3a2a1b743536db577589e7235d453cb6fb073036
[deliverable/binutils-gdb.git] / gas / config / tc-i386.c
1 /* tc-i386.c -- Assemble code for the Intel 80386
2 Copyright (C) 1989-2020 Free Software Foundation, Inc.
3
4 This file is part of GAS, the GNU Assembler.
5
6 GAS is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
10
11 GAS is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GAS; see the file COPYING. If not, write to the Free
18 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
19 02110-1301, USA. */
20
21 /* Intel 80386 machine specific gas.
22 Written by Eliot Dresselhaus (eliot@mgm.mit.edu).
23 x86_64 support by Jan Hubicka (jh@suse.cz)
24 VIA PadLock support by Michal Ludvig (mludvig@suse.cz)
25 Bugs & suggestions are completely welcome. This is free software.
26 Please help us make it better. */
27
28 #include "as.h"
29 #include "safe-ctype.h"
30 #include "subsegs.h"
31 #include "dwarf2dbg.h"
32 #include "dw2gencfi.h"
33 #include "elf/x86-64.h"
34 #include "opcodes/i386-init.h"
35
36 #ifdef HAVE_LIMITS_H
37 #include <limits.h>
38 #else
39 #ifdef HAVE_SYS_PARAM_H
40 #include <sys/param.h>
41 #endif
42 #ifndef INT_MAX
43 #define INT_MAX (int) (((unsigned) (-1)) >> 1)
44 #endif
45 #endif
46
47 #ifndef REGISTER_WARNINGS
48 #define REGISTER_WARNINGS 1
49 #endif
50
51 #ifndef INFER_ADDR_PREFIX
52 #define INFER_ADDR_PREFIX 1
53 #endif
54
55 #ifndef DEFAULT_ARCH
56 #define DEFAULT_ARCH "i386"
57 #endif
58
59 #ifndef INLINE
60 #if __GNUC__ >= 2
61 #define INLINE __inline__
62 #else
63 #define INLINE
64 #endif
65 #endif
66
67 /* Prefixes will be emitted in the order defined below.
68 WAIT_PREFIX must be the first prefix since FWAIT is really is an
69 instruction, and so must come before any prefixes.
70 The preferred prefix order is SEG_PREFIX, ADDR_PREFIX, DATA_PREFIX,
71 REP_PREFIX/HLE_PREFIX, LOCK_PREFIX. */
72 #define WAIT_PREFIX 0
73 #define SEG_PREFIX 1
74 #define ADDR_PREFIX 2
75 #define DATA_PREFIX 3
76 #define REP_PREFIX 4
77 #define HLE_PREFIX REP_PREFIX
78 #define BND_PREFIX REP_PREFIX
79 #define LOCK_PREFIX 5
80 #define REX_PREFIX 6 /* must come last. */
81 #define MAX_PREFIXES 7 /* max prefixes per opcode */
82
83 /* we define the syntax here (modulo base,index,scale syntax) */
84 #define REGISTER_PREFIX '%'
85 #define IMMEDIATE_PREFIX '$'
86 #define ABSOLUTE_PREFIX '*'
87
88 /* these are the instruction mnemonic suffixes in AT&T syntax or
89 memory operand size in Intel syntax. */
90 #define WORD_MNEM_SUFFIX 'w'
91 #define BYTE_MNEM_SUFFIX 'b'
92 #define SHORT_MNEM_SUFFIX 's'
93 #define LONG_MNEM_SUFFIX 'l'
94 #define QWORD_MNEM_SUFFIX 'q'
95 /* Intel Syntax. Use a non-ascii letter since since it never appears
96 in instructions. */
97 #define LONG_DOUBLE_MNEM_SUFFIX '\1'
98
99 #define END_OF_INSN '\0'
100
101 /* This matches the C -> StaticRounding alias in the opcode table. */
102 #define commutative staticrounding
103
104 /*
105 'templates' is for grouping together 'template' structures for opcodes
106 of the same name. This is only used for storing the insns in the grand
107 ole hash table of insns.
108 The templates themselves start at START and range up to (but not including)
109 END.
110 */
111 typedef struct
112 {
113 const insn_template *start;
114 const insn_template *end;
115 }
116 templates;
117
118 /* 386 operand encoding bytes: see 386 book for details of this. */
119 typedef struct
120 {
121 unsigned int regmem; /* codes register or memory operand */
122 unsigned int reg; /* codes register operand (or extended opcode) */
123 unsigned int mode; /* how to interpret regmem & reg */
124 }
125 modrm_byte;
126
127 /* x86-64 extension prefix. */
128 typedef int rex_byte;
129
130 /* 386 opcode byte to code indirect addressing. */
131 typedef struct
132 {
133 unsigned base;
134 unsigned index;
135 unsigned scale;
136 }
137 sib_byte;
138
139 /* x86 arch names, types and features */
140 typedef struct
141 {
142 const char *name; /* arch name */
143 unsigned int len; /* arch string length */
144 enum processor_type type; /* arch type */
145 i386_cpu_flags flags; /* cpu feature flags */
146 unsigned int skip; /* show_arch should skip this. */
147 }
148 arch_entry;
149
150 /* Used to turn off indicated flags. */
151 typedef struct
152 {
153 const char *name; /* arch name */
154 unsigned int len; /* arch string length */
155 i386_cpu_flags flags; /* cpu feature flags */
156 }
157 noarch_entry;
158
159 static void update_code_flag (int, int);
160 static void set_code_flag (int);
161 static void set_16bit_gcc_code_flag (int);
162 static void set_intel_syntax (int);
163 static void set_intel_mnemonic (int);
164 static void set_allow_index_reg (int);
165 static void set_check (int);
166 static void set_cpu_arch (int);
167 #ifdef TE_PE
168 static void pe_directive_secrel (int);
169 #endif
170 static void signed_cons (int);
171 static char *output_invalid (int c);
172 static int i386_finalize_immediate (segT, expressionS *, i386_operand_type,
173 const char *);
174 static int i386_finalize_displacement (segT, expressionS *, i386_operand_type,
175 const char *);
176 static int i386_att_operand (char *);
177 static int i386_intel_operand (char *, int);
178 static int i386_intel_simplify (expressionS *);
179 static int i386_intel_parse_name (const char *, expressionS *);
180 static const reg_entry *parse_register (char *, char **);
181 static char *parse_insn (char *, char *);
182 static char *parse_operands (char *, const char *);
183 static void swap_operands (void);
184 static void swap_2_operands (int, int);
185 static enum flag_code i386_addressing_mode (void);
186 static void optimize_imm (void);
187 static void optimize_disp (void);
188 static const insn_template *match_template (char);
189 static int check_string (void);
190 static int process_suffix (void);
191 static int check_byte_reg (void);
192 static int check_long_reg (void);
193 static int check_qword_reg (void);
194 static int check_word_reg (void);
195 static int finalize_imm (void);
196 static int process_operands (void);
197 static const seg_entry *build_modrm_byte (void);
198 static void output_insn (void);
199 static void output_imm (fragS *, offsetT);
200 static void output_disp (fragS *, offsetT);
201 #ifndef I386COFF
202 static void s_bss (int);
203 #endif
204 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
205 static void handle_large_common (int small ATTRIBUTE_UNUSED);
206
207 /* GNU_PROPERTY_X86_ISA_1_USED. */
208 static unsigned int x86_isa_1_used;
209 /* GNU_PROPERTY_X86_FEATURE_2_USED. */
210 static unsigned int x86_feature_2_used;
211 /* Generate x86 used ISA and feature properties. */
212 static unsigned int x86_used_note = DEFAULT_X86_USED_NOTE;
213 #endif
214
215 static const char *default_arch = DEFAULT_ARCH;
216
217 /* This struct describes rounding control and SAE in the instruction. */
218 struct RC_Operation
219 {
220 enum rc_type
221 {
222 rne = 0,
223 rd,
224 ru,
225 rz,
226 saeonly
227 } type;
228 int operand;
229 };
230
231 static struct RC_Operation rc_op;
232
233 /* The struct describes masking, applied to OPERAND in the instruction.
234 MASK is a pointer to the corresponding mask register. ZEROING tells
235 whether merging or zeroing mask is used. */
236 struct Mask_Operation
237 {
238 const reg_entry *mask;
239 unsigned int zeroing;
240 /* The operand where this operation is associated. */
241 int operand;
242 };
243
244 static struct Mask_Operation mask_op;
245
246 /* The struct describes broadcasting, applied to OPERAND. FACTOR is
247 broadcast factor. */
248 struct Broadcast_Operation
249 {
250 /* Type of broadcast: {1to2}, {1to4}, {1to8}, or {1to16}. */
251 int type;
252
253 /* Index of broadcasted operand. */
254 int operand;
255
256 /* Number of bytes to broadcast. */
257 int bytes;
258 };
259
260 static struct Broadcast_Operation broadcast_op;
261
262 /* VEX prefix. */
263 typedef struct
264 {
265 /* VEX prefix is either 2 byte or 3 byte. EVEX is 4 byte. */
266 unsigned char bytes[4];
267 unsigned int length;
268 /* Destination or source register specifier. */
269 const reg_entry *register_specifier;
270 } vex_prefix;
271
272 /* 'md_assemble ()' gathers together information and puts it into a
273 i386_insn. */
274
275 union i386_op
276 {
277 expressionS *disps;
278 expressionS *imms;
279 const reg_entry *regs;
280 };
281
282 enum i386_error
283 {
284 operand_size_mismatch,
285 operand_type_mismatch,
286 register_type_mismatch,
287 number_of_operands_mismatch,
288 invalid_instruction_suffix,
289 bad_imm4,
290 unsupported_with_intel_mnemonic,
291 unsupported_syntax,
292 unsupported,
293 invalid_vsib_address,
294 invalid_vector_register_set,
295 unsupported_vector_index_register,
296 unsupported_broadcast,
297 broadcast_needed,
298 unsupported_masking,
299 mask_not_on_destination,
300 no_default_mask,
301 unsupported_rc_sae,
302 rc_sae_operand_not_last_imm,
303 invalid_register_operand,
304 };
305
306 struct _i386_insn
307 {
308 /* TM holds the template for the insn were currently assembling. */
309 insn_template tm;
310
311 /* SUFFIX holds the instruction size suffix for byte, word, dword
312 or qword, if given. */
313 char suffix;
314
315 /* OPERANDS gives the number of given operands. */
316 unsigned int operands;
317
318 /* REG_OPERANDS, DISP_OPERANDS, MEM_OPERANDS, IMM_OPERANDS give the number
319 of given register, displacement, memory operands and immediate
320 operands. */
321 unsigned int reg_operands, disp_operands, mem_operands, imm_operands;
322
323 /* TYPES [i] is the type (see above #defines) which tells us how to
324 use OP[i] for the corresponding operand. */
325 i386_operand_type types[MAX_OPERANDS];
326
327 /* Displacement expression, immediate expression, or register for each
328 operand. */
329 union i386_op op[MAX_OPERANDS];
330
331 /* Flags for operands. */
332 unsigned int flags[MAX_OPERANDS];
333 #define Operand_PCrel 1
334 #define Operand_Mem 2
335
336 /* Relocation type for operand */
337 enum bfd_reloc_code_real reloc[MAX_OPERANDS];
338
339 /* BASE_REG, INDEX_REG, and LOG2_SCALE_FACTOR are used to encode
340 the base index byte below. */
341 const reg_entry *base_reg;
342 const reg_entry *index_reg;
343 unsigned int log2_scale_factor;
344
345 /* SEG gives the seg_entries of this insn. They are zero unless
346 explicit segment overrides are given. */
347 const seg_entry *seg[2];
348
349 /* Copied first memory operand string, for re-checking. */
350 char *memop1_string;
351
352 /* PREFIX holds all the given prefix opcodes (usually null).
353 PREFIXES is the number of prefix opcodes. */
354 unsigned int prefixes;
355 unsigned char prefix[MAX_PREFIXES];
356
357 /* The operand to a branch insn indicates an absolute branch. */
358 bfd_boolean jumpabsolute;
359
360 /* Has MMX register operands. */
361 bfd_boolean has_regmmx;
362
363 /* Has XMM register operands. */
364 bfd_boolean has_regxmm;
365
366 /* Has YMM register operands. */
367 bfd_boolean has_regymm;
368
369 /* Has ZMM register operands. */
370 bfd_boolean has_regzmm;
371
372 /* Has GOTPC or TLS relocation. */
373 bfd_boolean has_gotpc_tls_reloc;
374
375 /* RM and SIB are the modrm byte and the sib byte where the
376 addressing modes of this insn are encoded. */
377 modrm_byte rm;
378 rex_byte rex;
379 rex_byte vrex;
380 sib_byte sib;
381 vex_prefix vex;
382
383 /* Masking attributes. */
384 struct Mask_Operation *mask;
385
386 /* Rounding control and SAE attributes. */
387 struct RC_Operation *rounding;
388
389 /* Broadcasting attributes. */
390 struct Broadcast_Operation *broadcast;
391
392 /* Compressed disp8*N attribute. */
393 unsigned int memshift;
394
395 /* Prefer load or store in encoding. */
396 enum
397 {
398 dir_encoding_default = 0,
399 dir_encoding_load,
400 dir_encoding_store,
401 dir_encoding_swap
402 } dir_encoding;
403
404 /* Prefer 8bit or 32bit displacement in encoding. */
405 enum
406 {
407 disp_encoding_default = 0,
408 disp_encoding_8bit,
409 disp_encoding_32bit
410 } disp_encoding;
411
412 /* Prefer the REX byte in encoding. */
413 bfd_boolean rex_encoding;
414
415 /* Disable instruction size optimization. */
416 bfd_boolean no_optimize;
417
418 /* How to encode vector instructions. */
419 enum
420 {
421 vex_encoding_default = 0,
422 vex_encoding_vex,
423 vex_encoding_vex3,
424 vex_encoding_evex
425 } vec_encoding;
426
427 /* REP prefix. */
428 const char *rep_prefix;
429
430 /* HLE prefix. */
431 const char *hle_prefix;
432
433 /* Have BND prefix. */
434 const char *bnd_prefix;
435
436 /* Have NOTRACK prefix. */
437 const char *notrack_prefix;
438
439 /* Error message. */
440 enum i386_error error;
441 };
442
443 typedef struct _i386_insn i386_insn;
444
445 /* Link RC type with corresponding string, that'll be looked for in
446 asm. */
447 struct RC_name
448 {
449 enum rc_type type;
450 const char *name;
451 unsigned int len;
452 };
453
454 static const struct RC_name RC_NamesTable[] =
455 {
456 { rne, STRING_COMMA_LEN ("rn-sae") },
457 { rd, STRING_COMMA_LEN ("rd-sae") },
458 { ru, STRING_COMMA_LEN ("ru-sae") },
459 { rz, STRING_COMMA_LEN ("rz-sae") },
460 { saeonly, STRING_COMMA_LEN ("sae") },
461 };
462
463 /* List of chars besides those in app.c:symbol_chars that can start an
464 operand. Used to prevent the scrubber eating vital white-space. */
465 const char extra_symbol_chars[] = "*%-([{}"
466 #ifdef LEX_AT
467 "@"
468 #endif
469 #ifdef LEX_QM
470 "?"
471 #endif
472 ;
473
474 #if (defined (TE_I386AIX) \
475 || ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) \
476 && !defined (TE_GNU) \
477 && !defined (TE_LINUX) \
478 && !defined (TE_NACL) \
479 && !defined (TE_FreeBSD) \
480 && !defined (TE_DragonFly) \
481 && !defined (TE_NetBSD)))
482 /* This array holds the chars that always start a comment. If the
483 pre-processor is disabled, these aren't very useful. The option
484 --divide will remove '/' from this list. */
485 const char *i386_comment_chars = "#/";
486 #define SVR4_COMMENT_CHARS 1
487 #define PREFIX_SEPARATOR '\\'
488
489 #else
490 const char *i386_comment_chars = "#";
491 #define PREFIX_SEPARATOR '/'
492 #endif
493
494 /* This array holds the chars that only start a comment at the beginning of
495 a line. If the line seems to have the form '# 123 filename'
496 .line and .file directives will appear in the pre-processed output.
497 Note that input_file.c hand checks for '#' at the beginning of the
498 first line of the input file. This is because the compiler outputs
499 #NO_APP at the beginning of its output.
500 Also note that comments started like this one will always work if
501 '/' isn't otherwise defined. */
502 const char line_comment_chars[] = "#/";
503
504 const char line_separator_chars[] = ";";
505
506 /* Chars that can be used to separate mant from exp in floating point
507 nums. */
508 const char EXP_CHARS[] = "eE";
509
510 /* Chars that mean this number is a floating point constant
511 As in 0f12.456
512 or 0d1.2345e12. */
513 const char FLT_CHARS[] = "fFdDxX";
514
515 /* Tables for lexical analysis. */
516 static char mnemonic_chars[256];
517 static char register_chars[256];
518 static char operand_chars[256];
519 static char identifier_chars[256];
520 static char digit_chars[256];
521
522 /* Lexical macros. */
523 #define is_mnemonic_char(x) (mnemonic_chars[(unsigned char) x])
524 #define is_operand_char(x) (operand_chars[(unsigned char) x])
525 #define is_register_char(x) (register_chars[(unsigned char) x])
526 #define is_space_char(x) ((x) == ' ')
527 #define is_identifier_char(x) (identifier_chars[(unsigned char) x])
528 #define is_digit_char(x) (digit_chars[(unsigned char) x])
529
530 /* All non-digit non-letter characters that may occur in an operand. */
531 static char operand_special_chars[] = "%$-+(,)*._~/<>|&^!:[@]";
532
533 /* md_assemble() always leaves the strings it's passed unaltered. To
534 effect this we maintain a stack of saved characters that we've smashed
535 with '\0's (indicating end of strings for various sub-fields of the
536 assembler instruction). */
537 static char save_stack[32];
538 static char *save_stack_p;
539 #define END_STRING_AND_SAVE(s) \
540 do { *save_stack_p++ = *(s); *(s) = '\0'; } while (0)
541 #define RESTORE_END_STRING(s) \
542 do { *(s) = *--save_stack_p; } while (0)
543
544 /* The instruction we're assembling. */
545 static i386_insn i;
546
547 /* Possible templates for current insn. */
548 static const templates *current_templates;
549
550 /* Per instruction expressionS buffers: max displacements & immediates. */
551 static expressionS disp_expressions[MAX_MEMORY_OPERANDS];
552 static expressionS im_expressions[MAX_IMMEDIATE_OPERANDS];
553
554 /* Current operand we are working on. */
555 static int this_operand = -1;
556
557 /* We support four different modes. FLAG_CODE variable is used to distinguish
558 these. */
559
560 enum flag_code {
561 CODE_32BIT,
562 CODE_16BIT,
563 CODE_64BIT };
564
565 static enum flag_code flag_code;
566 static unsigned int object_64bit;
567 static unsigned int disallow_64bit_reloc;
568 static int use_rela_relocations = 0;
569 /* __tls_get_addr/___tls_get_addr symbol for TLS. */
570 static const char *tls_get_addr;
571
572 #if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
573 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
574 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
575
576 /* The ELF ABI to use. */
577 enum x86_elf_abi
578 {
579 I386_ABI,
580 X86_64_ABI,
581 X86_64_X32_ABI
582 };
583
584 static enum x86_elf_abi x86_elf_abi = I386_ABI;
585 #endif
586
587 #if defined (TE_PE) || defined (TE_PEP)
588 /* Use big object file format. */
589 static int use_big_obj = 0;
590 #endif
591
592 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
593 /* 1 if generating code for a shared library. */
594 static int shared = 0;
595 #endif
596
597 /* 1 for intel syntax,
598 0 if att syntax. */
599 static int intel_syntax = 0;
600
601 /* 1 for Intel64 ISA,
602 0 if AMD64 ISA. */
603 static int intel64;
604
605 /* 1 for intel mnemonic,
606 0 if att mnemonic. */
607 static int intel_mnemonic = !SYSV386_COMPAT;
608
609 /* 1 if pseudo registers are permitted. */
610 static int allow_pseudo_reg = 0;
611
612 /* 1 if register prefix % not required. */
613 static int allow_naked_reg = 0;
614
615 /* 1 if the assembler should add BND prefix for all control-transferring
616 instructions supporting it, even if this prefix wasn't specified
617 explicitly. */
618 static int add_bnd_prefix = 0;
619
620 /* 1 if pseudo index register, eiz/riz, is allowed . */
621 static int allow_index_reg = 0;
622
623 /* 1 if the assembler should ignore LOCK prefix, even if it was
624 specified explicitly. */
625 static int omit_lock_prefix = 0;
626
627 /* 1 if the assembler should encode lfence, mfence, and sfence as
628 "lock addl $0, (%{re}sp)". */
629 static int avoid_fence = 0;
630
631 /* Type of the previous instruction. */
632 static struct
633 {
634 segT seg;
635 const char *file;
636 const char *name;
637 unsigned int line;
638 enum last_insn_kind
639 {
640 last_insn_other = 0,
641 last_insn_directive,
642 last_insn_prefix
643 } kind;
644 } last_insn;
645
646 /* 1 if the assembler should generate relax relocations. */
647
648 static int generate_relax_relocations
649 = DEFAULT_GENERATE_X86_RELAX_RELOCATIONS;
650
651 static enum check_kind
652 {
653 check_none = 0,
654 check_warning,
655 check_error
656 }
657 sse_check, operand_check = check_warning;
658
659 /* Non-zero if branches should be aligned within power of 2 boundary. */
660 static int align_branch_power = 0;
661
662 /* Types of branches to align. */
663 enum align_branch_kind
664 {
665 align_branch_none = 0,
666 align_branch_jcc = 1,
667 align_branch_fused = 2,
668 align_branch_jmp = 3,
669 align_branch_call = 4,
670 align_branch_indirect = 5,
671 align_branch_ret = 6
672 };
673
674 /* Type bits of branches to align. */
675 enum align_branch_bit
676 {
677 align_branch_jcc_bit = 1 << align_branch_jcc,
678 align_branch_fused_bit = 1 << align_branch_fused,
679 align_branch_jmp_bit = 1 << align_branch_jmp,
680 align_branch_call_bit = 1 << align_branch_call,
681 align_branch_indirect_bit = 1 << align_branch_indirect,
682 align_branch_ret_bit = 1 << align_branch_ret
683 };
684
685 static unsigned int align_branch = (align_branch_jcc_bit
686 | align_branch_fused_bit
687 | align_branch_jmp_bit);
688
689 /* The maximum padding size for fused jcc. CMP like instruction can
690 be 9 bytes and jcc can be 6 bytes. Leave room just in case for
691 prefixes. */
692 #define MAX_FUSED_JCC_PADDING_SIZE 20
693
694 /* The maximum number of prefixes added for an instruction. */
695 static unsigned int align_branch_prefix_size = 5;
696
697 /* Optimization:
698 1. Clear the REX_W bit with register operand if possible.
699 2. Above plus use 128bit vector instruction to clear the full vector
700 register.
701 */
702 static int optimize = 0;
703
704 /* Optimization:
705 1. Clear the REX_W bit with register operand if possible.
706 2. Above plus use 128bit vector instruction to clear the full vector
707 register.
708 3. Above plus optimize "test{q,l,w} $imm8,%r{64,32,16}" to
709 "testb $imm7,%r8".
710 */
711 static int optimize_for_space = 0;
712
713 /* Register prefix used for error message. */
714 static const char *register_prefix = "%";
715
716 /* Used in 16 bit gcc mode to add an l suffix to call, ret, enter,
717 leave, push, and pop instructions so that gcc has the same stack
718 frame as in 32 bit mode. */
719 static char stackop_size = '\0';
720
721 /* Non-zero to optimize code alignment. */
722 int optimize_align_code = 1;
723
724 /* Non-zero to quieten some warnings. */
725 static int quiet_warnings = 0;
726
727 /* CPU name. */
728 static const char *cpu_arch_name = NULL;
729 static char *cpu_sub_arch_name = NULL;
730
731 /* CPU feature flags. */
732 static i386_cpu_flags cpu_arch_flags = CPU_UNKNOWN_FLAGS;
733
734 /* If we have selected a cpu we are generating instructions for. */
735 static int cpu_arch_tune_set = 0;
736
737 /* Cpu we are generating instructions for. */
738 enum processor_type cpu_arch_tune = PROCESSOR_UNKNOWN;
739
740 /* CPU feature flags of cpu we are generating instructions for. */
741 static i386_cpu_flags cpu_arch_tune_flags;
742
743 /* CPU instruction set architecture used. */
744 enum processor_type cpu_arch_isa = PROCESSOR_UNKNOWN;
745
746 /* CPU feature flags of instruction set architecture used. */
747 i386_cpu_flags cpu_arch_isa_flags;
748
749 /* If set, conditional jumps are not automatically promoted to handle
750 larger than a byte offset. */
751 static unsigned int no_cond_jump_promotion = 0;
752
753 /* Encode SSE instructions with VEX prefix. */
754 static unsigned int sse2avx;
755
756 /* Encode scalar AVX instructions with specific vector length. */
757 static enum
758 {
759 vex128 = 0,
760 vex256
761 } avxscalar;
762
763 /* Encode VEX WIG instructions with specific vex.w. */
764 static enum
765 {
766 vexw0 = 0,
767 vexw1
768 } vexwig;
769
770 /* Encode scalar EVEX LIG instructions with specific vector length. */
771 static enum
772 {
773 evexl128 = 0,
774 evexl256,
775 evexl512
776 } evexlig;
777
778 /* Encode EVEX WIG instructions with specific evex.w. */
779 static enum
780 {
781 evexw0 = 0,
782 evexw1
783 } evexwig;
784
785 /* Value to encode in EVEX RC bits, for SAE-only instructions. */
786 static enum rc_type evexrcig = rne;
787
788 /* Pre-defined "_GLOBAL_OFFSET_TABLE_". */
789 static symbolS *GOT_symbol;
790
791 /* The dwarf2 return column, adjusted for 32 or 64 bit. */
792 unsigned int x86_dwarf2_return_column;
793
794 /* The dwarf2 data alignment, adjusted for 32 or 64 bit. */
795 int x86_cie_data_alignment;
796
797 /* Interface to relax_segment.
798 There are 3 major relax states for 386 jump insns because the
799 different types of jumps add different sizes to frags when we're
800 figuring out what sort of jump to choose to reach a given label.
801
802 BRANCH_PADDING, BRANCH_PREFIX and FUSED_JCC_PADDING are used to align
803 branches which are handled by md_estimate_size_before_relax() and
804 i386_generic_table_relax_frag(). */
805
806 /* Types. */
807 #define UNCOND_JUMP 0
808 #define COND_JUMP 1
809 #define COND_JUMP86 2
810 #define BRANCH_PADDING 3
811 #define BRANCH_PREFIX 4
812 #define FUSED_JCC_PADDING 5
813
814 /* Sizes. */
815 #define CODE16 1
816 #define SMALL 0
817 #define SMALL16 (SMALL | CODE16)
818 #define BIG 2
819 #define BIG16 (BIG | CODE16)
820
821 #ifndef INLINE
822 #ifdef __GNUC__
823 #define INLINE __inline__
824 #else
825 #define INLINE
826 #endif
827 #endif
828
829 #define ENCODE_RELAX_STATE(type, size) \
830 ((relax_substateT) (((type) << 2) | (size)))
831 #define TYPE_FROM_RELAX_STATE(s) \
832 ((s) >> 2)
833 #define DISP_SIZE_FROM_RELAX_STATE(s) \
834 ((((s) & 3) == BIG ? 4 : (((s) & 3) == BIG16 ? 2 : 1)))
835
836 /* This table is used by relax_frag to promote short jumps to long
837 ones where necessary. SMALL (short) jumps may be promoted to BIG
838 (32 bit long) ones, and SMALL16 jumps to BIG16 (16 bit long). We
839 don't allow a short jump in a 32 bit code segment to be promoted to
840 a 16 bit offset jump because it's slower (requires data size
841 prefix), and doesn't work, unless the destination is in the bottom
842 64k of the code segment (The top 16 bits of eip are zeroed). */
843
844 const relax_typeS md_relax_table[] =
845 {
846 /* The fields are:
847 1) most positive reach of this state,
848 2) most negative reach of this state,
849 3) how many bytes this mode will have in the variable part of the frag
850 4) which index into the table to try if we can't fit into this one. */
851
852 /* UNCOND_JUMP states. */
853 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG)},
854 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16)},
855 /* dword jmp adds 4 bytes to frag:
856 0 extra opcode bytes, 4 displacement bytes. */
857 {0, 0, 4, 0},
858 /* word jmp adds 2 byte2 to frag:
859 0 extra opcode bytes, 2 displacement bytes. */
860 {0, 0, 2, 0},
861
862 /* COND_JUMP states. */
863 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG)},
864 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG16)},
865 /* dword conditionals adds 5 bytes to frag:
866 1 extra opcode byte, 4 displacement bytes. */
867 {0, 0, 5, 0},
868 /* word conditionals add 3 bytes to frag:
869 1 extra opcode byte, 2 displacement bytes. */
870 {0, 0, 3, 0},
871
872 /* COND_JUMP86 states. */
873 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG)},
874 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG16)},
875 /* dword conditionals adds 5 bytes to frag:
876 1 extra opcode byte, 4 displacement bytes. */
877 {0, 0, 5, 0},
878 /* word conditionals add 4 bytes to frag:
879 1 displacement byte and a 3 byte long branch insn. */
880 {0, 0, 4, 0}
881 };
882
883 static const arch_entry cpu_arch[] =
884 {
885 /* Do not replace the first two entries - i386_target_format()
886 relies on them being there in this order. */
887 { STRING_COMMA_LEN ("generic32"), PROCESSOR_GENERIC32,
888 CPU_GENERIC32_FLAGS, 0 },
889 { STRING_COMMA_LEN ("generic64"), PROCESSOR_GENERIC64,
890 CPU_GENERIC64_FLAGS, 0 },
891 { STRING_COMMA_LEN ("i8086"), PROCESSOR_UNKNOWN,
892 CPU_NONE_FLAGS, 0 },
893 { STRING_COMMA_LEN ("i186"), PROCESSOR_UNKNOWN,
894 CPU_I186_FLAGS, 0 },
895 { STRING_COMMA_LEN ("i286"), PROCESSOR_UNKNOWN,
896 CPU_I286_FLAGS, 0 },
897 { STRING_COMMA_LEN ("i386"), PROCESSOR_I386,
898 CPU_I386_FLAGS, 0 },
899 { STRING_COMMA_LEN ("i486"), PROCESSOR_I486,
900 CPU_I486_FLAGS, 0 },
901 { STRING_COMMA_LEN ("i586"), PROCESSOR_PENTIUM,
902 CPU_I586_FLAGS, 0 },
903 { STRING_COMMA_LEN ("i686"), PROCESSOR_PENTIUMPRO,
904 CPU_I686_FLAGS, 0 },
905 { STRING_COMMA_LEN ("pentium"), PROCESSOR_PENTIUM,
906 CPU_I586_FLAGS, 0 },
907 { STRING_COMMA_LEN ("pentiumpro"), PROCESSOR_PENTIUMPRO,
908 CPU_PENTIUMPRO_FLAGS, 0 },
909 { STRING_COMMA_LEN ("pentiumii"), PROCESSOR_PENTIUMPRO,
910 CPU_P2_FLAGS, 0 },
911 { STRING_COMMA_LEN ("pentiumiii"),PROCESSOR_PENTIUMPRO,
912 CPU_P3_FLAGS, 0 },
913 { STRING_COMMA_LEN ("pentium4"), PROCESSOR_PENTIUM4,
914 CPU_P4_FLAGS, 0 },
915 { STRING_COMMA_LEN ("prescott"), PROCESSOR_NOCONA,
916 CPU_CORE_FLAGS, 0 },
917 { STRING_COMMA_LEN ("nocona"), PROCESSOR_NOCONA,
918 CPU_NOCONA_FLAGS, 0 },
919 { STRING_COMMA_LEN ("yonah"), PROCESSOR_CORE,
920 CPU_CORE_FLAGS, 1 },
921 { STRING_COMMA_LEN ("core"), PROCESSOR_CORE,
922 CPU_CORE_FLAGS, 0 },
923 { STRING_COMMA_LEN ("merom"), PROCESSOR_CORE2,
924 CPU_CORE2_FLAGS, 1 },
925 { STRING_COMMA_LEN ("core2"), PROCESSOR_CORE2,
926 CPU_CORE2_FLAGS, 0 },
927 { STRING_COMMA_LEN ("corei7"), PROCESSOR_COREI7,
928 CPU_COREI7_FLAGS, 0 },
929 { STRING_COMMA_LEN ("l1om"), PROCESSOR_L1OM,
930 CPU_L1OM_FLAGS, 0 },
931 { STRING_COMMA_LEN ("k1om"), PROCESSOR_K1OM,
932 CPU_K1OM_FLAGS, 0 },
933 { STRING_COMMA_LEN ("iamcu"), PROCESSOR_IAMCU,
934 CPU_IAMCU_FLAGS, 0 },
935 { STRING_COMMA_LEN ("k6"), PROCESSOR_K6,
936 CPU_K6_FLAGS, 0 },
937 { STRING_COMMA_LEN ("k6_2"), PROCESSOR_K6,
938 CPU_K6_2_FLAGS, 0 },
939 { STRING_COMMA_LEN ("athlon"), PROCESSOR_ATHLON,
940 CPU_ATHLON_FLAGS, 0 },
941 { STRING_COMMA_LEN ("sledgehammer"), PROCESSOR_K8,
942 CPU_K8_FLAGS, 1 },
943 { STRING_COMMA_LEN ("opteron"), PROCESSOR_K8,
944 CPU_K8_FLAGS, 0 },
945 { STRING_COMMA_LEN ("k8"), PROCESSOR_K8,
946 CPU_K8_FLAGS, 0 },
947 { STRING_COMMA_LEN ("amdfam10"), PROCESSOR_AMDFAM10,
948 CPU_AMDFAM10_FLAGS, 0 },
949 { STRING_COMMA_LEN ("bdver1"), PROCESSOR_BD,
950 CPU_BDVER1_FLAGS, 0 },
951 { STRING_COMMA_LEN ("bdver2"), PROCESSOR_BD,
952 CPU_BDVER2_FLAGS, 0 },
953 { STRING_COMMA_LEN ("bdver3"), PROCESSOR_BD,
954 CPU_BDVER3_FLAGS, 0 },
955 { STRING_COMMA_LEN ("bdver4"), PROCESSOR_BD,
956 CPU_BDVER4_FLAGS, 0 },
957 { STRING_COMMA_LEN ("znver1"), PROCESSOR_ZNVER,
958 CPU_ZNVER1_FLAGS, 0 },
959 { STRING_COMMA_LEN ("znver2"), PROCESSOR_ZNVER,
960 CPU_ZNVER2_FLAGS, 0 },
961 { STRING_COMMA_LEN ("btver1"), PROCESSOR_BT,
962 CPU_BTVER1_FLAGS, 0 },
963 { STRING_COMMA_LEN ("btver2"), PROCESSOR_BT,
964 CPU_BTVER2_FLAGS, 0 },
965 { STRING_COMMA_LEN (".8087"), PROCESSOR_UNKNOWN,
966 CPU_8087_FLAGS, 0 },
967 { STRING_COMMA_LEN (".287"), PROCESSOR_UNKNOWN,
968 CPU_287_FLAGS, 0 },
969 { STRING_COMMA_LEN (".387"), PROCESSOR_UNKNOWN,
970 CPU_387_FLAGS, 0 },
971 { STRING_COMMA_LEN (".687"), PROCESSOR_UNKNOWN,
972 CPU_687_FLAGS, 0 },
973 { STRING_COMMA_LEN (".cmov"), PROCESSOR_UNKNOWN,
974 CPU_CMOV_FLAGS, 0 },
975 { STRING_COMMA_LEN (".fxsr"), PROCESSOR_UNKNOWN,
976 CPU_FXSR_FLAGS, 0 },
977 { STRING_COMMA_LEN (".mmx"), PROCESSOR_UNKNOWN,
978 CPU_MMX_FLAGS, 0 },
979 { STRING_COMMA_LEN (".sse"), PROCESSOR_UNKNOWN,
980 CPU_SSE_FLAGS, 0 },
981 { STRING_COMMA_LEN (".sse2"), PROCESSOR_UNKNOWN,
982 CPU_SSE2_FLAGS, 0 },
983 { STRING_COMMA_LEN (".sse3"), PROCESSOR_UNKNOWN,
984 CPU_SSE3_FLAGS, 0 },
985 { STRING_COMMA_LEN (".ssse3"), PROCESSOR_UNKNOWN,
986 CPU_SSSE3_FLAGS, 0 },
987 { STRING_COMMA_LEN (".sse4.1"), PROCESSOR_UNKNOWN,
988 CPU_SSE4_1_FLAGS, 0 },
989 { STRING_COMMA_LEN (".sse4.2"), PROCESSOR_UNKNOWN,
990 CPU_SSE4_2_FLAGS, 0 },
991 { STRING_COMMA_LEN (".sse4"), PROCESSOR_UNKNOWN,
992 CPU_SSE4_2_FLAGS, 0 },
993 { STRING_COMMA_LEN (".avx"), PROCESSOR_UNKNOWN,
994 CPU_AVX_FLAGS, 0 },
995 { STRING_COMMA_LEN (".avx2"), PROCESSOR_UNKNOWN,
996 CPU_AVX2_FLAGS, 0 },
997 { STRING_COMMA_LEN (".avx512f"), PROCESSOR_UNKNOWN,
998 CPU_AVX512F_FLAGS, 0 },
999 { STRING_COMMA_LEN (".avx512cd"), PROCESSOR_UNKNOWN,
1000 CPU_AVX512CD_FLAGS, 0 },
1001 { STRING_COMMA_LEN (".avx512er"), PROCESSOR_UNKNOWN,
1002 CPU_AVX512ER_FLAGS, 0 },
1003 { STRING_COMMA_LEN (".avx512pf"), PROCESSOR_UNKNOWN,
1004 CPU_AVX512PF_FLAGS, 0 },
1005 { STRING_COMMA_LEN (".avx512dq"), PROCESSOR_UNKNOWN,
1006 CPU_AVX512DQ_FLAGS, 0 },
1007 { STRING_COMMA_LEN (".avx512bw"), PROCESSOR_UNKNOWN,
1008 CPU_AVX512BW_FLAGS, 0 },
1009 { STRING_COMMA_LEN (".avx512vl"), PROCESSOR_UNKNOWN,
1010 CPU_AVX512VL_FLAGS, 0 },
1011 { STRING_COMMA_LEN (".vmx"), PROCESSOR_UNKNOWN,
1012 CPU_VMX_FLAGS, 0 },
1013 { STRING_COMMA_LEN (".vmfunc"), PROCESSOR_UNKNOWN,
1014 CPU_VMFUNC_FLAGS, 0 },
1015 { STRING_COMMA_LEN (".smx"), PROCESSOR_UNKNOWN,
1016 CPU_SMX_FLAGS, 0 },
1017 { STRING_COMMA_LEN (".xsave"), PROCESSOR_UNKNOWN,
1018 CPU_XSAVE_FLAGS, 0 },
1019 { STRING_COMMA_LEN (".xsaveopt"), PROCESSOR_UNKNOWN,
1020 CPU_XSAVEOPT_FLAGS, 0 },
1021 { STRING_COMMA_LEN (".xsavec"), PROCESSOR_UNKNOWN,
1022 CPU_XSAVEC_FLAGS, 0 },
1023 { STRING_COMMA_LEN (".xsaves"), PROCESSOR_UNKNOWN,
1024 CPU_XSAVES_FLAGS, 0 },
1025 { STRING_COMMA_LEN (".aes"), PROCESSOR_UNKNOWN,
1026 CPU_AES_FLAGS, 0 },
1027 { STRING_COMMA_LEN (".pclmul"), PROCESSOR_UNKNOWN,
1028 CPU_PCLMUL_FLAGS, 0 },
1029 { STRING_COMMA_LEN (".clmul"), PROCESSOR_UNKNOWN,
1030 CPU_PCLMUL_FLAGS, 1 },
1031 { STRING_COMMA_LEN (".fsgsbase"), PROCESSOR_UNKNOWN,
1032 CPU_FSGSBASE_FLAGS, 0 },
1033 { STRING_COMMA_LEN (".rdrnd"), PROCESSOR_UNKNOWN,
1034 CPU_RDRND_FLAGS, 0 },
1035 { STRING_COMMA_LEN (".f16c"), PROCESSOR_UNKNOWN,
1036 CPU_F16C_FLAGS, 0 },
1037 { STRING_COMMA_LEN (".bmi2"), PROCESSOR_UNKNOWN,
1038 CPU_BMI2_FLAGS, 0 },
1039 { STRING_COMMA_LEN (".fma"), PROCESSOR_UNKNOWN,
1040 CPU_FMA_FLAGS, 0 },
1041 { STRING_COMMA_LEN (".fma4"), PROCESSOR_UNKNOWN,
1042 CPU_FMA4_FLAGS, 0 },
1043 { STRING_COMMA_LEN (".xop"), PROCESSOR_UNKNOWN,
1044 CPU_XOP_FLAGS, 0 },
1045 { STRING_COMMA_LEN (".lwp"), PROCESSOR_UNKNOWN,
1046 CPU_LWP_FLAGS, 0 },
1047 { STRING_COMMA_LEN (".movbe"), PROCESSOR_UNKNOWN,
1048 CPU_MOVBE_FLAGS, 0 },
1049 { STRING_COMMA_LEN (".cx16"), PROCESSOR_UNKNOWN,
1050 CPU_CX16_FLAGS, 0 },
1051 { STRING_COMMA_LEN (".ept"), PROCESSOR_UNKNOWN,
1052 CPU_EPT_FLAGS, 0 },
1053 { STRING_COMMA_LEN (".lzcnt"), PROCESSOR_UNKNOWN,
1054 CPU_LZCNT_FLAGS, 0 },
1055 { STRING_COMMA_LEN (".hle"), PROCESSOR_UNKNOWN,
1056 CPU_HLE_FLAGS, 0 },
1057 { STRING_COMMA_LEN (".rtm"), PROCESSOR_UNKNOWN,
1058 CPU_RTM_FLAGS, 0 },
1059 { STRING_COMMA_LEN (".invpcid"), PROCESSOR_UNKNOWN,
1060 CPU_INVPCID_FLAGS, 0 },
1061 { STRING_COMMA_LEN (".clflush"), PROCESSOR_UNKNOWN,
1062 CPU_CLFLUSH_FLAGS, 0 },
1063 { STRING_COMMA_LEN (".nop"), PROCESSOR_UNKNOWN,
1064 CPU_NOP_FLAGS, 0 },
1065 { STRING_COMMA_LEN (".syscall"), PROCESSOR_UNKNOWN,
1066 CPU_SYSCALL_FLAGS, 0 },
1067 { STRING_COMMA_LEN (".rdtscp"), PROCESSOR_UNKNOWN,
1068 CPU_RDTSCP_FLAGS, 0 },
1069 { STRING_COMMA_LEN (".3dnow"), PROCESSOR_UNKNOWN,
1070 CPU_3DNOW_FLAGS, 0 },
1071 { STRING_COMMA_LEN (".3dnowa"), PROCESSOR_UNKNOWN,
1072 CPU_3DNOWA_FLAGS, 0 },
1073 { STRING_COMMA_LEN (".padlock"), PROCESSOR_UNKNOWN,
1074 CPU_PADLOCK_FLAGS, 0 },
1075 { STRING_COMMA_LEN (".pacifica"), PROCESSOR_UNKNOWN,
1076 CPU_SVME_FLAGS, 1 },
1077 { STRING_COMMA_LEN (".svme"), PROCESSOR_UNKNOWN,
1078 CPU_SVME_FLAGS, 0 },
1079 { STRING_COMMA_LEN (".sse4a"), PROCESSOR_UNKNOWN,
1080 CPU_SSE4A_FLAGS, 0 },
1081 { STRING_COMMA_LEN (".abm"), PROCESSOR_UNKNOWN,
1082 CPU_ABM_FLAGS, 0 },
1083 { STRING_COMMA_LEN (".bmi"), PROCESSOR_UNKNOWN,
1084 CPU_BMI_FLAGS, 0 },
1085 { STRING_COMMA_LEN (".tbm"), PROCESSOR_UNKNOWN,
1086 CPU_TBM_FLAGS, 0 },
1087 { STRING_COMMA_LEN (".adx"), PROCESSOR_UNKNOWN,
1088 CPU_ADX_FLAGS, 0 },
1089 { STRING_COMMA_LEN (".rdseed"), PROCESSOR_UNKNOWN,
1090 CPU_RDSEED_FLAGS, 0 },
1091 { STRING_COMMA_LEN (".prfchw"), PROCESSOR_UNKNOWN,
1092 CPU_PRFCHW_FLAGS, 0 },
1093 { STRING_COMMA_LEN (".smap"), PROCESSOR_UNKNOWN,
1094 CPU_SMAP_FLAGS, 0 },
1095 { STRING_COMMA_LEN (".mpx"), PROCESSOR_UNKNOWN,
1096 CPU_MPX_FLAGS, 0 },
1097 { STRING_COMMA_LEN (".sha"), PROCESSOR_UNKNOWN,
1098 CPU_SHA_FLAGS, 0 },
1099 { STRING_COMMA_LEN (".clflushopt"), PROCESSOR_UNKNOWN,
1100 CPU_CLFLUSHOPT_FLAGS, 0 },
1101 { STRING_COMMA_LEN (".prefetchwt1"), PROCESSOR_UNKNOWN,
1102 CPU_PREFETCHWT1_FLAGS, 0 },
1103 { STRING_COMMA_LEN (".se1"), PROCESSOR_UNKNOWN,
1104 CPU_SE1_FLAGS, 0 },
1105 { STRING_COMMA_LEN (".clwb"), PROCESSOR_UNKNOWN,
1106 CPU_CLWB_FLAGS, 0 },
1107 { STRING_COMMA_LEN (".avx512ifma"), PROCESSOR_UNKNOWN,
1108 CPU_AVX512IFMA_FLAGS, 0 },
1109 { STRING_COMMA_LEN (".avx512vbmi"), PROCESSOR_UNKNOWN,
1110 CPU_AVX512VBMI_FLAGS, 0 },
1111 { STRING_COMMA_LEN (".avx512_4fmaps"), PROCESSOR_UNKNOWN,
1112 CPU_AVX512_4FMAPS_FLAGS, 0 },
1113 { STRING_COMMA_LEN (".avx512_4vnniw"), PROCESSOR_UNKNOWN,
1114 CPU_AVX512_4VNNIW_FLAGS, 0 },
1115 { STRING_COMMA_LEN (".avx512_vpopcntdq"), PROCESSOR_UNKNOWN,
1116 CPU_AVX512_VPOPCNTDQ_FLAGS, 0 },
1117 { STRING_COMMA_LEN (".avx512_vbmi2"), PROCESSOR_UNKNOWN,
1118 CPU_AVX512_VBMI2_FLAGS, 0 },
1119 { STRING_COMMA_LEN (".avx512_vnni"), PROCESSOR_UNKNOWN,
1120 CPU_AVX512_VNNI_FLAGS, 0 },
1121 { STRING_COMMA_LEN (".avx512_bitalg"), PROCESSOR_UNKNOWN,
1122 CPU_AVX512_BITALG_FLAGS, 0 },
1123 { STRING_COMMA_LEN (".clzero"), PROCESSOR_UNKNOWN,
1124 CPU_CLZERO_FLAGS, 0 },
1125 { STRING_COMMA_LEN (".mwaitx"), PROCESSOR_UNKNOWN,
1126 CPU_MWAITX_FLAGS, 0 },
1127 { STRING_COMMA_LEN (".ospke"), PROCESSOR_UNKNOWN,
1128 CPU_OSPKE_FLAGS, 0 },
1129 { STRING_COMMA_LEN (".rdpid"), PROCESSOR_UNKNOWN,
1130 CPU_RDPID_FLAGS, 0 },
1131 { STRING_COMMA_LEN (".ptwrite"), PROCESSOR_UNKNOWN,
1132 CPU_PTWRITE_FLAGS, 0 },
1133 { STRING_COMMA_LEN (".ibt"), PROCESSOR_UNKNOWN,
1134 CPU_IBT_FLAGS, 0 },
1135 { STRING_COMMA_LEN (".shstk"), PROCESSOR_UNKNOWN,
1136 CPU_SHSTK_FLAGS, 0 },
1137 { STRING_COMMA_LEN (".gfni"), PROCESSOR_UNKNOWN,
1138 CPU_GFNI_FLAGS, 0 },
1139 { STRING_COMMA_LEN (".vaes"), PROCESSOR_UNKNOWN,
1140 CPU_VAES_FLAGS, 0 },
1141 { STRING_COMMA_LEN (".vpclmulqdq"), PROCESSOR_UNKNOWN,
1142 CPU_VPCLMULQDQ_FLAGS, 0 },
1143 { STRING_COMMA_LEN (".wbnoinvd"), PROCESSOR_UNKNOWN,
1144 CPU_WBNOINVD_FLAGS, 0 },
1145 { STRING_COMMA_LEN (".pconfig"), PROCESSOR_UNKNOWN,
1146 CPU_PCONFIG_FLAGS, 0 },
1147 { STRING_COMMA_LEN (".waitpkg"), PROCESSOR_UNKNOWN,
1148 CPU_WAITPKG_FLAGS, 0 },
1149 { STRING_COMMA_LEN (".cldemote"), PROCESSOR_UNKNOWN,
1150 CPU_CLDEMOTE_FLAGS, 0 },
1151 { STRING_COMMA_LEN (".movdiri"), PROCESSOR_UNKNOWN,
1152 CPU_MOVDIRI_FLAGS, 0 },
1153 { STRING_COMMA_LEN (".movdir64b"), PROCESSOR_UNKNOWN,
1154 CPU_MOVDIR64B_FLAGS, 0 },
1155 { STRING_COMMA_LEN (".avx512_bf16"), PROCESSOR_UNKNOWN,
1156 CPU_AVX512_BF16_FLAGS, 0 },
1157 { STRING_COMMA_LEN (".avx512_vp2intersect"), PROCESSOR_UNKNOWN,
1158 CPU_AVX512_VP2INTERSECT_FLAGS, 0 },
1159 { STRING_COMMA_LEN (".enqcmd"), PROCESSOR_UNKNOWN,
1160 CPU_ENQCMD_FLAGS, 0 },
1161 { STRING_COMMA_LEN (".rdpru"), PROCESSOR_UNKNOWN,
1162 CPU_RDPRU_FLAGS, 0 },
1163 { STRING_COMMA_LEN (".mcommit"), PROCESSOR_UNKNOWN,
1164 CPU_MCOMMIT_FLAGS, 0 },
1165 };
1166
1167 static const noarch_entry cpu_noarch[] =
1168 {
1169 { STRING_COMMA_LEN ("no87"), CPU_ANY_X87_FLAGS },
1170 { STRING_COMMA_LEN ("no287"), CPU_ANY_287_FLAGS },
1171 { STRING_COMMA_LEN ("no387"), CPU_ANY_387_FLAGS },
1172 { STRING_COMMA_LEN ("no687"), CPU_ANY_687_FLAGS },
1173 { STRING_COMMA_LEN ("nocmov"), CPU_ANY_CMOV_FLAGS },
1174 { STRING_COMMA_LEN ("nofxsr"), CPU_ANY_FXSR_FLAGS },
1175 { STRING_COMMA_LEN ("nommx"), CPU_ANY_MMX_FLAGS },
1176 { STRING_COMMA_LEN ("nosse"), CPU_ANY_SSE_FLAGS },
1177 { STRING_COMMA_LEN ("nosse2"), CPU_ANY_SSE2_FLAGS },
1178 { STRING_COMMA_LEN ("nosse3"), CPU_ANY_SSE3_FLAGS },
1179 { STRING_COMMA_LEN ("nossse3"), CPU_ANY_SSSE3_FLAGS },
1180 { STRING_COMMA_LEN ("nosse4.1"), CPU_ANY_SSE4_1_FLAGS },
1181 { STRING_COMMA_LEN ("nosse4.2"), CPU_ANY_SSE4_2_FLAGS },
1182 { STRING_COMMA_LEN ("nosse4"), CPU_ANY_SSE4_1_FLAGS },
1183 { STRING_COMMA_LEN ("noavx"), CPU_ANY_AVX_FLAGS },
1184 { STRING_COMMA_LEN ("noavx2"), CPU_ANY_AVX2_FLAGS },
1185 { STRING_COMMA_LEN ("noavx512f"), CPU_ANY_AVX512F_FLAGS },
1186 { STRING_COMMA_LEN ("noavx512cd"), CPU_ANY_AVX512CD_FLAGS },
1187 { STRING_COMMA_LEN ("noavx512er"), CPU_ANY_AVX512ER_FLAGS },
1188 { STRING_COMMA_LEN ("noavx512pf"), CPU_ANY_AVX512PF_FLAGS },
1189 { STRING_COMMA_LEN ("noavx512dq"), CPU_ANY_AVX512DQ_FLAGS },
1190 { STRING_COMMA_LEN ("noavx512bw"), CPU_ANY_AVX512BW_FLAGS },
1191 { STRING_COMMA_LEN ("noavx512vl"), CPU_ANY_AVX512VL_FLAGS },
1192 { STRING_COMMA_LEN ("noavx512ifma"), CPU_ANY_AVX512IFMA_FLAGS },
1193 { STRING_COMMA_LEN ("noavx512vbmi"), CPU_ANY_AVX512VBMI_FLAGS },
1194 { STRING_COMMA_LEN ("noavx512_4fmaps"), CPU_ANY_AVX512_4FMAPS_FLAGS },
1195 { STRING_COMMA_LEN ("noavx512_4vnniw"), CPU_ANY_AVX512_4VNNIW_FLAGS },
1196 { STRING_COMMA_LEN ("noavx512_vpopcntdq"), CPU_ANY_AVX512_VPOPCNTDQ_FLAGS },
1197 { STRING_COMMA_LEN ("noavx512_vbmi2"), CPU_ANY_AVX512_VBMI2_FLAGS },
1198 { STRING_COMMA_LEN ("noavx512_vnni"), CPU_ANY_AVX512_VNNI_FLAGS },
1199 { STRING_COMMA_LEN ("noavx512_bitalg"), CPU_ANY_AVX512_BITALG_FLAGS },
1200 { STRING_COMMA_LEN ("noibt"), CPU_ANY_IBT_FLAGS },
1201 { STRING_COMMA_LEN ("noshstk"), CPU_ANY_SHSTK_FLAGS },
1202 { STRING_COMMA_LEN ("nomovdiri"), CPU_ANY_MOVDIRI_FLAGS },
1203 { STRING_COMMA_LEN ("nomovdir64b"), CPU_ANY_MOVDIR64B_FLAGS },
1204 { STRING_COMMA_LEN ("noavx512_bf16"), CPU_ANY_AVX512_BF16_FLAGS },
1205 { STRING_COMMA_LEN ("noavx512_vp2intersect"), CPU_ANY_SHSTK_FLAGS },
1206 { STRING_COMMA_LEN ("noenqcmd"), CPU_ANY_ENQCMD_FLAGS },
1207 };
1208
1209 #ifdef I386COFF
1210 /* Like s_lcomm_internal in gas/read.c but the alignment string
1211 is allowed to be optional. */
1212
1213 static symbolS *
1214 pe_lcomm_internal (int needs_align, symbolS *symbolP, addressT size)
1215 {
1216 addressT align = 0;
1217
1218 SKIP_WHITESPACE ();
1219
1220 if (needs_align
1221 && *input_line_pointer == ',')
1222 {
1223 align = parse_align (needs_align - 1);
1224
1225 if (align == (addressT) -1)
1226 return NULL;
1227 }
1228 else
1229 {
1230 if (size >= 8)
1231 align = 3;
1232 else if (size >= 4)
1233 align = 2;
1234 else if (size >= 2)
1235 align = 1;
1236 else
1237 align = 0;
1238 }
1239
1240 bss_alloc (symbolP, size, align);
1241 return symbolP;
1242 }
1243
1244 static void
1245 pe_lcomm (int needs_align)
1246 {
1247 s_comm_internal (needs_align * 2, pe_lcomm_internal);
1248 }
1249 #endif
1250
1251 const pseudo_typeS md_pseudo_table[] =
1252 {
1253 #if !defined(OBJ_AOUT) && !defined(USE_ALIGN_PTWO)
1254 {"align", s_align_bytes, 0},
1255 #else
1256 {"align", s_align_ptwo, 0},
1257 #endif
1258 {"arch", set_cpu_arch, 0},
1259 #ifndef I386COFF
1260 {"bss", s_bss, 0},
1261 #else
1262 {"lcomm", pe_lcomm, 1},
1263 #endif
1264 {"ffloat", float_cons, 'f'},
1265 {"dfloat", float_cons, 'd'},
1266 {"tfloat", float_cons, 'x'},
1267 {"value", cons, 2},
1268 {"slong", signed_cons, 4},
1269 {"noopt", s_ignore, 0},
1270 {"optim", s_ignore, 0},
1271 {"code16gcc", set_16bit_gcc_code_flag, CODE_16BIT},
1272 {"code16", set_code_flag, CODE_16BIT},
1273 {"code32", set_code_flag, CODE_32BIT},
1274 #ifdef BFD64
1275 {"code64", set_code_flag, CODE_64BIT},
1276 #endif
1277 {"intel_syntax", set_intel_syntax, 1},
1278 {"att_syntax", set_intel_syntax, 0},
1279 {"intel_mnemonic", set_intel_mnemonic, 1},
1280 {"att_mnemonic", set_intel_mnemonic, 0},
1281 {"allow_index_reg", set_allow_index_reg, 1},
1282 {"disallow_index_reg", set_allow_index_reg, 0},
1283 {"sse_check", set_check, 0},
1284 {"operand_check", set_check, 1},
1285 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
1286 {"largecomm", handle_large_common, 0},
1287 #else
1288 {"file", dwarf2_directive_file, 0},
1289 {"loc", dwarf2_directive_loc, 0},
1290 {"loc_mark_labels", dwarf2_directive_loc_mark_labels, 0},
1291 #endif
1292 #ifdef TE_PE
1293 {"secrel32", pe_directive_secrel, 0},
1294 #endif
1295 {0, 0, 0}
1296 };
1297
1298 /* For interface with expression (). */
1299 extern char *input_line_pointer;
1300
1301 /* Hash table for instruction mnemonic lookup. */
1302 static struct hash_control *op_hash;
1303
1304 /* Hash table for register lookup. */
1305 static struct hash_control *reg_hash;
1306 \f
1307 /* Various efficient no-op patterns for aligning code labels.
1308 Note: Don't try to assemble the instructions in the comments.
1309 0L and 0w are not legal. */
1310 static const unsigned char f32_1[] =
1311 {0x90}; /* nop */
1312 static const unsigned char f32_2[] =
1313 {0x66,0x90}; /* xchg %ax,%ax */
1314 static const unsigned char f32_3[] =
1315 {0x8d,0x76,0x00}; /* leal 0(%esi),%esi */
1316 static const unsigned char f32_4[] =
1317 {0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
1318 static const unsigned char f32_6[] =
1319 {0x8d,0xb6,0x00,0x00,0x00,0x00}; /* leal 0L(%esi),%esi */
1320 static const unsigned char f32_7[] =
1321 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
1322 static const unsigned char f16_3[] =
1323 {0x8d,0x74,0x00}; /* lea 0(%si),%si */
1324 static const unsigned char f16_4[] =
1325 {0x8d,0xb4,0x00,0x00}; /* lea 0W(%si),%si */
1326 static const unsigned char jump_disp8[] =
1327 {0xeb}; /* jmp disp8 */
1328 static const unsigned char jump32_disp32[] =
1329 {0xe9}; /* jmp disp32 */
1330 static const unsigned char jump16_disp32[] =
1331 {0x66,0xe9}; /* jmp disp32 */
1332 /* 32-bit NOPs patterns. */
1333 static const unsigned char *const f32_patt[] = {
1334 f32_1, f32_2, f32_3, f32_4, NULL, f32_6, f32_7
1335 };
1336 /* 16-bit NOPs patterns. */
1337 static const unsigned char *const f16_patt[] = {
1338 f32_1, f32_2, f16_3, f16_4
1339 };
1340 /* nopl (%[re]ax) */
1341 static const unsigned char alt_3[] =
1342 {0x0f,0x1f,0x00};
1343 /* nopl 0(%[re]ax) */
1344 static const unsigned char alt_4[] =
1345 {0x0f,0x1f,0x40,0x00};
1346 /* nopl 0(%[re]ax,%[re]ax,1) */
1347 static const unsigned char alt_5[] =
1348 {0x0f,0x1f,0x44,0x00,0x00};
1349 /* nopw 0(%[re]ax,%[re]ax,1) */
1350 static const unsigned char alt_6[] =
1351 {0x66,0x0f,0x1f,0x44,0x00,0x00};
1352 /* nopl 0L(%[re]ax) */
1353 static const unsigned char alt_7[] =
1354 {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
1355 /* nopl 0L(%[re]ax,%[re]ax,1) */
1356 static const unsigned char alt_8[] =
1357 {0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1358 /* nopw 0L(%[re]ax,%[re]ax,1) */
1359 static const unsigned char alt_9[] =
1360 {0x66,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1361 /* nopw %cs:0L(%[re]ax,%[re]ax,1) */
1362 static const unsigned char alt_10[] =
1363 {0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1364 /* data16 nopw %cs:0L(%eax,%eax,1) */
1365 static const unsigned char alt_11[] =
1366 {0x66,0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1367 /* 32-bit and 64-bit NOPs patterns. */
1368 static const unsigned char *const alt_patt[] = {
1369 f32_1, f32_2, alt_3, alt_4, alt_5, alt_6, alt_7, alt_8,
1370 alt_9, alt_10, alt_11
1371 };
1372
1373 /* Genenerate COUNT bytes of NOPs to WHERE from PATT with the maximum
1374 size of a single NOP instruction MAX_SINGLE_NOP_SIZE. */
1375
1376 static void
1377 i386_output_nops (char *where, const unsigned char *const *patt,
1378 int count, int max_single_nop_size)
1379
1380 {
1381 /* Place the longer NOP first. */
1382 int last;
1383 int offset;
1384 const unsigned char *nops;
1385
1386 if (max_single_nop_size < 1)
1387 {
1388 as_fatal (_("i386_output_nops called to generate nops of at most %d bytes!"),
1389 max_single_nop_size);
1390 return;
1391 }
1392
1393 nops = patt[max_single_nop_size - 1];
1394
1395 /* Use the smaller one if the requsted one isn't available. */
1396 if (nops == NULL)
1397 {
1398 max_single_nop_size--;
1399 nops = patt[max_single_nop_size - 1];
1400 }
1401
1402 last = count % max_single_nop_size;
1403
1404 count -= last;
1405 for (offset = 0; offset < count; offset += max_single_nop_size)
1406 memcpy (where + offset, nops, max_single_nop_size);
1407
1408 if (last)
1409 {
1410 nops = patt[last - 1];
1411 if (nops == NULL)
1412 {
1413 /* Use the smaller one plus one-byte NOP if the needed one
1414 isn't available. */
1415 last--;
1416 nops = patt[last - 1];
1417 memcpy (where + offset, nops, last);
1418 where[offset + last] = *patt[0];
1419 }
1420 else
1421 memcpy (where + offset, nops, last);
1422 }
1423 }
1424
1425 static INLINE int
1426 fits_in_imm7 (offsetT num)
1427 {
1428 return (num & 0x7f) == num;
1429 }
1430
1431 static INLINE int
1432 fits_in_imm31 (offsetT num)
1433 {
1434 return (num & 0x7fffffff) == num;
1435 }
1436
1437 /* Genenerate COUNT bytes of NOPs to WHERE with the maximum size of a
1438 single NOP instruction LIMIT. */
1439
1440 void
1441 i386_generate_nops (fragS *fragP, char *where, offsetT count, int limit)
1442 {
1443 const unsigned char *const *patt = NULL;
1444 int max_single_nop_size;
1445 /* Maximum number of NOPs before switching to jump over NOPs. */
1446 int max_number_of_nops;
1447
1448 switch (fragP->fr_type)
1449 {
1450 case rs_fill_nop:
1451 case rs_align_code:
1452 break;
1453 case rs_machine_dependent:
1454 /* Allow NOP padding for jumps and calls. */
1455 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PADDING
1456 || TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == FUSED_JCC_PADDING)
1457 break;
1458 /* Fall through. */
1459 default:
1460 return;
1461 }
1462
1463 /* We need to decide which NOP sequence to use for 32bit and
1464 64bit. When -mtune= is used:
1465
1466 1. For PROCESSOR_I386, PROCESSOR_I486, PROCESSOR_PENTIUM and
1467 PROCESSOR_GENERIC32, f32_patt will be used.
1468 2. For the rest, alt_patt will be used.
1469
1470 When -mtune= isn't used, alt_patt will be used if
1471 cpu_arch_isa_flags has CpuNop. Otherwise, f32_patt will
1472 be used.
1473
1474 When -march= or .arch is used, we can't use anything beyond
1475 cpu_arch_isa_flags. */
1476
1477 if (flag_code == CODE_16BIT)
1478 {
1479 patt = f16_patt;
1480 max_single_nop_size = sizeof (f16_patt) / sizeof (f16_patt[0]);
1481 /* Limit number of NOPs to 2 in 16-bit mode. */
1482 max_number_of_nops = 2;
1483 }
1484 else
1485 {
1486 if (fragP->tc_frag_data.isa == PROCESSOR_UNKNOWN)
1487 {
1488 /* PROCESSOR_UNKNOWN means that all ISAs may be used. */
1489 switch (cpu_arch_tune)
1490 {
1491 case PROCESSOR_UNKNOWN:
1492 /* We use cpu_arch_isa_flags to check if we SHOULD
1493 optimize with nops. */
1494 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1495 patt = alt_patt;
1496 else
1497 patt = f32_patt;
1498 break;
1499 case PROCESSOR_PENTIUM4:
1500 case PROCESSOR_NOCONA:
1501 case PROCESSOR_CORE:
1502 case PROCESSOR_CORE2:
1503 case PROCESSOR_COREI7:
1504 case PROCESSOR_L1OM:
1505 case PROCESSOR_K1OM:
1506 case PROCESSOR_GENERIC64:
1507 case PROCESSOR_K6:
1508 case PROCESSOR_ATHLON:
1509 case PROCESSOR_K8:
1510 case PROCESSOR_AMDFAM10:
1511 case PROCESSOR_BD:
1512 case PROCESSOR_ZNVER:
1513 case PROCESSOR_BT:
1514 patt = alt_patt;
1515 break;
1516 case PROCESSOR_I386:
1517 case PROCESSOR_I486:
1518 case PROCESSOR_PENTIUM:
1519 case PROCESSOR_PENTIUMPRO:
1520 case PROCESSOR_IAMCU:
1521 case PROCESSOR_GENERIC32:
1522 patt = f32_patt;
1523 break;
1524 }
1525 }
1526 else
1527 {
1528 switch (fragP->tc_frag_data.tune)
1529 {
1530 case PROCESSOR_UNKNOWN:
1531 /* When cpu_arch_isa is set, cpu_arch_tune shouldn't be
1532 PROCESSOR_UNKNOWN. */
1533 abort ();
1534 break;
1535
1536 case PROCESSOR_I386:
1537 case PROCESSOR_I486:
1538 case PROCESSOR_PENTIUM:
1539 case PROCESSOR_IAMCU:
1540 case PROCESSOR_K6:
1541 case PROCESSOR_ATHLON:
1542 case PROCESSOR_K8:
1543 case PROCESSOR_AMDFAM10:
1544 case PROCESSOR_BD:
1545 case PROCESSOR_ZNVER:
1546 case PROCESSOR_BT:
1547 case PROCESSOR_GENERIC32:
1548 /* We use cpu_arch_isa_flags to check if we CAN optimize
1549 with nops. */
1550 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1551 patt = alt_patt;
1552 else
1553 patt = f32_patt;
1554 break;
1555 case PROCESSOR_PENTIUMPRO:
1556 case PROCESSOR_PENTIUM4:
1557 case PROCESSOR_NOCONA:
1558 case PROCESSOR_CORE:
1559 case PROCESSOR_CORE2:
1560 case PROCESSOR_COREI7:
1561 case PROCESSOR_L1OM:
1562 case PROCESSOR_K1OM:
1563 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1564 patt = alt_patt;
1565 else
1566 patt = f32_patt;
1567 break;
1568 case PROCESSOR_GENERIC64:
1569 patt = alt_patt;
1570 break;
1571 }
1572 }
1573
1574 if (patt == f32_patt)
1575 {
1576 max_single_nop_size = sizeof (f32_patt) / sizeof (f32_patt[0]);
1577 /* Limit number of NOPs to 2 for older processors. */
1578 max_number_of_nops = 2;
1579 }
1580 else
1581 {
1582 max_single_nop_size = sizeof (alt_patt) / sizeof (alt_patt[0]);
1583 /* Limit number of NOPs to 7 for newer processors. */
1584 max_number_of_nops = 7;
1585 }
1586 }
1587
1588 if (limit == 0)
1589 limit = max_single_nop_size;
1590
1591 if (fragP->fr_type == rs_fill_nop)
1592 {
1593 /* Output NOPs for .nop directive. */
1594 if (limit > max_single_nop_size)
1595 {
1596 as_bad_where (fragP->fr_file, fragP->fr_line,
1597 _("invalid single nop size: %d "
1598 "(expect within [0, %d])"),
1599 limit, max_single_nop_size);
1600 return;
1601 }
1602 }
1603 else if (fragP->fr_type != rs_machine_dependent)
1604 fragP->fr_var = count;
1605
1606 if ((count / max_single_nop_size) > max_number_of_nops)
1607 {
1608 /* Generate jump over NOPs. */
1609 offsetT disp = count - 2;
1610 if (fits_in_imm7 (disp))
1611 {
1612 /* Use "jmp disp8" if possible. */
1613 count = disp;
1614 where[0] = jump_disp8[0];
1615 where[1] = count;
1616 where += 2;
1617 }
1618 else
1619 {
1620 unsigned int size_of_jump;
1621
1622 if (flag_code == CODE_16BIT)
1623 {
1624 where[0] = jump16_disp32[0];
1625 where[1] = jump16_disp32[1];
1626 size_of_jump = 2;
1627 }
1628 else
1629 {
1630 where[0] = jump32_disp32[0];
1631 size_of_jump = 1;
1632 }
1633
1634 count -= size_of_jump + 4;
1635 if (!fits_in_imm31 (count))
1636 {
1637 as_bad_where (fragP->fr_file, fragP->fr_line,
1638 _("jump over nop padding out of range"));
1639 return;
1640 }
1641
1642 md_number_to_chars (where + size_of_jump, count, 4);
1643 where += size_of_jump + 4;
1644 }
1645 }
1646
1647 /* Generate multiple NOPs. */
1648 i386_output_nops (where, patt, count, limit);
1649 }
1650
1651 static INLINE int
1652 operand_type_all_zero (const union i386_operand_type *x)
1653 {
1654 switch (ARRAY_SIZE(x->array))
1655 {
1656 case 3:
1657 if (x->array[2])
1658 return 0;
1659 /* Fall through. */
1660 case 2:
1661 if (x->array[1])
1662 return 0;
1663 /* Fall through. */
1664 case 1:
1665 return !x->array[0];
1666 default:
1667 abort ();
1668 }
1669 }
1670
1671 static INLINE void
1672 operand_type_set (union i386_operand_type *x, unsigned int v)
1673 {
1674 switch (ARRAY_SIZE(x->array))
1675 {
1676 case 3:
1677 x->array[2] = v;
1678 /* Fall through. */
1679 case 2:
1680 x->array[1] = v;
1681 /* Fall through. */
1682 case 1:
1683 x->array[0] = v;
1684 /* Fall through. */
1685 break;
1686 default:
1687 abort ();
1688 }
1689
1690 x->bitfield.class = ClassNone;
1691 x->bitfield.instance = InstanceNone;
1692 }
1693
1694 static INLINE int
1695 operand_type_equal (const union i386_operand_type *x,
1696 const union i386_operand_type *y)
1697 {
1698 switch (ARRAY_SIZE(x->array))
1699 {
1700 case 3:
1701 if (x->array[2] != y->array[2])
1702 return 0;
1703 /* Fall through. */
1704 case 2:
1705 if (x->array[1] != y->array[1])
1706 return 0;
1707 /* Fall through. */
1708 case 1:
1709 return x->array[0] == y->array[0];
1710 break;
1711 default:
1712 abort ();
1713 }
1714 }
1715
1716 static INLINE int
1717 cpu_flags_all_zero (const union i386_cpu_flags *x)
1718 {
1719 switch (ARRAY_SIZE(x->array))
1720 {
1721 case 4:
1722 if (x->array[3])
1723 return 0;
1724 /* Fall through. */
1725 case 3:
1726 if (x->array[2])
1727 return 0;
1728 /* Fall through. */
1729 case 2:
1730 if (x->array[1])
1731 return 0;
1732 /* Fall through. */
1733 case 1:
1734 return !x->array[0];
1735 default:
1736 abort ();
1737 }
1738 }
1739
1740 static INLINE int
1741 cpu_flags_equal (const union i386_cpu_flags *x,
1742 const union i386_cpu_flags *y)
1743 {
1744 switch (ARRAY_SIZE(x->array))
1745 {
1746 case 4:
1747 if (x->array[3] != y->array[3])
1748 return 0;
1749 /* Fall through. */
1750 case 3:
1751 if (x->array[2] != y->array[2])
1752 return 0;
1753 /* Fall through. */
1754 case 2:
1755 if (x->array[1] != y->array[1])
1756 return 0;
1757 /* Fall through. */
1758 case 1:
1759 return x->array[0] == y->array[0];
1760 break;
1761 default:
1762 abort ();
1763 }
1764 }
1765
1766 static INLINE int
1767 cpu_flags_check_cpu64 (i386_cpu_flags f)
1768 {
1769 return !((flag_code == CODE_64BIT && f.bitfield.cpuno64)
1770 || (flag_code != CODE_64BIT && f.bitfield.cpu64));
1771 }
1772
1773 static INLINE i386_cpu_flags
1774 cpu_flags_and (i386_cpu_flags x, i386_cpu_flags y)
1775 {
1776 switch (ARRAY_SIZE (x.array))
1777 {
1778 case 4:
1779 x.array [3] &= y.array [3];
1780 /* Fall through. */
1781 case 3:
1782 x.array [2] &= y.array [2];
1783 /* Fall through. */
1784 case 2:
1785 x.array [1] &= y.array [1];
1786 /* Fall through. */
1787 case 1:
1788 x.array [0] &= y.array [0];
1789 break;
1790 default:
1791 abort ();
1792 }
1793 return x;
1794 }
1795
1796 static INLINE i386_cpu_flags
1797 cpu_flags_or (i386_cpu_flags x, i386_cpu_flags y)
1798 {
1799 switch (ARRAY_SIZE (x.array))
1800 {
1801 case 4:
1802 x.array [3] |= y.array [3];
1803 /* Fall through. */
1804 case 3:
1805 x.array [2] |= y.array [2];
1806 /* Fall through. */
1807 case 2:
1808 x.array [1] |= y.array [1];
1809 /* Fall through. */
1810 case 1:
1811 x.array [0] |= y.array [0];
1812 break;
1813 default:
1814 abort ();
1815 }
1816 return x;
1817 }
1818
1819 static INLINE i386_cpu_flags
1820 cpu_flags_and_not (i386_cpu_flags x, i386_cpu_flags y)
1821 {
1822 switch (ARRAY_SIZE (x.array))
1823 {
1824 case 4:
1825 x.array [3] &= ~y.array [3];
1826 /* Fall through. */
1827 case 3:
1828 x.array [2] &= ~y.array [2];
1829 /* Fall through. */
1830 case 2:
1831 x.array [1] &= ~y.array [1];
1832 /* Fall through. */
1833 case 1:
1834 x.array [0] &= ~y.array [0];
1835 break;
1836 default:
1837 abort ();
1838 }
1839 return x;
1840 }
1841
1842 #define CPU_FLAGS_ARCH_MATCH 0x1
1843 #define CPU_FLAGS_64BIT_MATCH 0x2
1844
1845 #define CPU_FLAGS_PERFECT_MATCH \
1846 (CPU_FLAGS_ARCH_MATCH | CPU_FLAGS_64BIT_MATCH)
1847
1848 /* Return CPU flags match bits. */
1849
1850 static int
1851 cpu_flags_match (const insn_template *t)
1852 {
1853 i386_cpu_flags x = t->cpu_flags;
1854 int match = cpu_flags_check_cpu64 (x) ? CPU_FLAGS_64BIT_MATCH : 0;
1855
1856 x.bitfield.cpu64 = 0;
1857 x.bitfield.cpuno64 = 0;
1858
1859 if (cpu_flags_all_zero (&x))
1860 {
1861 /* This instruction is available on all archs. */
1862 match |= CPU_FLAGS_ARCH_MATCH;
1863 }
1864 else
1865 {
1866 /* This instruction is available only on some archs. */
1867 i386_cpu_flags cpu = cpu_arch_flags;
1868
1869 /* AVX512VL is no standalone feature - match it and then strip it. */
1870 if (x.bitfield.cpuavx512vl && !cpu.bitfield.cpuavx512vl)
1871 return match;
1872 x.bitfield.cpuavx512vl = 0;
1873
1874 cpu = cpu_flags_and (x, cpu);
1875 if (!cpu_flags_all_zero (&cpu))
1876 {
1877 if (x.bitfield.cpuavx)
1878 {
1879 /* We need to check a few extra flags with AVX. */
1880 if (cpu.bitfield.cpuavx
1881 && (!t->opcode_modifier.sse2avx || sse2avx)
1882 && (!x.bitfield.cpuaes || cpu.bitfield.cpuaes)
1883 && (!x.bitfield.cpugfni || cpu.bitfield.cpugfni)
1884 && (!x.bitfield.cpupclmul || cpu.bitfield.cpupclmul))
1885 match |= CPU_FLAGS_ARCH_MATCH;
1886 }
1887 else if (x.bitfield.cpuavx512f)
1888 {
1889 /* We need to check a few extra flags with AVX512F. */
1890 if (cpu.bitfield.cpuavx512f
1891 && (!x.bitfield.cpugfni || cpu.bitfield.cpugfni)
1892 && (!x.bitfield.cpuvaes || cpu.bitfield.cpuvaes)
1893 && (!x.bitfield.cpuvpclmulqdq || cpu.bitfield.cpuvpclmulqdq))
1894 match |= CPU_FLAGS_ARCH_MATCH;
1895 }
1896 else
1897 match |= CPU_FLAGS_ARCH_MATCH;
1898 }
1899 }
1900 return match;
1901 }
1902
1903 static INLINE i386_operand_type
1904 operand_type_and (i386_operand_type x, i386_operand_type y)
1905 {
1906 if (x.bitfield.class != y.bitfield.class)
1907 x.bitfield.class = ClassNone;
1908 if (x.bitfield.instance != y.bitfield.instance)
1909 x.bitfield.instance = InstanceNone;
1910
1911 switch (ARRAY_SIZE (x.array))
1912 {
1913 case 3:
1914 x.array [2] &= y.array [2];
1915 /* Fall through. */
1916 case 2:
1917 x.array [1] &= y.array [1];
1918 /* Fall through. */
1919 case 1:
1920 x.array [0] &= y.array [0];
1921 break;
1922 default:
1923 abort ();
1924 }
1925 return x;
1926 }
1927
1928 static INLINE i386_operand_type
1929 operand_type_and_not (i386_operand_type x, i386_operand_type y)
1930 {
1931 gas_assert (y.bitfield.class == ClassNone);
1932 gas_assert (y.bitfield.instance == InstanceNone);
1933
1934 switch (ARRAY_SIZE (x.array))
1935 {
1936 case 3:
1937 x.array [2] &= ~y.array [2];
1938 /* Fall through. */
1939 case 2:
1940 x.array [1] &= ~y.array [1];
1941 /* Fall through. */
1942 case 1:
1943 x.array [0] &= ~y.array [0];
1944 break;
1945 default:
1946 abort ();
1947 }
1948 return x;
1949 }
1950
1951 static INLINE i386_operand_type
1952 operand_type_or (i386_operand_type x, i386_operand_type y)
1953 {
1954 gas_assert (x.bitfield.class == ClassNone ||
1955 y.bitfield.class == ClassNone ||
1956 x.bitfield.class == y.bitfield.class);
1957 gas_assert (x.bitfield.instance == InstanceNone ||
1958 y.bitfield.instance == InstanceNone ||
1959 x.bitfield.instance == y.bitfield.instance);
1960
1961 switch (ARRAY_SIZE (x.array))
1962 {
1963 case 3:
1964 x.array [2] |= y.array [2];
1965 /* Fall through. */
1966 case 2:
1967 x.array [1] |= y.array [1];
1968 /* Fall through. */
1969 case 1:
1970 x.array [0] |= y.array [0];
1971 break;
1972 default:
1973 abort ();
1974 }
1975 return x;
1976 }
1977
1978 static INLINE i386_operand_type
1979 operand_type_xor (i386_operand_type x, i386_operand_type y)
1980 {
1981 gas_assert (y.bitfield.class == ClassNone);
1982 gas_assert (y.bitfield.instance == InstanceNone);
1983
1984 switch (ARRAY_SIZE (x.array))
1985 {
1986 case 3:
1987 x.array [2] ^= y.array [2];
1988 /* Fall through. */
1989 case 2:
1990 x.array [1] ^= y.array [1];
1991 /* Fall through. */
1992 case 1:
1993 x.array [0] ^= y.array [0];
1994 break;
1995 default:
1996 abort ();
1997 }
1998 return x;
1999 }
2000
2001 static const i386_operand_type disp16 = OPERAND_TYPE_DISP16;
2002 static const i386_operand_type disp32 = OPERAND_TYPE_DISP32;
2003 static const i386_operand_type disp32s = OPERAND_TYPE_DISP32S;
2004 static const i386_operand_type disp16_32 = OPERAND_TYPE_DISP16_32;
2005 static const i386_operand_type anydisp = OPERAND_TYPE_ANYDISP;
2006 static const i386_operand_type anyimm = OPERAND_TYPE_ANYIMM;
2007 static const i386_operand_type regxmm = OPERAND_TYPE_REGXMM;
2008 static const i386_operand_type regmask = OPERAND_TYPE_REGMASK;
2009 static const i386_operand_type imm8 = OPERAND_TYPE_IMM8;
2010 static const i386_operand_type imm8s = OPERAND_TYPE_IMM8S;
2011 static const i386_operand_type imm16 = OPERAND_TYPE_IMM16;
2012 static const i386_operand_type imm32 = OPERAND_TYPE_IMM32;
2013 static const i386_operand_type imm32s = OPERAND_TYPE_IMM32S;
2014 static const i386_operand_type imm64 = OPERAND_TYPE_IMM64;
2015 static const i386_operand_type imm16_32 = OPERAND_TYPE_IMM16_32;
2016 static const i386_operand_type imm16_32s = OPERAND_TYPE_IMM16_32S;
2017 static const i386_operand_type imm16_32_32s = OPERAND_TYPE_IMM16_32_32S;
2018
2019 enum operand_type
2020 {
2021 reg,
2022 imm,
2023 disp,
2024 anymem
2025 };
2026
2027 static INLINE int
2028 operand_type_check (i386_operand_type t, enum operand_type c)
2029 {
2030 switch (c)
2031 {
2032 case reg:
2033 return t.bitfield.class == Reg;
2034
2035 case imm:
2036 return (t.bitfield.imm8
2037 || t.bitfield.imm8s
2038 || t.bitfield.imm16
2039 || t.bitfield.imm32
2040 || t.bitfield.imm32s
2041 || t.bitfield.imm64);
2042
2043 case disp:
2044 return (t.bitfield.disp8
2045 || t.bitfield.disp16
2046 || t.bitfield.disp32
2047 || t.bitfield.disp32s
2048 || t.bitfield.disp64);
2049
2050 case anymem:
2051 return (t.bitfield.disp8
2052 || t.bitfield.disp16
2053 || t.bitfield.disp32
2054 || t.bitfield.disp32s
2055 || t.bitfield.disp64
2056 || t.bitfield.baseindex);
2057
2058 default:
2059 abort ();
2060 }
2061
2062 return 0;
2063 }
2064
2065 /* Return 1 if there is no conflict in 8bit/16bit/32bit/64bit/80bit size
2066 between operand GIVEN and opeand WANTED for instruction template T. */
2067
2068 static INLINE int
2069 match_operand_size (const insn_template *t, unsigned int wanted,
2070 unsigned int given)
2071 {
2072 return !((i.types[given].bitfield.byte
2073 && !t->operand_types[wanted].bitfield.byte)
2074 || (i.types[given].bitfield.word
2075 && !t->operand_types[wanted].bitfield.word)
2076 || (i.types[given].bitfield.dword
2077 && !t->operand_types[wanted].bitfield.dword)
2078 || (i.types[given].bitfield.qword
2079 && !t->operand_types[wanted].bitfield.qword)
2080 || (i.types[given].bitfield.tbyte
2081 && !t->operand_types[wanted].bitfield.tbyte));
2082 }
2083
2084 /* Return 1 if there is no conflict in SIMD register between operand
2085 GIVEN and opeand WANTED for instruction template T. */
2086
2087 static INLINE int
2088 match_simd_size (const insn_template *t, unsigned int wanted,
2089 unsigned int given)
2090 {
2091 return !((i.types[given].bitfield.xmmword
2092 && !t->operand_types[wanted].bitfield.xmmword)
2093 || (i.types[given].bitfield.ymmword
2094 && !t->operand_types[wanted].bitfield.ymmword)
2095 || (i.types[given].bitfield.zmmword
2096 && !t->operand_types[wanted].bitfield.zmmword));
2097 }
2098
2099 /* Return 1 if there is no conflict in any size between operand GIVEN
2100 and opeand WANTED for instruction template T. */
2101
2102 static INLINE int
2103 match_mem_size (const insn_template *t, unsigned int wanted,
2104 unsigned int given)
2105 {
2106 return (match_operand_size (t, wanted, given)
2107 && !((i.types[given].bitfield.unspecified
2108 && !i.broadcast
2109 && !t->operand_types[wanted].bitfield.unspecified)
2110 || (i.types[given].bitfield.fword
2111 && !t->operand_types[wanted].bitfield.fword)
2112 /* For scalar opcode templates to allow register and memory
2113 operands at the same time, some special casing is needed
2114 here. Also for v{,p}broadcast*, {,v}pmov{s,z}*, and
2115 down-conversion vpmov*. */
2116 || ((t->operand_types[wanted].bitfield.class == RegSIMD
2117 && !t->opcode_modifier.broadcast
2118 && (t->operand_types[wanted].bitfield.byte
2119 || t->operand_types[wanted].bitfield.word
2120 || t->operand_types[wanted].bitfield.dword
2121 || t->operand_types[wanted].bitfield.qword))
2122 ? (i.types[given].bitfield.xmmword
2123 || i.types[given].bitfield.ymmword
2124 || i.types[given].bitfield.zmmword)
2125 : !match_simd_size(t, wanted, given))));
2126 }
2127
2128 /* Return value has MATCH_STRAIGHT set if there is no size conflict on any
2129 operands for instruction template T, and it has MATCH_REVERSE set if there
2130 is no size conflict on any operands for the template with operands reversed
2131 (and the template allows for reversing in the first place). */
2132
2133 #define MATCH_STRAIGHT 1
2134 #define MATCH_REVERSE 2
2135
2136 static INLINE unsigned int
2137 operand_size_match (const insn_template *t)
2138 {
2139 unsigned int j, match = MATCH_STRAIGHT;
2140
2141 /* Don't check non-absolute jump instructions. */
2142 if (t->opcode_modifier.jump
2143 && t->opcode_modifier.jump != JUMP_ABSOLUTE)
2144 return match;
2145
2146 /* Check memory and accumulator operand size. */
2147 for (j = 0; j < i.operands; j++)
2148 {
2149 if (i.types[j].bitfield.class != Reg
2150 && i.types[j].bitfield.class != RegSIMD
2151 && t->opcode_modifier.anysize)
2152 continue;
2153
2154 if (t->operand_types[j].bitfield.class == Reg
2155 && !match_operand_size (t, j, j))
2156 {
2157 match = 0;
2158 break;
2159 }
2160
2161 if (t->operand_types[j].bitfield.class == RegSIMD
2162 && !match_simd_size (t, j, j))
2163 {
2164 match = 0;
2165 break;
2166 }
2167
2168 if (t->operand_types[j].bitfield.instance == Accum
2169 && (!match_operand_size (t, j, j) || !match_simd_size (t, j, j)))
2170 {
2171 match = 0;
2172 break;
2173 }
2174
2175 if ((i.flags[j] & Operand_Mem) && !match_mem_size (t, j, j))
2176 {
2177 match = 0;
2178 break;
2179 }
2180 }
2181
2182 if (!t->opcode_modifier.d)
2183 {
2184 mismatch:
2185 if (!match)
2186 i.error = operand_size_mismatch;
2187 return match;
2188 }
2189
2190 /* Check reverse. */
2191 gas_assert (i.operands >= 2 && i.operands <= 3);
2192
2193 for (j = 0; j < i.operands; j++)
2194 {
2195 unsigned int given = i.operands - j - 1;
2196
2197 if (t->operand_types[j].bitfield.class == Reg
2198 && !match_operand_size (t, j, given))
2199 goto mismatch;
2200
2201 if (t->operand_types[j].bitfield.class == RegSIMD
2202 && !match_simd_size (t, j, given))
2203 goto mismatch;
2204
2205 if (t->operand_types[j].bitfield.instance == Accum
2206 && (!match_operand_size (t, j, given)
2207 || !match_simd_size (t, j, given)))
2208 goto mismatch;
2209
2210 if ((i.flags[given] & Operand_Mem) && !match_mem_size (t, j, given))
2211 goto mismatch;
2212 }
2213
2214 return match | MATCH_REVERSE;
2215 }
2216
2217 static INLINE int
2218 operand_type_match (i386_operand_type overlap,
2219 i386_operand_type given)
2220 {
2221 i386_operand_type temp = overlap;
2222
2223 temp.bitfield.unspecified = 0;
2224 temp.bitfield.byte = 0;
2225 temp.bitfield.word = 0;
2226 temp.bitfield.dword = 0;
2227 temp.bitfield.fword = 0;
2228 temp.bitfield.qword = 0;
2229 temp.bitfield.tbyte = 0;
2230 temp.bitfield.xmmword = 0;
2231 temp.bitfield.ymmword = 0;
2232 temp.bitfield.zmmword = 0;
2233 if (operand_type_all_zero (&temp))
2234 goto mismatch;
2235
2236 if (given.bitfield.baseindex == overlap.bitfield.baseindex)
2237 return 1;
2238
2239 mismatch:
2240 i.error = operand_type_mismatch;
2241 return 0;
2242 }
2243
2244 /* If given types g0 and g1 are registers they must be of the same type
2245 unless the expected operand type register overlap is null.
2246 Memory operand size of certain SIMD instructions is also being checked
2247 here. */
2248
2249 static INLINE int
2250 operand_type_register_match (i386_operand_type g0,
2251 i386_operand_type t0,
2252 i386_operand_type g1,
2253 i386_operand_type t1)
2254 {
2255 if (g0.bitfield.class != Reg
2256 && g0.bitfield.class != RegSIMD
2257 && (!operand_type_check (g0, anymem)
2258 || g0.bitfield.unspecified
2259 || t0.bitfield.class != RegSIMD))
2260 return 1;
2261
2262 if (g1.bitfield.class != Reg
2263 && g1.bitfield.class != RegSIMD
2264 && (!operand_type_check (g1, anymem)
2265 || g1.bitfield.unspecified
2266 || t1.bitfield.class != RegSIMD))
2267 return 1;
2268
2269 if (g0.bitfield.byte == g1.bitfield.byte
2270 && g0.bitfield.word == g1.bitfield.word
2271 && g0.bitfield.dword == g1.bitfield.dword
2272 && g0.bitfield.qword == g1.bitfield.qword
2273 && g0.bitfield.xmmword == g1.bitfield.xmmword
2274 && g0.bitfield.ymmword == g1.bitfield.ymmword
2275 && g0.bitfield.zmmword == g1.bitfield.zmmword)
2276 return 1;
2277
2278 if (!(t0.bitfield.byte & t1.bitfield.byte)
2279 && !(t0.bitfield.word & t1.bitfield.word)
2280 && !(t0.bitfield.dword & t1.bitfield.dword)
2281 && !(t0.bitfield.qword & t1.bitfield.qword)
2282 && !(t0.bitfield.xmmword & t1.bitfield.xmmword)
2283 && !(t0.bitfield.ymmword & t1.bitfield.ymmword)
2284 && !(t0.bitfield.zmmword & t1.bitfield.zmmword))
2285 return 1;
2286
2287 i.error = register_type_mismatch;
2288
2289 return 0;
2290 }
2291
2292 static INLINE unsigned int
2293 register_number (const reg_entry *r)
2294 {
2295 unsigned int nr = r->reg_num;
2296
2297 if (r->reg_flags & RegRex)
2298 nr += 8;
2299
2300 if (r->reg_flags & RegVRex)
2301 nr += 16;
2302
2303 return nr;
2304 }
2305
2306 static INLINE unsigned int
2307 mode_from_disp_size (i386_operand_type t)
2308 {
2309 if (t.bitfield.disp8)
2310 return 1;
2311 else if (t.bitfield.disp16
2312 || t.bitfield.disp32
2313 || t.bitfield.disp32s)
2314 return 2;
2315 else
2316 return 0;
2317 }
2318
2319 static INLINE int
2320 fits_in_signed_byte (addressT num)
2321 {
2322 return num + 0x80 <= 0xff;
2323 }
2324
2325 static INLINE int
2326 fits_in_unsigned_byte (addressT num)
2327 {
2328 return num <= 0xff;
2329 }
2330
2331 static INLINE int
2332 fits_in_unsigned_word (addressT num)
2333 {
2334 return num <= 0xffff;
2335 }
2336
2337 static INLINE int
2338 fits_in_signed_word (addressT num)
2339 {
2340 return num + 0x8000 <= 0xffff;
2341 }
2342
2343 static INLINE int
2344 fits_in_signed_long (addressT num ATTRIBUTE_UNUSED)
2345 {
2346 #ifndef BFD64
2347 return 1;
2348 #else
2349 return num + 0x80000000 <= 0xffffffff;
2350 #endif
2351 } /* fits_in_signed_long() */
2352
2353 static INLINE int
2354 fits_in_unsigned_long (addressT num ATTRIBUTE_UNUSED)
2355 {
2356 #ifndef BFD64
2357 return 1;
2358 #else
2359 return num <= 0xffffffff;
2360 #endif
2361 } /* fits_in_unsigned_long() */
2362
2363 static INLINE int
2364 fits_in_disp8 (offsetT num)
2365 {
2366 int shift = i.memshift;
2367 unsigned int mask;
2368
2369 if (shift == -1)
2370 abort ();
2371
2372 mask = (1 << shift) - 1;
2373
2374 /* Return 0 if NUM isn't properly aligned. */
2375 if ((num & mask))
2376 return 0;
2377
2378 /* Check if NUM will fit in 8bit after shift. */
2379 return fits_in_signed_byte (num >> shift);
2380 }
2381
2382 static INLINE int
2383 fits_in_imm4 (offsetT num)
2384 {
2385 return (num & 0xf) == num;
2386 }
2387
2388 static i386_operand_type
2389 smallest_imm_type (offsetT num)
2390 {
2391 i386_operand_type t;
2392
2393 operand_type_set (&t, 0);
2394 t.bitfield.imm64 = 1;
2395
2396 if (cpu_arch_tune != PROCESSOR_I486 && num == 1)
2397 {
2398 /* This code is disabled on the 486 because all the Imm1 forms
2399 in the opcode table are slower on the i486. They're the
2400 versions with the implicitly specified single-position
2401 displacement, which has another syntax if you really want to
2402 use that form. */
2403 t.bitfield.imm1 = 1;
2404 t.bitfield.imm8 = 1;
2405 t.bitfield.imm8s = 1;
2406 t.bitfield.imm16 = 1;
2407 t.bitfield.imm32 = 1;
2408 t.bitfield.imm32s = 1;
2409 }
2410 else if (fits_in_signed_byte (num))
2411 {
2412 t.bitfield.imm8 = 1;
2413 t.bitfield.imm8s = 1;
2414 t.bitfield.imm16 = 1;
2415 t.bitfield.imm32 = 1;
2416 t.bitfield.imm32s = 1;
2417 }
2418 else if (fits_in_unsigned_byte (num))
2419 {
2420 t.bitfield.imm8 = 1;
2421 t.bitfield.imm16 = 1;
2422 t.bitfield.imm32 = 1;
2423 t.bitfield.imm32s = 1;
2424 }
2425 else if (fits_in_signed_word (num) || fits_in_unsigned_word (num))
2426 {
2427 t.bitfield.imm16 = 1;
2428 t.bitfield.imm32 = 1;
2429 t.bitfield.imm32s = 1;
2430 }
2431 else if (fits_in_signed_long (num))
2432 {
2433 t.bitfield.imm32 = 1;
2434 t.bitfield.imm32s = 1;
2435 }
2436 else if (fits_in_unsigned_long (num))
2437 t.bitfield.imm32 = 1;
2438
2439 return t;
2440 }
2441
2442 static offsetT
2443 offset_in_range (offsetT val, int size)
2444 {
2445 addressT mask;
2446
2447 switch (size)
2448 {
2449 case 1: mask = ((addressT) 1 << 8) - 1; break;
2450 case 2: mask = ((addressT) 1 << 16) - 1; break;
2451 case 4: mask = ((addressT) 2 << 31) - 1; break;
2452 #ifdef BFD64
2453 case 8: mask = ((addressT) 2 << 63) - 1; break;
2454 #endif
2455 default: abort ();
2456 }
2457
2458 #ifdef BFD64
2459 /* If BFD64, sign extend val for 32bit address mode. */
2460 if (flag_code != CODE_64BIT
2461 || i.prefix[ADDR_PREFIX])
2462 if ((val & ~(((addressT) 2 << 31) - 1)) == 0)
2463 val = (val ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
2464 #endif
2465
2466 if ((val & ~mask) != 0 && (val & ~mask) != ~mask)
2467 {
2468 char buf1[40], buf2[40];
2469
2470 sprint_value (buf1, val);
2471 sprint_value (buf2, val & mask);
2472 as_warn (_("%s shortened to %s"), buf1, buf2);
2473 }
2474 return val & mask;
2475 }
2476
2477 enum PREFIX_GROUP
2478 {
2479 PREFIX_EXIST = 0,
2480 PREFIX_LOCK,
2481 PREFIX_REP,
2482 PREFIX_DS,
2483 PREFIX_OTHER
2484 };
2485
2486 /* Returns
2487 a. PREFIX_EXIST if attempting to add a prefix where one from the
2488 same class already exists.
2489 b. PREFIX_LOCK if lock prefix is added.
2490 c. PREFIX_REP if rep/repne prefix is added.
2491 d. PREFIX_DS if ds prefix is added.
2492 e. PREFIX_OTHER if other prefix is added.
2493 */
2494
2495 static enum PREFIX_GROUP
2496 add_prefix (unsigned int prefix)
2497 {
2498 enum PREFIX_GROUP ret = PREFIX_OTHER;
2499 unsigned int q;
2500
2501 if (prefix >= REX_OPCODE && prefix < REX_OPCODE + 16
2502 && flag_code == CODE_64BIT)
2503 {
2504 if ((i.prefix[REX_PREFIX] & prefix & REX_W)
2505 || (i.prefix[REX_PREFIX] & prefix & REX_R)
2506 || (i.prefix[REX_PREFIX] & prefix & REX_X)
2507 || (i.prefix[REX_PREFIX] & prefix & REX_B))
2508 ret = PREFIX_EXIST;
2509 q = REX_PREFIX;
2510 }
2511 else
2512 {
2513 switch (prefix)
2514 {
2515 default:
2516 abort ();
2517
2518 case DS_PREFIX_OPCODE:
2519 ret = PREFIX_DS;
2520 /* Fall through. */
2521 case CS_PREFIX_OPCODE:
2522 case ES_PREFIX_OPCODE:
2523 case FS_PREFIX_OPCODE:
2524 case GS_PREFIX_OPCODE:
2525 case SS_PREFIX_OPCODE:
2526 q = SEG_PREFIX;
2527 break;
2528
2529 case REPNE_PREFIX_OPCODE:
2530 case REPE_PREFIX_OPCODE:
2531 q = REP_PREFIX;
2532 ret = PREFIX_REP;
2533 break;
2534
2535 case LOCK_PREFIX_OPCODE:
2536 q = LOCK_PREFIX;
2537 ret = PREFIX_LOCK;
2538 break;
2539
2540 case FWAIT_OPCODE:
2541 q = WAIT_PREFIX;
2542 break;
2543
2544 case ADDR_PREFIX_OPCODE:
2545 q = ADDR_PREFIX;
2546 break;
2547
2548 case DATA_PREFIX_OPCODE:
2549 q = DATA_PREFIX;
2550 break;
2551 }
2552 if (i.prefix[q] != 0)
2553 ret = PREFIX_EXIST;
2554 }
2555
2556 if (ret)
2557 {
2558 if (!i.prefix[q])
2559 ++i.prefixes;
2560 i.prefix[q] |= prefix;
2561 }
2562 else
2563 as_bad (_("same type of prefix used twice"));
2564
2565 return ret;
2566 }
2567
2568 static void
2569 update_code_flag (int value, int check)
2570 {
2571 PRINTF_LIKE ((*as_error));
2572
2573 flag_code = (enum flag_code) value;
2574 if (flag_code == CODE_64BIT)
2575 {
2576 cpu_arch_flags.bitfield.cpu64 = 1;
2577 cpu_arch_flags.bitfield.cpuno64 = 0;
2578 }
2579 else
2580 {
2581 cpu_arch_flags.bitfield.cpu64 = 0;
2582 cpu_arch_flags.bitfield.cpuno64 = 1;
2583 }
2584 if (value == CODE_64BIT && !cpu_arch_flags.bitfield.cpulm )
2585 {
2586 if (check)
2587 as_error = as_fatal;
2588 else
2589 as_error = as_bad;
2590 (*as_error) (_("64bit mode not supported on `%s'."),
2591 cpu_arch_name ? cpu_arch_name : default_arch);
2592 }
2593 if (value == CODE_32BIT && !cpu_arch_flags.bitfield.cpui386)
2594 {
2595 if (check)
2596 as_error = as_fatal;
2597 else
2598 as_error = as_bad;
2599 (*as_error) (_("32bit mode not supported on `%s'."),
2600 cpu_arch_name ? cpu_arch_name : default_arch);
2601 }
2602 stackop_size = '\0';
2603 }
2604
2605 static void
2606 set_code_flag (int value)
2607 {
2608 update_code_flag (value, 0);
2609 }
2610
2611 static void
2612 set_16bit_gcc_code_flag (int new_code_flag)
2613 {
2614 flag_code = (enum flag_code) new_code_flag;
2615 if (flag_code != CODE_16BIT)
2616 abort ();
2617 cpu_arch_flags.bitfield.cpu64 = 0;
2618 cpu_arch_flags.bitfield.cpuno64 = 1;
2619 stackop_size = LONG_MNEM_SUFFIX;
2620 }
2621
2622 static void
2623 set_intel_syntax (int syntax_flag)
2624 {
2625 /* Find out if register prefixing is specified. */
2626 int ask_naked_reg = 0;
2627
2628 SKIP_WHITESPACE ();
2629 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2630 {
2631 char *string;
2632 int e = get_symbol_name (&string);
2633
2634 if (strcmp (string, "prefix") == 0)
2635 ask_naked_reg = 1;
2636 else if (strcmp (string, "noprefix") == 0)
2637 ask_naked_reg = -1;
2638 else
2639 as_bad (_("bad argument to syntax directive."));
2640 (void) restore_line_pointer (e);
2641 }
2642 demand_empty_rest_of_line ();
2643
2644 intel_syntax = syntax_flag;
2645
2646 if (ask_naked_reg == 0)
2647 allow_naked_reg = (intel_syntax
2648 && (bfd_get_symbol_leading_char (stdoutput) != '\0'));
2649 else
2650 allow_naked_reg = (ask_naked_reg < 0);
2651
2652 expr_set_rank (O_full_ptr, syntax_flag ? 10 : 0);
2653
2654 identifier_chars['%'] = intel_syntax && allow_naked_reg ? '%' : 0;
2655 identifier_chars['$'] = intel_syntax ? '$' : 0;
2656 register_prefix = allow_naked_reg ? "" : "%";
2657 }
2658
2659 static void
2660 set_intel_mnemonic (int mnemonic_flag)
2661 {
2662 intel_mnemonic = mnemonic_flag;
2663 }
2664
2665 static void
2666 set_allow_index_reg (int flag)
2667 {
2668 allow_index_reg = flag;
2669 }
2670
2671 static void
2672 set_check (int what)
2673 {
2674 enum check_kind *kind;
2675 const char *str;
2676
2677 if (what)
2678 {
2679 kind = &operand_check;
2680 str = "operand";
2681 }
2682 else
2683 {
2684 kind = &sse_check;
2685 str = "sse";
2686 }
2687
2688 SKIP_WHITESPACE ();
2689
2690 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2691 {
2692 char *string;
2693 int e = get_symbol_name (&string);
2694
2695 if (strcmp (string, "none") == 0)
2696 *kind = check_none;
2697 else if (strcmp (string, "warning") == 0)
2698 *kind = check_warning;
2699 else if (strcmp (string, "error") == 0)
2700 *kind = check_error;
2701 else
2702 as_bad (_("bad argument to %s_check directive."), str);
2703 (void) restore_line_pointer (e);
2704 }
2705 else
2706 as_bad (_("missing argument for %s_check directive"), str);
2707
2708 demand_empty_rest_of_line ();
2709 }
2710
2711 static void
2712 check_cpu_arch_compatible (const char *name ATTRIBUTE_UNUSED,
2713 i386_cpu_flags new_flag ATTRIBUTE_UNUSED)
2714 {
2715 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
2716 static const char *arch;
2717
2718 /* Intel LIOM is only supported on ELF. */
2719 if (!IS_ELF)
2720 return;
2721
2722 if (!arch)
2723 {
2724 /* Use cpu_arch_name if it is set in md_parse_option. Otherwise
2725 use default_arch. */
2726 arch = cpu_arch_name;
2727 if (!arch)
2728 arch = default_arch;
2729 }
2730
2731 /* If we are targeting Intel MCU, we must enable it. */
2732 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_IAMCU
2733 || new_flag.bitfield.cpuiamcu)
2734 return;
2735
2736 /* If we are targeting Intel L1OM, we must enable it. */
2737 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_L1OM
2738 || new_flag.bitfield.cpul1om)
2739 return;
2740
2741 /* If we are targeting Intel K1OM, we must enable it. */
2742 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_K1OM
2743 || new_flag.bitfield.cpuk1om)
2744 return;
2745
2746 as_bad (_("`%s' is not supported on `%s'"), name, arch);
2747 #endif
2748 }
2749
2750 static void
2751 set_cpu_arch (int dummy ATTRIBUTE_UNUSED)
2752 {
2753 SKIP_WHITESPACE ();
2754
2755 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2756 {
2757 char *string;
2758 int e = get_symbol_name (&string);
2759 unsigned int j;
2760 i386_cpu_flags flags;
2761
2762 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
2763 {
2764 if (strcmp (string, cpu_arch[j].name) == 0)
2765 {
2766 check_cpu_arch_compatible (string, cpu_arch[j].flags);
2767
2768 if (*string != '.')
2769 {
2770 cpu_arch_name = cpu_arch[j].name;
2771 cpu_sub_arch_name = NULL;
2772 cpu_arch_flags = cpu_arch[j].flags;
2773 if (flag_code == CODE_64BIT)
2774 {
2775 cpu_arch_flags.bitfield.cpu64 = 1;
2776 cpu_arch_flags.bitfield.cpuno64 = 0;
2777 }
2778 else
2779 {
2780 cpu_arch_flags.bitfield.cpu64 = 0;
2781 cpu_arch_flags.bitfield.cpuno64 = 1;
2782 }
2783 cpu_arch_isa = cpu_arch[j].type;
2784 cpu_arch_isa_flags = cpu_arch[j].flags;
2785 if (!cpu_arch_tune_set)
2786 {
2787 cpu_arch_tune = cpu_arch_isa;
2788 cpu_arch_tune_flags = cpu_arch_isa_flags;
2789 }
2790 break;
2791 }
2792
2793 flags = cpu_flags_or (cpu_arch_flags,
2794 cpu_arch[j].flags);
2795
2796 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
2797 {
2798 if (cpu_sub_arch_name)
2799 {
2800 char *name = cpu_sub_arch_name;
2801 cpu_sub_arch_name = concat (name,
2802 cpu_arch[j].name,
2803 (const char *) NULL);
2804 free (name);
2805 }
2806 else
2807 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
2808 cpu_arch_flags = flags;
2809 cpu_arch_isa_flags = flags;
2810 }
2811 else
2812 cpu_arch_isa_flags
2813 = cpu_flags_or (cpu_arch_isa_flags,
2814 cpu_arch[j].flags);
2815 (void) restore_line_pointer (e);
2816 demand_empty_rest_of_line ();
2817 return;
2818 }
2819 }
2820
2821 if (*string == '.' && j >= ARRAY_SIZE (cpu_arch))
2822 {
2823 /* Disable an ISA extension. */
2824 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
2825 if (strcmp (string + 1, cpu_noarch [j].name) == 0)
2826 {
2827 flags = cpu_flags_and_not (cpu_arch_flags,
2828 cpu_noarch[j].flags);
2829 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
2830 {
2831 if (cpu_sub_arch_name)
2832 {
2833 char *name = cpu_sub_arch_name;
2834 cpu_sub_arch_name = concat (name, string,
2835 (const char *) NULL);
2836 free (name);
2837 }
2838 else
2839 cpu_sub_arch_name = xstrdup (string);
2840 cpu_arch_flags = flags;
2841 cpu_arch_isa_flags = flags;
2842 }
2843 (void) restore_line_pointer (e);
2844 demand_empty_rest_of_line ();
2845 return;
2846 }
2847
2848 j = ARRAY_SIZE (cpu_arch);
2849 }
2850
2851 if (j >= ARRAY_SIZE (cpu_arch))
2852 as_bad (_("no such architecture: `%s'"), string);
2853
2854 *input_line_pointer = e;
2855 }
2856 else
2857 as_bad (_("missing cpu architecture"));
2858
2859 no_cond_jump_promotion = 0;
2860 if (*input_line_pointer == ','
2861 && !is_end_of_line[(unsigned char) input_line_pointer[1]])
2862 {
2863 char *string;
2864 char e;
2865
2866 ++input_line_pointer;
2867 e = get_symbol_name (&string);
2868
2869 if (strcmp (string, "nojumps") == 0)
2870 no_cond_jump_promotion = 1;
2871 else if (strcmp (string, "jumps") == 0)
2872 ;
2873 else
2874 as_bad (_("no such architecture modifier: `%s'"), string);
2875
2876 (void) restore_line_pointer (e);
2877 }
2878
2879 demand_empty_rest_of_line ();
2880 }
2881
2882 enum bfd_architecture
2883 i386_arch (void)
2884 {
2885 if (cpu_arch_isa == PROCESSOR_L1OM)
2886 {
2887 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2888 || flag_code != CODE_64BIT)
2889 as_fatal (_("Intel L1OM is 64bit ELF only"));
2890 return bfd_arch_l1om;
2891 }
2892 else if (cpu_arch_isa == PROCESSOR_K1OM)
2893 {
2894 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2895 || flag_code != CODE_64BIT)
2896 as_fatal (_("Intel K1OM is 64bit ELF only"));
2897 return bfd_arch_k1om;
2898 }
2899 else if (cpu_arch_isa == PROCESSOR_IAMCU)
2900 {
2901 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2902 || flag_code == CODE_64BIT)
2903 as_fatal (_("Intel MCU is 32bit ELF only"));
2904 return bfd_arch_iamcu;
2905 }
2906 else
2907 return bfd_arch_i386;
2908 }
2909
2910 unsigned long
2911 i386_mach (void)
2912 {
2913 if (!strncmp (default_arch, "x86_64", 6))
2914 {
2915 if (cpu_arch_isa == PROCESSOR_L1OM)
2916 {
2917 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2918 || default_arch[6] != '\0')
2919 as_fatal (_("Intel L1OM is 64bit ELF only"));
2920 return bfd_mach_l1om;
2921 }
2922 else if (cpu_arch_isa == PROCESSOR_K1OM)
2923 {
2924 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2925 || default_arch[6] != '\0')
2926 as_fatal (_("Intel K1OM is 64bit ELF only"));
2927 return bfd_mach_k1om;
2928 }
2929 else if (default_arch[6] == '\0')
2930 return bfd_mach_x86_64;
2931 else
2932 return bfd_mach_x64_32;
2933 }
2934 else if (!strcmp (default_arch, "i386")
2935 || !strcmp (default_arch, "iamcu"))
2936 {
2937 if (cpu_arch_isa == PROCESSOR_IAMCU)
2938 {
2939 if (OUTPUT_FLAVOR != bfd_target_elf_flavour)
2940 as_fatal (_("Intel MCU is 32bit ELF only"));
2941 return bfd_mach_i386_iamcu;
2942 }
2943 else
2944 return bfd_mach_i386_i386;
2945 }
2946 else
2947 as_fatal (_("unknown architecture"));
2948 }
2949 \f
2950 void
2951 md_begin (void)
2952 {
2953 const char *hash_err;
2954
2955 /* Support pseudo prefixes like {disp32}. */
2956 lex_type ['{'] = LEX_BEGIN_NAME;
2957
2958 /* Initialize op_hash hash table. */
2959 op_hash = hash_new ();
2960
2961 {
2962 const insn_template *optab;
2963 templates *core_optab;
2964
2965 /* Setup for loop. */
2966 optab = i386_optab;
2967 core_optab = XNEW (templates);
2968 core_optab->start = optab;
2969
2970 while (1)
2971 {
2972 ++optab;
2973 if (optab->name == NULL
2974 || strcmp (optab->name, (optab - 1)->name) != 0)
2975 {
2976 /* different name --> ship out current template list;
2977 add to hash table; & begin anew. */
2978 core_optab->end = optab;
2979 hash_err = hash_insert (op_hash,
2980 (optab - 1)->name,
2981 (void *) core_optab);
2982 if (hash_err)
2983 {
2984 as_fatal (_("can't hash %s: %s"),
2985 (optab - 1)->name,
2986 hash_err);
2987 }
2988 if (optab->name == NULL)
2989 break;
2990 core_optab = XNEW (templates);
2991 core_optab->start = optab;
2992 }
2993 }
2994 }
2995
2996 /* Initialize reg_hash hash table. */
2997 reg_hash = hash_new ();
2998 {
2999 const reg_entry *regtab;
3000 unsigned int regtab_size = i386_regtab_size;
3001
3002 for (regtab = i386_regtab; regtab_size--; regtab++)
3003 {
3004 hash_err = hash_insert (reg_hash, regtab->reg_name, (void *) regtab);
3005 if (hash_err)
3006 as_fatal (_("can't hash %s: %s"),
3007 regtab->reg_name,
3008 hash_err);
3009 }
3010 }
3011
3012 /* Fill in lexical tables: mnemonic_chars, operand_chars. */
3013 {
3014 int c;
3015 char *p;
3016
3017 for (c = 0; c < 256; c++)
3018 {
3019 if (ISDIGIT (c))
3020 {
3021 digit_chars[c] = c;
3022 mnemonic_chars[c] = c;
3023 register_chars[c] = c;
3024 operand_chars[c] = c;
3025 }
3026 else if (ISLOWER (c))
3027 {
3028 mnemonic_chars[c] = c;
3029 register_chars[c] = c;
3030 operand_chars[c] = c;
3031 }
3032 else if (ISUPPER (c))
3033 {
3034 mnemonic_chars[c] = TOLOWER (c);
3035 register_chars[c] = mnemonic_chars[c];
3036 operand_chars[c] = c;
3037 }
3038 else if (c == '{' || c == '}')
3039 {
3040 mnemonic_chars[c] = c;
3041 operand_chars[c] = c;
3042 }
3043
3044 if (ISALPHA (c) || ISDIGIT (c))
3045 identifier_chars[c] = c;
3046 else if (c >= 128)
3047 {
3048 identifier_chars[c] = c;
3049 operand_chars[c] = c;
3050 }
3051 }
3052
3053 #ifdef LEX_AT
3054 identifier_chars['@'] = '@';
3055 #endif
3056 #ifdef LEX_QM
3057 identifier_chars['?'] = '?';
3058 operand_chars['?'] = '?';
3059 #endif
3060 digit_chars['-'] = '-';
3061 mnemonic_chars['_'] = '_';
3062 mnemonic_chars['-'] = '-';
3063 mnemonic_chars['.'] = '.';
3064 identifier_chars['_'] = '_';
3065 identifier_chars['.'] = '.';
3066
3067 for (p = operand_special_chars; *p != '\0'; p++)
3068 operand_chars[(unsigned char) *p] = *p;
3069 }
3070
3071 if (flag_code == CODE_64BIT)
3072 {
3073 #if defined (OBJ_COFF) && defined (TE_PE)
3074 x86_dwarf2_return_column = (OUTPUT_FLAVOR == bfd_target_coff_flavour
3075 ? 32 : 16);
3076 #else
3077 x86_dwarf2_return_column = 16;
3078 #endif
3079 x86_cie_data_alignment = -8;
3080 }
3081 else
3082 {
3083 x86_dwarf2_return_column = 8;
3084 x86_cie_data_alignment = -4;
3085 }
3086
3087 /* NB: FUSED_JCC_PADDING frag must have sufficient room so that it
3088 can be turned into BRANCH_PREFIX frag. */
3089 if (align_branch_prefix_size > MAX_FUSED_JCC_PADDING_SIZE)
3090 abort ();
3091 }
3092
3093 void
3094 i386_print_statistics (FILE *file)
3095 {
3096 hash_print_statistics (file, "i386 opcode", op_hash);
3097 hash_print_statistics (file, "i386 register", reg_hash);
3098 }
3099 \f
3100 #ifdef DEBUG386
3101
3102 /* Debugging routines for md_assemble. */
3103 static void pte (insn_template *);
3104 static void pt (i386_operand_type);
3105 static void pe (expressionS *);
3106 static void ps (symbolS *);
3107
3108 static void
3109 pi (const char *line, i386_insn *x)
3110 {
3111 unsigned int j;
3112
3113 fprintf (stdout, "%s: template ", line);
3114 pte (&x->tm);
3115 fprintf (stdout, " address: base %s index %s scale %x\n",
3116 x->base_reg ? x->base_reg->reg_name : "none",
3117 x->index_reg ? x->index_reg->reg_name : "none",
3118 x->log2_scale_factor);
3119 fprintf (stdout, " modrm: mode %x reg %x reg/mem %x\n",
3120 x->rm.mode, x->rm.reg, x->rm.regmem);
3121 fprintf (stdout, " sib: base %x index %x scale %x\n",
3122 x->sib.base, x->sib.index, x->sib.scale);
3123 fprintf (stdout, " rex: 64bit %x extX %x extY %x extZ %x\n",
3124 (x->rex & REX_W) != 0,
3125 (x->rex & REX_R) != 0,
3126 (x->rex & REX_X) != 0,
3127 (x->rex & REX_B) != 0);
3128 for (j = 0; j < x->operands; j++)
3129 {
3130 fprintf (stdout, " #%d: ", j + 1);
3131 pt (x->types[j]);
3132 fprintf (stdout, "\n");
3133 if (x->types[j].bitfield.class == Reg
3134 || x->types[j].bitfield.class == RegMMX
3135 || x->types[j].bitfield.class == RegSIMD
3136 || x->types[j].bitfield.class == SReg
3137 || x->types[j].bitfield.class == RegCR
3138 || x->types[j].bitfield.class == RegDR
3139 || x->types[j].bitfield.class == RegTR)
3140 fprintf (stdout, "%s\n", x->op[j].regs->reg_name);
3141 if (operand_type_check (x->types[j], imm))
3142 pe (x->op[j].imms);
3143 if (operand_type_check (x->types[j], disp))
3144 pe (x->op[j].disps);
3145 }
3146 }
3147
3148 static void
3149 pte (insn_template *t)
3150 {
3151 unsigned int j;
3152 fprintf (stdout, " %d operands ", t->operands);
3153 fprintf (stdout, "opcode %x ", t->base_opcode);
3154 if (t->extension_opcode != None)
3155 fprintf (stdout, "ext %x ", t->extension_opcode);
3156 if (t->opcode_modifier.d)
3157 fprintf (stdout, "D");
3158 if (t->opcode_modifier.w)
3159 fprintf (stdout, "W");
3160 fprintf (stdout, "\n");
3161 for (j = 0; j < t->operands; j++)
3162 {
3163 fprintf (stdout, " #%d type ", j + 1);
3164 pt (t->operand_types[j]);
3165 fprintf (stdout, "\n");
3166 }
3167 }
3168
3169 static void
3170 pe (expressionS *e)
3171 {
3172 fprintf (stdout, " operation %d\n", e->X_op);
3173 fprintf (stdout, " add_number %ld (%lx)\n",
3174 (long) e->X_add_number, (long) e->X_add_number);
3175 if (e->X_add_symbol)
3176 {
3177 fprintf (stdout, " add_symbol ");
3178 ps (e->X_add_symbol);
3179 fprintf (stdout, "\n");
3180 }
3181 if (e->X_op_symbol)
3182 {
3183 fprintf (stdout, " op_symbol ");
3184 ps (e->X_op_symbol);
3185 fprintf (stdout, "\n");
3186 }
3187 }
3188
3189 static void
3190 ps (symbolS *s)
3191 {
3192 fprintf (stdout, "%s type %s%s",
3193 S_GET_NAME (s),
3194 S_IS_EXTERNAL (s) ? "EXTERNAL " : "",
3195 segment_name (S_GET_SEGMENT (s)));
3196 }
3197
3198 static struct type_name
3199 {
3200 i386_operand_type mask;
3201 const char *name;
3202 }
3203 const type_names[] =
3204 {
3205 { OPERAND_TYPE_REG8, "r8" },
3206 { OPERAND_TYPE_REG16, "r16" },
3207 { OPERAND_TYPE_REG32, "r32" },
3208 { OPERAND_TYPE_REG64, "r64" },
3209 { OPERAND_TYPE_ACC8, "acc8" },
3210 { OPERAND_TYPE_ACC16, "acc16" },
3211 { OPERAND_TYPE_ACC32, "acc32" },
3212 { OPERAND_TYPE_ACC64, "acc64" },
3213 { OPERAND_TYPE_IMM8, "i8" },
3214 { OPERAND_TYPE_IMM8, "i8s" },
3215 { OPERAND_TYPE_IMM16, "i16" },
3216 { OPERAND_TYPE_IMM32, "i32" },
3217 { OPERAND_TYPE_IMM32S, "i32s" },
3218 { OPERAND_TYPE_IMM64, "i64" },
3219 { OPERAND_TYPE_IMM1, "i1" },
3220 { OPERAND_TYPE_BASEINDEX, "BaseIndex" },
3221 { OPERAND_TYPE_DISP8, "d8" },
3222 { OPERAND_TYPE_DISP16, "d16" },
3223 { OPERAND_TYPE_DISP32, "d32" },
3224 { OPERAND_TYPE_DISP32S, "d32s" },
3225 { OPERAND_TYPE_DISP64, "d64" },
3226 { OPERAND_TYPE_INOUTPORTREG, "InOutPortReg" },
3227 { OPERAND_TYPE_SHIFTCOUNT, "ShiftCount" },
3228 { OPERAND_TYPE_CONTROL, "control reg" },
3229 { OPERAND_TYPE_TEST, "test reg" },
3230 { OPERAND_TYPE_DEBUG, "debug reg" },
3231 { OPERAND_TYPE_FLOATREG, "FReg" },
3232 { OPERAND_TYPE_FLOATACC, "FAcc" },
3233 { OPERAND_TYPE_SREG, "SReg" },
3234 { OPERAND_TYPE_REGMMX, "rMMX" },
3235 { OPERAND_TYPE_REGXMM, "rXMM" },
3236 { OPERAND_TYPE_REGYMM, "rYMM" },
3237 { OPERAND_TYPE_REGZMM, "rZMM" },
3238 { OPERAND_TYPE_REGMASK, "Mask reg" },
3239 };
3240
3241 static void
3242 pt (i386_operand_type t)
3243 {
3244 unsigned int j;
3245 i386_operand_type a;
3246
3247 for (j = 0; j < ARRAY_SIZE (type_names); j++)
3248 {
3249 a = operand_type_and (t, type_names[j].mask);
3250 if (operand_type_equal (&a, &type_names[j].mask))
3251 fprintf (stdout, "%s, ", type_names[j].name);
3252 }
3253 fflush (stdout);
3254 }
3255
3256 #endif /* DEBUG386 */
3257 \f
3258 static bfd_reloc_code_real_type
3259 reloc (unsigned int size,
3260 int pcrel,
3261 int sign,
3262 bfd_reloc_code_real_type other)
3263 {
3264 if (other != NO_RELOC)
3265 {
3266 reloc_howto_type *rel;
3267
3268 if (size == 8)
3269 switch (other)
3270 {
3271 case BFD_RELOC_X86_64_GOT32:
3272 return BFD_RELOC_X86_64_GOT64;
3273 break;
3274 case BFD_RELOC_X86_64_GOTPLT64:
3275 return BFD_RELOC_X86_64_GOTPLT64;
3276 break;
3277 case BFD_RELOC_X86_64_PLTOFF64:
3278 return BFD_RELOC_X86_64_PLTOFF64;
3279 break;
3280 case BFD_RELOC_X86_64_GOTPC32:
3281 other = BFD_RELOC_X86_64_GOTPC64;
3282 break;
3283 case BFD_RELOC_X86_64_GOTPCREL:
3284 other = BFD_RELOC_X86_64_GOTPCREL64;
3285 break;
3286 case BFD_RELOC_X86_64_TPOFF32:
3287 other = BFD_RELOC_X86_64_TPOFF64;
3288 break;
3289 case BFD_RELOC_X86_64_DTPOFF32:
3290 other = BFD_RELOC_X86_64_DTPOFF64;
3291 break;
3292 default:
3293 break;
3294 }
3295
3296 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
3297 if (other == BFD_RELOC_SIZE32)
3298 {
3299 if (size == 8)
3300 other = BFD_RELOC_SIZE64;
3301 if (pcrel)
3302 {
3303 as_bad (_("there are no pc-relative size relocations"));
3304 return NO_RELOC;
3305 }
3306 }
3307 #endif
3308
3309 /* Sign-checking 4-byte relocations in 16-/32-bit code is pointless. */
3310 if (size == 4 && (flag_code != CODE_64BIT || disallow_64bit_reloc))
3311 sign = -1;
3312
3313 rel = bfd_reloc_type_lookup (stdoutput, other);
3314 if (!rel)
3315 as_bad (_("unknown relocation (%u)"), other);
3316 else if (size != bfd_get_reloc_size (rel))
3317 as_bad (_("%u-byte relocation cannot be applied to %u-byte field"),
3318 bfd_get_reloc_size (rel),
3319 size);
3320 else if (pcrel && !rel->pc_relative)
3321 as_bad (_("non-pc-relative relocation for pc-relative field"));
3322 else if ((rel->complain_on_overflow == complain_overflow_signed
3323 && !sign)
3324 || (rel->complain_on_overflow == complain_overflow_unsigned
3325 && sign > 0))
3326 as_bad (_("relocated field and relocation type differ in signedness"));
3327 else
3328 return other;
3329 return NO_RELOC;
3330 }
3331
3332 if (pcrel)
3333 {
3334 if (!sign)
3335 as_bad (_("there are no unsigned pc-relative relocations"));
3336 switch (size)
3337 {
3338 case 1: return BFD_RELOC_8_PCREL;
3339 case 2: return BFD_RELOC_16_PCREL;
3340 case 4: return BFD_RELOC_32_PCREL;
3341 case 8: return BFD_RELOC_64_PCREL;
3342 }
3343 as_bad (_("cannot do %u byte pc-relative relocation"), size);
3344 }
3345 else
3346 {
3347 if (sign > 0)
3348 switch (size)
3349 {
3350 case 4: return BFD_RELOC_X86_64_32S;
3351 }
3352 else
3353 switch (size)
3354 {
3355 case 1: return BFD_RELOC_8;
3356 case 2: return BFD_RELOC_16;
3357 case 4: return BFD_RELOC_32;
3358 case 8: return BFD_RELOC_64;
3359 }
3360 as_bad (_("cannot do %s %u byte relocation"),
3361 sign > 0 ? "signed" : "unsigned", size);
3362 }
3363
3364 return NO_RELOC;
3365 }
3366
3367 /* Here we decide which fixups can be adjusted to make them relative to
3368 the beginning of the section instead of the symbol. Basically we need
3369 to make sure that the dynamic relocations are done correctly, so in
3370 some cases we force the original symbol to be used. */
3371
3372 int
3373 tc_i386_fix_adjustable (fixS *fixP ATTRIBUTE_UNUSED)
3374 {
3375 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
3376 if (!IS_ELF)
3377 return 1;
3378
3379 /* Don't adjust pc-relative references to merge sections in 64-bit
3380 mode. */
3381 if (use_rela_relocations
3382 && (S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_MERGE) != 0
3383 && fixP->fx_pcrel)
3384 return 0;
3385
3386 /* The x86_64 GOTPCREL are represented as 32bit PCrel relocations
3387 and changed later by validate_fix. */
3388 if (GOT_symbol && fixP->fx_subsy == GOT_symbol
3389 && fixP->fx_r_type == BFD_RELOC_32_PCREL)
3390 return 0;
3391
3392 /* Adjust_reloc_syms doesn't know about the GOT. Need to keep symbol
3393 for size relocations. */
3394 if (fixP->fx_r_type == BFD_RELOC_SIZE32
3395 || fixP->fx_r_type == BFD_RELOC_SIZE64
3396 || fixP->fx_r_type == BFD_RELOC_386_GOTOFF
3397 || fixP->fx_r_type == BFD_RELOC_386_PLT32
3398 || fixP->fx_r_type == BFD_RELOC_386_GOT32
3399 || fixP->fx_r_type == BFD_RELOC_386_GOT32X
3400 || fixP->fx_r_type == BFD_RELOC_386_TLS_GD
3401 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDM
3402 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDO_32
3403 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE_32
3404 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE
3405 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTIE
3406 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE_32
3407 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE
3408 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTDESC
3409 || fixP->fx_r_type == BFD_RELOC_386_TLS_DESC_CALL
3410 || fixP->fx_r_type == BFD_RELOC_X86_64_PLT32
3411 || fixP->fx_r_type == BFD_RELOC_X86_64_GOT32
3412 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCREL
3413 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCRELX
3414 || fixP->fx_r_type == BFD_RELOC_X86_64_REX_GOTPCRELX
3415 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSGD
3416 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSLD
3417 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF32
3418 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF64
3419 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTTPOFF
3420 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF32
3421 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF64
3422 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTOFF64
3423 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPC32_TLSDESC
3424 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSDESC_CALL
3425 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
3426 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
3427 return 0;
3428 #endif
3429 return 1;
3430 }
3431
3432 static int
3433 intel_float_operand (const char *mnemonic)
3434 {
3435 /* Note that the value returned is meaningful only for opcodes with (memory)
3436 operands, hence the code here is free to improperly handle opcodes that
3437 have no operands (for better performance and smaller code). */
3438
3439 if (mnemonic[0] != 'f')
3440 return 0; /* non-math */
3441
3442 switch (mnemonic[1])
3443 {
3444 /* fclex, fdecstp, fdisi, femms, feni, fincstp, finit, fsetpm, and
3445 the fs segment override prefix not currently handled because no
3446 call path can make opcodes without operands get here */
3447 case 'i':
3448 return 2 /* integer op */;
3449 case 'l':
3450 if (mnemonic[2] == 'd' && (mnemonic[3] == 'c' || mnemonic[3] == 'e'))
3451 return 3; /* fldcw/fldenv */
3452 break;
3453 case 'n':
3454 if (mnemonic[2] != 'o' /* fnop */)
3455 return 3; /* non-waiting control op */
3456 break;
3457 case 'r':
3458 if (mnemonic[2] == 's')
3459 return 3; /* frstor/frstpm */
3460 break;
3461 case 's':
3462 if (mnemonic[2] == 'a')
3463 return 3; /* fsave */
3464 if (mnemonic[2] == 't')
3465 {
3466 switch (mnemonic[3])
3467 {
3468 case 'c': /* fstcw */
3469 case 'd': /* fstdw */
3470 case 'e': /* fstenv */
3471 case 's': /* fsts[gw] */
3472 return 3;
3473 }
3474 }
3475 break;
3476 case 'x':
3477 if (mnemonic[2] == 'r' || mnemonic[2] == 's')
3478 return 0; /* fxsave/fxrstor are not really math ops */
3479 break;
3480 }
3481
3482 return 1;
3483 }
3484
3485 /* Build the VEX prefix. */
3486
3487 static void
3488 build_vex_prefix (const insn_template *t)
3489 {
3490 unsigned int register_specifier;
3491 unsigned int implied_prefix;
3492 unsigned int vector_length;
3493 unsigned int w;
3494
3495 /* Check register specifier. */
3496 if (i.vex.register_specifier)
3497 {
3498 register_specifier =
3499 ~register_number (i.vex.register_specifier) & 0xf;
3500 gas_assert ((i.vex.register_specifier->reg_flags & RegVRex) == 0);
3501 }
3502 else
3503 register_specifier = 0xf;
3504
3505 /* Use 2-byte VEX prefix by swapping destination and source operand
3506 if there are more than 1 register operand. */
3507 if (i.reg_operands > 1
3508 && i.vec_encoding != vex_encoding_vex3
3509 && i.dir_encoding == dir_encoding_default
3510 && i.operands == i.reg_operands
3511 && operand_type_equal (&i.types[0], &i.types[i.operands - 1])
3512 && i.tm.opcode_modifier.vexopcode == VEX0F
3513 && (i.tm.opcode_modifier.load || i.tm.opcode_modifier.d)
3514 && i.rex == REX_B)
3515 {
3516 unsigned int xchg = i.operands - 1;
3517 union i386_op temp_op;
3518 i386_operand_type temp_type;
3519
3520 temp_type = i.types[xchg];
3521 i.types[xchg] = i.types[0];
3522 i.types[0] = temp_type;
3523 temp_op = i.op[xchg];
3524 i.op[xchg] = i.op[0];
3525 i.op[0] = temp_op;
3526
3527 gas_assert (i.rm.mode == 3);
3528
3529 i.rex = REX_R;
3530 xchg = i.rm.regmem;
3531 i.rm.regmem = i.rm.reg;
3532 i.rm.reg = xchg;
3533
3534 if (i.tm.opcode_modifier.d)
3535 i.tm.base_opcode ^= (i.tm.base_opcode & 0xee) != 0x6e
3536 ? Opcode_SIMD_FloatD : Opcode_SIMD_IntD;
3537 else /* Use the next insn. */
3538 i.tm = t[1];
3539 }
3540
3541 /* Use 2-byte VEX prefix by swapping commutative source operands if there
3542 are no memory operands and at least 3 register ones. */
3543 if (i.reg_operands >= 3
3544 && i.vec_encoding != vex_encoding_vex3
3545 && i.reg_operands == i.operands - i.imm_operands
3546 && i.tm.opcode_modifier.vex
3547 && i.tm.opcode_modifier.commutative
3548 && (i.tm.opcode_modifier.sse2avx || optimize > 1)
3549 && i.rex == REX_B
3550 && i.vex.register_specifier
3551 && !(i.vex.register_specifier->reg_flags & RegRex))
3552 {
3553 unsigned int xchg = i.operands - i.reg_operands;
3554 union i386_op temp_op;
3555 i386_operand_type temp_type;
3556
3557 gas_assert (i.tm.opcode_modifier.vexopcode == VEX0F);
3558 gas_assert (!i.tm.opcode_modifier.sae);
3559 gas_assert (operand_type_equal (&i.types[i.operands - 2],
3560 &i.types[i.operands - 3]));
3561 gas_assert (i.rm.mode == 3);
3562
3563 temp_type = i.types[xchg];
3564 i.types[xchg] = i.types[xchg + 1];
3565 i.types[xchg + 1] = temp_type;
3566 temp_op = i.op[xchg];
3567 i.op[xchg] = i.op[xchg + 1];
3568 i.op[xchg + 1] = temp_op;
3569
3570 i.rex = 0;
3571 xchg = i.rm.regmem | 8;
3572 i.rm.regmem = ~register_specifier & 0xf;
3573 gas_assert (!(i.rm.regmem & 8));
3574 i.vex.register_specifier += xchg - i.rm.regmem;
3575 register_specifier = ~xchg & 0xf;
3576 }
3577
3578 if (i.tm.opcode_modifier.vex == VEXScalar)
3579 vector_length = avxscalar;
3580 else if (i.tm.opcode_modifier.vex == VEX256)
3581 vector_length = 1;
3582 else
3583 {
3584 unsigned int op;
3585
3586 /* Determine vector length from the last multi-length vector
3587 operand. */
3588 vector_length = 0;
3589 for (op = t->operands; op--;)
3590 if (t->operand_types[op].bitfield.xmmword
3591 && t->operand_types[op].bitfield.ymmword
3592 && i.types[op].bitfield.ymmword)
3593 {
3594 vector_length = 1;
3595 break;
3596 }
3597 }
3598
3599 switch ((i.tm.base_opcode >> 8) & 0xff)
3600 {
3601 case 0:
3602 implied_prefix = 0;
3603 break;
3604 case DATA_PREFIX_OPCODE:
3605 implied_prefix = 1;
3606 break;
3607 case REPE_PREFIX_OPCODE:
3608 implied_prefix = 2;
3609 break;
3610 case REPNE_PREFIX_OPCODE:
3611 implied_prefix = 3;
3612 break;
3613 default:
3614 abort ();
3615 }
3616
3617 /* Check the REX.W bit and VEXW. */
3618 if (i.tm.opcode_modifier.vexw == VEXWIG)
3619 w = (vexwig == vexw1 || (i.rex & REX_W)) ? 1 : 0;
3620 else if (i.tm.opcode_modifier.vexw)
3621 w = i.tm.opcode_modifier.vexw == VEXW1 ? 1 : 0;
3622 else
3623 w = (flag_code == CODE_64BIT ? i.rex & REX_W : vexwig == vexw1) ? 1 : 0;
3624
3625 /* Use 2-byte VEX prefix if possible. */
3626 if (w == 0
3627 && i.vec_encoding != vex_encoding_vex3
3628 && i.tm.opcode_modifier.vexopcode == VEX0F
3629 && (i.rex & (REX_W | REX_X | REX_B)) == 0)
3630 {
3631 /* 2-byte VEX prefix. */
3632 unsigned int r;
3633
3634 i.vex.length = 2;
3635 i.vex.bytes[0] = 0xc5;
3636
3637 /* Check the REX.R bit. */
3638 r = (i.rex & REX_R) ? 0 : 1;
3639 i.vex.bytes[1] = (r << 7
3640 | register_specifier << 3
3641 | vector_length << 2
3642 | implied_prefix);
3643 }
3644 else
3645 {
3646 /* 3-byte VEX prefix. */
3647 unsigned int m;
3648
3649 i.vex.length = 3;
3650
3651 switch (i.tm.opcode_modifier.vexopcode)
3652 {
3653 case VEX0F:
3654 m = 0x1;
3655 i.vex.bytes[0] = 0xc4;
3656 break;
3657 case VEX0F38:
3658 m = 0x2;
3659 i.vex.bytes[0] = 0xc4;
3660 break;
3661 case VEX0F3A:
3662 m = 0x3;
3663 i.vex.bytes[0] = 0xc4;
3664 break;
3665 case XOP08:
3666 m = 0x8;
3667 i.vex.bytes[0] = 0x8f;
3668 break;
3669 case XOP09:
3670 m = 0x9;
3671 i.vex.bytes[0] = 0x8f;
3672 break;
3673 case XOP0A:
3674 m = 0xa;
3675 i.vex.bytes[0] = 0x8f;
3676 break;
3677 default:
3678 abort ();
3679 }
3680
3681 /* The high 3 bits of the second VEX byte are 1's compliment
3682 of RXB bits from REX. */
3683 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3684
3685 i.vex.bytes[2] = (w << 7
3686 | register_specifier << 3
3687 | vector_length << 2
3688 | implied_prefix);
3689 }
3690 }
3691
3692 static INLINE bfd_boolean
3693 is_evex_encoding (const insn_template *t)
3694 {
3695 return t->opcode_modifier.evex || t->opcode_modifier.disp8memshift
3696 || t->opcode_modifier.broadcast || t->opcode_modifier.masking
3697 || t->opcode_modifier.sae;
3698 }
3699
3700 static INLINE bfd_boolean
3701 is_any_vex_encoding (const insn_template *t)
3702 {
3703 return t->opcode_modifier.vex || t->opcode_modifier.vexopcode
3704 || is_evex_encoding (t);
3705 }
3706
3707 /* Build the EVEX prefix. */
3708
3709 static void
3710 build_evex_prefix (void)
3711 {
3712 unsigned int register_specifier;
3713 unsigned int implied_prefix;
3714 unsigned int m, w;
3715 rex_byte vrex_used = 0;
3716
3717 /* Check register specifier. */
3718 if (i.vex.register_specifier)
3719 {
3720 gas_assert ((i.vrex & REX_X) == 0);
3721
3722 register_specifier = i.vex.register_specifier->reg_num;
3723 if ((i.vex.register_specifier->reg_flags & RegRex))
3724 register_specifier += 8;
3725 /* The upper 16 registers are encoded in the fourth byte of the
3726 EVEX prefix. */
3727 if (!(i.vex.register_specifier->reg_flags & RegVRex))
3728 i.vex.bytes[3] = 0x8;
3729 register_specifier = ~register_specifier & 0xf;
3730 }
3731 else
3732 {
3733 register_specifier = 0xf;
3734
3735 /* Encode upper 16 vector index register in the fourth byte of
3736 the EVEX prefix. */
3737 if (!(i.vrex & REX_X))
3738 i.vex.bytes[3] = 0x8;
3739 else
3740 vrex_used |= REX_X;
3741 }
3742
3743 switch ((i.tm.base_opcode >> 8) & 0xff)
3744 {
3745 case 0:
3746 implied_prefix = 0;
3747 break;
3748 case DATA_PREFIX_OPCODE:
3749 implied_prefix = 1;
3750 break;
3751 case REPE_PREFIX_OPCODE:
3752 implied_prefix = 2;
3753 break;
3754 case REPNE_PREFIX_OPCODE:
3755 implied_prefix = 3;
3756 break;
3757 default:
3758 abort ();
3759 }
3760
3761 /* 4 byte EVEX prefix. */
3762 i.vex.length = 4;
3763 i.vex.bytes[0] = 0x62;
3764
3765 /* mmmm bits. */
3766 switch (i.tm.opcode_modifier.vexopcode)
3767 {
3768 case VEX0F:
3769 m = 1;
3770 break;
3771 case VEX0F38:
3772 m = 2;
3773 break;
3774 case VEX0F3A:
3775 m = 3;
3776 break;
3777 default:
3778 abort ();
3779 break;
3780 }
3781
3782 /* The high 3 bits of the second EVEX byte are 1's compliment of RXB
3783 bits from REX. */
3784 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3785
3786 /* The fifth bit of the second EVEX byte is 1's compliment of the
3787 REX_R bit in VREX. */
3788 if (!(i.vrex & REX_R))
3789 i.vex.bytes[1] |= 0x10;
3790 else
3791 vrex_used |= REX_R;
3792
3793 if ((i.reg_operands + i.imm_operands) == i.operands)
3794 {
3795 /* When all operands are registers, the REX_X bit in REX is not
3796 used. We reuse it to encode the upper 16 registers, which is
3797 indicated by the REX_B bit in VREX. The REX_X bit is encoded
3798 as 1's compliment. */
3799 if ((i.vrex & REX_B))
3800 {
3801 vrex_used |= REX_B;
3802 i.vex.bytes[1] &= ~0x40;
3803 }
3804 }
3805
3806 /* EVEX instructions shouldn't need the REX prefix. */
3807 i.vrex &= ~vrex_used;
3808 gas_assert (i.vrex == 0);
3809
3810 /* Check the REX.W bit and VEXW. */
3811 if (i.tm.opcode_modifier.vexw == VEXWIG)
3812 w = (evexwig == evexw1 || (i.rex & REX_W)) ? 1 : 0;
3813 else if (i.tm.opcode_modifier.vexw)
3814 w = i.tm.opcode_modifier.vexw == VEXW1 ? 1 : 0;
3815 else
3816 w = (flag_code == CODE_64BIT ? i.rex & REX_W : evexwig == evexw1) ? 1 : 0;
3817
3818 /* Encode the U bit. */
3819 implied_prefix |= 0x4;
3820
3821 /* The third byte of the EVEX prefix. */
3822 i.vex.bytes[2] = (w << 7 | register_specifier << 3 | implied_prefix);
3823
3824 /* The fourth byte of the EVEX prefix. */
3825 /* The zeroing-masking bit. */
3826 if (i.mask && i.mask->zeroing)
3827 i.vex.bytes[3] |= 0x80;
3828
3829 /* Don't always set the broadcast bit if there is no RC. */
3830 if (!i.rounding)
3831 {
3832 /* Encode the vector length. */
3833 unsigned int vec_length;
3834
3835 if (!i.tm.opcode_modifier.evex
3836 || i.tm.opcode_modifier.evex == EVEXDYN)
3837 {
3838 unsigned int op;
3839
3840 /* Determine vector length from the last multi-length vector
3841 operand. */
3842 vec_length = 0;
3843 for (op = i.operands; op--;)
3844 if (i.tm.operand_types[op].bitfield.xmmword
3845 + i.tm.operand_types[op].bitfield.ymmword
3846 + i.tm.operand_types[op].bitfield.zmmword > 1)
3847 {
3848 if (i.types[op].bitfield.zmmword)
3849 {
3850 i.tm.opcode_modifier.evex = EVEX512;
3851 break;
3852 }
3853 else if (i.types[op].bitfield.ymmword)
3854 {
3855 i.tm.opcode_modifier.evex = EVEX256;
3856 break;
3857 }
3858 else if (i.types[op].bitfield.xmmword)
3859 {
3860 i.tm.opcode_modifier.evex = EVEX128;
3861 break;
3862 }
3863 else if (i.broadcast && (int) op == i.broadcast->operand)
3864 {
3865 switch (i.broadcast->bytes)
3866 {
3867 case 64:
3868 i.tm.opcode_modifier.evex = EVEX512;
3869 break;
3870 case 32:
3871 i.tm.opcode_modifier.evex = EVEX256;
3872 break;
3873 case 16:
3874 i.tm.opcode_modifier.evex = EVEX128;
3875 break;
3876 default:
3877 abort ();
3878 }
3879 break;
3880 }
3881 }
3882
3883 if (op >= MAX_OPERANDS)
3884 abort ();
3885 }
3886
3887 switch (i.tm.opcode_modifier.evex)
3888 {
3889 case EVEXLIG: /* LL' is ignored */
3890 vec_length = evexlig << 5;
3891 break;
3892 case EVEX128:
3893 vec_length = 0 << 5;
3894 break;
3895 case EVEX256:
3896 vec_length = 1 << 5;
3897 break;
3898 case EVEX512:
3899 vec_length = 2 << 5;
3900 break;
3901 default:
3902 abort ();
3903 break;
3904 }
3905 i.vex.bytes[3] |= vec_length;
3906 /* Encode the broadcast bit. */
3907 if (i.broadcast)
3908 i.vex.bytes[3] |= 0x10;
3909 }
3910 else
3911 {
3912 if (i.rounding->type != saeonly)
3913 i.vex.bytes[3] |= 0x10 | (i.rounding->type << 5);
3914 else
3915 i.vex.bytes[3] |= 0x10 | (evexrcig << 5);
3916 }
3917
3918 if (i.mask && i.mask->mask)
3919 i.vex.bytes[3] |= i.mask->mask->reg_num;
3920 }
3921
3922 static void
3923 process_immext (void)
3924 {
3925 expressionS *exp;
3926
3927 /* These AMD 3DNow! and SSE2 instructions have an opcode suffix
3928 which is coded in the same place as an 8-bit immediate field
3929 would be. Here we fake an 8-bit immediate operand from the
3930 opcode suffix stored in tm.extension_opcode.
3931
3932 AVX instructions also use this encoding, for some of
3933 3 argument instructions. */
3934
3935 gas_assert (i.imm_operands <= 1
3936 && (i.operands <= 2
3937 || (is_any_vex_encoding (&i.tm)
3938 && i.operands <= 4)));
3939
3940 exp = &im_expressions[i.imm_operands++];
3941 i.op[i.operands].imms = exp;
3942 i.types[i.operands] = imm8;
3943 i.operands++;
3944 exp->X_op = O_constant;
3945 exp->X_add_number = i.tm.extension_opcode;
3946 i.tm.extension_opcode = None;
3947 }
3948
3949
3950 static int
3951 check_hle (void)
3952 {
3953 switch (i.tm.opcode_modifier.hleprefixok)
3954 {
3955 default:
3956 abort ();
3957 case HLEPrefixNone:
3958 as_bad (_("invalid instruction `%s' after `%s'"),
3959 i.tm.name, i.hle_prefix);
3960 return 0;
3961 case HLEPrefixLock:
3962 if (i.prefix[LOCK_PREFIX])
3963 return 1;
3964 as_bad (_("missing `lock' with `%s'"), i.hle_prefix);
3965 return 0;
3966 case HLEPrefixAny:
3967 return 1;
3968 case HLEPrefixRelease:
3969 if (i.prefix[HLE_PREFIX] != XRELEASE_PREFIX_OPCODE)
3970 {
3971 as_bad (_("instruction `%s' after `xacquire' not allowed"),
3972 i.tm.name);
3973 return 0;
3974 }
3975 if (i.mem_operands == 0 || !(i.flags[i.operands - 1] & Operand_Mem))
3976 {
3977 as_bad (_("memory destination needed for instruction `%s'"
3978 " after `xrelease'"), i.tm.name);
3979 return 0;
3980 }
3981 return 1;
3982 }
3983 }
3984
3985 /* Try the shortest encoding by shortening operand size. */
3986
3987 static void
3988 optimize_encoding (void)
3989 {
3990 unsigned int j;
3991
3992 if (optimize_for_space
3993 && !is_any_vex_encoding (&i.tm)
3994 && i.reg_operands == 1
3995 && i.imm_operands == 1
3996 && !i.types[1].bitfield.byte
3997 && i.op[0].imms->X_op == O_constant
3998 && fits_in_imm7 (i.op[0].imms->X_add_number)
3999 && (i.tm.base_opcode == 0xa8
4000 || (i.tm.base_opcode == 0xf6
4001 && i.tm.extension_opcode == 0x0)))
4002 {
4003 /* Optimize: -Os:
4004 test $imm7, %r64/%r32/%r16 -> test $imm7, %r8
4005 */
4006 unsigned int base_regnum = i.op[1].regs->reg_num;
4007 if (flag_code == CODE_64BIT || base_regnum < 4)
4008 {
4009 i.types[1].bitfield.byte = 1;
4010 /* Ignore the suffix. */
4011 i.suffix = 0;
4012 /* Convert to byte registers. */
4013 if (i.types[1].bitfield.word)
4014 j = 16;
4015 else if (i.types[1].bitfield.dword)
4016 j = 32;
4017 else
4018 j = 48;
4019 if (!(i.op[1].regs->reg_flags & RegRex) && base_regnum < 4)
4020 j += 8;
4021 i.op[1].regs -= j;
4022 }
4023 }
4024 else if (flag_code == CODE_64BIT
4025 && !is_any_vex_encoding (&i.tm)
4026 && ((i.types[1].bitfield.qword
4027 && i.reg_operands == 1
4028 && i.imm_operands == 1
4029 && i.op[0].imms->X_op == O_constant
4030 && ((i.tm.base_opcode == 0xb8
4031 && i.tm.extension_opcode == None
4032 && fits_in_unsigned_long (i.op[0].imms->X_add_number))
4033 || (fits_in_imm31 (i.op[0].imms->X_add_number)
4034 && ((i.tm.base_opcode == 0x24
4035 || i.tm.base_opcode == 0xa8)
4036 || (i.tm.base_opcode == 0x80
4037 && i.tm.extension_opcode == 0x4)
4038 || ((i.tm.base_opcode == 0xf6
4039 || (i.tm.base_opcode | 1) == 0xc7)
4040 && i.tm.extension_opcode == 0x0)))
4041 || (fits_in_imm7 (i.op[0].imms->X_add_number)
4042 && i.tm.base_opcode == 0x83
4043 && i.tm.extension_opcode == 0x4)))
4044 || (i.types[0].bitfield.qword
4045 && ((i.reg_operands == 2
4046 && i.op[0].regs == i.op[1].regs
4047 && (i.tm.base_opcode == 0x30
4048 || i.tm.base_opcode == 0x28))
4049 || (i.reg_operands == 1
4050 && i.operands == 1
4051 && i.tm.base_opcode == 0x30)))))
4052 {
4053 /* Optimize: -O:
4054 andq $imm31, %r64 -> andl $imm31, %r32
4055 andq $imm7, %r64 -> andl $imm7, %r32
4056 testq $imm31, %r64 -> testl $imm31, %r32
4057 xorq %r64, %r64 -> xorl %r32, %r32
4058 subq %r64, %r64 -> subl %r32, %r32
4059 movq $imm31, %r64 -> movl $imm31, %r32
4060 movq $imm32, %r64 -> movl $imm32, %r32
4061 */
4062 i.tm.opcode_modifier.norex64 = 1;
4063 if (i.tm.base_opcode == 0xb8 || (i.tm.base_opcode | 1) == 0xc7)
4064 {
4065 /* Handle
4066 movq $imm31, %r64 -> movl $imm31, %r32
4067 movq $imm32, %r64 -> movl $imm32, %r32
4068 */
4069 i.tm.operand_types[0].bitfield.imm32 = 1;
4070 i.tm.operand_types[0].bitfield.imm32s = 0;
4071 i.tm.operand_types[0].bitfield.imm64 = 0;
4072 i.types[0].bitfield.imm32 = 1;
4073 i.types[0].bitfield.imm32s = 0;
4074 i.types[0].bitfield.imm64 = 0;
4075 i.types[1].bitfield.dword = 1;
4076 i.types[1].bitfield.qword = 0;
4077 if ((i.tm.base_opcode | 1) == 0xc7)
4078 {
4079 /* Handle
4080 movq $imm31, %r64 -> movl $imm31, %r32
4081 */
4082 i.tm.base_opcode = 0xb8;
4083 i.tm.extension_opcode = None;
4084 i.tm.opcode_modifier.w = 0;
4085 i.tm.opcode_modifier.shortform = 1;
4086 i.tm.opcode_modifier.modrm = 0;
4087 }
4088 }
4089 }
4090 else if (optimize > 1
4091 && !optimize_for_space
4092 && !is_any_vex_encoding (&i.tm)
4093 && i.reg_operands == 2
4094 && i.op[0].regs == i.op[1].regs
4095 && ((i.tm.base_opcode & ~(Opcode_D | 1)) == 0x8
4096 || (i.tm.base_opcode & ~(Opcode_D | 1)) == 0x20)
4097 && (flag_code != CODE_64BIT || !i.types[0].bitfield.dword))
4098 {
4099 /* Optimize: -O2:
4100 andb %rN, %rN -> testb %rN, %rN
4101 andw %rN, %rN -> testw %rN, %rN
4102 andq %rN, %rN -> testq %rN, %rN
4103 orb %rN, %rN -> testb %rN, %rN
4104 orw %rN, %rN -> testw %rN, %rN
4105 orq %rN, %rN -> testq %rN, %rN
4106
4107 and outside of 64-bit mode
4108
4109 andl %rN, %rN -> testl %rN, %rN
4110 orl %rN, %rN -> testl %rN, %rN
4111 */
4112 i.tm.base_opcode = 0x84 | (i.tm.base_opcode & 1);
4113 }
4114 else if (i.reg_operands == 3
4115 && i.op[0].regs == i.op[1].regs
4116 && !i.types[2].bitfield.xmmword
4117 && (i.tm.opcode_modifier.vex
4118 || ((!i.mask || i.mask->zeroing)
4119 && !i.rounding
4120 && is_evex_encoding (&i.tm)
4121 && (i.vec_encoding != vex_encoding_evex
4122 || cpu_arch_isa_flags.bitfield.cpuavx512vl
4123 || i.tm.cpu_flags.bitfield.cpuavx512vl
4124 || (i.tm.operand_types[2].bitfield.zmmword
4125 && i.types[2].bitfield.ymmword))))
4126 && ((i.tm.base_opcode == 0x55
4127 || i.tm.base_opcode == 0x6655
4128 || i.tm.base_opcode == 0x66df
4129 || i.tm.base_opcode == 0x57
4130 || i.tm.base_opcode == 0x6657
4131 || i.tm.base_opcode == 0x66ef
4132 || i.tm.base_opcode == 0x66f8
4133 || i.tm.base_opcode == 0x66f9
4134 || i.tm.base_opcode == 0x66fa
4135 || i.tm.base_opcode == 0x66fb
4136 || i.tm.base_opcode == 0x42
4137 || i.tm.base_opcode == 0x6642
4138 || i.tm.base_opcode == 0x47
4139 || i.tm.base_opcode == 0x6647)
4140 && i.tm.extension_opcode == None))
4141 {
4142 /* Optimize: -O1:
4143 VOP, one of vandnps, vandnpd, vxorps, vxorpd, vpsubb, vpsubd,
4144 vpsubq and vpsubw:
4145 EVEX VOP %zmmM, %zmmM, %zmmN
4146 -> VEX VOP %xmmM, %xmmM, %xmmN (M and N < 16)
4147 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
4148 EVEX VOP %ymmM, %ymmM, %ymmN
4149 -> VEX VOP %xmmM, %xmmM, %xmmN (M and N < 16)
4150 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
4151 VEX VOP %ymmM, %ymmM, %ymmN
4152 -> VEX VOP %xmmM, %xmmM, %xmmN
4153 VOP, one of vpandn and vpxor:
4154 VEX VOP %ymmM, %ymmM, %ymmN
4155 -> VEX VOP %xmmM, %xmmM, %xmmN
4156 VOP, one of vpandnd and vpandnq:
4157 EVEX VOP %zmmM, %zmmM, %zmmN
4158 -> VEX vpandn %xmmM, %xmmM, %xmmN (M and N < 16)
4159 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
4160 EVEX VOP %ymmM, %ymmM, %ymmN
4161 -> VEX vpandn %xmmM, %xmmM, %xmmN (M and N < 16)
4162 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
4163 VOP, one of vpxord and vpxorq:
4164 EVEX VOP %zmmM, %zmmM, %zmmN
4165 -> VEX vpxor %xmmM, %xmmM, %xmmN (M and N < 16)
4166 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
4167 EVEX VOP %ymmM, %ymmM, %ymmN
4168 -> VEX vpxor %xmmM, %xmmM, %xmmN (M and N < 16)
4169 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
4170 VOP, one of kxord and kxorq:
4171 VEX VOP %kM, %kM, %kN
4172 -> VEX kxorw %kM, %kM, %kN
4173 VOP, one of kandnd and kandnq:
4174 VEX VOP %kM, %kM, %kN
4175 -> VEX kandnw %kM, %kM, %kN
4176 */
4177 if (is_evex_encoding (&i.tm))
4178 {
4179 if (i.vec_encoding != vex_encoding_evex)
4180 {
4181 i.tm.opcode_modifier.vex = VEX128;
4182 i.tm.opcode_modifier.vexw = VEXW0;
4183 i.tm.opcode_modifier.evex = 0;
4184 }
4185 else if (optimize > 1)
4186 i.tm.opcode_modifier.evex = EVEX128;
4187 else
4188 return;
4189 }
4190 else if (i.tm.operand_types[0].bitfield.class == RegMask)
4191 {
4192 i.tm.base_opcode &= 0xff;
4193 i.tm.opcode_modifier.vexw = VEXW0;
4194 }
4195 else
4196 i.tm.opcode_modifier.vex = VEX128;
4197
4198 if (i.tm.opcode_modifier.vex)
4199 for (j = 0; j < 3; j++)
4200 {
4201 i.types[j].bitfield.xmmword = 1;
4202 i.types[j].bitfield.ymmword = 0;
4203 }
4204 }
4205 else if (i.vec_encoding != vex_encoding_evex
4206 && !i.types[0].bitfield.zmmword
4207 && !i.types[1].bitfield.zmmword
4208 && !i.mask
4209 && !i.broadcast
4210 && is_evex_encoding (&i.tm)
4211 && ((i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0x666f
4212 || (i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0xf36f
4213 || (i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0xf26f
4214 || (i.tm.base_opcode & ~4) == 0x66db
4215 || (i.tm.base_opcode & ~4) == 0x66eb)
4216 && i.tm.extension_opcode == None)
4217 {
4218 /* Optimize: -O1:
4219 VOP, one of vmovdqa32, vmovdqa64, vmovdqu8, vmovdqu16,
4220 vmovdqu32 and vmovdqu64:
4221 EVEX VOP %xmmM, %xmmN
4222 -> VEX vmovdqa|vmovdqu %xmmM, %xmmN (M and N < 16)
4223 EVEX VOP %ymmM, %ymmN
4224 -> VEX vmovdqa|vmovdqu %ymmM, %ymmN (M and N < 16)
4225 EVEX VOP %xmmM, mem
4226 -> VEX vmovdqa|vmovdqu %xmmM, mem (M < 16)
4227 EVEX VOP %ymmM, mem
4228 -> VEX vmovdqa|vmovdqu %ymmM, mem (M < 16)
4229 EVEX VOP mem, %xmmN
4230 -> VEX mvmovdqa|vmovdquem, %xmmN (N < 16)
4231 EVEX VOP mem, %ymmN
4232 -> VEX vmovdqa|vmovdqu mem, %ymmN (N < 16)
4233 VOP, one of vpand, vpandn, vpor, vpxor:
4234 EVEX VOP{d,q} %xmmL, %xmmM, %xmmN
4235 -> VEX VOP %xmmL, %xmmM, %xmmN (L, M, and N < 16)
4236 EVEX VOP{d,q} %ymmL, %ymmM, %ymmN
4237 -> VEX VOP %ymmL, %ymmM, %ymmN (L, M, and N < 16)
4238 EVEX VOP{d,q} mem, %xmmM, %xmmN
4239 -> VEX VOP mem, %xmmM, %xmmN (M and N < 16)
4240 EVEX VOP{d,q} mem, %ymmM, %ymmN
4241 -> VEX VOP mem, %ymmM, %ymmN (M and N < 16)
4242 */
4243 for (j = 0; j < i.operands; j++)
4244 if (operand_type_check (i.types[j], disp)
4245 && i.op[j].disps->X_op == O_constant)
4246 {
4247 /* Since the VEX prefix has 2 or 3 bytes, the EVEX prefix
4248 has 4 bytes, EVEX Disp8 has 1 byte and VEX Disp32 has 4
4249 bytes, we choose EVEX Disp8 over VEX Disp32. */
4250 int evex_disp8, vex_disp8;
4251 unsigned int memshift = i.memshift;
4252 offsetT n = i.op[j].disps->X_add_number;
4253
4254 evex_disp8 = fits_in_disp8 (n);
4255 i.memshift = 0;
4256 vex_disp8 = fits_in_disp8 (n);
4257 if (evex_disp8 != vex_disp8)
4258 {
4259 i.memshift = memshift;
4260 return;
4261 }
4262
4263 i.types[j].bitfield.disp8 = vex_disp8;
4264 break;
4265 }
4266 if ((i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0xf26f)
4267 i.tm.base_opcode ^= 0xf36f ^ 0xf26f;
4268 i.tm.opcode_modifier.vex
4269 = i.types[0].bitfield.ymmword ? VEX256 : VEX128;
4270 i.tm.opcode_modifier.vexw = VEXW0;
4271 /* VPAND, VPOR, and VPXOR are commutative. */
4272 if (i.reg_operands == 3 && i.tm.base_opcode != 0x66df)
4273 i.tm.opcode_modifier.commutative = 1;
4274 i.tm.opcode_modifier.evex = 0;
4275 i.tm.opcode_modifier.masking = 0;
4276 i.tm.opcode_modifier.broadcast = 0;
4277 i.tm.opcode_modifier.disp8memshift = 0;
4278 i.memshift = 0;
4279 if (j < i.operands)
4280 i.types[j].bitfield.disp8
4281 = fits_in_disp8 (i.op[j].disps->X_add_number);
4282 }
4283 }
4284
4285 /* This is the guts of the machine-dependent assembler. LINE points to a
4286 machine dependent instruction. This function is supposed to emit
4287 the frags/bytes it assembles to. */
4288
4289 void
4290 md_assemble (char *line)
4291 {
4292 unsigned int j;
4293 char mnemonic[MAX_MNEM_SIZE], mnem_suffix;
4294 const insn_template *t;
4295
4296 /* Initialize globals. */
4297 memset (&i, '\0', sizeof (i));
4298 for (j = 0; j < MAX_OPERANDS; j++)
4299 i.reloc[j] = NO_RELOC;
4300 memset (disp_expressions, '\0', sizeof (disp_expressions));
4301 memset (im_expressions, '\0', sizeof (im_expressions));
4302 save_stack_p = save_stack;
4303
4304 /* First parse an instruction mnemonic & call i386_operand for the operands.
4305 We assume that the scrubber has arranged it so that line[0] is the valid
4306 start of a (possibly prefixed) mnemonic. */
4307
4308 line = parse_insn (line, mnemonic);
4309 if (line == NULL)
4310 return;
4311 mnem_suffix = i.suffix;
4312
4313 line = parse_operands (line, mnemonic);
4314 this_operand = -1;
4315 xfree (i.memop1_string);
4316 i.memop1_string = NULL;
4317 if (line == NULL)
4318 return;
4319
4320 /* Now we've parsed the mnemonic into a set of templates, and have the
4321 operands at hand. */
4322
4323 /* All intel opcodes have reversed operands except for "bound" and
4324 "enter". We also don't reverse intersegment "jmp" and "call"
4325 instructions with 2 immediate operands so that the immediate segment
4326 precedes the offset, as it does when in AT&T mode. */
4327 if (intel_syntax
4328 && i.operands > 1
4329 && (strcmp (mnemonic, "bound") != 0)
4330 && (strcmp (mnemonic, "invlpga") != 0)
4331 && !(operand_type_check (i.types[0], imm)
4332 && operand_type_check (i.types[1], imm)))
4333 swap_operands ();
4334
4335 /* The order of the immediates should be reversed
4336 for 2 immediates extrq and insertq instructions */
4337 if (i.imm_operands == 2
4338 && (strcmp (mnemonic, "extrq") == 0
4339 || strcmp (mnemonic, "insertq") == 0))
4340 swap_2_operands (0, 1);
4341
4342 if (i.imm_operands)
4343 optimize_imm ();
4344
4345 /* Don't optimize displacement for movabs since it only takes 64bit
4346 displacement. */
4347 if (i.disp_operands
4348 && i.disp_encoding != disp_encoding_32bit
4349 && (flag_code != CODE_64BIT
4350 || strcmp (mnemonic, "movabs") != 0))
4351 optimize_disp ();
4352
4353 /* Next, we find a template that matches the given insn,
4354 making sure the overlap of the given operands types is consistent
4355 with the template operand types. */
4356
4357 if (!(t = match_template (mnem_suffix)))
4358 return;
4359
4360 if (sse_check != check_none
4361 && !i.tm.opcode_modifier.noavx
4362 && !i.tm.cpu_flags.bitfield.cpuavx
4363 && !i.tm.cpu_flags.bitfield.cpuavx512f
4364 && (i.tm.cpu_flags.bitfield.cpusse
4365 || i.tm.cpu_flags.bitfield.cpusse2
4366 || i.tm.cpu_flags.bitfield.cpusse3
4367 || i.tm.cpu_flags.bitfield.cpussse3
4368 || i.tm.cpu_flags.bitfield.cpusse4_1
4369 || i.tm.cpu_flags.bitfield.cpusse4_2
4370 || i.tm.cpu_flags.bitfield.cpusse4a
4371 || i.tm.cpu_flags.bitfield.cpupclmul
4372 || i.tm.cpu_flags.bitfield.cpuaes
4373 || i.tm.cpu_flags.bitfield.cpusha
4374 || i.tm.cpu_flags.bitfield.cpugfni))
4375 {
4376 (sse_check == check_warning
4377 ? as_warn
4378 : as_bad) (_("SSE instruction `%s' is used"), i.tm.name);
4379 }
4380
4381 /* Zap movzx and movsx suffix. The suffix has been set from
4382 "word ptr" or "byte ptr" on the source operand in Intel syntax
4383 or extracted from mnemonic in AT&T syntax. But we'll use
4384 the destination register to choose the suffix for encoding. */
4385 if ((i.tm.base_opcode & ~9) == 0x0fb6)
4386 {
4387 /* In Intel syntax, there must be a suffix. In AT&T syntax, if
4388 there is no suffix, the default will be byte extension. */
4389 if (i.reg_operands != 2
4390 && !i.suffix
4391 && intel_syntax)
4392 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
4393
4394 i.suffix = 0;
4395 }
4396
4397 if (i.tm.opcode_modifier.fwait)
4398 if (!add_prefix (FWAIT_OPCODE))
4399 return;
4400
4401 /* Check if REP prefix is OK. */
4402 if (i.rep_prefix && !i.tm.opcode_modifier.repprefixok)
4403 {
4404 as_bad (_("invalid instruction `%s' after `%s'"),
4405 i.tm.name, i.rep_prefix);
4406 return;
4407 }
4408
4409 /* Check for lock without a lockable instruction. Destination operand
4410 must be memory unless it is xchg (0x86). */
4411 if (i.prefix[LOCK_PREFIX]
4412 && (!i.tm.opcode_modifier.islockable
4413 || i.mem_operands == 0
4414 || (i.tm.base_opcode != 0x86
4415 && !(i.flags[i.operands - 1] & Operand_Mem))))
4416 {
4417 as_bad (_("expecting lockable instruction after `lock'"));
4418 return;
4419 }
4420
4421 /* Check for data size prefix on VEX/XOP/EVEX encoded insns. */
4422 if (i.prefix[DATA_PREFIX] && is_any_vex_encoding (&i.tm))
4423 {
4424 as_bad (_("data size prefix invalid with `%s'"), i.tm.name);
4425 return;
4426 }
4427
4428 /* Check if HLE prefix is OK. */
4429 if (i.hle_prefix && !check_hle ())
4430 return;
4431
4432 /* Check BND prefix. */
4433 if (i.bnd_prefix && !i.tm.opcode_modifier.bndprefixok)
4434 as_bad (_("expecting valid branch instruction after `bnd'"));
4435
4436 /* Check NOTRACK prefix. */
4437 if (i.notrack_prefix && !i.tm.opcode_modifier.notrackprefixok)
4438 as_bad (_("expecting indirect branch instruction after `notrack'"));
4439
4440 if (i.tm.cpu_flags.bitfield.cpumpx)
4441 {
4442 if (flag_code == CODE_64BIT && i.prefix[ADDR_PREFIX])
4443 as_bad (_("32-bit address isn't allowed in 64-bit MPX instructions."));
4444 else if (flag_code != CODE_16BIT
4445 ? i.prefix[ADDR_PREFIX]
4446 : i.mem_operands && !i.prefix[ADDR_PREFIX])
4447 as_bad (_("16-bit address isn't allowed in MPX instructions"));
4448 }
4449
4450 /* Insert BND prefix. */
4451 if (add_bnd_prefix && i.tm.opcode_modifier.bndprefixok)
4452 {
4453 if (!i.prefix[BND_PREFIX])
4454 add_prefix (BND_PREFIX_OPCODE);
4455 else if (i.prefix[BND_PREFIX] != BND_PREFIX_OPCODE)
4456 {
4457 as_warn (_("replacing `rep'/`repe' prefix by `bnd'"));
4458 i.prefix[BND_PREFIX] = BND_PREFIX_OPCODE;
4459 }
4460 }
4461
4462 /* Check string instruction segment overrides. */
4463 if (i.tm.opcode_modifier.isstring >= IS_STRING_ES_OP0)
4464 {
4465 gas_assert (i.mem_operands);
4466 if (!check_string ())
4467 return;
4468 i.disp_operands = 0;
4469 }
4470
4471 if (optimize && !i.no_optimize && i.tm.opcode_modifier.optimize)
4472 optimize_encoding ();
4473
4474 if (!process_suffix ())
4475 return;
4476
4477 /* Update operand types. */
4478 for (j = 0; j < i.operands; j++)
4479 i.types[j] = operand_type_and (i.types[j], i.tm.operand_types[j]);
4480
4481 /* Make still unresolved immediate matches conform to size of immediate
4482 given in i.suffix. */
4483 if (!finalize_imm ())
4484 return;
4485
4486 if (i.types[0].bitfield.imm1)
4487 i.imm_operands = 0; /* kludge for shift insns. */
4488
4489 /* We only need to check those implicit registers for instructions
4490 with 3 operands or less. */
4491 if (i.operands <= 3)
4492 for (j = 0; j < i.operands; j++)
4493 if (i.types[j].bitfield.instance != InstanceNone
4494 && !i.types[j].bitfield.xmmword)
4495 i.reg_operands--;
4496
4497 /* ImmExt should be processed after SSE2AVX. */
4498 if (!i.tm.opcode_modifier.sse2avx
4499 && i.tm.opcode_modifier.immext)
4500 process_immext ();
4501
4502 /* For insns with operands there are more diddles to do to the opcode. */
4503 if (i.operands)
4504 {
4505 if (!process_operands ())
4506 return;
4507 }
4508 else if (!quiet_warnings && i.tm.opcode_modifier.ugh)
4509 {
4510 /* UnixWare fsub no args is alias for fsubp, fadd -> faddp, etc. */
4511 as_warn (_("translating to `%sp'"), i.tm.name);
4512 }
4513
4514 if (is_any_vex_encoding (&i.tm))
4515 {
4516 if (!cpu_arch_flags.bitfield.cpui286)
4517 {
4518 as_bad (_("instruction `%s' isn't supported outside of protected mode."),
4519 i.tm.name);
4520 return;
4521 }
4522
4523 if (i.tm.opcode_modifier.vex)
4524 build_vex_prefix (t);
4525 else
4526 build_evex_prefix ();
4527 }
4528
4529 /* Handle conversion of 'int $3' --> special int3 insn. XOP or FMA4
4530 instructions may define INT_OPCODE as well, so avoid this corner
4531 case for those instructions that use MODRM. */
4532 if (i.tm.base_opcode == INT_OPCODE
4533 && !i.tm.opcode_modifier.modrm
4534 && i.op[0].imms->X_add_number == 3)
4535 {
4536 i.tm.base_opcode = INT3_OPCODE;
4537 i.imm_operands = 0;
4538 }
4539
4540 if ((i.tm.opcode_modifier.jump == JUMP
4541 || i.tm.opcode_modifier.jump == JUMP_BYTE
4542 || i.tm.opcode_modifier.jump == JUMP_DWORD)
4543 && i.op[0].disps->X_op == O_constant)
4544 {
4545 /* Convert "jmp constant" (and "call constant") to a jump (call) to
4546 the absolute address given by the constant. Since ix86 jumps and
4547 calls are pc relative, we need to generate a reloc. */
4548 i.op[0].disps->X_add_symbol = &abs_symbol;
4549 i.op[0].disps->X_op = O_symbol;
4550 }
4551
4552 if (i.tm.opcode_modifier.rex64)
4553 i.rex |= REX_W;
4554
4555 /* For 8 bit registers we need an empty rex prefix. Also if the
4556 instruction already has a prefix, we need to convert old
4557 registers to new ones. */
4558
4559 if ((i.types[0].bitfield.class == Reg && i.types[0].bitfield.byte
4560 && (i.op[0].regs->reg_flags & RegRex64) != 0)
4561 || (i.types[1].bitfield.class == Reg && i.types[1].bitfield.byte
4562 && (i.op[1].regs->reg_flags & RegRex64) != 0)
4563 || (((i.types[0].bitfield.class == Reg && i.types[0].bitfield.byte)
4564 || (i.types[1].bitfield.class == Reg && i.types[1].bitfield.byte))
4565 && i.rex != 0))
4566 {
4567 int x;
4568
4569 i.rex |= REX_OPCODE;
4570 for (x = 0; x < 2; x++)
4571 {
4572 /* Look for 8 bit operand that uses old registers. */
4573 if (i.types[x].bitfield.class == Reg && i.types[x].bitfield.byte
4574 && (i.op[x].regs->reg_flags & RegRex64) == 0)
4575 {
4576 gas_assert (!(i.op[x].regs->reg_flags & RegRex));
4577 /* In case it is "hi" register, give up. */
4578 if (i.op[x].regs->reg_num > 3)
4579 as_bad (_("can't encode register '%s%s' in an "
4580 "instruction requiring REX prefix."),
4581 register_prefix, i.op[x].regs->reg_name);
4582
4583 /* Otherwise it is equivalent to the extended register.
4584 Since the encoding doesn't change this is merely
4585 cosmetic cleanup for debug output. */
4586
4587 i.op[x].regs = i.op[x].regs + 8;
4588 }
4589 }
4590 }
4591
4592 if (i.rex == 0 && i.rex_encoding)
4593 {
4594 /* Check if we can add a REX_OPCODE byte. Look for 8 bit operand
4595 that uses legacy register. If it is "hi" register, don't add
4596 the REX_OPCODE byte. */
4597 int x;
4598 for (x = 0; x < 2; x++)
4599 if (i.types[x].bitfield.class == Reg
4600 && i.types[x].bitfield.byte
4601 && (i.op[x].regs->reg_flags & RegRex64) == 0
4602 && i.op[x].regs->reg_num > 3)
4603 {
4604 gas_assert (!(i.op[x].regs->reg_flags & RegRex));
4605 i.rex_encoding = FALSE;
4606 break;
4607 }
4608
4609 if (i.rex_encoding)
4610 i.rex = REX_OPCODE;
4611 }
4612
4613 if (i.rex != 0)
4614 add_prefix (REX_OPCODE | i.rex);
4615
4616 /* We are ready to output the insn. */
4617 output_insn ();
4618
4619 last_insn.seg = now_seg;
4620
4621 if (i.tm.opcode_modifier.isprefix)
4622 {
4623 last_insn.kind = last_insn_prefix;
4624 last_insn.name = i.tm.name;
4625 last_insn.file = as_where (&last_insn.line);
4626 }
4627 else
4628 last_insn.kind = last_insn_other;
4629 }
4630
4631 static char *
4632 parse_insn (char *line, char *mnemonic)
4633 {
4634 char *l = line;
4635 char *token_start = l;
4636 char *mnem_p;
4637 int supported;
4638 const insn_template *t;
4639 char *dot_p = NULL;
4640
4641 while (1)
4642 {
4643 mnem_p = mnemonic;
4644 while ((*mnem_p = mnemonic_chars[(unsigned char) *l]) != 0)
4645 {
4646 if (*mnem_p == '.')
4647 dot_p = mnem_p;
4648 mnem_p++;
4649 if (mnem_p >= mnemonic + MAX_MNEM_SIZE)
4650 {
4651 as_bad (_("no such instruction: `%s'"), token_start);
4652 return NULL;
4653 }
4654 l++;
4655 }
4656 if (!is_space_char (*l)
4657 && *l != END_OF_INSN
4658 && (intel_syntax
4659 || (*l != PREFIX_SEPARATOR
4660 && *l != ',')))
4661 {
4662 as_bad (_("invalid character %s in mnemonic"),
4663 output_invalid (*l));
4664 return NULL;
4665 }
4666 if (token_start == l)
4667 {
4668 if (!intel_syntax && *l == PREFIX_SEPARATOR)
4669 as_bad (_("expecting prefix; got nothing"));
4670 else
4671 as_bad (_("expecting mnemonic; got nothing"));
4672 return NULL;
4673 }
4674
4675 /* Look up instruction (or prefix) via hash table. */
4676 current_templates = (const templates *) hash_find (op_hash, mnemonic);
4677
4678 if (*l != END_OF_INSN
4679 && (!is_space_char (*l) || l[1] != END_OF_INSN)
4680 && current_templates
4681 && current_templates->start->opcode_modifier.isprefix)
4682 {
4683 if (!cpu_flags_check_cpu64 (current_templates->start->cpu_flags))
4684 {
4685 as_bad ((flag_code != CODE_64BIT
4686 ? _("`%s' is only supported in 64-bit mode")
4687 : _("`%s' is not supported in 64-bit mode")),
4688 current_templates->start->name);
4689 return NULL;
4690 }
4691 /* If we are in 16-bit mode, do not allow addr16 or data16.
4692 Similarly, in 32-bit mode, do not allow addr32 or data32. */
4693 if ((current_templates->start->opcode_modifier.size == SIZE16
4694 || current_templates->start->opcode_modifier.size == SIZE32)
4695 && flag_code != CODE_64BIT
4696 && ((current_templates->start->opcode_modifier.size == SIZE32)
4697 ^ (flag_code == CODE_16BIT)))
4698 {
4699 as_bad (_("redundant %s prefix"),
4700 current_templates->start->name);
4701 return NULL;
4702 }
4703 if (current_templates->start->opcode_length == 0)
4704 {
4705 /* Handle pseudo prefixes. */
4706 switch (current_templates->start->base_opcode)
4707 {
4708 case 0x0:
4709 /* {disp8} */
4710 i.disp_encoding = disp_encoding_8bit;
4711 break;
4712 case 0x1:
4713 /* {disp32} */
4714 i.disp_encoding = disp_encoding_32bit;
4715 break;
4716 case 0x2:
4717 /* {load} */
4718 i.dir_encoding = dir_encoding_load;
4719 break;
4720 case 0x3:
4721 /* {store} */
4722 i.dir_encoding = dir_encoding_store;
4723 break;
4724 case 0x4:
4725 /* {vex} */
4726 i.vec_encoding = vex_encoding_vex;
4727 break;
4728 case 0x5:
4729 /* {vex3} */
4730 i.vec_encoding = vex_encoding_vex3;
4731 break;
4732 case 0x6:
4733 /* {evex} */
4734 i.vec_encoding = vex_encoding_evex;
4735 break;
4736 case 0x7:
4737 /* {rex} */
4738 i.rex_encoding = TRUE;
4739 break;
4740 case 0x8:
4741 /* {nooptimize} */
4742 i.no_optimize = TRUE;
4743 break;
4744 default:
4745 abort ();
4746 }
4747 }
4748 else
4749 {
4750 /* Add prefix, checking for repeated prefixes. */
4751 switch (add_prefix (current_templates->start->base_opcode))
4752 {
4753 case PREFIX_EXIST:
4754 return NULL;
4755 case PREFIX_DS:
4756 if (current_templates->start->cpu_flags.bitfield.cpuibt)
4757 i.notrack_prefix = current_templates->start->name;
4758 break;
4759 case PREFIX_REP:
4760 if (current_templates->start->cpu_flags.bitfield.cpuhle)
4761 i.hle_prefix = current_templates->start->name;
4762 else if (current_templates->start->cpu_flags.bitfield.cpumpx)
4763 i.bnd_prefix = current_templates->start->name;
4764 else
4765 i.rep_prefix = current_templates->start->name;
4766 break;
4767 default:
4768 break;
4769 }
4770 }
4771 /* Skip past PREFIX_SEPARATOR and reset token_start. */
4772 token_start = ++l;
4773 }
4774 else
4775 break;
4776 }
4777
4778 if (!current_templates)
4779 {
4780 /* Deprecated functionality (new code should use pseudo-prefixes instead):
4781 Check if we should swap operand or force 32bit displacement in
4782 encoding. */
4783 if (mnem_p - 2 == dot_p && dot_p[1] == 's')
4784 i.dir_encoding = dir_encoding_swap;
4785 else if (mnem_p - 3 == dot_p
4786 && dot_p[1] == 'd'
4787 && dot_p[2] == '8')
4788 i.disp_encoding = disp_encoding_8bit;
4789 else if (mnem_p - 4 == dot_p
4790 && dot_p[1] == 'd'
4791 && dot_p[2] == '3'
4792 && dot_p[3] == '2')
4793 i.disp_encoding = disp_encoding_32bit;
4794 else
4795 goto check_suffix;
4796 mnem_p = dot_p;
4797 *dot_p = '\0';
4798 current_templates = (const templates *) hash_find (op_hash, mnemonic);
4799 }
4800
4801 if (!current_templates)
4802 {
4803 check_suffix:
4804 if (mnem_p > mnemonic)
4805 {
4806 /* See if we can get a match by trimming off a suffix. */
4807 switch (mnem_p[-1])
4808 {
4809 case WORD_MNEM_SUFFIX:
4810 if (intel_syntax && (intel_float_operand (mnemonic) & 2))
4811 i.suffix = SHORT_MNEM_SUFFIX;
4812 else
4813 /* Fall through. */
4814 case BYTE_MNEM_SUFFIX:
4815 case QWORD_MNEM_SUFFIX:
4816 i.suffix = mnem_p[-1];
4817 mnem_p[-1] = '\0';
4818 current_templates = (const templates *) hash_find (op_hash,
4819 mnemonic);
4820 break;
4821 case SHORT_MNEM_SUFFIX:
4822 case LONG_MNEM_SUFFIX:
4823 if (!intel_syntax)
4824 {
4825 i.suffix = mnem_p[-1];
4826 mnem_p[-1] = '\0';
4827 current_templates = (const templates *) hash_find (op_hash,
4828 mnemonic);
4829 }
4830 break;
4831
4832 /* Intel Syntax. */
4833 case 'd':
4834 if (intel_syntax)
4835 {
4836 if (intel_float_operand (mnemonic) == 1)
4837 i.suffix = SHORT_MNEM_SUFFIX;
4838 else
4839 i.suffix = LONG_MNEM_SUFFIX;
4840 mnem_p[-1] = '\0';
4841 current_templates = (const templates *) hash_find (op_hash,
4842 mnemonic);
4843 }
4844 break;
4845 }
4846 }
4847
4848 if (!current_templates)
4849 {
4850 as_bad (_("no such instruction: `%s'"), token_start);
4851 return NULL;
4852 }
4853 }
4854
4855 if (current_templates->start->opcode_modifier.jump == JUMP
4856 || current_templates->start->opcode_modifier.jump == JUMP_BYTE)
4857 {
4858 /* Check for a branch hint. We allow ",pt" and ",pn" for
4859 predict taken and predict not taken respectively.
4860 I'm not sure that branch hints actually do anything on loop
4861 and jcxz insns (JumpByte) for current Pentium4 chips. They
4862 may work in the future and it doesn't hurt to accept them
4863 now. */
4864 if (l[0] == ',' && l[1] == 'p')
4865 {
4866 if (l[2] == 't')
4867 {
4868 if (!add_prefix (DS_PREFIX_OPCODE))
4869 return NULL;
4870 l += 3;
4871 }
4872 else if (l[2] == 'n')
4873 {
4874 if (!add_prefix (CS_PREFIX_OPCODE))
4875 return NULL;
4876 l += 3;
4877 }
4878 }
4879 }
4880 /* Any other comma loses. */
4881 if (*l == ',')
4882 {
4883 as_bad (_("invalid character %s in mnemonic"),
4884 output_invalid (*l));
4885 return NULL;
4886 }
4887
4888 /* Check if instruction is supported on specified architecture. */
4889 supported = 0;
4890 for (t = current_templates->start; t < current_templates->end; ++t)
4891 {
4892 supported |= cpu_flags_match (t);
4893 if (supported == CPU_FLAGS_PERFECT_MATCH)
4894 {
4895 if (!cpu_arch_flags.bitfield.cpui386 && (flag_code != CODE_16BIT))
4896 as_warn (_("use .code16 to ensure correct addressing mode"));
4897
4898 return l;
4899 }
4900 }
4901
4902 if (!(supported & CPU_FLAGS_64BIT_MATCH))
4903 as_bad (flag_code == CODE_64BIT
4904 ? _("`%s' is not supported in 64-bit mode")
4905 : _("`%s' is only supported in 64-bit mode"),
4906 current_templates->start->name);
4907 else
4908 as_bad (_("`%s' is not supported on `%s%s'"),
4909 current_templates->start->name,
4910 cpu_arch_name ? cpu_arch_name : default_arch,
4911 cpu_sub_arch_name ? cpu_sub_arch_name : "");
4912
4913 return NULL;
4914 }
4915
4916 static char *
4917 parse_operands (char *l, const char *mnemonic)
4918 {
4919 char *token_start;
4920
4921 /* 1 if operand is pending after ','. */
4922 unsigned int expecting_operand = 0;
4923
4924 /* Non-zero if operand parens not balanced. */
4925 unsigned int paren_not_balanced;
4926
4927 while (*l != END_OF_INSN)
4928 {
4929 /* Skip optional white space before operand. */
4930 if (is_space_char (*l))
4931 ++l;
4932 if (!is_operand_char (*l) && *l != END_OF_INSN && *l != '"')
4933 {
4934 as_bad (_("invalid character %s before operand %d"),
4935 output_invalid (*l),
4936 i.operands + 1);
4937 return NULL;
4938 }
4939 token_start = l; /* After white space. */
4940 paren_not_balanced = 0;
4941 while (paren_not_balanced || *l != ',')
4942 {
4943 if (*l == END_OF_INSN)
4944 {
4945 if (paren_not_balanced)
4946 {
4947 if (!intel_syntax)
4948 as_bad (_("unbalanced parenthesis in operand %d."),
4949 i.operands + 1);
4950 else
4951 as_bad (_("unbalanced brackets in operand %d."),
4952 i.operands + 1);
4953 return NULL;
4954 }
4955 else
4956 break; /* we are done */
4957 }
4958 else if (!is_operand_char (*l) && !is_space_char (*l) && *l != '"')
4959 {
4960 as_bad (_("invalid character %s in operand %d"),
4961 output_invalid (*l),
4962 i.operands + 1);
4963 return NULL;
4964 }
4965 if (!intel_syntax)
4966 {
4967 if (*l == '(')
4968 ++paren_not_balanced;
4969 if (*l == ')')
4970 --paren_not_balanced;
4971 }
4972 else
4973 {
4974 if (*l == '[')
4975 ++paren_not_balanced;
4976 if (*l == ']')
4977 --paren_not_balanced;
4978 }
4979 l++;
4980 }
4981 if (l != token_start)
4982 { /* Yes, we've read in another operand. */
4983 unsigned int operand_ok;
4984 this_operand = i.operands++;
4985 if (i.operands > MAX_OPERANDS)
4986 {
4987 as_bad (_("spurious operands; (%d operands/instruction max)"),
4988 MAX_OPERANDS);
4989 return NULL;
4990 }
4991 i.types[this_operand].bitfield.unspecified = 1;
4992 /* Now parse operand adding info to 'i' as we go along. */
4993 END_STRING_AND_SAVE (l);
4994
4995 if (i.mem_operands > 1)
4996 {
4997 as_bad (_("too many memory references for `%s'"),
4998 mnemonic);
4999 return 0;
5000 }
5001
5002 if (intel_syntax)
5003 operand_ok =
5004 i386_intel_operand (token_start,
5005 intel_float_operand (mnemonic));
5006 else
5007 operand_ok = i386_att_operand (token_start);
5008
5009 RESTORE_END_STRING (l);
5010 if (!operand_ok)
5011 return NULL;
5012 }
5013 else
5014 {
5015 if (expecting_operand)
5016 {
5017 expecting_operand_after_comma:
5018 as_bad (_("expecting operand after ','; got nothing"));
5019 return NULL;
5020 }
5021 if (*l == ',')
5022 {
5023 as_bad (_("expecting operand before ','; got nothing"));
5024 return NULL;
5025 }
5026 }
5027
5028 /* Now *l must be either ',' or END_OF_INSN. */
5029 if (*l == ',')
5030 {
5031 if (*++l == END_OF_INSN)
5032 {
5033 /* Just skip it, if it's \n complain. */
5034 goto expecting_operand_after_comma;
5035 }
5036 expecting_operand = 1;
5037 }
5038 }
5039 return l;
5040 }
5041
5042 static void
5043 swap_2_operands (int xchg1, int xchg2)
5044 {
5045 union i386_op temp_op;
5046 i386_operand_type temp_type;
5047 unsigned int temp_flags;
5048 enum bfd_reloc_code_real temp_reloc;
5049
5050 temp_type = i.types[xchg2];
5051 i.types[xchg2] = i.types[xchg1];
5052 i.types[xchg1] = temp_type;
5053
5054 temp_flags = i.flags[xchg2];
5055 i.flags[xchg2] = i.flags[xchg1];
5056 i.flags[xchg1] = temp_flags;
5057
5058 temp_op = i.op[xchg2];
5059 i.op[xchg2] = i.op[xchg1];
5060 i.op[xchg1] = temp_op;
5061
5062 temp_reloc = i.reloc[xchg2];
5063 i.reloc[xchg2] = i.reloc[xchg1];
5064 i.reloc[xchg1] = temp_reloc;
5065
5066 if (i.mask)
5067 {
5068 if (i.mask->operand == xchg1)
5069 i.mask->operand = xchg2;
5070 else if (i.mask->operand == xchg2)
5071 i.mask->operand = xchg1;
5072 }
5073 if (i.broadcast)
5074 {
5075 if (i.broadcast->operand == xchg1)
5076 i.broadcast->operand = xchg2;
5077 else if (i.broadcast->operand == xchg2)
5078 i.broadcast->operand = xchg1;
5079 }
5080 if (i.rounding)
5081 {
5082 if (i.rounding->operand == xchg1)
5083 i.rounding->operand = xchg2;
5084 else if (i.rounding->operand == xchg2)
5085 i.rounding->operand = xchg1;
5086 }
5087 }
5088
5089 static void
5090 swap_operands (void)
5091 {
5092 switch (i.operands)
5093 {
5094 case 5:
5095 case 4:
5096 swap_2_operands (1, i.operands - 2);
5097 /* Fall through. */
5098 case 3:
5099 case 2:
5100 swap_2_operands (0, i.operands - 1);
5101 break;
5102 default:
5103 abort ();
5104 }
5105
5106 if (i.mem_operands == 2)
5107 {
5108 const seg_entry *temp_seg;
5109 temp_seg = i.seg[0];
5110 i.seg[0] = i.seg[1];
5111 i.seg[1] = temp_seg;
5112 }
5113 }
5114
5115 /* Try to ensure constant immediates are represented in the smallest
5116 opcode possible. */
5117 static void
5118 optimize_imm (void)
5119 {
5120 char guess_suffix = 0;
5121 int op;
5122
5123 if (i.suffix)
5124 guess_suffix = i.suffix;
5125 else if (i.reg_operands)
5126 {
5127 /* Figure out a suffix from the last register operand specified.
5128 We can't do this properly yet, i.e. excluding special register
5129 instances, but the following works for instructions with
5130 immediates. In any case, we can't set i.suffix yet. */
5131 for (op = i.operands; --op >= 0;)
5132 if (i.types[op].bitfield.class != Reg)
5133 continue;
5134 else if (i.types[op].bitfield.byte)
5135 {
5136 guess_suffix = BYTE_MNEM_SUFFIX;
5137 break;
5138 }
5139 else if (i.types[op].bitfield.word)
5140 {
5141 guess_suffix = WORD_MNEM_SUFFIX;
5142 break;
5143 }
5144 else if (i.types[op].bitfield.dword)
5145 {
5146 guess_suffix = LONG_MNEM_SUFFIX;
5147 break;
5148 }
5149 else if (i.types[op].bitfield.qword)
5150 {
5151 guess_suffix = QWORD_MNEM_SUFFIX;
5152 break;
5153 }
5154 }
5155 else if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
5156 guess_suffix = WORD_MNEM_SUFFIX;
5157
5158 for (op = i.operands; --op >= 0;)
5159 if (operand_type_check (i.types[op], imm))
5160 {
5161 switch (i.op[op].imms->X_op)
5162 {
5163 case O_constant:
5164 /* If a suffix is given, this operand may be shortened. */
5165 switch (guess_suffix)
5166 {
5167 case LONG_MNEM_SUFFIX:
5168 i.types[op].bitfield.imm32 = 1;
5169 i.types[op].bitfield.imm64 = 1;
5170 break;
5171 case WORD_MNEM_SUFFIX:
5172 i.types[op].bitfield.imm16 = 1;
5173 i.types[op].bitfield.imm32 = 1;
5174 i.types[op].bitfield.imm32s = 1;
5175 i.types[op].bitfield.imm64 = 1;
5176 break;
5177 case BYTE_MNEM_SUFFIX:
5178 i.types[op].bitfield.imm8 = 1;
5179 i.types[op].bitfield.imm8s = 1;
5180 i.types[op].bitfield.imm16 = 1;
5181 i.types[op].bitfield.imm32 = 1;
5182 i.types[op].bitfield.imm32s = 1;
5183 i.types[op].bitfield.imm64 = 1;
5184 break;
5185 }
5186
5187 /* If this operand is at most 16 bits, convert it
5188 to a signed 16 bit number before trying to see
5189 whether it will fit in an even smaller size.
5190 This allows a 16-bit operand such as $0xffe0 to
5191 be recognised as within Imm8S range. */
5192 if ((i.types[op].bitfield.imm16)
5193 && (i.op[op].imms->X_add_number & ~(offsetT) 0xffff) == 0)
5194 {
5195 i.op[op].imms->X_add_number =
5196 (((i.op[op].imms->X_add_number & 0xffff) ^ 0x8000) - 0x8000);
5197 }
5198 #ifdef BFD64
5199 /* Store 32-bit immediate in 64-bit for 64-bit BFD. */
5200 if ((i.types[op].bitfield.imm32)
5201 && ((i.op[op].imms->X_add_number & ~(((offsetT) 2 << 31) - 1))
5202 == 0))
5203 {
5204 i.op[op].imms->X_add_number = ((i.op[op].imms->X_add_number
5205 ^ ((offsetT) 1 << 31))
5206 - ((offsetT) 1 << 31));
5207 }
5208 #endif
5209 i.types[op]
5210 = operand_type_or (i.types[op],
5211 smallest_imm_type (i.op[op].imms->X_add_number));
5212
5213 /* We must avoid matching of Imm32 templates when 64bit
5214 only immediate is available. */
5215 if (guess_suffix == QWORD_MNEM_SUFFIX)
5216 i.types[op].bitfield.imm32 = 0;
5217 break;
5218
5219 case O_absent:
5220 case O_register:
5221 abort ();
5222
5223 /* Symbols and expressions. */
5224 default:
5225 /* Convert symbolic operand to proper sizes for matching, but don't
5226 prevent matching a set of insns that only supports sizes other
5227 than those matching the insn suffix. */
5228 {
5229 i386_operand_type mask, allowed;
5230 const insn_template *t;
5231
5232 operand_type_set (&mask, 0);
5233 operand_type_set (&allowed, 0);
5234
5235 for (t = current_templates->start;
5236 t < current_templates->end;
5237 ++t)
5238 {
5239 allowed = operand_type_or (allowed, t->operand_types[op]);
5240 allowed = operand_type_and (allowed, anyimm);
5241 }
5242 switch (guess_suffix)
5243 {
5244 case QWORD_MNEM_SUFFIX:
5245 mask.bitfield.imm64 = 1;
5246 mask.bitfield.imm32s = 1;
5247 break;
5248 case LONG_MNEM_SUFFIX:
5249 mask.bitfield.imm32 = 1;
5250 break;
5251 case WORD_MNEM_SUFFIX:
5252 mask.bitfield.imm16 = 1;
5253 break;
5254 case BYTE_MNEM_SUFFIX:
5255 mask.bitfield.imm8 = 1;
5256 break;
5257 default:
5258 break;
5259 }
5260 allowed = operand_type_and (mask, allowed);
5261 if (!operand_type_all_zero (&allowed))
5262 i.types[op] = operand_type_and (i.types[op], mask);
5263 }
5264 break;
5265 }
5266 }
5267 }
5268
5269 /* Try to use the smallest displacement type too. */
5270 static void
5271 optimize_disp (void)
5272 {
5273 int op;
5274
5275 for (op = i.operands; --op >= 0;)
5276 if (operand_type_check (i.types[op], disp))
5277 {
5278 if (i.op[op].disps->X_op == O_constant)
5279 {
5280 offsetT op_disp = i.op[op].disps->X_add_number;
5281
5282 if (i.types[op].bitfield.disp16
5283 && (op_disp & ~(offsetT) 0xffff) == 0)
5284 {
5285 /* If this operand is at most 16 bits, convert
5286 to a signed 16 bit number and don't use 64bit
5287 displacement. */
5288 op_disp = (((op_disp & 0xffff) ^ 0x8000) - 0x8000);
5289 i.types[op].bitfield.disp64 = 0;
5290 }
5291 #ifdef BFD64
5292 /* Optimize 64-bit displacement to 32-bit for 64-bit BFD. */
5293 if (i.types[op].bitfield.disp32
5294 && (op_disp & ~(((offsetT) 2 << 31) - 1)) == 0)
5295 {
5296 /* If this operand is at most 32 bits, convert
5297 to a signed 32 bit number and don't use 64bit
5298 displacement. */
5299 op_disp &= (((offsetT) 2 << 31) - 1);
5300 op_disp = (op_disp ^ ((offsetT) 1 << 31)) - ((addressT) 1 << 31);
5301 i.types[op].bitfield.disp64 = 0;
5302 }
5303 #endif
5304 if (!op_disp && i.types[op].bitfield.baseindex)
5305 {
5306 i.types[op].bitfield.disp8 = 0;
5307 i.types[op].bitfield.disp16 = 0;
5308 i.types[op].bitfield.disp32 = 0;
5309 i.types[op].bitfield.disp32s = 0;
5310 i.types[op].bitfield.disp64 = 0;
5311 i.op[op].disps = 0;
5312 i.disp_operands--;
5313 }
5314 else if (flag_code == CODE_64BIT)
5315 {
5316 if (fits_in_signed_long (op_disp))
5317 {
5318 i.types[op].bitfield.disp64 = 0;
5319 i.types[op].bitfield.disp32s = 1;
5320 }
5321 if (i.prefix[ADDR_PREFIX]
5322 && fits_in_unsigned_long (op_disp))
5323 i.types[op].bitfield.disp32 = 1;
5324 }
5325 if ((i.types[op].bitfield.disp32
5326 || i.types[op].bitfield.disp32s
5327 || i.types[op].bitfield.disp16)
5328 && fits_in_disp8 (op_disp))
5329 i.types[op].bitfield.disp8 = 1;
5330 }
5331 else if (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
5332 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL)
5333 {
5334 fix_new_exp (frag_now, frag_more (0) - frag_now->fr_literal, 0,
5335 i.op[op].disps, 0, i.reloc[op]);
5336 i.types[op].bitfield.disp8 = 0;
5337 i.types[op].bitfield.disp16 = 0;
5338 i.types[op].bitfield.disp32 = 0;
5339 i.types[op].bitfield.disp32s = 0;
5340 i.types[op].bitfield.disp64 = 0;
5341 }
5342 else
5343 /* We only support 64bit displacement on constants. */
5344 i.types[op].bitfield.disp64 = 0;
5345 }
5346 }
5347
5348 /* Return 1 if there is a match in broadcast bytes between operand
5349 GIVEN and instruction template T. */
5350
5351 static INLINE int
5352 match_broadcast_size (const insn_template *t, unsigned int given)
5353 {
5354 return ((t->opcode_modifier.broadcast == BYTE_BROADCAST
5355 && i.types[given].bitfield.byte)
5356 || (t->opcode_modifier.broadcast == WORD_BROADCAST
5357 && i.types[given].bitfield.word)
5358 || (t->opcode_modifier.broadcast == DWORD_BROADCAST
5359 && i.types[given].bitfield.dword)
5360 || (t->opcode_modifier.broadcast == QWORD_BROADCAST
5361 && i.types[given].bitfield.qword));
5362 }
5363
5364 /* Check if operands are valid for the instruction. */
5365
5366 static int
5367 check_VecOperands (const insn_template *t)
5368 {
5369 unsigned int op;
5370 i386_cpu_flags cpu;
5371 static const i386_cpu_flags avx512 = CPU_ANY_AVX512F_FLAGS;
5372
5373 /* Templates allowing for ZMMword as well as YMMword and/or XMMword for
5374 any one operand are implicity requiring AVX512VL support if the actual
5375 operand size is YMMword or XMMword. Since this function runs after
5376 template matching, there's no need to check for YMMword/XMMword in
5377 the template. */
5378 cpu = cpu_flags_and (t->cpu_flags, avx512);
5379 if (!cpu_flags_all_zero (&cpu)
5380 && !t->cpu_flags.bitfield.cpuavx512vl
5381 && !cpu_arch_flags.bitfield.cpuavx512vl)
5382 {
5383 for (op = 0; op < t->operands; ++op)
5384 {
5385 if (t->operand_types[op].bitfield.zmmword
5386 && (i.types[op].bitfield.ymmword
5387 || i.types[op].bitfield.xmmword))
5388 {
5389 i.error = unsupported;
5390 return 1;
5391 }
5392 }
5393 }
5394
5395 /* Without VSIB byte, we can't have a vector register for index. */
5396 if (!t->opcode_modifier.vecsib
5397 && i.index_reg
5398 && (i.index_reg->reg_type.bitfield.xmmword
5399 || i.index_reg->reg_type.bitfield.ymmword
5400 || i.index_reg->reg_type.bitfield.zmmword))
5401 {
5402 i.error = unsupported_vector_index_register;
5403 return 1;
5404 }
5405
5406 /* Check if default mask is allowed. */
5407 if (t->opcode_modifier.nodefmask
5408 && (!i.mask || i.mask->mask->reg_num == 0))
5409 {
5410 i.error = no_default_mask;
5411 return 1;
5412 }
5413
5414 /* For VSIB byte, we need a vector register for index, and all vector
5415 registers must be distinct. */
5416 if (t->opcode_modifier.vecsib)
5417 {
5418 if (!i.index_reg
5419 || !((t->opcode_modifier.vecsib == VecSIB128
5420 && i.index_reg->reg_type.bitfield.xmmword)
5421 || (t->opcode_modifier.vecsib == VecSIB256
5422 && i.index_reg->reg_type.bitfield.ymmword)
5423 || (t->opcode_modifier.vecsib == VecSIB512
5424 && i.index_reg->reg_type.bitfield.zmmword)))
5425 {
5426 i.error = invalid_vsib_address;
5427 return 1;
5428 }
5429
5430 gas_assert (i.reg_operands == 2 || i.mask);
5431 if (i.reg_operands == 2 && !i.mask)
5432 {
5433 gas_assert (i.types[0].bitfield.class == RegSIMD);
5434 gas_assert (i.types[0].bitfield.xmmword
5435 || i.types[0].bitfield.ymmword);
5436 gas_assert (i.types[2].bitfield.class == RegSIMD);
5437 gas_assert (i.types[2].bitfield.xmmword
5438 || i.types[2].bitfield.ymmword);
5439 if (operand_check == check_none)
5440 return 0;
5441 if (register_number (i.op[0].regs)
5442 != register_number (i.index_reg)
5443 && register_number (i.op[2].regs)
5444 != register_number (i.index_reg)
5445 && register_number (i.op[0].regs)
5446 != register_number (i.op[2].regs))
5447 return 0;
5448 if (operand_check == check_error)
5449 {
5450 i.error = invalid_vector_register_set;
5451 return 1;
5452 }
5453 as_warn (_("mask, index, and destination registers should be distinct"));
5454 }
5455 else if (i.reg_operands == 1 && i.mask)
5456 {
5457 if (i.types[1].bitfield.class == RegSIMD
5458 && (i.types[1].bitfield.xmmword
5459 || i.types[1].bitfield.ymmword
5460 || i.types[1].bitfield.zmmword)
5461 && (register_number (i.op[1].regs)
5462 == register_number (i.index_reg)))
5463 {
5464 if (operand_check == check_error)
5465 {
5466 i.error = invalid_vector_register_set;
5467 return 1;
5468 }
5469 if (operand_check != check_none)
5470 as_warn (_("index and destination registers should be distinct"));
5471 }
5472 }
5473 }
5474
5475 /* Check if broadcast is supported by the instruction and is applied
5476 to the memory operand. */
5477 if (i.broadcast)
5478 {
5479 i386_operand_type type, overlap;
5480
5481 /* Check if specified broadcast is supported in this instruction,
5482 and its broadcast bytes match the memory operand. */
5483 op = i.broadcast->operand;
5484 if (!t->opcode_modifier.broadcast
5485 || !(i.flags[op] & Operand_Mem)
5486 || (!i.types[op].bitfield.unspecified
5487 && !match_broadcast_size (t, op)))
5488 {
5489 bad_broadcast:
5490 i.error = unsupported_broadcast;
5491 return 1;
5492 }
5493
5494 i.broadcast->bytes = ((1 << (t->opcode_modifier.broadcast - 1))
5495 * i.broadcast->type);
5496 operand_type_set (&type, 0);
5497 switch (i.broadcast->bytes)
5498 {
5499 case 2:
5500 type.bitfield.word = 1;
5501 break;
5502 case 4:
5503 type.bitfield.dword = 1;
5504 break;
5505 case 8:
5506 type.bitfield.qword = 1;
5507 break;
5508 case 16:
5509 type.bitfield.xmmword = 1;
5510 break;
5511 case 32:
5512 type.bitfield.ymmword = 1;
5513 break;
5514 case 64:
5515 type.bitfield.zmmword = 1;
5516 break;
5517 default:
5518 goto bad_broadcast;
5519 }
5520
5521 overlap = operand_type_and (type, t->operand_types[op]);
5522 if (operand_type_all_zero (&overlap))
5523 goto bad_broadcast;
5524
5525 if (t->opcode_modifier.checkregsize)
5526 {
5527 unsigned int j;
5528
5529 type.bitfield.baseindex = 1;
5530 for (j = 0; j < i.operands; ++j)
5531 {
5532 if (j != op
5533 && !operand_type_register_match(i.types[j],
5534 t->operand_types[j],
5535 type,
5536 t->operand_types[op]))
5537 goto bad_broadcast;
5538 }
5539 }
5540 }
5541 /* If broadcast is supported in this instruction, we need to check if
5542 operand of one-element size isn't specified without broadcast. */
5543 else if (t->opcode_modifier.broadcast && i.mem_operands)
5544 {
5545 /* Find memory operand. */
5546 for (op = 0; op < i.operands; op++)
5547 if (i.flags[op] & Operand_Mem)
5548 break;
5549 gas_assert (op < i.operands);
5550 /* Check size of the memory operand. */
5551 if (match_broadcast_size (t, op))
5552 {
5553 i.error = broadcast_needed;
5554 return 1;
5555 }
5556 }
5557 else
5558 op = MAX_OPERANDS - 1; /* Avoid uninitialized variable warning. */
5559
5560 /* Check if requested masking is supported. */
5561 if (i.mask)
5562 {
5563 switch (t->opcode_modifier.masking)
5564 {
5565 case BOTH_MASKING:
5566 break;
5567 case MERGING_MASKING:
5568 if (i.mask->zeroing)
5569 {
5570 case 0:
5571 i.error = unsupported_masking;
5572 return 1;
5573 }
5574 break;
5575 case DYNAMIC_MASKING:
5576 /* Memory destinations allow only merging masking. */
5577 if (i.mask->zeroing && i.mem_operands)
5578 {
5579 /* Find memory operand. */
5580 for (op = 0; op < i.operands; op++)
5581 if (i.flags[op] & Operand_Mem)
5582 break;
5583 gas_assert (op < i.operands);
5584 if (op == i.operands - 1)
5585 {
5586 i.error = unsupported_masking;
5587 return 1;
5588 }
5589 }
5590 break;
5591 default:
5592 abort ();
5593 }
5594 }
5595
5596 /* Check if masking is applied to dest operand. */
5597 if (i.mask && (i.mask->operand != (int) (i.operands - 1)))
5598 {
5599 i.error = mask_not_on_destination;
5600 return 1;
5601 }
5602
5603 /* Check RC/SAE. */
5604 if (i.rounding)
5605 {
5606 if (!t->opcode_modifier.sae
5607 || (i.rounding->type != saeonly && !t->opcode_modifier.staticrounding))
5608 {
5609 i.error = unsupported_rc_sae;
5610 return 1;
5611 }
5612 /* If the instruction has several immediate operands and one of
5613 them is rounding, the rounding operand should be the last
5614 immediate operand. */
5615 if (i.imm_operands > 1
5616 && i.rounding->operand != (int) (i.imm_operands - 1))
5617 {
5618 i.error = rc_sae_operand_not_last_imm;
5619 return 1;
5620 }
5621 }
5622
5623 /* Check vector Disp8 operand. */
5624 if (t->opcode_modifier.disp8memshift
5625 && i.disp_encoding != disp_encoding_32bit)
5626 {
5627 if (i.broadcast)
5628 i.memshift = t->opcode_modifier.broadcast - 1;
5629 else if (t->opcode_modifier.disp8memshift != DISP8_SHIFT_VL)
5630 i.memshift = t->opcode_modifier.disp8memshift;
5631 else
5632 {
5633 const i386_operand_type *type = NULL;
5634
5635 i.memshift = 0;
5636 for (op = 0; op < i.operands; op++)
5637 if (i.flags[op] & Operand_Mem)
5638 {
5639 if (t->opcode_modifier.evex == EVEXLIG)
5640 i.memshift = 2 + (i.suffix == QWORD_MNEM_SUFFIX);
5641 else if (t->operand_types[op].bitfield.xmmword
5642 + t->operand_types[op].bitfield.ymmword
5643 + t->operand_types[op].bitfield.zmmword <= 1)
5644 type = &t->operand_types[op];
5645 else if (!i.types[op].bitfield.unspecified)
5646 type = &i.types[op];
5647 }
5648 else if (i.types[op].bitfield.class == RegSIMD
5649 && t->opcode_modifier.evex != EVEXLIG)
5650 {
5651 if (i.types[op].bitfield.zmmword)
5652 i.memshift = 6;
5653 else if (i.types[op].bitfield.ymmword && i.memshift < 5)
5654 i.memshift = 5;
5655 else if (i.types[op].bitfield.xmmword && i.memshift < 4)
5656 i.memshift = 4;
5657 }
5658
5659 if (type)
5660 {
5661 if (type->bitfield.zmmword)
5662 i.memshift = 6;
5663 else if (type->bitfield.ymmword)
5664 i.memshift = 5;
5665 else if (type->bitfield.xmmword)
5666 i.memshift = 4;
5667 }
5668
5669 /* For the check in fits_in_disp8(). */
5670 if (i.memshift == 0)
5671 i.memshift = -1;
5672 }
5673
5674 for (op = 0; op < i.operands; op++)
5675 if (operand_type_check (i.types[op], disp)
5676 && i.op[op].disps->X_op == O_constant)
5677 {
5678 if (fits_in_disp8 (i.op[op].disps->X_add_number))
5679 {
5680 i.types[op].bitfield.disp8 = 1;
5681 return 0;
5682 }
5683 i.types[op].bitfield.disp8 = 0;
5684 }
5685 }
5686
5687 i.memshift = 0;
5688
5689 return 0;
5690 }
5691
5692 /* Check if operands are valid for the instruction. Update VEX
5693 operand types. */
5694
5695 static int
5696 VEX_check_operands (const insn_template *t)
5697 {
5698 if (i.vec_encoding == vex_encoding_evex)
5699 {
5700 /* This instruction must be encoded with EVEX prefix. */
5701 if (!is_evex_encoding (t))
5702 {
5703 i.error = unsupported;
5704 return 1;
5705 }
5706 return 0;
5707 }
5708
5709 if (!t->opcode_modifier.vex)
5710 {
5711 /* This instruction template doesn't have VEX prefix. */
5712 if (i.vec_encoding != vex_encoding_default)
5713 {
5714 i.error = unsupported;
5715 return 1;
5716 }
5717 return 0;
5718 }
5719
5720 /* Check the special Imm4 cases; must be the first operand. */
5721 if (t->cpu_flags.bitfield.cpuxop && t->operands == 5)
5722 {
5723 if (i.op[0].imms->X_op != O_constant
5724 || !fits_in_imm4 (i.op[0].imms->X_add_number))
5725 {
5726 i.error = bad_imm4;
5727 return 1;
5728 }
5729
5730 /* Turn off Imm<N> so that update_imm won't complain. */
5731 operand_type_set (&i.types[0], 0);
5732 }
5733
5734 return 0;
5735 }
5736
5737 static const insn_template *
5738 match_template (char mnem_suffix)
5739 {
5740 /* Points to template once we've found it. */
5741 const insn_template *t;
5742 i386_operand_type overlap0, overlap1, overlap2, overlap3;
5743 i386_operand_type overlap4;
5744 unsigned int found_reverse_match;
5745 i386_opcode_modifier suffix_check;
5746 i386_operand_type operand_types [MAX_OPERANDS];
5747 int addr_prefix_disp;
5748 unsigned int j, size_match, check_register;
5749 enum i386_error specific_error = 0;
5750
5751 #if MAX_OPERANDS != 5
5752 # error "MAX_OPERANDS must be 5."
5753 #endif
5754
5755 found_reverse_match = 0;
5756 addr_prefix_disp = -1;
5757
5758 /* Prepare for mnemonic suffix check. */
5759 memset (&suffix_check, 0, sizeof (suffix_check));
5760 switch (mnem_suffix)
5761 {
5762 case BYTE_MNEM_SUFFIX:
5763 suffix_check.no_bsuf = 1;
5764 break;
5765 case WORD_MNEM_SUFFIX:
5766 suffix_check.no_wsuf = 1;
5767 break;
5768 case SHORT_MNEM_SUFFIX:
5769 suffix_check.no_ssuf = 1;
5770 break;
5771 case LONG_MNEM_SUFFIX:
5772 suffix_check.no_lsuf = 1;
5773 break;
5774 case QWORD_MNEM_SUFFIX:
5775 suffix_check.no_qsuf = 1;
5776 break;
5777 default:
5778 /* NB: In Intel syntax, normally we can check for memory operand
5779 size when there is no mnemonic suffix. But jmp and call have
5780 2 different encodings with Dword memory operand size, one with
5781 No_ldSuf and the other without. i.suffix is set to
5782 LONG_DOUBLE_MNEM_SUFFIX to skip the one with No_ldSuf. */
5783 if (i.suffix == LONG_DOUBLE_MNEM_SUFFIX)
5784 suffix_check.no_ldsuf = 1;
5785 }
5786
5787 /* Must have right number of operands. */
5788 i.error = number_of_operands_mismatch;
5789
5790 for (t = current_templates->start; t < current_templates->end; t++)
5791 {
5792 addr_prefix_disp = -1;
5793 found_reverse_match = 0;
5794
5795 if (i.operands != t->operands)
5796 continue;
5797
5798 /* Check processor support. */
5799 i.error = unsupported;
5800 if (cpu_flags_match (t) != CPU_FLAGS_PERFECT_MATCH)
5801 continue;
5802
5803 /* Check AT&T mnemonic. */
5804 i.error = unsupported_with_intel_mnemonic;
5805 if (intel_mnemonic && t->opcode_modifier.attmnemonic)
5806 continue;
5807
5808 /* Check AT&T/Intel syntax and Intel64/AMD64 ISA. */
5809 i.error = unsupported_syntax;
5810 if ((intel_syntax && t->opcode_modifier.attsyntax)
5811 || (!intel_syntax && t->opcode_modifier.intelsyntax)
5812 || (intel64 && t->opcode_modifier.amd64)
5813 || (!intel64 && t->opcode_modifier.intel64))
5814 continue;
5815
5816 /* Check the suffix. */
5817 i.error = invalid_instruction_suffix;
5818 if ((t->opcode_modifier.no_bsuf && suffix_check.no_bsuf)
5819 || (t->opcode_modifier.no_wsuf && suffix_check.no_wsuf)
5820 || (t->opcode_modifier.no_lsuf && suffix_check.no_lsuf)
5821 || (t->opcode_modifier.no_ssuf && suffix_check.no_ssuf)
5822 || (t->opcode_modifier.no_qsuf && suffix_check.no_qsuf)
5823 || (t->opcode_modifier.no_ldsuf && suffix_check.no_ldsuf))
5824 continue;
5825
5826 size_match = operand_size_match (t);
5827 if (!size_match)
5828 continue;
5829
5830 /* This is intentionally not
5831
5832 if (i.jumpabsolute != (t->opcode_modifier.jump == JUMP_ABSOLUTE))
5833
5834 as the case of a missing * on the operand is accepted (perhaps with
5835 a warning, issued further down). */
5836 if (i.jumpabsolute && t->opcode_modifier.jump != JUMP_ABSOLUTE)
5837 {
5838 i.error = operand_type_mismatch;
5839 continue;
5840 }
5841
5842 for (j = 0; j < MAX_OPERANDS; j++)
5843 operand_types[j] = t->operand_types[j];
5844
5845 /* In general, don't allow 64-bit operands in 32-bit mode. */
5846 if (i.suffix == QWORD_MNEM_SUFFIX
5847 && flag_code != CODE_64BIT
5848 && (intel_syntax
5849 ? (!t->opcode_modifier.ignoresize
5850 && !t->opcode_modifier.broadcast
5851 && !intel_float_operand (t->name))
5852 : intel_float_operand (t->name) != 2)
5853 && ((operand_types[0].bitfield.class != RegMMX
5854 && operand_types[0].bitfield.class != RegSIMD)
5855 || (operand_types[t->operands > 1].bitfield.class != RegMMX
5856 && operand_types[t->operands > 1].bitfield.class != RegSIMD))
5857 && (t->base_opcode != 0x0fc7
5858 || t->extension_opcode != 1 /* cmpxchg8b */))
5859 continue;
5860
5861 /* In general, don't allow 32-bit operands on pre-386. */
5862 else if (i.suffix == LONG_MNEM_SUFFIX
5863 && !cpu_arch_flags.bitfield.cpui386
5864 && (intel_syntax
5865 ? (!t->opcode_modifier.ignoresize
5866 && !intel_float_operand (t->name))
5867 : intel_float_operand (t->name) != 2)
5868 && ((operand_types[0].bitfield.class != RegMMX
5869 && operand_types[0].bitfield.class != RegSIMD)
5870 || (operand_types[t->operands > 1].bitfield.class != RegMMX
5871 && operand_types[t->operands > 1].bitfield.class
5872 != RegSIMD)))
5873 continue;
5874
5875 /* Do not verify operands when there are none. */
5876 else
5877 {
5878 if (!t->operands)
5879 /* We've found a match; break out of loop. */
5880 break;
5881 }
5882
5883 if (!t->opcode_modifier.jump
5884 || t->opcode_modifier.jump == JUMP_ABSOLUTE)
5885 {
5886 /* There should be only one Disp operand. */
5887 for (j = 0; j < MAX_OPERANDS; j++)
5888 if (operand_type_check (operand_types[j], disp))
5889 break;
5890 if (j < MAX_OPERANDS)
5891 {
5892 bfd_boolean override = (i.prefix[ADDR_PREFIX] != 0);
5893
5894 addr_prefix_disp = j;
5895
5896 /* Address size prefix will turn Disp64/Disp32S/Disp32/Disp16
5897 operand into Disp32/Disp32/Disp16/Disp32 operand. */
5898 switch (flag_code)
5899 {
5900 case CODE_16BIT:
5901 override = !override;
5902 /* Fall through. */
5903 case CODE_32BIT:
5904 if (operand_types[j].bitfield.disp32
5905 && operand_types[j].bitfield.disp16)
5906 {
5907 operand_types[j].bitfield.disp16 = override;
5908 operand_types[j].bitfield.disp32 = !override;
5909 }
5910 operand_types[j].bitfield.disp32s = 0;
5911 operand_types[j].bitfield.disp64 = 0;
5912 break;
5913
5914 case CODE_64BIT:
5915 if (operand_types[j].bitfield.disp32s
5916 || operand_types[j].bitfield.disp64)
5917 {
5918 operand_types[j].bitfield.disp64 &= !override;
5919 operand_types[j].bitfield.disp32s &= !override;
5920 operand_types[j].bitfield.disp32 = override;
5921 }
5922 operand_types[j].bitfield.disp16 = 0;
5923 break;
5924 }
5925 }
5926 }
5927
5928 /* Force 0x8b encoding for "mov foo@GOT, %eax". */
5929 if (i.reloc[0] == BFD_RELOC_386_GOT32 && t->base_opcode == 0xa0)
5930 continue;
5931
5932 /* We check register size if needed. */
5933 if (t->opcode_modifier.checkregsize)
5934 {
5935 check_register = (1 << t->operands) - 1;
5936 if (i.broadcast)
5937 check_register &= ~(1 << i.broadcast->operand);
5938 }
5939 else
5940 check_register = 0;
5941
5942 overlap0 = operand_type_and (i.types[0], operand_types[0]);
5943 switch (t->operands)
5944 {
5945 case 1:
5946 if (!operand_type_match (overlap0, i.types[0]))
5947 continue;
5948 break;
5949 case 2:
5950 /* xchg %eax, %eax is a special case. It is an alias for nop
5951 only in 32bit mode and we can use opcode 0x90. In 64bit
5952 mode, we can't use 0x90 for xchg %eax, %eax since it should
5953 zero-extend %eax to %rax. */
5954 if (flag_code == CODE_64BIT
5955 && t->base_opcode == 0x90
5956 && i.types[0].bitfield.instance == Accum
5957 && i.types[0].bitfield.dword
5958 && i.types[1].bitfield.instance == Accum
5959 && i.types[1].bitfield.dword)
5960 continue;
5961 /* xrelease mov %eax, <disp> is another special case. It must not
5962 match the accumulator-only encoding of mov. */
5963 if (flag_code != CODE_64BIT
5964 && i.hle_prefix
5965 && t->base_opcode == 0xa0
5966 && i.types[0].bitfield.instance == Accum
5967 && (i.flags[1] & Operand_Mem))
5968 continue;
5969 /* Fall through. */
5970
5971 case 3:
5972 if (!(size_match & MATCH_STRAIGHT))
5973 goto check_reverse;
5974 /* Reverse direction of operands if swapping is possible in the first
5975 place (operands need to be symmetric) and
5976 - the load form is requested, and the template is a store form,
5977 - the store form is requested, and the template is a load form,
5978 - the non-default (swapped) form is requested. */
5979 overlap1 = operand_type_and (operand_types[0], operand_types[1]);
5980 if (t->opcode_modifier.d && i.reg_operands == i.operands
5981 && !operand_type_all_zero (&overlap1))
5982 switch (i.dir_encoding)
5983 {
5984 case dir_encoding_load:
5985 if (operand_type_check (operand_types[i.operands - 1], anymem)
5986 || t->opcode_modifier.regmem)
5987 goto check_reverse;
5988 break;
5989
5990 case dir_encoding_store:
5991 if (!operand_type_check (operand_types[i.operands - 1], anymem)
5992 && !t->opcode_modifier.regmem)
5993 goto check_reverse;
5994 break;
5995
5996 case dir_encoding_swap:
5997 goto check_reverse;
5998
5999 case dir_encoding_default:
6000 break;
6001 }
6002 /* If we want store form, we skip the current load. */
6003 if ((i.dir_encoding == dir_encoding_store
6004 || i.dir_encoding == dir_encoding_swap)
6005 && i.mem_operands == 0
6006 && t->opcode_modifier.load)
6007 continue;
6008 /* Fall through. */
6009 case 4:
6010 case 5:
6011 overlap1 = operand_type_and (i.types[1], operand_types[1]);
6012 if (!operand_type_match (overlap0, i.types[0])
6013 || !operand_type_match (overlap1, i.types[1])
6014 || ((check_register & 3) == 3
6015 && !operand_type_register_match (i.types[0],
6016 operand_types[0],
6017 i.types[1],
6018 operand_types[1])))
6019 {
6020 /* Check if other direction is valid ... */
6021 if (!t->opcode_modifier.d)
6022 continue;
6023
6024 check_reverse:
6025 if (!(size_match & MATCH_REVERSE))
6026 continue;
6027 /* Try reversing direction of operands. */
6028 overlap0 = operand_type_and (i.types[0], operand_types[i.operands - 1]);
6029 overlap1 = operand_type_and (i.types[i.operands - 1], operand_types[0]);
6030 if (!operand_type_match (overlap0, i.types[0])
6031 || !operand_type_match (overlap1, i.types[i.operands - 1])
6032 || (check_register
6033 && !operand_type_register_match (i.types[0],
6034 operand_types[i.operands - 1],
6035 i.types[i.operands - 1],
6036 operand_types[0])))
6037 {
6038 /* Does not match either direction. */
6039 continue;
6040 }
6041 /* found_reverse_match holds which of D or FloatR
6042 we've found. */
6043 if (!t->opcode_modifier.d)
6044 found_reverse_match = 0;
6045 else if (operand_types[0].bitfield.tbyte)
6046 found_reverse_match = Opcode_FloatD;
6047 else if (operand_types[0].bitfield.xmmword
6048 || operand_types[i.operands - 1].bitfield.xmmword
6049 || operand_types[0].bitfield.class == RegMMX
6050 || operand_types[i.operands - 1].bitfield.class == RegMMX
6051 || is_any_vex_encoding(t))
6052 found_reverse_match = (t->base_opcode & 0xee) != 0x6e
6053 ? Opcode_SIMD_FloatD : Opcode_SIMD_IntD;
6054 else
6055 found_reverse_match = Opcode_D;
6056 if (t->opcode_modifier.floatr)
6057 found_reverse_match |= Opcode_FloatR;
6058 }
6059 else
6060 {
6061 /* Found a forward 2 operand match here. */
6062 switch (t->operands)
6063 {
6064 case 5:
6065 overlap4 = operand_type_and (i.types[4],
6066 operand_types[4]);
6067 /* Fall through. */
6068 case 4:
6069 overlap3 = operand_type_and (i.types[3],
6070 operand_types[3]);
6071 /* Fall through. */
6072 case 3:
6073 overlap2 = operand_type_and (i.types[2],
6074 operand_types[2]);
6075 break;
6076 }
6077
6078 switch (t->operands)
6079 {
6080 case 5:
6081 if (!operand_type_match (overlap4, i.types[4])
6082 || !operand_type_register_match (i.types[3],
6083 operand_types[3],
6084 i.types[4],
6085 operand_types[4]))
6086 continue;
6087 /* Fall through. */
6088 case 4:
6089 if (!operand_type_match (overlap3, i.types[3])
6090 || ((check_register & 0xa) == 0xa
6091 && !operand_type_register_match (i.types[1],
6092 operand_types[1],
6093 i.types[3],
6094 operand_types[3]))
6095 || ((check_register & 0xc) == 0xc
6096 && !operand_type_register_match (i.types[2],
6097 operand_types[2],
6098 i.types[3],
6099 operand_types[3])))
6100 continue;
6101 /* Fall through. */
6102 case 3:
6103 /* Here we make use of the fact that there are no
6104 reverse match 3 operand instructions. */
6105 if (!operand_type_match (overlap2, i.types[2])
6106 || ((check_register & 5) == 5
6107 && !operand_type_register_match (i.types[0],
6108 operand_types[0],
6109 i.types[2],
6110 operand_types[2]))
6111 || ((check_register & 6) == 6
6112 && !operand_type_register_match (i.types[1],
6113 operand_types[1],
6114 i.types[2],
6115 operand_types[2])))
6116 continue;
6117 break;
6118 }
6119 }
6120 /* Found either forward/reverse 2, 3 or 4 operand match here:
6121 slip through to break. */
6122 }
6123
6124 /* Check if vector and VEX operands are valid. */
6125 if (check_VecOperands (t) || VEX_check_operands (t))
6126 {
6127 specific_error = i.error;
6128 continue;
6129 }
6130
6131 /* We've found a match; break out of loop. */
6132 break;
6133 }
6134
6135 if (t == current_templates->end)
6136 {
6137 /* We found no match. */
6138 const char *err_msg;
6139 switch (specific_error ? specific_error : i.error)
6140 {
6141 default:
6142 abort ();
6143 case operand_size_mismatch:
6144 err_msg = _("operand size mismatch");
6145 break;
6146 case operand_type_mismatch:
6147 err_msg = _("operand type mismatch");
6148 break;
6149 case register_type_mismatch:
6150 err_msg = _("register type mismatch");
6151 break;
6152 case number_of_operands_mismatch:
6153 err_msg = _("number of operands mismatch");
6154 break;
6155 case invalid_instruction_suffix:
6156 err_msg = _("invalid instruction suffix");
6157 break;
6158 case bad_imm4:
6159 err_msg = _("constant doesn't fit in 4 bits");
6160 break;
6161 case unsupported_with_intel_mnemonic:
6162 err_msg = _("unsupported with Intel mnemonic");
6163 break;
6164 case unsupported_syntax:
6165 err_msg = _("unsupported syntax");
6166 break;
6167 case unsupported:
6168 as_bad (_("unsupported instruction `%s'"),
6169 current_templates->start->name);
6170 return NULL;
6171 case invalid_vsib_address:
6172 err_msg = _("invalid VSIB address");
6173 break;
6174 case invalid_vector_register_set:
6175 err_msg = _("mask, index, and destination registers must be distinct");
6176 break;
6177 case unsupported_vector_index_register:
6178 err_msg = _("unsupported vector index register");
6179 break;
6180 case unsupported_broadcast:
6181 err_msg = _("unsupported broadcast");
6182 break;
6183 case broadcast_needed:
6184 err_msg = _("broadcast is needed for operand of such type");
6185 break;
6186 case unsupported_masking:
6187 err_msg = _("unsupported masking");
6188 break;
6189 case mask_not_on_destination:
6190 err_msg = _("mask not on destination operand");
6191 break;
6192 case no_default_mask:
6193 err_msg = _("default mask isn't allowed");
6194 break;
6195 case unsupported_rc_sae:
6196 err_msg = _("unsupported static rounding/sae");
6197 break;
6198 case rc_sae_operand_not_last_imm:
6199 if (intel_syntax)
6200 err_msg = _("RC/SAE operand must precede immediate operands");
6201 else
6202 err_msg = _("RC/SAE operand must follow immediate operands");
6203 break;
6204 case invalid_register_operand:
6205 err_msg = _("invalid register operand");
6206 break;
6207 }
6208 as_bad (_("%s for `%s'"), err_msg,
6209 current_templates->start->name);
6210 return NULL;
6211 }
6212
6213 if (!quiet_warnings)
6214 {
6215 if (!intel_syntax
6216 && (i.jumpabsolute != (t->opcode_modifier.jump == JUMP_ABSOLUTE)))
6217 as_warn (_("indirect %s without `*'"), t->name);
6218
6219 if (t->opcode_modifier.isprefix
6220 && t->opcode_modifier.ignoresize)
6221 {
6222 /* Warn them that a data or address size prefix doesn't
6223 affect assembly of the next line of code. */
6224 as_warn (_("stand-alone `%s' prefix"), t->name);
6225 }
6226 }
6227
6228 /* Copy the template we found. */
6229 i.tm = *t;
6230
6231 if (addr_prefix_disp != -1)
6232 i.tm.operand_types[addr_prefix_disp]
6233 = operand_types[addr_prefix_disp];
6234
6235 if (found_reverse_match)
6236 {
6237 /* If we found a reverse match we must alter the opcode direction
6238 bit and clear/flip the regmem modifier one. found_reverse_match
6239 holds bits to change (different for int & float insns). */
6240
6241 i.tm.base_opcode ^= found_reverse_match;
6242
6243 i.tm.operand_types[0] = operand_types[i.operands - 1];
6244 i.tm.operand_types[i.operands - 1] = operand_types[0];
6245
6246 /* Certain SIMD insns have their load forms specified in the opcode
6247 table, and hence we need to _set_ RegMem instead of clearing it.
6248 We need to avoid setting the bit though on insns like KMOVW. */
6249 i.tm.opcode_modifier.regmem
6250 = i.tm.opcode_modifier.modrm && i.tm.opcode_modifier.d
6251 && i.tm.operands > 2U - i.tm.opcode_modifier.sse2avx
6252 && !i.tm.opcode_modifier.regmem;
6253 }
6254
6255 return t;
6256 }
6257
6258 static int
6259 check_string (void)
6260 {
6261 unsigned int es_op = i.tm.opcode_modifier.isstring - IS_STRING_ES_OP0;
6262 unsigned int op = i.tm.operand_types[0].bitfield.baseindex ? es_op : 0;
6263
6264 if (i.seg[op] != NULL && i.seg[op] != &es)
6265 {
6266 as_bad (_("`%s' operand %u must use `%ses' segment"),
6267 i.tm.name,
6268 intel_syntax ? i.tm.operands - es_op : es_op + 1,
6269 register_prefix);
6270 return 0;
6271 }
6272
6273 /* There's only ever one segment override allowed per instruction.
6274 This instruction possibly has a legal segment override on the
6275 second operand, so copy the segment to where non-string
6276 instructions store it, allowing common code. */
6277 i.seg[op] = i.seg[1];
6278
6279 return 1;
6280 }
6281
6282 static int
6283 process_suffix (void)
6284 {
6285 /* If matched instruction specifies an explicit instruction mnemonic
6286 suffix, use it. */
6287 if (i.tm.opcode_modifier.size == SIZE16)
6288 i.suffix = WORD_MNEM_SUFFIX;
6289 else if (i.tm.opcode_modifier.size == SIZE32)
6290 i.suffix = LONG_MNEM_SUFFIX;
6291 else if (i.tm.opcode_modifier.size == SIZE64)
6292 i.suffix = QWORD_MNEM_SUFFIX;
6293 else if (i.reg_operands
6294 && (i.operands > 1 || i.types[0].bitfield.class == Reg))
6295 {
6296 /* If there's no instruction mnemonic suffix we try to invent one
6297 based on GPR operands. */
6298 if (!i.suffix)
6299 {
6300 /* We take i.suffix from the last register operand specified,
6301 Destination register type is more significant than source
6302 register type. crc32 in SSE4.2 prefers source register
6303 type. */
6304 unsigned int op = i.tm.base_opcode != 0xf20f38f0 ? i.operands : 1;
6305
6306 while (op--)
6307 if (i.tm.operand_types[op].bitfield.instance == InstanceNone
6308 || i.tm.operand_types[op].bitfield.instance == Accum)
6309 {
6310 if (i.types[op].bitfield.class != Reg)
6311 continue;
6312 if (i.types[op].bitfield.byte)
6313 i.suffix = BYTE_MNEM_SUFFIX;
6314 else if (i.types[op].bitfield.word)
6315 i.suffix = WORD_MNEM_SUFFIX;
6316 else if (i.types[op].bitfield.dword)
6317 i.suffix = LONG_MNEM_SUFFIX;
6318 else if (i.types[op].bitfield.qword)
6319 i.suffix = QWORD_MNEM_SUFFIX;
6320 else
6321 continue;
6322 break;
6323 }
6324 }
6325 else if (i.suffix == BYTE_MNEM_SUFFIX)
6326 {
6327 if (intel_syntax
6328 && i.tm.opcode_modifier.ignoresize
6329 && i.tm.opcode_modifier.no_bsuf)
6330 i.suffix = 0;
6331 else if (!check_byte_reg ())
6332 return 0;
6333 }
6334 else if (i.suffix == LONG_MNEM_SUFFIX)
6335 {
6336 if (intel_syntax
6337 && i.tm.opcode_modifier.ignoresize
6338 && i.tm.opcode_modifier.no_lsuf
6339 && !i.tm.opcode_modifier.todword
6340 && !i.tm.opcode_modifier.toqword)
6341 i.suffix = 0;
6342 else if (!check_long_reg ())
6343 return 0;
6344 }
6345 else if (i.suffix == QWORD_MNEM_SUFFIX)
6346 {
6347 if (intel_syntax
6348 && i.tm.opcode_modifier.ignoresize
6349 && i.tm.opcode_modifier.no_qsuf
6350 && !i.tm.opcode_modifier.todword
6351 && !i.tm.opcode_modifier.toqword)
6352 i.suffix = 0;
6353 else if (!check_qword_reg ())
6354 return 0;
6355 }
6356 else if (i.suffix == WORD_MNEM_SUFFIX)
6357 {
6358 if (intel_syntax
6359 && i.tm.opcode_modifier.ignoresize
6360 && i.tm.opcode_modifier.no_wsuf)
6361 i.suffix = 0;
6362 else if (!check_word_reg ())
6363 return 0;
6364 }
6365 else if (intel_syntax && i.tm.opcode_modifier.ignoresize)
6366 /* Do nothing if the instruction is going to ignore the prefix. */
6367 ;
6368 else
6369 abort ();
6370 }
6371 else if (i.tm.opcode_modifier.defaultsize
6372 && !i.suffix
6373 /* exclude fldenv/frstor/fsave/fstenv */
6374 && i.tm.opcode_modifier.no_ssuf)
6375 {
6376 i.suffix = stackop_size;
6377 if (stackop_size == LONG_MNEM_SUFFIX)
6378 {
6379 /* stackop_size is set to LONG_MNEM_SUFFIX for the
6380 .code16gcc directive to support 16-bit mode with
6381 32-bit address. For IRET without a suffix, generate
6382 16-bit IRET (opcode 0xcf) to return from an interrupt
6383 handler. */
6384 if (i.tm.base_opcode == 0xcf)
6385 {
6386 i.suffix = WORD_MNEM_SUFFIX;
6387 as_warn (_("generating 16-bit `iret' for .code16gcc directive"));
6388 }
6389 /* Warn about changed behavior for segment register push/pop. */
6390 else if ((i.tm.base_opcode | 1) == 0x07)
6391 as_warn (_("generating 32-bit `%s', unlike earlier gas versions"),
6392 i.tm.name);
6393 }
6394 }
6395 else if (!i.suffix
6396 && (i.tm.opcode_modifier.jump == JUMP_ABSOLUTE
6397 || i.tm.opcode_modifier.jump == JUMP_BYTE
6398 || i.tm.opcode_modifier.jump == JUMP_INTERSEGMENT
6399 || (i.tm.base_opcode == 0x0f01 /* [ls][gi]dt */
6400 && i.tm.extension_opcode <= 3)))
6401 {
6402 switch (flag_code)
6403 {
6404 case CODE_64BIT:
6405 if (!i.tm.opcode_modifier.no_qsuf)
6406 {
6407 i.suffix = QWORD_MNEM_SUFFIX;
6408 break;
6409 }
6410 /* Fall through. */
6411 case CODE_32BIT:
6412 if (!i.tm.opcode_modifier.no_lsuf)
6413 i.suffix = LONG_MNEM_SUFFIX;
6414 break;
6415 case CODE_16BIT:
6416 if (!i.tm.opcode_modifier.no_wsuf)
6417 i.suffix = WORD_MNEM_SUFFIX;
6418 break;
6419 }
6420 }
6421
6422 if (!i.suffix
6423 && !i.tm.opcode_modifier.defaultsize
6424 && !i.tm.opcode_modifier.ignoresize)
6425 {
6426 unsigned int suffixes;
6427
6428 suffixes = !i.tm.opcode_modifier.no_bsuf;
6429 if (!i.tm.opcode_modifier.no_wsuf)
6430 suffixes |= 1 << 1;
6431 if (!i.tm.opcode_modifier.no_lsuf)
6432 suffixes |= 1 << 2;
6433 if (!i.tm.opcode_modifier.no_ldsuf)
6434 suffixes |= 1 << 3;
6435 if (!i.tm.opcode_modifier.no_ssuf)
6436 suffixes |= 1 << 4;
6437 if (flag_code == CODE_64BIT && !i.tm.opcode_modifier.no_qsuf)
6438 suffixes |= 1 << 5;
6439
6440 /* Are multiple suffixes allowed? */
6441 if (suffixes & (suffixes - 1))
6442 {
6443 if (intel_syntax)
6444 {
6445 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
6446 return 0;
6447 }
6448 if (operand_check == check_error)
6449 {
6450 as_bad (_("no instruction mnemonic suffix given and "
6451 "no register operands; can't size `%s'"), i.tm.name);
6452 return 0;
6453 }
6454 if (operand_check == check_warning)
6455 as_warn (_("no instruction mnemonic suffix given and "
6456 "no register operands; using default for `%s'"),
6457 i.tm.name);
6458
6459 if (i.tm.opcode_modifier.floatmf)
6460 i.suffix = SHORT_MNEM_SUFFIX;
6461 else if (flag_code == CODE_16BIT)
6462 i.suffix = WORD_MNEM_SUFFIX;
6463 else if (!i.tm.opcode_modifier.no_lsuf)
6464 i.suffix = LONG_MNEM_SUFFIX;
6465 else
6466 i.suffix = QWORD_MNEM_SUFFIX;
6467 }
6468 }
6469
6470 /* Change the opcode based on the operand size given by i.suffix. */
6471 switch (i.suffix)
6472 {
6473 /* Size floating point instruction. */
6474 case LONG_MNEM_SUFFIX:
6475 if (i.tm.opcode_modifier.floatmf)
6476 {
6477 i.tm.base_opcode ^= 4;
6478 break;
6479 }
6480 /* fall through */
6481 case WORD_MNEM_SUFFIX:
6482 case QWORD_MNEM_SUFFIX:
6483 /* It's not a byte, select word/dword operation. */
6484 if (i.tm.opcode_modifier.w)
6485 {
6486 if (i.tm.opcode_modifier.shortform)
6487 i.tm.base_opcode |= 8;
6488 else
6489 i.tm.base_opcode |= 1;
6490 }
6491 /* fall through */
6492 case SHORT_MNEM_SUFFIX:
6493 /* Now select between word & dword operations via the operand
6494 size prefix, except for instructions that will ignore this
6495 prefix anyway. */
6496 if (i.reg_operands > 0
6497 && i.types[0].bitfield.class == Reg
6498 && i.tm.opcode_modifier.addrprefixopreg
6499 && (i.tm.operand_types[0].bitfield.instance == Accum
6500 || i.operands == 1))
6501 {
6502 /* The address size override prefix changes the size of the
6503 first operand. */
6504 if ((flag_code == CODE_32BIT
6505 && i.op[0].regs->reg_type.bitfield.word)
6506 || (flag_code != CODE_32BIT
6507 && i.op[0].regs->reg_type.bitfield.dword))
6508 if (!add_prefix (ADDR_PREFIX_OPCODE))
6509 return 0;
6510 }
6511 else if (i.suffix != QWORD_MNEM_SUFFIX
6512 && !i.tm.opcode_modifier.ignoresize
6513 && !i.tm.opcode_modifier.floatmf
6514 && !is_any_vex_encoding (&i.tm)
6515 && ((i.suffix == LONG_MNEM_SUFFIX) == (flag_code == CODE_16BIT)
6516 || (flag_code == CODE_64BIT
6517 && i.tm.opcode_modifier.jump == JUMP_BYTE)))
6518 {
6519 unsigned int prefix = DATA_PREFIX_OPCODE;
6520
6521 if (i.tm.opcode_modifier.jump == JUMP_BYTE) /* jcxz, loop */
6522 prefix = ADDR_PREFIX_OPCODE;
6523
6524 if (!add_prefix (prefix))
6525 return 0;
6526 }
6527
6528 /* Set mode64 for an operand. */
6529 if (i.suffix == QWORD_MNEM_SUFFIX
6530 && flag_code == CODE_64BIT
6531 && !i.tm.opcode_modifier.norex64
6532 /* Special case for xchg %rax,%rax. It is NOP and doesn't
6533 need rex64. */
6534 && ! (i.operands == 2
6535 && i.tm.base_opcode == 0x90
6536 && i.tm.extension_opcode == None
6537 && i.types[0].bitfield.instance == Accum
6538 && i.types[0].bitfield.qword
6539 && i.types[1].bitfield.instance == Accum
6540 && i.types[1].bitfield.qword))
6541 i.rex |= REX_W;
6542
6543 break;
6544 }
6545
6546 if (i.reg_operands != 0
6547 && i.operands > 1
6548 && i.tm.opcode_modifier.addrprefixopreg
6549 && i.tm.operand_types[0].bitfield.instance != Accum)
6550 {
6551 /* Check invalid register operand when the address size override
6552 prefix changes the size of register operands. */
6553 unsigned int op;
6554 enum { need_word, need_dword, need_qword } need;
6555
6556 if (flag_code == CODE_32BIT)
6557 need = i.prefix[ADDR_PREFIX] ? need_word : need_dword;
6558 else
6559 {
6560 if (i.prefix[ADDR_PREFIX])
6561 need = need_dword;
6562 else
6563 need = flag_code == CODE_64BIT ? need_qword : need_word;
6564 }
6565
6566 for (op = 0; op < i.operands; op++)
6567 if (i.types[op].bitfield.class == Reg
6568 && ((need == need_word
6569 && !i.op[op].regs->reg_type.bitfield.word)
6570 || (need == need_dword
6571 && !i.op[op].regs->reg_type.bitfield.dword)
6572 || (need == need_qword
6573 && !i.op[op].regs->reg_type.bitfield.qword)))
6574 {
6575 as_bad (_("invalid register operand size for `%s'"),
6576 i.tm.name);
6577 return 0;
6578 }
6579 }
6580
6581 return 1;
6582 }
6583
6584 static int
6585 check_byte_reg (void)
6586 {
6587 int op;
6588
6589 for (op = i.operands; --op >= 0;)
6590 {
6591 /* Skip non-register operands. */
6592 if (i.types[op].bitfield.class != Reg)
6593 continue;
6594
6595 /* If this is an eight bit register, it's OK. If it's the 16 or
6596 32 bit version of an eight bit register, we will just use the
6597 low portion, and that's OK too. */
6598 if (i.types[op].bitfield.byte)
6599 continue;
6600
6601 /* I/O port address operands are OK too. */
6602 if (i.tm.operand_types[op].bitfield.instance == RegD
6603 && i.tm.operand_types[op].bitfield.word)
6604 continue;
6605
6606 /* crc32 doesn't generate this warning. */
6607 if (i.tm.base_opcode == 0xf20f38f0)
6608 continue;
6609
6610 if ((i.types[op].bitfield.word
6611 || i.types[op].bitfield.dword
6612 || i.types[op].bitfield.qword)
6613 && i.op[op].regs->reg_num < 4
6614 /* Prohibit these changes in 64bit mode, since the lowering
6615 would be more complicated. */
6616 && flag_code != CODE_64BIT)
6617 {
6618 #if REGISTER_WARNINGS
6619 if (!quiet_warnings)
6620 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
6621 register_prefix,
6622 (i.op[op].regs + (i.types[op].bitfield.word
6623 ? REGNAM_AL - REGNAM_AX
6624 : REGNAM_AL - REGNAM_EAX))->reg_name,
6625 register_prefix,
6626 i.op[op].regs->reg_name,
6627 i.suffix);
6628 #endif
6629 continue;
6630 }
6631 /* Any other register is bad. */
6632 if (i.types[op].bitfield.class == Reg
6633 || i.types[op].bitfield.class == RegMMX
6634 || i.types[op].bitfield.class == RegSIMD
6635 || i.types[op].bitfield.class == SReg
6636 || i.types[op].bitfield.class == RegCR
6637 || i.types[op].bitfield.class == RegDR
6638 || i.types[op].bitfield.class == RegTR)
6639 {
6640 as_bad (_("`%s%s' not allowed with `%s%c'"),
6641 register_prefix,
6642 i.op[op].regs->reg_name,
6643 i.tm.name,
6644 i.suffix);
6645 return 0;
6646 }
6647 }
6648 return 1;
6649 }
6650
6651 static int
6652 check_long_reg (void)
6653 {
6654 int op;
6655
6656 for (op = i.operands; --op >= 0;)
6657 /* Skip non-register operands. */
6658 if (i.types[op].bitfield.class != Reg)
6659 continue;
6660 /* Reject eight bit registers, except where the template requires
6661 them. (eg. movzb) */
6662 else if (i.types[op].bitfield.byte
6663 && (i.tm.operand_types[op].bitfield.class == Reg
6664 || i.tm.operand_types[op].bitfield.instance == Accum)
6665 && (i.tm.operand_types[op].bitfield.word
6666 || i.tm.operand_types[op].bitfield.dword))
6667 {
6668 as_bad (_("`%s%s' not allowed with `%s%c'"),
6669 register_prefix,
6670 i.op[op].regs->reg_name,
6671 i.tm.name,
6672 i.suffix);
6673 return 0;
6674 }
6675 /* Warn if the e prefix on a general reg is missing. */
6676 else if ((!quiet_warnings || flag_code == CODE_64BIT)
6677 && i.types[op].bitfield.word
6678 && (i.tm.operand_types[op].bitfield.class == Reg
6679 || i.tm.operand_types[op].bitfield.instance == Accum)
6680 && i.tm.operand_types[op].bitfield.dword)
6681 {
6682 /* Prohibit these changes in the 64bit mode, since the
6683 lowering is more complicated. */
6684 if (flag_code == CODE_64BIT)
6685 {
6686 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
6687 register_prefix, i.op[op].regs->reg_name,
6688 i.suffix);
6689 return 0;
6690 }
6691 #if REGISTER_WARNINGS
6692 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
6693 register_prefix,
6694 (i.op[op].regs + REGNAM_EAX - REGNAM_AX)->reg_name,
6695 register_prefix, i.op[op].regs->reg_name, i.suffix);
6696 #endif
6697 }
6698 /* Warn if the r prefix on a general reg is present. */
6699 else if (i.types[op].bitfield.qword
6700 && (i.tm.operand_types[op].bitfield.class == Reg
6701 || i.tm.operand_types[op].bitfield.instance == Accum)
6702 && i.tm.operand_types[op].bitfield.dword)
6703 {
6704 if (intel_syntax
6705 && i.tm.opcode_modifier.toqword
6706 && i.types[0].bitfield.class != RegSIMD)
6707 {
6708 /* Convert to QWORD. We want REX byte. */
6709 i.suffix = QWORD_MNEM_SUFFIX;
6710 }
6711 else
6712 {
6713 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
6714 register_prefix, i.op[op].regs->reg_name,
6715 i.suffix);
6716 return 0;
6717 }
6718 }
6719 return 1;
6720 }
6721
6722 static int
6723 check_qword_reg (void)
6724 {
6725 int op;
6726
6727 for (op = i.operands; --op >= 0; )
6728 /* Skip non-register operands. */
6729 if (i.types[op].bitfield.class != Reg)
6730 continue;
6731 /* Reject eight bit registers, except where the template requires
6732 them. (eg. movzb) */
6733 else if (i.types[op].bitfield.byte
6734 && (i.tm.operand_types[op].bitfield.class == Reg
6735 || i.tm.operand_types[op].bitfield.instance == Accum)
6736 && (i.tm.operand_types[op].bitfield.word
6737 || i.tm.operand_types[op].bitfield.dword))
6738 {
6739 as_bad (_("`%s%s' not allowed with `%s%c'"),
6740 register_prefix,
6741 i.op[op].regs->reg_name,
6742 i.tm.name,
6743 i.suffix);
6744 return 0;
6745 }
6746 /* Warn if the r prefix on a general reg is missing. */
6747 else if ((i.types[op].bitfield.word
6748 || i.types[op].bitfield.dword)
6749 && (i.tm.operand_types[op].bitfield.class == Reg
6750 || i.tm.operand_types[op].bitfield.instance == Accum)
6751 && i.tm.operand_types[op].bitfield.qword)
6752 {
6753 /* Prohibit these changes in the 64bit mode, since the
6754 lowering is more complicated. */
6755 if (intel_syntax
6756 && i.tm.opcode_modifier.todword
6757 && i.types[0].bitfield.class != RegSIMD)
6758 {
6759 /* Convert to DWORD. We don't want REX byte. */
6760 i.suffix = LONG_MNEM_SUFFIX;
6761 }
6762 else
6763 {
6764 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
6765 register_prefix, i.op[op].regs->reg_name,
6766 i.suffix);
6767 return 0;
6768 }
6769 }
6770 return 1;
6771 }
6772
6773 static int
6774 check_word_reg (void)
6775 {
6776 int op;
6777 for (op = i.operands; --op >= 0;)
6778 /* Skip non-register operands. */
6779 if (i.types[op].bitfield.class != Reg)
6780 continue;
6781 /* Reject eight bit registers, except where the template requires
6782 them. (eg. movzb) */
6783 else if (i.types[op].bitfield.byte
6784 && (i.tm.operand_types[op].bitfield.class == Reg
6785 || i.tm.operand_types[op].bitfield.instance == Accum)
6786 && (i.tm.operand_types[op].bitfield.word
6787 || i.tm.operand_types[op].bitfield.dword))
6788 {
6789 as_bad (_("`%s%s' not allowed with `%s%c'"),
6790 register_prefix,
6791 i.op[op].regs->reg_name,
6792 i.tm.name,
6793 i.suffix);
6794 return 0;
6795 }
6796 /* Warn if the e or r prefix on a general reg is present. */
6797 else if ((!quiet_warnings || flag_code == CODE_64BIT)
6798 && (i.types[op].bitfield.dword
6799 || i.types[op].bitfield.qword)
6800 && (i.tm.operand_types[op].bitfield.class == Reg
6801 || i.tm.operand_types[op].bitfield.instance == Accum)
6802 && i.tm.operand_types[op].bitfield.word)
6803 {
6804 /* Prohibit these changes in the 64bit mode, since the
6805 lowering is more complicated. */
6806 if (flag_code == CODE_64BIT)
6807 {
6808 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
6809 register_prefix, i.op[op].regs->reg_name,
6810 i.suffix);
6811 return 0;
6812 }
6813 #if REGISTER_WARNINGS
6814 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
6815 register_prefix,
6816 (i.op[op].regs + REGNAM_AX - REGNAM_EAX)->reg_name,
6817 register_prefix, i.op[op].regs->reg_name, i.suffix);
6818 #endif
6819 }
6820 return 1;
6821 }
6822
6823 static int
6824 update_imm (unsigned int j)
6825 {
6826 i386_operand_type overlap = i.types[j];
6827 if ((overlap.bitfield.imm8
6828 || overlap.bitfield.imm8s
6829 || overlap.bitfield.imm16
6830 || overlap.bitfield.imm32
6831 || overlap.bitfield.imm32s
6832 || overlap.bitfield.imm64)
6833 && !operand_type_equal (&overlap, &imm8)
6834 && !operand_type_equal (&overlap, &imm8s)
6835 && !operand_type_equal (&overlap, &imm16)
6836 && !operand_type_equal (&overlap, &imm32)
6837 && !operand_type_equal (&overlap, &imm32s)
6838 && !operand_type_equal (&overlap, &imm64))
6839 {
6840 if (i.suffix)
6841 {
6842 i386_operand_type temp;
6843
6844 operand_type_set (&temp, 0);
6845 if (i.suffix == BYTE_MNEM_SUFFIX)
6846 {
6847 temp.bitfield.imm8 = overlap.bitfield.imm8;
6848 temp.bitfield.imm8s = overlap.bitfield.imm8s;
6849 }
6850 else if (i.suffix == WORD_MNEM_SUFFIX)
6851 temp.bitfield.imm16 = overlap.bitfield.imm16;
6852 else if (i.suffix == QWORD_MNEM_SUFFIX)
6853 {
6854 temp.bitfield.imm64 = overlap.bitfield.imm64;
6855 temp.bitfield.imm32s = overlap.bitfield.imm32s;
6856 }
6857 else
6858 temp.bitfield.imm32 = overlap.bitfield.imm32;
6859 overlap = temp;
6860 }
6861 else if (operand_type_equal (&overlap, &imm16_32_32s)
6862 || operand_type_equal (&overlap, &imm16_32)
6863 || operand_type_equal (&overlap, &imm16_32s))
6864 {
6865 if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
6866 overlap = imm16;
6867 else
6868 overlap = imm32s;
6869 }
6870 if (!operand_type_equal (&overlap, &imm8)
6871 && !operand_type_equal (&overlap, &imm8s)
6872 && !operand_type_equal (&overlap, &imm16)
6873 && !operand_type_equal (&overlap, &imm32)
6874 && !operand_type_equal (&overlap, &imm32s)
6875 && !operand_type_equal (&overlap, &imm64))
6876 {
6877 as_bad (_("no instruction mnemonic suffix given; "
6878 "can't determine immediate size"));
6879 return 0;
6880 }
6881 }
6882 i.types[j] = overlap;
6883
6884 return 1;
6885 }
6886
6887 static int
6888 finalize_imm (void)
6889 {
6890 unsigned int j, n;
6891
6892 /* Update the first 2 immediate operands. */
6893 n = i.operands > 2 ? 2 : i.operands;
6894 if (n)
6895 {
6896 for (j = 0; j < n; j++)
6897 if (update_imm (j) == 0)
6898 return 0;
6899
6900 /* The 3rd operand can't be immediate operand. */
6901 gas_assert (operand_type_check (i.types[2], imm) == 0);
6902 }
6903
6904 return 1;
6905 }
6906
6907 static int
6908 process_operands (void)
6909 {
6910 /* Default segment register this instruction will use for memory
6911 accesses. 0 means unknown. This is only for optimizing out
6912 unnecessary segment overrides. */
6913 const seg_entry *default_seg = 0;
6914
6915 if (i.tm.opcode_modifier.sse2avx && i.tm.opcode_modifier.vexvvvv)
6916 {
6917 unsigned int dupl = i.operands;
6918 unsigned int dest = dupl - 1;
6919 unsigned int j;
6920
6921 /* The destination must be an xmm register. */
6922 gas_assert (i.reg_operands
6923 && MAX_OPERANDS > dupl
6924 && operand_type_equal (&i.types[dest], &regxmm));
6925
6926 if (i.tm.operand_types[0].bitfield.instance == Accum
6927 && i.tm.operand_types[0].bitfield.xmmword)
6928 {
6929 if (i.tm.opcode_modifier.vexsources == VEX3SOURCES)
6930 {
6931 /* Keep xmm0 for instructions with VEX prefix and 3
6932 sources. */
6933 i.tm.operand_types[0].bitfield.instance = InstanceNone;
6934 i.tm.operand_types[0].bitfield.class = RegSIMD;
6935 goto duplicate;
6936 }
6937 else
6938 {
6939 /* We remove the first xmm0 and keep the number of
6940 operands unchanged, which in fact duplicates the
6941 destination. */
6942 for (j = 1; j < i.operands; j++)
6943 {
6944 i.op[j - 1] = i.op[j];
6945 i.types[j - 1] = i.types[j];
6946 i.tm.operand_types[j - 1] = i.tm.operand_types[j];
6947 i.flags[j - 1] = i.flags[j];
6948 }
6949 }
6950 }
6951 else if (i.tm.opcode_modifier.implicit1stxmm0)
6952 {
6953 gas_assert ((MAX_OPERANDS - 1) > dupl
6954 && (i.tm.opcode_modifier.vexsources
6955 == VEX3SOURCES));
6956
6957 /* Add the implicit xmm0 for instructions with VEX prefix
6958 and 3 sources. */
6959 for (j = i.operands; j > 0; j--)
6960 {
6961 i.op[j] = i.op[j - 1];
6962 i.types[j] = i.types[j - 1];
6963 i.tm.operand_types[j] = i.tm.operand_types[j - 1];
6964 i.flags[j] = i.flags[j - 1];
6965 }
6966 i.op[0].regs
6967 = (const reg_entry *) hash_find (reg_hash, "xmm0");
6968 i.types[0] = regxmm;
6969 i.tm.operand_types[0] = regxmm;
6970
6971 i.operands += 2;
6972 i.reg_operands += 2;
6973 i.tm.operands += 2;
6974
6975 dupl++;
6976 dest++;
6977 i.op[dupl] = i.op[dest];
6978 i.types[dupl] = i.types[dest];
6979 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
6980 i.flags[dupl] = i.flags[dest];
6981 }
6982 else
6983 {
6984 duplicate:
6985 i.operands++;
6986 i.reg_operands++;
6987 i.tm.operands++;
6988
6989 i.op[dupl] = i.op[dest];
6990 i.types[dupl] = i.types[dest];
6991 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
6992 i.flags[dupl] = i.flags[dest];
6993 }
6994
6995 if (i.tm.opcode_modifier.immext)
6996 process_immext ();
6997 }
6998 else if (i.tm.operand_types[0].bitfield.instance == Accum
6999 && i.tm.operand_types[0].bitfield.xmmword)
7000 {
7001 unsigned int j;
7002
7003 for (j = 1; j < i.operands; j++)
7004 {
7005 i.op[j - 1] = i.op[j];
7006 i.types[j - 1] = i.types[j];
7007
7008 /* We need to adjust fields in i.tm since they are used by
7009 build_modrm_byte. */
7010 i.tm.operand_types [j - 1] = i.tm.operand_types [j];
7011
7012 i.flags[j - 1] = i.flags[j];
7013 }
7014
7015 i.operands--;
7016 i.reg_operands--;
7017 i.tm.operands--;
7018 }
7019 else if (i.tm.opcode_modifier.implicitquadgroup)
7020 {
7021 unsigned int regnum, first_reg_in_group, last_reg_in_group;
7022
7023 /* The second operand must be {x,y,z}mmN, where N is a multiple of 4. */
7024 gas_assert (i.operands >= 2 && i.types[1].bitfield.class == RegSIMD);
7025 regnum = register_number (i.op[1].regs);
7026 first_reg_in_group = regnum & ~3;
7027 last_reg_in_group = first_reg_in_group + 3;
7028 if (regnum != first_reg_in_group)
7029 as_warn (_("source register `%s%s' implicitly denotes"
7030 " `%s%.3s%u' to `%s%.3s%u' source group in `%s'"),
7031 register_prefix, i.op[1].regs->reg_name,
7032 register_prefix, i.op[1].regs->reg_name, first_reg_in_group,
7033 register_prefix, i.op[1].regs->reg_name, last_reg_in_group,
7034 i.tm.name);
7035 }
7036 else if (i.tm.opcode_modifier.regkludge)
7037 {
7038 /* The imul $imm, %reg instruction is converted into
7039 imul $imm, %reg, %reg, and the clr %reg instruction
7040 is converted into xor %reg, %reg. */
7041
7042 unsigned int first_reg_op;
7043
7044 if (operand_type_check (i.types[0], reg))
7045 first_reg_op = 0;
7046 else
7047 first_reg_op = 1;
7048 /* Pretend we saw the extra register operand. */
7049 gas_assert (i.reg_operands == 1
7050 && i.op[first_reg_op + 1].regs == 0);
7051 i.op[first_reg_op + 1].regs = i.op[first_reg_op].regs;
7052 i.types[first_reg_op + 1] = i.types[first_reg_op];
7053 i.operands++;
7054 i.reg_operands++;
7055 }
7056
7057 if (i.tm.opcode_modifier.modrm)
7058 {
7059 /* The opcode is completed (modulo i.tm.extension_opcode which
7060 must be put into the modrm byte). Now, we make the modrm and
7061 index base bytes based on all the info we've collected. */
7062
7063 default_seg = build_modrm_byte ();
7064 }
7065 else if (i.types[0].bitfield.class == SReg)
7066 {
7067 if (flag_code != CODE_64BIT
7068 ? i.tm.base_opcode == POP_SEG_SHORT
7069 && i.op[0].regs->reg_num == 1
7070 : (i.tm.base_opcode | 1) == POP_SEG386_SHORT
7071 && i.op[0].regs->reg_num < 4)
7072 {
7073 as_bad (_("you can't `%s %s%s'"),
7074 i.tm.name, register_prefix, i.op[0].regs->reg_name);
7075 return 0;
7076 }
7077 if ( i.op[0].regs->reg_num > 3 && i.tm.opcode_length == 1 )
7078 {
7079 i.tm.base_opcode ^= POP_SEG_SHORT ^ POP_SEG386_SHORT;
7080 i.tm.opcode_length = 2;
7081 }
7082 i.tm.base_opcode |= (i.op[0].regs->reg_num << 3);
7083 }
7084 else if ((i.tm.base_opcode & ~0x3) == MOV_AX_DISP32)
7085 {
7086 default_seg = &ds;
7087 }
7088 else if (i.tm.opcode_modifier.isstring)
7089 {
7090 /* For the string instructions that allow a segment override
7091 on one of their operands, the default segment is ds. */
7092 default_seg = &ds;
7093 }
7094 else if (i.tm.opcode_modifier.shortform)
7095 {
7096 /* The register or float register operand is in operand
7097 0 or 1. */
7098 unsigned int op = i.tm.operand_types[0].bitfield.class != Reg;
7099
7100 /* Register goes in low 3 bits of opcode. */
7101 i.tm.base_opcode |= i.op[op].regs->reg_num;
7102 if ((i.op[op].regs->reg_flags & RegRex) != 0)
7103 i.rex |= REX_B;
7104 if (!quiet_warnings && i.tm.opcode_modifier.ugh)
7105 {
7106 /* Warn about some common errors, but press on regardless.
7107 The first case can be generated by gcc (<= 2.8.1). */
7108 if (i.operands == 2)
7109 {
7110 /* Reversed arguments on faddp, fsubp, etc. */
7111 as_warn (_("translating to `%s %s%s,%s%s'"), i.tm.name,
7112 register_prefix, i.op[!intel_syntax].regs->reg_name,
7113 register_prefix, i.op[intel_syntax].regs->reg_name);
7114 }
7115 else
7116 {
7117 /* Extraneous `l' suffix on fp insn. */
7118 as_warn (_("translating to `%s %s%s'"), i.tm.name,
7119 register_prefix, i.op[0].regs->reg_name);
7120 }
7121 }
7122 }
7123
7124 if (i.tm.base_opcode == 0x8d /* lea */
7125 && i.seg[0]
7126 && !quiet_warnings)
7127 as_warn (_("segment override on `%s' is ineffectual"), i.tm.name);
7128
7129 /* If a segment was explicitly specified, and the specified segment
7130 is not the default, use an opcode prefix to select it. If we
7131 never figured out what the default segment is, then default_seg
7132 will be zero at this point, and the specified segment prefix will
7133 always be used. */
7134 if ((i.seg[0]) && (i.seg[0] != default_seg))
7135 {
7136 if (!add_prefix (i.seg[0]->seg_prefix))
7137 return 0;
7138 }
7139 return 1;
7140 }
7141
7142 static const seg_entry *
7143 build_modrm_byte (void)
7144 {
7145 const seg_entry *default_seg = 0;
7146 unsigned int source, dest;
7147 int vex_3_sources;
7148
7149 vex_3_sources = i.tm.opcode_modifier.vexsources == VEX3SOURCES;
7150 if (vex_3_sources)
7151 {
7152 unsigned int nds, reg_slot;
7153 expressionS *exp;
7154
7155 dest = i.operands - 1;
7156 nds = dest - 1;
7157
7158 /* There are 2 kinds of instructions:
7159 1. 5 operands: 4 register operands or 3 register operands
7160 plus 1 memory operand plus one Imm4 operand, VexXDS, and
7161 VexW0 or VexW1. The destination must be either XMM, YMM or
7162 ZMM register.
7163 2. 4 operands: 4 register operands or 3 register operands
7164 plus 1 memory operand, with VexXDS. */
7165 gas_assert ((i.reg_operands == 4
7166 || (i.reg_operands == 3 && i.mem_operands == 1))
7167 && i.tm.opcode_modifier.vexvvvv == VEXXDS
7168 && i.tm.opcode_modifier.vexw
7169 && i.tm.operand_types[dest].bitfield.class == RegSIMD);
7170
7171 /* If VexW1 is set, the first non-immediate operand is the source and
7172 the second non-immediate one is encoded in the immediate operand. */
7173 if (i.tm.opcode_modifier.vexw == VEXW1)
7174 {
7175 source = i.imm_operands;
7176 reg_slot = i.imm_operands + 1;
7177 }
7178 else
7179 {
7180 source = i.imm_operands + 1;
7181 reg_slot = i.imm_operands;
7182 }
7183
7184 if (i.imm_operands == 0)
7185 {
7186 /* When there is no immediate operand, generate an 8bit
7187 immediate operand to encode the first operand. */
7188 exp = &im_expressions[i.imm_operands++];
7189 i.op[i.operands].imms = exp;
7190 i.types[i.operands] = imm8;
7191 i.operands++;
7192
7193 gas_assert (i.tm.operand_types[reg_slot].bitfield.class == RegSIMD);
7194 exp->X_op = O_constant;
7195 exp->X_add_number = register_number (i.op[reg_slot].regs) << 4;
7196 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
7197 }
7198 else
7199 {
7200 gas_assert (i.imm_operands == 1);
7201 gas_assert (fits_in_imm4 (i.op[0].imms->X_add_number));
7202 gas_assert (!i.tm.opcode_modifier.immext);
7203
7204 /* Turn on Imm8 again so that output_imm will generate it. */
7205 i.types[0].bitfield.imm8 = 1;
7206
7207 gas_assert (i.tm.operand_types[reg_slot].bitfield.class == RegSIMD);
7208 i.op[0].imms->X_add_number
7209 |= register_number (i.op[reg_slot].regs) << 4;
7210 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
7211 }
7212
7213 gas_assert (i.tm.operand_types[nds].bitfield.class == RegSIMD);
7214 i.vex.register_specifier = i.op[nds].regs;
7215 }
7216 else
7217 source = dest = 0;
7218
7219 /* i.reg_operands MUST be the number of real register operands;
7220 implicit registers do not count. If there are 3 register
7221 operands, it must be a instruction with VexNDS. For a
7222 instruction with VexNDD, the destination register is encoded
7223 in VEX prefix. If there are 4 register operands, it must be
7224 a instruction with VEX prefix and 3 sources. */
7225 if (i.mem_operands == 0
7226 && ((i.reg_operands == 2
7227 && i.tm.opcode_modifier.vexvvvv <= VEXXDS)
7228 || (i.reg_operands == 3
7229 && i.tm.opcode_modifier.vexvvvv == VEXXDS)
7230 || (i.reg_operands == 4 && vex_3_sources)))
7231 {
7232 switch (i.operands)
7233 {
7234 case 2:
7235 source = 0;
7236 break;
7237 case 3:
7238 /* When there are 3 operands, one of them may be immediate,
7239 which may be the first or the last operand. Otherwise,
7240 the first operand must be shift count register (cl) or it
7241 is an instruction with VexNDS. */
7242 gas_assert (i.imm_operands == 1
7243 || (i.imm_operands == 0
7244 && (i.tm.opcode_modifier.vexvvvv == VEXXDS
7245 || (i.types[0].bitfield.instance == RegC
7246 && i.types[0].bitfield.byte))));
7247 if (operand_type_check (i.types[0], imm)
7248 || (i.types[0].bitfield.instance == RegC
7249 && i.types[0].bitfield.byte))
7250 source = 1;
7251 else
7252 source = 0;
7253 break;
7254 case 4:
7255 /* When there are 4 operands, the first two must be 8bit
7256 immediate operands. The source operand will be the 3rd
7257 one.
7258
7259 For instructions with VexNDS, if the first operand
7260 an imm8, the source operand is the 2nd one. If the last
7261 operand is imm8, the source operand is the first one. */
7262 gas_assert ((i.imm_operands == 2
7263 && i.types[0].bitfield.imm8
7264 && i.types[1].bitfield.imm8)
7265 || (i.tm.opcode_modifier.vexvvvv == VEXXDS
7266 && i.imm_operands == 1
7267 && (i.types[0].bitfield.imm8
7268 || i.types[i.operands - 1].bitfield.imm8
7269 || i.rounding)));
7270 if (i.imm_operands == 2)
7271 source = 2;
7272 else
7273 {
7274 if (i.types[0].bitfield.imm8)
7275 source = 1;
7276 else
7277 source = 0;
7278 }
7279 break;
7280 case 5:
7281 if (is_evex_encoding (&i.tm))
7282 {
7283 /* For EVEX instructions, when there are 5 operands, the
7284 first one must be immediate operand. If the second one
7285 is immediate operand, the source operand is the 3th
7286 one. If the last one is immediate operand, the source
7287 operand is the 2nd one. */
7288 gas_assert (i.imm_operands == 2
7289 && i.tm.opcode_modifier.sae
7290 && operand_type_check (i.types[0], imm));
7291 if (operand_type_check (i.types[1], imm))
7292 source = 2;
7293 else if (operand_type_check (i.types[4], imm))
7294 source = 1;
7295 else
7296 abort ();
7297 }
7298 break;
7299 default:
7300 abort ();
7301 }
7302
7303 if (!vex_3_sources)
7304 {
7305 dest = source + 1;
7306
7307 /* RC/SAE operand could be between DEST and SRC. That happens
7308 when one operand is GPR and the other one is XMM/YMM/ZMM
7309 register. */
7310 if (i.rounding && i.rounding->operand == (int) dest)
7311 dest++;
7312
7313 if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
7314 {
7315 /* For instructions with VexNDS, the register-only source
7316 operand must be a 32/64bit integer, XMM, YMM, ZMM, or mask
7317 register. It is encoded in VEX prefix. */
7318
7319 i386_operand_type op;
7320 unsigned int vvvv;
7321
7322 /* Check register-only source operand when two source
7323 operands are swapped. */
7324 if (!i.tm.operand_types[source].bitfield.baseindex
7325 && i.tm.operand_types[dest].bitfield.baseindex)
7326 {
7327 vvvv = source;
7328 source = dest;
7329 }
7330 else
7331 vvvv = dest;
7332
7333 op = i.tm.operand_types[vvvv];
7334 if ((dest + 1) >= i.operands
7335 || ((op.bitfield.class != Reg
7336 || (!op.bitfield.dword && !op.bitfield.qword))
7337 && op.bitfield.class != RegSIMD
7338 && !operand_type_equal (&op, &regmask)))
7339 abort ();
7340 i.vex.register_specifier = i.op[vvvv].regs;
7341 dest++;
7342 }
7343 }
7344
7345 i.rm.mode = 3;
7346 /* One of the register operands will be encoded in the i.rm.reg
7347 field, the other in the combined i.rm.mode and i.rm.regmem
7348 fields. If no form of this instruction supports a memory
7349 destination operand, then we assume the source operand may
7350 sometimes be a memory operand and so we need to store the
7351 destination in the i.rm.reg field. */
7352 if (!i.tm.opcode_modifier.regmem
7353 && operand_type_check (i.tm.operand_types[dest], anymem) == 0)
7354 {
7355 i.rm.reg = i.op[dest].regs->reg_num;
7356 i.rm.regmem = i.op[source].regs->reg_num;
7357 if (i.op[dest].regs->reg_type.bitfield.class == RegMMX
7358 || i.op[source].regs->reg_type.bitfield.class == RegMMX)
7359 i.has_regmmx = TRUE;
7360 else if (i.op[dest].regs->reg_type.bitfield.class == RegSIMD
7361 || i.op[source].regs->reg_type.bitfield.class == RegSIMD)
7362 {
7363 if (i.types[dest].bitfield.zmmword
7364 || i.types[source].bitfield.zmmword)
7365 i.has_regzmm = TRUE;
7366 else if (i.types[dest].bitfield.ymmword
7367 || i.types[source].bitfield.ymmword)
7368 i.has_regymm = TRUE;
7369 else
7370 i.has_regxmm = TRUE;
7371 }
7372 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
7373 i.rex |= REX_R;
7374 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
7375 i.vrex |= REX_R;
7376 if ((i.op[source].regs->reg_flags & RegRex) != 0)
7377 i.rex |= REX_B;
7378 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
7379 i.vrex |= REX_B;
7380 }
7381 else
7382 {
7383 i.rm.reg = i.op[source].regs->reg_num;
7384 i.rm.regmem = i.op[dest].regs->reg_num;
7385 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
7386 i.rex |= REX_B;
7387 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
7388 i.vrex |= REX_B;
7389 if ((i.op[source].regs->reg_flags & RegRex) != 0)
7390 i.rex |= REX_R;
7391 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
7392 i.vrex |= REX_R;
7393 }
7394 if (flag_code != CODE_64BIT && (i.rex & REX_R))
7395 {
7396 if (i.types[!i.tm.opcode_modifier.regmem].bitfield.class != RegCR)
7397 abort ();
7398 i.rex &= ~REX_R;
7399 add_prefix (LOCK_PREFIX_OPCODE);
7400 }
7401 }
7402 else
7403 { /* If it's not 2 reg operands... */
7404 unsigned int mem;
7405
7406 if (i.mem_operands)
7407 {
7408 unsigned int fake_zero_displacement = 0;
7409 unsigned int op;
7410
7411 for (op = 0; op < i.operands; op++)
7412 if (i.flags[op] & Operand_Mem)
7413 break;
7414 gas_assert (op < i.operands);
7415
7416 if (i.tm.opcode_modifier.vecsib)
7417 {
7418 if (i.index_reg->reg_num == RegIZ)
7419 abort ();
7420
7421 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7422 if (!i.base_reg)
7423 {
7424 i.sib.base = NO_BASE_REGISTER;
7425 i.sib.scale = i.log2_scale_factor;
7426 i.types[op].bitfield.disp8 = 0;
7427 i.types[op].bitfield.disp16 = 0;
7428 i.types[op].bitfield.disp64 = 0;
7429 if (flag_code != CODE_64BIT || i.prefix[ADDR_PREFIX])
7430 {
7431 /* Must be 32 bit */
7432 i.types[op].bitfield.disp32 = 1;
7433 i.types[op].bitfield.disp32s = 0;
7434 }
7435 else
7436 {
7437 i.types[op].bitfield.disp32 = 0;
7438 i.types[op].bitfield.disp32s = 1;
7439 }
7440 }
7441 i.sib.index = i.index_reg->reg_num;
7442 if ((i.index_reg->reg_flags & RegRex) != 0)
7443 i.rex |= REX_X;
7444 if ((i.index_reg->reg_flags & RegVRex) != 0)
7445 i.vrex |= REX_X;
7446 }
7447
7448 default_seg = &ds;
7449
7450 if (i.base_reg == 0)
7451 {
7452 i.rm.mode = 0;
7453 if (!i.disp_operands)
7454 fake_zero_displacement = 1;
7455 if (i.index_reg == 0)
7456 {
7457 i386_operand_type newdisp;
7458
7459 gas_assert (!i.tm.opcode_modifier.vecsib);
7460 /* Operand is just <disp> */
7461 if (flag_code == CODE_64BIT)
7462 {
7463 /* 64bit mode overwrites the 32bit absolute
7464 addressing by RIP relative addressing and
7465 absolute addressing is encoded by one of the
7466 redundant SIB forms. */
7467 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7468 i.sib.base = NO_BASE_REGISTER;
7469 i.sib.index = NO_INDEX_REGISTER;
7470 newdisp = (!i.prefix[ADDR_PREFIX] ? disp32s : disp32);
7471 }
7472 else if ((flag_code == CODE_16BIT)
7473 ^ (i.prefix[ADDR_PREFIX] != 0))
7474 {
7475 i.rm.regmem = NO_BASE_REGISTER_16;
7476 newdisp = disp16;
7477 }
7478 else
7479 {
7480 i.rm.regmem = NO_BASE_REGISTER;
7481 newdisp = disp32;
7482 }
7483 i.types[op] = operand_type_and_not (i.types[op], anydisp);
7484 i.types[op] = operand_type_or (i.types[op], newdisp);
7485 }
7486 else if (!i.tm.opcode_modifier.vecsib)
7487 {
7488 /* !i.base_reg && i.index_reg */
7489 if (i.index_reg->reg_num == RegIZ)
7490 i.sib.index = NO_INDEX_REGISTER;
7491 else
7492 i.sib.index = i.index_reg->reg_num;
7493 i.sib.base = NO_BASE_REGISTER;
7494 i.sib.scale = i.log2_scale_factor;
7495 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7496 i.types[op].bitfield.disp8 = 0;
7497 i.types[op].bitfield.disp16 = 0;
7498 i.types[op].bitfield.disp64 = 0;
7499 if (flag_code != CODE_64BIT || i.prefix[ADDR_PREFIX])
7500 {
7501 /* Must be 32 bit */
7502 i.types[op].bitfield.disp32 = 1;
7503 i.types[op].bitfield.disp32s = 0;
7504 }
7505 else
7506 {
7507 i.types[op].bitfield.disp32 = 0;
7508 i.types[op].bitfield.disp32s = 1;
7509 }
7510 if ((i.index_reg->reg_flags & RegRex) != 0)
7511 i.rex |= REX_X;
7512 }
7513 }
7514 /* RIP addressing for 64bit mode. */
7515 else if (i.base_reg->reg_num == RegIP)
7516 {
7517 gas_assert (!i.tm.opcode_modifier.vecsib);
7518 i.rm.regmem = NO_BASE_REGISTER;
7519 i.types[op].bitfield.disp8 = 0;
7520 i.types[op].bitfield.disp16 = 0;
7521 i.types[op].bitfield.disp32 = 0;
7522 i.types[op].bitfield.disp32s = 1;
7523 i.types[op].bitfield.disp64 = 0;
7524 i.flags[op] |= Operand_PCrel;
7525 if (! i.disp_operands)
7526 fake_zero_displacement = 1;
7527 }
7528 else if (i.base_reg->reg_type.bitfield.word)
7529 {
7530 gas_assert (!i.tm.opcode_modifier.vecsib);
7531 switch (i.base_reg->reg_num)
7532 {
7533 case 3: /* (%bx) */
7534 if (i.index_reg == 0)
7535 i.rm.regmem = 7;
7536 else /* (%bx,%si) -> 0, or (%bx,%di) -> 1 */
7537 i.rm.regmem = i.index_reg->reg_num - 6;
7538 break;
7539 case 5: /* (%bp) */
7540 default_seg = &ss;
7541 if (i.index_reg == 0)
7542 {
7543 i.rm.regmem = 6;
7544 if (operand_type_check (i.types[op], disp) == 0)
7545 {
7546 /* fake (%bp) into 0(%bp) */
7547 i.types[op].bitfield.disp8 = 1;
7548 fake_zero_displacement = 1;
7549 }
7550 }
7551 else /* (%bp,%si) -> 2, or (%bp,%di) -> 3 */
7552 i.rm.regmem = i.index_reg->reg_num - 6 + 2;
7553 break;
7554 default: /* (%si) -> 4 or (%di) -> 5 */
7555 i.rm.regmem = i.base_reg->reg_num - 6 + 4;
7556 }
7557 i.rm.mode = mode_from_disp_size (i.types[op]);
7558 }
7559 else /* i.base_reg and 32/64 bit mode */
7560 {
7561 if (flag_code == CODE_64BIT
7562 && operand_type_check (i.types[op], disp))
7563 {
7564 i.types[op].bitfield.disp16 = 0;
7565 i.types[op].bitfield.disp64 = 0;
7566 if (i.prefix[ADDR_PREFIX] == 0)
7567 {
7568 i.types[op].bitfield.disp32 = 0;
7569 i.types[op].bitfield.disp32s = 1;
7570 }
7571 else
7572 {
7573 i.types[op].bitfield.disp32 = 1;
7574 i.types[op].bitfield.disp32s = 0;
7575 }
7576 }
7577
7578 if (!i.tm.opcode_modifier.vecsib)
7579 i.rm.regmem = i.base_reg->reg_num;
7580 if ((i.base_reg->reg_flags & RegRex) != 0)
7581 i.rex |= REX_B;
7582 i.sib.base = i.base_reg->reg_num;
7583 /* x86-64 ignores REX prefix bit here to avoid decoder
7584 complications. */
7585 if (!(i.base_reg->reg_flags & RegRex)
7586 && (i.base_reg->reg_num == EBP_REG_NUM
7587 || i.base_reg->reg_num == ESP_REG_NUM))
7588 default_seg = &ss;
7589 if (i.base_reg->reg_num == 5 && i.disp_operands == 0)
7590 {
7591 fake_zero_displacement = 1;
7592 i.types[op].bitfield.disp8 = 1;
7593 }
7594 i.sib.scale = i.log2_scale_factor;
7595 if (i.index_reg == 0)
7596 {
7597 gas_assert (!i.tm.opcode_modifier.vecsib);
7598 /* <disp>(%esp) becomes two byte modrm with no index
7599 register. We've already stored the code for esp
7600 in i.rm.regmem ie. ESCAPE_TO_TWO_BYTE_ADDRESSING.
7601 Any base register besides %esp will not use the
7602 extra modrm byte. */
7603 i.sib.index = NO_INDEX_REGISTER;
7604 }
7605 else if (!i.tm.opcode_modifier.vecsib)
7606 {
7607 if (i.index_reg->reg_num == RegIZ)
7608 i.sib.index = NO_INDEX_REGISTER;
7609 else
7610 i.sib.index = i.index_reg->reg_num;
7611 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7612 if ((i.index_reg->reg_flags & RegRex) != 0)
7613 i.rex |= REX_X;
7614 }
7615
7616 if (i.disp_operands
7617 && (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
7618 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL))
7619 i.rm.mode = 0;
7620 else
7621 {
7622 if (!fake_zero_displacement
7623 && !i.disp_operands
7624 && i.disp_encoding)
7625 {
7626 fake_zero_displacement = 1;
7627 if (i.disp_encoding == disp_encoding_8bit)
7628 i.types[op].bitfield.disp8 = 1;
7629 else
7630 i.types[op].bitfield.disp32 = 1;
7631 }
7632 i.rm.mode = mode_from_disp_size (i.types[op]);
7633 }
7634 }
7635
7636 if (fake_zero_displacement)
7637 {
7638 /* Fakes a zero displacement assuming that i.types[op]
7639 holds the correct displacement size. */
7640 expressionS *exp;
7641
7642 gas_assert (i.op[op].disps == 0);
7643 exp = &disp_expressions[i.disp_operands++];
7644 i.op[op].disps = exp;
7645 exp->X_op = O_constant;
7646 exp->X_add_number = 0;
7647 exp->X_add_symbol = (symbolS *) 0;
7648 exp->X_op_symbol = (symbolS *) 0;
7649 }
7650
7651 mem = op;
7652 }
7653 else
7654 mem = ~0;
7655
7656 if (i.tm.opcode_modifier.vexsources == XOP2SOURCES)
7657 {
7658 if (operand_type_check (i.types[0], imm))
7659 i.vex.register_specifier = NULL;
7660 else
7661 {
7662 /* VEX.vvvv encodes one of the sources when the first
7663 operand is not an immediate. */
7664 if (i.tm.opcode_modifier.vexw == VEXW0)
7665 i.vex.register_specifier = i.op[0].regs;
7666 else
7667 i.vex.register_specifier = i.op[1].regs;
7668 }
7669
7670 /* Destination is a XMM register encoded in the ModRM.reg
7671 and VEX.R bit. */
7672 i.rm.reg = i.op[2].regs->reg_num;
7673 if ((i.op[2].regs->reg_flags & RegRex) != 0)
7674 i.rex |= REX_R;
7675
7676 /* ModRM.rm and VEX.B encodes the other source. */
7677 if (!i.mem_operands)
7678 {
7679 i.rm.mode = 3;
7680
7681 if (i.tm.opcode_modifier.vexw == VEXW0)
7682 i.rm.regmem = i.op[1].regs->reg_num;
7683 else
7684 i.rm.regmem = i.op[0].regs->reg_num;
7685
7686 if ((i.op[1].regs->reg_flags & RegRex) != 0)
7687 i.rex |= REX_B;
7688 }
7689 }
7690 else if (i.tm.opcode_modifier.vexvvvv == VEXLWP)
7691 {
7692 i.vex.register_specifier = i.op[2].regs;
7693 if (!i.mem_operands)
7694 {
7695 i.rm.mode = 3;
7696 i.rm.regmem = i.op[1].regs->reg_num;
7697 if ((i.op[1].regs->reg_flags & RegRex) != 0)
7698 i.rex |= REX_B;
7699 }
7700 }
7701 /* Fill in i.rm.reg or i.rm.regmem field with register operand
7702 (if any) based on i.tm.extension_opcode. Again, we must be
7703 careful to make sure that segment/control/debug/test/MMX
7704 registers are coded into the i.rm.reg field. */
7705 else if (i.reg_operands)
7706 {
7707 unsigned int op;
7708 unsigned int vex_reg = ~0;
7709
7710 for (op = 0; op < i.operands; op++)
7711 {
7712 if (i.types[op].bitfield.class == Reg
7713 || i.types[op].bitfield.class == RegBND
7714 || i.types[op].bitfield.class == RegMask
7715 || i.types[op].bitfield.class == SReg
7716 || i.types[op].bitfield.class == RegCR
7717 || i.types[op].bitfield.class == RegDR
7718 || i.types[op].bitfield.class == RegTR)
7719 break;
7720 if (i.types[op].bitfield.class == RegSIMD)
7721 {
7722 if (i.types[op].bitfield.zmmword)
7723 i.has_regzmm = TRUE;
7724 else if (i.types[op].bitfield.ymmword)
7725 i.has_regymm = TRUE;
7726 else
7727 i.has_regxmm = TRUE;
7728 break;
7729 }
7730 if (i.types[op].bitfield.class == RegMMX)
7731 {
7732 i.has_regmmx = TRUE;
7733 break;
7734 }
7735 }
7736
7737 if (vex_3_sources)
7738 op = dest;
7739 else if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
7740 {
7741 /* For instructions with VexNDS, the register-only
7742 source operand is encoded in VEX prefix. */
7743 gas_assert (mem != (unsigned int) ~0);
7744
7745 if (op > mem)
7746 {
7747 vex_reg = op++;
7748 gas_assert (op < i.operands);
7749 }
7750 else
7751 {
7752 /* Check register-only source operand when two source
7753 operands are swapped. */
7754 if (!i.tm.operand_types[op].bitfield.baseindex
7755 && i.tm.operand_types[op + 1].bitfield.baseindex)
7756 {
7757 vex_reg = op;
7758 op += 2;
7759 gas_assert (mem == (vex_reg + 1)
7760 && op < i.operands);
7761 }
7762 else
7763 {
7764 vex_reg = op + 1;
7765 gas_assert (vex_reg < i.operands);
7766 }
7767 }
7768 }
7769 else if (i.tm.opcode_modifier.vexvvvv == VEXNDD)
7770 {
7771 /* For instructions with VexNDD, the register destination
7772 is encoded in VEX prefix. */
7773 if (i.mem_operands == 0)
7774 {
7775 /* There is no memory operand. */
7776 gas_assert ((op + 2) == i.operands);
7777 vex_reg = op + 1;
7778 }
7779 else
7780 {
7781 /* There are only 2 non-immediate operands. */
7782 gas_assert (op < i.imm_operands + 2
7783 && i.operands == i.imm_operands + 2);
7784 vex_reg = i.imm_operands + 1;
7785 }
7786 }
7787 else
7788 gas_assert (op < i.operands);
7789
7790 if (vex_reg != (unsigned int) ~0)
7791 {
7792 i386_operand_type *type = &i.tm.operand_types[vex_reg];
7793
7794 if ((type->bitfield.class != Reg
7795 || (!type->bitfield.dword && !type->bitfield.qword))
7796 && type->bitfield.class != RegSIMD
7797 && !operand_type_equal (type, &regmask))
7798 abort ();
7799
7800 i.vex.register_specifier = i.op[vex_reg].regs;
7801 }
7802
7803 /* Don't set OP operand twice. */
7804 if (vex_reg != op)
7805 {
7806 /* If there is an extension opcode to put here, the
7807 register number must be put into the regmem field. */
7808 if (i.tm.extension_opcode != None)
7809 {
7810 i.rm.regmem = i.op[op].regs->reg_num;
7811 if ((i.op[op].regs->reg_flags & RegRex) != 0)
7812 i.rex |= REX_B;
7813 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
7814 i.vrex |= REX_B;
7815 }
7816 else
7817 {
7818 i.rm.reg = i.op[op].regs->reg_num;
7819 if ((i.op[op].regs->reg_flags & RegRex) != 0)
7820 i.rex |= REX_R;
7821 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
7822 i.vrex |= REX_R;
7823 }
7824 }
7825
7826 /* Now, if no memory operand has set i.rm.mode = 0, 1, 2 we
7827 must set it to 3 to indicate this is a register operand
7828 in the regmem field. */
7829 if (!i.mem_operands)
7830 i.rm.mode = 3;
7831 }
7832
7833 /* Fill in i.rm.reg field with extension opcode (if any). */
7834 if (i.tm.extension_opcode != None)
7835 i.rm.reg = i.tm.extension_opcode;
7836 }
7837 return default_seg;
7838 }
7839
7840 static unsigned int
7841 flip_code16 (unsigned int code16)
7842 {
7843 gas_assert (i.tm.operands == 1);
7844
7845 return !(i.prefix[REX_PREFIX] & REX_W)
7846 && (code16 ? i.tm.operand_types[0].bitfield.disp32
7847 || i.tm.operand_types[0].bitfield.disp32s
7848 : i.tm.operand_types[0].bitfield.disp16)
7849 ? CODE16 : 0;
7850 }
7851
7852 static void
7853 output_branch (void)
7854 {
7855 char *p;
7856 int size;
7857 int code16;
7858 int prefix;
7859 relax_substateT subtype;
7860 symbolS *sym;
7861 offsetT off;
7862
7863 code16 = flag_code == CODE_16BIT ? CODE16 : 0;
7864 size = i.disp_encoding == disp_encoding_32bit ? BIG : SMALL;
7865
7866 prefix = 0;
7867 if (i.prefix[DATA_PREFIX] != 0)
7868 {
7869 prefix = 1;
7870 i.prefixes -= 1;
7871 code16 ^= flip_code16(code16);
7872 }
7873 /* Pentium4 branch hints. */
7874 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
7875 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
7876 {
7877 prefix++;
7878 i.prefixes--;
7879 }
7880 if (i.prefix[REX_PREFIX] != 0)
7881 {
7882 prefix++;
7883 i.prefixes--;
7884 }
7885
7886 /* BND prefixed jump. */
7887 if (i.prefix[BND_PREFIX] != 0)
7888 {
7889 prefix++;
7890 i.prefixes--;
7891 }
7892
7893 if (i.prefixes != 0)
7894 as_warn (_("skipping prefixes on `%s'"), i.tm.name);
7895
7896 /* It's always a symbol; End frag & setup for relax.
7897 Make sure there is enough room in this frag for the largest
7898 instruction we may generate in md_convert_frag. This is 2
7899 bytes for the opcode and room for the prefix and largest
7900 displacement. */
7901 frag_grow (prefix + 2 + 4);
7902 /* Prefix and 1 opcode byte go in fr_fix. */
7903 p = frag_more (prefix + 1);
7904 if (i.prefix[DATA_PREFIX] != 0)
7905 *p++ = DATA_PREFIX_OPCODE;
7906 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE
7907 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE)
7908 *p++ = i.prefix[SEG_PREFIX];
7909 if (i.prefix[BND_PREFIX] != 0)
7910 *p++ = BND_PREFIX_OPCODE;
7911 if (i.prefix[REX_PREFIX] != 0)
7912 *p++ = i.prefix[REX_PREFIX];
7913 *p = i.tm.base_opcode;
7914
7915 if ((unsigned char) *p == JUMP_PC_RELATIVE)
7916 subtype = ENCODE_RELAX_STATE (UNCOND_JUMP, size);
7917 else if (cpu_arch_flags.bitfield.cpui386)
7918 subtype = ENCODE_RELAX_STATE (COND_JUMP, size);
7919 else
7920 subtype = ENCODE_RELAX_STATE (COND_JUMP86, size);
7921 subtype |= code16;
7922
7923 sym = i.op[0].disps->X_add_symbol;
7924 off = i.op[0].disps->X_add_number;
7925
7926 if (i.op[0].disps->X_op != O_constant
7927 && i.op[0].disps->X_op != O_symbol)
7928 {
7929 /* Handle complex expressions. */
7930 sym = make_expr_symbol (i.op[0].disps);
7931 off = 0;
7932 }
7933
7934 /* 1 possible extra opcode + 4 byte displacement go in var part.
7935 Pass reloc in fr_var. */
7936 frag_var (rs_machine_dependent, 5, i.reloc[0], subtype, sym, off, p);
7937 }
7938
7939 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7940 /* Return TRUE iff PLT32 relocation should be used for branching to
7941 symbol S. */
7942
7943 static bfd_boolean
7944 need_plt32_p (symbolS *s)
7945 {
7946 /* PLT32 relocation is ELF only. */
7947 if (!IS_ELF)
7948 return FALSE;
7949
7950 #ifdef TE_SOLARIS
7951 /* Don't emit PLT32 relocation on Solaris: neither native linker nor
7952 krtld support it. */
7953 return FALSE;
7954 #endif
7955
7956 /* Since there is no need to prepare for PLT branch on x86-64, we
7957 can generate R_X86_64_PLT32, instead of R_X86_64_PC32, which can
7958 be used as a marker for 32-bit PC-relative branches. */
7959 if (!object_64bit)
7960 return FALSE;
7961
7962 /* Weak or undefined symbol need PLT32 relocation. */
7963 if (S_IS_WEAK (s) || !S_IS_DEFINED (s))
7964 return TRUE;
7965
7966 /* Non-global symbol doesn't need PLT32 relocation. */
7967 if (! S_IS_EXTERNAL (s))
7968 return FALSE;
7969
7970 /* Other global symbols need PLT32 relocation. NB: Symbol with
7971 non-default visibilities are treated as normal global symbol
7972 so that PLT32 relocation can be used as a marker for 32-bit
7973 PC-relative branches. It is useful for linker relaxation. */
7974 return TRUE;
7975 }
7976 #endif
7977
7978 static void
7979 output_jump (void)
7980 {
7981 char *p;
7982 int size;
7983 fixS *fixP;
7984 bfd_reloc_code_real_type jump_reloc = i.reloc[0];
7985
7986 if (i.tm.opcode_modifier.jump == JUMP_BYTE)
7987 {
7988 /* This is a loop or jecxz type instruction. */
7989 size = 1;
7990 if (i.prefix[ADDR_PREFIX] != 0)
7991 {
7992 FRAG_APPEND_1_CHAR (ADDR_PREFIX_OPCODE);
7993 i.prefixes -= 1;
7994 }
7995 /* Pentium4 branch hints. */
7996 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
7997 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
7998 {
7999 FRAG_APPEND_1_CHAR (i.prefix[SEG_PREFIX]);
8000 i.prefixes--;
8001 }
8002 }
8003 else
8004 {
8005 int code16;
8006
8007 code16 = 0;
8008 if (flag_code == CODE_16BIT)
8009 code16 = CODE16;
8010
8011 if (i.prefix[DATA_PREFIX] != 0)
8012 {
8013 FRAG_APPEND_1_CHAR (DATA_PREFIX_OPCODE);
8014 i.prefixes -= 1;
8015 code16 ^= flip_code16(code16);
8016 }
8017
8018 size = 4;
8019 if (code16)
8020 size = 2;
8021 }
8022
8023 /* BND prefixed jump. */
8024 if (i.prefix[BND_PREFIX] != 0)
8025 {
8026 FRAG_APPEND_1_CHAR (i.prefix[BND_PREFIX]);
8027 i.prefixes -= 1;
8028 }
8029
8030 if (i.prefix[REX_PREFIX] != 0)
8031 {
8032 FRAG_APPEND_1_CHAR (i.prefix[REX_PREFIX]);
8033 i.prefixes -= 1;
8034 }
8035
8036 if (i.prefixes != 0)
8037 as_warn (_("skipping prefixes on `%s'"), i.tm.name);
8038
8039 p = frag_more (i.tm.opcode_length + size);
8040 switch (i.tm.opcode_length)
8041 {
8042 case 2:
8043 *p++ = i.tm.base_opcode >> 8;
8044 /* Fall through. */
8045 case 1:
8046 *p++ = i.tm.base_opcode;
8047 break;
8048 default:
8049 abort ();
8050 }
8051
8052 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8053 if (size == 4
8054 && jump_reloc == NO_RELOC
8055 && need_plt32_p (i.op[0].disps->X_add_symbol))
8056 jump_reloc = BFD_RELOC_X86_64_PLT32;
8057 #endif
8058
8059 jump_reloc = reloc (size, 1, 1, jump_reloc);
8060
8061 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal, size,
8062 i.op[0].disps, 1, jump_reloc);
8063
8064 /* All jumps handled here are signed, but don't use a signed limit
8065 check for 32 and 16 bit jumps as we want to allow wrap around at
8066 4G and 64k respectively. */
8067 if (size == 1)
8068 fixP->fx_signed = 1;
8069 }
8070
8071 static void
8072 output_interseg_jump (void)
8073 {
8074 char *p;
8075 int size;
8076 int prefix;
8077 int code16;
8078
8079 code16 = 0;
8080 if (flag_code == CODE_16BIT)
8081 code16 = CODE16;
8082
8083 prefix = 0;
8084 if (i.prefix[DATA_PREFIX] != 0)
8085 {
8086 prefix = 1;
8087 i.prefixes -= 1;
8088 code16 ^= CODE16;
8089 }
8090
8091 gas_assert (!i.prefix[REX_PREFIX]);
8092
8093 size = 4;
8094 if (code16)
8095 size = 2;
8096
8097 if (i.prefixes != 0)
8098 as_warn (_("skipping prefixes on `%s'"), i.tm.name);
8099
8100 /* 1 opcode; 2 segment; offset */
8101 p = frag_more (prefix + 1 + 2 + size);
8102
8103 if (i.prefix[DATA_PREFIX] != 0)
8104 *p++ = DATA_PREFIX_OPCODE;
8105
8106 if (i.prefix[REX_PREFIX] != 0)
8107 *p++ = i.prefix[REX_PREFIX];
8108
8109 *p++ = i.tm.base_opcode;
8110 if (i.op[1].imms->X_op == O_constant)
8111 {
8112 offsetT n = i.op[1].imms->X_add_number;
8113
8114 if (size == 2
8115 && !fits_in_unsigned_word (n)
8116 && !fits_in_signed_word (n))
8117 {
8118 as_bad (_("16-bit jump out of range"));
8119 return;
8120 }
8121 md_number_to_chars (p, n, size);
8122 }
8123 else
8124 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
8125 i.op[1].imms, 0, reloc (size, 0, 0, i.reloc[1]));
8126 if (i.op[0].imms->X_op != O_constant)
8127 as_bad (_("can't handle non absolute segment in `%s'"),
8128 i.tm.name);
8129 md_number_to_chars (p + size, (valueT) i.op[0].imms->X_add_number, 2);
8130 }
8131
8132 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8133 void
8134 x86_cleanup (void)
8135 {
8136 char *p;
8137 asection *seg = now_seg;
8138 subsegT subseg = now_subseg;
8139 asection *sec;
8140 unsigned int alignment, align_size_1;
8141 unsigned int isa_1_descsz, feature_2_descsz, descsz;
8142 unsigned int isa_1_descsz_raw, feature_2_descsz_raw;
8143 unsigned int padding;
8144
8145 if (!IS_ELF || !x86_used_note)
8146 return;
8147
8148 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_X86;
8149
8150 /* The .note.gnu.property section layout:
8151
8152 Field Length Contents
8153 ---- ---- ----
8154 n_namsz 4 4
8155 n_descsz 4 The note descriptor size
8156 n_type 4 NT_GNU_PROPERTY_TYPE_0
8157 n_name 4 "GNU"
8158 n_desc n_descsz The program property array
8159 .... .... ....
8160 */
8161
8162 /* Create the .note.gnu.property section. */
8163 sec = subseg_new (NOTE_GNU_PROPERTY_SECTION_NAME, 0);
8164 bfd_set_section_flags (sec,
8165 (SEC_ALLOC
8166 | SEC_LOAD
8167 | SEC_DATA
8168 | SEC_HAS_CONTENTS
8169 | SEC_READONLY));
8170
8171 if (get_elf_backend_data (stdoutput)->s->elfclass == ELFCLASS64)
8172 {
8173 align_size_1 = 7;
8174 alignment = 3;
8175 }
8176 else
8177 {
8178 align_size_1 = 3;
8179 alignment = 2;
8180 }
8181
8182 bfd_set_section_alignment (sec, alignment);
8183 elf_section_type (sec) = SHT_NOTE;
8184
8185 /* GNU_PROPERTY_X86_ISA_1_USED: 4-byte type + 4-byte data size
8186 + 4-byte data */
8187 isa_1_descsz_raw = 4 + 4 + 4;
8188 /* Align GNU_PROPERTY_X86_ISA_1_USED. */
8189 isa_1_descsz = (isa_1_descsz_raw + align_size_1) & ~align_size_1;
8190
8191 feature_2_descsz_raw = isa_1_descsz;
8192 /* GNU_PROPERTY_X86_FEATURE_2_USED: 4-byte type + 4-byte data size
8193 + 4-byte data */
8194 feature_2_descsz_raw += 4 + 4 + 4;
8195 /* Align GNU_PROPERTY_X86_FEATURE_2_USED. */
8196 feature_2_descsz = ((feature_2_descsz_raw + align_size_1)
8197 & ~align_size_1);
8198
8199 descsz = feature_2_descsz;
8200 /* Section size: n_namsz + n_descsz + n_type + n_name + n_descsz. */
8201 p = frag_more (4 + 4 + 4 + 4 + descsz);
8202
8203 /* Write n_namsz. */
8204 md_number_to_chars (p, (valueT) 4, 4);
8205
8206 /* Write n_descsz. */
8207 md_number_to_chars (p + 4, (valueT) descsz, 4);
8208
8209 /* Write n_type. */
8210 md_number_to_chars (p + 4 * 2, (valueT) NT_GNU_PROPERTY_TYPE_0, 4);
8211
8212 /* Write n_name. */
8213 memcpy (p + 4 * 3, "GNU", 4);
8214
8215 /* Write 4-byte type. */
8216 md_number_to_chars (p + 4 * 4,
8217 (valueT) GNU_PROPERTY_X86_ISA_1_USED, 4);
8218
8219 /* Write 4-byte data size. */
8220 md_number_to_chars (p + 4 * 5, (valueT) 4, 4);
8221
8222 /* Write 4-byte data. */
8223 md_number_to_chars (p + 4 * 6, (valueT) x86_isa_1_used, 4);
8224
8225 /* Zero out paddings. */
8226 padding = isa_1_descsz - isa_1_descsz_raw;
8227 if (padding)
8228 memset (p + 4 * 7, 0, padding);
8229
8230 /* Write 4-byte type. */
8231 md_number_to_chars (p + isa_1_descsz + 4 * 4,
8232 (valueT) GNU_PROPERTY_X86_FEATURE_2_USED, 4);
8233
8234 /* Write 4-byte data size. */
8235 md_number_to_chars (p + isa_1_descsz + 4 * 5, (valueT) 4, 4);
8236
8237 /* Write 4-byte data. */
8238 md_number_to_chars (p + isa_1_descsz + 4 * 6,
8239 (valueT) x86_feature_2_used, 4);
8240
8241 /* Zero out paddings. */
8242 padding = feature_2_descsz - feature_2_descsz_raw;
8243 if (padding)
8244 memset (p + isa_1_descsz + 4 * 7, 0, padding);
8245
8246 /* We probably can't restore the current segment, for there likely
8247 isn't one yet... */
8248 if (seg && subseg)
8249 subseg_set (seg, subseg);
8250 }
8251 #endif
8252
8253 static unsigned int
8254 encoding_length (const fragS *start_frag, offsetT start_off,
8255 const char *frag_now_ptr)
8256 {
8257 unsigned int len = 0;
8258
8259 if (start_frag != frag_now)
8260 {
8261 const fragS *fr = start_frag;
8262
8263 do {
8264 len += fr->fr_fix;
8265 fr = fr->fr_next;
8266 } while (fr && fr != frag_now);
8267 }
8268
8269 return len - start_off + (frag_now_ptr - frag_now->fr_literal);
8270 }
8271
8272 /* Return 1 for test, and, cmp, add, sub, inc and dec which may
8273 be macro-fused with conditional jumps. */
8274
8275 static int
8276 maybe_fused_with_jcc_p (void)
8277 {
8278 /* No RIP address. */
8279 if (i.base_reg && i.base_reg->reg_num == RegIP)
8280 return 0;
8281
8282 /* No VEX/EVEX encoding. */
8283 if (is_any_vex_encoding (&i.tm))
8284 return 0;
8285
8286 /* and, add, sub with destination register. */
8287 if ((i.tm.base_opcode >= 0x20 && i.tm.base_opcode <= 0x25)
8288 || i.tm.base_opcode <= 5
8289 || (i.tm.base_opcode >= 0x28 && i.tm.base_opcode <= 0x2d)
8290 || ((i.tm.base_opcode | 3) == 0x83
8291 && ((i.tm.extension_opcode | 1) == 0x5
8292 || i.tm.extension_opcode == 0x0)))
8293 return (i.types[1].bitfield.class == Reg
8294 || i.types[1].bitfield.instance == Accum);
8295
8296 /* test, cmp with any register. */
8297 if ((i.tm.base_opcode | 1) == 0x85
8298 || (i.tm.base_opcode | 1) == 0xa9
8299 || ((i.tm.base_opcode | 1) == 0xf7
8300 && i.tm.extension_opcode == 0)
8301 || (i.tm.base_opcode >= 0x38 && i.tm.base_opcode <= 0x3d)
8302 || ((i.tm.base_opcode | 3) == 0x83
8303 && (i.tm.extension_opcode == 0x7)))
8304 return (i.types[0].bitfield.class == Reg
8305 || i.types[0].bitfield.instance == Accum
8306 || i.types[1].bitfield.class == Reg
8307 || i.types[1].bitfield.instance == Accum);
8308
8309 /* inc, dec with any register. */
8310 if ((i.tm.cpu_flags.bitfield.cpuno64
8311 && (i.tm.base_opcode | 0xf) == 0x4f)
8312 || ((i.tm.base_opcode | 1) == 0xff
8313 && i.tm.extension_opcode <= 0x1))
8314 return (i.types[0].bitfield.class == Reg
8315 || i.types[0].bitfield.instance == Accum);
8316
8317 return 0;
8318 }
8319
8320 /* Return 1 if a FUSED_JCC_PADDING frag should be generated. */
8321
8322 static int
8323 add_fused_jcc_padding_frag_p (void)
8324 {
8325 /* NB: Don't work with COND_JUMP86 without i386. */
8326 if (!align_branch_power
8327 || now_seg == absolute_section
8328 || !cpu_arch_flags.bitfield.cpui386
8329 || !(align_branch & align_branch_fused_bit))
8330 return 0;
8331
8332 if (maybe_fused_with_jcc_p ())
8333 {
8334 if (last_insn.kind == last_insn_other
8335 || last_insn.seg != now_seg)
8336 return 1;
8337 if (flag_debug)
8338 as_warn_where (last_insn.file, last_insn.line,
8339 _("`%s` skips -malign-branch-boundary on `%s`"),
8340 last_insn.name, i.tm.name);
8341 }
8342
8343 return 0;
8344 }
8345
8346 /* Return 1 if a BRANCH_PREFIX frag should be generated. */
8347
8348 static int
8349 add_branch_prefix_frag_p (void)
8350 {
8351 /* NB: Don't work with COND_JUMP86 without i386. Don't add prefix
8352 to PadLock instructions since they include prefixes in opcode. */
8353 if (!align_branch_power
8354 || !align_branch_prefix_size
8355 || now_seg == absolute_section
8356 || i.tm.cpu_flags.bitfield.cpupadlock
8357 || !cpu_arch_flags.bitfield.cpui386)
8358 return 0;
8359
8360 /* Don't add prefix if it is a prefix or there is no operand in case
8361 that segment prefix is special. */
8362 if (!i.operands || i.tm.opcode_modifier.isprefix)
8363 return 0;
8364
8365 if (last_insn.kind == last_insn_other
8366 || last_insn.seg != now_seg)
8367 return 1;
8368
8369 if (flag_debug)
8370 as_warn_where (last_insn.file, last_insn.line,
8371 _("`%s` skips -malign-branch-boundary on `%s`"),
8372 last_insn.name, i.tm.name);
8373
8374 return 0;
8375 }
8376
8377 /* Return 1 if a BRANCH_PADDING frag should be generated. */
8378
8379 static int
8380 add_branch_padding_frag_p (enum align_branch_kind *branch_p)
8381 {
8382 int add_padding;
8383
8384 /* NB: Don't work with COND_JUMP86 without i386. */
8385 if (!align_branch_power
8386 || now_seg == absolute_section
8387 || !cpu_arch_flags.bitfield.cpui386)
8388 return 0;
8389
8390 add_padding = 0;
8391
8392 /* Check for jcc and direct jmp. */
8393 if (i.tm.opcode_modifier.jump == JUMP)
8394 {
8395 if (i.tm.base_opcode == JUMP_PC_RELATIVE)
8396 {
8397 *branch_p = align_branch_jmp;
8398 add_padding = align_branch & align_branch_jmp_bit;
8399 }
8400 else
8401 {
8402 *branch_p = align_branch_jcc;
8403 if ((align_branch & align_branch_jcc_bit))
8404 add_padding = 1;
8405 }
8406 }
8407 else if (is_any_vex_encoding (&i.tm))
8408 return 0;
8409 else if ((i.tm.base_opcode | 1) == 0xc3)
8410 {
8411 /* Near ret. */
8412 *branch_p = align_branch_ret;
8413 if ((align_branch & align_branch_ret_bit))
8414 add_padding = 1;
8415 }
8416 else
8417 {
8418 /* Check for indirect jmp, direct and indirect calls. */
8419 if (i.tm.base_opcode == 0xe8)
8420 {
8421 /* Direct call. */
8422 *branch_p = align_branch_call;
8423 if ((align_branch & align_branch_call_bit))
8424 add_padding = 1;
8425 }
8426 else if (i.tm.base_opcode == 0xff
8427 && (i.tm.extension_opcode == 2
8428 || i.tm.extension_opcode == 4))
8429 {
8430 /* Indirect call and jmp. */
8431 *branch_p = align_branch_indirect;
8432 if ((align_branch & align_branch_indirect_bit))
8433 add_padding = 1;
8434 }
8435
8436 if (add_padding
8437 && i.disp_operands
8438 && tls_get_addr
8439 && (i.op[0].disps->X_op == O_symbol
8440 || (i.op[0].disps->X_op == O_subtract
8441 && i.op[0].disps->X_op_symbol == GOT_symbol)))
8442 {
8443 symbolS *s = i.op[0].disps->X_add_symbol;
8444 /* No padding to call to global or undefined tls_get_addr. */
8445 if ((S_IS_EXTERNAL (s) || !S_IS_DEFINED (s))
8446 && strcmp (S_GET_NAME (s), tls_get_addr) == 0)
8447 return 0;
8448 }
8449 }
8450
8451 if (add_padding
8452 && last_insn.kind != last_insn_other
8453 && last_insn.seg == now_seg)
8454 {
8455 if (flag_debug)
8456 as_warn_where (last_insn.file, last_insn.line,
8457 _("`%s` skips -malign-branch-boundary on `%s`"),
8458 last_insn.name, i.tm.name);
8459 return 0;
8460 }
8461
8462 return add_padding;
8463 }
8464
8465 static void
8466 output_insn (void)
8467 {
8468 fragS *insn_start_frag;
8469 offsetT insn_start_off;
8470 fragS *fragP = NULL;
8471 enum align_branch_kind branch = align_branch_none;
8472
8473 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8474 if (IS_ELF && x86_used_note)
8475 {
8476 if (i.tm.cpu_flags.bitfield.cpucmov)
8477 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_CMOV;
8478 if (i.tm.cpu_flags.bitfield.cpusse)
8479 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE;
8480 if (i.tm.cpu_flags.bitfield.cpusse2)
8481 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE2;
8482 if (i.tm.cpu_flags.bitfield.cpusse3)
8483 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE3;
8484 if (i.tm.cpu_flags.bitfield.cpussse3)
8485 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSSE3;
8486 if (i.tm.cpu_flags.bitfield.cpusse4_1)
8487 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE4_1;
8488 if (i.tm.cpu_flags.bitfield.cpusse4_2)
8489 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE4_2;
8490 if (i.tm.cpu_flags.bitfield.cpuavx)
8491 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX;
8492 if (i.tm.cpu_flags.bitfield.cpuavx2)
8493 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX2;
8494 if (i.tm.cpu_flags.bitfield.cpufma)
8495 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_FMA;
8496 if (i.tm.cpu_flags.bitfield.cpuavx512f)
8497 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512F;
8498 if (i.tm.cpu_flags.bitfield.cpuavx512cd)
8499 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512CD;
8500 if (i.tm.cpu_flags.bitfield.cpuavx512er)
8501 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512ER;
8502 if (i.tm.cpu_flags.bitfield.cpuavx512pf)
8503 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512PF;
8504 if (i.tm.cpu_flags.bitfield.cpuavx512vl)
8505 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512VL;
8506 if (i.tm.cpu_flags.bitfield.cpuavx512dq)
8507 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512DQ;
8508 if (i.tm.cpu_flags.bitfield.cpuavx512bw)
8509 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512BW;
8510 if (i.tm.cpu_flags.bitfield.cpuavx512_4fmaps)
8511 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_4FMAPS;
8512 if (i.tm.cpu_flags.bitfield.cpuavx512_4vnniw)
8513 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_4VNNIW;
8514 if (i.tm.cpu_flags.bitfield.cpuavx512_bitalg)
8515 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_BITALG;
8516 if (i.tm.cpu_flags.bitfield.cpuavx512ifma)
8517 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_IFMA;
8518 if (i.tm.cpu_flags.bitfield.cpuavx512vbmi)
8519 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_VBMI;
8520 if (i.tm.cpu_flags.bitfield.cpuavx512_vbmi2)
8521 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_VBMI2;
8522 if (i.tm.cpu_flags.bitfield.cpuavx512_vnni)
8523 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_VNNI;
8524 if (i.tm.cpu_flags.bitfield.cpuavx512_bf16)
8525 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_BF16;
8526
8527 if (i.tm.cpu_flags.bitfield.cpu8087
8528 || i.tm.cpu_flags.bitfield.cpu287
8529 || i.tm.cpu_flags.bitfield.cpu387
8530 || i.tm.cpu_flags.bitfield.cpu687
8531 || i.tm.cpu_flags.bitfield.cpufisttp)
8532 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_X87;
8533 if (i.has_regmmx
8534 || i.tm.base_opcode == 0xf77 /* emms */
8535 || i.tm.base_opcode == 0xf0e /* femms */)
8536 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_MMX;
8537 if (i.has_regxmm)
8538 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XMM;
8539 if (i.has_regymm)
8540 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_YMM;
8541 if (i.has_regzmm)
8542 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_ZMM;
8543 if (i.tm.cpu_flags.bitfield.cpufxsr)
8544 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_FXSR;
8545 if (i.tm.cpu_flags.bitfield.cpuxsave)
8546 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XSAVE;
8547 if (i.tm.cpu_flags.bitfield.cpuxsaveopt)
8548 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XSAVEOPT;
8549 if (i.tm.cpu_flags.bitfield.cpuxsavec)
8550 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XSAVEC;
8551 }
8552 #endif
8553
8554 /* Tie dwarf2 debug info to the address at the start of the insn.
8555 We can't do this after the insn has been output as the current
8556 frag may have been closed off. eg. by frag_var. */
8557 dwarf2_emit_insn (0);
8558
8559 insn_start_frag = frag_now;
8560 insn_start_off = frag_now_fix ();
8561
8562 if (add_branch_padding_frag_p (&branch))
8563 {
8564 char *p;
8565 /* Branch can be 8 bytes. Leave some room for prefixes. */
8566 unsigned int max_branch_padding_size = 14;
8567
8568 /* Align section to boundary. */
8569 record_alignment (now_seg, align_branch_power);
8570
8571 /* Make room for padding. */
8572 frag_grow (max_branch_padding_size);
8573
8574 /* Start of the padding. */
8575 p = frag_more (0);
8576
8577 fragP = frag_now;
8578
8579 frag_var (rs_machine_dependent, max_branch_padding_size, 0,
8580 ENCODE_RELAX_STATE (BRANCH_PADDING, 0),
8581 NULL, 0, p);
8582
8583 fragP->tc_frag_data.branch_type = branch;
8584 fragP->tc_frag_data.max_bytes = max_branch_padding_size;
8585 }
8586
8587 /* Output jumps. */
8588 if (i.tm.opcode_modifier.jump == JUMP)
8589 output_branch ();
8590 else if (i.tm.opcode_modifier.jump == JUMP_BYTE
8591 || i.tm.opcode_modifier.jump == JUMP_DWORD)
8592 output_jump ();
8593 else if (i.tm.opcode_modifier.jump == JUMP_INTERSEGMENT)
8594 output_interseg_jump ();
8595 else
8596 {
8597 /* Output normal instructions here. */
8598 char *p;
8599 unsigned char *q;
8600 unsigned int j;
8601 unsigned int prefix;
8602
8603 if (avoid_fence
8604 && (i.tm.base_opcode == 0xfaee8
8605 || i.tm.base_opcode == 0xfaef0
8606 || i.tm.base_opcode == 0xfaef8))
8607 {
8608 /* Encode lfence, mfence, and sfence as
8609 f0 83 04 24 00 lock addl $0x0, (%{re}sp). */
8610 offsetT val = 0x240483f0ULL;
8611 p = frag_more (5);
8612 md_number_to_chars (p, val, 5);
8613 return;
8614 }
8615
8616 /* Some processors fail on LOCK prefix. This options makes
8617 assembler ignore LOCK prefix and serves as a workaround. */
8618 if (omit_lock_prefix)
8619 {
8620 if (i.tm.base_opcode == LOCK_PREFIX_OPCODE)
8621 return;
8622 i.prefix[LOCK_PREFIX] = 0;
8623 }
8624
8625 if (branch)
8626 /* Skip if this is a branch. */
8627 ;
8628 else if (add_fused_jcc_padding_frag_p ())
8629 {
8630 /* Make room for padding. */
8631 frag_grow (MAX_FUSED_JCC_PADDING_SIZE);
8632 p = frag_more (0);
8633
8634 fragP = frag_now;
8635
8636 frag_var (rs_machine_dependent, MAX_FUSED_JCC_PADDING_SIZE, 0,
8637 ENCODE_RELAX_STATE (FUSED_JCC_PADDING, 0),
8638 NULL, 0, p);
8639
8640 fragP->tc_frag_data.branch_type = align_branch_fused;
8641 fragP->tc_frag_data.max_bytes = MAX_FUSED_JCC_PADDING_SIZE;
8642 }
8643 else if (add_branch_prefix_frag_p ())
8644 {
8645 unsigned int max_prefix_size = align_branch_prefix_size;
8646
8647 /* Make room for padding. */
8648 frag_grow (max_prefix_size);
8649 p = frag_more (0);
8650
8651 fragP = frag_now;
8652
8653 frag_var (rs_machine_dependent, max_prefix_size, 0,
8654 ENCODE_RELAX_STATE (BRANCH_PREFIX, 0),
8655 NULL, 0, p);
8656
8657 fragP->tc_frag_data.max_bytes = max_prefix_size;
8658 }
8659
8660 /* Since the VEX/EVEX prefix contains the implicit prefix, we
8661 don't need the explicit prefix. */
8662 if (!i.tm.opcode_modifier.vex && !i.tm.opcode_modifier.evex)
8663 {
8664 switch (i.tm.opcode_length)
8665 {
8666 case 3:
8667 if (i.tm.base_opcode & 0xff000000)
8668 {
8669 prefix = (i.tm.base_opcode >> 24) & 0xff;
8670 if (!i.tm.cpu_flags.bitfield.cpupadlock
8671 || prefix != REPE_PREFIX_OPCODE
8672 || (i.prefix[REP_PREFIX] != REPE_PREFIX_OPCODE))
8673 add_prefix (prefix);
8674 }
8675 break;
8676 case 2:
8677 if ((i.tm.base_opcode & 0xff0000) != 0)
8678 {
8679 prefix = (i.tm.base_opcode >> 16) & 0xff;
8680 add_prefix (prefix);
8681 }
8682 break;
8683 case 1:
8684 break;
8685 case 0:
8686 /* Check for pseudo prefixes. */
8687 as_bad_where (insn_start_frag->fr_file,
8688 insn_start_frag->fr_line,
8689 _("pseudo prefix without instruction"));
8690 return;
8691 default:
8692 abort ();
8693 }
8694
8695 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
8696 /* For x32, add a dummy REX_OPCODE prefix for mov/add with
8697 R_X86_64_GOTTPOFF relocation so that linker can safely
8698 perform IE->LE optimization. A dummy REX_OPCODE prefix
8699 is also needed for lea with R_X86_64_GOTPC32_TLSDESC
8700 relocation for GDesc -> IE/LE optimization. */
8701 if (x86_elf_abi == X86_64_X32_ABI
8702 && i.operands == 2
8703 && (i.reloc[0] == BFD_RELOC_X86_64_GOTTPOFF
8704 || i.reloc[0] == BFD_RELOC_X86_64_GOTPC32_TLSDESC)
8705 && i.prefix[REX_PREFIX] == 0)
8706 add_prefix (REX_OPCODE);
8707 #endif
8708
8709 /* The prefix bytes. */
8710 for (j = ARRAY_SIZE (i.prefix), q = i.prefix; j > 0; j--, q++)
8711 if (*q)
8712 FRAG_APPEND_1_CHAR (*q);
8713 }
8714 else
8715 {
8716 for (j = 0, q = i.prefix; j < ARRAY_SIZE (i.prefix); j++, q++)
8717 if (*q)
8718 switch (j)
8719 {
8720 case REX_PREFIX:
8721 /* REX byte is encoded in VEX prefix. */
8722 break;
8723 case SEG_PREFIX:
8724 case ADDR_PREFIX:
8725 FRAG_APPEND_1_CHAR (*q);
8726 break;
8727 default:
8728 /* There should be no other prefixes for instructions
8729 with VEX prefix. */
8730 abort ();
8731 }
8732
8733 /* For EVEX instructions i.vrex should become 0 after
8734 build_evex_prefix. For VEX instructions upper 16 registers
8735 aren't available, so VREX should be 0. */
8736 if (i.vrex)
8737 abort ();
8738 /* Now the VEX prefix. */
8739 p = frag_more (i.vex.length);
8740 for (j = 0; j < i.vex.length; j++)
8741 p[j] = i.vex.bytes[j];
8742 }
8743
8744 /* Now the opcode; be careful about word order here! */
8745 if (i.tm.opcode_length == 1)
8746 {
8747 FRAG_APPEND_1_CHAR (i.tm.base_opcode);
8748 }
8749 else
8750 {
8751 switch (i.tm.opcode_length)
8752 {
8753 case 4:
8754 p = frag_more (4);
8755 *p++ = (i.tm.base_opcode >> 24) & 0xff;
8756 *p++ = (i.tm.base_opcode >> 16) & 0xff;
8757 break;
8758 case 3:
8759 p = frag_more (3);
8760 *p++ = (i.tm.base_opcode >> 16) & 0xff;
8761 break;
8762 case 2:
8763 p = frag_more (2);
8764 break;
8765 default:
8766 abort ();
8767 break;
8768 }
8769
8770 /* Put out high byte first: can't use md_number_to_chars! */
8771 *p++ = (i.tm.base_opcode >> 8) & 0xff;
8772 *p = i.tm.base_opcode & 0xff;
8773 }
8774
8775 /* Now the modrm byte and sib byte (if present). */
8776 if (i.tm.opcode_modifier.modrm)
8777 {
8778 FRAG_APPEND_1_CHAR ((i.rm.regmem << 0
8779 | i.rm.reg << 3
8780 | i.rm.mode << 6));
8781 /* If i.rm.regmem == ESP (4)
8782 && i.rm.mode != (Register mode)
8783 && not 16 bit
8784 ==> need second modrm byte. */
8785 if (i.rm.regmem == ESCAPE_TO_TWO_BYTE_ADDRESSING
8786 && i.rm.mode != 3
8787 && !(i.base_reg && i.base_reg->reg_type.bitfield.word))
8788 FRAG_APPEND_1_CHAR ((i.sib.base << 0
8789 | i.sib.index << 3
8790 | i.sib.scale << 6));
8791 }
8792
8793 if (i.disp_operands)
8794 output_disp (insn_start_frag, insn_start_off);
8795
8796 if (i.imm_operands)
8797 output_imm (insn_start_frag, insn_start_off);
8798
8799 /*
8800 * frag_now_fix () returning plain abs_section_offset when we're in the
8801 * absolute section, and abs_section_offset not getting updated as data
8802 * gets added to the frag breaks the logic below.
8803 */
8804 if (now_seg != absolute_section)
8805 {
8806 j = encoding_length (insn_start_frag, insn_start_off, frag_more (0));
8807 if (j > 15)
8808 as_warn (_("instruction length of %u bytes exceeds the limit of 15"),
8809 j);
8810 else if (fragP)
8811 {
8812 /* NB: Don't add prefix with GOTPC relocation since
8813 output_disp() above depends on the fixed encoding
8814 length. Can't add prefix with TLS relocation since
8815 it breaks TLS linker optimization. */
8816 unsigned int max = i.has_gotpc_tls_reloc ? 0 : 15 - j;
8817 /* Prefix count on the current instruction. */
8818 unsigned int count = i.vex.length;
8819 unsigned int k;
8820 for (k = 0; k < ARRAY_SIZE (i.prefix); k++)
8821 /* REX byte is encoded in VEX/EVEX prefix. */
8822 if (i.prefix[k] && (k != REX_PREFIX || !i.vex.length))
8823 count++;
8824
8825 /* Count prefixes for extended opcode maps. */
8826 if (!i.vex.length)
8827 switch (i.tm.opcode_length)
8828 {
8829 case 3:
8830 if (((i.tm.base_opcode >> 16) & 0xff) == 0xf)
8831 {
8832 count++;
8833 switch ((i.tm.base_opcode >> 8) & 0xff)
8834 {
8835 case 0x38:
8836 case 0x3a:
8837 count++;
8838 break;
8839 default:
8840 break;
8841 }
8842 }
8843 break;
8844 case 2:
8845 if (((i.tm.base_opcode >> 8) & 0xff) == 0xf)
8846 count++;
8847 break;
8848 case 1:
8849 break;
8850 default:
8851 abort ();
8852 }
8853
8854 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype)
8855 == BRANCH_PREFIX)
8856 {
8857 /* Set the maximum prefix size in BRANCH_PREFIX
8858 frag. */
8859 if (fragP->tc_frag_data.max_bytes > max)
8860 fragP->tc_frag_data.max_bytes = max;
8861 if (fragP->tc_frag_data.max_bytes > count)
8862 fragP->tc_frag_data.max_bytes -= count;
8863 else
8864 fragP->tc_frag_data.max_bytes = 0;
8865 }
8866 else
8867 {
8868 /* Remember the maximum prefix size in FUSED_JCC_PADDING
8869 frag. */
8870 unsigned int max_prefix_size;
8871 if (align_branch_prefix_size > max)
8872 max_prefix_size = max;
8873 else
8874 max_prefix_size = align_branch_prefix_size;
8875 if (max_prefix_size > count)
8876 fragP->tc_frag_data.max_prefix_length
8877 = max_prefix_size - count;
8878 }
8879
8880 /* Use existing segment prefix if possible. Use CS
8881 segment prefix in 64-bit mode. In 32-bit mode, use SS
8882 segment prefix with ESP/EBP base register and use DS
8883 segment prefix without ESP/EBP base register. */
8884 if (i.prefix[SEG_PREFIX])
8885 fragP->tc_frag_data.default_prefix = i.prefix[SEG_PREFIX];
8886 else if (flag_code == CODE_64BIT)
8887 fragP->tc_frag_data.default_prefix = CS_PREFIX_OPCODE;
8888 else if (i.base_reg
8889 && (i.base_reg->reg_num == 4
8890 || i.base_reg->reg_num == 5))
8891 fragP->tc_frag_data.default_prefix = SS_PREFIX_OPCODE;
8892 else
8893 fragP->tc_frag_data.default_prefix = DS_PREFIX_OPCODE;
8894 }
8895 }
8896 }
8897
8898 /* NB: Don't work with COND_JUMP86 without i386. */
8899 if (align_branch_power
8900 && now_seg != absolute_section
8901 && cpu_arch_flags.bitfield.cpui386)
8902 {
8903 /* Terminate each frag so that we can add prefix and check for
8904 fused jcc. */
8905 frag_wane (frag_now);
8906 frag_new (0);
8907 }
8908
8909 #ifdef DEBUG386
8910 if (flag_debug)
8911 {
8912 pi ("" /*line*/, &i);
8913 }
8914 #endif /* DEBUG386 */
8915 }
8916
8917 /* Return the size of the displacement operand N. */
8918
8919 static int
8920 disp_size (unsigned int n)
8921 {
8922 int size = 4;
8923
8924 if (i.types[n].bitfield.disp64)
8925 size = 8;
8926 else if (i.types[n].bitfield.disp8)
8927 size = 1;
8928 else if (i.types[n].bitfield.disp16)
8929 size = 2;
8930 return size;
8931 }
8932
8933 /* Return the size of the immediate operand N. */
8934
8935 static int
8936 imm_size (unsigned int n)
8937 {
8938 int size = 4;
8939 if (i.types[n].bitfield.imm64)
8940 size = 8;
8941 else if (i.types[n].bitfield.imm8 || i.types[n].bitfield.imm8s)
8942 size = 1;
8943 else if (i.types[n].bitfield.imm16)
8944 size = 2;
8945 return size;
8946 }
8947
8948 static void
8949 output_disp (fragS *insn_start_frag, offsetT insn_start_off)
8950 {
8951 char *p;
8952 unsigned int n;
8953
8954 for (n = 0; n < i.operands; n++)
8955 {
8956 if (operand_type_check (i.types[n], disp))
8957 {
8958 if (i.op[n].disps->X_op == O_constant)
8959 {
8960 int size = disp_size (n);
8961 offsetT val = i.op[n].disps->X_add_number;
8962
8963 val = offset_in_range (val >> (size == 1 ? i.memshift : 0),
8964 size);
8965 p = frag_more (size);
8966 md_number_to_chars (p, val, size);
8967 }
8968 else
8969 {
8970 enum bfd_reloc_code_real reloc_type;
8971 int size = disp_size (n);
8972 int sign = i.types[n].bitfield.disp32s;
8973 int pcrel = (i.flags[n] & Operand_PCrel) != 0;
8974 fixS *fixP;
8975
8976 /* We can't have 8 bit displacement here. */
8977 gas_assert (!i.types[n].bitfield.disp8);
8978
8979 /* The PC relative address is computed relative
8980 to the instruction boundary, so in case immediate
8981 fields follows, we need to adjust the value. */
8982 if (pcrel && i.imm_operands)
8983 {
8984 unsigned int n1;
8985 int sz = 0;
8986
8987 for (n1 = 0; n1 < i.operands; n1++)
8988 if (operand_type_check (i.types[n1], imm))
8989 {
8990 /* Only one immediate is allowed for PC
8991 relative address. */
8992 gas_assert (sz == 0);
8993 sz = imm_size (n1);
8994 i.op[n].disps->X_add_number -= sz;
8995 }
8996 /* We should find the immediate. */
8997 gas_assert (sz != 0);
8998 }
8999
9000 p = frag_more (size);
9001 reloc_type = reloc (size, pcrel, sign, i.reloc[n]);
9002 if (GOT_symbol
9003 && GOT_symbol == i.op[n].disps->X_add_symbol
9004 && (((reloc_type == BFD_RELOC_32
9005 || reloc_type == BFD_RELOC_X86_64_32S
9006 || (reloc_type == BFD_RELOC_64
9007 && object_64bit))
9008 && (i.op[n].disps->X_op == O_symbol
9009 || (i.op[n].disps->X_op == O_add
9010 && ((symbol_get_value_expression
9011 (i.op[n].disps->X_op_symbol)->X_op)
9012 == O_subtract))))
9013 || reloc_type == BFD_RELOC_32_PCREL))
9014 {
9015 if (!object_64bit)
9016 {
9017 reloc_type = BFD_RELOC_386_GOTPC;
9018 i.has_gotpc_tls_reloc = TRUE;
9019 i.op[n].imms->X_add_number +=
9020 encoding_length (insn_start_frag, insn_start_off, p);
9021 }
9022 else if (reloc_type == BFD_RELOC_64)
9023 reloc_type = BFD_RELOC_X86_64_GOTPC64;
9024 else
9025 /* Don't do the adjustment for x86-64, as there
9026 the pcrel addressing is relative to the _next_
9027 insn, and that is taken care of in other code. */
9028 reloc_type = BFD_RELOC_X86_64_GOTPC32;
9029 }
9030 else if (align_branch_power)
9031 {
9032 switch (reloc_type)
9033 {
9034 case BFD_RELOC_386_TLS_GD:
9035 case BFD_RELOC_386_TLS_LDM:
9036 case BFD_RELOC_386_TLS_IE:
9037 case BFD_RELOC_386_TLS_IE_32:
9038 case BFD_RELOC_386_TLS_GOTIE:
9039 case BFD_RELOC_386_TLS_GOTDESC:
9040 case BFD_RELOC_386_TLS_DESC_CALL:
9041 case BFD_RELOC_X86_64_TLSGD:
9042 case BFD_RELOC_X86_64_TLSLD:
9043 case BFD_RELOC_X86_64_GOTTPOFF:
9044 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
9045 case BFD_RELOC_X86_64_TLSDESC_CALL:
9046 i.has_gotpc_tls_reloc = TRUE;
9047 default:
9048 break;
9049 }
9050 }
9051 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal,
9052 size, i.op[n].disps, pcrel,
9053 reloc_type);
9054 /* Check for "call/jmp *mem", "mov mem, %reg",
9055 "test %reg, mem" and "binop mem, %reg" where binop
9056 is one of adc, add, and, cmp, or, sbb, sub, xor
9057 instructions without data prefix. Always generate
9058 R_386_GOT32X for "sym*GOT" operand in 32-bit mode. */
9059 if (i.prefix[DATA_PREFIX] == 0
9060 && (generate_relax_relocations
9061 || (!object_64bit
9062 && i.rm.mode == 0
9063 && i.rm.regmem == 5))
9064 && (i.rm.mode == 2
9065 || (i.rm.mode == 0 && i.rm.regmem == 5))
9066 && ((i.operands == 1
9067 && i.tm.base_opcode == 0xff
9068 && (i.rm.reg == 2 || i.rm.reg == 4))
9069 || (i.operands == 2
9070 && (i.tm.base_opcode == 0x8b
9071 || i.tm.base_opcode == 0x85
9072 || (i.tm.base_opcode & 0xc7) == 0x03))))
9073 {
9074 if (object_64bit)
9075 {
9076 fixP->fx_tcbit = i.rex != 0;
9077 if (i.base_reg
9078 && (i.base_reg->reg_num == RegIP))
9079 fixP->fx_tcbit2 = 1;
9080 }
9081 else
9082 fixP->fx_tcbit2 = 1;
9083 }
9084 }
9085 }
9086 }
9087 }
9088
9089 static void
9090 output_imm (fragS *insn_start_frag, offsetT insn_start_off)
9091 {
9092 char *p;
9093 unsigned int n;
9094
9095 for (n = 0; n < i.operands; n++)
9096 {
9097 /* Skip SAE/RC Imm operand in EVEX. They are already handled. */
9098 if (i.rounding && (int) n == i.rounding->operand)
9099 continue;
9100
9101 if (operand_type_check (i.types[n], imm))
9102 {
9103 if (i.op[n].imms->X_op == O_constant)
9104 {
9105 int size = imm_size (n);
9106 offsetT val;
9107
9108 val = offset_in_range (i.op[n].imms->X_add_number,
9109 size);
9110 p = frag_more (size);
9111 md_number_to_chars (p, val, size);
9112 }
9113 else
9114 {
9115 /* Not absolute_section.
9116 Need a 32-bit fixup (don't support 8bit
9117 non-absolute imms). Try to support other
9118 sizes ... */
9119 enum bfd_reloc_code_real reloc_type;
9120 int size = imm_size (n);
9121 int sign;
9122
9123 if (i.types[n].bitfield.imm32s
9124 && (i.suffix == QWORD_MNEM_SUFFIX
9125 || (!i.suffix && i.tm.opcode_modifier.no_lsuf)))
9126 sign = 1;
9127 else
9128 sign = 0;
9129
9130 p = frag_more (size);
9131 reloc_type = reloc (size, 0, sign, i.reloc[n]);
9132
9133 /* This is tough to explain. We end up with this one if we
9134 * have operands that look like
9135 * "_GLOBAL_OFFSET_TABLE_+[.-.L284]". The goal here is to
9136 * obtain the absolute address of the GOT, and it is strongly
9137 * preferable from a performance point of view to avoid using
9138 * a runtime relocation for this. The actual sequence of
9139 * instructions often look something like:
9140 *
9141 * call .L66
9142 * .L66:
9143 * popl %ebx
9144 * addl $_GLOBAL_OFFSET_TABLE_+[.-.L66],%ebx
9145 *
9146 * The call and pop essentially return the absolute address
9147 * of the label .L66 and store it in %ebx. The linker itself
9148 * will ultimately change the first operand of the addl so
9149 * that %ebx points to the GOT, but to keep things simple, the
9150 * .o file must have this operand set so that it generates not
9151 * the absolute address of .L66, but the absolute address of
9152 * itself. This allows the linker itself simply treat a GOTPC
9153 * relocation as asking for a pcrel offset to the GOT to be
9154 * added in, and the addend of the relocation is stored in the
9155 * operand field for the instruction itself.
9156 *
9157 * Our job here is to fix the operand so that it would add
9158 * the correct offset so that %ebx would point to itself. The
9159 * thing that is tricky is that .-.L66 will point to the
9160 * beginning of the instruction, so we need to further modify
9161 * the operand so that it will point to itself. There are
9162 * other cases where you have something like:
9163 *
9164 * .long $_GLOBAL_OFFSET_TABLE_+[.-.L66]
9165 *
9166 * and here no correction would be required. Internally in
9167 * the assembler we treat operands of this form as not being
9168 * pcrel since the '.' is explicitly mentioned, and I wonder
9169 * whether it would simplify matters to do it this way. Who
9170 * knows. In earlier versions of the PIC patches, the
9171 * pcrel_adjust field was used to store the correction, but
9172 * since the expression is not pcrel, I felt it would be
9173 * confusing to do it this way. */
9174
9175 if ((reloc_type == BFD_RELOC_32
9176 || reloc_type == BFD_RELOC_X86_64_32S
9177 || reloc_type == BFD_RELOC_64)
9178 && GOT_symbol
9179 && GOT_symbol == i.op[n].imms->X_add_symbol
9180 && (i.op[n].imms->X_op == O_symbol
9181 || (i.op[n].imms->X_op == O_add
9182 && ((symbol_get_value_expression
9183 (i.op[n].imms->X_op_symbol)->X_op)
9184 == O_subtract))))
9185 {
9186 if (!object_64bit)
9187 reloc_type = BFD_RELOC_386_GOTPC;
9188 else if (size == 4)
9189 reloc_type = BFD_RELOC_X86_64_GOTPC32;
9190 else if (size == 8)
9191 reloc_type = BFD_RELOC_X86_64_GOTPC64;
9192 i.has_gotpc_tls_reloc = TRUE;
9193 i.op[n].imms->X_add_number +=
9194 encoding_length (insn_start_frag, insn_start_off, p);
9195 }
9196 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
9197 i.op[n].imms, 0, reloc_type);
9198 }
9199 }
9200 }
9201 }
9202 \f
9203 /* x86_cons_fix_new is called via the expression parsing code when a
9204 reloc is needed. We use this hook to get the correct .got reloc. */
9205 static int cons_sign = -1;
9206
9207 void
9208 x86_cons_fix_new (fragS *frag, unsigned int off, unsigned int len,
9209 expressionS *exp, bfd_reloc_code_real_type r)
9210 {
9211 r = reloc (len, 0, cons_sign, r);
9212
9213 #ifdef TE_PE
9214 if (exp->X_op == O_secrel)
9215 {
9216 exp->X_op = O_symbol;
9217 r = BFD_RELOC_32_SECREL;
9218 }
9219 #endif
9220
9221 fix_new_exp (frag, off, len, exp, 0, r);
9222 }
9223
9224 /* Export the ABI address size for use by TC_ADDRESS_BYTES for the
9225 purpose of the `.dc.a' internal pseudo-op. */
9226
9227 int
9228 x86_address_bytes (void)
9229 {
9230 if ((stdoutput->arch_info->mach & bfd_mach_x64_32))
9231 return 4;
9232 return stdoutput->arch_info->bits_per_address / 8;
9233 }
9234
9235 #if !(defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) || defined (OBJ_MACH_O)) \
9236 || defined (LEX_AT)
9237 # define lex_got(reloc, adjust, types) NULL
9238 #else
9239 /* Parse operands of the form
9240 <symbol>@GOTOFF+<nnn>
9241 and similar .plt or .got references.
9242
9243 If we find one, set up the correct relocation in RELOC and copy the
9244 input string, minus the `@GOTOFF' into a malloc'd buffer for
9245 parsing by the calling routine. Return this buffer, and if ADJUST
9246 is non-null set it to the length of the string we removed from the
9247 input line. Otherwise return NULL. */
9248 static char *
9249 lex_got (enum bfd_reloc_code_real *rel,
9250 int *adjust,
9251 i386_operand_type *types)
9252 {
9253 /* Some of the relocations depend on the size of what field is to
9254 be relocated. But in our callers i386_immediate and i386_displacement
9255 we don't yet know the operand size (this will be set by insn
9256 matching). Hence we record the word32 relocation here,
9257 and adjust the reloc according to the real size in reloc(). */
9258 static const struct {
9259 const char *str;
9260 int len;
9261 const enum bfd_reloc_code_real rel[2];
9262 const i386_operand_type types64;
9263 } gotrel[] = {
9264 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9265 { STRING_COMMA_LEN ("SIZE"), { BFD_RELOC_SIZE32,
9266 BFD_RELOC_SIZE32 },
9267 OPERAND_TYPE_IMM32_64 },
9268 #endif
9269 { STRING_COMMA_LEN ("PLTOFF"), { _dummy_first_bfd_reloc_code_real,
9270 BFD_RELOC_X86_64_PLTOFF64 },
9271 OPERAND_TYPE_IMM64 },
9272 { STRING_COMMA_LEN ("PLT"), { BFD_RELOC_386_PLT32,
9273 BFD_RELOC_X86_64_PLT32 },
9274 OPERAND_TYPE_IMM32_32S_DISP32 },
9275 { STRING_COMMA_LEN ("GOTPLT"), { _dummy_first_bfd_reloc_code_real,
9276 BFD_RELOC_X86_64_GOTPLT64 },
9277 OPERAND_TYPE_IMM64_DISP64 },
9278 { STRING_COMMA_LEN ("GOTOFF"), { BFD_RELOC_386_GOTOFF,
9279 BFD_RELOC_X86_64_GOTOFF64 },
9280 OPERAND_TYPE_IMM64_DISP64 },
9281 { STRING_COMMA_LEN ("GOTPCREL"), { _dummy_first_bfd_reloc_code_real,
9282 BFD_RELOC_X86_64_GOTPCREL },
9283 OPERAND_TYPE_IMM32_32S_DISP32 },
9284 { STRING_COMMA_LEN ("TLSGD"), { BFD_RELOC_386_TLS_GD,
9285 BFD_RELOC_X86_64_TLSGD },
9286 OPERAND_TYPE_IMM32_32S_DISP32 },
9287 { STRING_COMMA_LEN ("TLSLDM"), { BFD_RELOC_386_TLS_LDM,
9288 _dummy_first_bfd_reloc_code_real },
9289 OPERAND_TYPE_NONE },
9290 { STRING_COMMA_LEN ("TLSLD"), { _dummy_first_bfd_reloc_code_real,
9291 BFD_RELOC_X86_64_TLSLD },
9292 OPERAND_TYPE_IMM32_32S_DISP32 },
9293 { STRING_COMMA_LEN ("GOTTPOFF"), { BFD_RELOC_386_TLS_IE_32,
9294 BFD_RELOC_X86_64_GOTTPOFF },
9295 OPERAND_TYPE_IMM32_32S_DISP32 },
9296 { STRING_COMMA_LEN ("TPOFF"), { BFD_RELOC_386_TLS_LE_32,
9297 BFD_RELOC_X86_64_TPOFF32 },
9298 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
9299 { STRING_COMMA_LEN ("NTPOFF"), { BFD_RELOC_386_TLS_LE,
9300 _dummy_first_bfd_reloc_code_real },
9301 OPERAND_TYPE_NONE },
9302 { STRING_COMMA_LEN ("DTPOFF"), { BFD_RELOC_386_TLS_LDO_32,
9303 BFD_RELOC_X86_64_DTPOFF32 },
9304 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
9305 { STRING_COMMA_LEN ("GOTNTPOFF"),{ BFD_RELOC_386_TLS_GOTIE,
9306 _dummy_first_bfd_reloc_code_real },
9307 OPERAND_TYPE_NONE },
9308 { STRING_COMMA_LEN ("INDNTPOFF"),{ BFD_RELOC_386_TLS_IE,
9309 _dummy_first_bfd_reloc_code_real },
9310 OPERAND_TYPE_NONE },
9311 { STRING_COMMA_LEN ("GOT"), { BFD_RELOC_386_GOT32,
9312 BFD_RELOC_X86_64_GOT32 },
9313 OPERAND_TYPE_IMM32_32S_64_DISP32 },
9314 { STRING_COMMA_LEN ("TLSDESC"), { BFD_RELOC_386_TLS_GOTDESC,
9315 BFD_RELOC_X86_64_GOTPC32_TLSDESC },
9316 OPERAND_TYPE_IMM32_32S_DISP32 },
9317 { STRING_COMMA_LEN ("TLSCALL"), { BFD_RELOC_386_TLS_DESC_CALL,
9318 BFD_RELOC_X86_64_TLSDESC_CALL },
9319 OPERAND_TYPE_IMM32_32S_DISP32 },
9320 };
9321 char *cp;
9322 unsigned int j;
9323
9324 #if defined (OBJ_MAYBE_ELF)
9325 if (!IS_ELF)
9326 return NULL;
9327 #endif
9328
9329 for (cp = input_line_pointer; *cp != '@'; cp++)
9330 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
9331 return NULL;
9332
9333 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
9334 {
9335 int len = gotrel[j].len;
9336 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
9337 {
9338 if (gotrel[j].rel[object_64bit] != 0)
9339 {
9340 int first, second;
9341 char *tmpbuf, *past_reloc;
9342
9343 *rel = gotrel[j].rel[object_64bit];
9344
9345 if (types)
9346 {
9347 if (flag_code != CODE_64BIT)
9348 {
9349 types->bitfield.imm32 = 1;
9350 types->bitfield.disp32 = 1;
9351 }
9352 else
9353 *types = gotrel[j].types64;
9354 }
9355
9356 if (j != 0 && GOT_symbol == NULL)
9357 GOT_symbol = symbol_find_or_make (GLOBAL_OFFSET_TABLE_NAME);
9358
9359 /* The length of the first part of our input line. */
9360 first = cp - input_line_pointer;
9361
9362 /* The second part goes from after the reloc token until
9363 (and including) an end_of_line char or comma. */
9364 past_reloc = cp + 1 + len;
9365 cp = past_reloc;
9366 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
9367 ++cp;
9368 second = cp + 1 - past_reloc;
9369
9370 /* Allocate and copy string. The trailing NUL shouldn't
9371 be necessary, but be safe. */
9372 tmpbuf = XNEWVEC (char, first + second + 2);
9373 memcpy (tmpbuf, input_line_pointer, first);
9374 if (second != 0 && *past_reloc != ' ')
9375 /* Replace the relocation token with ' ', so that
9376 errors like foo@GOTOFF1 will be detected. */
9377 tmpbuf[first++] = ' ';
9378 else
9379 /* Increment length by 1 if the relocation token is
9380 removed. */
9381 len++;
9382 if (adjust)
9383 *adjust = len;
9384 memcpy (tmpbuf + first, past_reloc, second);
9385 tmpbuf[first + second] = '\0';
9386 return tmpbuf;
9387 }
9388
9389 as_bad (_("@%s reloc is not supported with %d-bit output format"),
9390 gotrel[j].str, 1 << (5 + object_64bit));
9391 return NULL;
9392 }
9393 }
9394
9395 /* Might be a symbol version string. Don't as_bad here. */
9396 return NULL;
9397 }
9398 #endif
9399
9400 #ifdef TE_PE
9401 #ifdef lex_got
9402 #undef lex_got
9403 #endif
9404 /* Parse operands of the form
9405 <symbol>@SECREL32+<nnn>
9406
9407 If we find one, set up the correct relocation in RELOC and copy the
9408 input string, minus the `@SECREL32' into a malloc'd buffer for
9409 parsing by the calling routine. Return this buffer, and if ADJUST
9410 is non-null set it to the length of the string we removed from the
9411 input line. Otherwise return NULL.
9412
9413 This function is copied from the ELF version above adjusted for PE targets. */
9414
9415 static char *
9416 lex_got (enum bfd_reloc_code_real *rel ATTRIBUTE_UNUSED,
9417 int *adjust ATTRIBUTE_UNUSED,
9418 i386_operand_type *types)
9419 {
9420 static const struct
9421 {
9422 const char *str;
9423 int len;
9424 const enum bfd_reloc_code_real rel[2];
9425 const i386_operand_type types64;
9426 }
9427 gotrel[] =
9428 {
9429 { STRING_COMMA_LEN ("SECREL32"), { BFD_RELOC_32_SECREL,
9430 BFD_RELOC_32_SECREL },
9431 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
9432 };
9433
9434 char *cp;
9435 unsigned j;
9436
9437 for (cp = input_line_pointer; *cp != '@'; cp++)
9438 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
9439 return NULL;
9440
9441 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
9442 {
9443 int len = gotrel[j].len;
9444
9445 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
9446 {
9447 if (gotrel[j].rel[object_64bit] != 0)
9448 {
9449 int first, second;
9450 char *tmpbuf, *past_reloc;
9451
9452 *rel = gotrel[j].rel[object_64bit];
9453 if (adjust)
9454 *adjust = len;
9455
9456 if (types)
9457 {
9458 if (flag_code != CODE_64BIT)
9459 {
9460 types->bitfield.imm32 = 1;
9461 types->bitfield.disp32 = 1;
9462 }
9463 else
9464 *types = gotrel[j].types64;
9465 }
9466
9467 /* The length of the first part of our input line. */
9468 first = cp - input_line_pointer;
9469
9470 /* The second part goes from after the reloc token until
9471 (and including) an end_of_line char or comma. */
9472 past_reloc = cp + 1 + len;
9473 cp = past_reloc;
9474 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
9475 ++cp;
9476 second = cp + 1 - past_reloc;
9477
9478 /* Allocate and copy string. The trailing NUL shouldn't
9479 be necessary, but be safe. */
9480 tmpbuf = XNEWVEC (char, first + second + 2);
9481 memcpy (tmpbuf, input_line_pointer, first);
9482 if (second != 0 && *past_reloc != ' ')
9483 /* Replace the relocation token with ' ', so that
9484 errors like foo@SECLREL321 will be detected. */
9485 tmpbuf[first++] = ' ';
9486 memcpy (tmpbuf + first, past_reloc, second);
9487 tmpbuf[first + second] = '\0';
9488 return tmpbuf;
9489 }
9490
9491 as_bad (_("@%s reloc is not supported with %d-bit output format"),
9492 gotrel[j].str, 1 << (5 + object_64bit));
9493 return NULL;
9494 }
9495 }
9496
9497 /* Might be a symbol version string. Don't as_bad here. */
9498 return NULL;
9499 }
9500
9501 #endif /* TE_PE */
9502
9503 bfd_reloc_code_real_type
9504 x86_cons (expressionS *exp, int size)
9505 {
9506 bfd_reloc_code_real_type got_reloc = NO_RELOC;
9507
9508 intel_syntax = -intel_syntax;
9509
9510 exp->X_md = 0;
9511 if (size == 4 || (object_64bit && size == 8))
9512 {
9513 /* Handle @GOTOFF and the like in an expression. */
9514 char *save;
9515 char *gotfree_input_line;
9516 int adjust = 0;
9517
9518 save = input_line_pointer;
9519 gotfree_input_line = lex_got (&got_reloc, &adjust, NULL);
9520 if (gotfree_input_line)
9521 input_line_pointer = gotfree_input_line;
9522
9523 expression (exp);
9524
9525 if (gotfree_input_line)
9526 {
9527 /* expression () has merrily parsed up to the end of line,
9528 or a comma - in the wrong buffer. Transfer how far
9529 input_line_pointer has moved to the right buffer. */
9530 input_line_pointer = (save
9531 + (input_line_pointer - gotfree_input_line)
9532 + adjust);
9533 free (gotfree_input_line);
9534 if (exp->X_op == O_constant
9535 || exp->X_op == O_absent
9536 || exp->X_op == O_illegal
9537 || exp->X_op == O_register
9538 || exp->X_op == O_big)
9539 {
9540 char c = *input_line_pointer;
9541 *input_line_pointer = 0;
9542 as_bad (_("missing or invalid expression `%s'"), save);
9543 *input_line_pointer = c;
9544 }
9545 else if ((got_reloc == BFD_RELOC_386_PLT32
9546 || got_reloc == BFD_RELOC_X86_64_PLT32)
9547 && exp->X_op != O_symbol)
9548 {
9549 char c = *input_line_pointer;
9550 *input_line_pointer = 0;
9551 as_bad (_("invalid PLT expression `%s'"), save);
9552 *input_line_pointer = c;
9553 }
9554 }
9555 }
9556 else
9557 expression (exp);
9558
9559 intel_syntax = -intel_syntax;
9560
9561 if (intel_syntax)
9562 i386_intel_simplify (exp);
9563
9564 return got_reloc;
9565 }
9566
9567 static void
9568 signed_cons (int size)
9569 {
9570 if (flag_code == CODE_64BIT)
9571 cons_sign = 1;
9572 cons (size);
9573 cons_sign = -1;
9574 }
9575
9576 #ifdef TE_PE
9577 static void
9578 pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
9579 {
9580 expressionS exp;
9581
9582 do
9583 {
9584 expression (&exp);
9585 if (exp.X_op == O_symbol)
9586 exp.X_op = O_secrel;
9587
9588 emit_expr (&exp, 4);
9589 }
9590 while (*input_line_pointer++ == ',');
9591
9592 input_line_pointer--;
9593 demand_empty_rest_of_line ();
9594 }
9595 #endif
9596
9597 /* Handle Vector operations. */
9598
9599 static char *
9600 check_VecOperations (char *op_string, char *op_end)
9601 {
9602 const reg_entry *mask;
9603 const char *saved;
9604 char *end_op;
9605
9606 while (*op_string
9607 && (op_end == NULL || op_string < op_end))
9608 {
9609 saved = op_string;
9610 if (*op_string == '{')
9611 {
9612 op_string++;
9613
9614 /* Check broadcasts. */
9615 if (strncmp (op_string, "1to", 3) == 0)
9616 {
9617 int bcst_type;
9618
9619 if (i.broadcast)
9620 goto duplicated_vec_op;
9621
9622 op_string += 3;
9623 if (*op_string == '8')
9624 bcst_type = 8;
9625 else if (*op_string == '4')
9626 bcst_type = 4;
9627 else if (*op_string == '2')
9628 bcst_type = 2;
9629 else if (*op_string == '1'
9630 && *(op_string+1) == '6')
9631 {
9632 bcst_type = 16;
9633 op_string++;
9634 }
9635 else
9636 {
9637 as_bad (_("Unsupported broadcast: `%s'"), saved);
9638 return NULL;
9639 }
9640 op_string++;
9641
9642 broadcast_op.type = bcst_type;
9643 broadcast_op.operand = this_operand;
9644 broadcast_op.bytes = 0;
9645 i.broadcast = &broadcast_op;
9646 }
9647 /* Check masking operation. */
9648 else if ((mask = parse_register (op_string, &end_op)) != NULL)
9649 {
9650 /* k0 can't be used for write mask. */
9651 if (mask->reg_type.bitfield.class != RegMask || !mask->reg_num)
9652 {
9653 as_bad (_("`%s%s' can't be used for write mask"),
9654 register_prefix, mask->reg_name);
9655 return NULL;
9656 }
9657
9658 if (!i.mask)
9659 {
9660 mask_op.mask = mask;
9661 mask_op.zeroing = 0;
9662 mask_op.operand = this_operand;
9663 i.mask = &mask_op;
9664 }
9665 else
9666 {
9667 if (i.mask->mask)
9668 goto duplicated_vec_op;
9669
9670 i.mask->mask = mask;
9671
9672 /* Only "{z}" is allowed here. No need to check
9673 zeroing mask explicitly. */
9674 if (i.mask->operand != this_operand)
9675 {
9676 as_bad (_("invalid write mask `%s'"), saved);
9677 return NULL;
9678 }
9679 }
9680
9681 op_string = end_op;
9682 }
9683 /* Check zeroing-flag for masking operation. */
9684 else if (*op_string == 'z')
9685 {
9686 if (!i.mask)
9687 {
9688 mask_op.mask = NULL;
9689 mask_op.zeroing = 1;
9690 mask_op.operand = this_operand;
9691 i.mask = &mask_op;
9692 }
9693 else
9694 {
9695 if (i.mask->zeroing)
9696 {
9697 duplicated_vec_op:
9698 as_bad (_("duplicated `%s'"), saved);
9699 return NULL;
9700 }
9701
9702 i.mask->zeroing = 1;
9703
9704 /* Only "{%k}" is allowed here. No need to check mask
9705 register explicitly. */
9706 if (i.mask->operand != this_operand)
9707 {
9708 as_bad (_("invalid zeroing-masking `%s'"),
9709 saved);
9710 return NULL;
9711 }
9712 }
9713
9714 op_string++;
9715 }
9716 else
9717 goto unknown_vec_op;
9718
9719 if (*op_string != '}')
9720 {
9721 as_bad (_("missing `}' in `%s'"), saved);
9722 return NULL;
9723 }
9724 op_string++;
9725
9726 /* Strip whitespace since the addition of pseudo prefixes
9727 changed how the scrubber treats '{'. */
9728 if (is_space_char (*op_string))
9729 ++op_string;
9730
9731 continue;
9732 }
9733 unknown_vec_op:
9734 /* We don't know this one. */
9735 as_bad (_("unknown vector operation: `%s'"), saved);
9736 return NULL;
9737 }
9738
9739 if (i.mask && i.mask->zeroing && !i.mask->mask)
9740 {
9741 as_bad (_("zeroing-masking only allowed with write mask"));
9742 return NULL;
9743 }
9744
9745 return op_string;
9746 }
9747
9748 static int
9749 i386_immediate (char *imm_start)
9750 {
9751 char *save_input_line_pointer;
9752 char *gotfree_input_line;
9753 segT exp_seg = 0;
9754 expressionS *exp;
9755 i386_operand_type types;
9756
9757 operand_type_set (&types, ~0);
9758
9759 if (i.imm_operands == MAX_IMMEDIATE_OPERANDS)
9760 {
9761 as_bad (_("at most %d immediate operands are allowed"),
9762 MAX_IMMEDIATE_OPERANDS);
9763 return 0;
9764 }
9765
9766 exp = &im_expressions[i.imm_operands++];
9767 i.op[this_operand].imms = exp;
9768
9769 if (is_space_char (*imm_start))
9770 ++imm_start;
9771
9772 save_input_line_pointer = input_line_pointer;
9773 input_line_pointer = imm_start;
9774
9775 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
9776 if (gotfree_input_line)
9777 input_line_pointer = gotfree_input_line;
9778
9779 exp_seg = expression (exp);
9780
9781 SKIP_WHITESPACE ();
9782
9783 /* Handle vector operations. */
9784 if (*input_line_pointer == '{')
9785 {
9786 input_line_pointer = check_VecOperations (input_line_pointer,
9787 NULL);
9788 if (input_line_pointer == NULL)
9789 return 0;
9790 }
9791
9792 if (*input_line_pointer)
9793 as_bad (_("junk `%s' after expression"), input_line_pointer);
9794
9795 input_line_pointer = save_input_line_pointer;
9796 if (gotfree_input_line)
9797 {
9798 free (gotfree_input_line);
9799
9800 if (exp->X_op == O_constant || exp->X_op == O_register)
9801 exp->X_op = O_illegal;
9802 }
9803
9804 return i386_finalize_immediate (exp_seg, exp, types, imm_start);
9805 }
9806
9807 static int
9808 i386_finalize_immediate (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
9809 i386_operand_type types, const char *imm_start)
9810 {
9811 if (exp->X_op == O_absent || exp->X_op == O_illegal || exp->X_op == O_big)
9812 {
9813 if (imm_start)
9814 as_bad (_("missing or invalid immediate expression `%s'"),
9815 imm_start);
9816 return 0;
9817 }
9818 else if (exp->X_op == O_constant)
9819 {
9820 /* Size it properly later. */
9821 i.types[this_operand].bitfield.imm64 = 1;
9822 /* If not 64bit, sign extend val. */
9823 if (flag_code != CODE_64BIT
9824 && (exp->X_add_number & ~(((addressT) 2 << 31) - 1)) == 0)
9825 exp->X_add_number
9826 = (exp->X_add_number ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
9827 }
9828 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
9829 else if (OUTPUT_FLAVOR == bfd_target_aout_flavour
9830 && exp_seg != absolute_section
9831 && exp_seg != text_section
9832 && exp_seg != data_section
9833 && exp_seg != bss_section
9834 && exp_seg != undefined_section
9835 && !bfd_is_com_section (exp_seg))
9836 {
9837 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
9838 return 0;
9839 }
9840 #endif
9841 else if (!intel_syntax && exp_seg == reg_section)
9842 {
9843 if (imm_start)
9844 as_bad (_("illegal immediate register operand %s"), imm_start);
9845 return 0;
9846 }
9847 else
9848 {
9849 /* This is an address. The size of the address will be
9850 determined later, depending on destination register,
9851 suffix, or the default for the section. */
9852 i.types[this_operand].bitfield.imm8 = 1;
9853 i.types[this_operand].bitfield.imm16 = 1;
9854 i.types[this_operand].bitfield.imm32 = 1;
9855 i.types[this_operand].bitfield.imm32s = 1;
9856 i.types[this_operand].bitfield.imm64 = 1;
9857 i.types[this_operand] = operand_type_and (i.types[this_operand],
9858 types);
9859 }
9860
9861 return 1;
9862 }
9863
9864 static char *
9865 i386_scale (char *scale)
9866 {
9867 offsetT val;
9868 char *save = input_line_pointer;
9869
9870 input_line_pointer = scale;
9871 val = get_absolute_expression ();
9872
9873 switch (val)
9874 {
9875 case 1:
9876 i.log2_scale_factor = 0;
9877 break;
9878 case 2:
9879 i.log2_scale_factor = 1;
9880 break;
9881 case 4:
9882 i.log2_scale_factor = 2;
9883 break;
9884 case 8:
9885 i.log2_scale_factor = 3;
9886 break;
9887 default:
9888 {
9889 char sep = *input_line_pointer;
9890
9891 *input_line_pointer = '\0';
9892 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
9893 scale);
9894 *input_line_pointer = sep;
9895 input_line_pointer = save;
9896 return NULL;
9897 }
9898 }
9899 if (i.log2_scale_factor != 0 && i.index_reg == 0)
9900 {
9901 as_warn (_("scale factor of %d without an index register"),
9902 1 << i.log2_scale_factor);
9903 i.log2_scale_factor = 0;
9904 }
9905 scale = input_line_pointer;
9906 input_line_pointer = save;
9907 return scale;
9908 }
9909
9910 static int
9911 i386_displacement (char *disp_start, char *disp_end)
9912 {
9913 expressionS *exp;
9914 segT exp_seg = 0;
9915 char *save_input_line_pointer;
9916 char *gotfree_input_line;
9917 int override;
9918 i386_operand_type bigdisp, types = anydisp;
9919 int ret;
9920
9921 if (i.disp_operands == MAX_MEMORY_OPERANDS)
9922 {
9923 as_bad (_("at most %d displacement operands are allowed"),
9924 MAX_MEMORY_OPERANDS);
9925 return 0;
9926 }
9927
9928 operand_type_set (&bigdisp, 0);
9929 if (i.jumpabsolute
9930 || i.types[this_operand].bitfield.baseindex
9931 || (current_templates->start->opcode_modifier.jump != JUMP
9932 && current_templates->start->opcode_modifier.jump != JUMP_DWORD))
9933 {
9934 i386_addressing_mode ();
9935 override = (i.prefix[ADDR_PREFIX] != 0);
9936 if (flag_code == CODE_64BIT)
9937 {
9938 if (!override)
9939 {
9940 bigdisp.bitfield.disp32s = 1;
9941 bigdisp.bitfield.disp64 = 1;
9942 }
9943 else
9944 bigdisp.bitfield.disp32 = 1;
9945 }
9946 else if ((flag_code == CODE_16BIT) ^ override)
9947 bigdisp.bitfield.disp16 = 1;
9948 else
9949 bigdisp.bitfield.disp32 = 1;
9950 }
9951 else
9952 {
9953 /* For PC-relative branches, the width of the displacement may be
9954 dependent upon data size, but is never dependent upon address size.
9955 Also make sure to not unintentionally match against a non-PC-relative
9956 branch template. */
9957 static templates aux_templates;
9958 const insn_template *t = current_templates->start;
9959 bfd_boolean has_intel64 = FALSE;
9960
9961 aux_templates.start = t;
9962 while (++t < current_templates->end)
9963 {
9964 if (t->opcode_modifier.jump
9965 != current_templates->start->opcode_modifier.jump)
9966 break;
9967 if (t->opcode_modifier.intel64)
9968 has_intel64 = TRUE;
9969 }
9970 if (t < current_templates->end)
9971 {
9972 aux_templates.end = t;
9973 current_templates = &aux_templates;
9974 }
9975
9976 override = (i.prefix[DATA_PREFIX] != 0);
9977 if (flag_code == CODE_64BIT)
9978 {
9979 if ((override || i.suffix == WORD_MNEM_SUFFIX)
9980 && (!intel64 || !has_intel64))
9981 bigdisp.bitfield.disp16 = 1;
9982 else
9983 bigdisp.bitfield.disp32s = 1;
9984 }
9985 else
9986 {
9987 if (!override)
9988 override = (i.suffix == (flag_code != CODE_16BIT
9989 ? WORD_MNEM_SUFFIX
9990 : LONG_MNEM_SUFFIX));
9991 bigdisp.bitfield.disp32 = 1;
9992 if ((flag_code == CODE_16BIT) ^ override)
9993 {
9994 bigdisp.bitfield.disp32 = 0;
9995 bigdisp.bitfield.disp16 = 1;
9996 }
9997 }
9998 }
9999 i.types[this_operand] = operand_type_or (i.types[this_operand],
10000 bigdisp);
10001
10002 exp = &disp_expressions[i.disp_operands];
10003 i.op[this_operand].disps = exp;
10004 i.disp_operands++;
10005 save_input_line_pointer = input_line_pointer;
10006 input_line_pointer = disp_start;
10007 END_STRING_AND_SAVE (disp_end);
10008
10009 #ifndef GCC_ASM_O_HACK
10010 #define GCC_ASM_O_HACK 0
10011 #endif
10012 #if GCC_ASM_O_HACK
10013 END_STRING_AND_SAVE (disp_end + 1);
10014 if (i.types[this_operand].bitfield.baseIndex
10015 && displacement_string_end[-1] == '+')
10016 {
10017 /* This hack is to avoid a warning when using the "o"
10018 constraint within gcc asm statements.
10019 For instance:
10020
10021 #define _set_tssldt_desc(n,addr,limit,type) \
10022 __asm__ __volatile__ ( \
10023 "movw %w2,%0\n\t" \
10024 "movw %w1,2+%0\n\t" \
10025 "rorl $16,%1\n\t" \
10026 "movb %b1,4+%0\n\t" \
10027 "movb %4,5+%0\n\t" \
10028 "movb $0,6+%0\n\t" \
10029 "movb %h1,7+%0\n\t" \
10030 "rorl $16,%1" \
10031 : "=o"(*(n)) : "q" (addr), "ri"(limit), "i"(type))
10032
10033 This works great except that the output assembler ends
10034 up looking a bit weird if it turns out that there is
10035 no offset. You end up producing code that looks like:
10036
10037 #APP
10038 movw $235,(%eax)
10039 movw %dx,2+(%eax)
10040 rorl $16,%edx
10041 movb %dl,4+(%eax)
10042 movb $137,5+(%eax)
10043 movb $0,6+(%eax)
10044 movb %dh,7+(%eax)
10045 rorl $16,%edx
10046 #NO_APP
10047
10048 So here we provide the missing zero. */
10049
10050 *displacement_string_end = '0';
10051 }
10052 #endif
10053 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
10054 if (gotfree_input_line)
10055 input_line_pointer = gotfree_input_line;
10056
10057 exp_seg = expression (exp);
10058
10059 SKIP_WHITESPACE ();
10060 if (*input_line_pointer)
10061 as_bad (_("junk `%s' after expression"), input_line_pointer);
10062 #if GCC_ASM_O_HACK
10063 RESTORE_END_STRING (disp_end + 1);
10064 #endif
10065 input_line_pointer = save_input_line_pointer;
10066 if (gotfree_input_line)
10067 {
10068 free (gotfree_input_line);
10069
10070 if (exp->X_op == O_constant || exp->X_op == O_register)
10071 exp->X_op = O_illegal;
10072 }
10073
10074 ret = i386_finalize_displacement (exp_seg, exp, types, disp_start);
10075
10076 RESTORE_END_STRING (disp_end);
10077
10078 return ret;
10079 }
10080
10081 static int
10082 i386_finalize_displacement (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
10083 i386_operand_type types, const char *disp_start)
10084 {
10085 i386_operand_type bigdisp;
10086 int ret = 1;
10087
10088 /* We do this to make sure that the section symbol is in
10089 the symbol table. We will ultimately change the relocation
10090 to be relative to the beginning of the section. */
10091 if (i.reloc[this_operand] == BFD_RELOC_386_GOTOFF
10092 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL
10093 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
10094 {
10095 if (exp->X_op != O_symbol)
10096 goto inv_disp;
10097
10098 if (S_IS_LOCAL (exp->X_add_symbol)
10099 && S_GET_SEGMENT (exp->X_add_symbol) != undefined_section
10100 && S_GET_SEGMENT (exp->X_add_symbol) != expr_section)
10101 section_symbol (S_GET_SEGMENT (exp->X_add_symbol));
10102 exp->X_op = O_subtract;
10103 exp->X_op_symbol = GOT_symbol;
10104 if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
10105 i.reloc[this_operand] = BFD_RELOC_32_PCREL;
10106 else if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
10107 i.reloc[this_operand] = BFD_RELOC_64;
10108 else
10109 i.reloc[this_operand] = BFD_RELOC_32;
10110 }
10111
10112 else if (exp->X_op == O_absent
10113 || exp->X_op == O_illegal
10114 || exp->X_op == O_big)
10115 {
10116 inv_disp:
10117 as_bad (_("missing or invalid displacement expression `%s'"),
10118 disp_start);
10119 ret = 0;
10120 }
10121
10122 else if (flag_code == CODE_64BIT
10123 && !i.prefix[ADDR_PREFIX]
10124 && exp->X_op == O_constant)
10125 {
10126 /* Since displacement is signed extended to 64bit, don't allow
10127 disp32 and turn off disp32s if they are out of range. */
10128 i.types[this_operand].bitfield.disp32 = 0;
10129 if (!fits_in_signed_long (exp->X_add_number))
10130 {
10131 i.types[this_operand].bitfield.disp32s = 0;
10132 if (i.types[this_operand].bitfield.baseindex)
10133 {
10134 as_bad (_("0x%lx out range of signed 32bit displacement"),
10135 (long) exp->X_add_number);
10136 ret = 0;
10137 }
10138 }
10139 }
10140
10141 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
10142 else if (exp->X_op != O_constant
10143 && OUTPUT_FLAVOR == bfd_target_aout_flavour
10144 && exp_seg != absolute_section
10145 && exp_seg != text_section
10146 && exp_seg != data_section
10147 && exp_seg != bss_section
10148 && exp_seg != undefined_section
10149 && !bfd_is_com_section (exp_seg))
10150 {
10151 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
10152 ret = 0;
10153 }
10154 #endif
10155
10156 if (current_templates->start->opcode_modifier.jump == JUMP_BYTE
10157 /* Constants get taken care of by optimize_disp(). */
10158 && exp->X_op != O_constant)
10159 i.types[this_operand].bitfield.disp8 = 1;
10160
10161 /* Check if this is a displacement only operand. */
10162 bigdisp = i.types[this_operand];
10163 bigdisp.bitfield.disp8 = 0;
10164 bigdisp.bitfield.disp16 = 0;
10165 bigdisp.bitfield.disp32 = 0;
10166 bigdisp.bitfield.disp32s = 0;
10167 bigdisp.bitfield.disp64 = 0;
10168 if (operand_type_all_zero (&bigdisp))
10169 i.types[this_operand] = operand_type_and (i.types[this_operand],
10170 types);
10171
10172 return ret;
10173 }
10174
10175 /* Return the active addressing mode, taking address override and
10176 registers forming the address into consideration. Update the
10177 address override prefix if necessary. */
10178
10179 static enum flag_code
10180 i386_addressing_mode (void)
10181 {
10182 enum flag_code addr_mode;
10183
10184 if (i.prefix[ADDR_PREFIX])
10185 addr_mode = flag_code == CODE_32BIT ? CODE_16BIT : CODE_32BIT;
10186 else
10187 {
10188 addr_mode = flag_code;
10189
10190 #if INFER_ADDR_PREFIX
10191 if (i.mem_operands == 0)
10192 {
10193 /* Infer address prefix from the first memory operand. */
10194 const reg_entry *addr_reg = i.base_reg;
10195
10196 if (addr_reg == NULL)
10197 addr_reg = i.index_reg;
10198
10199 if (addr_reg)
10200 {
10201 if (addr_reg->reg_type.bitfield.dword)
10202 addr_mode = CODE_32BIT;
10203 else if (flag_code != CODE_64BIT
10204 && addr_reg->reg_type.bitfield.word)
10205 addr_mode = CODE_16BIT;
10206
10207 if (addr_mode != flag_code)
10208 {
10209 i.prefix[ADDR_PREFIX] = ADDR_PREFIX_OPCODE;
10210 i.prefixes += 1;
10211 /* Change the size of any displacement too. At most one
10212 of Disp16 or Disp32 is set.
10213 FIXME. There doesn't seem to be any real need for
10214 separate Disp16 and Disp32 flags. The same goes for
10215 Imm16 and Imm32. Removing them would probably clean
10216 up the code quite a lot. */
10217 if (flag_code != CODE_64BIT
10218 && (i.types[this_operand].bitfield.disp16
10219 || i.types[this_operand].bitfield.disp32))
10220 i.types[this_operand]
10221 = operand_type_xor (i.types[this_operand], disp16_32);
10222 }
10223 }
10224 }
10225 #endif
10226 }
10227
10228 return addr_mode;
10229 }
10230
10231 /* Make sure the memory operand we've been dealt is valid.
10232 Return 1 on success, 0 on a failure. */
10233
10234 static int
10235 i386_index_check (const char *operand_string)
10236 {
10237 const char *kind = "base/index";
10238 enum flag_code addr_mode = i386_addressing_mode ();
10239
10240 if (current_templates->start->opcode_modifier.isstring
10241 && !current_templates->start->cpu_flags.bitfield.cpupadlock
10242 && (current_templates->end[-1].opcode_modifier.isstring
10243 || i.mem_operands))
10244 {
10245 /* Memory operands of string insns are special in that they only allow
10246 a single register (rDI, rSI, or rBX) as their memory address. */
10247 const reg_entry *expected_reg;
10248 static const char *di_si[][2] =
10249 {
10250 { "esi", "edi" },
10251 { "si", "di" },
10252 { "rsi", "rdi" }
10253 };
10254 static const char *bx[] = { "ebx", "bx", "rbx" };
10255
10256 kind = "string address";
10257
10258 if (current_templates->start->opcode_modifier.repprefixok)
10259 {
10260 int es_op = current_templates->end[-1].opcode_modifier.isstring
10261 - IS_STRING_ES_OP0;
10262 int op = 0;
10263
10264 if (!current_templates->end[-1].operand_types[0].bitfield.baseindex
10265 || ((!i.mem_operands != !intel_syntax)
10266 && current_templates->end[-1].operand_types[1]
10267 .bitfield.baseindex))
10268 op = 1;
10269 expected_reg = hash_find (reg_hash, di_si[addr_mode][op == es_op]);
10270 }
10271 else
10272 expected_reg = hash_find (reg_hash, bx[addr_mode]);
10273
10274 if (i.base_reg != expected_reg
10275 || i.index_reg
10276 || operand_type_check (i.types[this_operand], disp))
10277 {
10278 /* The second memory operand must have the same size as
10279 the first one. */
10280 if (i.mem_operands
10281 && i.base_reg
10282 && !((addr_mode == CODE_64BIT
10283 && i.base_reg->reg_type.bitfield.qword)
10284 || (addr_mode == CODE_32BIT
10285 ? i.base_reg->reg_type.bitfield.dword
10286 : i.base_reg->reg_type.bitfield.word)))
10287 goto bad_address;
10288
10289 as_warn (_("`%s' is not valid here (expected `%c%s%s%c')"),
10290 operand_string,
10291 intel_syntax ? '[' : '(',
10292 register_prefix,
10293 expected_reg->reg_name,
10294 intel_syntax ? ']' : ')');
10295 return 1;
10296 }
10297 else
10298 return 1;
10299
10300 bad_address:
10301 as_bad (_("`%s' is not a valid %s expression"),
10302 operand_string, kind);
10303 return 0;
10304 }
10305 else
10306 {
10307 if (addr_mode != CODE_16BIT)
10308 {
10309 /* 32-bit/64-bit checks. */
10310 if ((i.base_reg
10311 && ((addr_mode == CODE_64BIT
10312 ? !i.base_reg->reg_type.bitfield.qword
10313 : !i.base_reg->reg_type.bitfield.dword)
10314 || (i.index_reg && i.base_reg->reg_num == RegIP)
10315 || i.base_reg->reg_num == RegIZ))
10316 || (i.index_reg
10317 && !i.index_reg->reg_type.bitfield.xmmword
10318 && !i.index_reg->reg_type.bitfield.ymmword
10319 && !i.index_reg->reg_type.bitfield.zmmword
10320 && ((addr_mode == CODE_64BIT
10321 ? !i.index_reg->reg_type.bitfield.qword
10322 : !i.index_reg->reg_type.bitfield.dword)
10323 || !i.index_reg->reg_type.bitfield.baseindex)))
10324 goto bad_address;
10325
10326 /* bndmk, bndldx, and bndstx have special restrictions. */
10327 if (current_templates->start->base_opcode == 0xf30f1b
10328 || (current_templates->start->base_opcode & ~1) == 0x0f1a)
10329 {
10330 /* They cannot use RIP-relative addressing. */
10331 if (i.base_reg && i.base_reg->reg_num == RegIP)
10332 {
10333 as_bad (_("`%s' cannot be used here"), operand_string);
10334 return 0;
10335 }
10336
10337 /* bndldx and bndstx ignore their scale factor. */
10338 if (current_templates->start->base_opcode != 0xf30f1b
10339 && i.log2_scale_factor)
10340 as_warn (_("register scaling is being ignored here"));
10341 }
10342 }
10343 else
10344 {
10345 /* 16-bit checks. */
10346 if ((i.base_reg
10347 && (!i.base_reg->reg_type.bitfield.word
10348 || !i.base_reg->reg_type.bitfield.baseindex))
10349 || (i.index_reg
10350 && (!i.index_reg->reg_type.bitfield.word
10351 || !i.index_reg->reg_type.bitfield.baseindex
10352 || !(i.base_reg
10353 && i.base_reg->reg_num < 6
10354 && i.index_reg->reg_num >= 6
10355 && i.log2_scale_factor == 0))))
10356 goto bad_address;
10357 }
10358 }
10359 return 1;
10360 }
10361
10362 /* Handle vector immediates. */
10363
10364 static int
10365 RC_SAE_immediate (const char *imm_start)
10366 {
10367 unsigned int match_found, j;
10368 const char *pstr = imm_start;
10369 expressionS *exp;
10370
10371 if (*pstr != '{')
10372 return 0;
10373
10374 pstr++;
10375 match_found = 0;
10376 for (j = 0; j < ARRAY_SIZE (RC_NamesTable); j++)
10377 {
10378 if (!strncmp (pstr, RC_NamesTable[j].name, RC_NamesTable[j].len))
10379 {
10380 if (!i.rounding)
10381 {
10382 rc_op.type = RC_NamesTable[j].type;
10383 rc_op.operand = this_operand;
10384 i.rounding = &rc_op;
10385 }
10386 else
10387 {
10388 as_bad (_("duplicated `%s'"), imm_start);
10389 return 0;
10390 }
10391 pstr += RC_NamesTable[j].len;
10392 match_found = 1;
10393 break;
10394 }
10395 }
10396 if (!match_found)
10397 return 0;
10398
10399 if (*pstr++ != '}')
10400 {
10401 as_bad (_("Missing '}': '%s'"), imm_start);
10402 return 0;
10403 }
10404 /* RC/SAE immediate string should contain nothing more. */;
10405 if (*pstr != 0)
10406 {
10407 as_bad (_("Junk after '}': '%s'"), imm_start);
10408 return 0;
10409 }
10410
10411 exp = &im_expressions[i.imm_operands++];
10412 i.op[this_operand].imms = exp;
10413
10414 exp->X_op = O_constant;
10415 exp->X_add_number = 0;
10416 exp->X_add_symbol = (symbolS *) 0;
10417 exp->X_op_symbol = (symbolS *) 0;
10418
10419 i.types[this_operand].bitfield.imm8 = 1;
10420 return 1;
10421 }
10422
10423 /* Only string instructions can have a second memory operand, so
10424 reduce current_templates to just those if it contains any. */
10425 static int
10426 maybe_adjust_templates (void)
10427 {
10428 const insn_template *t;
10429
10430 gas_assert (i.mem_operands == 1);
10431
10432 for (t = current_templates->start; t < current_templates->end; ++t)
10433 if (t->opcode_modifier.isstring)
10434 break;
10435
10436 if (t < current_templates->end)
10437 {
10438 static templates aux_templates;
10439 bfd_boolean recheck;
10440
10441 aux_templates.start = t;
10442 for (; t < current_templates->end; ++t)
10443 if (!t->opcode_modifier.isstring)
10444 break;
10445 aux_templates.end = t;
10446
10447 /* Determine whether to re-check the first memory operand. */
10448 recheck = (aux_templates.start != current_templates->start
10449 || t != current_templates->end);
10450
10451 current_templates = &aux_templates;
10452
10453 if (recheck)
10454 {
10455 i.mem_operands = 0;
10456 if (i.memop1_string != NULL
10457 && i386_index_check (i.memop1_string) == 0)
10458 return 0;
10459 i.mem_operands = 1;
10460 }
10461 }
10462
10463 return 1;
10464 }
10465
10466 /* Parse OPERAND_STRING into the i386_insn structure I. Returns zero
10467 on error. */
10468
10469 static int
10470 i386_att_operand (char *operand_string)
10471 {
10472 const reg_entry *r;
10473 char *end_op;
10474 char *op_string = operand_string;
10475
10476 if (is_space_char (*op_string))
10477 ++op_string;
10478
10479 /* We check for an absolute prefix (differentiating,
10480 for example, 'jmp pc_relative_label' from 'jmp *absolute_label'. */
10481 if (*op_string == ABSOLUTE_PREFIX)
10482 {
10483 ++op_string;
10484 if (is_space_char (*op_string))
10485 ++op_string;
10486 i.jumpabsolute = TRUE;
10487 }
10488
10489 /* Check if operand is a register. */
10490 if ((r = parse_register (op_string, &end_op)) != NULL)
10491 {
10492 i386_operand_type temp;
10493
10494 /* Check for a segment override by searching for ':' after a
10495 segment register. */
10496 op_string = end_op;
10497 if (is_space_char (*op_string))
10498 ++op_string;
10499 if (*op_string == ':' && r->reg_type.bitfield.class == SReg)
10500 {
10501 switch (r->reg_num)
10502 {
10503 case 0:
10504 i.seg[i.mem_operands] = &es;
10505 break;
10506 case 1:
10507 i.seg[i.mem_operands] = &cs;
10508 break;
10509 case 2:
10510 i.seg[i.mem_operands] = &ss;
10511 break;
10512 case 3:
10513 i.seg[i.mem_operands] = &ds;
10514 break;
10515 case 4:
10516 i.seg[i.mem_operands] = &fs;
10517 break;
10518 case 5:
10519 i.seg[i.mem_operands] = &gs;
10520 break;
10521 }
10522
10523 /* Skip the ':' and whitespace. */
10524 ++op_string;
10525 if (is_space_char (*op_string))
10526 ++op_string;
10527
10528 if (!is_digit_char (*op_string)
10529 && !is_identifier_char (*op_string)
10530 && *op_string != '('
10531 && *op_string != ABSOLUTE_PREFIX)
10532 {
10533 as_bad (_("bad memory operand `%s'"), op_string);
10534 return 0;
10535 }
10536 /* Handle case of %es:*foo. */
10537 if (*op_string == ABSOLUTE_PREFIX)
10538 {
10539 ++op_string;
10540 if (is_space_char (*op_string))
10541 ++op_string;
10542 i.jumpabsolute = TRUE;
10543 }
10544 goto do_memory_reference;
10545 }
10546
10547 /* Handle vector operations. */
10548 if (*op_string == '{')
10549 {
10550 op_string = check_VecOperations (op_string, NULL);
10551 if (op_string == NULL)
10552 return 0;
10553 }
10554
10555 if (*op_string)
10556 {
10557 as_bad (_("junk `%s' after register"), op_string);
10558 return 0;
10559 }
10560 temp = r->reg_type;
10561 temp.bitfield.baseindex = 0;
10562 i.types[this_operand] = operand_type_or (i.types[this_operand],
10563 temp);
10564 i.types[this_operand].bitfield.unspecified = 0;
10565 i.op[this_operand].regs = r;
10566 i.reg_operands++;
10567 }
10568 else if (*op_string == REGISTER_PREFIX)
10569 {
10570 as_bad (_("bad register name `%s'"), op_string);
10571 return 0;
10572 }
10573 else if (*op_string == IMMEDIATE_PREFIX)
10574 {
10575 ++op_string;
10576 if (i.jumpabsolute)
10577 {
10578 as_bad (_("immediate operand illegal with absolute jump"));
10579 return 0;
10580 }
10581 if (!i386_immediate (op_string))
10582 return 0;
10583 }
10584 else if (RC_SAE_immediate (operand_string))
10585 {
10586 /* If it is a RC or SAE immediate, do nothing. */
10587 ;
10588 }
10589 else if (is_digit_char (*op_string)
10590 || is_identifier_char (*op_string)
10591 || *op_string == '"'
10592 || *op_string == '(')
10593 {
10594 /* This is a memory reference of some sort. */
10595 char *base_string;
10596
10597 /* Start and end of displacement string expression (if found). */
10598 char *displacement_string_start;
10599 char *displacement_string_end;
10600 char *vop_start;
10601
10602 do_memory_reference:
10603 if (i.mem_operands == 1 && !maybe_adjust_templates ())
10604 return 0;
10605 if ((i.mem_operands == 1
10606 && !current_templates->start->opcode_modifier.isstring)
10607 || i.mem_operands == 2)
10608 {
10609 as_bad (_("too many memory references for `%s'"),
10610 current_templates->start->name);
10611 return 0;
10612 }
10613
10614 /* Check for base index form. We detect the base index form by
10615 looking for an ')' at the end of the operand, searching
10616 for the '(' matching it, and finding a REGISTER_PREFIX or ','
10617 after the '('. */
10618 base_string = op_string + strlen (op_string);
10619
10620 /* Handle vector operations. */
10621 vop_start = strchr (op_string, '{');
10622 if (vop_start && vop_start < base_string)
10623 {
10624 if (check_VecOperations (vop_start, base_string) == NULL)
10625 return 0;
10626 base_string = vop_start;
10627 }
10628
10629 --base_string;
10630 if (is_space_char (*base_string))
10631 --base_string;
10632
10633 /* If we only have a displacement, set-up for it to be parsed later. */
10634 displacement_string_start = op_string;
10635 displacement_string_end = base_string + 1;
10636
10637 if (*base_string == ')')
10638 {
10639 char *temp_string;
10640 unsigned int parens_balanced = 1;
10641 /* We've already checked that the number of left & right ()'s are
10642 equal, so this loop will not be infinite. */
10643 do
10644 {
10645 base_string--;
10646 if (*base_string == ')')
10647 parens_balanced++;
10648 if (*base_string == '(')
10649 parens_balanced--;
10650 }
10651 while (parens_balanced);
10652
10653 temp_string = base_string;
10654
10655 /* Skip past '(' and whitespace. */
10656 ++base_string;
10657 if (is_space_char (*base_string))
10658 ++base_string;
10659
10660 if (*base_string == ','
10661 || ((i.base_reg = parse_register (base_string, &end_op))
10662 != NULL))
10663 {
10664 displacement_string_end = temp_string;
10665
10666 i.types[this_operand].bitfield.baseindex = 1;
10667
10668 if (i.base_reg)
10669 {
10670 base_string = end_op;
10671 if (is_space_char (*base_string))
10672 ++base_string;
10673 }
10674
10675 /* There may be an index reg or scale factor here. */
10676 if (*base_string == ',')
10677 {
10678 ++base_string;
10679 if (is_space_char (*base_string))
10680 ++base_string;
10681
10682 if ((i.index_reg = parse_register (base_string, &end_op))
10683 != NULL)
10684 {
10685 base_string = end_op;
10686 if (is_space_char (*base_string))
10687 ++base_string;
10688 if (*base_string == ',')
10689 {
10690 ++base_string;
10691 if (is_space_char (*base_string))
10692 ++base_string;
10693 }
10694 else if (*base_string != ')')
10695 {
10696 as_bad (_("expecting `,' or `)' "
10697 "after index register in `%s'"),
10698 operand_string);
10699 return 0;
10700 }
10701 }
10702 else if (*base_string == REGISTER_PREFIX)
10703 {
10704 end_op = strchr (base_string, ',');
10705 if (end_op)
10706 *end_op = '\0';
10707 as_bad (_("bad register name `%s'"), base_string);
10708 return 0;
10709 }
10710
10711 /* Check for scale factor. */
10712 if (*base_string != ')')
10713 {
10714 char *end_scale = i386_scale (base_string);
10715
10716 if (!end_scale)
10717 return 0;
10718
10719 base_string = end_scale;
10720 if (is_space_char (*base_string))
10721 ++base_string;
10722 if (*base_string != ')')
10723 {
10724 as_bad (_("expecting `)' "
10725 "after scale factor in `%s'"),
10726 operand_string);
10727 return 0;
10728 }
10729 }
10730 else if (!i.index_reg)
10731 {
10732 as_bad (_("expecting index register or scale factor "
10733 "after `,'; got '%c'"),
10734 *base_string);
10735 return 0;
10736 }
10737 }
10738 else if (*base_string != ')')
10739 {
10740 as_bad (_("expecting `,' or `)' "
10741 "after base register in `%s'"),
10742 operand_string);
10743 return 0;
10744 }
10745 }
10746 else if (*base_string == REGISTER_PREFIX)
10747 {
10748 end_op = strchr (base_string, ',');
10749 if (end_op)
10750 *end_op = '\0';
10751 as_bad (_("bad register name `%s'"), base_string);
10752 return 0;
10753 }
10754 }
10755
10756 /* If there's an expression beginning the operand, parse it,
10757 assuming displacement_string_start and
10758 displacement_string_end are meaningful. */
10759 if (displacement_string_start != displacement_string_end)
10760 {
10761 if (!i386_displacement (displacement_string_start,
10762 displacement_string_end))
10763 return 0;
10764 }
10765
10766 /* Special case for (%dx) while doing input/output op. */
10767 if (i.base_reg
10768 && i.base_reg->reg_type.bitfield.instance == RegD
10769 && i.base_reg->reg_type.bitfield.word
10770 && i.index_reg == 0
10771 && i.log2_scale_factor == 0
10772 && i.seg[i.mem_operands] == 0
10773 && !operand_type_check (i.types[this_operand], disp))
10774 {
10775 i.types[this_operand] = i.base_reg->reg_type;
10776 return 1;
10777 }
10778
10779 if (i386_index_check (operand_string) == 0)
10780 return 0;
10781 i.flags[this_operand] |= Operand_Mem;
10782 if (i.mem_operands == 0)
10783 i.memop1_string = xstrdup (operand_string);
10784 i.mem_operands++;
10785 }
10786 else
10787 {
10788 /* It's not a memory operand; argh! */
10789 as_bad (_("invalid char %s beginning operand %d `%s'"),
10790 output_invalid (*op_string),
10791 this_operand + 1,
10792 op_string);
10793 return 0;
10794 }
10795 return 1; /* Normal return. */
10796 }
10797 \f
10798 /* Calculate the maximum variable size (i.e., excluding fr_fix)
10799 that an rs_machine_dependent frag may reach. */
10800
10801 unsigned int
10802 i386_frag_max_var (fragS *frag)
10803 {
10804 /* The only relaxable frags are for jumps.
10805 Unconditional jumps can grow by 4 bytes and others by 5 bytes. */
10806 gas_assert (frag->fr_type == rs_machine_dependent);
10807 return TYPE_FROM_RELAX_STATE (frag->fr_subtype) == UNCOND_JUMP ? 4 : 5;
10808 }
10809
10810 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10811 static int
10812 elf_symbol_resolved_in_segment_p (symbolS *fr_symbol, offsetT fr_var)
10813 {
10814 /* STT_GNU_IFUNC symbol must go through PLT. */
10815 if ((symbol_get_bfdsym (fr_symbol)->flags
10816 & BSF_GNU_INDIRECT_FUNCTION) != 0)
10817 return 0;
10818
10819 if (!S_IS_EXTERNAL (fr_symbol))
10820 /* Symbol may be weak or local. */
10821 return !S_IS_WEAK (fr_symbol);
10822
10823 /* Global symbols with non-default visibility can't be preempted. */
10824 if (ELF_ST_VISIBILITY (S_GET_OTHER (fr_symbol)) != STV_DEFAULT)
10825 return 1;
10826
10827 if (fr_var != NO_RELOC)
10828 switch ((enum bfd_reloc_code_real) fr_var)
10829 {
10830 case BFD_RELOC_386_PLT32:
10831 case BFD_RELOC_X86_64_PLT32:
10832 /* Symbol with PLT relocation may be preempted. */
10833 return 0;
10834 default:
10835 abort ();
10836 }
10837
10838 /* Global symbols with default visibility in a shared library may be
10839 preempted by another definition. */
10840 return !shared;
10841 }
10842 #endif
10843
10844 /* Return the next non-empty frag. */
10845
10846 static fragS *
10847 i386_next_non_empty_frag (fragS *fragP)
10848 {
10849 /* There may be a frag with a ".fill 0" when there is no room in
10850 the current frag for frag_grow in output_insn. */
10851 for (fragP = fragP->fr_next;
10852 (fragP != NULL
10853 && fragP->fr_type == rs_fill
10854 && fragP->fr_fix == 0);
10855 fragP = fragP->fr_next)
10856 ;
10857 return fragP;
10858 }
10859
10860 /* Return the next jcc frag after BRANCH_PADDING. */
10861
10862 static fragS *
10863 i386_next_jcc_frag (fragS *fragP)
10864 {
10865 if (!fragP)
10866 return NULL;
10867
10868 if (fragP->fr_type == rs_machine_dependent
10869 && (TYPE_FROM_RELAX_STATE (fragP->fr_subtype)
10870 == BRANCH_PADDING))
10871 {
10872 fragP = i386_next_non_empty_frag (fragP);
10873 if (fragP->fr_type != rs_machine_dependent)
10874 return NULL;
10875 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == COND_JUMP)
10876 return fragP;
10877 }
10878
10879 return NULL;
10880 }
10881
10882 /* Classify BRANCH_PADDING, BRANCH_PREFIX and FUSED_JCC_PADDING frags. */
10883
10884 static void
10885 i386_classify_machine_dependent_frag (fragS *fragP)
10886 {
10887 fragS *cmp_fragP;
10888 fragS *pad_fragP;
10889 fragS *branch_fragP;
10890 fragS *next_fragP;
10891 unsigned int max_prefix_length;
10892
10893 if (fragP->tc_frag_data.classified)
10894 return;
10895
10896 /* First scan for BRANCH_PADDING and FUSED_JCC_PADDING. Convert
10897 FUSED_JCC_PADDING and merge BRANCH_PADDING. */
10898 for (next_fragP = fragP;
10899 next_fragP != NULL;
10900 next_fragP = next_fragP->fr_next)
10901 {
10902 next_fragP->tc_frag_data.classified = 1;
10903 if (next_fragP->fr_type == rs_machine_dependent)
10904 switch (TYPE_FROM_RELAX_STATE (next_fragP->fr_subtype))
10905 {
10906 case BRANCH_PADDING:
10907 /* The BRANCH_PADDING frag must be followed by a branch
10908 frag. */
10909 branch_fragP = i386_next_non_empty_frag (next_fragP);
10910 next_fragP->tc_frag_data.u.branch_fragP = branch_fragP;
10911 break;
10912 case FUSED_JCC_PADDING:
10913 /* Check if this is a fused jcc:
10914 FUSED_JCC_PADDING
10915 CMP like instruction
10916 BRANCH_PADDING
10917 COND_JUMP
10918 */
10919 cmp_fragP = i386_next_non_empty_frag (next_fragP);
10920 pad_fragP = i386_next_non_empty_frag (cmp_fragP);
10921 branch_fragP = i386_next_jcc_frag (pad_fragP);
10922 if (branch_fragP)
10923 {
10924 /* The BRANCH_PADDING frag is merged with the
10925 FUSED_JCC_PADDING frag. */
10926 next_fragP->tc_frag_data.u.branch_fragP = branch_fragP;
10927 /* CMP like instruction size. */
10928 next_fragP->tc_frag_data.cmp_size = cmp_fragP->fr_fix;
10929 frag_wane (pad_fragP);
10930 /* Skip to branch_fragP. */
10931 next_fragP = branch_fragP;
10932 }
10933 else if (next_fragP->tc_frag_data.max_prefix_length)
10934 {
10935 /* Turn FUSED_JCC_PADDING into BRANCH_PREFIX if it isn't
10936 a fused jcc. */
10937 next_fragP->fr_subtype
10938 = ENCODE_RELAX_STATE (BRANCH_PREFIX, 0);
10939 next_fragP->tc_frag_data.max_bytes
10940 = next_fragP->tc_frag_data.max_prefix_length;
10941 /* This will be updated in the BRANCH_PREFIX scan. */
10942 next_fragP->tc_frag_data.max_prefix_length = 0;
10943 }
10944 else
10945 frag_wane (next_fragP);
10946 break;
10947 }
10948 }
10949
10950 /* Stop if there is no BRANCH_PREFIX. */
10951 if (!align_branch_prefix_size)
10952 return;
10953
10954 /* Scan for BRANCH_PREFIX. */
10955 for (; fragP != NULL; fragP = fragP->fr_next)
10956 {
10957 if (fragP->fr_type != rs_machine_dependent
10958 || (TYPE_FROM_RELAX_STATE (fragP->fr_subtype)
10959 != BRANCH_PREFIX))
10960 continue;
10961
10962 /* Count all BRANCH_PREFIX frags before BRANCH_PADDING and
10963 COND_JUMP_PREFIX. */
10964 max_prefix_length = 0;
10965 for (next_fragP = fragP;
10966 next_fragP != NULL;
10967 next_fragP = next_fragP->fr_next)
10968 {
10969 if (next_fragP->fr_type == rs_fill)
10970 /* Skip rs_fill frags. */
10971 continue;
10972 else if (next_fragP->fr_type != rs_machine_dependent)
10973 /* Stop for all other frags. */
10974 break;
10975
10976 /* rs_machine_dependent frags. */
10977 if (TYPE_FROM_RELAX_STATE (next_fragP->fr_subtype)
10978 == BRANCH_PREFIX)
10979 {
10980 /* Count BRANCH_PREFIX frags. */
10981 if (max_prefix_length >= MAX_FUSED_JCC_PADDING_SIZE)
10982 {
10983 max_prefix_length = MAX_FUSED_JCC_PADDING_SIZE;
10984 frag_wane (next_fragP);
10985 }
10986 else
10987 max_prefix_length
10988 += next_fragP->tc_frag_data.max_bytes;
10989 }
10990 else if ((TYPE_FROM_RELAX_STATE (next_fragP->fr_subtype)
10991 == BRANCH_PADDING)
10992 || (TYPE_FROM_RELAX_STATE (next_fragP->fr_subtype)
10993 == FUSED_JCC_PADDING))
10994 {
10995 /* Stop at BRANCH_PADDING and FUSED_JCC_PADDING. */
10996 fragP->tc_frag_data.u.padding_fragP = next_fragP;
10997 break;
10998 }
10999 else
11000 /* Stop for other rs_machine_dependent frags. */
11001 break;
11002 }
11003
11004 fragP->tc_frag_data.max_prefix_length = max_prefix_length;
11005
11006 /* Skip to the next frag. */
11007 fragP = next_fragP;
11008 }
11009 }
11010
11011 /* Compute padding size for
11012
11013 FUSED_JCC_PADDING
11014 CMP like instruction
11015 BRANCH_PADDING
11016 COND_JUMP/UNCOND_JUMP
11017
11018 or
11019
11020 BRANCH_PADDING
11021 COND_JUMP/UNCOND_JUMP
11022 */
11023
11024 static int
11025 i386_branch_padding_size (fragS *fragP, offsetT address)
11026 {
11027 unsigned int offset, size, padding_size;
11028 fragS *branch_fragP = fragP->tc_frag_data.u.branch_fragP;
11029
11030 /* The start address of the BRANCH_PADDING or FUSED_JCC_PADDING frag. */
11031 if (!address)
11032 address = fragP->fr_address;
11033 address += fragP->fr_fix;
11034
11035 /* CMP like instrunction size. */
11036 size = fragP->tc_frag_data.cmp_size;
11037
11038 /* The base size of the branch frag. */
11039 size += branch_fragP->fr_fix;
11040
11041 /* Add opcode and displacement bytes for the rs_machine_dependent
11042 branch frag. */
11043 if (branch_fragP->fr_type == rs_machine_dependent)
11044 size += md_relax_table[branch_fragP->fr_subtype].rlx_length;
11045
11046 /* Check if branch is within boundary and doesn't end at the last
11047 byte. */
11048 offset = address & ((1U << align_branch_power) - 1);
11049 if ((offset + size) >= (1U << align_branch_power))
11050 /* Padding needed to avoid crossing boundary. */
11051 padding_size = (1U << align_branch_power) - offset;
11052 else
11053 /* No padding needed. */
11054 padding_size = 0;
11055
11056 /* The return value may be saved in tc_frag_data.length which is
11057 unsigned byte. */
11058 if (!fits_in_unsigned_byte (padding_size))
11059 abort ();
11060
11061 return padding_size;
11062 }
11063
11064 /* i386_generic_table_relax_frag()
11065
11066 Handle BRANCH_PADDING, BRANCH_PREFIX and FUSED_JCC_PADDING frags to
11067 grow/shrink padding to align branch frags. Hand others to
11068 relax_frag(). */
11069
11070 long
11071 i386_generic_table_relax_frag (segT segment, fragS *fragP, long stretch)
11072 {
11073 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PADDING
11074 || TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == FUSED_JCC_PADDING)
11075 {
11076 long padding_size = i386_branch_padding_size (fragP, 0);
11077 long grow = padding_size - fragP->tc_frag_data.length;
11078
11079 /* When the BRANCH_PREFIX frag is used, the computed address
11080 must match the actual address and there should be no padding. */
11081 if (fragP->tc_frag_data.padding_address
11082 && (fragP->tc_frag_data.padding_address != fragP->fr_address
11083 || padding_size))
11084 abort ();
11085
11086 /* Update the padding size. */
11087 if (grow)
11088 fragP->tc_frag_data.length = padding_size;
11089
11090 return grow;
11091 }
11092 else if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PREFIX)
11093 {
11094 fragS *padding_fragP, *next_fragP;
11095 long padding_size, left_size, last_size;
11096
11097 padding_fragP = fragP->tc_frag_data.u.padding_fragP;
11098 if (!padding_fragP)
11099 /* Use the padding set by the leading BRANCH_PREFIX frag. */
11100 return (fragP->tc_frag_data.length
11101 - fragP->tc_frag_data.last_length);
11102
11103 /* Compute the relative address of the padding frag in the very
11104 first time where the BRANCH_PREFIX frag sizes are zero. */
11105 if (!fragP->tc_frag_data.padding_address)
11106 fragP->tc_frag_data.padding_address
11107 = padding_fragP->fr_address - (fragP->fr_address - stretch);
11108
11109 /* First update the last length from the previous interation. */
11110 left_size = fragP->tc_frag_data.prefix_length;
11111 for (next_fragP = fragP;
11112 next_fragP != padding_fragP;
11113 next_fragP = next_fragP->fr_next)
11114 if (next_fragP->fr_type == rs_machine_dependent
11115 && (TYPE_FROM_RELAX_STATE (next_fragP->fr_subtype)
11116 == BRANCH_PREFIX))
11117 {
11118 if (left_size)
11119 {
11120 int max = next_fragP->tc_frag_data.max_bytes;
11121 if (max)
11122 {
11123 int size;
11124 if (max > left_size)
11125 size = left_size;
11126 else
11127 size = max;
11128 left_size -= size;
11129 next_fragP->tc_frag_data.last_length = size;
11130 }
11131 }
11132 else
11133 next_fragP->tc_frag_data.last_length = 0;
11134 }
11135
11136 /* Check the padding size for the padding frag. */
11137 padding_size = i386_branch_padding_size
11138 (padding_fragP, (fragP->fr_address
11139 + fragP->tc_frag_data.padding_address));
11140
11141 last_size = fragP->tc_frag_data.prefix_length;
11142 /* Check if there is change from the last interation. */
11143 if (padding_size == last_size)
11144 {
11145 /* Update the expected address of the padding frag. */
11146 padding_fragP->tc_frag_data.padding_address
11147 = (fragP->fr_address + padding_size
11148 + fragP->tc_frag_data.padding_address);
11149 return 0;
11150 }
11151
11152 if (padding_size > fragP->tc_frag_data.max_prefix_length)
11153 {
11154 /* No padding if there is no sufficient room. Clear the
11155 expected address of the padding frag. */
11156 padding_fragP->tc_frag_data.padding_address = 0;
11157 padding_size = 0;
11158 }
11159 else
11160 /* Store the expected address of the padding frag. */
11161 padding_fragP->tc_frag_data.padding_address
11162 = (fragP->fr_address + padding_size
11163 + fragP->tc_frag_data.padding_address);
11164
11165 fragP->tc_frag_data.prefix_length = padding_size;
11166
11167 /* Update the length for the current interation. */
11168 left_size = padding_size;
11169 for (next_fragP = fragP;
11170 next_fragP != padding_fragP;
11171 next_fragP = next_fragP->fr_next)
11172 if (next_fragP->fr_type == rs_machine_dependent
11173 && (TYPE_FROM_RELAX_STATE (next_fragP->fr_subtype)
11174 == BRANCH_PREFIX))
11175 {
11176 if (left_size)
11177 {
11178 int max = next_fragP->tc_frag_data.max_bytes;
11179 if (max)
11180 {
11181 int size;
11182 if (max > left_size)
11183 size = left_size;
11184 else
11185 size = max;
11186 left_size -= size;
11187 next_fragP->tc_frag_data.length = size;
11188 }
11189 }
11190 else
11191 next_fragP->tc_frag_data.length = 0;
11192 }
11193
11194 return (fragP->tc_frag_data.length
11195 - fragP->tc_frag_data.last_length);
11196 }
11197 return relax_frag (segment, fragP, stretch);
11198 }
11199
11200 /* md_estimate_size_before_relax()
11201
11202 Called just before relax() for rs_machine_dependent frags. The x86
11203 assembler uses these frags to handle variable size jump
11204 instructions.
11205
11206 Any symbol that is now undefined will not become defined.
11207 Return the correct fr_subtype in the frag.
11208 Return the initial "guess for variable size of frag" to caller.
11209 The guess is actually the growth beyond the fixed part. Whatever
11210 we do to grow the fixed or variable part contributes to our
11211 returned value. */
11212
11213 int
11214 md_estimate_size_before_relax (fragS *fragP, segT segment)
11215 {
11216 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PADDING
11217 || TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PREFIX
11218 || TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == FUSED_JCC_PADDING)
11219 {
11220 i386_classify_machine_dependent_frag (fragP);
11221 return fragP->tc_frag_data.length;
11222 }
11223
11224 /* We've already got fragP->fr_subtype right; all we have to do is
11225 check for un-relaxable symbols. On an ELF system, we can't relax
11226 an externally visible symbol, because it may be overridden by a
11227 shared library. */
11228 if (S_GET_SEGMENT (fragP->fr_symbol) != segment
11229 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11230 || (IS_ELF
11231 && !elf_symbol_resolved_in_segment_p (fragP->fr_symbol,
11232 fragP->fr_var))
11233 #endif
11234 #if defined (OBJ_COFF) && defined (TE_PE)
11235 || (OUTPUT_FLAVOR == bfd_target_coff_flavour
11236 && S_IS_WEAK (fragP->fr_symbol))
11237 #endif
11238 )
11239 {
11240 /* Symbol is undefined in this segment, or we need to keep a
11241 reloc so that weak symbols can be overridden. */
11242 int size = (fragP->fr_subtype & CODE16) ? 2 : 4;
11243 enum bfd_reloc_code_real reloc_type;
11244 unsigned char *opcode;
11245 int old_fr_fix;
11246
11247 if (fragP->fr_var != NO_RELOC)
11248 reloc_type = (enum bfd_reloc_code_real) fragP->fr_var;
11249 else if (size == 2)
11250 reloc_type = BFD_RELOC_16_PCREL;
11251 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11252 else if (need_plt32_p (fragP->fr_symbol))
11253 reloc_type = BFD_RELOC_X86_64_PLT32;
11254 #endif
11255 else
11256 reloc_type = BFD_RELOC_32_PCREL;
11257
11258 old_fr_fix = fragP->fr_fix;
11259 opcode = (unsigned char *) fragP->fr_opcode;
11260
11261 switch (TYPE_FROM_RELAX_STATE (fragP->fr_subtype))
11262 {
11263 case UNCOND_JUMP:
11264 /* Make jmp (0xeb) a (d)word displacement jump. */
11265 opcode[0] = 0xe9;
11266 fragP->fr_fix += size;
11267 fix_new (fragP, old_fr_fix, size,
11268 fragP->fr_symbol,
11269 fragP->fr_offset, 1,
11270 reloc_type);
11271 break;
11272
11273 case COND_JUMP86:
11274 if (size == 2
11275 && (!no_cond_jump_promotion || fragP->fr_var != NO_RELOC))
11276 {
11277 /* Negate the condition, and branch past an
11278 unconditional jump. */
11279 opcode[0] ^= 1;
11280 opcode[1] = 3;
11281 /* Insert an unconditional jump. */
11282 opcode[2] = 0xe9;
11283 /* We added two extra opcode bytes, and have a two byte
11284 offset. */
11285 fragP->fr_fix += 2 + 2;
11286 fix_new (fragP, old_fr_fix + 2, 2,
11287 fragP->fr_symbol,
11288 fragP->fr_offset, 1,
11289 reloc_type);
11290 break;
11291 }
11292 /* Fall through. */
11293
11294 case COND_JUMP:
11295 if (no_cond_jump_promotion && fragP->fr_var == NO_RELOC)
11296 {
11297 fixS *fixP;
11298
11299 fragP->fr_fix += 1;
11300 fixP = fix_new (fragP, old_fr_fix, 1,
11301 fragP->fr_symbol,
11302 fragP->fr_offset, 1,
11303 BFD_RELOC_8_PCREL);
11304 fixP->fx_signed = 1;
11305 break;
11306 }
11307
11308 /* This changes the byte-displacement jump 0x7N
11309 to the (d)word-displacement jump 0x0f,0x8N. */
11310 opcode[1] = opcode[0] + 0x10;
11311 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
11312 /* We've added an opcode byte. */
11313 fragP->fr_fix += 1 + size;
11314 fix_new (fragP, old_fr_fix + 1, size,
11315 fragP->fr_symbol,
11316 fragP->fr_offset, 1,
11317 reloc_type);
11318 break;
11319
11320 default:
11321 BAD_CASE (fragP->fr_subtype);
11322 break;
11323 }
11324 frag_wane (fragP);
11325 return fragP->fr_fix - old_fr_fix;
11326 }
11327
11328 /* Guess size depending on current relax state. Initially the relax
11329 state will correspond to a short jump and we return 1, because
11330 the variable part of the frag (the branch offset) is one byte
11331 long. However, we can relax a section more than once and in that
11332 case we must either set fr_subtype back to the unrelaxed state,
11333 or return the value for the appropriate branch. */
11334 return md_relax_table[fragP->fr_subtype].rlx_length;
11335 }
11336
11337 /* Called after relax() is finished.
11338
11339 In: Address of frag.
11340 fr_type == rs_machine_dependent.
11341 fr_subtype is what the address relaxed to.
11342
11343 Out: Any fixSs and constants are set up.
11344 Caller will turn frag into a ".space 0". */
11345
11346 void
11347 md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT sec ATTRIBUTE_UNUSED,
11348 fragS *fragP)
11349 {
11350 unsigned char *opcode;
11351 unsigned char *where_to_put_displacement = NULL;
11352 offsetT target_address;
11353 offsetT opcode_address;
11354 unsigned int extension = 0;
11355 offsetT displacement_from_opcode_start;
11356
11357 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PADDING
11358 || TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == FUSED_JCC_PADDING
11359 || TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PREFIX)
11360 {
11361 /* Generate nop padding. */
11362 unsigned int size = fragP->tc_frag_data.length;
11363 if (size)
11364 {
11365 if (size > fragP->tc_frag_data.max_bytes)
11366 abort ();
11367
11368 if (flag_debug)
11369 {
11370 const char *msg;
11371 const char *branch = "branch";
11372 const char *prefix = "";
11373 fragS *padding_fragP;
11374 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype)
11375 == BRANCH_PREFIX)
11376 {
11377 padding_fragP = fragP->tc_frag_data.u.padding_fragP;
11378 switch (fragP->tc_frag_data.default_prefix)
11379 {
11380 default:
11381 abort ();
11382 break;
11383 case CS_PREFIX_OPCODE:
11384 prefix = " cs";
11385 break;
11386 case DS_PREFIX_OPCODE:
11387 prefix = " ds";
11388 break;
11389 case ES_PREFIX_OPCODE:
11390 prefix = " es";
11391 break;
11392 case FS_PREFIX_OPCODE:
11393 prefix = " fs";
11394 break;
11395 case GS_PREFIX_OPCODE:
11396 prefix = " gs";
11397 break;
11398 case SS_PREFIX_OPCODE:
11399 prefix = " ss";
11400 break;
11401 }
11402 if (padding_fragP)
11403 msg = _("%s:%u: add %d%s at 0x%llx to align "
11404 "%s within %d-byte boundary\n");
11405 else
11406 msg = _("%s:%u: add additional %d%s at 0x%llx to "
11407 "align %s within %d-byte boundary\n");
11408 }
11409 else
11410 {
11411 padding_fragP = fragP;
11412 msg = _("%s:%u: add %d%s-byte nop at 0x%llx to align "
11413 "%s within %d-byte boundary\n");
11414 }
11415
11416 if (padding_fragP)
11417 switch (padding_fragP->tc_frag_data.branch_type)
11418 {
11419 case align_branch_jcc:
11420 branch = "jcc";
11421 break;
11422 case align_branch_fused:
11423 branch = "fused jcc";
11424 break;
11425 case align_branch_jmp:
11426 branch = "jmp";
11427 break;
11428 case align_branch_call:
11429 branch = "call";
11430 break;
11431 case align_branch_indirect:
11432 branch = "indiret branch";
11433 break;
11434 case align_branch_ret:
11435 branch = "ret";
11436 break;
11437 default:
11438 break;
11439 }
11440
11441 fprintf (stdout, msg,
11442 fragP->fr_file, fragP->fr_line, size, prefix,
11443 (long long) fragP->fr_address, branch,
11444 1 << align_branch_power);
11445 }
11446 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PREFIX)
11447 memset (fragP->fr_opcode,
11448 fragP->tc_frag_data.default_prefix, size);
11449 else
11450 i386_generate_nops (fragP, (char *) fragP->fr_opcode,
11451 size, 0);
11452 fragP->fr_fix += size;
11453 }
11454 return;
11455 }
11456
11457 opcode = (unsigned char *) fragP->fr_opcode;
11458
11459 /* Address we want to reach in file space. */
11460 target_address = S_GET_VALUE (fragP->fr_symbol) + fragP->fr_offset;
11461
11462 /* Address opcode resides at in file space. */
11463 opcode_address = fragP->fr_address + fragP->fr_fix;
11464
11465 /* Displacement from opcode start to fill into instruction. */
11466 displacement_from_opcode_start = target_address - opcode_address;
11467
11468 if ((fragP->fr_subtype & BIG) == 0)
11469 {
11470 /* Don't have to change opcode. */
11471 extension = 1; /* 1 opcode + 1 displacement */
11472 where_to_put_displacement = &opcode[1];
11473 }
11474 else
11475 {
11476 if (no_cond_jump_promotion
11477 && TYPE_FROM_RELAX_STATE (fragP->fr_subtype) != UNCOND_JUMP)
11478 as_warn_where (fragP->fr_file, fragP->fr_line,
11479 _("long jump required"));
11480
11481 switch (fragP->fr_subtype)
11482 {
11483 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG):
11484 extension = 4; /* 1 opcode + 4 displacement */
11485 opcode[0] = 0xe9;
11486 where_to_put_displacement = &opcode[1];
11487 break;
11488
11489 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16):
11490 extension = 2; /* 1 opcode + 2 displacement */
11491 opcode[0] = 0xe9;
11492 where_to_put_displacement = &opcode[1];
11493 break;
11494
11495 case ENCODE_RELAX_STATE (COND_JUMP, BIG):
11496 case ENCODE_RELAX_STATE (COND_JUMP86, BIG):
11497 extension = 5; /* 2 opcode + 4 displacement */
11498 opcode[1] = opcode[0] + 0x10;
11499 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
11500 where_to_put_displacement = &opcode[2];
11501 break;
11502
11503 case ENCODE_RELAX_STATE (COND_JUMP, BIG16):
11504 extension = 3; /* 2 opcode + 2 displacement */
11505 opcode[1] = opcode[0] + 0x10;
11506 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
11507 where_to_put_displacement = &opcode[2];
11508 break;
11509
11510 case ENCODE_RELAX_STATE (COND_JUMP86, BIG16):
11511 extension = 4;
11512 opcode[0] ^= 1;
11513 opcode[1] = 3;
11514 opcode[2] = 0xe9;
11515 where_to_put_displacement = &opcode[3];
11516 break;
11517
11518 default:
11519 BAD_CASE (fragP->fr_subtype);
11520 break;
11521 }
11522 }
11523
11524 /* If size if less then four we are sure that the operand fits,
11525 but if it's 4, then it could be that the displacement is larger
11526 then -/+ 2GB. */
11527 if (DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype) == 4
11528 && object_64bit
11529 && ((addressT) (displacement_from_opcode_start - extension
11530 + ((addressT) 1 << 31))
11531 > (((addressT) 2 << 31) - 1)))
11532 {
11533 as_bad_where (fragP->fr_file, fragP->fr_line,
11534 _("jump target out of range"));
11535 /* Make us emit 0. */
11536 displacement_from_opcode_start = extension;
11537 }
11538 /* Now put displacement after opcode. */
11539 md_number_to_chars ((char *) where_to_put_displacement,
11540 (valueT) (displacement_from_opcode_start - extension),
11541 DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype));
11542 fragP->fr_fix += extension;
11543 }
11544 \f
11545 /* Apply a fixup (fixP) to segment data, once it has been determined
11546 by our caller that we have all the info we need to fix it up.
11547
11548 Parameter valP is the pointer to the value of the bits.
11549
11550 On the 386, immediates, displacements, and data pointers are all in
11551 the same (little-endian) format, so we don't need to care about which
11552 we are handling. */
11553
11554 void
11555 md_apply_fix (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED)
11556 {
11557 char *p = fixP->fx_where + fixP->fx_frag->fr_literal;
11558 valueT value = *valP;
11559
11560 #if !defined (TE_Mach)
11561 if (fixP->fx_pcrel)
11562 {
11563 switch (fixP->fx_r_type)
11564 {
11565 default:
11566 break;
11567
11568 case BFD_RELOC_64:
11569 fixP->fx_r_type = BFD_RELOC_64_PCREL;
11570 break;
11571 case BFD_RELOC_32:
11572 case BFD_RELOC_X86_64_32S:
11573 fixP->fx_r_type = BFD_RELOC_32_PCREL;
11574 break;
11575 case BFD_RELOC_16:
11576 fixP->fx_r_type = BFD_RELOC_16_PCREL;
11577 break;
11578 case BFD_RELOC_8:
11579 fixP->fx_r_type = BFD_RELOC_8_PCREL;
11580 break;
11581 }
11582 }
11583
11584 if (fixP->fx_addsy != NULL
11585 && (fixP->fx_r_type == BFD_RELOC_32_PCREL
11586 || fixP->fx_r_type == BFD_RELOC_64_PCREL
11587 || fixP->fx_r_type == BFD_RELOC_16_PCREL
11588 || fixP->fx_r_type == BFD_RELOC_8_PCREL)
11589 && !use_rela_relocations)
11590 {
11591 /* This is a hack. There should be a better way to handle this.
11592 This covers for the fact that bfd_install_relocation will
11593 subtract the current location (for partial_inplace, PC relative
11594 relocations); see more below. */
11595 #ifndef OBJ_AOUT
11596 if (IS_ELF
11597 #ifdef TE_PE
11598 || OUTPUT_FLAVOR == bfd_target_coff_flavour
11599 #endif
11600 )
11601 value += fixP->fx_where + fixP->fx_frag->fr_address;
11602 #endif
11603 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11604 if (IS_ELF)
11605 {
11606 segT sym_seg = S_GET_SEGMENT (fixP->fx_addsy);
11607
11608 if ((sym_seg == seg
11609 || (symbol_section_p (fixP->fx_addsy)
11610 && sym_seg != absolute_section))
11611 && !generic_force_reloc (fixP))
11612 {
11613 /* Yes, we add the values in twice. This is because
11614 bfd_install_relocation subtracts them out again. I think
11615 bfd_install_relocation is broken, but I don't dare change
11616 it. FIXME. */
11617 value += fixP->fx_where + fixP->fx_frag->fr_address;
11618 }
11619 }
11620 #endif
11621 #if defined (OBJ_COFF) && defined (TE_PE)
11622 /* For some reason, the PE format does not store a
11623 section address offset for a PC relative symbol. */
11624 if (S_GET_SEGMENT (fixP->fx_addsy) != seg
11625 || S_IS_WEAK (fixP->fx_addsy))
11626 value += md_pcrel_from (fixP);
11627 #endif
11628 }
11629 #if defined (OBJ_COFF) && defined (TE_PE)
11630 if (fixP->fx_addsy != NULL
11631 && S_IS_WEAK (fixP->fx_addsy)
11632 /* PR 16858: Do not modify weak function references. */
11633 && ! fixP->fx_pcrel)
11634 {
11635 #if !defined (TE_PEP)
11636 /* For x86 PE weak function symbols are neither PC-relative
11637 nor do they set S_IS_FUNCTION. So the only reliable way
11638 to detect them is to check the flags of their containing
11639 section. */
11640 if (S_GET_SEGMENT (fixP->fx_addsy) != NULL
11641 && S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_CODE)
11642 ;
11643 else
11644 #endif
11645 value -= S_GET_VALUE (fixP->fx_addsy);
11646 }
11647 #endif
11648
11649 /* Fix a few things - the dynamic linker expects certain values here,
11650 and we must not disappoint it. */
11651 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11652 if (IS_ELF && fixP->fx_addsy)
11653 switch (fixP->fx_r_type)
11654 {
11655 case BFD_RELOC_386_PLT32:
11656 case BFD_RELOC_X86_64_PLT32:
11657 /* Make the jump instruction point to the address of the operand.
11658 At runtime we merely add the offset to the actual PLT entry.
11659 NB: Subtract the offset size only for jump instructions. */
11660 if (fixP->fx_pcrel)
11661 value = -4;
11662 break;
11663
11664 case BFD_RELOC_386_TLS_GD:
11665 case BFD_RELOC_386_TLS_LDM:
11666 case BFD_RELOC_386_TLS_IE_32:
11667 case BFD_RELOC_386_TLS_IE:
11668 case BFD_RELOC_386_TLS_GOTIE:
11669 case BFD_RELOC_386_TLS_GOTDESC:
11670 case BFD_RELOC_X86_64_TLSGD:
11671 case BFD_RELOC_X86_64_TLSLD:
11672 case BFD_RELOC_X86_64_GOTTPOFF:
11673 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
11674 value = 0; /* Fully resolved at runtime. No addend. */
11675 /* Fallthrough */
11676 case BFD_RELOC_386_TLS_LE:
11677 case BFD_RELOC_386_TLS_LDO_32:
11678 case BFD_RELOC_386_TLS_LE_32:
11679 case BFD_RELOC_X86_64_DTPOFF32:
11680 case BFD_RELOC_X86_64_DTPOFF64:
11681 case BFD_RELOC_X86_64_TPOFF32:
11682 case BFD_RELOC_X86_64_TPOFF64:
11683 S_SET_THREAD_LOCAL (fixP->fx_addsy);
11684 break;
11685
11686 case BFD_RELOC_386_TLS_DESC_CALL:
11687 case BFD_RELOC_X86_64_TLSDESC_CALL:
11688 value = 0; /* Fully resolved at runtime. No addend. */
11689 S_SET_THREAD_LOCAL (fixP->fx_addsy);
11690 fixP->fx_done = 0;
11691 return;
11692
11693 case BFD_RELOC_VTABLE_INHERIT:
11694 case BFD_RELOC_VTABLE_ENTRY:
11695 fixP->fx_done = 0;
11696 return;
11697
11698 default:
11699 break;
11700 }
11701 #endif /* defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) */
11702 *valP = value;
11703 #endif /* !defined (TE_Mach) */
11704
11705 /* Are we finished with this relocation now? */
11706 if (fixP->fx_addsy == NULL)
11707 fixP->fx_done = 1;
11708 #if defined (OBJ_COFF) && defined (TE_PE)
11709 else if (fixP->fx_addsy != NULL && S_IS_WEAK (fixP->fx_addsy))
11710 {
11711 fixP->fx_done = 0;
11712 /* Remember value for tc_gen_reloc. */
11713 fixP->fx_addnumber = value;
11714 /* Clear out the frag for now. */
11715 value = 0;
11716 }
11717 #endif
11718 else if (use_rela_relocations)
11719 {
11720 fixP->fx_no_overflow = 1;
11721 /* Remember value for tc_gen_reloc. */
11722 fixP->fx_addnumber = value;
11723 value = 0;
11724 }
11725
11726 md_number_to_chars (p, value, fixP->fx_size);
11727 }
11728 \f
11729 const char *
11730 md_atof (int type, char *litP, int *sizeP)
11731 {
11732 /* This outputs the LITTLENUMs in REVERSE order;
11733 in accord with the bigendian 386. */
11734 return ieee_md_atof (type, litP, sizeP, FALSE);
11735 }
11736 \f
11737 static char output_invalid_buf[sizeof (unsigned char) * 2 + 6];
11738
11739 static char *
11740 output_invalid (int c)
11741 {
11742 if (ISPRINT (c))
11743 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
11744 "'%c'", c);
11745 else
11746 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
11747 "(0x%x)", (unsigned char) c);
11748 return output_invalid_buf;
11749 }
11750
11751 /* REG_STRING starts *before* REGISTER_PREFIX. */
11752
11753 static const reg_entry *
11754 parse_real_register (char *reg_string, char **end_op)
11755 {
11756 char *s = reg_string;
11757 char *p;
11758 char reg_name_given[MAX_REG_NAME_SIZE + 1];
11759 const reg_entry *r;
11760
11761 /* Skip possible REGISTER_PREFIX and possible whitespace. */
11762 if (*s == REGISTER_PREFIX)
11763 ++s;
11764
11765 if (is_space_char (*s))
11766 ++s;
11767
11768 p = reg_name_given;
11769 while ((*p++ = register_chars[(unsigned char) *s]) != '\0')
11770 {
11771 if (p >= reg_name_given + MAX_REG_NAME_SIZE)
11772 return (const reg_entry *) NULL;
11773 s++;
11774 }
11775
11776 /* For naked regs, make sure that we are not dealing with an identifier.
11777 This prevents confusing an identifier like `eax_var' with register
11778 `eax'. */
11779 if (allow_naked_reg && identifier_chars[(unsigned char) *s])
11780 return (const reg_entry *) NULL;
11781
11782 *end_op = s;
11783
11784 r = (const reg_entry *) hash_find (reg_hash, reg_name_given);
11785
11786 /* Handle floating point regs, allowing spaces in the (i) part. */
11787 if (r == i386_regtab /* %st is first entry of table */)
11788 {
11789 if (!cpu_arch_flags.bitfield.cpu8087
11790 && !cpu_arch_flags.bitfield.cpu287
11791 && !cpu_arch_flags.bitfield.cpu387)
11792 return (const reg_entry *) NULL;
11793
11794 if (is_space_char (*s))
11795 ++s;
11796 if (*s == '(')
11797 {
11798 ++s;
11799 if (is_space_char (*s))
11800 ++s;
11801 if (*s >= '0' && *s <= '7')
11802 {
11803 int fpr = *s - '0';
11804 ++s;
11805 if (is_space_char (*s))
11806 ++s;
11807 if (*s == ')')
11808 {
11809 *end_op = s + 1;
11810 r = (const reg_entry *) hash_find (reg_hash, "st(0)");
11811 know (r);
11812 return r + fpr;
11813 }
11814 }
11815 /* We have "%st(" then garbage. */
11816 return (const reg_entry *) NULL;
11817 }
11818 }
11819
11820 if (r == NULL || allow_pseudo_reg)
11821 return r;
11822
11823 if (operand_type_all_zero (&r->reg_type))
11824 return (const reg_entry *) NULL;
11825
11826 if ((r->reg_type.bitfield.dword
11827 || (r->reg_type.bitfield.class == SReg && r->reg_num > 3)
11828 || r->reg_type.bitfield.class == RegCR
11829 || r->reg_type.bitfield.class == RegDR
11830 || r->reg_type.bitfield.class == RegTR)
11831 && !cpu_arch_flags.bitfield.cpui386)
11832 return (const reg_entry *) NULL;
11833
11834 if (r->reg_type.bitfield.class == RegMMX && !cpu_arch_flags.bitfield.cpummx)
11835 return (const reg_entry *) NULL;
11836
11837 if (!cpu_arch_flags.bitfield.cpuavx512f)
11838 {
11839 if (r->reg_type.bitfield.zmmword
11840 || r->reg_type.bitfield.class == RegMask)
11841 return (const reg_entry *) NULL;
11842
11843 if (!cpu_arch_flags.bitfield.cpuavx)
11844 {
11845 if (r->reg_type.bitfield.ymmword)
11846 return (const reg_entry *) NULL;
11847
11848 if (!cpu_arch_flags.bitfield.cpusse && r->reg_type.bitfield.xmmword)
11849 return (const reg_entry *) NULL;
11850 }
11851 }
11852
11853 if (r->reg_type.bitfield.class == RegBND && !cpu_arch_flags.bitfield.cpumpx)
11854 return (const reg_entry *) NULL;
11855
11856 /* Don't allow fake index register unless allow_index_reg isn't 0. */
11857 if (!allow_index_reg && r->reg_num == RegIZ)
11858 return (const reg_entry *) NULL;
11859
11860 /* Upper 16 vector registers are only available with VREX in 64bit
11861 mode, and require EVEX encoding. */
11862 if (r->reg_flags & RegVRex)
11863 {
11864 if (!cpu_arch_flags.bitfield.cpuavx512f
11865 || flag_code != CODE_64BIT)
11866 return (const reg_entry *) NULL;
11867
11868 i.vec_encoding = vex_encoding_evex;
11869 }
11870
11871 if (((r->reg_flags & (RegRex64 | RegRex)) || r->reg_type.bitfield.qword)
11872 && (!cpu_arch_flags.bitfield.cpulm || r->reg_type.bitfield.class != RegCR)
11873 && flag_code != CODE_64BIT)
11874 return (const reg_entry *) NULL;
11875
11876 if (r->reg_type.bitfield.class == SReg && r->reg_num == RegFlat
11877 && !intel_syntax)
11878 return (const reg_entry *) NULL;
11879
11880 return r;
11881 }
11882
11883 /* REG_STRING starts *before* REGISTER_PREFIX. */
11884
11885 static const reg_entry *
11886 parse_register (char *reg_string, char **end_op)
11887 {
11888 const reg_entry *r;
11889
11890 if (*reg_string == REGISTER_PREFIX || allow_naked_reg)
11891 r = parse_real_register (reg_string, end_op);
11892 else
11893 r = NULL;
11894 if (!r)
11895 {
11896 char *save = input_line_pointer;
11897 char c;
11898 symbolS *symbolP;
11899
11900 input_line_pointer = reg_string;
11901 c = get_symbol_name (&reg_string);
11902 symbolP = symbol_find (reg_string);
11903 if (symbolP && S_GET_SEGMENT (symbolP) == reg_section)
11904 {
11905 const expressionS *e = symbol_get_value_expression (symbolP);
11906
11907 know (e->X_op == O_register);
11908 know (e->X_add_number >= 0
11909 && (valueT) e->X_add_number < i386_regtab_size);
11910 r = i386_regtab + e->X_add_number;
11911 if ((r->reg_flags & RegVRex))
11912 i.vec_encoding = vex_encoding_evex;
11913 *end_op = input_line_pointer;
11914 }
11915 *input_line_pointer = c;
11916 input_line_pointer = save;
11917 }
11918 return r;
11919 }
11920
11921 int
11922 i386_parse_name (char *name, expressionS *e, char *nextcharP)
11923 {
11924 const reg_entry *r;
11925 char *end = input_line_pointer;
11926
11927 *end = *nextcharP;
11928 r = parse_register (name, &input_line_pointer);
11929 if (r && end <= input_line_pointer)
11930 {
11931 *nextcharP = *input_line_pointer;
11932 *input_line_pointer = 0;
11933 e->X_op = O_register;
11934 e->X_add_number = r - i386_regtab;
11935 return 1;
11936 }
11937 input_line_pointer = end;
11938 *end = 0;
11939 return intel_syntax ? i386_intel_parse_name (name, e) : 0;
11940 }
11941
11942 void
11943 md_operand (expressionS *e)
11944 {
11945 char *end;
11946 const reg_entry *r;
11947
11948 switch (*input_line_pointer)
11949 {
11950 case REGISTER_PREFIX:
11951 r = parse_real_register (input_line_pointer, &end);
11952 if (r)
11953 {
11954 e->X_op = O_register;
11955 e->X_add_number = r - i386_regtab;
11956 input_line_pointer = end;
11957 }
11958 break;
11959
11960 case '[':
11961 gas_assert (intel_syntax);
11962 end = input_line_pointer++;
11963 expression (e);
11964 if (*input_line_pointer == ']')
11965 {
11966 ++input_line_pointer;
11967 e->X_op_symbol = make_expr_symbol (e);
11968 e->X_add_symbol = NULL;
11969 e->X_add_number = 0;
11970 e->X_op = O_index;
11971 }
11972 else
11973 {
11974 e->X_op = O_absent;
11975 input_line_pointer = end;
11976 }
11977 break;
11978 }
11979 }
11980
11981 \f
11982 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11983 const char *md_shortopts = "kVQ:sqnO::";
11984 #else
11985 const char *md_shortopts = "qnO::";
11986 #endif
11987
11988 #define OPTION_32 (OPTION_MD_BASE + 0)
11989 #define OPTION_64 (OPTION_MD_BASE + 1)
11990 #define OPTION_DIVIDE (OPTION_MD_BASE + 2)
11991 #define OPTION_MARCH (OPTION_MD_BASE + 3)
11992 #define OPTION_MTUNE (OPTION_MD_BASE + 4)
11993 #define OPTION_MMNEMONIC (OPTION_MD_BASE + 5)
11994 #define OPTION_MSYNTAX (OPTION_MD_BASE + 6)
11995 #define OPTION_MINDEX_REG (OPTION_MD_BASE + 7)
11996 #define OPTION_MNAKED_REG (OPTION_MD_BASE + 8)
11997 #define OPTION_MRELAX_RELOCATIONS (OPTION_MD_BASE + 9)
11998 #define OPTION_MSSE2AVX (OPTION_MD_BASE + 10)
11999 #define OPTION_MSSE_CHECK (OPTION_MD_BASE + 11)
12000 #define OPTION_MOPERAND_CHECK (OPTION_MD_BASE + 12)
12001 #define OPTION_MAVXSCALAR (OPTION_MD_BASE + 13)
12002 #define OPTION_X32 (OPTION_MD_BASE + 14)
12003 #define OPTION_MADD_BND_PREFIX (OPTION_MD_BASE + 15)
12004 #define OPTION_MEVEXLIG (OPTION_MD_BASE + 16)
12005 #define OPTION_MEVEXWIG (OPTION_MD_BASE + 17)
12006 #define OPTION_MBIG_OBJ (OPTION_MD_BASE + 18)
12007 #define OPTION_MOMIT_LOCK_PREFIX (OPTION_MD_BASE + 19)
12008 #define OPTION_MEVEXRCIG (OPTION_MD_BASE + 20)
12009 #define OPTION_MSHARED (OPTION_MD_BASE + 21)
12010 #define OPTION_MAMD64 (OPTION_MD_BASE + 22)
12011 #define OPTION_MINTEL64 (OPTION_MD_BASE + 23)
12012 #define OPTION_MFENCE_AS_LOCK_ADD (OPTION_MD_BASE + 24)
12013 #define OPTION_X86_USED_NOTE (OPTION_MD_BASE + 25)
12014 #define OPTION_MVEXWIG (OPTION_MD_BASE + 26)
12015 #define OPTION_MALIGN_BRANCH_BOUNDARY (OPTION_MD_BASE + 27)
12016 #define OPTION_MALIGN_BRANCH_PREFIX_SIZE (OPTION_MD_BASE + 28)
12017 #define OPTION_MALIGN_BRANCH (OPTION_MD_BASE + 29)
12018 #define OPTION_MBRANCHES_WITH_32B_BOUNDARIES (OPTION_MD_BASE + 30)
12019
12020 struct option md_longopts[] =
12021 {
12022 {"32", no_argument, NULL, OPTION_32},
12023 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
12024 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
12025 {"64", no_argument, NULL, OPTION_64},
12026 #endif
12027 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12028 {"x32", no_argument, NULL, OPTION_X32},
12029 {"mshared", no_argument, NULL, OPTION_MSHARED},
12030 {"mx86-used-note", required_argument, NULL, OPTION_X86_USED_NOTE},
12031 #endif
12032 {"divide", no_argument, NULL, OPTION_DIVIDE},
12033 {"march", required_argument, NULL, OPTION_MARCH},
12034 {"mtune", required_argument, NULL, OPTION_MTUNE},
12035 {"mmnemonic", required_argument, NULL, OPTION_MMNEMONIC},
12036 {"msyntax", required_argument, NULL, OPTION_MSYNTAX},
12037 {"mindex-reg", no_argument, NULL, OPTION_MINDEX_REG},
12038 {"mnaked-reg", no_argument, NULL, OPTION_MNAKED_REG},
12039 {"msse2avx", no_argument, NULL, OPTION_MSSE2AVX},
12040 {"msse-check", required_argument, NULL, OPTION_MSSE_CHECK},
12041 {"moperand-check", required_argument, NULL, OPTION_MOPERAND_CHECK},
12042 {"mavxscalar", required_argument, NULL, OPTION_MAVXSCALAR},
12043 {"mvexwig", required_argument, NULL, OPTION_MVEXWIG},
12044 {"madd-bnd-prefix", no_argument, NULL, OPTION_MADD_BND_PREFIX},
12045 {"mevexlig", required_argument, NULL, OPTION_MEVEXLIG},
12046 {"mevexwig", required_argument, NULL, OPTION_MEVEXWIG},
12047 # if defined (TE_PE) || defined (TE_PEP)
12048 {"mbig-obj", no_argument, NULL, OPTION_MBIG_OBJ},
12049 #endif
12050 {"momit-lock-prefix", required_argument, NULL, OPTION_MOMIT_LOCK_PREFIX},
12051 {"mfence-as-lock-add", required_argument, NULL, OPTION_MFENCE_AS_LOCK_ADD},
12052 {"mrelax-relocations", required_argument, NULL, OPTION_MRELAX_RELOCATIONS},
12053 {"mevexrcig", required_argument, NULL, OPTION_MEVEXRCIG},
12054 {"malign-branch-boundary", required_argument, NULL, OPTION_MALIGN_BRANCH_BOUNDARY},
12055 {"malign-branch-prefix-size", required_argument, NULL, OPTION_MALIGN_BRANCH_PREFIX_SIZE},
12056 {"malign-branch", required_argument, NULL, OPTION_MALIGN_BRANCH},
12057 {"mbranches-within-32B-boundaries", no_argument, NULL, OPTION_MBRANCHES_WITH_32B_BOUNDARIES},
12058 {"mamd64", no_argument, NULL, OPTION_MAMD64},
12059 {"mintel64", no_argument, NULL, OPTION_MINTEL64},
12060 {NULL, no_argument, NULL, 0}
12061 };
12062 size_t md_longopts_size = sizeof (md_longopts);
12063
12064 int
12065 md_parse_option (int c, const char *arg)
12066 {
12067 unsigned int j;
12068 char *arch, *next, *saved, *type;
12069
12070 switch (c)
12071 {
12072 case 'n':
12073 optimize_align_code = 0;
12074 break;
12075
12076 case 'q':
12077 quiet_warnings = 1;
12078 break;
12079
12080 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12081 /* -Qy, -Qn: SVR4 arguments controlling whether a .comment section
12082 should be emitted or not. FIXME: Not implemented. */
12083 case 'Q':
12084 if ((arg[0] != 'y' && arg[0] != 'n') || arg[1])
12085 return 0;
12086 break;
12087
12088 /* -V: SVR4 argument to print version ID. */
12089 case 'V':
12090 print_version_id ();
12091 break;
12092
12093 /* -k: Ignore for FreeBSD compatibility. */
12094 case 'k':
12095 break;
12096
12097 case 's':
12098 /* -s: On i386 Solaris, this tells the native assembler to use
12099 .stab instead of .stab.excl. We always use .stab anyhow. */
12100 break;
12101
12102 case OPTION_MSHARED:
12103 shared = 1;
12104 break;
12105
12106 case OPTION_X86_USED_NOTE:
12107 if (strcasecmp (arg, "yes") == 0)
12108 x86_used_note = 1;
12109 else if (strcasecmp (arg, "no") == 0)
12110 x86_used_note = 0;
12111 else
12112 as_fatal (_("invalid -mx86-used-note= option: `%s'"), arg);
12113 break;
12114
12115
12116 #endif
12117 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
12118 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
12119 case OPTION_64:
12120 {
12121 const char **list, **l;
12122
12123 list = bfd_target_list ();
12124 for (l = list; *l != NULL; l++)
12125 if (CONST_STRNEQ (*l, "elf64-x86-64")
12126 || strcmp (*l, "coff-x86-64") == 0
12127 || strcmp (*l, "pe-x86-64") == 0
12128 || strcmp (*l, "pei-x86-64") == 0
12129 || strcmp (*l, "mach-o-x86-64") == 0)
12130 {
12131 default_arch = "x86_64";
12132 break;
12133 }
12134 if (*l == NULL)
12135 as_fatal (_("no compiled in support for x86_64"));
12136 free (list);
12137 }
12138 break;
12139 #endif
12140
12141 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12142 case OPTION_X32:
12143 if (IS_ELF)
12144 {
12145 const char **list, **l;
12146
12147 list = bfd_target_list ();
12148 for (l = list; *l != NULL; l++)
12149 if (CONST_STRNEQ (*l, "elf32-x86-64"))
12150 {
12151 default_arch = "x86_64:32";
12152 break;
12153 }
12154 if (*l == NULL)
12155 as_fatal (_("no compiled in support for 32bit x86_64"));
12156 free (list);
12157 }
12158 else
12159 as_fatal (_("32bit x86_64 is only supported for ELF"));
12160 break;
12161 #endif
12162
12163 case OPTION_32:
12164 default_arch = "i386";
12165 break;
12166
12167 case OPTION_DIVIDE:
12168 #ifdef SVR4_COMMENT_CHARS
12169 {
12170 char *n, *t;
12171 const char *s;
12172
12173 n = XNEWVEC (char, strlen (i386_comment_chars) + 1);
12174 t = n;
12175 for (s = i386_comment_chars; *s != '\0'; s++)
12176 if (*s != '/')
12177 *t++ = *s;
12178 *t = '\0';
12179 i386_comment_chars = n;
12180 }
12181 #endif
12182 break;
12183
12184 case OPTION_MARCH:
12185 saved = xstrdup (arg);
12186 arch = saved;
12187 /* Allow -march=+nosse. */
12188 if (*arch == '+')
12189 arch++;
12190 do
12191 {
12192 if (*arch == '.')
12193 as_fatal (_("invalid -march= option: `%s'"), arg);
12194 next = strchr (arch, '+');
12195 if (next)
12196 *next++ = '\0';
12197 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
12198 {
12199 if (strcmp (arch, cpu_arch [j].name) == 0)
12200 {
12201 /* Processor. */
12202 if (! cpu_arch[j].flags.bitfield.cpui386)
12203 continue;
12204
12205 cpu_arch_name = cpu_arch[j].name;
12206 cpu_sub_arch_name = NULL;
12207 cpu_arch_flags = cpu_arch[j].flags;
12208 cpu_arch_isa = cpu_arch[j].type;
12209 cpu_arch_isa_flags = cpu_arch[j].flags;
12210 if (!cpu_arch_tune_set)
12211 {
12212 cpu_arch_tune = cpu_arch_isa;
12213 cpu_arch_tune_flags = cpu_arch_isa_flags;
12214 }
12215 break;
12216 }
12217 else if (*cpu_arch [j].name == '.'
12218 && strcmp (arch, cpu_arch [j].name + 1) == 0)
12219 {
12220 /* ISA extension. */
12221 i386_cpu_flags flags;
12222
12223 flags = cpu_flags_or (cpu_arch_flags,
12224 cpu_arch[j].flags);
12225
12226 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
12227 {
12228 if (cpu_sub_arch_name)
12229 {
12230 char *name = cpu_sub_arch_name;
12231 cpu_sub_arch_name = concat (name,
12232 cpu_arch[j].name,
12233 (const char *) NULL);
12234 free (name);
12235 }
12236 else
12237 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
12238 cpu_arch_flags = flags;
12239 cpu_arch_isa_flags = flags;
12240 }
12241 else
12242 cpu_arch_isa_flags
12243 = cpu_flags_or (cpu_arch_isa_flags,
12244 cpu_arch[j].flags);
12245 break;
12246 }
12247 }
12248
12249 if (j >= ARRAY_SIZE (cpu_arch))
12250 {
12251 /* Disable an ISA extension. */
12252 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
12253 if (strcmp (arch, cpu_noarch [j].name) == 0)
12254 {
12255 i386_cpu_flags flags;
12256
12257 flags = cpu_flags_and_not (cpu_arch_flags,
12258 cpu_noarch[j].flags);
12259 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
12260 {
12261 if (cpu_sub_arch_name)
12262 {
12263 char *name = cpu_sub_arch_name;
12264 cpu_sub_arch_name = concat (arch,
12265 (const char *) NULL);
12266 free (name);
12267 }
12268 else
12269 cpu_sub_arch_name = xstrdup (arch);
12270 cpu_arch_flags = flags;
12271 cpu_arch_isa_flags = flags;
12272 }
12273 break;
12274 }
12275
12276 if (j >= ARRAY_SIZE (cpu_noarch))
12277 j = ARRAY_SIZE (cpu_arch);
12278 }
12279
12280 if (j >= ARRAY_SIZE (cpu_arch))
12281 as_fatal (_("invalid -march= option: `%s'"), arg);
12282
12283 arch = next;
12284 }
12285 while (next != NULL);
12286 free (saved);
12287 break;
12288
12289 case OPTION_MTUNE:
12290 if (*arg == '.')
12291 as_fatal (_("invalid -mtune= option: `%s'"), arg);
12292 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
12293 {
12294 if (strcmp (arg, cpu_arch [j].name) == 0)
12295 {
12296 cpu_arch_tune_set = 1;
12297 cpu_arch_tune = cpu_arch [j].type;
12298 cpu_arch_tune_flags = cpu_arch[j].flags;
12299 break;
12300 }
12301 }
12302 if (j >= ARRAY_SIZE (cpu_arch))
12303 as_fatal (_("invalid -mtune= option: `%s'"), arg);
12304 break;
12305
12306 case OPTION_MMNEMONIC:
12307 if (strcasecmp (arg, "att") == 0)
12308 intel_mnemonic = 0;
12309 else if (strcasecmp (arg, "intel") == 0)
12310 intel_mnemonic = 1;
12311 else
12312 as_fatal (_("invalid -mmnemonic= option: `%s'"), arg);
12313 break;
12314
12315 case OPTION_MSYNTAX:
12316 if (strcasecmp (arg, "att") == 0)
12317 intel_syntax = 0;
12318 else if (strcasecmp (arg, "intel") == 0)
12319 intel_syntax = 1;
12320 else
12321 as_fatal (_("invalid -msyntax= option: `%s'"), arg);
12322 break;
12323
12324 case OPTION_MINDEX_REG:
12325 allow_index_reg = 1;
12326 break;
12327
12328 case OPTION_MNAKED_REG:
12329 allow_naked_reg = 1;
12330 break;
12331
12332 case OPTION_MSSE2AVX:
12333 sse2avx = 1;
12334 break;
12335
12336 case OPTION_MSSE_CHECK:
12337 if (strcasecmp (arg, "error") == 0)
12338 sse_check = check_error;
12339 else if (strcasecmp (arg, "warning") == 0)
12340 sse_check = check_warning;
12341 else if (strcasecmp (arg, "none") == 0)
12342 sse_check = check_none;
12343 else
12344 as_fatal (_("invalid -msse-check= option: `%s'"), arg);
12345 break;
12346
12347 case OPTION_MOPERAND_CHECK:
12348 if (strcasecmp (arg, "error") == 0)
12349 operand_check = check_error;
12350 else if (strcasecmp (arg, "warning") == 0)
12351 operand_check = check_warning;
12352 else if (strcasecmp (arg, "none") == 0)
12353 operand_check = check_none;
12354 else
12355 as_fatal (_("invalid -moperand-check= option: `%s'"), arg);
12356 break;
12357
12358 case OPTION_MAVXSCALAR:
12359 if (strcasecmp (arg, "128") == 0)
12360 avxscalar = vex128;
12361 else if (strcasecmp (arg, "256") == 0)
12362 avxscalar = vex256;
12363 else
12364 as_fatal (_("invalid -mavxscalar= option: `%s'"), arg);
12365 break;
12366
12367 case OPTION_MVEXWIG:
12368 if (strcmp (arg, "0") == 0)
12369 vexwig = vexw0;
12370 else if (strcmp (arg, "1") == 0)
12371 vexwig = vexw1;
12372 else
12373 as_fatal (_("invalid -mvexwig= option: `%s'"), arg);
12374 break;
12375
12376 case OPTION_MADD_BND_PREFIX:
12377 add_bnd_prefix = 1;
12378 break;
12379
12380 case OPTION_MEVEXLIG:
12381 if (strcmp (arg, "128") == 0)
12382 evexlig = evexl128;
12383 else if (strcmp (arg, "256") == 0)
12384 evexlig = evexl256;
12385 else if (strcmp (arg, "512") == 0)
12386 evexlig = evexl512;
12387 else
12388 as_fatal (_("invalid -mevexlig= option: `%s'"), arg);
12389 break;
12390
12391 case OPTION_MEVEXRCIG:
12392 if (strcmp (arg, "rne") == 0)
12393 evexrcig = rne;
12394 else if (strcmp (arg, "rd") == 0)
12395 evexrcig = rd;
12396 else if (strcmp (arg, "ru") == 0)
12397 evexrcig = ru;
12398 else if (strcmp (arg, "rz") == 0)
12399 evexrcig = rz;
12400 else
12401 as_fatal (_("invalid -mevexrcig= option: `%s'"), arg);
12402 break;
12403
12404 case OPTION_MEVEXWIG:
12405 if (strcmp (arg, "0") == 0)
12406 evexwig = evexw0;
12407 else if (strcmp (arg, "1") == 0)
12408 evexwig = evexw1;
12409 else
12410 as_fatal (_("invalid -mevexwig= option: `%s'"), arg);
12411 break;
12412
12413 # if defined (TE_PE) || defined (TE_PEP)
12414 case OPTION_MBIG_OBJ:
12415 use_big_obj = 1;
12416 break;
12417 #endif
12418
12419 case OPTION_MOMIT_LOCK_PREFIX:
12420 if (strcasecmp (arg, "yes") == 0)
12421 omit_lock_prefix = 1;
12422 else if (strcasecmp (arg, "no") == 0)
12423 omit_lock_prefix = 0;
12424 else
12425 as_fatal (_("invalid -momit-lock-prefix= option: `%s'"), arg);
12426 break;
12427
12428 case OPTION_MFENCE_AS_LOCK_ADD:
12429 if (strcasecmp (arg, "yes") == 0)
12430 avoid_fence = 1;
12431 else if (strcasecmp (arg, "no") == 0)
12432 avoid_fence = 0;
12433 else
12434 as_fatal (_("invalid -mfence-as-lock-add= option: `%s'"), arg);
12435 break;
12436
12437 case OPTION_MRELAX_RELOCATIONS:
12438 if (strcasecmp (arg, "yes") == 0)
12439 generate_relax_relocations = 1;
12440 else if (strcasecmp (arg, "no") == 0)
12441 generate_relax_relocations = 0;
12442 else
12443 as_fatal (_("invalid -mrelax-relocations= option: `%s'"), arg);
12444 break;
12445
12446 case OPTION_MALIGN_BRANCH_BOUNDARY:
12447 {
12448 char *end;
12449 long int align = strtoul (arg, &end, 0);
12450 if (*end == '\0')
12451 {
12452 if (align == 0)
12453 {
12454 align_branch_power = 0;
12455 break;
12456 }
12457 else if (align >= 16)
12458 {
12459 int align_power;
12460 for (align_power = 0;
12461 (align & 1) == 0;
12462 align >>= 1, align_power++)
12463 continue;
12464 /* Limit alignment power to 31. */
12465 if (align == 1 && align_power < 32)
12466 {
12467 align_branch_power = align_power;
12468 break;
12469 }
12470 }
12471 }
12472 as_fatal (_("invalid -malign-branch-boundary= value: %s"), arg);
12473 }
12474 break;
12475
12476 case OPTION_MALIGN_BRANCH_PREFIX_SIZE:
12477 {
12478 char *end;
12479 int align = strtoul (arg, &end, 0);
12480 /* Some processors only support 5 prefixes. */
12481 if (*end == '\0' && align >= 0 && align < 6)
12482 {
12483 align_branch_prefix_size = align;
12484 break;
12485 }
12486 as_fatal (_("invalid -malign-branch-prefix-size= value: %s"),
12487 arg);
12488 }
12489 break;
12490
12491 case OPTION_MALIGN_BRANCH:
12492 align_branch = 0;
12493 saved = xstrdup (arg);
12494 type = saved;
12495 do
12496 {
12497 next = strchr (type, '+');
12498 if (next)
12499 *next++ = '\0';
12500 if (strcasecmp (type, "jcc") == 0)
12501 align_branch |= align_branch_jcc_bit;
12502 else if (strcasecmp (type, "fused") == 0)
12503 align_branch |= align_branch_fused_bit;
12504 else if (strcasecmp (type, "jmp") == 0)
12505 align_branch |= align_branch_jmp_bit;
12506 else if (strcasecmp (type, "call") == 0)
12507 align_branch |= align_branch_call_bit;
12508 else if (strcasecmp (type, "ret") == 0)
12509 align_branch |= align_branch_ret_bit;
12510 else if (strcasecmp (type, "indirect") == 0)
12511 align_branch |= align_branch_indirect_bit;
12512 else
12513 as_fatal (_("invalid -malign-branch= option: `%s'"), arg);
12514 type = next;
12515 }
12516 while (next != NULL);
12517 free (saved);
12518 break;
12519
12520 case OPTION_MBRANCHES_WITH_32B_BOUNDARIES:
12521 align_branch_power = 5;
12522 align_branch_prefix_size = 5;
12523 align_branch = (align_branch_jcc_bit
12524 | align_branch_fused_bit
12525 | align_branch_jmp_bit);
12526 break;
12527
12528 case OPTION_MAMD64:
12529 intel64 = 0;
12530 break;
12531
12532 case OPTION_MINTEL64:
12533 intel64 = 1;
12534 break;
12535
12536 case 'O':
12537 if (arg == NULL)
12538 {
12539 optimize = 1;
12540 /* Turn off -Os. */
12541 optimize_for_space = 0;
12542 }
12543 else if (*arg == 's')
12544 {
12545 optimize_for_space = 1;
12546 /* Turn on all encoding optimizations. */
12547 optimize = INT_MAX;
12548 }
12549 else
12550 {
12551 optimize = atoi (arg);
12552 /* Turn off -Os. */
12553 optimize_for_space = 0;
12554 }
12555 break;
12556
12557 default:
12558 return 0;
12559 }
12560 return 1;
12561 }
12562
12563 #define MESSAGE_TEMPLATE \
12564 " "
12565
12566 static char *
12567 output_message (FILE *stream, char *p, char *message, char *start,
12568 int *left_p, const char *name, int len)
12569 {
12570 int size = sizeof (MESSAGE_TEMPLATE);
12571 int left = *left_p;
12572
12573 /* Reserve 2 spaces for ", " or ",\0" */
12574 left -= len + 2;
12575
12576 /* Check if there is any room. */
12577 if (left >= 0)
12578 {
12579 if (p != start)
12580 {
12581 *p++ = ',';
12582 *p++ = ' ';
12583 }
12584 p = mempcpy (p, name, len);
12585 }
12586 else
12587 {
12588 /* Output the current message now and start a new one. */
12589 *p++ = ',';
12590 *p = '\0';
12591 fprintf (stream, "%s\n", message);
12592 p = start;
12593 left = size - (start - message) - len - 2;
12594
12595 gas_assert (left >= 0);
12596
12597 p = mempcpy (p, name, len);
12598 }
12599
12600 *left_p = left;
12601 return p;
12602 }
12603
12604 static void
12605 show_arch (FILE *stream, int ext, int check)
12606 {
12607 static char message[] = MESSAGE_TEMPLATE;
12608 char *start = message + 27;
12609 char *p;
12610 int size = sizeof (MESSAGE_TEMPLATE);
12611 int left;
12612 const char *name;
12613 int len;
12614 unsigned int j;
12615
12616 p = start;
12617 left = size - (start - message);
12618 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
12619 {
12620 /* Should it be skipped? */
12621 if (cpu_arch [j].skip)
12622 continue;
12623
12624 name = cpu_arch [j].name;
12625 len = cpu_arch [j].len;
12626 if (*name == '.')
12627 {
12628 /* It is an extension. Skip if we aren't asked to show it. */
12629 if (ext)
12630 {
12631 name++;
12632 len--;
12633 }
12634 else
12635 continue;
12636 }
12637 else if (ext)
12638 {
12639 /* It is an processor. Skip if we show only extension. */
12640 continue;
12641 }
12642 else if (check && ! cpu_arch[j].flags.bitfield.cpui386)
12643 {
12644 /* It is an impossible processor - skip. */
12645 continue;
12646 }
12647
12648 p = output_message (stream, p, message, start, &left, name, len);
12649 }
12650
12651 /* Display disabled extensions. */
12652 if (ext)
12653 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
12654 {
12655 name = cpu_noarch [j].name;
12656 len = cpu_noarch [j].len;
12657 p = output_message (stream, p, message, start, &left, name,
12658 len);
12659 }
12660
12661 *p = '\0';
12662 fprintf (stream, "%s\n", message);
12663 }
12664
12665 void
12666 md_show_usage (FILE *stream)
12667 {
12668 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12669 fprintf (stream, _("\
12670 -Qy, -Qn ignored\n\
12671 -V print assembler version number\n\
12672 -k ignored\n"));
12673 #endif
12674 fprintf (stream, _("\
12675 -n Do not optimize code alignment\n\
12676 -q quieten some warnings\n"));
12677 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12678 fprintf (stream, _("\
12679 -s ignored\n"));
12680 #endif
12681 #if defined BFD64 && (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
12682 || defined (TE_PE) || defined (TE_PEP))
12683 fprintf (stream, _("\
12684 --32/--64/--x32 generate 32bit/64bit/x32 code\n"));
12685 #endif
12686 #ifdef SVR4_COMMENT_CHARS
12687 fprintf (stream, _("\
12688 --divide do not treat `/' as a comment character\n"));
12689 #else
12690 fprintf (stream, _("\
12691 --divide ignored\n"));
12692 #endif
12693 fprintf (stream, _("\
12694 -march=CPU[,+EXTENSION...]\n\
12695 generate code for CPU and EXTENSION, CPU is one of:\n"));
12696 show_arch (stream, 0, 1);
12697 fprintf (stream, _("\
12698 EXTENSION is combination of:\n"));
12699 show_arch (stream, 1, 0);
12700 fprintf (stream, _("\
12701 -mtune=CPU optimize for CPU, CPU is one of:\n"));
12702 show_arch (stream, 0, 0);
12703 fprintf (stream, _("\
12704 -msse2avx encode SSE instructions with VEX prefix\n"));
12705 fprintf (stream, _("\
12706 -msse-check=[none|error|warning] (default: warning)\n\
12707 check SSE instructions\n"));
12708 fprintf (stream, _("\
12709 -moperand-check=[none|error|warning] (default: warning)\n\
12710 check operand combinations for validity\n"));
12711 fprintf (stream, _("\
12712 -mavxscalar=[128|256] (default: 128)\n\
12713 encode scalar AVX instructions with specific vector\n\
12714 length\n"));
12715 fprintf (stream, _("\
12716 -mvexwig=[0|1] (default: 0)\n\
12717 encode VEX instructions with specific VEX.W value\n\
12718 for VEX.W bit ignored instructions\n"));
12719 fprintf (stream, _("\
12720 -mevexlig=[128|256|512] (default: 128)\n\
12721 encode scalar EVEX instructions with specific vector\n\
12722 length\n"));
12723 fprintf (stream, _("\
12724 -mevexwig=[0|1] (default: 0)\n\
12725 encode EVEX instructions with specific EVEX.W value\n\
12726 for EVEX.W bit ignored instructions\n"));
12727 fprintf (stream, _("\
12728 -mevexrcig=[rne|rd|ru|rz] (default: rne)\n\
12729 encode EVEX instructions with specific EVEX.RC value\n\
12730 for SAE-only ignored instructions\n"));
12731 fprintf (stream, _("\
12732 -mmnemonic=[att|intel] "));
12733 if (SYSV386_COMPAT)
12734 fprintf (stream, _("(default: att)\n"));
12735 else
12736 fprintf (stream, _("(default: intel)\n"));
12737 fprintf (stream, _("\
12738 use AT&T/Intel mnemonic\n"));
12739 fprintf (stream, _("\
12740 -msyntax=[att|intel] (default: att)\n\
12741 use AT&T/Intel syntax\n"));
12742 fprintf (stream, _("\
12743 -mindex-reg support pseudo index registers\n"));
12744 fprintf (stream, _("\
12745 -mnaked-reg don't require `%%' prefix for registers\n"));
12746 fprintf (stream, _("\
12747 -madd-bnd-prefix add BND prefix for all valid branches\n"));
12748 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12749 fprintf (stream, _("\
12750 -mshared disable branch optimization for shared code\n"));
12751 fprintf (stream, _("\
12752 -mx86-used-note=[no|yes] "));
12753 if (DEFAULT_X86_USED_NOTE)
12754 fprintf (stream, _("(default: yes)\n"));
12755 else
12756 fprintf (stream, _("(default: no)\n"));
12757 fprintf (stream, _("\
12758 generate x86 used ISA and feature properties\n"));
12759 #endif
12760 #if defined (TE_PE) || defined (TE_PEP)
12761 fprintf (stream, _("\
12762 -mbig-obj generate big object files\n"));
12763 #endif
12764 fprintf (stream, _("\
12765 -momit-lock-prefix=[no|yes] (default: no)\n\
12766 strip all lock prefixes\n"));
12767 fprintf (stream, _("\
12768 -mfence-as-lock-add=[no|yes] (default: no)\n\
12769 encode lfence, mfence and sfence as\n\
12770 lock addl $0x0, (%%{re}sp)\n"));
12771 fprintf (stream, _("\
12772 -mrelax-relocations=[no|yes] "));
12773 if (DEFAULT_GENERATE_X86_RELAX_RELOCATIONS)
12774 fprintf (stream, _("(default: yes)\n"));
12775 else
12776 fprintf (stream, _("(default: no)\n"));
12777 fprintf (stream, _("\
12778 generate relax relocations\n"));
12779 fprintf (stream, _("\
12780 -malign-branch-boundary=NUM (default: 0)\n\
12781 align branches within NUM byte boundary\n"));
12782 fprintf (stream, _("\
12783 -malign-branch=TYPE[+TYPE...] (default: jcc+fused+jmp)\n\
12784 TYPE is combination of jcc, fused, jmp, call, ret,\n\
12785 indirect\n\
12786 specify types of branches to align\n"));
12787 fprintf (stream, _("\
12788 -malign-branch-prefix-size=NUM (default: 5)\n\
12789 align branches with NUM prefixes per instruction\n"));
12790 fprintf (stream, _("\
12791 -mbranches-within-32B-boundaries\n\
12792 align branches within 32 byte boundary\n"));
12793 fprintf (stream, _("\
12794 -mamd64 accept only AMD64 ISA [default]\n"));
12795 fprintf (stream, _("\
12796 -mintel64 accept only Intel64 ISA\n"));
12797 }
12798
12799 #if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
12800 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
12801 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
12802
12803 /* Pick the target format to use. */
12804
12805 const char *
12806 i386_target_format (void)
12807 {
12808 if (!strncmp (default_arch, "x86_64", 6))
12809 {
12810 update_code_flag (CODE_64BIT, 1);
12811 if (default_arch[6] == '\0')
12812 x86_elf_abi = X86_64_ABI;
12813 else
12814 x86_elf_abi = X86_64_X32_ABI;
12815 }
12816 else if (!strcmp (default_arch, "i386"))
12817 update_code_flag (CODE_32BIT, 1);
12818 else if (!strcmp (default_arch, "iamcu"))
12819 {
12820 update_code_flag (CODE_32BIT, 1);
12821 if (cpu_arch_isa == PROCESSOR_UNKNOWN)
12822 {
12823 static const i386_cpu_flags iamcu_flags = CPU_IAMCU_FLAGS;
12824 cpu_arch_name = "iamcu";
12825 cpu_sub_arch_name = NULL;
12826 cpu_arch_flags = iamcu_flags;
12827 cpu_arch_isa = PROCESSOR_IAMCU;
12828 cpu_arch_isa_flags = iamcu_flags;
12829 if (!cpu_arch_tune_set)
12830 {
12831 cpu_arch_tune = cpu_arch_isa;
12832 cpu_arch_tune_flags = cpu_arch_isa_flags;
12833 }
12834 }
12835 else if (cpu_arch_isa != PROCESSOR_IAMCU)
12836 as_fatal (_("Intel MCU doesn't support `%s' architecture"),
12837 cpu_arch_name);
12838 }
12839 else
12840 as_fatal (_("unknown architecture"));
12841
12842 if (cpu_flags_all_zero (&cpu_arch_isa_flags))
12843 cpu_arch_isa_flags = cpu_arch[flag_code == CODE_64BIT].flags;
12844 if (cpu_flags_all_zero (&cpu_arch_tune_flags))
12845 cpu_arch_tune_flags = cpu_arch[flag_code == CODE_64BIT].flags;
12846
12847 switch (OUTPUT_FLAVOR)
12848 {
12849 #if defined (OBJ_MAYBE_AOUT) || defined (OBJ_AOUT)
12850 case bfd_target_aout_flavour:
12851 return AOUT_TARGET_FORMAT;
12852 #endif
12853 #if defined (OBJ_MAYBE_COFF) || defined (OBJ_COFF)
12854 # if defined (TE_PE) || defined (TE_PEP)
12855 case bfd_target_coff_flavour:
12856 if (flag_code == CODE_64BIT)
12857 return use_big_obj ? "pe-bigobj-x86-64" : "pe-x86-64";
12858 else
12859 return "pe-i386";
12860 # elif defined (TE_GO32)
12861 case bfd_target_coff_flavour:
12862 return "coff-go32";
12863 # else
12864 case bfd_target_coff_flavour:
12865 return "coff-i386";
12866 # endif
12867 #endif
12868 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
12869 case bfd_target_elf_flavour:
12870 {
12871 const char *format;
12872
12873 switch (x86_elf_abi)
12874 {
12875 default:
12876 format = ELF_TARGET_FORMAT;
12877 #ifndef TE_SOLARIS
12878 tls_get_addr = "___tls_get_addr";
12879 #endif
12880 break;
12881 case X86_64_ABI:
12882 use_rela_relocations = 1;
12883 object_64bit = 1;
12884 #ifndef TE_SOLARIS
12885 tls_get_addr = "__tls_get_addr";
12886 #endif
12887 format = ELF_TARGET_FORMAT64;
12888 break;
12889 case X86_64_X32_ABI:
12890 use_rela_relocations = 1;
12891 object_64bit = 1;
12892 #ifndef TE_SOLARIS
12893 tls_get_addr = "__tls_get_addr";
12894 #endif
12895 disallow_64bit_reloc = 1;
12896 format = ELF_TARGET_FORMAT32;
12897 break;
12898 }
12899 if (cpu_arch_isa == PROCESSOR_L1OM)
12900 {
12901 if (x86_elf_abi != X86_64_ABI)
12902 as_fatal (_("Intel L1OM is 64bit only"));
12903 return ELF_TARGET_L1OM_FORMAT;
12904 }
12905 else if (cpu_arch_isa == PROCESSOR_K1OM)
12906 {
12907 if (x86_elf_abi != X86_64_ABI)
12908 as_fatal (_("Intel K1OM is 64bit only"));
12909 return ELF_TARGET_K1OM_FORMAT;
12910 }
12911 else if (cpu_arch_isa == PROCESSOR_IAMCU)
12912 {
12913 if (x86_elf_abi != I386_ABI)
12914 as_fatal (_("Intel MCU is 32bit only"));
12915 return ELF_TARGET_IAMCU_FORMAT;
12916 }
12917 else
12918 return format;
12919 }
12920 #endif
12921 #if defined (OBJ_MACH_O)
12922 case bfd_target_mach_o_flavour:
12923 if (flag_code == CODE_64BIT)
12924 {
12925 use_rela_relocations = 1;
12926 object_64bit = 1;
12927 return "mach-o-x86-64";
12928 }
12929 else
12930 return "mach-o-i386";
12931 #endif
12932 default:
12933 abort ();
12934 return NULL;
12935 }
12936 }
12937
12938 #endif /* OBJ_MAYBE_ more than one */
12939 \f
12940 symbolS *
12941 md_undefined_symbol (char *name)
12942 {
12943 if (name[0] == GLOBAL_OFFSET_TABLE_NAME[0]
12944 && name[1] == GLOBAL_OFFSET_TABLE_NAME[1]
12945 && name[2] == GLOBAL_OFFSET_TABLE_NAME[2]
12946 && strcmp (name, GLOBAL_OFFSET_TABLE_NAME) == 0)
12947 {
12948 if (!GOT_symbol)
12949 {
12950 if (symbol_find (name))
12951 as_bad (_("GOT already in symbol table"));
12952 GOT_symbol = symbol_new (name, undefined_section,
12953 (valueT) 0, &zero_address_frag);
12954 };
12955 return GOT_symbol;
12956 }
12957 return 0;
12958 }
12959
12960 /* Round up a section size to the appropriate boundary. */
12961
12962 valueT
12963 md_section_align (segT segment ATTRIBUTE_UNUSED, valueT size)
12964 {
12965 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
12966 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
12967 {
12968 /* For a.out, force the section size to be aligned. If we don't do
12969 this, BFD will align it for us, but it will not write out the
12970 final bytes of the section. This may be a bug in BFD, but it is
12971 easier to fix it here since that is how the other a.out targets
12972 work. */
12973 int align;
12974
12975 align = bfd_section_alignment (segment);
12976 size = ((size + (1 << align) - 1) & (-((valueT) 1 << align)));
12977 }
12978 #endif
12979
12980 return size;
12981 }
12982
12983 /* On the i386, PC-relative offsets are relative to the start of the
12984 next instruction. That is, the address of the offset, plus its
12985 size, since the offset is always the last part of the insn. */
12986
12987 long
12988 md_pcrel_from (fixS *fixP)
12989 {
12990 return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address;
12991 }
12992
12993 #ifndef I386COFF
12994
12995 static void
12996 s_bss (int ignore ATTRIBUTE_UNUSED)
12997 {
12998 int temp;
12999
13000 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
13001 if (IS_ELF)
13002 obj_elf_section_change_hook ();
13003 #endif
13004 temp = get_absolute_expression ();
13005 subseg_set (bss_section, (subsegT) temp);
13006 demand_empty_rest_of_line ();
13007 }
13008
13009 #endif
13010
13011 /* Remember constant directive. */
13012
13013 void
13014 i386_cons_align (int ignore ATTRIBUTE_UNUSED)
13015 {
13016 if (last_insn.kind != last_insn_directive
13017 && (bfd_section_flags (now_seg) & SEC_CODE))
13018 {
13019 last_insn.seg = now_seg;
13020 last_insn.kind = last_insn_directive;
13021 last_insn.name = "constant directive";
13022 last_insn.file = as_where (&last_insn.line);
13023 }
13024 }
13025
13026 void
13027 i386_validate_fix (fixS *fixp)
13028 {
13029 if (fixp->fx_subsy)
13030 {
13031 if (fixp->fx_subsy == GOT_symbol)
13032 {
13033 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
13034 {
13035 if (!object_64bit)
13036 abort ();
13037 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
13038 if (fixp->fx_tcbit2)
13039 fixp->fx_r_type = (fixp->fx_tcbit
13040 ? BFD_RELOC_X86_64_REX_GOTPCRELX
13041 : BFD_RELOC_X86_64_GOTPCRELX);
13042 else
13043 #endif
13044 fixp->fx_r_type = BFD_RELOC_X86_64_GOTPCREL;
13045 }
13046 else
13047 {
13048 if (!object_64bit)
13049 fixp->fx_r_type = BFD_RELOC_386_GOTOFF;
13050 else
13051 fixp->fx_r_type = BFD_RELOC_X86_64_GOTOFF64;
13052 }
13053 fixp->fx_subsy = 0;
13054 }
13055 }
13056 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
13057 else if (!object_64bit)
13058 {
13059 if (fixp->fx_r_type == BFD_RELOC_386_GOT32
13060 && fixp->fx_tcbit2)
13061 fixp->fx_r_type = BFD_RELOC_386_GOT32X;
13062 }
13063 #endif
13064 }
13065
13066 arelent *
13067 tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
13068 {
13069 arelent *rel;
13070 bfd_reloc_code_real_type code;
13071
13072 switch (fixp->fx_r_type)
13073 {
13074 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
13075 case BFD_RELOC_SIZE32:
13076 case BFD_RELOC_SIZE64:
13077 if (S_IS_DEFINED (fixp->fx_addsy)
13078 && !S_IS_EXTERNAL (fixp->fx_addsy))
13079 {
13080 /* Resolve size relocation against local symbol to size of
13081 the symbol plus addend. */
13082 valueT value = S_GET_SIZE (fixp->fx_addsy) + fixp->fx_offset;
13083 if (fixp->fx_r_type == BFD_RELOC_SIZE32
13084 && !fits_in_unsigned_long (value))
13085 as_bad_where (fixp->fx_file, fixp->fx_line,
13086 _("symbol size computation overflow"));
13087 fixp->fx_addsy = NULL;
13088 fixp->fx_subsy = NULL;
13089 md_apply_fix (fixp, (valueT *) &value, NULL);
13090 return NULL;
13091 }
13092 #endif
13093 /* Fall through. */
13094
13095 case BFD_RELOC_X86_64_PLT32:
13096 case BFD_RELOC_X86_64_GOT32:
13097 case BFD_RELOC_X86_64_GOTPCREL:
13098 case BFD_RELOC_X86_64_GOTPCRELX:
13099 case BFD_RELOC_X86_64_REX_GOTPCRELX:
13100 case BFD_RELOC_386_PLT32:
13101 case BFD_RELOC_386_GOT32:
13102 case BFD_RELOC_386_GOT32X:
13103 case BFD_RELOC_386_GOTOFF:
13104 case BFD_RELOC_386_GOTPC:
13105 case BFD_RELOC_386_TLS_GD:
13106 case BFD_RELOC_386_TLS_LDM:
13107 case BFD_RELOC_386_TLS_LDO_32:
13108 case BFD_RELOC_386_TLS_IE_32:
13109 case BFD_RELOC_386_TLS_IE:
13110 case BFD_RELOC_386_TLS_GOTIE:
13111 case BFD_RELOC_386_TLS_LE_32:
13112 case BFD_RELOC_386_TLS_LE:
13113 case BFD_RELOC_386_TLS_GOTDESC:
13114 case BFD_RELOC_386_TLS_DESC_CALL:
13115 case BFD_RELOC_X86_64_TLSGD:
13116 case BFD_RELOC_X86_64_TLSLD:
13117 case BFD_RELOC_X86_64_DTPOFF32:
13118 case BFD_RELOC_X86_64_DTPOFF64:
13119 case BFD_RELOC_X86_64_GOTTPOFF:
13120 case BFD_RELOC_X86_64_TPOFF32:
13121 case BFD_RELOC_X86_64_TPOFF64:
13122 case BFD_RELOC_X86_64_GOTOFF64:
13123 case BFD_RELOC_X86_64_GOTPC32:
13124 case BFD_RELOC_X86_64_GOT64:
13125 case BFD_RELOC_X86_64_GOTPCREL64:
13126 case BFD_RELOC_X86_64_GOTPC64:
13127 case BFD_RELOC_X86_64_GOTPLT64:
13128 case BFD_RELOC_X86_64_PLTOFF64:
13129 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
13130 case BFD_RELOC_X86_64_TLSDESC_CALL:
13131 case BFD_RELOC_RVA:
13132 case BFD_RELOC_VTABLE_ENTRY:
13133 case BFD_RELOC_VTABLE_INHERIT:
13134 #ifdef TE_PE
13135 case BFD_RELOC_32_SECREL:
13136 #endif
13137 code = fixp->fx_r_type;
13138 break;
13139 case BFD_RELOC_X86_64_32S:
13140 if (!fixp->fx_pcrel)
13141 {
13142 /* Don't turn BFD_RELOC_X86_64_32S into BFD_RELOC_32. */
13143 code = fixp->fx_r_type;
13144 break;
13145 }
13146 /* Fall through. */
13147 default:
13148 if (fixp->fx_pcrel)
13149 {
13150 switch (fixp->fx_size)
13151 {
13152 default:
13153 as_bad_where (fixp->fx_file, fixp->fx_line,
13154 _("can not do %d byte pc-relative relocation"),
13155 fixp->fx_size);
13156 code = BFD_RELOC_32_PCREL;
13157 break;
13158 case 1: code = BFD_RELOC_8_PCREL; break;
13159 case 2: code = BFD_RELOC_16_PCREL; break;
13160 case 4: code = BFD_RELOC_32_PCREL; break;
13161 #ifdef BFD64
13162 case 8: code = BFD_RELOC_64_PCREL; break;
13163 #endif
13164 }
13165 }
13166 else
13167 {
13168 switch (fixp->fx_size)
13169 {
13170 default:
13171 as_bad_where (fixp->fx_file, fixp->fx_line,
13172 _("can not do %d byte relocation"),
13173 fixp->fx_size);
13174 code = BFD_RELOC_32;
13175 break;
13176 case 1: code = BFD_RELOC_8; break;
13177 case 2: code = BFD_RELOC_16; break;
13178 case 4: code = BFD_RELOC_32; break;
13179 #ifdef BFD64
13180 case 8: code = BFD_RELOC_64; break;
13181 #endif
13182 }
13183 }
13184 break;
13185 }
13186
13187 if ((code == BFD_RELOC_32
13188 || code == BFD_RELOC_32_PCREL
13189 || code == BFD_RELOC_X86_64_32S)
13190 && GOT_symbol
13191 && fixp->fx_addsy == GOT_symbol)
13192 {
13193 if (!object_64bit)
13194 code = BFD_RELOC_386_GOTPC;
13195 else
13196 code = BFD_RELOC_X86_64_GOTPC32;
13197 }
13198 if ((code == BFD_RELOC_64 || code == BFD_RELOC_64_PCREL)
13199 && GOT_symbol
13200 && fixp->fx_addsy == GOT_symbol)
13201 {
13202 code = BFD_RELOC_X86_64_GOTPC64;
13203 }
13204
13205 rel = XNEW (arelent);
13206 rel->sym_ptr_ptr = XNEW (asymbol *);
13207 *rel->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
13208
13209 rel->address = fixp->fx_frag->fr_address + fixp->fx_where;
13210
13211 if (!use_rela_relocations)
13212 {
13213 /* HACK: Since i386 ELF uses Rel instead of Rela, encode the
13214 vtable entry to be used in the relocation's section offset. */
13215 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
13216 rel->address = fixp->fx_offset;
13217 #if defined (OBJ_COFF) && defined (TE_PE)
13218 else if (fixp->fx_addsy && S_IS_WEAK (fixp->fx_addsy))
13219 rel->addend = fixp->fx_addnumber - (S_GET_VALUE (fixp->fx_addsy) * 2);
13220 else
13221 #endif
13222 rel->addend = 0;
13223 }
13224 /* Use the rela in 64bit mode. */
13225 else
13226 {
13227 if (disallow_64bit_reloc)
13228 switch (code)
13229 {
13230 case BFD_RELOC_X86_64_DTPOFF64:
13231 case BFD_RELOC_X86_64_TPOFF64:
13232 case BFD_RELOC_64_PCREL:
13233 case BFD_RELOC_X86_64_GOTOFF64:
13234 case BFD_RELOC_X86_64_GOT64:
13235 case BFD_RELOC_X86_64_GOTPCREL64:
13236 case BFD_RELOC_X86_64_GOTPC64:
13237 case BFD_RELOC_X86_64_GOTPLT64:
13238 case BFD_RELOC_X86_64_PLTOFF64:
13239 as_bad_where (fixp->fx_file, fixp->fx_line,
13240 _("cannot represent relocation type %s in x32 mode"),
13241 bfd_get_reloc_code_name (code));
13242 break;
13243 default:
13244 break;
13245 }
13246
13247 if (!fixp->fx_pcrel)
13248 rel->addend = fixp->fx_offset;
13249 else
13250 switch (code)
13251 {
13252 case BFD_RELOC_X86_64_PLT32:
13253 case BFD_RELOC_X86_64_GOT32:
13254 case BFD_RELOC_X86_64_GOTPCREL:
13255 case BFD_RELOC_X86_64_GOTPCRELX:
13256 case BFD_RELOC_X86_64_REX_GOTPCRELX:
13257 case BFD_RELOC_X86_64_TLSGD:
13258 case BFD_RELOC_X86_64_TLSLD:
13259 case BFD_RELOC_X86_64_GOTTPOFF:
13260 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
13261 case BFD_RELOC_X86_64_TLSDESC_CALL:
13262 rel->addend = fixp->fx_offset - fixp->fx_size;
13263 break;
13264 default:
13265 rel->addend = (section->vma
13266 - fixp->fx_size
13267 + fixp->fx_addnumber
13268 + md_pcrel_from (fixp));
13269 break;
13270 }
13271 }
13272
13273 rel->howto = bfd_reloc_type_lookup (stdoutput, code);
13274 if (rel->howto == NULL)
13275 {
13276 as_bad_where (fixp->fx_file, fixp->fx_line,
13277 _("cannot represent relocation type %s"),
13278 bfd_get_reloc_code_name (code));
13279 /* Set howto to a garbage value so that we can keep going. */
13280 rel->howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_32);
13281 gas_assert (rel->howto != NULL);
13282 }
13283
13284 return rel;
13285 }
13286
13287 #include "tc-i386-intel.c"
13288
13289 void
13290 tc_x86_parse_to_dw2regnum (expressionS *exp)
13291 {
13292 int saved_naked_reg;
13293 char saved_register_dot;
13294
13295 saved_naked_reg = allow_naked_reg;
13296 allow_naked_reg = 1;
13297 saved_register_dot = register_chars['.'];
13298 register_chars['.'] = '.';
13299 allow_pseudo_reg = 1;
13300 expression_and_evaluate (exp);
13301 allow_pseudo_reg = 0;
13302 register_chars['.'] = saved_register_dot;
13303 allow_naked_reg = saved_naked_reg;
13304
13305 if (exp->X_op == O_register && exp->X_add_number >= 0)
13306 {
13307 if ((addressT) exp->X_add_number < i386_regtab_size)
13308 {
13309 exp->X_op = O_constant;
13310 exp->X_add_number = i386_regtab[exp->X_add_number]
13311 .dw2_regnum[flag_code >> 1];
13312 }
13313 else
13314 exp->X_op = O_illegal;
13315 }
13316 }
13317
13318 void
13319 tc_x86_frame_initial_instructions (void)
13320 {
13321 static unsigned int sp_regno[2];
13322
13323 if (!sp_regno[flag_code >> 1])
13324 {
13325 char *saved_input = input_line_pointer;
13326 char sp[][4] = {"esp", "rsp"};
13327 expressionS exp;
13328
13329 input_line_pointer = sp[flag_code >> 1];
13330 tc_x86_parse_to_dw2regnum (&exp);
13331 gas_assert (exp.X_op == O_constant);
13332 sp_regno[flag_code >> 1] = exp.X_add_number;
13333 input_line_pointer = saved_input;
13334 }
13335
13336 cfi_add_CFA_def_cfa (sp_regno[flag_code >> 1], -x86_cie_data_alignment);
13337 cfi_add_CFA_offset (x86_dwarf2_return_column, x86_cie_data_alignment);
13338 }
13339
13340 int
13341 x86_dwarf2_addr_size (void)
13342 {
13343 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
13344 if (x86_elf_abi == X86_64_X32_ABI)
13345 return 4;
13346 #endif
13347 return bfd_arch_bits_per_address (stdoutput) / 8;
13348 }
13349
13350 int
13351 i386_elf_section_type (const char *str, size_t len)
13352 {
13353 if (flag_code == CODE_64BIT
13354 && len == sizeof ("unwind") - 1
13355 && strncmp (str, "unwind", 6) == 0)
13356 return SHT_X86_64_UNWIND;
13357
13358 return -1;
13359 }
13360
13361 #ifdef TE_SOLARIS
13362 void
13363 i386_solaris_fix_up_eh_frame (segT sec)
13364 {
13365 if (flag_code == CODE_64BIT)
13366 elf_section_type (sec) = SHT_X86_64_UNWIND;
13367 }
13368 #endif
13369
13370 #ifdef TE_PE
13371 void
13372 tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
13373 {
13374 expressionS exp;
13375
13376 exp.X_op = O_secrel;
13377 exp.X_add_symbol = symbol;
13378 exp.X_add_number = 0;
13379 emit_expr (&exp, size);
13380 }
13381 #endif
13382
13383 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
13384 /* For ELF on x86-64, add support for SHF_X86_64_LARGE. */
13385
13386 bfd_vma
13387 x86_64_section_letter (int letter, const char **ptr_msg)
13388 {
13389 if (flag_code == CODE_64BIT)
13390 {
13391 if (letter == 'l')
13392 return SHF_X86_64_LARGE;
13393
13394 *ptr_msg = _("bad .section directive: want a,l,w,x,M,S,G,T in string");
13395 }
13396 else
13397 *ptr_msg = _("bad .section directive: want a,w,x,M,S,G,T in string");
13398 return -1;
13399 }
13400
13401 bfd_vma
13402 x86_64_section_word (char *str, size_t len)
13403 {
13404 if (len == 5 && flag_code == CODE_64BIT && CONST_STRNEQ (str, "large"))
13405 return SHF_X86_64_LARGE;
13406
13407 return -1;
13408 }
13409
13410 static void
13411 handle_large_common (int small ATTRIBUTE_UNUSED)
13412 {
13413 if (flag_code != CODE_64BIT)
13414 {
13415 s_comm_internal (0, elf_common_parse);
13416 as_warn (_(".largecomm supported only in 64bit mode, producing .comm"));
13417 }
13418 else
13419 {
13420 static segT lbss_section;
13421 asection *saved_com_section_ptr = elf_com_section_ptr;
13422 asection *saved_bss_section = bss_section;
13423
13424 if (lbss_section == NULL)
13425 {
13426 flagword applicable;
13427 segT seg = now_seg;
13428 subsegT subseg = now_subseg;
13429
13430 /* The .lbss section is for local .largecomm symbols. */
13431 lbss_section = subseg_new (".lbss", 0);
13432 applicable = bfd_applicable_section_flags (stdoutput);
13433 bfd_set_section_flags (lbss_section, applicable & SEC_ALLOC);
13434 seg_info (lbss_section)->bss = 1;
13435
13436 subseg_set (seg, subseg);
13437 }
13438
13439 elf_com_section_ptr = &_bfd_elf_large_com_section;
13440 bss_section = lbss_section;
13441
13442 s_comm_internal (0, elf_common_parse);
13443
13444 elf_com_section_ptr = saved_com_section_ptr;
13445 bss_section = saved_bss_section;
13446 }
13447 }
13448 #endif /* OBJ_ELF || OBJ_MAYBE_ELF */
This page took 0.473809 seconds and 3 git commands to generate.