x86-64: also diagnose far returns / IRET with ambiguous operand size
[deliverable/binutils-gdb.git] / gas / config / tc-i386.c
1 /* tc-i386.c -- Assemble code for the Intel 80386
2 Copyright (C) 1989-2020 Free Software Foundation, Inc.
3
4 This file is part of GAS, the GNU Assembler.
5
6 GAS is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
10
11 GAS is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GAS; see the file COPYING. If not, write to the Free
18 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
19 02110-1301, USA. */
20
21 /* Intel 80386 machine specific gas.
22 Written by Eliot Dresselhaus (eliot@mgm.mit.edu).
23 x86_64 support by Jan Hubicka (jh@suse.cz)
24 VIA PadLock support by Michal Ludvig (mludvig@suse.cz)
25 Bugs & suggestions are completely welcome. This is free software.
26 Please help us make it better. */
27
28 #include "as.h"
29 #include "safe-ctype.h"
30 #include "subsegs.h"
31 #include "dwarf2dbg.h"
32 #include "dw2gencfi.h"
33 #include "elf/x86-64.h"
34 #include "opcodes/i386-init.h"
35
36 #ifdef HAVE_LIMITS_H
37 #include <limits.h>
38 #else
39 #ifdef HAVE_SYS_PARAM_H
40 #include <sys/param.h>
41 #endif
42 #ifndef INT_MAX
43 #define INT_MAX (int) (((unsigned) (-1)) >> 1)
44 #endif
45 #endif
46
47 #ifndef REGISTER_WARNINGS
48 #define REGISTER_WARNINGS 1
49 #endif
50
51 #ifndef INFER_ADDR_PREFIX
52 #define INFER_ADDR_PREFIX 1
53 #endif
54
55 #ifndef DEFAULT_ARCH
56 #define DEFAULT_ARCH "i386"
57 #endif
58
59 #ifndef INLINE
60 #if __GNUC__ >= 2
61 #define INLINE __inline__
62 #else
63 #define INLINE
64 #endif
65 #endif
66
67 /* Prefixes will be emitted in the order defined below.
68 WAIT_PREFIX must be the first prefix since FWAIT is really is an
69 instruction, and so must come before any prefixes.
70 The preferred prefix order is SEG_PREFIX, ADDR_PREFIX, DATA_PREFIX,
71 REP_PREFIX/HLE_PREFIX, LOCK_PREFIX. */
72 #define WAIT_PREFIX 0
73 #define SEG_PREFIX 1
74 #define ADDR_PREFIX 2
75 #define DATA_PREFIX 3
76 #define REP_PREFIX 4
77 #define HLE_PREFIX REP_PREFIX
78 #define BND_PREFIX REP_PREFIX
79 #define LOCK_PREFIX 5
80 #define REX_PREFIX 6 /* must come last. */
81 #define MAX_PREFIXES 7 /* max prefixes per opcode */
82
83 /* we define the syntax here (modulo base,index,scale syntax) */
84 #define REGISTER_PREFIX '%'
85 #define IMMEDIATE_PREFIX '$'
86 #define ABSOLUTE_PREFIX '*'
87
88 /* these are the instruction mnemonic suffixes in AT&T syntax or
89 memory operand size in Intel syntax. */
90 #define WORD_MNEM_SUFFIX 'w'
91 #define BYTE_MNEM_SUFFIX 'b'
92 #define SHORT_MNEM_SUFFIX 's'
93 #define LONG_MNEM_SUFFIX 'l'
94 #define QWORD_MNEM_SUFFIX 'q'
95 /* Intel Syntax. Use a non-ascii letter since since it never appears
96 in instructions. */
97 #define LONG_DOUBLE_MNEM_SUFFIX '\1'
98
99 #define END_OF_INSN '\0'
100
101 /* This matches the C -> StaticRounding alias in the opcode table. */
102 #define commutative staticrounding
103
104 /*
105 'templates' is for grouping together 'template' structures for opcodes
106 of the same name. This is only used for storing the insns in the grand
107 ole hash table of insns.
108 The templates themselves start at START and range up to (but not including)
109 END.
110 */
111 typedef struct
112 {
113 const insn_template *start;
114 const insn_template *end;
115 }
116 templates;
117
118 /* 386 operand encoding bytes: see 386 book for details of this. */
119 typedef struct
120 {
121 unsigned int regmem; /* codes register or memory operand */
122 unsigned int reg; /* codes register operand (or extended opcode) */
123 unsigned int mode; /* how to interpret regmem & reg */
124 }
125 modrm_byte;
126
127 /* x86-64 extension prefix. */
128 typedef int rex_byte;
129
130 /* 386 opcode byte to code indirect addressing. */
131 typedef struct
132 {
133 unsigned base;
134 unsigned index;
135 unsigned scale;
136 }
137 sib_byte;
138
139 /* x86 arch names, types and features */
140 typedef struct
141 {
142 const char *name; /* arch name */
143 unsigned int len; /* arch string length */
144 enum processor_type type; /* arch type */
145 i386_cpu_flags flags; /* cpu feature flags */
146 unsigned int skip; /* show_arch should skip this. */
147 }
148 arch_entry;
149
150 /* Used to turn off indicated flags. */
151 typedef struct
152 {
153 const char *name; /* arch name */
154 unsigned int len; /* arch string length */
155 i386_cpu_flags flags; /* cpu feature flags */
156 }
157 noarch_entry;
158
159 static void update_code_flag (int, int);
160 static void set_code_flag (int);
161 static void set_16bit_gcc_code_flag (int);
162 static void set_intel_syntax (int);
163 static void set_intel_mnemonic (int);
164 static void set_allow_index_reg (int);
165 static void set_check (int);
166 static void set_cpu_arch (int);
167 #ifdef TE_PE
168 static void pe_directive_secrel (int);
169 #endif
170 static void signed_cons (int);
171 static char *output_invalid (int c);
172 static int i386_finalize_immediate (segT, expressionS *, i386_operand_type,
173 const char *);
174 static int i386_finalize_displacement (segT, expressionS *, i386_operand_type,
175 const char *);
176 static int i386_att_operand (char *);
177 static int i386_intel_operand (char *, int);
178 static int i386_intel_simplify (expressionS *);
179 static int i386_intel_parse_name (const char *, expressionS *);
180 static const reg_entry *parse_register (char *, char **);
181 static char *parse_insn (char *, char *);
182 static char *parse_operands (char *, const char *);
183 static void swap_operands (void);
184 static void swap_2_operands (int, int);
185 static enum flag_code i386_addressing_mode (void);
186 static void optimize_imm (void);
187 static void optimize_disp (void);
188 static const insn_template *match_template (char);
189 static int check_string (void);
190 static int process_suffix (void);
191 static int check_byte_reg (void);
192 static int check_long_reg (void);
193 static int check_qword_reg (void);
194 static int check_word_reg (void);
195 static int finalize_imm (void);
196 static int process_operands (void);
197 static const seg_entry *build_modrm_byte (void);
198 static void output_insn (void);
199 static void output_imm (fragS *, offsetT);
200 static void output_disp (fragS *, offsetT);
201 #ifndef I386COFF
202 static void s_bss (int);
203 #endif
204 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
205 static void handle_large_common (int small ATTRIBUTE_UNUSED);
206
207 /* GNU_PROPERTY_X86_ISA_1_USED. */
208 static unsigned int x86_isa_1_used;
209 /* GNU_PROPERTY_X86_FEATURE_2_USED. */
210 static unsigned int x86_feature_2_used;
211 /* Generate x86 used ISA and feature properties. */
212 static unsigned int x86_used_note = DEFAULT_X86_USED_NOTE;
213 #endif
214
215 static const char *default_arch = DEFAULT_ARCH;
216
217 /* This struct describes rounding control and SAE in the instruction. */
218 struct RC_Operation
219 {
220 enum rc_type
221 {
222 rne = 0,
223 rd,
224 ru,
225 rz,
226 saeonly
227 } type;
228 int operand;
229 };
230
231 static struct RC_Operation rc_op;
232
233 /* The struct describes masking, applied to OPERAND in the instruction.
234 MASK is a pointer to the corresponding mask register. ZEROING tells
235 whether merging or zeroing mask is used. */
236 struct Mask_Operation
237 {
238 const reg_entry *mask;
239 unsigned int zeroing;
240 /* The operand where this operation is associated. */
241 int operand;
242 };
243
244 static struct Mask_Operation mask_op;
245
246 /* The struct describes broadcasting, applied to OPERAND. FACTOR is
247 broadcast factor. */
248 struct Broadcast_Operation
249 {
250 /* Type of broadcast: {1to2}, {1to4}, {1to8}, or {1to16}. */
251 int type;
252
253 /* Index of broadcasted operand. */
254 int operand;
255
256 /* Number of bytes to broadcast. */
257 int bytes;
258 };
259
260 static struct Broadcast_Operation broadcast_op;
261
262 /* VEX prefix. */
263 typedef struct
264 {
265 /* VEX prefix is either 2 byte or 3 byte. EVEX is 4 byte. */
266 unsigned char bytes[4];
267 unsigned int length;
268 /* Destination or source register specifier. */
269 const reg_entry *register_specifier;
270 } vex_prefix;
271
272 /* 'md_assemble ()' gathers together information and puts it into a
273 i386_insn. */
274
275 union i386_op
276 {
277 expressionS *disps;
278 expressionS *imms;
279 const reg_entry *regs;
280 };
281
282 enum i386_error
283 {
284 operand_size_mismatch,
285 operand_type_mismatch,
286 register_type_mismatch,
287 number_of_operands_mismatch,
288 invalid_instruction_suffix,
289 bad_imm4,
290 unsupported_with_intel_mnemonic,
291 unsupported_syntax,
292 unsupported,
293 invalid_vsib_address,
294 invalid_vector_register_set,
295 unsupported_vector_index_register,
296 unsupported_broadcast,
297 broadcast_needed,
298 unsupported_masking,
299 mask_not_on_destination,
300 no_default_mask,
301 unsupported_rc_sae,
302 rc_sae_operand_not_last_imm,
303 invalid_register_operand,
304 };
305
306 struct _i386_insn
307 {
308 /* TM holds the template for the insn were currently assembling. */
309 insn_template tm;
310
311 /* SUFFIX holds the instruction size suffix for byte, word, dword
312 or qword, if given. */
313 char suffix;
314
315 /* OPERANDS gives the number of given operands. */
316 unsigned int operands;
317
318 /* REG_OPERANDS, DISP_OPERANDS, MEM_OPERANDS, IMM_OPERANDS give the number
319 of given register, displacement, memory operands and immediate
320 operands. */
321 unsigned int reg_operands, disp_operands, mem_operands, imm_operands;
322
323 /* TYPES [i] is the type (see above #defines) which tells us how to
324 use OP[i] for the corresponding operand. */
325 i386_operand_type types[MAX_OPERANDS];
326
327 /* Displacement expression, immediate expression, or register for each
328 operand. */
329 union i386_op op[MAX_OPERANDS];
330
331 /* Flags for operands. */
332 unsigned int flags[MAX_OPERANDS];
333 #define Operand_PCrel 1
334 #define Operand_Mem 2
335
336 /* Relocation type for operand */
337 enum bfd_reloc_code_real reloc[MAX_OPERANDS];
338
339 /* BASE_REG, INDEX_REG, and LOG2_SCALE_FACTOR are used to encode
340 the base index byte below. */
341 const reg_entry *base_reg;
342 const reg_entry *index_reg;
343 unsigned int log2_scale_factor;
344
345 /* SEG gives the seg_entries of this insn. They are zero unless
346 explicit segment overrides are given. */
347 const seg_entry *seg[2];
348
349 /* Copied first memory operand string, for re-checking. */
350 char *memop1_string;
351
352 /* PREFIX holds all the given prefix opcodes (usually null).
353 PREFIXES is the number of prefix opcodes. */
354 unsigned int prefixes;
355 unsigned char prefix[MAX_PREFIXES];
356
357 /* The operand to a branch insn indicates an absolute branch. */
358 bfd_boolean jumpabsolute;
359
360 /* Has MMX register operands. */
361 bfd_boolean has_regmmx;
362
363 /* Has XMM register operands. */
364 bfd_boolean has_regxmm;
365
366 /* Has YMM register operands. */
367 bfd_boolean has_regymm;
368
369 /* Has ZMM register operands. */
370 bfd_boolean has_regzmm;
371
372 /* Has GOTPC or TLS relocation. */
373 bfd_boolean has_gotpc_tls_reloc;
374
375 /* RM and SIB are the modrm byte and the sib byte where the
376 addressing modes of this insn are encoded. */
377 modrm_byte rm;
378 rex_byte rex;
379 rex_byte vrex;
380 sib_byte sib;
381 vex_prefix vex;
382
383 /* Masking attributes. */
384 struct Mask_Operation *mask;
385
386 /* Rounding control and SAE attributes. */
387 struct RC_Operation *rounding;
388
389 /* Broadcasting attributes. */
390 struct Broadcast_Operation *broadcast;
391
392 /* Compressed disp8*N attribute. */
393 unsigned int memshift;
394
395 /* Prefer load or store in encoding. */
396 enum
397 {
398 dir_encoding_default = 0,
399 dir_encoding_load,
400 dir_encoding_store,
401 dir_encoding_swap
402 } dir_encoding;
403
404 /* Prefer 8bit or 32bit displacement in encoding. */
405 enum
406 {
407 disp_encoding_default = 0,
408 disp_encoding_8bit,
409 disp_encoding_32bit
410 } disp_encoding;
411
412 /* Prefer the REX byte in encoding. */
413 bfd_boolean rex_encoding;
414
415 /* Disable instruction size optimization. */
416 bfd_boolean no_optimize;
417
418 /* How to encode vector instructions. */
419 enum
420 {
421 vex_encoding_default = 0,
422 vex_encoding_vex,
423 vex_encoding_vex3,
424 vex_encoding_evex
425 } vec_encoding;
426
427 /* REP prefix. */
428 const char *rep_prefix;
429
430 /* HLE prefix. */
431 const char *hle_prefix;
432
433 /* Have BND prefix. */
434 const char *bnd_prefix;
435
436 /* Have NOTRACK prefix. */
437 const char *notrack_prefix;
438
439 /* Error message. */
440 enum i386_error error;
441 };
442
443 typedef struct _i386_insn i386_insn;
444
445 /* Link RC type with corresponding string, that'll be looked for in
446 asm. */
447 struct RC_name
448 {
449 enum rc_type type;
450 const char *name;
451 unsigned int len;
452 };
453
454 static const struct RC_name RC_NamesTable[] =
455 {
456 { rne, STRING_COMMA_LEN ("rn-sae") },
457 { rd, STRING_COMMA_LEN ("rd-sae") },
458 { ru, STRING_COMMA_LEN ("ru-sae") },
459 { rz, STRING_COMMA_LEN ("rz-sae") },
460 { saeonly, STRING_COMMA_LEN ("sae") },
461 };
462
463 /* List of chars besides those in app.c:symbol_chars that can start an
464 operand. Used to prevent the scrubber eating vital white-space. */
465 const char extra_symbol_chars[] = "*%-([{}"
466 #ifdef LEX_AT
467 "@"
468 #endif
469 #ifdef LEX_QM
470 "?"
471 #endif
472 ;
473
474 #if (defined (TE_I386AIX) \
475 || ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) \
476 && !defined (TE_GNU) \
477 && !defined (TE_LINUX) \
478 && !defined (TE_NACL) \
479 && !defined (TE_FreeBSD) \
480 && !defined (TE_DragonFly) \
481 && !defined (TE_NetBSD)))
482 /* This array holds the chars that always start a comment. If the
483 pre-processor is disabled, these aren't very useful. The option
484 --divide will remove '/' from this list. */
485 const char *i386_comment_chars = "#/";
486 #define SVR4_COMMENT_CHARS 1
487 #define PREFIX_SEPARATOR '\\'
488
489 #else
490 const char *i386_comment_chars = "#";
491 #define PREFIX_SEPARATOR '/'
492 #endif
493
494 /* This array holds the chars that only start a comment at the beginning of
495 a line. If the line seems to have the form '# 123 filename'
496 .line and .file directives will appear in the pre-processed output.
497 Note that input_file.c hand checks for '#' at the beginning of the
498 first line of the input file. This is because the compiler outputs
499 #NO_APP at the beginning of its output.
500 Also note that comments started like this one will always work if
501 '/' isn't otherwise defined. */
502 const char line_comment_chars[] = "#/";
503
504 const char line_separator_chars[] = ";";
505
506 /* Chars that can be used to separate mant from exp in floating point
507 nums. */
508 const char EXP_CHARS[] = "eE";
509
510 /* Chars that mean this number is a floating point constant
511 As in 0f12.456
512 or 0d1.2345e12. */
513 const char FLT_CHARS[] = "fFdDxX";
514
515 /* Tables for lexical analysis. */
516 static char mnemonic_chars[256];
517 static char register_chars[256];
518 static char operand_chars[256];
519 static char identifier_chars[256];
520 static char digit_chars[256];
521
522 /* Lexical macros. */
523 #define is_mnemonic_char(x) (mnemonic_chars[(unsigned char) x])
524 #define is_operand_char(x) (operand_chars[(unsigned char) x])
525 #define is_register_char(x) (register_chars[(unsigned char) x])
526 #define is_space_char(x) ((x) == ' ')
527 #define is_identifier_char(x) (identifier_chars[(unsigned char) x])
528 #define is_digit_char(x) (digit_chars[(unsigned char) x])
529
530 /* All non-digit non-letter characters that may occur in an operand. */
531 static char operand_special_chars[] = "%$-+(,)*._~/<>|&^!:[@]";
532
533 /* md_assemble() always leaves the strings it's passed unaltered. To
534 effect this we maintain a stack of saved characters that we've smashed
535 with '\0's (indicating end of strings for various sub-fields of the
536 assembler instruction). */
537 static char save_stack[32];
538 static char *save_stack_p;
539 #define END_STRING_AND_SAVE(s) \
540 do { *save_stack_p++ = *(s); *(s) = '\0'; } while (0)
541 #define RESTORE_END_STRING(s) \
542 do { *(s) = *--save_stack_p; } while (0)
543
544 /* The instruction we're assembling. */
545 static i386_insn i;
546
547 /* Possible templates for current insn. */
548 static const templates *current_templates;
549
550 /* Per instruction expressionS buffers: max displacements & immediates. */
551 static expressionS disp_expressions[MAX_MEMORY_OPERANDS];
552 static expressionS im_expressions[MAX_IMMEDIATE_OPERANDS];
553
554 /* Current operand we are working on. */
555 static int this_operand = -1;
556
557 /* We support four different modes. FLAG_CODE variable is used to distinguish
558 these. */
559
560 enum flag_code {
561 CODE_32BIT,
562 CODE_16BIT,
563 CODE_64BIT };
564
565 static enum flag_code flag_code;
566 static unsigned int object_64bit;
567 static unsigned int disallow_64bit_reloc;
568 static int use_rela_relocations = 0;
569 /* __tls_get_addr/___tls_get_addr symbol for TLS. */
570 static const char *tls_get_addr;
571
572 #if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
573 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
574 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
575
576 /* The ELF ABI to use. */
577 enum x86_elf_abi
578 {
579 I386_ABI,
580 X86_64_ABI,
581 X86_64_X32_ABI
582 };
583
584 static enum x86_elf_abi x86_elf_abi = I386_ABI;
585 #endif
586
587 #if defined (TE_PE) || defined (TE_PEP)
588 /* Use big object file format. */
589 static int use_big_obj = 0;
590 #endif
591
592 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
593 /* 1 if generating code for a shared library. */
594 static int shared = 0;
595 #endif
596
597 /* 1 for intel syntax,
598 0 if att syntax. */
599 static int intel_syntax = 0;
600
601 /* 1 for Intel64 ISA,
602 0 if AMD64 ISA. */
603 static int intel64;
604
605 /* 1 for intel mnemonic,
606 0 if att mnemonic. */
607 static int intel_mnemonic = !SYSV386_COMPAT;
608
609 /* 1 if pseudo registers are permitted. */
610 static int allow_pseudo_reg = 0;
611
612 /* 1 if register prefix % not required. */
613 static int allow_naked_reg = 0;
614
615 /* 1 if the assembler should add BND prefix for all control-transferring
616 instructions supporting it, even if this prefix wasn't specified
617 explicitly. */
618 static int add_bnd_prefix = 0;
619
620 /* 1 if pseudo index register, eiz/riz, is allowed . */
621 static int allow_index_reg = 0;
622
623 /* 1 if the assembler should ignore LOCK prefix, even if it was
624 specified explicitly. */
625 static int omit_lock_prefix = 0;
626
627 /* 1 if the assembler should encode lfence, mfence, and sfence as
628 "lock addl $0, (%{re}sp)". */
629 static int avoid_fence = 0;
630
631 /* Type of the previous instruction. */
632 static struct
633 {
634 segT seg;
635 const char *file;
636 const char *name;
637 unsigned int line;
638 enum last_insn_kind
639 {
640 last_insn_other = 0,
641 last_insn_directive,
642 last_insn_prefix
643 } kind;
644 } last_insn;
645
646 /* 1 if the assembler should generate relax relocations. */
647
648 static int generate_relax_relocations
649 = DEFAULT_GENERATE_X86_RELAX_RELOCATIONS;
650
651 static enum check_kind
652 {
653 check_none = 0,
654 check_warning,
655 check_error
656 }
657 sse_check, operand_check = check_warning;
658
659 /* Non-zero if branches should be aligned within power of 2 boundary. */
660 static int align_branch_power = 0;
661
662 /* Types of branches to align. */
663 enum align_branch_kind
664 {
665 align_branch_none = 0,
666 align_branch_jcc = 1,
667 align_branch_fused = 2,
668 align_branch_jmp = 3,
669 align_branch_call = 4,
670 align_branch_indirect = 5,
671 align_branch_ret = 6
672 };
673
674 /* Type bits of branches to align. */
675 enum align_branch_bit
676 {
677 align_branch_jcc_bit = 1 << align_branch_jcc,
678 align_branch_fused_bit = 1 << align_branch_fused,
679 align_branch_jmp_bit = 1 << align_branch_jmp,
680 align_branch_call_bit = 1 << align_branch_call,
681 align_branch_indirect_bit = 1 << align_branch_indirect,
682 align_branch_ret_bit = 1 << align_branch_ret
683 };
684
685 static unsigned int align_branch = (align_branch_jcc_bit
686 | align_branch_fused_bit
687 | align_branch_jmp_bit);
688
689 /* The maximum padding size for fused jcc. CMP like instruction can
690 be 9 bytes and jcc can be 6 bytes. Leave room just in case for
691 prefixes. */
692 #define MAX_FUSED_JCC_PADDING_SIZE 20
693
694 /* The maximum number of prefixes added for an instruction. */
695 static unsigned int align_branch_prefix_size = 5;
696
697 /* Optimization:
698 1. Clear the REX_W bit with register operand if possible.
699 2. Above plus use 128bit vector instruction to clear the full vector
700 register.
701 */
702 static int optimize = 0;
703
704 /* Optimization:
705 1. Clear the REX_W bit with register operand if possible.
706 2. Above plus use 128bit vector instruction to clear the full vector
707 register.
708 3. Above plus optimize "test{q,l,w} $imm8,%r{64,32,16}" to
709 "testb $imm7,%r8".
710 */
711 static int optimize_for_space = 0;
712
713 /* Register prefix used for error message. */
714 static const char *register_prefix = "%";
715
716 /* Used in 16 bit gcc mode to add an l suffix to call, ret, enter,
717 leave, push, and pop instructions so that gcc has the same stack
718 frame as in 32 bit mode. */
719 static char stackop_size = '\0';
720
721 /* Non-zero to optimize code alignment. */
722 int optimize_align_code = 1;
723
724 /* Non-zero to quieten some warnings. */
725 static int quiet_warnings = 0;
726
727 /* CPU name. */
728 static const char *cpu_arch_name = NULL;
729 static char *cpu_sub_arch_name = NULL;
730
731 /* CPU feature flags. */
732 static i386_cpu_flags cpu_arch_flags = CPU_UNKNOWN_FLAGS;
733
734 /* If we have selected a cpu we are generating instructions for. */
735 static int cpu_arch_tune_set = 0;
736
737 /* Cpu we are generating instructions for. */
738 enum processor_type cpu_arch_tune = PROCESSOR_UNKNOWN;
739
740 /* CPU feature flags of cpu we are generating instructions for. */
741 static i386_cpu_flags cpu_arch_tune_flags;
742
743 /* CPU instruction set architecture used. */
744 enum processor_type cpu_arch_isa = PROCESSOR_UNKNOWN;
745
746 /* CPU feature flags of instruction set architecture used. */
747 i386_cpu_flags cpu_arch_isa_flags;
748
749 /* If set, conditional jumps are not automatically promoted to handle
750 larger than a byte offset. */
751 static unsigned int no_cond_jump_promotion = 0;
752
753 /* Encode SSE instructions with VEX prefix. */
754 static unsigned int sse2avx;
755
756 /* Encode scalar AVX instructions with specific vector length. */
757 static enum
758 {
759 vex128 = 0,
760 vex256
761 } avxscalar;
762
763 /* Encode VEX WIG instructions with specific vex.w. */
764 static enum
765 {
766 vexw0 = 0,
767 vexw1
768 } vexwig;
769
770 /* Encode scalar EVEX LIG instructions with specific vector length. */
771 static enum
772 {
773 evexl128 = 0,
774 evexl256,
775 evexl512
776 } evexlig;
777
778 /* Encode EVEX WIG instructions with specific evex.w. */
779 static enum
780 {
781 evexw0 = 0,
782 evexw1
783 } evexwig;
784
785 /* Value to encode in EVEX RC bits, for SAE-only instructions. */
786 static enum rc_type evexrcig = rne;
787
788 /* Pre-defined "_GLOBAL_OFFSET_TABLE_". */
789 static symbolS *GOT_symbol;
790
791 /* The dwarf2 return column, adjusted for 32 or 64 bit. */
792 unsigned int x86_dwarf2_return_column;
793
794 /* The dwarf2 data alignment, adjusted for 32 or 64 bit. */
795 int x86_cie_data_alignment;
796
797 /* Interface to relax_segment.
798 There are 3 major relax states for 386 jump insns because the
799 different types of jumps add different sizes to frags when we're
800 figuring out what sort of jump to choose to reach a given label.
801
802 BRANCH_PADDING, BRANCH_PREFIX and FUSED_JCC_PADDING are used to align
803 branches which are handled by md_estimate_size_before_relax() and
804 i386_generic_table_relax_frag(). */
805
806 /* Types. */
807 #define UNCOND_JUMP 0
808 #define COND_JUMP 1
809 #define COND_JUMP86 2
810 #define BRANCH_PADDING 3
811 #define BRANCH_PREFIX 4
812 #define FUSED_JCC_PADDING 5
813
814 /* Sizes. */
815 #define CODE16 1
816 #define SMALL 0
817 #define SMALL16 (SMALL | CODE16)
818 #define BIG 2
819 #define BIG16 (BIG | CODE16)
820
821 #ifndef INLINE
822 #ifdef __GNUC__
823 #define INLINE __inline__
824 #else
825 #define INLINE
826 #endif
827 #endif
828
829 #define ENCODE_RELAX_STATE(type, size) \
830 ((relax_substateT) (((type) << 2) | (size)))
831 #define TYPE_FROM_RELAX_STATE(s) \
832 ((s) >> 2)
833 #define DISP_SIZE_FROM_RELAX_STATE(s) \
834 ((((s) & 3) == BIG ? 4 : (((s) & 3) == BIG16 ? 2 : 1)))
835
836 /* This table is used by relax_frag to promote short jumps to long
837 ones where necessary. SMALL (short) jumps may be promoted to BIG
838 (32 bit long) ones, and SMALL16 jumps to BIG16 (16 bit long). We
839 don't allow a short jump in a 32 bit code segment to be promoted to
840 a 16 bit offset jump because it's slower (requires data size
841 prefix), and doesn't work, unless the destination is in the bottom
842 64k of the code segment (The top 16 bits of eip are zeroed). */
843
844 const relax_typeS md_relax_table[] =
845 {
846 /* The fields are:
847 1) most positive reach of this state,
848 2) most negative reach of this state,
849 3) how many bytes this mode will have in the variable part of the frag
850 4) which index into the table to try if we can't fit into this one. */
851
852 /* UNCOND_JUMP states. */
853 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG)},
854 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16)},
855 /* dword jmp adds 4 bytes to frag:
856 0 extra opcode bytes, 4 displacement bytes. */
857 {0, 0, 4, 0},
858 /* word jmp adds 2 byte2 to frag:
859 0 extra opcode bytes, 2 displacement bytes. */
860 {0, 0, 2, 0},
861
862 /* COND_JUMP states. */
863 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG)},
864 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG16)},
865 /* dword conditionals adds 5 bytes to frag:
866 1 extra opcode byte, 4 displacement bytes. */
867 {0, 0, 5, 0},
868 /* word conditionals add 3 bytes to frag:
869 1 extra opcode byte, 2 displacement bytes. */
870 {0, 0, 3, 0},
871
872 /* COND_JUMP86 states. */
873 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG)},
874 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG16)},
875 /* dword conditionals adds 5 bytes to frag:
876 1 extra opcode byte, 4 displacement bytes. */
877 {0, 0, 5, 0},
878 /* word conditionals add 4 bytes to frag:
879 1 displacement byte and a 3 byte long branch insn. */
880 {0, 0, 4, 0}
881 };
882
883 static const arch_entry cpu_arch[] =
884 {
885 /* Do not replace the first two entries - i386_target_format()
886 relies on them being there in this order. */
887 { STRING_COMMA_LEN ("generic32"), PROCESSOR_GENERIC32,
888 CPU_GENERIC32_FLAGS, 0 },
889 { STRING_COMMA_LEN ("generic64"), PROCESSOR_GENERIC64,
890 CPU_GENERIC64_FLAGS, 0 },
891 { STRING_COMMA_LEN ("i8086"), PROCESSOR_UNKNOWN,
892 CPU_NONE_FLAGS, 0 },
893 { STRING_COMMA_LEN ("i186"), PROCESSOR_UNKNOWN,
894 CPU_I186_FLAGS, 0 },
895 { STRING_COMMA_LEN ("i286"), PROCESSOR_UNKNOWN,
896 CPU_I286_FLAGS, 0 },
897 { STRING_COMMA_LEN ("i386"), PROCESSOR_I386,
898 CPU_I386_FLAGS, 0 },
899 { STRING_COMMA_LEN ("i486"), PROCESSOR_I486,
900 CPU_I486_FLAGS, 0 },
901 { STRING_COMMA_LEN ("i586"), PROCESSOR_PENTIUM,
902 CPU_I586_FLAGS, 0 },
903 { STRING_COMMA_LEN ("i686"), PROCESSOR_PENTIUMPRO,
904 CPU_I686_FLAGS, 0 },
905 { STRING_COMMA_LEN ("pentium"), PROCESSOR_PENTIUM,
906 CPU_I586_FLAGS, 0 },
907 { STRING_COMMA_LEN ("pentiumpro"), PROCESSOR_PENTIUMPRO,
908 CPU_PENTIUMPRO_FLAGS, 0 },
909 { STRING_COMMA_LEN ("pentiumii"), PROCESSOR_PENTIUMPRO,
910 CPU_P2_FLAGS, 0 },
911 { STRING_COMMA_LEN ("pentiumiii"),PROCESSOR_PENTIUMPRO,
912 CPU_P3_FLAGS, 0 },
913 { STRING_COMMA_LEN ("pentium4"), PROCESSOR_PENTIUM4,
914 CPU_P4_FLAGS, 0 },
915 { STRING_COMMA_LEN ("prescott"), PROCESSOR_NOCONA,
916 CPU_CORE_FLAGS, 0 },
917 { STRING_COMMA_LEN ("nocona"), PROCESSOR_NOCONA,
918 CPU_NOCONA_FLAGS, 0 },
919 { STRING_COMMA_LEN ("yonah"), PROCESSOR_CORE,
920 CPU_CORE_FLAGS, 1 },
921 { STRING_COMMA_LEN ("core"), PROCESSOR_CORE,
922 CPU_CORE_FLAGS, 0 },
923 { STRING_COMMA_LEN ("merom"), PROCESSOR_CORE2,
924 CPU_CORE2_FLAGS, 1 },
925 { STRING_COMMA_LEN ("core2"), PROCESSOR_CORE2,
926 CPU_CORE2_FLAGS, 0 },
927 { STRING_COMMA_LEN ("corei7"), PROCESSOR_COREI7,
928 CPU_COREI7_FLAGS, 0 },
929 { STRING_COMMA_LEN ("l1om"), PROCESSOR_L1OM,
930 CPU_L1OM_FLAGS, 0 },
931 { STRING_COMMA_LEN ("k1om"), PROCESSOR_K1OM,
932 CPU_K1OM_FLAGS, 0 },
933 { STRING_COMMA_LEN ("iamcu"), PROCESSOR_IAMCU,
934 CPU_IAMCU_FLAGS, 0 },
935 { STRING_COMMA_LEN ("k6"), PROCESSOR_K6,
936 CPU_K6_FLAGS, 0 },
937 { STRING_COMMA_LEN ("k6_2"), PROCESSOR_K6,
938 CPU_K6_2_FLAGS, 0 },
939 { STRING_COMMA_LEN ("athlon"), PROCESSOR_ATHLON,
940 CPU_ATHLON_FLAGS, 0 },
941 { STRING_COMMA_LEN ("sledgehammer"), PROCESSOR_K8,
942 CPU_K8_FLAGS, 1 },
943 { STRING_COMMA_LEN ("opteron"), PROCESSOR_K8,
944 CPU_K8_FLAGS, 0 },
945 { STRING_COMMA_LEN ("k8"), PROCESSOR_K8,
946 CPU_K8_FLAGS, 0 },
947 { STRING_COMMA_LEN ("amdfam10"), PROCESSOR_AMDFAM10,
948 CPU_AMDFAM10_FLAGS, 0 },
949 { STRING_COMMA_LEN ("bdver1"), PROCESSOR_BD,
950 CPU_BDVER1_FLAGS, 0 },
951 { STRING_COMMA_LEN ("bdver2"), PROCESSOR_BD,
952 CPU_BDVER2_FLAGS, 0 },
953 { STRING_COMMA_LEN ("bdver3"), PROCESSOR_BD,
954 CPU_BDVER3_FLAGS, 0 },
955 { STRING_COMMA_LEN ("bdver4"), PROCESSOR_BD,
956 CPU_BDVER4_FLAGS, 0 },
957 { STRING_COMMA_LEN ("znver1"), PROCESSOR_ZNVER,
958 CPU_ZNVER1_FLAGS, 0 },
959 { STRING_COMMA_LEN ("znver2"), PROCESSOR_ZNVER,
960 CPU_ZNVER2_FLAGS, 0 },
961 { STRING_COMMA_LEN ("btver1"), PROCESSOR_BT,
962 CPU_BTVER1_FLAGS, 0 },
963 { STRING_COMMA_LEN ("btver2"), PROCESSOR_BT,
964 CPU_BTVER2_FLAGS, 0 },
965 { STRING_COMMA_LEN (".8087"), PROCESSOR_UNKNOWN,
966 CPU_8087_FLAGS, 0 },
967 { STRING_COMMA_LEN (".287"), PROCESSOR_UNKNOWN,
968 CPU_287_FLAGS, 0 },
969 { STRING_COMMA_LEN (".387"), PROCESSOR_UNKNOWN,
970 CPU_387_FLAGS, 0 },
971 { STRING_COMMA_LEN (".687"), PROCESSOR_UNKNOWN,
972 CPU_687_FLAGS, 0 },
973 { STRING_COMMA_LEN (".cmov"), PROCESSOR_UNKNOWN,
974 CPU_CMOV_FLAGS, 0 },
975 { STRING_COMMA_LEN (".fxsr"), PROCESSOR_UNKNOWN,
976 CPU_FXSR_FLAGS, 0 },
977 { STRING_COMMA_LEN (".mmx"), PROCESSOR_UNKNOWN,
978 CPU_MMX_FLAGS, 0 },
979 { STRING_COMMA_LEN (".sse"), PROCESSOR_UNKNOWN,
980 CPU_SSE_FLAGS, 0 },
981 { STRING_COMMA_LEN (".sse2"), PROCESSOR_UNKNOWN,
982 CPU_SSE2_FLAGS, 0 },
983 { STRING_COMMA_LEN (".sse3"), PROCESSOR_UNKNOWN,
984 CPU_SSE3_FLAGS, 0 },
985 { STRING_COMMA_LEN (".ssse3"), PROCESSOR_UNKNOWN,
986 CPU_SSSE3_FLAGS, 0 },
987 { STRING_COMMA_LEN (".sse4.1"), PROCESSOR_UNKNOWN,
988 CPU_SSE4_1_FLAGS, 0 },
989 { STRING_COMMA_LEN (".sse4.2"), PROCESSOR_UNKNOWN,
990 CPU_SSE4_2_FLAGS, 0 },
991 { STRING_COMMA_LEN (".sse4"), PROCESSOR_UNKNOWN,
992 CPU_SSE4_2_FLAGS, 0 },
993 { STRING_COMMA_LEN (".avx"), PROCESSOR_UNKNOWN,
994 CPU_AVX_FLAGS, 0 },
995 { STRING_COMMA_LEN (".avx2"), PROCESSOR_UNKNOWN,
996 CPU_AVX2_FLAGS, 0 },
997 { STRING_COMMA_LEN (".avx512f"), PROCESSOR_UNKNOWN,
998 CPU_AVX512F_FLAGS, 0 },
999 { STRING_COMMA_LEN (".avx512cd"), PROCESSOR_UNKNOWN,
1000 CPU_AVX512CD_FLAGS, 0 },
1001 { STRING_COMMA_LEN (".avx512er"), PROCESSOR_UNKNOWN,
1002 CPU_AVX512ER_FLAGS, 0 },
1003 { STRING_COMMA_LEN (".avx512pf"), PROCESSOR_UNKNOWN,
1004 CPU_AVX512PF_FLAGS, 0 },
1005 { STRING_COMMA_LEN (".avx512dq"), PROCESSOR_UNKNOWN,
1006 CPU_AVX512DQ_FLAGS, 0 },
1007 { STRING_COMMA_LEN (".avx512bw"), PROCESSOR_UNKNOWN,
1008 CPU_AVX512BW_FLAGS, 0 },
1009 { STRING_COMMA_LEN (".avx512vl"), PROCESSOR_UNKNOWN,
1010 CPU_AVX512VL_FLAGS, 0 },
1011 { STRING_COMMA_LEN (".vmx"), PROCESSOR_UNKNOWN,
1012 CPU_VMX_FLAGS, 0 },
1013 { STRING_COMMA_LEN (".vmfunc"), PROCESSOR_UNKNOWN,
1014 CPU_VMFUNC_FLAGS, 0 },
1015 { STRING_COMMA_LEN (".smx"), PROCESSOR_UNKNOWN,
1016 CPU_SMX_FLAGS, 0 },
1017 { STRING_COMMA_LEN (".xsave"), PROCESSOR_UNKNOWN,
1018 CPU_XSAVE_FLAGS, 0 },
1019 { STRING_COMMA_LEN (".xsaveopt"), PROCESSOR_UNKNOWN,
1020 CPU_XSAVEOPT_FLAGS, 0 },
1021 { STRING_COMMA_LEN (".xsavec"), PROCESSOR_UNKNOWN,
1022 CPU_XSAVEC_FLAGS, 0 },
1023 { STRING_COMMA_LEN (".xsaves"), PROCESSOR_UNKNOWN,
1024 CPU_XSAVES_FLAGS, 0 },
1025 { STRING_COMMA_LEN (".aes"), PROCESSOR_UNKNOWN,
1026 CPU_AES_FLAGS, 0 },
1027 { STRING_COMMA_LEN (".pclmul"), PROCESSOR_UNKNOWN,
1028 CPU_PCLMUL_FLAGS, 0 },
1029 { STRING_COMMA_LEN (".clmul"), PROCESSOR_UNKNOWN,
1030 CPU_PCLMUL_FLAGS, 1 },
1031 { STRING_COMMA_LEN (".fsgsbase"), PROCESSOR_UNKNOWN,
1032 CPU_FSGSBASE_FLAGS, 0 },
1033 { STRING_COMMA_LEN (".rdrnd"), PROCESSOR_UNKNOWN,
1034 CPU_RDRND_FLAGS, 0 },
1035 { STRING_COMMA_LEN (".f16c"), PROCESSOR_UNKNOWN,
1036 CPU_F16C_FLAGS, 0 },
1037 { STRING_COMMA_LEN (".bmi2"), PROCESSOR_UNKNOWN,
1038 CPU_BMI2_FLAGS, 0 },
1039 { STRING_COMMA_LEN (".fma"), PROCESSOR_UNKNOWN,
1040 CPU_FMA_FLAGS, 0 },
1041 { STRING_COMMA_LEN (".fma4"), PROCESSOR_UNKNOWN,
1042 CPU_FMA4_FLAGS, 0 },
1043 { STRING_COMMA_LEN (".xop"), PROCESSOR_UNKNOWN,
1044 CPU_XOP_FLAGS, 0 },
1045 { STRING_COMMA_LEN (".lwp"), PROCESSOR_UNKNOWN,
1046 CPU_LWP_FLAGS, 0 },
1047 { STRING_COMMA_LEN (".movbe"), PROCESSOR_UNKNOWN,
1048 CPU_MOVBE_FLAGS, 0 },
1049 { STRING_COMMA_LEN (".cx16"), PROCESSOR_UNKNOWN,
1050 CPU_CX16_FLAGS, 0 },
1051 { STRING_COMMA_LEN (".ept"), PROCESSOR_UNKNOWN,
1052 CPU_EPT_FLAGS, 0 },
1053 { STRING_COMMA_LEN (".lzcnt"), PROCESSOR_UNKNOWN,
1054 CPU_LZCNT_FLAGS, 0 },
1055 { STRING_COMMA_LEN (".hle"), PROCESSOR_UNKNOWN,
1056 CPU_HLE_FLAGS, 0 },
1057 { STRING_COMMA_LEN (".rtm"), PROCESSOR_UNKNOWN,
1058 CPU_RTM_FLAGS, 0 },
1059 { STRING_COMMA_LEN (".invpcid"), PROCESSOR_UNKNOWN,
1060 CPU_INVPCID_FLAGS, 0 },
1061 { STRING_COMMA_LEN (".clflush"), PROCESSOR_UNKNOWN,
1062 CPU_CLFLUSH_FLAGS, 0 },
1063 { STRING_COMMA_LEN (".nop"), PROCESSOR_UNKNOWN,
1064 CPU_NOP_FLAGS, 0 },
1065 { STRING_COMMA_LEN (".syscall"), PROCESSOR_UNKNOWN,
1066 CPU_SYSCALL_FLAGS, 0 },
1067 { STRING_COMMA_LEN (".rdtscp"), PROCESSOR_UNKNOWN,
1068 CPU_RDTSCP_FLAGS, 0 },
1069 { STRING_COMMA_LEN (".3dnow"), PROCESSOR_UNKNOWN,
1070 CPU_3DNOW_FLAGS, 0 },
1071 { STRING_COMMA_LEN (".3dnowa"), PROCESSOR_UNKNOWN,
1072 CPU_3DNOWA_FLAGS, 0 },
1073 { STRING_COMMA_LEN (".padlock"), PROCESSOR_UNKNOWN,
1074 CPU_PADLOCK_FLAGS, 0 },
1075 { STRING_COMMA_LEN (".pacifica"), PROCESSOR_UNKNOWN,
1076 CPU_SVME_FLAGS, 1 },
1077 { STRING_COMMA_LEN (".svme"), PROCESSOR_UNKNOWN,
1078 CPU_SVME_FLAGS, 0 },
1079 { STRING_COMMA_LEN (".sse4a"), PROCESSOR_UNKNOWN,
1080 CPU_SSE4A_FLAGS, 0 },
1081 { STRING_COMMA_LEN (".abm"), PROCESSOR_UNKNOWN,
1082 CPU_ABM_FLAGS, 0 },
1083 { STRING_COMMA_LEN (".bmi"), PROCESSOR_UNKNOWN,
1084 CPU_BMI_FLAGS, 0 },
1085 { STRING_COMMA_LEN (".tbm"), PROCESSOR_UNKNOWN,
1086 CPU_TBM_FLAGS, 0 },
1087 { STRING_COMMA_LEN (".adx"), PROCESSOR_UNKNOWN,
1088 CPU_ADX_FLAGS, 0 },
1089 { STRING_COMMA_LEN (".rdseed"), PROCESSOR_UNKNOWN,
1090 CPU_RDSEED_FLAGS, 0 },
1091 { STRING_COMMA_LEN (".prfchw"), PROCESSOR_UNKNOWN,
1092 CPU_PRFCHW_FLAGS, 0 },
1093 { STRING_COMMA_LEN (".smap"), PROCESSOR_UNKNOWN,
1094 CPU_SMAP_FLAGS, 0 },
1095 { STRING_COMMA_LEN (".mpx"), PROCESSOR_UNKNOWN,
1096 CPU_MPX_FLAGS, 0 },
1097 { STRING_COMMA_LEN (".sha"), PROCESSOR_UNKNOWN,
1098 CPU_SHA_FLAGS, 0 },
1099 { STRING_COMMA_LEN (".clflushopt"), PROCESSOR_UNKNOWN,
1100 CPU_CLFLUSHOPT_FLAGS, 0 },
1101 { STRING_COMMA_LEN (".prefetchwt1"), PROCESSOR_UNKNOWN,
1102 CPU_PREFETCHWT1_FLAGS, 0 },
1103 { STRING_COMMA_LEN (".se1"), PROCESSOR_UNKNOWN,
1104 CPU_SE1_FLAGS, 0 },
1105 { STRING_COMMA_LEN (".clwb"), PROCESSOR_UNKNOWN,
1106 CPU_CLWB_FLAGS, 0 },
1107 { STRING_COMMA_LEN (".avx512ifma"), PROCESSOR_UNKNOWN,
1108 CPU_AVX512IFMA_FLAGS, 0 },
1109 { STRING_COMMA_LEN (".avx512vbmi"), PROCESSOR_UNKNOWN,
1110 CPU_AVX512VBMI_FLAGS, 0 },
1111 { STRING_COMMA_LEN (".avx512_4fmaps"), PROCESSOR_UNKNOWN,
1112 CPU_AVX512_4FMAPS_FLAGS, 0 },
1113 { STRING_COMMA_LEN (".avx512_4vnniw"), PROCESSOR_UNKNOWN,
1114 CPU_AVX512_4VNNIW_FLAGS, 0 },
1115 { STRING_COMMA_LEN (".avx512_vpopcntdq"), PROCESSOR_UNKNOWN,
1116 CPU_AVX512_VPOPCNTDQ_FLAGS, 0 },
1117 { STRING_COMMA_LEN (".avx512_vbmi2"), PROCESSOR_UNKNOWN,
1118 CPU_AVX512_VBMI2_FLAGS, 0 },
1119 { STRING_COMMA_LEN (".avx512_vnni"), PROCESSOR_UNKNOWN,
1120 CPU_AVX512_VNNI_FLAGS, 0 },
1121 { STRING_COMMA_LEN (".avx512_bitalg"), PROCESSOR_UNKNOWN,
1122 CPU_AVX512_BITALG_FLAGS, 0 },
1123 { STRING_COMMA_LEN (".clzero"), PROCESSOR_UNKNOWN,
1124 CPU_CLZERO_FLAGS, 0 },
1125 { STRING_COMMA_LEN (".mwaitx"), PROCESSOR_UNKNOWN,
1126 CPU_MWAITX_FLAGS, 0 },
1127 { STRING_COMMA_LEN (".ospke"), PROCESSOR_UNKNOWN,
1128 CPU_OSPKE_FLAGS, 0 },
1129 { STRING_COMMA_LEN (".rdpid"), PROCESSOR_UNKNOWN,
1130 CPU_RDPID_FLAGS, 0 },
1131 { STRING_COMMA_LEN (".ptwrite"), PROCESSOR_UNKNOWN,
1132 CPU_PTWRITE_FLAGS, 0 },
1133 { STRING_COMMA_LEN (".ibt"), PROCESSOR_UNKNOWN,
1134 CPU_IBT_FLAGS, 0 },
1135 { STRING_COMMA_LEN (".shstk"), PROCESSOR_UNKNOWN,
1136 CPU_SHSTK_FLAGS, 0 },
1137 { STRING_COMMA_LEN (".gfni"), PROCESSOR_UNKNOWN,
1138 CPU_GFNI_FLAGS, 0 },
1139 { STRING_COMMA_LEN (".vaes"), PROCESSOR_UNKNOWN,
1140 CPU_VAES_FLAGS, 0 },
1141 { STRING_COMMA_LEN (".vpclmulqdq"), PROCESSOR_UNKNOWN,
1142 CPU_VPCLMULQDQ_FLAGS, 0 },
1143 { STRING_COMMA_LEN (".wbnoinvd"), PROCESSOR_UNKNOWN,
1144 CPU_WBNOINVD_FLAGS, 0 },
1145 { STRING_COMMA_LEN (".pconfig"), PROCESSOR_UNKNOWN,
1146 CPU_PCONFIG_FLAGS, 0 },
1147 { STRING_COMMA_LEN (".waitpkg"), PROCESSOR_UNKNOWN,
1148 CPU_WAITPKG_FLAGS, 0 },
1149 { STRING_COMMA_LEN (".cldemote"), PROCESSOR_UNKNOWN,
1150 CPU_CLDEMOTE_FLAGS, 0 },
1151 { STRING_COMMA_LEN (".movdiri"), PROCESSOR_UNKNOWN,
1152 CPU_MOVDIRI_FLAGS, 0 },
1153 { STRING_COMMA_LEN (".movdir64b"), PROCESSOR_UNKNOWN,
1154 CPU_MOVDIR64B_FLAGS, 0 },
1155 { STRING_COMMA_LEN (".avx512_bf16"), PROCESSOR_UNKNOWN,
1156 CPU_AVX512_BF16_FLAGS, 0 },
1157 { STRING_COMMA_LEN (".avx512_vp2intersect"), PROCESSOR_UNKNOWN,
1158 CPU_AVX512_VP2INTERSECT_FLAGS, 0 },
1159 { STRING_COMMA_LEN (".enqcmd"), PROCESSOR_UNKNOWN,
1160 CPU_ENQCMD_FLAGS, 0 },
1161 { STRING_COMMA_LEN (".rdpru"), PROCESSOR_UNKNOWN,
1162 CPU_RDPRU_FLAGS, 0 },
1163 { STRING_COMMA_LEN (".mcommit"), PROCESSOR_UNKNOWN,
1164 CPU_MCOMMIT_FLAGS, 0 },
1165 };
1166
1167 static const noarch_entry cpu_noarch[] =
1168 {
1169 { STRING_COMMA_LEN ("no87"), CPU_ANY_X87_FLAGS },
1170 { STRING_COMMA_LEN ("no287"), CPU_ANY_287_FLAGS },
1171 { STRING_COMMA_LEN ("no387"), CPU_ANY_387_FLAGS },
1172 { STRING_COMMA_LEN ("no687"), CPU_ANY_687_FLAGS },
1173 { STRING_COMMA_LEN ("nocmov"), CPU_ANY_CMOV_FLAGS },
1174 { STRING_COMMA_LEN ("nofxsr"), CPU_ANY_FXSR_FLAGS },
1175 { STRING_COMMA_LEN ("nommx"), CPU_ANY_MMX_FLAGS },
1176 { STRING_COMMA_LEN ("nosse"), CPU_ANY_SSE_FLAGS },
1177 { STRING_COMMA_LEN ("nosse2"), CPU_ANY_SSE2_FLAGS },
1178 { STRING_COMMA_LEN ("nosse3"), CPU_ANY_SSE3_FLAGS },
1179 { STRING_COMMA_LEN ("nossse3"), CPU_ANY_SSSE3_FLAGS },
1180 { STRING_COMMA_LEN ("nosse4.1"), CPU_ANY_SSE4_1_FLAGS },
1181 { STRING_COMMA_LEN ("nosse4.2"), CPU_ANY_SSE4_2_FLAGS },
1182 { STRING_COMMA_LEN ("nosse4"), CPU_ANY_SSE4_1_FLAGS },
1183 { STRING_COMMA_LEN ("noavx"), CPU_ANY_AVX_FLAGS },
1184 { STRING_COMMA_LEN ("noavx2"), CPU_ANY_AVX2_FLAGS },
1185 { STRING_COMMA_LEN ("noavx512f"), CPU_ANY_AVX512F_FLAGS },
1186 { STRING_COMMA_LEN ("noavx512cd"), CPU_ANY_AVX512CD_FLAGS },
1187 { STRING_COMMA_LEN ("noavx512er"), CPU_ANY_AVX512ER_FLAGS },
1188 { STRING_COMMA_LEN ("noavx512pf"), CPU_ANY_AVX512PF_FLAGS },
1189 { STRING_COMMA_LEN ("noavx512dq"), CPU_ANY_AVX512DQ_FLAGS },
1190 { STRING_COMMA_LEN ("noavx512bw"), CPU_ANY_AVX512BW_FLAGS },
1191 { STRING_COMMA_LEN ("noavx512vl"), CPU_ANY_AVX512VL_FLAGS },
1192 { STRING_COMMA_LEN ("noavx512ifma"), CPU_ANY_AVX512IFMA_FLAGS },
1193 { STRING_COMMA_LEN ("noavx512vbmi"), CPU_ANY_AVX512VBMI_FLAGS },
1194 { STRING_COMMA_LEN ("noavx512_4fmaps"), CPU_ANY_AVX512_4FMAPS_FLAGS },
1195 { STRING_COMMA_LEN ("noavx512_4vnniw"), CPU_ANY_AVX512_4VNNIW_FLAGS },
1196 { STRING_COMMA_LEN ("noavx512_vpopcntdq"), CPU_ANY_AVX512_VPOPCNTDQ_FLAGS },
1197 { STRING_COMMA_LEN ("noavx512_vbmi2"), CPU_ANY_AVX512_VBMI2_FLAGS },
1198 { STRING_COMMA_LEN ("noavx512_vnni"), CPU_ANY_AVX512_VNNI_FLAGS },
1199 { STRING_COMMA_LEN ("noavx512_bitalg"), CPU_ANY_AVX512_BITALG_FLAGS },
1200 { STRING_COMMA_LEN ("noibt"), CPU_ANY_IBT_FLAGS },
1201 { STRING_COMMA_LEN ("noshstk"), CPU_ANY_SHSTK_FLAGS },
1202 { STRING_COMMA_LEN ("nomovdiri"), CPU_ANY_MOVDIRI_FLAGS },
1203 { STRING_COMMA_LEN ("nomovdir64b"), CPU_ANY_MOVDIR64B_FLAGS },
1204 { STRING_COMMA_LEN ("noavx512_bf16"), CPU_ANY_AVX512_BF16_FLAGS },
1205 { STRING_COMMA_LEN ("noavx512_vp2intersect"), CPU_ANY_SHSTK_FLAGS },
1206 { STRING_COMMA_LEN ("noenqcmd"), CPU_ANY_ENQCMD_FLAGS },
1207 };
1208
1209 #ifdef I386COFF
1210 /* Like s_lcomm_internal in gas/read.c but the alignment string
1211 is allowed to be optional. */
1212
1213 static symbolS *
1214 pe_lcomm_internal (int needs_align, symbolS *symbolP, addressT size)
1215 {
1216 addressT align = 0;
1217
1218 SKIP_WHITESPACE ();
1219
1220 if (needs_align
1221 && *input_line_pointer == ',')
1222 {
1223 align = parse_align (needs_align - 1);
1224
1225 if (align == (addressT) -1)
1226 return NULL;
1227 }
1228 else
1229 {
1230 if (size >= 8)
1231 align = 3;
1232 else if (size >= 4)
1233 align = 2;
1234 else if (size >= 2)
1235 align = 1;
1236 else
1237 align = 0;
1238 }
1239
1240 bss_alloc (symbolP, size, align);
1241 return symbolP;
1242 }
1243
1244 static void
1245 pe_lcomm (int needs_align)
1246 {
1247 s_comm_internal (needs_align * 2, pe_lcomm_internal);
1248 }
1249 #endif
1250
1251 const pseudo_typeS md_pseudo_table[] =
1252 {
1253 #if !defined(OBJ_AOUT) && !defined(USE_ALIGN_PTWO)
1254 {"align", s_align_bytes, 0},
1255 #else
1256 {"align", s_align_ptwo, 0},
1257 #endif
1258 {"arch", set_cpu_arch, 0},
1259 #ifndef I386COFF
1260 {"bss", s_bss, 0},
1261 #else
1262 {"lcomm", pe_lcomm, 1},
1263 #endif
1264 {"ffloat", float_cons, 'f'},
1265 {"dfloat", float_cons, 'd'},
1266 {"tfloat", float_cons, 'x'},
1267 {"value", cons, 2},
1268 {"slong", signed_cons, 4},
1269 {"noopt", s_ignore, 0},
1270 {"optim", s_ignore, 0},
1271 {"code16gcc", set_16bit_gcc_code_flag, CODE_16BIT},
1272 {"code16", set_code_flag, CODE_16BIT},
1273 {"code32", set_code_flag, CODE_32BIT},
1274 #ifdef BFD64
1275 {"code64", set_code_flag, CODE_64BIT},
1276 #endif
1277 {"intel_syntax", set_intel_syntax, 1},
1278 {"att_syntax", set_intel_syntax, 0},
1279 {"intel_mnemonic", set_intel_mnemonic, 1},
1280 {"att_mnemonic", set_intel_mnemonic, 0},
1281 {"allow_index_reg", set_allow_index_reg, 1},
1282 {"disallow_index_reg", set_allow_index_reg, 0},
1283 {"sse_check", set_check, 0},
1284 {"operand_check", set_check, 1},
1285 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
1286 {"largecomm", handle_large_common, 0},
1287 #else
1288 {"file", dwarf2_directive_file, 0},
1289 {"loc", dwarf2_directive_loc, 0},
1290 {"loc_mark_labels", dwarf2_directive_loc_mark_labels, 0},
1291 #endif
1292 #ifdef TE_PE
1293 {"secrel32", pe_directive_secrel, 0},
1294 #endif
1295 {0, 0, 0}
1296 };
1297
1298 /* For interface with expression (). */
1299 extern char *input_line_pointer;
1300
1301 /* Hash table for instruction mnemonic lookup. */
1302 static struct hash_control *op_hash;
1303
1304 /* Hash table for register lookup. */
1305 static struct hash_control *reg_hash;
1306 \f
1307 /* Various efficient no-op patterns for aligning code labels.
1308 Note: Don't try to assemble the instructions in the comments.
1309 0L and 0w are not legal. */
1310 static const unsigned char f32_1[] =
1311 {0x90}; /* nop */
1312 static const unsigned char f32_2[] =
1313 {0x66,0x90}; /* xchg %ax,%ax */
1314 static const unsigned char f32_3[] =
1315 {0x8d,0x76,0x00}; /* leal 0(%esi),%esi */
1316 static const unsigned char f32_4[] =
1317 {0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
1318 static const unsigned char f32_6[] =
1319 {0x8d,0xb6,0x00,0x00,0x00,0x00}; /* leal 0L(%esi),%esi */
1320 static const unsigned char f32_7[] =
1321 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
1322 static const unsigned char f16_3[] =
1323 {0x8d,0x74,0x00}; /* lea 0(%si),%si */
1324 static const unsigned char f16_4[] =
1325 {0x8d,0xb4,0x00,0x00}; /* lea 0W(%si),%si */
1326 static const unsigned char jump_disp8[] =
1327 {0xeb}; /* jmp disp8 */
1328 static const unsigned char jump32_disp32[] =
1329 {0xe9}; /* jmp disp32 */
1330 static const unsigned char jump16_disp32[] =
1331 {0x66,0xe9}; /* jmp disp32 */
1332 /* 32-bit NOPs patterns. */
1333 static const unsigned char *const f32_patt[] = {
1334 f32_1, f32_2, f32_3, f32_4, NULL, f32_6, f32_7
1335 };
1336 /* 16-bit NOPs patterns. */
1337 static const unsigned char *const f16_patt[] = {
1338 f32_1, f32_2, f16_3, f16_4
1339 };
1340 /* nopl (%[re]ax) */
1341 static const unsigned char alt_3[] =
1342 {0x0f,0x1f,0x00};
1343 /* nopl 0(%[re]ax) */
1344 static const unsigned char alt_4[] =
1345 {0x0f,0x1f,0x40,0x00};
1346 /* nopl 0(%[re]ax,%[re]ax,1) */
1347 static const unsigned char alt_5[] =
1348 {0x0f,0x1f,0x44,0x00,0x00};
1349 /* nopw 0(%[re]ax,%[re]ax,1) */
1350 static const unsigned char alt_6[] =
1351 {0x66,0x0f,0x1f,0x44,0x00,0x00};
1352 /* nopl 0L(%[re]ax) */
1353 static const unsigned char alt_7[] =
1354 {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
1355 /* nopl 0L(%[re]ax,%[re]ax,1) */
1356 static const unsigned char alt_8[] =
1357 {0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1358 /* nopw 0L(%[re]ax,%[re]ax,1) */
1359 static const unsigned char alt_9[] =
1360 {0x66,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1361 /* nopw %cs:0L(%[re]ax,%[re]ax,1) */
1362 static const unsigned char alt_10[] =
1363 {0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1364 /* data16 nopw %cs:0L(%eax,%eax,1) */
1365 static const unsigned char alt_11[] =
1366 {0x66,0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1367 /* 32-bit and 64-bit NOPs patterns. */
1368 static const unsigned char *const alt_patt[] = {
1369 f32_1, f32_2, alt_3, alt_4, alt_5, alt_6, alt_7, alt_8,
1370 alt_9, alt_10, alt_11
1371 };
1372
1373 /* Genenerate COUNT bytes of NOPs to WHERE from PATT with the maximum
1374 size of a single NOP instruction MAX_SINGLE_NOP_SIZE. */
1375
1376 static void
1377 i386_output_nops (char *where, const unsigned char *const *patt,
1378 int count, int max_single_nop_size)
1379
1380 {
1381 /* Place the longer NOP first. */
1382 int last;
1383 int offset;
1384 const unsigned char *nops;
1385
1386 if (max_single_nop_size < 1)
1387 {
1388 as_fatal (_("i386_output_nops called to generate nops of at most %d bytes!"),
1389 max_single_nop_size);
1390 return;
1391 }
1392
1393 nops = patt[max_single_nop_size - 1];
1394
1395 /* Use the smaller one if the requsted one isn't available. */
1396 if (nops == NULL)
1397 {
1398 max_single_nop_size--;
1399 nops = patt[max_single_nop_size - 1];
1400 }
1401
1402 last = count % max_single_nop_size;
1403
1404 count -= last;
1405 for (offset = 0; offset < count; offset += max_single_nop_size)
1406 memcpy (where + offset, nops, max_single_nop_size);
1407
1408 if (last)
1409 {
1410 nops = patt[last - 1];
1411 if (nops == NULL)
1412 {
1413 /* Use the smaller one plus one-byte NOP if the needed one
1414 isn't available. */
1415 last--;
1416 nops = patt[last - 1];
1417 memcpy (where + offset, nops, last);
1418 where[offset + last] = *patt[0];
1419 }
1420 else
1421 memcpy (where + offset, nops, last);
1422 }
1423 }
1424
1425 static INLINE int
1426 fits_in_imm7 (offsetT num)
1427 {
1428 return (num & 0x7f) == num;
1429 }
1430
1431 static INLINE int
1432 fits_in_imm31 (offsetT num)
1433 {
1434 return (num & 0x7fffffff) == num;
1435 }
1436
1437 /* Genenerate COUNT bytes of NOPs to WHERE with the maximum size of a
1438 single NOP instruction LIMIT. */
1439
1440 void
1441 i386_generate_nops (fragS *fragP, char *where, offsetT count, int limit)
1442 {
1443 const unsigned char *const *patt = NULL;
1444 int max_single_nop_size;
1445 /* Maximum number of NOPs before switching to jump over NOPs. */
1446 int max_number_of_nops;
1447
1448 switch (fragP->fr_type)
1449 {
1450 case rs_fill_nop:
1451 case rs_align_code:
1452 break;
1453 case rs_machine_dependent:
1454 /* Allow NOP padding for jumps and calls. */
1455 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PADDING
1456 || TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == FUSED_JCC_PADDING)
1457 break;
1458 /* Fall through. */
1459 default:
1460 return;
1461 }
1462
1463 /* We need to decide which NOP sequence to use for 32bit and
1464 64bit. When -mtune= is used:
1465
1466 1. For PROCESSOR_I386, PROCESSOR_I486, PROCESSOR_PENTIUM and
1467 PROCESSOR_GENERIC32, f32_patt will be used.
1468 2. For the rest, alt_patt will be used.
1469
1470 When -mtune= isn't used, alt_patt will be used if
1471 cpu_arch_isa_flags has CpuNop. Otherwise, f32_patt will
1472 be used.
1473
1474 When -march= or .arch is used, we can't use anything beyond
1475 cpu_arch_isa_flags. */
1476
1477 if (flag_code == CODE_16BIT)
1478 {
1479 patt = f16_patt;
1480 max_single_nop_size = sizeof (f16_patt) / sizeof (f16_patt[0]);
1481 /* Limit number of NOPs to 2 in 16-bit mode. */
1482 max_number_of_nops = 2;
1483 }
1484 else
1485 {
1486 if (fragP->tc_frag_data.isa == PROCESSOR_UNKNOWN)
1487 {
1488 /* PROCESSOR_UNKNOWN means that all ISAs may be used. */
1489 switch (cpu_arch_tune)
1490 {
1491 case PROCESSOR_UNKNOWN:
1492 /* We use cpu_arch_isa_flags to check if we SHOULD
1493 optimize with nops. */
1494 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1495 patt = alt_patt;
1496 else
1497 patt = f32_patt;
1498 break;
1499 case PROCESSOR_PENTIUM4:
1500 case PROCESSOR_NOCONA:
1501 case PROCESSOR_CORE:
1502 case PROCESSOR_CORE2:
1503 case PROCESSOR_COREI7:
1504 case PROCESSOR_L1OM:
1505 case PROCESSOR_K1OM:
1506 case PROCESSOR_GENERIC64:
1507 case PROCESSOR_K6:
1508 case PROCESSOR_ATHLON:
1509 case PROCESSOR_K8:
1510 case PROCESSOR_AMDFAM10:
1511 case PROCESSOR_BD:
1512 case PROCESSOR_ZNVER:
1513 case PROCESSOR_BT:
1514 patt = alt_patt;
1515 break;
1516 case PROCESSOR_I386:
1517 case PROCESSOR_I486:
1518 case PROCESSOR_PENTIUM:
1519 case PROCESSOR_PENTIUMPRO:
1520 case PROCESSOR_IAMCU:
1521 case PROCESSOR_GENERIC32:
1522 patt = f32_patt;
1523 break;
1524 }
1525 }
1526 else
1527 {
1528 switch (fragP->tc_frag_data.tune)
1529 {
1530 case PROCESSOR_UNKNOWN:
1531 /* When cpu_arch_isa is set, cpu_arch_tune shouldn't be
1532 PROCESSOR_UNKNOWN. */
1533 abort ();
1534 break;
1535
1536 case PROCESSOR_I386:
1537 case PROCESSOR_I486:
1538 case PROCESSOR_PENTIUM:
1539 case PROCESSOR_IAMCU:
1540 case PROCESSOR_K6:
1541 case PROCESSOR_ATHLON:
1542 case PROCESSOR_K8:
1543 case PROCESSOR_AMDFAM10:
1544 case PROCESSOR_BD:
1545 case PROCESSOR_ZNVER:
1546 case PROCESSOR_BT:
1547 case PROCESSOR_GENERIC32:
1548 /* We use cpu_arch_isa_flags to check if we CAN optimize
1549 with nops. */
1550 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1551 patt = alt_patt;
1552 else
1553 patt = f32_patt;
1554 break;
1555 case PROCESSOR_PENTIUMPRO:
1556 case PROCESSOR_PENTIUM4:
1557 case PROCESSOR_NOCONA:
1558 case PROCESSOR_CORE:
1559 case PROCESSOR_CORE2:
1560 case PROCESSOR_COREI7:
1561 case PROCESSOR_L1OM:
1562 case PROCESSOR_K1OM:
1563 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1564 patt = alt_patt;
1565 else
1566 patt = f32_patt;
1567 break;
1568 case PROCESSOR_GENERIC64:
1569 patt = alt_patt;
1570 break;
1571 }
1572 }
1573
1574 if (patt == f32_patt)
1575 {
1576 max_single_nop_size = sizeof (f32_patt) / sizeof (f32_patt[0]);
1577 /* Limit number of NOPs to 2 for older processors. */
1578 max_number_of_nops = 2;
1579 }
1580 else
1581 {
1582 max_single_nop_size = sizeof (alt_patt) / sizeof (alt_patt[0]);
1583 /* Limit number of NOPs to 7 for newer processors. */
1584 max_number_of_nops = 7;
1585 }
1586 }
1587
1588 if (limit == 0)
1589 limit = max_single_nop_size;
1590
1591 if (fragP->fr_type == rs_fill_nop)
1592 {
1593 /* Output NOPs for .nop directive. */
1594 if (limit > max_single_nop_size)
1595 {
1596 as_bad_where (fragP->fr_file, fragP->fr_line,
1597 _("invalid single nop size: %d "
1598 "(expect within [0, %d])"),
1599 limit, max_single_nop_size);
1600 return;
1601 }
1602 }
1603 else if (fragP->fr_type != rs_machine_dependent)
1604 fragP->fr_var = count;
1605
1606 if ((count / max_single_nop_size) > max_number_of_nops)
1607 {
1608 /* Generate jump over NOPs. */
1609 offsetT disp = count - 2;
1610 if (fits_in_imm7 (disp))
1611 {
1612 /* Use "jmp disp8" if possible. */
1613 count = disp;
1614 where[0] = jump_disp8[0];
1615 where[1] = count;
1616 where += 2;
1617 }
1618 else
1619 {
1620 unsigned int size_of_jump;
1621
1622 if (flag_code == CODE_16BIT)
1623 {
1624 where[0] = jump16_disp32[0];
1625 where[1] = jump16_disp32[1];
1626 size_of_jump = 2;
1627 }
1628 else
1629 {
1630 where[0] = jump32_disp32[0];
1631 size_of_jump = 1;
1632 }
1633
1634 count -= size_of_jump + 4;
1635 if (!fits_in_imm31 (count))
1636 {
1637 as_bad_where (fragP->fr_file, fragP->fr_line,
1638 _("jump over nop padding out of range"));
1639 return;
1640 }
1641
1642 md_number_to_chars (where + size_of_jump, count, 4);
1643 where += size_of_jump + 4;
1644 }
1645 }
1646
1647 /* Generate multiple NOPs. */
1648 i386_output_nops (where, patt, count, limit);
1649 }
1650
1651 static INLINE int
1652 operand_type_all_zero (const union i386_operand_type *x)
1653 {
1654 switch (ARRAY_SIZE(x->array))
1655 {
1656 case 3:
1657 if (x->array[2])
1658 return 0;
1659 /* Fall through. */
1660 case 2:
1661 if (x->array[1])
1662 return 0;
1663 /* Fall through. */
1664 case 1:
1665 return !x->array[0];
1666 default:
1667 abort ();
1668 }
1669 }
1670
1671 static INLINE void
1672 operand_type_set (union i386_operand_type *x, unsigned int v)
1673 {
1674 switch (ARRAY_SIZE(x->array))
1675 {
1676 case 3:
1677 x->array[2] = v;
1678 /* Fall through. */
1679 case 2:
1680 x->array[1] = v;
1681 /* Fall through. */
1682 case 1:
1683 x->array[0] = v;
1684 /* Fall through. */
1685 break;
1686 default:
1687 abort ();
1688 }
1689
1690 x->bitfield.class = ClassNone;
1691 x->bitfield.instance = InstanceNone;
1692 }
1693
1694 static INLINE int
1695 operand_type_equal (const union i386_operand_type *x,
1696 const union i386_operand_type *y)
1697 {
1698 switch (ARRAY_SIZE(x->array))
1699 {
1700 case 3:
1701 if (x->array[2] != y->array[2])
1702 return 0;
1703 /* Fall through. */
1704 case 2:
1705 if (x->array[1] != y->array[1])
1706 return 0;
1707 /* Fall through. */
1708 case 1:
1709 return x->array[0] == y->array[0];
1710 break;
1711 default:
1712 abort ();
1713 }
1714 }
1715
1716 static INLINE int
1717 cpu_flags_all_zero (const union i386_cpu_flags *x)
1718 {
1719 switch (ARRAY_SIZE(x->array))
1720 {
1721 case 4:
1722 if (x->array[3])
1723 return 0;
1724 /* Fall through. */
1725 case 3:
1726 if (x->array[2])
1727 return 0;
1728 /* Fall through. */
1729 case 2:
1730 if (x->array[1])
1731 return 0;
1732 /* Fall through. */
1733 case 1:
1734 return !x->array[0];
1735 default:
1736 abort ();
1737 }
1738 }
1739
1740 static INLINE int
1741 cpu_flags_equal (const union i386_cpu_flags *x,
1742 const union i386_cpu_flags *y)
1743 {
1744 switch (ARRAY_SIZE(x->array))
1745 {
1746 case 4:
1747 if (x->array[3] != y->array[3])
1748 return 0;
1749 /* Fall through. */
1750 case 3:
1751 if (x->array[2] != y->array[2])
1752 return 0;
1753 /* Fall through. */
1754 case 2:
1755 if (x->array[1] != y->array[1])
1756 return 0;
1757 /* Fall through. */
1758 case 1:
1759 return x->array[0] == y->array[0];
1760 break;
1761 default:
1762 abort ();
1763 }
1764 }
1765
1766 static INLINE int
1767 cpu_flags_check_cpu64 (i386_cpu_flags f)
1768 {
1769 return !((flag_code == CODE_64BIT && f.bitfield.cpuno64)
1770 || (flag_code != CODE_64BIT && f.bitfield.cpu64));
1771 }
1772
1773 static INLINE i386_cpu_flags
1774 cpu_flags_and (i386_cpu_flags x, i386_cpu_flags y)
1775 {
1776 switch (ARRAY_SIZE (x.array))
1777 {
1778 case 4:
1779 x.array [3] &= y.array [3];
1780 /* Fall through. */
1781 case 3:
1782 x.array [2] &= y.array [2];
1783 /* Fall through. */
1784 case 2:
1785 x.array [1] &= y.array [1];
1786 /* Fall through. */
1787 case 1:
1788 x.array [0] &= y.array [0];
1789 break;
1790 default:
1791 abort ();
1792 }
1793 return x;
1794 }
1795
1796 static INLINE i386_cpu_flags
1797 cpu_flags_or (i386_cpu_flags x, i386_cpu_flags y)
1798 {
1799 switch (ARRAY_SIZE (x.array))
1800 {
1801 case 4:
1802 x.array [3] |= y.array [3];
1803 /* Fall through. */
1804 case 3:
1805 x.array [2] |= y.array [2];
1806 /* Fall through. */
1807 case 2:
1808 x.array [1] |= y.array [1];
1809 /* Fall through. */
1810 case 1:
1811 x.array [0] |= y.array [0];
1812 break;
1813 default:
1814 abort ();
1815 }
1816 return x;
1817 }
1818
1819 static INLINE i386_cpu_flags
1820 cpu_flags_and_not (i386_cpu_flags x, i386_cpu_flags y)
1821 {
1822 switch (ARRAY_SIZE (x.array))
1823 {
1824 case 4:
1825 x.array [3] &= ~y.array [3];
1826 /* Fall through. */
1827 case 3:
1828 x.array [2] &= ~y.array [2];
1829 /* Fall through. */
1830 case 2:
1831 x.array [1] &= ~y.array [1];
1832 /* Fall through. */
1833 case 1:
1834 x.array [0] &= ~y.array [0];
1835 break;
1836 default:
1837 abort ();
1838 }
1839 return x;
1840 }
1841
1842 #define CPU_FLAGS_ARCH_MATCH 0x1
1843 #define CPU_FLAGS_64BIT_MATCH 0x2
1844
1845 #define CPU_FLAGS_PERFECT_MATCH \
1846 (CPU_FLAGS_ARCH_MATCH | CPU_FLAGS_64BIT_MATCH)
1847
1848 /* Return CPU flags match bits. */
1849
1850 static int
1851 cpu_flags_match (const insn_template *t)
1852 {
1853 i386_cpu_flags x = t->cpu_flags;
1854 int match = cpu_flags_check_cpu64 (x) ? CPU_FLAGS_64BIT_MATCH : 0;
1855
1856 x.bitfield.cpu64 = 0;
1857 x.bitfield.cpuno64 = 0;
1858
1859 if (cpu_flags_all_zero (&x))
1860 {
1861 /* This instruction is available on all archs. */
1862 match |= CPU_FLAGS_ARCH_MATCH;
1863 }
1864 else
1865 {
1866 /* This instruction is available only on some archs. */
1867 i386_cpu_flags cpu = cpu_arch_flags;
1868
1869 /* AVX512VL is no standalone feature - match it and then strip it. */
1870 if (x.bitfield.cpuavx512vl && !cpu.bitfield.cpuavx512vl)
1871 return match;
1872 x.bitfield.cpuavx512vl = 0;
1873
1874 cpu = cpu_flags_and (x, cpu);
1875 if (!cpu_flags_all_zero (&cpu))
1876 {
1877 if (x.bitfield.cpuavx)
1878 {
1879 /* We need to check a few extra flags with AVX. */
1880 if (cpu.bitfield.cpuavx
1881 && (!t->opcode_modifier.sse2avx || sse2avx)
1882 && (!x.bitfield.cpuaes || cpu.bitfield.cpuaes)
1883 && (!x.bitfield.cpugfni || cpu.bitfield.cpugfni)
1884 && (!x.bitfield.cpupclmul || cpu.bitfield.cpupclmul))
1885 match |= CPU_FLAGS_ARCH_MATCH;
1886 }
1887 else if (x.bitfield.cpuavx512f)
1888 {
1889 /* We need to check a few extra flags with AVX512F. */
1890 if (cpu.bitfield.cpuavx512f
1891 && (!x.bitfield.cpugfni || cpu.bitfield.cpugfni)
1892 && (!x.bitfield.cpuvaes || cpu.bitfield.cpuvaes)
1893 && (!x.bitfield.cpuvpclmulqdq || cpu.bitfield.cpuvpclmulqdq))
1894 match |= CPU_FLAGS_ARCH_MATCH;
1895 }
1896 else
1897 match |= CPU_FLAGS_ARCH_MATCH;
1898 }
1899 }
1900 return match;
1901 }
1902
1903 static INLINE i386_operand_type
1904 operand_type_and (i386_operand_type x, i386_operand_type y)
1905 {
1906 if (x.bitfield.class != y.bitfield.class)
1907 x.bitfield.class = ClassNone;
1908 if (x.bitfield.instance != y.bitfield.instance)
1909 x.bitfield.instance = InstanceNone;
1910
1911 switch (ARRAY_SIZE (x.array))
1912 {
1913 case 3:
1914 x.array [2] &= y.array [2];
1915 /* Fall through. */
1916 case 2:
1917 x.array [1] &= y.array [1];
1918 /* Fall through. */
1919 case 1:
1920 x.array [0] &= y.array [0];
1921 break;
1922 default:
1923 abort ();
1924 }
1925 return x;
1926 }
1927
1928 static INLINE i386_operand_type
1929 operand_type_and_not (i386_operand_type x, i386_operand_type y)
1930 {
1931 gas_assert (y.bitfield.class == ClassNone);
1932 gas_assert (y.bitfield.instance == InstanceNone);
1933
1934 switch (ARRAY_SIZE (x.array))
1935 {
1936 case 3:
1937 x.array [2] &= ~y.array [2];
1938 /* Fall through. */
1939 case 2:
1940 x.array [1] &= ~y.array [1];
1941 /* Fall through. */
1942 case 1:
1943 x.array [0] &= ~y.array [0];
1944 break;
1945 default:
1946 abort ();
1947 }
1948 return x;
1949 }
1950
1951 static INLINE i386_operand_type
1952 operand_type_or (i386_operand_type x, i386_operand_type y)
1953 {
1954 gas_assert (x.bitfield.class == ClassNone ||
1955 y.bitfield.class == ClassNone ||
1956 x.bitfield.class == y.bitfield.class);
1957 gas_assert (x.bitfield.instance == InstanceNone ||
1958 y.bitfield.instance == InstanceNone ||
1959 x.bitfield.instance == y.bitfield.instance);
1960
1961 switch (ARRAY_SIZE (x.array))
1962 {
1963 case 3:
1964 x.array [2] |= y.array [2];
1965 /* Fall through. */
1966 case 2:
1967 x.array [1] |= y.array [1];
1968 /* Fall through. */
1969 case 1:
1970 x.array [0] |= y.array [0];
1971 break;
1972 default:
1973 abort ();
1974 }
1975 return x;
1976 }
1977
1978 static INLINE i386_operand_type
1979 operand_type_xor (i386_operand_type x, i386_operand_type y)
1980 {
1981 gas_assert (y.bitfield.class == ClassNone);
1982 gas_assert (y.bitfield.instance == InstanceNone);
1983
1984 switch (ARRAY_SIZE (x.array))
1985 {
1986 case 3:
1987 x.array [2] ^= y.array [2];
1988 /* Fall through. */
1989 case 2:
1990 x.array [1] ^= y.array [1];
1991 /* Fall through. */
1992 case 1:
1993 x.array [0] ^= y.array [0];
1994 break;
1995 default:
1996 abort ();
1997 }
1998 return x;
1999 }
2000
2001 static const i386_operand_type disp16 = OPERAND_TYPE_DISP16;
2002 static const i386_operand_type disp32 = OPERAND_TYPE_DISP32;
2003 static const i386_operand_type disp32s = OPERAND_TYPE_DISP32S;
2004 static const i386_operand_type disp16_32 = OPERAND_TYPE_DISP16_32;
2005 static const i386_operand_type anydisp = OPERAND_TYPE_ANYDISP;
2006 static const i386_operand_type anyimm = OPERAND_TYPE_ANYIMM;
2007 static const i386_operand_type regxmm = OPERAND_TYPE_REGXMM;
2008 static const i386_operand_type regmask = OPERAND_TYPE_REGMASK;
2009 static const i386_operand_type imm8 = OPERAND_TYPE_IMM8;
2010 static const i386_operand_type imm8s = OPERAND_TYPE_IMM8S;
2011 static const i386_operand_type imm16 = OPERAND_TYPE_IMM16;
2012 static const i386_operand_type imm32 = OPERAND_TYPE_IMM32;
2013 static const i386_operand_type imm32s = OPERAND_TYPE_IMM32S;
2014 static const i386_operand_type imm64 = OPERAND_TYPE_IMM64;
2015 static const i386_operand_type imm16_32 = OPERAND_TYPE_IMM16_32;
2016 static const i386_operand_type imm16_32s = OPERAND_TYPE_IMM16_32S;
2017 static const i386_operand_type imm16_32_32s = OPERAND_TYPE_IMM16_32_32S;
2018
2019 enum operand_type
2020 {
2021 reg,
2022 imm,
2023 disp,
2024 anymem
2025 };
2026
2027 static INLINE int
2028 operand_type_check (i386_operand_type t, enum operand_type c)
2029 {
2030 switch (c)
2031 {
2032 case reg:
2033 return t.bitfield.class == Reg;
2034
2035 case imm:
2036 return (t.bitfield.imm8
2037 || t.bitfield.imm8s
2038 || t.bitfield.imm16
2039 || t.bitfield.imm32
2040 || t.bitfield.imm32s
2041 || t.bitfield.imm64);
2042
2043 case disp:
2044 return (t.bitfield.disp8
2045 || t.bitfield.disp16
2046 || t.bitfield.disp32
2047 || t.bitfield.disp32s
2048 || t.bitfield.disp64);
2049
2050 case anymem:
2051 return (t.bitfield.disp8
2052 || t.bitfield.disp16
2053 || t.bitfield.disp32
2054 || t.bitfield.disp32s
2055 || t.bitfield.disp64
2056 || t.bitfield.baseindex);
2057
2058 default:
2059 abort ();
2060 }
2061
2062 return 0;
2063 }
2064
2065 /* Return 1 if there is no conflict in 8bit/16bit/32bit/64bit/80bit size
2066 between operand GIVEN and opeand WANTED for instruction template T. */
2067
2068 static INLINE int
2069 match_operand_size (const insn_template *t, unsigned int wanted,
2070 unsigned int given)
2071 {
2072 return !((i.types[given].bitfield.byte
2073 && !t->operand_types[wanted].bitfield.byte)
2074 || (i.types[given].bitfield.word
2075 && !t->operand_types[wanted].bitfield.word)
2076 || (i.types[given].bitfield.dword
2077 && !t->operand_types[wanted].bitfield.dword)
2078 || (i.types[given].bitfield.qword
2079 && !t->operand_types[wanted].bitfield.qword)
2080 || (i.types[given].bitfield.tbyte
2081 && !t->operand_types[wanted].bitfield.tbyte));
2082 }
2083
2084 /* Return 1 if there is no conflict in SIMD register between operand
2085 GIVEN and opeand WANTED for instruction template T. */
2086
2087 static INLINE int
2088 match_simd_size (const insn_template *t, unsigned int wanted,
2089 unsigned int given)
2090 {
2091 return !((i.types[given].bitfield.xmmword
2092 && !t->operand_types[wanted].bitfield.xmmword)
2093 || (i.types[given].bitfield.ymmword
2094 && !t->operand_types[wanted].bitfield.ymmword)
2095 || (i.types[given].bitfield.zmmword
2096 && !t->operand_types[wanted].bitfield.zmmword));
2097 }
2098
2099 /* Return 1 if there is no conflict in any size between operand GIVEN
2100 and opeand WANTED for instruction template T. */
2101
2102 static INLINE int
2103 match_mem_size (const insn_template *t, unsigned int wanted,
2104 unsigned int given)
2105 {
2106 return (match_operand_size (t, wanted, given)
2107 && !((i.types[given].bitfield.unspecified
2108 && !i.broadcast
2109 && !t->operand_types[wanted].bitfield.unspecified)
2110 || (i.types[given].bitfield.fword
2111 && !t->operand_types[wanted].bitfield.fword)
2112 /* For scalar opcode templates to allow register and memory
2113 operands at the same time, some special casing is needed
2114 here. Also for v{,p}broadcast*, {,v}pmov{s,z}*, and
2115 down-conversion vpmov*. */
2116 || ((t->operand_types[wanted].bitfield.class == RegSIMD
2117 && !t->opcode_modifier.broadcast
2118 && (t->operand_types[wanted].bitfield.byte
2119 || t->operand_types[wanted].bitfield.word
2120 || t->operand_types[wanted].bitfield.dword
2121 || t->operand_types[wanted].bitfield.qword))
2122 ? (i.types[given].bitfield.xmmword
2123 || i.types[given].bitfield.ymmword
2124 || i.types[given].bitfield.zmmword)
2125 : !match_simd_size(t, wanted, given))));
2126 }
2127
2128 /* Return value has MATCH_STRAIGHT set if there is no size conflict on any
2129 operands for instruction template T, and it has MATCH_REVERSE set if there
2130 is no size conflict on any operands for the template with operands reversed
2131 (and the template allows for reversing in the first place). */
2132
2133 #define MATCH_STRAIGHT 1
2134 #define MATCH_REVERSE 2
2135
2136 static INLINE unsigned int
2137 operand_size_match (const insn_template *t)
2138 {
2139 unsigned int j, match = MATCH_STRAIGHT;
2140
2141 /* Don't check non-absolute jump instructions. */
2142 if (t->opcode_modifier.jump
2143 && t->opcode_modifier.jump != JUMP_ABSOLUTE)
2144 return match;
2145
2146 /* Check memory and accumulator operand size. */
2147 for (j = 0; j < i.operands; j++)
2148 {
2149 if (i.types[j].bitfield.class != Reg
2150 && i.types[j].bitfield.class != RegSIMD
2151 && t->opcode_modifier.anysize)
2152 continue;
2153
2154 if (t->operand_types[j].bitfield.class == Reg
2155 && !match_operand_size (t, j, j))
2156 {
2157 match = 0;
2158 break;
2159 }
2160
2161 if (t->operand_types[j].bitfield.class == RegSIMD
2162 && !match_simd_size (t, j, j))
2163 {
2164 match = 0;
2165 break;
2166 }
2167
2168 if (t->operand_types[j].bitfield.instance == Accum
2169 && (!match_operand_size (t, j, j) || !match_simd_size (t, j, j)))
2170 {
2171 match = 0;
2172 break;
2173 }
2174
2175 if ((i.flags[j] & Operand_Mem) && !match_mem_size (t, j, j))
2176 {
2177 match = 0;
2178 break;
2179 }
2180 }
2181
2182 if (!t->opcode_modifier.d)
2183 {
2184 mismatch:
2185 if (!match)
2186 i.error = operand_size_mismatch;
2187 return match;
2188 }
2189
2190 /* Check reverse. */
2191 gas_assert (i.operands >= 2 && i.operands <= 3);
2192
2193 for (j = 0; j < i.operands; j++)
2194 {
2195 unsigned int given = i.operands - j - 1;
2196
2197 if (t->operand_types[j].bitfield.class == Reg
2198 && !match_operand_size (t, j, given))
2199 goto mismatch;
2200
2201 if (t->operand_types[j].bitfield.class == RegSIMD
2202 && !match_simd_size (t, j, given))
2203 goto mismatch;
2204
2205 if (t->operand_types[j].bitfield.instance == Accum
2206 && (!match_operand_size (t, j, given)
2207 || !match_simd_size (t, j, given)))
2208 goto mismatch;
2209
2210 if ((i.flags[given] & Operand_Mem) && !match_mem_size (t, j, given))
2211 goto mismatch;
2212 }
2213
2214 return match | MATCH_REVERSE;
2215 }
2216
2217 static INLINE int
2218 operand_type_match (i386_operand_type overlap,
2219 i386_operand_type given)
2220 {
2221 i386_operand_type temp = overlap;
2222
2223 temp.bitfield.unspecified = 0;
2224 temp.bitfield.byte = 0;
2225 temp.bitfield.word = 0;
2226 temp.bitfield.dword = 0;
2227 temp.bitfield.fword = 0;
2228 temp.bitfield.qword = 0;
2229 temp.bitfield.tbyte = 0;
2230 temp.bitfield.xmmword = 0;
2231 temp.bitfield.ymmword = 0;
2232 temp.bitfield.zmmword = 0;
2233 if (operand_type_all_zero (&temp))
2234 goto mismatch;
2235
2236 if (given.bitfield.baseindex == overlap.bitfield.baseindex)
2237 return 1;
2238
2239 mismatch:
2240 i.error = operand_type_mismatch;
2241 return 0;
2242 }
2243
2244 /* If given types g0 and g1 are registers they must be of the same type
2245 unless the expected operand type register overlap is null.
2246 Memory operand size of certain SIMD instructions is also being checked
2247 here. */
2248
2249 static INLINE int
2250 operand_type_register_match (i386_operand_type g0,
2251 i386_operand_type t0,
2252 i386_operand_type g1,
2253 i386_operand_type t1)
2254 {
2255 if (g0.bitfield.class != Reg
2256 && g0.bitfield.class != RegSIMD
2257 && (!operand_type_check (g0, anymem)
2258 || g0.bitfield.unspecified
2259 || t0.bitfield.class != RegSIMD))
2260 return 1;
2261
2262 if (g1.bitfield.class != Reg
2263 && g1.bitfield.class != RegSIMD
2264 && (!operand_type_check (g1, anymem)
2265 || g1.bitfield.unspecified
2266 || t1.bitfield.class != RegSIMD))
2267 return 1;
2268
2269 if (g0.bitfield.byte == g1.bitfield.byte
2270 && g0.bitfield.word == g1.bitfield.word
2271 && g0.bitfield.dword == g1.bitfield.dword
2272 && g0.bitfield.qword == g1.bitfield.qword
2273 && g0.bitfield.xmmword == g1.bitfield.xmmword
2274 && g0.bitfield.ymmword == g1.bitfield.ymmword
2275 && g0.bitfield.zmmword == g1.bitfield.zmmword)
2276 return 1;
2277
2278 if (!(t0.bitfield.byte & t1.bitfield.byte)
2279 && !(t0.bitfield.word & t1.bitfield.word)
2280 && !(t0.bitfield.dword & t1.bitfield.dword)
2281 && !(t0.bitfield.qword & t1.bitfield.qword)
2282 && !(t0.bitfield.xmmword & t1.bitfield.xmmword)
2283 && !(t0.bitfield.ymmword & t1.bitfield.ymmword)
2284 && !(t0.bitfield.zmmword & t1.bitfield.zmmword))
2285 return 1;
2286
2287 i.error = register_type_mismatch;
2288
2289 return 0;
2290 }
2291
2292 static INLINE unsigned int
2293 register_number (const reg_entry *r)
2294 {
2295 unsigned int nr = r->reg_num;
2296
2297 if (r->reg_flags & RegRex)
2298 nr += 8;
2299
2300 if (r->reg_flags & RegVRex)
2301 nr += 16;
2302
2303 return nr;
2304 }
2305
2306 static INLINE unsigned int
2307 mode_from_disp_size (i386_operand_type t)
2308 {
2309 if (t.bitfield.disp8)
2310 return 1;
2311 else if (t.bitfield.disp16
2312 || t.bitfield.disp32
2313 || t.bitfield.disp32s)
2314 return 2;
2315 else
2316 return 0;
2317 }
2318
2319 static INLINE int
2320 fits_in_signed_byte (addressT num)
2321 {
2322 return num + 0x80 <= 0xff;
2323 }
2324
2325 static INLINE int
2326 fits_in_unsigned_byte (addressT num)
2327 {
2328 return num <= 0xff;
2329 }
2330
2331 static INLINE int
2332 fits_in_unsigned_word (addressT num)
2333 {
2334 return num <= 0xffff;
2335 }
2336
2337 static INLINE int
2338 fits_in_signed_word (addressT num)
2339 {
2340 return num + 0x8000 <= 0xffff;
2341 }
2342
2343 static INLINE int
2344 fits_in_signed_long (addressT num ATTRIBUTE_UNUSED)
2345 {
2346 #ifndef BFD64
2347 return 1;
2348 #else
2349 return num + 0x80000000 <= 0xffffffff;
2350 #endif
2351 } /* fits_in_signed_long() */
2352
2353 static INLINE int
2354 fits_in_unsigned_long (addressT num ATTRIBUTE_UNUSED)
2355 {
2356 #ifndef BFD64
2357 return 1;
2358 #else
2359 return num <= 0xffffffff;
2360 #endif
2361 } /* fits_in_unsigned_long() */
2362
2363 static INLINE int
2364 fits_in_disp8 (offsetT num)
2365 {
2366 int shift = i.memshift;
2367 unsigned int mask;
2368
2369 if (shift == -1)
2370 abort ();
2371
2372 mask = (1 << shift) - 1;
2373
2374 /* Return 0 if NUM isn't properly aligned. */
2375 if ((num & mask))
2376 return 0;
2377
2378 /* Check if NUM will fit in 8bit after shift. */
2379 return fits_in_signed_byte (num >> shift);
2380 }
2381
2382 static INLINE int
2383 fits_in_imm4 (offsetT num)
2384 {
2385 return (num & 0xf) == num;
2386 }
2387
2388 static i386_operand_type
2389 smallest_imm_type (offsetT num)
2390 {
2391 i386_operand_type t;
2392
2393 operand_type_set (&t, 0);
2394 t.bitfield.imm64 = 1;
2395
2396 if (cpu_arch_tune != PROCESSOR_I486 && num == 1)
2397 {
2398 /* This code is disabled on the 486 because all the Imm1 forms
2399 in the opcode table are slower on the i486. They're the
2400 versions with the implicitly specified single-position
2401 displacement, which has another syntax if you really want to
2402 use that form. */
2403 t.bitfield.imm1 = 1;
2404 t.bitfield.imm8 = 1;
2405 t.bitfield.imm8s = 1;
2406 t.bitfield.imm16 = 1;
2407 t.bitfield.imm32 = 1;
2408 t.bitfield.imm32s = 1;
2409 }
2410 else if (fits_in_signed_byte (num))
2411 {
2412 t.bitfield.imm8 = 1;
2413 t.bitfield.imm8s = 1;
2414 t.bitfield.imm16 = 1;
2415 t.bitfield.imm32 = 1;
2416 t.bitfield.imm32s = 1;
2417 }
2418 else if (fits_in_unsigned_byte (num))
2419 {
2420 t.bitfield.imm8 = 1;
2421 t.bitfield.imm16 = 1;
2422 t.bitfield.imm32 = 1;
2423 t.bitfield.imm32s = 1;
2424 }
2425 else if (fits_in_signed_word (num) || fits_in_unsigned_word (num))
2426 {
2427 t.bitfield.imm16 = 1;
2428 t.bitfield.imm32 = 1;
2429 t.bitfield.imm32s = 1;
2430 }
2431 else if (fits_in_signed_long (num))
2432 {
2433 t.bitfield.imm32 = 1;
2434 t.bitfield.imm32s = 1;
2435 }
2436 else if (fits_in_unsigned_long (num))
2437 t.bitfield.imm32 = 1;
2438
2439 return t;
2440 }
2441
2442 static offsetT
2443 offset_in_range (offsetT val, int size)
2444 {
2445 addressT mask;
2446
2447 switch (size)
2448 {
2449 case 1: mask = ((addressT) 1 << 8) - 1; break;
2450 case 2: mask = ((addressT) 1 << 16) - 1; break;
2451 case 4: mask = ((addressT) 2 << 31) - 1; break;
2452 #ifdef BFD64
2453 case 8: mask = ((addressT) 2 << 63) - 1; break;
2454 #endif
2455 default: abort ();
2456 }
2457
2458 #ifdef BFD64
2459 /* If BFD64, sign extend val for 32bit address mode. */
2460 if (flag_code != CODE_64BIT
2461 || i.prefix[ADDR_PREFIX])
2462 if ((val & ~(((addressT) 2 << 31) - 1)) == 0)
2463 val = (val ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
2464 #endif
2465
2466 if ((val & ~mask) != 0 && (val & ~mask) != ~mask)
2467 {
2468 char buf1[40], buf2[40];
2469
2470 sprint_value (buf1, val);
2471 sprint_value (buf2, val & mask);
2472 as_warn (_("%s shortened to %s"), buf1, buf2);
2473 }
2474 return val & mask;
2475 }
2476
2477 enum PREFIX_GROUP
2478 {
2479 PREFIX_EXIST = 0,
2480 PREFIX_LOCK,
2481 PREFIX_REP,
2482 PREFIX_DS,
2483 PREFIX_OTHER
2484 };
2485
2486 /* Returns
2487 a. PREFIX_EXIST if attempting to add a prefix where one from the
2488 same class already exists.
2489 b. PREFIX_LOCK if lock prefix is added.
2490 c. PREFIX_REP if rep/repne prefix is added.
2491 d. PREFIX_DS if ds prefix is added.
2492 e. PREFIX_OTHER if other prefix is added.
2493 */
2494
2495 static enum PREFIX_GROUP
2496 add_prefix (unsigned int prefix)
2497 {
2498 enum PREFIX_GROUP ret = PREFIX_OTHER;
2499 unsigned int q;
2500
2501 if (prefix >= REX_OPCODE && prefix < REX_OPCODE + 16
2502 && flag_code == CODE_64BIT)
2503 {
2504 if ((i.prefix[REX_PREFIX] & prefix & REX_W)
2505 || (i.prefix[REX_PREFIX] & prefix & REX_R)
2506 || (i.prefix[REX_PREFIX] & prefix & REX_X)
2507 || (i.prefix[REX_PREFIX] & prefix & REX_B))
2508 ret = PREFIX_EXIST;
2509 q = REX_PREFIX;
2510 }
2511 else
2512 {
2513 switch (prefix)
2514 {
2515 default:
2516 abort ();
2517
2518 case DS_PREFIX_OPCODE:
2519 ret = PREFIX_DS;
2520 /* Fall through. */
2521 case CS_PREFIX_OPCODE:
2522 case ES_PREFIX_OPCODE:
2523 case FS_PREFIX_OPCODE:
2524 case GS_PREFIX_OPCODE:
2525 case SS_PREFIX_OPCODE:
2526 q = SEG_PREFIX;
2527 break;
2528
2529 case REPNE_PREFIX_OPCODE:
2530 case REPE_PREFIX_OPCODE:
2531 q = REP_PREFIX;
2532 ret = PREFIX_REP;
2533 break;
2534
2535 case LOCK_PREFIX_OPCODE:
2536 q = LOCK_PREFIX;
2537 ret = PREFIX_LOCK;
2538 break;
2539
2540 case FWAIT_OPCODE:
2541 q = WAIT_PREFIX;
2542 break;
2543
2544 case ADDR_PREFIX_OPCODE:
2545 q = ADDR_PREFIX;
2546 break;
2547
2548 case DATA_PREFIX_OPCODE:
2549 q = DATA_PREFIX;
2550 break;
2551 }
2552 if (i.prefix[q] != 0)
2553 ret = PREFIX_EXIST;
2554 }
2555
2556 if (ret)
2557 {
2558 if (!i.prefix[q])
2559 ++i.prefixes;
2560 i.prefix[q] |= prefix;
2561 }
2562 else
2563 as_bad (_("same type of prefix used twice"));
2564
2565 return ret;
2566 }
2567
2568 static void
2569 update_code_flag (int value, int check)
2570 {
2571 PRINTF_LIKE ((*as_error));
2572
2573 flag_code = (enum flag_code) value;
2574 if (flag_code == CODE_64BIT)
2575 {
2576 cpu_arch_flags.bitfield.cpu64 = 1;
2577 cpu_arch_flags.bitfield.cpuno64 = 0;
2578 }
2579 else
2580 {
2581 cpu_arch_flags.bitfield.cpu64 = 0;
2582 cpu_arch_flags.bitfield.cpuno64 = 1;
2583 }
2584 if (value == CODE_64BIT && !cpu_arch_flags.bitfield.cpulm )
2585 {
2586 if (check)
2587 as_error = as_fatal;
2588 else
2589 as_error = as_bad;
2590 (*as_error) (_("64bit mode not supported on `%s'."),
2591 cpu_arch_name ? cpu_arch_name : default_arch);
2592 }
2593 if (value == CODE_32BIT && !cpu_arch_flags.bitfield.cpui386)
2594 {
2595 if (check)
2596 as_error = as_fatal;
2597 else
2598 as_error = as_bad;
2599 (*as_error) (_("32bit mode not supported on `%s'."),
2600 cpu_arch_name ? cpu_arch_name : default_arch);
2601 }
2602 stackop_size = '\0';
2603 }
2604
2605 static void
2606 set_code_flag (int value)
2607 {
2608 update_code_flag (value, 0);
2609 }
2610
2611 static void
2612 set_16bit_gcc_code_flag (int new_code_flag)
2613 {
2614 flag_code = (enum flag_code) new_code_flag;
2615 if (flag_code != CODE_16BIT)
2616 abort ();
2617 cpu_arch_flags.bitfield.cpu64 = 0;
2618 cpu_arch_flags.bitfield.cpuno64 = 1;
2619 stackop_size = LONG_MNEM_SUFFIX;
2620 }
2621
2622 static void
2623 set_intel_syntax (int syntax_flag)
2624 {
2625 /* Find out if register prefixing is specified. */
2626 int ask_naked_reg = 0;
2627
2628 SKIP_WHITESPACE ();
2629 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2630 {
2631 char *string;
2632 int e = get_symbol_name (&string);
2633
2634 if (strcmp (string, "prefix") == 0)
2635 ask_naked_reg = 1;
2636 else if (strcmp (string, "noprefix") == 0)
2637 ask_naked_reg = -1;
2638 else
2639 as_bad (_("bad argument to syntax directive."));
2640 (void) restore_line_pointer (e);
2641 }
2642 demand_empty_rest_of_line ();
2643
2644 intel_syntax = syntax_flag;
2645
2646 if (ask_naked_reg == 0)
2647 allow_naked_reg = (intel_syntax
2648 && (bfd_get_symbol_leading_char (stdoutput) != '\0'));
2649 else
2650 allow_naked_reg = (ask_naked_reg < 0);
2651
2652 expr_set_rank (O_full_ptr, syntax_flag ? 10 : 0);
2653
2654 identifier_chars['%'] = intel_syntax && allow_naked_reg ? '%' : 0;
2655 identifier_chars['$'] = intel_syntax ? '$' : 0;
2656 register_prefix = allow_naked_reg ? "" : "%";
2657 }
2658
2659 static void
2660 set_intel_mnemonic (int mnemonic_flag)
2661 {
2662 intel_mnemonic = mnemonic_flag;
2663 }
2664
2665 static void
2666 set_allow_index_reg (int flag)
2667 {
2668 allow_index_reg = flag;
2669 }
2670
2671 static void
2672 set_check (int what)
2673 {
2674 enum check_kind *kind;
2675 const char *str;
2676
2677 if (what)
2678 {
2679 kind = &operand_check;
2680 str = "operand";
2681 }
2682 else
2683 {
2684 kind = &sse_check;
2685 str = "sse";
2686 }
2687
2688 SKIP_WHITESPACE ();
2689
2690 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2691 {
2692 char *string;
2693 int e = get_symbol_name (&string);
2694
2695 if (strcmp (string, "none") == 0)
2696 *kind = check_none;
2697 else if (strcmp (string, "warning") == 0)
2698 *kind = check_warning;
2699 else if (strcmp (string, "error") == 0)
2700 *kind = check_error;
2701 else
2702 as_bad (_("bad argument to %s_check directive."), str);
2703 (void) restore_line_pointer (e);
2704 }
2705 else
2706 as_bad (_("missing argument for %s_check directive"), str);
2707
2708 demand_empty_rest_of_line ();
2709 }
2710
2711 static void
2712 check_cpu_arch_compatible (const char *name ATTRIBUTE_UNUSED,
2713 i386_cpu_flags new_flag ATTRIBUTE_UNUSED)
2714 {
2715 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
2716 static const char *arch;
2717
2718 /* Intel LIOM is only supported on ELF. */
2719 if (!IS_ELF)
2720 return;
2721
2722 if (!arch)
2723 {
2724 /* Use cpu_arch_name if it is set in md_parse_option. Otherwise
2725 use default_arch. */
2726 arch = cpu_arch_name;
2727 if (!arch)
2728 arch = default_arch;
2729 }
2730
2731 /* If we are targeting Intel MCU, we must enable it. */
2732 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_IAMCU
2733 || new_flag.bitfield.cpuiamcu)
2734 return;
2735
2736 /* If we are targeting Intel L1OM, we must enable it. */
2737 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_L1OM
2738 || new_flag.bitfield.cpul1om)
2739 return;
2740
2741 /* If we are targeting Intel K1OM, we must enable it. */
2742 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_K1OM
2743 || new_flag.bitfield.cpuk1om)
2744 return;
2745
2746 as_bad (_("`%s' is not supported on `%s'"), name, arch);
2747 #endif
2748 }
2749
2750 static void
2751 set_cpu_arch (int dummy ATTRIBUTE_UNUSED)
2752 {
2753 SKIP_WHITESPACE ();
2754
2755 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2756 {
2757 char *string;
2758 int e = get_symbol_name (&string);
2759 unsigned int j;
2760 i386_cpu_flags flags;
2761
2762 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
2763 {
2764 if (strcmp (string, cpu_arch[j].name) == 0)
2765 {
2766 check_cpu_arch_compatible (string, cpu_arch[j].flags);
2767
2768 if (*string != '.')
2769 {
2770 cpu_arch_name = cpu_arch[j].name;
2771 cpu_sub_arch_name = NULL;
2772 cpu_arch_flags = cpu_arch[j].flags;
2773 if (flag_code == CODE_64BIT)
2774 {
2775 cpu_arch_flags.bitfield.cpu64 = 1;
2776 cpu_arch_flags.bitfield.cpuno64 = 0;
2777 }
2778 else
2779 {
2780 cpu_arch_flags.bitfield.cpu64 = 0;
2781 cpu_arch_flags.bitfield.cpuno64 = 1;
2782 }
2783 cpu_arch_isa = cpu_arch[j].type;
2784 cpu_arch_isa_flags = cpu_arch[j].flags;
2785 if (!cpu_arch_tune_set)
2786 {
2787 cpu_arch_tune = cpu_arch_isa;
2788 cpu_arch_tune_flags = cpu_arch_isa_flags;
2789 }
2790 break;
2791 }
2792
2793 flags = cpu_flags_or (cpu_arch_flags,
2794 cpu_arch[j].flags);
2795
2796 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
2797 {
2798 if (cpu_sub_arch_name)
2799 {
2800 char *name = cpu_sub_arch_name;
2801 cpu_sub_arch_name = concat (name,
2802 cpu_arch[j].name,
2803 (const char *) NULL);
2804 free (name);
2805 }
2806 else
2807 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
2808 cpu_arch_flags = flags;
2809 cpu_arch_isa_flags = flags;
2810 }
2811 else
2812 cpu_arch_isa_flags
2813 = cpu_flags_or (cpu_arch_isa_flags,
2814 cpu_arch[j].flags);
2815 (void) restore_line_pointer (e);
2816 demand_empty_rest_of_line ();
2817 return;
2818 }
2819 }
2820
2821 if (*string == '.' && j >= ARRAY_SIZE (cpu_arch))
2822 {
2823 /* Disable an ISA extension. */
2824 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
2825 if (strcmp (string + 1, cpu_noarch [j].name) == 0)
2826 {
2827 flags = cpu_flags_and_not (cpu_arch_flags,
2828 cpu_noarch[j].flags);
2829 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
2830 {
2831 if (cpu_sub_arch_name)
2832 {
2833 char *name = cpu_sub_arch_name;
2834 cpu_sub_arch_name = concat (name, string,
2835 (const char *) NULL);
2836 free (name);
2837 }
2838 else
2839 cpu_sub_arch_name = xstrdup (string);
2840 cpu_arch_flags = flags;
2841 cpu_arch_isa_flags = flags;
2842 }
2843 (void) restore_line_pointer (e);
2844 demand_empty_rest_of_line ();
2845 return;
2846 }
2847
2848 j = ARRAY_SIZE (cpu_arch);
2849 }
2850
2851 if (j >= ARRAY_SIZE (cpu_arch))
2852 as_bad (_("no such architecture: `%s'"), string);
2853
2854 *input_line_pointer = e;
2855 }
2856 else
2857 as_bad (_("missing cpu architecture"));
2858
2859 no_cond_jump_promotion = 0;
2860 if (*input_line_pointer == ','
2861 && !is_end_of_line[(unsigned char) input_line_pointer[1]])
2862 {
2863 char *string;
2864 char e;
2865
2866 ++input_line_pointer;
2867 e = get_symbol_name (&string);
2868
2869 if (strcmp (string, "nojumps") == 0)
2870 no_cond_jump_promotion = 1;
2871 else if (strcmp (string, "jumps") == 0)
2872 ;
2873 else
2874 as_bad (_("no such architecture modifier: `%s'"), string);
2875
2876 (void) restore_line_pointer (e);
2877 }
2878
2879 demand_empty_rest_of_line ();
2880 }
2881
2882 enum bfd_architecture
2883 i386_arch (void)
2884 {
2885 if (cpu_arch_isa == PROCESSOR_L1OM)
2886 {
2887 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2888 || flag_code != CODE_64BIT)
2889 as_fatal (_("Intel L1OM is 64bit ELF only"));
2890 return bfd_arch_l1om;
2891 }
2892 else if (cpu_arch_isa == PROCESSOR_K1OM)
2893 {
2894 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2895 || flag_code != CODE_64BIT)
2896 as_fatal (_("Intel K1OM is 64bit ELF only"));
2897 return bfd_arch_k1om;
2898 }
2899 else if (cpu_arch_isa == PROCESSOR_IAMCU)
2900 {
2901 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2902 || flag_code == CODE_64BIT)
2903 as_fatal (_("Intel MCU is 32bit ELF only"));
2904 return bfd_arch_iamcu;
2905 }
2906 else
2907 return bfd_arch_i386;
2908 }
2909
2910 unsigned long
2911 i386_mach (void)
2912 {
2913 if (!strncmp (default_arch, "x86_64", 6))
2914 {
2915 if (cpu_arch_isa == PROCESSOR_L1OM)
2916 {
2917 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2918 || default_arch[6] != '\0')
2919 as_fatal (_("Intel L1OM is 64bit ELF only"));
2920 return bfd_mach_l1om;
2921 }
2922 else if (cpu_arch_isa == PROCESSOR_K1OM)
2923 {
2924 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2925 || default_arch[6] != '\0')
2926 as_fatal (_("Intel K1OM is 64bit ELF only"));
2927 return bfd_mach_k1om;
2928 }
2929 else if (default_arch[6] == '\0')
2930 return bfd_mach_x86_64;
2931 else
2932 return bfd_mach_x64_32;
2933 }
2934 else if (!strcmp (default_arch, "i386")
2935 || !strcmp (default_arch, "iamcu"))
2936 {
2937 if (cpu_arch_isa == PROCESSOR_IAMCU)
2938 {
2939 if (OUTPUT_FLAVOR != bfd_target_elf_flavour)
2940 as_fatal (_("Intel MCU is 32bit ELF only"));
2941 return bfd_mach_i386_iamcu;
2942 }
2943 else
2944 return bfd_mach_i386_i386;
2945 }
2946 else
2947 as_fatal (_("unknown architecture"));
2948 }
2949 \f
2950 void
2951 md_begin (void)
2952 {
2953 const char *hash_err;
2954
2955 /* Support pseudo prefixes like {disp32}. */
2956 lex_type ['{'] = LEX_BEGIN_NAME;
2957
2958 /* Initialize op_hash hash table. */
2959 op_hash = hash_new ();
2960
2961 {
2962 const insn_template *optab;
2963 templates *core_optab;
2964
2965 /* Setup for loop. */
2966 optab = i386_optab;
2967 core_optab = XNEW (templates);
2968 core_optab->start = optab;
2969
2970 while (1)
2971 {
2972 ++optab;
2973 if (optab->name == NULL
2974 || strcmp (optab->name, (optab - 1)->name) != 0)
2975 {
2976 /* different name --> ship out current template list;
2977 add to hash table; & begin anew. */
2978 core_optab->end = optab;
2979 hash_err = hash_insert (op_hash,
2980 (optab - 1)->name,
2981 (void *) core_optab);
2982 if (hash_err)
2983 {
2984 as_fatal (_("can't hash %s: %s"),
2985 (optab - 1)->name,
2986 hash_err);
2987 }
2988 if (optab->name == NULL)
2989 break;
2990 core_optab = XNEW (templates);
2991 core_optab->start = optab;
2992 }
2993 }
2994 }
2995
2996 /* Initialize reg_hash hash table. */
2997 reg_hash = hash_new ();
2998 {
2999 const reg_entry *regtab;
3000 unsigned int regtab_size = i386_regtab_size;
3001
3002 for (regtab = i386_regtab; regtab_size--; regtab++)
3003 {
3004 hash_err = hash_insert (reg_hash, regtab->reg_name, (void *) regtab);
3005 if (hash_err)
3006 as_fatal (_("can't hash %s: %s"),
3007 regtab->reg_name,
3008 hash_err);
3009 }
3010 }
3011
3012 /* Fill in lexical tables: mnemonic_chars, operand_chars. */
3013 {
3014 int c;
3015 char *p;
3016
3017 for (c = 0; c < 256; c++)
3018 {
3019 if (ISDIGIT (c))
3020 {
3021 digit_chars[c] = c;
3022 mnemonic_chars[c] = c;
3023 register_chars[c] = c;
3024 operand_chars[c] = c;
3025 }
3026 else if (ISLOWER (c))
3027 {
3028 mnemonic_chars[c] = c;
3029 register_chars[c] = c;
3030 operand_chars[c] = c;
3031 }
3032 else if (ISUPPER (c))
3033 {
3034 mnemonic_chars[c] = TOLOWER (c);
3035 register_chars[c] = mnemonic_chars[c];
3036 operand_chars[c] = c;
3037 }
3038 else if (c == '{' || c == '}')
3039 {
3040 mnemonic_chars[c] = c;
3041 operand_chars[c] = c;
3042 }
3043
3044 if (ISALPHA (c) || ISDIGIT (c))
3045 identifier_chars[c] = c;
3046 else if (c >= 128)
3047 {
3048 identifier_chars[c] = c;
3049 operand_chars[c] = c;
3050 }
3051 }
3052
3053 #ifdef LEX_AT
3054 identifier_chars['@'] = '@';
3055 #endif
3056 #ifdef LEX_QM
3057 identifier_chars['?'] = '?';
3058 operand_chars['?'] = '?';
3059 #endif
3060 digit_chars['-'] = '-';
3061 mnemonic_chars['_'] = '_';
3062 mnemonic_chars['-'] = '-';
3063 mnemonic_chars['.'] = '.';
3064 identifier_chars['_'] = '_';
3065 identifier_chars['.'] = '.';
3066
3067 for (p = operand_special_chars; *p != '\0'; p++)
3068 operand_chars[(unsigned char) *p] = *p;
3069 }
3070
3071 if (flag_code == CODE_64BIT)
3072 {
3073 #if defined (OBJ_COFF) && defined (TE_PE)
3074 x86_dwarf2_return_column = (OUTPUT_FLAVOR == bfd_target_coff_flavour
3075 ? 32 : 16);
3076 #else
3077 x86_dwarf2_return_column = 16;
3078 #endif
3079 x86_cie_data_alignment = -8;
3080 }
3081 else
3082 {
3083 x86_dwarf2_return_column = 8;
3084 x86_cie_data_alignment = -4;
3085 }
3086
3087 /* NB: FUSED_JCC_PADDING frag must have sufficient room so that it
3088 can be turned into BRANCH_PREFIX frag. */
3089 if (align_branch_prefix_size > MAX_FUSED_JCC_PADDING_SIZE)
3090 abort ();
3091 }
3092
3093 void
3094 i386_print_statistics (FILE *file)
3095 {
3096 hash_print_statistics (file, "i386 opcode", op_hash);
3097 hash_print_statistics (file, "i386 register", reg_hash);
3098 }
3099 \f
3100 #ifdef DEBUG386
3101
3102 /* Debugging routines for md_assemble. */
3103 static void pte (insn_template *);
3104 static void pt (i386_operand_type);
3105 static void pe (expressionS *);
3106 static void ps (symbolS *);
3107
3108 static void
3109 pi (const char *line, i386_insn *x)
3110 {
3111 unsigned int j;
3112
3113 fprintf (stdout, "%s: template ", line);
3114 pte (&x->tm);
3115 fprintf (stdout, " address: base %s index %s scale %x\n",
3116 x->base_reg ? x->base_reg->reg_name : "none",
3117 x->index_reg ? x->index_reg->reg_name : "none",
3118 x->log2_scale_factor);
3119 fprintf (stdout, " modrm: mode %x reg %x reg/mem %x\n",
3120 x->rm.mode, x->rm.reg, x->rm.regmem);
3121 fprintf (stdout, " sib: base %x index %x scale %x\n",
3122 x->sib.base, x->sib.index, x->sib.scale);
3123 fprintf (stdout, " rex: 64bit %x extX %x extY %x extZ %x\n",
3124 (x->rex & REX_W) != 0,
3125 (x->rex & REX_R) != 0,
3126 (x->rex & REX_X) != 0,
3127 (x->rex & REX_B) != 0);
3128 for (j = 0; j < x->operands; j++)
3129 {
3130 fprintf (stdout, " #%d: ", j + 1);
3131 pt (x->types[j]);
3132 fprintf (stdout, "\n");
3133 if (x->types[j].bitfield.class == Reg
3134 || x->types[j].bitfield.class == RegMMX
3135 || x->types[j].bitfield.class == RegSIMD
3136 || x->types[j].bitfield.class == SReg
3137 || x->types[j].bitfield.class == RegCR
3138 || x->types[j].bitfield.class == RegDR
3139 || x->types[j].bitfield.class == RegTR)
3140 fprintf (stdout, "%s\n", x->op[j].regs->reg_name);
3141 if (operand_type_check (x->types[j], imm))
3142 pe (x->op[j].imms);
3143 if (operand_type_check (x->types[j], disp))
3144 pe (x->op[j].disps);
3145 }
3146 }
3147
3148 static void
3149 pte (insn_template *t)
3150 {
3151 unsigned int j;
3152 fprintf (stdout, " %d operands ", t->operands);
3153 fprintf (stdout, "opcode %x ", t->base_opcode);
3154 if (t->extension_opcode != None)
3155 fprintf (stdout, "ext %x ", t->extension_opcode);
3156 if (t->opcode_modifier.d)
3157 fprintf (stdout, "D");
3158 if (t->opcode_modifier.w)
3159 fprintf (stdout, "W");
3160 fprintf (stdout, "\n");
3161 for (j = 0; j < t->operands; j++)
3162 {
3163 fprintf (stdout, " #%d type ", j + 1);
3164 pt (t->operand_types[j]);
3165 fprintf (stdout, "\n");
3166 }
3167 }
3168
3169 static void
3170 pe (expressionS *e)
3171 {
3172 fprintf (stdout, " operation %d\n", e->X_op);
3173 fprintf (stdout, " add_number %ld (%lx)\n",
3174 (long) e->X_add_number, (long) e->X_add_number);
3175 if (e->X_add_symbol)
3176 {
3177 fprintf (stdout, " add_symbol ");
3178 ps (e->X_add_symbol);
3179 fprintf (stdout, "\n");
3180 }
3181 if (e->X_op_symbol)
3182 {
3183 fprintf (stdout, " op_symbol ");
3184 ps (e->X_op_symbol);
3185 fprintf (stdout, "\n");
3186 }
3187 }
3188
3189 static void
3190 ps (symbolS *s)
3191 {
3192 fprintf (stdout, "%s type %s%s",
3193 S_GET_NAME (s),
3194 S_IS_EXTERNAL (s) ? "EXTERNAL " : "",
3195 segment_name (S_GET_SEGMENT (s)));
3196 }
3197
3198 static struct type_name
3199 {
3200 i386_operand_type mask;
3201 const char *name;
3202 }
3203 const type_names[] =
3204 {
3205 { OPERAND_TYPE_REG8, "r8" },
3206 { OPERAND_TYPE_REG16, "r16" },
3207 { OPERAND_TYPE_REG32, "r32" },
3208 { OPERAND_TYPE_REG64, "r64" },
3209 { OPERAND_TYPE_ACC8, "acc8" },
3210 { OPERAND_TYPE_ACC16, "acc16" },
3211 { OPERAND_TYPE_ACC32, "acc32" },
3212 { OPERAND_TYPE_ACC64, "acc64" },
3213 { OPERAND_TYPE_IMM8, "i8" },
3214 { OPERAND_TYPE_IMM8, "i8s" },
3215 { OPERAND_TYPE_IMM16, "i16" },
3216 { OPERAND_TYPE_IMM32, "i32" },
3217 { OPERAND_TYPE_IMM32S, "i32s" },
3218 { OPERAND_TYPE_IMM64, "i64" },
3219 { OPERAND_TYPE_IMM1, "i1" },
3220 { OPERAND_TYPE_BASEINDEX, "BaseIndex" },
3221 { OPERAND_TYPE_DISP8, "d8" },
3222 { OPERAND_TYPE_DISP16, "d16" },
3223 { OPERAND_TYPE_DISP32, "d32" },
3224 { OPERAND_TYPE_DISP32S, "d32s" },
3225 { OPERAND_TYPE_DISP64, "d64" },
3226 { OPERAND_TYPE_INOUTPORTREG, "InOutPortReg" },
3227 { OPERAND_TYPE_SHIFTCOUNT, "ShiftCount" },
3228 { OPERAND_TYPE_CONTROL, "control reg" },
3229 { OPERAND_TYPE_TEST, "test reg" },
3230 { OPERAND_TYPE_DEBUG, "debug reg" },
3231 { OPERAND_TYPE_FLOATREG, "FReg" },
3232 { OPERAND_TYPE_FLOATACC, "FAcc" },
3233 { OPERAND_TYPE_SREG, "SReg" },
3234 { OPERAND_TYPE_REGMMX, "rMMX" },
3235 { OPERAND_TYPE_REGXMM, "rXMM" },
3236 { OPERAND_TYPE_REGYMM, "rYMM" },
3237 { OPERAND_TYPE_REGZMM, "rZMM" },
3238 { OPERAND_TYPE_REGMASK, "Mask reg" },
3239 };
3240
3241 static void
3242 pt (i386_operand_type t)
3243 {
3244 unsigned int j;
3245 i386_operand_type a;
3246
3247 for (j = 0; j < ARRAY_SIZE (type_names); j++)
3248 {
3249 a = operand_type_and (t, type_names[j].mask);
3250 if (operand_type_equal (&a, &type_names[j].mask))
3251 fprintf (stdout, "%s, ", type_names[j].name);
3252 }
3253 fflush (stdout);
3254 }
3255
3256 #endif /* DEBUG386 */
3257 \f
3258 static bfd_reloc_code_real_type
3259 reloc (unsigned int size,
3260 int pcrel,
3261 int sign,
3262 bfd_reloc_code_real_type other)
3263 {
3264 if (other != NO_RELOC)
3265 {
3266 reloc_howto_type *rel;
3267
3268 if (size == 8)
3269 switch (other)
3270 {
3271 case BFD_RELOC_X86_64_GOT32:
3272 return BFD_RELOC_X86_64_GOT64;
3273 break;
3274 case BFD_RELOC_X86_64_GOTPLT64:
3275 return BFD_RELOC_X86_64_GOTPLT64;
3276 break;
3277 case BFD_RELOC_X86_64_PLTOFF64:
3278 return BFD_RELOC_X86_64_PLTOFF64;
3279 break;
3280 case BFD_RELOC_X86_64_GOTPC32:
3281 other = BFD_RELOC_X86_64_GOTPC64;
3282 break;
3283 case BFD_RELOC_X86_64_GOTPCREL:
3284 other = BFD_RELOC_X86_64_GOTPCREL64;
3285 break;
3286 case BFD_RELOC_X86_64_TPOFF32:
3287 other = BFD_RELOC_X86_64_TPOFF64;
3288 break;
3289 case BFD_RELOC_X86_64_DTPOFF32:
3290 other = BFD_RELOC_X86_64_DTPOFF64;
3291 break;
3292 default:
3293 break;
3294 }
3295
3296 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
3297 if (other == BFD_RELOC_SIZE32)
3298 {
3299 if (size == 8)
3300 other = BFD_RELOC_SIZE64;
3301 if (pcrel)
3302 {
3303 as_bad (_("there are no pc-relative size relocations"));
3304 return NO_RELOC;
3305 }
3306 }
3307 #endif
3308
3309 /* Sign-checking 4-byte relocations in 16-/32-bit code is pointless. */
3310 if (size == 4 && (flag_code != CODE_64BIT || disallow_64bit_reloc))
3311 sign = -1;
3312
3313 rel = bfd_reloc_type_lookup (stdoutput, other);
3314 if (!rel)
3315 as_bad (_("unknown relocation (%u)"), other);
3316 else if (size != bfd_get_reloc_size (rel))
3317 as_bad (_("%u-byte relocation cannot be applied to %u-byte field"),
3318 bfd_get_reloc_size (rel),
3319 size);
3320 else if (pcrel && !rel->pc_relative)
3321 as_bad (_("non-pc-relative relocation for pc-relative field"));
3322 else if ((rel->complain_on_overflow == complain_overflow_signed
3323 && !sign)
3324 || (rel->complain_on_overflow == complain_overflow_unsigned
3325 && sign > 0))
3326 as_bad (_("relocated field and relocation type differ in signedness"));
3327 else
3328 return other;
3329 return NO_RELOC;
3330 }
3331
3332 if (pcrel)
3333 {
3334 if (!sign)
3335 as_bad (_("there are no unsigned pc-relative relocations"));
3336 switch (size)
3337 {
3338 case 1: return BFD_RELOC_8_PCREL;
3339 case 2: return BFD_RELOC_16_PCREL;
3340 case 4: return BFD_RELOC_32_PCREL;
3341 case 8: return BFD_RELOC_64_PCREL;
3342 }
3343 as_bad (_("cannot do %u byte pc-relative relocation"), size);
3344 }
3345 else
3346 {
3347 if (sign > 0)
3348 switch (size)
3349 {
3350 case 4: return BFD_RELOC_X86_64_32S;
3351 }
3352 else
3353 switch (size)
3354 {
3355 case 1: return BFD_RELOC_8;
3356 case 2: return BFD_RELOC_16;
3357 case 4: return BFD_RELOC_32;
3358 case 8: return BFD_RELOC_64;
3359 }
3360 as_bad (_("cannot do %s %u byte relocation"),
3361 sign > 0 ? "signed" : "unsigned", size);
3362 }
3363
3364 return NO_RELOC;
3365 }
3366
3367 /* Here we decide which fixups can be adjusted to make them relative to
3368 the beginning of the section instead of the symbol. Basically we need
3369 to make sure that the dynamic relocations are done correctly, so in
3370 some cases we force the original symbol to be used. */
3371
3372 int
3373 tc_i386_fix_adjustable (fixS *fixP ATTRIBUTE_UNUSED)
3374 {
3375 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
3376 if (!IS_ELF)
3377 return 1;
3378
3379 /* Don't adjust pc-relative references to merge sections in 64-bit
3380 mode. */
3381 if (use_rela_relocations
3382 && (S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_MERGE) != 0
3383 && fixP->fx_pcrel)
3384 return 0;
3385
3386 /* The x86_64 GOTPCREL are represented as 32bit PCrel relocations
3387 and changed later by validate_fix. */
3388 if (GOT_symbol && fixP->fx_subsy == GOT_symbol
3389 && fixP->fx_r_type == BFD_RELOC_32_PCREL)
3390 return 0;
3391
3392 /* Adjust_reloc_syms doesn't know about the GOT. Need to keep symbol
3393 for size relocations. */
3394 if (fixP->fx_r_type == BFD_RELOC_SIZE32
3395 || fixP->fx_r_type == BFD_RELOC_SIZE64
3396 || fixP->fx_r_type == BFD_RELOC_386_GOTOFF
3397 || fixP->fx_r_type == BFD_RELOC_386_PLT32
3398 || fixP->fx_r_type == BFD_RELOC_386_GOT32
3399 || fixP->fx_r_type == BFD_RELOC_386_GOT32X
3400 || fixP->fx_r_type == BFD_RELOC_386_TLS_GD
3401 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDM
3402 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDO_32
3403 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE_32
3404 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE
3405 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTIE
3406 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE_32
3407 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE
3408 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTDESC
3409 || fixP->fx_r_type == BFD_RELOC_386_TLS_DESC_CALL
3410 || fixP->fx_r_type == BFD_RELOC_X86_64_PLT32
3411 || fixP->fx_r_type == BFD_RELOC_X86_64_GOT32
3412 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCREL
3413 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCRELX
3414 || fixP->fx_r_type == BFD_RELOC_X86_64_REX_GOTPCRELX
3415 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSGD
3416 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSLD
3417 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF32
3418 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF64
3419 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTTPOFF
3420 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF32
3421 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF64
3422 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTOFF64
3423 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPC32_TLSDESC
3424 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSDESC_CALL
3425 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
3426 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
3427 return 0;
3428 #endif
3429 return 1;
3430 }
3431
3432 static int
3433 intel_float_operand (const char *mnemonic)
3434 {
3435 /* Note that the value returned is meaningful only for opcodes with (memory)
3436 operands, hence the code here is free to improperly handle opcodes that
3437 have no operands (for better performance and smaller code). */
3438
3439 if (mnemonic[0] != 'f')
3440 return 0; /* non-math */
3441
3442 switch (mnemonic[1])
3443 {
3444 /* fclex, fdecstp, fdisi, femms, feni, fincstp, finit, fsetpm, and
3445 the fs segment override prefix not currently handled because no
3446 call path can make opcodes without operands get here */
3447 case 'i':
3448 return 2 /* integer op */;
3449 case 'l':
3450 if (mnemonic[2] == 'd' && (mnemonic[3] == 'c' || mnemonic[3] == 'e'))
3451 return 3; /* fldcw/fldenv */
3452 break;
3453 case 'n':
3454 if (mnemonic[2] != 'o' /* fnop */)
3455 return 3; /* non-waiting control op */
3456 break;
3457 case 'r':
3458 if (mnemonic[2] == 's')
3459 return 3; /* frstor/frstpm */
3460 break;
3461 case 's':
3462 if (mnemonic[2] == 'a')
3463 return 3; /* fsave */
3464 if (mnemonic[2] == 't')
3465 {
3466 switch (mnemonic[3])
3467 {
3468 case 'c': /* fstcw */
3469 case 'd': /* fstdw */
3470 case 'e': /* fstenv */
3471 case 's': /* fsts[gw] */
3472 return 3;
3473 }
3474 }
3475 break;
3476 case 'x':
3477 if (mnemonic[2] == 'r' || mnemonic[2] == 's')
3478 return 0; /* fxsave/fxrstor are not really math ops */
3479 break;
3480 }
3481
3482 return 1;
3483 }
3484
3485 /* Build the VEX prefix. */
3486
3487 static void
3488 build_vex_prefix (const insn_template *t)
3489 {
3490 unsigned int register_specifier;
3491 unsigned int implied_prefix;
3492 unsigned int vector_length;
3493 unsigned int w;
3494
3495 /* Check register specifier. */
3496 if (i.vex.register_specifier)
3497 {
3498 register_specifier =
3499 ~register_number (i.vex.register_specifier) & 0xf;
3500 gas_assert ((i.vex.register_specifier->reg_flags & RegVRex) == 0);
3501 }
3502 else
3503 register_specifier = 0xf;
3504
3505 /* Use 2-byte VEX prefix by swapping destination and source operand
3506 if there are more than 1 register operand. */
3507 if (i.reg_operands > 1
3508 && i.vec_encoding != vex_encoding_vex3
3509 && i.dir_encoding == dir_encoding_default
3510 && i.operands == i.reg_operands
3511 && operand_type_equal (&i.types[0], &i.types[i.operands - 1])
3512 && i.tm.opcode_modifier.vexopcode == VEX0F
3513 && (i.tm.opcode_modifier.load || i.tm.opcode_modifier.d)
3514 && i.rex == REX_B)
3515 {
3516 unsigned int xchg = i.operands - 1;
3517 union i386_op temp_op;
3518 i386_operand_type temp_type;
3519
3520 temp_type = i.types[xchg];
3521 i.types[xchg] = i.types[0];
3522 i.types[0] = temp_type;
3523 temp_op = i.op[xchg];
3524 i.op[xchg] = i.op[0];
3525 i.op[0] = temp_op;
3526
3527 gas_assert (i.rm.mode == 3);
3528
3529 i.rex = REX_R;
3530 xchg = i.rm.regmem;
3531 i.rm.regmem = i.rm.reg;
3532 i.rm.reg = xchg;
3533
3534 if (i.tm.opcode_modifier.d)
3535 i.tm.base_opcode ^= (i.tm.base_opcode & 0xee) != 0x6e
3536 ? Opcode_SIMD_FloatD : Opcode_SIMD_IntD;
3537 else /* Use the next insn. */
3538 i.tm = t[1];
3539 }
3540
3541 /* Use 2-byte VEX prefix by swapping commutative source operands if there
3542 are no memory operands and at least 3 register ones. */
3543 if (i.reg_operands >= 3
3544 && i.vec_encoding != vex_encoding_vex3
3545 && i.reg_operands == i.operands - i.imm_operands
3546 && i.tm.opcode_modifier.vex
3547 && i.tm.opcode_modifier.commutative
3548 && (i.tm.opcode_modifier.sse2avx || optimize > 1)
3549 && i.rex == REX_B
3550 && i.vex.register_specifier
3551 && !(i.vex.register_specifier->reg_flags & RegRex))
3552 {
3553 unsigned int xchg = i.operands - i.reg_operands;
3554 union i386_op temp_op;
3555 i386_operand_type temp_type;
3556
3557 gas_assert (i.tm.opcode_modifier.vexopcode == VEX0F);
3558 gas_assert (!i.tm.opcode_modifier.sae);
3559 gas_assert (operand_type_equal (&i.types[i.operands - 2],
3560 &i.types[i.operands - 3]));
3561 gas_assert (i.rm.mode == 3);
3562
3563 temp_type = i.types[xchg];
3564 i.types[xchg] = i.types[xchg + 1];
3565 i.types[xchg + 1] = temp_type;
3566 temp_op = i.op[xchg];
3567 i.op[xchg] = i.op[xchg + 1];
3568 i.op[xchg + 1] = temp_op;
3569
3570 i.rex = 0;
3571 xchg = i.rm.regmem | 8;
3572 i.rm.regmem = ~register_specifier & 0xf;
3573 gas_assert (!(i.rm.regmem & 8));
3574 i.vex.register_specifier += xchg - i.rm.regmem;
3575 register_specifier = ~xchg & 0xf;
3576 }
3577
3578 if (i.tm.opcode_modifier.vex == VEXScalar)
3579 vector_length = avxscalar;
3580 else if (i.tm.opcode_modifier.vex == VEX256)
3581 vector_length = 1;
3582 else
3583 {
3584 unsigned int op;
3585
3586 /* Determine vector length from the last multi-length vector
3587 operand. */
3588 vector_length = 0;
3589 for (op = t->operands; op--;)
3590 if (t->operand_types[op].bitfield.xmmword
3591 && t->operand_types[op].bitfield.ymmword
3592 && i.types[op].bitfield.ymmword)
3593 {
3594 vector_length = 1;
3595 break;
3596 }
3597 }
3598
3599 switch ((i.tm.base_opcode >> 8) & 0xff)
3600 {
3601 case 0:
3602 implied_prefix = 0;
3603 break;
3604 case DATA_PREFIX_OPCODE:
3605 implied_prefix = 1;
3606 break;
3607 case REPE_PREFIX_OPCODE:
3608 implied_prefix = 2;
3609 break;
3610 case REPNE_PREFIX_OPCODE:
3611 implied_prefix = 3;
3612 break;
3613 default:
3614 abort ();
3615 }
3616
3617 /* Check the REX.W bit and VEXW. */
3618 if (i.tm.opcode_modifier.vexw == VEXWIG)
3619 w = (vexwig == vexw1 || (i.rex & REX_W)) ? 1 : 0;
3620 else if (i.tm.opcode_modifier.vexw)
3621 w = i.tm.opcode_modifier.vexw == VEXW1 ? 1 : 0;
3622 else
3623 w = (flag_code == CODE_64BIT ? i.rex & REX_W : vexwig == vexw1) ? 1 : 0;
3624
3625 /* Use 2-byte VEX prefix if possible. */
3626 if (w == 0
3627 && i.vec_encoding != vex_encoding_vex3
3628 && i.tm.opcode_modifier.vexopcode == VEX0F
3629 && (i.rex & (REX_W | REX_X | REX_B)) == 0)
3630 {
3631 /* 2-byte VEX prefix. */
3632 unsigned int r;
3633
3634 i.vex.length = 2;
3635 i.vex.bytes[0] = 0xc5;
3636
3637 /* Check the REX.R bit. */
3638 r = (i.rex & REX_R) ? 0 : 1;
3639 i.vex.bytes[1] = (r << 7
3640 | register_specifier << 3
3641 | vector_length << 2
3642 | implied_prefix);
3643 }
3644 else
3645 {
3646 /* 3-byte VEX prefix. */
3647 unsigned int m;
3648
3649 i.vex.length = 3;
3650
3651 switch (i.tm.opcode_modifier.vexopcode)
3652 {
3653 case VEX0F:
3654 m = 0x1;
3655 i.vex.bytes[0] = 0xc4;
3656 break;
3657 case VEX0F38:
3658 m = 0x2;
3659 i.vex.bytes[0] = 0xc4;
3660 break;
3661 case VEX0F3A:
3662 m = 0x3;
3663 i.vex.bytes[0] = 0xc4;
3664 break;
3665 case XOP08:
3666 m = 0x8;
3667 i.vex.bytes[0] = 0x8f;
3668 break;
3669 case XOP09:
3670 m = 0x9;
3671 i.vex.bytes[0] = 0x8f;
3672 break;
3673 case XOP0A:
3674 m = 0xa;
3675 i.vex.bytes[0] = 0x8f;
3676 break;
3677 default:
3678 abort ();
3679 }
3680
3681 /* The high 3 bits of the second VEX byte are 1's compliment
3682 of RXB bits from REX. */
3683 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3684
3685 i.vex.bytes[2] = (w << 7
3686 | register_specifier << 3
3687 | vector_length << 2
3688 | implied_prefix);
3689 }
3690 }
3691
3692 static INLINE bfd_boolean
3693 is_evex_encoding (const insn_template *t)
3694 {
3695 return t->opcode_modifier.evex || t->opcode_modifier.disp8memshift
3696 || t->opcode_modifier.broadcast || t->opcode_modifier.masking
3697 || t->opcode_modifier.sae;
3698 }
3699
3700 static INLINE bfd_boolean
3701 is_any_vex_encoding (const insn_template *t)
3702 {
3703 return t->opcode_modifier.vex || t->opcode_modifier.vexopcode
3704 || is_evex_encoding (t);
3705 }
3706
3707 /* Build the EVEX prefix. */
3708
3709 static void
3710 build_evex_prefix (void)
3711 {
3712 unsigned int register_specifier;
3713 unsigned int implied_prefix;
3714 unsigned int m, w;
3715 rex_byte vrex_used = 0;
3716
3717 /* Check register specifier. */
3718 if (i.vex.register_specifier)
3719 {
3720 gas_assert ((i.vrex & REX_X) == 0);
3721
3722 register_specifier = i.vex.register_specifier->reg_num;
3723 if ((i.vex.register_specifier->reg_flags & RegRex))
3724 register_specifier += 8;
3725 /* The upper 16 registers are encoded in the fourth byte of the
3726 EVEX prefix. */
3727 if (!(i.vex.register_specifier->reg_flags & RegVRex))
3728 i.vex.bytes[3] = 0x8;
3729 register_specifier = ~register_specifier & 0xf;
3730 }
3731 else
3732 {
3733 register_specifier = 0xf;
3734
3735 /* Encode upper 16 vector index register in the fourth byte of
3736 the EVEX prefix. */
3737 if (!(i.vrex & REX_X))
3738 i.vex.bytes[3] = 0x8;
3739 else
3740 vrex_used |= REX_X;
3741 }
3742
3743 switch ((i.tm.base_opcode >> 8) & 0xff)
3744 {
3745 case 0:
3746 implied_prefix = 0;
3747 break;
3748 case DATA_PREFIX_OPCODE:
3749 implied_prefix = 1;
3750 break;
3751 case REPE_PREFIX_OPCODE:
3752 implied_prefix = 2;
3753 break;
3754 case REPNE_PREFIX_OPCODE:
3755 implied_prefix = 3;
3756 break;
3757 default:
3758 abort ();
3759 }
3760
3761 /* 4 byte EVEX prefix. */
3762 i.vex.length = 4;
3763 i.vex.bytes[0] = 0x62;
3764
3765 /* mmmm bits. */
3766 switch (i.tm.opcode_modifier.vexopcode)
3767 {
3768 case VEX0F:
3769 m = 1;
3770 break;
3771 case VEX0F38:
3772 m = 2;
3773 break;
3774 case VEX0F3A:
3775 m = 3;
3776 break;
3777 default:
3778 abort ();
3779 break;
3780 }
3781
3782 /* The high 3 bits of the second EVEX byte are 1's compliment of RXB
3783 bits from REX. */
3784 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3785
3786 /* The fifth bit of the second EVEX byte is 1's compliment of the
3787 REX_R bit in VREX. */
3788 if (!(i.vrex & REX_R))
3789 i.vex.bytes[1] |= 0x10;
3790 else
3791 vrex_used |= REX_R;
3792
3793 if ((i.reg_operands + i.imm_operands) == i.operands)
3794 {
3795 /* When all operands are registers, the REX_X bit in REX is not
3796 used. We reuse it to encode the upper 16 registers, which is
3797 indicated by the REX_B bit in VREX. The REX_X bit is encoded
3798 as 1's compliment. */
3799 if ((i.vrex & REX_B))
3800 {
3801 vrex_used |= REX_B;
3802 i.vex.bytes[1] &= ~0x40;
3803 }
3804 }
3805
3806 /* EVEX instructions shouldn't need the REX prefix. */
3807 i.vrex &= ~vrex_used;
3808 gas_assert (i.vrex == 0);
3809
3810 /* Check the REX.W bit and VEXW. */
3811 if (i.tm.opcode_modifier.vexw == VEXWIG)
3812 w = (evexwig == evexw1 || (i.rex & REX_W)) ? 1 : 0;
3813 else if (i.tm.opcode_modifier.vexw)
3814 w = i.tm.opcode_modifier.vexw == VEXW1 ? 1 : 0;
3815 else
3816 w = (flag_code == CODE_64BIT ? i.rex & REX_W : evexwig == evexw1) ? 1 : 0;
3817
3818 /* Encode the U bit. */
3819 implied_prefix |= 0x4;
3820
3821 /* The third byte of the EVEX prefix. */
3822 i.vex.bytes[2] = (w << 7 | register_specifier << 3 | implied_prefix);
3823
3824 /* The fourth byte of the EVEX prefix. */
3825 /* The zeroing-masking bit. */
3826 if (i.mask && i.mask->zeroing)
3827 i.vex.bytes[3] |= 0x80;
3828
3829 /* Don't always set the broadcast bit if there is no RC. */
3830 if (!i.rounding)
3831 {
3832 /* Encode the vector length. */
3833 unsigned int vec_length;
3834
3835 if (!i.tm.opcode_modifier.evex
3836 || i.tm.opcode_modifier.evex == EVEXDYN)
3837 {
3838 unsigned int op;
3839
3840 /* Determine vector length from the last multi-length vector
3841 operand. */
3842 vec_length = 0;
3843 for (op = i.operands; op--;)
3844 if (i.tm.operand_types[op].bitfield.xmmword
3845 + i.tm.operand_types[op].bitfield.ymmword
3846 + i.tm.operand_types[op].bitfield.zmmword > 1)
3847 {
3848 if (i.types[op].bitfield.zmmword)
3849 {
3850 i.tm.opcode_modifier.evex = EVEX512;
3851 break;
3852 }
3853 else if (i.types[op].bitfield.ymmword)
3854 {
3855 i.tm.opcode_modifier.evex = EVEX256;
3856 break;
3857 }
3858 else if (i.types[op].bitfield.xmmword)
3859 {
3860 i.tm.opcode_modifier.evex = EVEX128;
3861 break;
3862 }
3863 else if (i.broadcast && (int) op == i.broadcast->operand)
3864 {
3865 switch (i.broadcast->bytes)
3866 {
3867 case 64:
3868 i.tm.opcode_modifier.evex = EVEX512;
3869 break;
3870 case 32:
3871 i.tm.opcode_modifier.evex = EVEX256;
3872 break;
3873 case 16:
3874 i.tm.opcode_modifier.evex = EVEX128;
3875 break;
3876 default:
3877 abort ();
3878 }
3879 break;
3880 }
3881 }
3882
3883 if (op >= MAX_OPERANDS)
3884 abort ();
3885 }
3886
3887 switch (i.tm.opcode_modifier.evex)
3888 {
3889 case EVEXLIG: /* LL' is ignored */
3890 vec_length = evexlig << 5;
3891 break;
3892 case EVEX128:
3893 vec_length = 0 << 5;
3894 break;
3895 case EVEX256:
3896 vec_length = 1 << 5;
3897 break;
3898 case EVEX512:
3899 vec_length = 2 << 5;
3900 break;
3901 default:
3902 abort ();
3903 break;
3904 }
3905 i.vex.bytes[3] |= vec_length;
3906 /* Encode the broadcast bit. */
3907 if (i.broadcast)
3908 i.vex.bytes[3] |= 0x10;
3909 }
3910 else
3911 {
3912 if (i.rounding->type != saeonly)
3913 i.vex.bytes[3] |= 0x10 | (i.rounding->type << 5);
3914 else
3915 i.vex.bytes[3] |= 0x10 | (evexrcig << 5);
3916 }
3917
3918 if (i.mask && i.mask->mask)
3919 i.vex.bytes[3] |= i.mask->mask->reg_num;
3920 }
3921
3922 static void
3923 process_immext (void)
3924 {
3925 expressionS *exp;
3926
3927 /* These AMD 3DNow! and SSE2 instructions have an opcode suffix
3928 which is coded in the same place as an 8-bit immediate field
3929 would be. Here we fake an 8-bit immediate operand from the
3930 opcode suffix stored in tm.extension_opcode.
3931
3932 AVX instructions also use this encoding, for some of
3933 3 argument instructions. */
3934
3935 gas_assert (i.imm_operands <= 1
3936 && (i.operands <= 2
3937 || (is_any_vex_encoding (&i.tm)
3938 && i.operands <= 4)));
3939
3940 exp = &im_expressions[i.imm_operands++];
3941 i.op[i.operands].imms = exp;
3942 i.types[i.operands] = imm8;
3943 i.operands++;
3944 exp->X_op = O_constant;
3945 exp->X_add_number = i.tm.extension_opcode;
3946 i.tm.extension_opcode = None;
3947 }
3948
3949
3950 static int
3951 check_hle (void)
3952 {
3953 switch (i.tm.opcode_modifier.hleprefixok)
3954 {
3955 default:
3956 abort ();
3957 case HLEPrefixNone:
3958 as_bad (_("invalid instruction `%s' after `%s'"),
3959 i.tm.name, i.hle_prefix);
3960 return 0;
3961 case HLEPrefixLock:
3962 if (i.prefix[LOCK_PREFIX])
3963 return 1;
3964 as_bad (_("missing `lock' with `%s'"), i.hle_prefix);
3965 return 0;
3966 case HLEPrefixAny:
3967 return 1;
3968 case HLEPrefixRelease:
3969 if (i.prefix[HLE_PREFIX] != XRELEASE_PREFIX_OPCODE)
3970 {
3971 as_bad (_("instruction `%s' after `xacquire' not allowed"),
3972 i.tm.name);
3973 return 0;
3974 }
3975 if (i.mem_operands == 0 || !(i.flags[i.operands - 1] & Operand_Mem))
3976 {
3977 as_bad (_("memory destination needed for instruction `%s'"
3978 " after `xrelease'"), i.tm.name);
3979 return 0;
3980 }
3981 return 1;
3982 }
3983 }
3984
3985 /* Try the shortest encoding by shortening operand size. */
3986
3987 static void
3988 optimize_encoding (void)
3989 {
3990 unsigned int j;
3991
3992 if (optimize_for_space
3993 && !is_any_vex_encoding (&i.tm)
3994 && i.reg_operands == 1
3995 && i.imm_operands == 1
3996 && !i.types[1].bitfield.byte
3997 && i.op[0].imms->X_op == O_constant
3998 && fits_in_imm7 (i.op[0].imms->X_add_number)
3999 && (i.tm.base_opcode == 0xa8
4000 || (i.tm.base_opcode == 0xf6
4001 && i.tm.extension_opcode == 0x0)))
4002 {
4003 /* Optimize: -Os:
4004 test $imm7, %r64/%r32/%r16 -> test $imm7, %r8
4005 */
4006 unsigned int base_regnum = i.op[1].regs->reg_num;
4007 if (flag_code == CODE_64BIT || base_regnum < 4)
4008 {
4009 i.types[1].bitfield.byte = 1;
4010 /* Ignore the suffix. */
4011 i.suffix = 0;
4012 /* Convert to byte registers. */
4013 if (i.types[1].bitfield.word)
4014 j = 16;
4015 else if (i.types[1].bitfield.dword)
4016 j = 32;
4017 else
4018 j = 48;
4019 if (!(i.op[1].regs->reg_flags & RegRex) && base_regnum < 4)
4020 j += 8;
4021 i.op[1].regs -= j;
4022 }
4023 }
4024 else if (flag_code == CODE_64BIT
4025 && !is_any_vex_encoding (&i.tm)
4026 && ((i.types[1].bitfield.qword
4027 && i.reg_operands == 1
4028 && i.imm_operands == 1
4029 && i.op[0].imms->X_op == O_constant
4030 && ((i.tm.base_opcode == 0xb8
4031 && i.tm.extension_opcode == None
4032 && fits_in_unsigned_long (i.op[0].imms->X_add_number))
4033 || (fits_in_imm31 (i.op[0].imms->X_add_number)
4034 && ((i.tm.base_opcode == 0x24
4035 || i.tm.base_opcode == 0xa8)
4036 || (i.tm.base_opcode == 0x80
4037 && i.tm.extension_opcode == 0x4)
4038 || ((i.tm.base_opcode == 0xf6
4039 || (i.tm.base_opcode | 1) == 0xc7)
4040 && i.tm.extension_opcode == 0x0)))
4041 || (fits_in_imm7 (i.op[0].imms->X_add_number)
4042 && i.tm.base_opcode == 0x83
4043 && i.tm.extension_opcode == 0x4)))
4044 || (i.types[0].bitfield.qword
4045 && ((i.reg_operands == 2
4046 && i.op[0].regs == i.op[1].regs
4047 && (i.tm.base_opcode == 0x30
4048 || i.tm.base_opcode == 0x28))
4049 || (i.reg_operands == 1
4050 && i.operands == 1
4051 && i.tm.base_opcode == 0x30)))))
4052 {
4053 /* Optimize: -O:
4054 andq $imm31, %r64 -> andl $imm31, %r32
4055 andq $imm7, %r64 -> andl $imm7, %r32
4056 testq $imm31, %r64 -> testl $imm31, %r32
4057 xorq %r64, %r64 -> xorl %r32, %r32
4058 subq %r64, %r64 -> subl %r32, %r32
4059 movq $imm31, %r64 -> movl $imm31, %r32
4060 movq $imm32, %r64 -> movl $imm32, %r32
4061 */
4062 i.tm.opcode_modifier.norex64 = 1;
4063 if (i.tm.base_opcode == 0xb8 || (i.tm.base_opcode | 1) == 0xc7)
4064 {
4065 /* Handle
4066 movq $imm31, %r64 -> movl $imm31, %r32
4067 movq $imm32, %r64 -> movl $imm32, %r32
4068 */
4069 i.tm.operand_types[0].bitfield.imm32 = 1;
4070 i.tm.operand_types[0].bitfield.imm32s = 0;
4071 i.tm.operand_types[0].bitfield.imm64 = 0;
4072 i.types[0].bitfield.imm32 = 1;
4073 i.types[0].bitfield.imm32s = 0;
4074 i.types[0].bitfield.imm64 = 0;
4075 i.types[1].bitfield.dword = 1;
4076 i.types[1].bitfield.qword = 0;
4077 if ((i.tm.base_opcode | 1) == 0xc7)
4078 {
4079 /* Handle
4080 movq $imm31, %r64 -> movl $imm31, %r32
4081 */
4082 i.tm.base_opcode = 0xb8;
4083 i.tm.extension_opcode = None;
4084 i.tm.opcode_modifier.w = 0;
4085 i.tm.opcode_modifier.shortform = 1;
4086 i.tm.opcode_modifier.modrm = 0;
4087 }
4088 }
4089 }
4090 else if (optimize > 1
4091 && !optimize_for_space
4092 && !is_any_vex_encoding (&i.tm)
4093 && i.reg_operands == 2
4094 && i.op[0].regs == i.op[1].regs
4095 && ((i.tm.base_opcode & ~(Opcode_D | 1)) == 0x8
4096 || (i.tm.base_opcode & ~(Opcode_D | 1)) == 0x20)
4097 && (flag_code != CODE_64BIT || !i.types[0].bitfield.dword))
4098 {
4099 /* Optimize: -O2:
4100 andb %rN, %rN -> testb %rN, %rN
4101 andw %rN, %rN -> testw %rN, %rN
4102 andq %rN, %rN -> testq %rN, %rN
4103 orb %rN, %rN -> testb %rN, %rN
4104 orw %rN, %rN -> testw %rN, %rN
4105 orq %rN, %rN -> testq %rN, %rN
4106
4107 and outside of 64-bit mode
4108
4109 andl %rN, %rN -> testl %rN, %rN
4110 orl %rN, %rN -> testl %rN, %rN
4111 */
4112 i.tm.base_opcode = 0x84 | (i.tm.base_opcode & 1);
4113 }
4114 else if (i.reg_operands == 3
4115 && i.op[0].regs == i.op[1].regs
4116 && !i.types[2].bitfield.xmmword
4117 && (i.tm.opcode_modifier.vex
4118 || ((!i.mask || i.mask->zeroing)
4119 && !i.rounding
4120 && is_evex_encoding (&i.tm)
4121 && (i.vec_encoding != vex_encoding_evex
4122 || cpu_arch_isa_flags.bitfield.cpuavx512vl
4123 || i.tm.cpu_flags.bitfield.cpuavx512vl
4124 || (i.tm.operand_types[2].bitfield.zmmword
4125 && i.types[2].bitfield.ymmword))))
4126 && ((i.tm.base_opcode == 0x55
4127 || i.tm.base_opcode == 0x6655
4128 || i.tm.base_opcode == 0x66df
4129 || i.tm.base_opcode == 0x57
4130 || i.tm.base_opcode == 0x6657
4131 || i.tm.base_opcode == 0x66ef
4132 || i.tm.base_opcode == 0x66f8
4133 || i.tm.base_opcode == 0x66f9
4134 || i.tm.base_opcode == 0x66fa
4135 || i.tm.base_opcode == 0x66fb
4136 || i.tm.base_opcode == 0x42
4137 || i.tm.base_opcode == 0x6642
4138 || i.tm.base_opcode == 0x47
4139 || i.tm.base_opcode == 0x6647)
4140 && i.tm.extension_opcode == None))
4141 {
4142 /* Optimize: -O1:
4143 VOP, one of vandnps, vandnpd, vxorps, vxorpd, vpsubb, vpsubd,
4144 vpsubq and vpsubw:
4145 EVEX VOP %zmmM, %zmmM, %zmmN
4146 -> VEX VOP %xmmM, %xmmM, %xmmN (M and N < 16)
4147 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
4148 EVEX VOP %ymmM, %ymmM, %ymmN
4149 -> VEX VOP %xmmM, %xmmM, %xmmN (M and N < 16)
4150 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
4151 VEX VOP %ymmM, %ymmM, %ymmN
4152 -> VEX VOP %xmmM, %xmmM, %xmmN
4153 VOP, one of vpandn and vpxor:
4154 VEX VOP %ymmM, %ymmM, %ymmN
4155 -> VEX VOP %xmmM, %xmmM, %xmmN
4156 VOP, one of vpandnd and vpandnq:
4157 EVEX VOP %zmmM, %zmmM, %zmmN
4158 -> VEX vpandn %xmmM, %xmmM, %xmmN (M and N < 16)
4159 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
4160 EVEX VOP %ymmM, %ymmM, %ymmN
4161 -> VEX vpandn %xmmM, %xmmM, %xmmN (M and N < 16)
4162 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
4163 VOP, one of vpxord and vpxorq:
4164 EVEX VOP %zmmM, %zmmM, %zmmN
4165 -> VEX vpxor %xmmM, %xmmM, %xmmN (M and N < 16)
4166 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
4167 EVEX VOP %ymmM, %ymmM, %ymmN
4168 -> VEX vpxor %xmmM, %xmmM, %xmmN (M and N < 16)
4169 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
4170 VOP, one of kxord and kxorq:
4171 VEX VOP %kM, %kM, %kN
4172 -> VEX kxorw %kM, %kM, %kN
4173 VOP, one of kandnd and kandnq:
4174 VEX VOP %kM, %kM, %kN
4175 -> VEX kandnw %kM, %kM, %kN
4176 */
4177 if (is_evex_encoding (&i.tm))
4178 {
4179 if (i.vec_encoding != vex_encoding_evex)
4180 {
4181 i.tm.opcode_modifier.vex = VEX128;
4182 i.tm.opcode_modifier.vexw = VEXW0;
4183 i.tm.opcode_modifier.evex = 0;
4184 }
4185 else if (optimize > 1)
4186 i.tm.opcode_modifier.evex = EVEX128;
4187 else
4188 return;
4189 }
4190 else if (i.tm.operand_types[0].bitfield.class == RegMask)
4191 {
4192 i.tm.base_opcode &= 0xff;
4193 i.tm.opcode_modifier.vexw = VEXW0;
4194 }
4195 else
4196 i.tm.opcode_modifier.vex = VEX128;
4197
4198 if (i.tm.opcode_modifier.vex)
4199 for (j = 0; j < 3; j++)
4200 {
4201 i.types[j].bitfield.xmmword = 1;
4202 i.types[j].bitfield.ymmword = 0;
4203 }
4204 }
4205 else if (i.vec_encoding != vex_encoding_evex
4206 && !i.types[0].bitfield.zmmword
4207 && !i.types[1].bitfield.zmmword
4208 && !i.mask
4209 && !i.broadcast
4210 && is_evex_encoding (&i.tm)
4211 && ((i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0x666f
4212 || (i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0xf36f
4213 || (i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0xf26f
4214 || (i.tm.base_opcode & ~4) == 0x66db
4215 || (i.tm.base_opcode & ~4) == 0x66eb)
4216 && i.tm.extension_opcode == None)
4217 {
4218 /* Optimize: -O1:
4219 VOP, one of vmovdqa32, vmovdqa64, vmovdqu8, vmovdqu16,
4220 vmovdqu32 and vmovdqu64:
4221 EVEX VOP %xmmM, %xmmN
4222 -> VEX vmovdqa|vmovdqu %xmmM, %xmmN (M and N < 16)
4223 EVEX VOP %ymmM, %ymmN
4224 -> VEX vmovdqa|vmovdqu %ymmM, %ymmN (M and N < 16)
4225 EVEX VOP %xmmM, mem
4226 -> VEX vmovdqa|vmovdqu %xmmM, mem (M < 16)
4227 EVEX VOP %ymmM, mem
4228 -> VEX vmovdqa|vmovdqu %ymmM, mem (M < 16)
4229 EVEX VOP mem, %xmmN
4230 -> VEX mvmovdqa|vmovdquem, %xmmN (N < 16)
4231 EVEX VOP mem, %ymmN
4232 -> VEX vmovdqa|vmovdqu mem, %ymmN (N < 16)
4233 VOP, one of vpand, vpandn, vpor, vpxor:
4234 EVEX VOP{d,q} %xmmL, %xmmM, %xmmN
4235 -> VEX VOP %xmmL, %xmmM, %xmmN (L, M, and N < 16)
4236 EVEX VOP{d,q} %ymmL, %ymmM, %ymmN
4237 -> VEX VOP %ymmL, %ymmM, %ymmN (L, M, and N < 16)
4238 EVEX VOP{d,q} mem, %xmmM, %xmmN
4239 -> VEX VOP mem, %xmmM, %xmmN (M and N < 16)
4240 EVEX VOP{d,q} mem, %ymmM, %ymmN
4241 -> VEX VOP mem, %ymmM, %ymmN (M and N < 16)
4242 */
4243 for (j = 0; j < i.operands; j++)
4244 if (operand_type_check (i.types[j], disp)
4245 && i.op[j].disps->X_op == O_constant)
4246 {
4247 /* Since the VEX prefix has 2 or 3 bytes, the EVEX prefix
4248 has 4 bytes, EVEX Disp8 has 1 byte and VEX Disp32 has 4
4249 bytes, we choose EVEX Disp8 over VEX Disp32. */
4250 int evex_disp8, vex_disp8;
4251 unsigned int memshift = i.memshift;
4252 offsetT n = i.op[j].disps->X_add_number;
4253
4254 evex_disp8 = fits_in_disp8 (n);
4255 i.memshift = 0;
4256 vex_disp8 = fits_in_disp8 (n);
4257 if (evex_disp8 != vex_disp8)
4258 {
4259 i.memshift = memshift;
4260 return;
4261 }
4262
4263 i.types[j].bitfield.disp8 = vex_disp8;
4264 break;
4265 }
4266 if ((i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0xf26f)
4267 i.tm.base_opcode ^= 0xf36f ^ 0xf26f;
4268 i.tm.opcode_modifier.vex
4269 = i.types[0].bitfield.ymmword ? VEX256 : VEX128;
4270 i.tm.opcode_modifier.vexw = VEXW0;
4271 /* VPAND, VPOR, and VPXOR are commutative. */
4272 if (i.reg_operands == 3 && i.tm.base_opcode != 0x66df)
4273 i.tm.opcode_modifier.commutative = 1;
4274 i.tm.opcode_modifier.evex = 0;
4275 i.tm.opcode_modifier.masking = 0;
4276 i.tm.opcode_modifier.broadcast = 0;
4277 i.tm.opcode_modifier.disp8memshift = 0;
4278 i.memshift = 0;
4279 if (j < i.operands)
4280 i.types[j].bitfield.disp8
4281 = fits_in_disp8 (i.op[j].disps->X_add_number);
4282 }
4283 }
4284
4285 /* This is the guts of the machine-dependent assembler. LINE points to a
4286 machine dependent instruction. This function is supposed to emit
4287 the frags/bytes it assembles to. */
4288
4289 void
4290 md_assemble (char *line)
4291 {
4292 unsigned int j;
4293 char mnemonic[MAX_MNEM_SIZE], mnem_suffix;
4294 const insn_template *t;
4295
4296 /* Initialize globals. */
4297 memset (&i, '\0', sizeof (i));
4298 for (j = 0; j < MAX_OPERANDS; j++)
4299 i.reloc[j] = NO_RELOC;
4300 memset (disp_expressions, '\0', sizeof (disp_expressions));
4301 memset (im_expressions, '\0', sizeof (im_expressions));
4302 save_stack_p = save_stack;
4303
4304 /* First parse an instruction mnemonic & call i386_operand for the operands.
4305 We assume that the scrubber has arranged it so that line[0] is the valid
4306 start of a (possibly prefixed) mnemonic. */
4307
4308 line = parse_insn (line, mnemonic);
4309 if (line == NULL)
4310 return;
4311 mnem_suffix = i.suffix;
4312
4313 line = parse_operands (line, mnemonic);
4314 this_operand = -1;
4315 xfree (i.memop1_string);
4316 i.memop1_string = NULL;
4317 if (line == NULL)
4318 return;
4319
4320 /* Now we've parsed the mnemonic into a set of templates, and have the
4321 operands at hand. */
4322
4323 /* All intel opcodes have reversed operands except for "bound" and
4324 "enter". We also don't reverse intersegment "jmp" and "call"
4325 instructions with 2 immediate operands so that the immediate segment
4326 precedes the offset, as it does when in AT&T mode. */
4327 if (intel_syntax
4328 && i.operands > 1
4329 && (strcmp (mnemonic, "bound") != 0)
4330 && (strcmp (mnemonic, "invlpga") != 0)
4331 && !(operand_type_check (i.types[0], imm)
4332 && operand_type_check (i.types[1], imm)))
4333 swap_operands ();
4334
4335 /* The order of the immediates should be reversed
4336 for 2 immediates extrq and insertq instructions */
4337 if (i.imm_operands == 2
4338 && (strcmp (mnemonic, "extrq") == 0
4339 || strcmp (mnemonic, "insertq") == 0))
4340 swap_2_operands (0, 1);
4341
4342 if (i.imm_operands)
4343 optimize_imm ();
4344
4345 /* Don't optimize displacement for movabs since it only takes 64bit
4346 displacement. */
4347 if (i.disp_operands
4348 && i.disp_encoding != disp_encoding_32bit
4349 && (flag_code != CODE_64BIT
4350 || strcmp (mnemonic, "movabs") != 0))
4351 optimize_disp ();
4352
4353 /* Next, we find a template that matches the given insn,
4354 making sure the overlap of the given operands types is consistent
4355 with the template operand types. */
4356
4357 if (!(t = match_template (mnem_suffix)))
4358 return;
4359
4360 if (sse_check != check_none
4361 && !i.tm.opcode_modifier.noavx
4362 && !i.tm.cpu_flags.bitfield.cpuavx
4363 && !i.tm.cpu_flags.bitfield.cpuavx512f
4364 && (i.tm.cpu_flags.bitfield.cpusse
4365 || i.tm.cpu_flags.bitfield.cpusse2
4366 || i.tm.cpu_flags.bitfield.cpusse3
4367 || i.tm.cpu_flags.bitfield.cpussse3
4368 || i.tm.cpu_flags.bitfield.cpusse4_1
4369 || i.tm.cpu_flags.bitfield.cpusse4_2
4370 || i.tm.cpu_flags.bitfield.cpusse4a
4371 || i.tm.cpu_flags.bitfield.cpupclmul
4372 || i.tm.cpu_flags.bitfield.cpuaes
4373 || i.tm.cpu_flags.bitfield.cpusha
4374 || i.tm.cpu_flags.bitfield.cpugfni))
4375 {
4376 (sse_check == check_warning
4377 ? as_warn
4378 : as_bad) (_("SSE instruction `%s' is used"), i.tm.name);
4379 }
4380
4381 /* Zap movzx and movsx suffix. The suffix has been set from
4382 "word ptr" or "byte ptr" on the source operand in Intel syntax
4383 or extracted from mnemonic in AT&T syntax. But we'll use
4384 the destination register to choose the suffix for encoding. */
4385 if ((i.tm.base_opcode & ~9) == 0x0fb6)
4386 {
4387 /* In Intel syntax, there must be a suffix. In AT&T syntax, if
4388 there is no suffix, the default will be byte extension. */
4389 if (i.reg_operands != 2
4390 && !i.suffix
4391 && intel_syntax)
4392 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
4393
4394 i.suffix = 0;
4395 }
4396
4397 if (i.tm.opcode_modifier.fwait)
4398 if (!add_prefix (FWAIT_OPCODE))
4399 return;
4400
4401 /* Check if REP prefix is OK. */
4402 if (i.rep_prefix && !i.tm.opcode_modifier.repprefixok)
4403 {
4404 as_bad (_("invalid instruction `%s' after `%s'"),
4405 i.tm.name, i.rep_prefix);
4406 return;
4407 }
4408
4409 /* Check for lock without a lockable instruction. Destination operand
4410 must be memory unless it is xchg (0x86). */
4411 if (i.prefix[LOCK_PREFIX]
4412 && (!i.tm.opcode_modifier.islockable
4413 || i.mem_operands == 0
4414 || (i.tm.base_opcode != 0x86
4415 && !(i.flags[i.operands - 1] & Operand_Mem))))
4416 {
4417 as_bad (_("expecting lockable instruction after `lock'"));
4418 return;
4419 }
4420
4421 /* Check for data size prefix on VEX/XOP/EVEX encoded insns. */
4422 if (i.prefix[DATA_PREFIX] && is_any_vex_encoding (&i.tm))
4423 {
4424 as_bad (_("data size prefix invalid with `%s'"), i.tm.name);
4425 return;
4426 }
4427
4428 /* Check if HLE prefix is OK. */
4429 if (i.hle_prefix && !check_hle ())
4430 return;
4431
4432 /* Check BND prefix. */
4433 if (i.bnd_prefix && !i.tm.opcode_modifier.bndprefixok)
4434 as_bad (_("expecting valid branch instruction after `bnd'"));
4435
4436 /* Check NOTRACK prefix. */
4437 if (i.notrack_prefix && !i.tm.opcode_modifier.notrackprefixok)
4438 as_bad (_("expecting indirect branch instruction after `notrack'"));
4439
4440 if (i.tm.cpu_flags.bitfield.cpumpx)
4441 {
4442 if (flag_code == CODE_64BIT && i.prefix[ADDR_PREFIX])
4443 as_bad (_("32-bit address isn't allowed in 64-bit MPX instructions."));
4444 else if (flag_code != CODE_16BIT
4445 ? i.prefix[ADDR_PREFIX]
4446 : i.mem_operands && !i.prefix[ADDR_PREFIX])
4447 as_bad (_("16-bit address isn't allowed in MPX instructions"));
4448 }
4449
4450 /* Insert BND prefix. */
4451 if (add_bnd_prefix && i.tm.opcode_modifier.bndprefixok)
4452 {
4453 if (!i.prefix[BND_PREFIX])
4454 add_prefix (BND_PREFIX_OPCODE);
4455 else if (i.prefix[BND_PREFIX] != BND_PREFIX_OPCODE)
4456 {
4457 as_warn (_("replacing `rep'/`repe' prefix by `bnd'"));
4458 i.prefix[BND_PREFIX] = BND_PREFIX_OPCODE;
4459 }
4460 }
4461
4462 /* Check string instruction segment overrides. */
4463 if (i.tm.opcode_modifier.isstring >= IS_STRING_ES_OP0)
4464 {
4465 gas_assert (i.mem_operands);
4466 if (!check_string ())
4467 return;
4468 i.disp_operands = 0;
4469 }
4470
4471 if (optimize && !i.no_optimize && i.tm.opcode_modifier.optimize)
4472 optimize_encoding ();
4473
4474 if (!process_suffix ())
4475 return;
4476
4477 /* Update operand types. */
4478 for (j = 0; j < i.operands; j++)
4479 i.types[j] = operand_type_and (i.types[j], i.tm.operand_types[j]);
4480
4481 /* Make still unresolved immediate matches conform to size of immediate
4482 given in i.suffix. */
4483 if (!finalize_imm ())
4484 return;
4485
4486 if (i.types[0].bitfield.imm1)
4487 i.imm_operands = 0; /* kludge for shift insns. */
4488
4489 /* We only need to check those implicit registers for instructions
4490 with 3 operands or less. */
4491 if (i.operands <= 3)
4492 for (j = 0; j < i.operands; j++)
4493 if (i.types[j].bitfield.instance != InstanceNone
4494 && !i.types[j].bitfield.xmmword)
4495 i.reg_operands--;
4496
4497 /* ImmExt should be processed after SSE2AVX. */
4498 if (!i.tm.opcode_modifier.sse2avx
4499 && i.tm.opcode_modifier.immext)
4500 process_immext ();
4501
4502 /* For insns with operands there are more diddles to do to the opcode. */
4503 if (i.operands)
4504 {
4505 if (!process_operands ())
4506 return;
4507 }
4508 else if (!quiet_warnings && i.tm.opcode_modifier.ugh)
4509 {
4510 /* UnixWare fsub no args is alias for fsubp, fadd -> faddp, etc. */
4511 as_warn (_("translating to `%sp'"), i.tm.name);
4512 }
4513
4514 if (is_any_vex_encoding (&i.tm))
4515 {
4516 if (!cpu_arch_flags.bitfield.cpui286)
4517 {
4518 as_bad (_("instruction `%s' isn't supported outside of protected mode."),
4519 i.tm.name);
4520 return;
4521 }
4522
4523 if (i.tm.opcode_modifier.vex)
4524 build_vex_prefix (t);
4525 else
4526 build_evex_prefix ();
4527 }
4528
4529 /* Handle conversion of 'int $3' --> special int3 insn. XOP or FMA4
4530 instructions may define INT_OPCODE as well, so avoid this corner
4531 case for those instructions that use MODRM. */
4532 if (i.tm.base_opcode == INT_OPCODE
4533 && !i.tm.opcode_modifier.modrm
4534 && i.op[0].imms->X_add_number == 3)
4535 {
4536 i.tm.base_opcode = INT3_OPCODE;
4537 i.imm_operands = 0;
4538 }
4539
4540 if ((i.tm.opcode_modifier.jump == JUMP
4541 || i.tm.opcode_modifier.jump == JUMP_BYTE
4542 || i.tm.opcode_modifier.jump == JUMP_DWORD)
4543 && i.op[0].disps->X_op == O_constant)
4544 {
4545 /* Convert "jmp constant" (and "call constant") to a jump (call) to
4546 the absolute address given by the constant. Since ix86 jumps and
4547 calls are pc relative, we need to generate a reloc. */
4548 i.op[0].disps->X_add_symbol = &abs_symbol;
4549 i.op[0].disps->X_op = O_symbol;
4550 }
4551
4552 if (i.tm.opcode_modifier.rex64)
4553 i.rex |= REX_W;
4554
4555 /* For 8 bit registers we need an empty rex prefix. Also if the
4556 instruction already has a prefix, we need to convert old
4557 registers to new ones. */
4558
4559 if ((i.types[0].bitfield.class == Reg && i.types[0].bitfield.byte
4560 && (i.op[0].regs->reg_flags & RegRex64) != 0)
4561 || (i.types[1].bitfield.class == Reg && i.types[1].bitfield.byte
4562 && (i.op[1].regs->reg_flags & RegRex64) != 0)
4563 || (((i.types[0].bitfield.class == Reg && i.types[0].bitfield.byte)
4564 || (i.types[1].bitfield.class == Reg && i.types[1].bitfield.byte))
4565 && i.rex != 0))
4566 {
4567 int x;
4568
4569 i.rex |= REX_OPCODE;
4570 for (x = 0; x < 2; x++)
4571 {
4572 /* Look for 8 bit operand that uses old registers. */
4573 if (i.types[x].bitfield.class == Reg && i.types[x].bitfield.byte
4574 && (i.op[x].regs->reg_flags & RegRex64) == 0)
4575 {
4576 gas_assert (!(i.op[x].regs->reg_flags & RegRex));
4577 /* In case it is "hi" register, give up. */
4578 if (i.op[x].regs->reg_num > 3)
4579 as_bad (_("can't encode register '%s%s' in an "
4580 "instruction requiring REX prefix."),
4581 register_prefix, i.op[x].regs->reg_name);
4582
4583 /* Otherwise it is equivalent to the extended register.
4584 Since the encoding doesn't change this is merely
4585 cosmetic cleanup for debug output. */
4586
4587 i.op[x].regs = i.op[x].regs + 8;
4588 }
4589 }
4590 }
4591
4592 if (i.rex == 0 && i.rex_encoding)
4593 {
4594 /* Check if we can add a REX_OPCODE byte. Look for 8 bit operand
4595 that uses legacy register. If it is "hi" register, don't add
4596 the REX_OPCODE byte. */
4597 int x;
4598 for (x = 0; x < 2; x++)
4599 if (i.types[x].bitfield.class == Reg
4600 && i.types[x].bitfield.byte
4601 && (i.op[x].regs->reg_flags & RegRex64) == 0
4602 && i.op[x].regs->reg_num > 3)
4603 {
4604 gas_assert (!(i.op[x].regs->reg_flags & RegRex));
4605 i.rex_encoding = FALSE;
4606 break;
4607 }
4608
4609 if (i.rex_encoding)
4610 i.rex = REX_OPCODE;
4611 }
4612
4613 if (i.rex != 0)
4614 add_prefix (REX_OPCODE | i.rex);
4615
4616 /* We are ready to output the insn. */
4617 output_insn ();
4618
4619 last_insn.seg = now_seg;
4620
4621 if (i.tm.opcode_modifier.isprefix)
4622 {
4623 last_insn.kind = last_insn_prefix;
4624 last_insn.name = i.tm.name;
4625 last_insn.file = as_where (&last_insn.line);
4626 }
4627 else
4628 last_insn.kind = last_insn_other;
4629 }
4630
4631 static char *
4632 parse_insn (char *line, char *mnemonic)
4633 {
4634 char *l = line;
4635 char *token_start = l;
4636 char *mnem_p;
4637 int supported;
4638 const insn_template *t;
4639 char *dot_p = NULL;
4640
4641 while (1)
4642 {
4643 mnem_p = mnemonic;
4644 while ((*mnem_p = mnemonic_chars[(unsigned char) *l]) != 0)
4645 {
4646 if (*mnem_p == '.')
4647 dot_p = mnem_p;
4648 mnem_p++;
4649 if (mnem_p >= mnemonic + MAX_MNEM_SIZE)
4650 {
4651 as_bad (_("no such instruction: `%s'"), token_start);
4652 return NULL;
4653 }
4654 l++;
4655 }
4656 if (!is_space_char (*l)
4657 && *l != END_OF_INSN
4658 && (intel_syntax
4659 || (*l != PREFIX_SEPARATOR
4660 && *l != ',')))
4661 {
4662 as_bad (_("invalid character %s in mnemonic"),
4663 output_invalid (*l));
4664 return NULL;
4665 }
4666 if (token_start == l)
4667 {
4668 if (!intel_syntax && *l == PREFIX_SEPARATOR)
4669 as_bad (_("expecting prefix; got nothing"));
4670 else
4671 as_bad (_("expecting mnemonic; got nothing"));
4672 return NULL;
4673 }
4674
4675 /* Look up instruction (or prefix) via hash table. */
4676 current_templates = (const templates *) hash_find (op_hash, mnemonic);
4677
4678 if (*l != END_OF_INSN
4679 && (!is_space_char (*l) || l[1] != END_OF_INSN)
4680 && current_templates
4681 && current_templates->start->opcode_modifier.isprefix)
4682 {
4683 if (!cpu_flags_check_cpu64 (current_templates->start->cpu_flags))
4684 {
4685 as_bad ((flag_code != CODE_64BIT
4686 ? _("`%s' is only supported in 64-bit mode")
4687 : _("`%s' is not supported in 64-bit mode")),
4688 current_templates->start->name);
4689 return NULL;
4690 }
4691 /* If we are in 16-bit mode, do not allow addr16 or data16.
4692 Similarly, in 32-bit mode, do not allow addr32 or data32. */
4693 if ((current_templates->start->opcode_modifier.size == SIZE16
4694 || current_templates->start->opcode_modifier.size == SIZE32)
4695 && flag_code != CODE_64BIT
4696 && ((current_templates->start->opcode_modifier.size == SIZE32)
4697 ^ (flag_code == CODE_16BIT)))
4698 {
4699 as_bad (_("redundant %s prefix"),
4700 current_templates->start->name);
4701 return NULL;
4702 }
4703 if (current_templates->start->opcode_length == 0)
4704 {
4705 /* Handle pseudo prefixes. */
4706 switch (current_templates->start->base_opcode)
4707 {
4708 case 0x0:
4709 /* {disp8} */
4710 i.disp_encoding = disp_encoding_8bit;
4711 break;
4712 case 0x1:
4713 /* {disp32} */
4714 i.disp_encoding = disp_encoding_32bit;
4715 break;
4716 case 0x2:
4717 /* {load} */
4718 i.dir_encoding = dir_encoding_load;
4719 break;
4720 case 0x3:
4721 /* {store} */
4722 i.dir_encoding = dir_encoding_store;
4723 break;
4724 case 0x4:
4725 /* {vex} */
4726 i.vec_encoding = vex_encoding_vex;
4727 break;
4728 case 0x5:
4729 /* {vex3} */
4730 i.vec_encoding = vex_encoding_vex3;
4731 break;
4732 case 0x6:
4733 /* {evex} */
4734 i.vec_encoding = vex_encoding_evex;
4735 break;
4736 case 0x7:
4737 /* {rex} */
4738 i.rex_encoding = TRUE;
4739 break;
4740 case 0x8:
4741 /* {nooptimize} */
4742 i.no_optimize = TRUE;
4743 break;
4744 default:
4745 abort ();
4746 }
4747 }
4748 else
4749 {
4750 /* Add prefix, checking for repeated prefixes. */
4751 switch (add_prefix (current_templates->start->base_opcode))
4752 {
4753 case PREFIX_EXIST:
4754 return NULL;
4755 case PREFIX_DS:
4756 if (current_templates->start->cpu_flags.bitfield.cpuibt)
4757 i.notrack_prefix = current_templates->start->name;
4758 break;
4759 case PREFIX_REP:
4760 if (current_templates->start->cpu_flags.bitfield.cpuhle)
4761 i.hle_prefix = current_templates->start->name;
4762 else if (current_templates->start->cpu_flags.bitfield.cpumpx)
4763 i.bnd_prefix = current_templates->start->name;
4764 else
4765 i.rep_prefix = current_templates->start->name;
4766 break;
4767 default:
4768 break;
4769 }
4770 }
4771 /* Skip past PREFIX_SEPARATOR and reset token_start. */
4772 token_start = ++l;
4773 }
4774 else
4775 break;
4776 }
4777
4778 if (!current_templates)
4779 {
4780 /* Deprecated functionality (new code should use pseudo-prefixes instead):
4781 Check if we should swap operand or force 32bit displacement in
4782 encoding. */
4783 if (mnem_p - 2 == dot_p && dot_p[1] == 's')
4784 i.dir_encoding = dir_encoding_swap;
4785 else if (mnem_p - 3 == dot_p
4786 && dot_p[1] == 'd'
4787 && dot_p[2] == '8')
4788 i.disp_encoding = disp_encoding_8bit;
4789 else if (mnem_p - 4 == dot_p
4790 && dot_p[1] == 'd'
4791 && dot_p[2] == '3'
4792 && dot_p[3] == '2')
4793 i.disp_encoding = disp_encoding_32bit;
4794 else
4795 goto check_suffix;
4796 mnem_p = dot_p;
4797 *dot_p = '\0';
4798 current_templates = (const templates *) hash_find (op_hash, mnemonic);
4799 }
4800
4801 if (!current_templates)
4802 {
4803 check_suffix:
4804 if (mnem_p > mnemonic)
4805 {
4806 /* See if we can get a match by trimming off a suffix. */
4807 switch (mnem_p[-1])
4808 {
4809 case WORD_MNEM_SUFFIX:
4810 if (intel_syntax && (intel_float_operand (mnemonic) & 2))
4811 i.suffix = SHORT_MNEM_SUFFIX;
4812 else
4813 /* Fall through. */
4814 case BYTE_MNEM_SUFFIX:
4815 case QWORD_MNEM_SUFFIX:
4816 i.suffix = mnem_p[-1];
4817 mnem_p[-1] = '\0';
4818 current_templates = (const templates *) hash_find (op_hash,
4819 mnemonic);
4820 break;
4821 case SHORT_MNEM_SUFFIX:
4822 case LONG_MNEM_SUFFIX:
4823 if (!intel_syntax)
4824 {
4825 i.suffix = mnem_p[-1];
4826 mnem_p[-1] = '\0';
4827 current_templates = (const templates *) hash_find (op_hash,
4828 mnemonic);
4829 }
4830 break;
4831
4832 /* Intel Syntax. */
4833 case 'd':
4834 if (intel_syntax)
4835 {
4836 if (intel_float_operand (mnemonic) == 1)
4837 i.suffix = SHORT_MNEM_SUFFIX;
4838 else
4839 i.suffix = LONG_MNEM_SUFFIX;
4840 mnem_p[-1] = '\0';
4841 current_templates = (const templates *) hash_find (op_hash,
4842 mnemonic);
4843 }
4844 break;
4845 }
4846 }
4847
4848 if (!current_templates)
4849 {
4850 as_bad (_("no such instruction: `%s'"), token_start);
4851 return NULL;
4852 }
4853 }
4854
4855 if (current_templates->start->opcode_modifier.jump == JUMP
4856 || current_templates->start->opcode_modifier.jump == JUMP_BYTE)
4857 {
4858 /* Check for a branch hint. We allow ",pt" and ",pn" for
4859 predict taken and predict not taken respectively.
4860 I'm not sure that branch hints actually do anything on loop
4861 and jcxz insns (JumpByte) for current Pentium4 chips. They
4862 may work in the future and it doesn't hurt to accept them
4863 now. */
4864 if (l[0] == ',' && l[1] == 'p')
4865 {
4866 if (l[2] == 't')
4867 {
4868 if (!add_prefix (DS_PREFIX_OPCODE))
4869 return NULL;
4870 l += 3;
4871 }
4872 else if (l[2] == 'n')
4873 {
4874 if (!add_prefix (CS_PREFIX_OPCODE))
4875 return NULL;
4876 l += 3;
4877 }
4878 }
4879 }
4880 /* Any other comma loses. */
4881 if (*l == ',')
4882 {
4883 as_bad (_("invalid character %s in mnemonic"),
4884 output_invalid (*l));
4885 return NULL;
4886 }
4887
4888 /* Check if instruction is supported on specified architecture. */
4889 supported = 0;
4890 for (t = current_templates->start; t < current_templates->end; ++t)
4891 {
4892 supported |= cpu_flags_match (t);
4893 if (supported == CPU_FLAGS_PERFECT_MATCH)
4894 {
4895 if (!cpu_arch_flags.bitfield.cpui386 && (flag_code != CODE_16BIT))
4896 as_warn (_("use .code16 to ensure correct addressing mode"));
4897
4898 return l;
4899 }
4900 }
4901
4902 if (!(supported & CPU_FLAGS_64BIT_MATCH))
4903 as_bad (flag_code == CODE_64BIT
4904 ? _("`%s' is not supported in 64-bit mode")
4905 : _("`%s' is only supported in 64-bit mode"),
4906 current_templates->start->name);
4907 else
4908 as_bad (_("`%s' is not supported on `%s%s'"),
4909 current_templates->start->name,
4910 cpu_arch_name ? cpu_arch_name : default_arch,
4911 cpu_sub_arch_name ? cpu_sub_arch_name : "");
4912
4913 return NULL;
4914 }
4915
4916 static char *
4917 parse_operands (char *l, const char *mnemonic)
4918 {
4919 char *token_start;
4920
4921 /* 1 if operand is pending after ','. */
4922 unsigned int expecting_operand = 0;
4923
4924 /* Non-zero if operand parens not balanced. */
4925 unsigned int paren_not_balanced;
4926
4927 while (*l != END_OF_INSN)
4928 {
4929 /* Skip optional white space before operand. */
4930 if (is_space_char (*l))
4931 ++l;
4932 if (!is_operand_char (*l) && *l != END_OF_INSN && *l != '"')
4933 {
4934 as_bad (_("invalid character %s before operand %d"),
4935 output_invalid (*l),
4936 i.operands + 1);
4937 return NULL;
4938 }
4939 token_start = l; /* After white space. */
4940 paren_not_balanced = 0;
4941 while (paren_not_balanced || *l != ',')
4942 {
4943 if (*l == END_OF_INSN)
4944 {
4945 if (paren_not_balanced)
4946 {
4947 if (!intel_syntax)
4948 as_bad (_("unbalanced parenthesis in operand %d."),
4949 i.operands + 1);
4950 else
4951 as_bad (_("unbalanced brackets in operand %d."),
4952 i.operands + 1);
4953 return NULL;
4954 }
4955 else
4956 break; /* we are done */
4957 }
4958 else if (!is_operand_char (*l) && !is_space_char (*l) && *l != '"')
4959 {
4960 as_bad (_("invalid character %s in operand %d"),
4961 output_invalid (*l),
4962 i.operands + 1);
4963 return NULL;
4964 }
4965 if (!intel_syntax)
4966 {
4967 if (*l == '(')
4968 ++paren_not_balanced;
4969 if (*l == ')')
4970 --paren_not_balanced;
4971 }
4972 else
4973 {
4974 if (*l == '[')
4975 ++paren_not_balanced;
4976 if (*l == ']')
4977 --paren_not_balanced;
4978 }
4979 l++;
4980 }
4981 if (l != token_start)
4982 { /* Yes, we've read in another operand. */
4983 unsigned int operand_ok;
4984 this_operand = i.operands++;
4985 if (i.operands > MAX_OPERANDS)
4986 {
4987 as_bad (_("spurious operands; (%d operands/instruction max)"),
4988 MAX_OPERANDS);
4989 return NULL;
4990 }
4991 i.types[this_operand].bitfield.unspecified = 1;
4992 /* Now parse operand adding info to 'i' as we go along. */
4993 END_STRING_AND_SAVE (l);
4994
4995 if (i.mem_operands > 1)
4996 {
4997 as_bad (_("too many memory references for `%s'"),
4998 mnemonic);
4999 return 0;
5000 }
5001
5002 if (intel_syntax)
5003 operand_ok =
5004 i386_intel_operand (token_start,
5005 intel_float_operand (mnemonic));
5006 else
5007 operand_ok = i386_att_operand (token_start);
5008
5009 RESTORE_END_STRING (l);
5010 if (!operand_ok)
5011 return NULL;
5012 }
5013 else
5014 {
5015 if (expecting_operand)
5016 {
5017 expecting_operand_after_comma:
5018 as_bad (_("expecting operand after ','; got nothing"));
5019 return NULL;
5020 }
5021 if (*l == ',')
5022 {
5023 as_bad (_("expecting operand before ','; got nothing"));
5024 return NULL;
5025 }
5026 }
5027
5028 /* Now *l must be either ',' or END_OF_INSN. */
5029 if (*l == ',')
5030 {
5031 if (*++l == END_OF_INSN)
5032 {
5033 /* Just skip it, if it's \n complain. */
5034 goto expecting_operand_after_comma;
5035 }
5036 expecting_operand = 1;
5037 }
5038 }
5039 return l;
5040 }
5041
5042 static void
5043 swap_2_operands (int xchg1, int xchg2)
5044 {
5045 union i386_op temp_op;
5046 i386_operand_type temp_type;
5047 unsigned int temp_flags;
5048 enum bfd_reloc_code_real temp_reloc;
5049
5050 temp_type = i.types[xchg2];
5051 i.types[xchg2] = i.types[xchg1];
5052 i.types[xchg1] = temp_type;
5053
5054 temp_flags = i.flags[xchg2];
5055 i.flags[xchg2] = i.flags[xchg1];
5056 i.flags[xchg1] = temp_flags;
5057
5058 temp_op = i.op[xchg2];
5059 i.op[xchg2] = i.op[xchg1];
5060 i.op[xchg1] = temp_op;
5061
5062 temp_reloc = i.reloc[xchg2];
5063 i.reloc[xchg2] = i.reloc[xchg1];
5064 i.reloc[xchg1] = temp_reloc;
5065
5066 if (i.mask)
5067 {
5068 if (i.mask->operand == xchg1)
5069 i.mask->operand = xchg2;
5070 else if (i.mask->operand == xchg2)
5071 i.mask->operand = xchg1;
5072 }
5073 if (i.broadcast)
5074 {
5075 if (i.broadcast->operand == xchg1)
5076 i.broadcast->operand = xchg2;
5077 else if (i.broadcast->operand == xchg2)
5078 i.broadcast->operand = xchg1;
5079 }
5080 if (i.rounding)
5081 {
5082 if (i.rounding->operand == xchg1)
5083 i.rounding->operand = xchg2;
5084 else if (i.rounding->operand == xchg2)
5085 i.rounding->operand = xchg1;
5086 }
5087 }
5088
5089 static void
5090 swap_operands (void)
5091 {
5092 switch (i.operands)
5093 {
5094 case 5:
5095 case 4:
5096 swap_2_operands (1, i.operands - 2);
5097 /* Fall through. */
5098 case 3:
5099 case 2:
5100 swap_2_operands (0, i.operands - 1);
5101 break;
5102 default:
5103 abort ();
5104 }
5105
5106 if (i.mem_operands == 2)
5107 {
5108 const seg_entry *temp_seg;
5109 temp_seg = i.seg[0];
5110 i.seg[0] = i.seg[1];
5111 i.seg[1] = temp_seg;
5112 }
5113 }
5114
5115 /* Try to ensure constant immediates are represented in the smallest
5116 opcode possible. */
5117 static void
5118 optimize_imm (void)
5119 {
5120 char guess_suffix = 0;
5121 int op;
5122
5123 if (i.suffix)
5124 guess_suffix = i.suffix;
5125 else if (i.reg_operands)
5126 {
5127 /* Figure out a suffix from the last register operand specified.
5128 We can't do this properly yet, i.e. excluding special register
5129 instances, but the following works for instructions with
5130 immediates. In any case, we can't set i.suffix yet. */
5131 for (op = i.operands; --op >= 0;)
5132 if (i.types[op].bitfield.class != Reg)
5133 continue;
5134 else if (i.types[op].bitfield.byte)
5135 {
5136 guess_suffix = BYTE_MNEM_SUFFIX;
5137 break;
5138 }
5139 else if (i.types[op].bitfield.word)
5140 {
5141 guess_suffix = WORD_MNEM_SUFFIX;
5142 break;
5143 }
5144 else if (i.types[op].bitfield.dword)
5145 {
5146 guess_suffix = LONG_MNEM_SUFFIX;
5147 break;
5148 }
5149 else if (i.types[op].bitfield.qword)
5150 {
5151 guess_suffix = QWORD_MNEM_SUFFIX;
5152 break;
5153 }
5154 }
5155 else if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
5156 guess_suffix = WORD_MNEM_SUFFIX;
5157
5158 for (op = i.operands; --op >= 0;)
5159 if (operand_type_check (i.types[op], imm))
5160 {
5161 switch (i.op[op].imms->X_op)
5162 {
5163 case O_constant:
5164 /* If a suffix is given, this operand may be shortened. */
5165 switch (guess_suffix)
5166 {
5167 case LONG_MNEM_SUFFIX:
5168 i.types[op].bitfield.imm32 = 1;
5169 i.types[op].bitfield.imm64 = 1;
5170 break;
5171 case WORD_MNEM_SUFFIX:
5172 i.types[op].bitfield.imm16 = 1;
5173 i.types[op].bitfield.imm32 = 1;
5174 i.types[op].bitfield.imm32s = 1;
5175 i.types[op].bitfield.imm64 = 1;
5176 break;
5177 case BYTE_MNEM_SUFFIX:
5178 i.types[op].bitfield.imm8 = 1;
5179 i.types[op].bitfield.imm8s = 1;
5180 i.types[op].bitfield.imm16 = 1;
5181 i.types[op].bitfield.imm32 = 1;
5182 i.types[op].bitfield.imm32s = 1;
5183 i.types[op].bitfield.imm64 = 1;
5184 break;
5185 }
5186
5187 /* If this operand is at most 16 bits, convert it
5188 to a signed 16 bit number before trying to see
5189 whether it will fit in an even smaller size.
5190 This allows a 16-bit operand such as $0xffe0 to
5191 be recognised as within Imm8S range. */
5192 if ((i.types[op].bitfield.imm16)
5193 && (i.op[op].imms->X_add_number & ~(offsetT) 0xffff) == 0)
5194 {
5195 i.op[op].imms->X_add_number =
5196 (((i.op[op].imms->X_add_number & 0xffff) ^ 0x8000) - 0x8000);
5197 }
5198 #ifdef BFD64
5199 /* Store 32-bit immediate in 64-bit for 64-bit BFD. */
5200 if ((i.types[op].bitfield.imm32)
5201 && ((i.op[op].imms->X_add_number & ~(((offsetT) 2 << 31) - 1))
5202 == 0))
5203 {
5204 i.op[op].imms->X_add_number = ((i.op[op].imms->X_add_number
5205 ^ ((offsetT) 1 << 31))
5206 - ((offsetT) 1 << 31));
5207 }
5208 #endif
5209 i.types[op]
5210 = operand_type_or (i.types[op],
5211 smallest_imm_type (i.op[op].imms->X_add_number));
5212
5213 /* We must avoid matching of Imm32 templates when 64bit
5214 only immediate is available. */
5215 if (guess_suffix == QWORD_MNEM_SUFFIX)
5216 i.types[op].bitfield.imm32 = 0;
5217 break;
5218
5219 case O_absent:
5220 case O_register:
5221 abort ();
5222
5223 /* Symbols and expressions. */
5224 default:
5225 /* Convert symbolic operand to proper sizes for matching, but don't
5226 prevent matching a set of insns that only supports sizes other
5227 than those matching the insn suffix. */
5228 {
5229 i386_operand_type mask, allowed;
5230 const insn_template *t;
5231
5232 operand_type_set (&mask, 0);
5233 operand_type_set (&allowed, 0);
5234
5235 for (t = current_templates->start;
5236 t < current_templates->end;
5237 ++t)
5238 {
5239 allowed = operand_type_or (allowed, t->operand_types[op]);
5240 allowed = operand_type_and (allowed, anyimm);
5241 }
5242 switch (guess_suffix)
5243 {
5244 case QWORD_MNEM_SUFFIX:
5245 mask.bitfield.imm64 = 1;
5246 mask.bitfield.imm32s = 1;
5247 break;
5248 case LONG_MNEM_SUFFIX:
5249 mask.bitfield.imm32 = 1;
5250 break;
5251 case WORD_MNEM_SUFFIX:
5252 mask.bitfield.imm16 = 1;
5253 break;
5254 case BYTE_MNEM_SUFFIX:
5255 mask.bitfield.imm8 = 1;
5256 break;
5257 default:
5258 break;
5259 }
5260 allowed = operand_type_and (mask, allowed);
5261 if (!operand_type_all_zero (&allowed))
5262 i.types[op] = operand_type_and (i.types[op], mask);
5263 }
5264 break;
5265 }
5266 }
5267 }
5268
5269 /* Try to use the smallest displacement type too. */
5270 static void
5271 optimize_disp (void)
5272 {
5273 int op;
5274
5275 for (op = i.operands; --op >= 0;)
5276 if (operand_type_check (i.types[op], disp))
5277 {
5278 if (i.op[op].disps->X_op == O_constant)
5279 {
5280 offsetT op_disp = i.op[op].disps->X_add_number;
5281
5282 if (i.types[op].bitfield.disp16
5283 && (op_disp & ~(offsetT) 0xffff) == 0)
5284 {
5285 /* If this operand is at most 16 bits, convert
5286 to a signed 16 bit number and don't use 64bit
5287 displacement. */
5288 op_disp = (((op_disp & 0xffff) ^ 0x8000) - 0x8000);
5289 i.types[op].bitfield.disp64 = 0;
5290 }
5291 #ifdef BFD64
5292 /* Optimize 64-bit displacement to 32-bit for 64-bit BFD. */
5293 if (i.types[op].bitfield.disp32
5294 && (op_disp & ~(((offsetT) 2 << 31) - 1)) == 0)
5295 {
5296 /* If this operand is at most 32 bits, convert
5297 to a signed 32 bit number and don't use 64bit
5298 displacement. */
5299 op_disp &= (((offsetT) 2 << 31) - 1);
5300 op_disp = (op_disp ^ ((offsetT) 1 << 31)) - ((addressT) 1 << 31);
5301 i.types[op].bitfield.disp64 = 0;
5302 }
5303 #endif
5304 if (!op_disp && i.types[op].bitfield.baseindex)
5305 {
5306 i.types[op].bitfield.disp8 = 0;
5307 i.types[op].bitfield.disp16 = 0;
5308 i.types[op].bitfield.disp32 = 0;
5309 i.types[op].bitfield.disp32s = 0;
5310 i.types[op].bitfield.disp64 = 0;
5311 i.op[op].disps = 0;
5312 i.disp_operands--;
5313 }
5314 else if (flag_code == CODE_64BIT)
5315 {
5316 if (fits_in_signed_long (op_disp))
5317 {
5318 i.types[op].bitfield.disp64 = 0;
5319 i.types[op].bitfield.disp32s = 1;
5320 }
5321 if (i.prefix[ADDR_PREFIX]
5322 && fits_in_unsigned_long (op_disp))
5323 i.types[op].bitfield.disp32 = 1;
5324 }
5325 if ((i.types[op].bitfield.disp32
5326 || i.types[op].bitfield.disp32s
5327 || i.types[op].bitfield.disp16)
5328 && fits_in_disp8 (op_disp))
5329 i.types[op].bitfield.disp8 = 1;
5330 }
5331 else if (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
5332 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL)
5333 {
5334 fix_new_exp (frag_now, frag_more (0) - frag_now->fr_literal, 0,
5335 i.op[op].disps, 0, i.reloc[op]);
5336 i.types[op].bitfield.disp8 = 0;
5337 i.types[op].bitfield.disp16 = 0;
5338 i.types[op].bitfield.disp32 = 0;
5339 i.types[op].bitfield.disp32s = 0;
5340 i.types[op].bitfield.disp64 = 0;
5341 }
5342 else
5343 /* We only support 64bit displacement on constants. */
5344 i.types[op].bitfield.disp64 = 0;
5345 }
5346 }
5347
5348 /* Return 1 if there is a match in broadcast bytes between operand
5349 GIVEN and instruction template T. */
5350
5351 static INLINE int
5352 match_broadcast_size (const insn_template *t, unsigned int given)
5353 {
5354 return ((t->opcode_modifier.broadcast == BYTE_BROADCAST
5355 && i.types[given].bitfield.byte)
5356 || (t->opcode_modifier.broadcast == WORD_BROADCAST
5357 && i.types[given].bitfield.word)
5358 || (t->opcode_modifier.broadcast == DWORD_BROADCAST
5359 && i.types[given].bitfield.dword)
5360 || (t->opcode_modifier.broadcast == QWORD_BROADCAST
5361 && i.types[given].bitfield.qword));
5362 }
5363
5364 /* Check if operands are valid for the instruction. */
5365
5366 static int
5367 check_VecOperands (const insn_template *t)
5368 {
5369 unsigned int op;
5370 i386_cpu_flags cpu;
5371 static const i386_cpu_flags avx512 = CPU_ANY_AVX512F_FLAGS;
5372
5373 /* Templates allowing for ZMMword as well as YMMword and/or XMMword for
5374 any one operand are implicity requiring AVX512VL support if the actual
5375 operand size is YMMword or XMMword. Since this function runs after
5376 template matching, there's no need to check for YMMword/XMMword in
5377 the template. */
5378 cpu = cpu_flags_and (t->cpu_flags, avx512);
5379 if (!cpu_flags_all_zero (&cpu)
5380 && !t->cpu_flags.bitfield.cpuavx512vl
5381 && !cpu_arch_flags.bitfield.cpuavx512vl)
5382 {
5383 for (op = 0; op < t->operands; ++op)
5384 {
5385 if (t->operand_types[op].bitfield.zmmword
5386 && (i.types[op].bitfield.ymmword
5387 || i.types[op].bitfield.xmmword))
5388 {
5389 i.error = unsupported;
5390 return 1;
5391 }
5392 }
5393 }
5394
5395 /* Without VSIB byte, we can't have a vector register for index. */
5396 if (!t->opcode_modifier.vecsib
5397 && i.index_reg
5398 && (i.index_reg->reg_type.bitfield.xmmword
5399 || i.index_reg->reg_type.bitfield.ymmword
5400 || i.index_reg->reg_type.bitfield.zmmword))
5401 {
5402 i.error = unsupported_vector_index_register;
5403 return 1;
5404 }
5405
5406 /* Check if default mask is allowed. */
5407 if (t->opcode_modifier.nodefmask
5408 && (!i.mask || i.mask->mask->reg_num == 0))
5409 {
5410 i.error = no_default_mask;
5411 return 1;
5412 }
5413
5414 /* For VSIB byte, we need a vector register for index, and all vector
5415 registers must be distinct. */
5416 if (t->opcode_modifier.vecsib)
5417 {
5418 if (!i.index_reg
5419 || !((t->opcode_modifier.vecsib == VecSIB128
5420 && i.index_reg->reg_type.bitfield.xmmword)
5421 || (t->opcode_modifier.vecsib == VecSIB256
5422 && i.index_reg->reg_type.bitfield.ymmword)
5423 || (t->opcode_modifier.vecsib == VecSIB512
5424 && i.index_reg->reg_type.bitfield.zmmword)))
5425 {
5426 i.error = invalid_vsib_address;
5427 return 1;
5428 }
5429
5430 gas_assert (i.reg_operands == 2 || i.mask);
5431 if (i.reg_operands == 2 && !i.mask)
5432 {
5433 gas_assert (i.types[0].bitfield.class == RegSIMD);
5434 gas_assert (i.types[0].bitfield.xmmword
5435 || i.types[0].bitfield.ymmword);
5436 gas_assert (i.types[2].bitfield.class == RegSIMD);
5437 gas_assert (i.types[2].bitfield.xmmword
5438 || i.types[2].bitfield.ymmword);
5439 if (operand_check == check_none)
5440 return 0;
5441 if (register_number (i.op[0].regs)
5442 != register_number (i.index_reg)
5443 && register_number (i.op[2].regs)
5444 != register_number (i.index_reg)
5445 && register_number (i.op[0].regs)
5446 != register_number (i.op[2].regs))
5447 return 0;
5448 if (operand_check == check_error)
5449 {
5450 i.error = invalid_vector_register_set;
5451 return 1;
5452 }
5453 as_warn (_("mask, index, and destination registers should be distinct"));
5454 }
5455 else if (i.reg_operands == 1 && i.mask)
5456 {
5457 if (i.types[1].bitfield.class == RegSIMD
5458 && (i.types[1].bitfield.xmmword
5459 || i.types[1].bitfield.ymmword
5460 || i.types[1].bitfield.zmmword)
5461 && (register_number (i.op[1].regs)
5462 == register_number (i.index_reg)))
5463 {
5464 if (operand_check == check_error)
5465 {
5466 i.error = invalid_vector_register_set;
5467 return 1;
5468 }
5469 if (operand_check != check_none)
5470 as_warn (_("index and destination registers should be distinct"));
5471 }
5472 }
5473 }
5474
5475 /* Check if broadcast is supported by the instruction and is applied
5476 to the memory operand. */
5477 if (i.broadcast)
5478 {
5479 i386_operand_type type, overlap;
5480
5481 /* Check if specified broadcast is supported in this instruction,
5482 and its broadcast bytes match the memory operand. */
5483 op = i.broadcast->operand;
5484 if (!t->opcode_modifier.broadcast
5485 || !(i.flags[op] & Operand_Mem)
5486 || (!i.types[op].bitfield.unspecified
5487 && !match_broadcast_size (t, op)))
5488 {
5489 bad_broadcast:
5490 i.error = unsupported_broadcast;
5491 return 1;
5492 }
5493
5494 i.broadcast->bytes = ((1 << (t->opcode_modifier.broadcast - 1))
5495 * i.broadcast->type);
5496 operand_type_set (&type, 0);
5497 switch (i.broadcast->bytes)
5498 {
5499 case 2:
5500 type.bitfield.word = 1;
5501 break;
5502 case 4:
5503 type.bitfield.dword = 1;
5504 break;
5505 case 8:
5506 type.bitfield.qword = 1;
5507 break;
5508 case 16:
5509 type.bitfield.xmmword = 1;
5510 break;
5511 case 32:
5512 type.bitfield.ymmword = 1;
5513 break;
5514 case 64:
5515 type.bitfield.zmmword = 1;
5516 break;
5517 default:
5518 goto bad_broadcast;
5519 }
5520
5521 overlap = operand_type_and (type, t->operand_types[op]);
5522 if (operand_type_all_zero (&overlap))
5523 goto bad_broadcast;
5524
5525 if (t->opcode_modifier.checkregsize)
5526 {
5527 unsigned int j;
5528
5529 type.bitfield.baseindex = 1;
5530 for (j = 0; j < i.operands; ++j)
5531 {
5532 if (j != op
5533 && !operand_type_register_match(i.types[j],
5534 t->operand_types[j],
5535 type,
5536 t->operand_types[op]))
5537 goto bad_broadcast;
5538 }
5539 }
5540 }
5541 /* If broadcast is supported in this instruction, we need to check if
5542 operand of one-element size isn't specified without broadcast. */
5543 else if (t->opcode_modifier.broadcast && i.mem_operands)
5544 {
5545 /* Find memory operand. */
5546 for (op = 0; op < i.operands; op++)
5547 if (i.flags[op] & Operand_Mem)
5548 break;
5549 gas_assert (op < i.operands);
5550 /* Check size of the memory operand. */
5551 if (match_broadcast_size (t, op))
5552 {
5553 i.error = broadcast_needed;
5554 return 1;
5555 }
5556 }
5557 else
5558 op = MAX_OPERANDS - 1; /* Avoid uninitialized variable warning. */
5559
5560 /* Check if requested masking is supported. */
5561 if (i.mask)
5562 {
5563 switch (t->opcode_modifier.masking)
5564 {
5565 case BOTH_MASKING:
5566 break;
5567 case MERGING_MASKING:
5568 if (i.mask->zeroing)
5569 {
5570 case 0:
5571 i.error = unsupported_masking;
5572 return 1;
5573 }
5574 break;
5575 case DYNAMIC_MASKING:
5576 /* Memory destinations allow only merging masking. */
5577 if (i.mask->zeroing && i.mem_operands)
5578 {
5579 /* Find memory operand. */
5580 for (op = 0; op < i.operands; op++)
5581 if (i.flags[op] & Operand_Mem)
5582 break;
5583 gas_assert (op < i.operands);
5584 if (op == i.operands - 1)
5585 {
5586 i.error = unsupported_masking;
5587 return 1;
5588 }
5589 }
5590 break;
5591 default:
5592 abort ();
5593 }
5594 }
5595
5596 /* Check if masking is applied to dest operand. */
5597 if (i.mask && (i.mask->operand != (int) (i.operands - 1)))
5598 {
5599 i.error = mask_not_on_destination;
5600 return 1;
5601 }
5602
5603 /* Check RC/SAE. */
5604 if (i.rounding)
5605 {
5606 if (!t->opcode_modifier.sae
5607 || (i.rounding->type != saeonly && !t->opcode_modifier.staticrounding))
5608 {
5609 i.error = unsupported_rc_sae;
5610 return 1;
5611 }
5612 /* If the instruction has several immediate operands and one of
5613 them is rounding, the rounding operand should be the last
5614 immediate operand. */
5615 if (i.imm_operands > 1
5616 && i.rounding->operand != (int) (i.imm_operands - 1))
5617 {
5618 i.error = rc_sae_operand_not_last_imm;
5619 return 1;
5620 }
5621 }
5622
5623 /* Check vector Disp8 operand. */
5624 if (t->opcode_modifier.disp8memshift
5625 && i.disp_encoding != disp_encoding_32bit)
5626 {
5627 if (i.broadcast)
5628 i.memshift = t->opcode_modifier.broadcast - 1;
5629 else if (t->opcode_modifier.disp8memshift != DISP8_SHIFT_VL)
5630 i.memshift = t->opcode_modifier.disp8memshift;
5631 else
5632 {
5633 const i386_operand_type *type = NULL;
5634
5635 i.memshift = 0;
5636 for (op = 0; op < i.operands; op++)
5637 if (i.flags[op] & Operand_Mem)
5638 {
5639 if (t->opcode_modifier.evex == EVEXLIG)
5640 i.memshift = 2 + (i.suffix == QWORD_MNEM_SUFFIX);
5641 else if (t->operand_types[op].bitfield.xmmword
5642 + t->operand_types[op].bitfield.ymmword
5643 + t->operand_types[op].bitfield.zmmword <= 1)
5644 type = &t->operand_types[op];
5645 else if (!i.types[op].bitfield.unspecified)
5646 type = &i.types[op];
5647 }
5648 else if (i.types[op].bitfield.class == RegSIMD
5649 && t->opcode_modifier.evex != EVEXLIG)
5650 {
5651 if (i.types[op].bitfield.zmmword)
5652 i.memshift = 6;
5653 else if (i.types[op].bitfield.ymmword && i.memshift < 5)
5654 i.memshift = 5;
5655 else if (i.types[op].bitfield.xmmword && i.memshift < 4)
5656 i.memshift = 4;
5657 }
5658
5659 if (type)
5660 {
5661 if (type->bitfield.zmmword)
5662 i.memshift = 6;
5663 else if (type->bitfield.ymmword)
5664 i.memshift = 5;
5665 else if (type->bitfield.xmmword)
5666 i.memshift = 4;
5667 }
5668
5669 /* For the check in fits_in_disp8(). */
5670 if (i.memshift == 0)
5671 i.memshift = -1;
5672 }
5673
5674 for (op = 0; op < i.operands; op++)
5675 if (operand_type_check (i.types[op], disp)
5676 && i.op[op].disps->X_op == O_constant)
5677 {
5678 if (fits_in_disp8 (i.op[op].disps->X_add_number))
5679 {
5680 i.types[op].bitfield.disp8 = 1;
5681 return 0;
5682 }
5683 i.types[op].bitfield.disp8 = 0;
5684 }
5685 }
5686
5687 i.memshift = 0;
5688
5689 return 0;
5690 }
5691
5692 /* Check if operands are valid for the instruction. Update VEX
5693 operand types. */
5694
5695 static int
5696 VEX_check_operands (const insn_template *t)
5697 {
5698 if (i.vec_encoding == vex_encoding_evex)
5699 {
5700 /* This instruction must be encoded with EVEX prefix. */
5701 if (!is_evex_encoding (t))
5702 {
5703 i.error = unsupported;
5704 return 1;
5705 }
5706 return 0;
5707 }
5708
5709 if (!t->opcode_modifier.vex)
5710 {
5711 /* This instruction template doesn't have VEX prefix. */
5712 if (i.vec_encoding != vex_encoding_default)
5713 {
5714 i.error = unsupported;
5715 return 1;
5716 }
5717 return 0;
5718 }
5719
5720 /* Check the special Imm4 cases; must be the first operand. */
5721 if (t->cpu_flags.bitfield.cpuxop && t->operands == 5)
5722 {
5723 if (i.op[0].imms->X_op != O_constant
5724 || !fits_in_imm4 (i.op[0].imms->X_add_number))
5725 {
5726 i.error = bad_imm4;
5727 return 1;
5728 }
5729
5730 /* Turn off Imm<N> so that update_imm won't complain. */
5731 operand_type_set (&i.types[0], 0);
5732 }
5733
5734 return 0;
5735 }
5736
5737 static const insn_template *
5738 match_template (char mnem_suffix)
5739 {
5740 /* Points to template once we've found it. */
5741 const insn_template *t;
5742 i386_operand_type overlap0, overlap1, overlap2, overlap3;
5743 i386_operand_type overlap4;
5744 unsigned int found_reverse_match;
5745 i386_opcode_modifier suffix_check;
5746 i386_operand_type operand_types [MAX_OPERANDS];
5747 int addr_prefix_disp;
5748 unsigned int j, size_match, check_register;
5749 enum i386_error specific_error = 0;
5750
5751 #if MAX_OPERANDS != 5
5752 # error "MAX_OPERANDS must be 5."
5753 #endif
5754
5755 found_reverse_match = 0;
5756 addr_prefix_disp = -1;
5757
5758 /* Prepare for mnemonic suffix check. */
5759 memset (&suffix_check, 0, sizeof (suffix_check));
5760 switch (mnem_suffix)
5761 {
5762 case BYTE_MNEM_SUFFIX:
5763 suffix_check.no_bsuf = 1;
5764 break;
5765 case WORD_MNEM_SUFFIX:
5766 suffix_check.no_wsuf = 1;
5767 break;
5768 case SHORT_MNEM_SUFFIX:
5769 suffix_check.no_ssuf = 1;
5770 break;
5771 case LONG_MNEM_SUFFIX:
5772 suffix_check.no_lsuf = 1;
5773 break;
5774 case QWORD_MNEM_SUFFIX:
5775 suffix_check.no_qsuf = 1;
5776 break;
5777 default:
5778 /* NB: In Intel syntax, normally we can check for memory operand
5779 size when there is no mnemonic suffix. But jmp and call have
5780 2 different encodings with Dword memory operand size, one with
5781 No_ldSuf and the other without. i.suffix is set to
5782 LONG_DOUBLE_MNEM_SUFFIX to skip the one with No_ldSuf. */
5783 if (i.suffix == LONG_DOUBLE_MNEM_SUFFIX)
5784 suffix_check.no_ldsuf = 1;
5785 }
5786
5787 /* Must have right number of operands. */
5788 i.error = number_of_operands_mismatch;
5789
5790 for (t = current_templates->start; t < current_templates->end; t++)
5791 {
5792 addr_prefix_disp = -1;
5793 found_reverse_match = 0;
5794
5795 if (i.operands != t->operands)
5796 continue;
5797
5798 /* Check processor support. */
5799 i.error = unsupported;
5800 if (cpu_flags_match (t) != CPU_FLAGS_PERFECT_MATCH)
5801 continue;
5802
5803 /* Check AT&T mnemonic. */
5804 i.error = unsupported_with_intel_mnemonic;
5805 if (intel_mnemonic && t->opcode_modifier.attmnemonic)
5806 continue;
5807
5808 /* Check AT&T/Intel syntax and Intel64/AMD64 ISA. */
5809 i.error = unsupported_syntax;
5810 if ((intel_syntax && t->opcode_modifier.attsyntax)
5811 || (!intel_syntax && t->opcode_modifier.intelsyntax)
5812 || (intel64 && t->opcode_modifier.amd64)
5813 || (!intel64 && t->opcode_modifier.intel64))
5814 continue;
5815
5816 /* Check the suffix. */
5817 i.error = invalid_instruction_suffix;
5818 if ((t->opcode_modifier.no_bsuf && suffix_check.no_bsuf)
5819 || (t->opcode_modifier.no_wsuf && suffix_check.no_wsuf)
5820 || (t->opcode_modifier.no_lsuf && suffix_check.no_lsuf)
5821 || (t->opcode_modifier.no_ssuf && suffix_check.no_ssuf)
5822 || (t->opcode_modifier.no_qsuf && suffix_check.no_qsuf)
5823 || (t->opcode_modifier.no_ldsuf && suffix_check.no_ldsuf))
5824 continue;
5825
5826 size_match = operand_size_match (t);
5827 if (!size_match)
5828 continue;
5829
5830 /* This is intentionally not
5831
5832 if (i.jumpabsolute != (t->opcode_modifier.jump == JUMP_ABSOLUTE))
5833
5834 as the case of a missing * on the operand is accepted (perhaps with
5835 a warning, issued further down). */
5836 if (i.jumpabsolute && t->opcode_modifier.jump != JUMP_ABSOLUTE)
5837 {
5838 i.error = operand_type_mismatch;
5839 continue;
5840 }
5841
5842 for (j = 0; j < MAX_OPERANDS; j++)
5843 operand_types[j] = t->operand_types[j];
5844
5845 /* In general, don't allow 64-bit operands in 32-bit mode. */
5846 if (i.suffix == QWORD_MNEM_SUFFIX
5847 && flag_code != CODE_64BIT
5848 && (intel_syntax
5849 ? (!t->opcode_modifier.ignoresize
5850 && !t->opcode_modifier.broadcast
5851 && !intel_float_operand (t->name))
5852 : intel_float_operand (t->name) != 2)
5853 && ((operand_types[0].bitfield.class != RegMMX
5854 && operand_types[0].bitfield.class != RegSIMD)
5855 || (operand_types[t->operands > 1].bitfield.class != RegMMX
5856 && operand_types[t->operands > 1].bitfield.class != RegSIMD))
5857 && (t->base_opcode != 0x0fc7
5858 || t->extension_opcode != 1 /* cmpxchg8b */))
5859 continue;
5860
5861 /* In general, don't allow 32-bit operands on pre-386. */
5862 else if (i.suffix == LONG_MNEM_SUFFIX
5863 && !cpu_arch_flags.bitfield.cpui386
5864 && (intel_syntax
5865 ? (!t->opcode_modifier.ignoresize
5866 && !intel_float_operand (t->name))
5867 : intel_float_operand (t->name) != 2)
5868 && ((operand_types[0].bitfield.class != RegMMX
5869 && operand_types[0].bitfield.class != RegSIMD)
5870 || (operand_types[t->operands > 1].bitfield.class != RegMMX
5871 && operand_types[t->operands > 1].bitfield.class
5872 != RegSIMD)))
5873 continue;
5874
5875 /* Do not verify operands when there are none. */
5876 else
5877 {
5878 if (!t->operands)
5879 /* We've found a match; break out of loop. */
5880 break;
5881 }
5882
5883 if (!t->opcode_modifier.jump
5884 || t->opcode_modifier.jump == JUMP_ABSOLUTE)
5885 {
5886 /* There should be only one Disp operand. */
5887 for (j = 0; j < MAX_OPERANDS; j++)
5888 if (operand_type_check (operand_types[j], disp))
5889 break;
5890 if (j < MAX_OPERANDS)
5891 {
5892 bfd_boolean override = (i.prefix[ADDR_PREFIX] != 0);
5893
5894 addr_prefix_disp = j;
5895
5896 /* Address size prefix will turn Disp64/Disp32S/Disp32/Disp16
5897 operand into Disp32/Disp32/Disp16/Disp32 operand. */
5898 switch (flag_code)
5899 {
5900 case CODE_16BIT:
5901 override = !override;
5902 /* Fall through. */
5903 case CODE_32BIT:
5904 if (operand_types[j].bitfield.disp32
5905 && operand_types[j].bitfield.disp16)
5906 {
5907 operand_types[j].bitfield.disp16 = override;
5908 operand_types[j].bitfield.disp32 = !override;
5909 }
5910 operand_types[j].bitfield.disp32s = 0;
5911 operand_types[j].bitfield.disp64 = 0;
5912 break;
5913
5914 case CODE_64BIT:
5915 if (operand_types[j].bitfield.disp32s
5916 || operand_types[j].bitfield.disp64)
5917 {
5918 operand_types[j].bitfield.disp64 &= !override;
5919 operand_types[j].bitfield.disp32s &= !override;
5920 operand_types[j].bitfield.disp32 = override;
5921 }
5922 operand_types[j].bitfield.disp16 = 0;
5923 break;
5924 }
5925 }
5926 }
5927
5928 /* Force 0x8b encoding for "mov foo@GOT, %eax". */
5929 if (i.reloc[0] == BFD_RELOC_386_GOT32 && t->base_opcode == 0xa0)
5930 continue;
5931
5932 /* We check register size if needed. */
5933 if (t->opcode_modifier.checkregsize)
5934 {
5935 check_register = (1 << t->operands) - 1;
5936 if (i.broadcast)
5937 check_register &= ~(1 << i.broadcast->operand);
5938 }
5939 else
5940 check_register = 0;
5941
5942 overlap0 = operand_type_and (i.types[0], operand_types[0]);
5943 switch (t->operands)
5944 {
5945 case 1:
5946 if (!operand_type_match (overlap0, i.types[0]))
5947 continue;
5948 break;
5949 case 2:
5950 /* xchg %eax, %eax is a special case. It is an alias for nop
5951 only in 32bit mode and we can use opcode 0x90. In 64bit
5952 mode, we can't use 0x90 for xchg %eax, %eax since it should
5953 zero-extend %eax to %rax. */
5954 if (flag_code == CODE_64BIT
5955 && t->base_opcode == 0x90
5956 && i.types[0].bitfield.instance == Accum
5957 && i.types[0].bitfield.dword
5958 && i.types[1].bitfield.instance == Accum
5959 && i.types[1].bitfield.dword)
5960 continue;
5961 /* xrelease mov %eax, <disp> is another special case. It must not
5962 match the accumulator-only encoding of mov. */
5963 if (flag_code != CODE_64BIT
5964 && i.hle_prefix
5965 && t->base_opcode == 0xa0
5966 && i.types[0].bitfield.instance == Accum
5967 && (i.flags[1] & Operand_Mem))
5968 continue;
5969 /* Fall through. */
5970
5971 case 3:
5972 if (!(size_match & MATCH_STRAIGHT))
5973 goto check_reverse;
5974 /* Reverse direction of operands if swapping is possible in the first
5975 place (operands need to be symmetric) and
5976 - the load form is requested, and the template is a store form,
5977 - the store form is requested, and the template is a load form,
5978 - the non-default (swapped) form is requested. */
5979 overlap1 = operand_type_and (operand_types[0], operand_types[1]);
5980 if (t->opcode_modifier.d && i.reg_operands == i.operands
5981 && !operand_type_all_zero (&overlap1))
5982 switch (i.dir_encoding)
5983 {
5984 case dir_encoding_load:
5985 if (operand_type_check (operand_types[i.operands - 1], anymem)
5986 || t->opcode_modifier.regmem)
5987 goto check_reverse;
5988 break;
5989
5990 case dir_encoding_store:
5991 if (!operand_type_check (operand_types[i.operands - 1], anymem)
5992 && !t->opcode_modifier.regmem)
5993 goto check_reverse;
5994 break;
5995
5996 case dir_encoding_swap:
5997 goto check_reverse;
5998
5999 case dir_encoding_default:
6000 break;
6001 }
6002 /* If we want store form, we skip the current load. */
6003 if ((i.dir_encoding == dir_encoding_store
6004 || i.dir_encoding == dir_encoding_swap)
6005 && i.mem_operands == 0
6006 && t->opcode_modifier.load)
6007 continue;
6008 /* Fall through. */
6009 case 4:
6010 case 5:
6011 overlap1 = operand_type_and (i.types[1], operand_types[1]);
6012 if (!operand_type_match (overlap0, i.types[0])
6013 || !operand_type_match (overlap1, i.types[1])
6014 || ((check_register & 3) == 3
6015 && !operand_type_register_match (i.types[0],
6016 operand_types[0],
6017 i.types[1],
6018 operand_types[1])))
6019 {
6020 /* Check if other direction is valid ... */
6021 if (!t->opcode_modifier.d)
6022 continue;
6023
6024 check_reverse:
6025 if (!(size_match & MATCH_REVERSE))
6026 continue;
6027 /* Try reversing direction of operands. */
6028 overlap0 = operand_type_and (i.types[0], operand_types[i.operands - 1]);
6029 overlap1 = operand_type_and (i.types[i.operands - 1], operand_types[0]);
6030 if (!operand_type_match (overlap0, i.types[0])
6031 || !operand_type_match (overlap1, i.types[i.operands - 1])
6032 || (check_register
6033 && !operand_type_register_match (i.types[0],
6034 operand_types[i.operands - 1],
6035 i.types[i.operands - 1],
6036 operand_types[0])))
6037 {
6038 /* Does not match either direction. */
6039 continue;
6040 }
6041 /* found_reverse_match holds which of D or FloatR
6042 we've found. */
6043 if (!t->opcode_modifier.d)
6044 found_reverse_match = 0;
6045 else if (operand_types[0].bitfield.tbyte)
6046 found_reverse_match = Opcode_FloatD;
6047 else if (operand_types[0].bitfield.xmmword
6048 || operand_types[i.operands - 1].bitfield.xmmword
6049 || operand_types[0].bitfield.class == RegMMX
6050 || operand_types[i.operands - 1].bitfield.class == RegMMX
6051 || is_any_vex_encoding(t))
6052 found_reverse_match = (t->base_opcode & 0xee) != 0x6e
6053 ? Opcode_SIMD_FloatD : Opcode_SIMD_IntD;
6054 else
6055 found_reverse_match = Opcode_D;
6056 if (t->opcode_modifier.floatr)
6057 found_reverse_match |= Opcode_FloatR;
6058 }
6059 else
6060 {
6061 /* Found a forward 2 operand match here. */
6062 switch (t->operands)
6063 {
6064 case 5:
6065 overlap4 = operand_type_and (i.types[4],
6066 operand_types[4]);
6067 /* Fall through. */
6068 case 4:
6069 overlap3 = operand_type_and (i.types[3],
6070 operand_types[3]);
6071 /* Fall through. */
6072 case 3:
6073 overlap2 = operand_type_and (i.types[2],
6074 operand_types[2]);
6075 break;
6076 }
6077
6078 switch (t->operands)
6079 {
6080 case 5:
6081 if (!operand_type_match (overlap4, i.types[4])
6082 || !operand_type_register_match (i.types[3],
6083 operand_types[3],
6084 i.types[4],
6085 operand_types[4]))
6086 continue;
6087 /* Fall through. */
6088 case 4:
6089 if (!operand_type_match (overlap3, i.types[3])
6090 || ((check_register & 0xa) == 0xa
6091 && !operand_type_register_match (i.types[1],
6092 operand_types[1],
6093 i.types[3],
6094 operand_types[3]))
6095 || ((check_register & 0xc) == 0xc
6096 && !operand_type_register_match (i.types[2],
6097 operand_types[2],
6098 i.types[3],
6099 operand_types[3])))
6100 continue;
6101 /* Fall through. */
6102 case 3:
6103 /* Here we make use of the fact that there are no
6104 reverse match 3 operand instructions. */
6105 if (!operand_type_match (overlap2, i.types[2])
6106 || ((check_register & 5) == 5
6107 && !operand_type_register_match (i.types[0],
6108 operand_types[0],
6109 i.types[2],
6110 operand_types[2]))
6111 || ((check_register & 6) == 6
6112 && !operand_type_register_match (i.types[1],
6113 operand_types[1],
6114 i.types[2],
6115 operand_types[2])))
6116 continue;
6117 break;
6118 }
6119 }
6120 /* Found either forward/reverse 2, 3 or 4 operand match here:
6121 slip through to break. */
6122 }
6123
6124 /* Check if vector and VEX operands are valid. */
6125 if (check_VecOperands (t) || VEX_check_operands (t))
6126 {
6127 specific_error = i.error;
6128 continue;
6129 }
6130
6131 /* We've found a match; break out of loop. */
6132 break;
6133 }
6134
6135 if (t == current_templates->end)
6136 {
6137 /* We found no match. */
6138 const char *err_msg;
6139 switch (specific_error ? specific_error : i.error)
6140 {
6141 default:
6142 abort ();
6143 case operand_size_mismatch:
6144 err_msg = _("operand size mismatch");
6145 break;
6146 case operand_type_mismatch:
6147 err_msg = _("operand type mismatch");
6148 break;
6149 case register_type_mismatch:
6150 err_msg = _("register type mismatch");
6151 break;
6152 case number_of_operands_mismatch:
6153 err_msg = _("number of operands mismatch");
6154 break;
6155 case invalid_instruction_suffix:
6156 err_msg = _("invalid instruction suffix");
6157 break;
6158 case bad_imm4:
6159 err_msg = _("constant doesn't fit in 4 bits");
6160 break;
6161 case unsupported_with_intel_mnemonic:
6162 err_msg = _("unsupported with Intel mnemonic");
6163 break;
6164 case unsupported_syntax:
6165 err_msg = _("unsupported syntax");
6166 break;
6167 case unsupported:
6168 as_bad (_("unsupported instruction `%s'"),
6169 current_templates->start->name);
6170 return NULL;
6171 case invalid_vsib_address:
6172 err_msg = _("invalid VSIB address");
6173 break;
6174 case invalid_vector_register_set:
6175 err_msg = _("mask, index, and destination registers must be distinct");
6176 break;
6177 case unsupported_vector_index_register:
6178 err_msg = _("unsupported vector index register");
6179 break;
6180 case unsupported_broadcast:
6181 err_msg = _("unsupported broadcast");
6182 break;
6183 case broadcast_needed:
6184 err_msg = _("broadcast is needed for operand of such type");
6185 break;
6186 case unsupported_masking:
6187 err_msg = _("unsupported masking");
6188 break;
6189 case mask_not_on_destination:
6190 err_msg = _("mask not on destination operand");
6191 break;
6192 case no_default_mask:
6193 err_msg = _("default mask isn't allowed");
6194 break;
6195 case unsupported_rc_sae:
6196 err_msg = _("unsupported static rounding/sae");
6197 break;
6198 case rc_sae_operand_not_last_imm:
6199 if (intel_syntax)
6200 err_msg = _("RC/SAE operand must precede immediate operands");
6201 else
6202 err_msg = _("RC/SAE operand must follow immediate operands");
6203 break;
6204 case invalid_register_operand:
6205 err_msg = _("invalid register operand");
6206 break;
6207 }
6208 as_bad (_("%s for `%s'"), err_msg,
6209 current_templates->start->name);
6210 return NULL;
6211 }
6212
6213 if (!quiet_warnings)
6214 {
6215 if (!intel_syntax
6216 && (i.jumpabsolute != (t->opcode_modifier.jump == JUMP_ABSOLUTE)))
6217 as_warn (_("indirect %s without `*'"), t->name);
6218
6219 if (t->opcode_modifier.isprefix
6220 && t->opcode_modifier.ignoresize)
6221 {
6222 /* Warn them that a data or address size prefix doesn't
6223 affect assembly of the next line of code. */
6224 as_warn (_("stand-alone `%s' prefix"), t->name);
6225 }
6226 }
6227
6228 /* Copy the template we found. */
6229 i.tm = *t;
6230
6231 if (addr_prefix_disp != -1)
6232 i.tm.operand_types[addr_prefix_disp]
6233 = operand_types[addr_prefix_disp];
6234
6235 if (found_reverse_match)
6236 {
6237 /* If we found a reverse match we must alter the opcode direction
6238 bit and clear/flip the regmem modifier one. found_reverse_match
6239 holds bits to change (different for int & float insns). */
6240
6241 i.tm.base_opcode ^= found_reverse_match;
6242
6243 i.tm.operand_types[0] = operand_types[i.operands - 1];
6244 i.tm.operand_types[i.operands - 1] = operand_types[0];
6245
6246 /* Certain SIMD insns have their load forms specified in the opcode
6247 table, and hence we need to _set_ RegMem instead of clearing it.
6248 We need to avoid setting the bit though on insns like KMOVW. */
6249 i.tm.opcode_modifier.regmem
6250 = i.tm.opcode_modifier.modrm && i.tm.opcode_modifier.d
6251 && i.tm.operands > 2U - i.tm.opcode_modifier.sse2avx
6252 && !i.tm.opcode_modifier.regmem;
6253 }
6254
6255 return t;
6256 }
6257
6258 static int
6259 check_string (void)
6260 {
6261 unsigned int es_op = i.tm.opcode_modifier.isstring - IS_STRING_ES_OP0;
6262 unsigned int op = i.tm.operand_types[0].bitfield.baseindex ? es_op : 0;
6263
6264 if (i.seg[op] != NULL && i.seg[op] != &es)
6265 {
6266 as_bad (_("`%s' operand %u must use `%ses' segment"),
6267 i.tm.name,
6268 intel_syntax ? i.tm.operands - es_op : es_op + 1,
6269 register_prefix);
6270 return 0;
6271 }
6272
6273 /* There's only ever one segment override allowed per instruction.
6274 This instruction possibly has a legal segment override on the
6275 second operand, so copy the segment to where non-string
6276 instructions store it, allowing common code. */
6277 i.seg[op] = i.seg[1];
6278
6279 return 1;
6280 }
6281
6282 static int
6283 process_suffix (void)
6284 {
6285 /* If matched instruction specifies an explicit instruction mnemonic
6286 suffix, use it. */
6287 if (i.tm.opcode_modifier.size == SIZE16)
6288 i.suffix = WORD_MNEM_SUFFIX;
6289 else if (i.tm.opcode_modifier.size == SIZE32)
6290 i.suffix = LONG_MNEM_SUFFIX;
6291 else if (i.tm.opcode_modifier.size == SIZE64)
6292 i.suffix = QWORD_MNEM_SUFFIX;
6293 else if (i.reg_operands
6294 && (i.operands > 1 || i.types[0].bitfield.class == Reg))
6295 {
6296 /* If there's no instruction mnemonic suffix we try to invent one
6297 based on GPR operands. */
6298 if (!i.suffix)
6299 {
6300 /* We take i.suffix from the last register operand specified,
6301 Destination register type is more significant than source
6302 register type. crc32 in SSE4.2 prefers source register
6303 type. */
6304 unsigned int op = i.tm.base_opcode != 0xf20f38f0 ? i.operands : 1;
6305
6306 while (op--)
6307 if (i.tm.operand_types[op].bitfield.instance == InstanceNone
6308 || i.tm.operand_types[op].bitfield.instance == Accum)
6309 {
6310 if (i.types[op].bitfield.class != Reg)
6311 continue;
6312 if (i.types[op].bitfield.byte)
6313 i.suffix = BYTE_MNEM_SUFFIX;
6314 else if (i.types[op].bitfield.word)
6315 i.suffix = WORD_MNEM_SUFFIX;
6316 else if (i.types[op].bitfield.dword)
6317 i.suffix = LONG_MNEM_SUFFIX;
6318 else if (i.types[op].bitfield.qword)
6319 i.suffix = QWORD_MNEM_SUFFIX;
6320 else
6321 continue;
6322 break;
6323 }
6324 }
6325 else if (i.suffix == BYTE_MNEM_SUFFIX)
6326 {
6327 if (intel_syntax
6328 && i.tm.opcode_modifier.ignoresize
6329 && i.tm.opcode_modifier.no_bsuf)
6330 i.suffix = 0;
6331 else if (!check_byte_reg ())
6332 return 0;
6333 }
6334 else if (i.suffix == LONG_MNEM_SUFFIX)
6335 {
6336 if (intel_syntax
6337 && i.tm.opcode_modifier.ignoresize
6338 && i.tm.opcode_modifier.no_lsuf
6339 && !i.tm.opcode_modifier.todword
6340 && !i.tm.opcode_modifier.toqword)
6341 i.suffix = 0;
6342 else if (!check_long_reg ())
6343 return 0;
6344 }
6345 else if (i.suffix == QWORD_MNEM_SUFFIX)
6346 {
6347 if (intel_syntax
6348 && i.tm.opcode_modifier.ignoresize
6349 && i.tm.opcode_modifier.no_qsuf
6350 && !i.tm.opcode_modifier.todword
6351 && !i.tm.opcode_modifier.toqword)
6352 i.suffix = 0;
6353 else if (!check_qword_reg ())
6354 return 0;
6355 }
6356 else if (i.suffix == WORD_MNEM_SUFFIX)
6357 {
6358 if (intel_syntax
6359 && i.tm.opcode_modifier.ignoresize
6360 && i.tm.opcode_modifier.no_wsuf)
6361 i.suffix = 0;
6362 else if (!check_word_reg ())
6363 return 0;
6364 }
6365 else if (intel_syntax && i.tm.opcode_modifier.ignoresize)
6366 /* Do nothing if the instruction is going to ignore the prefix. */
6367 ;
6368 else
6369 abort ();
6370 }
6371 else if (i.tm.opcode_modifier.defaultsize && !i.suffix)
6372 {
6373 i.suffix = stackop_size;
6374 if (stackop_size == LONG_MNEM_SUFFIX)
6375 {
6376 /* stackop_size is set to LONG_MNEM_SUFFIX for the
6377 .code16gcc directive to support 16-bit mode with
6378 32-bit address. For IRET without a suffix, generate
6379 16-bit IRET (opcode 0xcf) to return from an interrupt
6380 handler. */
6381 if (i.tm.base_opcode == 0xcf)
6382 {
6383 i.suffix = WORD_MNEM_SUFFIX;
6384 as_warn (_("generating 16-bit `iret' for .code16gcc directive"));
6385 }
6386 /* Warn about changed behavior for segment register push/pop. */
6387 else if ((i.tm.base_opcode | 1) == 0x07)
6388 as_warn (_("generating 32-bit `%s', unlike earlier gas versions"),
6389 i.tm.name);
6390 }
6391 }
6392 else if (!i.suffix
6393 && (i.tm.opcode_modifier.jump == JUMP_ABSOLUTE
6394 || i.tm.opcode_modifier.jump == JUMP_BYTE
6395 || i.tm.opcode_modifier.jump == JUMP_INTERSEGMENT
6396 || (i.tm.base_opcode == 0x0f01 /* [ls][gi]dt */
6397 && i.tm.extension_opcode <= 3)))
6398 {
6399 switch (flag_code)
6400 {
6401 case CODE_64BIT:
6402 if (!i.tm.opcode_modifier.no_qsuf)
6403 {
6404 i.suffix = QWORD_MNEM_SUFFIX;
6405 break;
6406 }
6407 /* Fall through. */
6408 case CODE_32BIT:
6409 if (!i.tm.opcode_modifier.no_lsuf)
6410 i.suffix = LONG_MNEM_SUFFIX;
6411 break;
6412 case CODE_16BIT:
6413 if (!i.tm.opcode_modifier.no_wsuf)
6414 i.suffix = WORD_MNEM_SUFFIX;
6415 break;
6416 }
6417 }
6418
6419 if (!i.suffix
6420 && (!i.tm.opcode_modifier.defaultsize
6421 /* Also cover lret/retf/iret in 64-bit mode. */
6422 || (flag_code == CODE_64BIT
6423 && !i.tm.opcode_modifier.no_lsuf
6424 && !i.tm.opcode_modifier.no_qsuf))
6425 && !i.tm.opcode_modifier.ignoresize
6426 /* Accept FLDENV et al without suffix. */
6427 && (i.tm.opcode_modifier.no_ssuf || i.tm.opcode_modifier.floatmf))
6428 {
6429 unsigned int suffixes;
6430
6431 suffixes = !i.tm.opcode_modifier.no_bsuf;
6432 if (!i.tm.opcode_modifier.no_wsuf)
6433 suffixes |= 1 << 1;
6434 if (!i.tm.opcode_modifier.no_lsuf)
6435 suffixes |= 1 << 2;
6436 if (!i.tm.opcode_modifier.no_ldsuf)
6437 suffixes |= 1 << 3;
6438 if (!i.tm.opcode_modifier.no_ssuf)
6439 suffixes |= 1 << 4;
6440 if (flag_code == CODE_64BIT && !i.tm.opcode_modifier.no_qsuf)
6441 suffixes |= 1 << 5;
6442
6443 /* Are multiple suffixes allowed? */
6444 if (suffixes & (suffixes - 1))
6445 {
6446 if (intel_syntax
6447 && (!i.tm.opcode_modifier.defaultsize
6448 || operand_check == check_error))
6449 {
6450 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
6451 return 0;
6452 }
6453 if (operand_check == check_error)
6454 {
6455 as_bad (_("no instruction mnemonic suffix given and "
6456 "no register operands; can't size `%s'"), i.tm.name);
6457 return 0;
6458 }
6459 if (operand_check == check_warning)
6460 as_warn (_("%s; using default for `%s'"),
6461 intel_syntax
6462 ? _("ambiguous operand size")
6463 : _("no instruction mnemonic suffix given and "
6464 "no register operands"),
6465 i.tm.name);
6466
6467 if (i.tm.opcode_modifier.floatmf)
6468 i.suffix = SHORT_MNEM_SUFFIX;
6469 else if (flag_code == CODE_16BIT)
6470 i.suffix = WORD_MNEM_SUFFIX;
6471 else if (!i.tm.opcode_modifier.no_lsuf)
6472 i.suffix = LONG_MNEM_SUFFIX;
6473 else
6474 i.suffix = QWORD_MNEM_SUFFIX;
6475 }
6476 }
6477
6478 /* Change the opcode based on the operand size given by i.suffix. */
6479 switch (i.suffix)
6480 {
6481 /* Size floating point instruction. */
6482 case LONG_MNEM_SUFFIX:
6483 if (i.tm.opcode_modifier.floatmf)
6484 {
6485 i.tm.base_opcode ^= 4;
6486 break;
6487 }
6488 /* fall through */
6489 case WORD_MNEM_SUFFIX:
6490 case QWORD_MNEM_SUFFIX:
6491 /* It's not a byte, select word/dword operation. */
6492 if (i.tm.opcode_modifier.w)
6493 {
6494 if (i.tm.opcode_modifier.shortform)
6495 i.tm.base_opcode |= 8;
6496 else
6497 i.tm.base_opcode |= 1;
6498 }
6499 /* fall through */
6500 case SHORT_MNEM_SUFFIX:
6501 /* Now select between word & dword operations via the operand
6502 size prefix, except for instructions that will ignore this
6503 prefix anyway. */
6504 if (i.reg_operands > 0
6505 && i.types[0].bitfield.class == Reg
6506 && i.tm.opcode_modifier.addrprefixopreg
6507 && (i.tm.operand_types[0].bitfield.instance == Accum
6508 || i.operands == 1))
6509 {
6510 /* The address size override prefix changes the size of the
6511 first operand. */
6512 if ((flag_code == CODE_32BIT
6513 && i.op[0].regs->reg_type.bitfield.word)
6514 || (flag_code != CODE_32BIT
6515 && i.op[0].regs->reg_type.bitfield.dword))
6516 if (!add_prefix (ADDR_PREFIX_OPCODE))
6517 return 0;
6518 }
6519 else if (i.suffix != QWORD_MNEM_SUFFIX
6520 && !i.tm.opcode_modifier.ignoresize
6521 && !i.tm.opcode_modifier.floatmf
6522 && !is_any_vex_encoding (&i.tm)
6523 && ((i.suffix == LONG_MNEM_SUFFIX) == (flag_code == CODE_16BIT)
6524 || (flag_code == CODE_64BIT
6525 && i.tm.opcode_modifier.jump == JUMP_BYTE)))
6526 {
6527 unsigned int prefix = DATA_PREFIX_OPCODE;
6528
6529 if (i.tm.opcode_modifier.jump == JUMP_BYTE) /* jcxz, loop */
6530 prefix = ADDR_PREFIX_OPCODE;
6531
6532 if (!add_prefix (prefix))
6533 return 0;
6534 }
6535
6536 /* Set mode64 for an operand. */
6537 if (i.suffix == QWORD_MNEM_SUFFIX
6538 && flag_code == CODE_64BIT
6539 && !i.tm.opcode_modifier.norex64
6540 /* Special case for xchg %rax,%rax. It is NOP and doesn't
6541 need rex64. */
6542 && ! (i.operands == 2
6543 && i.tm.base_opcode == 0x90
6544 && i.tm.extension_opcode == None
6545 && i.types[0].bitfield.instance == Accum
6546 && i.types[0].bitfield.qword
6547 && i.types[1].bitfield.instance == Accum
6548 && i.types[1].bitfield.qword))
6549 i.rex |= REX_W;
6550
6551 break;
6552 }
6553
6554 if (i.reg_operands != 0
6555 && i.operands > 1
6556 && i.tm.opcode_modifier.addrprefixopreg
6557 && i.tm.operand_types[0].bitfield.instance != Accum)
6558 {
6559 /* Check invalid register operand when the address size override
6560 prefix changes the size of register operands. */
6561 unsigned int op;
6562 enum { need_word, need_dword, need_qword } need;
6563
6564 if (flag_code == CODE_32BIT)
6565 need = i.prefix[ADDR_PREFIX] ? need_word : need_dword;
6566 else
6567 {
6568 if (i.prefix[ADDR_PREFIX])
6569 need = need_dword;
6570 else
6571 need = flag_code == CODE_64BIT ? need_qword : need_word;
6572 }
6573
6574 for (op = 0; op < i.operands; op++)
6575 if (i.types[op].bitfield.class == Reg
6576 && ((need == need_word
6577 && !i.op[op].regs->reg_type.bitfield.word)
6578 || (need == need_dword
6579 && !i.op[op].regs->reg_type.bitfield.dword)
6580 || (need == need_qword
6581 && !i.op[op].regs->reg_type.bitfield.qword)))
6582 {
6583 as_bad (_("invalid register operand size for `%s'"),
6584 i.tm.name);
6585 return 0;
6586 }
6587 }
6588
6589 return 1;
6590 }
6591
6592 static int
6593 check_byte_reg (void)
6594 {
6595 int op;
6596
6597 for (op = i.operands; --op >= 0;)
6598 {
6599 /* Skip non-register operands. */
6600 if (i.types[op].bitfield.class != Reg)
6601 continue;
6602
6603 /* If this is an eight bit register, it's OK. If it's the 16 or
6604 32 bit version of an eight bit register, we will just use the
6605 low portion, and that's OK too. */
6606 if (i.types[op].bitfield.byte)
6607 continue;
6608
6609 /* I/O port address operands are OK too. */
6610 if (i.tm.operand_types[op].bitfield.instance == RegD
6611 && i.tm.operand_types[op].bitfield.word)
6612 continue;
6613
6614 /* crc32 doesn't generate this warning. */
6615 if (i.tm.base_opcode == 0xf20f38f0)
6616 continue;
6617
6618 if ((i.types[op].bitfield.word
6619 || i.types[op].bitfield.dword
6620 || i.types[op].bitfield.qword)
6621 && i.op[op].regs->reg_num < 4
6622 /* Prohibit these changes in 64bit mode, since the lowering
6623 would be more complicated. */
6624 && flag_code != CODE_64BIT)
6625 {
6626 #if REGISTER_WARNINGS
6627 if (!quiet_warnings)
6628 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
6629 register_prefix,
6630 (i.op[op].regs + (i.types[op].bitfield.word
6631 ? REGNAM_AL - REGNAM_AX
6632 : REGNAM_AL - REGNAM_EAX))->reg_name,
6633 register_prefix,
6634 i.op[op].regs->reg_name,
6635 i.suffix);
6636 #endif
6637 continue;
6638 }
6639 /* Any other register is bad. */
6640 if (i.types[op].bitfield.class == Reg
6641 || i.types[op].bitfield.class == RegMMX
6642 || i.types[op].bitfield.class == RegSIMD
6643 || i.types[op].bitfield.class == SReg
6644 || i.types[op].bitfield.class == RegCR
6645 || i.types[op].bitfield.class == RegDR
6646 || i.types[op].bitfield.class == RegTR)
6647 {
6648 as_bad (_("`%s%s' not allowed with `%s%c'"),
6649 register_prefix,
6650 i.op[op].regs->reg_name,
6651 i.tm.name,
6652 i.suffix);
6653 return 0;
6654 }
6655 }
6656 return 1;
6657 }
6658
6659 static int
6660 check_long_reg (void)
6661 {
6662 int op;
6663
6664 for (op = i.operands; --op >= 0;)
6665 /* Skip non-register operands. */
6666 if (i.types[op].bitfield.class != Reg)
6667 continue;
6668 /* Reject eight bit registers, except where the template requires
6669 them. (eg. movzb) */
6670 else if (i.types[op].bitfield.byte
6671 && (i.tm.operand_types[op].bitfield.class == Reg
6672 || i.tm.operand_types[op].bitfield.instance == Accum)
6673 && (i.tm.operand_types[op].bitfield.word
6674 || i.tm.operand_types[op].bitfield.dword))
6675 {
6676 as_bad (_("`%s%s' not allowed with `%s%c'"),
6677 register_prefix,
6678 i.op[op].regs->reg_name,
6679 i.tm.name,
6680 i.suffix);
6681 return 0;
6682 }
6683 /* Error if the e prefix on a general reg is missing. */
6684 else if (i.types[op].bitfield.word
6685 && (i.tm.operand_types[op].bitfield.class == Reg
6686 || i.tm.operand_types[op].bitfield.instance == Accum)
6687 && i.tm.operand_types[op].bitfield.dword)
6688 {
6689 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
6690 register_prefix, i.op[op].regs->reg_name,
6691 i.suffix);
6692 return 0;
6693 }
6694 /* Warn if the r prefix on a general reg is present. */
6695 else if (i.types[op].bitfield.qword
6696 && (i.tm.operand_types[op].bitfield.class == Reg
6697 || i.tm.operand_types[op].bitfield.instance == Accum)
6698 && i.tm.operand_types[op].bitfield.dword)
6699 {
6700 if (intel_syntax
6701 && (i.tm.opcode_modifier.toqword
6702 /* Also convert to QWORD for MOVSXD. */
6703 || i.tm.base_opcode == 0x63)
6704 && i.types[0].bitfield.class != RegSIMD)
6705 {
6706 /* Convert to QWORD. We want REX byte. */
6707 i.suffix = QWORD_MNEM_SUFFIX;
6708 }
6709 else
6710 {
6711 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
6712 register_prefix, i.op[op].regs->reg_name,
6713 i.suffix);
6714 return 0;
6715 }
6716 }
6717 return 1;
6718 }
6719
6720 static int
6721 check_qword_reg (void)
6722 {
6723 int op;
6724
6725 for (op = i.operands; --op >= 0; )
6726 /* Skip non-register operands. */
6727 if (i.types[op].bitfield.class != Reg)
6728 continue;
6729 /* Reject eight bit registers, except where the template requires
6730 them. (eg. movzb) */
6731 else if (i.types[op].bitfield.byte
6732 && (i.tm.operand_types[op].bitfield.class == Reg
6733 || i.tm.operand_types[op].bitfield.instance == Accum)
6734 && (i.tm.operand_types[op].bitfield.word
6735 || i.tm.operand_types[op].bitfield.dword))
6736 {
6737 as_bad (_("`%s%s' not allowed with `%s%c'"),
6738 register_prefix,
6739 i.op[op].regs->reg_name,
6740 i.tm.name,
6741 i.suffix);
6742 return 0;
6743 }
6744 /* Warn if the r prefix on a general reg is missing. */
6745 else if ((i.types[op].bitfield.word
6746 || i.types[op].bitfield.dword)
6747 && (i.tm.operand_types[op].bitfield.class == Reg
6748 || i.tm.operand_types[op].bitfield.instance == Accum)
6749 && i.tm.operand_types[op].bitfield.qword)
6750 {
6751 /* Prohibit these changes in the 64bit mode, since the
6752 lowering is more complicated. */
6753 if (intel_syntax
6754 && i.tm.opcode_modifier.todword
6755 && i.types[0].bitfield.class != RegSIMD)
6756 {
6757 /* Convert to DWORD. We don't want REX byte. */
6758 i.suffix = LONG_MNEM_SUFFIX;
6759 }
6760 else
6761 {
6762 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
6763 register_prefix, i.op[op].regs->reg_name,
6764 i.suffix);
6765 return 0;
6766 }
6767 }
6768 return 1;
6769 }
6770
6771 static int
6772 check_word_reg (void)
6773 {
6774 int op;
6775 for (op = i.operands; --op >= 0;)
6776 /* Skip non-register operands. */
6777 if (i.types[op].bitfield.class != Reg)
6778 continue;
6779 /* Reject eight bit registers, except where the template requires
6780 them. (eg. movzb) */
6781 else if (i.types[op].bitfield.byte
6782 && (i.tm.operand_types[op].bitfield.class == Reg
6783 || i.tm.operand_types[op].bitfield.instance == Accum)
6784 && (i.tm.operand_types[op].bitfield.word
6785 || i.tm.operand_types[op].bitfield.dword))
6786 {
6787 as_bad (_("`%s%s' not allowed with `%s%c'"),
6788 register_prefix,
6789 i.op[op].regs->reg_name,
6790 i.tm.name,
6791 i.suffix);
6792 return 0;
6793 }
6794 /* Warn if the e or r prefix on a general reg is present. */
6795 else if ((!quiet_warnings || flag_code == CODE_64BIT)
6796 && (i.types[op].bitfield.dword
6797 || i.types[op].bitfield.qword)
6798 && (i.tm.operand_types[op].bitfield.class == Reg
6799 || i.tm.operand_types[op].bitfield.instance == Accum)
6800 && i.tm.operand_types[op].bitfield.word)
6801 {
6802 /* Prohibit these changes in the 64bit mode, since the
6803 lowering is more complicated. */
6804 if (flag_code == CODE_64BIT)
6805 {
6806 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
6807 register_prefix, i.op[op].regs->reg_name,
6808 i.suffix);
6809 return 0;
6810 }
6811 #if REGISTER_WARNINGS
6812 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
6813 register_prefix,
6814 (i.op[op].regs + REGNAM_AX - REGNAM_EAX)->reg_name,
6815 register_prefix, i.op[op].regs->reg_name, i.suffix);
6816 #endif
6817 }
6818 return 1;
6819 }
6820
6821 static int
6822 update_imm (unsigned int j)
6823 {
6824 i386_operand_type overlap = i.types[j];
6825 if ((overlap.bitfield.imm8
6826 || overlap.bitfield.imm8s
6827 || overlap.bitfield.imm16
6828 || overlap.bitfield.imm32
6829 || overlap.bitfield.imm32s
6830 || overlap.bitfield.imm64)
6831 && !operand_type_equal (&overlap, &imm8)
6832 && !operand_type_equal (&overlap, &imm8s)
6833 && !operand_type_equal (&overlap, &imm16)
6834 && !operand_type_equal (&overlap, &imm32)
6835 && !operand_type_equal (&overlap, &imm32s)
6836 && !operand_type_equal (&overlap, &imm64))
6837 {
6838 if (i.suffix)
6839 {
6840 i386_operand_type temp;
6841
6842 operand_type_set (&temp, 0);
6843 if (i.suffix == BYTE_MNEM_SUFFIX)
6844 {
6845 temp.bitfield.imm8 = overlap.bitfield.imm8;
6846 temp.bitfield.imm8s = overlap.bitfield.imm8s;
6847 }
6848 else if (i.suffix == WORD_MNEM_SUFFIX)
6849 temp.bitfield.imm16 = overlap.bitfield.imm16;
6850 else if (i.suffix == QWORD_MNEM_SUFFIX)
6851 {
6852 temp.bitfield.imm64 = overlap.bitfield.imm64;
6853 temp.bitfield.imm32s = overlap.bitfield.imm32s;
6854 }
6855 else
6856 temp.bitfield.imm32 = overlap.bitfield.imm32;
6857 overlap = temp;
6858 }
6859 else if (operand_type_equal (&overlap, &imm16_32_32s)
6860 || operand_type_equal (&overlap, &imm16_32)
6861 || operand_type_equal (&overlap, &imm16_32s))
6862 {
6863 if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
6864 overlap = imm16;
6865 else
6866 overlap = imm32s;
6867 }
6868 if (!operand_type_equal (&overlap, &imm8)
6869 && !operand_type_equal (&overlap, &imm8s)
6870 && !operand_type_equal (&overlap, &imm16)
6871 && !operand_type_equal (&overlap, &imm32)
6872 && !operand_type_equal (&overlap, &imm32s)
6873 && !operand_type_equal (&overlap, &imm64))
6874 {
6875 as_bad (_("no instruction mnemonic suffix given; "
6876 "can't determine immediate size"));
6877 return 0;
6878 }
6879 }
6880 i.types[j] = overlap;
6881
6882 return 1;
6883 }
6884
6885 static int
6886 finalize_imm (void)
6887 {
6888 unsigned int j, n;
6889
6890 /* Update the first 2 immediate operands. */
6891 n = i.operands > 2 ? 2 : i.operands;
6892 if (n)
6893 {
6894 for (j = 0; j < n; j++)
6895 if (update_imm (j) == 0)
6896 return 0;
6897
6898 /* The 3rd operand can't be immediate operand. */
6899 gas_assert (operand_type_check (i.types[2], imm) == 0);
6900 }
6901
6902 return 1;
6903 }
6904
6905 static int
6906 process_operands (void)
6907 {
6908 /* Default segment register this instruction will use for memory
6909 accesses. 0 means unknown. This is only for optimizing out
6910 unnecessary segment overrides. */
6911 const seg_entry *default_seg = 0;
6912
6913 if (i.tm.opcode_modifier.sse2avx && i.tm.opcode_modifier.vexvvvv)
6914 {
6915 unsigned int dupl = i.operands;
6916 unsigned int dest = dupl - 1;
6917 unsigned int j;
6918
6919 /* The destination must be an xmm register. */
6920 gas_assert (i.reg_operands
6921 && MAX_OPERANDS > dupl
6922 && operand_type_equal (&i.types[dest], &regxmm));
6923
6924 if (i.tm.operand_types[0].bitfield.instance == Accum
6925 && i.tm.operand_types[0].bitfield.xmmword)
6926 {
6927 if (i.tm.opcode_modifier.vexsources == VEX3SOURCES)
6928 {
6929 /* Keep xmm0 for instructions with VEX prefix and 3
6930 sources. */
6931 i.tm.operand_types[0].bitfield.instance = InstanceNone;
6932 i.tm.operand_types[0].bitfield.class = RegSIMD;
6933 goto duplicate;
6934 }
6935 else
6936 {
6937 /* We remove the first xmm0 and keep the number of
6938 operands unchanged, which in fact duplicates the
6939 destination. */
6940 for (j = 1; j < i.operands; j++)
6941 {
6942 i.op[j - 1] = i.op[j];
6943 i.types[j - 1] = i.types[j];
6944 i.tm.operand_types[j - 1] = i.tm.operand_types[j];
6945 i.flags[j - 1] = i.flags[j];
6946 }
6947 }
6948 }
6949 else if (i.tm.opcode_modifier.implicit1stxmm0)
6950 {
6951 gas_assert ((MAX_OPERANDS - 1) > dupl
6952 && (i.tm.opcode_modifier.vexsources
6953 == VEX3SOURCES));
6954
6955 /* Add the implicit xmm0 for instructions with VEX prefix
6956 and 3 sources. */
6957 for (j = i.operands; j > 0; j--)
6958 {
6959 i.op[j] = i.op[j - 1];
6960 i.types[j] = i.types[j - 1];
6961 i.tm.operand_types[j] = i.tm.operand_types[j - 1];
6962 i.flags[j] = i.flags[j - 1];
6963 }
6964 i.op[0].regs
6965 = (const reg_entry *) hash_find (reg_hash, "xmm0");
6966 i.types[0] = regxmm;
6967 i.tm.operand_types[0] = regxmm;
6968
6969 i.operands += 2;
6970 i.reg_operands += 2;
6971 i.tm.operands += 2;
6972
6973 dupl++;
6974 dest++;
6975 i.op[dupl] = i.op[dest];
6976 i.types[dupl] = i.types[dest];
6977 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
6978 i.flags[dupl] = i.flags[dest];
6979 }
6980 else
6981 {
6982 duplicate:
6983 i.operands++;
6984 i.reg_operands++;
6985 i.tm.operands++;
6986
6987 i.op[dupl] = i.op[dest];
6988 i.types[dupl] = i.types[dest];
6989 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
6990 i.flags[dupl] = i.flags[dest];
6991 }
6992
6993 if (i.tm.opcode_modifier.immext)
6994 process_immext ();
6995 }
6996 else if (i.tm.operand_types[0].bitfield.instance == Accum
6997 && i.tm.operand_types[0].bitfield.xmmword)
6998 {
6999 unsigned int j;
7000
7001 for (j = 1; j < i.operands; j++)
7002 {
7003 i.op[j - 1] = i.op[j];
7004 i.types[j - 1] = i.types[j];
7005
7006 /* We need to adjust fields in i.tm since they are used by
7007 build_modrm_byte. */
7008 i.tm.operand_types [j - 1] = i.tm.operand_types [j];
7009
7010 i.flags[j - 1] = i.flags[j];
7011 }
7012
7013 i.operands--;
7014 i.reg_operands--;
7015 i.tm.operands--;
7016 }
7017 else if (i.tm.opcode_modifier.implicitquadgroup)
7018 {
7019 unsigned int regnum, first_reg_in_group, last_reg_in_group;
7020
7021 /* The second operand must be {x,y,z}mmN, where N is a multiple of 4. */
7022 gas_assert (i.operands >= 2 && i.types[1].bitfield.class == RegSIMD);
7023 regnum = register_number (i.op[1].regs);
7024 first_reg_in_group = regnum & ~3;
7025 last_reg_in_group = first_reg_in_group + 3;
7026 if (regnum != first_reg_in_group)
7027 as_warn (_("source register `%s%s' implicitly denotes"
7028 " `%s%.3s%u' to `%s%.3s%u' source group in `%s'"),
7029 register_prefix, i.op[1].regs->reg_name,
7030 register_prefix, i.op[1].regs->reg_name, first_reg_in_group,
7031 register_prefix, i.op[1].regs->reg_name, last_reg_in_group,
7032 i.tm.name);
7033 }
7034 else if (i.tm.opcode_modifier.regkludge)
7035 {
7036 /* The imul $imm, %reg instruction is converted into
7037 imul $imm, %reg, %reg, and the clr %reg instruction
7038 is converted into xor %reg, %reg. */
7039
7040 unsigned int first_reg_op;
7041
7042 if (operand_type_check (i.types[0], reg))
7043 first_reg_op = 0;
7044 else
7045 first_reg_op = 1;
7046 /* Pretend we saw the extra register operand. */
7047 gas_assert (i.reg_operands == 1
7048 && i.op[first_reg_op + 1].regs == 0);
7049 i.op[first_reg_op + 1].regs = i.op[first_reg_op].regs;
7050 i.types[first_reg_op + 1] = i.types[first_reg_op];
7051 i.operands++;
7052 i.reg_operands++;
7053 }
7054
7055 if (i.tm.opcode_modifier.modrm)
7056 {
7057 /* The opcode is completed (modulo i.tm.extension_opcode which
7058 must be put into the modrm byte). Now, we make the modrm and
7059 index base bytes based on all the info we've collected. */
7060
7061 default_seg = build_modrm_byte ();
7062 }
7063 else if (i.types[0].bitfield.class == SReg)
7064 {
7065 if (flag_code != CODE_64BIT
7066 ? i.tm.base_opcode == POP_SEG_SHORT
7067 && i.op[0].regs->reg_num == 1
7068 : (i.tm.base_opcode | 1) == POP_SEG386_SHORT
7069 && i.op[0].regs->reg_num < 4)
7070 {
7071 as_bad (_("you can't `%s %s%s'"),
7072 i.tm.name, register_prefix, i.op[0].regs->reg_name);
7073 return 0;
7074 }
7075 if ( i.op[0].regs->reg_num > 3 && i.tm.opcode_length == 1 )
7076 {
7077 i.tm.base_opcode ^= POP_SEG_SHORT ^ POP_SEG386_SHORT;
7078 i.tm.opcode_length = 2;
7079 }
7080 i.tm.base_opcode |= (i.op[0].regs->reg_num << 3);
7081 }
7082 else if ((i.tm.base_opcode & ~0x3) == MOV_AX_DISP32)
7083 {
7084 default_seg = &ds;
7085 }
7086 else if (i.tm.opcode_modifier.isstring)
7087 {
7088 /* For the string instructions that allow a segment override
7089 on one of their operands, the default segment is ds. */
7090 default_seg = &ds;
7091 }
7092 else if (i.tm.opcode_modifier.shortform)
7093 {
7094 /* The register or float register operand is in operand
7095 0 or 1. */
7096 unsigned int op = i.tm.operand_types[0].bitfield.class != Reg;
7097
7098 /* Register goes in low 3 bits of opcode. */
7099 i.tm.base_opcode |= i.op[op].regs->reg_num;
7100 if ((i.op[op].regs->reg_flags & RegRex) != 0)
7101 i.rex |= REX_B;
7102 if (!quiet_warnings && i.tm.opcode_modifier.ugh)
7103 {
7104 /* Warn about some common errors, but press on regardless.
7105 The first case can be generated by gcc (<= 2.8.1). */
7106 if (i.operands == 2)
7107 {
7108 /* Reversed arguments on faddp, fsubp, etc. */
7109 as_warn (_("translating to `%s %s%s,%s%s'"), i.tm.name,
7110 register_prefix, i.op[!intel_syntax].regs->reg_name,
7111 register_prefix, i.op[intel_syntax].regs->reg_name);
7112 }
7113 else
7114 {
7115 /* Extraneous `l' suffix on fp insn. */
7116 as_warn (_("translating to `%s %s%s'"), i.tm.name,
7117 register_prefix, i.op[0].regs->reg_name);
7118 }
7119 }
7120 }
7121
7122 if (i.tm.base_opcode == 0x8d /* lea */
7123 && i.seg[0]
7124 && !quiet_warnings)
7125 as_warn (_("segment override on `%s' is ineffectual"), i.tm.name);
7126
7127 /* If a segment was explicitly specified, and the specified segment
7128 is not the default, use an opcode prefix to select it. If we
7129 never figured out what the default segment is, then default_seg
7130 will be zero at this point, and the specified segment prefix will
7131 always be used. */
7132 if ((i.seg[0]) && (i.seg[0] != default_seg))
7133 {
7134 if (!add_prefix (i.seg[0]->seg_prefix))
7135 return 0;
7136 }
7137 return 1;
7138 }
7139
7140 static const seg_entry *
7141 build_modrm_byte (void)
7142 {
7143 const seg_entry *default_seg = 0;
7144 unsigned int source, dest;
7145 int vex_3_sources;
7146
7147 vex_3_sources = i.tm.opcode_modifier.vexsources == VEX3SOURCES;
7148 if (vex_3_sources)
7149 {
7150 unsigned int nds, reg_slot;
7151 expressionS *exp;
7152
7153 dest = i.operands - 1;
7154 nds = dest - 1;
7155
7156 /* There are 2 kinds of instructions:
7157 1. 5 operands: 4 register operands or 3 register operands
7158 plus 1 memory operand plus one Imm4 operand, VexXDS, and
7159 VexW0 or VexW1. The destination must be either XMM, YMM or
7160 ZMM register.
7161 2. 4 operands: 4 register operands or 3 register operands
7162 plus 1 memory operand, with VexXDS. */
7163 gas_assert ((i.reg_operands == 4
7164 || (i.reg_operands == 3 && i.mem_operands == 1))
7165 && i.tm.opcode_modifier.vexvvvv == VEXXDS
7166 && i.tm.opcode_modifier.vexw
7167 && i.tm.operand_types[dest].bitfield.class == RegSIMD);
7168
7169 /* If VexW1 is set, the first non-immediate operand is the source and
7170 the second non-immediate one is encoded in the immediate operand. */
7171 if (i.tm.opcode_modifier.vexw == VEXW1)
7172 {
7173 source = i.imm_operands;
7174 reg_slot = i.imm_operands + 1;
7175 }
7176 else
7177 {
7178 source = i.imm_operands + 1;
7179 reg_slot = i.imm_operands;
7180 }
7181
7182 if (i.imm_operands == 0)
7183 {
7184 /* When there is no immediate operand, generate an 8bit
7185 immediate operand to encode the first operand. */
7186 exp = &im_expressions[i.imm_operands++];
7187 i.op[i.operands].imms = exp;
7188 i.types[i.operands] = imm8;
7189 i.operands++;
7190
7191 gas_assert (i.tm.operand_types[reg_slot].bitfield.class == RegSIMD);
7192 exp->X_op = O_constant;
7193 exp->X_add_number = register_number (i.op[reg_slot].regs) << 4;
7194 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
7195 }
7196 else
7197 {
7198 gas_assert (i.imm_operands == 1);
7199 gas_assert (fits_in_imm4 (i.op[0].imms->X_add_number));
7200 gas_assert (!i.tm.opcode_modifier.immext);
7201
7202 /* Turn on Imm8 again so that output_imm will generate it. */
7203 i.types[0].bitfield.imm8 = 1;
7204
7205 gas_assert (i.tm.operand_types[reg_slot].bitfield.class == RegSIMD);
7206 i.op[0].imms->X_add_number
7207 |= register_number (i.op[reg_slot].regs) << 4;
7208 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
7209 }
7210
7211 gas_assert (i.tm.operand_types[nds].bitfield.class == RegSIMD);
7212 i.vex.register_specifier = i.op[nds].regs;
7213 }
7214 else
7215 source = dest = 0;
7216
7217 /* i.reg_operands MUST be the number of real register operands;
7218 implicit registers do not count. If there are 3 register
7219 operands, it must be a instruction with VexNDS. For a
7220 instruction with VexNDD, the destination register is encoded
7221 in VEX prefix. If there are 4 register operands, it must be
7222 a instruction with VEX prefix and 3 sources. */
7223 if (i.mem_operands == 0
7224 && ((i.reg_operands == 2
7225 && i.tm.opcode_modifier.vexvvvv <= VEXXDS)
7226 || (i.reg_operands == 3
7227 && i.tm.opcode_modifier.vexvvvv == VEXXDS)
7228 || (i.reg_operands == 4 && vex_3_sources)))
7229 {
7230 switch (i.operands)
7231 {
7232 case 2:
7233 source = 0;
7234 break;
7235 case 3:
7236 /* When there are 3 operands, one of them may be immediate,
7237 which may be the first or the last operand. Otherwise,
7238 the first operand must be shift count register (cl) or it
7239 is an instruction with VexNDS. */
7240 gas_assert (i.imm_operands == 1
7241 || (i.imm_operands == 0
7242 && (i.tm.opcode_modifier.vexvvvv == VEXXDS
7243 || (i.types[0].bitfield.instance == RegC
7244 && i.types[0].bitfield.byte))));
7245 if (operand_type_check (i.types[0], imm)
7246 || (i.types[0].bitfield.instance == RegC
7247 && i.types[0].bitfield.byte))
7248 source = 1;
7249 else
7250 source = 0;
7251 break;
7252 case 4:
7253 /* When there are 4 operands, the first two must be 8bit
7254 immediate operands. The source operand will be the 3rd
7255 one.
7256
7257 For instructions with VexNDS, if the first operand
7258 an imm8, the source operand is the 2nd one. If the last
7259 operand is imm8, the source operand is the first one. */
7260 gas_assert ((i.imm_operands == 2
7261 && i.types[0].bitfield.imm8
7262 && i.types[1].bitfield.imm8)
7263 || (i.tm.opcode_modifier.vexvvvv == VEXXDS
7264 && i.imm_operands == 1
7265 && (i.types[0].bitfield.imm8
7266 || i.types[i.operands - 1].bitfield.imm8
7267 || i.rounding)));
7268 if (i.imm_operands == 2)
7269 source = 2;
7270 else
7271 {
7272 if (i.types[0].bitfield.imm8)
7273 source = 1;
7274 else
7275 source = 0;
7276 }
7277 break;
7278 case 5:
7279 if (is_evex_encoding (&i.tm))
7280 {
7281 /* For EVEX instructions, when there are 5 operands, the
7282 first one must be immediate operand. If the second one
7283 is immediate operand, the source operand is the 3th
7284 one. If the last one is immediate operand, the source
7285 operand is the 2nd one. */
7286 gas_assert (i.imm_operands == 2
7287 && i.tm.opcode_modifier.sae
7288 && operand_type_check (i.types[0], imm));
7289 if (operand_type_check (i.types[1], imm))
7290 source = 2;
7291 else if (operand_type_check (i.types[4], imm))
7292 source = 1;
7293 else
7294 abort ();
7295 }
7296 break;
7297 default:
7298 abort ();
7299 }
7300
7301 if (!vex_3_sources)
7302 {
7303 dest = source + 1;
7304
7305 /* RC/SAE operand could be between DEST and SRC. That happens
7306 when one operand is GPR and the other one is XMM/YMM/ZMM
7307 register. */
7308 if (i.rounding && i.rounding->operand == (int) dest)
7309 dest++;
7310
7311 if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
7312 {
7313 /* For instructions with VexNDS, the register-only source
7314 operand must be a 32/64bit integer, XMM, YMM, ZMM, or mask
7315 register. It is encoded in VEX prefix. */
7316
7317 i386_operand_type op;
7318 unsigned int vvvv;
7319
7320 /* Check register-only source operand when two source
7321 operands are swapped. */
7322 if (!i.tm.operand_types[source].bitfield.baseindex
7323 && i.tm.operand_types[dest].bitfield.baseindex)
7324 {
7325 vvvv = source;
7326 source = dest;
7327 }
7328 else
7329 vvvv = dest;
7330
7331 op = i.tm.operand_types[vvvv];
7332 if ((dest + 1) >= i.operands
7333 || ((op.bitfield.class != Reg
7334 || (!op.bitfield.dword && !op.bitfield.qword))
7335 && op.bitfield.class != RegSIMD
7336 && !operand_type_equal (&op, &regmask)))
7337 abort ();
7338 i.vex.register_specifier = i.op[vvvv].regs;
7339 dest++;
7340 }
7341 }
7342
7343 i.rm.mode = 3;
7344 /* One of the register operands will be encoded in the i.rm.reg
7345 field, the other in the combined i.rm.mode and i.rm.regmem
7346 fields. If no form of this instruction supports a memory
7347 destination operand, then we assume the source operand may
7348 sometimes be a memory operand and so we need to store the
7349 destination in the i.rm.reg field. */
7350 if (!i.tm.opcode_modifier.regmem
7351 && operand_type_check (i.tm.operand_types[dest], anymem) == 0)
7352 {
7353 i.rm.reg = i.op[dest].regs->reg_num;
7354 i.rm.regmem = i.op[source].regs->reg_num;
7355 if (i.op[dest].regs->reg_type.bitfield.class == RegMMX
7356 || i.op[source].regs->reg_type.bitfield.class == RegMMX)
7357 i.has_regmmx = TRUE;
7358 else if (i.op[dest].regs->reg_type.bitfield.class == RegSIMD
7359 || i.op[source].regs->reg_type.bitfield.class == RegSIMD)
7360 {
7361 if (i.types[dest].bitfield.zmmword
7362 || i.types[source].bitfield.zmmword)
7363 i.has_regzmm = TRUE;
7364 else if (i.types[dest].bitfield.ymmword
7365 || i.types[source].bitfield.ymmword)
7366 i.has_regymm = TRUE;
7367 else
7368 i.has_regxmm = TRUE;
7369 }
7370 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
7371 i.rex |= REX_R;
7372 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
7373 i.vrex |= REX_R;
7374 if ((i.op[source].regs->reg_flags & RegRex) != 0)
7375 i.rex |= REX_B;
7376 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
7377 i.vrex |= REX_B;
7378 }
7379 else
7380 {
7381 i.rm.reg = i.op[source].regs->reg_num;
7382 i.rm.regmem = i.op[dest].regs->reg_num;
7383 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
7384 i.rex |= REX_B;
7385 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
7386 i.vrex |= REX_B;
7387 if ((i.op[source].regs->reg_flags & RegRex) != 0)
7388 i.rex |= REX_R;
7389 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
7390 i.vrex |= REX_R;
7391 }
7392 if (flag_code != CODE_64BIT && (i.rex & REX_R))
7393 {
7394 if (i.types[!i.tm.opcode_modifier.regmem].bitfield.class != RegCR)
7395 abort ();
7396 i.rex &= ~REX_R;
7397 add_prefix (LOCK_PREFIX_OPCODE);
7398 }
7399 }
7400 else
7401 { /* If it's not 2 reg operands... */
7402 unsigned int mem;
7403
7404 if (i.mem_operands)
7405 {
7406 unsigned int fake_zero_displacement = 0;
7407 unsigned int op;
7408
7409 for (op = 0; op < i.operands; op++)
7410 if (i.flags[op] & Operand_Mem)
7411 break;
7412 gas_assert (op < i.operands);
7413
7414 if (i.tm.opcode_modifier.vecsib)
7415 {
7416 if (i.index_reg->reg_num == RegIZ)
7417 abort ();
7418
7419 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7420 if (!i.base_reg)
7421 {
7422 i.sib.base = NO_BASE_REGISTER;
7423 i.sib.scale = i.log2_scale_factor;
7424 i.types[op].bitfield.disp8 = 0;
7425 i.types[op].bitfield.disp16 = 0;
7426 i.types[op].bitfield.disp64 = 0;
7427 if (flag_code != CODE_64BIT || i.prefix[ADDR_PREFIX])
7428 {
7429 /* Must be 32 bit */
7430 i.types[op].bitfield.disp32 = 1;
7431 i.types[op].bitfield.disp32s = 0;
7432 }
7433 else
7434 {
7435 i.types[op].bitfield.disp32 = 0;
7436 i.types[op].bitfield.disp32s = 1;
7437 }
7438 }
7439 i.sib.index = i.index_reg->reg_num;
7440 if ((i.index_reg->reg_flags & RegRex) != 0)
7441 i.rex |= REX_X;
7442 if ((i.index_reg->reg_flags & RegVRex) != 0)
7443 i.vrex |= REX_X;
7444 }
7445
7446 default_seg = &ds;
7447
7448 if (i.base_reg == 0)
7449 {
7450 i.rm.mode = 0;
7451 if (!i.disp_operands)
7452 fake_zero_displacement = 1;
7453 if (i.index_reg == 0)
7454 {
7455 i386_operand_type newdisp;
7456
7457 gas_assert (!i.tm.opcode_modifier.vecsib);
7458 /* Operand is just <disp> */
7459 if (flag_code == CODE_64BIT)
7460 {
7461 /* 64bit mode overwrites the 32bit absolute
7462 addressing by RIP relative addressing and
7463 absolute addressing is encoded by one of the
7464 redundant SIB forms. */
7465 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7466 i.sib.base = NO_BASE_REGISTER;
7467 i.sib.index = NO_INDEX_REGISTER;
7468 newdisp = (!i.prefix[ADDR_PREFIX] ? disp32s : disp32);
7469 }
7470 else if ((flag_code == CODE_16BIT)
7471 ^ (i.prefix[ADDR_PREFIX] != 0))
7472 {
7473 i.rm.regmem = NO_BASE_REGISTER_16;
7474 newdisp = disp16;
7475 }
7476 else
7477 {
7478 i.rm.regmem = NO_BASE_REGISTER;
7479 newdisp = disp32;
7480 }
7481 i.types[op] = operand_type_and_not (i.types[op], anydisp);
7482 i.types[op] = operand_type_or (i.types[op], newdisp);
7483 }
7484 else if (!i.tm.opcode_modifier.vecsib)
7485 {
7486 /* !i.base_reg && i.index_reg */
7487 if (i.index_reg->reg_num == RegIZ)
7488 i.sib.index = NO_INDEX_REGISTER;
7489 else
7490 i.sib.index = i.index_reg->reg_num;
7491 i.sib.base = NO_BASE_REGISTER;
7492 i.sib.scale = i.log2_scale_factor;
7493 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7494 i.types[op].bitfield.disp8 = 0;
7495 i.types[op].bitfield.disp16 = 0;
7496 i.types[op].bitfield.disp64 = 0;
7497 if (flag_code != CODE_64BIT || i.prefix[ADDR_PREFIX])
7498 {
7499 /* Must be 32 bit */
7500 i.types[op].bitfield.disp32 = 1;
7501 i.types[op].bitfield.disp32s = 0;
7502 }
7503 else
7504 {
7505 i.types[op].bitfield.disp32 = 0;
7506 i.types[op].bitfield.disp32s = 1;
7507 }
7508 if ((i.index_reg->reg_flags & RegRex) != 0)
7509 i.rex |= REX_X;
7510 }
7511 }
7512 /* RIP addressing for 64bit mode. */
7513 else if (i.base_reg->reg_num == RegIP)
7514 {
7515 gas_assert (!i.tm.opcode_modifier.vecsib);
7516 i.rm.regmem = NO_BASE_REGISTER;
7517 i.types[op].bitfield.disp8 = 0;
7518 i.types[op].bitfield.disp16 = 0;
7519 i.types[op].bitfield.disp32 = 0;
7520 i.types[op].bitfield.disp32s = 1;
7521 i.types[op].bitfield.disp64 = 0;
7522 i.flags[op] |= Operand_PCrel;
7523 if (! i.disp_operands)
7524 fake_zero_displacement = 1;
7525 }
7526 else if (i.base_reg->reg_type.bitfield.word)
7527 {
7528 gas_assert (!i.tm.opcode_modifier.vecsib);
7529 switch (i.base_reg->reg_num)
7530 {
7531 case 3: /* (%bx) */
7532 if (i.index_reg == 0)
7533 i.rm.regmem = 7;
7534 else /* (%bx,%si) -> 0, or (%bx,%di) -> 1 */
7535 i.rm.regmem = i.index_reg->reg_num - 6;
7536 break;
7537 case 5: /* (%bp) */
7538 default_seg = &ss;
7539 if (i.index_reg == 0)
7540 {
7541 i.rm.regmem = 6;
7542 if (operand_type_check (i.types[op], disp) == 0)
7543 {
7544 /* fake (%bp) into 0(%bp) */
7545 i.types[op].bitfield.disp8 = 1;
7546 fake_zero_displacement = 1;
7547 }
7548 }
7549 else /* (%bp,%si) -> 2, or (%bp,%di) -> 3 */
7550 i.rm.regmem = i.index_reg->reg_num - 6 + 2;
7551 break;
7552 default: /* (%si) -> 4 or (%di) -> 5 */
7553 i.rm.regmem = i.base_reg->reg_num - 6 + 4;
7554 }
7555 i.rm.mode = mode_from_disp_size (i.types[op]);
7556 }
7557 else /* i.base_reg and 32/64 bit mode */
7558 {
7559 if (flag_code == CODE_64BIT
7560 && operand_type_check (i.types[op], disp))
7561 {
7562 i.types[op].bitfield.disp16 = 0;
7563 i.types[op].bitfield.disp64 = 0;
7564 if (i.prefix[ADDR_PREFIX] == 0)
7565 {
7566 i.types[op].bitfield.disp32 = 0;
7567 i.types[op].bitfield.disp32s = 1;
7568 }
7569 else
7570 {
7571 i.types[op].bitfield.disp32 = 1;
7572 i.types[op].bitfield.disp32s = 0;
7573 }
7574 }
7575
7576 if (!i.tm.opcode_modifier.vecsib)
7577 i.rm.regmem = i.base_reg->reg_num;
7578 if ((i.base_reg->reg_flags & RegRex) != 0)
7579 i.rex |= REX_B;
7580 i.sib.base = i.base_reg->reg_num;
7581 /* x86-64 ignores REX prefix bit here to avoid decoder
7582 complications. */
7583 if (!(i.base_reg->reg_flags & RegRex)
7584 && (i.base_reg->reg_num == EBP_REG_NUM
7585 || i.base_reg->reg_num == ESP_REG_NUM))
7586 default_seg = &ss;
7587 if (i.base_reg->reg_num == 5 && i.disp_operands == 0)
7588 {
7589 fake_zero_displacement = 1;
7590 i.types[op].bitfield.disp8 = 1;
7591 }
7592 i.sib.scale = i.log2_scale_factor;
7593 if (i.index_reg == 0)
7594 {
7595 gas_assert (!i.tm.opcode_modifier.vecsib);
7596 /* <disp>(%esp) becomes two byte modrm with no index
7597 register. We've already stored the code for esp
7598 in i.rm.regmem ie. ESCAPE_TO_TWO_BYTE_ADDRESSING.
7599 Any base register besides %esp will not use the
7600 extra modrm byte. */
7601 i.sib.index = NO_INDEX_REGISTER;
7602 }
7603 else if (!i.tm.opcode_modifier.vecsib)
7604 {
7605 if (i.index_reg->reg_num == RegIZ)
7606 i.sib.index = NO_INDEX_REGISTER;
7607 else
7608 i.sib.index = i.index_reg->reg_num;
7609 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7610 if ((i.index_reg->reg_flags & RegRex) != 0)
7611 i.rex |= REX_X;
7612 }
7613
7614 if (i.disp_operands
7615 && (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
7616 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL))
7617 i.rm.mode = 0;
7618 else
7619 {
7620 if (!fake_zero_displacement
7621 && !i.disp_operands
7622 && i.disp_encoding)
7623 {
7624 fake_zero_displacement = 1;
7625 if (i.disp_encoding == disp_encoding_8bit)
7626 i.types[op].bitfield.disp8 = 1;
7627 else
7628 i.types[op].bitfield.disp32 = 1;
7629 }
7630 i.rm.mode = mode_from_disp_size (i.types[op]);
7631 }
7632 }
7633
7634 if (fake_zero_displacement)
7635 {
7636 /* Fakes a zero displacement assuming that i.types[op]
7637 holds the correct displacement size. */
7638 expressionS *exp;
7639
7640 gas_assert (i.op[op].disps == 0);
7641 exp = &disp_expressions[i.disp_operands++];
7642 i.op[op].disps = exp;
7643 exp->X_op = O_constant;
7644 exp->X_add_number = 0;
7645 exp->X_add_symbol = (symbolS *) 0;
7646 exp->X_op_symbol = (symbolS *) 0;
7647 }
7648
7649 mem = op;
7650 }
7651 else
7652 mem = ~0;
7653
7654 if (i.tm.opcode_modifier.vexsources == XOP2SOURCES)
7655 {
7656 if (operand_type_check (i.types[0], imm))
7657 i.vex.register_specifier = NULL;
7658 else
7659 {
7660 /* VEX.vvvv encodes one of the sources when the first
7661 operand is not an immediate. */
7662 if (i.tm.opcode_modifier.vexw == VEXW0)
7663 i.vex.register_specifier = i.op[0].regs;
7664 else
7665 i.vex.register_specifier = i.op[1].regs;
7666 }
7667
7668 /* Destination is a XMM register encoded in the ModRM.reg
7669 and VEX.R bit. */
7670 i.rm.reg = i.op[2].regs->reg_num;
7671 if ((i.op[2].regs->reg_flags & RegRex) != 0)
7672 i.rex |= REX_R;
7673
7674 /* ModRM.rm and VEX.B encodes the other source. */
7675 if (!i.mem_operands)
7676 {
7677 i.rm.mode = 3;
7678
7679 if (i.tm.opcode_modifier.vexw == VEXW0)
7680 i.rm.regmem = i.op[1].regs->reg_num;
7681 else
7682 i.rm.regmem = i.op[0].regs->reg_num;
7683
7684 if ((i.op[1].regs->reg_flags & RegRex) != 0)
7685 i.rex |= REX_B;
7686 }
7687 }
7688 else if (i.tm.opcode_modifier.vexvvvv == VEXLWP)
7689 {
7690 i.vex.register_specifier = i.op[2].regs;
7691 if (!i.mem_operands)
7692 {
7693 i.rm.mode = 3;
7694 i.rm.regmem = i.op[1].regs->reg_num;
7695 if ((i.op[1].regs->reg_flags & RegRex) != 0)
7696 i.rex |= REX_B;
7697 }
7698 }
7699 /* Fill in i.rm.reg or i.rm.regmem field with register operand
7700 (if any) based on i.tm.extension_opcode. Again, we must be
7701 careful to make sure that segment/control/debug/test/MMX
7702 registers are coded into the i.rm.reg field. */
7703 else if (i.reg_operands)
7704 {
7705 unsigned int op;
7706 unsigned int vex_reg = ~0;
7707
7708 for (op = 0; op < i.operands; op++)
7709 {
7710 if (i.types[op].bitfield.class == Reg
7711 || i.types[op].bitfield.class == RegBND
7712 || i.types[op].bitfield.class == RegMask
7713 || i.types[op].bitfield.class == SReg
7714 || i.types[op].bitfield.class == RegCR
7715 || i.types[op].bitfield.class == RegDR
7716 || i.types[op].bitfield.class == RegTR)
7717 break;
7718 if (i.types[op].bitfield.class == RegSIMD)
7719 {
7720 if (i.types[op].bitfield.zmmword)
7721 i.has_regzmm = TRUE;
7722 else if (i.types[op].bitfield.ymmword)
7723 i.has_regymm = TRUE;
7724 else
7725 i.has_regxmm = TRUE;
7726 break;
7727 }
7728 if (i.types[op].bitfield.class == RegMMX)
7729 {
7730 i.has_regmmx = TRUE;
7731 break;
7732 }
7733 }
7734
7735 if (vex_3_sources)
7736 op = dest;
7737 else if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
7738 {
7739 /* For instructions with VexNDS, the register-only
7740 source operand is encoded in VEX prefix. */
7741 gas_assert (mem != (unsigned int) ~0);
7742
7743 if (op > mem)
7744 {
7745 vex_reg = op++;
7746 gas_assert (op < i.operands);
7747 }
7748 else
7749 {
7750 /* Check register-only source operand when two source
7751 operands are swapped. */
7752 if (!i.tm.operand_types[op].bitfield.baseindex
7753 && i.tm.operand_types[op + 1].bitfield.baseindex)
7754 {
7755 vex_reg = op;
7756 op += 2;
7757 gas_assert (mem == (vex_reg + 1)
7758 && op < i.operands);
7759 }
7760 else
7761 {
7762 vex_reg = op + 1;
7763 gas_assert (vex_reg < i.operands);
7764 }
7765 }
7766 }
7767 else if (i.tm.opcode_modifier.vexvvvv == VEXNDD)
7768 {
7769 /* For instructions with VexNDD, the register destination
7770 is encoded in VEX prefix. */
7771 if (i.mem_operands == 0)
7772 {
7773 /* There is no memory operand. */
7774 gas_assert ((op + 2) == i.operands);
7775 vex_reg = op + 1;
7776 }
7777 else
7778 {
7779 /* There are only 2 non-immediate operands. */
7780 gas_assert (op < i.imm_operands + 2
7781 && i.operands == i.imm_operands + 2);
7782 vex_reg = i.imm_operands + 1;
7783 }
7784 }
7785 else
7786 gas_assert (op < i.operands);
7787
7788 if (vex_reg != (unsigned int) ~0)
7789 {
7790 i386_operand_type *type = &i.tm.operand_types[vex_reg];
7791
7792 if ((type->bitfield.class != Reg
7793 || (!type->bitfield.dword && !type->bitfield.qword))
7794 && type->bitfield.class != RegSIMD
7795 && !operand_type_equal (type, &regmask))
7796 abort ();
7797
7798 i.vex.register_specifier = i.op[vex_reg].regs;
7799 }
7800
7801 /* Don't set OP operand twice. */
7802 if (vex_reg != op)
7803 {
7804 /* If there is an extension opcode to put here, the
7805 register number must be put into the regmem field. */
7806 if (i.tm.extension_opcode != None)
7807 {
7808 i.rm.regmem = i.op[op].regs->reg_num;
7809 if ((i.op[op].regs->reg_flags & RegRex) != 0)
7810 i.rex |= REX_B;
7811 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
7812 i.vrex |= REX_B;
7813 }
7814 else
7815 {
7816 i.rm.reg = i.op[op].regs->reg_num;
7817 if ((i.op[op].regs->reg_flags & RegRex) != 0)
7818 i.rex |= REX_R;
7819 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
7820 i.vrex |= REX_R;
7821 }
7822 }
7823
7824 /* Now, if no memory operand has set i.rm.mode = 0, 1, 2 we
7825 must set it to 3 to indicate this is a register operand
7826 in the regmem field. */
7827 if (!i.mem_operands)
7828 i.rm.mode = 3;
7829 }
7830
7831 /* Fill in i.rm.reg field with extension opcode (if any). */
7832 if (i.tm.extension_opcode != None)
7833 i.rm.reg = i.tm.extension_opcode;
7834 }
7835 return default_seg;
7836 }
7837
7838 static unsigned int
7839 flip_code16 (unsigned int code16)
7840 {
7841 gas_assert (i.tm.operands == 1);
7842
7843 return !(i.prefix[REX_PREFIX] & REX_W)
7844 && (code16 ? i.tm.operand_types[0].bitfield.disp32
7845 || i.tm.operand_types[0].bitfield.disp32s
7846 : i.tm.operand_types[0].bitfield.disp16)
7847 ? CODE16 : 0;
7848 }
7849
7850 static void
7851 output_branch (void)
7852 {
7853 char *p;
7854 int size;
7855 int code16;
7856 int prefix;
7857 relax_substateT subtype;
7858 symbolS *sym;
7859 offsetT off;
7860
7861 code16 = flag_code == CODE_16BIT ? CODE16 : 0;
7862 size = i.disp_encoding == disp_encoding_32bit ? BIG : SMALL;
7863
7864 prefix = 0;
7865 if (i.prefix[DATA_PREFIX] != 0)
7866 {
7867 prefix = 1;
7868 i.prefixes -= 1;
7869 code16 ^= flip_code16(code16);
7870 }
7871 /* Pentium4 branch hints. */
7872 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
7873 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
7874 {
7875 prefix++;
7876 i.prefixes--;
7877 }
7878 if (i.prefix[REX_PREFIX] != 0)
7879 {
7880 prefix++;
7881 i.prefixes--;
7882 }
7883
7884 /* BND prefixed jump. */
7885 if (i.prefix[BND_PREFIX] != 0)
7886 {
7887 prefix++;
7888 i.prefixes--;
7889 }
7890
7891 if (i.prefixes != 0)
7892 as_warn (_("skipping prefixes on `%s'"), i.tm.name);
7893
7894 /* It's always a symbol; End frag & setup for relax.
7895 Make sure there is enough room in this frag for the largest
7896 instruction we may generate in md_convert_frag. This is 2
7897 bytes for the opcode and room for the prefix and largest
7898 displacement. */
7899 frag_grow (prefix + 2 + 4);
7900 /* Prefix and 1 opcode byte go in fr_fix. */
7901 p = frag_more (prefix + 1);
7902 if (i.prefix[DATA_PREFIX] != 0)
7903 *p++ = DATA_PREFIX_OPCODE;
7904 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE
7905 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE)
7906 *p++ = i.prefix[SEG_PREFIX];
7907 if (i.prefix[BND_PREFIX] != 0)
7908 *p++ = BND_PREFIX_OPCODE;
7909 if (i.prefix[REX_PREFIX] != 0)
7910 *p++ = i.prefix[REX_PREFIX];
7911 *p = i.tm.base_opcode;
7912
7913 if ((unsigned char) *p == JUMP_PC_RELATIVE)
7914 subtype = ENCODE_RELAX_STATE (UNCOND_JUMP, size);
7915 else if (cpu_arch_flags.bitfield.cpui386)
7916 subtype = ENCODE_RELAX_STATE (COND_JUMP, size);
7917 else
7918 subtype = ENCODE_RELAX_STATE (COND_JUMP86, size);
7919 subtype |= code16;
7920
7921 sym = i.op[0].disps->X_add_symbol;
7922 off = i.op[0].disps->X_add_number;
7923
7924 if (i.op[0].disps->X_op != O_constant
7925 && i.op[0].disps->X_op != O_symbol)
7926 {
7927 /* Handle complex expressions. */
7928 sym = make_expr_symbol (i.op[0].disps);
7929 off = 0;
7930 }
7931
7932 /* 1 possible extra opcode + 4 byte displacement go in var part.
7933 Pass reloc in fr_var. */
7934 frag_var (rs_machine_dependent, 5, i.reloc[0], subtype, sym, off, p);
7935 }
7936
7937 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7938 /* Return TRUE iff PLT32 relocation should be used for branching to
7939 symbol S. */
7940
7941 static bfd_boolean
7942 need_plt32_p (symbolS *s)
7943 {
7944 /* PLT32 relocation is ELF only. */
7945 if (!IS_ELF)
7946 return FALSE;
7947
7948 #ifdef TE_SOLARIS
7949 /* Don't emit PLT32 relocation on Solaris: neither native linker nor
7950 krtld support it. */
7951 return FALSE;
7952 #endif
7953
7954 /* Since there is no need to prepare for PLT branch on x86-64, we
7955 can generate R_X86_64_PLT32, instead of R_X86_64_PC32, which can
7956 be used as a marker for 32-bit PC-relative branches. */
7957 if (!object_64bit)
7958 return FALSE;
7959
7960 /* Weak or undefined symbol need PLT32 relocation. */
7961 if (S_IS_WEAK (s) || !S_IS_DEFINED (s))
7962 return TRUE;
7963
7964 /* Non-global symbol doesn't need PLT32 relocation. */
7965 if (! S_IS_EXTERNAL (s))
7966 return FALSE;
7967
7968 /* Other global symbols need PLT32 relocation. NB: Symbol with
7969 non-default visibilities are treated as normal global symbol
7970 so that PLT32 relocation can be used as a marker for 32-bit
7971 PC-relative branches. It is useful for linker relaxation. */
7972 return TRUE;
7973 }
7974 #endif
7975
7976 static void
7977 output_jump (void)
7978 {
7979 char *p;
7980 int size;
7981 fixS *fixP;
7982 bfd_reloc_code_real_type jump_reloc = i.reloc[0];
7983
7984 if (i.tm.opcode_modifier.jump == JUMP_BYTE)
7985 {
7986 /* This is a loop or jecxz type instruction. */
7987 size = 1;
7988 if (i.prefix[ADDR_PREFIX] != 0)
7989 {
7990 FRAG_APPEND_1_CHAR (ADDR_PREFIX_OPCODE);
7991 i.prefixes -= 1;
7992 }
7993 /* Pentium4 branch hints. */
7994 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
7995 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
7996 {
7997 FRAG_APPEND_1_CHAR (i.prefix[SEG_PREFIX]);
7998 i.prefixes--;
7999 }
8000 }
8001 else
8002 {
8003 int code16;
8004
8005 code16 = 0;
8006 if (flag_code == CODE_16BIT)
8007 code16 = CODE16;
8008
8009 if (i.prefix[DATA_PREFIX] != 0)
8010 {
8011 FRAG_APPEND_1_CHAR (DATA_PREFIX_OPCODE);
8012 i.prefixes -= 1;
8013 code16 ^= flip_code16(code16);
8014 }
8015
8016 size = 4;
8017 if (code16)
8018 size = 2;
8019 }
8020
8021 /* BND prefixed jump. */
8022 if (i.prefix[BND_PREFIX] != 0)
8023 {
8024 FRAG_APPEND_1_CHAR (i.prefix[BND_PREFIX]);
8025 i.prefixes -= 1;
8026 }
8027
8028 if (i.prefix[REX_PREFIX] != 0)
8029 {
8030 FRAG_APPEND_1_CHAR (i.prefix[REX_PREFIX]);
8031 i.prefixes -= 1;
8032 }
8033
8034 if (i.prefixes != 0)
8035 as_warn (_("skipping prefixes on `%s'"), i.tm.name);
8036
8037 p = frag_more (i.tm.opcode_length + size);
8038 switch (i.tm.opcode_length)
8039 {
8040 case 2:
8041 *p++ = i.tm.base_opcode >> 8;
8042 /* Fall through. */
8043 case 1:
8044 *p++ = i.tm.base_opcode;
8045 break;
8046 default:
8047 abort ();
8048 }
8049
8050 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8051 if (size == 4
8052 && jump_reloc == NO_RELOC
8053 && need_plt32_p (i.op[0].disps->X_add_symbol))
8054 jump_reloc = BFD_RELOC_X86_64_PLT32;
8055 #endif
8056
8057 jump_reloc = reloc (size, 1, 1, jump_reloc);
8058
8059 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal, size,
8060 i.op[0].disps, 1, jump_reloc);
8061
8062 /* All jumps handled here are signed, but don't use a signed limit
8063 check for 32 and 16 bit jumps as we want to allow wrap around at
8064 4G and 64k respectively. */
8065 if (size == 1)
8066 fixP->fx_signed = 1;
8067 }
8068
8069 static void
8070 output_interseg_jump (void)
8071 {
8072 char *p;
8073 int size;
8074 int prefix;
8075 int code16;
8076
8077 code16 = 0;
8078 if (flag_code == CODE_16BIT)
8079 code16 = CODE16;
8080
8081 prefix = 0;
8082 if (i.prefix[DATA_PREFIX] != 0)
8083 {
8084 prefix = 1;
8085 i.prefixes -= 1;
8086 code16 ^= CODE16;
8087 }
8088
8089 gas_assert (!i.prefix[REX_PREFIX]);
8090
8091 size = 4;
8092 if (code16)
8093 size = 2;
8094
8095 if (i.prefixes != 0)
8096 as_warn (_("skipping prefixes on `%s'"), i.tm.name);
8097
8098 /* 1 opcode; 2 segment; offset */
8099 p = frag_more (prefix + 1 + 2 + size);
8100
8101 if (i.prefix[DATA_PREFIX] != 0)
8102 *p++ = DATA_PREFIX_OPCODE;
8103
8104 if (i.prefix[REX_PREFIX] != 0)
8105 *p++ = i.prefix[REX_PREFIX];
8106
8107 *p++ = i.tm.base_opcode;
8108 if (i.op[1].imms->X_op == O_constant)
8109 {
8110 offsetT n = i.op[1].imms->X_add_number;
8111
8112 if (size == 2
8113 && !fits_in_unsigned_word (n)
8114 && !fits_in_signed_word (n))
8115 {
8116 as_bad (_("16-bit jump out of range"));
8117 return;
8118 }
8119 md_number_to_chars (p, n, size);
8120 }
8121 else
8122 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
8123 i.op[1].imms, 0, reloc (size, 0, 0, i.reloc[1]));
8124 if (i.op[0].imms->X_op != O_constant)
8125 as_bad (_("can't handle non absolute segment in `%s'"),
8126 i.tm.name);
8127 md_number_to_chars (p + size, (valueT) i.op[0].imms->X_add_number, 2);
8128 }
8129
8130 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8131 void
8132 x86_cleanup (void)
8133 {
8134 char *p;
8135 asection *seg = now_seg;
8136 subsegT subseg = now_subseg;
8137 asection *sec;
8138 unsigned int alignment, align_size_1;
8139 unsigned int isa_1_descsz, feature_2_descsz, descsz;
8140 unsigned int isa_1_descsz_raw, feature_2_descsz_raw;
8141 unsigned int padding;
8142
8143 if (!IS_ELF || !x86_used_note)
8144 return;
8145
8146 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_X86;
8147
8148 /* The .note.gnu.property section layout:
8149
8150 Field Length Contents
8151 ---- ---- ----
8152 n_namsz 4 4
8153 n_descsz 4 The note descriptor size
8154 n_type 4 NT_GNU_PROPERTY_TYPE_0
8155 n_name 4 "GNU"
8156 n_desc n_descsz The program property array
8157 .... .... ....
8158 */
8159
8160 /* Create the .note.gnu.property section. */
8161 sec = subseg_new (NOTE_GNU_PROPERTY_SECTION_NAME, 0);
8162 bfd_set_section_flags (sec,
8163 (SEC_ALLOC
8164 | SEC_LOAD
8165 | SEC_DATA
8166 | SEC_HAS_CONTENTS
8167 | SEC_READONLY));
8168
8169 if (get_elf_backend_data (stdoutput)->s->elfclass == ELFCLASS64)
8170 {
8171 align_size_1 = 7;
8172 alignment = 3;
8173 }
8174 else
8175 {
8176 align_size_1 = 3;
8177 alignment = 2;
8178 }
8179
8180 bfd_set_section_alignment (sec, alignment);
8181 elf_section_type (sec) = SHT_NOTE;
8182
8183 /* GNU_PROPERTY_X86_ISA_1_USED: 4-byte type + 4-byte data size
8184 + 4-byte data */
8185 isa_1_descsz_raw = 4 + 4 + 4;
8186 /* Align GNU_PROPERTY_X86_ISA_1_USED. */
8187 isa_1_descsz = (isa_1_descsz_raw + align_size_1) & ~align_size_1;
8188
8189 feature_2_descsz_raw = isa_1_descsz;
8190 /* GNU_PROPERTY_X86_FEATURE_2_USED: 4-byte type + 4-byte data size
8191 + 4-byte data */
8192 feature_2_descsz_raw += 4 + 4 + 4;
8193 /* Align GNU_PROPERTY_X86_FEATURE_2_USED. */
8194 feature_2_descsz = ((feature_2_descsz_raw + align_size_1)
8195 & ~align_size_1);
8196
8197 descsz = feature_2_descsz;
8198 /* Section size: n_namsz + n_descsz + n_type + n_name + n_descsz. */
8199 p = frag_more (4 + 4 + 4 + 4 + descsz);
8200
8201 /* Write n_namsz. */
8202 md_number_to_chars (p, (valueT) 4, 4);
8203
8204 /* Write n_descsz. */
8205 md_number_to_chars (p + 4, (valueT) descsz, 4);
8206
8207 /* Write n_type. */
8208 md_number_to_chars (p + 4 * 2, (valueT) NT_GNU_PROPERTY_TYPE_0, 4);
8209
8210 /* Write n_name. */
8211 memcpy (p + 4 * 3, "GNU", 4);
8212
8213 /* Write 4-byte type. */
8214 md_number_to_chars (p + 4 * 4,
8215 (valueT) GNU_PROPERTY_X86_ISA_1_USED, 4);
8216
8217 /* Write 4-byte data size. */
8218 md_number_to_chars (p + 4 * 5, (valueT) 4, 4);
8219
8220 /* Write 4-byte data. */
8221 md_number_to_chars (p + 4 * 6, (valueT) x86_isa_1_used, 4);
8222
8223 /* Zero out paddings. */
8224 padding = isa_1_descsz - isa_1_descsz_raw;
8225 if (padding)
8226 memset (p + 4 * 7, 0, padding);
8227
8228 /* Write 4-byte type. */
8229 md_number_to_chars (p + isa_1_descsz + 4 * 4,
8230 (valueT) GNU_PROPERTY_X86_FEATURE_2_USED, 4);
8231
8232 /* Write 4-byte data size. */
8233 md_number_to_chars (p + isa_1_descsz + 4 * 5, (valueT) 4, 4);
8234
8235 /* Write 4-byte data. */
8236 md_number_to_chars (p + isa_1_descsz + 4 * 6,
8237 (valueT) x86_feature_2_used, 4);
8238
8239 /* Zero out paddings. */
8240 padding = feature_2_descsz - feature_2_descsz_raw;
8241 if (padding)
8242 memset (p + isa_1_descsz + 4 * 7, 0, padding);
8243
8244 /* We probably can't restore the current segment, for there likely
8245 isn't one yet... */
8246 if (seg && subseg)
8247 subseg_set (seg, subseg);
8248 }
8249 #endif
8250
8251 static unsigned int
8252 encoding_length (const fragS *start_frag, offsetT start_off,
8253 const char *frag_now_ptr)
8254 {
8255 unsigned int len = 0;
8256
8257 if (start_frag != frag_now)
8258 {
8259 const fragS *fr = start_frag;
8260
8261 do {
8262 len += fr->fr_fix;
8263 fr = fr->fr_next;
8264 } while (fr && fr != frag_now);
8265 }
8266
8267 return len - start_off + (frag_now_ptr - frag_now->fr_literal);
8268 }
8269
8270 /* Return 1 for test, and, cmp, add, sub, inc and dec which may
8271 be macro-fused with conditional jumps. */
8272
8273 static int
8274 maybe_fused_with_jcc_p (void)
8275 {
8276 /* No RIP address. */
8277 if (i.base_reg && i.base_reg->reg_num == RegIP)
8278 return 0;
8279
8280 /* No VEX/EVEX encoding. */
8281 if (is_any_vex_encoding (&i.tm))
8282 return 0;
8283
8284 /* and, add, sub with destination register. */
8285 if ((i.tm.base_opcode >= 0x20 && i.tm.base_opcode <= 0x25)
8286 || i.tm.base_opcode <= 5
8287 || (i.tm.base_opcode >= 0x28 && i.tm.base_opcode <= 0x2d)
8288 || ((i.tm.base_opcode | 3) == 0x83
8289 && ((i.tm.extension_opcode | 1) == 0x5
8290 || i.tm.extension_opcode == 0x0)))
8291 return (i.types[1].bitfield.class == Reg
8292 || i.types[1].bitfield.instance == Accum);
8293
8294 /* test, cmp with any register. */
8295 if ((i.tm.base_opcode | 1) == 0x85
8296 || (i.tm.base_opcode | 1) == 0xa9
8297 || ((i.tm.base_opcode | 1) == 0xf7
8298 && i.tm.extension_opcode == 0)
8299 || (i.tm.base_opcode >= 0x38 && i.tm.base_opcode <= 0x3d)
8300 || ((i.tm.base_opcode | 3) == 0x83
8301 && (i.tm.extension_opcode == 0x7)))
8302 return (i.types[0].bitfield.class == Reg
8303 || i.types[0].bitfield.instance == Accum
8304 || i.types[1].bitfield.class == Reg
8305 || i.types[1].bitfield.instance == Accum);
8306
8307 /* inc, dec with any register. */
8308 if ((i.tm.cpu_flags.bitfield.cpuno64
8309 && (i.tm.base_opcode | 0xf) == 0x4f)
8310 || ((i.tm.base_opcode | 1) == 0xff
8311 && i.tm.extension_opcode <= 0x1))
8312 return (i.types[0].bitfield.class == Reg
8313 || i.types[0].bitfield.instance == Accum);
8314
8315 return 0;
8316 }
8317
8318 /* Return 1 if a FUSED_JCC_PADDING frag should be generated. */
8319
8320 static int
8321 add_fused_jcc_padding_frag_p (void)
8322 {
8323 /* NB: Don't work with COND_JUMP86 without i386. */
8324 if (!align_branch_power
8325 || now_seg == absolute_section
8326 || !cpu_arch_flags.bitfield.cpui386
8327 || !(align_branch & align_branch_fused_bit))
8328 return 0;
8329
8330 if (maybe_fused_with_jcc_p ())
8331 {
8332 if (last_insn.kind == last_insn_other
8333 || last_insn.seg != now_seg)
8334 return 1;
8335 if (flag_debug)
8336 as_warn_where (last_insn.file, last_insn.line,
8337 _("`%s` skips -malign-branch-boundary on `%s`"),
8338 last_insn.name, i.tm.name);
8339 }
8340
8341 return 0;
8342 }
8343
8344 /* Return 1 if a BRANCH_PREFIX frag should be generated. */
8345
8346 static int
8347 add_branch_prefix_frag_p (void)
8348 {
8349 /* NB: Don't work with COND_JUMP86 without i386. Don't add prefix
8350 to PadLock instructions since they include prefixes in opcode. */
8351 if (!align_branch_power
8352 || !align_branch_prefix_size
8353 || now_seg == absolute_section
8354 || i.tm.cpu_flags.bitfield.cpupadlock
8355 || !cpu_arch_flags.bitfield.cpui386)
8356 return 0;
8357
8358 /* Don't add prefix if it is a prefix or there is no operand in case
8359 that segment prefix is special. */
8360 if (!i.operands || i.tm.opcode_modifier.isprefix)
8361 return 0;
8362
8363 if (last_insn.kind == last_insn_other
8364 || last_insn.seg != now_seg)
8365 return 1;
8366
8367 if (flag_debug)
8368 as_warn_where (last_insn.file, last_insn.line,
8369 _("`%s` skips -malign-branch-boundary on `%s`"),
8370 last_insn.name, i.tm.name);
8371
8372 return 0;
8373 }
8374
8375 /* Return 1 if a BRANCH_PADDING frag should be generated. */
8376
8377 static int
8378 add_branch_padding_frag_p (enum align_branch_kind *branch_p)
8379 {
8380 int add_padding;
8381
8382 /* NB: Don't work with COND_JUMP86 without i386. */
8383 if (!align_branch_power
8384 || now_seg == absolute_section
8385 || !cpu_arch_flags.bitfield.cpui386)
8386 return 0;
8387
8388 add_padding = 0;
8389
8390 /* Check for jcc and direct jmp. */
8391 if (i.tm.opcode_modifier.jump == JUMP)
8392 {
8393 if (i.tm.base_opcode == JUMP_PC_RELATIVE)
8394 {
8395 *branch_p = align_branch_jmp;
8396 add_padding = align_branch & align_branch_jmp_bit;
8397 }
8398 else
8399 {
8400 *branch_p = align_branch_jcc;
8401 if ((align_branch & align_branch_jcc_bit))
8402 add_padding = 1;
8403 }
8404 }
8405 else if (is_any_vex_encoding (&i.tm))
8406 return 0;
8407 else if ((i.tm.base_opcode | 1) == 0xc3)
8408 {
8409 /* Near ret. */
8410 *branch_p = align_branch_ret;
8411 if ((align_branch & align_branch_ret_bit))
8412 add_padding = 1;
8413 }
8414 else
8415 {
8416 /* Check for indirect jmp, direct and indirect calls. */
8417 if (i.tm.base_opcode == 0xe8)
8418 {
8419 /* Direct call. */
8420 *branch_p = align_branch_call;
8421 if ((align_branch & align_branch_call_bit))
8422 add_padding = 1;
8423 }
8424 else if (i.tm.base_opcode == 0xff
8425 && (i.tm.extension_opcode == 2
8426 || i.tm.extension_opcode == 4))
8427 {
8428 /* Indirect call and jmp. */
8429 *branch_p = align_branch_indirect;
8430 if ((align_branch & align_branch_indirect_bit))
8431 add_padding = 1;
8432 }
8433
8434 if (add_padding
8435 && i.disp_operands
8436 && tls_get_addr
8437 && (i.op[0].disps->X_op == O_symbol
8438 || (i.op[0].disps->X_op == O_subtract
8439 && i.op[0].disps->X_op_symbol == GOT_symbol)))
8440 {
8441 symbolS *s = i.op[0].disps->X_add_symbol;
8442 /* No padding to call to global or undefined tls_get_addr. */
8443 if ((S_IS_EXTERNAL (s) || !S_IS_DEFINED (s))
8444 && strcmp (S_GET_NAME (s), tls_get_addr) == 0)
8445 return 0;
8446 }
8447 }
8448
8449 if (add_padding
8450 && last_insn.kind != last_insn_other
8451 && last_insn.seg == now_seg)
8452 {
8453 if (flag_debug)
8454 as_warn_where (last_insn.file, last_insn.line,
8455 _("`%s` skips -malign-branch-boundary on `%s`"),
8456 last_insn.name, i.tm.name);
8457 return 0;
8458 }
8459
8460 return add_padding;
8461 }
8462
8463 static void
8464 output_insn (void)
8465 {
8466 fragS *insn_start_frag;
8467 offsetT insn_start_off;
8468 fragS *fragP = NULL;
8469 enum align_branch_kind branch = align_branch_none;
8470
8471 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8472 if (IS_ELF && x86_used_note)
8473 {
8474 if (i.tm.cpu_flags.bitfield.cpucmov)
8475 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_CMOV;
8476 if (i.tm.cpu_flags.bitfield.cpusse)
8477 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE;
8478 if (i.tm.cpu_flags.bitfield.cpusse2)
8479 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE2;
8480 if (i.tm.cpu_flags.bitfield.cpusse3)
8481 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE3;
8482 if (i.tm.cpu_flags.bitfield.cpussse3)
8483 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSSE3;
8484 if (i.tm.cpu_flags.bitfield.cpusse4_1)
8485 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE4_1;
8486 if (i.tm.cpu_flags.bitfield.cpusse4_2)
8487 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE4_2;
8488 if (i.tm.cpu_flags.bitfield.cpuavx)
8489 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX;
8490 if (i.tm.cpu_flags.bitfield.cpuavx2)
8491 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX2;
8492 if (i.tm.cpu_flags.bitfield.cpufma)
8493 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_FMA;
8494 if (i.tm.cpu_flags.bitfield.cpuavx512f)
8495 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512F;
8496 if (i.tm.cpu_flags.bitfield.cpuavx512cd)
8497 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512CD;
8498 if (i.tm.cpu_flags.bitfield.cpuavx512er)
8499 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512ER;
8500 if (i.tm.cpu_flags.bitfield.cpuavx512pf)
8501 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512PF;
8502 if (i.tm.cpu_flags.bitfield.cpuavx512vl)
8503 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512VL;
8504 if (i.tm.cpu_flags.bitfield.cpuavx512dq)
8505 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512DQ;
8506 if (i.tm.cpu_flags.bitfield.cpuavx512bw)
8507 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512BW;
8508 if (i.tm.cpu_flags.bitfield.cpuavx512_4fmaps)
8509 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_4FMAPS;
8510 if (i.tm.cpu_flags.bitfield.cpuavx512_4vnniw)
8511 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_4VNNIW;
8512 if (i.tm.cpu_flags.bitfield.cpuavx512_bitalg)
8513 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_BITALG;
8514 if (i.tm.cpu_flags.bitfield.cpuavx512ifma)
8515 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_IFMA;
8516 if (i.tm.cpu_flags.bitfield.cpuavx512vbmi)
8517 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_VBMI;
8518 if (i.tm.cpu_flags.bitfield.cpuavx512_vbmi2)
8519 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_VBMI2;
8520 if (i.tm.cpu_flags.bitfield.cpuavx512_vnni)
8521 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_VNNI;
8522 if (i.tm.cpu_flags.bitfield.cpuavx512_bf16)
8523 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_BF16;
8524
8525 if (i.tm.cpu_flags.bitfield.cpu8087
8526 || i.tm.cpu_flags.bitfield.cpu287
8527 || i.tm.cpu_flags.bitfield.cpu387
8528 || i.tm.cpu_flags.bitfield.cpu687
8529 || i.tm.cpu_flags.bitfield.cpufisttp)
8530 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_X87;
8531 if (i.has_regmmx
8532 || i.tm.base_opcode == 0xf77 /* emms */
8533 || i.tm.base_opcode == 0xf0e /* femms */)
8534 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_MMX;
8535 if (i.has_regxmm)
8536 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XMM;
8537 if (i.has_regymm)
8538 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_YMM;
8539 if (i.has_regzmm)
8540 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_ZMM;
8541 if (i.tm.cpu_flags.bitfield.cpufxsr)
8542 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_FXSR;
8543 if (i.tm.cpu_flags.bitfield.cpuxsave)
8544 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XSAVE;
8545 if (i.tm.cpu_flags.bitfield.cpuxsaveopt)
8546 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XSAVEOPT;
8547 if (i.tm.cpu_flags.bitfield.cpuxsavec)
8548 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XSAVEC;
8549 }
8550 #endif
8551
8552 /* Tie dwarf2 debug info to the address at the start of the insn.
8553 We can't do this after the insn has been output as the current
8554 frag may have been closed off. eg. by frag_var. */
8555 dwarf2_emit_insn (0);
8556
8557 insn_start_frag = frag_now;
8558 insn_start_off = frag_now_fix ();
8559
8560 if (add_branch_padding_frag_p (&branch))
8561 {
8562 char *p;
8563 /* Branch can be 8 bytes. Leave some room for prefixes. */
8564 unsigned int max_branch_padding_size = 14;
8565
8566 /* Align section to boundary. */
8567 record_alignment (now_seg, align_branch_power);
8568
8569 /* Make room for padding. */
8570 frag_grow (max_branch_padding_size);
8571
8572 /* Start of the padding. */
8573 p = frag_more (0);
8574
8575 fragP = frag_now;
8576
8577 frag_var (rs_machine_dependent, max_branch_padding_size, 0,
8578 ENCODE_RELAX_STATE (BRANCH_PADDING, 0),
8579 NULL, 0, p);
8580
8581 fragP->tc_frag_data.branch_type = branch;
8582 fragP->tc_frag_data.max_bytes = max_branch_padding_size;
8583 }
8584
8585 /* Output jumps. */
8586 if (i.tm.opcode_modifier.jump == JUMP)
8587 output_branch ();
8588 else if (i.tm.opcode_modifier.jump == JUMP_BYTE
8589 || i.tm.opcode_modifier.jump == JUMP_DWORD)
8590 output_jump ();
8591 else if (i.tm.opcode_modifier.jump == JUMP_INTERSEGMENT)
8592 output_interseg_jump ();
8593 else
8594 {
8595 /* Output normal instructions here. */
8596 char *p;
8597 unsigned char *q;
8598 unsigned int j;
8599 unsigned int prefix;
8600
8601 if (avoid_fence
8602 && (i.tm.base_opcode == 0xfaee8
8603 || i.tm.base_opcode == 0xfaef0
8604 || i.tm.base_opcode == 0xfaef8))
8605 {
8606 /* Encode lfence, mfence, and sfence as
8607 f0 83 04 24 00 lock addl $0x0, (%{re}sp). */
8608 offsetT val = 0x240483f0ULL;
8609 p = frag_more (5);
8610 md_number_to_chars (p, val, 5);
8611 return;
8612 }
8613
8614 /* Some processors fail on LOCK prefix. This options makes
8615 assembler ignore LOCK prefix and serves as a workaround. */
8616 if (omit_lock_prefix)
8617 {
8618 if (i.tm.base_opcode == LOCK_PREFIX_OPCODE)
8619 return;
8620 i.prefix[LOCK_PREFIX] = 0;
8621 }
8622
8623 if (branch)
8624 /* Skip if this is a branch. */
8625 ;
8626 else if (add_fused_jcc_padding_frag_p ())
8627 {
8628 /* Make room for padding. */
8629 frag_grow (MAX_FUSED_JCC_PADDING_SIZE);
8630 p = frag_more (0);
8631
8632 fragP = frag_now;
8633
8634 frag_var (rs_machine_dependent, MAX_FUSED_JCC_PADDING_SIZE, 0,
8635 ENCODE_RELAX_STATE (FUSED_JCC_PADDING, 0),
8636 NULL, 0, p);
8637
8638 fragP->tc_frag_data.branch_type = align_branch_fused;
8639 fragP->tc_frag_data.max_bytes = MAX_FUSED_JCC_PADDING_SIZE;
8640 }
8641 else if (add_branch_prefix_frag_p ())
8642 {
8643 unsigned int max_prefix_size = align_branch_prefix_size;
8644
8645 /* Make room for padding. */
8646 frag_grow (max_prefix_size);
8647 p = frag_more (0);
8648
8649 fragP = frag_now;
8650
8651 frag_var (rs_machine_dependent, max_prefix_size, 0,
8652 ENCODE_RELAX_STATE (BRANCH_PREFIX, 0),
8653 NULL, 0, p);
8654
8655 fragP->tc_frag_data.max_bytes = max_prefix_size;
8656 }
8657
8658 /* Since the VEX/EVEX prefix contains the implicit prefix, we
8659 don't need the explicit prefix. */
8660 if (!i.tm.opcode_modifier.vex && !i.tm.opcode_modifier.evex)
8661 {
8662 switch (i.tm.opcode_length)
8663 {
8664 case 3:
8665 if (i.tm.base_opcode & 0xff000000)
8666 {
8667 prefix = (i.tm.base_opcode >> 24) & 0xff;
8668 if (!i.tm.cpu_flags.bitfield.cpupadlock
8669 || prefix != REPE_PREFIX_OPCODE
8670 || (i.prefix[REP_PREFIX] != REPE_PREFIX_OPCODE))
8671 add_prefix (prefix);
8672 }
8673 break;
8674 case 2:
8675 if ((i.tm.base_opcode & 0xff0000) != 0)
8676 {
8677 prefix = (i.tm.base_opcode >> 16) & 0xff;
8678 add_prefix (prefix);
8679 }
8680 break;
8681 case 1:
8682 break;
8683 case 0:
8684 /* Check for pseudo prefixes. */
8685 as_bad_where (insn_start_frag->fr_file,
8686 insn_start_frag->fr_line,
8687 _("pseudo prefix without instruction"));
8688 return;
8689 default:
8690 abort ();
8691 }
8692
8693 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
8694 /* For x32, add a dummy REX_OPCODE prefix for mov/add with
8695 R_X86_64_GOTTPOFF relocation so that linker can safely
8696 perform IE->LE optimization. A dummy REX_OPCODE prefix
8697 is also needed for lea with R_X86_64_GOTPC32_TLSDESC
8698 relocation for GDesc -> IE/LE optimization. */
8699 if (x86_elf_abi == X86_64_X32_ABI
8700 && i.operands == 2
8701 && (i.reloc[0] == BFD_RELOC_X86_64_GOTTPOFF
8702 || i.reloc[0] == BFD_RELOC_X86_64_GOTPC32_TLSDESC)
8703 && i.prefix[REX_PREFIX] == 0)
8704 add_prefix (REX_OPCODE);
8705 #endif
8706
8707 /* The prefix bytes. */
8708 for (j = ARRAY_SIZE (i.prefix), q = i.prefix; j > 0; j--, q++)
8709 if (*q)
8710 FRAG_APPEND_1_CHAR (*q);
8711 }
8712 else
8713 {
8714 for (j = 0, q = i.prefix; j < ARRAY_SIZE (i.prefix); j++, q++)
8715 if (*q)
8716 switch (j)
8717 {
8718 case REX_PREFIX:
8719 /* REX byte is encoded in VEX prefix. */
8720 break;
8721 case SEG_PREFIX:
8722 case ADDR_PREFIX:
8723 FRAG_APPEND_1_CHAR (*q);
8724 break;
8725 default:
8726 /* There should be no other prefixes for instructions
8727 with VEX prefix. */
8728 abort ();
8729 }
8730
8731 /* For EVEX instructions i.vrex should become 0 after
8732 build_evex_prefix. For VEX instructions upper 16 registers
8733 aren't available, so VREX should be 0. */
8734 if (i.vrex)
8735 abort ();
8736 /* Now the VEX prefix. */
8737 p = frag_more (i.vex.length);
8738 for (j = 0; j < i.vex.length; j++)
8739 p[j] = i.vex.bytes[j];
8740 }
8741
8742 /* Now the opcode; be careful about word order here! */
8743 if (i.tm.opcode_length == 1)
8744 {
8745 FRAG_APPEND_1_CHAR (i.tm.base_opcode);
8746 }
8747 else
8748 {
8749 switch (i.tm.opcode_length)
8750 {
8751 case 4:
8752 p = frag_more (4);
8753 *p++ = (i.tm.base_opcode >> 24) & 0xff;
8754 *p++ = (i.tm.base_opcode >> 16) & 0xff;
8755 break;
8756 case 3:
8757 p = frag_more (3);
8758 *p++ = (i.tm.base_opcode >> 16) & 0xff;
8759 break;
8760 case 2:
8761 p = frag_more (2);
8762 break;
8763 default:
8764 abort ();
8765 break;
8766 }
8767
8768 /* Put out high byte first: can't use md_number_to_chars! */
8769 *p++ = (i.tm.base_opcode >> 8) & 0xff;
8770 *p = i.tm.base_opcode & 0xff;
8771 }
8772
8773 /* Now the modrm byte and sib byte (if present). */
8774 if (i.tm.opcode_modifier.modrm)
8775 {
8776 FRAG_APPEND_1_CHAR ((i.rm.regmem << 0
8777 | i.rm.reg << 3
8778 | i.rm.mode << 6));
8779 /* If i.rm.regmem == ESP (4)
8780 && i.rm.mode != (Register mode)
8781 && not 16 bit
8782 ==> need second modrm byte. */
8783 if (i.rm.regmem == ESCAPE_TO_TWO_BYTE_ADDRESSING
8784 && i.rm.mode != 3
8785 && !(i.base_reg && i.base_reg->reg_type.bitfield.word))
8786 FRAG_APPEND_1_CHAR ((i.sib.base << 0
8787 | i.sib.index << 3
8788 | i.sib.scale << 6));
8789 }
8790
8791 if (i.disp_operands)
8792 output_disp (insn_start_frag, insn_start_off);
8793
8794 if (i.imm_operands)
8795 output_imm (insn_start_frag, insn_start_off);
8796
8797 /*
8798 * frag_now_fix () returning plain abs_section_offset when we're in the
8799 * absolute section, and abs_section_offset not getting updated as data
8800 * gets added to the frag breaks the logic below.
8801 */
8802 if (now_seg != absolute_section)
8803 {
8804 j = encoding_length (insn_start_frag, insn_start_off, frag_more (0));
8805 if (j > 15)
8806 as_warn (_("instruction length of %u bytes exceeds the limit of 15"),
8807 j);
8808 else if (fragP)
8809 {
8810 /* NB: Don't add prefix with GOTPC relocation since
8811 output_disp() above depends on the fixed encoding
8812 length. Can't add prefix with TLS relocation since
8813 it breaks TLS linker optimization. */
8814 unsigned int max = i.has_gotpc_tls_reloc ? 0 : 15 - j;
8815 /* Prefix count on the current instruction. */
8816 unsigned int count = i.vex.length;
8817 unsigned int k;
8818 for (k = 0; k < ARRAY_SIZE (i.prefix); k++)
8819 /* REX byte is encoded in VEX/EVEX prefix. */
8820 if (i.prefix[k] && (k != REX_PREFIX || !i.vex.length))
8821 count++;
8822
8823 /* Count prefixes for extended opcode maps. */
8824 if (!i.vex.length)
8825 switch (i.tm.opcode_length)
8826 {
8827 case 3:
8828 if (((i.tm.base_opcode >> 16) & 0xff) == 0xf)
8829 {
8830 count++;
8831 switch ((i.tm.base_opcode >> 8) & 0xff)
8832 {
8833 case 0x38:
8834 case 0x3a:
8835 count++;
8836 break;
8837 default:
8838 break;
8839 }
8840 }
8841 break;
8842 case 2:
8843 if (((i.tm.base_opcode >> 8) & 0xff) == 0xf)
8844 count++;
8845 break;
8846 case 1:
8847 break;
8848 default:
8849 abort ();
8850 }
8851
8852 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype)
8853 == BRANCH_PREFIX)
8854 {
8855 /* Set the maximum prefix size in BRANCH_PREFIX
8856 frag. */
8857 if (fragP->tc_frag_data.max_bytes > max)
8858 fragP->tc_frag_data.max_bytes = max;
8859 if (fragP->tc_frag_data.max_bytes > count)
8860 fragP->tc_frag_data.max_bytes -= count;
8861 else
8862 fragP->tc_frag_data.max_bytes = 0;
8863 }
8864 else
8865 {
8866 /* Remember the maximum prefix size in FUSED_JCC_PADDING
8867 frag. */
8868 unsigned int max_prefix_size;
8869 if (align_branch_prefix_size > max)
8870 max_prefix_size = max;
8871 else
8872 max_prefix_size = align_branch_prefix_size;
8873 if (max_prefix_size > count)
8874 fragP->tc_frag_data.max_prefix_length
8875 = max_prefix_size - count;
8876 }
8877
8878 /* Use existing segment prefix if possible. Use CS
8879 segment prefix in 64-bit mode. In 32-bit mode, use SS
8880 segment prefix with ESP/EBP base register and use DS
8881 segment prefix without ESP/EBP base register. */
8882 if (i.prefix[SEG_PREFIX])
8883 fragP->tc_frag_data.default_prefix = i.prefix[SEG_PREFIX];
8884 else if (flag_code == CODE_64BIT)
8885 fragP->tc_frag_data.default_prefix = CS_PREFIX_OPCODE;
8886 else if (i.base_reg
8887 && (i.base_reg->reg_num == 4
8888 || i.base_reg->reg_num == 5))
8889 fragP->tc_frag_data.default_prefix = SS_PREFIX_OPCODE;
8890 else
8891 fragP->tc_frag_data.default_prefix = DS_PREFIX_OPCODE;
8892 }
8893 }
8894 }
8895
8896 /* NB: Don't work with COND_JUMP86 without i386. */
8897 if (align_branch_power
8898 && now_seg != absolute_section
8899 && cpu_arch_flags.bitfield.cpui386)
8900 {
8901 /* Terminate each frag so that we can add prefix and check for
8902 fused jcc. */
8903 frag_wane (frag_now);
8904 frag_new (0);
8905 }
8906
8907 #ifdef DEBUG386
8908 if (flag_debug)
8909 {
8910 pi ("" /*line*/, &i);
8911 }
8912 #endif /* DEBUG386 */
8913 }
8914
8915 /* Return the size of the displacement operand N. */
8916
8917 static int
8918 disp_size (unsigned int n)
8919 {
8920 int size = 4;
8921
8922 if (i.types[n].bitfield.disp64)
8923 size = 8;
8924 else if (i.types[n].bitfield.disp8)
8925 size = 1;
8926 else if (i.types[n].bitfield.disp16)
8927 size = 2;
8928 return size;
8929 }
8930
8931 /* Return the size of the immediate operand N. */
8932
8933 static int
8934 imm_size (unsigned int n)
8935 {
8936 int size = 4;
8937 if (i.types[n].bitfield.imm64)
8938 size = 8;
8939 else if (i.types[n].bitfield.imm8 || i.types[n].bitfield.imm8s)
8940 size = 1;
8941 else if (i.types[n].bitfield.imm16)
8942 size = 2;
8943 return size;
8944 }
8945
8946 static void
8947 output_disp (fragS *insn_start_frag, offsetT insn_start_off)
8948 {
8949 char *p;
8950 unsigned int n;
8951
8952 for (n = 0; n < i.operands; n++)
8953 {
8954 if (operand_type_check (i.types[n], disp))
8955 {
8956 if (i.op[n].disps->X_op == O_constant)
8957 {
8958 int size = disp_size (n);
8959 offsetT val = i.op[n].disps->X_add_number;
8960
8961 val = offset_in_range (val >> (size == 1 ? i.memshift : 0),
8962 size);
8963 p = frag_more (size);
8964 md_number_to_chars (p, val, size);
8965 }
8966 else
8967 {
8968 enum bfd_reloc_code_real reloc_type;
8969 int size = disp_size (n);
8970 int sign = i.types[n].bitfield.disp32s;
8971 int pcrel = (i.flags[n] & Operand_PCrel) != 0;
8972 fixS *fixP;
8973
8974 /* We can't have 8 bit displacement here. */
8975 gas_assert (!i.types[n].bitfield.disp8);
8976
8977 /* The PC relative address is computed relative
8978 to the instruction boundary, so in case immediate
8979 fields follows, we need to adjust the value. */
8980 if (pcrel && i.imm_operands)
8981 {
8982 unsigned int n1;
8983 int sz = 0;
8984
8985 for (n1 = 0; n1 < i.operands; n1++)
8986 if (operand_type_check (i.types[n1], imm))
8987 {
8988 /* Only one immediate is allowed for PC
8989 relative address. */
8990 gas_assert (sz == 0);
8991 sz = imm_size (n1);
8992 i.op[n].disps->X_add_number -= sz;
8993 }
8994 /* We should find the immediate. */
8995 gas_assert (sz != 0);
8996 }
8997
8998 p = frag_more (size);
8999 reloc_type = reloc (size, pcrel, sign, i.reloc[n]);
9000 if (GOT_symbol
9001 && GOT_symbol == i.op[n].disps->X_add_symbol
9002 && (((reloc_type == BFD_RELOC_32
9003 || reloc_type == BFD_RELOC_X86_64_32S
9004 || (reloc_type == BFD_RELOC_64
9005 && object_64bit))
9006 && (i.op[n].disps->X_op == O_symbol
9007 || (i.op[n].disps->X_op == O_add
9008 && ((symbol_get_value_expression
9009 (i.op[n].disps->X_op_symbol)->X_op)
9010 == O_subtract))))
9011 || reloc_type == BFD_RELOC_32_PCREL))
9012 {
9013 if (!object_64bit)
9014 {
9015 reloc_type = BFD_RELOC_386_GOTPC;
9016 i.has_gotpc_tls_reloc = TRUE;
9017 i.op[n].imms->X_add_number +=
9018 encoding_length (insn_start_frag, insn_start_off, p);
9019 }
9020 else if (reloc_type == BFD_RELOC_64)
9021 reloc_type = BFD_RELOC_X86_64_GOTPC64;
9022 else
9023 /* Don't do the adjustment for x86-64, as there
9024 the pcrel addressing is relative to the _next_
9025 insn, and that is taken care of in other code. */
9026 reloc_type = BFD_RELOC_X86_64_GOTPC32;
9027 }
9028 else if (align_branch_power)
9029 {
9030 switch (reloc_type)
9031 {
9032 case BFD_RELOC_386_TLS_GD:
9033 case BFD_RELOC_386_TLS_LDM:
9034 case BFD_RELOC_386_TLS_IE:
9035 case BFD_RELOC_386_TLS_IE_32:
9036 case BFD_RELOC_386_TLS_GOTIE:
9037 case BFD_RELOC_386_TLS_GOTDESC:
9038 case BFD_RELOC_386_TLS_DESC_CALL:
9039 case BFD_RELOC_X86_64_TLSGD:
9040 case BFD_RELOC_X86_64_TLSLD:
9041 case BFD_RELOC_X86_64_GOTTPOFF:
9042 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
9043 case BFD_RELOC_X86_64_TLSDESC_CALL:
9044 i.has_gotpc_tls_reloc = TRUE;
9045 default:
9046 break;
9047 }
9048 }
9049 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal,
9050 size, i.op[n].disps, pcrel,
9051 reloc_type);
9052 /* Check for "call/jmp *mem", "mov mem, %reg",
9053 "test %reg, mem" and "binop mem, %reg" where binop
9054 is one of adc, add, and, cmp, or, sbb, sub, xor
9055 instructions without data prefix. Always generate
9056 R_386_GOT32X for "sym*GOT" operand in 32-bit mode. */
9057 if (i.prefix[DATA_PREFIX] == 0
9058 && (generate_relax_relocations
9059 || (!object_64bit
9060 && i.rm.mode == 0
9061 && i.rm.regmem == 5))
9062 && (i.rm.mode == 2
9063 || (i.rm.mode == 0 && i.rm.regmem == 5))
9064 && ((i.operands == 1
9065 && i.tm.base_opcode == 0xff
9066 && (i.rm.reg == 2 || i.rm.reg == 4))
9067 || (i.operands == 2
9068 && (i.tm.base_opcode == 0x8b
9069 || i.tm.base_opcode == 0x85
9070 || (i.tm.base_opcode & 0xc7) == 0x03))))
9071 {
9072 if (object_64bit)
9073 {
9074 fixP->fx_tcbit = i.rex != 0;
9075 if (i.base_reg
9076 && (i.base_reg->reg_num == RegIP))
9077 fixP->fx_tcbit2 = 1;
9078 }
9079 else
9080 fixP->fx_tcbit2 = 1;
9081 }
9082 }
9083 }
9084 }
9085 }
9086
9087 static void
9088 output_imm (fragS *insn_start_frag, offsetT insn_start_off)
9089 {
9090 char *p;
9091 unsigned int n;
9092
9093 for (n = 0; n < i.operands; n++)
9094 {
9095 /* Skip SAE/RC Imm operand in EVEX. They are already handled. */
9096 if (i.rounding && (int) n == i.rounding->operand)
9097 continue;
9098
9099 if (operand_type_check (i.types[n], imm))
9100 {
9101 if (i.op[n].imms->X_op == O_constant)
9102 {
9103 int size = imm_size (n);
9104 offsetT val;
9105
9106 val = offset_in_range (i.op[n].imms->X_add_number,
9107 size);
9108 p = frag_more (size);
9109 md_number_to_chars (p, val, size);
9110 }
9111 else
9112 {
9113 /* Not absolute_section.
9114 Need a 32-bit fixup (don't support 8bit
9115 non-absolute imms). Try to support other
9116 sizes ... */
9117 enum bfd_reloc_code_real reloc_type;
9118 int size = imm_size (n);
9119 int sign;
9120
9121 if (i.types[n].bitfield.imm32s
9122 && (i.suffix == QWORD_MNEM_SUFFIX
9123 || (!i.suffix && i.tm.opcode_modifier.no_lsuf)))
9124 sign = 1;
9125 else
9126 sign = 0;
9127
9128 p = frag_more (size);
9129 reloc_type = reloc (size, 0, sign, i.reloc[n]);
9130
9131 /* This is tough to explain. We end up with this one if we
9132 * have operands that look like
9133 * "_GLOBAL_OFFSET_TABLE_+[.-.L284]". The goal here is to
9134 * obtain the absolute address of the GOT, and it is strongly
9135 * preferable from a performance point of view to avoid using
9136 * a runtime relocation for this. The actual sequence of
9137 * instructions often look something like:
9138 *
9139 * call .L66
9140 * .L66:
9141 * popl %ebx
9142 * addl $_GLOBAL_OFFSET_TABLE_+[.-.L66],%ebx
9143 *
9144 * The call and pop essentially return the absolute address
9145 * of the label .L66 and store it in %ebx. The linker itself
9146 * will ultimately change the first operand of the addl so
9147 * that %ebx points to the GOT, but to keep things simple, the
9148 * .o file must have this operand set so that it generates not
9149 * the absolute address of .L66, but the absolute address of
9150 * itself. This allows the linker itself simply treat a GOTPC
9151 * relocation as asking for a pcrel offset to the GOT to be
9152 * added in, and the addend of the relocation is stored in the
9153 * operand field for the instruction itself.
9154 *
9155 * Our job here is to fix the operand so that it would add
9156 * the correct offset so that %ebx would point to itself. The
9157 * thing that is tricky is that .-.L66 will point to the
9158 * beginning of the instruction, so we need to further modify
9159 * the operand so that it will point to itself. There are
9160 * other cases where you have something like:
9161 *
9162 * .long $_GLOBAL_OFFSET_TABLE_+[.-.L66]
9163 *
9164 * and here no correction would be required. Internally in
9165 * the assembler we treat operands of this form as not being
9166 * pcrel since the '.' is explicitly mentioned, and I wonder
9167 * whether it would simplify matters to do it this way. Who
9168 * knows. In earlier versions of the PIC patches, the
9169 * pcrel_adjust field was used to store the correction, but
9170 * since the expression is not pcrel, I felt it would be
9171 * confusing to do it this way. */
9172
9173 if ((reloc_type == BFD_RELOC_32
9174 || reloc_type == BFD_RELOC_X86_64_32S
9175 || reloc_type == BFD_RELOC_64)
9176 && GOT_symbol
9177 && GOT_symbol == i.op[n].imms->X_add_symbol
9178 && (i.op[n].imms->X_op == O_symbol
9179 || (i.op[n].imms->X_op == O_add
9180 && ((symbol_get_value_expression
9181 (i.op[n].imms->X_op_symbol)->X_op)
9182 == O_subtract))))
9183 {
9184 if (!object_64bit)
9185 reloc_type = BFD_RELOC_386_GOTPC;
9186 else if (size == 4)
9187 reloc_type = BFD_RELOC_X86_64_GOTPC32;
9188 else if (size == 8)
9189 reloc_type = BFD_RELOC_X86_64_GOTPC64;
9190 i.has_gotpc_tls_reloc = TRUE;
9191 i.op[n].imms->X_add_number +=
9192 encoding_length (insn_start_frag, insn_start_off, p);
9193 }
9194 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
9195 i.op[n].imms, 0, reloc_type);
9196 }
9197 }
9198 }
9199 }
9200 \f
9201 /* x86_cons_fix_new is called via the expression parsing code when a
9202 reloc is needed. We use this hook to get the correct .got reloc. */
9203 static int cons_sign = -1;
9204
9205 void
9206 x86_cons_fix_new (fragS *frag, unsigned int off, unsigned int len,
9207 expressionS *exp, bfd_reloc_code_real_type r)
9208 {
9209 r = reloc (len, 0, cons_sign, r);
9210
9211 #ifdef TE_PE
9212 if (exp->X_op == O_secrel)
9213 {
9214 exp->X_op = O_symbol;
9215 r = BFD_RELOC_32_SECREL;
9216 }
9217 #endif
9218
9219 fix_new_exp (frag, off, len, exp, 0, r);
9220 }
9221
9222 /* Export the ABI address size for use by TC_ADDRESS_BYTES for the
9223 purpose of the `.dc.a' internal pseudo-op. */
9224
9225 int
9226 x86_address_bytes (void)
9227 {
9228 if ((stdoutput->arch_info->mach & bfd_mach_x64_32))
9229 return 4;
9230 return stdoutput->arch_info->bits_per_address / 8;
9231 }
9232
9233 #if !(defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) || defined (OBJ_MACH_O)) \
9234 || defined (LEX_AT)
9235 # define lex_got(reloc, adjust, types) NULL
9236 #else
9237 /* Parse operands of the form
9238 <symbol>@GOTOFF+<nnn>
9239 and similar .plt or .got references.
9240
9241 If we find one, set up the correct relocation in RELOC and copy the
9242 input string, minus the `@GOTOFF' into a malloc'd buffer for
9243 parsing by the calling routine. Return this buffer, and if ADJUST
9244 is non-null set it to the length of the string we removed from the
9245 input line. Otherwise return NULL. */
9246 static char *
9247 lex_got (enum bfd_reloc_code_real *rel,
9248 int *adjust,
9249 i386_operand_type *types)
9250 {
9251 /* Some of the relocations depend on the size of what field is to
9252 be relocated. But in our callers i386_immediate and i386_displacement
9253 we don't yet know the operand size (this will be set by insn
9254 matching). Hence we record the word32 relocation here,
9255 and adjust the reloc according to the real size in reloc(). */
9256 static const struct {
9257 const char *str;
9258 int len;
9259 const enum bfd_reloc_code_real rel[2];
9260 const i386_operand_type types64;
9261 } gotrel[] = {
9262 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9263 { STRING_COMMA_LEN ("SIZE"), { BFD_RELOC_SIZE32,
9264 BFD_RELOC_SIZE32 },
9265 OPERAND_TYPE_IMM32_64 },
9266 #endif
9267 { STRING_COMMA_LEN ("PLTOFF"), { _dummy_first_bfd_reloc_code_real,
9268 BFD_RELOC_X86_64_PLTOFF64 },
9269 OPERAND_TYPE_IMM64 },
9270 { STRING_COMMA_LEN ("PLT"), { BFD_RELOC_386_PLT32,
9271 BFD_RELOC_X86_64_PLT32 },
9272 OPERAND_TYPE_IMM32_32S_DISP32 },
9273 { STRING_COMMA_LEN ("GOTPLT"), { _dummy_first_bfd_reloc_code_real,
9274 BFD_RELOC_X86_64_GOTPLT64 },
9275 OPERAND_TYPE_IMM64_DISP64 },
9276 { STRING_COMMA_LEN ("GOTOFF"), { BFD_RELOC_386_GOTOFF,
9277 BFD_RELOC_X86_64_GOTOFF64 },
9278 OPERAND_TYPE_IMM64_DISP64 },
9279 { STRING_COMMA_LEN ("GOTPCREL"), { _dummy_first_bfd_reloc_code_real,
9280 BFD_RELOC_X86_64_GOTPCREL },
9281 OPERAND_TYPE_IMM32_32S_DISP32 },
9282 { STRING_COMMA_LEN ("TLSGD"), { BFD_RELOC_386_TLS_GD,
9283 BFD_RELOC_X86_64_TLSGD },
9284 OPERAND_TYPE_IMM32_32S_DISP32 },
9285 { STRING_COMMA_LEN ("TLSLDM"), { BFD_RELOC_386_TLS_LDM,
9286 _dummy_first_bfd_reloc_code_real },
9287 OPERAND_TYPE_NONE },
9288 { STRING_COMMA_LEN ("TLSLD"), { _dummy_first_bfd_reloc_code_real,
9289 BFD_RELOC_X86_64_TLSLD },
9290 OPERAND_TYPE_IMM32_32S_DISP32 },
9291 { STRING_COMMA_LEN ("GOTTPOFF"), { BFD_RELOC_386_TLS_IE_32,
9292 BFD_RELOC_X86_64_GOTTPOFF },
9293 OPERAND_TYPE_IMM32_32S_DISP32 },
9294 { STRING_COMMA_LEN ("TPOFF"), { BFD_RELOC_386_TLS_LE_32,
9295 BFD_RELOC_X86_64_TPOFF32 },
9296 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
9297 { STRING_COMMA_LEN ("NTPOFF"), { BFD_RELOC_386_TLS_LE,
9298 _dummy_first_bfd_reloc_code_real },
9299 OPERAND_TYPE_NONE },
9300 { STRING_COMMA_LEN ("DTPOFF"), { BFD_RELOC_386_TLS_LDO_32,
9301 BFD_RELOC_X86_64_DTPOFF32 },
9302 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
9303 { STRING_COMMA_LEN ("GOTNTPOFF"),{ BFD_RELOC_386_TLS_GOTIE,
9304 _dummy_first_bfd_reloc_code_real },
9305 OPERAND_TYPE_NONE },
9306 { STRING_COMMA_LEN ("INDNTPOFF"),{ BFD_RELOC_386_TLS_IE,
9307 _dummy_first_bfd_reloc_code_real },
9308 OPERAND_TYPE_NONE },
9309 { STRING_COMMA_LEN ("GOT"), { BFD_RELOC_386_GOT32,
9310 BFD_RELOC_X86_64_GOT32 },
9311 OPERAND_TYPE_IMM32_32S_64_DISP32 },
9312 { STRING_COMMA_LEN ("TLSDESC"), { BFD_RELOC_386_TLS_GOTDESC,
9313 BFD_RELOC_X86_64_GOTPC32_TLSDESC },
9314 OPERAND_TYPE_IMM32_32S_DISP32 },
9315 { STRING_COMMA_LEN ("TLSCALL"), { BFD_RELOC_386_TLS_DESC_CALL,
9316 BFD_RELOC_X86_64_TLSDESC_CALL },
9317 OPERAND_TYPE_IMM32_32S_DISP32 },
9318 };
9319 char *cp;
9320 unsigned int j;
9321
9322 #if defined (OBJ_MAYBE_ELF)
9323 if (!IS_ELF)
9324 return NULL;
9325 #endif
9326
9327 for (cp = input_line_pointer; *cp != '@'; cp++)
9328 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
9329 return NULL;
9330
9331 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
9332 {
9333 int len = gotrel[j].len;
9334 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
9335 {
9336 if (gotrel[j].rel[object_64bit] != 0)
9337 {
9338 int first, second;
9339 char *tmpbuf, *past_reloc;
9340
9341 *rel = gotrel[j].rel[object_64bit];
9342
9343 if (types)
9344 {
9345 if (flag_code != CODE_64BIT)
9346 {
9347 types->bitfield.imm32 = 1;
9348 types->bitfield.disp32 = 1;
9349 }
9350 else
9351 *types = gotrel[j].types64;
9352 }
9353
9354 if (j != 0 && GOT_symbol == NULL)
9355 GOT_symbol = symbol_find_or_make (GLOBAL_OFFSET_TABLE_NAME);
9356
9357 /* The length of the first part of our input line. */
9358 first = cp - input_line_pointer;
9359
9360 /* The second part goes from after the reloc token until
9361 (and including) an end_of_line char or comma. */
9362 past_reloc = cp + 1 + len;
9363 cp = past_reloc;
9364 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
9365 ++cp;
9366 second = cp + 1 - past_reloc;
9367
9368 /* Allocate and copy string. The trailing NUL shouldn't
9369 be necessary, but be safe. */
9370 tmpbuf = XNEWVEC (char, first + second + 2);
9371 memcpy (tmpbuf, input_line_pointer, first);
9372 if (second != 0 && *past_reloc != ' ')
9373 /* Replace the relocation token with ' ', so that
9374 errors like foo@GOTOFF1 will be detected. */
9375 tmpbuf[first++] = ' ';
9376 else
9377 /* Increment length by 1 if the relocation token is
9378 removed. */
9379 len++;
9380 if (adjust)
9381 *adjust = len;
9382 memcpy (tmpbuf + first, past_reloc, second);
9383 tmpbuf[first + second] = '\0';
9384 return tmpbuf;
9385 }
9386
9387 as_bad (_("@%s reloc is not supported with %d-bit output format"),
9388 gotrel[j].str, 1 << (5 + object_64bit));
9389 return NULL;
9390 }
9391 }
9392
9393 /* Might be a symbol version string. Don't as_bad here. */
9394 return NULL;
9395 }
9396 #endif
9397
9398 #ifdef TE_PE
9399 #ifdef lex_got
9400 #undef lex_got
9401 #endif
9402 /* Parse operands of the form
9403 <symbol>@SECREL32+<nnn>
9404
9405 If we find one, set up the correct relocation in RELOC and copy the
9406 input string, minus the `@SECREL32' into a malloc'd buffer for
9407 parsing by the calling routine. Return this buffer, and if ADJUST
9408 is non-null set it to the length of the string we removed from the
9409 input line. Otherwise return NULL.
9410
9411 This function is copied from the ELF version above adjusted for PE targets. */
9412
9413 static char *
9414 lex_got (enum bfd_reloc_code_real *rel ATTRIBUTE_UNUSED,
9415 int *adjust ATTRIBUTE_UNUSED,
9416 i386_operand_type *types)
9417 {
9418 static const struct
9419 {
9420 const char *str;
9421 int len;
9422 const enum bfd_reloc_code_real rel[2];
9423 const i386_operand_type types64;
9424 }
9425 gotrel[] =
9426 {
9427 { STRING_COMMA_LEN ("SECREL32"), { BFD_RELOC_32_SECREL,
9428 BFD_RELOC_32_SECREL },
9429 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
9430 };
9431
9432 char *cp;
9433 unsigned j;
9434
9435 for (cp = input_line_pointer; *cp != '@'; cp++)
9436 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
9437 return NULL;
9438
9439 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
9440 {
9441 int len = gotrel[j].len;
9442
9443 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
9444 {
9445 if (gotrel[j].rel[object_64bit] != 0)
9446 {
9447 int first, second;
9448 char *tmpbuf, *past_reloc;
9449
9450 *rel = gotrel[j].rel[object_64bit];
9451 if (adjust)
9452 *adjust = len;
9453
9454 if (types)
9455 {
9456 if (flag_code != CODE_64BIT)
9457 {
9458 types->bitfield.imm32 = 1;
9459 types->bitfield.disp32 = 1;
9460 }
9461 else
9462 *types = gotrel[j].types64;
9463 }
9464
9465 /* The length of the first part of our input line. */
9466 first = cp - input_line_pointer;
9467
9468 /* The second part goes from after the reloc token until
9469 (and including) an end_of_line char or comma. */
9470 past_reloc = cp + 1 + len;
9471 cp = past_reloc;
9472 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
9473 ++cp;
9474 second = cp + 1 - past_reloc;
9475
9476 /* Allocate and copy string. The trailing NUL shouldn't
9477 be necessary, but be safe. */
9478 tmpbuf = XNEWVEC (char, first + second + 2);
9479 memcpy (tmpbuf, input_line_pointer, first);
9480 if (second != 0 && *past_reloc != ' ')
9481 /* Replace the relocation token with ' ', so that
9482 errors like foo@SECLREL321 will be detected. */
9483 tmpbuf[first++] = ' ';
9484 memcpy (tmpbuf + first, past_reloc, second);
9485 tmpbuf[first + second] = '\0';
9486 return tmpbuf;
9487 }
9488
9489 as_bad (_("@%s reloc is not supported with %d-bit output format"),
9490 gotrel[j].str, 1 << (5 + object_64bit));
9491 return NULL;
9492 }
9493 }
9494
9495 /* Might be a symbol version string. Don't as_bad here. */
9496 return NULL;
9497 }
9498
9499 #endif /* TE_PE */
9500
9501 bfd_reloc_code_real_type
9502 x86_cons (expressionS *exp, int size)
9503 {
9504 bfd_reloc_code_real_type got_reloc = NO_RELOC;
9505
9506 intel_syntax = -intel_syntax;
9507
9508 exp->X_md = 0;
9509 if (size == 4 || (object_64bit && size == 8))
9510 {
9511 /* Handle @GOTOFF and the like in an expression. */
9512 char *save;
9513 char *gotfree_input_line;
9514 int adjust = 0;
9515
9516 save = input_line_pointer;
9517 gotfree_input_line = lex_got (&got_reloc, &adjust, NULL);
9518 if (gotfree_input_line)
9519 input_line_pointer = gotfree_input_line;
9520
9521 expression (exp);
9522
9523 if (gotfree_input_line)
9524 {
9525 /* expression () has merrily parsed up to the end of line,
9526 or a comma - in the wrong buffer. Transfer how far
9527 input_line_pointer has moved to the right buffer. */
9528 input_line_pointer = (save
9529 + (input_line_pointer - gotfree_input_line)
9530 + adjust);
9531 free (gotfree_input_line);
9532 if (exp->X_op == O_constant
9533 || exp->X_op == O_absent
9534 || exp->X_op == O_illegal
9535 || exp->X_op == O_register
9536 || exp->X_op == O_big)
9537 {
9538 char c = *input_line_pointer;
9539 *input_line_pointer = 0;
9540 as_bad (_("missing or invalid expression `%s'"), save);
9541 *input_line_pointer = c;
9542 }
9543 else if ((got_reloc == BFD_RELOC_386_PLT32
9544 || got_reloc == BFD_RELOC_X86_64_PLT32)
9545 && exp->X_op != O_symbol)
9546 {
9547 char c = *input_line_pointer;
9548 *input_line_pointer = 0;
9549 as_bad (_("invalid PLT expression `%s'"), save);
9550 *input_line_pointer = c;
9551 }
9552 }
9553 }
9554 else
9555 expression (exp);
9556
9557 intel_syntax = -intel_syntax;
9558
9559 if (intel_syntax)
9560 i386_intel_simplify (exp);
9561
9562 return got_reloc;
9563 }
9564
9565 static void
9566 signed_cons (int size)
9567 {
9568 if (flag_code == CODE_64BIT)
9569 cons_sign = 1;
9570 cons (size);
9571 cons_sign = -1;
9572 }
9573
9574 #ifdef TE_PE
9575 static void
9576 pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
9577 {
9578 expressionS exp;
9579
9580 do
9581 {
9582 expression (&exp);
9583 if (exp.X_op == O_symbol)
9584 exp.X_op = O_secrel;
9585
9586 emit_expr (&exp, 4);
9587 }
9588 while (*input_line_pointer++ == ',');
9589
9590 input_line_pointer--;
9591 demand_empty_rest_of_line ();
9592 }
9593 #endif
9594
9595 /* Handle Vector operations. */
9596
9597 static char *
9598 check_VecOperations (char *op_string, char *op_end)
9599 {
9600 const reg_entry *mask;
9601 const char *saved;
9602 char *end_op;
9603
9604 while (*op_string
9605 && (op_end == NULL || op_string < op_end))
9606 {
9607 saved = op_string;
9608 if (*op_string == '{')
9609 {
9610 op_string++;
9611
9612 /* Check broadcasts. */
9613 if (strncmp (op_string, "1to", 3) == 0)
9614 {
9615 int bcst_type;
9616
9617 if (i.broadcast)
9618 goto duplicated_vec_op;
9619
9620 op_string += 3;
9621 if (*op_string == '8')
9622 bcst_type = 8;
9623 else if (*op_string == '4')
9624 bcst_type = 4;
9625 else if (*op_string == '2')
9626 bcst_type = 2;
9627 else if (*op_string == '1'
9628 && *(op_string+1) == '6')
9629 {
9630 bcst_type = 16;
9631 op_string++;
9632 }
9633 else
9634 {
9635 as_bad (_("Unsupported broadcast: `%s'"), saved);
9636 return NULL;
9637 }
9638 op_string++;
9639
9640 broadcast_op.type = bcst_type;
9641 broadcast_op.operand = this_operand;
9642 broadcast_op.bytes = 0;
9643 i.broadcast = &broadcast_op;
9644 }
9645 /* Check masking operation. */
9646 else if ((mask = parse_register (op_string, &end_op)) != NULL)
9647 {
9648 /* k0 can't be used for write mask. */
9649 if (mask->reg_type.bitfield.class != RegMask || !mask->reg_num)
9650 {
9651 as_bad (_("`%s%s' can't be used for write mask"),
9652 register_prefix, mask->reg_name);
9653 return NULL;
9654 }
9655
9656 if (!i.mask)
9657 {
9658 mask_op.mask = mask;
9659 mask_op.zeroing = 0;
9660 mask_op.operand = this_operand;
9661 i.mask = &mask_op;
9662 }
9663 else
9664 {
9665 if (i.mask->mask)
9666 goto duplicated_vec_op;
9667
9668 i.mask->mask = mask;
9669
9670 /* Only "{z}" is allowed here. No need to check
9671 zeroing mask explicitly. */
9672 if (i.mask->operand != this_operand)
9673 {
9674 as_bad (_("invalid write mask `%s'"), saved);
9675 return NULL;
9676 }
9677 }
9678
9679 op_string = end_op;
9680 }
9681 /* Check zeroing-flag for masking operation. */
9682 else if (*op_string == 'z')
9683 {
9684 if (!i.mask)
9685 {
9686 mask_op.mask = NULL;
9687 mask_op.zeroing = 1;
9688 mask_op.operand = this_operand;
9689 i.mask = &mask_op;
9690 }
9691 else
9692 {
9693 if (i.mask->zeroing)
9694 {
9695 duplicated_vec_op:
9696 as_bad (_("duplicated `%s'"), saved);
9697 return NULL;
9698 }
9699
9700 i.mask->zeroing = 1;
9701
9702 /* Only "{%k}" is allowed here. No need to check mask
9703 register explicitly. */
9704 if (i.mask->operand != this_operand)
9705 {
9706 as_bad (_("invalid zeroing-masking `%s'"),
9707 saved);
9708 return NULL;
9709 }
9710 }
9711
9712 op_string++;
9713 }
9714 else
9715 goto unknown_vec_op;
9716
9717 if (*op_string != '}')
9718 {
9719 as_bad (_("missing `}' in `%s'"), saved);
9720 return NULL;
9721 }
9722 op_string++;
9723
9724 /* Strip whitespace since the addition of pseudo prefixes
9725 changed how the scrubber treats '{'. */
9726 if (is_space_char (*op_string))
9727 ++op_string;
9728
9729 continue;
9730 }
9731 unknown_vec_op:
9732 /* We don't know this one. */
9733 as_bad (_("unknown vector operation: `%s'"), saved);
9734 return NULL;
9735 }
9736
9737 if (i.mask && i.mask->zeroing && !i.mask->mask)
9738 {
9739 as_bad (_("zeroing-masking only allowed with write mask"));
9740 return NULL;
9741 }
9742
9743 return op_string;
9744 }
9745
9746 static int
9747 i386_immediate (char *imm_start)
9748 {
9749 char *save_input_line_pointer;
9750 char *gotfree_input_line;
9751 segT exp_seg = 0;
9752 expressionS *exp;
9753 i386_operand_type types;
9754
9755 operand_type_set (&types, ~0);
9756
9757 if (i.imm_operands == MAX_IMMEDIATE_OPERANDS)
9758 {
9759 as_bad (_("at most %d immediate operands are allowed"),
9760 MAX_IMMEDIATE_OPERANDS);
9761 return 0;
9762 }
9763
9764 exp = &im_expressions[i.imm_operands++];
9765 i.op[this_operand].imms = exp;
9766
9767 if (is_space_char (*imm_start))
9768 ++imm_start;
9769
9770 save_input_line_pointer = input_line_pointer;
9771 input_line_pointer = imm_start;
9772
9773 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
9774 if (gotfree_input_line)
9775 input_line_pointer = gotfree_input_line;
9776
9777 exp_seg = expression (exp);
9778
9779 SKIP_WHITESPACE ();
9780
9781 /* Handle vector operations. */
9782 if (*input_line_pointer == '{')
9783 {
9784 input_line_pointer = check_VecOperations (input_line_pointer,
9785 NULL);
9786 if (input_line_pointer == NULL)
9787 return 0;
9788 }
9789
9790 if (*input_line_pointer)
9791 as_bad (_("junk `%s' after expression"), input_line_pointer);
9792
9793 input_line_pointer = save_input_line_pointer;
9794 if (gotfree_input_line)
9795 {
9796 free (gotfree_input_line);
9797
9798 if (exp->X_op == O_constant || exp->X_op == O_register)
9799 exp->X_op = O_illegal;
9800 }
9801
9802 return i386_finalize_immediate (exp_seg, exp, types, imm_start);
9803 }
9804
9805 static int
9806 i386_finalize_immediate (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
9807 i386_operand_type types, const char *imm_start)
9808 {
9809 if (exp->X_op == O_absent || exp->X_op == O_illegal || exp->X_op == O_big)
9810 {
9811 if (imm_start)
9812 as_bad (_("missing or invalid immediate expression `%s'"),
9813 imm_start);
9814 return 0;
9815 }
9816 else if (exp->X_op == O_constant)
9817 {
9818 /* Size it properly later. */
9819 i.types[this_operand].bitfield.imm64 = 1;
9820 /* If not 64bit, sign extend val. */
9821 if (flag_code != CODE_64BIT
9822 && (exp->X_add_number & ~(((addressT) 2 << 31) - 1)) == 0)
9823 exp->X_add_number
9824 = (exp->X_add_number ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
9825 }
9826 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
9827 else if (OUTPUT_FLAVOR == bfd_target_aout_flavour
9828 && exp_seg != absolute_section
9829 && exp_seg != text_section
9830 && exp_seg != data_section
9831 && exp_seg != bss_section
9832 && exp_seg != undefined_section
9833 && !bfd_is_com_section (exp_seg))
9834 {
9835 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
9836 return 0;
9837 }
9838 #endif
9839 else if (!intel_syntax && exp_seg == reg_section)
9840 {
9841 if (imm_start)
9842 as_bad (_("illegal immediate register operand %s"), imm_start);
9843 return 0;
9844 }
9845 else
9846 {
9847 /* This is an address. The size of the address will be
9848 determined later, depending on destination register,
9849 suffix, or the default for the section. */
9850 i.types[this_operand].bitfield.imm8 = 1;
9851 i.types[this_operand].bitfield.imm16 = 1;
9852 i.types[this_operand].bitfield.imm32 = 1;
9853 i.types[this_operand].bitfield.imm32s = 1;
9854 i.types[this_operand].bitfield.imm64 = 1;
9855 i.types[this_operand] = operand_type_and (i.types[this_operand],
9856 types);
9857 }
9858
9859 return 1;
9860 }
9861
9862 static char *
9863 i386_scale (char *scale)
9864 {
9865 offsetT val;
9866 char *save = input_line_pointer;
9867
9868 input_line_pointer = scale;
9869 val = get_absolute_expression ();
9870
9871 switch (val)
9872 {
9873 case 1:
9874 i.log2_scale_factor = 0;
9875 break;
9876 case 2:
9877 i.log2_scale_factor = 1;
9878 break;
9879 case 4:
9880 i.log2_scale_factor = 2;
9881 break;
9882 case 8:
9883 i.log2_scale_factor = 3;
9884 break;
9885 default:
9886 {
9887 char sep = *input_line_pointer;
9888
9889 *input_line_pointer = '\0';
9890 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
9891 scale);
9892 *input_line_pointer = sep;
9893 input_line_pointer = save;
9894 return NULL;
9895 }
9896 }
9897 if (i.log2_scale_factor != 0 && i.index_reg == 0)
9898 {
9899 as_warn (_("scale factor of %d without an index register"),
9900 1 << i.log2_scale_factor);
9901 i.log2_scale_factor = 0;
9902 }
9903 scale = input_line_pointer;
9904 input_line_pointer = save;
9905 return scale;
9906 }
9907
9908 static int
9909 i386_displacement (char *disp_start, char *disp_end)
9910 {
9911 expressionS *exp;
9912 segT exp_seg = 0;
9913 char *save_input_line_pointer;
9914 char *gotfree_input_line;
9915 int override;
9916 i386_operand_type bigdisp, types = anydisp;
9917 int ret;
9918
9919 if (i.disp_operands == MAX_MEMORY_OPERANDS)
9920 {
9921 as_bad (_("at most %d displacement operands are allowed"),
9922 MAX_MEMORY_OPERANDS);
9923 return 0;
9924 }
9925
9926 operand_type_set (&bigdisp, 0);
9927 if (i.jumpabsolute
9928 || i.types[this_operand].bitfield.baseindex
9929 || (current_templates->start->opcode_modifier.jump != JUMP
9930 && current_templates->start->opcode_modifier.jump != JUMP_DWORD))
9931 {
9932 i386_addressing_mode ();
9933 override = (i.prefix[ADDR_PREFIX] != 0);
9934 if (flag_code == CODE_64BIT)
9935 {
9936 if (!override)
9937 {
9938 bigdisp.bitfield.disp32s = 1;
9939 bigdisp.bitfield.disp64 = 1;
9940 }
9941 else
9942 bigdisp.bitfield.disp32 = 1;
9943 }
9944 else if ((flag_code == CODE_16BIT) ^ override)
9945 bigdisp.bitfield.disp16 = 1;
9946 else
9947 bigdisp.bitfield.disp32 = 1;
9948 }
9949 else
9950 {
9951 /* For PC-relative branches, the width of the displacement may be
9952 dependent upon data size, but is never dependent upon address size.
9953 Also make sure to not unintentionally match against a non-PC-relative
9954 branch template. */
9955 static templates aux_templates;
9956 const insn_template *t = current_templates->start;
9957 bfd_boolean has_intel64 = FALSE;
9958
9959 aux_templates.start = t;
9960 while (++t < current_templates->end)
9961 {
9962 if (t->opcode_modifier.jump
9963 != current_templates->start->opcode_modifier.jump)
9964 break;
9965 if (t->opcode_modifier.intel64)
9966 has_intel64 = TRUE;
9967 }
9968 if (t < current_templates->end)
9969 {
9970 aux_templates.end = t;
9971 current_templates = &aux_templates;
9972 }
9973
9974 override = (i.prefix[DATA_PREFIX] != 0);
9975 if (flag_code == CODE_64BIT)
9976 {
9977 if ((override || i.suffix == WORD_MNEM_SUFFIX)
9978 && (!intel64 || !has_intel64))
9979 bigdisp.bitfield.disp16 = 1;
9980 else
9981 bigdisp.bitfield.disp32s = 1;
9982 }
9983 else
9984 {
9985 if (!override)
9986 override = (i.suffix == (flag_code != CODE_16BIT
9987 ? WORD_MNEM_SUFFIX
9988 : LONG_MNEM_SUFFIX));
9989 bigdisp.bitfield.disp32 = 1;
9990 if ((flag_code == CODE_16BIT) ^ override)
9991 {
9992 bigdisp.bitfield.disp32 = 0;
9993 bigdisp.bitfield.disp16 = 1;
9994 }
9995 }
9996 }
9997 i.types[this_operand] = operand_type_or (i.types[this_operand],
9998 bigdisp);
9999
10000 exp = &disp_expressions[i.disp_operands];
10001 i.op[this_operand].disps = exp;
10002 i.disp_operands++;
10003 save_input_line_pointer = input_line_pointer;
10004 input_line_pointer = disp_start;
10005 END_STRING_AND_SAVE (disp_end);
10006
10007 #ifndef GCC_ASM_O_HACK
10008 #define GCC_ASM_O_HACK 0
10009 #endif
10010 #if GCC_ASM_O_HACK
10011 END_STRING_AND_SAVE (disp_end + 1);
10012 if (i.types[this_operand].bitfield.baseIndex
10013 && displacement_string_end[-1] == '+')
10014 {
10015 /* This hack is to avoid a warning when using the "o"
10016 constraint within gcc asm statements.
10017 For instance:
10018
10019 #define _set_tssldt_desc(n,addr,limit,type) \
10020 __asm__ __volatile__ ( \
10021 "movw %w2,%0\n\t" \
10022 "movw %w1,2+%0\n\t" \
10023 "rorl $16,%1\n\t" \
10024 "movb %b1,4+%0\n\t" \
10025 "movb %4,5+%0\n\t" \
10026 "movb $0,6+%0\n\t" \
10027 "movb %h1,7+%0\n\t" \
10028 "rorl $16,%1" \
10029 : "=o"(*(n)) : "q" (addr), "ri"(limit), "i"(type))
10030
10031 This works great except that the output assembler ends
10032 up looking a bit weird if it turns out that there is
10033 no offset. You end up producing code that looks like:
10034
10035 #APP
10036 movw $235,(%eax)
10037 movw %dx,2+(%eax)
10038 rorl $16,%edx
10039 movb %dl,4+(%eax)
10040 movb $137,5+(%eax)
10041 movb $0,6+(%eax)
10042 movb %dh,7+(%eax)
10043 rorl $16,%edx
10044 #NO_APP
10045
10046 So here we provide the missing zero. */
10047
10048 *displacement_string_end = '0';
10049 }
10050 #endif
10051 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
10052 if (gotfree_input_line)
10053 input_line_pointer = gotfree_input_line;
10054
10055 exp_seg = expression (exp);
10056
10057 SKIP_WHITESPACE ();
10058 if (*input_line_pointer)
10059 as_bad (_("junk `%s' after expression"), input_line_pointer);
10060 #if GCC_ASM_O_HACK
10061 RESTORE_END_STRING (disp_end + 1);
10062 #endif
10063 input_line_pointer = save_input_line_pointer;
10064 if (gotfree_input_line)
10065 {
10066 free (gotfree_input_line);
10067
10068 if (exp->X_op == O_constant || exp->X_op == O_register)
10069 exp->X_op = O_illegal;
10070 }
10071
10072 ret = i386_finalize_displacement (exp_seg, exp, types, disp_start);
10073
10074 RESTORE_END_STRING (disp_end);
10075
10076 return ret;
10077 }
10078
10079 static int
10080 i386_finalize_displacement (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
10081 i386_operand_type types, const char *disp_start)
10082 {
10083 i386_operand_type bigdisp;
10084 int ret = 1;
10085
10086 /* We do this to make sure that the section symbol is in
10087 the symbol table. We will ultimately change the relocation
10088 to be relative to the beginning of the section. */
10089 if (i.reloc[this_operand] == BFD_RELOC_386_GOTOFF
10090 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL
10091 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
10092 {
10093 if (exp->X_op != O_symbol)
10094 goto inv_disp;
10095
10096 if (S_IS_LOCAL (exp->X_add_symbol)
10097 && S_GET_SEGMENT (exp->X_add_symbol) != undefined_section
10098 && S_GET_SEGMENT (exp->X_add_symbol) != expr_section)
10099 section_symbol (S_GET_SEGMENT (exp->X_add_symbol));
10100 exp->X_op = O_subtract;
10101 exp->X_op_symbol = GOT_symbol;
10102 if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
10103 i.reloc[this_operand] = BFD_RELOC_32_PCREL;
10104 else if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
10105 i.reloc[this_operand] = BFD_RELOC_64;
10106 else
10107 i.reloc[this_operand] = BFD_RELOC_32;
10108 }
10109
10110 else if (exp->X_op == O_absent
10111 || exp->X_op == O_illegal
10112 || exp->X_op == O_big)
10113 {
10114 inv_disp:
10115 as_bad (_("missing or invalid displacement expression `%s'"),
10116 disp_start);
10117 ret = 0;
10118 }
10119
10120 else if (flag_code == CODE_64BIT
10121 && !i.prefix[ADDR_PREFIX]
10122 && exp->X_op == O_constant)
10123 {
10124 /* Since displacement is signed extended to 64bit, don't allow
10125 disp32 and turn off disp32s if they are out of range. */
10126 i.types[this_operand].bitfield.disp32 = 0;
10127 if (!fits_in_signed_long (exp->X_add_number))
10128 {
10129 i.types[this_operand].bitfield.disp32s = 0;
10130 if (i.types[this_operand].bitfield.baseindex)
10131 {
10132 as_bad (_("0x%lx out range of signed 32bit displacement"),
10133 (long) exp->X_add_number);
10134 ret = 0;
10135 }
10136 }
10137 }
10138
10139 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
10140 else if (exp->X_op != O_constant
10141 && OUTPUT_FLAVOR == bfd_target_aout_flavour
10142 && exp_seg != absolute_section
10143 && exp_seg != text_section
10144 && exp_seg != data_section
10145 && exp_seg != bss_section
10146 && exp_seg != undefined_section
10147 && !bfd_is_com_section (exp_seg))
10148 {
10149 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
10150 ret = 0;
10151 }
10152 #endif
10153
10154 if (current_templates->start->opcode_modifier.jump == JUMP_BYTE
10155 /* Constants get taken care of by optimize_disp(). */
10156 && exp->X_op != O_constant)
10157 i.types[this_operand].bitfield.disp8 = 1;
10158
10159 /* Check if this is a displacement only operand. */
10160 bigdisp = i.types[this_operand];
10161 bigdisp.bitfield.disp8 = 0;
10162 bigdisp.bitfield.disp16 = 0;
10163 bigdisp.bitfield.disp32 = 0;
10164 bigdisp.bitfield.disp32s = 0;
10165 bigdisp.bitfield.disp64 = 0;
10166 if (operand_type_all_zero (&bigdisp))
10167 i.types[this_operand] = operand_type_and (i.types[this_operand],
10168 types);
10169
10170 return ret;
10171 }
10172
10173 /* Return the active addressing mode, taking address override and
10174 registers forming the address into consideration. Update the
10175 address override prefix if necessary. */
10176
10177 static enum flag_code
10178 i386_addressing_mode (void)
10179 {
10180 enum flag_code addr_mode;
10181
10182 if (i.prefix[ADDR_PREFIX])
10183 addr_mode = flag_code == CODE_32BIT ? CODE_16BIT : CODE_32BIT;
10184 else
10185 {
10186 addr_mode = flag_code;
10187
10188 #if INFER_ADDR_PREFIX
10189 if (i.mem_operands == 0)
10190 {
10191 /* Infer address prefix from the first memory operand. */
10192 const reg_entry *addr_reg = i.base_reg;
10193
10194 if (addr_reg == NULL)
10195 addr_reg = i.index_reg;
10196
10197 if (addr_reg)
10198 {
10199 if (addr_reg->reg_type.bitfield.dword)
10200 addr_mode = CODE_32BIT;
10201 else if (flag_code != CODE_64BIT
10202 && addr_reg->reg_type.bitfield.word)
10203 addr_mode = CODE_16BIT;
10204
10205 if (addr_mode != flag_code)
10206 {
10207 i.prefix[ADDR_PREFIX] = ADDR_PREFIX_OPCODE;
10208 i.prefixes += 1;
10209 /* Change the size of any displacement too. At most one
10210 of Disp16 or Disp32 is set.
10211 FIXME. There doesn't seem to be any real need for
10212 separate Disp16 and Disp32 flags. The same goes for
10213 Imm16 and Imm32. Removing them would probably clean
10214 up the code quite a lot. */
10215 if (flag_code != CODE_64BIT
10216 && (i.types[this_operand].bitfield.disp16
10217 || i.types[this_operand].bitfield.disp32))
10218 i.types[this_operand]
10219 = operand_type_xor (i.types[this_operand], disp16_32);
10220 }
10221 }
10222 }
10223 #endif
10224 }
10225
10226 return addr_mode;
10227 }
10228
10229 /* Make sure the memory operand we've been dealt is valid.
10230 Return 1 on success, 0 on a failure. */
10231
10232 static int
10233 i386_index_check (const char *operand_string)
10234 {
10235 const char *kind = "base/index";
10236 enum flag_code addr_mode = i386_addressing_mode ();
10237
10238 if (current_templates->start->opcode_modifier.isstring
10239 && !current_templates->start->cpu_flags.bitfield.cpupadlock
10240 && (current_templates->end[-1].opcode_modifier.isstring
10241 || i.mem_operands))
10242 {
10243 /* Memory operands of string insns are special in that they only allow
10244 a single register (rDI, rSI, or rBX) as their memory address. */
10245 const reg_entry *expected_reg;
10246 static const char *di_si[][2] =
10247 {
10248 { "esi", "edi" },
10249 { "si", "di" },
10250 { "rsi", "rdi" }
10251 };
10252 static const char *bx[] = { "ebx", "bx", "rbx" };
10253
10254 kind = "string address";
10255
10256 if (current_templates->start->opcode_modifier.repprefixok)
10257 {
10258 int es_op = current_templates->end[-1].opcode_modifier.isstring
10259 - IS_STRING_ES_OP0;
10260 int op = 0;
10261
10262 if (!current_templates->end[-1].operand_types[0].bitfield.baseindex
10263 || ((!i.mem_operands != !intel_syntax)
10264 && current_templates->end[-1].operand_types[1]
10265 .bitfield.baseindex))
10266 op = 1;
10267 expected_reg = hash_find (reg_hash, di_si[addr_mode][op == es_op]);
10268 }
10269 else
10270 expected_reg = hash_find (reg_hash, bx[addr_mode]);
10271
10272 if (i.base_reg != expected_reg
10273 || i.index_reg
10274 || operand_type_check (i.types[this_operand], disp))
10275 {
10276 /* The second memory operand must have the same size as
10277 the first one. */
10278 if (i.mem_operands
10279 && i.base_reg
10280 && !((addr_mode == CODE_64BIT
10281 && i.base_reg->reg_type.bitfield.qword)
10282 || (addr_mode == CODE_32BIT
10283 ? i.base_reg->reg_type.bitfield.dword
10284 : i.base_reg->reg_type.bitfield.word)))
10285 goto bad_address;
10286
10287 as_warn (_("`%s' is not valid here (expected `%c%s%s%c')"),
10288 operand_string,
10289 intel_syntax ? '[' : '(',
10290 register_prefix,
10291 expected_reg->reg_name,
10292 intel_syntax ? ']' : ')');
10293 return 1;
10294 }
10295 else
10296 return 1;
10297
10298 bad_address:
10299 as_bad (_("`%s' is not a valid %s expression"),
10300 operand_string, kind);
10301 return 0;
10302 }
10303 else
10304 {
10305 if (addr_mode != CODE_16BIT)
10306 {
10307 /* 32-bit/64-bit checks. */
10308 if ((i.base_reg
10309 && ((addr_mode == CODE_64BIT
10310 ? !i.base_reg->reg_type.bitfield.qword
10311 : !i.base_reg->reg_type.bitfield.dword)
10312 || (i.index_reg && i.base_reg->reg_num == RegIP)
10313 || i.base_reg->reg_num == RegIZ))
10314 || (i.index_reg
10315 && !i.index_reg->reg_type.bitfield.xmmword
10316 && !i.index_reg->reg_type.bitfield.ymmword
10317 && !i.index_reg->reg_type.bitfield.zmmword
10318 && ((addr_mode == CODE_64BIT
10319 ? !i.index_reg->reg_type.bitfield.qword
10320 : !i.index_reg->reg_type.bitfield.dword)
10321 || !i.index_reg->reg_type.bitfield.baseindex)))
10322 goto bad_address;
10323
10324 /* bndmk, bndldx, and bndstx have special restrictions. */
10325 if (current_templates->start->base_opcode == 0xf30f1b
10326 || (current_templates->start->base_opcode & ~1) == 0x0f1a)
10327 {
10328 /* They cannot use RIP-relative addressing. */
10329 if (i.base_reg && i.base_reg->reg_num == RegIP)
10330 {
10331 as_bad (_("`%s' cannot be used here"), operand_string);
10332 return 0;
10333 }
10334
10335 /* bndldx and bndstx ignore their scale factor. */
10336 if (current_templates->start->base_opcode != 0xf30f1b
10337 && i.log2_scale_factor)
10338 as_warn (_("register scaling is being ignored here"));
10339 }
10340 }
10341 else
10342 {
10343 /* 16-bit checks. */
10344 if ((i.base_reg
10345 && (!i.base_reg->reg_type.bitfield.word
10346 || !i.base_reg->reg_type.bitfield.baseindex))
10347 || (i.index_reg
10348 && (!i.index_reg->reg_type.bitfield.word
10349 || !i.index_reg->reg_type.bitfield.baseindex
10350 || !(i.base_reg
10351 && i.base_reg->reg_num < 6
10352 && i.index_reg->reg_num >= 6
10353 && i.log2_scale_factor == 0))))
10354 goto bad_address;
10355 }
10356 }
10357 return 1;
10358 }
10359
10360 /* Handle vector immediates. */
10361
10362 static int
10363 RC_SAE_immediate (const char *imm_start)
10364 {
10365 unsigned int match_found, j;
10366 const char *pstr = imm_start;
10367 expressionS *exp;
10368
10369 if (*pstr != '{')
10370 return 0;
10371
10372 pstr++;
10373 match_found = 0;
10374 for (j = 0; j < ARRAY_SIZE (RC_NamesTable); j++)
10375 {
10376 if (!strncmp (pstr, RC_NamesTable[j].name, RC_NamesTable[j].len))
10377 {
10378 if (!i.rounding)
10379 {
10380 rc_op.type = RC_NamesTable[j].type;
10381 rc_op.operand = this_operand;
10382 i.rounding = &rc_op;
10383 }
10384 else
10385 {
10386 as_bad (_("duplicated `%s'"), imm_start);
10387 return 0;
10388 }
10389 pstr += RC_NamesTable[j].len;
10390 match_found = 1;
10391 break;
10392 }
10393 }
10394 if (!match_found)
10395 return 0;
10396
10397 if (*pstr++ != '}')
10398 {
10399 as_bad (_("Missing '}': '%s'"), imm_start);
10400 return 0;
10401 }
10402 /* RC/SAE immediate string should contain nothing more. */;
10403 if (*pstr != 0)
10404 {
10405 as_bad (_("Junk after '}': '%s'"), imm_start);
10406 return 0;
10407 }
10408
10409 exp = &im_expressions[i.imm_operands++];
10410 i.op[this_operand].imms = exp;
10411
10412 exp->X_op = O_constant;
10413 exp->X_add_number = 0;
10414 exp->X_add_symbol = (symbolS *) 0;
10415 exp->X_op_symbol = (symbolS *) 0;
10416
10417 i.types[this_operand].bitfield.imm8 = 1;
10418 return 1;
10419 }
10420
10421 /* Only string instructions can have a second memory operand, so
10422 reduce current_templates to just those if it contains any. */
10423 static int
10424 maybe_adjust_templates (void)
10425 {
10426 const insn_template *t;
10427
10428 gas_assert (i.mem_operands == 1);
10429
10430 for (t = current_templates->start; t < current_templates->end; ++t)
10431 if (t->opcode_modifier.isstring)
10432 break;
10433
10434 if (t < current_templates->end)
10435 {
10436 static templates aux_templates;
10437 bfd_boolean recheck;
10438
10439 aux_templates.start = t;
10440 for (; t < current_templates->end; ++t)
10441 if (!t->opcode_modifier.isstring)
10442 break;
10443 aux_templates.end = t;
10444
10445 /* Determine whether to re-check the first memory operand. */
10446 recheck = (aux_templates.start != current_templates->start
10447 || t != current_templates->end);
10448
10449 current_templates = &aux_templates;
10450
10451 if (recheck)
10452 {
10453 i.mem_operands = 0;
10454 if (i.memop1_string != NULL
10455 && i386_index_check (i.memop1_string) == 0)
10456 return 0;
10457 i.mem_operands = 1;
10458 }
10459 }
10460
10461 return 1;
10462 }
10463
10464 /* Parse OPERAND_STRING into the i386_insn structure I. Returns zero
10465 on error. */
10466
10467 static int
10468 i386_att_operand (char *operand_string)
10469 {
10470 const reg_entry *r;
10471 char *end_op;
10472 char *op_string = operand_string;
10473
10474 if (is_space_char (*op_string))
10475 ++op_string;
10476
10477 /* We check for an absolute prefix (differentiating,
10478 for example, 'jmp pc_relative_label' from 'jmp *absolute_label'. */
10479 if (*op_string == ABSOLUTE_PREFIX)
10480 {
10481 ++op_string;
10482 if (is_space_char (*op_string))
10483 ++op_string;
10484 i.jumpabsolute = TRUE;
10485 }
10486
10487 /* Check if operand is a register. */
10488 if ((r = parse_register (op_string, &end_op)) != NULL)
10489 {
10490 i386_operand_type temp;
10491
10492 /* Check for a segment override by searching for ':' after a
10493 segment register. */
10494 op_string = end_op;
10495 if (is_space_char (*op_string))
10496 ++op_string;
10497 if (*op_string == ':' && r->reg_type.bitfield.class == SReg)
10498 {
10499 switch (r->reg_num)
10500 {
10501 case 0:
10502 i.seg[i.mem_operands] = &es;
10503 break;
10504 case 1:
10505 i.seg[i.mem_operands] = &cs;
10506 break;
10507 case 2:
10508 i.seg[i.mem_operands] = &ss;
10509 break;
10510 case 3:
10511 i.seg[i.mem_operands] = &ds;
10512 break;
10513 case 4:
10514 i.seg[i.mem_operands] = &fs;
10515 break;
10516 case 5:
10517 i.seg[i.mem_operands] = &gs;
10518 break;
10519 }
10520
10521 /* Skip the ':' and whitespace. */
10522 ++op_string;
10523 if (is_space_char (*op_string))
10524 ++op_string;
10525
10526 if (!is_digit_char (*op_string)
10527 && !is_identifier_char (*op_string)
10528 && *op_string != '('
10529 && *op_string != ABSOLUTE_PREFIX)
10530 {
10531 as_bad (_("bad memory operand `%s'"), op_string);
10532 return 0;
10533 }
10534 /* Handle case of %es:*foo. */
10535 if (*op_string == ABSOLUTE_PREFIX)
10536 {
10537 ++op_string;
10538 if (is_space_char (*op_string))
10539 ++op_string;
10540 i.jumpabsolute = TRUE;
10541 }
10542 goto do_memory_reference;
10543 }
10544
10545 /* Handle vector operations. */
10546 if (*op_string == '{')
10547 {
10548 op_string = check_VecOperations (op_string, NULL);
10549 if (op_string == NULL)
10550 return 0;
10551 }
10552
10553 if (*op_string)
10554 {
10555 as_bad (_("junk `%s' after register"), op_string);
10556 return 0;
10557 }
10558 temp = r->reg_type;
10559 temp.bitfield.baseindex = 0;
10560 i.types[this_operand] = operand_type_or (i.types[this_operand],
10561 temp);
10562 i.types[this_operand].bitfield.unspecified = 0;
10563 i.op[this_operand].regs = r;
10564 i.reg_operands++;
10565 }
10566 else if (*op_string == REGISTER_PREFIX)
10567 {
10568 as_bad (_("bad register name `%s'"), op_string);
10569 return 0;
10570 }
10571 else if (*op_string == IMMEDIATE_PREFIX)
10572 {
10573 ++op_string;
10574 if (i.jumpabsolute)
10575 {
10576 as_bad (_("immediate operand illegal with absolute jump"));
10577 return 0;
10578 }
10579 if (!i386_immediate (op_string))
10580 return 0;
10581 }
10582 else if (RC_SAE_immediate (operand_string))
10583 {
10584 /* If it is a RC or SAE immediate, do nothing. */
10585 ;
10586 }
10587 else if (is_digit_char (*op_string)
10588 || is_identifier_char (*op_string)
10589 || *op_string == '"'
10590 || *op_string == '(')
10591 {
10592 /* This is a memory reference of some sort. */
10593 char *base_string;
10594
10595 /* Start and end of displacement string expression (if found). */
10596 char *displacement_string_start;
10597 char *displacement_string_end;
10598 char *vop_start;
10599
10600 do_memory_reference:
10601 if (i.mem_operands == 1 && !maybe_adjust_templates ())
10602 return 0;
10603 if ((i.mem_operands == 1
10604 && !current_templates->start->opcode_modifier.isstring)
10605 || i.mem_operands == 2)
10606 {
10607 as_bad (_("too many memory references for `%s'"),
10608 current_templates->start->name);
10609 return 0;
10610 }
10611
10612 /* Check for base index form. We detect the base index form by
10613 looking for an ')' at the end of the operand, searching
10614 for the '(' matching it, and finding a REGISTER_PREFIX or ','
10615 after the '('. */
10616 base_string = op_string + strlen (op_string);
10617
10618 /* Handle vector operations. */
10619 vop_start = strchr (op_string, '{');
10620 if (vop_start && vop_start < base_string)
10621 {
10622 if (check_VecOperations (vop_start, base_string) == NULL)
10623 return 0;
10624 base_string = vop_start;
10625 }
10626
10627 --base_string;
10628 if (is_space_char (*base_string))
10629 --base_string;
10630
10631 /* If we only have a displacement, set-up for it to be parsed later. */
10632 displacement_string_start = op_string;
10633 displacement_string_end = base_string + 1;
10634
10635 if (*base_string == ')')
10636 {
10637 char *temp_string;
10638 unsigned int parens_balanced = 1;
10639 /* We've already checked that the number of left & right ()'s are
10640 equal, so this loop will not be infinite. */
10641 do
10642 {
10643 base_string--;
10644 if (*base_string == ')')
10645 parens_balanced++;
10646 if (*base_string == '(')
10647 parens_balanced--;
10648 }
10649 while (parens_balanced);
10650
10651 temp_string = base_string;
10652
10653 /* Skip past '(' and whitespace. */
10654 ++base_string;
10655 if (is_space_char (*base_string))
10656 ++base_string;
10657
10658 if (*base_string == ','
10659 || ((i.base_reg = parse_register (base_string, &end_op))
10660 != NULL))
10661 {
10662 displacement_string_end = temp_string;
10663
10664 i.types[this_operand].bitfield.baseindex = 1;
10665
10666 if (i.base_reg)
10667 {
10668 base_string = end_op;
10669 if (is_space_char (*base_string))
10670 ++base_string;
10671 }
10672
10673 /* There may be an index reg or scale factor here. */
10674 if (*base_string == ',')
10675 {
10676 ++base_string;
10677 if (is_space_char (*base_string))
10678 ++base_string;
10679
10680 if ((i.index_reg = parse_register (base_string, &end_op))
10681 != NULL)
10682 {
10683 base_string = end_op;
10684 if (is_space_char (*base_string))
10685 ++base_string;
10686 if (*base_string == ',')
10687 {
10688 ++base_string;
10689 if (is_space_char (*base_string))
10690 ++base_string;
10691 }
10692 else if (*base_string != ')')
10693 {
10694 as_bad (_("expecting `,' or `)' "
10695 "after index register in `%s'"),
10696 operand_string);
10697 return 0;
10698 }
10699 }
10700 else if (*base_string == REGISTER_PREFIX)
10701 {
10702 end_op = strchr (base_string, ',');
10703 if (end_op)
10704 *end_op = '\0';
10705 as_bad (_("bad register name `%s'"), base_string);
10706 return 0;
10707 }
10708
10709 /* Check for scale factor. */
10710 if (*base_string != ')')
10711 {
10712 char *end_scale = i386_scale (base_string);
10713
10714 if (!end_scale)
10715 return 0;
10716
10717 base_string = end_scale;
10718 if (is_space_char (*base_string))
10719 ++base_string;
10720 if (*base_string != ')')
10721 {
10722 as_bad (_("expecting `)' "
10723 "after scale factor in `%s'"),
10724 operand_string);
10725 return 0;
10726 }
10727 }
10728 else if (!i.index_reg)
10729 {
10730 as_bad (_("expecting index register or scale factor "
10731 "after `,'; got '%c'"),
10732 *base_string);
10733 return 0;
10734 }
10735 }
10736 else if (*base_string != ')')
10737 {
10738 as_bad (_("expecting `,' or `)' "
10739 "after base register in `%s'"),
10740 operand_string);
10741 return 0;
10742 }
10743 }
10744 else if (*base_string == REGISTER_PREFIX)
10745 {
10746 end_op = strchr (base_string, ',');
10747 if (end_op)
10748 *end_op = '\0';
10749 as_bad (_("bad register name `%s'"), base_string);
10750 return 0;
10751 }
10752 }
10753
10754 /* If there's an expression beginning the operand, parse it,
10755 assuming displacement_string_start and
10756 displacement_string_end are meaningful. */
10757 if (displacement_string_start != displacement_string_end)
10758 {
10759 if (!i386_displacement (displacement_string_start,
10760 displacement_string_end))
10761 return 0;
10762 }
10763
10764 /* Special case for (%dx) while doing input/output op. */
10765 if (i.base_reg
10766 && i.base_reg->reg_type.bitfield.instance == RegD
10767 && i.base_reg->reg_type.bitfield.word
10768 && i.index_reg == 0
10769 && i.log2_scale_factor == 0
10770 && i.seg[i.mem_operands] == 0
10771 && !operand_type_check (i.types[this_operand], disp))
10772 {
10773 i.types[this_operand] = i.base_reg->reg_type;
10774 return 1;
10775 }
10776
10777 if (i386_index_check (operand_string) == 0)
10778 return 0;
10779 i.flags[this_operand] |= Operand_Mem;
10780 if (i.mem_operands == 0)
10781 i.memop1_string = xstrdup (operand_string);
10782 i.mem_operands++;
10783 }
10784 else
10785 {
10786 /* It's not a memory operand; argh! */
10787 as_bad (_("invalid char %s beginning operand %d `%s'"),
10788 output_invalid (*op_string),
10789 this_operand + 1,
10790 op_string);
10791 return 0;
10792 }
10793 return 1; /* Normal return. */
10794 }
10795 \f
10796 /* Calculate the maximum variable size (i.e., excluding fr_fix)
10797 that an rs_machine_dependent frag may reach. */
10798
10799 unsigned int
10800 i386_frag_max_var (fragS *frag)
10801 {
10802 /* The only relaxable frags are for jumps.
10803 Unconditional jumps can grow by 4 bytes and others by 5 bytes. */
10804 gas_assert (frag->fr_type == rs_machine_dependent);
10805 return TYPE_FROM_RELAX_STATE (frag->fr_subtype) == UNCOND_JUMP ? 4 : 5;
10806 }
10807
10808 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10809 static int
10810 elf_symbol_resolved_in_segment_p (symbolS *fr_symbol, offsetT fr_var)
10811 {
10812 /* STT_GNU_IFUNC symbol must go through PLT. */
10813 if ((symbol_get_bfdsym (fr_symbol)->flags
10814 & BSF_GNU_INDIRECT_FUNCTION) != 0)
10815 return 0;
10816
10817 if (!S_IS_EXTERNAL (fr_symbol))
10818 /* Symbol may be weak or local. */
10819 return !S_IS_WEAK (fr_symbol);
10820
10821 /* Global symbols with non-default visibility can't be preempted. */
10822 if (ELF_ST_VISIBILITY (S_GET_OTHER (fr_symbol)) != STV_DEFAULT)
10823 return 1;
10824
10825 if (fr_var != NO_RELOC)
10826 switch ((enum bfd_reloc_code_real) fr_var)
10827 {
10828 case BFD_RELOC_386_PLT32:
10829 case BFD_RELOC_X86_64_PLT32:
10830 /* Symbol with PLT relocation may be preempted. */
10831 return 0;
10832 default:
10833 abort ();
10834 }
10835
10836 /* Global symbols with default visibility in a shared library may be
10837 preempted by another definition. */
10838 return !shared;
10839 }
10840 #endif
10841
10842 /* Return the next non-empty frag. */
10843
10844 static fragS *
10845 i386_next_non_empty_frag (fragS *fragP)
10846 {
10847 /* There may be a frag with a ".fill 0" when there is no room in
10848 the current frag for frag_grow in output_insn. */
10849 for (fragP = fragP->fr_next;
10850 (fragP != NULL
10851 && fragP->fr_type == rs_fill
10852 && fragP->fr_fix == 0);
10853 fragP = fragP->fr_next)
10854 ;
10855 return fragP;
10856 }
10857
10858 /* Return the next jcc frag after BRANCH_PADDING. */
10859
10860 static fragS *
10861 i386_next_jcc_frag (fragS *fragP)
10862 {
10863 if (!fragP)
10864 return NULL;
10865
10866 if (fragP->fr_type == rs_machine_dependent
10867 && (TYPE_FROM_RELAX_STATE (fragP->fr_subtype)
10868 == BRANCH_PADDING))
10869 {
10870 fragP = i386_next_non_empty_frag (fragP);
10871 if (fragP->fr_type != rs_machine_dependent)
10872 return NULL;
10873 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == COND_JUMP)
10874 return fragP;
10875 }
10876
10877 return NULL;
10878 }
10879
10880 /* Classify BRANCH_PADDING, BRANCH_PREFIX and FUSED_JCC_PADDING frags. */
10881
10882 static void
10883 i386_classify_machine_dependent_frag (fragS *fragP)
10884 {
10885 fragS *cmp_fragP;
10886 fragS *pad_fragP;
10887 fragS *branch_fragP;
10888 fragS *next_fragP;
10889 unsigned int max_prefix_length;
10890
10891 if (fragP->tc_frag_data.classified)
10892 return;
10893
10894 /* First scan for BRANCH_PADDING and FUSED_JCC_PADDING. Convert
10895 FUSED_JCC_PADDING and merge BRANCH_PADDING. */
10896 for (next_fragP = fragP;
10897 next_fragP != NULL;
10898 next_fragP = next_fragP->fr_next)
10899 {
10900 next_fragP->tc_frag_data.classified = 1;
10901 if (next_fragP->fr_type == rs_machine_dependent)
10902 switch (TYPE_FROM_RELAX_STATE (next_fragP->fr_subtype))
10903 {
10904 case BRANCH_PADDING:
10905 /* The BRANCH_PADDING frag must be followed by a branch
10906 frag. */
10907 branch_fragP = i386_next_non_empty_frag (next_fragP);
10908 next_fragP->tc_frag_data.u.branch_fragP = branch_fragP;
10909 break;
10910 case FUSED_JCC_PADDING:
10911 /* Check if this is a fused jcc:
10912 FUSED_JCC_PADDING
10913 CMP like instruction
10914 BRANCH_PADDING
10915 COND_JUMP
10916 */
10917 cmp_fragP = i386_next_non_empty_frag (next_fragP);
10918 pad_fragP = i386_next_non_empty_frag (cmp_fragP);
10919 branch_fragP = i386_next_jcc_frag (pad_fragP);
10920 if (branch_fragP)
10921 {
10922 /* The BRANCH_PADDING frag is merged with the
10923 FUSED_JCC_PADDING frag. */
10924 next_fragP->tc_frag_data.u.branch_fragP = branch_fragP;
10925 /* CMP like instruction size. */
10926 next_fragP->tc_frag_data.cmp_size = cmp_fragP->fr_fix;
10927 frag_wane (pad_fragP);
10928 /* Skip to branch_fragP. */
10929 next_fragP = branch_fragP;
10930 }
10931 else if (next_fragP->tc_frag_data.max_prefix_length)
10932 {
10933 /* Turn FUSED_JCC_PADDING into BRANCH_PREFIX if it isn't
10934 a fused jcc. */
10935 next_fragP->fr_subtype
10936 = ENCODE_RELAX_STATE (BRANCH_PREFIX, 0);
10937 next_fragP->tc_frag_data.max_bytes
10938 = next_fragP->tc_frag_data.max_prefix_length;
10939 /* This will be updated in the BRANCH_PREFIX scan. */
10940 next_fragP->tc_frag_data.max_prefix_length = 0;
10941 }
10942 else
10943 frag_wane (next_fragP);
10944 break;
10945 }
10946 }
10947
10948 /* Stop if there is no BRANCH_PREFIX. */
10949 if (!align_branch_prefix_size)
10950 return;
10951
10952 /* Scan for BRANCH_PREFIX. */
10953 for (; fragP != NULL; fragP = fragP->fr_next)
10954 {
10955 if (fragP->fr_type != rs_machine_dependent
10956 || (TYPE_FROM_RELAX_STATE (fragP->fr_subtype)
10957 != BRANCH_PREFIX))
10958 continue;
10959
10960 /* Count all BRANCH_PREFIX frags before BRANCH_PADDING and
10961 COND_JUMP_PREFIX. */
10962 max_prefix_length = 0;
10963 for (next_fragP = fragP;
10964 next_fragP != NULL;
10965 next_fragP = next_fragP->fr_next)
10966 {
10967 if (next_fragP->fr_type == rs_fill)
10968 /* Skip rs_fill frags. */
10969 continue;
10970 else if (next_fragP->fr_type != rs_machine_dependent)
10971 /* Stop for all other frags. */
10972 break;
10973
10974 /* rs_machine_dependent frags. */
10975 if (TYPE_FROM_RELAX_STATE (next_fragP->fr_subtype)
10976 == BRANCH_PREFIX)
10977 {
10978 /* Count BRANCH_PREFIX frags. */
10979 if (max_prefix_length >= MAX_FUSED_JCC_PADDING_SIZE)
10980 {
10981 max_prefix_length = MAX_FUSED_JCC_PADDING_SIZE;
10982 frag_wane (next_fragP);
10983 }
10984 else
10985 max_prefix_length
10986 += next_fragP->tc_frag_data.max_bytes;
10987 }
10988 else if ((TYPE_FROM_RELAX_STATE (next_fragP->fr_subtype)
10989 == BRANCH_PADDING)
10990 || (TYPE_FROM_RELAX_STATE (next_fragP->fr_subtype)
10991 == FUSED_JCC_PADDING))
10992 {
10993 /* Stop at BRANCH_PADDING and FUSED_JCC_PADDING. */
10994 fragP->tc_frag_data.u.padding_fragP = next_fragP;
10995 break;
10996 }
10997 else
10998 /* Stop for other rs_machine_dependent frags. */
10999 break;
11000 }
11001
11002 fragP->tc_frag_data.max_prefix_length = max_prefix_length;
11003
11004 /* Skip to the next frag. */
11005 fragP = next_fragP;
11006 }
11007 }
11008
11009 /* Compute padding size for
11010
11011 FUSED_JCC_PADDING
11012 CMP like instruction
11013 BRANCH_PADDING
11014 COND_JUMP/UNCOND_JUMP
11015
11016 or
11017
11018 BRANCH_PADDING
11019 COND_JUMP/UNCOND_JUMP
11020 */
11021
11022 static int
11023 i386_branch_padding_size (fragS *fragP, offsetT address)
11024 {
11025 unsigned int offset, size, padding_size;
11026 fragS *branch_fragP = fragP->tc_frag_data.u.branch_fragP;
11027
11028 /* The start address of the BRANCH_PADDING or FUSED_JCC_PADDING frag. */
11029 if (!address)
11030 address = fragP->fr_address;
11031 address += fragP->fr_fix;
11032
11033 /* CMP like instrunction size. */
11034 size = fragP->tc_frag_data.cmp_size;
11035
11036 /* The base size of the branch frag. */
11037 size += branch_fragP->fr_fix;
11038
11039 /* Add opcode and displacement bytes for the rs_machine_dependent
11040 branch frag. */
11041 if (branch_fragP->fr_type == rs_machine_dependent)
11042 size += md_relax_table[branch_fragP->fr_subtype].rlx_length;
11043
11044 /* Check if branch is within boundary and doesn't end at the last
11045 byte. */
11046 offset = address & ((1U << align_branch_power) - 1);
11047 if ((offset + size) >= (1U << align_branch_power))
11048 /* Padding needed to avoid crossing boundary. */
11049 padding_size = (1U << align_branch_power) - offset;
11050 else
11051 /* No padding needed. */
11052 padding_size = 0;
11053
11054 /* The return value may be saved in tc_frag_data.length which is
11055 unsigned byte. */
11056 if (!fits_in_unsigned_byte (padding_size))
11057 abort ();
11058
11059 return padding_size;
11060 }
11061
11062 /* i386_generic_table_relax_frag()
11063
11064 Handle BRANCH_PADDING, BRANCH_PREFIX and FUSED_JCC_PADDING frags to
11065 grow/shrink padding to align branch frags. Hand others to
11066 relax_frag(). */
11067
11068 long
11069 i386_generic_table_relax_frag (segT segment, fragS *fragP, long stretch)
11070 {
11071 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PADDING
11072 || TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == FUSED_JCC_PADDING)
11073 {
11074 long padding_size = i386_branch_padding_size (fragP, 0);
11075 long grow = padding_size - fragP->tc_frag_data.length;
11076
11077 /* When the BRANCH_PREFIX frag is used, the computed address
11078 must match the actual address and there should be no padding. */
11079 if (fragP->tc_frag_data.padding_address
11080 && (fragP->tc_frag_data.padding_address != fragP->fr_address
11081 || padding_size))
11082 abort ();
11083
11084 /* Update the padding size. */
11085 if (grow)
11086 fragP->tc_frag_data.length = padding_size;
11087
11088 return grow;
11089 }
11090 else if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PREFIX)
11091 {
11092 fragS *padding_fragP, *next_fragP;
11093 long padding_size, left_size, last_size;
11094
11095 padding_fragP = fragP->tc_frag_data.u.padding_fragP;
11096 if (!padding_fragP)
11097 /* Use the padding set by the leading BRANCH_PREFIX frag. */
11098 return (fragP->tc_frag_data.length
11099 - fragP->tc_frag_data.last_length);
11100
11101 /* Compute the relative address of the padding frag in the very
11102 first time where the BRANCH_PREFIX frag sizes are zero. */
11103 if (!fragP->tc_frag_data.padding_address)
11104 fragP->tc_frag_data.padding_address
11105 = padding_fragP->fr_address - (fragP->fr_address - stretch);
11106
11107 /* First update the last length from the previous interation. */
11108 left_size = fragP->tc_frag_data.prefix_length;
11109 for (next_fragP = fragP;
11110 next_fragP != padding_fragP;
11111 next_fragP = next_fragP->fr_next)
11112 if (next_fragP->fr_type == rs_machine_dependent
11113 && (TYPE_FROM_RELAX_STATE (next_fragP->fr_subtype)
11114 == BRANCH_PREFIX))
11115 {
11116 if (left_size)
11117 {
11118 int max = next_fragP->tc_frag_data.max_bytes;
11119 if (max)
11120 {
11121 int size;
11122 if (max > left_size)
11123 size = left_size;
11124 else
11125 size = max;
11126 left_size -= size;
11127 next_fragP->tc_frag_data.last_length = size;
11128 }
11129 }
11130 else
11131 next_fragP->tc_frag_data.last_length = 0;
11132 }
11133
11134 /* Check the padding size for the padding frag. */
11135 padding_size = i386_branch_padding_size
11136 (padding_fragP, (fragP->fr_address
11137 + fragP->tc_frag_data.padding_address));
11138
11139 last_size = fragP->tc_frag_data.prefix_length;
11140 /* Check if there is change from the last interation. */
11141 if (padding_size == last_size)
11142 {
11143 /* Update the expected address of the padding frag. */
11144 padding_fragP->tc_frag_data.padding_address
11145 = (fragP->fr_address + padding_size
11146 + fragP->tc_frag_data.padding_address);
11147 return 0;
11148 }
11149
11150 if (padding_size > fragP->tc_frag_data.max_prefix_length)
11151 {
11152 /* No padding if there is no sufficient room. Clear the
11153 expected address of the padding frag. */
11154 padding_fragP->tc_frag_data.padding_address = 0;
11155 padding_size = 0;
11156 }
11157 else
11158 /* Store the expected address of the padding frag. */
11159 padding_fragP->tc_frag_data.padding_address
11160 = (fragP->fr_address + padding_size
11161 + fragP->tc_frag_data.padding_address);
11162
11163 fragP->tc_frag_data.prefix_length = padding_size;
11164
11165 /* Update the length for the current interation. */
11166 left_size = padding_size;
11167 for (next_fragP = fragP;
11168 next_fragP != padding_fragP;
11169 next_fragP = next_fragP->fr_next)
11170 if (next_fragP->fr_type == rs_machine_dependent
11171 && (TYPE_FROM_RELAX_STATE (next_fragP->fr_subtype)
11172 == BRANCH_PREFIX))
11173 {
11174 if (left_size)
11175 {
11176 int max = next_fragP->tc_frag_data.max_bytes;
11177 if (max)
11178 {
11179 int size;
11180 if (max > left_size)
11181 size = left_size;
11182 else
11183 size = max;
11184 left_size -= size;
11185 next_fragP->tc_frag_data.length = size;
11186 }
11187 }
11188 else
11189 next_fragP->tc_frag_data.length = 0;
11190 }
11191
11192 return (fragP->tc_frag_data.length
11193 - fragP->tc_frag_data.last_length);
11194 }
11195 return relax_frag (segment, fragP, stretch);
11196 }
11197
11198 /* md_estimate_size_before_relax()
11199
11200 Called just before relax() for rs_machine_dependent frags. The x86
11201 assembler uses these frags to handle variable size jump
11202 instructions.
11203
11204 Any symbol that is now undefined will not become defined.
11205 Return the correct fr_subtype in the frag.
11206 Return the initial "guess for variable size of frag" to caller.
11207 The guess is actually the growth beyond the fixed part. Whatever
11208 we do to grow the fixed or variable part contributes to our
11209 returned value. */
11210
11211 int
11212 md_estimate_size_before_relax (fragS *fragP, segT segment)
11213 {
11214 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PADDING
11215 || TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PREFIX
11216 || TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == FUSED_JCC_PADDING)
11217 {
11218 i386_classify_machine_dependent_frag (fragP);
11219 return fragP->tc_frag_data.length;
11220 }
11221
11222 /* We've already got fragP->fr_subtype right; all we have to do is
11223 check for un-relaxable symbols. On an ELF system, we can't relax
11224 an externally visible symbol, because it may be overridden by a
11225 shared library. */
11226 if (S_GET_SEGMENT (fragP->fr_symbol) != segment
11227 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11228 || (IS_ELF
11229 && !elf_symbol_resolved_in_segment_p (fragP->fr_symbol,
11230 fragP->fr_var))
11231 #endif
11232 #if defined (OBJ_COFF) && defined (TE_PE)
11233 || (OUTPUT_FLAVOR == bfd_target_coff_flavour
11234 && S_IS_WEAK (fragP->fr_symbol))
11235 #endif
11236 )
11237 {
11238 /* Symbol is undefined in this segment, or we need to keep a
11239 reloc so that weak symbols can be overridden. */
11240 int size = (fragP->fr_subtype & CODE16) ? 2 : 4;
11241 enum bfd_reloc_code_real reloc_type;
11242 unsigned char *opcode;
11243 int old_fr_fix;
11244
11245 if (fragP->fr_var != NO_RELOC)
11246 reloc_type = (enum bfd_reloc_code_real) fragP->fr_var;
11247 else if (size == 2)
11248 reloc_type = BFD_RELOC_16_PCREL;
11249 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11250 else if (need_plt32_p (fragP->fr_symbol))
11251 reloc_type = BFD_RELOC_X86_64_PLT32;
11252 #endif
11253 else
11254 reloc_type = BFD_RELOC_32_PCREL;
11255
11256 old_fr_fix = fragP->fr_fix;
11257 opcode = (unsigned char *) fragP->fr_opcode;
11258
11259 switch (TYPE_FROM_RELAX_STATE (fragP->fr_subtype))
11260 {
11261 case UNCOND_JUMP:
11262 /* Make jmp (0xeb) a (d)word displacement jump. */
11263 opcode[0] = 0xe9;
11264 fragP->fr_fix += size;
11265 fix_new (fragP, old_fr_fix, size,
11266 fragP->fr_symbol,
11267 fragP->fr_offset, 1,
11268 reloc_type);
11269 break;
11270
11271 case COND_JUMP86:
11272 if (size == 2
11273 && (!no_cond_jump_promotion || fragP->fr_var != NO_RELOC))
11274 {
11275 /* Negate the condition, and branch past an
11276 unconditional jump. */
11277 opcode[0] ^= 1;
11278 opcode[1] = 3;
11279 /* Insert an unconditional jump. */
11280 opcode[2] = 0xe9;
11281 /* We added two extra opcode bytes, and have a two byte
11282 offset. */
11283 fragP->fr_fix += 2 + 2;
11284 fix_new (fragP, old_fr_fix + 2, 2,
11285 fragP->fr_symbol,
11286 fragP->fr_offset, 1,
11287 reloc_type);
11288 break;
11289 }
11290 /* Fall through. */
11291
11292 case COND_JUMP:
11293 if (no_cond_jump_promotion && fragP->fr_var == NO_RELOC)
11294 {
11295 fixS *fixP;
11296
11297 fragP->fr_fix += 1;
11298 fixP = fix_new (fragP, old_fr_fix, 1,
11299 fragP->fr_symbol,
11300 fragP->fr_offset, 1,
11301 BFD_RELOC_8_PCREL);
11302 fixP->fx_signed = 1;
11303 break;
11304 }
11305
11306 /* This changes the byte-displacement jump 0x7N
11307 to the (d)word-displacement jump 0x0f,0x8N. */
11308 opcode[1] = opcode[0] + 0x10;
11309 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
11310 /* We've added an opcode byte. */
11311 fragP->fr_fix += 1 + size;
11312 fix_new (fragP, old_fr_fix + 1, size,
11313 fragP->fr_symbol,
11314 fragP->fr_offset, 1,
11315 reloc_type);
11316 break;
11317
11318 default:
11319 BAD_CASE (fragP->fr_subtype);
11320 break;
11321 }
11322 frag_wane (fragP);
11323 return fragP->fr_fix - old_fr_fix;
11324 }
11325
11326 /* Guess size depending on current relax state. Initially the relax
11327 state will correspond to a short jump and we return 1, because
11328 the variable part of the frag (the branch offset) is one byte
11329 long. However, we can relax a section more than once and in that
11330 case we must either set fr_subtype back to the unrelaxed state,
11331 or return the value for the appropriate branch. */
11332 return md_relax_table[fragP->fr_subtype].rlx_length;
11333 }
11334
11335 /* Called after relax() is finished.
11336
11337 In: Address of frag.
11338 fr_type == rs_machine_dependent.
11339 fr_subtype is what the address relaxed to.
11340
11341 Out: Any fixSs and constants are set up.
11342 Caller will turn frag into a ".space 0". */
11343
11344 void
11345 md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT sec ATTRIBUTE_UNUSED,
11346 fragS *fragP)
11347 {
11348 unsigned char *opcode;
11349 unsigned char *where_to_put_displacement = NULL;
11350 offsetT target_address;
11351 offsetT opcode_address;
11352 unsigned int extension = 0;
11353 offsetT displacement_from_opcode_start;
11354
11355 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PADDING
11356 || TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == FUSED_JCC_PADDING
11357 || TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PREFIX)
11358 {
11359 /* Generate nop padding. */
11360 unsigned int size = fragP->tc_frag_data.length;
11361 if (size)
11362 {
11363 if (size > fragP->tc_frag_data.max_bytes)
11364 abort ();
11365
11366 if (flag_debug)
11367 {
11368 const char *msg;
11369 const char *branch = "branch";
11370 const char *prefix = "";
11371 fragS *padding_fragP;
11372 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype)
11373 == BRANCH_PREFIX)
11374 {
11375 padding_fragP = fragP->tc_frag_data.u.padding_fragP;
11376 switch (fragP->tc_frag_data.default_prefix)
11377 {
11378 default:
11379 abort ();
11380 break;
11381 case CS_PREFIX_OPCODE:
11382 prefix = " cs";
11383 break;
11384 case DS_PREFIX_OPCODE:
11385 prefix = " ds";
11386 break;
11387 case ES_PREFIX_OPCODE:
11388 prefix = " es";
11389 break;
11390 case FS_PREFIX_OPCODE:
11391 prefix = " fs";
11392 break;
11393 case GS_PREFIX_OPCODE:
11394 prefix = " gs";
11395 break;
11396 case SS_PREFIX_OPCODE:
11397 prefix = " ss";
11398 break;
11399 }
11400 if (padding_fragP)
11401 msg = _("%s:%u: add %d%s at 0x%llx to align "
11402 "%s within %d-byte boundary\n");
11403 else
11404 msg = _("%s:%u: add additional %d%s at 0x%llx to "
11405 "align %s within %d-byte boundary\n");
11406 }
11407 else
11408 {
11409 padding_fragP = fragP;
11410 msg = _("%s:%u: add %d%s-byte nop at 0x%llx to align "
11411 "%s within %d-byte boundary\n");
11412 }
11413
11414 if (padding_fragP)
11415 switch (padding_fragP->tc_frag_data.branch_type)
11416 {
11417 case align_branch_jcc:
11418 branch = "jcc";
11419 break;
11420 case align_branch_fused:
11421 branch = "fused jcc";
11422 break;
11423 case align_branch_jmp:
11424 branch = "jmp";
11425 break;
11426 case align_branch_call:
11427 branch = "call";
11428 break;
11429 case align_branch_indirect:
11430 branch = "indiret branch";
11431 break;
11432 case align_branch_ret:
11433 branch = "ret";
11434 break;
11435 default:
11436 break;
11437 }
11438
11439 fprintf (stdout, msg,
11440 fragP->fr_file, fragP->fr_line, size, prefix,
11441 (long long) fragP->fr_address, branch,
11442 1 << align_branch_power);
11443 }
11444 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PREFIX)
11445 memset (fragP->fr_opcode,
11446 fragP->tc_frag_data.default_prefix, size);
11447 else
11448 i386_generate_nops (fragP, (char *) fragP->fr_opcode,
11449 size, 0);
11450 fragP->fr_fix += size;
11451 }
11452 return;
11453 }
11454
11455 opcode = (unsigned char *) fragP->fr_opcode;
11456
11457 /* Address we want to reach in file space. */
11458 target_address = S_GET_VALUE (fragP->fr_symbol) + fragP->fr_offset;
11459
11460 /* Address opcode resides at in file space. */
11461 opcode_address = fragP->fr_address + fragP->fr_fix;
11462
11463 /* Displacement from opcode start to fill into instruction. */
11464 displacement_from_opcode_start = target_address - opcode_address;
11465
11466 if ((fragP->fr_subtype & BIG) == 0)
11467 {
11468 /* Don't have to change opcode. */
11469 extension = 1; /* 1 opcode + 1 displacement */
11470 where_to_put_displacement = &opcode[1];
11471 }
11472 else
11473 {
11474 if (no_cond_jump_promotion
11475 && TYPE_FROM_RELAX_STATE (fragP->fr_subtype) != UNCOND_JUMP)
11476 as_warn_where (fragP->fr_file, fragP->fr_line,
11477 _("long jump required"));
11478
11479 switch (fragP->fr_subtype)
11480 {
11481 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG):
11482 extension = 4; /* 1 opcode + 4 displacement */
11483 opcode[0] = 0xe9;
11484 where_to_put_displacement = &opcode[1];
11485 break;
11486
11487 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16):
11488 extension = 2; /* 1 opcode + 2 displacement */
11489 opcode[0] = 0xe9;
11490 where_to_put_displacement = &opcode[1];
11491 break;
11492
11493 case ENCODE_RELAX_STATE (COND_JUMP, BIG):
11494 case ENCODE_RELAX_STATE (COND_JUMP86, BIG):
11495 extension = 5; /* 2 opcode + 4 displacement */
11496 opcode[1] = opcode[0] + 0x10;
11497 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
11498 where_to_put_displacement = &opcode[2];
11499 break;
11500
11501 case ENCODE_RELAX_STATE (COND_JUMP, BIG16):
11502 extension = 3; /* 2 opcode + 2 displacement */
11503 opcode[1] = opcode[0] + 0x10;
11504 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
11505 where_to_put_displacement = &opcode[2];
11506 break;
11507
11508 case ENCODE_RELAX_STATE (COND_JUMP86, BIG16):
11509 extension = 4;
11510 opcode[0] ^= 1;
11511 opcode[1] = 3;
11512 opcode[2] = 0xe9;
11513 where_to_put_displacement = &opcode[3];
11514 break;
11515
11516 default:
11517 BAD_CASE (fragP->fr_subtype);
11518 break;
11519 }
11520 }
11521
11522 /* If size if less then four we are sure that the operand fits,
11523 but if it's 4, then it could be that the displacement is larger
11524 then -/+ 2GB. */
11525 if (DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype) == 4
11526 && object_64bit
11527 && ((addressT) (displacement_from_opcode_start - extension
11528 + ((addressT) 1 << 31))
11529 > (((addressT) 2 << 31) - 1)))
11530 {
11531 as_bad_where (fragP->fr_file, fragP->fr_line,
11532 _("jump target out of range"));
11533 /* Make us emit 0. */
11534 displacement_from_opcode_start = extension;
11535 }
11536 /* Now put displacement after opcode. */
11537 md_number_to_chars ((char *) where_to_put_displacement,
11538 (valueT) (displacement_from_opcode_start - extension),
11539 DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype));
11540 fragP->fr_fix += extension;
11541 }
11542 \f
11543 /* Apply a fixup (fixP) to segment data, once it has been determined
11544 by our caller that we have all the info we need to fix it up.
11545
11546 Parameter valP is the pointer to the value of the bits.
11547
11548 On the 386, immediates, displacements, and data pointers are all in
11549 the same (little-endian) format, so we don't need to care about which
11550 we are handling. */
11551
11552 void
11553 md_apply_fix (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED)
11554 {
11555 char *p = fixP->fx_where + fixP->fx_frag->fr_literal;
11556 valueT value = *valP;
11557
11558 #if !defined (TE_Mach)
11559 if (fixP->fx_pcrel)
11560 {
11561 switch (fixP->fx_r_type)
11562 {
11563 default:
11564 break;
11565
11566 case BFD_RELOC_64:
11567 fixP->fx_r_type = BFD_RELOC_64_PCREL;
11568 break;
11569 case BFD_RELOC_32:
11570 case BFD_RELOC_X86_64_32S:
11571 fixP->fx_r_type = BFD_RELOC_32_PCREL;
11572 break;
11573 case BFD_RELOC_16:
11574 fixP->fx_r_type = BFD_RELOC_16_PCREL;
11575 break;
11576 case BFD_RELOC_8:
11577 fixP->fx_r_type = BFD_RELOC_8_PCREL;
11578 break;
11579 }
11580 }
11581
11582 if (fixP->fx_addsy != NULL
11583 && (fixP->fx_r_type == BFD_RELOC_32_PCREL
11584 || fixP->fx_r_type == BFD_RELOC_64_PCREL
11585 || fixP->fx_r_type == BFD_RELOC_16_PCREL
11586 || fixP->fx_r_type == BFD_RELOC_8_PCREL)
11587 && !use_rela_relocations)
11588 {
11589 /* This is a hack. There should be a better way to handle this.
11590 This covers for the fact that bfd_install_relocation will
11591 subtract the current location (for partial_inplace, PC relative
11592 relocations); see more below. */
11593 #ifndef OBJ_AOUT
11594 if (IS_ELF
11595 #ifdef TE_PE
11596 || OUTPUT_FLAVOR == bfd_target_coff_flavour
11597 #endif
11598 )
11599 value += fixP->fx_where + fixP->fx_frag->fr_address;
11600 #endif
11601 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11602 if (IS_ELF)
11603 {
11604 segT sym_seg = S_GET_SEGMENT (fixP->fx_addsy);
11605
11606 if ((sym_seg == seg
11607 || (symbol_section_p (fixP->fx_addsy)
11608 && sym_seg != absolute_section))
11609 && !generic_force_reloc (fixP))
11610 {
11611 /* Yes, we add the values in twice. This is because
11612 bfd_install_relocation subtracts them out again. I think
11613 bfd_install_relocation is broken, but I don't dare change
11614 it. FIXME. */
11615 value += fixP->fx_where + fixP->fx_frag->fr_address;
11616 }
11617 }
11618 #endif
11619 #if defined (OBJ_COFF) && defined (TE_PE)
11620 /* For some reason, the PE format does not store a
11621 section address offset for a PC relative symbol. */
11622 if (S_GET_SEGMENT (fixP->fx_addsy) != seg
11623 || S_IS_WEAK (fixP->fx_addsy))
11624 value += md_pcrel_from (fixP);
11625 #endif
11626 }
11627 #if defined (OBJ_COFF) && defined (TE_PE)
11628 if (fixP->fx_addsy != NULL
11629 && S_IS_WEAK (fixP->fx_addsy)
11630 /* PR 16858: Do not modify weak function references. */
11631 && ! fixP->fx_pcrel)
11632 {
11633 #if !defined (TE_PEP)
11634 /* For x86 PE weak function symbols are neither PC-relative
11635 nor do they set S_IS_FUNCTION. So the only reliable way
11636 to detect them is to check the flags of their containing
11637 section. */
11638 if (S_GET_SEGMENT (fixP->fx_addsy) != NULL
11639 && S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_CODE)
11640 ;
11641 else
11642 #endif
11643 value -= S_GET_VALUE (fixP->fx_addsy);
11644 }
11645 #endif
11646
11647 /* Fix a few things - the dynamic linker expects certain values here,
11648 and we must not disappoint it. */
11649 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11650 if (IS_ELF && fixP->fx_addsy)
11651 switch (fixP->fx_r_type)
11652 {
11653 case BFD_RELOC_386_PLT32:
11654 case BFD_RELOC_X86_64_PLT32:
11655 /* Make the jump instruction point to the address of the operand.
11656 At runtime we merely add the offset to the actual PLT entry.
11657 NB: Subtract the offset size only for jump instructions. */
11658 if (fixP->fx_pcrel)
11659 value = -4;
11660 break;
11661
11662 case BFD_RELOC_386_TLS_GD:
11663 case BFD_RELOC_386_TLS_LDM:
11664 case BFD_RELOC_386_TLS_IE_32:
11665 case BFD_RELOC_386_TLS_IE:
11666 case BFD_RELOC_386_TLS_GOTIE:
11667 case BFD_RELOC_386_TLS_GOTDESC:
11668 case BFD_RELOC_X86_64_TLSGD:
11669 case BFD_RELOC_X86_64_TLSLD:
11670 case BFD_RELOC_X86_64_GOTTPOFF:
11671 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
11672 value = 0; /* Fully resolved at runtime. No addend. */
11673 /* Fallthrough */
11674 case BFD_RELOC_386_TLS_LE:
11675 case BFD_RELOC_386_TLS_LDO_32:
11676 case BFD_RELOC_386_TLS_LE_32:
11677 case BFD_RELOC_X86_64_DTPOFF32:
11678 case BFD_RELOC_X86_64_DTPOFF64:
11679 case BFD_RELOC_X86_64_TPOFF32:
11680 case BFD_RELOC_X86_64_TPOFF64:
11681 S_SET_THREAD_LOCAL (fixP->fx_addsy);
11682 break;
11683
11684 case BFD_RELOC_386_TLS_DESC_CALL:
11685 case BFD_RELOC_X86_64_TLSDESC_CALL:
11686 value = 0; /* Fully resolved at runtime. No addend. */
11687 S_SET_THREAD_LOCAL (fixP->fx_addsy);
11688 fixP->fx_done = 0;
11689 return;
11690
11691 case BFD_RELOC_VTABLE_INHERIT:
11692 case BFD_RELOC_VTABLE_ENTRY:
11693 fixP->fx_done = 0;
11694 return;
11695
11696 default:
11697 break;
11698 }
11699 #endif /* defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) */
11700 *valP = value;
11701 #endif /* !defined (TE_Mach) */
11702
11703 /* Are we finished with this relocation now? */
11704 if (fixP->fx_addsy == NULL)
11705 fixP->fx_done = 1;
11706 #if defined (OBJ_COFF) && defined (TE_PE)
11707 else if (fixP->fx_addsy != NULL && S_IS_WEAK (fixP->fx_addsy))
11708 {
11709 fixP->fx_done = 0;
11710 /* Remember value for tc_gen_reloc. */
11711 fixP->fx_addnumber = value;
11712 /* Clear out the frag for now. */
11713 value = 0;
11714 }
11715 #endif
11716 else if (use_rela_relocations)
11717 {
11718 fixP->fx_no_overflow = 1;
11719 /* Remember value for tc_gen_reloc. */
11720 fixP->fx_addnumber = value;
11721 value = 0;
11722 }
11723
11724 md_number_to_chars (p, value, fixP->fx_size);
11725 }
11726 \f
11727 const char *
11728 md_atof (int type, char *litP, int *sizeP)
11729 {
11730 /* This outputs the LITTLENUMs in REVERSE order;
11731 in accord with the bigendian 386. */
11732 return ieee_md_atof (type, litP, sizeP, FALSE);
11733 }
11734 \f
11735 static char output_invalid_buf[sizeof (unsigned char) * 2 + 6];
11736
11737 static char *
11738 output_invalid (int c)
11739 {
11740 if (ISPRINT (c))
11741 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
11742 "'%c'", c);
11743 else
11744 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
11745 "(0x%x)", (unsigned char) c);
11746 return output_invalid_buf;
11747 }
11748
11749 /* REG_STRING starts *before* REGISTER_PREFIX. */
11750
11751 static const reg_entry *
11752 parse_real_register (char *reg_string, char **end_op)
11753 {
11754 char *s = reg_string;
11755 char *p;
11756 char reg_name_given[MAX_REG_NAME_SIZE + 1];
11757 const reg_entry *r;
11758
11759 /* Skip possible REGISTER_PREFIX and possible whitespace. */
11760 if (*s == REGISTER_PREFIX)
11761 ++s;
11762
11763 if (is_space_char (*s))
11764 ++s;
11765
11766 p = reg_name_given;
11767 while ((*p++ = register_chars[(unsigned char) *s]) != '\0')
11768 {
11769 if (p >= reg_name_given + MAX_REG_NAME_SIZE)
11770 return (const reg_entry *) NULL;
11771 s++;
11772 }
11773
11774 /* For naked regs, make sure that we are not dealing with an identifier.
11775 This prevents confusing an identifier like `eax_var' with register
11776 `eax'. */
11777 if (allow_naked_reg && identifier_chars[(unsigned char) *s])
11778 return (const reg_entry *) NULL;
11779
11780 *end_op = s;
11781
11782 r = (const reg_entry *) hash_find (reg_hash, reg_name_given);
11783
11784 /* Handle floating point regs, allowing spaces in the (i) part. */
11785 if (r == i386_regtab /* %st is first entry of table */)
11786 {
11787 if (!cpu_arch_flags.bitfield.cpu8087
11788 && !cpu_arch_flags.bitfield.cpu287
11789 && !cpu_arch_flags.bitfield.cpu387)
11790 return (const reg_entry *) NULL;
11791
11792 if (is_space_char (*s))
11793 ++s;
11794 if (*s == '(')
11795 {
11796 ++s;
11797 if (is_space_char (*s))
11798 ++s;
11799 if (*s >= '0' && *s <= '7')
11800 {
11801 int fpr = *s - '0';
11802 ++s;
11803 if (is_space_char (*s))
11804 ++s;
11805 if (*s == ')')
11806 {
11807 *end_op = s + 1;
11808 r = (const reg_entry *) hash_find (reg_hash, "st(0)");
11809 know (r);
11810 return r + fpr;
11811 }
11812 }
11813 /* We have "%st(" then garbage. */
11814 return (const reg_entry *) NULL;
11815 }
11816 }
11817
11818 if (r == NULL || allow_pseudo_reg)
11819 return r;
11820
11821 if (operand_type_all_zero (&r->reg_type))
11822 return (const reg_entry *) NULL;
11823
11824 if ((r->reg_type.bitfield.dword
11825 || (r->reg_type.bitfield.class == SReg && r->reg_num > 3)
11826 || r->reg_type.bitfield.class == RegCR
11827 || r->reg_type.bitfield.class == RegDR
11828 || r->reg_type.bitfield.class == RegTR)
11829 && !cpu_arch_flags.bitfield.cpui386)
11830 return (const reg_entry *) NULL;
11831
11832 if (r->reg_type.bitfield.class == RegMMX && !cpu_arch_flags.bitfield.cpummx)
11833 return (const reg_entry *) NULL;
11834
11835 if (!cpu_arch_flags.bitfield.cpuavx512f)
11836 {
11837 if (r->reg_type.bitfield.zmmword
11838 || r->reg_type.bitfield.class == RegMask)
11839 return (const reg_entry *) NULL;
11840
11841 if (!cpu_arch_flags.bitfield.cpuavx)
11842 {
11843 if (r->reg_type.bitfield.ymmword)
11844 return (const reg_entry *) NULL;
11845
11846 if (!cpu_arch_flags.bitfield.cpusse && r->reg_type.bitfield.xmmword)
11847 return (const reg_entry *) NULL;
11848 }
11849 }
11850
11851 if (r->reg_type.bitfield.class == RegBND && !cpu_arch_flags.bitfield.cpumpx)
11852 return (const reg_entry *) NULL;
11853
11854 /* Don't allow fake index register unless allow_index_reg isn't 0. */
11855 if (!allow_index_reg && r->reg_num == RegIZ)
11856 return (const reg_entry *) NULL;
11857
11858 /* Upper 16 vector registers are only available with VREX in 64bit
11859 mode, and require EVEX encoding. */
11860 if (r->reg_flags & RegVRex)
11861 {
11862 if (!cpu_arch_flags.bitfield.cpuavx512f
11863 || flag_code != CODE_64BIT)
11864 return (const reg_entry *) NULL;
11865
11866 i.vec_encoding = vex_encoding_evex;
11867 }
11868
11869 if (((r->reg_flags & (RegRex64 | RegRex)) || r->reg_type.bitfield.qword)
11870 && (!cpu_arch_flags.bitfield.cpulm || r->reg_type.bitfield.class != RegCR)
11871 && flag_code != CODE_64BIT)
11872 return (const reg_entry *) NULL;
11873
11874 if (r->reg_type.bitfield.class == SReg && r->reg_num == RegFlat
11875 && !intel_syntax)
11876 return (const reg_entry *) NULL;
11877
11878 return r;
11879 }
11880
11881 /* REG_STRING starts *before* REGISTER_PREFIX. */
11882
11883 static const reg_entry *
11884 parse_register (char *reg_string, char **end_op)
11885 {
11886 const reg_entry *r;
11887
11888 if (*reg_string == REGISTER_PREFIX || allow_naked_reg)
11889 r = parse_real_register (reg_string, end_op);
11890 else
11891 r = NULL;
11892 if (!r)
11893 {
11894 char *save = input_line_pointer;
11895 char c;
11896 symbolS *symbolP;
11897
11898 input_line_pointer = reg_string;
11899 c = get_symbol_name (&reg_string);
11900 symbolP = symbol_find (reg_string);
11901 if (symbolP && S_GET_SEGMENT (symbolP) == reg_section)
11902 {
11903 const expressionS *e = symbol_get_value_expression (symbolP);
11904
11905 know (e->X_op == O_register);
11906 know (e->X_add_number >= 0
11907 && (valueT) e->X_add_number < i386_regtab_size);
11908 r = i386_regtab + e->X_add_number;
11909 if ((r->reg_flags & RegVRex))
11910 i.vec_encoding = vex_encoding_evex;
11911 *end_op = input_line_pointer;
11912 }
11913 *input_line_pointer = c;
11914 input_line_pointer = save;
11915 }
11916 return r;
11917 }
11918
11919 int
11920 i386_parse_name (char *name, expressionS *e, char *nextcharP)
11921 {
11922 const reg_entry *r;
11923 char *end = input_line_pointer;
11924
11925 *end = *nextcharP;
11926 r = parse_register (name, &input_line_pointer);
11927 if (r && end <= input_line_pointer)
11928 {
11929 *nextcharP = *input_line_pointer;
11930 *input_line_pointer = 0;
11931 e->X_op = O_register;
11932 e->X_add_number = r - i386_regtab;
11933 return 1;
11934 }
11935 input_line_pointer = end;
11936 *end = 0;
11937 return intel_syntax ? i386_intel_parse_name (name, e) : 0;
11938 }
11939
11940 void
11941 md_operand (expressionS *e)
11942 {
11943 char *end;
11944 const reg_entry *r;
11945
11946 switch (*input_line_pointer)
11947 {
11948 case REGISTER_PREFIX:
11949 r = parse_real_register (input_line_pointer, &end);
11950 if (r)
11951 {
11952 e->X_op = O_register;
11953 e->X_add_number = r - i386_regtab;
11954 input_line_pointer = end;
11955 }
11956 break;
11957
11958 case '[':
11959 gas_assert (intel_syntax);
11960 end = input_line_pointer++;
11961 expression (e);
11962 if (*input_line_pointer == ']')
11963 {
11964 ++input_line_pointer;
11965 e->X_op_symbol = make_expr_symbol (e);
11966 e->X_add_symbol = NULL;
11967 e->X_add_number = 0;
11968 e->X_op = O_index;
11969 }
11970 else
11971 {
11972 e->X_op = O_absent;
11973 input_line_pointer = end;
11974 }
11975 break;
11976 }
11977 }
11978
11979 \f
11980 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11981 const char *md_shortopts = "kVQ:sqnO::";
11982 #else
11983 const char *md_shortopts = "qnO::";
11984 #endif
11985
11986 #define OPTION_32 (OPTION_MD_BASE + 0)
11987 #define OPTION_64 (OPTION_MD_BASE + 1)
11988 #define OPTION_DIVIDE (OPTION_MD_BASE + 2)
11989 #define OPTION_MARCH (OPTION_MD_BASE + 3)
11990 #define OPTION_MTUNE (OPTION_MD_BASE + 4)
11991 #define OPTION_MMNEMONIC (OPTION_MD_BASE + 5)
11992 #define OPTION_MSYNTAX (OPTION_MD_BASE + 6)
11993 #define OPTION_MINDEX_REG (OPTION_MD_BASE + 7)
11994 #define OPTION_MNAKED_REG (OPTION_MD_BASE + 8)
11995 #define OPTION_MRELAX_RELOCATIONS (OPTION_MD_BASE + 9)
11996 #define OPTION_MSSE2AVX (OPTION_MD_BASE + 10)
11997 #define OPTION_MSSE_CHECK (OPTION_MD_BASE + 11)
11998 #define OPTION_MOPERAND_CHECK (OPTION_MD_BASE + 12)
11999 #define OPTION_MAVXSCALAR (OPTION_MD_BASE + 13)
12000 #define OPTION_X32 (OPTION_MD_BASE + 14)
12001 #define OPTION_MADD_BND_PREFIX (OPTION_MD_BASE + 15)
12002 #define OPTION_MEVEXLIG (OPTION_MD_BASE + 16)
12003 #define OPTION_MEVEXWIG (OPTION_MD_BASE + 17)
12004 #define OPTION_MBIG_OBJ (OPTION_MD_BASE + 18)
12005 #define OPTION_MOMIT_LOCK_PREFIX (OPTION_MD_BASE + 19)
12006 #define OPTION_MEVEXRCIG (OPTION_MD_BASE + 20)
12007 #define OPTION_MSHARED (OPTION_MD_BASE + 21)
12008 #define OPTION_MAMD64 (OPTION_MD_BASE + 22)
12009 #define OPTION_MINTEL64 (OPTION_MD_BASE + 23)
12010 #define OPTION_MFENCE_AS_LOCK_ADD (OPTION_MD_BASE + 24)
12011 #define OPTION_X86_USED_NOTE (OPTION_MD_BASE + 25)
12012 #define OPTION_MVEXWIG (OPTION_MD_BASE + 26)
12013 #define OPTION_MALIGN_BRANCH_BOUNDARY (OPTION_MD_BASE + 27)
12014 #define OPTION_MALIGN_BRANCH_PREFIX_SIZE (OPTION_MD_BASE + 28)
12015 #define OPTION_MALIGN_BRANCH (OPTION_MD_BASE + 29)
12016 #define OPTION_MBRANCHES_WITH_32B_BOUNDARIES (OPTION_MD_BASE + 30)
12017
12018 struct option md_longopts[] =
12019 {
12020 {"32", no_argument, NULL, OPTION_32},
12021 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
12022 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
12023 {"64", no_argument, NULL, OPTION_64},
12024 #endif
12025 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12026 {"x32", no_argument, NULL, OPTION_X32},
12027 {"mshared", no_argument, NULL, OPTION_MSHARED},
12028 {"mx86-used-note", required_argument, NULL, OPTION_X86_USED_NOTE},
12029 #endif
12030 {"divide", no_argument, NULL, OPTION_DIVIDE},
12031 {"march", required_argument, NULL, OPTION_MARCH},
12032 {"mtune", required_argument, NULL, OPTION_MTUNE},
12033 {"mmnemonic", required_argument, NULL, OPTION_MMNEMONIC},
12034 {"msyntax", required_argument, NULL, OPTION_MSYNTAX},
12035 {"mindex-reg", no_argument, NULL, OPTION_MINDEX_REG},
12036 {"mnaked-reg", no_argument, NULL, OPTION_MNAKED_REG},
12037 {"msse2avx", no_argument, NULL, OPTION_MSSE2AVX},
12038 {"msse-check", required_argument, NULL, OPTION_MSSE_CHECK},
12039 {"moperand-check", required_argument, NULL, OPTION_MOPERAND_CHECK},
12040 {"mavxscalar", required_argument, NULL, OPTION_MAVXSCALAR},
12041 {"mvexwig", required_argument, NULL, OPTION_MVEXWIG},
12042 {"madd-bnd-prefix", no_argument, NULL, OPTION_MADD_BND_PREFIX},
12043 {"mevexlig", required_argument, NULL, OPTION_MEVEXLIG},
12044 {"mevexwig", required_argument, NULL, OPTION_MEVEXWIG},
12045 # if defined (TE_PE) || defined (TE_PEP)
12046 {"mbig-obj", no_argument, NULL, OPTION_MBIG_OBJ},
12047 #endif
12048 {"momit-lock-prefix", required_argument, NULL, OPTION_MOMIT_LOCK_PREFIX},
12049 {"mfence-as-lock-add", required_argument, NULL, OPTION_MFENCE_AS_LOCK_ADD},
12050 {"mrelax-relocations", required_argument, NULL, OPTION_MRELAX_RELOCATIONS},
12051 {"mevexrcig", required_argument, NULL, OPTION_MEVEXRCIG},
12052 {"malign-branch-boundary", required_argument, NULL, OPTION_MALIGN_BRANCH_BOUNDARY},
12053 {"malign-branch-prefix-size", required_argument, NULL, OPTION_MALIGN_BRANCH_PREFIX_SIZE},
12054 {"malign-branch", required_argument, NULL, OPTION_MALIGN_BRANCH},
12055 {"mbranches-within-32B-boundaries", no_argument, NULL, OPTION_MBRANCHES_WITH_32B_BOUNDARIES},
12056 {"mamd64", no_argument, NULL, OPTION_MAMD64},
12057 {"mintel64", no_argument, NULL, OPTION_MINTEL64},
12058 {NULL, no_argument, NULL, 0}
12059 };
12060 size_t md_longopts_size = sizeof (md_longopts);
12061
12062 int
12063 md_parse_option (int c, const char *arg)
12064 {
12065 unsigned int j;
12066 char *arch, *next, *saved, *type;
12067
12068 switch (c)
12069 {
12070 case 'n':
12071 optimize_align_code = 0;
12072 break;
12073
12074 case 'q':
12075 quiet_warnings = 1;
12076 break;
12077
12078 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12079 /* -Qy, -Qn: SVR4 arguments controlling whether a .comment section
12080 should be emitted or not. FIXME: Not implemented. */
12081 case 'Q':
12082 if ((arg[0] != 'y' && arg[0] != 'n') || arg[1])
12083 return 0;
12084 break;
12085
12086 /* -V: SVR4 argument to print version ID. */
12087 case 'V':
12088 print_version_id ();
12089 break;
12090
12091 /* -k: Ignore for FreeBSD compatibility. */
12092 case 'k':
12093 break;
12094
12095 case 's':
12096 /* -s: On i386 Solaris, this tells the native assembler to use
12097 .stab instead of .stab.excl. We always use .stab anyhow. */
12098 break;
12099
12100 case OPTION_MSHARED:
12101 shared = 1;
12102 break;
12103
12104 case OPTION_X86_USED_NOTE:
12105 if (strcasecmp (arg, "yes") == 0)
12106 x86_used_note = 1;
12107 else if (strcasecmp (arg, "no") == 0)
12108 x86_used_note = 0;
12109 else
12110 as_fatal (_("invalid -mx86-used-note= option: `%s'"), arg);
12111 break;
12112
12113
12114 #endif
12115 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
12116 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
12117 case OPTION_64:
12118 {
12119 const char **list, **l;
12120
12121 list = bfd_target_list ();
12122 for (l = list; *l != NULL; l++)
12123 if (CONST_STRNEQ (*l, "elf64-x86-64")
12124 || strcmp (*l, "coff-x86-64") == 0
12125 || strcmp (*l, "pe-x86-64") == 0
12126 || strcmp (*l, "pei-x86-64") == 0
12127 || strcmp (*l, "mach-o-x86-64") == 0)
12128 {
12129 default_arch = "x86_64";
12130 break;
12131 }
12132 if (*l == NULL)
12133 as_fatal (_("no compiled in support for x86_64"));
12134 free (list);
12135 }
12136 break;
12137 #endif
12138
12139 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12140 case OPTION_X32:
12141 if (IS_ELF)
12142 {
12143 const char **list, **l;
12144
12145 list = bfd_target_list ();
12146 for (l = list; *l != NULL; l++)
12147 if (CONST_STRNEQ (*l, "elf32-x86-64"))
12148 {
12149 default_arch = "x86_64:32";
12150 break;
12151 }
12152 if (*l == NULL)
12153 as_fatal (_("no compiled in support for 32bit x86_64"));
12154 free (list);
12155 }
12156 else
12157 as_fatal (_("32bit x86_64 is only supported for ELF"));
12158 break;
12159 #endif
12160
12161 case OPTION_32:
12162 default_arch = "i386";
12163 break;
12164
12165 case OPTION_DIVIDE:
12166 #ifdef SVR4_COMMENT_CHARS
12167 {
12168 char *n, *t;
12169 const char *s;
12170
12171 n = XNEWVEC (char, strlen (i386_comment_chars) + 1);
12172 t = n;
12173 for (s = i386_comment_chars; *s != '\0'; s++)
12174 if (*s != '/')
12175 *t++ = *s;
12176 *t = '\0';
12177 i386_comment_chars = n;
12178 }
12179 #endif
12180 break;
12181
12182 case OPTION_MARCH:
12183 saved = xstrdup (arg);
12184 arch = saved;
12185 /* Allow -march=+nosse. */
12186 if (*arch == '+')
12187 arch++;
12188 do
12189 {
12190 if (*arch == '.')
12191 as_fatal (_("invalid -march= option: `%s'"), arg);
12192 next = strchr (arch, '+');
12193 if (next)
12194 *next++ = '\0';
12195 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
12196 {
12197 if (strcmp (arch, cpu_arch [j].name) == 0)
12198 {
12199 /* Processor. */
12200 if (! cpu_arch[j].flags.bitfield.cpui386)
12201 continue;
12202
12203 cpu_arch_name = cpu_arch[j].name;
12204 cpu_sub_arch_name = NULL;
12205 cpu_arch_flags = cpu_arch[j].flags;
12206 cpu_arch_isa = cpu_arch[j].type;
12207 cpu_arch_isa_flags = cpu_arch[j].flags;
12208 if (!cpu_arch_tune_set)
12209 {
12210 cpu_arch_tune = cpu_arch_isa;
12211 cpu_arch_tune_flags = cpu_arch_isa_flags;
12212 }
12213 break;
12214 }
12215 else if (*cpu_arch [j].name == '.'
12216 && strcmp (arch, cpu_arch [j].name + 1) == 0)
12217 {
12218 /* ISA extension. */
12219 i386_cpu_flags flags;
12220
12221 flags = cpu_flags_or (cpu_arch_flags,
12222 cpu_arch[j].flags);
12223
12224 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
12225 {
12226 if (cpu_sub_arch_name)
12227 {
12228 char *name = cpu_sub_arch_name;
12229 cpu_sub_arch_name = concat (name,
12230 cpu_arch[j].name,
12231 (const char *) NULL);
12232 free (name);
12233 }
12234 else
12235 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
12236 cpu_arch_flags = flags;
12237 cpu_arch_isa_flags = flags;
12238 }
12239 else
12240 cpu_arch_isa_flags
12241 = cpu_flags_or (cpu_arch_isa_flags,
12242 cpu_arch[j].flags);
12243 break;
12244 }
12245 }
12246
12247 if (j >= ARRAY_SIZE (cpu_arch))
12248 {
12249 /* Disable an ISA extension. */
12250 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
12251 if (strcmp (arch, cpu_noarch [j].name) == 0)
12252 {
12253 i386_cpu_flags flags;
12254
12255 flags = cpu_flags_and_not (cpu_arch_flags,
12256 cpu_noarch[j].flags);
12257 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
12258 {
12259 if (cpu_sub_arch_name)
12260 {
12261 char *name = cpu_sub_arch_name;
12262 cpu_sub_arch_name = concat (arch,
12263 (const char *) NULL);
12264 free (name);
12265 }
12266 else
12267 cpu_sub_arch_name = xstrdup (arch);
12268 cpu_arch_flags = flags;
12269 cpu_arch_isa_flags = flags;
12270 }
12271 break;
12272 }
12273
12274 if (j >= ARRAY_SIZE (cpu_noarch))
12275 j = ARRAY_SIZE (cpu_arch);
12276 }
12277
12278 if (j >= ARRAY_SIZE (cpu_arch))
12279 as_fatal (_("invalid -march= option: `%s'"), arg);
12280
12281 arch = next;
12282 }
12283 while (next != NULL);
12284 free (saved);
12285 break;
12286
12287 case OPTION_MTUNE:
12288 if (*arg == '.')
12289 as_fatal (_("invalid -mtune= option: `%s'"), arg);
12290 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
12291 {
12292 if (strcmp (arg, cpu_arch [j].name) == 0)
12293 {
12294 cpu_arch_tune_set = 1;
12295 cpu_arch_tune = cpu_arch [j].type;
12296 cpu_arch_tune_flags = cpu_arch[j].flags;
12297 break;
12298 }
12299 }
12300 if (j >= ARRAY_SIZE (cpu_arch))
12301 as_fatal (_("invalid -mtune= option: `%s'"), arg);
12302 break;
12303
12304 case OPTION_MMNEMONIC:
12305 if (strcasecmp (arg, "att") == 0)
12306 intel_mnemonic = 0;
12307 else if (strcasecmp (arg, "intel") == 0)
12308 intel_mnemonic = 1;
12309 else
12310 as_fatal (_("invalid -mmnemonic= option: `%s'"), arg);
12311 break;
12312
12313 case OPTION_MSYNTAX:
12314 if (strcasecmp (arg, "att") == 0)
12315 intel_syntax = 0;
12316 else if (strcasecmp (arg, "intel") == 0)
12317 intel_syntax = 1;
12318 else
12319 as_fatal (_("invalid -msyntax= option: `%s'"), arg);
12320 break;
12321
12322 case OPTION_MINDEX_REG:
12323 allow_index_reg = 1;
12324 break;
12325
12326 case OPTION_MNAKED_REG:
12327 allow_naked_reg = 1;
12328 break;
12329
12330 case OPTION_MSSE2AVX:
12331 sse2avx = 1;
12332 break;
12333
12334 case OPTION_MSSE_CHECK:
12335 if (strcasecmp (arg, "error") == 0)
12336 sse_check = check_error;
12337 else if (strcasecmp (arg, "warning") == 0)
12338 sse_check = check_warning;
12339 else if (strcasecmp (arg, "none") == 0)
12340 sse_check = check_none;
12341 else
12342 as_fatal (_("invalid -msse-check= option: `%s'"), arg);
12343 break;
12344
12345 case OPTION_MOPERAND_CHECK:
12346 if (strcasecmp (arg, "error") == 0)
12347 operand_check = check_error;
12348 else if (strcasecmp (arg, "warning") == 0)
12349 operand_check = check_warning;
12350 else if (strcasecmp (arg, "none") == 0)
12351 operand_check = check_none;
12352 else
12353 as_fatal (_("invalid -moperand-check= option: `%s'"), arg);
12354 break;
12355
12356 case OPTION_MAVXSCALAR:
12357 if (strcasecmp (arg, "128") == 0)
12358 avxscalar = vex128;
12359 else if (strcasecmp (arg, "256") == 0)
12360 avxscalar = vex256;
12361 else
12362 as_fatal (_("invalid -mavxscalar= option: `%s'"), arg);
12363 break;
12364
12365 case OPTION_MVEXWIG:
12366 if (strcmp (arg, "0") == 0)
12367 vexwig = vexw0;
12368 else if (strcmp (arg, "1") == 0)
12369 vexwig = vexw1;
12370 else
12371 as_fatal (_("invalid -mvexwig= option: `%s'"), arg);
12372 break;
12373
12374 case OPTION_MADD_BND_PREFIX:
12375 add_bnd_prefix = 1;
12376 break;
12377
12378 case OPTION_MEVEXLIG:
12379 if (strcmp (arg, "128") == 0)
12380 evexlig = evexl128;
12381 else if (strcmp (arg, "256") == 0)
12382 evexlig = evexl256;
12383 else if (strcmp (arg, "512") == 0)
12384 evexlig = evexl512;
12385 else
12386 as_fatal (_("invalid -mevexlig= option: `%s'"), arg);
12387 break;
12388
12389 case OPTION_MEVEXRCIG:
12390 if (strcmp (arg, "rne") == 0)
12391 evexrcig = rne;
12392 else if (strcmp (arg, "rd") == 0)
12393 evexrcig = rd;
12394 else if (strcmp (arg, "ru") == 0)
12395 evexrcig = ru;
12396 else if (strcmp (arg, "rz") == 0)
12397 evexrcig = rz;
12398 else
12399 as_fatal (_("invalid -mevexrcig= option: `%s'"), arg);
12400 break;
12401
12402 case OPTION_MEVEXWIG:
12403 if (strcmp (arg, "0") == 0)
12404 evexwig = evexw0;
12405 else if (strcmp (arg, "1") == 0)
12406 evexwig = evexw1;
12407 else
12408 as_fatal (_("invalid -mevexwig= option: `%s'"), arg);
12409 break;
12410
12411 # if defined (TE_PE) || defined (TE_PEP)
12412 case OPTION_MBIG_OBJ:
12413 use_big_obj = 1;
12414 break;
12415 #endif
12416
12417 case OPTION_MOMIT_LOCK_PREFIX:
12418 if (strcasecmp (arg, "yes") == 0)
12419 omit_lock_prefix = 1;
12420 else if (strcasecmp (arg, "no") == 0)
12421 omit_lock_prefix = 0;
12422 else
12423 as_fatal (_("invalid -momit-lock-prefix= option: `%s'"), arg);
12424 break;
12425
12426 case OPTION_MFENCE_AS_LOCK_ADD:
12427 if (strcasecmp (arg, "yes") == 0)
12428 avoid_fence = 1;
12429 else if (strcasecmp (arg, "no") == 0)
12430 avoid_fence = 0;
12431 else
12432 as_fatal (_("invalid -mfence-as-lock-add= option: `%s'"), arg);
12433 break;
12434
12435 case OPTION_MRELAX_RELOCATIONS:
12436 if (strcasecmp (arg, "yes") == 0)
12437 generate_relax_relocations = 1;
12438 else if (strcasecmp (arg, "no") == 0)
12439 generate_relax_relocations = 0;
12440 else
12441 as_fatal (_("invalid -mrelax-relocations= option: `%s'"), arg);
12442 break;
12443
12444 case OPTION_MALIGN_BRANCH_BOUNDARY:
12445 {
12446 char *end;
12447 long int align = strtoul (arg, &end, 0);
12448 if (*end == '\0')
12449 {
12450 if (align == 0)
12451 {
12452 align_branch_power = 0;
12453 break;
12454 }
12455 else if (align >= 16)
12456 {
12457 int align_power;
12458 for (align_power = 0;
12459 (align & 1) == 0;
12460 align >>= 1, align_power++)
12461 continue;
12462 /* Limit alignment power to 31. */
12463 if (align == 1 && align_power < 32)
12464 {
12465 align_branch_power = align_power;
12466 break;
12467 }
12468 }
12469 }
12470 as_fatal (_("invalid -malign-branch-boundary= value: %s"), arg);
12471 }
12472 break;
12473
12474 case OPTION_MALIGN_BRANCH_PREFIX_SIZE:
12475 {
12476 char *end;
12477 int align = strtoul (arg, &end, 0);
12478 /* Some processors only support 5 prefixes. */
12479 if (*end == '\0' && align >= 0 && align < 6)
12480 {
12481 align_branch_prefix_size = align;
12482 break;
12483 }
12484 as_fatal (_("invalid -malign-branch-prefix-size= value: %s"),
12485 arg);
12486 }
12487 break;
12488
12489 case OPTION_MALIGN_BRANCH:
12490 align_branch = 0;
12491 saved = xstrdup (arg);
12492 type = saved;
12493 do
12494 {
12495 next = strchr (type, '+');
12496 if (next)
12497 *next++ = '\0';
12498 if (strcasecmp (type, "jcc") == 0)
12499 align_branch |= align_branch_jcc_bit;
12500 else if (strcasecmp (type, "fused") == 0)
12501 align_branch |= align_branch_fused_bit;
12502 else if (strcasecmp (type, "jmp") == 0)
12503 align_branch |= align_branch_jmp_bit;
12504 else if (strcasecmp (type, "call") == 0)
12505 align_branch |= align_branch_call_bit;
12506 else if (strcasecmp (type, "ret") == 0)
12507 align_branch |= align_branch_ret_bit;
12508 else if (strcasecmp (type, "indirect") == 0)
12509 align_branch |= align_branch_indirect_bit;
12510 else
12511 as_fatal (_("invalid -malign-branch= option: `%s'"), arg);
12512 type = next;
12513 }
12514 while (next != NULL);
12515 free (saved);
12516 break;
12517
12518 case OPTION_MBRANCHES_WITH_32B_BOUNDARIES:
12519 align_branch_power = 5;
12520 align_branch_prefix_size = 5;
12521 align_branch = (align_branch_jcc_bit
12522 | align_branch_fused_bit
12523 | align_branch_jmp_bit);
12524 break;
12525
12526 case OPTION_MAMD64:
12527 intel64 = 0;
12528 break;
12529
12530 case OPTION_MINTEL64:
12531 intel64 = 1;
12532 break;
12533
12534 case 'O':
12535 if (arg == NULL)
12536 {
12537 optimize = 1;
12538 /* Turn off -Os. */
12539 optimize_for_space = 0;
12540 }
12541 else if (*arg == 's')
12542 {
12543 optimize_for_space = 1;
12544 /* Turn on all encoding optimizations. */
12545 optimize = INT_MAX;
12546 }
12547 else
12548 {
12549 optimize = atoi (arg);
12550 /* Turn off -Os. */
12551 optimize_for_space = 0;
12552 }
12553 break;
12554
12555 default:
12556 return 0;
12557 }
12558 return 1;
12559 }
12560
12561 #define MESSAGE_TEMPLATE \
12562 " "
12563
12564 static char *
12565 output_message (FILE *stream, char *p, char *message, char *start,
12566 int *left_p, const char *name, int len)
12567 {
12568 int size = sizeof (MESSAGE_TEMPLATE);
12569 int left = *left_p;
12570
12571 /* Reserve 2 spaces for ", " or ",\0" */
12572 left -= len + 2;
12573
12574 /* Check if there is any room. */
12575 if (left >= 0)
12576 {
12577 if (p != start)
12578 {
12579 *p++ = ',';
12580 *p++ = ' ';
12581 }
12582 p = mempcpy (p, name, len);
12583 }
12584 else
12585 {
12586 /* Output the current message now and start a new one. */
12587 *p++ = ',';
12588 *p = '\0';
12589 fprintf (stream, "%s\n", message);
12590 p = start;
12591 left = size - (start - message) - len - 2;
12592
12593 gas_assert (left >= 0);
12594
12595 p = mempcpy (p, name, len);
12596 }
12597
12598 *left_p = left;
12599 return p;
12600 }
12601
12602 static void
12603 show_arch (FILE *stream, int ext, int check)
12604 {
12605 static char message[] = MESSAGE_TEMPLATE;
12606 char *start = message + 27;
12607 char *p;
12608 int size = sizeof (MESSAGE_TEMPLATE);
12609 int left;
12610 const char *name;
12611 int len;
12612 unsigned int j;
12613
12614 p = start;
12615 left = size - (start - message);
12616 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
12617 {
12618 /* Should it be skipped? */
12619 if (cpu_arch [j].skip)
12620 continue;
12621
12622 name = cpu_arch [j].name;
12623 len = cpu_arch [j].len;
12624 if (*name == '.')
12625 {
12626 /* It is an extension. Skip if we aren't asked to show it. */
12627 if (ext)
12628 {
12629 name++;
12630 len--;
12631 }
12632 else
12633 continue;
12634 }
12635 else if (ext)
12636 {
12637 /* It is an processor. Skip if we show only extension. */
12638 continue;
12639 }
12640 else if (check && ! cpu_arch[j].flags.bitfield.cpui386)
12641 {
12642 /* It is an impossible processor - skip. */
12643 continue;
12644 }
12645
12646 p = output_message (stream, p, message, start, &left, name, len);
12647 }
12648
12649 /* Display disabled extensions. */
12650 if (ext)
12651 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
12652 {
12653 name = cpu_noarch [j].name;
12654 len = cpu_noarch [j].len;
12655 p = output_message (stream, p, message, start, &left, name,
12656 len);
12657 }
12658
12659 *p = '\0';
12660 fprintf (stream, "%s\n", message);
12661 }
12662
12663 void
12664 md_show_usage (FILE *stream)
12665 {
12666 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12667 fprintf (stream, _("\
12668 -Qy, -Qn ignored\n\
12669 -V print assembler version number\n\
12670 -k ignored\n"));
12671 #endif
12672 fprintf (stream, _("\
12673 -n Do not optimize code alignment\n\
12674 -q quieten some warnings\n"));
12675 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12676 fprintf (stream, _("\
12677 -s ignored\n"));
12678 #endif
12679 #if defined BFD64 && (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
12680 || defined (TE_PE) || defined (TE_PEP))
12681 fprintf (stream, _("\
12682 --32/--64/--x32 generate 32bit/64bit/x32 code\n"));
12683 #endif
12684 #ifdef SVR4_COMMENT_CHARS
12685 fprintf (stream, _("\
12686 --divide do not treat `/' as a comment character\n"));
12687 #else
12688 fprintf (stream, _("\
12689 --divide ignored\n"));
12690 #endif
12691 fprintf (stream, _("\
12692 -march=CPU[,+EXTENSION...]\n\
12693 generate code for CPU and EXTENSION, CPU is one of:\n"));
12694 show_arch (stream, 0, 1);
12695 fprintf (stream, _("\
12696 EXTENSION is combination of:\n"));
12697 show_arch (stream, 1, 0);
12698 fprintf (stream, _("\
12699 -mtune=CPU optimize for CPU, CPU is one of:\n"));
12700 show_arch (stream, 0, 0);
12701 fprintf (stream, _("\
12702 -msse2avx encode SSE instructions with VEX prefix\n"));
12703 fprintf (stream, _("\
12704 -msse-check=[none|error|warning] (default: warning)\n\
12705 check SSE instructions\n"));
12706 fprintf (stream, _("\
12707 -moperand-check=[none|error|warning] (default: warning)\n\
12708 check operand combinations for validity\n"));
12709 fprintf (stream, _("\
12710 -mavxscalar=[128|256] (default: 128)\n\
12711 encode scalar AVX instructions with specific vector\n\
12712 length\n"));
12713 fprintf (stream, _("\
12714 -mvexwig=[0|1] (default: 0)\n\
12715 encode VEX instructions with specific VEX.W value\n\
12716 for VEX.W bit ignored instructions\n"));
12717 fprintf (stream, _("\
12718 -mevexlig=[128|256|512] (default: 128)\n\
12719 encode scalar EVEX instructions with specific vector\n\
12720 length\n"));
12721 fprintf (stream, _("\
12722 -mevexwig=[0|1] (default: 0)\n\
12723 encode EVEX instructions with specific EVEX.W value\n\
12724 for EVEX.W bit ignored instructions\n"));
12725 fprintf (stream, _("\
12726 -mevexrcig=[rne|rd|ru|rz] (default: rne)\n\
12727 encode EVEX instructions with specific EVEX.RC value\n\
12728 for SAE-only ignored instructions\n"));
12729 fprintf (stream, _("\
12730 -mmnemonic=[att|intel] "));
12731 if (SYSV386_COMPAT)
12732 fprintf (stream, _("(default: att)\n"));
12733 else
12734 fprintf (stream, _("(default: intel)\n"));
12735 fprintf (stream, _("\
12736 use AT&T/Intel mnemonic\n"));
12737 fprintf (stream, _("\
12738 -msyntax=[att|intel] (default: att)\n\
12739 use AT&T/Intel syntax\n"));
12740 fprintf (stream, _("\
12741 -mindex-reg support pseudo index registers\n"));
12742 fprintf (stream, _("\
12743 -mnaked-reg don't require `%%' prefix for registers\n"));
12744 fprintf (stream, _("\
12745 -madd-bnd-prefix add BND prefix for all valid branches\n"));
12746 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12747 fprintf (stream, _("\
12748 -mshared disable branch optimization for shared code\n"));
12749 fprintf (stream, _("\
12750 -mx86-used-note=[no|yes] "));
12751 if (DEFAULT_X86_USED_NOTE)
12752 fprintf (stream, _("(default: yes)\n"));
12753 else
12754 fprintf (stream, _("(default: no)\n"));
12755 fprintf (stream, _("\
12756 generate x86 used ISA and feature properties\n"));
12757 #endif
12758 #if defined (TE_PE) || defined (TE_PEP)
12759 fprintf (stream, _("\
12760 -mbig-obj generate big object files\n"));
12761 #endif
12762 fprintf (stream, _("\
12763 -momit-lock-prefix=[no|yes] (default: no)\n\
12764 strip all lock prefixes\n"));
12765 fprintf (stream, _("\
12766 -mfence-as-lock-add=[no|yes] (default: no)\n\
12767 encode lfence, mfence and sfence as\n\
12768 lock addl $0x0, (%%{re}sp)\n"));
12769 fprintf (stream, _("\
12770 -mrelax-relocations=[no|yes] "));
12771 if (DEFAULT_GENERATE_X86_RELAX_RELOCATIONS)
12772 fprintf (stream, _("(default: yes)\n"));
12773 else
12774 fprintf (stream, _("(default: no)\n"));
12775 fprintf (stream, _("\
12776 generate relax relocations\n"));
12777 fprintf (stream, _("\
12778 -malign-branch-boundary=NUM (default: 0)\n\
12779 align branches within NUM byte boundary\n"));
12780 fprintf (stream, _("\
12781 -malign-branch=TYPE[+TYPE...] (default: jcc+fused+jmp)\n\
12782 TYPE is combination of jcc, fused, jmp, call, ret,\n\
12783 indirect\n\
12784 specify types of branches to align\n"));
12785 fprintf (stream, _("\
12786 -malign-branch-prefix-size=NUM (default: 5)\n\
12787 align branches with NUM prefixes per instruction\n"));
12788 fprintf (stream, _("\
12789 -mbranches-within-32B-boundaries\n\
12790 align branches within 32 byte boundary\n"));
12791 fprintf (stream, _("\
12792 -mamd64 accept only AMD64 ISA [default]\n"));
12793 fprintf (stream, _("\
12794 -mintel64 accept only Intel64 ISA\n"));
12795 }
12796
12797 #if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
12798 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
12799 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
12800
12801 /* Pick the target format to use. */
12802
12803 const char *
12804 i386_target_format (void)
12805 {
12806 if (!strncmp (default_arch, "x86_64", 6))
12807 {
12808 update_code_flag (CODE_64BIT, 1);
12809 if (default_arch[6] == '\0')
12810 x86_elf_abi = X86_64_ABI;
12811 else
12812 x86_elf_abi = X86_64_X32_ABI;
12813 }
12814 else if (!strcmp (default_arch, "i386"))
12815 update_code_flag (CODE_32BIT, 1);
12816 else if (!strcmp (default_arch, "iamcu"))
12817 {
12818 update_code_flag (CODE_32BIT, 1);
12819 if (cpu_arch_isa == PROCESSOR_UNKNOWN)
12820 {
12821 static const i386_cpu_flags iamcu_flags = CPU_IAMCU_FLAGS;
12822 cpu_arch_name = "iamcu";
12823 cpu_sub_arch_name = NULL;
12824 cpu_arch_flags = iamcu_flags;
12825 cpu_arch_isa = PROCESSOR_IAMCU;
12826 cpu_arch_isa_flags = iamcu_flags;
12827 if (!cpu_arch_tune_set)
12828 {
12829 cpu_arch_tune = cpu_arch_isa;
12830 cpu_arch_tune_flags = cpu_arch_isa_flags;
12831 }
12832 }
12833 else if (cpu_arch_isa != PROCESSOR_IAMCU)
12834 as_fatal (_("Intel MCU doesn't support `%s' architecture"),
12835 cpu_arch_name);
12836 }
12837 else
12838 as_fatal (_("unknown architecture"));
12839
12840 if (cpu_flags_all_zero (&cpu_arch_isa_flags))
12841 cpu_arch_isa_flags = cpu_arch[flag_code == CODE_64BIT].flags;
12842 if (cpu_flags_all_zero (&cpu_arch_tune_flags))
12843 cpu_arch_tune_flags = cpu_arch[flag_code == CODE_64BIT].flags;
12844
12845 switch (OUTPUT_FLAVOR)
12846 {
12847 #if defined (OBJ_MAYBE_AOUT) || defined (OBJ_AOUT)
12848 case bfd_target_aout_flavour:
12849 return AOUT_TARGET_FORMAT;
12850 #endif
12851 #if defined (OBJ_MAYBE_COFF) || defined (OBJ_COFF)
12852 # if defined (TE_PE) || defined (TE_PEP)
12853 case bfd_target_coff_flavour:
12854 if (flag_code == CODE_64BIT)
12855 return use_big_obj ? "pe-bigobj-x86-64" : "pe-x86-64";
12856 else
12857 return "pe-i386";
12858 # elif defined (TE_GO32)
12859 case bfd_target_coff_flavour:
12860 return "coff-go32";
12861 # else
12862 case bfd_target_coff_flavour:
12863 return "coff-i386";
12864 # endif
12865 #endif
12866 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
12867 case bfd_target_elf_flavour:
12868 {
12869 const char *format;
12870
12871 switch (x86_elf_abi)
12872 {
12873 default:
12874 format = ELF_TARGET_FORMAT;
12875 #ifndef TE_SOLARIS
12876 tls_get_addr = "___tls_get_addr";
12877 #endif
12878 break;
12879 case X86_64_ABI:
12880 use_rela_relocations = 1;
12881 object_64bit = 1;
12882 #ifndef TE_SOLARIS
12883 tls_get_addr = "__tls_get_addr";
12884 #endif
12885 format = ELF_TARGET_FORMAT64;
12886 break;
12887 case X86_64_X32_ABI:
12888 use_rela_relocations = 1;
12889 object_64bit = 1;
12890 #ifndef TE_SOLARIS
12891 tls_get_addr = "__tls_get_addr";
12892 #endif
12893 disallow_64bit_reloc = 1;
12894 format = ELF_TARGET_FORMAT32;
12895 break;
12896 }
12897 if (cpu_arch_isa == PROCESSOR_L1OM)
12898 {
12899 if (x86_elf_abi != X86_64_ABI)
12900 as_fatal (_("Intel L1OM is 64bit only"));
12901 return ELF_TARGET_L1OM_FORMAT;
12902 }
12903 else if (cpu_arch_isa == PROCESSOR_K1OM)
12904 {
12905 if (x86_elf_abi != X86_64_ABI)
12906 as_fatal (_("Intel K1OM is 64bit only"));
12907 return ELF_TARGET_K1OM_FORMAT;
12908 }
12909 else if (cpu_arch_isa == PROCESSOR_IAMCU)
12910 {
12911 if (x86_elf_abi != I386_ABI)
12912 as_fatal (_("Intel MCU is 32bit only"));
12913 return ELF_TARGET_IAMCU_FORMAT;
12914 }
12915 else
12916 return format;
12917 }
12918 #endif
12919 #if defined (OBJ_MACH_O)
12920 case bfd_target_mach_o_flavour:
12921 if (flag_code == CODE_64BIT)
12922 {
12923 use_rela_relocations = 1;
12924 object_64bit = 1;
12925 return "mach-o-x86-64";
12926 }
12927 else
12928 return "mach-o-i386";
12929 #endif
12930 default:
12931 abort ();
12932 return NULL;
12933 }
12934 }
12935
12936 #endif /* OBJ_MAYBE_ more than one */
12937 \f
12938 symbolS *
12939 md_undefined_symbol (char *name)
12940 {
12941 if (name[0] == GLOBAL_OFFSET_TABLE_NAME[0]
12942 && name[1] == GLOBAL_OFFSET_TABLE_NAME[1]
12943 && name[2] == GLOBAL_OFFSET_TABLE_NAME[2]
12944 && strcmp (name, GLOBAL_OFFSET_TABLE_NAME) == 0)
12945 {
12946 if (!GOT_symbol)
12947 {
12948 if (symbol_find (name))
12949 as_bad (_("GOT already in symbol table"));
12950 GOT_symbol = symbol_new (name, undefined_section,
12951 (valueT) 0, &zero_address_frag);
12952 };
12953 return GOT_symbol;
12954 }
12955 return 0;
12956 }
12957
12958 /* Round up a section size to the appropriate boundary. */
12959
12960 valueT
12961 md_section_align (segT segment ATTRIBUTE_UNUSED, valueT size)
12962 {
12963 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
12964 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
12965 {
12966 /* For a.out, force the section size to be aligned. If we don't do
12967 this, BFD will align it for us, but it will not write out the
12968 final bytes of the section. This may be a bug in BFD, but it is
12969 easier to fix it here since that is how the other a.out targets
12970 work. */
12971 int align;
12972
12973 align = bfd_section_alignment (segment);
12974 size = ((size + (1 << align) - 1) & (-((valueT) 1 << align)));
12975 }
12976 #endif
12977
12978 return size;
12979 }
12980
12981 /* On the i386, PC-relative offsets are relative to the start of the
12982 next instruction. That is, the address of the offset, plus its
12983 size, since the offset is always the last part of the insn. */
12984
12985 long
12986 md_pcrel_from (fixS *fixP)
12987 {
12988 return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address;
12989 }
12990
12991 #ifndef I386COFF
12992
12993 static void
12994 s_bss (int ignore ATTRIBUTE_UNUSED)
12995 {
12996 int temp;
12997
12998 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12999 if (IS_ELF)
13000 obj_elf_section_change_hook ();
13001 #endif
13002 temp = get_absolute_expression ();
13003 subseg_set (bss_section, (subsegT) temp);
13004 demand_empty_rest_of_line ();
13005 }
13006
13007 #endif
13008
13009 /* Remember constant directive. */
13010
13011 void
13012 i386_cons_align (int ignore ATTRIBUTE_UNUSED)
13013 {
13014 if (last_insn.kind != last_insn_directive
13015 && (bfd_section_flags (now_seg) & SEC_CODE))
13016 {
13017 last_insn.seg = now_seg;
13018 last_insn.kind = last_insn_directive;
13019 last_insn.name = "constant directive";
13020 last_insn.file = as_where (&last_insn.line);
13021 }
13022 }
13023
13024 void
13025 i386_validate_fix (fixS *fixp)
13026 {
13027 if (fixp->fx_subsy)
13028 {
13029 if (fixp->fx_subsy == GOT_symbol)
13030 {
13031 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
13032 {
13033 if (!object_64bit)
13034 abort ();
13035 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
13036 if (fixp->fx_tcbit2)
13037 fixp->fx_r_type = (fixp->fx_tcbit
13038 ? BFD_RELOC_X86_64_REX_GOTPCRELX
13039 : BFD_RELOC_X86_64_GOTPCRELX);
13040 else
13041 #endif
13042 fixp->fx_r_type = BFD_RELOC_X86_64_GOTPCREL;
13043 }
13044 else
13045 {
13046 if (!object_64bit)
13047 fixp->fx_r_type = BFD_RELOC_386_GOTOFF;
13048 else
13049 fixp->fx_r_type = BFD_RELOC_X86_64_GOTOFF64;
13050 }
13051 fixp->fx_subsy = 0;
13052 }
13053 }
13054 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
13055 else if (!object_64bit)
13056 {
13057 if (fixp->fx_r_type == BFD_RELOC_386_GOT32
13058 && fixp->fx_tcbit2)
13059 fixp->fx_r_type = BFD_RELOC_386_GOT32X;
13060 }
13061 #endif
13062 }
13063
13064 arelent *
13065 tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
13066 {
13067 arelent *rel;
13068 bfd_reloc_code_real_type code;
13069
13070 switch (fixp->fx_r_type)
13071 {
13072 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
13073 case BFD_RELOC_SIZE32:
13074 case BFD_RELOC_SIZE64:
13075 if (S_IS_DEFINED (fixp->fx_addsy)
13076 && !S_IS_EXTERNAL (fixp->fx_addsy))
13077 {
13078 /* Resolve size relocation against local symbol to size of
13079 the symbol plus addend. */
13080 valueT value = S_GET_SIZE (fixp->fx_addsy) + fixp->fx_offset;
13081 if (fixp->fx_r_type == BFD_RELOC_SIZE32
13082 && !fits_in_unsigned_long (value))
13083 as_bad_where (fixp->fx_file, fixp->fx_line,
13084 _("symbol size computation overflow"));
13085 fixp->fx_addsy = NULL;
13086 fixp->fx_subsy = NULL;
13087 md_apply_fix (fixp, (valueT *) &value, NULL);
13088 return NULL;
13089 }
13090 #endif
13091 /* Fall through. */
13092
13093 case BFD_RELOC_X86_64_PLT32:
13094 case BFD_RELOC_X86_64_GOT32:
13095 case BFD_RELOC_X86_64_GOTPCREL:
13096 case BFD_RELOC_X86_64_GOTPCRELX:
13097 case BFD_RELOC_X86_64_REX_GOTPCRELX:
13098 case BFD_RELOC_386_PLT32:
13099 case BFD_RELOC_386_GOT32:
13100 case BFD_RELOC_386_GOT32X:
13101 case BFD_RELOC_386_GOTOFF:
13102 case BFD_RELOC_386_GOTPC:
13103 case BFD_RELOC_386_TLS_GD:
13104 case BFD_RELOC_386_TLS_LDM:
13105 case BFD_RELOC_386_TLS_LDO_32:
13106 case BFD_RELOC_386_TLS_IE_32:
13107 case BFD_RELOC_386_TLS_IE:
13108 case BFD_RELOC_386_TLS_GOTIE:
13109 case BFD_RELOC_386_TLS_LE_32:
13110 case BFD_RELOC_386_TLS_LE:
13111 case BFD_RELOC_386_TLS_GOTDESC:
13112 case BFD_RELOC_386_TLS_DESC_CALL:
13113 case BFD_RELOC_X86_64_TLSGD:
13114 case BFD_RELOC_X86_64_TLSLD:
13115 case BFD_RELOC_X86_64_DTPOFF32:
13116 case BFD_RELOC_X86_64_DTPOFF64:
13117 case BFD_RELOC_X86_64_GOTTPOFF:
13118 case BFD_RELOC_X86_64_TPOFF32:
13119 case BFD_RELOC_X86_64_TPOFF64:
13120 case BFD_RELOC_X86_64_GOTOFF64:
13121 case BFD_RELOC_X86_64_GOTPC32:
13122 case BFD_RELOC_X86_64_GOT64:
13123 case BFD_RELOC_X86_64_GOTPCREL64:
13124 case BFD_RELOC_X86_64_GOTPC64:
13125 case BFD_RELOC_X86_64_GOTPLT64:
13126 case BFD_RELOC_X86_64_PLTOFF64:
13127 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
13128 case BFD_RELOC_X86_64_TLSDESC_CALL:
13129 case BFD_RELOC_RVA:
13130 case BFD_RELOC_VTABLE_ENTRY:
13131 case BFD_RELOC_VTABLE_INHERIT:
13132 #ifdef TE_PE
13133 case BFD_RELOC_32_SECREL:
13134 #endif
13135 code = fixp->fx_r_type;
13136 break;
13137 case BFD_RELOC_X86_64_32S:
13138 if (!fixp->fx_pcrel)
13139 {
13140 /* Don't turn BFD_RELOC_X86_64_32S into BFD_RELOC_32. */
13141 code = fixp->fx_r_type;
13142 break;
13143 }
13144 /* Fall through. */
13145 default:
13146 if (fixp->fx_pcrel)
13147 {
13148 switch (fixp->fx_size)
13149 {
13150 default:
13151 as_bad_where (fixp->fx_file, fixp->fx_line,
13152 _("can not do %d byte pc-relative relocation"),
13153 fixp->fx_size);
13154 code = BFD_RELOC_32_PCREL;
13155 break;
13156 case 1: code = BFD_RELOC_8_PCREL; break;
13157 case 2: code = BFD_RELOC_16_PCREL; break;
13158 case 4: code = BFD_RELOC_32_PCREL; break;
13159 #ifdef BFD64
13160 case 8: code = BFD_RELOC_64_PCREL; break;
13161 #endif
13162 }
13163 }
13164 else
13165 {
13166 switch (fixp->fx_size)
13167 {
13168 default:
13169 as_bad_where (fixp->fx_file, fixp->fx_line,
13170 _("can not do %d byte relocation"),
13171 fixp->fx_size);
13172 code = BFD_RELOC_32;
13173 break;
13174 case 1: code = BFD_RELOC_8; break;
13175 case 2: code = BFD_RELOC_16; break;
13176 case 4: code = BFD_RELOC_32; break;
13177 #ifdef BFD64
13178 case 8: code = BFD_RELOC_64; break;
13179 #endif
13180 }
13181 }
13182 break;
13183 }
13184
13185 if ((code == BFD_RELOC_32
13186 || code == BFD_RELOC_32_PCREL
13187 || code == BFD_RELOC_X86_64_32S)
13188 && GOT_symbol
13189 && fixp->fx_addsy == GOT_symbol)
13190 {
13191 if (!object_64bit)
13192 code = BFD_RELOC_386_GOTPC;
13193 else
13194 code = BFD_RELOC_X86_64_GOTPC32;
13195 }
13196 if ((code == BFD_RELOC_64 || code == BFD_RELOC_64_PCREL)
13197 && GOT_symbol
13198 && fixp->fx_addsy == GOT_symbol)
13199 {
13200 code = BFD_RELOC_X86_64_GOTPC64;
13201 }
13202
13203 rel = XNEW (arelent);
13204 rel->sym_ptr_ptr = XNEW (asymbol *);
13205 *rel->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
13206
13207 rel->address = fixp->fx_frag->fr_address + fixp->fx_where;
13208
13209 if (!use_rela_relocations)
13210 {
13211 /* HACK: Since i386 ELF uses Rel instead of Rela, encode the
13212 vtable entry to be used in the relocation's section offset. */
13213 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
13214 rel->address = fixp->fx_offset;
13215 #if defined (OBJ_COFF) && defined (TE_PE)
13216 else if (fixp->fx_addsy && S_IS_WEAK (fixp->fx_addsy))
13217 rel->addend = fixp->fx_addnumber - (S_GET_VALUE (fixp->fx_addsy) * 2);
13218 else
13219 #endif
13220 rel->addend = 0;
13221 }
13222 /* Use the rela in 64bit mode. */
13223 else
13224 {
13225 if (disallow_64bit_reloc)
13226 switch (code)
13227 {
13228 case BFD_RELOC_X86_64_DTPOFF64:
13229 case BFD_RELOC_X86_64_TPOFF64:
13230 case BFD_RELOC_64_PCREL:
13231 case BFD_RELOC_X86_64_GOTOFF64:
13232 case BFD_RELOC_X86_64_GOT64:
13233 case BFD_RELOC_X86_64_GOTPCREL64:
13234 case BFD_RELOC_X86_64_GOTPC64:
13235 case BFD_RELOC_X86_64_GOTPLT64:
13236 case BFD_RELOC_X86_64_PLTOFF64:
13237 as_bad_where (fixp->fx_file, fixp->fx_line,
13238 _("cannot represent relocation type %s in x32 mode"),
13239 bfd_get_reloc_code_name (code));
13240 break;
13241 default:
13242 break;
13243 }
13244
13245 if (!fixp->fx_pcrel)
13246 rel->addend = fixp->fx_offset;
13247 else
13248 switch (code)
13249 {
13250 case BFD_RELOC_X86_64_PLT32:
13251 case BFD_RELOC_X86_64_GOT32:
13252 case BFD_RELOC_X86_64_GOTPCREL:
13253 case BFD_RELOC_X86_64_GOTPCRELX:
13254 case BFD_RELOC_X86_64_REX_GOTPCRELX:
13255 case BFD_RELOC_X86_64_TLSGD:
13256 case BFD_RELOC_X86_64_TLSLD:
13257 case BFD_RELOC_X86_64_GOTTPOFF:
13258 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
13259 case BFD_RELOC_X86_64_TLSDESC_CALL:
13260 rel->addend = fixp->fx_offset - fixp->fx_size;
13261 break;
13262 default:
13263 rel->addend = (section->vma
13264 - fixp->fx_size
13265 + fixp->fx_addnumber
13266 + md_pcrel_from (fixp));
13267 break;
13268 }
13269 }
13270
13271 rel->howto = bfd_reloc_type_lookup (stdoutput, code);
13272 if (rel->howto == NULL)
13273 {
13274 as_bad_where (fixp->fx_file, fixp->fx_line,
13275 _("cannot represent relocation type %s"),
13276 bfd_get_reloc_code_name (code));
13277 /* Set howto to a garbage value so that we can keep going. */
13278 rel->howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_32);
13279 gas_assert (rel->howto != NULL);
13280 }
13281
13282 return rel;
13283 }
13284
13285 #include "tc-i386-intel.c"
13286
13287 void
13288 tc_x86_parse_to_dw2regnum (expressionS *exp)
13289 {
13290 int saved_naked_reg;
13291 char saved_register_dot;
13292
13293 saved_naked_reg = allow_naked_reg;
13294 allow_naked_reg = 1;
13295 saved_register_dot = register_chars['.'];
13296 register_chars['.'] = '.';
13297 allow_pseudo_reg = 1;
13298 expression_and_evaluate (exp);
13299 allow_pseudo_reg = 0;
13300 register_chars['.'] = saved_register_dot;
13301 allow_naked_reg = saved_naked_reg;
13302
13303 if (exp->X_op == O_register && exp->X_add_number >= 0)
13304 {
13305 if ((addressT) exp->X_add_number < i386_regtab_size)
13306 {
13307 exp->X_op = O_constant;
13308 exp->X_add_number = i386_regtab[exp->X_add_number]
13309 .dw2_regnum[flag_code >> 1];
13310 }
13311 else
13312 exp->X_op = O_illegal;
13313 }
13314 }
13315
13316 void
13317 tc_x86_frame_initial_instructions (void)
13318 {
13319 static unsigned int sp_regno[2];
13320
13321 if (!sp_regno[flag_code >> 1])
13322 {
13323 char *saved_input = input_line_pointer;
13324 char sp[][4] = {"esp", "rsp"};
13325 expressionS exp;
13326
13327 input_line_pointer = sp[flag_code >> 1];
13328 tc_x86_parse_to_dw2regnum (&exp);
13329 gas_assert (exp.X_op == O_constant);
13330 sp_regno[flag_code >> 1] = exp.X_add_number;
13331 input_line_pointer = saved_input;
13332 }
13333
13334 cfi_add_CFA_def_cfa (sp_regno[flag_code >> 1], -x86_cie_data_alignment);
13335 cfi_add_CFA_offset (x86_dwarf2_return_column, x86_cie_data_alignment);
13336 }
13337
13338 int
13339 x86_dwarf2_addr_size (void)
13340 {
13341 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
13342 if (x86_elf_abi == X86_64_X32_ABI)
13343 return 4;
13344 #endif
13345 return bfd_arch_bits_per_address (stdoutput) / 8;
13346 }
13347
13348 int
13349 i386_elf_section_type (const char *str, size_t len)
13350 {
13351 if (flag_code == CODE_64BIT
13352 && len == sizeof ("unwind") - 1
13353 && strncmp (str, "unwind", 6) == 0)
13354 return SHT_X86_64_UNWIND;
13355
13356 return -1;
13357 }
13358
13359 #ifdef TE_SOLARIS
13360 void
13361 i386_solaris_fix_up_eh_frame (segT sec)
13362 {
13363 if (flag_code == CODE_64BIT)
13364 elf_section_type (sec) = SHT_X86_64_UNWIND;
13365 }
13366 #endif
13367
13368 #ifdef TE_PE
13369 void
13370 tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
13371 {
13372 expressionS exp;
13373
13374 exp.X_op = O_secrel;
13375 exp.X_add_symbol = symbol;
13376 exp.X_add_number = 0;
13377 emit_expr (&exp, size);
13378 }
13379 #endif
13380
13381 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
13382 /* For ELF on x86-64, add support for SHF_X86_64_LARGE. */
13383
13384 bfd_vma
13385 x86_64_section_letter (int letter, const char **ptr_msg)
13386 {
13387 if (flag_code == CODE_64BIT)
13388 {
13389 if (letter == 'l')
13390 return SHF_X86_64_LARGE;
13391
13392 *ptr_msg = _("bad .section directive: want a,l,w,x,M,S,G,T in string");
13393 }
13394 else
13395 *ptr_msg = _("bad .section directive: want a,w,x,M,S,G,T in string");
13396 return -1;
13397 }
13398
13399 bfd_vma
13400 x86_64_section_word (char *str, size_t len)
13401 {
13402 if (len == 5 && flag_code == CODE_64BIT && CONST_STRNEQ (str, "large"))
13403 return SHF_X86_64_LARGE;
13404
13405 return -1;
13406 }
13407
13408 static void
13409 handle_large_common (int small ATTRIBUTE_UNUSED)
13410 {
13411 if (flag_code != CODE_64BIT)
13412 {
13413 s_comm_internal (0, elf_common_parse);
13414 as_warn (_(".largecomm supported only in 64bit mode, producing .comm"));
13415 }
13416 else
13417 {
13418 static segT lbss_section;
13419 asection *saved_com_section_ptr = elf_com_section_ptr;
13420 asection *saved_bss_section = bss_section;
13421
13422 if (lbss_section == NULL)
13423 {
13424 flagword applicable;
13425 segT seg = now_seg;
13426 subsegT subseg = now_subseg;
13427
13428 /* The .lbss section is for local .largecomm symbols. */
13429 lbss_section = subseg_new (".lbss", 0);
13430 applicable = bfd_applicable_section_flags (stdoutput);
13431 bfd_set_section_flags (lbss_section, applicable & SEC_ALLOC);
13432 seg_info (lbss_section)->bss = 1;
13433
13434 subseg_set (seg, subseg);
13435 }
13436
13437 elf_com_section_ptr = &_bfd_elf_large_com_section;
13438 bss_section = lbss_section;
13439
13440 s_comm_internal (0, elf_common_parse);
13441
13442 elf_com_section_ptr = saved_com_section_ptr;
13443 bss_section = saved_bss_section;
13444 }
13445 }
13446 #endif /* OBJ_ELF || OBJ_MAYBE_ELF */
This page took 0.355675 seconds and 4 git commands to generate.