RISC-V: Support assembler modifier %got_pcrel_hi.
[deliverable/binutils-gdb.git] / gas / config / tc-i386.c
1 /* tc-i386.c -- Assemble code for the Intel 80386
2 Copyright (C) 1989-2020 Free Software Foundation, Inc.
3
4 This file is part of GAS, the GNU Assembler.
5
6 GAS is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
10
11 GAS is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GAS; see the file COPYING. If not, write to the Free
18 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
19 02110-1301, USA. */
20
21 /* Intel 80386 machine specific gas.
22 Written by Eliot Dresselhaus (eliot@mgm.mit.edu).
23 x86_64 support by Jan Hubicka (jh@suse.cz)
24 VIA PadLock support by Michal Ludvig (mludvig@suse.cz)
25 Bugs & suggestions are completely welcome. This is free software.
26 Please help us make it better. */
27
28 #include "as.h"
29 #include "safe-ctype.h"
30 #include "subsegs.h"
31 #include "dwarf2dbg.h"
32 #include "dw2gencfi.h"
33 #include "elf/x86-64.h"
34 #include "opcodes/i386-init.h"
35
36 #ifdef HAVE_LIMITS_H
37 #include <limits.h>
38 #else
39 #ifdef HAVE_SYS_PARAM_H
40 #include <sys/param.h>
41 #endif
42 #ifndef INT_MAX
43 #define INT_MAX (int) (((unsigned) (-1)) >> 1)
44 #endif
45 #endif
46
47 #ifndef INFER_ADDR_PREFIX
48 #define INFER_ADDR_PREFIX 1
49 #endif
50
51 #ifndef DEFAULT_ARCH
52 #define DEFAULT_ARCH "i386"
53 #endif
54
55 #ifndef INLINE
56 #if __GNUC__ >= 2
57 #define INLINE __inline__
58 #else
59 #define INLINE
60 #endif
61 #endif
62
63 /* Prefixes will be emitted in the order defined below.
64 WAIT_PREFIX must be the first prefix since FWAIT is really is an
65 instruction, and so must come before any prefixes.
66 The preferred prefix order is SEG_PREFIX, ADDR_PREFIX, DATA_PREFIX,
67 REP_PREFIX/HLE_PREFIX, LOCK_PREFIX. */
68 #define WAIT_PREFIX 0
69 #define SEG_PREFIX 1
70 #define ADDR_PREFIX 2
71 #define DATA_PREFIX 3
72 #define REP_PREFIX 4
73 #define HLE_PREFIX REP_PREFIX
74 #define BND_PREFIX REP_PREFIX
75 #define LOCK_PREFIX 5
76 #define REX_PREFIX 6 /* must come last. */
77 #define MAX_PREFIXES 7 /* max prefixes per opcode */
78
79 /* we define the syntax here (modulo base,index,scale syntax) */
80 #define REGISTER_PREFIX '%'
81 #define IMMEDIATE_PREFIX '$'
82 #define ABSOLUTE_PREFIX '*'
83
84 /* these are the instruction mnemonic suffixes in AT&T syntax or
85 memory operand size in Intel syntax. */
86 #define WORD_MNEM_SUFFIX 'w'
87 #define BYTE_MNEM_SUFFIX 'b'
88 #define SHORT_MNEM_SUFFIX 's'
89 #define LONG_MNEM_SUFFIX 'l'
90 #define QWORD_MNEM_SUFFIX 'q'
91 /* Intel Syntax. Use a non-ascii letter since since it never appears
92 in instructions. */
93 #define LONG_DOUBLE_MNEM_SUFFIX '\1'
94
95 #define END_OF_INSN '\0'
96
97 /* This matches the C -> StaticRounding alias in the opcode table. */
98 #define commutative staticrounding
99
100 /*
101 'templates' is for grouping together 'template' structures for opcodes
102 of the same name. This is only used for storing the insns in the grand
103 ole hash table of insns.
104 The templates themselves start at START and range up to (but not including)
105 END.
106 */
107 typedef struct
108 {
109 const insn_template *start;
110 const insn_template *end;
111 }
112 templates;
113
114 /* 386 operand encoding bytes: see 386 book for details of this. */
115 typedef struct
116 {
117 unsigned int regmem; /* codes register or memory operand */
118 unsigned int reg; /* codes register operand (or extended opcode) */
119 unsigned int mode; /* how to interpret regmem & reg */
120 }
121 modrm_byte;
122
123 /* x86-64 extension prefix. */
124 typedef int rex_byte;
125
126 /* 386 opcode byte to code indirect addressing. */
127 typedef struct
128 {
129 unsigned base;
130 unsigned index;
131 unsigned scale;
132 }
133 sib_byte;
134
135 /* x86 arch names, types and features */
136 typedef struct
137 {
138 const char *name; /* arch name */
139 unsigned int len; /* arch string length */
140 enum processor_type type; /* arch type */
141 i386_cpu_flags flags; /* cpu feature flags */
142 unsigned int skip; /* show_arch should skip this. */
143 }
144 arch_entry;
145
146 /* Used to turn off indicated flags. */
147 typedef struct
148 {
149 const char *name; /* arch name */
150 unsigned int len; /* arch string length */
151 i386_cpu_flags flags; /* cpu feature flags */
152 }
153 noarch_entry;
154
155 static void update_code_flag (int, int);
156 static void set_code_flag (int);
157 static void set_16bit_gcc_code_flag (int);
158 static void set_intel_syntax (int);
159 static void set_intel_mnemonic (int);
160 static void set_allow_index_reg (int);
161 static void set_check (int);
162 static void set_cpu_arch (int);
163 #ifdef TE_PE
164 static void pe_directive_secrel (int);
165 #endif
166 static void signed_cons (int);
167 static char *output_invalid (int c);
168 static int i386_finalize_immediate (segT, expressionS *, i386_operand_type,
169 const char *);
170 static int i386_finalize_displacement (segT, expressionS *, i386_operand_type,
171 const char *);
172 static int i386_att_operand (char *);
173 static int i386_intel_operand (char *, int);
174 static int i386_intel_simplify (expressionS *);
175 static int i386_intel_parse_name (const char *, expressionS *);
176 static const reg_entry *parse_register (char *, char **);
177 static char *parse_insn (char *, char *);
178 static char *parse_operands (char *, const char *);
179 static void swap_operands (void);
180 static void swap_2_operands (int, int);
181 static enum flag_code i386_addressing_mode (void);
182 static void optimize_imm (void);
183 static void optimize_disp (void);
184 static const insn_template *match_template (char);
185 static int check_string (void);
186 static int process_suffix (void);
187 static int check_byte_reg (void);
188 static int check_long_reg (void);
189 static int check_qword_reg (void);
190 static int check_word_reg (void);
191 static int finalize_imm (void);
192 static int process_operands (void);
193 static const seg_entry *build_modrm_byte (void);
194 static void output_insn (void);
195 static void output_imm (fragS *, offsetT);
196 static void output_disp (fragS *, offsetT);
197 #ifndef I386COFF
198 static void s_bss (int);
199 #endif
200 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
201 static void handle_large_common (int small ATTRIBUTE_UNUSED);
202
203 /* GNU_PROPERTY_X86_ISA_1_USED. */
204 static unsigned int x86_isa_1_used;
205 /* GNU_PROPERTY_X86_FEATURE_2_USED. */
206 static unsigned int x86_feature_2_used;
207 /* Generate x86 used ISA and feature properties. */
208 static unsigned int x86_used_note = DEFAULT_X86_USED_NOTE;
209 #endif
210
211 static const char *default_arch = DEFAULT_ARCH;
212
213 /* This struct describes rounding control and SAE in the instruction. */
214 struct RC_Operation
215 {
216 enum rc_type
217 {
218 rne = 0,
219 rd,
220 ru,
221 rz,
222 saeonly
223 } type;
224 int operand;
225 };
226
227 static struct RC_Operation rc_op;
228
229 /* The struct describes masking, applied to OPERAND in the instruction.
230 MASK is a pointer to the corresponding mask register. ZEROING tells
231 whether merging or zeroing mask is used. */
232 struct Mask_Operation
233 {
234 const reg_entry *mask;
235 unsigned int zeroing;
236 /* The operand where this operation is associated. */
237 int operand;
238 };
239
240 static struct Mask_Operation mask_op;
241
242 /* The struct describes broadcasting, applied to OPERAND. FACTOR is
243 broadcast factor. */
244 struct Broadcast_Operation
245 {
246 /* Type of broadcast: {1to2}, {1to4}, {1to8}, or {1to16}. */
247 int type;
248
249 /* Index of broadcasted operand. */
250 int operand;
251
252 /* Number of bytes to broadcast. */
253 int bytes;
254 };
255
256 static struct Broadcast_Operation broadcast_op;
257
258 /* VEX prefix. */
259 typedef struct
260 {
261 /* VEX prefix is either 2 byte or 3 byte. EVEX is 4 byte. */
262 unsigned char bytes[4];
263 unsigned int length;
264 /* Destination or source register specifier. */
265 const reg_entry *register_specifier;
266 } vex_prefix;
267
268 /* 'md_assemble ()' gathers together information and puts it into a
269 i386_insn. */
270
271 union i386_op
272 {
273 expressionS *disps;
274 expressionS *imms;
275 const reg_entry *regs;
276 };
277
278 enum i386_error
279 {
280 operand_size_mismatch,
281 operand_type_mismatch,
282 register_type_mismatch,
283 number_of_operands_mismatch,
284 invalid_instruction_suffix,
285 bad_imm4,
286 unsupported_with_intel_mnemonic,
287 unsupported_syntax,
288 unsupported,
289 invalid_vsib_address,
290 invalid_vector_register_set,
291 unsupported_vector_index_register,
292 unsupported_broadcast,
293 broadcast_needed,
294 unsupported_masking,
295 mask_not_on_destination,
296 no_default_mask,
297 unsupported_rc_sae,
298 rc_sae_operand_not_last_imm,
299 invalid_register_operand,
300 };
301
302 struct _i386_insn
303 {
304 /* TM holds the template for the insn were currently assembling. */
305 insn_template tm;
306
307 /* SUFFIX holds the instruction size suffix for byte, word, dword
308 or qword, if given. */
309 char suffix;
310
311 /* OPERANDS gives the number of given operands. */
312 unsigned int operands;
313
314 /* REG_OPERANDS, DISP_OPERANDS, MEM_OPERANDS, IMM_OPERANDS give the number
315 of given register, displacement, memory operands and immediate
316 operands. */
317 unsigned int reg_operands, disp_operands, mem_operands, imm_operands;
318
319 /* TYPES [i] is the type (see above #defines) which tells us how to
320 use OP[i] for the corresponding operand. */
321 i386_operand_type types[MAX_OPERANDS];
322
323 /* Displacement expression, immediate expression, or register for each
324 operand. */
325 union i386_op op[MAX_OPERANDS];
326
327 /* Flags for operands. */
328 unsigned int flags[MAX_OPERANDS];
329 #define Operand_PCrel 1
330 #define Operand_Mem 2
331
332 /* Relocation type for operand */
333 enum bfd_reloc_code_real reloc[MAX_OPERANDS];
334
335 /* BASE_REG, INDEX_REG, and LOG2_SCALE_FACTOR are used to encode
336 the base index byte below. */
337 const reg_entry *base_reg;
338 const reg_entry *index_reg;
339 unsigned int log2_scale_factor;
340
341 /* SEG gives the seg_entries of this insn. They are zero unless
342 explicit segment overrides are given. */
343 const seg_entry *seg[2];
344
345 /* Copied first memory operand string, for re-checking. */
346 char *memop1_string;
347
348 /* PREFIX holds all the given prefix opcodes (usually null).
349 PREFIXES is the number of prefix opcodes. */
350 unsigned int prefixes;
351 unsigned char prefix[MAX_PREFIXES];
352
353 /* Register is in low 3 bits of opcode. */
354 bfd_boolean short_form;
355
356 /* The operand to a branch insn indicates an absolute branch. */
357 bfd_boolean jumpabsolute;
358
359 /* Has MMX register operands. */
360 bfd_boolean has_regmmx;
361
362 /* Has XMM register operands. */
363 bfd_boolean has_regxmm;
364
365 /* Has YMM register operands. */
366 bfd_boolean has_regymm;
367
368 /* Has ZMM register operands. */
369 bfd_boolean has_regzmm;
370
371 /* Has GOTPC or TLS relocation. */
372 bfd_boolean has_gotpc_tls_reloc;
373
374 /* RM and SIB are the modrm byte and the sib byte where the
375 addressing modes of this insn are encoded. */
376 modrm_byte rm;
377 rex_byte rex;
378 rex_byte vrex;
379 sib_byte sib;
380 vex_prefix vex;
381
382 /* Masking attributes. */
383 struct Mask_Operation *mask;
384
385 /* Rounding control and SAE attributes. */
386 struct RC_Operation *rounding;
387
388 /* Broadcasting attributes. */
389 struct Broadcast_Operation *broadcast;
390
391 /* Compressed disp8*N attribute. */
392 unsigned int memshift;
393
394 /* Prefer load or store in encoding. */
395 enum
396 {
397 dir_encoding_default = 0,
398 dir_encoding_load,
399 dir_encoding_store,
400 dir_encoding_swap
401 } dir_encoding;
402
403 /* Prefer 8bit or 32bit displacement in encoding. */
404 enum
405 {
406 disp_encoding_default = 0,
407 disp_encoding_8bit,
408 disp_encoding_32bit
409 } disp_encoding;
410
411 /* Prefer the REX byte in encoding. */
412 bfd_boolean rex_encoding;
413
414 /* Disable instruction size optimization. */
415 bfd_boolean no_optimize;
416
417 /* How to encode vector instructions. */
418 enum
419 {
420 vex_encoding_default = 0,
421 vex_encoding_vex,
422 vex_encoding_vex3,
423 vex_encoding_evex
424 } vec_encoding;
425
426 /* REP prefix. */
427 const char *rep_prefix;
428
429 /* HLE prefix. */
430 const char *hle_prefix;
431
432 /* Have BND prefix. */
433 const char *bnd_prefix;
434
435 /* Have NOTRACK prefix. */
436 const char *notrack_prefix;
437
438 /* Error message. */
439 enum i386_error error;
440 };
441
442 typedef struct _i386_insn i386_insn;
443
444 /* Link RC type with corresponding string, that'll be looked for in
445 asm. */
446 struct RC_name
447 {
448 enum rc_type type;
449 const char *name;
450 unsigned int len;
451 };
452
453 static const struct RC_name RC_NamesTable[] =
454 {
455 { rne, STRING_COMMA_LEN ("rn-sae") },
456 { rd, STRING_COMMA_LEN ("rd-sae") },
457 { ru, STRING_COMMA_LEN ("ru-sae") },
458 { rz, STRING_COMMA_LEN ("rz-sae") },
459 { saeonly, STRING_COMMA_LEN ("sae") },
460 };
461
462 /* List of chars besides those in app.c:symbol_chars that can start an
463 operand. Used to prevent the scrubber eating vital white-space. */
464 const char extra_symbol_chars[] = "*%-([{}"
465 #ifdef LEX_AT
466 "@"
467 #endif
468 #ifdef LEX_QM
469 "?"
470 #endif
471 ;
472
473 #if (defined (TE_I386AIX) \
474 || ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) \
475 && !defined (TE_GNU) \
476 && !defined (TE_LINUX) \
477 && !defined (TE_NACL) \
478 && !defined (TE_FreeBSD) \
479 && !defined (TE_DragonFly) \
480 && !defined (TE_NetBSD)))
481 /* This array holds the chars that always start a comment. If the
482 pre-processor is disabled, these aren't very useful. The option
483 --divide will remove '/' from this list. */
484 const char *i386_comment_chars = "#/";
485 #define SVR4_COMMENT_CHARS 1
486 #define PREFIX_SEPARATOR '\\'
487
488 #else
489 const char *i386_comment_chars = "#";
490 #define PREFIX_SEPARATOR '/'
491 #endif
492
493 /* This array holds the chars that only start a comment at the beginning of
494 a line. If the line seems to have the form '# 123 filename'
495 .line and .file directives will appear in the pre-processed output.
496 Note that input_file.c hand checks for '#' at the beginning of the
497 first line of the input file. This is because the compiler outputs
498 #NO_APP at the beginning of its output.
499 Also note that comments started like this one will always work if
500 '/' isn't otherwise defined. */
501 const char line_comment_chars[] = "#/";
502
503 const char line_separator_chars[] = ";";
504
505 /* Chars that can be used to separate mant from exp in floating point
506 nums. */
507 const char EXP_CHARS[] = "eE";
508
509 /* Chars that mean this number is a floating point constant
510 As in 0f12.456
511 or 0d1.2345e12. */
512 const char FLT_CHARS[] = "fFdDxX";
513
514 /* Tables for lexical analysis. */
515 static char mnemonic_chars[256];
516 static char register_chars[256];
517 static char operand_chars[256];
518 static char identifier_chars[256];
519 static char digit_chars[256];
520
521 /* Lexical macros. */
522 #define is_mnemonic_char(x) (mnemonic_chars[(unsigned char) x])
523 #define is_operand_char(x) (operand_chars[(unsigned char) x])
524 #define is_register_char(x) (register_chars[(unsigned char) x])
525 #define is_space_char(x) ((x) == ' ')
526 #define is_identifier_char(x) (identifier_chars[(unsigned char) x])
527 #define is_digit_char(x) (digit_chars[(unsigned char) x])
528
529 /* All non-digit non-letter characters that may occur in an operand. */
530 static char operand_special_chars[] = "%$-+(,)*._~/<>|&^!:[@]";
531
532 /* md_assemble() always leaves the strings it's passed unaltered. To
533 effect this we maintain a stack of saved characters that we've smashed
534 with '\0's (indicating end of strings for various sub-fields of the
535 assembler instruction). */
536 static char save_stack[32];
537 static char *save_stack_p;
538 #define END_STRING_AND_SAVE(s) \
539 do { *save_stack_p++ = *(s); *(s) = '\0'; } while (0)
540 #define RESTORE_END_STRING(s) \
541 do { *(s) = *--save_stack_p; } while (0)
542
543 /* The instruction we're assembling. */
544 static i386_insn i;
545
546 /* Possible templates for current insn. */
547 static const templates *current_templates;
548
549 /* Per instruction expressionS buffers: max displacements & immediates. */
550 static expressionS disp_expressions[MAX_MEMORY_OPERANDS];
551 static expressionS im_expressions[MAX_IMMEDIATE_OPERANDS];
552
553 /* Current operand we are working on. */
554 static int this_operand = -1;
555
556 /* We support four different modes. FLAG_CODE variable is used to distinguish
557 these. */
558
559 enum flag_code {
560 CODE_32BIT,
561 CODE_16BIT,
562 CODE_64BIT };
563
564 static enum flag_code flag_code;
565 static unsigned int object_64bit;
566 static unsigned int disallow_64bit_reloc;
567 static int use_rela_relocations = 0;
568 /* __tls_get_addr/___tls_get_addr symbol for TLS. */
569 static const char *tls_get_addr;
570
571 #if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
572 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
573 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
574
575 /* The ELF ABI to use. */
576 enum x86_elf_abi
577 {
578 I386_ABI,
579 X86_64_ABI,
580 X86_64_X32_ABI
581 };
582
583 static enum x86_elf_abi x86_elf_abi = I386_ABI;
584 #endif
585
586 #if defined (TE_PE) || defined (TE_PEP)
587 /* Use big object file format. */
588 static int use_big_obj = 0;
589 #endif
590
591 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
592 /* 1 if generating code for a shared library. */
593 static int shared = 0;
594 #endif
595
596 /* 1 for intel syntax,
597 0 if att syntax. */
598 static int intel_syntax = 0;
599
600 static enum x86_64_isa
601 {
602 amd64 = 1, /* AMD64 ISA. */
603 intel64 /* Intel64 ISA. */
604 } isa64;
605
606 /* 1 for intel mnemonic,
607 0 if att mnemonic. */
608 static int intel_mnemonic = !SYSV386_COMPAT;
609
610 /* 1 if pseudo registers are permitted. */
611 static int allow_pseudo_reg = 0;
612
613 /* 1 if register prefix % not required. */
614 static int allow_naked_reg = 0;
615
616 /* 1 if the assembler should add BND prefix for all control-transferring
617 instructions supporting it, even if this prefix wasn't specified
618 explicitly. */
619 static int add_bnd_prefix = 0;
620
621 /* 1 if pseudo index register, eiz/riz, is allowed . */
622 static int allow_index_reg = 0;
623
624 /* 1 if the assembler should ignore LOCK prefix, even if it was
625 specified explicitly. */
626 static int omit_lock_prefix = 0;
627
628 /* 1 if the assembler should encode lfence, mfence, and sfence as
629 "lock addl $0, (%{re}sp)". */
630 static int avoid_fence = 0;
631
632 /* Type of the previous instruction. */
633 static struct
634 {
635 segT seg;
636 const char *file;
637 const char *name;
638 unsigned int line;
639 enum last_insn_kind
640 {
641 last_insn_other = 0,
642 last_insn_directive,
643 last_insn_prefix
644 } kind;
645 } last_insn;
646
647 /* 1 if the assembler should generate relax relocations. */
648
649 static int generate_relax_relocations
650 = DEFAULT_GENERATE_X86_RELAX_RELOCATIONS;
651
652 static enum check_kind
653 {
654 check_none = 0,
655 check_warning,
656 check_error
657 }
658 sse_check, operand_check = check_warning;
659
660 /* Non-zero if branches should be aligned within power of 2 boundary. */
661 static int align_branch_power = 0;
662
663 /* Types of branches to align. */
664 enum align_branch_kind
665 {
666 align_branch_none = 0,
667 align_branch_jcc = 1,
668 align_branch_fused = 2,
669 align_branch_jmp = 3,
670 align_branch_call = 4,
671 align_branch_indirect = 5,
672 align_branch_ret = 6
673 };
674
675 /* Type bits of branches to align. */
676 enum align_branch_bit
677 {
678 align_branch_jcc_bit = 1 << align_branch_jcc,
679 align_branch_fused_bit = 1 << align_branch_fused,
680 align_branch_jmp_bit = 1 << align_branch_jmp,
681 align_branch_call_bit = 1 << align_branch_call,
682 align_branch_indirect_bit = 1 << align_branch_indirect,
683 align_branch_ret_bit = 1 << align_branch_ret
684 };
685
686 static unsigned int align_branch = (align_branch_jcc_bit
687 | align_branch_fused_bit
688 | align_branch_jmp_bit);
689
690 /* Types of condition jump used by macro-fusion. */
691 enum mf_jcc_kind
692 {
693 mf_jcc_jo = 0, /* base opcode 0x70 */
694 mf_jcc_jc, /* base opcode 0x72 */
695 mf_jcc_je, /* base opcode 0x74 */
696 mf_jcc_jna, /* base opcode 0x76 */
697 mf_jcc_js, /* base opcode 0x78 */
698 mf_jcc_jp, /* base opcode 0x7a */
699 mf_jcc_jl, /* base opcode 0x7c */
700 mf_jcc_jle, /* base opcode 0x7e */
701 };
702
703 /* Types of compare flag-modifying insntructions used by macro-fusion. */
704 enum mf_cmp_kind
705 {
706 mf_cmp_test_and, /* test/cmp */
707 mf_cmp_alu_cmp, /* add/sub/cmp */
708 mf_cmp_incdec /* inc/dec */
709 };
710
711 /* The maximum padding size for fused jcc. CMP like instruction can
712 be 9 bytes and jcc can be 6 bytes. Leave room just in case for
713 prefixes. */
714 #define MAX_FUSED_JCC_PADDING_SIZE 20
715
716 /* The maximum number of prefixes added for an instruction. */
717 static unsigned int align_branch_prefix_size = 5;
718
719 /* Optimization:
720 1. Clear the REX_W bit with register operand if possible.
721 2. Above plus use 128bit vector instruction to clear the full vector
722 register.
723 */
724 static int optimize = 0;
725
726 /* Optimization:
727 1. Clear the REX_W bit with register operand if possible.
728 2. Above plus use 128bit vector instruction to clear the full vector
729 register.
730 3. Above plus optimize "test{q,l,w} $imm8,%r{64,32,16}" to
731 "testb $imm7,%r8".
732 */
733 static int optimize_for_space = 0;
734
735 /* Register prefix used for error message. */
736 static const char *register_prefix = "%";
737
738 /* Used in 16 bit gcc mode to add an l suffix to call, ret, enter,
739 leave, push, and pop instructions so that gcc has the same stack
740 frame as in 32 bit mode. */
741 static char stackop_size = '\0';
742
743 /* Non-zero to optimize code alignment. */
744 int optimize_align_code = 1;
745
746 /* Non-zero to quieten some warnings. */
747 static int quiet_warnings = 0;
748
749 /* CPU name. */
750 static const char *cpu_arch_name = NULL;
751 static char *cpu_sub_arch_name = NULL;
752
753 /* CPU feature flags. */
754 static i386_cpu_flags cpu_arch_flags = CPU_UNKNOWN_FLAGS;
755
756 /* If we have selected a cpu we are generating instructions for. */
757 static int cpu_arch_tune_set = 0;
758
759 /* Cpu we are generating instructions for. */
760 enum processor_type cpu_arch_tune = PROCESSOR_UNKNOWN;
761
762 /* CPU feature flags of cpu we are generating instructions for. */
763 static i386_cpu_flags cpu_arch_tune_flags;
764
765 /* CPU instruction set architecture used. */
766 enum processor_type cpu_arch_isa = PROCESSOR_UNKNOWN;
767
768 /* CPU feature flags of instruction set architecture used. */
769 i386_cpu_flags cpu_arch_isa_flags;
770
771 /* If set, conditional jumps are not automatically promoted to handle
772 larger than a byte offset. */
773 static unsigned int no_cond_jump_promotion = 0;
774
775 /* Encode SSE instructions with VEX prefix. */
776 static unsigned int sse2avx;
777
778 /* Encode scalar AVX instructions with specific vector length. */
779 static enum
780 {
781 vex128 = 0,
782 vex256
783 } avxscalar;
784
785 /* Encode VEX WIG instructions with specific vex.w. */
786 static enum
787 {
788 vexw0 = 0,
789 vexw1
790 } vexwig;
791
792 /* Encode scalar EVEX LIG instructions with specific vector length. */
793 static enum
794 {
795 evexl128 = 0,
796 evexl256,
797 evexl512
798 } evexlig;
799
800 /* Encode EVEX WIG instructions with specific evex.w. */
801 static enum
802 {
803 evexw0 = 0,
804 evexw1
805 } evexwig;
806
807 /* Value to encode in EVEX RC bits, for SAE-only instructions. */
808 static enum rc_type evexrcig = rne;
809
810 /* Pre-defined "_GLOBAL_OFFSET_TABLE_". */
811 static symbolS *GOT_symbol;
812
813 /* The dwarf2 return column, adjusted for 32 or 64 bit. */
814 unsigned int x86_dwarf2_return_column;
815
816 /* The dwarf2 data alignment, adjusted for 32 or 64 bit. */
817 int x86_cie_data_alignment;
818
819 /* Interface to relax_segment.
820 There are 3 major relax states for 386 jump insns because the
821 different types of jumps add different sizes to frags when we're
822 figuring out what sort of jump to choose to reach a given label.
823
824 BRANCH_PADDING, BRANCH_PREFIX and FUSED_JCC_PADDING are used to align
825 branches which are handled by md_estimate_size_before_relax() and
826 i386_generic_table_relax_frag(). */
827
828 /* Types. */
829 #define UNCOND_JUMP 0
830 #define COND_JUMP 1
831 #define COND_JUMP86 2
832 #define BRANCH_PADDING 3
833 #define BRANCH_PREFIX 4
834 #define FUSED_JCC_PADDING 5
835
836 /* Sizes. */
837 #define CODE16 1
838 #define SMALL 0
839 #define SMALL16 (SMALL | CODE16)
840 #define BIG 2
841 #define BIG16 (BIG | CODE16)
842
843 #ifndef INLINE
844 #ifdef __GNUC__
845 #define INLINE __inline__
846 #else
847 #define INLINE
848 #endif
849 #endif
850
851 #define ENCODE_RELAX_STATE(type, size) \
852 ((relax_substateT) (((type) << 2) | (size)))
853 #define TYPE_FROM_RELAX_STATE(s) \
854 ((s) >> 2)
855 #define DISP_SIZE_FROM_RELAX_STATE(s) \
856 ((((s) & 3) == BIG ? 4 : (((s) & 3) == BIG16 ? 2 : 1)))
857
858 /* This table is used by relax_frag to promote short jumps to long
859 ones where necessary. SMALL (short) jumps may be promoted to BIG
860 (32 bit long) ones, and SMALL16 jumps to BIG16 (16 bit long). We
861 don't allow a short jump in a 32 bit code segment to be promoted to
862 a 16 bit offset jump because it's slower (requires data size
863 prefix), and doesn't work, unless the destination is in the bottom
864 64k of the code segment (The top 16 bits of eip are zeroed). */
865
866 const relax_typeS md_relax_table[] =
867 {
868 /* The fields are:
869 1) most positive reach of this state,
870 2) most negative reach of this state,
871 3) how many bytes this mode will have in the variable part of the frag
872 4) which index into the table to try if we can't fit into this one. */
873
874 /* UNCOND_JUMP states. */
875 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG)},
876 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16)},
877 /* dword jmp adds 4 bytes to frag:
878 0 extra opcode bytes, 4 displacement bytes. */
879 {0, 0, 4, 0},
880 /* word jmp adds 2 byte2 to frag:
881 0 extra opcode bytes, 2 displacement bytes. */
882 {0, 0, 2, 0},
883
884 /* COND_JUMP states. */
885 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG)},
886 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG16)},
887 /* dword conditionals adds 5 bytes to frag:
888 1 extra opcode byte, 4 displacement bytes. */
889 {0, 0, 5, 0},
890 /* word conditionals add 3 bytes to frag:
891 1 extra opcode byte, 2 displacement bytes. */
892 {0, 0, 3, 0},
893
894 /* COND_JUMP86 states. */
895 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG)},
896 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG16)},
897 /* dword conditionals adds 5 bytes to frag:
898 1 extra opcode byte, 4 displacement bytes. */
899 {0, 0, 5, 0},
900 /* word conditionals add 4 bytes to frag:
901 1 displacement byte and a 3 byte long branch insn. */
902 {0, 0, 4, 0}
903 };
904
905 static const arch_entry cpu_arch[] =
906 {
907 /* Do not replace the first two entries - i386_target_format()
908 relies on them being there in this order. */
909 { STRING_COMMA_LEN ("generic32"), PROCESSOR_GENERIC32,
910 CPU_GENERIC32_FLAGS, 0 },
911 { STRING_COMMA_LEN ("generic64"), PROCESSOR_GENERIC64,
912 CPU_GENERIC64_FLAGS, 0 },
913 { STRING_COMMA_LEN ("i8086"), PROCESSOR_UNKNOWN,
914 CPU_NONE_FLAGS, 0 },
915 { STRING_COMMA_LEN ("i186"), PROCESSOR_UNKNOWN,
916 CPU_I186_FLAGS, 0 },
917 { STRING_COMMA_LEN ("i286"), PROCESSOR_UNKNOWN,
918 CPU_I286_FLAGS, 0 },
919 { STRING_COMMA_LEN ("i386"), PROCESSOR_I386,
920 CPU_I386_FLAGS, 0 },
921 { STRING_COMMA_LEN ("i486"), PROCESSOR_I486,
922 CPU_I486_FLAGS, 0 },
923 { STRING_COMMA_LEN ("i586"), PROCESSOR_PENTIUM,
924 CPU_I586_FLAGS, 0 },
925 { STRING_COMMA_LEN ("i686"), PROCESSOR_PENTIUMPRO,
926 CPU_I686_FLAGS, 0 },
927 { STRING_COMMA_LEN ("pentium"), PROCESSOR_PENTIUM,
928 CPU_I586_FLAGS, 0 },
929 { STRING_COMMA_LEN ("pentiumpro"), PROCESSOR_PENTIUMPRO,
930 CPU_PENTIUMPRO_FLAGS, 0 },
931 { STRING_COMMA_LEN ("pentiumii"), PROCESSOR_PENTIUMPRO,
932 CPU_P2_FLAGS, 0 },
933 { STRING_COMMA_LEN ("pentiumiii"),PROCESSOR_PENTIUMPRO,
934 CPU_P3_FLAGS, 0 },
935 { STRING_COMMA_LEN ("pentium4"), PROCESSOR_PENTIUM4,
936 CPU_P4_FLAGS, 0 },
937 { STRING_COMMA_LEN ("prescott"), PROCESSOR_NOCONA,
938 CPU_CORE_FLAGS, 0 },
939 { STRING_COMMA_LEN ("nocona"), PROCESSOR_NOCONA,
940 CPU_NOCONA_FLAGS, 0 },
941 { STRING_COMMA_LEN ("yonah"), PROCESSOR_CORE,
942 CPU_CORE_FLAGS, 1 },
943 { STRING_COMMA_LEN ("core"), PROCESSOR_CORE,
944 CPU_CORE_FLAGS, 0 },
945 { STRING_COMMA_LEN ("merom"), PROCESSOR_CORE2,
946 CPU_CORE2_FLAGS, 1 },
947 { STRING_COMMA_LEN ("core2"), PROCESSOR_CORE2,
948 CPU_CORE2_FLAGS, 0 },
949 { STRING_COMMA_LEN ("corei7"), PROCESSOR_COREI7,
950 CPU_COREI7_FLAGS, 0 },
951 { STRING_COMMA_LEN ("l1om"), PROCESSOR_L1OM,
952 CPU_L1OM_FLAGS, 0 },
953 { STRING_COMMA_LEN ("k1om"), PROCESSOR_K1OM,
954 CPU_K1OM_FLAGS, 0 },
955 { STRING_COMMA_LEN ("iamcu"), PROCESSOR_IAMCU,
956 CPU_IAMCU_FLAGS, 0 },
957 { STRING_COMMA_LEN ("k6"), PROCESSOR_K6,
958 CPU_K6_FLAGS, 0 },
959 { STRING_COMMA_LEN ("k6_2"), PROCESSOR_K6,
960 CPU_K6_2_FLAGS, 0 },
961 { STRING_COMMA_LEN ("athlon"), PROCESSOR_ATHLON,
962 CPU_ATHLON_FLAGS, 0 },
963 { STRING_COMMA_LEN ("sledgehammer"), PROCESSOR_K8,
964 CPU_K8_FLAGS, 1 },
965 { STRING_COMMA_LEN ("opteron"), PROCESSOR_K8,
966 CPU_K8_FLAGS, 0 },
967 { STRING_COMMA_LEN ("k8"), PROCESSOR_K8,
968 CPU_K8_FLAGS, 0 },
969 { STRING_COMMA_LEN ("amdfam10"), PROCESSOR_AMDFAM10,
970 CPU_AMDFAM10_FLAGS, 0 },
971 { STRING_COMMA_LEN ("bdver1"), PROCESSOR_BD,
972 CPU_BDVER1_FLAGS, 0 },
973 { STRING_COMMA_LEN ("bdver2"), PROCESSOR_BD,
974 CPU_BDVER2_FLAGS, 0 },
975 { STRING_COMMA_LEN ("bdver3"), PROCESSOR_BD,
976 CPU_BDVER3_FLAGS, 0 },
977 { STRING_COMMA_LEN ("bdver4"), PROCESSOR_BD,
978 CPU_BDVER4_FLAGS, 0 },
979 { STRING_COMMA_LEN ("znver1"), PROCESSOR_ZNVER,
980 CPU_ZNVER1_FLAGS, 0 },
981 { STRING_COMMA_LEN ("znver2"), PROCESSOR_ZNVER,
982 CPU_ZNVER2_FLAGS, 0 },
983 { STRING_COMMA_LEN ("btver1"), PROCESSOR_BT,
984 CPU_BTVER1_FLAGS, 0 },
985 { STRING_COMMA_LEN ("btver2"), PROCESSOR_BT,
986 CPU_BTVER2_FLAGS, 0 },
987 { STRING_COMMA_LEN (".8087"), PROCESSOR_UNKNOWN,
988 CPU_8087_FLAGS, 0 },
989 { STRING_COMMA_LEN (".287"), PROCESSOR_UNKNOWN,
990 CPU_287_FLAGS, 0 },
991 { STRING_COMMA_LEN (".387"), PROCESSOR_UNKNOWN,
992 CPU_387_FLAGS, 0 },
993 { STRING_COMMA_LEN (".687"), PROCESSOR_UNKNOWN,
994 CPU_687_FLAGS, 0 },
995 { STRING_COMMA_LEN (".cmov"), PROCESSOR_UNKNOWN,
996 CPU_CMOV_FLAGS, 0 },
997 { STRING_COMMA_LEN (".fxsr"), PROCESSOR_UNKNOWN,
998 CPU_FXSR_FLAGS, 0 },
999 { STRING_COMMA_LEN (".mmx"), PROCESSOR_UNKNOWN,
1000 CPU_MMX_FLAGS, 0 },
1001 { STRING_COMMA_LEN (".sse"), PROCESSOR_UNKNOWN,
1002 CPU_SSE_FLAGS, 0 },
1003 { STRING_COMMA_LEN (".sse2"), PROCESSOR_UNKNOWN,
1004 CPU_SSE2_FLAGS, 0 },
1005 { STRING_COMMA_LEN (".sse3"), PROCESSOR_UNKNOWN,
1006 CPU_SSE3_FLAGS, 0 },
1007 { STRING_COMMA_LEN (".sse4a"), PROCESSOR_UNKNOWN,
1008 CPU_SSE4A_FLAGS, 0 },
1009 { STRING_COMMA_LEN (".ssse3"), PROCESSOR_UNKNOWN,
1010 CPU_SSSE3_FLAGS, 0 },
1011 { STRING_COMMA_LEN (".sse4.1"), PROCESSOR_UNKNOWN,
1012 CPU_SSE4_1_FLAGS, 0 },
1013 { STRING_COMMA_LEN (".sse4.2"), PROCESSOR_UNKNOWN,
1014 CPU_SSE4_2_FLAGS, 0 },
1015 { STRING_COMMA_LEN (".sse4"), PROCESSOR_UNKNOWN,
1016 CPU_SSE4_2_FLAGS, 0 },
1017 { STRING_COMMA_LEN (".avx"), PROCESSOR_UNKNOWN,
1018 CPU_AVX_FLAGS, 0 },
1019 { STRING_COMMA_LEN (".avx2"), PROCESSOR_UNKNOWN,
1020 CPU_AVX2_FLAGS, 0 },
1021 { STRING_COMMA_LEN (".avx512f"), PROCESSOR_UNKNOWN,
1022 CPU_AVX512F_FLAGS, 0 },
1023 { STRING_COMMA_LEN (".avx512cd"), PROCESSOR_UNKNOWN,
1024 CPU_AVX512CD_FLAGS, 0 },
1025 { STRING_COMMA_LEN (".avx512er"), PROCESSOR_UNKNOWN,
1026 CPU_AVX512ER_FLAGS, 0 },
1027 { STRING_COMMA_LEN (".avx512pf"), PROCESSOR_UNKNOWN,
1028 CPU_AVX512PF_FLAGS, 0 },
1029 { STRING_COMMA_LEN (".avx512dq"), PROCESSOR_UNKNOWN,
1030 CPU_AVX512DQ_FLAGS, 0 },
1031 { STRING_COMMA_LEN (".avx512bw"), PROCESSOR_UNKNOWN,
1032 CPU_AVX512BW_FLAGS, 0 },
1033 { STRING_COMMA_LEN (".avx512vl"), PROCESSOR_UNKNOWN,
1034 CPU_AVX512VL_FLAGS, 0 },
1035 { STRING_COMMA_LEN (".vmx"), PROCESSOR_UNKNOWN,
1036 CPU_VMX_FLAGS, 0 },
1037 { STRING_COMMA_LEN (".vmfunc"), PROCESSOR_UNKNOWN,
1038 CPU_VMFUNC_FLAGS, 0 },
1039 { STRING_COMMA_LEN (".smx"), PROCESSOR_UNKNOWN,
1040 CPU_SMX_FLAGS, 0 },
1041 { STRING_COMMA_LEN (".xsave"), PROCESSOR_UNKNOWN,
1042 CPU_XSAVE_FLAGS, 0 },
1043 { STRING_COMMA_LEN (".xsaveopt"), PROCESSOR_UNKNOWN,
1044 CPU_XSAVEOPT_FLAGS, 0 },
1045 { STRING_COMMA_LEN (".xsavec"), PROCESSOR_UNKNOWN,
1046 CPU_XSAVEC_FLAGS, 0 },
1047 { STRING_COMMA_LEN (".xsaves"), PROCESSOR_UNKNOWN,
1048 CPU_XSAVES_FLAGS, 0 },
1049 { STRING_COMMA_LEN (".aes"), PROCESSOR_UNKNOWN,
1050 CPU_AES_FLAGS, 0 },
1051 { STRING_COMMA_LEN (".pclmul"), PROCESSOR_UNKNOWN,
1052 CPU_PCLMUL_FLAGS, 0 },
1053 { STRING_COMMA_LEN (".clmul"), PROCESSOR_UNKNOWN,
1054 CPU_PCLMUL_FLAGS, 1 },
1055 { STRING_COMMA_LEN (".fsgsbase"), PROCESSOR_UNKNOWN,
1056 CPU_FSGSBASE_FLAGS, 0 },
1057 { STRING_COMMA_LEN (".rdrnd"), PROCESSOR_UNKNOWN,
1058 CPU_RDRND_FLAGS, 0 },
1059 { STRING_COMMA_LEN (".f16c"), PROCESSOR_UNKNOWN,
1060 CPU_F16C_FLAGS, 0 },
1061 { STRING_COMMA_LEN (".bmi2"), PROCESSOR_UNKNOWN,
1062 CPU_BMI2_FLAGS, 0 },
1063 { STRING_COMMA_LEN (".fma"), PROCESSOR_UNKNOWN,
1064 CPU_FMA_FLAGS, 0 },
1065 { STRING_COMMA_LEN (".fma4"), PROCESSOR_UNKNOWN,
1066 CPU_FMA4_FLAGS, 0 },
1067 { STRING_COMMA_LEN (".xop"), PROCESSOR_UNKNOWN,
1068 CPU_XOP_FLAGS, 0 },
1069 { STRING_COMMA_LEN (".lwp"), PROCESSOR_UNKNOWN,
1070 CPU_LWP_FLAGS, 0 },
1071 { STRING_COMMA_LEN (".movbe"), PROCESSOR_UNKNOWN,
1072 CPU_MOVBE_FLAGS, 0 },
1073 { STRING_COMMA_LEN (".cx16"), PROCESSOR_UNKNOWN,
1074 CPU_CX16_FLAGS, 0 },
1075 { STRING_COMMA_LEN (".ept"), PROCESSOR_UNKNOWN,
1076 CPU_EPT_FLAGS, 0 },
1077 { STRING_COMMA_LEN (".lzcnt"), PROCESSOR_UNKNOWN,
1078 CPU_LZCNT_FLAGS, 0 },
1079 { STRING_COMMA_LEN (".popcnt"), PROCESSOR_UNKNOWN,
1080 CPU_POPCNT_FLAGS, 0 },
1081 { STRING_COMMA_LEN (".hle"), PROCESSOR_UNKNOWN,
1082 CPU_HLE_FLAGS, 0 },
1083 { STRING_COMMA_LEN (".rtm"), PROCESSOR_UNKNOWN,
1084 CPU_RTM_FLAGS, 0 },
1085 { STRING_COMMA_LEN (".invpcid"), PROCESSOR_UNKNOWN,
1086 CPU_INVPCID_FLAGS, 0 },
1087 { STRING_COMMA_LEN (".clflush"), PROCESSOR_UNKNOWN,
1088 CPU_CLFLUSH_FLAGS, 0 },
1089 { STRING_COMMA_LEN (".nop"), PROCESSOR_UNKNOWN,
1090 CPU_NOP_FLAGS, 0 },
1091 { STRING_COMMA_LEN (".syscall"), PROCESSOR_UNKNOWN,
1092 CPU_SYSCALL_FLAGS, 0 },
1093 { STRING_COMMA_LEN (".rdtscp"), PROCESSOR_UNKNOWN,
1094 CPU_RDTSCP_FLAGS, 0 },
1095 { STRING_COMMA_LEN (".3dnow"), PROCESSOR_UNKNOWN,
1096 CPU_3DNOW_FLAGS, 0 },
1097 { STRING_COMMA_LEN (".3dnowa"), PROCESSOR_UNKNOWN,
1098 CPU_3DNOWA_FLAGS, 0 },
1099 { STRING_COMMA_LEN (".padlock"), PROCESSOR_UNKNOWN,
1100 CPU_PADLOCK_FLAGS, 0 },
1101 { STRING_COMMA_LEN (".pacifica"), PROCESSOR_UNKNOWN,
1102 CPU_SVME_FLAGS, 1 },
1103 { STRING_COMMA_LEN (".svme"), PROCESSOR_UNKNOWN,
1104 CPU_SVME_FLAGS, 0 },
1105 { STRING_COMMA_LEN (".sse4a"), PROCESSOR_UNKNOWN,
1106 CPU_SSE4A_FLAGS, 0 },
1107 { STRING_COMMA_LEN (".abm"), PROCESSOR_UNKNOWN,
1108 CPU_ABM_FLAGS, 0 },
1109 { STRING_COMMA_LEN (".bmi"), PROCESSOR_UNKNOWN,
1110 CPU_BMI_FLAGS, 0 },
1111 { STRING_COMMA_LEN (".tbm"), PROCESSOR_UNKNOWN,
1112 CPU_TBM_FLAGS, 0 },
1113 { STRING_COMMA_LEN (".adx"), PROCESSOR_UNKNOWN,
1114 CPU_ADX_FLAGS, 0 },
1115 { STRING_COMMA_LEN (".rdseed"), PROCESSOR_UNKNOWN,
1116 CPU_RDSEED_FLAGS, 0 },
1117 { STRING_COMMA_LEN (".prfchw"), PROCESSOR_UNKNOWN,
1118 CPU_PRFCHW_FLAGS, 0 },
1119 { STRING_COMMA_LEN (".smap"), PROCESSOR_UNKNOWN,
1120 CPU_SMAP_FLAGS, 0 },
1121 { STRING_COMMA_LEN (".mpx"), PROCESSOR_UNKNOWN,
1122 CPU_MPX_FLAGS, 0 },
1123 { STRING_COMMA_LEN (".sha"), PROCESSOR_UNKNOWN,
1124 CPU_SHA_FLAGS, 0 },
1125 { STRING_COMMA_LEN (".clflushopt"), PROCESSOR_UNKNOWN,
1126 CPU_CLFLUSHOPT_FLAGS, 0 },
1127 { STRING_COMMA_LEN (".prefetchwt1"), PROCESSOR_UNKNOWN,
1128 CPU_PREFETCHWT1_FLAGS, 0 },
1129 { STRING_COMMA_LEN (".se1"), PROCESSOR_UNKNOWN,
1130 CPU_SE1_FLAGS, 0 },
1131 { STRING_COMMA_LEN (".clwb"), PROCESSOR_UNKNOWN,
1132 CPU_CLWB_FLAGS, 0 },
1133 { STRING_COMMA_LEN (".avx512ifma"), PROCESSOR_UNKNOWN,
1134 CPU_AVX512IFMA_FLAGS, 0 },
1135 { STRING_COMMA_LEN (".avx512vbmi"), PROCESSOR_UNKNOWN,
1136 CPU_AVX512VBMI_FLAGS, 0 },
1137 { STRING_COMMA_LEN (".avx512_4fmaps"), PROCESSOR_UNKNOWN,
1138 CPU_AVX512_4FMAPS_FLAGS, 0 },
1139 { STRING_COMMA_LEN (".avx512_4vnniw"), PROCESSOR_UNKNOWN,
1140 CPU_AVX512_4VNNIW_FLAGS, 0 },
1141 { STRING_COMMA_LEN (".avx512_vpopcntdq"), PROCESSOR_UNKNOWN,
1142 CPU_AVX512_VPOPCNTDQ_FLAGS, 0 },
1143 { STRING_COMMA_LEN (".avx512_vbmi2"), PROCESSOR_UNKNOWN,
1144 CPU_AVX512_VBMI2_FLAGS, 0 },
1145 { STRING_COMMA_LEN (".avx512_vnni"), PROCESSOR_UNKNOWN,
1146 CPU_AVX512_VNNI_FLAGS, 0 },
1147 { STRING_COMMA_LEN (".avx512_bitalg"), PROCESSOR_UNKNOWN,
1148 CPU_AVX512_BITALG_FLAGS, 0 },
1149 { STRING_COMMA_LEN (".clzero"), PROCESSOR_UNKNOWN,
1150 CPU_CLZERO_FLAGS, 0 },
1151 { STRING_COMMA_LEN (".mwaitx"), PROCESSOR_UNKNOWN,
1152 CPU_MWAITX_FLAGS, 0 },
1153 { STRING_COMMA_LEN (".ospke"), PROCESSOR_UNKNOWN,
1154 CPU_OSPKE_FLAGS, 0 },
1155 { STRING_COMMA_LEN (".rdpid"), PROCESSOR_UNKNOWN,
1156 CPU_RDPID_FLAGS, 0 },
1157 { STRING_COMMA_LEN (".ptwrite"), PROCESSOR_UNKNOWN,
1158 CPU_PTWRITE_FLAGS, 0 },
1159 { STRING_COMMA_LEN (".ibt"), PROCESSOR_UNKNOWN,
1160 CPU_IBT_FLAGS, 0 },
1161 { STRING_COMMA_LEN (".shstk"), PROCESSOR_UNKNOWN,
1162 CPU_SHSTK_FLAGS, 0 },
1163 { STRING_COMMA_LEN (".gfni"), PROCESSOR_UNKNOWN,
1164 CPU_GFNI_FLAGS, 0 },
1165 { STRING_COMMA_LEN (".vaes"), PROCESSOR_UNKNOWN,
1166 CPU_VAES_FLAGS, 0 },
1167 { STRING_COMMA_LEN (".vpclmulqdq"), PROCESSOR_UNKNOWN,
1168 CPU_VPCLMULQDQ_FLAGS, 0 },
1169 { STRING_COMMA_LEN (".wbnoinvd"), PROCESSOR_UNKNOWN,
1170 CPU_WBNOINVD_FLAGS, 0 },
1171 { STRING_COMMA_LEN (".pconfig"), PROCESSOR_UNKNOWN,
1172 CPU_PCONFIG_FLAGS, 0 },
1173 { STRING_COMMA_LEN (".waitpkg"), PROCESSOR_UNKNOWN,
1174 CPU_WAITPKG_FLAGS, 0 },
1175 { STRING_COMMA_LEN (".cldemote"), PROCESSOR_UNKNOWN,
1176 CPU_CLDEMOTE_FLAGS, 0 },
1177 { STRING_COMMA_LEN (".movdiri"), PROCESSOR_UNKNOWN,
1178 CPU_MOVDIRI_FLAGS, 0 },
1179 { STRING_COMMA_LEN (".movdir64b"), PROCESSOR_UNKNOWN,
1180 CPU_MOVDIR64B_FLAGS, 0 },
1181 { STRING_COMMA_LEN (".avx512_bf16"), PROCESSOR_UNKNOWN,
1182 CPU_AVX512_BF16_FLAGS, 0 },
1183 { STRING_COMMA_LEN (".avx512_vp2intersect"), PROCESSOR_UNKNOWN,
1184 CPU_AVX512_VP2INTERSECT_FLAGS, 0 },
1185 { STRING_COMMA_LEN (".enqcmd"), PROCESSOR_UNKNOWN,
1186 CPU_ENQCMD_FLAGS, 0 },
1187 { STRING_COMMA_LEN (".rdpru"), PROCESSOR_UNKNOWN,
1188 CPU_RDPRU_FLAGS, 0 },
1189 { STRING_COMMA_LEN (".mcommit"), PROCESSOR_UNKNOWN,
1190 CPU_MCOMMIT_FLAGS, 0 },
1191 { STRING_COMMA_LEN (".sev_es"), PROCESSOR_UNKNOWN,
1192 CPU_SEV_ES_FLAGS, 0 },
1193 };
1194
1195 static const noarch_entry cpu_noarch[] =
1196 {
1197 { STRING_COMMA_LEN ("no87"), CPU_ANY_X87_FLAGS },
1198 { STRING_COMMA_LEN ("no287"), CPU_ANY_287_FLAGS },
1199 { STRING_COMMA_LEN ("no387"), CPU_ANY_387_FLAGS },
1200 { STRING_COMMA_LEN ("no687"), CPU_ANY_687_FLAGS },
1201 { STRING_COMMA_LEN ("nocmov"), CPU_ANY_CMOV_FLAGS },
1202 { STRING_COMMA_LEN ("nofxsr"), CPU_ANY_FXSR_FLAGS },
1203 { STRING_COMMA_LEN ("nommx"), CPU_ANY_MMX_FLAGS },
1204 { STRING_COMMA_LEN ("nosse"), CPU_ANY_SSE_FLAGS },
1205 { STRING_COMMA_LEN ("nosse2"), CPU_ANY_SSE2_FLAGS },
1206 { STRING_COMMA_LEN ("nosse3"), CPU_ANY_SSE3_FLAGS },
1207 { STRING_COMMA_LEN ("nosse4a"), CPU_ANY_SSE4A_FLAGS },
1208 { STRING_COMMA_LEN ("nossse3"), CPU_ANY_SSSE3_FLAGS },
1209 { STRING_COMMA_LEN ("nosse4.1"), CPU_ANY_SSE4_1_FLAGS },
1210 { STRING_COMMA_LEN ("nosse4.2"), CPU_ANY_SSE4_2_FLAGS },
1211 { STRING_COMMA_LEN ("nosse4"), CPU_ANY_SSE4_1_FLAGS },
1212 { STRING_COMMA_LEN ("noavx"), CPU_ANY_AVX_FLAGS },
1213 { STRING_COMMA_LEN ("noavx2"), CPU_ANY_AVX2_FLAGS },
1214 { STRING_COMMA_LEN ("noavx512f"), CPU_ANY_AVX512F_FLAGS },
1215 { STRING_COMMA_LEN ("noavx512cd"), CPU_ANY_AVX512CD_FLAGS },
1216 { STRING_COMMA_LEN ("noavx512er"), CPU_ANY_AVX512ER_FLAGS },
1217 { STRING_COMMA_LEN ("noavx512pf"), CPU_ANY_AVX512PF_FLAGS },
1218 { STRING_COMMA_LEN ("noavx512dq"), CPU_ANY_AVX512DQ_FLAGS },
1219 { STRING_COMMA_LEN ("noavx512bw"), CPU_ANY_AVX512BW_FLAGS },
1220 { STRING_COMMA_LEN ("noavx512vl"), CPU_ANY_AVX512VL_FLAGS },
1221 { STRING_COMMA_LEN ("noavx512ifma"), CPU_ANY_AVX512IFMA_FLAGS },
1222 { STRING_COMMA_LEN ("noavx512vbmi"), CPU_ANY_AVX512VBMI_FLAGS },
1223 { STRING_COMMA_LEN ("noavx512_4fmaps"), CPU_ANY_AVX512_4FMAPS_FLAGS },
1224 { STRING_COMMA_LEN ("noavx512_4vnniw"), CPU_ANY_AVX512_4VNNIW_FLAGS },
1225 { STRING_COMMA_LEN ("noavx512_vpopcntdq"), CPU_ANY_AVX512_VPOPCNTDQ_FLAGS },
1226 { STRING_COMMA_LEN ("noavx512_vbmi2"), CPU_ANY_AVX512_VBMI2_FLAGS },
1227 { STRING_COMMA_LEN ("noavx512_vnni"), CPU_ANY_AVX512_VNNI_FLAGS },
1228 { STRING_COMMA_LEN ("noavx512_bitalg"), CPU_ANY_AVX512_BITALG_FLAGS },
1229 { STRING_COMMA_LEN ("noibt"), CPU_ANY_IBT_FLAGS },
1230 { STRING_COMMA_LEN ("noshstk"), CPU_ANY_SHSTK_FLAGS },
1231 { STRING_COMMA_LEN ("nomovdiri"), CPU_ANY_MOVDIRI_FLAGS },
1232 { STRING_COMMA_LEN ("nomovdir64b"), CPU_ANY_MOVDIR64B_FLAGS },
1233 { STRING_COMMA_LEN ("noavx512_bf16"), CPU_ANY_AVX512_BF16_FLAGS },
1234 { STRING_COMMA_LEN ("noavx512_vp2intersect"), CPU_ANY_SHSTK_FLAGS },
1235 { STRING_COMMA_LEN ("noenqcmd"), CPU_ANY_ENQCMD_FLAGS },
1236 };
1237
1238 #ifdef I386COFF
1239 /* Like s_lcomm_internal in gas/read.c but the alignment string
1240 is allowed to be optional. */
1241
1242 static symbolS *
1243 pe_lcomm_internal (int needs_align, symbolS *symbolP, addressT size)
1244 {
1245 addressT align = 0;
1246
1247 SKIP_WHITESPACE ();
1248
1249 if (needs_align
1250 && *input_line_pointer == ',')
1251 {
1252 align = parse_align (needs_align - 1);
1253
1254 if (align == (addressT) -1)
1255 return NULL;
1256 }
1257 else
1258 {
1259 if (size >= 8)
1260 align = 3;
1261 else if (size >= 4)
1262 align = 2;
1263 else if (size >= 2)
1264 align = 1;
1265 else
1266 align = 0;
1267 }
1268
1269 bss_alloc (symbolP, size, align);
1270 return symbolP;
1271 }
1272
1273 static void
1274 pe_lcomm (int needs_align)
1275 {
1276 s_comm_internal (needs_align * 2, pe_lcomm_internal);
1277 }
1278 #endif
1279
1280 const pseudo_typeS md_pseudo_table[] =
1281 {
1282 #if !defined(OBJ_AOUT) && !defined(USE_ALIGN_PTWO)
1283 {"align", s_align_bytes, 0},
1284 #else
1285 {"align", s_align_ptwo, 0},
1286 #endif
1287 {"arch", set_cpu_arch, 0},
1288 #ifndef I386COFF
1289 {"bss", s_bss, 0},
1290 #else
1291 {"lcomm", pe_lcomm, 1},
1292 #endif
1293 {"ffloat", float_cons, 'f'},
1294 {"dfloat", float_cons, 'd'},
1295 {"tfloat", float_cons, 'x'},
1296 {"value", cons, 2},
1297 {"slong", signed_cons, 4},
1298 {"noopt", s_ignore, 0},
1299 {"optim", s_ignore, 0},
1300 {"code16gcc", set_16bit_gcc_code_flag, CODE_16BIT},
1301 {"code16", set_code_flag, CODE_16BIT},
1302 {"code32", set_code_flag, CODE_32BIT},
1303 #ifdef BFD64
1304 {"code64", set_code_flag, CODE_64BIT},
1305 #endif
1306 {"intel_syntax", set_intel_syntax, 1},
1307 {"att_syntax", set_intel_syntax, 0},
1308 {"intel_mnemonic", set_intel_mnemonic, 1},
1309 {"att_mnemonic", set_intel_mnemonic, 0},
1310 {"allow_index_reg", set_allow_index_reg, 1},
1311 {"disallow_index_reg", set_allow_index_reg, 0},
1312 {"sse_check", set_check, 0},
1313 {"operand_check", set_check, 1},
1314 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
1315 {"largecomm", handle_large_common, 0},
1316 #else
1317 {"file", dwarf2_directive_file, 0},
1318 {"loc", dwarf2_directive_loc, 0},
1319 {"loc_mark_labels", dwarf2_directive_loc_mark_labels, 0},
1320 #endif
1321 #ifdef TE_PE
1322 {"secrel32", pe_directive_secrel, 0},
1323 #endif
1324 {0, 0, 0}
1325 };
1326
1327 /* For interface with expression (). */
1328 extern char *input_line_pointer;
1329
1330 /* Hash table for instruction mnemonic lookup. */
1331 static struct hash_control *op_hash;
1332
1333 /* Hash table for register lookup. */
1334 static struct hash_control *reg_hash;
1335 \f
1336 /* Various efficient no-op patterns for aligning code labels.
1337 Note: Don't try to assemble the instructions in the comments.
1338 0L and 0w are not legal. */
1339 static const unsigned char f32_1[] =
1340 {0x90}; /* nop */
1341 static const unsigned char f32_2[] =
1342 {0x66,0x90}; /* xchg %ax,%ax */
1343 static const unsigned char f32_3[] =
1344 {0x8d,0x76,0x00}; /* leal 0(%esi),%esi */
1345 static const unsigned char f32_4[] =
1346 {0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
1347 static const unsigned char f32_6[] =
1348 {0x8d,0xb6,0x00,0x00,0x00,0x00}; /* leal 0L(%esi),%esi */
1349 static const unsigned char f32_7[] =
1350 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
1351 static const unsigned char f16_3[] =
1352 {0x8d,0x74,0x00}; /* lea 0(%si),%si */
1353 static const unsigned char f16_4[] =
1354 {0x8d,0xb4,0x00,0x00}; /* lea 0W(%si),%si */
1355 static const unsigned char jump_disp8[] =
1356 {0xeb}; /* jmp disp8 */
1357 static const unsigned char jump32_disp32[] =
1358 {0xe9}; /* jmp disp32 */
1359 static const unsigned char jump16_disp32[] =
1360 {0x66,0xe9}; /* jmp disp32 */
1361 /* 32-bit NOPs patterns. */
1362 static const unsigned char *const f32_patt[] = {
1363 f32_1, f32_2, f32_3, f32_4, NULL, f32_6, f32_7
1364 };
1365 /* 16-bit NOPs patterns. */
1366 static const unsigned char *const f16_patt[] = {
1367 f32_1, f32_2, f16_3, f16_4
1368 };
1369 /* nopl (%[re]ax) */
1370 static const unsigned char alt_3[] =
1371 {0x0f,0x1f,0x00};
1372 /* nopl 0(%[re]ax) */
1373 static const unsigned char alt_4[] =
1374 {0x0f,0x1f,0x40,0x00};
1375 /* nopl 0(%[re]ax,%[re]ax,1) */
1376 static const unsigned char alt_5[] =
1377 {0x0f,0x1f,0x44,0x00,0x00};
1378 /* nopw 0(%[re]ax,%[re]ax,1) */
1379 static const unsigned char alt_6[] =
1380 {0x66,0x0f,0x1f,0x44,0x00,0x00};
1381 /* nopl 0L(%[re]ax) */
1382 static const unsigned char alt_7[] =
1383 {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
1384 /* nopl 0L(%[re]ax,%[re]ax,1) */
1385 static const unsigned char alt_8[] =
1386 {0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1387 /* nopw 0L(%[re]ax,%[re]ax,1) */
1388 static const unsigned char alt_9[] =
1389 {0x66,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1390 /* nopw %cs:0L(%[re]ax,%[re]ax,1) */
1391 static const unsigned char alt_10[] =
1392 {0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1393 /* data16 nopw %cs:0L(%eax,%eax,1) */
1394 static const unsigned char alt_11[] =
1395 {0x66,0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1396 /* 32-bit and 64-bit NOPs patterns. */
1397 static const unsigned char *const alt_patt[] = {
1398 f32_1, f32_2, alt_3, alt_4, alt_5, alt_6, alt_7, alt_8,
1399 alt_9, alt_10, alt_11
1400 };
1401
1402 /* Genenerate COUNT bytes of NOPs to WHERE from PATT with the maximum
1403 size of a single NOP instruction MAX_SINGLE_NOP_SIZE. */
1404
1405 static void
1406 i386_output_nops (char *where, const unsigned char *const *patt,
1407 int count, int max_single_nop_size)
1408
1409 {
1410 /* Place the longer NOP first. */
1411 int last;
1412 int offset;
1413 const unsigned char *nops;
1414
1415 if (max_single_nop_size < 1)
1416 {
1417 as_fatal (_("i386_output_nops called to generate nops of at most %d bytes!"),
1418 max_single_nop_size);
1419 return;
1420 }
1421
1422 nops = patt[max_single_nop_size - 1];
1423
1424 /* Use the smaller one if the requsted one isn't available. */
1425 if (nops == NULL)
1426 {
1427 max_single_nop_size--;
1428 nops = patt[max_single_nop_size - 1];
1429 }
1430
1431 last = count % max_single_nop_size;
1432
1433 count -= last;
1434 for (offset = 0; offset < count; offset += max_single_nop_size)
1435 memcpy (where + offset, nops, max_single_nop_size);
1436
1437 if (last)
1438 {
1439 nops = patt[last - 1];
1440 if (nops == NULL)
1441 {
1442 /* Use the smaller one plus one-byte NOP if the needed one
1443 isn't available. */
1444 last--;
1445 nops = patt[last - 1];
1446 memcpy (where + offset, nops, last);
1447 where[offset + last] = *patt[0];
1448 }
1449 else
1450 memcpy (where + offset, nops, last);
1451 }
1452 }
1453
1454 static INLINE int
1455 fits_in_imm7 (offsetT num)
1456 {
1457 return (num & 0x7f) == num;
1458 }
1459
1460 static INLINE int
1461 fits_in_imm31 (offsetT num)
1462 {
1463 return (num & 0x7fffffff) == num;
1464 }
1465
1466 /* Genenerate COUNT bytes of NOPs to WHERE with the maximum size of a
1467 single NOP instruction LIMIT. */
1468
1469 void
1470 i386_generate_nops (fragS *fragP, char *where, offsetT count, int limit)
1471 {
1472 const unsigned char *const *patt = NULL;
1473 int max_single_nop_size;
1474 /* Maximum number of NOPs before switching to jump over NOPs. */
1475 int max_number_of_nops;
1476
1477 switch (fragP->fr_type)
1478 {
1479 case rs_fill_nop:
1480 case rs_align_code:
1481 break;
1482 case rs_machine_dependent:
1483 /* Allow NOP padding for jumps and calls. */
1484 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PADDING
1485 || TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == FUSED_JCC_PADDING)
1486 break;
1487 /* Fall through. */
1488 default:
1489 return;
1490 }
1491
1492 /* We need to decide which NOP sequence to use for 32bit and
1493 64bit. When -mtune= is used:
1494
1495 1. For PROCESSOR_I386, PROCESSOR_I486, PROCESSOR_PENTIUM and
1496 PROCESSOR_GENERIC32, f32_patt will be used.
1497 2. For the rest, alt_patt will be used.
1498
1499 When -mtune= isn't used, alt_patt will be used if
1500 cpu_arch_isa_flags has CpuNop. Otherwise, f32_patt will
1501 be used.
1502
1503 When -march= or .arch is used, we can't use anything beyond
1504 cpu_arch_isa_flags. */
1505
1506 if (flag_code == CODE_16BIT)
1507 {
1508 patt = f16_patt;
1509 max_single_nop_size = sizeof (f16_patt) / sizeof (f16_patt[0]);
1510 /* Limit number of NOPs to 2 in 16-bit mode. */
1511 max_number_of_nops = 2;
1512 }
1513 else
1514 {
1515 if (fragP->tc_frag_data.isa == PROCESSOR_UNKNOWN)
1516 {
1517 /* PROCESSOR_UNKNOWN means that all ISAs may be used. */
1518 switch (cpu_arch_tune)
1519 {
1520 case PROCESSOR_UNKNOWN:
1521 /* We use cpu_arch_isa_flags to check if we SHOULD
1522 optimize with nops. */
1523 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1524 patt = alt_patt;
1525 else
1526 patt = f32_patt;
1527 break;
1528 case PROCESSOR_PENTIUM4:
1529 case PROCESSOR_NOCONA:
1530 case PROCESSOR_CORE:
1531 case PROCESSOR_CORE2:
1532 case PROCESSOR_COREI7:
1533 case PROCESSOR_L1OM:
1534 case PROCESSOR_K1OM:
1535 case PROCESSOR_GENERIC64:
1536 case PROCESSOR_K6:
1537 case PROCESSOR_ATHLON:
1538 case PROCESSOR_K8:
1539 case PROCESSOR_AMDFAM10:
1540 case PROCESSOR_BD:
1541 case PROCESSOR_ZNVER:
1542 case PROCESSOR_BT:
1543 patt = alt_patt;
1544 break;
1545 case PROCESSOR_I386:
1546 case PROCESSOR_I486:
1547 case PROCESSOR_PENTIUM:
1548 case PROCESSOR_PENTIUMPRO:
1549 case PROCESSOR_IAMCU:
1550 case PROCESSOR_GENERIC32:
1551 patt = f32_patt;
1552 break;
1553 }
1554 }
1555 else
1556 {
1557 switch (fragP->tc_frag_data.tune)
1558 {
1559 case PROCESSOR_UNKNOWN:
1560 /* When cpu_arch_isa is set, cpu_arch_tune shouldn't be
1561 PROCESSOR_UNKNOWN. */
1562 abort ();
1563 break;
1564
1565 case PROCESSOR_I386:
1566 case PROCESSOR_I486:
1567 case PROCESSOR_PENTIUM:
1568 case PROCESSOR_IAMCU:
1569 case PROCESSOR_K6:
1570 case PROCESSOR_ATHLON:
1571 case PROCESSOR_K8:
1572 case PROCESSOR_AMDFAM10:
1573 case PROCESSOR_BD:
1574 case PROCESSOR_ZNVER:
1575 case PROCESSOR_BT:
1576 case PROCESSOR_GENERIC32:
1577 /* We use cpu_arch_isa_flags to check if we CAN optimize
1578 with nops. */
1579 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1580 patt = alt_patt;
1581 else
1582 patt = f32_patt;
1583 break;
1584 case PROCESSOR_PENTIUMPRO:
1585 case PROCESSOR_PENTIUM4:
1586 case PROCESSOR_NOCONA:
1587 case PROCESSOR_CORE:
1588 case PROCESSOR_CORE2:
1589 case PROCESSOR_COREI7:
1590 case PROCESSOR_L1OM:
1591 case PROCESSOR_K1OM:
1592 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1593 patt = alt_patt;
1594 else
1595 patt = f32_patt;
1596 break;
1597 case PROCESSOR_GENERIC64:
1598 patt = alt_patt;
1599 break;
1600 }
1601 }
1602
1603 if (patt == f32_patt)
1604 {
1605 max_single_nop_size = sizeof (f32_patt) / sizeof (f32_patt[0]);
1606 /* Limit number of NOPs to 2 for older processors. */
1607 max_number_of_nops = 2;
1608 }
1609 else
1610 {
1611 max_single_nop_size = sizeof (alt_patt) / sizeof (alt_patt[0]);
1612 /* Limit number of NOPs to 7 for newer processors. */
1613 max_number_of_nops = 7;
1614 }
1615 }
1616
1617 if (limit == 0)
1618 limit = max_single_nop_size;
1619
1620 if (fragP->fr_type == rs_fill_nop)
1621 {
1622 /* Output NOPs for .nop directive. */
1623 if (limit > max_single_nop_size)
1624 {
1625 as_bad_where (fragP->fr_file, fragP->fr_line,
1626 _("invalid single nop size: %d "
1627 "(expect within [0, %d])"),
1628 limit, max_single_nop_size);
1629 return;
1630 }
1631 }
1632 else if (fragP->fr_type != rs_machine_dependent)
1633 fragP->fr_var = count;
1634
1635 if ((count / max_single_nop_size) > max_number_of_nops)
1636 {
1637 /* Generate jump over NOPs. */
1638 offsetT disp = count - 2;
1639 if (fits_in_imm7 (disp))
1640 {
1641 /* Use "jmp disp8" if possible. */
1642 count = disp;
1643 where[0] = jump_disp8[0];
1644 where[1] = count;
1645 where += 2;
1646 }
1647 else
1648 {
1649 unsigned int size_of_jump;
1650
1651 if (flag_code == CODE_16BIT)
1652 {
1653 where[0] = jump16_disp32[0];
1654 where[1] = jump16_disp32[1];
1655 size_of_jump = 2;
1656 }
1657 else
1658 {
1659 where[0] = jump32_disp32[0];
1660 size_of_jump = 1;
1661 }
1662
1663 count -= size_of_jump + 4;
1664 if (!fits_in_imm31 (count))
1665 {
1666 as_bad_where (fragP->fr_file, fragP->fr_line,
1667 _("jump over nop padding out of range"));
1668 return;
1669 }
1670
1671 md_number_to_chars (where + size_of_jump, count, 4);
1672 where += size_of_jump + 4;
1673 }
1674 }
1675
1676 /* Generate multiple NOPs. */
1677 i386_output_nops (where, patt, count, limit);
1678 }
1679
1680 static INLINE int
1681 operand_type_all_zero (const union i386_operand_type *x)
1682 {
1683 switch (ARRAY_SIZE(x->array))
1684 {
1685 case 3:
1686 if (x->array[2])
1687 return 0;
1688 /* Fall through. */
1689 case 2:
1690 if (x->array[1])
1691 return 0;
1692 /* Fall through. */
1693 case 1:
1694 return !x->array[0];
1695 default:
1696 abort ();
1697 }
1698 }
1699
1700 static INLINE void
1701 operand_type_set (union i386_operand_type *x, unsigned int v)
1702 {
1703 switch (ARRAY_SIZE(x->array))
1704 {
1705 case 3:
1706 x->array[2] = v;
1707 /* Fall through. */
1708 case 2:
1709 x->array[1] = v;
1710 /* Fall through. */
1711 case 1:
1712 x->array[0] = v;
1713 /* Fall through. */
1714 break;
1715 default:
1716 abort ();
1717 }
1718
1719 x->bitfield.class = ClassNone;
1720 x->bitfield.instance = InstanceNone;
1721 }
1722
1723 static INLINE int
1724 operand_type_equal (const union i386_operand_type *x,
1725 const union i386_operand_type *y)
1726 {
1727 switch (ARRAY_SIZE(x->array))
1728 {
1729 case 3:
1730 if (x->array[2] != y->array[2])
1731 return 0;
1732 /* Fall through. */
1733 case 2:
1734 if (x->array[1] != y->array[1])
1735 return 0;
1736 /* Fall through. */
1737 case 1:
1738 return x->array[0] == y->array[0];
1739 break;
1740 default:
1741 abort ();
1742 }
1743 }
1744
1745 static INLINE int
1746 cpu_flags_all_zero (const union i386_cpu_flags *x)
1747 {
1748 switch (ARRAY_SIZE(x->array))
1749 {
1750 case 4:
1751 if (x->array[3])
1752 return 0;
1753 /* Fall through. */
1754 case 3:
1755 if (x->array[2])
1756 return 0;
1757 /* Fall through. */
1758 case 2:
1759 if (x->array[1])
1760 return 0;
1761 /* Fall through. */
1762 case 1:
1763 return !x->array[0];
1764 default:
1765 abort ();
1766 }
1767 }
1768
1769 static INLINE int
1770 cpu_flags_equal (const union i386_cpu_flags *x,
1771 const union i386_cpu_flags *y)
1772 {
1773 switch (ARRAY_SIZE(x->array))
1774 {
1775 case 4:
1776 if (x->array[3] != y->array[3])
1777 return 0;
1778 /* Fall through. */
1779 case 3:
1780 if (x->array[2] != y->array[2])
1781 return 0;
1782 /* Fall through. */
1783 case 2:
1784 if (x->array[1] != y->array[1])
1785 return 0;
1786 /* Fall through. */
1787 case 1:
1788 return x->array[0] == y->array[0];
1789 break;
1790 default:
1791 abort ();
1792 }
1793 }
1794
1795 static INLINE int
1796 cpu_flags_check_cpu64 (i386_cpu_flags f)
1797 {
1798 return !((flag_code == CODE_64BIT && f.bitfield.cpuno64)
1799 || (flag_code != CODE_64BIT && f.bitfield.cpu64));
1800 }
1801
1802 static INLINE i386_cpu_flags
1803 cpu_flags_and (i386_cpu_flags x, i386_cpu_flags y)
1804 {
1805 switch (ARRAY_SIZE (x.array))
1806 {
1807 case 4:
1808 x.array [3] &= y.array [3];
1809 /* Fall through. */
1810 case 3:
1811 x.array [2] &= y.array [2];
1812 /* Fall through. */
1813 case 2:
1814 x.array [1] &= y.array [1];
1815 /* Fall through. */
1816 case 1:
1817 x.array [0] &= y.array [0];
1818 break;
1819 default:
1820 abort ();
1821 }
1822 return x;
1823 }
1824
1825 static INLINE i386_cpu_flags
1826 cpu_flags_or (i386_cpu_flags x, i386_cpu_flags y)
1827 {
1828 switch (ARRAY_SIZE (x.array))
1829 {
1830 case 4:
1831 x.array [3] |= y.array [3];
1832 /* Fall through. */
1833 case 3:
1834 x.array [2] |= y.array [2];
1835 /* Fall through. */
1836 case 2:
1837 x.array [1] |= y.array [1];
1838 /* Fall through. */
1839 case 1:
1840 x.array [0] |= y.array [0];
1841 break;
1842 default:
1843 abort ();
1844 }
1845 return x;
1846 }
1847
1848 static INLINE i386_cpu_flags
1849 cpu_flags_and_not (i386_cpu_flags x, i386_cpu_flags y)
1850 {
1851 switch (ARRAY_SIZE (x.array))
1852 {
1853 case 4:
1854 x.array [3] &= ~y.array [3];
1855 /* Fall through. */
1856 case 3:
1857 x.array [2] &= ~y.array [2];
1858 /* Fall through. */
1859 case 2:
1860 x.array [1] &= ~y.array [1];
1861 /* Fall through. */
1862 case 1:
1863 x.array [0] &= ~y.array [0];
1864 break;
1865 default:
1866 abort ();
1867 }
1868 return x;
1869 }
1870
1871 static const i386_cpu_flags avx512 = CPU_ANY_AVX512F_FLAGS;
1872
1873 #define CPU_FLAGS_ARCH_MATCH 0x1
1874 #define CPU_FLAGS_64BIT_MATCH 0x2
1875
1876 #define CPU_FLAGS_PERFECT_MATCH \
1877 (CPU_FLAGS_ARCH_MATCH | CPU_FLAGS_64BIT_MATCH)
1878
1879 /* Return CPU flags match bits. */
1880
1881 static int
1882 cpu_flags_match (const insn_template *t)
1883 {
1884 i386_cpu_flags x = t->cpu_flags;
1885 int match = cpu_flags_check_cpu64 (x) ? CPU_FLAGS_64BIT_MATCH : 0;
1886
1887 x.bitfield.cpu64 = 0;
1888 x.bitfield.cpuno64 = 0;
1889
1890 if (cpu_flags_all_zero (&x))
1891 {
1892 /* This instruction is available on all archs. */
1893 match |= CPU_FLAGS_ARCH_MATCH;
1894 }
1895 else
1896 {
1897 /* This instruction is available only on some archs. */
1898 i386_cpu_flags cpu = cpu_arch_flags;
1899
1900 /* AVX512VL is no standalone feature - match it and then strip it. */
1901 if (x.bitfield.cpuavx512vl && !cpu.bitfield.cpuavx512vl)
1902 return match;
1903 x.bitfield.cpuavx512vl = 0;
1904
1905 cpu = cpu_flags_and (x, cpu);
1906 if (!cpu_flags_all_zero (&cpu))
1907 {
1908 if (x.bitfield.cpuavx)
1909 {
1910 /* We need to check a few extra flags with AVX. */
1911 if (cpu.bitfield.cpuavx
1912 && (!t->opcode_modifier.sse2avx || sse2avx)
1913 && (!x.bitfield.cpuaes || cpu.bitfield.cpuaes)
1914 && (!x.bitfield.cpugfni || cpu.bitfield.cpugfni)
1915 && (!x.bitfield.cpupclmul || cpu.bitfield.cpupclmul))
1916 match |= CPU_FLAGS_ARCH_MATCH;
1917 }
1918 else if (x.bitfield.cpuavx512f)
1919 {
1920 /* We need to check a few extra flags with AVX512F. */
1921 if (cpu.bitfield.cpuavx512f
1922 && (!x.bitfield.cpugfni || cpu.bitfield.cpugfni)
1923 && (!x.bitfield.cpuvaes || cpu.bitfield.cpuvaes)
1924 && (!x.bitfield.cpuvpclmulqdq || cpu.bitfield.cpuvpclmulqdq))
1925 match |= CPU_FLAGS_ARCH_MATCH;
1926 }
1927 else
1928 match |= CPU_FLAGS_ARCH_MATCH;
1929 }
1930 }
1931 return match;
1932 }
1933
1934 static INLINE i386_operand_type
1935 operand_type_and (i386_operand_type x, i386_operand_type y)
1936 {
1937 if (x.bitfield.class != y.bitfield.class)
1938 x.bitfield.class = ClassNone;
1939 if (x.bitfield.instance != y.bitfield.instance)
1940 x.bitfield.instance = InstanceNone;
1941
1942 switch (ARRAY_SIZE (x.array))
1943 {
1944 case 3:
1945 x.array [2] &= y.array [2];
1946 /* Fall through. */
1947 case 2:
1948 x.array [1] &= y.array [1];
1949 /* Fall through. */
1950 case 1:
1951 x.array [0] &= y.array [0];
1952 break;
1953 default:
1954 abort ();
1955 }
1956 return x;
1957 }
1958
1959 static INLINE i386_operand_type
1960 operand_type_and_not (i386_operand_type x, i386_operand_type y)
1961 {
1962 gas_assert (y.bitfield.class == ClassNone);
1963 gas_assert (y.bitfield.instance == InstanceNone);
1964
1965 switch (ARRAY_SIZE (x.array))
1966 {
1967 case 3:
1968 x.array [2] &= ~y.array [2];
1969 /* Fall through. */
1970 case 2:
1971 x.array [1] &= ~y.array [1];
1972 /* Fall through. */
1973 case 1:
1974 x.array [0] &= ~y.array [0];
1975 break;
1976 default:
1977 abort ();
1978 }
1979 return x;
1980 }
1981
1982 static INLINE i386_operand_type
1983 operand_type_or (i386_operand_type x, i386_operand_type y)
1984 {
1985 gas_assert (x.bitfield.class == ClassNone ||
1986 y.bitfield.class == ClassNone ||
1987 x.bitfield.class == y.bitfield.class);
1988 gas_assert (x.bitfield.instance == InstanceNone ||
1989 y.bitfield.instance == InstanceNone ||
1990 x.bitfield.instance == y.bitfield.instance);
1991
1992 switch (ARRAY_SIZE (x.array))
1993 {
1994 case 3:
1995 x.array [2] |= y.array [2];
1996 /* Fall through. */
1997 case 2:
1998 x.array [1] |= y.array [1];
1999 /* Fall through. */
2000 case 1:
2001 x.array [0] |= y.array [0];
2002 break;
2003 default:
2004 abort ();
2005 }
2006 return x;
2007 }
2008
2009 static INLINE i386_operand_type
2010 operand_type_xor (i386_operand_type x, i386_operand_type y)
2011 {
2012 gas_assert (y.bitfield.class == ClassNone);
2013 gas_assert (y.bitfield.instance == InstanceNone);
2014
2015 switch (ARRAY_SIZE (x.array))
2016 {
2017 case 3:
2018 x.array [2] ^= y.array [2];
2019 /* Fall through. */
2020 case 2:
2021 x.array [1] ^= y.array [1];
2022 /* Fall through. */
2023 case 1:
2024 x.array [0] ^= y.array [0];
2025 break;
2026 default:
2027 abort ();
2028 }
2029 return x;
2030 }
2031
2032 static const i386_operand_type disp16 = OPERAND_TYPE_DISP16;
2033 static const i386_operand_type disp32 = OPERAND_TYPE_DISP32;
2034 static const i386_operand_type disp32s = OPERAND_TYPE_DISP32S;
2035 static const i386_operand_type disp16_32 = OPERAND_TYPE_DISP16_32;
2036 static const i386_operand_type anydisp = OPERAND_TYPE_ANYDISP;
2037 static const i386_operand_type anyimm = OPERAND_TYPE_ANYIMM;
2038 static const i386_operand_type regxmm = OPERAND_TYPE_REGXMM;
2039 static const i386_operand_type regmask = OPERAND_TYPE_REGMASK;
2040 static const i386_operand_type imm8 = OPERAND_TYPE_IMM8;
2041 static const i386_operand_type imm8s = OPERAND_TYPE_IMM8S;
2042 static const i386_operand_type imm16 = OPERAND_TYPE_IMM16;
2043 static const i386_operand_type imm32 = OPERAND_TYPE_IMM32;
2044 static const i386_operand_type imm32s = OPERAND_TYPE_IMM32S;
2045 static const i386_operand_type imm64 = OPERAND_TYPE_IMM64;
2046 static const i386_operand_type imm16_32 = OPERAND_TYPE_IMM16_32;
2047 static const i386_operand_type imm16_32s = OPERAND_TYPE_IMM16_32S;
2048 static const i386_operand_type imm16_32_32s = OPERAND_TYPE_IMM16_32_32S;
2049
2050 enum operand_type
2051 {
2052 reg,
2053 imm,
2054 disp,
2055 anymem
2056 };
2057
2058 static INLINE int
2059 operand_type_check (i386_operand_type t, enum operand_type c)
2060 {
2061 switch (c)
2062 {
2063 case reg:
2064 return t.bitfield.class == Reg;
2065
2066 case imm:
2067 return (t.bitfield.imm8
2068 || t.bitfield.imm8s
2069 || t.bitfield.imm16
2070 || t.bitfield.imm32
2071 || t.bitfield.imm32s
2072 || t.bitfield.imm64);
2073
2074 case disp:
2075 return (t.bitfield.disp8
2076 || t.bitfield.disp16
2077 || t.bitfield.disp32
2078 || t.bitfield.disp32s
2079 || t.bitfield.disp64);
2080
2081 case anymem:
2082 return (t.bitfield.disp8
2083 || t.bitfield.disp16
2084 || t.bitfield.disp32
2085 || t.bitfield.disp32s
2086 || t.bitfield.disp64
2087 || t.bitfield.baseindex);
2088
2089 default:
2090 abort ();
2091 }
2092
2093 return 0;
2094 }
2095
2096 /* Return 1 if there is no conflict in 8bit/16bit/32bit/64bit/80bit size
2097 between operand GIVEN and opeand WANTED for instruction template T. */
2098
2099 static INLINE int
2100 match_operand_size (const insn_template *t, unsigned int wanted,
2101 unsigned int given)
2102 {
2103 return !((i.types[given].bitfield.byte
2104 && !t->operand_types[wanted].bitfield.byte)
2105 || (i.types[given].bitfield.word
2106 && !t->operand_types[wanted].bitfield.word)
2107 || (i.types[given].bitfield.dword
2108 && !t->operand_types[wanted].bitfield.dword)
2109 || (i.types[given].bitfield.qword
2110 && !t->operand_types[wanted].bitfield.qword)
2111 || (i.types[given].bitfield.tbyte
2112 && !t->operand_types[wanted].bitfield.tbyte));
2113 }
2114
2115 /* Return 1 if there is no conflict in SIMD register between operand
2116 GIVEN and opeand WANTED for instruction template T. */
2117
2118 static INLINE int
2119 match_simd_size (const insn_template *t, unsigned int wanted,
2120 unsigned int given)
2121 {
2122 return !((i.types[given].bitfield.xmmword
2123 && !t->operand_types[wanted].bitfield.xmmword)
2124 || (i.types[given].bitfield.ymmword
2125 && !t->operand_types[wanted].bitfield.ymmword)
2126 || (i.types[given].bitfield.zmmword
2127 && !t->operand_types[wanted].bitfield.zmmword));
2128 }
2129
2130 /* Return 1 if there is no conflict in any size between operand GIVEN
2131 and opeand WANTED for instruction template T. */
2132
2133 static INLINE int
2134 match_mem_size (const insn_template *t, unsigned int wanted,
2135 unsigned int given)
2136 {
2137 return (match_operand_size (t, wanted, given)
2138 && !((i.types[given].bitfield.unspecified
2139 && !i.broadcast
2140 && !t->operand_types[wanted].bitfield.unspecified)
2141 || (i.types[given].bitfield.fword
2142 && !t->operand_types[wanted].bitfield.fword)
2143 /* For scalar opcode templates to allow register and memory
2144 operands at the same time, some special casing is needed
2145 here. Also for v{,p}broadcast*, {,v}pmov{s,z}*, and
2146 down-conversion vpmov*. */
2147 || ((t->operand_types[wanted].bitfield.class == RegSIMD
2148 && !t->opcode_modifier.broadcast
2149 && (t->operand_types[wanted].bitfield.byte
2150 || t->operand_types[wanted].bitfield.word
2151 || t->operand_types[wanted].bitfield.dword
2152 || t->operand_types[wanted].bitfield.qword))
2153 ? (i.types[given].bitfield.xmmword
2154 || i.types[given].bitfield.ymmword
2155 || i.types[given].bitfield.zmmword)
2156 : !match_simd_size(t, wanted, given))));
2157 }
2158
2159 /* Return value has MATCH_STRAIGHT set if there is no size conflict on any
2160 operands for instruction template T, and it has MATCH_REVERSE set if there
2161 is no size conflict on any operands for the template with operands reversed
2162 (and the template allows for reversing in the first place). */
2163
2164 #define MATCH_STRAIGHT 1
2165 #define MATCH_REVERSE 2
2166
2167 static INLINE unsigned int
2168 operand_size_match (const insn_template *t)
2169 {
2170 unsigned int j, match = MATCH_STRAIGHT;
2171
2172 /* Don't check non-absolute jump instructions. */
2173 if (t->opcode_modifier.jump
2174 && t->opcode_modifier.jump != JUMP_ABSOLUTE)
2175 return match;
2176
2177 /* Check memory and accumulator operand size. */
2178 for (j = 0; j < i.operands; j++)
2179 {
2180 if (i.types[j].bitfield.class != Reg
2181 && i.types[j].bitfield.class != RegSIMD
2182 && t->opcode_modifier.anysize)
2183 continue;
2184
2185 if (t->operand_types[j].bitfield.class == Reg
2186 && !match_operand_size (t, j, j))
2187 {
2188 match = 0;
2189 break;
2190 }
2191
2192 if (t->operand_types[j].bitfield.class == RegSIMD
2193 && !match_simd_size (t, j, j))
2194 {
2195 match = 0;
2196 break;
2197 }
2198
2199 if (t->operand_types[j].bitfield.instance == Accum
2200 && (!match_operand_size (t, j, j) || !match_simd_size (t, j, j)))
2201 {
2202 match = 0;
2203 break;
2204 }
2205
2206 if ((i.flags[j] & Operand_Mem) && !match_mem_size (t, j, j))
2207 {
2208 match = 0;
2209 break;
2210 }
2211 }
2212
2213 if (!t->opcode_modifier.d)
2214 {
2215 mismatch:
2216 if (!match)
2217 i.error = operand_size_mismatch;
2218 return match;
2219 }
2220
2221 /* Check reverse. */
2222 gas_assert (i.operands >= 2 && i.operands <= 3);
2223
2224 for (j = 0; j < i.operands; j++)
2225 {
2226 unsigned int given = i.operands - j - 1;
2227
2228 if (t->operand_types[j].bitfield.class == Reg
2229 && !match_operand_size (t, j, given))
2230 goto mismatch;
2231
2232 if (t->operand_types[j].bitfield.class == RegSIMD
2233 && !match_simd_size (t, j, given))
2234 goto mismatch;
2235
2236 if (t->operand_types[j].bitfield.instance == Accum
2237 && (!match_operand_size (t, j, given)
2238 || !match_simd_size (t, j, given)))
2239 goto mismatch;
2240
2241 if ((i.flags[given] & Operand_Mem) && !match_mem_size (t, j, given))
2242 goto mismatch;
2243 }
2244
2245 return match | MATCH_REVERSE;
2246 }
2247
2248 static INLINE int
2249 operand_type_match (i386_operand_type overlap,
2250 i386_operand_type given)
2251 {
2252 i386_operand_type temp = overlap;
2253
2254 temp.bitfield.unspecified = 0;
2255 temp.bitfield.byte = 0;
2256 temp.bitfield.word = 0;
2257 temp.bitfield.dword = 0;
2258 temp.bitfield.fword = 0;
2259 temp.bitfield.qword = 0;
2260 temp.bitfield.tbyte = 0;
2261 temp.bitfield.xmmword = 0;
2262 temp.bitfield.ymmword = 0;
2263 temp.bitfield.zmmword = 0;
2264 if (operand_type_all_zero (&temp))
2265 goto mismatch;
2266
2267 if (given.bitfield.baseindex == overlap.bitfield.baseindex)
2268 return 1;
2269
2270 mismatch:
2271 i.error = operand_type_mismatch;
2272 return 0;
2273 }
2274
2275 /* If given types g0 and g1 are registers they must be of the same type
2276 unless the expected operand type register overlap is null.
2277 Some Intel syntax memory operand size checking also happens here. */
2278
2279 static INLINE int
2280 operand_type_register_match (i386_operand_type g0,
2281 i386_operand_type t0,
2282 i386_operand_type g1,
2283 i386_operand_type t1)
2284 {
2285 if (g0.bitfield.class != Reg
2286 && g0.bitfield.class != RegSIMD
2287 && (!operand_type_check (g0, anymem)
2288 || g0.bitfield.unspecified
2289 || (t0.bitfield.class != Reg
2290 && t0.bitfield.class != RegSIMD)))
2291 return 1;
2292
2293 if (g1.bitfield.class != Reg
2294 && g1.bitfield.class != RegSIMD
2295 && (!operand_type_check (g1, anymem)
2296 || g1.bitfield.unspecified
2297 || (t1.bitfield.class != Reg
2298 && t1.bitfield.class != RegSIMD)))
2299 return 1;
2300
2301 if (g0.bitfield.byte == g1.bitfield.byte
2302 && g0.bitfield.word == g1.bitfield.word
2303 && g0.bitfield.dword == g1.bitfield.dword
2304 && g0.bitfield.qword == g1.bitfield.qword
2305 && g0.bitfield.xmmword == g1.bitfield.xmmword
2306 && g0.bitfield.ymmword == g1.bitfield.ymmword
2307 && g0.bitfield.zmmword == g1.bitfield.zmmword)
2308 return 1;
2309
2310 if (!(t0.bitfield.byte & t1.bitfield.byte)
2311 && !(t0.bitfield.word & t1.bitfield.word)
2312 && !(t0.bitfield.dword & t1.bitfield.dword)
2313 && !(t0.bitfield.qword & t1.bitfield.qword)
2314 && !(t0.bitfield.xmmword & t1.bitfield.xmmword)
2315 && !(t0.bitfield.ymmword & t1.bitfield.ymmword)
2316 && !(t0.bitfield.zmmword & t1.bitfield.zmmword))
2317 return 1;
2318
2319 i.error = register_type_mismatch;
2320
2321 return 0;
2322 }
2323
2324 static INLINE unsigned int
2325 register_number (const reg_entry *r)
2326 {
2327 unsigned int nr = r->reg_num;
2328
2329 if (r->reg_flags & RegRex)
2330 nr += 8;
2331
2332 if (r->reg_flags & RegVRex)
2333 nr += 16;
2334
2335 return nr;
2336 }
2337
2338 static INLINE unsigned int
2339 mode_from_disp_size (i386_operand_type t)
2340 {
2341 if (t.bitfield.disp8)
2342 return 1;
2343 else if (t.bitfield.disp16
2344 || t.bitfield.disp32
2345 || t.bitfield.disp32s)
2346 return 2;
2347 else
2348 return 0;
2349 }
2350
2351 static INLINE int
2352 fits_in_signed_byte (addressT num)
2353 {
2354 return num + 0x80 <= 0xff;
2355 }
2356
2357 static INLINE int
2358 fits_in_unsigned_byte (addressT num)
2359 {
2360 return num <= 0xff;
2361 }
2362
2363 static INLINE int
2364 fits_in_unsigned_word (addressT num)
2365 {
2366 return num <= 0xffff;
2367 }
2368
2369 static INLINE int
2370 fits_in_signed_word (addressT num)
2371 {
2372 return num + 0x8000 <= 0xffff;
2373 }
2374
2375 static INLINE int
2376 fits_in_signed_long (addressT num ATTRIBUTE_UNUSED)
2377 {
2378 #ifndef BFD64
2379 return 1;
2380 #else
2381 return num + 0x80000000 <= 0xffffffff;
2382 #endif
2383 } /* fits_in_signed_long() */
2384
2385 static INLINE int
2386 fits_in_unsigned_long (addressT num ATTRIBUTE_UNUSED)
2387 {
2388 #ifndef BFD64
2389 return 1;
2390 #else
2391 return num <= 0xffffffff;
2392 #endif
2393 } /* fits_in_unsigned_long() */
2394
2395 static INLINE int
2396 fits_in_disp8 (offsetT num)
2397 {
2398 int shift = i.memshift;
2399 unsigned int mask;
2400
2401 if (shift == -1)
2402 abort ();
2403
2404 mask = (1 << shift) - 1;
2405
2406 /* Return 0 if NUM isn't properly aligned. */
2407 if ((num & mask))
2408 return 0;
2409
2410 /* Check if NUM will fit in 8bit after shift. */
2411 return fits_in_signed_byte (num >> shift);
2412 }
2413
2414 static INLINE int
2415 fits_in_imm4 (offsetT num)
2416 {
2417 return (num & 0xf) == num;
2418 }
2419
2420 static i386_operand_type
2421 smallest_imm_type (offsetT num)
2422 {
2423 i386_operand_type t;
2424
2425 operand_type_set (&t, 0);
2426 t.bitfield.imm64 = 1;
2427
2428 if (cpu_arch_tune != PROCESSOR_I486 && num == 1)
2429 {
2430 /* This code is disabled on the 486 because all the Imm1 forms
2431 in the opcode table are slower on the i486. They're the
2432 versions with the implicitly specified single-position
2433 displacement, which has another syntax if you really want to
2434 use that form. */
2435 t.bitfield.imm1 = 1;
2436 t.bitfield.imm8 = 1;
2437 t.bitfield.imm8s = 1;
2438 t.bitfield.imm16 = 1;
2439 t.bitfield.imm32 = 1;
2440 t.bitfield.imm32s = 1;
2441 }
2442 else if (fits_in_signed_byte (num))
2443 {
2444 t.bitfield.imm8 = 1;
2445 t.bitfield.imm8s = 1;
2446 t.bitfield.imm16 = 1;
2447 t.bitfield.imm32 = 1;
2448 t.bitfield.imm32s = 1;
2449 }
2450 else if (fits_in_unsigned_byte (num))
2451 {
2452 t.bitfield.imm8 = 1;
2453 t.bitfield.imm16 = 1;
2454 t.bitfield.imm32 = 1;
2455 t.bitfield.imm32s = 1;
2456 }
2457 else if (fits_in_signed_word (num) || fits_in_unsigned_word (num))
2458 {
2459 t.bitfield.imm16 = 1;
2460 t.bitfield.imm32 = 1;
2461 t.bitfield.imm32s = 1;
2462 }
2463 else if (fits_in_signed_long (num))
2464 {
2465 t.bitfield.imm32 = 1;
2466 t.bitfield.imm32s = 1;
2467 }
2468 else if (fits_in_unsigned_long (num))
2469 t.bitfield.imm32 = 1;
2470
2471 return t;
2472 }
2473
2474 static offsetT
2475 offset_in_range (offsetT val, int size)
2476 {
2477 addressT mask;
2478
2479 switch (size)
2480 {
2481 case 1: mask = ((addressT) 1 << 8) - 1; break;
2482 case 2: mask = ((addressT) 1 << 16) - 1; break;
2483 case 4: mask = ((addressT) 2 << 31) - 1; break;
2484 #ifdef BFD64
2485 case 8: mask = ((addressT) 2 << 63) - 1; break;
2486 #endif
2487 default: abort ();
2488 }
2489
2490 #ifdef BFD64
2491 /* If BFD64, sign extend val for 32bit address mode. */
2492 if (flag_code != CODE_64BIT
2493 || i.prefix[ADDR_PREFIX])
2494 if ((val & ~(((addressT) 2 << 31) - 1)) == 0)
2495 val = (val ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
2496 #endif
2497
2498 if ((val & ~mask) != 0 && (val & ~mask) != ~mask)
2499 {
2500 char buf1[40], buf2[40];
2501
2502 sprint_value (buf1, val);
2503 sprint_value (buf2, val & mask);
2504 as_warn (_("%s shortened to %s"), buf1, buf2);
2505 }
2506 return val & mask;
2507 }
2508
2509 enum PREFIX_GROUP
2510 {
2511 PREFIX_EXIST = 0,
2512 PREFIX_LOCK,
2513 PREFIX_REP,
2514 PREFIX_DS,
2515 PREFIX_OTHER
2516 };
2517
2518 /* Returns
2519 a. PREFIX_EXIST if attempting to add a prefix where one from the
2520 same class already exists.
2521 b. PREFIX_LOCK if lock prefix is added.
2522 c. PREFIX_REP if rep/repne prefix is added.
2523 d. PREFIX_DS if ds prefix is added.
2524 e. PREFIX_OTHER if other prefix is added.
2525 */
2526
2527 static enum PREFIX_GROUP
2528 add_prefix (unsigned int prefix)
2529 {
2530 enum PREFIX_GROUP ret = PREFIX_OTHER;
2531 unsigned int q;
2532
2533 if (prefix >= REX_OPCODE && prefix < REX_OPCODE + 16
2534 && flag_code == CODE_64BIT)
2535 {
2536 if ((i.prefix[REX_PREFIX] & prefix & REX_W)
2537 || (i.prefix[REX_PREFIX] & prefix & REX_R)
2538 || (i.prefix[REX_PREFIX] & prefix & REX_X)
2539 || (i.prefix[REX_PREFIX] & prefix & REX_B))
2540 ret = PREFIX_EXIST;
2541 q = REX_PREFIX;
2542 }
2543 else
2544 {
2545 switch (prefix)
2546 {
2547 default:
2548 abort ();
2549
2550 case DS_PREFIX_OPCODE:
2551 ret = PREFIX_DS;
2552 /* Fall through. */
2553 case CS_PREFIX_OPCODE:
2554 case ES_PREFIX_OPCODE:
2555 case FS_PREFIX_OPCODE:
2556 case GS_PREFIX_OPCODE:
2557 case SS_PREFIX_OPCODE:
2558 q = SEG_PREFIX;
2559 break;
2560
2561 case REPNE_PREFIX_OPCODE:
2562 case REPE_PREFIX_OPCODE:
2563 q = REP_PREFIX;
2564 ret = PREFIX_REP;
2565 break;
2566
2567 case LOCK_PREFIX_OPCODE:
2568 q = LOCK_PREFIX;
2569 ret = PREFIX_LOCK;
2570 break;
2571
2572 case FWAIT_OPCODE:
2573 q = WAIT_PREFIX;
2574 break;
2575
2576 case ADDR_PREFIX_OPCODE:
2577 q = ADDR_PREFIX;
2578 break;
2579
2580 case DATA_PREFIX_OPCODE:
2581 q = DATA_PREFIX;
2582 break;
2583 }
2584 if (i.prefix[q] != 0)
2585 ret = PREFIX_EXIST;
2586 }
2587
2588 if (ret)
2589 {
2590 if (!i.prefix[q])
2591 ++i.prefixes;
2592 i.prefix[q] |= prefix;
2593 }
2594 else
2595 as_bad (_("same type of prefix used twice"));
2596
2597 return ret;
2598 }
2599
2600 static void
2601 update_code_flag (int value, int check)
2602 {
2603 PRINTF_LIKE ((*as_error));
2604
2605 flag_code = (enum flag_code) value;
2606 if (flag_code == CODE_64BIT)
2607 {
2608 cpu_arch_flags.bitfield.cpu64 = 1;
2609 cpu_arch_flags.bitfield.cpuno64 = 0;
2610 }
2611 else
2612 {
2613 cpu_arch_flags.bitfield.cpu64 = 0;
2614 cpu_arch_flags.bitfield.cpuno64 = 1;
2615 }
2616 if (value == CODE_64BIT && !cpu_arch_flags.bitfield.cpulm )
2617 {
2618 if (check)
2619 as_error = as_fatal;
2620 else
2621 as_error = as_bad;
2622 (*as_error) (_("64bit mode not supported on `%s'."),
2623 cpu_arch_name ? cpu_arch_name : default_arch);
2624 }
2625 if (value == CODE_32BIT && !cpu_arch_flags.bitfield.cpui386)
2626 {
2627 if (check)
2628 as_error = as_fatal;
2629 else
2630 as_error = as_bad;
2631 (*as_error) (_("32bit mode not supported on `%s'."),
2632 cpu_arch_name ? cpu_arch_name : default_arch);
2633 }
2634 stackop_size = '\0';
2635 }
2636
2637 static void
2638 set_code_flag (int value)
2639 {
2640 update_code_flag (value, 0);
2641 }
2642
2643 static void
2644 set_16bit_gcc_code_flag (int new_code_flag)
2645 {
2646 flag_code = (enum flag_code) new_code_flag;
2647 if (flag_code != CODE_16BIT)
2648 abort ();
2649 cpu_arch_flags.bitfield.cpu64 = 0;
2650 cpu_arch_flags.bitfield.cpuno64 = 1;
2651 stackop_size = LONG_MNEM_SUFFIX;
2652 }
2653
2654 static void
2655 set_intel_syntax (int syntax_flag)
2656 {
2657 /* Find out if register prefixing is specified. */
2658 int ask_naked_reg = 0;
2659
2660 SKIP_WHITESPACE ();
2661 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2662 {
2663 char *string;
2664 int e = get_symbol_name (&string);
2665
2666 if (strcmp (string, "prefix") == 0)
2667 ask_naked_reg = 1;
2668 else if (strcmp (string, "noprefix") == 0)
2669 ask_naked_reg = -1;
2670 else
2671 as_bad (_("bad argument to syntax directive."));
2672 (void) restore_line_pointer (e);
2673 }
2674 demand_empty_rest_of_line ();
2675
2676 intel_syntax = syntax_flag;
2677
2678 if (ask_naked_reg == 0)
2679 allow_naked_reg = (intel_syntax
2680 && (bfd_get_symbol_leading_char (stdoutput) != '\0'));
2681 else
2682 allow_naked_reg = (ask_naked_reg < 0);
2683
2684 expr_set_rank (O_full_ptr, syntax_flag ? 10 : 0);
2685
2686 identifier_chars['%'] = intel_syntax && allow_naked_reg ? '%' : 0;
2687 identifier_chars['$'] = intel_syntax ? '$' : 0;
2688 register_prefix = allow_naked_reg ? "" : "%";
2689 }
2690
2691 static void
2692 set_intel_mnemonic (int mnemonic_flag)
2693 {
2694 intel_mnemonic = mnemonic_flag;
2695 }
2696
2697 static void
2698 set_allow_index_reg (int flag)
2699 {
2700 allow_index_reg = flag;
2701 }
2702
2703 static void
2704 set_check (int what)
2705 {
2706 enum check_kind *kind;
2707 const char *str;
2708
2709 if (what)
2710 {
2711 kind = &operand_check;
2712 str = "operand";
2713 }
2714 else
2715 {
2716 kind = &sse_check;
2717 str = "sse";
2718 }
2719
2720 SKIP_WHITESPACE ();
2721
2722 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2723 {
2724 char *string;
2725 int e = get_symbol_name (&string);
2726
2727 if (strcmp (string, "none") == 0)
2728 *kind = check_none;
2729 else if (strcmp (string, "warning") == 0)
2730 *kind = check_warning;
2731 else if (strcmp (string, "error") == 0)
2732 *kind = check_error;
2733 else
2734 as_bad (_("bad argument to %s_check directive."), str);
2735 (void) restore_line_pointer (e);
2736 }
2737 else
2738 as_bad (_("missing argument for %s_check directive"), str);
2739
2740 demand_empty_rest_of_line ();
2741 }
2742
2743 static void
2744 check_cpu_arch_compatible (const char *name ATTRIBUTE_UNUSED,
2745 i386_cpu_flags new_flag ATTRIBUTE_UNUSED)
2746 {
2747 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
2748 static const char *arch;
2749
2750 /* Intel LIOM is only supported on ELF. */
2751 if (!IS_ELF)
2752 return;
2753
2754 if (!arch)
2755 {
2756 /* Use cpu_arch_name if it is set in md_parse_option. Otherwise
2757 use default_arch. */
2758 arch = cpu_arch_name;
2759 if (!arch)
2760 arch = default_arch;
2761 }
2762
2763 /* If we are targeting Intel MCU, we must enable it. */
2764 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_IAMCU
2765 || new_flag.bitfield.cpuiamcu)
2766 return;
2767
2768 /* If we are targeting Intel L1OM, we must enable it. */
2769 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_L1OM
2770 || new_flag.bitfield.cpul1om)
2771 return;
2772
2773 /* If we are targeting Intel K1OM, we must enable it. */
2774 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_K1OM
2775 || new_flag.bitfield.cpuk1om)
2776 return;
2777
2778 as_bad (_("`%s' is not supported on `%s'"), name, arch);
2779 #endif
2780 }
2781
2782 static void
2783 set_cpu_arch (int dummy ATTRIBUTE_UNUSED)
2784 {
2785 SKIP_WHITESPACE ();
2786
2787 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2788 {
2789 char *string;
2790 int e = get_symbol_name (&string);
2791 unsigned int j;
2792 i386_cpu_flags flags;
2793
2794 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
2795 {
2796 if (strcmp (string, cpu_arch[j].name) == 0)
2797 {
2798 check_cpu_arch_compatible (string, cpu_arch[j].flags);
2799
2800 if (*string != '.')
2801 {
2802 cpu_arch_name = cpu_arch[j].name;
2803 cpu_sub_arch_name = NULL;
2804 cpu_arch_flags = cpu_arch[j].flags;
2805 if (flag_code == CODE_64BIT)
2806 {
2807 cpu_arch_flags.bitfield.cpu64 = 1;
2808 cpu_arch_flags.bitfield.cpuno64 = 0;
2809 }
2810 else
2811 {
2812 cpu_arch_flags.bitfield.cpu64 = 0;
2813 cpu_arch_flags.bitfield.cpuno64 = 1;
2814 }
2815 cpu_arch_isa = cpu_arch[j].type;
2816 cpu_arch_isa_flags = cpu_arch[j].flags;
2817 if (!cpu_arch_tune_set)
2818 {
2819 cpu_arch_tune = cpu_arch_isa;
2820 cpu_arch_tune_flags = cpu_arch_isa_flags;
2821 }
2822 break;
2823 }
2824
2825 flags = cpu_flags_or (cpu_arch_flags,
2826 cpu_arch[j].flags);
2827
2828 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
2829 {
2830 if (cpu_sub_arch_name)
2831 {
2832 char *name = cpu_sub_arch_name;
2833 cpu_sub_arch_name = concat (name,
2834 cpu_arch[j].name,
2835 (const char *) NULL);
2836 free (name);
2837 }
2838 else
2839 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
2840 cpu_arch_flags = flags;
2841 cpu_arch_isa_flags = flags;
2842 }
2843 else
2844 cpu_arch_isa_flags
2845 = cpu_flags_or (cpu_arch_isa_flags,
2846 cpu_arch[j].flags);
2847 (void) restore_line_pointer (e);
2848 demand_empty_rest_of_line ();
2849 return;
2850 }
2851 }
2852
2853 if (*string == '.' && j >= ARRAY_SIZE (cpu_arch))
2854 {
2855 /* Disable an ISA extension. */
2856 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
2857 if (strcmp (string + 1, cpu_noarch [j].name) == 0)
2858 {
2859 flags = cpu_flags_and_not (cpu_arch_flags,
2860 cpu_noarch[j].flags);
2861 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
2862 {
2863 if (cpu_sub_arch_name)
2864 {
2865 char *name = cpu_sub_arch_name;
2866 cpu_sub_arch_name = concat (name, string,
2867 (const char *) NULL);
2868 free (name);
2869 }
2870 else
2871 cpu_sub_arch_name = xstrdup (string);
2872 cpu_arch_flags = flags;
2873 cpu_arch_isa_flags = flags;
2874 }
2875 (void) restore_line_pointer (e);
2876 demand_empty_rest_of_line ();
2877 return;
2878 }
2879
2880 j = ARRAY_SIZE (cpu_arch);
2881 }
2882
2883 if (j >= ARRAY_SIZE (cpu_arch))
2884 as_bad (_("no such architecture: `%s'"), string);
2885
2886 *input_line_pointer = e;
2887 }
2888 else
2889 as_bad (_("missing cpu architecture"));
2890
2891 no_cond_jump_promotion = 0;
2892 if (*input_line_pointer == ','
2893 && !is_end_of_line[(unsigned char) input_line_pointer[1]])
2894 {
2895 char *string;
2896 char e;
2897
2898 ++input_line_pointer;
2899 e = get_symbol_name (&string);
2900
2901 if (strcmp (string, "nojumps") == 0)
2902 no_cond_jump_promotion = 1;
2903 else if (strcmp (string, "jumps") == 0)
2904 ;
2905 else
2906 as_bad (_("no such architecture modifier: `%s'"), string);
2907
2908 (void) restore_line_pointer (e);
2909 }
2910
2911 demand_empty_rest_of_line ();
2912 }
2913
2914 enum bfd_architecture
2915 i386_arch (void)
2916 {
2917 if (cpu_arch_isa == PROCESSOR_L1OM)
2918 {
2919 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2920 || flag_code != CODE_64BIT)
2921 as_fatal (_("Intel L1OM is 64bit ELF only"));
2922 return bfd_arch_l1om;
2923 }
2924 else if (cpu_arch_isa == PROCESSOR_K1OM)
2925 {
2926 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2927 || flag_code != CODE_64BIT)
2928 as_fatal (_("Intel K1OM is 64bit ELF only"));
2929 return bfd_arch_k1om;
2930 }
2931 else if (cpu_arch_isa == PROCESSOR_IAMCU)
2932 {
2933 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2934 || flag_code == CODE_64BIT)
2935 as_fatal (_("Intel MCU is 32bit ELF only"));
2936 return bfd_arch_iamcu;
2937 }
2938 else
2939 return bfd_arch_i386;
2940 }
2941
2942 unsigned long
2943 i386_mach (void)
2944 {
2945 if (!strncmp (default_arch, "x86_64", 6))
2946 {
2947 if (cpu_arch_isa == PROCESSOR_L1OM)
2948 {
2949 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2950 || default_arch[6] != '\0')
2951 as_fatal (_("Intel L1OM is 64bit ELF only"));
2952 return bfd_mach_l1om;
2953 }
2954 else if (cpu_arch_isa == PROCESSOR_K1OM)
2955 {
2956 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2957 || default_arch[6] != '\0')
2958 as_fatal (_("Intel K1OM is 64bit ELF only"));
2959 return bfd_mach_k1om;
2960 }
2961 else if (default_arch[6] == '\0')
2962 return bfd_mach_x86_64;
2963 else
2964 return bfd_mach_x64_32;
2965 }
2966 else if (!strcmp (default_arch, "i386")
2967 || !strcmp (default_arch, "iamcu"))
2968 {
2969 if (cpu_arch_isa == PROCESSOR_IAMCU)
2970 {
2971 if (OUTPUT_FLAVOR != bfd_target_elf_flavour)
2972 as_fatal (_("Intel MCU is 32bit ELF only"));
2973 return bfd_mach_i386_iamcu;
2974 }
2975 else
2976 return bfd_mach_i386_i386;
2977 }
2978 else
2979 as_fatal (_("unknown architecture"));
2980 }
2981 \f
2982 void
2983 md_begin (void)
2984 {
2985 const char *hash_err;
2986
2987 /* Support pseudo prefixes like {disp32}. */
2988 lex_type ['{'] = LEX_BEGIN_NAME;
2989
2990 /* Initialize op_hash hash table. */
2991 op_hash = hash_new ();
2992
2993 {
2994 const insn_template *optab;
2995 templates *core_optab;
2996
2997 /* Setup for loop. */
2998 optab = i386_optab;
2999 core_optab = XNEW (templates);
3000 core_optab->start = optab;
3001
3002 while (1)
3003 {
3004 ++optab;
3005 if (optab->name == NULL
3006 || strcmp (optab->name, (optab - 1)->name) != 0)
3007 {
3008 /* different name --> ship out current template list;
3009 add to hash table; & begin anew. */
3010 core_optab->end = optab;
3011 hash_err = hash_insert (op_hash,
3012 (optab - 1)->name,
3013 (void *) core_optab);
3014 if (hash_err)
3015 {
3016 as_fatal (_("can't hash %s: %s"),
3017 (optab - 1)->name,
3018 hash_err);
3019 }
3020 if (optab->name == NULL)
3021 break;
3022 core_optab = XNEW (templates);
3023 core_optab->start = optab;
3024 }
3025 }
3026 }
3027
3028 /* Initialize reg_hash hash table. */
3029 reg_hash = hash_new ();
3030 {
3031 const reg_entry *regtab;
3032 unsigned int regtab_size = i386_regtab_size;
3033
3034 for (regtab = i386_regtab; regtab_size--; regtab++)
3035 {
3036 hash_err = hash_insert (reg_hash, regtab->reg_name, (void *) regtab);
3037 if (hash_err)
3038 as_fatal (_("can't hash %s: %s"),
3039 regtab->reg_name,
3040 hash_err);
3041 }
3042 }
3043
3044 /* Fill in lexical tables: mnemonic_chars, operand_chars. */
3045 {
3046 int c;
3047 char *p;
3048
3049 for (c = 0; c < 256; c++)
3050 {
3051 if (ISDIGIT (c))
3052 {
3053 digit_chars[c] = c;
3054 mnemonic_chars[c] = c;
3055 register_chars[c] = c;
3056 operand_chars[c] = c;
3057 }
3058 else if (ISLOWER (c))
3059 {
3060 mnemonic_chars[c] = c;
3061 register_chars[c] = c;
3062 operand_chars[c] = c;
3063 }
3064 else if (ISUPPER (c))
3065 {
3066 mnemonic_chars[c] = TOLOWER (c);
3067 register_chars[c] = mnemonic_chars[c];
3068 operand_chars[c] = c;
3069 }
3070 else if (c == '{' || c == '}')
3071 {
3072 mnemonic_chars[c] = c;
3073 operand_chars[c] = c;
3074 }
3075
3076 if (ISALPHA (c) || ISDIGIT (c))
3077 identifier_chars[c] = c;
3078 else if (c >= 128)
3079 {
3080 identifier_chars[c] = c;
3081 operand_chars[c] = c;
3082 }
3083 }
3084
3085 #ifdef LEX_AT
3086 identifier_chars['@'] = '@';
3087 #endif
3088 #ifdef LEX_QM
3089 identifier_chars['?'] = '?';
3090 operand_chars['?'] = '?';
3091 #endif
3092 digit_chars['-'] = '-';
3093 mnemonic_chars['_'] = '_';
3094 mnemonic_chars['-'] = '-';
3095 mnemonic_chars['.'] = '.';
3096 identifier_chars['_'] = '_';
3097 identifier_chars['.'] = '.';
3098
3099 for (p = operand_special_chars; *p != '\0'; p++)
3100 operand_chars[(unsigned char) *p] = *p;
3101 }
3102
3103 if (flag_code == CODE_64BIT)
3104 {
3105 #if defined (OBJ_COFF) && defined (TE_PE)
3106 x86_dwarf2_return_column = (OUTPUT_FLAVOR == bfd_target_coff_flavour
3107 ? 32 : 16);
3108 #else
3109 x86_dwarf2_return_column = 16;
3110 #endif
3111 x86_cie_data_alignment = -8;
3112 }
3113 else
3114 {
3115 x86_dwarf2_return_column = 8;
3116 x86_cie_data_alignment = -4;
3117 }
3118
3119 /* NB: FUSED_JCC_PADDING frag must have sufficient room so that it
3120 can be turned into BRANCH_PREFIX frag. */
3121 if (align_branch_prefix_size > MAX_FUSED_JCC_PADDING_SIZE)
3122 abort ();
3123 }
3124
3125 void
3126 i386_print_statistics (FILE *file)
3127 {
3128 hash_print_statistics (file, "i386 opcode", op_hash);
3129 hash_print_statistics (file, "i386 register", reg_hash);
3130 }
3131 \f
3132 #ifdef DEBUG386
3133
3134 /* Debugging routines for md_assemble. */
3135 static void pte (insn_template *);
3136 static void pt (i386_operand_type);
3137 static void pe (expressionS *);
3138 static void ps (symbolS *);
3139
3140 static void
3141 pi (const char *line, i386_insn *x)
3142 {
3143 unsigned int j;
3144
3145 fprintf (stdout, "%s: template ", line);
3146 pte (&x->tm);
3147 fprintf (stdout, " address: base %s index %s scale %x\n",
3148 x->base_reg ? x->base_reg->reg_name : "none",
3149 x->index_reg ? x->index_reg->reg_name : "none",
3150 x->log2_scale_factor);
3151 fprintf (stdout, " modrm: mode %x reg %x reg/mem %x\n",
3152 x->rm.mode, x->rm.reg, x->rm.regmem);
3153 fprintf (stdout, " sib: base %x index %x scale %x\n",
3154 x->sib.base, x->sib.index, x->sib.scale);
3155 fprintf (stdout, " rex: 64bit %x extX %x extY %x extZ %x\n",
3156 (x->rex & REX_W) != 0,
3157 (x->rex & REX_R) != 0,
3158 (x->rex & REX_X) != 0,
3159 (x->rex & REX_B) != 0);
3160 for (j = 0; j < x->operands; j++)
3161 {
3162 fprintf (stdout, " #%d: ", j + 1);
3163 pt (x->types[j]);
3164 fprintf (stdout, "\n");
3165 if (x->types[j].bitfield.class == Reg
3166 || x->types[j].bitfield.class == RegMMX
3167 || x->types[j].bitfield.class == RegSIMD
3168 || x->types[j].bitfield.class == SReg
3169 || x->types[j].bitfield.class == RegCR
3170 || x->types[j].bitfield.class == RegDR
3171 || x->types[j].bitfield.class == RegTR)
3172 fprintf (stdout, "%s\n", x->op[j].regs->reg_name);
3173 if (operand_type_check (x->types[j], imm))
3174 pe (x->op[j].imms);
3175 if (operand_type_check (x->types[j], disp))
3176 pe (x->op[j].disps);
3177 }
3178 }
3179
3180 static void
3181 pte (insn_template *t)
3182 {
3183 unsigned int j;
3184 fprintf (stdout, " %d operands ", t->operands);
3185 fprintf (stdout, "opcode %x ", t->base_opcode);
3186 if (t->extension_opcode != None)
3187 fprintf (stdout, "ext %x ", t->extension_opcode);
3188 if (t->opcode_modifier.d)
3189 fprintf (stdout, "D");
3190 if (t->opcode_modifier.w)
3191 fprintf (stdout, "W");
3192 fprintf (stdout, "\n");
3193 for (j = 0; j < t->operands; j++)
3194 {
3195 fprintf (stdout, " #%d type ", j + 1);
3196 pt (t->operand_types[j]);
3197 fprintf (stdout, "\n");
3198 }
3199 }
3200
3201 static void
3202 pe (expressionS *e)
3203 {
3204 fprintf (stdout, " operation %d\n", e->X_op);
3205 fprintf (stdout, " add_number %ld (%lx)\n",
3206 (long) e->X_add_number, (long) e->X_add_number);
3207 if (e->X_add_symbol)
3208 {
3209 fprintf (stdout, " add_symbol ");
3210 ps (e->X_add_symbol);
3211 fprintf (stdout, "\n");
3212 }
3213 if (e->X_op_symbol)
3214 {
3215 fprintf (stdout, " op_symbol ");
3216 ps (e->X_op_symbol);
3217 fprintf (stdout, "\n");
3218 }
3219 }
3220
3221 static void
3222 ps (symbolS *s)
3223 {
3224 fprintf (stdout, "%s type %s%s",
3225 S_GET_NAME (s),
3226 S_IS_EXTERNAL (s) ? "EXTERNAL " : "",
3227 segment_name (S_GET_SEGMENT (s)));
3228 }
3229
3230 static struct type_name
3231 {
3232 i386_operand_type mask;
3233 const char *name;
3234 }
3235 const type_names[] =
3236 {
3237 { OPERAND_TYPE_REG8, "r8" },
3238 { OPERAND_TYPE_REG16, "r16" },
3239 { OPERAND_TYPE_REG32, "r32" },
3240 { OPERAND_TYPE_REG64, "r64" },
3241 { OPERAND_TYPE_ACC8, "acc8" },
3242 { OPERAND_TYPE_ACC16, "acc16" },
3243 { OPERAND_TYPE_ACC32, "acc32" },
3244 { OPERAND_TYPE_ACC64, "acc64" },
3245 { OPERAND_TYPE_IMM8, "i8" },
3246 { OPERAND_TYPE_IMM8, "i8s" },
3247 { OPERAND_TYPE_IMM16, "i16" },
3248 { OPERAND_TYPE_IMM32, "i32" },
3249 { OPERAND_TYPE_IMM32S, "i32s" },
3250 { OPERAND_TYPE_IMM64, "i64" },
3251 { OPERAND_TYPE_IMM1, "i1" },
3252 { OPERAND_TYPE_BASEINDEX, "BaseIndex" },
3253 { OPERAND_TYPE_DISP8, "d8" },
3254 { OPERAND_TYPE_DISP16, "d16" },
3255 { OPERAND_TYPE_DISP32, "d32" },
3256 { OPERAND_TYPE_DISP32S, "d32s" },
3257 { OPERAND_TYPE_DISP64, "d64" },
3258 { OPERAND_TYPE_INOUTPORTREG, "InOutPortReg" },
3259 { OPERAND_TYPE_SHIFTCOUNT, "ShiftCount" },
3260 { OPERAND_TYPE_CONTROL, "control reg" },
3261 { OPERAND_TYPE_TEST, "test reg" },
3262 { OPERAND_TYPE_DEBUG, "debug reg" },
3263 { OPERAND_TYPE_FLOATREG, "FReg" },
3264 { OPERAND_TYPE_FLOATACC, "FAcc" },
3265 { OPERAND_TYPE_SREG, "SReg" },
3266 { OPERAND_TYPE_REGMMX, "rMMX" },
3267 { OPERAND_TYPE_REGXMM, "rXMM" },
3268 { OPERAND_TYPE_REGYMM, "rYMM" },
3269 { OPERAND_TYPE_REGZMM, "rZMM" },
3270 { OPERAND_TYPE_REGMASK, "Mask reg" },
3271 };
3272
3273 static void
3274 pt (i386_operand_type t)
3275 {
3276 unsigned int j;
3277 i386_operand_type a;
3278
3279 for (j = 0; j < ARRAY_SIZE (type_names); j++)
3280 {
3281 a = operand_type_and (t, type_names[j].mask);
3282 if (operand_type_equal (&a, &type_names[j].mask))
3283 fprintf (stdout, "%s, ", type_names[j].name);
3284 }
3285 fflush (stdout);
3286 }
3287
3288 #endif /* DEBUG386 */
3289 \f
3290 static bfd_reloc_code_real_type
3291 reloc (unsigned int size,
3292 int pcrel,
3293 int sign,
3294 bfd_reloc_code_real_type other)
3295 {
3296 if (other != NO_RELOC)
3297 {
3298 reloc_howto_type *rel;
3299
3300 if (size == 8)
3301 switch (other)
3302 {
3303 case BFD_RELOC_X86_64_GOT32:
3304 return BFD_RELOC_X86_64_GOT64;
3305 break;
3306 case BFD_RELOC_X86_64_GOTPLT64:
3307 return BFD_RELOC_X86_64_GOTPLT64;
3308 break;
3309 case BFD_RELOC_X86_64_PLTOFF64:
3310 return BFD_RELOC_X86_64_PLTOFF64;
3311 break;
3312 case BFD_RELOC_X86_64_GOTPC32:
3313 other = BFD_RELOC_X86_64_GOTPC64;
3314 break;
3315 case BFD_RELOC_X86_64_GOTPCREL:
3316 other = BFD_RELOC_X86_64_GOTPCREL64;
3317 break;
3318 case BFD_RELOC_X86_64_TPOFF32:
3319 other = BFD_RELOC_X86_64_TPOFF64;
3320 break;
3321 case BFD_RELOC_X86_64_DTPOFF32:
3322 other = BFD_RELOC_X86_64_DTPOFF64;
3323 break;
3324 default:
3325 break;
3326 }
3327
3328 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
3329 if (other == BFD_RELOC_SIZE32)
3330 {
3331 if (size == 8)
3332 other = BFD_RELOC_SIZE64;
3333 if (pcrel)
3334 {
3335 as_bad (_("there are no pc-relative size relocations"));
3336 return NO_RELOC;
3337 }
3338 }
3339 #endif
3340
3341 /* Sign-checking 4-byte relocations in 16-/32-bit code is pointless. */
3342 if (size == 4 && (flag_code != CODE_64BIT || disallow_64bit_reloc))
3343 sign = -1;
3344
3345 rel = bfd_reloc_type_lookup (stdoutput, other);
3346 if (!rel)
3347 as_bad (_("unknown relocation (%u)"), other);
3348 else if (size != bfd_get_reloc_size (rel))
3349 as_bad (_("%u-byte relocation cannot be applied to %u-byte field"),
3350 bfd_get_reloc_size (rel),
3351 size);
3352 else if (pcrel && !rel->pc_relative)
3353 as_bad (_("non-pc-relative relocation for pc-relative field"));
3354 else if ((rel->complain_on_overflow == complain_overflow_signed
3355 && !sign)
3356 || (rel->complain_on_overflow == complain_overflow_unsigned
3357 && sign > 0))
3358 as_bad (_("relocated field and relocation type differ in signedness"));
3359 else
3360 return other;
3361 return NO_RELOC;
3362 }
3363
3364 if (pcrel)
3365 {
3366 if (!sign)
3367 as_bad (_("there are no unsigned pc-relative relocations"));
3368 switch (size)
3369 {
3370 case 1: return BFD_RELOC_8_PCREL;
3371 case 2: return BFD_RELOC_16_PCREL;
3372 case 4: return BFD_RELOC_32_PCREL;
3373 case 8: return BFD_RELOC_64_PCREL;
3374 }
3375 as_bad (_("cannot do %u byte pc-relative relocation"), size);
3376 }
3377 else
3378 {
3379 if (sign > 0)
3380 switch (size)
3381 {
3382 case 4: return BFD_RELOC_X86_64_32S;
3383 }
3384 else
3385 switch (size)
3386 {
3387 case 1: return BFD_RELOC_8;
3388 case 2: return BFD_RELOC_16;
3389 case 4: return BFD_RELOC_32;
3390 case 8: return BFD_RELOC_64;
3391 }
3392 as_bad (_("cannot do %s %u byte relocation"),
3393 sign > 0 ? "signed" : "unsigned", size);
3394 }
3395
3396 return NO_RELOC;
3397 }
3398
3399 /* Here we decide which fixups can be adjusted to make them relative to
3400 the beginning of the section instead of the symbol. Basically we need
3401 to make sure that the dynamic relocations are done correctly, so in
3402 some cases we force the original symbol to be used. */
3403
3404 int
3405 tc_i386_fix_adjustable (fixS *fixP ATTRIBUTE_UNUSED)
3406 {
3407 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
3408 if (!IS_ELF)
3409 return 1;
3410
3411 /* Don't adjust pc-relative references to merge sections in 64-bit
3412 mode. */
3413 if (use_rela_relocations
3414 && (S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_MERGE) != 0
3415 && fixP->fx_pcrel)
3416 return 0;
3417
3418 /* The x86_64 GOTPCREL are represented as 32bit PCrel relocations
3419 and changed later by validate_fix. */
3420 if (GOT_symbol && fixP->fx_subsy == GOT_symbol
3421 && fixP->fx_r_type == BFD_RELOC_32_PCREL)
3422 return 0;
3423
3424 /* Adjust_reloc_syms doesn't know about the GOT. Need to keep symbol
3425 for size relocations. */
3426 if (fixP->fx_r_type == BFD_RELOC_SIZE32
3427 || fixP->fx_r_type == BFD_RELOC_SIZE64
3428 || fixP->fx_r_type == BFD_RELOC_386_GOTOFF
3429 || fixP->fx_r_type == BFD_RELOC_386_GOT32
3430 || fixP->fx_r_type == BFD_RELOC_386_GOT32X
3431 || fixP->fx_r_type == BFD_RELOC_386_TLS_GD
3432 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDM
3433 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDO_32
3434 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE_32
3435 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE
3436 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTIE
3437 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE_32
3438 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE
3439 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTDESC
3440 || fixP->fx_r_type == BFD_RELOC_386_TLS_DESC_CALL
3441 || fixP->fx_r_type == BFD_RELOC_X86_64_GOT32
3442 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCREL
3443 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCRELX
3444 || fixP->fx_r_type == BFD_RELOC_X86_64_REX_GOTPCRELX
3445 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSGD
3446 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSLD
3447 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF32
3448 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF64
3449 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTTPOFF
3450 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF32
3451 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF64
3452 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTOFF64
3453 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPC32_TLSDESC
3454 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSDESC_CALL
3455 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
3456 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
3457 return 0;
3458 #endif
3459 return 1;
3460 }
3461
3462 static int
3463 intel_float_operand (const char *mnemonic)
3464 {
3465 /* Note that the value returned is meaningful only for opcodes with (memory)
3466 operands, hence the code here is free to improperly handle opcodes that
3467 have no operands (for better performance and smaller code). */
3468
3469 if (mnemonic[0] != 'f')
3470 return 0; /* non-math */
3471
3472 switch (mnemonic[1])
3473 {
3474 /* fclex, fdecstp, fdisi, femms, feni, fincstp, finit, fsetpm, and
3475 the fs segment override prefix not currently handled because no
3476 call path can make opcodes without operands get here */
3477 case 'i':
3478 return 2 /* integer op */;
3479 case 'l':
3480 if (mnemonic[2] == 'd' && (mnemonic[3] == 'c' || mnemonic[3] == 'e'))
3481 return 3; /* fldcw/fldenv */
3482 break;
3483 case 'n':
3484 if (mnemonic[2] != 'o' /* fnop */)
3485 return 3; /* non-waiting control op */
3486 break;
3487 case 'r':
3488 if (mnemonic[2] == 's')
3489 return 3; /* frstor/frstpm */
3490 break;
3491 case 's':
3492 if (mnemonic[2] == 'a')
3493 return 3; /* fsave */
3494 if (mnemonic[2] == 't')
3495 {
3496 switch (mnemonic[3])
3497 {
3498 case 'c': /* fstcw */
3499 case 'd': /* fstdw */
3500 case 'e': /* fstenv */
3501 case 's': /* fsts[gw] */
3502 return 3;
3503 }
3504 }
3505 break;
3506 case 'x':
3507 if (mnemonic[2] == 'r' || mnemonic[2] == 's')
3508 return 0; /* fxsave/fxrstor are not really math ops */
3509 break;
3510 }
3511
3512 return 1;
3513 }
3514
3515 /* Build the VEX prefix. */
3516
3517 static void
3518 build_vex_prefix (const insn_template *t)
3519 {
3520 unsigned int register_specifier;
3521 unsigned int implied_prefix;
3522 unsigned int vector_length;
3523 unsigned int w;
3524
3525 /* Check register specifier. */
3526 if (i.vex.register_specifier)
3527 {
3528 register_specifier =
3529 ~register_number (i.vex.register_specifier) & 0xf;
3530 gas_assert ((i.vex.register_specifier->reg_flags & RegVRex) == 0);
3531 }
3532 else
3533 register_specifier = 0xf;
3534
3535 /* Use 2-byte VEX prefix by swapping destination and source operand
3536 if there are more than 1 register operand. */
3537 if (i.reg_operands > 1
3538 && i.vec_encoding != vex_encoding_vex3
3539 && i.dir_encoding == dir_encoding_default
3540 && i.operands == i.reg_operands
3541 && operand_type_equal (&i.types[0], &i.types[i.operands - 1])
3542 && i.tm.opcode_modifier.vexopcode == VEX0F
3543 && (i.tm.opcode_modifier.load || i.tm.opcode_modifier.d)
3544 && i.rex == REX_B)
3545 {
3546 unsigned int xchg = i.operands - 1;
3547 union i386_op temp_op;
3548 i386_operand_type temp_type;
3549
3550 temp_type = i.types[xchg];
3551 i.types[xchg] = i.types[0];
3552 i.types[0] = temp_type;
3553 temp_op = i.op[xchg];
3554 i.op[xchg] = i.op[0];
3555 i.op[0] = temp_op;
3556
3557 gas_assert (i.rm.mode == 3);
3558
3559 i.rex = REX_R;
3560 xchg = i.rm.regmem;
3561 i.rm.regmem = i.rm.reg;
3562 i.rm.reg = xchg;
3563
3564 if (i.tm.opcode_modifier.d)
3565 i.tm.base_opcode ^= (i.tm.base_opcode & 0xee) != 0x6e
3566 ? Opcode_SIMD_FloatD : Opcode_SIMD_IntD;
3567 else /* Use the next insn. */
3568 i.tm = t[1];
3569 }
3570
3571 /* Use 2-byte VEX prefix by swapping commutative source operands if there
3572 are no memory operands and at least 3 register ones. */
3573 if (i.reg_operands >= 3
3574 && i.vec_encoding != vex_encoding_vex3
3575 && i.reg_operands == i.operands - i.imm_operands
3576 && i.tm.opcode_modifier.vex
3577 && i.tm.opcode_modifier.commutative
3578 && (i.tm.opcode_modifier.sse2avx || optimize > 1)
3579 && i.rex == REX_B
3580 && i.vex.register_specifier
3581 && !(i.vex.register_specifier->reg_flags & RegRex))
3582 {
3583 unsigned int xchg = i.operands - i.reg_operands;
3584 union i386_op temp_op;
3585 i386_operand_type temp_type;
3586
3587 gas_assert (i.tm.opcode_modifier.vexopcode == VEX0F);
3588 gas_assert (!i.tm.opcode_modifier.sae);
3589 gas_assert (operand_type_equal (&i.types[i.operands - 2],
3590 &i.types[i.operands - 3]));
3591 gas_assert (i.rm.mode == 3);
3592
3593 temp_type = i.types[xchg];
3594 i.types[xchg] = i.types[xchg + 1];
3595 i.types[xchg + 1] = temp_type;
3596 temp_op = i.op[xchg];
3597 i.op[xchg] = i.op[xchg + 1];
3598 i.op[xchg + 1] = temp_op;
3599
3600 i.rex = 0;
3601 xchg = i.rm.regmem | 8;
3602 i.rm.regmem = ~register_specifier & 0xf;
3603 gas_assert (!(i.rm.regmem & 8));
3604 i.vex.register_specifier += xchg - i.rm.regmem;
3605 register_specifier = ~xchg & 0xf;
3606 }
3607
3608 if (i.tm.opcode_modifier.vex == VEXScalar)
3609 vector_length = avxscalar;
3610 else if (i.tm.opcode_modifier.vex == VEX256)
3611 vector_length = 1;
3612 else
3613 {
3614 unsigned int op;
3615
3616 /* Determine vector length from the last multi-length vector
3617 operand. */
3618 vector_length = 0;
3619 for (op = t->operands; op--;)
3620 if (t->operand_types[op].bitfield.xmmword
3621 && t->operand_types[op].bitfield.ymmword
3622 && i.types[op].bitfield.ymmword)
3623 {
3624 vector_length = 1;
3625 break;
3626 }
3627 }
3628
3629 switch ((i.tm.base_opcode >> 8) & 0xff)
3630 {
3631 case 0:
3632 implied_prefix = 0;
3633 break;
3634 case DATA_PREFIX_OPCODE:
3635 implied_prefix = 1;
3636 break;
3637 case REPE_PREFIX_OPCODE:
3638 implied_prefix = 2;
3639 break;
3640 case REPNE_PREFIX_OPCODE:
3641 implied_prefix = 3;
3642 break;
3643 default:
3644 abort ();
3645 }
3646
3647 /* Check the REX.W bit and VEXW. */
3648 if (i.tm.opcode_modifier.vexw == VEXWIG)
3649 w = (vexwig == vexw1 || (i.rex & REX_W)) ? 1 : 0;
3650 else if (i.tm.opcode_modifier.vexw)
3651 w = i.tm.opcode_modifier.vexw == VEXW1 ? 1 : 0;
3652 else
3653 w = (flag_code == CODE_64BIT ? i.rex & REX_W : vexwig == vexw1) ? 1 : 0;
3654
3655 /* Use 2-byte VEX prefix if possible. */
3656 if (w == 0
3657 && i.vec_encoding != vex_encoding_vex3
3658 && i.tm.opcode_modifier.vexopcode == VEX0F
3659 && (i.rex & (REX_W | REX_X | REX_B)) == 0)
3660 {
3661 /* 2-byte VEX prefix. */
3662 unsigned int r;
3663
3664 i.vex.length = 2;
3665 i.vex.bytes[0] = 0xc5;
3666
3667 /* Check the REX.R bit. */
3668 r = (i.rex & REX_R) ? 0 : 1;
3669 i.vex.bytes[1] = (r << 7
3670 | register_specifier << 3
3671 | vector_length << 2
3672 | implied_prefix);
3673 }
3674 else
3675 {
3676 /* 3-byte VEX prefix. */
3677 unsigned int m;
3678
3679 i.vex.length = 3;
3680
3681 switch (i.tm.opcode_modifier.vexopcode)
3682 {
3683 case VEX0F:
3684 m = 0x1;
3685 i.vex.bytes[0] = 0xc4;
3686 break;
3687 case VEX0F38:
3688 m = 0x2;
3689 i.vex.bytes[0] = 0xc4;
3690 break;
3691 case VEX0F3A:
3692 m = 0x3;
3693 i.vex.bytes[0] = 0xc4;
3694 break;
3695 case XOP08:
3696 m = 0x8;
3697 i.vex.bytes[0] = 0x8f;
3698 break;
3699 case XOP09:
3700 m = 0x9;
3701 i.vex.bytes[0] = 0x8f;
3702 break;
3703 case XOP0A:
3704 m = 0xa;
3705 i.vex.bytes[0] = 0x8f;
3706 break;
3707 default:
3708 abort ();
3709 }
3710
3711 /* The high 3 bits of the second VEX byte are 1's compliment
3712 of RXB bits from REX. */
3713 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3714
3715 i.vex.bytes[2] = (w << 7
3716 | register_specifier << 3
3717 | vector_length << 2
3718 | implied_prefix);
3719 }
3720 }
3721
3722 static INLINE bfd_boolean
3723 is_evex_encoding (const insn_template *t)
3724 {
3725 return t->opcode_modifier.evex || t->opcode_modifier.disp8memshift
3726 || t->opcode_modifier.broadcast || t->opcode_modifier.masking
3727 || t->opcode_modifier.sae;
3728 }
3729
3730 static INLINE bfd_boolean
3731 is_any_vex_encoding (const insn_template *t)
3732 {
3733 return t->opcode_modifier.vex || t->opcode_modifier.vexopcode
3734 || is_evex_encoding (t);
3735 }
3736
3737 /* Build the EVEX prefix. */
3738
3739 static void
3740 build_evex_prefix (void)
3741 {
3742 unsigned int register_specifier;
3743 unsigned int implied_prefix;
3744 unsigned int m, w;
3745 rex_byte vrex_used = 0;
3746
3747 /* Check register specifier. */
3748 if (i.vex.register_specifier)
3749 {
3750 gas_assert ((i.vrex & REX_X) == 0);
3751
3752 register_specifier = i.vex.register_specifier->reg_num;
3753 if ((i.vex.register_specifier->reg_flags & RegRex))
3754 register_specifier += 8;
3755 /* The upper 16 registers are encoded in the fourth byte of the
3756 EVEX prefix. */
3757 if (!(i.vex.register_specifier->reg_flags & RegVRex))
3758 i.vex.bytes[3] = 0x8;
3759 register_specifier = ~register_specifier & 0xf;
3760 }
3761 else
3762 {
3763 register_specifier = 0xf;
3764
3765 /* Encode upper 16 vector index register in the fourth byte of
3766 the EVEX prefix. */
3767 if (!(i.vrex & REX_X))
3768 i.vex.bytes[3] = 0x8;
3769 else
3770 vrex_used |= REX_X;
3771 }
3772
3773 switch ((i.tm.base_opcode >> 8) & 0xff)
3774 {
3775 case 0:
3776 implied_prefix = 0;
3777 break;
3778 case DATA_PREFIX_OPCODE:
3779 implied_prefix = 1;
3780 break;
3781 case REPE_PREFIX_OPCODE:
3782 implied_prefix = 2;
3783 break;
3784 case REPNE_PREFIX_OPCODE:
3785 implied_prefix = 3;
3786 break;
3787 default:
3788 abort ();
3789 }
3790
3791 /* 4 byte EVEX prefix. */
3792 i.vex.length = 4;
3793 i.vex.bytes[0] = 0x62;
3794
3795 /* mmmm bits. */
3796 switch (i.tm.opcode_modifier.vexopcode)
3797 {
3798 case VEX0F:
3799 m = 1;
3800 break;
3801 case VEX0F38:
3802 m = 2;
3803 break;
3804 case VEX0F3A:
3805 m = 3;
3806 break;
3807 default:
3808 abort ();
3809 break;
3810 }
3811
3812 /* The high 3 bits of the second EVEX byte are 1's compliment of RXB
3813 bits from REX. */
3814 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3815
3816 /* The fifth bit of the second EVEX byte is 1's compliment of the
3817 REX_R bit in VREX. */
3818 if (!(i.vrex & REX_R))
3819 i.vex.bytes[1] |= 0x10;
3820 else
3821 vrex_used |= REX_R;
3822
3823 if ((i.reg_operands + i.imm_operands) == i.operands)
3824 {
3825 /* When all operands are registers, the REX_X bit in REX is not
3826 used. We reuse it to encode the upper 16 registers, which is
3827 indicated by the REX_B bit in VREX. The REX_X bit is encoded
3828 as 1's compliment. */
3829 if ((i.vrex & REX_B))
3830 {
3831 vrex_used |= REX_B;
3832 i.vex.bytes[1] &= ~0x40;
3833 }
3834 }
3835
3836 /* EVEX instructions shouldn't need the REX prefix. */
3837 i.vrex &= ~vrex_used;
3838 gas_assert (i.vrex == 0);
3839
3840 /* Check the REX.W bit and VEXW. */
3841 if (i.tm.opcode_modifier.vexw == VEXWIG)
3842 w = (evexwig == evexw1 || (i.rex & REX_W)) ? 1 : 0;
3843 else if (i.tm.opcode_modifier.vexw)
3844 w = i.tm.opcode_modifier.vexw == VEXW1 ? 1 : 0;
3845 else
3846 w = (flag_code == CODE_64BIT ? i.rex & REX_W : evexwig == evexw1) ? 1 : 0;
3847
3848 /* Encode the U bit. */
3849 implied_prefix |= 0x4;
3850
3851 /* The third byte of the EVEX prefix. */
3852 i.vex.bytes[2] = (w << 7 | register_specifier << 3 | implied_prefix);
3853
3854 /* The fourth byte of the EVEX prefix. */
3855 /* The zeroing-masking bit. */
3856 if (i.mask && i.mask->zeroing)
3857 i.vex.bytes[3] |= 0x80;
3858
3859 /* Don't always set the broadcast bit if there is no RC. */
3860 if (!i.rounding)
3861 {
3862 /* Encode the vector length. */
3863 unsigned int vec_length;
3864
3865 if (!i.tm.opcode_modifier.evex
3866 || i.tm.opcode_modifier.evex == EVEXDYN)
3867 {
3868 unsigned int op;
3869
3870 /* Determine vector length from the last multi-length vector
3871 operand. */
3872 vec_length = 0;
3873 for (op = i.operands; op--;)
3874 if (i.tm.operand_types[op].bitfield.xmmword
3875 + i.tm.operand_types[op].bitfield.ymmword
3876 + i.tm.operand_types[op].bitfield.zmmword > 1)
3877 {
3878 if (i.types[op].bitfield.zmmword)
3879 {
3880 i.tm.opcode_modifier.evex = EVEX512;
3881 break;
3882 }
3883 else if (i.types[op].bitfield.ymmword)
3884 {
3885 i.tm.opcode_modifier.evex = EVEX256;
3886 break;
3887 }
3888 else if (i.types[op].bitfield.xmmword)
3889 {
3890 i.tm.opcode_modifier.evex = EVEX128;
3891 break;
3892 }
3893 else if (i.broadcast && (int) op == i.broadcast->operand)
3894 {
3895 switch (i.broadcast->bytes)
3896 {
3897 case 64:
3898 i.tm.opcode_modifier.evex = EVEX512;
3899 break;
3900 case 32:
3901 i.tm.opcode_modifier.evex = EVEX256;
3902 break;
3903 case 16:
3904 i.tm.opcode_modifier.evex = EVEX128;
3905 break;
3906 default:
3907 abort ();
3908 }
3909 break;
3910 }
3911 }
3912
3913 if (op >= MAX_OPERANDS)
3914 abort ();
3915 }
3916
3917 switch (i.tm.opcode_modifier.evex)
3918 {
3919 case EVEXLIG: /* LL' is ignored */
3920 vec_length = evexlig << 5;
3921 break;
3922 case EVEX128:
3923 vec_length = 0 << 5;
3924 break;
3925 case EVEX256:
3926 vec_length = 1 << 5;
3927 break;
3928 case EVEX512:
3929 vec_length = 2 << 5;
3930 break;
3931 default:
3932 abort ();
3933 break;
3934 }
3935 i.vex.bytes[3] |= vec_length;
3936 /* Encode the broadcast bit. */
3937 if (i.broadcast)
3938 i.vex.bytes[3] |= 0x10;
3939 }
3940 else
3941 {
3942 if (i.rounding->type != saeonly)
3943 i.vex.bytes[3] |= 0x10 | (i.rounding->type << 5);
3944 else
3945 i.vex.bytes[3] |= 0x10 | (evexrcig << 5);
3946 }
3947
3948 if (i.mask && i.mask->mask)
3949 i.vex.bytes[3] |= i.mask->mask->reg_num;
3950 }
3951
3952 static void
3953 process_immext (void)
3954 {
3955 expressionS *exp;
3956
3957 /* These AMD 3DNow! and SSE2 instructions have an opcode suffix
3958 which is coded in the same place as an 8-bit immediate field
3959 would be. Here we fake an 8-bit immediate operand from the
3960 opcode suffix stored in tm.extension_opcode.
3961
3962 AVX instructions also use this encoding, for some of
3963 3 argument instructions. */
3964
3965 gas_assert (i.imm_operands <= 1
3966 && (i.operands <= 2
3967 || (is_any_vex_encoding (&i.tm)
3968 && i.operands <= 4)));
3969
3970 exp = &im_expressions[i.imm_operands++];
3971 i.op[i.operands].imms = exp;
3972 i.types[i.operands] = imm8;
3973 i.operands++;
3974 exp->X_op = O_constant;
3975 exp->X_add_number = i.tm.extension_opcode;
3976 i.tm.extension_opcode = None;
3977 }
3978
3979
3980 static int
3981 check_hle (void)
3982 {
3983 switch (i.tm.opcode_modifier.hleprefixok)
3984 {
3985 default:
3986 abort ();
3987 case HLEPrefixNone:
3988 as_bad (_("invalid instruction `%s' after `%s'"),
3989 i.tm.name, i.hle_prefix);
3990 return 0;
3991 case HLEPrefixLock:
3992 if (i.prefix[LOCK_PREFIX])
3993 return 1;
3994 as_bad (_("missing `lock' with `%s'"), i.hle_prefix);
3995 return 0;
3996 case HLEPrefixAny:
3997 return 1;
3998 case HLEPrefixRelease:
3999 if (i.prefix[HLE_PREFIX] != XRELEASE_PREFIX_OPCODE)
4000 {
4001 as_bad (_("instruction `%s' after `xacquire' not allowed"),
4002 i.tm.name);
4003 return 0;
4004 }
4005 if (i.mem_operands == 0 || !(i.flags[i.operands - 1] & Operand_Mem))
4006 {
4007 as_bad (_("memory destination needed for instruction `%s'"
4008 " after `xrelease'"), i.tm.name);
4009 return 0;
4010 }
4011 return 1;
4012 }
4013 }
4014
4015 /* Try the shortest encoding by shortening operand size. */
4016
4017 static void
4018 optimize_encoding (void)
4019 {
4020 unsigned int j;
4021
4022 if (optimize_for_space
4023 && !is_any_vex_encoding (&i.tm)
4024 && i.reg_operands == 1
4025 && i.imm_operands == 1
4026 && !i.types[1].bitfield.byte
4027 && i.op[0].imms->X_op == O_constant
4028 && fits_in_imm7 (i.op[0].imms->X_add_number)
4029 && (i.tm.base_opcode == 0xa8
4030 || (i.tm.base_opcode == 0xf6
4031 && i.tm.extension_opcode == 0x0)))
4032 {
4033 /* Optimize: -Os:
4034 test $imm7, %r64/%r32/%r16 -> test $imm7, %r8
4035 */
4036 unsigned int base_regnum = i.op[1].regs->reg_num;
4037 if (flag_code == CODE_64BIT || base_regnum < 4)
4038 {
4039 i.types[1].bitfield.byte = 1;
4040 /* Ignore the suffix. */
4041 i.suffix = 0;
4042 /* Convert to byte registers. */
4043 if (i.types[1].bitfield.word)
4044 j = 16;
4045 else if (i.types[1].bitfield.dword)
4046 j = 32;
4047 else
4048 j = 48;
4049 if (!(i.op[1].regs->reg_flags & RegRex) && base_regnum < 4)
4050 j += 8;
4051 i.op[1].regs -= j;
4052 }
4053 }
4054 else if (flag_code == CODE_64BIT
4055 && !is_any_vex_encoding (&i.tm)
4056 && ((i.types[1].bitfield.qword
4057 && i.reg_operands == 1
4058 && i.imm_operands == 1
4059 && i.op[0].imms->X_op == O_constant
4060 && ((i.tm.base_opcode == 0xb8
4061 && i.tm.extension_opcode == None
4062 && fits_in_unsigned_long (i.op[0].imms->X_add_number))
4063 || (fits_in_imm31 (i.op[0].imms->X_add_number)
4064 && ((i.tm.base_opcode == 0x24
4065 || i.tm.base_opcode == 0xa8)
4066 || (i.tm.base_opcode == 0x80
4067 && i.tm.extension_opcode == 0x4)
4068 || ((i.tm.base_opcode == 0xf6
4069 || (i.tm.base_opcode | 1) == 0xc7)
4070 && i.tm.extension_opcode == 0x0)))
4071 || (fits_in_imm7 (i.op[0].imms->X_add_number)
4072 && i.tm.base_opcode == 0x83
4073 && i.tm.extension_opcode == 0x4)))
4074 || (i.types[0].bitfield.qword
4075 && ((i.reg_operands == 2
4076 && i.op[0].regs == i.op[1].regs
4077 && (i.tm.base_opcode == 0x30
4078 || i.tm.base_opcode == 0x28))
4079 || (i.reg_operands == 1
4080 && i.operands == 1
4081 && i.tm.base_opcode == 0x30)))))
4082 {
4083 /* Optimize: -O:
4084 andq $imm31, %r64 -> andl $imm31, %r32
4085 andq $imm7, %r64 -> andl $imm7, %r32
4086 testq $imm31, %r64 -> testl $imm31, %r32
4087 xorq %r64, %r64 -> xorl %r32, %r32
4088 subq %r64, %r64 -> subl %r32, %r32
4089 movq $imm31, %r64 -> movl $imm31, %r32
4090 movq $imm32, %r64 -> movl $imm32, %r32
4091 */
4092 i.tm.opcode_modifier.norex64 = 1;
4093 if (i.tm.base_opcode == 0xb8 || (i.tm.base_opcode | 1) == 0xc7)
4094 {
4095 /* Handle
4096 movq $imm31, %r64 -> movl $imm31, %r32
4097 movq $imm32, %r64 -> movl $imm32, %r32
4098 */
4099 i.tm.operand_types[0].bitfield.imm32 = 1;
4100 i.tm.operand_types[0].bitfield.imm32s = 0;
4101 i.tm.operand_types[0].bitfield.imm64 = 0;
4102 i.types[0].bitfield.imm32 = 1;
4103 i.types[0].bitfield.imm32s = 0;
4104 i.types[0].bitfield.imm64 = 0;
4105 i.types[1].bitfield.dword = 1;
4106 i.types[1].bitfield.qword = 0;
4107 if ((i.tm.base_opcode | 1) == 0xc7)
4108 {
4109 /* Handle
4110 movq $imm31, %r64 -> movl $imm31, %r32
4111 */
4112 i.tm.base_opcode = 0xb8;
4113 i.tm.extension_opcode = None;
4114 i.tm.opcode_modifier.w = 0;
4115 i.tm.opcode_modifier.modrm = 0;
4116 }
4117 }
4118 }
4119 else if (optimize > 1
4120 && !optimize_for_space
4121 && !is_any_vex_encoding (&i.tm)
4122 && i.reg_operands == 2
4123 && i.op[0].regs == i.op[1].regs
4124 && ((i.tm.base_opcode & ~(Opcode_D | 1)) == 0x8
4125 || (i.tm.base_opcode & ~(Opcode_D | 1)) == 0x20)
4126 && (flag_code != CODE_64BIT || !i.types[0].bitfield.dword))
4127 {
4128 /* Optimize: -O2:
4129 andb %rN, %rN -> testb %rN, %rN
4130 andw %rN, %rN -> testw %rN, %rN
4131 andq %rN, %rN -> testq %rN, %rN
4132 orb %rN, %rN -> testb %rN, %rN
4133 orw %rN, %rN -> testw %rN, %rN
4134 orq %rN, %rN -> testq %rN, %rN
4135
4136 and outside of 64-bit mode
4137
4138 andl %rN, %rN -> testl %rN, %rN
4139 orl %rN, %rN -> testl %rN, %rN
4140 */
4141 i.tm.base_opcode = 0x84 | (i.tm.base_opcode & 1);
4142 }
4143 else if (i.reg_operands == 3
4144 && i.op[0].regs == i.op[1].regs
4145 && !i.types[2].bitfield.xmmword
4146 && (i.tm.opcode_modifier.vex
4147 || ((!i.mask || i.mask->zeroing)
4148 && !i.rounding
4149 && is_evex_encoding (&i.tm)
4150 && (i.vec_encoding != vex_encoding_evex
4151 || cpu_arch_isa_flags.bitfield.cpuavx512vl
4152 || i.tm.cpu_flags.bitfield.cpuavx512vl
4153 || (i.tm.operand_types[2].bitfield.zmmword
4154 && i.types[2].bitfield.ymmword))))
4155 && ((i.tm.base_opcode == 0x55
4156 || i.tm.base_opcode == 0x6655
4157 || i.tm.base_opcode == 0x66df
4158 || i.tm.base_opcode == 0x57
4159 || i.tm.base_opcode == 0x6657
4160 || i.tm.base_opcode == 0x66ef
4161 || i.tm.base_opcode == 0x66f8
4162 || i.tm.base_opcode == 0x66f9
4163 || i.tm.base_opcode == 0x66fa
4164 || i.tm.base_opcode == 0x66fb
4165 || i.tm.base_opcode == 0x42
4166 || i.tm.base_opcode == 0x6642
4167 || i.tm.base_opcode == 0x47
4168 || i.tm.base_opcode == 0x6647)
4169 && i.tm.extension_opcode == None))
4170 {
4171 /* Optimize: -O1:
4172 VOP, one of vandnps, vandnpd, vxorps, vxorpd, vpsubb, vpsubd,
4173 vpsubq and vpsubw:
4174 EVEX VOP %zmmM, %zmmM, %zmmN
4175 -> VEX VOP %xmmM, %xmmM, %xmmN (M and N < 16)
4176 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
4177 EVEX VOP %ymmM, %ymmM, %ymmN
4178 -> VEX VOP %xmmM, %xmmM, %xmmN (M and N < 16)
4179 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
4180 VEX VOP %ymmM, %ymmM, %ymmN
4181 -> VEX VOP %xmmM, %xmmM, %xmmN
4182 VOP, one of vpandn and vpxor:
4183 VEX VOP %ymmM, %ymmM, %ymmN
4184 -> VEX VOP %xmmM, %xmmM, %xmmN
4185 VOP, one of vpandnd and vpandnq:
4186 EVEX VOP %zmmM, %zmmM, %zmmN
4187 -> VEX vpandn %xmmM, %xmmM, %xmmN (M and N < 16)
4188 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
4189 EVEX VOP %ymmM, %ymmM, %ymmN
4190 -> VEX vpandn %xmmM, %xmmM, %xmmN (M and N < 16)
4191 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
4192 VOP, one of vpxord and vpxorq:
4193 EVEX VOP %zmmM, %zmmM, %zmmN
4194 -> VEX vpxor %xmmM, %xmmM, %xmmN (M and N < 16)
4195 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
4196 EVEX VOP %ymmM, %ymmM, %ymmN
4197 -> VEX vpxor %xmmM, %xmmM, %xmmN (M and N < 16)
4198 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
4199 VOP, one of kxord and kxorq:
4200 VEX VOP %kM, %kM, %kN
4201 -> VEX kxorw %kM, %kM, %kN
4202 VOP, one of kandnd and kandnq:
4203 VEX VOP %kM, %kM, %kN
4204 -> VEX kandnw %kM, %kM, %kN
4205 */
4206 if (is_evex_encoding (&i.tm))
4207 {
4208 if (i.vec_encoding != vex_encoding_evex)
4209 {
4210 i.tm.opcode_modifier.vex = VEX128;
4211 i.tm.opcode_modifier.vexw = VEXW0;
4212 i.tm.opcode_modifier.evex = 0;
4213 }
4214 else if (optimize > 1)
4215 i.tm.opcode_modifier.evex = EVEX128;
4216 else
4217 return;
4218 }
4219 else if (i.tm.operand_types[0].bitfield.class == RegMask)
4220 {
4221 i.tm.base_opcode &= 0xff;
4222 i.tm.opcode_modifier.vexw = VEXW0;
4223 }
4224 else
4225 i.tm.opcode_modifier.vex = VEX128;
4226
4227 if (i.tm.opcode_modifier.vex)
4228 for (j = 0; j < 3; j++)
4229 {
4230 i.types[j].bitfield.xmmword = 1;
4231 i.types[j].bitfield.ymmword = 0;
4232 }
4233 }
4234 else if (i.vec_encoding != vex_encoding_evex
4235 && !i.types[0].bitfield.zmmword
4236 && !i.types[1].bitfield.zmmword
4237 && !i.mask
4238 && !i.broadcast
4239 && is_evex_encoding (&i.tm)
4240 && ((i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0x666f
4241 || (i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0xf36f
4242 || (i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0xf26f
4243 || (i.tm.base_opcode & ~4) == 0x66db
4244 || (i.tm.base_opcode & ~4) == 0x66eb)
4245 && i.tm.extension_opcode == None)
4246 {
4247 /* Optimize: -O1:
4248 VOP, one of vmovdqa32, vmovdqa64, vmovdqu8, vmovdqu16,
4249 vmovdqu32 and vmovdqu64:
4250 EVEX VOP %xmmM, %xmmN
4251 -> VEX vmovdqa|vmovdqu %xmmM, %xmmN (M and N < 16)
4252 EVEX VOP %ymmM, %ymmN
4253 -> VEX vmovdqa|vmovdqu %ymmM, %ymmN (M and N < 16)
4254 EVEX VOP %xmmM, mem
4255 -> VEX vmovdqa|vmovdqu %xmmM, mem (M < 16)
4256 EVEX VOP %ymmM, mem
4257 -> VEX vmovdqa|vmovdqu %ymmM, mem (M < 16)
4258 EVEX VOP mem, %xmmN
4259 -> VEX mvmovdqa|vmovdquem, %xmmN (N < 16)
4260 EVEX VOP mem, %ymmN
4261 -> VEX vmovdqa|vmovdqu mem, %ymmN (N < 16)
4262 VOP, one of vpand, vpandn, vpor, vpxor:
4263 EVEX VOP{d,q} %xmmL, %xmmM, %xmmN
4264 -> VEX VOP %xmmL, %xmmM, %xmmN (L, M, and N < 16)
4265 EVEX VOP{d,q} %ymmL, %ymmM, %ymmN
4266 -> VEX VOP %ymmL, %ymmM, %ymmN (L, M, and N < 16)
4267 EVEX VOP{d,q} mem, %xmmM, %xmmN
4268 -> VEX VOP mem, %xmmM, %xmmN (M and N < 16)
4269 EVEX VOP{d,q} mem, %ymmM, %ymmN
4270 -> VEX VOP mem, %ymmM, %ymmN (M and N < 16)
4271 */
4272 for (j = 0; j < i.operands; j++)
4273 if (operand_type_check (i.types[j], disp)
4274 && i.op[j].disps->X_op == O_constant)
4275 {
4276 /* Since the VEX prefix has 2 or 3 bytes, the EVEX prefix
4277 has 4 bytes, EVEX Disp8 has 1 byte and VEX Disp32 has 4
4278 bytes, we choose EVEX Disp8 over VEX Disp32. */
4279 int evex_disp8, vex_disp8;
4280 unsigned int memshift = i.memshift;
4281 offsetT n = i.op[j].disps->X_add_number;
4282
4283 evex_disp8 = fits_in_disp8 (n);
4284 i.memshift = 0;
4285 vex_disp8 = fits_in_disp8 (n);
4286 if (evex_disp8 != vex_disp8)
4287 {
4288 i.memshift = memshift;
4289 return;
4290 }
4291
4292 i.types[j].bitfield.disp8 = vex_disp8;
4293 break;
4294 }
4295 if ((i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0xf26f)
4296 i.tm.base_opcode ^= 0xf36f ^ 0xf26f;
4297 i.tm.opcode_modifier.vex
4298 = i.types[0].bitfield.ymmword ? VEX256 : VEX128;
4299 i.tm.opcode_modifier.vexw = VEXW0;
4300 /* VPAND, VPOR, and VPXOR are commutative. */
4301 if (i.reg_operands == 3 && i.tm.base_opcode != 0x66df)
4302 i.tm.opcode_modifier.commutative = 1;
4303 i.tm.opcode_modifier.evex = 0;
4304 i.tm.opcode_modifier.masking = 0;
4305 i.tm.opcode_modifier.broadcast = 0;
4306 i.tm.opcode_modifier.disp8memshift = 0;
4307 i.memshift = 0;
4308 if (j < i.operands)
4309 i.types[j].bitfield.disp8
4310 = fits_in_disp8 (i.op[j].disps->X_add_number);
4311 }
4312 }
4313
4314 /* This is the guts of the machine-dependent assembler. LINE points to a
4315 machine dependent instruction. This function is supposed to emit
4316 the frags/bytes it assembles to. */
4317
4318 void
4319 md_assemble (char *line)
4320 {
4321 unsigned int j;
4322 char mnemonic[MAX_MNEM_SIZE], mnem_suffix;
4323 const insn_template *t;
4324
4325 /* Initialize globals. */
4326 memset (&i, '\0', sizeof (i));
4327 for (j = 0; j < MAX_OPERANDS; j++)
4328 i.reloc[j] = NO_RELOC;
4329 memset (disp_expressions, '\0', sizeof (disp_expressions));
4330 memset (im_expressions, '\0', sizeof (im_expressions));
4331 save_stack_p = save_stack;
4332
4333 /* First parse an instruction mnemonic & call i386_operand for the operands.
4334 We assume that the scrubber has arranged it so that line[0] is the valid
4335 start of a (possibly prefixed) mnemonic. */
4336
4337 line = parse_insn (line, mnemonic);
4338 if (line == NULL)
4339 return;
4340 mnem_suffix = i.suffix;
4341
4342 line = parse_operands (line, mnemonic);
4343 this_operand = -1;
4344 xfree (i.memop1_string);
4345 i.memop1_string = NULL;
4346 if (line == NULL)
4347 return;
4348
4349 /* Now we've parsed the mnemonic into a set of templates, and have the
4350 operands at hand. */
4351
4352 /* All Intel opcodes have reversed operands except for "bound", "enter"
4353 "monitor*", and "mwait*". We also don't reverse intersegment "jmp"
4354 and "call" instructions with 2 immediate operands so that the immediate
4355 segment precedes the offset, as it does when in AT&T mode. */
4356 if (intel_syntax
4357 && i.operands > 1
4358 && (strcmp (mnemonic, "bound") != 0)
4359 && (strcmp (mnemonic, "invlpga") != 0)
4360 && (strncmp (mnemonic, "monitor", 7) != 0)
4361 && (strncmp (mnemonic, "mwait", 5) != 0)
4362 && !(operand_type_check (i.types[0], imm)
4363 && operand_type_check (i.types[1], imm)))
4364 swap_operands ();
4365
4366 /* The order of the immediates should be reversed
4367 for 2 immediates extrq and insertq instructions */
4368 if (i.imm_operands == 2
4369 && (strcmp (mnemonic, "extrq") == 0
4370 || strcmp (mnemonic, "insertq") == 0))
4371 swap_2_operands (0, 1);
4372
4373 if (i.imm_operands)
4374 optimize_imm ();
4375
4376 /* Don't optimize displacement for movabs since it only takes 64bit
4377 displacement. */
4378 if (i.disp_operands
4379 && i.disp_encoding != disp_encoding_32bit
4380 && (flag_code != CODE_64BIT
4381 || strcmp (mnemonic, "movabs") != 0))
4382 optimize_disp ();
4383
4384 /* Next, we find a template that matches the given insn,
4385 making sure the overlap of the given operands types is consistent
4386 with the template operand types. */
4387
4388 if (!(t = match_template (mnem_suffix)))
4389 return;
4390
4391 if (sse_check != check_none
4392 && !i.tm.opcode_modifier.noavx
4393 && !i.tm.cpu_flags.bitfield.cpuavx
4394 && !i.tm.cpu_flags.bitfield.cpuavx512f
4395 && (i.tm.cpu_flags.bitfield.cpusse
4396 || i.tm.cpu_flags.bitfield.cpusse2
4397 || i.tm.cpu_flags.bitfield.cpusse3
4398 || i.tm.cpu_flags.bitfield.cpussse3
4399 || i.tm.cpu_flags.bitfield.cpusse4_1
4400 || i.tm.cpu_flags.bitfield.cpusse4_2
4401 || i.tm.cpu_flags.bitfield.cpusse4a
4402 || i.tm.cpu_flags.bitfield.cpupclmul
4403 || i.tm.cpu_flags.bitfield.cpuaes
4404 || i.tm.cpu_flags.bitfield.cpusha
4405 || i.tm.cpu_flags.bitfield.cpugfni))
4406 {
4407 (sse_check == check_warning
4408 ? as_warn
4409 : as_bad) (_("SSE instruction `%s' is used"), i.tm.name);
4410 }
4411
4412 if (i.tm.opcode_modifier.fwait)
4413 if (!add_prefix (FWAIT_OPCODE))
4414 return;
4415
4416 /* Check if REP prefix is OK. */
4417 if (i.rep_prefix && !i.tm.opcode_modifier.repprefixok)
4418 {
4419 as_bad (_("invalid instruction `%s' after `%s'"),
4420 i.tm.name, i.rep_prefix);
4421 return;
4422 }
4423
4424 /* Check for lock without a lockable instruction. Destination operand
4425 must be memory unless it is xchg (0x86). */
4426 if (i.prefix[LOCK_PREFIX]
4427 && (!i.tm.opcode_modifier.islockable
4428 || i.mem_operands == 0
4429 || (i.tm.base_opcode != 0x86
4430 && !(i.flags[i.operands - 1] & Operand_Mem))))
4431 {
4432 as_bad (_("expecting lockable instruction after `lock'"));
4433 return;
4434 }
4435
4436 /* Check for data size prefix on VEX/XOP/EVEX encoded insns. */
4437 if (i.prefix[DATA_PREFIX] && is_any_vex_encoding (&i.tm))
4438 {
4439 as_bad (_("data size prefix invalid with `%s'"), i.tm.name);
4440 return;
4441 }
4442
4443 /* Check if HLE prefix is OK. */
4444 if (i.hle_prefix && !check_hle ())
4445 return;
4446
4447 /* Check BND prefix. */
4448 if (i.bnd_prefix && !i.tm.opcode_modifier.bndprefixok)
4449 as_bad (_("expecting valid branch instruction after `bnd'"));
4450
4451 /* Check NOTRACK prefix. */
4452 if (i.notrack_prefix && !i.tm.opcode_modifier.notrackprefixok)
4453 as_bad (_("expecting indirect branch instruction after `notrack'"));
4454
4455 if (i.tm.cpu_flags.bitfield.cpumpx)
4456 {
4457 if (flag_code == CODE_64BIT && i.prefix[ADDR_PREFIX])
4458 as_bad (_("32-bit address isn't allowed in 64-bit MPX instructions."));
4459 else if (flag_code != CODE_16BIT
4460 ? i.prefix[ADDR_PREFIX]
4461 : i.mem_operands && !i.prefix[ADDR_PREFIX])
4462 as_bad (_("16-bit address isn't allowed in MPX instructions"));
4463 }
4464
4465 /* Insert BND prefix. */
4466 if (add_bnd_prefix && i.tm.opcode_modifier.bndprefixok)
4467 {
4468 if (!i.prefix[BND_PREFIX])
4469 add_prefix (BND_PREFIX_OPCODE);
4470 else if (i.prefix[BND_PREFIX] != BND_PREFIX_OPCODE)
4471 {
4472 as_warn (_("replacing `rep'/`repe' prefix by `bnd'"));
4473 i.prefix[BND_PREFIX] = BND_PREFIX_OPCODE;
4474 }
4475 }
4476
4477 /* Check string instruction segment overrides. */
4478 if (i.tm.opcode_modifier.isstring >= IS_STRING_ES_OP0)
4479 {
4480 gas_assert (i.mem_operands);
4481 if (!check_string ())
4482 return;
4483 i.disp_operands = 0;
4484 }
4485
4486 if (optimize && !i.no_optimize && i.tm.opcode_modifier.optimize)
4487 optimize_encoding ();
4488
4489 if (!process_suffix ())
4490 return;
4491
4492 /* Update operand types. */
4493 for (j = 0; j < i.operands; j++)
4494 i.types[j] = operand_type_and (i.types[j], i.tm.operand_types[j]);
4495
4496 /* Make still unresolved immediate matches conform to size of immediate
4497 given in i.suffix. */
4498 if (!finalize_imm ())
4499 return;
4500
4501 if (i.types[0].bitfield.imm1)
4502 i.imm_operands = 0; /* kludge for shift insns. */
4503
4504 /* We only need to check those implicit registers for instructions
4505 with 3 operands or less. */
4506 if (i.operands <= 3)
4507 for (j = 0; j < i.operands; j++)
4508 if (i.types[j].bitfield.instance != InstanceNone
4509 && !i.types[j].bitfield.xmmword)
4510 i.reg_operands--;
4511
4512 /* ImmExt should be processed after SSE2AVX. */
4513 if (!i.tm.opcode_modifier.sse2avx
4514 && i.tm.opcode_modifier.immext)
4515 process_immext ();
4516
4517 /* For insns with operands there are more diddles to do to the opcode. */
4518 if (i.operands)
4519 {
4520 if (!process_operands ())
4521 return;
4522 }
4523 else if (!quiet_warnings && i.tm.opcode_modifier.ugh)
4524 {
4525 /* UnixWare fsub no args is alias for fsubp, fadd -> faddp, etc. */
4526 as_warn (_("translating to `%sp'"), i.tm.name);
4527 }
4528
4529 if (is_any_vex_encoding (&i.tm))
4530 {
4531 if (!cpu_arch_flags.bitfield.cpui286)
4532 {
4533 as_bad (_("instruction `%s' isn't supported outside of protected mode."),
4534 i.tm.name);
4535 return;
4536 }
4537
4538 if (i.tm.opcode_modifier.vex)
4539 build_vex_prefix (t);
4540 else
4541 build_evex_prefix ();
4542 }
4543
4544 /* Handle conversion of 'int $3' --> special int3 insn. XOP or FMA4
4545 instructions may define INT_OPCODE as well, so avoid this corner
4546 case for those instructions that use MODRM. */
4547 if (i.tm.base_opcode == INT_OPCODE
4548 && !i.tm.opcode_modifier.modrm
4549 && i.op[0].imms->X_add_number == 3)
4550 {
4551 i.tm.base_opcode = INT3_OPCODE;
4552 i.imm_operands = 0;
4553 }
4554
4555 if ((i.tm.opcode_modifier.jump == JUMP
4556 || i.tm.opcode_modifier.jump == JUMP_BYTE
4557 || i.tm.opcode_modifier.jump == JUMP_DWORD)
4558 && i.op[0].disps->X_op == O_constant)
4559 {
4560 /* Convert "jmp constant" (and "call constant") to a jump (call) to
4561 the absolute address given by the constant. Since ix86 jumps and
4562 calls are pc relative, we need to generate a reloc. */
4563 i.op[0].disps->X_add_symbol = &abs_symbol;
4564 i.op[0].disps->X_op = O_symbol;
4565 }
4566
4567 if (i.tm.opcode_modifier.rex64)
4568 i.rex |= REX_W;
4569
4570 /* For 8 bit registers we need an empty rex prefix. Also if the
4571 instruction already has a prefix, we need to convert old
4572 registers to new ones. */
4573
4574 if ((i.types[0].bitfield.class == Reg && i.types[0].bitfield.byte
4575 && (i.op[0].regs->reg_flags & RegRex64) != 0)
4576 || (i.types[1].bitfield.class == Reg && i.types[1].bitfield.byte
4577 && (i.op[1].regs->reg_flags & RegRex64) != 0)
4578 || (((i.types[0].bitfield.class == Reg && i.types[0].bitfield.byte)
4579 || (i.types[1].bitfield.class == Reg && i.types[1].bitfield.byte))
4580 && i.rex != 0))
4581 {
4582 int x;
4583
4584 i.rex |= REX_OPCODE;
4585 for (x = 0; x < 2; x++)
4586 {
4587 /* Look for 8 bit operand that uses old registers. */
4588 if (i.types[x].bitfield.class == Reg && i.types[x].bitfield.byte
4589 && (i.op[x].regs->reg_flags & RegRex64) == 0)
4590 {
4591 gas_assert (!(i.op[x].regs->reg_flags & RegRex));
4592 /* In case it is "hi" register, give up. */
4593 if (i.op[x].regs->reg_num > 3)
4594 as_bad (_("can't encode register '%s%s' in an "
4595 "instruction requiring REX prefix."),
4596 register_prefix, i.op[x].regs->reg_name);
4597
4598 /* Otherwise it is equivalent to the extended register.
4599 Since the encoding doesn't change this is merely
4600 cosmetic cleanup for debug output. */
4601
4602 i.op[x].regs = i.op[x].regs + 8;
4603 }
4604 }
4605 }
4606
4607 if (i.rex == 0 && i.rex_encoding)
4608 {
4609 /* Check if we can add a REX_OPCODE byte. Look for 8 bit operand
4610 that uses legacy register. If it is "hi" register, don't add
4611 the REX_OPCODE byte. */
4612 int x;
4613 for (x = 0; x < 2; x++)
4614 if (i.types[x].bitfield.class == Reg
4615 && i.types[x].bitfield.byte
4616 && (i.op[x].regs->reg_flags & RegRex64) == 0
4617 && i.op[x].regs->reg_num > 3)
4618 {
4619 gas_assert (!(i.op[x].regs->reg_flags & RegRex));
4620 i.rex_encoding = FALSE;
4621 break;
4622 }
4623
4624 if (i.rex_encoding)
4625 i.rex = REX_OPCODE;
4626 }
4627
4628 if (i.rex != 0)
4629 add_prefix (REX_OPCODE | i.rex);
4630
4631 /* We are ready to output the insn. */
4632 output_insn ();
4633
4634 last_insn.seg = now_seg;
4635
4636 if (i.tm.opcode_modifier.isprefix)
4637 {
4638 last_insn.kind = last_insn_prefix;
4639 last_insn.name = i.tm.name;
4640 last_insn.file = as_where (&last_insn.line);
4641 }
4642 else
4643 last_insn.kind = last_insn_other;
4644 }
4645
4646 static char *
4647 parse_insn (char *line, char *mnemonic)
4648 {
4649 char *l = line;
4650 char *token_start = l;
4651 char *mnem_p;
4652 int supported;
4653 const insn_template *t;
4654 char *dot_p = NULL;
4655
4656 while (1)
4657 {
4658 mnem_p = mnemonic;
4659 while ((*mnem_p = mnemonic_chars[(unsigned char) *l]) != 0)
4660 {
4661 if (*mnem_p == '.')
4662 dot_p = mnem_p;
4663 mnem_p++;
4664 if (mnem_p >= mnemonic + MAX_MNEM_SIZE)
4665 {
4666 as_bad (_("no such instruction: `%s'"), token_start);
4667 return NULL;
4668 }
4669 l++;
4670 }
4671 if (!is_space_char (*l)
4672 && *l != END_OF_INSN
4673 && (intel_syntax
4674 || (*l != PREFIX_SEPARATOR
4675 && *l != ',')))
4676 {
4677 as_bad (_("invalid character %s in mnemonic"),
4678 output_invalid (*l));
4679 return NULL;
4680 }
4681 if (token_start == l)
4682 {
4683 if (!intel_syntax && *l == PREFIX_SEPARATOR)
4684 as_bad (_("expecting prefix; got nothing"));
4685 else
4686 as_bad (_("expecting mnemonic; got nothing"));
4687 return NULL;
4688 }
4689
4690 /* Look up instruction (or prefix) via hash table. */
4691 current_templates = (const templates *) hash_find (op_hash, mnemonic);
4692
4693 if (*l != END_OF_INSN
4694 && (!is_space_char (*l) || l[1] != END_OF_INSN)
4695 && current_templates
4696 && current_templates->start->opcode_modifier.isprefix)
4697 {
4698 if (!cpu_flags_check_cpu64 (current_templates->start->cpu_flags))
4699 {
4700 as_bad ((flag_code != CODE_64BIT
4701 ? _("`%s' is only supported in 64-bit mode")
4702 : _("`%s' is not supported in 64-bit mode")),
4703 current_templates->start->name);
4704 return NULL;
4705 }
4706 /* If we are in 16-bit mode, do not allow addr16 or data16.
4707 Similarly, in 32-bit mode, do not allow addr32 or data32. */
4708 if ((current_templates->start->opcode_modifier.size == SIZE16
4709 || current_templates->start->opcode_modifier.size == SIZE32)
4710 && flag_code != CODE_64BIT
4711 && ((current_templates->start->opcode_modifier.size == SIZE32)
4712 ^ (flag_code == CODE_16BIT)))
4713 {
4714 as_bad (_("redundant %s prefix"),
4715 current_templates->start->name);
4716 return NULL;
4717 }
4718 if (current_templates->start->opcode_length == 0)
4719 {
4720 /* Handle pseudo prefixes. */
4721 switch (current_templates->start->base_opcode)
4722 {
4723 case 0x0:
4724 /* {disp8} */
4725 i.disp_encoding = disp_encoding_8bit;
4726 break;
4727 case 0x1:
4728 /* {disp32} */
4729 i.disp_encoding = disp_encoding_32bit;
4730 break;
4731 case 0x2:
4732 /* {load} */
4733 i.dir_encoding = dir_encoding_load;
4734 break;
4735 case 0x3:
4736 /* {store} */
4737 i.dir_encoding = dir_encoding_store;
4738 break;
4739 case 0x4:
4740 /* {vex} */
4741 i.vec_encoding = vex_encoding_vex;
4742 break;
4743 case 0x5:
4744 /* {vex3} */
4745 i.vec_encoding = vex_encoding_vex3;
4746 break;
4747 case 0x6:
4748 /* {evex} */
4749 i.vec_encoding = vex_encoding_evex;
4750 break;
4751 case 0x7:
4752 /* {rex} */
4753 i.rex_encoding = TRUE;
4754 break;
4755 case 0x8:
4756 /* {nooptimize} */
4757 i.no_optimize = TRUE;
4758 break;
4759 default:
4760 abort ();
4761 }
4762 }
4763 else
4764 {
4765 /* Add prefix, checking for repeated prefixes. */
4766 switch (add_prefix (current_templates->start->base_opcode))
4767 {
4768 case PREFIX_EXIST:
4769 return NULL;
4770 case PREFIX_DS:
4771 if (current_templates->start->cpu_flags.bitfield.cpuibt)
4772 i.notrack_prefix = current_templates->start->name;
4773 break;
4774 case PREFIX_REP:
4775 if (current_templates->start->cpu_flags.bitfield.cpuhle)
4776 i.hle_prefix = current_templates->start->name;
4777 else if (current_templates->start->cpu_flags.bitfield.cpumpx)
4778 i.bnd_prefix = current_templates->start->name;
4779 else
4780 i.rep_prefix = current_templates->start->name;
4781 break;
4782 default:
4783 break;
4784 }
4785 }
4786 /* Skip past PREFIX_SEPARATOR and reset token_start. */
4787 token_start = ++l;
4788 }
4789 else
4790 break;
4791 }
4792
4793 if (!current_templates)
4794 {
4795 /* Deprecated functionality (new code should use pseudo-prefixes instead):
4796 Check if we should swap operand or force 32bit displacement in
4797 encoding. */
4798 if (mnem_p - 2 == dot_p && dot_p[1] == 's')
4799 i.dir_encoding = dir_encoding_swap;
4800 else if (mnem_p - 3 == dot_p
4801 && dot_p[1] == 'd'
4802 && dot_p[2] == '8')
4803 i.disp_encoding = disp_encoding_8bit;
4804 else if (mnem_p - 4 == dot_p
4805 && dot_p[1] == 'd'
4806 && dot_p[2] == '3'
4807 && dot_p[3] == '2')
4808 i.disp_encoding = disp_encoding_32bit;
4809 else
4810 goto check_suffix;
4811 mnem_p = dot_p;
4812 *dot_p = '\0';
4813 current_templates = (const templates *) hash_find (op_hash, mnemonic);
4814 }
4815
4816 if (!current_templates)
4817 {
4818 check_suffix:
4819 if (mnem_p > mnemonic)
4820 {
4821 /* See if we can get a match by trimming off a suffix. */
4822 switch (mnem_p[-1])
4823 {
4824 case WORD_MNEM_SUFFIX:
4825 if (intel_syntax && (intel_float_operand (mnemonic) & 2))
4826 i.suffix = SHORT_MNEM_SUFFIX;
4827 else
4828 /* Fall through. */
4829 case BYTE_MNEM_SUFFIX:
4830 case QWORD_MNEM_SUFFIX:
4831 i.suffix = mnem_p[-1];
4832 mnem_p[-1] = '\0';
4833 current_templates = (const templates *) hash_find (op_hash,
4834 mnemonic);
4835 break;
4836 case SHORT_MNEM_SUFFIX:
4837 case LONG_MNEM_SUFFIX:
4838 if (!intel_syntax)
4839 {
4840 i.suffix = mnem_p[-1];
4841 mnem_p[-1] = '\0';
4842 current_templates = (const templates *) hash_find (op_hash,
4843 mnemonic);
4844 }
4845 break;
4846
4847 /* Intel Syntax. */
4848 case 'd':
4849 if (intel_syntax)
4850 {
4851 if (intel_float_operand (mnemonic) == 1)
4852 i.suffix = SHORT_MNEM_SUFFIX;
4853 else
4854 i.suffix = LONG_MNEM_SUFFIX;
4855 mnem_p[-1] = '\0';
4856 current_templates = (const templates *) hash_find (op_hash,
4857 mnemonic);
4858 }
4859 break;
4860 }
4861 }
4862
4863 if (!current_templates)
4864 {
4865 as_bad (_("no such instruction: `%s'"), token_start);
4866 return NULL;
4867 }
4868 }
4869
4870 if (current_templates->start->opcode_modifier.jump == JUMP
4871 || current_templates->start->opcode_modifier.jump == JUMP_BYTE)
4872 {
4873 /* Check for a branch hint. We allow ",pt" and ",pn" for
4874 predict taken and predict not taken respectively.
4875 I'm not sure that branch hints actually do anything on loop
4876 and jcxz insns (JumpByte) for current Pentium4 chips. They
4877 may work in the future and it doesn't hurt to accept them
4878 now. */
4879 if (l[0] == ',' && l[1] == 'p')
4880 {
4881 if (l[2] == 't')
4882 {
4883 if (!add_prefix (DS_PREFIX_OPCODE))
4884 return NULL;
4885 l += 3;
4886 }
4887 else if (l[2] == 'n')
4888 {
4889 if (!add_prefix (CS_PREFIX_OPCODE))
4890 return NULL;
4891 l += 3;
4892 }
4893 }
4894 }
4895 /* Any other comma loses. */
4896 if (*l == ',')
4897 {
4898 as_bad (_("invalid character %s in mnemonic"),
4899 output_invalid (*l));
4900 return NULL;
4901 }
4902
4903 /* Check if instruction is supported on specified architecture. */
4904 supported = 0;
4905 for (t = current_templates->start; t < current_templates->end; ++t)
4906 {
4907 supported |= cpu_flags_match (t);
4908 if (supported == CPU_FLAGS_PERFECT_MATCH)
4909 {
4910 if (!cpu_arch_flags.bitfield.cpui386 && (flag_code != CODE_16BIT))
4911 as_warn (_("use .code16 to ensure correct addressing mode"));
4912
4913 return l;
4914 }
4915 }
4916
4917 if (!(supported & CPU_FLAGS_64BIT_MATCH))
4918 as_bad (flag_code == CODE_64BIT
4919 ? _("`%s' is not supported in 64-bit mode")
4920 : _("`%s' is only supported in 64-bit mode"),
4921 current_templates->start->name);
4922 else
4923 as_bad (_("`%s' is not supported on `%s%s'"),
4924 current_templates->start->name,
4925 cpu_arch_name ? cpu_arch_name : default_arch,
4926 cpu_sub_arch_name ? cpu_sub_arch_name : "");
4927
4928 return NULL;
4929 }
4930
4931 static char *
4932 parse_operands (char *l, const char *mnemonic)
4933 {
4934 char *token_start;
4935
4936 /* 1 if operand is pending after ','. */
4937 unsigned int expecting_operand = 0;
4938
4939 /* Non-zero if operand parens not balanced. */
4940 unsigned int paren_not_balanced;
4941
4942 while (*l != END_OF_INSN)
4943 {
4944 /* Skip optional white space before operand. */
4945 if (is_space_char (*l))
4946 ++l;
4947 if (!is_operand_char (*l) && *l != END_OF_INSN && *l != '"')
4948 {
4949 as_bad (_("invalid character %s before operand %d"),
4950 output_invalid (*l),
4951 i.operands + 1);
4952 return NULL;
4953 }
4954 token_start = l; /* After white space. */
4955 paren_not_balanced = 0;
4956 while (paren_not_balanced || *l != ',')
4957 {
4958 if (*l == END_OF_INSN)
4959 {
4960 if (paren_not_balanced)
4961 {
4962 if (!intel_syntax)
4963 as_bad (_("unbalanced parenthesis in operand %d."),
4964 i.operands + 1);
4965 else
4966 as_bad (_("unbalanced brackets in operand %d."),
4967 i.operands + 1);
4968 return NULL;
4969 }
4970 else
4971 break; /* we are done */
4972 }
4973 else if (!is_operand_char (*l) && !is_space_char (*l) && *l != '"')
4974 {
4975 as_bad (_("invalid character %s in operand %d"),
4976 output_invalid (*l),
4977 i.operands + 1);
4978 return NULL;
4979 }
4980 if (!intel_syntax)
4981 {
4982 if (*l == '(')
4983 ++paren_not_balanced;
4984 if (*l == ')')
4985 --paren_not_balanced;
4986 }
4987 else
4988 {
4989 if (*l == '[')
4990 ++paren_not_balanced;
4991 if (*l == ']')
4992 --paren_not_balanced;
4993 }
4994 l++;
4995 }
4996 if (l != token_start)
4997 { /* Yes, we've read in another operand. */
4998 unsigned int operand_ok;
4999 this_operand = i.operands++;
5000 if (i.operands > MAX_OPERANDS)
5001 {
5002 as_bad (_("spurious operands; (%d operands/instruction max)"),
5003 MAX_OPERANDS);
5004 return NULL;
5005 }
5006 i.types[this_operand].bitfield.unspecified = 1;
5007 /* Now parse operand adding info to 'i' as we go along. */
5008 END_STRING_AND_SAVE (l);
5009
5010 if (i.mem_operands > 1)
5011 {
5012 as_bad (_("too many memory references for `%s'"),
5013 mnemonic);
5014 return 0;
5015 }
5016
5017 if (intel_syntax)
5018 operand_ok =
5019 i386_intel_operand (token_start,
5020 intel_float_operand (mnemonic));
5021 else
5022 operand_ok = i386_att_operand (token_start);
5023
5024 RESTORE_END_STRING (l);
5025 if (!operand_ok)
5026 return NULL;
5027 }
5028 else
5029 {
5030 if (expecting_operand)
5031 {
5032 expecting_operand_after_comma:
5033 as_bad (_("expecting operand after ','; got nothing"));
5034 return NULL;
5035 }
5036 if (*l == ',')
5037 {
5038 as_bad (_("expecting operand before ','; got nothing"));
5039 return NULL;
5040 }
5041 }
5042
5043 /* Now *l must be either ',' or END_OF_INSN. */
5044 if (*l == ',')
5045 {
5046 if (*++l == END_OF_INSN)
5047 {
5048 /* Just skip it, if it's \n complain. */
5049 goto expecting_operand_after_comma;
5050 }
5051 expecting_operand = 1;
5052 }
5053 }
5054 return l;
5055 }
5056
5057 static void
5058 swap_2_operands (int xchg1, int xchg2)
5059 {
5060 union i386_op temp_op;
5061 i386_operand_type temp_type;
5062 unsigned int temp_flags;
5063 enum bfd_reloc_code_real temp_reloc;
5064
5065 temp_type = i.types[xchg2];
5066 i.types[xchg2] = i.types[xchg1];
5067 i.types[xchg1] = temp_type;
5068
5069 temp_flags = i.flags[xchg2];
5070 i.flags[xchg2] = i.flags[xchg1];
5071 i.flags[xchg1] = temp_flags;
5072
5073 temp_op = i.op[xchg2];
5074 i.op[xchg2] = i.op[xchg1];
5075 i.op[xchg1] = temp_op;
5076
5077 temp_reloc = i.reloc[xchg2];
5078 i.reloc[xchg2] = i.reloc[xchg1];
5079 i.reloc[xchg1] = temp_reloc;
5080
5081 if (i.mask)
5082 {
5083 if (i.mask->operand == xchg1)
5084 i.mask->operand = xchg2;
5085 else if (i.mask->operand == xchg2)
5086 i.mask->operand = xchg1;
5087 }
5088 if (i.broadcast)
5089 {
5090 if (i.broadcast->operand == xchg1)
5091 i.broadcast->operand = xchg2;
5092 else if (i.broadcast->operand == xchg2)
5093 i.broadcast->operand = xchg1;
5094 }
5095 if (i.rounding)
5096 {
5097 if (i.rounding->operand == xchg1)
5098 i.rounding->operand = xchg2;
5099 else if (i.rounding->operand == xchg2)
5100 i.rounding->operand = xchg1;
5101 }
5102 }
5103
5104 static void
5105 swap_operands (void)
5106 {
5107 switch (i.operands)
5108 {
5109 case 5:
5110 case 4:
5111 swap_2_operands (1, i.operands - 2);
5112 /* Fall through. */
5113 case 3:
5114 case 2:
5115 swap_2_operands (0, i.operands - 1);
5116 break;
5117 default:
5118 abort ();
5119 }
5120
5121 if (i.mem_operands == 2)
5122 {
5123 const seg_entry *temp_seg;
5124 temp_seg = i.seg[0];
5125 i.seg[0] = i.seg[1];
5126 i.seg[1] = temp_seg;
5127 }
5128 }
5129
5130 /* Try to ensure constant immediates are represented in the smallest
5131 opcode possible. */
5132 static void
5133 optimize_imm (void)
5134 {
5135 char guess_suffix = 0;
5136 int op;
5137
5138 if (i.suffix)
5139 guess_suffix = i.suffix;
5140 else if (i.reg_operands)
5141 {
5142 /* Figure out a suffix from the last register operand specified.
5143 We can't do this properly yet, i.e. excluding special register
5144 instances, but the following works for instructions with
5145 immediates. In any case, we can't set i.suffix yet. */
5146 for (op = i.operands; --op >= 0;)
5147 if (i.types[op].bitfield.class != Reg)
5148 continue;
5149 else if (i.types[op].bitfield.byte)
5150 {
5151 guess_suffix = BYTE_MNEM_SUFFIX;
5152 break;
5153 }
5154 else if (i.types[op].bitfield.word)
5155 {
5156 guess_suffix = WORD_MNEM_SUFFIX;
5157 break;
5158 }
5159 else if (i.types[op].bitfield.dword)
5160 {
5161 guess_suffix = LONG_MNEM_SUFFIX;
5162 break;
5163 }
5164 else if (i.types[op].bitfield.qword)
5165 {
5166 guess_suffix = QWORD_MNEM_SUFFIX;
5167 break;
5168 }
5169 }
5170 else if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
5171 guess_suffix = WORD_MNEM_SUFFIX;
5172
5173 for (op = i.operands; --op >= 0;)
5174 if (operand_type_check (i.types[op], imm))
5175 {
5176 switch (i.op[op].imms->X_op)
5177 {
5178 case O_constant:
5179 /* If a suffix is given, this operand may be shortened. */
5180 switch (guess_suffix)
5181 {
5182 case LONG_MNEM_SUFFIX:
5183 i.types[op].bitfield.imm32 = 1;
5184 i.types[op].bitfield.imm64 = 1;
5185 break;
5186 case WORD_MNEM_SUFFIX:
5187 i.types[op].bitfield.imm16 = 1;
5188 i.types[op].bitfield.imm32 = 1;
5189 i.types[op].bitfield.imm32s = 1;
5190 i.types[op].bitfield.imm64 = 1;
5191 break;
5192 case BYTE_MNEM_SUFFIX:
5193 i.types[op].bitfield.imm8 = 1;
5194 i.types[op].bitfield.imm8s = 1;
5195 i.types[op].bitfield.imm16 = 1;
5196 i.types[op].bitfield.imm32 = 1;
5197 i.types[op].bitfield.imm32s = 1;
5198 i.types[op].bitfield.imm64 = 1;
5199 break;
5200 }
5201
5202 /* If this operand is at most 16 bits, convert it
5203 to a signed 16 bit number before trying to see
5204 whether it will fit in an even smaller size.
5205 This allows a 16-bit operand such as $0xffe0 to
5206 be recognised as within Imm8S range. */
5207 if ((i.types[op].bitfield.imm16)
5208 && (i.op[op].imms->X_add_number & ~(offsetT) 0xffff) == 0)
5209 {
5210 i.op[op].imms->X_add_number =
5211 (((i.op[op].imms->X_add_number & 0xffff) ^ 0x8000) - 0x8000);
5212 }
5213 #ifdef BFD64
5214 /* Store 32-bit immediate in 64-bit for 64-bit BFD. */
5215 if ((i.types[op].bitfield.imm32)
5216 && ((i.op[op].imms->X_add_number & ~(((offsetT) 2 << 31) - 1))
5217 == 0))
5218 {
5219 i.op[op].imms->X_add_number = ((i.op[op].imms->X_add_number
5220 ^ ((offsetT) 1 << 31))
5221 - ((offsetT) 1 << 31));
5222 }
5223 #endif
5224 i.types[op]
5225 = operand_type_or (i.types[op],
5226 smallest_imm_type (i.op[op].imms->X_add_number));
5227
5228 /* We must avoid matching of Imm32 templates when 64bit
5229 only immediate is available. */
5230 if (guess_suffix == QWORD_MNEM_SUFFIX)
5231 i.types[op].bitfield.imm32 = 0;
5232 break;
5233
5234 case O_absent:
5235 case O_register:
5236 abort ();
5237
5238 /* Symbols and expressions. */
5239 default:
5240 /* Convert symbolic operand to proper sizes for matching, but don't
5241 prevent matching a set of insns that only supports sizes other
5242 than those matching the insn suffix. */
5243 {
5244 i386_operand_type mask, allowed;
5245 const insn_template *t;
5246
5247 operand_type_set (&mask, 0);
5248 operand_type_set (&allowed, 0);
5249
5250 for (t = current_templates->start;
5251 t < current_templates->end;
5252 ++t)
5253 {
5254 allowed = operand_type_or (allowed, t->operand_types[op]);
5255 allowed = operand_type_and (allowed, anyimm);
5256 }
5257 switch (guess_suffix)
5258 {
5259 case QWORD_MNEM_SUFFIX:
5260 mask.bitfield.imm64 = 1;
5261 mask.bitfield.imm32s = 1;
5262 break;
5263 case LONG_MNEM_SUFFIX:
5264 mask.bitfield.imm32 = 1;
5265 break;
5266 case WORD_MNEM_SUFFIX:
5267 mask.bitfield.imm16 = 1;
5268 break;
5269 case BYTE_MNEM_SUFFIX:
5270 mask.bitfield.imm8 = 1;
5271 break;
5272 default:
5273 break;
5274 }
5275 allowed = operand_type_and (mask, allowed);
5276 if (!operand_type_all_zero (&allowed))
5277 i.types[op] = operand_type_and (i.types[op], mask);
5278 }
5279 break;
5280 }
5281 }
5282 }
5283
5284 /* Try to use the smallest displacement type too. */
5285 static void
5286 optimize_disp (void)
5287 {
5288 int op;
5289
5290 for (op = i.operands; --op >= 0;)
5291 if (operand_type_check (i.types[op], disp))
5292 {
5293 if (i.op[op].disps->X_op == O_constant)
5294 {
5295 offsetT op_disp = i.op[op].disps->X_add_number;
5296
5297 if (i.types[op].bitfield.disp16
5298 && (op_disp & ~(offsetT) 0xffff) == 0)
5299 {
5300 /* If this operand is at most 16 bits, convert
5301 to a signed 16 bit number and don't use 64bit
5302 displacement. */
5303 op_disp = (((op_disp & 0xffff) ^ 0x8000) - 0x8000);
5304 i.types[op].bitfield.disp64 = 0;
5305 }
5306 #ifdef BFD64
5307 /* Optimize 64-bit displacement to 32-bit for 64-bit BFD. */
5308 if (i.types[op].bitfield.disp32
5309 && (op_disp & ~(((offsetT) 2 << 31) - 1)) == 0)
5310 {
5311 /* If this operand is at most 32 bits, convert
5312 to a signed 32 bit number and don't use 64bit
5313 displacement. */
5314 op_disp &= (((offsetT) 2 << 31) - 1);
5315 op_disp = (op_disp ^ ((offsetT) 1 << 31)) - ((addressT) 1 << 31);
5316 i.types[op].bitfield.disp64 = 0;
5317 }
5318 #endif
5319 if (!op_disp && i.types[op].bitfield.baseindex)
5320 {
5321 i.types[op].bitfield.disp8 = 0;
5322 i.types[op].bitfield.disp16 = 0;
5323 i.types[op].bitfield.disp32 = 0;
5324 i.types[op].bitfield.disp32s = 0;
5325 i.types[op].bitfield.disp64 = 0;
5326 i.op[op].disps = 0;
5327 i.disp_operands--;
5328 }
5329 else if (flag_code == CODE_64BIT)
5330 {
5331 if (fits_in_signed_long (op_disp))
5332 {
5333 i.types[op].bitfield.disp64 = 0;
5334 i.types[op].bitfield.disp32s = 1;
5335 }
5336 if (i.prefix[ADDR_PREFIX]
5337 && fits_in_unsigned_long (op_disp))
5338 i.types[op].bitfield.disp32 = 1;
5339 }
5340 if ((i.types[op].bitfield.disp32
5341 || i.types[op].bitfield.disp32s
5342 || i.types[op].bitfield.disp16)
5343 && fits_in_disp8 (op_disp))
5344 i.types[op].bitfield.disp8 = 1;
5345 }
5346 else if (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
5347 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL)
5348 {
5349 fix_new_exp (frag_now, frag_more (0) - frag_now->fr_literal, 0,
5350 i.op[op].disps, 0, i.reloc[op]);
5351 i.types[op].bitfield.disp8 = 0;
5352 i.types[op].bitfield.disp16 = 0;
5353 i.types[op].bitfield.disp32 = 0;
5354 i.types[op].bitfield.disp32s = 0;
5355 i.types[op].bitfield.disp64 = 0;
5356 }
5357 else
5358 /* We only support 64bit displacement on constants. */
5359 i.types[op].bitfield.disp64 = 0;
5360 }
5361 }
5362
5363 /* Return 1 if there is a match in broadcast bytes between operand
5364 GIVEN and instruction template T. */
5365
5366 static INLINE int
5367 match_broadcast_size (const insn_template *t, unsigned int given)
5368 {
5369 return ((t->opcode_modifier.broadcast == BYTE_BROADCAST
5370 && i.types[given].bitfield.byte)
5371 || (t->opcode_modifier.broadcast == WORD_BROADCAST
5372 && i.types[given].bitfield.word)
5373 || (t->opcode_modifier.broadcast == DWORD_BROADCAST
5374 && i.types[given].bitfield.dword)
5375 || (t->opcode_modifier.broadcast == QWORD_BROADCAST
5376 && i.types[given].bitfield.qword));
5377 }
5378
5379 /* Check if operands are valid for the instruction. */
5380
5381 static int
5382 check_VecOperands (const insn_template *t)
5383 {
5384 unsigned int op;
5385 i386_cpu_flags cpu;
5386
5387 /* Templates allowing for ZMMword as well as YMMword and/or XMMword for
5388 any one operand are implicity requiring AVX512VL support if the actual
5389 operand size is YMMword or XMMword. Since this function runs after
5390 template matching, there's no need to check for YMMword/XMMword in
5391 the template. */
5392 cpu = cpu_flags_and (t->cpu_flags, avx512);
5393 if (!cpu_flags_all_zero (&cpu)
5394 && !t->cpu_flags.bitfield.cpuavx512vl
5395 && !cpu_arch_flags.bitfield.cpuavx512vl)
5396 {
5397 for (op = 0; op < t->operands; ++op)
5398 {
5399 if (t->operand_types[op].bitfield.zmmword
5400 && (i.types[op].bitfield.ymmword
5401 || i.types[op].bitfield.xmmword))
5402 {
5403 i.error = unsupported;
5404 return 1;
5405 }
5406 }
5407 }
5408
5409 /* Without VSIB byte, we can't have a vector register for index. */
5410 if (!t->opcode_modifier.vecsib
5411 && i.index_reg
5412 && (i.index_reg->reg_type.bitfield.xmmword
5413 || i.index_reg->reg_type.bitfield.ymmword
5414 || i.index_reg->reg_type.bitfield.zmmword))
5415 {
5416 i.error = unsupported_vector_index_register;
5417 return 1;
5418 }
5419
5420 /* Check if default mask is allowed. */
5421 if (t->opcode_modifier.nodefmask
5422 && (!i.mask || i.mask->mask->reg_num == 0))
5423 {
5424 i.error = no_default_mask;
5425 return 1;
5426 }
5427
5428 /* For VSIB byte, we need a vector register for index, and all vector
5429 registers must be distinct. */
5430 if (t->opcode_modifier.vecsib)
5431 {
5432 if (!i.index_reg
5433 || !((t->opcode_modifier.vecsib == VecSIB128
5434 && i.index_reg->reg_type.bitfield.xmmword)
5435 || (t->opcode_modifier.vecsib == VecSIB256
5436 && i.index_reg->reg_type.bitfield.ymmword)
5437 || (t->opcode_modifier.vecsib == VecSIB512
5438 && i.index_reg->reg_type.bitfield.zmmword)))
5439 {
5440 i.error = invalid_vsib_address;
5441 return 1;
5442 }
5443
5444 gas_assert (i.reg_operands == 2 || i.mask);
5445 if (i.reg_operands == 2 && !i.mask)
5446 {
5447 gas_assert (i.types[0].bitfield.class == RegSIMD);
5448 gas_assert (i.types[0].bitfield.xmmword
5449 || i.types[0].bitfield.ymmword);
5450 gas_assert (i.types[2].bitfield.class == RegSIMD);
5451 gas_assert (i.types[2].bitfield.xmmword
5452 || i.types[2].bitfield.ymmword);
5453 if (operand_check == check_none)
5454 return 0;
5455 if (register_number (i.op[0].regs)
5456 != register_number (i.index_reg)
5457 && register_number (i.op[2].regs)
5458 != register_number (i.index_reg)
5459 && register_number (i.op[0].regs)
5460 != register_number (i.op[2].regs))
5461 return 0;
5462 if (operand_check == check_error)
5463 {
5464 i.error = invalid_vector_register_set;
5465 return 1;
5466 }
5467 as_warn (_("mask, index, and destination registers should be distinct"));
5468 }
5469 else if (i.reg_operands == 1 && i.mask)
5470 {
5471 if (i.types[1].bitfield.class == RegSIMD
5472 && (i.types[1].bitfield.xmmword
5473 || i.types[1].bitfield.ymmword
5474 || i.types[1].bitfield.zmmword)
5475 && (register_number (i.op[1].regs)
5476 == register_number (i.index_reg)))
5477 {
5478 if (operand_check == check_error)
5479 {
5480 i.error = invalid_vector_register_set;
5481 return 1;
5482 }
5483 if (operand_check != check_none)
5484 as_warn (_("index and destination registers should be distinct"));
5485 }
5486 }
5487 }
5488
5489 /* Check if broadcast is supported by the instruction and is applied
5490 to the memory operand. */
5491 if (i.broadcast)
5492 {
5493 i386_operand_type type, overlap;
5494
5495 /* Check if specified broadcast is supported in this instruction,
5496 and its broadcast bytes match the memory operand. */
5497 op = i.broadcast->operand;
5498 if (!t->opcode_modifier.broadcast
5499 || !(i.flags[op] & Operand_Mem)
5500 || (!i.types[op].bitfield.unspecified
5501 && !match_broadcast_size (t, op)))
5502 {
5503 bad_broadcast:
5504 i.error = unsupported_broadcast;
5505 return 1;
5506 }
5507
5508 i.broadcast->bytes = ((1 << (t->opcode_modifier.broadcast - 1))
5509 * i.broadcast->type);
5510 operand_type_set (&type, 0);
5511 switch (i.broadcast->bytes)
5512 {
5513 case 2:
5514 type.bitfield.word = 1;
5515 break;
5516 case 4:
5517 type.bitfield.dword = 1;
5518 break;
5519 case 8:
5520 type.bitfield.qword = 1;
5521 break;
5522 case 16:
5523 type.bitfield.xmmword = 1;
5524 break;
5525 case 32:
5526 type.bitfield.ymmword = 1;
5527 break;
5528 case 64:
5529 type.bitfield.zmmword = 1;
5530 break;
5531 default:
5532 goto bad_broadcast;
5533 }
5534
5535 overlap = operand_type_and (type, t->operand_types[op]);
5536 if (operand_type_all_zero (&overlap))
5537 goto bad_broadcast;
5538
5539 if (t->opcode_modifier.checkregsize)
5540 {
5541 unsigned int j;
5542
5543 type.bitfield.baseindex = 1;
5544 for (j = 0; j < i.operands; ++j)
5545 {
5546 if (j != op
5547 && !operand_type_register_match(i.types[j],
5548 t->operand_types[j],
5549 type,
5550 t->operand_types[op]))
5551 goto bad_broadcast;
5552 }
5553 }
5554 }
5555 /* If broadcast is supported in this instruction, we need to check if
5556 operand of one-element size isn't specified without broadcast. */
5557 else if (t->opcode_modifier.broadcast && i.mem_operands)
5558 {
5559 /* Find memory operand. */
5560 for (op = 0; op < i.operands; op++)
5561 if (i.flags[op] & Operand_Mem)
5562 break;
5563 gas_assert (op < i.operands);
5564 /* Check size of the memory operand. */
5565 if (match_broadcast_size (t, op))
5566 {
5567 i.error = broadcast_needed;
5568 return 1;
5569 }
5570 }
5571 else
5572 op = MAX_OPERANDS - 1; /* Avoid uninitialized variable warning. */
5573
5574 /* Check if requested masking is supported. */
5575 if (i.mask)
5576 {
5577 switch (t->opcode_modifier.masking)
5578 {
5579 case BOTH_MASKING:
5580 break;
5581 case MERGING_MASKING:
5582 if (i.mask->zeroing)
5583 {
5584 case 0:
5585 i.error = unsupported_masking;
5586 return 1;
5587 }
5588 break;
5589 case DYNAMIC_MASKING:
5590 /* Memory destinations allow only merging masking. */
5591 if (i.mask->zeroing && i.mem_operands)
5592 {
5593 /* Find memory operand. */
5594 for (op = 0; op < i.operands; op++)
5595 if (i.flags[op] & Operand_Mem)
5596 break;
5597 gas_assert (op < i.operands);
5598 if (op == i.operands - 1)
5599 {
5600 i.error = unsupported_masking;
5601 return 1;
5602 }
5603 }
5604 break;
5605 default:
5606 abort ();
5607 }
5608 }
5609
5610 /* Check if masking is applied to dest operand. */
5611 if (i.mask && (i.mask->operand != (int) (i.operands - 1)))
5612 {
5613 i.error = mask_not_on_destination;
5614 return 1;
5615 }
5616
5617 /* Check RC/SAE. */
5618 if (i.rounding)
5619 {
5620 if (!t->opcode_modifier.sae
5621 || (i.rounding->type != saeonly && !t->opcode_modifier.staticrounding))
5622 {
5623 i.error = unsupported_rc_sae;
5624 return 1;
5625 }
5626 /* If the instruction has several immediate operands and one of
5627 them is rounding, the rounding operand should be the last
5628 immediate operand. */
5629 if (i.imm_operands > 1
5630 && i.rounding->operand != (int) (i.imm_operands - 1))
5631 {
5632 i.error = rc_sae_operand_not_last_imm;
5633 return 1;
5634 }
5635 }
5636
5637 /* Check vector Disp8 operand. */
5638 if (t->opcode_modifier.disp8memshift
5639 && i.disp_encoding != disp_encoding_32bit)
5640 {
5641 if (i.broadcast)
5642 i.memshift = t->opcode_modifier.broadcast - 1;
5643 else if (t->opcode_modifier.disp8memshift != DISP8_SHIFT_VL)
5644 i.memshift = t->opcode_modifier.disp8memshift;
5645 else
5646 {
5647 const i386_operand_type *type = NULL;
5648
5649 i.memshift = 0;
5650 for (op = 0; op < i.operands; op++)
5651 if (i.flags[op] & Operand_Mem)
5652 {
5653 if (t->opcode_modifier.evex == EVEXLIG)
5654 i.memshift = 2 + (i.suffix == QWORD_MNEM_SUFFIX);
5655 else if (t->operand_types[op].bitfield.xmmword
5656 + t->operand_types[op].bitfield.ymmword
5657 + t->operand_types[op].bitfield.zmmword <= 1)
5658 type = &t->operand_types[op];
5659 else if (!i.types[op].bitfield.unspecified)
5660 type = &i.types[op];
5661 }
5662 else if (i.types[op].bitfield.class == RegSIMD
5663 && t->opcode_modifier.evex != EVEXLIG)
5664 {
5665 if (i.types[op].bitfield.zmmword)
5666 i.memshift = 6;
5667 else if (i.types[op].bitfield.ymmword && i.memshift < 5)
5668 i.memshift = 5;
5669 else if (i.types[op].bitfield.xmmword && i.memshift < 4)
5670 i.memshift = 4;
5671 }
5672
5673 if (type)
5674 {
5675 if (type->bitfield.zmmword)
5676 i.memshift = 6;
5677 else if (type->bitfield.ymmword)
5678 i.memshift = 5;
5679 else if (type->bitfield.xmmword)
5680 i.memshift = 4;
5681 }
5682
5683 /* For the check in fits_in_disp8(). */
5684 if (i.memshift == 0)
5685 i.memshift = -1;
5686 }
5687
5688 for (op = 0; op < i.operands; op++)
5689 if (operand_type_check (i.types[op], disp)
5690 && i.op[op].disps->X_op == O_constant)
5691 {
5692 if (fits_in_disp8 (i.op[op].disps->X_add_number))
5693 {
5694 i.types[op].bitfield.disp8 = 1;
5695 return 0;
5696 }
5697 i.types[op].bitfield.disp8 = 0;
5698 }
5699 }
5700
5701 i.memshift = 0;
5702
5703 return 0;
5704 }
5705
5706 /* Check if operands are valid for the instruction. Update VEX
5707 operand types. */
5708
5709 static int
5710 VEX_check_operands (const insn_template *t)
5711 {
5712 if (i.vec_encoding == vex_encoding_evex)
5713 {
5714 /* This instruction must be encoded with EVEX prefix. */
5715 if (!is_evex_encoding (t))
5716 {
5717 i.error = unsupported;
5718 return 1;
5719 }
5720 return 0;
5721 }
5722
5723 if (!t->opcode_modifier.vex)
5724 {
5725 /* This instruction template doesn't have VEX prefix. */
5726 if (i.vec_encoding != vex_encoding_default)
5727 {
5728 i.error = unsupported;
5729 return 1;
5730 }
5731 return 0;
5732 }
5733
5734 /* Check the special Imm4 cases; must be the first operand. */
5735 if (t->cpu_flags.bitfield.cpuxop && t->operands == 5)
5736 {
5737 if (i.op[0].imms->X_op != O_constant
5738 || !fits_in_imm4 (i.op[0].imms->X_add_number))
5739 {
5740 i.error = bad_imm4;
5741 return 1;
5742 }
5743
5744 /* Turn off Imm<N> so that update_imm won't complain. */
5745 operand_type_set (&i.types[0], 0);
5746 }
5747
5748 return 0;
5749 }
5750
5751 static const insn_template *
5752 match_template (char mnem_suffix)
5753 {
5754 /* Points to template once we've found it. */
5755 const insn_template *t;
5756 i386_operand_type overlap0, overlap1, overlap2, overlap3;
5757 i386_operand_type overlap4;
5758 unsigned int found_reverse_match;
5759 i386_opcode_modifier suffix_check;
5760 i386_operand_type operand_types [MAX_OPERANDS];
5761 int addr_prefix_disp;
5762 unsigned int j, size_match, check_register;
5763 enum i386_error specific_error = 0;
5764
5765 #if MAX_OPERANDS != 5
5766 # error "MAX_OPERANDS must be 5."
5767 #endif
5768
5769 found_reverse_match = 0;
5770 addr_prefix_disp = -1;
5771
5772 /* Prepare for mnemonic suffix check. */
5773 memset (&suffix_check, 0, sizeof (suffix_check));
5774 switch (mnem_suffix)
5775 {
5776 case BYTE_MNEM_SUFFIX:
5777 suffix_check.no_bsuf = 1;
5778 break;
5779 case WORD_MNEM_SUFFIX:
5780 suffix_check.no_wsuf = 1;
5781 break;
5782 case SHORT_MNEM_SUFFIX:
5783 suffix_check.no_ssuf = 1;
5784 break;
5785 case LONG_MNEM_SUFFIX:
5786 suffix_check.no_lsuf = 1;
5787 break;
5788 case QWORD_MNEM_SUFFIX:
5789 suffix_check.no_qsuf = 1;
5790 break;
5791 default:
5792 /* NB: In Intel syntax, normally we can check for memory operand
5793 size when there is no mnemonic suffix. But jmp and call have
5794 2 different encodings with Dword memory operand size, one with
5795 No_ldSuf and the other without. i.suffix is set to
5796 LONG_DOUBLE_MNEM_SUFFIX to skip the one with No_ldSuf. */
5797 if (i.suffix == LONG_DOUBLE_MNEM_SUFFIX)
5798 suffix_check.no_ldsuf = 1;
5799 }
5800
5801 /* Must have right number of operands. */
5802 i.error = number_of_operands_mismatch;
5803
5804 for (t = current_templates->start; t < current_templates->end; t++)
5805 {
5806 addr_prefix_disp = -1;
5807 found_reverse_match = 0;
5808
5809 if (i.operands != t->operands)
5810 continue;
5811
5812 /* Check processor support. */
5813 i.error = unsupported;
5814 if (cpu_flags_match (t) != CPU_FLAGS_PERFECT_MATCH)
5815 continue;
5816
5817 /* Check AT&T mnemonic. */
5818 i.error = unsupported_with_intel_mnemonic;
5819 if (intel_mnemonic && t->opcode_modifier.attmnemonic)
5820 continue;
5821
5822 /* Check AT&T/Intel syntax. */
5823 i.error = unsupported_syntax;
5824 if ((intel_syntax && t->opcode_modifier.attsyntax)
5825 || (!intel_syntax && t->opcode_modifier.intelsyntax))
5826 continue;
5827
5828 /* Check Intel64/AMD64 ISA. */
5829 switch (isa64)
5830 {
5831 default:
5832 /* Default: Don't accept Intel64. */
5833 if (t->opcode_modifier.isa64 == INTEL64)
5834 continue;
5835 break;
5836 case amd64:
5837 /* -mamd64: Don't accept Intel64 and Intel64 only. */
5838 if (t->opcode_modifier.isa64 >= INTEL64)
5839 continue;
5840 break;
5841 case intel64:
5842 /* -mintel64: Don't accept AMD64. */
5843 if (t->opcode_modifier.isa64 == AMD64 && flag_code == CODE_64BIT)
5844 continue;
5845 break;
5846 }
5847
5848 /* Check the suffix. */
5849 i.error = invalid_instruction_suffix;
5850 if ((t->opcode_modifier.no_bsuf && suffix_check.no_bsuf)
5851 || (t->opcode_modifier.no_wsuf && suffix_check.no_wsuf)
5852 || (t->opcode_modifier.no_lsuf && suffix_check.no_lsuf)
5853 || (t->opcode_modifier.no_ssuf && suffix_check.no_ssuf)
5854 || (t->opcode_modifier.no_qsuf && suffix_check.no_qsuf)
5855 || (t->opcode_modifier.no_ldsuf && suffix_check.no_ldsuf))
5856 continue;
5857
5858 size_match = operand_size_match (t);
5859 if (!size_match)
5860 continue;
5861
5862 /* This is intentionally not
5863
5864 if (i.jumpabsolute != (t->opcode_modifier.jump == JUMP_ABSOLUTE))
5865
5866 as the case of a missing * on the operand is accepted (perhaps with
5867 a warning, issued further down). */
5868 if (i.jumpabsolute && t->opcode_modifier.jump != JUMP_ABSOLUTE)
5869 {
5870 i.error = operand_type_mismatch;
5871 continue;
5872 }
5873
5874 for (j = 0; j < MAX_OPERANDS; j++)
5875 operand_types[j] = t->operand_types[j];
5876
5877 /* In general, don't allow 64-bit operands in 32-bit mode. */
5878 if (i.suffix == QWORD_MNEM_SUFFIX
5879 && flag_code != CODE_64BIT
5880 && (intel_syntax
5881 ? (t->opcode_modifier.mnemonicsize != IGNORESIZE
5882 && !t->opcode_modifier.broadcast
5883 && !intel_float_operand (t->name))
5884 : intel_float_operand (t->name) != 2)
5885 && ((operand_types[0].bitfield.class != RegMMX
5886 && operand_types[0].bitfield.class != RegSIMD)
5887 || (operand_types[t->operands > 1].bitfield.class != RegMMX
5888 && operand_types[t->operands > 1].bitfield.class != RegSIMD))
5889 && (t->base_opcode != 0x0fc7
5890 || t->extension_opcode != 1 /* cmpxchg8b */))
5891 continue;
5892
5893 /* In general, don't allow 32-bit operands on pre-386. */
5894 else if (i.suffix == LONG_MNEM_SUFFIX
5895 && !cpu_arch_flags.bitfield.cpui386
5896 && (intel_syntax
5897 ? (t->opcode_modifier.mnemonicsize != IGNORESIZE
5898 && !intel_float_operand (t->name))
5899 : intel_float_operand (t->name) != 2)
5900 && ((operand_types[0].bitfield.class != RegMMX
5901 && operand_types[0].bitfield.class != RegSIMD)
5902 || (operand_types[t->operands > 1].bitfield.class != RegMMX
5903 && operand_types[t->operands > 1].bitfield.class
5904 != RegSIMD)))
5905 continue;
5906
5907 /* Do not verify operands when there are none. */
5908 else
5909 {
5910 if (!t->operands)
5911 /* We've found a match; break out of loop. */
5912 break;
5913 }
5914
5915 if (!t->opcode_modifier.jump
5916 || t->opcode_modifier.jump == JUMP_ABSOLUTE)
5917 {
5918 /* There should be only one Disp operand. */
5919 for (j = 0; j < MAX_OPERANDS; j++)
5920 if (operand_type_check (operand_types[j], disp))
5921 break;
5922 if (j < MAX_OPERANDS)
5923 {
5924 bfd_boolean override = (i.prefix[ADDR_PREFIX] != 0);
5925
5926 addr_prefix_disp = j;
5927
5928 /* Address size prefix will turn Disp64/Disp32S/Disp32/Disp16
5929 operand into Disp32/Disp32/Disp16/Disp32 operand. */
5930 switch (flag_code)
5931 {
5932 case CODE_16BIT:
5933 override = !override;
5934 /* Fall through. */
5935 case CODE_32BIT:
5936 if (operand_types[j].bitfield.disp32
5937 && operand_types[j].bitfield.disp16)
5938 {
5939 operand_types[j].bitfield.disp16 = override;
5940 operand_types[j].bitfield.disp32 = !override;
5941 }
5942 operand_types[j].bitfield.disp32s = 0;
5943 operand_types[j].bitfield.disp64 = 0;
5944 break;
5945
5946 case CODE_64BIT:
5947 if (operand_types[j].bitfield.disp32s
5948 || operand_types[j].bitfield.disp64)
5949 {
5950 operand_types[j].bitfield.disp64 &= !override;
5951 operand_types[j].bitfield.disp32s &= !override;
5952 operand_types[j].bitfield.disp32 = override;
5953 }
5954 operand_types[j].bitfield.disp16 = 0;
5955 break;
5956 }
5957 }
5958 }
5959
5960 /* Force 0x8b encoding for "mov foo@GOT, %eax". */
5961 if (i.reloc[0] == BFD_RELOC_386_GOT32 && t->base_opcode == 0xa0)
5962 continue;
5963
5964 /* We check register size if needed. */
5965 if (t->opcode_modifier.checkregsize)
5966 {
5967 check_register = (1 << t->operands) - 1;
5968 if (i.broadcast)
5969 check_register &= ~(1 << i.broadcast->operand);
5970 }
5971 else
5972 check_register = 0;
5973
5974 overlap0 = operand_type_and (i.types[0], operand_types[0]);
5975 switch (t->operands)
5976 {
5977 case 1:
5978 if (!operand_type_match (overlap0, i.types[0]))
5979 continue;
5980 break;
5981 case 2:
5982 /* xchg %eax, %eax is a special case. It is an alias for nop
5983 only in 32bit mode and we can use opcode 0x90. In 64bit
5984 mode, we can't use 0x90 for xchg %eax, %eax since it should
5985 zero-extend %eax to %rax. */
5986 if (flag_code == CODE_64BIT
5987 && t->base_opcode == 0x90
5988 && i.types[0].bitfield.instance == Accum
5989 && i.types[0].bitfield.dword
5990 && i.types[1].bitfield.instance == Accum
5991 && i.types[1].bitfield.dword)
5992 continue;
5993 /* xrelease mov %eax, <disp> is another special case. It must not
5994 match the accumulator-only encoding of mov. */
5995 if (flag_code != CODE_64BIT
5996 && i.hle_prefix
5997 && t->base_opcode == 0xa0
5998 && i.types[0].bitfield.instance == Accum
5999 && (i.flags[1] & Operand_Mem))
6000 continue;
6001 /* Fall through. */
6002
6003 case 3:
6004 if (!(size_match & MATCH_STRAIGHT))
6005 goto check_reverse;
6006 /* Reverse direction of operands if swapping is possible in the first
6007 place (operands need to be symmetric) and
6008 - the load form is requested, and the template is a store form,
6009 - the store form is requested, and the template is a load form,
6010 - the non-default (swapped) form is requested. */
6011 overlap1 = operand_type_and (operand_types[0], operand_types[1]);
6012 if (t->opcode_modifier.d && i.reg_operands == i.operands
6013 && !operand_type_all_zero (&overlap1))
6014 switch (i.dir_encoding)
6015 {
6016 case dir_encoding_load:
6017 if (operand_type_check (operand_types[i.operands - 1], anymem)
6018 || t->opcode_modifier.regmem)
6019 goto check_reverse;
6020 break;
6021
6022 case dir_encoding_store:
6023 if (!operand_type_check (operand_types[i.operands - 1], anymem)
6024 && !t->opcode_modifier.regmem)
6025 goto check_reverse;
6026 break;
6027
6028 case dir_encoding_swap:
6029 goto check_reverse;
6030
6031 case dir_encoding_default:
6032 break;
6033 }
6034 /* If we want store form, we skip the current load. */
6035 if ((i.dir_encoding == dir_encoding_store
6036 || i.dir_encoding == dir_encoding_swap)
6037 && i.mem_operands == 0
6038 && t->opcode_modifier.load)
6039 continue;
6040 /* Fall through. */
6041 case 4:
6042 case 5:
6043 overlap1 = operand_type_and (i.types[1], operand_types[1]);
6044 if (!operand_type_match (overlap0, i.types[0])
6045 || !operand_type_match (overlap1, i.types[1])
6046 || ((check_register & 3) == 3
6047 && !operand_type_register_match (i.types[0],
6048 operand_types[0],
6049 i.types[1],
6050 operand_types[1])))
6051 {
6052 /* Check if other direction is valid ... */
6053 if (!t->opcode_modifier.d)
6054 continue;
6055
6056 check_reverse:
6057 if (!(size_match & MATCH_REVERSE))
6058 continue;
6059 /* Try reversing direction of operands. */
6060 overlap0 = operand_type_and (i.types[0], operand_types[i.operands - 1]);
6061 overlap1 = operand_type_and (i.types[i.operands - 1], operand_types[0]);
6062 if (!operand_type_match (overlap0, i.types[0])
6063 || !operand_type_match (overlap1, i.types[i.operands - 1])
6064 || (check_register
6065 && !operand_type_register_match (i.types[0],
6066 operand_types[i.operands - 1],
6067 i.types[i.operands - 1],
6068 operand_types[0])))
6069 {
6070 /* Does not match either direction. */
6071 continue;
6072 }
6073 /* found_reverse_match holds which of D or FloatR
6074 we've found. */
6075 if (!t->opcode_modifier.d)
6076 found_reverse_match = 0;
6077 else if (operand_types[0].bitfield.tbyte)
6078 found_reverse_match = Opcode_FloatD;
6079 else if (operand_types[0].bitfield.xmmword
6080 || operand_types[i.operands - 1].bitfield.xmmword
6081 || operand_types[0].bitfield.class == RegMMX
6082 || operand_types[i.operands - 1].bitfield.class == RegMMX
6083 || is_any_vex_encoding(t))
6084 found_reverse_match = (t->base_opcode & 0xee) != 0x6e
6085 ? Opcode_SIMD_FloatD : Opcode_SIMD_IntD;
6086 else
6087 found_reverse_match = Opcode_D;
6088 if (t->opcode_modifier.floatr)
6089 found_reverse_match |= Opcode_FloatR;
6090 }
6091 else
6092 {
6093 /* Found a forward 2 operand match here. */
6094 switch (t->operands)
6095 {
6096 case 5:
6097 overlap4 = operand_type_and (i.types[4],
6098 operand_types[4]);
6099 /* Fall through. */
6100 case 4:
6101 overlap3 = operand_type_and (i.types[3],
6102 operand_types[3]);
6103 /* Fall through. */
6104 case 3:
6105 overlap2 = operand_type_and (i.types[2],
6106 operand_types[2]);
6107 break;
6108 }
6109
6110 switch (t->operands)
6111 {
6112 case 5:
6113 if (!operand_type_match (overlap4, i.types[4])
6114 || !operand_type_register_match (i.types[3],
6115 operand_types[3],
6116 i.types[4],
6117 operand_types[4]))
6118 continue;
6119 /* Fall through. */
6120 case 4:
6121 if (!operand_type_match (overlap3, i.types[3])
6122 || ((check_register & 0xa) == 0xa
6123 && !operand_type_register_match (i.types[1],
6124 operand_types[1],
6125 i.types[3],
6126 operand_types[3]))
6127 || ((check_register & 0xc) == 0xc
6128 && !operand_type_register_match (i.types[2],
6129 operand_types[2],
6130 i.types[3],
6131 operand_types[3])))
6132 continue;
6133 /* Fall through. */
6134 case 3:
6135 /* Here we make use of the fact that there are no
6136 reverse match 3 operand instructions. */
6137 if (!operand_type_match (overlap2, i.types[2])
6138 || ((check_register & 5) == 5
6139 && !operand_type_register_match (i.types[0],
6140 operand_types[0],
6141 i.types[2],
6142 operand_types[2]))
6143 || ((check_register & 6) == 6
6144 && !operand_type_register_match (i.types[1],
6145 operand_types[1],
6146 i.types[2],
6147 operand_types[2])))
6148 continue;
6149 break;
6150 }
6151 }
6152 /* Found either forward/reverse 2, 3 or 4 operand match here:
6153 slip through to break. */
6154 }
6155
6156 /* Check if vector and VEX operands are valid. */
6157 if (check_VecOperands (t) || VEX_check_operands (t))
6158 {
6159 specific_error = i.error;
6160 continue;
6161 }
6162
6163 /* We've found a match; break out of loop. */
6164 break;
6165 }
6166
6167 if (t == current_templates->end)
6168 {
6169 /* We found no match. */
6170 const char *err_msg;
6171 switch (specific_error ? specific_error : i.error)
6172 {
6173 default:
6174 abort ();
6175 case operand_size_mismatch:
6176 err_msg = _("operand size mismatch");
6177 break;
6178 case operand_type_mismatch:
6179 err_msg = _("operand type mismatch");
6180 break;
6181 case register_type_mismatch:
6182 err_msg = _("register type mismatch");
6183 break;
6184 case number_of_operands_mismatch:
6185 err_msg = _("number of operands mismatch");
6186 break;
6187 case invalid_instruction_suffix:
6188 err_msg = _("invalid instruction suffix");
6189 break;
6190 case bad_imm4:
6191 err_msg = _("constant doesn't fit in 4 bits");
6192 break;
6193 case unsupported_with_intel_mnemonic:
6194 err_msg = _("unsupported with Intel mnemonic");
6195 break;
6196 case unsupported_syntax:
6197 err_msg = _("unsupported syntax");
6198 break;
6199 case unsupported:
6200 as_bad (_("unsupported instruction `%s'"),
6201 current_templates->start->name);
6202 return NULL;
6203 case invalid_vsib_address:
6204 err_msg = _("invalid VSIB address");
6205 break;
6206 case invalid_vector_register_set:
6207 err_msg = _("mask, index, and destination registers must be distinct");
6208 break;
6209 case unsupported_vector_index_register:
6210 err_msg = _("unsupported vector index register");
6211 break;
6212 case unsupported_broadcast:
6213 err_msg = _("unsupported broadcast");
6214 break;
6215 case broadcast_needed:
6216 err_msg = _("broadcast is needed for operand of such type");
6217 break;
6218 case unsupported_masking:
6219 err_msg = _("unsupported masking");
6220 break;
6221 case mask_not_on_destination:
6222 err_msg = _("mask not on destination operand");
6223 break;
6224 case no_default_mask:
6225 err_msg = _("default mask isn't allowed");
6226 break;
6227 case unsupported_rc_sae:
6228 err_msg = _("unsupported static rounding/sae");
6229 break;
6230 case rc_sae_operand_not_last_imm:
6231 if (intel_syntax)
6232 err_msg = _("RC/SAE operand must precede immediate operands");
6233 else
6234 err_msg = _("RC/SAE operand must follow immediate operands");
6235 break;
6236 case invalid_register_operand:
6237 err_msg = _("invalid register operand");
6238 break;
6239 }
6240 as_bad (_("%s for `%s'"), err_msg,
6241 current_templates->start->name);
6242 return NULL;
6243 }
6244
6245 if (!quiet_warnings)
6246 {
6247 if (!intel_syntax
6248 && (i.jumpabsolute != (t->opcode_modifier.jump == JUMP_ABSOLUTE)))
6249 as_warn (_("indirect %s without `*'"), t->name);
6250
6251 if (t->opcode_modifier.isprefix
6252 && t->opcode_modifier.mnemonicsize == IGNORESIZE)
6253 {
6254 /* Warn them that a data or address size prefix doesn't
6255 affect assembly of the next line of code. */
6256 as_warn (_("stand-alone `%s' prefix"), t->name);
6257 }
6258 }
6259
6260 /* Copy the template we found. */
6261 i.tm = *t;
6262
6263 if (addr_prefix_disp != -1)
6264 i.tm.operand_types[addr_prefix_disp]
6265 = operand_types[addr_prefix_disp];
6266
6267 if (found_reverse_match)
6268 {
6269 /* If we found a reverse match we must alter the opcode direction
6270 bit and clear/flip the regmem modifier one. found_reverse_match
6271 holds bits to change (different for int & float insns). */
6272
6273 i.tm.base_opcode ^= found_reverse_match;
6274
6275 i.tm.operand_types[0] = operand_types[i.operands - 1];
6276 i.tm.operand_types[i.operands - 1] = operand_types[0];
6277
6278 /* Certain SIMD insns have their load forms specified in the opcode
6279 table, and hence we need to _set_ RegMem instead of clearing it.
6280 We need to avoid setting the bit though on insns like KMOVW. */
6281 i.tm.opcode_modifier.regmem
6282 = i.tm.opcode_modifier.modrm && i.tm.opcode_modifier.d
6283 && i.tm.operands > 2U - i.tm.opcode_modifier.sse2avx
6284 && !i.tm.opcode_modifier.regmem;
6285 }
6286
6287 return t;
6288 }
6289
6290 static int
6291 check_string (void)
6292 {
6293 unsigned int es_op = i.tm.opcode_modifier.isstring - IS_STRING_ES_OP0;
6294 unsigned int op = i.tm.operand_types[0].bitfield.baseindex ? es_op : 0;
6295
6296 if (i.seg[op] != NULL && i.seg[op] != &es)
6297 {
6298 as_bad (_("`%s' operand %u must use `%ses' segment"),
6299 i.tm.name,
6300 intel_syntax ? i.tm.operands - es_op : es_op + 1,
6301 register_prefix);
6302 return 0;
6303 }
6304
6305 /* There's only ever one segment override allowed per instruction.
6306 This instruction possibly has a legal segment override on the
6307 second operand, so copy the segment to where non-string
6308 instructions store it, allowing common code. */
6309 i.seg[op] = i.seg[1];
6310
6311 return 1;
6312 }
6313
6314 static int
6315 process_suffix (void)
6316 {
6317 /* If matched instruction specifies an explicit instruction mnemonic
6318 suffix, use it. */
6319 if (i.tm.opcode_modifier.size == SIZE16)
6320 i.suffix = WORD_MNEM_SUFFIX;
6321 else if (i.tm.opcode_modifier.size == SIZE32)
6322 i.suffix = LONG_MNEM_SUFFIX;
6323 else if (i.tm.opcode_modifier.size == SIZE64)
6324 i.suffix = QWORD_MNEM_SUFFIX;
6325 else if (i.reg_operands
6326 && (i.operands > 1 || i.types[0].bitfield.class == Reg)
6327 && !i.tm.opcode_modifier.addrprefixopreg)
6328 {
6329 unsigned int numop = i.operands;
6330
6331 /* movsx/movzx want only their source operand considered here, for the
6332 ambiguity checking below. The suffix will be replaced afterwards
6333 to represent the destination (register). */
6334 if (((i.tm.base_opcode | 8) == 0xfbe && i.tm.opcode_modifier.w)
6335 || (i.tm.base_opcode == 0x63 && i.tm.cpu_flags.bitfield.cpu64))
6336 --i.operands;
6337
6338 /* If there's no instruction mnemonic suffix we try to invent one
6339 based on GPR operands. */
6340 if (!i.suffix)
6341 {
6342 /* We take i.suffix from the last register operand specified,
6343 Destination register type is more significant than source
6344 register type. crc32 in SSE4.2 prefers source register
6345 type. */
6346 unsigned int op = i.tm.base_opcode != 0xf20f38f0 ? i.operands : 1;
6347
6348 while (op--)
6349 if (i.tm.operand_types[op].bitfield.instance == InstanceNone
6350 || i.tm.operand_types[op].bitfield.instance == Accum)
6351 {
6352 if (i.types[op].bitfield.class != Reg)
6353 continue;
6354 if (i.types[op].bitfield.byte)
6355 i.suffix = BYTE_MNEM_SUFFIX;
6356 else if (i.types[op].bitfield.word)
6357 i.suffix = WORD_MNEM_SUFFIX;
6358 else if (i.types[op].bitfield.dword)
6359 i.suffix = LONG_MNEM_SUFFIX;
6360 else if (i.types[op].bitfield.qword)
6361 i.suffix = QWORD_MNEM_SUFFIX;
6362 else
6363 continue;
6364 break;
6365 }
6366
6367 /* As an exception, movsx/movzx silently default to a byte source
6368 in AT&T mode. */
6369 if ((i.tm.base_opcode | 8) == 0xfbe && i.tm.opcode_modifier.w
6370 && !i.suffix && !intel_syntax)
6371 i.suffix = BYTE_MNEM_SUFFIX;
6372 }
6373 else if (i.suffix == BYTE_MNEM_SUFFIX)
6374 {
6375 if (intel_syntax
6376 && i.tm.opcode_modifier.mnemonicsize == IGNORESIZE
6377 && i.tm.opcode_modifier.no_bsuf)
6378 i.suffix = 0;
6379 else if (!check_byte_reg ())
6380 return 0;
6381 }
6382 else if (i.suffix == LONG_MNEM_SUFFIX)
6383 {
6384 if (intel_syntax
6385 && i.tm.opcode_modifier.mnemonicsize == IGNORESIZE
6386 && i.tm.opcode_modifier.no_lsuf
6387 && !i.tm.opcode_modifier.todword
6388 && !i.tm.opcode_modifier.toqword)
6389 i.suffix = 0;
6390 else if (!check_long_reg ())
6391 return 0;
6392 }
6393 else if (i.suffix == QWORD_MNEM_SUFFIX)
6394 {
6395 if (intel_syntax
6396 && i.tm.opcode_modifier.mnemonicsize == IGNORESIZE
6397 && i.tm.opcode_modifier.no_qsuf
6398 && !i.tm.opcode_modifier.todword
6399 && !i.tm.opcode_modifier.toqword)
6400 i.suffix = 0;
6401 else if (!check_qword_reg ())
6402 return 0;
6403 }
6404 else if (i.suffix == WORD_MNEM_SUFFIX)
6405 {
6406 if (intel_syntax
6407 && i.tm.opcode_modifier.mnemonicsize == IGNORESIZE
6408 && i.tm.opcode_modifier.no_wsuf)
6409 i.suffix = 0;
6410 else if (!check_word_reg ())
6411 return 0;
6412 }
6413 else if (intel_syntax
6414 && i.tm.opcode_modifier.mnemonicsize == IGNORESIZE)
6415 /* Do nothing if the instruction is going to ignore the prefix. */
6416 ;
6417 else
6418 abort ();
6419
6420 /* Undo the movsx/movzx change done above. */
6421 i.operands = numop;
6422 }
6423 else if (i.tm.opcode_modifier.mnemonicsize == DEFAULTSIZE
6424 && !i.suffix)
6425 {
6426 i.suffix = stackop_size;
6427 if (stackop_size == LONG_MNEM_SUFFIX)
6428 {
6429 /* stackop_size is set to LONG_MNEM_SUFFIX for the
6430 .code16gcc directive to support 16-bit mode with
6431 32-bit address. For IRET without a suffix, generate
6432 16-bit IRET (opcode 0xcf) to return from an interrupt
6433 handler. */
6434 if (i.tm.base_opcode == 0xcf)
6435 {
6436 i.suffix = WORD_MNEM_SUFFIX;
6437 as_warn (_("generating 16-bit `iret' for .code16gcc directive"));
6438 }
6439 /* Warn about changed behavior for segment register push/pop. */
6440 else if ((i.tm.base_opcode | 1) == 0x07)
6441 as_warn (_("generating 32-bit `%s', unlike earlier gas versions"),
6442 i.tm.name);
6443 }
6444 }
6445 else if (!i.suffix
6446 && (i.tm.opcode_modifier.jump == JUMP_ABSOLUTE
6447 || i.tm.opcode_modifier.jump == JUMP_BYTE
6448 || i.tm.opcode_modifier.jump == JUMP_INTERSEGMENT
6449 || (i.tm.base_opcode == 0x0f01 /* [ls][gi]dt */
6450 && i.tm.extension_opcode <= 3)))
6451 {
6452 switch (flag_code)
6453 {
6454 case CODE_64BIT:
6455 if (!i.tm.opcode_modifier.no_qsuf)
6456 {
6457 i.suffix = QWORD_MNEM_SUFFIX;
6458 break;
6459 }
6460 /* Fall through. */
6461 case CODE_32BIT:
6462 if (!i.tm.opcode_modifier.no_lsuf)
6463 i.suffix = LONG_MNEM_SUFFIX;
6464 break;
6465 case CODE_16BIT:
6466 if (!i.tm.opcode_modifier.no_wsuf)
6467 i.suffix = WORD_MNEM_SUFFIX;
6468 break;
6469 }
6470 }
6471
6472 if (!i.suffix
6473 && (i.tm.opcode_modifier.mnemonicsize != DEFAULTSIZE
6474 /* Also cover lret/retf/iret in 64-bit mode. */
6475 || (flag_code == CODE_64BIT
6476 && !i.tm.opcode_modifier.no_lsuf
6477 && !i.tm.opcode_modifier.no_qsuf))
6478 && i.tm.opcode_modifier.mnemonicsize != IGNORESIZE
6479 /* Accept FLDENV et al without suffix. */
6480 && (i.tm.opcode_modifier.no_ssuf || i.tm.opcode_modifier.floatmf))
6481 {
6482 unsigned int suffixes, evex = 0;
6483
6484 suffixes = !i.tm.opcode_modifier.no_bsuf;
6485 if (!i.tm.opcode_modifier.no_wsuf)
6486 suffixes |= 1 << 1;
6487 if (!i.tm.opcode_modifier.no_lsuf)
6488 suffixes |= 1 << 2;
6489 if (!i.tm.opcode_modifier.no_ldsuf)
6490 suffixes |= 1 << 3;
6491 if (!i.tm.opcode_modifier.no_ssuf)
6492 suffixes |= 1 << 4;
6493 if (flag_code == CODE_64BIT && !i.tm.opcode_modifier.no_qsuf)
6494 suffixes |= 1 << 5;
6495
6496 /* For [XYZ]MMWORD operands inspect operand sizes. While generally
6497 also suitable for AT&T syntax mode, it was requested that this be
6498 restricted to just Intel syntax. */
6499 if (intel_syntax && is_any_vex_encoding (&i.tm) && !i.broadcast)
6500 {
6501 unsigned int op;
6502
6503 for (op = 0; op < i.tm.operands; ++op)
6504 {
6505 if (is_evex_encoding (&i.tm)
6506 && !cpu_arch_flags.bitfield.cpuavx512vl)
6507 {
6508 if (i.tm.operand_types[op].bitfield.ymmword)
6509 i.tm.operand_types[op].bitfield.xmmword = 0;
6510 if (i.tm.operand_types[op].bitfield.zmmword)
6511 i.tm.operand_types[op].bitfield.ymmword = 0;
6512 if (!i.tm.opcode_modifier.evex
6513 || i.tm.opcode_modifier.evex == EVEXDYN)
6514 i.tm.opcode_modifier.evex = EVEX512;
6515 }
6516
6517 if (i.tm.operand_types[op].bitfield.xmmword
6518 + i.tm.operand_types[op].bitfield.ymmword
6519 + i.tm.operand_types[op].bitfield.zmmword < 2)
6520 continue;
6521
6522 /* Any properly sized operand disambiguates the insn. */
6523 if (i.types[op].bitfield.xmmword
6524 || i.types[op].bitfield.ymmword
6525 || i.types[op].bitfield.zmmword)
6526 {
6527 suffixes &= ~(7 << 6);
6528 evex = 0;
6529 break;
6530 }
6531
6532 if ((i.flags[op] & Operand_Mem)
6533 && i.tm.operand_types[op].bitfield.unspecified)
6534 {
6535 if (i.tm.operand_types[op].bitfield.xmmword)
6536 suffixes |= 1 << 6;
6537 if (i.tm.operand_types[op].bitfield.ymmword)
6538 suffixes |= 1 << 7;
6539 if (i.tm.operand_types[op].bitfield.zmmword)
6540 suffixes |= 1 << 8;
6541 if (is_evex_encoding (&i.tm))
6542 evex = EVEX512;
6543 }
6544 }
6545 }
6546
6547 /* Are multiple suffixes / operand sizes allowed? */
6548 if (suffixes & (suffixes - 1))
6549 {
6550 if (intel_syntax
6551 && (i.tm.opcode_modifier.mnemonicsize != DEFAULTSIZE
6552 || operand_check == check_error))
6553 {
6554 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
6555 return 0;
6556 }
6557 if (operand_check == check_error)
6558 {
6559 as_bad (_("no instruction mnemonic suffix given and "
6560 "no register operands; can't size `%s'"), i.tm.name);
6561 return 0;
6562 }
6563 if (operand_check == check_warning)
6564 as_warn (_("%s; using default for `%s'"),
6565 intel_syntax
6566 ? _("ambiguous operand size")
6567 : _("no instruction mnemonic suffix given and "
6568 "no register operands"),
6569 i.tm.name);
6570
6571 if (i.tm.opcode_modifier.floatmf)
6572 i.suffix = SHORT_MNEM_SUFFIX;
6573 else if ((i.tm.base_opcode | 8) == 0xfbe
6574 || (i.tm.base_opcode == 0x63
6575 && i.tm.cpu_flags.bitfield.cpu64))
6576 /* handled below */;
6577 else if (evex)
6578 i.tm.opcode_modifier.evex = evex;
6579 else if (flag_code == CODE_16BIT)
6580 i.suffix = WORD_MNEM_SUFFIX;
6581 else if (!i.tm.opcode_modifier.no_lsuf)
6582 i.suffix = LONG_MNEM_SUFFIX;
6583 else
6584 i.suffix = QWORD_MNEM_SUFFIX;
6585 }
6586 }
6587
6588 if ((i.tm.base_opcode | 8) == 0xfbe
6589 || (i.tm.base_opcode == 0x63 && i.tm.cpu_flags.bitfield.cpu64))
6590 {
6591 /* In Intel syntax, movsx/movzx must have a "suffix" (checked above).
6592 In AT&T syntax, if there is no suffix (warned about above), the default
6593 will be byte extension. */
6594 if (i.tm.opcode_modifier.w && i.suffix && i.suffix != BYTE_MNEM_SUFFIX)
6595 i.tm.base_opcode |= 1;
6596
6597 /* For further processing, the suffix should represent the destination
6598 (register). This is already the case when one was used with
6599 mov[sz][bw]*, but we need to replace it for mov[sz]x, or if there was
6600 no suffix to begin with. */
6601 if (i.tm.opcode_modifier.w || i.tm.base_opcode == 0x63 || !i.suffix)
6602 {
6603 if (i.types[1].bitfield.word)
6604 i.suffix = WORD_MNEM_SUFFIX;
6605 else if (i.types[1].bitfield.qword)
6606 i.suffix = QWORD_MNEM_SUFFIX;
6607 else
6608 i.suffix = LONG_MNEM_SUFFIX;
6609
6610 i.tm.opcode_modifier.w = 0;
6611 }
6612 }
6613
6614 if (!i.tm.opcode_modifier.modrm && i.reg_operands && i.tm.operands < 3)
6615 i.short_form = (i.tm.operand_types[0].bitfield.class == Reg)
6616 != (i.tm.operand_types[1].bitfield.class == Reg);
6617
6618 /* Change the opcode based on the operand size given by i.suffix. */
6619 switch (i.suffix)
6620 {
6621 /* Size floating point instruction. */
6622 case LONG_MNEM_SUFFIX:
6623 if (i.tm.opcode_modifier.floatmf)
6624 {
6625 i.tm.base_opcode ^= 4;
6626 break;
6627 }
6628 /* fall through */
6629 case WORD_MNEM_SUFFIX:
6630 case QWORD_MNEM_SUFFIX:
6631 /* It's not a byte, select word/dword operation. */
6632 if (i.tm.opcode_modifier.w)
6633 {
6634 if (i.short_form)
6635 i.tm.base_opcode |= 8;
6636 else
6637 i.tm.base_opcode |= 1;
6638 }
6639 /* fall through */
6640 case SHORT_MNEM_SUFFIX:
6641 /* Now select between word & dword operations via the operand
6642 size prefix, except for instructions that will ignore this
6643 prefix anyway. */
6644 if (i.suffix != QWORD_MNEM_SUFFIX
6645 && i.tm.opcode_modifier.mnemonicsize != IGNORESIZE
6646 && !i.tm.opcode_modifier.floatmf
6647 && !is_any_vex_encoding (&i.tm)
6648 && ((i.suffix == LONG_MNEM_SUFFIX) == (flag_code == CODE_16BIT)
6649 || (flag_code == CODE_64BIT
6650 && i.tm.opcode_modifier.jump == JUMP_BYTE)))
6651 {
6652 unsigned int prefix = DATA_PREFIX_OPCODE;
6653
6654 if (i.tm.opcode_modifier.jump == JUMP_BYTE) /* jcxz, loop */
6655 prefix = ADDR_PREFIX_OPCODE;
6656
6657 if (!add_prefix (prefix))
6658 return 0;
6659 }
6660
6661 /* Set mode64 for an operand. */
6662 if (i.suffix == QWORD_MNEM_SUFFIX
6663 && flag_code == CODE_64BIT
6664 && !i.tm.opcode_modifier.norex64
6665 /* Special case for xchg %rax,%rax. It is NOP and doesn't
6666 need rex64. */
6667 && ! (i.operands == 2
6668 && i.tm.base_opcode == 0x90
6669 && i.tm.extension_opcode == None
6670 && i.types[0].bitfield.instance == Accum
6671 && i.types[0].bitfield.qword
6672 && i.types[1].bitfield.instance == Accum
6673 && i.types[1].bitfield.qword))
6674 i.rex |= REX_W;
6675
6676 break;
6677 }
6678
6679 if (i.tm.opcode_modifier.addrprefixopreg)
6680 {
6681 gas_assert (!i.suffix);
6682 gas_assert (i.reg_operands);
6683
6684 if (i.tm.operand_types[0].bitfield.instance == Accum
6685 || i.operands == 1)
6686 {
6687 /* The address size override prefix changes the size of the
6688 first operand. */
6689 if (flag_code == CODE_64BIT
6690 && i.op[0].regs->reg_type.bitfield.word)
6691 {
6692 as_bad (_("16-bit addressing unavailable for `%s'"),
6693 i.tm.name);
6694 return 0;
6695 }
6696
6697 if ((flag_code == CODE_32BIT
6698 ? i.op[0].regs->reg_type.bitfield.word
6699 : i.op[0].regs->reg_type.bitfield.dword)
6700 && !add_prefix (ADDR_PREFIX_OPCODE))
6701 return 0;
6702 }
6703 else
6704 {
6705 /* Check invalid register operand when the address size override
6706 prefix changes the size of register operands. */
6707 unsigned int op;
6708 enum { need_word, need_dword, need_qword } need;
6709
6710 if (flag_code == CODE_32BIT)
6711 need = i.prefix[ADDR_PREFIX] ? need_word : need_dword;
6712 else if (i.prefix[ADDR_PREFIX])
6713 need = need_dword;
6714 else
6715 need = flag_code == CODE_64BIT ? need_qword : need_word;
6716
6717 for (op = 0; op < i.operands; op++)
6718 {
6719 if (i.types[op].bitfield.class != Reg)
6720 continue;
6721
6722 switch (need)
6723 {
6724 case need_word:
6725 if (i.op[op].regs->reg_type.bitfield.word)
6726 continue;
6727 break;
6728 case need_dword:
6729 if (i.op[op].regs->reg_type.bitfield.dword)
6730 continue;
6731 break;
6732 case need_qword:
6733 if (i.op[op].regs->reg_type.bitfield.qword)
6734 continue;
6735 break;
6736 }
6737
6738 as_bad (_("invalid register operand size for `%s'"),
6739 i.tm.name);
6740 return 0;
6741 }
6742 }
6743 }
6744
6745 return 1;
6746 }
6747
6748 static int
6749 check_byte_reg (void)
6750 {
6751 int op;
6752
6753 for (op = i.operands; --op >= 0;)
6754 {
6755 /* Skip non-register operands. */
6756 if (i.types[op].bitfield.class != Reg)
6757 continue;
6758
6759 /* If this is an eight bit register, it's OK. If it's the 16 or
6760 32 bit version of an eight bit register, we will just use the
6761 low portion, and that's OK too. */
6762 if (i.types[op].bitfield.byte)
6763 continue;
6764
6765 /* I/O port address operands are OK too. */
6766 if (i.tm.operand_types[op].bitfield.instance == RegD
6767 && i.tm.operand_types[op].bitfield.word)
6768 continue;
6769
6770 /* crc32 only wants its source operand checked here. */
6771 if (i.tm.base_opcode == 0xf20f38f0 && op)
6772 continue;
6773
6774 /* Any other register is bad. */
6775 if (i.types[op].bitfield.class == Reg
6776 || i.types[op].bitfield.class == RegMMX
6777 || i.types[op].bitfield.class == RegSIMD
6778 || i.types[op].bitfield.class == SReg
6779 || i.types[op].bitfield.class == RegCR
6780 || i.types[op].bitfield.class == RegDR
6781 || i.types[op].bitfield.class == RegTR)
6782 {
6783 as_bad (_("`%s%s' not allowed with `%s%c'"),
6784 register_prefix,
6785 i.op[op].regs->reg_name,
6786 i.tm.name,
6787 i.suffix);
6788 return 0;
6789 }
6790 }
6791 return 1;
6792 }
6793
6794 static int
6795 check_long_reg (void)
6796 {
6797 int op;
6798
6799 for (op = i.operands; --op >= 0;)
6800 /* Skip non-register operands. */
6801 if (i.types[op].bitfield.class != Reg)
6802 continue;
6803 /* Reject eight bit registers, except where the template requires
6804 them. (eg. movzb) */
6805 else if (i.types[op].bitfield.byte
6806 && (i.tm.operand_types[op].bitfield.class == Reg
6807 || i.tm.operand_types[op].bitfield.instance == Accum)
6808 && (i.tm.operand_types[op].bitfield.word
6809 || i.tm.operand_types[op].bitfield.dword))
6810 {
6811 as_bad (_("`%s%s' not allowed with `%s%c'"),
6812 register_prefix,
6813 i.op[op].regs->reg_name,
6814 i.tm.name,
6815 i.suffix);
6816 return 0;
6817 }
6818 /* Error if the e prefix on a general reg is missing. */
6819 else if (i.types[op].bitfield.word
6820 && (i.tm.operand_types[op].bitfield.class == Reg
6821 || i.tm.operand_types[op].bitfield.instance == Accum)
6822 && i.tm.operand_types[op].bitfield.dword)
6823 {
6824 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
6825 register_prefix, i.op[op].regs->reg_name,
6826 i.suffix);
6827 return 0;
6828 }
6829 /* Warn if the r prefix on a general reg is present. */
6830 else if (i.types[op].bitfield.qword
6831 && (i.tm.operand_types[op].bitfield.class == Reg
6832 || i.tm.operand_types[op].bitfield.instance == Accum)
6833 && i.tm.operand_types[op].bitfield.dword)
6834 {
6835 if (intel_syntax
6836 && i.tm.opcode_modifier.toqword
6837 && i.types[0].bitfield.class != RegSIMD)
6838 {
6839 /* Convert to QWORD. We want REX byte. */
6840 i.suffix = QWORD_MNEM_SUFFIX;
6841 }
6842 else
6843 {
6844 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
6845 register_prefix, i.op[op].regs->reg_name,
6846 i.suffix);
6847 return 0;
6848 }
6849 }
6850 return 1;
6851 }
6852
6853 static int
6854 check_qword_reg (void)
6855 {
6856 int op;
6857
6858 for (op = i.operands; --op >= 0; )
6859 /* Skip non-register operands. */
6860 if (i.types[op].bitfield.class != Reg)
6861 continue;
6862 /* Reject eight bit registers, except where the template requires
6863 them. (eg. movzb) */
6864 else if (i.types[op].bitfield.byte
6865 && (i.tm.operand_types[op].bitfield.class == Reg
6866 || i.tm.operand_types[op].bitfield.instance == Accum)
6867 && (i.tm.operand_types[op].bitfield.word
6868 || i.tm.operand_types[op].bitfield.dword))
6869 {
6870 as_bad (_("`%s%s' not allowed with `%s%c'"),
6871 register_prefix,
6872 i.op[op].regs->reg_name,
6873 i.tm.name,
6874 i.suffix);
6875 return 0;
6876 }
6877 /* Warn if the r prefix on a general reg is missing. */
6878 else if ((i.types[op].bitfield.word
6879 || i.types[op].bitfield.dword)
6880 && (i.tm.operand_types[op].bitfield.class == Reg
6881 || i.tm.operand_types[op].bitfield.instance == Accum)
6882 && i.tm.operand_types[op].bitfield.qword)
6883 {
6884 /* Prohibit these changes in the 64bit mode, since the
6885 lowering is more complicated. */
6886 if (intel_syntax
6887 && i.tm.opcode_modifier.todword
6888 && i.types[0].bitfield.class != RegSIMD)
6889 {
6890 /* Convert to DWORD. We don't want REX byte. */
6891 i.suffix = LONG_MNEM_SUFFIX;
6892 }
6893 else
6894 {
6895 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
6896 register_prefix, i.op[op].regs->reg_name,
6897 i.suffix);
6898 return 0;
6899 }
6900 }
6901 return 1;
6902 }
6903
6904 static int
6905 check_word_reg (void)
6906 {
6907 int op;
6908 for (op = i.operands; --op >= 0;)
6909 /* Skip non-register operands. */
6910 if (i.types[op].bitfield.class != Reg)
6911 continue;
6912 /* Reject eight bit registers, except where the template requires
6913 them. (eg. movzb) */
6914 else if (i.types[op].bitfield.byte
6915 && (i.tm.operand_types[op].bitfield.class == Reg
6916 || i.tm.operand_types[op].bitfield.instance == Accum)
6917 && (i.tm.operand_types[op].bitfield.word
6918 || i.tm.operand_types[op].bitfield.dword))
6919 {
6920 as_bad (_("`%s%s' not allowed with `%s%c'"),
6921 register_prefix,
6922 i.op[op].regs->reg_name,
6923 i.tm.name,
6924 i.suffix);
6925 return 0;
6926 }
6927 /* Error if the e or r prefix on a general reg is present. */
6928 else if ((i.types[op].bitfield.dword
6929 || i.types[op].bitfield.qword)
6930 && (i.tm.operand_types[op].bitfield.class == Reg
6931 || i.tm.operand_types[op].bitfield.instance == Accum)
6932 && i.tm.operand_types[op].bitfield.word)
6933 {
6934 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
6935 register_prefix, i.op[op].regs->reg_name,
6936 i.suffix);
6937 return 0;
6938 }
6939 return 1;
6940 }
6941
6942 static int
6943 update_imm (unsigned int j)
6944 {
6945 i386_operand_type overlap = i.types[j];
6946 if ((overlap.bitfield.imm8
6947 || overlap.bitfield.imm8s
6948 || overlap.bitfield.imm16
6949 || overlap.bitfield.imm32
6950 || overlap.bitfield.imm32s
6951 || overlap.bitfield.imm64)
6952 && !operand_type_equal (&overlap, &imm8)
6953 && !operand_type_equal (&overlap, &imm8s)
6954 && !operand_type_equal (&overlap, &imm16)
6955 && !operand_type_equal (&overlap, &imm32)
6956 && !operand_type_equal (&overlap, &imm32s)
6957 && !operand_type_equal (&overlap, &imm64))
6958 {
6959 if (i.suffix)
6960 {
6961 i386_operand_type temp;
6962
6963 operand_type_set (&temp, 0);
6964 if (i.suffix == BYTE_MNEM_SUFFIX)
6965 {
6966 temp.bitfield.imm8 = overlap.bitfield.imm8;
6967 temp.bitfield.imm8s = overlap.bitfield.imm8s;
6968 }
6969 else if (i.suffix == WORD_MNEM_SUFFIX)
6970 temp.bitfield.imm16 = overlap.bitfield.imm16;
6971 else if (i.suffix == QWORD_MNEM_SUFFIX)
6972 {
6973 temp.bitfield.imm64 = overlap.bitfield.imm64;
6974 temp.bitfield.imm32s = overlap.bitfield.imm32s;
6975 }
6976 else
6977 temp.bitfield.imm32 = overlap.bitfield.imm32;
6978 overlap = temp;
6979 }
6980 else if (operand_type_equal (&overlap, &imm16_32_32s)
6981 || operand_type_equal (&overlap, &imm16_32)
6982 || operand_type_equal (&overlap, &imm16_32s))
6983 {
6984 if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
6985 overlap = imm16;
6986 else
6987 overlap = imm32s;
6988 }
6989 if (!operand_type_equal (&overlap, &imm8)
6990 && !operand_type_equal (&overlap, &imm8s)
6991 && !operand_type_equal (&overlap, &imm16)
6992 && !operand_type_equal (&overlap, &imm32)
6993 && !operand_type_equal (&overlap, &imm32s)
6994 && !operand_type_equal (&overlap, &imm64))
6995 {
6996 as_bad (_("no instruction mnemonic suffix given; "
6997 "can't determine immediate size"));
6998 return 0;
6999 }
7000 }
7001 i.types[j] = overlap;
7002
7003 return 1;
7004 }
7005
7006 static int
7007 finalize_imm (void)
7008 {
7009 unsigned int j, n;
7010
7011 /* Update the first 2 immediate operands. */
7012 n = i.operands > 2 ? 2 : i.operands;
7013 if (n)
7014 {
7015 for (j = 0; j < n; j++)
7016 if (update_imm (j) == 0)
7017 return 0;
7018
7019 /* The 3rd operand can't be immediate operand. */
7020 gas_assert (operand_type_check (i.types[2], imm) == 0);
7021 }
7022
7023 return 1;
7024 }
7025
7026 static int
7027 process_operands (void)
7028 {
7029 /* Default segment register this instruction will use for memory
7030 accesses. 0 means unknown. This is only for optimizing out
7031 unnecessary segment overrides. */
7032 const seg_entry *default_seg = 0;
7033
7034 if (i.tm.opcode_modifier.sse2avx && i.tm.opcode_modifier.vexvvvv)
7035 {
7036 unsigned int dupl = i.operands;
7037 unsigned int dest = dupl - 1;
7038 unsigned int j;
7039
7040 /* The destination must be an xmm register. */
7041 gas_assert (i.reg_operands
7042 && MAX_OPERANDS > dupl
7043 && operand_type_equal (&i.types[dest], &regxmm));
7044
7045 if (i.tm.operand_types[0].bitfield.instance == Accum
7046 && i.tm.operand_types[0].bitfield.xmmword)
7047 {
7048 if (i.tm.opcode_modifier.vexsources == VEX3SOURCES)
7049 {
7050 /* Keep xmm0 for instructions with VEX prefix and 3
7051 sources. */
7052 i.tm.operand_types[0].bitfield.instance = InstanceNone;
7053 i.tm.operand_types[0].bitfield.class = RegSIMD;
7054 goto duplicate;
7055 }
7056 else
7057 {
7058 /* We remove the first xmm0 and keep the number of
7059 operands unchanged, which in fact duplicates the
7060 destination. */
7061 for (j = 1; j < i.operands; j++)
7062 {
7063 i.op[j - 1] = i.op[j];
7064 i.types[j - 1] = i.types[j];
7065 i.tm.operand_types[j - 1] = i.tm.operand_types[j];
7066 i.flags[j - 1] = i.flags[j];
7067 }
7068 }
7069 }
7070 else if (i.tm.opcode_modifier.implicit1stxmm0)
7071 {
7072 gas_assert ((MAX_OPERANDS - 1) > dupl
7073 && (i.tm.opcode_modifier.vexsources
7074 == VEX3SOURCES));
7075
7076 /* Add the implicit xmm0 for instructions with VEX prefix
7077 and 3 sources. */
7078 for (j = i.operands; j > 0; j--)
7079 {
7080 i.op[j] = i.op[j - 1];
7081 i.types[j] = i.types[j - 1];
7082 i.tm.operand_types[j] = i.tm.operand_types[j - 1];
7083 i.flags[j] = i.flags[j - 1];
7084 }
7085 i.op[0].regs
7086 = (const reg_entry *) hash_find (reg_hash, "xmm0");
7087 i.types[0] = regxmm;
7088 i.tm.operand_types[0] = regxmm;
7089
7090 i.operands += 2;
7091 i.reg_operands += 2;
7092 i.tm.operands += 2;
7093
7094 dupl++;
7095 dest++;
7096 i.op[dupl] = i.op[dest];
7097 i.types[dupl] = i.types[dest];
7098 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
7099 i.flags[dupl] = i.flags[dest];
7100 }
7101 else
7102 {
7103 duplicate:
7104 i.operands++;
7105 i.reg_operands++;
7106 i.tm.operands++;
7107
7108 i.op[dupl] = i.op[dest];
7109 i.types[dupl] = i.types[dest];
7110 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
7111 i.flags[dupl] = i.flags[dest];
7112 }
7113
7114 if (i.tm.opcode_modifier.immext)
7115 process_immext ();
7116 }
7117 else if (i.tm.operand_types[0].bitfield.instance == Accum
7118 && i.tm.operand_types[0].bitfield.xmmword)
7119 {
7120 unsigned int j;
7121
7122 for (j = 1; j < i.operands; j++)
7123 {
7124 i.op[j - 1] = i.op[j];
7125 i.types[j - 1] = i.types[j];
7126
7127 /* We need to adjust fields in i.tm since they are used by
7128 build_modrm_byte. */
7129 i.tm.operand_types [j - 1] = i.tm.operand_types [j];
7130
7131 i.flags[j - 1] = i.flags[j];
7132 }
7133
7134 i.operands--;
7135 i.reg_operands--;
7136 i.tm.operands--;
7137 }
7138 else if (i.tm.opcode_modifier.implicitquadgroup)
7139 {
7140 unsigned int regnum, first_reg_in_group, last_reg_in_group;
7141
7142 /* The second operand must be {x,y,z}mmN, where N is a multiple of 4. */
7143 gas_assert (i.operands >= 2 && i.types[1].bitfield.class == RegSIMD);
7144 regnum = register_number (i.op[1].regs);
7145 first_reg_in_group = regnum & ~3;
7146 last_reg_in_group = first_reg_in_group + 3;
7147 if (regnum != first_reg_in_group)
7148 as_warn (_("source register `%s%s' implicitly denotes"
7149 " `%s%.3s%u' to `%s%.3s%u' source group in `%s'"),
7150 register_prefix, i.op[1].regs->reg_name,
7151 register_prefix, i.op[1].regs->reg_name, first_reg_in_group,
7152 register_prefix, i.op[1].regs->reg_name, last_reg_in_group,
7153 i.tm.name);
7154 }
7155 else if (i.tm.opcode_modifier.regkludge)
7156 {
7157 /* The imul $imm, %reg instruction is converted into
7158 imul $imm, %reg, %reg, and the clr %reg instruction
7159 is converted into xor %reg, %reg. */
7160
7161 unsigned int first_reg_op;
7162
7163 if (operand_type_check (i.types[0], reg))
7164 first_reg_op = 0;
7165 else
7166 first_reg_op = 1;
7167 /* Pretend we saw the extra register operand. */
7168 gas_assert (i.reg_operands == 1
7169 && i.op[first_reg_op + 1].regs == 0);
7170 i.op[first_reg_op + 1].regs = i.op[first_reg_op].regs;
7171 i.types[first_reg_op + 1] = i.types[first_reg_op];
7172 i.operands++;
7173 i.reg_operands++;
7174 }
7175
7176 if (i.tm.opcode_modifier.modrm)
7177 {
7178 /* The opcode is completed (modulo i.tm.extension_opcode which
7179 must be put into the modrm byte). Now, we make the modrm and
7180 index base bytes based on all the info we've collected. */
7181
7182 default_seg = build_modrm_byte ();
7183 }
7184 else if (i.types[0].bitfield.class == SReg)
7185 {
7186 if (flag_code != CODE_64BIT
7187 ? i.tm.base_opcode == POP_SEG_SHORT
7188 && i.op[0].regs->reg_num == 1
7189 : (i.tm.base_opcode | 1) == POP_SEG386_SHORT
7190 && i.op[0].regs->reg_num < 4)
7191 {
7192 as_bad (_("you can't `%s %s%s'"),
7193 i.tm.name, register_prefix, i.op[0].regs->reg_name);
7194 return 0;
7195 }
7196 if ( i.op[0].regs->reg_num > 3 && i.tm.opcode_length == 1 )
7197 {
7198 i.tm.base_opcode ^= POP_SEG_SHORT ^ POP_SEG386_SHORT;
7199 i.tm.opcode_length = 2;
7200 }
7201 i.tm.base_opcode |= (i.op[0].regs->reg_num << 3);
7202 }
7203 else if ((i.tm.base_opcode & ~0x3) == MOV_AX_DISP32)
7204 {
7205 default_seg = &ds;
7206 }
7207 else if (i.tm.opcode_modifier.isstring)
7208 {
7209 /* For the string instructions that allow a segment override
7210 on one of their operands, the default segment is ds. */
7211 default_seg = &ds;
7212 }
7213 else if (i.short_form)
7214 {
7215 /* The register or float register operand is in operand
7216 0 or 1. */
7217 unsigned int op = i.tm.operand_types[0].bitfield.class != Reg;
7218
7219 /* Register goes in low 3 bits of opcode. */
7220 i.tm.base_opcode |= i.op[op].regs->reg_num;
7221 if ((i.op[op].regs->reg_flags & RegRex) != 0)
7222 i.rex |= REX_B;
7223 if (!quiet_warnings && i.tm.opcode_modifier.ugh)
7224 {
7225 /* Warn about some common errors, but press on regardless.
7226 The first case can be generated by gcc (<= 2.8.1). */
7227 if (i.operands == 2)
7228 {
7229 /* Reversed arguments on faddp, fsubp, etc. */
7230 as_warn (_("translating to `%s %s%s,%s%s'"), i.tm.name,
7231 register_prefix, i.op[!intel_syntax].regs->reg_name,
7232 register_prefix, i.op[intel_syntax].regs->reg_name);
7233 }
7234 else
7235 {
7236 /* Extraneous `l' suffix on fp insn. */
7237 as_warn (_("translating to `%s %s%s'"), i.tm.name,
7238 register_prefix, i.op[0].regs->reg_name);
7239 }
7240 }
7241 }
7242
7243 if ((i.seg[0] || i.prefix[SEG_PREFIX])
7244 && i.tm.base_opcode == 0x8d /* lea */
7245 && !is_any_vex_encoding(&i.tm))
7246 {
7247 if (!quiet_warnings)
7248 as_warn (_("segment override on `%s' is ineffectual"), i.tm.name);
7249 if (optimize)
7250 {
7251 i.seg[0] = NULL;
7252 i.prefix[SEG_PREFIX] = 0;
7253 }
7254 }
7255
7256 /* If a segment was explicitly specified, and the specified segment
7257 is neither the default nor the one already recorded from a prefix,
7258 use an opcode prefix to select it. If we never figured out what
7259 the default segment is, then default_seg will be zero at this
7260 point, and the specified segment prefix will always be used. */
7261 if (i.seg[0]
7262 && i.seg[0] != default_seg
7263 && i.seg[0]->seg_prefix != i.prefix[SEG_PREFIX])
7264 {
7265 if (!add_prefix (i.seg[0]->seg_prefix))
7266 return 0;
7267 }
7268 return 1;
7269 }
7270
7271 static const seg_entry *
7272 build_modrm_byte (void)
7273 {
7274 const seg_entry *default_seg = 0;
7275 unsigned int source, dest;
7276 int vex_3_sources;
7277
7278 vex_3_sources = i.tm.opcode_modifier.vexsources == VEX3SOURCES;
7279 if (vex_3_sources)
7280 {
7281 unsigned int nds, reg_slot;
7282 expressionS *exp;
7283
7284 dest = i.operands - 1;
7285 nds = dest - 1;
7286
7287 /* There are 2 kinds of instructions:
7288 1. 5 operands: 4 register operands or 3 register operands
7289 plus 1 memory operand plus one Imm4 operand, VexXDS, and
7290 VexW0 or VexW1. The destination must be either XMM, YMM or
7291 ZMM register.
7292 2. 4 operands: 4 register operands or 3 register operands
7293 plus 1 memory operand, with VexXDS. */
7294 gas_assert ((i.reg_operands == 4
7295 || (i.reg_operands == 3 && i.mem_operands == 1))
7296 && i.tm.opcode_modifier.vexvvvv == VEXXDS
7297 && i.tm.opcode_modifier.vexw
7298 && i.tm.operand_types[dest].bitfield.class == RegSIMD);
7299
7300 /* If VexW1 is set, the first non-immediate operand is the source and
7301 the second non-immediate one is encoded in the immediate operand. */
7302 if (i.tm.opcode_modifier.vexw == VEXW1)
7303 {
7304 source = i.imm_operands;
7305 reg_slot = i.imm_operands + 1;
7306 }
7307 else
7308 {
7309 source = i.imm_operands + 1;
7310 reg_slot = i.imm_operands;
7311 }
7312
7313 if (i.imm_operands == 0)
7314 {
7315 /* When there is no immediate operand, generate an 8bit
7316 immediate operand to encode the first operand. */
7317 exp = &im_expressions[i.imm_operands++];
7318 i.op[i.operands].imms = exp;
7319 i.types[i.operands] = imm8;
7320 i.operands++;
7321
7322 gas_assert (i.tm.operand_types[reg_slot].bitfield.class == RegSIMD);
7323 exp->X_op = O_constant;
7324 exp->X_add_number = register_number (i.op[reg_slot].regs) << 4;
7325 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
7326 }
7327 else
7328 {
7329 gas_assert (i.imm_operands == 1);
7330 gas_assert (fits_in_imm4 (i.op[0].imms->X_add_number));
7331 gas_assert (!i.tm.opcode_modifier.immext);
7332
7333 /* Turn on Imm8 again so that output_imm will generate it. */
7334 i.types[0].bitfield.imm8 = 1;
7335
7336 gas_assert (i.tm.operand_types[reg_slot].bitfield.class == RegSIMD);
7337 i.op[0].imms->X_add_number
7338 |= register_number (i.op[reg_slot].regs) << 4;
7339 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
7340 }
7341
7342 gas_assert (i.tm.operand_types[nds].bitfield.class == RegSIMD);
7343 i.vex.register_specifier = i.op[nds].regs;
7344 }
7345 else
7346 source = dest = 0;
7347
7348 /* i.reg_operands MUST be the number of real register operands;
7349 implicit registers do not count. If there are 3 register
7350 operands, it must be a instruction with VexNDS. For a
7351 instruction with VexNDD, the destination register is encoded
7352 in VEX prefix. If there are 4 register operands, it must be
7353 a instruction with VEX prefix and 3 sources. */
7354 if (i.mem_operands == 0
7355 && ((i.reg_operands == 2
7356 && i.tm.opcode_modifier.vexvvvv <= VEXXDS)
7357 || (i.reg_operands == 3
7358 && i.tm.opcode_modifier.vexvvvv == VEXXDS)
7359 || (i.reg_operands == 4 && vex_3_sources)))
7360 {
7361 switch (i.operands)
7362 {
7363 case 2:
7364 source = 0;
7365 break;
7366 case 3:
7367 /* When there are 3 operands, one of them may be immediate,
7368 which may be the first or the last operand. Otherwise,
7369 the first operand must be shift count register (cl) or it
7370 is an instruction with VexNDS. */
7371 gas_assert (i.imm_operands == 1
7372 || (i.imm_operands == 0
7373 && (i.tm.opcode_modifier.vexvvvv == VEXXDS
7374 || (i.types[0].bitfield.instance == RegC
7375 && i.types[0].bitfield.byte))));
7376 if (operand_type_check (i.types[0], imm)
7377 || (i.types[0].bitfield.instance == RegC
7378 && i.types[0].bitfield.byte))
7379 source = 1;
7380 else
7381 source = 0;
7382 break;
7383 case 4:
7384 /* When there are 4 operands, the first two must be 8bit
7385 immediate operands. The source operand will be the 3rd
7386 one.
7387
7388 For instructions with VexNDS, if the first operand
7389 an imm8, the source operand is the 2nd one. If the last
7390 operand is imm8, the source operand is the first one. */
7391 gas_assert ((i.imm_operands == 2
7392 && i.types[0].bitfield.imm8
7393 && i.types[1].bitfield.imm8)
7394 || (i.tm.opcode_modifier.vexvvvv == VEXXDS
7395 && i.imm_operands == 1
7396 && (i.types[0].bitfield.imm8
7397 || i.types[i.operands - 1].bitfield.imm8
7398 || i.rounding)));
7399 if (i.imm_operands == 2)
7400 source = 2;
7401 else
7402 {
7403 if (i.types[0].bitfield.imm8)
7404 source = 1;
7405 else
7406 source = 0;
7407 }
7408 break;
7409 case 5:
7410 if (is_evex_encoding (&i.tm))
7411 {
7412 /* For EVEX instructions, when there are 5 operands, the
7413 first one must be immediate operand. If the second one
7414 is immediate operand, the source operand is the 3th
7415 one. If the last one is immediate operand, the source
7416 operand is the 2nd one. */
7417 gas_assert (i.imm_operands == 2
7418 && i.tm.opcode_modifier.sae
7419 && operand_type_check (i.types[0], imm));
7420 if (operand_type_check (i.types[1], imm))
7421 source = 2;
7422 else if (operand_type_check (i.types[4], imm))
7423 source = 1;
7424 else
7425 abort ();
7426 }
7427 break;
7428 default:
7429 abort ();
7430 }
7431
7432 if (!vex_3_sources)
7433 {
7434 dest = source + 1;
7435
7436 /* RC/SAE operand could be between DEST and SRC. That happens
7437 when one operand is GPR and the other one is XMM/YMM/ZMM
7438 register. */
7439 if (i.rounding && i.rounding->operand == (int) dest)
7440 dest++;
7441
7442 if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
7443 {
7444 /* For instructions with VexNDS, the register-only source
7445 operand must be a 32/64bit integer, XMM, YMM, ZMM, or mask
7446 register. It is encoded in VEX prefix. */
7447
7448 i386_operand_type op;
7449 unsigned int vvvv;
7450
7451 /* Check register-only source operand when two source
7452 operands are swapped. */
7453 if (!i.tm.operand_types[source].bitfield.baseindex
7454 && i.tm.operand_types[dest].bitfield.baseindex)
7455 {
7456 vvvv = source;
7457 source = dest;
7458 }
7459 else
7460 vvvv = dest;
7461
7462 op = i.tm.operand_types[vvvv];
7463 if ((dest + 1) >= i.operands
7464 || ((op.bitfield.class != Reg
7465 || (!op.bitfield.dword && !op.bitfield.qword))
7466 && op.bitfield.class != RegSIMD
7467 && !operand_type_equal (&op, &regmask)))
7468 abort ();
7469 i.vex.register_specifier = i.op[vvvv].regs;
7470 dest++;
7471 }
7472 }
7473
7474 i.rm.mode = 3;
7475 /* One of the register operands will be encoded in the i.rm.reg
7476 field, the other in the combined i.rm.mode and i.rm.regmem
7477 fields. If no form of this instruction supports a memory
7478 destination operand, then we assume the source operand may
7479 sometimes be a memory operand and so we need to store the
7480 destination in the i.rm.reg field. */
7481 if (!i.tm.opcode_modifier.regmem
7482 && operand_type_check (i.tm.operand_types[dest], anymem) == 0)
7483 {
7484 i.rm.reg = i.op[dest].regs->reg_num;
7485 i.rm.regmem = i.op[source].regs->reg_num;
7486 if (i.op[dest].regs->reg_type.bitfield.class == RegMMX
7487 || i.op[source].regs->reg_type.bitfield.class == RegMMX)
7488 i.has_regmmx = TRUE;
7489 else if (i.op[dest].regs->reg_type.bitfield.class == RegSIMD
7490 || i.op[source].regs->reg_type.bitfield.class == RegSIMD)
7491 {
7492 if (i.types[dest].bitfield.zmmword
7493 || i.types[source].bitfield.zmmword)
7494 i.has_regzmm = TRUE;
7495 else if (i.types[dest].bitfield.ymmword
7496 || i.types[source].bitfield.ymmword)
7497 i.has_regymm = TRUE;
7498 else
7499 i.has_regxmm = TRUE;
7500 }
7501 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
7502 i.rex |= REX_R;
7503 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
7504 i.vrex |= REX_R;
7505 if ((i.op[source].regs->reg_flags & RegRex) != 0)
7506 i.rex |= REX_B;
7507 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
7508 i.vrex |= REX_B;
7509 }
7510 else
7511 {
7512 i.rm.reg = i.op[source].regs->reg_num;
7513 i.rm.regmem = i.op[dest].regs->reg_num;
7514 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
7515 i.rex |= REX_B;
7516 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
7517 i.vrex |= REX_B;
7518 if ((i.op[source].regs->reg_flags & RegRex) != 0)
7519 i.rex |= REX_R;
7520 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
7521 i.vrex |= REX_R;
7522 }
7523 if (flag_code != CODE_64BIT && (i.rex & REX_R))
7524 {
7525 if (i.types[!i.tm.opcode_modifier.regmem].bitfield.class != RegCR)
7526 abort ();
7527 i.rex &= ~REX_R;
7528 add_prefix (LOCK_PREFIX_OPCODE);
7529 }
7530 }
7531 else
7532 { /* If it's not 2 reg operands... */
7533 unsigned int mem;
7534
7535 if (i.mem_operands)
7536 {
7537 unsigned int fake_zero_displacement = 0;
7538 unsigned int op;
7539
7540 for (op = 0; op < i.operands; op++)
7541 if (i.flags[op] & Operand_Mem)
7542 break;
7543 gas_assert (op < i.operands);
7544
7545 if (i.tm.opcode_modifier.vecsib)
7546 {
7547 if (i.index_reg->reg_num == RegIZ)
7548 abort ();
7549
7550 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7551 if (!i.base_reg)
7552 {
7553 i.sib.base = NO_BASE_REGISTER;
7554 i.sib.scale = i.log2_scale_factor;
7555 i.types[op].bitfield.disp8 = 0;
7556 i.types[op].bitfield.disp16 = 0;
7557 i.types[op].bitfield.disp64 = 0;
7558 if (flag_code != CODE_64BIT || i.prefix[ADDR_PREFIX])
7559 {
7560 /* Must be 32 bit */
7561 i.types[op].bitfield.disp32 = 1;
7562 i.types[op].bitfield.disp32s = 0;
7563 }
7564 else
7565 {
7566 i.types[op].bitfield.disp32 = 0;
7567 i.types[op].bitfield.disp32s = 1;
7568 }
7569 }
7570 i.sib.index = i.index_reg->reg_num;
7571 if ((i.index_reg->reg_flags & RegRex) != 0)
7572 i.rex |= REX_X;
7573 if ((i.index_reg->reg_flags & RegVRex) != 0)
7574 i.vrex |= REX_X;
7575 }
7576
7577 default_seg = &ds;
7578
7579 if (i.base_reg == 0)
7580 {
7581 i.rm.mode = 0;
7582 if (!i.disp_operands)
7583 fake_zero_displacement = 1;
7584 if (i.index_reg == 0)
7585 {
7586 i386_operand_type newdisp;
7587
7588 gas_assert (!i.tm.opcode_modifier.vecsib);
7589 /* Operand is just <disp> */
7590 if (flag_code == CODE_64BIT)
7591 {
7592 /* 64bit mode overwrites the 32bit absolute
7593 addressing by RIP relative addressing and
7594 absolute addressing is encoded by one of the
7595 redundant SIB forms. */
7596 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7597 i.sib.base = NO_BASE_REGISTER;
7598 i.sib.index = NO_INDEX_REGISTER;
7599 newdisp = (!i.prefix[ADDR_PREFIX] ? disp32s : disp32);
7600 }
7601 else if ((flag_code == CODE_16BIT)
7602 ^ (i.prefix[ADDR_PREFIX] != 0))
7603 {
7604 i.rm.regmem = NO_BASE_REGISTER_16;
7605 newdisp = disp16;
7606 }
7607 else
7608 {
7609 i.rm.regmem = NO_BASE_REGISTER;
7610 newdisp = disp32;
7611 }
7612 i.types[op] = operand_type_and_not (i.types[op], anydisp);
7613 i.types[op] = operand_type_or (i.types[op], newdisp);
7614 }
7615 else if (!i.tm.opcode_modifier.vecsib)
7616 {
7617 /* !i.base_reg && i.index_reg */
7618 if (i.index_reg->reg_num == RegIZ)
7619 i.sib.index = NO_INDEX_REGISTER;
7620 else
7621 i.sib.index = i.index_reg->reg_num;
7622 i.sib.base = NO_BASE_REGISTER;
7623 i.sib.scale = i.log2_scale_factor;
7624 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7625 i.types[op].bitfield.disp8 = 0;
7626 i.types[op].bitfield.disp16 = 0;
7627 i.types[op].bitfield.disp64 = 0;
7628 if (flag_code != CODE_64BIT || i.prefix[ADDR_PREFIX])
7629 {
7630 /* Must be 32 bit */
7631 i.types[op].bitfield.disp32 = 1;
7632 i.types[op].bitfield.disp32s = 0;
7633 }
7634 else
7635 {
7636 i.types[op].bitfield.disp32 = 0;
7637 i.types[op].bitfield.disp32s = 1;
7638 }
7639 if ((i.index_reg->reg_flags & RegRex) != 0)
7640 i.rex |= REX_X;
7641 }
7642 }
7643 /* RIP addressing for 64bit mode. */
7644 else if (i.base_reg->reg_num == RegIP)
7645 {
7646 gas_assert (!i.tm.opcode_modifier.vecsib);
7647 i.rm.regmem = NO_BASE_REGISTER;
7648 i.types[op].bitfield.disp8 = 0;
7649 i.types[op].bitfield.disp16 = 0;
7650 i.types[op].bitfield.disp32 = 0;
7651 i.types[op].bitfield.disp32s = 1;
7652 i.types[op].bitfield.disp64 = 0;
7653 i.flags[op] |= Operand_PCrel;
7654 if (! i.disp_operands)
7655 fake_zero_displacement = 1;
7656 }
7657 else if (i.base_reg->reg_type.bitfield.word)
7658 {
7659 gas_assert (!i.tm.opcode_modifier.vecsib);
7660 switch (i.base_reg->reg_num)
7661 {
7662 case 3: /* (%bx) */
7663 if (i.index_reg == 0)
7664 i.rm.regmem = 7;
7665 else /* (%bx,%si) -> 0, or (%bx,%di) -> 1 */
7666 i.rm.regmem = i.index_reg->reg_num - 6;
7667 break;
7668 case 5: /* (%bp) */
7669 default_seg = &ss;
7670 if (i.index_reg == 0)
7671 {
7672 i.rm.regmem = 6;
7673 if (operand_type_check (i.types[op], disp) == 0)
7674 {
7675 /* fake (%bp) into 0(%bp) */
7676 i.types[op].bitfield.disp8 = 1;
7677 fake_zero_displacement = 1;
7678 }
7679 }
7680 else /* (%bp,%si) -> 2, or (%bp,%di) -> 3 */
7681 i.rm.regmem = i.index_reg->reg_num - 6 + 2;
7682 break;
7683 default: /* (%si) -> 4 or (%di) -> 5 */
7684 i.rm.regmem = i.base_reg->reg_num - 6 + 4;
7685 }
7686 i.rm.mode = mode_from_disp_size (i.types[op]);
7687 }
7688 else /* i.base_reg and 32/64 bit mode */
7689 {
7690 if (flag_code == CODE_64BIT
7691 && operand_type_check (i.types[op], disp))
7692 {
7693 i.types[op].bitfield.disp16 = 0;
7694 i.types[op].bitfield.disp64 = 0;
7695 if (i.prefix[ADDR_PREFIX] == 0)
7696 {
7697 i.types[op].bitfield.disp32 = 0;
7698 i.types[op].bitfield.disp32s = 1;
7699 }
7700 else
7701 {
7702 i.types[op].bitfield.disp32 = 1;
7703 i.types[op].bitfield.disp32s = 0;
7704 }
7705 }
7706
7707 if (!i.tm.opcode_modifier.vecsib)
7708 i.rm.regmem = i.base_reg->reg_num;
7709 if ((i.base_reg->reg_flags & RegRex) != 0)
7710 i.rex |= REX_B;
7711 i.sib.base = i.base_reg->reg_num;
7712 /* x86-64 ignores REX prefix bit here to avoid decoder
7713 complications. */
7714 if (!(i.base_reg->reg_flags & RegRex)
7715 && (i.base_reg->reg_num == EBP_REG_NUM
7716 || i.base_reg->reg_num == ESP_REG_NUM))
7717 default_seg = &ss;
7718 if (i.base_reg->reg_num == 5 && i.disp_operands == 0)
7719 {
7720 fake_zero_displacement = 1;
7721 i.types[op].bitfield.disp8 = 1;
7722 }
7723 i.sib.scale = i.log2_scale_factor;
7724 if (i.index_reg == 0)
7725 {
7726 gas_assert (!i.tm.opcode_modifier.vecsib);
7727 /* <disp>(%esp) becomes two byte modrm with no index
7728 register. We've already stored the code for esp
7729 in i.rm.regmem ie. ESCAPE_TO_TWO_BYTE_ADDRESSING.
7730 Any base register besides %esp will not use the
7731 extra modrm byte. */
7732 i.sib.index = NO_INDEX_REGISTER;
7733 }
7734 else if (!i.tm.opcode_modifier.vecsib)
7735 {
7736 if (i.index_reg->reg_num == RegIZ)
7737 i.sib.index = NO_INDEX_REGISTER;
7738 else
7739 i.sib.index = i.index_reg->reg_num;
7740 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7741 if ((i.index_reg->reg_flags & RegRex) != 0)
7742 i.rex |= REX_X;
7743 }
7744
7745 if (i.disp_operands
7746 && (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
7747 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL))
7748 i.rm.mode = 0;
7749 else
7750 {
7751 if (!fake_zero_displacement
7752 && !i.disp_operands
7753 && i.disp_encoding)
7754 {
7755 fake_zero_displacement = 1;
7756 if (i.disp_encoding == disp_encoding_8bit)
7757 i.types[op].bitfield.disp8 = 1;
7758 else
7759 i.types[op].bitfield.disp32 = 1;
7760 }
7761 i.rm.mode = mode_from_disp_size (i.types[op]);
7762 }
7763 }
7764
7765 if (fake_zero_displacement)
7766 {
7767 /* Fakes a zero displacement assuming that i.types[op]
7768 holds the correct displacement size. */
7769 expressionS *exp;
7770
7771 gas_assert (i.op[op].disps == 0);
7772 exp = &disp_expressions[i.disp_operands++];
7773 i.op[op].disps = exp;
7774 exp->X_op = O_constant;
7775 exp->X_add_number = 0;
7776 exp->X_add_symbol = (symbolS *) 0;
7777 exp->X_op_symbol = (symbolS *) 0;
7778 }
7779
7780 mem = op;
7781 }
7782 else
7783 mem = ~0;
7784
7785 if (i.tm.opcode_modifier.vexsources == XOP2SOURCES)
7786 {
7787 if (operand_type_check (i.types[0], imm))
7788 i.vex.register_specifier = NULL;
7789 else
7790 {
7791 /* VEX.vvvv encodes one of the sources when the first
7792 operand is not an immediate. */
7793 if (i.tm.opcode_modifier.vexw == VEXW0)
7794 i.vex.register_specifier = i.op[0].regs;
7795 else
7796 i.vex.register_specifier = i.op[1].regs;
7797 }
7798
7799 /* Destination is a XMM register encoded in the ModRM.reg
7800 and VEX.R bit. */
7801 i.rm.reg = i.op[2].regs->reg_num;
7802 if ((i.op[2].regs->reg_flags & RegRex) != 0)
7803 i.rex |= REX_R;
7804
7805 /* ModRM.rm and VEX.B encodes the other source. */
7806 if (!i.mem_operands)
7807 {
7808 i.rm.mode = 3;
7809
7810 if (i.tm.opcode_modifier.vexw == VEXW0)
7811 i.rm.regmem = i.op[1].regs->reg_num;
7812 else
7813 i.rm.regmem = i.op[0].regs->reg_num;
7814
7815 if ((i.op[1].regs->reg_flags & RegRex) != 0)
7816 i.rex |= REX_B;
7817 }
7818 }
7819 else if (i.tm.opcode_modifier.vexvvvv == VEXLWP)
7820 {
7821 i.vex.register_specifier = i.op[2].regs;
7822 if (!i.mem_operands)
7823 {
7824 i.rm.mode = 3;
7825 i.rm.regmem = i.op[1].regs->reg_num;
7826 if ((i.op[1].regs->reg_flags & RegRex) != 0)
7827 i.rex |= REX_B;
7828 }
7829 }
7830 /* Fill in i.rm.reg or i.rm.regmem field with register operand
7831 (if any) based on i.tm.extension_opcode. Again, we must be
7832 careful to make sure that segment/control/debug/test/MMX
7833 registers are coded into the i.rm.reg field. */
7834 else if (i.reg_operands)
7835 {
7836 unsigned int op;
7837 unsigned int vex_reg = ~0;
7838
7839 for (op = 0; op < i.operands; op++)
7840 {
7841 if (i.types[op].bitfield.class == Reg
7842 || i.types[op].bitfield.class == RegBND
7843 || i.types[op].bitfield.class == RegMask
7844 || i.types[op].bitfield.class == SReg
7845 || i.types[op].bitfield.class == RegCR
7846 || i.types[op].bitfield.class == RegDR
7847 || i.types[op].bitfield.class == RegTR)
7848 break;
7849 if (i.types[op].bitfield.class == RegSIMD)
7850 {
7851 if (i.types[op].bitfield.zmmword)
7852 i.has_regzmm = TRUE;
7853 else if (i.types[op].bitfield.ymmword)
7854 i.has_regymm = TRUE;
7855 else
7856 i.has_regxmm = TRUE;
7857 break;
7858 }
7859 if (i.types[op].bitfield.class == RegMMX)
7860 {
7861 i.has_regmmx = TRUE;
7862 break;
7863 }
7864 }
7865
7866 if (vex_3_sources)
7867 op = dest;
7868 else if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
7869 {
7870 /* For instructions with VexNDS, the register-only
7871 source operand is encoded in VEX prefix. */
7872 gas_assert (mem != (unsigned int) ~0);
7873
7874 if (op > mem)
7875 {
7876 vex_reg = op++;
7877 gas_assert (op < i.operands);
7878 }
7879 else
7880 {
7881 /* Check register-only source operand when two source
7882 operands are swapped. */
7883 if (!i.tm.operand_types[op].bitfield.baseindex
7884 && i.tm.operand_types[op + 1].bitfield.baseindex)
7885 {
7886 vex_reg = op;
7887 op += 2;
7888 gas_assert (mem == (vex_reg + 1)
7889 && op < i.operands);
7890 }
7891 else
7892 {
7893 vex_reg = op + 1;
7894 gas_assert (vex_reg < i.operands);
7895 }
7896 }
7897 }
7898 else if (i.tm.opcode_modifier.vexvvvv == VEXNDD)
7899 {
7900 /* For instructions with VexNDD, the register destination
7901 is encoded in VEX prefix. */
7902 if (i.mem_operands == 0)
7903 {
7904 /* There is no memory operand. */
7905 gas_assert ((op + 2) == i.operands);
7906 vex_reg = op + 1;
7907 }
7908 else
7909 {
7910 /* There are only 2 non-immediate operands. */
7911 gas_assert (op < i.imm_operands + 2
7912 && i.operands == i.imm_operands + 2);
7913 vex_reg = i.imm_operands + 1;
7914 }
7915 }
7916 else
7917 gas_assert (op < i.operands);
7918
7919 if (vex_reg != (unsigned int) ~0)
7920 {
7921 i386_operand_type *type = &i.tm.operand_types[vex_reg];
7922
7923 if ((type->bitfield.class != Reg
7924 || (!type->bitfield.dword && !type->bitfield.qword))
7925 && type->bitfield.class != RegSIMD
7926 && !operand_type_equal (type, &regmask))
7927 abort ();
7928
7929 i.vex.register_specifier = i.op[vex_reg].regs;
7930 }
7931
7932 /* Don't set OP operand twice. */
7933 if (vex_reg != op)
7934 {
7935 /* If there is an extension opcode to put here, the
7936 register number must be put into the regmem field. */
7937 if (i.tm.extension_opcode != None)
7938 {
7939 i.rm.regmem = i.op[op].regs->reg_num;
7940 if ((i.op[op].regs->reg_flags & RegRex) != 0)
7941 i.rex |= REX_B;
7942 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
7943 i.vrex |= REX_B;
7944 }
7945 else
7946 {
7947 i.rm.reg = i.op[op].regs->reg_num;
7948 if ((i.op[op].regs->reg_flags & RegRex) != 0)
7949 i.rex |= REX_R;
7950 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
7951 i.vrex |= REX_R;
7952 }
7953 }
7954
7955 /* Now, if no memory operand has set i.rm.mode = 0, 1, 2 we
7956 must set it to 3 to indicate this is a register operand
7957 in the regmem field. */
7958 if (!i.mem_operands)
7959 i.rm.mode = 3;
7960 }
7961
7962 /* Fill in i.rm.reg field with extension opcode (if any). */
7963 if (i.tm.extension_opcode != None)
7964 i.rm.reg = i.tm.extension_opcode;
7965 }
7966 return default_seg;
7967 }
7968
7969 static unsigned int
7970 flip_code16 (unsigned int code16)
7971 {
7972 gas_assert (i.tm.operands == 1);
7973
7974 return !(i.prefix[REX_PREFIX] & REX_W)
7975 && (code16 ? i.tm.operand_types[0].bitfield.disp32
7976 || i.tm.operand_types[0].bitfield.disp32s
7977 : i.tm.operand_types[0].bitfield.disp16)
7978 ? CODE16 : 0;
7979 }
7980
7981 static void
7982 output_branch (void)
7983 {
7984 char *p;
7985 int size;
7986 int code16;
7987 int prefix;
7988 relax_substateT subtype;
7989 symbolS *sym;
7990 offsetT off;
7991
7992 code16 = flag_code == CODE_16BIT ? CODE16 : 0;
7993 size = i.disp_encoding == disp_encoding_32bit ? BIG : SMALL;
7994
7995 prefix = 0;
7996 if (i.prefix[DATA_PREFIX] != 0)
7997 {
7998 prefix = 1;
7999 i.prefixes -= 1;
8000 code16 ^= flip_code16(code16);
8001 }
8002 /* Pentium4 branch hints. */
8003 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
8004 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
8005 {
8006 prefix++;
8007 i.prefixes--;
8008 }
8009 if (i.prefix[REX_PREFIX] != 0)
8010 {
8011 prefix++;
8012 i.prefixes--;
8013 }
8014
8015 /* BND prefixed jump. */
8016 if (i.prefix[BND_PREFIX] != 0)
8017 {
8018 prefix++;
8019 i.prefixes--;
8020 }
8021
8022 if (i.prefixes != 0)
8023 as_warn (_("skipping prefixes on `%s'"), i.tm.name);
8024
8025 /* It's always a symbol; End frag & setup for relax.
8026 Make sure there is enough room in this frag for the largest
8027 instruction we may generate in md_convert_frag. This is 2
8028 bytes for the opcode and room for the prefix and largest
8029 displacement. */
8030 frag_grow (prefix + 2 + 4);
8031 /* Prefix and 1 opcode byte go in fr_fix. */
8032 p = frag_more (prefix + 1);
8033 if (i.prefix[DATA_PREFIX] != 0)
8034 *p++ = DATA_PREFIX_OPCODE;
8035 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE
8036 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE)
8037 *p++ = i.prefix[SEG_PREFIX];
8038 if (i.prefix[BND_PREFIX] != 0)
8039 *p++ = BND_PREFIX_OPCODE;
8040 if (i.prefix[REX_PREFIX] != 0)
8041 *p++ = i.prefix[REX_PREFIX];
8042 *p = i.tm.base_opcode;
8043
8044 if ((unsigned char) *p == JUMP_PC_RELATIVE)
8045 subtype = ENCODE_RELAX_STATE (UNCOND_JUMP, size);
8046 else if (cpu_arch_flags.bitfield.cpui386)
8047 subtype = ENCODE_RELAX_STATE (COND_JUMP, size);
8048 else
8049 subtype = ENCODE_RELAX_STATE (COND_JUMP86, size);
8050 subtype |= code16;
8051
8052 sym = i.op[0].disps->X_add_symbol;
8053 off = i.op[0].disps->X_add_number;
8054
8055 if (i.op[0].disps->X_op != O_constant
8056 && i.op[0].disps->X_op != O_symbol)
8057 {
8058 /* Handle complex expressions. */
8059 sym = make_expr_symbol (i.op[0].disps);
8060 off = 0;
8061 }
8062
8063 /* 1 possible extra opcode + 4 byte displacement go in var part.
8064 Pass reloc in fr_var. */
8065 frag_var (rs_machine_dependent, 5, i.reloc[0], subtype, sym, off, p);
8066 }
8067
8068 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8069 /* Return TRUE iff PLT32 relocation should be used for branching to
8070 symbol S. */
8071
8072 static bfd_boolean
8073 need_plt32_p (symbolS *s)
8074 {
8075 /* PLT32 relocation is ELF only. */
8076 if (!IS_ELF)
8077 return FALSE;
8078
8079 #ifdef TE_SOLARIS
8080 /* Don't emit PLT32 relocation on Solaris: neither native linker nor
8081 krtld support it. */
8082 return FALSE;
8083 #endif
8084
8085 /* Since there is no need to prepare for PLT branch on x86-64, we
8086 can generate R_X86_64_PLT32, instead of R_X86_64_PC32, which can
8087 be used as a marker for 32-bit PC-relative branches. */
8088 if (!object_64bit)
8089 return FALSE;
8090
8091 /* Weak or undefined symbol need PLT32 relocation. */
8092 if (S_IS_WEAK (s) || !S_IS_DEFINED (s))
8093 return TRUE;
8094
8095 /* Non-global symbol doesn't need PLT32 relocation. */
8096 if (! S_IS_EXTERNAL (s))
8097 return FALSE;
8098
8099 /* Other global symbols need PLT32 relocation. NB: Symbol with
8100 non-default visibilities are treated as normal global symbol
8101 so that PLT32 relocation can be used as a marker for 32-bit
8102 PC-relative branches. It is useful for linker relaxation. */
8103 return TRUE;
8104 }
8105 #endif
8106
8107 static void
8108 output_jump (void)
8109 {
8110 char *p;
8111 int size;
8112 fixS *fixP;
8113 bfd_reloc_code_real_type jump_reloc = i.reloc[0];
8114
8115 if (i.tm.opcode_modifier.jump == JUMP_BYTE)
8116 {
8117 /* This is a loop or jecxz type instruction. */
8118 size = 1;
8119 if (i.prefix[ADDR_PREFIX] != 0)
8120 {
8121 FRAG_APPEND_1_CHAR (ADDR_PREFIX_OPCODE);
8122 i.prefixes -= 1;
8123 }
8124 /* Pentium4 branch hints. */
8125 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
8126 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
8127 {
8128 FRAG_APPEND_1_CHAR (i.prefix[SEG_PREFIX]);
8129 i.prefixes--;
8130 }
8131 }
8132 else
8133 {
8134 int code16;
8135
8136 code16 = 0;
8137 if (flag_code == CODE_16BIT)
8138 code16 = CODE16;
8139
8140 if (i.prefix[DATA_PREFIX] != 0)
8141 {
8142 FRAG_APPEND_1_CHAR (DATA_PREFIX_OPCODE);
8143 i.prefixes -= 1;
8144 code16 ^= flip_code16(code16);
8145 }
8146
8147 size = 4;
8148 if (code16)
8149 size = 2;
8150 }
8151
8152 /* BND prefixed jump. */
8153 if (i.prefix[BND_PREFIX] != 0)
8154 {
8155 FRAG_APPEND_1_CHAR (i.prefix[BND_PREFIX]);
8156 i.prefixes -= 1;
8157 }
8158
8159 if (i.prefix[REX_PREFIX] != 0)
8160 {
8161 FRAG_APPEND_1_CHAR (i.prefix[REX_PREFIX]);
8162 i.prefixes -= 1;
8163 }
8164
8165 if (i.prefixes != 0)
8166 as_warn (_("skipping prefixes on `%s'"), i.tm.name);
8167
8168 p = frag_more (i.tm.opcode_length + size);
8169 switch (i.tm.opcode_length)
8170 {
8171 case 2:
8172 *p++ = i.tm.base_opcode >> 8;
8173 /* Fall through. */
8174 case 1:
8175 *p++ = i.tm.base_opcode;
8176 break;
8177 default:
8178 abort ();
8179 }
8180
8181 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8182 if (size == 4
8183 && jump_reloc == NO_RELOC
8184 && need_plt32_p (i.op[0].disps->X_add_symbol))
8185 jump_reloc = BFD_RELOC_X86_64_PLT32;
8186 #endif
8187
8188 jump_reloc = reloc (size, 1, 1, jump_reloc);
8189
8190 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal, size,
8191 i.op[0].disps, 1, jump_reloc);
8192
8193 /* All jumps handled here are signed, but don't use a signed limit
8194 check for 32 and 16 bit jumps as we want to allow wrap around at
8195 4G and 64k respectively. */
8196 if (size == 1)
8197 fixP->fx_signed = 1;
8198 }
8199
8200 static void
8201 output_interseg_jump (void)
8202 {
8203 char *p;
8204 int size;
8205 int prefix;
8206 int code16;
8207
8208 code16 = 0;
8209 if (flag_code == CODE_16BIT)
8210 code16 = CODE16;
8211
8212 prefix = 0;
8213 if (i.prefix[DATA_PREFIX] != 0)
8214 {
8215 prefix = 1;
8216 i.prefixes -= 1;
8217 code16 ^= CODE16;
8218 }
8219
8220 gas_assert (!i.prefix[REX_PREFIX]);
8221
8222 size = 4;
8223 if (code16)
8224 size = 2;
8225
8226 if (i.prefixes != 0)
8227 as_warn (_("skipping prefixes on `%s'"), i.tm.name);
8228
8229 /* 1 opcode; 2 segment; offset */
8230 p = frag_more (prefix + 1 + 2 + size);
8231
8232 if (i.prefix[DATA_PREFIX] != 0)
8233 *p++ = DATA_PREFIX_OPCODE;
8234
8235 if (i.prefix[REX_PREFIX] != 0)
8236 *p++ = i.prefix[REX_PREFIX];
8237
8238 *p++ = i.tm.base_opcode;
8239 if (i.op[1].imms->X_op == O_constant)
8240 {
8241 offsetT n = i.op[1].imms->X_add_number;
8242
8243 if (size == 2
8244 && !fits_in_unsigned_word (n)
8245 && !fits_in_signed_word (n))
8246 {
8247 as_bad (_("16-bit jump out of range"));
8248 return;
8249 }
8250 md_number_to_chars (p, n, size);
8251 }
8252 else
8253 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
8254 i.op[1].imms, 0, reloc (size, 0, 0, i.reloc[1]));
8255 if (i.op[0].imms->X_op != O_constant)
8256 as_bad (_("can't handle non absolute segment in `%s'"),
8257 i.tm.name);
8258 md_number_to_chars (p + size, (valueT) i.op[0].imms->X_add_number, 2);
8259 }
8260
8261 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8262 void
8263 x86_cleanup (void)
8264 {
8265 char *p;
8266 asection *seg = now_seg;
8267 subsegT subseg = now_subseg;
8268 asection *sec;
8269 unsigned int alignment, align_size_1;
8270 unsigned int isa_1_descsz, feature_2_descsz, descsz;
8271 unsigned int isa_1_descsz_raw, feature_2_descsz_raw;
8272 unsigned int padding;
8273
8274 if (!IS_ELF || !x86_used_note)
8275 return;
8276
8277 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_X86;
8278
8279 /* The .note.gnu.property section layout:
8280
8281 Field Length Contents
8282 ---- ---- ----
8283 n_namsz 4 4
8284 n_descsz 4 The note descriptor size
8285 n_type 4 NT_GNU_PROPERTY_TYPE_0
8286 n_name 4 "GNU"
8287 n_desc n_descsz The program property array
8288 .... .... ....
8289 */
8290
8291 /* Create the .note.gnu.property section. */
8292 sec = subseg_new (NOTE_GNU_PROPERTY_SECTION_NAME, 0);
8293 bfd_set_section_flags (sec,
8294 (SEC_ALLOC
8295 | SEC_LOAD
8296 | SEC_DATA
8297 | SEC_HAS_CONTENTS
8298 | SEC_READONLY));
8299
8300 if (get_elf_backend_data (stdoutput)->s->elfclass == ELFCLASS64)
8301 {
8302 align_size_1 = 7;
8303 alignment = 3;
8304 }
8305 else
8306 {
8307 align_size_1 = 3;
8308 alignment = 2;
8309 }
8310
8311 bfd_set_section_alignment (sec, alignment);
8312 elf_section_type (sec) = SHT_NOTE;
8313
8314 /* GNU_PROPERTY_X86_ISA_1_USED: 4-byte type + 4-byte data size
8315 + 4-byte data */
8316 isa_1_descsz_raw = 4 + 4 + 4;
8317 /* Align GNU_PROPERTY_X86_ISA_1_USED. */
8318 isa_1_descsz = (isa_1_descsz_raw + align_size_1) & ~align_size_1;
8319
8320 feature_2_descsz_raw = isa_1_descsz;
8321 /* GNU_PROPERTY_X86_FEATURE_2_USED: 4-byte type + 4-byte data size
8322 + 4-byte data */
8323 feature_2_descsz_raw += 4 + 4 + 4;
8324 /* Align GNU_PROPERTY_X86_FEATURE_2_USED. */
8325 feature_2_descsz = ((feature_2_descsz_raw + align_size_1)
8326 & ~align_size_1);
8327
8328 descsz = feature_2_descsz;
8329 /* Section size: n_namsz + n_descsz + n_type + n_name + n_descsz. */
8330 p = frag_more (4 + 4 + 4 + 4 + descsz);
8331
8332 /* Write n_namsz. */
8333 md_number_to_chars (p, (valueT) 4, 4);
8334
8335 /* Write n_descsz. */
8336 md_number_to_chars (p + 4, (valueT) descsz, 4);
8337
8338 /* Write n_type. */
8339 md_number_to_chars (p + 4 * 2, (valueT) NT_GNU_PROPERTY_TYPE_0, 4);
8340
8341 /* Write n_name. */
8342 memcpy (p + 4 * 3, "GNU", 4);
8343
8344 /* Write 4-byte type. */
8345 md_number_to_chars (p + 4 * 4,
8346 (valueT) GNU_PROPERTY_X86_ISA_1_USED, 4);
8347
8348 /* Write 4-byte data size. */
8349 md_number_to_chars (p + 4 * 5, (valueT) 4, 4);
8350
8351 /* Write 4-byte data. */
8352 md_number_to_chars (p + 4 * 6, (valueT) x86_isa_1_used, 4);
8353
8354 /* Zero out paddings. */
8355 padding = isa_1_descsz - isa_1_descsz_raw;
8356 if (padding)
8357 memset (p + 4 * 7, 0, padding);
8358
8359 /* Write 4-byte type. */
8360 md_number_to_chars (p + isa_1_descsz + 4 * 4,
8361 (valueT) GNU_PROPERTY_X86_FEATURE_2_USED, 4);
8362
8363 /* Write 4-byte data size. */
8364 md_number_to_chars (p + isa_1_descsz + 4 * 5, (valueT) 4, 4);
8365
8366 /* Write 4-byte data. */
8367 md_number_to_chars (p + isa_1_descsz + 4 * 6,
8368 (valueT) x86_feature_2_used, 4);
8369
8370 /* Zero out paddings. */
8371 padding = feature_2_descsz - feature_2_descsz_raw;
8372 if (padding)
8373 memset (p + isa_1_descsz + 4 * 7, 0, padding);
8374
8375 /* We probably can't restore the current segment, for there likely
8376 isn't one yet... */
8377 if (seg && subseg)
8378 subseg_set (seg, subseg);
8379 }
8380 #endif
8381
8382 static unsigned int
8383 encoding_length (const fragS *start_frag, offsetT start_off,
8384 const char *frag_now_ptr)
8385 {
8386 unsigned int len = 0;
8387
8388 if (start_frag != frag_now)
8389 {
8390 const fragS *fr = start_frag;
8391
8392 do {
8393 len += fr->fr_fix;
8394 fr = fr->fr_next;
8395 } while (fr && fr != frag_now);
8396 }
8397
8398 return len - start_off + (frag_now_ptr - frag_now->fr_literal);
8399 }
8400
8401 /* Return 1 for test, and, cmp, add, sub, inc and dec which may
8402 be macro-fused with conditional jumps.
8403 NB: If TEST/AND/CMP/ADD/SUB/INC/DEC is of RIP relative address,
8404 or is one of the following format:
8405
8406 cmp m, imm
8407 add m, imm
8408 sub m, imm
8409 test m, imm
8410 and m, imm
8411 inc m
8412 dec m
8413
8414 it is unfusible. */
8415
8416 static int
8417 maybe_fused_with_jcc_p (enum mf_cmp_kind* mf_cmp_p)
8418 {
8419 /* No RIP address. */
8420 if (i.base_reg && i.base_reg->reg_num == RegIP)
8421 return 0;
8422
8423 /* No VEX/EVEX encoding. */
8424 if (is_any_vex_encoding (&i.tm))
8425 return 0;
8426
8427 /* add, sub without add/sub m, imm. */
8428 if (i.tm.base_opcode <= 5
8429 || (i.tm.base_opcode >= 0x28 && i.tm.base_opcode <= 0x2d)
8430 || ((i.tm.base_opcode | 3) == 0x83
8431 && (i.tm.extension_opcode == 0x5
8432 || i.tm.extension_opcode == 0x0)))
8433 {
8434 *mf_cmp_p = mf_cmp_alu_cmp;
8435 return !(i.mem_operands && i.imm_operands);
8436 }
8437
8438 /* and without and m, imm. */
8439 if ((i.tm.base_opcode >= 0x20 && i.tm.base_opcode <= 0x25)
8440 || ((i.tm.base_opcode | 3) == 0x83
8441 && i.tm.extension_opcode == 0x4))
8442 {
8443 *mf_cmp_p = mf_cmp_test_and;
8444 return !(i.mem_operands && i.imm_operands);
8445 }
8446
8447 /* test without test m imm. */
8448 if ((i.tm.base_opcode | 1) == 0x85
8449 || (i.tm.base_opcode | 1) == 0xa9
8450 || ((i.tm.base_opcode | 1) == 0xf7
8451 && i.tm.extension_opcode == 0))
8452 {
8453 *mf_cmp_p = mf_cmp_test_and;
8454 return !(i.mem_operands && i.imm_operands);
8455 }
8456
8457 /* cmp without cmp m, imm. */
8458 if ((i.tm.base_opcode >= 0x38 && i.tm.base_opcode <= 0x3d)
8459 || ((i.tm.base_opcode | 3) == 0x83
8460 && (i.tm.extension_opcode == 0x7)))
8461 {
8462 *mf_cmp_p = mf_cmp_alu_cmp;
8463 return !(i.mem_operands && i.imm_operands);
8464 }
8465
8466 /* inc, dec without inc/dec m. */
8467 if ((i.tm.cpu_flags.bitfield.cpuno64
8468 && (i.tm.base_opcode | 0xf) == 0x4f)
8469 || ((i.tm.base_opcode | 1) == 0xff
8470 && i.tm.extension_opcode <= 0x1))
8471 {
8472 *mf_cmp_p = mf_cmp_incdec;
8473 return !i.mem_operands;
8474 }
8475
8476 return 0;
8477 }
8478
8479 /* Return 1 if a FUSED_JCC_PADDING frag should be generated. */
8480
8481 static int
8482 add_fused_jcc_padding_frag_p (enum mf_cmp_kind* mf_cmp_p)
8483 {
8484 /* NB: Don't work with COND_JUMP86 without i386. */
8485 if (!align_branch_power
8486 || now_seg == absolute_section
8487 || !cpu_arch_flags.bitfield.cpui386
8488 || !(align_branch & align_branch_fused_bit))
8489 return 0;
8490
8491 if (maybe_fused_with_jcc_p (mf_cmp_p))
8492 {
8493 if (last_insn.kind == last_insn_other
8494 || last_insn.seg != now_seg)
8495 return 1;
8496 if (flag_debug)
8497 as_warn_where (last_insn.file, last_insn.line,
8498 _("`%s` skips -malign-branch-boundary on `%s`"),
8499 last_insn.name, i.tm.name);
8500 }
8501
8502 return 0;
8503 }
8504
8505 /* Return 1 if a BRANCH_PREFIX frag should be generated. */
8506
8507 static int
8508 add_branch_prefix_frag_p (void)
8509 {
8510 /* NB: Don't work with COND_JUMP86 without i386. Don't add prefix
8511 to PadLock instructions since they include prefixes in opcode. */
8512 if (!align_branch_power
8513 || !align_branch_prefix_size
8514 || now_seg == absolute_section
8515 || i.tm.cpu_flags.bitfield.cpupadlock
8516 || !cpu_arch_flags.bitfield.cpui386)
8517 return 0;
8518
8519 /* Don't add prefix if it is a prefix or there is no operand in case
8520 that segment prefix is special. */
8521 if (!i.operands || i.tm.opcode_modifier.isprefix)
8522 return 0;
8523
8524 if (last_insn.kind == last_insn_other
8525 || last_insn.seg != now_seg)
8526 return 1;
8527
8528 if (flag_debug)
8529 as_warn_where (last_insn.file, last_insn.line,
8530 _("`%s` skips -malign-branch-boundary on `%s`"),
8531 last_insn.name, i.tm.name);
8532
8533 return 0;
8534 }
8535
8536 /* Return 1 if a BRANCH_PADDING frag should be generated. */
8537
8538 static int
8539 add_branch_padding_frag_p (enum align_branch_kind *branch_p,
8540 enum mf_jcc_kind *mf_jcc_p)
8541 {
8542 int add_padding;
8543
8544 /* NB: Don't work with COND_JUMP86 without i386. */
8545 if (!align_branch_power
8546 || now_seg == absolute_section
8547 || !cpu_arch_flags.bitfield.cpui386)
8548 return 0;
8549
8550 add_padding = 0;
8551
8552 /* Check for jcc and direct jmp. */
8553 if (i.tm.opcode_modifier.jump == JUMP)
8554 {
8555 if (i.tm.base_opcode == JUMP_PC_RELATIVE)
8556 {
8557 *branch_p = align_branch_jmp;
8558 add_padding = align_branch & align_branch_jmp_bit;
8559 }
8560 else
8561 {
8562 /* Because J<cc> and JN<cc> share same group in macro-fusible table,
8563 igore the lowest bit. */
8564 *mf_jcc_p = (i.tm.base_opcode & 0x0e) >> 1;
8565 *branch_p = align_branch_jcc;
8566 if ((align_branch & align_branch_jcc_bit))
8567 add_padding = 1;
8568 }
8569 }
8570 else if (is_any_vex_encoding (&i.tm))
8571 return 0;
8572 else if ((i.tm.base_opcode | 1) == 0xc3)
8573 {
8574 /* Near ret. */
8575 *branch_p = align_branch_ret;
8576 if ((align_branch & align_branch_ret_bit))
8577 add_padding = 1;
8578 }
8579 else
8580 {
8581 /* Check for indirect jmp, direct and indirect calls. */
8582 if (i.tm.base_opcode == 0xe8)
8583 {
8584 /* Direct call. */
8585 *branch_p = align_branch_call;
8586 if ((align_branch & align_branch_call_bit))
8587 add_padding = 1;
8588 }
8589 else if (i.tm.base_opcode == 0xff
8590 && (i.tm.extension_opcode == 2
8591 || i.tm.extension_opcode == 4))
8592 {
8593 /* Indirect call and jmp. */
8594 *branch_p = align_branch_indirect;
8595 if ((align_branch & align_branch_indirect_bit))
8596 add_padding = 1;
8597 }
8598
8599 if (add_padding
8600 && i.disp_operands
8601 && tls_get_addr
8602 && (i.op[0].disps->X_op == O_symbol
8603 || (i.op[0].disps->X_op == O_subtract
8604 && i.op[0].disps->X_op_symbol == GOT_symbol)))
8605 {
8606 symbolS *s = i.op[0].disps->X_add_symbol;
8607 /* No padding to call to global or undefined tls_get_addr. */
8608 if ((S_IS_EXTERNAL (s) || !S_IS_DEFINED (s))
8609 && strcmp (S_GET_NAME (s), tls_get_addr) == 0)
8610 return 0;
8611 }
8612 }
8613
8614 if (add_padding
8615 && last_insn.kind != last_insn_other
8616 && last_insn.seg == now_seg)
8617 {
8618 if (flag_debug)
8619 as_warn_where (last_insn.file, last_insn.line,
8620 _("`%s` skips -malign-branch-boundary on `%s`"),
8621 last_insn.name, i.tm.name);
8622 return 0;
8623 }
8624
8625 return add_padding;
8626 }
8627
8628 static void
8629 output_insn (void)
8630 {
8631 fragS *insn_start_frag;
8632 offsetT insn_start_off;
8633 fragS *fragP = NULL;
8634 enum align_branch_kind branch = align_branch_none;
8635 /* The initializer is arbitrary just to avoid uninitialized error.
8636 it's actually either assigned in add_branch_padding_frag_p
8637 or never be used. */
8638 enum mf_jcc_kind mf_jcc = mf_jcc_jo;
8639
8640 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8641 if (IS_ELF && x86_used_note)
8642 {
8643 if (i.tm.cpu_flags.bitfield.cpucmov)
8644 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_CMOV;
8645 if (i.tm.cpu_flags.bitfield.cpusse)
8646 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE;
8647 if (i.tm.cpu_flags.bitfield.cpusse2)
8648 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE2;
8649 if (i.tm.cpu_flags.bitfield.cpusse3)
8650 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE3;
8651 if (i.tm.cpu_flags.bitfield.cpussse3)
8652 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSSE3;
8653 if (i.tm.cpu_flags.bitfield.cpusse4_1)
8654 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE4_1;
8655 if (i.tm.cpu_flags.bitfield.cpusse4_2)
8656 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE4_2;
8657 if (i.tm.cpu_flags.bitfield.cpuavx)
8658 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX;
8659 if (i.tm.cpu_flags.bitfield.cpuavx2)
8660 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX2;
8661 if (i.tm.cpu_flags.bitfield.cpufma)
8662 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_FMA;
8663 if (i.tm.cpu_flags.bitfield.cpuavx512f)
8664 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512F;
8665 if (i.tm.cpu_flags.bitfield.cpuavx512cd)
8666 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512CD;
8667 if (i.tm.cpu_flags.bitfield.cpuavx512er)
8668 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512ER;
8669 if (i.tm.cpu_flags.bitfield.cpuavx512pf)
8670 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512PF;
8671 if (i.tm.cpu_flags.bitfield.cpuavx512vl)
8672 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512VL;
8673 if (i.tm.cpu_flags.bitfield.cpuavx512dq)
8674 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512DQ;
8675 if (i.tm.cpu_flags.bitfield.cpuavx512bw)
8676 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512BW;
8677 if (i.tm.cpu_flags.bitfield.cpuavx512_4fmaps)
8678 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_4FMAPS;
8679 if (i.tm.cpu_flags.bitfield.cpuavx512_4vnniw)
8680 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_4VNNIW;
8681 if (i.tm.cpu_flags.bitfield.cpuavx512_bitalg)
8682 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_BITALG;
8683 if (i.tm.cpu_flags.bitfield.cpuavx512ifma)
8684 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_IFMA;
8685 if (i.tm.cpu_flags.bitfield.cpuavx512vbmi)
8686 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_VBMI;
8687 if (i.tm.cpu_flags.bitfield.cpuavx512_vbmi2)
8688 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_VBMI2;
8689 if (i.tm.cpu_flags.bitfield.cpuavx512_vnni)
8690 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_VNNI;
8691 if (i.tm.cpu_flags.bitfield.cpuavx512_bf16)
8692 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_BF16;
8693
8694 if (i.tm.cpu_flags.bitfield.cpu8087
8695 || i.tm.cpu_flags.bitfield.cpu287
8696 || i.tm.cpu_flags.bitfield.cpu387
8697 || i.tm.cpu_flags.bitfield.cpu687
8698 || i.tm.cpu_flags.bitfield.cpufisttp)
8699 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_X87;
8700 if (i.has_regmmx
8701 || i.tm.base_opcode == 0xf77 /* emms */
8702 || i.tm.base_opcode == 0xf0e /* femms */
8703 || i.tm.base_opcode == 0xf2a /* cvtpi2ps */
8704 || i.tm.base_opcode == 0x660f2a /* cvtpi2pd */)
8705 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_MMX;
8706 if (i.has_regxmm)
8707 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XMM;
8708 if (i.has_regymm)
8709 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_YMM;
8710 if (i.has_regzmm)
8711 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_ZMM;
8712 if (i.tm.cpu_flags.bitfield.cpufxsr)
8713 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_FXSR;
8714 if (i.tm.cpu_flags.bitfield.cpuxsave)
8715 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XSAVE;
8716 if (i.tm.cpu_flags.bitfield.cpuxsaveopt)
8717 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XSAVEOPT;
8718 if (i.tm.cpu_flags.bitfield.cpuxsavec)
8719 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XSAVEC;
8720 }
8721 #endif
8722
8723 /* Tie dwarf2 debug info to the address at the start of the insn.
8724 We can't do this after the insn has been output as the current
8725 frag may have been closed off. eg. by frag_var. */
8726 dwarf2_emit_insn (0);
8727
8728 insn_start_frag = frag_now;
8729 insn_start_off = frag_now_fix ();
8730
8731 if (add_branch_padding_frag_p (&branch, &mf_jcc))
8732 {
8733 char *p;
8734 /* Branch can be 8 bytes. Leave some room for prefixes. */
8735 unsigned int max_branch_padding_size = 14;
8736
8737 /* Align section to boundary. */
8738 record_alignment (now_seg, align_branch_power);
8739
8740 /* Make room for padding. */
8741 frag_grow (max_branch_padding_size);
8742
8743 /* Start of the padding. */
8744 p = frag_more (0);
8745
8746 fragP = frag_now;
8747
8748 frag_var (rs_machine_dependent, max_branch_padding_size, 0,
8749 ENCODE_RELAX_STATE (BRANCH_PADDING, 0),
8750 NULL, 0, p);
8751
8752 fragP->tc_frag_data.mf_type = mf_jcc;
8753 fragP->tc_frag_data.branch_type = branch;
8754 fragP->tc_frag_data.max_bytes = max_branch_padding_size;
8755 }
8756
8757 /* Output jumps. */
8758 if (i.tm.opcode_modifier.jump == JUMP)
8759 output_branch ();
8760 else if (i.tm.opcode_modifier.jump == JUMP_BYTE
8761 || i.tm.opcode_modifier.jump == JUMP_DWORD)
8762 output_jump ();
8763 else if (i.tm.opcode_modifier.jump == JUMP_INTERSEGMENT)
8764 output_interseg_jump ();
8765 else
8766 {
8767 /* Output normal instructions here. */
8768 char *p;
8769 unsigned char *q;
8770 unsigned int j;
8771 unsigned int prefix;
8772 enum mf_cmp_kind mf_cmp;
8773
8774 if (avoid_fence
8775 && (i.tm.base_opcode == 0xfaee8
8776 || i.tm.base_opcode == 0xfaef0
8777 || i.tm.base_opcode == 0xfaef8))
8778 {
8779 /* Encode lfence, mfence, and sfence as
8780 f0 83 04 24 00 lock addl $0x0, (%{re}sp). */
8781 offsetT val = 0x240483f0ULL;
8782 p = frag_more (5);
8783 md_number_to_chars (p, val, 5);
8784 return;
8785 }
8786
8787 /* Some processors fail on LOCK prefix. This options makes
8788 assembler ignore LOCK prefix and serves as a workaround. */
8789 if (omit_lock_prefix)
8790 {
8791 if (i.tm.base_opcode == LOCK_PREFIX_OPCODE)
8792 return;
8793 i.prefix[LOCK_PREFIX] = 0;
8794 }
8795
8796 if (branch)
8797 /* Skip if this is a branch. */
8798 ;
8799 else if (add_fused_jcc_padding_frag_p (&mf_cmp))
8800 {
8801 /* Make room for padding. */
8802 frag_grow (MAX_FUSED_JCC_PADDING_SIZE);
8803 p = frag_more (0);
8804
8805 fragP = frag_now;
8806
8807 frag_var (rs_machine_dependent, MAX_FUSED_JCC_PADDING_SIZE, 0,
8808 ENCODE_RELAX_STATE (FUSED_JCC_PADDING, 0),
8809 NULL, 0, p);
8810
8811 fragP->tc_frag_data.mf_type = mf_cmp;
8812 fragP->tc_frag_data.branch_type = align_branch_fused;
8813 fragP->tc_frag_data.max_bytes = MAX_FUSED_JCC_PADDING_SIZE;
8814 }
8815 else if (add_branch_prefix_frag_p ())
8816 {
8817 unsigned int max_prefix_size = align_branch_prefix_size;
8818
8819 /* Make room for padding. */
8820 frag_grow (max_prefix_size);
8821 p = frag_more (0);
8822
8823 fragP = frag_now;
8824
8825 frag_var (rs_machine_dependent, max_prefix_size, 0,
8826 ENCODE_RELAX_STATE (BRANCH_PREFIX, 0),
8827 NULL, 0, p);
8828
8829 fragP->tc_frag_data.max_bytes = max_prefix_size;
8830 }
8831
8832 /* Since the VEX/EVEX prefix contains the implicit prefix, we
8833 don't need the explicit prefix. */
8834 if (!i.tm.opcode_modifier.vex && !i.tm.opcode_modifier.evex)
8835 {
8836 switch (i.tm.opcode_length)
8837 {
8838 case 3:
8839 if (i.tm.base_opcode & 0xff000000)
8840 {
8841 prefix = (i.tm.base_opcode >> 24) & 0xff;
8842 if (!i.tm.cpu_flags.bitfield.cpupadlock
8843 || prefix != REPE_PREFIX_OPCODE
8844 || (i.prefix[REP_PREFIX] != REPE_PREFIX_OPCODE))
8845 add_prefix (prefix);
8846 }
8847 break;
8848 case 2:
8849 if ((i.tm.base_opcode & 0xff0000) != 0)
8850 {
8851 prefix = (i.tm.base_opcode >> 16) & 0xff;
8852 add_prefix (prefix);
8853 }
8854 break;
8855 case 1:
8856 break;
8857 case 0:
8858 /* Check for pseudo prefixes. */
8859 as_bad_where (insn_start_frag->fr_file,
8860 insn_start_frag->fr_line,
8861 _("pseudo prefix without instruction"));
8862 return;
8863 default:
8864 abort ();
8865 }
8866
8867 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
8868 /* For x32, add a dummy REX_OPCODE prefix for mov/add with
8869 R_X86_64_GOTTPOFF relocation so that linker can safely
8870 perform IE->LE optimization. A dummy REX_OPCODE prefix
8871 is also needed for lea with R_X86_64_GOTPC32_TLSDESC
8872 relocation for GDesc -> IE/LE optimization. */
8873 if (x86_elf_abi == X86_64_X32_ABI
8874 && i.operands == 2
8875 && (i.reloc[0] == BFD_RELOC_X86_64_GOTTPOFF
8876 || i.reloc[0] == BFD_RELOC_X86_64_GOTPC32_TLSDESC)
8877 && i.prefix[REX_PREFIX] == 0)
8878 add_prefix (REX_OPCODE);
8879 #endif
8880
8881 /* The prefix bytes. */
8882 for (j = ARRAY_SIZE (i.prefix), q = i.prefix; j > 0; j--, q++)
8883 if (*q)
8884 FRAG_APPEND_1_CHAR (*q);
8885 }
8886 else
8887 {
8888 for (j = 0, q = i.prefix; j < ARRAY_SIZE (i.prefix); j++, q++)
8889 if (*q)
8890 switch (j)
8891 {
8892 case REX_PREFIX:
8893 /* REX byte is encoded in VEX prefix. */
8894 break;
8895 case SEG_PREFIX:
8896 case ADDR_PREFIX:
8897 FRAG_APPEND_1_CHAR (*q);
8898 break;
8899 default:
8900 /* There should be no other prefixes for instructions
8901 with VEX prefix. */
8902 abort ();
8903 }
8904
8905 /* For EVEX instructions i.vrex should become 0 after
8906 build_evex_prefix. For VEX instructions upper 16 registers
8907 aren't available, so VREX should be 0. */
8908 if (i.vrex)
8909 abort ();
8910 /* Now the VEX prefix. */
8911 p = frag_more (i.vex.length);
8912 for (j = 0; j < i.vex.length; j++)
8913 p[j] = i.vex.bytes[j];
8914 }
8915
8916 /* Now the opcode; be careful about word order here! */
8917 if (i.tm.opcode_length == 1)
8918 {
8919 FRAG_APPEND_1_CHAR (i.tm.base_opcode);
8920 }
8921 else
8922 {
8923 switch (i.tm.opcode_length)
8924 {
8925 case 4:
8926 p = frag_more (4);
8927 *p++ = (i.tm.base_opcode >> 24) & 0xff;
8928 *p++ = (i.tm.base_opcode >> 16) & 0xff;
8929 break;
8930 case 3:
8931 p = frag_more (3);
8932 *p++ = (i.tm.base_opcode >> 16) & 0xff;
8933 break;
8934 case 2:
8935 p = frag_more (2);
8936 break;
8937 default:
8938 abort ();
8939 break;
8940 }
8941
8942 /* Put out high byte first: can't use md_number_to_chars! */
8943 *p++ = (i.tm.base_opcode >> 8) & 0xff;
8944 *p = i.tm.base_opcode & 0xff;
8945 }
8946
8947 /* Now the modrm byte and sib byte (if present). */
8948 if (i.tm.opcode_modifier.modrm)
8949 {
8950 FRAG_APPEND_1_CHAR ((i.rm.regmem << 0
8951 | i.rm.reg << 3
8952 | i.rm.mode << 6));
8953 /* If i.rm.regmem == ESP (4)
8954 && i.rm.mode != (Register mode)
8955 && not 16 bit
8956 ==> need second modrm byte. */
8957 if (i.rm.regmem == ESCAPE_TO_TWO_BYTE_ADDRESSING
8958 && i.rm.mode != 3
8959 && !(i.base_reg && i.base_reg->reg_type.bitfield.word))
8960 FRAG_APPEND_1_CHAR ((i.sib.base << 0
8961 | i.sib.index << 3
8962 | i.sib.scale << 6));
8963 }
8964
8965 if (i.disp_operands)
8966 output_disp (insn_start_frag, insn_start_off);
8967
8968 if (i.imm_operands)
8969 output_imm (insn_start_frag, insn_start_off);
8970
8971 /*
8972 * frag_now_fix () returning plain abs_section_offset when we're in the
8973 * absolute section, and abs_section_offset not getting updated as data
8974 * gets added to the frag breaks the logic below.
8975 */
8976 if (now_seg != absolute_section)
8977 {
8978 j = encoding_length (insn_start_frag, insn_start_off, frag_more (0));
8979 if (j > 15)
8980 as_warn (_("instruction length of %u bytes exceeds the limit of 15"),
8981 j);
8982 else if (fragP)
8983 {
8984 /* NB: Don't add prefix with GOTPC relocation since
8985 output_disp() above depends on the fixed encoding
8986 length. Can't add prefix with TLS relocation since
8987 it breaks TLS linker optimization. */
8988 unsigned int max = i.has_gotpc_tls_reloc ? 0 : 15 - j;
8989 /* Prefix count on the current instruction. */
8990 unsigned int count = i.vex.length;
8991 unsigned int k;
8992 for (k = 0; k < ARRAY_SIZE (i.prefix); k++)
8993 /* REX byte is encoded in VEX/EVEX prefix. */
8994 if (i.prefix[k] && (k != REX_PREFIX || !i.vex.length))
8995 count++;
8996
8997 /* Count prefixes for extended opcode maps. */
8998 if (!i.vex.length)
8999 switch (i.tm.opcode_length)
9000 {
9001 case 3:
9002 if (((i.tm.base_opcode >> 16) & 0xff) == 0xf)
9003 {
9004 count++;
9005 switch ((i.tm.base_opcode >> 8) & 0xff)
9006 {
9007 case 0x38:
9008 case 0x3a:
9009 count++;
9010 break;
9011 default:
9012 break;
9013 }
9014 }
9015 break;
9016 case 2:
9017 if (((i.tm.base_opcode >> 8) & 0xff) == 0xf)
9018 count++;
9019 break;
9020 case 1:
9021 break;
9022 default:
9023 abort ();
9024 }
9025
9026 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype)
9027 == BRANCH_PREFIX)
9028 {
9029 /* Set the maximum prefix size in BRANCH_PREFIX
9030 frag. */
9031 if (fragP->tc_frag_data.max_bytes > max)
9032 fragP->tc_frag_data.max_bytes = max;
9033 if (fragP->tc_frag_data.max_bytes > count)
9034 fragP->tc_frag_data.max_bytes -= count;
9035 else
9036 fragP->tc_frag_data.max_bytes = 0;
9037 }
9038 else
9039 {
9040 /* Remember the maximum prefix size in FUSED_JCC_PADDING
9041 frag. */
9042 unsigned int max_prefix_size;
9043 if (align_branch_prefix_size > max)
9044 max_prefix_size = max;
9045 else
9046 max_prefix_size = align_branch_prefix_size;
9047 if (max_prefix_size > count)
9048 fragP->tc_frag_data.max_prefix_length
9049 = max_prefix_size - count;
9050 }
9051
9052 /* Use existing segment prefix if possible. Use CS
9053 segment prefix in 64-bit mode. In 32-bit mode, use SS
9054 segment prefix with ESP/EBP base register and use DS
9055 segment prefix without ESP/EBP base register. */
9056 if (i.prefix[SEG_PREFIX])
9057 fragP->tc_frag_data.default_prefix = i.prefix[SEG_PREFIX];
9058 else if (flag_code == CODE_64BIT)
9059 fragP->tc_frag_data.default_prefix = CS_PREFIX_OPCODE;
9060 else if (i.base_reg
9061 && (i.base_reg->reg_num == 4
9062 || i.base_reg->reg_num == 5))
9063 fragP->tc_frag_data.default_prefix = SS_PREFIX_OPCODE;
9064 else
9065 fragP->tc_frag_data.default_prefix = DS_PREFIX_OPCODE;
9066 }
9067 }
9068 }
9069
9070 /* NB: Don't work with COND_JUMP86 without i386. */
9071 if (align_branch_power
9072 && now_seg != absolute_section
9073 && cpu_arch_flags.bitfield.cpui386)
9074 {
9075 /* Terminate each frag so that we can add prefix and check for
9076 fused jcc. */
9077 frag_wane (frag_now);
9078 frag_new (0);
9079 }
9080
9081 #ifdef DEBUG386
9082 if (flag_debug)
9083 {
9084 pi ("" /*line*/, &i);
9085 }
9086 #endif /* DEBUG386 */
9087 }
9088
9089 /* Return the size of the displacement operand N. */
9090
9091 static int
9092 disp_size (unsigned int n)
9093 {
9094 int size = 4;
9095
9096 if (i.types[n].bitfield.disp64)
9097 size = 8;
9098 else if (i.types[n].bitfield.disp8)
9099 size = 1;
9100 else if (i.types[n].bitfield.disp16)
9101 size = 2;
9102 return size;
9103 }
9104
9105 /* Return the size of the immediate operand N. */
9106
9107 static int
9108 imm_size (unsigned int n)
9109 {
9110 int size = 4;
9111 if (i.types[n].bitfield.imm64)
9112 size = 8;
9113 else if (i.types[n].bitfield.imm8 || i.types[n].bitfield.imm8s)
9114 size = 1;
9115 else if (i.types[n].bitfield.imm16)
9116 size = 2;
9117 return size;
9118 }
9119
9120 static void
9121 output_disp (fragS *insn_start_frag, offsetT insn_start_off)
9122 {
9123 char *p;
9124 unsigned int n;
9125
9126 for (n = 0; n < i.operands; n++)
9127 {
9128 if (operand_type_check (i.types[n], disp))
9129 {
9130 if (i.op[n].disps->X_op == O_constant)
9131 {
9132 int size = disp_size (n);
9133 offsetT val = i.op[n].disps->X_add_number;
9134
9135 val = offset_in_range (val >> (size == 1 ? i.memshift : 0),
9136 size);
9137 p = frag_more (size);
9138 md_number_to_chars (p, val, size);
9139 }
9140 else
9141 {
9142 enum bfd_reloc_code_real reloc_type;
9143 int size = disp_size (n);
9144 int sign = i.types[n].bitfield.disp32s;
9145 int pcrel = (i.flags[n] & Operand_PCrel) != 0;
9146 fixS *fixP;
9147
9148 /* We can't have 8 bit displacement here. */
9149 gas_assert (!i.types[n].bitfield.disp8);
9150
9151 /* The PC relative address is computed relative
9152 to the instruction boundary, so in case immediate
9153 fields follows, we need to adjust the value. */
9154 if (pcrel && i.imm_operands)
9155 {
9156 unsigned int n1;
9157 int sz = 0;
9158
9159 for (n1 = 0; n1 < i.operands; n1++)
9160 if (operand_type_check (i.types[n1], imm))
9161 {
9162 /* Only one immediate is allowed for PC
9163 relative address. */
9164 gas_assert (sz == 0);
9165 sz = imm_size (n1);
9166 i.op[n].disps->X_add_number -= sz;
9167 }
9168 /* We should find the immediate. */
9169 gas_assert (sz != 0);
9170 }
9171
9172 p = frag_more (size);
9173 reloc_type = reloc (size, pcrel, sign, i.reloc[n]);
9174 if (GOT_symbol
9175 && GOT_symbol == i.op[n].disps->X_add_symbol
9176 && (((reloc_type == BFD_RELOC_32
9177 || reloc_type == BFD_RELOC_X86_64_32S
9178 || (reloc_type == BFD_RELOC_64
9179 && object_64bit))
9180 && (i.op[n].disps->X_op == O_symbol
9181 || (i.op[n].disps->X_op == O_add
9182 && ((symbol_get_value_expression
9183 (i.op[n].disps->X_op_symbol)->X_op)
9184 == O_subtract))))
9185 || reloc_type == BFD_RELOC_32_PCREL))
9186 {
9187 if (!object_64bit)
9188 {
9189 reloc_type = BFD_RELOC_386_GOTPC;
9190 i.has_gotpc_tls_reloc = TRUE;
9191 i.op[n].imms->X_add_number +=
9192 encoding_length (insn_start_frag, insn_start_off, p);
9193 }
9194 else if (reloc_type == BFD_RELOC_64)
9195 reloc_type = BFD_RELOC_X86_64_GOTPC64;
9196 else
9197 /* Don't do the adjustment for x86-64, as there
9198 the pcrel addressing is relative to the _next_
9199 insn, and that is taken care of in other code. */
9200 reloc_type = BFD_RELOC_X86_64_GOTPC32;
9201 }
9202 else if (align_branch_power)
9203 {
9204 switch (reloc_type)
9205 {
9206 case BFD_RELOC_386_TLS_GD:
9207 case BFD_RELOC_386_TLS_LDM:
9208 case BFD_RELOC_386_TLS_IE:
9209 case BFD_RELOC_386_TLS_IE_32:
9210 case BFD_RELOC_386_TLS_GOTIE:
9211 case BFD_RELOC_386_TLS_GOTDESC:
9212 case BFD_RELOC_386_TLS_DESC_CALL:
9213 case BFD_RELOC_X86_64_TLSGD:
9214 case BFD_RELOC_X86_64_TLSLD:
9215 case BFD_RELOC_X86_64_GOTTPOFF:
9216 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
9217 case BFD_RELOC_X86_64_TLSDESC_CALL:
9218 i.has_gotpc_tls_reloc = TRUE;
9219 default:
9220 break;
9221 }
9222 }
9223 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal,
9224 size, i.op[n].disps, pcrel,
9225 reloc_type);
9226 /* Check for "call/jmp *mem", "mov mem, %reg",
9227 "test %reg, mem" and "binop mem, %reg" where binop
9228 is one of adc, add, and, cmp, or, sbb, sub, xor
9229 instructions without data prefix. Always generate
9230 R_386_GOT32X for "sym*GOT" operand in 32-bit mode. */
9231 if (i.prefix[DATA_PREFIX] == 0
9232 && (generate_relax_relocations
9233 || (!object_64bit
9234 && i.rm.mode == 0
9235 && i.rm.regmem == 5))
9236 && (i.rm.mode == 2
9237 || (i.rm.mode == 0 && i.rm.regmem == 5))
9238 && !is_any_vex_encoding(&i.tm)
9239 && ((i.operands == 1
9240 && i.tm.base_opcode == 0xff
9241 && (i.rm.reg == 2 || i.rm.reg == 4))
9242 || (i.operands == 2
9243 && (i.tm.base_opcode == 0x8b
9244 || i.tm.base_opcode == 0x85
9245 || (i.tm.base_opcode & ~0x38) == 0x03))))
9246 {
9247 if (object_64bit)
9248 {
9249 fixP->fx_tcbit = i.rex != 0;
9250 if (i.base_reg
9251 && (i.base_reg->reg_num == RegIP))
9252 fixP->fx_tcbit2 = 1;
9253 }
9254 else
9255 fixP->fx_tcbit2 = 1;
9256 }
9257 }
9258 }
9259 }
9260 }
9261
9262 static void
9263 output_imm (fragS *insn_start_frag, offsetT insn_start_off)
9264 {
9265 char *p;
9266 unsigned int n;
9267
9268 for (n = 0; n < i.operands; n++)
9269 {
9270 /* Skip SAE/RC Imm operand in EVEX. They are already handled. */
9271 if (i.rounding && (int) n == i.rounding->operand)
9272 continue;
9273
9274 if (operand_type_check (i.types[n], imm))
9275 {
9276 if (i.op[n].imms->X_op == O_constant)
9277 {
9278 int size = imm_size (n);
9279 offsetT val;
9280
9281 val = offset_in_range (i.op[n].imms->X_add_number,
9282 size);
9283 p = frag_more (size);
9284 md_number_to_chars (p, val, size);
9285 }
9286 else
9287 {
9288 /* Not absolute_section.
9289 Need a 32-bit fixup (don't support 8bit
9290 non-absolute imms). Try to support other
9291 sizes ... */
9292 enum bfd_reloc_code_real reloc_type;
9293 int size = imm_size (n);
9294 int sign;
9295
9296 if (i.types[n].bitfield.imm32s
9297 && (i.suffix == QWORD_MNEM_SUFFIX
9298 || (!i.suffix && i.tm.opcode_modifier.no_lsuf)))
9299 sign = 1;
9300 else
9301 sign = 0;
9302
9303 p = frag_more (size);
9304 reloc_type = reloc (size, 0, sign, i.reloc[n]);
9305
9306 /* This is tough to explain. We end up with this one if we
9307 * have operands that look like
9308 * "_GLOBAL_OFFSET_TABLE_+[.-.L284]". The goal here is to
9309 * obtain the absolute address of the GOT, and it is strongly
9310 * preferable from a performance point of view to avoid using
9311 * a runtime relocation for this. The actual sequence of
9312 * instructions often look something like:
9313 *
9314 * call .L66
9315 * .L66:
9316 * popl %ebx
9317 * addl $_GLOBAL_OFFSET_TABLE_+[.-.L66],%ebx
9318 *
9319 * The call and pop essentially return the absolute address
9320 * of the label .L66 and store it in %ebx. The linker itself
9321 * will ultimately change the first operand of the addl so
9322 * that %ebx points to the GOT, but to keep things simple, the
9323 * .o file must have this operand set so that it generates not
9324 * the absolute address of .L66, but the absolute address of
9325 * itself. This allows the linker itself simply treat a GOTPC
9326 * relocation as asking for a pcrel offset to the GOT to be
9327 * added in, and the addend of the relocation is stored in the
9328 * operand field for the instruction itself.
9329 *
9330 * Our job here is to fix the operand so that it would add
9331 * the correct offset so that %ebx would point to itself. The
9332 * thing that is tricky is that .-.L66 will point to the
9333 * beginning of the instruction, so we need to further modify
9334 * the operand so that it will point to itself. There are
9335 * other cases where you have something like:
9336 *
9337 * .long $_GLOBAL_OFFSET_TABLE_+[.-.L66]
9338 *
9339 * and here no correction would be required. Internally in
9340 * the assembler we treat operands of this form as not being
9341 * pcrel since the '.' is explicitly mentioned, and I wonder
9342 * whether it would simplify matters to do it this way. Who
9343 * knows. In earlier versions of the PIC patches, the
9344 * pcrel_adjust field was used to store the correction, but
9345 * since the expression is not pcrel, I felt it would be
9346 * confusing to do it this way. */
9347
9348 if ((reloc_type == BFD_RELOC_32
9349 || reloc_type == BFD_RELOC_X86_64_32S
9350 || reloc_type == BFD_RELOC_64)
9351 && GOT_symbol
9352 && GOT_symbol == i.op[n].imms->X_add_symbol
9353 && (i.op[n].imms->X_op == O_symbol
9354 || (i.op[n].imms->X_op == O_add
9355 && ((symbol_get_value_expression
9356 (i.op[n].imms->X_op_symbol)->X_op)
9357 == O_subtract))))
9358 {
9359 if (!object_64bit)
9360 reloc_type = BFD_RELOC_386_GOTPC;
9361 else if (size == 4)
9362 reloc_type = BFD_RELOC_X86_64_GOTPC32;
9363 else if (size == 8)
9364 reloc_type = BFD_RELOC_X86_64_GOTPC64;
9365 i.has_gotpc_tls_reloc = TRUE;
9366 i.op[n].imms->X_add_number +=
9367 encoding_length (insn_start_frag, insn_start_off, p);
9368 }
9369 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
9370 i.op[n].imms, 0, reloc_type);
9371 }
9372 }
9373 }
9374 }
9375 \f
9376 /* x86_cons_fix_new is called via the expression parsing code when a
9377 reloc is needed. We use this hook to get the correct .got reloc. */
9378 static int cons_sign = -1;
9379
9380 void
9381 x86_cons_fix_new (fragS *frag, unsigned int off, unsigned int len,
9382 expressionS *exp, bfd_reloc_code_real_type r)
9383 {
9384 r = reloc (len, 0, cons_sign, r);
9385
9386 #ifdef TE_PE
9387 if (exp->X_op == O_secrel)
9388 {
9389 exp->X_op = O_symbol;
9390 r = BFD_RELOC_32_SECREL;
9391 }
9392 #endif
9393
9394 fix_new_exp (frag, off, len, exp, 0, r);
9395 }
9396
9397 /* Export the ABI address size for use by TC_ADDRESS_BYTES for the
9398 purpose of the `.dc.a' internal pseudo-op. */
9399
9400 int
9401 x86_address_bytes (void)
9402 {
9403 if ((stdoutput->arch_info->mach & bfd_mach_x64_32))
9404 return 4;
9405 return stdoutput->arch_info->bits_per_address / 8;
9406 }
9407
9408 #if !(defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) || defined (OBJ_MACH_O)) \
9409 || defined (LEX_AT)
9410 # define lex_got(reloc, adjust, types) NULL
9411 #else
9412 /* Parse operands of the form
9413 <symbol>@GOTOFF+<nnn>
9414 and similar .plt or .got references.
9415
9416 If we find one, set up the correct relocation in RELOC and copy the
9417 input string, minus the `@GOTOFF' into a malloc'd buffer for
9418 parsing by the calling routine. Return this buffer, and if ADJUST
9419 is non-null set it to the length of the string we removed from the
9420 input line. Otherwise return NULL. */
9421 static char *
9422 lex_got (enum bfd_reloc_code_real *rel,
9423 int *adjust,
9424 i386_operand_type *types)
9425 {
9426 /* Some of the relocations depend on the size of what field is to
9427 be relocated. But in our callers i386_immediate and i386_displacement
9428 we don't yet know the operand size (this will be set by insn
9429 matching). Hence we record the word32 relocation here,
9430 and adjust the reloc according to the real size in reloc(). */
9431 static const struct {
9432 const char *str;
9433 int len;
9434 const enum bfd_reloc_code_real rel[2];
9435 const i386_operand_type types64;
9436 } gotrel[] = {
9437 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9438 { STRING_COMMA_LEN ("SIZE"), { BFD_RELOC_SIZE32,
9439 BFD_RELOC_SIZE32 },
9440 OPERAND_TYPE_IMM32_64 },
9441 #endif
9442 { STRING_COMMA_LEN ("PLTOFF"), { _dummy_first_bfd_reloc_code_real,
9443 BFD_RELOC_X86_64_PLTOFF64 },
9444 OPERAND_TYPE_IMM64 },
9445 { STRING_COMMA_LEN ("PLT"), { BFD_RELOC_386_PLT32,
9446 BFD_RELOC_X86_64_PLT32 },
9447 OPERAND_TYPE_IMM32_32S_DISP32 },
9448 { STRING_COMMA_LEN ("GOTPLT"), { _dummy_first_bfd_reloc_code_real,
9449 BFD_RELOC_X86_64_GOTPLT64 },
9450 OPERAND_TYPE_IMM64_DISP64 },
9451 { STRING_COMMA_LEN ("GOTOFF"), { BFD_RELOC_386_GOTOFF,
9452 BFD_RELOC_X86_64_GOTOFF64 },
9453 OPERAND_TYPE_IMM64_DISP64 },
9454 { STRING_COMMA_LEN ("GOTPCREL"), { _dummy_first_bfd_reloc_code_real,
9455 BFD_RELOC_X86_64_GOTPCREL },
9456 OPERAND_TYPE_IMM32_32S_DISP32 },
9457 { STRING_COMMA_LEN ("TLSGD"), { BFD_RELOC_386_TLS_GD,
9458 BFD_RELOC_X86_64_TLSGD },
9459 OPERAND_TYPE_IMM32_32S_DISP32 },
9460 { STRING_COMMA_LEN ("TLSLDM"), { BFD_RELOC_386_TLS_LDM,
9461 _dummy_first_bfd_reloc_code_real },
9462 OPERAND_TYPE_NONE },
9463 { STRING_COMMA_LEN ("TLSLD"), { _dummy_first_bfd_reloc_code_real,
9464 BFD_RELOC_X86_64_TLSLD },
9465 OPERAND_TYPE_IMM32_32S_DISP32 },
9466 { STRING_COMMA_LEN ("GOTTPOFF"), { BFD_RELOC_386_TLS_IE_32,
9467 BFD_RELOC_X86_64_GOTTPOFF },
9468 OPERAND_TYPE_IMM32_32S_DISP32 },
9469 { STRING_COMMA_LEN ("TPOFF"), { BFD_RELOC_386_TLS_LE_32,
9470 BFD_RELOC_X86_64_TPOFF32 },
9471 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
9472 { STRING_COMMA_LEN ("NTPOFF"), { BFD_RELOC_386_TLS_LE,
9473 _dummy_first_bfd_reloc_code_real },
9474 OPERAND_TYPE_NONE },
9475 { STRING_COMMA_LEN ("DTPOFF"), { BFD_RELOC_386_TLS_LDO_32,
9476 BFD_RELOC_X86_64_DTPOFF32 },
9477 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
9478 { STRING_COMMA_LEN ("GOTNTPOFF"),{ BFD_RELOC_386_TLS_GOTIE,
9479 _dummy_first_bfd_reloc_code_real },
9480 OPERAND_TYPE_NONE },
9481 { STRING_COMMA_LEN ("INDNTPOFF"),{ BFD_RELOC_386_TLS_IE,
9482 _dummy_first_bfd_reloc_code_real },
9483 OPERAND_TYPE_NONE },
9484 { STRING_COMMA_LEN ("GOT"), { BFD_RELOC_386_GOT32,
9485 BFD_RELOC_X86_64_GOT32 },
9486 OPERAND_TYPE_IMM32_32S_64_DISP32 },
9487 { STRING_COMMA_LEN ("TLSDESC"), { BFD_RELOC_386_TLS_GOTDESC,
9488 BFD_RELOC_X86_64_GOTPC32_TLSDESC },
9489 OPERAND_TYPE_IMM32_32S_DISP32 },
9490 { STRING_COMMA_LEN ("TLSCALL"), { BFD_RELOC_386_TLS_DESC_CALL,
9491 BFD_RELOC_X86_64_TLSDESC_CALL },
9492 OPERAND_TYPE_IMM32_32S_DISP32 },
9493 };
9494 char *cp;
9495 unsigned int j;
9496
9497 #if defined (OBJ_MAYBE_ELF)
9498 if (!IS_ELF)
9499 return NULL;
9500 #endif
9501
9502 for (cp = input_line_pointer; *cp != '@'; cp++)
9503 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
9504 return NULL;
9505
9506 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
9507 {
9508 int len = gotrel[j].len;
9509 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
9510 {
9511 if (gotrel[j].rel[object_64bit] != 0)
9512 {
9513 int first, second;
9514 char *tmpbuf, *past_reloc;
9515
9516 *rel = gotrel[j].rel[object_64bit];
9517
9518 if (types)
9519 {
9520 if (flag_code != CODE_64BIT)
9521 {
9522 types->bitfield.imm32 = 1;
9523 types->bitfield.disp32 = 1;
9524 }
9525 else
9526 *types = gotrel[j].types64;
9527 }
9528
9529 if (j != 0 && GOT_symbol == NULL)
9530 GOT_symbol = symbol_find_or_make (GLOBAL_OFFSET_TABLE_NAME);
9531
9532 /* The length of the first part of our input line. */
9533 first = cp - input_line_pointer;
9534
9535 /* The second part goes from after the reloc token until
9536 (and including) an end_of_line char or comma. */
9537 past_reloc = cp + 1 + len;
9538 cp = past_reloc;
9539 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
9540 ++cp;
9541 second = cp + 1 - past_reloc;
9542
9543 /* Allocate and copy string. The trailing NUL shouldn't
9544 be necessary, but be safe. */
9545 tmpbuf = XNEWVEC (char, first + second + 2);
9546 memcpy (tmpbuf, input_line_pointer, first);
9547 if (second != 0 && *past_reloc != ' ')
9548 /* Replace the relocation token with ' ', so that
9549 errors like foo@GOTOFF1 will be detected. */
9550 tmpbuf[first++] = ' ';
9551 else
9552 /* Increment length by 1 if the relocation token is
9553 removed. */
9554 len++;
9555 if (adjust)
9556 *adjust = len;
9557 memcpy (tmpbuf + first, past_reloc, second);
9558 tmpbuf[first + second] = '\0';
9559 return tmpbuf;
9560 }
9561
9562 as_bad (_("@%s reloc is not supported with %d-bit output format"),
9563 gotrel[j].str, 1 << (5 + object_64bit));
9564 return NULL;
9565 }
9566 }
9567
9568 /* Might be a symbol version string. Don't as_bad here. */
9569 return NULL;
9570 }
9571 #endif
9572
9573 #ifdef TE_PE
9574 #ifdef lex_got
9575 #undef lex_got
9576 #endif
9577 /* Parse operands of the form
9578 <symbol>@SECREL32+<nnn>
9579
9580 If we find one, set up the correct relocation in RELOC and copy the
9581 input string, minus the `@SECREL32' into a malloc'd buffer for
9582 parsing by the calling routine. Return this buffer, and if ADJUST
9583 is non-null set it to the length of the string we removed from the
9584 input line. Otherwise return NULL.
9585
9586 This function is copied from the ELF version above adjusted for PE targets. */
9587
9588 static char *
9589 lex_got (enum bfd_reloc_code_real *rel ATTRIBUTE_UNUSED,
9590 int *adjust ATTRIBUTE_UNUSED,
9591 i386_operand_type *types)
9592 {
9593 static const struct
9594 {
9595 const char *str;
9596 int len;
9597 const enum bfd_reloc_code_real rel[2];
9598 const i386_operand_type types64;
9599 }
9600 gotrel[] =
9601 {
9602 { STRING_COMMA_LEN ("SECREL32"), { BFD_RELOC_32_SECREL,
9603 BFD_RELOC_32_SECREL },
9604 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
9605 };
9606
9607 char *cp;
9608 unsigned j;
9609
9610 for (cp = input_line_pointer; *cp != '@'; cp++)
9611 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
9612 return NULL;
9613
9614 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
9615 {
9616 int len = gotrel[j].len;
9617
9618 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
9619 {
9620 if (gotrel[j].rel[object_64bit] != 0)
9621 {
9622 int first, second;
9623 char *tmpbuf, *past_reloc;
9624
9625 *rel = gotrel[j].rel[object_64bit];
9626 if (adjust)
9627 *adjust = len;
9628
9629 if (types)
9630 {
9631 if (flag_code != CODE_64BIT)
9632 {
9633 types->bitfield.imm32 = 1;
9634 types->bitfield.disp32 = 1;
9635 }
9636 else
9637 *types = gotrel[j].types64;
9638 }
9639
9640 /* The length of the first part of our input line. */
9641 first = cp - input_line_pointer;
9642
9643 /* The second part goes from after the reloc token until
9644 (and including) an end_of_line char or comma. */
9645 past_reloc = cp + 1 + len;
9646 cp = past_reloc;
9647 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
9648 ++cp;
9649 second = cp + 1 - past_reloc;
9650
9651 /* Allocate and copy string. The trailing NUL shouldn't
9652 be necessary, but be safe. */
9653 tmpbuf = XNEWVEC (char, first + second + 2);
9654 memcpy (tmpbuf, input_line_pointer, first);
9655 if (second != 0 && *past_reloc != ' ')
9656 /* Replace the relocation token with ' ', so that
9657 errors like foo@SECLREL321 will be detected. */
9658 tmpbuf[first++] = ' ';
9659 memcpy (tmpbuf + first, past_reloc, second);
9660 tmpbuf[first + second] = '\0';
9661 return tmpbuf;
9662 }
9663
9664 as_bad (_("@%s reloc is not supported with %d-bit output format"),
9665 gotrel[j].str, 1 << (5 + object_64bit));
9666 return NULL;
9667 }
9668 }
9669
9670 /* Might be a symbol version string. Don't as_bad here. */
9671 return NULL;
9672 }
9673
9674 #endif /* TE_PE */
9675
9676 bfd_reloc_code_real_type
9677 x86_cons (expressionS *exp, int size)
9678 {
9679 bfd_reloc_code_real_type got_reloc = NO_RELOC;
9680
9681 intel_syntax = -intel_syntax;
9682
9683 exp->X_md = 0;
9684 if (size == 4 || (object_64bit && size == 8))
9685 {
9686 /* Handle @GOTOFF and the like in an expression. */
9687 char *save;
9688 char *gotfree_input_line;
9689 int adjust = 0;
9690
9691 save = input_line_pointer;
9692 gotfree_input_line = lex_got (&got_reloc, &adjust, NULL);
9693 if (gotfree_input_line)
9694 input_line_pointer = gotfree_input_line;
9695
9696 expression (exp);
9697
9698 if (gotfree_input_line)
9699 {
9700 /* expression () has merrily parsed up to the end of line,
9701 or a comma - in the wrong buffer. Transfer how far
9702 input_line_pointer has moved to the right buffer. */
9703 input_line_pointer = (save
9704 + (input_line_pointer - gotfree_input_line)
9705 + adjust);
9706 free (gotfree_input_line);
9707 if (exp->X_op == O_constant
9708 || exp->X_op == O_absent
9709 || exp->X_op == O_illegal
9710 || exp->X_op == O_register
9711 || exp->X_op == O_big)
9712 {
9713 char c = *input_line_pointer;
9714 *input_line_pointer = 0;
9715 as_bad (_("missing or invalid expression `%s'"), save);
9716 *input_line_pointer = c;
9717 }
9718 else if ((got_reloc == BFD_RELOC_386_PLT32
9719 || got_reloc == BFD_RELOC_X86_64_PLT32)
9720 && exp->X_op != O_symbol)
9721 {
9722 char c = *input_line_pointer;
9723 *input_line_pointer = 0;
9724 as_bad (_("invalid PLT expression `%s'"), save);
9725 *input_line_pointer = c;
9726 }
9727 }
9728 }
9729 else
9730 expression (exp);
9731
9732 intel_syntax = -intel_syntax;
9733
9734 if (intel_syntax)
9735 i386_intel_simplify (exp);
9736
9737 return got_reloc;
9738 }
9739
9740 static void
9741 signed_cons (int size)
9742 {
9743 if (flag_code == CODE_64BIT)
9744 cons_sign = 1;
9745 cons (size);
9746 cons_sign = -1;
9747 }
9748
9749 #ifdef TE_PE
9750 static void
9751 pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
9752 {
9753 expressionS exp;
9754
9755 do
9756 {
9757 expression (&exp);
9758 if (exp.X_op == O_symbol)
9759 exp.X_op = O_secrel;
9760
9761 emit_expr (&exp, 4);
9762 }
9763 while (*input_line_pointer++ == ',');
9764
9765 input_line_pointer--;
9766 demand_empty_rest_of_line ();
9767 }
9768 #endif
9769
9770 /* Handle Vector operations. */
9771
9772 static char *
9773 check_VecOperations (char *op_string, char *op_end)
9774 {
9775 const reg_entry *mask;
9776 const char *saved;
9777 char *end_op;
9778
9779 while (*op_string
9780 && (op_end == NULL || op_string < op_end))
9781 {
9782 saved = op_string;
9783 if (*op_string == '{')
9784 {
9785 op_string++;
9786
9787 /* Check broadcasts. */
9788 if (strncmp (op_string, "1to", 3) == 0)
9789 {
9790 int bcst_type;
9791
9792 if (i.broadcast)
9793 goto duplicated_vec_op;
9794
9795 op_string += 3;
9796 if (*op_string == '8')
9797 bcst_type = 8;
9798 else if (*op_string == '4')
9799 bcst_type = 4;
9800 else if (*op_string == '2')
9801 bcst_type = 2;
9802 else if (*op_string == '1'
9803 && *(op_string+1) == '6')
9804 {
9805 bcst_type = 16;
9806 op_string++;
9807 }
9808 else
9809 {
9810 as_bad (_("Unsupported broadcast: `%s'"), saved);
9811 return NULL;
9812 }
9813 op_string++;
9814
9815 broadcast_op.type = bcst_type;
9816 broadcast_op.operand = this_operand;
9817 broadcast_op.bytes = 0;
9818 i.broadcast = &broadcast_op;
9819 }
9820 /* Check masking operation. */
9821 else if ((mask = parse_register (op_string, &end_op)) != NULL)
9822 {
9823 /* k0 can't be used for write mask. */
9824 if (mask->reg_type.bitfield.class != RegMask || !mask->reg_num)
9825 {
9826 as_bad (_("`%s%s' can't be used for write mask"),
9827 register_prefix, mask->reg_name);
9828 return NULL;
9829 }
9830
9831 if (!i.mask)
9832 {
9833 mask_op.mask = mask;
9834 mask_op.zeroing = 0;
9835 mask_op.operand = this_operand;
9836 i.mask = &mask_op;
9837 }
9838 else
9839 {
9840 if (i.mask->mask)
9841 goto duplicated_vec_op;
9842
9843 i.mask->mask = mask;
9844
9845 /* Only "{z}" is allowed here. No need to check
9846 zeroing mask explicitly. */
9847 if (i.mask->operand != this_operand)
9848 {
9849 as_bad (_("invalid write mask `%s'"), saved);
9850 return NULL;
9851 }
9852 }
9853
9854 op_string = end_op;
9855 }
9856 /* Check zeroing-flag for masking operation. */
9857 else if (*op_string == 'z')
9858 {
9859 if (!i.mask)
9860 {
9861 mask_op.mask = NULL;
9862 mask_op.zeroing = 1;
9863 mask_op.operand = this_operand;
9864 i.mask = &mask_op;
9865 }
9866 else
9867 {
9868 if (i.mask->zeroing)
9869 {
9870 duplicated_vec_op:
9871 as_bad (_("duplicated `%s'"), saved);
9872 return NULL;
9873 }
9874
9875 i.mask->zeroing = 1;
9876
9877 /* Only "{%k}" is allowed here. No need to check mask
9878 register explicitly. */
9879 if (i.mask->operand != this_operand)
9880 {
9881 as_bad (_("invalid zeroing-masking `%s'"),
9882 saved);
9883 return NULL;
9884 }
9885 }
9886
9887 op_string++;
9888 }
9889 else
9890 goto unknown_vec_op;
9891
9892 if (*op_string != '}')
9893 {
9894 as_bad (_("missing `}' in `%s'"), saved);
9895 return NULL;
9896 }
9897 op_string++;
9898
9899 /* Strip whitespace since the addition of pseudo prefixes
9900 changed how the scrubber treats '{'. */
9901 if (is_space_char (*op_string))
9902 ++op_string;
9903
9904 continue;
9905 }
9906 unknown_vec_op:
9907 /* We don't know this one. */
9908 as_bad (_("unknown vector operation: `%s'"), saved);
9909 return NULL;
9910 }
9911
9912 if (i.mask && i.mask->zeroing && !i.mask->mask)
9913 {
9914 as_bad (_("zeroing-masking only allowed with write mask"));
9915 return NULL;
9916 }
9917
9918 return op_string;
9919 }
9920
9921 static int
9922 i386_immediate (char *imm_start)
9923 {
9924 char *save_input_line_pointer;
9925 char *gotfree_input_line;
9926 segT exp_seg = 0;
9927 expressionS *exp;
9928 i386_operand_type types;
9929
9930 operand_type_set (&types, ~0);
9931
9932 if (i.imm_operands == MAX_IMMEDIATE_OPERANDS)
9933 {
9934 as_bad (_("at most %d immediate operands are allowed"),
9935 MAX_IMMEDIATE_OPERANDS);
9936 return 0;
9937 }
9938
9939 exp = &im_expressions[i.imm_operands++];
9940 i.op[this_operand].imms = exp;
9941
9942 if (is_space_char (*imm_start))
9943 ++imm_start;
9944
9945 save_input_line_pointer = input_line_pointer;
9946 input_line_pointer = imm_start;
9947
9948 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
9949 if (gotfree_input_line)
9950 input_line_pointer = gotfree_input_line;
9951
9952 exp_seg = expression (exp);
9953
9954 SKIP_WHITESPACE ();
9955
9956 /* Handle vector operations. */
9957 if (*input_line_pointer == '{')
9958 {
9959 input_line_pointer = check_VecOperations (input_line_pointer,
9960 NULL);
9961 if (input_line_pointer == NULL)
9962 return 0;
9963 }
9964
9965 if (*input_line_pointer)
9966 as_bad (_("junk `%s' after expression"), input_line_pointer);
9967
9968 input_line_pointer = save_input_line_pointer;
9969 if (gotfree_input_line)
9970 {
9971 free (gotfree_input_line);
9972
9973 if (exp->X_op == O_constant || exp->X_op == O_register)
9974 exp->X_op = O_illegal;
9975 }
9976
9977 return i386_finalize_immediate (exp_seg, exp, types, imm_start);
9978 }
9979
9980 static int
9981 i386_finalize_immediate (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
9982 i386_operand_type types, const char *imm_start)
9983 {
9984 if (exp->X_op == O_absent || exp->X_op == O_illegal || exp->X_op == O_big)
9985 {
9986 if (imm_start)
9987 as_bad (_("missing or invalid immediate expression `%s'"),
9988 imm_start);
9989 return 0;
9990 }
9991 else if (exp->X_op == O_constant)
9992 {
9993 /* Size it properly later. */
9994 i.types[this_operand].bitfield.imm64 = 1;
9995 /* If not 64bit, sign extend val. */
9996 if (flag_code != CODE_64BIT
9997 && (exp->X_add_number & ~(((addressT) 2 << 31) - 1)) == 0)
9998 exp->X_add_number
9999 = (exp->X_add_number ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
10000 }
10001 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
10002 else if (OUTPUT_FLAVOR == bfd_target_aout_flavour
10003 && exp_seg != absolute_section
10004 && exp_seg != text_section
10005 && exp_seg != data_section
10006 && exp_seg != bss_section
10007 && exp_seg != undefined_section
10008 && !bfd_is_com_section (exp_seg))
10009 {
10010 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
10011 return 0;
10012 }
10013 #endif
10014 else if (!intel_syntax && exp_seg == reg_section)
10015 {
10016 if (imm_start)
10017 as_bad (_("illegal immediate register operand %s"), imm_start);
10018 return 0;
10019 }
10020 else
10021 {
10022 /* This is an address. The size of the address will be
10023 determined later, depending on destination register,
10024 suffix, or the default for the section. */
10025 i.types[this_operand].bitfield.imm8 = 1;
10026 i.types[this_operand].bitfield.imm16 = 1;
10027 i.types[this_operand].bitfield.imm32 = 1;
10028 i.types[this_operand].bitfield.imm32s = 1;
10029 i.types[this_operand].bitfield.imm64 = 1;
10030 i.types[this_operand] = operand_type_and (i.types[this_operand],
10031 types);
10032 }
10033
10034 return 1;
10035 }
10036
10037 static char *
10038 i386_scale (char *scale)
10039 {
10040 offsetT val;
10041 char *save = input_line_pointer;
10042
10043 input_line_pointer = scale;
10044 val = get_absolute_expression ();
10045
10046 switch (val)
10047 {
10048 case 1:
10049 i.log2_scale_factor = 0;
10050 break;
10051 case 2:
10052 i.log2_scale_factor = 1;
10053 break;
10054 case 4:
10055 i.log2_scale_factor = 2;
10056 break;
10057 case 8:
10058 i.log2_scale_factor = 3;
10059 break;
10060 default:
10061 {
10062 char sep = *input_line_pointer;
10063
10064 *input_line_pointer = '\0';
10065 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
10066 scale);
10067 *input_line_pointer = sep;
10068 input_line_pointer = save;
10069 return NULL;
10070 }
10071 }
10072 if (i.log2_scale_factor != 0 && i.index_reg == 0)
10073 {
10074 as_warn (_("scale factor of %d without an index register"),
10075 1 << i.log2_scale_factor);
10076 i.log2_scale_factor = 0;
10077 }
10078 scale = input_line_pointer;
10079 input_line_pointer = save;
10080 return scale;
10081 }
10082
10083 static int
10084 i386_displacement (char *disp_start, char *disp_end)
10085 {
10086 expressionS *exp;
10087 segT exp_seg = 0;
10088 char *save_input_line_pointer;
10089 char *gotfree_input_line;
10090 int override;
10091 i386_operand_type bigdisp, types = anydisp;
10092 int ret;
10093
10094 if (i.disp_operands == MAX_MEMORY_OPERANDS)
10095 {
10096 as_bad (_("at most %d displacement operands are allowed"),
10097 MAX_MEMORY_OPERANDS);
10098 return 0;
10099 }
10100
10101 operand_type_set (&bigdisp, 0);
10102 if (i.jumpabsolute
10103 || i.types[this_operand].bitfield.baseindex
10104 || (current_templates->start->opcode_modifier.jump != JUMP
10105 && current_templates->start->opcode_modifier.jump != JUMP_DWORD))
10106 {
10107 i386_addressing_mode ();
10108 override = (i.prefix[ADDR_PREFIX] != 0);
10109 if (flag_code == CODE_64BIT)
10110 {
10111 if (!override)
10112 {
10113 bigdisp.bitfield.disp32s = 1;
10114 bigdisp.bitfield.disp64 = 1;
10115 }
10116 else
10117 bigdisp.bitfield.disp32 = 1;
10118 }
10119 else if ((flag_code == CODE_16BIT) ^ override)
10120 bigdisp.bitfield.disp16 = 1;
10121 else
10122 bigdisp.bitfield.disp32 = 1;
10123 }
10124 else
10125 {
10126 /* For PC-relative branches, the width of the displacement may be
10127 dependent upon data size, but is never dependent upon address size.
10128 Also make sure to not unintentionally match against a non-PC-relative
10129 branch template. */
10130 static templates aux_templates;
10131 const insn_template *t = current_templates->start;
10132 bfd_boolean has_intel64 = FALSE;
10133
10134 aux_templates.start = t;
10135 while (++t < current_templates->end)
10136 {
10137 if (t->opcode_modifier.jump
10138 != current_templates->start->opcode_modifier.jump)
10139 break;
10140 if ((t->opcode_modifier.isa64 >= INTEL64))
10141 has_intel64 = TRUE;
10142 }
10143 if (t < current_templates->end)
10144 {
10145 aux_templates.end = t;
10146 current_templates = &aux_templates;
10147 }
10148
10149 override = (i.prefix[DATA_PREFIX] != 0);
10150 if (flag_code == CODE_64BIT)
10151 {
10152 if ((override || i.suffix == WORD_MNEM_SUFFIX)
10153 && (!intel64 || !has_intel64))
10154 bigdisp.bitfield.disp16 = 1;
10155 else
10156 bigdisp.bitfield.disp32s = 1;
10157 }
10158 else
10159 {
10160 if (!override)
10161 override = (i.suffix == (flag_code != CODE_16BIT
10162 ? WORD_MNEM_SUFFIX
10163 : LONG_MNEM_SUFFIX));
10164 bigdisp.bitfield.disp32 = 1;
10165 if ((flag_code == CODE_16BIT) ^ override)
10166 {
10167 bigdisp.bitfield.disp32 = 0;
10168 bigdisp.bitfield.disp16 = 1;
10169 }
10170 }
10171 }
10172 i.types[this_operand] = operand_type_or (i.types[this_operand],
10173 bigdisp);
10174
10175 exp = &disp_expressions[i.disp_operands];
10176 i.op[this_operand].disps = exp;
10177 i.disp_operands++;
10178 save_input_line_pointer = input_line_pointer;
10179 input_line_pointer = disp_start;
10180 END_STRING_AND_SAVE (disp_end);
10181
10182 #ifndef GCC_ASM_O_HACK
10183 #define GCC_ASM_O_HACK 0
10184 #endif
10185 #if GCC_ASM_O_HACK
10186 END_STRING_AND_SAVE (disp_end + 1);
10187 if (i.types[this_operand].bitfield.baseIndex
10188 && displacement_string_end[-1] == '+')
10189 {
10190 /* This hack is to avoid a warning when using the "o"
10191 constraint within gcc asm statements.
10192 For instance:
10193
10194 #define _set_tssldt_desc(n,addr,limit,type) \
10195 __asm__ __volatile__ ( \
10196 "movw %w2,%0\n\t" \
10197 "movw %w1,2+%0\n\t" \
10198 "rorl $16,%1\n\t" \
10199 "movb %b1,4+%0\n\t" \
10200 "movb %4,5+%0\n\t" \
10201 "movb $0,6+%0\n\t" \
10202 "movb %h1,7+%0\n\t" \
10203 "rorl $16,%1" \
10204 : "=o"(*(n)) : "q" (addr), "ri"(limit), "i"(type))
10205
10206 This works great except that the output assembler ends
10207 up looking a bit weird if it turns out that there is
10208 no offset. You end up producing code that looks like:
10209
10210 #APP
10211 movw $235,(%eax)
10212 movw %dx,2+(%eax)
10213 rorl $16,%edx
10214 movb %dl,4+(%eax)
10215 movb $137,5+(%eax)
10216 movb $0,6+(%eax)
10217 movb %dh,7+(%eax)
10218 rorl $16,%edx
10219 #NO_APP
10220
10221 So here we provide the missing zero. */
10222
10223 *displacement_string_end = '0';
10224 }
10225 #endif
10226 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
10227 if (gotfree_input_line)
10228 input_line_pointer = gotfree_input_line;
10229
10230 exp_seg = expression (exp);
10231
10232 SKIP_WHITESPACE ();
10233 if (*input_line_pointer)
10234 as_bad (_("junk `%s' after expression"), input_line_pointer);
10235 #if GCC_ASM_O_HACK
10236 RESTORE_END_STRING (disp_end + 1);
10237 #endif
10238 input_line_pointer = save_input_line_pointer;
10239 if (gotfree_input_line)
10240 {
10241 free (gotfree_input_line);
10242
10243 if (exp->X_op == O_constant || exp->X_op == O_register)
10244 exp->X_op = O_illegal;
10245 }
10246
10247 ret = i386_finalize_displacement (exp_seg, exp, types, disp_start);
10248
10249 RESTORE_END_STRING (disp_end);
10250
10251 return ret;
10252 }
10253
10254 static int
10255 i386_finalize_displacement (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
10256 i386_operand_type types, const char *disp_start)
10257 {
10258 i386_operand_type bigdisp;
10259 int ret = 1;
10260
10261 /* We do this to make sure that the section symbol is in
10262 the symbol table. We will ultimately change the relocation
10263 to be relative to the beginning of the section. */
10264 if (i.reloc[this_operand] == BFD_RELOC_386_GOTOFF
10265 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL
10266 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
10267 {
10268 if (exp->X_op != O_symbol)
10269 goto inv_disp;
10270
10271 if (S_IS_LOCAL (exp->X_add_symbol)
10272 && S_GET_SEGMENT (exp->X_add_symbol) != undefined_section
10273 && S_GET_SEGMENT (exp->X_add_symbol) != expr_section)
10274 section_symbol (S_GET_SEGMENT (exp->X_add_symbol));
10275 exp->X_op = O_subtract;
10276 exp->X_op_symbol = GOT_symbol;
10277 if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
10278 i.reloc[this_operand] = BFD_RELOC_32_PCREL;
10279 else if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
10280 i.reloc[this_operand] = BFD_RELOC_64;
10281 else
10282 i.reloc[this_operand] = BFD_RELOC_32;
10283 }
10284
10285 else if (exp->X_op == O_absent
10286 || exp->X_op == O_illegal
10287 || exp->X_op == O_big)
10288 {
10289 inv_disp:
10290 as_bad (_("missing or invalid displacement expression `%s'"),
10291 disp_start);
10292 ret = 0;
10293 }
10294
10295 else if (flag_code == CODE_64BIT
10296 && !i.prefix[ADDR_PREFIX]
10297 && exp->X_op == O_constant)
10298 {
10299 /* Since displacement is signed extended to 64bit, don't allow
10300 disp32 and turn off disp32s if they are out of range. */
10301 i.types[this_operand].bitfield.disp32 = 0;
10302 if (!fits_in_signed_long (exp->X_add_number))
10303 {
10304 i.types[this_operand].bitfield.disp32s = 0;
10305 if (i.types[this_operand].bitfield.baseindex)
10306 {
10307 as_bad (_("0x%lx out range of signed 32bit displacement"),
10308 (long) exp->X_add_number);
10309 ret = 0;
10310 }
10311 }
10312 }
10313
10314 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
10315 else if (exp->X_op != O_constant
10316 && OUTPUT_FLAVOR == bfd_target_aout_flavour
10317 && exp_seg != absolute_section
10318 && exp_seg != text_section
10319 && exp_seg != data_section
10320 && exp_seg != bss_section
10321 && exp_seg != undefined_section
10322 && !bfd_is_com_section (exp_seg))
10323 {
10324 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
10325 ret = 0;
10326 }
10327 #endif
10328
10329 if (current_templates->start->opcode_modifier.jump == JUMP_BYTE
10330 /* Constants get taken care of by optimize_disp(). */
10331 && exp->X_op != O_constant)
10332 i.types[this_operand].bitfield.disp8 = 1;
10333
10334 /* Check if this is a displacement only operand. */
10335 bigdisp = i.types[this_operand];
10336 bigdisp.bitfield.disp8 = 0;
10337 bigdisp.bitfield.disp16 = 0;
10338 bigdisp.bitfield.disp32 = 0;
10339 bigdisp.bitfield.disp32s = 0;
10340 bigdisp.bitfield.disp64 = 0;
10341 if (operand_type_all_zero (&bigdisp))
10342 i.types[this_operand] = operand_type_and (i.types[this_operand],
10343 types);
10344
10345 return ret;
10346 }
10347
10348 /* Return the active addressing mode, taking address override and
10349 registers forming the address into consideration. Update the
10350 address override prefix if necessary. */
10351
10352 static enum flag_code
10353 i386_addressing_mode (void)
10354 {
10355 enum flag_code addr_mode;
10356
10357 if (i.prefix[ADDR_PREFIX])
10358 addr_mode = flag_code == CODE_32BIT ? CODE_16BIT : CODE_32BIT;
10359 else
10360 {
10361 addr_mode = flag_code;
10362
10363 #if INFER_ADDR_PREFIX
10364 if (i.mem_operands == 0)
10365 {
10366 /* Infer address prefix from the first memory operand. */
10367 const reg_entry *addr_reg = i.base_reg;
10368
10369 if (addr_reg == NULL)
10370 addr_reg = i.index_reg;
10371
10372 if (addr_reg)
10373 {
10374 if (addr_reg->reg_type.bitfield.dword)
10375 addr_mode = CODE_32BIT;
10376 else if (flag_code != CODE_64BIT
10377 && addr_reg->reg_type.bitfield.word)
10378 addr_mode = CODE_16BIT;
10379
10380 if (addr_mode != flag_code)
10381 {
10382 i.prefix[ADDR_PREFIX] = ADDR_PREFIX_OPCODE;
10383 i.prefixes += 1;
10384 /* Change the size of any displacement too. At most one
10385 of Disp16 or Disp32 is set.
10386 FIXME. There doesn't seem to be any real need for
10387 separate Disp16 and Disp32 flags. The same goes for
10388 Imm16 and Imm32. Removing them would probably clean
10389 up the code quite a lot. */
10390 if (flag_code != CODE_64BIT
10391 && (i.types[this_operand].bitfield.disp16
10392 || i.types[this_operand].bitfield.disp32))
10393 i.types[this_operand]
10394 = operand_type_xor (i.types[this_operand], disp16_32);
10395 }
10396 }
10397 }
10398 #endif
10399 }
10400
10401 return addr_mode;
10402 }
10403
10404 /* Make sure the memory operand we've been dealt is valid.
10405 Return 1 on success, 0 on a failure. */
10406
10407 static int
10408 i386_index_check (const char *operand_string)
10409 {
10410 const char *kind = "base/index";
10411 enum flag_code addr_mode = i386_addressing_mode ();
10412
10413 if (current_templates->start->opcode_modifier.isstring
10414 && !current_templates->start->cpu_flags.bitfield.cpupadlock
10415 && (current_templates->end[-1].opcode_modifier.isstring
10416 || i.mem_operands))
10417 {
10418 /* Memory operands of string insns are special in that they only allow
10419 a single register (rDI, rSI, or rBX) as their memory address. */
10420 const reg_entry *expected_reg;
10421 static const char *di_si[][2] =
10422 {
10423 { "esi", "edi" },
10424 { "si", "di" },
10425 { "rsi", "rdi" }
10426 };
10427 static const char *bx[] = { "ebx", "bx", "rbx" };
10428
10429 kind = "string address";
10430
10431 if (current_templates->start->opcode_modifier.repprefixok)
10432 {
10433 int es_op = current_templates->end[-1].opcode_modifier.isstring
10434 - IS_STRING_ES_OP0;
10435 int op = 0;
10436
10437 if (!current_templates->end[-1].operand_types[0].bitfield.baseindex
10438 || ((!i.mem_operands != !intel_syntax)
10439 && current_templates->end[-1].operand_types[1]
10440 .bitfield.baseindex))
10441 op = 1;
10442 expected_reg = hash_find (reg_hash, di_si[addr_mode][op == es_op]);
10443 }
10444 else
10445 expected_reg = hash_find (reg_hash, bx[addr_mode]);
10446
10447 if (i.base_reg != expected_reg
10448 || i.index_reg
10449 || operand_type_check (i.types[this_operand], disp))
10450 {
10451 /* The second memory operand must have the same size as
10452 the first one. */
10453 if (i.mem_operands
10454 && i.base_reg
10455 && !((addr_mode == CODE_64BIT
10456 && i.base_reg->reg_type.bitfield.qword)
10457 || (addr_mode == CODE_32BIT
10458 ? i.base_reg->reg_type.bitfield.dword
10459 : i.base_reg->reg_type.bitfield.word)))
10460 goto bad_address;
10461
10462 as_warn (_("`%s' is not valid here (expected `%c%s%s%c')"),
10463 operand_string,
10464 intel_syntax ? '[' : '(',
10465 register_prefix,
10466 expected_reg->reg_name,
10467 intel_syntax ? ']' : ')');
10468 return 1;
10469 }
10470 else
10471 return 1;
10472
10473 bad_address:
10474 as_bad (_("`%s' is not a valid %s expression"),
10475 operand_string, kind);
10476 return 0;
10477 }
10478 else
10479 {
10480 if (addr_mode != CODE_16BIT)
10481 {
10482 /* 32-bit/64-bit checks. */
10483 if ((i.base_reg
10484 && ((addr_mode == CODE_64BIT
10485 ? !i.base_reg->reg_type.bitfield.qword
10486 : !i.base_reg->reg_type.bitfield.dword)
10487 || (i.index_reg && i.base_reg->reg_num == RegIP)
10488 || i.base_reg->reg_num == RegIZ))
10489 || (i.index_reg
10490 && !i.index_reg->reg_type.bitfield.xmmword
10491 && !i.index_reg->reg_type.bitfield.ymmword
10492 && !i.index_reg->reg_type.bitfield.zmmword
10493 && ((addr_mode == CODE_64BIT
10494 ? !i.index_reg->reg_type.bitfield.qword
10495 : !i.index_reg->reg_type.bitfield.dword)
10496 || !i.index_reg->reg_type.bitfield.baseindex)))
10497 goto bad_address;
10498
10499 /* bndmk, bndldx, and bndstx have special restrictions. */
10500 if (current_templates->start->base_opcode == 0xf30f1b
10501 || (current_templates->start->base_opcode & ~1) == 0x0f1a)
10502 {
10503 /* They cannot use RIP-relative addressing. */
10504 if (i.base_reg && i.base_reg->reg_num == RegIP)
10505 {
10506 as_bad (_("`%s' cannot be used here"), operand_string);
10507 return 0;
10508 }
10509
10510 /* bndldx and bndstx ignore their scale factor. */
10511 if (current_templates->start->base_opcode != 0xf30f1b
10512 && i.log2_scale_factor)
10513 as_warn (_("register scaling is being ignored here"));
10514 }
10515 }
10516 else
10517 {
10518 /* 16-bit checks. */
10519 if ((i.base_reg
10520 && (!i.base_reg->reg_type.bitfield.word
10521 || !i.base_reg->reg_type.bitfield.baseindex))
10522 || (i.index_reg
10523 && (!i.index_reg->reg_type.bitfield.word
10524 || !i.index_reg->reg_type.bitfield.baseindex
10525 || !(i.base_reg
10526 && i.base_reg->reg_num < 6
10527 && i.index_reg->reg_num >= 6
10528 && i.log2_scale_factor == 0))))
10529 goto bad_address;
10530 }
10531 }
10532 return 1;
10533 }
10534
10535 /* Handle vector immediates. */
10536
10537 static int
10538 RC_SAE_immediate (const char *imm_start)
10539 {
10540 unsigned int match_found, j;
10541 const char *pstr = imm_start;
10542 expressionS *exp;
10543
10544 if (*pstr != '{')
10545 return 0;
10546
10547 pstr++;
10548 match_found = 0;
10549 for (j = 0; j < ARRAY_SIZE (RC_NamesTable); j++)
10550 {
10551 if (!strncmp (pstr, RC_NamesTable[j].name, RC_NamesTable[j].len))
10552 {
10553 if (!i.rounding)
10554 {
10555 rc_op.type = RC_NamesTable[j].type;
10556 rc_op.operand = this_operand;
10557 i.rounding = &rc_op;
10558 }
10559 else
10560 {
10561 as_bad (_("duplicated `%s'"), imm_start);
10562 return 0;
10563 }
10564 pstr += RC_NamesTable[j].len;
10565 match_found = 1;
10566 break;
10567 }
10568 }
10569 if (!match_found)
10570 return 0;
10571
10572 if (*pstr++ != '}')
10573 {
10574 as_bad (_("Missing '}': '%s'"), imm_start);
10575 return 0;
10576 }
10577 /* RC/SAE immediate string should contain nothing more. */;
10578 if (*pstr != 0)
10579 {
10580 as_bad (_("Junk after '}': '%s'"), imm_start);
10581 return 0;
10582 }
10583
10584 exp = &im_expressions[i.imm_operands++];
10585 i.op[this_operand].imms = exp;
10586
10587 exp->X_op = O_constant;
10588 exp->X_add_number = 0;
10589 exp->X_add_symbol = (symbolS *) 0;
10590 exp->X_op_symbol = (symbolS *) 0;
10591
10592 i.types[this_operand].bitfield.imm8 = 1;
10593 return 1;
10594 }
10595
10596 /* Only string instructions can have a second memory operand, so
10597 reduce current_templates to just those if it contains any. */
10598 static int
10599 maybe_adjust_templates (void)
10600 {
10601 const insn_template *t;
10602
10603 gas_assert (i.mem_operands == 1);
10604
10605 for (t = current_templates->start; t < current_templates->end; ++t)
10606 if (t->opcode_modifier.isstring)
10607 break;
10608
10609 if (t < current_templates->end)
10610 {
10611 static templates aux_templates;
10612 bfd_boolean recheck;
10613
10614 aux_templates.start = t;
10615 for (; t < current_templates->end; ++t)
10616 if (!t->opcode_modifier.isstring)
10617 break;
10618 aux_templates.end = t;
10619
10620 /* Determine whether to re-check the first memory operand. */
10621 recheck = (aux_templates.start != current_templates->start
10622 || t != current_templates->end);
10623
10624 current_templates = &aux_templates;
10625
10626 if (recheck)
10627 {
10628 i.mem_operands = 0;
10629 if (i.memop1_string != NULL
10630 && i386_index_check (i.memop1_string) == 0)
10631 return 0;
10632 i.mem_operands = 1;
10633 }
10634 }
10635
10636 return 1;
10637 }
10638
10639 /* Parse OPERAND_STRING into the i386_insn structure I. Returns zero
10640 on error. */
10641
10642 static int
10643 i386_att_operand (char *operand_string)
10644 {
10645 const reg_entry *r;
10646 char *end_op;
10647 char *op_string = operand_string;
10648
10649 if (is_space_char (*op_string))
10650 ++op_string;
10651
10652 /* We check for an absolute prefix (differentiating,
10653 for example, 'jmp pc_relative_label' from 'jmp *absolute_label'. */
10654 if (*op_string == ABSOLUTE_PREFIX)
10655 {
10656 ++op_string;
10657 if (is_space_char (*op_string))
10658 ++op_string;
10659 i.jumpabsolute = TRUE;
10660 }
10661
10662 /* Check if operand is a register. */
10663 if ((r = parse_register (op_string, &end_op)) != NULL)
10664 {
10665 i386_operand_type temp;
10666
10667 /* Check for a segment override by searching for ':' after a
10668 segment register. */
10669 op_string = end_op;
10670 if (is_space_char (*op_string))
10671 ++op_string;
10672 if (*op_string == ':' && r->reg_type.bitfield.class == SReg)
10673 {
10674 switch (r->reg_num)
10675 {
10676 case 0:
10677 i.seg[i.mem_operands] = &es;
10678 break;
10679 case 1:
10680 i.seg[i.mem_operands] = &cs;
10681 break;
10682 case 2:
10683 i.seg[i.mem_operands] = &ss;
10684 break;
10685 case 3:
10686 i.seg[i.mem_operands] = &ds;
10687 break;
10688 case 4:
10689 i.seg[i.mem_operands] = &fs;
10690 break;
10691 case 5:
10692 i.seg[i.mem_operands] = &gs;
10693 break;
10694 }
10695
10696 /* Skip the ':' and whitespace. */
10697 ++op_string;
10698 if (is_space_char (*op_string))
10699 ++op_string;
10700
10701 if (!is_digit_char (*op_string)
10702 && !is_identifier_char (*op_string)
10703 && *op_string != '('
10704 && *op_string != ABSOLUTE_PREFIX)
10705 {
10706 as_bad (_("bad memory operand `%s'"), op_string);
10707 return 0;
10708 }
10709 /* Handle case of %es:*foo. */
10710 if (*op_string == ABSOLUTE_PREFIX)
10711 {
10712 ++op_string;
10713 if (is_space_char (*op_string))
10714 ++op_string;
10715 i.jumpabsolute = TRUE;
10716 }
10717 goto do_memory_reference;
10718 }
10719
10720 /* Handle vector operations. */
10721 if (*op_string == '{')
10722 {
10723 op_string = check_VecOperations (op_string, NULL);
10724 if (op_string == NULL)
10725 return 0;
10726 }
10727
10728 if (*op_string)
10729 {
10730 as_bad (_("junk `%s' after register"), op_string);
10731 return 0;
10732 }
10733 temp = r->reg_type;
10734 temp.bitfield.baseindex = 0;
10735 i.types[this_operand] = operand_type_or (i.types[this_operand],
10736 temp);
10737 i.types[this_operand].bitfield.unspecified = 0;
10738 i.op[this_operand].regs = r;
10739 i.reg_operands++;
10740 }
10741 else if (*op_string == REGISTER_PREFIX)
10742 {
10743 as_bad (_("bad register name `%s'"), op_string);
10744 return 0;
10745 }
10746 else if (*op_string == IMMEDIATE_PREFIX)
10747 {
10748 ++op_string;
10749 if (i.jumpabsolute)
10750 {
10751 as_bad (_("immediate operand illegal with absolute jump"));
10752 return 0;
10753 }
10754 if (!i386_immediate (op_string))
10755 return 0;
10756 }
10757 else if (RC_SAE_immediate (operand_string))
10758 {
10759 /* If it is a RC or SAE immediate, do nothing. */
10760 ;
10761 }
10762 else if (is_digit_char (*op_string)
10763 || is_identifier_char (*op_string)
10764 || *op_string == '"'
10765 || *op_string == '(')
10766 {
10767 /* This is a memory reference of some sort. */
10768 char *base_string;
10769
10770 /* Start and end of displacement string expression (if found). */
10771 char *displacement_string_start;
10772 char *displacement_string_end;
10773 char *vop_start;
10774
10775 do_memory_reference:
10776 if (i.mem_operands == 1 && !maybe_adjust_templates ())
10777 return 0;
10778 if ((i.mem_operands == 1
10779 && !current_templates->start->opcode_modifier.isstring)
10780 || i.mem_operands == 2)
10781 {
10782 as_bad (_("too many memory references for `%s'"),
10783 current_templates->start->name);
10784 return 0;
10785 }
10786
10787 /* Check for base index form. We detect the base index form by
10788 looking for an ')' at the end of the operand, searching
10789 for the '(' matching it, and finding a REGISTER_PREFIX or ','
10790 after the '('. */
10791 base_string = op_string + strlen (op_string);
10792
10793 /* Handle vector operations. */
10794 vop_start = strchr (op_string, '{');
10795 if (vop_start && vop_start < base_string)
10796 {
10797 if (check_VecOperations (vop_start, base_string) == NULL)
10798 return 0;
10799 base_string = vop_start;
10800 }
10801
10802 --base_string;
10803 if (is_space_char (*base_string))
10804 --base_string;
10805
10806 /* If we only have a displacement, set-up for it to be parsed later. */
10807 displacement_string_start = op_string;
10808 displacement_string_end = base_string + 1;
10809
10810 if (*base_string == ')')
10811 {
10812 char *temp_string;
10813 unsigned int parens_balanced = 1;
10814 /* We've already checked that the number of left & right ()'s are
10815 equal, so this loop will not be infinite. */
10816 do
10817 {
10818 base_string--;
10819 if (*base_string == ')')
10820 parens_balanced++;
10821 if (*base_string == '(')
10822 parens_balanced--;
10823 }
10824 while (parens_balanced);
10825
10826 temp_string = base_string;
10827
10828 /* Skip past '(' and whitespace. */
10829 ++base_string;
10830 if (is_space_char (*base_string))
10831 ++base_string;
10832
10833 if (*base_string == ','
10834 || ((i.base_reg = parse_register (base_string, &end_op))
10835 != NULL))
10836 {
10837 displacement_string_end = temp_string;
10838
10839 i.types[this_operand].bitfield.baseindex = 1;
10840
10841 if (i.base_reg)
10842 {
10843 base_string = end_op;
10844 if (is_space_char (*base_string))
10845 ++base_string;
10846 }
10847
10848 /* There may be an index reg or scale factor here. */
10849 if (*base_string == ',')
10850 {
10851 ++base_string;
10852 if (is_space_char (*base_string))
10853 ++base_string;
10854
10855 if ((i.index_reg = parse_register (base_string, &end_op))
10856 != NULL)
10857 {
10858 base_string = end_op;
10859 if (is_space_char (*base_string))
10860 ++base_string;
10861 if (*base_string == ',')
10862 {
10863 ++base_string;
10864 if (is_space_char (*base_string))
10865 ++base_string;
10866 }
10867 else if (*base_string != ')')
10868 {
10869 as_bad (_("expecting `,' or `)' "
10870 "after index register in `%s'"),
10871 operand_string);
10872 return 0;
10873 }
10874 }
10875 else if (*base_string == REGISTER_PREFIX)
10876 {
10877 end_op = strchr (base_string, ',');
10878 if (end_op)
10879 *end_op = '\0';
10880 as_bad (_("bad register name `%s'"), base_string);
10881 return 0;
10882 }
10883
10884 /* Check for scale factor. */
10885 if (*base_string != ')')
10886 {
10887 char *end_scale = i386_scale (base_string);
10888
10889 if (!end_scale)
10890 return 0;
10891
10892 base_string = end_scale;
10893 if (is_space_char (*base_string))
10894 ++base_string;
10895 if (*base_string != ')')
10896 {
10897 as_bad (_("expecting `)' "
10898 "after scale factor in `%s'"),
10899 operand_string);
10900 return 0;
10901 }
10902 }
10903 else if (!i.index_reg)
10904 {
10905 as_bad (_("expecting index register or scale factor "
10906 "after `,'; got '%c'"),
10907 *base_string);
10908 return 0;
10909 }
10910 }
10911 else if (*base_string != ')')
10912 {
10913 as_bad (_("expecting `,' or `)' "
10914 "after base register in `%s'"),
10915 operand_string);
10916 return 0;
10917 }
10918 }
10919 else if (*base_string == REGISTER_PREFIX)
10920 {
10921 end_op = strchr (base_string, ',');
10922 if (end_op)
10923 *end_op = '\0';
10924 as_bad (_("bad register name `%s'"), base_string);
10925 return 0;
10926 }
10927 }
10928
10929 /* If there's an expression beginning the operand, parse it,
10930 assuming displacement_string_start and
10931 displacement_string_end are meaningful. */
10932 if (displacement_string_start != displacement_string_end)
10933 {
10934 if (!i386_displacement (displacement_string_start,
10935 displacement_string_end))
10936 return 0;
10937 }
10938
10939 /* Special case for (%dx) while doing input/output op. */
10940 if (i.base_reg
10941 && i.base_reg->reg_type.bitfield.instance == RegD
10942 && i.base_reg->reg_type.bitfield.word
10943 && i.index_reg == 0
10944 && i.log2_scale_factor == 0
10945 && i.seg[i.mem_operands] == 0
10946 && !operand_type_check (i.types[this_operand], disp))
10947 {
10948 i.types[this_operand] = i.base_reg->reg_type;
10949 return 1;
10950 }
10951
10952 if (i386_index_check (operand_string) == 0)
10953 return 0;
10954 i.flags[this_operand] |= Operand_Mem;
10955 if (i.mem_operands == 0)
10956 i.memop1_string = xstrdup (operand_string);
10957 i.mem_operands++;
10958 }
10959 else
10960 {
10961 /* It's not a memory operand; argh! */
10962 as_bad (_("invalid char %s beginning operand %d `%s'"),
10963 output_invalid (*op_string),
10964 this_operand + 1,
10965 op_string);
10966 return 0;
10967 }
10968 return 1; /* Normal return. */
10969 }
10970 \f
10971 /* Calculate the maximum variable size (i.e., excluding fr_fix)
10972 that an rs_machine_dependent frag may reach. */
10973
10974 unsigned int
10975 i386_frag_max_var (fragS *frag)
10976 {
10977 /* The only relaxable frags are for jumps.
10978 Unconditional jumps can grow by 4 bytes and others by 5 bytes. */
10979 gas_assert (frag->fr_type == rs_machine_dependent);
10980 return TYPE_FROM_RELAX_STATE (frag->fr_subtype) == UNCOND_JUMP ? 4 : 5;
10981 }
10982
10983 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10984 static int
10985 elf_symbol_resolved_in_segment_p (symbolS *fr_symbol, offsetT fr_var)
10986 {
10987 /* STT_GNU_IFUNC symbol must go through PLT. */
10988 if ((symbol_get_bfdsym (fr_symbol)->flags
10989 & BSF_GNU_INDIRECT_FUNCTION) != 0)
10990 return 0;
10991
10992 if (!S_IS_EXTERNAL (fr_symbol))
10993 /* Symbol may be weak or local. */
10994 return !S_IS_WEAK (fr_symbol);
10995
10996 /* Global symbols with non-default visibility can't be preempted. */
10997 if (ELF_ST_VISIBILITY (S_GET_OTHER (fr_symbol)) != STV_DEFAULT)
10998 return 1;
10999
11000 if (fr_var != NO_RELOC)
11001 switch ((enum bfd_reloc_code_real) fr_var)
11002 {
11003 case BFD_RELOC_386_PLT32:
11004 case BFD_RELOC_X86_64_PLT32:
11005 /* Symbol with PLT relocation may be preempted. */
11006 return 0;
11007 default:
11008 abort ();
11009 }
11010
11011 /* Global symbols with default visibility in a shared library may be
11012 preempted by another definition. */
11013 return !shared;
11014 }
11015 #endif
11016
11017 /* Table 3-2. Macro-Fusible Instructions in Haswell Microarchitecture
11018 Note also work for Skylake and Cascadelake.
11019 ---------------------------------------------------------------------
11020 | JCC | ADD/SUB/CMP | INC/DEC | TEST/AND |
11021 | ------ | ----------- | ------- | -------- |
11022 | Jo | N | N | Y |
11023 | Jno | N | N | Y |
11024 | Jc/Jb | Y | N | Y |
11025 | Jae/Jnb | Y | N | Y |
11026 | Je/Jz | Y | Y | Y |
11027 | Jne/Jnz | Y | Y | Y |
11028 | Jna/Jbe | Y | N | Y |
11029 | Ja/Jnbe | Y | N | Y |
11030 | Js | N | N | Y |
11031 | Jns | N | N | Y |
11032 | Jp/Jpe | N | N | Y |
11033 | Jnp/Jpo | N | N | Y |
11034 | Jl/Jnge | Y | Y | Y |
11035 | Jge/Jnl | Y | Y | Y |
11036 | Jle/Jng | Y | Y | Y |
11037 | Jg/Jnle | Y | Y | Y |
11038 --------------------------------------------------------------------- */
11039 static int
11040 i386_macro_fusible_p (enum mf_cmp_kind mf_cmp, enum mf_jcc_kind mf_jcc)
11041 {
11042 if (mf_cmp == mf_cmp_alu_cmp)
11043 return ((mf_jcc >= mf_jcc_jc && mf_jcc <= mf_jcc_jna)
11044 || mf_jcc == mf_jcc_jl || mf_jcc == mf_jcc_jle);
11045 if (mf_cmp == mf_cmp_incdec)
11046 return (mf_jcc == mf_jcc_je || mf_jcc == mf_jcc_jl
11047 || mf_jcc == mf_jcc_jle);
11048 if (mf_cmp == mf_cmp_test_and)
11049 return 1;
11050 return 0;
11051 }
11052
11053 /* Return the next non-empty frag. */
11054
11055 static fragS *
11056 i386_next_non_empty_frag (fragS *fragP)
11057 {
11058 /* There may be a frag with a ".fill 0" when there is no room in
11059 the current frag for frag_grow in output_insn. */
11060 for (fragP = fragP->fr_next;
11061 (fragP != NULL
11062 && fragP->fr_type == rs_fill
11063 && fragP->fr_fix == 0);
11064 fragP = fragP->fr_next)
11065 ;
11066 return fragP;
11067 }
11068
11069 /* Return the next jcc frag after BRANCH_PADDING. */
11070
11071 static fragS *
11072 i386_next_fusible_jcc_frag (fragS *maybe_cmp_fragP, fragS *pad_fragP)
11073 {
11074 fragS *branch_fragP;
11075 if (!pad_fragP)
11076 return NULL;
11077
11078 if (pad_fragP->fr_type == rs_machine_dependent
11079 && (TYPE_FROM_RELAX_STATE (pad_fragP->fr_subtype)
11080 == BRANCH_PADDING))
11081 {
11082 branch_fragP = i386_next_non_empty_frag (pad_fragP);
11083 if (branch_fragP->fr_type != rs_machine_dependent)
11084 return NULL;
11085 if (TYPE_FROM_RELAX_STATE (branch_fragP->fr_subtype) == COND_JUMP
11086 && i386_macro_fusible_p (maybe_cmp_fragP->tc_frag_data.mf_type,
11087 pad_fragP->tc_frag_data.mf_type))
11088 return branch_fragP;
11089 }
11090
11091 return NULL;
11092 }
11093
11094 /* Classify BRANCH_PADDING, BRANCH_PREFIX and FUSED_JCC_PADDING frags. */
11095
11096 static void
11097 i386_classify_machine_dependent_frag (fragS *fragP)
11098 {
11099 fragS *cmp_fragP;
11100 fragS *pad_fragP;
11101 fragS *branch_fragP;
11102 fragS *next_fragP;
11103 unsigned int max_prefix_length;
11104
11105 if (fragP->tc_frag_data.classified)
11106 return;
11107
11108 /* First scan for BRANCH_PADDING and FUSED_JCC_PADDING. Convert
11109 FUSED_JCC_PADDING and merge BRANCH_PADDING. */
11110 for (next_fragP = fragP;
11111 next_fragP != NULL;
11112 next_fragP = next_fragP->fr_next)
11113 {
11114 next_fragP->tc_frag_data.classified = 1;
11115 if (next_fragP->fr_type == rs_machine_dependent)
11116 switch (TYPE_FROM_RELAX_STATE (next_fragP->fr_subtype))
11117 {
11118 case BRANCH_PADDING:
11119 /* The BRANCH_PADDING frag must be followed by a branch
11120 frag. */
11121 branch_fragP = i386_next_non_empty_frag (next_fragP);
11122 next_fragP->tc_frag_data.u.branch_fragP = branch_fragP;
11123 break;
11124 case FUSED_JCC_PADDING:
11125 /* Check if this is a fused jcc:
11126 FUSED_JCC_PADDING
11127 CMP like instruction
11128 BRANCH_PADDING
11129 COND_JUMP
11130 */
11131 cmp_fragP = i386_next_non_empty_frag (next_fragP);
11132 pad_fragP = i386_next_non_empty_frag (cmp_fragP);
11133 branch_fragP = i386_next_fusible_jcc_frag (next_fragP, pad_fragP);
11134 if (branch_fragP)
11135 {
11136 /* The BRANCH_PADDING frag is merged with the
11137 FUSED_JCC_PADDING frag. */
11138 next_fragP->tc_frag_data.u.branch_fragP = branch_fragP;
11139 /* CMP like instruction size. */
11140 next_fragP->tc_frag_data.cmp_size = cmp_fragP->fr_fix;
11141 frag_wane (pad_fragP);
11142 /* Skip to branch_fragP. */
11143 next_fragP = branch_fragP;
11144 }
11145 else if (next_fragP->tc_frag_data.max_prefix_length)
11146 {
11147 /* Turn FUSED_JCC_PADDING into BRANCH_PREFIX if it isn't
11148 a fused jcc. */
11149 next_fragP->fr_subtype
11150 = ENCODE_RELAX_STATE (BRANCH_PREFIX, 0);
11151 next_fragP->tc_frag_data.max_bytes
11152 = next_fragP->tc_frag_data.max_prefix_length;
11153 /* This will be updated in the BRANCH_PREFIX scan. */
11154 next_fragP->tc_frag_data.max_prefix_length = 0;
11155 }
11156 else
11157 frag_wane (next_fragP);
11158 break;
11159 }
11160 }
11161
11162 /* Stop if there is no BRANCH_PREFIX. */
11163 if (!align_branch_prefix_size)
11164 return;
11165
11166 /* Scan for BRANCH_PREFIX. */
11167 for (; fragP != NULL; fragP = fragP->fr_next)
11168 {
11169 if (fragP->fr_type != rs_machine_dependent
11170 || (TYPE_FROM_RELAX_STATE (fragP->fr_subtype)
11171 != BRANCH_PREFIX))
11172 continue;
11173
11174 /* Count all BRANCH_PREFIX frags before BRANCH_PADDING and
11175 COND_JUMP_PREFIX. */
11176 max_prefix_length = 0;
11177 for (next_fragP = fragP;
11178 next_fragP != NULL;
11179 next_fragP = next_fragP->fr_next)
11180 {
11181 if (next_fragP->fr_type == rs_fill)
11182 /* Skip rs_fill frags. */
11183 continue;
11184 else if (next_fragP->fr_type != rs_machine_dependent)
11185 /* Stop for all other frags. */
11186 break;
11187
11188 /* rs_machine_dependent frags. */
11189 if (TYPE_FROM_RELAX_STATE (next_fragP->fr_subtype)
11190 == BRANCH_PREFIX)
11191 {
11192 /* Count BRANCH_PREFIX frags. */
11193 if (max_prefix_length >= MAX_FUSED_JCC_PADDING_SIZE)
11194 {
11195 max_prefix_length = MAX_FUSED_JCC_PADDING_SIZE;
11196 frag_wane (next_fragP);
11197 }
11198 else
11199 max_prefix_length
11200 += next_fragP->tc_frag_data.max_bytes;
11201 }
11202 else if ((TYPE_FROM_RELAX_STATE (next_fragP->fr_subtype)
11203 == BRANCH_PADDING)
11204 || (TYPE_FROM_RELAX_STATE (next_fragP->fr_subtype)
11205 == FUSED_JCC_PADDING))
11206 {
11207 /* Stop at BRANCH_PADDING and FUSED_JCC_PADDING. */
11208 fragP->tc_frag_data.u.padding_fragP = next_fragP;
11209 break;
11210 }
11211 else
11212 /* Stop for other rs_machine_dependent frags. */
11213 break;
11214 }
11215
11216 fragP->tc_frag_data.max_prefix_length = max_prefix_length;
11217
11218 /* Skip to the next frag. */
11219 fragP = next_fragP;
11220 }
11221 }
11222
11223 /* Compute padding size for
11224
11225 FUSED_JCC_PADDING
11226 CMP like instruction
11227 BRANCH_PADDING
11228 COND_JUMP/UNCOND_JUMP
11229
11230 or
11231
11232 BRANCH_PADDING
11233 COND_JUMP/UNCOND_JUMP
11234 */
11235
11236 static int
11237 i386_branch_padding_size (fragS *fragP, offsetT address)
11238 {
11239 unsigned int offset, size, padding_size;
11240 fragS *branch_fragP = fragP->tc_frag_data.u.branch_fragP;
11241
11242 /* The start address of the BRANCH_PADDING or FUSED_JCC_PADDING frag. */
11243 if (!address)
11244 address = fragP->fr_address;
11245 address += fragP->fr_fix;
11246
11247 /* CMP like instrunction size. */
11248 size = fragP->tc_frag_data.cmp_size;
11249
11250 /* The base size of the branch frag. */
11251 size += branch_fragP->fr_fix;
11252
11253 /* Add opcode and displacement bytes for the rs_machine_dependent
11254 branch frag. */
11255 if (branch_fragP->fr_type == rs_machine_dependent)
11256 size += md_relax_table[branch_fragP->fr_subtype].rlx_length;
11257
11258 /* Check if branch is within boundary and doesn't end at the last
11259 byte. */
11260 offset = address & ((1U << align_branch_power) - 1);
11261 if ((offset + size) >= (1U << align_branch_power))
11262 /* Padding needed to avoid crossing boundary. */
11263 padding_size = (1U << align_branch_power) - offset;
11264 else
11265 /* No padding needed. */
11266 padding_size = 0;
11267
11268 /* The return value may be saved in tc_frag_data.length which is
11269 unsigned byte. */
11270 if (!fits_in_unsigned_byte (padding_size))
11271 abort ();
11272
11273 return padding_size;
11274 }
11275
11276 /* i386_generic_table_relax_frag()
11277
11278 Handle BRANCH_PADDING, BRANCH_PREFIX and FUSED_JCC_PADDING frags to
11279 grow/shrink padding to align branch frags. Hand others to
11280 relax_frag(). */
11281
11282 long
11283 i386_generic_table_relax_frag (segT segment, fragS *fragP, long stretch)
11284 {
11285 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PADDING
11286 || TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == FUSED_JCC_PADDING)
11287 {
11288 long padding_size = i386_branch_padding_size (fragP, 0);
11289 long grow = padding_size - fragP->tc_frag_data.length;
11290
11291 /* When the BRANCH_PREFIX frag is used, the computed address
11292 must match the actual address and there should be no padding. */
11293 if (fragP->tc_frag_data.padding_address
11294 && (fragP->tc_frag_data.padding_address != fragP->fr_address
11295 || padding_size))
11296 abort ();
11297
11298 /* Update the padding size. */
11299 if (grow)
11300 fragP->tc_frag_data.length = padding_size;
11301
11302 return grow;
11303 }
11304 else if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PREFIX)
11305 {
11306 fragS *padding_fragP, *next_fragP;
11307 long padding_size, left_size, last_size;
11308
11309 padding_fragP = fragP->tc_frag_data.u.padding_fragP;
11310 if (!padding_fragP)
11311 /* Use the padding set by the leading BRANCH_PREFIX frag. */
11312 return (fragP->tc_frag_data.length
11313 - fragP->tc_frag_data.last_length);
11314
11315 /* Compute the relative address of the padding frag in the very
11316 first time where the BRANCH_PREFIX frag sizes are zero. */
11317 if (!fragP->tc_frag_data.padding_address)
11318 fragP->tc_frag_data.padding_address
11319 = padding_fragP->fr_address - (fragP->fr_address - stretch);
11320
11321 /* First update the last length from the previous interation. */
11322 left_size = fragP->tc_frag_data.prefix_length;
11323 for (next_fragP = fragP;
11324 next_fragP != padding_fragP;
11325 next_fragP = next_fragP->fr_next)
11326 if (next_fragP->fr_type == rs_machine_dependent
11327 && (TYPE_FROM_RELAX_STATE (next_fragP->fr_subtype)
11328 == BRANCH_PREFIX))
11329 {
11330 if (left_size)
11331 {
11332 int max = next_fragP->tc_frag_data.max_bytes;
11333 if (max)
11334 {
11335 int size;
11336 if (max > left_size)
11337 size = left_size;
11338 else
11339 size = max;
11340 left_size -= size;
11341 next_fragP->tc_frag_data.last_length = size;
11342 }
11343 }
11344 else
11345 next_fragP->tc_frag_data.last_length = 0;
11346 }
11347
11348 /* Check the padding size for the padding frag. */
11349 padding_size = i386_branch_padding_size
11350 (padding_fragP, (fragP->fr_address
11351 + fragP->tc_frag_data.padding_address));
11352
11353 last_size = fragP->tc_frag_data.prefix_length;
11354 /* Check if there is change from the last interation. */
11355 if (padding_size == last_size)
11356 {
11357 /* Update the expected address of the padding frag. */
11358 padding_fragP->tc_frag_data.padding_address
11359 = (fragP->fr_address + padding_size
11360 + fragP->tc_frag_data.padding_address);
11361 return 0;
11362 }
11363
11364 if (padding_size > fragP->tc_frag_data.max_prefix_length)
11365 {
11366 /* No padding if there is no sufficient room. Clear the
11367 expected address of the padding frag. */
11368 padding_fragP->tc_frag_data.padding_address = 0;
11369 padding_size = 0;
11370 }
11371 else
11372 /* Store the expected address of the padding frag. */
11373 padding_fragP->tc_frag_data.padding_address
11374 = (fragP->fr_address + padding_size
11375 + fragP->tc_frag_data.padding_address);
11376
11377 fragP->tc_frag_data.prefix_length = padding_size;
11378
11379 /* Update the length for the current interation. */
11380 left_size = padding_size;
11381 for (next_fragP = fragP;
11382 next_fragP != padding_fragP;
11383 next_fragP = next_fragP->fr_next)
11384 if (next_fragP->fr_type == rs_machine_dependent
11385 && (TYPE_FROM_RELAX_STATE (next_fragP->fr_subtype)
11386 == BRANCH_PREFIX))
11387 {
11388 if (left_size)
11389 {
11390 int max = next_fragP->tc_frag_data.max_bytes;
11391 if (max)
11392 {
11393 int size;
11394 if (max > left_size)
11395 size = left_size;
11396 else
11397 size = max;
11398 left_size -= size;
11399 next_fragP->tc_frag_data.length = size;
11400 }
11401 }
11402 else
11403 next_fragP->tc_frag_data.length = 0;
11404 }
11405
11406 return (fragP->tc_frag_data.length
11407 - fragP->tc_frag_data.last_length);
11408 }
11409 return relax_frag (segment, fragP, stretch);
11410 }
11411
11412 /* md_estimate_size_before_relax()
11413
11414 Called just before relax() for rs_machine_dependent frags. The x86
11415 assembler uses these frags to handle variable size jump
11416 instructions.
11417
11418 Any symbol that is now undefined will not become defined.
11419 Return the correct fr_subtype in the frag.
11420 Return the initial "guess for variable size of frag" to caller.
11421 The guess is actually the growth beyond the fixed part. Whatever
11422 we do to grow the fixed or variable part contributes to our
11423 returned value. */
11424
11425 int
11426 md_estimate_size_before_relax (fragS *fragP, segT segment)
11427 {
11428 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PADDING
11429 || TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PREFIX
11430 || TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == FUSED_JCC_PADDING)
11431 {
11432 i386_classify_machine_dependent_frag (fragP);
11433 return fragP->tc_frag_data.length;
11434 }
11435
11436 /* We've already got fragP->fr_subtype right; all we have to do is
11437 check for un-relaxable symbols. On an ELF system, we can't relax
11438 an externally visible symbol, because it may be overridden by a
11439 shared library. */
11440 if (S_GET_SEGMENT (fragP->fr_symbol) != segment
11441 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11442 || (IS_ELF
11443 && !elf_symbol_resolved_in_segment_p (fragP->fr_symbol,
11444 fragP->fr_var))
11445 #endif
11446 #if defined (OBJ_COFF) && defined (TE_PE)
11447 || (OUTPUT_FLAVOR == bfd_target_coff_flavour
11448 && S_IS_WEAK (fragP->fr_symbol))
11449 #endif
11450 )
11451 {
11452 /* Symbol is undefined in this segment, or we need to keep a
11453 reloc so that weak symbols can be overridden. */
11454 int size = (fragP->fr_subtype & CODE16) ? 2 : 4;
11455 enum bfd_reloc_code_real reloc_type;
11456 unsigned char *opcode;
11457 int old_fr_fix;
11458
11459 if (fragP->fr_var != NO_RELOC)
11460 reloc_type = (enum bfd_reloc_code_real) fragP->fr_var;
11461 else if (size == 2)
11462 reloc_type = BFD_RELOC_16_PCREL;
11463 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11464 else if (need_plt32_p (fragP->fr_symbol))
11465 reloc_type = BFD_RELOC_X86_64_PLT32;
11466 #endif
11467 else
11468 reloc_type = BFD_RELOC_32_PCREL;
11469
11470 old_fr_fix = fragP->fr_fix;
11471 opcode = (unsigned char *) fragP->fr_opcode;
11472
11473 switch (TYPE_FROM_RELAX_STATE (fragP->fr_subtype))
11474 {
11475 case UNCOND_JUMP:
11476 /* Make jmp (0xeb) a (d)word displacement jump. */
11477 opcode[0] = 0xe9;
11478 fragP->fr_fix += size;
11479 fix_new (fragP, old_fr_fix, size,
11480 fragP->fr_symbol,
11481 fragP->fr_offset, 1,
11482 reloc_type);
11483 break;
11484
11485 case COND_JUMP86:
11486 if (size == 2
11487 && (!no_cond_jump_promotion || fragP->fr_var != NO_RELOC))
11488 {
11489 /* Negate the condition, and branch past an
11490 unconditional jump. */
11491 opcode[0] ^= 1;
11492 opcode[1] = 3;
11493 /* Insert an unconditional jump. */
11494 opcode[2] = 0xe9;
11495 /* We added two extra opcode bytes, and have a two byte
11496 offset. */
11497 fragP->fr_fix += 2 + 2;
11498 fix_new (fragP, old_fr_fix + 2, 2,
11499 fragP->fr_symbol,
11500 fragP->fr_offset, 1,
11501 reloc_type);
11502 break;
11503 }
11504 /* Fall through. */
11505
11506 case COND_JUMP:
11507 if (no_cond_jump_promotion && fragP->fr_var == NO_RELOC)
11508 {
11509 fixS *fixP;
11510
11511 fragP->fr_fix += 1;
11512 fixP = fix_new (fragP, old_fr_fix, 1,
11513 fragP->fr_symbol,
11514 fragP->fr_offset, 1,
11515 BFD_RELOC_8_PCREL);
11516 fixP->fx_signed = 1;
11517 break;
11518 }
11519
11520 /* This changes the byte-displacement jump 0x7N
11521 to the (d)word-displacement jump 0x0f,0x8N. */
11522 opcode[1] = opcode[0] + 0x10;
11523 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
11524 /* We've added an opcode byte. */
11525 fragP->fr_fix += 1 + size;
11526 fix_new (fragP, old_fr_fix + 1, size,
11527 fragP->fr_symbol,
11528 fragP->fr_offset, 1,
11529 reloc_type);
11530 break;
11531
11532 default:
11533 BAD_CASE (fragP->fr_subtype);
11534 break;
11535 }
11536 frag_wane (fragP);
11537 return fragP->fr_fix - old_fr_fix;
11538 }
11539
11540 /* Guess size depending on current relax state. Initially the relax
11541 state will correspond to a short jump and we return 1, because
11542 the variable part of the frag (the branch offset) is one byte
11543 long. However, we can relax a section more than once and in that
11544 case we must either set fr_subtype back to the unrelaxed state,
11545 or return the value for the appropriate branch. */
11546 return md_relax_table[fragP->fr_subtype].rlx_length;
11547 }
11548
11549 /* Called after relax() is finished.
11550
11551 In: Address of frag.
11552 fr_type == rs_machine_dependent.
11553 fr_subtype is what the address relaxed to.
11554
11555 Out: Any fixSs and constants are set up.
11556 Caller will turn frag into a ".space 0". */
11557
11558 void
11559 md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT sec ATTRIBUTE_UNUSED,
11560 fragS *fragP)
11561 {
11562 unsigned char *opcode;
11563 unsigned char *where_to_put_displacement = NULL;
11564 offsetT target_address;
11565 offsetT opcode_address;
11566 unsigned int extension = 0;
11567 offsetT displacement_from_opcode_start;
11568
11569 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PADDING
11570 || TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == FUSED_JCC_PADDING
11571 || TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PREFIX)
11572 {
11573 /* Generate nop padding. */
11574 unsigned int size = fragP->tc_frag_data.length;
11575 if (size)
11576 {
11577 if (size > fragP->tc_frag_data.max_bytes)
11578 abort ();
11579
11580 if (flag_debug)
11581 {
11582 const char *msg;
11583 const char *branch = "branch";
11584 const char *prefix = "";
11585 fragS *padding_fragP;
11586 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype)
11587 == BRANCH_PREFIX)
11588 {
11589 padding_fragP = fragP->tc_frag_data.u.padding_fragP;
11590 switch (fragP->tc_frag_data.default_prefix)
11591 {
11592 default:
11593 abort ();
11594 break;
11595 case CS_PREFIX_OPCODE:
11596 prefix = " cs";
11597 break;
11598 case DS_PREFIX_OPCODE:
11599 prefix = " ds";
11600 break;
11601 case ES_PREFIX_OPCODE:
11602 prefix = " es";
11603 break;
11604 case FS_PREFIX_OPCODE:
11605 prefix = " fs";
11606 break;
11607 case GS_PREFIX_OPCODE:
11608 prefix = " gs";
11609 break;
11610 case SS_PREFIX_OPCODE:
11611 prefix = " ss";
11612 break;
11613 }
11614 if (padding_fragP)
11615 msg = _("%s:%u: add %d%s at 0x%llx to align "
11616 "%s within %d-byte boundary\n");
11617 else
11618 msg = _("%s:%u: add additional %d%s at 0x%llx to "
11619 "align %s within %d-byte boundary\n");
11620 }
11621 else
11622 {
11623 padding_fragP = fragP;
11624 msg = _("%s:%u: add %d%s-byte nop at 0x%llx to align "
11625 "%s within %d-byte boundary\n");
11626 }
11627
11628 if (padding_fragP)
11629 switch (padding_fragP->tc_frag_data.branch_type)
11630 {
11631 case align_branch_jcc:
11632 branch = "jcc";
11633 break;
11634 case align_branch_fused:
11635 branch = "fused jcc";
11636 break;
11637 case align_branch_jmp:
11638 branch = "jmp";
11639 break;
11640 case align_branch_call:
11641 branch = "call";
11642 break;
11643 case align_branch_indirect:
11644 branch = "indiret branch";
11645 break;
11646 case align_branch_ret:
11647 branch = "ret";
11648 break;
11649 default:
11650 break;
11651 }
11652
11653 fprintf (stdout, msg,
11654 fragP->fr_file, fragP->fr_line, size, prefix,
11655 (long long) fragP->fr_address, branch,
11656 1 << align_branch_power);
11657 }
11658 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PREFIX)
11659 memset (fragP->fr_opcode,
11660 fragP->tc_frag_data.default_prefix, size);
11661 else
11662 i386_generate_nops (fragP, (char *) fragP->fr_opcode,
11663 size, 0);
11664 fragP->fr_fix += size;
11665 }
11666 return;
11667 }
11668
11669 opcode = (unsigned char *) fragP->fr_opcode;
11670
11671 /* Address we want to reach in file space. */
11672 target_address = S_GET_VALUE (fragP->fr_symbol) + fragP->fr_offset;
11673
11674 /* Address opcode resides at in file space. */
11675 opcode_address = fragP->fr_address + fragP->fr_fix;
11676
11677 /* Displacement from opcode start to fill into instruction. */
11678 displacement_from_opcode_start = target_address - opcode_address;
11679
11680 if ((fragP->fr_subtype & BIG) == 0)
11681 {
11682 /* Don't have to change opcode. */
11683 extension = 1; /* 1 opcode + 1 displacement */
11684 where_to_put_displacement = &opcode[1];
11685 }
11686 else
11687 {
11688 if (no_cond_jump_promotion
11689 && TYPE_FROM_RELAX_STATE (fragP->fr_subtype) != UNCOND_JUMP)
11690 as_warn_where (fragP->fr_file, fragP->fr_line,
11691 _("long jump required"));
11692
11693 switch (fragP->fr_subtype)
11694 {
11695 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG):
11696 extension = 4; /* 1 opcode + 4 displacement */
11697 opcode[0] = 0xe9;
11698 where_to_put_displacement = &opcode[1];
11699 break;
11700
11701 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16):
11702 extension = 2; /* 1 opcode + 2 displacement */
11703 opcode[0] = 0xe9;
11704 where_to_put_displacement = &opcode[1];
11705 break;
11706
11707 case ENCODE_RELAX_STATE (COND_JUMP, BIG):
11708 case ENCODE_RELAX_STATE (COND_JUMP86, BIG):
11709 extension = 5; /* 2 opcode + 4 displacement */
11710 opcode[1] = opcode[0] + 0x10;
11711 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
11712 where_to_put_displacement = &opcode[2];
11713 break;
11714
11715 case ENCODE_RELAX_STATE (COND_JUMP, BIG16):
11716 extension = 3; /* 2 opcode + 2 displacement */
11717 opcode[1] = opcode[0] + 0x10;
11718 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
11719 where_to_put_displacement = &opcode[2];
11720 break;
11721
11722 case ENCODE_RELAX_STATE (COND_JUMP86, BIG16):
11723 extension = 4;
11724 opcode[0] ^= 1;
11725 opcode[1] = 3;
11726 opcode[2] = 0xe9;
11727 where_to_put_displacement = &opcode[3];
11728 break;
11729
11730 default:
11731 BAD_CASE (fragP->fr_subtype);
11732 break;
11733 }
11734 }
11735
11736 /* If size if less then four we are sure that the operand fits,
11737 but if it's 4, then it could be that the displacement is larger
11738 then -/+ 2GB. */
11739 if (DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype) == 4
11740 && object_64bit
11741 && ((addressT) (displacement_from_opcode_start - extension
11742 + ((addressT) 1 << 31))
11743 > (((addressT) 2 << 31) - 1)))
11744 {
11745 as_bad_where (fragP->fr_file, fragP->fr_line,
11746 _("jump target out of range"));
11747 /* Make us emit 0. */
11748 displacement_from_opcode_start = extension;
11749 }
11750 /* Now put displacement after opcode. */
11751 md_number_to_chars ((char *) where_to_put_displacement,
11752 (valueT) (displacement_from_opcode_start - extension),
11753 DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype));
11754 fragP->fr_fix += extension;
11755 }
11756 \f
11757 /* Apply a fixup (fixP) to segment data, once it has been determined
11758 by our caller that we have all the info we need to fix it up.
11759
11760 Parameter valP is the pointer to the value of the bits.
11761
11762 On the 386, immediates, displacements, and data pointers are all in
11763 the same (little-endian) format, so we don't need to care about which
11764 we are handling. */
11765
11766 void
11767 md_apply_fix (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED)
11768 {
11769 char *p = fixP->fx_where + fixP->fx_frag->fr_literal;
11770 valueT value = *valP;
11771
11772 #if !defined (TE_Mach)
11773 if (fixP->fx_pcrel)
11774 {
11775 switch (fixP->fx_r_type)
11776 {
11777 default:
11778 break;
11779
11780 case BFD_RELOC_64:
11781 fixP->fx_r_type = BFD_RELOC_64_PCREL;
11782 break;
11783 case BFD_RELOC_32:
11784 case BFD_RELOC_X86_64_32S:
11785 fixP->fx_r_type = BFD_RELOC_32_PCREL;
11786 break;
11787 case BFD_RELOC_16:
11788 fixP->fx_r_type = BFD_RELOC_16_PCREL;
11789 break;
11790 case BFD_RELOC_8:
11791 fixP->fx_r_type = BFD_RELOC_8_PCREL;
11792 break;
11793 }
11794 }
11795
11796 if (fixP->fx_addsy != NULL
11797 && (fixP->fx_r_type == BFD_RELOC_32_PCREL
11798 || fixP->fx_r_type == BFD_RELOC_64_PCREL
11799 || fixP->fx_r_type == BFD_RELOC_16_PCREL
11800 || fixP->fx_r_type == BFD_RELOC_8_PCREL)
11801 && !use_rela_relocations)
11802 {
11803 /* This is a hack. There should be a better way to handle this.
11804 This covers for the fact that bfd_install_relocation will
11805 subtract the current location (for partial_inplace, PC relative
11806 relocations); see more below. */
11807 #ifndef OBJ_AOUT
11808 if (IS_ELF
11809 #ifdef TE_PE
11810 || OUTPUT_FLAVOR == bfd_target_coff_flavour
11811 #endif
11812 )
11813 value += fixP->fx_where + fixP->fx_frag->fr_address;
11814 #endif
11815 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11816 if (IS_ELF)
11817 {
11818 segT sym_seg = S_GET_SEGMENT (fixP->fx_addsy);
11819
11820 if ((sym_seg == seg
11821 || (symbol_section_p (fixP->fx_addsy)
11822 && sym_seg != absolute_section))
11823 && !generic_force_reloc (fixP))
11824 {
11825 /* Yes, we add the values in twice. This is because
11826 bfd_install_relocation subtracts them out again. I think
11827 bfd_install_relocation is broken, but I don't dare change
11828 it. FIXME. */
11829 value += fixP->fx_where + fixP->fx_frag->fr_address;
11830 }
11831 }
11832 #endif
11833 #if defined (OBJ_COFF) && defined (TE_PE)
11834 /* For some reason, the PE format does not store a
11835 section address offset for a PC relative symbol. */
11836 if (S_GET_SEGMENT (fixP->fx_addsy) != seg
11837 || S_IS_WEAK (fixP->fx_addsy))
11838 value += md_pcrel_from (fixP);
11839 #endif
11840 }
11841 #if defined (OBJ_COFF) && defined (TE_PE)
11842 if (fixP->fx_addsy != NULL
11843 && S_IS_WEAK (fixP->fx_addsy)
11844 /* PR 16858: Do not modify weak function references. */
11845 && ! fixP->fx_pcrel)
11846 {
11847 #if !defined (TE_PEP)
11848 /* For x86 PE weak function symbols are neither PC-relative
11849 nor do they set S_IS_FUNCTION. So the only reliable way
11850 to detect them is to check the flags of their containing
11851 section. */
11852 if (S_GET_SEGMENT (fixP->fx_addsy) != NULL
11853 && S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_CODE)
11854 ;
11855 else
11856 #endif
11857 value -= S_GET_VALUE (fixP->fx_addsy);
11858 }
11859 #endif
11860
11861 /* Fix a few things - the dynamic linker expects certain values here,
11862 and we must not disappoint it. */
11863 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11864 if (IS_ELF && fixP->fx_addsy)
11865 switch (fixP->fx_r_type)
11866 {
11867 case BFD_RELOC_386_PLT32:
11868 case BFD_RELOC_X86_64_PLT32:
11869 /* Make the jump instruction point to the address of the operand.
11870 At runtime we merely add the offset to the actual PLT entry.
11871 NB: Subtract the offset size only for jump instructions. */
11872 if (fixP->fx_pcrel)
11873 value = -4;
11874 break;
11875
11876 case BFD_RELOC_386_TLS_GD:
11877 case BFD_RELOC_386_TLS_LDM:
11878 case BFD_RELOC_386_TLS_IE_32:
11879 case BFD_RELOC_386_TLS_IE:
11880 case BFD_RELOC_386_TLS_GOTIE:
11881 case BFD_RELOC_386_TLS_GOTDESC:
11882 case BFD_RELOC_X86_64_TLSGD:
11883 case BFD_RELOC_X86_64_TLSLD:
11884 case BFD_RELOC_X86_64_GOTTPOFF:
11885 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
11886 value = 0; /* Fully resolved at runtime. No addend. */
11887 /* Fallthrough */
11888 case BFD_RELOC_386_TLS_LE:
11889 case BFD_RELOC_386_TLS_LDO_32:
11890 case BFD_RELOC_386_TLS_LE_32:
11891 case BFD_RELOC_X86_64_DTPOFF32:
11892 case BFD_RELOC_X86_64_DTPOFF64:
11893 case BFD_RELOC_X86_64_TPOFF32:
11894 case BFD_RELOC_X86_64_TPOFF64:
11895 S_SET_THREAD_LOCAL (fixP->fx_addsy);
11896 break;
11897
11898 case BFD_RELOC_386_TLS_DESC_CALL:
11899 case BFD_RELOC_X86_64_TLSDESC_CALL:
11900 value = 0; /* Fully resolved at runtime. No addend. */
11901 S_SET_THREAD_LOCAL (fixP->fx_addsy);
11902 fixP->fx_done = 0;
11903 return;
11904
11905 case BFD_RELOC_VTABLE_INHERIT:
11906 case BFD_RELOC_VTABLE_ENTRY:
11907 fixP->fx_done = 0;
11908 return;
11909
11910 default:
11911 break;
11912 }
11913 #endif /* defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) */
11914 *valP = value;
11915 #endif /* !defined (TE_Mach) */
11916
11917 /* Are we finished with this relocation now? */
11918 if (fixP->fx_addsy == NULL)
11919 fixP->fx_done = 1;
11920 #if defined (OBJ_COFF) && defined (TE_PE)
11921 else if (fixP->fx_addsy != NULL && S_IS_WEAK (fixP->fx_addsy))
11922 {
11923 fixP->fx_done = 0;
11924 /* Remember value for tc_gen_reloc. */
11925 fixP->fx_addnumber = value;
11926 /* Clear out the frag for now. */
11927 value = 0;
11928 }
11929 #endif
11930 else if (use_rela_relocations)
11931 {
11932 fixP->fx_no_overflow = 1;
11933 /* Remember value for tc_gen_reloc. */
11934 fixP->fx_addnumber = value;
11935 value = 0;
11936 }
11937
11938 md_number_to_chars (p, value, fixP->fx_size);
11939 }
11940 \f
11941 const char *
11942 md_atof (int type, char *litP, int *sizeP)
11943 {
11944 /* This outputs the LITTLENUMs in REVERSE order;
11945 in accord with the bigendian 386. */
11946 return ieee_md_atof (type, litP, sizeP, FALSE);
11947 }
11948 \f
11949 static char output_invalid_buf[sizeof (unsigned char) * 2 + 6];
11950
11951 static char *
11952 output_invalid (int c)
11953 {
11954 if (ISPRINT (c))
11955 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
11956 "'%c'", c);
11957 else
11958 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
11959 "(0x%x)", (unsigned char) c);
11960 return output_invalid_buf;
11961 }
11962
11963 /* REG_STRING starts *before* REGISTER_PREFIX. */
11964
11965 static const reg_entry *
11966 parse_real_register (char *reg_string, char **end_op)
11967 {
11968 char *s = reg_string;
11969 char *p;
11970 char reg_name_given[MAX_REG_NAME_SIZE + 1];
11971 const reg_entry *r;
11972
11973 /* Skip possible REGISTER_PREFIX and possible whitespace. */
11974 if (*s == REGISTER_PREFIX)
11975 ++s;
11976
11977 if (is_space_char (*s))
11978 ++s;
11979
11980 p = reg_name_given;
11981 while ((*p++ = register_chars[(unsigned char) *s]) != '\0')
11982 {
11983 if (p >= reg_name_given + MAX_REG_NAME_SIZE)
11984 return (const reg_entry *) NULL;
11985 s++;
11986 }
11987
11988 /* For naked regs, make sure that we are not dealing with an identifier.
11989 This prevents confusing an identifier like `eax_var' with register
11990 `eax'. */
11991 if (allow_naked_reg && identifier_chars[(unsigned char) *s])
11992 return (const reg_entry *) NULL;
11993
11994 *end_op = s;
11995
11996 r = (const reg_entry *) hash_find (reg_hash, reg_name_given);
11997
11998 /* Handle floating point regs, allowing spaces in the (i) part. */
11999 if (r == i386_regtab /* %st is first entry of table */)
12000 {
12001 if (!cpu_arch_flags.bitfield.cpu8087
12002 && !cpu_arch_flags.bitfield.cpu287
12003 && !cpu_arch_flags.bitfield.cpu387)
12004 return (const reg_entry *) NULL;
12005
12006 if (is_space_char (*s))
12007 ++s;
12008 if (*s == '(')
12009 {
12010 ++s;
12011 if (is_space_char (*s))
12012 ++s;
12013 if (*s >= '0' && *s <= '7')
12014 {
12015 int fpr = *s - '0';
12016 ++s;
12017 if (is_space_char (*s))
12018 ++s;
12019 if (*s == ')')
12020 {
12021 *end_op = s + 1;
12022 r = (const reg_entry *) hash_find (reg_hash, "st(0)");
12023 know (r);
12024 return r + fpr;
12025 }
12026 }
12027 /* We have "%st(" then garbage. */
12028 return (const reg_entry *) NULL;
12029 }
12030 }
12031
12032 if (r == NULL || allow_pseudo_reg)
12033 return r;
12034
12035 if (operand_type_all_zero (&r->reg_type))
12036 return (const reg_entry *) NULL;
12037
12038 if ((r->reg_type.bitfield.dword
12039 || (r->reg_type.bitfield.class == SReg && r->reg_num > 3)
12040 || r->reg_type.bitfield.class == RegCR
12041 || r->reg_type.bitfield.class == RegDR
12042 || r->reg_type.bitfield.class == RegTR)
12043 && !cpu_arch_flags.bitfield.cpui386)
12044 return (const reg_entry *) NULL;
12045
12046 if (r->reg_type.bitfield.class == RegMMX && !cpu_arch_flags.bitfield.cpummx)
12047 return (const reg_entry *) NULL;
12048
12049 if (!cpu_arch_flags.bitfield.cpuavx512f)
12050 {
12051 if (r->reg_type.bitfield.zmmword
12052 || r->reg_type.bitfield.class == RegMask)
12053 return (const reg_entry *) NULL;
12054
12055 if (!cpu_arch_flags.bitfield.cpuavx)
12056 {
12057 if (r->reg_type.bitfield.ymmword)
12058 return (const reg_entry *) NULL;
12059
12060 if (!cpu_arch_flags.bitfield.cpusse && r->reg_type.bitfield.xmmword)
12061 return (const reg_entry *) NULL;
12062 }
12063 }
12064
12065 if (r->reg_type.bitfield.class == RegBND && !cpu_arch_flags.bitfield.cpumpx)
12066 return (const reg_entry *) NULL;
12067
12068 /* Don't allow fake index register unless allow_index_reg isn't 0. */
12069 if (!allow_index_reg && r->reg_num == RegIZ)
12070 return (const reg_entry *) NULL;
12071
12072 /* Upper 16 vector registers are only available with VREX in 64bit
12073 mode, and require EVEX encoding. */
12074 if (r->reg_flags & RegVRex)
12075 {
12076 if (!cpu_arch_flags.bitfield.cpuavx512f
12077 || flag_code != CODE_64BIT)
12078 return (const reg_entry *) NULL;
12079
12080 i.vec_encoding = vex_encoding_evex;
12081 }
12082
12083 if (((r->reg_flags & (RegRex64 | RegRex)) || r->reg_type.bitfield.qword)
12084 && (!cpu_arch_flags.bitfield.cpulm || r->reg_type.bitfield.class != RegCR)
12085 && flag_code != CODE_64BIT)
12086 return (const reg_entry *) NULL;
12087
12088 if (r->reg_type.bitfield.class == SReg && r->reg_num == RegFlat
12089 && !intel_syntax)
12090 return (const reg_entry *) NULL;
12091
12092 return r;
12093 }
12094
12095 /* REG_STRING starts *before* REGISTER_PREFIX. */
12096
12097 static const reg_entry *
12098 parse_register (char *reg_string, char **end_op)
12099 {
12100 const reg_entry *r;
12101
12102 if (*reg_string == REGISTER_PREFIX || allow_naked_reg)
12103 r = parse_real_register (reg_string, end_op);
12104 else
12105 r = NULL;
12106 if (!r)
12107 {
12108 char *save = input_line_pointer;
12109 char c;
12110 symbolS *symbolP;
12111
12112 input_line_pointer = reg_string;
12113 c = get_symbol_name (&reg_string);
12114 symbolP = symbol_find (reg_string);
12115 if (symbolP && S_GET_SEGMENT (symbolP) == reg_section)
12116 {
12117 const expressionS *e = symbol_get_value_expression (symbolP);
12118
12119 know (e->X_op == O_register);
12120 know (e->X_add_number >= 0
12121 && (valueT) e->X_add_number < i386_regtab_size);
12122 r = i386_regtab + e->X_add_number;
12123 if ((r->reg_flags & RegVRex))
12124 i.vec_encoding = vex_encoding_evex;
12125 *end_op = input_line_pointer;
12126 }
12127 *input_line_pointer = c;
12128 input_line_pointer = save;
12129 }
12130 return r;
12131 }
12132
12133 int
12134 i386_parse_name (char *name, expressionS *e, char *nextcharP)
12135 {
12136 const reg_entry *r;
12137 char *end = input_line_pointer;
12138
12139 *end = *nextcharP;
12140 r = parse_register (name, &input_line_pointer);
12141 if (r && end <= input_line_pointer)
12142 {
12143 *nextcharP = *input_line_pointer;
12144 *input_line_pointer = 0;
12145 e->X_op = O_register;
12146 e->X_add_number = r - i386_regtab;
12147 return 1;
12148 }
12149 input_line_pointer = end;
12150 *end = 0;
12151 return intel_syntax ? i386_intel_parse_name (name, e) : 0;
12152 }
12153
12154 void
12155 md_operand (expressionS *e)
12156 {
12157 char *end;
12158 const reg_entry *r;
12159
12160 switch (*input_line_pointer)
12161 {
12162 case REGISTER_PREFIX:
12163 r = parse_real_register (input_line_pointer, &end);
12164 if (r)
12165 {
12166 e->X_op = O_register;
12167 e->X_add_number = r - i386_regtab;
12168 input_line_pointer = end;
12169 }
12170 break;
12171
12172 case '[':
12173 gas_assert (intel_syntax);
12174 end = input_line_pointer++;
12175 expression (e);
12176 if (*input_line_pointer == ']')
12177 {
12178 ++input_line_pointer;
12179 e->X_op_symbol = make_expr_symbol (e);
12180 e->X_add_symbol = NULL;
12181 e->X_add_number = 0;
12182 e->X_op = O_index;
12183 }
12184 else
12185 {
12186 e->X_op = O_absent;
12187 input_line_pointer = end;
12188 }
12189 break;
12190 }
12191 }
12192
12193 \f
12194 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12195 const char *md_shortopts = "kVQ:sqnO::";
12196 #else
12197 const char *md_shortopts = "qnO::";
12198 #endif
12199
12200 #define OPTION_32 (OPTION_MD_BASE + 0)
12201 #define OPTION_64 (OPTION_MD_BASE + 1)
12202 #define OPTION_DIVIDE (OPTION_MD_BASE + 2)
12203 #define OPTION_MARCH (OPTION_MD_BASE + 3)
12204 #define OPTION_MTUNE (OPTION_MD_BASE + 4)
12205 #define OPTION_MMNEMONIC (OPTION_MD_BASE + 5)
12206 #define OPTION_MSYNTAX (OPTION_MD_BASE + 6)
12207 #define OPTION_MINDEX_REG (OPTION_MD_BASE + 7)
12208 #define OPTION_MNAKED_REG (OPTION_MD_BASE + 8)
12209 #define OPTION_MRELAX_RELOCATIONS (OPTION_MD_BASE + 9)
12210 #define OPTION_MSSE2AVX (OPTION_MD_BASE + 10)
12211 #define OPTION_MSSE_CHECK (OPTION_MD_BASE + 11)
12212 #define OPTION_MOPERAND_CHECK (OPTION_MD_BASE + 12)
12213 #define OPTION_MAVXSCALAR (OPTION_MD_BASE + 13)
12214 #define OPTION_X32 (OPTION_MD_BASE + 14)
12215 #define OPTION_MADD_BND_PREFIX (OPTION_MD_BASE + 15)
12216 #define OPTION_MEVEXLIG (OPTION_MD_BASE + 16)
12217 #define OPTION_MEVEXWIG (OPTION_MD_BASE + 17)
12218 #define OPTION_MBIG_OBJ (OPTION_MD_BASE + 18)
12219 #define OPTION_MOMIT_LOCK_PREFIX (OPTION_MD_BASE + 19)
12220 #define OPTION_MEVEXRCIG (OPTION_MD_BASE + 20)
12221 #define OPTION_MSHARED (OPTION_MD_BASE + 21)
12222 #define OPTION_MAMD64 (OPTION_MD_BASE + 22)
12223 #define OPTION_MINTEL64 (OPTION_MD_BASE + 23)
12224 #define OPTION_MFENCE_AS_LOCK_ADD (OPTION_MD_BASE + 24)
12225 #define OPTION_X86_USED_NOTE (OPTION_MD_BASE + 25)
12226 #define OPTION_MVEXWIG (OPTION_MD_BASE + 26)
12227 #define OPTION_MALIGN_BRANCH_BOUNDARY (OPTION_MD_BASE + 27)
12228 #define OPTION_MALIGN_BRANCH_PREFIX_SIZE (OPTION_MD_BASE + 28)
12229 #define OPTION_MALIGN_BRANCH (OPTION_MD_BASE + 29)
12230 #define OPTION_MBRANCHES_WITH_32B_BOUNDARIES (OPTION_MD_BASE + 30)
12231
12232 struct option md_longopts[] =
12233 {
12234 {"32", no_argument, NULL, OPTION_32},
12235 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
12236 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
12237 {"64", no_argument, NULL, OPTION_64},
12238 #endif
12239 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12240 {"x32", no_argument, NULL, OPTION_X32},
12241 {"mshared", no_argument, NULL, OPTION_MSHARED},
12242 {"mx86-used-note", required_argument, NULL, OPTION_X86_USED_NOTE},
12243 #endif
12244 {"divide", no_argument, NULL, OPTION_DIVIDE},
12245 {"march", required_argument, NULL, OPTION_MARCH},
12246 {"mtune", required_argument, NULL, OPTION_MTUNE},
12247 {"mmnemonic", required_argument, NULL, OPTION_MMNEMONIC},
12248 {"msyntax", required_argument, NULL, OPTION_MSYNTAX},
12249 {"mindex-reg", no_argument, NULL, OPTION_MINDEX_REG},
12250 {"mnaked-reg", no_argument, NULL, OPTION_MNAKED_REG},
12251 {"msse2avx", no_argument, NULL, OPTION_MSSE2AVX},
12252 {"msse-check", required_argument, NULL, OPTION_MSSE_CHECK},
12253 {"moperand-check", required_argument, NULL, OPTION_MOPERAND_CHECK},
12254 {"mavxscalar", required_argument, NULL, OPTION_MAVXSCALAR},
12255 {"mvexwig", required_argument, NULL, OPTION_MVEXWIG},
12256 {"madd-bnd-prefix", no_argument, NULL, OPTION_MADD_BND_PREFIX},
12257 {"mevexlig", required_argument, NULL, OPTION_MEVEXLIG},
12258 {"mevexwig", required_argument, NULL, OPTION_MEVEXWIG},
12259 # if defined (TE_PE) || defined (TE_PEP)
12260 {"mbig-obj", no_argument, NULL, OPTION_MBIG_OBJ},
12261 #endif
12262 {"momit-lock-prefix", required_argument, NULL, OPTION_MOMIT_LOCK_PREFIX},
12263 {"mfence-as-lock-add", required_argument, NULL, OPTION_MFENCE_AS_LOCK_ADD},
12264 {"mrelax-relocations", required_argument, NULL, OPTION_MRELAX_RELOCATIONS},
12265 {"mevexrcig", required_argument, NULL, OPTION_MEVEXRCIG},
12266 {"malign-branch-boundary", required_argument, NULL, OPTION_MALIGN_BRANCH_BOUNDARY},
12267 {"malign-branch-prefix-size", required_argument, NULL, OPTION_MALIGN_BRANCH_PREFIX_SIZE},
12268 {"malign-branch", required_argument, NULL, OPTION_MALIGN_BRANCH},
12269 {"mbranches-within-32B-boundaries", no_argument, NULL, OPTION_MBRANCHES_WITH_32B_BOUNDARIES},
12270 {"mamd64", no_argument, NULL, OPTION_MAMD64},
12271 {"mintel64", no_argument, NULL, OPTION_MINTEL64},
12272 {NULL, no_argument, NULL, 0}
12273 };
12274 size_t md_longopts_size = sizeof (md_longopts);
12275
12276 int
12277 md_parse_option (int c, const char *arg)
12278 {
12279 unsigned int j;
12280 char *arch, *next, *saved, *type;
12281
12282 switch (c)
12283 {
12284 case 'n':
12285 optimize_align_code = 0;
12286 break;
12287
12288 case 'q':
12289 quiet_warnings = 1;
12290 break;
12291
12292 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12293 /* -Qy, -Qn: SVR4 arguments controlling whether a .comment section
12294 should be emitted or not. FIXME: Not implemented. */
12295 case 'Q':
12296 if ((arg[0] != 'y' && arg[0] != 'n') || arg[1])
12297 return 0;
12298 break;
12299
12300 /* -V: SVR4 argument to print version ID. */
12301 case 'V':
12302 print_version_id ();
12303 break;
12304
12305 /* -k: Ignore for FreeBSD compatibility. */
12306 case 'k':
12307 break;
12308
12309 case 's':
12310 /* -s: On i386 Solaris, this tells the native assembler to use
12311 .stab instead of .stab.excl. We always use .stab anyhow. */
12312 break;
12313
12314 case OPTION_MSHARED:
12315 shared = 1;
12316 break;
12317
12318 case OPTION_X86_USED_NOTE:
12319 if (strcasecmp (arg, "yes") == 0)
12320 x86_used_note = 1;
12321 else if (strcasecmp (arg, "no") == 0)
12322 x86_used_note = 0;
12323 else
12324 as_fatal (_("invalid -mx86-used-note= option: `%s'"), arg);
12325 break;
12326
12327
12328 #endif
12329 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
12330 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
12331 case OPTION_64:
12332 {
12333 const char **list, **l;
12334
12335 list = bfd_target_list ();
12336 for (l = list; *l != NULL; l++)
12337 if (CONST_STRNEQ (*l, "elf64-x86-64")
12338 || strcmp (*l, "coff-x86-64") == 0
12339 || strcmp (*l, "pe-x86-64") == 0
12340 || strcmp (*l, "pei-x86-64") == 0
12341 || strcmp (*l, "mach-o-x86-64") == 0)
12342 {
12343 default_arch = "x86_64";
12344 break;
12345 }
12346 if (*l == NULL)
12347 as_fatal (_("no compiled in support for x86_64"));
12348 free (list);
12349 }
12350 break;
12351 #endif
12352
12353 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12354 case OPTION_X32:
12355 if (IS_ELF)
12356 {
12357 const char **list, **l;
12358
12359 list = bfd_target_list ();
12360 for (l = list; *l != NULL; l++)
12361 if (CONST_STRNEQ (*l, "elf32-x86-64"))
12362 {
12363 default_arch = "x86_64:32";
12364 break;
12365 }
12366 if (*l == NULL)
12367 as_fatal (_("no compiled in support for 32bit x86_64"));
12368 free (list);
12369 }
12370 else
12371 as_fatal (_("32bit x86_64 is only supported for ELF"));
12372 break;
12373 #endif
12374
12375 case OPTION_32:
12376 default_arch = "i386";
12377 break;
12378
12379 case OPTION_DIVIDE:
12380 #ifdef SVR4_COMMENT_CHARS
12381 {
12382 char *n, *t;
12383 const char *s;
12384
12385 n = XNEWVEC (char, strlen (i386_comment_chars) + 1);
12386 t = n;
12387 for (s = i386_comment_chars; *s != '\0'; s++)
12388 if (*s != '/')
12389 *t++ = *s;
12390 *t = '\0';
12391 i386_comment_chars = n;
12392 }
12393 #endif
12394 break;
12395
12396 case OPTION_MARCH:
12397 saved = xstrdup (arg);
12398 arch = saved;
12399 /* Allow -march=+nosse. */
12400 if (*arch == '+')
12401 arch++;
12402 do
12403 {
12404 if (*arch == '.')
12405 as_fatal (_("invalid -march= option: `%s'"), arg);
12406 next = strchr (arch, '+');
12407 if (next)
12408 *next++ = '\0';
12409 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
12410 {
12411 if (strcmp (arch, cpu_arch [j].name) == 0)
12412 {
12413 /* Processor. */
12414 if (! cpu_arch[j].flags.bitfield.cpui386)
12415 continue;
12416
12417 cpu_arch_name = cpu_arch[j].name;
12418 cpu_sub_arch_name = NULL;
12419 cpu_arch_flags = cpu_arch[j].flags;
12420 cpu_arch_isa = cpu_arch[j].type;
12421 cpu_arch_isa_flags = cpu_arch[j].flags;
12422 if (!cpu_arch_tune_set)
12423 {
12424 cpu_arch_tune = cpu_arch_isa;
12425 cpu_arch_tune_flags = cpu_arch_isa_flags;
12426 }
12427 break;
12428 }
12429 else if (*cpu_arch [j].name == '.'
12430 && strcmp (arch, cpu_arch [j].name + 1) == 0)
12431 {
12432 /* ISA extension. */
12433 i386_cpu_flags flags;
12434
12435 flags = cpu_flags_or (cpu_arch_flags,
12436 cpu_arch[j].flags);
12437
12438 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
12439 {
12440 if (cpu_sub_arch_name)
12441 {
12442 char *name = cpu_sub_arch_name;
12443 cpu_sub_arch_name = concat (name,
12444 cpu_arch[j].name,
12445 (const char *) NULL);
12446 free (name);
12447 }
12448 else
12449 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
12450 cpu_arch_flags = flags;
12451 cpu_arch_isa_flags = flags;
12452 }
12453 else
12454 cpu_arch_isa_flags
12455 = cpu_flags_or (cpu_arch_isa_flags,
12456 cpu_arch[j].flags);
12457 break;
12458 }
12459 }
12460
12461 if (j >= ARRAY_SIZE (cpu_arch))
12462 {
12463 /* Disable an ISA extension. */
12464 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
12465 if (strcmp (arch, cpu_noarch [j].name) == 0)
12466 {
12467 i386_cpu_flags flags;
12468
12469 flags = cpu_flags_and_not (cpu_arch_flags,
12470 cpu_noarch[j].flags);
12471 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
12472 {
12473 if (cpu_sub_arch_name)
12474 {
12475 char *name = cpu_sub_arch_name;
12476 cpu_sub_arch_name = concat (arch,
12477 (const char *) NULL);
12478 free (name);
12479 }
12480 else
12481 cpu_sub_arch_name = xstrdup (arch);
12482 cpu_arch_flags = flags;
12483 cpu_arch_isa_flags = flags;
12484 }
12485 break;
12486 }
12487
12488 if (j >= ARRAY_SIZE (cpu_noarch))
12489 j = ARRAY_SIZE (cpu_arch);
12490 }
12491
12492 if (j >= ARRAY_SIZE (cpu_arch))
12493 as_fatal (_("invalid -march= option: `%s'"), arg);
12494
12495 arch = next;
12496 }
12497 while (next != NULL);
12498 free (saved);
12499 break;
12500
12501 case OPTION_MTUNE:
12502 if (*arg == '.')
12503 as_fatal (_("invalid -mtune= option: `%s'"), arg);
12504 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
12505 {
12506 if (strcmp (arg, cpu_arch [j].name) == 0)
12507 {
12508 cpu_arch_tune_set = 1;
12509 cpu_arch_tune = cpu_arch [j].type;
12510 cpu_arch_tune_flags = cpu_arch[j].flags;
12511 break;
12512 }
12513 }
12514 if (j >= ARRAY_SIZE (cpu_arch))
12515 as_fatal (_("invalid -mtune= option: `%s'"), arg);
12516 break;
12517
12518 case OPTION_MMNEMONIC:
12519 if (strcasecmp (arg, "att") == 0)
12520 intel_mnemonic = 0;
12521 else if (strcasecmp (arg, "intel") == 0)
12522 intel_mnemonic = 1;
12523 else
12524 as_fatal (_("invalid -mmnemonic= option: `%s'"), arg);
12525 break;
12526
12527 case OPTION_MSYNTAX:
12528 if (strcasecmp (arg, "att") == 0)
12529 intel_syntax = 0;
12530 else if (strcasecmp (arg, "intel") == 0)
12531 intel_syntax = 1;
12532 else
12533 as_fatal (_("invalid -msyntax= option: `%s'"), arg);
12534 break;
12535
12536 case OPTION_MINDEX_REG:
12537 allow_index_reg = 1;
12538 break;
12539
12540 case OPTION_MNAKED_REG:
12541 allow_naked_reg = 1;
12542 break;
12543
12544 case OPTION_MSSE2AVX:
12545 sse2avx = 1;
12546 break;
12547
12548 case OPTION_MSSE_CHECK:
12549 if (strcasecmp (arg, "error") == 0)
12550 sse_check = check_error;
12551 else if (strcasecmp (arg, "warning") == 0)
12552 sse_check = check_warning;
12553 else if (strcasecmp (arg, "none") == 0)
12554 sse_check = check_none;
12555 else
12556 as_fatal (_("invalid -msse-check= option: `%s'"), arg);
12557 break;
12558
12559 case OPTION_MOPERAND_CHECK:
12560 if (strcasecmp (arg, "error") == 0)
12561 operand_check = check_error;
12562 else if (strcasecmp (arg, "warning") == 0)
12563 operand_check = check_warning;
12564 else if (strcasecmp (arg, "none") == 0)
12565 operand_check = check_none;
12566 else
12567 as_fatal (_("invalid -moperand-check= option: `%s'"), arg);
12568 break;
12569
12570 case OPTION_MAVXSCALAR:
12571 if (strcasecmp (arg, "128") == 0)
12572 avxscalar = vex128;
12573 else if (strcasecmp (arg, "256") == 0)
12574 avxscalar = vex256;
12575 else
12576 as_fatal (_("invalid -mavxscalar= option: `%s'"), arg);
12577 break;
12578
12579 case OPTION_MVEXWIG:
12580 if (strcmp (arg, "0") == 0)
12581 vexwig = vexw0;
12582 else if (strcmp (arg, "1") == 0)
12583 vexwig = vexw1;
12584 else
12585 as_fatal (_("invalid -mvexwig= option: `%s'"), arg);
12586 break;
12587
12588 case OPTION_MADD_BND_PREFIX:
12589 add_bnd_prefix = 1;
12590 break;
12591
12592 case OPTION_MEVEXLIG:
12593 if (strcmp (arg, "128") == 0)
12594 evexlig = evexl128;
12595 else if (strcmp (arg, "256") == 0)
12596 evexlig = evexl256;
12597 else if (strcmp (arg, "512") == 0)
12598 evexlig = evexl512;
12599 else
12600 as_fatal (_("invalid -mevexlig= option: `%s'"), arg);
12601 break;
12602
12603 case OPTION_MEVEXRCIG:
12604 if (strcmp (arg, "rne") == 0)
12605 evexrcig = rne;
12606 else if (strcmp (arg, "rd") == 0)
12607 evexrcig = rd;
12608 else if (strcmp (arg, "ru") == 0)
12609 evexrcig = ru;
12610 else if (strcmp (arg, "rz") == 0)
12611 evexrcig = rz;
12612 else
12613 as_fatal (_("invalid -mevexrcig= option: `%s'"), arg);
12614 break;
12615
12616 case OPTION_MEVEXWIG:
12617 if (strcmp (arg, "0") == 0)
12618 evexwig = evexw0;
12619 else if (strcmp (arg, "1") == 0)
12620 evexwig = evexw1;
12621 else
12622 as_fatal (_("invalid -mevexwig= option: `%s'"), arg);
12623 break;
12624
12625 # if defined (TE_PE) || defined (TE_PEP)
12626 case OPTION_MBIG_OBJ:
12627 use_big_obj = 1;
12628 break;
12629 #endif
12630
12631 case OPTION_MOMIT_LOCK_PREFIX:
12632 if (strcasecmp (arg, "yes") == 0)
12633 omit_lock_prefix = 1;
12634 else if (strcasecmp (arg, "no") == 0)
12635 omit_lock_prefix = 0;
12636 else
12637 as_fatal (_("invalid -momit-lock-prefix= option: `%s'"), arg);
12638 break;
12639
12640 case OPTION_MFENCE_AS_LOCK_ADD:
12641 if (strcasecmp (arg, "yes") == 0)
12642 avoid_fence = 1;
12643 else if (strcasecmp (arg, "no") == 0)
12644 avoid_fence = 0;
12645 else
12646 as_fatal (_("invalid -mfence-as-lock-add= option: `%s'"), arg);
12647 break;
12648
12649 case OPTION_MRELAX_RELOCATIONS:
12650 if (strcasecmp (arg, "yes") == 0)
12651 generate_relax_relocations = 1;
12652 else if (strcasecmp (arg, "no") == 0)
12653 generate_relax_relocations = 0;
12654 else
12655 as_fatal (_("invalid -mrelax-relocations= option: `%s'"), arg);
12656 break;
12657
12658 case OPTION_MALIGN_BRANCH_BOUNDARY:
12659 {
12660 char *end;
12661 long int align = strtoul (arg, &end, 0);
12662 if (*end == '\0')
12663 {
12664 if (align == 0)
12665 {
12666 align_branch_power = 0;
12667 break;
12668 }
12669 else if (align >= 16)
12670 {
12671 int align_power;
12672 for (align_power = 0;
12673 (align & 1) == 0;
12674 align >>= 1, align_power++)
12675 continue;
12676 /* Limit alignment power to 31. */
12677 if (align == 1 && align_power < 32)
12678 {
12679 align_branch_power = align_power;
12680 break;
12681 }
12682 }
12683 }
12684 as_fatal (_("invalid -malign-branch-boundary= value: %s"), arg);
12685 }
12686 break;
12687
12688 case OPTION_MALIGN_BRANCH_PREFIX_SIZE:
12689 {
12690 char *end;
12691 int align = strtoul (arg, &end, 0);
12692 /* Some processors only support 5 prefixes. */
12693 if (*end == '\0' && align >= 0 && align < 6)
12694 {
12695 align_branch_prefix_size = align;
12696 break;
12697 }
12698 as_fatal (_("invalid -malign-branch-prefix-size= value: %s"),
12699 arg);
12700 }
12701 break;
12702
12703 case OPTION_MALIGN_BRANCH:
12704 align_branch = 0;
12705 saved = xstrdup (arg);
12706 type = saved;
12707 do
12708 {
12709 next = strchr (type, '+');
12710 if (next)
12711 *next++ = '\0';
12712 if (strcasecmp (type, "jcc") == 0)
12713 align_branch |= align_branch_jcc_bit;
12714 else if (strcasecmp (type, "fused") == 0)
12715 align_branch |= align_branch_fused_bit;
12716 else if (strcasecmp (type, "jmp") == 0)
12717 align_branch |= align_branch_jmp_bit;
12718 else if (strcasecmp (type, "call") == 0)
12719 align_branch |= align_branch_call_bit;
12720 else if (strcasecmp (type, "ret") == 0)
12721 align_branch |= align_branch_ret_bit;
12722 else if (strcasecmp (type, "indirect") == 0)
12723 align_branch |= align_branch_indirect_bit;
12724 else
12725 as_fatal (_("invalid -malign-branch= option: `%s'"), arg);
12726 type = next;
12727 }
12728 while (next != NULL);
12729 free (saved);
12730 break;
12731
12732 case OPTION_MBRANCHES_WITH_32B_BOUNDARIES:
12733 align_branch_power = 5;
12734 align_branch_prefix_size = 5;
12735 align_branch = (align_branch_jcc_bit
12736 | align_branch_fused_bit
12737 | align_branch_jmp_bit);
12738 break;
12739
12740 case OPTION_MAMD64:
12741 isa64 = amd64;
12742 break;
12743
12744 case OPTION_MINTEL64:
12745 isa64 = intel64;
12746 break;
12747
12748 case 'O':
12749 if (arg == NULL)
12750 {
12751 optimize = 1;
12752 /* Turn off -Os. */
12753 optimize_for_space = 0;
12754 }
12755 else if (*arg == 's')
12756 {
12757 optimize_for_space = 1;
12758 /* Turn on all encoding optimizations. */
12759 optimize = INT_MAX;
12760 }
12761 else
12762 {
12763 optimize = atoi (arg);
12764 /* Turn off -Os. */
12765 optimize_for_space = 0;
12766 }
12767 break;
12768
12769 default:
12770 return 0;
12771 }
12772 return 1;
12773 }
12774
12775 #define MESSAGE_TEMPLATE \
12776 " "
12777
12778 static char *
12779 output_message (FILE *stream, char *p, char *message, char *start,
12780 int *left_p, const char *name, int len)
12781 {
12782 int size = sizeof (MESSAGE_TEMPLATE);
12783 int left = *left_p;
12784
12785 /* Reserve 2 spaces for ", " or ",\0" */
12786 left -= len + 2;
12787
12788 /* Check if there is any room. */
12789 if (left >= 0)
12790 {
12791 if (p != start)
12792 {
12793 *p++ = ',';
12794 *p++ = ' ';
12795 }
12796 p = mempcpy (p, name, len);
12797 }
12798 else
12799 {
12800 /* Output the current message now and start a new one. */
12801 *p++ = ',';
12802 *p = '\0';
12803 fprintf (stream, "%s\n", message);
12804 p = start;
12805 left = size - (start - message) - len - 2;
12806
12807 gas_assert (left >= 0);
12808
12809 p = mempcpy (p, name, len);
12810 }
12811
12812 *left_p = left;
12813 return p;
12814 }
12815
12816 static void
12817 show_arch (FILE *stream, int ext, int check)
12818 {
12819 static char message[] = MESSAGE_TEMPLATE;
12820 char *start = message + 27;
12821 char *p;
12822 int size = sizeof (MESSAGE_TEMPLATE);
12823 int left;
12824 const char *name;
12825 int len;
12826 unsigned int j;
12827
12828 p = start;
12829 left = size - (start - message);
12830 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
12831 {
12832 /* Should it be skipped? */
12833 if (cpu_arch [j].skip)
12834 continue;
12835
12836 name = cpu_arch [j].name;
12837 len = cpu_arch [j].len;
12838 if (*name == '.')
12839 {
12840 /* It is an extension. Skip if we aren't asked to show it. */
12841 if (ext)
12842 {
12843 name++;
12844 len--;
12845 }
12846 else
12847 continue;
12848 }
12849 else if (ext)
12850 {
12851 /* It is an processor. Skip if we show only extension. */
12852 continue;
12853 }
12854 else if (check && ! cpu_arch[j].flags.bitfield.cpui386)
12855 {
12856 /* It is an impossible processor - skip. */
12857 continue;
12858 }
12859
12860 p = output_message (stream, p, message, start, &left, name, len);
12861 }
12862
12863 /* Display disabled extensions. */
12864 if (ext)
12865 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
12866 {
12867 name = cpu_noarch [j].name;
12868 len = cpu_noarch [j].len;
12869 p = output_message (stream, p, message, start, &left, name,
12870 len);
12871 }
12872
12873 *p = '\0';
12874 fprintf (stream, "%s\n", message);
12875 }
12876
12877 void
12878 md_show_usage (FILE *stream)
12879 {
12880 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12881 fprintf (stream, _("\
12882 -Qy, -Qn ignored\n\
12883 -V print assembler version number\n\
12884 -k ignored\n"));
12885 #endif
12886 fprintf (stream, _("\
12887 -n Do not optimize code alignment\n\
12888 -q quieten some warnings\n"));
12889 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12890 fprintf (stream, _("\
12891 -s ignored\n"));
12892 #endif
12893 #if defined BFD64 && (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
12894 || defined (TE_PE) || defined (TE_PEP))
12895 fprintf (stream, _("\
12896 --32/--64/--x32 generate 32bit/64bit/x32 code\n"));
12897 #endif
12898 #ifdef SVR4_COMMENT_CHARS
12899 fprintf (stream, _("\
12900 --divide do not treat `/' as a comment character\n"));
12901 #else
12902 fprintf (stream, _("\
12903 --divide ignored\n"));
12904 #endif
12905 fprintf (stream, _("\
12906 -march=CPU[,+EXTENSION...]\n\
12907 generate code for CPU and EXTENSION, CPU is one of:\n"));
12908 show_arch (stream, 0, 1);
12909 fprintf (stream, _("\
12910 EXTENSION is combination of:\n"));
12911 show_arch (stream, 1, 0);
12912 fprintf (stream, _("\
12913 -mtune=CPU optimize for CPU, CPU is one of:\n"));
12914 show_arch (stream, 0, 0);
12915 fprintf (stream, _("\
12916 -msse2avx encode SSE instructions with VEX prefix\n"));
12917 fprintf (stream, _("\
12918 -msse-check=[none|error|warning] (default: warning)\n\
12919 check SSE instructions\n"));
12920 fprintf (stream, _("\
12921 -moperand-check=[none|error|warning] (default: warning)\n\
12922 check operand combinations for validity\n"));
12923 fprintf (stream, _("\
12924 -mavxscalar=[128|256] (default: 128)\n\
12925 encode scalar AVX instructions with specific vector\n\
12926 length\n"));
12927 fprintf (stream, _("\
12928 -mvexwig=[0|1] (default: 0)\n\
12929 encode VEX instructions with specific VEX.W value\n\
12930 for VEX.W bit ignored instructions\n"));
12931 fprintf (stream, _("\
12932 -mevexlig=[128|256|512] (default: 128)\n\
12933 encode scalar EVEX instructions with specific vector\n\
12934 length\n"));
12935 fprintf (stream, _("\
12936 -mevexwig=[0|1] (default: 0)\n\
12937 encode EVEX instructions with specific EVEX.W value\n\
12938 for EVEX.W bit ignored instructions\n"));
12939 fprintf (stream, _("\
12940 -mevexrcig=[rne|rd|ru|rz] (default: rne)\n\
12941 encode EVEX instructions with specific EVEX.RC value\n\
12942 for SAE-only ignored instructions\n"));
12943 fprintf (stream, _("\
12944 -mmnemonic=[att|intel] "));
12945 if (SYSV386_COMPAT)
12946 fprintf (stream, _("(default: att)\n"));
12947 else
12948 fprintf (stream, _("(default: intel)\n"));
12949 fprintf (stream, _("\
12950 use AT&T/Intel mnemonic\n"));
12951 fprintf (stream, _("\
12952 -msyntax=[att|intel] (default: att)\n\
12953 use AT&T/Intel syntax\n"));
12954 fprintf (stream, _("\
12955 -mindex-reg support pseudo index registers\n"));
12956 fprintf (stream, _("\
12957 -mnaked-reg don't require `%%' prefix for registers\n"));
12958 fprintf (stream, _("\
12959 -madd-bnd-prefix add BND prefix for all valid branches\n"));
12960 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12961 fprintf (stream, _("\
12962 -mshared disable branch optimization for shared code\n"));
12963 fprintf (stream, _("\
12964 -mx86-used-note=[no|yes] "));
12965 if (DEFAULT_X86_USED_NOTE)
12966 fprintf (stream, _("(default: yes)\n"));
12967 else
12968 fprintf (stream, _("(default: no)\n"));
12969 fprintf (stream, _("\
12970 generate x86 used ISA and feature properties\n"));
12971 #endif
12972 #if defined (TE_PE) || defined (TE_PEP)
12973 fprintf (stream, _("\
12974 -mbig-obj generate big object files\n"));
12975 #endif
12976 fprintf (stream, _("\
12977 -momit-lock-prefix=[no|yes] (default: no)\n\
12978 strip all lock prefixes\n"));
12979 fprintf (stream, _("\
12980 -mfence-as-lock-add=[no|yes] (default: no)\n\
12981 encode lfence, mfence and sfence as\n\
12982 lock addl $0x0, (%%{re}sp)\n"));
12983 fprintf (stream, _("\
12984 -mrelax-relocations=[no|yes] "));
12985 if (DEFAULT_GENERATE_X86_RELAX_RELOCATIONS)
12986 fprintf (stream, _("(default: yes)\n"));
12987 else
12988 fprintf (stream, _("(default: no)\n"));
12989 fprintf (stream, _("\
12990 generate relax relocations\n"));
12991 fprintf (stream, _("\
12992 -malign-branch-boundary=NUM (default: 0)\n\
12993 align branches within NUM byte boundary\n"));
12994 fprintf (stream, _("\
12995 -malign-branch=TYPE[+TYPE...] (default: jcc+fused+jmp)\n\
12996 TYPE is combination of jcc, fused, jmp, call, ret,\n\
12997 indirect\n\
12998 specify types of branches to align\n"));
12999 fprintf (stream, _("\
13000 -malign-branch-prefix-size=NUM (default: 5)\n\
13001 align branches with NUM prefixes per instruction\n"));
13002 fprintf (stream, _("\
13003 -mbranches-within-32B-boundaries\n\
13004 align branches within 32 byte boundary\n"));
13005 fprintf (stream, _("\
13006 -mamd64 accept only AMD64 ISA [default]\n"));
13007 fprintf (stream, _("\
13008 -mintel64 accept only Intel64 ISA\n"));
13009 }
13010
13011 #if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
13012 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
13013 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
13014
13015 /* Pick the target format to use. */
13016
13017 const char *
13018 i386_target_format (void)
13019 {
13020 if (!strncmp (default_arch, "x86_64", 6))
13021 {
13022 update_code_flag (CODE_64BIT, 1);
13023 if (default_arch[6] == '\0')
13024 x86_elf_abi = X86_64_ABI;
13025 else
13026 x86_elf_abi = X86_64_X32_ABI;
13027 }
13028 else if (!strcmp (default_arch, "i386"))
13029 update_code_flag (CODE_32BIT, 1);
13030 else if (!strcmp (default_arch, "iamcu"))
13031 {
13032 update_code_flag (CODE_32BIT, 1);
13033 if (cpu_arch_isa == PROCESSOR_UNKNOWN)
13034 {
13035 static const i386_cpu_flags iamcu_flags = CPU_IAMCU_FLAGS;
13036 cpu_arch_name = "iamcu";
13037 cpu_sub_arch_name = NULL;
13038 cpu_arch_flags = iamcu_flags;
13039 cpu_arch_isa = PROCESSOR_IAMCU;
13040 cpu_arch_isa_flags = iamcu_flags;
13041 if (!cpu_arch_tune_set)
13042 {
13043 cpu_arch_tune = cpu_arch_isa;
13044 cpu_arch_tune_flags = cpu_arch_isa_flags;
13045 }
13046 }
13047 else if (cpu_arch_isa != PROCESSOR_IAMCU)
13048 as_fatal (_("Intel MCU doesn't support `%s' architecture"),
13049 cpu_arch_name);
13050 }
13051 else
13052 as_fatal (_("unknown architecture"));
13053
13054 if (cpu_flags_all_zero (&cpu_arch_isa_flags))
13055 cpu_arch_isa_flags = cpu_arch[flag_code == CODE_64BIT].flags;
13056 if (cpu_flags_all_zero (&cpu_arch_tune_flags))
13057 cpu_arch_tune_flags = cpu_arch[flag_code == CODE_64BIT].flags;
13058
13059 switch (OUTPUT_FLAVOR)
13060 {
13061 #if defined (OBJ_MAYBE_AOUT) || defined (OBJ_AOUT)
13062 case bfd_target_aout_flavour:
13063 return AOUT_TARGET_FORMAT;
13064 #endif
13065 #if defined (OBJ_MAYBE_COFF) || defined (OBJ_COFF)
13066 # if defined (TE_PE) || defined (TE_PEP)
13067 case bfd_target_coff_flavour:
13068 if (flag_code == CODE_64BIT)
13069 return use_big_obj ? "pe-bigobj-x86-64" : "pe-x86-64";
13070 else
13071 return "pe-i386";
13072 # elif defined (TE_GO32)
13073 case bfd_target_coff_flavour:
13074 return "coff-go32";
13075 # else
13076 case bfd_target_coff_flavour:
13077 return "coff-i386";
13078 # endif
13079 #endif
13080 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
13081 case bfd_target_elf_flavour:
13082 {
13083 const char *format;
13084
13085 switch (x86_elf_abi)
13086 {
13087 default:
13088 format = ELF_TARGET_FORMAT;
13089 #ifndef TE_SOLARIS
13090 tls_get_addr = "___tls_get_addr";
13091 #endif
13092 break;
13093 case X86_64_ABI:
13094 use_rela_relocations = 1;
13095 object_64bit = 1;
13096 #ifndef TE_SOLARIS
13097 tls_get_addr = "__tls_get_addr";
13098 #endif
13099 format = ELF_TARGET_FORMAT64;
13100 break;
13101 case X86_64_X32_ABI:
13102 use_rela_relocations = 1;
13103 object_64bit = 1;
13104 #ifndef TE_SOLARIS
13105 tls_get_addr = "__tls_get_addr";
13106 #endif
13107 disallow_64bit_reloc = 1;
13108 format = ELF_TARGET_FORMAT32;
13109 break;
13110 }
13111 if (cpu_arch_isa == PROCESSOR_L1OM)
13112 {
13113 if (x86_elf_abi != X86_64_ABI)
13114 as_fatal (_("Intel L1OM is 64bit only"));
13115 return ELF_TARGET_L1OM_FORMAT;
13116 }
13117 else if (cpu_arch_isa == PROCESSOR_K1OM)
13118 {
13119 if (x86_elf_abi != X86_64_ABI)
13120 as_fatal (_("Intel K1OM is 64bit only"));
13121 return ELF_TARGET_K1OM_FORMAT;
13122 }
13123 else if (cpu_arch_isa == PROCESSOR_IAMCU)
13124 {
13125 if (x86_elf_abi != I386_ABI)
13126 as_fatal (_("Intel MCU is 32bit only"));
13127 return ELF_TARGET_IAMCU_FORMAT;
13128 }
13129 else
13130 return format;
13131 }
13132 #endif
13133 #if defined (OBJ_MACH_O)
13134 case bfd_target_mach_o_flavour:
13135 if (flag_code == CODE_64BIT)
13136 {
13137 use_rela_relocations = 1;
13138 object_64bit = 1;
13139 return "mach-o-x86-64";
13140 }
13141 else
13142 return "mach-o-i386";
13143 #endif
13144 default:
13145 abort ();
13146 return NULL;
13147 }
13148 }
13149
13150 #endif /* OBJ_MAYBE_ more than one */
13151 \f
13152 symbolS *
13153 md_undefined_symbol (char *name)
13154 {
13155 if (name[0] == GLOBAL_OFFSET_TABLE_NAME[0]
13156 && name[1] == GLOBAL_OFFSET_TABLE_NAME[1]
13157 && name[2] == GLOBAL_OFFSET_TABLE_NAME[2]
13158 && strcmp (name, GLOBAL_OFFSET_TABLE_NAME) == 0)
13159 {
13160 if (!GOT_symbol)
13161 {
13162 if (symbol_find (name))
13163 as_bad (_("GOT already in symbol table"));
13164 GOT_symbol = symbol_new (name, undefined_section,
13165 (valueT) 0, &zero_address_frag);
13166 };
13167 return GOT_symbol;
13168 }
13169 return 0;
13170 }
13171
13172 /* Round up a section size to the appropriate boundary. */
13173
13174 valueT
13175 md_section_align (segT segment ATTRIBUTE_UNUSED, valueT size)
13176 {
13177 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
13178 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
13179 {
13180 /* For a.out, force the section size to be aligned. If we don't do
13181 this, BFD will align it for us, but it will not write out the
13182 final bytes of the section. This may be a bug in BFD, but it is
13183 easier to fix it here since that is how the other a.out targets
13184 work. */
13185 int align;
13186
13187 align = bfd_section_alignment (segment);
13188 size = ((size + (1 << align) - 1) & (-((valueT) 1 << align)));
13189 }
13190 #endif
13191
13192 return size;
13193 }
13194
13195 /* On the i386, PC-relative offsets are relative to the start of the
13196 next instruction. That is, the address of the offset, plus its
13197 size, since the offset is always the last part of the insn. */
13198
13199 long
13200 md_pcrel_from (fixS *fixP)
13201 {
13202 return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address;
13203 }
13204
13205 #ifndef I386COFF
13206
13207 static void
13208 s_bss (int ignore ATTRIBUTE_UNUSED)
13209 {
13210 int temp;
13211
13212 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
13213 if (IS_ELF)
13214 obj_elf_section_change_hook ();
13215 #endif
13216 temp = get_absolute_expression ();
13217 subseg_set (bss_section, (subsegT) temp);
13218 demand_empty_rest_of_line ();
13219 }
13220
13221 #endif
13222
13223 /* Remember constant directive. */
13224
13225 void
13226 i386_cons_align (int ignore ATTRIBUTE_UNUSED)
13227 {
13228 if (last_insn.kind != last_insn_directive
13229 && (bfd_section_flags (now_seg) & SEC_CODE))
13230 {
13231 last_insn.seg = now_seg;
13232 last_insn.kind = last_insn_directive;
13233 last_insn.name = "constant directive";
13234 last_insn.file = as_where (&last_insn.line);
13235 }
13236 }
13237
13238 void
13239 i386_validate_fix (fixS *fixp)
13240 {
13241 if (fixp->fx_subsy)
13242 {
13243 if (fixp->fx_subsy == GOT_symbol)
13244 {
13245 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
13246 {
13247 if (!object_64bit)
13248 abort ();
13249 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
13250 if (fixp->fx_tcbit2)
13251 fixp->fx_r_type = (fixp->fx_tcbit
13252 ? BFD_RELOC_X86_64_REX_GOTPCRELX
13253 : BFD_RELOC_X86_64_GOTPCRELX);
13254 else
13255 #endif
13256 fixp->fx_r_type = BFD_RELOC_X86_64_GOTPCREL;
13257 }
13258 else
13259 {
13260 if (!object_64bit)
13261 fixp->fx_r_type = BFD_RELOC_386_GOTOFF;
13262 else
13263 fixp->fx_r_type = BFD_RELOC_X86_64_GOTOFF64;
13264 }
13265 fixp->fx_subsy = 0;
13266 }
13267 }
13268 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
13269 else if (!object_64bit)
13270 {
13271 if (fixp->fx_r_type == BFD_RELOC_386_GOT32
13272 && fixp->fx_tcbit2)
13273 fixp->fx_r_type = BFD_RELOC_386_GOT32X;
13274 }
13275 #endif
13276 }
13277
13278 arelent *
13279 tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
13280 {
13281 arelent *rel;
13282 bfd_reloc_code_real_type code;
13283
13284 switch (fixp->fx_r_type)
13285 {
13286 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
13287 case BFD_RELOC_SIZE32:
13288 case BFD_RELOC_SIZE64:
13289 if (S_IS_DEFINED (fixp->fx_addsy)
13290 && !S_IS_EXTERNAL (fixp->fx_addsy))
13291 {
13292 /* Resolve size relocation against local symbol to size of
13293 the symbol plus addend. */
13294 valueT value = S_GET_SIZE (fixp->fx_addsy) + fixp->fx_offset;
13295 if (fixp->fx_r_type == BFD_RELOC_SIZE32
13296 && !fits_in_unsigned_long (value))
13297 as_bad_where (fixp->fx_file, fixp->fx_line,
13298 _("symbol size computation overflow"));
13299 fixp->fx_addsy = NULL;
13300 fixp->fx_subsy = NULL;
13301 md_apply_fix (fixp, (valueT *) &value, NULL);
13302 return NULL;
13303 }
13304 #endif
13305 /* Fall through. */
13306
13307 case BFD_RELOC_X86_64_PLT32:
13308 case BFD_RELOC_X86_64_GOT32:
13309 case BFD_RELOC_X86_64_GOTPCREL:
13310 case BFD_RELOC_X86_64_GOTPCRELX:
13311 case BFD_RELOC_X86_64_REX_GOTPCRELX:
13312 case BFD_RELOC_386_PLT32:
13313 case BFD_RELOC_386_GOT32:
13314 case BFD_RELOC_386_GOT32X:
13315 case BFD_RELOC_386_GOTOFF:
13316 case BFD_RELOC_386_GOTPC:
13317 case BFD_RELOC_386_TLS_GD:
13318 case BFD_RELOC_386_TLS_LDM:
13319 case BFD_RELOC_386_TLS_LDO_32:
13320 case BFD_RELOC_386_TLS_IE_32:
13321 case BFD_RELOC_386_TLS_IE:
13322 case BFD_RELOC_386_TLS_GOTIE:
13323 case BFD_RELOC_386_TLS_LE_32:
13324 case BFD_RELOC_386_TLS_LE:
13325 case BFD_RELOC_386_TLS_GOTDESC:
13326 case BFD_RELOC_386_TLS_DESC_CALL:
13327 case BFD_RELOC_X86_64_TLSGD:
13328 case BFD_RELOC_X86_64_TLSLD:
13329 case BFD_RELOC_X86_64_DTPOFF32:
13330 case BFD_RELOC_X86_64_DTPOFF64:
13331 case BFD_RELOC_X86_64_GOTTPOFF:
13332 case BFD_RELOC_X86_64_TPOFF32:
13333 case BFD_RELOC_X86_64_TPOFF64:
13334 case BFD_RELOC_X86_64_GOTOFF64:
13335 case BFD_RELOC_X86_64_GOTPC32:
13336 case BFD_RELOC_X86_64_GOT64:
13337 case BFD_RELOC_X86_64_GOTPCREL64:
13338 case BFD_RELOC_X86_64_GOTPC64:
13339 case BFD_RELOC_X86_64_GOTPLT64:
13340 case BFD_RELOC_X86_64_PLTOFF64:
13341 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
13342 case BFD_RELOC_X86_64_TLSDESC_CALL:
13343 case BFD_RELOC_RVA:
13344 case BFD_RELOC_VTABLE_ENTRY:
13345 case BFD_RELOC_VTABLE_INHERIT:
13346 #ifdef TE_PE
13347 case BFD_RELOC_32_SECREL:
13348 #endif
13349 code = fixp->fx_r_type;
13350 break;
13351 case BFD_RELOC_X86_64_32S:
13352 if (!fixp->fx_pcrel)
13353 {
13354 /* Don't turn BFD_RELOC_X86_64_32S into BFD_RELOC_32. */
13355 code = fixp->fx_r_type;
13356 break;
13357 }
13358 /* Fall through. */
13359 default:
13360 if (fixp->fx_pcrel)
13361 {
13362 switch (fixp->fx_size)
13363 {
13364 default:
13365 as_bad_where (fixp->fx_file, fixp->fx_line,
13366 _("can not do %d byte pc-relative relocation"),
13367 fixp->fx_size);
13368 code = BFD_RELOC_32_PCREL;
13369 break;
13370 case 1: code = BFD_RELOC_8_PCREL; break;
13371 case 2: code = BFD_RELOC_16_PCREL; break;
13372 case 4: code = BFD_RELOC_32_PCREL; break;
13373 #ifdef BFD64
13374 case 8: code = BFD_RELOC_64_PCREL; break;
13375 #endif
13376 }
13377 }
13378 else
13379 {
13380 switch (fixp->fx_size)
13381 {
13382 default:
13383 as_bad_where (fixp->fx_file, fixp->fx_line,
13384 _("can not do %d byte relocation"),
13385 fixp->fx_size);
13386 code = BFD_RELOC_32;
13387 break;
13388 case 1: code = BFD_RELOC_8; break;
13389 case 2: code = BFD_RELOC_16; break;
13390 case 4: code = BFD_RELOC_32; break;
13391 #ifdef BFD64
13392 case 8: code = BFD_RELOC_64; break;
13393 #endif
13394 }
13395 }
13396 break;
13397 }
13398
13399 if ((code == BFD_RELOC_32
13400 || code == BFD_RELOC_32_PCREL
13401 || code == BFD_RELOC_X86_64_32S)
13402 && GOT_symbol
13403 && fixp->fx_addsy == GOT_symbol)
13404 {
13405 if (!object_64bit)
13406 code = BFD_RELOC_386_GOTPC;
13407 else
13408 code = BFD_RELOC_X86_64_GOTPC32;
13409 }
13410 if ((code == BFD_RELOC_64 || code == BFD_RELOC_64_PCREL)
13411 && GOT_symbol
13412 && fixp->fx_addsy == GOT_symbol)
13413 {
13414 code = BFD_RELOC_X86_64_GOTPC64;
13415 }
13416
13417 rel = XNEW (arelent);
13418 rel->sym_ptr_ptr = XNEW (asymbol *);
13419 *rel->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
13420
13421 rel->address = fixp->fx_frag->fr_address + fixp->fx_where;
13422
13423 if (!use_rela_relocations)
13424 {
13425 /* HACK: Since i386 ELF uses Rel instead of Rela, encode the
13426 vtable entry to be used in the relocation's section offset. */
13427 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
13428 rel->address = fixp->fx_offset;
13429 #if defined (OBJ_COFF) && defined (TE_PE)
13430 else if (fixp->fx_addsy && S_IS_WEAK (fixp->fx_addsy))
13431 rel->addend = fixp->fx_addnumber - (S_GET_VALUE (fixp->fx_addsy) * 2);
13432 else
13433 #endif
13434 rel->addend = 0;
13435 }
13436 /* Use the rela in 64bit mode. */
13437 else
13438 {
13439 if (disallow_64bit_reloc)
13440 switch (code)
13441 {
13442 case BFD_RELOC_X86_64_DTPOFF64:
13443 case BFD_RELOC_X86_64_TPOFF64:
13444 case BFD_RELOC_64_PCREL:
13445 case BFD_RELOC_X86_64_GOTOFF64:
13446 case BFD_RELOC_X86_64_GOT64:
13447 case BFD_RELOC_X86_64_GOTPCREL64:
13448 case BFD_RELOC_X86_64_GOTPC64:
13449 case BFD_RELOC_X86_64_GOTPLT64:
13450 case BFD_RELOC_X86_64_PLTOFF64:
13451 as_bad_where (fixp->fx_file, fixp->fx_line,
13452 _("cannot represent relocation type %s in x32 mode"),
13453 bfd_get_reloc_code_name (code));
13454 break;
13455 default:
13456 break;
13457 }
13458
13459 if (!fixp->fx_pcrel)
13460 rel->addend = fixp->fx_offset;
13461 else
13462 switch (code)
13463 {
13464 case BFD_RELOC_X86_64_PLT32:
13465 case BFD_RELOC_X86_64_GOT32:
13466 case BFD_RELOC_X86_64_GOTPCREL:
13467 case BFD_RELOC_X86_64_GOTPCRELX:
13468 case BFD_RELOC_X86_64_REX_GOTPCRELX:
13469 case BFD_RELOC_X86_64_TLSGD:
13470 case BFD_RELOC_X86_64_TLSLD:
13471 case BFD_RELOC_X86_64_GOTTPOFF:
13472 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
13473 case BFD_RELOC_X86_64_TLSDESC_CALL:
13474 rel->addend = fixp->fx_offset - fixp->fx_size;
13475 break;
13476 default:
13477 rel->addend = (section->vma
13478 - fixp->fx_size
13479 + fixp->fx_addnumber
13480 + md_pcrel_from (fixp));
13481 break;
13482 }
13483 }
13484
13485 rel->howto = bfd_reloc_type_lookup (stdoutput, code);
13486 if (rel->howto == NULL)
13487 {
13488 as_bad_where (fixp->fx_file, fixp->fx_line,
13489 _("cannot represent relocation type %s"),
13490 bfd_get_reloc_code_name (code));
13491 /* Set howto to a garbage value so that we can keep going. */
13492 rel->howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_32);
13493 gas_assert (rel->howto != NULL);
13494 }
13495
13496 return rel;
13497 }
13498
13499 #include "tc-i386-intel.c"
13500
13501 void
13502 tc_x86_parse_to_dw2regnum (expressionS *exp)
13503 {
13504 int saved_naked_reg;
13505 char saved_register_dot;
13506
13507 saved_naked_reg = allow_naked_reg;
13508 allow_naked_reg = 1;
13509 saved_register_dot = register_chars['.'];
13510 register_chars['.'] = '.';
13511 allow_pseudo_reg = 1;
13512 expression_and_evaluate (exp);
13513 allow_pseudo_reg = 0;
13514 register_chars['.'] = saved_register_dot;
13515 allow_naked_reg = saved_naked_reg;
13516
13517 if (exp->X_op == O_register && exp->X_add_number >= 0)
13518 {
13519 if ((addressT) exp->X_add_number < i386_regtab_size)
13520 {
13521 exp->X_op = O_constant;
13522 exp->X_add_number = i386_regtab[exp->X_add_number]
13523 .dw2_regnum[flag_code >> 1];
13524 }
13525 else
13526 exp->X_op = O_illegal;
13527 }
13528 }
13529
13530 void
13531 tc_x86_frame_initial_instructions (void)
13532 {
13533 static unsigned int sp_regno[2];
13534
13535 if (!sp_regno[flag_code >> 1])
13536 {
13537 char *saved_input = input_line_pointer;
13538 char sp[][4] = {"esp", "rsp"};
13539 expressionS exp;
13540
13541 input_line_pointer = sp[flag_code >> 1];
13542 tc_x86_parse_to_dw2regnum (&exp);
13543 gas_assert (exp.X_op == O_constant);
13544 sp_regno[flag_code >> 1] = exp.X_add_number;
13545 input_line_pointer = saved_input;
13546 }
13547
13548 cfi_add_CFA_def_cfa (sp_regno[flag_code >> 1], -x86_cie_data_alignment);
13549 cfi_add_CFA_offset (x86_dwarf2_return_column, x86_cie_data_alignment);
13550 }
13551
13552 int
13553 x86_dwarf2_addr_size (void)
13554 {
13555 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
13556 if (x86_elf_abi == X86_64_X32_ABI)
13557 return 4;
13558 #endif
13559 return bfd_arch_bits_per_address (stdoutput) / 8;
13560 }
13561
13562 int
13563 i386_elf_section_type (const char *str, size_t len)
13564 {
13565 if (flag_code == CODE_64BIT
13566 && len == sizeof ("unwind") - 1
13567 && strncmp (str, "unwind", 6) == 0)
13568 return SHT_X86_64_UNWIND;
13569
13570 return -1;
13571 }
13572
13573 #ifdef TE_SOLARIS
13574 void
13575 i386_solaris_fix_up_eh_frame (segT sec)
13576 {
13577 if (flag_code == CODE_64BIT)
13578 elf_section_type (sec) = SHT_X86_64_UNWIND;
13579 }
13580 #endif
13581
13582 #ifdef TE_PE
13583 void
13584 tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
13585 {
13586 expressionS exp;
13587
13588 exp.X_op = O_secrel;
13589 exp.X_add_symbol = symbol;
13590 exp.X_add_number = 0;
13591 emit_expr (&exp, size);
13592 }
13593 #endif
13594
13595 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
13596 /* For ELF on x86-64, add support for SHF_X86_64_LARGE. */
13597
13598 bfd_vma
13599 x86_64_section_letter (int letter, const char **ptr_msg)
13600 {
13601 if (flag_code == CODE_64BIT)
13602 {
13603 if (letter == 'l')
13604 return SHF_X86_64_LARGE;
13605
13606 *ptr_msg = _("bad .section directive: want a,l,w,x,M,S,G,T in string");
13607 }
13608 else
13609 *ptr_msg = _("bad .section directive: want a,w,x,M,S,G,T in string");
13610 return -1;
13611 }
13612
13613 bfd_vma
13614 x86_64_section_word (char *str, size_t len)
13615 {
13616 if (len == 5 && flag_code == CODE_64BIT && CONST_STRNEQ (str, "large"))
13617 return SHF_X86_64_LARGE;
13618
13619 return -1;
13620 }
13621
13622 static void
13623 handle_large_common (int small ATTRIBUTE_UNUSED)
13624 {
13625 if (flag_code != CODE_64BIT)
13626 {
13627 s_comm_internal (0, elf_common_parse);
13628 as_warn (_(".largecomm supported only in 64bit mode, producing .comm"));
13629 }
13630 else
13631 {
13632 static segT lbss_section;
13633 asection *saved_com_section_ptr = elf_com_section_ptr;
13634 asection *saved_bss_section = bss_section;
13635
13636 if (lbss_section == NULL)
13637 {
13638 flagword applicable;
13639 segT seg = now_seg;
13640 subsegT subseg = now_subseg;
13641
13642 /* The .lbss section is for local .largecomm symbols. */
13643 lbss_section = subseg_new (".lbss", 0);
13644 applicable = bfd_applicable_section_flags (stdoutput);
13645 bfd_set_section_flags (lbss_section, applicable & SEC_ALLOC);
13646 seg_info (lbss_section)->bss = 1;
13647
13648 subseg_set (seg, subseg);
13649 }
13650
13651 elf_com_section_ptr = &_bfd_elf_large_com_section;
13652 bss_section = lbss_section;
13653
13654 s_comm_internal (0, elf_common_parse);
13655
13656 elf_com_section_ptr = saved_com_section_ptr;
13657 bss_section = saved_bss_section;
13658 }
13659 }
13660 #endif /* OBJ_ELF || OBJ_MAYBE_ELF */
This page took 0.527396 seconds and 4 git commands to generate.