x86: limit ImmExt abuse
[deliverable/binutils-gdb.git] / gas / config / tc-i386.c
1 /* tc-i386.c -- Assemble code for the Intel 80386
2 Copyright (C) 1989-2019 Free Software Foundation, Inc.
3
4 This file is part of GAS, the GNU Assembler.
5
6 GAS is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
10
11 GAS is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GAS; see the file COPYING. If not, write to the Free
18 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
19 02110-1301, USA. */
20
21 /* Intel 80386 machine specific gas.
22 Written by Eliot Dresselhaus (eliot@mgm.mit.edu).
23 x86_64 support by Jan Hubicka (jh@suse.cz)
24 VIA PadLock support by Michal Ludvig (mludvig@suse.cz)
25 Bugs & suggestions are completely welcome. This is free software.
26 Please help us make it better. */
27
28 #include "as.h"
29 #include "safe-ctype.h"
30 #include "subsegs.h"
31 #include "dwarf2dbg.h"
32 #include "dw2gencfi.h"
33 #include "elf/x86-64.h"
34 #include "opcodes/i386-init.h"
35
36 #ifdef HAVE_LIMITS_H
37 #include <limits.h>
38 #else
39 #ifdef HAVE_SYS_PARAM_H
40 #include <sys/param.h>
41 #endif
42 #ifndef INT_MAX
43 #define INT_MAX (int) (((unsigned) (-1)) >> 1)
44 #endif
45 #endif
46
47 #ifndef REGISTER_WARNINGS
48 #define REGISTER_WARNINGS 1
49 #endif
50
51 #ifndef INFER_ADDR_PREFIX
52 #define INFER_ADDR_PREFIX 1
53 #endif
54
55 #ifndef DEFAULT_ARCH
56 #define DEFAULT_ARCH "i386"
57 #endif
58
59 #ifndef INLINE
60 #if __GNUC__ >= 2
61 #define INLINE __inline__
62 #else
63 #define INLINE
64 #endif
65 #endif
66
67 /* Prefixes will be emitted in the order defined below.
68 WAIT_PREFIX must be the first prefix since FWAIT is really is an
69 instruction, and so must come before any prefixes.
70 The preferred prefix order is SEG_PREFIX, ADDR_PREFIX, DATA_PREFIX,
71 REP_PREFIX/HLE_PREFIX, LOCK_PREFIX. */
72 #define WAIT_PREFIX 0
73 #define SEG_PREFIX 1
74 #define ADDR_PREFIX 2
75 #define DATA_PREFIX 3
76 #define REP_PREFIX 4
77 #define HLE_PREFIX REP_PREFIX
78 #define BND_PREFIX REP_PREFIX
79 #define LOCK_PREFIX 5
80 #define REX_PREFIX 6 /* must come last. */
81 #define MAX_PREFIXES 7 /* max prefixes per opcode */
82
83 /* we define the syntax here (modulo base,index,scale syntax) */
84 #define REGISTER_PREFIX '%'
85 #define IMMEDIATE_PREFIX '$'
86 #define ABSOLUTE_PREFIX '*'
87
88 /* these are the instruction mnemonic suffixes in AT&T syntax or
89 memory operand size in Intel syntax. */
90 #define WORD_MNEM_SUFFIX 'w'
91 #define BYTE_MNEM_SUFFIX 'b'
92 #define SHORT_MNEM_SUFFIX 's'
93 #define LONG_MNEM_SUFFIX 'l'
94 #define QWORD_MNEM_SUFFIX 'q'
95 /* Intel Syntax. Use a non-ascii letter since since it never appears
96 in instructions. */
97 #define LONG_DOUBLE_MNEM_SUFFIX '\1'
98
99 #define END_OF_INSN '\0'
100
101 /* This matches the C -> StaticRounding alias in the opcode table. */
102 #define commutative staticrounding
103
104 /*
105 'templates' is for grouping together 'template' structures for opcodes
106 of the same name. This is only used for storing the insns in the grand
107 ole hash table of insns.
108 The templates themselves start at START and range up to (but not including)
109 END.
110 */
111 typedef struct
112 {
113 const insn_template *start;
114 const insn_template *end;
115 }
116 templates;
117
118 /* 386 operand encoding bytes: see 386 book for details of this. */
119 typedef struct
120 {
121 unsigned int regmem; /* codes register or memory operand */
122 unsigned int reg; /* codes register operand (or extended opcode) */
123 unsigned int mode; /* how to interpret regmem & reg */
124 }
125 modrm_byte;
126
127 /* x86-64 extension prefix. */
128 typedef int rex_byte;
129
130 /* 386 opcode byte to code indirect addressing. */
131 typedef struct
132 {
133 unsigned base;
134 unsigned index;
135 unsigned scale;
136 }
137 sib_byte;
138
139 /* x86 arch names, types and features */
140 typedef struct
141 {
142 const char *name; /* arch name */
143 unsigned int len; /* arch string length */
144 enum processor_type type; /* arch type */
145 i386_cpu_flags flags; /* cpu feature flags */
146 unsigned int skip; /* show_arch should skip this. */
147 }
148 arch_entry;
149
150 /* Used to turn off indicated flags. */
151 typedef struct
152 {
153 const char *name; /* arch name */
154 unsigned int len; /* arch string length */
155 i386_cpu_flags flags; /* cpu feature flags */
156 }
157 noarch_entry;
158
159 static void update_code_flag (int, int);
160 static void set_code_flag (int);
161 static void set_16bit_gcc_code_flag (int);
162 static void set_intel_syntax (int);
163 static void set_intel_mnemonic (int);
164 static void set_allow_index_reg (int);
165 static void set_check (int);
166 static void set_cpu_arch (int);
167 #ifdef TE_PE
168 static void pe_directive_secrel (int);
169 #endif
170 static void signed_cons (int);
171 static char *output_invalid (int c);
172 static int i386_finalize_immediate (segT, expressionS *, i386_operand_type,
173 const char *);
174 static int i386_finalize_displacement (segT, expressionS *, i386_operand_type,
175 const char *);
176 static int i386_att_operand (char *);
177 static int i386_intel_operand (char *, int);
178 static int i386_intel_simplify (expressionS *);
179 static int i386_intel_parse_name (const char *, expressionS *);
180 static const reg_entry *parse_register (char *, char **);
181 static char *parse_insn (char *, char *);
182 static char *parse_operands (char *, const char *);
183 static void swap_operands (void);
184 static void swap_2_operands (int, int);
185 static void optimize_imm (void);
186 static void optimize_disp (void);
187 static const insn_template *match_template (char);
188 static int check_string (void);
189 static int process_suffix (void);
190 static int check_byte_reg (void);
191 static int check_long_reg (void);
192 static int check_qword_reg (void);
193 static int check_word_reg (void);
194 static int finalize_imm (void);
195 static int process_operands (void);
196 static const seg_entry *build_modrm_byte (void);
197 static void output_insn (void);
198 static void output_imm (fragS *, offsetT);
199 static void output_disp (fragS *, offsetT);
200 #ifndef I386COFF
201 static void s_bss (int);
202 #endif
203 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
204 static void handle_large_common (int small ATTRIBUTE_UNUSED);
205
206 /* GNU_PROPERTY_X86_ISA_1_USED. */
207 static unsigned int x86_isa_1_used;
208 /* GNU_PROPERTY_X86_FEATURE_2_USED. */
209 static unsigned int x86_feature_2_used;
210 /* Generate x86 used ISA and feature properties. */
211 static unsigned int x86_used_note = DEFAULT_X86_USED_NOTE;
212 #endif
213
214 static const char *default_arch = DEFAULT_ARCH;
215
216 /* This struct describes rounding control and SAE in the instruction. */
217 struct RC_Operation
218 {
219 enum rc_type
220 {
221 rne = 0,
222 rd,
223 ru,
224 rz,
225 saeonly
226 } type;
227 int operand;
228 };
229
230 static struct RC_Operation rc_op;
231
232 /* The struct describes masking, applied to OPERAND in the instruction.
233 MASK is a pointer to the corresponding mask register. ZEROING tells
234 whether merging or zeroing mask is used. */
235 struct Mask_Operation
236 {
237 const reg_entry *mask;
238 unsigned int zeroing;
239 /* The operand where this operation is associated. */
240 int operand;
241 };
242
243 static struct Mask_Operation mask_op;
244
245 /* The struct describes broadcasting, applied to OPERAND. FACTOR is
246 broadcast factor. */
247 struct Broadcast_Operation
248 {
249 /* Type of broadcast: {1to2}, {1to4}, {1to8}, or {1to16}. */
250 int type;
251
252 /* Index of broadcasted operand. */
253 int operand;
254
255 /* Number of bytes to broadcast. */
256 int bytes;
257 };
258
259 static struct Broadcast_Operation broadcast_op;
260
261 /* VEX prefix. */
262 typedef struct
263 {
264 /* VEX prefix is either 2 byte or 3 byte. EVEX is 4 byte. */
265 unsigned char bytes[4];
266 unsigned int length;
267 /* Destination or source register specifier. */
268 const reg_entry *register_specifier;
269 } vex_prefix;
270
271 /* 'md_assemble ()' gathers together information and puts it into a
272 i386_insn. */
273
274 union i386_op
275 {
276 expressionS *disps;
277 expressionS *imms;
278 const reg_entry *regs;
279 };
280
281 enum i386_error
282 {
283 operand_size_mismatch,
284 operand_type_mismatch,
285 register_type_mismatch,
286 number_of_operands_mismatch,
287 invalid_instruction_suffix,
288 bad_imm4,
289 unsupported_with_intel_mnemonic,
290 unsupported_syntax,
291 unsupported,
292 invalid_vsib_address,
293 invalid_vector_register_set,
294 unsupported_vector_index_register,
295 unsupported_broadcast,
296 broadcast_needed,
297 unsupported_masking,
298 mask_not_on_destination,
299 no_default_mask,
300 unsupported_rc_sae,
301 rc_sae_operand_not_last_imm,
302 invalid_register_operand,
303 };
304
305 struct _i386_insn
306 {
307 /* TM holds the template for the insn were currently assembling. */
308 insn_template tm;
309
310 /* SUFFIX holds the instruction size suffix for byte, word, dword
311 or qword, if given. */
312 char suffix;
313
314 /* OPERANDS gives the number of given operands. */
315 unsigned int operands;
316
317 /* REG_OPERANDS, DISP_OPERANDS, MEM_OPERANDS, IMM_OPERANDS give the number
318 of given register, displacement, memory operands and immediate
319 operands. */
320 unsigned int reg_operands, disp_operands, mem_operands, imm_operands;
321
322 /* TYPES [i] is the type (see above #defines) which tells us how to
323 use OP[i] for the corresponding operand. */
324 i386_operand_type types[MAX_OPERANDS];
325
326 /* Displacement expression, immediate expression, or register for each
327 operand. */
328 union i386_op op[MAX_OPERANDS];
329
330 /* Flags for operands. */
331 unsigned int flags[MAX_OPERANDS];
332 #define Operand_PCrel 1
333 #define Operand_Mem 2
334
335 /* Relocation type for operand */
336 enum bfd_reloc_code_real reloc[MAX_OPERANDS];
337
338 /* BASE_REG, INDEX_REG, and LOG2_SCALE_FACTOR are used to encode
339 the base index byte below. */
340 const reg_entry *base_reg;
341 const reg_entry *index_reg;
342 unsigned int log2_scale_factor;
343
344 /* SEG gives the seg_entries of this insn. They are zero unless
345 explicit segment overrides are given. */
346 const seg_entry *seg[2];
347
348 /* Copied first memory operand string, for re-checking. */
349 char *memop1_string;
350
351 /* PREFIX holds all the given prefix opcodes (usually null).
352 PREFIXES is the number of prefix opcodes. */
353 unsigned int prefixes;
354 unsigned char prefix[MAX_PREFIXES];
355
356 /* Has MMX register operands. */
357 bfd_boolean has_regmmx;
358
359 /* Has XMM register operands. */
360 bfd_boolean has_regxmm;
361
362 /* Has YMM register operands. */
363 bfd_boolean has_regymm;
364
365 /* Has ZMM register operands. */
366 bfd_boolean has_regzmm;
367
368 /* RM and SIB are the modrm byte and the sib byte where the
369 addressing modes of this insn are encoded. */
370 modrm_byte rm;
371 rex_byte rex;
372 rex_byte vrex;
373 sib_byte sib;
374 vex_prefix vex;
375
376 /* Masking attributes. */
377 struct Mask_Operation *mask;
378
379 /* Rounding control and SAE attributes. */
380 struct RC_Operation *rounding;
381
382 /* Broadcasting attributes. */
383 struct Broadcast_Operation *broadcast;
384
385 /* Compressed disp8*N attribute. */
386 unsigned int memshift;
387
388 /* Prefer load or store in encoding. */
389 enum
390 {
391 dir_encoding_default = 0,
392 dir_encoding_load,
393 dir_encoding_store,
394 dir_encoding_swap
395 } dir_encoding;
396
397 /* Prefer 8bit or 32bit displacement in encoding. */
398 enum
399 {
400 disp_encoding_default = 0,
401 disp_encoding_8bit,
402 disp_encoding_32bit
403 } disp_encoding;
404
405 /* Prefer the REX byte in encoding. */
406 bfd_boolean rex_encoding;
407
408 /* Disable instruction size optimization. */
409 bfd_boolean no_optimize;
410
411 /* How to encode vector instructions. */
412 enum
413 {
414 vex_encoding_default = 0,
415 vex_encoding_vex2,
416 vex_encoding_vex3,
417 vex_encoding_evex
418 } vec_encoding;
419
420 /* REP prefix. */
421 const char *rep_prefix;
422
423 /* HLE prefix. */
424 const char *hle_prefix;
425
426 /* Have BND prefix. */
427 const char *bnd_prefix;
428
429 /* Have NOTRACK prefix. */
430 const char *notrack_prefix;
431
432 /* Error message. */
433 enum i386_error error;
434 };
435
436 typedef struct _i386_insn i386_insn;
437
438 /* Link RC type with corresponding string, that'll be looked for in
439 asm. */
440 struct RC_name
441 {
442 enum rc_type type;
443 const char *name;
444 unsigned int len;
445 };
446
447 static const struct RC_name RC_NamesTable[] =
448 {
449 { rne, STRING_COMMA_LEN ("rn-sae") },
450 { rd, STRING_COMMA_LEN ("rd-sae") },
451 { ru, STRING_COMMA_LEN ("ru-sae") },
452 { rz, STRING_COMMA_LEN ("rz-sae") },
453 { saeonly, STRING_COMMA_LEN ("sae") },
454 };
455
456 /* List of chars besides those in app.c:symbol_chars that can start an
457 operand. Used to prevent the scrubber eating vital white-space. */
458 const char extra_symbol_chars[] = "*%-([{}"
459 #ifdef LEX_AT
460 "@"
461 #endif
462 #ifdef LEX_QM
463 "?"
464 #endif
465 ;
466
467 #if (defined (TE_I386AIX) \
468 || ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) \
469 && !defined (TE_GNU) \
470 && !defined (TE_LINUX) \
471 && !defined (TE_NACL) \
472 && !defined (TE_FreeBSD) \
473 && !defined (TE_DragonFly) \
474 && !defined (TE_NetBSD)))
475 /* This array holds the chars that always start a comment. If the
476 pre-processor is disabled, these aren't very useful. The option
477 --divide will remove '/' from this list. */
478 const char *i386_comment_chars = "#/";
479 #define SVR4_COMMENT_CHARS 1
480 #define PREFIX_SEPARATOR '\\'
481
482 #else
483 const char *i386_comment_chars = "#";
484 #define PREFIX_SEPARATOR '/'
485 #endif
486
487 /* This array holds the chars that only start a comment at the beginning of
488 a line. If the line seems to have the form '# 123 filename'
489 .line and .file directives will appear in the pre-processed output.
490 Note that input_file.c hand checks for '#' at the beginning of the
491 first line of the input file. This is because the compiler outputs
492 #NO_APP at the beginning of its output.
493 Also note that comments started like this one will always work if
494 '/' isn't otherwise defined. */
495 const char line_comment_chars[] = "#/";
496
497 const char line_separator_chars[] = ";";
498
499 /* Chars that can be used to separate mant from exp in floating point
500 nums. */
501 const char EXP_CHARS[] = "eE";
502
503 /* Chars that mean this number is a floating point constant
504 As in 0f12.456
505 or 0d1.2345e12. */
506 const char FLT_CHARS[] = "fFdDxX";
507
508 /* Tables for lexical analysis. */
509 static char mnemonic_chars[256];
510 static char register_chars[256];
511 static char operand_chars[256];
512 static char identifier_chars[256];
513 static char digit_chars[256];
514
515 /* Lexical macros. */
516 #define is_mnemonic_char(x) (mnemonic_chars[(unsigned char) x])
517 #define is_operand_char(x) (operand_chars[(unsigned char) x])
518 #define is_register_char(x) (register_chars[(unsigned char) x])
519 #define is_space_char(x) ((x) == ' ')
520 #define is_identifier_char(x) (identifier_chars[(unsigned char) x])
521 #define is_digit_char(x) (digit_chars[(unsigned char) x])
522
523 /* All non-digit non-letter characters that may occur in an operand. */
524 static char operand_special_chars[] = "%$-+(,)*._~/<>|&^!:[@]";
525
526 /* md_assemble() always leaves the strings it's passed unaltered. To
527 effect this we maintain a stack of saved characters that we've smashed
528 with '\0's (indicating end of strings for various sub-fields of the
529 assembler instruction). */
530 static char save_stack[32];
531 static char *save_stack_p;
532 #define END_STRING_AND_SAVE(s) \
533 do { *save_stack_p++ = *(s); *(s) = '\0'; } while (0)
534 #define RESTORE_END_STRING(s) \
535 do { *(s) = *--save_stack_p; } while (0)
536
537 /* The instruction we're assembling. */
538 static i386_insn i;
539
540 /* Possible templates for current insn. */
541 static const templates *current_templates;
542
543 /* Per instruction expressionS buffers: max displacements & immediates. */
544 static expressionS disp_expressions[MAX_MEMORY_OPERANDS];
545 static expressionS im_expressions[MAX_IMMEDIATE_OPERANDS];
546
547 /* Current operand we are working on. */
548 static int this_operand = -1;
549
550 /* We support four different modes. FLAG_CODE variable is used to distinguish
551 these. */
552
553 enum flag_code {
554 CODE_32BIT,
555 CODE_16BIT,
556 CODE_64BIT };
557
558 static enum flag_code flag_code;
559 static unsigned int object_64bit;
560 static unsigned int disallow_64bit_reloc;
561 static int use_rela_relocations = 0;
562
563 #if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
564 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
565 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
566
567 /* The ELF ABI to use. */
568 enum x86_elf_abi
569 {
570 I386_ABI,
571 X86_64_ABI,
572 X86_64_X32_ABI
573 };
574
575 static enum x86_elf_abi x86_elf_abi = I386_ABI;
576 #endif
577
578 #if defined (TE_PE) || defined (TE_PEP)
579 /* Use big object file format. */
580 static int use_big_obj = 0;
581 #endif
582
583 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
584 /* 1 if generating code for a shared library. */
585 static int shared = 0;
586 #endif
587
588 /* 1 for intel syntax,
589 0 if att syntax. */
590 static int intel_syntax = 0;
591
592 /* 1 for Intel64 ISA,
593 0 if AMD64 ISA. */
594 static int intel64;
595
596 /* 1 for intel mnemonic,
597 0 if att mnemonic. */
598 static int intel_mnemonic = !SYSV386_COMPAT;
599
600 /* 1 if pseudo registers are permitted. */
601 static int allow_pseudo_reg = 0;
602
603 /* 1 if register prefix % not required. */
604 static int allow_naked_reg = 0;
605
606 /* 1 if the assembler should add BND prefix for all control-transferring
607 instructions supporting it, even if this prefix wasn't specified
608 explicitly. */
609 static int add_bnd_prefix = 0;
610
611 /* 1 if pseudo index register, eiz/riz, is allowed . */
612 static int allow_index_reg = 0;
613
614 /* 1 if the assembler should ignore LOCK prefix, even if it was
615 specified explicitly. */
616 static int omit_lock_prefix = 0;
617
618 /* 1 if the assembler should encode lfence, mfence, and sfence as
619 "lock addl $0, (%{re}sp)". */
620 static int avoid_fence = 0;
621
622 /* 1 if the assembler should generate relax relocations. */
623
624 static int generate_relax_relocations
625 = DEFAULT_GENERATE_X86_RELAX_RELOCATIONS;
626
627 static enum check_kind
628 {
629 check_none = 0,
630 check_warning,
631 check_error
632 }
633 sse_check, operand_check = check_warning;
634
635 /* Optimization:
636 1. Clear the REX_W bit with register operand if possible.
637 2. Above plus use 128bit vector instruction to clear the full vector
638 register.
639 */
640 static int optimize = 0;
641
642 /* Optimization:
643 1. Clear the REX_W bit with register operand if possible.
644 2. Above plus use 128bit vector instruction to clear the full vector
645 register.
646 3. Above plus optimize "test{q,l,w} $imm8,%r{64,32,16}" to
647 "testb $imm7,%r8".
648 */
649 static int optimize_for_space = 0;
650
651 /* Register prefix used for error message. */
652 static const char *register_prefix = "%";
653
654 /* Used in 16 bit gcc mode to add an l suffix to call, ret, enter,
655 leave, push, and pop instructions so that gcc has the same stack
656 frame as in 32 bit mode. */
657 static char stackop_size = '\0';
658
659 /* Non-zero to optimize code alignment. */
660 int optimize_align_code = 1;
661
662 /* Non-zero to quieten some warnings. */
663 static int quiet_warnings = 0;
664
665 /* CPU name. */
666 static const char *cpu_arch_name = NULL;
667 static char *cpu_sub_arch_name = NULL;
668
669 /* CPU feature flags. */
670 static i386_cpu_flags cpu_arch_flags = CPU_UNKNOWN_FLAGS;
671
672 /* If we have selected a cpu we are generating instructions for. */
673 static int cpu_arch_tune_set = 0;
674
675 /* Cpu we are generating instructions for. */
676 enum processor_type cpu_arch_tune = PROCESSOR_UNKNOWN;
677
678 /* CPU feature flags of cpu we are generating instructions for. */
679 static i386_cpu_flags cpu_arch_tune_flags;
680
681 /* CPU instruction set architecture used. */
682 enum processor_type cpu_arch_isa = PROCESSOR_UNKNOWN;
683
684 /* CPU feature flags of instruction set architecture used. */
685 i386_cpu_flags cpu_arch_isa_flags;
686
687 /* If set, conditional jumps are not automatically promoted to handle
688 larger than a byte offset. */
689 static unsigned int no_cond_jump_promotion = 0;
690
691 /* Encode SSE instructions with VEX prefix. */
692 static unsigned int sse2avx;
693
694 /* Encode scalar AVX instructions with specific vector length. */
695 static enum
696 {
697 vex128 = 0,
698 vex256
699 } avxscalar;
700
701 /* Encode VEX WIG instructions with specific vex.w. */
702 static enum
703 {
704 vexw0 = 0,
705 vexw1
706 } vexwig;
707
708 /* Encode scalar EVEX LIG instructions with specific vector length. */
709 static enum
710 {
711 evexl128 = 0,
712 evexl256,
713 evexl512
714 } evexlig;
715
716 /* Encode EVEX WIG instructions with specific evex.w. */
717 static enum
718 {
719 evexw0 = 0,
720 evexw1
721 } evexwig;
722
723 /* Value to encode in EVEX RC bits, for SAE-only instructions. */
724 static enum rc_type evexrcig = rne;
725
726 /* Pre-defined "_GLOBAL_OFFSET_TABLE_". */
727 static symbolS *GOT_symbol;
728
729 /* The dwarf2 return column, adjusted for 32 or 64 bit. */
730 unsigned int x86_dwarf2_return_column;
731
732 /* The dwarf2 data alignment, adjusted for 32 or 64 bit. */
733 int x86_cie_data_alignment;
734
735 /* Interface to relax_segment.
736 There are 3 major relax states for 386 jump insns because the
737 different types of jumps add different sizes to frags when we're
738 figuring out what sort of jump to choose to reach a given label. */
739
740 /* Types. */
741 #define UNCOND_JUMP 0
742 #define COND_JUMP 1
743 #define COND_JUMP86 2
744
745 /* Sizes. */
746 #define CODE16 1
747 #define SMALL 0
748 #define SMALL16 (SMALL | CODE16)
749 #define BIG 2
750 #define BIG16 (BIG | CODE16)
751
752 #ifndef INLINE
753 #ifdef __GNUC__
754 #define INLINE __inline__
755 #else
756 #define INLINE
757 #endif
758 #endif
759
760 #define ENCODE_RELAX_STATE(type, size) \
761 ((relax_substateT) (((type) << 2) | (size)))
762 #define TYPE_FROM_RELAX_STATE(s) \
763 ((s) >> 2)
764 #define DISP_SIZE_FROM_RELAX_STATE(s) \
765 ((((s) & 3) == BIG ? 4 : (((s) & 3) == BIG16 ? 2 : 1)))
766
767 /* This table is used by relax_frag to promote short jumps to long
768 ones where necessary. SMALL (short) jumps may be promoted to BIG
769 (32 bit long) ones, and SMALL16 jumps to BIG16 (16 bit long). We
770 don't allow a short jump in a 32 bit code segment to be promoted to
771 a 16 bit offset jump because it's slower (requires data size
772 prefix), and doesn't work, unless the destination is in the bottom
773 64k of the code segment (The top 16 bits of eip are zeroed). */
774
775 const relax_typeS md_relax_table[] =
776 {
777 /* The fields are:
778 1) most positive reach of this state,
779 2) most negative reach of this state,
780 3) how many bytes this mode will have in the variable part of the frag
781 4) which index into the table to try if we can't fit into this one. */
782
783 /* UNCOND_JUMP states. */
784 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG)},
785 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16)},
786 /* dword jmp adds 4 bytes to frag:
787 0 extra opcode bytes, 4 displacement bytes. */
788 {0, 0, 4, 0},
789 /* word jmp adds 2 byte2 to frag:
790 0 extra opcode bytes, 2 displacement bytes. */
791 {0, 0, 2, 0},
792
793 /* COND_JUMP states. */
794 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG)},
795 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG16)},
796 /* dword conditionals adds 5 bytes to frag:
797 1 extra opcode byte, 4 displacement bytes. */
798 {0, 0, 5, 0},
799 /* word conditionals add 3 bytes to frag:
800 1 extra opcode byte, 2 displacement bytes. */
801 {0, 0, 3, 0},
802
803 /* COND_JUMP86 states. */
804 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG)},
805 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG16)},
806 /* dword conditionals adds 5 bytes to frag:
807 1 extra opcode byte, 4 displacement bytes. */
808 {0, 0, 5, 0},
809 /* word conditionals add 4 bytes to frag:
810 1 displacement byte and a 3 byte long branch insn. */
811 {0, 0, 4, 0}
812 };
813
814 static const arch_entry cpu_arch[] =
815 {
816 /* Do not replace the first two entries - i386_target_format()
817 relies on them being there in this order. */
818 { STRING_COMMA_LEN ("generic32"), PROCESSOR_GENERIC32,
819 CPU_GENERIC32_FLAGS, 0 },
820 { STRING_COMMA_LEN ("generic64"), PROCESSOR_GENERIC64,
821 CPU_GENERIC64_FLAGS, 0 },
822 { STRING_COMMA_LEN ("i8086"), PROCESSOR_UNKNOWN,
823 CPU_NONE_FLAGS, 0 },
824 { STRING_COMMA_LEN ("i186"), PROCESSOR_UNKNOWN,
825 CPU_I186_FLAGS, 0 },
826 { STRING_COMMA_LEN ("i286"), PROCESSOR_UNKNOWN,
827 CPU_I286_FLAGS, 0 },
828 { STRING_COMMA_LEN ("i386"), PROCESSOR_I386,
829 CPU_I386_FLAGS, 0 },
830 { STRING_COMMA_LEN ("i486"), PROCESSOR_I486,
831 CPU_I486_FLAGS, 0 },
832 { STRING_COMMA_LEN ("i586"), PROCESSOR_PENTIUM,
833 CPU_I586_FLAGS, 0 },
834 { STRING_COMMA_LEN ("i686"), PROCESSOR_PENTIUMPRO,
835 CPU_I686_FLAGS, 0 },
836 { STRING_COMMA_LEN ("pentium"), PROCESSOR_PENTIUM,
837 CPU_I586_FLAGS, 0 },
838 { STRING_COMMA_LEN ("pentiumpro"), PROCESSOR_PENTIUMPRO,
839 CPU_PENTIUMPRO_FLAGS, 0 },
840 { STRING_COMMA_LEN ("pentiumii"), PROCESSOR_PENTIUMPRO,
841 CPU_P2_FLAGS, 0 },
842 { STRING_COMMA_LEN ("pentiumiii"),PROCESSOR_PENTIUMPRO,
843 CPU_P3_FLAGS, 0 },
844 { STRING_COMMA_LEN ("pentium4"), PROCESSOR_PENTIUM4,
845 CPU_P4_FLAGS, 0 },
846 { STRING_COMMA_LEN ("prescott"), PROCESSOR_NOCONA,
847 CPU_CORE_FLAGS, 0 },
848 { STRING_COMMA_LEN ("nocona"), PROCESSOR_NOCONA,
849 CPU_NOCONA_FLAGS, 0 },
850 { STRING_COMMA_LEN ("yonah"), PROCESSOR_CORE,
851 CPU_CORE_FLAGS, 1 },
852 { STRING_COMMA_LEN ("core"), PROCESSOR_CORE,
853 CPU_CORE_FLAGS, 0 },
854 { STRING_COMMA_LEN ("merom"), PROCESSOR_CORE2,
855 CPU_CORE2_FLAGS, 1 },
856 { STRING_COMMA_LEN ("core2"), PROCESSOR_CORE2,
857 CPU_CORE2_FLAGS, 0 },
858 { STRING_COMMA_LEN ("corei7"), PROCESSOR_COREI7,
859 CPU_COREI7_FLAGS, 0 },
860 { STRING_COMMA_LEN ("l1om"), PROCESSOR_L1OM,
861 CPU_L1OM_FLAGS, 0 },
862 { STRING_COMMA_LEN ("k1om"), PROCESSOR_K1OM,
863 CPU_K1OM_FLAGS, 0 },
864 { STRING_COMMA_LEN ("iamcu"), PROCESSOR_IAMCU,
865 CPU_IAMCU_FLAGS, 0 },
866 { STRING_COMMA_LEN ("k6"), PROCESSOR_K6,
867 CPU_K6_FLAGS, 0 },
868 { STRING_COMMA_LEN ("k6_2"), PROCESSOR_K6,
869 CPU_K6_2_FLAGS, 0 },
870 { STRING_COMMA_LEN ("athlon"), PROCESSOR_ATHLON,
871 CPU_ATHLON_FLAGS, 0 },
872 { STRING_COMMA_LEN ("sledgehammer"), PROCESSOR_K8,
873 CPU_K8_FLAGS, 1 },
874 { STRING_COMMA_LEN ("opteron"), PROCESSOR_K8,
875 CPU_K8_FLAGS, 0 },
876 { STRING_COMMA_LEN ("k8"), PROCESSOR_K8,
877 CPU_K8_FLAGS, 0 },
878 { STRING_COMMA_LEN ("amdfam10"), PROCESSOR_AMDFAM10,
879 CPU_AMDFAM10_FLAGS, 0 },
880 { STRING_COMMA_LEN ("bdver1"), PROCESSOR_BD,
881 CPU_BDVER1_FLAGS, 0 },
882 { STRING_COMMA_LEN ("bdver2"), PROCESSOR_BD,
883 CPU_BDVER2_FLAGS, 0 },
884 { STRING_COMMA_LEN ("bdver3"), PROCESSOR_BD,
885 CPU_BDVER3_FLAGS, 0 },
886 { STRING_COMMA_LEN ("bdver4"), PROCESSOR_BD,
887 CPU_BDVER4_FLAGS, 0 },
888 { STRING_COMMA_LEN ("znver1"), PROCESSOR_ZNVER,
889 CPU_ZNVER1_FLAGS, 0 },
890 { STRING_COMMA_LEN ("znver2"), PROCESSOR_ZNVER,
891 CPU_ZNVER2_FLAGS, 0 },
892 { STRING_COMMA_LEN ("btver1"), PROCESSOR_BT,
893 CPU_BTVER1_FLAGS, 0 },
894 { STRING_COMMA_LEN ("btver2"), PROCESSOR_BT,
895 CPU_BTVER2_FLAGS, 0 },
896 { STRING_COMMA_LEN (".8087"), PROCESSOR_UNKNOWN,
897 CPU_8087_FLAGS, 0 },
898 { STRING_COMMA_LEN (".287"), PROCESSOR_UNKNOWN,
899 CPU_287_FLAGS, 0 },
900 { STRING_COMMA_LEN (".387"), PROCESSOR_UNKNOWN,
901 CPU_387_FLAGS, 0 },
902 { STRING_COMMA_LEN (".687"), PROCESSOR_UNKNOWN,
903 CPU_687_FLAGS, 0 },
904 { STRING_COMMA_LEN (".cmov"), PROCESSOR_UNKNOWN,
905 CPU_CMOV_FLAGS, 0 },
906 { STRING_COMMA_LEN (".fxsr"), PROCESSOR_UNKNOWN,
907 CPU_FXSR_FLAGS, 0 },
908 { STRING_COMMA_LEN (".mmx"), PROCESSOR_UNKNOWN,
909 CPU_MMX_FLAGS, 0 },
910 { STRING_COMMA_LEN (".sse"), PROCESSOR_UNKNOWN,
911 CPU_SSE_FLAGS, 0 },
912 { STRING_COMMA_LEN (".sse2"), PROCESSOR_UNKNOWN,
913 CPU_SSE2_FLAGS, 0 },
914 { STRING_COMMA_LEN (".sse3"), PROCESSOR_UNKNOWN,
915 CPU_SSE3_FLAGS, 0 },
916 { STRING_COMMA_LEN (".ssse3"), PROCESSOR_UNKNOWN,
917 CPU_SSSE3_FLAGS, 0 },
918 { STRING_COMMA_LEN (".sse4.1"), PROCESSOR_UNKNOWN,
919 CPU_SSE4_1_FLAGS, 0 },
920 { STRING_COMMA_LEN (".sse4.2"), PROCESSOR_UNKNOWN,
921 CPU_SSE4_2_FLAGS, 0 },
922 { STRING_COMMA_LEN (".sse4"), PROCESSOR_UNKNOWN,
923 CPU_SSE4_2_FLAGS, 0 },
924 { STRING_COMMA_LEN (".avx"), PROCESSOR_UNKNOWN,
925 CPU_AVX_FLAGS, 0 },
926 { STRING_COMMA_LEN (".avx2"), PROCESSOR_UNKNOWN,
927 CPU_AVX2_FLAGS, 0 },
928 { STRING_COMMA_LEN (".avx512f"), PROCESSOR_UNKNOWN,
929 CPU_AVX512F_FLAGS, 0 },
930 { STRING_COMMA_LEN (".avx512cd"), PROCESSOR_UNKNOWN,
931 CPU_AVX512CD_FLAGS, 0 },
932 { STRING_COMMA_LEN (".avx512er"), PROCESSOR_UNKNOWN,
933 CPU_AVX512ER_FLAGS, 0 },
934 { STRING_COMMA_LEN (".avx512pf"), PROCESSOR_UNKNOWN,
935 CPU_AVX512PF_FLAGS, 0 },
936 { STRING_COMMA_LEN (".avx512dq"), PROCESSOR_UNKNOWN,
937 CPU_AVX512DQ_FLAGS, 0 },
938 { STRING_COMMA_LEN (".avx512bw"), PROCESSOR_UNKNOWN,
939 CPU_AVX512BW_FLAGS, 0 },
940 { STRING_COMMA_LEN (".avx512vl"), PROCESSOR_UNKNOWN,
941 CPU_AVX512VL_FLAGS, 0 },
942 { STRING_COMMA_LEN (".vmx"), PROCESSOR_UNKNOWN,
943 CPU_VMX_FLAGS, 0 },
944 { STRING_COMMA_LEN (".vmfunc"), PROCESSOR_UNKNOWN,
945 CPU_VMFUNC_FLAGS, 0 },
946 { STRING_COMMA_LEN (".smx"), PROCESSOR_UNKNOWN,
947 CPU_SMX_FLAGS, 0 },
948 { STRING_COMMA_LEN (".xsave"), PROCESSOR_UNKNOWN,
949 CPU_XSAVE_FLAGS, 0 },
950 { STRING_COMMA_LEN (".xsaveopt"), PROCESSOR_UNKNOWN,
951 CPU_XSAVEOPT_FLAGS, 0 },
952 { STRING_COMMA_LEN (".xsavec"), PROCESSOR_UNKNOWN,
953 CPU_XSAVEC_FLAGS, 0 },
954 { STRING_COMMA_LEN (".xsaves"), PROCESSOR_UNKNOWN,
955 CPU_XSAVES_FLAGS, 0 },
956 { STRING_COMMA_LEN (".aes"), PROCESSOR_UNKNOWN,
957 CPU_AES_FLAGS, 0 },
958 { STRING_COMMA_LEN (".pclmul"), PROCESSOR_UNKNOWN,
959 CPU_PCLMUL_FLAGS, 0 },
960 { STRING_COMMA_LEN (".clmul"), PROCESSOR_UNKNOWN,
961 CPU_PCLMUL_FLAGS, 1 },
962 { STRING_COMMA_LEN (".fsgsbase"), PROCESSOR_UNKNOWN,
963 CPU_FSGSBASE_FLAGS, 0 },
964 { STRING_COMMA_LEN (".rdrnd"), PROCESSOR_UNKNOWN,
965 CPU_RDRND_FLAGS, 0 },
966 { STRING_COMMA_LEN (".f16c"), PROCESSOR_UNKNOWN,
967 CPU_F16C_FLAGS, 0 },
968 { STRING_COMMA_LEN (".bmi2"), PROCESSOR_UNKNOWN,
969 CPU_BMI2_FLAGS, 0 },
970 { STRING_COMMA_LEN (".fma"), PROCESSOR_UNKNOWN,
971 CPU_FMA_FLAGS, 0 },
972 { STRING_COMMA_LEN (".fma4"), PROCESSOR_UNKNOWN,
973 CPU_FMA4_FLAGS, 0 },
974 { STRING_COMMA_LEN (".xop"), PROCESSOR_UNKNOWN,
975 CPU_XOP_FLAGS, 0 },
976 { STRING_COMMA_LEN (".lwp"), PROCESSOR_UNKNOWN,
977 CPU_LWP_FLAGS, 0 },
978 { STRING_COMMA_LEN (".movbe"), PROCESSOR_UNKNOWN,
979 CPU_MOVBE_FLAGS, 0 },
980 { STRING_COMMA_LEN (".cx16"), PROCESSOR_UNKNOWN,
981 CPU_CX16_FLAGS, 0 },
982 { STRING_COMMA_LEN (".ept"), PROCESSOR_UNKNOWN,
983 CPU_EPT_FLAGS, 0 },
984 { STRING_COMMA_LEN (".lzcnt"), PROCESSOR_UNKNOWN,
985 CPU_LZCNT_FLAGS, 0 },
986 { STRING_COMMA_LEN (".hle"), PROCESSOR_UNKNOWN,
987 CPU_HLE_FLAGS, 0 },
988 { STRING_COMMA_LEN (".rtm"), PROCESSOR_UNKNOWN,
989 CPU_RTM_FLAGS, 0 },
990 { STRING_COMMA_LEN (".invpcid"), PROCESSOR_UNKNOWN,
991 CPU_INVPCID_FLAGS, 0 },
992 { STRING_COMMA_LEN (".clflush"), PROCESSOR_UNKNOWN,
993 CPU_CLFLUSH_FLAGS, 0 },
994 { STRING_COMMA_LEN (".nop"), PROCESSOR_UNKNOWN,
995 CPU_NOP_FLAGS, 0 },
996 { STRING_COMMA_LEN (".syscall"), PROCESSOR_UNKNOWN,
997 CPU_SYSCALL_FLAGS, 0 },
998 { STRING_COMMA_LEN (".rdtscp"), PROCESSOR_UNKNOWN,
999 CPU_RDTSCP_FLAGS, 0 },
1000 { STRING_COMMA_LEN (".3dnow"), PROCESSOR_UNKNOWN,
1001 CPU_3DNOW_FLAGS, 0 },
1002 { STRING_COMMA_LEN (".3dnowa"), PROCESSOR_UNKNOWN,
1003 CPU_3DNOWA_FLAGS, 0 },
1004 { STRING_COMMA_LEN (".padlock"), PROCESSOR_UNKNOWN,
1005 CPU_PADLOCK_FLAGS, 0 },
1006 { STRING_COMMA_LEN (".pacifica"), PROCESSOR_UNKNOWN,
1007 CPU_SVME_FLAGS, 1 },
1008 { STRING_COMMA_LEN (".svme"), PROCESSOR_UNKNOWN,
1009 CPU_SVME_FLAGS, 0 },
1010 { STRING_COMMA_LEN (".sse4a"), PROCESSOR_UNKNOWN,
1011 CPU_SSE4A_FLAGS, 0 },
1012 { STRING_COMMA_LEN (".abm"), PROCESSOR_UNKNOWN,
1013 CPU_ABM_FLAGS, 0 },
1014 { STRING_COMMA_LEN (".bmi"), PROCESSOR_UNKNOWN,
1015 CPU_BMI_FLAGS, 0 },
1016 { STRING_COMMA_LEN (".tbm"), PROCESSOR_UNKNOWN,
1017 CPU_TBM_FLAGS, 0 },
1018 { STRING_COMMA_LEN (".adx"), PROCESSOR_UNKNOWN,
1019 CPU_ADX_FLAGS, 0 },
1020 { STRING_COMMA_LEN (".rdseed"), PROCESSOR_UNKNOWN,
1021 CPU_RDSEED_FLAGS, 0 },
1022 { STRING_COMMA_LEN (".prfchw"), PROCESSOR_UNKNOWN,
1023 CPU_PRFCHW_FLAGS, 0 },
1024 { STRING_COMMA_LEN (".smap"), PROCESSOR_UNKNOWN,
1025 CPU_SMAP_FLAGS, 0 },
1026 { STRING_COMMA_LEN (".mpx"), PROCESSOR_UNKNOWN,
1027 CPU_MPX_FLAGS, 0 },
1028 { STRING_COMMA_LEN (".sha"), PROCESSOR_UNKNOWN,
1029 CPU_SHA_FLAGS, 0 },
1030 { STRING_COMMA_LEN (".clflushopt"), PROCESSOR_UNKNOWN,
1031 CPU_CLFLUSHOPT_FLAGS, 0 },
1032 { STRING_COMMA_LEN (".prefetchwt1"), PROCESSOR_UNKNOWN,
1033 CPU_PREFETCHWT1_FLAGS, 0 },
1034 { STRING_COMMA_LEN (".se1"), PROCESSOR_UNKNOWN,
1035 CPU_SE1_FLAGS, 0 },
1036 { STRING_COMMA_LEN (".clwb"), PROCESSOR_UNKNOWN,
1037 CPU_CLWB_FLAGS, 0 },
1038 { STRING_COMMA_LEN (".avx512ifma"), PROCESSOR_UNKNOWN,
1039 CPU_AVX512IFMA_FLAGS, 0 },
1040 { STRING_COMMA_LEN (".avx512vbmi"), PROCESSOR_UNKNOWN,
1041 CPU_AVX512VBMI_FLAGS, 0 },
1042 { STRING_COMMA_LEN (".avx512_4fmaps"), PROCESSOR_UNKNOWN,
1043 CPU_AVX512_4FMAPS_FLAGS, 0 },
1044 { STRING_COMMA_LEN (".avx512_4vnniw"), PROCESSOR_UNKNOWN,
1045 CPU_AVX512_4VNNIW_FLAGS, 0 },
1046 { STRING_COMMA_LEN (".avx512_vpopcntdq"), PROCESSOR_UNKNOWN,
1047 CPU_AVX512_VPOPCNTDQ_FLAGS, 0 },
1048 { STRING_COMMA_LEN (".avx512_vbmi2"), PROCESSOR_UNKNOWN,
1049 CPU_AVX512_VBMI2_FLAGS, 0 },
1050 { STRING_COMMA_LEN (".avx512_vnni"), PROCESSOR_UNKNOWN,
1051 CPU_AVX512_VNNI_FLAGS, 0 },
1052 { STRING_COMMA_LEN (".avx512_bitalg"), PROCESSOR_UNKNOWN,
1053 CPU_AVX512_BITALG_FLAGS, 0 },
1054 { STRING_COMMA_LEN (".clzero"), PROCESSOR_UNKNOWN,
1055 CPU_CLZERO_FLAGS, 0 },
1056 { STRING_COMMA_LEN (".mwaitx"), PROCESSOR_UNKNOWN,
1057 CPU_MWAITX_FLAGS, 0 },
1058 { STRING_COMMA_LEN (".ospke"), PROCESSOR_UNKNOWN,
1059 CPU_OSPKE_FLAGS, 0 },
1060 { STRING_COMMA_LEN (".rdpid"), PROCESSOR_UNKNOWN,
1061 CPU_RDPID_FLAGS, 0 },
1062 { STRING_COMMA_LEN (".ptwrite"), PROCESSOR_UNKNOWN,
1063 CPU_PTWRITE_FLAGS, 0 },
1064 { STRING_COMMA_LEN (".ibt"), PROCESSOR_UNKNOWN,
1065 CPU_IBT_FLAGS, 0 },
1066 { STRING_COMMA_LEN (".shstk"), PROCESSOR_UNKNOWN,
1067 CPU_SHSTK_FLAGS, 0 },
1068 { STRING_COMMA_LEN (".gfni"), PROCESSOR_UNKNOWN,
1069 CPU_GFNI_FLAGS, 0 },
1070 { STRING_COMMA_LEN (".vaes"), PROCESSOR_UNKNOWN,
1071 CPU_VAES_FLAGS, 0 },
1072 { STRING_COMMA_LEN (".vpclmulqdq"), PROCESSOR_UNKNOWN,
1073 CPU_VPCLMULQDQ_FLAGS, 0 },
1074 { STRING_COMMA_LEN (".wbnoinvd"), PROCESSOR_UNKNOWN,
1075 CPU_WBNOINVD_FLAGS, 0 },
1076 { STRING_COMMA_LEN (".pconfig"), PROCESSOR_UNKNOWN,
1077 CPU_PCONFIG_FLAGS, 0 },
1078 { STRING_COMMA_LEN (".waitpkg"), PROCESSOR_UNKNOWN,
1079 CPU_WAITPKG_FLAGS, 0 },
1080 { STRING_COMMA_LEN (".cldemote"), PROCESSOR_UNKNOWN,
1081 CPU_CLDEMOTE_FLAGS, 0 },
1082 { STRING_COMMA_LEN (".movdiri"), PROCESSOR_UNKNOWN,
1083 CPU_MOVDIRI_FLAGS, 0 },
1084 { STRING_COMMA_LEN (".movdir64b"), PROCESSOR_UNKNOWN,
1085 CPU_MOVDIR64B_FLAGS, 0 },
1086 { STRING_COMMA_LEN (".avx512_bf16"), PROCESSOR_UNKNOWN,
1087 CPU_AVX512_BF16_FLAGS, 0 },
1088 { STRING_COMMA_LEN (".avx512_vp2intersect"), PROCESSOR_UNKNOWN,
1089 CPU_AVX512_VP2INTERSECT_FLAGS, 0 },
1090 { STRING_COMMA_LEN (".enqcmd"), PROCESSOR_UNKNOWN,
1091 CPU_ENQCMD_FLAGS, 0 },
1092 };
1093
1094 static const noarch_entry cpu_noarch[] =
1095 {
1096 { STRING_COMMA_LEN ("no87"), CPU_ANY_X87_FLAGS },
1097 { STRING_COMMA_LEN ("no287"), CPU_ANY_287_FLAGS },
1098 { STRING_COMMA_LEN ("no387"), CPU_ANY_387_FLAGS },
1099 { STRING_COMMA_LEN ("no687"), CPU_ANY_687_FLAGS },
1100 { STRING_COMMA_LEN ("nocmov"), CPU_ANY_CMOV_FLAGS },
1101 { STRING_COMMA_LEN ("nofxsr"), CPU_ANY_FXSR_FLAGS },
1102 { STRING_COMMA_LEN ("nommx"), CPU_ANY_MMX_FLAGS },
1103 { STRING_COMMA_LEN ("nosse"), CPU_ANY_SSE_FLAGS },
1104 { STRING_COMMA_LEN ("nosse2"), CPU_ANY_SSE2_FLAGS },
1105 { STRING_COMMA_LEN ("nosse3"), CPU_ANY_SSE3_FLAGS },
1106 { STRING_COMMA_LEN ("nossse3"), CPU_ANY_SSSE3_FLAGS },
1107 { STRING_COMMA_LEN ("nosse4.1"), CPU_ANY_SSE4_1_FLAGS },
1108 { STRING_COMMA_LEN ("nosse4.2"), CPU_ANY_SSE4_2_FLAGS },
1109 { STRING_COMMA_LEN ("nosse4"), CPU_ANY_SSE4_1_FLAGS },
1110 { STRING_COMMA_LEN ("noavx"), CPU_ANY_AVX_FLAGS },
1111 { STRING_COMMA_LEN ("noavx2"), CPU_ANY_AVX2_FLAGS },
1112 { STRING_COMMA_LEN ("noavx512f"), CPU_ANY_AVX512F_FLAGS },
1113 { STRING_COMMA_LEN ("noavx512cd"), CPU_ANY_AVX512CD_FLAGS },
1114 { STRING_COMMA_LEN ("noavx512er"), CPU_ANY_AVX512ER_FLAGS },
1115 { STRING_COMMA_LEN ("noavx512pf"), CPU_ANY_AVX512PF_FLAGS },
1116 { STRING_COMMA_LEN ("noavx512dq"), CPU_ANY_AVX512DQ_FLAGS },
1117 { STRING_COMMA_LEN ("noavx512bw"), CPU_ANY_AVX512BW_FLAGS },
1118 { STRING_COMMA_LEN ("noavx512vl"), CPU_ANY_AVX512VL_FLAGS },
1119 { STRING_COMMA_LEN ("noavx512ifma"), CPU_ANY_AVX512IFMA_FLAGS },
1120 { STRING_COMMA_LEN ("noavx512vbmi"), CPU_ANY_AVX512VBMI_FLAGS },
1121 { STRING_COMMA_LEN ("noavx512_4fmaps"), CPU_ANY_AVX512_4FMAPS_FLAGS },
1122 { STRING_COMMA_LEN ("noavx512_4vnniw"), CPU_ANY_AVX512_4VNNIW_FLAGS },
1123 { STRING_COMMA_LEN ("noavx512_vpopcntdq"), CPU_ANY_AVX512_VPOPCNTDQ_FLAGS },
1124 { STRING_COMMA_LEN ("noavx512_vbmi2"), CPU_ANY_AVX512_VBMI2_FLAGS },
1125 { STRING_COMMA_LEN ("noavx512_vnni"), CPU_ANY_AVX512_VNNI_FLAGS },
1126 { STRING_COMMA_LEN ("noavx512_bitalg"), CPU_ANY_AVX512_BITALG_FLAGS },
1127 { STRING_COMMA_LEN ("noibt"), CPU_ANY_IBT_FLAGS },
1128 { STRING_COMMA_LEN ("noshstk"), CPU_ANY_SHSTK_FLAGS },
1129 { STRING_COMMA_LEN ("nomovdiri"), CPU_ANY_MOVDIRI_FLAGS },
1130 { STRING_COMMA_LEN ("nomovdir64b"), CPU_ANY_MOVDIR64B_FLAGS },
1131 { STRING_COMMA_LEN ("noavx512_bf16"), CPU_ANY_AVX512_BF16_FLAGS },
1132 { STRING_COMMA_LEN ("noavx512_vp2intersect"), CPU_ANY_SHSTK_FLAGS },
1133 { STRING_COMMA_LEN ("noenqcmd"), CPU_ANY_ENQCMD_FLAGS },
1134 };
1135
1136 #ifdef I386COFF
1137 /* Like s_lcomm_internal in gas/read.c but the alignment string
1138 is allowed to be optional. */
1139
1140 static symbolS *
1141 pe_lcomm_internal (int needs_align, symbolS *symbolP, addressT size)
1142 {
1143 addressT align = 0;
1144
1145 SKIP_WHITESPACE ();
1146
1147 if (needs_align
1148 && *input_line_pointer == ',')
1149 {
1150 align = parse_align (needs_align - 1);
1151
1152 if (align == (addressT) -1)
1153 return NULL;
1154 }
1155 else
1156 {
1157 if (size >= 8)
1158 align = 3;
1159 else if (size >= 4)
1160 align = 2;
1161 else if (size >= 2)
1162 align = 1;
1163 else
1164 align = 0;
1165 }
1166
1167 bss_alloc (symbolP, size, align);
1168 return symbolP;
1169 }
1170
1171 static void
1172 pe_lcomm (int needs_align)
1173 {
1174 s_comm_internal (needs_align * 2, pe_lcomm_internal);
1175 }
1176 #endif
1177
1178 const pseudo_typeS md_pseudo_table[] =
1179 {
1180 #if !defined(OBJ_AOUT) && !defined(USE_ALIGN_PTWO)
1181 {"align", s_align_bytes, 0},
1182 #else
1183 {"align", s_align_ptwo, 0},
1184 #endif
1185 {"arch", set_cpu_arch, 0},
1186 #ifndef I386COFF
1187 {"bss", s_bss, 0},
1188 #else
1189 {"lcomm", pe_lcomm, 1},
1190 #endif
1191 {"ffloat", float_cons, 'f'},
1192 {"dfloat", float_cons, 'd'},
1193 {"tfloat", float_cons, 'x'},
1194 {"value", cons, 2},
1195 {"slong", signed_cons, 4},
1196 {"noopt", s_ignore, 0},
1197 {"optim", s_ignore, 0},
1198 {"code16gcc", set_16bit_gcc_code_flag, CODE_16BIT},
1199 {"code16", set_code_flag, CODE_16BIT},
1200 {"code32", set_code_flag, CODE_32BIT},
1201 #ifdef BFD64
1202 {"code64", set_code_flag, CODE_64BIT},
1203 #endif
1204 {"intel_syntax", set_intel_syntax, 1},
1205 {"att_syntax", set_intel_syntax, 0},
1206 {"intel_mnemonic", set_intel_mnemonic, 1},
1207 {"att_mnemonic", set_intel_mnemonic, 0},
1208 {"allow_index_reg", set_allow_index_reg, 1},
1209 {"disallow_index_reg", set_allow_index_reg, 0},
1210 {"sse_check", set_check, 0},
1211 {"operand_check", set_check, 1},
1212 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
1213 {"largecomm", handle_large_common, 0},
1214 #else
1215 {"file", dwarf2_directive_file, 0},
1216 {"loc", dwarf2_directive_loc, 0},
1217 {"loc_mark_labels", dwarf2_directive_loc_mark_labels, 0},
1218 #endif
1219 #ifdef TE_PE
1220 {"secrel32", pe_directive_secrel, 0},
1221 #endif
1222 {0, 0, 0}
1223 };
1224
1225 /* For interface with expression (). */
1226 extern char *input_line_pointer;
1227
1228 /* Hash table for instruction mnemonic lookup. */
1229 static struct hash_control *op_hash;
1230
1231 /* Hash table for register lookup. */
1232 static struct hash_control *reg_hash;
1233 \f
1234 /* Various efficient no-op patterns for aligning code labels.
1235 Note: Don't try to assemble the instructions in the comments.
1236 0L and 0w are not legal. */
1237 static const unsigned char f32_1[] =
1238 {0x90}; /* nop */
1239 static const unsigned char f32_2[] =
1240 {0x66,0x90}; /* xchg %ax,%ax */
1241 static const unsigned char f32_3[] =
1242 {0x8d,0x76,0x00}; /* leal 0(%esi),%esi */
1243 static const unsigned char f32_4[] =
1244 {0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
1245 static const unsigned char f32_6[] =
1246 {0x8d,0xb6,0x00,0x00,0x00,0x00}; /* leal 0L(%esi),%esi */
1247 static const unsigned char f32_7[] =
1248 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
1249 static const unsigned char f16_3[] =
1250 {0x8d,0x74,0x00}; /* lea 0(%si),%si */
1251 static const unsigned char f16_4[] =
1252 {0x8d,0xb4,0x00,0x00}; /* lea 0W(%si),%si */
1253 static const unsigned char jump_disp8[] =
1254 {0xeb}; /* jmp disp8 */
1255 static const unsigned char jump32_disp32[] =
1256 {0xe9}; /* jmp disp32 */
1257 static const unsigned char jump16_disp32[] =
1258 {0x66,0xe9}; /* jmp disp32 */
1259 /* 32-bit NOPs patterns. */
1260 static const unsigned char *const f32_patt[] = {
1261 f32_1, f32_2, f32_3, f32_4, NULL, f32_6, f32_7
1262 };
1263 /* 16-bit NOPs patterns. */
1264 static const unsigned char *const f16_patt[] = {
1265 f32_1, f32_2, f16_3, f16_4
1266 };
1267 /* nopl (%[re]ax) */
1268 static const unsigned char alt_3[] =
1269 {0x0f,0x1f,0x00};
1270 /* nopl 0(%[re]ax) */
1271 static const unsigned char alt_4[] =
1272 {0x0f,0x1f,0x40,0x00};
1273 /* nopl 0(%[re]ax,%[re]ax,1) */
1274 static const unsigned char alt_5[] =
1275 {0x0f,0x1f,0x44,0x00,0x00};
1276 /* nopw 0(%[re]ax,%[re]ax,1) */
1277 static const unsigned char alt_6[] =
1278 {0x66,0x0f,0x1f,0x44,0x00,0x00};
1279 /* nopl 0L(%[re]ax) */
1280 static const unsigned char alt_7[] =
1281 {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
1282 /* nopl 0L(%[re]ax,%[re]ax,1) */
1283 static const unsigned char alt_8[] =
1284 {0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1285 /* nopw 0L(%[re]ax,%[re]ax,1) */
1286 static const unsigned char alt_9[] =
1287 {0x66,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1288 /* nopw %cs:0L(%[re]ax,%[re]ax,1) */
1289 static const unsigned char alt_10[] =
1290 {0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1291 /* data16 nopw %cs:0L(%eax,%eax,1) */
1292 static const unsigned char alt_11[] =
1293 {0x66,0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1294 /* 32-bit and 64-bit NOPs patterns. */
1295 static const unsigned char *const alt_patt[] = {
1296 f32_1, f32_2, alt_3, alt_4, alt_5, alt_6, alt_7, alt_8,
1297 alt_9, alt_10, alt_11
1298 };
1299
1300 /* Genenerate COUNT bytes of NOPs to WHERE from PATT with the maximum
1301 size of a single NOP instruction MAX_SINGLE_NOP_SIZE. */
1302
1303 static void
1304 i386_output_nops (char *where, const unsigned char *const *patt,
1305 int count, int max_single_nop_size)
1306
1307 {
1308 /* Place the longer NOP first. */
1309 int last;
1310 int offset;
1311 const unsigned char *nops;
1312
1313 if (max_single_nop_size < 1)
1314 {
1315 as_fatal (_("i386_output_nops called to generate nops of at most %d bytes!"),
1316 max_single_nop_size);
1317 return;
1318 }
1319
1320 nops = patt[max_single_nop_size - 1];
1321
1322 /* Use the smaller one if the requsted one isn't available. */
1323 if (nops == NULL)
1324 {
1325 max_single_nop_size--;
1326 nops = patt[max_single_nop_size - 1];
1327 }
1328
1329 last = count % max_single_nop_size;
1330
1331 count -= last;
1332 for (offset = 0; offset < count; offset += max_single_nop_size)
1333 memcpy (where + offset, nops, max_single_nop_size);
1334
1335 if (last)
1336 {
1337 nops = patt[last - 1];
1338 if (nops == NULL)
1339 {
1340 /* Use the smaller one plus one-byte NOP if the needed one
1341 isn't available. */
1342 last--;
1343 nops = patt[last - 1];
1344 memcpy (where + offset, nops, last);
1345 where[offset + last] = *patt[0];
1346 }
1347 else
1348 memcpy (where + offset, nops, last);
1349 }
1350 }
1351
1352 static INLINE int
1353 fits_in_imm7 (offsetT num)
1354 {
1355 return (num & 0x7f) == num;
1356 }
1357
1358 static INLINE int
1359 fits_in_imm31 (offsetT num)
1360 {
1361 return (num & 0x7fffffff) == num;
1362 }
1363
1364 /* Genenerate COUNT bytes of NOPs to WHERE with the maximum size of a
1365 single NOP instruction LIMIT. */
1366
1367 void
1368 i386_generate_nops (fragS *fragP, char *where, offsetT count, int limit)
1369 {
1370 const unsigned char *const *patt = NULL;
1371 int max_single_nop_size;
1372 /* Maximum number of NOPs before switching to jump over NOPs. */
1373 int max_number_of_nops;
1374
1375 switch (fragP->fr_type)
1376 {
1377 case rs_fill_nop:
1378 case rs_align_code:
1379 break;
1380 default:
1381 return;
1382 }
1383
1384 /* We need to decide which NOP sequence to use for 32bit and
1385 64bit. When -mtune= is used:
1386
1387 1. For PROCESSOR_I386, PROCESSOR_I486, PROCESSOR_PENTIUM and
1388 PROCESSOR_GENERIC32, f32_patt will be used.
1389 2. For the rest, alt_patt will be used.
1390
1391 When -mtune= isn't used, alt_patt will be used if
1392 cpu_arch_isa_flags has CpuNop. Otherwise, f32_patt will
1393 be used.
1394
1395 When -march= or .arch is used, we can't use anything beyond
1396 cpu_arch_isa_flags. */
1397
1398 if (flag_code == CODE_16BIT)
1399 {
1400 patt = f16_patt;
1401 max_single_nop_size = sizeof (f16_patt) / sizeof (f16_patt[0]);
1402 /* Limit number of NOPs to 2 in 16-bit mode. */
1403 max_number_of_nops = 2;
1404 }
1405 else
1406 {
1407 if (fragP->tc_frag_data.isa == PROCESSOR_UNKNOWN)
1408 {
1409 /* PROCESSOR_UNKNOWN means that all ISAs may be used. */
1410 switch (cpu_arch_tune)
1411 {
1412 case PROCESSOR_UNKNOWN:
1413 /* We use cpu_arch_isa_flags to check if we SHOULD
1414 optimize with nops. */
1415 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1416 patt = alt_patt;
1417 else
1418 patt = f32_patt;
1419 break;
1420 case PROCESSOR_PENTIUM4:
1421 case PROCESSOR_NOCONA:
1422 case PROCESSOR_CORE:
1423 case PROCESSOR_CORE2:
1424 case PROCESSOR_COREI7:
1425 case PROCESSOR_L1OM:
1426 case PROCESSOR_K1OM:
1427 case PROCESSOR_GENERIC64:
1428 case PROCESSOR_K6:
1429 case PROCESSOR_ATHLON:
1430 case PROCESSOR_K8:
1431 case PROCESSOR_AMDFAM10:
1432 case PROCESSOR_BD:
1433 case PROCESSOR_ZNVER:
1434 case PROCESSOR_BT:
1435 patt = alt_patt;
1436 break;
1437 case PROCESSOR_I386:
1438 case PROCESSOR_I486:
1439 case PROCESSOR_PENTIUM:
1440 case PROCESSOR_PENTIUMPRO:
1441 case PROCESSOR_IAMCU:
1442 case PROCESSOR_GENERIC32:
1443 patt = f32_patt;
1444 break;
1445 }
1446 }
1447 else
1448 {
1449 switch (fragP->tc_frag_data.tune)
1450 {
1451 case PROCESSOR_UNKNOWN:
1452 /* When cpu_arch_isa is set, cpu_arch_tune shouldn't be
1453 PROCESSOR_UNKNOWN. */
1454 abort ();
1455 break;
1456
1457 case PROCESSOR_I386:
1458 case PROCESSOR_I486:
1459 case PROCESSOR_PENTIUM:
1460 case PROCESSOR_IAMCU:
1461 case PROCESSOR_K6:
1462 case PROCESSOR_ATHLON:
1463 case PROCESSOR_K8:
1464 case PROCESSOR_AMDFAM10:
1465 case PROCESSOR_BD:
1466 case PROCESSOR_ZNVER:
1467 case PROCESSOR_BT:
1468 case PROCESSOR_GENERIC32:
1469 /* We use cpu_arch_isa_flags to check if we CAN optimize
1470 with nops. */
1471 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1472 patt = alt_patt;
1473 else
1474 patt = f32_patt;
1475 break;
1476 case PROCESSOR_PENTIUMPRO:
1477 case PROCESSOR_PENTIUM4:
1478 case PROCESSOR_NOCONA:
1479 case PROCESSOR_CORE:
1480 case PROCESSOR_CORE2:
1481 case PROCESSOR_COREI7:
1482 case PROCESSOR_L1OM:
1483 case PROCESSOR_K1OM:
1484 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1485 patt = alt_patt;
1486 else
1487 patt = f32_patt;
1488 break;
1489 case PROCESSOR_GENERIC64:
1490 patt = alt_patt;
1491 break;
1492 }
1493 }
1494
1495 if (patt == f32_patt)
1496 {
1497 max_single_nop_size = sizeof (f32_patt) / sizeof (f32_patt[0]);
1498 /* Limit number of NOPs to 2 for older processors. */
1499 max_number_of_nops = 2;
1500 }
1501 else
1502 {
1503 max_single_nop_size = sizeof (alt_patt) / sizeof (alt_patt[0]);
1504 /* Limit number of NOPs to 7 for newer processors. */
1505 max_number_of_nops = 7;
1506 }
1507 }
1508
1509 if (limit == 0)
1510 limit = max_single_nop_size;
1511
1512 if (fragP->fr_type == rs_fill_nop)
1513 {
1514 /* Output NOPs for .nop directive. */
1515 if (limit > max_single_nop_size)
1516 {
1517 as_bad_where (fragP->fr_file, fragP->fr_line,
1518 _("invalid single nop size: %d "
1519 "(expect within [0, %d])"),
1520 limit, max_single_nop_size);
1521 return;
1522 }
1523 }
1524 else
1525 fragP->fr_var = count;
1526
1527 if ((count / max_single_nop_size) > max_number_of_nops)
1528 {
1529 /* Generate jump over NOPs. */
1530 offsetT disp = count - 2;
1531 if (fits_in_imm7 (disp))
1532 {
1533 /* Use "jmp disp8" if possible. */
1534 count = disp;
1535 where[0] = jump_disp8[0];
1536 where[1] = count;
1537 where += 2;
1538 }
1539 else
1540 {
1541 unsigned int size_of_jump;
1542
1543 if (flag_code == CODE_16BIT)
1544 {
1545 where[0] = jump16_disp32[0];
1546 where[1] = jump16_disp32[1];
1547 size_of_jump = 2;
1548 }
1549 else
1550 {
1551 where[0] = jump32_disp32[0];
1552 size_of_jump = 1;
1553 }
1554
1555 count -= size_of_jump + 4;
1556 if (!fits_in_imm31 (count))
1557 {
1558 as_bad_where (fragP->fr_file, fragP->fr_line,
1559 _("jump over nop padding out of range"));
1560 return;
1561 }
1562
1563 md_number_to_chars (where + size_of_jump, count, 4);
1564 where += size_of_jump + 4;
1565 }
1566 }
1567
1568 /* Generate multiple NOPs. */
1569 i386_output_nops (where, patt, count, limit);
1570 }
1571
1572 static INLINE int
1573 operand_type_all_zero (const union i386_operand_type *x)
1574 {
1575 switch (ARRAY_SIZE(x->array))
1576 {
1577 case 3:
1578 if (x->array[2])
1579 return 0;
1580 /* Fall through. */
1581 case 2:
1582 if (x->array[1])
1583 return 0;
1584 /* Fall through. */
1585 case 1:
1586 return !x->array[0];
1587 default:
1588 abort ();
1589 }
1590 }
1591
1592 static INLINE void
1593 operand_type_set (union i386_operand_type *x, unsigned int v)
1594 {
1595 switch (ARRAY_SIZE(x->array))
1596 {
1597 case 3:
1598 x->array[2] = v;
1599 /* Fall through. */
1600 case 2:
1601 x->array[1] = v;
1602 /* Fall through. */
1603 case 1:
1604 x->array[0] = v;
1605 /* Fall through. */
1606 break;
1607 default:
1608 abort ();
1609 }
1610 }
1611
1612 static INLINE int
1613 operand_type_equal (const union i386_operand_type *x,
1614 const union i386_operand_type *y)
1615 {
1616 switch (ARRAY_SIZE(x->array))
1617 {
1618 case 3:
1619 if (x->array[2] != y->array[2])
1620 return 0;
1621 /* Fall through. */
1622 case 2:
1623 if (x->array[1] != y->array[1])
1624 return 0;
1625 /* Fall through. */
1626 case 1:
1627 return x->array[0] == y->array[0];
1628 break;
1629 default:
1630 abort ();
1631 }
1632 }
1633
1634 static INLINE int
1635 cpu_flags_all_zero (const union i386_cpu_flags *x)
1636 {
1637 switch (ARRAY_SIZE(x->array))
1638 {
1639 case 4:
1640 if (x->array[3])
1641 return 0;
1642 /* Fall through. */
1643 case 3:
1644 if (x->array[2])
1645 return 0;
1646 /* Fall through. */
1647 case 2:
1648 if (x->array[1])
1649 return 0;
1650 /* Fall through. */
1651 case 1:
1652 return !x->array[0];
1653 default:
1654 abort ();
1655 }
1656 }
1657
1658 static INLINE int
1659 cpu_flags_equal (const union i386_cpu_flags *x,
1660 const union i386_cpu_flags *y)
1661 {
1662 switch (ARRAY_SIZE(x->array))
1663 {
1664 case 4:
1665 if (x->array[3] != y->array[3])
1666 return 0;
1667 /* Fall through. */
1668 case 3:
1669 if (x->array[2] != y->array[2])
1670 return 0;
1671 /* Fall through. */
1672 case 2:
1673 if (x->array[1] != y->array[1])
1674 return 0;
1675 /* Fall through. */
1676 case 1:
1677 return x->array[0] == y->array[0];
1678 break;
1679 default:
1680 abort ();
1681 }
1682 }
1683
1684 static INLINE int
1685 cpu_flags_check_cpu64 (i386_cpu_flags f)
1686 {
1687 return !((flag_code == CODE_64BIT && f.bitfield.cpuno64)
1688 || (flag_code != CODE_64BIT && f.bitfield.cpu64));
1689 }
1690
1691 static INLINE i386_cpu_flags
1692 cpu_flags_and (i386_cpu_flags x, i386_cpu_flags y)
1693 {
1694 switch (ARRAY_SIZE (x.array))
1695 {
1696 case 4:
1697 x.array [3] &= y.array [3];
1698 /* Fall through. */
1699 case 3:
1700 x.array [2] &= y.array [2];
1701 /* Fall through. */
1702 case 2:
1703 x.array [1] &= y.array [1];
1704 /* Fall through. */
1705 case 1:
1706 x.array [0] &= y.array [0];
1707 break;
1708 default:
1709 abort ();
1710 }
1711 return x;
1712 }
1713
1714 static INLINE i386_cpu_flags
1715 cpu_flags_or (i386_cpu_flags x, i386_cpu_flags y)
1716 {
1717 switch (ARRAY_SIZE (x.array))
1718 {
1719 case 4:
1720 x.array [3] |= y.array [3];
1721 /* Fall through. */
1722 case 3:
1723 x.array [2] |= y.array [2];
1724 /* Fall through. */
1725 case 2:
1726 x.array [1] |= y.array [1];
1727 /* Fall through. */
1728 case 1:
1729 x.array [0] |= y.array [0];
1730 break;
1731 default:
1732 abort ();
1733 }
1734 return x;
1735 }
1736
1737 static INLINE i386_cpu_flags
1738 cpu_flags_and_not (i386_cpu_flags x, i386_cpu_flags y)
1739 {
1740 switch (ARRAY_SIZE (x.array))
1741 {
1742 case 4:
1743 x.array [3] &= ~y.array [3];
1744 /* Fall through. */
1745 case 3:
1746 x.array [2] &= ~y.array [2];
1747 /* Fall through. */
1748 case 2:
1749 x.array [1] &= ~y.array [1];
1750 /* Fall through. */
1751 case 1:
1752 x.array [0] &= ~y.array [0];
1753 break;
1754 default:
1755 abort ();
1756 }
1757 return x;
1758 }
1759
1760 #define CPU_FLAGS_ARCH_MATCH 0x1
1761 #define CPU_FLAGS_64BIT_MATCH 0x2
1762
1763 #define CPU_FLAGS_PERFECT_MATCH \
1764 (CPU_FLAGS_ARCH_MATCH | CPU_FLAGS_64BIT_MATCH)
1765
1766 /* Return CPU flags match bits. */
1767
1768 static int
1769 cpu_flags_match (const insn_template *t)
1770 {
1771 i386_cpu_flags x = t->cpu_flags;
1772 int match = cpu_flags_check_cpu64 (x) ? CPU_FLAGS_64BIT_MATCH : 0;
1773
1774 x.bitfield.cpu64 = 0;
1775 x.bitfield.cpuno64 = 0;
1776
1777 if (cpu_flags_all_zero (&x))
1778 {
1779 /* This instruction is available on all archs. */
1780 match |= CPU_FLAGS_ARCH_MATCH;
1781 }
1782 else
1783 {
1784 /* This instruction is available only on some archs. */
1785 i386_cpu_flags cpu = cpu_arch_flags;
1786
1787 /* AVX512VL is no standalone feature - match it and then strip it. */
1788 if (x.bitfield.cpuavx512vl && !cpu.bitfield.cpuavx512vl)
1789 return match;
1790 x.bitfield.cpuavx512vl = 0;
1791
1792 cpu = cpu_flags_and (x, cpu);
1793 if (!cpu_flags_all_zero (&cpu))
1794 {
1795 if (x.bitfield.cpuavx)
1796 {
1797 /* We need to check a few extra flags with AVX. */
1798 if (cpu.bitfield.cpuavx
1799 && (!t->opcode_modifier.sse2avx || sse2avx)
1800 && (!x.bitfield.cpuaes || cpu.bitfield.cpuaes)
1801 && (!x.bitfield.cpugfni || cpu.bitfield.cpugfni)
1802 && (!x.bitfield.cpupclmul || cpu.bitfield.cpupclmul))
1803 match |= CPU_FLAGS_ARCH_MATCH;
1804 }
1805 else if (x.bitfield.cpuavx512f)
1806 {
1807 /* We need to check a few extra flags with AVX512F. */
1808 if (cpu.bitfield.cpuavx512f
1809 && (!x.bitfield.cpugfni || cpu.bitfield.cpugfni)
1810 && (!x.bitfield.cpuvaes || cpu.bitfield.cpuvaes)
1811 && (!x.bitfield.cpuvpclmulqdq || cpu.bitfield.cpuvpclmulqdq))
1812 match |= CPU_FLAGS_ARCH_MATCH;
1813 }
1814 else
1815 match |= CPU_FLAGS_ARCH_MATCH;
1816 }
1817 }
1818 return match;
1819 }
1820
1821 static INLINE i386_operand_type
1822 operand_type_and (i386_operand_type x, i386_operand_type y)
1823 {
1824 switch (ARRAY_SIZE (x.array))
1825 {
1826 case 3:
1827 x.array [2] &= y.array [2];
1828 /* Fall through. */
1829 case 2:
1830 x.array [1] &= y.array [1];
1831 /* Fall through. */
1832 case 1:
1833 x.array [0] &= y.array [0];
1834 break;
1835 default:
1836 abort ();
1837 }
1838 return x;
1839 }
1840
1841 static INLINE i386_operand_type
1842 operand_type_and_not (i386_operand_type x, i386_operand_type y)
1843 {
1844 switch (ARRAY_SIZE (x.array))
1845 {
1846 case 3:
1847 x.array [2] &= ~y.array [2];
1848 /* Fall through. */
1849 case 2:
1850 x.array [1] &= ~y.array [1];
1851 /* Fall through. */
1852 case 1:
1853 x.array [0] &= ~y.array [0];
1854 break;
1855 default:
1856 abort ();
1857 }
1858 return x;
1859 }
1860
1861 static INLINE i386_operand_type
1862 operand_type_or (i386_operand_type x, i386_operand_type y)
1863 {
1864 switch (ARRAY_SIZE (x.array))
1865 {
1866 case 3:
1867 x.array [2] |= y.array [2];
1868 /* Fall through. */
1869 case 2:
1870 x.array [1] |= y.array [1];
1871 /* Fall through. */
1872 case 1:
1873 x.array [0] |= y.array [0];
1874 break;
1875 default:
1876 abort ();
1877 }
1878 return x;
1879 }
1880
1881 static INLINE i386_operand_type
1882 operand_type_xor (i386_operand_type x, i386_operand_type y)
1883 {
1884 switch (ARRAY_SIZE (x.array))
1885 {
1886 case 3:
1887 x.array [2] ^= y.array [2];
1888 /* Fall through. */
1889 case 2:
1890 x.array [1] ^= y.array [1];
1891 /* Fall through. */
1892 case 1:
1893 x.array [0] ^= y.array [0];
1894 break;
1895 default:
1896 abort ();
1897 }
1898 return x;
1899 }
1900
1901 static const i386_operand_type disp16 = OPERAND_TYPE_DISP16;
1902 static const i386_operand_type disp32 = OPERAND_TYPE_DISP32;
1903 static const i386_operand_type disp32s = OPERAND_TYPE_DISP32S;
1904 static const i386_operand_type disp16_32 = OPERAND_TYPE_DISP16_32;
1905 static const i386_operand_type anydisp
1906 = OPERAND_TYPE_ANYDISP;
1907 static const i386_operand_type regxmm = OPERAND_TYPE_REGXMM;
1908 static const i386_operand_type regmask = OPERAND_TYPE_REGMASK;
1909 static const i386_operand_type imm8 = OPERAND_TYPE_IMM8;
1910 static const i386_operand_type imm8s = OPERAND_TYPE_IMM8S;
1911 static const i386_operand_type imm16 = OPERAND_TYPE_IMM16;
1912 static const i386_operand_type imm32 = OPERAND_TYPE_IMM32;
1913 static const i386_operand_type imm32s = OPERAND_TYPE_IMM32S;
1914 static const i386_operand_type imm64 = OPERAND_TYPE_IMM64;
1915 static const i386_operand_type imm16_32 = OPERAND_TYPE_IMM16_32;
1916 static const i386_operand_type imm16_32s = OPERAND_TYPE_IMM16_32S;
1917 static const i386_operand_type imm16_32_32s = OPERAND_TYPE_IMM16_32_32S;
1918 static const i386_operand_type vec_imm4 = OPERAND_TYPE_VEC_IMM4;
1919
1920 enum operand_type
1921 {
1922 reg,
1923 imm,
1924 disp,
1925 anymem
1926 };
1927
1928 static INLINE int
1929 operand_type_check (i386_operand_type t, enum operand_type c)
1930 {
1931 switch (c)
1932 {
1933 case reg:
1934 return t.bitfield.reg;
1935
1936 case imm:
1937 return (t.bitfield.imm8
1938 || t.bitfield.imm8s
1939 || t.bitfield.imm16
1940 || t.bitfield.imm32
1941 || t.bitfield.imm32s
1942 || t.bitfield.imm64);
1943
1944 case disp:
1945 return (t.bitfield.disp8
1946 || t.bitfield.disp16
1947 || t.bitfield.disp32
1948 || t.bitfield.disp32s
1949 || t.bitfield.disp64);
1950
1951 case anymem:
1952 return (t.bitfield.disp8
1953 || t.bitfield.disp16
1954 || t.bitfield.disp32
1955 || t.bitfield.disp32s
1956 || t.bitfield.disp64
1957 || t.bitfield.baseindex);
1958
1959 default:
1960 abort ();
1961 }
1962
1963 return 0;
1964 }
1965
1966 /* Return 1 if there is no conflict in 8bit/16bit/32bit/64bit/80bit size
1967 between operand GIVEN and opeand WANTED for instruction template T. */
1968
1969 static INLINE int
1970 match_operand_size (const insn_template *t, unsigned int wanted,
1971 unsigned int given)
1972 {
1973 return !((i.types[given].bitfield.byte
1974 && !t->operand_types[wanted].bitfield.byte)
1975 || (i.types[given].bitfield.word
1976 && !t->operand_types[wanted].bitfield.word)
1977 || (i.types[given].bitfield.dword
1978 && !t->operand_types[wanted].bitfield.dword)
1979 || (i.types[given].bitfield.qword
1980 && !t->operand_types[wanted].bitfield.qword)
1981 || (i.types[given].bitfield.tbyte
1982 && !t->operand_types[wanted].bitfield.tbyte));
1983 }
1984
1985 /* Return 1 if there is no conflict in SIMD register between operand
1986 GIVEN and opeand WANTED for instruction template T. */
1987
1988 static INLINE int
1989 match_simd_size (const insn_template *t, unsigned int wanted,
1990 unsigned int given)
1991 {
1992 return !((i.types[given].bitfield.xmmword
1993 && !t->operand_types[wanted].bitfield.xmmword)
1994 || (i.types[given].bitfield.ymmword
1995 && !t->operand_types[wanted].bitfield.ymmword)
1996 || (i.types[given].bitfield.zmmword
1997 && !t->operand_types[wanted].bitfield.zmmword));
1998 }
1999
2000 /* Return 1 if there is no conflict in any size between operand GIVEN
2001 and opeand WANTED for instruction template T. */
2002
2003 static INLINE int
2004 match_mem_size (const insn_template *t, unsigned int wanted,
2005 unsigned int given)
2006 {
2007 return (match_operand_size (t, wanted, given)
2008 && !((i.types[given].bitfield.unspecified
2009 && !i.broadcast
2010 && !t->operand_types[wanted].bitfield.unspecified)
2011 || (i.types[given].bitfield.fword
2012 && !t->operand_types[wanted].bitfield.fword)
2013 /* For scalar opcode templates to allow register and memory
2014 operands at the same time, some special casing is needed
2015 here. Also for v{,p}broadcast*, {,v}pmov{s,z}*, and
2016 down-conversion vpmov*. */
2017 || ((t->operand_types[wanted].bitfield.regsimd
2018 && !t->opcode_modifier.broadcast
2019 && (t->operand_types[wanted].bitfield.byte
2020 || t->operand_types[wanted].bitfield.word
2021 || t->operand_types[wanted].bitfield.dword
2022 || t->operand_types[wanted].bitfield.qword))
2023 ? (i.types[given].bitfield.xmmword
2024 || i.types[given].bitfield.ymmword
2025 || i.types[given].bitfield.zmmword)
2026 : !match_simd_size(t, wanted, given))));
2027 }
2028
2029 /* Return value has MATCH_STRAIGHT set if there is no size conflict on any
2030 operands for instruction template T, and it has MATCH_REVERSE set if there
2031 is no size conflict on any operands for the template with operands reversed
2032 (and the template allows for reversing in the first place). */
2033
2034 #define MATCH_STRAIGHT 1
2035 #define MATCH_REVERSE 2
2036
2037 static INLINE unsigned int
2038 operand_size_match (const insn_template *t)
2039 {
2040 unsigned int j, match = MATCH_STRAIGHT;
2041
2042 /* Don't check jump instructions. */
2043 if (t->opcode_modifier.jump
2044 || t->opcode_modifier.jumpbyte
2045 || t->opcode_modifier.jumpdword
2046 || t->opcode_modifier.jumpintersegment)
2047 return match;
2048
2049 /* Check memory and accumulator operand size. */
2050 for (j = 0; j < i.operands; j++)
2051 {
2052 if (!i.types[j].bitfield.reg && !i.types[j].bitfield.regsimd
2053 && t->operand_types[j].bitfield.anysize)
2054 continue;
2055
2056 if (t->operand_types[j].bitfield.reg
2057 && !match_operand_size (t, j, j))
2058 {
2059 match = 0;
2060 break;
2061 }
2062
2063 if (t->operand_types[j].bitfield.regsimd
2064 && !match_simd_size (t, j, j))
2065 {
2066 match = 0;
2067 break;
2068 }
2069
2070 if (t->operand_types[j].bitfield.acc
2071 && (!match_operand_size (t, j, j) || !match_simd_size (t, j, j)))
2072 {
2073 match = 0;
2074 break;
2075 }
2076
2077 if ((i.flags[j] & Operand_Mem) && !match_mem_size (t, j, j))
2078 {
2079 match = 0;
2080 break;
2081 }
2082 }
2083
2084 if (!t->opcode_modifier.d)
2085 {
2086 mismatch:
2087 if (!match)
2088 i.error = operand_size_mismatch;
2089 return match;
2090 }
2091
2092 /* Check reverse. */
2093 gas_assert (i.operands >= 2 && i.operands <= 3);
2094
2095 for (j = 0; j < i.operands; j++)
2096 {
2097 unsigned int given = i.operands - j - 1;
2098
2099 if (t->operand_types[j].bitfield.reg
2100 && !match_operand_size (t, j, given))
2101 goto mismatch;
2102
2103 if (t->operand_types[j].bitfield.regsimd
2104 && !match_simd_size (t, j, given))
2105 goto mismatch;
2106
2107 if (t->operand_types[j].bitfield.acc
2108 && (!match_operand_size (t, j, given)
2109 || !match_simd_size (t, j, given)))
2110 goto mismatch;
2111
2112 if ((i.flags[given] & Operand_Mem) && !match_mem_size (t, j, given))
2113 goto mismatch;
2114 }
2115
2116 return match | MATCH_REVERSE;
2117 }
2118
2119 static INLINE int
2120 operand_type_match (i386_operand_type overlap,
2121 i386_operand_type given)
2122 {
2123 i386_operand_type temp = overlap;
2124
2125 temp.bitfield.jumpabsolute = 0;
2126 temp.bitfield.unspecified = 0;
2127 temp.bitfield.byte = 0;
2128 temp.bitfield.word = 0;
2129 temp.bitfield.dword = 0;
2130 temp.bitfield.fword = 0;
2131 temp.bitfield.qword = 0;
2132 temp.bitfield.tbyte = 0;
2133 temp.bitfield.xmmword = 0;
2134 temp.bitfield.ymmword = 0;
2135 temp.bitfield.zmmword = 0;
2136 if (operand_type_all_zero (&temp))
2137 goto mismatch;
2138
2139 if (given.bitfield.baseindex == overlap.bitfield.baseindex
2140 && given.bitfield.jumpabsolute == overlap.bitfield.jumpabsolute)
2141 return 1;
2142
2143 mismatch:
2144 i.error = operand_type_mismatch;
2145 return 0;
2146 }
2147
2148 /* If given types g0 and g1 are registers they must be of the same type
2149 unless the expected operand type register overlap is null.
2150 Memory operand size of certain SIMD instructions is also being checked
2151 here. */
2152
2153 static INLINE int
2154 operand_type_register_match (i386_operand_type g0,
2155 i386_operand_type t0,
2156 i386_operand_type g1,
2157 i386_operand_type t1)
2158 {
2159 if (!g0.bitfield.reg
2160 && !g0.bitfield.regsimd
2161 && (!operand_type_check (g0, anymem)
2162 || g0.bitfield.unspecified
2163 || !t0.bitfield.regsimd))
2164 return 1;
2165
2166 if (!g1.bitfield.reg
2167 && !g1.bitfield.regsimd
2168 && (!operand_type_check (g1, anymem)
2169 || g1.bitfield.unspecified
2170 || !t1.bitfield.regsimd))
2171 return 1;
2172
2173 if (g0.bitfield.byte == g1.bitfield.byte
2174 && g0.bitfield.word == g1.bitfield.word
2175 && g0.bitfield.dword == g1.bitfield.dword
2176 && g0.bitfield.qword == g1.bitfield.qword
2177 && g0.bitfield.xmmword == g1.bitfield.xmmword
2178 && g0.bitfield.ymmword == g1.bitfield.ymmword
2179 && g0.bitfield.zmmword == g1.bitfield.zmmword)
2180 return 1;
2181
2182 if (!(t0.bitfield.byte & t1.bitfield.byte)
2183 && !(t0.bitfield.word & t1.bitfield.word)
2184 && !(t0.bitfield.dword & t1.bitfield.dword)
2185 && !(t0.bitfield.qword & t1.bitfield.qword)
2186 && !(t0.bitfield.xmmword & t1.bitfield.xmmword)
2187 && !(t0.bitfield.ymmword & t1.bitfield.ymmword)
2188 && !(t0.bitfield.zmmword & t1.bitfield.zmmword))
2189 return 1;
2190
2191 i.error = register_type_mismatch;
2192
2193 return 0;
2194 }
2195
2196 static INLINE unsigned int
2197 register_number (const reg_entry *r)
2198 {
2199 unsigned int nr = r->reg_num;
2200
2201 if (r->reg_flags & RegRex)
2202 nr += 8;
2203
2204 if (r->reg_flags & RegVRex)
2205 nr += 16;
2206
2207 return nr;
2208 }
2209
2210 static INLINE unsigned int
2211 mode_from_disp_size (i386_operand_type t)
2212 {
2213 if (t.bitfield.disp8)
2214 return 1;
2215 else if (t.bitfield.disp16
2216 || t.bitfield.disp32
2217 || t.bitfield.disp32s)
2218 return 2;
2219 else
2220 return 0;
2221 }
2222
2223 static INLINE int
2224 fits_in_signed_byte (addressT num)
2225 {
2226 return num + 0x80 <= 0xff;
2227 }
2228
2229 static INLINE int
2230 fits_in_unsigned_byte (addressT num)
2231 {
2232 return num <= 0xff;
2233 }
2234
2235 static INLINE int
2236 fits_in_unsigned_word (addressT num)
2237 {
2238 return num <= 0xffff;
2239 }
2240
2241 static INLINE int
2242 fits_in_signed_word (addressT num)
2243 {
2244 return num + 0x8000 <= 0xffff;
2245 }
2246
2247 static INLINE int
2248 fits_in_signed_long (addressT num ATTRIBUTE_UNUSED)
2249 {
2250 #ifndef BFD64
2251 return 1;
2252 #else
2253 return num + 0x80000000 <= 0xffffffff;
2254 #endif
2255 } /* fits_in_signed_long() */
2256
2257 static INLINE int
2258 fits_in_unsigned_long (addressT num ATTRIBUTE_UNUSED)
2259 {
2260 #ifndef BFD64
2261 return 1;
2262 #else
2263 return num <= 0xffffffff;
2264 #endif
2265 } /* fits_in_unsigned_long() */
2266
2267 static INLINE int
2268 fits_in_disp8 (offsetT num)
2269 {
2270 int shift = i.memshift;
2271 unsigned int mask;
2272
2273 if (shift == -1)
2274 abort ();
2275
2276 mask = (1 << shift) - 1;
2277
2278 /* Return 0 if NUM isn't properly aligned. */
2279 if ((num & mask))
2280 return 0;
2281
2282 /* Check if NUM will fit in 8bit after shift. */
2283 return fits_in_signed_byte (num >> shift);
2284 }
2285
2286 static INLINE int
2287 fits_in_imm4 (offsetT num)
2288 {
2289 return (num & 0xf) == num;
2290 }
2291
2292 static i386_operand_type
2293 smallest_imm_type (offsetT num)
2294 {
2295 i386_operand_type t;
2296
2297 operand_type_set (&t, 0);
2298 t.bitfield.imm64 = 1;
2299
2300 if (cpu_arch_tune != PROCESSOR_I486 && num == 1)
2301 {
2302 /* This code is disabled on the 486 because all the Imm1 forms
2303 in the opcode table are slower on the i486. They're the
2304 versions with the implicitly specified single-position
2305 displacement, which has another syntax if you really want to
2306 use that form. */
2307 t.bitfield.imm1 = 1;
2308 t.bitfield.imm8 = 1;
2309 t.bitfield.imm8s = 1;
2310 t.bitfield.imm16 = 1;
2311 t.bitfield.imm32 = 1;
2312 t.bitfield.imm32s = 1;
2313 }
2314 else if (fits_in_signed_byte (num))
2315 {
2316 t.bitfield.imm8 = 1;
2317 t.bitfield.imm8s = 1;
2318 t.bitfield.imm16 = 1;
2319 t.bitfield.imm32 = 1;
2320 t.bitfield.imm32s = 1;
2321 }
2322 else if (fits_in_unsigned_byte (num))
2323 {
2324 t.bitfield.imm8 = 1;
2325 t.bitfield.imm16 = 1;
2326 t.bitfield.imm32 = 1;
2327 t.bitfield.imm32s = 1;
2328 }
2329 else if (fits_in_signed_word (num) || fits_in_unsigned_word (num))
2330 {
2331 t.bitfield.imm16 = 1;
2332 t.bitfield.imm32 = 1;
2333 t.bitfield.imm32s = 1;
2334 }
2335 else if (fits_in_signed_long (num))
2336 {
2337 t.bitfield.imm32 = 1;
2338 t.bitfield.imm32s = 1;
2339 }
2340 else if (fits_in_unsigned_long (num))
2341 t.bitfield.imm32 = 1;
2342
2343 return t;
2344 }
2345
2346 static offsetT
2347 offset_in_range (offsetT val, int size)
2348 {
2349 addressT mask;
2350
2351 switch (size)
2352 {
2353 case 1: mask = ((addressT) 1 << 8) - 1; break;
2354 case 2: mask = ((addressT) 1 << 16) - 1; break;
2355 case 4: mask = ((addressT) 2 << 31) - 1; break;
2356 #ifdef BFD64
2357 case 8: mask = ((addressT) 2 << 63) - 1; break;
2358 #endif
2359 default: abort ();
2360 }
2361
2362 #ifdef BFD64
2363 /* If BFD64, sign extend val for 32bit address mode. */
2364 if (flag_code != CODE_64BIT
2365 || i.prefix[ADDR_PREFIX])
2366 if ((val & ~(((addressT) 2 << 31) - 1)) == 0)
2367 val = (val ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
2368 #endif
2369
2370 if ((val & ~mask) != 0 && (val & ~mask) != ~mask)
2371 {
2372 char buf1[40], buf2[40];
2373
2374 sprint_value (buf1, val);
2375 sprint_value (buf2, val & mask);
2376 as_warn (_("%s shortened to %s"), buf1, buf2);
2377 }
2378 return val & mask;
2379 }
2380
2381 enum PREFIX_GROUP
2382 {
2383 PREFIX_EXIST = 0,
2384 PREFIX_LOCK,
2385 PREFIX_REP,
2386 PREFIX_DS,
2387 PREFIX_OTHER
2388 };
2389
2390 /* Returns
2391 a. PREFIX_EXIST if attempting to add a prefix where one from the
2392 same class already exists.
2393 b. PREFIX_LOCK if lock prefix is added.
2394 c. PREFIX_REP if rep/repne prefix is added.
2395 d. PREFIX_DS if ds prefix is added.
2396 e. PREFIX_OTHER if other prefix is added.
2397 */
2398
2399 static enum PREFIX_GROUP
2400 add_prefix (unsigned int prefix)
2401 {
2402 enum PREFIX_GROUP ret = PREFIX_OTHER;
2403 unsigned int q;
2404
2405 if (prefix >= REX_OPCODE && prefix < REX_OPCODE + 16
2406 && flag_code == CODE_64BIT)
2407 {
2408 if ((i.prefix[REX_PREFIX] & prefix & REX_W)
2409 || (i.prefix[REX_PREFIX] & prefix & REX_R)
2410 || (i.prefix[REX_PREFIX] & prefix & REX_X)
2411 || (i.prefix[REX_PREFIX] & prefix & REX_B))
2412 ret = PREFIX_EXIST;
2413 q = REX_PREFIX;
2414 }
2415 else
2416 {
2417 switch (prefix)
2418 {
2419 default:
2420 abort ();
2421
2422 case DS_PREFIX_OPCODE:
2423 ret = PREFIX_DS;
2424 /* Fall through. */
2425 case CS_PREFIX_OPCODE:
2426 case ES_PREFIX_OPCODE:
2427 case FS_PREFIX_OPCODE:
2428 case GS_PREFIX_OPCODE:
2429 case SS_PREFIX_OPCODE:
2430 q = SEG_PREFIX;
2431 break;
2432
2433 case REPNE_PREFIX_OPCODE:
2434 case REPE_PREFIX_OPCODE:
2435 q = REP_PREFIX;
2436 ret = PREFIX_REP;
2437 break;
2438
2439 case LOCK_PREFIX_OPCODE:
2440 q = LOCK_PREFIX;
2441 ret = PREFIX_LOCK;
2442 break;
2443
2444 case FWAIT_OPCODE:
2445 q = WAIT_PREFIX;
2446 break;
2447
2448 case ADDR_PREFIX_OPCODE:
2449 q = ADDR_PREFIX;
2450 break;
2451
2452 case DATA_PREFIX_OPCODE:
2453 q = DATA_PREFIX;
2454 break;
2455 }
2456 if (i.prefix[q] != 0)
2457 ret = PREFIX_EXIST;
2458 }
2459
2460 if (ret)
2461 {
2462 if (!i.prefix[q])
2463 ++i.prefixes;
2464 i.prefix[q] |= prefix;
2465 }
2466 else
2467 as_bad (_("same type of prefix used twice"));
2468
2469 return ret;
2470 }
2471
2472 static void
2473 update_code_flag (int value, int check)
2474 {
2475 PRINTF_LIKE ((*as_error));
2476
2477 flag_code = (enum flag_code) value;
2478 if (flag_code == CODE_64BIT)
2479 {
2480 cpu_arch_flags.bitfield.cpu64 = 1;
2481 cpu_arch_flags.bitfield.cpuno64 = 0;
2482 }
2483 else
2484 {
2485 cpu_arch_flags.bitfield.cpu64 = 0;
2486 cpu_arch_flags.bitfield.cpuno64 = 1;
2487 }
2488 if (value == CODE_64BIT && !cpu_arch_flags.bitfield.cpulm )
2489 {
2490 if (check)
2491 as_error = as_fatal;
2492 else
2493 as_error = as_bad;
2494 (*as_error) (_("64bit mode not supported on `%s'."),
2495 cpu_arch_name ? cpu_arch_name : default_arch);
2496 }
2497 if (value == CODE_32BIT && !cpu_arch_flags.bitfield.cpui386)
2498 {
2499 if (check)
2500 as_error = as_fatal;
2501 else
2502 as_error = as_bad;
2503 (*as_error) (_("32bit mode not supported on `%s'."),
2504 cpu_arch_name ? cpu_arch_name : default_arch);
2505 }
2506 stackop_size = '\0';
2507 }
2508
2509 static void
2510 set_code_flag (int value)
2511 {
2512 update_code_flag (value, 0);
2513 }
2514
2515 static void
2516 set_16bit_gcc_code_flag (int new_code_flag)
2517 {
2518 flag_code = (enum flag_code) new_code_flag;
2519 if (flag_code != CODE_16BIT)
2520 abort ();
2521 cpu_arch_flags.bitfield.cpu64 = 0;
2522 cpu_arch_flags.bitfield.cpuno64 = 1;
2523 stackop_size = LONG_MNEM_SUFFIX;
2524 }
2525
2526 static void
2527 set_intel_syntax (int syntax_flag)
2528 {
2529 /* Find out if register prefixing is specified. */
2530 int ask_naked_reg = 0;
2531
2532 SKIP_WHITESPACE ();
2533 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2534 {
2535 char *string;
2536 int e = get_symbol_name (&string);
2537
2538 if (strcmp (string, "prefix") == 0)
2539 ask_naked_reg = 1;
2540 else if (strcmp (string, "noprefix") == 0)
2541 ask_naked_reg = -1;
2542 else
2543 as_bad (_("bad argument to syntax directive."));
2544 (void) restore_line_pointer (e);
2545 }
2546 demand_empty_rest_of_line ();
2547
2548 intel_syntax = syntax_flag;
2549
2550 if (ask_naked_reg == 0)
2551 allow_naked_reg = (intel_syntax
2552 && (bfd_get_symbol_leading_char (stdoutput) != '\0'));
2553 else
2554 allow_naked_reg = (ask_naked_reg < 0);
2555
2556 expr_set_rank (O_full_ptr, syntax_flag ? 10 : 0);
2557
2558 identifier_chars['%'] = intel_syntax && allow_naked_reg ? '%' : 0;
2559 identifier_chars['$'] = intel_syntax ? '$' : 0;
2560 register_prefix = allow_naked_reg ? "" : "%";
2561 }
2562
2563 static void
2564 set_intel_mnemonic (int mnemonic_flag)
2565 {
2566 intel_mnemonic = mnemonic_flag;
2567 }
2568
2569 static void
2570 set_allow_index_reg (int flag)
2571 {
2572 allow_index_reg = flag;
2573 }
2574
2575 static void
2576 set_check (int what)
2577 {
2578 enum check_kind *kind;
2579 const char *str;
2580
2581 if (what)
2582 {
2583 kind = &operand_check;
2584 str = "operand";
2585 }
2586 else
2587 {
2588 kind = &sse_check;
2589 str = "sse";
2590 }
2591
2592 SKIP_WHITESPACE ();
2593
2594 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2595 {
2596 char *string;
2597 int e = get_symbol_name (&string);
2598
2599 if (strcmp (string, "none") == 0)
2600 *kind = check_none;
2601 else if (strcmp (string, "warning") == 0)
2602 *kind = check_warning;
2603 else if (strcmp (string, "error") == 0)
2604 *kind = check_error;
2605 else
2606 as_bad (_("bad argument to %s_check directive."), str);
2607 (void) restore_line_pointer (e);
2608 }
2609 else
2610 as_bad (_("missing argument for %s_check directive"), str);
2611
2612 demand_empty_rest_of_line ();
2613 }
2614
2615 static void
2616 check_cpu_arch_compatible (const char *name ATTRIBUTE_UNUSED,
2617 i386_cpu_flags new_flag ATTRIBUTE_UNUSED)
2618 {
2619 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
2620 static const char *arch;
2621
2622 /* Intel LIOM is only supported on ELF. */
2623 if (!IS_ELF)
2624 return;
2625
2626 if (!arch)
2627 {
2628 /* Use cpu_arch_name if it is set in md_parse_option. Otherwise
2629 use default_arch. */
2630 arch = cpu_arch_name;
2631 if (!arch)
2632 arch = default_arch;
2633 }
2634
2635 /* If we are targeting Intel MCU, we must enable it. */
2636 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_IAMCU
2637 || new_flag.bitfield.cpuiamcu)
2638 return;
2639
2640 /* If we are targeting Intel L1OM, we must enable it. */
2641 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_L1OM
2642 || new_flag.bitfield.cpul1om)
2643 return;
2644
2645 /* If we are targeting Intel K1OM, we must enable it. */
2646 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_K1OM
2647 || new_flag.bitfield.cpuk1om)
2648 return;
2649
2650 as_bad (_("`%s' is not supported on `%s'"), name, arch);
2651 #endif
2652 }
2653
2654 static void
2655 set_cpu_arch (int dummy ATTRIBUTE_UNUSED)
2656 {
2657 SKIP_WHITESPACE ();
2658
2659 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2660 {
2661 char *string;
2662 int e = get_symbol_name (&string);
2663 unsigned int j;
2664 i386_cpu_flags flags;
2665
2666 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
2667 {
2668 if (strcmp (string, cpu_arch[j].name) == 0)
2669 {
2670 check_cpu_arch_compatible (string, cpu_arch[j].flags);
2671
2672 if (*string != '.')
2673 {
2674 cpu_arch_name = cpu_arch[j].name;
2675 cpu_sub_arch_name = NULL;
2676 cpu_arch_flags = cpu_arch[j].flags;
2677 if (flag_code == CODE_64BIT)
2678 {
2679 cpu_arch_flags.bitfield.cpu64 = 1;
2680 cpu_arch_flags.bitfield.cpuno64 = 0;
2681 }
2682 else
2683 {
2684 cpu_arch_flags.bitfield.cpu64 = 0;
2685 cpu_arch_flags.bitfield.cpuno64 = 1;
2686 }
2687 cpu_arch_isa = cpu_arch[j].type;
2688 cpu_arch_isa_flags = cpu_arch[j].flags;
2689 if (!cpu_arch_tune_set)
2690 {
2691 cpu_arch_tune = cpu_arch_isa;
2692 cpu_arch_tune_flags = cpu_arch_isa_flags;
2693 }
2694 break;
2695 }
2696
2697 flags = cpu_flags_or (cpu_arch_flags,
2698 cpu_arch[j].flags);
2699
2700 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
2701 {
2702 if (cpu_sub_arch_name)
2703 {
2704 char *name = cpu_sub_arch_name;
2705 cpu_sub_arch_name = concat (name,
2706 cpu_arch[j].name,
2707 (const char *) NULL);
2708 free (name);
2709 }
2710 else
2711 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
2712 cpu_arch_flags = flags;
2713 cpu_arch_isa_flags = flags;
2714 }
2715 else
2716 cpu_arch_isa_flags
2717 = cpu_flags_or (cpu_arch_isa_flags,
2718 cpu_arch[j].flags);
2719 (void) restore_line_pointer (e);
2720 demand_empty_rest_of_line ();
2721 return;
2722 }
2723 }
2724
2725 if (*string == '.' && j >= ARRAY_SIZE (cpu_arch))
2726 {
2727 /* Disable an ISA extension. */
2728 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
2729 if (strcmp (string + 1, cpu_noarch [j].name) == 0)
2730 {
2731 flags = cpu_flags_and_not (cpu_arch_flags,
2732 cpu_noarch[j].flags);
2733 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
2734 {
2735 if (cpu_sub_arch_name)
2736 {
2737 char *name = cpu_sub_arch_name;
2738 cpu_sub_arch_name = concat (name, string,
2739 (const char *) NULL);
2740 free (name);
2741 }
2742 else
2743 cpu_sub_arch_name = xstrdup (string);
2744 cpu_arch_flags = flags;
2745 cpu_arch_isa_flags = flags;
2746 }
2747 (void) restore_line_pointer (e);
2748 demand_empty_rest_of_line ();
2749 return;
2750 }
2751
2752 j = ARRAY_SIZE (cpu_arch);
2753 }
2754
2755 if (j >= ARRAY_SIZE (cpu_arch))
2756 as_bad (_("no such architecture: `%s'"), string);
2757
2758 *input_line_pointer = e;
2759 }
2760 else
2761 as_bad (_("missing cpu architecture"));
2762
2763 no_cond_jump_promotion = 0;
2764 if (*input_line_pointer == ','
2765 && !is_end_of_line[(unsigned char) input_line_pointer[1]])
2766 {
2767 char *string;
2768 char e;
2769
2770 ++input_line_pointer;
2771 e = get_symbol_name (&string);
2772
2773 if (strcmp (string, "nojumps") == 0)
2774 no_cond_jump_promotion = 1;
2775 else if (strcmp (string, "jumps") == 0)
2776 ;
2777 else
2778 as_bad (_("no such architecture modifier: `%s'"), string);
2779
2780 (void) restore_line_pointer (e);
2781 }
2782
2783 demand_empty_rest_of_line ();
2784 }
2785
2786 enum bfd_architecture
2787 i386_arch (void)
2788 {
2789 if (cpu_arch_isa == PROCESSOR_L1OM)
2790 {
2791 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2792 || flag_code != CODE_64BIT)
2793 as_fatal (_("Intel L1OM is 64bit ELF only"));
2794 return bfd_arch_l1om;
2795 }
2796 else if (cpu_arch_isa == PROCESSOR_K1OM)
2797 {
2798 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2799 || flag_code != CODE_64BIT)
2800 as_fatal (_("Intel K1OM is 64bit ELF only"));
2801 return bfd_arch_k1om;
2802 }
2803 else if (cpu_arch_isa == PROCESSOR_IAMCU)
2804 {
2805 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2806 || flag_code == CODE_64BIT)
2807 as_fatal (_("Intel MCU is 32bit ELF only"));
2808 return bfd_arch_iamcu;
2809 }
2810 else
2811 return bfd_arch_i386;
2812 }
2813
2814 unsigned long
2815 i386_mach (void)
2816 {
2817 if (!strncmp (default_arch, "x86_64", 6))
2818 {
2819 if (cpu_arch_isa == PROCESSOR_L1OM)
2820 {
2821 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2822 || default_arch[6] != '\0')
2823 as_fatal (_("Intel L1OM is 64bit ELF only"));
2824 return bfd_mach_l1om;
2825 }
2826 else if (cpu_arch_isa == PROCESSOR_K1OM)
2827 {
2828 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2829 || default_arch[6] != '\0')
2830 as_fatal (_("Intel K1OM is 64bit ELF only"));
2831 return bfd_mach_k1om;
2832 }
2833 else if (default_arch[6] == '\0')
2834 return bfd_mach_x86_64;
2835 else
2836 return bfd_mach_x64_32;
2837 }
2838 else if (!strcmp (default_arch, "i386")
2839 || !strcmp (default_arch, "iamcu"))
2840 {
2841 if (cpu_arch_isa == PROCESSOR_IAMCU)
2842 {
2843 if (OUTPUT_FLAVOR != bfd_target_elf_flavour)
2844 as_fatal (_("Intel MCU is 32bit ELF only"));
2845 return bfd_mach_i386_iamcu;
2846 }
2847 else
2848 return bfd_mach_i386_i386;
2849 }
2850 else
2851 as_fatal (_("unknown architecture"));
2852 }
2853 \f
2854 void
2855 md_begin (void)
2856 {
2857 const char *hash_err;
2858
2859 /* Support pseudo prefixes like {disp32}. */
2860 lex_type ['{'] = LEX_BEGIN_NAME;
2861
2862 /* Initialize op_hash hash table. */
2863 op_hash = hash_new ();
2864
2865 {
2866 const insn_template *optab;
2867 templates *core_optab;
2868
2869 /* Setup for loop. */
2870 optab = i386_optab;
2871 core_optab = XNEW (templates);
2872 core_optab->start = optab;
2873
2874 while (1)
2875 {
2876 ++optab;
2877 if (optab->name == NULL
2878 || strcmp (optab->name, (optab - 1)->name) != 0)
2879 {
2880 /* different name --> ship out current template list;
2881 add to hash table; & begin anew. */
2882 core_optab->end = optab;
2883 hash_err = hash_insert (op_hash,
2884 (optab - 1)->name,
2885 (void *) core_optab);
2886 if (hash_err)
2887 {
2888 as_fatal (_("can't hash %s: %s"),
2889 (optab - 1)->name,
2890 hash_err);
2891 }
2892 if (optab->name == NULL)
2893 break;
2894 core_optab = XNEW (templates);
2895 core_optab->start = optab;
2896 }
2897 }
2898 }
2899
2900 /* Initialize reg_hash hash table. */
2901 reg_hash = hash_new ();
2902 {
2903 const reg_entry *regtab;
2904 unsigned int regtab_size = i386_regtab_size;
2905
2906 for (regtab = i386_regtab; regtab_size--; regtab++)
2907 {
2908 hash_err = hash_insert (reg_hash, regtab->reg_name, (void *) regtab);
2909 if (hash_err)
2910 as_fatal (_("can't hash %s: %s"),
2911 regtab->reg_name,
2912 hash_err);
2913 }
2914 }
2915
2916 /* Fill in lexical tables: mnemonic_chars, operand_chars. */
2917 {
2918 int c;
2919 char *p;
2920
2921 for (c = 0; c < 256; c++)
2922 {
2923 if (ISDIGIT (c))
2924 {
2925 digit_chars[c] = c;
2926 mnemonic_chars[c] = c;
2927 register_chars[c] = c;
2928 operand_chars[c] = c;
2929 }
2930 else if (ISLOWER (c))
2931 {
2932 mnemonic_chars[c] = c;
2933 register_chars[c] = c;
2934 operand_chars[c] = c;
2935 }
2936 else if (ISUPPER (c))
2937 {
2938 mnemonic_chars[c] = TOLOWER (c);
2939 register_chars[c] = mnemonic_chars[c];
2940 operand_chars[c] = c;
2941 }
2942 else if (c == '{' || c == '}')
2943 {
2944 mnemonic_chars[c] = c;
2945 operand_chars[c] = c;
2946 }
2947
2948 if (ISALPHA (c) || ISDIGIT (c))
2949 identifier_chars[c] = c;
2950 else if (c >= 128)
2951 {
2952 identifier_chars[c] = c;
2953 operand_chars[c] = c;
2954 }
2955 }
2956
2957 #ifdef LEX_AT
2958 identifier_chars['@'] = '@';
2959 #endif
2960 #ifdef LEX_QM
2961 identifier_chars['?'] = '?';
2962 operand_chars['?'] = '?';
2963 #endif
2964 digit_chars['-'] = '-';
2965 mnemonic_chars['_'] = '_';
2966 mnemonic_chars['-'] = '-';
2967 mnemonic_chars['.'] = '.';
2968 identifier_chars['_'] = '_';
2969 identifier_chars['.'] = '.';
2970
2971 for (p = operand_special_chars; *p != '\0'; p++)
2972 operand_chars[(unsigned char) *p] = *p;
2973 }
2974
2975 if (flag_code == CODE_64BIT)
2976 {
2977 #if defined (OBJ_COFF) && defined (TE_PE)
2978 x86_dwarf2_return_column = (OUTPUT_FLAVOR == bfd_target_coff_flavour
2979 ? 32 : 16);
2980 #else
2981 x86_dwarf2_return_column = 16;
2982 #endif
2983 x86_cie_data_alignment = -8;
2984 }
2985 else
2986 {
2987 x86_dwarf2_return_column = 8;
2988 x86_cie_data_alignment = -4;
2989 }
2990 }
2991
2992 void
2993 i386_print_statistics (FILE *file)
2994 {
2995 hash_print_statistics (file, "i386 opcode", op_hash);
2996 hash_print_statistics (file, "i386 register", reg_hash);
2997 }
2998 \f
2999 #ifdef DEBUG386
3000
3001 /* Debugging routines for md_assemble. */
3002 static void pte (insn_template *);
3003 static void pt (i386_operand_type);
3004 static void pe (expressionS *);
3005 static void ps (symbolS *);
3006
3007 static void
3008 pi (const char *line, i386_insn *x)
3009 {
3010 unsigned int j;
3011
3012 fprintf (stdout, "%s: template ", line);
3013 pte (&x->tm);
3014 fprintf (stdout, " address: base %s index %s scale %x\n",
3015 x->base_reg ? x->base_reg->reg_name : "none",
3016 x->index_reg ? x->index_reg->reg_name : "none",
3017 x->log2_scale_factor);
3018 fprintf (stdout, " modrm: mode %x reg %x reg/mem %x\n",
3019 x->rm.mode, x->rm.reg, x->rm.regmem);
3020 fprintf (stdout, " sib: base %x index %x scale %x\n",
3021 x->sib.base, x->sib.index, x->sib.scale);
3022 fprintf (stdout, " rex: 64bit %x extX %x extY %x extZ %x\n",
3023 (x->rex & REX_W) != 0,
3024 (x->rex & REX_R) != 0,
3025 (x->rex & REX_X) != 0,
3026 (x->rex & REX_B) != 0);
3027 for (j = 0; j < x->operands; j++)
3028 {
3029 fprintf (stdout, " #%d: ", j + 1);
3030 pt (x->types[j]);
3031 fprintf (stdout, "\n");
3032 if (x->types[j].bitfield.reg
3033 || x->types[j].bitfield.regmmx
3034 || x->types[j].bitfield.regsimd
3035 || x->types[j].bitfield.sreg2
3036 || x->types[j].bitfield.sreg3
3037 || x->types[j].bitfield.control
3038 || x->types[j].bitfield.debug
3039 || x->types[j].bitfield.test)
3040 fprintf (stdout, "%s\n", x->op[j].regs->reg_name);
3041 if (operand_type_check (x->types[j], imm))
3042 pe (x->op[j].imms);
3043 if (operand_type_check (x->types[j], disp))
3044 pe (x->op[j].disps);
3045 }
3046 }
3047
3048 static void
3049 pte (insn_template *t)
3050 {
3051 unsigned int j;
3052 fprintf (stdout, " %d operands ", t->operands);
3053 fprintf (stdout, "opcode %x ", t->base_opcode);
3054 if (t->extension_opcode != None)
3055 fprintf (stdout, "ext %x ", t->extension_opcode);
3056 if (t->opcode_modifier.d)
3057 fprintf (stdout, "D");
3058 if (t->opcode_modifier.w)
3059 fprintf (stdout, "W");
3060 fprintf (stdout, "\n");
3061 for (j = 0; j < t->operands; j++)
3062 {
3063 fprintf (stdout, " #%d type ", j + 1);
3064 pt (t->operand_types[j]);
3065 fprintf (stdout, "\n");
3066 }
3067 }
3068
3069 static void
3070 pe (expressionS *e)
3071 {
3072 fprintf (stdout, " operation %d\n", e->X_op);
3073 fprintf (stdout, " add_number %ld (%lx)\n",
3074 (long) e->X_add_number, (long) e->X_add_number);
3075 if (e->X_add_symbol)
3076 {
3077 fprintf (stdout, " add_symbol ");
3078 ps (e->X_add_symbol);
3079 fprintf (stdout, "\n");
3080 }
3081 if (e->X_op_symbol)
3082 {
3083 fprintf (stdout, " op_symbol ");
3084 ps (e->X_op_symbol);
3085 fprintf (stdout, "\n");
3086 }
3087 }
3088
3089 static void
3090 ps (symbolS *s)
3091 {
3092 fprintf (stdout, "%s type %s%s",
3093 S_GET_NAME (s),
3094 S_IS_EXTERNAL (s) ? "EXTERNAL " : "",
3095 segment_name (S_GET_SEGMENT (s)));
3096 }
3097
3098 static struct type_name
3099 {
3100 i386_operand_type mask;
3101 const char *name;
3102 }
3103 const type_names[] =
3104 {
3105 { OPERAND_TYPE_REG8, "r8" },
3106 { OPERAND_TYPE_REG16, "r16" },
3107 { OPERAND_TYPE_REG32, "r32" },
3108 { OPERAND_TYPE_REG64, "r64" },
3109 { OPERAND_TYPE_ACC8, "acc8" },
3110 { OPERAND_TYPE_ACC16, "acc16" },
3111 { OPERAND_TYPE_ACC32, "acc32" },
3112 { OPERAND_TYPE_ACC64, "acc64" },
3113 { OPERAND_TYPE_IMM8, "i8" },
3114 { OPERAND_TYPE_IMM8, "i8s" },
3115 { OPERAND_TYPE_IMM16, "i16" },
3116 { OPERAND_TYPE_IMM32, "i32" },
3117 { OPERAND_TYPE_IMM32S, "i32s" },
3118 { OPERAND_TYPE_IMM64, "i64" },
3119 { OPERAND_TYPE_IMM1, "i1" },
3120 { OPERAND_TYPE_BASEINDEX, "BaseIndex" },
3121 { OPERAND_TYPE_DISP8, "d8" },
3122 { OPERAND_TYPE_DISP16, "d16" },
3123 { OPERAND_TYPE_DISP32, "d32" },
3124 { OPERAND_TYPE_DISP32S, "d32s" },
3125 { OPERAND_TYPE_DISP64, "d64" },
3126 { OPERAND_TYPE_INOUTPORTREG, "InOutPortReg" },
3127 { OPERAND_TYPE_SHIFTCOUNT, "ShiftCount" },
3128 { OPERAND_TYPE_CONTROL, "control reg" },
3129 { OPERAND_TYPE_TEST, "test reg" },
3130 { OPERAND_TYPE_DEBUG, "debug reg" },
3131 { OPERAND_TYPE_FLOATREG, "FReg" },
3132 { OPERAND_TYPE_FLOATACC, "FAcc" },
3133 { OPERAND_TYPE_SREG2, "SReg2" },
3134 { OPERAND_TYPE_SREG3, "SReg3" },
3135 { OPERAND_TYPE_JUMPABSOLUTE, "Jump Absolute" },
3136 { OPERAND_TYPE_REGMMX, "rMMX" },
3137 { OPERAND_TYPE_REGXMM, "rXMM" },
3138 { OPERAND_TYPE_REGYMM, "rYMM" },
3139 { OPERAND_TYPE_REGZMM, "rZMM" },
3140 { OPERAND_TYPE_REGMASK, "Mask reg" },
3141 { OPERAND_TYPE_ESSEG, "es" },
3142 };
3143
3144 static void
3145 pt (i386_operand_type t)
3146 {
3147 unsigned int j;
3148 i386_operand_type a;
3149
3150 for (j = 0; j < ARRAY_SIZE (type_names); j++)
3151 {
3152 a = operand_type_and (t, type_names[j].mask);
3153 if (operand_type_equal (&a, &type_names[j].mask))
3154 fprintf (stdout, "%s, ", type_names[j].name);
3155 }
3156 fflush (stdout);
3157 }
3158
3159 #endif /* DEBUG386 */
3160 \f
3161 static bfd_reloc_code_real_type
3162 reloc (unsigned int size,
3163 int pcrel,
3164 int sign,
3165 bfd_reloc_code_real_type other)
3166 {
3167 if (other != NO_RELOC)
3168 {
3169 reloc_howto_type *rel;
3170
3171 if (size == 8)
3172 switch (other)
3173 {
3174 case BFD_RELOC_X86_64_GOT32:
3175 return BFD_RELOC_X86_64_GOT64;
3176 break;
3177 case BFD_RELOC_X86_64_GOTPLT64:
3178 return BFD_RELOC_X86_64_GOTPLT64;
3179 break;
3180 case BFD_RELOC_X86_64_PLTOFF64:
3181 return BFD_RELOC_X86_64_PLTOFF64;
3182 break;
3183 case BFD_RELOC_X86_64_GOTPC32:
3184 other = BFD_RELOC_X86_64_GOTPC64;
3185 break;
3186 case BFD_RELOC_X86_64_GOTPCREL:
3187 other = BFD_RELOC_X86_64_GOTPCREL64;
3188 break;
3189 case BFD_RELOC_X86_64_TPOFF32:
3190 other = BFD_RELOC_X86_64_TPOFF64;
3191 break;
3192 case BFD_RELOC_X86_64_DTPOFF32:
3193 other = BFD_RELOC_X86_64_DTPOFF64;
3194 break;
3195 default:
3196 break;
3197 }
3198
3199 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
3200 if (other == BFD_RELOC_SIZE32)
3201 {
3202 if (size == 8)
3203 other = BFD_RELOC_SIZE64;
3204 if (pcrel)
3205 {
3206 as_bad (_("there are no pc-relative size relocations"));
3207 return NO_RELOC;
3208 }
3209 }
3210 #endif
3211
3212 /* Sign-checking 4-byte relocations in 16-/32-bit code is pointless. */
3213 if (size == 4 && (flag_code != CODE_64BIT || disallow_64bit_reloc))
3214 sign = -1;
3215
3216 rel = bfd_reloc_type_lookup (stdoutput, other);
3217 if (!rel)
3218 as_bad (_("unknown relocation (%u)"), other);
3219 else if (size != bfd_get_reloc_size (rel))
3220 as_bad (_("%u-byte relocation cannot be applied to %u-byte field"),
3221 bfd_get_reloc_size (rel),
3222 size);
3223 else if (pcrel && !rel->pc_relative)
3224 as_bad (_("non-pc-relative relocation for pc-relative field"));
3225 else if ((rel->complain_on_overflow == complain_overflow_signed
3226 && !sign)
3227 || (rel->complain_on_overflow == complain_overflow_unsigned
3228 && sign > 0))
3229 as_bad (_("relocated field and relocation type differ in signedness"));
3230 else
3231 return other;
3232 return NO_RELOC;
3233 }
3234
3235 if (pcrel)
3236 {
3237 if (!sign)
3238 as_bad (_("there are no unsigned pc-relative relocations"));
3239 switch (size)
3240 {
3241 case 1: return BFD_RELOC_8_PCREL;
3242 case 2: return BFD_RELOC_16_PCREL;
3243 case 4: return BFD_RELOC_32_PCREL;
3244 case 8: return BFD_RELOC_64_PCREL;
3245 }
3246 as_bad (_("cannot do %u byte pc-relative relocation"), size);
3247 }
3248 else
3249 {
3250 if (sign > 0)
3251 switch (size)
3252 {
3253 case 4: return BFD_RELOC_X86_64_32S;
3254 }
3255 else
3256 switch (size)
3257 {
3258 case 1: return BFD_RELOC_8;
3259 case 2: return BFD_RELOC_16;
3260 case 4: return BFD_RELOC_32;
3261 case 8: return BFD_RELOC_64;
3262 }
3263 as_bad (_("cannot do %s %u byte relocation"),
3264 sign > 0 ? "signed" : "unsigned", size);
3265 }
3266
3267 return NO_RELOC;
3268 }
3269
3270 /* Here we decide which fixups can be adjusted to make them relative to
3271 the beginning of the section instead of the symbol. Basically we need
3272 to make sure that the dynamic relocations are done correctly, so in
3273 some cases we force the original symbol to be used. */
3274
3275 int
3276 tc_i386_fix_adjustable (fixS *fixP ATTRIBUTE_UNUSED)
3277 {
3278 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
3279 if (!IS_ELF)
3280 return 1;
3281
3282 /* Don't adjust pc-relative references to merge sections in 64-bit
3283 mode. */
3284 if (use_rela_relocations
3285 && (S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_MERGE) != 0
3286 && fixP->fx_pcrel)
3287 return 0;
3288
3289 /* The x86_64 GOTPCREL are represented as 32bit PCrel relocations
3290 and changed later by validate_fix. */
3291 if (GOT_symbol && fixP->fx_subsy == GOT_symbol
3292 && fixP->fx_r_type == BFD_RELOC_32_PCREL)
3293 return 0;
3294
3295 /* Adjust_reloc_syms doesn't know about the GOT. Need to keep symbol
3296 for size relocations. */
3297 if (fixP->fx_r_type == BFD_RELOC_SIZE32
3298 || fixP->fx_r_type == BFD_RELOC_SIZE64
3299 || fixP->fx_r_type == BFD_RELOC_386_GOTOFF
3300 || fixP->fx_r_type == BFD_RELOC_386_PLT32
3301 || fixP->fx_r_type == BFD_RELOC_386_GOT32
3302 || fixP->fx_r_type == BFD_RELOC_386_GOT32X
3303 || fixP->fx_r_type == BFD_RELOC_386_TLS_GD
3304 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDM
3305 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDO_32
3306 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE_32
3307 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE
3308 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTIE
3309 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE_32
3310 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE
3311 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTDESC
3312 || fixP->fx_r_type == BFD_RELOC_386_TLS_DESC_CALL
3313 || fixP->fx_r_type == BFD_RELOC_X86_64_PLT32
3314 || fixP->fx_r_type == BFD_RELOC_X86_64_GOT32
3315 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCREL
3316 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCRELX
3317 || fixP->fx_r_type == BFD_RELOC_X86_64_REX_GOTPCRELX
3318 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSGD
3319 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSLD
3320 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF32
3321 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF64
3322 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTTPOFF
3323 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF32
3324 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF64
3325 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTOFF64
3326 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPC32_TLSDESC
3327 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSDESC_CALL
3328 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
3329 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
3330 return 0;
3331 #endif
3332 return 1;
3333 }
3334
3335 static int
3336 intel_float_operand (const char *mnemonic)
3337 {
3338 /* Note that the value returned is meaningful only for opcodes with (memory)
3339 operands, hence the code here is free to improperly handle opcodes that
3340 have no operands (for better performance and smaller code). */
3341
3342 if (mnemonic[0] != 'f')
3343 return 0; /* non-math */
3344
3345 switch (mnemonic[1])
3346 {
3347 /* fclex, fdecstp, fdisi, femms, feni, fincstp, finit, fsetpm, and
3348 the fs segment override prefix not currently handled because no
3349 call path can make opcodes without operands get here */
3350 case 'i':
3351 return 2 /* integer op */;
3352 case 'l':
3353 if (mnemonic[2] == 'd' && (mnemonic[3] == 'c' || mnemonic[3] == 'e'))
3354 return 3; /* fldcw/fldenv */
3355 break;
3356 case 'n':
3357 if (mnemonic[2] != 'o' /* fnop */)
3358 return 3; /* non-waiting control op */
3359 break;
3360 case 'r':
3361 if (mnemonic[2] == 's')
3362 return 3; /* frstor/frstpm */
3363 break;
3364 case 's':
3365 if (mnemonic[2] == 'a')
3366 return 3; /* fsave */
3367 if (mnemonic[2] == 't')
3368 {
3369 switch (mnemonic[3])
3370 {
3371 case 'c': /* fstcw */
3372 case 'd': /* fstdw */
3373 case 'e': /* fstenv */
3374 case 's': /* fsts[gw] */
3375 return 3;
3376 }
3377 }
3378 break;
3379 case 'x':
3380 if (mnemonic[2] == 'r' || mnemonic[2] == 's')
3381 return 0; /* fxsave/fxrstor are not really math ops */
3382 break;
3383 }
3384
3385 return 1;
3386 }
3387
3388 /* Build the VEX prefix. */
3389
3390 static void
3391 build_vex_prefix (const insn_template *t)
3392 {
3393 unsigned int register_specifier;
3394 unsigned int implied_prefix;
3395 unsigned int vector_length;
3396 unsigned int w;
3397
3398 /* Check register specifier. */
3399 if (i.vex.register_specifier)
3400 {
3401 register_specifier =
3402 ~register_number (i.vex.register_specifier) & 0xf;
3403 gas_assert ((i.vex.register_specifier->reg_flags & RegVRex) == 0);
3404 }
3405 else
3406 register_specifier = 0xf;
3407
3408 /* Use 2-byte VEX prefix by swapping destination and source operand
3409 if there are more than 1 register operand. */
3410 if (i.reg_operands > 1
3411 && i.vec_encoding != vex_encoding_vex3
3412 && i.dir_encoding == dir_encoding_default
3413 && i.operands == i.reg_operands
3414 && operand_type_equal (&i.types[0], &i.types[i.operands - 1])
3415 && i.tm.opcode_modifier.vexopcode == VEX0F
3416 && (i.tm.opcode_modifier.load || i.tm.opcode_modifier.d)
3417 && i.rex == REX_B)
3418 {
3419 unsigned int xchg = i.operands - 1;
3420 union i386_op temp_op;
3421 i386_operand_type temp_type;
3422
3423 temp_type = i.types[xchg];
3424 i.types[xchg] = i.types[0];
3425 i.types[0] = temp_type;
3426 temp_op = i.op[xchg];
3427 i.op[xchg] = i.op[0];
3428 i.op[0] = temp_op;
3429
3430 gas_assert (i.rm.mode == 3);
3431
3432 i.rex = REX_R;
3433 xchg = i.rm.regmem;
3434 i.rm.regmem = i.rm.reg;
3435 i.rm.reg = xchg;
3436
3437 if (i.tm.opcode_modifier.d)
3438 i.tm.base_opcode ^= (i.tm.base_opcode & 0xee) != 0x6e
3439 ? Opcode_SIMD_FloatD : Opcode_SIMD_IntD;
3440 else /* Use the next insn. */
3441 i.tm = t[1];
3442 }
3443
3444 /* Use 2-byte VEX prefix by swapping commutative source operands if there
3445 are no memory operands and at least 3 register ones. */
3446 if (i.reg_operands >= 3
3447 && i.vec_encoding != vex_encoding_vex3
3448 && i.reg_operands == i.operands - i.imm_operands
3449 && i.tm.opcode_modifier.vex
3450 && i.tm.opcode_modifier.commutative
3451 && (i.tm.opcode_modifier.sse2avx || optimize > 1)
3452 && i.rex == REX_B
3453 && i.vex.register_specifier
3454 && !(i.vex.register_specifier->reg_flags & RegRex))
3455 {
3456 unsigned int xchg = i.operands - i.reg_operands;
3457 union i386_op temp_op;
3458 i386_operand_type temp_type;
3459
3460 gas_assert (i.tm.opcode_modifier.vexopcode == VEX0F);
3461 gas_assert (!i.tm.opcode_modifier.sae);
3462 gas_assert (operand_type_equal (&i.types[i.operands - 2],
3463 &i.types[i.operands - 3]));
3464 gas_assert (i.rm.mode == 3);
3465
3466 temp_type = i.types[xchg];
3467 i.types[xchg] = i.types[xchg + 1];
3468 i.types[xchg + 1] = temp_type;
3469 temp_op = i.op[xchg];
3470 i.op[xchg] = i.op[xchg + 1];
3471 i.op[xchg + 1] = temp_op;
3472
3473 i.rex = 0;
3474 xchg = i.rm.regmem | 8;
3475 i.rm.regmem = ~register_specifier & 0xf;
3476 gas_assert (!(i.rm.regmem & 8));
3477 i.vex.register_specifier += xchg - i.rm.regmem;
3478 register_specifier = ~xchg & 0xf;
3479 }
3480
3481 if (i.tm.opcode_modifier.vex == VEXScalar)
3482 vector_length = avxscalar;
3483 else if (i.tm.opcode_modifier.vex == VEX256)
3484 vector_length = 1;
3485 else
3486 {
3487 unsigned int op;
3488
3489 /* Determine vector length from the last multi-length vector
3490 operand. */
3491 vector_length = 0;
3492 for (op = t->operands; op--;)
3493 if (t->operand_types[op].bitfield.xmmword
3494 && t->operand_types[op].bitfield.ymmword
3495 && i.types[op].bitfield.ymmword)
3496 {
3497 vector_length = 1;
3498 break;
3499 }
3500 }
3501
3502 switch ((i.tm.base_opcode >> 8) & 0xff)
3503 {
3504 case 0:
3505 implied_prefix = 0;
3506 break;
3507 case DATA_PREFIX_OPCODE:
3508 implied_prefix = 1;
3509 break;
3510 case REPE_PREFIX_OPCODE:
3511 implied_prefix = 2;
3512 break;
3513 case REPNE_PREFIX_OPCODE:
3514 implied_prefix = 3;
3515 break;
3516 default:
3517 abort ();
3518 }
3519
3520 /* Check the REX.W bit and VEXW. */
3521 if (i.tm.opcode_modifier.vexw == VEXWIG)
3522 w = (vexwig == vexw1 || (i.rex & REX_W)) ? 1 : 0;
3523 else if (i.tm.opcode_modifier.vexw)
3524 w = i.tm.opcode_modifier.vexw == VEXW1 ? 1 : 0;
3525 else
3526 w = (flag_code == CODE_64BIT ? i.rex & REX_W : vexwig == vexw1) ? 1 : 0;
3527
3528 /* Use 2-byte VEX prefix if possible. */
3529 if (w == 0
3530 && i.vec_encoding != vex_encoding_vex3
3531 && i.tm.opcode_modifier.vexopcode == VEX0F
3532 && (i.rex & (REX_W | REX_X | REX_B)) == 0)
3533 {
3534 /* 2-byte VEX prefix. */
3535 unsigned int r;
3536
3537 i.vex.length = 2;
3538 i.vex.bytes[0] = 0xc5;
3539
3540 /* Check the REX.R bit. */
3541 r = (i.rex & REX_R) ? 0 : 1;
3542 i.vex.bytes[1] = (r << 7
3543 | register_specifier << 3
3544 | vector_length << 2
3545 | implied_prefix);
3546 }
3547 else
3548 {
3549 /* 3-byte VEX prefix. */
3550 unsigned int m;
3551
3552 i.vex.length = 3;
3553
3554 switch (i.tm.opcode_modifier.vexopcode)
3555 {
3556 case VEX0F:
3557 m = 0x1;
3558 i.vex.bytes[0] = 0xc4;
3559 break;
3560 case VEX0F38:
3561 m = 0x2;
3562 i.vex.bytes[0] = 0xc4;
3563 break;
3564 case VEX0F3A:
3565 m = 0x3;
3566 i.vex.bytes[0] = 0xc4;
3567 break;
3568 case XOP08:
3569 m = 0x8;
3570 i.vex.bytes[0] = 0x8f;
3571 break;
3572 case XOP09:
3573 m = 0x9;
3574 i.vex.bytes[0] = 0x8f;
3575 break;
3576 case XOP0A:
3577 m = 0xa;
3578 i.vex.bytes[0] = 0x8f;
3579 break;
3580 default:
3581 abort ();
3582 }
3583
3584 /* The high 3 bits of the second VEX byte are 1's compliment
3585 of RXB bits from REX. */
3586 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3587
3588 i.vex.bytes[2] = (w << 7
3589 | register_specifier << 3
3590 | vector_length << 2
3591 | implied_prefix);
3592 }
3593 }
3594
3595 static INLINE bfd_boolean
3596 is_evex_encoding (const insn_template *t)
3597 {
3598 return t->opcode_modifier.evex || t->opcode_modifier.disp8memshift
3599 || t->opcode_modifier.broadcast || t->opcode_modifier.masking
3600 || t->opcode_modifier.sae;
3601 }
3602
3603 static INLINE bfd_boolean
3604 is_any_vex_encoding (const insn_template *t)
3605 {
3606 return t->opcode_modifier.vex || t->opcode_modifier.vexopcode
3607 || is_evex_encoding (t);
3608 }
3609
3610 /* Build the EVEX prefix. */
3611
3612 static void
3613 build_evex_prefix (void)
3614 {
3615 unsigned int register_specifier;
3616 unsigned int implied_prefix;
3617 unsigned int m, w;
3618 rex_byte vrex_used = 0;
3619
3620 /* Check register specifier. */
3621 if (i.vex.register_specifier)
3622 {
3623 gas_assert ((i.vrex & REX_X) == 0);
3624
3625 register_specifier = i.vex.register_specifier->reg_num;
3626 if ((i.vex.register_specifier->reg_flags & RegRex))
3627 register_specifier += 8;
3628 /* The upper 16 registers are encoded in the fourth byte of the
3629 EVEX prefix. */
3630 if (!(i.vex.register_specifier->reg_flags & RegVRex))
3631 i.vex.bytes[3] = 0x8;
3632 register_specifier = ~register_specifier & 0xf;
3633 }
3634 else
3635 {
3636 register_specifier = 0xf;
3637
3638 /* Encode upper 16 vector index register in the fourth byte of
3639 the EVEX prefix. */
3640 if (!(i.vrex & REX_X))
3641 i.vex.bytes[3] = 0x8;
3642 else
3643 vrex_used |= REX_X;
3644 }
3645
3646 switch ((i.tm.base_opcode >> 8) & 0xff)
3647 {
3648 case 0:
3649 implied_prefix = 0;
3650 break;
3651 case DATA_PREFIX_OPCODE:
3652 implied_prefix = 1;
3653 break;
3654 case REPE_PREFIX_OPCODE:
3655 implied_prefix = 2;
3656 break;
3657 case REPNE_PREFIX_OPCODE:
3658 implied_prefix = 3;
3659 break;
3660 default:
3661 abort ();
3662 }
3663
3664 /* 4 byte EVEX prefix. */
3665 i.vex.length = 4;
3666 i.vex.bytes[0] = 0x62;
3667
3668 /* mmmm bits. */
3669 switch (i.tm.opcode_modifier.vexopcode)
3670 {
3671 case VEX0F:
3672 m = 1;
3673 break;
3674 case VEX0F38:
3675 m = 2;
3676 break;
3677 case VEX0F3A:
3678 m = 3;
3679 break;
3680 default:
3681 abort ();
3682 break;
3683 }
3684
3685 /* The high 3 bits of the second EVEX byte are 1's compliment of RXB
3686 bits from REX. */
3687 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3688
3689 /* The fifth bit of the second EVEX byte is 1's compliment of the
3690 REX_R bit in VREX. */
3691 if (!(i.vrex & REX_R))
3692 i.vex.bytes[1] |= 0x10;
3693 else
3694 vrex_used |= REX_R;
3695
3696 if ((i.reg_operands + i.imm_operands) == i.operands)
3697 {
3698 /* When all operands are registers, the REX_X bit in REX is not
3699 used. We reuse it to encode the upper 16 registers, which is
3700 indicated by the REX_B bit in VREX. The REX_X bit is encoded
3701 as 1's compliment. */
3702 if ((i.vrex & REX_B))
3703 {
3704 vrex_used |= REX_B;
3705 i.vex.bytes[1] &= ~0x40;
3706 }
3707 }
3708
3709 /* EVEX instructions shouldn't need the REX prefix. */
3710 i.vrex &= ~vrex_used;
3711 gas_assert (i.vrex == 0);
3712
3713 /* Check the REX.W bit and VEXW. */
3714 if (i.tm.opcode_modifier.vexw == VEXWIG)
3715 w = (evexwig == evexw1 || (i.rex & REX_W)) ? 1 : 0;
3716 else if (i.tm.opcode_modifier.vexw)
3717 w = i.tm.opcode_modifier.vexw == VEXW1 ? 1 : 0;
3718 else
3719 w = (flag_code == CODE_64BIT ? i.rex & REX_W : evexwig == evexw1) ? 1 : 0;
3720
3721 /* Encode the U bit. */
3722 implied_prefix |= 0x4;
3723
3724 /* The third byte of the EVEX prefix. */
3725 i.vex.bytes[2] = (w << 7 | register_specifier << 3 | implied_prefix);
3726
3727 /* The fourth byte of the EVEX prefix. */
3728 /* The zeroing-masking bit. */
3729 if (i.mask && i.mask->zeroing)
3730 i.vex.bytes[3] |= 0x80;
3731
3732 /* Don't always set the broadcast bit if there is no RC. */
3733 if (!i.rounding)
3734 {
3735 /* Encode the vector length. */
3736 unsigned int vec_length;
3737
3738 if (!i.tm.opcode_modifier.evex
3739 || i.tm.opcode_modifier.evex == EVEXDYN)
3740 {
3741 unsigned int op;
3742
3743 /* Determine vector length from the last multi-length vector
3744 operand. */
3745 vec_length = 0;
3746 for (op = i.operands; op--;)
3747 if (i.tm.operand_types[op].bitfield.xmmword
3748 + i.tm.operand_types[op].bitfield.ymmword
3749 + i.tm.operand_types[op].bitfield.zmmword > 1)
3750 {
3751 if (i.types[op].bitfield.zmmword)
3752 {
3753 i.tm.opcode_modifier.evex = EVEX512;
3754 break;
3755 }
3756 else if (i.types[op].bitfield.ymmword)
3757 {
3758 i.tm.opcode_modifier.evex = EVEX256;
3759 break;
3760 }
3761 else if (i.types[op].bitfield.xmmword)
3762 {
3763 i.tm.opcode_modifier.evex = EVEX128;
3764 break;
3765 }
3766 else if (i.broadcast && (int) op == i.broadcast->operand)
3767 {
3768 switch (i.broadcast->bytes)
3769 {
3770 case 64:
3771 i.tm.opcode_modifier.evex = EVEX512;
3772 break;
3773 case 32:
3774 i.tm.opcode_modifier.evex = EVEX256;
3775 break;
3776 case 16:
3777 i.tm.opcode_modifier.evex = EVEX128;
3778 break;
3779 default:
3780 abort ();
3781 }
3782 break;
3783 }
3784 }
3785
3786 if (op >= MAX_OPERANDS)
3787 abort ();
3788 }
3789
3790 switch (i.tm.opcode_modifier.evex)
3791 {
3792 case EVEXLIG: /* LL' is ignored */
3793 vec_length = evexlig << 5;
3794 break;
3795 case EVEX128:
3796 vec_length = 0 << 5;
3797 break;
3798 case EVEX256:
3799 vec_length = 1 << 5;
3800 break;
3801 case EVEX512:
3802 vec_length = 2 << 5;
3803 break;
3804 default:
3805 abort ();
3806 break;
3807 }
3808 i.vex.bytes[3] |= vec_length;
3809 /* Encode the broadcast bit. */
3810 if (i.broadcast)
3811 i.vex.bytes[3] |= 0x10;
3812 }
3813 else
3814 {
3815 if (i.rounding->type != saeonly)
3816 i.vex.bytes[3] |= 0x10 | (i.rounding->type << 5);
3817 else
3818 i.vex.bytes[3] |= 0x10 | (evexrcig << 5);
3819 }
3820
3821 if (i.mask && i.mask->mask)
3822 i.vex.bytes[3] |= i.mask->mask->reg_num;
3823 }
3824
3825 static void
3826 process_immext (void)
3827 {
3828 expressionS *exp;
3829
3830 if ((i.tm.cpu_flags.bitfield.cpusse3 || i.tm.cpu_flags.bitfield.cpusvme)
3831 && i.operands > 0)
3832 {
3833 /* MONITOR/MWAIT as well as SVME instructions have fixed operands
3834 with an opcode suffix which is coded in the same place as an
3835 8-bit immediate field would be.
3836 Here we check those operands and remove them afterwards. */
3837 unsigned int x;
3838
3839 for (x = 0; x < i.operands; x++)
3840 if (register_number (i.op[x].regs) != x)
3841 as_bad (_("can't use register '%s%s' as operand %d in '%s'."),
3842 register_prefix, i.op[x].regs->reg_name, x + 1,
3843 i.tm.name);
3844
3845 i.operands = 0;
3846 }
3847
3848 if (i.tm.cpu_flags.bitfield.cpumwaitx && i.operands > 0)
3849 {
3850 /* MONITORX/MWAITX instructions have fixed operands with an opcode
3851 suffix which is coded in the same place as an 8-bit immediate
3852 field would be.
3853 Here we check those operands and remove them afterwards. */
3854 unsigned int x;
3855
3856 if (i.operands != 3)
3857 abort();
3858
3859 for (x = 0; x < 2; x++)
3860 if (register_number (i.op[x].regs) != x)
3861 goto bad_register_operand;
3862
3863 /* Check for third operand for mwaitx/monitorx insn. */
3864 if (register_number (i.op[x].regs)
3865 != (x + (i.tm.extension_opcode == 0xfb)))
3866 {
3867 bad_register_operand:
3868 as_bad (_("can't use register '%s%s' as operand %d in '%s'."),
3869 register_prefix, i.op[x].regs->reg_name, x+1,
3870 i.tm.name);
3871 }
3872
3873 i.operands = 0;
3874 }
3875
3876 /* These AMD 3DNow! and SSE2 instructions have an opcode suffix
3877 which is coded in the same place as an 8-bit immediate field
3878 would be. Here we fake an 8-bit immediate operand from the
3879 opcode suffix stored in tm.extension_opcode.
3880
3881 AVX instructions also use this encoding, for some of
3882 3 argument instructions. */
3883
3884 gas_assert (i.imm_operands <= 1
3885 && (i.operands <= 2
3886 || (is_any_vex_encoding (&i.tm)
3887 && i.operands <= 4)));
3888
3889 exp = &im_expressions[i.imm_operands++];
3890 i.op[i.operands].imms = exp;
3891 i.types[i.operands] = imm8;
3892 i.operands++;
3893 exp->X_op = O_constant;
3894 exp->X_add_number = i.tm.extension_opcode;
3895 i.tm.extension_opcode = None;
3896 }
3897
3898
3899 static int
3900 check_hle (void)
3901 {
3902 switch (i.tm.opcode_modifier.hleprefixok)
3903 {
3904 default:
3905 abort ();
3906 case HLEPrefixNone:
3907 as_bad (_("invalid instruction `%s' after `%s'"),
3908 i.tm.name, i.hle_prefix);
3909 return 0;
3910 case HLEPrefixLock:
3911 if (i.prefix[LOCK_PREFIX])
3912 return 1;
3913 as_bad (_("missing `lock' with `%s'"), i.hle_prefix);
3914 return 0;
3915 case HLEPrefixAny:
3916 return 1;
3917 case HLEPrefixRelease:
3918 if (i.prefix[HLE_PREFIX] != XRELEASE_PREFIX_OPCODE)
3919 {
3920 as_bad (_("instruction `%s' after `xacquire' not allowed"),
3921 i.tm.name);
3922 return 0;
3923 }
3924 if (i.mem_operands == 0
3925 || !operand_type_check (i.types[i.operands - 1], anymem))
3926 {
3927 as_bad (_("memory destination needed for instruction `%s'"
3928 " after `xrelease'"), i.tm.name);
3929 return 0;
3930 }
3931 return 1;
3932 }
3933 }
3934
3935 /* Try the shortest encoding by shortening operand size. */
3936
3937 static void
3938 optimize_encoding (void)
3939 {
3940 unsigned int j;
3941
3942 if (optimize_for_space
3943 && i.reg_operands == 1
3944 && i.imm_operands == 1
3945 && !i.types[1].bitfield.byte
3946 && i.op[0].imms->X_op == O_constant
3947 && fits_in_imm7 (i.op[0].imms->X_add_number)
3948 && ((i.tm.base_opcode == 0xa8
3949 && i.tm.extension_opcode == None)
3950 || (i.tm.base_opcode == 0xf6
3951 && i.tm.extension_opcode == 0x0)))
3952 {
3953 /* Optimize: -Os:
3954 test $imm7, %r64/%r32/%r16 -> test $imm7, %r8
3955 */
3956 unsigned int base_regnum = i.op[1].regs->reg_num;
3957 if (flag_code == CODE_64BIT || base_regnum < 4)
3958 {
3959 i.types[1].bitfield.byte = 1;
3960 /* Ignore the suffix. */
3961 i.suffix = 0;
3962 if (base_regnum >= 4
3963 && !(i.op[1].regs->reg_flags & RegRex))
3964 {
3965 /* Handle SP, BP, SI and DI registers. */
3966 if (i.types[1].bitfield.word)
3967 j = 16;
3968 else if (i.types[1].bitfield.dword)
3969 j = 32;
3970 else
3971 j = 48;
3972 i.op[1].regs -= j;
3973 }
3974 }
3975 }
3976 else if (flag_code == CODE_64BIT
3977 && ((i.types[1].bitfield.qword
3978 && i.reg_operands == 1
3979 && i.imm_operands == 1
3980 && i.op[0].imms->X_op == O_constant
3981 && ((i.tm.base_opcode == 0xb0
3982 && i.tm.extension_opcode == None
3983 && fits_in_unsigned_long (i.op[0].imms->X_add_number))
3984 || (fits_in_imm31 (i.op[0].imms->X_add_number)
3985 && (((i.tm.base_opcode == 0x24
3986 || i.tm.base_opcode == 0xa8)
3987 && i.tm.extension_opcode == None)
3988 || (i.tm.base_opcode == 0x80
3989 && i.tm.extension_opcode == 0x4)
3990 || ((i.tm.base_opcode == 0xf6
3991 || i.tm.base_opcode == 0xc6)
3992 && i.tm.extension_opcode == 0x0)))
3993 || (fits_in_imm7 (i.op[0].imms->X_add_number)
3994 && i.tm.base_opcode == 0x83
3995 && i.tm.extension_opcode == 0x4)))
3996 || (i.types[0].bitfield.qword
3997 && ((i.reg_operands == 2
3998 && i.op[0].regs == i.op[1].regs
3999 && ((i.tm.base_opcode == 0x30
4000 || i.tm.base_opcode == 0x28)
4001 && i.tm.extension_opcode == None))
4002 || (i.reg_operands == 1
4003 && i.operands == 1
4004 && i.tm.base_opcode == 0x30
4005 && i.tm.extension_opcode == None)))))
4006 {
4007 /* Optimize: -O:
4008 andq $imm31, %r64 -> andl $imm31, %r32
4009 andq $imm7, %r64 -> andl $imm7, %r32
4010 testq $imm31, %r64 -> testl $imm31, %r32
4011 xorq %r64, %r64 -> xorl %r32, %r32
4012 subq %r64, %r64 -> subl %r32, %r32
4013 movq $imm31, %r64 -> movl $imm31, %r32
4014 movq $imm32, %r64 -> movl $imm32, %r32
4015 */
4016 i.tm.opcode_modifier.norex64 = 1;
4017 if (i.tm.base_opcode == 0xb0 || i.tm.base_opcode == 0xc6)
4018 {
4019 /* Handle
4020 movq $imm31, %r64 -> movl $imm31, %r32
4021 movq $imm32, %r64 -> movl $imm32, %r32
4022 */
4023 i.tm.operand_types[0].bitfield.imm32 = 1;
4024 i.tm.operand_types[0].bitfield.imm32s = 0;
4025 i.tm.operand_types[0].bitfield.imm64 = 0;
4026 i.types[0].bitfield.imm32 = 1;
4027 i.types[0].bitfield.imm32s = 0;
4028 i.types[0].bitfield.imm64 = 0;
4029 i.types[1].bitfield.dword = 1;
4030 i.types[1].bitfield.qword = 0;
4031 if (i.tm.base_opcode == 0xc6)
4032 {
4033 /* Handle
4034 movq $imm31, %r64 -> movl $imm31, %r32
4035 */
4036 i.tm.base_opcode = 0xb0;
4037 i.tm.extension_opcode = None;
4038 i.tm.opcode_modifier.shortform = 1;
4039 i.tm.opcode_modifier.modrm = 0;
4040 }
4041 }
4042 }
4043 else if (optimize > 1
4044 && !optimize_for_space
4045 && i.reg_operands == 2
4046 && i.op[0].regs == i.op[1].regs
4047 && ((i.tm.base_opcode & ~(Opcode_D | 1)) == 0x8
4048 || (i.tm.base_opcode & ~(Opcode_D | 1)) == 0x20)
4049 && (flag_code != CODE_64BIT || !i.types[0].bitfield.dword))
4050 {
4051 /* Optimize: -O2:
4052 andb %rN, %rN -> testb %rN, %rN
4053 andw %rN, %rN -> testw %rN, %rN
4054 andq %rN, %rN -> testq %rN, %rN
4055 orb %rN, %rN -> testb %rN, %rN
4056 orw %rN, %rN -> testw %rN, %rN
4057 orq %rN, %rN -> testq %rN, %rN
4058
4059 and outside of 64-bit mode
4060
4061 andl %rN, %rN -> testl %rN, %rN
4062 orl %rN, %rN -> testl %rN, %rN
4063 */
4064 i.tm.base_opcode = 0x84 | (i.tm.base_opcode & 1);
4065 }
4066 else if (i.reg_operands == 3
4067 && i.op[0].regs == i.op[1].regs
4068 && !i.types[2].bitfield.xmmword
4069 && (i.tm.opcode_modifier.vex
4070 || ((!i.mask || i.mask->zeroing)
4071 && !i.rounding
4072 && is_evex_encoding (&i.tm)
4073 && (i.vec_encoding != vex_encoding_evex
4074 || cpu_arch_isa_flags.bitfield.cpuavx512vl
4075 || i.tm.cpu_flags.bitfield.cpuavx512vl
4076 || (i.tm.operand_types[2].bitfield.zmmword
4077 && i.types[2].bitfield.ymmword))))
4078 && ((i.tm.base_opcode == 0x55
4079 || i.tm.base_opcode == 0x6655
4080 || i.tm.base_opcode == 0x66df
4081 || i.tm.base_opcode == 0x57
4082 || i.tm.base_opcode == 0x6657
4083 || i.tm.base_opcode == 0x66ef
4084 || i.tm.base_opcode == 0x66f8
4085 || i.tm.base_opcode == 0x66f9
4086 || i.tm.base_opcode == 0x66fa
4087 || i.tm.base_opcode == 0x66fb
4088 || i.tm.base_opcode == 0x42
4089 || i.tm.base_opcode == 0x6642
4090 || i.tm.base_opcode == 0x47
4091 || i.tm.base_opcode == 0x6647)
4092 && i.tm.extension_opcode == None))
4093 {
4094 /* Optimize: -O1:
4095 VOP, one of vandnps, vandnpd, vxorps, vxorpd, vpsubb, vpsubd,
4096 vpsubq and vpsubw:
4097 EVEX VOP %zmmM, %zmmM, %zmmN
4098 -> VEX VOP %xmmM, %xmmM, %xmmN (M and N < 16)
4099 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
4100 EVEX VOP %ymmM, %ymmM, %ymmN
4101 -> VEX VOP %xmmM, %xmmM, %xmmN (M and N < 16)
4102 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
4103 VEX VOP %ymmM, %ymmM, %ymmN
4104 -> VEX VOP %xmmM, %xmmM, %xmmN
4105 VOP, one of vpandn and vpxor:
4106 VEX VOP %ymmM, %ymmM, %ymmN
4107 -> VEX VOP %xmmM, %xmmM, %xmmN
4108 VOP, one of vpandnd and vpandnq:
4109 EVEX VOP %zmmM, %zmmM, %zmmN
4110 -> VEX vpandn %xmmM, %xmmM, %xmmN (M and N < 16)
4111 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
4112 EVEX VOP %ymmM, %ymmM, %ymmN
4113 -> VEX vpandn %xmmM, %xmmM, %xmmN (M and N < 16)
4114 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
4115 VOP, one of vpxord and vpxorq:
4116 EVEX VOP %zmmM, %zmmM, %zmmN
4117 -> VEX vpxor %xmmM, %xmmM, %xmmN (M and N < 16)
4118 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
4119 EVEX VOP %ymmM, %ymmM, %ymmN
4120 -> VEX vpxor %xmmM, %xmmM, %xmmN (M and N < 16)
4121 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
4122 VOP, one of kxord and kxorq:
4123 VEX VOP %kM, %kM, %kN
4124 -> VEX kxorw %kM, %kM, %kN
4125 VOP, one of kandnd and kandnq:
4126 VEX VOP %kM, %kM, %kN
4127 -> VEX kandnw %kM, %kM, %kN
4128 */
4129 if (is_evex_encoding (&i.tm))
4130 {
4131 if (i.vec_encoding != vex_encoding_evex)
4132 {
4133 i.tm.opcode_modifier.vex = VEX128;
4134 i.tm.opcode_modifier.vexw = VEXW0;
4135 i.tm.opcode_modifier.evex = 0;
4136 }
4137 else if (optimize > 1)
4138 i.tm.opcode_modifier.evex = EVEX128;
4139 else
4140 return;
4141 }
4142 else if (i.tm.operand_types[0].bitfield.regmask)
4143 {
4144 i.tm.base_opcode &= 0xff;
4145 i.tm.opcode_modifier.vexw = VEXW0;
4146 }
4147 else
4148 i.tm.opcode_modifier.vex = VEX128;
4149
4150 if (i.tm.opcode_modifier.vex)
4151 for (j = 0; j < 3; j++)
4152 {
4153 i.types[j].bitfield.xmmword = 1;
4154 i.types[j].bitfield.ymmword = 0;
4155 }
4156 }
4157 else if (i.vec_encoding != vex_encoding_evex
4158 && !i.types[0].bitfield.zmmword
4159 && !i.types[1].bitfield.zmmword
4160 && !i.mask
4161 && !i.broadcast
4162 && is_evex_encoding (&i.tm)
4163 && ((i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0x666f
4164 || (i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0xf36f
4165 || (i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0xf26f
4166 || (i.tm.base_opcode & ~4) == 0x66db
4167 || (i.tm.base_opcode & ~4) == 0x66eb)
4168 && i.tm.extension_opcode == None)
4169 {
4170 /* Optimize: -O1:
4171 VOP, one of vmovdqa32, vmovdqa64, vmovdqu8, vmovdqu16,
4172 vmovdqu32 and vmovdqu64:
4173 EVEX VOP %xmmM, %xmmN
4174 -> VEX vmovdqa|vmovdqu %xmmM, %xmmN (M and N < 16)
4175 EVEX VOP %ymmM, %ymmN
4176 -> VEX vmovdqa|vmovdqu %ymmM, %ymmN (M and N < 16)
4177 EVEX VOP %xmmM, mem
4178 -> VEX vmovdqa|vmovdqu %xmmM, mem (M < 16)
4179 EVEX VOP %ymmM, mem
4180 -> VEX vmovdqa|vmovdqu %ymmM, mem (M < 16)
4181 EVEX VOP mem, %xmmN
4182 -> VEX mvmovdqa|vmovdquem, %xmmN (N < 16)
4183 EVEX VOP mem, %ymmN
4184 -> VEX vmovdqa|vmovdqu mem, %ymmN (N < 16)
4185 VOP, one of vpand, vpandn, vpor, vpxor:
4186 EVEX VOP{d,q} %xmmL, %xmmM, %xmmN
4187 -> VEX VOP %xmmL, %xmmM, %xmmN (L, M, and N < 16)
4188 EVEX VOP{d,q} %ymmL, %ymmM, %ymmN
4189 -> VEX VOP %ymmL, %ymmM, %ymmN (L, M, and N < 16)
4190 EVEX VOP{d,q} mem, %xmmM, %xmmN
4191 -> VEX VOP mem, %xmmM, %xmmN (M and N < 16)
4192 EVEX VOP{d,q} mem, %ymmM, %ymmN
4193 -> VEX VOP mem, %ymmM, %ymmN (M and N < 16)
4194 */
4195 for (j = 0; j < i.operands; j++)
4196 if (operand_type_check (i.types[j], disp)
4197 && i.op[j].disps->X_op == O_constant)
4198 {
4199 /* Since the VEX prefix has 2 or 3 bytes, the EVEX prefix
4200 has 4 bytes, EVEX Disp8 has 1 byte and VEX Disp32 has 4
4201 bytes, we choose EVEX Disp8 over VEX Disp32. */
4202 int evex_disp8, vex_disp8;
4203 unsigned int memshift = i.memshift;
4204 offsetT n = i.op[j].disps->X_add_number;
4205
4206 evex_disp8 = fits_in_disp8 (n);
4207 i.memshift = 0;
4208 vex_disp8 = fits_in_disp8 (n);
4209 if (evex_disp8 != vex_disp8)
4210 {
4211 i.memshift = memshift;
4212 return;
4213 }
4214
4215 i.types[j].bitfield.disp8 = vex_disp8;
4216 break;
4217 }
4218 if ((i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0xf26f)
4219 i.tm.base_opcode ^= 0xf36f ^ 0xf26f;
4220 i.tm.opcode_modifier.vex
4221 = i.types[0].bitfield.ymmword ? VEX256 : VEX128;
4222 i.tm.opcode_modifier.vexw = VEXW0;
4223 /* VPAND, VPOR, and VPXOR are commutative. */
4224 if (i.reg_operands == 3 && i.tm.base_opcode != 0x66df)
4225 i.tm.opcode_modifier.commutative = 1;
4226 i.tm.opcode_modifier.evex = 0;
4227 i.tm.opcode_modifier.masking = 0;
4228 i.tm.opcode_modifier.broadcast = 0;
4229 i.tm.opcode_modifier.disp8memshift = 0;
4230 i.memshift = 0;
4231 if (j < i.operands)
4232 i.types[j].bitfield.disp8
4233 = fits_in_disp8 (i.op[j].disps->X_add_number);
4234 }
4235 }
4236
4237 /* This is the guts of the machine-dependent assembler. LINE points to a
4238 machine dependent instruction. This function is supposed to emit
4239 the frags/bytes it assembles to. */
4240
4241 void
4242 md_assemble (char *line)
4243 {
4244 unsigned int j;
4245 char mnemonic[MAX_MNEM_SIZE], mnem_suffix;
4246 const insn_template *t;
4247
4248 /* Initialize globals. */
4249 memset (&i, '\0', sizeof (i));
4250 for (j = 0; j < MAX_OPERANDS; j++)
4251 i.reloc[j] = NO_RELOC;
4252 memset (disp_expressions, '\0', sizeof (disp_expressions));
4253 memset (im_expressions, '\0', sizeof (im_expressions));
4254 save_stack_p = save_stack;
4255
4256 /* First parse an instruction mnemonic & call i386_operand for the operands.
4257 We assume that the scrubber has arranged it so that line[0] is the valid
4258 start of a (possibly prefixed) mnemonic. */
4259
4260 line = parse_insn (line, mnemonic);
4261 if (line == NULL)
4262 return;
4263 mnem_suffix = i.suffix;
4264
4265 line = parse_operands (line, mnemonic);
4266 this_operand = -1;
4267 xfree (i.memop1_string);
4268 i.memop1_string = NULL;
4269 if (line == NULL)
4270 return;
4271
4272 /* Now we've parsed the mnemonic into a set of templates, and have the
4273 operands at hand. */
4274
4275 /* All intel opcodes have reversed operands except for "bound" and
4276 "enter". We also don't reverse intersegment "jmp" and "call"
4277 instructions with 2 immediate operands so that the immediate segment
4278 precedes the offset, as it does when in AT&T mode. */
4279 if (intel_syntax
4280 && i.operands > 1
4281 && (strcmp (mnemonic, "bound") != 0)
4282 && (strcmp (mnemonic, "invlpga") != 0)
4283 && !(operand_type_check (i.types[0], imm)
4284 && operand_type_check (i.types[1], imm)))
4285 swap_operands ();
4286
4287 /* The order of the immediates should be reversed
4288 for 2 immediates extrq and insertq instructions */
4289 if (i.imm_operands == 2
4290 && (strcmp (mnemonic, "extrq") == 0
4291 || strcmp (mnemonic, "insertq") == 0))
4292 swap_2_operands (0, 1);
4293
4294 if (i.imm_operands)
4295 optimize_imm ();
4296
4297 /* Don't optimize displacement for movabs since it only takes 64bit
4298 displacement. */
4299 if (i.disp_operands
4300 && i.disp_encoding != disp_encoding_32bit
4301 && (flag_code != CODE_64BIT
4302 || strcmp (mnemonic, "movabs") != 0))
4303 optimize_disp ();
4304
4305 /* Next, we find a template that matches the given insn,
4306 making sure the overlap of the given operands types is consistent
4307 with the template operand types. */
4308
4309 if (!(t = match_template (mnem_suffix)))
4310 return;
4311
4312 if (sse_check != check_none
4313 && !i.tm.opcode_modifier.noavx
4314 && !i.tm.cpu_flags.bitfield.cpuavx
4315 && (i.tm.cpu_flags.bitfield.cpusse
4316 || i.tm.cpu_flags.bitfield.cpusse2
4317 || i.tm.cpu_flags.bitfield.cpusse3
4318 || i.tm.cpu_flags.bitfield.cpussse3
4319 || i.tm.cpu_flags.bitfield.cpusse4_1
4320 || i.tm.cpu_flags.bitfield.cpusse4_2
4321 || i.tm.cpu_flags.bitfield.cpupclmul
4322 || i.tm.cpu_flags.bitfield.cpuaes
4323 || i.tm.cpu_flags.bitfield.cpugfni))
4324 {
4325 (sse_check == check_warning
4326 ? as_warn
4327 : as_bad) (_("SSE instruction `%s' is used"), i.tm.name);
4328 }
4329
4330 /* Zap movzx and movsx suffix. The suffix has been set from
4331 "word ptr" or "byte ptr" on the source operand in Intel syntax
4332 or extracted from mnemonic in AT&T syntax. But we'll use
4333 the destination register to choose the suffix for encoding. */
4334 if ((i.tm.base_opcode & ~9) == 0x0fb6)
4335 {
4336 /* In Intel syntax, there must be a suffix. In AT&T syntax, if
4337 there is no suffix, the default will be byte extension. */
4338 if (i.reg_operands != 2
4339 && !i.suffix
4340 && intel_syntax)
4341 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
4342
4343 i.suffix = 0;
4344 }
4345
4346 if (i.tm.opcode_modifier.fwait)
4347 if (!add_prefix (FWAIT_OPCODE))
4348 return;
4349
4350 /* Check if REP prefix is OK. */
4351 if (i.rep_prefix && !i.tm.opcode_modifier.repprefixok)
4352 {
4353 as_bad (_("invalid instruction `%s' after `%s'"),
4354 i.tm.name, i.rep_prefix);
4355 return;
4356 }
4357
4358 /* Check for lock without a lockable instruction. Destination operand
4359 must be memory unless it is xchg (0x86). */
4360 if (i.prefix[LOCK_PREFIX]
4361 && (!i.tm.opcode_modifier.islockable
4362 || i.mem_operands == 0
4363 || (i.tm.base_opcode != 0x86
4364 && !operand_type_check (i.types[i.operands - 1], anymem))))
4365 {
4366 as_bad (_("expecting lockable instruction after `lock'"));
4367 return;
4368 }
4369
4370 /* Check for data size prefix on VEX/XOP/EVEX encoded insns. */
4371 if (i.prefix[DATA_PREFIX] && is_any_vex_encoding (&i.tm))
4372 {
4373 as_bad (_("data size prefix invalid with `%s'"), i.tm.name);
4374 return;
4375 }
4376
4377 /* Check if HLE prefix is OK. */
4378 if (i.hle_prefix && !check_hle ())
4379 return;
4380
4381 /* Check BND prefix. */
4382 if (i.bnd_prefix && !i.tm.opcode_modifier.bndprefixok)
4383 as_bad (_("expecting valid branch instruction after `bnd'"));
4384
4385 /* Check NOTRACK prefix. */
4386 if (i.notrack_prefix && !i.tm.opcode_modifier.notrackprefixok)
4387 as_bad (_("expecting indirect branch instruction after `notrack'"));
4388
4389 if (i.tm.cpu_flags.bitfield.cpumpx)
4390 {
4391 if (flag_code == CODE_64BIT && i.prefix[ADDR_PREFIX])
4392 as_bad (_("32-bit address isn't allowed in 64-bit MPX instructions."));
4393 else if (flag_code != CODE_16BIT
4394 ? i.prefix[ADDR_PREFIX]
4395 : i.mem_operands && !i.prefix[ADDR_PREFIX])
4396 as_bad (_("16-bit address isn't allowed in MPX instructions"));
4397 }
4398
4399 /* Insert BND prefix. */
4400 if (add_bnd_prefix && i.tm.opcode_modifier.bndprefixok)
4401 {
4402 if (!i.prefix[BND_PREFIX])
4403 add_prefix (BND_PREFIX_OPCODE);
4404 else if (i.prefix[BND_PREFIX] != BND_PREFIX_OPCODE)
4405 {
4406 as_warn (_("replacing `rep'/`repe' prefix by `bnd'"));
4407 i.prefix[BND_PREFIX] = BND_PREFIX_OPCODE;
4408 }
4409 }
4410
4411 /* Check string instruction segment overrides. */
4412 if (i.tm.opcode_modifier.isstring && i.mem_operands != 0)
4413 {
4414 if (!check_string ())
4415 return;
4416 i.disp_operands = 0;
4417 }
4418
4419 if (optimize && !i.no_optimize && i.tm.opcode_modifier.optimize)
4420 optimize_encoding ();
4421
4422 if (!process_suffix ())
4423 return;
4424
4425 /* Update operand types. */
4426 for (j = 0; j < i.operands; j++)
4427 i.types[j] = operand_type_and (i.types[j], i.tm.operand_types[j]);
4428
4429 /* Make still unresolved immediate matches conform to size of immediate
4430 given in i.suffix. */
4431 if (!finalize_imm ())
4432 return;
4433
4434 if (i.types[0].bitfield.imm1)
4435 i.imm_operands = 0; /* kludge for shift insns. */
4436
4437 /* We only need to check those implicit registers for instructions
4438 with 3 operands or less. */
4439 if (i.operands <= 3)
4440 for (j = 0; j < i.operands; j++)
4441 if (i.types[j].bitfield.inoutportreg
4442 || i.types[j].bitfield.shiftcount
4443 || (i.types[j].bitfield.acc && !i.types[j].bitfield.xmmword))
4444 i.reg_operands--;
4445
4446 /* ImmExt should be processed after SSE2AVX. */
4447 if (!i.tm.opcode_modifier.sse2avx
4448 && i.tm.opcode_modifier.immext)
4449 process_immext ();
4450
4451 /* For insns with operands there are more diddles to do to the opcode. */
4452 if (i.operands)
4453 {
4454 if (!process_operands ())
4455 return;
4456 }
4457 else if (!quiet_warnings && i.tm.opcode_modifier.ugh)
4458 {
4459 /* UnixWare fsub no args is alias for fsubp, fadd -> faddp, etc. */
4460 as_warn (_("translating to `%sp'"), i.tm.name);
4461 }
4462
4463 if (is_any_vex_encoding (&i.tm))
4464 {
4465 if (!cpu_arch_flags.bitfield.cpui286)
4466 {
4467 as_bad (_("instruction `%s' isn't supported outside of protected mode."),
4468 i.tm.name);
4469 return;
4470 }
4471
4472 if (i.tm.opcode_modifier.vex)
4473 build_vex_prefix (t);
4474 else
4475 build_evex_prefix ();
4476 }
4477
4478 /* Handle conversion of 'int $3' --> special int3 insn. XOP or FMA4
4479 instructions may define INT_OPCODE as well, so avoid this corner
4480 case for those instructions that use MODRM. */
4481 if (i.tm.base_opcode == INT_OPCODE
4482 && !i.tm.opcode_modifier.modrm
4483 && i.op[0].imms->X_add_number == 3)
4484 {
4485 i.tm.base_opcode = INT3_OPCODE;
4486 i.imm_operands = 0;
4487 }
4488
4489 if ((i.tm.opcode_modifier.jump
4490 || i.tm.opcode_modifier.jumpbyte
4491 || i.tm.opcode_modifier.jumpdword)
4492 && i.op[0].disps->X_op == O_constant)
4493 {
4494 /* Convert "jmp constant" (and "call constant") to a jump (call) to
4495 the absolute address given by the constant. Since ix86 jumps and
4496 calls are pc relative, we need to generate a reloc. */
4497 i.op[0].disps->X_add_symbol = &abs_symbol;
4498 i.op[0].disps->X_op = O_symbol;
4499 }
4500
4501 if (i.tm.opcode_modifier.rex64)
4502 i.rex |= REX_W;
4503
4504 /* For 8 bit registers we need an empty rex prefix. Also if the
4505 instruction already has a prefix, we need to convert old
4506 registers to new ones. */
4507
4508 if ((i.types[0].bitfield.reg && i.types[0].bitfield.byte
4509 && (i.op[0].regs->reg_flags & RegRex64) != 0)
4510 || (i.types[1].bitfield.reg && i.types[1].bitfield.byte
4511 && (i.op[1].regs->reg_flags & RegRex64) != 0)
4512 || (((i.types[0].bitfield.reg && i.types[0].bitfield.byte)
4513 || (i.types[1].bitfield.reg && i.types[1].bitfield.byte))
4514 && i.rex != 0))
4515 {
4516 int x;
4517
4518 i.rex |= REX_OPCODE;
4519 for (x = 0; x < 2; x++)
4520 {
4521 /* Look for 8 bit operand that uses old registers. */
4522 if (i.types[x].bitfield.reg && i.types[x].bitfield.byte
4523 && (i.op[x].regs->reg_flags & RegRex64) == 0)
4524 {
4525 /* In case it is "hi" register, give up. */
4526 if (i.op[x].regs->reg_num > 3)
4527 as_bad (_("can't encode register '%s%s' in an "
4528 "instruction requiring REX prefix."),
4529 register_prefix, i.op[x].regs->reg_name);
4530
4531 /* Otherwise it is equivalent to the extended register.
4532 Since the encoding doesn't change this is merely
4533 cosmetic cleanup for debug output. */
4534
4535 i.op[x].regs = i.op[x].regs + 8;
4536 }
4537 }
4538 }
4539
4540 if (i.rex == 0 && i.rex_encoding)
4541 {
4542 /* Check if we can add a REX_OPCODE byte. Look for 8 bit operand
4543 that uses legacy register. If it is "hi" register, don't add
4544 the REX_OPCODE byte. */
4545 int x;
4546 for (x = 0; x < 2; x++)
4547 if (i.types[x].bitfield.reg
4548 && i.types[x].bitfield.byte
4549 && (i.op[x].regs->reg_flags & RegRex64) == 0
4550 && i.op[x].regs->reg_num > 3)
4551 {
4552 i.rex_encoding = FALSE;
4553 break;
4554 }
4555
4556 if (i.rex_encoding)
4557 i.rex = REX_OPCODE;
4558 }
4559
4560 if (i.rex != 0)
4561 add_prefix (REX_OPCODE | i.rex);
4562
4563 /* We are ready to output the insn. */
4564 output_insn ();
4565 }
4566
4567 static char *
4568 parse_insn (char *line, char *mnemonic)
4569 {
4570 char *l = line;
4571 char *token_start = l;
4572 char *mnem_p;
4573 int supported;
4574 const insn_template *t;
4575 char *dot_p = NULL;
4576
4577 while (1)
4578 {
4579 mnem_p = mnemonic;
4580 while ((*mnem_p = mnemonic_chars[(unsigned char) *l]) != 0)
4581 {
4582 if (*mnem_p == '.')
4583 dot_p = mnem_p;
4584 mnem_p++;
4585 if (mnem_p >= mnemonic + MAX_MNEM_SIZE)
4586 {
4587 as_bad (_("no such instruction: `%s'"), token_start);
4588 return NULL;
4589 }
4590 l++;
4591 }
4592 if (!is_space_char (*l)
4593 && *l != END_OF_INSN
4594 && (intel_syntax
4595 || (*l != PREFIX_SEPARATOR
4596 && *l != ',')))
4597 {
4598 as_bad (_("invalid character %s in mnemonic"),
4599 output_invalid (*l));
4600 return NULL;
4601 }
4602 if (token_start == l)
4603 {
4604 if (!intel_syntax && *l == PREFIX_SEPARATOR)
4605 as_bad (_("expecting prefix; got nothing"));
4606 else
4607 as_bad (_("expecting mnemonic; got nothing"));
4608 return NULL;
4609 }
4610
4611 /* Look up instruction (or prefix) via hash table. */
4612 current_templates = (const templates *) hash_find (op_hash, mnemonic);
4613
4614 if (*l != END_OF_INSN
4615 && (!is_space_char (*l) || l[1] != END_OF_INSN)
4616 && current_templates
4617 && current_templates->start->opcode_modifier.isprefix)
4618 {
4619 if (!cpu_flags_check_cpu64 (current_templates->start->cpu_flags))
4620 {
4621 as_bad ((flag_code != CODE_64BIT
4622 ? _("`%s' is only supported in 64-bit mode")
4623 : _("`%s' is not supported in 64-bit mode")),
4624 current_templates->start->name);
4625 return NULL;
4626 }
4627 /* If we are in 16-bit mode, do not allow addr16 or data16.
4628 Similarly, in 32-bit mode, do not allow addr32 or data32. */
4629 if ((current_templates->start->opcode_modifier.size == SIZE16
4630 || current_templates->start->opcode_modifier.size == SIZE32)
4631 && flag_code != CODE_64BIT
4632 && ((current_templates->start->opcode_modifier.size == SIZE32)
4633 ^ (flag_code == CODE_16BIT)))
4634 {
4635 as_bad (_("redundant %s prefix"),
4636 current_templates->start->name);
4637 return NULL;
4638 }
4639 if (current_templates->start->opcode_length == 0)
4640 {
4641 /* Handle pseudo prefixes. */
4642 switch (current_templates->start->base_opcode)
4643 {
4644 case 0x0:
4645 /* {disp8} */
4646 i.disp_encoding = disp_encoding_8bit;
4647 break;
4648 case 0x1:
4649 /* {disp32} */
4650 i.disp_encoding = disp_encoding_32bit;
4651 break;
4652 case 0x2:
4653 /* {load} */
4654 i.dir_encoding = dir_encoding_load;
4655 break;
4656 case 0x3:
4657 /* {store} */
4658 i.dir_encoding = dir_encoding_store;
4659 break;
4660 case 0x4:
4661 /* {vex2} */
4662 i.vec_encoding = vex_encoding_vex2;
4663 break;
4664 case 0x5:
4665 /* {vex3} */
4666 i.vec_encoding = vex_encoding_vex3;
4667 break;
4668 case 0x6:
4669 /* {evex} */
4670 i.vec_encoding = vex_encoding_evex;
4671 break;
4672 case 0x7:
4673 /* {rex} */
4674 i.rex_encoding = TRUE;
4675 break;
4676 case 0x8:
4677 /* {nooptimize} */
4678 i.no_optimize = TRUE;
4679 break;
4680 default:
4681 abort ();
4682 }
4683 }
4684 else
4685 {
4686 /* Add prefix, checking for repeated prefixes. */
4687 switch (add_prefix (current_templates->start->base_opcode))
4688 {
4689 case PREFIX_EXIST:
4690 return NULL;
4691 case PREFIX_DS:
4692 if (current_templates->start->cpu_flags.bitfield.cpuibt)
4693 i.notrack_prefix = current_templates->start->name;
4694 break;
4695 case PREFIX_REP:
4696 if (current_templates->start->cpu_flags.bitfield.cpuhle)
4697 i.hle_prefix = current_templates->start->name;
4698 else if (current_templates->start->cpu_flags.bitfield.cpumpx)
4699 i.bnd_prefix = current_templates->start->name;
4700 else
4701 i.rep_prefix = current_templates->start->name;
4702 break;
4703 default:
4704 break;
4705 }
4706 }
4707 /* Skip past PREFIX_SEPARATOR and reset token_start. */
4708 token_start = ++l;
4709 }
4710 else
4711 break;
4712 }
4713
4714 if (!current_templates)
4715 {
4716 /* Deprecated functionality (new code should use pseudo-prefixes instead):
4717 Check if we should swap operand or force 32bit displacement in
4718 encoding. */
4719 if (mnem_p - 2 == dot_p && dot_p[1] == 's')
4720 i.dir_encoding = dir_encoding_swap;
4721 else if (mnem_p - 3 == dot_p
4722 && dot_p[1] == 'd'
4723 && dot_p[2] == '8')
4724 i.disp_encoding = disp_encoding_8bit;
4725 else if (mnem_p - 4 == dot_p
4726 && dot_p[1] == 'd'
4727 && dot_p[2] == '3'
4728 && dot_p[3] == '2')
4729 i.disp_encoding = disp_encoding_32bit;
4730 else
4731 goto check_suffix;
4732 mnem_p = dot_p;
4733 *dot_p = '\0';
4734 current_templates = (const templates *) hash_find (op_hash, mnemonic);
4735 }
4736
4737 if (!current_templates)
4738 {
4739 check_suffix:
4740 if (mnem_p > mnemonic)
4741 {
4742 /* See if we can get a match by trimming off a suffix. */
4743 switch (mnem_p[-1])
4744 {
4745 case WORD_MNEM_SUFFIX:
4746 if (intel_syntax && (intel_float_operand (mnemonic) & 2))
4747 i.suffix = SHORT_MNEM_SUFFIX;
4748 else
4749 /* Fall through. */
4750 case BYTE_MNEM_SUFFIX:
4751 case QWORD_MNEM_SUFFIX:
4752 i.suffix = mnem_p[-1];
4753 mnem_p[-1] = '\0';
4754 current_templates = (const templates *) hash_find (op_hash,
4755 mnemonic);
4756 break;
4757 case SHORT_MNEM_SUFFIX:
4758 case LONG_MNEM_SUFFIX:
4759 if (!intel_syntax)
4760 {
4761 i.suffix = mnem_p[-1];
4762 mnem_p[-1] = '\0';
4763 current_templates = (const templates *) hash_find (op_hash,
4764 mnemonic);
4765 }
4766 break;
4767
4768 /* Intel Syntax. */
4769 case 'd':
4770 if (intel_syntax)
4771 {
4772 if (intel_float_operand (mnemonic) == 1)
4773 i.suffix = SHORT_MNEM_SUFFIX;
4774 else
4775 i.suffix = LONG_MNEM_SUFFIX;
4776 mnem_p[-1] = '\0';
4777 current_templates = (const templates *) hash_find (op_hash,
4778 mnemonic);
4779 }
4780 break;
4781 }
4782 }
4783
4784 if (!current_templates)
4785 {
4786 as_bad (_("no such instruction: `%s'"), token_start);
4787 return NULL;
4788 }
4789 }
4790
4791 if (current_templates->start->opcode_modifier.jump
4792 || current_templates->start->opcode_modifier.jumpbyte)
4793 {
4794 /* Check for a branch hint. We allow ",pt" and ",pn" for
4795 predict taken and predict not taken respectively.
4796 I'm not sure that branch hints actually do anything on loop
4797 and jcxz insns (JumpByte) for current Pentium4 chips. They
4798 may work in the future and it doesn't hurt to accept them
4799 now. */
4800 if (l[0] == ',' && l[1] == 'p')
4801 {
4802 if (l[2] == 't')
4803 {
4804 if (!add_prefix (DS_PREFIX_OPCODE))
4805 return NULL;
4806 l += 3;
4807 }
4808 else if (l[2] == 'n')
4809 {
4810 if (!add_prefix (CS_PREFIX_OPCODE))
4811 return NULL;
4812 l += 3;
4813 }
4814 }
4815 }
4816 /* Any other comma loses. */
4817 if (*l == ',')
4818 {
4819 as_bad (_("invalid character %s in mnemonic"),
4820 output_invalid (*l));
4821 return NULL;
4822 }
4823
4824 /* Check if instruction is supported on specified architecture. */
4825 supported = 0;
4826 for (t = current_templates->start; t < current_templates->end; ++t)
4827 {
4828 supported |= cpu_flags_match (t);
4829 if (supported == CPU_FLAGS_PERFECT_MATCH)
4830 {
4831 if (!cpu_arch_flags.bitfield.cpui386 && (flag_code != CODE_16BIT))
4832 as_warn (_("use .code16 to ensure correct addressing mode"));
4833
4834 return l;
4835 }
4836 }
4837
4838 if (!(supported & CPU_FLAGS_64BIT_MATCH))
4839 as_bad (flag_code == CODE_64BIT
4840 ? _("`%s' is not supported in 64-bit mode")
4841 : _("`%s' is only supported in 64-bit mode"),
4842 current_templates->start->name);
4843 else
4844 as_bad (_("`%s' is not supported on `%s%s'"),
4845 current_templates->start->name,
4846 cpu_arch_name ? cpu_arch_name : default_arch,
4847 cpu_sub_arch_name ? cpu_sub_arch_name : "");
4848
4849 return NULL;
4850 }
4851
4852 static char *
4853 parse_operands (char *l, const char *mnemonic)
4854 {
4855 char *token_start;
4856
4857 /* 1 if operand is pending after ','. */
4858 unsigned int expecting_operand = 0;
4859
4860 /* Non-zero if operand parens not balanced. */
4861 unsigned int paren_not_balanced;
4862
4863 while (*l != END_OF_INSN)
4864 {
4865 /* Skip optional white space before operand. */
4866 if (is_space_char (*l))
4867 ++l;
4868 if (!is_operand_char (*l) && *l != END_OF_INSN && *l != '"')
4869 {
4870 as_bad (_("invalid character %s before operand %d"),
4871 output_invalid (*l),
4872 i.operands + 1);
4873 return NULL;
4874 }
4875 token_start = l; /* After white space. */
4876 paren_not_balanced = 0;
4877 while (paren_not_balanced || *l != ',')
4878 {
4879 if (*l == END_OF_INSN)
4880 {
4881 if (paren_not_balanced)
4882 {
4883 if (!intel_syntax)
4884 as_bad (_("unbalanced parenthesis in operand %d."),
4885 i.operands + 1);
4886 else
4887 as_bad (_("unbalanced brackets in operand %d."),
4888 i.operands + 1);
4889 return NULL;
4890 }
4891 else
4892 break; /* we are done */
4893 }
4894 else if (!is_operand_char (*l) && !is_space_char (*l) && *l != '"')
4895 {
4896 as_bad (_("invalid character %s in operand %d"),
4897 output_invalid (*l),
4898 i.operands + 1);
4899 return NULL;
4900 }
4901 if (!intel_syntax)
4902 {
4903 if (*l == '(')
4904 ++paren_not_balanced;
4905 if (*l == ')')
4906 --paren_not_balanced;
4907 }
4908 else
4909 {
4910 if (*l == '[')
4911 ++paren_not_balanced;
4912 if (*l == ']')
4913 --paren_not_balanced;
4914 }
4915 l++;
4916 }
4917 if (l != token_start)
4918 { /* Yes, we've read in another operand. */
4919 unsigned int operand_ok;
4920 this_operand = i.operands++;
4921 if (i.operands > MAX_OPERANDS)
4922 {
4923 as_bad (_("spurious operands; (%d operands/instruction max)"),
4924 MAX_OPERANDS);
4925 return NULL;
4926 }
4927 i.types[this_operand].bitfield.unspecified = 1;
4928 /* Now parse operand adding info to 'i' as we go along. */
4929 END_STRING_AND_SAVE (l);
4930
4931 if (i.mem_operands > 1)
4932 {
4933 as_bad (_("too many memory references for `%s'"),
4934 mnemonic);
4935 return 0;
4936 }
4937
4938 if (intel_syntax)
4939 operand_ok =
4940 i386_intel_operand (token_start,
4941 intel_float_operand (mnemonic));
4942 else
4943 operand_ok = i386_att_operand (token_start);
4944
4945 RESTORE_END_STRING (l);
4946 if (!operand_ok)
4947 return NULL;
4948 }
4949 else
4950 {
4951 if (expecting_operand)
4952 {
4953 expecting_operand_after_comma:
4954 as_bad (_("expecting operand after ','; got nothing"));
4955 return NULL;
4956 }
4957 if (*l == ',')
4958 {
4959 as_bad (_("expecting operand before ','; got nothing"));
4960 return NULL;
4961 }
4962 }
4963
4964 /* Now *l must be either ',' or END_OF_INSN. */
4965 if (*l == ',')
4966 {
4967 if (*++l == END_OF_INSN)
4968 {
4969 /* Just skip it, if it's \n complain. */
4970 goto expecting_operand_after_comma;
4971 }
4972 expecting_operand = 1;
4973 }
4974 }
4975 return l;
4976 }
4977
4978 static void
4979 swap_2_operands (int xchg1, int xchg2)
4980 {
4981 union i386_op temp_op;
4982 i386_operand_type temp_type;
4983 unsigned int temp_flags;
4984 enum bfd_reloc_code_real temp_reloc;
4985
4986 temp_type = i.types[xchg2];
4987 i.types[xchg2] = i.types[xchg1];
4988 i.types[xchg1] = temp_type;
4989
4990 temp_flags = i.flags[xchg2];
4991 i.flags[xchg2] = i.flags[xchg1];
4992 i.flags[xchg1] = temp_flags;
4993
4994 temp_op = i.op[xchg2];
4995 i.op[xchg2] = i.op[xchg1];
4996 i.op[xchg1] = temp_op;
4997
4998 temp_reloc = i.reloc[xchg2];
4999 i.reloc[xchg2] = i.reloc[xchg1];
5000 i.reloc[xchg1] = temp_reloc;
5001
5002 if (i.mask)
5003 {
5004 if (i.mask->operand == xchg1)
5005 i.mask->operand = xchg2;
5006 else if (i.mask->operand == xchg2)
5007 i.mask->operand = xchg1;
5008 }
5009 if (i.broadcast)
5010 {
5011 if (i.broadcast->operand == xchg1)
5012 i.broadcast->operand = xchg2;
5013 else if (i.broadcast->operand == xchg2)
5014 i.broadcast->operand = xchg1;
5015 }
5016 if (i.rounding)
5017 {
5018 if (i.rounding->operand == xchg1)
5019 i.rounding->operand = xchg2;
5020 else if (i.rounding->operand == xchg2)
5021 i.rounding->operand = xchg1;
5022 }
5023 }
5024
5025 static void
5026 swap_operands (void)
5027 {
5028 switch (i.operands)
5029 {
5030 case 5:
5031 case 4:
5032 swap_2_operands (1, i.operands - 2);
5033 /* Fall through. */
5034 case 3:
5035 case 2:
5036 swap_2_operands (0, i.operands - 1);
5037 break;
5038 default:
5039 abort ();
5040 }
5041
5042 if (i.mem_operands == 2)
5043 {
5044 const seg_entry *temp_seg;
5045 temp_seg = i.seg[0];
5046 i.seg[0] = i.seg[1];
5047 i.seg[1] = temp_seg;
5048 }
5049 }
5050
5051 /* Try to ensure constant immediates are represented in the smallest
5052 opcode possible. */
5053 static void
5054 optimize_imm (void)
5055 {
5056 char guess_suffix = 0;
5057 int op;
5058
5059 if (i.suffix)
5060 guess_suffix = i.suffix;
5061 else if (i.reg_operands)
5062 {
5063 /* Figure out a suffix from the last register operand specified.
5064 We can't do this properly yet, ie. excluding InOutPortReg,
5065 but the following works for instructions with immediates.
5066 In any case, we can't set i.suffix yet. */
5067 for (op = i.operands; --op >= 0;)
5068 if (i.types[op].bitfield.reg && i.types[op].bitfield.byte)
5069 {
5070 guess_suffix = BYTE_MNEM_SUFFIX;
5071 break;
5072 }
5073 else if (i.types[op].bitfield.reg && i.types[op].bitfield.word)
5074 {
5075 guess_suffix = WORD_MNEM_SUFFIX;
5076 break;
5077 }
5078 else if (i.types[op].bitfield.reg && i.types[op].bitfield.dword)
5079 {
5080 guess_suffix = LONG_MNEM_SUFFIX;
5081 break;
5082 }
5083 else if (i.types[op].bitfield.reg && i.types[op].bitfield.qword)
5084 {
5085 guess_suffix = QWORD_MNEM_SUFFIX;
5086 break;
5087 }
5088 }
5089 else if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
5090 guess_suffix = WORD_MNEM_SUFFIX;
5091
5092 for (op = i.operands; --op >= 0;)
5093 if (operand_type_check (i.types[op], imm))
5094 {
5095 switch (i.op[op].imms->X_op)
5096 {
5097 case O_constant:
5098 /* If a suffix is given, this operand may be shortened. */
5099 switch (guess_suffix)
5100 {
5101 case LONG_MNEM_SUFFIX:
5102 i.types[op].bitfield.imm32 = 1;
5103 i.types[op].bitfield.imm64 = 1;
5104 break;
5105 case WORD_MNEM_SUFFIX:
5106 i.types[op].bitfield.imm16 = 1;
5107 i.types[op].bitfield.imm32 = 1;
5108 i.types[op].bitfield.imm32s = 1;
5109 i.types[op].bitfield.imm64 = 1;
5110 break;
5111 case BYTE_MNEM_SUFFIX:
5112 i.types[op].bitfield.imm8 = 1;
5113 i.types[op].bitfield.imm8s = 1;
5114 i.types[op].bitfield.imm16 = 1;
5115 i.types[op].bitfield.imm32 = 1;
5116 i.types[op].bitfield.imm32s = 1;
5117 i.types[op].bitfield.imm64 = 1;
5118 break;
5119 }
5120
5121 /* If this operand is at most 16 bits, convert it
5122 to a signed 16 bit number before trying to see
5123 whether it will fit in an even smaller size.
5124 This allows a 16-bit operand such as $0xffe0 to
5125 be recognised as within Imm8S range. */
5126 if ((i.types[op].bitfield.imm16)
5127 && (i.op[op].imms->X_add_number & ~(offsetT) 0xffff) == 0)
5128 {
5129 i.op[op].imms->X_add_number =
5130 (((i.op[op].imms->X_add_number & 0xffff) ^ 0x8000) - 0x8000);
5131 }
5132 #ifdef BFD64
5133 /* Store 32-bit immediate in 64-bit for 64-bit BFD. */
5134 if ((i.types[op].bitfield.imm32)
5135 && ((i.op[op].imms->X_add_number & ~(((offsetT) 2 << 31) - 1))
5136 == 0))
5137 {
5138 i.op[op].imms->X_add_number = ((i.op[op].imms->X_add_number
5139 ^ ((offsetT) 1 << 31))
5140 - ((offsetT) 1 << 31));
5141 }
5142 #endif
5143 i.types[op]
5144 = operand_type_or (i.types[op],
5145 smallest_imm_type (i.op[op].imms->X_add_number));
5146
5147 /* We must avoid matching of Imm32 templates when 64bit
5148 only immediate is available. */
5149 if (guess_suffix == QWORD_MNEM_SUFFIX)
5150 i.types[op].bitfield.imm32 = 0;
5151 break;
5152
5153 case O_absent:
5154 case O_register:
5155 abort ();
5156
5157 /* Symbols and expressions. */
5158 default:
5159 /* Convert symbolic operand to proper sizes for matching, but don't
5160 prevent matching a set of insns that only supports sizes other
5161 than those matching the insn suffix. */
5162 {
5163 i386_operand_type mask, allowed;
5164 const insn_template *t;
5165
5166 operand_type_set (&mask, 0);
5167 operand_type_set (&allowed, 0);
5168
5169 for (t = current_templates->start;
5170 t < current_templates->end;
5171 ++t)
5172 allowed = operand_type_or (allowed,
5173 t->operand_types[op]);
5174 switch (guess_suffix)
5175 {
5176 case QWORD_MNEM_SUFFIX:
5177 mask.bitfield.imm64 = 1;
5178 mask.bitfield.imm32s = 1;
5179 break;
5180 case LONG_MNEM_SUFFIX:
5181 mask.bitfield.imm32 = 1;
5182 break;
5183 case WORD_MNEM_SUFFIX:
5184 mask.bitfield.imm16 = 1;
5185 break;
5186 case BYTE_MNEM_SUFFIX:
5187 mask.bitfield.imm8 = 1;
5188 break;
5189 default:
5190 break;
5191 }
5192 allowed = operand_type_and (mask, allowed);
5193 if (!operand_type_all_zero (&allowed))
5194 i.types[op] = operand_type_and (i.types[op], mask);
5195 }
5196 break;
5197 }
5198 }
5199 }
5200
5201 /* Try to use the smallest displacement type too. */
5202 static void
5203 optimize_disp (void)
5204 {
5205 int op;
5206
5207 for (op = i.operands; --op >= 0;)
5208 if (operand_type_check (i.types[op], disp))
5209 {
5210 if (i.op[op].disps->X_op == O_constant)
5211 {
5212 offsetT op_disp = i.op[op].disps->X_add_number;
5213
5214 if (i.types[op].bitfield.disp16
5215 && (op_disp & ~(offsetT) 0xffff) == 0)
5216 {
5217 /* If this operand is at most 16 bits, convert
5218 to a signed 16 bit number and don't use 64bit
5219 displacement. */
5220 op_disp = (((op_disp & 0xffff) ^ 0x8000) - 0x8000);
5221 i.types[op].bitfield.disp64 = 0;
5222 }
5223 #ifdef BFD64
5224 /* Optimize 64-bit displacement to 32-bit for 64-bit BFD. */
5225 if (i.types[op].bitfield.disp32
5226 && (op_disp & ~(((offsetT) 2 << 31) - 1)) == 0)
5227 {
5228 /* If this operand is at most 32 bits, convert
5229 to a signed 32 bit number and don't use 64bit
5230 displacement. */
5231 op_disp &= (((offsetT) 2 << 31) - 1);
5232 op_disp = (op_disp ^ ((offsetT) 1 << 31)) - ((addressT) 1 << 31);
5233 i.types[op].bitfield.disp64 = 0;
5234 }
5235 #endif
5236 if (!op_disp && i.types[op].bitfield.baseindex)
5237 {
5238 i.types[op].bitfield.disp8 = 0;
5239 i.types[op].bitfield.disp16 = 0;
5240 i.types[op].bitfield.disp32 = 0;
5241 i.types[op].bitfield.disp32s = 0;
5242 i.types[op].bitfield.disp64 = 0;
5243 i.op[op].disps = 0;
5244 i.disp_operands--;
5245 }
5246 else if (flag_code == CODE_64BIT)
5247 {
5248 if (fits_in_signed_long (op_disp))
5249 {
5250 i.types[op].bitfield.disp64 = 0;
5251 i.types[op].bitfield.disp32s = 1;
5252 }
5253 if (i.prefix[ADDR_PREFIX]
5254 && fits_in_unsigned_long (op_disp))
5255 i.types[op].bitfield.disp32 = 1;
5256 }
5257 if ((i.types[op].bitfield.disp32
5258 || i.types[op].bitfield.disp32s
5259 || i.types[op].bitfield.disp16)
5260 && fits_in_disp8 (op_disp))
5261 i.types[op].bitfield.disp8 = 1;
5262 }
5263 else if (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
5264 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL)
5265 {
5266 fix_new_exp (frag_now, frag_more (0) - frag_now->fr_literal, 0,
5267 i.op[op].disps, 0, i.reloc[op]);
5268 i.types[op].bitfield.disp8 = 0;
5269 i.types[op].bitfield.disp16 = 0;
5270 i.types[op].bitfield.disp32 = 0;
5271 i.types[op].bitfield.disp32s = 0;
5272 i.types[op].bitfield.disp64 = 0;
5273 }
5274 else
5275 /* We only support 64bit displacement on constants. */
5276 i.types[op].bitfield.disp64 = 0;
5277 }
5278 }
5279
5280 /* Return 1 if there is a match in broadcast bytes between operand
5281 GIVEN and instruction template T. */
5282
5283 static INLINE int
5284 match_broadcast_size (const insn_template *t, unsigned int given)
5285 {
5286 return ((t->opcode_modifier.broadcast == BYTE_BROADCAST
5287 && i.types[given].bitfield.byte)
5288 || (t->opcode_modifier.broadcast == WORD_BROADCAST
5289 && i.types[given].bitfield.word)
5290 || (t->opcode_modifier.broadcast == DWORD_BROADCAST
5291 && i.types[given].bitfield.dword)
5292 || (t->opcode_modifier.broadcast == QWORD_BROADCAST
5293 && i.types[given].bitfield.qword));
5294 }
5295
5296 /* Check if operands are valid for the instruction. */
5297
5298 static int
5299 check_VecOperands (const insn_template *t)
5300 {
5301 unsigned int op;
5302 i386_cpu_flags cpu;
5303 static const i386_cpu_flags avx512 = CPU_ANY_AVX512F_FLAGS;
5304
5305 /* Templates allowing for ZMMword as well as YMMword and/or XMMword for
5306 any one operand are implicity requiring AVX512VL support if the actual
5307 operand size is YMMword or XMMword. Since this function runs after
5308 template matching, there's no need to check for YMMword/XMMword in
5309 the template. */
5310 cpu = cpu_flags_and (t->cpu_flags, avx512);
5311 if (!cpu_flags_all_zero (&cpu)
5312 && !t->cpu_flags.bitfield.cpuavx512vl
5313 && !cpu_arch_flags.bitfield.cpuavx512vl)
5314 {
5315 for (op = 0; op < t->operands; ++op)
5316 {
5317 if (t->operand_types[op].bitfield.zmmword
5318 && (i.types[op].bitfield.ymmword
5319 || i.types[op].bitfield.xmmword))
5320 {
5321 i.error = unsupported;
5322 return 1;
5323 }
5324 }
5325 }
5326
5327 /* Without VSIB byte, we can't have a vector register for index. */
5328 if (!t->opcode_modifier.vecsib
5329 && i.index_reg
5330 && (i.index_reg->reg_type.bitfield.xmmword
5331 || i.index_reg->reg_type.bitfield.ymmword
5332 || i.index_reg->reg_type.bitfield.zmmword))
5333 {
5334 i.error = unsupported_vector_index_register;
5335 return 1;
5336 }
5337
5338 /* Check if default mask is allowed. */
5339 if (t->opcode_modifier.nodefmask
5340 && (!i.mask || i.mask->mask->reg_num == 0))
5341 {
5342 i.error = no_default_mask;
5343 return 1;
5344 }
5345
5346 /* For VSIB byte, we need a vector register for index, and all vector
5347 registers must be distinct. */
5348 if (t->opcode_modifier.vecsib)
5349 {
5350 if (!i.index_reg
5351 || !((t->opcode_modifier.vecsib == VecSIB128
5352 && i.index_reg->reg_type.bitfield.xmmword)
5353 || (t->opcode_modifier.vecsib == VecSIB256
5354 && i.index_reg->reg_type.bitfield.ymmword)
5355 || (t->opcode_modifier.vecsib == VecSIB512
5356 && i.index_reg->reg_type.bitfield.zmmword)))
5357 {
5358 i.error = invalid_vsib_address;
5359 return 1;
5360 }
5361
5362 gas_assert (i.reg_operands == 2 || i.mask);
5363 if (i.reg_operands == 2 && !i.mask)
5364 {
5365 gas_assert (i.types[0].bitfield.regsimd);
5366 gas_assert (i.types[0].bitfield.xmmword
5367 || i.types[0].bitfield.ymmword);
5368 gas_assert (i.types[2].bitfield.regsimd);
5369 gas_assert (i.types[2].bitfield.xmmword
5370 || i.types[2].bitfield.ymmword);
5371 if (operand_check == check_none)
5372 return 0;
5373 if (register_number (i.op[0].regs)
5374 != register_number (i.index_reg)
5375 && register_number (i.op[2].regs)
5376 != register_number (i.index_reg)
5377 && register_number (i.op[0].regs)
5378 != register_number (i.op[2].regs))
5379 return 0;
5380 if (operand_check == check_error)
5381 {
5382 i.error = invalid_vector_register_set;
5383 return 1;
5384 }
5385 as_warn (_("mask, index, and destination registers should be distinct"));
5386 }
5387 else if (i.reg_operands == 1 && i.mask)
5388 {
5389 if (i.types[1].bitfield.regsimd
5390 && (i.types[1].bitfield.xmmword
5391 || i.types[1].bitfield.ymmword
5392 || i.types[1].bitfield.zmmword)
5393 && (register_number (i.op[1].regs)
5394 == register_number (i.index_reg)))
5395 {
5396 if (operand_check == check_error)
5397 {
5398 i.error = invalid_vector_register_set;
5399 return 1;
5400 }
5401 if (operand_check != check_none)
5402 as_warn (_("index and destination registers should be distinct"));
5403 }
5404 }
5405 }
5406
5407 /* Check if broadcast is supported by the instruction and is applied
5408 to the memory operand. */
5409 if (i.broadcast)
5410 {
5411 i386_operand_type type, overlap;
5412
5413 /* Check if specified broadcast is supported in this instruction,
5414 and its broadcast bytes match the memory operand. */
5415 op = i.broadcast->operand;
5416 if (!t->opcode_modifier.broadcast
5417 || !(i.flags[op] & Operand_Mem)
5418 || (!i.types[op].bitfield.unspecified
5419 && !match_broadcast_size (t, op)))
5420 {
5421 bad_broadcast:
5422 i.error = unsupported_broadcast;
5423 return 1;
5424 }
5425
5426 i.broadcast->bytes = ((1 << (t->opcode_modifier.broadcast - 1))
5427 * i.broadcast->type);
5428 operand_type_set (&type, 0);
5429 switch (i.broadcast->bytes)
5430 {
5431 case 2:
5432 type.bitfield.word = 1;
5433 break;
5434 case 4:
5435 type.bitfield.dword = 1;
5436 break;
5437 case 8:
5438 type.bitfield.qword = 1;
5439 break;
5440 case 16:
5441 type.bitfield.xmmword = 1;
5442 break;
5443 case 32:
5444 type.bitfield.ymmword = 1;
5445 break;
5446 case 64:
5447 type.bitfield.zmmword = 1;
5448 break;
5449 default:
5450 goto bad_broadcast;
5451 }
5452
5453 overlap = operand_type_and (type, t->operand_types[op]);
5454 if (operand_type_all_zero (&overlap))
5455 goto bad_broadcast;
5456
5457 if (t->opcode_modifier.checkregsize)
5458 {
5459 unsigned int j;
5460
5461 type.bitfield.baseindex = 1;
5462 for (j = 0; j < i.operands; ++j)
5463 {
5464 if (j != op
5465 && !operand_type_register_match(i.types[j],
5466 t->operand_types[j],
5467 type,
5468 t->operand_types[op]))
5469 goto bad_broadcast;
5470 }
5471 }
5472 }
5473 /* If broadcast is supported in this instruction, we need to check if
5474 operand of one-element size isn't specified without broadcast. */
5475 else if (t->opcode_modifier.broadcast && i.mem_operands)
5476 {
5477 /* Find memory operand. */
5478 for (op = 0; op < i.operands; op++)
5479 if (operand_type_check (i.types[op], anymem))
5480 break;
5481 gas_assert (op < i.operands);
5482 /* Check size of the memory operand. */
5483 if (match_broadcast_size (t, op))
5484 {
5485 i.error = broadcast_needed;
5486 return 1;
5487 }
5488 }
5489 else
5490 op = MAX_OPERANDS - 1; /* Avoid uninitialized variable warning. */
5491
5492 /* Check if requested masking is supported. */
5493 if (i.mask)
5494 {
5495 switch (t->opcode_modifier.masking)
5496 {
5497 case BOTH_MASKING:
5498 break;
5499 case MERGING_MASKING:
5500 if (i.mask->zeroing)
5501 {
5502 case 0:
5503 i.error = unsupported_masking;
5504 return 1;
5505 }
5506 break;
5507 case DYNAMIC_MASKING:
5508 /* Memory destinations allow only merging masking. */
5509 if (i.mask->zeroing && i.mem_operands)
5510 {
5511 /* Find memory operand. */
5512 for (op = 0; op < i.operands; op++)
5513 if (i.flags[op] & Operand_Mem)
5514 break;
5515 gas_assert (op < i.operands);
5516 if (op == i.operands - 1)
5517 {
5518 i.error = unsupported_masking;
5519 return 1;
5520 }
5521 }
5522 break;
5523 default:
5524 abort ();
5525 }
5526 }
5527
5528 /* Check if masking is applied to dest operand. */
5529 if (i.mask && (i.mask->operand != (int) (i.operands - 1)))
5530 {
5531 i.error = mask_not_on_destination;
5532 return 1;
5533 }
5534
5535 /* Check RC/SAE. */
5536 if (i.rounding)
5537 {
5538 if (!t->opcode_modifier.sae
5539 || (i.rounding->type != saeonly && !t->opcode_modifier.staticrounding))
5540 {
5541 i.error = unsupported_rc_sae;
5542 return 1;
5543 }
5544 /* If the instruction has several immediate operands and one of
5545 them is rounding, the rounding operand should be the last
5546 immediate operand. */
5547 if (i.imm_operands > 1
5548 && i.rounding->operand != (int) (i.imm_operands - 1))
5549 {
5550 i.error = rc_sae_operand_not_last_imm;
5551 return 1;
5552 }
5553 }
5554
5555 /* Check vector Disp8 operand. */
5556 if (t->opcode_modifier.disp8memshift
5557 && i.disp_encoding != disp_encoding_32bit)
5558 {
5559 if (i.broadcast)
5560 i.memshift = t->opcode_modifier.broadcast - 1;
5561 else if (t->opcode_modifier.disp8memshift != DISP8_SHIFT_VL)
5562 i.memshift = t->opcode_modifier.disp8memshift;
5563 else
5564 {
5565 const i386_operand_type *type = NULL;
5566
5567 i.memshift = 0;
5568 for (op = 0; op < i.operands; op++)
5569 if (operand_type_check (i.types[op], anymem))
5570 {
5571 if (t->opcode_modifier.evex == EVEXLIG)
5572 i.memshift = 2 + (i.suffix == QWORD_MNEM_SUFFIX);
5573 else if (t->operand_types[op].bitfield.xmmword
5574 + t->operand_types[op].bitfield.ymmword
5575 + t->operand_types[op].bitfield.zmmword <= 1)
5576 type = &t->operand_types[op];
5577 else if (!i.types[op].bitfield.unspecified)
5578 type = &i.types[op];
5579 }
5580 else if (i.types[op].bitfield.regsimd
5581 && t->opcode_modifier.evex != EVEXLIG)
5582 {
5583 if (i.types[op].bitfield.zmmword)
5584 i.memshift = 6;
5585 else if (i.types[op].bitfield.ymmword && i.memshift < 5)
5586 i.memshift = 5;
5587 else if (i.types[op].bitfield.xmmword && i.memshift < 4)
5588 i.memshift = 4;
5589 }
5590
5591 if (type)
5592 {
5593 if (type->bitfield.zmmword)
5594 i.memshift = 6;
5595 else if (type->bitfield.ymmword)
5596 i.memshift = 5;
5597 else if (type->bitfield.xmmword)
5598 i.memshift = 4;
5599 }
5600
5601 /* For the check in fits_in_disp8(). */
5602 if (i.memshift == 0)
5603 i.memshift = -1;
5604 }
5605
5606 for (op = 0; op < i.operands; op++)
5607 if (operand_type_check (i.types[op], disp)
5608 && i.op[op].disps->X_op == O_constant)
5609 {
5610 if (fits_in_disp8 (i.op[op].disps->X_add_number))
5611 {
5612 i.types[op].bitfield.disp8 = 1;
5613 return 0;
5614 }
5615 i.types[op].bitfield.disp8 = 0;
5616 }
5617 }
5618
5619 i.memshift = 0;
5620
5621 return 0;
5622 }
5623
5624 /* Check if operands are valid for the instruction. Update VEX
5625 operand types. */
5626
5627 static int
5628 VEX_check_operands (const insn_template *t)
5629 {
5630 if (i.vec_encoding == vex_encoding_evex)
5631 {
5632 /* This instruction must be encoded with EVEX prefix. */
5633 if (!is_evex_encoding (t))
5634 {
5635 i.error = unsupported;
5636 return 1;
5637 }
5638 return 0;
5639 }
5640
5641 if (!t->opcode_modifier.vex)
5642 {
5643 /* This instruction template doesn't have VEX prefix. */
5644 if (i.vec_encoding != vex_encoding_default)
5645 {
5646 i.error = unsupported;
5647 return 1;
5648 }
5649 return 0;
5650 }
5651
5652 /* Only check VEX_Imm4, which must be the first operand. */
5653 if (t->operand_types[0].bitfield.vec_imm4)
5654 {
5655 if (i.op[0].imms->X_op != O_constant
5656 || !fits_in_imm4 (i.op[0].imms->X_add_number))
5657 {
5658 i.error = bad_imm4;
5659 return 1;
5660 }
5661
5662 /* Turn off Imm8 so that update_imm won't complain. */
5663 i.types[0] = vec_imm4;
5664 }
5665
5666 return 0;
5667 }
5668
5669 static const insn_template *
5670 match_template (char mnem_suffix)
5671 {
5672 /* Points to template once we've found it. */
5673 const insn_template *t;
5674 i386_operand_type overlap0, overlap1, overlap2, overlap3;
5675 i386_operand_type overlap4;
5676 unsigned int found_reverse_match;
5677 i386_opcode_modifier suffix_check, mnemsuf_check;
5678 i386_operand_type operand_types [MAX_OPERANDS];
5679 int addr_prefix_disp;
5680 unsigned int j;
5681 unsigned int found_cpu_match, size_match;
5682 unsigned int check_register;
5683 enum i386_error specific_error = 0;
5684
5685 #if MAX_OPERANDS != 5
5686 # error "MAX_OPERANDS must be 5."
5687 #endif
5688
5689 found_reverse_match = 0;
5690 addr_prefix_disp = -1;
5691
5692 memset (&suffix_check, 0, sizeof (suffix_check));
5693 if (intel_syntax && i.broadcast)
5694 /* nothing */;
5695 else if (i.suffix == BYTE_MNEM_SUFFIX)
5696 suffix_check.no_bsuf = 1;
5697 else if (i.suffix == WORD_MNEM_SUFFIX)
5698 suffix_check.no_wsuf = 1;
5699 else if (i.suffix == SHORT_MNEM_SUFFIX)
5700 suffix_check.no_ssuf = 1;
5701 else if (i.suffix == LONG_MNEM_SUFFIX)
5702 suffix_check.no_lsuf = 1;
5703 else if (i.suffix == QWORD_MNEM_SUFFIX)
5704 suffix_check.no_qsuf = 1;
5705 else if (i.suffix == LONG_DOUBLE_MNEM_SUFFIX)
5706 suffix_check.no_ldsuf = 1;
5707
5708 memset (&mnemsuf_check, 0, sizeof (mnemsuf_check));
5709 if (intel_syntax)
5710 {
5711 switch (mnem_suffix)
5712 {
5713 case BYTE_MNEM_SUFFIX: mnemsuf_check.no_bsuf = 1; break;
5714 case WORD_MNEM_SUFFIX: mnemsuf_check.no_wsuf = 1; break;
5715 case SHORT_MNEM_SUFFIX: mnemsuf_check.no_ssuf = 1; break;
5716 case LONG_MNEM_SUFFIX: mnemsuf_check.no_lsuf = 1; break;
5717 case QWORD_MNEM_SUFFIX: mnemsuf_check.no_qsuf = 1; break;
5718 }
5719 }
5720
5721 /* Must have right number of operands. */
5722 i.error = number_of_operands_mismatch;
5723
5724 for (t = current_templates->start; t < current_templates->end; t++)
5725 {
5726 addr_prefix_disp = -1;
5727 found_reverse_match = 0;
5728
5729 if (i.operands != t->operands)
5730 continue;
5731
5732 /* Check processor support. */
5733 i.error = unsupported;
5734 found_cpu_match = (cpu_flags_match (t)
5735 == CPU_FLAGS_PERFECT_MATCH);
5736 if (!found_cpu_match)
5737 continue;
5738
5739 /* Check AT&T mnemonic. */
5740 i.error = unsupported_with_intel_mnemonic;
5741 if (intel_mnemonic && t->opcode_modifier.attmnemonic)
5742 continue;
5743
5744 /* Check AT&T/Intel syntax and Intel64/AMD64 ISA. */
5745 i.error = unsupported_syntax;
5746 if ((intel_syntax && t->opcode_modifier.attsyntax)
5747 || (!intel_syntax && t->opcode_modifier.intelsyntax)
5748 || (intel64 && t->opcode_modifier.amd64)
5749 || (!intel64 && t->opcode_modifier.intel64))
5750 continue;
5751
5752 /* Check the suffix, except for some instructions in intel mode. */
5753 i.error = invalid_instruction_suffix;
5754 if ((!intel_syntax || !t->opcode_modifier.ignoresize)
5755 && ((t->opcode_modifier.no_bsuf && suffix_check.no_bsuf)
5756 || (t->opcode_modifier.no_wsuf && suffix_check.no_wsuf)
5757 || (t->opcode_modifier.no_lsuf && suffix_check.no_lsuf)
5758 || (t->opcode_modifier.no_ssuf && suffix_check.no_ssuf)
5759 || (t->opcode_modifier.no_qsuf && suffix_check.no_qsuf)
5760 || (t->opcode_modifier.no_ldsuf && suffix_check.no_ldsuf)))
5761 continue;
5762 /* In Intel mode all mnemonic suffixes must be explicitly allowed. */
5763 if ((t->opcode_modifier.no_bsuf && mnemsuf_check.no_bsuf)
5764 || (t->opcode_modifier.no_wsuf && mnemsuf_check.no_wsuf)
5765 || (t->opcode_modifier.no_lsuf && mnemsuf_check.no_lsuf)
5766 || (t->opcode_modifier.no_ssuf && mnemsuf_check.no_ssuf)
5767 || (t->opcode_modifier.no_qsuf && mnemsuf_check.no_qsuf)
5768 || (t->opcode_modifier.no_ldsuf && mnemsuf_check.no_ldsuf))
5769 continue;
5770
5771 size_match = operand_size_match (t);
5772 if (!size_match)
5773 continue;
5774
5775 for (j = 0; j < MAX_OPERANDS; j++)
5776 operand_types[j] = t->operand_types[j];
5777
5778 /* In general, don't allow 64-bit operands in 32-bit mode. */
5779 if (i.suffix == QWORD_MNEM_SUFFIX
5780 && flag_code != CODE_64BIT
5781 && (intel_syntax
5782 ? (!t->opcode_modifier.ignoresize
5783 && !t->opcode_modifier.broadcast
5784 && !intel_float_operand (t->name))
5785 : intel_float_operand (t->name) != 2)
5786 && ((!operand_types[0].bitfield.regmmx
5787 && !operand_types[0].bitfield.regsimd)
5788 || (!operand_types[t->operands > 1].bitfield.regmmx
5789 && !operand_types[t->operands > 1].bitfield.regsimd))
5790 && (t->base_opcode != 0x0fc7
5791 || t->extension_opcode != 1 /* cmpxchg8b */))
5792 continue;
5793
5794 /* In general, don't allow 32-bit operands on pre-386. */
5795 else if (i.suffix == LONG_MNEM_SUFFIX
5796 && !cpu_arch_flags.bitfield.cpui386
5797 && (intel_syntax
5798 ? (!t->opcode_modifier.ignoresize
5799 && !intel_float_operand (t->name))
5800 : intel_float_operand (t->name) != 2)
5801 && ((!operand_types[0].bitfield.regmmx
5802 && !operand_types[0].bitfield.regsimd)
5803 || (!operand_types[t->operands > 1].bitfield.regmmx
5804 && !operand_types[t->operands > 1].bitfield.regsimd)))
5805 continue;
5806
5807 /* Do not verify operands when there are none. */
5808 else
5809 {
5810 if (!t->operands)
5811 /* We've found a match; break out of loop. */
5812 break;
5813 }
5814
5815 /* Address size prefix will turn Disp64/Disp32/Disp16 operand
5816 into Disp32/Disp16/Disp32 operand. */
5817 if (i.prefix[ADDR_PREFIX] != 0)
5818 {
5819 /* There should be only one Disp operand. */
5820 switch (flag_code)
5821 {
5822 case CODE_16BIT:
5823 for (j = 0; j < MAX_OPERANDS; j++)
5824 {
5825 if (operand_types[j].bitfield.disp16)
5826 {
5827 addr_prefix_disp = j;
5828 operand_types[j].bitfield.disp32 = 1;
5829 operand_types[j].bitfield.disp16 = 0;
5830 break;
5831 }
5832 }
5833 break;
5834 case CODE_32BIT:
5835 for (j = 0; j < MAX_OPERANDS; j++)
5836 {
5837 if (operand_types[j].bitfield.disp32)
5838 {
5839 addr_prefix_disp = j;
5840 operand_types[j].bitfield.disp32 = 0;
5841 operand_types[j].bitfield.disp16 = 1;
5842 break;
5843 }
5844 }
5845 break;
5846 case CODE_64BIT:
5847 for (j = 0; j < MAX_OPERANDS; j++)
5848 {
5849 if (operand_types[j].bitfield.disp64)
5850 {
5851 addr_prefix_disp = j;
5852 operand_types[j].bitfield.disp64 = 0;
5853 operand_types[j].bitfield.disp32 = 1;
5854 break;
5855 }
5856 }
5857 break;
5858 }
5859 }
5860
5861 /* Force 0x8b encoding for "mov foo@GOT, %eax". */
5862 if (i.reloc[0] == BFD_RELOC_386_GOT32 && t->base_opcode == 0xa0)
5863 continue;
5864
5865 /* We check register size if needed. */
5866 if (t->opcode_modifier.checkregsize)
5867 {
5868 check_register = (1 << t->operands) - 1;
5869 if (i.broadcast)
5870 check_register &= ~(1 << i.broadcast->operand);
5871 }
5872 else
5873 check_register = 0;
5874
5875 overlap0 = operand_type_and (i.types[0], operand_types[0]);
5876 switch (t->operands)
5877 {
5878 case 1:
5879 if (!operand_type_match (overlap0, i.types[0]))
5880 continue;
5881 break;
5882 case 2:
5883 /* xchg %eax, %eax is a special case. It is an alias for nop
5884 only in 32bit mode and we can use opcode 0x90. In 64bit
5885 mode, we can't use 0x90 for xchg %eax, %eax since it should
5886 zero-extend %eax to %rax. */
5887 if (flag_code == CODE_64BIT
5888 && t->base_opcode == 0x90
5889 && i.types[0].bitfield.acc && i.types[0].bitfield.dword
5890 && i.types[1].bitfield.acc && i.types[1].bitfield.dword)
5891 continue;
5892 /* xrelease mov %eax, <disp> is another special case. It must not
5893 match the accumulator-only encoding of mov. */
5894 if (flag_code != CODE_64BIT
5895 && i.hle_prefix
5896 && t->base_opcode == 0xa0
5897 && i.types[0].bitfield.acc
5898 && operand_type_check (i.types[1], anymem))
5899 continue;
5900 /* Fall through. */
5901
5902 case 3:
5903 if (!(size_match & MATCH_STRAIGHT))
5904 goto check_reverse;
5905 /* Reverse direction of operands if swapping is possible in the first
5906 place (operands need to be symmetric) and
5907 - the load form is requested, and the template is a store form,
5908 - the store form is requested, and the template is a load form,
5909 - the non-default (swapped) form is requested. */
5910 overlap1 = operand_type_and (operand_types[0], operand_types[1]);
5911 if (t->opcode_modifier.d && i.reg_operands == i.operands
5912 && !operand_type_all_zero (&overlap1))
5913 switch (i.dir_encoding)
5914 {
5915 case dir_encoding_load:
5916 if (operand_type_check (operand_types[i.operands - 1], anymem)
5917 || operand_types[i.operands - 1].bitfield.regmem)
5918 goto check_reverse;
5919 break;
5920
5921 case dir_encoding_store:
5922 if (!operand_type_check (operand_types[i.operands - 1], anymem)
5923 && !operand_types[i.operands - 1].bitfield.regmem)
5924 goto check_reverse;
5925 break;
5926
5927 case dir_encoding_swap:
5928 goto check_reverse;
5929
5930 case dir_encoding_default:
5931 break;
5932 }
5933 /* If we want store form, we skip the current load. */
5934 if ((i.dir_encoding == dir_encoding_store
5935 || i.dir_encoding == dir_encoding_swap)
5936 && i.mem_operands == 0
5937 && t->opcode_modifier.load)
5938 continue;
5939 /* Fall through. */
5940 case 4:
5941 case 5:
5942 overlap1 = operand_type_and (i.types[1], operand_types[1]);
5943 if (!operand_type_match (overlap0, i.types[0])
5944 || !operand_type_match (overlap1, i.types[1])
5945 || ((check_register & 3) == 3
5946 && !operand_type_register_match (i.types[0],
5947 operand_types[0],
5948 i.types[1],
5949 operand_types[1])))
5950 {
5951 /* Check if other direction is valid ... */
5952 if (!t->opcode_modifier.d)
5953 continue;
5954
5955 check_reverse:
5956 if (!(size_match & MATCH_REVERSE))
5957 continue;
5958 /* Try reversing direction of operands. */
5959 overlap0 = operand_type_and (i.types[0], operand_types[i.operands - 1]);
5960 overlap1 = operand_type_and (i.types[i.operands - 1], operand_types[0]);
5961 if (!operand_type_match (overlap0, i.types[0])
5962 || !operand_type_match (overlap1, i.types[i.operands - 1])
5963 || (check_register
5964 && !operand_type_register_match (i.types[0],
5965 operand_types[i.operands - 1],
5966 i.types[i.operands - 1],
5967 operand_types[0])))
5968 {
5969 /* Does not match either direction. */
5970 continue;
5971 }
5972 /* found_reverse_match holds which of D or FloatR
5973 we've found. */
5974 if (!t->opcode_modifier.d)
5975 found_reverse_match = 0;
5976 else if (operand_types[0].bitfield.tbyte)
5977 found_reverse_match = Opcode_FloatD;
5978 else if (operand_types[0].bitfield.xmmword
5979 || operand_types[i.operands - 1].bitfield.xmmword
5980 || operand_types[0].bitfield.regmmx
5981 || operand_types[i.operands - 1].bitfield.regmmx
5982 || is_any_vex_encoding(t))
5983 found_reverse_match = (t->base_opcode & 0xee) != 0x6e
5984 ? Opcode_SIMD_FloatD : Opcode_SIMD_IntD;
5985 else
5986 found_reverse_match = Opcode_D;
5987 if (t->opcode_modifier.floatr)
5988 found_reverse_match |= Opcode_FloatR;
5989 }
5990 else
5991 {
5992 /* Found a forward 2 operand match here. */
5993 switch (t->operands)
5994 {
5995 case 5:
5996 overlap4 = operand_type_and (i.types[4],
5997 operand_types[4]);
5998 /* Fall through. */
5999 case 4:
6000 overlap3 = operand_type_and (i.types[3],
6001 operand_types[3]);
6002 /* Fall through. */
6003 case 3:
6004 overlap2 = operand_type_and (i.types[2],
6005 operand_types[2]);
6006 break;
6007 }
6008
6009 switch (t->operands)
6010 {
6011 case 5:
6012 if (!operand_type_match (overlap4, i.types[4])
6013 || !operand_type_register_match (i.types[3],
6014 operand_types[3],
6015 i.types[4],
6016 operand_types[4]))
6017 continue;
6018 /* Fall through. */
6019 case 4:
6020 if (!operand_type_match (overlap3, i.types[3])
6021 || ((check_register & 0xa) == 0xa
6022 && !operand_type_register_match (i.types[1],
6023 operand_types[1],
6024 i.types[3],
6025 operand_types[3]))
6026 || ((check_register & 0xc) == 0xc
6027 && !operand_type_register_match (i.types[2],
6028 operand_types[2],
6029 i.types[3],
6030 operand_types[3])))
6031 continue;
6032 /* Fall through. */
6033 case 3:
6034 /* Here we make use of the fact that there are no
6035 reverse match 3 operand instructions. */
6036 if (!operand_type_match (overlap2, i.types[2])
6037 || ((check_register & 5) == 5
6038 && !operand_type_register_match (i.types[0],
6039 operand_types[0],
6040 i.types[2],
6041 operand_types[2]))
6042 || ((check_register & 6) == 6
6043 && !operand_type_register_match (i.types[1],
6044 operand_types[1],
6045 i.types[2],
6046 operand_types[2])))
6047 continue;
6048 break;
6049 }
6050 }
6051 /* Found either forward/reverse 2, 3 or 4 operand match here:
6052 slip through to break. */
6053 }
6054 if (!found_cpu_match)
6055 continue;
6056
6057 /* Check if vector and VEX operands are valid. */
6058 if (check_VecOperands (t) || VEX_check_operands (t))
6059 {
6060 specific_error = i.error;
6061 continue;
6062 }
6063
6064 /* We've found a match; break out of loop. */
6065 break;
6066 }
6067
6068 if (t == current_templates->end)
6069 {
6070 /* We found no match. */
6071 const char *err_msg;
6072 switch (specific_error ? specific_error : i.error)
6073 {
6074 default:
6075 abort ();
6076 case operand_size_mismatch:
6077 err_msg = _("operand size mismatch");
6078 break;
6079 case operand_type_mismatch:
6080 err_msg = _("operand type mismatch");
6081 break;
6082 case register_type_mismatch:
6083 err_msg = _("register type mismatch");
6084 break;
6085 case number_of_operands_mismatch:
6086 err_msg = _("number of operands mismatch");
6087 break;
6088 case invalid_instruction_suffix:
6089 err_msg = _("invalid instruction suffix");
6090 break;
6091 case bad_imm4:
6092 err_msg = _("constant doesn't fit in 4 bits");
6093 break;
6094 case unsupported_with_intel_mnemonic:
6095 err_msg = _("unsupported with Intel mnemonic");
6096 break;
6097 case unsupported_syntax:
6098 err_msg = _("unsupported syntax");
6099 break;
6100 case unsupported:
6101 as_bad (_("unsupported instruction `%s'"),
6102 current_templates->start->name);
6103 return NULL;
6104 case invalid_vsib_address:
6105 err_msg = _("invalid VSIB address");
6106 break;
6107 case invalid_vector_register_set:
6108 err_msg = _("mask, index, and destination registers must be distinct");
6109 break;
6110 case unsupported_vector_index_register:
6111 err_msg = _("unsupported vector index register");
6112 break;
6113 case unsupported_broadcast:
6114 err_msg = _("unsupported broadcast");
6115 break;
6116 case broadcast_needed:
6117 err_msg = _("broadcast is needed for operand of such type");
6118 break;
6119 case unsupported_masking:
6120 err_msg = _("unsupported masking");
6121 break;
6122 case mask_not_on_destination:
6123 err_msg = _("mask not on destination operand");
6124 break;
6125 case no_default_mask:
6126 err_msg = _("default mask isn't allowed");
6127 break;
6128 case unsupported_rc_sae:
6129 err_msg = _("unsupported static rounding/sae");
6130 break;
6131 case rc_sae_operand_not_last_imm:
6132 if (intel_syntax)
6133 err_msg = _("RC/SAE operand must precede immediate operands");
6134 else
6135 err_msg = _("RC/SAE operand must follow immediate operands");
6136 break;
6137 case invalid_register_operand:
6138 err_msg = _("invalid register operand");
6139 break;
6140 }
6141 as_bad (_("%s for `%s'"), err_msg,
6142 current_templates->start->name);
6143 return NULL;
6144 }
6145
6146 if (!quiet_warnings)
6147 {
6148 if (!intel_syntax
6149 && (i.types[0].bitfield.jumpabsolute
6150 != operand_types[0].bitfield.jumpabsolute))
6151 {
6152 as_warn (_("indirect %s without `*'"), t->name);
6153 }
6154
6155 if (t->opcode_modifier.isprefix
6156 && t->opcode_modifier.ignoresize)
6157 {
6158 /* Warn them that a data or address size prefix doesn't
6159 affect assembly of the next line of code. */
6160 as_warn (_("stand-alone `%s' prefix"), t->name);
6161 }
6162 }
6163
6164 /* Copy the template we found. */
6165 i.tm = *t;
6166
6167 if (addr_prefix_disp != -1)
6168 i.tm.operand_types[addr_prefix_disp]
6169 = operand_types[addr_prefix_disp];
6170
6171 if (found_reverse_match)
6172 {
6173 /* If we found a reverse match we must alter the opcode
6174 direction bit. found_reverse_match holds bits to change
6175 (different for int & float insns). */
6176
6177 i.tm.base_opcode ^= found_reverse_match;
6178
6179 i.tm.operand_types[0] = operand_types[i.operands - 1];
6180 i.tm.operand_types[i.operands - 1] = operand_types[0];
6181 }
6182
6183 return t;
6184 }
6185
6186 static int
6187 check_string (void)
6188 {
6189 int mem_op = operand_type_check (i.types[0], anymem) ? 0 : 1;
6190 if (i.tm.operand_types[mem_op].bitfield.esseg)
6191 {
6192 if (i.seg[0] != NULL && i.seg[0] != &es)
6193 {
6194 as_bad (_("`%s' operand %d must use `%ses' segment"),
6195 i.tm.name,
6196 mem_op + 1,
6197 register_prefix);
6198 return 0;
6199 }
6200 /* There's only ever one segment override allowed per instruction.
6201 This instruction possibly has a legal segment override on the
6202 second operand, so copy the segment to where non-string
6203 instructions store it, allowing common code. */
6204 i.seg[0] = i.seg[1];
6205 }
6206 else if (i.tm.operand_types[mem_op + 1].bitfield.esseg)
6207 {
6208 if (i.seg[1] != NULL && i.seg[1] != &es)
6209 {
6210 as_bad (_("`%s' operand %d must use `%ses' segment"),
6211 i.tm.name,
6212 mem_op + 2,
6213 register_prefix);
6214 return 0;
6215 }
6216 }
6217 return 1;
6218 }
6219
6220 static int
6221 process_suffix (void)
6222 {
6223 /* If matched instruction specifies an explicit instruction mnemonic
6224 suffix, use it. */
6225 if (i.tm.opcode_modifier.size == SIZE16)
6226 i.suffix = WORD_MNEM_SUFFIX;
6227 else if (i.tm.opcode_modifier.size == SIZE32)
6228 i.suffix = LONG_MNEM_SUFFIX;
6229 else if (i.tm.opcode_modifier.size == SIZE64)
6230 i.suffix = QWORD_MNEM_SUFFIX;
6231 else if (i.reg_operands)
6232 {
6233 /* If there's no instruction mnemonic suffix we try to invent one
6234 based on register operands. */
6235 if (!i.suffix)
6236 {
6237 /* We take i.suffix from the last register operand specified,
6238 Destination register type is more significant than source
6239 register type. crc32 in SSE4.2 prefers source register
6240 type. */
6241 if (i.tm.base_opcode == 0xf20f38f0 && i.types[0].bitfield.reg)
6242 {
6243 if (i.types[0].bitfield.byte)
6244 i.suffix = BYTE_MNEM_SUFFIX;
6245 else if (i.types[0].bitfield.word)
6246 i.suffix = WORD_MNEM_SUFFIX;
6247 else if (i.types[0].bitfield.dword)
6248 i.suffix = LONG_MNEM_SUFFIX;
6249 else if (i.types[0].bitfield.qword)
6250 i.suffix = QWORD_MNEM_SUFFIX;
6251 }
6252
6253 if (!i.suffix)
6254 {
6255 int op;
6256
6257 if (i.tm.base_opcode == 0xf20f38f0)
6258 {
6259 /* We have to know the operand size for crc32. */
6260 as_bad (_("ambiguous memory operand size for `%s`"),
6261 i.tm.name);
6262 return 0;
6263 }
6264
6265 for (op = i.operands; --op >= 0;)
6266 if (!i.tm.operand_types[op].bitfield.inoutportreg
6267 && !i.tm.operand_types[op].bitfield.shiftcount)
6268 {
6269 if (!i.types[op].bitfield.reg)
6270 continue;
6271 if (i.types[op].bitfield.byte)
6272 i.suffix = BYTE_MNEM_SUFFIX;
6273 else if (i.types[op].bitfield.word)
6274 i.suffix = WORD_MNEM_SUFFIX;
6275 else if (i.types[op].bitfield.dword)
6276 i.suffix = LONG_MNEM_SUFFIX;
6277 else if (i.types[op].bitfield.qword)
6278 i.suffix = QWORD_MNEM_SUFFIX;
6279 else
6280 continue;
6281 break;
6282 }
6283 }
6284 }
6285 else if (i.suffix == BYTE_MNEM_SUFFIX)
6286 {
6287 if (intel_syntax
6288 && i.tm.opcode_modifier.ignoresize
6289 && i.tm.opcode_modifier.no_bsuf)
6290 i.suffix = 0;
6291 else if (!check_byte_reg ())
6292 return 0;
6293 }
6294 else if (i.suffix == LONG_MNEM_SUFFIX)
6295 {
6296 if (intel_syntax
6297 && i.tm.opcode_modifier.ignoresize
6298 && i.tm.opcode_modifier.no_lsuf
6299 && !i.tm.opcode_modifier.todword
6300 && !i.tm.opcode_modifier.toqword)
6301 i.suffix = 0;
6302 else if (!check_long_reg ())
6303 return 0;
6304 }
6305 else if (i.suffix == QWORD_MNEM_SUFFIX)
6306 {
6307 if (intel_syntax
6308 && i.tm.opcode_modifier.ignoresize
6309 && i.tm.opcode_modifier.no_qsuf
6310 && !i.tm.opcode_modifier.todword
6311 && !i.tm.opcode_modifier.toqword)
6312 i.suffix = 0;
6313 else if (!check_qword_reg ())
6314 return 0;
6315 }
6316 else if (i.suffix == WORD_MNEM_SUFFIX)
6317 {
6318 if (intel_syntax
6319 && i.tm.opcode_modifier.ignoresize
6320 && i.tm.opcode_modifier.no_wsuf)
6321 i.suffix = 0;
6322 else if (!check_word_reg ())
6323 return 0;
6324 }
6325 else if (intel_syntax && i.tm.opcode_modifier.ignoresize)
6326 /* Do nothing if the instruction is going to ignore the prefix. */
6327 ;
6328 else
6329 abort ();
6330 }
6331 else if (i.tm.opcode_modifier.defaultsize
6332 && !i.suffix
6333 /* exclude fldenv/frstor/fsave/fstenv */
6334 && i.tm.opcode_modifier.no_ssuf)
6335 {
6336 if (stackop_size == LONG_MNEM_SUFFIX
6337 && i.tm.base_opcode == 0xcf)
6338 {
6339 /* stackop_size is set to LONG_MNEM_SUFFIX for the
6340 .code16gcc directive to support 16-bit mode with
6341 32-bit address. For IRET without a suffix, generate
6342 16-bit IRET (opcode 0xcf) to return from an interrupt
6343 handler. */
6344 i.suffix = WORD_MNEM_SUFFIX;
6345 as_warn (_("generating 16-bit `iret' for .code16gcc directive"));
6346 }
6347 else
6348 i.suffix = stackop_size;
6349 }
6350 else if (intel_syntax
6351 && !i.suffix
6352 && (i.tm.operand_types[0].bitfield.jumpabsolute
6353 || i.tm.opcode_modifier.jumpbyte
6354 || i.tm.opcode_modifier.jumpintersegment
6355 || (i.tm.base_opcode == 0x0f01 /* [ls][gi]dt */
6356 && i.tm.extension_opcode <= 3)))
6357 {
6358 switch (flag_code)
6359 {
6360 case CODE_64BIT:
6361 if (!i.tm.opcode_modifier.no_qsuf)
6362 {
6363 i.suffix = QWORD_MNEM_SUFFIX;
6364 break;
6365 }
6366 /* Fall through. */
6367 case CODE_32BIT:
6368 if (!i.tm.opcode_modifier.no_lsuf)
6369 i.suffix = LONG_MNEM_SUFFIX;
6370 break;
6371 case CODE_16BIT:
6372 if (!i.tm.opcode_modifier.no_wsuf)
6373 i.suffix = WORD_MNEM_SUFFIX;
6374 break;
6375 }
6376 }
6377
6378 if (!i.suffix)
6379 {
6380 if (!intel_syntax)
6381 {
6382 if (i.tm.opcode_modifier.w)
6383 {
6384 as_bad (_("no instruction mnemonic suffix given and "
6385 "no register operands; can't size instruction"));
6386 return 0;
6387 }
6388 }
6389 else
6390 {
6391 unsigned int suffixes;
6392
6393 suffixes = !i.tm.opcode_modifier.no_bsuf;
6394 if (!i.tm.opcode_modifier.no_wsuf)
6395 suffixes |= 1 << 1;
6396 if (!i.tm.opcode_modifier.no_lsuf)
6397 suffixes |= 1 << 2;
6398 if (!i.tm.opcode_modifier.no_ldsuf)
6399 suffixes |= 1 << 3;
6400 if (!i.tm.opcode_modifier.no_ssuf)
6401 suffixes |= 1 << 4;
6402 if (flag_code == CODE_64BIT && !i.tm.opcode_modifier.no_qsuf)
6403 suffixes |= 1 << 5;
6404
6405 /* There are more than suffix matches. */
6406 if (i.tm.opcode_modifier.w
6407 || ((suffixes & (suffixes - 1))
6408 && !i.tm.opcode_modifier.defaultsize
6409 && !i.tm.opcode_modifier.ignoresize))
6410 {
6411 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
6412 return 0;
6413 }
6414 }
6415 }
6416
6417 /* Change the opcode based on the operand size given by i.suffix. */
6418 switch (i.suffix)
6419 {
6420 /* Size floating point instruction. */
6421 case LONG_MNEM_SUFFIX:
6422 if (i.tm.opcode_modifier.floatmf)
6423 {
6424 i.tm.base_opcode ^= 4;
6425 break;
6426 }
6427 /* fall through */
6428 case WORD_MNEM_SUFFIX:
6429 case QWORD_MNEM_SUFFIX:
6430 /* It's not a byte, select word/dword operation. */
6431 if (i.tm.opcode_modifier.w)
6432 {
6433 if (i.tm.opcode_modifier.shortform)
6434 i.tm.base_opcode |= 8;
6435 else
6436 i.tm.base_opcode |= 1;
6437 }
6438 /* fall through */
6439 case SHORT_MNEM_SUFFIX:
6440 /* Now select between word & dword operations via the operand
6441 size prefix, except for instructions that will ignore this
6442 prefix anyway. */
6443 if (i.reg_operands > 0
6444 && i.types[0].bitfield.reg
6445 && i.tm.opcode_modifier.addrprefixopreg
6446 && (i.tm.opcode_modifier.immext
6447 || i.operands == 1))
6448 {
6449 /* The address size override prefix changes the size of the
6450 first operand. */
6451 if ((flag_code == CODE_32BIT
6452 && i.op[0].regs->reg_type.bitfield.word)
6453 || (flag_code != CODE_32BIT
6454 && i.op[0].regs->reg_type.bitfield.dword))
6455 if (!add_prefix (ADDR_PREFIX_OPCODE))
6456 return 0;
6457 }
6458 else if (i.suffix != QWORD_MNEM_SUFFIX
6459 && !i.tm.opcode_modifier.ignoresize
6460 && !i.tm.opcode_modifier.floatmf
6461 && !is_any_vex_encoding (&i.tm)
6462 && ((i.suffix == LONG_MNEM_SUFFIX) == (flag_code == CODE_16BIT)
6463 || (flag_code == CODE_64BIT
6464 && i.tm.opcode_modifier.jumpbyte)))
6465 {
6466 unsigned int prefix = DATA_PREFIX_OPCODE;
6467
6468 if (i.tm.opcode_modifier.jumpbyte) /* jcxz, loop */
6469 prefix = ADDR_PREFIX_OPCODE;
6470
6471 if (!add_prefix (prefix))
6472 return 0;
6473 }
6474
6475 /* Set mode64 for an operand. */
6476 if (i.suffix == QWORD_MNEM_SUFFIX
6477 && flag_code == CODE_64BIT
6478 && !i.tm.opcode_modifier.norex64
6479 /* Special case for xchg %rax,%rax. It is NOP and doesn't
6480 need rex64. */
6481 && ! (i.operands == 2
6482 && i.tm.base_opcode == 0x90
6483 && i.tm.extension_opcode == None
6484 && i.types[0].bitfield.acc && i.types[0].bitfield.qword
6485 && i.types[1].bitfield.acc && i.types[1].bitfield.qword))
6486 i.rex |= REX_W;
6487
6488 break;
6489 }
6490
6491 if (i.reg_operands != 0
6492 && i.operands > 1
6493 && i.tm.opcode_modifier.addrprefixopreg
6494 && !i.tm.opcode_modifier.immext)
6495 {
6496 /* Check invalid register operand when the address size override
6497 prefix changes the size of register operands. */
6498 unsigned int op;
6499 enum { need_word, need_dword, need_qword } need;
6500
6501 if (flag_code == CODE_32BIT)
6502 need = i.prefix[ADDR_PREFIX] ? need_word : need_dword;
6503 else
6504 {
6505 if (i.prefix[ADDR_PREFIX])
6506 need = need_dword;
6507 else
6508 need = flag_code == CODE_64BIT ? need_qword : need_word;
6509 }
6510
6511 for (op = 0; op < i.operands; op++)
6512 if (i.types[op].bitfield.reg
6513 && ((need == need_word
6514 && !i.op[op].regs->reg_type.bitfield.word)
6515 || (need == need_dword
6516 && !i.op[op].regs->reg_type.bitfield.dword)
6517 || (need == need_qword
6518 && !i.op[op].regs->reg_type.bitfield.qword)))
6519 {
6520 as_bad (_("invalid register operand size for `%s'"),
6521 i.tm.name);
6522 return 0;
6523 }
6524 }
6525
6526 return 1;
6527 }
6528
6529 static int
6530 check_byte_reg (void)
6531 {
6532 int op;
6533
6534 for (op = i.operands; --op >= 0;)
6535 {
6536 /* Skip non-register operands. */
6537 if (!i.types[op].bitfield.reg)
6538 continue;
6539
6540 /* If this is an eight bit register, it's OK. If it's the 16 or
6541 32 bit version of an eight bit register, we will just use the
6542 low portion, and that's OK too. */
6543 if (i.types[op].bitfield.byte)
6544 continue;
6545
6546 /* I/O port address operands are OK too. */
6547 if (i.tm.operand_types[op].bitfield.inoutportreg)
6548 continue;
6549
6550 /* crc32 doesn't generate this warning. */
6551 if (i.tm.base_opcode == 0xf20f38f0)
6552 continue;
6553
6554 if ((i.types[op].bitfield.word
6555 || i.types[op].bitfield.dword
6556 || i.types[op].bitfield.qword)
6557 && i.op[op].regs->reg_num < 4
6558 /* Prohibit these changes in 64bit mode, since the lowering
6559 would be more complicated. */
6560 && flag_code != CODE_64BIT)
6561 {
6562 #if REGISTER_WARNINGS
6563 if (!quiet_warnings)
6564 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
6565 register_prefix,
6566 (i.op[op].regs + (i.types[op].bitfield.word
6567 ? REGNAM_AL - REGNAM_AX
6568 : REGNAM_AL - REGNAM_EAX))->reg_name,
6569 register_prefix,
6570 i.op[op].regs->reg_name,
6571 i.suffix);
6572 #endif
6573 continue;
6574 }
6575 /* Any other register is bad. */
6576 if (i.types[op].bitfield.reg
6577 || i.types[op].bitfield.regmmx
6578 || i.types[op].bitfield.regsimd
6579 || i.types[op].bitfield.sreg2
6580 || i.types[op].bitfield.sreg3
6581 || i.types[op].bitfield.control
6582 || i.types[op].bitfield.debug
6583 || i.types[op].bitfield.test)
6584 {
6585 as_bad (_("`%s%s' not allowed with `%s%c'"),
6586 register_prefix,
6587 i.op[op].regs->reg_name,
6588 i.tm.name,
6589 i.suffix);
6590 return 0;
6591 }
6592 }
6593 return 1;
6594 }
6595
6596 static int
6597 check_long_reg (void)
6598 {
6599 int op;
6600
6601 for (op = i.operands; --op >= 0;)
6602 /* Skip non-register operands. */
6603 if (!i.types[op].bitfield.reg)
6604 continue;
6605 /* Reject eight bit registers, except where the template requires
6606 them. (eg. movzb) */
6607 else if (i.types[op].bitfield.byte
6608 && (i.tm.operand_types[op].bitfield.reg
6609 || i.tm.operand_types[op].bitfield.acc)
6610 && (i.tm.operand_types[op].bitfield.word
6611 || i.tm.operand_types[op].bitfield.dword))
6612 {
6613 as_bad (_("`%s%s' not allowed with `%s%c'"),
6614 register_prefix,
6615 i.op[op].regs->reg_name,
6616 i.tm.name,
6617 i.suffix);
6618 return 0;
6619 }
6620 /* Warn if the e prefix on a general reg is missing. */
6621 else if ((!quiet_warnings || flag_code == CODE_64BIT)
6622 && i.types[op].bitfield.word
6623 && (i.tm.operand_types[op].bitfield.reg
6624 || i.tm.operand_types[op].bitfield.acc)
6625 && i.tm.operand_types[op].bitfield.dword)
6626 {
6627 /* Prohibit these changes in the 64bit mode, since the
6628 lowering is more complicated. */
6629 if (flag_code == CODE_64BIT)
6630 {
6631 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
6632 register_prefix, i.op[op].regs->reg_name,
6633 i.suffix);
6634 return 0;
6635 }
6636 #if REGISTER_WARNINGS
6637 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
6638 register_prefix,
6639 (i.op[op].regs + REGNAM_EAX - REGNAM_AX)->reg_name,
6640 register_prefix, i.op[op].regs->reg_name, i.suffix);
6641 #endif
6642 }
6643 /* Warn if the r prefix on a general reg is present. */
6644 else if (i.types[op].bitfield.qword
6645 && (i.tm.operand_types[op].bitfield.reg
6646 || i.tm.operand_types[op].bitfield.acc)
6647 && i.tm.operand_types[op].bitfield.dword)
6648 {
6649 if (intel_syntax
6650 && i.tm.opcode_modifier.toqword
6651 && !i.types[0].bitfield.regsimd)
6652 {
6653 /* Convert to QWORD. We want REX byte. */
6654 i.suffix = QWORD_MNEM_SUFFIX;
6655 }
6656 else
6657 {
6658 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
6659 register_prefix, i.op[op].regs->reg_name,
6660 i.suffix);
6661 return 0;
6662 }
6663 }
6664 return 1;
6665 }
6666
6667 static int
6668 check_qword_reg (void)
6669 {
6670 int op;
6671
6672 for (op = i.operands; --op >= 0; )
6673 /* Skip non-register operands. */
6674 if (!i.types[op].bitfield.reg)
6675 continue;
6676 /* Reject eight bit registers, except where the template requires
6677 them. (eg. movzb) */
6678 else if (i.types[op].bitfield.byte
6679 && (i.tm.operand_types[op].bitfield.reg
6680 || i.tm.operand_types[op].bitfield.acc)
6681 && (i.tm.operand_types[op].bitfield.word
6682 || i.tm.operand_types[op].bitfield.dword))
6683 {
6684 as_bad (_("`%s%s' not allowed with `%s%c'"),
6685 register_prefix,
6686 i.op[op].regs->reg_name,
6687 i.tm.name,
6688 i.suffix);
6689 return 0;
6690 }
6691 /* Warn if the r prefix on a general reg is missing. */
6692 else if ((i.types[op].bitfield.word
6693 || i.types[op].bitfield.dword)
6694 && (i.tm.operand_types[op].bitfield.reg
6695 || i.tm.operand_types[op].bitfield.acc)
6696 && i.tm.operand_types[op].bitfield.qword)
6697 {
6698 /* Prohibit these changes in the 64bit mode, since the
6699 lowering is more complicated. */
6700 if (intel_syntax
6701 && i.tm.opcode_modifier.todword
6702 && !i.types[0].bitfield.regsimd)
6703 {
6704 /* Convert to DWORD. We don't want REX byte. */
6705 i.suffix = LONG_MNEM_SUFFIX;
6706 }
6707 else
6708 {
6709 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
6710 register_prefix, i.op[op].regs->reg_name,
6711 i.suffix);
6712 return 0;
6713 }
6714 }
6715 return 1;
6716 }
6717
6718 static int
6719 check_word_reg (void)
6720 {
6721 int op;
6722 for (op = i.operands; --op >= 0;)
6723 /* Skip non-register operands. */
6724 if (!i.types[op].bitfield.reg)
6725 continue;
6726 /* Reject eight bit registers, except where the template requires
6727 them. (eg. movzb) */
6728 else if (i.types[op].bitfield.byte
6729 && (i.tm.operand_types[op].bitfield.reg
6730 || i.tm.operand_types[op].bitfield.acc)
6731 && (i.tm.operand_types[op].bitfield.word
6732 || i.tm.operand_types[op].bitfield.dword))
6733 {
6734 as_bad (_("`%s%s' not allowed with `%s%c'"),
6735 register_prefix,
6736 i.op[op].regs->reg_name,
6737 i.tm.name,
6738 i.suffix);
6739 return 0;
6740 }
6741 /* Warn if the e or r prefix on a general reg is present. */
6742 else if ((!quiet_warnings || flag_code == CODE_64BIT)
6743 && (i.types[op].bitfield.dword
6744 || i.types[op].bitfield.qword)
6745 && (i.tm.operand_types[op].bitfield.reg
6746 || i.tm.operand_types[op].bitfield.acc)
6747 && i.tm.operand_types[op].bitfield.word)
6748 {
6749 /* Prohibit these changes in the 64bit mode, since the
6750 lowering is more complicated. */
6751 if (flag_code == CODE_64BIT)
6752 {
6753 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
6754 register_prefix, i.op[op].regs->reg_name,
6755 i.suffix);
6756 return 0;
6757 }
6758 #if REGISTER_WARNINGS
6759 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
6760 register_prefix,
6761 (i.op[op].regs + REGNAM_AX - REGNAM_EAX)->reg_name,
6762 register_prefix, i.op[op].regs->reg_name, i.suffix);
6763 #endif
6764 }
6765 return 1;
6766 }
6767
6768 static int
6769 update_imm (unsigned int j)
6770 {
6771 i386_operand_type overlap = i.types[j];
6772 if ((overlap.bitfield.imm8
6773 || overlap.bitfield.imm8s
6774 || overlap.bitfield.imm16
6775 || overlap.bitfield.imm32
6776 || overlap.bitfield.imm32s
6777 || overlap.bitfield.imm64)
6778 && !operand_type_equal (&overlap, &imm8)
6779 && !operand_type_equal (&overlap, &imm8s)
6780 && !operand_type_equal (&overlap, &imm16)
6781 && !operand_type_equal (&overlap, &imm32)
6782 && !operand_type_equal (&overlap, &imm32s)
6783 && !operand_type_equal (&overlap, &imm64))
6784 {
6785 if (i.suffix)
6786 {
6787 i386_operand_type temp;
6788
6789 operand_type_set (&temp, 0);
6790 if (i.suffix == BYTE_MNEM_SUFFIX)
6791 {
6792 temp.bitfield.imm8 = overlap.bitfield.imm8;
6793 temp.bitfield.imm8s = overlap.bitfield.imm8s;
6794 }
6795 else if (i.suffix == WORD_MNEM_SUFFIX)
6796 temp.bitfield.imm16 = overlap.bitfield.imm16;
6797 else if (i.suffix == QWORD_MNEM_SUFFIX)
6798 {
6799 temp.bitfield.imm64 = overlap.bitfield.imm64;
6800 temp.bitfield.imm32s = overlap.bitfield.imm32s;
6801 }
6802 else
6803 temp.bitfield.imm32 = overlap.bitfield.imm32;
6804 overlap = temp;
6805 }
6806 else if (operand_type_equal (&overlap, &imm16_32_32s)
6807 || operand_type_equal (&overlap, &imm16_32)
6808 || operand_type_equal (&overlap, &imm16_32s))
6809 {
6810 if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
6811 overlap = imm16;
6812 else
6813 overlap = imm32s;
6814 }
6815 if (!operand_type_equal (&overlap, &imm8)
6816 && !operand_type_equal (&overlap, &imm8s)
6817 && !operand_type_equal (&overlap, &imm16)
6818 && !operand_type_equal (&overlap, &imm32)
6819 && !operand_type_equal (&overlap, &imm32s)
6820 && !operand_type_equal (&overlap, &imm64))
6821 {
6822 as_bad (_("no instruction mnemonic suffix given; "
6823 "can't determine immediate size"));
6824 return 0;
6825 }
6826 }
6827 i.types[j] = overlap;
6828
6829 return 1;
6830 }
6831
6832 static int
6833 finalize_imm (void)
6834 {
6835 unsigned int j, n;
6836
6837 /* Update the first 2 immediate operands. */
6838 n = i.operands > 2 ? 2 : i.operands;
6839 if (n)
6840 {
6841 for (j = 0; j < n; j++)
6842 if (update_imm (j) == 0)
6843 return 0;
6844
6845 /* The 3rd operand can't be immediate operand. */
6846 gas_assert (operand_type_check (i.types[2], imm) == 0);
6847 }
6848
6849 return 1;
6850 }
6851
6852 static int
6853 process_operands (void)
6854 {
6855 /* Default segment register this instruction will use for memory
6856 accesses. 0 means unknown. This is only for optimizing out
6857 unnecessary segment overrides. */
6858 const seg_entry *default_seg = 0;
6859
6860 if (i.tm.opcode_modifier.sse2avx && i.tm.opcode_modifier.vexvvvv)
6861 {
6862 unsigned int dupl = i.operands;
6863 unsigned int dest = dupl - 1;
6864 unsigned int j;
6865
6866 /* The destination must be an xmm register. */
6867 gas_assert (i.reg_operands
6868 && MAX_OPERANDS > dupl
6869 && operand_type_equal (&i.types[dest], &regxmm));
6870
6871 if (i.tm.operand_types[0].bitfield.acc
6872 && i.tm.operand_types[0].bitfield.xmmword)
6873 {
6874 if (i.tm.opcode_modifier.vexsources == VEX3SOURCES)
6875 {
6876 /* Keep xmm0 for instructions with VEX prefix and 3
6877 sources. */
6878 i.tm.operand_types[0].bitfield.acc = 0;
6879 i.tm.operand_types[0].bitfield.regsimd = 1;
6880 goto duplicate;
6881 }
6882 else
6883 {
6884 /* We remove the first xmm0 and keep the number of
6885 operands unchanged, which in fact duplicates the
6886 destination. */
6887 for (j = 1; j < i.operands; j++)
6888 {
6889 i.op[j - 1] = i.op[j];
6890 i.types[j - 1] = i.types[j];
6891 i.tm.operand_types[j - 1] = i.tm.operand_types[j];
6892 }
6893 }
6894 }
6895 else if (i.tm.opcode_modifier.implicit1stxmm0)
6896 {
6897 gas_assert ((MAX_OPERANDS - 1) > dupl
6898 && (i.tm.opcode_modifier.vexsources
6899 == VEX3SOURCES));
6900
6901 /* Add the implicit xmm0 for instructions with VEX prefix
6902 and 3 sources. */
6903 for (j = i.operands; j > 0; j--)
6904 {
6905 i.op[j] = i.op[j - 1];
6906 i.types[j] = i.types[j - 1];
6907 i.tm.operand_types[j] = i.tm.operand_types[j - 1];
6908 }
6909 i.op[0].regs
6910 = (const reg_entry *) hash_find (reg_hash, "xmm0");
6911 i.types[0] = regxmm;
6912 i.tm.operand_types[0] = regxmm;
6913
6914 i.operands += 2;
6915 i.reg_operands += 2;
6916 i.tm.operands += 2;
6917
6918 dupl++;
6919 dest++;
6920 i.op[dupl] = i.op[dest];
6921 i.types[dupl] = i.types[dest];
6922 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
6923 }
6924 else
6925 {
6926 duplicate:
6927 i.operands++;
6928 i.reg_operands++;
6929 i.tm.operands++;
6930
6931 i.op[dupl] = i.op[dest];
6932 i.types[dupl] = i.types[dest];
6933 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
6934 }
6935
6936 if (i.tm.opcode_modifier.immext)
6937 process_immext ();
6938 }
6939 else if (i.tm.operand_types[0].bitfield.acc
6940 && i.tm.operand_types[0].bitfield.xmmword)
6941 {
6942 unsigned int j;
6943
6944 for (j = 1; j < i.operands; j++)
6945 {
6946 i.op[j - 1] = i.op[j];
6947 i.types[j - 1] = i.types[j];
6948
6949 /* We need to adjust fields in i.tm since they are used by
6950 build_modrm_byte. */
6951 i.tm.operand_types [j - 1] = i.tm.operand_types [j];
6952 }
6953
6954 i.operands--;
6955 i.reg_operands--;
6956 i.tm.operands--;
6957 }
6958 else if (i.tm.opcode_modifier.implicitquadgroup)
6959 {
6960 unsigned int regnum, first_reg_in_group, last_reg_in_group;
6961
6962 /* The second operand must be {x,y,z}mmN, where N is a multiple of 4. */
6963 gas_assert (i.operands >= 2 && i.types[1].bitfield.regsimd);
6964 regnum = register_number (i.op[1].regs);
6965 first_reg_in_group = regnum & ~3;
6966 last_reg_in_group = first_reg_in_group + 3;
6967 if (regnum != first_reg_in_group)
6968 as_warn (_("source register `%s%s' implicitly denotes"
6969 " `%s%.3s%u' to `%s%.3s%u' source group in `%s'"),
6970 register_prefix, i.op[1].regs->reg_name,
6971 register_prefix, i.op[1].regs->reg_name, first_reg_in_group,
6972 register_prefix, i.op[1].regs->reg_name, last_reg_in_group,
6973 i.tm.name);
6974 }
6975 else if (i.tm.opcode_modifier.regkludge)
6976 {
6977 /* The imul $imm, %reg instruction is converted into
6978 imul $imm, %reg, %reg, and the clr %reg instruction
6979 is converted into xor %reg, %reg. */
6980
6981 unsigned int first_reg_op;
6982
6983 if (operand_type_check (i.types[0], reg))
6984 first_reg_op = 0;
6985 else
6986 first_reg_op = 1;
6987 /* Pretend we saw the extra register operand. */
6988 gas_assert (i.reg_operands == 1
6989 && i.op[first_reg_op + 1].regs == 0);
6990 i.op[first_reg_op + 1].regs = i.op[first_reg_op].regs;
6991 i.types[first_reg_op + 1] = i.types[first_reg_op];
6992 i.operands++;
6993 i.reg_operands++;
6994 }
6995
6996 if (i.tm.opcode_modifier.shortform)
6997 {
6998 if (i.types[0].bitfield.sreg2
6999 || i.types[0].bitfield.sreg3)
7000 {
7001 if (i.tm.base_opcode == POP_SEG_SHORT
7002 && i.op[0].regs->reg_num == 1)
7003 {
7004 as_bad (_("you can't `pop %scs'"), register_prefix);
7005 return 0;
7006 }
7007 i.tm.base_opcode |= (i.op[0].regs->reg_num << 3);
7008 if ((i.op[0].regs->reg_flags & RegRex) != 0)
7009 i.rex |= REX_B;
7010 }
7011 else
7012 {
7013 /* The register or float register operand is in operand
7014 0 or 1. */
7015 unsigned int op;
7016
7017 if ((i.types[0].bitfield.reg && i.types[0].bitfield.tbyte)
7018 || operand_type_check (i.types[0], reg))
7019 op = 0;
7020 else
7021 op = 1;
7022 /* Register goes in low 3 bits of opcode. */
7023 i.tm.base_opcode |= i.op[op].regs->reg_num;
7024 if ((i.op[op].regs->reg_flags & RegRex) != 0)
7025 i.rex |= REX_B;
7026 if (!quiet_warnings && i.tm.opcode_modifier.ugh)
7027 {
7028 /* Warn about some common errors, but press on regardless.
7029 The first case can be generated by gcc (<= 2.8.1). */
7030 if (i.operands == 2)
7031 {
7032 /* Reversed arguments on faddp, fsubp, etc. */
7033 as_warn (_("translating to `%s %s%s,%s%s'"), i.tm.name,
7034 register_prefix, i.op[!intel_syntax].regs->reg_name,
7035 register_prefix, i.op[intel_syntax].regs->reg_name);
7036 }
7037 else
7038 {
7039 /* Extraneous `l' suffix on fp insn. */
7040 as_warn (_("translating to `%s %s%s'"), i.tm.name,
7041 register_prefix, i.op[0].regs->reg_name);
7042 }
7043 }
7044 }
7045 }
7046 else if (i.tm.opcode_modifier.modrm)
7047 {
7048 /* The opcode is completed (modulo i.tm.extension_opcode which
7049 must be put into the modrm byte). Now, we make the modrm and
7050 index base bytes based on all the info we've collected. */
7051
7052 default_seg = build_modrm_byte ();
7053 }
7054 else if ((i.tm.base_opcode & ~0x3) == MOV_AX_DISP32)
7055 {
7056 default_seg = &ds;
7057 }
7058 else if (i.tm.opcode_modifier.isstring)
7059 {
7060 /* For the string instructions that allow a segment override
7061 on one of their operands, the default segment is ds. */
7062 default_seg = &ds;
7063 }
7064
7065 if (i.tm.base_opcode == 0x8d /* lea */
7066 && i.seg[0]
7067 && !quiet_warnings)
7068 as_warn (_("segment override on `%s' is ineffectual"), i.tm.name);
7069
7070 /* If a segment was explicitly specified, and the specified segment
7071 is not the default, use an opcode prefix to select it. If we
7072 never figured out what the default segment is, then default_seg
7073 will be zero at this point, and the specified segment prefix will
7074 always be used. */
7075 if ((i.seg[0]) && (i.seg[0] != default_seg))
7076 {
7077 if (!add_prefix (i.seg[0]->seg_prefix))
7078 return 0;
7079 }
7080 return 1;
7081 }
7082
7083 static const seg_entry *
7084 build_modrm_byte (void)
7085 {
7086 const seg_entry *default_seg = 0;
7087 unsigned int source, dest;
7088 int vex_3_sources;
7089
7090 vex_3_sources = i.tm.opcode_modifier.vexsources == VEX3SOURCES;
7091 if (vex_3_sources)
7092 {
7093 unsigned int nds, reg_slot;
7094 expressionS *exp;
7095
7096 dest = i.operands - 1;
7097 nds = dest - 1;
7098
7099 /* There are 2 kinds of instructions:
7100 1. 5 operands: 4 register operands or 3 register operands
7101 plus 1 memory operand plus one Vec_Imm4 operand, VexXDS, and
7102 VexW0 or VexW1. The destination must be either XMM, YMM or
7103 ZMM register.
7104 2. 4 operands: 4 register operands or 3 register operands
7105 plus 1 memory operand, with VexXDS. */
7106 gas_assert ((i.reg_operands == 4
7107 || (i.reg_operands == 3 && i.mem_operands == 1))
7108 && i.tm.opcode_modifier.vexvvvv == VEXXDS
7109 && i.tm.opcode_modifier.vexw
7110 && i.tm.operand_types[dest].bitfield.regsimd);
7111
7112 /* If VexW1 is set, the first non-immediate operand is the source and
7113 the second non-immediate one is encoded in the immediate operand. */
7114 if (i.tm.opcode_modifier.vexw == VEXW1)
7115 {
7116 source = i.imm_operands;
7117 reg_slot = i.imm_operands + 1;
7118 }
7119 else
7120 {
7121 source = i.imm_operands + 1;
7122 reg_slot = i.imm_operands;
7123 }
7124
7125 if (i.imm_operands == 0)
7126 {
7127 /* When there is no immediate operand, generate an 8bit
7128 immediate operand to encode the first operand. */
7129 exp = &im_expressions[i.imm_operands++];
7130 i.op[i.operands].imms = exp;
7131 i.types[i.operands] = imm8;
7132 i.operands++;
7133
7134 gas_assert (i.tm.operand_types[reg_slot].bitfield.regsimd);
7135 exp->X_op = O_constant;
7136 exp->X_add_number = register_number (i.op[reg_slot].regs) << 4;
7137 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
7138 }
7139 else
7140 {
7141 unsigned int imm_slot;
7142
7143 gas_assert (i.imm_operands == 1 && i.types[0].bitfield.vec_imm4);
7144
7145 if (i.tm.opcode_modifier.immext)
7146 {
7147 /* When ImmExt is set, the immediate byte is the last
7148 operand. */
7149 imm_slot = i.operands - 1;
7150 source--;
7151 reg_slot--;
7152 }
7153 else
7154 {
7155 imm_slot = 0;
7156
7157 /* Turn on Imm8 so that output_imm will generate it. */
7158 i.types[imm_slot].bitfield.imm8 = 1;
7159 }
7160
7161 gas_assert (i.tm.operand_types[reg_slot].bitfield.regsimd);
7162 i.op[imm_slot].imms->X_add_number
7163 |= register_number (i.op[reg_slot].regs) << 4;
7164 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
7165 }
7166
7167 gas_assert (i.tm.operand_types[nds].bitfield.regsimd);
7168 i.vex.register_specifier = i.op[nds].regs;
7169 }
7170 else
7171 source = dest = 0;
7172
7173 /* i.reg_operands MUST be the number of real register operands;
7174 implicit registers do not count. If there are 3 register
7175 operands, it must be a instruction with VexNDS. For a
7176 instruction with VexNDD, the destination register is encoded
7177 in VEX prefix. If there are 4 register operands, it must be
7178 a instruction with VEX prefix and 3 sources. */
7179 if (i.mem_operands == 0
7180 && ((i.reg_operands == 2
7181 && i.tm.opcode_modifier.vexvvvv <= VEXXDS)
7182 || (i.reg_operands == 3
7183 && i.tm.opcode_modifier.vexvvvv == VEXXDS)
7184 || (i.reg_operands == 4 && vex_3_sources)))
7185 {
7186 switch (i.operands)
7187 {
7188 case 2:
7189 source = 0;
7190 break;
7191 case 3:
7192 /* When there are 3 operands, one of them may be immediate,
7193 which may be the first or the last operand. Otherwise,
7194 the first operand must be shift count register (cl) or it
7195 is an instruction with VexNDS. */
7196 gas_assert (i.imm_operands == 1
7197 || (i.imm_operands == 0
7198 && (i.tm.opcode_modifier.vexvvvv == VEXXDS
7199 || i.types[0].bitfield.shiftcount)));
7200 if (operand_type_check (i.types[0], imm)
7201 || i.types[0].bitfield.shiftcount)
7202 source = 1;
7203 else
7204 source = 0;
7205 break;
7206 case 4:
7207 /* When there are 4 operands, the first two must be 8bit
7208 immediate operands. The source operand will be the 3rd
7209 one.
7210
7211 For instructions with VexNDS, if the first operand
7212 an imm8, the source operand is the 2nd one. If the last
7213 operand is imm8, the source operand is the first one. */
7214 gas_assert ((i.imm_operands == 2
7215 && i.types[0].bitfield.imm8
7216 && i.types[1].bitfield.imm8)
7217 || (i.tm.opcode_modifier.vexvvvv == VEXXDS
7218 && i.imm_operands == 1
7219 && (i.types[0].bitfield.imm8
7220 || i.types[i.operands - 1].bitfield.imm8
7221 || i.rounding)));
7222 if (i.imm_operands == 2)
7223 source = 2;
7224 else
7225 {
7226 if (i.types[0].bitfield.imm8)
7227 source = 1;
7228 else
7229 source = 0;
7230 }
7231 break;
7232 case 5:
7233 if (is_evex_encoding (&i.tm))
7234 {
7235 /* For EVEX instructions, when there are 5 operands, the
7236 first one must be immediate operand. If the second one
7237 is immediate operand, the source operand is the 3th
7238 one. If the last one is immediate operand, the source
7239 operand is the 2nd one. */
7240 gas_assert (i.imm_operands == 2
7241 && i.tm.opcode_modifier.sae
7242 && operand_type_check (i.types[0], imm));
7243 if (operand_type_check (i.types[1], imm))
7244 source = 2;
7245 else if (operand_type_check (i.types[4], imm))
7246 source = 1;
7247 else
7248 abort ();
7249 }
7250 break;
7251 default:
7252 abort ();
7253 }
7254
7255 if (!vex_3_sources)
7256 {
7257 dest = source + 1;
7258
7259 /* RC/SAE operand could be between DEST and SRC. That happens
7260 when one operand is GPR and the other one is XMM/YMM/ZMM
7261 register. */
7262 if (i.rounding && i.rounding->operand == (int) dest)
7263 dest++;
7264
7265 if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
7266 {
7267 /* For instructions with VexNDS, the register-only source
7268 operand must be a 32/64bit integer, XMM, YMM, ZMM, or mask
7269 register. It is encoded in VEX prefix. We need to
7270 clear RegMem bit before calling operand_type_equal. */
7271
7272 i386_operand_type op;
7273 unsigned int vvvv;
7274
7275 /* Check register-only source operand when two source
7276 operands are swapped. */
7277 if (!i.tm.operand_types[source].bitfield.baseindex
7278 && i.tm.operand_types[dest].bitfield.baseindex)
7279 {
7280 vvvv = source;
7281 source = dest;
7282 }
7283 else
7284 vvvv = dest;
7285
7286 op = i.tm.operand_types[vvvv];
7287 op.bitfield.regmem = 0;
7288 if ((dest + 1) >= i.operands
7289 || ((!op.bitfield.reg
7290 || (!op.bitfield.dword && !op.bitfield.qword))
7291 && !op.bitfield.regsimd
7292 && !operand_type_equal (&op, &regmask)))
7293 abort ();
7294 i.vex.register_specifier = i.op[vvvv].regs;
7295 dest++;
7296 }
7297 }
7298
7299 i.rm.mode = 3;
7300 /* One of the register operands will be encoded in the i.tm.reg
7301 field, the other in the combined i.tm.mode and i.tm.regmem
7302 fields. If no form of this instruction supports a memory
7303 destination operand, then we assume the source operand may
7304 sometimes be a memory operand and so we need to store the
7305 destination in the i.rm.reg field. */
7306 if (!i.tm.operand_types[dest].bitfield.regmem
7307 && operand_type_check (i.tm.operand_types[dest], anymem) == 0)
7308 {
7309 i.rm.reg = i.op[dest].regs->reg_num;
7310 i.rm.regmem = i.op[source].regs->reg_num;
7311 if (i.op[dest].regs->reg_type.bitfield.regmmx
7312 || i.op[source].regs->reg_type.bitfield.regmmx)
7313 i.has_regmmx = TRUE;
7314 else if (i.op[dest].regs->reg_type.bitfield.regsimd
7315 || i.op[source].regs->reg_type.bitfield.regsimd)
7316 {
7317 if (i.types[dest].bitfield.zmmword
7318 || i.types[source].bitfield.zmmword)
7319 i.has_regzmm = TRUE;
7320 else if (i.types[dest].bitfield.ymmword
7321 || i.types[source].bitfield.ymmword)
7322 i.has_regymm = TRUE;
7323 else
7324 i.has_regxmm = TRUE;
7325 }
7326 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
7327 i.rex |= REX_R;
7328 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
7329 i.vrex |= REX_R;
7330 if ((i.op[source].regs->reg_flags & RegRex) != 0)
7331 i.rex |= REX_B;
7332 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
7333 i.vrex |= REX_B;
7334 }
7335 else
7336 {
7337 i.rm.reg = i.op[source].regs->reg_num;
7338 i.rm.regmem = i.op[dest].regs->reg_num;
7339 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
7340 i.rex |= REX_B;
7341 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
7342 i.vrex |= REX_B;
7343 if ((i.op[source].regs->reg_flags & RegRex) != 0)
7344 i.rex |= REX_R;
7345 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
7346 i.vrex |= REX_R;
7347 }
7348 if (flag_code != CODE_64BIT && (i.rex & REX_R))
7349 {
7350 if (!i.types[i.tm.operand_types[0].bitfield.regmem].bitfield.control)
7351 abort ();
7352 i.rex &= ~REX_R;
7353 add_prefix (LOCK_PREFIX_OPCODE);
7354 }
7355 }
7356 else
7357 { /* If it's not 2 reg operands... */
7358 unsigned int mem;
7359
7360 if (i.mem_operands)
7361 {
7362 unsigned int fake_zero_displacement = 0;
7363 unsigned int op;
7364
7365 for (op = 0; op < i.operands; op++)
7366 if (operand_type_check (i.types[op], anymem))
7367 break;
7368 gas_assert (op < i.operands);
7369
7370 if (i.tm.opcode_modifier.vecsib)
7371 {
7372 if (i.index_reg->reg_num == RegIZ)
7373 abort ();
7374
7375 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7376 if (!i.base_reg)
7377 {
7378 i.sib.base = NO_BASE_REGISTER;
7379 i.sib.scale = i.log2_scale_factor;
7380 i.types[op].bitfield.disp8 = 0;
7381 i.types[op].bitfield.disp16 = 0;
7382 i.types[op].bitfield.disp64 = 0;
7383 if (flag_code != CODE_64BIT || i.prefix[ADDR_PREFIX])
7384 {
7385 /* Must be 32 bit */
7386 i.types[op].bitfield.disp32 = 1;
7387 i.types[op].bitfield.disp32s = 0;
7388 }
7389 else
7390 {
7391 i.types[op].bitfield.disp32 = 0;
7392 i.types[op].bitfield.disp32s = 1;
7393 }
7394 }
7395 i.sib.index = i.index_reg->reg_num;
7396 if ((i.index_reg->reg_flags & RegRex) != 0)
7397 i.rex |= REX_X;
7398 if ((i.index_reg->reg_flags & RegVRex) != 0)
7399 i.vrex |= REX_X;
7400 }
7401
7402 default_seg = &ds;
7403
7404 if (i.base_reg == 0)
7405 {
7406 i.rm.mode = 0;
7407 if (!i.disp_operands)
7408 fake_zero_displacement = 1;
7409 if (i.index_reg == 0)
7410 {
7411 i386_operand_type newdisp;
7412
7413 gas_assert (!i.tm.opcode_modifier.vecsib);
7414 /* Operand is just <disp> */
7415 if (flag_code == CODE_64BIT)
7416 {
7417 /* 64bit mode overwrites the 32bit absolute
7418 addressing by RIP relative addressing and
7419 absolute addressing is encoded by one of the
7420 redundant SIB forms. */
7421 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7422 i.sib.base = NO_BASE_REGISTER;
7423 i.sib.index = NO_INDEX_REGISTER;
7424 newdisp = (!i.prefix[ADDR_PREFIX] ? disp32s : disp32);
7425 }
7426 else if ((flag_code == CODE_16BIT)
7427 ^ (i.prefix[ADDR_PREFIX] != 0))
7428 {
7429 i.rm.regmem = NO_BASE_REGISTER_16;
7430 newdisp = disp16;
7431 }
7432 else
7433 {
7434 i.rm.regmem = NO_BASE_REGISTER;
7435 newdisp = disp32;
7436 }
7437 i.types[op] = operand_type_and_not (i.types[op], anydisp);
7438 i.types[op] = operand_type_or (i.types[op], newdisp);
7439 }
7440 else if (!i.tm.opcode_modifier.vecsib)
7441 {
7442 /* !i.base_reg && i.index_reg */
7443 if (i.index_reg->reg_num == RegIZ)
7444 i.sib.index = NO_INDEX_REGISTER;
7445 else
7446 i.sib.index = i.index_reg->reg_num;
7447 i.sib.base = NO_BASE_REGISTER;
7448 i.sib.scale = i.log2_scale_factor;
7449 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7450 i.types[op].bitfield.disp8 = 0;
7451 i.types[op].bitfield.disp16 = 0;
7452 i.types[op].bitfield.disp64 = 0;
7453 if (flag_code != CODE_64BIT || i.prefix[ADDR_PREFIX])
7454 {
7455 /* Must be 32 bit */
7456 i.types[op].bitfield.disp32 = 1;
7457 i.types[op].bitfield.disp32s = 0;
7458 }
7459 else
7460 {
7461 i.types[op].bitfield.disp32 = 0;
7462 i.types[op].bitfield.disp32s = 1;
7463 }
7464 if ((i.index_reg->reg_flags & RegRex) != 0)
7465 i.rex |= REX_X;
7466 }
7467 }
7468 /* RIP addressing for 64bit mode. */
7469 else if (i.base_reg->reg_num == RegIP)
7470 {
7471 gas_assert (!i.tm.opcode_modifier.vecsib);
7472 i.rm.regmem = NO_BASE_REGISTER;
7473 i.types[op].bitfield.disp8 = 0;
7474 i.types[op].bitfield.disp16 = 0;
7475 i.types[op].bitfield.disp32 = 0;
7476 i.types[op].bitfield.disp32s = 1;
7477 i.types[op].bitfield.disp64 = 0;
7478 i.flags[op] |= Operand_PCrel;
7479 if (! i.disp_operands)
7480 fake_zero_displacement = 1;
7481 }
7482 else if (i.base_reg->reg_type.bitfield.word)
7483 {
7484 gas_assert (!i.tm.opcode_modifier.vecsib);
7485 switch (i.base_reg->reg_num)
7486 {
7487 case 3: /* (%bx) */
7488 if (i.index_reg == 0)
7489 i.rm.regmem = 7;
7490 else /* (%bx,%si) -> 0, or (%bx,%di) -> 1 */
7491 i.rm.regmem = i.index_reg->reg_num - 6;
7492 break;
7493 case 5: /* (%bp) */
7494 default_seg = &ss;
7495 if (i.index_reg == 0)
7496 {
7497 i.rm.regmem = 6;
7498 if (operand_type_check (i.types[op], disp) == 0)
7499 {
7500 /* fake (%bp) into 0(%bp) */
7501 i.types[op].bitfield.disp8 = 1;
7502 fake_zero_displacement = 1;
7503 }
7504 }
7505 else /* (%bp,%si) -> 2, or (%bp,%di) -> 3 */
7506 i.rm.regmem = i.index_reg->reg_num - 6 + 2;
7507 break;
7508 default: /* (%si) -> 4 or (%di) -> 5 */
7509 i.rm.regmem = i.base_reg->reg_num - 6 + 4;
7510 }
7511 i.rm.mode = mode_from_disp_size (i.types[op]);
7512 }
7513 else /* i.base_reg and 32/64 bit mode */
7514 {
7515 if (flag_code == CODE_64BIT
7516 && operand_type_check (i.types[op], disp))
7517 {
7518 i.types[op].bitfield.disp16 = 0;
7519 i.types[op].bitfield.disp64 = 0;
7520 if (i.prefix[ADDR_PREFIX] == 0)
7521 {
7522 i.types[op].bitfield.disp32 = 0;
7523 i.types[op].bitfield.disp32s = 1;
7524 }
7525 else
7526 {
7527 i.types[op].bitfield.disp32 = 1;
7528 i.types[op].bitfield.disp32s = 0;
7529 }
7530 }
7531
7532 if (!i.tm.opcode_modifier.vecsib)
7533 i.rm.regmem = i.base_reg->reg_num;
7534 if ((i.base_reg->reg_flags & RegRex) != 0)
7535 i.rex |= REX_B;
7536 i.sib.base = i.base_reg->reg_num;
7537 /* x86-64 ignores REX prefix bit here to avoid decoder
7538 complications. */
7539 if (!(i.base_reg->reg_flags & RegRex)
7540 && (i.base_reg->reg_num == EBP_REG_NUM
7541 || i.base_reg->reg_num == ESP_REG_NUM))
7542 default_seg = &ss;
7543 if (i.base_reg->reg_num == 5 && i.disp_operands == 0)
7544 {
7545 fake_zero_displacement = 1;
7546 i.types[op].bitfield.disp8 = 1;
7547 }
7548 i.sib.scale = i.log2_scale_factor;
7549 if (i.index_reg == 0)
7550 {
7551 gas_assert (!i.tm.opcode_modifier.vecsib);
7552 /* <disp>(%esp) becomes two byte modrm with no index
7553 register. We've already stored the code for esp
7554 in i.rm.regmem ie. ESCAPE_TO_TWO_BYTE_ADDRESSING.
7555 Any base register besides %esp will not use the
7556 extra modrm byte. */
7557 i.sib.index = NO_INDEX_REGISTER;
7558 }
7559 else if (!i.tm.opcode_modifier.vecsib)
7560 {
7561 if (i.index_reg->reg_num == RegIZ)
7562 i.sib.index = NO_INDEX_REGISTER;
7563 else
7564 i.sib.index = i.index_reg->reg_num;
7565 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7566 if ((i.index_reg->reg_flags & RegRex) != 0)
7567 i.rex |= REX_X;
7568 }
7569
7570 if (i.disp_operands
7571 && (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
7572 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL))
7573 i.rm.mode = 0;
7574 else
7575 {
7576 if (!fake_zero_displacement
7577 && !i.disp_operands
7578 && i.disp_encoding)
7579 {
7580 fake_zero_displacement = 1;
7581 if (i.disp_encoding == disp_encoding_8bit)
7582 i.types[op].bitfield.disp8 = 1;
7583 else
7584 i.types[op].bitfield.disp32 = 1;
7585 }
7586 i.rm.mode = mode_from_disp_size (i.types[op]);
7587 }
7588 }
7589
7590 if (fake_zero_displacement)
7591 {
7592 /* Fakes a zero displacement assuming that i.types[op]
7593 holds the correct displacement size. */
7594 expressionS *exp;
7595
7596 gas_assert (i.op[op].disps == 0);
7597 exp = &disp_expressions[i.disp_operands++];
7598 i.op[op].disps = exp;
7599 exp->X_op = O_constant;
7600 exp->X_add_number = 0;
7601 exp->X_add_symbol = (symbolS *) 0;
7602 exp->X_op_symbol = (symbolS *) 0;
7603 }
7604
7605 mem = op;
7606 }
7607 else
7608 mem = ~0;
7609
7610 if (i.tm.opcode_modifier.vexsources == XOP2SOURCES)
7611 {
7612 if (operand_type_check (i.types[0], imm))
7613 i.vex.register_specifier = NULL;
7614 else
7615 {
7616 /* VEX.vvvv encodes one of the sources when the first
7617 operand is not an immediate. */
7618 if (i.tm.opcode_modifier.vexw == VEXW0)
7619 i.vex.register_specifier = i.op[0].regs;
7620 else
7621 i.vex.register_specifier = i.op[1].regs;
7622 }
7623
7624 /* Destination is a XMM register encoded in the ModRM.reg
7625 and VEX.R bit. */
7626 i.rm.reg = i.op[2].regs->reg_num;
7627 if ((i.op[2].regs->reg_flags & RegRex) != 0)
7628 i.rex |= REX_R;
7629
7630 /* ModRM.rm and VEX.B encodes the other source. */
7631 if (!i.mem_operands)
7632 {
7633 i.rm.mode = 3;
7634
7635 if (i.tm.opcode_modifier.vexw == VEXW0)
7636 i.rm.regmem = i.op[1].regs->reg_num;
7637 else
7638 i.rm.regmem = i.op[0].regs->reg_num;
7639
7640 if ((i.op[1].regs->reg_flags & RegRex) != 0)
7641 i.rex |= REX_B;
7642 }
7643 }
7644 else if (i.tm.opcode_modifier.vexvvvv == VEXLWP)
7645 {
7646 i.vex.register_specifier = i.op[2].regs;
7647 if (!i.mem_operands)
7648 {
7649 i.rm.mode = 3;
7650 i.rm.regmem = i.op[1].regs->reg_num;
7651 if ((i.op[1].regs->reg_flags & RegRex) != 0)
7652 i.rex |= REX_B;
7653 }
7654 }
7655 /* Fill in i.rm.reg or i.rm.regmem field with register operand
7656 (if any) based on i.tm.extension_opcode. Again, we must be
7657 careful to make sure that segment/control/debug/test/MMX
7658 registers are coded into the i.rm.reg field. */
7659 else if (i.reg_operands)
7660 {
7661 unsigned int op;
7662 unsigned int vex_reg = ~0;
7663
7664 for (op = 0; op < i.operands; op++)
7665 {
7666 if (i.types[op].bitfield.reg
7667 || i.types[op].bitfield.regbnd
7668 || i.types[op].bitfield.regmask
7669 || i.types[op].bitfield.sreg2
7670 || i.types[op].bitfield.sreg3
7671 || i.types[op].bitfield.control
7672 || i.types[op].bitfield.debug
7673 || i.types[op].bitfield.test)
7674 break;
7675 if (i.types[op].bitfield.regsimd)
7676 {
7677 if (i.types[op].bitfield.zmmword)
7678 i.has_regzmm = TRUE;
7679 else if (i.types[op].bitfield.ymmword)
7680 i.has_regymm = TRUE;
7681 else
7682 i.has_regxmm = TRUE;
7683 break;
7684 }
7685 if (i.types[op].bitfield.regmmx)
7686 {
7687 i.has_regmmx = TRUE;
7688 break;
7689 }
7690 }
7691
7692 if (vex_3_sources)
7693 op = dest;
7694 else if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
7695 {
7696 /* For instructions with VexNDS, the register-only
7697 source operand is encoded in VEX prefix. */
7698 gas_assert (mem != (unsigned int) ~0);
7699
7700 if (op > mem)
7701 {
7702 vex_reg = op++;
7703 gas_assert (op < i.operands);
7704 }
7705 else
7706 {
7707 /* Check register-only source operand when two source
7708 operands are swapped. */
7709 if (!i.tm.operand_types[op].bitfield.baseindex
7710 && i.tm.operand_types[op + 1].bitfield.baseindex)
7711 {
7712 vex_reg = op;
7713 op += 2;
7714 gas_assert (mem == (vex_reg + 1)
7715 && op < i.operands);
7716 }
7717 else
7718 {
7719 vex_reg = op + 1;
7720 gas_assert (vex_reg < i.operands);
7721 }
7722 }
7723 }
7724 else if (i.tm.opcode_modifier.vexvvvv == VEXNDD)
7725 {
7726 /* For instructions with VexNDD, the register destination
7727 is encoded in VEX prefix. */
7728 if (i.mem_operands == 0)
7729 {
7730 /* There is no memory operand. */
7731 gas_assert ((op + 2) == i.operands);
7732 vex_reg = op + 1;
7733 }
7734 else
7735 {
7736 /* There are only 2 non-immediate operands. */
7737 gas_assert (op < i.imm_operands + 2
7738 && i.operands == i.imm_operands + 2);
7739 vex_reg = i.imm_operands + 1;
7740 }
7741 }
7742 else
7743 gas_assert (op < i.operands);
7744
7745 if (vex_reg != (unsigned int) ~0)
7746 {
7747 i386_operand_type *type = &i.tm.operand_types[vex_reg];
7748
7749 if ((!type->bitfield.reg
7750 || (!type->bitfield.dword && !type->bitfield.qword))
7751 && !type->bitfield.regsimd
7752 && !operand_type_equal (type, &regmask))
7753 abort ();
7754
7755 i.vex.register_specifier = i.op[vex_reg].regs;
7756 }
7757
7758 /* Don't set OP operand twice. */
7759 if (vex_reg != op)
7760 {
7761 /* If there is an extension opcode to put here, the
7762 register number must be put into the regmem field. */
7763 if (i.tm.extension_opcode != None)
7764 {
7765 i.rm.regmem = i.op[op].regs->reg_num;
7766 if ((i.op[op].regs->reg_flags & RegRex) != 0)
7767 i.rex |= REX_B;
7768 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
7769 i.vrex |= REX_B;
7770 }
7771 else
7772 {
7773 i.rm.reg = i.op[op].regs->reg_num;
7774 if ((i.op[op].regs->reg_flags & RegRex) != 0)
7775 i.rex |= REX_R;
7776 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
7777 i.vrex |= REX_R;
7778 }
7779 }
7780
7781 /* Now, if no memory operand has set i.rm.mode = 0, 1, 2 we
7782 must set it to 3 to indicate this is a register operand
7783 in the regmem field. */
7784 if (!i.mem_operands)
7785 i.rm.mode = 3;
7786 }
7787
7788 /* Fill in i.rm.reg field with extension opcode (if any). */
7789 if (i.tm.extension_opcode != None)
7790 i.rm.reg = i.tm.extension_opcode;
7791 }
7792 return default_seg;
7793 }
7794
7795 static void
7796 output_branch (void)
7797 {
7798 char *p;
7799 int size;
7800 int code16;
7801 int prefix;
7802 relax_substateT subtype;
7803 symbolS *sym;
7804 offsetT off;
7805
7806 code16 = flag_code == CODE_16BIT ? CODE16 : 0;
7807 size = i.disp_encoding == disp_encoding_32bit ? BIG : SMALL;
7808
7809 prefix = 0;
7810 if (i.prefix[DATA_PREFIX] != 0)
7811 {
7812 prefix = 1;
7813 i.prefixes -= 1;
7814 code16 ^= CODE16;
7815 }
7816 /* Pentium4 branch hints. */
7817 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
7818 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
7819 {
7820 prefix++;
7821 i.prefixes--;
7822 }
7823 if (i.prefix[REX_PREFIX] != 0)
7824 {
7825 prefix++;
7826 i.prefixes--;
7827 }
7828
7829 /* BND prefixed jump. */
7830 if (i.prefix[BND_PREFIX] != 0)
7831 {
7832 FRAG_APPEND_1_CHAR (i.prefix[BND_PREFIX]);
7833 i.prefixes -= 1;
7834 }
7835
7836 if (i.prefixes != 0 && !intel_syntax)
7837 as_warn (_("skipping prefixes on this instruction"));
7838
7839 /* It's always a symbol; End frag & setup for relax.
7840 Make sure there is enough room in this frag for the largest
7841 instruction we may generate in md_convert_frag. This is 2
7842 bytes for the opcode and room for the prefix and largest
7843 displacement. */
7844 frag_grow (prefix + 2 + 4);
7845 /* Prefix and 1 opcode byte go in fr_fix. */
7846 p = frag_more (prefix + 1);
7847 if (i.prefix[DATA_PREFIX] != 0)
7848 *p++ = DATA_PREFIX_OPCODE;
7849 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE
7850 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE)
7851 *p++ = i.prefix[SEG_PREFIX];
7852 if (i.prefix[REX_PREFIX] != 0)
7853 *p++ = i.prefix[REX_PREFIX];
7854 *p = i.tm.base_opcode;
7855
7856 if ((unsigned char) *p == JUMP_PC_RELATIVE)
7857 subtype = ENCODE_RELAX_STATE (UNCOND_JUMP, size);
7858 else if (cpu_arch_flags.bitfield.cpui386)
7859 subtype = ENCODE_RELAX_STATE (COND_JUMP, size);
7860 else
7861 subtype = ENCODE_RELAX_STATE (COND_JUMP86, size);
7862 subtype |= code16;
7863
7864 sym = i.op[0].disps->X_add_symbol;
7865 off = i.op[0].disps->X_add_number;
7866
7867 if (i.op[0].disps->X_op != O_constant
7868 && i.op[0].disps->X_op != O_symbol)
7869 {
7870 /* Handle complex expressions. */
7871 sym = make_expr_symbol (i.op[0].disps);
7872 off = 0;
7873 }
7874
7875 /* 1 possible extra opcode + 4 byte displacement go in var part.
7876 Pass reloc in fr_var. */
7877 frag_var (rs_machine_dependent, 5, i.reloc[0], subtype, sym, off, p);
7878 }
7879
7880 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7881 /* Return TRUE iff PLT32 relocation should be used for branching to
7882 symbol S. */
7883
7884 static bfd_boolean
7885 need_plt32_p (symbolS *s)
7886 {
7887 /* PLT32 relocation is ELF only. */
7888 if (!IS_ELF)
7889 return FALSE;
7890
7891 #ifdef TE_SOLARIS
7892 /* Don't emit PLT32 relocation on Solaris: neither native linker nor
7893 krtld support it. */
7894 return FALSE;
7895 #endif
7896
7897 /* Since there is no need to prepare for PLT branch on x86-64, we
7898 can generate R_X86_64_PLT32, instead of R_X86_64_PC32, which can
7899 be used as a marker for 32-bit PC-relative branches. */
7900 if (!object_64bit)
7901 return FALSE;
7902
7903 /* Weak or undefined symbol need PLT32 relocation. */
7904 if (S_IS_WEAK (s) || !S_IS_DEFINED (s))
7905 return TRUE;
7906
7907 /* Non-global symbol doesn't need PLT32 relocation. */
7908 if (! S_IS_EXTERNAL (s))
7909 return FALSE;
7910
7911 /* Other global symbols need PLT32 relocation. NB: Symbol with
7912 non-default visibilities are treated as normal global symbol
7913 so that PLT32 relocation can be used as a marker for 32-bit
7914 PC-relative branches. It is useful for linker relaxation. */
7915 return TRUE;
7916 }
7917 #endif
7918
7919 static void
7920 output_jump (void)
7921 {
7922 char *p;
7923 int size;
7924 fixS *fixP;
7925 bfd_reloc_code_real_type jump_reloc = i.reloc[0];
7926
7927 if (i.tm.opcode_modifier.jumpbyte)
7928 {
7929 /* This is a loop or jecxz type instruction. */
7930 size = 1;
7931 if (i.prefix[ADDR_PREFIX] != 0)
7932 {
7933 FRAG_APPEND_1_CHAR (ADDR_PREFIX_OPCODE);
7934 i.prefixes -= 1;
7935 }
7936 /* Pentium4 branch hints. */
7937 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
7938 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
7939 {
7940 FRAG_APPEND_1_CHAR (i.prefix[SEG_PREFIX]);
7941 i.prefixes--;
7942 }
7943 }
7944 else
7945 {
7946 int code16;
7947
7948 code16 = 0;
7949 if (flag_code == CODE_16BIT)
7950 code16 = CODE16;
7951
7952 if (i.prefix[DATA_PREFIX] != 0)
7953 {
7954 FRAG_APPEND_1_CHAR (DATA_PREFIX_OPCODE);
7955 i.prefixes -= 1;
7956 code16 ^= CODE16;
7957 }
7958
7959 size = 4;
7960 if (code16)
7961 size = 2;
7962 }
7963
7964 if (i.prefix[REX_PREFIX] != 0)
7965 {
7966 FRAG_APPEND_1_CHAR (i.prefix[REX_PREFIX]);
7967 i.prefixes -= 1;
7968 }
7969
7970 /* BND prefixed jump. */
7971 if (i.prefix[BND_PREFIX] != 0)
7972 {
7973 FRAG_APPEND_1_CHAR (i.prefix[BND_PREFIX]);
7974 i.prefixes -= 1;
7975 }
7976
7977 if (i.prefixes != 0 && !intel_syntax)
7978 as_warn (_("skipping prefixes on this instruction"));
7979
7980 p = frag_more (i.tm.opcode_length + size);
7981 switch (i.tm.opcode_length)
7982 {
7983 case 2:
7984 *p++ = i.tm.base_opcode >> 8;
7985 /* Fall through. */
7986 case 1:
7987 *p++ = i.tm.base_opcode;
7988 break;
7989 default:
7990 abort ();
7991 }
7992
7993 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7994 if (size == 4
7995 && jump_reloc == NO_RELOC
7996 && need_plt32_p (i.op[0].disps->X_add_symbol))
7997 jump_reloc = BFD_RELOC_X86_64_PLT32;
7998 #endif
7999
8000 jump_reloc = reloc (size, 1, 1, jump_reloc);
8001
8002 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal, size,
8003 i.op[0].disps, 1, jump_reloc);
8004
8005 /* All jumps handled here are signed, but don't use a signed limit
8006 check for 32 and 16 bit jumps as we want to allow wrap around at
8007 4G and 64k respectively. */
8008 if (size == 1)
8009 fixP->fx_signed = 1;
8010 }
8011
8012 static void
8013 output_interseg_jump (void)
8014 {
8015 char *p;
8016 int size;
8017 int prefix;
8018 int code16;
8019
8020 code16 = 0;
8021 if (flag_code == CODE_16BIT)
8022 code16 = CODE16;
8023
8024 prefix = 0;
8025 if (i.prefix[DATA_PREFIX] != 0)
8026 {
8027 prefix = 1;
8028 i.prefixes -= 1;
8029 code16 ^= CODE16;
8030 }
8031 if (i.prefix[REX_PREFIX] != 0)
8032 {
8033 prefix++;
8034 i.prefixes -= 1;
8035 }
8036
8037 size = 4;
8038 if (code16)
8039 size = 2;
8040
8041 if (i.prefixes != 0 && !intel_syntax)
8042 as_warn (_("skipping prefixes on this instruction"));
8043
8044 /* 1 opcode; 2 segment; offset */
8045 p = frag_more (prefix + 1 + 2 + size);
8046
8047 if (i.prefix[DATA_PREFIX] != 0)
8048 *p++ = DATA_PREFIX_OPCODE;
8049
8050 if (i.prefix[REX_PREFIX] != 0)
8051 *p++ = i.prefix[REX_PREFIX];
8052
8053 *p++ = i.tm.base_opcode;
8054 if (i.op[1].imms->X_op == O_constant)
8055 {
8056 offsetT n = i.op[1].imms->X_add_number;
8057
8058 if (size == 2
8059 && !fits_in_unsigned_word (n)
8060 && !fits_in_signed_word (n))
8061 {
8062 as_bad (_("16-bit jump out of range"));
8063 return;
8064 }
8065 md_number_to_chars (p, n, size);
8066 }
8067 else
8068 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
8069 i.op[1].imms, 0, reloc (size, 0, 0, i.reloc[1]));
8070 if (i.op[0].imms->X_op != O_constant)
8071 as_bad (_("can't handle non absolute segment in `%s'"),
8072 i.tm.name);
8073 md_number_to_chars (p + size, (valueT) i.op[0].imms->X_add_number, 2);
8074 }
8075
8076 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8077 void
8078 x86_cleanup (void)
8079 {
8080 char *p;
8081 asection *seg = now_seg;
8082 subsegT subseg = now_subseg;
8083 asection *sec;
8084 unsigned int alignment, align_size_1;
8085 unsigned int isa_1_descsz, feature_2_descsz, descsz;
8086 unsigned int isa_1_descsz_raw, feature_2_descsz_raw;
8087 unsigned int padding;
8088
8089 if (!IS_ELF || !x86_used_note)
8090 return;
8091
8092 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_X86;
8093
8094 /* The .note.gnu.property section layout:
8095
8096 Field Length Contents
8097 ---- ---- ----
8098 n_namsz 4 4
8099 n_descsz 4 The note descriptor size
8100 n_type 4 NT_GNU_PROPERTY_TYPE_0
8101 n_name 4 "GNU"
8102 n_desc n_descsz The program property array
8103 .... .... ....
8104 */
8105
8106 /* Create the .note.gnu.property section. */
8107 sec = subseg_new (NOTE_GNU_PROPERTY_SECTION_NAME, 0);
8108 bfd_set_section_flags (stdoutput, sec,
8109 (SEC_ALLOC
8110 | SEC_LOAD
8111 | SEC_DATA
8112 | SEC_HAS_CONTENTS
8113 | SEC_READONLY));
8114
8115 if (get_elf_backend_data (stdoutput)->s->elfclass == ELFCLASS64)
8116 {
8117 align_size_1 = 7;
8118 alignment = 3;
8119 }
8120 else
8121 {
8122 align_size_1 = 3;
8123 alignment = 2;
8124 }
8125
8126 bfd_set_section_alignment (stdoutput, sec, alignment);
8127 elf_section_type (sec) = SHT_NOTE;
8128
8129 /* GNU_PROPERTY_X86_ISA_1_USED: 4-byte type + 4-byte data size
8130 + 4-byte data */
8131 isa_1_descsz_raw = 4 + 4 + 4;
8132 /* Align GNU_PROPERTY_X86_ISA_1_USED. */
8133 isa_1_descsz = (isa_1_descsz_raw + align_size_1) & ~align_size_1;
8134
8135 feature_2_descsz_raw = isa_1_descsz;
8136 /* GNU_PROPERTY_X86_FEATURE_2_USED: 4-byte type + 4-byte data size
8137 + 4-byte data */
8138 feature_2_descsz_raw += 4 + 4 + 4;
8139 /* Align GNU_PROPERTY_X86_FEATURE_2_USED. */
8140 feature_2_descsz = ((feature_2_descsz_raw + align_size_1)
8141 & ~align_size_1);
8142
8143 descsz = feature_2_descsz;
8144 /* Section size: n_namsz + n_descsz + n_type + n_name + n_descsz. */
8145 p = frag_more (4 + 4 + 4 + 4 + descsz);
8146
8147 /* Write n_namsz. */
8148 md_number_to_chars (p, (valueT) 4, 4);
8149
8150 /* Write n_descsz. */
8151 md_number_to_chars (p + 4, (valueT) descsz, 4);
8152
8153 /* Write n_type. */
8154 md_number_to_chars (p + 4 * 2, (valueT) NT_GNU_PROPERTY_TYPE_0, 4);
8155
8156 /* Write n_name. */
8157 memcpy (p + 4 * 3, "GNU", 4);
8158
8159 /* Write 4-byte type. */
8160 md_number_to_chars (p + 4 * 4,
8161 (valueT) GNU_PROPERTY_X86_ISA_1_USED, 4);
8162
8163 /* Write 4-byte data size. */
8164 md_number_to_chars (p + 4 * 5, (valueT) 4, 4);
8165
8166 /* Write 4-byte data. */
8167 md_number_to_chars (p + 4 * 6, (valueT) x86_isa_1_used, 4);
8168
8169 /* Zero out paddings. */
8170 padding = isa_1_descsz - isa_1_descsz_raw;
8171 if (padding)
8172 memset (p + 4 * 7, 0, padding);
8173
8174 /* Write 4-byte type. */
8175 md_number_to_chars (p + isa_1_descsz + 4 * 4,
8176 (valueT) GNU_PROPERTY_X86_FEATURE_2_USED, 4);
8177
8178 /* Write 4-byte data size. */
8179 md_number_to_chars (p + isa_1_descsz + 4 * 5, (valueT) 4, 4);
8180
8181 /* Write 4-byte data. */
8182 md_number_to_chars (p + isa_1_descsz + 4 * 6,
8183 (valueT) x86_feature_2_used, 4);
8184
8185 /* Zero out paddings. */
8186 padding = feature_2_descsz - feature_2_descsz_raw;
8187 if (padding)
8188 memset (p + isa_1_descsz + 4 * 7, 0, padding);
8189
8190 /* We probably can't restore the current segment, for there likely
8191 isn't one yet... */
8192 if (seg && subseg)
8193 subseg_set (seg, subseg);
8194 }
8195 #endif
8196
8197 static unsigned int
8198 encoding_length (const fragS *start_frag, offsetT start_off,
8199 const char *frag_now_ptr)
8200 {
8201 unsigned int len = 0;
8202
8203 if (start_frag != frag_now)
8204 {
8205 const fragS *fr = start_frag;
8206
8207 do {
8208 len += fr->fr_fix;
8209 fr = fr->fr_next;
8210 } while (fr && fr != frag_now);
8211 }
8212
8213 return len - start_off + (frag_now_ptr - frag_now->fr_literal);
8214 }
8215
8216 static void
8217 output_insn (void)
8218 {
8219 fragS *insn_start_frag;
8220 offsetT insn_start_off;
8221
8222 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8223 if (IS_ELF && x86_used_note)
8224 {
8225 if (i.tm.cpu_flags.bitfield.cpucmov)
8226 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_CMOV;
8227 if (i.tm.cpu_flags.bitfield.cpusse)
8228 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE;
8229 if (i.tm.cpu_flags.bitfield.cpusse2)
8230 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE2;
8231 if (i.tm.cpu_flags.bitfield.cpusse3)
8232 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE3;
8233 if (i.tm.cpu_flags.bitfield.cpussse3)
8234 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSSE3;
8235 if (i.tm.cpu_flags.bitfield.cpusse4_1)
8236 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE4_1;
8237 if (i.tm.cpu_flags.bitfield.cpusse4_2)
8238 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE4_2;
8239 if (i.tm.cpu_flags.bitfield.cpuavx)
8240 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX;
8241 if (i.tm.cpu_flags.bitfield.cpuavx2)
8242 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX2;
8243 if (i.tm.cpu_flags.bitfield.cpufma)
8244 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_FMA;
8245 if (i.tm.cpu_flags.bitfield.cpuavx512f)
8246 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512F;
8247 if (i.tm.cpu_flags.bitfield.cpuavx512cd)
8248 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512CD;
8249 if (i.tm.cpu_flags.bitfield.cpuavx512er)
8250 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512ER;
8251 if (i.tm.cpu_flags.bitfield.cpuavx512pf)
8252 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512PF;
8253 if (i.tm.cpu_flags.bitfield.cpuavx512vl)
8254 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512VL;
8255 if (i.tm.cpu_flags.bitfield.cpuavx512dq)
8256 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512DQ;
8257 if (i.tm.cpu_flags.bitfield.cpuavx512bw)
8258 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512BW;
8259 if (i.tm.cpu_flags.bitfield.cpuavx512_4fmaps)
8260 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_4FMAPS;
8261 if (i.tm.cpu_flags.bitfield.cpuavx512_4vnniw)
8262 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_4VNNIW;
8263 if (i.tm.cpu_flags.bitfield.cpuavx512_bitalg)
8264 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_BITALG;
8265 if (i.tm.cpu_flags.bitfield.cpuavx512ifma)
8266 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_IFMA;
8267 if (i.tm.cpu_flags.bitfield.cpuavx512vbmi)
8268 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_VBMI;
8269 if (i.tm.cpu_flags.bitfield.cpuavx512_vbmi2)
8270 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_VBMI2;
8271 if (i.tm.cpu_flags.bitfield.cpuavx512_vnni)
8272 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_VNNI;
8273 if (i.tm.cpu_flags.bitfield.cpuavx512_bf16)
8274 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_BF16;
8275
8276 if (i.tm.cpu_flags.bitfield.cpu8087
8277 || i.tm.cpu_flags.bitfield.cpu287
8278 || i.tm.cpu_flags.bitfield.cpu387
8279 || i.tm.cpu_flags.bitfield.cpu687
8280 || i.tm.cpu_flags.bitfield.cpufisttp)
8281 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_X87;
8282 /* Don't set GNU_PROPERTY_X86_FEATURE_2_MMX for prefetchtXXX nor
8283 Xfence instructions. */
8284 if (i.tm.base_opcode != 0xf18
8285 && i.tm.base_opcode != 0xf0d
8286 && i.tm.base_opcode != 0xfaef8
8287 && (i.has_regmmx
8288 || i.tm.cpu_flags.bitfield.cpummx
8289 || i.tm.cpu_flags.bitfield.cpua3dnow
8290 || i.tm.cpu_flags.bitfield.cpua3dnowa))
8291 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_MMX;
8292 if (i.has_regxmm)
8293 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XMM;
8294 if (i.has_regymm)
8295 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_YMM;
8296 if (i.has_regzmm)
8297 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_ZMM;
8298 if (i.tm.cpu_flags.bitfield.cpufxsr)
8299 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_FXSR;
8300 if (i.tm.cpu_flags.bitfield.cpuxsave)
8301 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XSAVE;
8302 if (i.tm.cpu_flags.bitfield.cpuxsaveopt)
8303 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XSAVEOPT;
8304 if (i.tm.cpu_flags.bitfield.cpuxsavec)
8305 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XSAVEC;
8306 }
8307 #endif
8308
8309 /* Tie dwarf2 debug info to the address at the start of the insn.
8310 We can't do this after the insn has been output as the current
8311 frag may have been closed off. eg. by frag_var. */
8312 dwarf2_emit_insn (0);
8313
8314 insn_start_frag = frag_now;
8315 insn_start_off = frag_now_fix ();
8316
8317 /* Output jumps. */
8318 if (i.tm.opcode_modifier.jump)
8319 output_branch ();
8320 else if (i.tm.opcode_modifier.jumpbyte
8321 || i.tm.opcode_modifier.jumpdword)
8322 output_jump ();
8323 else if (i.tm.opcode_modifier.jumpintersegment)
8324 output_interseg_jump ();
8325 else
8326 {
8327 /* Output normal instructions here. */
8328 char *p;
8329 unsigned char *q;
8330 unsigned int j;
8331 unsigned int prefix;
8332
8333 if (avoid_fence
8334 && (i.tm.base_opcode == 0xfaee8
8335 || i.tm.base_opcode == 0xfaef0
8336 || i.tm.base_opcode == 0xfaef8))
8337 {
8338 /* Encode lfence, mfence, and sfence as
8339 f0 83 04 24 00 lock addl $0x0, (%{re}sp). */
8340 offsetT val = 0x240483f0ULL;
8341 p = frag_more (5);
8342 md_number_to_chars (p, val, 5);
8343 return;
8344 }
8345
8346 /* Some processors fail on LOCK prefix. This options makes
8347 assembler ignore LOCK prefix and serves as a workaround. */
8348 if (omit_lock_prefix)
8349 {
8350 if (i.tm.base_opcode == LOCK_PREFIX_OPCODE)
8351 return;
8352 i.prefix[LOCK_PREFIX] = 0;
8353 }
8354
8355 /* Since the VEX/EVEX prefix contains the implicit prefix, we
8356 don't need the explicit prefix. */
8357 if (!i.tm.opcode_modifier.vex && !i.tm.opcode_modifier.evex)
8358 {
8359 switch (i.tm.opcode_length)
8360 {
8361 case 3:
8362 if (i.tm.base_opcode & 0xff000000)
8363 {
8364 prefix = (i.tm.base_opcode >> 24) & 0xff;
8365 if (!i.tm.cpu_flags.bitfield.cpupadlock
8366 || prefix != REPE_PREFIX_OPCODE
8367 || (i.prefix[REP_PREFIX] != REPE_PREFIX_OPCODE))
8368 add_prefix (prefix);
8369 }
8370 break;
8371 case 2:
8372 if ((i.tm.base_opcode & 0xff0000) != 0)
8373 {
8374 prefix = (i.tm.base_opcode >> 16) & 0xff;
8375 add_prefix (prefix);
8376 }
8377 break;
8378 case 1:
8379 break;
8380 case 0:
8381 /* Check for pseudo prefixes. */
8382 as_bad_where (insn_start_frag->fr_file,
8383 insn_start_frag->fr_line,
8384 _("pseudo prefix without instruction"));
8385 return;
8386 default:
8387 abort ();
8388 }
8389
8390 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
8391 /* For x32, add a dummy REX_OPCODE prefix for mov/add with
8392 R_X86_64_GOTTPOFF relocation so that linker can safely
8393 perform IE->LE optimization. */
8394 if (x86_elf_abi == X86_64_X32_ABI
8395 && i.operands == 2
8396 && i.reloc[0] == BFD_RELOC_X86_64_GOTTPOFF
8397 && i.prefix[REX_PREFIX] == 0)
8398 add_prefix (REX_OPCODE);
8399 #endif
8400
8401 /* The prefix bytes. */
8402 for (j = ARRAY_SIZE (i.prefix), q = i.prefix; j > 0; j--, q++)
8403 if (*q)
8404 FRAG_APPEND_1_CHAR (*q);
8405 }
8406 else
8407 {
8408 for (j = 0, q = i.prefix; j < ARRAY_SIZE (i.prefix); j++, q++)
8409 if (*q)
8410 switch (j)
8411 {
8412 case REX_PREFIX:
8413 /* REX byte is encoded in VEX prefix. */
8414 break;
8415 case SEG_PREFIX:
8416 case ADDR_PREFIX:
8417 FRAG_APPEND_1_CHAR (*q);
8418 break;
8419 default:
8420 /* There should be no other prefixes for instructions
8421 with VEX prefix. */
8422 abort ();
8423 }
8424
8425 /* For EVEX instructions i.vrex should become 0 after
8426 build_evex_prefix. For VEX instructions upper 16 registers
8427 aren't available, so VREX should be 0. */
8428 if (i.vrex)
8429 abort ();
8430 /* Now the VEX prefix. */
8431 p = frag_more (i.vex.length);
8432 for (j = 0; j < i.vex.length; j++)
8433 p[j] = i.vex.bytes[j];
8434 }
8435
8436 /* Now the opcode; be careful about word order here! */
8437 if (i.tm.opcode_length == 1)
8438 {
8439 FRAG_APPEND_1_CHAR (i.tm.base_opcode);
8440 }
8441 else
8442 {
8443 switch (i.tm.opcode_length)
8444 {
8445 case 4:
8446 p = frag_more (4);
8447 *p++ = (i.tm.base_opcode >> 24) & 0xff;
8448 *p++ = (i.tm.base_opcode >> 16) & 0xff;
8449 break;
8450 case 3:
8451 p = frag_more (3);
8452 *p++ = (i.tm.base_opcode >> 16) & 0xff;
8453 break;
8454 case 2:
8455 p = frag_more (2);
8456 break;
8457 default:
8458 abort ();
8459 break;
8460 }
8461
8462 /* Put out high byte first: can't use md_number_to_chars! */
8463 *p++ = (i.tm.base_opcode >> 8) & 0xff;
8464 *p = i.tm.base_opcode & 0xff;
8465 }
8466
8467 /* Now the modrm byte and sib byte (if present). */
8468 if (i.tm.opcode_modifier.modrm)
8469 {
8470 FRAG_APPEND_1_CHAR ((i.rm.regmem << 0
8471 | i.rm.reg << 3
8472 | i.rm.mode << 6));
8473 /* If i.rm.regmem == ESP (4)
8474 && i.rm.mode != (Register mode)
8475 && not 16 bit
8476 ==> need second modrm byte. */
8477 if (i.rm.regmem == ESCAPE_TO_TWO_BYTE_ADDRESSING
8478 && i.rm.mode != 3
8479 && !(i.base_reg && i.base_reg->reg_type.bitfield.word))
8480 FRAG_APPEND_1_CHAR ((i.sib.base << 0
8481 | i.sib.index << 3
8482 | i.sib.scale << 6));
8483 }
8484
8485 if (i.disp_operands)
8486 output_disp (insn_start_frag, insn_start_off);
8487
8488 if (i.imm_operands)
8489 output_imm (insn_start_frag, insn_start_off);
8490
8491 /*
8492 * frag_now_fix () returning plain abs_section_offset when we're in the
8493 * absolute section, and abs_section_offset not getting updated as data
8494 * gets added to the frag breaks the logic below.
8495 */
8496 if (now_seg != absolute_section)
8497 {
8498 j = encoding_length (insn_start_frag, insn_start_off, frag_more (0));
8499 if (j > 15)
8500 as_warn (_("instruction length of %u bytes exceeds the limit of 15"),
8501 j);
8502 }
8503 }
8504
8505 #ifdef DEBUG386
8506 if (flag_debug)
8507 {
8508 pi ("" /*line*/, &i);
8509 }
8510 #endif /* DEBUG386 */
8511 }
8512
8513 /* Return the size of the displacement operand N. */
8514
8515 static int
8516 disp_size (unsigned int n)
8517 {
8518 int size = 4;
8519
8520 if (i.types[n].bitfield.disp64)
8521 size = 8;
8522 else if (i.types[n].bitfield.disp8)
8523 size = 1;
8524 else if (i.types[n].bitfield.disp16)
8525 size = 2;
8526 return size;
8527 }
8528
8529 /* Return the size of the immediate operand N. */
8530
8531 static int
8532 imm_size (unsigned int n)
8533 {
8534 int size = 4;
8535 if (i.types[n].bitfield.imm64)
8536 size = 8;
8537 else if (i.types[n].bitfield.imm8 || i.types[n].bitfield.imm8s)
8538 size = 1;
8539 else if (i.types[n].bitfield.imm16)
8540 size = 2;
8541 return size;
8542 }
8543
8544 static void
8545 output_disp (fragS *insn_start_frag, offsetT insn_start_off)
8546 {
8547 char *p;
8548 unsigned int n;
8549
8550 for (n = 0; n < i.operands; n++)
8551 {
8552 if (operand_type_check (i.types[n], disp))
8553 {
8554 if (i.op[n].disps->X_op == O_constant)
8555 {
8556 int size = disp_size (n);
8557 offsetT val = i.op[n].disps->X_add_number;
8558
8559 val = offset_in_range (val >> (size == 1 ? i.memshift : 0),
8560 size);
8561 p = frag_more (size);
8562 md_number_to_chars (p, val, size);
8563 }
8564 else
8565 {
8566 enum bfd_reloc_code_real reloc_type;
8567 int size = disp_size (n);
8568 int sign = i.types[n].bitfield.disp32s;
8569 int pcrel = (i.flags[n] & Operand_PCrel) != 0;
8570 fixS *fixP;
8571
8572 /* We can't have 8 bit displacement here. */
8573 gas_assert (!i.types[n].bitfield.disp8);
8574
8575 /* The PC relative address is computed relative
8576 to the instruction boundary, so in case immediate
8577 fields follows, we need to adjust the value. */
8578 if (pcrel && i.imm_operands)
8579 {
8580 unsigned int n1;
8581 int sz = 0;
8582
8583 for (n1 = 0; n1 < i.operands; n1++)
8584 if (operand_type_check (i.types[n1], imm))
8585 {
8586 /* Only one immediate is allowed for PC
8587 relative address. */
8588 gas_assert (sz == 0);
8589 sz = imm_size (n1);
8590 i.op[n].disps->X_add_number -= sz;
8591 }
8592 /* We should find the immediate. */
8593 gas_assert (sz != 0);
8594 }
8595
8596 p = frag_more (size);
8597 reloc_type = reloc (size, pcrel, sign, i.reloc[n]);
8598 if (GOT_symbol
8599 && GOT_symbol == i.op[n].disps->X_add_symbol
8600 && (((reloc_type == BFD_RELOC_32
8601 || reloc_type == BFD_RELOC_X86_64_32S
8602 || (reloc_type == BFD_RELOC_64
8603 && object_64bit))
8604 && (i.op[n].disps->X_op == O_symbol
8605 || (i.op[n].disps->X_op == O_add
8606 && ((symbol_get_value_expression
8607 (i.op[n].disps->X_op_symbol)->X_op)
8608 == O_subtract))))
8609 || reloc_type == BFD_RELOC_32_PCREL))
8610 {
8611 if (!object_64bit)
8612 {
8613 reloc_type = BFD_RELOC_386_GOTPC;
8614 i.op[n].imms->X_add_number +=
8615 encoding_length (insn_start_frag, insn_start_off, p);
8616 }
8617 else if (reloc_type == BFD_RELOC_64)
8618 reloc_type = BFD_RELOC_X86_64_GOTPC64;
8619 else
8620 /* Don't do the adjustment for x86-64, as there
8621 the pcrel addressing is relative to the _next_
8622 insn, and that is taken care of in other code. */
8623 reloc_type = BFD_RELOC_X86_64_GOTPC32;
8624 }
8625 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal,
8626 size, i.op[n].disps, pcrel,
8627 reloc_type);
8628 /* Check for "call/jmp *mem", "mov mem, %reg",
8629 "test %reg, mem" and "binop mem, %reg" where binop
8630 is one of adc, add, and, cmp, or, sbb, sub, xor
8631 instructions without data prefix. Always generate
8632 R_386_GOT32X for "sym*GOT" operand in 32-bit mode. */
8633 if (i.prefix[DATA_PREFIX] == 0
8634 && (generate_relax_relocations
8635 || (!object_64bit
8636 && i.rm.mode == 0
8637 && i.rm.regmem == 5))
8638 && (i.rm.mode == 2
8639 || (i.rm.mode == 0 && i.rm.regmem == 5))
8640 && ((i.operands == 1
8641 && i.tm.base_opcode == 0xff
8642 && (i.rm.reg == 2 || i.rm.reg == 4))
8643 || (i.operands == 2
8644 && (i.tm.base_opcode == 0x8b
8645 || i.tm.base_opcode == 0x85
8646 || (i.tm.base_opcode & 0xc7) == 0x03))))
8647 {
8648 if (object_64bit)
8649 {
8650 fixP->fx_tcbit = i.rex != 0;
8651 if (i.base_reg
8652 && (i.base_reg->reg_num == RegIP))
8653 fixP->fx_tcbit2 = 1;
8654 }
8655 else
8656 fixP->fx_tcbit2 = 1;
8657 }
8658 }
8659 }
8660 }
8661 }
8662
8663 static void
8664 output_imm (fragS *insn_start_frag, offsetT insn_start_off)
8665 {
8666 char *p;
8667 unsigned int n;
8668
8669 for (n = 0; n < i.operands; n++)
8670 {
8671 /* Skip SAE/RC Imm operand in EVEX. They are already handled. */
8672 if (i.rounding && (int) n == i.rounding->operand)
8673 continue;
8674
8675 if (operand_type_check (i.types[n], imm))
8676 {
8677 if (i.op[n].imms->X_op == O_constant)
8678 {
8679 int size = imm_size (n);
8680 offsetT val;
8681
8682 val = offset_in_range (i.op[n].imms->X_add_number,
8683 size);
8684 p = frag_more (size);
8685 md_number_to_chars (p, val, size);
8686 }
8687 else
8688 {
8689 /* Not absolute_section.
8690 Need a 32-bit fixup (don't support 8bit
8691 non-absolute imms). Try to support other
8692 sizes ... */
8693 enum bfd_reloc_code_real reloc_type;
8694 int size = imm_size (n);
8695 int sign;
8696
8697 if (i.types[n].bitfield.imm32s
8698 && (i.suffix == QWORD_MNEM_SUFFIX
8699 || (!i.suffix && i.tm.opcode_modifier.no_lsuf)))
8700 sign = 1;
8701 else
8702 sign = 0;
8703
8704 p = frag_more (size);
8705 reloc_type = reloc (size, 0, sign, i.reloc[n]);
8706
8707 /* This is tough to explain. We end up with this one if we
8708 * have operands that look like
8709 * "_GLOBAL_OFFSET_TABLE_+[.-.L284]". The goal here is to
8710 * obtain the absolute address of the GOT, and it is strongly
8711 * preferable from a performance point of view to avoid using
8712 * a runtime relocation for this. The actual sequence of
8713 * instructions often look something like:
8714 *
8715 * call .L66
8716 * .L66:
8717 * popl %ebx
8718 * addl $_GLOBAL_OFFSET_TABLE_+[.-.L66],%ebx
8719 *
8720 * The call and pop essentially return the absolute address
8721 * of the label .L66 and store it in %ebx. The linker itself
8722 * will ultimately change the first operand of the addl so
8723 * that %ebx points to the GOT, but to keep things simple, the
8724 * .o file must have this operand set so that it generates not
8725 * the absolute address of .L66, but the absolute address of
8726 * itself. This allows the linker itself simply treat a GOTPC
8727 * relocation as asking for a pcrel offset to the GOT to be
8728 * added in, and the addend of the relocation is stored in the
8729 * operand field for the instruction itself.
8730 *
8731 * Our job here is to fix the operand so that it would add
8732 * the correct offset so that %ebx would point to itself. The
8733 * thing that is tricky is that .-.L66 will point to the
8734 * beginning of the instruction, so we need to further modify
8735 * the operand so that it will point to itself. There are
8736 * other cases where you have something like:
8737 *
8738 * .long $_GLOBAL_OFFSET_TABLE_+[.-.L66]
8739 *
8740 * and here no correction would be required. Internally in
8741 * the assembler we treat operands of this form as not being
8742 * pcrel since the '.' is explicitly mentioned, and I wonder
8743 * whether it would simplify matters to do it this way. Who
8744 * knows. In earlier versions of the PIC patches, the
8745 * pcrel_adjust field was used to store the correction, but
8746 * since the expression is not pcrel, I felt it would be
8747 * confusing to do it this way. */
8748
8749 if ((reloc_type == BFD_RELOC_32
8750 || reloc_type == BFD_RELOC_X86_64_32S
8751 || reloc_type == BFD_RELOC_64)
8752 && GOT_symbol
8753 && GOT_symbol == i.op[n].imms->X_add_symbol
8754 && (i.op[n].imms->X_op == O_symbol
8755 || (i.op[n].imms->X_op == O_add
8756 && ((symbol_get_value_expression
8757 (i.op[n].imms->X_op_symbol)->X_op)
8758 == O_subtract))))
8759 {
8760 if (!object_64bit)
8761 reloc_type = BFD_RELOC_386_GOTPC;
8762 else if (size == 4)
8763 reloc_type = BFD_RELOC_X86_64_GOTPC32;
8764 else if (size == 8)
8765 reloc_type = BFD_RELOC_X86_64_GOTPC64;
8766 i.op[n].imms->X_add_number +=
8767 encoding_length (insn_start_frag, insn_start_off, p);
8768 }
8769 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
8770 i.op[n].imms, 0, reloc_type);
8771 }
8772 }
8773 }
8774 }
8775 \f
8776 /* x86_cons_fix_new is called via the expression parsing code when a
8777 reloc is needed. We use this hook to get the correct .got reloc. */
8778 static int cons_sign = -1;
8779
8780 void
8781 x86_cons_fix_new (fragS *frag, unsigned int off, unsigned int len,
8782 expressionS *exp, bfd_reloc_code_real_type r)
8783 {
8784 r = reloc (len, 0, cons_sign, r);
8785
8786 #ifdef TE_PE
8787 if (exp->X_op == O_secrel)
8788 {
8789 exp->X_op = O_symbol;
8790 r = BFD_RELOC_32_SECREL;
8791 }
8792 #endif
8793
8794 fix_new_exp (frag, off, len, exp, 0, r);
8795 }
8796
8797 /* Export the ABI address size for use by TC_ADDRESS_BYTES for the
8798 purpose of the `.dc.a' internal pseudo-op. */
8799
8800 int
8801 x86_address_bytes (void)
8802 {
8803 if ((stdoutput->arch_info->mach & bfd_mach_x64_32))
8804 return 4;
8805 return stdoutput->arch_info->bits_per_address / 8;
8806 }
8807
8808 #if !(defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) || defined (OBJ_MACH_O)) \
8809 || defined (LEX_AT)
8810 # define lex_got(reloc, adjust, types) NULL
8811 #else
8812 /* Parse operands of the form
8813 <symbol>@GOTOFF+<nnn>
8814 and similar .plt or .got references.
8815
8816 If we find one, set up the correct relocation in RELOC and copy the
8817 input string, minus the `@GOTOFF' into a malloc'd buffer for
8818 parsing by the calling routine. Return this buffer, and if ADJUST
8819 is non-null set it to the length of the string we removed from the
8820 input line. Otherwise return NULL. */
8821 static char *
8822 lex_got (enum bfd_reloc_code_real *rel,
8823 int *adjust,
8824 i386_operand_type *types)
8825 {
8826 /* Some of the relocations depend on the size of what field is to
8827 be relocated. But in our callers i386_immediate and i386_displacement
8828 we don't yet know the operand size (this will be set by insn
8829 matching). Hence we record the word32 relocation here,
8830 and adjust the reloc according to the real size in reloc(). */
8831 static const struct {
8832 const char *str;
8833 int len;
8834 const enum bfd_reloc_code_real rel[2];
8835 const i386_operand_type types64;
8836 } gotrel[] = {
8837 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8838 { STRING_COMMA_LEN ("SIZE"), { BFD_RELOC_SIZE32,
8839 BFD_RELOC_SIZE32 },
8840 OPERAND_TYPE_IMM32_64 },
8841 #endif
8842 { STRING_COMMA_LEN ("PLTOFF"), { _dummy_first_bfd_reloc_code_real,
8843 BFD_RELOC_X86_64_PLTOFF64 },
8844 OPERAND_TYPE_IMM64 },
8845 { STRING_COMMA_LEN ("PLT"), { BFD_RELOC_386_PLT32,
8846 BFD_RELOC_X86_64_PLT32 },
8847 OPERAND_TYPE_IMM32_32S_DISP32 },
8848 { STRING_COMMA_LEN ("GOTPLT"), { _dummy_first_bfd_reloc_code_real,
8849 BFD_RELOC_X86_64_GOTPLT64 },
8850 OPERAND_TYPE_IMM64_DISP64 },
8851 { STRING_COMMA_LEN ("GOTOFF"), { BFD_RELOC_386_GOTOFF,
8852 BFD_RELOC_X86_64_GOTOFF64 },
8853 OPERAND_TYPE_IMM64_DISP64 },
8854 { STRING_COMMA_LEN ("GOTPCREL"), { _dummy_first_bfd_reloc_code_real,
8855 BFD_RELOC_X86_64_GOTPCREL },
8856 OPERAND_TYPE_IMM32_32S_DISP32 },
8857 { STRING_COMMA_LEN ("TLSGD"), { BFD_RELOC_386_TLS_GD,
8858 BFD_RELOC_X86_64_TLSGD },
8859 OPERAND_TYPE_IMM32_32S_DISP32 },
8860 { STRING_COMMA_LEN ("TLSLDM"), { BFD_RELOC_386_TLS_LDM,
8861 _dummy_first_bfd_reloc_code_real },
8862 OPERAND_TYPE_NONE },
8863 { STRING_COMMA_LEN ("TLSLD"), { _dummy_first_bfd_reloc_code_real,
8864 BFD_RELOC_X86_64_TLSLD },
8865 OPERAND_TYPE_IMM32_32S_DISP32 },
8866 { STRING_COMMA_LEN ("GOTTPOFF"), { BFD_RELOC_386_TLS_IE_32,
8867 BFD_RELOC_X86_64_GOTTPOFF },
8868 OPERAND_TYPE_IMM32_32S_DISP32 },
8869 { STRING_COMMA_LEN ("TPOFF"), { BFD_RELOC_386_TLS_LE_32,
8870 BFD_RELOC_X86_64_TPOFF32 },
8871 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
8872 { STRING_COMMA_LEN ("NTPOFF"), { BFD_RELOC_386_TLS_LE,
8873 _dummy_first_bfd_reloc_code_real },
8874 OPERAND_TYPE_NONE },
8875 { STRING_COMMA_LEN ("DTPOFF"), { BFD_RELOC_386_TLS_LDO_32,
8876 BFD_RELOC_X86_64_DTPOFF32 },
8877 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
8878 { STRING_COMMA_LEN ("GOTNTPOFF"),{ BFD_RELOC_386_TLS_GOTIE,
8879 _dummy_first_bfd_reloc_code_real },
8880 OPERAND_TYPE_NONE },
8881 { STRING_COMMA_LEN ("INDNTPOFF"),{ BFD_RELOC_386_TLS_IE,
8882 _dummy_first_bfd_reloc_code_real },
8883 OPERAND_TYPE_NONE },
8884 { STRING_COMMA_LEN ("GOT"), { BFD_RELOC_386_GOT32,
8885 BFD_RELOC_X86_64_GOT32 },
8886 OPERAND_TYPE_IMM32_32S_64_DISP32 },
8887 { STRING_COMMA_LEN ("TLSDESC"), { BFD_RELOC_386_TLS_GOTDESC,
8888 BFD_RELOC_X86_64_GOTPC32_TLSDESC },
8889 OPERAND_TYPE_IMM32_32S_DISP32 },
8890 { STRING_COMMA_LEN ("TLSCALL"), { BFD_RELOC_386_TLS_DESC_CALL,
8891 BFD_RELOC_X86_64_TLSDESC_CALL },
8892 OPERAND_TYPE_IMM32_32S_DISP32 },
8893 };
8894 char *cp;
8895 unsigned int j;
8896
8897 #if defined (OBJ_MAYBE_ELF)
8898 if (!IS_ELF)
8899 return NULL;
8900 #endif
8901
8902 for (cp = input_line_pointer; *cp != '@'; cp++)
8903 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
8904 return NULL;
8905
8906 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
8907 {
8908 int len = gotrel[j].len;
8909 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
8910 {
8911 if (gotrel[j].rel[object_64bit] != 0)
8912 {
8913 int first, second;
8914 char *tmpbuf, *past_reloc;
8915
8916 *rel = gotrel[j].rel[object_64bit];
8917
8918 if (types)
8919 {
8920 if (flag_code != CODE_64BIT)
8921 {
8922 types->bitfield.imm32 = 1;
8923 types->bitfield.disp32 = 1;
8924 }
8925 else
8926 *types = gotrel[j].types64;
8927 }
8928
8929 if (j != 0 && GOT_symbol == NULL)
8930 GOT_symbol = symbol_find_or_make (GLOBAL_OFFSET_TABLE_NAME);
8931
8932 /* The length of the first part of our input line. */
8933 first = cp - input_line_pointer;
8934
8935 /* The second part goes from after the reloc token until
8936 (and including) an end_of_line char or comma. */
8937 past_reloc = cp + 1 + len;
8938 cp = past_reloc;
8939 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
8940 ++cp;
8941 second = cp + 1 - past_reloc;
8942
8943 /* Allocate and copy string. The trailing NUL shouldn't
8944 be necessary, but be safe. */
8945 tmpbuf = XNEWVEC (char, first + second + 2);
8946 memcpy (tmpbuf, input_line_pointer, first);
8947 if (second != 0 && *past_reloc != ' ')
8948 /* Replace the relocation token with ' ', so that
8949 errors like foo@GOTOFF1 will be detected. */
8950 tmpbuf[first++] = ' ';
8951 else
8952 /* Increment length by 1 if the relocation token is
8953 removed. */
8954 len++;
8955 if (adjust)
8956 *adjust = len;
8957 memcpy (tmpbuf + first, past_reloc, second);
8958 tmpbuf[first + second] = '\0';
8959 return tmpbuf;
8960 }
8961
8962 as_bad (_("@%s reloc is not supported with %d-bit output format"),
8963 gotrel[j].str, 1 << (5 + object_64bit));
8964 return NULL;
8965 }
8966 }
8967
8968 /* Might be a symbol version string. Don't as_bad here. */
8969 return NULL;
8970 }
8971 #endif
8972
8973 #ifdef TE_PE
8974 #ifdef lex_got
8975 #undef lex_got
8976 #endif
8977 /* Parse operands of the form
8978 <symbol>@SECREL32+<nnn>
8979
8980 If we find one, set up the correct relocation in RELOC and copy the
8981 input string, minus the `@SECREL32' into a malloc'd buffer for
8982 parsing by the calling routine. Return this buffer, and if ADJUST
8983 is non-null set it to the length of the string we removed from the
8984 input line. Otherwise return NULL.
8985
8986 This function is copied from the ELF version above adjusted for PE targets. */
8987
8988 static char *
8989 lex_got (enum bfd_reloc_code_real *rel ATTRIBUTE_UNUSED,
8990 int *adjust ATTRIBUTE_UNUSED,
8991 i386_operand_type *types)
8992 {
8993 static const struct
8994 {
8995 const char *str;
8996 int len;
8997 const enum bfd_reloc_code_real rel[2];
8998 const i386_operand_type types64;
8999 }
9000 gotrel[] =
9001 {
9002 { STRING_COMMA_LEN ("SECREL32"), { BFD_RELOC_32_SECREL,
9003 BFD_RELOC_32_SECREL },
9004 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
9005 };
9006
9007 char *cp;
9008 unsigned j;
9009
9010 for (cp = input_line_pointer; *cp != '@'; cp++)
9011 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
9012 return NULL;
9013
9014 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
9015 {
9016 int len = gotrel[j].len;
9017
9018 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
9019 {
9020 if (gotrel[j].rel[object_64bit] != 0)
9021 {
9022 int first, second;
9023 char *tmpbuf, *past_reloc;
9024
9025 *rel = gotrel[j].rel[object_64bit];
9026 if (adjust)
9027 *adjust = len;
9028
9029 if (types)
9030 {
9031 if (flag_code != CODE_64BIT)
9032 {
9033 types->bitfield.imm32 = 1;
9034 types->bitfield.disp32 = 1;
9035 }
9036 else
9037 *types = gotrel[j].types64;
9038 }
9039
9040 /* The length of the first part of our input line. */
9041 first = cp - input_line_pointer;
9042
9043 /* The second part goes from after the reloc token until
9044 (and including) an end_of_line char or comma. */
9045 past_reloc = cp + 1 + len;
9046 cp = past_reloc;
9047 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
9048 ++cp;
9049 second = cp + 1 - past_reloc;
9050
9051 /* Allocate and copy string. The trailing NUL shouldn't
9052 be necessary, but be safe. */
9053 tmpbuf = XNEWVEC (char, first + second + 2);
9054 memcpy (tmpbuf, input_line_pointer, first);
9055 if (second != 0 && *past_reloc != ' ')
9056 /* Replace the relocation token with ' ', so that
9057 errors like foo@SECLREL321 will be detected. */
9058 tmpbuf[first++] = ' ';
9059 memcpy (tmpbuf + first, past_reloc, second);
9060 tmpbuf[first + second] = '\0';
9061 return tmpbuf;
9062 }
9063
9064 as_bad (_("@%s reloc is not supported with %d-bit output format"),
9065 gotrel[j].str, 1 << (5 + object_64bit));
9066 return NULL;
9067 }
9068 }
9069
9070 /* Might be a symbol version string. Don't as_bad here. */
9071 return NULL;
9072 }
9073
9074 #endif /* TE_PE */
9075
9076 bfd_reloc_code_real_type
9077 x86_cons (expressionS *exp, int size)
9078 {
9079 bfd_reloc_code_real_type got_reloc = NO_RELOC;
9080
9081 intel_syntax = -intel_syntax;
9082
9083 exp->X_md = 0;
9084 if (size == 4 || (object_64bit && size == 8))
9085 {
9086 /* Handle @GOTOFF and the like in an expression. */
9087 char *save;
9088 char *gotfree_input_line;
9089 int adjust = 0;
9090
9091 save = input_line_pointer;
9092 gotfree_input_line = lex_got (&got_reloc, &adjust, NULL);
9093 if (gotfree_input_line)
9094 input_line_pointer = gotfree_input_line;
9095
9096 expression (exp);
9097
9098 if (gotfree_input_line)
9099 {
9100 /* expression () has merrily parsed up to the end of line,
9101 or a comma - in the wrong buffer. Transfer how far
9102 input_line_pointer has moved to the right buffer. */
9103 input_line_pointer = (save
9104 + (input_line_pointer - gotfree_input_line)
9105 + adjust);
9106 free (gotfree_input_line);
9107 if (exp->X_op == O_constant
9108 || exp->X_op == O_absent
9109 || exp->X_op == O_illegal
9110 || exp->X_op == O_register
9111 || exp->X_op == O_big)
9112 {
9113 char c = *input_line_pointer;
9114 *input_line_pointer = 0;
9115 as_bad (_("missing or invalid expression `%s'"), save);
9116 *input_line_pointer = c;
9117 }
9118 else if ((got_reloc == BFD_RELOC_386_PLT32
9119 || got_reloc == BFD_RELOC_X86_64_PLT32)
9120 && exp->X_op != O_symbol)
9121 {
9122 char c = *input_line_pointer;
9123 *input_line_pointer = 0;
9124 as_bad (_("invalid PLT expression `%s'"), save);
9125 *input_line_pointer = c;
9126 }
9127 }
9128 }
9129 else
9130 expression (exp);
9131
9132 intel_syntax = -intel_syntax;
9133
9134 if (intel_syntax)
9135 i386_intel_simplify (exp);
9136
9137 return got_reloc;
9138 }
9139
9140 static void
9141 signed_cons (int size)
9142 {
9143 if (flag_code == CODE_64BIT)
9144 cons_sign = 1;
9145 cons (size);
9146 cons_sign = -1;
9147 }
9148
9149 #ifdef TE_PE
9150 static void
9151 pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
9152 {
9153 expressionS exp;
9154
9155 do
9156 {
9157 expression (&exp);
9158 if (exp.X_op == O_symbol)
9159 exp.X_op = O_secrel;
9160
9161 emit_expr (&exp, 4);
9162 }
9163 while (*input_line_pointer++ == ',');
9164
9165 input_line_pointer--;
9166 demand_empty_rest_of_line ();
9167 }
9168 #endif
9169
9170 /* Handle Vector operations. */
9171
9172 static char *
9173 check_VecOperations (char *op_string, char *op_end)
9174 {
9175 const reg_entry *mask;
9176 const char *saved;
9177 char *end_op;
9178
9179 while (*op_string
9180 && (op_end == NULL || op_string < op_end))
9181 {
9182 saved = op_string;
9183 if (*op_string == '{')
9184 {
9185 op_string++;
9186
9187 /* Check broadcasts. */
9188 if (strncmp (op_string, "1to", 3) == 0)
9189 {
9190 int bcst_type;
9191
9192 if (i.broadcast)
9193 goto duplicated_vec_op;
9194
9195 op_string += 3;
9196 if (*op_string == '8')
9197 bcst_type = 8;
9198 else if (*op_string == '4')
9199 bcst_type = 4;
9200 else if (*op_string == '2')
9201 bcst_type = 2;
9202 else if (*op_string == '1'
9203 && *(op_string+1) == '6')
9204 {
9205 bcst_type = 16;
9206 op_string++;
9207 }
9208 else
9209 {
9210 as_bad (_("Unsupported broadcast: `%s'"), saved);
9211 return NULL;
9212 }
9213 op_string++;
9214
9215 broadcast_op.type = bcst_type;
9216 broadcast_op.operand = this_operand;
9217 broadcast_op.bytes = 0;
9218 i.broadcast = &broadcast_op;
9219 }
9220 /* Check masking operation. */
9221 else if ((mask = parse_register (op_string, &end_op)) != NULL)
9222 {
9223 /* k0 can't be used for write mask. */
9224 if (!mask->reg_type.bitfield.regmask || mask->reg_num == 0)
9225 {
9226 as_bad (_("`%s%s' can't be used for write mask"),
9227 register_prefix, mask->reg_name);
9228 return NULL;
9229 }
9230
9231 if (!i.mask)
9232 {
9233 mask_op.mask = mask;
9234 mask_op.zeroing = 0;
9235 mask_op.operand = this_operand;
9236 i.mask = &mask_op;
9237 }
9238 else
9239 {
9240 if (i.mask->mask)
9241 goto duplicated_vec_op;
9242
9243 i.mask->mask = mask;
9244
9245 /* Only "{z}" is allowed here. No need to check
9246 zeroing mask explicitly. */
9247 if (i.mask->operand != this_operand)
9248 {
9249 as_bad (_("invalid write mask `%s'"), saved);
9250 return NULL;
9251 }
9252 }
9253
9254 op_string = end_op;
9255 }
9256 /* Check zeroing-flag for masking operation. */
9257 else if (*op_string == 'z')
9258 {
9259 if (!i.mask)
9260 {
9261 mask_op.mask = NULL;
9262 mask_op.zeroing = 1;
9263 mask_op.operand = this_operand;
9264 i.mask = &mask_op;
9265 }
9266 else
9267 {
9268 if (i.mask->zeroing)
9269 {
9270 duplicated_vec_op:
9271 as_bad (_("duplicated `%s'"), saved);
9272 return NULL;
9273 }
9274
9275 i.mask->zeroing = 1;
9276
9277 /* Only "{%k}" is allowed here. No need to check mask
9278 register explicitly. */
9279 if (i.mask->operand != this_operand)
9280 {
9281 as_bad (_("invalid zeroing-masking `%s'"),
9282 saved);
9283 return NULL;
9284 }
9285 }
9286
9287 op_string++;
9288 }
9289 else
9290 goto unknown_vec_op;
9291
9292 if (*op_string != '}')
9293 {
9294 as_bad (_("missing `}' in `%s'"), saved);
9295 return NULL;
9296 }
9297 op_string++;
9298
9299 /* Strip whitespace since the addition of pseudo prefixes
9300 changed how the scrubber treats '{'. */
9301 if (is_space_char (*op_string))
9302 ++op_string;
9303
9304 continue;
9305 }
9306 unknown_vec_op:
9307 /* We don't know this one. */
9308 as_bad (_("unknown vector operation: `%s'"), saved);
9309 return NULL;
9310 }
9311
9312 if (i.mask && i.mask->zeroing && !i.mask->mask)
9313 {
9314 as_bad (_("zeroing-masking only allowed with write mask"));
9315 return NULL;
9316 }
9317
9318 return op_string;
9319 }
9320
9321 static int
9322 i386_immediate (char *imm_start)
9323 {
9324 char *save_input_line_pointer;
9325 char *gotfree_input_line;
9326 segT exp_seg = 0;
9327 expressionS *exp;
9328 i386_operand_type types;
9329
9330 operand_type_set (&types, ~0);
9331
9332 if (i.imm_operands == MAX_IMMEDIATE_OPERANDS)
9333 {
9334 as_bad (_("at most %d immediate operands are allowed"),
9335 MAX_IMMEDIATE_OPERANDS);
9336 return 0;
9337 }
9338
9339 exp = &im_expressions[i.imm_operands++];
9340 i.op[this_operand].imms = exp;
9341
9342 if (is_space_char (*imm_start))
9343 ++imm_start;
9344
9345 save_input_line_pointer = input_line_pointer;
9346 input_line_pointer = imm_start;
9347
9348 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
9349 if (gotfree_input_line)
9350 input_line_pointer = gotfree_input_line;
9351
9352 exp_seg = expression (exp);
9353
9354 SKIP_WHITESPACE ();
9355
9356 /* Handle vector operations. */
9357 if (*input_line_pointer == '{')
9358 {
9359 input_line_pointer = check_VecOperations (input_line_pointer,
9360 NULL);
9361 if (input_line_pointer == NULL)
9362 return 0;
9363 }
9364
9365 if (*input_line_pointer)
9366 as_bad (_("junk `%s' after expression"), input_line_pointer);
9367
9368 input_line_pointer = save_input_line_pointer;
9369 if (gotfree_input_line)
9370 {
9371 free (gotfree_input_line);
9372
9373 if (exp->X_op == O_constant || exp->X_op == O_register)
9374 exp->X_op = O_illegal;
9375 }
9376
9377 return i386_finalize_immediate (exp_seg, exp, types, imm_start);
9378 }
9379
9380 static int
9381 i386_finalize_immediate (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
9382 i386_operand_type types, const char *imm_start)
9383 {
9384 if (exp->X_op == O_absent || exp->X_op == O_illegal || exp->X_op == O_big)
9385 {
9386 if (imm_start)
9387 as_bad (_("missing or invalid immediate expression `%s'"),
9388 imm_start);
9389 return 0;
9390 }
9391 else if (exp->X_op == O_constant)
9392 {
9393 /* Size it properly later. */
9394 i.types[this_operand].bitfield.imm64 = 1;
9395 /* If not 64bit, sign extend val. */
9396 if (flag_code != CODE_64BIT
9397 && (exp->X_add_number & ~(((addressT) 2 << 31) - 1)) == 0)
9398 exp->X_add_number
9399 = (exp->X_add_number ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
9400 }
9401 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
9402 else if (OUTPUT_FLAVOR == bfd_target_aout_flavour
9403 && exp_seg != absolute_section
9404 && exp_seg != text_section
9405 && exp_seg != data_section
9406 && exp_seg != bss_section
9407 && exp_seg != undefined_section
9408 && !bfd_is_com_section (exp_seg))
9409 {
9410 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
9411 return 0;
9412 }
9413 #endif
9414 else if (!intel_syntax && exp_seg == reg_section)
9415 {
9416 if (imm_start)
9417 as_bad (_("illegal immediate register operand %s"), imm_start);
9418 return 0;
9419 }
9420 else
9421 {
9422 /* This is an address. The size of the address will be
9423 determined later, depending on destination register,
9424 suffix, or the default for the section. */
9425 i.types[this_operand].bitfield.imm8 = 1;
9426 i.types[this_operand].bitfield.imm16 = 1;
9427 i.types[this_operand].bitfield.imm32 = 1;
9428 i.types[this_operand].bitfield.imm32s = 1;
9429 i.types[this_operand].bitfield.imm64 = 1;
9430 i.types[this_operand] = operand_type_and (i.types[this_operand],
9431 types);
9432 }
9433
9434 return 1;
9435 }
9436
9437 static char *
9438 i386_scale (char *scale)
9439 {
9440 offsetT val;
9441 char *save = input_line_pointer;
9442
9443 input_line_pointer = scale;
9444 val = get_absolute_expression ();
9445
9446 switch (val)
9447 {
9448 case 1:
9449 i.log2_scale_factor = 0;
9450 break;
9451 case 2:
9452 i.log2_scale_factor = 1;
9453 break;
9454 case 4:
9455 i.log2_scale_factor = 2;
9456 break;
9457 case 8:
9458 i.log2_scale_factor = 3;
9459 break;
9460 default:
9461 {
9462 char sep = *input_line_pointer;
9463
9464 *input_line_pointer = '\0';
9465 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
9466 scale);
9467 *input_line_pointer = sep;
9468 input_line_pointer = save;
9469 return NULL;
9470 }
9471 }
9472 if (i.log2_scale_factor != 0 && i.index_reg == 0)
9473 {
9474 as_warn (_("scale factor of %d without an index register"),
9475 1 << i.log2_scale_factor);
9476 i.log2_scale_factor = 0;
9477 }
9478 scale = input_line_pointer;
9479 input_line_pointer = save;
9480 return scale;
9481 }
9482
9483 static int
9484 i386_displacement (char *disp_start, char *disp_end)
9485 {
9486 expressionS *exp;
9487 segT exp_seg = 0;
9488 char *save_input_line_pointer;
9489 char *gotfree_input_line;
9490 int override;
9491 i386_operand_type bigdisp, types = anydisp;
9492 int ret;
9493
9494 if (i.disp_operands == MAX_MEMORY_OPERANDS)
9495 {
9496 as_bad (_("at most %d displacement operands are allowed"),
9497 MAX_MEMORY_OPERANDS);
9498 return 0;
9499 }
9500
9501 operand_type_set (&bigdisp, 0);
9502 if ((i.types[this_operand].bitfield.jumpabsolute)
9503 || (!current_templates->start->opcode_modifier.jump
9504 && !current_templates->start->opcode_modifier.jumpdword))
9505 {
9506 bigdisp.bitfield.disp32 = 1;
9507 override = (i.prefix[ADDR_PREFIX] != 0);
9508 if (flag_code == CODE_64BIT)
9509 {
9510 if (!override)
9511 {
9512 bigdisp.bitfield.disp32s = 1;
9513 bigdisp.bitfield.disp64 = 1;
9514 }
9515 }
9516 else if ((flag_code == CODE_16BIT) ^ override)
9517 {
9518 bigdisp.bitfield.disp32 = 0;
9519 bigdisp.bitfield.disp16 = 1;
9520 }
9521 }
9522 else
9523 {
9524 /* For PC-relative branches, the width of the displacement
9525 is dependent upon data size, not address size. */
9526 override = (i.prefix[DATA_PREFIX] != 0);
9527 if (flag_code == CODE_64BIT)
9528 {
9529 if (override || i.suffix == WORD_MNEM_SUFFIX)
9530 bigdisp.bitfield.disp16 = 1;
9531 else
9532 {
9533 bigdisp.bitfield.disp32 = 1;
9534 bigdisp.bitfield.disp32s = 1;
9535 }
9536 }
9537 else
9538 {
9539 if (!override)
9540 override = (i.suffix == (flag_code != CODE_16BIT
9541 ? WORD_MNEM_SUFFIX
9542 : LONG_MNEM_SUFFIX));
9543 bigdisp.bitfield.disp32 = 1;
9544 if ((flag_code == CODE_16BIT) ^ override)
9545 {
9546 bigdisp.bitfield.disp32 = 0;
9547 bigdisp.bitfield.disp16 = 1;
9548 }
9549 }
9550 }
9551 i.types[this_operand] = operand_type_or (i.types[this_operand],
9552 bigdisp);
9553
9554 exp = &disp_expressions[i.disp_operands];
9555 i.op[this_operand].disps = exp;
9556 i.disp_operands++;
9557 save_input_line_pointer = input_line_pointer;
9558 input_line_pointer = disp_start;
9559 END_STRING_AND_SAVE (disp_end);
9560
9561 #ifndef GCC_ASM_O_HACK
9562 #define GCC_ASM_O_HACK 0
9563 #endif
9564 #if GCC_ASM_O_HACK
9565 END_STRING_AND_SAVE (disp_end + 1);
9566 if (i.types[this_operand].bitfield.baseIndex
9567 && displacement_string_end[-1] == '+')
9568 {
9569 /* This hack is to avoid a warning when using the "o"
9570 constraint within gcc asm statements.
9571 For instance:
9572
9573 #define _set_tssldt_desc(n,addr,limit,type) \
9574 __asm__ __volatile__ ( \
9575 "movw %w2,%0\n\t" \
9576 "movw %w1,2+%0\n\t" \
9577 "rorl $16,%1\n\t" \
9578 "movb %b1,4+%0\n\t" \
9579 "movb %4,5+%0\n\t" \
9580 "movb $0,6+%0\n\t" \
9581 "movb %h1,7+%0\n\t" \
9582 "rorl $16,%1" \
9583 : "=o"(*(n)) : "q" (addr), "ri"(limit), "i"(type))
9584
9585 This works great except that the output assembler ends
9586 up looking a bit weird if it turns out that there is
9587 no offset. You end up producing code that looks like:
9588
9589 #APP
9590 movw $235,(%eax)
9591 movw %dx,2+(%eax)
9592 rorl $16,%edx
9593 movb %dl,4+(%eax)
9594 movb $137,5+(%eax)
9595 movb $0,6+(%eax)
9596 movb %dh,7+(%eax)
9597 rorl $16,%edx
9598 #NO_APP
9599
9600 So here we provide the missing zero. */
9601
9602 *displacement_string_end = '0';
9603 }
9604 #endif
9605 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
9606 if (gotfree_input_line)
9607 input_line_pointer = gotfree_input_line;
9608
9609 exp_seg = expression (exp);
9610
9611 SKIP_WHITESPACE ();
9612 if (*input_line_pointer)
9613 as_bad (_("junk `%s' after expression"), input_line_pointer);
9614 #if GCC_ASM_O_HACK
9615 RESTORE_END_STRING (disp_end + 1);
9616 #endif
9617 input_line_pointer = save_input_line_pointer;
9618 if (gotfree_input_line)
9619 {
9620 free (gotfree_input_line);
9621
9622 if (exp->X_op == O_constant || exp->X_op == O_register)
9623 exp->X_op = O_illegal;
9624 }
9625
9626 ret = i386_finalize_displacement (exp_seg, exp, types, disp_start);
9627
9628 RESTORE_END_STRING (disp_end);
9629
9630 return ret;
9631 }
9632
9633 static int
9634 i386_finalize_displacement (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
9635 i386_operand_type types, const char *disp_start)
9636 {
9637 i386_operand_type bigdisp;
9638 int ret = 1;
9639
9640 /* We do this to make sure that the section symbol is in
9641 the symbol table. We will ultimately change the relocation
9642 to be relative to the beginning of the section. */
9643 if (i.reloc[this_operand] == BFD_RELOC_386_GOTOFF
9644 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL
9645 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
9646 {
9647 if (exp->X_op != O_symbol)
9648 goto inv_disp;
9649
9650 if (S_IS_LOCAL (exp->X_add_symbol)
9651 && S_GET_SEGMENT (exp->X_add_symbol) != undefined_section
9652 && S_GET_SEGMENT (exp->X_add_symbol) != expr_section)
9653 section_symbol (S_GET_SEGMENT (exp->X_add_symbol));
9654 exp->X_op = O_subtract;
9655 exp->X_op_symbol = GOT_symbol;
9656 if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
9657 i.reloc[this_operand] = BFD_RELOC_32_PCREL;
9658 else if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
9659 i.reloc[this_operand] = BFD_RELOC_64;
9660 else
9661 i.reloc[this_operand] = BFD_RELOC_32;
9662 }
9663
9664 else if (exp->X_op == O_absent
9665 || exp->X_op == O_illegal
9666 || exp->X_op == O_big)
9667 {
9668 inv_disp:
9669 as_bad (_("missing or invalid displacement expression `%s'"),
9670 disp_start);
9671 ret = 0;
9672 }
9673
9674 else if (flag_code == CODE_64BIT
9675 && !i.prefix[ADDR_PREFIX]
9676 && exp->X_op == O_constant)
9677 {
9678 /* Since displacement is signed extended to 64bit, don't allow
9679 disp32 and turn off disp32s if they are out of range. */
9680 i.types[this_operand].bitfield.disp32 = 0;
9681 if (!fits_in_signed_long (exp->X_add_number))
9682 {
9683 i.types[this_operand].bitfield.disp32s = 0;
9684 if (i.types[this_operand].bitfield.baseindex)
9685 {
9686 as_bad (_("0x%lx out range of signed 32bit displacement"),
9687 (long) exp->X_add_number);
9688 ret = 0;
9689 }
9690 }
9691 }
9692
9693 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
9694 else if (exp->X_op != O_constant
9695 && OUTPUT_FLAVOR == bfd_target_aout_flavour
9696 && exp_seg != absolute_section
9697 && exp_seg != text_section
9698 && exp_seg != data_section
9699 && exp_seg != bss_section
9700 && exp_seg != undefined_section
9701 && !bfd_is_com_section (exp_seg))
9702 {
9703 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
9704 ret = 0;
9705 }
9706 #endif
9707
9708 /* Check if this is a displacement only operand. */
9709 bigdisp = i.types[this_operand];
9710 bigdisp.bitfield.disp8 = 0;
9711 bigdisp.bitfield.disp16 = 0;
9712 bigdisp.bitfield.disp32 = 0;
9713 bigdisp.bitfield.disp32s = 0;
9714 bigdisp.bitfield.disp64 = 0;
9715 if (operand_type_all_zero (&bigdisp))
9716 i.types[this_operand] = operand_type_and (i.types[this_operand],
9717 types);
9718
9719 return ret;
9720 }
9721
9722 /* Return the active addressing mode, taking address override and
9723 registers forming the address into consideration. Update the
9724 address override prefix if necessary. */
9725
9726 static enum flag_code
9727 i386_addressing_mode (void)
9728 {
9729 enum flag_code addr_mode;
9730
9731 if (i.prefix[ADDR_PREFIX])
9732 addr_mode = flag_code == CODE_32BIT ? CODE_16BIT : CODE_32BIT;
9733 else
9734 {
9735 addr_mode = flag_code;
9736
9737 #if INFER_ADDR_PREFIX
9738 if (i.mem_operands == 0)
9739 {
9740 /* Infer address prefix from the first memory operand. */
9741 const reg_entry *addr_reg = i.base_reg;
9742
9743 if (addr_reg == NULL)
9744 addr_reg = i.index_reg;
9745
9746 if (addr_reg)
9747 {
9748 if (addr_reg->reg_type.bitfield.dword)
9749 addr_mode = CODE_32BIT;
9750 else if (flag_code != CODE_64BIT
9751 && addr_reg->reg_type.bitfield.word)
9752 addr_mode = CODE_16BIT;
9753
9754 if (addr_mode != flag_code)
9755 {
9756 i.prefix[ADDR_PREFIX] = ADDR_PREFIX_OPCODE;
9757 i.prefixes += 1;
9758 /* Change the size of any displacement too. At most one
9759 of Disp16 or Disp32 is set.
9760 FIXME. There doesn't seem to be any real need for
9761 separate Disp16 and Disp32 flags. The same goes for
9762 Imm16 and Imm32. Removing them would probably clean
9763 up the code quite a lot. */
9764 if (flag_code != CODE_64BIT
9765 && (i.types[this_operand].bitfield.disp16
9766 || i.types[this_operand].bitfield.disp32))
9767 i.types[this_operand]
9768 = operand_type_xor (i.types[this_operand], disp16_32);
9769 }
9770 }
9771 }
9772 #endif
9773 }
9774
9775 return addr_mode;
9776 }
9777
9778 /* Make sure the memory operand we've been dealt is valid.
9779 Return 1 on success, 0 on a failure. */
9780
9781 static int
9782 i386_index_check (const char *operand_string)
9783 {
9784 const char *kind = "base/index";
9785 enum flag_code addr_mode = i386_addressing_mode ();
9786
9787 if (current_templates->start->opcode_modifier.isstring
9788 && !current_templates->start->cpu_flags.bitfield.cpupadlock
9789 && (current_templates->end[-1].opcode_modifier.isstring
9790 || i.mem_operands))
9791 {
9792 /* Memory operands of string insns are special in that they only allow
9793 a single register (rDI, rSI, or rBX) as their memory address. */
9794 const reg_entry *expected_reg;
9795 static const char *di_si[][2] =
9796 {
9797 { "esi", "edi" },
9798 { "si", "di" },
9799 { "rsi", "rdi" }
9800 };
9801 static const char *bx[] = { "ebx", "bx", "rbx" };
9802
9803 kind = "string address";
9804
9805 if (current_templates->start->opcode_modifier.repprefixok)
9806 {
9807 i386_operand_type type = current_templates->end[-1].operand_types[0];
9808
9809 if (!type.bitfield.baseindex
9810 || ((!i.mem_operands != !intel_syntax)
9811 && current_templates->end[-1].operand_types[1]
9812 .bitfield.baseindex))
9813 type = current_templates->end[-1].operand_types[1];
9814 expected_reg = hash_find (reg_hash,
9815 di_si[addr_mode][type.bitfield.esseg]);
9816
9817 }
9818 else
9819 expected_reg = hash_find (reg_hash, bx[addr_mode]);
9820
9821 if (i.base_reg != expected_reg
9822 || i.index_reg
9823 || operand_type_check (i.types[this_operand], disp))
9824 {
9825 /* The second memory operand must have the same size as
9826 the first one. */
9827 if (i.mem_operands
9828 && i.base_reg
9829 && !((addr_mode == CODE_64BIT
9830 && i.base_reg->reg_type.bitfield.qword)
9831 || (addr_mode == CODE_32BIT
9832 ? i.base_reg->reg_type.bitfield.dword
9833 : i.base_reg->reg_type.bitfield.word)))
9834 goto bad_address;
9835
9836 as_warn (_("`%s' is not valid here (expected `%c%s%s%c')"),
9837 operand_string,
9838 intel_syntax ? '[' : '(',
9839 register_prefix,
9840 expected_reg->reg_name,
9841 intel_syntax ? ']' : ')');
9842 return 1;
9843 }
9844 else
9845 return 1;
9846
9847 bad_address:
9848 as_bad (_("`%s' is not a valid %s expression"),
9849 operand_string, kind);
9850 return 0;
9851 }
9852 else
9853 {
9854 if (addr_mode != CODE_16BIT)
9855 {
9856 /* 32-bit/64-bit checks. */
9857 if ((i.base_reg
9858 && ((addr_mode == CODE_64BIT
9859 ? !i.base_reg->reg_type.bitfield.qword
9860 : !i.base_reg->reg_type.bitfield.dword)
9861 || (i.index_reg && i.base_reg->reg_num == RegIP)
9862 || i.base_reg->reg_num == RegIZ))
9863 || (i.index_reg
9864 && !i.index_reg->reg_type.bitfield.xmmword
9865 && !i.index_reg->reg_type.bitfield.ymmword
9866 && !i.index_reg->reg_type.bitfield.zmmword
9867 && ((addr_mode == CODE_64BIT
9868 ? !i.index_reg->reg_type.bitfield.qword
9869 : !i.index_reg->reg_type.bitfield.dword)
9870 || !i.index_reg->reg_type.bitfield.baseindex)))
9871 goto bad_address;
9872
9873 /* bndmk, bndldx, and bndstx have special restrictions. */
9874 if (current_templates->start->base_opcode == 0xf30f1b
9875 || (current_templates->start->base_opcode & ~1) == 0x0f1a)
9876 {
9877 /* They cannot use RIP-relative addressing. */
9878 if (i.base_reg && i.base_reg->reg_num == RegIP)
9879 {
9880 as_bad (_("`%s' cannot be used here"), operand_string);
9881 return 0;
9882 }
9883
9884 /* bndldx and bndstx ignore their scale factor. */
9885 if (current_templates->start->base_opcode != 0xf30f1b
9886 && i.log2_scale_factor)
9887 as_warn (_("register scaling is being ignored here"));
9888 }
9889 }
9890 else
9891 {
9892 /* 16-bit checks. */
9893 if ((i.base_reg
9894 && (!i.base_reg->reg_type.bitfield.word
9895 || !i.base_reg->reg_type.bitfield.baseindex))
9896 || (i.index_reg
9897 && (!i.index_reg->reg_type.bitfield.word
9898 || !i.index_reg->reg_type.bitfield.baseindex
9899 || !(i.base_reg
9900 && i.base_reg->reg_num < 6
9901 && i.index_reg->reg_num >= 6
9902 && i.log2_scale_factor == 0))))
9903 goto bad_address;
9904 }
9905 }
9906 return 1;
9907 }
9908
9909 /* Handle vector immediates. */
9910
9911 static int
9912 RC_SAE_immediate (const char *imm_start)
9913 {
9914 unsigned int match_found, j;
9915 const char *pstr = imm_start;
9916 expressionS *exp;
9917
9918 if (*pstr != '{')
9919 return 0;
9920
9921 pstr++;
9922 match_found = 0;
9923 for (j = 0; j < ARRAY_SIZE (RC_NamesTable); j++)
9924 {
9925 if (!strncmp (pstr, RC_NamesTable[j].name, RC_NamesTable[j].len))
9926 {
9927 if (!i.rounding)
9928 {
9929 rc_op.type = RC_NamesTable[j].type;
9930 rc_op.operand = this_operand;
9931 i.rounding = &rc_op;
9932 }
9933 else
9934 {
9935 as_bad (_("duplicated `%s'"), imm_start);
9936 return 0;
9937 }
9938 pstr += RC_NamesTable[j].len;
9939 match_found = 1;
9940 break;
9941 }
9942 }
9943 if (!match_found)
9944 return 0;
9945
9946 if (*pstr++ != '}')
9947 {
9948 as_bad (_("Missing '}': '%s'"), imm_start);
9949 return 0;
9950 }
9951 /* RC/SAE immediate string should contain nothing more. */;
9952 if (*pstr != 0)
9953 {
9954 as_bad (_("Junk after '}': '%s'"), imm_start);
9955 return 0;
9956 }
9957
9958 exp = &im_expressions[i.imm_operands++];
9959 i.op[this_operand].imms = exp;
9960
9961 exp->X_op = O_constant;
9962 exp->X_add_number = 0;
9963 exp->X_add_symbol = (symbolS *) 0;
9964 exp->X_op_symbol = (symbolS *) 0;
9965
9966 i.types[this_operand].bitfield.imm8 = 1;
9967 return 1;
9968 }
9969
9970 /* Only string instructions can have a second memory operand, so
9971 reduce current_templates to just those if it contains any. */
9972 static int
9973 maybe_adjust_templates (void)
9974 {
9975 const insn_template *t;
9976
9977 gas_assert (i.mem_operands == 1);
9978
9979 for (t = current_templates->start; t < current_templates->end; ++t)
9980 if (t->opcode_modifier.isstring)
9981 break;
9982
9983 if (t < current_templates->end)
9984 {
9985 static templates aux_templates;
9986 bfd_boolean recheck;
9987
9988 aux_templates.start = t;
9989 for (; t < current_templates->end; ++t)
9990 if (!t->opcode_modifier.isstring)
9991 break;
9992 aux_templates.end = t;
9993
9994 /* Determine whether to re-check the first memory operand. */
9995 recheck = (aux_templates.start != current_templates->start
9996 || t != current_templates->end);
9997
9998 current_templates = &aux_templates;
9999
10000 if (recheck)
10001 {
10002 i.mem_operands = 0;
10003 if (i.memop1_string != NULL
10004 && i386_index_check (i.memop1_string) == 0)
10005 return 0;
10006 i.mem_operands = 1;
10007 }
10008 }
10009
10010 return 1;
10011 }
10012
10013 /* Parse OPERAND_STRING into the i386_insn structure I. Returns zero
10014 on error. */
10015
10016 static int
10017 i386_att_operand (char *operand_string)
10018 {
10019 const reg_entry *r;
10020 char *end_op;
10021 char *op_string = operand_string;
10022
10023 if (is_space_char (*op_string))
10024 ++op_string;
10025
10026 /* We check for an absolute prefix (differentiating,
10027 for example, 'jmp pc_relative_label' from 'jmp *absolute_label'. */
10028 if (*op_string == ABSOLUTE_PREFIX)
10029 {
10030 ++op_string;
10031 if (is_space_char (*op_string))
10032 ++op_string;
10033 i.types[this_operand].bitfield.jumpabsolute = 1;
10034 }
10035
10036 /* Check if operand is a register. */
10037 if ((r = parse_register (op_string, &end_op)) != NULL)
10038 {
10039 i386_operand_type temp;
10040
10041 /* Check for a segment override by searching for ':' after a
10042 segment register. */
10043 op_string = end_op;
10044 if (is_space_char (*op_string))
10045 ++op_string;
10046 if (*op_string == ':'
10047 && (r->reg_type.bitfield.sreg2
10048 || r->reg_type.bitfield.sreg3))
10049 {
10050 switch (r->reg_num)
10051 {
10052 case 0:
10053 i.seg[i.mem_operands] = &es;
10054 break;
10055 case 1:
10056 i.seg[i.mem_operands] = &cs;
10057 break;
10058 case 2:
10059 i.seg[i.mem_operands] = &ss;
10060 break;
10061 case 3:
10062 i.seg[i.mem_operands] = &ds;
10063 break;
10064 case 4:
10065 i.seg[i.mem_operands] = &fs;
10066 break;
10067 case 5:
10068 i.seg[i.mem_operands] = &gs;
10069 break;
10070 }
10071
10072 /* Skip the ':' and whitespace. */
10073 ++op_string;
10074 if (is_space_char (*op_string))
10075 ++op_string;
10076
10077 if (!is_digit_char (*op_string)
10078 && !is_identifier_char (*op_string)
10079 && *op_string != '('
10080 && *op_string != ABSOLUTE_PREFIX)
10081 {
10082 as_bad (_("bad memory operand `%s'"), op_string);
10083 return 0;
10084 }
10085 /* Handle case of %es:*foo. */
10086 if (*op_string == ABSOLUTE_PREFIX)
10087 {
10088 ++op_string;
10089 if (is_space_char (*op_string))
10090 ++op_string;
10091 i.types[this_operand].bitfield.jumpabsolute = 1;
10092 }
10093 goto do_memory_reference;
10094 }
10095
10096 /* Handle vector operations. */
10097 if (*op_string == '{')
10098 {
10099 op_string = check_VecOperations (op_string, NULL);
10100 if (op_string == NULL)
10101 return 0;
10102 }
10103
10104 if (*op_string)
10105 {
10106 as_bad (_("junk `%s' after register"), op_string);
10107 return 0;
10108 }
10109 temp = r->reg_type;
10110 temp.bitfield.baseindex = 0;
10111 i.types[this_operand] = operand_type_or (i.types[this_operand],
10112 temp);
10113 i.types[this_operand].bitfield.unspecified = 0;
10114 i.op[this_operand].regs = r;
10115 i.reg_operands++;
10116 }
10117 else if (*op_string == REGISTER_PREFIX)
10118 {
10119 as_bad (_("bad register name `%s'"), op_string);
10120 return 0;
10121 }
10122 else if (*op_string == IMMEDIATE_PREFIX)
10123 {
10124 ++op_string;
10125 if (i.types[this_operand].bitfield.jumpabsolute)
10126 {
10127 as_bad (_("immediate operand illegal with absolute jump"));
10128 return 0;
10129 }
10130 if (!i386_immediate (op_string))
10131 return 0;
10132 }
10133 else if (RC_SAE_immediate (operand_string))
10134 {
10135 /* If it is a RC or SAE immediate, do nothing. */
10136 ;
10137 }
10138 else if (is_digit_char (*op_string)
10139 || is_identifier_char (*op_string)
10140 || *op_string == '"'
10141 || *op_string == '(')
10142 {
10143 /* This is a memory reference of some sort. */
10144 char *base_string;
10145
10146 /* Start and end of displacement string expression (if found). */
10147 char *displacement_string_start;
10148 char *displacement_string_end;
10149 char *vop_start;
10150
10151 do_memory_reference:
10152 if (i.mem_operands == 1 && !maybe_adjust_templates ())
10153 return 0;
10154 if ((i.mem_operands == 1
10155 && !current_templates->start->opcode_modifier.isstring)
10156 || i.mem_operands == 2)
10157 {
10158 as_bad (_("too many memory references for `%s'"),
10159 current_templates->start->name);
10160 return 0;
10161 }
10162
10163 /* Check for base index form. We detect the base index form by
10164 looking for an ')' at the end of the operand, searching
10165 for the '(' matching it, and finding a REGISTER_PREFIX or ','
10166 after the '('. */
10167 base_string = op_string + strlen (op_string);
10168
10169 /* Handle vector operations. */
10170 vop_start = strchr (op_string, '{');
10171 if (vop_start && vop_start < base_string)
10172 {
10173 if (check_VecOperations (vop_start, base_string) == NULL)
10174 return 0;
10175 base_string = vop_start;
10176 }
10177
10178 --base_string;
10179 if (is_space_char (*base_string))
10180 --base_string;
10181
10182 /* If we only have a displacement, set-up for it to be parsed later. */
10183 displacement_string_start = op_string;
10184 displacement_string_end = base_string + 1;
10185
10186 if (*base_string == ')')
10187 {
10188 char *temp_string;
10189 unsigned int parens_balanced = 1;
10190 /* We've already checked that the number of left & right ()'s are
10191 equal, so this loop will not be infinite. */
10192 do
10193 {
10194 base_string--;
10195 if (*base_string == ')')
10196 parens_balanced++;
10197 if (*base_string == '(')
10198 parens_balanced--;
10199 }
10200 while (parens_balanced);
10201
10202 temp_string = base_string;
10203
10204 /* Skip past '(' and whitespace. */
10205 ++base_string;
10206 if (is_space_char (*base_string))
10207 ++base_string;
10208
10209 if (*base_string == ','
10210 || ((i.base_reg = parse_register (base_string, &end_op))
10211 != NULL))
10212 {
10213 displacement_string_end = temp_string;
10214
10215 i.types[this_operand].bitfield.baseindex = 1;
10216
10217 if (i.base_reg)
10218 {
10219 base_string = end_op;
10220 if (is_space_char (*base_string))
10221 ++base_string;
10222 }
10223
10224 /* There may be an index reg or scale factor here. */
10225 if (*base_string == ',')
10226 {
10227 ++base_string;
10228 if (is_space_char (*base_string))
10229 ++base_string;
10230
10231 if ((i.index_reg = parse_register (base_string, &end_op))
10232 != NULL)
10233 {
10234 base_string = end_op;
10235 if (is_space_char (*base_string))
10236 ++base_string;
10237 if (*base_string == ',')
10238 {
10239 ++base_string;
10240 if (is_space_char (*base_string))
10241 ++base_string;
10242 }
10243 else if (*base_string != ')')
10244 {
10245 as_bad (_("expecting `,' or `)' "
10246 "after index register in `%s'"),
10247 operand_string);
10248 return 0;
10249 }
10250 }
10251 else if (*base_string == REGISTER_PREFIX)
10252 {
10253 end_op = strchr (base_string, ',');
10254 if (end_op)
10255 *end_op = '\0';
10256 as_bad (_("bad register name `%s'"), base_string);
10257 return 0;
10258 }
10259
10260 /* Check for scale factor. */
10261 if (*base_string != ')')
10262 {
10263 char *end_scale = i386_scale (base_string);
10264
10265 if (!end_scale)
10266 return 0;
10267
10268 base_string = end_scale;
10269 if (is_space_char (*base_string))
10270 ++base_string;
10271 if (*base_string != ')')
10272 {
10273 as_bad (_("expecting `)' "
10274 "after scale factor in `%s'"),
10275 operand_string);
10276 return 0;
10277 }
10278 }
10279 else if (!i.index_reg)
10280 {
10281 as_bad (_("expecting index register or scale factor "
10282 "after `,'; got '%c'"),
10283 *base_string);
10284 return 0;
10285 }
10286 }
10287 else if (*base_string != ')')
10288 {
10289 as_bad (_("expecting `,' or `)' "
10290 "after base register in `%s'"),
10291 operand_string);
10292 return 0;
10293 }
10294 }
10295 else if (*base_string == REGISTER_PREFIX)
10296 {
10297 end_op = strchr (base_string, ',');
10298 if (end_op)
10299 *end_op = '\0';
10300 as_bad (_("bad register name `%s'"), base_string);
10301 return 0;
10302 }
10303 }
10304
10305 /* If there's an expression beginning the operand, parse it,
10306 assuming displacement_string_start and
10307 displacement_string_end are meaningful. */
10308 if (displacement_string_start != displacement_string_end)
10309 {
10310 if (!i386_displacement (displacement_string_start,
10311 displacement_string_end))
10312 return 0;
10313 }
10314
10315 /* Special case for (%dx) while doing input/output op. */
10316 if (i.base_reg
10317 && i.base_reg->reg_type.bitfield.inoutportreg
10318 && i.index_reg == 0
10319 && i.log2_scale_factor == 0
10320 && i.seg[i.mem_operands] == 0
10321 && !operand_type_check (i.types[this_operand], disp))
10322 {
10323 i.types[this_operand] = i.base_reg->reg_type;
10324 return 1;
10325 }
10326
10327 if (i386_index_check (operand_string) == 0)
10328 return 0;
10329 i.flags[this_operand] |= Operand_Mem;
10330 if (i.mem_operands == 0)
10331 i.memop1_string = xstrdup (operand_string);
10332 i.mem_operands++;
10333 }
10334 else
10335 {
10336 /* It's not a memory operand; argh! */
10337 as_bad (_("invalid char %s beginning operand %d `%s'"),
10338 output_invalid (*op_string),
10339 this_operand + 1,
10340 op_string);
10341 return 0;
10342 }
10343 return 1; /* Normal return. */
10344 }
10345 \f
10346 /* Calculate the maximum variable size (i.e., excluding fr_fix)
10347 that an rs_machine_dependent frag may reach. */
10348
10349 unsigned int
10350 i386_frag_max_var (fragS *frag)
10351 {
10352 /* The only relaxable frags are for jumps.
10353 Unconditional jumps can grow by 4 bytes and others by 5 bytes. */
10354 gas_assert (frag->fr_type == rs_machine_dependent);
10355 return TYPE_FROM_RELAX_STATE (frag->fr_subtype) == UNCOND_JUMP ? 4 : 5;
10356 }
10357
10358 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10359 static int
10360 elf_symbol_resolved_in_segment_p (symbolS *fr_symbol, offsetT fr_var)
10361 {
10362 /* STT_GNU_IFUNC symbol must go through PLT. */
10363 if ((symbol_get_bfdsym (fr_symbol)->flags
10364 & BSF_GNU_INDIRECT_FUNCTION) != 0)
10365 return 0;
10366
10367 if (!S_IS_EXTERNAL (fr_symbol))
10368 /* Symbol may be weak or local. */
10369 return !S_IS_WEAK (fr_symbol);
10370
10371 /* Global symbols with non-default visibility can't be preempted. */
10372 if (ELF_ST_VISIBILITY (S_GET_OTHER (fr_symbol)) != STV_DEFAULT)
10373 return 1;
10374
10375 if (fr_var != NO_RELOC)
10376 switch ((enum bfd_reloc_code_real) fr_var)
10377 {
10378 case BFD_RELOC_386_PLT32:
10379 case BFD_RELOC_X86_64_PLT32:
10380 /* Symbol with PLT relocation may be preempted. */
10381 return 0;
10382 default:
10383 abort ();
10384 }
10385
10386 /* Global symbols with default visibility in a shared library may be
10387 preempted by another definition. */
10388 return !shared;
10389 }
10390 #endif
10391
10392 /* md_estimate_size_before_relax()
10393
10394 Called just before relax() for rs_machine_dependent frags. The x86
10395 assembler uses these frags to handle variable size jump
10396 instructions.
10397
10398 Any symbol that is now undefined will not become defined.
10399 Return the correct fr_subtype in the frag.
10400 Return the initial "guess for variable size of frag" to caller.
10401 The guess is actually the growth beyond the fixed part. Whatever
10402 we do to grow the fixed or variable part contributes to our
10403 returned value. */
10404
10405 int
10406 md_estimate_size_before_relax (fragS *fragP, segT segment)
10407 {
10408 /* We've already got fragP->fr_subtype right; all we have to do is
10409 check for un-relaxable symbols. On an ELF system, we can't relax
10410 an externally visible symbol, because it may be overridden by a
10411 shared library. */
10412 if (S_GET_SEGMENT (fragP->fr_symbol) != segment
10413 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10414 || (IS_ELF
10415 && !elf_symbol_resolved_in_segment_p (fragP->fr_symbol,
10416 fragP->fr_var))
10417 #endif
10418 #if defined (OBJ_COFF) && defined (TE_PE)
10419 || (OUTPUT_FLAVOR == bfd_target_coff_flavour
10420 && S_IS_WEAK (fragP->fr_symbol))
10421 #endif
10422 )
10423 {
10424 /* Symbol is undefined in this segment, or we need to keep a
10425 reloc so that weak symbols can be overridden. */
10426 int size = (fragP->fr_subtype & CODE16) ? 2 : 4;
10427 enum bfd_reloc_code_real reloc_type;
10428 unsigned char *opcode;
10429 int old_fr_fix;
10430
10431 if (fragP->fr_var != NO_RELOC)
10432 reloc_type = (enum bfd_reloc_code_real) fragP->fr_var;
10433 else if (size == 2)
10434 reloc_type = BFD_RELOC_16_PCREL;
10435 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10436 else if (need_plt32_p (fragP->fr_symbol))
10437 reloc_type = BFD_RELOC_X86_64_PLT32;
10438 #endif
10439 else
10440 reloc_type = BFD_RELOC_32_PCREL;
10441
10442 old_fr_fix = fragP->fr_fix;
10443 opcode = (unsigned char *) fragP->fr_opcode;
10444
10445 switch (TYPE_FROM_RELAX_STATE (fragP->fr_subtype))
10446 {
10447 case UNCOND_JUMP:
10448 /* Make jmp (0xeb) a (d)word displacement jump. */
10449 opcode[0] = 0xe9;
10450 fragP->fr_fix += size;
10451 fix_new (fragP, old_fr_fix, size,
10452 fragP->fr_symbol,
10453 fragP->fr_offset, 1,
10454 reloc_type);
10455 break;
10456
10457 case COND_JUMP86:
10458 if (size == 2
10459 && (!no_cond_jump_promotion || fragP->fr_var != NO_RELOC))
10460 {
10461 /* Negate the condition, and branch past an
10462 unconditional jump. */
10463 opcode[0] ^= 1;
10464 opcode[1] = 3;
10465 /* Insert an unconditional jump. */
10466 opcode[2] = 0xe9;
10467 /* We added two extra opcode bytes, and have a two byte
10468 offset. */
10469 fragP->fr_fix += 2 + 2;
10470 fix_new (fragP, old_fr_fix + 2, 2,
10471 fragP->fr_symbol,
10472 fragP->fr_offset, 1,
10473 reloc_type);
10474 break;
10475 }
10476 /* Fall through. */
10477
10478 case COND_JUMP:
10479 if (no_cond_jump_promotion && fragP->fr_var == NO_RELOC)
10480 {
10481 fixS *fixP;
10482
10483 fragP->fr_fix += 1;
10484 fixP = fix_new (fragP, old_fr_fix, 1,
10485 fragP->fr_symbol,
10486 fragP->fr_offset, 1,
10487 BFD_RELOC_8_PCREL);
10488 fixP->fx_signed = 1;
10489 break;
10490 }
10491
10492 /* This changes the byte-displacement jump 0x7N
10493 to the (d)word-displacement jump 0x0f,0x8N. */
10494 opcode[1] = opcode[0] + 0x10;
10495 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
10496 /* We've added an opcode byte. */
10497 fragP->fr_fix += 1 + size;
10498 fix_new (fragP, old_fr_fix + 1, size,
10499 fragP->fr_symbol,
10500 fragP->fr_offset, 1,
10501 reloc_type);
10502 break;
10503
10504 default:
10505 BAD_CASE (fragP->fr_subtype);
10506 break;
10507 }
10508 frag_wane (fragP);
10509 return fragP->fr_fix - old_fr_fix;
10510 }
10511
10512 /* Guess size depending on current relax state. Initially the relax
10513 state will correspond to a short jump and we return 1, because
10514 the variable part of the frag (the branch offset) is one byte
10515 long. However, we can relax a section more than once and in that
10516 case we must either set fr_subtype back to the unrelaxed state,
10517 or return the value for the appropriate branch. */
10518 return md_relax_table[fragP->fr_subtype].rlx_length;
10519 }
10520
10521 /* Called after relax() is finished.
10522
10523 In: Address of frag.
10524 fr_type == rs_machine_dependent.
10525 fr_subtype is what the address relaxed to.
10526
10527 Out: Any fixSs and constants are set up.
10528 Caller will turn frag into a ".space 0". */
10529
10530 void
10531 md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT sec ATTRIBUTE_UNUSED,
10532 fragS *fragP)
10533 {
10534 unsigned char *opcode;
10535 unsigned char *where_to_put_displacement = NULL;
10536 offsetT target_address;
10537 offsetT opcode_address;
10538 unsigned int extension = 0;
10539 offsetT displacement_from_opcode_start;
10540
10541 opcode = (unsigned char *) fragP->fr_opcode;
10542
10543 /* Address we want to reach in file space. */
10544 target_address = S_GET_VALUE (fragP->fr_symbol) + fragP->fr_offset;
10545
10546 /* Address opcode resides at in file space. */
10547 opcode_address = fragP->fr_address + fragP->fr_fix;
10548
10549 /* Displacement from opcode start to fill into instruction. */
10550 displacement_from_opcode_start = target_address - opcode_address;
10551
10552 if ((fragP->fr_subtype & BIG) == 0)
10553 {
10554 /* Don't have to change opcode. */
10555 extension = 1; /* 1 opcode + 1 displacement */
10556 where_to_put_displacement = &opcode[1];
10557 }
10558 else
10559 {
10560 if (no_cond_jump_promotion
10561 && TYPE_FROM_RELAX_STATE (fragP->fr_subtype) != UNCOND_JUMP)
10562 as_warn_where (fragP->fr_file, fragP->fr_line,
10563 _("long jump required"));
10564
10565 switch (fragP->fr_subtype)
10566 {
10567 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG):
10568 extension = 4; /* 1 opcode + 4 displacement */
10569 opcode[0] = 0xe9;
10570 where_to_put_displacement = &opcode[1];
10571 break;
10572
10573 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16):
10574 extension = 2; /* 1 opcode + 2 displacement */
10575 opcode[0] = 0xe9;
10576 where_to_put_displacement = &opcode[1];
10577 break;
10578
10579 case ENCODE_RELAX_STATE (COND_JUMP, BIG):
10580 case ENCODE_RELAX_STATE (COND_JUMP86, BIG):
10581 extension = 5; /* 2 opcode + 4 displacement */
10582 opcode[1] = opcode[0] + 0x10;
10583 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
10584 where_to_put_displacement = &opcode[2];
10585 break;
10586
10587 case ENCODE_RELAX_STATE (COND_JUMP, BIG16):
10588 extension = 3; /* 2 opcode + 2 displacement */
10589 opcode[1] = opcode[0] + 0x10;
10590 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
10591 where_to_put_displacement = &opcode[2];
10592 break;
10593
10594 case ENCODE_RELAX_STATE (COND_JUMP86, BIG16):
10595 extension = 4;
10596 opcode[0] ^= 1;
10597 opcode[1] = 3;
10598 opcode[2] = 0xe9;
10599 where_to_put_displacement = &opcode[3];
10600 break;
10601
10602 default:
10603 BAD_CASE (fragP->fr_subtype);
10604 break;
10605 }
10606 }
10607
10608 /* If size if less then four we are sure that the operand fits,
10609 but if it's 4, then it could be that the displacement is larger
10610 then -/+ 2GB. */
10611 if (DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype) == 4
10612 && object_64bit
10613 && ((addressT) (displacement_from_opcode_start - extension
10614 + ((addressT) 1 << 31))
10615 > (((addressT) 2 << 31) - 1)))
10616 {
10617 as_bad_where (fragP->fr_file, fragP->fr_line,
10618 _("jump target out of range"));
10619 /* Make us emit 0. */
10620 displacement_from_opcode_start = extension;
10621 }
10622 /* Now put displacement after opcode. */
10623 md_number_to_chars ((char *) where_to_put_displacement,
10624 (valueT) (displacement_from_opcode_start - extension),
10625 DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype));
10626 fragP->fr_fix += extension;
10627 }
10628 \f
10629 /* Apply a fixup (fixP) to segment data, once it has been determined
10630 by our caller that we have all the info we need to fix it up.
10631
10632 Parameter valP is the pointer to the value of the bits.
10633
10634 On the 386, immediates, displacements, and data pointers are all in
10635 the same (little-endian) format, so we don't need to care about which
10636 we are handling. */
10637
10638 void
10639 md_apply_fix (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED)
10640 {
10641 char *p = fixP->fx_where + fixP->fx_frag->fr_literal;
10642 valueT value = *valP;
10643
10644 #if !defined (TE_Mach)
10645 if (fixP->fx_pcrel)
10646 {
10647 switch (fixP->fx_r_type)
10648 {
10649 default:
10650 break;
10651
10652 case BFD_RELOC_64:
10653 fixP->fx_r_type = BFD_RELOC_64_PCREL;
10654 break;
10655 case BFD_RELOC_32:
10656 case BFD_RELOC_X86_64_32S:
10657 fixP->fx_r_type = BFD_RELOC_32_PCREL;
10658 break;
10659 case BFD_RELOC_16:
10660 fixP->fx_r_type = BFD_RELOC_16_PCREL;
10661 break;
10662 case BFD_RELOC_8:
10663 fixP->fx_r_type = BFD_RELOC_8_PCREL;
10664 break;
10665 }
10666 }
10667
10668 if (fixP->fx_addsy != NULL
10669 && (fixP->fx_r_type == BFD_RELOC_32_PCREL
10670 || fixP->fx_r_type == BFD_RELOC_64_PCREL
10671 || fixP->fx_r_type == BFD_RELOC_16_PCREL
10672 || fixP->fx_r_type == BFD_RELOC_8_PCREL)
10673 && !use_rela_relocations)
10674 {
10675 /* This is a hack. There should be a better way to handle this.
10676 This covers for the fact that bfd_install_relocation will
10677 subtract the current location (for partial_inplace, PC relative
10678 relocations); see more below. */
10679 #ifndef OBJ_AOUT
10680 if (IS_ELF
10681 #ifdef TE_PE
10682 || OUTPUT_FLAVOR == bfd_target_coff_flavour
10683 #endif
10684 )
10685 value += fixP->fx_where + fixP->fx_frag->fr_address;
10686 #endif
10687 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10688 if (IS_ELF)
10689 {
10690 segT sym_seg = S_GET_SEGMENT (fixP->fx_addsy);
10691
10692 if ((sym_seg == seg
10693 || (symbol_section_p (fixP->fx_addsy)
10694 && sym_seg != absolute_section))
10695 && !generic_force_reloc (fixP))
10696 {
10697 /* Yes, we add the values in twice. This is because
10698 bfd_install_relocation subtracts them out again. I think
10699 bfd_install_relocation is broken, but I don't dare change
10700 it. FIXME. */
10701 value += fixP->fx_where + fixP->fx_frag->fr_address;
10702 }
10703 }
10704 #endif
10705 #if defined (OBJ_COFF) && defined (TE_PE)
10706 /* For some reason, the PE format does not store a
10707 section address offset for a PC relative symbol. */
10708 if (S_GET_SEGMENT (fixP->fx_addsy) != seg
10709 || S_IS_WEAK (fixP->fx_addsy))
10710 value += md_pcrel_from (fixP);
10711 #endif
10712 }
10713 #if defined (OBJ_COFF) && defined (TE_PE)
10714 if (fixP->fx_addsy != NULL
10715 && S_IS_WEAK (fixP->fx_addsy)
10716 /* PR 16858: Do not modify weak function references. */
10717 && ! fixP->fx_pcrel)
10718 {
10719 #if !defined (TE_PEP)
10720 /* For x86 PE weak function symbols are neither PC-relative
10721 nor do they set S_IS_FUNCTION. So the only reliable way
10722 to detect them is to check the flags of their containing
10723 section. */
10724 if (S_GET_SEGMENT (fixP->fx_addsy) != NULL
10725 && S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_CODE)
10726 ;
10727 else
10728 #endif
10729 value -= S_GET_VALUE (fixP->fx_addsy);
10730 }
10731 #endif
10732
10733 /* Fix a few things - the dynamic linker expects certain values here,
10734 and we must not disappoint it. */
10735 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10736 if (IS_ELF && fixP->fx_addsy)
10737 switch (fixP->fx_r_type)
10738 {
10739 case BFD_RELOC_386_PLT32:
10740 case BFD_RELOC_X86_64_PLT32:
10741 /* Make the jump instruction point to the address of the operand.
10742 At runtime we merely add the offset to the actual PLT entry.
10743 NB: Subtract the offset size only for jump instructions. */
10744 if (fixP->fx_pcrel)
10745 value = -4;
10746 break;
10747
10748 case BFD_RELOC_386_TLS_GD:
10749 case BFD_RELOC_386_TLS_LDM:
10750 case BFD_RELOC_386_TLS_IE_32:
10751 case BFD_RELOC_386_TLS_IE:
10752 case BFD_RELOC_386_TLS_GOTIE:
10753 case BFD_RELOC_386_TLS_GOTDESC:
10754 case BFD_RELOC_X86_64_TLSGD:
10755 case BFD_RELOC_X86_64_TLSLD:
10756 case BFD_RELOC_X86_64_GOTTPOFF:
10757 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
10758 value = 0; /* Fully resolved at runtime. No addend. */
10759 /* Fallthrough */
10760 case BFD_RELOC_386_TLS_LE:
10761 case BFD_RELOC_386_TLS_LDO_32:
10762 case BFD_RELOC_386_TLS_LE_32:
10763 case BFD_RELOC_X86_64_DTPOFF32:
10764 case BFD_RELOC_X86_64_DTPOFF64:
10765 case BFD_RELOC_X86_64_TPOFF32:
10766 case BFD_RELOC_X86_64_TPOFF64:
10767 S_SET_THREAD_LOCAL (fixP->fx_addsy);
10768 break;
10769
10770 case BFD_RELOC_386_TLS_DESC_CALL:
10771 case BFD_RELOC_X86_64_TLSDESC_CALL:
10772 value = 0; /* Fully resolved at runtime. No addend. */
10773 S_SET_THREAD_LOCAL (fixP->fx_addsy);
10774 fixP->fx_done = 0;
10775 return;
10776
10777 case BFD_RELOC_VTABLE_INHERIT:
10778 case BFD_RELOC_VTABLE_ENTRY:
10779 fixP->fx_done = 0;
10780 return;
10781
10782 default:
10783 break;
10784 }
10785 #endif /* defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) */
10786 *valP = value;
10787 #endif /* !defined (TE_Mach) */
10788
10789 /* Are we finished with this relocation now? */
10790 if (fixP->fx_addsy == NULL)
10791 fixP->fx_done = 1;
10792 #if defined (OBJ_COFF) && defined (TE_PE)
10793 else if (fixP->fx_addsy != NULL && S_IS_WEAK (fixP->fx_addsy))
10794 {
10795 fixP->fx_done = 0;
10796 /* Remember value for tc_gen_reloc. */
10797 fixP->fx_addnumber = value;
10798 /* Clear out the frag for now. */
10799 value = 0;
10800 }
10801 #endif
10802 else if (use_rela_relocations)
10803 {
10804 fixP->fx_no_overflow = 1;
10805 /* Remember value for tc_gen_reloc. */
10806 fixP->fx_addnumber = value;
10807 value = 0;
10808 }
10809
10810 md_number_to_chars (p, value, fixP->fx_size);
10811 }
10812 \f
10813 const char *
10814 md_atof (int type, char *litP, int *sizeP)
10815 {
10816 /* This outputs the LITTLENUMs in REVERSE order;
10817 in accord with the bigendian 386. */
10818 return ieee_md_atof (type, litP, sizeP, FALSE);
10819 }
10820 \f
10821 static char output_invalid_buf[sizeof (unsigned char) * 2 + 6];
10822
10823 static char *
10824 output_invalid (int c)
10825 {
10826 if (ISPRINT (c))
10827 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
10828 "'%c'", c);
10829 else
10830 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
10831 "(0x%x)", (unsigned char) c);
10832 return output_invalid_buf;
10833 }
10834
10835 /* REG_STRING starts *before* REGISTER_PREFIX. */
10836
10837 static const reg_entry *
10838 parse_real_register (char *reg_string, char **end_op)
10839 {
10840 char *s = reg_string;
10841 char *p;
10842 char reg_name_given[MAX_REG_NAME_SIZE + 1];
10843 const reg_entry *r;
10844
10845 /* Skip possible REGISTER_PREFIX and possible whitespace. */
10846 if (*s == REGISTER_PREFIX)
10847 ++s;
10848
10849 if (is_space_char (*s))
10850 ++s;
10851
10852 p = reg_name_given;
10853 while ((*p++ = register_chars[(unsigned char) *s]) != '\0')
10854 {
10855 if (p >= reg_name_given + MAX_REG_NAME_SIZE)
10856 return (const reg_entry *) NULL;
10857 s++;
10858 }
10859
10860 /* For naked regs, make sure that we are not dealing with an identifier.
10861 This prevents confusing an identifier like `eax_var' with register
10862 `eax'. */
10863 if (allow_naked_reg && identifier_chars[(unsigned char) *s])
10864 return (const reg_entry *) NULL;
10865
10866 *end_op = s;
10867
10868 r = (const reg_entry *) hash_find (reg_hash, reg_name_given);
10869
10870 /* Handle floating point regs, allowing spaces in the (i) part. */
10871 if (r == i386_regtab /* %st is first entry of table */)
10872 {
10873 if (!cpu_arch_flags.bitfield.cpu8087
10874 && !cpu_arch_flags.bitfield.cpu287
10875 && !cpu_arch_flags.bitfield.cpu387)
10876 return (const reg_entry *) NULL;
10877
10878 if (is_space_char (*s))
10879 ++s;
10880 if (*s == '(')
10881 {
10882 ++s;
10883 if (is_space_char (*s))
10884 ++s;
10885 if (*s >= '0' && *s <= '7')
10886 {
10887 int fpr = *s - '0';
10888 ++s;
10889 if (is_space_char (*s))
10890 ++s;
10891 if (*s == ')')
10892 {
10893 *end_op = s + 1;
10894 r = (const reg_entry *) hash_find (reg_hash, "st(0)");
10895 know (r);
10896 return r + fpr;
10897 }
10898 }
10899 /* We have "%st(" then garbage. */
10900 return (const reg_entry *) NULL;
10901 }
10902 }
10903
10904 if (r == NULL || allow_pseudo_reg)
10905 return r;
10906
10907 if (operand_type_all_zero (&r->reg_type))
10908 return (const reg_entry *) NULL;
10909
10910 if ((r->reg_type.bitfield.dword
10911 || r->reg_type.bitfield.sreg3
10912 || r->reg_type.bitfield.control
10913 || r->reg_type.bitfield.debug
10914 || r->reg_type.bitfield.test)
10915 && !cpu_arch_flags.bitfield.cpui386)
10916 return (const reg_entry *) NULL;
10917
10918 if (r->reg_type.bitfield.regmmx && !cpu_arch_flags.bitfield.cpummx)
10919 return (const reg_entry *) NULL;
10920
10921 if (!cpu_arch_flags.bitfield.cpuavx512f)
10922 {
10923 if (r->reg_type.bitfield.zmmword || r->reg_type.bitfield.regmask)
10924 return (const reg_entry *) NULL;
10925
10926 if (!cpu_arch_flags.bitfield.cpuavx)
10927 {
10928 if (r->reg_type.bitfield.ymmword)
10929 return (const reg_entry *) NULL;
10930
10931 if (!cpu_arch_flags.bitfield.cpusse && r->reg_type.bitfield.xmmword)
10932 return (const reg_entry *) NULL;
10933 }
10934 }
10935
10936 if (r->reg_type.bitfield.regbnd && !cpu_arch_flags.bitfield.cpumpx)
10937 return (const reg_entry *) NULL;
10938
10939 /* Don't allow fake index register unless allow_index_reg isn't 0. */
10940 if (!allow_index_reg && r->reg_num == RegIZ)
10941 return (const reg_entry *) NULL;
10942
10943 /* Upper 16 vector registers are only available with VREX in 64bit
10944 mode, and require EVEX encoding. */
10945 if (r->reg_flags & RegVRex)
10946 {
10947 if (!cpu_arch_flags.bitfield.cpuavx512f
10948 || flag_code != CODE_64BIT)
10949 return (const reg_entry *) NULL;
10950
10951 i.vec_encoding = vex_encoding_evex;
10952 }
10953
10954 if (((r->reg_flags & (RegRex64 | RegRex)) || r->reg_type.bitfield.qword)
10955 && (!cpu_arch_flags.bitfield.cpulm || !r->reg_type.bitfield.control)
10956 && flag_code != CODE_64BIT)
10957 return (const reg_entry *) NULL;
10958
10959 if (r->reg_type.bitfield.sreg3 && r->reg_num == RegFlat && !intel_syntax)
10960 return (const reg_entry *) NULL;
10961
10962 return r;
10963 }
10964
10965 /* REG_STRING starts *before* REGISTER_PREFIX. */
10966
10967 static const reg_entry *
10968 parse_register (char *reg_string, char **end_op)
10969 {
10970 const reg_entry *r;
10971
10972 if (*reg_string == REGISTER_PREFIX || allow_naked_reg)
10973 r = parse_real_register (reg_string, end_op);
10974 else
10975 r = NULL;
10976 if (!r)
10977 {
10978 char *save = input_line_pointer;
10979 char c;
10980 symbolS *symbolP;
10981
10982 input_line_pointer = reg_string;
10983 c = get_symbol_name (&reg_string);
10984 symbolP = symbol_find (reg_string);
10985 if (symbolP && S_GET_SEGMENT (symbolP) == reg_section)
10986 {
10987 const expressionS *e = symbol_get_value_expression (symbolP);
10988
10989 know (e->X_op == O_register);
10990 know (e->X_add_number >= 0
10991 && (valueT) e->X_add_number < i386_regtab_size);
10992 r = i386_regtab + e->X_add_number;
10993 if ((r->reg_flags & RegVRex))
10994 i.vec_encoding = vex_encoding_evex;
10995 *end_op = input_line_pointer;
10996 }
10997 *input_line_pointer = c;
10998 input_line_pointer = save;
10999 }
11000 return r;
11001 }
11002
11003 int
11004 i386_parse_name (char *name, expressionS *e, char *nextcharP)
11005 {
11006 const reg_entry *r;
11007 char *end = input_line_pointer;
11008
11009 *end = *nextcharP;
11010 r = parse_register (name, &input_line_pointer);
11011 if (r && end <= input_line_pointer)
11012 {
11013 *nextcharP = *input_line_pointer;
11014 *input_line_pointer = 0;
11015 e->X_op = O_register;
11016 e->X_add_number = r - i386_regtab;
11017 return 1;
11018 }
11019 input_line_pointer = end;
11020 *end = 0;
11021 return intel_syntax ? i386_intel_parse_name (name, e) : 0;
11022 }
11023
11024 void
11025 md_operand (expressionS *e)
11026 {
11027 char *end;
11028 const reg_entry *r;
11029
11030 switch (*input_line_pointer)
11031 {
11032 case REGISTER_PREFIX:
11033 r = parse_real_register (input_line_pointer, &end);
11034 if (r)
11035 {
11036 e->X_op = O_register;
11037 e->X_add_number = r - i386_regtab;
11038 input_line_pointer = end;
11039 }
11040 break;
11041
11042 case '[':
11043 gas_assert (intel_syntax);
11044 end = input_line_pointer++;
11045 expression (e);
11046 if (*input_line_pointer == ']')
11047 {
11048 ++input_line_pointer;
11049 e->X_op_symbol = make_expr_symbol (e);
11050 e->X_add_symbol = NULL;
11051 e->X_add_number = 0;
11052 e->X_op = O_index;
11053 }
11054 else
11055 {
11056 e->X_op = O_absent;
11057 input_line_pointer = end;
11058 }
11059 break;
11060 }
11061 }
11062
11063 \f
11064 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11065 const char *md_shortopts = "kVQ:sqnO::";
11066 #else
11067 const char *md_shortopts = "qnO::";
11068 #endif
11069
11070 #define OPTION_32 (OPTION_MD_BASE + 0)
11071 #define OPTION_64 (OPTION_MD_BASE + 1)
11072 #define OPTION_DIVIDE (OPTION_MD_BASE + 2)
11073 #define OPTION_MARCH (OPTION_MD_BASE + 3)
11074 #define OPTION_MTUNE (OPTION_MD_BASE + 4)
11075 #define OPTION_MMNEMONIC (OPTION_MD_BASE + 5)
11076 #define OPTION_MSYNTAX (OPTION_MD_BASE + 6)
11077 #define OPTION_MINDEX_REG (OPTION_MD_BASE + 7)
11078 #define OPTION_MNAKED_REG (OPTION_MD_BASE + 8)
11079 #define OPTION_MRELAX_RELOCATIONS (OPTION_MD_BASE + 9)
11080 #define OPTION_MSSE2AVX (OPTION_MD_BASE + 10)
11081 #define OPTION_MSSE_CHECK (OPTION_MD_BASE + 11)
11082 #define OPTION_MOPERAND_CHECK (OPTION_MD_BASE + 12)
11083 #define OPTION_MAVXSCALAR (OPTION_MD_BASE + 13)
11084 #define OPTION_X32 (OPTION_MD_BASE + 14)
11085 #define OPTION_MADD_BND_PREFIX (OPTION_MD_BASE + 15)
11086 #define OPTION_MEVEXLIG (OPTION_MD_BASE + 16)
11087 #define OPTION_MEVEXWIG (OPTION_MD_BASE + 17)
11088 #define OPTION_MBIG_OBJ (OPTION_MD_BASE + 18)
11089 #define OPTION_MOMIT_LOCK_PREFIX (OPTION_MD_BASE + 19)
11090 #define OPTION_MEVEXRCIG (OPTION_MD_BASE + 20)
11091 #define OPTION_MSHARED (OPTION_MD_BASE + 21)
11092 #define OPTION_MAMD64 (OPTION_MD_BASE + 22)
11093 #define OPTION_MINTEL64 (OPTION_MD_BASE + 23)
11094 #define OPTION_MFENCE_AS_LOCK_ADD (OPTION_MD_BASE + 24)
11095 #define OPTION_X86_USED_NOTE (OPTION_MD_BASE + 25)
11096 #define OPTION_MVEXWIG (OPTION_MD_BASE + 26)
11097
11098 struct option md_longopts[] =
11099 {
11100 {"32", no_argument, NULL, OPTION_32},
11101 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
11102 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
11103 {"64", no_argument, NULL, OPTION_64},
11104 #endif
11105 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11106 {"x32", no_argument, NULL, OPTION_X32},
11107 {"mshared", no_argument, NULL, OPTION_MSHARED},
11108 {"mx86-used-note", required_argument, NULL, OPTION_X86_USED_NOTE},
11109 #endif
11110 {"divide", no_argument, NULL, OPTION_DIVIDE},
11111 {"march", required_argument, NULL, OPTION_MARCH},
11112 {"mtune", required_argument, NULL, OPTION_MTUNE},
11113 {"mmnemonic", required_argument, NULL, OPTION_MMNEMONIC},
11114 {"msyntax", required_argument, NULL, OPTION_MSYNTAX},
11115 {"mindex-reg", no_argument, NULL, OPTION_MINDEX_REG},
11116 {"mnaked-reg", no_argument, NULL, OPTION_MNAKED_REG},
11117 {"msse2avx", no_argument, NULL, OPTION_MSSE2AVX},
11118 {"msse-check", required_argument, NULL, OPTION_MSSE_CHECK},
11119 {"moperand-check", required_argument, NULL, OPTION_MOPERAND_CHECK},
11120 {"mavxscalar", required_argument, NULL, OPTION_MAVXSCALAR},
11121 {"mvexwig", required_argument, NULL, OPTION_MVEXWIG},
11122 {"madd-bnd-prefix", no_argument, NULL, OPTION_MADD_BND_PREFIX},
11123 {"mevexlig", required_argument, NULL, OPTION_MEVEXLIG},
11124 {"mevexwig", required_argument, NULL, OPTION_MEVEXWIG},
11125 # if defined (TE_PE) || defined (TE_PEP)
11126 {"mbig-obj", no_argument, NULL, OPTION_MBIG_OBJ},
11127 #endif
11128 {"momit-lock-prefix", required_argument, NULL, OPTION_MOMIT_LOCK_PREFIX},
11129 {"mfence-as-lock-add", required_argument, NULL, OPTION_MFENCE_AS_LOCK_ADD},
11130 {"mrelax-relocations", required_argument, NULL, OPTION_MRELAX_RELOCATIONS},
11131 {"mevexrcig", required_argument, NULL, OPTION_MEVEXRCIG},
11132 {"mamd64", no_argument, NULL, OPTION_MAMD64},
11133 {"mintel64", no_argument, NULL, OPTION_MINTEL64},
11134 {NULL, no_argument, NULL, 0}
11135 };
11136 size_t md_longopts_size = sizeof (md_longopts);
11137
11138 int
11139 md_parse_option (int c, const char *arg)
11140 {
11141 unsigned int j;
11142 char *arch, *next, *saved;
11143
11144 switch (c)
11145 {
11146 case 'n':
11147 optimize_align_code = 0;
11148 break;
11149
11150 case 'q':
11151 quiet_warnings = 1;
11152 break;
11153
11154 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11155 /* -Qy, -Qn: SVR4 arguments controlling whether a .comment section
11156 should be emitted or not. FIXME: Not implemented. */
11157 case 'Q':
11158 break;
11159
11160 /* -V: SVR4 argument to print version ID. */
11161 case 'V':
11162 print_version_id ();
11163 break;
11164
11165 /* -k: Ignore for FreeBSD compatibility. */
11166 case 'k':
11167 break;
11168
11169 case 's':
11170 /* -s: On i386 Solaris, this tells the native assembler to use
11171 .stab instead of .stab.excl. We always use .stab anyhow. */
11172 break;
11173
11174 case OPTION_MSHARED:
11175 shared = 1;
11176 break;
11177
11178 case OPTION_X86_USED_NOTE:
11179 if (strcasecmp (arg, "yes") == 0)
11180 x86_used_note = 1;
11181 else if (strcasecmp (arg, "no") == 0)
11182 x86_used_note = 0;
11183 else
11184 as_fatal (_("invalid -mx86-used-note= option: `%s'"), arg);
11185 break;
11186
11187
11188 #endif
11189 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
11190 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
11191 case OPTION_64:
11192 {
11193 const char **list, **l;
11194
11195 list = bfd_target_list ();
11196 for (l = list; *l != NULL; l++)
11197 if (CONST_STRNEQ (*l, "elf64-x86-64")
11198 || strcmp (*l, "coff-x86-64") == 0
11199 || strcmp (*l, "pe-x86-64") == 0
11200 || strcmp (*l, "pei-x86-64") == 0
11201 || strcmp (*l, "mach-o-x86-64") == 0)
11202 {
11203 default_arch = "x86_64";
11204 break;
11205 }
11206 if (*l == NULL)
11207 as_fatal (_("no compiled in support for x86_64"));
11208 free (list);
11209 }
11210 break;
11211 #endif
11212
11213 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11214 case OPTION_X32:
11215 if (IS_ELF)
11216 {
11217 const char **list, **l;
11218
11219 list = bfd_target_list ();
11220 for (l = list; *l != NULL; l++)
11221 if (CONST_STRNEQ (*l, "elf32-x86-64"))
11222 {
11223 default_arch = "x86_64:32";
11224 break;
11225 }
11226 if (*l == NULL)
11227 as_fatal (_("no compiled in support for 32bit x86_64"));
11228 free (list);
11229 }
11230 else
11231 as_fatal (_("32bit x86_64 is only supported for ELF"));
11232 break;
11233 #endif
11234
11235 case OPTION_32:
11236 default_arch = "i386";
11237 break;
11238
11239 case OPTION_DIVIDE:
11240 #ifdef SVR4_COMMENT_CHARS
11241 {
11242 char *n, *t;
11243 const char *s;
11244
11245 n = XNEWVEC (char, strlen (i386_comment_chars) + 1);
11246 t = n;
11247 for (s = i386_comment_chars; *s != '\0'; s++)
11248 if (*s != '/')
11249 *t++ = *s;
11250 *t = '\0';
11251 i386_comment_chars = n;
11252 }
11253 #endif
11254 break;
11255
11256 case OPTION_MARCH:
11257 saved = xstrdup (arg);
11258 arch = saved;
11259 /* Allow -march=+nosse. */
11260 if (*arch == '+')
11261 arch++;
11262 do
11263 {
11264 if (*arch == '.')
11265 as_fatal (_("invalid -march= option: `%s'"), arg);
11266 next = strchr (arch, '+');
11267 if (next)
11268 *next++ = '\0';
11269 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
11270 {
11271 if (strcmp (arch, cpu_arch [j].name) == 0)
11272 {
11273 /* Processor. */
11274 if (! cpu_arch[j].flags.bitfield.cpui386)
11275 continue;
11276
11277 cpu_arch_name = cpu_arch[j].name;
11278 cpu_sub_arch_name = NULL;
11279 cpu_arch_flags = cpu_arch[j].flags;
11280 cpu_arch_isa = cpu_arch[j].type;
11281 cpu_arch_isa_flags = cpu_arch[j].flags;
11282 if (!cpu_arch_tune_set)
11283 {
11284 cpu_arch_tune = cpu_arch_isa;
11285 cpu_arch_tune_flags = cpu_arch_isa_flags;
11286 }
11287 break;
11288 }
11289 else if (*cpu_arch [j].name == '.'
11290 && strcmp (arch, cpu_arch [j].name + 1) == 0)
11291 {
11292 /* ISA extension. */
11293 i386_cpu_flags flags;
11294
11295 flags = cpu_flags_or (cpu_arch_flags,
11296 cpu_arch[j].flags);
11297
11298 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
11299 {
11300 if (cpu_sub_arch_name)
11301 {
11302 char *name = cpu_sub_arch_name;
11303 cpu_sub_arch_name = concat (name,
11304 cpu_arch[j].name,
11305 (const char *) NULL);
11306 free (name);
11307 }
11308 else
11309 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
11310 cpu_arch_flags = flags;
11311 cpu_arch_isa_flags = flags;
11312 }
11313 else
11314 cpu_arch_isa_flags
11315 = cpu_flags_or (cpu_arch_isa_flags,
11316 cpu_arch[j].flags);
11317 break;
11318 }
11319 }
11320
11321 if (j >= ARRAY_SIZE (cpu_arch))
11322 {
11323 /* Disable an ISA extension. */
11324 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
11325 if (strcmp (arch, cpu_noarch [j].name) == 0)
11326 {
11327 i386_cpu_flags flags;
11328
11329 flags = cpu_flags_and_not (cpu_arch_flags,
11330 cpu_noarch[j].flags);
11331 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
11332 {
11333 if (cpu_sub_arch_name)
11334 {
11335 char *name = cpu_sub_arch_name;
11336 cpu_sub_arch_name = concat (arch,
11337 (const char *) NULL);
11338 free (name);
11339 }
11340 else
11341 cpu_sub_arch_name = xstrdup (arch);
11342 cpu_arch_flags = flags;
11343 cpu_arch_isa_flags = flags;
11344 }
11345 break;
11346 }
11347
11348 if (j >= ARRAY_SIZE (cpu_noarch))
11349 j = ARRAY_SIZE (cpu_arch);
11350 }
11351
11352 if (j >= ARRAY_SIZE (cpu_arch))
11353 as_fatal (_("invalid -march= option: `%s'"), arg);
11354
11355 arch = next;
11356 }
11357 while (next != NULL);
11358 free (saved);
11359 break;
11360
11361 case OPTION_MTUNE:
11362 if (*arg == '.')
11363 as_fatal (_("invalid -mtune= option: `%s'"), arg);
11364 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
11365 {
11366 if (strcmp (arg, cpu_arch [j].name) == 0)
11367 {
11368 cpu_arch_tune_set = 1;
11369 cpu_arch_tune = cpu_arch [j].type;
11370 cpu_arch_tune_flags = cpu_arch[j].flags;
11371 break;
11372 }
11373 }
11374 if (j >= ARRAY_SIZE (cpu_arch))
11375 as_fatal (_("invalid -mtune= option: `%s'"), arg);
11376 break;
11377
11378 case OPTION_MMNEMONIC:
11379 if (strcasecmp (arg, "att") == 0)
11380 intel_mnemonic = 0;
11381 else if (strcasecmp (arg, "intel") == 0)
11382 intel_mnemonic = 1;
11383 else
11384 as_fatal (_("invalid -mmnemonic= option: `%s'"), arg);
11385 break;
11386
11387 case OPTION_MSYNTAX:
11388 if (strcasecmp (arg, "att") == 0)
11389 intel_syntax = 0;
11390 else if (strcasecmp (arg, "intel") == 0)
11391 intel_syntax = 1;
11392 else
11393 as_fatal (_("invalid -msyntax= option: `%s'"), arg);
11394 break;
11395
11396 case OPTION_MINDEX_REG:
11397 allow_index_reg = 1;
11398 break;
11399
11400 case OPTION_MNAKED_REG:
11401 allow_naked_reg = 1;
11402 break;
11403
11404 case OPTION_MSSE2AVX:
11405 sse2avx = 1;
11406 break;
11407
11408 case OPTION_MSSE_CHECK:
11409 if (strcasecmp (arg, "error") == 0)
11410 sse_check = check_error;
11411 else if (strcasecmp (arg, "warning") == 0)
11412 sse_check = check_warning;
11413 else if (strcasecmp (arg, "none") == 0)
11414 sse_check = check_none;
11415 else
11416 as_fatal (_("invalid -msse-check= option: `%s'"), arg);
11417 break;
11418
11419 case OPTION_MOPERAND_CHECK:
11420 if (strcasecmp (arg, "error") == 0)
11421 operand_check = check_error;
11422 else if (strcasecmp (arg, "warning") == 0)
11423 operand_check = check_warning;
11424 else if (strcasecmp (arg, "none") == 0)
11425 operand_check = check_none;
11426 else
11427 as_fatal (_("invalid -moperand-check= option: `%s'"), arg);
11428 break;
11429
11430 case OPTION_MAVXSCALAR:
11431 if (strcasecmp (arg, "128") == 0)
11432 avxscalar = vex128;
11433 else if (strcasecmp (arg, "256") == 0)
11434 avxscalar = vex256;
11435 else
11436 as_fatal (_("invalid -mavxscalar= option: `%s'"), arg);
11437 break;
11438
11439 case OPTION_MVEXWIG:
11440 if (strcmp (arg, "0") == 0)
11441 vexwig = evexw0;
11442 else if (strcmp (arg, "1") == 0)
11443 vexwig = evexw1;
11444 else
11445 as_fatal (_("invalid -mvexwig= option: `%s'"), arg);
11446 break;
11447
11448 case OPTION_MADD_BND_PREFIX:
11449 add_bnd_prefix = 1;
11450 break;
11451
11452 case OPTION_MEVEXLIG:
11453 if (strcmp (arg, "128") == 0)
11454 evexlig = evexl128;
11455 else if (strcmp (arg, "256") == 0)
11456 evexlig = evexl256;
11457 else if (strcmp (arg, "512") == 0)
11458 evexlig = evexl512;
11459 else
11460 as_fatal (_("invalid -mevexlig= option: `%s'"), arg);
11461 break;
11462
11463 case OPTION_MEVEXRCIG:
11464 if (strcmp (arg, "rne") == 0)
11465 evexrcig = rne;
11466 else if (strcmp (arg, "rd") == 0)
11467 evexrcig = rd;
11468 else if (strcmp (arg, "ru") == 0)
11469 evexrcig = ru;
11470 else if (strcmp (arg, "rz") == 0)
11471 evexrcig = rz;
11472 else
11473 as_fatal (_("invalid -mevexrcig= option: `%s'"), arg);
11474 break;
11475
11476 case OPTION_MEVEXWIG:
11477 if (strcmp (arg, "0") == 0)
11478 evexwig = evexw0;
11479 else if (strcmp (arg, "1") == 0)
11480 evexwig = evexw1;
11481 else
11482 as_fatal (_("invalid -mevexwig= option: `%s'"), arg);
11483 break;
11484
11485 # if defined (TE_PE) || defined (TE_PEP)
11486 case OPTION_MBIG_OBJ:
11487 use_big_obj = 1;
11488 break;
11489 #endif
11490
11491 case OPTION_MOMIT_LOCK_PREFIX:
11492 if (strcasecmp (arg, "yes") == 0)
11493 omit_lock_prefix = 1;
11494 else if (strcasecmp (arg, "no") == 0)
11495 omit_lock_prefix = 0;
11496 else
11497 as_fatal (_("invalid -momit-lock-prefix= option: `%s'"), arg);
11498 break;
11499
11500 case OPTION_MFENCE_AS_LOCK_ADD:
11501 if (strcasecmp (arg, "yes") == 0)
11502 avoid_fence = 1;
11503 else if (strcasecmp (arg, "no") == 0)
11504 avoid_fence = 0;
11505 else
11506 as_fatal (_("invalid -mfence-as-lock-add= option: `%s'"), arg);
11507 break;
11508
11509 case OPTION_MRELAX_RELOCATIONS:
11510 if (strcasecmp (arg, "yes") == 0)
11511 generate_relax_relocations = 1;
11512 else if (strcasecmp (arg, "no") == 0)
11513 generate_relax_relocations = 0;
11514 else
11515 as_fatal (_("invalid -mrelax-relocations= option: `%s'"), arg);
11516 break;
11517
11518 case OPTION_MAMD64:
11519 intel64 = 0;
11520 break;
11521
11522 case OPTION_MINTEL64:
11523 intel64 = 1;
11524 break;
11525
11526 case 'O':
11527 if (arg == NULL)
11528 {
11529 optimize = 1;
11530 /* Turn off -Os. */
11531 optimize_for_space = 0;
11532 }
11533 else if (*arg == 's')
11534 {
11535 optimize_for_space = 1;
11536 /* Turn on all encoding optimizations. */
11537 optimize = INT_MAX;
11538 }
11539 else
11540 {
11541 optimize = atoi (arg);
11542 /* Turn off -Os. */
11543 optimize_for_space = 0;
11544 }
11545 break;
11546
11547 default:
11548 return 0;
11549 }
11550 return 1;
11551 }
11552
11553 #define MESSAGE_TEMPLATE \
11554 " "
11555
11556 static char *
11557 output_message (FILE *stream, char *p, char *message, char *start,
11558 int *left_p, const char *name, int len)
11559 {
11560 int size = sizeof (MESSAGE_TEMPLATE);
11561 int left = *left_p;
11562
11563 /* Reserve 2 spaces for ", " or ",\0" */
11564 left -= len + 2;
11565
11566 /* Check if there is any room. */
11567 if (left >= 0)
11568 {
11569 if (p != start)
11570 {
11571 *p++ = ',';
11572 *p++ = ' ';
11573 }
11574 p = mempcpy (p, name, len);
11575 }
11576 else
11577 {
11578 /* Output the current message now and start a new one. */
11579 *p++ = ',';
11580 *p = '\0';
11581 fprintf (stream, "%s\n", message);
11582 p = start;
11583 left = size - (start - message) - len - 2;
11584
11585 gas_assert (left >= 0);
11586
11587 p = mempcpy (p, name, len);
11588 }
11589
11590 *left_p = left;
11591 return p;
11592 }
11593
11594 static void
11595 show_arch (FILE *stream, int ext, int check)
11596 {
11597 static char message[] = MESSAGE_TEMPLATE;
11598 char *start = message + 27;
11599 char *p;
11600 int size = sizeof (MESSAGE_TEMPLATE);
11601 int left;
11602 const char *name;
11603 int len;
11604 unsigned int j;
11605
11606 p = start;
11607 left = size - (start - message);
11608 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
11609 {
11610 /* Should it be skipped? */
11611 if (cpu_arch [j].skip)
11612 continue;
11613
11614 name = cpu_arch [j].name;
11615 len = cpu_arch [j].len;
11616 if (*name == '.')
11617 {
11618 /* It is an extension. Skip if we aren't asked to show it. */
11619 if (ext)
11620 {
11621 name++;
11622 len--;
11623 }
11624 else
11625 continue;
11626 }
11627 else if (ext)
11628 {
11629 /* It is an processor. Skip if we show only extension. */
11630 continue;
11631 }
11632 else if (check && ! cpu_arch[j].flags.bitfield.cpui386)
11633 {
11634 /* It is an impossible processor - skip. */
11635 continue;
11636 }
11637
11638 p = output_message (stream, p, message, start, &left, name, len);
11639 }
11640
11641 /* Display disabled extensions. */
11642 if (ext)
11643 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
11644 {
11645 name = cpu_noarch [j].name;
11646 len = cpu_noarch [j].len;
11647 p = output_message (stream, p, message, start, &left, name,
11648 len);
11649 }
11650
11651 *p = '\0';
11652 fprintf (stream, "%s\n", message);
11653 }
11654
11655 void
11656 md_show_usage (FILE *stream)
11657 {
11658 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11659 fprintf (stream, _("\
11660 -Q ignored\n\
11661 -V print assembler version number\n\
11662 -k ignored\n"));
11663 #endif
11664 fprintf (stream, _("\
11665 -n Do not optimize code alignment\n\
11666 -q quieten some warnings\n"));
11667 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11668 fprintf (stream, _("\
11669 -s ignored\n"));
11670 #endif
11671 #if defined BFD64 && (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
11672 || defined (TE_PE) || defined (TE_PEP))
11673 fprintf (stream, _("\
11674 --32/--64/--x32 generate 32bit/64bit/x32 code\n"));
11675 #endif
11676 #ifdef SVR4_COMMENT_CHARS
11677 fprintf (stream, _("\
11678 --divide do not treat `/' as a comment character\n"));
11679 #else
11680 fprintf (stream, _("\
11681 --divide ignored\n"));
11682 #endif
11683 fprintf (stream, _("\
11684 -march=CPU[,+EXTENSION...]\n\
11685 generate code for CPU and EXTENSION, CPU is one of:\n"));
11686 show_arch (stream, 0, 1);
11687 fprintf (stream, _("\
11688 EXTENSION is combination of:\n"));
11689 show_arch (stream, 1, 0);
11690 fprintf (stream, _("\
11691 -mtune=CPU optimize for CPU, CPU is one of:\n"));
11692 show_arch (stream, 0, 0);
11693 fprintf (stream, _("\
11694 -msse2avx encode SSE instructions with VEX prefix\n"));
11695 fprintf (stream, _("\
11696 -msse-check=[none|error|warning] (default: warning)\n\
11697 check SSE instructions\n"));
11698 fprintf (stream, _("\
11699 -moperand-check=[none|error|warning] (default: warning)\n\
11700 check operand combinations for validity\n"));
11701 fprintf (stream, _("\
11702 -mavxscalar=[128|256] (default: 128)\n\
11703 encode scalar AVX instructions with specific vector\n\
11704 length\n"));
11705 fprintf (stream, _("\
11706 -mvexwig=[0|1] (default: 0)\n\
11707 encode VEX instructions with specific VEX.W value\n\
11708 for VEX.W bit ignored instructions\n"));
11709 fprintf (stream, _("\
11710 -mevexlig=[128|256|512] (default: 128)\n\
11711 encode scalar EVEX instructions with specific vector\n\
11712 length\n"));
11713 fprintf (stream, _("\
11714 -mevexwig=[0|1] (default: 0)\n\
11715 encode EVEX instructions with specific EVEX.W value\n\
11716 for EVEX.W bit ignored instructions\n"));
11717 fprintf (stream, _("\
11718 -mevexrcig=[rne|rd|ru|rz] (default: rne)\n\
11719 encode EVEX instructions with specific EVEX.RC value\n\
11720 for SAE-only ignored instructions\n"));
11721 fprintf (stream, _("\
11722 -mmnemonic=[att|intel] "));
11723 if (SYSV386_COMPAT)
11724 fprintf (stream, _("(default: att)\n"));
11725 else
11726 fprintf (stream, _("(default: intel)\n"));
11727 fprintf (stream, _("\
11728 use AT&T/Intel mnemonic\n"));
11729 fprintf (stream, _("\
11730 -msyntax=[att|intel] (default: att)\n\
11731 use AT&T/Intel syntax\n"));
11732 fprintf (stream, _("\
11733 -mindex-reg support pseudo index registers\n"));
11734 fprintf (stream, _("\
11735 -mnaked-reg don't require `%%' prefix for registers\n"));
11736 fprintf (stream, _("\
11737 -madd-bnd-prefix add BND prefix for all valid branches\n"));
11738 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11739 fprintf (stream, _("\
11740 -mshared disable branch optimization for shared code\n"));
11741 fprintf (stream, _("\
11742 -mx86-used-note=[no|yes] "));
11743 if (DEFAULT_X86_USED_NOTE)
11744 fprintf (stream, _("(default: yes)\n"));
11745 else
11746 fprintf (stream, _("(default: no)\n"));
11747 fprintf (stream, _("\
11748 generate x86 used ISA and feature properties\n"));
11749 #endif
11750 #if defined (TE_PE) || defined (TE_PEP)
11751 fprintf (stream, _("\
11752 -mbig-obj generate big object files\n"));
11753 #endif
11754 fprintf (stream, _("\
11755 -momit-lock-prefix=[no|yes] (default: no)\n\
11756 strip all lock prefixes\n"));
11757 fprintf (stream, _("\
11758 -mfence-as-lock-add=[no|yes] (default: no)\n\
11759 encode lfence, mfence and sfence as\n\
11760 lock addl $0x0, (%%{re}sp)\n"));
11761 fprintf (stream, _("\
11762 -mrelax-relocations=[no|yes] "));
11763 if (DEFAULT_GENERATE_X86_RELAX_RELOCATIONS)
11764 fprintf (stream, _("(default: yes)\n"));
11765 else
11766 fprintf (stream, _("(default: no)\n"));
11767 fprintf (stream, _("\
11768 generate relax relocations\n"));
11769 fprintf (stream, _("\
11770 -mamd64 accept only AMD64 ISA [default]\n"));
11771 fprintf (stream, _("\
11772 -mintel64 accept only Intel64 ISA\n"));
11773 }
11774
11775 #if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
11776 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
11777 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
11778
11779 /* Pick the target format to use. */
11780
11781 const char *
11782 i386_target_format (void)
11783 {
11784 if (!strncmp (default_arch, "x86_64", 6))
11785 {
11786 update_code_flag (CODE_64BIT, 1);
11787 if (default_arch[6] == '\0')
11788 x86_elf_abi = X86_64_ABI;
11789 else
11790 x86_elf_abi = X86_64_X32_ABI;
11791 }
11792 else if (!strcmp (default_arch, "i386"))
11793 update_code_flag (CODE_32BIT, 1);
11794 else if (!strcmp (default_arch, "iamcu"))
11795 {
11796 update_code_flag (CODE_32BIT, 1);
11797 if (cpu_arch_isa == PROCESSOR_UNKNOWN)
11798 {
11799 static const i386_cpu_flags iamcu_flags = CPU_IAMCU_FLAGS;
11800 cpu_arch_name = "iamcu";
11801 cpu_sub_arch_name = NULL;
11802 cpu_arch_flags = iamcu_flags;
11803 cpu_arch_isa = PROCESSOR_IAMCU;
11804 cpu_arch_isa_flags = iamcu_flags;
11805 if (!cpu_arch_tune_set)
11806 {
11807 cpu_arch_tune = cpu_arch_isa;
11808 cpu_arch_tune_flags = cpu_arch_isa_flags;
11809 }
11810 }
11811 else if (cpu_arch_isa != PROCESSOR_IAMCU)
11812 as_fatal (_("Intel MCU doesn't support `%s' architecture"),
11813 cpu_arch_name);
11814 }
11815 else
11816 as_fatal (_("unknown architecture"));
11817
11818 if (cpu_flags_all_zero (&cpu_arch_isa_flags))
11819 cpu_arch_isa_flags = cpu_arch[flag_code == CODE_64BIT].flags;
11820 if (cpu_flags_all_zero (&cpu_arch_tune_flags))
11821 cpu_arch_tune_flags = cpu_arch[flag_code == CODE_64BIT].flags;
11822
11823 switch (OUTPUT_FLAVOR)
11824 {
11825 #if defined (OBJ_MAYBE_AOUT) || defined (OBJ_AOUT)
11826 case bfd_target_aout_flavour:
11827 return AOUT_TARGET_FORMAT;
11828 #endif
11829 #if defined (OBJ_MAYBE_COFF) || defined (OBJ_COFF)
11830 # if defined (TE_PE) || defined (TE_PEP)
11831 case bfd_target_coff_flavour:
11832 if (flag_code == CODE_64BIT)
11833 return use_big_obj ? "pe-bigobj-x86-64" : "pe-x86-64";
11834 else
11835 return "pe-i386";
11836 # elif defined (TE_GO32)
11837 case bfd_target_coff_flavour:
11838 return "coff-go32";
11839 # else
11840 case bfd_target_coff_flavour:
11841 return "coff-i386";
11842 # endif
11843 #endif
11844 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
11845 case bfd_target_elf_flavour:
11846 {
11847 const char *format;
11848
11849 switch (x86_elf_abi)
11850 {
11851 default:
11852 format = ELF_TARGET_FORMAT;
11853 break;
11854 case X86_64_ABI:
11855 use_rela_relocations = 1;
11856 object_64bit = 1;
11857 format = ELF_TARGET_FORMAT64;
11858 break;
11859 case X86_64_X32_ABI:
11860 use_rela_relocations = 1;
11861 object_64bit = 1;
11862 disallow_64bit_reloc = 1;
11863 format = ELF_TARGET_FORMAT32;
11864 break;
11865 }
11866 if (cpu_arch_isa == PROCESSOR_L1OM)
11867 {
11868 if (x86_elf_abi != X86_64_ABI)
11869 as_fatal (_("Intel L1OM is 64bit only"));
11870 return ELF_TARGET_L1OM_FORMAT;
11871 }
11872 else if (cpu_arch_isa == PROCESSOR_K1OM)
11873 {
11874 if (x86_elf_abi != X86_64_ABI)
11875 as_fatal (_("Intel K1OM is 64bit only"));
11876 return ELF_TARGET_K1OM_FORMAT;
11877 }
11878 else if (cpu_arch_isa == PROCESSOR_IAMCU)
11879 {
11880 if (x86_elf_abi != I386_ABI)
11881 as_fatal (_("Intel MCU is 32bit only"));
11882 return ELF_TARGET_IAMCU_FORMAT;
11883 }
11884 else
11885 return format;
11886 }
11887 #endif
11888 #if defined (OBJ_MACH_O)
11889 case bfd_target_mach_o_flavour:
11890 if (flag_code == CODE_64BIT)
11891 {
11892 use_rela_relocations = 1;
11893 object_64bit = 1;
11894 return "mach-o-x86-64";
11895 }
11896 else
11897 return "mach-o-i386";
11898 #endif
11899 default:
11900 abort ();
11901 return NULL;
11902 }
11903 }
11904
11905 #endif /* OBJ_MAYBE_ more than one */
11906 \f
11907 symbolS *
11908 md_undefined_symbol (char *name)
11909 {
11910 if (name[0] == GLOBAL_OFFSET_TABLE_NAME[0]
11911 && name[1] == GLOBAL_OFFSET_TABLE_NAME[1]
11912 && name[2] == GLOBAL_OFFSET_TABLE_NAME[2]
11913 && strcmp (name, GLOBAL_OFFSET_TABLE_NAME) == 0)
11914 {
11915 if (!GOT_symbol)
11916 {
11917 if (symbol_find (name))
11918 as_bad (_("GOT already in symbol table"));
11919 GOT_symbol = symbol_new (name, undefined_section,
11920 (valueT) 0, &zero_address_frag);
11921 };
11922 return GOT_symbol;
11923 }
11924 return 0;
11925 }
11926
11927 /* Round up a section size to the appropriate boundary. */
11928
11929 valueT
11930 md_section_align (segT segment ATTRIBUTE_UNUSED, valueT size)
11931 {
11932 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
11933 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
11934 {
11935 /* For a.out, force the section size to be aligned. If we don't do
11936 this, BFD will align it for us, but it will not write out the
11937 final bytes of the section. This may be a bug in BFD, but it is
11938 easier to fix it here since that is how the other a.out targets
11939 work. */
11940 int align;
11941
11942 align = bfd_get_section_alignment (stdoutput, segment);
11943 size = ((size + (1 << align) - 1) & (-((valueT) 1 << align)));
11944 }
11945 #endif
11946
11947 return size;
11948 }
11949
11950 /* On the i386, PC-relative offsets are relative to the start of the
11951 next instruction. That is, the address of the offset, plus its
11952 size, since the offset is always the last part of the insn. */
11953
11954 long
11955 md_pcrel_from (fixS *fixP)
11956 {
11957 return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address;
11958 }
11959
11960 #ifndef I386COFF
11961
11962 static void
11963 s_bss (int ignore ATTRIBUTE_UNUSED)
11964 {
11965 int temp;
11966
11967 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11968 if (IS_ELF)
11969 obj_elf_section_change_hook ();
11970 #endif
11971 temp = get_absolute_expression ();
11972 subseg_set (bss_section, (subsegT) temp);
11973 demand_empty_rest_of_line ();
11974 }
11975
11976 #endif
11977
11978 void
11979 i386_validate_fix (fixS *fixp)
11980 {
11981 if (fixp->fx_subsy)
11982 {
11983 if (fixp->fx_subsy == GOT_symbol)
11984 {
11985 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
11986 {
11987 if (!object_64bit)
11988 abort ();
11989 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11990 if (fixp->fx_tcbit2)
11991 fixp->fx_r_type = (fixp->fx_tcbit
11992 ? BFD_RELOC_X86_64_REX_GOTPCRELX
11993 : BFD_RELOC_X86_64_GOTPCRELX);
11994 else
11995 #endif
11996 fixp->fx_r_type = BFD_RELOC_X86_64_GOTPCREL;
11997 }
11998 else
11999 {
12000 if (!object_64bit)
12001 fixp->fx_r_type = BFD_RELOC_386_GOTOFF;
12002 else
12003 fixp->fx_r_type = BFD_RELOC_X86_64_GOTOFF64;
12004 }
12005 fixp->fx_subsy = 0;
12006 }
12007 }
12008 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12009 else if (!object_64bit)
12010 {
12011 if (fixp->fx_r_type == BFD_RELOC_386_GOT32
12012 && fixp->fx_tcbit2)
12013 fixp->fx_r_type = BFD_RELOC_386_GOT32X;
12014 }
12015 #endif
12016 }
12017
12018 arelent *
12019 tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
12020 {
12021 arelent *rel;
12022 bfd_reloc_code_real_type code;
12023
12024 switch (fixp->fx_r_type)
12025 {
12026 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12027 case BFD_RELOC_SIZE32:
12028 case BFD_RELOC_SIZE64:
12029 if (S_IS_DEFINED (fixp->fx_addsy)
12030 && !S_IS_EXTERNAL (fixp->fx_addsy))
12031 {
12032 /* Resolve size relocation against local symbol to size of
12033 the symbol plus addend. */
12034 valueT value = S_GET_SIZE (fixp->fx_addsy) + fixp->fx_offset;
12035 if (fixp->fx_r_type == BFD_RELOC_SIZE32
12036 && !fits_in_unsigned_long (value))
12037 as_bad_where (fixp->fx_file, fixp->fx_line,
12038 _("symbol size computation overflow"));
12039 fixp->fx_addsy = NULL;
12040 fixp->fx_subsy = NULL;
12041 md_apply_fix (fixp, (valueT *) &value, NULL);
12042 return NULL;
12043 }
12044 #endif
12045 /* Fall through. */
12046
12047 case BFD_RELOC_X86_64_PLT32:
12048 case BFD_RELOC_X86_64_GOT32:
12049 case BFD_RELOC_X86_64_GOTPCREL:
12050 case BFD_RELOC_X86_64_GOTPCRELX:
12051 case BFD_RELOC_X86_64_REX_GOTPCRELX:
12052 case BFD_RELOC_386_PLT32:
12053 case BFD_RELOC_386_GOT32:
12054 case BFD_RELOC_386_GOT32X:
12055 case BFD_RELOC_386_GOTOFF:
12056 case BFD_RELOC_386_GOTPC:
12057 case BFD_RELOC_386_TLS_GD:
12058 case BFD_RELOC_386_TLS_LDM:
12059 case BFD_RELOC_386_TLS_LDO_32:
12060 case BFD_RELOC_386_TLS_IE_32:
12061 case BFD_RELOC_386_TLS_IE:
12062 case BFD_RELOC_386_TLS_GOTIE:
12063 case BFD_RELOC_386_TLS_LE_32:
12064 case BFD_RELOC_386_TLS_LE:
12065 case BFD_RELOC_386_TLS_GOTDESC:
12066 case BFD_RELOC_386_TLS_DESC_CALL:
12067 case BFD_RELOC_X86_64_TLSGD:
12068 case BFD_RELOC_X86_64_TLSLD:
12069 case BFD_RELOC_X86_64_DTPOFF32:
12070 case BFD_RELOC_X86_64_DTPOFF64:
12071 case BFD_RELOC_X86_64_GOTTPOFF:
12072 case BFD_RELOC_X86_64_TPOFF32:
12073 case BFD_RELOC_X86_64_TPOFF64:
12074 case BFD_RELOC_X86_64_GOTOFF64:
12075 case BFD_RELOC_X86_64_GOTPC32:
12076 case BFD_RELOC_X86_64_GOT64:
12077 case BFD_RELOC_X86_64_GOTPCREL64:
12078 case BFD_RELOC_X86_64_GOTPC64:
12079 case BFD_RELOC_X86_64_GOTPLT64:
12080 case BFD_RELOC_X86_64_PLTOFF64:
12081 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
12082 case BFD_RELOC_X86_64_TLSDESC_CALL:
12083 case BFD_RELOC_RVA:
12084 case BFD_RELOC_VTABLE_ENTRY:
12085 case BFD_RELOC_VTABLE_INHERIT:
12086 #ifdef TE_PE
12087 case BFD_RELOC_32_SECREL:
12088 #endif
12089 code = fixp->fx_r_type;
12090 break;
12091 case BFD_RELOC_X86_64_32S:
12092 if (!fixp->fx_pcrel)
12093 {
12094 /* Don't turn BFD_RELOC_X86_64_32S into BFD_RELOC_32. */
12095 code = fixp->fx_r_type;
12096 break;
12097 }
12098 /* Fall through. */
12099 default:
12100 if (fixp->fx_pcrel)
12101 {
12102 switch (fixp->fx_size)
12103 {
12104 default:
12105 as_bad_where (fixp->fx_file, fixp->fx_line,
12106 _("can not do %d byte pc-relative relocation"),
12107 fixp->fx_size);
12108 code = BFD_RELOC_32_PCREL;
12109 break;
12110 case 1: code = BFD_RELOC_8_PCREL; break;
12111 case 2: code = BFD_RELOC_16_PCREL; break;
12112 case 4: code = BFD_RELOC_32_PCREL; break;
12113 #ifdef BFD64
12114 case 8: code = BFD_RELOC_64_PCREL; break;
12115 #endif
12116 }
12117 }
12118 else
12119 {
12120 switch (fixp->fx_size)
12121 {
12122 default:
12123 as_bad_where (fixp->fx_file, fixp->fx_line,
12124 _("can not do %d byte relocation"),
12125 fixp->fx_size);
12126 code = BFD_RELOC_32;
12127 break;
12128 case 1: code = BFD_RELOC_8; break;
12129 case 2: code = BFD_RELOC_16; break;
12130 case 4: code = BFD_RELOC_32; break;
12131 #ifdef BFD64
12132 case 8: code = BFD_RELOC_64; break;
12133 #endif
12134 }
12135 }
12136 break;
12137 }
12138
12139 if ((code == BFD_RELOC_32
12140 || code == BFD_RELOC_32_PCREL
12141 || code == BFD_RELOC_X86_64_32S)
12142 && GOT_symbol
12143 && fixp->fx_addsy == GOT_symbol)
12144 {
12145 if (!object_64bit)
12146 code = BFD_RELOC_386_GOTPC;
12147 else
12148 code = BFD_RELOC_X86_64_GOTPC32;
12149 }
12150 if ((code == BFD_RELOC_64 || code == BFD_RELOC_64_PCREL)
12151 && GOT_symbol
12152 && fixp->fx_addsy == GOT_symbol)
12153 {
12154 code = BFD_RELOC_X86_64_GOTPC64;
12155 }
12156
12157 rel = XNEW (arelent);
12158 rel->sym_ptr_ptr = XNEW (asymbol *);
12159 *rel->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
12160
12161 rel->address = fixp->fx_frag->fr_address + fixp->fx_where;
12162
12163 if (!use_rela_relocations)
12164 {
12165 /* HACK: Since i386 ELF uses Rel instead of Rela, encode the
12166 vtable entry to be used in the relocation's section offset. */
12167 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
12168 rel->address = fixp->fx_offset;
12169 #if defined (OBJ_COFF) && defined (TE_PE)
12170 else if (fixp->fx_addsy && S_IS_WEAK (fixp->fx_addsy))
12171 rel->addend = fixp->fx_addnumber - (S_GET_VALUE (fixp->fx_addsy) * 2);
12172 else
12173 #endif
12174 rel->addend = 0;
12175 }
12176 /* Use the rela in 64bit mode. */
12177 else
12178 {
12179 if (disallow_64bit_reloc)
12180 switch (code)
12181 {
12182 case BFD_RELOC_X86_64_DTPOFF64:
12183 case BFD_RELOC_X86_64_TPOFF64:
12184 case BFD_RELOC_64_PCREL:
12185 case BFD_RELOC_X86_64_GOTOFF64:
12186 case BFD_RELOC_X86_64_GOT64:
12187 case BFD_RELOC_X86_64_GOTPCREL64:
12188 case BFD_RELOC_X86_64_GOTPC64:
12189 case BFD_RELOC_X86_64_GOTPLT64:
12190 case BFD_RELOC_X86_64_PLTOFF64:
12191 as_bad_where (fixp->fx_file, fixp->fx_line,
12192 _("cannot represent relocation type %s in x32 mode"),
12193 bfd_get_reloc_code_name (code));
12194 break;
12195 default:
12196 break;
12197 }
12198
12199 if (!fixp->fx_pcrel)
12200 rel->addend = fixp->fx_offset;
12201 else
12202 switch (code)
12203 {
12204 case BFD_RELOC_X86_64_PLT32:
12205 case BFD_RELOC_X86_64_GOT32:
12206 case BFD_RELOC_X86_64_GOTPCREL:
12207 case BFD_RELOC_X86_64_GOTPCRELX:
12208 case BFD_RELOC_X86_64_REX_GOTPCRELX:
12209 case BFD_RELOC_X86_64_TLSGD:
12210 case BFD_RELOC_X86_64_TLSLD:
12211 case BFD_RELOC_X86_64_GOTTPOFF:
12212 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
12213 case BFD_RELOC_X86_64_TLSDESC_CALL:
12214 rel->addend = fixp->fx_offset - fixp->fx_size;
12215 break;
12216 default:
12217 rel->addend = (section->vma
12218 - fixp->fx_size
12219 + fixp->fx_addnumber
12220 + md_pcrel_from (fixp));
12221 break;
12222 }
12223 }
12224
12225 rel->howto = bfd_reloc_type_lookup (stdoutput, code);
12226 if (rel->howto == NULL)
12227 {
12228 as_bad_where (fixp->fx_file, fixp->fx_line,
12229 _("cannot represent relocation type %s"),
12230 bfd_get_reloc_code_name (code));
12231 /* Set howto to a garbage value so that we can keep going. */
12232 rel->howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_32);
12233 gas_assert (rel->howto != NULL);
12234 }
12235
12236 return rel;
12237 }
12238
12239 #include "tc-i386-intel.c"
12240
12241 void
12242 tc_x86_parse_to_dw2regnum (expressionS *exp)
12243 {
12244 int saved_naked_reg;
12245 char saved_register_dot;
12246
12247 saved_naked_reg = allow_naked_reg;
12248 allow_naked_reg = 1;
12249 saved_register_dot = register_chars['.'];
12250 register_chars['.'] = '.';
12251 allow_pseudo_reg = 1;
12252 expression_and_evaluate (exp);
12253 allow_pseudo_reg = 0;
12254 register_chars['.'] = saved_register_dot;
12255 allow_naked_reg = saved_naked_reg;
12256
12257 if (exp->X_op == O_register && exp->X_add_number >= 0)
12258 {
12259 if ((addressT) exp->X_add_number < i386_regtab_size)
12260 {
12261 exp->X_op = O_constant;
12262 exp->X_add_number = i386_regtab[exp->X_add_number]
12263 .dw2_regnum[flag_code >> 1];
12264 }
12265 else
12266 exp->X_op = O_illegal;
12267 }
12268 }
12269
12270 void
12271 tc_x86_frame_initial_instructions (void)
12272 {
12273 static unsigned int sp_regno[2];
12274
12275 if (!sp_regno[flag_code >> 1])
12276 {
12277 char *saved_input = input_line_pointer;
12278 char sp[][4] = {"esp", "rsp"};
12279 expressionS exp;
12280
12281 input_line_pointer = sp[flag_code >> 1];
12282 tc_x86_parse_to_dw2regnum (&exp);
12283 gas_assert (exp.X_op == O_constant);
12284 sp_regno[flag_code >> 1] = exp.X_add_number;
12285 input_line_pointer = saved_input;
12286 }
12287
12288 cfi_add_CFA_def_cfa (sp_regno[flag_code >> 1], -x86_cie_data_alignment);
12289 cfi_add_CFA_offset (x86_dwarf2_return_column, x86_cie_data_alignment);
12290 }
12291
12292 int
12293 x86_dwarf2_addr_size (void)
12294 {
12295 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
12296 if (x86_elf_abi == X86_64_X32_ABI)
12297 return 4;
12298 #endif
12299 return bfd_arch_bits_per_address (stdoutput) / 8;
12300 }
12301
12302 int
12303 i386_elf_section_type (const char *str, size_t len)
12304 {
12305 if (flag_code == CODE_64BIT
12306 && len == sizeof ("unwind") - 1
12307 && strncmp (str, "unwind", 6) == 0)
12308 return SHT_X86_64_UNWIND;
12309
12310 return -1;
12311 }
12312
12313 #ifdef TE_SOLARIS
12314 void
12315 i386_solaris_fix_up_eh_frame (segT sec)
12316 {
12317 if (flag_code == CODE_64BIT)
12318 elf_section_type (sec) = SHT_X86_64_UNWIND;
12319 }
12320 #endif
12321
12322 #ifdef TE_PE
12323 void
12324 tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
12325 {
12326 expressionS exp;
12327
12328 exp.X_op = O_secrel;
12329 exp.X_add_symbol = symbol;
12330 exp.X_add_number = 0;
12331 emit_expr (&exp, size);
12332 }
12333 #endif
12334
12335 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12336 /* For ELF on x86-64, add support for SHF_X86_64_LARGE. */
12337
12338 bfd_vma
12339 x86_64_section_letter (int letter, const char **ptr_msg)
12340 {
12341 if (flag_code == CODE_64BIT)
12342 {
12343 if (letter == 'l')
12344 return SHF_X86_64_LARGE;
12345
12346 *ptr_msg = _("bad .section directive: want a,l,w,x,M,S,G,T in string");
12347 }
12348 else
12349 *ptr_msg = _("bad .section directive: want a,w,x,M,S,G,T in string");
12350 return -1;
12351 }
12352
12353 bfd_vma
12354 x86_64_section_word (char *str, size_t len)
12355 {
12356 if (len == 5 && flag_code == CODE_64BIT && CONST_STRNEQ (str, "large"))
12357 return SHF_X86_64_LARGE;
12358
12359 return -1;
12360 }
12361
12362 static void
12363 handle_large_common (int small ATTRIBUTE_UNUSED)
12364 {
12365 if (flag_code != CODE_64BIT)
12366 {
12367 s_comm_internal (0, elf_common_parse);
12368 as_warn (_(".largecomm supported only in 64bit mode, producing .comm"));
12369 }
12370 else
12371 {
12372 static segT lbss_section;
12373 asection *saved_com_section_ptr = elf_com_section_ptr;
12374 asection *saved_bss_section = bss_section;
12375
12376 if (lbss_section == NULL)
12377 {
12378 flagword applicable;
12379 segT seg = now_seg;
12380 subsegT subseg = now_subseg;
12381
12382 /* The .lbss section is for local .largecomm symbols. */
12383 lbss_section = subseg_new (".lbss", 0);
12384 applicable = bfd_applicable_section_flags (stdoutput);
12385 bfd_set_section_flags (stdoutput, lbss_section,
12386 applicable & SEC_ALLOC);
12387 seg_info (lbss_section)->bss = 1;
12388
12389 subseg_set (seg, subseg);
12390 }
12391
12392 elf_com_section_ptr = &_bfd_elf_large_com_section;
12393 bss_section = lbss_section;
12394
12395 s_comm_internal (0, elf_common_parse);
12396
12397 elf_com_section_ptr = saved_com_section_ptr;
12398 bss_section = saved_bss_section;
12399 }
12400 }
12401 #endif /* OBJ_ELF || OBJ_MAYBE_ELF */
This page took 0.474119 seconds and 4 git commands to generate.