Process 64-bit imm/disp only for 64-bit BFD
[deliverable/binutils-gdb.git] / gas / config / tc-i386.c
1 /* tc-i386.c -- Assemble code for the Intel 80386
2 Copyright (C) 1989-2015 Free Software Foundation, Inc.
3
4 This file is part of GAS, the GNU Assembler.
5
6 GAS is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
10
11 GAS is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GAS; see the file COPYING. If not, write to the Free
18 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
19 02110-1301, USA. */
20
21 /* Intel 80386 machine specific gas.
22 Written by Eliot Dresselhaus (eliot@mgm.mit.edu).
23 x86_64 support by Jan Hubicka (jh@suse.cz)
24 VIA PadLock support by Michal Ludvig (mludvig@suse.cz)
25 Bugs & suggestions are completely welcome. This is free software.
26 Please help us make it better. */
27
28 #include "as.h"
29 #include "safe-ctype.h"
30 #include "subsegs.h"
31 #include "dwarf2dbg.h"
32 #include "dw2gencfi.h"
33 #include "elf/x86-64.h"
34 #include "opcodes/i386-init.h"
35
36 #ifndef REGISTER_WARNINGS
37 #define REGISTER_WARNINGS 1
38 #endif
39
40 #ifndef INFER_ADDR_PREFIX
41 #define INFER_ADDR_PREFIX 1
42 #endif
43
44 #ifndef DEFAULT_ARCH
45 #define DEFAULT_ARCH "i386"
46 #endif
47
48 #ifndef INLINE
49 #if __GNUC__ >= 2
50 #define INLINE __inline__
51 #else
52 #define INLINE
53 #endif
54 #endif
55
56 /* Prefixes will be emitted in the order defined below.
57 WAIT_PREFIX must be the first prefix since FWAIT is really is an
58 instruction, and so must come before any prefixes.
59 The preferred prefix order is SEG_PREFIX, ADDR_PREFIX, DATA_PREFIX,
60 REP_PREFIX/HLE_PREFIX, LOCK_PREFIX. */
61 #define WAIT_PREFIX 0
62 #define SEG_PREFIX 1
63 #define ADDR_PREFIX 2
64 #define DATA_PREFIX 3
65 #define REP_PREFIX 4
66 #define HLE_PREFIX REP_PREFIX
67 #define BND_PREFIX REP_PREFIX
68 #define LOCK_PREFIX 5
69 #define REX_PREFIX 6 /* must come last. */
70 #define MAX_PREFIXES 7 /* max prefixes per opcode */
71
72 /* we define the syntax here (modulo base,index,scale syntax) */
73 #define REGISTER_PREFIX '%'
74 #define IMMEDIATE_PREFIX '$'
75 #define ABSOLUTE_PREFIX '*'
76
77 /* these are the instruction mnemonic suffixes in AT&T syntax or
78 memory operand size in Intel syntax. */
79 #define WORD_MNEM_SUFFIX 'w'
80 #define BYTE_MNEM_SUFFIX 'b'
81 #define SHORT_MNEM_SUFFIX 's'
82 #define LONG_MNEM_SUFFIX 'l'
83 #define QWORD_MNEM_SUFFIX 'q'
84 #define XMMWORD_MNEM_SUFFIX 'x'
85 #define YMMWORD_MNEM_SUFFIX 'y'
86 #define ZMMWORD_MNEM_SUFFIX 'z'
87 /* Intel Syntax. Use a non-ascii letter since since it never appears
88 in instructions. */
89 #define LONG_DOUBLE_MNEM_SUFFIX '\1'
90
91 #define END_OF_INSN '\0'
92
93 /*
94 'templates' is for grouping together 'template' structures for opcodes
95 of the same name. This is only used for storing the insns in the grand
96 ole hash table of insns.
97 The templates themselves start at START and range up to (but not including)
98 END.
99 */
100 typedef struct
101 {
102 const insn_template *start;
103 const insn_template *end;
104 }
105 templates;
106
107 /* 386 operand encoding bytes: see 386 book for details of this. */
108 typedef struct
109 {
110 unsigned int regmem; /* codes register or memory operand */
111 unsigned int reg; /* codes register operand (or extended opcode) */
112 unsigned int mode; /* how to interpret regmem & reg */
113 }
114 modrm_byte;
115
116 /* x86-64 extension prefix. */
117 typedef int rex_byte;
118
119 /* 386 opcode byte to code indirect addressing. */
120 typedef struct
121 {
122 unsigned base;
123 unsigned index;
124 unsigned scale;
125 }
126 sib_byte;
127
128 /* x86 arch names, types and features */
129 typedef struct
130 {
131 const char *name; /* arch name */
132 unsigned int len; /* arch string length */
133 enum processor_type type; /* arch type */
134 i386_cpu_flags flags; /* cpu feature flags */
135 unsigned int skip; /* show_arch should skip this. */
136 unsigned int negated; /* turn off indicated flags. */
137 }
138 arch_entry;
139
140 static void update_code_flag (int, int);
141 static void set_code_flag (int);
142 static void set_16bit_gcc_code_flag (int);
143 static void set_intel_syntax (int);
144 static void set_intel_mnemonic (int);
145 static void set_allow_index_reg (int);
146 static void set_check (int);
147 static void set_cpu_arch (int);
148 #ifdef TE_PE
149 static void pe_directive_secrel (int);
150 #endif
151 static void signed_cons (int);
152 static char *output_invalid (int c);
153 static int i386_finalize_immediate (segT, expressionS *, i386_operand_type,
154 const char *);
155 static int i386_finalize_displacement (segT, expressionS *, i386_operand_type,
156 const char *);
157 static int i386_att_operand (char *);
158 static int i386_intel_operand (char *, int);
159 static int i386_intel_simplify (expressionS *);
160 static int i386_intel_parse_name (const char *, expressionS *);
161 static const reg_entry *parse_register (char *, char **);
162 static char *parse_insn (char *, char *);
163 static char *parse_operands (char *, const char *);
164 static void swap_operands (void);
165 static void swap_2_operands (int, int);
166 static void optimize_imm (void);
167 static void optimize_disp (void);
168 static const insn_template *match_template (void);
169 static int check_string (void);
170 static int process_suffix (void);
171 static int check_byte_reg (void);
172 static int check_long_reg (void);
173 static int check_qword_reg (void);
174 static int check_word_reg (void);
175 static int finalize_imm (void);
176 static int process_operands (void);
177 static const seg_entry *build_modrm_byte (void);
178 static void output_insn (void);
179 static void output_imm (fragS *, offsetT);
180 static void output_disp (fragS *, offsetT);
181 #ifndef I386COFF
182 static void s_bss (int);
183 #endif
184 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
185 static void handle_large_common (int small ATTRIBUTE_UNUSED);
186 #endif
187
188 static const char *default_arch = DEFAULT_ARCH;
189
190 /* This struct describes rounding control and SAE in the instruction. */
191 struct RC_Operation
192 {
193 enum rc_type
194 {
195 rne = 0,
196 rd,
197 ru,
198 rz,
199 saeonly
200 } type;
201 int operand;
202 };
203
204 static struct RC_Operation rc_op;
205
206 /* The struct describes masking, applied to OPERAND in the instruction.
207 MASK is a pointer to the corresponding mask register. ZEROING tells
208 whether merging or zeroing mask is used. */
209 struct Mask_Operation
210 {
211 const reg_entry *mask;
212 unsigned int zeroing;
213 /* The operand where this operation is associated. */
214 int operand;
215 };
216
217 static struct Mask_Operation mask_op;
218
219 /* The struct describes broadcasting, applied to OPERAND. FACTOR is
220 broadcast factor. */
221 struct Broadcast_Operation
222 {
223 /* Type of broadcast: no broadcast, {1to8}, or {1to16}. */
224 int type;
225
226 /* Index of broadcasted operand. */
227 int operand;
228 };
229
230 static struct Broadcast_Operation broadcast_op;
231
232 /* VEX prefix. */
233 typedef struct
234 {
235 /* VEX prefix is either 2 byte or 3 byte. EVEX is 4 byte. */
236 unsigned char bytes[4];
237 unsigned int length;
238 /* Destination or source register specifier. */
239 const reg_entry *register_specifier;
240 } vex_prefix;
241
242 /* 'md_assemble ()' gathers together information and puts it into a
243 i386_insn. */
244
245 union i386_op
246 {
247 expressionS *disps;
248 expressionS *imms;
249 const reg_entry *regs;
250 };
251
252 enum i386_error
253 {
254 operand_size_mismatch,
255 operand_type_mismatch,
256 register_type_mismatch,
257 number_of_operands_mismatch,
258 invalid_instruction_suffix,
259 bad_imm4,
260 old_gcc_only,
261 unsupported_with_intel_mnemonic,
262 unsupported_syntax,
263 unsupported,
264 invalid_vsib_address,
265 invalid_vector_register_set,
266 unsupported_vector_index_register,
267 unsupported_broadcast,
268 broadcast_not_on_src_operand,
269 broadcast_needed,
270 unsupported_masking,
271 mask_not_on_destination,
272 no_default_mask,
273 unsupported_rc_sae,
274 rc_sae_operand_not_last_imm,
275 invalid_register_operand,
276 try_vector_disp8
277 };
278
279 struct _i386_insn
280 {
281 /* TM holds the template for the insn were currently assembling. */
282 insn_template tm;
283
284 /* SUFFIX holds the instruction size suffix for byte, word, dword
285 or qword, if given. */
286 char suffix;
287
288 /* OPERANDS gives the number of given operands. */
289 unsigned int operands;
290
291 /* REG_OPERANDS, DISP_OPERANDS, MEM_OPERANDS, IMM_OPERANDS give the number
292 of given register, displacement, memory operands and immediate
293 operands. */
294 unsigned int reg_operands, disp_operands, mem_operands, imm_operands;
295
296 /* TYPES [i] is the type (see above #defines) which tells us how to
297 use OP[i] for the corresponding operand. */
298 i386_operand_type types[MAX_OPERANDS];
299
300 /* Displacement expression, immediate expression, or register for each
301 operand. */
302 union i386_op op[MAX_OPERANDS];
303
304 /* Flags for operands. */
305 unsigned int flags[MAX_OPERANDS];
306 #define Operand_PCrel 1
307
308 /* Relocation type for operand */
309 enum bfd_reloc_code_real reloc[MAX_OPERANDS];
310
311 /* BASE_REG, INDEX_REG, and LOG2_SCALE_FACTOR are used to encode
312 the base index byte below. */
313 const reg_entry *base_reg;
314 const reg_entry *index_reg;
315 unsigned int log2_scale_factor;
316
317 /* SEG gives the seg_entries of this insn. They are zero unless
318 explicit segment overrides are given. */
319 const seg_entry *seg[2];
320
321 /* PREFIX holds all the given prefix opcodes (usually null).
322 PREFIXES is the number of prefix opcodes. */
323 unsigned int prefixes;
324 unsigned char prefix[MAX_PREFIXES];
325
326 /* RM and SIB are the modrm byte and the sib byte where the
327 addressing modes of this insn are encoded. */
328 modrm_byte rm;
329 rex_byte rex;
330 rex_byte vrex;
331 sib_byte sib;
332 vex_prefix vex;
333
334 /* Masking attributes. */
335 struct Mask_Operation *mask;
336
337 /* Rounding control and SAE attributes. */
338 struct RC_Operation *rounding;
339
340 /* Broadcasting attributes. */
341 struct Broadcast_Operation *broadcast;
342
343 /* Compressed disp8*N attribute. */
344 unsigned int memshift;
345
346 /* Swap operand in encoding. */
347 unsigned int swap_operand;
348
349 /* Prefer 8bit or 32bit displacement in encoding. */
350 enum
351 {
352 disp_encoding_default = 0,
353 disp_encoding_8bit,
354 disp_encoding_32bit
355 } disp_encoding;
356
357 /* REP prefix. */
358 const char *rep_prefix;
359
360 /* HLE prefix. */
361 const char *hle_prefix;
362
363 /* Have BND prefix. */
364 const char *bnd_prefix;
365
366 /* Need VREX to support upper 16 registers. */
367 int need_vrex;
368
369 /* Error message. */
370 enum i386_error error;
371 };
372
373 typedef struct _i386_insn i386_insn;
374
375 /* Link RC type with corresponding string, that'll be looked for in
376 asm. */
377 struct RC_name
378 {
379 enum rc_type type;
380 const char *name;
381 unsigned int len;
382 };
383
384 static const struct RC_name RC_NamesTable[] =
385 {
386 { rne, STRING_COMMA_LEN ("rn-sae") },
387 { rd, STRING_COMMA_LEN ("rd-sae") },
388 { ru, STRING_COMMA_LEN ("ru-sae") },
389 { rz, STRING_COMMA_LEN ("rz-sae") },
390 { saeonly, STRING_COMMA_LEN ("sae") },
391 };
392
393 /* List of chars besides those in app.c:symbol_chars that can start an
394 operand. Used to prevent the scrubber eating vital white-space. */
395 const char extra_symbol_chars[] = "*%-([{"
396 #ifdef LEX_AT
397 "@"
398 #endif
399 #ifdef LEX_QM
400 "?"
401 #endif
402 ;
403
404 #if (defined (TE_I386AIX) \
405 || ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) \
406 && !defined (TE_GNU) \
407 && !defined (TE_LINUX) \
408 && !defined (TE_NACL) \
409 && !defined (TE_NETWARE) \
410 && !defined (TE_FreeBSD) \
411 && !defined (TE_DragonFly) \
412 && !defined (TE_NetBSD)))
413 /* This array holds the chars that always start a comment. If the
414 pre-processor is disabled, these aren't very useful. The option
415 --divide will remove '/' from this list. */
416 const char *i386_comment_chars = "#/";
417 #define SVR4_COMMENT_CHARS 1
418 #define PREFIX_SEPARATOR '\\'
419
420 #else
421 const char *i386_comment_chars = "#";
422 #define PREFIX_SEPARATOR '/'
423 #endif
424
425 /* This array holds the chars that only start a comment at the beginning of
426 a line. If the line seems to have the form '# 123 filename'
427 .line and .file directives will appear in the pre-processed output.
428 Note that input_file.c hand checks for '#' at the beginning of the
429 first line of the input file. This is because the compiler outputs
430 #NO_APP at the beginning of its output.
431 Also note that comments started like this one will always work if
432 '/' isn't otherwise defined. */
433 const char line_comment_chars[] = "#/";
434
435 const char line_separator_chars[] = ";";
436
437 /* Chars that can be used to separate mant from exp in floating point
438 nums. */
439 const char EXP_CHARS[] = "eE";
440
441 /* Chars that mean this number is a floating point constant
442 As in 0f12.456
443 or 0d1.2345e12. */
444 const char FLT_CHARS[] = "fFdDxX";
445
446 /* Tables for lexical analysis. */
447 static char mnemonic_chars[256];
448 static char register_chars[256];
449 static char operand_chars[256];
450 static char identifier_chars[256];
451 static char digit_chars[256];
452
453 /* Lexical macros. */
454 #define is_mnemonic_char(x) (mnemonic_chars[(unsigned char) x])
455 #define is_operand_char(x) (operand_chars[(unsigned char) x])
456 #define is_register_char(x) (register_chars[(unsigned char) x])
457 #define is_space_char(x) ((x) == ' ')
458 #define is_identifier_char(x) (identifier_chars[(unsigned char) x])
459 #define is_digit_char(x) (digit_chars[(unsigned char) x])
460
461 /* All non-digit non-letter characters that may occur in an operand. */
462 static char operand_special_chars[] = "%$-+(,)*._~/<>|&^!:[@]";
463
464 /* md_assemble() always leaves the strings it's passed unaltered. To
465 effect this we maintain a stack of saved characters that we've smashed
466 with '\0's (indicating end of strings for various sub-fields of the
467 assembler instruction). */
468 static char save_stack[32];
469 static char *save_stack_p;
470 #define END_STRING_AND_SAVE(s) \
471 do { *save_stack_p++ = *(s); *(s) = '\0'; } while (0)
472 #define RESTORE_END_STRING(s) \
473 do { *(s) = *--save_stack_p; } while (0)
474
475 /* The instruction we're assembling. */
476 static i386_insn i;
477
478 /* Possible templates for current insn. */
479 static const templates *current_templates;
480
481 /* Per instruction expressionS buffers: max displacements & immediates. */
482 static expressionS disp_expressions[MAX_MEMORY_OPERANDS];
483 static expressionS im_expressions[MAX_IMMEDIATE_OPERANDS];
484
485 /* Current operand we are working on. */
486 static int this_operand = -1;
487
488 /* We support four different modes. FLAG_CODE variable is used to distinguish
489 these. */
490
491 enum flag_code {
492 CODE_32BIT,
493 CODE_16BIT,
494 CODE_64BIT };
495
496 static enum flag_code flag_code;
497 static unsigned int object_64bit;
498 static unsigned int disallow_64bit_reloc;
499 static int use_rela_relocations = 0;
500
501 #if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
502 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
503 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
504
505 /* The ELF ABI to use. */
506 enum x86_elf_abi
507 {
508 I386_ABI,
509 X86_64_ABI,
510 X86_64_X32_ABI
511 };
512
513 static enum x86_elf_abi x86_elf_abi = I386_ABI;
514 #endif
515
516 #if defined (TE_PE) || defined (TE_PEP)
517 /* Use big object file format. */
518 static int use_big_obj = 0;
519 #endif
520
521 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
522 /* 1 if generating code for a shared library. */
523 static int shared = 0;
524 #endif
525
526 /* 1 for intel syntax,
527 0 if att syntax. */
528 static int intel_syntax = 0;
529
530 /* 1 for intel mnemonic,
531 0 if att mnemonic. */
532 static int intel_mnemonic = !SYSV386_COMPAT;
533
534 /* 1 if support old (<= 2.8.1) versions of gcc. */
535 static int old_gcc = OLDGCC_COMPAT;
536
537 /* 1 if pseudo registers are permitted. */
538 static int allow_pseudo_reg = 0;
539
540 /* 1 if register prefix % not required. */
541 static int allow_naked_reg = 0;
542
543 /* 1 if the assembler should add BND prefix for all control-tranferring
544 instructions supporting it, even if this prefix wasn't specified
545 explicitly. */
546 static int add_bnd_prefix = 0;
547
548 /* 1 if pseudo index register, eiz/riz, is allowed . */
549 static int allow_index_reg = 0;
550
551 /* 1 if the assembler should ignore LOCK prefix, even if it was
552 specified explicitly. */
553 static int omit_lock_prefix = 0;
554
555 static enum check_kind
556 {
557 check_none = 0,
558 check_warning,
559 check_error
560 }
561 sse_check, operand_check = check_warning;
562
563 /* Register prefix used for error message. */
564 static const char *register_prefix = "%";
565
566 /* Used in 16 bit gcc mode to add an l suffix to call, ret, enter,
567 leave, push, and pop instructions so that gcc has the same stack
568 frame as in 32 bit mode. */
569 static char stackop_size = '\0';
570
571 /* Non-zero to optimize code alignment. */
572 int optimize_align_code = 1;
573
574 /* Non-zero to quieten some warnings. */
575 static int quiet_warnings = 0;
576
577 /* CPU name. */
578 static const char *cpu_arch_name = NULL;
579 static char *cpu_sub_arch_name = NULL;
580
581 /* CPU feature flags. */
582 static i386_cpu_flags cpu_arch_flags = CPU_UNKNOWN_FLAGS;
583
584 /* If we have selected a cpu we are generating instructions for. */
585 static int cpu_arch_tune_set = 0;
586
587 /* Cpu we are generating instructions for. */
588 enum processor_type cpu_arch_tune = PROCESSOR_UNKNOWN;
589
590 /* CPU feature flags of cpu we are generating instructions for. */
591 static i386_cpu_flags cpu_arch_tune_flags;
592
593 /* CPU instruction set architecture used. */
594 enum processor_type cpu_arch_isa = PROCESSOR_UNKNOWN;
595
596 /* CPU feature flags of instruction set architecture used. */
597 i386_cpu_flags cpu_arch_isa_flags;
598
599 /* If set, conditional jumps are not automatically promoted to handle
600 larger than a byte offset. */
601 static unsigned int no_cond_jump_promotion = 0;
602
603 /* Encode SSE instructions with VEX prefix. */
604 static unsigned int sse2avx;
605
606 /* Encode scalar AVX instructions with specific vector length. */
607 static enum
608 {
609 vex128 = 0,
610 vex256
611 } avxscalar;
612
613 /* Encode scalar EVEX LIG instructions with specific vector length. */
614 static enum
615 {
616 evexl128 = 0,
617 evexl256,
618 evexl512
619 } evexlig;
620
621 /* Encode EVEX WIG instructions with specific evex.w. */
622 static enum
623 {
624 evexw0 = 0,
625 evexw1
626 } evexwig;
627
628 /* Value to encode in EVEX RC bits, for SAE-only instructions. */
629 static enum rc_type evexrcig = rne;
630
631 /* Pre-defined "_GLOBAL_OFFSET_TABLE_". */
632 static symbolS *GOT_symbol;
633
634 /* The dwarf2 return column, adjusted for 32 or 64 bit. */
635 unsigned int x86_dwarf2_return_column;
636
637 /* The dwarf2 data alignment, adjusted for 32 or 64 bit. */
638 int x86_cie_data_alignment;
639
640 /* Interface to relax_segment.
641 There are 3 major relax states for 386 jump insns because the
642 different types of jumps add different sizes to frags when we're
643 figuring out what sort of jump to choose to reach a given label. */
644
645 /* Types. */
646 #define UNCOND_JUMP 0
647 #define COND_JUMP 1
648 #define COND_JUMP86 2
649
650 /* Sizes. */
651 #define CODE16 1
652 #define SMALL 0
653 #define SMALL16 (SMALL | CODE16)
654 #define BIG 2
655 #define BIG16 (BIG | CODE16)
656
657 #ifndef INLINE
658 #ifdef __GNUC__
659 #define INLINE __inline__
660 #else
661 #define INLINE
662 #endif
663 #endif
664
665 #define ENCODE_RELAX_STATE(type, size) \
666 ((relax_substateT) (((type) << 2) | (size)))
667 #define TYPE_FROM_RELAX_STATE(s) \
668 ((s) >> 2)
669 #define DISP_SIZE_FROM_RELAX_STATE(s) \
670 ((((s) & 3) == BIG ? 4 : (((s) & 3) == BIG16 ? 2 : 1)))
671
672 /* This table is used by relax_frag to promote short jumps to long
673 ones where necessary. SMALL (short) jumps may be promoted to BIG
674 (32 bit long) ones, and SMALL16 jumps to BIG16 (16 bit long). We
675 don't allow a short jump in a 32 bit code segment to be promoted to
676 a 16 bit offset jump because it's slower (requires data size
677 prefix), and doesn't work, unless the destination is in the bottom
678 64k of the code segment (The top 16 bits of eip are zeroed). */
679
680 const relax_typeS md_relax_table[] =
681 {
682 /* The fields are:
683 1) most positive reach of this state,
684 2) most negative reach of this state,
685 3) how many bytes this mode will have in the variable part of the frag
686 4) which index into the table to try if we can't fit into this one. */
687
688 /* UNCOND_JUMP states. */
689 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG)},
690 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16)},
691 /* dword jmp adds 4 bytes to frag:
692 0 extra opcode bytes, 4 displacement bytes. */
693 {0, 0, 4, 0},
694 /* word jmp adds 2 byte2 to frag:
695 0 extra opcode bytes, 2 displacement bytes. */
696 {0, 0, 2, 0},
697
698 /* COND_JUMP states. */
699 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG)},
700 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG16)},
701 /* dword conditionals adds 5 bytes to frag:
702 1 extra opcode byte, 4 displacement bytes. */
703 {0, 0, 5, 0},
704 /* word conditionals add 3 bytes to frag:
705 1 extra opcode byte, 2 displacement bytes. */
706 {0, 0, 3, 0},
707
708 /* COND_JUMP86 states. */
709 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG)},
710 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG16)},
711 /* dword conditionals adds 5 bytes to frag:
712 1 extra opcode byte, 4 displacement bytes. */
713 {0, 0, 5, 0},
714 /* word conditionals add 4 bytes to frag:
715 1 displacement byte and a 3 byte long branch insn. */
716 {0, 0, 4, 0}
717 };
718
719 static const arch_entry cpu_arch[] =
720 {
721 /* Do not replace the first two entries - i386_target_format()
722 relies on them being there in this order. */
723 { STRING_COMMA_LEN ("generic32"), PROCESSOR_GENERIC32,
724 CPU_GENERIC32_FLAGS, 0, 0 },
725 { STRING_COMMA_LEN ("generic64"), PROCESSOR_GENERIC64,
726 CPU_GENERIC64_FLAGS, 0, 0 },
727 { STRING_COMMA_LEN ("i8086"), PROCESSOR_UNKNOWN,
728 CPU_NONE_FLAGS, 0, 0 },
729 { STRING_COMMA_LEN ("i186"), PROCESSOR_UNKNOWN,
730 CPU_I186_FLAGS, 0, 0 },
731 { STRING_COMMA_LEN ("i286"), PROCESSOR_UNKNOWN,
732 CPU_I286_FLAGS, 0, 0 },
733 { STRING_COMMA_LEN ("i386"), PROCESSOR_I386,
734 CPU_I386_FLAGS, 0, 0 },
735 { STRING_COMMA_LEN ("i486"), PROCESSOR_I486,
736 CPU_I486_FLAGS, 0, 0 },
737 { STRING_COMMA_LEN ("i586"), PROCESSOR_PENTIUM,
738 CPU_I586_FLAGS, 0, 0 },
739 { STRING_COMMA_LEN ("i686"), PROCESSOR_PENTIUMPRO,
740 CPU_I686_FLAGS, 0, 0 },
741 { STRING_COMMA_LEN ("pentium"), PROCESSOR_PENTIUM,
742 CPU_I586_FLAGS, 0, 0 },
743 { STRING_COMMA_LEN ("pentiumpro"), PROCESSOR_PENTIUMPRO,
744 CPU_PENTIUMPRO_FLAGS, 0, 0 },
745 { STRING_COMMA_LEN ("pentiumii"), PROCESSOR_PENTIUMPRO,
746 CPU_P2_FLAGS, 0, 0 },
747 { STRING_COMMA_LEN ("pentiumiii"),PROCESSOR_PENTIUMPRO,
748 CPU_P3_FLAGS, 0, 0 },
749 { STRING_COMMA_LEN ("pentium4"), PROCESSOR_PENTIUM4,
750 CPU_P4_FLAGS, 0, 0 },
751 { STRING_COMMA_LEN ("prescott"), PROCESSOR_NOCONA,
752 CPU_CORE_FLAGS, 0, 0 },
753 { STRING_COMMA_LEN ("nocona"), PROCESSOR_NOCONA,
754 CPU_NOCONA_FLAGS, 0, 0 },
755 { STRING_COMMA_LEN ("yonah"), PROCESSOR_CORE,
756 CPU_CORE_FLAGS, 1, 0 },
757 { STRING_COMMA_LEN ("core"), PROCESSOR_CORE,
758 CPU_CORE_FLAGS, 0, 0 },
759 { STRING_COMMA_LEN ("merom"), PROCESSOR_CORE2,
760 CPU_CORE2_FLAGS, 1, 0 },
761 { STRING_COMMA_LEN ("core2"), PROCESSOR_CORE2,
762 CPU_CORE2_FLAGS, 0, 0 },
763 { STRING_COMMA_LEN ("corei7"), PROCESSOR_COREI7,
764 CPU_COREI7_FLAGS, 0, 0 },
765 { STRING_COMMA_LEN ("l1om"), PROCESSOR_L1OM,
766 CPU_L1OM_FLAGS, 0, 0 },
767 { STRING_COMMA_LEN ("k1om"), PROCESSOR_K1OM,
768 CPU_K1OM_FLAGS, 0, 0 },
769 { STRING_COMMA_LEN ("iamcu"), PROCESSOR_IAMCU,
770 CPU_IAMCU_FLAGS, 0, 0 },
771 { STRING_COMMA_LEN ("k6"), PROCESSOR_K6,
772 CPU_K6_FLAGS, 0, 0 },
773 { STRING_COMMA_LEN ("k6_2"), PROCESSOR_K6,
774 CPU_K6_2_FLAGS, 0, 0 },
775 { STRING_COMMA_LEN ("athlon"), PROCESSOR_ATHLON,
776 CPU_ATHLON_FLAGS, 0, 0 },
777 { STRING_COMMA_LEN ("sledgehammer"), PROCESSOR_K8,
778 CPU_K8_FLAGS, 1, 0 },
779 { STRING_COMMA_LEN ("opteron"), PROCESSOR_K8,
780 CPU_K8_FLAGS, 0, 0 },
781 { STRING_COMMA_LEN ("k8"), PROCESSOR_K8,
782 CPU_K8_FLAGS, 0, 0 },
783 { STRING_COMMA_LEN ("amdfam10"), PROCESSOR_AMDFAM10,
784 CPU_AMDFAM10_FLAGS, 0, 0 },
785 { STRING_COMMA_LEN ("bdver1"), PROCESSOR_BD,
786 CPU_BDVER1_FLAGS, 0, 0 },
787 { STRING_COMMA_LEN ("bdver2"), PROCESSOR_BD,
788 CPU_BDVER2_FLAGS, 0, 0 },
789 { STRING_COMMA_LEN ("bdver3"), PROCESSOR_BD,
790 CPU_BDVER3_FLAGS, 0, 0 },
791 { STRING_COMMA_LEN ("bdver4"), PROCESSOR_BD,
792 CPU_BDVER4_FLAGS, 0, 0 },
793 { STRING_COMMA_LEN ("znver1"), PROCESSOR_ZNVER,
794 CPU_ZNVER1_FLAGS, 0, 0 },
795 { STRING_COMMA_LEN ("btver1"), PROCESSOR_BT,
796 CPU_BTVER1_FLAGS, 0, 0 },
797 { STRING_COMMA_LEN ("btver2"), PROCESSOR_BT,
798 CPU_BTVER2_FLAGS, 0, 0 },
799 { STRING_COMMA_LEN (".8087"), PROCESSOR_UNKNOWN,
800 CPU_8087_FLAGS, 0, 0 },
801 { STRING_COMMA_LEN (".287"), PROCESSOR_UNKNOWN,
802 CPU_287_FLAGS, 0, 0 },
803 { STRING_COMMA_LEN (".387"), PROCESSOR_UNKNOWN,
804 CPU_387_FLAGS, 0, 0 },
805 { STRING_COMMA_LEN (".no87"), PROCESSOR_UNKNOWN,
806 CPU_ANY87_FLAGS, 0, 1 },
807 { STRING_COMMA_LEN (".mmx"), PROCESSOR_UNKNOWN,
808 CPU_MMX_FLAGS, 0, 0 },
809 { STRING_COMMA_LEN (".nommx"), PROCESSOR_UNKNOWN,
810 CPU_3DNOWA_FLAGS, 0, 1 },
811 { STRING_COMMA_LEN (".sse"), PROCESSOR_UNKNOWN,
812 CPU_SSE_FLAGS, 0, 0 },
813 { STRING_COMMA_LEN (".sse2"), PROCESSOR_UNKNOWN,
814 CPU_SSE2_FLAGS, 0, 0 },
815 { STRING_COMMA_LEN (".sse3"), PROCESSOR_UNKNOWN,
816 CPU_SSE3_FLAGS, 0, 0 },
817 { STRING_COMMA_LEN (".ssse3"), PROCESSOR_UNKNOWN,
818 CPU_SSSE3_FLAGS, 0, 0 },
819 { STRING_COMMA_LEN (".sse4.1"), PROCESSOR_UNKNOWN,
820 CPU_SSE4_1_FLAGS, 0, 0 },
821 { STRING_COMMA_LEN (".sse4.2"), PROCESSOR_UNKNOWN,
822 CPU_SSE4_2_FLAGS, 0, 0 },
823 { STRING_COMMA_LEN (".sse4"), PROCESSOR_UNKNOWN,
824 CPU_SSE4_2_FLAGS, 0, 0 },
825 { STRING_COMMA_LEN (".nosse"), PROCESSOR_UNKNOWN,
826 CPU_ANY_SSE_FLAGS, 0, 1 },
827 { STRING_COMMA_LEN (".avx"), PROCESSOR_UNKNOWN,
828 CPU_AVX_FLAGS, 0, 0 },
829 { STRING_COMMA_LEN (".avx2"), PROCESSOR_UNKNOWN,
830 CPU_AVX2_FLAGS, 0, 0 },
831 { STRING_COMMA_LEN (".avx512f"), PROCESSOR_UNKNOWN,
832 CPU_AVX512F_FLAGS, 0, 0 },
833 { STRING_COMMA_LEN (".avx512cd"), PROCESSOR_UNKNOWN,
834 CPU_AVX512CD_FLAGS, 0, 0 },
835 { STRING_COMMA_LEN (".avx512er"), PROCESSOR_UNKNOWN,
836 CPU_AVX512ER_FLAGS, 0, 0 },
837 { STRING_COMMA_LEN (".avx512pf"), PROCESSOR_UNKNOWN,
838 CPU_AVX512PF_FLAGS, 0, 0 },
839 { STRING_COMMA_LEN (".avx512dq"), PROCESSOR_UNKNOWN,
840 CPU_AVX512DQ_FLAGS, 0, 0 },
841 { STRING_COMMA_LEN (".avx512bw"), PROCESSOR_UNKNOWN,
842 CPU_AVX512BW_FLAGS, 0, 0 },
843 { STRING_COMMA_LEN (".avx512vl"), PROCESSOR_UNKNOWN,
844 CPU_AVX512VL_FLAGS, 0, 0 },
845 { STRING_COMMA_LEN (".noavx"), PROCESSOR_UNKNOWN,
846 CPU_ANY_AVX_FLAGS, 0, 1 },
847 { STRING_COMMA_LEN (".vmx"), PROCESSOR_UNKNOWN,
848 CPU_VMX_FLAGS, 0, 0 },
849 { STRING_COMMA_LEN (".vmfunc"), PROCESSOR_UNKNOWN,
850 CPU_VMFUNC_FLAGS, 0, 0 },
851 { STRING_COMMA_LEN (".smx"), PROCESSOR_UNKNOWN,
852 CPU_SMX_FLAGS, 0, 0 },
853 { STRING_COMMA_LEN (".xsave"), PROCESSOR_UNKNOWN,
854 CPU_XSAVE_FLAGS, 0, 0 },
855 { STRING_COMMA_LEN (".xsaveopt"), PROCESSOR_UNKNOWN,
856 CPU_XSAVEOPT_FLAGS, 0, 0 },
857 { STRING_COMMA_LEN (".xsavec"), PROCESSOR_UNKNOWN,
858 CPU_XSAVEC_FLAGS, 0, 0 },
859 { STRING_COMMA_LEN (".xsaves"), PROCESSOR_UNKNOWN,
860 CPU_XSAVES_FLAGS, 0, 0 },
861 { STRING_COMMA_LEN (".aes"), PROCESSOR_UNKNOWN,
862 CPU_AES_FLAGS, 0, 0 },
863 { STRING_COMMA_LEN (".pclmul"), PROCESSOR_UNKNOWN,
864 CPU_PCLMUL_FLAGS, 0, 0 },
865 { STRING_COMMA_LEN (".clmul"), PROCESSOR_UNKNOWN,
866 CPU_PCLMUL_FLAGS, 1, 0 },
867 { STRING_COMMA_LEN (".fsgsbase"), PROCESSOR_UNKNOWN,
868 CPU_FSGSBASE_FLAGS, 0, 0 },
869 { STRING_COMMA_LEN (".rdrnd"), PROCESSOR_UNKNOWN,
870 CPU_RDRND_FLAGS, 0, 0 },
871 { STRING_COMMA_LEN (".f16c"), PROCESSOR_UNKNOWN,
872 CPU_F16C_FLAGS, 0, 0 },
873 { STRING_COMMA_LEN (".bmi2"), PROCESSOR_UNKNOWN,
874 CPU_BMI2_FLAGS, 0, 0 },
875 { STRING_COMMA_LEN (".fma"), PROCESSOR_UNKNOWN,
876 CPU_FMA_FLAGS, 0, 0 },
877 { STRING_COMMA_LEN (".fma4"), PROCESSOR_UNKNOWN,
878 CPU_FMA4_FLAGS, 0, 0 },
879 { STRING_COMMA_LEN (".xop"), PROCESSOR_UNKNOWN,
880 CPU_XOP_FLAGS, 0, 0 },
881 { STRING_COMMA_LEN (".lwp"), PROCESSOR_UNKNOWN,
882 CPU_LWP_FLAGS, 0, 0 },
883 { STRING_COMMA_LEN (".movbe"), PROCESSOR_UNKNOWN,
884 CPU_MOVBE_FLAGS, 0, 0 },
885 { STRING_COMMA_LEN (".cx16"), PROCESSOR_UNKNOWN,
886 CPU_CX16_FLAGS, 0, 0 },
887 { STRING_COMMA_LEN (".ept"), PROCESSOR_UNKNOWN,
888 CPU_EPT_FLAGS, 0, 0 },
889 { STRING_COMMA_LEN (".lzcnt"), PROCESSOR_UNKNOWN,
890 CPU_LZCNT_FLAGS, 0, 0 },
891 { STRING_COMMA_LEN (".hle"), PROCESSOR_UNKNOWN,
892 CPU_HLE_FLAGS, 0, 0 },
893 { STRING_COMMA_LEN (".rtm"), PROCESSOR_UNKNOWN,
894 CPU_RTM_FLAGS, 0, 0 },
895 { STRING_COMMA_LEN (".invpcid"), PROCESSOR_UNKNOWN,
896 CPU_INVPCID_FLAGS, 0, 0 },
897 { STRING_COMMA_LEN (".clflush"), PROCESSOR_UNKNOWN,
898 CPU_CLFLUSH_FLAGS, 0, 0 },
899 { STRING_COMMA_LEN (".nop"), PROCESSOR_UNKNOWN,
900 CPU_NOP_FLAGS, 0, 0 },
901 { STRING_COMMA_LEN (".syscall"), PROCESSOR_UNKNOWN,
902 CPU_SYSCALL_FLAGS, 0, 0 },
903 { STRING_COMMA_LEN (".rdtscp"), PROCESSOR_UNKNOWN,
904 CPU_RDTSCP_FLAGS, 0, 0 },
905 { STRING_COMMA_LEN (".3dnow"), PROCESSOR_UNKNOWN,
906 CPU_3DNOW_FLAGS, 0, 0 },
907 { STRING_COMMA_LEN (".3dnowa"), PROCESSOR_UNKNOWN,
908 CPU_3DNOWA_FLAGS, 0, 0 },
909 { STRING_COMMA_LEN (".padlock"), PROCESSOR_UNKNOWN,
910 CPU_PADLOCK_FLAGS, 0, 0 },
911 { STRING_COMMA_LEN (".pacifica"), PROCESSOR_UNKNOWN,
912 CPU_SVME_FLAGS, 1, 0 },
913 { STRING_COMMA_LEN (".svme"), PROCESSOR_UNKNOWN,
914 CPU_SVME_FLAGS, 0, 0 },
915 { STRING_COMMA_LEN (".sse4a"), PROCESSOR_UNKNOWN,
916 CPU_SSE4A_FLAGS, 0, 0 },
917 { STRING_COMMA_LEN (".abm"), PROCESSOR_UNKNOWN,
918 CPU_ABM_FLAGS, 0, 0 },
919 { STRING_COMMA_LEN (".bmi"), PROCESSOR_UNKNOWN,
920 CPU_BMI_FLAGS, 0, 0 },
921 { STRING_COMMA_LEN (".tbm"), PROCESSOR_UNKNOWN,
922 CPU_TBM_FLAGS, 0, 0 },
923 { STRING_COMMA_LEN (".adx"), PROCESSOR_UNKNOWN,
924 CPU_ADX_FLAGS, 0, 0 },
925 { STRING_COMMA_LEN (".rdseed"), PROCESSOR_UNKNOWN,
926 CPU_RDSEED_FLAGS, 0, 0 },
927 { STRING_COMMA_LEN (".prfchw"), PROCESSOR_UNKNOWN,
928 CPU_PRFCHW_FLAGS, 0, 0 },
929 { STRING_COMMA_LEN (".smap"), PROCESSOR_UNKNOWN,
930 CPU_SMAP_FLAGS, 0, 0 },
931 { STRING_COMMA_LEN (".mpx"), PROCESSOR_UNKNOWN,
932 CPU_MPX_FLAGS, 0, 0 },
933 { STRING_COMMA_LEN (".sha"), PROCESSOR_UNKNOWN,
934 CPU_SHA_FLAGS, 0, 0 },
935 { STRING_COMMA_LEN (".clflushopt"), PROCESSOR_UNKNOWN,
936 CPU_CLFLUSHOPT_FLAGS, 0, 0 },
937 { STRING_COMMA_LEN (".prefetchwt1"), PROCESSOR_UNKNOWN,
938 CPU_PREFETCHWT1_FLAGS, 0, 0 },
939 { STRING_COMMA_LEN (".se1"), PROCESSOR_UNKNOWN,
940 CPU_SE1_FLAGS, 0, 0 },
941 { STRING_COMMA_LEN (".clwb"), PROCESSOR_UNKNOWN,
942 CPU_CLWB_FLAGS, 0, 0 },
943 { STRING_COMMA_LEN (".pcommit"), PROCESSOR_UNKNOWN,
944 CPU_PCOMMIT_FLAGS, 0, 0 },
945 { STRING_COMMA_LEN (".avx512ifma"), PROCESSOR_UNKNOWN,
946 CPU_AVX512IFMA_FLAGS, 0, 0 },
947 { STRING_COMMA_LEN (".avx512vbmi"), PROCESSOR_UNKNOWN,
948 CPU_AVX512VBMI_FLAGS, 0, 0 },
949 { STRING_COMMA_LEN (".clzero"), PROCESSOR_UNKNOWN,
950 CPU_CLZERO_FLAGS, 0, 0 },
951 { STRING_COMMA_LEN (".mwaitx"), PROCESSOR_UNKNOWN,
952 CPU_MWAITX_FLAGS, 0, 0 },
953 { STRING_COMMA_LEN (".ospke"), PROCESSOR_UNKNOWN,
954 CPU_OSPKE_FLAGS, 0, 0 },
955 };
956
957 #ifdef I386COFF
958 /* Like s_lcomm_internal in gas/read.c but the alignment string
959 is allowed to be optional. */
960
961 static symbolS *
962 pe_lcomm_internal (int needs_align, symbolS *symbolP, addressT size)
963 {
964 addressT align = 0;
965
966 SKIP_WHITESPACE ();
967
968 if (needs_align
969 && *input_line_pointer == ',')
970 {
971 align = parse_align (needs_align - 1);
972
973 if (align == (addressT) -1)
974 return NULL;
975 }
976 else
977 {
978 if (size >= 8)
979 align = 3;
980 else if (size >= 4)
981 align = 2;
982 else if (size >= 2)
983 align = 1;
984 else
985 align = 0;
986 }
987
988 bss_alloc (symbolP, size, align);
989 return symbolP;
990 }
991
992 static void
993 pe_lcomm (int needs_align)
994 {
995 s_comm_internal (needs_align * 2, pe_lcomm_internal);
996 }
997 #endif
998
999 const pseudo_typeS md_pseudo_table[] =
1000 {
1001 #if !defined(OBJ_AOUT) && !defined(USE_ALIGN_PTWO)
1002 {"align", s_align_bytes, 0},
1003 #else
1004 {"align", s_align_ptwo, 0},
1005 #endif
1006 {"arch", set_cpu_arch, 0},
1007 #ifndef I386COFF
1008 {"bss", s_bss, 0},
1009 #else
1010 {"lcomm", pe_lcomm, 1},
1011 #endif
1012 {"ffloat", float_cons, 'f'},
1013 {"dfloat", float_cons, 'd'},
1014 {"tfloat", float_cons, 'x'},
1015 {"value", cons, 2},
1016 {"slong", signed_cons, 4},
1017 {"noopt", s_ignore, 0},
1018 {"optim", s_ignore, 0},
1019 {"code16gcc", set_16bit_gcc_code_flag, CODE_16BIT},
1020 {"code16", set_code_flag, CODE_16BIT},
1021 {"code32", set_code_flag, CODE_32BIT},
1022 {"code64", set_code_flag, CODE_64BIT},
1023 {"intel_syntax", set_intel_syntax, 1},
1024 {"att_syntax", set_intel_syntax, 0},
1025 {"intel_mnemonic", set_intel_mnemonic, 1},
1026 {"att_mnemonic", set_intel_mnemonic, 0},
1027 {"allow_index_reg", set_allow_index_reg, 1},
1028 {"disallow_index_reg", set_allow_index_reg, 0},
1029 {"sse_check", set_check, 0},
1030 {"operand_check", set_check, 1},
1031 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
1032 {"largecomm", handle_large_common, 0},
1033 #else
1034 {"file", (void (*) (int)) dwarf2_directive_file, 0},
1035 {"loc", dwarf2_directive_loc, 0},
1036 {"loc_mark_labels", dwarf2_directive_loc_mark_labels, 0},
1037 #endif
1038 #ifdef TE_PE
1039 {"secrel32", pe_directive_secrel, 0},
1040 #endif
1041 {0, 0, 0}
1042 };
1043
1044 /* For interface with expression (). */
1045 extern char *input_line_pointer;
1046
1047 /* Hash table for instruction mnemonic lookup. */
1048 static struct hash_control *op_hash;
1049
1050 /* Hash table for register lookup. */
1051 static struct hash_control *reg_hash;
1052 \f
1053 void
1054 i386_align_code (fragS *fragP, int count)
1055 {
1056 /* Various efficient no-op patterns for aligning code labels.
1057 Note: Don't try to assemble the instructions in the comments.
1058 0L and 0w are not legal. */
1059 static const char f32_1[] =
1060 {0x90}; /* nop */
1061 static const char f32_2[] =
1062 {0x66,0x90}; /* xchg %ax,%ax */
1063 static const char f32_3[] =
1064 {0x8d,0x76,0x00}; /* leal 0(%esi),%esi */
1065 static const char f32_4[] =
1066 {0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
1067 static const char f32_5[] =
1068 {0x90, /* nop */
1069 0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
1070 static const char f32_6[] =
1071 {0x8d,0xb6,0x00,0x00,0x00,0x00}; /* leal 0L(%esi),%esi */
1072 static const char f32_7[] =
1073 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
1074 static const char f32_8[] =
1075 {0x90, /* nop */
1076 0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
1077 static const char f32_9[] =
1078 {0x89,0xf6, /* movl %esi,%esi */
1079 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
1080 static const char f32_10[] =
1081 {0x8d,0x76,0x00, /* leal 0(%esi),%esi */
1082 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
1083 static const char f32_11[] =
1084 {0x8d,0x74,0x26,0x00, /* leal 0(%esi,1),%esi */
1085 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
1086 static const char f32_12[] =
1087 {0x8d,0xb6,0x00,0x00,0x00,0x00, /* leal 0L(%esi),%esi */
1088 0x8d,0xbf,0x00,0x00,0x00,0x00}; /* leal 0L(%edi),%edi */
1089 static const char f32_13[] =
1090 {0x8d,0xb6,0x00,0x00,0x00,0x00, /* leal 0L(%esi),%esi */
1091 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
1092 static const char f32_14[] =
1093 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00, /* leal 0L(%esi,1),%esi */
1094 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
1095 static const char f16_3[] =
1096 {0x8d,0x74,0x00}; /* lea 0(%esi),%esi */
1097 static const char f16_4[] =
1098 {0x8d,0xb4,0x00,0x00}; /* lea 0w(%si),%si */
1099 static const char f16_5[] =
1100 {0x90, /* nop */
1101 0x8d,0xb4,0x00,0x00}; /* lea 0w(%si),%si */
1102 static const char f16_6[] =
1103 {0x89,0xf6, /* mov %si,%si */
1104 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
1105 static const char f16_7[] =
1106 {0x8d,0x74,0x00, /* lea 0(%si),%si */
1107 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
1108 static const char f16_8[] =
1109 {0x8d,0xb4,0x00,0x00, /* lea 0w(%si),%si */
1110 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
1111 static const char jump_31[] =
1112 {0xeb,0x1d,0x90,0x90,0x90,0x90,0x90, /* jmp .+31; lotsa nops */
1113 0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90,
1114 0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90,
1115 0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90};
1116 static const char *const f32_patt[] = {
1117 f32_1, f32_2, f32_3, f32_4, f32_5, f32_6, f32_7, f32_8,
1118 f32_9, f32_10, f32_11, f32_12, f32_13, f32_14
1119 };
1120 static const char *const f16_patt[] = {
1121 f32_1, f32_2, f16_3, f16_4, f16_5, f16_6, f16_7, f16_8
1122 };
1123 /* nopl (%[re]ax) */
1124 static const char alt_3[] =
1125 {0x0f,0x1f,0x00};
1126 /* nopl 0(%[re]ax) */
1127 static const char alt_4[] =
1128 {0x0f,0x1f,0x40,0x00};
1129 /* nopl 0(%[re]ax,%[re]ax,1) */
1130 static const char alt_5[] =
1131 {0x0f,0x1f,0x44,0x00,0x00};
1132 /* nopw 0(%[re]ax,%[re]ax,1) */
1133 static const char alt_6[] =
1134 {0x66,0x0f,0x1f,0x44,0x00,0x00};
1135 /* nopl 0L(%[re]ax) */
1136 static const char alt_7[] =
1137 {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
1138 /* nopl 0L(%[re]ax,%[re]ax,1) */
1139 static const char alt_8[] =
1140 {0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1141 /* nopw 0L(%[re]ax,%[re]ax,1) */
1142 static const char alt_9[] =
1143 {0x66,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1144 /* nopw %cs:0L(%[re]ax,%[re]ax,1) */
1145 static const char alt_10[] =
1146 {0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1147 static const char *const alt_patt[] = {
1148 f32_1, f32_2, alt_3, alt_4, alt_5, alt_6, alt_7, alt_8,
1149 alt_9, alt_10
1150 };
1151
1152 /* Only align for at least a positive non-zero boundary. */
1153 if (count <= 0 || count > MAX_MEM_FOR_RS_ALIGN_CODE)
1154 return;
1155
1156 /* We need to decide which NOP sequence to use for 32bit and
1157 64bit. When -mtune= is used:
1158
1159 1. For PROCESSOR_I386, PROCESSOR_I486, PROCESSOR_PENTIUM and
1160 PROCESSOR_GENERIC32, f32_patt will be used.
1161 2. For the rest, alt_patt will be used.
1162
1163 When -mtune= isn't used, alt_patt will be used if
1164 cpu_arch_isa_flags has CpuNop. Otherwise, f32_patt will
1165 be used.
1166
1167 When -march= or .arch is used, we can't use anything beyond
1168 cpu_arch_isa_flags. */
1169
1170 if (flag_code == CODE_16BIT)
1171 {
1172 if (count > 8)
1173 {
1174 memcpy (fragP->fr_literal + fragP->fr_fix,
1175 jump_31, count);
1176 /* Adjust jump offset. */
1177 fragP->fr_literal[fragP->fr_fix + 1] = count - 2;
1178 }
1179 else
1180 memcpy (fragP->fr_literal + fragP->fr_fix,
1181 f16_patt[count - 1], count);
1182 }
1183 else
1184 {
1185 const char *const *patt = NULL;
1186
1187 if (fragP->tc_frag_data.isa == PROCESSOR_UNKNOWN)
1188 {
1189 /* PROCESSOR_UNKNOWN means that all ISAs may be used. */
1190 switch (cpu_arch_tune)
1191 {
1192 case PROCESSOR_UNKNOWN:
1193 /* We use cpu_arch_isa_flags to check if we SHOULD
1194 optimize with nops. */
1195 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1196 patt = alt_patt;
1197 else
1198 patt = f32_patt;
1199 break;
1200 case PROCESSOR_PENTIUM4:
1201 case PROCESSOR_NOCONA:
1202 case PROCESSOR_CORE:
1203 case PROCESSOR_CORE2:
1204 case PROCESSOR_COREI7:
1205 case PROCESSOR_L1OM:
1206 case PROCESSOR_K1OM:
1207 case PROCESSOR_GENERIC64:
1208 case PROCESSOR_K6:
1209 case PROCESSOR_ATHLON:
1210 case PROCESSOR_K8:
1211 case PROCESSOR_AMDFAM10:
1212 case PROCESSOR_BD:
1213 case PROCESSOR_ZNVER:
1214 case PROCESSOR_BT:
1215 patt = alt_patt;
1216 break;
1217 case PROCESSOR_I386:
1218 case PROCESSOR_I486:
1219 case PROCESSOR_PENTIUM:
1220 case PROCESSOR_PENTIUMPRO:
1221 case PROCESSOR_IAMCU:
1222 case PROCESSOR_GENERIC32:
1223 patt = f32_patt;
1224 break;
1225 }
1226 }
1227 else
1228 {
1229 switch (fragP->tc_frag_data.tune)
1230 {
1231 case PROCESSOR_UNKNOWN:
1232 /* When cpu_arch_isa is set, cpu_arch_tune shouldn't be
1233 PROCESSOR_UNKNOWN. */
1234 abort ();
1235 break;
1236
1237 case PROCESSOR_I386:
1238 case PROCESSOR_I486:
1239 case PROCESSOR_PENTIUM:
1240 case PROCESSOR_IAMCU:
1241 case PROCESSOR_K6:
1242 case PROCESSOR_ATHLON:
1243 case PROCESSOR_K8:
1244 case PROCESSOR_AMDFAM10:
1245 case PROCESSOR_BD:
1246 case PROCESSOR_ZNVER:
1247 case PROCESSOR_BT:
1248 case PROCESSOR_GENERIC32:
1249 /* We use cpu_arch_isa_flags to check if we CAN optimize
1250 with nops. */
1251 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1252 patt = alt_patt;
1253 else
1254 patt = f32_patt;
1255 break;
1256 case PROCESSOR_PENTIUMPRO:
1257 case PROCESSOR_PENTIUM4:
1258 case PROCESSOR_NOCONA:
1259 case PROCESSOR_CORE:
1260 case PROCESSOR_CORE2:
1261 case PROCESSOR_COREI7:
1262 case PROCESSOR_L1OM:
1263 case PROCESSOR_K1OM:
1264 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1265 patt = alt_patt;
1266 else
1267 patt = f32_patt;
1268 break;
1269 case PROCESSOR_GENERIC64:
1270 patt = alt_patt;
1271 break;
1272 }
1273 }
1274
1275 if (patt == f32_patt)
1276 {
1277 /* If the padding is less than 15 bytes, we use the normal
1278 ones. Otherwise, we use a jump instruction and adjust
1279 its offset. */
1280 int limit;
1281
1282 /* For 64bit, the limit is 3 bytes. */
1283 if (flag_code == CODE_64BIT
1284 && fragP->tc_frag_data.isa_flags.bitfield.cpulm)
1285 limit = 3;
1286 else
1287 limit = 15;
1288 if (count < limit)
1289 memcpy (fragP->fr_literal + fragP->fr_fix,
1290 patt[count - 1], count);
1291 else
1292 {
1293 memcpy (fragP->fr_literal + fragP->fr_fix,
1294 jump_31, count);
1295 /* Adjust jump offset. */
1296 fragP->fr_literal[fragP->fr_fix + 1] = count - 2;
1297 }
1298 }
1299 else
1300 {
1301 /* Maximum length of an instruction is 10 byte. If the
1302 padding is greater than 10 bytes and we don't use jump,
1303 we have to break it into smaller pieces. */
1304 int padding = count;
1305 while (padding > 10)
1306 {
1307 padding -= 10;
1308 memcpy (fragP->fr_literal + fragP->fr_fix + padding,
1309 patt [9], 10);
1310 }
1311
1312 if (padding)
1313 memcpy (fragP->fr_literal + fragP->fr_fix,
1314 patt [padding - 1], padding);
1315 }
1316 }
1317 fragP->fr_var = count;
1318 }
1319
1320 static INLINE int
1321 operand_type_all_zero (const union i386_operand_type *x)
1322 {
1323 switch (ARRAY_SIZE(x->array))
1324 {
1325 case 3:
1326 if (x->array[2])
1327 return 0;
1328 case 2:
1329 if (x->array[1])
1330 return 0;
1331 case 1:
1332 return !x->array[0];
1333 default:
1334 abort ();
1335 }
1336 }
1337
1338 static INLINE void
1339 operand_type_set (union i386_operand_type *x, unsigned int v)
1340 {
1341 switch (ARRAY_SIZE(x->array))
1342 {
1343 case 3:
1344 x->array[2] = v;
1345 case 2:
1346 x->array[1] = v;
1347 case 1:
1348 x->array[0] = v;
1349 break;
1350 default:
1351 abort ();
1352 }
1353 }
1354
1355 static INLINE int
1356 operand_type_equal (const union i386_operand_type *x,
1357 const union i386_operand_type *y)
1358 {
1359 switch (ARRAY_SIZE(x->array))
1360 {
1361 case 3:
1362 if (x->array[2] != y->array[2])
1363 return 0;
1364 case 2:
1365 if (x->array[1] != y->array[1])
1366 return 0;
1367 case 1:
1368 return x->array[0] == y->array[0];
1369 break;
1370 default:
1371 abort ();
1372 }
1373 }
1374
1375 static INLINE int
1376 cpu_flags_all_zero (const union i386_cpu_flags *x)
1377 {
1378 switch (ARRAY_SIZE(x->array))
1379 {
1380 case 3:
1381 if (x->array[2])
1382 return 0;
1383 case 2:
1384 if (x->array[1])
1385 return 0;
1386 case 1:
1387 return !x->array[0];
1388 default:
1389 abort ();
1390 }
1391 }
1392
1393 static INLINE int
1394 cpu_flags_equal (const union i386_cpu_flags *x,
1395 const union i386_cpu_flags *y)
1396 {
1397 switch (ARRAY_SIZE(x->array))
1398 {
1399 case 3:
1400 if (x->array[2] != y->array[2])
1401 return 0;
1402 case 2:
1403 if (x->array[1] != y->array[1])
1404 return 0;
1405 case 1:
1406 return x->array[0] == y->array[0];
1407 break;
1408 default:
1409 abort ();
1410 }
1411 }
1412
1413 static INLINE int
1414 cpu_flags_check_cpu64 (i386_cpu_flags f)
1415 {
1416 return !((flag_code == CODE_64BIT && f.bitfield.cpuno64)
1417 || (flag_code != CODE_64BIT && f.bitfield.cpu64));
1418 }
1419
1420 static INLINE i386_cpu_flags
1421 cpu_flags_and (i386_cpu_flags x, i386_cpu_flags y)
1422 {
1423 switch (ARRAY_SIZE (x.array))
1424 {
1425 case 3:
1426 x.array [2] &= y.array [2];
1427 case 2:
1428 x.array [1] &= y.array [1];
1429 case 1:
1430 x.array [0] &= y.array [0];
1431 break;
1432 default:
1433 abort ();
1434 }
1435 return x;
1436 }
1437
1438 static INLINE i386_cpu_flags
1439 cpu_flags_or (i386_cpu_flags x, i386_cpu_flags y)
1440 {
1441 switch (ARRAY_SIZE (x.array))
1442 {
1443 case 3:
1444 x.array [2] |= y.array [2];
1445 case 2:
1446 x.array [1] |= y.array [1];
1447 case 1:
1448 x.array [0] |= y.array [0];
1449 break;
1450 default:
1451 abort ();
1452 }
1453 return x;
1454 }
1455
1456 static INLINE i386_cpu_flags
1457 cpu_flags_and_not (i386_cpu_flags x, i386_cpu_flags y)
1458 {
1459 switch (ARRAY_SIZE (x.array))
1460 {
1461 case 3:
1462 x.array [2] &= ~y.array [2];
1463 case 2:
1464 x.array [1] &= ~y.array [1];
1465 case 1:
1466 x.array [0] &= ~y.array [0];
1467 break;
1468 default:
1469 abort ();
1470 }
1471 return x;
1472 }
1473
1474 static int
1475 valid_iamcu_cpu_flags (const i386_cpu_flags *flags)
1476 {
1477 if (cpu_arch_isa == PROCESSOR_IAMCU)
1478 {
1479 static const i386_cpu_flags iamcu_flags = CPU_IAMCU_COMPAT_FLAGS;
1480 i386_cpu_flags compat_flags;
1481 compat_flags = cpu_flags_and_not (*flags, iamcu_flags);
1482 return cpu_flags_all_zero (&compat_flags);
1483 }
1484 else
1485 return 1;
1486 }
1487
1488 #define CPU_FLAGS_ARCH_MATCH 0x1
1489 #define CPU_FLAGS_64BIT_MATCH 0x2
1490 #define CPU_FLAGS_AES_MATCH 0x4
1491 #define CPU_FLAGS_PCLMUL_MATCH 0x8
1492 #define CPU_FLAGS_AVX_MATCH 0x10
1493
1494 #define CPU_FLAGS_32BIT_MATCH \
1495 (CPU_FLAGS_ARCH_MATCH | CPU_FLAGS_AES_MATCH \
1496 | CPU_FLAGS_PCLMUL_MATCH | CPU_FLAGS_AVX_MATCH)
1497 #define CPU_FLAGS_PERFECT_MATCH \
1498 (CPU_FLAGS_32BIT_MATCH | CPU_FLAGS_64BIT_MATCH)
1499
1500 /* Return CPU flags match bits. */
1501
1502 static int
1503 cpu_flags_match (const insn_template *t)
1504 {
1505 i386_cpu_flags x = t->cpu_flags;
1506 int match = cpu_flags_check_cpu64 (x) ? CPU_FLAGS_64BIT_MATCH : 0;
1507
1508 x.bitfield.cpu64 = 0;
1509 x.bitfield.cpuno64 = 0;
1510
1511 if (cpu_flags_all_zero (&x))
1512 {
1513 /* This instruction is available on all archs. */
1514 match |= CPU_FLAGS_32BIT_MATCH;
1515 }
1516 else
1517 {
1518 /* This instruction is available only on some archs. */
1519 i386_cpu_flags cpu = cpu_arch_flags;
1520
1521 cpu.bitfield.cpu64 = 0;
1522 cpu.bitfield.cpuno64 = 0;
1523 cpu = cpu_flags_and (x, cpu);
1524 if (!cpu_flags_all_zero (&cpu))
1525 {
1526 if (x.bitfield.cpuavx)
1527 {
1528 /* We only need to check AES/PCLMUL/SSE2AVX with AVX. */
1529 if (cpu.bitfield.cpuavx)
1530 {
1531 /* Check SSE2AVX. */
1532 if (!t->opcode_modifier.sse2avx|| sse2avx)
1533 {
1534 match |= (CPU_FLAGS_ARCH_MATCH
1535 | CPU_FLAGS_AVX_MATCH);
1536 /* Check AES. */
1537 if (!x.bitfield.cpuaes || cpu.bitfield.cpuaes)
1538 match |= CPU_FLAGS_AES_MATCH;
1539 /* Check PCLMUL. */
1540 if (!x.bitfield.cpupclmul
1541 || cpu.bitfield.cpupclmul)
1542 match |= CPU_FLAGS_PCLMUL_MATCH;
1543 }
1544 }
1545 else
1546 match |= CPU_FLAGS_ARCH_MATCH;
1547 }
1548 else
1549 match |= CPU_FLAGS_32BIT_MATCH;
1550 }
1551 }
1552 return match;
1553 }
1554
1555 static INLINE i386_operand_type
1556 operand_type_and (i386_operand_type x, i386_operand_type y)
1557 {
1558 switch (ARRAY_SIZE (x.array))
1559 {
1560 case 3:
1561 x.array [2] &= y.array [2];
1562 case 2:
1563 x.array [1] &= y.array [1];
1564 case 1:
1565 x.array [0] &= y.array [0];
1566 break;
1567 default:
1568 abort ();
1569 }
1570 return x;
1571 }
1572
1573 static INLINE i386_operand_type
1574 operand_type_or (i386_operand_type x, i386_operand_type y)
1575 {
1576 switch (ARRAY_SIZE (x.array))
1577 {
1578 case 3:
1579 x.array [2] |= y.array [2];
1580 case 2:
1581 x.array [1] |= y.array [1];
1582 case 1:
1583 x.array [0] |= y.array [0];
1584 break;
1585 default:
1586 abort ();
1587 }
1588 return x;
1589 }
1590
1591 static INLINE i386_operand_type
1592 operand_type_xor (i386_operand_type x, i386_operand_type y)
1593 {
1594 switch (ARRAY_SIZE (x.array))
1595 {
1596 case 3:
1597 x.array [2] ^= y.array [2];
1598 case 2:
1599 x.array [1] ^= y.array [1];
1600 case 1:
1601 x.array [0] ^= y.array [0];
1602 break;
1603 default:
1604 abort ();
1605 }
1606 return x;
1607 }
1608
1609 static const i386_operand_type acc32 = OPERAND_TYPE_ACC32;
1610 static const i386_operand_type acc64 = OPERAND_TYPE_ACC64;
1611 static const i386_operand_type control = OPERAND_TYPE_CONTROL;
1612 static const i386_operand_type inoutportreg
1613 = OPERAND_TYPE_INOUTPORTREG;
1614 static const i386_operand_type reg16_inoutportreg
1615 = OPERAND_TYPE_REG16_INOUTPORTREG;
1616 static const i386_operand_type disp16 = OPERAND_TYPE_DISP16;
1617 static const i386_operand_type disp32 = OPERAND_TYPE_DISP32;
1618 static const i386_operand_type disp32s = OPERAND_TYPE_DISP32S;
1619 static const i386_operand_type disp16_32 = OPERAND_TYPE_DISP16_32;
1620 static const i386_operand_type anydisp
1621 = OPERAND_TYPE_ANYDISP;
1622 static const i386_operand_type regxmm = OPERAND_TYPE_REGXMM;
1623 static const i386_operand_type regymm = OPERAND_TYPE_REGYMM;
1624 static const i386_operand_type regzmm = OPERAND_TYPE_REGZMM;
1625 static const i386_operand_type regmask = OPERAND_TYPE_REGMASK;
1626 static const i386_operand_type imm8 = OPERAND_TYPE_IMM8;
1627 static const i386_operand_type imm8s = OPERAND_TYPE_IMM8S;
1628 static const i386_operand_type imm16 = OPERAND_TYPE_IMM16;
1629 static const i386_operand_type imm32 = OPERAND_TYPE_IMM32;
1630 static const i386_operand_type imm32s = OPERAND_TYPE_IMM32S;
1631 static const i386_operand_type imm64 = OPERAND_TYPE_IMM64;
1632 static const i386_operand_type imm16_32 = OPERAND_TYPE_IMM16_32;
1633 static const i386_operand_type imm16_32s = OPERAND_TYPE_IMM16_32S;
1634 static const i386_operand_type imm16_32_32s = OPERAND_TYPE_IMM16_32_32S;
1635 static const i386_operand_type vec_imm4 = OPERAND_TYPE_VEC_IMM4;
1636
1637 enum operand_type
1638 {
1639 reg,
1640 imm,
1641 disp,
1642 anymem
1643 };
1644
1645 static INLINE int
1646 operand_type_check (i386_operand_type t, enum operand_type c)
1647 {
1648 switch (c)
1649 {
1650 case reg:
1651 return (t.bitfield.reg8
1652 || t.bitfield.reg16
1653 || t.bitfield.reg32
1654 || t.bitfield.reg64);
1655
1656 case imm:
1657 return (t.bitfield.imm8
1658 || t.bitfield.imm8s
1659 || t.bitfield.imm16
1660 || t.bitfield.imm32
1661 || t.bitfield.imm32s
1662 || t.bitfield.imm64);
1663
1664 case disp:
1665 return (t.bitfield.disp8
1666 || t.bitfield.disp16
1667 || t.bitfield.disp32
1668 || t.bitfield.disp32s
1669 || t.bitfield.disp64);
1670
1671 case anymem:
1672 return (t.bitfield.disp8
1673 || t.bitfield.disp16
1674 || t.bitfield.disp32
1675 || t.bitfield.disp32s
1676 || t.bitfield.disp64
1677 || t.bitfield.baseindex);
1678
1679 default:
1680 abort ();
1681 }
1682
1683 return 0;
1684 }
1685
1686 /* Return 1 if there is no conflict in 8bit/16bit/32bit/64bit on
1687 operand J for instruction template T. */
1688
1689 static INLINE int
1690 match_reg_size (const insn_template *t, unsigned int j)
1691 {
1692 return !((i.types[j].bitfield.byte
1693 && !t->operand_types[j].bitfield.byte)
1694 || (i.types[j].bitfield.word
1695 && !t->operand_types[j].bitfield.word)
1696 || (i.types[j].bitfield.dword
1697 && !t->operand_types[j].bitfield.dword)
1698 || (i.types[j].bitfield.qword
1699 && !t->operand_types[j].bitfield.qword));
1700 }
1701
1702 /* Return 1 if there is no conflict in any size on operand J for
1703 instruction template T. */
1704
1705 static INLINE int
1706 match_mem_size (const insn_template *t, unsigned int j)
1707 {
1708 return (match_reg_size (t, j)
1709 && !((i.types[j].bitfield.unspecified
1710 && !i.broadcast
1711 && !t->operand_types[j].bitfield.unspecified)
1712 || (i.types[j].bitfield.fword
1713 && !t->operand_types[j].bitfield.fword)
1714 || (i.types[j].bitfield.tbyte
1715 && !t->operand_types[j].bitfield.tbyte)
1716 || (i.types[j].bitfield.xmmword
1717 && !t->operand_types[j].bitfield.xmmword)
1718 || (i.types[j].bitfield.ymmword
1719 && !t->operand_types[j].bitfield.ymmword)
1720 || (i.types[j].bitfield.zmmword
1721 && !t->operand_types[j].bitfield.zmmword)));
1722 }
1723
1724 /* Return 1 if there is no size conflict on any operands for
1725 instruction template T. */
1726
1727 static INLINE int
1728 operand_size_match (const insn_template *t)
1729 {
1730 unsigned int j;
1731 int match = 1;
1732
1733 /* Don't check jump instructions. */
1734 if (t->opcode_modifier.jump
1735 || t->opcode_modifier.jumpbyte
1736 || t->opcode_modifier.jumpdword
1737 || t->opcode_modifier.jumpintersegment)
1738 return match;
1739
1740 /* Check memory and accumulator operand size. */
1741 for (j = 0; j < i.operands; j++)
1742 {
1743 if (t->operand_types[j].bitfield.anysize)
1744 continue;
1745
1746 if (t->operand_types[j].bitfield.acc && !match_reg_size (t, j))
1747 {
1748 match = 0;
1749 break;
1750 }
1751
1752 if (i.types[j].bitfield.mem && !match_mem_size (t, j))
1753 {
1754 match = 0;
1755 break;
1756 }
1757 }
1758
1759 if (match)
1760 return match;
1761 else if (!t->opcode_modifier.d && !t->opcode_modifier.floatd)
1762 {
1763 mismatch:
1764 i.error = operand_size_mismatch;
1765 return 0;
1766 }
1767
1768 /* Check reverse. */
1769 gas_assert (i.operands == 2);
1770
1771 match = 1;
1772 for (j = 0; j < 2; j++)
1773 {
1774 if (t->operand_types[j].bitfield.acc
1775 && !match_reg_size (t, j ? 0 : 1))
1776 goto mismatch;
1777
1778 if (i.types[j].bitfield.mem
1779 && !match_mem_size (t, j ? 0 : 1))
1780 goto mismatch;
1781 }
1782
1783 return match;
1784 }
1785
1786 static INLINE int
1787 operand_type_match (i386_operand_type overlap,
1788 i386_operand_type given)
1789 {
1790 i386_operand_type temp = overlap;
1791
1792 temp.bitfield.jumpabsolute = 0;
1793 temp.bitfield.unspecified = 0;
1794 temp.bitfield.byte = 0;
1795 temp.bitfield.word = 0;
1796 temp.bitfield.dword = 0;
1797 temp.bitfield.fword = 0;
1798 temp.bitfield.qword = 0;
1799 temp.bitfield.tbyte = 0;
1800 temp.bitfield.xmmword = 0;
1801 temp.bitfield.ymmword = 0;
1802 temp.bitfield.zmmword = 0;
1803 if (operand_type_all_zero (&temp))
1804 goto mismatch;
1805
1806 if (given.bitfield.baseindex == overlap.bitfield.baseindex
1807 && given.bitfield.jumpabsolute == overlap.bitfield.jumpabsolute)
1808 return 1;
1809
1810 mismatch:
1811 i.error = operand_type_mismatch;
1812 return 0;
1813 }
1814
1815 /* If given types g0 and g1 are registers they must be of the same type
1816 unless the expected operand type register overlap is null.
1817 Note that Acc in a template matches every size of reg. */
1818
1819 static INLINE int
1820 operand_type_register_match (i386_operand_type m0,
1821 i386_operand_type g0,
1822 i386_operand_type t0,
1823 i386_operand_type m1,
1824 i386_operand_type g1,
1825 i386_operand_type t1)
1826 {
1827 if (!operand_type_check (g0, reg))
1828 return 1;
1829
1830 if (!operand_type_check (g1, reg))
1831 return 1;
1832
1833 if (g0.bitfield.reg8 == g1.bitfield.reg8
1834 && g0.bitfield.reg16 == g1.bitfield.reg16
1835 && g0.bitfield.reg32 == g1.bitfield.reg32
1836 && g0.bitfield.reg64 == g1.bitfield.reg64)
1837 return 1;
1838
1839 if (m0.bitfield.acc)
1840 {
1841 t0.bitfield.reg8 = 1;
1842 t0.bitfield.reg16 = 1;
1843 t0.bitfield.reg32 = 1;
1844 t0.bitfield.reg64 = 1;
1845 }
1846
1847 if (m1.bitfield.acc)
1848 {
1849 t1.bitfield.reg8 = 1;
1850 t1.bitfield.reg16 = 1;
1851 t1.bitfield.reg32 = 1;
1852 t1.bitfield.reg64 = 1;
1853 }
1854
1855 if (!(t0.bitfield.reg8 & t1.bitfield.reg8)
1856 && !(t0.bitfield.reg16 & t1.bitfield.reg16)
1857 && !(t0.bitfield.reg32 & t1.bitfield.reg32)
1858 && !(t0.bitfield.reg64 & t1.bitfield.reg64))
1859 return 1;
1860
1861 i.error = register_type_mismatch;
1862
1863 return 0;
1864 }
1865
1866 static INLINE unsigned int
1867 register_number (const reg_entry *r)
1868 {
1869 unsigned int nr = r->reg_num;
1870
1871 if (r->reg_flags & RegRex)
1872 nr += 8;
1873
1874 return nr;
1875 }
1876
1877 static INLINE unsigned int
1878 mode_from_disp_size (i386_operand_type t)
1879 {
1880 if (t.bitfield.disp8 || t.bitfield.vec_disp8)
1881 return 1;
1882 else if (t.bitfield.disp16
1883 || t.bitfield.disp32
1884 || t.bitfield.disp32s)
1885 return 2;
1886 else
1887 return 0;
1888 }
1889
1890 static INLINE int
1891 fits_in_signed_byte (addressT num)
1892 {
1893 return num + 0x80 <= 0xff;
1894 }
1895
1896 static INLINE int
1897 fits_in_unsigned_byte (addressT num)
1898 {
1899 return num <= 0xff;
1900 }
1901
1902 static INLINE int
1903 fits_in_unsigned_word (addressT num)
1904 {
1905 return num <= 0xffff;
1906 }
1907
1908 static INLINE int
1909 fits_in_signed_word (addressT num)
1910 {
1911 return num + 0x8000 <= 0xffff;
1912 }
1913
1914 static INLINE int
1915 fits_in_signed_long (addressT num ATTRIBUTE_UNUSED)
1916 {
1917 #ifndef BFD64
1918 return 1;
1919 #else
1920 return num + 0x80000000 <= 0xffffffff;
1921 #endif
1922 } /* fits_in_signed_long() */
1923
1924 static INLINE int
1925 fits_in_unsigned_long (addressT num ATTRIBUTE_UNUSED)
1926 {
1927 #ifndef BFD64
1928 return 1;
1929 #else
1930 return num <= 0xffffffff;
1931 #endif
1932 } /* fits_in_unsigned_long() */
1933
1934 static INLINE int
1935 fits_in_vec_disp8 (offsetT num)
1936 {
1937 int shift = i.memshift;
1938 unsigned int mask;
1939
1940 if (shift == -1)
1941 abort ();
1942
1943 mask = (1 << shift) - 1;
1944
1945 /* Return 0 if NUM isn't properly aligned. */
1946 if ((num & mask))
1947 return 0;
1948
1949 /* Check if NUM will fit in 8bit after shift. */
1950 return fits_in_signed_byte (num >> shift);
1951 }
1952
1953 static INLINE int
1954 fits_in_imm4 (offsetT num)
1955 {
1956 return (num & 0xf) == num;
1957 }
1958
1959 static i386_operand_type
1960 smallest_imm_type (offsetT num)
1961 {
1962 i386_operand_type t;
1963
1964 operand_type_set (&t, 0);
1965 t.bitfield.imm64 = 1;
1966
1967 if (cpu_arch_tune != PROCESSOR_I486 && num == 1)
1968 {
1969 /* This code is disabled on the 486 because all the Imm1 forms
1970 in the opcode table are slower on the i486. They're the
1971 versions with the implicitly specified single-position
1972 displacement, which has another syntax if you really want to
1973 use that form. */
1974 t.bitfield.imm1 = 1;
1975 t.bitfield.imm8 = 1;
1976 t.bitfield.imm8s = 1;
1977 t.bitfield.imm16 = 1;
1978 t.bitfield.imm32 = 1;
1979 t.bitfield.imm32s = 1;
1980 }
1981 else if (fits_in_signed_byte (num))
1982 {
1983 t.bitfield.imm8 = 1;
1984 t.bitfield.imm8s = 1;
1985 t.bitfield.imm16 = 1;
1986 t.bitfield.imm32 = 1;
1987 t.bitfield.imm32s = 1;
1988 }
1989 else if (fits_in_unsigned_byte (num))
1990 {
1991 t.bitfield.imm8 = 1;
1992 t.bitfield.imm16 = 1;
1993 t.bitfield.imm32 = 1;
1994 t.bitfield.imm32s = 1;
1995 }
1996 else if (fits_in_signed_word (num) || fits_in_unsigned_word (num))
1997 {
1998 t.bitfield.imm16 = 1;
1999 t.bitfield.imm32 = 1;
2000 t.bitfield.imm32s = 1;
2001 }
2002 else if (fits_in_signed_long (num))
2003 {
2004 t.bitfield.imm32 = 1;
2005 t.bitfield.imm32s = 1;
2006 }
2007 else if (fits_in_unsigned_long (num))
2008 t.bitfield.imm32 = 1;
2009
2010 return t;
2011 }
2012
2013 static offsetT
2014 offset_in_range (offsetT val, int size)
2015 {
2016 addressT mask;
2017
2018 switch (size)
2019 {
2020 case 1: mask = ((addressT) 1 << 8) - 1; break;
2021 case 2: mask = ((addressT) 1 << 16) - 1; break;
2022 case 4: mask = ((addressT) 2 << 31) - 1; break;
2023 #ifdef BFD64
2024 case 8: mask = ((addressT) 2 << 63) - 1; break;
2025 #endif
2026 default: abort ();
2027 }
2028
2029 #ifdef BFD64
2030 /* If BFD64, sign extend val for 32bit address mode. */
2031 if (flag_code != CODE_64BIT
2032 || i.prefix[ADDR_PREFIX])
2033 if ((val & ~(((addressT) 2 << 31) - 1)) == 0)
2034 val = (val ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
2035 #endif
2036
2037 if ((val & ~mask) != 0 && (val & ~mask) != ~mask)
2038 {
2039 char buf1[40], buf2[40];
2040
2041 sprint_value (buf1, val);
2042 sprint_value (buf2, val & mask);
2043 as_warn (_("%s shortened to %s"), buf1, buf2);
2044 }
2045 return val & mask;
2046 }
2047
2048 enum PREFIX_GROUP
2049 {
2050 PREFIX_EXIST = 0,
2051 PREFIX_LOCK,
2052 PREFIX_REP,
2053 PREFIX_OTHER
2054 };
2055
2056 /* Returns
2057 a. PREFIX_EXIST if attempting to add a prefix where one from the
2058 same class already exists.
2059 b. PREFIX_LOCK if lock prefix is added.
2060 c. PREFIX_REP if rep/repne prefix is added.
2061 d. PREFIX_OTHER if other prefix is added.
2062 */
2063
2064 static enum PREFIX_GROUP
2065 add_prefix (unsigned int prefix)
2066 {
2067 enum PREFIX_GROUP ret = PREFIX_OTHER;
2068 unsigned int q;
2069
2070 if (prefix >= REX_OPCODE && prefix < REX_OPCODE + 16
2071 && flag_code == CODE_64BIT)
2072 {
2073 if ((i.prefix[REX_PREFIX] & prefix & REX_W)
2074 || ((i.prefix[REX_PREFIX] & (REX_R | REX_X | REX_B))
2075 && (prefix & (REX_R | REX_X | REX_B))))
2076 ret = PREFIX_EXIST;
2077 q = REX_PREFIX;
2078 }
2079 else
2080 {
2081 switch (prefix)
2082 {
2083 default:
2084 abort ();
2085
2086 case CS_PREFIX_OPCODE:
2087 case DS_PREFIX_OPCODE:
2088 case ES_PREFIX_OPCODE:
2089 case FS_PREFIX_OPCODE:
2090 case GS_PREFIX_OPCODE:
2091 case SS_PREFIX_OPCODE:
2092 q = SEG_PREFIX;
2093 break;
2094
2095 case REPNE_PREFIX_OPCODE:
2096 case REPE_PREFIX_OPCODE:
2097 q = REP_PREFIX;
2098 ret = PREFIX_REP;
2099 break;
2100
2101 case LOCK_PREFIX_OPCODE:
2102 q = LOCK_PREFIX;
2103 ret = PREFIX_LOCK;
2104 break;
2105
2106 case FWAIT_OPCODE:
2107 q = WAIT_PREFIX;
2108 break;
2109
2110 case ADDR_PREFIX_OPCODE:
2111 q = ADDR_PREFIX;
2112 break;
2113
2114 case DATA_PREFIX_OPCODE:
2115 q = DATA_PREFIX;
2116 break;
2117 }
2118 if (i.prefix[q] != 0)
2119 ret = PREFIX_EXIST;
2120 }
2121
2122 if (ret)
2123 {
2124 if (!i.prefix[q])
2125 ++i.prefixes;
2126 i.prefix[q] |= prefix;
2127 }
2128 else
2129 as_bad (_("same type of prefix used twice"));
2130
2131 return ret;
2132 }
2133
2134 static void
2135 update_code_flag (int value, int check)
2136 {
2137 PRINTF_LIKE ((*as_error));
2138
2139 flag_code = (enum flag_code) value;
2140 if (flag_code == CODE_64BIT)
2141 {
2142 cpu_arch_flags.bitfield.cpu64 = 1;
2143 cpu_arch_flags.bitfield.cpuno64 = 0;
2144 }
2145 else
2146 {
2147 cpu_arch_flags.bitfield.cpu64 = 0;
2148 cpu_arch_flags.bitfield.cpuno64 = 1;
2149 }
2150 if (value == CODE_64BIT && !cpu_arch_flags.bitfield.cpulm )
2151 {
2152 if (check)
2153 as_error = as_fatal;
2154 else
2155 as_error = as_bad;
2156 (*as_error) (_("64bit mode not supported on `%s'."),
2157 cpu_arch_name ? cpu_arch_name : default_arch);
2158 }
2159 if (value == CODE_32BIT && !cpu_arch_flags.bitfield.cpui386)
2160 {
2161 if (check)
2162 as_error = as_fatal;
2163 else
2164 as_error = as_bad;
2165 (*as_error) (_("32bit mode not supported on `%s'."),
2166 cpu_arch_name ? cpu_arch_name : default_arch);
2167 }
2168 stackop_size = '\0';
2169 }
2170
2171 static void
2172 set_code_flag (int value)
2173 {
2174 update_code_flag (value, 0);
2175 }
2176
2177 static void
2178 set_16bit_gcc_code_flag (int new_code_flag)
2179 {
2180 flag_code = (enum flag_code) new_code_flag;
2181 if (flag_code != CODE_16BIT)
2182 abort ();
2183 cpu_arch_flags.bitfield.cpu64 = 0;
2184 cpu_arch_flags.bitfield.cpuno64 = 1;
2185 stackop_size = LONG_MNEM_SUFFIX;
2186 }
2187
2188 static void
2189 set_intel_syntax (int syntax_flag)
2190 {
2191 /* Find out if register prefixing is specified. */
2192 int ask_naked_reg = 0;
2193
2194 SKIP_WHITESPACE ();
2195 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2196 {
2197 char *string;
2198 int e = get_symbol_name (&string);
2199
2200 if (strcmp (string, "prefix") == 0)
2201 ask_naked_reg = 1;
2202 else if (strcmp (string, "noprefix") == 0)
2203 ask_naked_reg = -1;
2204 else
2205 as_bad (_("bad argument to syntax directive."));
2206 (void) restore_line_pointer (e);
2207 }
2208 demand_empty_rest_of_line ();
2209
2210 intel_syntax = syntax_flag;
2211
2212 if (ask_naked_reg == 0)
2213 allow_naked_reg = (intel_syntax
2214 && (bfd_get_symbol_leading_char (stdoutput) != '\0'));
2215 else
2216 allow_naked_reg = (ask_naked_reg < 0);
2217
2218 expr_set_rank (O_full_ptr, syntax_flag ? 10 : 0);
2219
2220 identifier_chars['%'] = intel_syntax && allow_naked_reg ? '%' : 0;
2221 identifier_chars['$'] = intel_syntax ? '$' : 0;
2222 register_prefix = allow_naked_reg ? "" : "%";
2223 }
2224
2225 static void
2226 set_intel_mnemonic (int mnemonic_flag)
2227 {
2228 intel_mnemonic = mnemonic_flag;
2229 }
2230
2231 static void
2232 set_allow_index_reg (int flag)
2233 {
2234 allow_index_reg = flag;
2235 }
2236
2237 static void
2238 set_check (int what)
2239 {
2240 enum check_kind *kind;
2241 const char *str;
2242
2243 if (what)
2244 {
2245 kind = &operand_check;
2246 str = "operand";
2247 }
2248 else
2249 {
2250 kind = &sse_check;
2251 str = "sse";
2252 }
2253
2254 SKIP_WHITESPACE ();
2255
2256 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2257 {
2258 char *string;
2259 int e = get_symbol_name (&string);
2260
2261 if (strcmp (string, "none") == 0)
2262 *kind = check_none;
2263 else if (strcmp (string, "warning") == 0)
2264 *kind = check_warning;
2265 else if (strcmp (string, "error") == 0)
2266 *kind = check_error;
2267 else
2268 as_bad (_("bad argument to %s_check directive."), str);
2269 (void) restore_line_pointer (e);
2270 }
2271 else
2272 as_bad (_("missing argument for %s_check directive"), str);
2273
2274 demand_empty_rest_of_line ();
2275 }
2276
2277 static void
2278 check_cpu_arch_compatible (const char *name ATTRIBUTE_UNUSED,
2279 i386_cpu_flags new_flag ATTRIBUTE_UNUSED)
2280 {
2281 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
2282 static const char *arch;
2283
2284 /* Intel LIOM is only supported on ELF. */
2285 if (!IS_ELF)
2286 return;
2287
2288 if (!arch)
2289 {
2290 /* Use cpu_arch_name if it is set in md_parse_option. Otherwise
2291 use default_arch. */
2292 arch = cpu_arch_name;
2293 if (!arch)
2294 arch = default_arch;
2295 }
2296
2297 /* If we are targeting Intel MCU, we must enable it. */
2298 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_IAMCU
2299 || new_flag.bitfield.cpuiamcu)
2300 return;
2301
2302 /* If we are targeting Intel L1OM, we must enable it. */
2303 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_L1OM
2304 || new_flag.bitfield.cpul1om)
2305 return;
2306
2307 /* If we are targeting Intel K1OM, we must enable it. */
2308 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_K1OM
2309 || new_flag.bitfield.cpuk1om)
2310 return;
2311
2312 as_bad (_("`%s' is not supported on `%s'"), name, arch);
2313 #endif
2314 }
2315
2316 static void
2317 set_cpu_arch (int dummy ATTRIBUTE_UNUSED)
2318 {
2319 SKIP_WHITESPACE ();
2320
2321 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2322 {
2323 char *string;
2324 int e = get_symbol_name (&string);
2325 unsigned int j;
2326 i386_cpu_flags flags;
2327
2328 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
2329 {
2330 if (strcmp (string, cpu_arch[j].name) == 0)
2331 {
2332 check_cpu_arch_compatible (string, cpu_arch[j].flags);
2333
2334 if (*string != '.')
2335 {
2336 cpu_arch_name = cpu_arch[j].name;
2337 cpu_sub_arch_name = NULL;
2338 cpu_arch_flags = cpu_arch[j].flags;
2339 if (flag_code == CODE_64BIT)
2340 {
2341 cpu_arch_flags.bitfield.cpu64 = 1;
2342 cpu_arch_flags.bitfield.cpuno64 = 0;
2343 }
2344 else
2345 {
2346 cpu_arch_flags.bitfield.cpu64 = 0;
2347 cpu_arch_flags.bitfield.cpuno64 = 1;
2348 }
2349 cpu_arch_isa = cpu_arch[j].type;
2350 cpu_arch_isa_flags = cpu_arch[j].flags;
2351 if (!cpu_arch_tune_set)
2352 {
2353 cpu_arch_tune = cpu_arch_isa;
2354 cpu_arch_tune_flags = cpu_arch_isa_flags;
2355 }
2356 break;
2357 }
2358
2359 if (!cpu_arch[j].negated)
2360 flags = cpu_flags_or (cpu_arch_flags,
2361 cpu_arch[j].flags);
2362 else
2363 flags = cpu_flags_and_not (cpu_arch_flags,
2364 cpu_arch[j].flags);
2365
2366 if (!valid_iamcu_cpu_flags (&flags))
2367 as_fatal (_("`%s' isn't valid for Intel MCU"),
2368 cpu_arch[j].name);
2369 else if (!cpu_flags_equal (&flags, &cpu_arch_flags))
2370 {
2371 if (cpu_sub_arch_name)
2372 {
2373 char *name = cpu_sub_arch_name;
2374 cpu_sub_arch_name = concat (name,
2375 cpu_arch[j].name,
2376 (const char *) NULL);
2377 free (name);
2378 }
2379 else
2380 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
2381 cpu_arch_flags = flags;
2382 cpu_arch_isa_flags = flags;
2383 }
2384 (void) restore_line_pointer (e);
2385 demand_empty_rest_of_line ();
2386 return;
2387 }
2388 }
2389 if (j >= ARRAY_SIZE (cpu_arch))
2390 as_bad (_("no such architecture: `%s'"), string);
2391
2392 *input_line_pointer = e;
2393 }
2394 else
2395 as_bad (_("missing cpu architecture"));
2396
2397 no_cond_jump_promotion = 0;
2398 if (*input_line_pointer == ','
2399 && !is_end_of_line[(unsigned char) input_line_pointer[1]])
2400 {
2401 char *string;
2402 char e;
2403
2404 ++input_line_pointer;
2405 e = get_symbol_name (&string);
2406
2407 if (strcmp (string, "nojumps") == 0)
2408 no_cond_jump_promotion = 1;
2409 else if (strcmp (string, "jumps") == 0)
2410 ;
2411 else
2412 as_bad (_("no such architecture modifier: `%s'"), string);
2413
2414 (void) restore_line_pointer (e);
2415 }
2416
2417 demand_empty_rest_of_line ();
2418 }
2419
2420 enum bfd_architecture
2421 i386_arch (void)
2422 {
2423 if (cpu_arch_isa == PROCESSOR_L1OM)
2424 {
2425 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2426 || flag_code != CODE_64BIT)
2427 as_fatal (_("Intel L1OM is 64bit ELF only"));
2428 return bfd_arch_l1om;
2429 }
2430 else if (cpu_arch_isa == PROCESSOR_K1OM)
2431 {
2432 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2433 || flag_code != CODE_64BIT)
2434 as_fatal (_("Intel K1OM is 64bit ELF only"));
2435 return bfd_arch_k1om;
2436 }
2437 else if (cpu_arch_isa == PROCESSOR_IAMCU)
2438 {
2439 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2440 || flag_code == CODE_64BIT)
2441 as_fatal (_("Intel MCU is 32bit ELF only"));
2442 return bfd_arch_iamcu;
2443 }
2444 else
2445 return bfd_arch_i386;
2446 }
2447
2448 unsigned long
2449 i386_mach (void)
2450 {
2451 if (!strncmp (default_arch, "x86_64", 6))
2452 {
2453 if (cpu_arch_isa == PROCESSOR_L1OM)
2454 {
2455 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2456 || default_arch[6] != '\0')
2457 as_fatal (_("Intel L1OM is 64bit ELF only"));
2458 return bfd_mach_l1om;
2459 }
2460 else if (cpu_arch_isa == PROCESSOR_K1OM)
2461 {
2462 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2463 || default_arch[6] != '\0')
2464 as_fatal (_("Intel K1OM is 64bit ELF only"));
2465 return bfd_mach_k1om;
2466 }
2467 else if (default_arch[6] == '\0')
2468 return bfd_mach_x86_64;
2469 else
2470 return bfd_mach_x64_32;
2471 }
2472 else if (!strcmp (default_arch, "i386")
2473 || !strcmp (default_arch, "iamcu"))
2474 {
2475 if (cpu_arch_isa == PROCESSOR_IAMCU)
2476 {
2477 if (OUTPUT_FLAVOR != bfd_target_elf_flavour)
2478 as_fatal (_("Intel MCU is 32bit ELF only"));
2479 return bfd_mach_i386_iamcu;
2480 }
2481 else
2482 return bfd_mach_i386_i386;
2483 }
2484 else
2485 as_fatal (_("unknown architecture"));
2486 }
2487 \f
2488 void
2489 md_begin (void)
2490 {
2491 const char *hash_err;
2492
2493 /* Initialize op_hash hash table. */
2494 op_hash = hash_new ();
2495
2496 {
2497 const insn_template *optab;
2498 templates *core_optab;
2499
2500 /* Setup for loop. */
2501 optab = i386_optab;
2502 core_optab = (templates *) xmalloc (sizeof (templates));
2503 core_optab->start = optab;
2504
2505 while (1)
2506 {
2507 ++optab;
2508 if (optab->name == NULL
2509 || strcmp (optab->name, (optab - 1)->name) != 0)
2510 {
2511 /* different name --> ship out current template list;
2512 add to hash table; & begin anew. */
2513 core_optab->end = optab;
2514 hash_err = hash_insert (op_hash,
2515 (optab - 1)->name,
2516 (void *) core_optab);
2517 if (hash_err)
2518 {
2519 as_fatal (_("can't hash %s: %s"),
2520 (optab - 1)->name,
2521 hash_err);
2522 }
2523 if (optab->name == NULL)
2524 break;
2525 core_optab = (templates *) xmalloc (sizeof (templates));
2526 core_optab->start = optab;
2527 }
2528 }
2529 }
2530
2531 /* Initialize reg_hash hash table. */
2532 reg_hash = hash_new ();
2533 {
2534 const reg_entry *regtab;
2535 unsigned int regtab_size = i386_regtab_size;
2536
2537 for (regtab = i386_regtab; regtab_size--; regtab++)
2538 {
2539 hash_err = hash_insert (reg_hash, regtab->reg_name, (void *) regtab);
2540 if (hash_err)
2541 as_fatal (_("can't hash %s: %s"),
2542 regtab->reg_name,
2543 hash_err);
2544 }
2545 }
2546
2547 /* Fill in lexical tables: mnemonic_chars, operand_chars. */
2548 {
2549 int c;
2550 char *p;
2551
2552 for (c = 0; c < 256; c++)
2553 {
2554 if (ISDIGIT (c))
2555 {
2556 digit_chars[c] = c;
2557 mnemonic_chars[c] = c;
2558 register_chars[c] = c;
2559 operand_chars[c] = c;
2560 }
2561 else if (ISLOWER (c))
2562 {
2563 mnemonic_chars[c] = c;
2564 register_chars[c] = c;
2565 operand_chars[c] = c;
2566 }
2567 else if (ISUPPER (c))
2568 {
2569 mnemonic_chars[c] = TOLOWER (c);
2570 register_chars[c] = mnemonic_chars[c];
2571 operand_chars[c] = c;
2572 }
2573 else if (c == '{' || c == '}')
2574 operand_chars[c] = c;
2575
2576 if (ISALPHA (c) || ISDIGIT (c))
2577 identifier_chars[c] = c;
2578 else if (c >= 128)
2579 {
2580 identifier_chars[c] = c;
2581 operand_chars[c] = c;
2582 }
2583 }
2584
2585 #ifdef LEX_AT
2586 identifier_chars['@'] = '@';
2587 #endif
2588 #ifdef LEX_QM
2589 identifier_chars['?'] = '?';
2590 operand_chars['?'] = '?';
2591 #endif
2592 digit_chars['-'] = '-';
2593 mnemonic_chars['_'] = '_';
2594 mnemonic_chars['-'] = '-';
2595 mnemonic_chars['.'] = '.';
2596 identifier_chars['_'] = '_';
2597 identifier_chars['.'] = '.';
2598
2599 for (p = operand_special_chars; *p != '\0'; p++)
2600 operand_chars[(unsigned char) *p] = *p;
2601 }
2602
2603 if (flag_code == CODE_64BIT)
2604 {
2605 #if defined (OBJ_COFF) && defined (TE_PE)
2606 x86_dwarf2_return_column = (OUTPUT_FLAVOR == bfd_target_coff_flavour
2607 ? 32 : 16);
2608 #else
2609 x86_dwarf2_return_column = 16;
2610 #endif
2611 x86_cie_data_alignment = -8;
2612 }
2613 else
2614 {
2615 x86_dwarf2_return_column = 8;
2616 x86_cie_data_alignment = -4;
2617 }
2618 }
2619
2620 void
2621 i386_print_statistics (FILE *file)
2622 {
2623 hash_print_statistics (file, "i386 opcode", op_hash);
2624 hash_print_statistics (file, "i386 register", reg_hash);
2625 }
2626 \f
2627 #ifdef DEBUG386
2628
2629 /* Debugging routines for md_assemble. */
2630 static void pte (insn_template *);
2631 static void pt (i386_operand_type);
2632 static void pe (expressionS *);
2633 static void ps (symbolS *);
2634
2635 static void
2636 pi (char *line, i386_insn *x)
2637 {
2638 unsigned int j;
2639
2640 fprintf (stdout, "%s: template ", line);
2641 pte (&x->tm);
2642 fprintf (stdout, " address: base %s index %s scale %x\n",
2643 x->base_reg ? x->base_reg->reg_name : "none",
2644 x->index_reg ? x->index_reg->reg_name : "none",
2645 x->log2_scale_factor);
2646 fprintf (stdout, " modrm: mode %x reg %x reg/mem %x\n",
2647 x->rm.mode, x->rm.reg, x->rm.regmem);
2648 fprintf (stdout, " sib: base %x index %x scale %x\n",
2649 x->sib.base, x->sib.index, x->sib.scale);
2650 fprintf (stdout, " rex: 64bit %x extX %x extY %x extZ %x\n",
2651 (x->rex & REX_W) != 0,
2652 (x->rex & REX_R) != 0,
2653 (x->rex & REX_X) != 0,
2654 (x->rex & REX_B) != 0);
2655 for (j = 0; j < x->operands; j++)
2656 {
2657 fprintf (stdout, " #%d: ", j + 1);
2658 pt (x->types[j]);
2659 fprintf (stdout, "\n");
2660 if (x->types[j].bitfield.reg8
2661 || x->types[j].bitfield.reg16
2662 || x->types[j].bitfield.reg32
2663 || x->types[j].bitfield.reg64
2664 || x->types[j].bitfield.regmmx
2665 || x->types[j].bitfield.regxmm
2666 || x->types[j].bitfield.regymm
2667 || x->types[j].bitfield.regzmm
2668 || x->types[j].bitfield.sreg2
2669 || x->types[j].bitfield.sreg3
2670 || x->types[j].bitfield.control
2671 || x->types[j].bitfield.debug
2672 || x->types[j].bitfield.test)
2673 fprintf (stdout, "%s\n", x->op[j].regs->reg_name);
2674 if (operand_type_check (x->types[j], imm))
2675 pe (x->op[j].imms);
2676 if (operand_type_check (x->types[j], disp))
2677 pe (x->op[j].disps);
2678 }
2679 }
2680
2681 static void
2682 pte (insn_template *t)
2683 {
2684 unsigned int j;
2685 fprintf (stdout, " %d operands ", t->operands);
2686 fprintf (stdout, "opcode %x ", t->base_opcode);
2687 if (t->extension_opcode != None)
2688 fprintf (stdout, "ext %x ", t->extension_opcode);
2689 if (t->opcode_modifier.d)
2690 fprintf (stdout, "D");
2691 if (t->opcode_modifier.w)
2692 fprintf (stdout, "W");
2693 fprintf (stdout, "\n");
2694 for (j = 0; j < t->operands; j++)
2695 {
2696 fprintf (stdout, " #%d type ", j + 1);
2697 pt (t->operand_types[j]);
2698 fprintf (stdout, "\n");
2699 }
2700 }
2701
2702 static void
2703 pe (expressionS *e)
2704 {
2705 fprintf (stdout, " operation %d\n", e->X_op);
2706 fprintf (stdout, " add_number %ld (%lx)\n",
2707 (long) e->X_add_number, (long) e->X_add_number);
2708 if (e->X_add_symbol)
2709 {
2710 fprintf (stdout, " add_symbol ");
2711 ps (e->X_add_symbol);
2712 fprintf (stdout, "\n");
2713 }
2714 if (e->X_op_symbol)
2715 {
2716 fprintf (stdout, " op_symbol ");
2717 ps (e->X_op_symbol);
2718 fprintf (stdout, "\n");
2719 }
2720 }
2721
2722 static void
2723 ps (symbolS *s)
2724 {
2725 fprintf (stdout, "%s type %s%s",
2726 S_GET_NAME (s),
2727 S_IS_EXTERNAL (s) ? "EXTERNAL " : "",
2728 segment_name (S_GET_SEGMENT (s)));
2729 }
2730
2731 static struct type_name
2732 {
2733 i386_operand_type mask;
2734 const char *name;
2735 }
2736 const type_names[] =
2737 {
2738 { OPERAND_TYPE_REG8, "r8" },
2739 { OPERAND_TYPE_REG16, "r16" },
2740 { OPERAND_TYPE_REG32, "r32" },
2741 { OPERAND_TYPE_REG64, "r64" },
2742 { OPERAND_TYPE_IMM8, "i8" },
2743 { OPERAND_TYPE_IMM8, "i8s" },
2744 { OPERAND_TYPE_IMM16, "i16" },
2745 { OPERAND_TYPE_IMM32, "i32" },
2746 { OPERAND_TYPE_IMM32S, "i32s" },
2747 { OPERAND_TYPE_IMM64, "i64" },
2748 { OPERAND_TYPE_IMM1, "i1" },
2749 { OPERAND_TYPE_BASEINDEX, "BaseIndex" },
2750 { OPERAND_TYPE_DISP8, "d8" },
2751 { OPERAND_TYPE_DISP16, "d16" },
2752 { OPERAND_TYPE_DISP32, "d32" },
2753 { OPERAND_TYPE_DISP32S, "d32s" },
2754 { OPERAND_TYPE_DISP64, "d64" },
2755 { OPERAND_TYPE_VEC_DISP8, "Vector d8" },
2756 { OPERAND_TYPE_INOUTPORTREG, "InOutPortReg" },
2757 { OPERAND_TYPE_SHIFTCOUNT, "ShiftCount" },
2758 { OPERAND_TYPE_CONTROL, "control reg" },
2759 { OPERAND_TYPE_TEST, "test reg" },
2760 { OPERAND_TYPE_DEBUG, "debug reg" },
2761 { OPERAND_TYPE_FLOATREG, "FReg" },
2762 { OPERAND_TYPE_FLOATACC, "FAcc" },
2763 { OPERAND_TYPE_SREG2, "SReg2" },
2764 { OPERAND_TYPE_SREG3, "SReg3" },
2765 { OPERAND_TYPE_ACC, "Acc" },
2766 { OPERAND_TYPE_JUMPABSOLUTE, "Jump Absolute" },
2767 { OPERAND_TYPE_REGMMX, "rMMX" },
2768 { OPERAND_TYPE_REGXMM, "rXMM" },
2769 { OPERAND_TYPE_REGYMM, "rYMM" },
2770 { OPERAND_TYPE_REGZMM, "rZMM" },
2771 { OPERAND_TYPE_REGMASK, "Mask reg" },
2772 { OPERAND_TYPE_ESSEG, "es" },
2773 };
2774
2775 static void
2776 pt (i386_operand_type t)
2777 {
2778 unsigned int j;
2779 i386_operand_type a;
2780
2781 for (j = 0; j < ARRAY_SIZE (type_names); j++)
2782 {
2783 a = operand_type_and (t, type_names[j].mask);
2784 if (!operand_type_all_zero (&a))
2785 fprintf (stdout, "%s, ", type_names[j].name);
2786 }
2787 fflush (stdout);
2788 }
2789
2790 #endif /* DEBUG386 */
2791 \f
2792 static bfd_reloc_code_real_type
2793 reloc (unsigned int size,
2794 int pcrel,
2795 int sign,
2796 bfd_reloc_code_real_type other)
2797 {
2798 if (other != NO_RELOC)
2799 {
2800 reloc_howto_type *rel;
2801
2802 if (size == 8)
2803 switch (other)
2804 {
2805 case BFD_RELOC_X86_64_GOT32:
2806 return BFD_RELOC_X86_64_GOT64;
2807 break;
2808 case BFD_RELOC_X86_64_GOTPLT64:
2809 return BFD_RELOC_X86_64_GOTPLT64;
2810 break;
2811 case BFD_RELOC_X86_64_PLTOFF64:
2812 return BFD_RELOC_X86_64_PLTOFF64;
2813 break;
2814 case BFD_RELOC_X86_64_GOTPC32:
2815 other = BFD_RELOC_X86_64_GOTPC64;
2816 break;
2817 case BFD_RELOC_X86_64_GOTPCREL:
2818 other = BFD_RELOC_X86_64_GOTPCREL64;
2819 break;
2820 case BFD_RELOC_X86_64_TPOFF32:
2821 other = BFD_RELOC_X86_64_TPOFF64;
2822 break;
2823 case BFD_RELOC_X86_64_DTPOFF32:
2824 other = BFD_RELOC_X86_64_DTPOFF64;
2825 break;
2826 default:
2827 break;
2828 }
2829
2830 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
2831 if (other == BFD_RELOC_SIZE32)
2832 {
2833 if (size == 8)
2834 other = BFD_RELOC_SIZE64;
2835 if (pcrel)
2836 {
2837 as_bad (_("there are no pc-relative size relocations"));
2838 return NO_RELOC;
2839 }
2840 }
2841 #endif
2842
2843 /* Sign-checking 4-byte relocations in 16-/32-bit code is pointless. */
2844 if (size == 4 && (flag_code != CODE_64BIT || disallow_64bit_reloc))
2845 sign = -1;
2846
2847 rel = bfd_reloc_type_lookup (stdoutput, other);
2848 if (!rel)
2849 as_bad (_("unknown relocation (%u)"), other);
2850 else if (size != bfd_get_reloc_size (rel))
2851 as_bad (_("%u-byte relocation cannot be applied to %u-byte field"),
2852 bfd_get_reloc_size (rel),
2853 size);
2854 else if (pcrel && !rel->pc_relative)
2855 as_bad (_("non-pc-relative relocation for pc-relative field"));
2856 else if ((rel->complain_on_overflow == complain_overflow_signed
2857 && !sign)
2858 || (rel->complain_on_overflow == complain_overflow_unsigned
2859 && sign > 0))
2860 as_bad (_("relocated field and relocation type differ in signedness"));
2861 else
2862 return other;
2863 return NO_RELOC;
2864 }
2865
2866 if (pcrel)
2867 {
2868 if (!sign)
2869 as_bad (_("there are no unsigned pc-relative relocations"));
2870 switch (size)
2871 {
2872 case 1: return BFD_RELOC_8_PCREL;
2873 case 2: return BFD_RELOC_16_PCREL;
2874 case 4: return BFD_RELOC_32_PCREL;
2875 case 8: return BFD_RELOC_64_PCREL;
2876 }
2877 as_bad (_("cannot do %u byte pc-relative relocation"), size);
2878 }
2879 else
2880 {
2881 if (sign > 0)
2882 switch (size)
2883 {
2884 case 4: return BFD_RELOC_X86_64_32S;
2885 }
2886 else
2887 switch (size)
2888 {
2889 case 1: return BFD_RELOC_8;
2890 case 2: return BFD_RELOC_16;
2891 case 4: return BFD_RELOC_32;
2892 case 8: return BFD_RELOC_64;
2893 }
2894 as_bad (_("cannot do %s %u byte relocation"),
2895 sign > 0 ? "signed" : "unsigned", size);
2896 }
2897
2898 return NO_RELOC;
2899 }
2900
2901 /* Here we decide which fixups can be adjusted to make them relative to
2902 the beginning of the section instead of the symbol. Basically we need
2903 to make sure that the dynamic relocations are done correctly, so in
2904 some cases we force the original symbol to be used. */
2905
2906 int
2907 tc_i386_fix_adjustable (fixS *fixP ATTRIBUTE_UNUSED)
2908 {
2909 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
2910 if (!IS_ELF)
2911 return 1;
2912
2913 /* Don't adjust pc-relative references to merge sections in 64-bit
2914 mode. */
2915 if (use_rela_relocations
2916 && (S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_MERGE) != 0
2917 && fixP->fx_pcrel)
2918 return 0;
2919
2920 /* The x86_64 GOTPCREL are represented as 32bit PCrel relocations
2921 and changed later by validate_fix. */
2922 if (GOT_symbol && fixP->fx_subsy == GOT_symbol
2923 && fixP->fx_r_type == BFD_RELOC_32_PCREL)
2924 return 0;
2925
2926 /* Adjust_reloc_syms doesn't know about the GOT. Need to keep symbol
2927 for size relocations. */
2928 if (fixP->fx_r_type == BFD_RELOC_SIZE32
2929 || fixP->fx_r_type == BFD_RELOC_SIZE64
2930 || fixP->fx_r_type == BFD_RELOC_386_GOTOFF
2931 || fixP->fx_r_type == BFD_RELOC_386_PLT32
2932 || fixP->fx_r_type == BFD_RELOC_386_GOT32
2933 || fixP->fx_r_type == BFD_RELOC_386_GOT32X
2934 || fixP->fx_r_type == BFD_RELOC_386_TLS_GD
2935 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDM
2936 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDO_32
2937 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE_32
2938 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE
2939 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTIE
2940 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE_32
2941 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE
2942 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTDESC
2943 || fixP->fx_r_type == BFD_RELOC_386_TLS_DESC_CALL
2944 || fixP->fx_r_type == BFD_RELOC_X86_64_PLT32
2945 || fixP->fx_r_type == BFD_RELOC_X86_64_GOT32
2946 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCREL
2947 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCRELX
2948 || fixP->fx_r_type == BFD_RELOC_X86_64_REX_GOTPCRELX
2949 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSGD
2950 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSLD
2951 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF32
2952 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF64
2953 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTTPOFF
2954 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF32
2955 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF64
2956 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTOFF64
2957 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPC32_TLSDESC
2958 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSDESC_CALL
2959 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
2960 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
2961 return 0;
2962 #endif
2963 return 1;
2964 }
2965
2966 static int
2967 intel_float_operand (const char *mnemonic)
2968 {
2969 /* Note that the value returned is meaningful only for opcodes with (memory)
2970 operands, hence the code here is free to improperly handle opcodes that
2971 have no operands (for better performance and smaller code). */
2972
2973 if (mnemonic[0] != 'f')
2974 return 0; /* non-math */
2975
2976 switch (mnemonic[1])
2977 {
2978 /* fclex, fdecstp, fdisi, femms, feni, fincstp, finit, fsetpm, and
2979 the fs segment override prefix not currently handled because no
2980 call path can make opcodes without operands get here */
2981 case 'i':
2982 return 2 /* integer op */;
2983 case 'l':
2984 if (mnemonic[2] == 'd' && (mnemonic[3] == 'c' || mnemonic[3] == 'e'))
2985 return 3; /* fldcw/fldenv */
2986 break;
2987 case 'n':
2988 if (mnemonic[2] != 'o' /* fnop */)
2989 return 3; /* non-waiting control op */
2990 break;
2991 case 'r':
2992 if (mnemonic[2] == 's')
2993 return 3; /* frstor/frstpm */
2994 break;
2995 case 's':
2996 if (mnemonic[2] == 'a')
2997 return 3; /* fsave */
2998 if (mnemonic[2] == 't')
2999 {
3000 switch (mnemonic[3])
3001 {
3002 case 'c': /* fstcw */
3003 case 'd': /* fstdw */
3004 case 'e': /* fstenv */
3005 case 's': /* fsts[gw] */
3006 return 3;
3007 }
3008 }
3009 break;
3010 case 'x':
3011 if (mnemonic[2] == 'r' || mnemonic[2] == 's')
3012 return 0; /* fxsave/fxrstor are not really math ops */
3013 break;
3014 }
3015
3016 return 1;
3017 }
3018
3019 /* Build the VEX prefix. */
3020
3021 static void
3022 build_vex_prefix (const insn_template *t)
3023 {
3024 unsigned int register_specifier;
3025 unsigned int implied_prefix;
3026 unsigned int vector_length;
3027
3028 /* Check register specifier. */
3029 if (i.vex.register_specifier)
3030 {
3031 register_specifier =
3032 ~register_number (i.vex.register_specifier) & 0xf;
3033 gas_assert ((i.vex.register_specifier->reg_flags & RegVRex) == 0);
3034 }
3035 else
3036 register_specifier = 0xf;
3037
3038 /* Use 2-byte VEX prefix by swappping destination and source
3039 operand. */
3040 if (!i.swap_operand
3041 && i.operands == i.reg_operands
3042 && i.tm.opcode_modifier.vexopcode == VEX0F
3043 && i.tm.opcode_modifier.s
3044 && i.rex == REX_B)
3045 {
3046 unsigned int xchg = i.operands - 1;
3047 union i386_op temp_op;
3048 i386_operand_type temp_type;
3049
3050 temp_type = i.types[xchg];
3051 i.types[xchg] = i.types[0];
3052 i.types[0] = temp_type;
3053 temp_op = i.op[xchg];
3054 i.op[xchg] = i.op[0];
3055 i.op[0] = temp_op;
3056
3057 gas_assert (i.rm.mode == 3);
3058
3059 i.rex = REX_R;
3060 xchg = i.rm.regmem;
3061 i.rm.regmem = i.rm.reg;
3062 i.rm.reg = xchg;
3063
3064 /* Use the next insn. */
3065 i.tm = t[1];
3066 }
3067
3068 if (i.tm.opcode_modifier.vex == VEXScalar)
3069 vector_length = avxscalar;
3070 else
3071 vector_length = i.tm.opcode_modifier.vex == VEX256 ? 1 : 0;
3072
3073 switch ((i.tm.base_opcode >> 8) & 0xff)
3074 {
3075 case 0:
3076 implied_prefix = 0;
3077 break;
3078 case DATA_PREFIX_OPCODE:
3079 implied_prefix = 1;
3080 break;
3081 case REPE_PREFIX_OPCODE:
3082 implied_prefix = 2;
3083 break;
3084 case REPNE_PREFIX_OPCODE:
3085 implied_prefix = 3;
3086 break;
3087 default:
3088 abort ();
3089 }
3090
3091 /* Use 2-byte VEX prefix if possible. */
3092 if (i.tm.opcode_modifier.vexopcode == VEX0F
3093 && i.tm.opcode_modifier.vexw != VEXW1
3094 && (i.rex & (REX_W | REX_X | REX_B)) == 0)
3095 {
3096 /* 2-byte VEX prefix. */
3097 unsigned int r;
3098
3099 i.vex.length = 2;
3100 i.vex.bytes[0] = 0xc5;
3101
3102 /* Check the REX.R bit. */
3103 r = (i.rex & REX_R) ? 0 : 1;
3104 i.vex.bytes[1] = (r << 7
3105 | register_specifier << 3
3106 | vector_length << 2
3107 | implied_prefix);
3108 }
3109 else
3110 {
3111 /* 3-byte VEX prefix. */
3112 unsigned int m, w;
3113
3114 i.vex.length = 3;
3115
3116 switch (i.tm.opcode_modifier.vexopcode)
3117 {
3118 case VEX0F:
3119 m = 0x1;
3120 i.vex.bytes[0] = 0xc4;
3121 break;
3122 case VEX0F38:
3123 m = 0x2;
3124 i.vex.bytes[0] = 0xc4;
3125 break;
3126 case VEX0F3A:
3127 m = 0x3;
3128 i.vex.bytes[0] = 0xc4;
3129 break;
3130 case XOP08:
3131 m = 0x8;
3132 i.vex.bytes[0] = 0x8f;
3133 break;
3134 case XOP09:
3135 m = 0x9;
3136 i.vex.bytes[0] = 0x8f;
3137 break;
3138 case XOP0A:
3139 m = 0xa;
3140 i.vex.bytes[0] = 0x8f;
3141 break;
3142 default:
3143 abort ();
3144 }
3145
3146 /* The high 3 bits of the second VEX byte are 1's compliment
3147 of RXB bits from REX. */
3148 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3149
3150 /* Check the REX.W bit. */
3151 w = (i.rex & REX_W) ? 1 : 0;
3152 if (i.tm.opcode_modifier.vexw == VEXW1)
3153 w = 1;
3154
3155 i.vex.bytes[2] = (w << 7
3156 | register_specifier << 3
3157 | vector_length << 2
3158 | implied_prefix);
3159 }
3160 }
3161
3162 /* Build the EVEX prefix. */
3163
3164 static void
3165 build_evex_prefix (void)
3166 {
3167 unsigned int register_specifier;
3168 unsigned int implied_prefix;
3169 unsigned int m, w;
3170 rex_byte vrex_used = 0;
3171
3172 /* Check register specifier. */
3173 if (i.vex.register_specifier)
3174 {
3175 gas_assert ((i.vrex & REX_X) == 0);
3176
3177 register_specifier = i.vex.register_specifier->reg_num;
3178 if ((i.vex.register_specifier->reg_flags & RegRex))
3179 register_specifier += 8;
3180 /* The upper 16 registers are encoded in the fourth byte of the
3181 EVEX prefix. */
3182 if (!(i.vex.register_specifier->reg_flags & RegVRex))
3183 i.vex.bytes[3] = 0x8;
3184 register_specifier = ~register_specifier & 0xf;
3185 }
3186 else
3187 {
3188 register_specifier = 0xf;
3189
3190 /* Encode upper 16 vector index register in the fourth byte of
3191 the EVEX prefix. */
3192 if (!(i.vrex & REX_X))
3193 i.vex.bytes[3] = 0x8;
3194 else
3195 vrex_used |= REX_X;
3196 }
3197
3198 switch ((i.tm.base_opcode >> 8) & 0xff)
3199 {
3200 case 0:
3201 implied_prefix = 0;
3202 break;
3203 case DATA_PREFIX_OPCODE:
3204 implied_prefix = 1;
3205 break;
3206 case REPE_PREFIX_OPCODE:
3207 implied_prefix = 2;
3208 break;
3209 case REPNE_PREFIX_OPCODE:
3210 implied_prefix = 3;
3211 break;
3212 default:
3213 abort ();
3214 }
3215
3216 /* 4 byte EVEX prefix. */
3217 i.vex.length = 4;
3218 i.vex.bytes[0] = 0x62;
3219
3220 /* mmmm bits. */
3221 switch (i.tm.opcode_modifier.vexopcode)
3222 {
3223 case VEX0F:
3224 m = 1;
3225 break;
3226 case VEX0F38:
3227 m = 2;
3228 break;
3229 case VEX0F3A:
3230 m = 3;
3231 break;
3232 default:
3233 abort ();
3234 break;
3235 }
3236
3237 /* The high 3 bits of the second EVEX byte are 1's compliment of RXB
3238 bits from REX. */
3239 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3240
3241 /* The fifth bit of the second EVEX byte is 1's compliment of the
3242 REX_R bit in VREX. */
3243 if (!(i.vrex & REX_R))
3244 i.vex.bytes[1] |= 0x10;
3245 else
3246 vrex_used |= REX_R;
3247
3248 if ((i.reg_operands + i.imm_operands) == i.operands)
3249 {
3250 /* When all operands are registers, the REX_X bit in REX is not
3251 used. We reuse it to encode the upper 16 registers, which is
3252 indicated by the REX_B bit in VREX. The REX_X bit is encoded
3253 as 1's compliment. */
3254 if ((i.vrex & REX_B))
3255 {
3256 vrex_used |= REX_B;
3257 i.vex.bytes[1] &= ~0x40;
3258 }
3259 }
3260
3261 /* EVEX instructions shouldn't need the REX prefix. */
3262 i.vrex &= ~vrex_used;
3263 gas_assert (i.vrex == 0);
3264
3265 /* Check the REX.W bit. */
3266 w = (i.rex & REX_W) ? 1 : 0;
3267 if (i.tm.opcode_modifier.vexw)
3268 {
3269 if (i.tm.opcode_modifier.vexw == VEXW1)
3270 w = 1;
3271 }
3272 /* If w is not set it means we are dealing with WIG instruction. */
3273 else if (!w)
3274 {
3275 if (evexwig == evexw1)
3276 w = 1;
3277 }
3278
3279 /* Encode the U bit. */
3280 implied_prefix |= 0x4;
3281
3282 /* The third byte of the EVEX prefix. */
3283 i.vex.bytes[2] = (w << 7 | register_specifier << 3 | implied_prefix);
3284
3285 /* The fourth byte of the EVEX prefix. */
3286 /* The zeroing-masking bit. */
3287 if (i.mask && i.mask->zeroing)
3288 i.vex.bytes[3] |= 0x80;
3289
3290 /* Don't always set the broadcast bit if there is no RC. */
3291 if (!i.rounding)
3292 {
3293 /* Encode the vector length. */
3294 unsigned int vec_length;
3295
3296 switch (i.tm.opcode_modifier.evex)
3297 {
3298 case EVEXLIG: /* LL' is ignored */
3299 vec_length = evexlig << 5;
3300 break;
3301 case EVEX128:
3302 vec_length = 0 << 5;
3303 break;
3304 case EVEX256:
3305 vec_length = 1 << 5;
3306 break;
3307 case EVEX512:
3308 vec_length = 2 << 5;
3309 break;
3310 default:
3311 abort ();
3312 break;
3313 }
3314 i.vex.bytes[3] |= vec_length;
3315 /* Encode the broadcast bit. */
3316 if (i.broadcast)
3317 i.vex.bytes[3] |= 0x10;
3318 }
3319 else
3320 {
3321 if (i.rounding->type != saeonly)
3322 i.vex.bytes[3] |= 0x10 | (i.rounding->type << 5);
3323 else
3324 i.vex.bytes[3] |= 0x10 | (evexrcig << 5);
3325 }
3326
3327 if (i.mask && i.mask->mask)
3328 i.vex.bytes[3] |= i.mask->mask->reg_num;
3329 }
3330
3331 static void
3332 process_immext (void)
3333 {
3334 expressionS *exp;
3335
3336 if ((i.tm.cpu_flags.bitfield.cpusse3 || i.tm.cpu_flags.bitfield.cpusvme)
3337 && i.operands > 0)
3338 {
3339 /* MONITOR/MWAIT as well as SVME instructions have fixed operands
3340 with an opcode suffix which is coded in the same place as an
3341 8-bit immediate field would be.
3342 Here we check those operands and remove them afterwards. */
3343 unsigned int x;
3344
3345 for (x = 0; x < i.operands; x++)
3346 if (register_number (i.op[x].regs) != x)
3347 as_bad (_("can't use register '%s%s' as operand %d in '%s'."),
3348 register_prefix, i.op[x].regs->reg_name, x + 1,
3349 i.tm.name);
3350
3351 i.operands = 0;
3352 }
3353
3354 if (i.tm.cpu_flags.bitfield.cpumwaitx && i.operands > 0)
3355 {
3356 /* MONITORX/MWAITX instructions have fixed operands with an opcode
3357 suffix which is coded in the same place as an 8-bit immediate
3358 field would be.
3359 Here we check those operands and remove them afterwards. */
3360 unsigned int x;
3361
3362 if (i.operands != 3)
3363 abort();
3364
3365 for (x = 0; x < 2; x++)
3366 if (register_number (i.op[x].regs) != x)
3367 goto bad_register_operand;
3368
3369 /* Check for third operand for mwaitx/monitorx insn. */
3370 if (register_number (i.op[x].regs)
3371 != (x + (i.tm.extension_opcode == 0xfb)))
3372 {
3373 bad_register_operand:
3374 as_bad (_("can't use register '%s%s' as operand %d in '%s'."),
3375 register_prefix, i.op[x].regs->reg_name, x+1,
3376 i.tm.name);
3377 }
3378
3379 i.operands = 0;
3380 }
3381
3382 /* These AMD 3DNow! and SSE2 instructions have an opcode suffix
3383 which is coded in the same place as an 8-bit immediate field
3384 would be. Here we fake an 8-bit immediate operand from the
3385 opcode suffix stored in tm.extension_opcode.
3386
3387 AVX instructions also use this encoding, for some of
3388 3 argument instructions. */
3389
3390 gas_assert (i.imm_operands <= 1
3391 && (i.operands <= 2
3392 || ((i.tm.opcode_modifier.vex
3393 || i.tm.opcode_modifier.evex)
3394 && i.operands <= 4)));
3395
3396 exp = &im_expressions[i.imm_operands++];
3397 i.op[i.operands].imms = exp;
3398 i.types[i.operands] = imm8;
3399 i.operands++;
3400 exp->X_op = O_constant;
3401 exp->X_add_number = i.tm.extension_opcode;
3402 i.tm.extension_opcode = None;
3403 }
3404
3405
3406 static int
3407 check_hle (void)
3408 {
3409 switch (i.tm.opcode_modifier.hleprefixok)
3410 {
3411 default:
3412 abort ();
3413 case HLEPrefixNone:
3414 as_bad (_("invalid instruction `%s' after `%s'"),
3415 i.tm.name, i.hle_prefix);
3416 return 0;
3417 case HLEPrefixLock:
3418 if (i.prefix[LOCK_PREFIX])
3419 return 1;
3420 as_bad (_("missing `lock' with `%s'"), i.hle_prefix);
3421 return 0;
3422 case HLEPrefixAny:
3423 return 1;
3424 case HLEPrefixRelease:
3425 if (i.prefix[HLE_PREFIX] != XRELEASE_PREFIX_OPCODE)
3426 {
3427 as_bad (_("instruction `%s' after `xacquire' not allowed"),
3428 i.tm.name);
3429 return 0;
3430 }
3431 if (i.mem_operands == 0
3432 || !operand_type_check (i.types[i.operands - 1], anymem))
3433 {
3434 as_bad (_("memory destination needed for instruction `%s'"
3435 " after `xrelease'"), i.tm.name);
3436 return 0;
3437 }
3438 return 1;
3439 }
3440 }
3441
3442 /* This is the guts of the machine-dependent assembler. LINE points to a
3443 machine dependent instruction. This function is supposed to emit
3444 the frags/bytes it assembles to. */
3445
3446 void
3447 md_assemble (char *line)
3448 {
3449 unsigned int j;
3450 char mnemonic[MAX_MNEM_SIZE];
3451 const insn_template *t;
3452
3453 /* Initialize globals. */
3454 memset (&i, '\0', sizeof (i));
3455 for (j = 0; j < MAX_OPERANDS; j++)
3456 i.reloc[j] = NO_RELOC;
3457 memset (disp_expressions, '\0', sizeof (disp_expressions));
3458 memset (im_expressions, '\0', sizeof (im_expressions));
3459 save_stack_p = save_stack;
3460
3461 /* First parse an instruction mnemonic & call i386_operand for the operands.
3462 We assume that the scrubber has arranged it so that line[0] is the valid
3463 start of a (possibly prefixed) mnemonic. */
3464
3465 line = parse_insn (line, mnemonic);
3466 if (line == NULL)
3467 return;
3468
3469 line = parse_operands (line, mnemonic);
3470 this_operand = -1;
3471 if (line == NULL)
3472 return;
3473
3474 /* Now we've parsed the mnemonic into a set of templates, and have the
3475 operands at hand. */
3476
3477 /* All intel opcodes have reversed operands except for "bound" and
3478 "enter". We also don't reverse intersegment "jmp" and "call"
3479 instructions with 2 immediate operands so that the immediate segment
3480 precedes the offset, as it does when in AT&T mode. */
3481 if (intel_syntax
3482 && i.operands > 1
3483 && (strcmp (mnemonic, "bound") != 0)
3484 && (strcmp (mnemonic, "invlpga") != 0)
3485 && !(operand_type_check (i.types[0], imm)
3486 && operand_type_check (i.types[1], imm)))
3487 swap_operands ();
3488
3489 /* The order of the immediates should be reversed
3490 for 2 immediates extrq and insertq instructions */
3491 if (i.imm_operands == 2
3492 && (strcmp (mnemonic, "extrq") == 0
3493 || strcmp (mnemonic, "insertq") == 0))
3494 swap_2_operands (0, 1);
3495
3496 if (i.imm_operands)
3497 optimize_imm ();
3498
3499 /* Don't optimize displacement for movabs since it only takes 64bit
3500 displacement. */
3501 if (i.disp_operands
3502 && i.disp_encoding != disp_encoding_32bit
3503 && (flag_code != CODE_64BIT
3504 || strcmp (mnemonic, "movabs") != 0))
3505 optimize_disp ();
3506
3507 /* Next, we find a template that matches the given insn,
3508 making sure the overlap of the given operands types is consistent
3509 with the template operand types. */
3510
3511 if (!(t = match_template ()))
3512 return;
3513
3514 if (sse_check != check_none
3515 && !i.tm.opcode_modifier.noavx
3516 && (i.tm.cpu_flags.bitfield.cpusse
3517 || i.tm.cpu_flags.bitfield.cpusse2
3518 || i.tm.cpu_flags.bitfield.cpusse3
3519 || i.tm.cpu_flags.bitfield.cpussse3
3520 || i.tm.cpu_flags.bitfield.cpusse4_1
3521 || i.tm.cpu_flags.bitfield.cpusse4_2))
3522 {
3523 (sse_check == check_warning
3524 ? as_warn
3525 : as_bad) (_("SSE instruction `%s' is used"), i.tm.name);
3526 }
3527
3528 /* Zap movzx and movsx suffix. The suffix has been set from
3529 "word ptr" or "byte ptr" on the source operand in Intel syntax
3530 or extracted from mnemonic in AT&T syntax. But we'll use
3531 the destination register to choose the suffix for encoding. */
3532 if ((i.tm.base_opcode & ~9) == 0x0fb6)
3533 {
3534 /* In Intel syntax, there must be a suffix. In AT&T syntax, if
3535 there is no suffix, the default will be byte extension. */
3536 if (i.reg_operands != 2
3537 && !i.suffix
3538 && intel_syntax)
3539 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
3540
3541 i.suffix = 0;
3542 }
3543
3544 if (i.tm.opcode_modifier.fwait)
3545 if (!add_prefix (FWAIT_OPCODE))
3546 return;
3547
3548 /* Check if REP prefix is OK. */
3549 if (i.rep_prefix && !i.tm.opcode_modifier.repprefixok)
3550 {
3551 as_bad (_("invalid instruction `%s' after `%s'"),
3552 i.tm.name, i.rep_prefix);
3553 return;
3554 }
3555
3556 /* Check for lock without a lockable instruction. Destination operand
3557 must be memory unless it is xchg (0x86). */
3558 if (i.prefix[LOCK_PREFIX]
3559 && (!i.tm.opcode_modifier.islockable
3560 || i.mem_operands == 0
3561 || (i.tm.base_opcode != 0x86
3562 && !operand_type_check (i.types[i.operands - 1], anymem))))
3563 {
3564 as_bad (_("expecting lockable instruction after `lock'"));
3565 return;
3566 }
3567
3568 /* Check if HLE prefix is OK. */
3569 if (i.hle_prefix && !check_hle ())
3570 return;
3571
3572 /* Check BND prefix. */
3573 if (i.bnd_prefix && !i.tm.opcode_modifier.bndprefixok)
3574 as_bad (_("expecting valid branch instruction after `bnd'"));
3575
3576 if (i.tm.cpu_flags.bitfield.cpumpx
3577 && flag_code == CODE_64BIT
3578 && i.prefix[ADDR_PREFIX])
3579 as_bad (_("32-bit address isn't allowed in 64-bit MPX instructions."));
3580
3581 /* Insert BND prefix. */
3582 if (add_bnd_prefix
3583 && i.tm.opcode_modifier.bndprefixok
3584 && !i.prefix[BND_PREFIX])
3585 add_prefix (BND_PREFIX_OPCODE);
3586
3587 /* Check string instruction segment overrides. */
3588 if (i.tm.opcode_modifier.isstring && i.mem_operands != 0)
3589 {
3590 if (!check_string ())
3591 return;
3592 i.disp_operands = 0;
3593 }
3594
3595 if (!process_suffix ())
3596 return;
3597
3598 /* Update operand types. */
3599 for (j = 0; j < i.operands; j++)
3600 i.types[j] = operand_type_and (i.types[j], i.tm.operand_types[j]);
3601
3602 /* Make still unresolved immediate matches conform to size of immediate
3603 given in i.suffix. */
3604 if (!finalize_imm ())
3605 return;
3606
3607 if (i.types[0].bitfield.imm1)
3608 i.imm_operands = 0; /* kludge for shift insns. */
3609
3610 /* We only need to check those implicit registers for instructions
3611 with 3 operands or less. */
3612 if (i.operands <= 3)
3613 for (j = 0; j < i.operands; j++)
3614 if (i.types[j].bitfield.inoutportreg
3615 || i.types[j].bitfield.shiftcount
3616 || i.types[j].bitfield.acc
3617 || i.types[j].bitfield.floatacc)
3618 i.reg_operands--;
3619
3620 /* ImmExt should be processed after SSE2AVX. */
3621 if (!i.tm.opcode_modifier.sse2avx
3622 && i.tm.opcode_modifier.immext)
3623 process_immext ();
3624
3625 /* For insns with operands there are more diddles to do to the opcode. */
3626 if (i.operands)
3627 {
3628 if (!process_operands ())
3629 return;
3630 }
3631 else if (!quiet_warnings && i.tm.opcode_modifier.ugh)
3632 {
3633 /* UnixWare fsub no args is alias for fsubp, fadd -> faddp, etc. */
3634 as_warn (_("translating to `%sp'"), i.tm.name);
3635 }
3636
3637 if (i.tm.opcode_modifier.vex || i.tm.opcode_modifier.evex)
3638 {
3639 if (flag_code == CODE_16BIT)
3640 {
3641 as_bad (_("instruction `%s' isn't supported in 16-bit mode."),
3642 i.tm.name);
3643 return;
3644 }
3645
3646 if (i.tm.opcode_modifier.vex)
3647 build_vex_prefix (t);
3648 else
3649 build_evex_prefix ();
3650 }
3651
3652 /* Handle conversion of 'int $3' --> special int3 insn. XOP or FMA4
3653 instructions may define INT_OPCODE as well, so avoid this corner
3654 case for those instructions that use MODRM. */
3655 if (i.tm.base_opcode == INT_OPCODE
3656 && !i.tm.opcode_modifier.modrm
3657 && i.op[0].imms->X_add_number == 3)
3658 {
3659 i.tm.base_opcode = INT3_OPCODE;
3660 i.imm_operands = 0;
3661 }
3662
3663 if ((i.tm.opcode_modifier.jump
3664 || i.tm.opcode_modifier.jumpbyte
3665 || i.tm.opcode_modifier.jumpdword)
3666 && i.op[0].disps->X_op == O_constant)
3667 {
3668 /* Convert "jmp constant" (and "call constant") to a jump (call) to
3669 the absolute address given by the constant. Since ix86 jumps and
3670 calls are pc relative, we need to generate a reloc. */
3671 i.op[0].disps->X_add_symbol = &abs_symbol;
3672 i.op[0].disps->X_op = O_symbol;
3673 }
3674
3675 if (i.tm.opcode_modifier.rex64)
3676 i.rex |= REX_W;
3677
3678 /* For 8 bit registers we need an empty rex prefix. Also if the
3679 instruction already has a prefix, we need to convert old
3680 registers to new ones. */
3681
3682 if ((i.types[0].bitfield.reg8
3683 && (i.op[0].regs->reg_flags & RegRex64) != 0)
3684 || (i.types[1].bitfield.reg8
3685 && (i.op[1].regs->reg_flags & RegRex64) != 0)
3686 || ((i.types[0].bitfield.reg8
3687 || i.types[1].bitfield.reg8)
3688 && i.rex != 0))
3689 {
3690 int x;
3691
3692 i.rex |= REX_OPCODE;
3693 for (x = 0; x < 2; x++)
3694 {
3695 /* Look for 8 bit operand that uses old registers. */
3696 if (i.types[x].bitfield.reg8
3697 && (i.op[x].regs->reg_flags & RegRex64) == 0)
3698 {
3699 /* In case it is "hi" register, give up. */
3700 if (i.op[x].regs->reg_num > 3)
3701 as_bad (_("can't encode register '%s%s' in an "
3702 "instruction requiring REX prefix."),
3703 register_prefix, i.op[x].regs->reg_name);
3704
3705 /* Otherwise it is equivalent to the extended register.
3706 Since the encoding doesn't change this is merely
3707 cosmetic cleanup for debug output. */
3708
3709 i.op[x].regs = i.op[x].regs + 8;
3710 }
3711 }
3712 }
3713
3714 if (i.rex != 0)
3715 add_prefix (REX_OPCODE | i.rex);
3716
3717 /* We are ready to output the insn. */
3718 output_insn ();
3719 }
3720
3721 static char *
3722 parse_insn (char *line, char *mnemonic)
3723 {
3724 char *l = line;
3725 char *token_start = l;
3726 char *mnem_p;
3727 int supported;
3728 const insn_template *t;
3729 char *dot_p = NULL;
3730
3731 while (1)
3732 {
3733 mnem_p = mnemonic;
3734 while ((*mnem_p = mnemonic_chars[(unsigned char) *l]) != 0)
3735 {
3736 if (*mnem_p == '.')
3737 dot_p = mnem_p;
3738 mnem_p++;
3739 if (mnem_p >= mnemonic + MAX_MNEM_SIZE)
3740 {
3741 as_bad (_("no such instruction: `%s'"), token_start);
3742 return NULL;
3743 }
3744 l++;
3745 }
3746 if (!is_space_char (*l)
3747 && *l != END_OF_INSN
3748 && (intel_syntax
3749 || (*l != PREFIX_SEPARATOR
3750 && *l != ',')))
3751 {
3752 as_bad (_("invalid character %s in mnemonic"),
3753 output_invalid (*l));
3754 return NULL;
3755 }
3756 if (token_start == l)
3757 {
3758 if (!intel_syntax && *l == PREFIX_SEPARATOR)
3759 as_bad (_("expecting prefix; got nothing"));
3760 else
3761 as_bad (_("expecting mnemonic; got nothing"));
3762 return NULL;
3763 }
3764
3765 /* Look up instruction (or prefix) via hash table. */
3766 current_templates = (const templates *) hash_find (op_hash, mnemonic);
3767
3768 if (*l != END_OF_INSN
3769 && (!is_space_char (*l) || l[1] != END_OF_INSN)
3770 && current_templates
3771 && current_templates->start->opcode_modifier.isprefix)
3772 {
3773 if (!cpu_flags_check_cpu64 (current_templates->start->cpu_flags))
3774 {
3775 as_bad ((flag_code != CODE_64BIT
3776 ? _("`%s' is only supported in 64-bit mode")
3777 : _("`%s' is not supported in 64-bit mode")),
3778 current_templates->start->name);
3779 return NULL;
3780 }
3781 /* If we are in 16-bit mode, do not allow addr16 or data16.
3782 Similarly, in 32-bit mode, do not allow addr32 or data32. */
3783 if ((current_templates->start->opcode_modifier.size16
3784 || current_templates->start->opcode_modifier.size32)
3785 && flag_code != CODE_64BIT
3786 && (current_templates->start->opcode_modifier.size32
3787 ^ (flag_code == CODE_16BIT)))
3788 {
3789 as_bad (_("redundant %s prefix"),
3790 current_templates->start->name);
3791 return NULL;
3792 }
3793 /* Add prefix, checking for repeated prefixes. */
3794 switch (add_prefix (current_templates->start->base_opcode))
3795 {
3796 case PREFIX_EXIST:
3797 return NULL;
3798 case PREFIX_REP:
3799 if (current_templates->start->cpu_flags.bitfield.cpuhle)
3800 i.hle_prefix = current_templates->start->name;
3801 else if (current_templates->start->cpu_flags.bitfield.cpumpx)
3802 i.bnd_prefix = current_templates->start->name;
3803 else
3804 i.rep_prefix = current_templates->start->name;
3805 break;
3806 default:
3807 break;
3808 }
3809 /* Skip past PREFIX_SEPARATOR and reset token_start. */
3810 token_start = ++l;
3811 }
3812 else
3813 break;
3814 }
3815
3816 if (!current_templates)
3817 {
3818 /* Check if we should swap operand or force 32bit displacement in
3819 encoding. */
3820 if (mnem_p - 2 == dot_p && dot_p[1] == 's')
3821 i.swap_operand = 1;
3822 else if (mnem_p - 3 == dot_p
3823 && dot_p[1] == 'd'
3824 && dot_p[2] == '8')
3825 i.disp_encoding = disp_encoding_8bit;
3826 else if (mnem_p - 4 == dot_p
3827 && dot_p[1] == 'd'
3828 && dot_p[2] == '3'
3829 && dot_p[3] == '2')
3830 i.disp_encoding = disp_encoding_32bit;
3831 else
3832 goto check_suffix;
3833 mnem_p = dot_p;
3834 *dot_p = '\0';
3835 current_templates = (const templates *) hash_find (op_hash, mnemonic);
3836 }
3837
3838 if (!current_templates)
3839 {
3840 check_suffix:
3841 /* See if we can get a match by trimming off a suffix. */
3842 switch (mnem_p[-1])
3843 {
3844 case WORD_MNEM_SUFFIX:
3845 if (intel_syntax && (intel_float_operand (mnemonic) & 2))
3846 i.suffix = SHORT_MNEM_SUFFIX;
3847 else
3848 case BYTE_MNEM_SUFFIX:
3849 case QWORD_MNEM_SUFFIX:
3850 i.suffix = mnem_p[-1];
3851 mnem_p[-1] = '\0';
3852 current_templates = (const templates *) hash_find (op_hash,
3853 mnemonic);
3854 break;
3855 case SHORT_MNEM_SUFFIX:
3856 case LONG_MNEM_SUFFIX:
3857 if (!intel_syntax)
3858 {
3859 i.suffix = mnem_p[-1];
3860 mnem_p[-1] = '\0';
3861 current_templates = (const templates *) hash_find (op_hash,
3862 mnemonic);
3863 }
3864 break;
3865
3866 /* Intel Syntax. */
3867 case 'd':
3868 if (intel_syntax)
3869 {
3870 if (intel_float_operand (mnemonic) == 1)
3871 i.suffix = SHORT_MNEM_SUFFIX;
3872 else
3873 i.suffix = LONG_MNEM_SUFFIX;
3874 mnem_p[-1] = '\0';
3875 current_templates = (const templates *) hash_find (op_hash,
3876 mnemonic);
3877 }
3878 break;
3879 }
3880 if (!current_templates)
3881 {
3882 as_bad (_("no such instruction: `%s'"), token_start);
3883 return NULL;
3884 }
3885 }
3886
3887 if (current_templates->start->opcode_modifier.jump
3888 || current_templates->start->opcode_modifier.jumpbyte)
3889 {
3890 /* Check for a branch hint. We allow ",pt" and ",pn" for
3891 predict taken and predict not taken respectively.
3892 I'm not sure that branch hints actually do anything on loop
3893 and jcxz insns (JumpByte) for current Pentium4 chips. They
3894 may work in the future and it doesn't hurt to accept them
3895 now. */
3896 if (l[0] == ',' && l[1] == 'p')
3897 {
3898 if (l[2] == 't')
3899 {
3900 if (!add_prefix (DS_PREFIX_OPCODE))
3901 return NULL;
3902 l += 3;
3903 }
3904 else if (l[2] == 'n')
3905 {
3906 if (!add_prefix (CS_PREFIX_OPCODE))
3907 return NULL;
3908 l += 3;
3909 }
3910 }
3911 }
3912 /* Any other comma loses. */
3913 if (*l == ',')
3914 {
3915 as_bad (_("invalid character %s in mnemonic"),
3916 output_invalid (*l));
3917 return NULL;
3918 }
3919
3920 /* Check if instruction is supported on specified architecture. */
3921 supported = 0;
3922 for (t = current_templates->start; t < current_templates->end; ++t)
3923 {
3924 supported |= cpu_flags_match (t);
3925 if (supported == CPU_FLAGS_PERFECT_MATCH)
3926 goto skip;
3927 }
3928
3929 if (!(supported & CPU_FLAGS_64BIT_MATCH))
3930 {
3931 as_bad (flag_code == CODE_64BIT
3932 ? _("`%s' is not supported in 64-bit mode")
3933 : _("`%s' is only supported in 64-bit mode"),
3934 current_templates->start->name);
3935 return NULL;
3936 }
3937 if (supported != CPU_FLAGS_PERFECT_MATCH)
3938 {
3939 as_bad (_("`%s' is not supported on `%s%s'"),
3940 current_templates->start->name,
3941 cpu_arch_name ? cpu_arch_name : default_arch,
3942 cpu_sub_arch_name ? cpu_sub_arch_name : "");
3943 return NULL;
3944 }
3945
3946 skip:
3947 if (!cpu_arch_flags.bitfield.cpui386
3948 && (flag_code != CODE_16BIT))
3949 {
3950 as_warn (_("use .code16 to ensure correct addressing mode"));
3951 }
3952
3953 return l;
3954 }
3955
3956 static char *
3957 parse_operands (char *l, const char *mnemonic)
3958 {
3959 char *token_start;
3960
3961 /* 1 if operand is pending after ','. */
3962 unsigned int expecting_operand = 0;
3963
3964 /* Non-zero if operand parens not balanced. */
3965 unsigned int paren_not_balanced;
3966
3967 while (*l != END_OF_INSN)
3968 {
3969 /* Skip optional white space before operand. */
3970 if (is_space_char (*l))
3971 ++l;
3972 if (!is_operand_char (*l) && *l != END_OF_INSN && *l != '"')
3973 {
3974 as_bad (_("invalid character %s before operand %d"),
3975 output_invalid (*l),
3976 i.operands + 1);
3977 return NULL;
3978 }
3979 token_start = l; /* After white space. */
3980 paren_not_balanced = 0;
3981 while (paren_not_balanced || *l != ',')
3982 {
3983 if (*l == END_OF_INSN)
3984 {
3985 if (paren_not_balanced)
3986 {
3987 if (!intel_syntax)
3988 as_bad (_("unbalanced parenthesis in operand %d."),
3989 i.operands + 1);
3990 else
3991 as_bad (_("unbalanced brackets in operand %d."),
3992 i.operands + 1);
3993 return NULL;
3994 }
3995 else
3996 break; /* we are done */
3997 }
3998 else if (!is_operand_char (*l) && !is_space_char (*l) && *l != '"')
3999 {
4000 as_bad (_("invalid character %s in operand %d"),
4001 output_invalid (*l),
4002 i.operands + 1);
4003 return NULL;
4004 }
4005 if (!intel_syntax)
4006 {
4007 if (*l == '(')
4008 ++paren_not_balanced;
4009 if (*l == ')')
4010 --paren_not_balanced;
4011 }
4012 else
4013 {
4014 if (*l == '[')
4015 ++paren_not_balanced;
4016 if (*l == ']')
4017 --paren_not_balanced;
4018 }
4019 l++;
4020 }
4021 if (l != token_start)
4022 { /* Yes, we've read in another operand. */
4023 unsigned int operand_ok;
4024 this_operand = i.operands++;
4025 i.types[this_operand].bitfield.unspecified = 1;
4026 if (i.operands > MAX_OPERANDS)
4027 {
4028 as_bad (_("spurious operands; (%d operands/instruction max)"),
4029 MAX_OPERANDS);
4030 return NULL;
4031 }
4032 /* Now parse operand adding info to 'i' as we go along. */
4033 END_STRING_AND_SAVE (l);
4034
4035 if (intel_syntax)
4036 operand_ok =
4037 i386_intel_operand (token_start,
4038 intel_float_operand (mnemonic));
4039 else
4040 operand_ok = i386_att_operand (token_start);
4041
4042 RESTORE_END_STRING (l);
4043 if (!operand_ok)
4044 return NULL;
4045 }
4046 else
4047 {
4048 if (expecting_operand)
4049 {
4050 expecting_operand_after_comma:
4051 as_bad (_("expecting operand after ','; got nothing"));
4052 return NULL;
4053 }
4054 if (*l == ',')
4055 {
4056 as_bad (_("expecting operand before ','; got nothing"));
4057 return NULL;
4058 }
4059 }
4060
4061 /* Now *l must be either ',' or END_OF_INSN. */
4062 if (*l == ',')
4063 {
4064 if (*++l == END_OF_INSN)
4065 {
4066 /* Just skip it, if it's \n complain. */
4067 goto expecting_operand_after_comma;
4068 }
4069 expecting_operand = 1;
4070 }
4071 }
4072 return l;
4073 }
4074
4075 static void
4076 swap_2_operands (int xchg1, int xchg2)
4077 {
4078 union i386_op temp_op;
4079 i386_operand_type temp_type;
4080 enum bfd_reloc_code_real temp_reloc;
4081
4082 temp_type = i.types[xchg2];
4083 i.types[xchg2] = i.types[xchg1];
4084 i.types[xchg1] = temp_type;
4085 temp_op = i.op[xchg2];
4086 i.op[xchg2] = i.op[xchg1];
4087 i.op[xchg1] = temp_op;
4088 temp_reloc = i.reloc[xchg2];
4089 i.reloc[xchg2] = i.reloc[xchg1];
4090 i.reloc[xchg1] = temp_reloc;
4091
4092 if (i.mask)
4093 {
4094 if (i.mask->operand == xchg1)
4095 i.mask->operand = xchg2;
4096 else if (i.mask->operand == xchg2)
4097 i.mask->operand = xchg1;
4098 }
4099 if (i.broadcast)
4100 {
4101 if (i.broadcast->operand == xchg1)
4102 i.broadcast->operand = xchg2;
4103 else if (i.broadcast->operand == xchg2)
4104 i.broadcast->operand = xchg1;
4105 }
4106 if (i.rounding)
4107 {
4108 if (i.rounding->operand == xchg1)
4109 i.rounding->operand = xchg2;
4110 else if (i.rounding->operand == xchg2)
4111 i.rounding->operand = xchg1;
4112 }
4113 }
4114
4115 static void
4116 swap_operands (void)
4117 {
4118 switch (i.operands)
4119 {
4120 case 5:
4121 case 4:
4122 swap_2_operands (1, i.operands - 2);
4123 case 3:
4124 case 2:
4125 swap_2_operands (0, i.operands - 1);
4126 break;
4127 default:
4128 abort ();
4129 }
4130
4131 if (i.mem_operands == 2)
4132 {
4133 const seg_entry *temp_seg;
4134 temp_seg = i.seg[0];
4135 i.seg[0] = i.seg[1];
4136 i.seg[1] = temp_seg;
4137 }
4138 }
4139
4140 /* Try to ensure constant immediates are represented in the smallest
4141 opcode possible. */
4142 static void
4143 optimize_imm (void)
4144 {
4145 char guess_suffix = 0;
4146 int op;
4147
4148 if (i.suffix)
4149 guess_suffix = i.suffix;
4150 else if (i.reg_operands)
4151 {
4152 /* Figure out a suffix from the last register operand specified.
4153 We can't do this properly yet, ie. excluding InOutPortReg,
4154 but the following works for instructions with immediates.
4155 In any case, we can't set i.suffix yet. */
4156 for (op = i.operands; --op >= 0;)
4157 if (i.types[op].bitfield.reg8)
4158 {
4159 guess_suffix = BYTE_MNEM_SUFFIX;
4160 break;
4161 }
4162 else if (i.types[op].bitfield.reg16)
4163 {
4164 guess_suffix = WORD_MNEM_SUFFIX;
4165 break;
4166 }
4167 else if (i.types[op].bitfield.reg32)
4168 {
4169 guess_suffix = LONG_MNEM_SUFFIX;
4170 break;
4171 }
4172 else if (i.types[op].bitfield.reg64)
4173 {
4174 guess_suffix = QWORD_MNEM_SUFFIX;
4175 break;
4176 }
4177 }
4178 else if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
4179 guess_suffix = WORD_MNEM_SUFFIX;
4180
4181 for (op = i.operands; --op >= 0;)
4182 if (operand_type_check (i.types[op], imm))
4183 {
4184 switch (i.op[op].imms->X_op)
4185 {
4186 case O_constant:
4187 /* If a suffix is given, this operand may be shortened. */
4188 switch (guess_suffix)
4189 {
4190 case LONG_MNEM_SUFFIX:
4191 i.types[op].bitfield.imm32 = 1;
4192 i.types[op].bitfield.imm64 = 1;
4193 break;
4194 case WORD_MNEM_SUFFIX:
4195 i.types[op].bitfield.imm16 = 1;
4196 i.types[op].bitfield.imm32 = 1;
4197 i.types[op].bitfield.imm32s = 1;
4198 i.types[op].bitfield.imm64 = 1;
4199 break;
4200 case BYTE_MNEM_SUFFIX:
4201 i.types[op].bitfield.imm8 = 1;
4202 i.types[op].bitfield.imm8s = 1;
4203 i.types[op].bitfield.imm16 = 1;
4204 i.types[op].bitfield.imm32 = 1;
4205 i.types[op].bitfield.imm32s = 1;
4206 i.types[op].bitfield.imm64 = 1;
4207 break;
4208 }
4209
4210 /* If this operand is at most 16 bits, convert it
4211 to a signed 16 bit number before trying to see
4212 whether it will fit in an even smaller size.
4213 This allows a 16-bit operand such as $0xffe0 to
4214 be recognised as within Imm8S range. */
4215 if ((i.types[op].bitfield.imm16)
4216 && (i.op[op].imms->X_add_number & ~(offsetT) 0xffff) == 0)
4217 {
4218 i.op[op].imms->X_add_number =
4219 (((i.op[op].imms->X_add_number & 0xffff) ^ 0x8000) - 0x8000);
4220 }
4221 #ifdef BFD64
4222 /* Store 32-bit immediate in 64-bit for 64-bit BFD. */
4223 if ((i.types[op].bitfield.imm32)
4224 && ((i.op[op].imms->X_add_number & ~(((offsetT) 2 << 31) - 1))
4225 == 0))
4226 {
4227 i.op[op].imms->X_add_number = ((i.op[op].imms->X_add_number
4228 ^ ((offsetT) 1 << 31))
4229 - ((offsetT) 1 << 31));
4230 }
4231 #endif
4232 i.types[op]
4233 = operand_type_or (i.types[op],
4234 smallest_imm_type (i.op[op].imms->X_add_number));
4235
4236 /* We must avoid matching of Imm32 templates when 64bit
4237 only immediate is available. */
4238 if (guess_suffix == QWORD_MNEM_SUFFIX)
4239 i.types[op].bitfield.imm32 = 0;
4240 break;
4241
4242 case O_absent:
4243 case O_register:
4244 abort ();
4245
4246 /* Symbols and expressions. */
4247 default:
4248 /* Convert symbolic operand to proper sizes for matching, but don't
4249 prevent matching a set of insns that only supports sizes other
4250 than those matching the insn suffix. */
4251 {
4252 i386_operand_type mask, allowed;
4253 const insn_template *t;
4254
4255 operand_type_set (&mask, 0);
4256 operand_type_set (&allowed, 0);
4257
4258 for (t = current_templates->start;
4259 t < current_templates->end;
4260 ++t)
4261 allowed = operand_type_or (allowed,
4262 t->operand_types[op]);
4263 switch (guess_suffix)
4264 {
4265 case QWORD_MNEM_SUFFIX:
4266 mask.bitfield.imm64 = 1;
4267 mask.bitfield.imm32s = 1;
4268 break;
4269 case LONG_MNEM_SUFFIX:
4270 mask.bitfield.imm32 = 1;
4271 break;
4272 case WORD_MNEM_SUFFIX:
4273 mask.bitfield.imm16 = 1;
4274 break;
4275 case BYTE_MNEM_SUFFIX:
4276 mask.bitfield.imm8 = 1;
4277 break;
4278 default:
4279 break;
4280 }
4281 allowed = operand_type_and (mask, allowed);
4282 if (!operand_type_all_zero (&allowed))
4283 i.types[op] = operand_type_and (i.types[op], mask);
4284 }
4285 break;
4286 }
4287 }
4288 }
4289
4290 /* Try to use the smallest displacement type too. */
4291 static void
4292 optimize_disp (void)
4293 {
4294 int op;
4295
4296 for (op = i.operands; --op >= 0;)
4297 if (operand_type_check (i.types[op], disp))
4298 {
4299 if (i.op[op].disps->X_op == O_constant)
4300 {
4301 offsetT op_disp = i.op[op].disps->X_add_number;
4302
4303 if (i.types[op].bitfield.disp16
4304 && (op_disp & ~(offsetT) 0xffff) == 0)
4305 {
4306 /* If this operand is at most 16 bits, convert
4307 to a signed 16 bit number and don't use 64bit
4308 displacement. */
4309 op_disp = (((op_disp & 0xffff) ^ 0x8000) - 0x8000);
4310 i.types[op].bitfield.disp64 = 0;
4311 }
4312 #ifdef BFD64
4313 /* Optimize 64-bit displacement to 32-bit for 64-bit BFD. */
4314 if (i.types[op].bitfield.disp32
4315 && (op_disp & ~(((offsetT) 2 << 31) - 1)) == 0)
4316 {
4317 /* If this operand is at most 32 bits, convert
4318 to a signed 32 bit number and don't use 64bit
4319 displacement. */
4320 op_disp &= (((offsetT) 2 << 31) - 1);
4321 op_disp = (op_disp ^ ((offsetT) 1 << 31)) - ((addressT) 1 << 31);
4322 i.types[op].bitfield.disp64 = 0;
4323 }
4324 #endif
4325 if (!op_disp && i.types[op].bitfield.baseindex)
4326 {
4327 i.types[op].bitfield.disp8 = 0;
4328 i.types[op].bitfield.disp16 = 0;
4329 i.types[op].bitfield.disp32 = 0;
4330 i.types[op].bitfield.disp32s = 0;
4331 i.types[op].bitfield.disp64 = 0;
4332 i.op[op].disps = 0;
4333 i.disp_operands--;
4334 }
4335 else if (flag_code == CODE_64BIT)
4336 {
4337 if (fits_in_signed_long (op_disp))
4338 {
4339 i.types[op].bitfield.disp64 = 0;
4340 i.types[op].bitfield.disp32s = 1;
4341 }
4342 if (i.prefix[ADDR_PREFIX]
4343 && fits_in_unsigned_long (op_disp))
4344 i.types[op].bitfield.disp32 = 1;
4345 }
4346 if ((i.types[op].bitfield.disp32
4347 || i.types[op].bitfield.disp32s
4348 || i.types[op].bitfield.disp16)
4349 && fits_in_signed_byte (op_disp))
4350 i.types[op].bitfield.disp8 = 1;
4351 }
4352 else if (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
4353 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL)
4354 {
4355 fix_new_exp (frag_now, frag_more (0) - frag_now->fr_literal, 0,
4356 i.op[op].disps, 0, i.reloc[op]);
4357 i.types[op].bitfield.disp8 = 0;
4358 i.types[op].bitfield.disp16 = 0;
4359 i.types[op].bitfield.disp32 = 0;
4360 i.types[op].bitfield.disp32s = 0;
4361 i.types[op].bitfield.disp64 = 0;
4362 }
4363 else
4364 /* We only support 64bit displacement on constants. */
4365 i.types[op].bitfield.disp64 = 0;
4366 }
4367 }
4368
4369 /* Check if operands are valid for the instruction. */
4370
4371 static int
4372 check_VecOperands (const insn_template *t)
4373 {
4374 unsigned int op;
4375
4376 /* Without VSIB byte, we can't have a vector register for index. */
4377 if (!t->opcode_modifier.vecsib
4378 && i.index_reg
4379 && (i.index_reg->reg_type.bitfield.regxmm
4380 || i.index_reg->reg_type.bitfield.regymm
4381 || i.index_reg->reg_type.bitfield.regzmm))
4382 {
4383 i.error = unsupported_vector_index_register;
4384 return 1;
4385 }
4386
4387 /* Check if default mask is allowed. */
4388 if (t->opcode_modifier.nodefmask
4389 && (!i.mask || i.mask->mask->reg_num == 0))
4390 {
4391 i.error = no_default_mask;
4392 return 1;
4393 }
4394
4395 /* For VSIB byte, we need a vector register for index, and all vector
4396 registers must be distinct. */
4397 if (t->opcode_modifier.vecsib)
4398 {
4399 if (!i.index_reg
4400 || !((t->opcode_modifier.vecsib == VecSIB128
4401 && i.index_reg->reg_type.bitfield.regxmm)
4402 || (t->opcode_modifier.vecsib == VecSIB256
4403 && i.index_reg->reg_type.bitfield.regymm)
4404 || (t->opcode_modifier.vecsib == VecSIB512
4405 && i.index_reg->reg_type.bitfield.regzmm)))
4406 {
4407 i.error = invalid_vsib_address;
4408 return 1;
4409 }
4410
4411 gas_assert (i.reg_operands == 2 || i.mask);
4412 if (i.reg_operands == 2 && !i.mask)
4413 {
4414 gas_assert (i.types[0].bitfield.regxmm
4415 || i.types[0].bitfield.regymm);
4416 gas_assert (i.types[2].bitfield.regxmm
4417 || i.types[2].bitfield.regymm);
4418 if (operand_check == check_none)
4419 return 0;
4420 if (register_number (i.op[0].regs)
4421 != register_number (i.index_reg)
4422 && register_number (i.op[2].regs)
4423 != register_number (i.index_reg)
4424 && register_number (i.op[0].regs)
4425 != register_number (i.op[2].regs))
4426 return 0;
4427 if (operand_check == check_error)
4428 {
4429 i.error = invalid_vector_register_set;
4430 return 1;
4431 }
4432 as_warn (_("mask, index, and destination registers should be distinct"));
4433 }
4434 else if (i.reg_operands == 1 && i.mask)
4435 {
4436 if ((i.types[1].bitfield.regymm
4437 || i.types[1].bitfield.regzmm)
4438 && (register_number (i.op[1].regs)
4439 == register_number (i.index_reg)))
4440 {
4441 if (operand_check == check_error)
4442 {
4443 i.error = invalid_vector_register_set;
4444 return 1;
4445 }
4446 if (operand_check != check_none)
4447 as_warn (_("index and destination registers should be distinct"));
4448 }
4449 }
4450 }
4451
4452 /* Check if broadcast is supported by the instruction and is applied
4453 to the memory operand. */
4454 if (i.broadcast)
4455 {
4456 int broadcasted_opnd_size;
4457
4458 /* Check if specified broadcast is supported in this instruction,
4459 and it's applied to memory operand of DWORD or QWORD type,
4460 depending on VecESize. */
4461 if (i.broadcast->type != t->opcode_modifier.broadcast
4462 || !i.types[i.broadcast->operand].bitfield.mem
4463 || (t->opcode_modifier.vecesize == 0
4464 && !i.types[i.broadcast->operand].bitfield.dword
4465 && !i.types[i.broadcast->operand].bitfield.unspecified)
4466 || (t->opcode_modifier.vecesize == 1
4467 && !i.types[i.broadcast->operand].bitfield.qword
4468 && !i.types[i.broadcast->operand].bitfield.unspecified))
4469 goto bad_broadcast;
4470
4471 broadcasted_opnd_size = t->opcode_modifier.vecesize ? 64 : 32;
4472 if (i.broadcast->type == BROADCAST_1TO16)
4473 broadcasted_opnd_size <<= 4; /* Broadcast 1to16. */
4474 else if (i.broadcast->type == BROADCAST_1TO8)
4475 broadcasted_opnd_size <<= 3; /* Broadcast 1to8. */
4476 else if (i.broadcast->type == BROADCAST_1TO4)
4477 broadcasted_opnd_size <<= 2; /* Broadcast 1to4. */
4478 else if (i.broadcast->type == BROADCAST_1TO2)
4479 broadcasted_opnd_size <<= 1; /* Broadcast 1to2. */
4480 else
4481 goto bad_broadcast;
4482
4483 if ((broadcasted_opnd_size == 256
4484 && !t->operand_types[i.broadcast->operand].bitfield.ymmword)
4485 || (broadcasted_opnd_size == 512
4486 && !t->operand_types[i.broadcast->operand].bitfield.zmmword))
4487 {
4488 bad_broadcast:
4489 i.error = unsupported_broadcast;
4490 return 1;
4491 }
4492 }
4493 /* If broadcast is supported in this instruction, we need to check if
4494 operand of one-element size isn't specified without broadcast. */
4495 else if (t->opcode_modifier.broadcast && i.mem_operands)
4496 {
4497 /* Find memory operand. */
4498 for (op = 0; op < i.operands; op++)
4499 if (operand_type_check (i.types[op], anymem))
4500 break;
4501 gas_assert (op < i.operands);
4502 /* Check size of the memory operand. */
4503 if ((t->opcode_modifier.vecesize == 0
4504 && i.types[op].bitfield.dword)
4505 || (t->opcode_modifier.vecesize == 1
4506 && i.types[op].bitfield.qword))
4507 {
4508 i.error = broadcast_needed;
4509 return 1;
4510 }
4511 }
4512
4513 /* Check if requested masking is supported. */
4514 if (i.mask
4515 && (!t->opcode_modifier.masking
4516 || (i.mask->zeroing
4517 && t->opcode_modifier.masking == MERGING_MASKING)))
4518 {
4519 i.error = unsupported_masking;
4520 return 1;
4521 }
4522
4523 /* Check if masking is applied to dest operand. */
4524 if (i.mask && (i.mask->operand != (int) (i.operands - 1)))
4525 {
4526 i.error = mask_not_on_destination;
4527 return 1;
4528 }
4529
4530 /* Check RC/SAE. */
4531 if (i.rounding)
4532 {
4533 if ((i.rounding->type != saeonly
4534 && !t->opcode_modifier.staticrounding)
4535 || (i.rounding->type == saeonly
4536 && (t->opcode_modifier.staticrounding
4537 || !t->opcode_modifier.sae)))
4538 {
4539 i.error = unsupported_rc_sae;
4540 return 1;
4541 }
4542 /* If the instruction has several immediate operands and one of
4543 them is rounding, the rounding operand should be the last
4544 immediate operand. */
4545 if (i.imm_operands > 1
4546 && i.rounding->operand != (int) (i.imm_operands - 1))
4547 {
4548 i.error = rc_sae_operand_not_last_imm;
4549 return 1;
4550 }
4551 }
4552
4553 /* Check vector Disp8 operand. */
4554 if (t->opcode_modifier.disp8memshift)
4555 {
4556 if (i.broadcast)
4557 i.memshift = t->opcode_modifier.vecesize ? 3 : 2;
4558 else
4559 i.memshift = t->opcode_modifier.disp8memshift;
4560
4561 for (op = 0; op < i.operands; op++)
4562 if (operand_type_check (i.types[op], disp)
4563 && i.op[op].disps->X_op == O_constant)
4564 {
4565 offsetT value = i.op[op].disps->X_add_number;
4566 int vec_disp8_ok = fits_in_vec_disp8 (value);
4567 if (t->operand_types [op].bitfield.vec_disp8)
4568 {
4569 if (vec_disp8_ok)
4570 i.types[op].bitfield.vec_disp8 = 1;
4571 else
4572 {
4573 /* Vector insn can only have Vec_Disp8/Disp32 in
4574 32/64bit modes, and Vec_Disp8/Disp16 in 16bit
4575 mode. */
4576 i.types[op].bitfield.disp8 = 0;
4577 if (flag_code != CODE_16BIT)
4578 i.types[op].bitfield.disp16 = 0;
4579 }
4580 }
4581 else if (flag_code != CODE_16BIT)
4582 {
4583 /* One form of this instruction supports vector Disp8.
4584 Try vector Disp8 if we need to use Disp32. */
4585 if (vec_disp8_ok && !fits_in_signed_byte (value))
4586 {
4587 i.error = try_vector_disp8;
4588 return 1;
4589 }
4590 }
4591 }
4592 }
4593 else
4594 i.memshift = -1;
4595
4596 return 0;
4597 }
4598
4599 /* Check if operands are valid for the instruction. Update VEX
4600 operand types. */
4601
4602 static int
4603 VEX_check_operands (const insn_template *t)
4604 {
4605 /* VREX is only valid with EVEX prefix. */
4606 if (i.need_vrex && !t->opcode_modifier.evex)
4607 {
4608 i.error = invalid_register_operand;
4609 return 1;
4610 }
4611
4612 if (!t->opcode_modifier.vex)
4613 return 0;
4614
4615 /* Only check VEX_Imm4, which must be the first operand. */
4616 if (t->operand_types[0].bitfield.vec_imm4)
4617 {
4618 if (i.op[0].imms->X_op != O_constant
4619 || !fits_in_imm4 (i.op[0].imms->X_add_number))
4620 {
4621 i.error = bad_imm4;
4622 return 1;
4623 }
4624
4625 /* Turn off Imm8 so that update_imm won't complain. */
4626 i.types[0] = vec_imm4;
4627 }
4628
4629 return 0;
4630 }
4631
4632 static const insn_template *
4633 match_template (void)
4634 {
4635 /* Points to template once we've found it. */
4636 const insn_template *t;
4637 i386_operand_type overlap0, overlap1, overlap2, overlap3;
4638 i386_operand_type overlap4;
4639 unsigned int found_reverse_match;
4640 i386_opcode_modifier suffix_check;
4641 i386_operand_type operand_types [MAX_OPERANDS];
4642 int addr_prefix_disp;
4643 unsigned int j;
4644 unsigned int found_cpu_match;
4645 unsigned int check_register;
4646 enum i386_error specific_error = 0;
4647
4648 #if MAX_OPERANDS != 5
4649 # error "MAX_OPERANDS must be 5."
4650 #endif
4651
4652 found_reverse_match = 0;
4653 addr_prefix_disp = -1;
4654
4655 memset (&suffix_check, 0, sizeof (suffix_check));
4656 if (i.suffix == BYTE_MNEM_SUFFIX)
4657 suffix_check.no_bsuf = 1;
4658 else if (i.suffix == WORD_MNEM_SUFFIX)
4659 suffix_check.no_wsuf = 1;
4660 else if (i.suffix == SHORT_MNEM_SUFFIX)
4661 suffix_check.no_ssuf = 1;
4662 else if (i.suffix == LONG_MNEM_SUFFIX)
4663 suffix_check.no_lsuf = 1;
4664 else if (i.suffix == QWORD_MNEM_SUFFIX)
4665 suffix_check.no_qsuf = 1;
4666 else if (i.suffix == LONG_DOUBLE_MNEM_SUFFIX)
4667 suffix_check.no_ldsuf = 1;
4668
4669 /* Must have right number of operands. */
4670 i.error = number_of_operands_mismatch;
4671
4672 for (t = current_templates->start; t < current_templates->end; t++)
4673 {
4674 addr_prefix_disp = -1;
4675
4676 if (i.operands != t->operands)
4677 continue;
4678
4679 /* Check processor support. */
4680 i.error = unsupported;
4681 found_cpu_match = (cpu_flags_match (t)
4682 == CPU_FLAGS_PERFECT_MATCH);
4683 if (!found_cpu_match)
4684 continue;
4685
4686 /* Check old gcc support. */
4687 i.error = old_gcc_only;
4688 if (!old_gcc && t->opcode_modifier.oldgcc)
4689 continue;
4690
4691 /* Check AT&T mnemonic. */
4692 i.error = unsupported_with_intel_mnemonic;
4693 if (intel_mnemonic && t->opcode_modifier.attmnemonic)
4694 continue;
4695
4696 /* Check AT&T/Intel syntax. */
4697 i.error = unsupported_syntax;
4698 if ((intel_syntax && t->opcode_modifier.attsyntax)
4699 || (!intel_syntax && t->opcode_modifier.intelsyntax))
4700 continue;
4701
4702 /* Check the suffix, except for some instructions in intel mode. */
4703 i.error = invalid_instruction_suffix;
4704 if ((!intel_syntax || !t->opcode_modifier.ignoresize)
4705 && ((t->opcode_modifier.no_bsuf && suffix_check.no_bsuf)
4706 || (t->opcode_modifier.no_wsuf && suffix_check.no_wsuf)
4707 || (t->opcode_modifier.no_lsuf && suffix_check.no_lsuf)
4708 || (t->opcode_modifier.no_ssuf && suffix_check.no_ssuf)
4709 || (t->opcode_modifier.no_qsuf && suffix_check.no_qsuf)
4710 || (t->opcode_modifier.no_ldsuf && suffix_check.no_ldsuf)))
4711 continue;
4712
4713 if (!operand_size_match (t))
4714 continue;
4715
4716 for (j = 0; j < MAX_OPERANDS; j++)
4717 operand_types[j] = t->operand_types[j];
4718
4719 /* In general, don't allow 64-bit operands in 32-bit mode. */
4720 if (i.suffix == QWORD_MNEM_SUFFIX
4721 && flag_code != CODE_64BIT
4722 && (intel_syntax
4723 ? (!t->opcode_modifier.ignoresize
4724 && !intel_float_operand (t->name))
4725 : intel_float_operand (t->name) != 2)
4726 && ((!operand_types[0].bitfield.regmmx
4727 && !operand_types[0].bitfield.regxmm
4728 && !operand_types[0].bitfield.regymm
4729 && !operand_types[0].bitfield.regzmm)
4730 || (!operand_types[t->operands > 1].bitfield.regmmx
4731 && operand_types[t->operands > 1].bitfield.regxmm
4732 && operand_types[t->operands > 1].bitfield.regymm
4733 && operand_types[t->operands > 1].bitfield.regzmm))
4734 && (t->base_opcode != 0x0fc7
4735 || t->extension_opcode != 1 /* cmpxchg8b */))
4736 continue;
4737
4738 /* In general, don't allow 32-bit operands on pre-386. */
4739 else if (i.suffix == LONG_MNEM_SUFFIX
4740 && !cpu_arch_flags.bitfield.cpui386
4741 && (intel_syntax
4742 ? (!t->opcode_modifier.ignoresize
4743 && !intel_float_operand (t->name))
4744 : intel_float_operand (t->name) != 2)
4745 && ((!operand_types[0].bitfield.regmmx
4746 && !operand_types[0].bitfield.regxmm)
4747 || (!operand_types[t->operands > 1].bitfield.regmmx
4748 && operand_types[t->operands > 1].bitfield.regxmm)))
4749 continue;
4750
4751 /* Do not verify operands when there are none. */
4752 else
4753 {
4754 if (!t->operands)
4755 /* We've found a match; break out of loop. */
4756 break;
4757 }
4758
4759 /* Address size prefix will turn Disp64/Disp32/Disp16 operand
4760 into Disp32/Disp16/Disp32 operand. */
4761 if (i.prefix[ADDR_PREFIX] != 0)
4762 {
4763 /* There should be only one Disp operand. */
4764 switch (flag_code)
4765 {
4766 case CODE_16BIT:
4767 for (j = 0; j < MAX_OPERANDS; j++)
4768 {
4769 if (operand_types[j].bitfield.disp16)
4770 {
4771 addr_prefix_disp = j;
4772 operand_types[j].bitfield.disp32 = 1;
4773 operand_types[j].bitfield.disp16 = 0;
4774 break;
4775 }
4776 }
4777 break;
4778 case CODE_32BIT:
4779 for (j = 0; j < MAX_OPERANDS; j++)
4780 {
4781 if (operand_types[j].bitfield.disp32)
4782 {
4783 addr_prefix_disp = j;
4784 operand_types[j].bitfield.disp32 = 0;
4785 operand_types[j].bitfield.disp16 = 1;
4786 break;
4787 }
4788 }
4789 break;
4790 case CODE_64BIT:
4791 for (j = 0; j < MAX_OPERANDS; j++)
4792 {
4793 if (operand_types[j].bitfield.disp64)
4794 {
4795 addr_prefix_disp = j;
4796 operand_types[j].bitfield.disp64 = 0;
4797 operand_types[j].bitfield.disp32 = 1;
4798 break;
4799 }
4800 }
4801 break;
4802 }
4803 }
4804
4805 /* Force 0x8b encoding for "mov foo@GOT, %eax". */
4806 if (i.reloc[0] == BFD_RELOC_386_GOT32 && t->base_opcode == 0xa0)
4807 continue;
4808
4809 /* We check register size if needed. */
4810 check_register = t->opcode_modifier.checkregsize;
4811 overlap0 = operand_type_and (i.types[0], operand_types[0]);
4812 switch (t->operands)
4813 {
4814 case 1:
4815 if (!operand_type_match (overlap0, i.types[0]))
4816 continue;
4817 break;
4818 case 2:
4819 /* xchg %eax, %eax is a special case. It is an aliase for nop
4820 only in 32bit mode and we can use opcode 0x90. In 64bit
4821 mode, we can't use 0x90 for xchg %eax, %eax since it should
4822 zero-extend %eax to %rax. */
4823 if (flag_code == CODE_64BIT
4824 && t->base_opcode == 0x90
4825 && operand_type_equal (&i.types [0], &acc32)
4826 && operand_type_equal (&i.types [1], &acc32))
4827 continue;
4828 if (i.swap_operand)
4829 {
4830 /* If we swap operand in encoding, we either match
4831 the next one or reverse direction of operands. */
4832 if (t->opcode_modifier.s)
4833 continue;
4834 else if (t->opcode_modifier.d)
4835 goto check_reverse;
4836 }
4837
4838 case 3:
4839 /* If we swap operand in encoding, we match the next one. */
4840 if (i.swap_operand && t->opcode_modifier.s)
4841 continue;
4842 case 4:
4843 case 5:
4844 overlap1 = operand_type_and (i.types[1], operand_types[1]);
4845 if (!operand_type_match (overlap0, i.types[0])
4846 || !operand_type_match (overlap1, i.types[1])
4847 || (check_register
4848 && !operand_type_register_match (overlap0, i.types[0],
4849 operand_types[0],
4850 overlap1, i.types[1],
4851 operand_types[1])))
4852 {
4853 /* Check if other direction is valid ... */
4854 if (!t->opcode_modifier.d && !t->opcode_modifier.floatd)
4855 continue;
4856
4857 check_reverse:
4858 /* Try reversing direction of operands. */
4859 overlap0 = operand_type_and (i.types[0], operand_types[1]);
4860 overlap1 = operand_type_and (i.types[1], operand_types[0]);
4861 if (!operand_type_match (overlap0, i.types[0])
4862 || !operand_type_match (overlap1, i.types[1])
4863 || (check_register
4864 && !operand_type_register_match (overlap0,
4865 i.types[0],
4866 operand_types[1],
4867 overlap1,
4868 i.types[1],
4869 operand_types[0])))
4870 {
4871 /* Does not match either direction. */
4872 continue;
4873 }
4874 /* found_reverse_match holds which of D or FloatDR
4875 we've found. */
4876 if (t->opcode_modifier.d)
4877 found_reverse_match = Opcode_D;
4878 else if (t->opcode_modifier.floatd)
4879 found_reverse_match = Opcode_FloatD;
4880 else
4881 found_reverse_match = 0;
4882 if (t->opcode_modifier.floatr)
4883 found_reverse_match |= Opcode_FloatR;
4884 }
4885 else
4886 {
4887 /* Found a forward 2 operand match here. */
4888 switch (t->operands)
4889 {
4890 case 5:
4891 overlap4 = operand_type_and (i.types[4],
4892 operand_types[4]);
4893 case 4:
4894 overlap3 = operand_type_and (i.types[3],
4895 operand_types[3]);
4896 case 3:
4897 overlap2 = operand_type_and (i.types[2],
4898 operand_types[2]);
4899 break;
4900 }
4901
4902 switch (t->operands)
4903 {
4904 case 5:
4905 if (!operand_type_match (overlap4, i.types[4])
4906 || !operand_type_register_match (overlap3,
4907 i.types[3],
4908 operand_types[3],
4909 overlap4,
4910 i.types[4],
4911 operand_types[4]))
4912 continue;
4913 case 4:
4914 if (!operand_type_match (overlap3, i.types[3])
4915 || (check_register
4916 && !operand_type_register_match (overlap2,
4917 i.types[2],
4918 operand_types[2],
4919 overlap3,
4920 i.types[3],
4921 operand_types[3])))
4922 continue;
4923 case 3:
4924 /* Here we make use of the fact that there are no
4925 reverse match 3 operand instructions, and all 3
4926 operand instructions only need to be checked for
4927 register consistency between operands 2 and 3. */
4928 if (!operand_type_match (overlap2, i.types[2])
4929 || (check_register
4930 && !operand_type_register_match (overlap1,
4931 i.types[1],
4932 operand_types[1],
4933 overlap2,
4934 i.types[2],
4935 operand_types[2])))
4936 continue;
4937 break;
4938 }
4939 }
4940 /* Found either forward/reverse 2, 3 or 4 operand match here:
4941 slip through to break. */
4942 }
4943 if (!found_cpu_match)
4944 {
4945 found_reverse_match = 0;
4946 continue;
4947 }
4948
4949 /* Check if vector and VEX operands are valid. */
4950 if (check_VecOperands (t) || VEX_check_operands (t))
4951 {
4952 specific_error = i.error;
4953 continue;
4954 }
4955
4956 /* We've found a match; break out of loop. */
4957 break;
4958 }
4959
4960 if (t == current_templates->end)
4961 {
4962 /* We found no match. */
4963 const char *err_msg;
4964 switch (specific_error ? specific_error : i.error)
4965 {
4966 default:
4967 abort ();
4968 case operand_size_mismatch:
4969 err_msg = _("operand size mismatch");
4970 break;
4971 case operand_type_mismatch:
4972 err_msg = _("operand type mismatch");
4973 break;
4974 case register_type_mismatch:
4975 err_msg = _("register type mismatch");
4976 break;
4977 case number_of_operands_mismatch:
4978 err_msg = _("number of operands mismatch");
4979 break;
4980 case invalid_instruction_suffix:
4981 err_msg = _("invalid instruction suffix");
4982 break;
4983 case bad_imm4:
4984 err_msg = _("constant doesn't fit in 4 bits");
4985 break;
4986 case old_gcc_only:
4987 err_msg = _("only supported with old gcc");
4988 break;
4989 case unsupported_with_intel_mnemonic:
4990 err_msg = _("unsupported with Intel mnemonic");
4991 break;
4992 case unsupported_syntax:
4993 err_msg = _("unsupported syntax");
4994 break;
4995 case unsupported:
4996 as_bad (_("unsupported instruction `%s'"),
4997 current_templates->start->name);
4998 return NULL;
4999 case invalid_vsib_address:
5000 err_msg = _("invalid VSIB address");
5001 break;
5002 case invalid_vector_register_set:
5003 err_msg = _("mask, index, and destination registers must be distinct");
5004 break;
5005 case unsupported_vector_index_register:
5006 err_msg = _("unsupported vector index register");
5007 break;
5008 case unsupported_broadcast:
5009 err_msg = _("unsupported broadcast");
5010 break;
5011 case broadcast_not_on_src_operand:
5012 err_msg = _("broadcast not on source memory operand");
5013 break;
5014 case broadcast_needed:
5015 err_msg = _("broadcast is needed for operand of such type");
5016 break;
5017 case unsupported_masking:
5018 err_msg = _("unsupported masking");
5019 break;
5020 case mask_not_on_destination:
5021 err_msg = _("mask not on destination operand");
5022 break;
5023 case no_default_mask:
5024 err_msg = _("default mask isn't allowed");
5025 break;
5026 case unsupported_rc_sae:
5027 err_msg = _("unsupported static rounding/sae");
5028 break;
5029 case rc_sae_operand_not_last_imm:
5030 if (intel_syntax)
5031 err_msg = _("RC/SAE operand must precede immediate operands");
5032 else
5033 err_msg = _("RC/SAE operand must follow immediate operands");
5034 break;
5035 case invalid_register_operand:
5036 err_msg = _("invalid register operand");
5037 break;
5038 }
5039 as_bad (_("%s for `%s'"), err_msg,
5040 current_templates->start->name);
5041 return NULL;
5042 }
5043
5044 if (!quiet_warnings)
5045 {
5046 if (!intel_syntax
5047 && (i.types[0].bitfield.jumpabsolute
5048 != operand_types[0].bitfield.jumpabsolute))
5049 {
5050 as_warn (_("indirect %s without `*'"), t->name);
5051 }
5052
5053 if (t->opcode_modifier.isprefix
5054 && t->opcode_modifier.ignoresize)
5055 {
5056 /* Warn them that a data or address size prefix doesn't
5057 affect assembly of the next line of code. */
5058 as_warn (_("stand-alone `%s' prefix"), t->name);
5059 }
5060 }
5061
5062 /* Copy the template we found. */
5063 i.tm = *t;
5064
5065 if (addr_prefix_disp != -1)
5066 i.tm.operand_types[addr_prefix_disp]
5067 = operand_types[addr_prefix_disp];
5068
5069 if (found_reverse_match)
5070 {
5071 /* If we found a reverse match we must alter the opcode
5072 direction bit. found_reverse_match holds bits to change
5073 (different for int & float insns). */
5074
5075 i.tm.base_opcode ^= found_reverse_match;
5076
5077 i.tm.operand_types[0] = operand_types[1];
5078 i.tm.operand_types[1] = operand_types[0];
5079 }
5080
5081 return t;
5082 }
5083
5084 static int
5085 check_string (void)
5086 {
5087 int mem_op = operand_type_check (i.types[0], anymem) ? 0 : 1;
5088 if (i.tm.operand_types[mem_op].bitfield.esseg)
5089 {
5090 if (i.seg[0] != NULL && i.seg[0] != &es)
5091 {
5092 as_bad (_("`%s' operand %d must use `%ses' segment"),
5093 i.tm.name,
5094 mem_op + 1,
5095 register_prefix);
5096 return 0;
5097 }
5098 /* There's only ever one segment override allowed per instruction.
5099 This instruction possibly has a legal segment override on the
5100 second operand, so copy the segment to where non-string
5101 instructions store it, allowing common code. */
5102 i.seg[0] = i.seg[1];
5103 }
5104 else if (i.tm.operand_types[mem_op + 1].bitfield.esseg)
5105 {
5106 if (i.seg[1] != NULL && i.seg[1] != &es)
5107 {
5108 as_bad (_("`%s' operand %d must use `%ses' segment"),
5109 i.tm.name,
5110 mem_op + 2,
5111 register_prefix);
5112 return 0;
5113 }
5114 }
5115 return 1;
5116 }
5117
5118 static int
5119 process_suffix (void)
5120 {
5121 /* If matched instruction specifies an explicit instruction mnemonic
5122 suffix, use it. */
5123 if (i.tm.opcode_modifier.size16)
5124 i.suffix = WORD_MNEM_SUFFIX;
5125 else if (i.tm.opcode_modifier.size32)
5126 i.suffix = LONG_MNEM_SUFFIX;
5127 else if (i.tm.opcode_modifier.size64)
5128 i.suffix = QWORD_MNEM_SUFFIX;
5129 else if (i.reg_operands)
5130 {
5131 /* If there's no instruction mnemonic suffix we try to invent one
5132 based on register operands. */
5133 if (!i.suffix)
5134 {
5135 /* We take i.suffix from the last register operand specified,
5136 Destination register type is more significant than source
5137 register type. crc32 in SSE4.2 prefers source register
5138 type. */
5139 if (i.tm.base_opcode == 0xf20f38f1)
5140 {
5141 if (i.types[0].bitfield.reg16)
5142 i.suffix = WORD_MNEM_SUFFIX;
5143 else if (i.types[0].bitfield.reg32)
5144 i.suffix = LONG_MNEM_SUFFIX;
5145 else if (i.types[0].bitfield.reg64)
5146 i.suffix = QWORD_MNEM_SUFFIX;
5147 }
5148 else if (i.tm.base_opcode == 0xf20f38f0)
5149 {
5150 if (i.types[0].bitfield.reg8)
5151 i.suffix = BYTE_MNEM_SUFFIX;
5152 }
5153
5154 if (!i.suffix)
5155 {
5156 int op;
5157
5158 if (i.tm.base_opcode == 0xf20f38f1
5159 || i.tm.base_opcode == 0xf20f38f0)
5160 {
5161 /* We have to know the operand size for crc32. */
5162 as_bad (_("ambiguous memory operand size for `%s`"),
5163 i.tm.name);
5164 return 0;
5165 }
5166
5167 for (op = i.operands; --op >= 0;)
5168 if (!i.tm.operand_types[op].bitfield.inoutportreg)
5169 {
5170 if (i.types[op].bitfield.reg8)
5171 {
5172 i.suffix = BYTE_MNEM_SUFFIX;
5173 break;
5174 }
5175 else if (i.types[op].bitfield.reg16)
5176 {
5177 i.suffix = WORD_MNEM_SUFFIX;
5178 break;
5179 }
5180 else if (i.types[op].bitfield.reg32)
5181 {
5182 i.suffix = LONG_MNEM_SUFFIX;
5183 break;
5184 }
5185 else if (i.types[op].bitfield.reg64)
5186 {
5187 i.suffix = QWORD_MNEM_SUFFIX;
5188 break;
5189 }
5190 }
5191 }
5192 }
5193 else if (i.suffix == BYTE_MNEM_SUFFIX)
5194 {
5195 if (intel_syntax
5196 && i.tm.opcode_modifier.ignoresize
5197 && i.tm.opcode_modifier.no_bsuf)
5198 i.suffix = 0;
5199 else if (!check_byte_reg ())
5200 return 0;
5201 }
5202 else if (i.suffix == LONG_MNEM_SUFFIX)
5203 {
5204 if (intel_syntax
5205 && i.tm.opcode_modifier.ignoresize
5206 && i.tm.opcode_modifier.no_lsuf)
5207 i.suffix = 0;
5208 else if (!check_long_reg ())
5209 return 0;
5210 }
5211 else if (i.suffix == QWORD_MNEM_SUFFIX)
5212 {
5213 if (intel_syntax
5214 && i.tm.opcode_modifier.ignoresize
5215 && i.tm.opcode_modifier.no_qsuf)
5216 i.suffix = 0;
5217 else if (!check_qword_reg ())
5218 return 0;
5219 }
5220 else if (i.suffix == WORD_MNEM_SUFFIX)
5221 {
5222 if (intel_syntax
5223 && i.tm.opcode_modifier.ignoresize
5224 && i.tm.opcode_modifier.no_wsuf)
5225 i.suffix = 0;
5226 else if (!check_word_reg ())
5227 return 0;
5228 }
5229 else if (i.suffix == XMMWORD_MNEM_SUFFIX
5230 || i.suffix == YMMWORD_MNEM_SUFFIX
5231 || i.suffix == ZMMWORD_MNEM_SUFFIX)
5232 {
5233 /* Skip if the instruction has x/y/z suffix. match_template
5234 should check if it is a valid suffix. */
5235 }
5236 else if (intel_syntax && i.tm.opcode_modifier.ignoresize)
5237 /* Do nothing if the instruction is going to ignore the prefix. */
5238 ;
5239 else
5240 abort ();
5241 }
5242 else if (i.tm.opcode_modifier.defaultsize
5243 && !i.suffix
5244 /* exclude fldenv/frstor/fsave/fstenv */
5245 && i.tm.opcode_modifier.no_ssuf)
5246 {
5247 i.suffix = stackop_size;
5248 }
5249 else if (intel_syntax
5250 && !i.suffix
5251 && (i.tm.operand_types[0].bitfield.jumpabsolute
5252 || i.tm.opcode_modifier.jumpbyte
5253 || i.tm.opcode_modifier.jumpintersegment
5254 || (i.tm.base_opcode == 0x0f01 /* [ls][gi]dt */
5255 && i.tm.extension_opcode <= 3)))
5256 {
5257 switch (flag_code)
5258 {
5259 case CODE_64BIT:
5260 if (!i.tm.opcode_modifier.no_qsuf)
5261 {
5262 i.suffix = QWORD_MNEM_SUFFIX;
5263 break;
5264 }
5265 case CODE_32BIT:
5266 if (!i.tm.opcode_modifier.no_lsuf)
5267 i.suffix = LONG_MNEM_SUFFIX;
5268 break;
5269 case CODE_16BIT:
5270 if (!i.tm.opcode_modifier.no_wsuf)
5271 i.suffix = WORD_MNEM_SUFFIX;
5272 break;
5273 }
5274 }
5275
5276 if (!i.suffix)
5277 {
5278 if (!intel_syntax)
5279 {
5280 if (i.tm.opcode_modifier.w)
5281 {
5282 as_bad (_("no instruction mnemonic suffix given and "
5283 "no register operands; can't size instruction"));
5284 return 0;
5285 }
5286 }
5287 else
5288 {
5289 unsigned int suffixes;
5290
5291 suffixes = !i.tm.opcode_modifier.no_bsuf;
5292 if (!i.tm.opcode_modifier.no_wsuf)
5293 suffixes |= 1 << 1;
5294 if (!i.tm.opcode_modifier.no_lsuf)
5295 suffixes |= 1 << 2;
5296 if (!i.tm.opcode_modifier.no_ldsuf)
5297 suffixes |= 1 << 3;
5298 if (!i.tm.opcode_modifier.no_ssuf)
5299 suffixes |= 1 << 4;
5300 if (!i.tm.opcode_modifier.no_qsuf)
5301 suffixes |= 1 << 5;
5302
5303 /* There are more than suffix matches. */
5304 if (i.tm.opcode_modifier.w
5305 || ((suffixes & (suffixes - 1))
5306 && !i.tm.opcode_modifier.defaultsize
5307 && !i.tm.opcode_modifier.ignoresize))
5308 {
5309 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
5310 return 0;
5311 }
5312 }
5313 }
5314
5315 /* Change the opcode based on the operand size given by i.suffix;
5316 We don't need to change things for byte insns. */
5317
5318 if (i.suffix
5319 && i.suffix != BYTE_MNEM_SUFFIX
5320 && i.suffix != XMMWORD_MNEM_SUFFIX
5321 && i.suffix != YMMWORD_MNEM_SUFFIX
5322 && i.suffix != ZMMWORD_MNEM_SUFFIX)
5323 {
5324 /* It's not a byte, select word/dword operation. */
5325 if (i.tm.opcode_modifier.w)
5326 {
5327 if (i.tm.opcode_modifier.shortform)
5328 i.tm.base_opcode |= 8;
5329 else
5330 i.tm.base_opcode |= 1;
5331 }
5332
5333 /* Now select between word & dword operations via the operand
5334 size prefix, except for instructions that will ignore this
5335 prefix anyway. */
5336 if (i.tm.opcode_modifier.addrprefixop0)
5337 {
5338 /* The address size override prefix changes the size of the
5339 first operand. */
5340 if ((flag_code == CODE_32BIT
5341 && i.op->regs[0].reg_type.bitfield.reg16)
5342 || (flag_code != CODE_32BIT
5343 && i.op->regs[0].reg_type.bitfield.reg32))
5344 if (!add_prefix (ADDR_PREFIX_OPCODE))
5345 return 0;
5346 }
5347 else if (i.suffix != QWORD_MNEM_SUFFIX
5348 && i.suffix != LONG_DOUBLE_MNEM_SUFFIX
5349 && !i.tm.opcode_modifier.ignoresize
5350 && !i.tm.opcode_modifier.floatmf
5351 && ((i.suffix == LONG_MNEM_SUFFIX) == (flag_code == CODE_16BIT)
5352 || (flag_code == CODE_64BIT
5353 && i.tm.opcode_modifier.jumpbyte)))
5354 {
5355 unsigned int prefix = DATA_PREFIX_OPCODE;
5356
5357 if (i.tm.opcode_modifier.jumpbyte) /* jcxz, loop */
5358 prefix = ADDR_PREFIX_OPCODE;
5359
5360 if (!add_prefix (prefix))
5361 return 0;
5362 }
5363
5364 /* Set mode64 for an operand. */
5365 if (i.suffix == QWORD_MNEM_SUFFIX
5366 && flag_code == CODE_64BIT
5367 && !i.tm.opcode_modifier.norex64)
5368 {
5369 /* Special case for xchg %rax,%rax. It is NOP and doesn't
5370 need rex64. cmpxchg8b is also a special case. */
5371 if (! (i.operands == 2
5372 && i.tm.base_opcode == 0x90
5373 && i.tm.extension_opcode == None
5374 && operand_type_equal (&i.types [0], &acc64)
5375 && operand_type_equal (&i.types [1], &acc64))
5376 && ! (i.operands == 1
5377 && i.tm.base_opcode == 0xfc7
5378 && i.tm.extension_opcode == 1
5379 && !operand_type_check (i.types [0], reg)
5380 && operand_type_check (i.types [0], anymem)))
5381 i.rex |= REX_W;
5382 }
5383
5384 /* Size floating point instruction. */
5385 if (i.suffix == LONG_MNEM_SUFFIX)
5386 if (i.tm.opcode_modifier.floatmf)
5387 i.tm.base_opcode ^= 4;
5388 }
5389
5390 return 1;
5391 }
5392
5393 static int
5394 check_byte_reg (void)
5395 {
5396 int op;
5397
5398 for (op = i.operands; --op >= 0;)
5399 {
5400 /* If this is an eight bit register, it's OK. If it's the 16 or
5401 32 bit version of an eight bit register, we will just use the
5402 low portion, and that's OK too. */
5403 if (i.types[op].bitfield.reg8)
5404 continue;
5405
5406 /* I/O port address operands are OK too. */
5407 if (i.tm.operand_types[op].bitfield.inoutportreg)
5408 continue;
5409
5410 /* crc32 doesn't generate this warning. */
5411 if (i.tm.base_opcode == 0xf20f38f0)
5412 continue;
5413
5414 if ((i.types[op].bitfield.reg16
5415 || i.types[op].bitfield.reg32
5416 || i.types[op].bitfield.reg64)
5417 && i.op[op].regs->reg_num < 4
5418 /* Prohibit these changes in 64bit mode, since the lowering
5419 would be more complicated. */
5420 && flag_code != CODE_64BIT)
5421 {
5422 #if REGISTER_WARNINGS
5423 if (!quiet_warnings)
5424 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
5425 register_prefix,
5426 (i.op[op].regs + (i.types[op].bitfield.reg16
5427 ? REGNAM_AL - REGNAM_AX
5428 : REGNAM_AL - REGNAM_EAX))->reg_name,
5429 register_prefix,
5430 i.op[op].regs->reg_name,
5431 i.suffix);
5432 #endif
5433 continue;
5434 }
5435 /* Any other register is bad. */
5436 if (i.types[op].bitfield.reg16
5437 || i.types[op].bitfield.reg32
5438 || i.types[op].bitfield.reg64
5439 || i.types[op].bitfield.regmmx
5440 || i.types[op].bitfield.regxmm
5441 || i.types[op].bitfield.regymm
5442 || i.types[op].bitfield.regzmm
5443 || i.types[op].bitfield.sreg2
5444 || i.types[op].bitfield.sreg3
5445 || i.types[op].bitfield.control
5446 || i.types[op].bitfield.debug
5447 || i.types[op].bitfield.test
5448 || i.types[op].bitfield.floatreg
5449 || i.types[op].bitfield.floatacc)
5450 {
5451 as_bad (_("`%s%s' not allowed with `%s%c'"),
5452 register_prefix,
5453 i.op[op].regs->reg_name,
5454 i.tm.name,
5455 i.suffix);
5456 return 0;
5457 }
5458 }
5459 return 1;
5460 }
5461
5462 static int
5463 check_long_reg (void)
5464 {
5465 int op;
5466
5467 for (op = i.operands; --op >= 0;)
5468 /* Reject eight bit registers, except where the template requires
5469 them. (eg. movzb) */
5470 if (i.types[op].bitfield.reg8
5471 && (i.tm.operand_types[op].bitfield.reg16
5472 || i.tm.operand_types[op].bitfield.reg32
5473 || i.tm.operand_types[op].bitfield.acc))
5474 {
5475 as_bad (_("`%s%s' not allowed with `%s%c'"),
5476 register_prefix,
5477 i.op[op].regs->reg_name,
5478 i.tm.name,
5479 i.suffix);
5480 return 0;
5481 }
5482 /* Warn if the e prefix on a general reg is missing. */
5483 else if ((!quiet_warnings || flag_code == CODE_64BIT)
5484 && i.types[op].bitfield.reg16
5485 && (i.tm.operand_types[op].bitfield.reg32
5486 || i.tm.operand_types[op].bitfield.acc))
5487 {
5488 /* Prohibit these changes in the 64bit mode, since the
5489 lowering is more complicated. */
5490 if (flag_code == CODE_64BIT)
5491 {
5492 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
5493 register_prefix, i.op[op].regs->reg_name,
5494 i.suffix);
5495 return 0;
5496 }
5497 #if REGISTER_WARNINGS
5498 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
5499 register_prefix,
5500 (i.op[op].regs + REGNAM_EAX - REGNAM_AX)->reg_name,
5501 register_prefix, i.op[op].regs->reg_name, i.suffix);
5502 #endif
5503 }
5504 /* Warn if the r prefix on a general reg is present. */
5505 else if (i.types[op].bitfield.reg64
5506 && (i.tm.operand_types[op].bitfield.reg32
5507 || i.tm.operand_types[op].bitfield.acc))
5508 {
5509 if (intel_syntax
5510 && i.tm.opcode_modifier.toqword
5511 && !i.types[0].bitfield.regxmm)
5512 {
5513 /* Convert to QWORD. We want REX byte. */
5514 i.suffix = QWORD_MNEM_SUFFIX;
5515 }
5516 else
5517 {
5518 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
5519 register_prefix, i.op[op].regs->reg_name,
5520 i.suffix);
5521 return 0;
5522 }
5523 }
5524 return 1;
5525 }
5526
5527 static int
5528 check_qword_reg (void)
5529 {
5530 int op;
5531
5532 for (op = i.operands; --op >= 0; )
5533 /* Reject eight bit registers, except where the template requires
5534 them. (eg. movzb) */
5535 if (i.types[op].bitfield.reg8
5536 && (i.tm.operand_types[op].bitfield.reg16
5537 || i.tm.operand_types[op].bitfield.reg32
5538 || i.tm.operand_types[op].bitfield.acc))
5539 {
5540 as_bad (_("`%s%s' not allowed with `%s%c'"),
5541 register_prefix,
5542 i.op[op].regs->reg_name,
5543 i.tm.name,
5544 i.suffix);
5545 return 0;
5546 }
5547 /* Warn if the r prefix on a general reg is missing. */
5548 else if ((i.types[op].bitfield.reg16
5549 || i.types[op].bitfield.reg32)
5550 && (i.tm.operand_types[op].bitfield.reg32
5551 || i.tm.operand_types[op].bitfield.acc))
5552 {
5553 /* Prohibit these changes in the 64bit mode, since the
5554 lowering is more complicated. */
5555 if (intel_syntax
5556 && i.tm.opcode_modifier.todword
5557 && !i.types[0].bitfield.regxmm)
5558 {
5559 /* Convert to DWORD. We don't want REX byte. */
5560 i.suffix = LONG_MNEM_SUFFIX;
5561 }
5562 else
5563 {
5564 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
5565 register_prefix, i.op[op].regs->reg_name,
5566 i.suffix);
5567 return 0;
5568 }
5569 }
5570 return 1;
5571 }
5572
5573 static int
5574 check_word_reg (void)
5575 {
5576 int op;
5577 for (op = i.operands; --op >= 0;)
5578 /* Reject eight bit registers, except where the template requires
5579 them. (eg. movzb) */
5580 if (i.types[op].bitfield.reg8
5581 && (i.tm.operand_types[op].bitfield.reg16
5582 || i.tm.operand_types[op].bitfield.reg32
5583 || i.tm.operand_types[op].bitfield.acc))
5584 {
5585 as_bad (_("`%s%s' not allowed with `%s%c'"),
5586 register_prefix,
5587 i.op[op].regs->reg_name,
5588 i.tm.name,
5589 i.suffix);
5590 return 0;
5591 }
5592 /* Warn if the e or r prefix on a general reg is present. */
5593 else if ((!quiet_warnings || flag_code == CODE_64BIT)
5594 && (i.types[op].bitfield.reg32
5595 || i.types[op].bitfield.reg64)
5596 && (i.tm.operand_types[op].bitfield.reg16
5597 || i.tm.operand_types[op].bitfield.acc))
5598 {
5599 /* Prohibit these changes in the 64bit mode, since the
5600 lowering is more complicated. */
5601 if (flag_code == CODE_64BIT)
5602 {
5603 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
5604 register_prefix, i.op[op].regs->reg_name,
5605 i.suffix);
5606 return 0;
5607 }
5608 #if REGISTER_WARNINGS
5609 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
5610 register_prefix,
5611 (i.op[op].regs + REGNAM_AX - REGNAM_EAX)->reg_name,
5612 register_prefix, i.op[op].regs->reg_name, i.suffix);
5613 #endif
5614 }
5615 return 1;
5616 }
5617
5618 static int
5619 update_imm (unsigned int j)
5620 {
5621 i386_operand_type overlap = i.types[j];
5622 if ((overlap.bitfield.imm8
5623 || overlap.bitfield.imm8s
5624 || overlap.bitfield.imm16
5625 || overlap.bitfield.imm32
5626 || overlap.bitfield.imm32s
5627 || overlap.bitfield.imm64)
5628 && !operand_type_equal (&overlap, &imm8)
5629 && !operand_type_equal (&overlap, &imm8s)
5630 && !operand_type_equal (&overlap, &imm16)
5631 && !operand_type_equal (&overlap, &imm32)
5632 && !operand_type_equal (&overlap, &imm32s)
5633 && !operand_type_equal (&overlap, &imm64))
5634 {
5635 if (i.suffix)
5636 {
5637 i386_operand_type temp;
5638
5639 operand_type_set (&temp, 0);
5640 if (i.suffix == BYTE_MNEM_SUFFIX)
5641 {
5642 temp.bitfield.imm8 = overlap.bitfield.imm8;
5643 temp.bitfield.imm8s = overlap.bitfield.imm8s;
5644 }
5645 else if (i.suffix == WORD_MNEM_SUFFIX)
5646 temp.bitfield.imm16 = overlap.bitfield.imm16;
5647 else if (i.suffix == QWORD_MNEM_SUFFIX)
5648 {
5649 temp.bitfield.imm64 = overlap.bitfield.imm64;
5650 temp.bitfield.imm32s = overlap.bitfield.imm32s;
5651 }
5652 else
5653 temp.bitfield.imm32 = overlap.bitfield.imm32;
5654 overlap = temp;
5655 }
5656 else if (operand_type_equal (&overlap, &imm16_32_32s)
5657 || operand_type_equal (&overlap, &imm16_32)
5658 || operand_type_equal (&overlap, &imm16_32s))
5659 {
5660 if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
5661 overlap = imm16;
5662 else
5663 overlap = imm32s;
5664 }
5665 if (!operand_type_equal (&overlap, &imm8)
5666 && !operand_type_equal (&overlap, &imm8s)
5667 && !operand_type_equal (&overlap, &imm16)
5668 && !operand_type_equal (&overlap, &imm32)
5669 && !operand_type_equal (&overlap, &imm32s)
5670 && !operand_type_equal (&overlap, &imm64))
5671 {
5672 as_bad (_("no instruction mnemonic suffix given; "
5673 "can't determine immediate size"));
5674 return 0;
5675 }
5676 }
5677 i.types[j] = overlap;
5678
5679 return 1;
5680 }
5681
5682 static int
5683 finalize_imm (void)
5684 {
5685 unsigned int j, n;
5686
5687 /* Update the first 2 immediate operands. */
5688 n = i.operands > 2 ? 2 : i.operands;
5689 if (n)
5690 {
5691 for (j = 0; j < n; j++)
5692 if (update_imm (j) == 0)
5693 return 0;
5694
5695 /* The 3rd operand can't be immediate operand. */
5696 gas_assert (operand_type_check (i.types[2], imm) == 0);
5697 }
5698
5699 return 1;
5700 }
5701
5702 static int
5703 bad_implicit_operand (int xmm)
5704 {
5705 const char *ireg = xmm ? "xmm0" : "ymm0";
5706
5707 if (intel_syntax)
5708 as_bad (_("the last operand of `%s' must be `%s%s'"),
5709 i.tm.name, register_prefix, ireg);
5710 else
5711 as_bad (_("the first operand of `%s' must be `%s%s'"),
5712 i.tm.name, register_prefix, ireg);
5713 return 0;
5714 }
5715
5716 static int
5717 process_operands (void)
5718 {
5719 /* Default segment register this instruction will use for memory
5720 accesses. 0 means unknown. This is only for optimizing out
5721 unnecessary segment overrides. */
5722 const seg_entry *default_seg = 0;
5723
5724 if (i.tm.opcode_modifier.sse2avx && i.tm.opcode_modifier.vexvvvv)
5725 {
5726 unsigned int dupl = i.operands;
5727 unsigned int dest = dupl - 1;
5728 unsigned int j;
5729
5730 /* The destination must be an xmm register. */
5731 gas_assert (i.reg_operands
5732 && MAX_OPERANDS > dupl
5733 && operand_type_equal (&i.types[dest], &regxmm));
5734
5735 if (i.tm.opcode_modifier.firstxmm0)
5736 {
5737 /* The first operand is implicit and must be xmm0. */
5738 gas_assert (operand_type_equal (&i.types[0], &regxmm));
5739 if (register_number (i.op[0].regs) != 0)
5740 return bad_implicit_operand (1);
5741
5742 if (i.tm.opcode_modifier.vexsources == VEX3SOURCES)
5743 {
5744 /* Keep xmm0 for instructions with VEX prefix and 3
5745 sources. */
5746 goto duplicate;
5747 }
5748 else
5749 {
5750 /* We remove the first xmm0 and keep the number of
5751 operands unchanged, which in fact duplicates the
5752 destination. */
5753 for (j = 1; j < i.operands; j++)
5754 {
5755 i.op[j - 1] = i.op[j];
5756 i.types[j - 1] = i.types[j];
5757 i.tm.operand_types[j - 1] = i.tm.operand_types[j];
5758 }
5759 }
5760 }
5761 else if (i.tm.opcode_modifier.implicit1stxmm0)
5762 {
5763 gas_assert ((MAX_OPERANDS - 1) > dupl
5764 && (i.tm.opcode_modifier.vexsources
5765 == VEX3SOURCES));
5766
5767 /* Add the implicit xmm0 for instructions with VEX prefix
5768 and 3 sources. */
5769 for (j = i.operands; j > 0; j--)
5770 {
5771 i.op[j] = i.op[j - 1];
5772 i.types[j] = i.types[j - 1];
5773 i.tm.operand_types[j] = i.tm.operand_types[j - 1];
5774 }
5775 i.op[0].regs
5776 = (const reg_entry *) hash_find (reg_hash, "xmm0");
5777 i.types[0] = regxmm;
5778 i.tm.operand_types[0] = regxmm;
5779
5780 i.operands += 2;
5781 i.reg_operands += 2;
5782 i.tm.operands += 2;
5783
5784 dupl++;
5785 dest++;
5786 i.op[dupl] = i.op[dest];
5787 i.types[dupl] = i.types[dest];
5788 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
5789 }
5790 else
5791 {
5792 duplicate:
5793 i.operands++;
5794 i.reg_operands++;
5795 i.tm.operands++;
5796
5797 i.op[dupl] = i.op[dest];
5798 i.types[dupl] = i.types[dest];
5799 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
5800 }
5801
5802 if (i.tm.opcode_modifier.immext)
5803 process_immext ();
5804 }
5805 else if (i.tm.opcode_modifier.firstxmm0)
5806 {
5807 unsigned int j;
5808
5809 /* The first operand is implicit and must be xmm0/ymm0/zmm0. */
5810 gas_assert (i.reg_operands
5811 && (operand_type_equal (&i.types[0], &regxmm)
5812 || operand_type_equal (&i.types[0], &regymm)
5813 || operand_type_equal (&i.types[0], &regzmm)));
5814 if (register_number (i.op[0].regs) != 0)
5815 return bad_implicit_operand (i.types[0].bitfield.regxmm);
5816
5817 for (j = 1; j < i.operands; j++)
5818 {
5819 i.op[j - 1] = i.op[j];
5820 i.types[j - 1] = i.types[j];
5821
5822 /* We need to adjust fields in i.tm since they are used by
5823 build_modrm_byte. */
5824 i.tm.operand_types [j - 1] = i.tm.operand_types [j];
5825 }
5826
5827 i.operands--;
5828 i.reg_operands--;
5829 i.tm.operands--;
5830 }
5831 else if (i.tm.opcode_modifier.regkludge)
5832 {
5833 /* The imul $imm, %reg instruction is converted into
5834 imul $imm, %reg, %reg, and the clr %reg instruction
5835 is converted into xor %reg, %reg. */
5836
5837 unsigned int first_reg_op;
5838
5839 if (operand_type_check (i.types[0], reg))
5840 first_reg_op = 0;
5841 else
5842 first_reg_op = 1;
5843 /* Pretend we saw the extra register operand. */
5844 gas_assert (i.reg_operands == 1
5845 && i.op[first_reg_op + 1].regs == 0);
5846 i.op[first_reg_op + 1].regs = i.op[first_reg_op].regs;
5847 i.types[first_reg_op + 1] = i.types[first_reg_op];
5848 i.operands++;
5849 i.reg_operands++;
5850 }
5851
5852 if (i.tm.opcode_modifier.shortform)
5853 {
5854 if (i.types[0].bitfield.sreg2
5855 || i.types[0].bitfield.sreg3)
5856 {
5857 if (i.tm.base_opcode == POP_SEG_SHORT
5858 && i.op[0].regs->reg_num == 1)
5859 {
5860 as_bad (_("you can't `pop %scs'"), register_prefix);
5861 return 0;
5862 }
5863 i.tm.base_opcode |= (i.op[0].regs->reg_num << 3);
5864 if ((i.op[0].regs->reg_flags & RegRex) != 0)
5865 i.rex |= REX_B;
5866 }
5867 else
5868 {
5869 /* The register or float register operand is in operand
5870 0 or 1. */
5871 unsigned int op;
5872
5873 if (i.types[0].bitfield.floatreg
5874 || operand_type_check (i.types[0], reg))
5875 op = 0;
5876 else
5877 op = 1;
5878 /* Register goes in low 3 bits of opcode. */
5879 i.tm.base_opcode |= i.op[op].regs->reg_num;
5880 if ((i.op[op].regs->reg_flags & RegRex) != 0)
5881 i.rex |= REX_B;
5882 if (!quiet_warnings && i.tm.opcode_modifier.ugh)
5883 {
5884 /* Warn about some common errors, but press on regardless.
5885 The first case can be generated by gcc (<= 2.8.1). */
5886 if (i.operands == 2)
5887 {
5888 /* Reversed arguments on faddp, fsubp, etc. */
5889 as_warn (_("translating to `%s %s%s,%s%s'"), i.tm.name,
5890 register_prefix, i.op[!intel_syntax].regs->reg_name,
5891 register_prefix, i.op[intel_syntax].regs->reg_name);
5892 }
5893 else
5894 {
5895 /* Extraneous `l' suffix on fp insn. */
5896 as_warn (_("translating to `%s %s%s'"), i.tm.name,
5897 register_prefix, i.op[0].regs->reg_name);
5898 }
5899 }
5900 }
5901 }
5902 else if (i.tm.opcode_modifier.modrm)
5903 {
5904 /* The opcode is completed (modulo i.tm.extension_opcode which
5905 must be put into the modrm byte). Now, we make the modrm and
5906 index base bytes based on all the info we've collected. */
5907
5908 default_seg = build_modrm_byte ();
5909 }
5910 else if ((i.tm.base_opcode & ~0x3) == MOV_AX_DISP32)
5911 {
5912 default_seg = &ds;
5913 }
5914 else if (i.tm.opcode_modifier.isstring)
5915 {
5916 /* For the string instructions that allow a segment override
5917 on one of their operands, the default segment is ds. */
5918 default_seg = &ds;
5919 }
5920
5921 if (i.tm.base_opcode == 0x8d /* lea */
5922 && i.seg[0]
5923 && !quiet_warnings)
5924 as_warn (_("segment override on `%s' is ineffectual"), i.tm.name);
5925
5926 /* If a segment was explicitly specified, and the specified segment
5927 is not the default, use an opcode prefix to select it. If we
5928 never figured out what the default segment is, then default_seg
5929 will be zero at this point, and the specified segment prefix will
5930 always be used. */
5931 if ((i.seg[0]) && (i.seg[0] != default_seg))
5932 {
5933 if (!add_prefix (i.seg[0]->seg_prefix))
5934 return 0;
5935 }
5936 return 1;
5937 }
5938
5939 static const seg_entry *
5940 build_modrm_byte (void)
5941 {
5942 const seg_entry *default_seg = 0;
5943 unsigned int source, dest;
5944 int vex_3_sources;
5945
5946 /* The first operand of instructions with VEX prefix and 3 sources
5947 must be VEX_Imm4. */
5948 vex_3_sources = i.tm.opcode_modifier.vexsources == VEX3SOURCES;
5949 if (vex_3_sources)
5950 {
5951 unsigned int nds, reg_slot;
5952 expressionS *exp;
5953
5954 if (i.tm.opcode_modifier.veximmext
5955 && i.tm.opcode_modifier.immext)
5956 {
5957 dest = i.operands - 2;
5958 gas_assert (dest == 3);
5959 }
5960 else
5961 dest = i.operands - 1;
5962 nds = dest - 1;
5963
5964 /* There are 2 kinds of instructions:
5965 1. 5 operands: 4 register operands or 3 register operands
5966 plus 1 memory operand plus one Vec_Imm4 operand, VexXDS, and
5967 VexW0 or VexW1. The destination must be either XMM, YMM or
5968 ZMM register.
5969 2. 4 operands: 4 register operands or 3 register operands
5970 plus 1 memory operand, VexXDS, and VexImmExt */
5971 gas_assert ((i.reg_operands == 4
5972 || (i.reg_operands == 3 && i.mem_operands == 1))
5973 && i.tm.opcode_modifier.vexvvvv == VEXXDS
5974 && (i.tm.opcode_modifier.veximmext
5975 || (i.imm_operands == 1
5976 && i.types[0].bitfield.vec_imm4
5977 && (i.tm.opcode_modifier.vexw == VEXW0
5978 || i.tm.opcode_modifier.vexw == VEXW1)
5979 && (operand_type_equal (&i.tm.operand_types[dest], &regxmm)
5980 || operand_type_equal (&i.tm.operand_types[dest], &regymm)
5981 || operand_type_equal (&i.tm.operand_types[dest], &regzmm)))));
5982
5983 if (i.imm_operands == 0)
5984 {
5985 /* When there is no immediate operand, generate an 8bit
5986 immediate operand to encode the first operand. */
5987 exp = &im_expressions[i.imm_operands++];
5988 i.op[i.operands].imms = exp;
5989 i.types[i.operands] = imm8;
5990 i.operands++;
5991 /* If VexW1 is set, the first operand is the source and
5992 the second operand is encoded in the immediate operand. */
5993 if (i.tm.opcode_modifier.vexw == VEXW1)
5994 {
5995 source = 0;
5996 reg_slot = 1;
5997 }
5998 else
5999 {
6000 source = 1;
6001 reg_slot = 0;
6002 }
6003
6004 /* FMA swaps REG and NDS. */
6005 if (i.tm.cpu_flags.bitfield.cpufma)
6006 {
6007 unsigned int tmp;
6008 tmp = reg_slot;
6009 reg_slot = nds;
6010 nds = tmp;
6011 }
6012
6013 gas_assert (operand_type_equal (&i.tm.operand_types[reg_slot],
6014 &regxmm)
6015 || operand_type_equal (&i.tm.operand_types[reg_slot],
6016 &regymm)
6017 || operand_type_equal (&i.tm.operand_types[reg_slot],
6018 &regzmm));
6019 exp->X_op = O_constant;
6020 exp->X_add_number = register_number (i.op[reg_slot].regs) << 4;
6021 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
6022 }
6023 else
6024 {
6025 unsigned int imm_slot;
6026
6027 if (i.tm.opcode_modifier.vexw == VEXW0)
6028 {
6029 /* If VexW0 is set, the third operand is the source and
6030 the second operand is encoded in the immediate
6031 operand. */
6032 source = 2;
6033 reg_slot = 1;
6034 }
6035 else
6036 {
6037 /* VexW1 is set, the second operand is the source and
6038 the third operand is encoded in the immediate
6039 operand. */
6040 source = 1;
6041 reg_slot = 2;
6042 }
6043
6044 if (i.tm.opcode_modifier.immext)
6045 {
6046 /* When ImmExt is set, the immdiate byte is the last
6047 operand. */
6048 imm_slot = i.operands - 1;
6049 source--;
6050 reg_slot--;
6051 }
6052 else
6053 {
6054 imm_slot = 0;
6055
6056 /* Turn on Imm8 so that output_imm will generate it. */
6057 i.types[imm_slot].bitfield.imm8 = 1;
6058 }
6059
6060 gas_assert (operand_type_equal (&i.tm.operand_types[reg_slot],
6061 &regxmm)
6062 || operand_type_equal (&i.tm.operand_types[reg_slot],
6063 &regymm)
6064 || operand_type_equal (&i.tm.operand_types[reg_slot],
6065 &regzmm));
6066 i.op[imm_slot].imms->X_add_number
6067 |= register_number (i.op[reg_slot].regs) << 4;
6068 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
6069 }
6070
6071 gas_assert (operand_type_equal (&i.tm.operand_types[nds], &regxmm)
6072 || operand_type_equal (&i.tm.operand_types[nds],
6073 &regymm)
6074 || operand_type_equal (&i.tm.operand_types[nds],
6075 &regzmm));
6076 i.vex.register_specifier = i.op[nds].regs;
6077 }
6078 else
6079 source = dest = 0;
6080
6081 /* i.reg_operands MUST be the number of real register operands;
6082 implicit registers do not count. If there are 3 register
6083 operands, it must be a instruction with VexNDS. For a
6084 instruction with VexNDD, the destination register is encoded
6085 in VEX prefix. If there are 4 register operands, it must be
6086 a instruction with VEX prefix and 3 sources. */
6087 if (i.mem_operands == 0
6088 && ((i.reg_operands == 2
6089 && i.tm.opcode_modifier.vexvvvv <= VEXXDS)
6090 || (i.reg_operands == 3
6091 && i.tm.opcode_modifier.vexvvvv == VEXXDS)
6092 || (i.reg_operands == 4 && vex_3_sources)))
6093 {
6094 switch (i.operands)
6095 {
6096 case 2:
6097 source = 0;
6098 break;
6099 case 3:
6100 /* When there are 3 operands, one of them may be immediate,
6101 which may be the first or the last operand. Otherwise,
6102 the first operand must be shift count register (cl) or it
6103 is an instruction with VexNDS. */
6104 gas_assert (i.imm_operands == 1
6105 || (i.imm_operands == 0
6106 && (i.tm.opcode_modifier.vexvvvv == VEXXDS
6107 || i.types[0].bitfield.shiftcount)));
6108 if (operand_type_check (i.types[0], imm)
6109 || i.types[0].bitfield.shiftcount)
6110 source = 1;
6111 else
6112 source = 0;
6113 break;
6114 case 4:
6115 /* When there are 4 operands, the first two must be 8bit
6116 immediate operands. The source operand will be the 3rd
6117 one.
6118
6119 For instructions with VexNDS, if the first operand
6120 an imm8, the source operand is the 2nd one. If the last
6121 operand is imm8, the source operand is the first one. */
6122 gas_assert ((i.imm_operands == 2
6123 && i.types[0].bitfield.imm8
6124 && i.types[1].bitfield.imm8)
6125 || (i.tm.opcode_modifier.vexvvvv == VEXXDS
6126 && i.imm_operands == 1
6127 && (i.types[0].bitfield.imm8
6128 || i.types[i.operands - 1].bitfield.imm8
6129 || i.rounding)));
6130 if (i.imm_operands == 2)
6131 source = 2;
6132 else
6133 {
6134 if (i.types[0].bitfield.imm8)
6135 source = 1;
6136 else
6137 source = 0;
6138 }
6139 break;
6140 case 5:
6141 if (i.tm.opcode_modifier.evex)
6142 {
6143 /* For EVEX instructions, when there are 5 operands, the
6144 first one must be immediate operand. If the second one
6145 is immediate operand, the source operand is the 3th
6146 one. If the last one is immediate operand, the source
6147 operand is the 2nd one. */
6148 gas_assert (i.imm_operands == 2
6149 && i.tm.opcode_modifier.sae
6150 && operand_type_check (i.types[0], imm));
6151 if (operand_type_check (i.types[1], imm))
6152 source = 2;
6153 else if (operand_type_check (i.types[4], imm))
6154 source = 1;
6155 else
6156 abort ();
6157 }
6158 break;
6159 default:
6160 abort ();
6161 }
6162
6163 if (!vex_3_sources)
6164 {
6165 dest = source + 1;
6166
6167 /* RC/SAE operand could be between DEST and SRC. That happens
6168 when one operand is GPR and the other one is XMM/YMM/ZMM
6169 register. */
6170 if (i.rounding && i.rounding->operand == (int) dest)
6171 dest++;
6172
6173 if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
6174 {
6175 /* For instructions with VexNDS, the register-only source
6176 operand must be 32/64bit integer, XMM, YMM or ZMM
6177 register. It is encoded in VEX prefix. We need to
6178 clear RegMem bit before calling operand_type_equal. */
6179
6180 i386_operand_type op;
6181 unsigned int vvvv;
6182
6183 /* Check register-only source operand when two source
6184 operands are swapped. */
6185 if (!i.tm.operand_types[source].bitfield.baseindex
6186 && i.tm.operand_types[dest].bitfield.baseindex)
6187 {
6188 vvvv = source;
6189 source = dest;
6190 }
6191 else
6192 vvvv = dest;
6193
6194 op = i.tm.operand_types[vvvv];
6195 op.bitfield.regmem = 0;
6196 if ((dest + 1) >= i.operands
6197 || (!op.bitfield.reg32
6198 && op.bitfield.reg64
6199 && !operand_type_equal (&op, &regxmm)
6200 && !operand_type_equal (&op, &regymm)
6201 && !operand_type_equal (&op, &regzmm)
6202 && !operand_type_equal (&op, &regmask)))
6203 abort ();
6204 i.vex.register_specifier = i.op[vvvv].regs;
6205 dest++;
6206 }
6207 }
6208
6209 i.rm.mode = 3;
6210 /* One of the register operands will be encoded in the i.tm.reg
6211 field, the other in the combined i.tm.mode and i.tm.regmem
6212 fields. If no form of this instruction supports a memory
6213 destination operand, then we assume the source operand may
6214 sometimes be a memory operand and so we need to store the
6215 destination in the i.rm.reg field. */
6216 if (!i.tm.operand_types[dest].bitfield.regmem
6217 && operand_type_check (i.tm.operand_types[dest], anymem) == 0)
6218 {
6219 i.rm.reg = i.op[dest].regs->reg_num;
6220 i.rm.regmem = i.op[source].regs->reg_num;
6221 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
6222 i.rex |= REX_R;
6223 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
6224 i.vrex |= REX_R;
6225 if ((i.op[source].regs->reg_flags & RegRex) != 0)
6226 i.rex |= REX_B;
6227 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
6228 i.vrex |= REX_B;
6229 }
6230 else
6231 {
6232 i.rm.reg = i.op[source].regs->reg_num;
6233 i.rm.regmem = i.op[dest].regs->reg_num;
6234 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
6235 i.rex |= REX_B;
6236 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
6237 i.vrex |= REX_B;
6238 if ((i.op[source].regs->reg_flags & RegRex) != 0)
6239 i.rex |= REX_R;
6240 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
6241 i.vrex |= REX_R;
6242 }
6243 if (flag_code != CODE_64BIT && (i.rex & (REX_R | REX_B)))
6244 {
6245 if (!i.types[0].bitfield.control
6246 && !i.types[1].bitfield.control)
6247 abort ();
6248 i.rex &= ~(REX_R | REX_B);
6249 add_prefix (LOCK_PREFIX_OPCODE);
6250 }
6251 }
6252 else
6253 { /* If it's not 2 reg operands... */
6254 unsigned int mem;
6255
6256 if (i.mem_operands)
6257 {
6258 unsigned int fake_zero_displacement = 0;
6259 unsigned int op;
6260
6261 for (op = 0; op < i.operands; op++)
6262 if (operand_type_check (i.types[op], anymem))
6263 break;
6264 gas_assert (op < i.operands);
6265
6266 if (i.tm.opcode_modifier.vecsib)
6267 {
6268 if (i.index_reg->reg_num == RegEiz
6269 || i.index_reg->reg_num == RegRiz)
6270 abort ();
6271
6272 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
6273 if (!i.base_reg)
6274 {
6275 i.sib.base = NO_BASE_REGISTER;
6276 i.sib.scale = i.log2_scale_factor;
6277 /* No Vec_Disp8 if there is no base. */
6278 i.types[op].bitfield.vec_disp8 = 0;
6279 i.types[op].bitfield.disp8 = 0;
6280 i.types[op].bitfield.disp16 = 0;
6281 i.types[op].bitfield.disp64 = 0;
6282 if (flag_code != CODE_64BIT)
6283 {
6284 /* Must be 32 bit */
6285 i.types[op].bitfield.disp32 = 1;
6286 i.types[op].bitfield.disp32s = 0;
6287 }
6288 else
6289 {
6290 i.types[op].bitfield.disp32 = 0;
6291 i.types[op].bitfield.disp32s = 1;
6292 }
6293 }
6294 i.sib.index = i.index_reg->reg_num;
6295 if ((i.index_reg->reg_flags & RegRex) != 0)
6296 i.rex |= REX_X;
6297 if ((i.index_reg->reg_flags & RegVRex) != 0)
6298 i.vrex |= REX_X;
6299 }
6300
6301 default_seg = &ds;
6302
6303 if (i.base_reg == 0)
6304 {
6305 i.rm.mode = 0;
6306 if (!i.disp_operands)
6307 {
6308 fake_zero_displacement = 1;
6309 /* Instructions with VSIB byte need 32bit displacement
6310 if there is no base register. */
6311 if (i.tm.opcode_modifier.vecsib)
6312 i.types[op].bitfield.disp32 = 1;
6313 }
6314 if (i.index_reg == 0)
6315 {
6316 gas_assert (!i.tm.opcode_modifier.vecsib);
6317 /* Operand is just <disp> */
6318 if (flag_code == CODE_64BIT)
6319 {
6320 /* 64bit mode overwrites the 32bit absolute
6321 addressing by RIP relative addressing and
6322 absolute addressing is encoded by one of the
6323 redundant SIB forms. */
6324 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
6325 i.sib.base = NO_BASE_REGISTER;
6326 i.sib.index = NO_INDEX_REGISTER;
6327 i.types[op] = ((i.prefix[ADDR_PREFIX] == 0)
6328 ? disp32s : disp32);
6329 }
6330 else if ((flag_code == CODE_16BIT)
6331 ^ (i.prefix[ADDR_PREFIX] != 0))
6332 {
6333 i.rm.regmem = NO_BASE_REGISTER_16;
6334 i.types[op] = disp16;
6335 }
6336 else
6337 {
6338 i.rm.regmem = NO_BASE_REGISTER;
6339 i.types[op] = disp32;
6340 }
6341 }
6342 else if (!i.tm.opcode_modifier.vecsib)
6343 {
6344 /* !i.base_reg && i.index_reg */
6345 if (i.index_reg->reg_num == RegEiz
6346 || i.index_reg->reg_num == RegRiz)
6347 i.sib.index = NO_INDEX_REGISTER;
6348 else
6349 i.sib.index = i.index_reg->reg_num;
6350 i.sib.base = NO_BASE_REGISTER;
6351 i.sib.scale = i.log2_scale_factor;
6352 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
6353 /* No Vec_Disp8 if there is no base. */
6354 i.types[op].bitfield.vec_disp8 = 0;
6355 i.types[op].bitfield.disp8 = 0;
6356 i.types[op].bitfield.disp16 = 0;
6357 i.types[op].bitfield.disp64 = 0;
6358 if (flag_code != CODE_64BIT)
6359 {
6360 /* Must be 32 bit */
6361 i.types[op].bitfield.disp32 = 1;
6362 i.types[op].bitfield.disp32s = 0;
6363 }
6364 else
6365 {
6366 i.types[op].bitfield.disp32 = 0;
6367 i.types[op].bitfield.disp32s = 1;
6368 }
6369 if ((i.index_reg->reg_flags & RegRex) != 0)
6370 i.rex |= REX_X;
6371 }
6372 }
6373 /* RIP addressing for 64bit mode. */
6374 else if (i.base_reg->reg_num == RegRip ||
6375 i.base_reg->reg_num == RegEip)
6376 {
6377 gas_assert (!i.tm.opcode_modifier.vecsib);
6378 i.rm.regmem = NO_BASE_REGISTER;
6379 i.types[op].bitfield.disp8 = 0;
6380 i.types[op].bitfield.disp16 = 0;
6381 i.types[op].bitfield.disp32 = 0;
6382 i.types[op].bitfield.disp32s = 1;
6383 i.types[op].bitfield.disp64 = 0;
6384 i.types[op].bitfield.vec_disp8 = 0;
6385 i.flags[op] |= Operand_PCrel;
6386 if (! i.disp_operands)
6387 fake_zero_displacement = 1;
6388 }
6389 else if (i.base_reg->reg_type.bitfield.reg16)
6390 {
6391 gas_assert (!i.tm.opcode_modifier.vecsib);
6392 switch (i.base_reg->reg_num)
6393 {
6394 case 3: /* (%bx) */
6395 if (i.index_reg == 0)
6396 i.rm.regmem = 7;
6397 else /* (%bx,%si) -> 0, or (%bx,%di) -> 1 */
6398 i.rm.regmem = i.index_reg->reg_num - 6;
6399 break;
6400 case 5: /* (%bp) */
6401 default_seg = &ss;
6402 if (i.index_reg == 0)
6403 {
6404 i.rm.regmem = 6;
6405 if (operand_type_check (i.types[op], disp) == 0)
6406 {
6407 /* fake (%bp) into 0(%bp) */
6408 if (i.tm.operand_types[op].bitfield.vec_disp8)
6409 i.types[op].bitfield.vec_disp8 = 1;
6410 else
6411 i.types[op].bitfield.disp8 = 1;
6412 fake_zero_displacement = 1;
6413 }
6414 }
6415 else /* (%bp,%si) -> 2, or (%bp,%di) -> 3 */
6416 i.rm.regmem = i.index_reg->reg_num - 6 + 2;
6417 break;
6418 default: /* (%si) -> 4 or (%di) -> 5 */
6419 i.rm.regmem = i.base_reg->reg_num - 6 + 4;
6420 }
6421 i.rm.mode = mode_from_disp_size (i.types[op]);
6422 }
6423 else /* i.base_reg and 32/64 bit mode */
6424 {
6425 if (flag_code == CODE_64BIT
6426 && operand_type_check (i.types[op], disp))
6427 {
6428 i386_operand_type temp;
6429 operand_type_set (&temp, 0);
6430 temp.bitfield.disp8 = i.types[op].bitfield.disp8;
6431 temp.bitfield.vec_disp8
6432 = i.types[op].bitfield.vec_disp8;
6433 i.types[op] = temp;
6434 if (i.prefix[ADDR_PREFIX] == 0)
6435 i.types[op].bitfield.disp32s = 1;
6436 else
6437 i.types[op].bitfield.disp32 = 1;
6438 }
6439
6440 if (!i.tm.opcode_modifier.vecsib)
6441 i.rm.regmem = i.base_reg->reg_num;
6442 if ((i.base_reg->reg_flags & RegRex) != 0)
6443 i.rex |= REX_B;
6444 i.sib.base = i.base_reg->reg_num;
6445 /* x86-64 ignores REX prefix bit here to avoid decoder
6446 complications. */
6447 if (!(i.base_reg->reg_flags & RegRex)
6448 && (i.base_reg->reg_num == EBP_REG_NUM
6449 || i.base_reg->reg_num == ESP_REG_NUM))
6450 default_seg = &ss;
6451 if (i.base_reg->reg_num == 5 && i.disp_operands == 0)
6452 {
6453 fake_zero_displacement = 1;
6454 if (i.tm.operand_types [op].bitfield.vec_disp8)
6455 i.types[op].bitfield.vec_disp8 = 1;
6456 else
6457 i.types[op].bitfield.disp8 = 1;
6458 }
6459 i.sib.scale = i.log2_scale_factor;
6460 if (i.index_reg == 0)
6461 {
6462 gas_assert (!i.tm.opcode_modifier.vecsib);
6463 /* <disp>(%esp) becomes two byte modrm with no index
6464 register. We've already stored the code for esp
6465 in i.rm.regmem ie. ESCAPE_TO_TWO_BYTE_ADDRESSING.
6466 Any base register besides %esp will not use the
6467 extra modrm byte. */
6468 i.sib.index = NO_INDEX_REGISTER;
6469 }
6470 else if (!i.tm.opcode_modifier.vecsib)
6471 {
6472 if (i.index_reg->reg_num == RegEiz
6473 || i.index_reg->reg_num == RegRiz)
6474 i.sib.index = NO_INDEX_REGISTER;
6475 else
6476 i.sib.index = i.index_reg->reg_num;
6477 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
6478 if ((i.index_reg->reg_flags & RegRex) != 0)
6479 i.rex |= REX_X;
6480 }
6481
6482 if (i.disp_operands
6483 && (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
6484 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL))
6485 i.rm.mode = 0;
6486 else
6487 {
6488 if (!fake_zero_displacement
6489 && !i.disp_operands
6490 && i.disp_encoding)
6491 {
6492 fake_zero_displacement = 1;
6493 if (i.disp_encoding == disp_encoding_8bit)
6494 i.types[op].bitfield.disp8 = 1;
6495 else
6496 i.types[op].bitfield.disp32 = 1;
6497 }
6498 i.rm.mode = mode_from_disp_size (i.types[op]);
6499 }
6500 }
6501
6502 if (fake_zero_displacement)
6503 {
6504 /* Fakes a zero displacement assuming that i.types[op]
6505 holds the correct displacement size. */
6506 expressionS *exp;
6507
6508 gas_assert (i.op[op].disps == 0);
6509 exp = &disp_expressions[i.disp_operands++];
6510 i.op[op].disps = exp;
6511 exp->X_op = O_constant;
6512 exp->X_add_number = 0;
6513 exp->X_add_symbol = (symbolS *) 0;
6514 exp->X_op_symbol = (symbolS *) 0;
6515 }
6516
6517 mem = op;
6518 }
6519 else
6520 mem = ~0;
6521
6522 if (i.tm.opcode_modifier.vexsources == XOP2SOURCES)
6523 {
6524 if (operand_type_check (i.types[0], imm))
6525 i.vex.register_specifier = NULL;
6526 else
6527 {
6528 /* VEX.vvvv encodes one of the sources when the first
6529 operand is not an immediate. */
6530 if (i.tm.opcode_modifier.vexw == VEXW0)
6531 i.vex.register_specifier = i.op[0].regs;
6532 else
6533 i.vex.register_specifier = i.op[1].regs;
6534 }
6535
6536 /* Destination is a XMM register encoded in the ModRM.reg
6537 and VEX.R bit. */
6538 i.rm.reg = i.op[2].regs->reg_num;
6539 if ((i.op[2].regs->reg_flags & RegRex) != 0)
6540 i.rex |= REX_R;
6541
6542 /* ModRM.rm and VEX.B encodes the other source. */
6543 if (!i.mem_operands)
6544 {
6545 i.rm.mode = 3;
6546
6547 if (i.tm.opcode_modifier.vexw == VEXW0)
6548 i.rm.regmem = i.op[1].regs->reg_num;
6549 else
6550 i.rm.regmem = i.op[0].regs->reg_num;
6551
6552 if ((i.op[1].regs->reg_flags & RegRex) != 0)
6553 i.rex |= REX_B;
6554 }
6555 }
6556 else if (i.tm.opcode_modifier.vexvvvv == VEXLWP)
6557 {
6558 i.vex.register_specifier = i.op[2].regs;
6559 if (!i.mem_operands)
6560 {
6561 i.rm.mode = 3;
6562 i.rm.regmem = i.op[1].regs->reg_num;
6563 if ((i.op[1].regs->reg_flags & RegRex) != 0)
6564 i.rex |= REX_B;
6565 }
6566 }
6567 /* Fill in i.rm.reg or i.rm.regmem field with register operand
6568 (if any) based on i.tm.extension_opcode. Again, we must be
6569 careful to make sure that segment/control/debug/test/MMX
6570 registers are coded into the i.rm.reg field. */
6571 else if (i.reg_operands)
6572 {
6573 unsigned int op;
6574 unsigned int vex_reg = ~0;
6575
6576 for (op = 0; op < i.operands; op++)
6577 if (i.types[op].bitfield.reg8
6578 || i.types[op].bitfield.reg16
6579 || i.types[op].bitfield.reg32
6580 || i.types[op].bitfield.reg64
6581 || i.types[op].bitfield.regmmx
6582 || i.types[op].bitfield.regxmm
6583 || i.types[op].bitfield.regymm
6584 || i.types[op].bitfield.regbnd
6585 || i.types[op].bitfield.regzmm
6586 || i.types[op].bitfield.regmask
6587 || i.types[op].bitfield.sreg2
6588 || i.types[op].bitfield.sreg3
6589 || i.types[op].bitfield.control
6590 || i.types[op].bitfield.debug
6591 || i.types[op].bitfield.test)
6592 break;
6593
6594 if (vex_3_sources)
6595 op = dest;
6596 else if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
6597 {
6598 /* For instructions with VexNDS, the register-only
6599 source operand is encoded in VEX prefix. */
6600 gas_assert (mem != (unsigned int) ~0);
6601
6602 if (op > mem)
6603 {
6604 vex_reg = op++;
6605 gas_assert (op < i.operands);
6606 }
6607 else
6608 {
6609 /* Check register-only source operand when two source
6610 operands are swapped. */
6611 if (!i.tm.operand_types[op].bitfield.baseindex
6612 && i.tm.operand_types[op + 1].bitfield.baseindex)
6613 {
6614 vex_reg = op;
6615 op += 2;
6616 gas_assert (mem == (vex_reg + 1)
6617 && op < i.operands);
6618 }
6619 else
6620 {
6621 vex_reg = op + 1;
6622 gas_assert (vex_reg < i.operands);
6623 }
6624 }
6625 }
6626 else if (i.tm.opcode_modifier.vexvvvv == VEXNDD)
6627 {
6628 /* For instructions with VexNDD, the register destination
6629 is encoded in VEX prefix. */
6630 if (i.mem_operands == 0)
6631 {
6632 /* There is no memory operand. */
6633 gas_assert ((op + 2) == i.operands);
6634 vex_reg = op + 1;
6635 }
6636 else
6637 {
6638 /* There are only 2 operands. */
6639 gas_assert (op < 2 && i.operands == 2);
6640 vex_reg = 1;
6641 }
6642 }
6643 else
6644 gas_assert (op < i.operands);
6645
6646 if (vex_reg != (unsigned int) ~0)
6647 {
6648 i386_operand_type *type = &i.tm.operand_types[vex_reg];
6649
6650 if (type->bitfield.reg32 != 1
6651 && type->bitfield.reg64 != 1
6652 && !operand_type_equal (type, &regxmm)
6653 && !operand_type_equal (type, &regymm)
6654 && !operand_type_equal (type, &regzmm)
6655 && !operand_type_equal (type, &regmask))
6656 abort ();
6657
6658 i.vex.register_specifier = i.op[vex_reg].regs;
6659 }
6660
6661 /* Don't set OP operand twice. */
6662 if (vex_reg != op)
6663 {
6664 /* If there is an extension opcode to put here, the
6665 register number must be put into the regmem field. */
6666 if (i.tm.extension_opcode != None)
6667 {
6668 i.rm.regmem = i.op[op].regs->reg_num;
6669 if ((i.op[op].regs->reg_flags & RegRex) != 0)
6670 i.rex |= REX_B;
6671 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
6672 i.vrex |= REX_B;
6673 }
6674 else
6675 {
6676 i.rm.reg = i.op[op].regs->reg_num;
6677 if ((i.op[op].regs->reg_flags & RegRex) != 0)
6678 i.rex |= REX_R;
6679 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
6680 i.vrex |= REX_R;
6681 }
6682 }
6683
6684 /* Now, if no memory operand has set i.rm.mode = 0, 1, 2 we
6685 must set it to 3 to indicate this is a register operand
6686 in the regmem field. */
6687 if (!i.mem_operands)
6688 i.rm.mode = 3;
6689 }
6690
6691 /* Fill in i.rm.reg field with extension opcode (if any). */
6692 if (i.tm.extension_opcode != None)
6693 i.rm.reg = i.tm.extension_opcode;
6694 }
6695 return default_seg;
6696 }
6697
6698 static void
6699 output_branch (void)
6700 {
6701 char *p;
6702 int size;
6703 int code16;
6704 int prefix;
6705 relax_substateT subtype;
6706 symbolS *sym;
6707 offsetT off;
6708
6709 code16 = flag_code == CODE_16BIT ? CODE16 : 0;
6710 size = i.disp_encoding == disp_encoding_32bit ? BIG : SMALL;
6711
6712 prefix = 0;
6713 if (i.prefix[DATA_PREFIX] != 0)
6714 {
6715 prefix = 1;
6716 i.prefixes -= 1;
6717 code16 ^= CODE16;
6718 }
6719 /* Pentium4 branch hints. */
6720 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
6721 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
6722 {
6723 prefix++;
6724 i.prefixes--;
6725 }
6726 if (i.prefix[REX_PREFIX] != 0)
6727 {
6728 prefix++;
6729 i.prefixes--;
6730 }
6731
6732 /* BND prefixed jump. */
6733 if (i.prefix[BND_PREFIX] != 0)
6734 {
6735 FRAG_APPEND_1_CHAR (i.prefix[BND_PREFIX]);
6736 i.prefixes -= 1;
6737 }
6738
6739 if (i.prefixes != 0 && !intel_syntax)
6740 as_warn (_("skipping prefixes on this instruction"));
6741
6742 /* It's always a symbol; End frag & setup for relax.
6743 Make sure there is enough room in this frag for the largest
6744 instruction we may generate in md_convert_frag. This is 2
6745 bytes for the opcode and room for the prefix and largest
6746 displacement. */
6747 frag_grow (prefix + 2 + 4);
6748 /* Prefix and 1 opcode byte go in fr_fix. */
6749 p = frag_more (prefix + 1);
6750 if (i.prefix[DATA_PREFIX] != 0)
6751 *p++ = DATA_PREFIX_OPCODE;
6752 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE
6753 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE)
6754 *p++ = i.prefix[SEG_PREFIX];
6755 if (i.prefix[REX_PREFIX] != 0)
6756 *p++ = i.prefix[REX_PREFIX];
6757 *p = i.tm.base_opcode;
6758
6759 if ((unsigned char) *p == JUMP_PC_RELATIVE)
6760 subtype = ENCODE_RELAX_STATE (UNCOND_JUMP, size);
6761 else if (cpu_arch_flags.bitfield.cpui386)
6762 subtype = ENCODE_RELAX_STATE (COND_JUMP, size);
6763 else
6764 subtype = ENCODE_RELAX_STATE (COND_JUMP86, size);
6765 subtype |= code16;
6766
6767 sym = i.op[0].disps->X_add_symbol;
6768 off = i.op[0].disps->X_add_number;
6769
6770 if (i.op[0].disps->X_op != O_constant
6771 && i.op[0].disps->X_op != O_symbol)
6772 {
6773 /* Handle complex expressions. */
6774 sym = make_expr_symbol (i.op[0].disps);
6775 off = 0;
6776 }
6777
6778 /* 1 possible extra opcode + 4 byte displacement go in var part.
6779 Pass reloc in fr_var. */
6780 frag_var (rs_machine_dependent, 5, i.reloc[0], subtype, sym, off, p);
6781 }
6782
6783 static void
6784 output_jump (void)
6785 {
6786 char *p;
6787 int size;
6788 fixS *fixP;
6789
6790 if (i.tm.opcode_modifier.jumpbyte)
6791 {
6792 /* This is a loop or jecxz type instruction. */
6793 size = 1;
6794 if (i.prefix[ADDR_PREFIX] != 0)
6795 {
6796 FRAG_APPEND_1_CHAR (ADDR_PREFIX_OPCODE);
6797 i.prefixes -= 1;
6798 }
6799 /* Pentium4 branch hints. */
6800 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
6801 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
6802 {
6803 FRAG_APPEND_1_CHAR (i.prefix[SEG_PREFIX]);
6804 i.prefixes--;
6805 }
6806 }
6807 else
6808 {
6809 int code16;
6810
6811 code16 = 0;
6812 if (flag_code == CODE_16BIT)
6813 code16 = CODE16;
6814
6815 if (i.prefix[DATA_PREFIX] != 0)
6816 {
6817 FRAG_APPEND_1_CHAR (DATA_PREFIX_OPCODE);
6818 i.prefixes -= 1;
6819 code16 ^= CODE16;
6820 }
6821
6822 size = 4;
6823 if (code16)
6824 size = 2;
6825 }
6826
6827 if (i.prefix[REX_PREFIX] != 0)
6828 {
6829 FRAG_APPEND_1_CHAR (i.prefix[REX_PREFIX]);
6830 i.prefixes -= 1;
6831 }
6832
6833 /* BND prefixed jump. */
6834 if (i.prefix[BND_PREFIX] != 0)
6835 {
6836 FRAG_APPEND_1_CHAR (i.prefix[BND_PREFIX]);
6837 i.prefixes -= 1;
6838 }
6839
6840 if (i.prefixes != 0 && !intel_syntax)
6841 as_warn (_("skipping prefixes on this instruction"));
6842
6843 p = frag_more (i.tm.opcode_length + size);
6844 switch (i.tm.opcode_length)
6845 {
6846 case 2:
6847 *p++ = i.tm.base_opcode >> 8;
6848 case 1:
6849 *p++ = i.tm.base_opcode;
6850 break;
6851 default:
6852 abort ();
6853 }
6854
6855 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal, size,
6856 i.op[0].disps, 1, reloc (size, 1, 1, i.reloc[0]));
6857
6858 /* All jumps handled here are signed, but don't use a signed limit
6859 check for 32 and 16 bit jumps as we want to allow wrap around at
6860 4G and 64k respectively. */
6861 if (size == 1)
6862 fixP->fx_signed = 1;
6863 }
6864
6865 static void
6866 output_interseg_jump (void)
6867 {
6868 char *p;
6869 int size;
6870 int prefix;
6871 int code16;
6872
6873 code16 = 0;
6874 if (flag_code == CODE_16BIT)
6875 code16 = CODE16;
6876
6877 prefix = 0;
6878 if (i.prefix[DATA_PREFIX] != 0)
6879 {
6880 prefix = 1;
6881 i.prefixes -= 1;
6882 code16 ^= CODE16;
6883 }
6884 if (i.prefix[REX_PREFIX] != 0)
6885 {
6886 prefix++;
6887 i.prefixes -= 1;
6888 }
6889
6890 size = 4;
6891 if (code16)
6892 size = 2;
6893
6894 if (i.prefixes != 0 && !intel_syntax)
6895 as_warn (_("skipping prefixes on this instruction"));
6896
6897 /* 1 opcode; 2 segment; offset */
6898 p = frag_more (prefix + 1 + 2 + size);
6899
6900 if (i.prefix[DATA_PREFIX] != 0)
6901 *p++ = DATA_PREFIX_OPCODE;
6902
6903 if (i.prefix[REX_PREFIX] != 0)
6904 *p++ = i.prefix[REX_PREFIX];
6905
6906 *p++ = i.tm.base_opcode;
6907 if (i.op[1].imms->X_op == O_constant)
6908 {
6909 offsetT n = i.op[1].imms->X_add_number;
6910
6911 if (size == 2
6912 && !fits_in_unsigned_word (n)
6913 && !fits_in_signed_word (n))
6914 {
6915 as_bad (_("16-bit jump out of range"));
6916 return;
6917 }
6918 md_number_to_chars (p, n, size);
6919 }
6920 else
6921 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
6922 i.op[1].imms, 0, reloc (size, 0, 0, i.reloc[1]));
6923 if (i.op[0].imms->X_op != O_constant)
6924 as_bad (_("can't handle non absolute segment in `%s'"),
6925 i.tm.name);
6926 md_number_to_chars (p + size, (valueT) i.op[0].imms->X_add_number, 2);
6927 }
6928
6929 static void
6930 output_insn (void)
6931 {
6932 fragS *insn_start_frag;
6933 offsetT insn_start_off;
6934
6935 /* Tie dwarf2 debug info to the address at the start of the insn.
6936 We can't do this after the insn has been output as the current
6937 frag may have been closed off. eg. by frag_var. */
6938 dwarf2_emit_insn (0);
6939
6940 insn_start_frag = frag_now;
6941 insn_start_off = frag_now_fix ();
6942
6943 /* Output jumps. */
6944 if (i.tm.opcode_modifier.jump)
6945 output_branch ();
6946 else if (i.tm.opcode_modifier.jumpbyte
6947 || i.tm.opcode_modifier.jumpdword)
6948 output_jump ();
6949 else if (i.tm.opcode_modifier.jumpintersegment)
6950 output_interseg_jump ();
6951 else
6952 {
6953 /* Output normal instructions here. */
6954 char *p;
6955 unsigned char *q;
6956 unsigned int j;
6957 unsigned int prefix;
6958
6959 /* Some processors fail on LOCK prefix. This options makes
6960 assembler ignore LOCK prefix and serves as a workaround. */
6961 if (omit_lock_prefix)
6962 {
6963 if (i.tm.base_opcode == LOCK_PREFIX_OPCODE)
6964 return;
6965 i.prefix[LOCK_PREFIX] = 0;
6966 }
6967
6968 /* Since the VEX/EVEX prefix contains the implicit prefix, we
6969 don't need the explicit prefix. */
6970 if (!i.tm.opcode_modifier.vex && !i.tm.opcode_modifier.evex)
6971 {
6972 switch (i.tm.opcode_length)
6973 {
6974 case 3:
6975 if (i.tm.base_opcode & 0xff000000)
6976 {
6977 prefix = (i.tm.base_opcode >> 24) & 0xff;
6978 goto check_prefix;
6979 }
6980 break;
6981 case 2:
6982 if ((i.tm.base_opcode & 0xff0000) != 0)
6983 {
6984 prefix = (i.tm.base_opcode >> 16) & 0xff;
6985 if (i.tm.cpu_flags.bitfield.cpupadlock)
6986 {
6987 check_prefix:
6988 if (prefix != REPE_PREFIX_OPCODE
6989 || (i.prefix[REP_PREFIX]
6990 != REPE_PREFIX_OPCODE))
6991 add_prefix (prefix);
6992 }
6993 else
6994 add_prefix (prefix);
6995 }
6996 break;
6997 case 1:
6998 break;
6999 default:
7000 abort ();
7001 }
7002
7003 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
7004 /* For x32, add a dummy REX_OPCODE prefix for mov/add with
7005 R_X86_64_GOTTPOFF relocation so that linker can safely
7006 perform IE->LE optimization. */
7007 if (x86_elf_abi == X86_64_X32_ABI
7008 && i.operands == 2
7009 && i.reloc[0] == BFD_RELOC_X86_64_GOTTPOFF
7010 && i.prefix[REX_PREFIX] == 0)
7011 add_prefix (REX_OPCODE);
7012 #endif
7013
7014 /* The prefix bytes. */
7015 for (j = ARRAY_SIZE (i.prefix), q = i.prefix; j > 0; j--, q++)
7016 if (*q)
7017 FRAG_APPEND_1_CHAR (*q);
7018 }
7019 else
7020 {
7021 for (j = 0, q = i.prefix; j < ARRAY_SIZE (i.prefix); j++, q++)
7022 if (*q)
7023 switch (j)
7024 {
7025 case REX_PREFIX:
7026 /* REX byte is encoded in VEX prefix. */
7027 break;
7028 case SEG_PREFIX:
7029 case ADDR_PREFIX:
7030 FRAG_APPEND_1_CHAR (*q);
7031 break;
7032 default:
7033 /* There should be no other prefixes for instructions
7034 with VEX prefix. */
7035 abort ();
7036 }
7037
7038 /* For EVEX instructions i.vrex should become 0 after
7039 build_evex_prefix. For VEX instructions upper 16 registers
7040 aren't available, so VREX should be 0. */
7041 if (i.vrex)
7042 abort ();
7043 /* Now the VEX prefix. */
7044 p = frag_more (i.vex.length);
7045 for (j = 0; j < i.vex.length; j++)
7046 p[j] = i.vex.bytes[j];
7047 }
7048
7049 /* Now the opcode; be careful about word order here! */
7050 if (i.tm.opcode_length == 1)
7051 {
7052 FRAG_APPEND_1_CHAR (i.tm.base_opcode);
7053 }
7054 else
7055 {
7056 switch (i.tm.opcode_length)
7057 {
7058 case 4:
7059 p = frag_more (4);
7060 *p++ = (i.tm.base_opcode >> 24) & 0xff;
7061 *p++ = (i.tm.base_opcode >> 16) & 0xff;
7062 break;
7063 case 3:
7064 p = frag_more (3);
7065 *p++ = (i.tm.base_opcode >> 16) & 0xff;
7066 break;
7067 case 2:
7068 p = frag_more (2);
7069 break;
7070 default:
7071 abort ();
7072 break;
7073 }
7074
7075 /* Put out high byte first: can't use md_number_to_chars! */
7076 *p++ = (i.tm.base_opcode >> 8) & 0xff;
7077 *p = i.tm.base_opcode & 0xff;
7078 }
7079
7080 /* Now the modrm byte and sib byte (if present). */
7081 if (i.tm.opcode_modifier.modrm)
7082 {
7083 FRAG_APPEND_1_CHAR ((i.rm.regmem << 0
7084 | i.rm.reg << 3
7085 | i.rm.mode << 6));
7086 /* If i.rm.regmem == ESP (4)
7087 && i.rm.mode != (Register mode)
7088 && not 16 bit
7089 ==> need second modrm byte. */
7090 if (i.rm.regmem == ESCAPE_TO_TWO_BYTE_ADDRESSING
7091 && i.rm.mode != 3
7092 && !(i.base_reg && i.base_reg->reg_type.bitfield.reg16))
7093 FRAG_APPEND_1_CHAR ((i.sib.base << 0
7094 | i.sib.index << 3
7095 | i.sib.scale << 6));
7096 }
7097
7098 if (i.disp_operands)
7099 output_disp (insn_start_frag, insn_start_off);
7100
7101 if (i.imm_operands)
7102 output_imm (insn_start_frag, insn_start_off);
7103 }
7104
7105 #ifdef DEBUG386
7106 if (flag_debug)
7107 {
7108 pi ("" /*line*/, &i);
7109 }
7110 #endif /* DEBUG386 */
7111 }
7112
7113 /* Return the size of the displacement operand N. */
7114
7115 static int
7116 disp_size (unsigned int n)
7117 {
7118 int size = 4;
7119
7120 /* Vec_Disp8 has to be 8bit. */
7121 if (i.types[n].bitfield.vec_disp8)
7122 size = 1;
7123 else if (i.types[n].bitfield.disp64)
7124 size = 8;
7125 else if (i.types[n].bitfield.disp8)
7126 size = 1;
7127 else if (i.types[n].bitfield.disp16)
7128 size = 2;
7129 return size;
7130 }
7131
7132 /* Return the size of the immediate operand N. */
7133
7134 static int
7135 imm_size (unsigned int n)
7136 {
7137 int size = 4;
7138 if (i.types[n].bitfield.imm64)
7139 size = 8;
7140 else if (i.types[n].bitfield.imm8 || i.types[n].bitfield.imm8s)
7141 size = 1;
7142 else if (i.types[n].bitfield.imm16)
7143 size = 2;
7144 return size;
7145 }
7146
7147 static void
7148 output_disp (fragS *insn_start_frag, offsetT insn_start_off)
7149 {
7150 char *p;
7151 unsigned int n;
7152
7153 for (n = 0; n < i.operands; n++)
7154 {
7155 if (i.types[n].bitfield.vec_disp8
7156 || operand_type_check (i.types[n], disp))
7157 {
7158 if (i.op[n].disps->X_op == O_constant)
7159 {
7160 int size = disp_size (n);
7161 offsetT val = i.op[n].disps->X_add_number;
7162
7163 if (i.types[n].bitfield.vec_disp8)
7164 val >>= i.memshift;
7165 val = offset_in_range (val, size);
7166 p = frag_more (size);
7167 md_number_to_chars (p, val, size);
7168 }
7169 else
7170 {
7171 enum bfd_reloc_code_real reloc_type;
7172 int size = disp_size (n);
7173 int sign = i.types[n].bitfield.disp32s;
7174 int pcrel = (i.flags[n] & Operand_PCrel) != 0;
7175 fixS *fixP;
7176
7177 /* We can't have 8 bit displacement here. */
7178 gas_assert (!i.types[n].bitfield.disp8);
7179
7180 /* The PC relative address is computed relative
7181 to the instruction boundary, so in case immediate
7182 fields follows, we need to adjust the value. */
7183 if (pcrel && i.imm_operands)
7184 {
7185 unsigned int n1;
7186 int sz = 0;
7187
7188 for (n1 = 0; n1 < i.operands; n1++)
7189 if (operand_type_check (i.types[n1], imm))
7190 {
7191 /* Only one immediate is allowed for PC
7192 relative address. */
7193 gas_assert (sz == 0);
7194 sz = imm_size (n1);
7195 i.op[n].disps->X_add_number -= sz;
7196 }
7197 /* We should find the immediate. */
7198 gas_assert (sz != 0);
7199 }
7200
7201 p = frag_more (size);
7202 reloc_type = reloc (size, pcrel, sign, i.reloc[n]);
7203 if (GOT_symbol
7204 && GOT_symbol == i.op[n].disps->X_add_symbol
7205 && (((reloc_type == BFD_RELOC_32
7206 || reloc_type == BFD_RELOC_X86_64_32S
7207 || (reloc_type == BFD_RELOC_64
7208 && object_64bit))
7209 && (i.op[n].disps->X_op == O_symbol
7210 || (i.op[n].disps->X_op == O_add
7211 && ((symbol_get_value_expression
7212 (i.op[n].disps->X_op_symbol)->X_op)
7213 == O_subtract))))
7214 || reloc_type == BFD_RELOC_32_PCREL))
7215 {
7216 offsetT add;
7217
7218 if (insn_start_frag == frag_now)
7219 add = (p - frag_now->fr_literal) - insn_start_off;
7220 else
7221 {
7222 fragS *fr;
7223
7224 add = insn_start_frag->fr_fix - insn_start_off;
7225 for (fr = insn_start_frag->fr_next;
7226 fr && fr != frag_now; fr = fr->fr_next)
7227 add += fr->fr_fix;
7228 add += p - frag_now->fr_literal;
7229 }
7230
7231 if (!object_64bit)
7232 {
7233 reloc_type = BFD_RELOC_386_GOTPC;
7234 i.op[n].imms->X_add_number += add;
7235 }
7236 else if (reloc_type == BFD_RELOC_64)
7237 reloc_type = BFD_RELOC_X86_64_GOTPC64;
7238 else
7239 /* Don't do the adjustment for x86-64, as there
7240 the pcrel addressing is relative to the _next_
7241 insn, and that is taken care of in other code. */
7242 reloc_type = BFD_RELOC_X86_64_GOTPC32;
7243 }
7244 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal,
7245 size, i.op[n].disps, pcrel,
7246 reloc_type);
7247 /* Check for "call/jmp *mem", "mov mem, %reg",
7248 "test %reg, mem" and "binop mem, %reg" where binop
7249 is one of adc, add, and, cmp, or, sbb, sub, xor
7250 instructions. */
7251 if ((i.rm.mode == 2
7252 || (i.rm.mode == 0 && i.rm.regmem == 5))
7253 && ((i.operands == 1
7254 && i.tm.base_opcode == 0xff
7255 && (i.rm.reg == 2 || i.rm.reg == 4))
7256 || (i.operands == 2
7257 && (i.tm.base_opcode == 0x8b
7258 || i.tm.base_opcode == 0x85
7259 || (i.tm.base_opcode & 0xc7) == 0x03))))
7260 {
7261 if (object_64bit)
7262 {
7263 fixP->fx_tcbit = i.rex != 0;
7264 if (i.base_reg
7265 && (i.base_reg->reg_num == RegRip
7266 || i.base_reg->reg_num == RegEip))
7267 fixP->fx_tcbit2 = 1;
7268 }
7269 else
7270 fixP->fx_tcbit2 = 1;
7271 }
7272 }
7273 }
7274 }
7275 }
7276
7277 static void
7278 output_imm (fragS *insn_start_frag, offsetT insn_start_off)
7279 {
7280 char *p;
7281 unsigned int n;
7282
7283 for (n = 0; n < i.operands; n++)
7284 {
7285 /* Skip SAE/RC Imm operand in EVEX. They are already handled. */
7286 if (i.rounding && (int) n == i.rounding->operand)
7287 continue;
7288
7289 if (operand_type_check (i.types[n], imm))
7290 {
7291 if (i.op[n].imms->X_op == O_constant)
7292 {
7293 int size = imm_size (n);
7294 offsetT val;
7295
7296 val = offset_in_range (i.op[n].imms->X_add_number,
7297 size);
7298 p = frag_more (size);
7299 md_number_to_chars (p, val, size);
7300 }
7301 else
7302 {
7303 /* Not absolute_section.
7304 Need a 32-bit fixup (don't support 8bit
7305 non-absolute imms). Try to support other
7306 sizes ... */
7307 enum bfd_reloc_code_real reloc_type;
7308 int size = imm_size (n);
7309 int sign;
7310
7311 if (i.types[n].bitfield.imm32s
7312 && (i.suffix == QWORD_MNEM_SUFFIX
7313 || (!i.suffix && i.tm.opcode_modifier.no_lsuf)))
7314 sign = 1;
7315 else
7316 sign = 0;
7317
7318 p = frag_more (size);
7319 reloc_type = reloc (size, 0, sign, i.reloc[n]);
7320
7321 /* This is tough to explain. We end up with this one if we
7322 * have operands that look like
7323 * "_GLOBAL_OFFSET_TABLE_+[.-.L284]". The goal here is to
7324 * obtain the absolute address of the GOT, and it is strongly
7325 * preferable from a performance point of view to avoid using
7326 * a runtime relocation for this. The actual sequence of
7327 * instructions often look something like:
7328 *
7329 * call .L66
7330 * .L66:
7331 * popl %ebx
7332 * addl $_GLOBAL_OFFSET_TABLE_+[.-.L66],%ebx
7333 *
7334 * The call and pop essentially return the absolute address
7335 * of the label .L66 and store it in %ebx. The linker itself
7336 * will ultimately change the first operand of the addl so
7337 * that %ebx points to the GOT, but to keep things simple, the
7338 * .o file must have this operand set so that it generates not
7339 * the absolute address of .L66, but the absolute address of
7340 * itself. This allows the linker itself simply treat a GOTPC
7341 * relocation as asking for a pcrel offset to the GOT to be
7342 * added in, and the addend of the relocation is stored in the
7343 * operand field for the instruction itself.
7344 *
7345 * Our job here is to fix the operand so that it would add
7346 * the correct offset so that %ebx would point to itself. The
7347 * thing that is tricky is that .-.L66 will point to the
7348 * beginning of the instruction, so we need to further modify
7349 * the operand so that it will point to itself. There are
7350 * other cases where you have something like:
7351 *
7352 * .long $_GLOBAL_OFFSET_TABLE_+[.-.L66]
7353 *
7354 * and here no correction would be required. Internally in
7355 * the assembler we treat operands of this form as not being
7356 * pcrel since the '.' is explicitly mentioned, and I wonder
7357 * whether it would simplify matters to do it this way. Who
7358 * knows. In earlier versions of the PIC patches, the
7359 * pcrel_adjust field was used to store the correction, but
7360 * since the expression is not pcrel, I felt it would be
7361 * confusing to do it this way. */
7362
7363 if ((reloc_type == BFD_RELOC_32
7364 || reloc_type == BFD_RELOC_X86_64_32S
7365 || reloc_type == BFD_RELOC_64)
7366 && GOT_symbol
7367 && GOT_symbol == i.op[n].imms->X_add_symbol
7368 && (i.op[n].imms->X_op == O_symbol
7369 || (i.op[n].imms->X_op == O_add
7370 && ((symbol_get_value_expression
7371 (i.op[n].imms->X_op_symbol)->X_op)
7372 == O_subtract))))
7373 {
7374 offsetT add;
7375
7376 if (insn_start_frag == frag_now)
7377 add = (p - frag_now->fr_literal) - insn_start_off;
7378 else
7379 {
7380 fragS *fr;
7381
7382 add = insn_start_frag->fr_fix - insn_start_off;
7383 for (fr = insn_start_frag->fr_next;
7384 fr && fr != frag_now; fr = fr->fr_next)
7385 add += fr->fr_fix;
7386 add += p - frag_now->fr_literal;
7387 }
7388
7389 if (!object_64bit)
7390 reloc_type = BFD_RELOC_386_GOTPC;
7391 else if (size == 4)
7392 reloc_type = BFD_RELOC_X86_64_GOTPC32;
7393 else if (size == 8)
7394 reloc_type = BFD_RELOC_X86_64_GOTPC64;
7395 i.op[n].imms->X_add_number += add;
7396 }
7397 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
7398 i.op[n].imms, 0, reloc_type);
7399 }
7400 }
7401 }
7402 }
7403 \f
7404 /* x86_cons_fix_new is called via the expression parsing code when a
7405 reloc is needed. We use this hook to get the correct .got reloc. */
7406 static int cons_sign = -1;
7407
7408 void
7409 x86_cons_fix_new (fragS *frag, unsigned int off, unsigned int len,
7410 expressionS *exp, bfd_reloc_code_real_type r)
7411 {
7412 r = reloc (len, 0, cons_sign, r);
7413
7414 #ifdef TE_PE
7415 if (exp->X_op == O_secrel)
7416 {
7417 exp->X_op = O_symbol;
7418 r = BFD_RELOC_32_SECREL;
7419 }
7420 #endif
7421
7422 fix_new_exp (frag, off, len, exp, 0, r);
7423 }
7424
7425 /* Export the ABI address size for use by TC_ADDRESS_BYTES for the
7426 purpose of the `.dc.a' internal pseudo-op. */
7427
7428 int
7429 x86_address_bytes (void)
7430 {
7431 if ((stdoutput->arch_info->mach & bfd_mach_x64_32))
7432 return 4;
7433 return stdoutput->arch_info->bits_per_address / 8;
7434 }
7435
7436 #if !(defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) || defined (OBJ_MACH_O)) \
7437 || defined (LEX_AT)
7438 # define lex_got(reloc, adjust, types) NULL
7439 #else
7440 /* Parse operands of the form
7441 <symbol>@GOTOFF+<nnn>
7442 and similar .plt or .got references.
7443
7444 If we find one, set up the correct relocation in RELOC and copy the
7445 input string, minus the `@GOTOFF' into a malloc'd buffer for
7446 parsing by the calling routine. Return this buffer, and if ADJUST
7447 is non-null set it to the length of the string we removed from the
7448 input line. Otherwise return NULL. */
7449 static char *
7450 lex_got (enum bfd_reloc_code_real *rel,
7451 int *adjust,
7452 i386_operand_type *types)
7453 {
7454 /* Some of the relocations depend on the size of what field is to
7455 be relocated. But in our callers i386_immediate and i386_displacement
7456 we don't yet know the operand size (this will be set by insn
7457 matching). Hence we record the word32 relocation here,
7458 and adjust the reloc according to the real size in reloc(). */
7459 static const struct {
7460 const char *str;
7461 int len;
7462 const enum bfd_reloc_code_real rel[2];
7463 const i386_operand_type types64;
7464 } gotrel[] = {
7465 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7466 { STRING_COMMA_LEN ("SIZE"), { BFD_RELOC_SIZE32,
7467 BFD_RELOC_SIZE32 },
7468 OPERAND_TYPE_IMM32_64 },
7469 #endif
7470 { STRING_COMMA_LEN ("PLTOFF"), { _dummy_first_bfd_reloc_code_real,
7471 BFD_RELOC_X86_64_PLTOFF64 },
7472 OPERAND_TYPE_IMM64 },
7473 { STRING_COMMA_LEN ("PLT"), { BFD_RELOC_386_PLT32,
7474 BFD_RELOC_X86_64_PLT32 },
7475 OPERAND_TYPE_IMM32_32S_DISP32 },
7476 { STRING_COMMA_LEN ("GOTPLT"), { _dummy_first_bfd_reloc_code_real,
7477 BFD_RELOC_X86_64_GOTPLT64 },
7478 OPERAND_TYPE_IMM64_DISP64 },
7479 { STRING_COMMA_LEN ("GOTOFF"), { BFD_RELOC_386_GOTOFF,
7480 BFD_RELOC_X86_64_GOTOFF64 },
7481 OPERAND_TYPE_IMM64_DISP64 },
7482 { STRING_COMMA_LEN ("GOTPCREL"), { _dummy_first_bfd_reloc_code_real,
7483 BFD_RELOC_X86_64_GOTPCREL },
7484 OPERAND_TYPE_IMM32_32S_DISP32 },
7485 { STRING_COMMA_LEN ("TLSGD"), { BFD_RELOC_386_TLS_GD,
7486 BFD_RELOC_X86_64_TLSGD },
7487 OPERAND_TYPE_IMM32_32S_DISP32 },
7488 { STRING_COMMA_LEN ("TLSLDM"), { BFD_RELOC_386_TLS_LDM,
7489 _dummy_first_bfd_reloc_code_real },
7490 OPERAND_TYPE_NONE },
7491 { STRING_COMMA_LEN ("TLSLD"), { _dummy_first_bfd_reloc_code_real,
7492 BFD_RELOC_X86_64_TLSLD },
7493 OPERAND_TYPE_IMM32_32S_DISP32 },
7494 { STRING_COMMA_LEN ("GOTTPOFF"), { BFD_RELOC_386_TLS_IE_32,
7495 BFD_RELOC_X86_64_GOTTPOFF },
7496 OPERAND_TYPE_IMM32_32S_DISP32 },
7497 { STRING_COMMA_LEN ("TPOFF"), { BFD_RELOC_386_TLS_LE_32,
7498 BFD_RELOC_X86_64_TPOFF32 },
7499 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
7500 { STRING_COMMA_LEN ("NTPOFF"), { BFD_RELOC_386_TLS_LE,
7501 _dummy_first_bfd_reloc_code_real },
7502 OPERAND_TYPE_NONE },
7503 { STRING_COMMA_LEN ("DTPOFF"), { BFD_RELOC_386_TLS_LDO_32,
7504 BFD_RELOC_X86_64_DTPOFF32 },
7505 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
7506 { STRING_COMMA_LEN ("GOTNTPOFF"),{ BFD_RELOC_386_TLS_GOTIE,
7507 _dummy_first_bfd_reloc_code_real },
7508 OPERAND_TYPE_NONE },
7509 { STRING_COMMA_LEN ("INDNTPOFF"),{ BFD_RELOC_386_TLS_IE,
7510 _dummy_first_bfd_reloc_code_real },
7511 OPERAND_TYPE_NONE },
7512 { STRING_COMMA_LEN ("GOT"), { BFD_RELOC_386_GOT32,
7513 BFD_RELOC_X86_64_GOT32 },
7514 OPERAND_TYPE_IMM32_32S_64_DISP32 },
7515 { STRING_COMMA_LEN ("TLSDESC"), { BFD_RELOC_386_TLS_GOTDESC,
7516 BFD_RELOC_X86_64_GOTPC32_TLSDESC },
7517 OPERAND_TYPE_IMM32_32S_DISP32 },
7518 { STRING_COMMA_LEN ("TLSCALL"), { BFD_RELOC_386_TLS_DESC_CALL,
7519 BFD_RELOC_X86_64_TLSDESC_CALL },
7520 OPERAND_TYPE_IMM32_32S_DISP32 },
7521 };
7522 char *cp;
7523 unsigned int j;
7524
7525 #if defined (OBJ_MAYBE_ELF)
7526 if (!IS_ELF)
7527 return NULL;
7528 #endif
7529
7530 for (cp = input_line_pointer; *cp != '@'; cp++)
7531 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
7532 return NULL;
7533
7534 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
7535 {
7536 int len = gotrel[j].len;
7537 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
7538 {
7539 if (gotrel[j].rel[object_64bit] != 0)
7540 {
7541 int first, second;
7542 char *tmpbuf, *past_reloc;
7543
7544 *rel = gotrel[j].rel[object_64bit];
7545
7546 if (types)
7547 {
7548 if (flag_code != CODE_64BIT)
7549 {
7550 types->bitfield.imm32 = 1;
7551 types->bitfield.disp32 = 1;
7552 }
7553 else
7554 *types = gotrel[j].types64;
7555 }
7556
7557 if (j != 0 && GOT_symbol == NULL)
7558 GOT_symbol = symbol_find_or_make (GLOBAL_OFFSET_TABLE_NAME);
7559
7560 /* The length of the first part of our input line. */
7561 first = cp - input_line_pointer;
7562
7563 /* The second part goes from after the reloc token until
7564 (and including) an end_of_line char or comma. */
7565 past_reloc = cp + 1 + len;
7566 cp = past_reloc;
7567 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
7568 ++cp;
7569 second = cp + 1 - past_reloc;
7570
7571 /* Allocate and copy string. The trailing NUL shouldn't
7572 be necessary, but be safe. */
7573 tmpbuf = (char *) xmalloc (first + second + 2);
7574 memcpy (tmpbuf, input_line_pointer, first);
7575 if (second != 0 && *past_reloc != ' ')
7576 /* Replace the relocation token with ' ', so that
7577 errors like foo@GOTOFF1 will be detected. */
7578 tmpbuf[first++] = ' ';
7579 else
7580 /* Increment length by 1 if the relocation token is
7581 removed. */
7582 len++;
7583 if (adjust)
7584 *adjust = len;
7585 memcpy (tmpbuf + first, past_reloc, second);
7586 tmpbuf[first + second] = '\0';
7587 return tmpbuf;
7588 }
7589
7590 as_bad (_("@%s reloc is not supported with %d-bit output format"),
7591 gotrel[j].str, 1 << (5 + object_64bit));
7592 return NULL;
7593 }
7594 }
7595
7596 /* Might be a symbol version string. Don't as_bad here. */
7597 return NULL;
7598 }
7599 #endif
7600
7601 #ifdef TE_PE
7602 #ifdef lex_got
7603 #undef lex_got
7604 #endif
7605 /* Parse operands of the form
7606 <symbol>@SECREL32+<nnn>
7607
7608 If we find one, set up the correct relocation in RELOC and copy the
7609 input string, minus the `@SECREL32' into a malloc'd buffer for
7610 parsing by the calling routine. Return this buffer, and if ADJUST
7611 is non-null set it to the length of the string we removed from the
7612 input line. Otherwise return NULL.
7613
7614 This function is copied from the ELF version above adjusted for PE targets. */
7615
7616 static char *
7617 lex_got (enum bfd_reloc_code_real *rel ATTRIBUTE_UNUSED,
7618 int *adjust ATTRIBUTE_UNUSED,
7619 i386_operand_type *types)
7620 {
7621 static const struct
7622 {
7623 const char *str;
7624 int len;
7625 const enum bfd_reloc_code_real rel[2];
7626 const i386_operand_type types64;
7627 }
7628 gotrel[] =
7629 {
7630 { STRING_COMMA_LEN ("SECREL32"), { BFD_RELOC_32_SECREL,
7631 BFD_RELOC_32_SECREL },
7632 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
7633 };
7634
7635 char *cp;
7636 unsigned j;
7637
7638 for (cp = input_line_pointer; *cp != '@'; cp++)
7639 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
7640 return NULL;
7641
7642 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
7643 {
7644 int len = gotrel[j].len;
7645
7646 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
7647 {
7648 if (gotrel[j].rel[object_64bit] != 0)
7649 {
7650 int first, second;
7651 char *tmpbuf, *past_reloc;
7652
7653 *rel = gotrel[j].rel[object_64bit];
7654 if (adjust)
7655 *adjust = len;
7656
7657 if (types)
7658 {
7659 if (flag_code != CODE_64BIT)
7660 {
7661 types->bitfield.imm32 = 1;
7662 types->bitfield.disp32 = 1;
7663 }
7664 else
7665 *types = gotrel[j].types64;
7666 }
7667
7668 /* The length of the first part of our input line. */
7669 first = cp - input_line_pointer;
7670
7671 /* The second part goes from after the reloc token until
7672 (and including) an end_of_line char or comma. */
7673 past_reloc = cp + 1 + len;
7674 cp = past_reloc;
7675 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
7676 ++cp;
7677 second = cp + 1 - past_reloc;
7678
7679 /* Allocate and copy string. The trailing NUL shouldn't
7680 be necessary, but be safe. */
7681 tmpbuf = (char *) xmalloc (first + second + 2);
7682 memcpy (tmpbuf, input_line_pointer, first);
7683 if (second != 0 && *past_reloc != ' ')
7684 /* Replace the relocation token with ' ', so that
7685 errors like foo@SECLREL321 will be detected. */
7686 tmpbuf[first++] = ' ';
7687 memcpy (tmpbuf + first, past_reloc, second);
7688 tmpbuf[first + second] = '\0';
7689 return tmpbuf;
7690 }
7691
7692 as_bad (_("@%s reloc is not supported with %d-bit output format"),
7693 gotrel[j].str, 1 << (5 + object_64bit));
7694 return NULL;
7695 }
7696 }
7697
7698 /* Might be a symbol version string. Don't as_bad here. */
7699 return NULL;
7700 }
7701
7702 #endif /* TE_PE */
7703
7704 bfd_reloc_code_real_type
7705 x86_cons (expressionS *exp, int size)
7706 {
7707 bfd_reloc_code_real_type got_reloc = NO_RELOC;
7708
7709 intel_syntax = -intel_syntax;
7710
7711 exp->X_md = 0;
7712 if (size == 4 || (object_64bit && size == 8))
7713 {
7714 /* Handle @GOTOFF and the like in an expression. */
7715 char *save;
7716 char *gotfree_input_line;
7717 int adjust = 0;
7718
7719 save = input_line_pointer;
7720 gotfree_input_line = lex_got (&got_reloc, &adjust, NULL);
7721 if (gotfree_input_line)
7722 input_line_pointer = gotfree_input_line;
7723
7724 expression (exp);
7725
7726 if (gotfree_input_line)
7727 {
7728 /* expression () has merrily parsed up to the end of line,
7729 or a comma - in the wrong buffer. Transfer how far
7730 input_line_pointer has moved to the right buffer. */
7731 input_line_pointer = (save
7732 + (input_line_pointer - gotfree_input_line)
7733 + adjust);
7734 free (gotfree_input_line);
7735 if (exp->X_op == O_constant
7736 || exp->X_op == O_absent
7737 || exp->X_op == O_illegal
7738 || exp->X_op == O_register
7739 || exp->X_op == O_big)
7740 {
7741 char c = *input_line_pointer;
7742 *input_line_pointer = 0;
7743 as_bad (_("missing or invalid expression `%s'"), save);
7744 *input_line_pointer = c;
7745 }
7746 }
7747 }
7748 else
7749 expression (exp);
7750
7751 intel_syntax = -intel_syntax;
7752
7753 if (intel_syntax)
7754 i386_intel_simplify (exp);
7755
7756 return got_reloc;
7757 }
7758
7759 static void
7760 signed_cons (int size)
7761 {
7762 if (flag_code == CODE_64BIT)
7763 cons_sign = 1;
7764 cons (size);
7765 cons_sign = -1;
7766 }
7767
7768 #ifdef TE_PE
7769 static void
7770 pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
7771 {
7772 expressionS exp;
7773
7774 do
7775 {
7776 expression (&exp);
7777 if (exp.X_op == O_symbol)
7778 exp.X_op = O_secrel;
7779
7780 emit_expr (&exp, 4);
7781 }
7782 while (*input_line_pointer++ == ',');
7783
7784 input_line_pointer--;
7785 demand_empty_rest_of_line ();
7786 }
7787 #endif
7788
7789 /* Handle Vector operations. */
7790
7791 static char *
7792 check_VecOperations (char *op_string, char *op_end)
7793 {
7794 const reg_entry *mask;
7795 const char *saved;
7796 char *end_op;
7797
7798 while (*op_string
7799 && (op_end == NULL || op_string < op_end))
7800 {
7801 saved = op_string;
7802 if (*op_string == '{')
7803 {
7804 op_string++;
7805
7806 /* Check broadcasts. */
7807 if (strncmp (op_string, "1to", 3) == 0)
7808 {
7809 int bcst_type;
7810
7811 if (i.broadcast)
7812 goto duplicated_vec_op;
7813
7814 op_string += 3;
7815 if (*op_string == '8')
7816 bcst_type = BROADCAST_1TO8;
7817 else if (*op_string == '4')
7818 bcst_type = BROADCAST_1TO4;
7819 else if (*op_string == '2')
7820 bcst_type = BROADCAST_1TO2;
7821 else if (*op_string == '1'
7822 && *(op_string+1) == '6')
7823 {
7824 bcst_type = BROADCAST_1TO16;
7825 op_string++;
7826 }
7827 else
7828 {
7829 as_bad (_("Unsupported broadcast: `%s'"), saved);
7830 return NULL;
7831 }
7832 op_string++;
7833
7834 broadcast_op.type = bcst_type;
7835 broadcast_op.operand = this_operand;
7836 i.broadcast = &broadcast_op;
7837 }
7838 /* Check masking operation. */
7839 else if ((mask = parse_register (op_string, &end_op)) != NULL)
7840 {
7841 /* k0 can't be used for write mask. */
7842 if (mask->reg_num == 0)
7843 {
7844 as_bad (_("`%s' can't be used for write mask"),
7845 op_string);
7846 return NULL;
7847 }
7848
7849 if (!i.mask)
7850 {
7851 mask_op.mask = mask;
7852 mask_op.zeroing = 0;
7853 mask_op.operand = this_operand;
7854 i.mask = &mask_op;
7855 }
7856 else
7857 {
7858 if (i.mask->mask)
7859 goto duplicated_vec_op;
7860
7861 i.mask->mask = mask;
7862
7863 /* Only "{z}" is allowed here. No need to check
7864 zeroing mask explicitly. */
7865 if (i.mask->operand != this_operand)
7866 {
7867 as_bad (_("invalid write mask `%s'"), saved);
7868 return NULL;
7869 }
7870 }
7871
7872 op_string = end_op;
7873 }
7874 /* Check zeroing-flag for masking operation. */
7875 else if (*op_string == 'z')
7876 {
7877 if (!i.mask)
7878 {
7879 mask_op.mask = NULL;
7880 mask_op.zeroing = 1;
7881 mask_op.operand = this_operand;
7882 i.mask = &mask_op;
7883 }
7884 else
7885 {
7886 if (i.mask->zeroing)
7887 {
7888 duplicated_vec_op:
7889 as_bad (_("duplicated `%s'"), saved);
7890 return NULL;
7891 }
7892
7893 i.mask->zeroing = 1;
7894
7895 /* Only "{%k}" is allowed here. No need to check mask
7896 register explicitly. */
7897 if (i.mask->operand != this_operand)
7898 {
7899 as_bad (_("invalid zeroing-masking `%s'"),
7900 saved);
7901 return NULL;
7902 }
7903 }
7904
7905 op_string++;
7906 }
7907 else
7908 goto unknown_vec_op;
7909
7910 if (*op_string != '}')
7911 {
7912 as_bad (_("missing `}' in `%s'"), saved);
7913 return NULL;
7914 }
7915 op_string++;
7916 continue;
7917 }
7918 unknown_vec_op:
7919 /* We don't know this one. */
7920 as_bad (_("unknown vector operation: `%s'"), saved);
7921 return NULL;
7922 }
7923
7924 return op_string;
7925 }
7926
7927 static int
7928 i386_immediate (char *imm_start)
7929 {
7930 char *save_input_line_pointer;
7931 char *gotfree_input_line;
7932 segT exp_seg = 0;
7933 expressionS *exp;
7934 i386_operand_type types;
7935
7936 operand_type_set (&types, ~0);
7937
7938 if (i.imm_operands == MAX_IMMEDIATE_OPERANDS)
7939 {
7940 as_bad (_("at most %d immediate operands are allowed"),
7941 MAX_IMMEDIATE_OPERANDS);
7942 return 0;
7943 }
7944
7945 exp = &im_expressions[i.imm_operands++];
7946 i.op[this_operand].imms = exp;
7947
7948 if (is_space_char (*imm_start))
7949 ++imm_start;
7950
7951 save_input_line_pointer = input_line_pointer;
7952 input_line_pointer = imm_start;
7953
7954 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
7955 if (gotfree_input_line)
7956 input_line_pointer = gotfree_input_line;
7957
7958 exp_seg = expression (exp);
7959
7960 SKIP_WHITESPACE ();
7961
7962 /* Handle vector operations. */
7963 if (*input_line_pointer == '{')
7964 {
7965 input_line_pointer = check_VecOperations (input_line_pointer,
7966 NULL);
7967 if (input_line_pointer == NULL)
7968 return 0;
7969 }
7970
7971 if (*input_line_pointer)
7972 as_bad (_("junk `%s' after expression"), input_line_pointer);
7973
7974 input_line_pointer = save_input_line_pointer;
7975 if (gotfree_input_line)
7976 {
7977 free (gotfree_input_line);
7978
7979 if (exp->X_op == O_constant || exp->X_op == O_register)
7980 exp->X_op = O_illegal;
7981 }
7982
7983 return i386_finalize_immediate (exp_seg, exp, types, imm_start);
7984 }
7985
7986 static int
7987 i386_finalize_immediate (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
7988 i386_operand_type types, const char *imm_start)
7989 {
7990 if (exp->X_op == O_absent || exp->X_op == O_illegal || exp->X_op == O_big)
7991 {
7992 if (imm_start)
7993 as_bad (_("missing or invalid immediate expression `%s'"),
7994 imm_start);
7995 return 0;
7996 }
7997 else if (exp->X_op == O_constant)
7998 {
7999 /* Size it properly later. */
8000 i.types[this_operand].bitfield.imm64 = 1;
8001 /* If not 64bit, sign extend val. */
8002 if (flag_code != CODE_64BIT
8003 && (exp->X_add_number & ~(((addressT) 2 << 31) - 1)) == 0)
8004 exp->X_add_number
8005 = (exp->X_add_number ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
8006 }
8007 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
8008 else if (OUTPUT_FLAVOR == bfd_target_aout_flavour
8009 && exp_seg != absolute_section
8010 && exp_seg != text_section
8011 && exp_seg != data_section
8012 && exp_seg != bss_section
8013 && exp_seg != undefined_section
8014 && !bfd_is_com_section (exp_seg))
8015 {
8016 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
8017 return 0;
8018 }
8019 #endif
8020 else if (!intel_syntax && exp_seg == reg_section)
8021 {
8022 if (imm_start)
8023 as_bad (_("illegal immediate register operand %s"), imm_start);
8024 return 0;
8025 }
8026 else
8027 {
8028 /* This is an address. The size of the address will be
8029 determined later, depending on destination register,
8030 suffix, or the default for the section. */
8031 i.types[this_operand].bitfield.imm8 = 1;
8032 i.types[this_operand].bitfield.imm16 = 1;
8033 i.types[this_operand].bitfield.imm32 = 1;
8034 i.types[this_operand].bitfield.imm32s = 1;
8035 i.types[this_operand].bitfield.imm64 = 1;
8036 i.types[this_operand] = operand_type_and (i.types[this_operand],
8037 types);
8038 }
8039
8040 return 1;
8041 }
8042
8043 static char *
8044 i386_scale (char *scale)
8045 {
8046 offsetT val;
8047 char *save = input_line_pointer;
8048
8049 input_line_pointer = scale;
8050 val = get_absolute_expression ();
8051
8052 switch (val)
8053 {
8054 case 1:
8055 i.log2_scale_factor = 0;
8056 break;
8057 case 2:
8058 i.log2_scale_factor = 1;
8059 break;
8060 case 4:
8061 i.log2_scale_factor = 2;
8062 break;
8063 case 8:
8064 i.log2_scale_factor = 3;
8065 break;
8066 default:
8067 {
8068 char sep = *input_line_pointer;
8069
8070 *input_line_pointer = '\0';
8071 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
8072 scale);
8073 *input_line_pointer = sep;
8074 input_line_pointer = save;
8075 return NULL;
8076 }
8077 }
8078 if (i.log2_scale_factor != 0 && i.index_reg == 0)
8079 {
8080 as_warn (_("scale factor of %d without an index register"),
8081 1 << i.log2_scale_factor);
8082 i.log2_scale_factor = 0;
8083 }
8084 scale = input_line_pointer;
8085 input_line_pointer = save;
8086 return scale;
8087 }
8088
8089 static int
8090 i386_displacement (char *disp_start, char *disp_end)
8091 {
8092 expressionS *exp;
8093 segT exp_seg = 0;
8094 char *save_input_line_pointer;
8095 char *gotfree_input_line;
8096 int override;
8097 i386_operand_type bigdisp, types = anydisp;
8098 int ret;
8099
8100 if (i.disp_operands == MAX_MEMORY_OPERANDS)
8101 {
8102 as_bad (_("at most %d displacement operands are allowed"),
8103 MAX_MEMORY_OPERANDS);
8104 return 0;
8105 }
8106
8107 operand_type_set (&bigdisp, 0);
8108 if ((i.types[this_operand].bitfield.jumpabsolute)
8109 || (!current_templates->start->opcode_modifier.jump
8110 && !current_templates->start->opcode_modifier.jumpdword))
8111 {
8112 bigdisp.bitfield.disp32 = 1;
8113 override = (i.prefix[ADDR_PREFIX] != 0);
8114 if (flag_code == CODE_64BIT)
8115 {
8116 if (!override)
8117 {
8118 bigdisp.bitfield.disp32s = 1;
8119 bigdisp.bitfield.disp64 = 1;
8120 }
8121 }
8122 else if ((flag_code == CODE_16BIT) ^ override)
8123 {
8124 bigdisp.bitfield.disp32 = 0;
8125 bigdisp.bitfield.disp16 = 1;
8126 }
8127 }
8128 else
8129 {
8130 /* For PC-relative branches, the width of the displacement
8131 is dependent upon data size, not address size. */
8132 override = (i.prefix[DATA_PREFIX] != 0);
8133 if (flag_code == CODE_64BIT)
8134 {
8135 if (override || i.suffix == WORD_MNEM_SUFFIX)
8136 bigdisp.bitfield.disp16 = 1;
8137 else
8138 {
8139 bigdisp.bitfield.disp32 = 1;
8140 bigdisp.bitfield.disp32s = 1;
8141 }
8142 }
8143 else
8144 {
8145 if (!override)
8146 override = (i.suffix == (flag_code != CODE_16BIT
8147 ? WORD_MNEM_SUFFIX
8148 : LONG_MNEM_SUFFIX));
8149 bigdisp.bitfield.disp32 = 1;
8150 if ((flag_code == CODE_16BIT) ^ override)
8151 {
8152 bigdisp.bitfield.disp32 = 0;
8153 bigdisp.bitfield.disp16 = 1;
8154 }
8155 }
8156 }
8157 i.types[this_operand] = operand_type_or (i.types[this_operand],
8158 bigdisp);
8159
8160 exp = &disp_expressions[i.disp_operands];
8161 i.op[this_operand].disps = exp;
8162 i.disp_operands++;
8163 save_input_line_pointer = input_line_pointer;
8164 input_line_pointer = disp_start;
8165 END_STRING_AND_SAVE (disp_end);
8166
8167 #ifndef GCC_ASM_O_HACK
8168 #define GCC_ASM_O_HACK 0
8169 #endif
8170 #if GCC_ASM_O_HACK
8171 END_STRING_AND_SAVE (disp_end + 1);
8172 if (i.types[this_operand].bitfield.baseIndex
8173 && displacement_string_end[-1] == '+')
8174 {
8175 /* This hack is to avoid a warning when using the "o"
8176 constraint within gcc asm statements.
8177 For instance:
8178
8179 #define _set_tssldt_desc(n,addr,limit,type) \
8180 __asm__ __volatile__ ( \
8181 "movw %w2,%0\n\t" \
8182 "movw %w1,2+%0\n\t" \
8183 "rorl $16,%1\n\t" \
8184 "movb %b1,4+%0\n\t" \
8185 "movb %4,5+%0\n\t" \
8186 "movb $0,6+%0\n\t" \
8187 "movb %h1,7+%0\n\t" \
8188 "rorl $16,%1" \
8189 : "=o"(*(n)) : "q" (addr), "ri"(limit), "i"(type))
8190
8191 This works great except that the output assembler ends
8192 up looking a bit weird if it turns out that there is
8193 no offset. You end up producing code that looks like:
8194
8195 #APP
8196 movw $235,(%eax)
8197 movw %dx,2+(%eax)
8198 rorl $16,%edx
8199 movb %dl,4+(%eax)
8200 movb $137,5+(%eax)
8201 movb $0,6+(%eax)
8202 movb %dh,7+(%eax)
8203 rorl $16,%edx
8204 #NO_APP
8205
8206 So here we provide the missing zero. */
8207
8208 *displacement_string_end = '0';
8209 }
8210 #endif
8211 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
8212 if (gotfree_input_line)
8213 input_line_pointer = gotfree_input_line;
8214
8215 exp_seg = expression (exp);
8216
8217 SKIP_WHITESPACE ();
8218 if (*input_line_pointer)
8219 as_bad (_("junk `%s' after expression"), input_line_pointer);
8220 #if GCC_ASM_O_HACK
8221 RESTORE_END_STRING (disp_end + 1);
8222 #endif
8223 input_line_pointer = save_input_line_pointer;
8224 if (gotfree_input_line)
8225 {
8226 free (gotfree_input_line);
8227
8228 if (exp->X_op == O_constant || exp->X_op == O_register)
8229 exp->X_op = O_illegal;
8230 }
8231
8232 ret = i386_finalize_displacement (exp_seg, exp, types, disp_start);
8233
8234 RESTORE_END_STRING (disp_end);
8235
8236 return ret;
8237 }
8238
8239 static int
8240 i386_finalize_displacement (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
8241 i386_operand_type types, const char *disp_start)
8242 {
8243 i386_operand_type bigdisp;
8244 int ret = 1;
8245
8246 /* We do this to make sure that the section symbol is in
8247 the symbol table. We will ultimately change the relocation
8248 to be relative to the beginning of the section. */
8249 if (i.reloc[this_operand] == BFD_RELOC_386_GOTOFF
8250 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL
8251 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
8252 {
8253 if (exp->X_op != O_symbol)
8254 goto inv_disp;
8255
8256 if (S_IS_LOCAL (exp->X_add_symbol)
8257 && S_GET_SEGMENT (exp->X_add_symbol) != undefined_section
8258 && S_GET_SEGMENT (exp->X_add_symbol) != expr_section)
8259 section_symbol (S_GET_SEGMENT (exp->X_add_symbol));
8260 exp->X_op = O_subtract;
8261 exp->X_op_symbol = GOT_symbol;
8262 if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
8263 i.reloc[this_operand] = BFD_RELOC_32_PCREL;
8264 else if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
8265 i.reloc[this_operand] = BFD_RELOC_64;
8266 else
8267 i.reloc[this_operand] = BFD_RELOC_32;
8268 }
8269
8270 else if (exp->X_op == O_absent
8271 || exp->X_op == O_illegal
8272 || exp->X_op == O_big)
8273 {
8274 inv_disp:
8275 as_bad (_("missing or invalid displacement expression `%s'"),
8276 disp_start);
8277 ret = 0;
8278 }
8279
8280 else if (flag_code == CODE_64BIT
8281 && !i.prefix[ADDR_PREFIX]
8282 && exp->X_op == O_constant)
8283 {
8284 /* Since displacement is signed extended to 64bit, don't allow
8285 disp32 and turn off disp32s if they are out of range. */
8286 i.types[this_operand].bitfield.disp32 = 0;
8287 if (!fits_in_signed_long (exp->X_add_number))
8288 {
8289 i.types[this_operand].bitfield.disp32s = 0;
8290 if (i.types[this_operand].bitfield.baseindex)
8291 {
8292 as_bad (_("0x%lx out range of signed 32bit displacement"),
8293 (long) exp->X_add_number);
8294 ret = 0;
8295 }
8296 }
8297 }
8298
8299 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
8300 else if (exp->X_op != O_constant
8301 && OUTPUT_FLAVOR == bfd_target_aout_flavour
8302 && exp_seg != absolute_section
8303 && exp_seg != text_section
8304 && exp_seg != data_section
8305 && exp_seg != bss_section
8306 && exp_seg != undefined_section
8307 && !bfd_is_com_section (exp_seg))
8308 {
8309 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
8310 ret = 0;
8311 }
8312 #endif
8313
8314 /* Check if this is a displacement only operand. */
8315 bigdisp = i.types[this_operand];
8316 bigdisp.bitfield.disp8 = 0;
8317 bigdisp.bitfield.disp16 = 0;
8318 bigdisp.bitfield.disp32 = 0;
8319 bigdisp.bitfield.disp32s = 0;
8320 bigdisp.bitfield.disp64 = 0;
8321 if (operand_type_all_zero (&bigdisp))
8322 i.types[this_operand] = operand_type_and (i.types[this_operand],
8323 types);
8324
8325 return ret;
8326 }
8327
8328 /* Make sure the memory operand we've been dealt is valid.
8329 Return 1 on success, 0 on a failure. */
8330
8331 static int
8332 i386_index_check (const char *operand_string)
8333 {
8334 const char *kind = "base/index";
8335 enum flag_code addr_mode;
8336
8337 if (i.prefix[ADDR_PREFIX])
8338 addr_mode = flag_code == CODE_32BIT ? CODE_16BIT : CODE_32BIT;
8339 else
8340 {
8341 addr_mode = flag_code;
8342
8343 #if INFER_ADDR_PREFIX
8344 if (i.mem_operands == 0)
8345 {
8346 /* Infer address prefix from the first memory operand. */
8347 const reg_entry *addr_reg = i.base_reg;
8348
8349 if (addr_reg == NULL)
8350 addr_reg = i.index_reg;
8351
8352 if (addr_reg)
8353 {
8354 if (addr_reg->reg_num == RegEip
8355 || addr_reg->reg_num == RegEiz
8356 || addr_reg->reg_type.bitfield.reg32)
8357 addr_mode = CODE_32BIT;
8358 else if (flag_code != CODE_64BIT
8359 && addr_reg->reg_type.bitfield.reg16)
8360 addr_mode = CODE_16BIT;
8361
8362 if (addr_mode != flag_code)
8363 {
8364 i.prefix[ADDR_PREFIX] = ADDR_PREFIX_OPCODE;
8365 i.prefixes += 1;
8366 /* Change the size of any displacement too. At most one
8367 of Disp16 or Disp32 is set.
8368 FIXME. There doesn't seem to be any real need for
8369 separate Disp16 and Disp32 flags. The same goes for
8370 Imm16 and Imm32. Removing them would probably clean
8371 up the code quite a lot. */
8372 if (flag_code != CODE_64BIT
8373 && (i.types[this_operand].bitfield.disp16
8374 || i.types[this_operand].bitfield.disp32))
8375 i.types[this_operand]
8376 = operand_type_xor (i.types[this_operand], disp16_32);
8377 }
8378 }
8379 }
8380 #endif
8381 }
8382
8383 if (current_templates->start->opcode_modifier.isstring
8384 && !current_templates->start->opcode_modifier.immext
8385 && (current_templates->end[-1].opcode_modifier.isstring
8386 || i.mem_operands))
8387 {
8388 /* Memory operands of string insns are special in that they only allow
8389 a single register (rDI, rSI, or rBX) as their memory address. */
8390 const reg_entry *expected_reg;
8391 static const char *di_si[][2] =
8392 {
8393 { "esi", "edi" },
8394 { "si", "di" },
8395 { "rsi", "rdi" }
8396 };
8397 static const char *bx[] = { "ebx", "bx", "rbx" };
8398
8399 kind = "string address";
8400
8401 if (current_templates->start->opcode_modifier.w)
8402 {
8403 i386_operand_type type = current_templates->end[-1].operand_types[0];
8404
8405 if (!type.bitfield.baseindex
8406 || ((!i.mem_operands != !intel_syntax)
8407 && current_templates->end[-1].operand_types[1]
8408 .bitfield.baseindex))
8409 type = current_templates->end[-1].operand_types[1];
8410 expected_reg = hash_find (reg_hash,
8411 di_si[addr_mode][type.bitfield.esseg]);
8412
8413 }
8414 else
8415 expected_reg = hash_find (reg_hash, bx[addr_mode]);
8416
8417 if (i.base_reg != expected_reg
8418 || i.index_reg
8419 || operand_type_check (i.types[this_operand], disp))
8420 {
8421 /* The second memory operand must have the same size as
8422 the first one. */
8423 if (i.mem_operands
8424 && i.base_reg
8425 && !((addr_mode == CODE_64BIT
8426 && i.base_reg->reg_type.bitfield.reg64)
8427 || (addr_mode == CODE_32BIT
8428 ? i.base_reg->reg_type.bitfield.reg32
8429 : i.base_reg->reg_type.bitfield.reg16)))
8430 goto bad_address;
8431
8432 as_warn (_("`%s' is not valid here (expected `%c%s%s%c')"),
8433 operand_string,
8434 intel_syntax ? '[' : '(',
8435 register_prefix,
8436 expected_reg->reg_name,
8437 intel_syntax ? ']' : ')');
8438 return 1;
8439 }
8440 else
8441 return 1;
8442
8443 bad_address:
8444 as_bad (_("`%s' is not a valid %s expression"),
8445 operand_string, kind);
8446 return 0;
8447 }
8448 else
8449 {
8450 if (addr_mode != CODE_16BIT)
8451 {
8452 /* 32-bit/64-bit checks. */
8453 if ((i.base_reg
8454 && (addr_mode == CODE_64BIT
8455 ? !i.base_reg->reg_type.bitfield.reg64
8456 : !i.base_reg->reg_type.bitfield.reg32)
8457 && (i.index_reg
8458 || (i.base_reg->reg_num
8459 != (addr_mode == CODE_64BIT ? RegRip : RegEip))))
8460 || (i.index_reg
8461 && !i.index_reg->reg_type.bitfield.regxmm
8462 && !i.index_reg->reg_type.bitfield.regymm
8463 && !i.index_reg->reg_type.bitfield.regzmm
8464 && ((addr_mode == CODE_64BIT
8465 ? !(i.index_reg->reg_type.bitfield.reg64
8466 || i.index_reg->reg_num == RegRiz)
8467 : !(i.index_reg->reg_type.bitfield.reg32
8468 || i.index_reg->reg_num == RegEiz))
8469 || !i.index_reg->reg_type.bitfield.baseindex)))
8470 goto bad_address;
8471 }
8472 else
8473 {
8474 /* 16-bit checks. */
8475 if ((i.base_reg
8476 && (!i.base_reg->reg_type.bitfield.reg16
8477 || !i.base_reg->reg_type.bitfield.baseindex))
8478 || (i.index_reg
8479 && (!i.index_reg->reg_type.bitfield.reg16
8480 || !i.index_reg->reg_type.bitfield.baseindex
8481 || !(i.base_reg
8482 && i.base_reg->reg_num < 6
8483 && i.index_reg->reg_num >= 6
8484 && i.log2_scale_factor == 0))))
8485 goto bad_address;
8486 }
8487 }
8488 return 1;
8489 }
8490
8491 /* Handle vector immediates. */
8492
8493 static int
8494 RC_SAE_immediate (const char *imm_start)
8495 {
8496 unsigned int match_found, j;
8497 const char *pstr = imm_start;
8498 expressionS *exp;
8499
8500 if (*pstr != '{')
8501 return 0;
8502
8503 pstr++;
8504 match_found = 0;
8505 for (j = 0; j < ARRAY_SIZE (RC_NamesTable); j++)
8506 {
8507 if (!strncmp (pstr, RC_NamesTable[j].name, RC_NamesTable[j].len))
8508 {
8509 if (!i.rounding)
8510 {
8511 rc_op.type = RC_NamesTable[j].type;
8512 rc_op.operand = this_operand;
8513 i.rounding = &rc_op;
8514 }
8515 else
8516 {
8517 as_bad (_("duplicated `%s'"), imm_start);
8518 return 0;
8519 }
8520 pstr += RC_NamesTable[j].len;
8521 match_found = 1;
8522 break;
8523 }
8524 }
8525 if (!match_found)
8526 return 0;
8527
8528 if (*pstr++ != '}')
8529 {
8530 as_bad (_("Missing '}': '%s'"), imm_start);
8531 return 0;
8532 }
8533 /* RC/SAE immediate string should contain nothing more. */;
8534 if (*pstr != 0)
8535 {
8536 as_bad (_("Junk after '}': '%s'"), imm_start);
8537 return 0;
8538 }
8539
8540 exp = &im_expressions[i.imm_operands++];
8541 i.op[this_operand].imms = exp;
8542
8543 exp->X_op = O_constant;
8544 exp->X_add_number = 0;
8545 exp->X_add_symbol = (symbolS *) 0;
8546 exp->X_op_symbol = (symbolS *) 0;
8547
8548 i.types[this_operand].bitfield.imm8 = 1;
8549 return 1;
8550 }
8551
8552 /* Parse OPERAND_STRING into the i386_insn structure I. Returns zero
8553 on error. */
8554
8555 static int
8556 i386_att_operand (char *operand_string)
8557 {
8558 const reg_entry *r;
8559 char *end_op;
8560 char *op_string = operand_string;
8561
8562 if (is_space_char (*op_string))
8563 ++op_string;
8564
8565 /* We check for an absolute prefix (differentiating,
8566 for example, 'jmp pc_relative_label' from 'jmp *absolute_label'. */
8567 if (*op_string == ABSOLUTE_PREFIX)
8568 {
8569 ++op_string;
8570 if (is_space_char (*op_string))
8571 ++op_string;
8572 i.types[this_operand].bitfield.jumpabsolute = 1;
8573 }
8574
8575 /* Check if operand is a register. */
8576 if ((r = parse_register (op_string, &end_op)) != NULL)
8577 {
8578 i386_operand_type temp;
8579
8580 /* Check for a segment override by searching for ':' after a
8581 segment register. */
8582 op_string = end_op;
8583 if (is_space_char (*op_string))
8584 ++op_string;
8585 if (*op_string == ':'
8586 && (r->reg_type.bitfield.sreg2
8587 || r->reg_type.bitfield.sreg3))
8588 {
8589 switch (r->reg_num)
8590 {
8591 case 0:
8592 i.seg[i.mem_operands] = &es;
8593 break;
8594 case 1:
8595 i.seg[i.mem_operands] = &cs;
8596 break;
8597 case 2:
8598 i.seg[i.mem_operands] = &ss;
8599 break;
8600 case 3:
8601 i.seg[i.mem_operands] = &ds;
8602 break;
8603 case 4:
8604 i.seg[i.mem_operands] = &fs;
8605 break;
8606 case 5:
8607 i.seg[i.mem_operands] = &gs;
8608 break;
8609 }
8610
8611 /* Skip the ':' and whitespace. */
8612 ++op_string;
8613 if (is_space_char (*op_string))
8614 ++op_string;
8615
8616 if (!is_digit_char (*op_string)
8617 && !is_identifier_char (*op_string)
8618 && *op_string != '('
8619 && *op_string != ABSOLUTE_PREFIX)
8620 {
8621 as_bad (_("bad memory operand `%s'"), op_string);
8622 return 0;
8623 }
8624 /* Handle case of %es:*foo. */
8625 if (*op_string == ABSOLUTE_PREFIX)
8626 {
8627 ++op_string;
8628 if (is_space_char (*op_string))
8629 ++op_string;
8630 i.types[this_operand].bitfield.jumpabsolute = 1;
8631 }
8632 goto do_memory_reference;
8633 }
8634
8635 /* Handle vector operations. */
8636 if (*op_string == '{')
8637 {
8638 op_string = check_VecOperations (op_string, NULL);
8639 if (op_string == NULL)
8640 return 0;
8641 }
8642
8643 if (*op_string)
8644 {
8645 as_bad (_("junk `%s' after register"), op_string);
8646 return 0;
8647 }
8648 temp = r->reg_type;
8649 temp.bitfield.baseindex = 0;
8650 i.types[this_operand] = operand_type_or (i.types[this_operand],
8651 temp);
8652 i.types[this_operand].bitfield.unspecified = 0;
8653 i.op[this_operand].regs = r;
8654 i.reg_operands++;
8655 }
8656 else if (*op_string == REGISTER_PREFIX)
8657 {
8658 as_bad (_("bad register name `%s'"), op_string);
8659 return 0;
8660 }
8661 else if (*op_string == IMMEDIATE_PREFIX)
8662 {
8663 ++op_string;
8664 if (i.types[this_operand].bitfield.jumpabsolute)
8665 {
8666 as_bad (_("immediate operand illegal with absolute jump"));
8667 return 0;
8668 }
8669 if (!i386_immediate (op_string))
8670 return 0;
8671 }
8672 else if (RC_SAE_immediate (operand_string))
8673 {
8674 /* If it is a RC or SAE immediate, do nothing. */
8675 ;
8676 }
8677 else if (is_digit_char (*op_string)
8678 || is_identifier_char (*op_string)
8679 || *op_string == '"'
8680 || *op_string == '(')
8681 {
8682 /* This is a memory reference of some sort. */
8683 char *base_string;
8684
8685 /* Start and end of displacement string expression (if found). */
8686 char *displacement_string_start;
8687 char *displacement_string_end;
8688 char *vop_start;
8689
8690 do_memory_reference:
8691 if ((i.mem_operands == 1
8692 && !current_templates->start->opcode_modifier.isstring)
8693 || i.mem_operands == 2)
8694 {
8695 as_bad (_("too many memory references for `%s'"),
8696 current_templates->start->name);
8697 return 0;
8698 }
8699
8700 /* Check for base index form. We detect the base index form by
8701 looking for an ')' at the end of the operand, searching
8702 for the '(' matching it, and finding a REGISTER_PREFIX or ','
8703 after the '('. */
8704 base_string = op_string + strlen (op_string);
8705
8706 /* Handle vector operations. */
8707 vop_start = strchr (op_string, '{');
8708 if (vop_start && vop_start < base_string)
8709 {
8710 if (check_VecOperations (vop_start, base_string) == NULL)
8711 return 0;
8712 base_string = vop_start;
8713 }
8714
8715 --base_string;
8716 if (is_space_char (*base_string))
8717 --base_string;
8718
8719 /* If we only have a displacement, set-up for it to be parsed later. */
8720 displacement_string_start = op_string;
8721 displacement_string_end = base_string + 1;
8722
8723 if (*base_string == ')')
8724 {
8725 char *temp_string;
8726 unsigned int parens_balanced = 1;
8727 /* We've already checked that the number of left & right ()'s are
8728 equal, so this loop will not be infinite. */
8729 do
8730 {
8731 base_string--;
8732 if (*base_string == ')')
8733 parens_balanced++;
8734 if (*base_string == '(')
8735 parens_balanced--;
8736 }
8737 while (parens_balanced);
8738
8739 temp_string = base_string;
8740
8741 /* Skip past '(' and whitespace. */
8742 ++base_string;
8743 if (is_space_char (*base_string))
8744 ++base_string;
8745
8746 if (*base_string == ','
8747 || ((i.base_reg = parse_register (base_string, &end_op))
8748 != NULL))
8749 {
8750 displacement_string_end = temp_string;
8751
8752 i.types[this_operand].bitfield.baseindex = 1;
8753
8754 if (i.base_reg)
8755 {
8756 base_string = end_op;
8757 if (is_space_char (*base_string))
8758 ++base_string;
8759 }
8760
8761 /* There may be an index reg or scale factor here. */
8762 if (*base_string == ',')
8763 {
8764 ++base_string;
8765 if (is_space_char (*base_string))
8766 ++base_string;
8767
8768 if ((i.index_reg = parse_register (base_string, &end_op))
8769 != NULL)
8770 {
8771 base_string = end_op;
8772 if (is_space_char (*base_string))
8773 ++base_string;
8774 if (*base_string == ',')
8775 {
8776 ++base_string;
8777 if (is_space_char (*base_string))
8778 ++base_string;
8779 }
8780 else if (*base_string != ')')
8781 {
8782 as_bad (_("expecting `,' or `)' "
8783 "after index register in `%s'"),
8784 operand_string);
8785 return 0;
8786 }
8787 }
8788 else if (*base_string == REGISTER_PREFIX)
8789 {
8790 end_op = strchr (base_string, ',');
8791 if (end_op)
8792 *end_op = '\0';
8793 as_bad (_("bad register name `%s'"), base_string);
8794 return 0;
8795 }
8796
8797 /* Check for scale factor. */
8798 if (*base_string != ')')
8799 {
8800 char *end_scale = i386_scale (base_string);
8801
8802 if (!end_scale)
8803 return 0;
8804
8805 base_string = end_scale;
8806 if (is_space_char (*base_string))
8807 ++base_string;
8808 if (*base_string != ')')
8809 {
8810 as_bad (_("expecting `)' "
8811 "after scale factor in `%s'"),
8812 operand_string);
8813 return 0;
8814 }
8815 }
8816 else if (!i.index_reg)
8817 {
8818 as_bad (_("expecting index register or scale factor "
8819 "after `,'; got '%c'"),
8820 *base_string);
8821 return 0;
8822 }
8823 }
8824 else if (*base_string != ')')
8825 {
8826 as_bad (_("expecting `,' or `)' "
8827 "after base register in `%s'"),
8828 operand_string);
8829 return 0;
8830 }
8831 }
8832 else if (*base_string == REGISTER_PREFIX)
8833 {
8834 end_op = strchr (base_string, ',');
8835 if (end_op)
8836 *end_op = '\0';
8837 as_bad (_("bad register name `%s'"), base_string);
8838 return 0;
8839 }
8840 }
8841
8842 /* If there's an expression beginning the operand, parse it,
8843 assuming displacement_string_start and
8844 displacement_string_end are meaningful. */
8845 if (displacement_string_start != displacement_string_end)
8846 {
8847 if (!i386_displacement (displacement_string_start,
8848 displacement_string_end))
8849 return 0;
8850 }
8851
8852 /* Special case for (%dx) while doing input/output op. */
8853 if (i.base_reg
8854 && operand_type_equal (&i.base_reg->reg_type,
8855 &reg16_inoutportreg)
8856 && i.index_reg == 0
8857 && i.log2_scale_factor == 0
8858 && i.seg[i.mem_operands] == 0
8859 && !operand_type_check (i.types[this_operand], disp))
8860 {
8861 i.types[this_operand] = inoutportreg;
8862 return 1;
8863 }
8864
8865 if (i386_index_check (operand_string) == 0)
8866 return 0;
8867 i.types[this_operand].bitfield.mem = 1;
8868 i.mem_operands++;
8869 }
8870 else
8871 {
8872 /* It's not a memory operand; argh! */
8873 as_bad (_("invalid char %s beginning operand %d `%s'"),
8874 output_invalid (*op_string),
8875 this_operand + 1,
8876 op_string);
8877 return 0;
8878 }
8879 return 1; /* Normal return. */
8880 }
8881 \f
8882 /* Calculate the maximum variable size (i.e., excluding fr_fix)
8883 that an rs_machine_dependent frag may reach. */
8884
8885 unsigned int
8886 i386_frag_max_var (fragS *frag)
8887 {
8888 /* The only relaxable frags are for jumps.
8889 Unconditional jumps can grow by 4 bytes and others by 5 bytes. */
8890 gas_assert (frag->fr_type == rs_machine_dependent);
8891 return TYPE_FROM_RELAX_STATE (frag->fr_subtype) == UNCOND_JUMP ? 4 : 5;
8892 }
8893
8894 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8895 static int
8896 elf_symbol_resolved_in_segment_p (symbolS *fr_symbol, offsetT fr_var)
8897 {
8898 /* STT_GNU_IFUNC symbol must go through PLT. */
8899 if ((symbol_get_bfdsym (fr_symbol)->flags
8900 & BSF_GNU_INDIRECT_FUNCTION) != 0)
8901 return 0;
8902
8903 if (!S_IS_EXTERNAL (fr_symbol))
8904 /* Symbol may be weak or local. */
8905 return !S_IS_WEAK (fr_symbol);
8906
8907 /* Global symbols with non-default visibility can't be preempted. */
8908 if (ELF_ST_VISIBILITY (S_GET_OTHER (fr_symbol)) != STV_DEFAULT)
8909 return 1;
8910
8911 if (fr_var != NO_RELOC)
8912 switch ((enum bfd_reloc_code_real) fr_var)
8913 {
8914 case BFD_RELOC_386_PLT32:
8915 case BFD_RELOC_X86_64_PLT32:
8916 /* Symbol with PLT relocatin may be preempted. */
8917 return 0;
8918 default:
8919 abort ();
8920 }
8921
8922 /* Global symbols with default visibility in a shared library may be
8923 preempted by another definition. */
8924 return !shared;
8925 }
8926 #endif
8927
8928 /* md_estimate_size_before_relax()
8929
8930 Called just before relax() for rs_machine_dependent frags. The x86
8931 assembler uses these frags to handle variable size jump
8932 instructions.
8933
8934 Any symbol that is now undefined will not become defined.
8935 Return the correct fr_subtype in the frag.
8936 Return the initial "guess for variable size of frag" to caller.
8937 The guess is actually the growth beyond the fixed part. Whatever
8938 we do to grow the fixed or variable part contributes to our
8939 returned value. */
8940
8941 int
8942 md_estimate_size_before_relax (fragS *fragP, segT segment)
8943 {
8944 /* We've already got fragP->fr_subtype right; all we have to do is
8945 check for un-relaxable symbols. On an ELF system, we can't relax
8946 an externally visible symbol, because it may be overridden by a
8947 shared library. */
8948 if (S_GET_SEGMENT (fragP->fr_symbol) != segment
8949 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8950 || (IS_ELF
8951 && !elf_symbol_resolved_in_segment_p (fragP->fr_symbol,
8952 fragP->fr_var))
8953 #endif
8954 #if defined (OBJ_COFF) && defined (TE_PE)
8955 || (OUTPUT_FLAVOR == bfd_target_coff_flavour
8956 && S_IS_WEAK (fragP->fr_symbol))
8957 #endif
8958 )
8959 {
8960 /* Symbol is undefined in this segment, or we need to keep a
8961 reloc so that weak symbols can be overridden. */
8962 int size = (fragP->fr_subtype & CODE16) ? 2 : 4;
8963 enum bfd_reloc_code_real reloc_type;
8964 unsigned char *opcode;
8965 int old_fr_fix;
8966
8967 if (fragP->fr_var != NO_RELOC)
8968 reloc_type = (enum bfd_reloc_code_real) fragP->fr_var;
8969 else if (size == 2)
8970 reloc_type = BFD_RELOC_16_PCREL;
8971 else
8972 reloc_type = BFD_RELOC_32_PCREL;
8973
8974 old_fr_fix = fragP->fr_fix;
8975 opcode = (unsigned char *) fragP->fr_opcode;
8976
8977 switch (TYPE_FROM_RELAX_STATE (fragP->fr_subtype))
8978 {
8979 case UNCOND_JUMP:
8980 /* Make jmp (0xeb) a (d)word displacement jump. */
8981 opcode[0] = 0xe9;
8982 fragP->fr_fix += size;
8983 fix_new (fragP, old_fr_fix, size,
8984 fragP->fr_symbol,
8985 fragP->fr_offset, 1,
8986 reloc_type);
8987 break;
8988
8989 case COND_JUMP86:
8990 if (size == 2
8991 && (!no_cond_jump_promotion || fragP->fr_var != NO_RELOC))
8992 {
8993 /* Negate the condition, and branch past an
8994 unconditional jump. */
8995 opcode[0] ^= 1;
8996 opcode[1] = 3;
8997 /* Insert an unconditional jump. */
8998 opcode[2] = 0xe9;
8999 /* We added two extra opcode bytes, and have a two byte
9000 offset. */
9001 fragP->fr_fix += 2 + 2;
9002 fix_new (fragP, old_fr_fix + 2, 2,
9003 fragP->fr_symbol,
9004 fragP->fr_offset, 1,
9005 reloc_type);
9006 break;
9007 }
9008 /* Fall through. */
9009
9010 case COND_JUMP:
9011 if (no_cond_jump_promotion && fragP->fr_var == NO_RELOC)
9012 {
9013 fixS *fixP;
9014
9015 fragP->fr_fix += 1;
9016 fixP = fix_new (fragP, old_fr_fix, 1,
9017 fragP->fr_symbol,
9018 fragP->fr_offset, 1,
9019 BFD_RELOC_8_PCREL);
9020 fixP->fx_signed = 1;
9021 break;
9022 }
9023
9024 /* This changes the byte-displacement jump 0x7N
9025 to the (d)word-displacement jump 0x0f,0x8N. */
9026 opcode[1] = opcode[0] + 0x10;
9027 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
9028 /* We've added an opcode byte. */
9029 fragP->fr_fix += 1 + size;
9030 fix_new (fragP, old_fr_fix + 1, size,
9031 fragP->fr_symbol,
9032 fragP->fr_offset, 1,
9033 reloc_type);
9034 break;
9035
9036 default:
9037 BAD_CASE (fragP->fr_subtype);
9038 break;
9039 }
9040 frag_wane (fragP);
9041 return fragP->fr_fix - old_fr_fix;
9042 }
9043
9044 /* Guess size depending on current relax state. Initially the relax
9045 state will correspond to a short jump and we return 1, because
9046 the variable part of the frag (the branch offset) is one byte
9047 long. However, we can relax a section more than once and in that
9048 case we must either set fr_subtype back to the unrelaxed state,
9049 or return the value for the appropriate branch. */
9050 return md_relax_table[fragP->fr_subtype].rlx_length;
9051 }
9052
9053 /* Called after relax() is finished.
9054
9055 In: Address of frag.
9056 fr_type == rs_machine_dependent.
9057 fr_subtype is what the address relaxed to.
9058
9059 Out: Any fixSs and constants are set up.
9060 Caller will turn frag into a ".space 0". */
9061
9062 void
9063 md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT sec ATTRIBUTE_UNUSED,
9064 fragS *fragP)
9065 {
9066 unsigned char *opcode;
9067 unsigned char *where_to_put_displacement = NULL;
9068 offsetT target_address;
9069 offsetT opcode_address;
9070 unsigned int extension = 0;
9071 offsetT displacement_from_opcode_start;
9072
9073 opcode = (unsigned char *) fragP->fr_opcode;
9074
9075 /* Address we want to reach in file space. */
9076 target_address = S_GET_VALUE (fragP->fr_symbol) + fragP->fr_offset;
9077
9078 /* Address opcode resides at in file space. */
9079 opcode_address = fragP->fr_address + fragP->fr_fix;
9080
9081 /* Displacement from opcode start to fill into instruction. */
9082 displacement_from_opcode_start = target_address - opcode_address;
9083
9084 if ((fragP->fr_subtype & BIG) == 0)
9085 {
9086 /* Don't have to change opcode. */
9087 extension = 1; /* 1 opcode + 1 displacement */
9088 where_to_put_displacement = &opcode[1];
9089 }
9090 else
9091 {
9092 if (no_cond_jump_promotion
9093 && TYPE_FROM_RELAX_STATE (fragP->fr_subtype) != UNCOND_JUMP)
9094 as_warn_where (fragP->fr_file, fragP->fr_line,
9095 _("long jump required"));
9096
9097 switch (fragP->fr_subtype)
9098 {
9099 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG):
9100 extension = 4; /* 1 opcode + 4 displacement */
9101 opcode[0] = 0xe9;
9102 where_to_put_displacement = &opcode[1];
9103 break;
9104
9105 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16):
9106 extension = 2; /* 1 opcode + 2 displacement */
9107 opcode[0] = 0xe9;
9108 where_to_put_displacement = &opcode[1];
9109 break;
9110
9111 case ENCODE_RELAX_STATE (COND_JUMP, BIG):
9112 case ENCODE_RELAX_STATE (COND_JUMP86, BIG):
9113 extension = 5; /* 2 opcode + 4 displacement */
9114 opcode[1] = opcode[0] + 0x10;
9115 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
9116 where_to_put_displacement = &opcode[2];
9117 break;
9118
9119 case ENCODE_RELAX_STATE (COND_JUMP, BIG16):
9120 extension = 3; /* 2 opcode + 2 displacement */
9121 opcode[1] = opcode[0] + 0x10;
9122 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
9123 where_to_put_displacement = &opcode[2];
9124 break;
9125
9126 case ENCODE_RELAX_STATE (COND_JUMP86, BIG16):
9127 extension = 4;
9128 opcode[0] ^= 1;
9129 opcode[1] = 3;
9130 opcode[2] = 0xe9;
9131 where_to_put_displacement = &opcode[3];
9132 break;
9133
9134 default:
9135 BAD_CASE (fragP->fr_subtype);
9136 break;
9137 }
9138 }
9139
9140 /* If size if less then four we are sure that the operand fits,
9141 but if it's 4, then it could be that the displacement is larger
9142 then -/+ 2GB. */
9143 if (DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype) == 4
9144 && object_64bit
9145 && ((addressT) (displacement_from_opcode_start - extension
9146 + ((addressT) 1 << 31))
9147 > (((addressT) 2 << 31) - 1)))
9148 {
9149 as_bad_where (fragP->fr_file, fragP->fr_line,
9150 _("jump target out of range"));
9151 /* Make us emit 0. */
9152 displacement_from_opcode_start = extension;
9153 }
9154 /* Now put displacement after opcode. */
9155 md_number_to_chars ((char *) where_to_put_displacement,
9156 (valueT) (displacement_from_opcode_start - extension),
9157 DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype));
9158 fragP->fr_fix += extension;
9159 }
9160 \f
9161 /* Apply a fixup (fixP) to segment data, once it has been determined
9162 by our caller that we have all the info we need to fix it up.
9163
9164 Parameter valP is the pointer to the value of the bits.
9165
9166 On the 386, immediates, displacements, and data pointers are all in
9167 the same (little-endian) format, so we don't need to care about which
9168 we are handling. */
9169
9170 void
9171 md_apply_fix (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED)
9172 {
9173 char *p = fixP->fx_where + fixP->fx_frag->fr_literal;
9174 valueT value = *valP;
9175
9176 #if !defined (TE_Mach)
9177 if (fixP->fx_pcrel)
9178 {
9179 switch (fixP->fx_r_type)
9180 {
9181 default:
9182 break;
9183
9184 case BFD_RELOC_64:
9185 fixP->fx_r_type = BFD_RELOC_64_PCREL;
9186 break;
9187 case BFD_RELOC_32:
9188 case BFD_RELOC_X86_64_32S:
9189 fixP->fx_r_type = BFD_RELOC_32_PCREL;
9190 break;
9191 case BFD_RELOC_16:
9192 fixP->fx_r_type = BFD_RELOC_16_PCREL;
9193 break;
9194 case BFD_RELOC_8:
9195 fixP->fx_r_type = BFD_RELOC_8_PCREL;
9196 break;
9197 }
9198 }
9199
9200 if (fixP->fx_addsy != NULL
9201 && (fixP->fx_r_type == BFD_RELOC_32_PCREL
9202 || fixP->fx_r_type == BFD_RELOC_64_PCREL
9203 || fixP->fx_r_type == BFD_RELOC_16_PCREL
9204 || fixP->fx_r_type == BFD_RELOC_8_PCREL)
9205 && !use_rela_relocations)
9206 {
9207 /* This is a hack. There should be a better way to handle this.
9208 This covers for the fact that bfd_install_relocation will
9209 subtract the current location (for partial_inplace, PC relative
9210 relocations); see more below. */
9211 #ifndef OBJ_AOUT
9212 if (IS_ELF
9213 #ifdef TE_PE
9214 || OUTPUT_FLAVOR == bfd_target_coff_flavour
9215 #endif
9216 )
9217 value += fixP->fx_where + fixP->fx_frag->fr_address;
9218 #endif
9219 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9220 if (IS_ELF)
9221 {
9222 segT sym_seg = S_GET_SEGMENT (fixP->fx_addsy);
9223
9224 if ((sym_seg == seg
9225 || (symbol_section_p (fixP->fx_addsy)
9226 && sym_seg != absolute_section))
9227 && !generic_force_reloc (fixP))
9228 {
9229 /* Yes, we add the values in twice. This is because
9230 bfd_install_relocation subtracts them out again. I think
9231 bfd_install_relocation is broken, but I don't dare change
9232 it. FIXME. */
9233 value += fixP->fx_where + fixP->fx_frag->fr_address;
9234 }
9235 }
9236 #endif
9237 #if defined (OBJ_COFF) && defined (TE_PE)
9238 /* For some reason, the PE format does not store a
9239 section address offset for a PC relative symbol. */
9240 if (S_GET_SEGMENT (fixP->fx_addsy) != seg
9241 || S_IS_WEAK (fixP->fx_addsy))
9242 value += md_pcrel_from (fixP);
9243 #endif
9244 }
9245 #if defined (OBJ_COFF) && defined (TE_PE)
9246 if (fixP->fx_addsy != NULL
9247 && S_IS_WEAK (fixP->fx_addsy)
9248 /* PR 16858: Do not modify weak function references. */
9249 && ! fixP->fx_pcrel)
9250 {
9251 #if !defined (TE_PEP)
9252 /* For x86 PE weak function symbols are neither PC-relative
9253 nor do they set S_IS_FUNCTION. So the only reliable way
9254 to detect them is to check the flags of their containing
9255 section. */
9256 if (S_GET_SEGMENT (fixP->fx_addsy) != NULL
9257 && S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_CODE)
9258 ;
9259 else
9260 #endif
9261 value -= S_GET_VALUE (fixP->fx_addsy);
9262 }
9263 #endif
9264
9265 /* Fix a few things - the dynamic linker expects certain values here,
9266 and we must not disappoint it. */
9267 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9268 if (IS_ELF && fixP->fx_addsy)
9269 switch (fixP->fx_r_type)
9270 {
9271 case BFD_RELOC_386_PLT32:
9272 case BFD_RELOC_X86_64_PLT32:
9273 /* Make the jump instruction point to the address of the operand. At
9274 runtime we merely add the offset to the actual PLT entry. */
9275 value = -4;
9276 break;
9277
9278 case BFD_RELOC_386_TLS_GD:
9279 case BFD_RELOC_386_TLS_LDM:
9280 case BFD_RELOC_386_TLS_IE_32:
9281 case BFD_RELOC_386_TLS_IE:
9282 case BFD_RELOC_386_TLS_GOTIE:
9283 case BFD_RELOC_386_TLS_GOTDESC:
9284 case BFD_RELOC_X86_64_TLSGD:
9285 case BFD_RELOC_X86_64_TLSLD:
9286 case BFD_RELOC_X86_64_GOTTPOFF:
9287 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
9288 value = 0; /* Fully resolved at runtime. No addend. */
9289 /* Fallthrough */
9290 case BFD_RELOC_386_TLS_LE:
9291 case BFD_RELOC_386_TLS_LDO_32:
9292 case BFD_RELOC_386_TLS_LE_32:
9293 case BFD_RELOC_X86_64_DTPOFF32:
9294 case BFD_RELOC_X86_64_DTPOFF64:
9295 case BFD_RELOC_X86_64_TPOFF32:
9296 case BFD_RELOC_X86_64_TPOFF64:
9297 S_SET_THREAD_LOCAL (fixP->fx_addsy);
9298 break;
9299
9300 case BFD_RELOC_386_TLS_DESC_CALL:
9301 case BFD_RELOC_X86_64_TLSDESC_CALL:
9302 value = 0; /* Fully resolved at runtime. No addend. */
9303 S_SET_THREAD_LOCAL (fixP->fx_addsy);
9304 fixP->fx_done = 0;
9305 return;
9306
9307 case BFD_RELOC_386_GOT32:
9308 case BFD_RELOC_X86_64_GOT32:
9309 value = 0; /* Fully resolved at runtime. No addend. */
9310 break;
9311
9312 case BFD_RELOC_VTABLE_INHERIT:
9313 case BFD_RELOC_VTABLE_ENTRY:
9314 fixP->fx_done = 0;
9315 return;
9316
9317 default:
9318 break;
9319 }
9320 #endif /* defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) */
9321 *valP = value;
9322 #endif /* !defined (TE_Mach) */
9323
9324 /* Are we finished with this relocation now? */
9325 if (fixP->fx_addsy == NULL)
9326 fixP->fx_done = 1;
9327 #if defined (OBJ_COFF) && defined (TE_PE)
9328 else if (fixP->fx_addsy != NULL && S_IS_WEAK (fixP->fx_addsy))
9329 {
9330 fixP->fx_done = 0;
9331 /* Remember value for tc_gen_reloc. */
9332 fixP->fx_addnumber = value;
9333 /* Clear out the frag for now. */
9334 value = 0;
9335 }
9336 #endif
9337 else if (use_rela_relocations)
9338 {
9339 fixP->fx_no_overflow = 1;
9340 /* Remember value for tc_gen_reloc. */
9341 fixP->fx_addnumber = value;
9342 value = 0;
9343 }
9344
9345 md_number_to_chars (p, value, fixP->fx_size);
9346 }
9347 \f
9348 char *
9349 md_atof (int type, char *litP, int *sizeP)
9350 {
9351 /* This outputs the LITTLENUMs in REVERSE order;
9352 in accord with the bigendian 386. */
9353 return ieee_md_atof (type, litP, sizeP, FALSE);
9354 }
9355 \f
9356 static char output_invalid_buf[sizeof (unsigned char) * 2 + 6];
9357
9358 static char *
9359 output_invalid (int c)
9360 {
9361 if (ISPRINT (c))
9362 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
9363 "'%c'", c);
9364 else
9365 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
9366 "(0x%x)", (unsigned char) c);
9367 return output_invalid_buf;
9368 }
9369
9370 /* REG_STRING starts *before* REGISTER_PREFIX. */
9371
9372 static const reg_entry *
9373 parse_real_register (char *reg_string, char **end_op)
9374 {
9375 char *s = reg_string;
9376 char *p;
9377 char reg_name_given[MAX_REG_NAME_SIZE + 1];
9378 const reg_entry *r;
9379
9380 /* Skip possible REGISTER_PREFIX and possible whitespace. */
9381 if (*s == REGISTER_PREFIX)
9382 ++s;
9383
9384 if (is_space_char (*s))
9385 ++s;
9386
9387 p = reg_name_given;
9388 while ((*p++ = register_chars[(unsigned char) *s]) != '\0')
9389 {
9390 if (p >= reg_name_given + MAX_REG_NAME_SIZE)
9391 return (const reg_entry *) NULL;
9392 s++;
9393 }
9394
9395 /* For naked regs, make sure that we are not dealing with an identifier.
9396 This prevents confusing an identifier like `eax_var' with register
9397 `eax'. */
9398 if (allow_naked_reg && identifier_chars[(unsigned char) *s])
9399 return (const reg_entry *) NULL;
9400
9401 *end_op = s;
9402
9403 r = (const reg_entry *) hash_find (reg_hash, reg_name_given);
9404
9405 /* Handle floating point regs, allowing spaces in the (i) part. */
9406 if (r == i386_regtab /* %st is first entry of table */)
9407 {
9408 if (is_space_char (*s))
9409 ++s;
9410 if (*s == '(')
9411 {
9412 ++s;
9413 if (is_space_char (*s))
9414 ++s;
9415 if (*s >= '0' && *s <= '7')
9416 {
9417 int fpr = *s - '0';
9418 ++s;
9419 if (is_space_char (*s))
9420 ++s;
9421 if (*s == ')')
9422 {
9423 *end_op = s + 1;
9424 r = (const reg_entry *) hash_find (reg_hash, "st(0)");
9425 know (r);
9426 return r + fpr;
9427 }
9428 }
9429 /* We have "%st(" then garbage. */
9430 return (const reg_entry *) NULL;
9431 }
9432 }
9433
9434 if (r == NULL || allow_pseudo_reg)
9435 return r;
9436
9437 if (operand_type_all_zero (&r->reg_type))
9438 return (const reg_entry *) NULL;
9439
9440 if ((r->reg_type.bitfield.reg32
9441 || r->reg_type.bitfield.sreg3
9442 || r->reg_type.bitfield.control
9443 || r->reg_type.bitfield.debug
9444 || r->reg_type.bitfield.test)
9445 && !cpu_arch_flags.bitfield.cpui386)
9446 return (const reg_entry *) NULL;
9447
9448 if (r->reg_type.bitfield.floatreg
9449 && !cpu_arch_flags.bitfield.cpu8087
9450 && !cpu_arch_flags.bitfield.cpu287
9451 && !cpu_arch_flags.bitfield.cpu387)
9452 return (const reg_entry *) NULL;
9453
9454 if (r->reg_type.bitfield.regmmx && !cpu_arch_flags.bitfield.cpummx)
9455 return (const reg_entry *) NULL;
9456
9457 if (r->reg_type.bitfield.regxmm && !cpu_arch_flags.bitfield.cpusse)
9458 return (const reg_entry *) NULL;
9459
9460 if (r->reg_type.bitfield.regymm && !cpu_arch_flags.bitfield.cpuavx)
9461 return (const reg_entry *) NULL;
9462
9463 if ((r->reg_type.bitfield.regzmm || r->reg_type.bitfield.regmask)
9464 && !cpu_arch_flags.bitfield.cpuavx512f)
9465 return (const reg_entry *) NULL;
9466
9467 /* Don't allow fake index register unless allow_index_reg isn't 0. */
9468 if (!allow_index_reg
9469 && (r->reg_num == RegEiz || r->reg_num == RegRiz))
9470 return (const reg_entry *) NULL;
9471
9472 /* Upper 16 vector register is only available with VREX in 64bit
9473 mode. */
9474 if ((r->reg_flags & RegVRex))
9475 {
9476 if (!cpu_arch_flags.bitfield.cpuvrex
9477 || flag_code != CODE_64BIT)
9478 return (const reg_entry *) NULL;
9479
9480 i.need_vrex = 1;
9481 }
9482
9483 if (((r->reg_flags & (RegRex64 | RegRex))
9484 || r->reg_type.bitfield.reg64)
9485 && (!cpu_arch_flags.bitfield.cpulm
9486 || !operand_type_equal (&r->reg_type, &control))
9487 && flag_code != CODE_64BIT)
9488 return (const reg_entry *) NULL;
9489
9490 if (r->reg_type.bitfield.sreg3 && r->reg_num == RegFlat && !intel_syntax)
9491 return (const reg_entry *) NULL;
9492
9493 return r;
9494 }
9495
9496 /* REG_STRING starts *before* REGISTER_PREFIX. */
9497
9498 static const reg_entry *
9499 parse_register (char *reg_string, char **end_op)
9500 {
9501 const reg_entry *r;
9502
9503 if (*reg_string == REGISTER_PREFIX || allow_naked_reg)
9504 r = parse_real_register (reg_string, end_op);
9505 else
9506 r = NULL;
9507 if (!r)
9508 {
9509 char *save = input_line_pointer;
9510 char c;
9511 symbolS *symbolP;
9512
9513 input_line_pointer = reg_string;
9514 c = get_symbol_name (&reg_string);
9515 symbolP = symbol_find (reg_string);
9516 if (symbolP && S_GET_SEGMENT (symbolP) == reg_section)
9517 {
9518 const expressionS *e = symbol_get_value_expression (symbolP);
9519
9520 know (e->X_op == O_register);
9521 know (e->X_add_number >= 0
9522 && (valueT) e->X_add_number < i386_regtab_size);
9523 r = i386_regtab + e->X_add_number;
9524 if ((r->reg_flags & RegVRex))
9525 i.need_vrex = 1;
9526 *end_op = input_line_pointer;
9527 }
9528 *input_line_pointer = c;
9529 input_line_pointer = save;
9530 }
9531 return r;
9532 }
9533
9534 int
9535 i386_parse_name (char *name, expressionS *e, char *nextcharP)
9536 {
9537 const reg_entry *r;
9538 char *end = input_line_pointer;
9539
9540 *end = *nextcharP;
9541 r = parse_register (name, &input_line_pointer);
9542 if (r && end <= input_line_pointer)
9543 {
9544 *nextcharP = *input_line_pointer;
9545 *input_line_pointer = 0;
9546 e->X_op = O_register;
9547 e->X_add_number = r - i386_regtab;
9548 return 1;
9549 }
9550 input_line_pointer = end;
9551 *end = 0;
9552 return intel_syntax ? i386_intel_parse_name (name, e) : 0;
9553 }
9554
9555 void
9556 md_operand (expressionS *e)
9557 {
9558 char *end;
9559 const reg_entry *r;
9560
9561 switch (*input_line_pointer)
9562 {
9563 case REGISTER_PREFIX:
9564 r = parse_real_register (input_line_pointer, &end);
9565 if (r)
9566 {
9567 e->X_op = O_register;
9568 e->X_add_number = r - i386_regtab;
9569 input_line_pointer = end;
9570 }
9571 break;
9572
9573 case '[':
9574 gas_assert (intel_syntax);
9575 end = input_line_pointer++;
9576 expression (e);
9577 if (*input_line_pointer == ']')
9578 {
9579 ++input_line_pointer;
9580 e->X_op_symbol = make_expr_symbol (e);
9581 e->X_add_symbol = NULL;
9582 e->X_add_number = 0;
9583 e->X_op = O_index;
9584 }
9585 else
9586 {
9587 e->X_op = O_absent;
9588 input_line_pointer = end;
9589 }
9590 break;
9591 }
9592 }
9593
9594 \f
9595 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9596 const char *md_shortopts = "kVQ:sqn";
9597 #else
9598 const char *md_shortopts = "qn";
9599 #endif
9600
9601 #define OPTION_32 (OPTION_MD_BASE + 0)
9602 #define OPTION_64 (OPTION_MD_BASE + 1)
9603 #define OPTION_DIVIDE (OPTION_MD_BASE + 2)
9604 #define OPTION_MARCH (OPTION_MD_BASE + 3)
9605 #define OPTION_MTUNE (OPTION_MD_BASE + 4)
9606 #define OPTION_MMNEMONIC (OPTION_MD_BASE + 5)
9607 #define OPTION_MSYNTAX (OPTION_MD_BASE + 6)
9608 #define OPTION_MINDEX_REG (OPTION_MD_BASE + 7)
9609 #define OPTION_MNAKED_REG (OPTION_MD_BASE + 8)
9610 #define OPTION_MOLD_GCC (OPTION_MD_BASE + 9)
9611 #define OPTION_MSSE2AVX (OPTION_MD_BASE + 10)
9612 #define OPTION_MSSE_CHECK (OPTION_MD_BASE + 11)
9613 #define OPTION_MOPERAND_CHECK (OPTION_MD_BASE + 12)
9614 #define OPTION_MAVXSCALAR (OPTION_MD_BASE + 13)
9615 #define OPTION_X32 (OPTION_MD_BASE + 14)
9616 #define OPTION_MADD_BND_PREFIX (OPTION_MD_BASE + 15)
9617 #define OPTION_MEVEXLIG (OPTION_MD_BASE + 16)
9618 #define OPTION_MEVEXWIG (OPTION_MD_BASE + 17)
9619 #define OPTION_MBIG_OBJ (OPTION_MD_BASE + 18)
9620 #define OPTION_OMIT_LOCK_PREFIX (OPTION_MD_BASE + 19)
9621 #define OPTION_MEVEXRCIG (OPTION_MD_BASE + 20)
9622 #define OPTION_MSHARED (OPTION_MD_BASE + 21)
9623 #define OPTION_MAMD64 (OPTION_MD_BASE + 22)
9624 #define OPTION_MINTEL64 (OPTION_MD_BASE + 23)
9625
9626 struct option md_longopts[] =
9627 {
9628 {"32", no_argument, NULL, OPTION_32},
9629 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
9630 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
9631 {"64", no_argument, NULL, OPTION_64},
9632 #endif
9633 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9634 {"x32", no_argument, NULL, OPTION_X32},
9635 {"mshared", no_argument, NULL, OPTION_MSHARED},
9636 #endif
9637 {"divide", no_argument, NULL, OPTION_DIVIDE},
9638 {"march", required_argument, NULL, OPTION_MARCH},
9639 {"mtune", required_argument, NULL, OPTION_MTUNE},
9640 {"mmnemonic", required_argument, NULL, OPTION_MMNEMONIC},
9641 {"msyntax", required_argument, NULL, OPTION_MSYNTAX},
9642 {"mindex-reg", no_argument, NULL, OPTION_MINDEX_REG},
9643 {"mnaked-reg", no_argument, NULL, OPTION_MNAKED_REG},
9644 {"mold-gcc", no_argument, NULL, OPTION_MOLD_GCC},
9645 {"msse2avx", no_argument, NULL, OPTION_MSSE2AVX},
9646 {"msse-check", required_argument, NULL, OPTION_MSSE_CHECK},
9647 {"moperand-check", required_argument, NULL, OPTION_MOPERAND_CHECK},
9648 {"mavxscalar", required_argument, NULL, OPTION_MAVXSCALAR},
9649 {"madd-bnd-prefix", no_argument, NULL, OPTION_MADD_BND_PREFIX},
9650 {"mevexlig", required_argument, NULL, OPTION_MEVEXLIG},
9651 {"mevexwig", required_argument, NULL, OPTION_MEVEXWIG},
9652 # if defined (TE_PE) || defined (TE_PEP)
9653 {"mbig-obj", no_argument, NULL, OPTION_MBIG_OBJ},
9654 #endif
9655 {"momit-lock-prefix", required_argument, NULL, OPTION_OMIT_LOCK_PREFIX},
9656 {"mevexrcig", required_argument, NULL, OPTION_MEVEXRCIG},
9657 {"mamd64", no_argument, NULL, OPTION_MAMD64},
9658 {"mintel64", no_argument, NULL, OPTION_MINTEL64},
9659 {NULL, no_argument, NULL, 0}
9660 };
9661 size_t md_longopts_size = sizeof (md_longopts);
9662
9663 int
9664 md_parse_option (int c, char *arg)
9665 {
9666 unsigned int j;
9667 char *arch, *next;
9668
9669 switch (c)
9670 {
9671 case 'n':
9672 optimize_align_code = 0;
9673 break;
9674
9675 case 'q':
9676 quiet_warnings = 1;
9677 break;
9678
9679 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9680 /* -Qy, -Qn: SVR4 arguments controlling whether a .comment section
9681 should be emitted or not. FIXME: Not implemented. */
9682 case 'Q':
9683 break;
9684
9685 /* -V: SVR4 argument to print version ID. */
9686 case 'V':
9687 print_version_id ();
9688 break;
9689
9690 /* -k: Ignore for FreeBSD compatibility. */
9691 case 'k':
9692 break;
9693
9694 case 's':
9695 /* -s: On i386 Solaris, this tells the native assembler to use
9696 .stab instead of .stab.excl. We always use .stab anyhow. */
9697 break;
9698
9699 case OPTION_MSHARED:
9700 shared = 1;
9701 break;
9702 #endif
9703 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
9704 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
9705 case OPTION_64:
9706 {
9707 const char **list, **l;
9708
9709 list = bfd_target_list ();
9710 for (l = list; *l != NULL; l++)
9711 if (CONST_STRNEQ (*l, "elf64-x86-64")
9712 || strcmp (*l, "coff-x86-64") == 0
9713 || strcmp (*l, "pe-x86-64") == 0
9714 || strcmp (*l, "pei-x86-64") == 0
9715 || strcmp (*l, "mach-o-x86-64") == 0)
9716 {
9717 default_arch = "x86_64";
9718 break;
9719 }
9720 if (*l == NULL)
9721 as_fatal (_("no compiled in support for x86_64"));
9722 free (list);
9723 }
9724 break;
9725 #endif
9726
9727 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9728 case OPTION_X32:
9729 if (IS_ELF)
9730 {
9731 const char **list, **l;
9732
9733 list = bfd_target_list ();
9734 for (l = list; *l != NULL; l++)
9735 if (CONST_STRNEQ (*l, "elf32-x86-64"))
9736 {
9737 default_arch = "x86_64:32";
9738 break;
9739 }
9740 if (*l == NULL)
9741 as_fatal (_("no compiled in support for 32bit x86_64"));
9742 free (list);
9743 }
9744 else
9745 as_fatal (_("32bit x86_64 is only supported for ELF"));
9746 break;
9747 #endif
9748
9749 case OPTION_32:
9750 default_arch = "i386";
9751 break;
9752
9753 case OPTION_DIVIDE:
9754 #ifdef SVR4_COMMENT_CHARS
9755 {
9756 char *n, *t;
9757 const char *s;
9758
9759 n = (char *) xmalloc (strlen (i386_comment_chars) + 1);
9760 t = n;
9761 for (s = i386_comment_chars; *s != '\0'; s++)
9762 if (*s != '/')
9763 *t++ = *s;
9764 *t = '\0';
9765 i386_comment_chars = n;
9766 }
9767 #endif
9768 break;
9769
9770 case OPTION_MARCH:
9771 arch = xstrdup (arg);
9772 do
9773 {
9774 if (*arch == '.')
9775 as_fatal (_("invalid -march= option: `%s'"), arg);
9776 next = strchr (arch, '+');
9777 if (next)
9778 *next++ = '\0';
9779 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
9780 {
9781 if (strcmp (arch, cpu_arch [j].name) == 0)
9782 {
9783 /* Processor. */
9784 if (! cpu_arch[j].flags.bitfield.cpui386)
9785 continue;
9786
9787 cpu_arch_name = cpu_arch[j].name;
9788 cpu_sub_arch_name = NULL;
9789 cpu_arch_flags = cpu_arch[j].flags;
9790 cpu_arch_isa = cpu_arch[j].type;
9791 cpu_arch_isa_flags = cpu_arch[j].flags;
9792 if (!cpu_arch_tune_set)
9793 {
9794 cpu_arch_tune = cpu_arch_isa;
9795 cpu_arch_tune_flags = cpu_arch_isa_flags;
9796 }
9797 break;
9798 }
9799 else if (*cpu_arch [j].name == '.'
9800 && strcmp (arch, cpu_arch [j].name + 1) == 0)
9801 {
9802 /* ISA entension. */
9803 i386_cpu_flags flags;
9804
9805 if (!cpu_arch[j].negated)
9806 flags = cpu_flags_or (cpu_arch_flags,
9807 cpu_arch[j].flags);
9808 else
9809 flags = cpu_flags_and_not (cpu_arch_flags,
9810 cpu_arch[j].flags);
9811
9812 if (!valid_iamcu_cpu_flags (&flags))
9813 as_fatal (_("`%s' isn't valid for Intel MCU"), arch);
9814 else if (!cpu_flags_equal (&flags, &cpu_arch_flags))
9815 {
9816 if (cpu_sub_arch_name)
9817 {
9818 char *name = cpu_sub_arch_name;
9819 cpu_sub_arch_name = concat (name,
9820 cpu_arch[j].name,
9821 (const char *) NULL);
9822 free (name);
9823 }
9824 else
9825 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
9826 cpu_arch_flags = flags;
9827 cpu_arch_isa_flags = flags;
9828 }
9829 break;
9830 }
9831 }
9832
9833 if (j >= ARRAY_SIZE (cpu_arch))
9834 as_fatal (_("invalid -march= option: `%s'"), arg);
9835
9836 arch = next;
9837 }
9838 while (next != NULL );
9839 break;
9840
9841 case OPTION_MTUNE:
9842 if (*arg == '.')
9843 as_fatal (_("invalid -mtune= option: `%s'"), arg);
9844 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
9845 {
9846 if (strcmp (arg, cpu_arch [j].name) == 0)
9847 {
9848 cpu_arch_tune_set = 1;
9849 cpu_arch_tune = cpu_arch [j].type;
9850 cpu_arch_tune_flags = cpu_arch[j].flags;
9851 break;
9852 }
9853 }
9854 if (j >= ARRAY_SIZE (cpu_arch))
9855 as_fatal (_("invalid -mtune= option: `%s'"), arg);
9856 break;
9857
9858 case OPTION_MMNEMONIC:
9859 if (strcasecmp (arg, "att") == 0)
9860 intel_mnemonic = 0;
9861 else if (strcasecmp (arg, "intel") == 0)
9862 intel_mnemonic = 1;
9863 else
9864 as_fatal (_("invalid -mmnemonic= option: `%s'"), arg);
9865 break;
9866
9867 case OPTION_MSYNTAX:
9868 if (strcasecmp (arg, "att") == 0)
9869 intel_syntax = 0;
9870 else if (strcasecmp (arg, "intel") == 0)
9871 intel_syntax = 1;
9872 else
9873 as_fatal (_("invalid -msyntax= option: `%s'"), arg);
9874 break;
9875
9876 case OPTION_MINDEX_REG:
9877 allow_index_reg = 1;
9878 break;
9879
9880 case OPTION_MNAKED_REG:
9881 allow_naked_reg = 1;
9882 break;
9883
9884 case OPTION_MOLD_GCC:
9885 old_gcc = 1;
9886 break;
9887
9888 case OPTION_MSSE2AVX:
9889 sse2avx = 1;
9890 break;
9891
9892 case OPTION_MSSE_CHECK:
9893 if (strcasecmp (arg, "error") == 0)
9894 sse_check = check_error;
9895 else if (strcasecmp (arg, "warning") == 0)
9896 sse_check = check_warning;
9897 else if (strcasecmp (arg, "none") == 0)
9898 sse_check = check_none;
9899 else
9900 as_fatal (_("invalid -msse-check= option: `%s'"), arg);
9901 break;
9902
9903 case OPTION_MOPERAND_CHECK:
9904 if (strcasecmp (arg, "error") == 0)
9905 operand_check = check_error;
9906 else if (strcasecmp (arg, "warning") == 0)
9907 operand_check = check_warning;
9908 else if (strcasecmp (arg, "none") == 0)
9909 operand_check = check_none;
9910 else
9911 as_fatal (_("invalid -moperand-check= option: `%s'"), arg);
9912 break;
9913
9914 case OPTION_MAVXSCALAR:
9915 if (strcasecmp (arg, "128") == 0)
9916 avxscalar = vex128;
9917 else if (strcasecmp (arg, "256") == 0)
9918 avxscalar = vex256;
9919 else
9920 as_fatal (_("invalid -mavxscalar= option: `%s'"), arg);
9921 break;
9922
9923 case OPTION_MADD_BND_PREFIX:
9924 add_bnd_prefix = 1;
9925 break;
9926
9927 case OPTION_MEVEXLIG:
9928 if (strcmp (arg, "128") == 0)
9929 evexlig = evexl128;
9930 else if (strcmp (arg, "256") == 0)
9931 evexlig = evexl256;
9932 else if (strcmp (arg, "512") == 0)
9933 evexlig = evexl512;
9934 else
9935 as_fatal (_("invalid -mevexlig= option: `%s'"), arg);
9936 break;
9937
9938 case OPTION_MEVEXRCIG:
9939 if (strcmp (arg, "rne") == 0)
9940 evexrcig = rne;
9941 else if (strcmp (arg, "rd") == 0)
9942 evexrcig = rd;
9943 else if (strcmp (arg, "ru") == 0)
9944 evexrcig = ru;
9945 else if (strcmp (arg, "rz") == 0)
9946 evexrcig = rz;
9947 else
9948 as_fatal (_("invalid -mevexrcig= option: `%s'"), arg);
9949 break;
9950
9951 case OPTION_MEVEXWIG:
9952 if (strcmp (arg, "0") == 0)
9953 evexwig = evexw0;
9954 else if (strcmp (arg, "1") == 0)
9955 evexwig = evexw1;
9956 else
9957 as_fatal (_("invalid -mevexwig= option: `%s'"), arg);
9958 break;
9959
9960 # if defined (TE_PE) || defined (TE_PEP)
9961 case OPTION_MBIG_OBJ:
9962 use_big_obj = 1;
9963 break;
9964 #endif
9965
9966 case OPTION_OMIT_LOCK_PREFIX:
9967 if (strcasecmp (arg, "yes") == 0)
9968 omit_lock_prefix = 1;
9969 else if (strcasecmp (arg, "no") == 0)
9970 omit_lock_prefix = 0;
9971 else
9972 as_fatal (_("invalid -momit-lock-prefix= option: `%s'"), arg);
9973 break;
9974
9975 case OPTION_MAMD64:
9976 cpu_arch_flags.bitfield.cpuamd64 = 1;
9977 cpu_arch_flags.bitfield.cpuintel64 = 0;
9978 cpu_arch_isa_flags.bitfield.cpuamd64 = 1;
9979 cpu_arch_isa_flags.bitfield.cpuintel64 = 0;
9980 break;
9981
9982 case OPTION_MINTEL64:
9983 cpu_arch_flags.bitfield.cpuamd64 = 0;
9984 cpu_arch_flags.bitfield.cpuintel64 = 1;
9985 cpu_arch_isa_flags.bitfield.cpuamd64 = 0;
9986 cpu_arch_isa_flags.bitfield.cpuintel64 = 1;
9987 break;
9988
9989 default:
9990 return 0;
9991 }
9992 return 1;
9993 }
9994
9995 #define MESSAGE_TEMPLATE \
9996 " "
9997
9998 static void
9999 show_arch (FILE *stream, int ext, int check)
10000 {
10001 static char message[] = MESSAGE_TEMPLATE;
10002 char *start = message + 27;
10003 char *p;
10004 int size = sizeof (MESSAGE_TEMPLATE);
10005 int left;
10006 const char *name;
10007 int len;
10008 unsigned int j;
10009
10010 p = start;
10011 left = size - (start - message);
10012 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
10013 {
10014 /* Should it be skipped? */
10015 if (cpu_arch [j].skip)
10016 continue;
10017
10018 name = cpu_arch [j].name;
10019 len = cpu_arch [j].len;
10020 if (*name == '.')
10021 {
10022 /* It is an extension. Skip if we aren't asked to show it. */
10023 if (ext)
10024 {
10025 name++;
10026 len--;
10027 }
10028 else
10029 continue;
10030 }
10031 else if (ext)
10032 {
10033 /* It is an processor. Skip if we show only extension. */
10034 continue;
10035 }
10036 else if (check && ! cpu_arch[j].flags.bitfield.cpui386)
10037 {
10038 /* It is an impossible processor - skip. */
10039 continue;
10040 }
10041
10042 /* Reserve 2 spaces for ", " or ",\0" */
10043 left -= len + 2;
10044
10045 /* Check if there is any room. */
10046 if (left >= 0)
10047 {
10048 if (p != start)
10049 {
10050 *p++ = ',';
10051 *p++ = ' ';
10052 }
10053 p = mempcpy (p, name, len);
10054 }
10055 else
10056 {
10057 /* Output the current message now and start a new one. */
10058 *p++ = ',';
10059 *p = '\0';
10060 fprintf (stream, "%s\n", message);
10061 p = start;
10062 left = size - (start - message) - len - 2;
10063
10064 gas_assert (left >= 0);
10065
10066 p = mempcpy (p, name, len);
10067 }
10068 }
10069
10070 *p = '\0';
10071 fprintf (stream, "%s\n", message);
10072 }
10073
10074 void
10075 md_show_usage (FILE *stream)
10076 {
10077 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10078 fprintf (stream, _("\
10079 -Q ignored\n\
10080 -V print assembler version number\n\
10081 -k ignored\n"));
10082 #endif
10083 fprintf (stream, _("\
10084 -n Do not optimize code alignment\n\
10085 -q quieten some warnings\n"));
10086 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10087 fprintf (stream, _("\
10088 -s ignored\n"));
10089 #endif
10090 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
10091 || defined (TE_PE) || defined (TE_PEP))
10092 fprintf (stream, _("\
10093 --32/--64/--x32 generate 32bit/64bit/x32 code\n"));
10094 #endif
10095 #ifdef SVR4_COMMENT_CHARS
10096 fprintf (stream, _("\
10097 --divide do not treat `/' as a comment character\n"));
10098 #else
10099 fprintf (stream, _("\
10100 --divide ignored\n"));
10101 #endif
10102 fprintf (stream, _("\
10103 -march=CPU[,+EXTENSION...]\n\
10104 generate code for CPU and EXTENSION, CPU is one of:\n"));
10105 show_arch (stream, 0, 1);
10106 fprintf (stream, _("\
10107 EXTENSION is combination of:\n"));
10108 show_arch (stream, 1, 0);
10109 fprintf (stream, _("\
10110 -mtune=CPU optimize for CPU, CPU is one of:\n"));
10111 show_arch (stream, 0, 0);
10112 fprintf (stream, _("\
10113 -msse2avx encode SSE instructions with VEX prefix\n"));
10114 fprintf (stream, _("\
10115 -msse-check=[none|error|warning]\n\
10116 check SSE instructions\n"));
10117 fprintf (stream, _("\
10118 -moperand-check=[none|error|warning]\n\
10119 check operand combinations for validity\n"));
10120 fprintf (stream, _("\
10121 -mavxscalar=[128|256] encode scalar AVX instructions with specific vector\n\
10122 length\n"));
10123 fprintf (stream, _("\
10124 -mevexlig=[128|256|512] encode scalar EVEX instructions with specific vector\n\
10125 length\n"));
10126 fprintf (stream, _("\
10127 -mevexwig=[0|1] encode EVEX instructions with specific EVEX.W value\n\
10128 for EVEX.W bit ignored instructions\n"));
10129 fprintf (stream, _("\
10130 -mevexrcig=[rne|rd|ru|rz]\n\
10131 encode EVEX instructions with specific EVEX.RC value\n\
10132 for SAE-only ignored instructions\n"));
10133 fprintf (stream, _("\
10134 -mmnemonic=[att|intel] use AT&T/Intel mnemonic\n"));
10135 fprintf (stream, _("\
10136 -msyntax=[att|intel] use AT&T/Intel syntax\n"));
10137 fprintf (stream, _("\
10138 -mindex-reg support pseudo index registers\n"));
10139 fprintf (stream, _("\
10140 -mnaked-reg don't require `%%' prefix for registers\n"));
10141 fprintf (stream, _("\
10142 -mold-gcc support old (<= 2.8.1) versions of gcc\n"));
10143 fprintf (stream, _("\
10144 -madd-bnd-prefix add BND prefix for all valid branches\n"));
10145 fprintf (stream, _("\
10146 -mshared disable branch optimization for shared code\n"));
10147 # if defined (TE_PE) || defined (TE_PEP)
10148 fprintf (stream, _("\
10149 -mbig-obj generate big object files\n"));
10150 #endif
10151 fprintf (stream, _("\
10152 -momit-lock-prefix=[no|yes]\n\
10153 strip all lock prefixes\n"));
10154 fprintf (stream, _("\
10155 -mamd64 accept only AMD64 ISA\n"));
10156 fprintf (stream, _("\
10157 -mintel64 accept only Intel64 ISA\n"));
10158 }
10159
10160 #if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
10161 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
10162 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
10163
10164 /* Pick the target format to use. */
10165
10166 const char *
10167 i386_target_format (void)
10168 {
10169 if (!strncmp (default_arch, "x86_64", 6))
10170 {
10171 update_code_flag (CODE_64BIT, 1);
10172 if (default_arch[6] == '\0')
10173 x86_elf_abi = X86_64_ABI;
10174 else
10175 x86_elf_abi = X86_64_X32_ABI;
10176 }
10177 else if (!strcmp (default_arch, "i386"))
10178 update_code_flag (CODE_32BIT, 1);
10179 else if (!strcmp (default_arch, "iamcu"))
10180 {
10181 update_code_flag (CODE_32BIT, 1);
10182 if (cpu_arch_isa == PROCESSOR_UNKNOWN)
10183 {
10184 static const i386_cpu_flags iamcu_flags = CPU_IAMCU_FLAGS;
10185 cpu_arch_name = "iamcu";
10186 cpu_sub_arch_name = NULL;
10187 cpu_arch_flags = iamcu_flags;
10188 cpu_arch_isa = PROCESSOR_IAMCU;
10189 cpu_arch_isa_flags = iamcu_flags;
10190 if (!cpu_arch_tune_set)
10191 {
10192 cpu_arch_tune = cpu_arch_isa;
10193 cpu_arch_tune_flags = cpu_arch_isa_flags;
10194 }
10195 }
10196 else
10197 as_fatal (_("Intel MCU doesn't support `%s' architecture"),
10198 cpu_arch_name);
10199 }
10200 else
10201 as_fatal (_("unknown architecture"));
10202
10203 if (cpu_flags_all_zero (&cpu_arch_isa_flags))
10204 cpu_arch_isa_flags = cpu_arch[flag_code == CODE_64BIT].flags;
10205 if (cpu_flags_all_zero (&cpu_arch_tune_flags))
10206 cpu_arch_tune_flags = cpu_arch[flag_code == CODE_64BIT].flags;
10207
10208 switch (OUTPUT_FLAVOR)
10209 {
10210 #if defined (OBJ_MAYBE_AOUT) || defined (OBJ_AOUT)
10211 case bfd_target_aout_flavour:
10212 return AOUT_TARGET_FORMAT;
10213 #endif
10214 #if defined (OBJ_MAYBE_COFF) || defined (OBJ_COFF)
10215 # if defined (TE_PE) || defined (TE_PEP)
10216 case bfd_target_coff_flavour:
10217 if (flag_code == CODE_64BIT)
10218 return use_big_obj ? "pe-bigobj-x86-64" : "pe-x86-64";
10219 else
10220 return "pe-i386";
10221 # elif defined (TE_GO32)
10222 case bfd_target_coff_flavour:
10223 return "coff-go32";
10224 # else
10225 case bfd_target_coff_flavour:
10226 return "coff-i386";
10227 # endif
10228 #endif
10229 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
10230 case bfd_target_elf_flavour:
10231 {
10232 const char *format;
10233
10234 switch (x86_elf_abi)
10235 {
10236 default:
10237 format = ELF_TARGET_FORMAT;
10238 break;
10239 case X86_64_ABI:
10240 use_rela_relocations = 1;
10241 object_64bit = 1;
10242 format = ELF_TARGET_FORMAT64;
10243 break;
10244 case X86_64_X32_ABI:
10245 use_rela_relocations = 1;
10246 object_64bit = 1;
10247 disallow_64bit_reloc = 1;
10248 format = ELF_TARGET_FORMAT32;
10249 break;
10250 }
10251 if (cpu_arch_isa == PROCESSOR_L1OM)
10252 {
10253 if (x86_elf_abi != X86_64_ABI)
10254 as_fatal (_("Intel L1OM is 64bit only"));
10255 return ELF_TARGET_L1OM_FORMAT;
10256 }
10257 else if (cpu_arch_isa == PROCESSOR_K1OM)
10258 {
10259 if (x86_elf_abi != X86_64_ABI)
10260 as_fatal (_("Intel K1OM is 64bit only"));
10261 return ELF_TARGET_K1OM_FORMAT;
10262 }
10263 else if (cpu_arch_isa == PROCESSOR_IAMCU)
10264 {
10265 if (x86_elf_abi != I386_ABI)
10266 as_fatal (_("Intel MCU is 32bit only"));
10267 return ELF_TARGET_IAMCU_FORMAT;
10268 }
10269 else
10270 return format;
10271 }
10272 #endif
10273 #if defined (OBJ_MACH_O)
10274 case bfd_target_mach_o_flavour:
10275 if (flag_code == CODE_64BIT)
10276 {
10277 use_rela_relocations = 1;
10278 object_64bit = 1;
10279 return "mach-o-x86-64";
10280 }
10281 else
10282 return "mach-o-i386";
10283 #endif
10284 default:
10285 abort ();
10286 return NULL;
10287 }
10288 }
10289
10290 #endif /* OBJ_MAYBE_ more than one */
10291 \f
10292 symbolS *
10293 md_undefined_symbol (char *name)
10294 {
10295 if (name[0] == GLOBAL_OFFSET_TABLE_NAME[0]
10296 && name[1] == GLOBAL_OFFSET_TABLE_NAME[1]
10297 && name[2] == GLOBAL_OFFSET_TABLE_NAME[2]
10298 && strcmp (name, GLOBAL_OFFSET_TABLE_NAME) == 0)
10299 {
10300 if (!GOT_symbol)
10301 {
10302 if (symbol_find (name))
10303 as_bad (_("GOT already in symbol table"));
10304 GOT_symbol = symbol_new (name, undefined_section,
10305 (valueT) 0, &zero_address_frag);
10306 };
10307 return GOT_symbol;
10308 }
10309 return 0;
10310 }
10311
10312 /* Round up a section size to the appropriate boundary. */
10313
10314 valueT
10315 md_section_align (segT segment ATTRIBUTE_UNUSED, valueT size)
10316 {
10317 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
10318 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
10319 {
10320 /* For a.out, force the section size to be aligned. If we don't do
10321 this, BFD will align it for us, but it will not write out the
10322 final bytes of the section. This may be a bug in BFD, but it is
10323 easier to fix it here since that is how the other a.out targets
10324 work. */
10325 int align;
10326
10327 align = bfd_get_section_alignment (stdoutput, segment);
10328 size = ((size + (1 << align) - 1) & (-((valueT) 1 << align)));
10329 }
10330 #endif
10331
10332 return size;
10333 }
10334
10335 /* On the i386, PC-relative offsets are relative to the start of the
10336 next instruction. That is, the address of the offset, plus its
10337 size, since the offset is always the last part of the insn. */
10338
10339 long
10340 md_pcrel_from (fixS *fixP)
10341 {
10342 return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address;
10343 }
10344
10345 #ifndef I386COFF
10346
10347 static void
10348 s_bss (int ignore ATTRIBUTE_UNUSED)
10349 {
10350 int temp;
10351
10352 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10353 if (IS_ELF)
10354 obj_elf_section_change_hook ();
10355 #endif
10356 temp = get_absolute_expression ();
10357 subseg_set (bss_section, (subsegT) temp);
10358 demand_empty_rest_of_line ();
10359 }
10360
10361 #endif
10362
10363 void
10364 i386_validate_fix (fixS *fixp)
10365 {
10366 if (fixp->fx_subsy)
10367 {
10368 if (fixp->fx_subsy == GOT_symbol)
10369 {
10370 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
10371 {
10372 if (!object_64bit)
10373 abort ();
10374 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10375 if (fixp->fx_tcbit2)
10376 fixp->fx_r_type = (fixp->fx_tcbit
10377 ? BFD_RELOC_X86_64_REX_GOTPCRELX
10378 : BFD_RELOC_X86_64_GOTPCRELX);
10379 else
10380 #endif
10381 fixp->fx_r_type = BFD_RELOC_X86_64_GOTPCREL;
10382 }
10383 else
10384 {
10385 if (!object_64bit)
10386 fixp->fx_r_type = BFD_RELOC_386_GOTOFF;
10387 else
10388 fixp->fx_r_type = BFD_RELOC_X86_64_GOTOFF64;
10389 }
10390 fixp->fx_subsy = 0;
10391 }
10392 }
10393 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10394 else if (!object_64bit)
10395 {
10396 if (fixp->fx_r_type == BFD_RELOC_386_GOT32
10397 && fixp->fx_tcbit2)
10398 fixp->fx_r_type = BFD_RELOC_386_GOT32X;
10399 }
10400 #endif
10401 }
10402
10403 arelent *
10404 tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
10405 {
10406 arelent *rel;
10407 bfd_reloc_code_real_type code;
10408
10409 switch (fixp->fx_r_type)
10410 {
10411 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10412 case BFD_RELOC_SIZE32:
10413 case BFD_RELOC_SIZE64:
10414 if (S_IS_DEFINED (fixp->fx_addsy)
10415 && !S_IS_EXTERNAL (fixp->fx_addsy))
10416 {
10417 /* Resolve size relocation against local symbol to size of
10418 the symbol plus addend. */
10419 valueT value = S_GET_SIZE (fixp->fx_addsy) + fixp->fx_offset;
10420 if (fixp->fx_r_type == BFD_RELOC_SIZE32
10421 && !fits_in_unsigned_long (value))
10422 as_bad_where (fixp->fx_file, fixp->fx_line,
10423 _("symbol size computation overflow"));
10424 fixp->fx_addsy = NULL;
10425 fixp->fx_subsy = NULL;
10426 md_apply_fix (fixp, (valueT *) &value, NULL);
10427 return NULL;
10428 }
10429 #endif
10430
10431 case BFD_RELOC_X86_64_PLT32:
10432 case BFD_RELOC_X86_64_GOT32:
10433 case BFD_RELOC_X86_64_GOTPCREL:
10434 case BFD_RELOC_X86_64_GOTPCRELX:
10435 case BFD_RELOC_X86_64_REX_GOTPCRELX:
10436 case BFD_RELOC_386_PLT32:
10437 case BFD_RELOC_386_GOT32:
10438 case BFD_RELOC_386_GOT32X:
10439 case BFD_RELOC_386_GOTOFF:
10440 case BFD_RELOC_386_GOTPC:
10441 case BFD_RELOC_386_TLS_GD:
10442 case BFD_RELOC_386_TLS_LDM:
10443 case BFD_RELOC_386_TLS_LDO_32:
10444 case BFD_RELOC_386_TLS_IE_32:
10445 case BFD_RELOC_386_TLS_IE:
10446 case BFD_RELOC_386_TLS_GOTIE:
10447 case BFD_RELOC_386_TLS_LE_32:
10448 case BFD_RELOC_386_TLS_LE:
10449 case BFD_RELOC_386_TLS_GOTDESC:
10450 case BFD_RELOC_386_TLS_DESC_CALL:
10451 case BFD_RELOC_X86_64_TLSGD:
10452 case BFD_RELOC_X86_64_TLSLD:
10453 case BFD_RELOC_X86_64_DTPOFF32:
10454 case BFD_RELOC_X86_64_DTPOFF64:
10455 case BFD_RELOC_X86_64_GOTTPOFF:
10456 case BFD_RELOC_X86_64_TPOFF32:
10457 case BFD_RELOC_X86_64_TPOFF64:
10458 case BFD_RELOC_X86_64_GOTOFF64:
10459 case BFD_RELOC_X86_64_GOTPC32:
10460 case BFD_RELOC_X86_64_GOT64:
10461 case BFD_RELOC_X86_64_GOTPCREL64:
10462 case BFD_RELOC_X86_64_GOTPC64:
10463 case BFD_RELOC_X86_64_GOTPLT64:
10464 case BFD_RELOC_X86_64_PLTOFF64:
10465 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
10466 case BFD_RELOC_X86_64_TLSDESC_CALL:
10467 case BFD_RELOC_RVA:
10468 case BFD_RELOC_VTABLE_ENTRY:
10469 case BFD_RELOC_VTABLE_INHERIT:
10470 #ifdef TE_PE
10471 case BFD_RELOC_32_SECREL:
10472 #endif
10473 code = fixp->fx_r_type;
10474 break;
10475 case BFD_RELOC_X86_64_32S:
10476 if (!fixp->fx_pcrel)
10477 {
10478 /* Don't turn BFD_RELOC_X86_64_32S into BFD_RELOC_32. */
10479 code = fixp->fx_r_type;
10480 break;
10481 }
10482 default:
10483 if (fixp->fx_pcrel)
10484 {
10485 switch (fixp->fx_size)
10486 {
10487 default:
10488 as_bad_where (fixp->fx_file, fixp->fx_line,
10489 _("can not do %d byte pc-relative relocation"),
10490 fixp->fx_size);
10491 code = BFD_RELOC_32_PCREL;
10492 break;
10493 case 1: code = BFD_RELOC_8_PCREL; break;
10494 case 2: code = BFD_RELOC_16_PCREL; break;
10495 case 4: code = BFD_RELOC_32_PCREL; break;
10496 #ifdef BFD64
10497 case 8: code = BFD_RELOC_64_PCREL; break;
10498 #endif
10499 }
10500 }
10501 else
10502 {
10503 switch (fixp->fx_size)
10504 {
10505 default:
10506 as_bad_where (fixp->fx_file, fixp->fx_line,
10507 _("can not do %d byte relocation"),
10508 fixp->fx_size);
10509 code = BFD_RELOC_32;
10510 break;
10511 case 1: code = BFD_RELOC_8; break;
10512 case 2: code = BFD_RELOC_16; break;
10513 case 4: code = BFD_RELOC_32; break;
10514 #ifdef BFD64
10515 case 8: code = BFD_RELOC_64; break;
10516 #endif
10517 }
10518 }
10519 break;
10520 }
10521
10522 if ((code == BFD_RELOC_32
10523 || code == BFD_RELOC_32_PCREL
10524 || code == BFD_RELOC_X86_64_32S)
10525 && GOT_symbol
10526 && fixp->fx_addsy == GOT_symbol)
10527 {
10528 if (!object_64bit)
10529 code = BFD_RELOC_386_GOTPC;
10530 else
10531 code = BFD_RELOC_X86_64_GOTPC32;
10532 }
10533 if ((code == BFD_RELOC_64 || code == BFD_RELOC_64_PCREL)
10534 && GOT_symbol
10535 && fixp->fx_addsy == GOT_symbol)
10536 {
10537 code = BFD_RELOC_X86_64_GOTPC64;
10538 }
10539
10540 rel = (arelent *) xmalloc (sizeof (arelent));
10541 rel->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
10542 *rel->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
10543
10544 rel->address = fixp->fx_frag->fr_address + fixp->fx_where;
10545
10546 if (!use_rela_relocations)
10547 {
10548 /* HACK: Since i386 ELF uses Rel instead of Rela, encode the
10549 vtable entry to be used in the relocation's section offset. */
10550 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
10551 rel->address = fixp->fx_offset;
10552 #if defined (OBJ_COFF) && defined (TE_PE)
10553 else if (fixp->fx_addsy && S_IS_WEAK (fixp->fx_addsy))
10554 rel->addend = fixp->fx_addnumber - (S_GET_VALUE (fixp->fx_addsy) * 2);
10555 else
10556 #endif
10557 rel->addend = 0;
10558 }
10559 /* Use the rela in 64bit mode. */
10560 else
10561 {
10562 if (disallow_64bit_reloc)
10563 switch (code)
10564 {
10565 case BFD_RELOC_X86_64_DTPOFF64:
10566 case BFD_RELOC_X86_64_TPOFF64:
10567 case BFD_RELOC_64_PCREL:
10568 case BFD_RELOC_X86_64_GOTOFF64:
10569 case BFD_RELOC_X86_64_GOT64:
10570 case BFD_RELOC_X86_64_GOTPCREL64:
10571 case BFD_RELOC_X86_64_GOTPC64:
10572 case BFD_RELOC_X86_64_GOTPLT64:
10573 case BFD_RELOC_X86_64_PLTOFF64:
10574 as_bad_where (fixp->fx_file, fixp->fx_line,
10575 _("cannot represent relocation type %s in x32 mode"),
10576 bfd_get_reloc_code_name (code));
10577 break;
10578 default:
10579 break;
10580 }
10581
10582 if (!fixp->fx_pcrel)
10583 rel->addend = fixp->fx_offset;
10584 else
10585 switch (code)
10586 {
10587 case BFD_RELOC_X86_64_PLT32:
10588 case BFD_RELOC_X86_64_GOT32:
10589 case BFD_RELOC_X86_64_GOTPCREL:
10590 case BFD_RELOC_X86_64_GOTPCRELX:
10591 case BFD_RELOC_X86_64_REX_GOTPCRELX:
10592 case BFD_RELOC_X86_64_TLSGD:
10593 case BFD_RELOC_X86_64_TLSLD:
10594 case BFD_RELOC_X86_64_GOTTPOFF:
10595 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
10596 case BFD_RELOC_X86_64_TLSDESC_CALL:
10597 rel->addend = fixp->fx_offset - fixp->fx_size;
10598 break;
10599 default:
10600 rel->addend = (section->vma
10601 - fixp->fx_size
10602 + fixp->fx_addnumber
10603 + md_pcrel_from (fixp));
10604 break;
10605 }
10606 }
10607
10608 rel->howto = bfd_reloc_type_lookup (stdoutput, code);
10609 if (rel->howto == NULL)
10610 {
10611 as_bad_where (fixp->fx_file, fixp->fx_line,
10612 _("cannot represent relocation type %s"),
10613 bfd_get_reloc_code_name (code));
10614 /* Set howto to a garbage value so that we can keep going. */
10615 rel->howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_32);
10616 gas_assert (rel->howto != NULL);
10617 }
10618
10619 return rel;
10620 }
10621
10622 #include "tc-i386-intel.c"
10623
10624 void
10625 tc_x86_parse_to_dw2regnum (expressionS *exp)
10626 {
10627 int saved_naked_reg;
10628 char saved_register_dot;
10629
10630 saved_naked_reg = allow_naked_reg;
10631 allow_naked_reg = 1;
10632 saved_register_dot = register_chars['.'];
10633 register_chars['.'] = '.';
10634 allow_pseudo_reg = 1;
10635 expression_and_evaluate (exp);
10636 allow_pseudo_reg = 0;
10637 register_chars['.'] = saved_register_dot;
10638 allow_naked_reg = saved_naked_reg;
10639
10640 if (exp->X_op == O_register && exp->X_add_number >= 0)
10641 {
10642 if ((addressT) exp->X_add_number < i386_regtab_size)
10643 {
10644 exp->X_op = O_constant;
10645 exp->X_add_number = i386_regtab[exp->X_add_number]
10646 .dw2_regnum[flag_code >> 1];
10647 }
10648 else
10649 exp->X_op = O_illegal;
10650 }
10651 }
10652
10653 void
10654 tc_x86_frame_initial_instructions (void)
10655 {
10656 static unsigned int sp_regno[2];
10657
10658 if (!sp_regno[flag_code >> 1])
10659 {
10660 char *saved_input = input_line_pointer;
10661 char sp[][4] = {"esp", "rsp"};
10662 expressionS exp;
10663
10664 input_line_pointer = sp[flag_code >> 1];
10665 tc_x86_parse_to_dw2regnum (&exp);
10666 gas_assert (exp.X_op == O_constant);
10667 sp_regno[flag_code >> 1] = exp.X_add_number;
10668 input_line_pointer = saved_input;
10669 }
10670
10671 cfi_add_CFA_def_cfa (sp_regno[flag_code >> 1], -x86_cie_data_alignment);
10672 cfi_add_CFA_offset (x86_dwarf2_return_column, x86_cie_data_alignment);
10673 }
10674
10675 int
10676 x86_dwarf2_addr_size (void)
10677 {
10678 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
10679 if (x86_elf_abi == X86_64_X32_ABI)
10680 return 4;
10681 #endif
10682 return bfd_arch_bits_per_address (stdoutput) / 8;
10683 }
10684
10685 int
10686 i386_elf_section_type (const char *str, size_t len)
10687 {
10688 if (flag_code == CODE_64BIT
10689 && len == sizeof ("unwind") - 1
10690 && strncmp (str, "unwind", 6) == 0)
10691 return SHT_X86_64_UNWIND;
10692
10693 return -1;
10694 }
10695
10696 #ifdef TE_SOLARIS
10697 void
10698 i386_solaris_fix_up_eh_frame (segT sec)
10699 {
10700 if (flag_code == CODE_64BIT)
10701 elf_section_type (sec) = SHT_X86_64_UNWIND;
10702 }
10703 #endif
10704
10705 #ifdef TE_PE
10706 void
10707 tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
10708 {
10709 expressionS exp;
10710
10711 exp.X_op = O_secrel;
10712 exp.X_add_symbol = symbol;
10713 exp.X_add_number = 0;
10714 emit_expr (&exp, size);
10715 }
10716 #endif
10717
10718 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10719 /* For ELF on x86-64, add support for SHF_X86_64_LARGE. */
10720
10721 bfd_vma
10722 x86_64_section_letter (int letter, char **ptr_msg)
10723 {
10724 if (flag_code == CODE_64BIT)
10725 {
10726 if (letter == 'l')
10727 return SHF_X86_64_LARGE;
10728
10729 *ptr_msg = _("bad .section directive: want a,l,w,x,M,S,G,T in string");
10730 }
10731 else
10732 *ptr_msg = _("bad .section directive: want a,w,x,M,S,G,T in string");
10733 return -1;
10734 }
10735
10736 bfd_vma
10737 x86_64_section_word (char *str, size_t len)
10738 {
10739 if (len == 5 && flag_code == CODE_64BIT && CONST_STRNEQ (str, "large"))
10740 return SHF_X86_64_LARGE;
10741
10742 return -1;
10743 }
10744
10745 static void
10746 handle_large_common (int small ATTRIBUTE_UNUSED)
10747 {
10748 if (flag_code != CODE_64BIT)
10749 {
10750 s_comm_internal (0, elf_common_parse);
10751 as_warn (_(".largecomm supported only in 64bit mode, producing .comm"));
10752 }
10753 else
10754 {
10755 static segT lbss_section;
10756 asection *saved_com_section_ptr = elf_com_section_ptr;
10757 asection *saved_bss_section = bss_section;
10758
10759 if (lbss_section == NULL)
10760 {
10761 flagword applicable;
10762 segT seg = now_seg;
10763 subsegT subseg = now_subseg;
10764
10765 /* The .lbss section is for local .largecomm symbols. */
10766 lbss_section = subseg_new (".lbss", 0);
10767 applicable = bfd_applicable_section_flags (stdoutput);
10768 bfd_set_section_flags (stdoutput, lbss_section,
10769 applicable & SEC_ALLOC);
10770 seg_info (lbss_section)->bss = 1;
10771
10772 subseg_set (seg, subseg);
10773 }
10774
10775 elf_com_section_ptr = &_bfd_elf_large_com_section;
10776 bss_section = lbss_section;
10777
10778 s_comm_internal (0, elf_common_parse);
10779
10780 elf_com_section_ptr = saved_com_section_ptr;
10781 bss_section = saved_bss_section;
10782 }
10783 }
10784 #endif /* OBJ_ELF || OBJ_MAYBE_ELF */
This page took 0.364852 seconds and 4 git commands to generate.