7126ca47fd175af07f390c08266e192d4f614c2d
[deliverable/binutils-gdb.git] / gas / config / tc-i386.c
1 /* tc-i386.c -- Assemble code for the Intel 80386
2 Copyright (C) 1989-2018 Free Software Foundation, Inc.
3
4 This file is part of GAS, the GNU Assembler.
5
6 GAS is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
10
11 GAS is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GAS; see the file COPYING. If not, write to the Free
18 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
19 02110-1301, USA. */
20
21 /* Intel 80386 machine specific gas.
22 Written by Eliot Dresselhaus (eliot@mgm.mit.edu).
23 x86_64 support by Jan Hubicka (jh@suse.cz)
24 VIA PadLock support by Michal Ludvig (mludvig@suse.cz)
25 Bugs & suggestions are completely welcome. This is free software.
26 Please help us make it better. */
27
28 #include "as.h"
29 #include "safe-ctype.h"
30 #include "subsegs.h"
31 #include "dwarf2dbg.h"
32 #include "dw2gencfi.h"
33 #include "elf/x86-64.h"
34 #include "opcodes/i386-init.h"
35
36 #ifndef REGISTER_WARNINGS
37 #define REGISTER_WARNINGS 1
38 #endif
39
40 #ifndef INFER_ADDR_PREFIX
41 #define INFER_ADDR_PREFIX 1
42 #endif
43
44 #ifndef DEFAULT_ARCH
45 #define DEFAULT_ARCH "i386"
46 #endif
47
48 #ifndef INLINE
49 #if __GNUC__ >= 2
50 #define INLINE __inline__
51 #else
52 #define INLINE
53 #endif
54 #endif
55
56 /* Prefixes will be emitted in the order defined below.
57 WAIT_PREFIX must be the first prefix since FWAIT is really is an
58 instruction, and so must come before any prefixes.
59 The preferred prefix order is SEG_PREFIX, ADDR_PREFIX, DATA_PREFIX,
60 REP_PREFIX/HLE_PREFIX, LOCK_PREFIX. */
61 #define WAIT_PREFIX 0
62 #define SEG_PREFIX 1
63 #define ADDR_PREFIX 2
64 #define DATA_PREFIX 3
65 #define REP_PREFIX 4
66 #define HLE_PREFIX REP_PREFIX
67 #define BND_PREFIX REP_PREFIX
68 #define LOCK_PREFIX 5
69 #define REX_PREFIX 6 /* must come last. */
70 #define MAX_PREFIXES 7 /* max prefixes per opcode */
71
72 /* we define the syntax here (modulo base,index,scale syntax) */
73 #define REGISTER_PREFIX '%'
74 #define IMMEDIATE_PREFIX '$'
75 #define ABSOLUTE_PREFIX '*'
76
77 /* these are the instruction mnemonic suffixes in AT&T syntax or
78 memory operand size in Intel syntax. */
79 #define WORD_MNEM_SUFFIX 'w'
80 #define BYTE_MNEM_SUFFIX 'b'
81 #define SHORT_MNEM_SUFFIX 's'
82 #define LONG_MNEM_SUFFIX 'l'
83 #define QWORD_MNEM_SUFFIX 'q'
84 /* Intel Syntax. Use a non-ascii letter since since it never appears
85 in instructions. */
86 #define LONG_DOUBLE_MNEM_SUFFIX '\1'
87
88 #define END_OF_INSN '\0'
89
90 /*
91 'templates' is for grouping together 'template' structures for opcodes
92 of the same name. This is only used for storing the insns in the grand
93 ole hash table of insns.
94 The templates themselves start at START and range up to (but not including)
95 END.
96 */
97 typedef struct
98 {
99 const insn_template *start;
100 const insn_template *end;
101 }
102 templates;
103
104 /* 386 operand encoding bytes: see 386 book for details of this. */
105 typedef struct
106 {
107 unsigned int regmem; /* codes register or memory operand */
108 unsigned int reg; /* codes register operand (or extended opcode) */
109 unsigned int mode; /* how to interpret regmem & reg */
110 }
111 modrm_byte;
112
113 /* x86-64 extension prefix. */
114 typedef int rex_byte;
115
116 /* 386 opcode byte to code indirect addressing. */
117 typedef struct
118 {
119 unsigned base;
120 unsigned index;
121 unsigned scale;
122 }
123 sib_byte;
124
125 /* x86 arch names, types and features */
126 typedef struct
127 {
128 const char *name; /* arch name */
129 unsigned int len; /* arch string length */
130 enum processor_type type; /* arch type */
131 i386_cpu_flags flags; /* cpu feature flags */
132 unsigned int skip; /* show_arch should skip this. */
133 }
134 arch_entry;
135
136 /* Used to turn off indicated flags. */
137 typedef struct
138 {
139 const char *name; /* arch name */
140 unsigned int len; /* arch string length */
141 i386_cpu_flags flags; /* cpu feature flags */
142 }
143 noarch_entry;
144
145 static void update_code_flag (int, int);
146 static void set_code_flag (int);
147 static void set_16bit_gcc_code_flag (int);
148 static void set_intel_syntax (int);
149 static void set_intel_mnemonic (int);
150 static void set_allow_index_reg (int);
151 static void set_check (int);
152 static void set_cpu_arch (int);
153 #ifdef TE_PE
154 static void pe_directive_secrel (int);
155 #endif
156 static void signed_cons (int);
157 static char *output_invalid (int c);
158 static int i386_finalize_immediate (segT, expressionS *, i386_operand_type,
159 const char *);
160 static int i386_finalize_displacement (segT, expressionS *, i386_operand_type,
161 const char *);
162 static int i386_att_operand (char *);
163 static int i386_intel_operand (char *, int);
164 static int i386_intel_simplify (expressionS *);
165 static int i386_intel_parse_name (const char *, expressionS *);
166 static const reg_entry *parse_register (char *, char **);
167 static char *parse_insn (char *, char *);
168 static char *parse_operands (char *, const char *);
169 static void swap_operands (void);
170 static void swap_2_operands (int, int);
171 static void optimize_imm (void);
172 static void optimize_disp (void);
173 static const insn_template *match_template (char);
174 static int check_string (void);
175 static int process_suffix (void);
176 static int check_byte_reg (void);
177 static int check_long_reg (void);
178 static int check_qword_reg (void);
179 static int check_word_reg (void);
180 static int finalize_imm (void);
181 static int process_operands (void);
182 static const seg_entry *build_modrm_byte (void);
183 static void output_insn (void);
184 static void output_imm (fragS *, offsetT);
185 static void output_disp (fragS *, offsetT);
186 #ifndef I386COFF
187 static void s_bss (int);
188 #endif
189 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
190 static void handle_large_common (int small ATTRIBUTE_UNUSED);
191 #endif
192
193 static const char *default_arch = DEFAULT_ARCH;
194
195 /* This struct describes rounding control and SAE in the instruction. */
196 struct RC_Operation
197 {
198 enum rc_type
199 {
200 rne = 0,
201 rd,
202 ru,
203 rz,
204 saeonly
205 } type;
206 int operand;
207 };
208
209 static struct RC_Operation rc_op;
210
211 /* The struct describes masking, applied to OPERAND in the instruction.
212 MASK is a pointer to the corresponding mask register. ZEROING tells
213 whether merging or zeroing mask is used. */
214 struct Mask_Operation
215 {
216 const reg_entry *mask;
217 unsigned int zeroing;
218 /* The operand where this operation is associated. */
219 int operand;
220 };
221
222 static struct Mask_Operation mask_op;
223
224 /* The struct describes broadcasting, applied to OPERAND. FACTOR is
225 broadcast factor. */
226 struct Broadcast_Operation
227 {
228 /* Type of broadcast: {1to2}, {1to4}, {1to8}, or {1to16}. */
229 int type;
230
231 /* Index of broadcasted operand. */
232 int operand;
233 };
234
235 static struct Broadcast_Operation broadcast_op;
236
237 /* VEX prefix. */
238 typedef struct
239 {
240 /* VEX prefix is either 2 byte or 3 byte. EVEX is 4 byte. */
241 unsigned char bytes[4];
242 unsigned int length;
243 /* Destination or source register specifier. */
244 const reg_entry *register_specifier;
245 } vex_prefix;
246
247 /* 'md_assemble ()' gathers together information and puts it into a
248 i386_insn. */
249
250 union i386_op
251 {
252 expressionS *disps;
253 expressionS *imms;
254 const reg_entry *regs;
255 };
256
257 enum i386_error
258 {
259 operand_size_mismatch,
260 operand_type_mismatch,
261 register_type_mismatch,
262 number_of_operands_mismatch,
263 invalid_instruction_suffix,
264 bad_imm4,
265 unsupported_with_intel_mnemonic,
266 unsupported_syntax,
267 unsupported,
268 invalid_vsib_address,
269 invalid_vector_register_set,
270 unsupported_vector_index_register,
271 unsupported_broadcast,
272 broadcast_not_on_src_operand,
273 broadcast_needed,
274 unsupported_masking,
275 mask_not_on_destination,
276 no_default_mask,
277 unsupported_rc_sae,
278 rc_sae_operand_not_last_imm,
279 invalid_register_operand,
280 };
281
282 struct _i386_insn
283 {
284 /* TM holds the template for the insn were currently assembling. */
285 insn_template tm;
286
287 /* SUFFIX holds the instruction size suffix for byte, word, dword
288 or qword, if given. */
289 char suffix;
290
291 /* OPERANDS gives the number of given operands. */
292 unsigned int operands;
293
294 /* REG_OPERANDS, DISP_OPERANDS, MEM_OPERANDS, IMM_OPERANDS give the number
295 of given register, displacement, memory operands and immediate
296 operands. */
297 unsigned int reg_operands, disp_operands, mem_operands, imm_operands;
298
299 /* TYPES [i] is the type (see above #defines) which tells us how to
300 use OP[i] for the corresponding operand. */
301 i386_operand_type types[MAX_OPERANDS];
302
303 /* Displacement expression, immediate expression, or register for each
304 operand. */
305 union i386_op op[MAX_OPERANDS];
306
307 /* Flags for operands. */
308 unsigned int flags[MAX_OPERANDS];
309 #define Operand_PCrel 1
310
311 /* Relocation type for operand */
312 enum bfd_reloc_code_real reloc[MAX_OPERANDS];
313
314 /* BASE_REG, INDEX_REG, and LOG2_SCALE_FACTOR are used to encode
315 the base index byte below. */
316 const reg_entry *base_reg;
317 const reg_entry *index_reg;
318 unsigned int log2_scale_factor;
319
320 /* SEG gives the seg_entries of this insn. They are zero unless
321 explicit segment overrides are given. */
322 const seg_entry *seg[2];
323
324 /* Copied first memory operand string, for re-checking. */
325 char *memop1_string;
326
327 /* PREFIX holds all the given prefix opcodes (usually null).
328 PREFIXES is the number of prefix opcodes. */
329 unsigned int prefixes;
330 unsigned char prefix[MAX_PREFIXES];
331
332 /* RM and SIB are the modrm byte and the sib byte where the
333 addressing modes of this insn are encoded. */
334 modrm_byte rm;
335 rex_byte rex;
336 rex_byte vrex;
337 sib_byte sib;
338 vex_prefix vex;
339
340 /* Masking attributes. */
341 struct Mask_Operation *mask;
342
343 /* Rounding control and SAE attributes. */
344 struct RC_Operation *rounding;
345
346 /* Broadcasting attributes. */
347 struct Broadcast_Operation *broadcast;
348
349 /* Compressed disp8*N attribute. */
350 unsigned int memshift;
351
352 /* Prefer load or store in encoding. */
353 enum
354 {
355 dir_encoding_default = 0,
356 dir_encoding_load,
357 dir_encoding_store
358 } dir_encoding;
359
360 /* Prefer 8bit or 32bit displacement in encoding. */
361 enum
362 {
363 disp_encoding_default = 0,
364 disp_encoding_8bit,
365 disp_encoding_32bit
366 } disp_encoding;
367
368 /* Prefer the REX byte in encoding. */
369 bfd_boolean rex_encoding;
370
371 /* Disable instruction size optimization. */
372 bfd_boolean no_optimize;
373
374 /* How to encode vector instructions. */
375 enum
376 {
377 vex_encoding_default = 0,
378 vex_encoding_vex2,
379 vex_encoding_vex3,
380 vex_encoding_evex
381 } vec_encoding;
382
383 /* REP prefix. */
384 const char *rep_prefix;
385
386 /* HLE prefix. */
387 const char *hle_prefix;
388
389 /* Have BND prefix. */
390 const char *bnd_prefix;
391
392 /* Have NOTRACK prefix. */
393 const char *notrack_prefix;
394
395 /* Error message. */
396 enum i386_error error;
397 };
398
399 typedef struct _i386_insn i386_insn;
400
401 /* Link RC type with corresponding string, that'll be looked for in
402 asm. */
403 struct RC_name
404 {
405 enum rc_type type;
406 const char *name;
407 unsigned int len;
408 };
409
410 static const struct RC_name RC_NamesTable[] =
411 {
412 { rne, STRING_COMMA_LEN ("rn-sae") },
413 { rd, STRING_COMMA_LEN ("rd-sae") },
414 { ru, STRING_COMMA_LEN ("ru-sae") },
415 { rz, STRING_COMMA_LEN ("rz-sae") },
416 { saeonly, STRING_COMMA_LEN ("sae") },
417 };
418
419 /* List of chars besides those in app.c:symbol_chars that can start an
420 operand. Used to prevent the scrubber eating vital white-space. */
421 const char extra_symbol_chars[] = "*%-([{}"
422 #ifdef LEX_AT
423 "@"
424 #endif
425 #ifdef LEX_QM
426 "?"
427 #endif
428 ;
429
430 #if (defined (TE_I386AIX) \
431 || ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) \
432 && !defined (TE_GNU) \
433 && !defined (TE_LINUX) \
434 && !defined (TE_NACL) \
435 && !defined (TE_FreeBSD) \
436 && !defined (TE_DragonFly) \
437 && !defined (TE_NetBSD)))
438 /* This array holds the chars that always start a comment. If the
439 pre-processor is disabled, these aren't very useful. The option
440 --divide will remove '/' from this list. */
441 const char *i386_comment_chars = "#/";
442 #define SVR4_COMMENT_CHARS 1
443 #define PREFIX_SEPARATOR '\\'
444
445 #else
446 const char *i386_comment_chars = "#";
447 #define PREFIX_SEPARATOR '/'
448 #endif
449
450 /* This array holds the chars that only start a comment at the beginning of
451 a line. If the line seems to have the form '# 123 filename'
452 .line and .file directives will appear in the pre-processed output.
453 Note that input_file.c hand checks for '#' at the beginning of the
454 first line of the input file. This is because the compiler outputs
455 #NO_APP at the beginning of its output.
456 Also note that comments started like this one will always work if
457 '/' isn't otherwise defined. */
458 const char line_comment_chars[] = "#/";
459
460 const char line_separator_chars[] = ";";
461
462 /* Chars that can be used to separate mant from exp in floating point
463 nums. */
464 const char EXP_CHARS[] = "eE";
465
466 /* Chars that mean this number is a floating point constant
467 As in 0f12.456
468 or 0d1.2345e12. */
469 const char FLT_CHARS[] = "fFdDxX";
470
471 /* Tables for lexical analysis. */
472 static char mnemonic_chars[256];
473 static char register_chars[256];
474 static char operand_chars[256];
475 static char identifier_chars[256];
476 static char digit_chars[256];
477
478 /* Lexical macros. */
479 #define is_mnemonic_char(x) (mnemonic_chars[(unsigned char) x])
480 #define is_operand_char(x) (operand_chars[(unsigned char) x])
481 #define is_register_char(x) (register_chars[(unsigned char) x])
482 #define is_space_char(x) ((x) == ' ')
483 #define is_identifier_char(x) (identifier_chars[(unsigned char) x])
484 #define is_digit_char(x) (digit_chars[(unsigned char) x])
485
486 /* All non-digit non-letter characters that may occur in an operand. */
487 static char operand_special_chars[] = "%$-+(,)*._~/<>|&^!:[@]";
488
489 /* md_assemble() always leaves the strings it's passed unaltered. To
490 effect this we maintain a stack of saved characters that we've smashed
491 with '\0's (indicating end of strings for various sub-fields of the
492 assembler instruction). */
493 static char save_stack[32];
494 static char *save_stack_p;
495 #define END_STRING_AND_SAVE(s) \
496 do { *save_stack_p++ = *(s); *(s) = '\0'; } while (0)
497 #define RESTORE_END_STRING(s) \
498 do { *(s) = *--save_stack_p; } while (0)
499
500 /* The instruction we're assembling. */
501 static i386_insn i;
502
503 /* Possible templates for current insn. */
504 static const templates *current_templates;
505
506 /* Per instruction expressionS buffers: max displacements & immediates. */
507 static expressionS disp_expressions[MAX_MEMORY_OPERANDS];
508 static expressionS im_expressions[MAX_IMMEDIATE_OPERANDS];
509
510 /* Current operand we are working on. */
511 static int this_operand = -1;
512
513 /* We support four different modes. FLAG_CODE variable is used to distinguish
514 these. */
515
516 enum flag_code {
517 CODE_32BIT,
518 CODE_16BIT,
519 CODE_64BIT };
520
521 static enum flag_code flag_code;
522 static unsigned int object_64bit;
523 static unsigned int disallow_64bit_reloc;
524 static int use_rela_relocations = 0;
525
526 #if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
527 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
528 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
529
530 /* The ELF ABI to use. */
531 enum x86_elf_abi
532 {
533 I386_ABI,
534 X86_64_ABI,
535 X86_64_X32_ABI
536 };
537
538 static enum x86_elf_abi x86_elf_abi = I386_ABI;
539 #endif
540
541 #if defined (TE_PE) || defined (TE_PEP)
542 /* Use big object file format. */
543 static int use_big_obj = 0;
544 #endif
545
546 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
547 /* 1 if generating code for a shared library. */
548 static int shared = 0;
549 #endif
550
551 /* 1 for intel syntax,
552 0 if att syntax. */
553 static int intel_syntax = 0;
554
555 /* 1 for Intel64 ISA,
556 0 if AMD64 ISA. */
557 static int intel64;
558
559 /* 1 for intel mnemonic,
560 0 if att mnemonic. */
561 static int intel_mnemonic = !SYSV386_COMPAT;
562
563 /* 1 if pseudo registers are permitted. */
564 static int allow_pseudo_reg = 0;
565
566 /* 1 if register prefix % not required. */
567 static int allow_naked_reg = 0;
568
569 /* 1 if the assembler should add BND prefix for all control-transferring
570 instructions supporting it, even if this prefix wasn't specified
571 explicitly. */
572 static int add_bnd_prefix = 0;
573
574 /* 1 if pseudo index register, eiz/riz, is allowed . */
575 static int allow_index_reg = 0;
576
577 /* 1 if the assembler should ignore LOCK prefix, even if it was
578 specified explicitly. */
579 static int omit_lock_prefix = 0;
580
581 /* 1 if the assembler should encode lfence, mfence, and sfence as
582 "lock addl $0, (%{re}sp)". */
583 static int avoid_fence = 0;
584
585 /* 1 if the assembler should generate relax relocations. */
586
587 static int generate_relax_relocations
588 = DEFAULT_GENERATE_X86_RELAX_RELOCATIONS;
589
590 static enum check_kind
591 {
592 check_none = 0,
593 check_warning,
594 check_error
595 }
596 sse_check, operand_check = check_warning;
597
598 /* Optimization:
599 1. Clear the REX_W bit with register operand if possible.
600 2. Above plus use 128bit vector instruction to clear the full vector
601 register.
602 */
603 static int optimize = 0;
604
605 /* Optimization:
606 1. Clear the REX_W bit with register operand if possible.
607 2. Above plus use 128bit vector instruction to clear the full vector
608 register.
609 3. Above plus optimize "test{q,l,w} $imm8,%r{64,32,16}" to
610 "testb $imm7,%r8".
611 */
612 static int optimize_for_space = 0;
613
614 /* Register prefix used for error message. */
615 static const char *register_prefix = "%";
616
617 /* Used in 16 bit gcc mode to add an l suffix to call, ret, enter,
618 leave, push, and pop instructions so that gcc has the same stack
619 frame as in 32 bit mode. */
620 static char stackop_size = '\0';
621
622 /* Non-zero to optimize code alignment. */
623 int optimize_align_code = 1;
624
625 /* Non-zero to quieten some warnings. */
626 static int quiet_warnings = 0;
627
628 /* CPU name. */
629 static const char *cpu_arch_name = NULL;
630 static char *cpu_sub_arch_name = NULL;
631
632 /* CPU feature flags. */
633 static i386_cpu_flags cpu_arch_flags = CPU_UNKNOWN_FLAGS;
634
635 /* If we have selected a cpu we are generating instructions for. */
636 static int cpu_arch_tune_set = 0;
637
638 /* Cpu we are generating instructions for. */
639 enum processor_type cpu_arch_tune = PROCESSOR_UNKNOWN;
640
641 /* CPU feature flags of cpu we are generating instructions for. */
642 static i386_cpu_flags cpu_arch_tune_flags;
643
644 /* CPU instruction set architecture used. */
645 enum processor_type cpu_arch_isa = PROCESSOR_UNKNOWN;
646
647 /* CPU feature flags of instruction set architecture used. */
648 i386_cpu_flags cpu_arch_isa_flags;
649
650 /* If set, conditional jumps are not automatically promoted to handle
651 larger than a byte offset. */
652 static unsigned int no_cond_jump_promotion = 0;
653
654 /* Encode SSE instructions with VEX prefix. */
655 static unsigned int sse2avx;
656
657 /* Encode scalar AVX instructions with specific vector length. */
658 static enum
659 {
660 vex128 = 0,
661 vex256
662 } avxscalar;
663
664 /* Encode scalar EVEX LIG instructions with specific vector length. */
665 static enum
666 {
667 evexl128 = 0,
668 evexl256,
669 evexl512
670 } evexlig;
671
672 /* Encode EVEX WIG instructions with specific evex.w. */
673 static enum
674 {
675 evexw0 = 0,
676 evexw1
677 } evexwig;
678
679 /* Value to encode in EVEX RC bits, for SAE-only instructions. */
680 static enum rc_type evexrcig = rne;
681
682 /* Pre-defined "_GLOBAL_OFFSET_TABLE_". */
683 static symbolS *GOT_symbol;
684
685 /* The dwarf2 return column, adjusted for 32 or 64 bit. */
686 unsigned int x86_dwarf2_return_column;
687
688 /* The dwarf2 data alignment, adjusted for 32 or 64 bit. */
689 int x86_cie_data_alignment;
690
691 /* Interface to relax_segment.
692 There are 3 major relax states for 386 jump insns because the
693 different types of jumps add different sizes to frags when we're
694 figuring out what sort of jump to choose to reach a given label. */
695
696 /* Types. */
697 #define UNCOND_JUMP 0
698 #define COND_JUMP 1
699 #define COND_JUMP86 2
700
701 /* Sizes. */
702 #define CODE16 1
703 #define SMALL 0
704 #define SMALL16 (SMALL | CODE16)
705 #define BIG 2
706 #define BIG16 (BIG | CODE16)
707
708 #ifndef INLINE
709 #ifdef __GNUC__
710 #define INLINE __inline__
711 #else
712 #define INLINE
713 #endif
714 #endif
715
716 #define ENCODE_RELAX_STATE(type, size) \
717 ((relax_substateT) (((type) << 2) | (size)))
718 #define TYPE_FROM_RELAX_STATE(s) \
719 ((s) >> 2)
720 #define DISP_SIZE_FROM_RELAX_STATE(s) \
721 ((((s) & 3) == BIG ? 4 : (((s) & 3) == BIG16 ? 2 : 1)))
722
723 /* This table is used by relax_frag to promote short jumps to long
724 ones where necessary. SMALL (short) jumps may be promoted to BIG
725 (32 bit long) ones, and SMALL16 jumps to BIG16 (16 bit long). We
726 don't allow a short jump in a 32 bit code segment to be promoted to
727 a 16 bit offset jump because it's slower (requires data size
728 prefix), and doesn't work, unless the destination is in the bottom
729 64k of the code segment (The top 16 bits of eip are zeroed). */
730
731 const relax_typeS md_relax_table[] =
732 {
733 /* The fields are:
734 1) most positive reach of this state,
735 2) most negative reach of this state,
736 3) how many bytes this mode will have in the variable part of the frag
737 4) which index into the table to try if we can't fit into this one. */
738
739 /* UNCOND_JUMP states. */
740 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG)},
741 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16)},
742 /* dword jmp adds 4 bytes to frag:
743 0 extra opcode bytes, 4 displacement bytes. */
744 {0, 0, 4, 0},
745 /* word jmp adds 2 byte2 to frag:
746 0 extra opcode bytes, 2 displacement bytes. */
747 {0, 0, 2, 0},
748
749 /* COND_JUMP states. */
750 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG)},
751 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG16)},
752 /* dword conditionals adds 5 bytes to frag:
753 1 extra opcode byte, 4 displacement bytes. */
754 {0, 0, 5, 0},
755 /* word conditionals add 3 bytes to frag:
756 1 extra opcode byte, 2 displacement bytes. */
757 {0, 0, 3, 0},
758
759 /* COND_JUMP86 states. */
760 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG)},
761 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG16)},
762 /* dword conditionals adds 5 bytes to frag:
763 1 extra opcode byte, 4 displacement bytes. */
764 {0, 0, 5, 0},
765 /* word conditionals add 4 bytes to frag:
766 1 displacement byte and a 3 byte long branch insn. */
767 {0, 0, 4, 0}
768 };
769
770 static const arch_entry cpu_arch[] =
771 {
772 /* Do not replace the first two entries - i386_target_format()
773 relies on them being there in this order. */
774 { STRING_COMMA_LEN ("generic32"), PROCESSOR_GENERIC32,
775 CPU_GENERIC32_FLAGS, 0 },
776 { STRING_COMMA_LEN ("generic64"), PROCESSOR_GENERIC64,
777 CPU_GENERIC64_FLAGS, 0 },
778 { STRING_COMMA_LEN ("i8086"), PROCESSOR_UNKNOWN,
779 CPU_NONE_FLAGS, 0 },
780 { STRING_COMMA_LEN ("i186"), PROCESSOR_UNKNOWN,
781 CPU_I186_FLAGS, 0 },
782 { STRING_COMMA_LEN ("i286"), PROCESSOR_UNKNOWN,
783 CPU_I286_FLAGS, 0 },
784 { STRING_COMMA_LEN ("i386"), PROCESSOR_I386,
785 CPU_I386_FLAGS, 0 },
786 { STRING_COMMA_LEN ("i486"), PROCESSOR_I486,
787 CPU_I486_FLAGS, 0 },
788 { STRING_COMMA_LEN ("i586"), PROCESSOR_PENTIUM,
789 CPU_I586_FLAGS, 0 },
790 { STRING_COMMA_LEN ("i686"), PROCESSOR_PENTIUMPRO,
791 CPU_I686_FLAGS, 0 },
792 { STRING_COMMA_LEN ("pentium"), PROCESSOR_PENTIUM,
793 CPU_I586_FLAGS, 0 },
794 { STRING_COMMA_LEN ("pentiumpro"), PROCESSOR_PENTIUMPRO,
795 CPU_PENTIUMPRO_FLAGS, 0 },
796 { STRING_COMMA_LEN ("pentiumii"), PROCESSOR_PENTIUMPRO,
797 CPU_P2_FLAGS, 0 },
798 { STRING_COMMA_LEN ("pentiumiii"),PROCESSOR_PENTIUMPRO,
799 CPU_P3_FLAGS, 0 },
800 { STRING_COMMA_LEN ("pentium4"), PROCESSOR_PENTIUM4,
801 CPU_P4_FLAGS, 0 },
802 { STRING_COMMA_LEN ("prescott"), PROCESSOR_NOCONA,
803 CPU_CORE_FLAGS, 0 },
804 { STRING_COMMA_LEN ("nocona"), PROCESSOR_NOCONA,
805 CPU_NOCONA_FLAGS, 0 },
806 { STRING_COMMA_LEN ("yonah"), PROCESSOR_CORE,
807 CPU_CORE_FLAGS, 1 },
808 { STRING_COMMA_LEN ("core"), PROCESSOR_CORE,
809 CPU_CORE_FLAGS, 0 },
810 { STRING_COMMA_LEN ("merom"), PROCESSOR_CORE2,
811 CPU_CORE2_FLAGS, 1 },
812 { STRING_COMMA_LEN ("core2"), PROCESSOR_CORE2,
813 CPU_CORE2_FLAGS, 0 },
814 { STRING_COMMA_LEN ("corei7"), PROCESSOR_COREI7,
815 CPU_COREI7_FLAGS, 0 },
816 { STRING_COMMA_LEN ("l1om"), PROCESSOR_L1OM,
817 CPU_L1OM_FLAGS, 0 },
818 { STRING_COMMA_LEN ("k1om"), PROCESSOR_K1OM,
819 CPU_K1OM_FLAGS, 0 },
820 { STRING_COMMA_LEN ("iamcu"), PROCESSOR_IAMCU,
821 CPU_IAMCU_FLAGS, 0 },
822 { STRING_COMMA_LEN ("k6"), PROCESSOR_K6,
823 CPU_K6_FLAGS, 0 },
824 { STRING_COMMA_LEN ("k6_2"), PROCESSOR_K6,
825 CPU_K6_2_FLAGS, 0 },
826 { STRING_COMMA_LEN ("athlon"), PROCESSOR_ATHLON,
827 CPU_ATHLON_FLAGS, 0 },
828 { STRING_COMMA_LEN ("sledgehammer"), PROCESSOR_K8,
829 CPU_K8_FLAGS, 1 },
830 { STRING_COMMA_LEN ("opteron"), PROCESSOR_K8,
831 CPU_K8_FLAGS, 0 },
832 { STRING_COMMA_LEN ("k8"), PROCESSOR_K8,
833 CPU_K8_FLAGS, 0 },
834 { STRING_COMMA_LEN ("amdfam10"), PROCESSOR_AMDFAM10,
835 CPU_AMDFAM10_FLAGS, 0 },
836 { STRING_COMMA_LEN ("bdver1"), PROCESSOR_BD,
837 CPU_BDVER1_FLAGS, 0 },
838 { STRING_COMMA_LEN ("bdver2"), PROCESSOR_BD,
839 CPU_BDVER2_FLAGS, 0 },
840 { STRING_COMMA_LEN ("bdver3"), PROCESSOR_BD,
841 CPU_BDVER3_FLAGS, 0 },
842 { STRING_COMMA_LEN ("bdver4"), PROCESSOR_BD,
843 CPU_BDVER4_FLAGS, 0 },
844 { STRING_COMMA_LEN ("znver1"), PROCESSOR_ZNVER,
845 CPU_ZNVER1_FLAGS, 0 },
846 { STRING_COMMA_LEN ("btver1"), PROCESSOR_BT,
847 CPU_BTVER1_FLAGS, 0 },
848 { STRING_COMMA_LEN ("btver2"), PROCESSOR_BT,
849 CPU_BTVER2_FLAGS, 0 },
850 { STRING_COMMA_LEN (".8087"), PROCESSOR_UNKNOWN,
851 CPU_8087_FLAGS, 0 },
852 { STRING_COMMA_LEN (".287"), PROCESSOR_UNKNOWN,
853 CPU_287_FLAGS, 0 },
854 { STRING_COMMA_LEN (".387"), PROCESSOR_UNKNOWN,
855 CPU_387_FLAGS, 0 },
856 { STRING_COMMA_LEN (".687"), PROCESSOR_UNKNOWN,
857 CPU_687_FLAGS, 0 },
858 { STRING_COMMA_LEN (".mmx"), PROCESSOR_UNKNOWN,
859 CPU_MMX_FLAGS, 0 },
860 { STRING_COMMA_LEN (".sse"), PROCESSOR_UNKNOWN,
861 CPU_SSE_FLAGS, 0 },
862 { STRING_COMMA_LEN (".sse2"), PROCESSOR_UNKNOWN,
863 CPU_SSE2_FLAGS, 0 },
864 { STRING_COMMA_LEN (".sse3"), PROCESSOR_UNKNOWN,
865 CPU_SSE3_FLAGS, 0 },
866 { STRING_COMMA_LEN (".ssse3"), PROCESSOR_UNKNOWN,
867 CPU_SSSE3_FLAGS, 0 },
868 { STRING_COMMA_LEN (".sse4.1"), PROCESSOR_UNKNOWN,
869 CPU_SSE4_1_FLAGS, 0 },
870 { STRING_COMMA_LEN (".sse4.2"), PROCESSOR_UNKNOWN,
871 CPU_SSE4_2_FLAGS, 0 },
872 { STRING_COMMA_LEN (".sse4"), PROCESSOR_UNKNOWN,
873 CPU_SSE4_2_FLAGS, 0 },
874 { STRING_COMMA_LEN (".avx"), PROCESSOR_UNKNOWN,
875 CPU_AVX_FLAGS, 0 },
876 { STRING_COMMA_LEN (".avx2"), PROCESSOR_UNKNOWN,
877 CPU_AVX2_FLAGS, 0 },
878 { STRING_COMMA_LEN (".avx512f"), PROCESSOR_UNKNOWN,
879 CPU_AVX512F_FLAGS, 0 },
880 { STRING_COMMA_LEN (".avx512cd"), PROCESSOR_UNKNOWN,
881 CPU_AVX512CD_FLAGS, 0 },
882 { STRING_COMMA_LEN (".avx512er"), PROCESSOR_UNKNOWN,
883 CPU_AVX512ER_FLAGS, 0 },
884 { STRING_COMMA_LEN (".avx512pf"), PROCESSOR_UNKNOWN,
885 CPU_AVX512PF_FLAGS, 0 },
886 { STRING_COMMA_LEN (".avx512dq"), PROCESSOR_UNKNOWN,
887 CPU_AVX512DQ_FLAGS, 0 },
888 { STRING_COMMA_LEN (".avx512bw"), PROCESSOR_UNKNOWN,
889 CPU_AVX512BW_FLAGS, 0 },
890 { STRING_COMMA_LEN (".avx512vl"), PROCESSOR_UNKNOWN,
891 CPU_AVX512VL_FLAGS, 0 },
892 { STRING_COMMA_LEN (".vmx"), PROCESSOR_UNKNOWN,
893 CPU_VMX_FLAGS, 0 },
894 { STRING_COMMA_LEN (".vmfunc"), PROCESSOR_UNKNOWN,
895 CPU_VMFUNC_FLAGS, 0 },
896 { STRING_COMMA_LEN (".smx"), PROCESSOR_UNKNOWN,
897 CPU_SMX_FLAGS, 0 },
898 { STRING_COMMA_LEN (".xsave"), PROCESSOR_UNKNOWN,
899 CPU_XSAVE_FLAGS, 0 },
900 { STRING_COMMA_LEN (".xsaveopt"), PROCESSOR_UNKNOWN,
901 CPU_XSAVEOPT_FLAGS, 0 },
902 { STRING_COMMA_LEN (".xsavec"), PROCESSOR_UNKNOWN,
903 CPU_XSAVEC_FLAGS, 0 },
904 { STRING_COMMA_LEN (".xsaves"), PROCESSOR_UNKNOWN,
905 CPU_XSAVES_FLAGS, 0 },
906 { STRING_COMMA_LEN (".aes"), PROCESSOR_UNKNOWN,
907 CPU_AES_FLAGS, 0 },
908 { STRING_COMMA_LEN (".pclmul"), PROCESSOR_UNKNOWN,
909 CPU_PCLMUL_FLAGS, 0 },
910 { STRING_COMMA_LEN (".clmul"), PROCESSOR_UNKNOWN,
911 CPU_PCLMUL_FLAGS, 1 },
912 { STRING_COMMA_LEN (".fsgsbase"), PROCESSOR_UNKNOWN,
913 CPU_FSGSBASE_FLAGS, 0 },
914 { STRING_COMMA_LEN (".rdrnd"), PROCESSOR_UNKNOWN,
915 CPU_RDRND_FLAGS, 0 },
916 { STRING_COMMA_LEN (".f16c"), PROCESSOR_UNKNOWN,
917 CPU_F16C_FLAGS, 0 },
918 { STRING_COMMA_LEN (".bmi2"), PROCESSOR_UNKNOWN,
919 CPU_BMI2_FLAGS, 0 },
920 { STRING_COMMA_LEN (".fma"), PROCESSOR_UNKNOWN,
921 CPU_FMA_FLAGS, 0 },
922 { STRING_COMMA_LEN (".fma4"), PROCESSOR_UNKNOWN,
923 CPU_FMA4_FLAGS, 0 },
924 { STRING_COMMA_LEN (".xop"), PROCESSOR_UNKNOWN,
925 CPU_XOP_FLAGS, 0 },
926 { STRING_COMMA_LEN (".lwp"), PROCESSOR_UNKNOWN,
927 CPU_LWP_FLAGS, 0 },
928 { STRING_COMMA_LEN (".movbe"), PROCESSOR_UNKNOWN,
929 CPU_MOVBE_FLAGS, 0 },
930 { STRING_COMMA_LEN (".cx16"), PROCESSOR_UNKNOWN,
931 CPU_CX16_FLAGS, 0 },
932 { STRING_COMMA_LEN (".ept"), PROCESSOR_UNKNOWN,
933 CPU_EPT_FLAGS, 0 },
934 { STRING_COMMA_LEN (".lzcnt"), PROCESSOR_UNKNOWN,
935 CPU_LZCNT_FLAGS, 0 },
936 { STRING_COMMA_LEN (".hle"), PROCESSOR_UNKNOWN,
937 CPU_HLE_FLAGS, 0 },
938 { STRING_COMMA_LEN (".rtm"), PROCESSOR_UNKNOWN,
939 CPU_RTM_FLAGS, 0 },
940 { STRING_COMMA_LEN (".invpcid"), PROCESSOR_UNKNOWN,
941 CPU_INVPCID_FLAGS, 0 },
942 { STRING_COMMA_LEN (".clflush"), PROCESSOR_UNKNOWN,
943 CPU_CLFLUSH_FLAGS, 0 },
944 { STRING_COMMA_LEN (".nop"), PROCESSOR_UNKNOWN,
945 CPU_NOP_FLAGS, 0 },
946 { STRING_COMMA_LEN (".syscall"), PROCESSOR_UNKNOWN,
947 CPU_SYSCALL_FLAGS, 0 },
948 { STRING_COMMA_LEN (".rdtscp"), PROCESSOR_UNKNOWN,
949 CPU_RDTSCP_FLAGS, 0 },
950 { STRING_COMMA_LEN (".3dnow"), PROCESSOR_UNKNOWN,
951 CPU_3DNOW_FLAGS, 0 },
952 { STRING_COMMA_LEN (".3dnowa"), PROCESSOR_UNKNOWN,
953 CPU_3DNOWA_FLAGS, 0 },
954 { STRING_COMMA_LEN (".padlock"), PROCESSOR_UNKNOWN,
955 CPU_PADLOCK_FLAGS, 0 },
956 { STRING_COMMA_LEN (".pacifica"), PROCESSOR_UNKNOWN,
957 CPU_SVME_FLAGS, 1 },
958 { STRING_COMMA_LEN (".svme"), PROCESSOR_UNKNOWN,
959 CPU_SVME_FLAGS, 0 },
960 { STRING_COMMA_LEN (".sse4a"), PROCESSOR_UNKNOWN,
961 CPU_SSE4A_FLAGS, 0 },
962 { STRING_COMMA_LEN (".abm"), PROCESSOR_UNKNOWN,
963 CPU_ABM_FLAGS, 0 },
964 { STRING_COMMA_LEN (".bmi"), PROCESSOR_UNKNOWN,
965 CPU_BMI_FLAGS, 0 },
966 { STRING_COMMA_LEN (".tbm"), PROCESSOR_UNKNOWN,
967 CPU_TBM_FLAGS, 0 },
968 { STRING_COMMA_LEN (".adx"), PROCESSOR_UNKNOWN,
969 CPU_ADX_FLAGS, 0 },
970 { STRING_COMMA_LEN (".rdseed"), PROCESSOR_UNKNOWN,
971 CPU_RDSEED_FLAGS, 0 },
972 { STRING_COMMA_LEN (".prfchw"), PROCESSOR_UNKNOWN,
973 CPU_PRFCHW_FLAGS, 0 },
974 { STRING_COMMA_LEN (".smap"), PROCESSOR_UNKNOWN,
975 CPU_SMAP_FLAGS, 0 },
976 { STRING_COMMA_LEN (".mpx"), PROCESSOR_UNKNOWN,
977 CPU_MPX_FLAGS, 0 },
978 { STRING_COMMA_LEN (".sha"), PROCESSOR_UNKNOWN,
979 CPU_SHA_FLAGS, 0 },
980 { STRING_COMMA_LEN (".clflushopt"), PROCESSOR_UNKNOWN,
981 CPU_CLFLUSHOPT_FLAGS, 0 },
982 { STRING_COMMA_LEN (".prefetchwt1"), PROCESSOR_UNKNOWN,
983 CPU_PREFETCHWT1_FLAGS, 0 },
984 { STRING_COMMA_LEN (".se1"), PROCESSOR_UNKNOWN,
985 CPU_SE1_FLAGS, 0 },
986 { STRING_COMMA_LEN (".clwb"), PROCESSOR_UNKNOWN,
987 CPU_CLWB_FLAGS, 0 },
988 { STRING_COMMA_LEN (".avx512ifma"), PROCESSOR_UNKNOWN,
989 CPU_AVX512IFMA_FLAGS, 0 },
990 { STRING_COMMA_LEN (".avx512vbmi"), PROCESSOR_UNKNOWN,
991 CPU_AVX512VBMI_FLAGS, 0 },
992 { STRING_COMMA_LEN (".avx512_4fmaps"), PROCESSOR_UNKNOWN,
993 CPU_AVX512_4FMAPS_FLAGS, 0 },
994 { STRING_COMMA_LEN (".avx512_4vnniw"), PROCESSOR_UNKNOWN,
995 CPU_AVX512_4VNNIW_FLAGS, 0 },
996 { STRING_COMMA_LEN (".avx512_vpopcntdq"), PROCESSOR_UNKNOWN,
997 CPU_AVX512_VPOPCNTDQ_FLAGS, 0 },
998 { STRING_COMMA_LEN (".avx512_vbmi2"), PROCESSOR_UNKNOWN,
999 CPU_AVX512_VBMI2_FLAGS, 0 },
1000 { STRING_COMMA_LEN (".avx512_vnni"), PROCESSOR_UNKNOWN,
1001 CPU_AVX512_VNNI_FLAGS, 0 },
1002 { STRING_COMMA_LEN (".avx512_bitalg"), PROCESSOR_UNKNOWN,
1003 CPU_AVX512_BITALG_FLAGS, 0 },
1004 { STRING_COMMA_LEN (".clzero"), PROCESSOR_UNKNOWN,
1005 CPU_CLZERO_FLAGS, 0 },
1006 { STRING_COMMA_LEN (".mwaitx"), PROCESSOR_UNKNOWN,
1007 CPU_MWAITX_FLAGS, 0 },
1008 { STRING_COMMA_LEN (".ospke"), PROCESSOR_UNKNOWN,
1009 CPU_OSPKE_FLAGS, 0 },
1010 { STRING_COMMA_LEN (".rdpid"), PROCESSOR_UNKNOWN,
1011 CPU_RDPID_FLAGS, 0 },
1012 { STRING_COMMA_LEN (".ptwrite"), PROCESSOR_UNKNOWN,
1013 CPU_PTWRITE_FLAGS, 0 },
1014 { STRING_COMMA_LEN (".ibt"), PROCESSOR_UNKNOWN,
1015 CPU_IBT_FLAGS, 0 },
1016 { STRING_COMMA_LEN (".shstk"), PROCESSOR_UNKNOWN,
1017 CPU_SHSTK_FLAGS, 0 },
1018 { STRING_COMMA_LEN (".gfni"), PROCESSOR_UNKNOWN,
1019 CPU_GFNI_FLAGS, 0 },
1020 { STRING_COMMA_LEN (".vaes"), PROCESSOR_UNKNOWN,
1021 CPU_VAES_FLAGS, 0 },
1022 { STRING_COMMA_LEN (".vpclmulqdq"), PROCESSOR_UNKNOWN,
1023 CPU_VPCLMULQDQ_FLAGS, 0 },
1024 { STRING_COMMA_LEN (".wbnoinvd"), PROCESSOR_UNKNOWN,
1025 CPU_WBNOINVD_FLAGS, 0 },
1026 { STRING_COMMA_LEN (".pconfig"), PROCESSOR_UNKNOWN,
1027 CPU_PCONFIG_FLAGS, 0 },
1028 { STRING_COMMA_LEN (".waitpkg"), PROCESSOR_UNKNOWN,
1029 CPU_WAITPKG_FLAGS, 0 },
1030 { STRING_COMMA_LEN (".cldemote"), PROCESSOR_UNKNOWN,
1031 CPU_CLDEMOTE_FLAGS, 0 },
1032 };
1033
1034 static const noarch_entry cpu_noarch[] =
1035 {
1036 { STRING_COMMA_LEN ("no87"), CPU_ANY_X87_FLAGS },
1037 { STRING_COMMA_LEN ("no287"), CPU_ANY_287_FLAGS },
1038 { STRING_COMMA_LEN ("no387"), CPU_ANY_387_FLAGS },
1039 { STRING_COMMA_LEN ("no687"), CPU_ANY_687_FLAGS },
1040 { STRING_COMMA_LEN ("nommx"), CPU_ANY_MMX_FLAGS },
1041 { STRING_COMMA_LEN ("nosse"), CPU_ANY_SSE_FLAGS },
1042 { STRING_COMMA_LEN ("nosse2"), CPU_ANY_SSE2_FLAGS },
1043 { STRING_COMMA_LEN ("nosse3"), CPU_ANY_SSE3_FLAGS },
1044 { STRING_COMMA_LEN ("nossse3"), CPU_ANY_SSSE3_FLAGS },
1045 { STRING_COMMA_LEN ("nosse4.1"), CPU_ANY_SSE4_1_FLAGS },
1046 { STRING_COMMA_LEN ("nosse4.2"), CPU_ANY_SSE4_2_FLAGS },
1047 { STRING_COMMA_LEN ("nosse4"), CPU_ANY_SSE4_1_FLAGS },
1048 { STRING_COMMA_LEN ("noavx"), CPU_ANY_AVX_FLAGS },
1049 { STRING_COMMA_LEN ("noavx2"), CPU_ANY_AVX2_FLAGS },
1050 { STRING_COMMA_LEN ("noavx512f"), CPU_ANY_AVX512F_FLAGS },
1051 { STRING_COMMA_LEN ("noavx512cd"), CPU_ANY_AVX512CD_FLAGS },
1052 { STRING_COMMA_LEN ("noavx512er"), CPU_ANY_AVX512ER_FLAGS },
1053 { STRING_COMMA_LEN ("noavx512pf"), CPU_ANY_AVX512PF_FLAGS },
1054 { STRING_COMMA_LEN ("noavx512dq"), CPU_ANY_AVX512DQ_FLAGS },
1055 { STRING_COMMA_LEN ("noavx512bw"), CPU_ANY_AVX512BW_FLAGS },
1056 { STRING_COMMA_LEN ("noavx512vl"), CPU_ANY_AVX512VL_FLAGS },
1057 { STRING_COMMA_LEN ("noavx512ifma"), CPU_ANY_AVX512IFMA_FLAGS },
1058 { STRING_COMMA_LEN ("noavx512vbmi"), CPU_ANY_AVX512VBMI_FLAGS },
1059 { STRING_COMMA_LEN ("noavx512_4fmaps"), CPU_ANY_AVX512_4FMAPS_FLAGS },
1060 { STRING_COMMA_LEN ("noavx512_4vnniw"), CPU_ANY_AVX512_4VNNIW_FLAGS },
1061 { STRING_COMMA_LEN ("noavx512_vpopcntdq"), CPU_ANY_AVX512_VPOPCNTDQ_FLAGS },
1062 { STRING_COMMA_LEN ("noavx512_vbmi2"), CPU_ANY_AVX512_VBMI2_FLAGS },
1063 { STRING_COMMA_LEN ("noavx512_vnni"), CPU_ANY_AVX512_VNNI_FLAGS },
1064 { STRING_COMMA_LEN ("noavx512_bitalg"), CPU_ANY_AVX512_BITALG_FLAGS },
1065 { STRING_COMMA_LEN ("noibt"), CPU_ANY_IBT_FLAGS },
1066 { STRING_COMMA_LEN ("noshstk"), CPU_ANY_SHSTK_FLAGS },
1067 };
1068
1069 #ifdef I386COFF
1070 /* Like s_lcomm_internal in gas/read.c but the alignment string
1071 is allowed to be optional. */
1072
1073 static symbolS *
1074 pe_lcomm_internal (int needs_align, symbolS *symbolP, addressT size)
1075 {
1076 addressT align = 0;
1077
1078 SKIP_WHITESPACE ();
1079
1080 if (needs_align
1081 && *input_line_pointer == ',')
1082 {
1083 align = parse_align (needs_align - 1);
1084
1085 if (align == (addressT) -1)
1086 return NULL;
1087 }
1088 else
1089 {
1090 if (size >= 8)
1091 align = 3;
1092 else if (size >= 4)
1093 align = 2;
1094 else if (size >= 2)
1095 align = 1;
1096 else
1097 align = 0;
1098 }
1099
1100 bss_alloc (symbolP, size, align);
1101 return symbolP;
1102 }
1103
1104 static void
1105 pe_lcomm (int needs_align)
1106 {
1107 s_comm_internal (needs_align * 2, pe_lcomm_internal);
1108 }
1109 #endif
1110
1111 const pseudo_typeS md_pseudo_table[] =
1112 {
1113 #if !defined(OBJ_AOUT) && !defined(USE_ALIGN_PTWO)
1114 {"align", s_align_bytes, 0},
1115 #else
1116 {"align", s_align_ptwo, 0},
1117 #endif
1118 {"arch", set_cpu_arch, 0},
1119 #ifndef I386COFF
1120 {"bss", s_bss, 0},
1121 #else
1122 {"lcomm", pe_lcomm, 1},
1123 #endif
1124 {"ffloat", float_cons, 'f'},
1125 {"dfloat", float_cons, 'd'},
1126 {"tfloat", float_cons, 'x'},
1127 {"value", cons, 2},
1128 {"slong", signed_cons, 4},
1129 {"noopt", s_ignore, 0},
1130 {"optim", s_ignore, 0},
1131 {"code16gcc", set_16bit_gcc_code_flag, CODE_16BIT},
1132 {"code16", set_code_flag, CODE_16BIT},
1133 {"code32", set_code_flag, CODE_32BIT},
1134 #ifdef BFD64
1135 {"code64", set_code_flag, CODE_64BIT},
1136 #endif
1137 {"intel_syntax", set_intel_syntax, 1},
1138 {"att_syntax", set_intel_syntax, 0},
1139 {"intel_mnemonic", set_intel_mnemonic, 1},
1140 {"att_mnemonic", set_intel_mnemonic, 0},
1141 {"allow_index_reg", set_allow_index_reg, 1},
1142 {"disallow_index_reg", set_allow_index_reg, 0},
1143 {"sse_check", set_check, 0},
1144 {"operand_check", set_check, 1},
1145 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
1146 {"largecomm", handle_large_common, 0},
1147 #else
1148 {"file", dwarf2_directive_file, 0},
1149 {"loc", dwarf2_directive_loc, 0},
1150 {"loc_mark_labels", dwarf2_directive_loc_mark_labels, 0},
1151 #endif
1152 #ifdef TE_PE
1153 {"secrel32", pe_directive_secrel, 0},
1154 #endif
1155 {0, 0, 0}
1156 };
1157
1158 /* For interface with expression (). */
1159 extern char *input_line_pointer;
1160
1161 /* Hash table for instruction mnemonic lookup. */
1162 static struct hash_control *op_hash;
1163
1164 /* Hash table for register lookup. */
1165 static struct hash_control *reg_hash;
1166 \f
1167 /* Various efficient no-op patterns for aligning code labels.
1168 Note: Don't try to assemble the instructions in the comments.
1169 0L and 0w are not legal. */
1170 static const unsigned char f32_1[] =
1171 {0x90}; /* nop */
1172 static const unsigned char f32_2[] =
1173 {0x66,0x90}; /* xchg %ax,%ax */
1174 static const unsigned char f32_3[] =
1175 {0x8d,0x76,0x00}; /* leal 0(%esi),%esi */
1176 static const unsigned char f32_4[] =
1177 {0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
1178 static const unsigned char f32_6[] =
1179 {0x8d,0xb6,0x00,0x00,0x00,0x00}; /* leal 0L(%esi),%esi */
1180 static const unsigned char f32_7[] =
1181 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
1182 static const unsigned char f16_3[] =
1183 {0x8d,0x74,0x00}; /* lea 0(%si),%si */
1184 static const unsigned char f16_4[] =
1185 {0x8d,0xb4,0x00,0x00}; /* lea 0W(%si),%si */
1186 static const unsigned char jump_disp8[] =
1187 {0xeb}; /* jmp disp8 */
1188 static const unsigned char jump32_disp32[] =
1189 {0xe9}; /* jmp disp32 */
1190 static const unsigned char jump16_disp32[] =
1191 {0x66,0xe9}; /* jmp disp32 */
1192 /* 32-bit NOPs patterns. */
1193 static const unsigned char *const f32_patt[] = {
1194 f32_1, f32_2, f32_3, f32_4, NULL, f32_6, f32_7
1195 };
1196 /* 16-bit NOPs patterns. */
1197 static const unsigned char *const f16_patt[] = {
1198 f32_1, f32_2, f16_3, f16_4
1199 };
1200 /* nopl (%[re]ax) */
1201 static const unsigned char alt_3[] =
1202 {0x0f,0x1f,0x00};
1203 /* nopl 0(%[re]ax) */
1204 static const unsigned char alt_4[] =
1205 {0x0f,0x1f,0x40,0x00};
1206 /* nopl 0(%[re]ax,%[re]ax,1) */
1207 static const unsigned char alt_5[] =
1208 {0x0f,0x1f,0x44,0x00,0x00};
1209 /* nopw 0(%[re]ax,%[re]ax,1) */
1210 static const unsigned char alt_6[] =
1211 {0x66,0x0f,0x1f,0x44,0x00,0x00};
1212 /* nopl 0L(%[re]ax) */
1213 static const unsigned char alt_7[] =
1214 {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
1215 /* nopl 0L(%[re]ax,%[re]ax,1) */
1216 static const unsigned char alt_8[] =
1217 {0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1218 /* nopw 0L(%[re]ax,%[re]ax,1) */
1219 static const unsigned char alt_9[] =
1220 {0x66,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1221 /* nopw %cs:0L(%[re]ax,%[re]ax,1) */
1222 static const unsigned char alt_10[] =
1223 {0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1224 /* data16 nopw %cs:0L(%eax,%eax,1) */
1225 static const unsigned char alt_11[] =
1226 {0x66,0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1227 /* 32-bit and 64-bit NOPs patterns. */
1228 static const unsigned char *const alt_patt[] = {
1229 f32_1, f32_2, alt_3, alt_4, alt_5, alt_6, alt_7, alt_8,
1230 alt_9, alt_10, alt_11
1231 };
1232
1233 /* Genenerate COUNT bytes of NOPs to WHERE from PATT with the maximum
1234 size of a single NOP instruction MAX_SINGLE_NOP_SIZE. */
1235
1236 static void
1237 i386_output_nops (char *where, const unsigned char *const *patt,
1238 int count, int max_single_nop_size)
1239
1240 {
1241 /* Place the longer NOP first. */
1242 int last;
1243 int offset;
1244 const unsigned char *nops = patt[max_single_nop_size - 1];
1245
1246 /* Use the smaller one if the requsted one isn't available. */
1247 if (nops == NULL)
1248 {
1249 max_single_nop_size--;
1250 nops = patt[max_single_nop_size - 1];
1251 }
1252
1253 last = count % max_single_nop_size;
1254
1255 count -= last;
1256 for (offset = 0; offset < count; offset += max_single_nop_size)
1257 memcpy (where + offset, nops, max_single_nop_size);
1258
1259 if (last)
1260 {
1261 nops = patt[last - 1];
1262 if (nops == NULL)
1263 {
1264 /* Use the smaller one plus one-byte NOP if the needed one
1265 isn't available. */
1266 last--;
1267 nops = patt[last - 1];
1268 memcpy (where + offset, nops, last);
1269 where[offset + last] = *patt[0];
1270 }
1271 else
1272 memcpy (where + offset, nops, last);
1273 }
1274 }
1275
1276 static INLINE int
1277 fits_in_imm7 (offsetT num)
1278 {
1279 return (num & 0x7f) == num;
1280 }
1281
1282 static INLINE int
1283 fits_in_imm31 (offsetT num)
1284 {
1285 return (num & 0x7fffffff) == num;
1286 }
1287
1288 /* Genenerate COUNT bytes of NOPs to WHERE with the maximum size of a
1289 single NOP instruction LIMIT. */
1290
1291 void
1292 i386_generate_nops (fragS *fragP, char *where, offsetT count, int limit)
1293 {
1294 const unsigned char *const *patt = NULL;
1295 int max_single_nop_size;
1296 /* Maximum number of NOPs before switching to jump over NOPs. */
1297 int max_number_of_nops;
1298
1299 switch (fragP->fr_type)
1300 {
1301 case rs_fill_nop:
1302 case rs_align_code:
1303 break;
1304 default:
1305 return;
1306 }
1307
1308 /* We need to decide which NOP sequence to use for 32bit and
1309 64bit. When -mtune= is used:
1310
1311 1. For PROCESSOR_I386, PROCESSOR_I486, PROCESSOR_PENTIUM and
1312 PROCESSOR_GENERIC32, f32_patt will be used.
1313 2. For the rest, alt_patt will be used.
1314
1315 When -mtune= isn't used, alt_patt will be used if
1316 cpu_arch_isa_flags has CpuNop. Otherwise, f32_patt will
1317 be used.
1318
1319 When -march= or .arch is used, we can't use anything beyond
1320 cpu_arch_isa_flags. */
1321
1322 if (flag_code == CODE_16BIT)
1323 {
1324 patt = f16_patt;
1325 max_single_nop_size = sizeof (f16_patt) / sizeof (f16_patt[0]);
1326 /* Limit number of NOPs to 2 in 16-bit mode. */
1327 max_number_of_nops = 2;
1328 }
1329 else
1330 {
1331 if (fragP->tc_frag_data.isa == PROCESSOR_UNKNOWN)
1332 {
1333 /* PROCESSOR_UNKNOWN means that all ISAs may be used. */
1334 switch (cpu_arch_tune)
1335 {
1336 case PROCESSOR_UNKNOWN:
1337 /* We use cpu_arch_isa_flags to check if we SHOULD
1338 optimize with nops. */
1339 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1340 patt = alt_patt;
1341 else
1342 patt = f32_patt;
1343 break;
1344 case PROCESSOR_PENTIUM4:
1345 case PROCESSOR_NOCONA:
1346 case PROCESSOR_CORE:
1347 case PROCESSOR_CORE2:
1348 case PROCESSOR_COREI7:
1349 case PROCESSOR_L1OM:
1350 case PROCESSOR_K1OM:
1351 case PROCESSOR_GENERIC64:
1352 case PROCESSOR_K6:
1353 case PROCESSOR_ATHLON:
1354 case PROCESSOR_K8:
1355 case PROCESSOR_AMDFAM10:
1356 case PROCESSOR_BD:
1357 case PROCESSOR_ZNVER:
1358 case PROCESSOR_BT:
1359 patt = alt_patt;
1360 break;
1361 case PROCESSOR_I386:
1362 case PROCESSOR_I486:
1363 case PROCESSOR_PENTIUM:
1364 case PROCESSOR_PENTIUMPRO:
1365 case PROCESSOR_IAMCU:
1366 case PROCESSOR_GENERIC32:
1367 patt = f32_patt;
1368 break;
1369 }
1370 }
1371 else
1372 {
1373 switch (fragP->tc_frag_data.tune)
1374 {
1375 case PROCESSOR_UNKNOWN:
1376 /* When cpu_arch_isa is set, cpu_arch_tune shouldn't be
1377 PROCESSOR_UNKNOWN. */
1378 abort ();
1379 break;
1380
1381 case PROCESSOR_I386:
1382 case PROCESSOR_I486:
1383 case PROCESSOR_PENTIUM:
1384 case PROCESSOR_IAMCU:
1385 case PROCESSOR_K6:
1386 case PROCESSOR_ATHLON:
1387 case PROCESSOR_K8:
1388 case PROCESSOR_AMDFAM10:
1389 case PROCESSOR_BD:
1390 case PROCESSOR_ZNVER:
1391 case PROCESSOR_BT:
1392 case PROCESSOR_GENERIC32:
1393 /* We use cpu_arch_isa_flags to check if we CAN optimize
1394 with nops. */
1395 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1396 patt = alt_patt;
1397 else
1398 patt = f32_patt;
1399 break;
1400 case PROCESSOR_PENTIUMPRO:
1401 case PROCESSOR_PENTIUM4:
1402 case PROCESSOR_NOCONA:
1403 case PROCESSOR_CORE:
1404 case PROCESSOR_CORE2:
1405 case PROCESSOR_COREI7:
1406 case PROCESSOR_L1OM:
1407 case PROCESSOR_K1OM:
1408 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1409 patt = alt_patt;
1410 else
1411 patt = f32_patt;
1412 break;
1413 case PROCESSOR_GENERIC64:
1414 patt = alt_patt;
1415 break;
1416 }
1417 }
1418
1419 if (patt == f32_patt)
1420 {
1421 max_single_nop_size = sizeof (f32_patt) / sizeof (f32_patt[0]);
1422 /* Limit number of NOPs to 2 for older processors. */
1423 max_number_of_nops = 2;
1424 }
1425 else
1426 {
1427 max_single_nop_size = sizeof (alt_patt) / sizeof (alt_patt[0]);
1428 /* Limit number of NOPs to 7 for newer processors. */
1429 max_number_of_nops = 7;
1430 }
1431 }
1432
1433 if (limit == 0)
1434 limit = max_single_nop_size;
1435
1436 if (fragP->fr_type == rs_fill_nop)
1437 {
1438 /* Output NOPs for .nop directive. */
1439 if (limit > max_single_nop_size)
1440 {
1441 as_bad_where (fragP->fr_file, fragP->fr_line,
1442 _("invalid single nop size: %d "
1443 "(expect within [0, %d])"),
1444 limit, max_single_nop_size);
1445 return;
1446 }
1447 }
1448 else
1449 fragP->fr_var = count;
1450
1451 if ((count / max_single_nop_size) > max_number_of_nops)
1452 {
1453 /* Generate jump over NOPs. */
1454 offsetT disp = count - 2;
1455 if (fits_in_imm7 (disp))
1456 {
1457 /* Use "jmp disp8" if possible. */
1458 count = disp;
1459 where[0] = jump_disp8[0];
1460 where[1] = count;
1461 where += 2;
1462 }
1463 else
1464 {
1465 unsigned int size_of_jump;
1466
1467 if (flag_code == CODE_16BIT)
1468 {
1469 where[0] = jump16_disp32[0];
1470 where[1] = jump16_disp32[1];
1471 size_of_jump = 2;
1472 }
1473 else
1474 {
1475 where[0] = jump32_disp32[0];
1476 size_of_jump = 1;
1477 }
1478
1479 count -= size_of_jump + 4;
1480 if (!fits_in_imm31 (count))
1481 {
1482 as_bad_where (fragP->fr_file, fragP->fr_line,
1483 _("jump over nop padding out of range"));
1484 return;
1485 }
1486
1487 md_number_to_chars (where + size_of_jump, count, 4);
1488 where += size_of_jump + 4;
1489 }
1490 }
1491
1492 /* Generate multiple NOPs. */
1493 i386_output_nops (where, patt, count, limit);
1494 }
1495
1496 static INLINE int
1497 operand_type_all_zero (const union i386_operand_type *x)
1498 {
1499 switch (ARRAY_SIZE(x->array))
1500 {
1501 case 3:
1502 if (x->array[2])
1503 return 0;
1504 /* Fall through. */
1505 case 2:
1506 if (x->array[1])
1507 return 0;
1508 /* Fall through. */
1509 case 1:
1510 return !x->array[0];
1511 default:
1512 abort ();
1513 }
1514 }
1515
1516 static INLINE void
1517 operand_type_set (union i386_operand_type *x, unsigned int v)
1518 {
1519 switch (ARRAY_SIZE(x->array))
1520 {
1521 case 3:
1522 x->array[2] = v;
1523 /* Fall through. */
1524 case 2:
1525 x->array[1] = v;
1526 /* Fall through. */
1527 case 1:
1528 x->array[0] = v;
1529 /* Fall through. */
1530 break;
1531 default:
1532 abort ();
1533 }
1534 }
1535
1536 static INLINE int
1537 operand_type_equal (const union i386_operand_type *x,
1538 const union i386_operand_type *y)
1539 {
1540 switch (ARRAY_SIZE(x->array))
1541 {
1542 case 3:
1543 if (x->array[2] != y->array[2])
1544 return 0;
1545 /* Fall through. */
1546 case 2:
1547 if (x->array[1] != y->array[1])
1548 return 0;
1549 /* Fall through. */
1550 case 1:
1551 return x->array[0] == y->array[0];
1552 break;
1553 default:
1554 abort ();
1555 }
1556 }
1557
1558 static INLINE int
1559 cpu_flags_all_zero (const union i386_cpu_flags *x)
1560 {
1561 switch (ARRAY_SIZE(x->array))
1562 {
1563 case 4:
1564 if (x->array[3])
1565 return 0;
1566 /* Fall through. */
1567 case 3:
1568 if (x->array[2])
1569 return 0;
1570 /* Fall through. */
1571 case 2:
1572 if (x->array[1])
1573 return 0;
1574 /* Fall through. */
1575 case 1:
1576 return !x->array[0];
1577 default:
1578 abort ();
1579 }
1580 }
1581
1582 static INLINE int
1583 cpu_flags_equal (const union i386_cpu_flags *x,
1584 const union i386_cpu_flags *y)
1585 {
1586 switch (ARRAY_SIZE(x->array))
1587 {
1588 case 4:
1589 if (x->array[3] != y->array[3])
1590 return 0;
1591 /* Fall through. */
1592 case 3:
1593 if (x->array[2] != y->array[2])
1594 return 0;
1595 /* Fall through. */
1596 case 2:
1597 if (x->array[1] != y->array[1])
1598 return 0;
1599 /* Fall through. */
1600 case 1:
1601 return x->array[0] == y->array[0];
1602 break;
1603 default:
1604 abort ();
1605 }
1606 }
1607
1608 static INLINE int
1609 cpu_flags_check_cpu64 (i386_cpu_flags f)
1610 {
1611 return !((flag_code == CODE_64BIT && f.bitfield.cpuno64)
1612 || (flag_code != CODE_64BIT && f.bitfield.cpu64));
1613 }
1614
1615 static INLINE i386_cpu_flags
1616 cpu_flags_and (i386_cpu_flags x, i386_cpu_flags y)
1617 {
1618 switch (ARRAY_SIZE (x.array))
1619 {
1620 case 4:
1621 x.array [3] &= y.array [3];
1622 /* Fall through. */
1623 case 3:
1624 x.array [2] &= y.array [2];
1625 /* Fall through. */
1626 case 2:
1627 x.array [1] &= y.array [1];
1628 /* Fall through. */
1629 case 1:
1630 x.array [0] &= y.array [0];
1631 break;
1632 default:
1633 abort ();
1634 }
1635 return x;
1636 }
1637
1638 static INLINE i386_cpu_flags
1639 cpu_flags_or (i386_cpu_flags x, i386_cpu_flags y)
1640 {
1641 switch (ARRAY_SIZE (x.array))
1642 {
1643 case 4:
1644 x.array [3] |= y.array [3];
1645 /* Fall through. */
1646 case 3:
1647 x.array [2] |= y.array [2];
1648 /* Fall through. */
1649 case 2:
1650 x.array [1] |= y.array [1];
1651 /* Fall through. */
1652 case 1:
1653 x.array [0] |= y.array [0];
1654 break;
1655 default:
1656 abort ();
1657 }
1658 return x;
1659 }
1660
1661 static INLINE i386_cpu_flags
1662 cpu_flags_and_not (i386_cpu_flags x, i386_cpu_flags y)
1663 {
1664 switch (ARRAY_SIZE (x.array))
1665 {
1666 case 4:
1667 x.array [3] &= ~y.array [3];
1668 /* Fall through. */
1669 case 3:
1670 x.array [2] &= ~y.array [2];
1671 /* Fall through. */
1672 case 2:
1673 x.array [1] &= ~y.array [1];
1674 /* Fall through. */
1675 case 1:
1676 x.array [0] &= ~y.array [0];
1677 break;
1678 default:
1679 abort ();
1680 }
1681 return x;
1682 }
1683
1684 #define CPU_FLAGS_ARCH_MATCH 0x1
1685 #define CPU_FLAGS_64BIT_MATCH 0x2
1686
1687 #define CPU_FLAGS_PERFECT_MATCH \
1688 (CPU_FLAGS_ARCH_MATCH | CPU_FLAGS_64BIT_MATCH)
1689
1690 /* Return CPU flags match bits. */
1691
1692 static int
1693 cpu_flags_match (const insn_template *t)
1694 {
1695 i386_cpu_flags x = t->cpu_flags;
1696 int match = cpu_flags_check_cpu64 (x) ? CPU_FLAGS_64BIT_MATCH : 0;
1697
1698 x.bitfield.cpu64 = 0;
1699 x.bitfield.cpuno64 = 0;
1700
1701 if (cpu_flags_all_zero (&x))
1702 {
1703 /* This instruction is available on all archs. */
1704 match |= CPU_FLAGS_ARCH_MATCH;
1705 }
1706 else
1707 {
1708 /* This instruction is available only on some archs. */
1709 i386_cpu_flags cpu = cpu_arch_flags;
1710
1711 /* AVX512VL is no standalone feature - match it and then strip it. */
1712 if (x.bitfield.cpuavx512vl && !cpu.bitfield.cpuavx512vl)
1713 return match;
1714 x.bitfield.cpuavx512vl = 0;
1715
1716 cpu = cpu_flags_and (x, cpu);
1717 if (!cpu_flags_all_zero (&cpu))
1718 {
1719 if (x.bitfield.cpuavx)
1720 {
1721 /* We need to check a few extra flags with AVX. */
1722 if (cpu.bitfield.cpuavx
1723 && (!t->opcode_modifier.sse2avx || sse2avx)
1724 && (!x.bitfield.cpuaes || cpu.bitfield.cpuaes)
1725 && (!x.bitfield.cpugfni || cpu.bitfield.cpugfni)
1726 && (!x.bitfield.cpupclmul || cpu.bitfield.cpupclmul))
1727 match |= CPU_FLAGS_ARCH_MATCH;
1728 }
1729 else if (x.bitfield.cpuavx512f)
1730 {
1731 /* We need to check a few extra flags with AVX512F. */
1732 if (cpu.bitfield.cpuavx512f
1733 && (!x.bitfield.cpugfni || cpu.bitfield.cpugfni)
1734 && (!x.bitfield.cpuvaes || cpu.bitfield.cpuvaes)
1735 && (!x.bitfield.cpuvpclmulqdq || cpu.bitfield.cpuvpclmulqdq))
1736 match |= CPU_FLAGS_ARCH_MATCH;
1737 }
1738 else
1739 match |= CPU_FLAGS_ARCH_MATCH;
1740 }
1741 }
1742 return match;
1743 }
1744
1745 static INLINE i386_operand_type
1746 operand_type_and (i386_operand_type x, i386_operand_type y)
1747 {
1748 switch (ARRAY_SIZE (x.array))
1749 {
1750 case 3:
1751 x.array [2] &= y.array [2];
1752 /* Fall through. */
1753 case 2:
1754 x.array [1] &= y.array [1];
1755 /* Fall through. */
1756 case 1:
1757 x.array [0] &= y.array [0];
1758 break;
1759 default:
1760 abort ();
1761 }
1762 return x;
1763 }
1764
1765 static INLINE i386_operand_type
1766 operand_type_and_not (i386_operand_type x, i386_operand_type y)
1767 {
1768 switch (ARRAY_SIZE (x.array))
1769 {
1770 case 3:
1771 x.array [2] &= ~y.array [2];
1772 /* Fall through. */
1773 case 2:
1774 x.array [1] &= ~y.array [1];
1775 /* Fall through. */
1776 case 1:
1777 x.array [0] &= ~y.array [0];
1778 break;
1779 default:
1780 abort ();
1781 }
1782 return x;
1783 }
1784
1785 static INLINE i386_operand_type
1786 operand_type_or (i386_operand_type x, i386_operand_type y)
1787 {
1788 switch (ARRAY_SIZE (x.array))
1789 {
1790 case 3:
1791 x.array [2] |= y.array [2];
1792 /* Fall through. */
1793 case 2:
1794 x.array [1] |= y.array [1];
1795 /* Fall through. */
1796 case 1:
1797 x.array [0] |= y.array [0];
1798 break;
1799 default:
1800 abort ();
1801 }
1802 return x;
1803 }
1804
1805 static INLINE i386_operand_type
1806 operand_type_xor (i386_operand_type x, i386_operand_type y)
1807 {
1808 switch (ARRAY_SIZE (x.array))
1809 {
1810 case 3:
1811 x.array [2] ^= y.array [2];
1812 /* Fall through. */
1813 case 2:
1814 x.array [1] ^= y.array [1];
1815 /* Fall through. */
1816 case 1:
1817 x.array [0] ^= y.array [0];
1818 break;
1819 default:
1820 abort ();
1821 }
1822 return x;
1823 }
1824
1825 static const i386_operand_type acc32 = OPERAND_TYPE_ACC32;
1826 static const i386_operand_type acc64 = OPERAND_TYPE_ACC64;
1827 static const i386_operand_type control = OPERAND_TYPE_CONTROL;
1828 static const i386_operand_type inoutportreg
1829 = OPERAND_TYPE_INOUTPORTREG;
1830 static const i386_operand_type reg16_inoutportreg
1831 = OPERAND_TYPE_REG16_INOUTPORTREG;
1832 static const i386_operand_type disp16 = OPERAND_TYPE_DISP16;
1833 static const i386_operand_type disp32 = OPERAND_TYPE_DISP32;
1834 static const i386_operand_type disp32s = OPERAND_TYPE_DISP32S;
1835 static const i386_operand_type disp16_32 = OPERAND_TYPE_DISP16_32;
1836 static const i386_operand_type anydisp
1837 = OPERAND_TYPE_ANYDISP;
1838 static const i386_operand_type regxmm = OPERAND_TYPE_REGXMM;
1839 static const i386_operand_type regmask = OPERAND_TYPE_REGMASK;
1840 static const i386_operand_type imm8 = OPERAND_TYPE_IMM8;
1841 static const i386_operand_type imm8s = OPERAND_TYPE_IMM8S;
1842 static const i386_operand_type imm16 = OPERAND_TYPE_IMM16;
1843 static const i386_operand_type imm32 = OPERAND_TYPE_IMM32;
1844 static const i386_operand_type imm32s = OPERAND_TYPE_IMM32S;
1845 static const i386_operand_type imm64 = OPERAND_TYPE_IMM64;
1846 static const i386_operand_type imm16_32 = OPERAND_TYPE_IMM16_32;
1847 static const i386_operand_type imm16_32s = OPERAND_TYPE_IMM16_32S;
1848 static const i386_operand_type imm16_32_32s = OPERAND_TYPE_IMM16_32_32S;
1849 static const i386_operand_type vec_imm4 = OPERAND_TYPE_VEC_IMM4;
1850
1851 enum operand_type
1852 {
1853 reg,
1854 imm,
1855 disp,
1856 anymem
1857 };
1858
1859 static INLINE int
1860 operand_type_check (i386_operand_type t, enum operand_type c)
1861 {
1862 switch (c)
1863 {
1864 case reg:
1865 return t.bitfield.reg;
1866
1867 case imm:
1868 return (t.bitfield.imm8
1869 || t.bitfield.imm8s
1870 || t.bitfield.imm16
1871 || t.bitfield.imm32
1872 || t.bitfield.imm32s
1873 || t.bitfield.imm64);
1874
1875 case disp:
1876 return (t.bitfield.disp8
1877 || t.bitfield.disp16
1878 || t.bitfield.disp32
1879 || t.bitfield.disp32s
1880 || t.bitfield.disp64);
1881
1882 case anymem:
1883 return (t.bitfield.disp8
1884 || t.bitfield.disp16
1885 || t.bitfield.disp32
1886 || t.bitfield.disp32s
1887 || t.bitfield.disp64
1888 || t.bitfield.baseindex);
1889
1890 default:
1891 abort ();
1892 }
1893
1894 return 0;
1895 }
1896
1897 /* Return 1 if there is no conflict in 8bit/16bit/32bit/64bit/80bit on
1898 operand J for instruction template T. */
1899
1900 static INLINE int
1901 match_reg_size (const insn_template *t, unsigned int j)
1902 {
1903 return !((i.types[j].bitfield.byte
1904 && !t->operand_types[j].bitfield.byte)
1905 || (i.types[j].bitfield.word
1906 && !t->operand_types[j].bitfield.word)
1907 || (i.types[j].bitfield.dword
1908 && !t->operand_types[j].bitfield.dword)
1909 || (i.types[j].bitfield.qword
1910 && !t->operand_types[j].bitfield.qword)
1911 || (i.types[j].bitfield.tbyte
1912 && !t->operand_types[j].bitfield.tbyte));
1913 }
1914
1915 /* Return 1 if there is no conflict in SIMD register on
1916 operand J for instruction template T. */
1917
1918 static INLINE int
1919 match_simd_size (const insn_template *t, unsigned int j)
1920 {
1921 return !((i.types[j].bitfield.xmmword
1922 && !t->operand_types[j].bitfield.xmmword)
1923 || (i.types[j].bitfield.ymmword
1924 && !t->operand_types[j].bitfield.ymmword)
1925 || (i.types[j].bitfield.zmmword
1926 && !t->operand_types[j].bitfield.zmmword));
1927 }
1928
1929 /* Return 1 if there is no conflict in any size on operand J for
1930 instruction template T. */
1931
1932 static INLINE int
1933 match_mem_size (const insn_template *t, unsigned int j)
1934 {
1935 return (match_reg_size (t, j)
1936 && !((i.types[j].bitfield.unspecified
1937 && !i.broadcast
1938 && !t->operand_types[j].bitfield.unspecified)
1939 || (i.types[j].bitfield.fword
1940 && !t->operand_types[j].bitfield.fword)
1941 /* For scalar opcode templates to allow register and memory
1942 operands at the same time, some special casing is needed
1943 here. Also for v{,p}broadcast*, {,v}pmov{s,z}*, and
1944 down-conversion vpmov*. */
1945 || ((t->operand_types[j].bitfield.regsimd
1946 && !t->opcode_modifier.broadcast
1947 && (t->operand_types[j].bitfield.byte
1948 || t->operand_types[j].bitfield.word
1949 || t->operand_types[j].bitfield.dword
1950 || t->operand_types[j].bitfield.qword))
1951 ? (i.types[j].bitfield.xmmword
1952 || i.types[j].bitfield.ymmword
1953 || i.types[j].bitfield.zmmword)
1954 : !match_simd_size(t, j))));
1955 }
1956
1957 /* Return 1 if there is no size conflict on any operands for
1958 instruction template T. */
1959
1960 static INLINE int
1961 operand_size_match (const insn_template *t)
1962 {
1963 unsigned int j;
1964 int match = 1;
1965
1966 /* Don't check jump instructions. */
1967 if (t->opcode_modifier.jump
1968 || t->opcode_modifier.jumpbyte
1969 || t->opcode_modifier.jumpdword
1970 || t->opcode_modifier.jumpintersegment)
1971 return match;
1972
1973 /* Check memory and accumulator operand size. */
1974 for (j = 0; j < i.operands; j++)
1975 {
1976 if (!i.types[j].bitfield.reg && !i.types[j].bitfield.regsimd
1977 && t->operand_types[j].bitfield.anysize)
1978 continue;
1979
1980 if (t->operand_types[j].bitfield.reg
1981 && !match_reg_size (t, j))
1982 {
1983 match = 0;
1984 break;
1985 }
1986
1987 if (t->operand_types[j].bitfield.regsimd
1988 && !match_simd_size (t, j))
1989 {
1990 match = 0;
1991 break;
1992 }
1993
1994 if (t->operand_types[j].bitfield.acc
1995 && (!match_reg_size (t, j) || !match_simd_size (t, j)))
1996 {
1997 match = 0;
1998 break;
1999 }
2000
2001 if (i.types[j].bitfield.mem && !match_mem_size (t, j))
2002 {
2003 match = 0;
2004 break;
2005 }
2006 }
2007
2008 if (match)
2009 return match;
2010 else if (!t->opcode_modifier.d)
2011 {
2012 mismatch:
2013 i.error = operand_size_mismatch;
2014 return 0;
2015 }
2016
2017 /* Check reverse. */
2018 gas_assert (i.operands == 2);
2019
2020 match = 1;
2021 for (j = 0; j < 2; j++)
2022 {
2023 if ((t->operand_types[j].bitfield.reg
2024 || t->operand_types[j].bitfield.acc)
2025 && !match_reg_size (t, j ? 0 : 1))
2026 goto mismatch;
2027
2028 if (i.types[j].bitfield.mem
2029 && !match_mem_size (t, j ? 0 : 1))
2030 goto mismatch;
2031 }
2032
2033 return match;
2034 }
2035
2036 static INLINE int
2037 operand_type_match (i386_operand_type overlap,
2038 i386_operand_type given)
2039 {
2040 i386_operand_type temp = overlap;
2041
2042 temp.bitfield.jumpabsolute = 0;
2043 temp.bitfield.unspecified = 0;
2044 temp.bitfield.byte = 0;
2045 temp.bitfield.word = 0;
2046 temp.bitfield.dword = 0;
2047 temp.bitfield.fword = 0;
2048 temp.bitfield.qword = 0;
2049 temp.bitfield.tbyte = 0;
2050 temp.bitfield.xmmword = 0;
2051 temp.bitfield.ymmword = 0;
2052 temp.bitfield.zmmword = 0;
2053 if (operand_type_all_zero (&temp))
2054 goto mismatch;
2055
2056 if (given.bitfield.baseindex == overlap.bitfield.baseindex
2057 && given.bitfield.jumpabsolute == overlap.bitfield.jumpabsolute)
2058 return 1;
2059
2060 mismatch:
2061 i.error = operand_type_mismatch;
2062 return 0;
2063 }
2064
2065 /* If given types g0 and g1 are registers they must be of the same type
2066 unless the expected operand type register overlap is null.
2067 Memory operand size of certain SIMD instructions is also being checked
2068 here. */
2069
2070 static INLINE int
2071 operand_type_register_match (i386_operand_type g0,
2072 i386_operand_type t0,
2073 i386_operand_type g1,
2074 i386_operand_type t1)
2075 {
2076 if (!g0.bitfield.reg
2077 && !g0.bitfield.regsimd
2078 && (!operand_type_check (g0, anymem)
2079 || g0.bitfield.unspecified
2080 || !t0.bitfield.regsimd))
2081 return 1;
2082
2083 if (!g1.bitfield.reg
2084 && !g1.bitfield.regsimd
2085 && (!operand_type_check (g1, anymem)
2086 || g1.bitfield.unspecified
2087 || !t1.bitfield.regsimd))
2088 return 1;
2089
2090 if (g0.bitfield.byte == g1.bitfield.byte
2091 && g0.bitfield.word == g1.bitfield.word
2092 && g0.bitfield.dword == g1.bitfield.dword
2093 && g0.bitfield.qword == g1.bitfield.qword
2094 && g0.bitfield.xmmword == g1.bitfield.xmmword
2095 && g0.bitfield.ymmword == g1.bitfield.ymmword
2096 && g0.bitfield.zmmword == g1.bitfield.zmmword)
2097 return 1;
2098
2099 if (!(t0.bitfield.byte & t1.bitfield.byte)
2100 && !(t0.bitfield.word & t1.bitfield.word)
2101 && !(t0.bitfield.dword & t1.bitfield.dword)
2102 && !(t0.bitfield.qword & t1.bitfield.qword)
2103 && !(t0.bitfield.xmmword & t1.bitfield.xmmword)
2104 && !(t0.bitfield.ymmword & t1.bitfield.ymmword)
2105 && !(t0.bitfield.zmmword & t1.bitfield.zmmword))
2106 return 1;
2107
2108 i.error = register_type_mismatch;
2109
2110 return 0;
2111 }
2112
2113 static INLINE unsigned int
2114 register_number (const reg_entry *r)
2115 {
2116 unsigned int nr = r->reg_num;
2117
2118 if (r->reg_flags & RegRex)
2119 nr += 8;
2120
2121 if (r->reg_flags & RegVRex)
2122 nr += 16;
2123
2124 return nr;
2125 }
2126
2127 static INLINE unsigned int
2128 mode_from_disp_size (i386_operand_type t)
2129 {
2130 if (t.bitfield.disp8)
2131 return 1;
2132 else if (t.bitfield.disp16
2133 || t.bitfield.disp32
2134 || t.bitfield.disp32s)
2135 return 2;
2136 else
2137 return 0;
2138 }
2139
2140 static INLINE int
2141 fits_in_signed_byte (addressT num)
2142 {
2143 return num + 0x80 <= 0xff;
2144 }
2145
2146 static INLINE int
2147 fits_in_unsigned_byte (addressT num)
2148 {
2149 return num <= 0xff;
2150 }
2151
2152 static INLINE int
2153 fits_in_unsigned_word (addressT num)
2154 {
2155 return num <= 0xffff;
2156 }
2157
2158 static INLINE int
2159 fits_in_signed_word (addressT num)
2160 {
2161 return num + 0x8000 <= 0xffff;
2162 }
2163
2164 static INLINE int
2165 fits_in_signed_long (addressT num ATTRIBUTE_UNUSED)
2166 {
2167 #ifndef BFD64
2168 return 1;
2169 #else
2170 return num + 0x80000000 <= 0xffffffff;
2171 #endif
2172 } /* fits_in_signed_long() */
2173
2174 static INLINE int
2175 fits_in_unsigned_long (addressT num ATTRIBUTE_UNUSED)
2176 {
2177 #ifndef BFD64
2178 return 1;
2179 #else
2180 return num <= 0xffffffff;
2181 #endif
2182 } /* fits_in_unsigned_long() */
2183
2184 static INLINE int
2185 fits_in_disp8 (offsetT num)
2186 {
2187 int shift = i.memshift;
2188 unsigned int mask;
2189
2190 if (shift == -1)
2191 abort ();
2192
2193 mask = (1 << shift) - 1;
2194
2195 /* Return 0 if NUM isn't properly aligned. */
2196 if ((num & mask))
2197 return 0;
2198
2199 /* Check if NUM will fit in 8bit after shift. */
2200 return fits_in_signed_byte (num >> shift);
2201 }
2202
2203 static INLINE int
2204 fits_in_imm4 (offsetT num)
2205 {
2206 return (num & 0xf) == num;
2207 }
2208
2209 static i386_operand_type
2210 smallest_imm_type (offsetT num)
2211 {
2212 i386_operand_type t;
2213
2214 operand_type_set (&t, 0);
2215 t.bitfield.imm64 = 1;
2216
2217 if (cpu_arch_tune != PROCESSOR_I486 && num == 1)
2218 {
2219 /* This code is disabled on the 486 because all the Imm1 forms
2220 in the opcode table are slower on the i486. They're the
2221 versions with the implicitly specified single-position
2222 displacement, which has another syntax if you really want to
2223 use that form. */
2224 t.bitfield.imm1 = 1;
2225 t.bitfield.imm8 = 1;
2226 t.bitfield.imm8s = 1;
2227 t.bitfield.imm16 = 1;
2228 t.bitfield.imm32 = 1;
2229 t.bitfield.imm32s = 1;
2230 }
2231 else if (fits_in_signed_byte (num))
2232 {
2233 t.bitfield.imm8 = 1;
2234 t.bitfield.imm8s = 1;
2235 t.bitfield.imm16 = 1;
2236 t.bitfield.imm32 = 1;
2237 t.bitfield.imm32s = 1;
2238 }
2239 else if (fits_in_unsigned_byte (num))
2240 {
2241 t.bitfield.imm8 = 1;
2242 t.bitfield.imm16 = 1;
2243 t.bitfield.imm32 = 1;
2244 t.bitfield.imm32s = 1;
2245 }
2246 else if (fits_in_signed_word (num) || fits_in_unsigned_word (num))
2247 {
2248 t.bitfield.imm16 = 1;
2249 t.bitfield.imm32 = 1;
2250 t.bitfield.imm32s = 1;
2251 }
2252 else if (fits_in_signed_long (num))
2253 {
2254 t.bitfield.imm32 = 1;
2255 t.bitfield.imm32s = 1;
2256 }
2257 else if (fits_in_unsigned_long (num))
2258 t.bitfield.imm32 = 1;
2259
2260 return t;
2261 }
2262
2263 static offsetT
2264 offset_in_range (offsetT val, int size)
2265 {
2266 addressT mask;
2267
2268 switch (size)
2269 {
2270 case 1: mask = ((addressT) 1 << 8) - 1; break;
2271 case 2: mask = ((addressT) 1 << 16) - 1; break;
2272 case 4: mask = ((addressT) 2 << 31) - 1; break;
2273 #ifdef BFD64
2274 case 8: mask = ((addressT) 2 << 63) - 1; break;
2275 #endif
2276 default: abort ();
2277 }
2278
2279 #ifdef BFD64
2280 /* If BFD64, sign extend val for 32bit address mode. */
2281 if (flag_code != CODE_64BIT
2282 || i.prefix[ADDR_PREFIX])
2283 if ((val & ~(((addressT) 2 << 31) - 1)) == 0)
2284 val = (val ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
2285 #endif
2286
2287 if ((val & ~mask) != 0 && (val & ~mask) != ~mask)
2288 {
2289 char buf1[40], buf2[40];
2290
2291 sprint_value (buf1, val);
2292 sprint_value (buf2, val & mask);
2293 as_warn (_("%s shortened to %s"), buf1, buf2);
2294 }
2295 return val & mask;
2296 }
2297
2298 enum PREFIX_GROUP
2299 {
2300 PREFIX_EXIST = 0,
2301 PREFIX_LOCK,
2302 PREFIX_REP,
2303 PREFIX_DS,
2304 PREFIX_OTHER
2305 };
2306
2307 /* Returns
2308 a. PREFIX_EXIST if attempting to add a prefix where one from the
2309 same class already exists.
2310 b. PREFIX_LOCK if lock prefix is added.
2311 c. PREFIX_REP if rep/repne prefix is added.
2312 d. PREFIX_DS if ds prefix is added.
2313 e. PREFIX_OTHER if other prefix is added.
2314 */
2315
2316 static enum PREFIX_GROUP
2317 add_prefix (unsigned int prefix)
2318 {
2319 enum PREFIX_GROUP ret = PREFIX_OTHER;
2320 unsigned int q;
2321
2322 if (prefix >= REX_OPCODE && prefix < REX_OPCODE + 16
2323 && flag_code == CODE_64BIT)
2324 {
2325 if ((i.prefix[REX_PREFIX] & prefix & REX_W)
2326 || ((i.prefix[REX_PREFIX] & (REX_R | REX_X | REX_B))
2327 && (prefix & (REX_R | REX_X | REX_B))))
2328 ret = PREFIX_EXIST;
2329 q = REX_PREFIX;
2330 }
2331 else
2332 {
2333 switch (prefix)
2334 {
2335 default:
2336 abort ();
2337
2338 case DS_PREFIX_OPCODE:
2339 ret = PREFIX_DS;
2340 /* Fall through. */
2341 case CS_PREFIX_OPCODE:
2342 case ES_PREFIX_OPCODE:
2343 case FS_PREFIX_OPCODE:
2344 case GS_PREFIX_OPCODE:
2345 case SS_PREFIX_OPCODE:
2346 q = SEG_PREFIX;
2347 break;
2348
2349 case REPNE_PREFIX_OPCODE:
2350 case REPE_PREFIX_OPCODE:
2351 q = REP_PREFIX;
2352 ret = PREFIX_REP;
2353 break;
2354
2355 case LOCK_PREFIX_OPCODE:
2356 q = LOCK_PREFIX;
2357 ret = PREFIX_LOCK;
2358 break;
2359
2360 case FWAIT_OPCODE:
2361 q = WAIT_PREFIX;
2362 break;
2363
2364 case ADDR_PREFIX_OPCODE:
2365 q = ADDR_PREFIX;
2366 break;
2367
2368 case DATA_PREFIX_OPCODE:
2369 q = DATA_PREFIX;
2370 break;
2371 }
2372 if (i.prefix[q] != 0)
2373 ret = PREFIX_EXIST;
2374 }
2375
2376 if (ret)
2377 {
2378 if (!i.prefix[q])
2379 ++i.prefixes;
2380 i.prefix[q] |= prefix;
2381 }
2382 else
2383 as_bad (_("same type of prefix used twice"));
2384
2385 return ret;
2386 }
2387
2388 static void
2389 update_code_flag (int value, int check)
2390 {
2391 PRINTF_LIKE ((*as_error));
2392
2393 flag_code = (enum flag_code) value;
2394 if (flag_code == CODE_64BIT)
2395 {
2396 cpu_arch_flags.bitfield.cpu64 = 1;
2397 cpu_arch_flags.bitfield.cpuno64 = 0;
2398 }
2399 else
2400 {
2401 cpu_arch_flags.bitfield.cpu64 = 0;
2402 cpu_arch_flags.bitfield.cpuno64 = 1;
2403 }
2404 if (value == CODE_64BIT && !cpu_arch_flags.bitfield.cpulm )
2405 {
2406 if (check)
2407 as_error = as_fatal;
2408 else
2409 as_error = as_bad;
2410 (*as_error) (_("64bit mode not supported on `%s'."),
2411 cpu_arch_name ? cpu_arch_name : default_arch);
2412 }
2413 if (value == CODE_32BIT && !cpu_arch_flags.bitfield.cpui386)
2414 {
2415 if (check)
2416 as_error = as_fatal;
2417 else
2418 as_error = as_bad;
2419 (*as_error) (_("32bit mode not supported on `%s'."),
2420 cpu_arch_name ? cpu_arch_name : default_arch);
2421 }
2422 stackop_size = '\0';
2423 }
2424
2425 static void
2426 set_code_flag (int value)
2427 {
2428 update_code_flag (value, 0);
2429 }
2430
2431 static void
2432 set_16bit_gcc_code_flag (int new_code_flag)
2433 {
2434 flag_code = (enum flag_code) new_code_flag;
2435 if (flag_code != CODE_16BIT)
2436 abort ();
2437 cpu_arch_flags.bitfield.cpu64 = 0;
2438 cpu_arch_flags.bitfield.cpuno64 = 1;
2439 stackop_size = LONG_MNEM_SUFFIX;
2440 }
2441
2442 static void
2443 set_intel_syntax (int syntax_flag)
2444 {
2445 /* Find out if register prefixing is specified. */
2446 int ask_naked_reg = 0;
2447
2448 SKIP_WHITESPACE ();
2449 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2450 {
2451 char *string;
2452 int e = get_symbol_name (&string);
2453
2454 if (strcmp (string, "prefix") == 0)
2455 ask_naked_reg = 1;
2456 else if (strcmp (string, "noprefix") == 0)
2457 ask_naked_reg = -1;
2458 else
2459 as_bad (_("bad argument to syntax directive."));
2460 (void) restore_line_pointer (e);
2461 }
2462 demand_empty_rest_of_line ();
2463
2464 intel_syntax = syntax_flag;
2465
2466 if (ask_naked_reg == 0)
2467 allow_naked_reg = (intel_syntax
2468 && (bfd_get_symbol_leading_char (stdoutput) != '\0'));
2469 else
2470 allow_naked_reg = (ask_naked_reg < 0);
2471
2472 expr_set_rank (O_full_ptr, syntax_flag ? 10 : 0);
2473
2474 identifier_chars['%'] = intel_syntax && allow_naked_reg ? '%' : 0;
2475 identifier_chars['$'] = intel_syntax ? '$' : 0;
2476 register_prefix = allow_naked_reg ? "" : "%";
2477 }
2478
2479 static void
2480 set_intel_mnemonic (int mnemonic_flag)
2481 {
2482 intel_mnemonic = mnemonic_flag;
2483 }
2484
2485 static void
2486 set_allow_index_reg (int flag)
2487 {
2488 allow_index_reg = flag;
2489 }
2490
2491 static void
2492 set_check (int what)
2493 {
2494 enum check_kind *kind;
2495 const char *str;
2496
2497 if (what)
2498 {
2499 kind = &operand_check;
2500 str = "operand";
2501 }
2502 else
2503 {
2504 kind = &sse_check;
2505 str = "sse";
2506 }
2507
2508 SKIP_WHITESPACE ();
2509
2510 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2511 {
2512 char *string;
2513 int e = get_symbol_name (&string);
2514
2515 if (strcmp (string, "none") == 0)
2516 *kind = check_none;
2517 else if (strcmp (string, "warning") == 0)
2518 *kind = check_warning;
2519 else if (strcmp (string, "error") == 0)
2520 *kind = check_error;
2521 else
2522 as_bad (_("bad argument to %s_check directive."), str);
2523 (void) restore_line_pointer (e);
2524 }
2525 else
2526 as_bad (_("missing argument for %s_check directive"), str);
2527
2528 demand_empty_rest_of_line ();
2529 }
2530
2531 static void
2532 check_cpu_arch_compatible (const char *name ATTRIBUTE_UNUSED,
2533 i386_cpu_flags new_flag ATTRIBUTE_UNUSED)
2534 {
2535 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
2536 static const char *arch;
2537
2538 /* Intel LIOM is only supported on ELF. */
2539 if (!IS_ELF)
2540 return;
2541
2542 if (!arch)
2543 {
2544 /* Use cpu_arch_name if it is set in md_parse_option. Otherwise
2545 use default_arch. */
2546 arch = cpu_arch_name;
2547 if (!arch)
2548 arch = default_arch;
2549 }
2550
2551 /* If we are targeting Intel MCU, we must enable it. */
2552 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_IAMCU
2553 || new_flag.bitfield.cpuiamcu)
2554 return;
2555
2556 /* If we are targeting Intel L1OM, we must enable it. */
2557 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_L1OM
2558 || new_flag.bitfield.cpul1om)
2559 return;
2560
2561 /* If we are targeting Intel K1OM, we must enable it. */
2562 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_K1OM
2563 || new_flag.bitfield.cpuk1om)
2564 return;
2565
2566 as_bad (_("`%s' is not supported on `%s'"), name, arch);
2567 #endif
2568 }
2569
2570 static void
2571 set_cpu_arch (int dummy ATTRIBUTE_UNUSED)
2572 {
2573 SKIP_WHITESPACE ();
2574
2575 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2576 {
2577 char *string;
2578 int e = get_symbol_name (&string);
2579 unsigned int j;
2580 i386_cpu_flags flags;
2581
2582 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
2583 {
2584 if (strcmp (string, cpu_arch[j].name) == 0)
2585 {
2586 check_cpu_arch_compatible (string, cpu_arch[j].flags);
2587
2588 if (*string != '.')
2589 {
2590 cpu_arch_name = cpu_arch[j].name;
2591 cpu_sub_arch_name = NULL;
2592 cpu_arch_flags = cpu_arch[j].flags;
2593 if (flag_code == CODE_64BIT)
2594 {
2595 cpu_arch_flags.bitfield.cpu64 = 1;
2596 cpu_arch_flags.bitfield.cpuno64 = 0;
2597 }
2598 else
2599 {
2600 cpu_arch_flags.bitfield.cpu64 = 0;
2601 cpu_arch_flags.bitfield.cpuno64 = 1;
2602 }
2603 cpu_arch_isa = cpu_arch[j].type;
2604 cpu_arch_isa_flags = cpu_arch[j].flags;
2605 if (!cpu_arch_tune_set)
2606 {
2607 cpu_arch_tune = cpu_arch_isa;
2608 cpu_arch_tune_flags = cpu_arch_isa_flags;
2609 }
2610 break;
2611 }
2612
2613 flags = cpu_flags_or (cpu_arch_flags,
2614 cpu_arch[j].flags);
2615
2616 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
2617 {
2618 if (cpu_sub_arch_name)
2619 {
2620 char *name = cpu_sub_arch_name;
2621 cpu_sub_arch_name = concat (name,
2622 cpu_arch[j].name,
2623 (const char *) NULL);
2624 free (name);
2625 }
2626 else
2627 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
2628 cpu_arch_flags = flags;
2629 cpu_arch_isa_flags = flags;
2630 }
2631 else
2632 cpu_arch_isa_flags
2633 = cpu_flags_or (cpu_arch_isa_flags,
2634 cpu_arch[j].flags);
2635 (void) restore_line_pointer (e);
2636 demand_empty_rest_of_line ();
2637 return;
2638 }
2639 }
2640
2641 if (*string == '.' && j >= ARRAY_SIZE (cpu_arch))
2642 {
2643 /* Disable an ISA extension. */
2644 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
2645 if (strcmp (string + 1, cpu_noarch [j].name) == 0)
2646 {
2647 flags = cpu_flags_and_not (cpu_arch_flags,
2648 cpu_noarch[j].flags);
2649 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
2650 {
2651 if (cpu_sub_arch_name)
2652 {
2653 char *name = cpu_sub_arch_name;
2654 cpu_sub_arch_name = concat (name, string,
2655 (const char *) NULL);
2656 free (name);
2657 }
2658 else
2659 cpu_sub_arch_name = xstrdup (string);
2660 cpu_arch_flags = flags;
2661 cpu_arch_isa_flags = flags;
2662 }
2663 (void) restore_line_pointer (e);
2664 demand_empty_rest_of_line ();
2665 return;
2666 }
2667
2668 j = ARRAY_SIZE (cpu_arch);
2669 }
2670
2671 if (j >= ARRAY_SIZE (cpu_arch))
2672 as_bad (_("no such architecture: `%s'"), string);
2673
2674 *input_line_pointer = e;
2675 }
2676 else
2677 as_bad (_("missing cpu architecture"));
2678
2679 no_cond_jump_promotion = 0;
2680 if (*input_line_pointer == ','
2681 && !is_end_of_line[(unsigned char) input_line_pointer[1]])
2682 {
2683 char *string;
2684 char e;
2685
2686 ++input_line_pointer;
2687 e = get_symbol_name (&string);
2688
2689 if (strcmp (string, "nojumps") == 0)
2690 no_cond_jump_promotion = 1;
2691 else if (strcmp (string, "jumps") == 0)
2692 ;
2693 else
2694 as_bad (_("no such architecture modifier: `%s'"), string);
2695
2696 (void) restore_line_pointer (e);
2697 }
2698
2699 demand_empty_rest_of_line ();
2700 }
2701
2702 enum bfd_architecture
2703 i386_arch (void)
2704 {
2705 if (cpu_arch_isa == PROCESSOR_L1OM)
2706 {
2707 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2708 || flag_code != CODE_64BIT)
2709 as_fatal (_("Intel L1OM is 64bit ELF only"));
2710 return bfd_arch_l1om;
2711 }
2712 else if (cpu_arch_isa == PROCESSOR_K1OM)
2713 {
2714 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2715 || flag_code != CODE_64BIT)
2716 as_fatal (_("Intel K1OM is 64bit ELF only"));
2717 return bfd_arch_k1om;
2718 }
2719 else if (cpu_arch_isa == PROCESSOR_IAMCU)
2720 {
2721 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2722 || flag_code == CODE_64BIT)
2723 as_fatal (_("Intel MCU is 32bit ELF only"));
2724 return bfd_arch_iamcu;
2725 }
2726 else
2727 return bfd_arch_i386;
2728 }
2729
2730 unsigned long
2731 i386_mach (void)
2732 {
2733 if (!strncmp (default_arch, "x86_64", 6))
2734 {
2735 if (cpu_arch_isa == PROCESSOR_L1OM)
2736 {
2737 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2738 || default_arch[6] != '\0')
2739 as_fatal (_("Intel L1OM is 64bit ELF only"));
2740 return bfd_mach_l1om;
2741 }
2742 else if (cpu_arch_isa == PROCESSOR_K1OM)
2743 {
2744 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2745 || default_arch[6] != '\0')
2746 as_fatal (_("Intel K1OM is 64bit ELF only"));
2747 return bfd_mach_k1om;
2748 }
2749 else if (default_arch[6] == '\0')
2750 return bfd_mach_x86_64;
2751 else
2752 return bfd_mach_x64_32;
2753 }
2754 else if (!strcmp (default_arch, "i386")
2755 || !strcmp (default_arch, "iamcu"))
2756 {
2757 if (cpu_arch_isa == PROCESSOR_IAMCU)
2758 {
2759 if (OUTPUT_FLAVOR != bfd_target_elf_flavour)
2760 as_fatal (_("Intel MCU is 32bit ELF only"));
2761 return bfd_mach_i386_iamcu;
2762 }
2763 else
2764 return bfd_mach_i386_i386;
2765 }
2766 else
2767 as_fatal (_("unknown architecture"));
2768 }
2769 \f
2770 void
2771 md_begin (void)
2772 {
2773 const char *hash_err;
2774
2775 /* Support pseudo prefixes like {disp32}. */
2776 lex_type ['{'] = LEX_BEGIN_NAME;
2777
2778 /* Initialize op_hash hash table. */
2779 op_hash = hash_new ();
2780
2781 {
2782 const insn_template *optab;
2783 templates *core_optab;
2784
2785 /* Setup for loop. */
2786 optab = i386_optab;
2787 core_optab = XNEW (templates);
2788 core_optab->start = optab;
2789
2790 while (1)
2791 {
2792 ++optab;
2793 if (optab->name == NULL
2794 || strcmp (optab->name, (optab - 1)->name) != 0)
2795 {
2796 /* different name --> ship out current template list;
2797 add to hash table; & begin anew. */
2798 core_optab->end = optab;
2799 hash_err = hash_insert (op_hash,
2800 (optab - 1)->name,
2801 (void *) core_optab);
2802 if (hash_err)
2803 {
2804 as_fatal (_("can't hash %s: %s"),
2805 (optab - 1)->name,
2806 hash_err);
2807 }
2808 if (optab->name == NULL)
2809 break;
2810 core_optab = XNEW (templates);
2811 core_optab->start = optab;
2812 }
2813 }
2814 }
2815
2816 /* Initialize reg_hash hash table. */
2817 reg_hash = hash_new ();
2818 {
2819 const reg_entry *regtab;
2820 unsigned int regtab_size = i386_regtab_size;
2821
2822 for (regtab = i386_regtab; regtab_size--; regtab++)
2823 {
2824 hash_err = hash_insert (reg_hash, regtab->reg_name, (void *) regtab);
2825 if (hash_err)
2826 as_fatal (_("can't hash %s: %s"),
2827 regtab->reg_name,
2828 hash_err);
2829 }
2830 }
2831
2832 /* Fill in lexical tables: mnemonic_chars, operand_chars. */
2833 {
2834 int c;
2835 char *p;
2836
2837 for (c = 0; c < 256; c++)
2838 {
2839 if (ISDIGIT (c))
2840 {
2841 digit_chars[c] = c;
2842 mnemonic_chars[c] = c;
2843 register_chars[c] = c;
2844 operand_chars[c] = c;
2845 }
2846 else if (ISLOWER (c))
2847 {
2848 mnemonic_chars[c] = c;
2849 register_chars[c] = c;
2850 operand_chars[c] = c;
2851 }
2852 else if (ISUPPER (c))
2853 {
2854 mnemonic_chars[c] = TOLOWER (c);
2855 register_chars[c] = mnemonic_chars[c];
2856 operand_chars[c] = c;
2857 }
2858 else if (c == '{' || c == '}')
2859 {
2860 mnemonic_chars[c] = c;
2861 operand_chars[c] = c;
2862 }
2863
2864 if (ISALPHA (c) || ISDIGIT (c))
2865 identifier_chars[c] = c;
2866 else if (c >= 128)
2867 {
2868 identifier_chars[c] = c;
2869 operand_chars[c] = c;
2870 }
2871 }
2872
2873 #ifdef LEX_AT
2874 identifier_chars['@'] = '@';
2875 #endif
2876 #ifdef LEX_QM
2877 identifier_chars['?'] = '?';
2878 operand_chars['?'] = '?';
2879 #endif
2880 digit_chars['-'] = '-';
2881 mnemonic_chars['_'] = '_';
2882 mnemonic_chars['-'] = '-';
2883 mnemonic_chars['.'] = '.';
2884 identifier_chars['_'] = '_';
2885 identifier_chars['.'] = '.';
2886
2887 for (p = operand_special_chars; *p != '\0'; p++)
2888 operand_chars[(unsigned char) *p] = *p;
2889 }
2890
2891 if (flag_code == CODE_64BIT)
2892 {
2893 #if defined (OBJ_COFF) && defined (TE_PE)
2894 x86_dwarf2_return_column = (OUTPUT_FLAVOR == bfd_target_coff_flavour
2895 ? 32 : 16);
2896 #else
2897 x86_dwarf2_return_column = 16;
2898 #endif
2899 x86_cie_data_alignment = -8;
2900 }
2901 else
2902 {
2903 x86_dwarf2_return_column = 8;
2904 x86_cie_data_alignment = -4;
2905 }
2906 }
2907
2908 void
2909 i386_print_statistics (FILE *file)
2910 {
2911 hash_print_statistics (file, "i386 opcode", op_hash);
2912 hash_print_statistics (file, "i386 register", reg_hash);
2913 }
2914 \f
2915 #ifdef DEBUG386
2916
2917 /* Debugging routines for md_assemble. */
2918 static void pte (insn_template *);
2919 static void pt (i386_operand_type);
2920 static void pe (expressionS *);
2921 static void ps (symbolS *);
2922
2923 static void
2924 pi (char *line, i386_insn *x)
2925 {
2926 unsigned int j;
2927
2928 fprintf (stdout, "%s: template ", line);
2929 pte (&x->tm);
2930 fprintf (stdout, " address: base %s index %s scale %x\n",
2931 x->base_reg ? x->base_reg->reg_name : "none",
2932 x->index_reg ? x->index_reg->reg_name : "none",
2933 x->log2_scale_factor);
2934 fprintf (stdout, " modrm: mode %x reg %x reg/mem %x\n",
2935 x->rm.mode, x->rm.reg, x->rm.regmem);
2936 fprintf (stdout, " sib: base %x index %x scale %x\n",
2937 x->sib.base, x->sib.index, x->sib.scale);
2938 fprintf (stdout, " rex: 64bit %x extX %x extY %x extZ %x\n",
2939 (x->rex & REX_W) != 0,
2940 (x->rex & REX_R) != 0,
2941 (x->rex & REX_X) != 0,
2942 (x->rex & REX_B) != 0);
2943 for (j = 0; j < x->operands; j++)
2944 {
2945 fprintf (stdout, " #%d: ", j + 1);
2946 pt (x->types[j]);
2947 fprintf (stdout, "\n");
2948 if (x->types[j].bitfield.reg
2949 || x->types[j].bitfield.regmmx
2950 || x->types[j].bitfield.regsimd
2951 || x->types[j].bitfield.sreg2
2952 || x->types[j].bitfield.sreg3
2953 || x->types[j].bitfield.control
2954 || x->types[j].bitfield.debug
2955 || x->types[j].bitfield.test)
2956 fprintf (stdout, "%s\n", x->op[j].regs->reg_name);
2957 if (operand_type_check (x->types[j], imm))
2958 pe (x->op[j].imms);
2959 if (operand_type_check (x->types[j], disp))
2960 pe (x->op[j].disps);
2961 }
2962 }
2963
2964 static void
2965 pte (insn_template *t)
2966 {
2967 unsigned int j;
2968 fprintf (stdout, " %d operands ", t->operands);
2969 fprintf (stdout, "opcode %x ", t->base_opcode);
2970 if (t->extension_opcode != None)
2971 fprintf (stdout, "ext %x ", t->extension_opcode);
2972 if (t->opcode_modifier.d)
2973 fprintf (stdout, "D");
2974 if (t->opcode_modifier.w)
2975 fprintf (stdout, "W");
2976 fprintf (stdout, "\n");
2977 for (j = 0; j < t->operands; j++)
2978 {
2979 fprintf (stdout, " #%d type ", j + 1);
2980 pt (t->operand_types[j]);
2981 fprintf (stdout, "\n");
2982 }
2983 }
2984
2985 static void
2986 pe (expressionS *e)
2987 {
2988 fprintf (stdout, " operation %d\n", e->X_op);
2989 fprintf (stdout, " add_number %ld (%lx)\n",
2990 (long) e->X_add_number, (long) e->X_add_number);
2991 if (e->X_add_symbol)
2992 {
2993 fprintf (stdout, " add_symbol ");
2994 ps (e->X_add_symbol);
2995 fprintf (stdout, "\n");
2996 }
2997 if (e->X_op_symbol)
2998 {
2999 fprintf (stdout, " op_symbol ");
3000 ps (e->X_op_symbol);
3001 fprintf (stdout, "\n");
3002 }
3003 }
3004
3005 static void
3006 ps (symbolS *s)
3007 {
3008 fprintf (stdout, "%s type %s%s",
3009 S_GET_NAME (s),
3010 S_IS_EXTERNAL (s) ? "EXTERNAL " : "",
3011 segment_name (S_GET_SEGMENT (s)));
3012 }
3013
3014 static struct type_name
3015 {
3016 i386_operand_type mask;
3017 const char *name;
3018 }
3019 const type_names[] =
3020 {
3021 { OPERAND_TYPE_REG8, "r8" },
3022 { OPERAND_TYPE_REG16, "r16" },
3023 { OPERAND_TYPE_REG32, "r32" },
3024 { OPERAND_TYPE_REG64, "r64" },
3025 { OPERAND_TYPE_IMM8, "i8" },
3026 { OPERAND_TYPE_IMM8, "i8s" },
3027 { OPERAND_TYPE_IMM16, "i16" },
3028 { OPERAND_TYPE_IMM32, "i32" },
3029 { OPERAND_TYPE_IMM32S, "i32s" },
3030 { OPERAND_TYPE_IMM64, "i64" },
3031 { OPERAND_TYPE_IMM1, "i1" },
3032 { OPERAND_TYPE_BASEINDEX, "BaseIndex" },
3033 { OPERAND_TYPE_DISP8, "d8" },
3034 { OPERAND_TYPE_DISP16, "d16" },
3035 { OPERAND_TYPE_DISP32, "d32" },
3036 { OPERAND_TYPE_DISP32S, "d32s" },
3037 { OPERAND_TYPE_DISP64, "d64" },
3038 { OPERAND_TYPE_INOUTPORTREG, "InOutPortReg" },
3039 { OPERAND_TYPE_SHIFTCOUNT, "ShiftCount" },
3040 { OPERAND_TYPE_CONTROL, "control reg" },
3041 { OPERAND_TYPE_TEST, "test reg" },
3042 { OPERAND_TYPE_DEBUG, "debug reg" },
3043 { OPERAND_TYPE_FLOATREG, "FReg" },
3044 { OPERAND_TYPE_FLOATACC, "FAcc" },
3045 { OPERAND_TYPE_SREG2, "SReg2" },
3046 { OPERAND_TYPE_SREG3, "SReg3" },
3047 { OPERAND_TYPE_ACC, "Acc" },
3048 { OPERAND_TYPE_JUMPABSOLUTE, "Jump Absolute" },
3049 { OPERAND_TYPE_REGMMX, "rMMX" },
3050 { OPERAND_TYPE_REGXMM, "rXMM" },
3051 { OPERAND_TYPE_REGYMM, "rYMM" },
3052 { OPERAND_TYPE_REGZMM, "rZMM" },
3053 { OPERAND_TYPE_REGMASK, "Mask reg" },
3054 { OPERAND_TYPE_ESSEG, "es" },
3055 };
3056
3057 static void
3058 pt (i386_operand_type t)
3059 {
3060 unsigned int j;
3061 i386_operand_type a;
3062
3063 for (j = 0; j < ARRAY_SIZE (type_names); j++)
3064 {
3065 a = operand_type_and (t, type_names[j].mask);
3066 if (!operand_type_all_zero (&a))
3067 fprintf (stdout, "%s, ", type_names[j].name);
3068 }
3069 fflush (stdout);
3070 }
3071
3072 #endif /* DEBUG386 */
3073 \f
3074 static bfd_reloc_code_real_type
3075 reloc (unsigned int size,
3076 int pcrel,
3077 int sign,
3078 bfd_reloc_code_real_type other)
3079 {
3080 if (other != NO_RELOC)
3081 {
3082 reloc_howto_type *rel;
3083
3084 if (size == 8)
3085 switch (other)
3086 {
3087 case BFD_RELOC_X86_64_GOT32:
3088 return BFD_RELOC_X86_64_GOT64;
3089 break;
3090 case BFD_RELOC_X86_64_GOTPLT64:
3091 return BFD_RELOC_X86_64_GOTPLT64;
3092 break;
3093 case BFD_RELOC_X86_64_PLTOFF64:
3094 return BFD_RELOC_X86_64_PLTOFF64;
3095 break;
3096 case BFD_RELOC_X86_64_GOTPC32:
3097 other = BFD_RELOC_X86_64_GOTPC64;
3098 break;
3099 case BFD_RELOC_X86_64_GOTPCREL:
3100 other = BFD_RELOC_X86_64_GOTPCREL64;
3101 break;
3102 case BFD_RELOC_X86_64_TPOFF32:
3103 other = BFD_RELOC_X86_64_TPOFF64;
3104 break;
3105 case BFD_RELOC_X86_64_DTPOFF32:
3106 other = BFD_RELOC_X86_64_DTPOFF64;
3107 break;
3108 default:
3109 break;
3110 }
3111
3112 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
3113 if (other == BFD_RELOC_SIZE32)
3114 {
3115 if (size == 8)
3116 other = BFD_RELOC_SIZE64;
3117 if (pcrel)
3118 {
3119 as_bad (_("there are no pc-relative size relocations"));
3120 return NO_RELOC;
3121 }
3122 }
3123 #endif
3124
3125 /* Sign-checking 4-byte relocations in 16-/32-bit code is pointless. */
3126 if (size == 4 && (flag_code != CODE_64BIT || disallow_64bit_reloc))
3127 sign = -1;
3128
3129 rel = bfd_reloc_type_lookup (stdoutput, other);
3130 if (!rel)
3131 as_bad (_("unknown relocation (%u)"), other);
3132 else if (size != bfd_get_reloc_size (rel))
3133 as_bad (_("%u-byte relocation cannot be applied to %u-byte field"),
3134 bfd_get_reloc_size (rel),
3135 size);
3136 else if (pcrel && !rel->pc_relative)
3137 as_bad (_("non-pc-relative relocation for pc-relative field"));
3138 else if ((rel->complain_on_overflow == complain_overflow_signed
3139 && !sign)
3140 || (rel->complain_on_overflow == complain_overflow_unsigned
3141 && sign > 0))
3142 as_bad (_("relocated field and relocation type differ in signedness"));
3143 else
3144 return other;
3145 return NO_RELOC;
3146 }
3147
3148 if (pcrel)
3149 {
3150 if (!sign)
3151 as_bad (_("there are no unsigned pc-relative relocations"));
3152 switch (size)
3153 {
3154 case 1: return BFD_RELOC_8_PCREL;
3155 case 2: return BFD_RELOC_16_PCREL;
3156 case 4: return BFD_RELOC_32_PCREL;
3157 case 8: return BFD_RELOC_64_PCREL;
3158 }
3159 as_bad (_("cannot do %u byte pc-relative relocation"), size);
3160 }
3161 else
3162 {
3163 if (sign > 0)
3164 switch (size)
3165 {
3166 case 4: return BFD_RELOC_X86_64_32S;
3167 }
3168 else
3169 switch (size)
3170 {
3171 case 1: return BFD_RELOC_8;
3172 case 2: return BFD_RELOC_16;
3173 case 4: return BFD_RELOC_32;
3174 case 8: return BFD_RELOC_64;
3175 }
3176 as_bad (_("cannot do %s %u byte relocation"),
3177 sign > 0 ? "signed" : "unsigned", size);
3178 }
3179
3180 return NO_RELOC;
3181 }
3182
3183 /* Here we decide which fixups can be adjusted to make them relative to
3184 the beginning of the section instead of the symbol. Basically we need
3185 to make sure that the dynamic relocations are done correctly, so in
3186 some cases we force the original symbol to be used. */
3187
3188 int
3189 tc_i386_fix_adjustable (fixS *fixP ATTRIBUTE_UNUSED)
3190 {
3191 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
3192 if (!IS_ELF)
3193 return 1;
3194
3195 /* Don't adjust pc-relative references to merge sections in 64-bit
3196 mode. */
3197 if (use_rela_relocations
3198 && (S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_MERGE) != 0
3199 && fixP->fx_pcrel)
3200 return 0;
3201
3202 /* The x86_64 GOTPCREL are represented as 32bit PCrel relocations
3203 and changed later by validate_fix. */
3204 if (GOT_symbol && fixP->fx_subsy == GOT_symbol
3205 && fixP->fx_r_type == BFD_RELOC_32_PCREL)
3206 return 0;
3207
3208 /* Adjust_reloc_syms doesn't know about the GOT. Need to keep symbol
3209 for size relocations. */
3210 if (fixP->fx_r_type == BFD_RELOC_SIZE32
3211 || fixP->fx_r_type == BFD_RELOC_SIZE64
3212 || fixP->fx_r_type == BFD_RELOC_386_GOTOFF
3213 || fixP->fx_r_type == BFD_RELOC_386_PLT32
3214 || fixP->fx_r_type == BFD_RELOC_386_GOT32
3215 || fixP->fx_r_type == BFD_RELOC_386_GOT32X
3216 || fixP->fx_r_type == BFD_RELOC_386_TLS_GD
3217 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDM
3218 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDO_32
3219 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE_32
3220 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE
3221 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTIE
3222 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE_32
3223 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE
3224 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTDESC
3225 || fixP->fx_r_type == BFD_RELOC_386_TLS_DESC_CALL
3226 || fixP->fx_r_type == BFD_RELOC_X86_64_PLT32
3227 || fixP->fx_r_type == BFD_RELOC_X86_64_GOT32
3228 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCREL
3229 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCRELX
3230 || fixP->fx_r_type == BFD_RELOC_X86_64_REX_GOTPCRELX
3231 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSGD
3232 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSLD
3233 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF32
3234 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF64
3235 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTTPOFF
3236 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF32
3237 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF64
3238 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTOFF64
3239 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPC32_TLSDESC
3240 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSDESC_CALL
3241 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
3242 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
3243 return 0;
3244 #endif
3245 return 1;
3246 }
3247
3248 static int
3249 intel_float_operand (const char *mnemonic)
3250 {
3251 /* Note that the value returned is meaningful only for opcodes with (memory)
3252 operands, hence the code here is free to improperly handle opcodes that
3253 have no operands (for better performance and smaller code). */
3254
3255 if (mnemonic[0] != 'f')
3256 return 0; /* non-math */
3257
3258 switch (mnemonic[1])
3259 {
3260 /* fclex, fdecstp, fdisi, femms, feni, fincstp, finit, fsetpm, and
3261 the fs segment override prefix not currently handled because no
3262 call path can make opcodes without operands get here */
3263 case 'i':
3264 return 2 /* integer op */;
3265 case 'l':
3266 if (mnemonic[2] == 'd' && (mnemonic[3] == 'c' || mnemonic[3] == 'e'))
3267 return 3; /* fldcw/fldenv */
3268 break;
3269 case 'n':
3270 if (mnemonic[2] != 'o' /* fnop */)
3271 return 3; /* non-waiting control op */
3272 break;
3273 case 'r':
3274 if (mnemonic[2] == 's')
3275 return 3; /* frstor/frstpm */
3276 break;
3277 case 's':
3278 if (mnemonic[2] == 'a')
3279 return 3; /* fsave */
3280 if (mnemonic[2] == 't')
3281 {
3282 switch (mnemonic[3])
3283 {
3284 case 'c': /* fstcw */
3285 case 'd': /* fstdw */
3286 case 'e': /* fstenv */
3287 case 's': /* fsts[gw] */
3288 return 3;
3289 }
3290 }
3291 break;
3292 case 'x':
3293 if (mnemonic[2] == 'r' || mnemonic[2] == 's')
3294 return 0; /* fxsave/fxrstor are not really math ops */
3295 break;
3296 }
3297
3298 return 1;
3299 }
3300
3301 /* Build the VEX prefix. */
3302
3303 static void
3304 build_vex_prefix (const insn_template *t)
3305 {
3306 unsigned int register_specifier;
3307 unsigned int implied_prefix;
3308 unsigned int vector_length;
3309
3310 /* Check register specifier. */
3311 if (i.vex.register_specifier)
3312 {
3313 register_specifier =
3314 ~register_number (i.vex.register_specifier) & 0xf;
3315 gas_assert ((i.vex.register_specifier->reg_flags & RegVRex) == 0);
3316 }
3317 else
3318 register_specifier = 0xf;
3319
3320 /* Use 2-byte VEX prefix by swapping destination and source
3321 operand. */
3322 if (i.vec_encoding != vex_encoding_vex3
3323 && i.dir_encoding == dir_encoding_default
3324 && i.operands == i.reg_operands
3325 && i.tm.opcode_modifier.vexopcode == VEX0F
3326 && i.tm.opcode_modifier.load
3327 && i.rex == REX_B)
3328 {
3329 unsigned int xchg = i.operands - 1;
3330 union i386_op temp_op;
3331 i386_operand_type temp_type;
3332
3333 temp_type = i.types[xchg];
3334 i.types[xchg] = i.types[0];
3335 i.types[0] = temp_type;
3336 temp_op = i.op[xchg];
3337 i.op[xchg] = i.op[0];
3338 i.op[0] = temp_op;
3339
3340 gas_assert (i.rm.mode == 3);
3341
3342 i.rex = REX_R;
3343 xchg = i.rm.regmem;
3344 i.rm.regmem = i.rm.reg;
3345 i.rm.reg = xchg;
3346
3347 /* Use the next insn. */
3348 i.tm = t[1];
3349 }
3350
3351 if (i.tm.opcode_modifier.vex == VEXScalar)
3352 vector_length = avxscalar;
3353 else if (i.tm.opcode_modifier.vex == VEX256)
3354 vector_length = 1;
3355 else
3356 {
3357 unsigned int op;
3358
3359 vector_length = 0;
3360 for (op = 0; op < t->operands; ++op)
3361 if (t->operand_types[op].bitfield.xmmword
3362 && t->operand_types[op].bitfield.ymmword
3363 && i.types[op].bitfield.ymmword)
3364 {
3365 vector_length = 1;
3366 break;
3367 }
3368 }
3369
3370 switch ((i.tm.base_opcode >> 8) & 0xff)
3371 {
3372 case 0:
3373 implied_prefix = 0;
3374 break;
3375 case DATA_PREFIX_OPCODE:
3376 implied_prefix = 1;
3377 break;
3378 case REPE_PREFIX_OPCODE:
3379 implied_prefix = 2;
3380 break;
3381 case REPNE_PREFIX_OPCODE:
3382 implied_prefix = 3;
3383 break;
3384 default:
3385 abort ();
3386 }
3387
3388 /* Use 2-byte VEX prefix if possible. */
3389 if (i.vec_encoding != vex_encoding_vex3
3390 && i.tm.opcode_modifier.vexopcode == VEX0F
3391 && i.tm.opcode_modifier.vexw != VEXW1
3392 && (i.rex & (REX_W | REX_X | REX_B)) == 0)
3393 {
3394 /* 2-byte VEX prefix. */
3395 unsigned int r;
3396
3397 i.vex.length = 2;
3398 i.vex.bytes[0] = 0xc5;
3399
3400 /* Check the REX.R bit. */
3401 r = (i.rex & REX_R) ? 0 : 1;
3402 i.vex.bytes[1] = (r << 7
3403 | register_specifier << 3
3404 | vector_length << 2
3405 | implied_prefix);
3406 }
3407 else
3408 {
3409 /* 3-byte VEX prefix. */
3410 unsigned int m, w;
3411
3412 i.vex.length = 3;
3413
3414 switch (i.tm.opcode_modifier.vexopcode)
3415 {
3416 case VEX0F:
3417 m = 0x1;
3418 i.vex.bytes[0] = 0xc4;
3419 break;
3420 case VEX0F38:
3421 m = 0x2;
3422 i.vex.bytes[0] = 0xc4;
3423 break;
3424 case VEX0F3A:
3425 m = 0x3;
3426 i.vex.bytes[0] = 0xc4;
3427 break;
3428 case XOP08:
3429 m = 0x8;
3430 i.vex.bytes[0] = 0x8f;
3431 break;
3432 case XOP09:
3433 m = 0x9;
3434 i.vex.bytes[0] = 0x8f;
3435 break;
3436 case XOP0A:
3437 m = 0xa;
3438 i.vex.bytes[0] = 0x8f;
3439 break;
3440 default:
3441 abort ();
3442 }
3443
3444 /* The high 3 bits of the second VEX byte are 1's compliment
3445 of RXB bits from REX. */
3446 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3447
3448 /* Check the REX.W bit. */
3449 w = (i.rex & REX_W) ? 1 : 0;
3450 if (i.tm.opcode_modifier.vexw == VEXW1)
3451 w = 1;
3452
3453 i.vex.bytes[2] = (w << 7
3454 | register_specifier << 3
3455 | vector_length << 2
3456 | implied_prefix);
3457 }
3458 }
3459
3460 static INLINE bfd_boolean
3461 is_evex_encoding (const insn_template *t)
3462 {
3463 return t->opcode_modifier.evex
3464 || t->opcode_modifier.broadcast || t->opcode_modifier.masking
3465 || t->opcode_modifier.staticrounding || t->opcode_modifier.sae;
3466 }
3467
3468 /* Build the EVEX prefix. */
3469
3470 static void
3471 build_evex_prefix (void)
3472 {
3473 unsigned int register_specifier;
3474 unsigned int implied_prefix;
3475 unsigned int m, w;
3476 rex_byte vrex_used = 0;
3477
3478 /* Check register specifier. */
3479 if (i.vex.register_specifier)
3480 {
3481 gas_assert ((i.vrex & REX_X) == 0);
3482
3483 register_specifier = i.vex.register_specifier->reg_num;
3484 if ((i.vex.register_specifier->reg_flags & RegRex))
3485 register_specifier += 8;
3486 /* The upper 16 registers are encoded in the fourth byte of the
3487 EVEX prefix. */
3488 if (!(i.vex.register_specifier->reg_flags & RegVRex))
3489 i.vex.bytes[3] = 0x8;
3490 register_specifier = ~register_specifier & 0xf;
3491 }
3492 else
3493 {
3494 register_specifier = 0xf;
3495
3496 /* Encode upper 16 vector index register in the fourth byte of
3497 the EVEX prefix. */
3498 if (!(i.vrex & REX_X))
3499 i.vex.bytes[3] = 0x8;
3500 else
3501 vrex_used |= REX_X;
3502 }
3503
3504 switch ((i.tm.base_opcode >> 8) & 0xff)
3505 {
3506 case 0:
3507 implied_prefix = 0;
3508 break;
3509 case DATA_PREFIX_OPCODE:
3510 implied_prefix = 1;
3511 break;
3512 case REPE_PREFIX_OPCODE:
3513 implied_prefix = 2;
3514 break;
3515 case REPNE_PREFIX_OPCODE:
3516 implied_prefix = 3;
3517 break;
3518 default:
3519 abort ();
3520 }
3521
3522 /* 4 byte EVEX prefix. */
3523 i.vex.length = 4;
3524 i.vex.bytes[0] = 0x62;
3525
3526 /* mmmm bits. */
3527 switch (i.tm.opcode_modifier.vexopcode)
3528 {
3529 case VEX0F:
3530 m = 1;
3531 break;
3532 case VEX0F38:
3533 m = 2;
3534 break;
3535 case VEX0F3A:
3536 m = 3;
3537 break;
3538 default:
3539 abort ();
3540 break;
3541 }
3542
3543 /* The high 3 bits of the second EVEX byte are 1's compliment of RXB
3544 bits from REX. */
3545 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3546
3547 /* The fifth bit of the second EVEX byte is 1's compliment of the
3548 REX_R bit in VREX. */
3549 if (!(i.vrex & REX_R))
3550 i.vex.bytes[1] |= 0x10;
3551 else
3552 vrex_used |= REX_R;
3553
3554 if ((i.reg_operands + i.imm_operands) == i.operands)
3555 {
3556 /* When all operands are registers, the REX_X bit in REX is not
3557 used. We reuse it to encode the upper 16 registers, which is
3558 indicated by the REX_B bit in VREX. The REX_X bit is encoded
3559 as 1's compliment. */
3560 if ((i.vrex & REX_B))
3561 {
3562 vrex_used |= REX_B;
3563 i.vex.bytes[1] &= ~0x40;
3564 }
3565 }
3566
3567 /* EVEX instructions shouldn't need the REX prefix. */
3568 i.vrex &= ~vrex_used;
3569 gas_assert (i.vrex == 0);
3570
3571 /* Check the REX.W bit. */
3572 w = (i.rex & REX_W) ? 1 : 0;
3573 if (i.tm.opcode_modifier.vexw)
3574 {
3575 if (i.tm.opcode_modifier.vexw == VEXW1)
3576 w = 1;
3577 }
3578 /* If w is not set it means we are dealing with WIG instruction. */
3579 else if (!w)
3580 {
3581 if (evexwig == evexw1)
3582 w = 1;
3583 }
3584
3585 /* Encode the U bit. */
3586 implied_prefix |= 0x4;
3587
3588 /* The third byte of the EVEX prefix. */
3589 i.vex.bytes[2] = (w << 7 | register_specifier << 3 | implied_prefix);
3590
3591 /* The fourth byte of the EVEX prefix. */
3592 /* The zeroing-masking bit. */
3593 if (i.mask && i.mask->zeroing)
3594 i.vex.bytes[3] |= 0x80;
3595
3596 /* Don't always set the broadcast bit if there is no RC. */
3597 if (!i.rounding)
3598 {
3599 /* Encode the vector length. */
3600 unsigned int vec_length;
3601
3602 if (!i.tm.opcode_modifier.evex
3603 || i.tm.opcode_modifier.evex == EVEXDYN)
3604 {
3605 unsigned int op;
3606
3607 vec_length = 0;
3608 for (op = 0; op < i.tm.operands; ++op)
3609 if (i.tm.operand_types[op].bitfield.xmmword
3610 + i.tm.operand_types[op].bitfield.ymmword
3611 + i.tm.operand_types[op].bitfield.zmmword > 1)
3612 {
3613 if (i.types[op].bitfield.zmmword)
3614 i.tm.opcode_modifier.evex = EVEX512;
3615 else if (i.types[op].bitfield.ymmword)
3616 i.tm.opcode_modifier.evex = EVEX256;
3617 else if (i.types[op].bitfield.xmmword)
3618 i.tm.opcode_modifier.evex = EVEX128;
3619 else
3620 continue;
3621 break;
3622 }
3623 }
3624
3625 switch (i.tm.opcode_modifier.evex)
3626 {
3627 case EVEXLIG: /* LL' is ignored */
3628 vec_length = evexlig << 5;
3629 break;
3630 case EVEX128:
3631 vec_length = 0 << 5;
3632 break;
3633 case EVEX256:
3634 vec_length = 1 << 5;
3635 break;
3636 case EVEX512:
3637 vec_length = 2 << 5;
3638 break;
3639 default:
3640 abort ();
3641 break;
3642 }
3643 i.vex.bytes[3] |= vec_length;
3644 /* Encode the broadcast bit. */
3645 if (i.broadcast)
3646 i.vex.bytes[3] |= 0x10;
3647 }
3648 else
3649 {
3650 if (i.rounding->type != saeonly)
3651 i.vex.bytes[3] |= 0x10 | (i.rounding->type << 5);
3652 else
3653 i.vex.bytes[3] |= 0x10 | (evexrcig << 5);
3654 }
3655
3656 if (i.mask && i.mask->mask)
3657 i.vex.bytes[3] |= i.mask->mask->reg_num;
3658 }
3659
3660 static void
3661 process_immext (void)
3662 {
3663 expressionS *exp;
3664
3665 if ((i.tm.cpu_flags.bitfield.cpusse3 || i.tm.cpu_flags.bitfield.cpusvme)
3666 && i.operands > 0)
3667 {
3668 /* MONITOR/MWAIT as well as SVME instructions have fixed operands
3669 with an opcode suffix which is coded in the same place as an
3670 8-bit immediate field would be.
3671 Here we check those operands and remove them afterwards. */
3672 unsigned int x;
3673
3674 for (x = 0; x < i.operands; x++)
3675 if (register_number (i.op[x].regs) != x)
3676 as_bad (_("can't use register '%s%s' as operand %d in '%s'."),
3677 register_prefix, i.op[x].regs->reg_name, x + 1,
3678 i.tm.name);
3679
3680 i.operands = 0;
3681 }
3682
3683 if (i.tm.cpu_flags.bitfield.cpumwaitx && i.operands > 0)
3684 {
3685 /* MONITORX/MWAITX instructions have fixed operands with an opcode
3686 suffix which is coded in the same place as an 8-bit immediate
3687 field would be.
3688 Here we check those operands and remove them afterwards. */
3689 unsigned int x;
3690
3691 if (i.operands != 3)
3692 abort();
3693
3694 for (x = 0; x < 2; x++)
3695 if (register_number (i.op[x].regs) != x)
3696 goto bad_register_operand;
3697
3698 /* Check for third operand for mwaitx/monitorx insn. */
3699 if (register_number (i.op[x].regs)
3700 != (x + (i.tm.extension_opcode == 0xfb)))
3701 {
3702 bad_register_operand:
3703 as_bad (_("can't use register '%s%s' as operand %d in '%s'."),
3704 register_prefix, i.op[x].regs->reg_name, x+1,
3705 i.tm.name);
3706 }
3707
3708 i.operands = 0;
3709 }
3710
3711 /* These AMD 3DNow! and SSE2 instructions have an opcode suffix
3712 which is coded in the same place as an 8-bit immediate field
3713 would be. Here we fake an 8-bit immediate operand from the
3714 opcode suffix stored in tm.extension_opcode.
3715
3716 AVX instructions also use this encoding, for some of
3717 3 argument instructions. */
3718
3719 gas_assert (i.imm_operands <= 1
3720 && (i.operands <= 2
3721 || ((i.tm.opcode_modifier.vex
3722 || i.tm.opcode_modifier.vexopcode
3723 || is_evex_encoding (&i.tm))
3724 && i.operands <= 4)));
3725
3726 exp = &im_expressions[i.imm_operands++];
3727 i.op[i.operands].imms = exp;
3728 i.types[i.operands] = imm8;
3729 i.operands++;
3730 exp->X_op = O_constant;
3731 exp->X_add_number = i.tm.extension_opcode;
3732 i.tm.extension_opcode = None;
3733 }
3734
3735
3736 static int
3737 check_hle (void)
3738 {
3739 switch (i.tm.opcode_modifier.hleprefixok)
3740 {
3741 default:
3742 abort ();
3743 case HLEPrefixNone:
3744 as_bad (_("invalid instruction `%s' after `%s'"),
3745 i.tm.name, i.hle_prefix);
3746 return 0;
3747 case HLEPrefixLock:
3748 if (i.prefix[LOCK_PREFIX])
3749 return 1;
3750 as_bad (_("missing `lock' with `%s'"), i.hle_prefix);
3751 return 0;
3752 case HLEPrefixAny:
3753 return 1;
3754 case HLEPrefixRelease:
3755 if (i.prefix[HLE_PREFIX] != XRELEASE_PREFIX_OPCODE)
3756 {
3757 as_bad (_("instruction `%s' after `xacquire' not allowed"),
3758 i.tm.name);
3759 return 0;
3760 }
3761 if (i.mem_operands == 0
3762 || !operand_type_check (i.types[i.operands - 1], anymem))
3763 {
3764 as_bad (_("memory destination needed for instruction `%s'"
3765 " after `xrelease'"), i.tm.name);
3766 return 0;
3767 }
3768 return 1;
3769 }
3770 }
3771
3772 /* Try the shortest encoding by shortening operand size. */
3773
3774 static void
3775 optimize_encoding (void)
3776 {
3777 int j;
3778
3779 if (optimize_for_space
3780 && i.reg_operands == 1
3781 && i.imm_operands == 1
3782 && !i.types[1].bitfield.byte
3783 && i.op[0].imms->X_op == O_constant
3784 && fits_in_imm7 (i.op[0].imms->X_add_number)
3785 && ((i.tm.base_opcode == 0xa8
3786 && i.tm.extension_opcode == None)
3787 || (i.tm.base_opcode == 0xf6
3788 && i.tm.extension_opcode == 0x0)))
3789 {
3790 /* Optimize: -Os:
3791 test $imm7, %r64/%r32/%r16 -> test $imm7, %r8
3792 */
3793 unsigned int base_regnum = i.op[1].regs->reg_num;
3794 if (flag_code == CODE_64BIT || base_regnum < 4)
3795 {
3796 i.types[1].bitfield.byte = 1;
3797 /* Ignore the suffix. */
3798 i.suffix = 0;
3799 if (base_regnum >= 4
3800 && !(i.op[1].regs->reg_flags & RegRex))
3801 {
3802 /* Handle SP, BP, SI and DI registers. */
3803 if (i.types[1].bitfield.word)
3804 j = 16;
3805 else if (i.types[1].bitfield.dword)
3806 j = 32;
3807 else
3808 j = 48;
3809 i.op[1].regs -= j;
3810 }
3811 }
3812 }
3813 else if (flag_code == CODE_64BIT
3814 && ((i.types[1].bitfield.qword
3815 && i.reg_operands == 1
3816 && i.imm_operands == 1
3817 && i.op[0].imms->X_op == O_constant
3818 && ((i.tm.base_opcode == 0xb0
3819 && i.tm.extension_opcode == None
3820 && fits_in_unsigned_long (i.op[0].imms->X_add_number))
3821 || (fits_in_imm31 (i.op[0].imms->X_add_number)
3822 && (((i.tm.base_opcode == 0x24
3823 || i.tm.base_opcode == 0xa8)
3824 && i.tm.extension_opcode == None)
3825 || (i.tm.base_opcode == 0x80
3826 && i.tm.extension_opcode == 0x4)
3827 || ((i.tm.base_opcode == 0xf6
3828 || i.tm.base_opcode == 0xc6)
3829 && i.tm.extension_opcode == 0x0)))))
3830 || (i.types[0].bitfield.qword
3831 && ((i.reg_operands == 2
3832 && i.op[0].regs == i.op[1].regs
3833 && ((i.tm.base_opcode == 0x30
3834 || i.tm.base_opcode == 0x28)
3835 && i.tm.extension_opcode == None))
3836 || (i.reg_operands == 1
3837 && i.operands == 1
3838 && i.tm.base_opcode == 0x30
3839 && i.tm.extension_opcode == None)))))
3840 {
3841 /* Optimize: -O:
3842 andq $imm31, %r64 -> andl $imm31, %r32
3843 testq $imm31, %r64 -> testl $imm31, %r32
3844 xorq %r64, %r64 -> xorl %r32, %r32
3845 subq %r64, %r64 -> subl %r32, %r32
3846 movq $imm31, %r64 -> movl $imm31, %r32
3847 movq $imm32, %r64 -> movl $imm32, %r32
3848 */
3849 i.tm.opcode_modifier.norex64 = 1;
3850 if (i.tm.base_opcode == 0xb0 || i.tm.base_opcode == 0xc6)
3851 {
3852 /* Handle
3853 movq $imm31, %r64 -> movl $imm31, %r32
3854 movq $imm32, %r64 -> movl $imm32, %r32
3855 */
3856 i.tm.operand_types[0].bitfield.imm32 = 1;
3857 i.tm.operand_types[0].bitfield.imm32s = 0;
3858 i.tm.operand_types[0].bitfield.imm64 = 0;
3859 i.types[0].bitfield.imm32 = 1;
3860 i.types[0].bitfield.imm32s = 0;
3861 i.types[0].bitfield.imm64 = 0;
3862 i.types[1].bitfield.dword = 1;
3863 i.types[1].bitfield.qword = 0;
3864 if (i.tm.base_opcode == 0xc6)
3865 {
3866 /* Handle
3867 movq $imm31, %r64 -> movl $imm31, %r32
3868 */
3869 i.tm.base_opcode = 0xb0;
3870 i.tm.extension_opcode = None;
3871 i.tm.opcode_modifier.shortform = 1;
3872 i.tm.opcode_modifier.modrm = 0;
3873 }
3874 }
3875 }
3876 else if (optimize > 1
3877 && i.reg_operands == 3
3878 && i.op[0].regs == i.op[1].regs
3879 && !i.types[2].bitfield.xmmword
3880 && (i.tm.opcode_modifier.vex
3881 || (!i.mask
3882 && !i.rounding
3883 && is_evex_encoding (&i.tm)
3884 && (i.vec_encoding != vex_encoding_evex
3885 || i.tm.cpu_flags.bitfield.cpuavx512vl
3886 || cpu_arch_isa_flags.bitfield.cpuavx512vl)))
3887 && ((i.tm.base_opcode == 0x55
3888 || i.tm.base_opcode == 0x6655
3889 || i.tm.base_opcode == 0x66df
3890 || i.tm.base_opcode == 0x57
3891 || i.tm.base_opcode == 0x6657
3892 || i.tm.base_opcode == 0x66ef
3893 || i.tm.base_opcode == 0x66f8
3894 || i.tm.base_opcode == 0x66f9
3895 || i.tm.base_opcode == 0x66fa
3896 || i.tm.base_opcode == 0x66fb)
3897 && i.tm.extension_opcode == None))
3898 {
3899 /* Optimize: -O2:
3900 VOP, one of vandnps, vandnpd, vxorps, vxorpd, vpsubb, vpsubd,
3901 vpsubq and vpsubw:
3902 EVEX VOP %zmmM, %zmmM, %zmmN
3903 -> VEX VOP %xmmM, %xmmM, %xmmN (M and N < 16)
3904 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16)
3905 EVEX VOP %ymmM, %ymmM, %ymmN
3906 -> VEX VOP %xmmM, %xmmM, %xmmN (M and N < 16)
3907 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16)
3908 VEX VOP %ymmM, %ymmM, %ymmN
3909 -> VEX VOP %xmmM, %xmmM, %xmmN
3910 VOP, one of vpandn and vpxor:
3911 VEX VOP %ymmM, %ymmM, %ymmN
3912 -> VEX VOP %xmmM, %xmmM, %xmmN
3913 VOP, one of vpandnd and vpandnq:
3914 EVEX VOP %zmmM, %zmmM, %zmmN
3915 -> VEX vpandn %xmmM, %xmmM, %xmmN (M and N < 16)
3916 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16)
3917 EVEX VOP %ymmM, %ymmM, %ymmN
3918 -> VEX vpandn %xmmM, %xmmM, %xmmN (M and N < 16)
3919 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16)
3920 VOP, one of vpxord and vpxorq:
3921 EVEX VOP %zmmM, %zmmM, %zmmN
3922 -> VEX vpxor %xmmM, %xmmM, %xmmN (M and N < 16)
3923 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16)
3924 EVEX VOP %ymmM, %ymmM, %ymmN
3925 -> VEX vpxor %xmmM, %xmmM, %xmmN (M and N < 16)
3926 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16)
3927 */
3928 if (is_evex_encoding (&i.tm))
3929 {
3930 if (i.vec_encoding == vex_encoding_evex)
3931 i.tm.opcode_modifier.evex = EVEX128;
3932 else
3933 {
3934 i.tm.opcode_modifier.vex = VEX128;
3935 i.tm.opcode_modifier.vexw = VEXW0;
3936 i.tm.opcode_modifier.evex = 0;
3937 }
3938 }
3939 else
3940 i.tm.opcode_modifier.vex = VEX128;
3941
3942 if (i.tm.opcode_modifier.vex)
3943 for (j = 0; j < 3; j++)
3944 {
3945 i.types[j].bitfield.xmmword = 1;
3946 i.types[j].bitfield.ymmword = 0;
3947 }
3948 }
3949 }
3950
3951 /* This is the guts of the machine-dependent assembler. LINE points to a
3952 machine dependent instruction. This function is supposed to emit
3953 the frags/bytes it assembles to. */
3954
3955 void
3956 md_assemble (char *line)
3957 {
3958 unsigned int j;
3959 char mnemonic[MAX_MNEM_SIZE], mnem_suffix;
3960 const insn_template *t;
3961
3962 /* Initialize globals. */
3963 memset (&i, '\0', sizeof (i));
3964 for (j = 0; j < MAX_OPERANDS; j++)
3965 i.reloc[j] = NO_RELOC;
3966 memset (disp_expressions, '\0', sizeof (disp_expressions));
3967 memset (im_expressions, '\0', sizeof (im_expressions));
3968 save_stack_p = save_stack;
3969
3970 /* First parse an instruction mnemonic & call i386_operand for the operands.
3971 We assume that the scrubber has arranged it so that line[0] is the valid
3972 start of a (possibly prefixed) mnemonic. */
3973
3974 line = parse_insn (line, mnemonic);
3975 if (line == NULL)
3976 return;
3977 mnem_suffix = i.suffix;
3978
3979 line = parse_operands (line, mnemonic);
3980 this_operand = -1;
3981 xfree (i.memop1_string);
3982 i.memop1_string = NULL;
3983 if (line == NULL)
3984 return;
3985
3986 /* Now we've parsed the mnemonic into a set of templates, and have the
3987 operands at hand. */
3988
3989 /* All intel opcodes have reversed operands except for "bound" and
3990 "enter". We also don't reverse intersegment "jmp" and "call"
3991 instructions with 2 immediate operands so that the immediate segment
3992 precedes the offset, as it does when in AT&T mode. */
3993 if (intel_syntax
3994 && i.operands > 1
3995 && (strcmp (mnemonic, "bound") != 0)
3996 && (strcmp (mnemonic, "invlpga") != 0)
3997 && !(operand_type_check (i.types[0], imm)
3998 && operand_type_check (i.types[1], imm)))
3999 swap_operands ();
4000
4001 /* The order of the immediates should be reversed
4002 for 2 immediates extrq and insertq instructions */
4003 if (i.imm_operands == 2
4004 && (strcmp (mnemonic, "extrq") == 0
4005 || strcmp (mnemonic, "insertq") == 0))
4006 swap_2_operands (0, 1);
4007
4008 if (i.imm_operands)
4009 optimize_imm ();
4010
4011 /* Don't optimize displacement for movabs since it only takes 64bit
4012 displacement. */
4013 if (i.disp_operands
4014 && i.disp_encoding != disp_encoding_32bit
4015 && (flag_code != CODE_64BIT
4016 || strcmp (mnemonic, "movabs") != 0))
4017 optimize_disp ();
4018
4019 /* Next, we find a template that matches the given insn,
4020 making sure the overlap of the given operands types is consistent
4021 with the template operand types. */
4022
4023 if (!(t = match_template (mnem_suffix)))
4024 return;
4025
4026 if (sse_check != check_none
4027 && !i.tm.opcode_modifier.noavx
4028 && !i.tm.cpu_flags.bitfield.cpuavx
4029 && (i.tm.cpu_flags.bitfield.cpusse
4030 || i.tm.cpu_flags.bitfield.cpusse2
4031 || i.tm.cpu_flags.bitfield.cpusse3
4032 || i.tm.cpu_flags.bitfield.cpussse3
4033 || i.tm.cpu_flags.bitfield.cpusse4_1
4034 || i.tm.cpu_flags.bitfield.cpusse4_2
4035 || i.tm.cpu_flags.bitfield.cpupclmul
4036 || i.tm.cpu_flags.bitfield.cpuaes
4037 || i.tm.cpu_flags.bitfield.cpugfni))
4038 {
4039 (sse_check == check_warning
4040 ? as_warn
4041 : as_bad) (_("SSE instruction `%s' is used"), i.tm.name);
4042 }
4043
4044 /* Zap movzx and movsx suffix. The suffix has been set from
4045 "word ptr" or "byte ptr" on the source operand in Intel syntax
4046 or extracted from mnemonic in AT&T syntax. But we'll use
4047 the destination register to choose the suffix for encoding. */
4048 if ((i.tm.base_opcode & ~9) == 0x0fb6)
4049 {
4050 /* In Intel syntax, there must be a suffix. In AT&T syntax, if
4051 there is no suffix, the default will be byte extension. */
4052 if (i.reg_operands != 2
4053 && !i.suffix
4054 && intel_syntax)
4055 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
4056
4057 i.suffix = 0;
4058 }
4059
4060 if (i.tm.opcode_modifier.fwait)
4061 if (!add_prefix (FWAIT_OPCODE))
4062 return;
4063
4064 /* Check if REP prefix is OK. */
4065 if (i.rep_prefix && !i.tm.opcode_modifier.repprefixok)
4066 {
4067 as_bad (_("invalid instruction `%s' after `%s'"),
4068 i.tm.name, i.rep_prefix);
4069 return;
4070 }
4071
4072 /* Check for lock without a lockable instruction. Destination operand
4073 must be memory unless it is xchg (0x86). */
4074 if (i.prefix[LOCK_PREFIX]
4075 && (!i.tm.opcode_modifier.islockable
4076 || i.mem_operands == 0
4077 || (i.tm.base_opcode != 0x86
4078 && !operand_type_check (i.types[i.operands - 1], anymem))))
4079 {
4080 as_bad (_("expecting lockable instruction after `lock'"));
4081 return;
4082 }
4083
4084 /* Check if HLE prefix is OK. */
4085 if (i.hle_prefix && !check_hle ())
4086 return;
4087
4088 /* Check BND prefix. */
4089 if (i.bnd_prefix && !i.tm.opcode_modifier.bndprefixok)
4090 as_bad (_("expecting valid branch instruction after `bnd'"));
4091
4092 /* Check NOTRACK prefix. */
4093 if (i.notrack_prefix && !i.tm.opcode_modifier.notrackprefixok)
4094 as_bad (_("expecting indirect branch instruction after `notrack'"));
4095
4096 if (i.tm.cpu_flags.bitfield.cpumpx)
4097 {
4098 if (flag_code == CODE_64BIT && i.prefix[ADDR_PREFIX])
4099 as_bad (_("32-bit address isn't allowed in 64-bit MPX instructions."));
4100 else if (flag_code != CODE_16BIT
4101 ? i.prefix[ADDR_PREFIX]
4102 : i.mem_operands && !i.prefix[ADDR_PREFIX])
4103 as_bad (_("16-bit address isn't allowed in MPX instructions"));
4104 }
4105
4106 /* Insert BND prefix. */
4107 if (add_bnd_prefix
4108 && i.tm.opcode_modifier.bndprefixok
4109 && !i.prefix[BND_PREFIX])
4110 add_prefix (BND_PREFIX_OPCODE);
4111
4112 /* Check string instruction segment overrides. */
4113 if (i.tm.opcode_modifier.isstring && i.mem_operands != 0)
4114 {
4115 if (!check_string ())
4116 return;
4117 i.disp_operands = 0;
4118 }
4119
4120 if (optimize && !i.no_optimize && i.tm.opcode_modifier.optimize)
4121 optimize_encoding ();
4122
4123 if (!process_suffix ())
4124 return;
4125
4126 /* Update operand types. */
4127 for (j = 0; j < i.operands; j++)
4128 i.types[j] = operand_type_and (i.types[j], i.tm.operand_types[j]);
4129
4130 /* Make still unresolved immediate matches conform to size of immediate
4131 given in i.suffix. */
4132 if (!finalize_imm ())
4133 return;
4134
4135 if (i.types[0].bitfield.imm1)
4136 i.imm_operands = 0; /* kludge for shift insns. */
4137
4138 /* We only need to check those implicit registers for instructions
4139 with 3 operands or less. */
4140 if (i.operands <= 3)
4141 for (j = 0; j < i.operands; j++)
4142 if (i.types[j].bitfield.inoutportreg
4143 || i.types[j].bitfield.shiftcount
4144 || (i.types[j].bitfield.acc && !i.types[j].bitfield.xmmword))
4145 i.reg_operands--;
4146
4147 /* ImmExt should be processed after SSE2AVX. */
4148 if (!i.tm.opcode_modifier.sse2avx
4149 && i.tm.opcode_modifier.immext)
4150 process_immext ();
4151
4152 /* For insns with operands there are more diddles to do to the opcode. */
4153 if (i.operands)
4154 {
4155 if (!process_operands ())
4156 return;
4157 }
4158 else if (!quiet_warnings && i.tm.opcode_modifier.ugh)
4159 {
4160 /* UnixWare fsub no args is alias for fsubp, fadd -> faddp, etc. */
4161 as_warn (_("translating to `%sp'"), i.tm.name);
4162 }
4163
4164 if (i.tm.opcode_modifier.vex || i.tm.opcode_modifier.vexopcode
4165 || is_evex_encoding (&i.tm))
4166 {
4167 if (flag_code == CODE_16BIT)
4168 {
4169 as_bad (_("instruction `%s' isn't supported in 16-bit mode."),
4170 i.tm.name);
4171 return;
4172 }
4173
4174 if (i.tm.opcode_modifier.vex)
4175 build_vex_prefix (t);
4176 else
4177 build_evex_prefix ();
4178 }
4179
4180 /* Handle conversion of 'int $3' --> special int3 insn. XOP or FMA4
4181 instructions may define INT_OPCODE as well, so avoid this corner
4182 case for those instructions that use MODRM. */
4183 if (i.tm.base_opcode == INT_OPCODE
4184 && !i.tm.opcode_modifier.modrm
4185 && i.op[0].imms->X_add_number == 3)
4186 {
4187 i.tm.base_opcode = INT3_OPCODE;
4188 i.imm_operands = 0;
4189 }
4190
4191 if ((i.tm.opcode_modifier.jump
4192 || i.tm.opcode_modifier.jumpbyte
4193 || i.tm.opcode_modifier.jumpdword)
4194 && i.op[0].disps->X_op == O_constant)
4195 {
4196 /* Convert "jmp constant" (and "call constant") to a jump (call) to
4197 the absolute address given by the constant. Since ix86 jumps and
4198 calls are pc relative, we need to generate a reloc. */
4199 i.op[0].disps->X_add_symbol = &abs_symbol;
4200 i.op[0].disps->X_op = O_symbol;
4201 }
4202
4203 if (i.tm.opcode_modifier.rex64)
4204 i.rex |= REX_W;
4205
4206 /* For 8 bit registers we need an empty rex prefix. Also if the
4207 instruction already has a prefix, we need to convert old
4208 registers to new ones. */
4209
4210 if ((i.types[0].bitfield.reg && i.types[0].bitfield.byte
4211 && (i.op[0].regs->reg_flags & RegRex64) != 0)
4212 || (i.types[1].bitfield.reg && i.types[1].bitfield.byte
4213 && (i.op[1].regs->reg_flags & RegRex64) != 0)
4214 || (((i.types[0].bitfield.reg && i.types[0].bitfield.byte)
4215 || (i.types[1].bitfield.reg && i.types[1].bitfield.byte))
4216 && i.rex != 0))
4217 {
4218 int x;
4219
4220 i.rex |= REX_OPCODE;
4221 for (x = 0; x < 2; x++)
4222 {
4223 /* Look for 8 bit operand that uses old registers. */
4224 if (i.types[x].bitfield.reg && i.types[x].bitfield.byte
4225 && (i.op[x].regs->reg_flags & RegRex64) == 0)
4226 {
4227 /* In case it is "hi" register, give up. */
4228 if (i.op[x].regs->reg_num > 3)
4229 as_bad (_("can't encode register '%s%s' in an "
4230 "instruction requiring REX prefix."),
4231 register_prefix, i.op[x].regs->reg_name);
4232
4233 /* Otherwise it is equivalent to the extended register.
4234 Since the encoding doesn't change this is merely
4235 cosmetic cleanup for debug output. */
4236
4237 i.op[x].regs = i.op[x].regs + 8;
4238 }
4239 }
4240 }
4241
4242 if (i.rex == 0 && i.rex_encoding)
4243 {
4244 /* Check if we can add a REX_OPCODE byte. Look for 8 bit operand
4245 that uses legacy register. If it is "hi" register, don't add
4246 the REX_OPCODE byte. */
4247 int x;
4248 for (x = 0; x < 2; x++)
4249 if (i.types[x].bitfield.reg
4250 && i.types[x].bitfield.byte
4251 && (i.op[x].regs->reg_flags & RegRex64) == 0
4252 && i.op[x].regs->reg_num > 3)
4253 {
4254 i.rex_encoding = FALSE;
4255 break;
4256 }
4257
4258 if (i.rex_encoding)
4259 i.rex = REX_OPCODE;
4260 }
4261
4262 if (i.rex != 0)
4263 add_prefix (REX_OPCODE | i.rex);
4264
4265 /* We are ready to output the insn. */
4266 output_insn ();
4267 }
4268
4269 static char *
4270 parse_insn (char *line, char *mnemonic)
4271 {
4272 char *l = line;
4273 char *token_start = l;
4274 char *mnem_p;
4275 int supported;
4276 const insn_template *t;
4277 char *dot_p = NULL;
4278
4279 while (1)
4280 {
4281 mnem_p = mnemonic;
4282 while ((*mnem_p = mnemonic_chars[(unsigned char) *l]) != 0)
4283 {
4284 if (*mnem_p == '.')
4285 dot_p = mnem_p;
4286 mnem_p++;
4287 if (mnem_p >= mnemonic + MAX_MNEM_SIZE)
4288 {
4289 as_bad (_("no such instruction: `%s'"), token_start);
4290 return NULL;
4291 }
4292 l++;
4293 }
4294 if (!is_space_char (*l)
4295 && *l != END_OF_INSN
4296 && (intel_syntax
4297 || (*l != PREFIX_SEPARATOR
4298 && *l != ',')))
4299 {
4300 as_bad (_("invalid character %s in mnemonic"),
4301 output_invalid (*l));
4302 return NULL;
4303 }
4304 if (token_start == l)
4305 {
4306 if (!intel_syntax && *l == PREFIX_SEPARATOR)
4307 as_bad (_("expecting prefix; got nothing"));
4308 else
4309 as_bad (_("expecting mnemonic; got nothing"));
4310 return NULL;
4311 }
4312
4313 /* Look up instruction (or prefix) via hash table. */
4314 current_templates = (const templates *) hash_find (op_hash, mnemonic);
4315
4316 if (*l != END_OF_INSN
4317 && (!is_space_char (*l) || l[1] != END_OF_INSN)
4318 && current_templates
4319 && current_templates->start->opcode_modifier.isprefix)
4320 {
4321 if (!cpu_flags_check_cpu64 (current_templates->start->cpu_flags))
4322 {
4323 as_bad ((flag_code != CODE_64BIT
4324 ? _("`%s' is only supported in 64-bit mode")
4325 : _("`%s' is not supported in 64-bit mode")),
4326 current_templates->start->name);
4327 return NULL;
4328 }
4329 /* If we are in 16-bit mode, do not allow addr16 or data16.
4330 Similarly, in 32-bit mode, do not allow addr32 or data32. */
4331 if ((current_templates->start->opcode_modifier.size16
4332 || current_templates->start->opcode_modifier.size32)
4333 && flag_code != CODE_64BIT
4334 && (current_templates->start->opcode_modifier.size32
4335 ^ (flag_code == CODE_16BIT)))
4336 {
4337 as_bad (_("redundant %s prefix"),
4338 current_templates->start->name);
4339 return NULL;
4340 }
4341 if (current_templates->start->opcode_length == 0)
4342 {
4343 /* Handle pseudo prefixes. */
4344 switch (current_templates->start->base_opcode)
4345 {
4346 case 0x0:
4347 /* {disp8} */
4348 i.disp_encoding = disp_encoding_8bit;
4349 break;
4350 case 0x1:
4351 /* {disp32} */
4352 i.disp_encoding = disp_encoding_32bit;
4353 break;
4354 case 0x2:
4355 /* {load} */
4356 i.dir_encoding = dir_encoding_load;
4357 break;
4358 case 0x3:
4359 /* {store} */
4360 i.dir_encoding = dir_encoding_store;
4361 break;
4362 case 0x4:
4363 /* {vex2} */
4364 i.vec_encoding = vex_encoding_vex2;
4365 break;
4366 case 0x5:
4367 /* {vex3} */
4368 i.vec_encoding = vex_encoding_vex3;
4369 break;
4370 case 0x6:
4371 /* {evex} */
4372 i.vec_encoding = vex_encoding_evex;
4373 break;
4374 case 0x7:
4375 /* {rex} */
4376 i.rex_encoding = TRUE;
4377 break;
4378 case 0x8:
4379 /* {nooptimize} */
4380 i.no_optimize = TRUE;
4381 break;
4382 default:
4383 abort ();
4384 }
4385 }
4386 else
4387 {
4388 /* Add prefix, checking for repeated prefixes. */
4389 switch (add_prefix (current_templates->start->base_opcode))
4390 {
4391 case PREFIX_EXIST:
4392 return NULL;
4393 case PREFIX_DS:
4394 if (current_templates->start->cpu_flags.bitfield.cpuibt)
4395 i.notrack_prefix = current_templates->start->name;
4396 break;
4397 case PREFIX_REP:
4398 if (current_templates->start->cpu_flags.bitfield.cpuhle)
4399 i.hle_prefix = current_templates->start->name;
4400 else if (current_templates->start->cpu_flags.bitfield.cpumpx)
4401 i.bnd_prefix = current_templates->start->name;
4402 else
4403 i.rep_prefix = current_templates->start->name;
4404 break;
4405 default:
4406 break;
4407 }
4408 }
4409 /* Skip past PREFIX_SEPARATOR and reset token_start. */
4410 token_start = ++l;
4411 }
4412 else
4413 break;
4414 }
4415
4416 if (!current_templates)
4417 {
4418 /* Check if we should swap operand or force 32bit displacement in
4419 encoding. */
4420 if (mnem_p - 2 == dot_p && dot_p[1] == 's')
4421 i.dir_encoding = dir_encoding_store;
4422 else if (mnem_p - 3 == dot_p
4423 && dot_p[1] == 'd'
4424 && dot_p[2] == '8')
4425 i.disp_encoding = disp_encoding_8bit;
4426 else if (mnem_p - 4 == dot_p
4427 && dot_p[1] == 'd'
4428 && dot_p[2] == '3'
4429 && dot_p[3] == '2')
4430 i.disp_encoding = disp_encoding_32bit;
4431 else
4432 goto check_suffix;
4433 mnem_p = dot_p;
4434 *dot_p = '\0';
4435 current_templates = (const templates *) hash_find (op_hash, mnemonic);
4436 }
4437
4438 if (!current_templates)
4439 {
4440 check_suffix:
4441 /* See if we can get a match by trimming off a suffix. */
4442 switch (mnem_p[-1])
4443 {
4444 case WORD_MNEM_SUFFIX:
4445 if (intel_syntax && (intel_float_operand (mnemonic) & 2))
4446 i.suffix = SHORT_MNEM_SUFFIX;
4447 else
4448 /* Fall through. */
4449 case BYTE_MNEM_SUFFIX:
4450 case QWORD_MNEM_SUFFIX:
4451 i.suffix = mnem_p[-1];
4452 mnem_p[-1] = '\0';
4453 current_templates = (const templates *) hash_find (op_hash,
4454 mnemonic);
4455 break;
4456 case SHORT_MNEM_SUFFIX:
4457 case LONG_MNEM_SUFFIX:
4458 if (!intel_syntax)
4459 {
4460 i.suffix = mnem_p[-1];
4461 mnem_p[-1] = '\0';
4462 current_templates = (const templates *) hash_find (op_hash,
4463 mnemonic);
4464 }
4465 break;
4466
4467 /* Intel Syntax. */
4468 case 'd':
4469 if (intel_syntax)
4470 {
4471 if (intel_float_operand (mnemonic) == 1)
4472 i.suffix = SHORT_MNEM_SUFFIX;
4473 else
4474 i.suffix = LONG_MNEM_SUFFIX;
4475 mnem_p[-1] = '\0';
4476 current_templates = (const templates *) hash_find (op_hash,
4477 mnemonic);
4478 }
4479 break;
4480 }
4481 if (!current_templates)
4482 {
4483 as_bad (_("no such instruction: `%s'"), token_start);
4484 return NULL;
4485 }
4486 }
4487
4488 if (current_templates->start->opcode_modifier.jump
4489 || current_templates->start->opcode_modifier.jumpbyte)
4490 {
4491 /* Check for a branch hint. We allow ",pt" and ",pn" for
4492 predict taken and predict not taken respectively.
4493 I'm not sure that branch hints actually do anything on loop
4494 and jcxz insns (JumpByte) for current Pentium4 chips. They
4495 may work in the future and it doesn't hurt to accept them
4496 now. */
4497 if (l[0] == ',' && l[1] == 'p')
4498 {
4499 if (l[2] == 't')
4500 {
4501 if (!add_prefix (DS_PREFIX_OPCODE))
4502 return NULL;
4503 l += 3;
4504 }
4505 else if (l[2] == 'n')
4506 {
4507 if (!add_prefix (CS_PREFIX_OPCODE))
4508 return NULL;
4509 l += 3;
4510 }
4511 }
4512 }
4513 /* Any other comma loses. */
4514 if (*l == ',')
4515 {
4516 as_bad (_("invalid character %s in mnemonic"),
4517 output_invalid (*l));
4518 return NULL;
4519 }
4520
4521 /* Check if instruction is supported on specified architecture. */
4522 supported = 0;
4523 for (t = current_templates->start; t < current_templates->end; ++t)
4524 {
4525 supported |= cpu_flags_match (t);
4526 if (supported == CPU_FLAGS_PERFECT_MATCH)
4527 {
4528 if (!cpu_arch_flags.bitfield.cpui386 && (flag_code != CODE_16BIT))
4529 as_warn (_("use .code16 to ensure correct addressing mode"));
4530
4531 return l;
4532 }
4533 }
4534
4535 if (!(supported & CPU_FLAGS_64BIT_MATCH))
4536 as_bad (flag_code == CODE_64BIT
4537 ? _("`%s' is not supported in 64-bit mode")
4538 : _("`%s' is only supported in 64-bit mode"),
4539 current_templates->start->name);
4540 else
4541 as_bad (_("`%s' is not supported on `%s%s'"),
4542 current_templates->start->name,
4543 cpu_arch_name ? cpu_arch_name : default_arch,
4544 cpu_sub_arch_name ? cpu_sub_arch_name : "");
4545
4546 return NULL;
4547 }
4548
4549 static char *
4550 parse_operands (char *l, const char *mnemonic)
4551 {
4552 char *token_start;
4553
4554 /* 1 if operand is pending after ','. */
4555 unsigned int expecting_operand = 0;
4556
4557 /* Non-zero if operand parens not balanced. */
4558 unsigned int paren_not_balanced;
4559
4560 while (*l != END_OF_INSN)
4561 {
4562 /* Skip optional white space before operand. */
4563 if (is_space_char (*l))
4564 ++l;
4565 if (!is_operand_char (*l) && *l != END_OF_INSN && *l != '"')
4566 {
4567 as_bad (_("invalid character %s before operand %d"),
4568 output_invalid (*l),
4569 i.operands + 1);
4570 return NULL;
4571 }
4572 token_start = l; /* After white space. */
4573 paren_not_balanced = 0;
4574 while (paren_not_balanced || *l != ',')
4575 {
4576 if (*l == END_OF_INSN)
4577 {
4578 if (paren_not_balanced)
4579 {
4580 if (!intel_syntax)
4581 as_bad (_("unbalanced parenthesis in operand %d."),
4582 i.operands + 1);
4583 else
4584 as_bad (_("unbalanced brackets in operand %d."),
4585 i.operands + 1);
4586 return NULL;
4587 }
4588 else
4589 break; /* we are done */
4590 }
4591 else if (!is_operand_char (*l) && !is_space_char (*l) && *l != '"')
4592 {
4593 as_bad (_("invalid character %s in operand %d"),
4594 output_invalid (*l),
4595 i.operands + 1);
4596 return NULL;
4597 }
4598 if (!intel_syntax)
4599 {
4600 if (*l == '(')
4601 ++paren_not_balanced;
4602 if (*l == ')')
4603 --paren_not_balanced;
4604 }
4605 else
4606 {
4607 if (*l == '[')
4608 ++paren_not_balanced;
4609 if (*l == ']')
4610 --paren_not_balanced;
4611 }
4612 l++;
4613 }
4614 if (l != token_start)
4615 { /* Yes, we've read in another operand. */
4616 unsigned int operand_ok;
4617 this_operand = i.operands++;
4618 if (i.operands > MAX_OPERANDS)
4619 {
4620 as_bad (_("spurious operands; (%d operands/instruction max)"),
4621 MAX_OPERANDS);
4622 return NULL;
4623 }
4624 i.types[this_operand].bitfield.unspecified = 1;
4625 /* Now parse operand adding info to 'i' as we go along. */
4626 END_STRING_AND_SAVE (l);
4627
4628 if (intel_syntax)
4629 operand_ok =
4630 i386_intel_operand (token_start,
4631 intel_float_operand (mnemonic));
4632 else
4633 operand_ok = i386_att_operand (token_start);
4634
4635 RESTORE_END_STRING (l);
4636 if (!operand_ok)
4637 return NULL;
4638 }
4639 else
4640 {
4641 if (expecting_operand)
4642 {
4643 expecting_operand_after_comma:
4644 as_bad (_("expecting operand after ','; got nothing"));
4645 return NULL;
4646 }
4647 if (*l == ',')
4648 {
4649 as_bad (_("expecting operand before ','; got nothing"));
4650 return NULL;
4651 }
4652 }
4653
4654 /* Now *l must be either ',' or END_OF_INSN. */
4655 if (*l == ',')
4656 {
4657 if (*++l == END_OF_INSN)
4658 {
4659 /* Just skip it, if it's \n complain. */
4660 goto expecting_operand_after_comma;
4661 }
4662 expecting_operand = 1;
4663 }
4664 }
4665 return l;
4666 }
4667
4668 static void
4669 swap_2_operands (int xchg1, int xchg2)
4670 {
4671 union i386_op temp_op;
4672 i386_operand_type temp_type;
4673 enum bfd_reloc_code_real temp_reloc;
4674
4675 temp_type = i.types[xchg2];
4676 i.types[xchg2] = i.types[xchg1];
4677 i.types[xchg1] = temp_type;
4678 temp_op = i.op[xchg2];
4679 i.op[xchg2] = i.op[xchg1];
4680 i.op[xchg1] = temp_op;
4681 temp_reloc = i.reloc[xchg2];
4682 i.reloc[xchg2] = i.reloc[xchg1];
4683 i.reloc[xchg1] = temp_reloc;
4684
4685 if (i.mask)
4686 {
4687 if (i.mask->operand == xchg1)
4688 i.mask->operand = xchg2;
4689 else if (i.mask->operand == xchg2)
4690 i.mask->operand = xchg1;
4691 }
4692 if (i.broadcast)
4693 {
4694 if (i.broadcast->operand == xchg1)
4695 i.broadcast->operand = xchg2;
4696 else if (i.broadcast->operand == xchg2)
4697 i.broadcast->operand = xchg1;
4698 }
4699 if (i.rounding)
4700 {
4701 if (i.rounding->operand == xchg1)
4702 i.rounding->operand = xchg2;
4703 else if (i.rounding->operand == xchg2)
4704 i.rounding->operand = xchg1;
4705 }
4706 }
4707
4708 static void
4709 swap_operands (void)
4710 {
4711 switch (i.operands)
4712 {
4713 case 5:
4714 case 4:
4715 swap_2_operands (1, i.operands - 2);
4716 /* Fall through. */
4717 case 3:
4718 case 2:
4719 swap_2_operands (0, i.operands - 1);
4720 break;
4721 default:
4722 abort ();
4723 }
4724
4725 if (i.mem_operands == 2)
4726 {
4727 const seg_entry *temp_seg;
4728 temp_seg = i.seg[0];
4729 i.seg[0] = i.seg[1];
4730 i.seg[1] = temp_seg;
4731 }
4732 }
4733
4734 /* Try to ensure constant immediates are represented in the smallest
4735 opcode possible. */
4736 static void
4737 optimize_imm (void)
4738 {
4739 char guess_suffix = 0;
4740 int op;
4741
4742 if (i.suffix)
4743 guess_suffix = i.suffix;
4744 else if (i.reg_operands)
4745 {
4746 /* Figure out a suffix from the last register operand specified.
4747 We can't do this properly yet, ie. excluding InOutPortReg,
4748 but the following works for instructions with immediates.
4749 In any case, we can't set i.suffix yet. */
4750 for (op = i.operands; --op >= 0;)
4751 if (i.types[op].bitfield.reg && i.types[op].bitfield.byte)
4752 {
4753 guess_suffix = BYTE_MNEM_SUFFIX;
4754 break;
4755 }
4756 else if (i.types[op].bitfield.reg && i.types[op].bitfield.word)
4757 {
4758 guess_suffix = WORD_MNEM_SUFFIX;
4759 break;
4760 }
4761 else if (i.types[op].bitfield.reg && i.types[op].bitfield.dword)
4762 {
4763 guess_suffix = LONG_MNEM_SUFFIX;
4764 break;
4765 }
4766 else if (i.types[op].bitfield.reg && i.types[op].bitfield.qword)
4767 {
4768 guess_suffix = QWORD_MNEM_SUFFIX;
4769 break;
4770 }
4771 }
4772 else if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
4773 guess_suffix = WORD_MNEM_SUFFIX;
4774
4775 for (op = i.operands; --op >= 0;)
4776 if (operand_type_check (i.types[op], imm))
4777 {
4778 switch (i.op[op].imms->X_op)
4779 {
4780 case O_constant:
4781 /* If a suffix is given, this operand may be shortened. */
4782 switch (guess_suffix)
4783 {
4784 case LONG_MNEM_SUFFIX:
4785 i.types[op].bitfield.imm32 = 1;
4786 i.types[op].bitfield.imm64 = 1;
4787 break;
4788 case WORD_MNEM_SUFFIX:
4789 i.types[op].bitfield.imm16 = 1;
4790 i.types[op].bitfield.imm32 = 1;
4791 i.types[op].bitfield.imm32s = 1;
4792 i.types[op].bitfield.imm64 = 1;
4793 break;
4794 case BYTE_MNEM_SUFFIX:
4795 i.types[op].bitfield.imm8 = 1;
4796 i.types[op].bitfield.imm8s = 1;
4797 i.types[op].bitfield.imm16 = 1;
4798 i.types[op].bitfield.imm32 = 1;
4799 i.types[op].bitfield.imm32s = 1;
4800 i.types[op].bitfield.imm64 = 1;
4801 break;
4802 }
4803
4804 /* If this operand is at most 16 bits, convert it
4805 to a signed 16 bit number before trying to see
4806 whether it will fit in an even smaller size.
4807 This allows a 16-bit operand such as $0xffe0 to
4808 be recognised as within Imm8S range. */
4809 if ((i.types[op].bitfield.imm16)
4810 && (i.op[op].imms->X_add_number & ~(offsetT) 0xffff) == 0)
4811 {
4812 i.op[op].imms->X_add_number =
4813 (((i.op[op].imms->X_add_number & 0xffff) ^ 0x8000) - 0x8000);
4814 }
4815 #ifdef BFD64
4816 /* Store 32-bit immediate in 64-bit for 64-bit BFD. */
4817 if ((i.types[op].bitfield.imm32)
4818 && ((i.op[op].imms->X_add_number & ~(((offsetT) 2 << 31) - 1))
4819 == 0))
4820 {
4821 i.op[op].imms->X_add_number = ((i.op[op].imms->X_add_number
4822 ^ ((offsetT) 1 << 31))
4823 - ((offsetT) 1 << 31));
4824 }
4825 #endif
4826 i.types[op]
4827 = operand_type_or (i.types[op],
4828 smallest_imm_type (i.op[op].imms->X_add_number));
4829
4830 /* We must avoid matching of Imm32 templates when 64bit
4831 only immediate is available. */
4832 if (guess_suffix == QWORD_MNEM_SUFFIX)
4833 i.types[op].bitfield.imm32 = 0;
4834 break;
4835
4836 case O_absent:
4837 case O_register:
4838 abort ();
4839
4840 /* Symbols and expressions. */
4841 default:
4842 /* Convert symbolic operand to proper sizes for matching, but don't
4843 prevent matching a set of insns that only supports sizes other
4844 than those matching the insn suffix. */
4845 {
4846 i386_operand_type mask, allowed;
4847 const insn_template *t;
4848
4849 operand_type_set (&mask, 0);
4850 operand_type_set (&allowed, 0);
4851
4852 for (t = current_templates->start;
4853 t < current_templates->end;
4854 ++t)
4855 allowed = operand_type_or (allowed,
4856 t->operand_types[op]);
4857 switch (guess_suffix)
4858 {
4859 case QWORD_MNEM_SUFFIX:
4860 mask.bitfield.imm64 = 1;
4861 mask.bitfield.imm32s = 1;
4862 break;
4863 case LONG_MNEM_SUFFIX:
4864 mask.bitfield.imm32 = 1;
4865 break;
4866 case WORD_MNEM_SUFFIX:
4867 mask.bitfield.imm16 = 1;
4868 break;
4869 case BYTE_MNEM_SUFFIX:
4870 mask.bitfield.imm8 = 1;
4871 break;
4872 default:
4873 break;
4874 }
4875 allowed = operand_type_and (mask, allowed);
4876 if (!operand_type_all_zero (&allowed))
4877 i.types[op] = operand_type_and (i.types[op], mask);
4878 }
4879 break;
4880 }
4881 }
4882 }
4883
4884 /* Try to use the smallest displacement type too. */
4885 static void
4886 optimize_disp (void)
4887 {
4888 int op;
4889
4890 for (op = i.operands; --op >= 0;)
4891 if (operand_type_check (i.types[op], disp))
4892 {
4893 if (i.op[op].disps->X_op == O_constant)
4894 {
4895 offsetT op_disp = i.op[op].disps->X_add_number;
4896
4897 if (i.types[op].bitfield.disp16
4898 && (op_disp & ~(offsetT) 0xffff) == 0)
4899 {
4900 /* If this operand is at most 16 bits, convert
4901 to a signed 16 bit number and don't use 64bit
4902 displacement. */
4903 op_disp = (((op_disp & 0xffff) ^ 0x8000) - 0x8000);
4904 i.types[op].bitfield.disp64 = 0;
4905 }
4906 #ifdef BFD64
4907 /* Optimize 64-bit displacement to 32-bit for 64-bit BFD. */
4908 if (i.types[op].bitfield.disp32
4909 && (op_disp & ~(((offsetT) 2 << 31) - 1)) == 0)
4910 {
4911 /* If this operand is at most 32 bits, convert
4912 to a signed 32 bit number and don't use 64bit
4913 displacement. */
4914 op_disp &= (((offsetT) 2 << 31) - 1);
4915 op_disp = (op_disp ^ ((offsetT) 1 << 31)) - ((addressT) 1 << 31);
4916 i.types[op].bitfield.disp64 = 0;
4917 }
4918 #endif
4919 if (!op_disp && i.types[op].bitfield.baseindex)
4920 {
4921 i.types[op].bitfield.disp8 = 0;
4922 i.types[op].bitfield.disp16 = 0;
4923 i.types[op].bitfield.disp32 = 0;
4924 i.types[op].bitfield.disp32s = 0;
4925 i.types[op].bitfield.disp64 = 0;
4926 i.op[op].disps = 0;
4927 i.disp_operands--;
4928 }
4929 else if (flag_code == CODE_64BIT)
4930 {
4931 if (fits_in_signed_long (op_disp))
4932 {
4933 i.types[op].bitfield.disp64 = 0;
4934 i.types[op].bitfield.disp32s = 1;
4935 }
4936 if (i.prefix[ADDR_PREFIX]
4937 && fits_in_unsigned_long (op_disp))
4938 i.types[op].bitfield.disp32 = 1;
4939 }
4940 if ((i.types[op].bitfield.disp32
4941 || i.types[op].bitfield.disp32s
4942 || i.types[op].bitfield.disp16)
4943 && fits_in_disp8 (op_disp))
4944 i.types[op].bitfield.disp8 = 1;
4945 }
4946 else if (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
4947 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL)
4948 {
4949 fix_new_exp (frag_now, frag_more (0) - frag_now->fr_literal, 0,
4950 i.op[op].disps, 0, i.reloc[op]);
4951 i.types[op].bitfield.disp8 = 0;
4952 i.types[op].bitfield.disp16 = 0;
4953 i.types[op].bitfield.disp32 = 0;
4954 i.types[op].bitfield.disp32s = 0;
4955 i.types[op].bitfield.disp64 = 0;
4956 }
4957 else
4958 /* We only support 64bit displacement on constants. */
4959 i.types[op].bitfield.disp64 = 0;
4960 }
4961 }
4962
4963 /* Check if operands are valid for the instruction. */
4964
4965 static int
4966 check_VecOperands (const insn_template *t)
4967 {
4968 unsigned int op;
4969
4970 /* Without VSIB byte, we can't have a vector register for index. */
4971 if (!t->opcode_modifier.vecsib
4972 && i.index_reg
4973 && (i.index_reg->reg_type.bitfield.xmmword
4974 || i.index_reg->reg_type.bitfield.ymmword
4975 || i.index_reg->reg_type.bitfield.zmmword))
4976 {
4977 i.error = unsupported_vector_index_register;
4978 return 1;
4979 }
4980
4981 /* Check if default mask is allowed. */
4982 if (t->opcode_modifier.nodefmask
4983 && (!i.mask || i.mask->mask->reg_num == 0))
4984 {
4985 i.error = no_default_mask;
4986 return 1;
4987 }
4988
4989 /* For VSIB byte, we need a vector register for index, and all vector
4990 registers must be distinct. */
4991 if (t->opcode_modifier.vecsib)
4992 {
4993 if (!i.index_reg
4994 || !((t->opcode_modifier.vecsib == VecSIB128
4995 && i.index_reg->reg_type.bitfield.xmmword)
4996 || (t->opcode_modifier.vecsib == VecSIB256
4997 && i.index_reg->reg_type.bitfield.ymmword)
4998 || (t->opcode_modifier.vecsib == VecSIB512
4999 && i.index_reg->reg_type.bitfield.zmmword)))
5000 {
5001 i.error = invalid_vsib_address;
5002 return 1;
5003 }
5004
5005 gas_assert (i.reg_operands == 2 || i.mask);
5006 if (i.reg_operands == 2 && !i.mask)
5007 {
5008 gas_assert (i.types[0].bitfield.regsimd);
5009 gas_assert (i.types[0].bitfield.xmmword
5010 || i.types[0].bitfield.ymmword);
5011 gas_assert (i.types[2].bitfield.regsimd);
5012 gas_assert (i.types[2].bitfield.xmmword
5013 || i.types[2].bitfield.ymmword);
5014 if (operand_check == check_none)
5015 return 0;
5016 if (register_number (i.op[0].regs)
5017 != register_number (i.index_reg)
5018 && register_number (i.op[2].regs)
5019 != register_number (i.index_reg)
5020 && register_number (i.op[0].regs)
5021 != register_number (i.op[2].regs))
5022 return 0;
5023 if (operand_check == check_error)
5024 {
5025 i.error = invalid_vector_register_set;
5026 return 1;
5027 }
5028 as_warn (_("mask, index, and destination registers should be distinct"));
5029 }
5030 else if (i.reg_operands == 1 && i.mask)
5031 {
5032 if (i.types[1].bitfield.regsimd
5033 && (i.types[1].bitfield.xmmword
5034 || i.types[1].bitfield.ymmword
5035 || i.types[1].bitfield.zmmword)
5036 && (register_number (i.op[1].regs)
5037 == register_number (i.index_reg)))
5038 {
5039 if (operand_check == check_error)
5040 {
5041 i.error = invalid_vector_register_set;
5042 return 1;
5043 }
5044 if (operand_check != check_none)
5045 as_warn (_("index and destination registers should be distinct"));
5046 }
5047 }
5048 }
5049
5050 /* Check if broadcast is supported by the instruction and is applied
5051 to the memory operand. */
5052 if (i.broadcast)
5053 {
5054 i386_operand_type type, overlap;
5055
5056 /* Check if specified broadcast is supported in this instruction,
5057 and it's applied to memory operand of DWORD or QWORD type. */
5058 op = i.broadcast->operand;
5059 if (!t->opcode_modifier.broadcast
5060 || !i.types[op].bitfield.mem
5061 || (!i.types[op].bitfield.unspecified
5062 && (t->operand_types[op].bitfield.dword
5063 ? !i.types[op].bitfield.dword
5064 : !i.types[op].bitfield.qword)))
5065 {
5066 bad_broadcast:
5067 i.error = unsupported_broadcast;
5068 return 1;
5069 }
5070
5071 operand_type_set (&type, 0);
5072 switch ((t->operand_types[op].bitfield.dword ? 4 : 8) * i.broadcast->type)
5073 {
5074 case 8:
5075 type.bitfield.qword = 1;
5076 break;
5077 case 16:
5078 type.bitfield.xmmword = 1;
5079 break;
5080 case 32:
5081 type.bitfield.ymmword = 1;
5082 break;
5083 case 64:
5084 type.bitfield.zmmword = 1;
5085 break;
5086 default:
5087 goto bad_broadcast;
5088 }
5089
5090 overlap = operand_type_and (type, t->operand_types[op]);
5091 if (operand_type_all_zero (&overlap))
5092 goto bad_broadcast;
5093
5094 if (t->opcode_modifier.checkregsize)
5095 {
5096 unsigned int j;
5097
5098 for (j = 0; j < i.operands; ++j)
5099 {
5100 if (j != op
5101 && !operand_type_register_match(i.types[j],
5102 t->operand_types[j],
5103 type,
5104 t->operand_types[op]))
5105 goto bad_broadcast;
5106 }
5107 }
5108 }
5109 /* If broadcast is supported in this instruction, we need to check if
5110 operand of one-element size isn't specified without broadcast. */
5111 else if (t->opcode_modifier.broadcast && i.mem_operands)
5112 {
5113 /* Find memory operand. */
5114 for (op = 0; op < i.operands; op++)
5115 if (operand_type_check (i.types[op], anymem))
5116 break;
5117 gas_assert (op < i.operands);
5118 /* Check size of the memory operand. */
5119 if (t->operand_types[op].bitfield.dword
5120 ? i.types[op].bitfield.dword
5121 : i.types[op].bitfield.qword)
5122 {
5123 i.error = broadcast_needed;
5124 return 1;
5125 }
5126 }
5127 else
5128 op = MAX_OPERANDS - 1; /* Avoid uninitialized variable warning. */
5129
5130 /* Check if requested masking is supported. */
5131 if (i.mask
5132 && (!t->opcode_modifier.masking
5133 || (i.mask->zeroing
5134 && t->opcode_modifier.masking == MERGING_MASKING)))
5135 {
5136 i.error = unsupported_masking;
5137 return 1;
5138 }
5139
5140 /* Check if masking is applied to dest operand. */
5141 if (i.mask && (i.mask->operand != (int) (i.operands - 1)))
5142 {
5143 i.error = mask_not_on_destination;
5144 return 1;
5145 }
5146
5147 /* Check RC/SAE. */
5148 if (i.rounding)
5149 {
5150 if ((i.rounding->type != saeonly
5151 && !t->opcode_modifier.staticrounding)
5152 || (i.rounding->type == saeonly
5153 && (t->opcode_modifier.staticrounding
5154 || !t->opcode_modifier.sae)))
5155 {
5156 i.error = unsupported_rc_sae;
5157 return 1;
5158 }
5159 /* If the instruction has several immediate operands and one of
5160 them is rounding, the rounding operand should be the last
5161 immediate operand. */
5162 if (i.imm_operands > 1
5163 && i.rounding->operand != (int) (i.imm_operands - 1))
5164 {
5165 i.error = rc_sae_operand_not_last_imm;
5166 return 1;
5167 }
5168 }
5169
5170 /* Check vector Disp8 operand. */
5171 if (t->opcode_modifier.disp8memshift
5172 && i.disp_encoding != disp_encoding_32bit)
5173 {
5174 if (i.broadcast)
5175 i.memshift = t->operand_types[op].bitfield.dword ? 2 : 3;
5176 else
5177 i.memshift = t->opcode_modifier.disp8memshift;
5178
5179 for (op = 0; op < i.operands; op++)
5180 if (operand_type_check (i.types[op], disp)
5181 && i.op[op].disps->X_op == O_constant)
5182 {
5183 if (fits_in_disp8 (i.op[op].disps->X_add_number))
5184 {
5185 i.types[op].bitfield.disp8 = 1;
5186 return 0;
5187 }
5188 i.types[op].bitfield.disp8 = 0;
5189 }
5190 }
5191
5192 i.memshift = 0;
5193
5194 return 0;
5195 }
5196
5197 /* Check if operands are valid for the instruction. Update VEX
5198 operand types. */
5199
5200 static int
5201 VEX_check_operands (const insn_template *t)
5202 {
5203 if (i.vec_encoding == vex_encoding_evex)
5204 {
5205 /* This instruction must be encoded with EVEX prefix. */
5206 if (!is_evex_encoding (t))
5207 {
5208 i.error = unsupported;
5209 return 1;
5210 }
5211 return 0;
5212 }
5213
5214 if (!t->opcode_modifier.vex)
5215 {
5216 /* This instruction template doesn't have VEX prefix. */
5217 if (i.vec_encoding != vex_encoding_default)
5218 {
5219 i.error = unsupported;
5220 return 1;
5221 }
5222 return 0;
5223 }
5224
5225 /* Only check VEX_Imm4, which must be the first operand. */
5226 if (t->operand_types[0].bitfield.vec_imm4)
5227 {
5228 if (i.op[0].imms->X_op != O_constant
5229 || !fits_in_imm4 (i.op[0].imms->X_add_number))
5230 {
5231 i.error = bad_imm4;
5232 return 1;
5233 }
5234
5235 /* Turn off Imm8 so that update_imm won't complain. */
5236 i.types[0] = vec_imm4;
5237 }
5238
5239 return 0;
5240 }
5241
5242 static const insn_template *
5243 match_template (char mnem_suffix)
5244 {
5245 /* Points to template once we've found it. */
5246 const insn_template *t;
5247 i386_operand_type overlap0, overlap1, overlap2, overlap3;
5248 i386_operand_type overlap4;
5249 unsigned int found_reverse_match;
5250 i386_opcode_modifier suffix_check, mnemsuf_check;
5251 i386_operand_type operand_types [MAX_OPERANDS];
5252 int addr_prefix_disp;
5253 unsigned int j;
5254 unsigned int found_cpu_match;
5255 unsigned int check_register;
5256 enum i386_error specific_error = 0;
5257
5258 #if MAX_OPERANDS != 5
5259 # error "MAX_OPERANDS must be 5."
5260 #endif
5261
5262 found_reverse_match = 0;
5263 addr_prefix_disp = -1;
5264
5265 memset (&suffix_check, 0, sizeof (suffix_check));
5266 if (i.suffix == BYTE_MNEM_SUFFIX)
5267 suffix_check.no_bsuf = 1;
5268 else if (i.suffix == WORD_MNEM_SUFFIX)
5269 suffix_check.no_wsuf = 1;
5270 else if (i.suffix == SHORT_MNEM_SUFFIX)
5271 suffix_check.no_ssuf = 1;
5272 else if (i.suffix == LONG_MNEM_SUFFIX)
5273 suffix_check.no_lsuf = 1;
5274 else if (i.suffix == QWORD_MNEM_SUFFIX)
5275 suffix_check.no_qsuf = 1;
5276 else if (i.suffix == LONG_DOUBLE_MNEM_SUFFIX)
5277 suffix_check.no_ldsuf = 1;
5278
5279 memset (&mnemsuf_check, 0, sizeof (mnemsuf_check));
5280 if (intel_syntax)
5281 {
5282 switch (mnem_suffix)
5283 {
5284 case BYTE_MNEM_SUFFIX: mnemsuf_check.no_bsuf = 1; break;
5285 case WORD_MNEM_SUFFIX: mnemsuf_check.no_wsuf = 1; break;
5286 case SHORT_MNEM_SUFFIX: mnemsuf_check.no_ssuf = 1; break;
5287 case LONG_MNEM_SUFFIX: mnemsuf_check.no_lsuf = 1; break;
5288 case QWORD_MNEM_SUFFIX: mnemsuf_check.no_qsuf = 1; break;
5289 }
5290 }
5291
5292 /* Must have right number of operands. */
5293 i.error = number_of_operands_mismatch;
5294
5295 for (t = current_templates->start; t < current_templates->end; t++)
5296 {
5297 addr_prefix_disp = -1;
5298
5299 if (i.operands != t->operands)
5300 continue;
5301
5302 /* Check processor support. */
5303 i.error = unsupported;
5304 found_cpu_match = (cpu_flags_match (t)
5305 == CPU_FLAGS_PERFECT_MATCH);
5306 if (!found_cpu_match)
5307 continue;
5308
5309 /* Check AT&T mnemonic. */
5310 i.error = unsupported_with_intel_mnemonic;
5311 if (intel_mnemonic && t->opcode_modifier.attmnemonic)
5312 continue;
5313
5314 /* Check AT&T/Intel syntax and Intel64/AMD64 ISA. */
5315 i.error = unsupported_syntax;
5316 if ((intel_syntax && t->opcode_modifier.attsyntax)
5317 || (!intel_syntax && t->opcode_modifier.intelsyntax)
5318 || (intel64 && t->opcode_modifier.amd64)
5319 || (!intel64 && t->opcode_modifier.intel64))
5320 continue;
5321
5322 /* Check the suffix, except for some instructions in intel mode. */
5323 i.error = invalid_instruction_suffix;
5324 if ((!intel_syntax || !t->opcode_modifier.ignoresize)
5325 && ((t->opcode_modifier.no_bsuf && suffix_check.no_bsuf)
5326 || (t->opcode_modifier.no_wsuf && suffix_check.no_wsuf)
5327 || (t->opcode_modifier.no_lsuf && suffix_check.no_lsuf)
5328 || (t->opcode_modifier.no_ssuf && suffix_check.no_ssuf)
5329 || (t->opcode_modifier.no_qsuf && suffix_check.no_qsuf)
5330 || (t->opcode_modifier.no_ldsuf && suffix_check.no_ldsuf)))
5331 continue;
5332 /* In Intel mode all mnemonic suffixes must be explicitly allowed. */
5333 if ((t->opcode_modifier.no_bsuf && mnemsuf_check.no_bsuf)
5334 || (t->opcode_modifier.no_wsuf && mnemsuf_check.no_wsuf)
5335 || (t->opcode_modifier.no_lsuf && mnemsuf_check.no_lsuf)
5336 || (t->opcode_modifier.no_ssuf && mnemsuf_check.no_ssuf)
5337 || (t->opcode_modifier.no_qsuf && mnemsuf_check.no_qsuf)
5338 || (t->opcode_modifier.no_ldsuf && mnemsuf_check.no_ldsuf))
5339 continue;
5340
5341 if (!operand_size_match (t))
5342 continue;
5343
5344 for (j = 0; j < MAX_OPERANDS; j++)
5345 operand_types[j] = t->operand_types[j];
5346
5347 /* In general, don't allow 64-bit operands in 32-bit mode. */
5348 if (i.suffix == QWORD_MNEM_SUFFIX
5349 && flag_code != CODE_64BIT
5350 && (intel_syntax
5351 ? (!t->opcode_modifier.ignoresize
5352 && !intel_float_operand (t->name))
5353 : intel_float_operand (t->name) != 2)
5354 && ((!operand_types[0].bitfield.regmmx
5355 && !operand_types[0].bitfield.regsimd)
5356 || (!operand_types[t->operands > 1].bitfield.regmmx
5357 && !operand_types[t->operands > 1].bitfield.regsimd))
5358 && (t->base_opcode != 0x0fc7
5359 || t->extension_opcode != 1 /* cmpxchg8b */))
5360 continue;
5361
5362 /* In general, don't allow 32-bit operands on pre-386. */
5363 else if (i.suffix == LONG_MNEM_SUFFIX
5364 && !cpu_arch_flags.bitfield.cpui386
5365 && (intel_syntax
5366 ? (!t->opcode_modifier.ignoresize
5367 && !intel_float_operand (t->name))
5368 : intel_float_operand (t->name) != 2)
5369 && ((!operand_types[0].bitfield.regmmx
5370 && !operand_types[0].bitfield.regsimd)
5371 || (!operand_types[t->operands > 1].bitfield.regmmx
5372 && !operand_types[t->operands > 1].bitfield.regsimd)))
5373 continue;
5374
5375 /* Do not verify operands when there are none. */
5376 else
5377 {
5378 if (!t->operands)
5379 /* We've found a match; break out of loop. */
5380 break;
5381 }
5382
5383 /* Address size prefix will turn Disp64/Disp32/Disp16 operand
5384 into Disp32/Disp16/Disp32 operand. */
5385 if (i.prefix[ADDR_PREFIX] != 0)
5386 {
5387 /* There should be only one Disp operand. */
5388 switch (flag_code)
5389 {
5390 case CODE_16BIT:
5391 for (j = 0; j < MAX_OPERANDS; j++)
5392 {
5393 if (operand_types[j].bitfield.disp16)
5394 {
5395 addr_prefix_disp = j;
5396 operand_types[j].bitfield.disp32 = 1;
5397 operand_types[j].bitfield.disp16 = 0;
5398 break;
5399 }
5400 }
5401 break;
5402 case CODE_32BIT:
5403 for (j = 0; j < MAX_OPERANDS; j++)
5404 {
5405 if (operand_types[j].bitfield.disp32)
5406 {
5407 addr_prefix_disp = j;
5408 operand_types[j].bitfield.disp32 = 0;
5409 operand_types[j].bitfield.disp16 = 1;
5410 break;
5411 }
5412 }
5413 break;
5414 case CODE_64BIT:
5415 for (j = 0; j < MAX_OPERANDS; j++)
5416 {
5417 if (operand_types[j].bitfield.disp64)
5418 {
5419 addr_prefix_disp = j;
5420 operand_types[j].bitfield.disp64 = 0;
5421 operand_types[j].bitfield.disp32 = 1;
5422 break;
5423 }
5424 }
5425 break;
5426 }
5427 }
5428
5429 /* Force 0x8b encoding for "mov foo@GOT, %eax". */
5430 if (i.reloc[0] == BFD_RELOC_386_GOT32 && t->base_opcode == 0xa0)
5431 continue;
5432
5433 /* We check register size if needed. */
5434 check_register = t->opcode_modifier.checkregsize;
5435 overlap0 = operand_type_and (i.types[0], operand_types[0]);
5436 switch (t->operands)
5437 {
5438 case 1:
5439 if (!operand_type_match (overlap0, i.types[0]))
5440 continue;
5441 break;
5442 case 2:
5443 /* xchg %eax, %eax is a special case. It is an alias for nop
5444 only in 32bit mode and we can use opcode 0x90. In 64bit
5445 mode, we can't use 0x90 for xchg %eax, %eax since it should
5446 zero-extend %eax to %rax. */
5447 if (flag_code == CODE_64BIT
5448 && t->base_opcode == 0x90
5449 && operand_type_equal (&i.types [0], &acc32)
5450 && operand_type_equal (&i.types [1], &acc32))
5451 continue;
5452 /* xrelease mov %eax, <disp> is another special case. It must not
5453 match the accumulator-only encoding of mov. */
5454 if (flag_code != CODE_64BIT
5455 && i.hle_prefix
5456 && t->base_opcode == 0xa0
5457 && i.types[0].bitfield.acc
5458 && operand_type_check (i.types[1], anymem))
5459 continue;
5460 /* If we want store form, we reverse direction of operands. */
5461 if (i.dir_encoding == dir_encoding_store
5462 && t->opcode_modifier.d)
5463 goto check_reverse;
5464 /* Fall through. */
5465
5466 case 3:
5467 /* If we want store form, we skip the current load. */
5468 if (i.dir_encoding == dir_encoding_store
5469 && i.mem_operands == 0
5470 && t->opcode_modifier.load)
5471 continue;
5472 /* Fall through. */
5473 case 4:
5474 case 5:
5475 overlap1 = operand_type_and (i.types[1], operand_types[1]);
5476 if (!operand_type_match (overlap0, i.types[0])
5477 || !operand_type_match (overlap1, i.types[1])
5478 || (check_register
5479 && !operand_type_register_match (i.types[0],
5480 operand_types[0],
5481 i.types[1],
5482 operand_types[1])))
5483 {
5484 /* Check if other direction is valid ... */
5485 if (!t->opcode_modifier.d)
5486 continue;
5487
5488 check_reverse:
5489 /* Try reversing direction of operands. */
5490 overlap0 = operand_type_and (i.types[0], operand_types[1]);
5491 overlap1 = operand_type_and (i.types[1], operand_types[0]);
5492 if (!operand_type_match (overlap0, i.types[0])
5493 || !operand_type_match (overlap1, i.types[1])
5494 || (check_register
5495 && !operand_type_register_match (i.types[0],
5496 operand_types[1],
5497 i.types[1],
5498 operand_types[0])))
5499 {
5500 /* Does not match either direction. */
5501 continue;
5502 }
5503 /* found_reverse_match holds which of D or FloatR
5504 we've found. */
5505 if (!t->opcode_modifier.d)
5506 found_reverse_match = 0;
5507 else if (operand_types[0].bitfield.tbyte)
5508 found_reverse_match = Opcode_FloatD;
5509 else
5510 found_reverse_match = Opcode_D;
5511 if (t->opcode_modifier.floatr)
5512 found_reverse_match |= Opcode_FloatR;
5513 }
5514 else
5515 {
5516 /* Found a forward 2 operand match here. */
5517 switch (t->operands)
5518 {
5519 case 5:
5520 overlap4 = operand_type_and (i.types[4],
5521 operand_types[4]);
5522 /* Fall through. */
5523 case 4:
5524 overlap3 = operand_type_and (i.types[3],
5525 operand_types[3]);
5526 /* Fall through. */
5527 case 3:
5528 overlap2 = operand_type_and (i.types[2],
5529 operand_types[2]);
5530 break;
5531 }
5532
5533 switch (t->operands)
5534 {
5535 case 5:
5536 if (!operand_type_match (overlap4, i.types[4])
5537 || !operand_type_register_match (i.types[3],
5538 operand_types[3],
5539 i.types[4],
5540 operand_types[4]))
5541 continue;
5542 /* Fall through. */
5543 case 4:
5544 if (!operand_type_match (overlap3, i.types[3])
5545 || (check_register
5546 && (!operand_type_register_match (i.types[1],
5547 operand_types[1],
5548 i.types[3],
5549 operand_types[3])
5550 || !operand_type_register_match (i.types[2],
5551 operand_types[2],
5552 i.types[3],
5553 operand_types[3]))))
5554 continue;
5555 /* Fall through. */
5556 case 3:
5557 /* Here we make use of the fact that there are no
5558 reverse match 3 operand instructions. */
5559 if (!operand_type_match (overlap2, i.types[2])
5560 || (check_register
5561 && (!operand_type_register_match (i.types[0],
5562 operand_types[0],
5563 i.types[2],
5564 operand_types[2])
5565 || !operand_type_register_match (i.types[1],
5566 operand_types[1],
5567 i.types[2],
5568 operand_types[2]))))
5569 continue;
5570 break;
5571 }
5572 }
5573 /* Found either forward/reverse 2, 3 or 4 operand match here:
5574 slip through to break. */
5575 }
5576 if (!found_cpu_match)
5577 {
5578 found_reverse_match = 0;
5579 continue;
5580 }
5581
5582 /* Check if vector and VEX operands are valid. */
5583 if (check_VecOperands (t) || VEX_check_operands (t))
5584 {
5585 specific_error = i.error;
5586 continue;
5587 }
5588
5589 /* We've found a match; break out of loop. */
5590 break;
5591 }
5592
5593 if (t == current_templates->end)
5594 {
5595 /* We found no match. */
5596 const char *err_msg;
5597 switch (specific_error ? specific_error : i.error)
5598 {
5599 default:
5600 abort ();
5601 case operand_size_mismatch:
5602 err_msg = _("operand size mismatch");
5603 break;
5604 case operand_type_mismatch:
5605 err_msg = _("operand type mismatch");
5606 break;
5607 case register_type_mismatch:
5608 err_msg = _("register type mismatch");
5609 break;
5610 case number_of_operands_mismatch:
5611 err_msg = _("number of operands mismatch");
5612 break;
5613 case invalid_instruction_suffix:
5614 err_msg = _("invalid instruction suffix");
5615 break;
5616 case bad_imm4:
5617 err_msg = _("constant doesn't fit in 4 bits");
5618 break;
5619 case unsupported_with_intel_mnemonic:
5620 err_msg = _("unsupported with Intel mnemonic");
5621 break;
5622 case unsupported_syntax:
5623 err_msg = _("unsupported syntax");
5624 break;
5625 case unsupported:
5626 as_bad (_("unsupported instruction `%s'"),
5627 current_templates->start->name);
5628 return NULL;
5629 case invalid_vsib_address:
5630 err_msg = _("invalid VSIB address");
5631 break;
5632 case invalid_vector_register_set:
5633 err_msg = _("mask, index, and destination registers must be distinct");
5634 break;
5635 case unsupported_vector_index_register:
5636 err_msg = _("unsupported vector index register");
5637 break;
5638 case unsupported_broadcast:
5639 err_msg = _("unsupported broadcast");
5640 break;
5641 case broadcast_not_on_src_operand:
5642 err_msg = _("broadcast not on source memory operand");
5643 break;
5644 case broadcast_needed:
5645 err_msg = _("broadcast is needed for operand of such type");
5646 break;
5647 case unsupported_masking:
5648 err_msg = _("unsupported masking");
5649 break;
5650 case mask_not_on_destination:
5651 err_msg = _("mask not on destination operand");
5652 break;
5653 case no_default_mask:
5654 err_msg = _("default mask isn't allowed");
5655 break;
5656 case unsupported_rc_sae:
5657 err_msg = _("unsupported static rounding/sae");
5658 break;
5659 case rc_sae_operand_not_last_imm:
5660 if (intel_syntax)
5661 err_msg = _("RC/SAE operand must precede immediate operands");
5662 else
5663 err_msg = _("RC/SAE operand must follow immediate operands");
5664 break;
5665 case invalid_register_operand:
5666 err_msg = _("invalid register operand");
5667 break;
5668 }
5669 as_bad (_("%s for `%s'"), err_msg,
5670 current_templates->start->name);
5671 return NULL;
5672 }
5673
5674 if (!quiet_warnings)
5675 {
5676 if (!intel_syntax
5677 && (i.types[0].bitfield.jumpabsolute
5678 != operand_types[0].bitfield.jumpabsolute))
5679 {
5680 as_warn (_("indirect %s without `*'"), t->name);
5681 }
5682
5683 if (t->opcode_modifier.isprefix
5684 && t->opcode_modifier.ignoresize)
5685 {
5686 /* Warn them that a data or address size prefix doesn't
5687 affect assembly of the next line of code. */
5688 as_warn (_("stand-alone `%s' prefix"), t->name);
5689 }
5690 }
5691
5692 /* Copy the template we found. */
5693 i.tm = *t;
5694
5695 if (addr_prefix_disp != -1)
5696 i.tm.operand_types[addr_prefix_disp]
5697 = operand_types[addr_prefix_disp];
5698
5699 if (found_reverse_match)
5700 {
5701 /* If we found a reverse match we must alter the opcode
5702 direction bit. found_reverse_match holds bits to change
5703 (different for int & float insns). */
5704
5705 i.tm.base_opcode ^= found_reverse_match;
5706
5707 i.tm.operand_types[0] = operand_types[1];
5708 i.tm.operand_types[1] = operand_types[0];
5709 }
5710
5711 return t;
5712 }
5713
5714 static int
5715 check_string (void)
5716 {
5717 int mem_op = operand_type_check (i.types[0], anymem) ? 0 : 1;
5718 if (i.tm.operand_types[mem_op].bitfield.esseg)
5719 {
5720 if (i.seg[0] != NULL && i.seg[0] != &es)
5721 {
5722 as_bad (_("`%s' operand %d must use `%ses' segment"),
5723 i.tm.name,
5724 mem_op + 1,
5725 register_prefix);
5726 return 0;
5727 }
5728 /* There's only ever one segment override allowed per instruction.
5729 This instruction possibly has a legal segment override on the
5730 second operand, so copy the segment to where non-string
5731 instructions store it, allowing common code. */
5732 i.seg[0] = i.seg[1];
5733 }
5734 else if (i.tm.operand_types[mem_op + 1].bitfield.esseg)
5735 {
5736 if (i.seg[1] != NULL && i.seg[1] != &es)
5737 {
5738 as_bad (_("`%s' operand %d must use `%ses' segment"),
5739 i.tm.name,
5740 mem_op + 2,
5741 register_prefix);
5742 return 0;
5743 }
5744 }
5745 return 1;
5746 }
5747
5748 static int
5749 process_suffix (void)
5750 {
5751 /* If matched instruction specifies an explicit instruction mnemonic
5752 suffix, use it. */
5753 if (i.tm.opcode_modifier.size16)
5754 i.suffix = WORD_MNEM_SUFFIX;
5755 else if (i.tm.opcode_modifier.size32)
5756 i.suffix = LONG_MNEM_SUFFIX;
5757 else if (i.tm.opcode_modifier.size64)
5758 i.suffix = QWORD_MNEM_SUFFIX;
5759 else if (i.reg_operands)
5760 {
5761 /* If there's no instruction mnemonic suffix we try to invent one
5762 based on register operands. */
5763 if (!i.suffix)
5764 {
5765 /* We take i.suffix from the last register operand specified,
5766 Destination register type is more significant than source
5767 register type. crc32 in SSE4.2 prefers source register
5768 type. */
5769 if (i.tm.base_opcode == 0xf20f38f1)
5770 {
5771 if (i.types[0].bitfield.reg && i.types[0].bitfield.word)
5772 i.suffix = WORD_MNEM_SUFFIX;
5773 else if (i.types[0].bitfield.reg && i.types[0].bitfield.dword)
5774 i.suffix = LONG_MNEM_SUFFIX;
5775 else if (i.types[0].bitfield.reg && i.types[0].bitfield.qword)
5776 i.suffix = QWORD_MNEM_SUFFIX;
5777 }
5778 else if (i.tm.base_opcode == 0xf20f38f0)
5779 {
5780 if (i.types[0].bitfield.reg && i.types[0].bitfield.byte)
5781 i.suffix = BYTE_MNEM_SUFFIX;
5782 }
5783
5784 if (!i.suffix)
5785 {
5786 int op;
5787
5788 if (i.tm.base_opcode == 0xf20f38f1
5789 || i.tm.base_opcode == 0xf20f38f0)
5790 {
5791 /* We have to know the operand size for crc32. */
5792 as_bad (_("ambiguous memory operand size for `%s`"),
5793 i.tm.name);
5794 return 0;
5795 }
5796
5797 for (op = i.operands; --op >= 0;)
5798 if (!i.tm.operand_types[op].bitfield.inoutportreg
5799 && !i.tm.operand_types[op].bitfield.shiftcount)
5800 {
5801 if (!i.types[op].bitfield.reg)
5802 continue;
5803 if (i.types[op].bitfield.byte)
5804 i.suffix = BYTE_MNEM_SUFFIX;
5805 else if (i.types[op].bitfield.word)
5806 i.suffix = WORD_MNEM_SUFFIX;
5807 else if (i.types[op].bitfield.dword)
5808 i.suffix = LONG_MNEM_SUFFIX;
5809 else if (i.types[op].bitfield.qword)
5810 i.suffix = QWORD_MNEM_SUFFIX;
5811 else
5812 continue;
5813 break;
5814 }
5815 }
5816 }
5817 else if (i.suffix == BYTE_MNEM_SUFFIX)
5818 {
5819 if (intel_syntax
5820 && i.tm.opcode_modifier.ignoresize
5821 && i.tm.opcode_modifier.no_bsuf)
5822 i.suffix = 0;
5823 else if (!check_byte_reg ())
5824 return 0;
5825 }
5826 else if (i.suffix == LONG_MNEM_SUFFIX)
5827 {
5828 if (intel_syntax
5829 && i.tm.opcode_modifier.ignoresize
5830 && i.tm.opcode_modifier.no_lsuf
5831 && !i.tm.opcode_modifier.todword
5832 && !i.tm.opcode_modifier.toqword)
5833 i.suffix = 0;
5834 else if (!check_long_reg ())
5835 return 0;
5836 }
5837 else if (i.suffix == QWORD_MNEM_SUFFIX)
5838 {
5839 if (intel_syntax
5840 && i.tm.opcode_modifier.ignoresize
5841 && i.tm.opcode_modifier.no_qsuf
5842 && !i.tm.opcode_modifier.todword
5843 && !i.tm.opcode_modifier.toqword)
5844 i.suffix = 0;
5845 else if (!check_qword_reg ())
5846 return 0;
5847 }
5848 else if (i.suffix == WORD_MNEM_SUFFIX)
5849 {
5850 if (intel_syntax
5851 && i.tm.opcode_modifier.ignoresize
5852 && i.tm.opcode_modifier.no_wsuf)
5853 i.suffix = 0;
5854 else if (!check_word_reg ())
5855 return 0;
5856 }
5857 else if (intel_syntax && i.tm.opcode_modifier.ignoresize)
5858 /* Do nothing if the instruction is going to ignore the prefix. */
5859 ;
5860 else
5861 abort ();
5862 }
5863 else if (i.tm.opcode_modifier.defaultsize
5864 && !i.suffix
5865 /* exclude fldenv/frstor/fsave/fstenv */
5866 && i.tm.opcode_modifier.no_ssuf)
5867 {
5868 i.suffix = stackop_size;
5869 }
5870 else if (intel_syntax
5871 && !i.suffix
5872 && (i.tm.operand_types[0].bitfield.jumpabsolute
5873 || i.tm.opcode_modifier.jumpbyte
5874 || i.tm.opcode_modifier.jumpintersegment
5875 || (i.tm.base_opcode == 0x0f01 /* [ls][gi]dt */
5876 && i.tm.extension_opcode <= 3)))
5877 {
5878 switch (flag_code)
5879 {
5880 case CODE_64BIT:
5881 if (!i.tm.opcode_modifier.no_qsuf)
5882 {
5883 i.suffix = QWORD_MNEM_SUFFIX;
5884 break;
5885 }
5886 /* Fall through. */
5887 case CODE_32BIT:
5888 if (!i.tm.opcode_modifier.no_lsuf)
5889 i.suffix = LONG_MNEM_SUFFIX;
5890 break;
5891 case CODE_16BIT:
5892 if (!i.tm.opcode_modifier.no_wsuf)
5893 i.suffix = WORD_MNEM_SUFFIX;
5894 break;
5895 }
5896 }
5897
5898 if (!i.suffix)
5899 {
5900 if (!intel_syntax)
5901 {
5902 if (i.tm.opcode_modifier.w)
5903 {
5904 as_bad (_("no instruction mnemonic suffix given and "
5905 "no register operands; can't size instruction"));
5906 return 0;
5907 }
5908 }
5909 else
5910 {
5911 unsigned int suffixes;
5912
5913 suffixes = !i.tm.opcode_modifier.no_bsuf;
5914 if (!i.tm.opcode_modifier.no_wsuf)
5915 suffixes |= 1 << 1;
5916 if (!i.tm.opcode_modifier.no_lsuf)
5917 suffixes |= 1 << 2;
5918 if (!i.tm.opcode_modifier.no_ldsuf)
5919 suffixes |= 1 << 3;
5920 if (!i.tm.opcode_modifier.no_ssuf)
5921 suffixes |= 1 << 4;
5922 if (flag_code == CODE_64BIT && !i.tm.opcode_modifier.no_qsuf)
5923 suffixes |= 1 << 5;
5924
5925 /* There are more than suffix matches. */
5926 if (i.tm.opcode_modifier.w
5927 || ((suffixes & (suffixes - 1))
5928 && !i.tm.opcode_modifier.defaultsize
5929 && !i.tm.opcode_modifier.ignoresize))
5930 {
5931 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
5932 return 0;
5933 }
5934 }
5935 }
5936
5937 /* Change the opcode based on the operand size given by i.suffix. */
5938 switch (i.suffix)
5939 {
5940 /* Size floating point instruction. */
5941 case LONG_MNEM_SUFFIX:
5942 if (i.tm.opcode_modifier.floatmf)
5943 {
5944 i.tm.base_opcode ^= 4;
5945 break;
5946 }
5947 /* fall through */
5948 case WORD_MNEM_SUFFIX:
5949 case QWORD_MNEM_SUFFIX:
5950 /* It's not a byte, select word/dword operation. */
5951 if (i.tm.opcode_modifier.w)
5952 {
5953 if (i.tm.opcode_modifier.shortform)
5954 i.tm.base_opcode |= 8;
5955 else
5956 i.tm.base_opcode |= 1;
5957 }
5958 /* fall through */
5959 case SHORT_MNEM_SUFFIX:
5960 /* Now select between word & dword operations via the operand
5961 size prefix, except for instructions that will ignore this
5962 prefix anyway. */
5963 if (i.tm.opcode_modifier.addrprefixop0)
5964 {
5965 /* The address size override prefix changes the size of the
5966 first operand. */
5967 if ((flag_code == CODE_32BIT
5968 && i.op->regs[0].reg_type.bitfield.word)
5969 || (flag_code != CODE_32BIT
5970 && i.op->regs[0].reg_type.bitfield.dword))
5971 if (!add_prefix (ADDR_PREFIX_OPCODE))
5972 return 0;
5973 }
5974 else if (i.suffix != QWORD_MNEM_SUFFIX
5975 && !i.tm.opcode_modifier.ignoresize
5976 && !i.tm.opcode_modifier.floatmf
5977 && ((i.suffix == LONG_MNEM_SUFFIX) == (flag_code == CODE_16BIT)
5978 || (flag_code == CODE_64BIT
5979 && i.tm.opcode_modifier.jumpbyte)))
5980 {
5981 unsigned int prefix = DATA_PREFIX_OPCODE;
5982
5983 if (i.tm.opcode_modifier.jumpbyte) /* jcxz, loop */
5984 prefix = ADDR_PREFIX_OPCODE;
5985
5986 if (!add_prefix (prefix))
5987 return 0;
5988 }
5989
5990 /* Set mode64 for an operand. */
5991 if (i.suffix == QWORD_MNEM_SUFFIX
5992 && flag_code == CODE_64BIT
5993 && !i.tm.opcode_modifier.norex64
5994 /* Special case for xchg %rax,%rax. It is NOP and doesn't
5995 need rex64. */
5996 && ! (i.operands == 2
5997 && i.tm.base_opcode == 0x90
5998 && i.tm.extension_opcode == None
5999 && operand_type_equal (&i.types [0], &acc64)
6000 && operand_type_equal (&i.types [1], &acc64)))
6001 i.rex |= REX_W;
6002
6003 break;
6004 }
6005
6006 return 1;
6007 }
6008
6009 static int
6010 check_byte_reg (void)
6011 {
6012 int op;
6013
6014 for (op = i.operands; --op >= 0;)
6015 {
6016 /* Skip non-register operands. */
6017 if (!i.types[op].bitfield.reg)
6018 continue;
6019
6020 /* If this is an eight bit register, it's OK. If it's the 16 or
6021 32 bit version of an eight bit register, we will just use the
6022 low portion, and that's OK too. */
6023 if (i.types[op].bitfield.byte)
6024 continue;
6025
6026 /* I/O port address operands are OK too. */
6027 if (i.tm.operand_types[op].bitfield.inoutportreg)
6028 continue;
6029
6030 /* crc32 doesn't generate this warning. */
6031 if (i.tm.base_opcode == 0xf20f38f0)
6032 continue;
6033
6034 if ((i.types[op].bitfield.word
6035 || i.types[op].bitfield.dword
6036 || i.types[op].bitfield.qword)
6037 && i.op[op].regs->reg_num < 4
6038 /* Prohibit these changes in 64bit mode, since the lowering
6039 would be more complicated. */
6040 && flag_code != CODE_64BIT)
6041 {
6042 #if REGISTER_WARNINGS
6043 if (!quiet_warnings)
6044 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
6045 register_prefix,
6046 (i.op[op].regs + (i.types[op].bitfield.word
6047 ? REGNAM_AL - REGNAM_AX
6048 : REGNAM_AL - REGNAM_EAX))->reg_name,
6049 register_prefix,
6050 i.op[op].regs->reg_name,
6051 i.suffix);
6052 #endif
6053 continue;
6054 }
6055 /* Any other register is bad. */
6056 if (i.types[op].bitfield.reg
6057 || i.types[op].bitfield.regmmx
6058 || i.types[op].bitfield.regsimd
6059 || i.types[op].bitfield.sreg2
6060 || i.types[op].bitfield.sreg3
6061 || i.types[op].bitfield.control
6062 || i.types[op].bitfield.debug
6063 || i.types[op].bitfield.test)
6064 {
6065 as_bad (_("`%s%s' not allowed with `%s%c'"),
6066 register_prefix,
6067 i.op[op].regs->reg_name,
6068 i.tm.name,
6069 i.suffix);
6070 return 0;
6071 }
6072 }
6073 return 1;
6074 }
6075
6076 static int
6077 check_long_reg (void)
6078 {
6079 int op;
6080
6081 for (op = i.operands; --op >= 0;)
6082 /* Skip non-register operands. */
6083 if (!i.types[op].bitfield.reg)
6084 continue;
6085 /* Reject eight bit registers, except where the template requires
6086 them. (eg. movzb) */
6087 else if (i.types[op].bitfield.byte
6088 && (i.tm.operand_types[op].bitfield.reg
6089 || i.tm.operand_types[op].bitfield.acc)
6090 && (i.tm.operand_types[op].bitfield.word
6091 || i.tm.operand_types[op].bitfield.dword))
6092 {
6093 as_bad (_("`%s%s' not allowed with `%s%c'"),
6094 register_prefix,
6095 i.op[op].regs->reg_name,
6096 i.tm.name,
6097 i.suffix);
6098 return 0;
6099 }
6100 /* Warn if the e prefix on a general reg is missing. */
6101 else if ((!quiet_warnings || flag_code == CODE_64BIT)
6102 && i.types[op].bitfield.word
6103 && (i.tm.operand_types[op].bitfield.reg
6104 || i.tm.operand_types[op].bitfield.acc)
6105 && i.tm.operand_types[op].bitfield.dword)
6106 {
6107 /* Prohibit these changes in the 64bit mode, since the
6108 lowering is more complicated. */
6109 if (flag_code == CODE_64BIT)
6110 {
6111 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
6112 register_prefix, i.op[op].regs->reg_name,
6113 i.suffix);
6114 return 0;
6115 }
6116 #if REGISTER_WARNINGS
6117 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
6118 register_prefix,
6119 (i.op[op].regs + REGNAM_EAX - REGNAM_AX)->reg_name,
6120 register_prefix, i.op[op].regs->reg_name, i.suffix);
6121 #endif
6122 }
6123 /* Warn if the r prefix on a general reg is present. */
6124 else if (i.types[op].bitfield.qword
6125 && (i.tm.operand_types[op].bitfield.reg
6126 || i.tm.operand_types[op].bitfield.acc)
6127 && i.tm.operand_types[op].bitfield.dword)
6128 {
6129 if (intel_syntax
6130 && i.tm.opcode_modifier.toqword
6131 && !i.types[0].bitfield.regsimd)
6132 {
6133 /* Convert to QWORD. We want REX byte. */
6134 i.suffix = QWORD_MNEM_SUFFIX;
6135 }
6136 else
6137 {
6138 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
6139 register_prefix, i.op[op].regs->reg_name,
6140 i.suffix);
6141 return 0;
6142 }
6143 }
6144 return 1;
6145 }
6146
6147 static int
6148 check_qword_reg (void)
6149 {
6150 int op;
6151
6152 for (op = i.operands; --op >= 0; )
6153 /* Skip non-register operands. */
6154 if (!i.types[op].bitfield.reg)
6155 continue;
6156 /* Reject eight bit registers, except where the template requires
6157 them. (eg. movzb) */
6158 else if (i.types[op].bitfield.byte
6159 && (i.tm.operand_types[op].bitfield.reg
6160 || i.tm.operand_types[op].bitfield.acc)
6161 && (i.tm.operand_types[op].bitfield.word
6162 || i.tm.operand_types[op].bitfield.dword))
6163 {
6164 as_bad (_("`%s%s' not allowed with `%s%c'"),
6165 register_prefix,
6166 i.op[op].regs->reg_name,
6167 i.tm.name,
6168 i.suffix);
6169 return 0;
6170 }
6171 /* Warn if the r prefix on a general reg is missing. */
6172 else if ((i.types[op].bitfield.word
6173 || i.types[op].bitfield.dword)
6174 && (i.tm.operand_types[op].bitfield.reg
6175 || i.tm.operand_types[op].bitfield.acc)
6176 && i.tm.operand_types[op].bitfield.qword)
6177 {
6178 /* Prohibit these changes in the 64bit mode, since the
6179 lowering is more complicated. */
6180 if (intel_syntax
6181 && i.tm.opcode_modifier.todword
6182 && !i.types[0].bitfield.regsimd)
6183 {
6184 /* Convert to DWORD. We don't want REX byte. */
6185 i.suffix = LONG_MNEM_SUFFIX;
6186 }
6187 else
6188 {
6189 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
6190 register_prefix, i.op[op].regs->reg_name,
6191 i.suffix);
6192 return 0;
6193 }
6194 }
6195 return 1;
6196 }
6197
6198 static int
6199 check_word_reg (void)
6200 {
6201 int op;
6202 for (op = i.operands; --op >= 0;)
6203 /* Skip non-register operands. */
6204 if (!i.types[op].bitfield.reg)
6205 continue;
6206 /* Reject eight bit registers, except where the template requires
6207 them. (eg. movzb) */
6208 else if (i.types[op].bitfield.byte
6209 && (i.tm.operand_types[op].bitfield.reg
6210 || i.tm.operand_types[op].bitfield.acc)
6211 && (i.tm.operand_types[op].bitfield.word
6212 || i.tm.operand_types[op].bitfield.dword))
6213 {
6214 as_bad (_("`%s%s' not allowed with `%s%c'"),
6215 register_prefix,
6216 i.op[op].regs->reg_name,
6217 i.tm.name,
6218 i.suffix);
6219 return 0;
6220 }
6221 /* Warn if the e or r prefix on a general reg is present. */
6222 else if ((!quiet_warnings || flag_code == CODE_64BIT)
6223 && (i.types[op].bitfield.dword
6224 || i.types[op].bitfield.qword)
6225 && (i.tm.operand_types[op].bitfield.reg
6226 || i.tm.operand_types[op].bitfield.acc)
6227 && i.tm.operand_types[op].bitfield.word)
6228 {
6229 /* Prohibit these changes in the 64bit mode, since the
6230 lowering is more complicated. */
6231 if (flag_code == CODE_64BIT)
6232 {
6233 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
6234 register_prefix, i.op[op].regs->reg_name,
6235 i.suffix);
6236 return 0;
6237 }
6238 #if REGISTER_WARNINGS
6239 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
6240 register_prefix,
6241 (i.op[op].regs + REGNAM_AX - REGNAM_EAX)->reg_name,
6242 register_prefix, i.op[op].regs->reg_name, i.suffix);
6243 #endif
6244 }
6245 return 1;
6246 }
6247
6248 static int
6249 update_imm (unsigned int j)
6250 {
6251 i386_operand_type overlap = i.types[j];
6252 if ((overlap.bitfield.imm8
6253 || overlap.bitfield.imm8s
6254 || overlap.bitfield.imm16
6255 || overlap.bitfield.imm32
6256 || overlap.bitfield.imm32s
6257 || overlap.bitfield.imm64)
6258 && !operand_type_equal (&overlap, &imm8)
6259 && !operand_type_equal (&overlap, &imm8s)
6260 && !operand_type_equal (&overlap, &imm16)
6261 && !operand_type_equal (&overlap, &imm32)
6262 && !operand_type_equal (&overlap, &imm32s)
6263 && !operand_type_equal (&overlap, &imm64))
6264 {
6265 if (i.suffix)
6266 {
6267 i386_operand_type temp;
6268
6269 operand_type_set (&temp, 0);
6270 if (i.suffix == BYTE_MNEM_SUFFIX)
6271 {
6272 temp.bitfield.imm8 = overlap.bitfield.imm8;
6273 temp.bitfield.imm8s = overlap.bitfield.imm8s;
6274 }
6275 else if (i.suffix == WORD_MNEM_SUFFIX)
6276 temp.bitfield.imm16 = overlap.bitfield.imm16;
6277 else if (i.suffix == QWORD_MNEM_SUFFIX)
6278 {
6279 temp.bitfield.imm64 = overlap.bitfield.imm64;
6280 temp.bitfield.imm32s = overlap.bitfield.imm32s;
6281 }
6282 else
6283 temp.bitfield.imm32 = overlap.bitfield.imm32;
6284 overlap = temp;
6285 }
6286 else if (operand_type_equal (&overlap, &imm16_32_32s)
6287 || operand_type_equal (&overlap, &imm16_32)
6288 || operand_type_equal (&overlap, &imm16_32s))
6289 {
6290 if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
6291 overlap = imm16;
6292 else
6293 overlap = imm32s;
6294 }
6295 if (!operand_type_equal (&overlap, &imm8)
6296 && !operand_type_equal (&overlap, &imm8s)
6297 && !operand_type_equal (&overlap, &imm16)
6298 && !operand_type_equal (&overlap, &imm32)
6299 && !operand_type_equal (&overlap, &imm32s)
6300 && !operand_type_equal (&overlap, &imm64))
6301 {
6302 as_bad (_("no instruction mnemonic suffix given; "
6303 "can't determine immediate size"));
6304 return 0;
6305 }
6306 }
6307 i.types[j] = overlap;
6308
6309 return 1;
6310 }
6311
6312 static int
6313 finalize_imm (void)
6314 {
6315 unsigned int j, n;
6316
6317 /* Update the first 2 immediate operands. */
6318 n = i.operands > 2 ? 2 : i.operands;
6319 if (n)
6320 {
6321 for (j = 0; j < n; j++)
6322 if (update_imm (j) == 0)
6323 return 0;
6324
6325 /* The 3rd operand can't be immediate operand. */
6326 gas_assert (operand_type_check (i.types[2], imm) == 0);
6327 }
6328
6329 return 1;
6330 }
6331
6332 static int
6333 process_operands (void)
6334 {
6335 /* Default segment register this instruction will use for memory
6336 accesses. 0 means unknown. This is only for optimizing out
6337 unnecessary segment overrides. */
6338 const seg_entry *default_seg = 0;
6339
6340 if (i.tm.opcode_modifier.sse2avx && i.tm.opcode_modifier.vexvvvv)
6341 {
6342 unsigned int dupl = i.operands;
6343 unsigned int dest = dupl - 1;
6344 unsigned int j;
6345
6346 /* The destination must be an xmm register. */
6347 gas_assert (i.reg_operands
6348 && MAX_OPERANDS > dupl
6349 && operand_type_equal (&i.types[dest], &regxmm));
6350
6351 if (i.tm.operand_types[0].bitfield.acc
6352 && i.tm.operand_types[0].bitfield.xmmword)
6353 {
6354 if (i.tm.opcode_modifier.vexsources == VEX3SOURCES)
6355 {
6356 /* Keep xmm0 for instructions with VEX prefix and 3
6357 sources. */
6358 i.tm.operand_types[0].bitfield.acc = 0;
6359 i.tm.operand_types[0].bitfield.regsimd = 1;
6360 goto duplicate;
6361 }
6362 else
6363 {
6364 /* We remove the first xmm0 and keep the number of
6365 operands unchanged, which in fact duplicates the
6366 destination. */
6367 for (j = 1; j < i.operands; j++)
6368 {
6369 i.op[j - 1] = i.op[j];
6370 i.types[j - 1] = i.types[j];
6371 i.tm.operand_types[j - 1] = i.tm.operand_types[j];
6372 }
6373 }
6374 }
6375 else if (i.tm.opcode_modifier.implicit1stxmm0)
6376 {
6377 gas_assert ((MAX_OPERANDS - 1) > dupl
6378 && (i.tm.opcode_modifier.vexsources
6379 == VEX3SOURCES));
6380
6381 /* Add the implicit xmm0 for instructions with VEX prefix
6382 and 3 sources. */
6383 for (j = i.operands; j > 0; j--)
6384 {
6385 i.op[j] = i.op[j - 1];
6386 i.types[j] = i.types[j - 1];
6387 i.tm.operand_types[j] = i.tm.operand_types[j - 1];
6388 }
6389 i.op[0].regs
6390 = (const reg_entry *) hash_find (reg_hash, "xmm0");
6391 i.types[0] = regxmm;
6392 i.tm.operand_types[0] = regxmm;
6393
6394 i.operands += 2;
6395 i.reg_operands += 2;
6396 i.tm.operands += 2;
6397
6398 dupl++;
6399 dest++;
6400 i.op[dupl] = i.op[dest];
6401 i.types[dupl] = i.types[dest];
6402 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
6403 }
6404 else
6405 {
6406 duplicate:
6407 i.operands++;
6408 i.reg_operands++;
6409 i.tm.operands++;
6410
6411 i.op[dupl] = i.op[dest];
6412 i.types[dupl] = i.types[dest];
6413 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
6414 }
6415
6416 if (i.tm.opcode_modifier.immext)
6417 process_immext ();
6418 }
6419 else if (i.tm.operand_types[0].bitfield.acc
6420 && i.tm.operand_types[0].bitfield.xmmword)
6421 {
6422 unsigned int j;
6423
6424 for (j = 1; j < i.operands; j++)
6425 {
6426 i.op[j - 1] = i.op[j];
6427 i.types[j - 1] = i.types[j];
6428
6429 /* We need to adjust fields in i.tm since they are used by
6430 build_modrm_byte. */
6431 i.tm.operand_types [j - 1] = i.tm.operand_types [j];
6432 }
6433
6434 i.operands--;
6435 i.reg_operands--;
6436 i.tm.operands--;
6437 }
6438 else if (i.tm.opcode_modifier.implicitquadgroup)
6439 {
6440 unsigned int regnum, first_reg_in_group, last_reg_in_group;
6441
6442 /* The second operand must be {x,y,z}mmN, where N is a multiple of 4. */
6443 gas_assert (i.operands >= 2 && i.types[1].bitfield.regsimd);
6444 regnum = register_number (i.op[1].regs);
6445 first_reg_in_group = regnum & ~3;
6446 last_reg_in_group = first_reg_in_group + 3;
6447 if (regnum != first_reg_in_group)
6448 as_warn (_("source register `%s%s' implicitly denotes"
6449 " `%s%.3s%u' to `%s%.3s%u' source group in `%s'"),
6450 register_prefix, i.op[1].regs->reg_name,
6451 register_prefix, i.op[1].regs->reg_name, first_reg_in_group,
6452 register_prefix, i.op[1].regs->reg_name, last_reg_in_group,
6453 i.tm.name);
6454 }
6455 else if (i.tm.opcode_modifier.regkludge)
6456 {
6457 /* The imul $imm, %reg instruction is converted into
6458 imul $imm, %reg, %reg, and the clr %reg instruction
6459 is converted into xor %reg, %reg. */
6460
6461 unsigned int first_reg_op;
6462
6463 if (operand_type_check (i.types[0], reg))
6464 first_reg_op = 0;
6465 else
6466 first_reg_op = 1;
6467 /* Pretend we saw the extra register operand. */
6468 gas_assert (i.reg_operands == 1
6469 && i.op[first_reg_op + 1].regs == 0);
6470 i.op[first_reg_op + 1].regs = i.op[first_reg_op].regs;
6471 i.types[first_reg_op + 1] = i.types[first_reg_op];
6472 i.operands++;
6473 i.reg_operands++;
6474 }
6475
6476 if (i.tm.opcode_modifier.shortform)
6477 {
6478 if (i.types[0].bitfield.sreg2
6479 || i.types[0].bitfield.sreg3)
6480 {
6481 if (i.tm.base_opcode == POP_SEG_SHORT
6482 && i.op[0].regs->reg_num == 1)
6483 {
6484 as_bad (_("you can't `pop %scs'"), register_prefix);
6485 return 0;
6486 }
6487 i.tm.base_opcode |= (i.op[0].regs->reg_num << 3);
6488 if ((i.op[0].regs->reg_flags & RegRex) != 0)
6489 i.rex |= REX_B;
6490 }
6491 else
6492 {
6493 /* The register or float register operand is in operand
6494 0 or 1. */
6495 unsigned int op;
6496
6497 if ((i.types[0].bitfield.reg && i.types[0].bitfield.tbyte)
6498 || operand_type_check (i.types[0], reg))
6499 op = 0;
6500 else
6501 op = 1;
6502 /* Register goes in low 3 bits of opcode. */
6503 i.tm.base_opcode |= i.op[op].regs->reg_num;
6504 if ((i.op[op].regs->reg_flags & RegRex) != 0)
6505 i.rex |= REX_B;
6506 if (!quiet_warnings && i.tm.opcode_modifier.ugh)
6507 {
6508 /* Warn about some common errors, but press on regardless.
6509 The first case can be generated by gcc (<= 2.8.1). */
6510 if (i.operands == 2)
6511 {
6512 /* Reversed arguments on faddp, fsubp, etc. */
6513 as_warn (_("translating to `%s %s%s,%s%s'"), i.tm.name,
6514 register_prefix, i.op[!intel_syntax].regs->reg_name,
6515 register_prefix, i.op[intel_syntax].regs->reg_name);
6516 }
6517 else
6518 {
6519 /* Extraneous `l' suffix on fp insn. */
6520 as_warn (_("translating to `%s %s%s'"), i.tm.name,
6521 register_prefix, i.op[0].regs->reg_name);
6522 }
6523 }
6524 }
6525 }
6526 else if (i.tm.opcode_modifier.modrm)
6527 {
6528 /* The opcode is completed (modulo i.tm.extension_opcode which
6529 must be put into the modrm byte). Now, we make the modrm and
6530 index base bytes based on all the info we've collected. */
6531
6532 default_seg = build_modrm_byte ();
6533 }
6534 else if ((i.tm.base_opcode & ~0x3) == MOV_AX_DISP32)
6535 {
6536 default_seg = &ds;
6537 }
6538 else if (i.tm.opcode_modifier.isstring)
6539 {
6540 /* For the string instructions that allow a segment override
6541 on one of their operands, the default segment is ds. */
6542 default_seg = &ds;
6543 }
6544
6545 if (i.tm.base_opcode == 0x8d /* lea */
6546 && i.seg[0]
6547 && !quiet_warnings)
6548 as_warn (_("segment override on `%s' is ineffectual"), i.tm.name);
6549
6550 /* If a segment was explicitly specified, and the specified segment
6551 is not the default, use an opcode prefix to select it. If we
6552 never figured out what the default segment is, then default_seg
6553 will be zero at this point, and the specified segment prefix will
6554 always be used. */
6555 if ((i.seg[0]) && (i.seg[0] != default_seg))
6556 {
6557 if (!add_prefix (i.seg[0]->seg_prefix))
6558 return 0;
6559 }
6560 return 1;
6561 }
6562
6563 static const seg_entry *
6564 build_modrm_byte (void)
6565 {
6566 const seg_entry *default_seg = 0;
6567 unsigned int source, dest;
6568 int vex_3_sources;
6569
6570 vex_3_sources = i.tm.opcode_modifier.vexsources == VEX3SOURCES;
6571 if (vex_3_sources)
6572 {
6573 unsigned int nds, reg_slot;
6574 expressionS *exp;
6575
6576 gas_assert (!i.tm.opcode_modifier.veximmext
6577 || !i.tm.opcode_modifier.immext);
6578
6579 dest = i.operands - 1;
6580 nds = dest - 1;
6581
6582 /* There are 2 kinds of instructions:
6583 1. 5 operands: 4 register operands or 3 register operands
6584 plus 1 memory operand plus one Vec_Imm4 operand, VexXDS, and
6585 VexW0 or VexW1. The destination must be either XMM, YMM or
6586 ZMM register.
6587 2. 4 operands: 4 register operands or 3 register operands
6588 plus 1 memory operand, VexXDS, and VexImmExt */
6589 gas_assert ((i.reg_operands == 4
6590 || (i.reg_operands == 3 && i.mem_operands == 1))
6591 && i.tm.opcode_modifier.vexvvvv == VEXXDS
6592 && (i.tm.opcode_modifier.veximmext
6593 || (i.imm_operands == 1
6594 && i.types[0].bitfield.vec_imm4))
6595 && i.tm.opcode_modifier.vexw
6596 && i.tm.operand_types[dest].bitfield.regsimd);
6597
6598 if (i.imm_operands == 0)
6599 {
6600 /* When there is no immediate operand, generate an 8bit
6601 immediate operand to encode the first operand. */
6602 exp = &im_expressions[i.imm_operands++];
6603 i.op[i.operands].imms = exp;
6604 i.types[i.operands] = imm8;
6605 i.operands++;
6606 /* If VexW1 is set, the first operand is the source and
6607 the second operand is encoded in the immediate operand. */
6608 if (i.tm.opcode_modifier.vexw == VEXW1)
6609 {
6610 source = 0;
6611 reg_slot = 1;
6612 }
6613 else
6614 {
6615 source = 1;
6616 reg_slot = 0;
6617 }
6618
6619 gas_assert (i.tm.operand_types[reg_slot].bitfield.regsimd);
6620 exp->X_op = O_constant;
6621 exp->X_add_number = register_number (i.op[reg_slot].regs) << 4;
6622 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
6623 }
6624 else
6625 {
6626 unsigned int imm_slot;
6627
6628 if (i.tm.opcode_modifier.vexw == VEXW0)
6629 {
6630 /* If VexW0 is set, the third operand is the source and
6631 the second operand is encoded in the immediate
6632 operand. */
6633 source = 2;
6634 reg_slot = 1;
6635 }
6636 else
6637 {
6638 /* VexW1 is set, the second operand is the source and
6639 the third operand is encoded in the immediate
6640 operand. */
6641 source = 1;
6642 reg_slot = 2;
6643 }
6644
6645 if (i.tm.opcode_modifier.immext)
6646 {
6647 /* When ImmExt is set, the immediate byte is the last
6648 operand. */
6649 imm_slot = i.operands - 1;
6650 source--;
6651 reg_slot--;
6652 }
6653 else
6654 {
6655 imm_slot = 0;
6656
6657 /* Turn on Imm8 so that output_imm will generate it. */
6658 i.types[imm_slot].bitfield.imm8 = 1;
6659 }
6660
6661 gas_assert (i.tm.operand_types[reg_slot].bitfield.regsimd);
6662 i.op[imm_slot].imms->X_add_number
6663 |= register_number (i.op[reg_slot].regs) << 4;
6664 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
6665 }
6666
6667 gas_assert (i.tm.operand_types[nds].bitfield.regsimd);
6668 i.vex.register_specifier = i.op[nds].regs;
6669 }
6670 else
6671 source = dest = 0;
6672
6673 /* i.reg_operands MUST be the number of real register operands;
6674 implicit registers do not count. If there are 3 register
6675 operands, it must be a instruction with VexNDS. For a
6676 instruction with VexNDD, the destination register is encoded
6677 in VEX prefix. If there are 4 register operands, it must be
6678 a instruction with VEX prefix and 3 sources. */
6679 if (i.mem_operands == 0
6680 && ((i.reg_operands == 2
6681 && i.tm.opcode_modifier.vexvvvv <= VEXXDS)
6682 || (i.reg_operands == 3
6683 && i.tm.opcode_modifier.vexvvvv == VEXXDS)
6684 || (i.reg_operands == 4 && vex_3_sources)))
6685 {
6686 switch (i.operands)
6687 {
6688 case 2:
6689 source = 0;
6690 break;
6691 case 3:
6692 /* When there are 3 operands, one of them may be immediate,
6693 which may be the first or the last operand. Otherwise,
6694 the first operand must be shift count register (cl) or it
6695 is an instruction with VexNDS. */
6696 gas_assert (i.imm_operands == 1
6697 || (i.imm_operands == 0
6698 && (i.tm.opcode_modifier.vexvvvv == VEXXDS
6699 || i.types[0].bitfield.shiftcount)));
6700 if (operand_type_check (i.types[0], imm)
6701 || i.types[0].bitfield.shiftcount)
6702 source = 1;
6703 else
6704 source = 0;
6705 break;
6706 case 4:
6707 /* When there are 4 operands, the first two must be 8bit
6708 immediate operands. The source operand will be the 3rd
6709 one.
6710
6711 For instructions with VexNDS, if the first operand
6712 an imm8, the source operand is the 2nd one. If the last
6713 operand is imm8, the source operand is the first one. */
6714 gas_assert ((i.imm_operands == 2
6715 && i.types[0].bitfield.imm8
6716 && i.types[1].bitfield.imm8)
6717 || (i.tm.opcode_modifier.vexvvvv == VEXXDS
6718 && i.imm_operands == 1
6719 && (i.types[0].bitfield.imm8
6720 || i.types[i.operands - 1].bitfield.imm8
6721 || i.rounding)));
6722 if (i.imm_operands == 2)
6723 source = 2;
6724 else
6725 {
6726 if (i.types[0].bitfield.imm8)
6727 source = 1;
6728 else
6729 source = 0;
6730 }
6731 break;
6732 case 5:
6733 if (is_evex_encoding (&i.tm))
6734 {
6735 /* For EVEX instructions, when there are 5 operands, the
6736 first one must be immediate operand. If the second one
6737 is immediate operand, the source operand is the 3th
6738 one. If the last one is immediate operand, the source
6739 operand is the 2nd one. */
6740 gas_assert (i.imm_operands == 2
6741 && i.tm.opcode_modifier.sae
6742 && operand_type_check (i.types[0], imm));
6743 if (operand_type_check (i.types[1], imm))
6744 source = 2;
6745 else if (operand_type_check (i.types[4], imm))
6746 source = 1;
6747 else
6748 abort ();
6749 }
6750 break;
6751 default:
6752 abort ();
6753 }
6754
6755 if (!vex_3_sources)
6756 {
6757 dest = source + 1;
6758
6759 /* RC/SAE operand could be between DEST and SRC. That happens
6760 when one operand is GPR and the other one is XMM/YMM/ZMM
6761 register. */
6762 if (i.rounding && i.rounding->operand == (int) dest)
6763 dest++;
6764
6765 if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
6766 {
6767 /* For instructions with VexNDS, the register-only source
6768 operand must be a 32/64bit integer, XMM, YMM, ZMM, or mask
6769 register. It is encoded in VEX prefix. We need to
6770 clear RegMem bit before calling operand_type_equal. */
6771
6772 i386_operand_type op;
6773 unsigned int vvvv;
6774
6775 /* Check register-only source operand when two source
6776 operands are swapped. */
6777 if (!i.tm.operand_types[source].bitfield.baseindex
6778 && i.tm.operand_types[dest].bitfield.baseindex)
6779 {
6780 vvvv = source;
6781 source = dest;
6782 }
6783 else
6784 vvvv = dest;
6785
6786 op = i.tm.operand_types[vvvv];
6787 op.bitfield.regmem = 0;
6788 if ((dest + 1) >= i.operands
6789 || ((!op.bitfield.reg
6790 || (!op.bitfield.dword && !op.bitfield.qword))
6791 && !op.bitfield.regsimd
6792 && !operand_type_equal (&op, &regmask)))
6793 abort ();
6794 i.vex.register_specifier = i.op[vvvv].regs;
6795 dest++;
6796 }
6797 }
6798
6799 i.rm.mode = 3;
6800 /* One of the register operands will be encoded in the i.tm.reg
6801 field, the other in the combined i.tm.mode and i.tm.regmem
6802 fields. If no form of this instruction supports a memory
6803 destination operand, then we assume the source operand may
6804 sometimes be a memory operand and so we need to store the
6805 destination in the i.rm.reg field. */
6806 if (!i.tm.operand_types[dest].bitfield.regmem
6807 && operand_type_check (i.tm.operand_types[dest], anymem) == 0)
6808 {
6809 i.rm.reg = i.op[dest].regs->reg_num;
6810 i.rm.regmem = i.op[source].regs->reg_num;
6811 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
6812 i.rex |= REX_R;
6813 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
6814 i.vrex |= REX_R;
6815 if ((i.op[source].regs->reg_flags & RegRex) != 0)
6816 i.rex |= REX_B;
6817 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
6818 i.vrex |= REX_B;
6819 }
6820 else
6821 {
6822 i.rm.reg = i.op[source].regs->reg_num;
6823 i.rm.regmem = i.op[dest].regs->reg_num;
6824 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
6825 i.rex |= REX_B;
6826 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
6827 i.vrex |= REX_B;
6828 if ((i.op[source].regs->reg_flags & RegRex) != 0)
6829 i.rex |= REX_R;
6830 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
6831 i.vrex |= REX_R;
6832 }
6833 if (flag_code != CODE_64BIT && (i.rex & (REX_R | REX_B)))
6834 {
6835 if (!i.types[0].bitfield.control
6836 && !i.types[1].bitfield.control)
6837 abort ();
6838 i.rex &= ~(REX_R | REX_B);
6839 add_prefix (LOCK_PREFIX_OPCODE);
6840 }
6841 }
6842 else
6843 { /* If it's not 2 reg operands... */
6844 unsigned int mem;
6845
6846 if (i.mem_operands)
6847 {
6848 unsigned int fake_zero_displacement = 0;
6849 unsigned int op;
6850
6851 for (op = 0; op < i.operands; op++)
6852 if (operand_type_check (i.types[op], anymem))
6853 break;
6854 gas_assert (op < i.operands);
6855
6856 if (i.tm.opcode_modifier.vecsib)
6857 {
6858 if (i.index_reg->reg_num == RegEiz
6859 || i.index_reg->reg_num == RegRiz)
6860 abort ();
6861
6862 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
6863 if (!i.base_reg)
6864 {
6865 i.sib.base = NO_BASE_REGISTER;
6866 i.sib.scale = i.log2_scale_factor;
6867 i.types[op].bitfield.disp8 = 0;
6868 i.types[op].bitfield.disp16 = 0;
6869 i.types[op].bitfield.disp64 = 0;
6870 if (flag_code != CODE_64BIT || i.prefix[ADDR_PREFIX])
6871 {
6872 /* Must be 32 bit */
6873 i.types[op].bitfield.disp32 = 1;
6874 i.types[op].bitfield.disp32s = 0;
6875 }
6876 else
6877 {
6878 i.types[op].bitfield.disp32 = 0;
6879 i.types[op].bitfield.disp32s = 1;
6880 }
6881 }
6882 i.sib.index = i.index_reg->reg_num;
6883 if ((i.index_reg->reg_flags & RegRex) != 0)
6884 i.rex |= REX_X;
6885 if ((i.index_reg->reg_flags & RegVRex) != 0)
6886 i.vrex |= REX_X;
6887 }
6888
6889 default_seg = &ds;
6890
6891 if (i.base_reg == 0)
6892 {
6893 i.rm.mode = 0;
6894 if (!i.disp_operands)
6895 fake_zero_displacement = 1;
6896 if (i.index_reg == 0)
6897 {
6898 i386_operand_type newdisp;
6899
6900 gas_assert (!i.tm.opcode_modifier.vecsib);
6901 /* Operand is just <disp> */
6902 if (flag_code == CODE_64BIT)
6903 {
6904 /* 64bit mode overwrites the 32bit absolute
6905 addressing by RIP relative addressing and
6906 absolute addressing is encoded by one of the
6907 redundant SIB forms. */
6908 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
6909 i.sib.base = NO_BASE_REGISTER;
6910 i.sib.index = NO_INDEX_REGISTER;
6911 newdisp = (!i.prefix[ADDR_PREFIX] ? disp32s : disp32);
6912 }
6913 else if ((flag_code == CODE_16BIT)
6914 ^ (i.prefix[ADDR_PREFIX] != 0))
6915 {
6916 i.rm.regmem = NO_BASE_REGISTER_16;
6917 newdisp = disp16;
6918 }
6919 else
6920 {
6921 i.rm.regmem = NO_BASE_REGISTER;
6922 newdisp = disp32;
6923 }
6924 i.types[op] = operand_type_and_not (i.types[op], anydisp);
6925 i.types[op] = operand_type_or (i.types[op], newdisp);
6926 }
6927 else if (!i.tm.opcode_modifier.vecsib)
6928 {
6929 /* !i.base_reg && i.index_reg */
6930 if (i.index_reg->reg_num == RegEiz
6931 || i.index_reg->reg_num == RegRiz)
6932 i.sib.index = NO_INDEX_REGISTER;
6933 else
6934 i.sib.index = i.index_reg->reg_num;
6935 i.sib.base = NO_BASE_REGISTER;
6936 i.sib.scale = i.log2_scale_factor;
6937 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
6938 i.types[op].bitfield.disp8 = 0;
6939 i.types[op].bitfield.disp16 = 0;
6940 i.types[op].bitfield.disp64 = 0;
6941 if (flag_code != CODE_64BIT || i.prefix[ADDR_PREFIX])
6942 {
6943 /* Must be 32 bit */
6944 i.types[op].bitfield.disp32 = 1;
6945 i.types[op].bitfield.disp32s = 0;
6946 }
6947 else
6948 {
6949 i.types[op].bitfield.disp32 = 0;
6950 i.types[op].bitfield.disp32s = 1;
6951 }
6952 if ((i.index_reg->reg_flags & RegRex) != 0)
6953 i.rex |= REX_X;
6954 }
6955 }
6956 /* RIP addressing for 64bit mode. */
6957 else if (i.base_reg->reg_num == RegRip ||
6958 i.base_reg->reg_num == RegEip)
6959 {
6960 gas_assert (!i.tm.opcode_modifier.vecsib);
6961 i.rm.regmem = NO_BASE_REGISTER;
6962 i.types[op].bitfield.disp8 = 0;
6963 i.types[op].bitfield.disp16 = 0;
6964 i.types[op].bitfield.disp32 = 0;
6965 i.types[op].bitfield.disp32s = 1;
6966 i.types[op].bitfield.disp64 = 0;
6967 i.flags[op] |= Operand_PCrel;
6968 if (! i.disp_operands)
6969 fake_zero_displacement = 1;
6970 }
6971 else if (i.base_reg->reg_type.bitfield.word)
6972 {
6973 gas_assert (!i.tm.opcode_modifier.vecsib);
6974 switch (i.base_reg->reg_num)
6975 {
6976 case 3: /* (%bx) */
6977 if (i.index_reg == 0)
6978 i.rm.regmem = 7;
6979 else /* (%bx,%si) -> 0, or (%bx,%di) -> 1 */
6980 i.rm.regmem = i.index_reg->reg_num - 6;
6981 break;
6982 case 5: /* (%bp) */
6983 default_seg = &ss;
6984 if (i.index_reg == 0)
6985 {
6986 i.rm.regmem = 6;
6987 if (operand_type_check (i.types[op], disp) == 0)
6988 {
6989 /* fake (%bp) into 0(%bp) */
6990 i.types[op].bitfield.disp8 = 1;
6991 fake_zero_displacement = 1;
6992 }
6993 }
6994 else /* (%bp,%si) -> 2, or (%bp,%di) -> 3 */
6995 i.rm.regmem = i.index_reg->reg_num - 6 + 2;
6996 break;
6997 default: /* (%si) -> 4 or (%di) -> 5 */
6998 i.rm.regmem = i.base_reg->reg_num - 6 + 4;
6999 }
7000 i.rm.mode = mode_from_disp_size (i.types[op]);
7001 }
7002 else /* i.base_reg and 32/64 bit mode */
7003 {
7004 if (flag_code == CODE_64BIT
7005 && operand_type_check (i.types[op], disp))
7006 {
7007 i.types[op].bitfield.disp16 = 0;
7008 i.types[op].bitfield.disp64 = 0;
7009 if (i.prefix[ADDR_PREFIX] == 0)
7010 {
7011 i.types[op].bitfield.disp32 = 0;
7012 i.types[op].bitfield.disp32s = 1;
7013 }
7014 else
7015 {
7016 i.types[op].bitfield.disp32 = 1;
7017 i.types[op].bitfield.disp32s = 0;
7018 }
7019 }
7020
7021 if (!i.tm.opcode_modifier.vecsib)
7022 i.rm.regmem = i.base_reg->reg_num;
7023 if ((i.base_reg->reg_flags & RegRex) != 0)
7024 i.rex |= REX_B;
7025 i.sib.base = i.base_reg->reg_num;
7026 /* x86-64 ignores REX prefix bit here to avoid decoder
7027 complications. */
7028 if (!(i.base_reg->reg_flags & RegRex)
7029 && (i.base_reg->reg_num == EBP_REG_NUM
7030 || i.base_reg->reg_num == ESP_REG_NUM))
7031 default_seg = &ss;
7032 if (i.base_reg->reg_num == 5 && i.disp_operands == 0)
7033 {
7034 fake_zero_displacement = 1;
7035 i.types[op].bitfield.disp8 = 1;
7036 }
7037 i.sib.scale = i.log2_scale_factor;
7038 if (i.index_reg == 0)
7039 {
7040 gas_assert (!i.tm.opcode_modifier.vecsib);
7041 /* <disp>(%esp) becomes two byte modrm with no index
7042 register. We've already stored the code for esp
7043 in i.rm.regmem ie. ESCAPE_TO_TWO_BYTE_ADDRESSING.
7044 Any base register besides %esp will not use the
7045 extra modrm byte. */
7046 i.sib.index = NO_INDEX_REGISTER;
7047 }
7048 else if (!i.tm.opcode_modifier.vecsib)
7049 {
7050 if (i.index_reg->reg_num == RegEiz
7051 || i.index_reg->reg_num == RegRiz)
7052 i.sib.index = NO_INDEX_REGISTER;
7053 else
7054 i.sib.index = i.index_reg->reg_num;
7055 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7056 if ((i.index_reg->reg_flags & RegRex) != 0)
7057 i.rex |= REX_X;
7058 }
7059
7060 if (i.disp_operands
7061 && (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
7062 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL))
7063 i.rm.mode = 0;
7064 else
7065 {
7066 if (!fake_zero_displacement
7067 && !i.disp_operands
7068 && i.disp_encoding)
7069 {
7070 fake_zero_displacement = 1;
7071 if (i.disp_encoding == disp_encoding_8bit)
7072 i.types[op].bitfield.disp8 = 1;
7073 else
7074 i.types[op].bitfield.disp32 = 1;
7075 }
7076 i.rm.mode = mode_from_disp_size (i.types[op]);
7077 }
7078 }
7079
7080 if (fake_zero_displacement)
7081 {
7082 /* Fakes a zero displacement assuming that i.types[op]
7083 holds the correct displacement size. */
7084 expressionS *exp;
7085
7086 gas_assert (i.op[op].disps == 0);
7087 exp = &disp_expressions[i.disp_operands++];
7088 i.op[op].disps = exp;
7089 exp->X_op = O_constant;
7090 exp->X_add_number = 0;
7091 exp->X_add_symbol = (symbolS *) 0;
7092 exp->X_op_symbol = (symbolS *) 0;
7093 }
7094
7095 mem = op;
7096 }
7097 else
7098 mem = ~0;
7099
7100 if (i.tm.opcode_modifier.vexsources == XOP2SOURCES)
7101 {
7102 if (operand_type_check (i.types[0], imm))
7103 i.vex.register_specifier = NULL;
7104 else
7105 {
7106 /* VEX.vvvv encodes one of the sources when the first
7107 operand is not an immediate. */
7108 if (i.tm.opcode_modifier.vexw == VEXW0)
7109 i.vex.register_specifier = i.op[0].regs;
7110 else
7111 i.vex.register_specifier = i.op[1].regs;
7112 }
7113
7114 /* Destination is a XMM register encoded in the ModRM.reg
7115 and VEX.R bit. */
7116 i.rm.reg = i.op[2].regs->reg_num;
7117 if ((i.op[2].regs->reg_flags & RegRex) != 0)
7118 i.rex |= REX_R;
7119
7120 /* ModRM.rm and VEX.B encodes the other source. */
7121 if (!i.mem_operands)
7122 {
7123 i.rm.mode = 3;
7124
7125 if (i.tm.opcode_modifier.vexw == VEXW0)
7126 i.rm.regmem = i.op[1].regs->reg_num;
7127 else
7128 i.rm.regmem = i.op[0].regs->reg_num;
7129
7130 if ((i.op[1].regs->reg_flags & RegRex) != 0)
7131 i.rex |= REX_B;
7132 }
7133 }
7134 else if (i.tm.opcode_modifier.vexvvvv == VEXLWP)
7135 {
7136 i.vex.register_specifier = i.op[2].regs;
7137 if (!i.mem_operands)
7138 {
7139 i.rm.mode = 3;
7140 i.rm.regmem = i.op[1].regs->reg_num;
7141 if ((i.op[1].regs->reg_flags & RegRex) != 0)
7142 i.rex |= REX_B;
7143 }
7144 }
7145 /* Fill in i.rm.reg or i.rm.regmem field with register operand
7146 (if any) based on i.tm.extension_opcode. Again, we must be
7147 careful to make sure that segment/control/debug/test/MMX
7148 registers are coded into the i.rm.reg field. */
7149 else if (i.reg_operands)
7150 {
7151 unsigned int op;
7152 unsigned int vex_reg = ~0;
7153
7154 for (op = 0; op < i.operands; op++)
7155 if (i.types[op].bitfield.reg
7156 || i.types[op].bitfield.regmmx
7157 || i.types[op].bitfield.regsimd
7158 || i.types[op].bitfield.regbnd
7159 || i.types[op].bitfield.regmask
7160 || i.types[op].bitfield.sreg2
7161 || i.types[op].bitfield.sreg3
7162 || i.types[op].bitfield.control
7163 || i.types[op].bitfield.debug
7164 || i.types[op].bitfield.test)
7165 break;
7166
7167 if (vex_3_sources)
7168 op = dest;
7169 else if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
7170 {
7171 /* For instructions with VexNDS, the register-only
7172 source operand is encoded in VEX prefix. */
7173 gas_assert (mem != (unsigned int) ~0);
7174
7175 if (op > mem)
7176 {
7177 vex_reg = op++;
7178 gas_assert (op < i.operands);
7179 }
7180 else
7181 {
7182 /* Check register-only source operand when two source
7183 operands are swapped. */
7184 if (!i.tm.operand_types[op].bitfield.baseindex
7185 && i.tm.operand_types[op + 1].bitfield.baseindex)
7186 {
7187 vex_reg = op;
7188 op += 2;
7189 gas_assert (mem == (vex_reg + 1)
7190 && op < i.operands);
7191 }
7192 else
7193 {
7194 vex_reg = op + 1;
7195 gas_assert (vex_reg < i.operands);
7196 }
7197 }
7198 }
7199 else if (i.tm.opcode_modifier.vexvvvv == VEXNDD)
7200 {
7201 /* For instructions with VexNDD, the register destination
7202 is encoded in VEX prefix. */
7203 if (i.mem_operands == 0)
7204 {
7205 /* There is no memory operand. */
7206 gas_assert ((op + 2) == i.operands);
7207 vex_reg = op + 1;
7208 }
7209 else
7210 {
7211 /* There are only 2 non-immediate operands. */
7212 gas_assert (op < i.imm_operands + 2
7213 && i.operands == i.imm_operands + 2);
7214 vex_reg = i.imm_operands + 1;
7215 }
7216 }
7217 else
7218 gas_assert (op < i.operands);
7219
7220 if (vex_reg != (unsigned int) ~0)
7221 {
7222 i386_operand_type *type = &i.tm.operand_types[vex_reg];
7223
7224 if ((!type->bitfield.reg
7225 || (!type->bitfield.dword && !type->bitfield.qword))
7226 && !type->bitfield.regsimd
7227 && !operand_type_equal (type, &regmask))
7228 abort ();
7229
7230 i.vex.register_specifier = i.op[vex_reg].regs;
7231 }
7232
7233 /* Don't set OP operand twice. */
7234 if (vex_reg != op)
7235 {
7236 /* If there is an extension opcode to put here, the
7237 register number must be put into the regmem field. */
7238 if (i.tm.extension_opcode != None)
7239 {
7240 i.rm.regmem = i.op[op].regs->reg_num;
7241 if ((i.op[op].regs->reg_flags & RegRex) != 0)
7242 i.rex |= REX_B;
7243 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
7244 i.vrex |= REX_B;
7245 }
7246 else
7247 {
7248 i.rm.reg = i.op[op].regs->reg_num;
7249 if ((i.op[op].regs->reg_flags & RegRex) != 0)
7250 i.rex |= REX_R;
7251 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
7252 i.vrex |= REX_R;
7253 }
7254 }
7255
7256 /* Now, if no memory operand has set i.rm.mode = 0, 1, 2 we
7257 must set it to 3 to indicate this is a register operand
7258 in the regmem field. */
7259 if (!i.mem_operands)
7260 i.rm.mode = 3;
7261 }
7262
7263 /* Fill in i.rm.reg field with extension opcode (if any). */
7264 if (i.tm.extension_opcode != None)
7265 i.rm.reg = i.tm.extension_opcode;
7266 }
7267 return default_seg;
7268 }
7269
7270 static void
7271 output_branch (void)
7272 {
7273 char *p;
7274 int size;
7275 int code16;
7276 int prefix;
7277 relax_substateT subtype;
7278 symbolS *sym;
7279 offsetT off;
7280
7281 code16 = flag_code == CODE_16BIT ? CODE16 : 0;
7282 size = i.disp_encoding == disp_encoding_32bit ? BIG : SMALL;
7283
7284 prefix = 0;
7285 if (i.prefix[DATA_PREFIX] != 0)
7286 {
7287 prefix = 1;
7288 i.prefixes -= 1;
7289 code16 ^= CODE16;
7290 }
7291 /* Pentium4 branch hints. */
7292 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
7293 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
7294 {
7295 prefix++;
7296 i.prefixes--;
7297 }
7298 if (i.prefix[REX_PREFIX] != 0)
7299 {
7300 prefix++;
7301 i.prefixes--;
7302 }
7303
7304 /* BND prefixed jump. */
7305 if (i.prefix[BND_PREFIX] != 0)
7306 {
7307 FRAG_APPEND_1_CHAR (i.prefix[BND_PREFIX]);
7308 i.prefixes -= 1;
7309 }
7310
7311 if (i.prefixes != 0 && !intel_syntax)
7312 as_warn (_("skipping prefixes on this instruction"));
7313
7314 /* It's always a symbol; End frag & setup for relax.
7315 Make sure there is enough room in this frag for the largest
7316 instruction we may generate in md_convert_frag. This is 2
7317 bytes for the opcode and room for the prefix and largest
7318 displacement. */
7319 frag_grow (prefix + 2 + 4);
7320 /* Prefix and 1 opcode byte go in fr_fix. */
7321 p = frag_more (prefix + 1);
7322 if (i.prefix[DATA_PREFIX] != 0)
7323 *p++ = DATA_PREFIX_OPCODE;
7324 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE
7325 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE)
7326 *p++ = i.prefix[SEG_PREFIX];
7327 if (i.prefix[REX_PREFIX] != 0)
7328 *p++ = i.prefix[REX_PREFIX];
7329 *p = i.tm.base_opcode;
7330
7331 if ((unsigned char) *p == JUMP_PC_RELATIVE)
7332 subtype = ENCODE_RELAX_STATE (UNCOND_JUMP, size);
7333 else if (cpu_arch_flags.bitfield.cpui386)
7334 subtype = ENCODE_RELAX_STATE (COND_JUMP, size);
7335 else
7336 subtype = ENCODE_RELAX_STATE (COND_JUMP86, size);
7337 subtype |= code16;
7338
7339 sym = i.op[0].disps->X_add_symbol;
7340 off = i.op[0].disps->X_add_number;
7341
7342 if (i.op[0].disps->X_op != O_constant
7343 && i.op[0].disps->X_op != O_symbol)
7344 {
7345 /* Handle complex expressions. */
7346 sym = make_expr_symbol (i.op[0].disps);
7347 off = 0;
7348 }
7349
7350 /* 1 possible extra opcode + 4 byte displacement go in var part.
7351 Pass reloc in fr_var. */
7352 frag_var (rs_machine_dependent, 5, i.reloc[0], subtype, sym, off, p);
7353 }
7354
7355 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7356 /* Return TRUE iff PLT32 relocation should be used for branching to
7357 symbol S. */
7358
7359 static bfd_boolean
7360 need_plt32_p (symbolS *s)
7361 {
7362 /* PLT32 relocation is ELF only. */
7363 if (!IS_ELF)
7364 return FALSE;
7365
7366 /* Since there is no need to prepare for PLT branch on x86-64, we
7367 can generate R_X86_64_PLT32, instead of R_X86_64_PC32, which can
7368 be used as a marker for 32-bit PC-relative branches. */
7369 if (!object_64bit)
7370 return FALSE;
7371
7372 /* Weak or undefined symbol need PLT32 relocation. */
7373 if (S_IS_WEAK (s) || !S_IS_DEFINED (s))
7374 return TRUE;
7375
7376 /* Non-global symbol doesn't need PLT32 relocation. */
7377 if (! S_IS_EXTERNAL (s))
7378 return FALSE;
7379
7380 /* Other global symbols need PLT32 relocation. NB: Symbol with
7381 non-default visibilities are treated as normal global symbol
7382 so that PLT32 relocation can be used as a marker for 32-bit
7383 PC-relative branches. It is useful for linker relaxation. */
7384 return TRUE;
7385 }
7386 #endif
7387
7388 static void
7389 output_jump (void)
7390 {
7391 char *p;
7392 int size;
7393 fixS *fixP;
7394 bfd_reloc_code_real_type jump_reloc = i.reloc[0];
7395
7396 if (i.tm.opcode_modifier.jumpbyte)
7397 {
7398 /* This is a loop or jecxz type instruction. */
7399 size = 1;
7400 if (i.prefix[ADDR_PREFIX] != 0)
7401 {
7402 FRAG_APPEND_1_CHAR (ADDR_PREFIX_OPCODE);
7403 i.prefixes -= 1;
7404 }
7405 /* Pentium4 branch hints. */
7406 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
7407 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
7408 {
7409 FRAG_APPEND_1_CHAR (i.prefix[SEG_PREFIX]);
7410 i.prefixes--;
7411 }
7412 }
7413 else
7414 {
7415 int code16;
7416
7417 code16 = 0;
7418 if (flag_code == CODE_16BIT)
7419 code16 = CODE16;
7420
7421 if (i.prefix[DATA_PREFIX] != 0)
7422 {
7423 FRAG_APPEND_1_CHAR (DATA_PREFIX_OPCODE);
7424 i.prefixes -= 1;
7425 code16 ^= CODE16;
7426 }
7427
7428 size = 4;
7429 if (code16)
7430 size = 2;
7431 }
7432
7433 if (i.prefix[REX_PREFIX] != 0)
7434 {
7435 FRAG_APPEND_1_CHAR (i.prefix[REX_PREFIX]);
7436 i.prefixes -= 1;
7437 }
7438
7439 /* BND prefixed jump. */
7440 if (i.prefix[BND_PREFIX] != 0)
7441 {
7442 FRAG_APPEND_1_CHAR (i.prefix[BND_PREFIX]);
7443 i.prefixes -= 1;
7444 }
7445
7446 if (i.prefixes != 0 && !intel_syntax)
7447 as_warn (_("skipping prefixes on this instruction"));
7448
7449 p = frag_more (i.tm.opcode_length + size);
7450 switch (i.tm.opcode_length)
7451 {
7452 case 2:
7453 *p++ = i.tm.base_opcode >> 8;
7454 /* Fall through. */
7455 case 1:
7456 *p++ = i.tm.base_opcode;
7457 break;
7458 default:
7459 abort ();
7460 }
7461
7462 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7463 if (size == 4
7464 && jump_reloc == NO_RELOC
7465 && need_plt32_p (i.op[0].disps->X_add_symbol))
7466 jump_reloc = BFD_RELOC_X86_64_PLT32;
7467 #endif
7468
7469 jump_reloc = reloc (size, 1, 1, jump_reloc);
7470
7471 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal, size,
7472 i.op[0].disps, 1, jump_reloc);
7473
7474 /* All jumps handled here are signed, but don't use a signed limit
7475 check for 32 and 16 bit jumps as we want to allow wrap around at
7476 4G and 64k respectively. */
7477 if (size == 1)
7478 fixP->fx_signed = 1;
7479 }
7480
7481 static void
7482 output_interseg_jump (void)
7483 {
7484 char *p;
7485 int size;
7486 int prefix;
7487 int code16;
7488
7489 code16 = 0;
7490 if (flag_code == CODE_16BIT)
7491 code16 = CODE16;
7492
7493 prefix = 0;
7494 if (i.prefix[DATA_PREFIX] != 0)
7495 {
7496 prefix = 1;
7497 i.prefixes -= 1;
7498 code16 ^= CODE16;
7499 }
7500 if (i.prefix[REX_PREFIX] != 0)
7501 {
7502 prefix++;
7503 i.prefixes -= 1;
7504 }
7505
7506 size = 4;
7507 if (code16)
7508 size = 2;
7509
7510 if (i.prefixes != 0 && !intel_syntax)
7511 as_warn (_("skipping prefixes on this instruction"));
7512
7513 /* 1 opcode; 2 segment; offset */
7514 p = frag_more (prefix + 1 + 2 + size);
7515
7516 if (i.prefix[DATA_PREFIX] != 0)
7517 *p++ = DATA_PREFIX_OPCODE;
7518
7519 if (i.prefix[REX_PREFIX] != 0)
7520 *p++ = i.prefix[REX_PREFIX];
7521
7522 *p++ = i.tm.base_opcode;
7523 if (i.op[1].imms->X_op == O_constant)
7524 {
7525 offsetT n = i.op[1].imms->X_add_number;
7526
7527 if (size == 2
7528 && !fits_in_unsigned_word (n)
7529 && !fits_in_signed_word (n))
7530 {
7531 as_bad (_("16-bit jump out of range"));
7532 return;
7533 }
7534 md_number_to_chars (p, n, size);
7535 }
7536 else
7537 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
7538 i.op[1].imms, 0, reloc (size, 0, 0, i.reloc[1]));
7539 if (i.op[0].imms->X_op != O_constant)
7540 as_bad (_("can't handle non absolute segment in `%s'"),
7541 i.tm.name);
7542 md_number_to_chars (p + size, (valueT) i.op[0].imms->X_add_number, 2);
7543 }
7544
7545 static void
7546 output_insn (void)
7547 {
7548 fragS *insn_start_frag;
7549 offsetT insn_start_off;
7550
7551 /* Tie dwarf2 debug info to the address at the start of the insn.
7552 We can't do this after the insn has been output as the current
7553 frag may have been closed off. eg. by frag_var. */
7554 dwarf2_emit_insn (0);
7555
7556 insn_start_frag = frag_now;
7557 insn_start_off = frag_now_fix ();
7558
7559 /* Output jumps. */
7560 if (i.tm.opcode_modifier.jump)
7561 output_branch ();
7562 else if (i.tm.opcode_modifier.jumpbyte
7563 || i.tm.opcode_modifier.jumpdword)
7564 output_jump ();
7565 else if (i.tm.opcode_modifier.jumpintersegment)
7566 output_interseg_jump ();
7567 else
7568 {
7569 /* Output normal instructions here. */
7570 char *p;
7571 unsigned char *q;
7572 unsigned int j;
7573 unsigned int prefix;
7574
7575 if (avoid_fence
7576 && i.tm.base_opcode == 0xfae
7577 && i.operands == 1
7578 && i.imm_operands == 1
7579 && (i.op[0].imms->X_add_number == 0xe8
7580 || i.op[0].imms->X_add_number == 0xf0
7581 || i.op[0].imms->X_add_number == 0xf8))
7582 {
7583 /* Encode lfence, mfence, and sfence as
7584 f0 83 04 24 00 lock addl $0x0, (%{re}sp). */
7585 offsetT val = 0x240483f0ULL;
7586 p = frag_more (5);
7587 md_number_to_chars (p, val, 5);
7588 return;
7589 }
7590
7591 /* Some processors fail on LOCK prefix. This options makes
7592 assembler ignore LOCK prefix and serves as a workaround. */
7593 if (omit_lock_prefix)
7594 {
7595 if (i.tm.base_opcode == LOCK_PREFIX_OPCODE)
7596 return;
7597 i.prefix[LOCK_PREFIX] = 0;
7598 }
7599
7600 /* Since the VEX/EVEX prefix contains the implicit prefix, we
7601 don't need the explicit prefix. */
7602 if (!i.tm.opcode_modifier.vex && !i.tm.opcode_modifier.evex)
7603 {
7604 switch (i.tm.opcode_length)
7605 {
7606 case 3:
7607 if (i.tm.base_opcode & 0xff000000)
7608 {
7609 prefix = (i.tm.base_opcode >> 24) & 0xff;
7610 goto check_prefix;
7611 }
7612 break;
7613 case 2:
7614 if ((i.tm.base_opcode & 0xff0000) != 0)
7615 {
7616 prefix = (i.tm.base_opcode >> 16) & 0xff;
7617 if (i.tm.cpu_flags.bitfield.cpupadlock)
7618 {
7619 check_prefix:
7620 if (prefix != REPE_PREFIX_OPCODE
7621 || (i.prefix[REP_PREFIX]
7622 != REPE_PREFIX_OPCODE))
7623 add_prefix (prefix);
7624 }
7625 else
7626 add_prefix (prefix);
7627 }
7628 break;
7629 case 1:
7630 break;
7631 case 0:
7632 /* Check for pseudo prefixes. */
7633 as_bad_where (insn_start_frag->fr_file,
7634 insn_start_frag->fr_line,
7635 _("pseudo prefix without instruction"));
7636 return;
7637 default:
7638 abort ();
7639 }
7640
7641 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
7642 /* For x32, add a dummy REX_OPCODE prefix for mov/add with
7643 R_X86_64_GOTTPOFF relocation so that linker can safely
7644 perform IE->LE optimization. */
7645 if (x86_elf_abi == X86_64_X32_ABI
7646 && i.operands == 2
7647 && i.reloc[0] == BFD_RELOC_X86_64_GOTTPOFF
7648 && i.prefix[REX_PREFIX] == 0)
7649 add_prefix (REX_OPCODE);
7650 #endif
7651
7652 /* The prefix bytes. */
7653 for (j = ARRAY_SIZE (i.prefix), q = i.prefix; j > 0; j--, q++)
7654 if (*q)
7655 FRAG_APPEND_1_CHAR (*q);
7656 }
7657 else
7658 {
7659 for (j = 0, q = i.prefix; j < ARRAY_SIZE (i.prefix); j++, q++)
7660 if (*q)
7661 switch (j)
7662 {
7663 case REX_PREFIX:
7664 /* REX byte is encoded in VEX prefix. */
7665 break;
7666 case SEG_PREFIX:
7667 case ADDR_PREFIX:
7668 FRAG_APPEND_1_CHAR (*q);
7669 break;
7670 default:
7671 /* There should be no other prefixes for instructions
7672 with VEX prefix. */
7673 abort ();
7674 }
7675
7676 /* For EVEX instructions i.vrex should become 0 after
7677 build_evex_prefix. For VEX instructions upper 16 registers
7678 aren't available, so VREX should be 0. */
7679 if (i.vrex)
7680 abort ();
7681 /* Now the VEX prefix. */
7682 p = frag_more (i.vex.length);
7683 for (j = 0; j < i.vex.length; j++)
7684 p[j] = i.vex.bytes[j];
7685 }
7686
7687 /* Now the opcode; be careful about word order here! */
7688 if (i.tm.opcode_length == 1)
7689 {
7690 FRAG_APPEND_1_CHAR (i.tm.base_opcode);
7691 }
7692 else
7693 {
7694 switch (i.tm.opcode_length)
7695 {
7696 case 4:
7697 p = frag_more (4);
7698 *p++ = (i.tm.base_opcode >> 24) & 0xff;
7699 *p++ = (i.tm.base_opcode >> 16) & 0xff;
7700 break;
7701 case 3:
7702 p = frag_more (3);
7703 *p++ = (i.tm.base_opcode >> 16) & 0xff;
7704 break;
7705 case 2:
7706 p = frag_more (2);
7707 break;
7708 default:
7709 abort ();
7710 break;
7711 }
7712
7713 /* Put out high byte first: can't use md_number_to_chars! */
7714 *p++ = (i.tm.base_opcode >> 8) & 0xff;
7715 *p = i.tm.base_opcode & 0xff;
7716 }
7717
7718 /* Now the modrm byte and sib byte (if present). */
7719 if (i.tm.opcode_modifier.modrm)
7720 {
7721 FRAG_APPEND_1_CHAR ((i.rm.regmem << 0
7722 | i.rm.reg << 3
7723 | i.rm.mode << 6));
7724 /* If i.rm.regmem == ESP (4)
7725 && i.rm.mode != (Register mode)
7726 && not 16 bit
7727 ==> need second modrm byte. */
7728 if (i.rm.regmem == ESCAPE_TO_TWO_BYTE_ADDRESSING
7729 && i.rm.mode != 3
7730 && !(i.base_reg && i.base_reg->reg_type.bitfield.word))
7731 FRAG_APPEND_1_CHAR ((i.sib.base << 0
7732 | i.sib.index << 3
7733 | i.sib.scale << 6));
7734 }
7735
7736 if (i.disp_operands)
7737 output_disp (insn_start_frag, insn_start_off);
7738
7739 if (i.imm_operands)
7740 output_imm (insn_start_frag, insn_start_off);
7741 }
7742
7743 #ifdef DEBUG386
7744 if (flag_debug)
7745 {
7746 pi ("" /*line*/, &i);
7747 }
7748 #endif /* DEBUG386 */
7749 }
7750
7751 /* Return the size of the displacement operand N. */
7752
7753 static int
7754 disp_size (unsigned int n)
7755 {
7756 int size = 4;
7757
7758 if (i.types[n].bitfield.disp64)
7759 size = 8;
7760 else if (i.types[n].bitfield.disp8)
7761 size = 1;
7762 else if (i.types[n].bitfield.disp16)
7763 size = 2;
7764 return size;
7765 }
7766
7767 /* Return the size of the immediate operand N. */
7768
7769 static int
7770 imm_size (unsigned int n)
7771 {
7772 int size = 4;
7773 if (i.types[n].bitfield.imm64)
7774 size = 8;
7775 else if (i.types[n].bitfield.imm8 || i.types[n].bitfield.imm8s)
7776 size = 1;
7777 else if (i.types[n].bitfield.imm16)
7778 size = 2;
7779 return size;
7780 }
7781
7782 static void
7783 output_disp (fragS *insn_start_frag, offsetT insn_start_off)
7784 {
7785 char *p;
7786 unsigned int n;
7787
7788 for (n = 0; n < i.operands; n++)
7789 {
7790 if (operand_type_check (i.types[n], disp))
7791 {
7792 if (i.op[n].disps->X_op == O_constant)
7793 {
7794 int size = disp_size (n);
7795 offsetT val = i.op[n].disps->X_add_number;
7796
7797 val = offset_in_range (val >> i.memshift, size);
7798 p = frag_more (size);
7799 md_number_to_chars (p, val, size);
7800 }
7801 else
7802 {
7803 enum bfd_reloc_code_real reloc_type;
7804 int size = disp_size (n);
7805 int sign = i.types[n].bitfield.disp32s;
7806 int pcrel = (i.flags[n] & Operand_PCrel) != 0;
7807 fixS *fixP;
7808
7809 /* We can't have 8 bit displacement here. */
7810 gas_assert (!i.types[n].bitfield.disp8);
7811
7812 /* The PC relative address is computed relative
7813 to the instruction boundary, so in case immediate
7814 fields follows, we need to adjust the value. */
7815 if (pcrel && i.imm_operands)
7816 {
7817 unsigned int n1;
7818 int sz = 0;
7819
7820 for (n1 = 0; n1 < i.operands; n1++)
7821 if (operand_type_check (i.types[n1], imm))
7822 {
7823 /* Only one immediate is allowed for PC
7824 relative address. */
7825 gas_assert (sz == 0);
7826 sz = imm_size (n1);
7827 i.op[n].disps->X_add_number -= sz;
7828 }
7829 /* We should find the immediate. */
7830 gas_assert (sz != 0);
7831 }
7832
7833 p = frag_more (size);
7834 reloc_type = reloc (size, pcrel, sign, i.reloc[n]);
7835 if (GOT_symbol
7836 && GOT_symbol == i.op[n].disps->X_add_symbol
7837 && (((reloc_type == BFD_RELOC_32
7838 || reloc_type == BFD_RELOC_X86_64_32S
7839 || (reloc_type == BFD_RELOC_64
7840 && object_64bit))
7841 && (i.op[n].disps->X_op == O_symbol
7842 || (i.op[n].disps->X_op == O_add
7843 && ((symbol_get_value_expression
7844 (i.op[n].disps->X_op_symbol)->X_op)
7845 == O_subtract))))
7846 || reloc_type == BFD_RELOC_32_PCREL))
7847 {
7848 offsetT add;
7849
7850 if (insn_start_frag == frag_now)
7851 add = (p - frag_now->fr_literal) - insn_start_off;
7852 else
7853 {
7854 fragS *fr;
7855
7856 add = insn_start_frag->fr_fix - insn_start_off;
7857 for (fr = insn_start_frag->fr_next;
7858 fr && fr != frag_now; fr = fr->fr_next)
7859 add += fr->fr_fix;
7860 add += p - frag_now->fr_literal;
7861 }
7862
7863 if (!object_64bit)
7864 {
7865 reloc_type = BFD_RELOC_386_GOTPC;
7866 i.op[n].imms->X_add_number += add;
7867 }
7868 else if (reloc_type == BFD_RELOC_64)
7869 reloc_type = BFD_RELOC_X86_64_GOTPC64;
7870 else
7871 /* Don't do the adjustment for x86-64, as there
7872 the pcrel addressing is relative to the _next_
7873 insn, and that is taken care of in other code. */
7874 reloc_type = BFD_RELOC_X86_64_GOTPC32;
7875 }
7876 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal,
7877 size, i.op[n].disps, pcrel,
7878 reloc_type);
7879 /* Check for "call/jmp *mem", "mov mem, %reg",
7880 "test %reg, mem" and "binop mem, %reg" where binop
7881 is one of adc, add, and, cmp, or, sbb, sub, xor
7882 instructions. Always generate R_386_GOT32X for
7883 "sym*GOT" operand in 32-bit mode. */
7884 if ((generate_relax_relocations
7885 || (!object_64bit
7886 && i.rm.mode == 0
7887 && i.rm.regmem == 5))
7888 && (i.rm.mode == 2
7889 || (i.rm.mode == 0 && i.rm.regmem == 5))
7890 && ((i.operands == 1
7891 && i.tm.base_opcode == 0xff
7892 && (i.rm.reg == 2 || i.rm.reg == 4))
7893 || (i.operands == 2
7894 && (i.tm.base_opcode == 0x8b
7895 || i.tm.base_opcode == 0x85
7896 || (i.tm.base_opcode & 0xc7) == 0x03))))
7897 {
7898 if (object_64bit)
7899 {
7900 fixP->fx_tcbit = i.rex != 0;
7901 if (i.base_reg
7902 && (i.base_reg->reg_num == RegRip
7903 || i.base_reg->reg_num == RegEip))
7904 fixP->fx_tcbit2 = 1;
7905 }
7906 else
7907 fixP->fx_tcbit2 = 1;
7908 }
7909 }
7910 }
7911 }
7912 }
7913
7914 static void
7915 output_imm (fragS *insn_start_frag, offsetT insn_start_off)
7916 {
7917 char *p;
7918 unsigned int n;
7919
7920 for (n = 0; n < i.operands; n++)
7921 {
7922 /* Skip SAE/RC Imm operand in EVEX. They are already handled. */
7923 if (i.rounding && (int) n == i.rounding->operand)
7924 continue;
7925
7926 if (operand_type_check (i.types[n], imm))
7927 {
7928 if (i.op[n].imms->X_op == O_constant)
7929 {
7930 int size = imm_size (n);
7931 offsetT val;
7932
7933 val = offset_in_range (i.op[n].imms->X_add_number,
7934 size);
7935 p = frag_more (size);
7936 md_number_to_chars (p, val, size);
7937 }
7938 else
7939 {
7940 /* Not absolute_section.
7941 Need a 32-bit fixup (don't support 8bit
7942 non-absolute imms). Try to support other
7943 sizes ... */
7944 enum bfd_reloc_code_real reloc_type;
7945 int size = imm_size (n);
7946 int sign;
7947
7948 if (i.types[n].bitfield.imm32s
7949 && (i.suffix == QWORD_MNEM_SUFFIX
7950 || (!i.suffix && i.tm.opcode_modifier.no_lsuf)))
7951 sign = 1;
7952 else
7953 sign = 0;
7954
7955 p = frag_more (size);
7956 reloc_type = reloc (size, 0, sign, i.reloc[n]);
7957
7958 /* This is tough to explain. We end up with this one if we
7959 * have operands that look like
7960 * "_GLOBAL_OFFSET_TABLE_+[.-.L284]". The goal here is to
7961 * obtain the absolute address of the GOT, and it is strongly
7962 * preferable from a performance point of view to avoid using
7963 * a runtime relocation for this. The actual sequence of
7964 * instructions often look something like:
7965 *
7966 * call .L66
7967 * .L66:
7968 * popl %ebx
7969 * addl $_GLOBAL_OFFSET_TABLE_+[.-.L66],%ebx
7970 *
7971 * The call and pop essentially return the absolute address
7972 * of the label .L66 and store it in %ebx. The linker itself
7973 * will ultimately change the first operand of the addl so
7974 * that %ebx points to the GOT, but to keep things simple, the
7975 * .o file must have this operand set so that it generates not
7976 * the absolute address of .L66, but the absolute address of
7977 * itself. This allows the linker itself simply treat a GOTPC
7978 * relocation as asking for a pcrel offset to the GOT to be
7979 * added in, and the addend of the relocation is stored in the
7980 * operand field for the instruction itself.
7981 *
7982 * Our job here is to fix the operand so that it would add
7983 * the correct offset so that %ebx would point to itself. The
7984 * thing that is tricky is that .-.L66 will point to the
7985 * beginning of the instruction, so we need to further modify
7986 * the operand so that it will point to itself. There are
7987 * other cases where you have something like:
7988 *
7989 * .long $_GLOBAL_OFFSET_TABLE_+[.-.L66]
7990 *
7991 * and here no correction would be required. Internally in
7992 * the assembler we treat operands of this form as not being
7993 * pcrel since the '.' is explicitly mentioned, and I wonder
7994 * whether it would simplify matters to do it this way. Who
7995 * knows. In earlier versions of the PIC patches, the
7996 * pcrel_adjust field was used to store the correction, but
7997 * since the expression is not pcrel, I felt it would be
7998 * confusing to do it this way. */
7999
8000 if ((reloc_type == BFD_RELOC_32
8001 || reloc_type == BFD_RELOC_X86_64_32S
8002 || reloc_type == BFD_RELOC_64)
8003 && GOT_symbol
8004 && GOT_symbol == i.op[n].imms->X_add_symbol
8005 && (i.op[n].imms->X_op == O_symbol
8006 || (i.op[n].imms->X_op == O_add
8007 && ((symbol_get_value_expression
8008 (i.op[n].imms->X_op_symbol)->X_op)
8009 == O_subtract))))
8010 {
8011 offsetT add;
8012
8013 if (insn_start_frag == frag_now)
8014 add = (p - frag_now->fr_literal) - insn_start_off;
8015 else
8016 {
8017 fragS *fr;
8018
8019 add = insn_start_frag->fr_fix - insn_start_off;
8020 for (fr = insn_start_frag->fr_next;
8021 fr && fr != frag_now; fr = fr->fr_next)
8022 add += fr->fr_fix;
8023 add += p - frag_now->fr_literal;
8024 }
8025
8026 if (!object_64bit)
8027 reloc_type = BFD_RELOC_386_GOTPC;
8028 else if (size == 4)
8029 reloc_type = BFD_RELOC_X86_64_GOTPC32;
8030 else if (size == 8)
8031 reloc_type = BFD_RELOC_X86_64_GOTPC64;
8032 i.op[n].imms->X_add_number += add;
8033 }
8034 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
8035 i.op[n].imms, 0, reloc_type);
8036 }
8037 }
8038 }
8039 }
8040 \f
8041 /* x86_cons_fix_new is called via the expression parsing code when a
8042 reloc is needed. We use this hook to get the correct .got reloc. */
8043 static int cons_sign = -1;
8044
8045 void
8046 x86_cons_fix_new (fragS *frag, unsigned int off, unsigned int len,
8047 expressionS *exp, bfd_reloc_code_real_type r)
8048 {
8049 r = reloc (len, 0, cons_sign, r);
8050
8051 #ifdef TE_PE
8052 if (exp->X_op == O_secrel)
8053 {
8054 exp->X_op = O_symbol;
8055 r = BFD_RELOC_32_SECREL;
8056 }
8057 #endif
8058
8059 fix_new_exp (frag, off, len, exp, 0, r);
8060 }
8061
8062 /* Export the ABI address size for use by TC_ADDRESS_BYTES for the
8063 purpose of the `.dc.a' internal pseudo-op. */
8064
8065 int
8066 x86_address_bytes (void)
8067 {
8068 if ((stdoutput->arch_info->mach & bfd_mach_x64_32))
8069 return 4;
8070 return stdoutput->arch_info->bits_per_address / 8;
8071 }
8072
8073 #if !(defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) || defined (OBJ_MACH_O)) \
8074 || defined (LEX_AT)
8075 # define lex_got(reloc, adjust, types) NULL
8076 #else
8077 /* Parse operands of the form
8078 <symbol>@GOTOFF+<nnn>
8079 and similar .plt or .got references.
8080
8081 If we find one, set up the correct relocation in RELOC and copy the
8082 input string, minus the `@GOTOFF' into a malloc'd buffer for
8083 parsing by the calling routine. Return this buffer, and if ADJUST
8084 is non-null set it to the length of the string we removed from the
8085 input line. Otherwise return NULL. */
8086 static char *
8087 lex_got (enum bfd_reloc_code_real *rel,
8088 int *adjust,
8089 i386_operand_type *types)
8090 {
8091 /* Some of the relocations depend on the size of what field is to
8092 be relocated. But in our callers i386_immediate and i386_displacement
8093 we don't yet know the operand size (this will be set by insn
8094 matching). Hence we record the word32 relocation here,
8095 and adjust the reloc according to the real size in reloc(). */
8096 static const struct {
8097 const char *str;
8098 int len;
8099 const enum bfd_reloc_code_real rel[2];
8100 const i386_operand_type types64;
8101 } gotrel[] = {
8102 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8103 { STRING_COMMA_LEN ("SIZE"), { BFD_RELOC_SIZE32,
8104 BFD_RELOC_SIZE32 },
8105 OPERAND_TYPE_IMM32_64 },
8106 #endif
8107 { STRING_COMMA_LEN ("PLTOFF"), { _dummy_first_bfd_reloc_code_real,
8108 BFD_RELOC_X86_64_PLTOFF64 },
8109 OPERAND_TYPE_IMM64 },
8110 { STRING_COMMA_LEN ("PLT"), { BFD_RELOC_386_PLT32,
8111 BFD_RELOC_X86_64_PLT32 },
8112 OPERAND_TYPE_IMM32_32S_DISP32 },
8113 { STRING_COMMA_LEN ("GOTPLT"), { _dummy_first_bfd_reloc_code_real,
8114 BFD_RELOC_X86_64_GOTPLT64 },
8115 OPERAND_TYPE_IMM64_DISP64 },
8116 { STRING_COMMA_LEN ("GOTOFF"), { BFD_RELOC_386_GOTOFF,
8117 BFD_RELOC_X86_64_GOTOFF64 },
8118 OPERAND_TYPE_IMM64_DISP64 },
8119 { STRING_COMMA_LEN ("GOTPCREL"), { _dummy_first_bfd_reloc_code_real,
8120 BFD_RELOC_X86_64_GOTPCREL },
8121 OPERAND_TYPE_IMM32_32S_DISP32 },
8122 { STRING_COMMA_LEN ("TLSGD"), { BFD_RELOC_386_TLS_GD,
8123 BFD_RELOC_X86_64_TLSGD },
8124 OPERAND_TYPE_IMM32_32S_DISP32 },
8125 { STRING_COMMA_LEN ("TLSLDM"), { BFD_RELOC_386_TLS_LDM,
8126 _dummy_first_bfd_reloc_code_real },
8127 OPERAND_TYPE_NONE },
8128 { STRING_COMMA_LEN ("TLSLD"), { _dummy_first_bfd_reloc_code_real,
8129 BFD_RELOC_X86_64_TLSLD },
8130 OPERAND_TYPE_IMM32_32S_DISP32 },
8131 { STRING_COMMA_LEN ("GOTTPOFF"), { BFD_RELOC_386_TLS_IE_32,
8132 BFD_RELOC_X86_64_GOTTPOFF },
8133 OPERAND_TYPE_IMM32_32S_DISP32 },
8134 { STRING_COMMA_LEN ("TPOFF"), { BFD_RELOC_386_TLS_LE_32,
8135 BFD_RELOC_X86_64_TPOFF32 },
8136 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
8137 { STRING_COMMA_LEN ("NTPOFF"), { BFD_RELOC_386_TLS_LE,
8138 _dummy_first_bfd_reloc_code_real },
8139 OPERAND_TYPE_NONE },
8140 { STRING_COMMA_LEN ("DTPOFF"), { BFD_RELOC_386_TLS_LDO_32,
8141 BFD_RELOC_X86_64_DTPOFF32 },
8142 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
8143 { STRING_COMMA_LEN ("GOTNTPOFF"),{ BFD_RELOC_386_TLS_GOTIE,
8144 _dummy_first_bfd_reloc_code_real },
8145 OPERAND_TYPE_NONE },
8146 { STRING_COMMA_LEN ("INDNTPOFF"),{ BFD_RELOC_386_TLS_IE,
8147 _dummy_first_bfd_reloc_code_real },
8148 OPERAND_TYPE_NONE },
8149 { STRING_COMMA_LEN ("GOT"), { BFD_RELOC_386_GOT32,
8150 BFD_RELOC_X86_64_GOT32 },
8151 OPERAND_TYPE_IMM32_32S_64_DISP32 },
8152 { STRING_COMMA_LEN ("TLSDESC"), { BFD_RELOC_386_TLS_GOTDESC,
8153 BFD_RELOC_X86_64_GOTPC32_TLSDESC },
8154 OPERAND_TYPE_IMM32_32S_DISP32 },
8155 { STRING_COMMA_LEN ("TLSCALL"), { BFD_RELOC_386_TLS_DESC_CALL,
8156 BFD_RELOC_X86_64_TLSDESC_CALL },
8157 OPERAND_TYPE_IMM32_32S_DISP32 },
8158 };
8159 char *cp;
8160 unsigned int j;
8161
8162 #if defined (OBJ_MAYBE_ELF)
8163 if (!IS_ELF)
8164 return NULL;
8165 #endif
8166
8167 for (cp = input_line_pointer; *cp != '@'; cp++)
8168 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
8169 return NULL;
8170
8171 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
8172 {
8173 int len = gotrel[j].len;
8174 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
8175 {
8176 if (gotrel[j].rel[object_64bit] != 0)
8177 {
8178 int first, second;
8179 char *tmpbuf, *past_reloc;
8180
8181 *rel = gotrel[j].rel[object_64bit];
8182
8183 if (types)
8184 {
8185 if (flag_code != CODE_64BIT)
8186 {
8187 types->bitfield.imm32 = 1;
8188 types->bitfield.disp32 = 1;
8189 }
8190 else
8191 *types = gotrel[j].types64;
8192 }
8193
8194 if (j != 0 && GOT_symbol == NULL)
8195 GOT_symbol = symbol_find_or_make (GLOBAL_OFFSET_TABLE_NAME);
8196
8197 /* The length of the first part of our input line. */
8198 first = cp - input_line_pointer;
8199
8200 /* The second part goes from after the reloc token until
8201 (and including) an end_of_line char or comma. */
8202 past_reloc = cp + 1 + len;
8203 cp = past_reloc;
8204 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
8205 ++cp;
8206 second = cp + 1 - past_reloc;
8207
8208 /* Allocate and copy string. The trailing NUL shouldn't
8209 be necessary, but be safe. */
8210 tmpbuf = XNEWVEC (char, first + second + 2);
8211 memcpy (tmpbuf, input_line_pointer, first);
8212 if (second != 0 && *past_reloc != ' ')
8213 /* Replace the relocation token with ' ', so that
8214 errors like foo@GOTOFF1 will be detected. */
8215 tmpbuf[first++] = ' ';
8216 else
8217 /* Increment length by 1 if the relocation token is
8218 removed. */
8219 len++;
8220 if (adjust)
8221 *adjust = len;
8222 memcpy (tmpbuf + first, past_reloc, second);
8223 tmpbuf[first + second] = '\0';
8224 return tmpbuf;
8225 }
8226
8227 as_bad (_("@%s reloc is not supported with %d-bit output format"),
8228 gotrel[j].str, 1 << (5 + object_64bit));
8229 return NULL;
8230 }
8231 }
8232
8233 /* Might be a symbol version string. Don't as_bad here. */
8234 return NULL;
8235 }
8236 #endif
8237
8238 #ifdef TE_PE
8239 #ifdef lex_got
8240 #undef lex_got
8241 #endif
8242 /* Parse operands of the form
8243 <symbol>@SECREL32+<nnn>
8244
8245 If we find one, set up the correct relocation in RELOC and copy the
8246 input string, minus the `@SECREL32' into a malloc'd buffer for
8247 parsing by the calling routine. Return this buffer, and if ADJUST
8248 is non-null set it to the length of the string we removed from the
8249 input line. Otherwise return NULL.
8250
8251 This function is copied from the ELF version above adjusted for PE targets. */
8252
8253 static char *
8254 lex_got (enum bfd_reloc_code_real *rel ATTRIBUTE_UNUSED,
8255 int *adjust ATTRIBUTE_UNUSED,
8256 i386_operand_type *types)
8257 {
8258 static const struct
8259 {
8260 const char *str;
8261 int len;
8262 const enum bfd_reloc_code_real rel[2];
8263 const i386_operand_type types64;
8264 }
8265 gotrel[] =
8266 {
8267 { STRING_COMMA_LEN ("SECREL32"), { BFD_RELOC_32_SECREL,
8268 BFD_RELOC_32_SECREL },
8269 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
8270 };
8271
8272 char *cp;
8273 unsigned j;
8274
8275 for (cp = input_line_pointer; *cp != '@'; cp++)
8276 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
8277 return NULL;
8278
8279 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
8280 {
8281 int len = gotrel[j].len;
8282
8283 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
8284 {
8285 if (gotrel[j].rel[object_64bit] != 0)
8286 {
8287 int first, second;
8288 char *tmpbuf, *past_reloc;
8289
8290 *rel = gotrel[j].rel[object_64bit];
8291 if (adjust)
8292 *adjust = len;
8293
8294 if (types)
8295 {
8296 if (flag_code != CODE_64BIT)
8297 {
8298 types->bitfield.imm32 = 1;
8299 types->bitfield.disp32 = 1;
8300 }
8301 else
8302 *types = gotrel[j].types64;
8303 }
8304
8305 /* The length of the first part of our input line. */
8306 first = cp - input_line_pointer;
8307
8308 /* The second part goes from after the reloc token until
8309 (and including) an end_of_line char or comma. */
8310 past_reloc = cp + 1 + len;
8311 cp = past_reloc;
8312 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
8313 ++cp;
8314 second = cp + 1 - past_reloc;
8315
8316 /* Allocate and copy string. The trailing NUL shouldn't
8317 be necessary, but be safe. */
8318 tmpbuf = XNEWVEC (char, first + second + 2);
8319 memcpy (tmpbuf, input_line_pointer, first);
8320 if (second != 0 && *past_reloc != ' ')
8321 /* Replace the relocation token with ' ', so that
8322 errors like foo@SECLREL321 will be detected. */
8323 tmpbuf[first++] = ' ';
8324 memcpy (tmpbuf + first, past_reloc, second);
8325 tmpbuf[first + second] = '\0';
8326 return tmpbuf;
8327 }
8328
8329 as_bad (_("@%s reloc is not supported with %d-bit output format"),
8330 gotrel[j].str, 1 << (5 + object_64bit));
8331 return NULL;
8332 }
8333 }
8334
8335 /* Might be a symbol version string. Don't as_bad here. */
8336 return NULL;
8337 }
8338
8339 #endif /* TE_PE */
8340
8341 bfd_reloc_code_real_type
8342 x86_cons (expressionS *exp, int size)
8343 {
8344 bfd_reloc_code_real_type got_reloc = NO_RELOC;
8345
8346 intel_syntax = -intel_syntax;
8347
8348 exp->X_md = 0;
8349 if (size == 4 || (object_64bit && size == 8))
8350 {
8351 /* Handle @GOTOFF and the like in an expression. */
8352 char *save;
8353 char *gotfree_input_line;
8354 int adjust = 0;
8355
8356 save = input_line_pointer;
8357 gotfree_input_line = lex_got (&got_reloc, &adjust, NULL);
8358 if (gotfree_input_line)
8359 input_line_pointer = gotfree_input_line;
8360
8361 expression (exp);
8362
8363 if (gotfree_input_line)
8364 {
8365 /* expression () has merrily parsed up to the end of line,
8366 or a comma - in the wrong buffer. Transfer how far
8367 input_line_pointer has moved to the right buffer. */
8368 input_line_pointer = (save
8369 + (input_line_pointer - gotfree_input_line)
8370 + adjust);
8371 free (gotfree_input_line);
8372 if (exp->X_op == O_constant
8373 || exp->X_op == O_absent
8374 || exp->X_op == O_illegal
8375 || exp->X_op == O_register
8376 || exp->X_op == O_big)
8377 {
8378 char c = *input_line_pointer;
8379 *input_line_pointer = 0;
8380 as_bad (_("missing or invalid expression `%s'"), save);
8381 *input_line_pointer = c;
8382 }
8383 }
8384 }
8385 else
8386 expression (exp);
8387
8388 intel_syntax = -intel_syntax;
8389
8390 if (intel_syntax)
8391 i386_intel_simplify (exp);
8392
8393 return got_reloc;
8394 }
8395
8396 static void
8397 signed_cons (int size)
8398 {
8399 if (flag_code == CODE_64BIT)
8400 cons_sign = 1;
8401 cons (size);
8402 cons_sign = -1;
8403 }
8404
8405 #ifdef TE_PE
8406 static void
8407 pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
8408 {
8409 expressionS exp;
8410
8411 do
8412 {
8413 expression (&exp);
8414 if (exp.X_op == O_symbol)
8415 exp.X_op = O_secrel;
8416
8417 emit_expr (&exp, 4);
8418 }
8419 while (*input_line_pointer++ == ',');
8420
8421 input_line_pointer--;
8422 demand_empty_rest_of_line ();
8423 }
8424 #endif
8425
8426 /* Handle Vector operations. */
8427
8428 static char *
8429 check_VecOperations (char *op_string, char *op_end)
8430 {
8431 const reg_entry *mask;
8432 const char *saved;
8433 char *end_op;
8434
8435 while (*op_string
8436 && (op_end == NULL || op_string < op_end))
8437 {
8438 saved = op_string;
8439 if (*op_string == '{')
8440 {
8441 op_string++;
8442
8443 /* Check broadcasts. */
8444 if (strncmp (op_string, "1to", 3) == 0)
8445 {
8446 int bcst_type;
8447
8448 if (i.broadcast)
8449 goto duplicated_vec_op;
8450
8451 op_string += 3;
8452 if (*op_string == '8')
8453 bcst_type = 8;
8454 else if (*op_string == '4')
8455 bcst_type = 4;
8456 else if (*op_string == '2')
8457 bcst_type = 2;
8458 else if (*op_string == '1'
8459 && *(op_string+1) == '6')
8460 {
8461 bcst_type = 16;
8462 op_string++;
8463 }
8464 else
8465 {
8466 as_bad (_("Unsupported broadcast: `%s'"), saved);
8467 return NULL;
8468 }
8469 op_string++;
8470
8471 broadcast_op.type = bcst_type;
8472 broadcast_op.operand = this_operand;
8473 i.broadcast = &broadcast_op;
8474 }
8475 /* Check masking operation. */
8476 else if ((mask = parse_register (op_string, &end_op)) != NULL)
8477 {
8478 /* k0 can't be used for write mask. */
8479 if (!mask->reg_type.bitfield.regmask || mask->reg_num == 0)
8480 {
8481 as_bad (_("`%s%s' can't be used for write mask"),
8482 register_prefix, mask->reg_name);
8483 return NULL;
8484 }
8485
8486 if (!i.mask)
8487 {
8488 mask_op.mask = mask;
8489 mask_op.zeroing = 0;
8490 mask_op.operand = this_operand;
8491 i.mask = &mask_op;
8492 }
8493 else
8494 {
8495 if (i.mask->mask)
8496 goto duplicated_vec_op;
8497
8498 i.mask->mask = mask;
8499
8500 /* Only "{z}" is allowed here. No need to check
8501 zeroing mask explicitly. */
8502 if (i.mask->operand != this_operand)
8503 {
8504 as_bad (_("invalid write mask `%s'"), saved);
8505 return NULL;
8506 }
8507 }
8508
8509 op_string = end_op;
8510 }
8511 /* Check zeroing-flag for masking operation. */
8512 else if (*op_string == 'z')
8513 {
8514 if (!i.mask)
8515 {
8516 mask_op.mask = NULL;
8517 mask_op.zeroing = 1;
8518 mask_op.operand = this_operand;
8519 i.mask = &mask_op;
8520 }
8521 else
8522 {
8523 if (i.mask->zeroing)
8524 {
8525 duplicated_vec_op:
8526 as_bad (_("duplicated `%s'"), saved);
8527 return NULL;
8528 }
8529
8530 i.mask->zeroing = 1;
8531
8532 /* Only "{%k}" is allowed here. No need to check mask
8533 register explicitly. */
8534 if (i.mask->operand != this_operand)
8535 {
8536 as_bad (_("invalid zeroing-masking `%s'"),
8537 saved);
8538 return NULL;
8539 }
8540 }
8541
8542 op_string++;
8543 }
8544 else
8545 goto unknown_vec_op;
8546
8547 if (*op_string != '}')
8548 {
8549 as_bad (_("missing `}' in `%s'"), saved);
8550 return NULL;
8551 }
8552 op_string++;
8553
8554 /* Strip whitespace since the addition of pseudo prefixes
8555 changed how the scrubber treats '{'. */
8556 if (is_space_char (*op_string))
8557 ++op_string;
8558
8559 continue;
8560 }
8561 unknown_vec_op:
8562 /* We don't know this one. */
8563 as_bad (_("unknown vector operation: `%s'"), saved);
8564 return NULL;
8565 }
8566
8567 if (i.mask && i.mask->zeroing && !i.mask->mask)
8568 {
8569 as_bad (_("zeroing-masking only allowed with write mask"));
8570 return NULL;
8571 }
8572
8573 return op_string;
8574 }
8575
8576 static int
8577 i386_immediate (char *imm_start)
8578 {
8579 char *save_input_line_pointer;
8580 char *gotfree_input_line;
8581 segT exp_seg = 0;
8582 expressionS *exp;
8583 i386_operand_type types;
8584
8585 operand_type_set (&types, ~0);
8586
8587 if (i.imm_operands == MAX_IMMEDIATE_OPERANDS)
8588 {
8589 as_bad (_("at most %d immediate operands are allowed"),
8590 MAX_IMMEDIATE_OPERANDS);
8591 return 0;
8592 }
8593
8594 exp = &im_expressions[i.imm_operands++];
8595 i.op[this_operand].imms = exp;
8596
8597 if (is_space_char (*imm_start))
8598 ++imm_start;
8599
8600 save_input_line_pointer = input_line_pointer;
8601 input_line_pointer = imm_start;
8602
8603 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
8604 if (gotfree_input_line)
8605 input_line_pointer = gotfree_input_line;
8606
8607 exp_seg = expression (exp);
8608
8609 SKIP_WHITESPACE ();
8610
8611 /* Handle vector operations. */
8612 if (*input_line_pointer == '{')
8613 {
8614 input_line_pointer = check_VecOperations (input_line_pointer,
8615 NULL);
8616 if (input_line_pointer == NULL)
8617 return 0;
8618 }
8619
8620 if (*input_line_pointer)
8621 as_bad (_("junk `%s' after expression"), input_line_pointer);
8622
8623 input_line_pointer = save_input_line_pointer;
8624 if (gotfree_input_line)
8625 {
8626 free (gotfree_input_line);
8627
8628 if (exp->X_op == O_constant || exp->X_op == O_register)
8629 exp->X_op = O_illegal;
8630 }
8631
8632 return i386_finalize_immediate (exp_seg, exp, types, imm_start);
8633 }
8634
8635 static int
8636 i386_finalize_immediate (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
8637 i386_operand_type types, const char *imm_start)
8638 {
8639 if (exp->X_op == O_absent || exp->X_op == O_illegal || exp->X_op == O_big)
8640 {
8641 if (imm_start)
8642 as_bad (_("missing or invalid immediate expression `%s'"),
8643 imm_start);
8644 return 0;
8645 }
8646 else if (exp->X_op == O_constant)
8647 {
8648 /* Size it properly later. */
8649 i.types[this_operand].bitfield.imm64 = 1;
8650 /* If not 64bit, sign extend val. */
8651 if (flag_code != CODE_64BIT
8652 && (exp->X_add_number & ~(((addressT) 2 << 31) - 1)) == 0)
8653 exp->X_add_number
8654 = (exp->X_add_number ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
8655 }
8656 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
8657 else if (OUTPUT_FLAVOR == bfd_target_aout_flavour
8658 && exp_seg != absolute_section
8659 && exp_seg != text_section
8660 && exp_seg != data_section
8661 && exp_seg != bss_section
8662 && exp_seg != undefined_section
8663 && !bfd_is_com_section (exp_seg))
8664 {
8665 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
8666 return 0;
8667 }
8668 #endif
8669 else if (!intel_syntax && exp_seg == reg_section)
8670 {
8671 if (imm_start)
8672 as_bad (_("illegal immediate register operand %s"), imm_start);
8673 return 0;
8674 }
8675 else
8676 {
8677 /* This is an address. The size of the address will be
8678 determined later, depending on destination register,
8679 suffix, or the default for the section. */
8680 i.types[this_operand].bitfield.imm8 = 1;
8681 i.types[this_operand].bitfield.imm16 = 1;
8682 i.types[this_operand].bitfield.imm32 = 1;
8683 i.types[this_operand].bitfield.imm32s = 1;
8684 i.types[this_operand].bitfield.imm64 = 1;
8685 i.types[this_operand] = operand_type_and (i.types[this_operand],
8686 types);
8687 }
8688
8689 return 1;
8690 }
8691
8692 static char *
8693 i386_scale (char *scale)
8694 {
8695 offsetT val;
8696 char *save = input_line_pointer;
8697
8698 input_line_pointer = scale;
8699 val = get_absolute_expression ();
8700
8701 switch (val)
8702 {
8703 case 1:
8704 i.log2_scale_factor = 0;
8705 break;
8706 case 2:
8707 i.log2_scale_factor = 1;
8708 break;
8709 case 4:
8710 i.log2_scale_factor = 2;
8711 break;
8712 case 8:
8713 i.log2_scale_factor = 3;
8714 break;
8715 default:
8716 {
8717 char sep = *input_line_pointer;
8718
8719 *input_line_pointer = '\0';
8720 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
8721 scale);
8722 *input_line_pointer = sep;
8723 input_line_pointer = save;
8724 return NULL;
8725 }
8726 }
8727 if (i.log2_scale_factor != 0 && i.index_reg == 0)
8728 {
8729 as_warn (_("scale factor of %d without an index register"),
8730 1 << i.log2_scale_factor);
8731 i.log2_scale_factor = 0;
8732 }
8733 scale = input_line_pointer;
8734 input_line_pointer = save;
8735 return scale;
8736 }
8737
8738 static int
8739 i386_displacement (char *disp_start, char *disp_end)
8740 {
8741 expressionS *exp;
8742 segT exp_seg = 0;
8743 char *save_input_line_pointer;
8744 char *gotfree_input_line;
8745 int override;
8746 i386_operand_type bigdisp, types = anydisp;
8747 int ret;
8748
8749 if (i.disp_operands == MAX_MEMORY_OPERANDS)
8750 {
8751 as_bad (_("at most %d displacement operands are allowed"),
8752 MAX_MEMORY_OPERANDS);
8753 return 0;
8754 }
8755
8756 operand_type_set (&bigdisp, 0);
8757 if ((i.types[this_operand].bitfield.jumpabsolute)
8758 || (!current_templates->start->opcode_modifier.jump
8759 && !current_templates->start->opcode_modifier.jumpdword))
8760 {
8761 bigdisp.bitfield.disp32 = 1;
8762 override = (i.prefix[ADDR_PREFIX] != 0);
8763 if (flag_code == CODE_64BIT)
8764 {
8765 if (!override)
8766 {
8767 bigdisp.bitfield.disp32s = 1;
8768 bigdisp.bitfield.disp64 = 1;
8769 }
8770 }
8771 else if ((flag_code == CODE_16BIT) ^ override)
8772 {
8773 bigdisp.bitfield.disp32 = 0;
8774 bigdisp.bitfield.disp16 = 1;
8775 }
8776 }
8777 else
8778 {
8779 /* For PC-relative branches, the width of the displacement
8780 is dependent upon data size, not address size. */
8781 override = (i.prefix[DATA_PREFIX] != 0);
8782 if (flag_code == CODE_64BIT)
8783 {
8784 if (override || i.suffix == WORD_MNEM_SUFFIX)
8785 bigdisp.bitfield.disp16 = 1;
8786 else
8787 {
8788 bigdisp.bitfield.disp32 = 1;
8789 bigdisp.bitfield.disp32s = 1;
8790 }
8791 }
8792 else
8793 {
8794 if (!override)
8795 override = (i.suffix == (flag_code != CODE_16BIT
8796 ? WORD_MNEM_SUFFIX
8797 : LONG_MNEM_SUFFIX));
8798 bigdisp.bitfield.disp32 = 1;
8799 if ((flag_code == CODE_16BIT) ^ override)
8800 {
8801 bigdisp.bitfield.disp32 = 0;
8802 bigdisp.bitfield.disp16 = 1;
8803 }
8804 }
8805 }
8806 i.types[this_operand] = operand_type_or (i.types[this_operand],
8807 bigdisp);
8808
8809 exp = &disp_expressions[i.disp_operands];
8810 i.op[this_operand].disps = exp;
8811 i.disp_operands++;
8812 save_input_line_pointer = input_line_pointer;
8813 input_line_pointer = disp_start;
8814 END_STRING_AND_SAVE (disp_end);
8815
8816 #ifndef GCC_ASM_O_HACK
8817 #define GCC_ASM_O_HACK 0
8818 #endif
8819 #if GCC_ASM_O_HACK
8820 END_STRING_AND_SAVE (disp_end + 1);
8821 if (i.types[this_operand].bitfield.baseIndex
8822 && displacement_string_end[-1] == '+')
8823 {
8824 /* This hack is to avoid a warning when using the "o"
8825 constraint within gcc asm statements.
8826 For instance:
8827
8828 #define _set_tssldt_desc(n,addr,limit,type) \
8829 __asm__ __volatile__ ( \
8830 "movw %w2,%0\n\t" \
8831 "movw %w1,2+%0\n\t" \
8832 "rorl $16,%1\n\t" \
8833 "movb %b1,4+%0\n\t" \
8834 "movb %4,5+%0\n\t" \
8835 "movb $0,6+%0\n\t" \
8836 "movb %h1,7+%0\n\t" \
8837 "rorl $16,%1" \
8838 : "=o"(*(n)) : "q" (addr), "ri"(limit), "i"(type))
8839
8840 This works great except that the output assembler ends
8841 up looking a bit weird if it turns out that there is
8842 no offset. You end up producing code that looks like:
8843
8844 #APP
8845 movw $235,(%eax)
8846 movw %dx,2+(%eax)
8847 rorl $16,%edx
8848 movb %dl,4+(%eax)
8849 movb $137,5+(%eax)
8850 movb $0,6+(%eax)
8851 movb %dh,7+(%eax)
8852 rorl $16,%edx
8853 #NO_APP
8854
8855 So here we provide the missing zero. */
8856
8857 *displacement_string_end = '0';
8858 }
8859 #endif
8860 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
8861 if (gotfree_input_line)
8862 input_line_pointer = gotfree_input_line;
8863
8864 exp_seg = expression (exp);
8865
8866 SKIP_WHITESPACE ();
8867 if (*input_line_pointer)
8868 as_bad (_("junk `%s' after expression"), input_line_pointer);
8869 #if GCC_ASM_O_HACK
8870 RESTORE_END_STRING (disp_end + 1);
8871 #endif
8872 input_line_pointer = save_input_line_pointer;
8873 if (gotfree_input_line)
8874 {
8875 free (gotfree_input_line);
8876
8877 if (exp->X_op == O_constant || exp->X_op == O_register)
8878 exp->X_op = O_illegal;
8879 }
8880
8881 ret = i386_finalize_displacement (exp_seg, exp, types, disp_start);
8882
8883 RESTORE_END_STRING (disp_end);
8884
8885 return ret;
8886 }
8887
8888 static int
8889 i386_finalize_displacement (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
8890 i386_operand_type types, const char *disp_start)
8891 {
8892 i386_operand_type bigdisp;
8893 int ret = 1;
8894
8895 /* We do this to make sure that the section symbol is in
8896 the symbol table. We will ultimately change the relocation
8897 to be relative to the beginning of the section. */
8898 if (i.reloc[this_operand] == BFD_RELOC_386_GOTOFF
8899 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL
8900 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
8901 {
8902 if (exp->X_op != O_symbol)
8903 goto inv_disp;
8904
8905 if (S_IS_LOCAL (exp->X_add_symbol)
8906 && S_GET_SEGMENT (exp->X_add_symbol) != undefined_section
8907 && S_GET_SEGMENT (exp->X_add_symbol) != expr_section)
8908 section_symbol (S_GET_SEGMENT (exp->X_add_symbol));
8909 exp->X_op = O_subtract;
8910 exp->X_op_symbol = GOT_symbol;
8911 if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
8912 i.reloc[this_operand] = BFD_RELOC_32_PCREL;
8913 else if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
8914 i.reloc[this_operand] = BFD_RELOC_64;
8915 else
8916 i.reloc[this_operand] = BFD_RELOC_32;
8917 }
8918
8919 else if (exp->X_op == O_absent
8920 || exp->X_op == O_illegal
8921 || exp->X_op == O_big)
8922 {
8923 inv_disp:
8924 as_bad (_("missing or invalid displacement expression `%s'"),
8925 disp_start);
8926 ret = 0;
8927 }
8928
8929 else if (flag_code == CODE_64BIT
8930 && !i.prefix[ADDR_PREFIX]
8931 && exp->X_op == O_constant)
8932 {
8933 /* Since displacement is signed extended to 64bit, don't allow
8934 disp32 and turn off disp32s if they are out of range. */
8935 i.types[this_operand].bitfield.disp32 = 0;
8936 if (!fits_in_signed_long (exp->X_add_number))
8937 {
8938 i.types[this_operand].bitfield.disp32s = 0;
8939 if (i.types[this_operand].bitfield.baseindex)
8940 {
8941 as_bad (_("0x%lx out range of signed 32bit displacement"),
8942 (long) exp->X_add_number);
8943 ret = 0;
8944 }
8945 }
8946 }
8947
8948 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
8949 else if (exp->X_op != O_constant
8950 && OUTPUT_FLAVOR == bfd_target_aout_flavour
8951 && exp_seg != absolute_section
8952 && exp_seg != text_section
8953 && exp_seg != data_section
8954 && exp_seg != bss_section
8955 && exp_seg != undefined_section
8956 && !bfd_is_com_section (exp_seg))
8957 {
8958 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
8959 ret = 0;
8960 }
8961 #endif
8962
8963 /* Check if this is a displacement only operand. */
8964 bigdisp = i.types[this_operand];
8965 bigdisp.bitfield.disp8 = 0;
8966 bigdisp.bitfield.disp16 = 0;
8967 bigdisp.bitfield.disp32 = 0;
8968 bigdisp.bitfield.disp32s = 0;
8969 bigdisp.bitfield.disp64 = 0;
8970 if (operand_type_all_zero (&bigdisp))
8971 i.types[this_operand] = operand_type_and (i.types[this_operand],
8972 types);
8973
8974 return ret;
8975 }
8976
8977 /* Return the active addressing mode, taking address override and
8978 registers forming the address into consideration. Update the
8979 address override prefix if necessary. */
8980
8981 static enum flag_code
8982 i386_addressing_mode (void)
8983 {
8984 enum flag_code addr_mode;
8985
8986 if (i.prefix[ADDR_PREFIX])
8987 addr_mode = flag_code == CODE_32BIT ? CODE_16BIT : CODE_32BIT;
8988 else
8989 {
8990 addr_mode = flag_code;
8991
8992 #if INFER_ADDR_PREFIX
8993 if (i.mem_operands == 0)
8994 {
8995 /* Infer address prefix from the first memory operand. */
8996 const reg_entry *addr_reg = i.base_reg;
8997
8998 if (addr_reg == NULL)
8999 addr_reg = i.index_reg;
9000
9001 if (addr_reg)
9002 {
9003 if (addr_reg->reg_num == RegEip
9004 || addr_reg->reg_num == RegEiz
9005 || addr_reg->reg_type.bitfield.dword)
9006 addr_mode = CODE_32BIT;
9007 else if (flag_code != CODE_64BIT
9008 && addr_reg->reg_type.bitfield.word)
9009 addr_mode = CODE_16BIT;
9010
9011 if (addr_mode != flag_code)
9012 {
9013 i.prefix[ADDR_PREFIX] = ADDR_PREFIX_OPCODE;
9014 i.prefixes += 1;
9015 /* Change the size of any displacement too. At most one
9016 of Disp16 or Disp32 is set.
9017 FIXME. There doesn't seem to be any real need for
9018 separate Disp16 and Disp32 flags. The same goes for
9019 Imm16 and Imm32. Removing them would probably clean
9020 up the code quite a lot. */
9021 if (flag_code != CODE_64BIT
9022 && (i.types[this_operand].bitfield.disp16
9023 || i.types[this_operand].bitfield.disp32))
9024 i.types[this_operand]
9025 = operand_type_xor (i.types[this_operand], disp16_32);
9026 }
9027 }
9028 }
9029 #endif
9030 }
9031
9032 return addr_mode;
9033 }
9034
9035 /* Make sure the memory operand we've been dealt is valid.
9036 Return 1 on success, 0 on a failure. */
9037
9038 static int
9039 i386_index_check (const char *operand_string)
9040 {
9041 const char *kind = "base/index";
9042 enum flag_code addr_mode = i386_addressing_mode ();
9043
9044 if (current_templates->start->opcode_modifier.isstring
9045 && !current_templates->start->opcode_modifier.immext
9046 && (current_templates->end[-1].opcode_modifier.isstring
9047 || i.mem_operands))
9048 {
9049 /* Memory operands of string insns are special in that they only allow
9050 a single register (rDI, rSI, or rBX) as their memory address. */
9051 const reg_entry *expected_reg;
9052 static const char *di_si[][2] =
9053 {
9054 { "esi", "edi" },
9055 { "si", "di" },
9056 { "rsi", "rdi" }
9057 };
9058 static const char *bx[] = { "ebx", "bx", "rbx" };
9059
9060 kind = "string address";
9061
9062 if (current_templates->start->opcode_modifier.repprefixok)
9063 {
9064 i386_operand_type type = current_templates->end[-1].operand_types[0];
9065
9066 if (!type.bitfield.baseindex
9067 || ((!i.mem_operands != !intel_syntax)
9068 && current_templates->end[-1].operand_types[1]
9069 .bitfield.baseindex))
9070 type = current_templates->end[-1].operand_types[1];
9071 expected_reg = hash_find (reg_hash,
9072 di_si[addr_mode][type.bitfield.esseg]);
9073
9074 }
9075 else
9076 expected_reg = hash_find (reg_hash, bx[addr_mode]);
9077
9078 if (i.base_reg != expected_reg
9079 || i.index_reg
9080 || operand_type_check (i.types[this_operand], disp))
9081 {
9082 /* The second memory operand must have the same size as
9083 the first one. */
9084 if (i.mem_operands
9085 && i.base_reg
9086 && !((addr_mode == CODE_64BIT
9087 && i.base_reg->reg_type.bitfield.qword)
9088 || (addr_mode == CODE_32BIT
9089 ? i.base_reg->reg_type.bitfield.dword
9090 : i.base_reg->reg_type.bitfield.word)))
9091 goto bad_address;
9092
9093 as_warn (_("`%s' is not valid here (expected `%c%s%s%c')"),
9094 operand_string,
9095 intel_syntax ? '[' : '(',
9096 register_prefix,
9097 expected_reg->reg_name,
9098 intel_syntax ? ']' : ')');
9099 return 1;
9100 }
9101 else
9102 return 1;
9103
9104 bad_address:
9105 as_bad (_("`%s' is not a valid %s expression"),
9106 operand_string, kind);
9107 return 0;
9108 }
9109 else
9110 {
9111 if (addr_mode != CODE_16BIT)
9112 {
9113 /* 32-bit/64-bit checks. */
9114 if ((i.base_reg
9115 && (addr_mode == CODE_64BIT
9116 ? !i.base_reg->reg_type.bitfield.qword
9117 : !i.base_reg->reg_type.bitfield.dword)
9118 && (i.index_reg
9119 || (i.base_reg->reg_num
9120 != (addr_mode == CODE_64BIT ? RegRip : RegEip))))
9121 || (i.index_reg
9122 && !i.index_reg->reg_type.bitfield.xmmword
9123 && !i.index_reg->reg_type.bitfield.ymmword
9124 && !i.index_reg->reg_type.bitfield.zmmword
9125 && ((addr_mode == CODE_64BIT
9126 ? !(i.index_reg->reg_type.bitfield.qword
9127 || i.index_reg->reg_num == RegRiz)
9128 : !(i.index_reg->reg_type.bitfield.dword
9129 || i.index_reg->reg_num == RegEiz))
9130 || !i.index_reg->reg_type.bitfield.baseindex)))
9131 goto bad_address;
9132
9133 /* bndmk, bndldx, and bndstx have special restrictions. */
9134 if (current_templates->start->base_opcode == 0xf30f1b
9135 || (current_templates->start->base_opcode & ~1) == 0x0f1a)
9136 {
9137 /* They cannot use RIP-relative addressing. */
9138 if (i.base_reg && i.base_reg->reg_num == RegRip)
9139 {
9140 as_bad (_("`%s' cannot be used here"), operand_string);
9141 return 0;
9142 }
9143
9144 /* bndldx and bndstx ignore their scale factor. */
9145 if (current_templates->start->base_opcode != 0xf30f1b
9146 && i.log2_scale_factor)
9147 as_warn (_("register scaling is being ignored here"));
9148 }
9149 }
9150 else
9151 {
9152 /* 16-bit checks. */
9153 if ((i.base_reg
9154 && (!i.base_reg->reg_type.bitfield.word
9155 || !i.base_reg->reg_type.bitfield.baseindex))
9156 || (i.index_reg
9157 && (!i.index_reg->reg_type.bitfield.word
9158 || !i.index_reg->reg_type.bitfield.baseindex
9159 || !(i.base_reg
9160 && i.base_reg->reg_num < 6
9161 && i.index_reg->reg_num >= 6
9162 && i.log2_scale_factor == 0))))
9163 goto bad_address;
9164 }
9165 }
9166 return 1;
9167 }
9168
9169 /* Handle vector immediates. */
9170
9171 static int
9172 RC_SAE_immediate (const char *imm_start)
9173 {
9174 unsigned int match_found, j;
9175 const char *pstr = imm_start;
9176 expressionS *exp;
9177
9178 if (*pstr != '{')
9179 return 0;
9180
9181 pstr++;
9182 match_found = 0;
9183 for (j = 0; j < ARRAY_SIZE (RC_NamesTable); j++)
9184 {
9185 if (!strncmp (pstr, RC_NamesTable[j].name, RC_NamesTable[j].len))
9186 {
9187 if (!i.rounding)
9188 {
9189 rc_op.type = RC_NamesTable[j].type;
9190 rc_op.operand = this_operand;
9191 i.rounding = &rc_op;
9192 }
9193 else
9194 {
9195 as_bad (_("duplicated `%s'"), imm_start);
9196 return 0;
9197 }
9198 pstr += RC_NamesTable[j].len;
9199 match_found = 1;
9200 break;
9201 }
9202 }
9203 if (!match_found)
9204 return 0;
9205
9206 if (*pstr++ != '}')
9207 {
9208 as_bad (_("Missing '}': '%s'"), imm_start);
9209 return 0;
9210 }
9211 /* RC/SAE immediate string should contain nothing more. */;
9212 if (*pstr != 0)
9213 {
9214 as_bad (_("Junk after '}': '%s'"), imm_start);
9215 return 0;
9216 }
9217
9218 exp = &im_expressions[i.imm_operands++];
9219 i.op[this_operand].imms = exp;
9220
9221 exp->X_op = O_constant;
9222 exp->X_add_number = 0;
9223 exp->X_add_symbol = (symbolS *) 0;
9224 exp->X_op_symbol = (symbolS *) 0;
9225
9226 i.types[this_operand].bitfield.imm8 = 1;
9227 return 1;
9228 }
9229
9230 /* Only string instructions can have a second memory operand, so
9231 reduce current_templates to just those if it contains any. */
9232 static int
9233 maybe_adjust_templates (void)
9234 {
9235 const insn_template *t;
9236
9237 gas_assert (i.mem_operands == 1);
9238
9239 for (t = current_templates->start; t < current_templates->end; ++t)
9240 if (t->opcode_modifier.isstring)
9241 break;
9242
9243 if (t < current_templates->end)
9244 {
9245 static templates aux_templates;
9246 bfd_boolean recheck;
9247
9248 aux_templates.start = t;
9249 for (; t < current_templates->end; ++t)
9250 if (!t->opcode_modifier.isstring)
9251 break;
9252 aux_templates.end = t;
9253
9254 /* Determine whether to re-check the first memory operand. */
9255 recheck = (aux_templates.start != current_templates->start
9256 || t != current_templates->end);
9257
9258 current_templates = &aux_templates;
9259
9260 if (recheck)
9261 {
9262 i.mem_operands = 0;
9263 if (i.memop1_string != NULL
9264 && i386_index_check (i.memop1_string) == 0)
9265 return 0;
9266 i.mem_operands = 1;
9267 }
9268 }
9269
9270 return 1;
9271 }
9272
9273 /* Parse OPERAND_STRING into the i386_insn structure I. Returns zero
9274 on error. */
9275
9276 static int
9277 i386_att_operand (char *operand_string)
9278 {
9279 const reg_entry *r;
9280 char *end_op;
9281 char *op_string = operand_string;
9282
9283 if (is_space_char (*op_string))
9284 ++op_string;
9285
9286 /* We check for an absolute prefix (differentiating,
9287 for example, 'jmp pc_relative_label' from 'jmp *absolute_label'. */
9288 if (*op_string == ABSOLUTE_PREFIX)
9289 {
9290 ++op_string;
9291 if (is_space_char (*op_string))
9292 ++op_string;
9293 i.types[this_operand].bitfield.jumpabsolute = 1;
9294 }
9295
9296 /* Check if operand is a register. */
9297 if ((r = parse_register (op_string, &end_op)) != NULL)
9298 {
9299 i386_operand_type temp;
9300
9301 /* Check for a segment override by searching for ':' after a
9302 segment register. */
9303 op_string = end_op;
9304 if (is_space_char (*op_string))
9305 ++op_string;
9306 if (*op_string == ':'
9307 && (r->reg_type.bitfield.sreg2
9308 || r->reg_type.bitfield.sreg3))
9309 {
9310 switch (r->reg_num)
9311 {
9312 case 0:
9313 i.seg[i.mem_operands] = &es;
9314 break;
9315 case 1:
9316 i.seg[i.mem_operands] = &cs;
9317 break;
9318 case 2:
9319 i.seg[i.mem_operands] = &ss;
9320 break;
9321 case 3:
9322 i.seg[i.mem_operands] = &ds;
9323 break;
9324 case 4:
9325 i.seg[i.mem_operands] = &fs;
9326 break;
9327 case 5:
9328 i.seg[i.mem_operands] = &gs;
9329 break;
9330 }
9331
9332 /* Skip the ':' and whitespace. */
9333 ++op_string;
9334 if (is_space_char (*op_string))
9335 ++op_string;
9336
9337 if (!is_digit_char (*op_string)
9338 && !is_identifier_char (*op_string)
9339 && *op_string != '('
9340 && *op_string != ABSOLUTE_PREFIX)
9341 {
9342 as_bad (_("bad memory operand `%s'"), op_string);
9343 return 0;
9344 }
9345 /* Handle case of %es:*foo. */
9346 if (*op_string == ABSOLUTE_PREFIX)
9347 {
9348 ++op_string;
9349 if (is_space_char (*op_string))
9350 ++op_string;
9351 i.types[this_operand].bitfield.jumpabsolute = 1;
9352 }
9353 goto do_memory_reference;
9354 }
9355
9356 /* Handle vector operations. */
9357 if (*op_string == '{')
9358 {
9359 op_string = check_VecOperations (op_string, NULL);
9360 if (op_string == NULL)
9361 return 0;
9362 }
9363
9364 if (*op_string)
9365 {
9366 as_bad (_("junk `%s' after register"), op_string);
9367 return 0;
9368 }
9369 temp = r->reg_type;
9370 temp.bitfield.baseindex = 0;
9371 i.types[this_operand] = operand_type_or (i.types[this_operand],
9372 temp);
9373 i.types[this_operand].bitfield.unspecified = 0;
9374 i.op[this_operand].regs = r;
9375 i.reg_operands++;
9376 }
9377 else if (*op_string == REGISTER_PREFIX)
9378 {
9379 as_bad (_("bad register name `%s'"), op_string);
9380 return 0;
9381 }
9382 else if (*op_string == IMMEDIATE_PREFIX)
9383 {
9384 ++op_string;
9385 if (i.types[this_operand].bitfield.jumpabsolute)
9386 {
9387 as_bad (_("immediate operand illegal with absolute jump"));
9388 return 0;
9389 }
9390 if (!i386_immediate (op_string))
9391 return 0;
9392 }
9393 else if (RC_SAE_immediate (operand_string))
9394 {
9395 /* If it is a RC or SAE immediate, do nothing. */
9396 ;
9397 }
9398 else if (is_digit_char (*op_string)
9399 || is_identifier_char (*op_string)
9400 || *op_string == '"'
9401 || *op_string == '(')
9402 {
9403 /* This is a memory reference of some sort. */
9404 char *base_string;
9405
9406 /* Start and end of displacement string expression (if found). */
9407 char *displacement_string_start;
9408 char *displacement_string_end;
9409 char *vop_start;
9410
9411 do_memory_reference:
9412 if (i.mem_operands == 1 && !maybe_adjust_templates ())
9413 return 0;
9414 if ((i.mem_operands == 1
9415 && !current_templates->start->opcode_modifier.isstring)
9416 || i.mem_operands == 2)
9417 {
9418 as_bad (_("too many memory references for `%s'"),
9419 current_templates->start->name);
9420 return 0;
9421 }
9422
9423 /* Check for base index form. We detect the base index form by
9424 looking for an ')' at the end of the operand, searching
9425 for the '(' matching it, and finding a REGISTER_PREFIX or ','
9426 after the '('. */
9427 base_string = op_string + strlen (op_string);
9428
9429 /* Handle vector operations. */
9430 vop_start = strchr (op_string, '{');
9431 if (vop_start && vop_start < base_string)
9432 {
9433 if (check_VecOperations (vop_start, base_string) == NULL)
9434 return 0;
9435 base_string = vop_start;
9436 }
9437
9438 --base_string;
9439 if (is_space_char (*base_string))
9440 --base_string;
9441
9442 /* If we only have a displacement, set-up for it to be parsed later. */
9443 displacement_string_start = op_string;
9444 displacement_string_end = base_string + 1;
9445
9446 if (*base_string == ')')
9447 {
9448 char *temp_string;
9449 unsigned int parens_balanced = 1;
9450 /* We've already checked that the number of left & right ()'s are
9451 equal, so this loop will not be infinite. */
9452 do
9453 {
9454 base_string--;
9455 if (*base_string == ')')
9456 parens_balanced++;
9457 if (*base_string == '(')
9458 parens_balanced--;
9459 }
9460 while (parens_balanced);
9461
9462 temp_string = base_string;
9463
9464 /* Skip past '(' and whitespace. */
9465 ++base_string;
9466 if (is_space_char (*base_string))
9467 ++base_string;
9468
9469 if (*base_string == ','
9470 || ((i.base_reg = parse_register (base_string, &end_op))
9471 != NULL))
9472 {
9473 displacement_string_end = temp_string;
9474
9475 i.types[this_operand].bitfield.baseindex = 1;
9476
9477 if (i.base_reg)
9478 {
9479 base_string = end_op;
9480 if (is_space_char (*base_string))
9481 ++base_string;
9482 }
9483
9484 /* There may be an index reg or scale factor here. */
9485 if (*base_string == ',')
9486 {
9487 ++base_string;
9488 if (is_space_char (*base_string))
9489 ++base_string;
9490
9491 if ((i.index_reg = parse_register (base_string, &end_op))
9492 != NULL)
9493 {
9494 base_string = end_op;
9495 if (is_space_char (*base_string))
9496 ++base_string;
9497 if (*base_string == ',')
9498 {
9499 ++base_string;
9500 if (is_space_char (*base_string))
9501 ++base_string;
9502 }
9503 else if (*base_string != ')')
9504 {
9505 as_bad (_("expecting `,' or `)' "
9506 "after index register in `%s'"),
9507 operand_string);
9508 return 0;
9509 }
9510 }
9511 else if (*base_string == REGISTER_PREFIX)
9512 {
9513 end_op = strchr (base_string, ',');
9514 if (end_op)
9515 *end_op = '\0';
9516 as_bad (_("bad register name `%s'"), base_string);
9517 return 0;
9518 }
9519
9520 /* Check for scale factor. */
9521 if (*base_string != ')')
9522 {
9523 char *end_scale = i386_scale (base_string);
9524
9525 if (!end_scale)
9526 return 0;
9527
9528 base_string = end_scale;
9529 if (is_space_char (*base_string))
9530 ++base_string;
9531 if (*base_string != ')')
9532 {
9533 as_bad (_("expecting `)' "
9534 "after scale factor in `%s'"),
9535 operand_string);
9536 return 0;
9537 }
9538 }
9539 else if (!i.index_reg)
9540 {
9541 as_bad (_("expecting index register or scale factor "
9542 "after `,'; got '%c'"),
9543 *base_string);
9544 return 0;
9545 }
9546 }
9547 else if (*base_string != ')')
9548 {
9549 as_bad (_("expecting `,' or `)' "
9550 "after base register in `%s'"),
9551 operand_string);
9552 return 0;
9553 }
9554 }
9555 else if (*base_string == REGISTER_PREFIX)
9556 {
9557 end_op = strchr (base_string, ',');
9558 if (end_op)
9559 *end_op = '\0';
9560 as_bad (_("bad register name `%s'"), base_string);
9561 return 0;
9562 }
9563 }
9564
9565 /* If there's an expression beginning the operand, parse it,
9566 assuming displacement_string_start and
9567 displacement_string_end are meaningful. */
9568 if (displacement_string_start != displacement_string_end)
9569 {
9570 if (!i386_displacement (displacement_string_start,
9571 displacement_string_end))
9572 return 0;
9573 }
9574
9575 /* Special case for (%dx) while doing input/output op. */
9576 if (i.base_reg
9577 && operand_type_equal (&i.base_reg->reg_type,
9578 &reg16_inoutportreg)
9579 && i.index_reg == 0
9580 && i.log2_scale_factor == 0
9581 && i.seg[i.mem_operands] == 0
9582 && !operand_type_check (i.types[this_operand], disp))
9583 {
9584 i.types[this_operand] = inoutportreg;
9585 return 1;
9586 }
9587
9588 if (i386_index_check (operand_string) == 0)
9589 return 0;
9590 i.types[this_operand].bitfield.mem = 1;
9591 if (i.mem_operands == 0)
9592 i.memop1_string = xstrdup (operand_string);
9593 i.mem_operands++;
9594 }
9595 else
9596 {
9597 /* It's not a memory operand; argh! */
9598 as_bad (_("invalid char %s beginning operand %d `%s'"),
9599 output_invalid (*op_string),
9600 this_operand + 1,
9601 op_string);
9602 return 0;
9603 }
9604 return 1; /* Normal return. */
9605 }
9606 \f
9607 /* Calculate the maximum variable size (i.e., excluding fr_fix)
9608 that an rs_machine_dependent frag may reach. */
9609
9610 unsigned int
9611 i386_frag_max_var (fragS *frag)
9612 {
9613 /* The only relaxable frags are for jumps.
9614 Unconditional jumps can grow by 4 bytes and others by 5 bytes. */
9615 gas_assert (frag->fr_type == rs_machine_dependent);
9616 return TYPE_FROM_RELAX_STATE (frag->fr_subtype) == UNCOND_JUMP ? 4 : 5;
9617 }
9618
9619 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9620 static int
9621 elf_symbol_resolved_in_segment_p (symbolS *fr_symbol, offsetT fr_var)
9622 {
9623 /* STT_GNU_IFUNC symbol must go through PLT. */
9624 if ((symbol_get_bfdsym (fr_symbol)->flags
9625 & BSF_GNU_INDIRECT_FUNCTION) != 0)
9626 return 0;
9627
9628 if (!S_IS_EXTERNAL (fr_symbol))
9629 /* Symbol may be weak or local. */
9630 return !S_IS_WEAK (fr_symbol);
9631
9632 /* Global symbols with non-default visibility can't be preempted. */
9633 if (ELF_ST_VISIBILITY (S_GET_OTHER (fr_symbol)) != STV_DEFAULT)
9634 return 1;
9635
9636 if (fr_var != NO_RELOC)
9637 switch ((enum bfd_reloc_code_real) fr_var)
9638 {
9639 case BFD_RELOC_386_PLT32:
9640 case BFD_RELOC_X86_64_PLT32:
9641 /* Symbol with PLT relocation may be preempted. */
9642 return 0;
9643 default:
9644 abort ();
9645 }
9646
9647 /* Global symbols with default visibility in a shared library may be
9648 preempted by another definition. */
9649 return !shared;
9650 }
9651 #endif
9652
9653 /* md_estimate_size_before_relax()
9654
9655 Called just before relax() for rs_machine_dependent frags. The x86
9656 assembler uses these frags to handle variable size jump
9657 instructions.
9658
9659 Any symbol that is now undefined will not become defined.
9660 Return the correct fr_subtype in the frag.
9661 Return the initial "guess for variable size of frag" to caller.
9662 The guess is actually the growth beyond the fixed part. Whatever
9663 we do to grow the fixed or variable part contributes to our
9664 returned value. */
9665
9666 int
9667 md_estimate_size_before_relax (fragS *fragP, segT segment)
9668 {
9669 /* We've already got fragP->fr_subtype right; all we have to do is
9670 check for un-relaxable symbols. On an ELF system, we can't relax
9671 an externally visible symbol, because it may be overridden by a
9672 shared library. */
9673 if (S_GET_SEGMENT (fragP->fr_symbol) != segment
9674 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9675 || (IS_ELF
9676 && !elf_symbol_resolved_in_segment_p (fragP->fr_symbol,
9677 fragP->fr_var))
9678 #endif
9679 #if defined (OBJ_COFF) && defined (TE_PE)
9680 || (OUTPUT_FLAVOR == bfd_target_coff_flavour
9681 && S_IS_WEAK (fragP->fr_symbol))
9682 #endif
9683 )
9684 {
9685 /* Symbol is undefined in this segment, or we need to keep a
9686 reloc so that weak symbols can be overridden. */
9687 int size = (fragP->fr_subtype & CODE16) ? 2 : 4;
9688 enum bfd_reloc_code_real reloc_type;
9689 unsigned char *opcode;
9690 int old_fr_fix;
9691
9692 if (fragP->fr_var != NO_RELOC)
9693 reloc_type = (enum bfd_reloc_code_real) fragP->fr_var;
9694 else if (size == 2)
9695 reloc_type = BFD_RELOC_16_PCREL;
9696 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9697 else if (need_plt32_p (fragP->fr_symbol))
9698 reloc_type = BFD_RELOC_X86_64_PLT32;
9699 #endif
9700 else
9701 reloc_type = BFD_RELOC_32_PCREL;
9702
9703 old_fr_fix = fragP->fr_fix;
9704 opcode = (unsigned char *) fragP->fr_opcode;
9705
9706 switch (TYPE_FROM_RELAX_STATE (fragP->fr_subtype))
9707 {
9708 case UNCOND_JUMP:
9709 /* Make jmp (0xeb) a (d)word displacement jump. */
9710 opcode[0] = 0xe9;
9711 fragP->fr_fix += size;
9712 fix_new (fragP, old_fr_fix, size,
9713 fragP->fr_symbol,
9714 fragP->fr_offset, 1,
9715 reloc_type);
9716 break;
9717
9718 case COND_JUMP86:
9719 if (size == 2
9720 && (!no_cond_jump_promotion || fragP->fr_var != NO_RELOC))
9721 {
9722 /* Negate the condition, and branch past an
9723 unconditional jump. */
9724 opcode[0] ^= 1;
9725 opcode[1] = 3;
9726 /* Insert an unconditional jump. */
9727 opcode[2] = 0xe9;
9728 /* We added two extra opcode bytes, and have a two byte
9729 offset. */
9730 fragP->fr_fix += 2 + 2;
9731 fix_new (fragP, old_fr_fix + 2, 2,
9732 fragP->fr_symbol,
9733 fragP->fr_offset, 1,
9734 reloc_type);
9735 break;
9736 }
9737 /* Fall through. */
9738
9739 case COND_JUMP:
9740 if (no_cond_jump_promotion && fragP->fr_var == NO_RELOC)
9741 {
9742 fixS *fixP;
9743
9744 fragP->fr_fix += 1;
9745 fixP = fix_new (fragP, old_fr_fix, 1,
9746 fragP->fr_symbol,
9747 fragP->fr_offset, 1,
9748 BFD_RELOC_8_PCREL);
9749 fixP->fx_signed = 1;
9750 break;
9751 }
9752
9753 /* This changes the byte-displacement jump 0x7N
9754 to the (d)word-displacement jump 0x0f,0x8N. */
9755 opcode[1] = opcode[0] + 0x10;
9756 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
9757 /* We've added an opcode byte. */
9758 fragP->fr_fix += 1 + size;
9759 fix_new (fragP, old_fr_fix + 1, size,
9760 fragP->fr_symbol,
9761 fragP->fr_offset, 1,
9762 reloc_type);
9763 break;
9764
9765 default:
9766 BAD_CASE (fragP->fr_subtype);
9767 break;
9768 }
9769 frag_wane (fragP);
9770 return fragP->fr_fix - old_fr_fix;
9771 }
9772
9773 /* Guess size depending on current relax state. Initially the relax
9774 state will correspond to a short jump and we return 1, because
9775 the variable part of the frag (the branch offset) is one byte
9776 long. However, we can relax a section more than once and in that
9777 case we must either set fr_subtype back to the unrelaxed state,
9778 or return the value for the appropriate branch. */
9779 return md_relax_table[fragP->fr_subtype].rlx_length;
9780 }
9781
9782 /* Called after relax() is finished.
9783
9784 In: Address of frag.
9785 fr_type == rs_machine_dependent.
9786 fr_subtype is what the address relaxed to.
9787
9788 Out: Any fixSs and constants are set up.
9789 Caller will turn frag into a ".space 0". */
9790
9791 void
9792 md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT sec ATTRIBUTE_UNUSED,
9793 fragS *fragP)
9794 {
9795 unsigned char *opcode;
9796 unsigned char *where_to_put_displacement = NULL;
9797 offsetT target_address;
9798 offsetT opcode_address;
9799 unsigned int extension = 0;
9800 offsetT displacement_from_opcode_start;
9801
9802 opcode = (unsigned char *) fragP->fr_opcode;
9803
9804 /* Address we want to reach in file space. */
9805 target_address = S_GET_VALUE (fragP->fr_symbol) + fragP->fr_offset;
9806
9807 /* Address opcode resides at in file space. */
9808 opcode_address = fragP->fr_address + fragP->fr_fix;
9809
9810 /* Displacement from opcode start to fill into instruction. */
9811 displacement_from_opcode_start = target_address - opcode_address;
9812
9813 if ((fragP->fr_subtype & BIG) == 0)
9814 {
9815 /* Don't have to change opcode. */
9816 extension = 1; /* 1 opcode + 1 displacement */
9817 where_to_put_displacement = &opcode[1];
9818 }
9819 else
9820 {
9821 if (no_cond_jump_promotion
9822 && TYPE_FROM_RELAX_STATE (fragP->fr_subtype) != UNCOND_JUMP)
9823 as_warn_where (fragP->fr_file, fragP->fr_line,
9824 _("long jump required"));
9825
9826 switch (fragP->fr_subtype)
9827 {
9828 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG):
9829 extension = 4; /* 1 opcode + 4 displacement */
9830 opcode[0] = 0xe9;
9831 where_to_put_displacement = &opcode[1];
9832 break;
9833
9834 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16):
9835 extension = 2; /* 1 opcode + 2 displacement */
9836 opcode[0] = 0xe9;
9837 where_to_put_displacement = &opcode[1];
9838 break;
9839
9840 case ENCODE_RELAX_STATE (COND_JUMP, BIG):
9841 case ENCODE_RELAX_STATE (COND_JUMP86, BIG):
9842 extension = 5; /* 2 opcode + 4 displacement */
9843 opcode[1] = opcode[0] + 0x10;
9844 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
9845 where_to_put_displacement = &opcode[2];
9846 break;
9847
9848 case ENCODE_RELAX_STATE (COND_JUMP, BIG16):
9849 extension = 3; /* 2 opcode + 2 displacement */
9850 opcode[1] = opcode[0] + 0x10;
9851 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
9852 where_to_put_displacement = &opcode[2];
9853 break;
9854
9855 case ENCODE_RELAX_STATE (COND_JUMP86, BIG16):
9856 extension = 4;
9857 opcode[0] ^= 1;
9858 opcode[1] = 3;
9859 opcode[2] = 0xe9;
9860 where_to_put_displacement = &opcode[3];
9861 break;
9862
9863 default:
9864 BAD_CASE (fragP->fr_subtype);
9865 break;
9866 }
9867 }
9868
9869 /* If size if less then four we are sure that the operand fits,
9870 but if it's 4, then it could be that the displacement is larger
9871 then -/+ 2GB. */
9872 if (DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype) == 4
9873 && object_64bit
9874 && ((addressT) (displacement_from_opcode_start - extension
9875 + ((addressT) 1 << 31))
9876 > (((addressT) 2 << 31) - 1)))
9877 {
9878 as_bad_where (fragP->fr_file, fragP->fr_line,
9879 _("jump target out of range"));
9880 /* Make us emit 0. */
9881 displacement_from_opcode_start = extension;
9882 }
9883 /* Now put displacement after opcode. */
9884 md_number_to_chars ((char *) where_to_put_displacement,
9885 (valueT) (displacement_from_opcode_start - extension),
9886 DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype));
9887 fragP->fr_fix += extension;
9888 }
9889 \f
9890 /* Apply a fixup (fixP) to segment data, once it has been determined
9891 by our caller that we have all the info we need to fix it up.
9892
9893 Parameter valP is the pointer to the value of the bits.
9894
9895 On the 386, immediates, displacements, and data pointers are all in
9896 the same (little-endian) format, so we don't need to care about which
9897 we are handling. */
9898
9899 void
9900 md_apply_fix (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED)
9901 {
9902 char *p = fixP->fx_where + fixP->fx_frag->fr_literal;
9903 valueT value = *valP;
9904
9905 #if !defined (TE_Mach)
9906 if (fixP->fx_pcrel)
9907 {
9908 switch (fixP->fx_r_type)
9909 {
9910 default:
9911 break;
9912
9913 case BFD_RELOC_64:
9914 fixP->fx_r_type = BFD_RELOC_64_PCREL;
9915 break;
9916 case BFD_RELOC_32:
9917 case BFD_RELOC_X86_64_32S:
9918 fixP->fx_r_type = BFD_RELOC_32_PCREL;
9919 break;
9920 case BFD_RELOC_16:
9921 fixP->fx_r_type = BFD_RELOC_16_PCREL;
9922 break;
9923 case BFD_RELOC_8:
9924 fixP->fx_r_type = BFD_RELOC_8_PCREL;
9925 break;
9926 }
9927 }
9928
9929 if (fixP->fx_addsy != NULL
9930 && (fixP->fx_r_type == BFD_RELOC_32_PCREL
9931 || fixP->fx_r_type == BFD_RELOC_64_PCREL
9932 || fixP->fx_r_type == BFD_RELOC_16_PCREL
9933 || fixP->fx_r_type == BFD_RELOC_8_PCREL)
9934 && !use_rela_relocations)
9935 {
9936 /* This is a hack. There should be a better way to handle this.
9937 This covers for the fact that bfd_install_relocation will
9938 subtract the current location (for partial_inplace, PC relative
9939 relocations); see more below. */
9940 #ifndef OBJ_AOUT
9941 if (IS_ELF
9942 #ifdef TE_PE
9943 || OUTPUT_FLAVOR == bfd_target_coff_flavour
9944 #endif
9945 )
9946 value += fixP->fx_where + fixP->fx_frag->fr_address;
9947 #endif
9948 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9949 if (IS_ELF)
9950 {
9951 segT sym_seg = S_GET_SEGMENT (fixP->fx_addsy);
9952
9953 if ((sym_seg == seg
9954 || (symbol_section_p (fixP->fx_addsy)
9955 && sym_seg != absolute_section))
9956 && !generic_force_reloc (fixP))
9957 {
9958 /* Yes, we add the values in twice. This is because
9959 bfd_install_relocation subtracts them out again. I think
9960 bfd_install_relocation is broken, but I don't dare change
9961 it. FIXME. */
9962 value += fixP->fx_where + fixP->fx_frag->fr_address;
9963 }
9964 }
9965 #endif
9966 #if defined (OBJ_COFF) && defined (TE_PE)
9967 /* For some reason, the PE format does not store a
9968 section address offset for a PC relative symbol. */
9969 if (S_GET_SEGMENT (fixP->fx_addsy) != seg
9970 || S_IS_WEAK (fixP->fx_addsy))
9971 value += md_pcrel_from (fixP);
9972 #endif
9973 }
9974 #if defined (OBJ_COFF) && defined (TE_PE)
9975 if (fixP->fx_addsy != NULL
9976 && S_IS_WEAK (fixP->fx_addsy)
9977 /* PR 16858: Do not modify weak function references. */
9978 && ! fixP->fx_pcrel)
9979 {
9980 #if !defined (TE_PEP)
9981 /* For x86 PE weak function symbols are neither PC-relative
9982 nor do they set S_IS_FUNCTION. So the only reliable way
9983 to detect them is to check the flags of their containing
9984 section. */
9985 if (S_GET_SEGMENT (fixP->fx_addsy) != NULL
9986 && S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_CODE)
9987 ;
9988 else
9989 #endif
9990 value -= S_GET_VALUE (fixP->fx_addsy);
9991 }
9992 #endif
9993
9994 /* Fix a few things - the dynamic linker expects certain values here,
9995 and we must not disappoint it. */
9996 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9997 if (IS_ELF && fixP->fx_addsy)
9998 switch (fixP->fx_r_type)
9999 {
10000 case BFD_RELOC_386_PLT32:
10001 case BFD_RELOC_X86_64_PLT32:
10002 /* Make the jump instruction point to the address of the operand. At
10003 runtime we merely add the offset to the actual PLT entry. */
10004 value = -4;
10005 break;
10006
10007 case BFD_RELOC_386_TLS_GD:
10008 case BFD_RELOC_386_TLS_LDM:
10009 case BFD_RELOC_386_TLS_IE_32:
10010 case BFD_RELOC_386_TLS_IE:
10011 case BFD_RELOC_386_TLS_GOTIE:
10012 case BFD_RELOC_386_TLS_GOTDESC:
10013 case BFD_RELOC_X86_64_TLSGD:
10014 case BFD_RELOC_X86_64_TLSLD:
10015 case BFD_RELOC_X86_64_GOTTPOFF:
10016 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
10017 value = 0; /* Fully resolved at runtime. No addend. */
10018 /* Fallthrough */
10019 case BFD_RELOC_386_TLS_LE:
10020 case BFD_RELOC_386_TLS_LDO_32:
10021 case BFD_RELOC_386_TLS_LE_32:
10022 case BFD_RELOC_X86_64_DTPOFF32:
10023 case BFD_RELOC_X86_64_DTPOFF64:
10024 case BFD_RELOC_X86_64_TPOFF32:
10025 case BFD_RELOC_X86_64_TPOFF64:
10026 S_SET_THREAD_LOCAL (fixP->fx_addsy);
10027 break;
10028
10029 case BFD_RELOC_386_TLS_DESC_CALL:
10030 case BFD_RELOC_X86_64_TLSDESC_CALL:
10031 value = 0; /* Fully resolved at runtime. No addend. */
10032 S_SET_THREAD_LOCAL (fixP->fx_addsy);
10033 fixP->fx_done = 0;
10034 return;
10035
10036 case BFD_RELOC_VTABLE_INHERIT:
10037 case BFD_RELOC_VTABLE_ENTRY:
10038 fixP->fx_done = 0;
10039 return;
10040
10041 default:
10042 break;
10043 }
10044 #endif /* defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) */
10045 *valP = value;
10046 #endif /* !defined (TE_Mach) */
10047
10048 /* Are we finished with this relocation now? */
10049 if (fixP->fx_addsy == NULL)
10050 fixP->fx_done = 1;
10051 #if defined (OBJ_COFF) && defined (TE_PE)
10052 else if (fixP->fx_addsy != NULL && S_IS_WEAK (fixP->fx_addsy))
10053 {
10054 fixP->fx_done = 0;
10055 /* Remember value for tc_gen_reloc. */
10056 fixP->fx_addnumber = value;
10057 /* Clear out the frag for now. */
10058 value = 0;
10059 }
10060 #endif
10061 else if (use_rela_relocations)
10062 {
10063 fixP->fx_no_overflow = 1;
10064 /* Remember value for tc_gen_reloc. */
10065 fixP->fx_addnumber = value;
10066 value = 0;
10067 }
10068
10069 md_number_to_chars (p, value, fixP->fx_size);
10070 }
10071 \f
10072 const char *
10073 md_atof (int type, char *litP, int *sizeP)
10074 {
10075 /* This outputs the LITTLENUMs in REVERSE order;
10076 in accord with the bigendian 386. */
10077 return ieee_md_atof (type, litP, sizeP, FALSE);
10078 }
10079 \f
10080 static char output_invalid_buf[sizeof (unsigned char) * 2 + 6];
10081
10082 static char *
10083 output_invalid (int c)
10084 {
10085 if (ISPRINT (c))
10086 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
10087 "'%c'", c);
10088 else
10089 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
10090 "(0x%x)", (unsigned char) c);
10091 return output_invalid_buf;
10092 }
10093
10094 /* REG_STRING starts *before* REGISTER_PREFIX. */
10095
10096 static const reg_entry *
10097 parse_real_register (char *reg_string, char **end_op)
10098 {
10099 char *s = reg_string;
10100 char *p;
10101 char reg_name_given[MAX_REG_NAME_SIZE + 1];
10102 const reg_entry *r;
10103
10104 /* Skip possible REGISTER_PREFIX and possible whitespace. */
10105 if (*s == REGISTER_PREFIX)
10106 ++s;
10107
10108 if (is_space_char (*s))
10109 ++s;
10110
10111 p = reg_name_given;
10112 while ((*p++ = register_chars[(unsigned char) *s]) != '\0')
10113 {
10114 if (p >= reg_name_given + MAX_REG_NAME_SIZE)
10115 return (const reg_entry *) NULL;
10116 s++;
10117 }
10118
10119 /* For naked regs, make sure that we are not dealing with an identifier.
10120 This prevents confusing an identifier like `eax_var' with register
10121 `eax'. */
10122 if (allow_naked_reg && identifier_chars[(unsigned char) *s])
10123 return (const reg_entry *) NULL;
10124
10125 *end_op = s;
10126
10127 r = (const reg_entry *) hash_find (reg_hash, reg_name_given);
10128
10129 /* Handle floating point regs, allowing spaces in the (i) part. */
10130 if (r == i386_regtab /* %st is first entry of table */)
10131 {
10132 if (is_space_char (*s))
10133 ++s;
10134 if (*s == '(')
10135 {
10136 ++s;
10137 if (is_space_char (*s))
10138 ++s;
10139 if (*s >= '0' && *s <= '7')
10140 {
10141 int fpr = *s - '0';
10142 ++s;
10143 if (is_space_char (*s))
10144 ++s;
10145 if (*s == ')')
10146 {
10147 *end_op = s + 1;
10148 r = (const reg_entry *) hash_find (reg_hash, "st(0)");
10149 know (r);
10150 return r + fpr;
10151 }
10152 }
10153 /* We have "%st(" then garbage. */
10154 return (const reg_entry *) NULL;
10155 }
10156 }
10157
10158 if (r == NULL || allow_pseudo_reg)
10159 return r;
10160
10161 if (operand_type_all_zero (&r->reg_type))
10162 return (const reg_entry *) NULL;
10163
10164 if ((r->reg_type.bitfield.dword
10165 || r->reg_type.bitfield.sreg3
10166 || r->reg_type.bitfield.control
10167 || r->reg_type.bitfield.debug
10168 || r->reg_type.bitfield.test)
10169 && !cpu_arch_flags.bitfield.cpui386)
10170 return (const reg_entry *) NULL;
10171
10172 if (r->reg_type.bitfield.tbyte
10173 && !cpu_arch_flags.bitfield.cpu8087
10174 && !cpu_arch_flags.bitfield.cpu287
10175 && !cpu_arch_flags.bitfield.cpu387)
10176 return (const reg_entry *) NULL;
10177
10178 if (r->reg_type.bitfield.regmmx && !cpu_arch_flags.bitfield.cpuregmmx)
10179 return (const reg_entry *) NULL;
10180
10181 if (r->reg_type.bitfield.xmmword && !cpu_arch_flags.bitfield.cpuregxmm)
10182 return (const reg_entry *) NULL;
10183
10184 if (r->reg_type.bitfield.ymmword && !cpu_arch_flags.bitfield.cpuregymm)
10185 return (const reg_entry *) NULL;
10186
10187 if (r->reg_type.bitfield.zmmword && !cpu_arch_flags.bitfield.cpuregzmm)
10188 return (const reg_entry *) NULL;
10189
10190 if (r->reg_type.bitfield.regmask
10191 && !cpu_arch_flags.bitfield.cpuregmask)
10192 return (const reg_entry *) NULL;
10193
10194 /* Don't allow fake index register unless allow_index_reg isn't 0. */
10195 if (!allow_index_reg
10196 && (r->reg_num == RegEiz || r->reg_num == RegRiz))
10197 return (const reg_entry *) NULL;
10198
10199 /* Upper 16 vector register is only available with VREX in 64bit
10200 mode. */
10201 if ((r->reg_flags & RegVRex))
10202 {
10203 if (i.vec_encoding == vex_encoding_default)
10204 i.vec_encoding = vex_encoding_evex;
10205
10206 if (!cpu_arch_flags.bitfield.cpuvrex
10207 || i.vec_encoding != vex_encoding_evex
10208 || flag_code != CODE_64BIT)
10209 return (const reg_entry *) NULL;
10210 }
10211
10212 if (((r->reg_flags & (RegRex64 | RegRex))
10213 || r->reg_type.bitfield.qword)
10214 && (!cpu_arch_flags.bitfield.cpulm
10215 || !operand_type_equal (&r->reg_type, &control))
10216 && flag_code != CODE_64BIT)
10217 return (const reg_entry *) NULL;
10218
10219 if (r->reg_type.bitfield.sreg3 && r->reg_num == RegFlat && !intel_syntax)
10220 return (const reg_entry *) NULL;
10221
10222 return r;
10223 }
10224
10225 /* REG_STRING starts *before* REGISTER_PREFIX. */
10226
10227 static const reg_entry *
10228 parse_register (char *reg_string, char **end_op)
10229 {
10230 const reg_entry *r;
10231
10232 if (*reg_string == REGISTER_PREFIX || allow_naked_reg)
10233 r = parse_real_register (reg_string, end_op);
10234 else
10235 r = NULL;
10236 if (!r)
10237 {
10238 char *save = input_line_pointer;
10239 char c;
10240 symbolS *symbolP;
10241
10242 input_line_pointer = reg_string;
10243 c = get_symbol_name (&reg_string);
10244 symbolP = symbol_find (reg_string);
10245 if (symbolP && S_GET_SEGMENT (symbolP) == reg_section)
10246 {
10247 const expressionS *e = symbol_get_value_expression (symbolP);
10248
10249 know (e->X_op == O_register);
10250 know (e->X_add_number >= 0
10251 && (valueT) e->X_add_number < i386_regtab_size);
10252 r = i386_regtab + e->X_add_number;
10253 if ((r->reg_flags & RegVRex))
10254 i.vec_encoding = vex_encoding_evex;
10255 *end_op = input_line_pointer;
10256 }
10257 *input_line_pointer = c;
10258 input_line_pointer = save;
10259 }
10260 return r;
10261 }
10262
10263 int
10264 i386_parse_name (char *name, expressionS *e, char *nextcharP)
10265 {
10266 const reg_entry *r;
10267 char *end = input_line_pointer;
10268
10269 *end = *nextcharP;
10270 r = parse_register (name, &input_line_pointer);
10271 if (r && end <= input_line_pointer)
10272 {
10273 *nextcharP = *input_line_pointer;
10274 *input_line_pointer = 0;
10275 e->X_op = O_register;
10276 e->X_add_number = r - i386_regtab;
10277 return 1;
10278 }
10279 input_line_pointer = end;
10280 *end = 0;
10281 return intel_syntax ? i386_intel_parse_name (name, e) : 0;
10282 }
10283
10284 void
10285 md_operand (expressionS *e)
10286 {
10287 char *end;
10288 const reg_entry *r;
10289
10290 switch (*input_line_pointer)
10291 {
10292 case REGISTER_PREFIX:
10293 r = parse_real_register (input_line_pointer, &end);
10294 if (r)
10295 {
10296 e->X_op = O_register;
10297 e->X_add_number = r - i386_regtab;
10298 input_line_pointer = end;
10299 }
10300 break;
10301
10302 case '[':
10303 gas_assert (intel_syntax);
10304 end = input_line_pointer++;
10305 expression (e);
10306 if (*input_line_pointer == ']')
10307 {
10308 ++input_line_pointer;
10309 e->X_op_symbol = make_expr_symbol (e);
10310 e->X_add_symbol = NULL;
10311 e->X_add_number = 0;
10312 e->X_op = O_index;
10313 }
10314 else
10315 {
10316 e->X_op = O_absent;
10317 input_line_pointer = end;
10318 }
10319 break;
10320 }
10321 }
10322
10323 \f
10324 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10325 const char *md_shortopts = "kVQ:sqnO::";
10326 #else
10327 const char *md_shortopts = "qnO::";
10328 #endif
10329
10330 #define OPTION_32 (OPTION_MD_BASE + 0)
10331 #define OPTION_64 (OPTION_MD_BASE + 1)
10332 #define OPTION_DIVIDE (OPTION_MD_BASE + 2)
10333 #define OPTION_MARCH (OPTION_MD_BASE + 3)
10334 #define OPTION_MTUNE (OPTION_MD_BASE + 4)
10335 #define OPTION_MMNEMONIC (OPTION_MD_BASE + 5)
10336 #define OPTION_MSYNTAX (OPTION_MD_BASE + 6)
10337 #define OPTION_MINDEX_REG (OPTION_MD_BASE + 7)
10338 #define OPTION_MNAKED_REG (OPTION_MD_BASE + 8)
10339 #define OPTION_MRELAX_RELOCATIONS (OPTION_MD_BASE + 9)
10340 #define OPTION_MSSE2AVX (OPTION_MD_BASE + 10)
10341 #define OPTION_MSSE_CHECK (OPTION_MD_BASE + 11)
10342 #define OPTION_MOPERAND_CHECK (OPTION_MD_BASE + 12)
10343 #define OPTION_MAVXSCALAR (OPTION_MD_BASE + 13)
10344 #define OPTION_X32 (OPTION_MD_BASE + 14)
10345 #define OPTION_MADD_BND_PREFIX (OPTION_MD_BASE + 15)
10346 #define OPTION_MEVEXLIG (OPTION_MD_BASE + 16)
10347 #define OPTION_MEVEXWIG (OPTION_MD_BASE + 17)
10348 #define OPTION_MBIG_OBJ (OPTION_MD_BASE + 18)
10349 #define OPTION_MOMIT_LOCK_PREFIX (OPTION_MD_BASE + 19)
10350 #define OPTION_MEVEXRCIG (OPTION_MD_BASE + 20)
10351 #define OPTION_MSHARED (OPTION_MD_BASE + 21)
10352 #define OPTION_MAMD64 (OPTION_MD_BASE + 22)
10353 #define OPTION_MINTEL64 (OPTION_MD_BASE + 23)
10354 #define OPTION_MFENCE_AS_LOCK_ADD (OPTION_MD_BASE + 24)
10355
10356 struct option md_longopts[] =
10357 {
10358 {"32", no_argument, NULL, OPTION_32},
10359 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
10360 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
10361 {"64", no_argument, NULL, OPTION_64},
10362 #endif
10363 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10364 {"x32", no_argument, NULL, OPTION_X32},
10365 {"mshared", no_argument, NULL, OPTION_MSHARED},
10366 #endif
10367 {"divide", no_argument, NULL, OPTION_DIVIDE},
10368 {"march", required_argument, NULL, OPTION_MARCH},
10369 {"mtune", required_argument, NULL, OPTION_MTUNE},
10370 {"mmnemonic", required_argument, NULL, OPTION_MMNEMONIC},
10371 {"msyntax", required_argument, NULL, OPTION_MSYNTAX},
10372 {"mindex-reg", no_argument, NULL, OPTION_MINDEX_REG},
10373 {"mnaked-reg", no_argument, NULL, OPTION_MNAKED_REG},
10374 {"msse2avx", no_argument, NULL, OPTION_MSSE2AVX},
10375 {"msse-check", required_argument, NULL, OPTION_MSSE_CHECK},
10376 {"moperand-check", required_argument, NULL, OPTION_MOPERAND_CHECK},
10377 {"mavxscalar", required_argument, NULL, OPTION_MAVXSCALAR},
10378 {"madd-bnd-prefix", no_argument, NULL, OPTION_MADD_BND_PREFIX},
10379 {"mevexlig", required_argument, NULL, OPTION_MEVEXLIG},
10380 {"mevexwig", required_argument, NULL, OPTION_MEVEXWIG},
10381 # if defined (TE_PE) || defined (TE_PEP)
10382 {"mbig-obj", no_argument, NULL, OPTION_MBIG_OBJ},
10383 #endif
10384 {"momit-lock-prefix", required_argument, NULL, OPTION_MOMIT_LOCK_PREFIX},
10385 {"mfence-as-lock-add", required_argument, NULL, OPTION_MFENCE_AS_LOCK_ADD},
10386 {"mrelax-relocations", required_argument, NULL, OPTION_MRELAX_RELOCATIONS},
10387 {"mevexrcig", required_argument, NULL, OPTION_MEVEXRCIG},
10388 {"mamd64", no_argument, NULL, OPTION_MAMD64},
10389 {"mintel64", no_argument, NULL, OPTION_MINTEL64},
10390 {NULL, no_argument, NULL, 0}
10391 };
10392 size_t md_longopts_size = sizeof (md_longopts);
10393
10394 int
10395 md_parse_option (int c, const char *arg)
10396 {
10397 unsigned int j;
10398 char *arch, *next, *saved;
10399
10400 switch (c)
10401 {
10402 case 'n':
10403 optimize_align_code = 0;
10404 break;
10405
10406 case 'q':
10407 quiet_warnings = 1;
10408 break;
10409
10410 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10411 /* -Qy, -Qn: SVR4 arguments controlling whether a .comment section
10412 should be emitted or not. FIXME: Not implemented. */
10413 case 'Q':
10414 break;
10415
10416 /* -V: SVR4 argument to print version ID. */
10417 case 'V':
10418 print_version_id ();
10419 break;
10420
10421 /* -k: Ignore for FreeBSD compatibility. */
10422 case 'k':
10423 break;
10424
10425 case 's':
10426 /* -s: On i386 Solaris, this tells the native assembler to use
10427 .stab instead of .stab.excl. We always use .stab anyhow. */
10428 break;
10429
10430 case OPTION_MSHARED:
10431 shared = 1;
10432 break;
10433 #endif
10434 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
10435 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
10436 case OPTION_64:
10437 {
10438 const char **list, **l;
10439
10440 list = bfd_target_list ();
10441 for (l = list; *l != NULL; l++)
10442 if (CONST_STRNEQ (*l, "elf64-x86-64")
10443 || strcmp (*l, "coff-x86-64") == 0
10444 || strcmp (*l, "pe-x86-64") == 0
10445 || strcmp (*l, "pei-x86-64") == 0
10446 || strcmp (*l, "mach-o-x86-64") == 0)
10447 {
10448 default_arch = "x86_64";
10449 break;
10450 }
10451 if (*l == NULL)
10452 as_fatal (_("no compiled in support for x86_64"));
10453 free (list);
10454 }
10455 break;
10456 #endif
10457
10458 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10459 case OPTION_X32:
10460 if (IS_ELF)
10461 {
10462 const char **list, **l;
10463
10464 list = bfd_target_list ();
10465 for (l = list; *l != NULL; l++)
10466 if (CONST_STRNEQ (*l, "elf32-x86-64"))
10467 {
10468 default_arch = "x86_64:32";
10469 break;
10470 }
10471 if (*l == NULL)
10472 as_fatal (_("no compiled in support for 32bit x86_64"));
10473 free (list);
10474 }
10475 else
10476 as_fatal (_("32bit x86_64 is only supported for ELF"));
10477 break;
10478 #endif
10479
10480 case OPTION_32:
10481 default_arch = "i386";
10482 break;
10483
10484 case OPTION_DIVIDE:
10485 #ifdef SVR4_COMMENT_CHARS
10486 {
10487 char *n, *t;
10488 const char *s;
10489
10490 n = XNEWVEC (char, strlen (i386_comment_chars) + 1);
10491 t = n;
10492 for (s = i386_comment_chars; *s != '\0'; s++)
10493 if (*s != '/')
10494 *t++ = *s;
10495 *t = '\0';
10496 i386_comment_chars = n;
10497 }
10498 #endif
10499 break;
10500
10501 case OPTION_MARCH:
10502 saved = xstrdup (arg);
10503 arch = saved;
10504 /* Allow -march=+nosse. */
10505 if (*arch == '+')
10506 arch++;
10507 do
10508 {
10509 if (*arch == '.')
10510 as_fatal (_("invalid -march= option: `%s'"), arg);
10511 next = strchr (arch, '+');
10512 if (next)
10513 *next++ = '\0';
10514 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
10515 {
10516 if (strcmp (arch, cpu_arch [j].name) == 0)
10517 {
10518 /* Processor. */
10519 if (! cpu_arch[j].flags.bitfield.cpui386)
10520 continue;
10521
10522 cpu_arch_name = cpu_arch[j].name;
10523 cpu_sub_arch_name = NULL;
10524 cpu_arch_flags = cpu_arch[j].flags;
10525 cpu_arch_isa = cpu_arch[j].type;
10526 cpu_arch_isa_flags = cpu_arch[j].flags;
10527 if (!cpu_arch_tune_set)
10528 {
10529 cpu_arch_tune = cpu_arch_isa;
10530 cpu_arch_tune_flags = cpu_arch_isa_flags;
10531 }
10532 break;
10533 }
10534 else if (*cpu_arch [j].name == '.'
10535 && strcmp (arch, cpu_arch [j].name + 1) == 0)
10536 {
10537 /* ISA extension. */
10538 i386_cpu_flags flags;
10539
10540 flags = cpu_flags_or (cpu_arch_flags,
10541 cpu_arch[j].flags);
10542
10543 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
10544 {
10545 if (cpu_sub_arch_name)
10546 {
10547 char *name = cpu_sub_arch_name;
10548 cpu_sub_arch_name = concat (name,
10549 cpu_arch[j].name,
10550 (const char *) NULL);
10551 free (name);
10552 }
10553 else
10554 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
10555 cpu_arch_flags = flags;
10556 cpu_arch_isa_flags = flags;
10557 }
10558 else
10559 cpu_arch_isa_flags
10560 = cpu_flags_or (cpu_arch_isa_flags,
10561 cpu_arch[j].flags);
10562 break;
10563 }
10564 }
10565
10566 if (j >= ARRAY_SIZE (cpu_arch))
10567 {
10568 /* Disable an ISA extension. */
10569 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
10570 if (strcmp (arch, cpu_noarch [j].name) == 0)
10571 {
10572 i386_cpu_flags flags;
10573
10574 flags = cpu_flags_and_not (cpu_arch_flags,
10575 cpu_noarch[j].flags);
10576 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
10577 {
10578 if (cpu_sub_arch_name)
10579 {
10580 char *name = cpu_sub_arch_name;
10581 cpu_sub_arch_name = concat (arch,
10582 (const char *) NULL);
10583 free (name);
10584 }
10585 else
10586 cpu_sub_arch_name = xstrdup (arch);
10587 cpu_arch_flags = flags;
10588 cpu_arch_isa_flags = flags;
10589 }
10590 break;
10591 }
10592
10593 if (j >= ARRAY_SIZE (cpu_noarch))
10594 j = ARRAY_SIZE (cpu_arch);
10595 }
10596
10597 if (j >= ARRAY_SIZE (cpu_arch))
10598 as_fatal (_("invalid -march= option: `%s'"), arg);
10599
10600 arch = next;
10601 }
10602 while (next != NULL);
10603 free (saved);
10604 break;
10605
10606 case OPTION_MTUNE:
10607 if (*arg == '.')
10608 as_fatal (_("invalid -mtune= option: `%s'"), arg);
10609 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
10610 {
10611 if (strcmp (arg, cpu_arch [j].name) == 0)
10612 {
10613 cpu_arch_tune_set = 1;
10614 cpu_arch_tune = cpu_arch [j].type;
10615 cpu_arch_tune_flags = cpu_arch[j].flags;
10616 break;
10617 }
10618 }
10619 if (j >= ARRAY_SIZE (cpu_arch))
10620 as_fatal (_("invalid -mtune= option: `%s'"), arg);
10621 break;
10622
10623 case OPTION_MMNEMONIC:
10624 if (strcasecmp (arg, "att") == 0)
10625 intel_mnemonic = 0;
10626 else if (strcasecmp (arg, "intel") == 0)
10627 intel_mnemonic = 1;
10628 else
10629 as_fatal (_("invalid -mmnemonic= option: `%s'"), arg);
10630 break;
10631
10632 case OPTION_MSYNTAX:
10633 if (strcasecmp (arg, "att") == 0)
10634 intel_syntax = 0;
10635 else if (strcasecmp (arg, "intel") == 0)
10636 intel_syntax = 1;
10637 else
10638 as_fatal (_("invalid -msyntax= option: `%s'"), arg);
10639 break;
10640
10641 case OPTION_MINDEX_REG:
10642 allow_index_reg = 1;
10643 break;
10644
10645 case OPTION_MNAKED_REG:
10646 allow_naked_reg = 1;
10647 break;
10648
10649 case OPTION_MSSE2AVX:
10650 sse2avx = 1;
10651 break;
10652
10653 case OPTION_MSSE_CHECK:
10654 if (strcasecmp (arg, "error") == 0)
10655 sse_check = check_error;
10656 else if (strcasecmp (arg, "warning") == 0)
10657 sse_check = check_warning;
10658 else if (strcasecmp (arg, "none") == 0)
10659 sse_check = check_none;
10660 else
10661 as_fatal (_("invalid -msse-check= option: `%s'"), arg);
10662 break;
10663
10664 case OPTION_MOPERAND_CHECK:
10665 if (strcasecmp (arg, "error") == 0)
10666 operand_check = check_error;
10667 else if (strcasecmp (arg, "warning") == 0)
10668 operand_check = check_warning;
10669 else if (strcasecmp (arg, "none") == 0)
10670 operand_check = check_none;
10671 else
10672 as_fatal (_("invalid -moperand-check= option: `%s'"), arg);
10673 break;
10674
10675 case OPTION_MAVXSCALAR:
10676 if (strcasecmp (arg, "128") == 0)
10677 avxscalar = vex128;
10678 else if (strcasecmp (arg, "256") == 0)
10679 avxscalar = vex256;
10680 else
10681 as_fatal (_("invalid -mavxscalar= option: `%s'"), arg);
10682 break;
10683
10684 case OPTION_MADD_BND_PREFIX:
10685 add_bnd_prefix = 1;
10686 break;
10687
10688 case OPTION_MEVEXLIG:
10689 if (strcmp (arg, "128") == 0)
10690 evexlig = evexl128;
10691 else if (strcmp (arg, "256") == 0)
10692 evexlig = evexl256;
10693 else if (strcmp (arg, "512") == 0)
10694 evexlig = evexl512;
10695 else
10696 as_fatal (_("invalid -mevexlig= option: `%s'"), arg);
10697 break;
10698
10699 case OPTION_MEVEXRCIG:
10700 if (strcmp (arg, "rne") == 0)
10701 evexrcig = rne;
10702 else if (strcmp (arg, "rd") == 0)
10703 evexrcig = rd;
10704 else if (strcmp (arg, "ru") == 0)
10705 evexrcig = ru;
10706 else if (strcmp (arg, "rz") == 0)
10707 evexrcig = rz;
10708 else
10709 as_fatal (_("invalid -mevexrcig= option: `%s'"), arg);
10710 break;
10711
10712 case OPTION_MEVEXWIG:
10713 if (strcmp (arg, "0") == 0)
10714 evexwig = evexw0;
10715 else if (strcmp (arg, "1") == 0)
10716 evexwig = evexw1;
10717 else
10718 as_fatal (_("invalid -mevexwig= option: `%s'"), arg);
10719 break;
10720
10721 # if defined (TE_PE) || defined (TE_PEP)
10722 case OPTION_MBIG_OBJ:
10723 use_big_obj = 1;
10724 break;
10725 #endif
10726
10727 case OPTION_MOMIT_LOCK_PREFIX:
10728 if (strcasecmp (arg, "yes") == 0)
10729 omit_lock_prefix = 1;
10730 else if (strcasecmp (arg, "no") == 0)
10731 omit_lock_prefix = 0;
10732 else
10733 as_fatal (_("invalid -momit-lock-prefix= option: `%s'"), arg);
10734 break;
10735
10736 case OPTION_MFENCE_AS_LOCK_ADD:
10737 if (strcasecmp (arg, "yes") == 0)
10738 avoid_fence = 1;
10739 else if (strcasecmp (arg, "no") == 0)
10740 avoid_fence = 0;
10741 else
10742 as_fatal (_("invalid -mfence-as-lock-add= option: `%s'"), arg);
10743 break;
10744
10745 case OPTION_MRELAX_RELOCATIONS:
10746 if (strcasecmp (arg, "yes") == 0)
10747 generate_relax_relocations = 1;
10748 else if (strcasecmp (arg, "no") == 0)
10749 generate_relax_relocations = 0;
10750 else
10751 as_fatal (_("invalid -mrelax-relocations= option: `%s'"), arg);
10752 break;
10753
10754 case OPTION_MAMD64:
10755 intel64 = 0;
10756 break;
10757
10758 case OPTION_MINTEL64:
10759 intel64 = 1;
10760 break;
10761
10762 case 'O':
10763 if (arg == NULL)
10764 {
10765 optimize = 1;
10766 /* Turn off -Os. */
10767 optimize_for_space = 0;
10768 }
10769 else if (*arg == 's')
10770 {
10771 optimize_for_space = 1;
10772 /* Turn on all encoding optimizations. */
10773 optimize = -1;
10774 }
10775 else
10776 {
10777 optimize = atoi (arg);
10778 /* Turn off -Os. */
10779 optimize_for_space = 0;
10780 }
10781 break;
10782
10783 default:
10784 return 0;
10785 }
10786 return 1;
10787 }
10788
10789 #define MESSAGE_TEMPLATE \
10790 " "
10791
10792 static char *
10793 output_message (FILE *stream, char *p, char *message, char *start,
10794 int *left_p, const char *name, int len)
10795 {
10796 int size = sizeof (MESSAGE_TEMPLATE);
10797 int left = *left_p;
10798
10799 /* Reserve 2 spaces for ", " or ",\0" */
10800 left -= len + 2;
10801
10802 /* Check if there is any room. */
10803 if (left >= 0)
10804 {
10805 if (p != start)
10806 {
10807 *p++ = ',';
10808 *p++ = ' ';
10809 }
10810 p = mempcpy (p, name, len);
10811 }
10812 else
10813 {
10814 /* Output the current message now and start a new one. */
10815 *p++ = ',';
10816 *p = '\0';
10817 fprintf (stream, "%s\n", message);
10818 p = start;
10819 left = size - (start - message) - len - 2;
10820
10821 gas_assert (left >= 0);
10822
10823 p = mempcpy (p, name, len);
10824 }
10825
10826 *left_p = left;
10827 return p;
10828 }
10829
10830 static void
10831 show_arch (FILE *stream, int ext, int check)
10832 {
10833 static char message[] = MESSAGE_TEMPLATE;
10834 char *start = message + 27;
10835 char *p;
10836 int size = sizeof (MESSAGE_TEMPLATE);
10837 int left;
10838 const char *name;
10839 int len;
10840 unsigned int j;
10841
10842 p = start;
10843 left = size - (start - message);
10844 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
10845 {
10846 /* Should it be skipped? */
10847 if (cpu_arch [j].skip)
10848 continue;
10849
10850 name = cpu_arch [j].name;
10851 len = cpu_arch [j].len;
10852 if (*name == '.')
10853 {
10854 /* It is an extension. Skip if we aren't asked to show it. */
10855 if (ext)
10856 {
10857 name++;
10858 len--;
10859 }
10860 else
10861 continue;
10862 }
10863 else if (ext)
10864 {
10865 /* It is an processor. Skip if we show only extension. */
10866 continue;
10867 }
10868 else if (check && ! cpu_arch[j].flags.bitfield.cpui386)
10869 {
10870 /* It is an impossible processor - skip. */
10871 continue;
10872 }
10873
10874 p = output_message (stream, p, message, start, &left, name, len);
10875 }
10876
10877 /* Display disabled extensions. */
10878 if (ext)
10879 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
10880 {
10881 name = cpu_noarch [j].name;
10882 len = cpu_noarch [j].len;
10883 p = output_message (stream, p, message, start, &left, name,
10884 len);
10885 }
10886
10887 *p = '\0';
10888 fprintf (stream, "%s\n", message);
10889 }
10890
10891 void
10892 md_show_usage (FILE *stream)
10893 {
10894 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10895 fprintf (stream, _("\
10896 -Q ignored\n\
10897 -V print assembler version number\n\
10898 -k ignored\n"));
10899 #endif
10900 fprintf (stream, _("\
10901 -n Do not optimize code alignment\n\
10902 -q quieten some warnings\n"));
10903 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10904 fprintf (stream, _("\
10905 -s ignored\n"));
10906 #endif
10907 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
10908 || defined (TE_PE) || defined (TE_PEP))
10909 fprintf (stream, _("\
10910 --32/--64/--x32 generate 32bit/64bit/x32 code\n"));
10911 #endif
10912 #ifdef SVR4_COMMENT_CHARS
10913 fprintf (stream, _("\
10914 --divide do not treat `/' as a comment character\n"));
10915 #else
10916 fprintf (stream, _("\
10917 --divide ignored\n"));
10918 #endif
10919 fprintf (stream, _("\
10920 -march=CPU[,+EXTENSION...]\n\
10921 generate code for CPU and EXTENSION, CPU is one of:\n"));
10922 show_arch (stream, 0, 1);
10923 fprintf (stream, _("\
10924 EXTENSION is combination of:\n"));
10925 show_arch (stream, 1, 0);
10926 fprintf (stream, _("\
10927 -mtune=CPU optimize for CPU, CPU is one of:\n"));
10928 show_arch (stream, 0, 0);
10929 fprintf (stream, _("\
10930 -msse2avx encode SSE instructions with VEX prefix\n"));
10931 fprintf (stream, _("\
10932 -msse-check=[none|error|warning]\n\
10933 check SSE instructions\n"));
10934 fprintf (stream, _("\
10935 -moperand-check=[none|error|warning]\n\
10936 check operand combinations for validity\n"));
10937 fprintf (stream, _("\
10938 -mavxscalar=[128|256] encode scalar AVX instructions with specific vector\n\
10939 length\n"));
10940 fprintf (stream, _("\
10941 -mevexlig=[128|256|512] encode scalar EVEX instructions with specific vector\n\
10942 length\n"));
10943 fprintf (stream, _("\
10944 -mevexwig=[0|1] encode EVEX instructions with specific EVEX.W value\n\
10945 for EVEX.W bit ignored instructions\n"));
10946 fprintf (stream, _("\
10947 -mevexrcig=[rne|rd|ru|rz]\n\
10948 encode EVEX instructions with specific EVEX.RC value\n\
10949 for SAE-only ignored instructions\n"));
10950 fprintf (stream, _("\
10951 -mmnemonic=[att|intel] use AT&T/Intel mnemonic\n"));
10952 fprintf (stream, _("\
10953 -msyntax=[att|intel] use AT&T/Intel syntax\n"));
10954 fprintf (stream, _("\
10955 -mindex-reg support pseudo index registers\n"));
10956 fprintf (stream, _("\
10957 -mnaked-reg don't require `%%' prefix for registers\n"));
10958 fprintf (stream, _("\
10959 -madd-bnd-prefix add BND prefix for all valid branches\n"));
10960 fprintf (stream, _("\
10961 -mshared disable branch optimization for shared code\n"));
10962 # if defined (TE_PE) || defined (TE_PEP)
10963 fprintf (stream, _("\
10964 -mbig-obj generate big object files\n"));
10965 #endif
10966 fprintf (stream, _("\
10967 -momit-lock-prefix=[no|yes]\n\
10968 strip all lock prefixes\n"));
10969 fprintf (stream, _("\
10970 -mfence-as-lock-add=[no|yes]\n\
10971 encode lfence, mfence and sfence as\n\
10972 lock addl $0x0, (%%{re}sp)\n"));
10973 fprintf (stream, _("\
10974 -mrelax-relocations=[no|yes]\n\
10975 generate relax relocations\n"));
10976 fprintf (stream, _("\
10977 -mamd64 accept only AMD64 ISA\n"));
10978 fprintf (stream, _("\
10979 -mintel64 accept only Intel64 ISA\n"));
10980 }
10981
10982 #if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
10983 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
10984 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
10985
10986 /* Pick the target format to use. */
10987
10988 const char *
10989 i386_target_format (void)
10990 {
10991 if (!strncmp (default_arch, "x86_64", 6))
10992 {
10993 update_code_flag (CODE_64BIT, 1);
10994 if (default_arch[6] == '\0')
10995 x86_elf_abi = X86_64_ABI;
10996 else
10997 x86_elf_abi = X86_64_X32_ABI;
10998 }
10999 else if (!strcmp (default_arch, "i386"))
11000 update_code_flag (CODE_32BIT, 1);
11001 else if (!strcmp (default_arch, "iamcu"))
11002 {
11003 update_code_flag (CODE_32BIT, 1);
11004 if (cpu_arch_isa == PROCESSOR_UNKNOWN)
11005 {
11006 static const i386_cpu_flags iamcu_flags = CPU_IAMCU_FLAGS;
11007 cpu_arch_name = "iamcu";
11008 cpu_sub_arch_name = NULL;
11009 cpu_arch_flags = iamcu_flags;
11010 cpu_arch_isa = PROCESSOR_IAMCU;
11011 cpu_arch_isa_flags = iamcu_flags;
11012 if (!cpu_arch_tune_set)
11013 {
11014 cpu_arch_tune = cpu_arch_isa;
11015 cpu_arch_tune_flags = cpu_arch_isa_flags;
11016 }
11017 }
11018 else if (cpu_arch_isa != PROCESSOR_IAMCU)
11019 as_fatal (_("Intel MCU doesn't support `%s' architecture"),
11020 cpu_arch_name);
11021 }
11022 else
11023 as_fatal (_("unknown architecture"));
11024
11025 if (cpu_flags_all_zero (&cpu_arch_isa_flags))
11026 cpu_arch_isa_flags = cpu_arch[flag_code == CODE_64BIT].flags;
11027 if (cpu_flags_all_zero (&cpu_arch_tune_flags))
11028 cpu_arch_tune_flags = cpu_arch[flag_code == CODE_64BIT].flags;
11029
11030 switch (OUTPUT_FLAVOR)
11031 {
11032 #if defined (OBJ_MAYBE_AOUT) || defined (OBJ_AOUT)
11033 case bfd_target_aout_flavour:
11034 return AOUT_TARGET_FORMAT;
11035 #endif
11036 #if defined (OBJ_MAYBE_COFF) || defined (OBJ_COFF)
11037 # if defined (TE_PE) || defined (TE_PEP)
11038 case bfd_target_coff_flavour:
11039 if (flag_code == CODE_64BIT)
11040 return use_big_obj ? "pe-bigobj-x86-64" : "pe-x86-64";
11041 else
11042 return "pe-i386";
11043 # elif defined (TE_GO32)
11044 case bfd_target_coff_flavour:
11045 return "coff-go32";
11046 # else
11047 case bfd_target_coff_flavour:
11048 return "coff-i386";
11049 # endif
11050 #endif
11051 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
11052 case bfd_target_elf_flavour:
11053 {
11054 const char *format;
11055
11056 switch (x86_elf_abi)
11057 {
11058 default:
11059 format = ELF_TARGET_FORMAT;
11060 break;
11061 case X86_64_ABI:
11062 use_rela_relocations = 1;
11063 object_64bit = 1;
11064 format = ELF_TARGET_FORMAT64;
11065 break;
11066 case X86_64_X32_ABI:
11067 use_rela_relocations = 1;
11068 object_64bit = 1;
11069 disallow_64bit_reloc = 1;
11070 format = ELF_TARGET_FORMAT32;
11071 break;
11072 }
11073 if (cpu_arch_isa == PROCESSOR_L1OM)
11074 {
11075 if (x86_elf_abi != X86_64_ABI)
11076 as_fatal (_("Intel L1OM is 64bit only"));
11077 return ELF_TARGET_L1OM_FORMAT;
11078 }
11079 else if (cpu_arch_isa == PROCESSOR_K1OM)
11080 {
11081 if (x86_elf_abi != X86_64_ABI)
11082 as_fatal (_("Intel K1OM is 64bit only"));
11083 return ELF_TARGET_K1OM_FORMAT;
11084 }
11085 else if (cpu_arch_isa == PROCESSOR_IAMCU)
11086 {
11087 if (x86_elf_abi != I386_ABI)
11088 as_fatal (_("Intel MCU is 32bit only"));
11089 return ELF_TARGET_IAMCU_FORMAT;
11090 }
11091 else
11092 return format;
11093 }
11094 #endif
11095 #if defined (OBJ_MACH_O)
11096 case bfd_target_mach_o_flavour:
11097 if (flag_code == CODE_64BIT)
11098 {
11099 use_rela_relocations = 1;
11100 object_64bit = 1;
11101 return "mach-o-x86-64";
11102 }
11103 else
11104 return "mach-o-i386";
11105 #endif
11106 default:
11107 abort ();
11108 return NULL;
11109 }
11110 }
11111
11112 #endif /* OBJ_MAYBE_ more than one */
11113 \f
11114 symbolS *
11115 md_undefined_symbol (char *name)
11116 {
11117 if (name[0] == GLOBAL_OFFSET_TABLE_NAME[0]
11118 && name[1] == GLOBAL_OFFSET_TABLE_NAME[1]
11119 && name[2] == GLOBAL_OFFSET_TABLE_NAME[2]
11120 && strcmp (name, GLOBAL_OFFSET_TABLE_NAME) == 0)
11121 {
11122 if (!GOT_symbol)
11123 {
11124 if (symbol_find (name))
11125 as_bad (_("GOT already in symbol table"));
11126 GOT_symbol = symbol_new (name, undefined_section,
11127 (valueT) 0, &zero_address_frag);
11128 };
11129 return GOT_symbol;
11130 }
11131 return 0;
11132 }
11133
11134 /* Round up a section size to the appropriate boundary. */
11135
11136 valueT
11137 md_section_align (segT segment ATTRIBUTE_UNUSED, valueT size)
11138 {
11139 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
11140 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
11141 {
11142 /* For a.out, force the section size to be aligned. If we don't do
11143 this, BFD will align it for us, but it will not write out the
11144 final bytes of the section. This may be a bug in BFD, but it is
11145 easier to fix it here since that is how the other a.out targets
11146 work. */
11147 int align;
11148
11149 align = bfd_get_section_alignment (stdoutput, segment);
11150 size = ((size + (1 << align) - 1) & (-((valueT) 1 << align)));
11151 }
11152 #endif
11153
11154 return size;
11155 }
11156
11157 /* On the i386, PC-relative offsets are relative to the start of the
11158 next instruction. That is, the address of the offset, plus its
11159 size, since the offset is always the last part of the insn. */
11160
11161 long
11162 md_pcrel_from (fixS *fixP)
11163 {
11164 return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address;
11165 }
11166
11167 #ifndef I386COFF
11168
11169 static void
11170 s_bss (int ignore ATTRIBUTE_UNUSED)
11171 {
11172 int temp;
11173
11174 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11175 if (IS_ELF)
11176 obj_elf_section_change_hook ();
11177 #endif
11178 temp = get_absolute_expression ();
11179 subseg_set (bss_section, (subsegT) temp);
11180 demand_empty_rest_of_line ();
11181 }
11182
11183 #endif
11184
11185 void
11186 i386_validate_fix (fixS *fixp)
11187 {
11188 if (fixp->fx_subsy)
11189 {
11190 if (fixp->fx_subsy == GOT_symbol)
11191 {
11192 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
11193 {
11194 if (!object_64bit)
11195 abort ();
11196 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11197 if (fixp->fx_tcbit2)
11198 fixp->fx_r_type = (fixp->fx_tcbit
11199 ? BFD_RELOC_X86_64_REX_GOTPCRELX
11200 : BFD_RELOC_X86_64_GOTPCRELX);
11201 else
11202 #endif
11203 fixp->fx_r_type = BFD_RELOC_X86_64_GOTPCREL;
11204 }
11205 else
11206 {
11207 if (!object_64bit)
11208 fixp->fx_r_type = BFD_RELOC_386_GOTOFF;
11209 else
11210 fixp->fx_r_type = BFD_RELOC_X86_64_GOTOFF64;
11211 }
11212 fixp->fx_subsy = 0;
11213 }
11214 }
11215 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11216 else if (!object_64bit)
11217 {
11218 if (fixp->fx_r_type == BFD_RELOC_386_GOT32
11219 && fixp->fx_tcbit2)
11220 fixp->fx_r_type = BFD_RELOC_386_GOT32X;
11221 }
11222 #endif
11223 }
11224
11225 arelent *
11226 tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
11227 {
11228 arelent *rel;
11229 bfd_reloc_code_real_type code;
11230
11231 switch (fixp->fx_r_type)
11232 {
11233 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11234 case BFD_RELOC_SIZE32:
11235 case BFD_RELOC_SIZE64:
11236 if (S_IS_DEFINED (fixp->fx_addsy)
11237 && !S_IS_EXTERNAL (fixp->fx_addsy))
11238 {
11239 /* Resolve size relocation against local symbol to size of
11240 the symbol plus addend. */
11241 valueT value = S_GET_SIZE (fixp->fx_addsy) + fixp->fx_offset;
11242 if (fixp->fx_r_type == BFD_RELOC_SIZE32
11243 && !fits_in_unsigned_long (value))
11244 as_bad_where (fixp->fx_file, fixp->fx_line,
11245 _("symbol size computation overflow"));
11246 fixp->fx_addsy = NULL;
11247 fixp->fx_subsy = NULL;
11248 md_apply_fix (fixp, (valueT *) &value, NULL);
11249 return NULL;
11250 }
11251 #endif
11252 /* Fall through. */
11253
11254 case BFD_RELOC_X86_64_PLT32:
11255 case BFD_RELOC_X86_64_GOT32:
11256 case BFD_RELOC_X86_64_GOTPCREL:
11257 case BFD_RELOC_X86_64_GOTPCRELX:
11258 case BFD_RELOC_X86_64_REX_GOTPCRELX:
11259 case BFD_RELOC_386_PLT32:
11260 case BFD_RELOC_386_GOT32:
11261 case BFD_RELOC_386_GOT32X:
11262 case BFD_RELOC_386_GOTOFF:
11263 case BFD_RELOC_386_GOTPC:
11264 case BFD_RELOC_386_TLS_GD:
11265 case BFD_RELOC_386_TLS_LDM:
11266 case BFD_RELOC_386_TLS_LDO_32:
11267 case BFD_RELOC_386_TLS_IE_32:
11268 case BFD_RELOC_386_TLS_IE:
11269 case BFD_RELOC_386_TLS_GOTIE:
11270 case BFD_RELOC_386_TLS_LE_32:
11271 case BFD_RELOC_386_TLS_LE:
11272 case BFD_RELOC_386_TLS_GOTDESC:
11273 case BFD_RELOC_386_TLS_DESC_CALL:
11274 case BFD_RELOC_X86_64_TLSGD:
11275 case BFD_RELOC_X86_64_TLSLD:
11276 case BFD_RELOC_X86_64_DTPOFF32:
11277 case BFD_RELOC_X86_64_DTPOFF64:
11278 case BFD_RELOC_X86_64_GOTTPOFF:
11279 case BFD_RELOC_X86_64_TPOFF32:
11280 case BFD_RELOC_X86_64_TPOFF64:
11281 case BFD_RELOC_X86_64_GOTOFF64:
11282 case BFD_RELOC_X86_64_GOTPC32:
11283 case BFD_RELOC_X86_64_GOT64:
11284 case BFD_RELOC_X86_64_GOTPCREL64:
11285 case BFD_RELOC_X86_64_GOTPC64:
11286 case BFD_RELOC_X86_64_GOTPLT64:
11287 case BFD_RELOC_X86_64_PLTOFF64:
11288 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
11289 case BFD_RELOC_X86_64_TLSDESC_CALL:
11290 case BFD_RELOC_RVA:
11291 case BFD_RELOC_VTABLE_ENTRY:
11292 case BFD_RELOC_VTABLE_INHERIT:
11293 #ifdef TE_PE
11294 case BFD_RELOC_32_SECREL:
11295 #endif
11296 code = fixp->fx_r_type;
11297 break;
11298 case BFD_RELOC_X86_64_32S:
11299 if (!fixp->fx_pcrel)
11300 {
11301 /* Don't turn BFD_RELOC_X86_64_32S into BFD_RELOC_32. */
11302 code = fixp->fx_r_type;
11303 break;
11304 }
11305 /* Fall through. */
11306 default:
11307 if (fixp->fx_pcrel)
11308 {
11309 switch (fixp->fx_size)
11310 {
11311 default:
11312 as_bad_where (fixp->fx_file, fixp->fx_line,
11313 _("can not do %d byte pc-relative relocation"),
11314 fixp->fx_size);
11315 code = BFD_RELOC_32_PCREL;
11316 break;
11317 case 1: code = BFD_RELOC_8_PCREL; break;
11318 case 2: code = BFD_RELOC_16_PCREL; break;
11319 case 4: code = BFD_RELOC_32_PCREL; break;
11320 #ifdef BFD64
11321 case 8: code = BFD_RELOC_64_PCREL; break;
11322 #endif
11323 }
11324 }
11325 else
11326 {
11327 switch (fixp->fx_size)
11328 {
11329 default:
11330 as_bad_where (fixp->fx_file, fixp->fx_line,
11331 _("can not do %d byte relocation"),
11332 fixp->fx_size);
11333 code = BFD_RELOC_32;
11334 break;
11335 case 1: code = BFD_RELOC_8; break;
11336 case 2: code = BFD_RELOC_16; break;
11337 case 4: code = BFD_RELOC_32; break;
11338 #ifdef BFD64
11339 case 8: code = BFD_RELOC_64; break;
11340 #endif
11341 }
11342 }
11343 break;
11344 }
11345
11346 if ((code == BFD_RELOC_32
11347 || code == BFD_RELOC_32_PCREL
11348 || code == BFD_RELOC_X86_64_32S)
11349 && GOT_symbol
11350 && fixp->fx_addsy == GOT_symbol)
11351 {
11352 if (!object_64bit)
11353 code = BFD_RELOC_386_GOTPC;
11354 else
11355 code = BFD_RELOC_X86_64_GOTPC32;
11356 }
11357 if ((code == BFD_RELOC_64 || code == BFD_RELOC_64_PCREL)
11358 && GOT_symbol
11359 && fixp->fx_addsy == GOT_symbol)
11360 {
11361 code = BFD_RELOC_X86_64_GOTPC64;
11362 }
11363
11364 rel = XNEW (arelent);
11365 rel->sym_ptr_ptr = XNEW (asymbol *);
11366 *rel->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
11367
11368 rel->address = fixp->fx_frag->fr_address + fixp->fx_where;
11369
11370 if (!use_rela_relocations)
11371 {
11372 /* HACK: Since i386 ELF uses Rel instead of Rela, encode the
11373 vtable entry to be used in the relocation's section offset. */
11374 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
11375 rel->address = fixp->fx_offset;
11376 #if defined (OBJ_COFF) && defined (TE_PE)
11377 else if (fixp->fx_addsy && S_IS_WEAK (fixp->fx_addsy))
11378 rel->addend = fixp->fx_addnumber - (S_GET_VALUE (fixp->fx_addsy) * 2);
11379 else
11380 #endif
11381 rel->addend = 0;
11382 }
11383 /* Use the rela in 64bit mode. */
11384 else
11385 {
11386 if (disallow_64bit_reloc)
11387 switch (code)
11388 {
11389 case BFD_RELOC_X86_64_DTPOFF64:
11390 case BFD_RELOC_X86_64_TPOFF64:
11391 case BFD_RELOC_64_PCREL:
11392 case BFD_RELOC_X86_64_GOTOFF64:
11393 case BFD_RELOC_X86_64_GOT64:
11394 case BFD_RELOC_X86_64_GOTPCREL64:
11395 case BFD_RELOC_X86_64_GOTPC64:
11396 case BFD_RELOC_X86_64_GOTPLT64:
11397 case BFD_RELOC_X86_64_PLTOFF64:
11398 as_bad_where (fixp->fx_file, fixp->fx_line,
11399 _("cannot represent relocation type %s in x32 mode"),
11400 bfd_get_reloc_code_name (code));
11401 break;
11402 default:
11403 break;
11404 }
11405
11406 if (!fixp->fx_pcrel)
11407 rel->addend = fixp->fx_offset;
11408 else
11409 switch (code)
11410 {
11411 case BFD_RELOC_X86_64_PLT32:
11412 case BFD_RELOC_X86_64_GOT32:
11413 case BFD_RELOC_X86_64_GOTPCREL:
11414 case BFD_RELOC_X86_64_GOTPCRELX:
11415 case BFD_RELOC_X86_64_REX_GOTPCRELX:
11416 case BFD_RELOC_X86_64_TLSGD:
11417 case BFD_RELOC_X86_64_TLSLD:
11418 case BFD_RELOC_X86_64_GOTTPOFF:
11419 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
11420 case BFD_RELOC_X86_64_TLSDESC_CALL:
11421 rel->addend = fixp->fx_offset - fixp->fx_size;
11422 break;
11423 default:
11424 rel->addend = (section->vma
11425 - fixp->fx_size
11426 + fixp->fx_addnumber
11427 + md_pcrel_from (fixp));
11428 break;
11429 }
11430 }
11431
11432 rel->howto = bfd_reloc_type_lookup (stdoutput, code);
11433 if (rel->howto == NULL)
11434 {
11435 as_bad_where (fixp->fx_file, fixp->fx_line,
11436 _("cannot represent relocation type %s"),
11437 bfd_get_reloc_code_name (code));
11438 /* Set howto to a garbage value so that we can keep going. */
11439 rel->howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_32);
11440 gas_assert (rel->howto != NULL);
11441 }
11442
11443 return rel;
11444 }
11445
11446 #include "tc-i386-intel.c"
11447
11448 void
11449 tc_x86_parse_to_dw2regnum (expressionS *exp)
11450 {
11451 int saved_naked_reg;
11452 char saved_register_dot;
11453
11454 saved_naked_reg = allow_naked_reg;
11455 allow_naked_reg = 1;
11456 saved_register_dot = register_chars['.'];
11457 register_chars['.'] = '.';
11458 allow_pseudo_reg = 1;
11459 expression_and_evaluate (exp);
11460 allow_pseudo_reg = 0;
11461 register_chars['.'] = saved_register_dot;
11462 allow_naked_reg = saved_naked_reg;
11463
11464 if (exp->X_op == O_register && exp->X_add_number >= 0)
11465 {
11466 if ((addressT) exp->X_add_number < i386_regtab_size)
11467 {
11468 exp->X_op = O_constant;
11469 exp->X_add_number = i386_regtab[exp->X_add_number]
11470 .dw2_regnum[flag_code >> 1];
11471 }
11472 else
11473 exp->X_op = O_illegal;
11474 }
11475 }
11476
11477 void
11478 tc_x86_frame_initial_instructions (void)
11479 {
11480 static unsigned int sp_regno[2];
11481
11482 if (!sp_regno[flag_code >> 1])
11483 {
11484 char *saved_input = input_line_pointer;
11485 char sp[][4] = {"esp", "rsp"};
11486 expressionS exp;
11487
11488 input_line_pointer = sp[flag_code >> 1];
11489 tc_x86_parse_to_dw2regnum (&exp);
11490 gas_assert (exp.X_op == O_constant);
11491 sp_regno[flag_code >> 1] = exp.X_add_number;
11492 input_line_pointer = saved_input;
11493 }
11494
11495 cfi_add_CFA_def_cfa (sp_regno[flag_code >> 1], -x86_cie_data_alignment);
11496 cfi_add_CFA_offset (x86_dwarf2_return_column, x86_cie_data_alignment);
11497 }
11498
11499 int
11500 x86_dwarf2_addr_size (void)
11501 {
11502 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
11503 if (x86_elf_abi == X86_64_X32_ABI)
11504 return 4;
11505 #endif
11506 return bfd_arch_bits_per_address (stdoutput) / 8;
11507 }
11508
11509 int
11510 i386_elf_section_type (const char *str, size_t len)
11511 {
11512 if (flag_code == CODE_64BIT
11513 && len == sizeof ("unwind") - 1
11514 && strncmp (str, "unwind", 6) == 0)
11515 return SHT_X86_64_UNWIND;
11516
11517 return -1;
11518 }
11519
11520 #ifdef TE_SOLARIS
11521 void
11522 i386_solaris_fix_up_eh_frame (segT sec)
11523 {
11524 if (flag_code == CODE_64BIT)
11525 elf_section_type (sec) = SHT_X86_64_UNWIND;
11526 }
11527 #endif
11528
11529 #ifdef TE_PE
11530 void
11531 tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
11532 {
11533 expressionS exp;
11534
11535 exp.X_op = O_secrel;
11536 exp.X_add_symbol = symbol;
11537 exp.X_add_number = 0;
11538 emit_expr (&exp, size);
11539 }
11540 #endif
11541
11542 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11543 /* For ELF on x86-64, add support for SHF_X86_64_LARGE. */
11544
11545 bfd_vma
11546 x86_64_section_letter (int letter, const char **ptr_msg)
11547 {
11548 if (flag_code == CODE_64BIT)
11549 {
11550 if (letter == 'l')
11551 return SHF_X86_64_LARGE;
11552
11553 *ptr_msg = _("bad .section directive: want a,l,w,x,M,S,G,T in string");
11554 }
11555 else
11556 *ptr_msg = _("bad .section directive: want a,w,x,M,S,G,T in string");
11557 return -1;
11558 }
11559
11560 bfd_vma
11561 x86_64_section_word (char *str, size_t len)
11562 {
11563 if (len == 5 && flag_code == CODE_64BIT && CONST_STRNEQ (str, "large"))
11564 return SHF_X86_64_LARGE;
11565
11566 return -1;
11567 }
11568
11569 static void
11570 handle_large_common (int small ATTRIBUTE_UNUSED)
11571 {
11572 if (flag_code != CODE_64BIT)
11573 {
11574 s_comm_internal (0, elf_common_parse);
11575 as_warn (_(".largecomm supported only in 64bit mode, producing .comm"));
11576 }
11577 else
11578 {
11579 static segT lbss_section;
11580 asection *saved_com_section_ptr = elf_com_section_ptr;
11581 asection *saved_bss_section = bss_section;
11582
11583 if (lbss_section == NULL)
11584 {
11585 flagword applicable;
11586 segT seg = now_seg;
11587 subsegT subseg = now_subseg;
11588
11589 /* The .lbss section is for local .largecomm symbols. */
11590 lbss_section = subseg_new (".lbss", 0);
11591 applicable = bfd_applicable_section_flags (stdoutput);
11592 bfd_set_section_flags (stdoutput, lbss_section,
11593 applicable & SEC_ALLOC);
11594 seg_info (lbss_section)->bss = 1;
11595
11596 subseg_set (seg, subseg);
11597 }
11598
11599 elf_com_section_ptr = &_bfd_elf_large_com_section;
11600 bss_section = lbss_section;
11601
11602 s_comm_internal (0, elf_common_parse);
11603
11604 elf_com_section_ptr = saved_com_section_ptr;
11605 bss_section = saved_bss_section;
11606 }
11607 }
11608 #endif /* OBJ_ELF || OBJ_MAYBE_ELF */
This page took 0.66063 seconds and 4 git commands to generate.