9954 shared = 1;
9955 break;
9956 #endif
9957 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
9958 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
9959 case OPTION_64:
9960 {
9961 const char **list, **l;
9962
9963 list = bfd_target_list ();
9964 for (l = list; *l != NULL; l++)
9965 if (CONST_STRNEQ (*l, "elf64-x86-64")
9966 || strcmp (*l, "coff-x86-64") == 0
9967 || strcmp (*l, "pe-x86-64") == 0
9968 || strcmp (*l, "pei-x86-64") == 0
9969 || strcmp (*l, "mach-o-x86-64") == 0)
9970 {
9971 default_arch = "x86_64";
9972 break;
9973 }
9974 if (*l == NULL)
9975 as_fatal (_("no compiled in support for x86_64"));
9976 free (list);
9977 }
9978 break;
9979 #endif
9980
9981 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9982 case OPTION_X32:
9983 if (IS_ELF)
9984 {
9985 const char **list, **l;
9986
9987 list = bfd_target_list ();
9988 for (l = list; *l != NULL; l++)
9989 if (CONST_STRNEQ (*l, "elf32-x86-64"))
9990 {
9991 default_arch = "x86_64:32";
9992 break;
9993 }
9994 if (*l == NULL)
9995 as_fatal (_("no compiled in support for 32bit x86_64"));
9996 free (list);
9997 }
9998 else
9999 as_fatal (_("32bit x86_64 is only supported for ELF"));
10000 break;
10001 #endif
10002
10003 case OPTION_32:
10004 default_arch = "i386";
10005 break;
10006
10007 case OPTION_DIVIDE:
10008 #ifdef SVR4_COMMENT_CHARS
10009 {
10010 char *n, *t;
10011 const char *s;
10012
10013 n = XNEWVEC (char, strlen (i386_comment_chars) + 1);
10014 t = n;
10015 for (s = i386_comment_chars; *s != '\0'; s++)
10016 if (*s != '/')
10017 *t++ = *s;
10018 *t = '\0';
10019 i386_comment_chars = n;
10020 }
10021 #endif
10022 break;
10023
10024 case OPTION_MARCH:
10025 saved = xstrdup (arg);
10026 arch = saved;
10027 /* Allow -march=+nosse. */
10028 if (*arch == '+')
10029 arch++;
10030 do
10031 {
10032 if (*arch == '.')
10033 as_fatal (_("invalid -march= option: `%s'"), arg);
10034 next = strchr (arch, '+');
10035 if (next)
10036 *next++ = '\0';
10037 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
10038 {
10039 if (strcmp (arch, cpu_arch [j].name) == 0)
10040 {
10041 /* Processor. */
10042 if (! cpu_arch[j].flags.bitfield.cpui386)
10043 continue;
10044
10045 cpu_arch_name = cpu_arch[j].name;
10046 cpu_sub_arch_name = NULL;
10047 cpu_arch_flags = cpu_arch[j].flags;
10048 cpu_arch_isa = cpu_arch[j].type;
10049 cpu_arch_isa_flags = cpu_arch[j].flags;
10050 if (!cpu_arch_tune_set)
10051 {
10052 cpu_arch_tune = cpu_arch_isa;
10053 cpu_arch_tune_flags = cpu_arch_isa_flags;
10054 }
10055 break;
10056 }
10057 else if (*cpu_arch [j].name == '.'
10058 && strcmp (arch, cpu_arch [j].name + 1) == 0)
10059 {
10060 /* ISA extension. */
10061 i386_cpu_flags flags;
10062
10063 flags = cpu_flags_or (cpu_arch_flags,
10064 cpu_arch[j].flags);
10065
10066 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
10067 {
10068 if (cpu_sub_arch_name)
10069 {
10070 char *name = cpu_sub_arch_name;
10071 cpu_sub_arch_name = concat (name,
10072 cpu_arch[j].name,
10073 (const char *) NULL);
10074 free (name);
10075 }
10076 else
10077 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
10078 cpu_arch_flags = flags;
10079 cpu_arch_isa_flags = flags;
10080 }
10081 break;
10082 }
10083 }
10084
10085 if (j >= ARRAY_SIZE (cpu_arch))
10086 {
10087 /* Disable an ISA extension. */
10088 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
10089 if (strcmp (arch, cpu_noarch [j].name) == 0)
10090 {
10091 i386_cpu_flags flags;
10092
10093 flags = cpu_flags_and_not (cpu_arch_flags,
10094 cpu_noarch[j].flags);
10095 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
10096 {
10097 if (cpu_sub_arch_name)
10098 {
10099 char *name = cpu_sub_arch_name;
10100 cpu_sub_arch_name = concat (arch,
10101 (const char *) NULL);
10102 free (name);
10103 }
10104 else
10105 cpu_sub_arch_name = xstrdup (arch);
10106 cpu_arch_flags = flags;
10107 cpu_arch_isa_flags = flags;
10108 }
10109 break;
10110 }
10111
10112 if (j >= ARRAY_SIZE (cpu_noarch))
10113 j = ARRAY_SIZE (cpu_arch);
10114 }
10115
10116 if (j >= ARRAY_SIZE (cpu_arch))
10117 as_fatal (_("invalid -march= option: `%s'"), arg);
10118
10119 arch = next;
10120 }
10121 while (next != NULL);
10122 free (saved);
10123 break;
10124
10125 case OPTION_MTUNE:
10126 if (*arg == '.')
10127 as_fatal (_("invalid -mtune= option: `%s'"), arg);
10128 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
10129 {
10130 if (strcmp (arg, cpu_arch [j].name) == 0)
10131 {
10132 cpu_arch_tune_set = 1;
10133 cpu_arch_tune = cpu_arch [j].type;
10134 cpu_arch_tune_flags = cpu_arch[j].flags;
10135 break;
10136 }
10137 }
10138 if (j >= ARRAY_SIZE (cpu_arch))
10139 as_fatal (_("invalid -mtune= option: `%s'"), arg);
10140 break;
10141
10142 case OPTION_MMNEMONIC:
10143 if (strcasecmp (arg, "att") == 0)
10144 intel_mnemonic = 0;
10145 else if (strcasecmp (arg, "intel") == 0)
10146 intel_mnemonic = 1;
10147 else
10148 as_fatal (_("invalid -mmnemonic= option: `%s'"), arg);
10149 break;
10150
10151 case OPTION_MSYNTAX:
10152 if (strcasecmp (arg, "att") == 0)
10153 intel_syntax = 0;
10154 else if (strcasecmp (arg, "intel") == 0)
10155 intel_syntax = 1;
10156 else
10157 as_fatal (_("invalid -msyntax= option: `%s'"), arg);
10158 break;
10159
10160 case OPTION_MINDEX_REG:
10161 allow_index_reg = 1;
10162 break;
10163
10164 case OPTION_MNAKED_REG:
10165 allow_naked_reg = 1;
10166 break;
10167
10168 case OPTION_MOLD_GCC:
10169 old_gcc = 1;
10170 break;
10171
10172 case OPTION_MSSE2AVX:
10173 sse2avx = 1;
10174 break;
10175
10176 case OPTION_MSSE_CHECK:
10177 if (strcasecmp (arg, "error") == 0)
10178 sse_check = check_error;
10179 else if (strcasecmp (arg, "warning") == 0)
10180 sse_check = check_warning;
10181 else if (strcasecmp (arg, "none") == 0)
10182 sse_check = check_none;
10183 else
10184 as_fatal (_("invalid -msse-check= option: `%s'"), arg);
10185 break;
10186
10187 case OPTION_MOPERAND_CHECK:
10188 if (strcasecmp (arg, "error") == 0)
10189 operand_check = check_error;
10190 else if (strcasecmp (arg, "warning") == 0)
10191 operand_check = check_warning;
10192 else if (strcasecmp (arg, "none") == 0)
10193 operand_check = check_none;
10194 else
10195 as_fatal (_("invalid -moperand-check= option: `%s'"), arg);
10196 break;
10197
10198 case OPTION_MAVXSCALAR:
10199 if (strcasecmp (arg, "128") == 0)
10200 avxscalar = vex128;
10201 else if (strcasecmp (arg, "256") == 0)
10202 avxscalar = vex256;
10203 else
10204 as_fatal (_("invalid -mavxscalar= option: `%s'"), arg);
10205 break;
10206
10207 case OPTION_MADD_BND_PREFIX:
10208 add_bnd_prefix = 1;
10209 break;
10210
10211 case OPTION_MEVEXLIG:
10212 if (strcmp (arg, "128") == 0)
10213 evexlig = evexl128;
10214 else if (strcmp (arg, "256") == 0)
10215 evexlig = evexl256;
10216 else if (strcmp (arg, "512") == 0)
10217 evexlig = evexl512;
10218 else
10219 as_fatal (_("invalid -mevexlig= option: `%s'"), arg);
10220 break;
10221
10222 case OPTION_MEVEXRCIG:
10223 if (strcmp (arg, "rne") == 0)
10224 evexrcig = rne;
10225 else if (strcmp (arg, "rd") == 0)
10226 evexrcig = rd;
10227 else if (strcmp (arg, "ru") == 0)
10228 evexrcig = ru;
10229 else if (strcmp (arg, "rz") == 0)
10230 evexrcig = rz;
10231 else
10232 as_fatal (_("invalid -mevexrcig= option: `%s'"), arg);
10233 break;
10234
10235 case OPTION_MEVEXWIG:
10236 if (strcmp (arg, "0") == 0)
10237 evexwig = evexw0;
10238 else if (strcmp (arg, "1") == 0)
10239 evexwig = evexw1;
10240 else
10241 as_fatal (_("invalid -mevexwig= option: `%s'"), arg);
10242 break;
10243
10244 # if defined (TE_PE) || defined (TE_PEP)
10245 case OPTION_MBIG_OBJ:
10246 use_big_obj = 1;
10247 break;
10248 #endif
10249
10250 case OPTION_MOMIT_LOCK_PREFIX:
10251 if (strcasecmp (arg, "yes") == 0)
10252 omit_lock_prefix = 1;
10253 else if (strcasecmp (arg, "no") == 0)
10254 omit_lock_prefix = 0;
10255 else
10256 as_fatal (_("invalid -momit-lock-prefix= option: `%s'"), arg);
10257 break;
10258
10259 case OPTION_MFENCE_AS_LOCK_ADD:
10260 if (strcasecmp (arg, "yes") == 0)
10261 avoid_fence = 1;
10262 else if (strcasecmp (arg, "no") == 0)
10263 avoid_fence = 0;
10264 else
10265 as_fatal (_("invalid -mfence-as-lock-add= option: `%s'"), arg);
10266 break;
10267
10268 case OPTION_MRELAX_RELOCATIONS:
10269 if (strcasecmp (arg, "yes") == 0)
10270 generate_relax_relocations = 1;
10271 else if (strcasecmp (arg, "no") == 0)
10272 generate_relax_relocations = 0;
10273 else
10274 as_fatal (_("invalid -mrelax-relocations= option: `%s'"), arg);
10275 break;
10276
10277 case OPTION_MAMD64:
10278 intel64 = 0;
10279 break;
10280
10281 case OPTION_MINTEL64:
10282 intel64 = 1;
10283 break;
10284
10285 default:
10286 return 0;
10287 }
10288 return 1;
10289 }
10290
10291 #define MESSAGE_TEMPLATE \
10292 " "
10293
10294 static char *
10295 output_message (FILE *stream, char *p, char *message, char *start,
10296 int *left_p, const char *name, int len)
10297 {
10298 int size = sizeof (MESSAGE_TEMPLATE);
10299 int left = *left_p;
10300
10301 /* Reserve 2 spaces for ", " or ",\0" */
10302 left -= len + 2;
10303
10304 /* Check if there is any room. */
10305 if (left >= 0)
10306 {
10307 if (p != start)
10308 {
10309 *p++ = ',';
10310 *p++ = ' ';
10311 }
10312 p = mempcpy (p, name, len);
10313 }
10314 else
10315 {
10316 /* Output the current message now and start a new one. */
10317 *p++ = ',';
10318 *p = '\0';
10319 fprintf (stream, "%s\n", message);
10320 p = start;
10321 left = size - (start - message) - len - 2;
10322
10323 gas_assert (left >= 0);
10324
10325 p = mempcpy (p, name, len);
10326 }
10327
10328 *left_p = left;
10329 return p;
10330 }
10331
10332 static void
10333 show_arch (FILE *stream, int ext, int check)
10334 {
10335 static char message[] = MESSAGE_TEMPLATE;
10336 char *start = message + 27;
10337 char *p;
10338 int size = sizeof (MESSAGE_TEMPLATE);
10339 int left;
10340 const char *name;
10341 int len;
10342 unsigned int j;
10343
10344 p = start;
10345 left = size - (start - message);
10346 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
10347 {
10348 /* Should it be skipped? */
10349 if (cpu_arch [j].skip)
10350 continue;
10351
10352 name = cpu_arch [j].name;
10353 len = cpu_arch [j].len;
10354 if (*name == '.')
10355 {
10356 /* It is an extension. Skip if we aren't asked to show it. */
10357 if (ext)
10358 {
10359 name++;
10360 len--;
10361 }
10362 else
10363 continue;
10364 }
10365 else if (ext)
10366 {
10367 /* It is an processor. Skip if we show only extension. */
10368 continue;
10369 }
10370 else if (check && ! cpu_arch[j].flags.bitfield.cpui386)
10371 {
10372 /* It is an impossible processor - skip. */
10373 continue;
10374 }
10375
10376 p = output_message (stream, p, message, start, &left, name, len);
10377 }
10378
10379 /* Display disabled extensions. */
10380 if (ext)
10381 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
10382 {
10383 name = cpu_noarch [j].name;
10384 len = cpu_noarch [j].len;
10385 p = output_message (stream, p, message, start, &left, name,
10386 len);
10387 }
10388
10389 *p = '\0';
10390 fprintf (stream, "%s\n", message);
10391 }
10392
10393 void
10394 md_show_usage (FILE *stream)
10395 {
10396 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10397 fprintf (stream, _("\
10398 -Q ignored\n\
10399 -V print assembler version number\n\
10400 -k ignored\n"));
10401 #endif
10402 fprintf (stream, _("\
10403 -n Do not optimize code alignment\n\
10404 -q quieten some warnings\n"));
10405 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10406 fprintf (stream, _("\
10407 -s ignored\n"));
10408 #endif
10409 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
10410 || defined (TE_PE) || defined (TE_PEP))
10411 fprintf (stream, _("\
10412 --32/--64/--x32 generate 32bit/64bit/x32 code\n"));
10413 #endif
10414 #ifdef SVR4_COMMENT_CHARS
10415 fprintf (stream, _("\
10416 --divide do not treat `/' as a comment character\n"));
10417 #else
10418 fprintf (stream, _("\
10419 --divide ignored\n"));
10420 #endif
10421 fprintf (stream, _("\
10422 -march=CPU[,+EXTENSION...]\n\
10423 generate code for CPU and EXTENSION, CPU is one of:\n"));
10424 show_arch (stream, 0, 1);
10425 fprintf (stream, _("\
10426 EXTENSION is combination of:\n"));
10427 show_arch (stream, 1, 0);
10428 fprintf (stream, _("\
10429 -mtune=CPU optimize for CPU, CPU is one of:\n"));
10430 show_arch (stream, 0, 0);
10431 fprintf (stream, _("\
10432 -msse2avx encode SSE instructions with VEX prefix\n"));
10433 fprintf (stream, _("\
10434 -msse-check=[none|error|warning]\n\
10435 check SSE instructions\n"));
10436 fprintf (stream, _("\
10437 -moperand-check=[none|error|warning]\n\
10438 check operand combinations for validity\n"));
10439 fprintf (stream, _("\
10440 -mavxscalar=[128|256] encode scalar AVX instructions with specific vector\n\
10441 length\n"));
10442 fprintf (stream, _("\
10443 -mevexlig=[128|256|512] encode scalar EVEX instructions with specific vector\n\
10444 length\n"));
10445 fprintf (stream, _("\
10446 -mevexwig=[0|1] encode EVEX instructions with specific EVEX.W value\n\
10447 for EVEX.W bit ignored instructions\n"));
10448 fprintf (stream, _("\
10449 -mevexrcig=[rne|rd|ru|rz]\n\
10450 encode EVEX instructions with specific EVEX.RC value\n\
10451 for SAE-only ignored instructions\n"));
10452 fprintf (stream, _("\
10453 -mmnemonic=[att|intel] use AT&T/Intel mnemonic\n"));
10454 fprintf (stream, _("\
10455 -msyntax=[att|intel] use AT&T/Intel syntax\n"));
10456 fprintf (stream, _("\
10457 -mindex-reg support pseudo index registers\n"));
10458 fprintf (stream, _("\
10459 -mnaked-reg don't require `%%' prefix for registers\n"));
10460 fprintf (stream, _("\
10461 -mold-gcc support old (<= 2.8.1) versions of gcc\n"));
10462 fprintf (stream, _("\
10463 -madd-bnd-prefix add BND prefix for all valid branches\n"));
10464 fprintf (stream, _("\
10465 -mshared disable branch optimization for shared code\n"));
10466 # if defined (TE_PE) || defined (TE_PEP)
10467 fprintf (stream, _("\
10468 -mbig-obj generate big object files\n"));
10469 #endif
10470 fprintf (stream, _("\
10471 -momit-lock-prefix=[no|yes]\n\
10472 strip all lock prefixes\n"));
10473 fprintf (stream, _("\
10474 -mfence-as-lock-add=[no|yes]\n\
10475 encode lfence, mfence and sfence as\n\
10476 lock addl $0x0, (%%{re}sp)\n"));
10477 fprintf (stream, _("\
10478 -mrelax-relocations=[no|yes]\n\
10479 generate relax relocations\n"));
10480 fprintf (stream, _("\
10481 -mamd64 accept only AMD64 ISA\n"));
10482 fprintf (stream, _("\
10483 -mintel64 accept only Intel64 ISA\n"));
10484 }
10485
10486 #if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
10487 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
10488 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
10489
10490 /* Pick the target format to use. */
10491
10492 const char *
10493 i386_target_format (void)
10494 {
10495 if (!strncmp (default_arch, "x86_64", 6))
10496 {
10497 update_code_flag (CODE_64BIT, 1);
10498 if (default_arch[6] == '\0')
10499 x86_elf_abi = X86_64_ABI;
10500 else
10501 x86_elf_abi = X86_64_X32_ABI;
10502 }
10503 else if (!strcmp (default_arch, "i386"))
10504 update_code_flag (CODE_32BIT, 1);
10505 else if (!strcmp (default_arch, "iamcu"))
10506 {
10507 update_code_flag (CODE_32BIT, 1);
10508 if (cpu_arch_isa == PROCESSOR_UNKNOWN)
10509 {
10510 static const i386_cpu_flags iamcu_flags = CPU_IAMCU_FLAGS;
10511 cpu_arch_name = "iamcu";
10512 cpu_sub_arch_name = NULL;
10513 cpu_arch_flags = iamcu_flags;
10514 cpu_arch_isa = PROCESSOR_IAMCU;
10515 cpu_arch_isa_flags = iamcu_flags;
10516 if (!cpu_arch_tune_set)
10517 {
10518 cpu_arch_tune = cpu_arch_isa;
10519 cpu_arch_tune_flags = cpu_arch_isa_flags;
10520 }
10521 }
10522 else if (cpu_arch_isa != PROCESSOR_IAMCU)
10523 as_fatal (_("Intel MCU doesn't support `%s' architecture"),
10524 cpu_arch_name);
10525 }
10526 else
10527 as_fatal (_("unknown architecture"));
10528
10529 if (cpu_flags_all_zero (&cpu_arch_isa_flags))
10530 cpu_arch_isa_flags = cpu_arch[flag_code == CODE_64BIT].flags;
10531 if (cpu_flags_all_zero (&cpu_arch_tune_flags))
10532 cpu_arch_tune_flags = cpu_arch[flag_code == CODE_64BIT].flags;
10533
10534 switch (OUTPUT_FLAVOR)
10535 {
10536 #if defined (OBJ_MAYBE_AOUT) || defined (OBJ_AOUT)
10537 case bfd_target_aout_flavour:
10538 return AOUT_TARGET_FORMAT;
10539 #endif
10540 #if defined (OBJ_MAYBE_COFF) || defined (OBJ_COFF)
10541 # if defined (TE_PE) || defined (TE_PEP)
10542 case bfd_target_coff_flavour:
10543 if (flag_code == CODE_64BIT)
10544 return use_big_obj ? "pe-bigobj-x86-64" : "pe-x86-64";
10545 else
10546 return "pe-i386";
10547 # elif defined (TE_GO32)
10548 case bfd_target_coff_flavour:
10549 return "coff-go32";
10550 # else
10551 case bfd_target_coff_flavour:
10552 return "coff-i386";
10553 # endif
10554 #endif
10555 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
10556 case bfd_target_elf_flavour:
10557 {
10558 const char *format;
10559
10560 switch (x86_elf_abi)
10561 {
10562 default:
10563 format = ELF_TARGET_FORMAT;
10564 break;
10565 case X86_64_ABI:
10566 use_rela_relocations = 1;
10567 object_64bit = 1;
10568 format = ELF_TARGET_FORMAT64;
10569 break;
10570 case X86_64_X32_ABI:
10571 use_rela_relocations = 1;
10572 object_64bit = 1;
10573 disallow_64bit_reloc = 1;
10574 format = ELF_TARGET_FORMAT32;
10575 break;
10576 }
10577 if (cpu_arch_isa == PROCESSOR_L1OM)
10578 {
10579 if (x86_elf_abi != X86_64_ABI)
10580 as_fatal (_("Intel L1OM is 64bit only"));
10581 return ELF_TARGET_L1OM_FORMAT;
10582 }
10583 else if (cpu_arch_isa == PROCESSOR_K1OM)
10584 {
10585 if (x86_elf_abi != X86_64_ABI)
10586 as_fatal (_("Intel K1OM is 64bit only"));
10587 return ELF_TARGET_K1OM_FORMAT;
10588 }
10589 else if (cpu_arch_isa == PROCESSOR_IAMCU)
10590 {
10591 if (x86_elf_abi != I386_ABI)
10592 as_fatal (_("Intel MCU is 32bit only"));
10593 return ELF_TARGET_IAMCU_FORMAT;
10594 }
10595 else
10596 return format;
10597 }
10598 #endif
10599 #if defined (OBJ_MACH_O)
10600 case bfd_target_mach_o_flavour:
10601 if (flag_code == CODE_64BIT)
10602 {
10603 use_rela_relocations = 1;
10604 object_64bit = 1;
10605 return "mach-o-x86-64";
10606 }
10607 else
10608 return "mach-o-i386";
10609 #endif
10610 default:
10611 abort ();
10612 return NULL;
10613 }
10614 }
10615
10616 #endif /* OBJ_MAYBE_ more than one */
10617 \f
10618 symbolS *
10619 md_undefined_symbol (char *name)
10620 {
10621 if (name[0] == GLOBAL_OFFSET_TABLE_NAME[0]
10622 && name[1] == GLOBAL_OFFSET_TABLE_NAME[1]
10623 && name[2] == GLOBAL_OFFSET_TABLE_NAME[2]
10624 && strcmp (name, GLOBAL_OFFSET_TABLE_NAME) == 0)
10625 {
10626 if (!GOT_symbol)
10627 {
10628 if (symbol_find (name))
10629 as_bad (_("GOT already in symbol table"));
10630 GOT_symbol = symbol_new (name, undefined_section,
10631 (valueT) 0, &zero_address_frag);
10632 };
10633 return GOT_symbol;
10634 }
10635 return 0;
10636 }
10637
10638 /* Round up a section size to the appropriate boundary. */
10639
10640 valueT
10641 md_section_align (segT segment ATTRIBUTE_UNUSED, valueT size)
10642 {
10643 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
10644 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
10645 {
10646 /* For a.out, force the section size to be aligned. If we don't do
10647 this, BFD will align it for us, but it will not write out the
10648 final bytes of the section. This may be a bug in BFD, but it is
10649 easier to fix it here since that is how the other a.out targets
10650 work. */
10651 int align;
10652
10653 align = bfd_get_section_alignment (stdoutput, segment);
10654 size = ((size + (1 << align) - 1) & (-((valueT) 1 << align)));
10655 }
10656 #endif
10657
10658 return size;
10659 }
10660
10661 /* On the i386, PC-relative offsets are relative to the start of the
10662 next instruction. That is, the address of the offset, plus its
10663 size, since the offset is always the last part of the insn. */
10664
10665 long
10666 md_pcrel_from (fixS *fixP)
10667 {
10668 return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address;
10669 }
10670
10671 #ifndef I386COFF
10672
10673 static void
10674 s_bss (int ignore ATTRIBUTE_UNUSED)
10675 {
10676 int temp;
10677
10678 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10679 if (IS_ELF)
10680 obj_elf_section_change_hook ();
10681 #endif
10682 temp = get_absolute_expression ();
10683 subseg_set (bss_section, (subsegT) temp);
10684 demand_empty_rest_of_line ();
10685 }
10686
10687 #endif
10688
10689 void
10690 i386_validate_fix (fixS *fixp)
10691 {
10692 if (fixp->fx_subsy)
10693 {
10694 if (fixp->fx_subsy == GOT_symbol)
10695 {
10696 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
10697 {
10698 if (!object_64bit)
10699 abort ();
10700 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10701 if (fixp->fx_tcbit2)
10702 fixp->fx_r_type = (fixp->fx_tcbit
10703 ? BFD_RELOC_X86_64_REX_GOTPCRELX
10704 : BFD_RELOC_X86_64_GOTPCRELX);
10705 else
10706 #endif
10707 fixp->fx_r_type = BFD_RELOC_X86_64_GOTPCREL;
10708 }
10709 else
10710 {
10711 if (!object_64bit)
10712 fixp->fx_r_type = BFD_RELOC_386_GOTOFF;
10713 else
10714 fixp->fx_r_type = BFD_RELOC_X86_64_GOTOFF64;
10715 }
10716 fixp->fx_subsy = 0;
10717 }
10718 }
10719 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10720 else if (!object_64bit)
10721 {
10722 if (fixp->fx_r_type == BFD_RELOC_386_GOT32
10723 && fixp->fx_tcbit2)
10724 fixp->fx_r_type = BFD_RELOC_386_GOT32X;
10725 }
10726 #endif
10727 }
10728
10729 arelent *
10730 tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
10731 {
10732 arelent *rel;
10733 bfd_reloc_code_real_type code;
10734
10735 switch (fixp->fx_r_type)
10736 {
10737 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10738 case BFD_RELOC_SIZE32:
10739 case BFD_RELOC_SIZE64:
10740 if (S_IS_DEFINED (fixp->fx_addsy)
10741 && !S_IS_EXTERNAL (fixp->fx_addsy))
10742 {
10743 /* Resolve size relocation against local symbol to size of
10744 the symbol plus addend. */
10745 valueT value = S_GET_SIZE (fixp->fx_addsy) + fixp->fx_offset;
10746 if (fixp->fx_r_type == BFD_RELOC_SIZE32
10747 && !fits_in_unsigned_long (value))
10748 as_bad_where (fixp->fx_file, fixp->fx_line,
10749 _("symbol size computation overflow"));
10750 fixp->fx_addsy = NULL;
10751 fixp->fx_subsy = NULL;
10752 md_apply_fix (fixp, (valueT *) &value, NULL);
10753 return NULL;
10754 }
10755 #endif
10756 /* Fall through. */
10757
10758 case BFD_RELOC_X86_64_PLT32:
10759 case BFD_RELOC_X86_64_GOT32:
10760 case BFD_RELOC_X86_64_GOTPCREL:
10761 case BFD_RELOC_X86_64_GOTPCRELX:
10762 case BFD_RELOC_X86_64_REX_GOTPCRELX:
10763 case BFD_RELOC_386_PLT32:
10764 case BFD_RELOC_386_GOT32:
10765 case BFD_RELOC_386_GOT32X:
10766 case BFD_RELOC_386_GOTOFF:
10767 case BFD_RELOC_386_GOTPC:
10768 case BFD_RELOC_386_TLS_GD:
10769 case BFD_RELOC_386_TLS_LDM:
10770 case BFD_RELOC_386_TLS_LDO_32:
10771 case BFD_RELOC_386_TLS_IE_32:
10772 case BFD_RELOC_386_TLS_IE:
10773 case BFD_RELOC_386_TLS_GOTIE:
10774 case BFD_RELOC_386_TLS_LE_32:
10775 case BFD_RELOC_386_TLS_LE:
10776 case BFD_RELOC_386_TLS_GOTDESC:
10777 case BFD_RELOC_386_TLS_DESC_CALL:
10778 case BFD_RELOC_X86_64_TLSGD:
10779 case BFD_RELOC_X86_64_TLSLD:
10780 case BFD_RELOC_X86_64_DTPOFF32:
10781 case BFD_RELOC_X86_64_DTPOFF64:
10782 case BFD_RELOC_X86_64_GOTTPOFF:
10783 case BFD_RELOC_X86_64_TPOFF32:
10784 case BFD_RELOC_X86_64_TPOFF64:
10785 case BFD_RELOC_X86_64_GOTOFF64:
10786 case BFD_RELOC_X86_64_GOTPC32:
10787 case BFD_RELOC_X86_64_GOT64:
10788 case BFD_RELOC_X86_64_GOTPCREL64:
10789 case BFD_RELOC_X86_64_GOTPC64:
10790 case BFD_RELOC_X86_64_GOTPLT64:
10791 case BFD_RELOC_X86_64_PLTOFF64:
10792 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
10793 case BFD_RELOC_X86_64_TLSDESC_CALL:
10794 case BFD_RELOC_RVA:
10795 case BFD_RELOC_VTABLE_ENTRY:
10796 case BFD_RELOC_VTABLE_INHERIT:
10797 #ifdef TE_PE
10798 case BFD_RELOC_32_SECREL:
10799 #endif
10800 code = fixp->fx_r_type;
10801 break;
10802 case BFD_RELOC_X86_64_32S:
10803 if (!fixp->fx_pcrel)
10804 {
10805 /* Don't turn BFD_RELOC_X86_64_32S into BFD_RELOC_32. */
10806 code = fixp->fx_r_type;
10807 break;
10808 }
10809 /* Fall through. */
10810 default:
10811 if (fixp->fx_pcrel)
10812 {
10813 switch (fixp->fx_size)
10814 {
10815 default:
10816 as_bad_where (fixp->fx_file, fixp->fx_line,
10817 _("can not do %d byte pc-relative relocation"),
10818 fixp->fx_size);
10819 code = BFD_RELOC_32_PCREL;
10820 break;
10821 case 1: code = BFD_RELOC_8_PCREL; break;
10822 case 2: code = BFD_RELOC_16_PCREL; break;
10823 case 4: code = BFD_RELOC_32_PCREL; break;
10824 #ifdef BFD64
10825 case 8: code = BFD_RELOC_64_PCREL; break;
10826 #endif
10827 }
10828 }
10829 else
10830 {
10831 switch (fixp->fx_size)
10832 {
10833 default:
10834 as_bad_where (fixp->fx_file, fixp->fx_line,
10835 _("can not do %d byte relocation"),
10836 fixp->fx_size);
10837 code = BFD_RELOC_32;
10838 break;
10839 case 1: code = BFD_RELOC_8; break;
10840 case 2: code = BFD_RELOC_16; break;
10841 case 4: code = BFD_RELOC_32; break;
10842 #ifdef BFD64
10843 case 8: code = BFD_RELOC_64; break;
10844 #endif
10845 }
10846 }
10847 break;
10848 }
10849
10850 if ((code == BFD_RELOC_32
10851 || code == BFD_RELOC_32_PCREL
10852 || code == BFD_RELOC_X86_64_32S)
10853 && GOT_symbol
10854 && fixp->fx_addsy == GOT_symbol)
10855 {
10856 if (!object_64bit)
10857 code = BFD_RELOC_386_GOTPC;
10858 else
10859 code = BFD_RELOC_X86_64_GOTPC32;
10860 }
10861 if ((code == BFD_RELOC_64 || code == BFD_RELOC_64_PCREL)
10862 && GOT_symbol
10863 && fixp->fx_addsy == GOT_symbol)
10864 {
10865 code = BFD_RELOC_X86_64_GOTPC64;
10866 }
10867
10868 rel = XNEW (arelent);
10869 rel->sym_ptr_ptr = XNEW (asymbol *);
10870 *rel->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
10871
10872 rel->address = fixp->fx_frag->fr_address + fixp->fx_where;
10873
10874 if (!use_rela_relocations)
10875 {
10876 /* HACK: Since i386 ELF uses Rel instead of Rela, encode the
10877 vtable entry to be used in the relocation's section offset. */
10878 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
10879 rel->address = fixp->fx_offset;
10880 #if defined (OBJ_COFF) && defined (TE_PE)
10881 else if (fixp->fx_addsy && S_IS_WEAK (fixp->fx_addsy))
10882 rel->addend = fixp->fx_addnumber - (S_GET_VALUE (fixp->fx_addsy) * 2);
10883 else
10884 #endif
10885 rel->addend = 0;
10886 }
10887 /* Use the rela in 64bit mode. */
10888 else
10889 {
10890 if (disallow_64bit_reloc)
10891 switch (code)
10892 {
10893 case BFD_RELOC_X86_64_DTPOFF64:
10894 case BFD_RELOC_X86_64_TPOFF64:
10895 case BFD_RELOC_64_PCREL:
10896 case BFD_RELOC_X86_64_GOTOFF64:
10897 case BFD_RELOC_X86_64_GOT64:
10898 case BFD_RELOC_X86_64_GOTPCREL64:
10899 case BFD_RELOC_X86_64_GOTPC64:
10900 case BFD_RELOC_X86_64_GOTPLT64:
10901 case BFD_RELOC_X86_64_PLTOFF64:
10902 as_bad_where (fixp->fx_file, fixp->fx_line,
10903 _("cannot represent relocation type %s in x32 mode"),
10904 bfd_get_reloc_code_name (code));
10905 break;
10906 default:
10907 break;
10908 }
10909
10910 if (!fixp->fx_pcrel)
10911 rel->addend = fixp->fx_offset;
10912 else
10913 switch (code)
10914 {
10915 case BFD_RELOC_X86_64_PLT32:
10916 case BFD_RELOC_X86_64_GOT32:
10917 case BFD_RELOC_X86_64_GOTPCREL:
10918 case BFD_RELOC_X86_64_GOTPCRELX:
10919 case BFD_RELOC_X86_64_REX_GOTPCRELX:
10920 case BFD_RELOC_X86_64_TLSGD:
10921 case BFD_RELOC_X86_64_TLSLD:
10922 case BFD_RELOC_X86_64_GOTTPOFF:
10923 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
10924 case BFD_RELOC_X86_64_TLSDESC_CALL:
10925 rel->addend = fixp->fx_offset - fixp->fx_size;
10926 break;
10927 default:
10928 rel->addend = (section->vma
10929 - fixp->fx_size
10930 + fixp->fx_addnumber
10931 + md_pcrel_from (fixp));
10932 break;
10933 }
10934 }
10935
10936 rel->howto = bfd_reloc_type_lookup (stdoutput, code);
10937 if (rel->howto == NULL)
10938 {
10939 as_bad_where (fixp->fx_file, fixp->fx_line,
10940 _("cannot represent relocation type %s"),
10941 bfd_get_reloc_code_name (code));
10942 /* Set howto to a garbage value so that we can keep going. */
10943 rel->howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_32);
10944 gas_assert (rel->howto != NULL);
10945 }
10946
10947 return rel;
10948 }
10949
10950 #include "tc-i386-intel.c"
10951
10952 void
10953 tc_x86_parse_to_dw2regnum (expressionS *exp)
10954 {
10955 int saved_naked_reg;
10956 char saved_register_dot;
10957
10958 saved_naked_reg = allow_naked_reg;
10959 allow_naked_reg = 1;
10960 saved_register_dot = register_chars['.'];
10961 register_chars['.'] = '.';
10962 allow_pseudo_reg = 1;
10963 expression_and_evaluate (exp);
10964 allow_pseudo_reg = 0;
10965 register_chars['.'] = saved_register_dot;
10966 allow_naked_reg = saved_naked_reg;
10967
10968 if (exp->X_op == O_register && exp->X_add_number >= 0)
10969 {
10970 if ((addressT) exp->X_add_number < i386_regtab_size)
10971 {
10972 exp->X_op = O_constant;
10973 exp->X_add_number = i386_regtab[exp->X_add_number]
10974 .dw2_regnum[flag_code >> 1];
10975 }
10976 else
10977 exp->X_op = O_illegal;
10978 }
10979 }
10980
10981 void
10982 tc_x86_frame_initial_instructions (void)
10983 {
10984 static unsigned int sp_regno[2];
10985
10986 if (!sp_regno[flag_code >> 1])
10987 {
10988 char *saved_input = input_line_pointer;
10989 char sp[][4] = {"esp", "rsp"};
10990 expressionS exp;
10991
10992 input_line_pointer = sp[flag_code >> 1];
10993 tc_x86_parse_to_dw2regnum (&exp);
10994 gas_assert (exp.X_op == O_constant);
10995 sp_regno[flag_code >> 1] = exp.X_add_number;
10996 input_line_pointer = saved_input;
10997 }
10998
10999 cfi_add_CFA_def_cfa (sp_regno[flag_code >> 1], -x86_cie_data_alignment);
11000 cfi_add_CFA_offset (x86_dwarf2_return_column, x86_cie_data_alignment);
11001 }
11002
11003 int
11004 x86_dwarf2_addr_size (void)
11005 {
11006 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
11007 if (x86_elf_abi == X86_64_X32_ABI)
11008 return 4;
11009 #endif
11010 return bfd_arch_bits_per_address (stdoutput) / 8;
11011 }
11012
11013 int
11014 i386_elf_section_type (const char *str, size_t len)
11015 {
11016 if (flag_code == CODE_64BIT
11017 && len == sizeof ("unwind") - 1
11018 && strncmp (str, "unwind", 6) == 0)
11019 return SHT_X86_64_UNWIND;
11020
11021 return -1;
11022 }
11023
11024 #ifdef TE_SOLARIS
11025 void
11026 i386_solaris_fix_up_eh_frame (segT sec)
11027 {
11028 if (flag_code == CODE_64BIT)
11029 elf_section_type (sec) = SHT_X86_64_UNWIND;
11030 }
11031 #endif
11032
11033 #ifdef TE_PE
11034 void
11035 tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
11036 {
11037 expressionS exp;
11038
11039 exp.X_op = O_secrel;
11040 exp.X_add_symbol = symbol;
11041 exp.X_add_number = 0;
11042 emit_expr (&exp, size);
11043 }
11044 #endif
11045
11046 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11047 /* For ELF on x86-64, add support for SHF_X86_64_LARGE. */
11048
11049 bfd_vma
11050 x86_64_section_letter (int letter, const char **ptr_msg)
11051 {
11052 if (flag_code == CODE_64BIT)
11053 {
11054 if (letter == 'l')
11055 return SHF_X86_64_LARGE;
11056
11057 *ptr_msg = _("bad .section directive: want a,l,w,x,M,S,G,T in string");
11058 }
11059 else
11060 *ptr_msg = _("bad .section directive: want a,w,x,M,S,G,T in string");
11061 return -1;
11062 }
11063
11064 bfd_vma
11065 x86_64_section_word (char *str, size_t len)
11066 {
11067 if (len == 5 && flag_code == CODE_64BIT && CONST_STRNEQ (str, "large"))
11068 return SHF_X86_64_LARGE;
11069
11070 return -1;
11071 }
11072
11073 static void
11074 handle_large_common (int small ATTRIBUTE_UNUSED)
11075 {
11076 if (flag_code != CODE_64BIT)
11077 {
11078 s_comm_internal (0, elf_common_parse);
11079 as_warn (_(".largecomm supported only in 64bit mode, producing .comm"));
11080 }
11081 else
11082 {
11083 static segT lbss_section;
11084 asection *saved_com_section_ptr = elf_com_section_ptr;
11085 asection *saved_bss_section = bss_section;
11086
11087 if (lbss_section == NULL)
11088 {
11089 flagword applicable;
11090 segT seg = now_seg;
11091 subsegT subseg = now_subseg;
11092
11093 /* The .lbss section is for local .largecomm symbols. */
11094 lbss_section = subseg_new (".lbss", 0);
11095 applicable = bfd_applicable_section_flags (stdoutput);
11096 bfd_set_section_flags (stdoutput, lbss_section,
11097 applicable & SEC_ALLOC);
11098 seg_info (lbss_section)->bss = 1;
11099
11100 subseg_set (seg, subseg);
11101 }
11102
11103 elf_com_section_ptr = &_bfd_elf_large_com_section;
11104 bss_section = lbss_section;
11105
11106 s_comm_internal (0, elf_common_parse);
11107
11108 elf_com_section_ptr = saved_com_section_ptr;
11109 bss_section = saved_bss_section;
11110 }
11111 }
11112 #endif /* OBJ_ELF || OBJ_MAYBE_ELF */
This page took 0.462048 seconds and 3 git commands to generate.