x86: make RegMem an opcode modifier
[deliverable/binutils-gdb.git] / gas / config / tc-i386.c
1 /* tc-i386.c -- Assemble code for the Intel 80386
2 Copyright (C) 1989-2019 Free Software Foundation, Inc.
3
4 This file is part of GAS, the GNU Assembler.
5
6 GAS is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
10
11 GAS is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GAS; see the file COPYING. If not, write to the Free
18 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
19 02110-1301, USA. */
20
21 /* Intel 80386 machine specific gas.
22 Written by Eliot Dresselhaus (eliot@mgm.mit.edu).
23 x86_64 support by Jan Hubicka (jh@suse.cz)
24 VIA PadLock support by Michal Ludvig (mludvig@suse.cz)
25 Bugs & suggestions are completely welcome. This is free software.
26 Please help us make it better. */
27
28 #include "as.h"
29 #include "safe-ctype.h"
30 #include "subsegs.h"
31 #include "dwarf2dbg.h"
32 #include "dw2gencfi.h"
33 #include "elf/x86-64.h"
34 #include "opcodes/i386-init.h"
35
36 #ifdef HAVE_LIMITS_H
37 #include <limits.h>
38 #else
39 #ifdef HAVE_SYS_PARAM_H
40 #include <sys/param.h>
41 #endif
42 #ifndef INT_MAX
43 #define INT_MAX (int) (((unsigned) (-1)) >> 1)
44 #endif
45 #endif
46
47 #ifndef REGISTER_WARNINGS
48 #define REGISTER_WARNINGS 1
49 #endif
50
51 #ifndef INFER_ADDR_PREFIX
52 #define INFER_ADDR_PREFIX 1
53 #endif
54
55 #ifndef DEFAULT_ARCH
56 #define DEFAULT_ARCH "i386"
57 #endif
58
59 #ifndef INLINE
60 #if __GNUC__ >= 2
61 #define INLINE __inline__
62 #else
63 #define INLINE
64 #endif
65 #endif
66
67 /* Prefixes will be emitted in the order defined below.
68 WAIT_PREFIX must be the first prefix since FWAIT is really is an
69 instruction, and so must come before any prefixes.
70 The preferred prefix order is SEG_PREFIX, ADDR_PREFIX, DATA_PREFIX,
71 REP_PREFIX/HLE_PREFIX, LOCK_PREFIX. */
72 #define WAIT_PREFIX 0
73 #define SEG_PREFIX 1
74 #define ADDR_PREFIX 2
75 #define DATA_PREFIX 3
76 #define REP_PREFIX 4
77 #define HLE_PREFIX REP_PREFIX
78 #define BND_PREFIX REP_PREFIX
79 #define LOCK_PREFIX 5
80 #define REX_PREFIX 6 /* must come last. */
81 #define MAX_PREFIXES 7 /* max prefixes per opcode */
82
83 /* we define the syntax here (modulo base,index,scale syntax) */
84 #define REGISTER_PREFIX '%'
85 #define IMMEDIATE_PREFIX '$'
86 #define ABSOLUTE_PREFIX '*'
87
88 /* these are the instruction mnemonic suffixes in AT&T syntax or
89 memory operand size in Intel syntax. */
90 #define WORD_MNEM_SUFFIX 'w'
91 #define BYTE_MNEM_SUFFIX 'b'
92 #define SHORT_MNEM_SUFFIX 's'
93 #define LONG_MNEM_SUFFIX 'l'
94 #define QWORD_MNEM_SUFFIX 'q'
95 /* Intel Syntax. Use a non-ascii letter since since it never appears
96 in instructions. */
97 #define LONG_DOUBLE_MNEM_SUFFIX '\1'
98
99 #define END_OF_INSN '\0'
100
101 /* This matches the C -> StaticRounding alias in the opcode table. */
102 #define commutative staticrounding
103
104 /*
105 'templates' is for grouping together 'template' structures for opcodes
106 of the same name. This is only used for storing the insns in the grand
107 ole hash table of insns.
108 The templates themselves start at START and range up to (but not including)
109 END.
110 */
111 typedef struct
112 {
113 const insn_template *start;
114 const insn_template *end;
115 }
116 templates;
117
118 /* 386 operand encoding bytes: see 386 book for details of this. */
119 typedef struct
120 {
121 unsigned int regmem; /* codes register or memory operand */
122 unsigned int reg; /* codes register operand (or extended opcode) */
123 unsigned int mode; /* how to interpret regmem & reg */
124 }
125 modrm_byte;
126
127 /* x86-64 extension prefix. */
128 typedef int rex_byte;
129
130 /* 386 opcode byte to code indirect addressing. */
131 typedef struct
132 {
133 unsigned base;
134 unsigned index;
135 unsigned scale;
136 }
137 sib_byte;
138
139 /* x86 arch names, types and features */
140 typedef struct
141 {
142 const char *name; /* arch name */
143 unsigned int len; /* arch string length */
144 enum processor_type type; /* arch type */
145 i386_cpu_flags flags; /* cpu feature flags */
146 unsigned int skip; /* show_arch should skip this. */
147 }
148 arch_entry;
149
150 /* Used to turn off indicated flags. */
151 typedef struct
152 {
153 const char *name; /* arch name */
154 unsigned int len; /* arch string length */
155 i386_cpu_flags flags; /* cpu feature flags */
156 }
157 noarch_entry;
158
159 static void update_code_flag (int, int);
160 static void set_code_flag (int);
161 static void set_16bit_gcc_code_flag (int);
162 static void set_intel_syntax (int);
163 static void set_intel_mnemonic (int);
164 static void set_allow_index_reg (int);
165 static void set_check (int);
166 static void set_cpu_arch (int);
167 #ifdef TE_PE
168 static void pe_directive_secrel (int);
169 #endif
170 static void signed_cons (int);
171 static char *output_invalid (int c);
172 static int i386_finalize_immediate (segT, expressionS *, i386_operand_type,
173 const char *);
174 static int i386_finalize_displacement (segT, expressionS *, i386_operand_type,
175 const char *);
176 static int i386_att_operand (char *);
177 static int i386_intel_operand (char *, int);
178 static int i386_intel_simplify (expressionS *);
179 static int i386_intel_parse_name (const char *, expressionS *);
180 static const reg_entry *parse_register (char *, char **);
181 static char *parse_insn (char *, char *);
182 static char *parse_operands (char *, const char *);
183 static void swap_operands (void);
184 static void swap_2_operands (int, int);
185 static void optimize_imm (void);
186 static void optimize_disp (void);
187 static const insn_template *match_template (char);
188 static int check_string (void);
189 static int process_suffix (void);
190 static int check_byte_reg (void);
191 static int check_long_reg (void);
192 static int check_qword_reg (void);
193 static int check_word_reg (void);
194 static int finalize_imm (void);
195 static int process_operands (void);
196 static const seg_entry *build_modrm_byte (void);
197 static void output_insn (void);
198 static void output_imm (fragS *, offsetT);
199 static void output_disp (fragS *, offsetT);
200 #ifndef I386COFF
201 static void s_bss (int);
202 #endif
203 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
204 static void handle_large_common (int small ATTRIBUTE_UNUSED);
205
206 /* GNU_PROPERTY_X86_ISA_1_USED. */
207 static unsigned int x86_isa_1_used;
208 /* GNU_PROPERTY_X86_FEATURE_2_USED. */
209 static unsigned int x86_feature_2_used;
210 /* Generate x86 used ISA and feature properties. */
211 static unsigned int x86_used_note = DEFAULT_X86_USED_NOTE;
212 #endif
213
214 static const char *default_arch = DEFAULT_ARCH;
215
216 /* This struct describes rounding control and SAE in the instruction. */
217 struct RC_Operation
218 {
219 enum rc_type
220 {
221 rne = 0,
222 rd,
223 ru,
224 rz,
225 saeonly
226 } type;
227 int operand;
228 };
229
230 static struct RC_Operation rc_op;
231
232 /* The struct describes masking, applied to OPERAND in the instruction.
233 MASK is a pointer to the corresponding mask register. ZEROING tells
234 whether merging or zeroing mask is used. */
235 struct Mask_Operation
236 {
237 const reg_entry *mask;
238 unsigned int zeroing;
239 /* The operand where this operation is associated. */
240 int operand;
241 };
242
243 static struct Mask_Operation mask_op;
244
245 /* The struct describes broadcasting, applied to OPERAND. FACTOR is
246 broadcast factor. */
247 struct Broadcast_Operation
248 {
249 /* Type of broadcast: {1to2}, {1to4}, {1to8}, or {1to16}. */
250 int type;
251
252 /* Index of broadcasted operand. */
253 int operand;
254
255 /* Number of bytes to broadcast. */
256 int bytes;
257 };
258
259 static struct Broadcast_Operation broadcast_op;
260
261 /* VEX prefix. */
262 typedef struct
263 {
264 /* VEX prefix is either 2 byte or 3 byte. EVEX is 4 byte. */
265 unsigned char bytes[4];
266 unsigned int length;
267 /* Destination or source register specifier. */
268 const reg_entry *register_specifier;
269 } vex_prefix;
270
271 /* 'md_assemble ()' gathers together information and puts it into a
272 i386_insn. */
273
274 union i386_op
275 {
276 expressionS *disps;
277 expressionS *imms;
278 const reg_entry *regs;
279 };
280
281 enum i386_error
282 {
283 operand_size_mismatch,
284 operand_type_mismatch,
285 register_type_mismatch,
286 number_of_operands_mismatch,
287 invalid_instruction_suffix,
288 bad_imm4,
289 unsupported_with_intel_mnemonic,
290 unsupported_syntax,
291 unsupported,
292 invalid_vsib_address,
293 invalid_vector_register_set,
294 unsupported_vector_index_register,
295 unsupported_broadcast,
296 broadcast_needed,
297 unsupported_masking,
298 mask_not_on_destination,
299 no_default_mask,
300 unsupported_rc_sae,
301 rc_sae_operand_not_last_imm,
302 invalid_register_operand,
303 };
304
305 struct _i386_insn
306 {
307 /* TM holds the template for the insn were currently assembling. */
308 insn_template tm;
309
310 /* SUFFIX holds the instruction size suffix for byte, word, dword
311 or qword, if given. */
312 char suffix;
313
314 /* OPERANDS gives the number of given operands. */
315 unsigned int operands;
316
317 /* REG_OPERANDS, DISP_OPERANDS, MEM_OPERANDS, IMM_OPERANDS give the number
318 of given register, displacement, memory operands and immediate
319 operands. */
320 unsigned int reg_operands, disp_operands, mem_operands, imm_operands;
321
322 /* TYPES [i] is the type (see above #defines) which tells us how to
323 use OP[i] for the corresponding operand. */
324 i386_operand_type types[MAX_OPERANDS];
325
326 /* Displacement expression, immediate expression, or register for each
327 operand. */
328 union i386_op op[MAX_OPERANDS];
329
330 /* Flags for operands. */
331 unsigned int flags[MAX_OPERANDS];
332 #define Operand_PCrel 1
333 #define Operand_Mem 2
334
335 /* Relocation type for operand */
336 enum bfd_reloc_code_real reloc[MAX_OPERANDS];
337
338 /* BASE_REG, INDEX_REG, and LOG2_SCALE_FACTOR are used to encode
339 the base index byte below. */
340 const reg_entry *base_reg;
341 const reg_entry *index_reg;
342 unsigned int log2_scale_factor;
343
344 /* SEG gives the seg_entries of this insn. They are zero unless
345 explicit segment overrides are given. */
346 const seg_entry *seg[2];
347
348 /* Copied first memory operand string, for re-checking. */
349 char *memop1_string;
350
351 /* PREFIX holds all the given prefix opcodes (usually null).
352 PREFIXES is the number of prefix opcodes. */
353 unsigned int prefixes;
354 unsigned char prefix[MAX_PREFIXES];
355
356 /* Has MMX register operands. */
357 bfd_boolean has_regmmx;
358
359 /* Has XMM register operands. */
360 bfd_boolean has_regxmm;
361
362 /* Has YMM register operands. */
363 bfd_boolean has_regymm;
364
365 /* Has ZMM register operands. */
366 bfd_boolean has_regzmm;
367
368 /* RM and SIB are the modrm byte and the sib byte where the
369 addressing modes of this insn are encoded. */
370 modrm_byte rm;
371 rex_byte rex;
372 rex_byte vrex;
373 sib_byte sib;
374 vex_prefix vex;
375
376 /* Masking attributes. */
377 struct Mask_Operation *mask;
378
379 /* Rounding control and SAE attributes. */
380 struct RC_Operation *rounding;
381
382 /* Broadcasting attributes. */
383 struct Broadcast_Operation *broadcast;
384
385 /* Compressed disp8*N attribute. */
386 unsigned int memshift;
387
388 /* Prefer load or store in encoding. */
389 enum
390 {
391 dir_encoding_default = 0,
392 dir_encoding_load,
393 dir_encoding_store,
394 dir_encoding_swap
395 } dir_encoding;
396
397 /* Prefer 8bit or 32bit displacement in encoding. */
398 enum
399 {
400 disp_encoding_default = 0,
401 disp_encoding_8bit,
402 disp_encoding_32bit
403 } disp_encoding;
404
405 /* Prefer the REX byte in encoding. */
406 bfd_boolean rex_encoding;
407
408 /* Disable instruction size optimization. */
409 bfd_boolean no_optimize;
410
411 /* How to encode vector instructions. */
412 enum
413 {
414 vex_encoding_default = 0,
415 vex_encoding_vex2,
416 vex_encoding_vex3,
417 vex_encoding_evex
418 } vec_encoding;
419
420 /* REP prefix. */
421 const char *rep_prefix;
422
423 /* HLE prefix. */
424 const char *hle_prefix;
425
426 /* Have BND prefix. */
427 const char *bnd_prefix;
428
429 /* Have NOTRACK prefix. */
430 const char *notrack_prefix;
431
432 /* Error message. */
433 enum i386_error error;
434 };
435
436 typedef struct _i386_insn i386_insn;
437
438 /* Link RC type with corresponding string, that'll be looked for in
439 asm. */
440 struct RC_name
441 {
442 enum rc_type type;
443 const char *name;
444 unsigned int len;
445 };
446
447 static const struct RC_name RC_NamesTable[] =
448 {
449 { rne, STRING_COMMA_LEN ("rn-sae") },
450 { rd, STRING_COMMA_LEN ("rd-sae") },
451 { ru, STRING_COMMA_LEN ("ru-sae") },
452 { rz, STRING_COMMA_LEN ("rz-sae") },
453 { saeonly, STRING_COMMA_LEN ("sae") },
454 };
455
456 /* List of chars besides those in app.c:symbol_chars that can start an
457 operand. Used to prevent the scrubber eating vital white-space. */
458 const char extra_symbol_chars[] = "*%-([{}"
459 #ifdef LEX_AT
460 "@"
461 #endif
462 #ifdef LEX_QM
463 "?"
464 #endif
465 ;
466
467 #if (defined (TE_I386AIX) \
468 || ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) \
469 && !defined (TE_GNU) \
470 && !defined (TE_LINUX) \
471 && !defined (TE_NACL) \
472 && !defined (TE_FreeBSD) \
473 && !defined (TE_DragonFly) \
474 && !defined (TE_NetBSD)))
475 /* This array holds the chars that always start a comment. If the
476 pre-processor is disabled, these aren't very useful. The option
477 --divide will remove '/' from this list. */
478 const char *i386_comment_chars = "#/";
479 #define SVR4_COMMENT_CHARS 1
480 #define PREFIX_SEPARATOR '\\'
481
482 #else
483 const char *i386_comment_chars = "#";
484 #define PREFIX_SEPARATOR '/'
485 #endif
486
487 /* This array holds the chars that only start a comment at the beginning of
488 a line. If the line seems to have the form '# 123 filename'
489 .line and .file directives will appear in the pre-processed output.
490 Note that input_file.c hand checks for '#' at the beginning of the
491 first line of the input file. This is because the compiler outputs
492 #NO_APP at the beginning of its output.
493 Also note that comments started like this one will always work if
494 '/' isn't otherwise defined. */
495 const char line_comment_chars[] = "#/";
496
497 const char line_separator_chars[] = ";";
498
499 /* Chars that can be used to separate mant from exp in floating point
500 nums. */
501 const char EXP_CHARS[] = "eE";
502
503 /* Chars that mean this number is a floating point constant
504 As in 0f12.456
505 or 0d1.2345e12. */
506 const char FLT_CHARS[] = "fFdDxX";
507
508 /* Tables for lexical analysis. */
509 static char mnemonic_chars[256];
510 static char register_chars[256];
511 static char operand_chars[256];
512 static char identifier_chars[256];
513 static char digit_chars[256];
514
515 /* Lexical macros. */
516 #define is_mnemonic_char(x) (mnemonic_chars[(unsigned char) x])
517 #define is_operand_char(x) (operand_chars[(unsigned char) x])
518 #define is_register_char(x) (register_chars[(unsigned char) x])
519 #define is_space_char(x) ((x) == ' ')
520 #define is_identifier_char(x) (identifier_chars[(unsigned char) x])
521 #define is_digit_char(x) (digit_chars[(unsigned char) x])
522
523 /* All non-digit non-letter characters that may occur in an operand. */
524 static char operand_special_chars[] = "%$-+(,)*._~/<>|&^!:[@]";
525
526 /* md_assemble() always leaves the strings it's passed unaltered. To
527 effect this we maintain a stack of saved characters that we've smashed
528 with '\0's (indicating end of strings for various sub-fields of the
529 assembler instruction). */
530 static char save_stack[32];
531 static char *save_stack_p;
532 #define END_STRING_AND_SAVE(s) \
533 do { *save_stack_p++ = *(s); *(s) = '\0'; } while (0)
534 #define RESTORE_END_STRING(s) \
535 do { *(s) = *--save_stack_p; } while (0)
536
537 /* The instruction we're assembling. */
538 static i386_insn i;
539
540 /* Possible templates for current insn. */
541 static const templates *current_templates;
542
543 /* Per instruction expressionS buffers: max displacements & immediates. */
544 static expressionS disp_expressions[MAX_MEMORY_OPERANDS];
545 static expressionS im_expressions[MAX_IMMEDIATE_OPERANDS];
546
547 /* Current operand we are working on. */
548 static int this_operand = -1;
549
550 /* We support four different modes. FLAG_CODE variable is used to distinguish
551 these. */
552
553 enum flag_code {
554 CODE_32BIT,
555 CODE_16BIT,
556 CODE_64BIT };
557
558 static enum flag_code flag_code;
559 static unsigned int object_64bit;
560 static unsigned int disallow_64bit_reloc;
561 static int use_rela_relocations = 0;
562
563 #if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
564 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
565 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
566
567 /* The ELF ABI to use. */
568 enum x86_elf_abi
569 {
570 I386_ABI,
571 X86_64_ABI,
572 X86_64_X32_ABI
573 };
574
575 static enum x86_elf_abi x86_elf_abi = I386_ABI;
576 #endif
577
578 #if defined (TE_PE) || defined (TE_PEP)
579 /* Use big object file format. */
580 static int use_big_obj = 0;
581 #endif
582
583 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
584 /* 1 if generating code for a shared library. */
585 static int shared = 0;
586 #endif
587
588 /* 1 for intel syntax,
589 0 if att syntax. */
590 static int intel_syntax = 0;
591
592 /* 1 for Intel64 ISA,
593 0 if AMD64 ISA. */
594 static int intel64;
595
596 /* 1 for intel mnemonic,
597 0 if att mnemonic. */
598 static int intel_mnemonic = !SYSV386_COMPAT;
599
600 /* 1 if pseudo registers are permitted. */
601 static int allow_pseudo_reg = 0;
602
603 /* 1 if register prefix % not required. */
604 static int allow_naked_reg = 0;
605
606 /* 1 if the assembler should add BND prefix for all control-transferring
607 instructions supporting it, even if this prefix wasn't specified
608 explicitly. */
609 static int add_bnd_prefix = 0;
610
611 /* 1 if pseudo index register, eiz/riz, is allowed . */
612 static int allow_index_reg = 0;
613
614 /* 1 if the assembler should ignore LOCK prefix, even if it was
615 specified explicitly. */
616 static int omit_lock_prefix = 0;
617
618 /* 1 if the assembler should encode lfence, mfence, and sfence as
619 "lock addl $0, (%{re}sp)". */
620 static int avoid_fence = 0;
621
622 /* 1 if the assembler should generate relax relocations. */
623
624 static int generate_relax_relocations
625 = DEFAULT_GENERATE_X86_RELAX_RELOCATIONS;
626
627 static enum check_kind
628 {
629 check_none = 0,
630 check_warning,
631 check_error
632 }
633 sse_check, operand_check = check_warning;
634
635 /* Optimization:
636 1. Clear the REX_W bit with register operand if possible.
637 2. Above plus use 128bit vector instruction to clear the full vector
638 register.
639 */
640 static int optimize = 0;
641
642 /* Optimization:
643 1. Clear the REX_W bit with register operand if possible.
644 2. Above plus use 128bit vector instruction to clear the full vector
645 register.
646 3. Above plus optimize "test{q,l,w} $imm8,%r{64,32,16}" to
647 "testb $imm7,%r8".
648 */
649 static int optimize_for_space = 0;
650
651 /* Register prefix used for error message. */
652 static const char *register_prefix = "%";
653
654 /* Used in 16 bit gcc mode to add an l suffix to call, ret, enter,
655 leave, push, and pop instructions so that gcc has the same stack
656 frame as in 32 bit mode. */
657 static char stackop_size = '\0';
658
659 /* Non-zero to optimize code alignment. */
660 int optimize_align_code = 1;
661
662 /* Non-zero to quieten some warnings. */
663 static int quiet_warnings = 0;
664
665 /* CPU name. */
666 static const char *cpu_arch_name = NULL;
667 static char *cpu_sub_arch_name = NULL;
668
669 /* CPU feature flags. */
670 static i386_cpu_flags cpu_arch_flags = CPU_UNKNOWN_FLAGS;
671
672 /* If we have selected a cpu we are generating instructions for. */
673 static int cpu_arch_tune_set = 0;
674
675 /* Cpu we are generating instructions for. */
676 enum processor_type cpu_arch_tune = PROCESSOR_UNKNOWN;
677
678 /* CPU feature flags of cpu we are generating instructions for. */
679 static i386_cpu_flags cpu_arch_tune_flags;
680
681 /* CPU instruction set architecture used. */
682 enum processor_type cpu_arch_isa = PROCESSOR_UNKNOWN;
683
684 /* CPU feature flags of instruction set architecture used. */
685 i386_cpu_flags cpu_arch_isa_flags;
686
687 /* If set, conditional jumps are not automatically promoted to handle
688 larger than a byte offset. */
689 static unsigned int no_cond_jump_promotion = 0;
690
691 /* Encode SSE instructions with VEX prefix. */
692 static unsigned int sse2avx;
693
694 /* Encode scalar AVX instructions with specific vector length. */
695 static enum
696 {
697 vex128 = 0,
698 vex256
699 } avxscalar;
700
701 /* Encode VEX WIG instructions with specific vex.w. */
702 static enum
703 {
704 vexw0 = 0,
705 vexw1
706 } vexwig;
707
708 /* Encode scalar EVEX LIG instructions with specific vector length. */
709 static enum
710 {
711 evexl128 = 0,
712 evexl256,
713 evexl512
714 } evexlig;
715
716 /* Encode EVEX WIG instructions with specific evex.w. */
717 static enum
718 {
719 evexw0 = 0,
720 evexw1
721 } evexwig;
722
723 /* Value to encode in EVEX RC bits, for SAE-only instructions. */
724 static enum rc_type evexrcig = rne;
725
726 /* Pre-defined "_GLOBAL_OFFSET_TABLE_". */
727 static symbolS *GOT_symbol;
728
729 /* The dwarf2 return column, adjusted for 32 or 64 bit. */
730 unsigned int x86_dwarf2_return_column;
731
732 /* The dwarf2 data alignment, adjusted for 32 or 64 bit. */
733 int x86_cie_data_alignment;
734
735 /* Interface to relax_segment.
736 There are 3 major relax states for 386 jump insns because the
737 different types of jumps add different sizes to frags when we're
738 figuring out what sort of jump to choose to reach a given label. */
739
740 /* Types. */
741 #define UNCOND_JUMP 0
742 #define COND_JUMP 1
743 #define COND_JUMP86 2
744
745 /* Sizes. */
746 #define CODE16 1
747 #define SMALL 0
748 #define SMALL16 (SMALL | CODE16)
749 #define BIG 2
750 #define BIG16 (BIG | CODE16)
751
752 #ifndef INLINE
753 #ifdef __GNUC__
754 #define INLINE __inline__
755 #else
756 #define INLINE
757 #endif
758 #endif
759
760 #define ENCODE_RELAX_STATE(type, size) \
761 ((relax_substateT) (((type) << 2) | (size)))
762 #define TYPE_FROM_RELAX_STATE(s) \
763 ((s) >> 2)
764 #define DISP_SIZE_FROM_RELAX_STATE(s) \
765 ((((s) & 3) == BIG ? 4 : (((s) & 3) == BIG16 ? 2 : 1)))
766
767 /* This table is used by relax_frag to promote short jumps to long
768 ones where necessary. SMALL (short) jumps may be promoted to BIG
769 (32 bit long) ones, and SMALL16 jumps to BIG16 (16 bit long). We
770 don't allow a short jump in a 32 bit code segment to be promoted to
771 a 16 bit offset jump because it's slower (requires data size
772 prefix), and doesn't work, unless the destination is in the bottom
773 64k of the code segment (The top 16 bits of eip are zeroed). */
774
775 const relax_typeS md_relax_table[] =
776 {
777 /* The fields are:
778 1) most positive reach of this state,
779 2) most negative reach of this state,
780 3) how many bytes this mode will have in the variable part of the frag
781 4) which index into the table to try if we can't fit into this one. */
782
783 /* UNCOND_JUMP states. */
784 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG)},
785 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16)},
786 /* dword jmp adds 4 bytes to frag:
787 0 extra opcode bytes, 4 displacement bytes. */
788 {0, 0, 4, 0},
789 /* word jmp adds 2 byte2 to frag:
790 0 extra opcode bytes, 2 displacement bytes. */
791 {0, 0, 2, 0},
792
793 /* COND_JUMP states. */
794 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG)},
795 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG16)},
796 /* dword conditionals adds 5 bytes to frag:
797 1 extra opcode byte, 4 displacement bytes. */
798 {0, 0, 5, 0},
799 /* word conditionals add 3 bytes to frag:
800 1 extra opcode byte, 2 displacement bytes. */
801 {0, 0, 3, 0},
802
803 /* COND_JUMP86 states. */
804 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG)},
805 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG16)},
806 /* dword conditionals adds 5 bytes to frag:
807 1 extra opcode byte, 4 displacement bytes. */
808 {0, 0, 5, 0},
809 /* word conditionals add 4 bytes to frag:
810 1 displacement byte and a 3 byte long branch insn. */
811 {0, 0, 4, 0}
812 };
813
814 static const arch_entry cpu_arch[] =
815 {
816 /* Do not replace the first two entries - i386_target_format()
817 relies on them being there in this order. */
818 { STRING_COMMA_LEN ("generic32"), PROCESSOR_GENERIC32,
819 CPU_GENERIC32_FLAGS, 0 },
820 { STRING_COMMA_LEN ("generic64"), PROCESSOR_GENERIC64,
821 CPU_GENERIC64_FLAGS, 0 },
822 { STRING_COMMA_LEN ("i8086"), PROCESSOR_UNKNOWN,
823 CPU_NONE_FLAGS, 0 },
824 { STRING_COMMA_LEN ("i186"), PROCESSOR_UNKNOWN,
825 CPU_I186_FLAGS, 0 },
826 { STRING_COMMA_LEN ("i286"), PROCESSOR_UNKNOWN,
827 CPU_I286_FLAGS, 0 },
828 { STRING_COMMA_LEN ("i386"), PROCESSOR_I386,
829 CPU_I386_FLAGS, 0 },
830 { STRING_COMMA_LEN ("i486"), PROCESSOR_I486,
831 CPU_I486_FLAGS, 0 },
832 { STRING_COMMA_LEN ("i586"), PROCESSOR_PENTIUM,
833 CPU_I586_FLAGS, 0 },
834 { STRING_COMMA_LEN ("i686"), PROCESSOR_PENTIUMPRO,
835 CPU_I686_FLAGS, 0 },
836 { STRING_COMMA_LEN ("pentium"), PROCESSOR_PENTIUM,
837 CPU_I586_FLAGS, 0 },
838 { STRING_COMMA_LEN ("pentiumpro"), PROCESSOR_PENTIUMPRO,
839 CPU_PENTIUMPRO_FLAGS, 0 },
840 { STRING_COMMA_LEN ("pentiumii"), PROCESSOR_PENTIUMPRO,
841 CPU_P2_FLAGS, 0 },
842 { STRING_COMMA_LEN ("pentiumiii"),PROCESSOR_PENTIUMPRO,
843 CPU_P3_FLAGS, 0 },
844 { STRING_COMMA_LEN ("pentium4"), PROCESSOR_PENTIUM4,
845 CPU_P4_FLAGS, 0 },
846 { STRING_COMMA_LEN ("prescott"), PROCESSOR_NOCONA,
847 CPU_CORE_FLAGS, 0 },
848 { STRING_COMMA_LEN ("nocona"), PROCESSOR_NOCONA,
849 CPU_NOCONA_FLAGS, 0 },
850 { STRING_COMMA_LEN ("yonah"), PROCESSOR_CORE,
851 CPU_CORE_FLAGS, 1 },
852 { STRING_COMMA_LEN ("core"), PROCESSOR_CORE,
853 CPU_CORE_FLAGS, 0 },
854 { STRING_COMMA_LEN ("merom"), PROCESSOR_CORE2,
855 CPU_CORE2_FLAGS, 1 },
856 { STRING_COMMA_LEN ("core2"), PROCESSOR_CORE2,
857 CPU_CORE2_FLAGS, 0 },
858 { STRING_COMMA_LEN ("corei7"), PROCESSOR_COREI7,
859 CPU_COREI7_FLAGS, 0 },
860 { STRING_COMMA_LEN ("l1om"), PROCESSOR_L1OM,
861 CPU_L1OM_FLAGS, 0 },
862 { STRING_COMMA_LEN ("k1om"), PROCESSOR_K1OM,
863 CPU_K1OM_FLAGS, 0 },
864 { STRING_COMMA_LEN ("iamcu"), PROCESSOR_IAMCU,
865 CPU_IAMCU_FLAGS, 0 },
866 { STRING_COMMA_LEN ("k6"), PROCESSOR_K6,
867 CPU_K6_FLAGS, 0 },
868 { STRING_COMMA_LEN ("k6_2"), PROCESSOR_K6,
869 CPU_K6_2_FLAGS, 0 },
870 { STRING_COMMA_LEN ("athlon"), PROCESSOR_ATHLON,
871 CPU_ATHLON_FLAGS, 0 },
872 { STRING_COMMA_LEN ("sledgehammer"), PROCESSOR_K8,
873 CPU_K8_FLAGS, 1 },
874 { STRING_COMMA_LEN ("opteron"), PROCESSOR_K8,
875 CPU_K8_FLAGS, 0 },
876 { STRING_COMMA_LEN ("k8"), PROCESSOR_K8,
877 CPU_K8_FLAGS, 0 },
878 { STRING_COMMA_LEN ("amdfam10"), PROCESSOR_AMDFAM10,
879 CPU_AMDFAM10_FLAGS, 0 },
880 { STRING_COMMA_LEN ("bdver1"), PROCESSOR_BD,
881 CPU_BDVER1_FLAGS, 0 },
882 { STRING_COMMA_LEN ("bdver2"), PROCESSOR_BD,
883 CPU_BDVER2_FLAGS, 0 },
884 { STRING_COMMA_LEN ("bdver3"), PROCESSOR_BD,
885 CPU_BDVER3_FLAGS, 0 },
886 { STRING_COMMA_LEN ("bdver4"), PROCESSOR_BD,
887 CPU_BDVER4_FLAGS, 0 },
888 { STRING_COMMA_LEN ("znver1"), PROCESSOR_ZNVER,
889 CPU_ZNVER1_FLAGS, 0 },
890 { STRING_COMMA_LEN ("znver2"), PROCESSOR_ZNVER,
891 CPU_ZNVER2_FLAGS, 0 },
892 { STRING_COMMA_LEN ("btver1"), PROCESSOR_BT,
893 CPU_BTVER1_FLAGS, 0 },
894 { STRING_COMMA_LEN ("btver2"), PROCESSOR_BT,
895 CPU_BTVER2_FLAGS, 0 },
896 { STRING_COMMA_LEN (".8087"), PROCESSOR_UNKNOWN,
897 CPU_8087_FLAGS, 0 },
898 { STRING_COMMA_LEN (".287"), PROCESSOR_UNKNOWN,
899 CPU_287_FLAGS, 0 },
900 { STRING_COMMA_LEN (".387"), PROCESSOR_UNKNOWN,
901 CPU_387_FLAGS, 0 },
902 { STRING_COMMA_LEN (".687"), PROCESSOR_UNKNOWN,
903 CPU_687_FLAGS, 0 },
904 { STRING_COMMA_LEN (".cmov"), PROCESSOR_UNKNOWN,
905 CPU_CMOV_FLAGS, 0 },
906 { STRING_COMMA_LEN (".fxsr"), PROCESSOR_UNKNOWN,
907 CPU_FXSR_FLAGS, 0 },
908 { STRING_COMMA_LEN (".mmx"), PROCESSOR_UNKNOWN,
909 CPU_MMX_FLAGS, 0 },
910 { STRING_COMMA_LEN (".sse"), PROCESSOR_UNKNOWN,
911 CPU_SSE_FLAGS, 0 },
912 { STRING_COMMA_LEN (".sse2"), PROCESSOR_UNKNOWN,
913 CPU_SSE2_FLAGS, 0 },
914 { STRING_COMMA_LEN (".sse3"), PROCESSOR_UNKNOWN,
915 CPU_SSE3_FLAGS, 0 },
916 { STRING_COMMA_LEN (".ssse3"), PROCESSOR_UNKNOWN,
917 CPU_SSSE3_FLAGS, 0 },
918 { STRING_COMMA_LEN (".sse4.1"), PROCESSOR_UNKNOWN,
919 CPU_SSE4_1_FLAGS, 0 },
920 { STRING_COMMA_LEN (".sse4.2"), PROCESSOR_UNKNOWN,
921 CPU_SSE4_2_FLAGS, 0 },
922 { STRING_COMMA_LEN (".sse4"), PROCESSOR_UNKNOWN,
923 CPU_SSE4_2_FLAGS, 0 },
924 { STRING_COMMA_LEN (".avx"), PROCESSOR_UNKNOWN,
925 CPU_AVX_FLAGS, 0 },
926 { STRING_COMMA_LEN (".avx2"), PROCESSOR_UNKNOWN,
927 CPU_AVX2_FLAGS, 0 },
928 { STRING_COMMA_LEN (".avx512f"), PROCESSOR_UNKNOWN,
929 CPU_AVX512F_FLAGS, 0 },
930 { STRING_COMMA_LEN (".avx512cd"), PROCESSOR_UNKNOWN,
931 CPU_AVX512CD_FLAGS, 0 },
932 { STRING_COMMA_LEN (".avx512er"), PROCESSOR_UNKNOWN,
933 CPU_AVX512ER_FLAGS, 0 },
934 { STRING_COMMA_LEN (".avx512pf"), PROCESSOR_UNKNOWN,
935 CPU_AVX512PF_FLAGS, 0 },
936 { STRING_COMMA_LEN (".avx512dq"), PROCESSOR_UNKNOWN,
937 CPU_AVX512DQ_FLAGS, 0 },
938 { STRING_COMMA_LEN (".avx512bw"), PROCESSOR_UNKNOWN,
939 CPU_AVX512BW_FLAGS, 0 },
940 { STRING_COMMA_LEN (".avx512vl"), PROCESSOR_UNKNOWN,
941 CPU_AVX512VL_FLAGS, 0 },
942 { STRING_COMMA_LEN (".vmx"), PROCESSOR_UNKNOWN,
943 CPU_VMX_FLAGS, 0 },
944 { STRING_COMMA_LEN (".vmfunc"), PROCESSOR_UNKNOWN,
945 CPU_VMFUNC_FLAGS, 0 },
946 { STRING_COMMA_LEN (".smx"), PROCESSOR_UNKNOWN,
947 CPU_SMX_FLAGS, 0 },
948 { STRING_COMMA_LEN (".xsave"), PROCESSOR_UNKNOWN,
949 CPU_XSAVE_FLAGS, 0 },
950 { STRING_COMMA_LEN (".xsaveopt"), PROCESSOR_UNKNOWN,
951 CPU_XSAVEOPT_FLAGS, 0 },
952 { STRING_COMMA_LEN (".xsavec"), PROCESSOR_UNKNOWN,
953 CPU_XSAVEC_FLAGS, 0 },
954 { STRING_COMMA_LEN (".xsaves"), PROCESSOR_UNKNOWN,
955 CPU_XSAVES_FLAGS, 0 },
956 { STRING_COMMA_LEN (".aes"), PROCESSOR_UNKNOWN,
957 CPU_AES_FLAGS, 0 },
958 { STRING_COMMA_LEN (".pclmul"), PROCESSOR_UNKNOWN,
959 CPU_PCLMUL_FLAGS, 0 },
960 { STRING_COMMA_LEN (".clmul"), PROCESSOR_UNKNOWN,
961 CPU_PCLMUL_FLAGS, 1 },
962 { STRING_COMMA_LEN (".fsgsbase"), PROCESSOR_UNKNOWN,
963 CPU_FSGSBASE_FLAGS, 0 },
964 { STRING_COMMA_LEN (".rdrnd"), PROCESSOR_UNKNOWN,
965 CPU_RDRND_FLAGS, 0 },
966 { STRING_COMMA_LEN (".f16c"), PROCESSOR_UNKNOWN,
967 CPU_F16C_FLAGS, 0 },
968 { STRING_COMMA_LEN (".bmi2"), PROCESSOR_UNKNOWN,
969 CPU_BMI2_FLAGS, 0 },
970 { STRING_COMMA_LEN (".fma"), PROCESSOR_UNKNOWN,
971 CPU_FMA_FLAGS, 0 },
972 { STRING_COMMA_LEN (".fma4"), PROCESSOR_UNKNOWN,
973 CPU_FMA4_FLAGS, 0 },
974 { STRING_COMMA_LEN (".xop"), PROCESSOR_UNKNOWN,
975 CPU_XOP_FLAGS, 0 },
976 { STRING_COMMA_LEN (".lwp"), PROCESSOR_UNKNOWN,
977 CPU_LWP_FLAGS, 0 },
978 { STRING_COMMA_LEN (".movbe"), PROCESSOR_UNKNOWN,
979 CPU_MOVBE_FLAGS, 0 },
980 { STRING_COMMA_LEN (".cx16"), PROCESSOR_UNKNOWN,
981 CPU_CX16_FLAGS, 0 },
982 { STRING_COMMA_LEN (".ept"), PROCESSOR_UNKNOWN,
983 CPU_EPT_FLAGS, 0 },
984 { STRING_COMMA_LEN (".lzcnt"), PROCESSOR_UNKNOWN,
985 CPU_LZCNT_FLAGS, 0 },
986 { STRING_COMMA_LEN (".hle"), PROCESSOR_UNKNOWN,
987 CPU_HLE_FLAGS, 0 },
988 { STRING_COMMA_LEN (".rtm"), PROCESSOR_UNKNOWN,
989 CPU_RTM_FLAGS, 0 },
990 { STRING_COMMA_LEN (".invpcid"), PROCESSOR_UNKNOWN,
991 CPU_INVPCID_FLAGS, 0 },
992 { STRING_COMMA_LEN (".clflush"), PROCESSOR_UNKNOWN,
993 CPU_CLFLUSH_FLAGS, 0 },
994 { STRING_COMMA_LEN (".nop"), PROCESSOR_UNKNOWN,
995 CPU_NOP_FLAGS, 0 },
996 { STRING_COMMA_LEN (".syscall"), PROCESSOR_UNKNOWN,
997 CPU_SYSCALL_FLAGS, 0 },
998 { STRING_COMMA_LEN (".rdtscp"), PROCESSOR_UNKNOWN,
999 CPU_RDTSCP_FLAGS, 0 },
1000 { STRING_COMMA_LEN (".3dnow"), PROCESSOR_UNKNOWN,
1001 CPU_3DNOW_FLAGS, 0 },
1002 { STRING_COMMA_LEN (".3dnowa"), PROCESSOR_UNKNOWN,
1003 CPU_3DNOWA_FLAGS, 0 },
1004 { STRING_COMMA_LEN (".padlock"), PROCESSOR_UNKNOWN,
1005 CPU_PADLOCK_FLAGS, 0 },
1006 { STRING_COMMA_LEN (".pacifica"), PROCESSOR_UNKNOWN,
1007 CPU_SVME_FLAGS, 1 },
1008 { STRING_COMMA_LEN (".svme"), PROCESSOR_UNKNOWN,
1009 CPU_SVME_FLAGS, 0 },
1010 { STRING_COMMA_LEN (".sse4a"), PROCESSOR_UNKNOWN,
1011 CPU_SSE4A_FLAGS, 0 },
1012 { STRING_COMMA_LEN (".abm"), PROCESSOR_UNKNOWN,
1013 CPU_ABM_FLAGS, 0 },
1014 { STRING_COMMA_LEN (".bmi"), PROCESSOR_UNKNOWN,
1015 CPU_BMI_FLAGS, 0 },
1016 { STRING_COMMA_LEN (".tbm"), PROCESSOR_UNKNOWN,
1017 CPU_TBM_FLAGS, 0 },
1018 { STRING_COMMA_LEN (".adx"), PROCESSOR_UNKNOWN,
1019 CPU_ADX_FLAGS, 0 },
1020 { STRING_COMMA_LEN (".rdseed"), PROCESSOR_UNKNOWN,
1021 CPU_RDSEED_FLAGS, 0 },
1022 { STRING_COMMA_LEN (".prfchw"), PROCESSOR_UNKNOWN,
1023 CPU_PRFCHW_FLAGS, 0 },
1024 { STRING_COMMA_LEN (".smap"), PROCESSOR_UNKNOWN,
1025 CPU_SMAP_FLAGS, 0 },
1026 { STRING_COMMA_LEN (".mpx"), PROCESSOR_UNKNOWN,
1027 CPU_MPX_FLAGS, 0 },
1028 { STRING_COMMA_LEN (".sha"), PROCESSOR_UNKNOWN,
1029 CPU_SHA_FLAGS, 0 },
1030 { STRING_COMMA_LEN (".clflushopt"), PROCESSOR_UNKNOWN,
1031 CPU_CLFLUSHOPT_FLAGS, 0 },
1032 { STRING_COMMA_LEN (".prefetchwt1"), PROCESSOR_UNKNOWN,
1033 CPU_PREFETCHWT1_FLAGS, 0 },
1034 { STRING_COMMA_LEN (".se1"), PROCESSOR_UNKNOWN,
1035 CPU_SE1_FLAGS, 0 },
1036 { STRING_COMMA_LEN (".clwb"), PROCESSOR_UNKNOWN,
1037 CPU_CLWB_FLAGS, 0 },
1038 { STRING_COMMA_LEN (".avx512ifma"), PROCESSOR_UNKNOWN,
1039 CPU_AVX512IFMA_FLAGS, 0 },
1040 { STRING_COMMA_LEN (".avx512vbmi"), PROCESSOR_UNKNOWN,
1041 CPU_AVX512VBMI_FLAGS, 0 },
1042 { STRING_COMMA_LEN (".avx512_4fmaps"), PROCESSOR_UNKNOWN,
1043 CPU_AVX512_4FMAPS_FLAGS, 0 },
1044 { STRING_COMMA_LEN (".avx512_4vnniw"), PROCESSOR_UNKNOWN,
1045 CPU_AVX512_4VNNIW_FLAGS, 0 },
1046 { STRING_COMMA_LEN (".avx512_vpopcntdq"), PROCESSOR_UNKNOWN,
1047 CPU_AVX512_VPOPCNTDQ_FLAGS, 0 },
1048 { STRING_COMMA_LEN (".avx512_vbmi2"), PROCESSOR_UNKNOWN,
1049 CPU_AVX512_VBMI2_FLAGS, 0 },
1050 { STRING_COMMA_LEN (".avx512_vnni"), PROCESSOR_UNKNOWN,
1051 CPU_AVX512_VNNI_FLAGS, 0 },
1052 { STRING_COMMA_LEN (".avx512_bitalg"), PROCESSOR_UNKNOWN,
1053 CPU_AVX512_BITALG_FLAGS, 0 },
1054 { STRING_COMMA_LEN (".clzero"), PROCESSOR_UNKNOWN,
1055 CPU_CLZERO_FLAGS, 0 },
1056 { STRING_COMMA_LEN (".mwaitx"), PROCESSOR_UNKNOWN,
1057 CPU_MWAITX_FLAGS, 0 },
1058 { STRING_COMMA_LEN (".ospke"), PROCESSOR_UNKNOWN,
1059 CPU_OSPKE_FLAGS, 0 },
1060 { STRING_COMMA_LEN (".rdpid"), PROCESSOR_UNKNOWN,
1061 CPU_RDPID_FLAGS, 0 },
1062 { STRING_COMMA_LEN (".ptwrite"), PROCESSOR_UNKNOWN,
1063 CPU_PTWRITE_FLAGS, 0 },
1064 { STRING_COMMA_LEN (".ibt"), PROCESSOR_UNKNOWN,
1065 CPU_IBT_FLAGS, 0 },
1066 { STRING_COMMA_LEN (".shstk"), PROCESSOR_UNKNOWN,
1067 CPU_SHSTK_FLAGS, 0 },
1068 { STRING_COMMA_LEN (".gfni"), PROCESSOR_UNKNOWN,
1069 CPU_GFNI_FLAGS, 0 },
1070 { STRING_COMMA_LEN (".vaes"), PROCESSOR_UNKNOWN,
1071 CPU_VAES_FLAGS, 0 },
1072 { STRING_COMMA_LEN (".vpclmulqdq"), PROCESSOR_UNKNOWN,
1073 CPU_VPCLMULQDQ_FLAGS, 0 },
1074 { STRING_COMMA_LEN (".wbnoinvd"), PROCESSOR_UNKNOWN,
1075 CPU_WBNOINVD_FLAGS, 0 },
1076 { STRING_COMMA_LEN (".pconfig"), PROCESSOR_UNKNOWN,
1077 CPU_PCONFIG_FLAGS, 0 },
1078 { STRING_COMMA_LEN (".waitpkg"), PROCESSOR_UNKNOWN,
1079 CPU_WAITPKG_FLAGS, 0 },
1080 { STRING_COMMA_LEN (".cldemote"), PROCESSOR_UNKNOWN,
1081 CPU_CLDEMOTE_FLAGS, 0 },
1082 { STRING_COMMA_LEN (".movdiri"), PROCESSOR_UNKNOWN,
1083 CPU_MOVDIRI_FLAGS, 0 },
1084 { STRING_COMMA_LEN (".movdir64b"), PROCESSOR_UNKNOWN,
1085 CPU_MOVDIR64B_FLAGS, 0 },
1086 { STRING_COMMA_LEN (".avx512_bf16"), PROCESSOR_UNKNOWN,
1087 CPU_AVX512_BF16_FLAGS, 0 },
1088 { STRING_COMMA_LEN (".avx512_vp2intersect"), PROCESSOR_UNKNOWN,
1089 CPU_AVX512_VP2INTERSECT_FLAGS, 0 },
1090 { STRING_COMMA_LEN (".enqcmd"), PROCESSOR_UNKNOWN,
1091 CPU_ENQCMD_FLAGS, 0 },
1092 };
1093
1094 static const noarch_entry cpu_noarch[] =
1095 {
1096 { STRING_COMMA_LEN ("no87"), CPU_ANY_X87_FLAGS },
1097 { STRING_COMMA_LEN ("no287"), CPU_ANY_287_FLAGS },
1098 { STRING_COMMA_LEN ("no387"), CPU_ANY_387_FLAGS },
1099 { STRING_COMMA_LEN ("no687"), CPU_ANY_687_FLAGS },
1100 { STRING_COMMA_LEN ("nocmov"), CPU_ANY_CMOV_FLAGS },
1101 { STRING_COMMA_LEN ("nofxsr"), CPU_ANY_FXSR_FLAGS },
1102 { STRING_COMMA_LEN ("nommx"), CPU_ANY_MMX_FLAGS },
1103 { STRING_COMMA_LEN ("nosse"), CPU_ANY_SSE_FLAGS },
1104 { STRING_COMMA_LEN ("nosse2"), CPU_ANY_SSE2_FLAGS },
1105 { STRING_COMMA_LEN ("nosse3"), CPU_ANY_SSE3_FLAGS },
1106 { STRING_COMMA_LEN ("nossse3"), CPU_ANY_SSSE3_FLAGS },
1107 { STRING_COMMA_LEN ("nosse4.1"), CPU_ANY_SSE4_1_FLAGS },
1108 { STRING_COMMA_LEN ("nosse4.2"), CPU_ANY_SSE4_2_FLAGS },
1109 { STRING_COMMA_LEN ("nosse4"), CPU_ANY_SSE4_1_FLAGS },
1110 { STRING_COMMA_LEN ("noavx"), CPU_ANY_AVX_FLAGS },
1111 { STRING_COMMA_LEN ("noavx2"), CPU_ANY_AVX2_FLAGS },
1112 { STRING_COMMA_LEN ("noavx512f"), CPU_ANY_AVX512F_FLAGS },
1113 { STRING_COMMA_LEN ("noavx512cd"), CPU_ANY_AVX512CD_FLAGS },
1114 { STRING_COMMA_LEN ("noavx512er"), CPU_ANY_AVX512ER_FLAGS },
1115 { STRING_COMMA_LEN ("noavx512pf"), CPU_ANY_AVX512PF_FLAGS },
1116 { STRING_COMMA_LEN ("noavx512dq"), CPU_ANY_AVX512DQ_FLAGS },
1117 { STRING_COMMA_LEN ("noavx512bw"), CPU_ANY_AVX512BW_FLAGS },
1118 { STRING_COMMA_LEN ("noavx512vl"), CPU_ANY_AVX512VL_FLAGS },
1119 { STRING_COMMA_LEN ("noavx512ifma"), CPU_ANY_AVX512IFMA_FLAGS },
1120 { STRING_COMMA_LEN ("noavx512vbmi"), CPU_ANY_AVX512VBMI_FLAGS },
1121 { STRING_COMMA_LEN ("noavx512_4fmaps"), CPU_ANY_AVX512_4FMAPS_FLAGS },
1122 { STRING_COMMA_LEN ("noavx512_4vnniw"), CPU_ANY_AVX512_4VNNIW_FLAGS },
1123 { STRING_COMMA_LEN ("noavx512_vpopcntdq"), CPU_ANY_AVX512_VPOPCNTDQ_FLAGS },
1124 { STRING_COMMA_LEN ("noavx512_vbmi2"), CPU_ANY_AVX512_VBMI2_FLAGS },
1125 { STRING_COMMA_LEN ("noavx512_vnni"), CPU_ANY_AVX512_VNNI_FLAGS },
1126 { STRING_COMMA_LEN ("noavx512_bitalg"), CPU_ANY_AVX512_BITALG_FLAGS },
1127 { STRING_COMMA_LEN ("noibt"), CPU_ANY_IBT_FLAGS },
1128 { STRING_COMMA_LEN ("noshstk"), CPU_ANY_SHSTK_FLAGS },
1129 { STRING_COMMA_LEN ("nomovdiri"), CPU_ANY_MOVDIRI_FLAGS },
1130 { STRING_COMMA_LEN ("nomovdir64b"), CPU_ANY_MOVDIR64B_FLAGS },
1131 { STRING_COMMA_LEN ("noavx512_bf16"), CPU_ANY_AVX512_BF16_FLAGS },
1132 { STRING_COMMA_LEN ("noavx512_vp2intersect"), CPU_ANY_SHSTK_FLAGS },
1133 { STRING_COMMA_LEN ("noenqcmd"), CPU_ANY_ENQCMD_FLAGS },
1134 };
1135
1136 #ifdef I386COFF
1137 /* Like s_lcomm_internal in gas/read.c but the alignment string
1138 is allowed to be optional. */
1139
1140 static symbolS *
1141 pe_lcomm_internal (int needs_align, symbolS *symbolP, addressT size)
1142 {
1143 addressT align = 0;
1144
1145 SKIP_WHITESPACE ();
1146
1147 if (needs_align
1148 && *input_line_pointer == ',')
1149 {
1150 align = parse_align (needs_align - 1);
1151
1152 if (align == (addressT) -1)
1153 return NULL;
1154 }
1155 else
1156 {
1157 if (size >= 8)
1158 align = 3;
1159 else if (size >= 4)
1160 align = 2;
1161 else if (size >= 2)
1162 align = 1;
1163 else
1164 align = 0;
1165 }
1166
1167 bss_alloc (symbolP, size, align);
1168 return symbolP;
1169 }
1170
1171 static void
1172 pe_lcomm (int needs_align)
1173 {
1174 s_comm_internal (needs_align * 2, pe_lcomm_internal);
1175 }
1176 #endif
1177
1178 const pseudo_typeS md_pseudo_table[] =
1179 {
1180 #if !defined(OBJ_AOUT) && !defined(USE_ALIGN_PTWO)
1181 {"align", s_align_bytes, 0},
1182 #else
1183 {"align", s_align_ptwo, 0},
1184 #endif
1185 {"arch", set_cpu_arch, 0},
1186 #ifndef I386COFF
1187 {"bss", s_bss, 0},
1188 #else
1189 {"lcomm", pe_lcomm, 1},
1190 #endif
1191 {"ffloat", float_cons, 'f'},
1192 {"dfloat", float_cons, 'd'},
1193 {"tfloat", float_cons, 'x'},
1194 {"value", cons, 2},
1195 {"slong", signed_cons, 4},
1196 {"noopt", s_ignore, 0},
1197 {"optim", s_ignore, 0},
1198 {"code16gcc", set_16bit_gcc_code_flag, CODE_16BIT},
1199 {"code16", set_code_flag, CODE_16BIT},
1200 {"code32", set_code_flag, CODE_32BIT},
1201 #ifdef BFD64
1202 {"code64", set_code_flag, CODE_64BIT},
1203 #endif
1204 {"intel_syntax", set_intel_syntax, 1},
1205 {"att_syntax", set_intel_syntax, 0},
1206 {"intel_mnemonic", set_intel_mnemonic, 1},
1207 {"att_mnemonic", set_intel_mnemonic, 0},
1208 {"allow_index_reg", set_allow_index_reg, 1},
1209 {"disallow_index_reg", set_allow_index_reg, 0},
1210 {"sse_check", set_check, 0},
1211 {"operand_check", set_check, 1},
1212 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
1213 {"largecomm", handle_large_common, 0},
1214 #else
1215 {"file", dwarf2_directive_file, 0},
1216 {"loc", dwarf2_directive_loc, 0},
1217 {"loc_mark_labels", dwarf2_directive_loc_mark_labels, 0},
1218 #endif
1219 #ifdef TE_PE
1220 {"secrel32", pe_directive_secrel, 0},
1221 #endif
1222 {0, 0, 0}
1223 };
1224
1225 /* For interface with expression (). */
1226 extern char *input_line_pointer;
1227
1228 /* Hash table for instruction mnemonic lookup. */
1229 static struct hash_control *op_hash;
1230
1231 /* Hash table for register lookup. */
1232 static struct hash_control *reg_hash;
1233 \f
1234 /* Various efficient no-op patterns for aligning code labels.
1235 Note: Don't try to assemble the instructions in the comments.
1236 0L and 0w are not legal. */
1237 static const unsigned char f32_1[] =
1238 {0x90}; /* nop */
1239 static const unsigned char f32_2[] =
1240 {0x66,0x90}; /* xchg %ax,%ax */
1241 static const unsigned char f32_3[] =
1242 {0x8d,0x76,0x00}; /* leal 0(%esi),%esi */
1243 static const unsigned char f32_4[] =
1244 {0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
1245 static const unsigned char f32_6[] =
1246 {0x8d,0xb6,0x00,0x00,0x00,0x00}; /* leal 0L(%esi),%esi */
1247 static const unsigned char f32_7[] =
1248 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
1249 static const unsigned char f16_3[] =
1250 {0x8d,0x74,0x00}; /* lea 0(%si),%si */
1251 static const unsigned char f16_4[] =
1252 {0x8d,0xb4,0x00,0x00}; /* lea 0W(%si),%si */
1253 static const unsigned char jump_disp8[] =
1254 {0xeb}; /* jmp disp8 */
1255 static const unsigned char jump32_disp32[] =
1256 {0xe9}; /* jmp disp32 */
1257 static const unsigned char jump16_disp32[] =
1258 {0x66,0xe9}; /* jmp disp32 */
1259 /* 32-bit NOPs patterns. */
1260 static const unsigned char *const f32_patt[] = {
1261 f32_1, f32_2, f32_3, f32_4, NULL, f32_6, f32_7
1262 };
1263 /* 16-bit NOPs patterns. */
1264 static const unsigned char *const f16_patt[] = {
1265 f32_1, f32_2, f16_3, f16_4
1266 };
1267 /* nopl (%[re]ax) */
1268 static const unsigned char alt_3[] =
1269 {0x0f,0x1f,0x00};
1270 /* nopl 0(%[re]ax) */
1271 static const unsigned char alt_4[] =
1272 {0x0f,0x1f,0x40,0x00};
1273 /* nopl 0(%[re]ax,%[re]ax,1) */
1274 static const unsigned char alt_5[] =
1275 {0x0f,0x1f,0x44,0x00,0x00};
1276 /* nopw 0(%[re]ax,%[re]ax,1) */
1277 static const unsigned char alt_6[] =
1278 {0x66,0x0f,0x1f,0x44,0x00,0x00};
1279 /* nopl 0L(%[re]ax) */
1280 static const unsigned char alt_7[] =
1281 {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
1282 /* nopl 0L(%[re]ax,%[re]ax,1) */
1283 static const unsigned char alt_8[] =
1284 {0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1285 /* nopw 0L(%[re]ax,%[re]ax,1) */
1286 static const unsigned char alt_9[] =
1287 {0x66,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1288 /* nopw %cs:0L(%[re]ax,%[re]ax,1) */
1289 static const unsigned char alt_10[] =
1290 {0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1291 /* data16 nopw %cs:0L(%eax,%eax,1) */
1292 static const unsigned char alt_11[] =
1293 {0x66,0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1294 /* 32-bit and 64-bit NOPs patterns. */
1295 static const unsigned char *const alt_patt[] = {
1296 f32_1, f32_2, alt_3, alt_4, alt_5, alt_6, alt_7, alt_8,
1297 alt_9, alt_10, alt_11
1298 };
1299
1300 /* Genenerate COUNT bytes of NOPs to WHERE from PATT with the maximum
1301 size of a single NOP instruction MAX_SINGLE_NOP_SIZE. */
1302
1303 static void
1304 i386_output_nops (char *where, const unsigned char *const *patt,
1305 int count, int max_single_nop_size)
1306
1307 {
1308 /* Place the longer NOP first. */
1309 int last;
1310 int offset;
1311 const unsigned char *nops;
1312
1313 if (max_single_nop_size < 1)
1314 {
1315 as_fatal (_("i386_output_nops called to generate nops of at most %d bytes!"),
1316 max_single_nop_size);
1317 return;
1318 }
1319
1320 nops = patt[max_single_nop_size - 1];
1321
1322 /* Use the smaller one if the requsted one isn't available. */
1323 if (nops == NULL)
1324 {
1325 max_single_nop_size--;
1326 nops = patt[max_single_nop_size - 1];
1327 }
1328
1329 last = count % max_single_nop_size;
1330
1331 count -= last;
1332 for (offset = 0; offset < count; offset += max_single_nop_size)
1333 memcpy (where + offset, nops, max_single_nop_size);
1334
1335 if (last)
1336 {
1337 nops = patt[last - 1];
1338 if (nops == NULL)
1339 {
1340 /* Use the smaller one plus one-byte NOP if the needed one
1341 isn't available. */
1342 last--;
1343 nops = patt[last - 1];
1344 memcpy (where + offset, nops, last);
1345 where[offset + last] = *patt[0];
1346 }
1347 else
1348 memcpy (where + offset, nops, last);
1349 }
1350 }
1351
1352 static INLINE int
1353 fits_in_imm7 (offsetT num)
1354 {
1355 return (num & 0x7f) == num;
1356 }
1357
1358 static INLINE int
1359 fits_in_imm31 (offsetT num)
1360 {
1361 return (num & 0x7fffffff) == num;
1362 }
1363
1364 /* Genenerate COUNT bytes of NOPs to WHERE with the maximum size of a
1365 single NOP instruction LIMIT. */
1366
1367 void
1368 i386_generate_nops (fragS *fragP, char *where, offsetT count, int limit)
1369 {
1370 const unsigned char *const *patt = NULL;
1371 int max_single_nop_size;
1372 /* Maximum number of NOPs before switching to jump over NOPs. */
1373 int max_number_of_nops;
1374
1375 switch (fragP->fr_type)
1376 {
1377 case rs_fill_nop:
1378 case rs_align_code:
1379 break;
1380 default:
1381 return;
1382 }
1383
1384 /* We need to decide which NOP sequence to use for 32bit and
1385 64bit. When -mtune= is used:
1386
1387 1. For PROCESSOR_I386, PROCESSOR_I486, PROCESSOR_PENTIUM and
1388 PROCESSOR_GENERIC32, f32_patt will be used.
1389 2. For the rest, alt_patt will be used.
1390
1391 When -mtune= isn't used, alt_patt will be used if
1392 cpu_arch_isa_flags has CpuNop. Otherwise, f32_patt will
1393 be used.
1394
1395 When -march= or .arch is used, we can't use anything beyond
1396 cpu_arch_isa_flags. */
1397
1398 if (flag_code == CODE_16BIT)
1399 {
1400 patt = f16_patt;
1401 max_single_nop_size = sizeof (f16_patt) / sizeof (f16_patt[0]);
1402 /* Limit number of NOPs to 2 in 16-bit mode. */
1403 max_number_of_nops = 2;
1404 }
1405 else
1406 {
1407 if (fragP->tc_frag_data.isa == PROCESSOR_UNKNOWN)
1408 {
1409 /* PROCESSOR_UNKNOWN means that all ISAs may be used. */
1410 switch (cpu_arch_tune)
1411 {
1412 case PROCESSOR_UNKNOWN:
1413 /* We use cpu_arch_isa_flags to check if we SHOULD
1414 optimize with nops. */
1415 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1416 patt = alt_patt;
1417 else
1418 patt = f32_patt;
1419 break;
1420 case PROCESSOR_PENTIUM4:
1421 case PROCESSOR_NOCONA:
1422 case PROCESSOR_CORE:
1423 case PROCESSOR_CORE2:
1424 case PROCESSOR_COREI7:
1425 case PROCESSOR_L1OM:
1426 case PROCESSOR_K1OM:
1427 case PROCESSOR_GENERIC64:
1428 case PROCESSOR_K6:
1429 case PROCESSOR_ATHLON:
1430 case PROCESSOR_K8:
1431 case PROCESSOR_AMDFAM10:
1432 case PROCESSOR_BD:
1433 case PROCESSOR_ZNVER:
1434 case PROCESSOR_BT:
1435 patt = alt_patt;
1436 break;
1437 case PROCESSOR_I386:
1438 case PROCESSOR_I486:
1439 case PROCESSOR_PENTIUM:
1440 case PROCESSOR_PENTIUMPRO:
1441 case PROCESSOR_IAMCU:
1442 case PROCESSOR_GENERIC32:
1443 patt = f32_patt;
1444 break;
1445 }
1446 }
1447 else
1448 {
1449 switch (fragP->tc_frag_data.tune)
1450 {
1451 case PROCESSOR_UNKNOWN:
1452 /* When cpu_arch_isa is set, cpu_arch_tune shouldn't be
1453 PROCESSOR_UNKNOWN. */
1454 abort ();
1455 break;
1456
1457 case PROCESSOR_I386:
1458 case PROCESSOR_I486:
1459 case PROCESSOR_PENTIUM:
1460 case PROCESSOR_IAMCU:
1461 case PROCESSOR_K6:
1462 case PROCESSOR_ATHLON:
1463 case PROCESSOR_K8:
1464 case PROCESSOR_AMDFAM10:
1465 case PROCESSOR_BD:
1466 case PROCESSOR_ZNVER:
1467 case PROCESSOR_BT:
1468 case PROCESSOR_GENERIC32:
1469 /* We use cpu_arch_isa_flags to check if we CAN optimize
1470 with nops. */
1471 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1472 patt = alt_patt;
1473 else
1474 patt = f32_patt;
1475 break;
1476 case PROCESSOR_PENTIUMPRO:
1477 case PROCESSOR_PENTIUM4:
1478 case PROCESSOR_NOCONA:
1479 case PROCESSOR_CORE:
1480 case PROCESSOR_CORE2:
1481 case PROCESSOR_COREI7:
1482 case PROCESSOR_L1OM:
1483 case PROCESSOR_K1OM:
1484 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1485 patt = alt_patt;
1486 else
1487 patt = f32_patt;
1488 break;
1489 case PROCESSOR_GENERIC64:
1490 patt = alt_patt;
1491 break;
1492 }
1493 }
1494
1495 if (patt == f32_patt)
1496 {
1497 max_single_nop_size = sizeof (f32_patt) / sizeof (f32_patt[0]);
1498 /* Limit number of NOPs to 2 for older processors. */
1499 max_number_of_nops = 2;
1500 }
1501 else
1502 {
1503 max_single_nop_size = sizeof (alt_patt) / sizeof (alt_patt[0]);
1504 /* Limit number of NOPs to 7 for newer processors. */
1505 max_number_of_nops = 7;
1506 }
1507 }
1508
1509 if (limit == 0)
1510 limit = max_single_nop_size;
1511
1512 if (fragP->fr_type == rs_fill_nop)
1513 {
1514 /* Output NOPs for .nop directive. */
1515 if (limit > max_single_nop_size)
1516 {
1517 as_bad_where (fragP->fr_file, fragP->fr_line,
1518 _("invalid single nop size: %d "
1519 "(expect within [0, %d])"),
1520 limit, max_single_nop_size);
1521 return;
1522 }
1523 }
1524 else
1525 fragP->fr_var = count;
1526
1527 if ((count / max_single_nop_size) > max_number_of_nops)
1528 {
1529 /* Generate jump over NOPs. */
1530 offsetT disp = count - 2;
1531 if (fits_in_imm7 (disp))
1532 {
1533 /* Use "jmp disp8" if possible. */
1534 count = disp;
1535 where[0] = jump_disp8[0];
1536 where[1] = count;
1537 where += 2;
1538 }
1539 else
1540 {
1541 unsigned int size_of_jump;
1542
1543 if (flag_code == CODE_16BIT)
1544 {
1545 where[0] = jump16_disp32[0];
1546 where[1] = jump16_disp32[1];
1547 size_of_jump = 2;
1548 }
1549 else
1550 {
1551 where[0] = jump32_disp32[0];
1552 size_of_jump = 1;
1553 }
1554
1555 count -= size_of_jump + 4;
1556 if (!fits_in_imm31 (count))
1557 {
1558 as_bad_where (fragP->fr_file, fragP->fr_line,
1559 _("jump over nop padding out of range"));
1560 return;
1561 }
1562
1563 md_number_to_chars (where + size_of_jump, count, 4);
1564 where += size_of_jump + 4;
1565 }
1566 }
1567
1568 /* Generate multiple NOPs. */
1569 i386_output_nops (where, patt, count, limit);
1570 }
1571
1572 static INLINE int
1573 operand_type_all_zero (const union i386_operand_type *x)
1574 {
1575 switch (ARRAY_SIZE(x->array))
1576 {
1577 case 3:
1578 if (x->array[2])
1579 return 0;
1580 /* Fall through. */
1581 case 2:
1582 if (x->array[1])
1583 return 0;
1584 /* Fall through. */
1585 case 1:
1586 return !x->array[0];
1587 default:
1588 abort ();
1589 }
1590 }
1591
1592 static INLINE void
1593 operand_type_set (union i386_operand_type *x, unsigned int v)
1594 {
1595 switch (ARRAY_SIZE(x->array))
1596 {
1597 case 3:
1598 x->array[2] = v;
1599 /* Fall through. */
1600 case 2:
1601 x->array[1] = v;
1602 /* Fall through. */
1603 case 1:
1604 x->array[0] = v;
1605 /* Fall through. */
1606 break;
1607 default:
1608 abort ();
1609 }
1610 }
1611
1612 static INLINE int
1613 operand_type_equal (const union i386_operand_type *x,
1614 const union i386_operand_type *y)
1615 {
1616 switch (ARRAY_SIZE(x->array))
1617 {
1618 case 3:
1619 if (x->array[2] != y->array[2])
1620 return 0;
1621 /* Fall through. */
1622 case 2:
1623 if (x->array[1] != y->array[1])
1624 return 0;
1625 /* Fall through. */
1626 case 1:
1627 return x->array[0] == y->array[0];
1628 break;
1629 default:
1630 abort ();
1631 }
1632 }
1633
1634 static INLINE int
1635 cpu_flags_all_zero (const union i386_cpu_flags *x)
1636 {
1637 switch (ARRAY_SIZE(x->array))
1638 {
1639 case 4:
1640 if (x->array[3])
1641 return 0;
1642 /* Fall through. */
1643 case 3:
1644 if (x->array[2])
1645 return 0;
1646 /* Fall through. */
1647 case 2:
1648 if (x->array[1])
1649 return 0;
1650 /* Fall through. */
1651 case 1:
1652 return !x->array[0];
1653 default:
1654 abort ();
1655 }
1656 }
1657
1658 static INLINE int
1659 cpu_flags_equal (const union i386_cpu_flags *x,
1660 const union i386_cpu_flags *y)
1661 {
1662 switch (ARRAY_SIZE(x->array))
1663 {
1664 case 4:
1665 if (x->array[3] != y->array[3])
1666 return 0;
1667 /* Fall through. */
1668 case 3:
1669 if (x->array[2] != y->array[2])
1670 return 0;
1671 /* Fall through. */
1672 case 2:
1673 if (x->array[1] != y->array[1])
1674 return 0;
1675 /* Fall through. */
1676 case 1:
1677 return x->array[0] == y->array[0];
1678 break;
1679 default:
1680 abort ();
1681 }
1682 }
1683
1684 static INLINE int
1685 cpu_flags_check_cpu64 (i386_cpu_flags f)
1686 {
1687 return !((flag_code == CODE_64BIT && f.bitfield.cpuno64)
1688 || (flag_code != CODE_64BIT && f.bitfield.cpu64));
1689 }
1690
1691 static INLINE i386_cpu_flags
1692 cpu_flags_and (i386_cpu_flags x, i386_cpu_flags y)
1693 {
1694 switch (ARRAY_SIZE (x.array))
1695 {
1696 case 4:
1697 x.array [3] &= y.array [3];
1698 /* Fall through. */
1699 case 3:
1700 x.array [2] &= y.array [2];
1701 /* Fall through. */
1702 case 2:
1703 x.array [1] &= y.array [1];
1704 /* Fall through. */
1705 case 1:
1706 x.array [0] &= y.array [0];
1707 break;
1708 default:
1709 abort ();
1710 }
1711 return x;
1712 }
1713
1714 static INLINE i386_cpu_flags
1715 cpu_flags_or (i386_cpu_flags x, i386_cpu_flags y)
1716 {
1717 switch (ARRAY_SIZE (x.array))
1718 {
1719 case 4:
1720 x.array [3] |= y.array [3];
1721 /* Fall through. */
1722 case 3:
1723 x.array [2] |= y.array [2];
1724 /* Fall through. */
1725 case 2:
1726 x.array [1] |= y.array [1];
1727 /* Fall through. */
1728 case 1:
1729 x.array [0] |= y.array [0];
1730 break;
1731 default:
1732 abort ();
1733 }
1734 return x;
1735 }
1736
1737 static INLINE i386_cpu_flags
1738 cpu_flags_and_not (i386_cpu_flags x, i386_cpu_flags y)
1739 {
1740 switch (ARRAY_SIZE (x.array))
1741 {
1742 case 4:
1743 x.array [3] &= ~y.array [3];
1744 /* Fall through. */
1745 case 3:
1746 x.array [2] &= ~y.array [2];
1747 /* Fall through. */
1748 case 2:
1749 x.array [1] &= ~y.array [1];
1750 /* Fall through. */
1751 case 1:
1752 x.array [0] &= ~y.array [0];
1753 break;
1754 default:
1755 abort ();
1756 }
1757 return x;
1758 }
1759
1760 #define CPU_FLAGS_ARCH_MATCH 0x1
1761 #define CPU_FLAGS_64BIT_MATCH 0x2
1762
1763 #define CPU_FLAGS_PERFECT_MATCH \
1764 (CPU_FLAGS_ARCH_MATCH | CPU_FLAGS_64BIT_MATCH)
1765
1766 /* Return CPU flags match bits. */
1767
1768 static int
1769 cpu_flags_match (const insn_template *t)
1770 {
1771 i386_cpu_flags x = t->cpu_flags;
1772 int match = cpu_flags_check_cpu64 (x) ? CPU_FLAGS_64BIT_MATCH : 0;
1773
1774 x.bitfield.cpu64 = 0;
1775 x.bitfield.cpuno64 = 0;
1776
1777 if (cpu_flags_all_zero (&x))
1778 {
1779 /* This instruction is available on all archs. */
1780 match |= CPU_FLAGS_ARCH_MATCH;
1781 }
1782 else
1783 {
1784 /* This instruction is available only on some archs. */
1785 i386_cpu_flags cpu = cpu_arch_flags;
1786
1787 /* AVX512VL is no standalone feature - match it and then strip it. */
1788 if (x.bitfield.cpuavx512vl && !cpu.bitfield.cpuavx512vl)
1789 return match;
1790 x.bitfield.cpuavx512vl = 0;
1791
1792 cpu = cpu_flags_and (x, cpu);
1793 if (!cpu_flags_all_zero (&cpu))
1794 {
1795 if (x.bitfield.cpuavx)
1796 {
1797 /* We need to check a few extra flags with AVX. */
1798 if (cpu.bitfield.cpuavx
1799 && (!t->opcode_modifier.sse2avx || sse2avx)
1800 && (!x.bitfield.cpuaes || cpu.bitfield.cpuaes)
1801 && (!x.bitfield.cpugfni || cpu.bitfield.cpugfni)
1802 && (!x.bitfield.cpupclmul || cpu.bitfield.cpupclmul))
1803 match |= CPU_FLAGS_ARCH_MATCH;
1804 }
1805 else if (x.bitfield.cpuavx512f)
1806 {
1807 /* We need to check a few extra flags with AVX512F. */
1808 if (cpu.bitfield.cpuavx512f
1809 && (!x.bitfield.cpugfni || cpu.bitfield.cpugfni)
1810 && (!x.bitfield.cpuvaes || cpu.bitfield.cpuvaes)
1811 && (!x.bitfield.cpuvpclmulqdq || cpu.bitfield.cpuvpclmulqdq))
1812 match |= CPU_FLAGS_ARCH_MATCH;
1813 }
1814 else
1815 match |= CPU_FLAGS_ARCH_MATCH;
1816 }
1817 }
1818 return match;
1819 }
1820
1821 static INLINE i386_operand_type
1822 operand_type_and (i386_operand_type x, i386_operand_type y)
1823 {
1824 switch (ARRAY_SIZE (x.array))
1825 {
1826 case 3:
1827 x.array [2] &= y.array [2];
1828 /* Fall through. */
1829 case 2:
1830 x.array [1] &= y.array [1];
1831 /* Fall through. */
1832 case 1:
1833 x.array [0] &= y.array [0];
1834 break;
1835 default:
1836 abort ();
1837 }
1838 return x;
1839 }
1840
1841 static INLINE i386_operand_type
1842 operand_type_and_not (i386_operand_type x, i386_operand_type y)
1843 {
1844 switch (ARRAY_SIZE (x.array))
1845 {
1846 case 3:
1847 x.array [2] &= ~y.array [2];
1848 /* Fall through. */
1849 case 2:
1850 x.array [1] &= ~y.array [1];
1851 /* Fall through. */
1852 case 1:
1853 x.array [0] &= ~y.array [0];
1854 break;
1855 default:
1856 abort ();
1857 }
1858 return x;
1859 }
1860
1861 static INLINE i386_operand_type
1862 operand_type_or (i386_operand_type x, i386_operand_type y)
1863 {
1864 switch (ARRAY_SIZE (x.array))
1865 {
1866 case 3:
1867 x.array [2] |= y.array [2];
1868 /* Fall through. */
1869 case 2:
1870 x.array [1] |= y.array [1];
1871 /* Fall through. */
1872 case 1:
1873 x.array [0] |= y.array [0];
1874 break;
1875 default:
1876 abort ();
1877 }
1878 return x;
1879 }
1880
1881 static INLINE i386_operand_type
1882 operand_type_xor (i386_operand_type x, i386_operand_type y)
1883 {
1884 switch (ARRAY_SIZE (x.array))
1885 {
1886 case 3:
1887 x.array [2] ^= y.array [2];
1888 /* Fall through. */
1889 case 2:
1890 x.array [1] ^= y.array [1];
1891 /* Fall through. */
1892 case 1:
1893 x.array [0] ^= y.array [0];
1894 break;
1895 default:
1896 abort ();
1897 }
1898 return x;
1899 }
1900
1901 static const i386_operand_type disp16 = OPERAND_TYPE_DISP16;
1902 static const i386_operand_type disp32 = OPERAND_TYPE_DISP32;
1903 static const i386_operand_type disp32s = OPERAND_TYPE_DISP32S;
1904 static const i386_operand_type disp16_32 = OPERAND_TYPE_DISP16_32;
1905 static const i386_operand_type anydisp
1906 = OPERAND_TYPE_ANYDISP;
1907 static const i386_operand_type regxmm = OPERAND_TYPE_REGXMM;
1908 static const i386_operand_type regmask = OPERAND_TYPE_REGMASK;
1909 static const i386_operand_type imm8 = OPERAND_TYPE_IMM8;
1910 static const i386_operand_type imm8s = OPERAND_TYPE_IMM8S;
1911 static const i386_operand_type imm16 = OPERAND_TYPE_IMM16;
1912 static const i386_operand_type imm32 = OPERAND_TYPE_IMM32;
1913 static const i386_operand_type imm32s = OPERAND_TYPE_IMM32S;
1914 static const i386_operand_type imm64 = OPERAND_TYPE_IMM64;
1915 static const i386_operand_type imm16_32 = OPERAND_TYPE_IMM16_32;
1916 static const i386_operand_type imm16_32s = OPERAND_TYPE_IMM16_32S;
1917 static const i386_operand_type imm16_32_32s = OPERAND_TYPE_IMM16_32_32S;
1918
1919 enum operand_type
1920 {
1921 reg,
1922 imm,
1923 disp,
1924 anymem
1925 };
1926
1927 static INLINE int
1928 operand_type_check (i386_operand_type t, enum operand_type c)
1929 {
1930 switch (c)
1931 {
1932 case reg:
1933 return t.bitfield.reg;
1934
1935 case imm:
1936 return (t.bitfield.imm8
1937 || t.bitfield.imm8s
1938 || t.bitfield.imm16
1939 || t.bitfield.imm32
1940 || t.bitfield.imm32s
1941 || t.bitfield.imm64);
1942
1943 case disp:
1944 return (t.bitfield.disp8
1945 || t.bitfield.disp16
1946 || t.bitfield.disp32
1947 || t.bitfield.disp32s
1948 || t.bitfield.disp64);
1949
1950 case anymem:
1951 return (t.bitfield.disp8
1952 || t.bitfield.disp16
1953 || t.bitfield.disp32
1954 || t.bitfield.disp32s
1955 || t.bitfield.disp64
1956 || t.bitfield.baseindex);
1957
1958 default:
1959 abort ();
1960 }
1961
1962 return 0;
1963 }
1964
1965 /* Return 1 if there is no conflict in 8bit/16bit/32bit/64bit/80bit size
1966 between operand GIVEN and opeand WANTED for instruction template T. */
1967
1968 static INLINE int
1969 match_operand_size (const insn_template *t, unsigned int wanted,
1970 unsigned int given)
1971 {
1972 return !((i.types[given].bitfield.byte
1973 && !t->operand_types[wanted].bitfield.byte)
1974 || (i.types[given].bitfield.word
1975 && !t->operand_types[wanted].bitfield.word)
1976 || (i.types[given].bitfield.dword
1977 && !t->operand_types[wanted].bitfield.dword)
1978 || (i.types[given].bitfield.qword
1979 && !t->operand_types[wanted].bitfield.qword)
1980 || (i.types[given].bitfield.tbyte
1981 && !t->operand_types[wanted].bitfield.tbyte));
1982 }
1983
1984 /* Return 1 if there is no conflict in SIMD register between operand
1985 GIVEN and opeand WANTED for instruction template T. */
1986
1987 static INLINE int
1988 match_simd_size (const insn_template *t, unsigned int wanted,
1989 unsigned int given)
1990 {
1991 return !((i.types[given].bitfield.xmmword
1992 && !t->operand_types[wanted].bitfield.xmmword)
1993 || (i.types[given].bitfield.ymmword
1994 && !t->operand_types[wanted].bitfield.ymmword)
1995 || (i.types[given].bitfield.zmmword
1996 && !t->operand_types[wanted].bitfield.zmmword));
1997 }
1998
1999 /* Return 1 if there is no conflict in any size between operand GIVEN
2000 and opeand WANTED for instruction template T. */
2001
2002 static INLINE int
2003 match_mem_size (const insn_template *t, unsigned int wanted,
2004 unsigned int given)
2005 {
2006 return (match_operand_size (t, wanted, given)
2007 && !((i.types[given].bitfield.unspecified
2008 && !i.broadcast
2009 && !t->operand_types[wanted].bitfield.unspecified)
2010 || (i.types[given].bitfield.fword
2011 && !t->operand_types[wanted].bitfield.fword)
2012 /* For scalar opcode templates to allow register and memory
2013 operands at the same time, some special casing is needed
2014 here. Also for v{,p}broadcast*, {,v}pmov{s,z}*, and
2015 down-conversion vpmov*. */
2016 || ((t->operand_types[wanted].bitfield.regsimd
2017 && !t->opcode_modifier.broadcast
2018 && (t->operand_types[wanted].bitfield.byte
2019 || t->operand_types[wanted].bitfield.word
2020 || t->operand_types[wanted].bitfield.dword
2021 || t->operand_types[wanted].bitfield.qword))
2022 ? (i.types[given].bitfield.xmmword
2023 || i.types[given].bitfield.ymmword
2024 || i.types[given].bitfield.zmmword)
2025 : !match_simd_size(t, wanted, given))));
2026 }
2027
2028 /* Return value has MATCH_STRAIGHT set if there is no size conflict on any
2029 operands for instruction template T, and it has MATCH_REVERSE set if there
2030 is no size conflict on any operands for the template with operands reversed
2031 (and the template allows for reversing in the first place). */
2032
2033 #define MATCH_STRAIGHT 1
2034 #define MATCH_REVERSE 2
2035
2036 static INLINE unsigned int
2037 operand_size_match (const insn_template *t)
2038 {
2039 unsigned int j, match = MATCH_STRAIGHT;
2040
2041 /* Don't check jump instructions. */
2042 if (t->opcode_modifier.jump
2043 || t->opcode_modifier.jumpbyte
2044 || t->opcode_modifier.jumpdword
2045 || t->opcode_modifier.jumpintersegment)
2046 return match;
2047
2048 /* Check memory and accumulator operand size. */
2049 for (j = 0; j < i.operands; j++)
2050 {
2051 if (!i.types[j].bitfield.reg && !i.types[j].bitfield.regsimd
2052 && t->operand_types[j].bitfield.anysize)
2053 continue;
2054
2055 if (t->operand_types[j].bitfield.reg
2056 && !match_operand_size (t, j, j))
2057 {
2058 match = 0;
2059 break;
2060 }
2061
2062 if (t->operand_types[j].bitfield.regsimd
2063 && !match_simd_size (t, j, j))
2064 {
2065 match = 0;
2066 break;
2067 }
2068
2069 if (t->operand_types[j].bitfield.acc
2070 && (!match_operand_size (t, j, j) || !match_simd_size (t, j, j)))
2071 {
2072 match = 0;
2073 break;
2074 }
2075
2076 if ((i.flags[j] & Operand_Mem) && !match_mem_size (t, j, j))
2077 {
2078 match = 0;
2079 break;
2080 }
2081 }
2082
2083 if (!t->opcode_modifier.d)
2084 {
2085 mismatch:
2086 if (!match)
2087 i.error = operand_size_mismatch;
2088 return match;
2089 }
2090
2091 /* Check reverse. */
2092 gas_assert (i.operands >= 2 && i.operands <= 3);
2093
2094 for (j = 0; j < i.operands; j++)
2095 {
2096 unsigned int given = i.operands - j - 1;
2097
2098 if (t->operand_types[j].bitfield.reg
2099 && !match_operand_size (t, j, given))
2100 goto mismatch;
2101
2102 if (t->operand_types[j].bitfield.regsimd
2103 && !match_simd_size (t, j, given))
2104 goto mismatch;
2105
2106 if (t->operand_types[j].bitfield.acc
2107 && (!match_operand_size (t, j, given)
2108 || !match_simd_size (t, j, given)))
2109 goto mismatch;
2110
2111 if ((i.flags[given] & Operand_Mem) && !match_mem_size (t, j, given))
2112 goto mismatch;
2113 }
2114
2115 return match | MATCH_REVERSE;
2116 }
2117
2118 static INLINE int
2119 operand_type_match (i386_operand_type overlap,
2120 i386_operand_type given)
2121 {
2122 i386_operand_type temp = overlap;
2123
2124 temp.bitfield.jumpabsolute = 0;
2125 temp.bitfield.unspecified = 0;
2126 temp.bitfield.byte = 0;
2127 temp.bitfield.word = 0;
2128 temp.bitfield.dword = 0;
2129 temp.bitfield.fword = 0;
2130 temp.bitfield.qword = 0;
2131 temp.bitfield.tbyte = 0;
2132 temp.bitfield.xmmword = 0;
2133 temp.bitfield.ymmword = 0;
2134 temp.bitfield.zmmword = 0;
2135 if (operand_type_all_zero (&temp))
2136 goto mismatch;
2137
2138 if (given.bitfield.baseindex == overlap.bitfield.baseindex
2139 && given.bitfield.jumpabsolute == overlap.bitfield.jumpabsolute)
2140 return 1;
2141
2142 mismatch:
2143 i.error = operand_type_mismatch;
2144 return 0;
2145 }
2146
2147 /* If given types g0 and g1 are registers they must be of the same type
2148 unless the expected operand type register overlap is null.
2149 Memory operand size of certain SIMD instructions is also being checked
2150 here. */
2151
2152 static INLINE int
2153 operand_type_register_match (i386_operand_type g0,
2154 i386_operand_type t0,
2155 i386_operand_type g1,
2156 i386_operand_type t1)
2157 {
2158 if (!g0.bitfield.reg
2159 && !g0.bitfield.regsimd
2160 && (!operand_type_check (g0, anymem)
2161 || g0.bitfield.unspecified
2162 || !t0.bitfield.regsimd))
2163 return 1;
2164
2165 if (!g1.bitfield.reg
2166 && !g1.bitfield.regsimd
2167 && (!operand_type_check (g1, anymem)
2168 || g1.bitfield.unspecified
2169 || !t1.bitfield.regsimd))
2170 return 1;
2171
2172 if (g0.bitfield.byte == g1.bitfield.byte
2173 && g0.bitfield.word == g1.bitfield.word
2174 && g0.bitfield.dword == g1.bitfield.dword
2175 && g0.bitfield.qword == g1.bitfield.qword
2176 && g0.bitfield.xmmword == g1.bitfield.xmmword
2177 && g0.bitfield.ymmword == g1.bitfield.ymmword
2178 && g0.bitfield.zmmword == g1.bitfield.zmmword)
2179 return 1;
2180
2181 if (!(t0.bitfield.byte & t1.bitfield.byte)
2182 && !(t0.bitfield.word & t1.bitfield.word)
2183 && !(t0.bitfield.dword & t1.bitfield.dword)
2184 && !(t0.bitfield.qword & t1.bitfield.qword)
2185 && !(t0.bitfield.xmmword & t1.bitfield.xmmword)
2186 && !(t0.bitfield.ymmword & t1.bitfield.ymmword)
2187 && !(t0.bitfield.zmmword & t1.bitfield.zmmword))
2188 return 1;
2189
2190 i.error = register_type_mismatch;
2191
2192 return 0;
2193 }
2194
2195 static INLINE unsigned int
2196 register_number (const reg_entry *r)
2197 {
2198 unsigned int nr = r->reg_num;
2199
2200 if (r->reg_flags & RegRex)
2201 nr += 8;
2202
2203 if (r->reg_flags & RegVRex)
2204 nr += 16;
2205
2206 return nr;
2207 }
2208
2209 static INLINE unsigned int
2210 mode_from_disp_size (i386_operand_type t)
2211 {
2212 if (t.bitfield.disp8)
2213 return 1;
2214 else if (t.bitfield.disp16
2215 || t.bitfield.disp32
2216 || t.bitfield.disp32s)
2217 return 2;
2218 else
2219 return 0;
2220 }
2221
2222 static INLINE int
2223 fits_in_signed_byte (addressT num)
2224 {
2225 return num + 0x80 <= 0xff;
2226 }
2227
2228 static INLINE int
2229 fits_in_unsigned_byte (addressT num)
2230 {
2231 return num <= 0xff;
2232 }
2233
2234 static INLINE int
2235 fits_in_unsigned_word (addressT num)
2236 {
2237 return num <= 0xffff;
2238 }
2239
2240 static INLINE int
2241 fits_in_signed_word (addressT num)
2242 {
2243 return num + 0x8000 <= 0xffff;
2244 }
2245
2246 static INLINE int
2247 fits_in_signed_long (addressT num ATTRIBUTE_UNUSED)
2248 {
2249 #ifndef BFD64
2250 return 1;
2251 #else
2252 return num + 0x80000000 <= 0xffffffff;
2253 #endif
2254 } /* fits_in_signed_long() */
2255
2256 static INLINE int
2257 fits_in_unsigned_long (addressT num ATTRIBUTE_UNUSED)
2258 {
2259 #ifndef BFD64
2260 return 1;
2261 #else
2262 return num <= 0xffffffff;
2263 #endif
2264 } /* fits_in_unsigned_long() */
2265
2266 static INLINE int
2267 fits_in_disp8 (offsetT num)
2268 {
2269 int shift = i.memshift;
2270 unsigned int mask;
2271
2272 if (shift == -1)
2273 abort ();
2274
2275 mask = (1 << shift) - 1;
2276
2277 /* Return 0 if NUM isn't properly aligned. */
2278 if ((num & mask))
2279 return 0;
2280
2281 /* Check if NUM will fit in 8bit after shift. */
2282 return fits_in_signed_byte (num >> shift);
2283 }
2284
2285 static INLINE int
2286 fits_in_imm4 (offsetT num)
2287 {
2288 return (num & 0xf) == num;
2289 }
2290
2291 static i386_operand_type
2292 smallest_imm_type (offsetT num)
2293 {
2294 i386_operand_type t;
2295
2296 operand_type_set (&t, 0);
2297 t.bitfield.imm64 = 1;
2298
2299 if (cpu_arch_tune != PROCESSOR_I486 && num == 1)
2300 {
2301 /* This code is disabled on the 486 because all the Imm1 forms
2302 in the opcode table are slower on the i486. They're the
2303 versions with the implicitly specified single-position
2304 displacement, which has another syntax if you really want to
2305 use that form. */
2306 t.bitfield.imm1 = 1;
2307 t.bitfield.imm8 = 1;
2308 t.bitfield.imm8s = 1;
2309 t.bitfield.imm16 = 1;
2310 t.bitfield.imm32 = 1;
2311 t.bitfield.imm32s = 1;
2312 }
2313 else if (fits_in_signed_byte (num))
2314 {
2315 t.bitfield.imm8 = 1;
2316 t.bitfield.imm8s = 1;
2317 t.bitfield.imm16 = 1;
2318 t.bitfield.imm32 = 1;
2319 t.bitfield.imm32s = 1;
2320 }
2321 else if (fits_in_unsigned_byte (num))
2322 {
2323 t.bitfield.imm8 = 1;
2324 t.bitfield.imm16 = 1;
2325 t.bitfield.imm32 = 1;
2326 t.bitfield.imm32s = 1;
2327 }
2328 else if (fits_in_signed_word (num) || fits_in_unsigned_word (num))
2329 {
2330 t.bitfield.imm16 = 1;
2331 t.bitfield.imm32 = 1;
2332 t.bitfield.imm32s = 1;
2333 }
2334 else if (fits_in_signed_long (num))
2335 {
2336 t.bitfield.imm32 = 1;
2337 t.bitfield.imm32s = 1;
2338 }
2339 else if (fits_in_unsigned_long (num))
2340 t.bitfield.imm32 = 1;
2341
2342 return t;
2343 }
2344
2345 static offsetT
2346 offset_in_range (offsetT val, int size)
2347 {
2348 addressT mask;
2349
2350 switch (size)
2351 {
2352 case 1: mask = ((addressT) 1 << 8) - 1; break;
2353 case 2: mask = ((addressT) 1 << 16) - 1; break;
2354 case 4: mask = ((addressT) 2 << 31) - 1; break;
2355 #ifdef BFD64
2356 case 8: mask = ((addressT) 2 << 63) - 1; break;
2357 #endif
2358 default: abort ();
2359 }
2360
2361 #ifdef BFD64
2362 /* If BFD64, sign extend val for 32bit address mode. */
2363 if (flag_code != CODE_64BIT
2364 || i.prefix[ADDR_PREFIX])
2365 if ((val & ~(((addressT) 2 << 31) - 1)) == 0)
2366 val = (val ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
2367 #endif
2368
2369 if ((val & ~mask) != 0 && (val & ~mask) != ~mask)
2370 {
2371 char buf1[40], buf2[40];
2372
2373 sprint_value (buf1, val);
2374 sprint_value (buf2, val & mask);
2375 as_warn (_("%s shortened to %s"), buf1, buf2);
2376 }
2377 return val & mask;
2378 }
2379
2380 enum PREFIX_GROUP
2381 {
2382 PREFIX_EXIST = 0,
2383 PREFIX_LOCK,
2384 PREFIX_REP,
2385 PREFIX_DS,
2386 PREFIX_OTHER
2387 };
2388
2389 /* Returns
2390 a. PREFIX_EXIST if attempting to add a prefix where one from the
2391 same class already exists.
2392 b. PREFIX_LOCK if lock prefix is added.
2393 c. PREFIX_REP if rep/repne prefix is added.
2394 d. PREFIX_DS if ds prefix is added.
2395 e. PREFIX_OTHER if other prefix is added.
2396 */
2397
2398 static enum PREFIX_GROUP
2399 add_prefix (unsigned int prefix)
2400 {
2401 enum PREFIX_GROUP ret = PREFIX_OTHER;
2402 unsigned int q;
2403
2404 if (prefix >= REX_OPCODE && prefix < REX_OPCODE + 16
2405 && flag_code == CODE_64BIT)
2406 {
2407 if ((i.prefix[REX_PREFIX] & prefix & REX_W)
2408 || (i.prefix[REX_PREFIX] & prefix & REX_R)
2409 || (i.prefix[REX_PREFIX] & prefix & REX_X)
2410 || (i.prefix[REX_PREFIX] & prefix & REX_B))
2411 ret = PREFIX_EXIST;
2412 q = REX_PREFIX;
2413 }
2414 else
2415 {
2416 switch (prefix)
2417 {
2418 default:
2419 abort ();
2420
2421 case DS_PREFIX_OPCODE:
2422 ret = PREFIX_DS;
2423 /* Fall through. */
2424 case CS_PREFIX_OPCODE:
2425 case ES_PREFIX_OPCODE:
2426 case FS_PREFIX_OPCODE:
2427 case GS_PREFIX_OPCODE:
2428 case SS_PREFIX_OPCODE:
2429 q = SEG_PREFIX;
2430 break;
2431
2432 case REPNE_PREFIX_OPCODE:
2433 case REPE_PREFIX_OPCODE:
2434 q = REP_PREFIX;
2435 ret = PREFIX_REP;
2436 break;
2437
2438 case LOCK_PREFIX_OPCODE:
2439 q = LOCK_PREFIX;
2440 ret = PREFIX_LOCK;
2441 break;
2442
2443 case FWAIT_OPCODE:
2444 q = WAIT_PREFIX;
2445 break;
2446
2447 case ADDR_PREFIX_OPCODE:
2448 q = ADDR_PREFIX;
2449 break;
2450
2451 case DATA_PREFIX_OPCODE:
2452 q = DATA_PREFIX;
2453 break;
2454 }
2455 if (i.prefix[q] != 0)
2456 ret = PREFIX_EXIST;
2457 }
2458
2459 if (ret)
2460 {
2461 if (!i.prefix[q])
2462 ++i.prefixes;
2463 i.prefix[q] |= prefix;
2464 }
2465 else
2466 as_bad (_("same type of prefix used twice"));
2467
2468 return ret;
2469 }
2470
2471 static void
2472 update_code_flag (int value, int check)
2473 {
2474 PRINTF_LIKE ((*as_error));
2475
2476 flag_code = (enum flag_code) value;
2477 if (flag_code == CODE_64BIT)
2478 {
2479 cpu_arch_flags.bitfield.cpu64 = 1;
2480 cpu_arch_flags.bitfield.cpuno64 = 0;
2481 }
2482 else
2483 {
2484 cpu_arch_flags.bitfield.cpu64 = 0;
2485 cpu_arch_flags.bitfield.cpuno64 = 1;
2486 }
2487 if (value == CODE_64BIT && !cpu_arch_flags.bitfield.cpulm )
2488 {
2489 if (check)
2490 as_error = as_fatal;
2491 else
2492 as_error = as_bad;
2493 (*as_error) (_("64bit mode not supported on `%s'."),
2494 cpu_arch_name ? cpu_arch_name : default_arch);
2495 }
2496 if (value == CODE_32BIT && !cpu_arch_flags.bitfield.cpui386)
2497 {
2498 if (check)
2499 as_error = as_fatal;
2500 else
2501 as_error = as_bad;
2502 (*as_error) (_("32bit mode not supported on `%s'."),
2503 cpu_arch_name ? cpu_arch_name : default_arch);
2504 }
2505 stackop_size = '\0';
2506 }
2507
2508 static void
2509 set_code_flag (int value)
2510 {
2511 update_code_flag (value, 0);
2512 }
2513
2514 static void
2515 set_16bit_gcc_code_flag (int new_code_flag)
2516 {
2517 flag_code = (enum flag_code) new_code_flag;
2518 if (flag_code != CODE_16BIT)
2519 abort ();
2520 cpu_arch_flags.bitfield.cpu64 = 0;
2521 cpu_arch_flags.bitfield.cpuno64 = 1;
2522 stackop_size = LONG_MNEM_SUFFIX;
2523 }
2524
2525 static void
2526 set_intel_syntax (int syntax_flag)
2527 {
2528 /* Find out if register prefixing is specified. */
2529 int ask_naked_reg = 0;
2530
2531 SKIP_WHITESPACE ();
2532 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2533 {
2534 char *string;
2535 int e = get_symbol_name (&string);
2536
2537 if (strcmp (string, "prefix") == 0)
2538 ask_naked_reg = 1;
2539 else if (strcmp (string, "noprefix") == 0)
2540 ask_naked_reg = -1;
2541 else
2542 as_bad (_("bad argument to syntax directive."));
2543 (void) restore_line_pointer (e);
2544 }
2545 demand_empty_rest_of_line ();
2546
2547 intel_syntax = syntax_flag;
2548
2549 if (ask_naked_reg == 0)
2550 allow_naked_reg = (intel_syntax
2551 && (bfd_get_symbol_leading_char (stdoutput) != '\0'));
2552 else
2553 allow_naked_reg = (ask_naked_reg < 0);
2554
2555 expr_set_rank (O_full_ptr, syntax_flag ? 10 : 0);
2556
2557 identifier_chars['%'] = intel_syntax && allow_naked_reg ? '%' : 0;
2558 identifier_chars['$'] = intel_syntax ? '$' : 0;
2559 register_prefix = allow_naked_reg ? "" : "%";
2560 }
2561
2562 static void
2563 set_intel_mnemonic (int mnemonic_flag)
2564 {
2565 intel_mnemonic = mnemonic_flag;
2566 }
2567
2568 static void
2569 set_allow_index_reg (int flag)
2570 {
2571 allow_index_reg = flag;
2572 }
2573
2574 static void
2575 set_check (int what)
2576 {
2577 enum check_kind *kind;
2578 const char *str;
2579
2580 if (what)
2581 {
2582 kind = &operand_check;
2583 str = "operand";
2584 }
2585 else
2586 {
2587 kind = &sse_check;
2588 str = "sse";
2589 }
2590
2591 SKIP_WHITESPACE ();
2592
2593 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2594 {
2595 char *string;
2596 int e = get_symbol_name (&string);
2597
2598 if (strcmp (string, "none") == 0)
2599 *kind = check_none;
2600 else if (strcmp (string, "warning") == 0)
2601 *kind = check_warning;
2602 else if (strcmp (string, "error") == 0)
2603 *kind = check_error;
2604 else
2605 as_bad (_("bad argument to %s_check directive."), str);
2606 (void) restore_line_pointer (e);
2607 }
2608 else
2609 as_bad (_("missing argument for %s_check directive"), str);
2610
2611 demand_empty_rest_of_line ();
2612 }
2613
2614 static void
2615 check_cpu_arch_compatible (const char *name ATTRIBUTE_UNUSED,
2616 i386_cpu_flags new_flag ATTRIBUTE_UNUSED)
2617 {
2618 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
2619 static const char *arch;
2620
2621 /* Intel LIOM is only supported on ELF. */
2622 if (!IS_ELF)
2623 return;
2624
2625 if (!arch)
2626 {
2627 /* Use cpu_arch_name if it is set in md_parse_option. Otherwise
2628 use default_arch. */
2629 arch = cpu_arch_name;
2630 if (!arch)
2631 arch = default_arch;
2632 }
2633
2634 /* If we are targeting Intel MCU, we must enable it. */
2635 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_IAMCU
2636 || new_flag.bitfield.cpuiamcu)
2637 return;
2638
2639 /* If we are targeting Intel L1OM, we must enable it. */
2640 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_L1OM
2641 || new_flag.bitfield.cpul1om)
2642 return;
2643
2644 /* If we are targeting Intel K1OM, we must enable it. */
2645 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_K1OM
2646 || new_flag.bitfield.cpuk1om)
2647 return;
2648
2649 as_bad (_("`%s' is not supported on `%s'"), name, arch);
2650 #endif
2651 }
2652
2653 static void
2654 set_cpu_arch (int dummy ATTRIBUTE_UNUSED)
2655 {
2656 SKIP_WHITESPACE ();
2657
2658 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2659 {
2660 char *string;
2661 int e = get_symbol_name (&string);
2662 unsigned int j;
2663 i386_cpu_flags flags;
2664
2665 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
2666 {
2667 if (strcmp (string, cpu_arch[j].name) == 0)
2668 {
2669 check_cpu_arch_compatible (string, cpu_arch[j].flags);
2670
2671 if (*string != '.')
2672 {
2673 cpu_arch_name = cpu_arch[j].name;
2674 cpu_sub_arch_name = NULL;
2675 cpu_arch_flags = cpu_arch[j].flags;
2676 if (flag_code == CODE_64BIT)
2677 {
2678 cpu_arch_flags.bitfield.cpu64 = 1;
2679 cpu_arch_flags.bitfield.cpuno64 = 0;
2680 }
2681 else
2682 {
2683 cpu_arch_flags.bitfield.cpu64 = 0;
2684 cpu_arch_flags.bitfield.cpuno64 = 1;
2685 }
2686 cpu_arch_isa = cpu_arch[j].type;
2687 cpu_arch_isa_flags = cpu_arch[j].flags;
2688 if (!cpu_arch_tune_set)
2689 {
2690 cpu_arch_tune = cpu_arch_isa;
2691 cpu_arch_tune_flags = cpu_arch_isa_flags;
2692 }
2693 break;
2694 }
2695
2696 flags = cpu_flags_or (cpu_arch_flags,
2697 cpu_arch[j].flags);
2698
2699 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
2700 {
2701 if (cpu_sub_arch_name)
2702 {
2703 char *name = cpu_sub_arch_name;
2704 cpu_sub_arch_name = concat (name,
2705 cpu_arch[j].name,
2706 (const char *) NULL);
2707 free (name);
2708 }
2709 else
2710 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
2711 cpu_arch_flags = flags;
2712 cpu_arch_isa_flags = flags;
2713 }
2714 else
2715 cpu_arch_isa_flags
2716 = cpu_flags_or (cpu_arch_isa_flags,
2717 cpu_arch[j].flags);
2718 (void) restore_line_pointer (e);
2719 demand_empty_rest_of_line ();
2720 return;
2721 }
2722 }
2723
2724 if (*string == '.' && j >= ARRAY_SIZE (cpu_arch))
2725 {
2726 /* Disable an ISA extension. */
2727 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
2728 if (strcmp (string + 1, cpu_noarch [j].name) == 0)
2729 {
2730 flags = cpu_flags_and_not (cpu_arch_flags,
2731 cpu_noarch[j].flags);
2732 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
2733 {
2734 if (cpu_sub_arch_name)
2735 {
2736 char *name = cpu_sub_arch_name;
2737 cpu_sub_arch_name = concat (name, string,
2738 (const char *) NULL);
2739 free (name);
2740 }
2741 else
2742 cpu_sub_arch_name = xstrdup (string);
2743 cpu_arch_flags = flags;
2744 cpu_arch_isa_flags = flags;
2745 }
2746 (void) restore_line_pointer (e);
2747 demand_empty_rest_of_line ();
2748 return;
2749 }
2750
2751 j = ARRAY_SIZE (cpu_arch);
2752 }
2753
2754 if (j >= ARRAY_SIZE (cpu_arch))
2755 as_bad (_("no such architecture: `%s'"), string);
2756
2757 *input_line_pointer = e;
2758 }
2759 else
2760 as_bad (_("missing cpu architecture"));
2761
2762 no_cond_jump_promotion = 0;
2763 if (*input_line_pointer == ','
2764 && !is_end_of_line[(unsigned char) input_line_pointer[1]])
2765 {
2766 char *string;
2767 char e;
2768
2769 ++input_line_pointer;
2770 e = get_symbol_name (&string);
2771
2772 if (strcmp (string, "nojumps") == 0)
2773 no_cond_jump_promotion = 1;
2774 else if (strcmp (string, "jumps") == 0)
2775 ;
2776 else
2777 as_bad (_("no such architecture modifier: `%s'"), string);
2778
2779 (void) restore_line_pointer (e);
2780 }
2781
2782 demand_empty_rest_of_line ();
2783 }
2784
2785 enum bfd_architecture
2786 i386_arch (void)
2787 {
2788 if (cpu_arch_isa == PROCESSOR_L1OM)
2789 {
2790 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2791 || flag_code != CODE_64BIT)
2792 as_fatal (_("Intel L1OM is 64bit ELF only"));
2793 return bfd_arch_l1om;
2794 }
2795 else if (cpu_arch_isa == PROCESSOR_K1OM)
2796 {
2797 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2798 || flag_code != CODE_64BIT)
2799 as_fatal (_("Intel K1OM is 64bit ELF only"));
2800 return bfd_arch_k1om;
2801 }
2802 else if (cpu_arch_isa == PROCESSOR_IAMCU)
2803 {
2804 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2805 || flag_code == CODE_64BIT)
2806 as_fatal (_("Intel MCU is 32bit ELF only"));
2807 return bfd_arch_iamcu;
2808 }
2809 else
2810 return bfd_arch_i386;
2811 }
2812
2813 unsigned long
2814 i386_mach (void)
2815 {
2816 if (!strncmp (default_arch, "x86_64", 6))
2817 {
2818 if (cpu_arch_isa == PROCESSOR_L1OM)
2819 {
2820 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2821 || default_arch[6] != '\0')
2822 as_fatal (_("Intel L1OM is 64bit ELF only"));
2823 return bfd_mach_l1om;
2824 }
2825 else if (cpu_arch_isa == PROCESSOR_K1OM)
2826 {
2827 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2828 || default_arch[6] != '\0')
2829 as_fatal (_("Intel K1OM is 64bit ELF only"));
2830 return bfd_mach_k1om;
2831 }
2832 else if (default_arch[6] == '\0')
2833 return bfd_mach_x86_64;
2834 else
2835 return bfd_mach_x64_32;
2836 }
2837 else if (!strcmp (default_arch, "i386")
2838 || !strcmp (default_arch, "iamcu"))
2839 {
2840 if (cpu_arch_isa == PROCESSOR_IAMCU)
2841 {
2842 if (OUTPUT_FLAVOR != bfd_target_elf_flavour)
2843 as_fatal (_("Intel MCU is 32bit ELF only"));
2844 return bfd_mach_i386_iamcu;
2845 }
2846 else
2847 return bfd_mach_i386_i386;
2848 }
2849 else
2850 as_fatal (_("unknown architecture"));
2851 }
2852 \f
2853 void
2854 md_begin (void)
2855 {
2856 const char *hash_err;
2857
2858 /* Support pseudo prefixes like {disp32}. */
2859 lex_type ['{'] = LEX_BEGIN_NAME;
2860
2861 /* Initialize op_hash hash table. */
2862 op_hash = hash_new ();
2863
2864 {
2865 const insn_template *optab;
2866 templates *core_optab;
2867
2868 /* Setup for loop. */
2869 optab = i386_optab;
2870 core_optab = XNEW (templates);
2871 core_optab->start = optab;
2872
2873 while (1)
2874 {
2875 ++optab;
2876 if (optab->name == NULL
2877 || strcmp (optab->name, (optab - 1)->name) != 0)
2878 {
2879 /* different name --> ship out current template list;
2880 add to hash table; & begin anew. */
2881 core_optab->end = optab;
2882 hash_err = hash_insert (op_hash,
2883 (optab - 1)->name,
2884 (void *) core_optab);
2885 if (hash_err)
2886 {
2887 as_fatal (_("can't hash %s: %s"),
2888 (optab - 1)->name,
2889 hash_err);
2890 }
2891 if (optab->name == NULL)
2892 break;
2893 core_optab = XNEW (templates);
2894 core_optab->start = optab;
2895 }
2896 }
2897 }
2898
2899 /* Initialize reg_hash hash table. */
2900 reg_hash = hash_new ();
2901 {
2902 const reg_entry *regtab;
2903 unsigned int regtab_size = i386_regtab_size;
2904
2905 for (regtab = i386_regtab; regtab_size--; regtab++)
2906 {
2907 hash_err = hash_insert (reg_hash, regtab->reg_name, (void *) regtab);
2908 if (hash_err)
2909 as_fatal (_("can't hash %s: %s"),
2910 regtab->reg_name,
2911 hash_err);
2912 }
2913 }
2914
2915 /* Fill in lexical tables: mnemonic_chars, operand_chars. */
2916 {
2917 int c;
2918 char *p;
2919
2920 for (c = 0; c < 256; c++)
2921 {
2922 if (ISDIGIT (c))
2923 {
2924 digit_chars[c] = c;
2925 mnemonic_chars[c] = c;
2926 register_chars[c] = c;
2927 operand_chars[c] = c;
2928 }
2929 else if (ISLOWER (c))
2930 {
2931 mnemonic_chars[c] = c;
2932 register_chars[c] = c;
2933 operand_chars[c] = c;
2934 }
2935 else if (ISUPPER (c))
2936 {
2937 mnemonic_chars[c] = TOLOWER (c);
2938 register_chars[c] = mnemonic_chars[c];
2939 operand_chars[c] = c;
2940 }
2941 else if (c == '{' || c == '}')
2942 {
2943 mnemonic_chars[c] = c;
2944 operand_chars[c] = c;
2945 }
2946
2947 if (ISALPHA (c) || ISDIGIT (c))
2948 identifier_chars[c] = c;
2949 else if (c >= 128)
2950 {
2951 identifier_chars[c] = c;
2952 operand_chars[c] = c;
2953 }
2954 }
2955
2956 #ifdef LEX_AT
2957 identifier_chars['@'] = '@';
2958 #endif
2959 #ifdef LEX_QM
2960 identifier_chars['?'] = '?';
2961 operand_chars['?'] = '?';
2962 #endif
2963 digit_chars['-'] = '-';
2964 mnemonic_chars['_'] = '_';
2965 mnemonic_chars['-'] = '-';
2966 mnemonic_chars['.'] = '.';
2967 identifier_chars['_'] = '_';
2968 identifier_chars['.'] = '.';
2969
2970 for (p = operand_special_chars; *p != '\0'; p++)
2971 operand_chars[(unsigned char) *p] = *p;
2972 }
2973
2974 if (flag_code == CODE_64BIT)
2975 {
2976 #if defined (OBJ_COFF) && defined (TE_PE)
2977 x86_dwarf2_return_column = (OUTPUT_FLAVOR == bfd_target_coff_flavour
2978 ? 32 : 16);
2979 #else
2980 x86_dwarf2_return_column = 16;
2981 #endif
2982 x86_cie_data_alignment = -8;
2983 }
2984 else
2985 {
2986 x86_dwarf2_return_column = 8;
2987 x86_cie_data_alignment = -4;
2988 }
2989 }
2990
2991 void
2992 i386_print_statistics (FILE *file)
2993 {
2994 hash_print_statistics (file, "i386 opcode", op_hash);
2995 hash_print_statistics (file, "i386 register", reg_hash);
2996 }
2997 \f
2998 #ifdef DEBUG386
2999
3000 /* Debugging routines for md_assemble. */
3001 static void pte (insn_template *);
3002 static void pt (i386_operand_type);
3003 static void pe (expressionS *);
3004 static void ps (symbolS *);
3005
3006 static void
3007 pi (const char *line, i386_insn *x)
3008 {
3009 unsigned int j;
3010
3011 fprintf (stdout, "%s: template ", line);
3012 pte (&x->tm);
3013 fprintf (stdout, " address: base %s index %s scale %x\n",
3014 x->base_reg ? x->base_reg->reg_name : "none",
3015 x->index_reg ? x->index_reg->reg_name : "none",
3016 x->log2_scale_factor);
3017 fprintf (stdout, " modrm: mode %x reg %x reg/mem %x\n",
3018 x->rm.mode, x->rm.reg, x->rm.regmem);
3019 fprintf (stdout, " sib: base %x index %x scale %x\n",
3020 x->sib.base, x->sib.index, x->sib.scale);
3021 fprintf (stdout, " rex: 64bit %x extX %x extY %x extZ %x\n",
3022 (x->rex & REX_W) != 0,
3023 (x->rex & REX_R) != 0,
3024 (x->rex & REX_X) != 0,
3025 (x->rex & REX_B) != 0);
3026 for (j = 0; j < x->operands; j++)
3027 {
3028 fprintf (stdout, " #%d: ", j + 1);
3029 pt (x->types[j]);
3030 fprintf (stdout, "\n");
3031 if (x->types[j].bitfield.reg
3032 || x->types[j].bitfield.regmmx
3033 || x->types[j].bitfield.regsimd
3034 || x->types[j].bitfield.sreg
3035 || x->types[j].bitfield.control
3036 || x->types[j].bitfield.debug
3037 || x->types[j].bitfield.test)
3038 fprintf (stdout, "%s\n", x->op[j].regs->reg_name);
3039 if (operand_type_check (x->types[j], imm))
3040 pe (x->op[j].imms);
3041 if (operand_type_check (x->types[j], disp))
3042 pe (x->op[j].disps);
3043 }
3044 }
3045
3046 static void
3047 pte (insn_template *t)
3048 {
3049 unsigned int j;
3050 fprintf (stdout, " %d operands ", t->operands);
3051 fprintf (stdout, "opcode %x ", t->base_opcode);
3052 if (t->extension_opcode != None)
3053 fprintf (stdout, "ext %x ", t->extension_opcode);
3054 if (t->opcode_modifier.d)
3055 fprintf (stdout, "D");
3056 if (t->opcode_modifier.w)
3057 fprintf (stdout, "W");
3058 fprintf (stdout, "\n");
3059 for (j = 0; j < t->operands; j++)
3060 {
3061 fprintf (stdout, " #%d type ", j + 1);
3062 pt (t->operand_types[j]);
3063 fprintf (stdout, "\n");
3064 }
3065 }
3066
3067 static void
3068 pe (expressionS *e)
3069 {
3070 fprintf (stdout, " operation %d\n", e->X_op);
3071 fprintf (stdout, " add_number %ld (%lx)\n",
3072 (long) e->X_add_number, (long) e->X_add_number);
3073 if (e->X_add_symbol)
3074 {
3075 fprintf (stdout, " add_symbol ");
3076 ps (e->X_add_symbol);
3077 fprintf (stdout, "\n");
3078 }
3079 if (e->X_op_symbol)
3080 {
3081 fprintf (stdout, " op_symbol ");
3082 ps (e->X_op_symbol);
3083 fprintf (stdout, "\n");
3084 }
3085 }
3086
3087 static void
3088 ps (symbolS *s)
3089 {
3090 fprintf (stdout, "%s type %s%s",
3091 S_GET_NAME (s),
3092 S_IS_EXTERNAL (s) ? "EXTERNAL " : "",
3093 segment_name (S_GET_SEGMENT (s)));
3094 }
3095
3096 static struct type_name
3097 {
3098 i386_operand_type mask;
3099 const char *name;
3100 }
3101 const type_names[] =
3102 {
3103 { OPERAND_TYPE_REG8, "r8" },
3104 { OPERAND_TYPE_REG16, "r16" },
3105 { OPERAND_TYPE_REG32, "r32" },
3106 { OPERAND_TYPE_REG64, "r64" },
3107 { OPERAND_TYPE_ACC8, "acc8" },
3108 { OPERAND_TYPE_ACC16, "acc16" },
3109 { OPERAND_TYPE_ACC32, "acc32" },
3110 { OPERAND_TYPE_ACC64, "acc64" },
3111 { OPERAND_TYPE_IMM8, "i8" },
3112 { OPERAND_TYPE_IMM8, "i8s" },
3113 { OPERAND_TYPE_IMM16, "i16" },
3114 { OPERAND_TYPE_IMM32, "i32" },
3115 { OPERAND_TYPE_IMM32S, "i32s" },
3116 { OPERAND_TYPE_IMM64, "i64" },
3117 { OPERAND_TYPE_IMM1, "i1" },
3118 { OPERAND_TYPE_BASEINDEX, "BaseIndex" },
3119 { OPERAND_TYPE_DISP8, "d8" },
3120 { OPERAND_TYPE_DISP16, "d16" },
3121 { OPERAND_TYPE_DISP32, "d32" },
3122 { OPERAND_TYPE_DISP32S, "d32s" },
3123 { OPERAND_TYPE_DISP64, "d64" },
3124 { OPERAND_TYPE_INOUTPORTREG, "InOutPortReg" },
3125 { OPERAND_TYPE_SHIFTCOUNT, "ShiftCount" },
3126 { OPERAND_TYPE_CONTROL, "control reg" },
3127 { OPERAND_TYPE_TEST, "test reg" },
3128 { OPERAND_TYPE_DEBUG, "debug reg" },
3129 { OPERAND_TYPE_FLOATREG, "FReg" },
3130 { OPERAND_TYPE_FLOATACC, "FAcc" },
3131 { OPERAND_TYPE_SREG, "SReg" },
3132 { OPERAND_TYPE_JUMPABSOLUTE, "Jump Absolute" },
3133 { OPERAND_TYPE_REGMMX, "rMMX" },
3134 { OPERAND_TYPE_REGXMM, "rXMM" },
3135 { OPERAND_TYPE_REGYMM, "rYMM" },
3136 { OPERAND_TYPE_REGZMM, "rZMM" },
3137 { OPERAND_TYPE_REGMASK, "Mask reg" },
3138 { OPERAND_TYPE_ESSEG, "es" },
3139 };
3140
3141 static void
3142 pt (i386_operand_type t)
3143 {
3144 unsigned int j;
3145 i386_operand_type a;
3146
3147 for (j = 0; j < ARRAY_SIZE (type_names); j++)
3148 {
3149 a = operand_type_and (t, type_names[j].mask);
3150 if (operand_type_equal (&a, &type_names[j].mask))
3151 fprintf (stdout, "%s, ", type_names[j].name);
3152 }
3153 fflush (stdout);
3154 }
3155
3156 #endif /* DEBUG386 */
3157 \f
3158 static bfd_reloc_code_real_type
3159 reloc (unsigned int size,
3160 int pcrel,
3161 int sign,
3162 bfd_reloc_code_real_type other)
3163 {
3164 if (other != NO_RELOC)
3165 {
3166 reloc_howto_type *rel;
3167
3168 if (size == 8)
3169 switch (other)
3170 {
3171 case BFD_RELOC_X86_64_GOT32:
3172 return BFD_RELOC_X86_64_GOT64;
3173 break;
3174 case BFD_RELOC_X86_64_GOTPLT64:
3175 return BFD_RELOC_X86_64_GOTPLT64;
3176 break;
3177 case BFD_RELOC_X86_64_PLTOFF64:
3178 return BFD_RELOC_X86_64_PLTOFF64;
3179 break;
3180 case BFD_RELOC_X86_64_GOTPC32:
3181 other = BFD_RELOC_X86_64_GOTPC64;
3182 break;
3183 case BFD_RELOC_X86_64_GOTPCREL:
3184 other = BFD_RELOC_X86_64_GOTPCREL64;
3185 break;
3186 case BFD_RELOC_X86_64_TPOFF32:
3187 other = BFD_RELOC_X86_64_TPOFF64;
3188 break;
3189 case BFD_RELOC_X86_64_DTPOFF32:
3190 other = BFD_RELOC_X86_64_DTPOFF64;
3191 break;
3192 default:
3193 break;
3194 }
3195
3196 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
3197 if (other == BFD_RELOC_SIZE32)
3198 {
3199 if (size == 8)
3200 other = BFD_RELOC_SIZE64;
3201 if (pcrel)
3202 {
3203 as_bad (_("there are no pc-relative size relocations"));
3204 return NO_RELOC;
3205 }
3206 }
3207 #endif
3208
3209 /* Sign-checking 4-byte relocations in 16-/32-bit code is pointless. */
3210 if (size == 4 && (flag_code != CODE_64BIT || disallow_64bit_reloc))
3211 sign = -1;
3212
3213 rel = bfd_reloc_type_lookup (stdoutput, other);
3214 if (!rel)
3215 as_bad (_("unknown relocation (%u)"), other);
3216 else if (size != bfd_get_reloc_size (rel))
3217 as_bad (_("%u-byte relocation cannot be applied to %u-byte field"),
3218 bfd_get_reloc_size (rel),
3219 size);
3220 else if (pcrel && !rel->pc_relative)
3221 as_bad (_("non-pc-relative relocation for pc-relative field"));
3222 else if ((rel->complain_on_overflow == complain_overflow_signed
3223 && !sign)
3224 || (rel->complain_on_overflow == complain_overflow_unsigned
3225 && sign > 0))
3226 as_bad (_("relocated field and relocation type differ in signedness"));
3227 else
3228 return other;
3229 return NO_RELOC;
3230 }
3231
3232 if (pcrel)
3233 {
3234 if (!sign)
3235 as_bad (_("there are no unsigned pc-relative relocations"));
3236 switch (size)
3237 {
3238 case 1: return BFD_RELOC_8_PCREL;
3239 case 2: return BFD_RELOC_16_PCREL;
3240 case 4: return BFD_RELOC_32_PCREL;
3241 case 8: return BFD_RELOC_64_PCREL;
3242 }
3243 as_bad (_("cannot do %u byte pc-relative relocation"), size);
3244 }
3245 else
3246 {
3247 if (sign > 0)
3248 switch (size)
3249 {
3250 case 4: return BFD_RELOC_X86_64_32S;
3251 }
3252 else
3253 switch (size)
3254 {
3255 case 1: return BFD_RELOC_8;
3256 case 2: return BFD_RELOC_16;
3257 case 4: return BFD_RELOC_32;
3258 case 8: return BFD_RELOC_64;
3259 }
3260 as_bad (_("cannot do %s %u byte relocation"),
3261 sign > 0 ? "signed" : "unsigned", size);
3262 }
3263
3264 return NO_RELOC;
3265 }
3266
3267 /* Here we decide which fixups can be adjusted to make them relative to
3268 the beginning of the section instead of the symbol. Basically we need
3269 to make sure that the dynamic relocations are done correctly, so in
3270 some cases we force the original symbol to be used. */
3271
3272 int
3273 tc_i386_fix_adjustable (fixS *fixP ATTRIBUTE_UNUSED)
3274 {
3275 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
3276 if (!IS_ELF)
3277 return 1;
3278
3279 /* Don't adjust pc-relative references to merge sections in 64-bit
3280 mode. */
3281 if (use_rela_relocations
3282 && (S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_MERGE) != 0
3283 && fixP->fx_pcrel)
3284 return 0;
3285
3286 /* The x86_64 GOTPCREL are represented as 32bit PCrel relocations
3287 and changed later by validate_fix. */
3288 if (GOT_symbol && fixP->fx_subsy == GOT_symbol
3289 && fixP->fx_r_type == BFD_RELOC_32_PCREL)
3290 return 0;
3291
3292 /* Adjust_reloc_syms doesn't know about the GOT. Need to keep symbol
3293 for size relocations. */
3294 if (fixP->fx_r_type == BFD_RELOC_SIZE32
3295 || fixP->fx_r_type == BFD_RELOC_SIZE64
3296 || fixP->fx_r_type == BFD_RELOC_386_GOTOFF
3297 || fixP->fx_r_type == BFD_RELOC_386_PLT32
3298 || fixP->fx_r_type == BFD_RELOC_386_GOT32
3299 || fixP->fx_r_type == BFD_RELOC_386_GOT32X
3300 || fixP->fx_r_type == BFD_RELOC_386_TLS_GD
3301 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDM
3302 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDO_32
3303 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE_32
3304 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE
3305 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTIE
3306 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE_32
3307 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE
3308 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTDESC
3309 || fixP->fx_r_type == BFD_RELOC_386_TLS_DESC_CALL
3310 || fixP->fx_r_type == BFD_RELOC_X86_64_PLT32
3311 || fixP->fx_r_type == BFD_RELOC_X86_64_GOT32
3312 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCREL
3313 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCRELX
3314 || fixP->fx_r_type == BFD_RELOC_X86_64_REX_GOTPCRELX
3315 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSGD
3316 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSLD
3317 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF32
3318 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF64
3319 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTTPOFF
3320 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF32
3321 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF64
3322 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTOFF64
3323 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPC32_TLSDESC
3324 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSDESC_CALL
3325 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
3326 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
3327 return 0;
3328 #endif
3329 return 1;
3330 }
3331
3332 static int
3333 intel_float_operand (const char *mnemonic)
3334 {
3335 /* Note that the value returned is meaningful only for opcodes with (memory)
3336 operands, hence the code here is free to improperly handle opcodes that
3337 have no operands (for better performance and smaller code). */
3338
3339 if (mnemonic[0] != 'f')
3340 return 0; /* non-math */
3341
3342 switch (mnemonic[1])
3343 {
3344 /* fclex, fdecstp, fdisi, femms, feni, fincstp, finit, fsetpm, and
3345 the fs segment override prefix not currently handled because no
3346 call path can make opcodes without operands get here */
3347 case 'i':
3348 return 2 /* integer op */;
3349 case 'l':
3350 if (mnemonic[2] == 'd' && (mnemonic[3] == 'c' || mnemonic[3] == 'e'))
3351 return 3; /* fldcw/fldenv */
3352 break;
3353 case 'n':
3354 if (mnemonic[2] != 'o' /* fnop */)
3355 return 3; /* non-waiting control op */
3356 break;
3357 case 'r':
3358 if (mnemonic[2] == 's')
3359 return 3; /* frstor/frstpm */
3360 break;
3361 case 's':
3362 if (mnemonic[2] == 'a')
3363 return 3; /* fsave */
3364 if (mnemonic[2] == 't')
3365 {
3366 switch (mnemonic[3])
3367 {
3368 case 'c': /* fstcw */
3369 case 'd': /* fstdw */
3370 case 'e': /* fstenv */
3371 case 's': /* fsts[gw] */
3372 return 3;
3373 }
3374 }
3375 break;
3376 case 'x':
3377 if (mnemonic[2] == 'r' || mnemonic[2] == 's')
3378 return 0; /* fxsave/fxrstor are not really math ops */
3379 break;
3380 }
3381
3382 return 1;
3383 }
3384
3385 /* Build the VEX prefix. */
3386
3387 static void
3388 build_vex_prefix (const insn_template *t)
3389 {
3390 unsigned int register_specifier;
3391 unsigned int implied_prefix;
3392 unsigned int vector_length;
3393 unsigned int w;
3394
3395 /* Check register specifier. */
3396 if (i.vex.register_specifier)
3397 {
3398 register_specifier =
3399 ~register_number (i.vex.register_specifier) & 0xf;
3400 gas_assert ((i.vex.register_specifier->reg_flags & RegVRex) == 0);
3401 }
3402 else
3403 register_specifier = 0xf;
3404
3405 /* Use 2-byte VEX prefix by swapping destination and source operand
3406 if there are more than 1 register operand. */
3407 if (i.reg_operands > 1
3408 && i.vec_encoding != vex_encoding_vex3
3409 && i.dir_encoding == dir_encoding_default
3410 && i.operands == i.reg_operands
3411 && operand_type_equal (&i.types[0], &i.types[i.operands - 1])
3412 && i.tm.opcode_modifier.vexopcode == VEX0F
3413 && (i.tm.opcode_modifier.load || i.tm.opcode_modifier.d)
3414 && i.rex == REX_B)
3415 {
3416 unsigned int xchg = i.operands - 1;
3417 union i386_op temp_op;
3418 i386_operand_type temp_type;
3419
3420 temp_type = i.types[xchg];
3421 i.types[xchg] = i.types[0];
3422 i.types[0] = temp_type;
3423 temp_op = i.op[xchg];
3424 i.op[xchg] = i.op[0];
3425 i.op[0] = temp_op;
3426
3427 gas_assert (i.rm.mode == 3);
3428
3429 i.rex = REX_R;
3430 xchg = i.rm.regmem;
3431 i.rm.regmem = i.rm.reg;
3432 i.rm.reg = xchg;
3433
3434 if (i.tm.opcode_modifier.d)
3435 i.tm.base_opcode ^= (i.tm.base_opcode & 0xee) != 0x6e
3436 ? Opcode_SIMD_FloatD : Opcode_SIMD_IntD;
3437 else /* Use the next insn. */
3438 i.tm = t[1];
3439 }
3440
3441 /* Use 2-byte VEX prefix by swapping commutative source operands if there
3442 are no memory operands and at least 3 register ones. */
3443 if (i.reg_operands >= 3
3444 && i.vec_encoding != vex_encoding_vex3
3445 && i.reg_operands == i.operands - i.imm_operands
3446 && i.tm.opcode_modifier.vex
3447 && i.tm.opcode_modifier.commutative
3448 && (i.tm.opcode_modifier.sse2avx || optimize > 1)
3449 && i.rex == REX_B
3450 && i.vex.register_specifier
3451 && !(i.vex.register_specifier->reg_flags & RegRex))
3452 {
3453 unsigned int xchg = i.operands - i.reg_operands;
3454 union i386_op temp_op;
3455 i386_operand_type temp_type;
3456
3457 gas_assert (i.tm.opcode_modifier.vexopcode == VEX0F);
3458 gas_assert (!i.tm.opcode_modifier.sae);
3459 gas_assert (operand_type_equal (&i.types[i.operands - 2],
3460 &i.types[i.operands - 3]));
3461 gas_assert (i.rm.mode == 3);
3462
3463 temp_type = i.types[xchg];
3464 i.types[xchg] = i.types[xchg + 1];
3465 i.types[xchg + 1] = temp_type;
3466 temp_op = i.op[xchg];
3467 i.op[xchg] = i.op[xchg + 1];
3468 i.op[xchg + 1] = temp_op;
3469
3470 i.rex = 0;
3471 xchg = i.rm.regmem | 8;
3472 i.rm.regmem = ~register_specifier & 0xf;
3473 gas_assert (!(i.rm.regmem & 8));
3474 i.vex.register_specifier += xchg - i.rm.regmem;
3475 register_specifier = ~xchg & 0xf;
3476 }
3477
3478 if (i.tm.opcode_modifier.vex == VEXScalar)
3479 vector_length = avxscalar;
3480 else if (i.tm.opcode_modifier.vex == VEX256)
3481 vector_length = 1;
3482 else
3483 {
3484 unsigned int op;
3485
3486 /* Determine vector length from the last multi-length vector
3487 operand. */
3488 vector_length = 0;
3489 for (op = t->operands; op--;)
3490 if (t->operand_types[op].bitfield.xmmword
3491 && t->operand_types[op].bitfield.ymmword
3492 && i.types[op].bitfield.ymmword)
3493 {
3494 vector_length = 1;
3495 break;
3496 }
3497 }
3498
3499 switch ((i.tm.base_opcode >> 8) & 0xff)
3500 {
3501 case 0:
3502 implied_prefix = 0;
3503 break;
3504 case DATA_PREFIX_OPCODE:
3505 implied_prefix = 1;
3506 break;
3507 case REPE_PREFIX_OPCODE:
3508 implied_prefix = 2;
3509 break;
3510 case REPNE_PREFIX_OPCODE:
3511 implied_prefix = 3;
3512 break;
3513 default:
3514 abort ();
3515 }
3516
3517 /* Check the REX.W bit and VEXW. */
3518 if (i.tm.opcode_modifier.vexw == VEXWIG)
3519 w = (vexwig == vexw1 || (i.rex & REX_W)) ? 1 : 0;
3520 else if (i.tm.opcode_modifier.vexw)
3521 w = i.tm.opcode_modifier.vexw == VEXW1 ? 1 : 0;
3522 else
3523 w = (flag_code == CODE_64BIT ? i.rex & REX_W : vexwig == vexw1) ? 1 : 0;
3524
3525 /* Use 2-byte VEX prefix if possible. */
3526 if (w == 0
3527 && i.vec_encoding != vex_encoding_vex3
3528 && i.tm.opcode_modifier.vexopcode == VEX0F
3529 && (i.rex & (REX_W | REX_X | REX_B)) == 0)
3530 {
3531 /* 2-byte VEX prefix. */
3532 unsigned int r;
3533
3534 i.vex.length = 2;
3535 i.vex.bytes[0] = 0xc5;
3536
3537 /* Check the REX.R bit. */
3538 r = (i.rex & REX_R) ? 0 : 1;
3539 i.vex.bytes[1] = (r << 7
3540 | register_specifier << 3
3541 | vector_length << 2
3542 | implied_prefix);
3543 }
3544 else
3545 {
3546 /* 3-byte VEX prefix. */
3547 unsigned int m;
3548
3549 i.vex.length = 3;
3550
3551 switch (i.tm.opcode_modifier.vexopcode)
3552 {
3553 case VEX0F:
3554 m = 0x1;
3555 i.vex.bytes[0] = 0xc4;
3556 break;
3557 case VEX0F38:
3558 m = 0x2;
3559 i.vex.bytes[0] = 0xc4;
3560 break;
3561 case VEX0F3A:
3562 m = 0x3;
3563 i.vex.bytes[0] = 0xc4;
3564 break;
3565 case XOP08:
3566 m = 0x8;
3567 i.vex.bytes[0] = 0x8f;
3568 break;
3569 case XOP09:
3570 m = 0x9;
3571 i.vex.bytes[0] = 0x8f;
3572 break;
3573 case XOP0A:
3574 m = 0xa;
3575 i.vex.bytes[0] = 0x8f;
3576 break;
3577 default:
3578 abort ();
3579 }
3580
3581 /* The high 3 bits of the second VEX byte are 1's compliment
3582 of RXB bits from REX. */
3583 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3584
3585 i.vex.bytes[2] = (w << 7
3586 | register_specifier << 3
3587 | vector_length << 2
3588 | implied_prefix);
3589 }
3590 }
3591
3592 static INLINE bfd_boolean
3593 is_evex_encoding (const insn_template *t)
3594 {
3595 return t->opcode_modifier.evex || t->opcode_modifier.disp8memshift
3596 || t->opcode_modifier.broadcast || t->opcode_modifier.masking
3597 || t->opcode_modifier.sae;
3598 }
3599
3600 static INLINE bfd_boolean
3601 is_any_vex_encoding (const insn_template *t)
3602 {
3603 return t->opcode_modifier.vex || t->opcode_modifier.vexopcode
3604 || is_evex_encoding (t);
3605 }
3606
3607 /* Build the EVEX prefix. */
3608
3609 static void
3610 build_evex_prefix (void)
3611 {
3612 unsigned int register_specifier;
3613 unsigned int implied_prefix;
3614 unsigned int m, w;
3615 rex_byte vrex_used = 0;
3616
3617 /* Check register specifier. */
3618 if (i.vex.register_specifier)
3619 {
3620 gas_assert ((i.vrex & REX_X) == 0);
3621
3622 register_specifier = i.vex.register_specifier->reg_num;
3623 if ((i.vex.register_specifier->reg_flags & RegRex))
3624 register_specifier += 8;
3625 /* The upper 16 registers are encoded in the fourth byte of the
3626 EVEX prefix. */
3627 if (!(i.vex.register_specifier->reg_flags & RegVRex))
3628 i.vex.bytes[3] = 0x8;
3629 register_specifier = ~register_specifier & 0xf;
3630 }
3631 else
3632 {
3633 register_specifier = 0xf;
3634
3635 /* Encode upper 16 vector index register in the fourth byte of
3636 the EVEX prefix. */
3637 if (!(i.vrex & REX_X))
3638 i.vex.bytes[3] = 0x8;
3639 else
3640 vrex_used |= REX_X;
3641 }
3642
3643 switch ((i.tm.base_opcode >> 8) & 0xff)
3644 {
3645 case 0:
3646 implied_prefix = 0;
3647 break;
3648 case DATA_PREFIX_OPCODE:
3649 implied_prefix = 1;
3650 break;
3651 case REPE_PREFIX_OPCODE:
3652 implied_prefix = 2;
3653 break;
3654 case REPNE_PREFIX_OPCODE:
3655 implied_prefix = 3;
3656 break;
3657 default:
3658 abort ();
3659 }
3660
3661 /* 4 byte EVEX prefix. */
3662 i.vex.length = 4;
3663 i.vex.bytes[0] = 0x62;
3664
3665 /* mmmm bits. */
3666 switch (i.tm.opcode_modifier.vexopcode)
3667 {
3668 case VEX0F:
3669 m = 1;
3670 break;
3671 case VEX0F38:
3672 m = 2;
3673 break;
3674 case VEX0F3A:
3675 m = 3;
3676 break;
3677 default:
3678 abort ();
3679 break;
3680 }
3681
3682 /* The high 3 bits of the second EVEX byte are 1's compliment of RXB
3683 bits from REX. */
3684 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3685
3686 /* The fifth bit of the second EVEX byte is 1's compliment of the
3687 REX_R bit in VREX. */
3688 if (!(i.vrex & REX_R))
3689 i.vex.bytes[1] |= 0x10;
3690 else
3691 vrex_used |= REX_R;
3692
3693 if ((i.reg_operands + i.imm_operands) == i.operands)
3694 {
3695 /* When all operands are registers, the REX_X bit in REX is not
3696 used. We reuse it to encode the upper 16 registers, which is
3697 indicated by the REX_B bit in VREX. The REX_X bit is encoded
3698 as 1's compliment. */
3699 if ((i.vrex & REX_B))
3700 {
3701 vrex_used |= REX_B;
3702 i.vex.bytes[1] &= ~0x40;
3703 }
3704 }
3705
3706 /* EVEX instructions shouldn't need the REX prefix. */
3707 i.vrex &= ~vrex_used;
3708 gas_assert (i.vrex == 0);
3709
3710 /* Check the REX.W bit and VEXW. */
3711 if (i.tm.opcode_modifier.vexw == VEXWIG)
3712 w = (evexwig == evexw1 || (i.rex & REX_W)) ? 1 : 0;
3713 else if (i.tm.opcode_modifier.vexw)
3714 w = i.tm.opcode_modifier.vexw == VEXW1 ? 1 : 0;
3715 else
3716 w = (flag_code == CODE_64BIT ? i.rex & REX_W : evexwig == evexw1) ? 1 : 0;
3717
3718 /* Encode the U bit. */
3719 implied_prefix |= 0x4;
3720
3721 /* The third byte of the EVEX prefix. */
3722 i.vex.bytes[2] = (w << 7 | register_specifier << 3 | implied_prefix);
3723
3724 /* The fourth byte of the EVEX prefix. */
3725 /* The zeroing-masking bit. */
3726 if (i.mask && i.mask->zeroing)
3727 i.vex.bytes[3] |= 0x80;
3728
3729 /* Don't always set the broadcast bit if there is no RC. */
3730 if (!i.rounding)
3731 {
3732 /* Encode the vector length. */
3733 unsigned int vec_length;
3734
3735 if (!i.tm.opcode_modifier.evex
3736 || i.tm.opcode_modifier.evex == EVEXDYN)
3737 {
3738 unsigned int op;
3739
3740 /* Determine vector length from the last multi-length vector
3741 operand. */
3742 vec_length = 0;
3743 for (op = i.operands; op--;)
3744 if (i.tm.operand_types[op].bitfield.xmmword
3745 + i.tm.operand_types[op].bitfield.ymmword
3746 + i.tm.operand_types[op].bitfield.zmmword > 1)
3747 {
3748 if (i.types[op].bitfield.zmmword)
3749 {
3750 i.tm.opcode_modifier.evex = EVEX512;
3751 break;
3752 }
3753 else if (i.types[op].bitfield.ymmword)
3754 {
3755 i.tm.opcode_modifier.evex = EVEX256;
3756 break;
3757 }
3758 else if (i.types[op].bitfield.xmmword)
3759 {
3760 i.tm.opcode_modifier.evex = EVEX128;
3761 break;
3762 }
3763 else if (i.broadcast && (int) op == i.broadcast->operand)
3764 {
3765 switch (i.broadcast->bytes)
3766 {
3767 case 64:
3768 i.tm.opcode_modifier.evex = EVEX512;
3769 break;
3770 case 32:
3771 i.tm.opcode_modifier.evex = EVEX256;
3772 break;
3773 case 16:
3774 i.tm.opcode_modifier.evex = EVEX128;
3775 break;
3776 default:
3777 abort ();
3778 }
3779 break;
3780 }
3781 }
3782
3783 if (op >= MAX_OPERANDS)
3784 abort ();
3785 }
3786
3787 switch (i.tm.opcode_modifier.evex)
3788 {
3789 case EVEXLIG: /* LL' is ignored */
3790 vec_length = evexlig << 5;
3791 break;
3792 case EVEX128:
3793 vec_length = 0 << 5;
3794 break;
3795 case EVEX256:
3796 vec_length = 1 << 5;
3797 break;
3798 case EVEX512:
3799 vec_length = 2 << 5;
3800 break;
3801 default:
3802 abort ();
3803 break;
3804 }
3805 i.vex.bytes[3] |= vec_length;
3806 /* Encode the broadcast bit. */
3807 if (i.broadcast)
3808 i.vex.bytes[3] |= 0x10;
3809 }
3810 else
3811 {
3812 if (i.rounding->type != saeonly)
3813 i.vex.bytes[3] |= 0x10 | (i.rounding->type << 5);
3814 else
3815 i.vex.bytes[3] |= 0x10 | (evexrcig << 5);
3816 }
3817
3818 if (i.mask && i.mask->mask)
3819 i.vex.bytes[3] |= i.mask->mask->reg_num;
3820 }
3821
3822 static void
3823 process_immext (void)
3824 {
3825 expressionS *exp;
3826
3827 if ((i.tm.cpu_flags.bitfield.cpusse3 || i.tm.cpu_flags.bitfield.cpusvme)
3828 && i.operands > 0)
3829 {
3830 /* MONITOR/MWAIT as well as SVME instructions have fixed operands
3831 with an opcode suffix which is coded in the same place as an
3832 8-bit immediate field would be.
3833 Here we check those operands and remove them afterwards. */
3834 unsigned int x;
3835
3836 for (x = 0; x < i.operands; x++)
3837 if (register_number (i.op[x].regs) != x)
3838 as_bad (_("can't use register '%s%s' as operand %d in '%s'."),
3839 register_prefix, i.op[x].regs->reg_name, x + 1,
3840 i.tm.name);
3841
3842 i.operands = 0;
3843 }
3844
3845 if (i.tm.cpu_flags.bitfield.cpumwaitx && i.operands > 0)
3846 {
3847 /* MONITORX/MWAITX instructions have fixed operands with an opcode
3848 suffix which is coded in the same place as an 8-bit immediate
3849 field would be.
3850 Here we check those operands and remove them afterwards. */
3851 unsigned int x;
3852
3853 if (i.operands != 3)
3854 abort();
3855
3856 for (x = 0; x < 2; x++)
3857 if (register_number (i.op[x].regs) != x)
3858 goto bad_register_operand;
3859
3860 /* Check for third operand for mwaitx/monitorx insn. */
3861 if (register_number (i.op[x].regs)
3862 != (x + (i.tm.extension_opcode == 0xfb)))
3863 {
3864 bad_register_operand:
3865 as_bad (_("can't use register '%s%s' as operand %d in '%s'."),
3866 register_prefix, i.op[x].regs->reg_name, x+1,
3867 i.tm.name);
3868 }
3869
3870 i.operands = 0;
3871 }
3872
3873 /* These AMD 3DNow! and SSE2 instructions have an opcode suffix
3874 which is coded in the same place as an 8-bit immediate field
3875 would be. Here we fake an 8-bit immediate operand from the
3876 opcode suffix stored in tm.extension_opcode.
3877
3878 AVX instructions also use this encoding, for some of
3879 3 argument instructions. */
3880
3881 gas_assert (i.imm_operands <= 1
3882 && (i.operands <= 2
3883 || (is_any_vex_encoding (&i.tm)
3884 && i.operands <= 4)));
3885
3886 exp = &im_expressions[i.imm_operands++];
3887 i.op[i.operands].imms = exp;
3888 i.types[i.operands] = imm8;
3889 i.operands++;
3890 exp->X_op = O_constant;
3891 exp->X_add_number = i.tm.extension_opcode;
3892 i.tm.extension_opcode = None;
3893 }
3894
3895
3896 static int
3897 check_hle (void)
3898 {
3899 switch (i.tm.opcode_modifier.hleprefixok)
3900 {
3901 default:
3902 abort ();
3903 case HLEPrefixNone:
3904 as_bad (_("invalid instruction `%s' after `%s'"),
3905 i.tm.name, i.hle_prefix);
3906 return 0;
3907 case HLEPrefixLock:
3908 if (i.prefix[LOCK_PREFIX])
3909 return 1;
3910 as_bad (_("missing `lock' with `%s'"), i.hle_prefix);
3911 return 0;
3912 case HLEPrefixAny:
3913 return 1;
3914 case HLEPrefixRelease:
3915 if (i.prefix[HLE_PREFIX] != XRELEASE_PREFIX_OPCODE)
3916 {
3917 as_bad (_("instruction `%s' after `xacquire' not allowed"),
3918 i.tm.name);
3919 return 0;
3920 }
3921 if (i.mem_operands == 0
3922 || !operand_type_check (i.types[i.operands - 1], anymem))
3923 {
3924 as_bad (_("memory destination needed for instruction `%s'"
3925 " after `xrelease'"), i.tm.name);
3926 return 0;
3927 }
3928 return 1;
3929 }
3930 }
3931
3932 /* Try the shortest encoding by shortening operand size. */
3933
3934 static void
3935 optimize_encoding (void)
3936 {
3937 unsigned int j;
3938
3939 if (optimize_for_space
3940 && i.reg_operands == 1
3941 && i.imm_operands == 1
3942 && !i.types[1].bitfield.byte
3943 && i.op[0].imms->X_op == O_constant
3944 && fits_in_imm7 (i.op[0].imms->X_add_number)
3945 && ((i.tm.base_opcode == 0xa8
3946 && i.tm.extension_opcode == None)
3947 || (i.tm.base_opcode == 0xf6
3948 && i.tm.extension_opcode == 0x0)))
3949 {
3950 /* Optimize: -Os:
3951 test $imm7, %r64/%r32/%r16 -> test $imm7, %r8
3952 */
3953 unsigned int base_regnum = i.op[1].regs->reg_num;
3954 if (flag_code == CODE_64BIT || base_regnum < 4)
3955 {
3956 i.types[1].bitfield.byte = 1;
3957 /* Ignore the suffix. */
3958 i.suffix = 0;
3959 if (base_regnum >= 4
3960 && !(i.op[1].regs->reg_flags & RegRex))
3961 {
3962 /* Handle SP, BP, SI and DI registers. */
3963 if (i.types[1].bitfield.word)
3964 j = 16;
3965 else if (i.types[1].bitfield.dword)
3966 j = 32;
3967 else
3968 j = 48;
3969 i.op[1].regs -= j;
3970 }
3971 }
3972 }
3973 else if (flag_code == CODE_64BIT
3974 && ((i.types[1].bitfield.qword
3975 && i.reg_operands == 1
3976 && i.imm_operands == 1
3977 && i.op[0].imms->X_op == O_constant
3978 && ((i.tm.base_opcode == 0xb0
3979 && i.tm.extension_opcode == None
3980 && fits_in_unsigned_long (i.op[0].imms->X_add_number))
3981 || (fits_in_imm31 (i.op[0].imms->X_add_number)
3982 && (((i.tm.base_opcode == 0x24
3983 || i.tm.base_opcode == 0xa8)
3984 && i.tm.extension_opcode == None)
3985 || (i.tm.base_opcode == 0x80
3986 && i.tm.extension_opcode == 0x4)
3987 || ((i.tm.base_opcode == 0xf6
3988 || i.tm.base_opcode == 0xc6)
3989 && i.tm.extension_opcode == 0x0)))
3990 || (fits_in_imm7 (i.op[0].imms->X_add_number)
3991 && i.tm.base_opcode == 0x83
3992 && i.tm.extension_opcode == 0x4)))
3993 || (i.types[0].bitfield.qword
3994 && ((i.reg_operands == 2
3995 && i.op[0].regs == i.op[1].regs
3996 && ((i.tm.base_opcode == 0x30
3997 || i.tm.base_opcode == 0x28)
3998 && i.tm.extension_opcode == None))
3999 || (i.reg_operands == 1
4000 && i.operands == 1
4001 && i.tm.base_opcode == 0x30
4002 && i.tm.extension_opcode == None)))))
4003 {
4004 /* Optimize: -O:
4005 andq $imm31, %r64 -> andl $imm31, %r32
4006 andq $imm7, %r64 -> andl $imm7, %r32
4007 testq $imm31, %r64 -> testl $imm31, %r32
4008 xorq %r64, %r64 -> xorl %r32, %r32
4009 subq %r64, %r64 -> subl %r32, %r32
4010 movq $imm31, %r64 -> movl $imm31, %r32
4011 movq $imm32, %r64 -> movl $imm32, %r32
4012 */
4013 i.tm.opcode_modifier.norex64 = 1;
4014 if (i.tm.base_opcode == 0xb0 || i.tm.base_opcode == 0xc6)
4015 {
4016 /* Handle
4017 movq $imm31, %r64 -> movl $imm31, %r32
4018 movq $imm32, %r64 -> movl $imm32, %r32
4019 */
4020 i.tm.operand_types[0].bitfield.imm32 = 1;
4021 i.tm.operand_types[0].bitfield.imm32s = 0;
4022 i.tm.operand_types[0].bitfield.imm64 = 0;
4023 i.types[0].bitfield.imm32 = 1;
4024 i.types[0].bitfield.imm32s = 0;
4025 i.types[0].bitfield.imm64 = 0;
4026 i.types[1].bitfield.dword = 1;
4027 i.types[1].bitfield.qword = 0;
4028 if (i.tm.base_opcode == 0xc6)
4029 {
4030 /* Handle
4031 movq $imm31, %r64 -> movl $imm31, %r32
4032 */
4033 i.tm.base_opcode = 0xb0;
4034 i.tm.extension_opcode = None;
4035 i.tm.opcode_modifier.shortform = 1;
4036 i.tm.opcode_modifier.modrm = 0;
4037 }
4038 }
4039 }
4040 else if (optimize > 1
4041 && !optimize_for_space
4042 && i.reg_operands == 2
4043 && i.op[0].regs == i.op[1].regs
4044 && ((i.tm.base_opcode & ~(Opcode_D | 1)) == 0x8
4045 || (i.tm.base_opcode & ~(Opcode_D | 1)) == 0x20)
4046 && (flag_code != CODE_64BIT || !i.types[0].bitfield.dword))
4047 {
4048 /* Optimize: -O2:
4049 andb %rN, %rN -> testb %rN, %rN
4050 andw %rN, %rN -> testw %rN, %rN
4051 andq %rN, %rN -> testq %rN, %rN
4052 orb %rN, %rN -> testb %rN, %rN
4053 orw %rN, %rN -> testw %rN, %rN
4054 orq %rN, %rN -> testq %rN, %rN
4055
4056 and outside of 64-bit mode
4057
4058 andl %rN, %rN -> testl %rN, %rN
4059 orl %rN, %rN -> testl %rN, %rN
4060 */
4061 i.tm.base_opcode = 0x84 | (i.tm.base_opcode & 1);
4062 }
4063 else if (i.reg_operands == 3
4064 && i.op[0].regs == i.op[1].regs
4065 && !i.types[2].bitfield.xmmword
4066 && (i.tm.opcode_modifier.vex
4067 || ((!i.mask || i.mask->zeroing)
4068 && !i.rounding
4069 && is_evex_encoding (&i.tm)
4070 && (i.vec_encoding != vex_encoding_evex
4071 || cpu_arch_isa_flags.bitfield.cpuavx512vl
4072 || i.tm.cpu_flags.bitfield.cpuavx512vl
4073 || (i.tm.operand_types[2].bitfield.zmmword
4074 && i.types[2].bitfield.ymmword))))
4075 && ((i.tm.base_opcode == 0x55
4076 || i.tm.base_opcode == 0x6655
4077 || i.tm.base_opcode == 0x66df
4078 || i.tm.base_opcode == 0x57
4079 || i.tm.base_opcode == 0x6657
4080 || i.tm.base_opcode == 0x66ef
4081 || i.tm.base_opcode == 0x66f8
4082 || i.tm.base_opcode == 0x66f9
4083 || i.tm.base_opcode == 0x66fa
4084 || i.tm.base_opcode == 0x66fb
4085 || i.tm.base_opcode == 0x42
4086 || i.tm.base_opcode == 0x6642
4087 || i.tm.base_opcode == 0x47
4088 || i.tm.base_opcode == 0x6647)
4089 && i.tm.extension_opcode == None))
4090 {
4091 /* Optimize: -O1:
4092 VOP, one of vandnps, vandnpd, vxorps, vxorpd, vpsubb, vpsubd,
4093 vpsubq and vpsubw:
4094 EVEX VOP %zmmM, %zmmM, %zmmN
4095 -> VEX VOP %xmmM, %xmmM, %xmmN (M and N < 16)
4096 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
4097 EVEX VOP %ymmM, %ymmM, %ymmN
4098 -> VEX VOP %xmmM, %xmmM, %xmmN (M and N < 16)
4099 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
4100 VEX VOP %ymmM, %ymmM, %ymmN
4101 -> VEX VOP %xmmM, %xmmM, %xmmN
4102 VOP, one of vpandn and vpxor:
4103 VEX VOP %ymmM, %ymmM, %ymmN
4104 -> VEX VOP %xmmM, %xmmM, %xmmN
4105 VOP, one of vpandnd and vpandnq:
4106 EVEX VOP %zmmM, %zmmM, %zmmN
4107 -> VEX vpandn %xmmM, %xmmM, %xmmN (M and N < 16)
4108 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
4109 EVEX VOP %ymmM, %ymmM, %ymmN
4110 -> VEX vpandn %xmmM, %xmmM, %xmmN (M and N < 16)
4111 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
4112 VOP, one of vpxord and vpxorq:
4113 EVEX VOP %zmmM, %zmmM, %zmmN
4114 -> VEX vpxor %xmmM, %xmmM, %xmmN (M and N < 16)
4115 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
4116 EVEX VOP %ymmM, %ymmM, %ymmN
4117 -> VEX vpxor %xmmM, %xmmM, %xmmN (M and N < 16)
4118 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
4119 VOP, one of kxord and kxorq:
4120 VEX VOP %kM, %kM, %kN
4121 -> VEX kxorw %kM, %kM, %kN
4122 VOP, one of kandnd and kandnq:
4123 VEX VOP %kM, %kM, %kN
4124 -> VEX kandnw %kM, %kM, %kN
4125 */
4126 if (is_evex_encoding (&i.tm))
4127 {
4128 if (i.vec_encoding != vex_encoding_evex)
4129 {
4130 i.tm.opcode_modifier.vex = VEX128;
4131 i.tm.opcode_modifier.vexw = VEXW0;
4132 i.tm.opcode_modifier.evex = 0;
4133 }
4134 else if (optimize > 1)
4135 i.tm.opcode_modifier.evex = EVEX128;
4136 else
4137 return;
4138 }
4139 else if (i.tm.operand_types[0].bitfield.regmask)
4140 {
4141 i.tm.base_opcode &= 0xff;
4142 i.tm.opcode_modifier.vexw = VEXW0;
4143 }
4144 else
4145 i.tm.opcode_modifier.vex = VEX128;
4146
4147 if (i.tm.opcode_modifier.vex)
4148 for (j = 0; j < 3; j++)
4149 {
4150 i.types[j].bitfield.xmmword = 1;
4151 i.types[j].bitfield.ymmword = 0;
4152 }
4153 }
4154 else if (i.vec_encoding != vex_encoding_evex
4155 && !i.types[0].bitfield.zmmword
4156 && !i.types[1].bitfield.zmmword
4157 && !i.mask
4158 && !i.broadcast
4159 && is_evex_encoding (&i.tm)
4160 && ((i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0x666f
4161 || (i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0xf36f
4162 || (i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0xf26f
4163 || (i.tm.base_opcode & ~4) == 0x66db
4164 || (i.tm.base_opcode & ~4) == 0x66eb)
4165 && i.tm.extension_opcode == None)
4166 {
4167 /* Optimize: -O1:
4168 VOP, one of vmovdqa32, vmovdqa64, vmovdqu8, vmovdqu16,
4169 vmovdqu32 and vmovdqu64:
4170 EVEX VOP %xmmM, %xmmN
4171 -> VEX vmovdqa|vmovdqu %xmmM, %xmmN (M and N < 16)
4172 EVEX VOP %ymmM, %ymmN
4173 -> VEX vmovdqa|vmovdqu %ymmM, %ymmN (M and N < 16)
4174 EVEX VOP %xmmM, mem
4175 -> VEX vmovdqa|vmovdqu %xmmM, mem (M < 16)
4176 EVEX VOP %ymmM, mem
4177 -> VEX vmovdqa|vmovdqu %ymmM, mem (M < 16)
4178 EVEX VOP mem, %xmmN
4179 -> VEX mvmovdqa|vmovdquem, %xmmN (N < 16)
4180 EVEX VOP mem, %ymmN
4181 -> VEX vmovdqa|vmovdqu mem, %ymmN (N < 16)
4182 VOP, one of vpand, vpandn, vpor, vpxor:
4183 EVEX VOP{d,q} %xmmL, %xmmM, %xmmN
4184 -> VEX VOP %xmmL, %xmmM, %xmmN (L, M, and N < 16)
4185 EVEX VOP{d,q} %ymmL, %ymmM, %ymmN
4186 -> VEX VOP %ymmL, %ymmM, %ymmN (L, M, and N < 16)
4187 EVEX VOP{d,q} mem, %xmmM, %xmmN
4188 -> VEX VOP mem, %xmmM, %xmmN (M and N < 16)
4189 EVEX VOP{d,q} mem, %ymmM, %ymmN
4190 -> VEX VOP mem, %ymmM, %ymmN (M and N < 16)
4191 */
4192 for (j = 0; j < i.operands; j++)
4193 if (operand_type_check (i.types[j], disp)
4194 && i.op[j].disps->X_op == O_constant)
4195 {
4196 /* Since the VEX prefix has 2 or 3 bytes, the EVEX prefix
4197 has 4 bytes, EVEX Disp8 has 1 byte and VEX Disp32 has 4
4198 bytes, we choose EVEX Disp8 over VEX Disp32. */
4199 int evex_disp8, vex_disp8;
4200 unsigned int memshift = i.memshift;
4201 offsetT n = i.op[j].disps->X_add_number;
4202
4203 evex_disp8 = fits_in_disp8 (n);
4204 i.memshift = 0;
4205 vex_disp8 = fits_in_disp8 (n);
4206 if (evex_disp8 != vex_disp8)
4207 {
4208 i.memshift = memshift;
4209 return;
4210 }
4211
4212 i.types[j].bitfield.disp8 = vex_disp8;
4213 break;
4214 }
4215 if ((i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0xf26f)
4216 i.tm.base_opcode ^= 0xf36f ^ 0xf26f;
4217 i.tm.opcode_modifier.vex
4218 = i.types[0].bitfield.ymmword ? VEX256 : VEX128;
4219 i.tm.opcode_modifier.vexw = VEXW0;
4220 /* VPAND, VPOR, and VPXOR are commutative. */
4221 if (i.reg_operands == 3 && i.tm.base_opcode != 0x66df)
4222 i.tm.opcode_modifier.commutative = 1;
4223 i.tm.opcode_modifier.evex = 0;
4224 i.tm.opcode_modifier.masking = 0;
4225 i.tm.opcode_modifier.broadcast = 0;
4226 i.tm.opcode_modifier.disp8memshift = 0;
4227 i.memshift = 0;
4228 if (j < i.operands)
4229 i.types[j].bitfield.disp8
4230 = fits_in_disp8 (i.op[j].disps->X_add_number);
4231 }
4232 }
4233
4234 /* This is the guts of the machine-dependent assembler. LINE points to a
4235 machine dependent instruction. This function is supposed to emit
4236 the frags/bytes it assembles to. */
4237
4238 void
4239 md_assemble (char *line)
4240 {
4241 unsigned int j;
4242 char mnemonic[MAX_MNEM_SIZE], mnem_suffix;
4243 const insn_template *t;
4244
4245 /* Initialize globals. */
4246 memset (&i, '\0', sizeof (i));
4247 for (j = 0; j < MAX_OPERANDS; j++)
4248 i.reloc[j] = NO_RELOC;
4249 memset (disp_expressions, '\0', sizeof (disp_expressions));
4250 memset (im_expressions, '\0', sizeof (im_expressions));
4251 save_stack_p = save_stack;
4252
4253 /* First parse an instruction mnemonic & call i386_operand for the operands.
4254 We assume that the scrubber has arranged it so that line[0] is the valid
4255 start of a (possibly prefixed) mnemonic. */
4256
4257 line = parse_insn (line, mnemonic);
4258 if (line == NULL)
4259 return;
4260 mnem_suffix = i.suffix;
4261
4262 line = parse_operands (line, mnemonic);
4263 this_operand = -1;
4264 xfree (i.memop1_string);
4265 i.memop1_string = NULL;
4266 if (line == NULL)
4267 return;
4268
4269 /* Now we've parsed the mnemonic into a set of templates, and have the
4270 operands at hand. */
4271
4272 /* All intel opcodes have reversed operands except for "bound" and
4273 "enter". We also don't reverse intersegment "jmp" and "call"
4274 instructions with 2 immediate operands so that the immediate segment
4275 precedes the offset, as it does when in AT&T mode. */
4276 if (intel_syntax
4277 && i.operands > 1
4278 && (strcmp (mnemonic, "bound") != 0)
4279 && (strcmp (mnemonic, "invlpga") != 0)
4280 && !(operand_type_check (i.types[0], imm)
4281 && operand_type_check (i.types[1], imm)))
4282 swap_operands ();
4283
4284 /* The order of the immediates should be reversed
4285 for 2 immediates extrq and insertq instructions */
4286 if (i.imm_operands == 2
4287 && (strcmp (mnemonic, "extrq") == 0
4288 || strcmp (mnemonic, "insertq") == 0))
4289 swap_2_operands (0, 1);
4290
4291 if (i.imm_operands)
4292 optimize_imm ();
4293
4294 /* Don't optimize displacement for movabs since it only takes 64bit
4295 displacement. */
4296 if (i.disp_operands
4297 && i.disp_encoding != disp_encoding_32bit
4298 && (flag_code != CODE_64BIT
4299 || strcmp (mnemonic, "movabs") != 0))
4300 optimize_disp ();
4301
4302 /* Next, we find a template that matches the given insn,
4303 making sure the overlap of the given operands types is consistent
4304 with the template operand types. */
4305
4306 if (!(t = match_template (mnem_suffix)))
4307 return;
4308
4309 if (sse_check != check_none
4310 && !i.tm.opcode_modifier.noavx
4311 && !i.tm.cpu_flags.bitfield.cpuavx
4312 && (i.tm.cpu_flags.bitfield.cpusse
4313 || i.tm.cpu_flags.bitfield.cpusse2
4314 || i.tm.cpu_flags.bitfield.cpusse3
4315 || i.tm.cpu_flags.bitfield.cpussse3
4316 || i.tm.cpu_flags.bitfield.cpusse4_1
4317 || i.tm.cpu_flags.bitfield.cpusse4_2
4318 || i.tm.cpu_flags.bitfield.cpupclmul
4319 || i.tm.cpu_flags.bitfield.cpuaes
4320 || i.tm.cpu_flags.bitfield.cpugfni))
4321 {
4322 (sse_check == check_warning
4323 ? as_warn
4324 : as_bad) (_("SSE instruction `%s' is used"), i.tm.name);
4325 }
4326
4327 /* Zap movzx and movsx suffix. The suffix has been set from
4328 "word ptr" or "byte ptr" on the source operand in Intel syntax
4329 or extracted from mnemonic in AT&T syntax. But we'll use
4330 the destination register to choose the suffix for encoding. */
4331 if ((i.tm.base_opcode & ~9) == 0x0fb6)
4332 {
4333 /* In Intel syntax, there must be a suffix. In AT&T syntax, if
4334 there is no suffix, the default will be byte extension. */
4335 if (i.reg_operands != 2
4336 && !i.suffix
4337 && intel_syntax)
4338 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
4339
4340 i.suffix = 0;
4341 }
4342
4343 if (i.tm.opcode_modifier.fwait)
4344 if (!add_prefix (FWAIT_OPCODE))
4345 return;
4346
4347 /* Check if REP prefix is OK. */
4348 if (i.rep_prefix && !i.tm.opcode_modifier.repprefixok)
4349 {
4350 as_bad (_("invalid instruction `%s' after `%s'"),
4351 i.tm.name, i.rep_prefix);
4352 return;
4353 }
4354
4355 /* Check for lock without a lockable instruction. Destination operand
4356 must be memory unless it is xchg (0x86). */
4357 if (i.prefix[LOCK_PREFIX]
4358 && (!i.tm.opcode_modifier.islockable
4359 || i.mem_operands == 0
4360 || (i.tm.base_opcode != 0x86
4361 && !operand_type_check (i.types[i.operands - 1], anymem))))
4362 {
4363 as_bad (_("expecting lockable instruction after `lock'"));
4364 return;
4365 }
4366
4367 /* Check for data size prefix on VEX/XOP/EVEX encoded insns. */
4368 if (i.prefix[DATA_PREFIX] && is_any_vex_encoding (&i.tm))
4369 {
4370 as_bad (_("data size prefix invalid with `%s'"), i.tm.name);
4371 return;
4372 }
4373
4374 /* Check if HLE prefix is OK. */
4375 if (i.hle_prefix && !check_hle ())
4376 return;
4377
4378 /* Check BND prefix. */
4379 if (i.bnd_prefix && !i.tm.opcode_modifier.bndprefixok)
4380 as_bad (_("expecting valid branch instruction after `bnd'"));
4381
4382 /* Check NOTRACK prefix. */
4383 if (i.notrack_prefix && !i.tm.opcode_modifier.notrackprefixok)
4384 as_bad (_("expecting indirect branch instruction after `notrack'"));
4385
4386 if (i.tm.cpu_flags.bitfield.cpumpx)
4387 {
4388 if (flag_code == CODE_64BIT && i.prefix[ADDR_PREFIX])
4389 as_bad (_("32-bit address isn't allowed in 64-bit MPX instructions."));
4390 else if (flag_code != CODE_16BIT
4391 ? i.prefix[ADDR_PREFIX]
4392 : i.mem_operands && !i.prefix[ADDR_PREFIX])
4393 as_bad (_("16-bit address isn't allowed in MPX instructions"));
4394 }
4395
4396 /* Insert BND prefix. */
4397 if (add_bnd_prefix && i.tm.opcode_modifier.bndprefixok)
4398 {
4399 if (!i.prefix[BND_PREFIX])
4400 add_prefix (BND_PREFIX_OPCODE);
4401 else if (i.prefix[BND_PREFIX] != BND_PREFIX_OPCODE)
4402 {
4403 as_warn (_("replacing `rep'/`repe' prefix by `bnd'"));
4404 i.prefix[BND_PREFIX] = BND_PREFIX_OPCODE;
4405 }
4406 }
4407
4408 /* Check string instruction segment overrides. */
4409 if (i.tm.opcode_modifier.isstring && i.mem_operands != 0)
4410 {
4411 if (!check_string ())
4412 return;
4413 i.disp_operands = 0;
4414 }
4415
4416 if (optimize && !i.no_optimize && i.tm.opcode_modifier.optimize)
4417 optimize_encoding ();
4418
4419 if (!process_suffix ())
4420 return;
4421
4422 /* Update operand types. */
4423 for (j = 0; j < i.operands; j++)
4424 i.types[j] = operand_type_and (i.types[j], i.tm.operand_types[j]);
4425
4426 /* Make still unresolved immediate matches conform to size of immediate
4427 given in i.suffix. */
4428 if (!finalize_imm ())
4429 return;
4430
4431 if (i.types[0].bitfield.imm1)
4432 i.imm_operands = 0; /* kludge for shift insns. */
4433
4434 /* We only need to check those implicit registers for instructions
4435 with 3 operands or less. */
4436 if (i.operands <= 3)
4437 for (j = 0; j < i.operands; j++)
4438 if (i.types[j].bitfield.inoutportreg
4439 || i.types[j].bitfield.shiftcount
4440 || (i.types[j].bitfield.acc && !i.types[j].bitfield.xmmword))
4441 i.reg_operands--;
4442
4443 /* ImmExt should be processed after SSE2AVX. */
4444 if (!i.tm.opcode_modifier.sse2avx
4445 && i.tm.opcode_modifier.immext)
4446 process_immext ();
4447
4448 /* For insns with operands there are more diddles to do to the opcode. */
4449 if (i.operands)
4450 {
4451 if (!process_operands ())
4452 return;
4453 }
4454 else if (!quiet_warnings && i.tm.opcode_modifier.ugh)
4455 {
4456 /* UnixWare fsub no args is alias for fsubp, fadd -> faddp, etc. */
4457 as_warn (_("translating to `%sp'"), i.tm.name);
4458 }
4459
4460 if (is_any_vex_encoding (&i.tm))
4461 {
4462 if (!cpu_arch_flags.bitfield.cpui286)
4463 {
4464 as_bad (_("instruction `%s' isn't supported outside of protected mode."),
4465 i.tm.name);
4466 return;
4467 }
4468
4469 if (i.tm.opcode_modifier.vex)
4470 build_vex_prefix (t);
4471 else
4472 build_evex_prefix ();
4473 }
4474
4475 /* Handle conversion of 'int $3' --> special int3 insn. XOP or FMA4
4476 instructions may define INT_OPCODE as well, so avoid this corner
4477 case for those instructions that use MODRM. */
4478 if (i.tm.base_opcode == INT_OPCODE
4479 && !i.tm.opcode_modifier.modrm
4480 && i.op[0].imms->X_add_number == 3)
4481 {
4482 i.tm.base_opcode = INT3_OPCODE;
4483 i.imm_operands = 0;
4484 }
4485
4486 if ((i.tm.opcode_modifier.jump
4487 || i.tm.opcode_modifier.jumpbyte
4488 || i.tm.opcode_modifier.jumpdword)
4489 && i.op[0].disps->X_op == O_constant)
4490 {
4491 /* Convert "jmp constant" (and "call constant") to a jump (call) to
4492 the absolute address given by the constant. Since ix86 jumps and
4493 calls are pc relative, we need to generate a reloc. */
4494 i.op[0].disps->X_add_symbol = &abs_symbol;
4495 i.op[0].disps->X_op = O_symbol;
4496 }
4497
4498 if (i.tm.opcode_modifier.rex64)
4499 i.rex |= REX_W;
4500
4501 /* For 8 bit registers we need an empty rex prefix. Also if the
4502 instruction already has a prefix, we need to convert old
4503 registers to new ones. */
4504
4505 if ((i.types[0].bitfield.reg && i.types[0].bitfield.byte
4506 && (i.op[0].regs->reg_flags & RegRex64) != 0)
4507 || (i.types[1].bitfield.reg && i.types[1].bitfield.byte
4508 && (i.op[1].regs->reg_flags & RegRex64) != 0)
4509 || (((i.types[0].bitfield.reg && i.types[0].bitfield.byte)
4510 || (i.types[1].bitfield.reg && i.types[1].bitfield.byte))
4511 && i.rex != 0))
4512 {
4513 int x;
4514
4515 i.rex |= REX_OPCODE;
4516 for (x = 0; x < 2; x++)
4517 {
4518 /* Look for 8 bit operand that uses old registers. */
4519 if (i.types[x].bitfield.reg && i.types[x].bitfield.byte
4520 && (i.op[x].regs->reg_flags & RegRex64) == 0)
4521 {
4522 /* In case it is "hi" register, give up. */
4523 if (i.op[x].regs->reg_num > 3)
4524 as_bad (_("can't encode register '%s%s' in an "
4525 "instruction requiring REX prefix."),
4526 register_prefix, i.op[x].regs->reg_name);
4527
4528 /* Otherwise it is equivalent to the extended register.
4529 Since the encoding doesn't change this is merely
4530 cosmetic cleanup for debug output. */
4531
4532 i.op[x].regs = i.op[x].regs + 8;
4533 }
4534 }
4535 }
4536
4537 if (i.rex == 0 && i.rex_encoding)
4538 {
4539 /* Check if we can add a REX_OPCODE byte. Look for 8 bit operand
4540 that uses legacy register. If it is "hi" register, don't add
4541 the REX_OPCODE byte. */
4542 int x;
4543 for (x = 0; x < 2; x++)
4544 if (i.types[x].bitfield.reg
4545 && i.types[x].bitfield.byte
4546 && (i.op[x].regs->reg_flags & RegRex64) == 0
4547 && i.op[x].regs->reg_num > 3)
4548 {
4549 i.rex_encoding = FALSE;
4550 break;
4551 }
4552
4553 if (i.rex_encoding)
4554 i.rex = REX_OPCODE;
4555 }
4556
4557 if (i.rex != 0)
4558 add_prefix (REX_OPCODE | i.rex);
4559
4560 /* We are ready to output the insn. */
4561 output_insn ();
4562 }
4563
4564 static char *
4565 parse_insn (char *line, char *mnemonic)
4566 {
4567 char *l = line;
4568 char *token_start = l;
4569 char *mnem_p;
4570 int supported;
4571 const insn_template *t;
4572 char *dot_p = NULL;
4573
4574 while (1)
4575 {
4576 mnem_p = mnemonic;
4577 while ((*mnem_p = mnemonic_chars[(unsigned char) *l]) != 0)
4578 {
4579 if (*mnem_p == '.')
4580 dot_p = mnem_p;
4581 mnem_p++;
4582 if (mnem_p >= mnemonic + MAX_MNEM_SIZE)
4583 {
4584 as_bad (_("no such instruction: `%s'"), token_start);
4585 return NULL;
4586 }
4587 l++;
4588 }
4589 if (!is_space_char (*l)
4590 && *l != END_OF_INSN
4591 && (intel_syntax
4592 || (*l != PREFIX_SEPARATOR
4593 && *l != ',')))
4594 {
4595 as_bad (_("invalid character %s in mnemonic"),
4596 output_invalid (*l));
4597 return NULL;
4598 }
4599 if (token_start == l)
4600 {
4601 if (!intel_syntax && *l == PREFIX_SEPARATOR)
4602 as_bad (_("expecting prefix; got nothing"));
4603 else
4604 as_bad (_("expecting mnemonic; got nothing"));
4605 return NULL;
4606 }
4607
4608 /* Look up instruction (or prefix) via hash table. */
4609 current_templates = (const templates *) hash_find (op_hash, mnemonic);
4610
4611 if (*l != END_OF_INSN
4612 && (!is_space_char (*l) || l[1] != END_OF_INSN)
4613 && current_templates
4614 && current_templates->start->opcode_modifier.isprefix)
4615 {
4616 if (!cpu_flags_check_cpu64 (current_templates->start->cpu_flags))
4617 {
4618 as_bad ((flag_code != CODE_64BIT
4619 ? _("`%s' is only supported in 64-bit mode")
4620 : _("`%s' is not supported in 64-bit mode")),
4621 current_templates->start->name);
4622 return NULL;
4623 }
4624 /* If we are in 16-bit mode, do not allow addr16 or data16.
4625 Similarly, in 32-bit mode, do not allow addr32 or data32. */
4626 if ((current_templates->start->opcode_modifier.size == SIZE16
4627 || current_templates->start->opcode_modifier.size == SIZE32)
4628 && flag_code != CODE_64BIT
4629 && ((current_templates->start->opcode_modifier.size == SIZE32)
4630 ^ (flag_code == CODE_16BIT)))
4631 {
4632 as_bad (_("redundant %s prefix"),
4633 current_templates->start->name);
4634 return NULL;
4635 }
4636 if (current_templates->start->opcode_length == 0)
4637 {
4638 /* Handle pseudo prefixes. */
4639 switch (current_templates->start->base_opcode)
4640 {
4641 case 0x0:
4642 /* {disp8} */
4643 i.disp_encoding = disp_encoding_8bit;
4644 break;
4645 case 0x1:
4646 /* {disp32} */
4647 i.disp_encoding = disp_encoding_32bit;
4648 break;
4649 case 0x2:
4650 /* {load} */
4651 i.dir_encoding = dir_encoding_load;
4652 break;
4653 case 0x3:
4654 /* {store} */
4655 i.dir_encoding = dir_encoding_store;
4656 break;
4657 case 0x4:
4658 /* {vex2} */
4659 i.vec_encoding = vex_encoding_vex2;
4660 break;
4661 case 0x5:
4662 /* {vex3} */
4663 i.vec_encoding = vex_encoding_vex3;
4664 break;
4665 case 0x6:
4666 /* {evex} */
4667 i.vec_encoding = vex_encoding_evex;
4668 break;
4669 case 0x7:
4670 /* {rex} */
4671 i.rex_encoding = TRUE;
4672 break;
4673 case 0x8:
4674 /* {nooptimize} */
4675 i.no_optimize = TRUE;
4676 break;
4677 default:
4678 abort ();
4679 }
4680 }
4681 else
4682 {
4683 /* Add prefix, checking for repeated prefixes. */
4684 switch (add_prefix (current_templates->start->base_opcode))
4685 {
4686 case PREFIX_EXIST:
4687 return NULL;
4688 case PREFIX_DS:
4689 if (current_templates->start->cpu_flags.bitfield.cpuibt)
4690 i.notrack_prefix = current_templates->start->name;
4691 break;
4692 case PREFIX_REP:
4693 if (current_templates->start->cpu_flags.bitfield.cpuhle)
4694 i.hle_prefix = current_templates->start->name;
4695 else if (current_templates->start->cpu_flags.bitfield.cpumpx)
4696 i.bnd_prefix = current_templates->start->name;
4697 else
4698 i.rep_prefix = current_templates->start->name;
4699 break;
4700 default:
4701 break;
4702 }
4703 }
4704 /* Skip past PREFIX_SEPARATOR and reset token_start. */
4705 token_start = ++l;
4706 }
4707 else
4708 break;
4709 }
4710
4711 if (!current_templates)
4712 {
4713 /* Deprecated functionality (new code should use pseudo-prefixes instead):
4714 Check if we should swap operand or force 32bit displacement in
4715 encoding. */
4716 if (mnem_p - 2 == dot_p && dot_p[1] == 's')
4717 i.dir_encoding = dir_encoding_swap;
4718 else if (mnem_p - 3 == dot_p
4719 && dot_p[1] == 'd'
4720 && dot_p[2] == '8')
4721 i.disp_encoding = disp_encoding_8bit;
4722 else if (mnem_p - 4 == dot_p
4723 && dot_p[1] == 'd'
4724 && dot_p[2] == '3'
4725 && dot_p[3] == '2')
4726 i.disp_encoding = disp_encoding_32bit;
4727 else
4728 goto check_suffix;
4729 mnem_p = dot_p;
4730 *dot_p = '\0';
4731 current_templates = (const templates *) hash_find (op_hash, mnemonic);
4732 }
4733
4734 if (!current_templates)
4735 {
4736 check_suffix:
4737 if (mnem_p > mnemonic)
4738 {
4739 /* See if we can get a match by trimming off a suffix. */
4740 switch (mnem_p[-1])
4741 {
4742 case WORD_MNEM_SUFFIX:
4743 if (intel_syntax && (intel_float_operand (mnemonic) & 2))
4744 i.suffix = SHORT_MNEM_SUFFIX;
4745 else
4746 /* Fall through. */
4747 case BYTE_MNEM_SUFFIX:
4748 case QWORD_MNEM_SUFFIX:
4749 i.suffix = mnem_p[-1];
4750 mnem_p[-1] = '\0';
4751 current_templates = (const templates *) hash_find (op_hash,
4752 mnemonic);
4753 break;
4754 case SHORT_MNEM_SUFFIX:
4755 case LONG_MNEM_SUFFIX:
4756 if (!intel_syntax)
4757 {
4758 i.suffix = mnem_p[-1];
4759 mnem_p[-1] = '\0';
4760 current_templates = (const templates *) hash_find (op_hash,
4761 mnemonic);
4762 }
4763 break;
4764
4765 /* Intel Syntax. */
4766 case 'd':
4767 if (intel_syntax)
4768 {
4769 if (intel_float_operand (mnemonic) == 1)
4770 i.suffix = SHORT_MNEM_SUFFIX;
4771 else
4772 i.suffix = LONG_MNEM_SUFFIX;
4773 mnem_p[-1] = '\0';
4774 current_templates = (const templates *) hash_find (op_hash,
4775 mnemonic);
4776 }
4777 break;
4778 }
4779 }
4780
4781 if (!current_templates)
4782 {
4783 as_bad (_("no such instruction: `%s'"), token_start);
4784 return NULL;
4785 }
4786 }
4787
4788 if (current_templates->start->opcode_modifier.jump
4789 || current_templates->start->opcode_modifier.jumpbyte)
4790 {
4791 /* Check for a branch hint. We allow ",pt" and ",pn" for
4792 predict taken and predict not taken respectively.
4793 I'm not sure that branch hints actually do anything on loop
4794 and jcxz insns (JumpByte) for current Pentium4 chips. They
4795 may work in the future and it doesn't hurt to accept them
4796 now. */
4797 if (l[0] == ',' && l[1] == 'p')
4798 {
4799 if (l[2] == 't')
4800 {
4801 if (!add_prefix (DS_PREFIX_OPCODE))
4802 return NULL;
4803 l += 3;
4804 }
4805 else if (l[2] == 'n')
4806 {
4807 if (!add_prefix (CS_PREFIX_OPCODE))
4808 return NULL;
4809 l += 3;
4810 }
4811 }
4812 }
4813 /* Any other comma loses. */
4814 if (*l == ',')
4815 {
4816 as_bad (_("invalid character %s in mnemonic"),
4817 output_invalid (*l));
4818 return NULL;
4819 }
4820
4821 /* Check if instruction is supported on specified architecture. */
4822 supported = 0;
4823 for (t = current_templates->start; t < current_templates->end; ++t)
4824 {
4825 supported |= cpu_flags_match (t);
4826 if (supported == CPU_FLAGS_PERFECT_MATCH)
4827 {
4828 if (!cpu_arch_flags.bitfield.cpui386 && (flag_code != CODE_16BIT))
4829 as_warn (_("use .code16 to ensure correct addressing mode"));
4830
4831 return l;
4832 }
4833 }
4834
4835 if (!(supported & CPU_FLAGS_64BIT_MATCH))
4836 as_bad (flag_code == CODE_64BIT
4837 ? _("`%s' is not supported in 64-bit mode")
4838 : _("`%s' is only supported in 64-bit mode"),
4839 current_templates->start->name);
4840 else
4841 as_bad (_("`%s' is not supported on `%s%s'"),
4842 current_templates->start->name,
4843 cpu_arch_name ? cpu_arch_name : default_arch,
4844 cpu_sub_arch_name ? cpu_sub_arch_name : "");
4845
4846 return NULL;
4847 }
4848
4849 static char *
4850 parse_operands (char *l, const char *mnemonic)
4851 {
4852 char *token_start;
4853
4854 /* 1 if operand is pending after ','. */
4855 unsigned int expecting_operand = 0;
4856
4857 /* Non-zero if operand parens not balanced. */
4858 unsigned int paren_not_balanced;
4859
4860 while (*l != END_OF_INSN)
4861 {
4862 /* Skip optional white space before operand. */
4863 if (is_space_char (*l))
4864 ++l;
4865 if (!is_operand_char (*l) && *l != END_OF_INSN && *l != '"')
4866 {
4867 as_bad (_("invalid character %s before operand %d"),
4868 output_invalid (*l),
4869 i.operands + 1);
4870 return NULL;
4871 }
4872 token_start = l; /* After white space. */
4873 paren_not_balanced = 0;
4874 while (paren_not_balanced || *l != ',')
4875 {
4876 if (*l == END_OF_INSN)
4877 {
4878 if (paren_not_balanced)
4879 {
4880 if (!intel_syntax)
4881 as_bad (_("unbalanced parenthesis in operand %d."),
4882 i.operands + 1);
4883 else
4884 as_bad (_("unbalanced brackets in operand %d."),
4885 i.operands + 1);
4886 return NULL;
4887 }
4888 else
4889 break; /* we are done */
4890 }
4891 else if (!is_operand_char (*l) && !is_space_char (*l) && *l != '"')
4892 {
4893 as_bad (_("invalid character %s in operand %d"),
4894 output_invalid (*l),
4895 i.operands + 1);
4896 return NULL;
4897 }
4898 if (!intel_syntax)
4899 {
4900 if (*l == '(')
4901 ++paren_not_balanced;
4902 if (*l == ')')
4903 --paren_not_balanced;
4904 }
4905 else
4906 {
4907 if (*l == '[')
4908 ++paren_not_balanced;
4909 if (*l == ']')
4910 --paren_not_balanced;
4911 }
4912 l++;
4913 }
4914 if (l != token_start)
4915 { /* Yes, we've read in another operand. */
4916 unsigned int operand_ok;
4917 this_operand = i.operands++;
4918 if (i.operands > MAX_OPERANDS)
4919 {
4920 as_bad (_("spurious operands; (%d operands/instruction max)"),
4921 MAX_OPERANDS);
4922 return NULL;
4923 }
4924 i.types[this_operand].bitfield.unspecified = 1;
4925 /* Now parse operand adding info to 'i' as we go along. */
4926 END_STRING_AND_SAVE (l);
4927
4928 if (i.mem_operands > 1)
4929 {
4930 as_bad (_("too many memory references for `%s'"),
4931 mnemonic);
4932 return 0;
4933 }
4934
4935 if (intel_syntax)
4936 operand_ok =
4937 i386_intel_operand (token_start,
4938 intel_float_operand (mnemonic));
4939 else
4940 operand_ok = i386_att_operand (token_start);
4941
4942 RESTORE_END_STRING (l);
4943 if (!operand_ok)
4944 return NULL;
4945 }
4946 else
4947 {
4948 if (expecting_operand)
4949 {
4950 expecting_operand_after_comma:
4951 as_bad (_("expecting operand after ','; got nothing"));
4952 return NULL;
4953 }
4954 if (*l == ',')
4955 {
4956 as_bad (_("expecting operand before ','; got nothing"));
4957 return NULL;
4958 }
4959 }
4960
4961 /* Now *l must be either ',' or END_OF_INSN. */
4962 if (*l == ',')
4963 {
4964 if (*++l == END_OF_INSN)
4965 {
4966 /* Just skip it, if it's \n complain. */
4967 goto expecting_operand_after_comma;
4968 }
4969 expecting_operand = 1;
4970 }
4971 }
4972 return l;
4973 }
4974
4975 static void
4976 swap_2_operands (int xchg1, int xchg2)
4977 {
4978 union i386_op temp_op;
4979 i386_operand_type temp_type;
4980 unsigned int temp_flags;
4981 enum bfd_reloc_code_real temp_reloc;
4982
4983 temp_type = i.types[xchg2];
4984 i.types[xchg2] = i.types[xchg1];
4985 i.types[xchg1] = temp_type;
4986
4987 temp_flags = i.flags[xchg2];
4988 i.flags[xchg2] = i.flags[xchg1];
4989 i.flags[xchg1] = temp_flags;
4990
4991 temp_op = i.op[xchg2];
4992 i.op[xchg2] = i.op[xchg1];
4993 i.op[xchg1] = temp_op;
4994
4995 temp_reloc = i.reloc[xchg2];
4996 i.reloc[xchg2] = i.reloc[xchg1];
4997 i.reloc[xchg1] = temp_reloc;
4998
4999 if (i.mask)
5000 {
5001 if (i.mask->operand == xchg1)
5002 i.mask->operand = xchg2;
5003 else if (i.mask->operand == xchg2)
5004 i.mask->operand = xchg1;
5005 }
5006 if (i.broadcast)
5007 {
5008 if (i.broadcast->operand == xchg1)
5009 i.broadcast->operand = xchg2;
5010 else if (i.broadcast->operand == xchg2)
5011 i.broadcast->operand = xchg1;
5012 }
5013 if (i.rounding)
5014 {
5015 if (i.rounding->operand == xchg1)
5016 i.rounding->operand = xchg2;
5017 else if (i.rounding->operand == xchg2)
5018 i.rounding->operand = xchg1;
5019 }
5020 }
5021
5022 static void
5023 swap_operands (void)
5024 {
5025 switch (i.operands)
5026 {
5027 case 5:
5028 case 4:
5029 swap_2_operands (1, i.operands - 2);
5030 /* Fall through. */
5031 case 3:
5032 case 2:
5033 swap_2_operands (0, i.operands - 1);
5034 break;
5035 default:
5036 abort ();
5037 }
5038
5039 if (i.mem_operands == 2)
5040 {
5041 const seg_entry *temp_seg;
5042 temp_seg = i.seg[0];
5043 i.seg[0] = i.seg[1];
5044 i.seg[1] = temp_seg;
5045 }
5046 }
5047
5048 /* Try to ensure constant immediates are represented in the smallest
5049 opcode possible. */
5050 static void
5051 optimize_imm (void)
5052 {
5053 char guess_suffix = 0;
5054 int op;
5055
5056 if (i.suffix)
5057 guess_suffix = i.suffix;
5058 else if (i.reg_operands)
5059 {
5060 /* Figure out a suffix from the last register operand specified.
5061 We can't do this properly yet, ie. excluding InOutPortReg,
5062 but the following works for instructions with immediates.
5063 In any case, we can't set i.suffix yet. */
5064 for (op = i.operands; --op >= 0;)
5065 if (i.types[op].bitfield.reg && i.types[op].bitfield.byte)
5066 {
5067 guess_suffix = BYTE_MNEM_SUFFIX;
5068 break;
5069 }
5070 else if (i.types[op].bitfield.reg && i.types[op].bitfield.word)
5071 {
5072 guess_suffix = WORD_MNEM_SUFFIX;
5073 break;
5074 }
5075 else if (i.types[op].bitfield.reg && i.types[op].bitfield.dword)
5076 {
5077 guess_suffix = LONG_MNEM_SUFFIX;
5078 break;
5079 }
5080 else if (i.types[op].bitfield.reg && i.types[op].bitfield.qword)
5081 {
5082 guess_suffix = QWORD_MNEM_SUFFIX;
5083 break;
5084 }
5085 }
5086 else if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
5087 guess_suffix = WORD_MNEM_SUFFIX;
5088
5089 for (op = i.operands; --op >= 0;)
5090 if (operand_type_check (i.types[op], imm))
5091 {
5092 switch (i.op[op].imms->X_op)
5093 {
5094 case O_constant:
5095 /* If a suffix is given, this operand may be shortened. */
5096 switch (guess_suffix)
5097 {
5098 case LONG_MNEM_SUFFIX:
5099 i.types[op].bitfield.imm32 = 1;
5100 i.types[op].bitfield.imm64 = 1;
5101 break;
5102 case WORD_MNEM_SUFFIX:
5103 i.types[op].bitfield.imm16 = 1;
5104 i.types[op].bitfield.imm32 = 1;
5105 i.types[op].bitfield.imm32s = 1;
5106 i.types[op].bitfield.imm64 = 1;
5107 break;
5108 case BYTE_MNEM_SUFFIX:
5109 i.types[op].bitfield.imm8 = 1;
5110 i.types[op].bitfield.imm8s = 1;
5111 i.types[op].bitfield.imm16 = 1;
5112 i.types[op].bitfield.imm32 = 1;
5113 i.types[op].bitfield.imm32s = 1;
5114 i.types[op].bitfield.imm64 = 1;
5115 break;
5116 }
5117
5118 /* If this operand is at most 16 bits, convert it
5119 to a signed 16 bit number before trying to see
5120 whether it will fit in an even smaller size.
5121 This allows a 16-bit operand such as $0xffe0 to
5122 be recognised as within Imm8S range. */
5123 if ((i.types[op].bitfield.imm16)
5124 && (i.op[op].imms->X_add_number & ~(offsetT) 0xffff) == 0)
5125 {
5126 i.op[op].imms->X_add_number =
5127 (((i.op[op].imms->X_add_number & 0xffff) ^ 0x8000) - 0x8000);
5128 }
5129 #ifdef BFD64
5130 /* Store 32-bit immediate in 64-bit for 64-bit BFD. */
5131 if ((i.types[op].bitfield.imm32)
5132 && ((i.op[op].imms->X_add_number & ~(((offsetT) 2 << 31) - 1))
5133 == 0))
5134 {
5135 i.op[op].imms->X_add_number = ((i.op[op].imms->X_add_number
5136 ^ ((offsetT) 1 << 31))
5137 - ((offsetT) 1 << 31));
5138 }
5139 #endif
5140 i.types[op]
5141 = operand_type_or (i.types[op],
5142 smallest_imm_type (i.op[op].imms->X_add_number));
5143
5144 /* We must avoid matching of Imm32 templates when 64bit
5145 only immediate is available. */
5146 if (guess_suffix == QWORD_MNEM_SUFFIX)
5147 i.types[op].bitfield.imm32 = 0;
5148 break;
5149
5150 case O_absent:
5151 case O_register:
5152 abort ();
5153
5154 /* Symbols and expressions. */
5155 default:
5156 /* Convert symbolic operand to proper sizes for matching, but don't
5157 prevent matching a set of insns that only supports sizes other
5158 than those matching the insn suffix. */
5159 {
5160 i386_operand_type mask, allowed;
5161 const insn_template *t;
5162
5163 operand_type_set (&mask, 0);
5164 operand_type_set (&allowed, 0);
5165
5166 for (t = current_templates->start;
5167 t < current_templates->end;
5168 ++t)
5169 allowed = operand_type_or (allowed,
5170 t->operand_types[op]);
5171 switch (guess_suffix)
5172 {
5173 case QWORD_MNEM_SUFFIX:
5174 mask.bitfield.imm64 = 1;
5175 mask.bitfield.imm32s = 1;
5176 break;
5177 case LONG_MNEM_SUFFIX:
5178 mask.bitfield.imm32 = 1;
5179 break;
5180 case WORD_MNEM_SUFFIX:
5181 mask.bitfield.imm16 = 1;
5182 break;
5183 case BYTE_MNEM_SUFFIX:
5184 mask.bitfield.imm8 = 1;
5185 break;
5186 default:
5187 break;
5188 }
5189 allowed = operand_type_and (mask, allowed);
5190 if (!operand_type_all_zero (&allowed))
5191 i.types[op] = operand_type_and (i.types[op], mask);
5192 }
5193 break;
5194 }
5195 }
5196 }
5197
5198 /* Try to use the smallest displacement type too. */
5199 static void
5200 optimize_disp (void)
5201 {
5202 int op;
5203
5204 for (op = i.operands; --op >= 0;)
5205 if (operand_type_check (i.types[op], disp))
5206 {
5207 if (i.op[op].disps->X_op == O_constant)
5208 {
5209 offsetT op_disp = i.op[op].disps->X_add_number;
5210
5211 if (i.types[op].bitfield.disp16
5212 && (op_disp & ~(offsetT) 0xffff) == 0)
5213 {
5214 /* If this operand is at most 16 bits, convert
5215 to a signed 16 bit number and don't use 64bit
5216 displacement. */
5217 op_disp = (((op_disp & 0xffff) ^ 0x8000) - 0x8000);
5218 i.types[op].bitfield.disp64 = 0;
5219 }
5220 #ifdef BFD64
5221 /* Optimize 64-bit displacement to 32-bit for 64-bit BFD. */
5222 if (i.types[op].bitfield.disp32
5223 && (op_disp & ~(((offsetT) 2 << 31) - 1)) == 0)
5224 {
5225 /* If this operand is at most 32 bits, convert
5226 to a signed 32 bit number and don't use 64bit
5227 displacement. */
5228 op_disp &= (((offsetT) 2 << 31) - 1);
5229 op_disp = (op_disp ^ ((offsetT) 1 << 31)) - ((addressT) 1 << 31);
5230 i.types[op].bitfield.disp64 = 0;
5231 }
5232 #endif
5233 if (!op_disp && i.types[op].bitfield.baseindex)
5234 {
5235 i.types[op].bitfield.disp8 = 0;
5236 i.types[op].bitfield.disp16 = 0;
5237 i.types[op].bitfield.disp32 = 0;
5238 i.types[op].bitfield.disp32s = 0;
5239 i.types[op].bitfield.disp64 = 0;
5240 i.op[op].disps = 0;
5241 i.disp_operands--;
5242 }
5243 else if (flag_code == CODE_64BIT)
5244 {
5245 if (fits_in_signed_long (op_disp))
5246 {
5247 i.types[op].bitfield.disp64 = 0;
5248 i.types[op].bitfield.disp32s = 1;
5249 }
5250 if (i.prefix[ADDR_PREFIX]
5251 && fits_in_unsigned_long (op_disp))
5252 i.types[op].bitfield.disp32 = 1;
5253 }
5254 if ((i.types[op].bitfield.disp32
5255 || i.types[op].bitfield.disp32s
5256 || i.types[op].bitfield.disp16)
5257 && fits_in_disp8 (op_disp))
5258 i.types[op].bitfield.disp8 = 1;
5259 }
5260 else if (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
5261 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL)
5262 {
5263 fix_new_exp (frag_now, frag_more (0) - frag_now->fr_literal, 0,
5264 i.op[op].disps, 0, i.reloc[op]);
5265 i.types[op].bitfield.disp8 = 0;
5266 i.types[op].bitfield.disp16 = 0;
5267 i.types[op].bitfield.disp32 = 0;
5268 i.types[op].bitfield.disp32s = 0;
5269 i.types[op].bitfield.disp64 = 0;
5270 }
5271 else
5272 /* We only support 64bit displacement on constants. */
5273 i.types[op].bitfield.disp64 = 0;
5274 }
5275 }
5276
5277 /* Return 1 if there is a match in broadcast bytes between operand
5278 GIVEN and instruction template T. */
5279
5280 static INLINE int
5281 match_broadcast_size (const insn_template *t, unsigned int given)
5282 {
5283 return ((t->opcode_modifier.broadcast == BYTE_BROADCAST
5284 && i.types[given].bitfield.byte)
5285 || (t->opcode_modifier.broadcast == WORD_BROADCAST
5286 && i.types[given].bitfield.word)
5287 || (t->opcode_modifier.broadcast == DWORD_BROADCAST
5288 && i.types[given].bitfield.dword)
5289 || (t->opcode_modifier.broadcast == QWORD_BROADCAST
5290 && i.types[given].bitfield.qword));
5291 }
5292
5293 /* Check if operands are valid for the instruction. */
5294
5295 static int
5296 check_VecOperands (const insn_template *t)
5297 {
5298 unsigned int op;
5299 i386_cpu_flags cpu;
5300 static const i386_cpu_flags avx512 = CPU_ANY_AVX512F_FLAGS;
5301
5302 /* Templates allowing for ZMMword as well as YMMword and/or XMMword for
5303 any one operand are implicity requiring AVX512VL support if the actual
5304 operand size is YMMword or XMMword. Since this function runs after
5305 template matching, there's no need to check for YMMword/XMMword in
5306 the template. */
5307 cpu = cpu_flags_and (t->cpu_flags, avx512);
5308 if (!cpu_flags_all_zero (&cpu)
5309 && !t->cpu_flags.bitfield.cpuavx512vl
5310 && !cpu_arch_flags.bitfield.cpuavx512vl)
5311 {
5312 for (op = 0; op < t->operands; ++op)
5313 {
5314 if (t->operand_types[op].bitfield.zmmword
5315 && (i.types[op].bitfield.ymmword
5316 || i.types[op].bitfield.xmmword))
5317 {
5318 i.error = unsupported;
5319 return 1;
5320 }
5321 }
5322 }
5323
5324 /* Without VSIB byte, we can't have a vector register for index. */
5325 if (!t->opcode_modifier.vecsib
5326 && i.index_reg
5327 && (i.index_reg->reg_type.bitfield.xmmword
5328 || i.index_reg->reg_type.bitfield.ymmword
5329 || i.index_reg->reg_type.bitfield.zmmword))
5330 {
5331 i.error = unsupported_vector_index_register;
5332 return 1;
5333 }
5334
5335 /* Check if default mask is allowed. */
5336 if (t->opcode_modifier.nodefmask
5337 && (!i.mask || i.mask->mask->reg_num == 0))
5338 {
5339 i.error = no_default_mask;
5340 return 1;
5341 }
5342
5343 /* For VSIB byte, we need a vector register for index, and all vector
5344 registers must be distinct. */
5345 if (t->opcode_modifier.vecsib)
5346 {
5347 if (!i.index_reg
5348 || !((t->opcode_modifier.vecsib == VecSIB128
5349 && i.index_reg->reg_type.bitfield.xmmword)
5350 || (t->opcode_modifier.vecsib == VecSIB256
5351 && i.index_reg->reg_type.bitfield.ymmword)
5352 || (t->opcode_modifier.vecsib == VecSIB512
5353 && i.index_reg->reg_type.bitfield.zmmword)))
5354 {
5355 i.error = invalid_vsib_address;
5356 return 1;
5357 }
5358
5359 gas_assert (i.reg_operands == 2 || i.mask);
5360 if (i.reg_operands == 2 && !i.mask)
5361 {
5362 gas_assert (i.types[0].bitfield.regsimd);
5363 gas_assert (i.types[0].bitfield.xmmword
5364 || i.types[0].bitfield.ymmword);
5365 gas_assert (i.types[2].bitfield.regsimd);
5366 gas_assert (i.types[2].bitfield.xmmword
5367 || i.types[2].bitfield.ymmword);
5368 if (operand_check == check_none)
5369 return 0;
5370 if (register_number (i.op[0].regs)
5371 != register_number (i.index_reg)
5372 && register_number (i.op[2].regs)
5373 != register_number (i.index_reg)
5374 && register_number (i.op[0].regs)
5375 != register_number (i.op[2].regs))
5376 return 0;
5377 if (operand_check == check_error)
5378 {
5379 i.error = invalid_vector_register_set;
5380 return 1;
5381 }
5382 as_warn (_("mask, index, and destination registers should be distinct"));
5383 }
5384 else if (i.reg_operands == 1 && i.mask)
5385 {
5386 if (i.types[1].bitfield.regsimd
5387 && (i.types[1].bitfield.xmmword
5388 || i.types[1].bitfield.ymmword
5389 || i.types[1].bitfield.zmmword)
5390 && (register_number (i.op[1].regs)
5391 == register_number (i.index_reg)))
5392 {
5393 if (operand_check == check_error)
5394 {
5395 i.error = invalid_vector_register_set;
5396 return 1;
5397 }
5398 if (operand_check != check_none)
5399 as_warn (_("index and destination registers should be distinct"));
5400 }
5401 }
5402 }
5403
5404 /* Check if broadcast is supported by the instruction and is applied
5405 to the memory operand. */
5406 if (i.broadcast)
5407 {
5408 i386_operand_type type, overlap;
5409
5410 /* Check if specified broadcast is supported in this instruction,
5411 and its broadcast bytes match the memory operand. */
5412 op = i.broadcast->operand;
5413 if (!t->opcode_modifier.broadcast
5414 || !(i.flags[op] & Operand_Mem)
5415 || (!i.types[op].bitfield.unspecified
5416 && !match_broadcast_size (t, op)))
5417 {
5418 bad_broadcast:
5419 i.error = unsupported_broadcast;
5420 return 1;
5421 }
5422
5423 i.broadcast->bytes = ((1 << (t->opcode_modifier.broadcast - 1))
5424 * i.broadcast->type);
5425 operand_type_set (&type, 0);
5426 switch (i.broadcast->bytes)
5427 {
5428 case 2:
5429 type.bitfield.word = 1;
5430 break;
5431 case 4:
5432 type.bitfield.dword = 1;
5433 break;
5434 case 8:
5435 type.bitfield.qword = 1;
5436 break;
5437 case 16:
5438 type.bitfield.xmmword = 1;
5439 break;
5440 case 32:
5441 type.bitfield.ymmword = 1;
5442 break;
5443 case 64:
5444 type.bitfield.zmmword = 1;
5445 break;
5446 default:
5447 goto bad_broadcast;
5448 }
5449
5450 overlap = operand_type_and (type, t->operand_types[op]);
5451 if (operand_type_all_zero (&overlap))
5452 goto bad_broadcast;
5453
5454 if (t->opcode_modifier.checkregsize)
5455 {
5456 unsigned int j;
5457
5458 type.bitfield.baseindex = 1;
5459 for (j = 0; j < i.operands; ++j)
5460 {
5461 if (j != op
5462 && !operand_type_register_match(i.types[j],
5463 t->operand_types[j],
5464 type,
5465 t->operand_types[op]))
5466 goto bad_broadcast;
5467 }
5468 }
5469 }
5470 /* If broadcast is supported in this instruction, we need to check if
5471 operand of one-element size isn't specified without broadcast. */
5472 else if (t->opcode_modifier.broadcast && i.mem_operands)
5473 {
5474 /* Find memory operand. */
5475 for (op = 0; op < i.operands; op++)
5476 if (operand_type_check (i.types[op], anymem))
5477 break;
5478 gas_assert (op < i.operands);
5479 /* Check size of the memory operand. */
5480 if (match_broadcast_size (t, op))
5481 {
5482 i.error = broadcast_needed;
5483 return 1;
5484 }
5485 }
5486 else
5487 op = MAX_OPERANDS - 1; /* Avoid uninitialized variable warning. */
5488
5489 /* Check if requested masking is supported. */
5490 if (i.mask)
5491 {
5492 switch (t->opcode_modifier.masking)
5493 {
5494 case BOTH_MASKING:
5495 break;
5496 case MERGING_MASKING:
5497 if (i.mask->zeroing)
5498 {
5499 case 0:
5500 i.error = unsupported_masking;
5501 return 1;
5502 }
5503 break;
5504 case DYNAMIC_MASKING:
5505 /* Memory destinations allow only merging masking. */
5506 if (i.mask->zeroing && i.mem_operands)
5507 {
5508 /* Find memory operand. */
5509 for (op = 0; op < i.operands; op++)
5510 if (i.flags[op] & Operand_Mem)
5511 break;
5512 gas_assert (op < i.operands);
5513 if (op == i.operands - 1)
5514 {
5515 i.error = unsupported_masking;
5516 return 1;
5517 }
5518 }
5519 break;
5520 default:
5521 abort ();
5522 }
5523 }
5524
5525 /* Check if masking is applied to dest operand. */
5526 if (i.mask && (i.mask->operand != (int) (i.operands - 1)))
5527 {
5528 i.error = mask_not_on_destination;
5529 return 1;
5530 }
5531
5532 /* Check RC/SAE. */
5533 if (i.rounding)
5534 {
5535 if (!t->opcode_modifier.sae
5536 || (i.rounding->type != saeonly && !t->opcode_modifier.staticrounding))
5537 {
5538 i.error = unsupported_rc_sae;
5539 return 1;
5540 }
5541 /* If the instruction has several immediate operands and one of
5542 them is rounding, the rounding operand should be the last
5543 immediate operand. */
5544 if (i.imm_operands > 1
5545 && i.rounding->operand != (int) (i.imm_operands - 1))
5546 {
5547 i.error = rc_sae_operand_not_last_imm;
5548 return 1;
5549 }
5550 }
5551
5552 /* Check vector Disp8 operand. */
5553 if (t->opcode_modifier.disp8memshift
5554 && i.disp_encoding != disp_encoding_32bit)
5555 {
5556 if (i.broadcast)
5557 i.memshift = t->opcode_modifier.broadcast - 1;
5558 else if (t->opcode_modifier.disp8memshift != DISP8_SHIFT_VL)
5559 i.memshift = t->opcode_modifier.disp8memshift;
5560 else
5561 {
5562 const i386_operand_type *type = NULL;
5563
5564 i.memshift = 0;
5565 for (op = 0; op < i.operands; op++)
5566 if (operand_type_check (i.types[op], anymem))
5567 {
5568 if (t->opcode_modifier.evex == EVEXLIG)
5569 i.memshift = 2 + (i.suffix == QWORD_MNEM_SUFFIX);
5570 else if (t->operand_types[op].bitfield.xmmword
5571 + t->operand_types[op].bitfield.ymmword
5572 + t->operand_types[op].bitfield.zmmword <= 1)
5573 type = &t->operand_types[op];
5574 else if (!i.types[op].bitfield.unspecified)
5575 type = &i.types[op];
5576 }
5577 else if (i.types[op].bitfield.regsimd
5578 && t->opcode_modifier.evex != EVEXLIG)
5579 {
5580 if (i.types[op].bitfield.zmmword)
5581 i.memshift = 6;
5582 else if (i.types[op].bitfield.ymmword && i.memshift < 5)
5583 i.memshift = 5;
5584 else if (i.types[op].bitfield.xmmword && i.memshift < 4)
5585 i.memshift = 4;
5586 }
5587
5588 if (type)
5589 {
5590 if (type->bitfield.zmmword)
5591 i.memshift = 6;
5592 else if (type->bitfield.ymmword)
5593 i.memshift = 5;
5594 else if (type->bitfield.xmmword)
5595 i.memshift = 4;
5596 }
5597
5598 /* For the check in fits_in_disp8(). */
5599 if (i.memshift == 0)
5600 i.memshift = -1;
5601 }
5602
5603 for (op = 0; op < i.operands; op++)
5604 if (operand_type_check (i.types[op], disp)
5605 && i.op[op].disps->X_op == O_constant)
5606 {
5607 if (fits_in_disp8 (i.op[op].disps->X_add_number))
5608 {
5609 i.types[op].bitfield.disp8 = 1;
5610 return 0;
5611 }
5612 i.types[op].bitfield.disp8 = 0;
5613 }
5614 }
5615
5616 i.memshift = 0;
5617
5618 return 0;
5619 }
5620
5621 /* Check if operands are valid for the instruction. Update VEX
5622 operand types. */
5623
5624 static int
5625 VEX_check_operands (const insn_template *t)
5626 {
5627 if (i.vec_encoding == vex_encoding_evex)
5628 {
5629 /* This instruction must be encoded with EVEX prefix. */
5630 if (!is_evex_encoding (t))
5631 {
5632 i.error = unsupported;
5633 return 1;
5634 }
5635 return 0;
5636 }
5637
5638 if (!t->opcode_modifier.vex)
5639 {
5640 /* This instruction template doesn't have VEX prefix. */
5641 if (i.vec_encoding != vex_encoding_default)
5642 {
5643 i.error = unsupported;
5644 return 1;
5645 }
5646 return 0;
5647 }
5648
5649 /* Check the special Imm4 cases; must be the first operand. */
5650 if (t->cpu_flags.bitfield.cpuxop && t->operands == 5)
5651 {
5652 if (i.op[0].imms->X_op != O_constant
5653 || !fits_in_imm4 (i.op[0].imms->X_add_number))
5654 {
5655 i.error = bad_imm4;
5656 return 1;
5657 }
5658
5659 /* Turn off Imm<N> so that update_imm won't complain. */
5660 operand_type_set (&i.types[0], 0);
5661 }
5662
5663 return 0;
5664 }
5665
5666 static const insn_template *
5667 match_template (char mnem_suffix)
5668 {
5669 /* Points to template once we've found it. */
5670 const insn_template *t;
5671 i386_operand_type overlap0, overlap1, overlap2, overlap3;
5672 i386_operand_type overlap4;
5673 unsigned int found_reverse_match;
5674 i386_opcode_modifier suffix_check, mnemsuf_check;
5675 i386_operand_type operand_types [MAX_OPERANDS];
5676 int addr_prefix_disp;
5677 unsigned int j;
5678 unsigned int found_cpu_match, size_match;
5679 unsigned int check_register;
5680 enum i386_error specific_error = 0;
5681
5682 #if MAX_OPERANDS != 5
5683 # error "MAX_OPERANDS must be 5."
5684 #endif
5685
5686 found_reverse_match = 0;
5687 addr_prefix_disp = -1;
5688
5689 memset (&suffix_check, 0, sizeof (suffix_check));
5690 if (intel_syntax && i.broadcast)
5691 /* nothing */;
5692 else if (i.suffix == BYTE_MNEM_SUFFIX)
5693 suffix_check.no_bsuf = 1;
5694 else if (i.suffix == WORD_MNEM_SUFFIX)
5695 suffix_check.no_wsuf = 1;
5696 else if (i.suffix == SHORT_MNEM_SUFFIX)
5697 suffix_check.no_ssuf = 1;
5698 else if (i.suffix == LONG_MNEM_SUFFIX)
5699 suffix_check.no_lsuf = 1;
5700 else if (i.suffix == QWORD_MNEM_SUFFIX)
5701 suffix_check.no_qsuf = 1;
5702 else if (i.suffix == LONG_DOUBLE_MNEM_SUFFIX)
5703 suffix_check.no_ldsuf = 1;
5704
5705 memset (&mnemsuf_check, 0, sizeof (mnemsuf_check));
5706 if (intel_syntax)
5707 {
5708 switch (mnem_suffix)
5709 {
5710 case BYTE_MNEM_SUFFIX: mnemsuf_check.no_bsuf = 1; break;
5711 case WORD_MNEM_SUFFIX: mnemsuf_check.no_wsuf = 1; break;
5712 case SHORT_MNEM_SUFFIX: mnemsuf_check.no_ssuf = 1; break;
5713 case LONG_MNEM_SUFFIX: mnemsuf_check.no_lsuf = 1; break;
5714 case QWORD_MNEM_SUFFIX: mnemsuf_check.no_qsuf = 1; break;
5715 }
5716 }
5717
5718 /* Must have right number of operands. */
5719 i.error = number_of_operands_mismatch;
5720
5721 for (t = current_templates->start; t < current_templates->end; t++)
5722 {
5723 addr_prefix_disp = -1;
5724 found_reverse_match = 0;
5725
5726 if (i.operands != t->operands)
5727 continue;
5728
5729 /* Check processor support. */
5730 i.error = unsupported;
5731 found_cpu_match = (cpu_flags_match (t)
5732 == CPU_FLAGS_PERFECT_MATCH);
5733 if (!found_cpu_match)
5734 continue;
5735
5736 /* Check AT&T mnemonic. */
5737 i.error = unsupported_with_intel_mnemonic;
5738 if (intel_mnemonic && t->opcode_modifier.attmnemonic)
5739 continue;
5740
5741 /* Check AT&T/Intel syntax and Intel64/AMD64 ISA. */
5742 i.error = unsupported_syntax;
5743 if ((intel_syntax && t->opcode_modifier.attsyntax)
5744 || (!intel_syntax && t->opcode_modifier.intelsyntax)
5745 || (intel64 && t->opcode_modifier.amd64)
5746 || (!intel64 && t->opcode_modifier.intel64))
5747 continue;
5748
5749 /* Check the suffix, except for some instructions in intel mode. */
5750 i.error = invalid_instruction_suffix;
5751 if ((!intel_syntax || !t->opcode_modifier.ignoresize)
5752 && ((t->opcode_modifier.no_bsuf && suffix_check.no_bsuf)
5753 || (t->opcode_modifier.no_wsuf && suffix_check.no_wsuf)
5754 || (t->opcode_modifier.no_lsuf && suffix_check.no_lsuf)
5755 || (t->opcode_modifier.no_ssuf && suffix_check.no_ssuf)
5756 || (t->opcode_modifier.no_qsuf && suffix_check.no_qsuf)
5757 || (t->opcode_modifier.no_ldsuf && suffix_check.no_ldsuf)))
5758 continue;
5759 /* In Intel mode all mnemonic suffixes must be explicitly allowed. */
5760 if ((t->opcode_modifier.no_bsuf && mnemsuf_check.no_bsuf)
5761 || (t->opcode_modifier.no_wsuf && mnemsuf_check.no_wsuf)
5762 || (t->opcode_modifier.no_lsuf && mnemsuf_check.no_lsuf)
5763 || (t->opcode_modifier.no_ssuf && mnemsuf_check.no_ssuf)
5764 || (t->opcode_modifier.no_qsuf && mnemsuf_check.no_qsuf)
5765 || (t->opcode_modifier.no_ldsuf && mnemsuf_check.no_ldsuf))
5766 continue;
5767
5768 size_match = operand_size_match (t);
5769 if (!size_match)
5770 continue;
5771
5772 for (j = 0; j < MAX_OPERANDS; j++)
5773 operand_types[j] = t->operand_types[j];
5774
5775 /* In general, don't allow 64-bit operands in 32-bit mode. */
5776 if (i.suffix == QWORD_MNEM_SUFFIX
5777 && flag_code != CODE_64BIT
5778 && (intel_syntax
5779 ? (!t->opcode_modifier.ignoresize
5780 && !t->opcode_modifier.broadcast
5781 && !intel_float_operand (t->name))
5782 : intel_float_operand (t->name) != 2)
5783 && ((!operand_types[0].bitfield.regmmx
5784 && !operand_types[0].bitfield.regsimd)
5785 || (!operand_types[t->operands > 1].bitfield.regmmx
5786 && !operand_types[t->operands > 1].bitfield.regsimd))
5787 && (t->base_opcode != 0x0fc7
5788 || t->extension_opcode != 1 /* cmpxchg8b */))
5789 continue;
5790
5791 /* In general, don't allow 32-bit operands on pre-386. */
5792 else if (i.suffix == LONG_MNEM_SUFFIX
5793 && !cpu_arch_flags.bitfield.cpui386
5794 && (intel_syntax
5795 ? (!t->opcode_modifier.ignoresize
5796 && !intel_float_operand (t->name))
5797 : intel_float_operand (t->name) != 2)
5798 && ((!operand_types[0].bitfield.regmmx
5799 && !operand_types[0].bitfield.regsimd)
5800 || (!operand_types[t->operands > 1].bitfield.regmmx
5801 && !operand_types[t->operands > 1].bitfield.regsimd)))
5802 continue;
5803
5804 /* Do not verify operands when there are none. */
5805 else
5806 {
5807 if (!t->operands)
5808 /* We've found a match; break out of loop. */
5809 break;
5810 }
5811
5812 /* Address size prefix will turn Disp64/Disp32/Disp16 operand
5813 into Disp32/Disp16/Disp32 operand. */
5814 if (i.prefix[ADDR_PREFIX] != 0)
5815 {
5816 /* There should be only one Disp operand. */
5817 switch (flag_code)
5818 {
5819 case CODE_16BIT:
5820 for (j = 0; j < MAX_OPERANDS; j++)
5821 {
5822 if (operand_types[j].bitfield.disp16)
5823 {
5824 addr_prefix_disp = j;
5825 operand_types[j].bitfield.disp32 = 1;
5826 operand_types[j].bitfield.disp16 = 0;
5827 break;
5828 }
5829 }
5830 break;
5831 case CODE_32BIT:
5832 for (j = 0; j < MAX_OPERANDS; j++)
5833 {
5834 if (operand_types[j].bitfield.disp32)
5835 {
5836 addr_prefix_disp = j;
5837 operand_types[j].bitfield.disp32 = 0;
5838 operand_types[j].bitfield.disp16 = 1;
5839 break;
5840 }
5841 }
5842 break;
5843 case CODE_64BIT:
5844 for (j = 0; j < MAX_OPERANDS; j++)
5845 {
5846 if (operand_types[j].bitfield.disp64)
5847 {
5848 addr_prefix_disp = j;
5849 operand_types[j].bitfield.disp64 = 0;
5850 operand_types[j].bitfield.disp32 = 1;
5851 break;
5852 }
5853 }
5854 break;
5855 }
5856 }
5857
5858 /* Force 0x8b encoding for "mov foo@GOT, %eax". */
5859 if (i.reloc[0] == BFD_RELOC_386_GOT32 && t->base_opcode == 0xa0)
5860 continue;
5861
5862 /* We check register size if needed. */
5863 if (t->opcode_modifier.checkregsize)
5864 {
5865 check_register = (1 << t->operands) - 1;
5866 if (i.broadcast)
5867 check_register &= ~(1 << i.broadcast->operand);
5868 }
5869 else
5870 check_register = 0;
5871
5872 overlap0 = operand_type_and (i.types[0], operand_types[0]);
5873 switch (t->operands)
5874 {
5875 case 1:
5876 if (!operand_type_match (overlap0, i.types[0]))
5877 continue;
5878 break;
5879 case 2:
5880 /* xchg %eax, %eax is a special case. It is an alias for nop
5881 only in 32bit mode and we can use opcode 0x90. In 64bit
5882 mode, we can't use 0x90 for xchg %eax, %eax since it should
5883 zero-extend %eax to %rax. */
5884 if (flag_code == CODE_64BIT
5885 && t->base_opcode == 0x90
5886 && i.types[0].bitfield.acc && i.types[0].bitfield.dword
5887 && i.types[1].bitfield.acc && i.types[1].bitfield.dword)
5888 continue;
5889 /* xrelease mov %eax, <disp> is another special case. It must not
5890 match the accumulator-only encoding of mov. */
5891 if (flag_code != CODE_64BIT
5892 && i.hle_prefix
5893 && t->base_opcode == 0xa0
5894 && i.types[0].bitfield.acc
5895 && operand_type_check (i.types[1], anymem))
5896 continue;
5897 /* Fall through. */
5898
5899 case 3:
5900 if (!(size_match & MATCH_STRAIGHT))
5901 goto check_reverse;
5902 /* Reverse direction of operands if swapping is possible in the first
5903 place (operands need to be symmetric) and
5904 - the load form is requested, and the template is a store form,
5905 - the store form is requested, and the template is a load form,
5906 - the non-default (swapped) form is requested. */
5907 overlap1 = operand_type_and (operand_types[0], operand_types[1]);
5908 if (t->opcode_modifier.d && i.reg_operands == i.operands
5909 && !operand_type_all_zero (&overlap1))
5910 switch (i.dir_encoding)
5911 {
5912 case dir_encoding_load:
5913 if (operand_type_check (operand_types[i.operands - 1], anymem)
5914 || t->opcode_modifier.regmem)
5915 goto check_reverse;
5916 break;
5917
5918 case dir_encoding_store:
5919 if (!operand_type_check (operand_types[i.operands - 1], anymem)
5920 && !t->opcode_modifier.regmem)
5921 goto check_reverse;
5922 break;
5923
5924 case dir_encoding_swap:
5925 goto check_reverse;
5926
5927 case dir_encoding_default:
5928 break;
5929 }
5930 /* If we want store form, we skip the current load. */
5931 if ((i.dir_encoding == dir_encoding_store
5932 || i.dir_encoding == dir_encoding_swap)
5933 && i.mem_operands == 0
5934 && t->opcode_modifier.load)
5935 continue;
5936 /* Fall through. */
5937 case 4:
5938 case 5:
5939 overlap1 = operand_type_and (i.types[1], operand_types[1]);
5940 if (!operand_type_match (overlap0, i.types[0])
5941 || !operand_type_match (overlap1, i.types[1])
5942 || ((check_register & 3) == 3
5943 && !operand_type_register_match (i.types[0],
5944 operand_types[0],
5945 i.types[1],
5946 operand_types[1])))
5947 {
5948 /* Check if other direction is valid ... */
5949 if (!t->opcode_modifier.d)
5950 continue;
5951
5952 check_reverse:
5953 if (!(size_match & MATCH_REVERSE))
5954 continue;
5955 /* Try reversing direction of operands. */
5956 overlap0 = operand_type_and (i.types[0], operand_types[i.operands - 1]);
5957 overlap1 = operand_type_and (i.types[i.operands - 1], operand_types[0]);
5958 if (!operand_type_match (overlap0, i.types[0])
5959 || !operand_type_match (overlap1, i.types[i.operands - 1])
5960 || (check_register
5961 && !operand_type_register_match (i.types[0],
5962 operand_types[i.operands - 1],
5963 i.types[i.operands - 1],
5964 operand_types[0])))
5965 {
5966 /* Does not match either direction. */
5967 continue;
5968 }
5969 /* found_reverse_match holds which of D or FloatR
5970 we've found. */
5971 if (!t->opcode_modifier.d)
5972 found_reverse_match = 0;
5973 else if (operand_types[0].bitfield.tbyte)
5974 found_reverse_match = Opcode_FloatD;
5975 else if (operand_types[0].bitfield.xmmword
5976 || operand_types[i.operands - 1].bitfield.xmmword
5977 || operand_types[0].bitfield.regmmx
5978 || operand_types[i.operands - 1].bitfield.regmmx
5979 || is_any_vex_encoding(t))
5980 found_reverse_match = (t->base_opcode & 0xee) != 0x6e
5981 ? Opcode_SIMD_FloatD : Opcode_SIMD_IntD;
5982 else
5983 found_reverse_match = Opcode_D;
5984 if (t->opcode_modifier.floatr)
5985 found_reverse_match |= Opcode_FloatR;
5986 }
5987 else
5988 {
5989 /* Found a forward 2 operand match here. */
5990 switch (t->operands)
5991 {
5992 case 5:
5993 overlap4 = operand_type_and (i.types[4],
5994 operand_types[4]);
5995 /* Fall through. */
5996 case 4:
5997 overlap3 = operand_type_and (i.types[3],
5998 operand_types[3]);
5999 /* Fall through. */
6000 case 3:
6001 overlap2 = operand_type_and (i.types[2],
6002 operand_types[2]);
6003 break;
6004 }
6005
6006 switch (t->operands)
6007 {
6008 case 5:
6009 if (!operand_type_match (overlap4, i.types[4])
6010 || !operand_type_register_match (i.types[3],
6011 operand_types[3],
6012 i.types[4],
6013 operand_types[4]))
6014 continue;
6015 /* Fall through. */
6016 case 4:
6017 if (!operand_type_match (overlap3, i.types[3])
6018 || ((check_register & 0xa) == 0xa
6019 && !operand_type_register_match (i.types[1],
6020 operand_types[1],
6021 i.types[3],
6022 operand_types[3]))
6023 || ((check_register & 0xc) == 0xc
6024 && !operand_type_register_match (i.types[2],
6025 operand_types[2],
6026 i.types[3],
6027 operand_types[3])))
6028 continue;
6029 /* Fall through. */
6030 case 3:
6031 /* Here we make use of the fact that there are no
6032 reverse match 3 operand instructions. */
6033 if (!operand_type_match (overlap2, i.types[2])
6034 || ((check_register & 5) == 5
6035 && !operand_type_register_match (i.types[0],
6036 operand_types[0],
6037 i.types[2],
6038 operand_types[2]))
6039 || ((check_register & 6) == 6
6040 && !operand_type_register_match (i.types[1],
6041 operand_types[1],
6042 i.types[2],
6043 operand_types[2])))
6044 continue;
6045 break;
6046 }
6047 }
6048 /* Found either forward/reverse 2, 3 or 4 operand match here:
6049 slip through to break. */
6050 }
6051 if (!found_cpu_match)
6052 continue;
6053
6054 /* Check if vector and VEX operands are valid. */
6055 if (check_VecOperands (t) || VEX_check_operands (t))
6056 {
6057 specific_error = i.error;
6058 continue;
6059 }
6060
6061 /* We've found a match; break out of loop. */
6062 break;
6063 }
6064
6065 if (t == current_templates->end)
6066 {
6067 /* We found no match. */
6068 const char *err_msg;
6069 switch (specific_error ? specific_error : i.error)
6070 {
6071 default:
6072 abort ();
6073 case operand_size_mismatch:
6074 err_msg = _("operand size mismatch");
6075 break;
6076 case operand_type_mismatch:
6077 err_msg = _("operand type mismatch");
6078 break;
6079 case register_type_mismatch:
6080 err_msg = _("register type mismatch");
6081 break;
6082 case number_of_operands_mismatch:
6083 err_msg = _("number of operands mismatch");
6084 break;
6085 case invalid_instruction_suffix:
6086 err_msg = _("invalid instruction suffix");
6087 break;
6088 case bad_imm4:
6089 err_msg = _("constant doesn't fit in 4 bits");
6090 break;
6091 case unsupported_with_intel_mnemonic:
6092 err_msg = _("unsupported with Intel mnemonic");
6093 break;
6094 case unsupported_syntax:
6095 err_msg = _("unsupported syntax");
6096 break;
6097 case unsupported:
6098 as_bad (_("unsupported instruction `%s'"),
6099 current_templates->start->name);
6100 return NULL;
6101 case invalid_vsib_address:
6102 err_msg = _("invalid VSIB address");
6103 break;
6104 case invalid_vector_register_set:
6105 err_msg = _("mask, index, and destination registers must be distinct");
6106 break;
6107 case unsupported_vector_index_register:
6108 err_msg = _("unsupported vector index register");
6109 break;
6110 case unsupported_broadcast:
6111 err_msg = _("unsupported broadcast");
6112 break;
6113 case broadcast_needed:
6114 err_msg = _("broadcast is needed for operand of such type");
6115 break;
6116 case unsupported_masking:
6117 err_msg = _("unsupported masking");
6118 break;
6119 case mask_not_on_destination:
6120 err_msg = _("mask not on destination operand");
6121 break;
6122 case no_default_mask:
6123 err_msg = _("default mask isn't allowed");
6124 break;
6125 case unsupported_rc_sae:
6126 err_msg = _("unsupported static rounding/sae");
6127 break;
6128 case rc_sae_operand_not_last_imm:
6129 if (intel_syntax)
6130 err_msg = _("RC/SAE operand must precede immediate operands");
6131 else
6132 err_msg = _("RC/SAE operand must follow immediate operands");
6133 break;
6134 case invalid_register_operand:
6135 err_msg = _("invalid register operand");
6136 break;
6137 }
6138 as_bad (_("%s for `%s'"), err_msg,
6139 current_templates->start->name);
6140 return NULL;
6141 }
6142
6143 if (!quiet_warnings)
6144 {
6145 if (!intel_syntax
6146 && (i.types[0].bitfield.jumpabsolute
6147 != operand_types[0].bitfield.jumpabsolute))
6148 {
6149 as_warn (_("indirect %s without `*'"), t->name);
6150 }
6151
6152 if (t->opcode_modifier.isprefix
6153 && t->opcode_modifier.ignoresize)
6154 {
6155 /* Warn them that a data or address size prefix doesn't
6156 affect assembly of the next line of code. */
6157 as_warn (_("stand-alone `%s' prefix"), t->name);
6158 }
6159 }
6160
6161 /* Copy the template we found. */
6162 i.tm = *t;
6163
6164 if (addr_prefix_disp != -1)
6165 i.tm.operand_types[addr_prefix_disp]
6166 = operand_types[addr_prefix_disp];
6167
6168 if (found_reverse_match)
6169 {
6170 /* If we found a reverse match we must alter the opcode direction
6171 bit and clear/flip the regmem modifier one. found_reverse_match
6172 holds bits to change (different for int & float insns). */
6173
6174 i.tm.base_opcode ^= found_reverse_match;
6175
6176 i.tm.operand_types[0] = operand_types[i.operands - 1];
6177 i.tm.operand_types[i.operands - 1] = operand_types[0];
6178
6179 /* Certain SIMD insns have their load forms specified in the opcode
6180 table, and hence we need to _set_ RegMem instead of clearing it.
6181 We need to avoid setting the bit though on insns like KMOVW. */
6182 i.tm.opcode_modifier.regmem
6183 = i.tm.opcode_modifier.modrm && i.tm.opcode_modifier.d
6184 && i.tm.operands > 2U - i.tm.opcode_modifier.sse2avx
6185 && !i.tm.opcode_modifier.regmem;
6186 }
6187
6188 return t;
6189 }
6190
6191 static int
6192 check_string (void)
6193 {
6194 int mem_op = operand_type_check (i.types[0], anymem) ? 0 : 1;
6195 if (i.tm.operand_types[mem_op].bitfield.esseg)
6196 {
6197 if (i.seg[0] != NULL && i.seg[0] != &es)
6198 {
6199 as_bad (_("`%s' operand %d must use `%ses' segment"),
6200 i.tm.name,
6201 mem_op + 1,
6202 register_prefix);
6203 return 0;
6204 }
6205 /* There's only ever one segment override allowed per instruction.
6206 This instruction possibly has a legal segment override on the
6207 second operand, so copy the segment to where non-string
6208 instructions store it, allowing common code. */
6209 i.seg[0] = i.seg[1];
6210 }
6211 else if (i.tm.operand_types[mem_op + 1].bitfield.esseg)
6212 {
6213 if (i.seg[1] != NULL && i.seg[1] != &es)
6214 {
6215 as_bad (_("`%s' operand %d must use `%ses' segment"),
6216 i.tm.name,
6217 mem_op + 2,
6218 register_prefix);
6219 return 0;
6220 }
6221 }
6222 return 1;
6223 }
6224
6225 static int
6226 process_suffix (void)
6227 {
6228 /* If matched instruction specifies an explicit instruction mnemonic
6229 suffix, use it. */
6230 if (i.tm.opcode_modifier.size == SIZE16)
6231 i.suffix = WORD_MNEM_SUFFIX;
6232 else if (i.tm.opcode_modifier.size == SIZE32)
6233 i.suffix = LONG_MNEM_SUFFIX;
6234 else if (i.tm.opcode_modifier.size == SIZE64)
6235 i.suffix = QWORD_MNEM_SUFFIX;
6236 else if (i.reg_operands)
6237 {
6238 /* If there's no instruction mnemonic suffix we try to invent one
6239 based on register operands. */
6240 if (!i.suffix)
6241 {
6242 /* We take i.suffix from the last register operand specified,
6243 Destination register type is more significant than source
6244 register type. crc32 in SSE4.2 prefers source register
6245 type. */
6246 if (i.tm.base_opcode == 0xf20f38f0 && i.types[0].bitfield.reg)
6247 {
6248 if (i.types[0].bitfield.byte)
6249 i.suffix = BYTE_MNEM_SUFFIX;
6250 else if (i.types[0].bitfield.word)
6251 i.suffix = WORD_MNEM_SUFFIX;
6252 else if (i.types[0].bitfield.dword)
6253 i.suffix = LONG_MNEM_SUFFIX;
6254 else if (i.types[0].bitfield.qword)
6255 i.suffix = QWORD_MNEM_SUFFIX;
6256 }
6257
6258 if (!i.suffix)
6259 {
6260 int op;
6261
6262 if (i.tm.base_opcode == 0xf20f38f0)
6263 {
6264 /* We have to know the operand size for crc32. */
6265 as_bad (_("ambiguous memory operand size for `%s`"),
6266 i.tm.name);
6267 return 0;
6268 }
6269
6270 for (op = i.operands; --op >= 0;)
6271 if (!i.tm.operand_types[op].bitfield.inoutportreg
6272 && !i.tm.operand_types[op].bitfield.shiftcount)
6273 {
6274 if (!i.types[op].bitfield.reg)
6275 continue;
6276 if (i.types[op].bitfield.byte)
6277 i.suffix = BYTE_MNEM_SUFFIX;
6278 else if (i.types[op].bitfield.word)
6279 i.suffix = WORD_MNEM_SUFFIX;
6280 else if (i.types[op].bitfield.dword)
6281 i.suffix = LONG_MNEM_SUFFIX;
6282 else if (i.types[op].bitfield.qword)
6283 i.suffix = QWORD_MNEM_SUFFIX;
6284 else
6285 continue;
6286 break;
6287 }
6288 }
6289 }
6290 else if (i.suffix == BYTE_MNEM_SUFFIX)
6291 {
6292 if (intel_syntax
6293 && i.tm.opcode_modifier.ignoresize
6294 && i.tm.opcode_modifier.no_bsuf)
6295 i.suffix = 0;
6296 else if (!check_byte_reg ())
6297 return 0;
6298 }
6299 else if (i.suffix == LONG_MNEM_SUFFIX)
6300 {
6301 if (intel_syntax
6302 && i.tm.opcode_modifier.ignoresize
6303 && i.tm.opcode_modifier.no_lsuf
6304 && !i.tm.opcode_modifier.todword
6305 && !i.tm.opcode_modifier.toqword)
6306 i.suffix = 0;
6307 else if (!check_long_reg ())
6308 return 0;
6309 }
6310 else if (i.suffix == QWORD_MNEM_SUFFIX)
6311 {
6312 if (intel_syntax
6313 && i.tm.opcode_modifier.ignoresize
6314 && i.tm.opcode_modifier.no_qsuf
6315 && !i.tm.opcode_modifier.todword
6316 && !i.tm.opcode_modifier.toqword)
6317 i.suffix = 0;
6318 else if (!check_qword_reg ())
6319 return 0;
6320 }
6321 else if (i.suffix == WORD_MNEM_SUFFIX)
6322 {
6323 if (intel_syntax
6324 && i.tm.opcode_modifier.ignoresize
6325 && i.tm.opcode_modifier.no_wsuf)
6326 i.suffix = 0;
6327 else if (!check_word_reg ())
6328 return 0;
6329 }
6330 else if (intel_syntax && i.tm.opcode_modifier.ignoresize)
6331 /* Do nothing if the instruction is going to ignore the prefix. */
6332 ;
6333 else
6334 abort ();
6335 }
6336 else if (i.tm.opcode_modifier.defaultsize
6337 && !i.suffix
6338 /* exclude fldenv/frstor/fsave/fstenv */
6339 && i.tm.opcode_modifier.no_ssuf)
6340 {
6341 if (stackop_size == LONG_MNEM_SUFFIX
6342 && i.tm.base_opcode == 0xcf)
6343 {
6344 /* stackop_size is set to LONG_MNEM_SUFFIX for the
6345 .code16gcc directive to support 16-bit mode with
6346 32-bit address. For IRET without a suffix, generate
6347 16-bit IRET (opcode 0xcf) to return from an interrupt
6348 handler. */
6349 i.suffix = WORD_MNEM_SUFFIX;
6350 as_warn (_("generating 16-bit `iret' for .code16gcc directive"));
6351 }
6352 else
6353 i.suffix = stackop_size;
6354 }
6355 else if (intel_syntax
6356 && !i.suffix
6357 && (i.tm.operand_types[0].bitfield.jumpabsolute
6358 || i.tm.opcode_modifier.jumpbyte
6359 || i.tm.opcode_modifier.jumpintersegment
6360 || (i.tm.base_opcode == 0x0f01 /* [ls][gi]dt */
6361 && i.tm.extension_opcode <= 3)))
6362 {
6363 switch (flag_code)
6364 {
6365 case CODE_64BIT:
6366 if (!i.tm.opcode_modifier.no_qsuf)
6367 {
6368 i.suffix = QWORD_MNEM_SUFFIX;
6369 break;
6370 }
6371 /* Fall through. */
6372 case CODE_32BIT:
6373 if (!i.tm.opcode_modifier.no_lsuf)
6374 i.suffix = LONG_MNEM_SUFFIX;
6375 break;
6376 case CODE_16BIT:
6377 if (!i.tm.opcode_modifier.no_wsuf)
6378 i.suffix = WORD_MNEM_SUFFIX;
6379 break;
6380 }
6381 }
6382
6383 if (!i.suffix)
6384 {
6385 if (!intel_syntax)
6386 {
6387 if (i.tm.opcode_modifier.w)
6388 {
6389 as_bad (_("no instruction mnemonic suffix given and "
6390 "no register operands; can't size instruction"));
6391 return 0;
6392 }
6393 }
6394 else
6395 {
6396 unsigned int suffixes;
6397
6398 suffixes = !i.tm.opcode_modifier.no_bsuf;
6399 if (!i.tm.opcode_modifier.no_wsuf)
6400 suffixes |= 1 << 1;
6401 if (!i.tm.opcode_modifier.no_lsuf)
6402 suffixes |= 1 << 2;
6403 if (!i.tm.opcode_modifier.no_ldsuf)
6404 suffixes |= 1 << 3;
6405 if (!i.tm.opcode_modifier.no_ssuf)
6406 suffixes |= 1 << 4;
6407 if (flag_code == CODE_64BIT && !i.tm.opcode_modifier.no_qsuf)
6408 suffixes |= 1 << 5;
6409
6410 /* There are more than suffix matches. */
6411 if (i.tm.opcode_modifier.w
6412 || ((suffixes & (suffixes - 1))
6413 && !i.tm.opcode_modifier.defaultsize
6414 && !i.tm.opcode_modifier.ignoresize))
6415 {
6416 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
6417 return 0;
6418 }
6419 }
6420 }
6421
6422 /* Change the opcode based on the operand size given by i.suffix. */
6423 switch (i.suffix)
6424 {
6425 /* Size floating point instruction. */
6426 case LONG_MNEM_SUFFIX:
6427 if (i.tm.opcode_modifier.floatmf)
6428 {
6429 i.tm.base_opcode ^= 4;
6430 break;
6431 }
6432 /* fall through */
6433 case WORD_MNEM_SUFFIX:
6434 case QWORD_MNEM_SUFFIX:
6435 /* It's not a byte, select word/dword operation. */
6436 if (i.tm.opcode_modifier.w)
6437 {
6438 if (i.tm.opcode_modifier.shortform)
6439 i.tm.base_opcode |= 8;
6440 else
6441 i.tm.base_opcode |= 1;
6442 }
6443 /* fall through */
6444 case SHORT_MNEM_SUFFIX:
6445 /* Now select between word & dword operations via the operand
6446 size prefix, except for instructions that will ignore this
6447 prefix anyway. */
6448 if (i.reg_operands > 0
6449 && i.types[0].bitfield.reg
6450 && i.tm.opcode_modifier.addrprefixopreg
6451 && (i.tm.opcode_modifier.immext
6452 || i.operands == 1))
6453 {
6454 /* The address size override prefix changes the size of the
6455 first operand. */
6456 if ((flag_code == CODE_32BIT
6457 && i.op[0].regs->reg_type.bitfield.word)
6458 || (flag_code != CODE_32BIT
6459 && i.op[0].regs->reg_type.bitfield.dword))
6460 if (!add_prefix (ADDR_PREFIX_OPCODE))
6461 return 0;
6462 }
6463 else if (i.suffix != QWORD_MNEM_SUFFIX
6464 && !i.tm.opcode_modifier.ignoresize
6465 && !i.tm.opcode_modifier.floatmf
6466 && !is_any_vex_encoding (&i.tm)
6467 && ((i.suffix == LONG_MNEM_SUFFIX) == (flag_code == CODE_16BIT)
6468 || (flag_code == CODE_64BIT
6469 && i.tm.opcode_modifier.jumpbyte)))
6470 {
6471 unsigned int prefix = DATA_PREFIX_OPCODE;
6472
6473 if (i.tm.opcode_modifier.jumpbyte) /* jcxz, loop */
6474 prefix = ADDR_PREFIX_OPCODE;
6475
6476 if (!add_prefix (prefix))
6477 return 0;
6478 }
6479
6480 /* Set mode64 for an operand. */
6481 if (i.suffix == QWORD_MNEM_SUFFIX
6482 && flag_code == CODE_64BIT
6483 && !i.tm.opcode_modifier.norex64
6484 /* Special case for xchg %rax,%rax. It is NOP and doesn't
6485 need rex64. */
6486 && ! (i.operands == 2
6487 && i.tm.base_opcode == 0x90
6488 && i.tm.extension_opcode == None
6489 && i.types[0].bitfield.acc && i.types[0].bitfield.qword
6490 && i.types[1].bitfield.acc && i.types[1].bitfield.qword))
6491 i.rex |= REX_W;
6492
6493 break;
6494 }
6495
6496 if (i.reg_operands != 0
6497 && i.operands > 1
6498 && i.tm.opcode_modifier.addrprefixopreg
6499 && !i.tm.opcode_modifier.immext)
6500 {
6501 /* Check invalid register operand when the address size override
6502 prefix changes the size of register operands. */
6503 unsigned int op;
6504 enum { need_word, need_dword, need_qword } need;
6505
6506 if (flag_code == CODE_32BIT)
6507 need = i.prefix[ADDR_PREFIX] ? need_word : need_dword;
6508 else
6509 {
6510 if (i.prefix[ADDR_PREFIX])
6511 need = need_dword;
6512 else
6513 need = flag_code == CODE_64BIT ? need_qword : need_word;
6514 }
6515
6516 for (op = 0; op < i.operands; op++)
6517 if (i.types[op].bitfield.reg
6518 && ((need == need_word
6519 && !i.op[op].regs->reg_type.bitfield.word)
6520 || (need == need_dword
6521 && !i.op[op].regs->reg_type.bitfield.dword)
6522 || (need == need_qword
6523 && !i.op[op].regs->reg_type.bitfield.qword)))
6524 {
6525 as_bad (_("invalid register operand size for `%s'"),
6526 i.tm.name);
6527 return 0;
6528 }
6529 }
6530
6531 return 1;
6532 }
6533
6534 static int
6535 check_byte_reg (void)
6536 {
6537 int op;
6538
6539 for (op = i.operands; --op >= 0;)
6540 {
6541 /* Skip non-register operands. */
6542 if (!i.types[op].bitfield.reg)
6543 continue;
6544
6545 /* If this is an eight bit register, it's OK. If it's the 16 or
6546 32 bit version of an eight bit register, we will just use the
6547 low portion, and that's OK too. */
6548 if (i.types[op].bitfield.byte)
6549 continue;
6550
6551 /* I/O port address operands are OK too. */
6552 if (i.tm.operand_types[op].bitfield.inoutportreg)
6553 continue;
6554
6555 /* crc32 doesn't generate this warning. */
6556 if (i.tm.base_opcode == 0xf20f38f0)
6557 continue;
6558
6559 if ((i.types[op].bitfield.word
6560 || i.types[op].bitfield.dword
6561 || i.types[op].bitfield.qword)
6562 && i.op[op].regs->reg_num < 4
6563 /* Prohibit these changes in 64bit mode, since the lowering
6564 would be more complicated. */
6565 && flag_code != CODE_64BIT)
6566 {
6567 #if REGISTER_WARNINGS
6568 if (!quiet_warnings)
6569 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
6570 register_prefix,
6571 (i.op[op].regs + (i.types[op].bitfield.word
6572 ? REGNAM_AL - REGNAM_AX
6573 : REGNAM_AL - REGNAM_EAX))->reg_name,
6574 register_prefix,
6575 i.op[op].regs->reg_name,
6576 i.suffix);
6577 #endif
6578 continue;
6579 }
6580 /* Any other register is bad. */
6581 if (i.types[op].bitfield.reg
6582 || i.types[op].bitfield.regmmx
6583 || i.types[op].bitfield.regsimd
6584 || i.types[op].bitfield.sreg
6585 || i.types[op].bitfield.control
6586 || i.types[op].bitfield.debug
6587 || i.types[op].bitfield.test)
6588 {
6589 as_bad (_("`%s%s' not allowed with `%s%c'"),
6590 register_prefix,
6591 i.op[op].regs->reg_name,
6592 i.tm.name,
6593 i.suffix);
6594 return 0;
6595 }
6596 }
6597 return 1;
6598 }
6599
6600 static int
6601 check_long_reg (void)
6602 {
6603 int op;
6604
6605 for (op = i.operands; --op >= 0;)
6606 /* Skip non-register operands. */
6607 if (!i.types[op].bitfield.reg)
6608 continue;
6609 /* Reject eight bit registers, except where the template requires
6610 them. (eg. movzb) */
6611 else if (i.types[op].bitfield.byte
6612 && (i.tm.operand_types[op].bitfield.reg
6613 || i.tm.operand_types[op].bitfield.acc)
6614 && (i.tm.operand_types[op].bitfield.word
6615 || i.tm.operand_types[op].bitfield.dword))
6616 {
6617 as_bad (_("`%s%s' not allowed with `%s%c'"),
6618 register_prefix,
6619 i.op[op].regs->reg_name,
6620 i.tm.name,
6621 i.suffix);
6622 return 0;
6623 }
6624 /* Warn if the e prefix on a general reg is missing. */
6625 else if ((!quiet_warnings || flag_code == CODE_64BIT)
6626 && i.types[op].bitfield.word
6627 && (i.tm.operand_types[op].bitfield.reg
6628 || i.tm.operand_types[op].bitfield.acc)
6629 && i.tm.operand_types[op].bitfield.dword)
6630 {
6631 /* Prohibit these changes in the 64bit mode, since the
6632 lowering is more complicated. */
6633 if (flag_code == CODE_64BIT)
6634 {
6635 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
6636 register_prefix, i.op[op].regs->reg_name,
6637 i.suffix);
6638 return 0;
6639 }
6640 #if REGISTER_WARNINGS
6641 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
6642 register_prefix,
6643 (i.op[op].regs + REGNAM_EAX - REGNAM_AX)->reg_name,
6644 register_prefix, i.op[op].regs->reg_name, i.suffix);
6645 #endif
6646 }
6647 /* Warn if the r prefix on a general reg is present. */
6648 else if (i.types[op].bitfield.qword
6649 && (i.tm.operand_types[op].bitfield.reg
6650 || i.tm.operand_types[op].bitfield.acc)
6651 && i.tm.operand_types[op].bitfield.dword)
6652 {
6653 if (intel_syntax
6654 && i.tm.opcode_modifier.toqword
6655 && !i.types[0].bitfield.regsimd)
6656 {
6657 /* Convert to QWORD. We want REX byte. */
6658 i.suffix = QWORD_MNEM_SUFFIX;
6659 }
6660 else
6661 {
6662 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
6663 register_prefix, i.op[op].regs->reg_name,
6664 i.suffix);
6665 return 0;
6666 }
6667 }
6668 return 1;
6669 }
6670
6671 static int
6672 check_qword_reg (void)
6673 {
6674 int op;
6675
6676 for (op = i.operands; --op >= 0; )
6677 /* Skip non-register operands. */
6678 if (!i.types[op].bitfield.reg)
6679 continue;
6680 /* Reject eight bit registers, except where the template requires
6681 them. (eg. movzb) */
6682 else if (i.types[op].bitfield.byte
6683 && (i.tm.operand_types[op].bitfield.reg
6684 || i.tm.operand_types[op].bitfield.acc)
6685 && (i.tm.operand_types[op].bitfield.word
6686 || i.tm.operand_types[op].bitfield.dword))
6687 {
6688 as_bad (_("`%s%s' not allowed with `%s%c'"),
6689 register_prefix,
6690 i.op[op].regs->reg_name,
6691 i.tm.name,
6692 i.suffix);
6693 return 0;
6694 }
6695 /* Warn if the r prefix on a general reg is missing. */
6696 else if ((i.types[op].bitfield.word
6697 || i.types[op].bitfield.dword)
6698 && (i.tm.operand_types[op].bitfield.reg
6699 || i.tm.operand_types[op].bitfield.acc)
6700 && i.tm.operand_types[op].bitfield.qword)
6701 {
6702 /* Prohibit these changes in the 64bit mode, since the
6703 lowering is more complicated. */
6704 if (intel_syntax
6705 && i.tm.opcode_modifier.todword
6706 && !i.types[0].bitfield.regsimd)
6707 {
6708 /* Convert to DWORD. We don't want REX byte. */
6709 i.suffix = LONG_MNEM_SUFFIX;
6710 }
6711 else
6712 {
6713 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
6714 register_prefix, i.op[op].regs->reg_name,
6715 i.suffix);
6716 return 0;
6717 }
6718 }
6719 return 1;
6720 }
6721
6722 static int
6723 check_word_reg (void)
6724 {
6725 int op;
6726 for (op = i.operands; --op >= 0;)
6727 /* Skip non-register operands. */
6728 if (!i.types[op].bitfield.reg)
6729 continue;
6730 /* Reject eight bit registers, except where the template requires
6731 them. (eg. movzb) */
6732 else if (i.types[op].bitfield.byte
6733 && (i.tm.operand_types[op].bitfield.reg
6734 || i.tm.operand_types[op].bitfield.acc)
6735 && (i.tm.operand_types[op].bitfield.word
6736 || i.tm.operand_types[op].bitfield.dword))
6737 {
6738 as_bad (_("`%s%s' not allowed with `%s%c'"),
6739 register_prefix,
6740 i.op[op].regs->reg_name,
6741 i.tm.name,
6742 i.suffix);
6743 return 0;
6744 }
6745 /* Warn if the e or r prefix on a general reg is present. */
6746 else if ((!quiet_warnings || flag_code == CODE_64BIT)
6747 && (i.types[op].bitfield.dword
6748 || i.types[op].bitfield.qword)
6749 && (i.tm.operand_types[op].bitfield.reg
6750 || i.tm.operand_types[op].bitfield.acc)
6751 && i.tm.operand_types[op].bitfield.word)
6752 {
6753 /* Prohibit these changes in the 64bit mode, since the
6754 lowering is more complicated. */
6755 if (flag_code == CODE_64BIT)
6756 {
6757 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
6758 register_prefix, i.op[op].regs->reg_name,
6759 i.suffix);
6760 return 0;
6761 }
6762 #if REGISTER_WARNINGS
6763 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
6764 register_prefix,
6765 (i.op[op].regs + REGNAM_AX - REGNAM_EAX)->reg_name,
6766 register_prefix, i.op[op].regs->reg_name, i.suffix);
6767 #endif
6768 }
6769 return 1;
6770 }
6771
6772 static int
6773 update_imm (unsigned int j)
6774 {
6775 i386_operand_type overlap = i.types[j];
6776 if ((overlap.bitfield.imm8
6777 || overlap.bitfield.imm8s
6778 || overlap.bitfield.imm16
6779 || overlap.bitfield.imm32
6780 || overlap.bitfield.imm32s
6781 || overlap.bitfield.imm64)
6782 && !operand_type_equal (&overlap, &imm8)
6783 && !operand_type_equal (&overlap, &imm8s)
6784 && !operand_type_equal (&overlap, &imm16)
6785 && !operand_type_equal (&overlap, &imm32)
6786 && !operand_type_equal (&overlap, &imm32s)
6787 && !operand_type_equal (&overlap, &imm64))
6788 {
6789 if (i.suffix)
6790 {
6791 i386_operand_type temp;
6792
6793 operand_type_set (&temp, 0);
6794 if (i.suffix == BYTE_MNEM_SUFFIX)
6795 {
6796 temp.bitfield.imm8 = overlap.bitfield.imm8;
6797 temp.bitfield.imm8s = overlap.bitfield.imm8s;
6798 }
6799 else if (i.suffix == WORD_MNEM_SUFFIX)
6800 temp.bitfield.imm16 = overlap.bitfield.imm16;
6801 else if (i.suffix == QWORD_MNEM_SUFFIX)
6802 {
6803 temp.bitfield.imm64 = overlap.bitfield.imm64;
6804 temp.bitfield.imm32s = overlap.bitfield.imm32s;
6805 }
6806 else
6807 temp.bitfield.imm32 = overlap.bitfield.imm32;
6808 overlap = temp;
6809 }
6810 else if (operand_type_equal (&overlap, &imm16_32_32s)
6811 || operand_type_equal (&overlap, &imm16_32)
6812 || operand_type_equal (&overlap, &imm16_32s))
6813 {
6814 if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
6815 overlap = imm16;
6816 else
6817 overlap = imm32s;
6818 }
6819 if (!operand_type_equal (&overlap, &imm8)
6820 && !operand_type_equal (&overlap, &imm8s)
6821 && !operand_type_equal (&overlap, &imm16)
6822 && !operand_type_equal (&overlap, &imm32)
6823 && !operand_type_equal (&overlap, &imm32s)
6824 && !operand_type_equal (&overlap, &imm64))
6825 {
6826 as_bad (_("no instruction mnemonic suffix given; "
6827 "can't determine immediate size"));
6828 return 0;
6829 }
6830 }
6831 i.types[j] = overlap;
6832
6833 return 1;
6834 }
6835
6836 static int
6837 finalize_imm (void)
6838 {
6839 unsigned int j, n;
6840
6841 /* Update the first 2 immediate operands. */
6842 n = i.operands > 2 ? 2 : i.operands;
6843 if (n)
6844 {
6845 for (j = 0; j < n; j++)
6846 if (update_imm (j) == 0)
6847 return 0;
6848
6849 /* The 3rd operand can't be immediate operand. */
6850 gas_assert (operand_type_check (i.types[2], imm) == 0);
6851 }
6852
6853 return 1;
6854 }
6855
6856 static int
6857 process_operands (void)
6858 {
6859 /* Default segment register this instruction will use for memory
6860 accesses. 0 means unknown. This is only for optimizing out
6861 unnecessary segment overrides. */
6862 const seg_entry *default_seg = 0;
6863
6864 if (i.tm.opcode_modifier.sse2avx && i.tm.opcode_modifier.vexvvvv)
6865 {
6866 unsigned int dupl = i.operands;
6867 unsigned int dest = dupl - 1;
6868 unsigned int j;
6869
6870 /* The destination must be an xmm register. */
6871 gas_assert (i.reg_operands
6872 && MAX_OPERANDS > dupl
6873 && operand_type_equal (&i.types[dest], &regxmm));
6874
6875 if (i.tm.operand_types[0].bitfield.acc
6876 && i.tm.operand_types[0].bitfield.xmmword)
6877 {
6878 if (i.tm.opcode_modifier.vexsources == VEX3SOURCES)
6879 {
6880 /* Keep xmm0 for instructions with VEX prefix and 3
6881 sources. */
6882 i.tm.operand_types[0].bitfield.acc = 0;
6883 i.tm.operand_types[0].bitfield.regsimd = 1;
6884 goto duplicate;
6885 }
6886 else
6887 {
6888 /* We remove the first xmm0 and keep the number of
6889 operands unchanged, which in fact duplicates the
6890 destination. */
6891 for (j = 1; j < i.operands; j++)
6892 {
6893 i.op[j - 1] = i.op[j];
6894 i.types[j - 1] = i.types[j];
6895 i.tm.operand_types[j - 1] = i.tm.operand_types[j];
6896 }
6897 }
6898 }
6899 else if (i.tm.opcode_modifier.implicit1stxmm0)
6900 {
6901 gas_assert ((MAX_OPERANDS - 1) > dupl
6902 && (i.tm.opcode_modifier.vexsources
6903 == VEX3SOURCES));
6904
6905 /* Add the implicit xmm0 for instructions with VEX prefix
6906 and 3 sources. */
6907 for (j = i.operands; j > 0; j--)
6908 {
6909 i.op[j] = i.op[j - 1];
6910 i.types[j] = i.types[j - 1];
6911 i.tm.operand_types[j] = i.tm.operand_types[j - 1];
6912 }
6913 i.op[0].regs
6914 = (const reg_entry *) hash_find (reg_hash, "xmm0");
6915 i.types[0] = regxmm;
6916 i.tm.operand_types[0] = regxmm;
6917
6918 i.operands += 2;
6919 i.reg_operands += 2;
6920 i.tm.operands += 2;
6921
6922 dupl++;
6923 dest++;
6924 i.op[dupl] = i.op[dest];
6925 i.types[dupl] = i.types[dest];
6926 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
6927 }
6928 else
6929 {
6930 duplicate:
6931 i.operands++;
6932 i.reg_operands++;
6933 i.tm.operands++;
6934
6935 i.op[dupl] = i.op[dest];
6936 i.types[dupl] = i.types[dest];
6937 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
6938 }
6939
6940 if (i.tm.opcode_modifier.immext)
6941 process_immext ();
6942 }
6943 else if (i.tm.operand_types[0].bitfield.acc
6944 && i.tm.operand_types[0].bitfield.xmmword)
6945 {
6946 unsigned int j;
6947
6948 for (j = 1; j < i.operands; j++)
6949 {
6950 i.op[j - 1] = i.op[j];
6951 i.types[j - 1] = i.types[j];
6952
6953 /* We need to adjust fields in i.tm since they are used by
6954 build_modrm_byte. */
6955 i.tm.operand_types [j - 1] = i.tm.operand_types [j];
6956 }
6957
6958 i.operands--;
6959 i.reg_operands--;
6960 i.tm.operands--;
6961 }
6962 else if (i.tm.opcode_modifier.implicitquadgroup)
6963 {
6964 unsigned int regnum, first_reg_in_group, last_reg_in_group;
6965
6966 /* The second operand must be {x,y,z}mmN, where N is a multiple of 4. */
6967 gas_assert (i.operands >= 2 && i.types[1].bitfield.regsimd);
6968 regnum = register_number (i.op[1].regs);
6969 first_reg_in_group = regnum & ~3;
6970 last_reg_in_group = first_reg_in_group + 3;
6971 if (regnum != first_reg_in_group)
6972 as_warn (_("source register `%s%s' implicitly denotes"
6973 " `%s%.3s%u' to `%s%.3s%u' source group in `%s'"),
6974 register_prefix, i.op[1].regs->reg_name,
6975 register_prefix, i.op[1].regs->reg_name, first_reg_in_group,
6976 register_prefix, i.op[1].regs->reg_name, last_reg_in_group,
6977 i.tm.name);
6978 }
6979 else if (i.tm.opcode_modifier.regkludge)
6980 {
6981 /* The imul $imm, %reg instruction is converted into
6982 imul $imm, %reg, %reg, and the clr %reg instruction
6983 is converted into xor %reg, %reg. */
6984
6985 unsigned int first_reg_op;
6986
6987 if (operand_type_check (i.types[0], reg))
6988 first_reg_op = 0;
6989 else
6990 first_reg_op = 1;
6991 /* Pretend we saw the extra register operand. */
6992 gas_assert (i.reg_operands == 1
6993 && i.op[first_reg_op + 1].regs == 0);
6994 i.op[first_reg_op + 1].regs = i.op[first_reg_op].regs;
6995 i.types[first_reg_op + 1] = i.types[first_reg_op];
6996 i.operands++;
6997 i.reg_operands++;
6998 }
6999
7000 if (i.tm.opcode_modifier.shortform)
7001 {
7002 if (i.types[0].bitfield.sreg)
7003 {
7004 if (flag_code != CODE_64BIT
7005 ? i.tm.base_opcode == POP_SEG_SHORT
7006 && i.op[0].regs->reg_num == 1
7007 : (i.tm.base_opcode | 1) == POP_SEG_SHORT
7008 && i.op[0].regs->reg_num < 4)
7009 {
7010 as_bad (_("you can't `%s %s%s'"),
7011 i.tm.name, register_prefix, i.op[0].regs->reg_name);
7012 return 0;
7013 }
7014 if ( i.op[0].regs->reg_num > 3 )
7015 {
7016 i.tm.base_opcode ^= POP_SEG_SHORT ^ POP_SEG386_SHORT;
7017 i.tm.opcode_length = 2;
7018 }
7019 i.tm.base_opcode |= (i.op[0].regs->reg_num << 3);
7020 }
7021 else
7022 {
7023 /* The register or float register operand is in operand
7024 0 or 1. */
7025 unsigned int op;
7026
7027 if ((i.types[0].bitfield.reg && i.types[0].bitfield.tbyte)
7028 || operand_type_check (i.types[0], reg))
7029 op = 0;
7030 else
7031 op = 1;
7032 /* Register goes in low 3 bits of opcode. */
7033 i.tm.base_opcode |= i.op[op].regs->reg_num;
7034 if ((i.op[op].regs->reg_flags & RegRex) != 0)
7035 i.rex |= REX_B;
7036 if (!quiet_warnings && i.tm.opcode_modifier.ugh)
7037 {
7038 /* Warn about some common errors, but press on regardless.
7039 The first case can be generated by gcc (<= 2.8.1). */
7040 if (i.operands == 2)
7041 {
7042 /* Reversed arguments on faddp, fsubp, etc. */
7043 as_warn (_("translating to `%s %s%s,%s%s'"), i.tm.name,
7044 register_prefix, i.op[!intel_syntax].regs->reg_name,
7045 register_prefix, i.op[intel_syntax].regs->reg_name);
7046 }
7047 else
7048 {
7049 /* Extraneous `l' suffix on fp insn. */
7050 as_warn (_("translating to `%s %s%s'"), i.tm.name,
7051 register_prefix, i.op[0].regs->reg_name);
7052 }
7053 }
7054 }
7055 }
7056 else if (i.tm.opcode_modifier.modrm)
7057 {
7058 /* The opcode is completed (modulo i.tm.extension_opcode which
7059 must be put into the modrm byte). Now, we make the modrm and
7060 index base bytes based on all the info we've collected. */
7061
7062 default_seg = build_modrm_byte ();
7063 }
7064 else if ((i.tm.base_opcode & ~0x3) == MOV_AX_DISP32)
7065 {
7066 default_seg = &ds;
7067 }
7068 else if (i.tm.opcode_modifier.isstring)
7069 {
7070 /* For the string instructions that allow a segment override
7071 on one of their operands, the default segment is ds. */
7072 default_seg = &ds;
7073 }
7074
7075 if (i.tm.base_opcode == 0x8d /* lea */
7076 && i.seg[0]
7077 && !quiet_warnings)
7078 as_warn (_("segment override on `%s' is ineffectual"), i.tm.name);
7079
7080 /* If a segment was explicitly specified, and the specified segment
7081 is not the default, use an opcode prefix to select it. If we
7082 never figured out what the default segment is, then default_seg
7083 will be zero at this point, and the specified segment prefix will
7084 always be used. */
7085 if ((i.seg[0]) && (i.seg[0] != default_seg))
7086 {
7087 if (!add_prefix (i.seg[0]->seg_prefix))
7088 return 0;
7089 }
7090 return 1;
7091 }
7092
7093 static const seg_entry *
7094 build_modrm_byte (void)
7095 {
7096 const seg_entry *default_seg = 0;
7097 unsigned int source, dest;
7098 int vex_3_sources;
7099
7100 vex_3_sources = i.tm.opcode_modifier.vexsources == VEX3SOURCES;
7101 if (vex_3_sources)
7102 {
7103 unsigned int nds, reg_slot;
7104 expressionS *exp;
7105
7106 dest = i.operands - 1;
7107 nds = dest - 1;
7108
7109 /* There are 2 kinds of instructions:
7110 1. 5 operands: 4 register operands or 3 register operands
7111 plus 1 memory operand plus one Imm4 operand, VexXDS, and
7112 VexW0 or VexW1. The destination must be either XMM, YMM or
7113 ZMM register.
7114 2. 4 operands: 4 register operands or 3 register operands
7115 plus 1 memory operand, with VexXDS. */
7116 gas_assert ((i.reg_operands == 4
7117 || (i.reg_operands == 3 && i.mem_operands == 1))
7118 && i.tm.opcode_modifier.vexvvvv == VEXXDS
7119 && i.tm.opcode_modifier.vexw
7120 && i.tm.operand_types[dest].bitfield.regsimd);
7121
7122 /* If VexW1 is set, the first non-immediate operand is the source and
7123 the second non-immediate one is encoded in the immediate operand. */
7124 if (i.tm.opcode_modifier.vexw == VEXW1)
7125 {
7126 source = i.imm_operands;
7127 reg_slot = i.imm_operands + 1;
7128 }
7129 else
7130 {
7131 source = i.imm_operands + 1;
7132 reg_slot = i.imm_operands;
7133 }
7134
7135 if (i.imm_operands == 0)
7136 {
7137 /* When there is no immediate operand, generate an 8bit
7138 immediate operand to encode the first operand. */
7139 exp = &im_expressions[i.imm_operands++];
7140 i.op[i.operands].imms = exp;
7141 i.types[i.operands] = imm8;
7142 i.operands++;
7143
7144 gas_assert (i.tm.operand_types[reg_slot].bitfield.regsimd);
7145 exp->X_op = O_constant;
7146 exp->X_add_number = register_number (i.op[reg_slot].regs) << 4;
7147 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
7148 }
7149 else
7150 {
7151 gas_assert (i.imm_operands == 1);
7152 gas_assert (fits_in_imm4 (i.op[0].imms->X_add_number));
7153 gas_assert (!i.tm.opcode_modifier.immext);
7154
7155 /* Turn on Imm8 again so that output_imm will generate it. */
7156 i.types[0].bitfield.imm8 = 1;
7157
7158 gas_assert (i.tm.operand_types[reg_slot].bitfield.regsimd);
7159 i.op[0].imms->X_add_number
7160 |= register_number (i.op[reg_slot].regs) << 4;
7161 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
7162 }
7163
7164 gas_assert (i.tm.operand_types[nds].bitfield.regsimd);
7165 i.vex.register_specifier = i.op[nds].regs;
7166 }
7167 else
7168 source = dest = 0;
7169
7170 /* i.reg_operands MUST be the number of real register operands;
7171 implicit registers do not count. If there are 3 register
7172 operands, it must be a instruction with VexNDS. For a
7173 instruction with VexNDD, the destination register is encoded
7174 in VEX prefix. If there are 4 register operands, it must be
7175 a instruction with VEX prefix and 3 sources. */
7176 if (i.mem_operands == 0
7177 && ((i.reg_operands == 2
7178 && i.tm.opcode_modifier.vexvvvv <= VEXXDS)
7179 || (i.reg_operands == 3
7180 && i.tm.opcode_modifier.vexvvvv == VEXXDS)
7181 || (i.reg_operands == 4 && vex_3_sources)))
7182 {
7183 switch (i.operands)
7184 {
7185 case 2:
7186 source = 0;
7187 break;
7188 case 3:
7189 /* When there are 3 operands, one of them may be immediate,
7190 which may be the first or the last operand. Otherwise,
7191 the first operand must be shift count register (cl) or it
7192 is an instruction with VexNDS. */
7193 gas_assert (i.imm_operands == 1
7194 || (i.imm_operands == 0
7195 && (i.tm.opcode_modifier.vexvvvv == VEXXDS
7196 || i.types[0].bitfield.shiftcount)));
7197 if (operand_type_check (i.types[0], imm)
7198 || i.types[0].bitfield.shiftcount)
7199 source = 1;
7200 else
7201 source = 0;
7202 break;
7203 case 4:
7204 /* When there are 4 operands, the first two must be 8bit
7205 immediate operands. The source operand will be the 3rd
7206 one.
7207
7208 For instructions with VexNDS, if the first operand
7209 an imm8, the source operand is the 2nd one. If the last
7210 operand is imm8, the source operand is the first one. */
7211 gas_assert ((i.imm_operands == 2
7212 && i.types[0].bitfield.imm8
7213 && i.types[1].bitfield.imm8)
7214 || (i.tm.opcode_modifier.vexvvvv == VEXXDS
7215 && i.imm_operands == 1
7216 && (i.types[0].bitfield.imm8
7217 || i.types[i.operands - 1].bitfield.imm8
7218 || i.rounding)));
7219 if (i.imm_operands == 2)
7220 source = 2;
7221 else
7222 {
7223 if (i.types[0].bitfield.imm8)
7224 source = 1;
7225 else
7226 source = 0;
7227 }
7228 break;
7229 case 5:
7230 if (is_evex_encoding (&i.tm))
7231 {
7232 /* For EVEX instructions, when there are 5 operands, the
7233 first one must be immediate operand. If the second one
7234 is immediate operand, the source operand is the 3th
7235 one. If the last one is immediate operand, the source
7236 operand is the 2nd one. */
7237 gas_assert (i.imm_operands == 2
7238 && i.tm.opcode_modifier.sae
7239 && operand_type_check (i.types[0], imm));
7240 if (operand_type_check (i.types[1], imm))
7241 source = 2;
7242 else if (operand_type_check (i.types[4], imm))
7243 source = 1;
7244 else
7245 abort ();
7246 }
7247 break;
7248 default:
7249 abort ();
7250 }
7251
7252 if (!vex_3_sources)
7253 {
7254 dest = source + 1;
7255
7256 /* RC/SAE operand could be between DEST and SRC. That happens
7257 when one operand is GPR and the other one is XMM/YMM/ZMM
7258 register. */
7259 if (i.rounding && i.rounding->operand == (int) dest)
7260 dest++;
7261
7262 if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
7263 {
7264 /* For instructions with VexNDS, the register-only source
7265 operand must be a 32/64bit integer, XMM, YMM, ZMM, or mask
7266 register. It is encoded in VEX prefix. */
7267
7268 i386_operand_type op;
7269 unsigned int vvvv;
7270
7271 /* Check register-only source operand when two source
7272 operands are swapped. */
7273 if (!i.tm.operand_types[source].bitfield.baseindex
7274 && i.tm.operand_types[dest].bitfield.baseindex)
7275 {
7276 vvvv = source;
7277 source = dest;
7278 }
7279 else
7280 vvvv = dest;
7281
7282 op = i.tm.operand_types[vvvv];
7283 if ((dest + 1) >= i.operands
7284 || ((!op.bitfield.reg
7285 || (!op.bitfield.dword && !op.bitfield.qword))
7286 && !op.bitfield.regsimd
7287 && !operand_type_equal (&op, &regmask)))
7288 abort ();
7289 i.vex.register_specifier = i.op[vvvv].regs;
7290 dest++;
7291 }
7292 }
7293
7294 i.rm.mode = 3;
7295 /* One of the register operands will be encoded in the i.rm.reg
7296 field, the other in the combined i.rm.mode and i.rm.regmem
7297 fields. If no form of this instruction supports a memory
7298 destination operand, then we assume the source operand may
7299 sometimes be a memory operand and so we need to store the
7300 destination in the i.rm.reg field. */
7301 if (!i.tm.opcode_modifier.regmem
7302 && operand_type_check (i.tm.operand_types[dest], anymem) == 0)
7303 {
7304 i.rm.reg = i.op[dest].regs->reg_num;
7305 i.rm.regmem = i.op[source].regs->reg_num;
7306 if (i.op[dest].regs->reg_type.bitfield.regmmx
7307 || i.op[source].regs->reg_type.bitfield.regmmx)
7308 i.has_regmmx = TRUE;
7309 else if (i.op[dest].regs->reg_type.bitfield.regsimd
7310 || i.op[source].regs->reg_type.bitfield.regsimd)
7311 {
7312 if (i.types[dest].bitfield.zmmword
7313 || i.types[source].bitfield.zmmword)
7314 i.has_regzmm = TRUE;
7315 else if (i.types[dest].bitfield.ymmword
7316 || i.types[source].bitfield.ymmword)
7317 i.has_regymm = TRUE;
7318 else
7319 i.has_regxmm = TRUE;
7320 }
7321 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
7322 i.rex |= REX_R;
7323 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
7324 i.vrex |= REX_R;
7325 if ((i.op[source].regs->reg_flags & RegRex) != 0)
7326 i.rex |= REX_B;
7327 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
7328 i.vrex |= REX_B;
7329 }
7330 else
7331 {
7332 i.rm.reg = i.op[source].regs->reg_num;
7333 i.rm.regmem = i.op[dest].regs->reg_num;
7334 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
7335 i.rex |= REX_B;
7336 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
7337 i.vrex |= REX_B;
7338 if ((i.op[source].regs->reg_flags & RegRex) != 0)
7339 i.rex |= REX_R;
7340 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
7341 i.vrex |= REX_R;
7342 }
7343 if (flag_code != CODE_64BIT && (i.rex & REX_R))
7344 {
7345 if (!i.types[!i.tm.opcode_modifier.regmem].bitfield.control)
7346 abort ();
7347 i.rex &= ~REX_R;
7348 add_prefix (LOCK_PREFIX_OPCODE);
7349 }
7350 }
7351 else
7352 { /* If it's not 2 reg operands... */
7353 unsigned int mem;
7354
7355 if (i.mem_operands)
7356 {
7357 unsigned int fake_zero_displacement = 0;
7358 unsigned int op;
7359
7360 for (op = 0; op < i.operands; op++)
7361 if (operand_type_check (i.types[op], anymem))
7362 break;
7363 gas_assert (op < i.operands);
7364
7365 if (i.tm.opcode_modifier.vecsib)
7366 {
7367 if (i.index_reg->reg_num == RegIZ)
7368 abort ();
7369
7370 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7371 if (!i.base_reg)
7372 {
7373 i.sib.base = NO_BASE_REGISTER;
7374 i.sib.scale = i.log2_scale_factor;
7375 i.types[op].bitfield.disp8 = 0;
7376 i.types[op].bitfield.disp16 = 0;
7377 i.types[op].bitfield.disp64 = 0;
7378 if (flag_code != CODE_64BIT || i.prefix[ADDR_PREFIX])
7379 {
7380 /* Must be 32 bit */
7381 i.types[op].bitfield.disp32 = 1;
7382 i.types[op].bitfield.disp32s = 0;
7383 }
7384 else
7385 {
7386 i.types[op].bitfield.disp32 = 0;
7387 i.types[op].bitfield.disp32s = 1;
7388 }
7389 }
7390 i.sib.index = i.index_reg->reg_num;
7391 if ((i.index_reg->reg_flags & RegRex) != 0)
7392 i.rex |= REX_X;
7393 if ((i.index_reg->reg_flags & RegVRex) != 0)
7394 i.vrex |= REX_X;
7395 }
7396
7397 default_seg = &ds;
7398
7399 if (i.base_reg == 0)
7400 {
7401 i.rm.mode = 0;
7402 if (!i.disp_operands)
7403 fake_zero_displacement = 1;
7404 if (i.index_reg == 0)
7405 {
7406 i386_operand_type newdisp;
7407
7408 gas_assert (!i.tm.opcode_modifier.vecsib);
7409 /* Operand is just <disp> */
7410 if (flag_code == CODE_64BIT)
7411 {
7412 /* 64bit mode overwrites the 32bit absolute
7413 addressing by RIP relative addressing and
7414 absolute addressing is encoded by one of the
7415 redundant SIB forms. */
7416 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7417 i.sib.base = NO_BASE_REGISTER;
7418 i.sib.index = NO_INDEX_REGISTER;
7419 newdisp = (!i.prefix[ADDR_PREFIX] ? disp32s : disp32);
7420 }
7421 else if ((flag_code == CODE_16BIT)
7422 ^ (i.prefix[ADDR_PREFIX] != 0))
7423 {
7424 i.rm.regmem = NO_BASE_REGISTER_16;
7425 newdisp = disp16;
7426 }
7427 else
7428 {
7429 i.rm.regmem = NO_BASE_REGISTER;
7430 newdisp = disp32;
7431 }
7432 i.types[op] = operand_type_and_not (i.types[op], anydisp);
7433 i.types[op] = operand_type_or (i.types[op], newdisp);
7434 }
7435 else if (!i.tm.opcode_modifier.vecsib)
7436 {
7437 /* !i.base_reg && i.index_reg */
7438 if (i.index_reg->reg_num == RegIZ)
7439 i.sib.index = NO_INDEX_REGISTER;
7440 else
7441 i.sib.index = i.index_reg->reg_num;
7442 i.sib.base = NO_BASE_REGISTER;
7443 i.sib.scale = i.log2_scale_factor;
7444 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7445 i.types[op].bitfield.disp8 = 0;
7446 i.types[op].bitfield.disp16 = 0;
7447 i.types[op].bitfield.disp64 = 0;
7448 if (flag_code != CODE_64BIT || i.prefix[ADDR_PREFIX])
7449 {
7450 /* Must be 32 bit */
7451 i.types[op].bitfield.disp32 = 1;
7452 i.types[op].bitfield.disp32s = 0;
7453 }
7454 else
7455 {
7456 i.types[op].bitfield.disp32 = 0;
7457 i.types[op].bitfield.disp32s = 1;
7458 }
7459 if ((i.index_reg->reg_flags & RegRex) != 0)
7460 i.rex |= REX_X;
7461 }
7462 }
7463 /* RIP addressing for 64bit mode. */
7464 else if (i.base_reg->reg_num == RegIP)
7465 {
7466 gas_assert (!i.tm.opcode_modifier.vecsib);
7467 i.rm.regmem = NO_BASE_REGISTER;
7468 i.types[op].bitfield.disp8 = 0;
7469 i.types[op].bitfield.disp16 = 0;
7470 i.types[op].bitfield.disp32 = 0;
7471 i.types[op].bitfield.disp32s = 1;
7472 i.types[op].bitfield.disp64 = 0;
7473 i.flags[op] |= Operand_PCrel;
7474 if (! i.disp_operands)
7475 fake_zero_displacement = 1;
7476 }
7477 else if (i.base_reg->reg_type.bitfield.word)
7478 {
7479 gas_assert (!i.tm.opcode_modifier.vecsib);
7480 switch (i.base_reg->reg_num)
7481 {
7482 case 3: /* (%bx) */
7483 if (i.index_reg == 0)
7484 i.rm.regmem = 7;
7485 else /* (%bx,%si) -> 0, or (%bx,%di) -> 1 */
7486 i.rm.regmem = i.index_reg->reg_num - 6;
7487 break;
7488 case 5: /* (%bp) */
7489 default_seg = &ss;
7490 if (i.index_reg == 0)
7491 {
7492 i.rm.regmem = 6;
7493 if (operand_type_check (i.types[op], disp) == 0)
7494 {
7495 /* fake (%bp) into 0(%bp) */
7496 i.types[op].bitfield.disp8 = 1;
7497 fake_zero_displacement = 1;
7498 }
7499 }
7500 else /* (%bp,%si) -> 2, or (%bp,%di) -> 3 */
7501 i.rm.regmem = i.index_reg->reg_num - 6 + 2;
7502 break;
7503 default: /* (%si) -> 4 or (%di) -> 5 */
7504 i.rm.regmem = i.base_reg->reg_num - 6 + 4;
7505 }
7506 i.rm.mode = mode_from_disp_size (i.types[op]);
7507 }
7508 else /* i.base_reg and 32/64 bit mode */
7509 {
7510 if (flag_code == CODE_64BIT
7511 && operand_type_check (i.types[op], disp))
7512 {
7513 i.types[op].bitfield.disp16 = 0;
7514 i.types[op].bitfield.disp64 = 0;
7515 if (i.prefix[ADDR_PREFIX] == 0)
7516 {
7517 i.types[op].bitfield.disp32 = 0;
7518 i.types[op].bitfield.disp32s = 1;
7519 }
7520 else
7521 {
7522 i.types[op].bitfield.disp32 = 1;
7523 i.types[op].bitfield.disp32s = 0;
7524 }
7525 }
7526
7527 if (!i.tm.opcode_modifier.vecsib)
7528 i.rm.regmem = i.base_reg->reg_num;
7529 if ((i.base_reg->reg_flags & RegRex) != 0)
7530 i.rex |= REX_B;
7531 i.sib.base = i.base_reg->reg_num;
7532 /* x86-64 ignores REX prefix bit here to avoid decoder
7533 complications. */
7534 if (!(i.base_reg->reg_flags & RegRex)
7535 && (i.base_reg->reg_num == EBP_REG_NUM
7536 || i.base_reg->reg_num == ESP_REG_NUM))
7537 default_seg = &ss;
7538 if (i.base_reg->reg_num == 5 && i.disp_operands == 0)
7539 {
7540 fake_zero_displacement = 1;
7541 i.types[op].bitfield.disp8 = 1;
7542 }
7543 i.sib.scale = i.log2_scale_factor;
7544 if (i.index_reg == 0)
7545 {
7546 gas_assert (!i.tm.opcode_modifier.vecsib);
7547 /* <disp>(%esp) becomes two byte modrm with no index
7548 register. We've already stored the code for esp
7549 in i.rm.regmem ie. ESCAPE_TO_TWO_BYTE_ADDRESSING.
7550 Any base register besides %esp will not use the
7551 extra modrm byte. */
7552 i.sib.index = NO_INDEX_REGISTER;
7553 }
7554 else if (!i.tm.opcode_modifier.vecsib)
7555 {
7556 if (i.index_reg->reg_num == RegIZ)
7557 i.sib.index = NO_INDEX_REGISTER;
7558 else
7559 i.sib.index = i.index_reg->reg_num;
7560 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7561 if ((i.index_reg->reg_flags & RegRex) != 0)
7562 i.rex |= REX_X;
7563 }
7564
7565 if (i.disp_operands
7566 && (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
7567 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL))
7568 i.rm.mode = 0;
7569 else
7570 {
7571 if (!fake_zero_displacement
7572 && !i.disp_operands
7573 && i.disp_encoding)
7574 {
7575 fake_zero_displacement = 1;
7576 if (i.disp_encoding == disp_encoding_8bit)
7577 i.types[op].bitfield.disp8 = 1;
7578 else
7579 i.types[op].bitfield.disp32 = 1;
7580 }
7581 i.rm.mode = mode_from_disp_size (i.types[op]);
7582 }
7583 }
7584
7585 if (fake_zero_displacement)
7586 {
7587 /* Fakes a zero displacement assuming that i.types[op]
7588 holds the correct displacement size. */
7589 expressionS *exp;
7590
7591 gas_assert (i.op[op].disps == 0);
7592 exp = &disp_expressions[i.disp_operands++];
7593 i.op[op].disps = exp;
7594 exp->X_op = O_constant;
7595 exp->X_add_number = 0;
7596 exp->X_add_symbol = (symbolS *) 0;
7597 exp->X_op_symbol = (symbolS *) 0;
7598 }
7599
7600 mem = op;
7601 }
7602 else
7603 mem = ~0;
7604
7605 if (i.tm.opcode_modifier.vexsources == XOP2SOURCES)
7606 {
7607 if (operand_type_check (i.types[0], imm))
7608 i.vex.register_specifier = NULL;
7609 else
7610 {
7611 /* VEX.vvvv encodes one of the sources when the first
7612 operand is not an immediate. */
7613 if (i.tm.opcode_modifier.vexw == VEXW0)
7614 i.vex.register_specifier = i.op[0].regs;
7615 else
7616 i.vex.register_specifier = i.op[1].regs;
7617 }
7618
7619 /* Destination is a XMM register encoded in the ModRM.reg
7620 and VEX.R bit. */
7621 i.rm.reg = i.op[2].regs->reg_num;
7622 if ((i.op[2].regs->reg_flags & RegRex) != 0)
7623 i.rex |= REX_R;
7624
7625 /* ModRM.rm and VEX.B encodes the other source. */
7626 if (!i.mem_operands)
7627 {
7628 i.rm.mode = 3;
7629
7630 if (i.tm.opcode_modifier.vexw == VEXW0)
7631 i.rm.regmem = i.op[1].regs->reg_num;
7632 else
7633 i.rm.regmem = i.op[0].regs->reg_num;
7634
7635 if ((i.op[1].regs->reg_flags & RegRex) != 0)
7636 i.rex |= REX_B;
7637 }
7638 }
7639 else if (i.tm.opcode_modifier.vexvvvv == VEXLWP)
7640 {
7641 i.vex.register_specifier = i.op[2].regs;
7642 if (!i.mem_operands)
7643 {
7644 i.rm.mode = 3;
7645 i.rm.regmem = i.op[1].regs->reg_num;
7646 if ((i.op[1].regs->reg_flags & RegRex) != 0)
7647 i.rex |= REX_B;
7648 }
7649 }
7650 /* Fill in i.rm.reg or i.rm.regmem field with register operand
7651 (if any) based on i.tm.extension_opcode. Again, we must be
7652 careful to make sure that segment/control/debug/test/MMX
7653 registers are coded into the i.rm.reg field. */
7654 else if (i.reg_operands)
7655 {
7656 unsigned int op;
7657 unsigned int vex_reg = ~0;
7658
7659 for (op = 0; op < i.operands; op++)
7660 {
7661 if (i.types[op].bitfield.reg
7662 || i.types[op].bitfield.regbnd
7663 || i.types[op].bitfield.regmask
7664 || i.types[op].bitfield.sreg
7665 || i.types[op].bitfield.control
7666 || i.types[op].bitfield.debug
7667 || i.types[op].bitfield.test)
7668 break;
7669 if (i.types[op].bitfield.regsimd)
7670 {
7671 if (i.types[op].bitfield.zmmword)
7672 i.has_regzmm = TRUE;
7673 else if (i.types[op].bitfield.ymmword)
7674 i.has_regymm = TRUE;
7675 else
7676 i.has_regxmm = TRUE;
7677 break;
7678 }
7679 if (i.types[op].bitfield.regmmx)
7680 {
7681 i.has_regmmx = TRUE;
7682 break;
7683 }
7684 }
7685
7686 if (vex_3_sources)
7687 op = dest;
7688 else if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
7689 {
7690 /* For instructions with VexNDS, the register-only
7691 source operand is encoded in VEX prefix. */
7692 gas_assert (mem != (unsigned int) ~0);
7693
7694 if (op > mem)
7695 {
7696 vex_reg = op++;
7697 gas_assert (op < i.operands);
7698 }
7699 else
7700 {
7701 /* Check register-only source operand when two source
7702 operands are swapped. */
7703 if (!i.tm.operand_types[op].bitfield.baseindex
7704 && i.tm.operand_types[op + 1].bitfield.baseindex)
7705 {
7706 vex_reg = op;
7707 op += 2;
7708 gas_assert (mem == (vex_reg + 1)
7709 && op < i.operands);
7710 }
7711 else
7712 {
7713 vex_reg = op + 1;
7714 gas_assert (vex_reg < i.operands);
7715 }
7716 }
7717 }
7718 else if (i.tm.opcode_modifier.vexvvvv == VEXNDD)
7719 {
7720 /* For instructions with VexNDD, the register destination
7721 is encoded in VEX prefix. */
7722 if (i.mem_operands == 0)
7723 {
7724 /* There is no memory operand. */
7725 gas_assert ((op + 2) == i.operands);
7726 vex_reg = op + 1;
7727 }
7728 else
7729 {
7730 /* There are only 2 non-immediate operands. */
7731 gas_assert (op < i.imm_operands + 2
7732 && i.operands == i.imm_operands + 2);
7733 vex_reg = i.imm_operands + 1;
7734 }
7735 }
7736 else
7737 gas_assert (op < i.operands);
7738
7739 if (vex_reg != (unsigned int) ~0)
7740 {
7741 i386_operand_type *type = &i.tm.operand_types[vex_reg];
7742
7743 if ((!type->bitfield.reg
7744 || (!type->bitfield.dword && !type->bitfield.qword))
7745 && !type->bitfield.regsimd
7746 && !operand_type_equal (type, &regmask))
7747 abort ();
7748
7749 i.vex.register_specifier = i.op[vex_reg].regs;
7750 }
7751
7752 /* Don't set OP operand twice. */
7753 if (vex_reg != op)
7754 {
7755 /* If there is an extension opcode to put here, the
7756 register number must be put into the regmem field. */
7757 if (i.tm.extension_opcode != None)
7758 {
7759 i.rm.regmem = i.op[op].regs->reg_num;
7760 if ((i.op[op].regs->reg_flags & RegRex) != 0)
7761 i.rex |= REX_B;
7762 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
7763 i.vrex |= REX_B;
7764 }
7765 else
7766 {
7767 i.rm.reg = i.op[op].regs->reg_num;
7768 if ((i.op[op].regs->reg_flags & RegRex) != 0)
7769 i.rex |= REX_R;
7770 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
7771 i.vrex |= REX_R;
7772 }
7773 }
7774
7775 /* Now, if no memory operand has set i.rm.mode = 0, 1, 2 we
7776 must set it to 3 to indicate this is a register operand
7777 in the regmem field. */
7778 if (!i.mem_operands)
7779 i.rm.mode = 3;
7780 }
7781
7782 /* Fill in i.rm.reg field with extension opcode (if any). */
7783 if (i.tm.extension_opcode != None)
7784 i.rm.reg = i.tm.extension_opcode;
7785 }
7786 return default_seg;
7787 }
7788
7789 static void
7790 output_branch (void)
7791 {
7792 char *p;
7793 int size;
7794 int code16;
7795 int prefix;
7796 relax_substateT subtype;
7797 symbolS *sym;
7798 offsetT off;
7799
7800 code16 = flag_code == CODE_16BIT ? CODE16 : 0;
7801 size = i.disp_encoding == disp_encoding_32bit ? BIG : SMALL;
7802
7803 prefix = 0;
7804 if (i.prefix[DATA_PREFIX] != 0)
7805 {
7806 prefix = 1;
7807 i.prefixes -= 1;
7808 code16 ^= CODE16;
7809 }
7810 /* Pentium4 branch hints. */
7811 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
7812 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
7813 {
7814 prefix++;
7815 i.prefixes--;
7816 }
7817 if (i.prefix[REX_PREFIX] != 0)
7818 {
7819 prefix++;
7820 i.prefixes--;
7821 }
7822
7823 /* BND prefixed jump. */
7824 if (i.prefix[BND_PREFIX] != 0)
7825 {
7826 FRAG_APPEND_1_CHAR (i.prefix[BND_PREFIX]);
7827 i.prefixes -= 1;
7828 }
7829
7830 if (i.prefixes != 0 && !intel_syntax)
7831 as_warn (_("skipping prefixes on this instruction"));
7832
7833 /* It's always a symbol; End frag & setup for relax.
7834 Make sure there is enough room in this frag for the largest
7835 instruction we may generate in md_convert_frag. This is 2
7836 bytes for the opcode and room for the prefix and largest
7837 displacement. */
7838 frag_grow (prefix + 2 + 4);
7839 /* Prefix and 1 opcode byte go in fr_fix. */
7840 p = frag_more (prefix + 1);
7841 if (i.prefix[DATA_PREFIX] != 0)
7842 *p++ = DATA_PREFIX_OPCODE;
7843 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE
7844 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE)
7845 *p++ = i.prefix[SEG_PREFIX];
7846 if (i.prefix[REX_PREFIX] != 0)
7847 *p++ = i.prefix[REX_PREFIX];
7848 *p = i.tm.base_opcode;
7849
7850 if ((unsigned char) *p == JUMP_PC_RELATIVE)
7851 subtype = ENCODE_RELAX_STATE (UNCOND_JUMP, size);
7852 else if (cpu_arch_flags.bitfield.cpui386)
7853 subtype = ENCODE_RELAX_STATE (COND_JUMP, size);
7854 else
7855 subtype = ENCODE_RELAX_STATE (COND_JUMP86, size);
7856 subtype |= code16;
7857
7858 sym = i.op[0].disps->X_add_symbol;
7859 off = i.op[0].disps->X_add_number;
7860
7861 if (i.op[0].disps->X_op != O_constant
7862 && i.op[0].disps->X_op != O_symbol)
7863 {
7864 /* Handle complex expressions. */
7865 sym = make_expr_symbol (i.op[0].disps);
7866 off = 0;
7867 }
7868
7869 /* 1 possible extra opcode + 4 byte displacement go in var part.
7870 Pass reloc in fr_var. */
7871 frag_var (rs_machine_dependent, 5, i.reloc[0], subtype, sym, off, p);
7872 }
7873
7874 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7875 /* Return TRUE iff PLT32 relocation should be used for branching to
7876 symbol S. */
7877
7878 static bfd_boolean
7879 need_plt32_p (symbolS *s)
7880 {
7881 /* PLT32 relocation is ELF only. */
7882 if (!IS_ELF)
7883 return FALSE;
7884
7885 #ifdef TE_SOLARIS
7886 /* Don't emit PLT32 relocation on Solaris: neither native linker nor
7887 krtld support it. */
7888 return FALSE;
7889 #endif
7890
7891 /* Since there is no need to prepare for PLT branch on x86-64, we
7892 can generate R_X86_64_PLT32, instead of R_X86_64_PC32, which can
7893 be used as a marker for 32-bit PC-relative branches. */
7894 if (!object_64bit)
7895 return FALSE;
7896
7897 /* Weak or undefined symbol need PLT32 relocation. */
7898 if (S_IS_WEAK (s) || !S_IS_DEFINED (s))
7899 return TRUE;
7900
7901 /* Non-global symbol doesn't need PLT32 relocation. */
7902 if (! S_IS_EXTERNAL (s))
7903 return FALSE;
7904
7905 /* Other global symbols need PLT32 relocation. NB: Symbol with
7906 non-default visibilities are treated as normal global symbol
7907 so that PLT32 relocation can be used as a marker for 32-bit
7908 PC-relative branches. It is useful for linker relaxation. */
7909 return TRUE;
7910 }
7911 #endif
7912
7913 static void
7914 output_jump (void)
7915 {
7916 char *p;
7917 int size;
7918 fixS *fixP;
7919 bfd_reloc_code_real_type jump_reloc = i.reloc[0];
7920
7921 if (i.tm.opcode_modifier.jumpbyte)
7922 {
7923 /* This is a loop or jecxz type instruction. */
7924 size = 1;
7925 if (i.prefix[ADDR_PREFIX] != 0)
7926 {
7927 FRAG_APPEND_1_CHAR (ADDR_PREFIX_OPCODE);
7928 i.prefixes -= 1;
7929 }
7930 /* Pentium4 branch hints. */
7931 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
7932 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
7933 {
7934 FRAG_APPEND_1_CHAR (i.prefix[SEG_PREFIX]);
7935 i.prefixes--;
7936 }
7937 }
7938 else
7939 {
7940 int code16;
7941
7942 code16 = 0;
7943 if (flag_code == CODE_16BIT)
7944 code16 = CODE16;
7945
7946 if (i.prefix[DATA_PREFIX] != 0)
7947 {
7948 FRAG_APPEND_1_CHAR (DATA_PREFIX_OPCODE);
7949 i.prefixes -= 1;
7950 code16 ^= CODE16;
7951 }
7952
7953 size = 4;
7954 if (code16)
7955 size = 2;
7956 }
7957
7958 if (i.prefix[REX_PREFIX] != 0)
7959 {
7960 FRAG_APPEND_1_CHAR (i.prefix[REX_PREFIX]);
7961 i.prefixes -= 1;
7962 }
7963
7964 /* BND prefixed jump. */
7965 if (i.prefix[BND_PREFIX] != 0)
7966 {
7967 FRAG_APPEND_1_CHAR (i.prefix[BND_PREFIX]);
7968 i.prefixes -= 1;
7969 }
7970
7971 if (i.prefixes != 0 && !intel_syntax)
7972 as_warn (_("skipping prefixes on this instruction"));
7973
7974 p = frag_more (i.tm.opcode_length + size);
7975 switch (i.tm.opcode_length)
7976 {
7977 case 2:
7978 *p++ = i.tm.base_opcode >> 8;
7979 /* Fall through. */
7980 case 1:
7981 *p++ = i.tm.base_opcode;
7982 break;
7983 default:
7984 abort ();
7985 }
7986
7987 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7988 if (size == 4
7989 && jump_reloc == NO_RELOC
7990 && need_plt32_p (i.op[0].disps->X_add_symbol))
7991 jump_reloc = BFD_RELOC_X86_64_PLT32;
7992 #endif
7993
7994 jump_reloc = reloc (size, 1, 1, jump_reloc);
7995
7996 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal, size,
7997 i.op[0].disps, 1, jump_reloc);
7998
7999 /* All jumps handled here are signed, but don't use a signed limit
8000 check for 32 and 16 bit jumps as we want to allow wrap around at
8001 4G and 64k respectively. */
8002 if (size == 1)
8003 fixP->fx_signed = 1;
8004 }
8005
8006 static void
8007 output_interseg_jump (void)
8008 {
8009 char *p;
8010 int size;
8011 int prefix;
8012 int code16;
8013
8014 code16 = 0;
8015 if (flag_code == CODE_16BIT)
8016 code16 = CODE16;
8017
8018 prefix = 0;
8019 if (i.prefix[DATA_PREFIX] != 0)
8020 {
8021 prefix = 1;
8022 i.prefixes -= 1;
8023 code16 ^= CODE16;
8024 }
8025 if (i.prefix[REX_PREFIX] != 0)
8026 {
8027 prefix++;
8028 i.prefixes -= 1;
8029 }
8030
8031 size = 4;
8032 if (code16)
8033 size = 2;
8034
8035 if (i.prefixes != 0 && !intel_syntax)
8036 as_warn (_("skipping prefixes on this instruction"));
8037
8038 /* 1 opcode; 2 segment; offset */
8039 p = frag_more (prefix + 1 + 2 + size);
8040
8041 if (i.prefix[DATA_PREFIX] != 0)
8042 *p++ = DATA_PREFIX_OPCODE;
8043
8044 if (i.prefix[REX_PREFIX] != 0)
8045 *p++ = i.prefix[REX_PREFIX];
8046
8047 *p++ = i.tm.base_opcode;
8048 if (i.op[1].imms->X_op == O_constant)
8049 {
8050 offsetT n = i.op[1].imms->X_add_number;
8051
8052 if (size == 2
8053 && !fits_in_unsigned_word (n)
8054 && !fits_in_signed_word (n))
8055 {
8056 as_bad (_("16-bit jump out of range"));
8057 return;
8058 }
8059 md_number_to_chars (p, n, size);
8060 }
8061 else
8062 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
8063 i.op[1].imms, 0, reloc (size, 0, 0, i.reloc[1]));
8064 if (i.op[0].imms->X_op != O_constant)
8065 as_bad (_("can't handle non absolute segment in `%s'"),
8066 i.tm.name);
8067 md_number_to_chars (p + size, (valueT) i.op[0].imms->X_add_number, 2);
8068 }
8069
8070 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8071 void
8072 x86_cleanup (void)
8073 {
8074 char *p;
8075 asection *seg = now_seg;
8076 subsegT subseg = now_subseg;
8077 asection *sec;
8078 unsigned int alignment, align_size_1;
8079 unsigned int isa_1_descsz, feature_2_descsz, descsz;
8080 unsigned int isa_1_descsz_raw, feature_2_descsz_raw;
8081 unsigned int padding;
8082
8083 if (!IS_ELF || !x86_used_note)
8084 return;
8085
8086 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_X86;
8087
8088 /* The .note.gnu.property section layout:
8089
8090 Field Length Contents
8091 ---- ---- ----
8092 n_namsz 4 4
8093 n_descsz 4 The note descriptor size
8094 n_type 4 NT_GNU_PROPERTY_TYPE_0
8095 n_name 4 "GNU"
8096 n_desc n_descsz The program property array
8097 .... .... ....
8098 */
8099
8100 /* Create the .note.gnu.property section. */
8101 sec = subseg_new (NOTE_GNU_PROPERTY_SECTION_NAME, 0);
8102 bfd_set_section_flags (stdoutput, sec,
8103 (SEC_ALLOC
8104 | SEC_LOAD
8105 | SEC_DATA
8106 | SEC_HAS_CONTENTS
8107 | SEC_READONLY));
8108
8109 if (get_elf_backend_data (stdoutput)->s->elfclass == ELFCLASS64)
8110 {
8111 align_size_1 = 7;
8112 alignment = 3;
8113 }
8114 else
8115 {
8116 align_size_1 = 3;
8117 alignment = 2;
8118 }
8119
8120 bfd_set_section_alignment (stdoutput, sec, alignment);
8121 elf_section_type (sec) = SHT_NOTE;
8122
8123 /* GNU_PROPERTY_X86_ISA_1_USED: 4-byte type + 4-byte data size
8124 + 4-byte data */
8125 isa_1_descsz_raw = 4 + 4 + 4;
8126 /* Align GNU_PROPERTY_X86_ISA_1_USED. */
8127 isa_1_descsz = (isa_1_descsz_raw + align_size_1) & ~align_size_1;
8128
8129 feature_2_descsz_raw = isa_1_descsz;
8130 /* GNU_PROPERTY_X86_FEATURE_2_USED: 4-byte type + 4-byte data size
8131 + 4-byte data */
8132 feature_2_descsz_raw += 4 + 4 + 4;
8133 /* Align GNU_PROPERTY_X86_FEATURE_2_USED. */
8134 feature_2_descsz = ((feature_2_descsz_raw + align_size_1)
8135 & ~align_size_1);
8136
8137 descsz = feature_2_descsz;
8138 /* Section size: n_namsz + n_descsz + n_type + n_name + n_descsz. */
8139 p = frag_more (4 + 4 + 4 + 4 + descsz);
8140
8141 /* Write n_namsz. */
8142 md_number_to_chars (p, (valueT) 4, 4);
8143
8144 /* Write n_descsz. */
8145 md_number_to_chars (p + 4, (valueT) descsz, 4);
8146
8147 /* Write n_type. */
8148 md_number_to_chars (p + 4 * 2, (valueT) NT_GNU_PROPERTY_TYPE_0, 4);
8149
8150 /* Write n_name. */
8151 memcpy (p + 4 * 3, "GNU", 4);
8152
8153 /* Write 4-byte type. */
8154 md_number_to_chars (p + 4 * 4,
8155 (valueT) GNU_PROPERTY_X86_ISA_1_USED, 4);
8156
8157 /* Write 4-byte data size. */
8158 md_number_to_chars (p + 4 * 5, (valueT) 4, 4);
8159
8160 /* Write 4-byte data. */
8161 md_number_to_chars (p + 4 * 6, (valueT) x86_isa_1_used, 4);
8162
8163 /* Zero out paddings. */
8164 padding = isa_1_descsz - isa_1_descsz_raw;
8165 if (padding)
8166 memset (p + 4 * 7, 0, padding);
8167
8168 /* Write 4-byte type. */
8169 md_number_to_chars (p + isa_1_descsz + 4 * 4,
8170 (valueT) GNU_PROPERTY_X86_FEATURE_2_USED, 4);
8171
8172 /* Write 4-byte data size. */
8173 md_number_to_chars (p + isa_1_descsz + 4 * 5, (valueT) 4, 4);
8174
8175 /* Write 4-byte data. */
8176 md_number_to_chars (p + isa_1_descsz + 4 * 6,
8177 (valueT) x86_feature_2_used, 4);
8178
8179 /* Zero out paddings. */
8180 padding = feature_2_descsz - feature_2_descsz_raw;
8181 if (padding)
8182 memset (p + isa_1_descsz + 4 * 7, 0, padding);
8183
8184 /* We probably can't restore the current segment, for there likely
8185 isn't one yet... */
8186 if (seg && subseg)
8187 subseg_set (seg, subseg);
8188 }
8189 #endif
8190
8191 static unsigned int
8192 encoding_length (const fragS *start_frag, offsetT start_off,
8193 const char *frag_now_ptr)
8194 {
8195 unsigned int len = 0;
8196
8197 if (start_frag != frag_now)
8198 {
8199 const fragS *fr = start_frag;
8200
8201 do {
8202 len += fr->fr_fix;
8203 fr = fr->fr_next;
8204 } while (fr && fr != frag_now);
8205 }
8206
8207 return len - start_off + (frag_now_ptr - frag_now->fr_literal);
8208 }
8209
8210 static void
8211 output_insn (void)
8212 {
8213 fragS *insn_start_frag;
8214 offsetT insn_start_off;
8215
8216 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8217 if (IS_ELF && x86_used_note)
8218 {
8219 if (i.tm.cpu_flags.bitfield.cpucmov)
8220 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_CMOV;
8221 if (i.tm.cpu_flags.bitfield.cpusse)
8222 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE;
8223 if (i.tm.cpu_flags.bitfield.cpusse2)
8224 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE2;
8225 if (i.tm.cpu_flags.bitfield.cpusse3)
8226 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE3;
8227 if (i.tm.cpu_flags.bitfield.cpussse3)
8228 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSSE3;
8229 if (i.tm.cpu_flags.bitfield.cpusse4_1)
8230 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE4_1;
8231 if (i.tm.cpu_flags.bitfield.cpusse4_2)
8232 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE4_2;
8233 if (i.tm.cpu_flags.bitfield.cpuavx)
8234 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX;
8235 if (i.tm.cpu_flags.bitfield.cpuavx2)
8236 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX2;
8237 if (i.tm.cpu_flags.bitfield.cpufma)
8238 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_FMA;
8239 if (i.tm.cpu_flags.bitfield.cpuavx512f)
8240 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512F;
8241 if (i.tm.cpu_flags.bitfield.cpuavx512cd)
8242 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512CD;
8243 if (i.tm.cpu_flags.bitfield.cpuavx512er)
8244 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512ER;
8245 if (i.tm.cpu_flags.bitfield.cpuavx512pf)
8246 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512PF;
8247 if (i.tm.cpu_flags.bitfield.cpuavx512vl)
8248 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512VL;
8249 if (i.tm.cpu_flags.bitfield.cpuavx512dq)
8250 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512DQ;
8251 if (i.tm.cpu_flags.bitfield.cpuavx512bw)
8252 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512BW;
8253 if (i.tm.cpu_flags.bitfield.cpuavx512_4fmaps)
8254 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_4FMAPS;
8255 if (i.tm.cpu_flags.bitfield.cpuavx512_4vnniw)
8256 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_4VNNIW;
8257 if (i.tm.cpu_flags.bitfield.cpuavx512_bitalg)
8258 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_BITALG;
8259 if (i.tm.cpu_flags.bitfield.cpuavx512ifma)
8260 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_IFMA;
8261 if (i.tm.cpu_flags.bitfield.cpuavx512vbmi)
8262 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_VBMI;
8263 if (i.tm.cpu_flags.bitfield.cpuavx512_vbmi2)
8264 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_VBMI2;
8265 if (i.tm.cpu_flags.bitfield.cpuavx512_vnni)
8266 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_VNNI;
8267 if (i.tm.cpu_flags.bitfield.cpuavx512_bf16)
8268 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_BF16;
8269
8270 if (i.tm.cpu_flags.bitfield.cpu8087
8271 || i.tm.cpu_flags.bitfield.cpu287
8272 || i.tm.cpu_flags.bitfield.cpu387
8273 || i.tm.cpu_flags.bitfield.cpu687
8274 || i.tm.cpu_flags.bitfield.cpufisttp)
8275 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_X87;
8276 /* Don't set GNU_PROPERTY_X86_FEATURE_2_MMX for prefetchtXXX nor
8277 Xfence instructions. */
8278 if (i.tm.base_opcode != 0xf18
8279 && i.tm.base_opcode != 0xf0d
8280 && i.tm.base_opcode != 0xfaef8
8281 && (i.has_regmmx
8282 || i.tm.cpu_flags.bitfield.cpummx
8283 || i.tm.cpu_flags.bitfield.cpua3dnow
8284 || i.tm.cpu_flags.bitfield.cpua3dnowa))
8285 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_MMX;
8286 if (i.has_regxmm)
8287 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XMM;
8288 if (i.has_regymm)
8289 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_YMM;
8290 if (i.has_regzmm)
8291 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_ZMM;
8292 if (i.tm.cpu_flags.bitfield.cpufxsr)
8293 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_FXSR;
8294 if (i.tm.cpu_flags.bitfield.cpuxsave)
8295 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XSAVE;
8296 if (i.tm.cpu_flags.bitfield.cpuxsaveopt)
8297 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XSAVEOPT;
8298 if (i.tm.cpu_flags.bitfield.cpuxsavec)
8299 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XSAVEC;
8300 }
8301 #endif
8302
8303 /* Tie dwarf2 debug info to the address at the start of the insn.
8304 We can't do this after the insn has been output as the current
8305 frag may have been closed off. eg. by frag_var. */
8306 dwarf2_emit_insn (0);
8307
8308 insn_start_frag = frag_now;
8309 insn_start_off = frag_now_fix ();
8310
8311 /* Output jumps. */
8312 if (i.tm.opcode_modifier.jump)
8313 output_branch ();
8314 else if (i.tm.opcode_modifier.jumpbyte
8315 || i.tm.opcode_modifier.jumpdword)
8316 output_jump ();
8317 else if (i.tm.opcode_modifier.jumpintersegment)
8318 output_interseg_jump ();
8319 else
8320 {
8321 /* Output normal instructions here. */
8322 char *p;
8323 unsigned char *q;
8324 unsigned int j;
8325 unsigned int prefix;
8326
8327 if (avoid_fence
8328 && (i.tm.base_opcode == 0xfaee8
8329 || i.tm.base_opcode == 0xfaef0
8330 || i.tm.base_opcode == 0xfaef8))
8331 {
8332 /* Encode lfence, mfence, and sfence as
8333 f0 83 04 24 00 lock addl $0x0, (%{re}sp). */
8334 offsetT val = 0x240483f0ULL;
8335 p = frag_more (5);
8336 md_number_to_chars (p, val, 5);
8337 return;
8338 }
8339
8340 /* Some processors fail on LOCK prefix. This options makes
8341 assembler ignore LOCK prefix and serves as a workaround. */
8342 if (omit_lock_prefix)
8343 {
8344 if (i.tm.base_opcode == LOCK_PREFIX_OPCODE)
8345 return;
8346 i.prefix[LOCK_PREFIX] = 0;
8347 }
8348
8349 /* Since the VEX/EVEX prefix contains the implicit prefix, we
8350 don't need the explicit prefix. */
8351 if (!i.tm.opcode_modifier.vex && !i.tm.opcode_modifier.evex)
8352 {
8353 switch (i.tm.opcode_length)
8354 {
8355 case 3:
8356 if (i.tm.base_opcode & 0xff000000)
8357 {
8358 prefix = (i.tm.base_opcode >> 24) & 0xff;
8359 if (!i.tm.cpu_flags.bitfield.cpupadlock
8360 || prefix != REPE_PREFIX_OPCODE
8361 || (i.prefix[REP_PREFIX] != REPE_PREFIX_OPCODE))
8362 add_prefix (prefix);
8363 }
8364 break;
8365 case 2:
8366 if ((i.tm.base_opcode & 0xff0000) != 0)
8367 {
8368 prefix = (i.tm.base_opcode >> 16) & 0xff;
8369 add_prefix (prefix);
8370 }
8371 break;
8372 case 1:
8373 break;
8374 case 0:
8375 /* Check for pseudo prefixes. */
8376 as_bad_where (insn_start_frag->fr_file,
8377 insn_start_frag->fr_line,
8378 _("pseudo prefix without instruction"));
8379 return;
8380 default:
8381 abort ();
8382 }
8383
8384 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
8385 /* For x32, add a dummy REX_OPCODE prefix for mov/add with
8386 R_X86_64_GOTTPOFF relocation so that linker can safely
8387 perform IE->LE optimization. */
8388 if (x86_elf_abi == X86_64_X32_ABI
8389 && i.operands == 2
8390 && i.reloc[0] == BFD_RELOC_X86_64_GOTTPOFF
8391 && i.prefix[REX_PREFIX] == 0)
8392 add_prefix (REX_OPCODE);
8393 #endif
8394
8395 /* The prefix bytes. */
8396 for (j = ARRAY_SIZE (i.prefix), q = i.prefix; j > 0; j--, q++)
8397 if (*q)
8398 FRAG_APPEND_1_CHAR (*q);
8399 }
8400 else
8401 {
8402 for (j = 0, q = i.prefix; j < ARRAY_SIZE (i.prefix); j++, q++)
8403 if (*q)
8404 switch (j)
8405 {
8406 case REX_PREFIX:
8407 /* REX byte is encoded in VEX prefix. */
8408 break;
8409 case SEG_PREFIX:
8410 case ADDR_PREFIX:
8411 FRAG_APPEND_1_CHAR (*q);
8412 break;
8413 default:
8414 /* There should be no other prefixes for instructions
8415 with VEX prefix. */
8416 abort ();
8417 }
8418
8419 /* For EVEX instructions i.vrex should become 0 after
8420 build_evex_prefix. For VEX instructions upper 16 registers
8421 aren't available, so VREX should be 0. */
8422 if (i.vrex)
8423 abort ();
8424 /* Now the VEX prefix. */
8425 p = frag_more (i.vex.length);
8426 for (j = 0; j < i.vex.length; j++)
8427 p[j] = i.vex.bytes[j];
8428 }
8429
8430 /* Now the opcode; be careful about word order here! */
8431 if (i.tm.opcode_length == 1)
8432 {
8433 FRAG_APPEND_1_CHAR (i.tm.base_opcode);
8434 }
8435 else
8436 {
8437 switch (i.tm.opcode_length)
8438 {
8439 case 4:
8440 p = frag_more (4);
8441 *p++ = (i.tm.base_opcode >> 24) & 0xff;
8442 *p++ = (i.tm.base_opcode >> 16) & 0xff;
8443 break;
8444 case 3:
8445 p = frag_more (3);
8446 *p++ = (i.tm.base_opcode >> 16) & 0xff;
8447 break;
8448 case 2:
8449 p = frag_more (2);
8450 break;
8451 default:
8452 abort ();
8453 break;
8454 }
8455
8456 /* Put out high byte first: can't use md_number_to_chars! */
8457 *p++ = (i.tm.base_opcode >> 8) & 0xff;
8458 *p = i.tm.base_opcode & 0xff;
8459 }
8460
8461 /* Now the modrm byte and sib byte (if present). */
8462 if (i.tm.opcode_modifier.modrm)
8463 {
8464 FRAG_APPEND_1_CHAR ((i.rm.regmem << 0
8465 | i.rm.reg << 3
8466 | i.rm.mode << 6));
8467 /* If i.rm.regmem == ESP (4)
8468 && i.rm.mode != (Register mode)
8469 && not 16 bit
8470 ==> need second modrm byte. */
8471 if (i.rm.regmem == ESCAPE_TO_TWO_BYTE_ADDRESSING
8472 && i.rm.mode != 3
8473 && !(i.base_reg && i.base_reg->reg_type.bitfield.word))
8474 FRAG_APPEND_1_CHAR ((i.sib.base << 0
8475 | i.sib.index << 3
8476 | i.sib.scale << 6));
8477 }
8478
8479 if (i.disp_operands)
8480 output_disp (insn_start_frag, insn_start_off);
8481
8482 if (i.imm_operands)
8483 output_imm (insn_start_frag, insn_start_off);
8484
8485 /*
8486 * frag_now_fix () returning plain abs_section_offset when we're in the
8487 * absolute section, and abs_section_offset not getting updated as data
8488 * gets added to the frag breaks the logic below.
8489 */
8490 if (now_seg != absolute_section)
8491 {
8492 j = encoding_length (insn_start_frag, insn_start_off, frag_more (0));
8493 if (j > 15)
8494 as_warn (_("instruction length of %u bytes exceeds the limit of 15"),
8495 j);
8496 }
8497 }
8498
8499 #ifdef DEBUG386
8500 if (flag_debug)
8501 {
8502 pi ("" /*line*/, &i);
8503 }
8504 #endif /* DEBUG386 */
8505 }
8506
8507 /* Return the size of the displacement operand N. */
8508
8509 static int
8510 disp_size (unsigned int n)
8511 {
8512 int size = 4;
8513
8514 if (i.types[n].bitfield.disp64)
8515 size = 8;
8516 else if (i.types[n].bitfield.disp8)
8517 size = 1;
8518 else if (i.types[n].bitfield.disp16)
8519 size = 2;
8520 return size;
8521 }
8522
8523 /* Return the size of the immediate operand N. */
8524
8525 static int
8526 imm_size (unsigned int n)
8527 {
8528 int size = 4;
8529 if (i.types[n].bitfield.imm64)
8530 size = 8;
8531 else if (i.types[n].bitfield.imm8 || i.types[n].bitfield.imm8s)
8532 size = 1;
8533 else if (i.types[n].bitfield.imm16)
8534 size = 2;
8535 return size;
8536 }
8537
8538 static void
8539 output_disp (fragS *insn_start_frag, offsetT insn_start_off)
8540 {
8541 char *p;
8542 unsigned int n;
8543
8544 for (n = 0; n < i.operands; n++)
8545 {
8546 if (operand_type_check (i.types[n], disp))
8547 {
8548 if (i.op[n].disps->X_op == O_constant)
8549 {
8550 int size = disp_size (n);
8551 offsetT val = i.op[n].disps->X_add_number;
8552
8553 val = offset_in_range (val >> (size == 1 ? i.memshift : 0),
8554 size);
8555 p = frag_more (size);
8556 md_number_to_chars (p, val, size);
8557 }
8558 else
8559 {
8560 enum bfd_reloc_code_real reloc_type;
8561 int size = disp_size (n);
8562 int sign = i.types[n].bitfield.disp32s;
8563 int pcrel = (i.flags[n] & Operand_PCrel) != 0;
8564 fixS *fixP;
8565
8566 /* We can't have 8 bit displacement here. */
8567 gas_assert (!i.types[n].bitfield.disp8);
8568
8569 /* The PC relative address is computed relative
8570 to the instruction boundary, so in case immediate
8571 fields follows, we need to adjust the value. */
8572 if (pcrel && i.imm_operands)
8573 {
8574 unsigned int n1;
8575 int sz = 0;
8576
8577 for (n1 = 0; n1 < i.operands; n1++)
8578 if (operand_type_check (i.types[n1], imm))
8579 {
8580 /* Only one immediate is allowed for PC
8581 relative address. */
8582 gas_assert (sz == 0);
8583 sz = imm_size (n1);
8584 i.op[n].disps->X_add_number -= sz;
8585 }
8586 /* We should find the immediate. */
8587 gas_assert (sz != 0);
8588 }
8589
8590 p = frag_more (size);
8591 reloc_type = reloc (size, pcrel, sign, i.reloc[n]);
8592 if (GOT_symbol
8593 && GOT_symbol == i.op[n].disps->X_add_symbol
8594 && (((reloc_type == BFD_RELOC_32
8595 || reloc_type == BFD_RELOC_X86_64_32S
8596 || (reloc_type == BFD_RELOC_64
8597 && object_64bit))
8598 && (i.op[n].disps->X_op == O_symbol
8599 || (i.op[n].disps->X_op == O_add
8600 && ((symbol_get_value_expression
8601 (i.op[n].disps->X_op_symbol)->X_op)
8602 == O_subtract))))
8603 || reloc_type == BFD_RELOC_32_PCREL))
8604 {
8605 if (!object_64bit)
8606 {
8607 reloc_type = BFD_RELOC_386_GOTPC;
8608 i.op[n].imms->X_add_number +=
8609 encoding_length (insn_start_frag, insn_start_off, p);
8610 }
8611 else if (reloc_type == BFD_RELOC_64)
8612 reloc_type = BFD_RELOC_X86_64_GOTPC64;
8613 else
8614 /* Don't do the adjustment for x86-64, as there
8615 the pcrel addressing is relative to the _next_
8616 insn, and that is taken care of in other code. */
8617 reloc_type = BFD_RELOC_X86_64_GOTPC32;
8618 }
8619 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal,
8620 size, i.op[n].disps, pcrel,
8621 reloc_type);
8622 /* Check for "call/jmp *mem", "mov mem, %reg",
8623 "test %reg, mem" and "binop mem, %reg" where binop
8624 is one of adc, add, and, cmp, or, sbb, sub, xor
8625 instructions without data prefix. Always generate
8626 R_386_GOT32X for "sym*GOT" operand in 32-bit mode. */
8627 if (i.prefix[DATA_PREFIX] == 0
8628 && (generate_relax_relocations
8629 || (!object_64bit
8630 && i.rm.mode == 0
8631 && i.rm.regmem == 5))
8632 && (i.rm.mode == 2
8633 || (i.rm.mode == 0 && i.rm.regmem == 5))
8634 && ((i.operands == 1
8635 && i.tm.base_opcode == 0xff
8636 && (i.rm.reg == 2 || i.rm.reg == 4))
8637 || (i.operands == 2
8638 && (i.tm.base_opcode == 0x8b
8639 || i.tm.base_opcode == 0x85
8640 || (i.tm.base_opcode & 0xc7) == 0x03))))
8641 {
8642 if (object_64bit)
8643 {
8644 fixP->fx_tcbit = i.rex != 0;
8645 if (i.base_reg
8646 && (i.base_reg->reg_num == RegIP))
8647 fixP->fx_tcbit2 = 1;
8648 }
8649 else
8650 fixP->fx_tcbit2 = 1;
8651 }
8652 }
8653 }
8654 }
8655 }
8656
8657 static void
8658 output_imm (fragS *insn_start_frag, offsetT insn_start_off)
8659 {
8660 char *p;
8661 unsigned int n;
8662
8663 for (n = 0; n < i.operands; n++)
8664 {
8665 /* Skip SAE/RC Imm operand in EVEX. They are already handled. */
8666 if (i.rounding && (int) n == i.rounding->operand)
8667 continue;
8668
8669 if (operand_type_check (i.types[n], imm))
8670 {
8671 if (i.op[n].imms->X_op == O_constant)
8672 {
8673 int size = imm_size (n);
8674 offsetT val;
8675
8676 val = offset_in_range (i.op[n].imms->X_add_number,
8677 size);
8678 p = frag_more (size);
8679 md_number_to_chars (p, val, size);
8680 }
8681 else
8682 {
8683 /* Not absolute_section.
8684 Need a 32-bit fixup (don't support 8bit
8685 non-absolute imms). Try to support other
8686 sizes ... */
8687 enum bfd_reloc_code_real reloc_type;
8688 int size = imm_size (n);
8689 int sign;
8690
8691 if (i.types[n].bitfield.imm32s
8692 && (i.suffix == QWORD_MNEM_SUFFIX
8693 || (!i.suffix && i.tm.opcode_modifier.no_lsuf)))
8694 sign = 1;
8695 else
8696 sign = 0;
8697
8698 p = frag_more (size);
8699 reloc_type = reloc (size, 0, sign, i.reloc[n]);
8700
8701 /* This is tough to explain. We end up with this one if we
8702 * have operands that look like
8703 * "_GLOBAL_OFFSET_TABLE_+[.-.L284]". The goal here is to
8704 * obtain the absolute address of the GOT, and it is strongly
8705 * preferable from a performance point of view to avoid using
8706 * a runtime relocation for this. The actual sequence of
8707 * instructions often look something like:
8708 *
8709 * call .L66
8710 * .L66:
8711 * popl %ebx
8712 * addl $_GLOBAL_OFFSET_TABLE_+[.-.L66],%ebx
8713 *
8714 * The call and pop essentially return the absolute address
8715 * of the label .L66 and store it in %ebx. The linker itself
8716 * will ultimately change the first operand of the addl so
8717 * that %ebx points to the GOT, but to keep things simple, the
8718 * .o file must have this operand set so that it generates not
8719 * the absolute address of .L66, but the absolute address of
8720 * itself. This allows the linker itself simply treat a GOTPC
8721 * relocation as asking for a pcrel offset to the GOT to be
8722 * added in, and the addend of the relocation is stored in the
8723 * operand field for the instruction itself.
8724 *
8725 * Our job here is to fix the operand so that it would add
8726 * the correct offset so that %ebx would point to itself. The
8727 * thing that is tricky is that .-.L66 will point to the
8728 * beginning of the instruction, so we need to further modify
8729 * the operand so that it will point to itself. There are
8730 * other cases where you have something like:
8731 *
8732 * .long $_GLOBAL_OFFSET_TABLE_+[.-.L66]
8733 *
8734 * and here no correction would be required. Internally in
8735 * the assembler we treat operands of this form as not being
8736 * pcrel since the '.' is explicitly mentioned, and I wonder
8737 * whether it would simplify matters to do it this way. Who
8738 * knows. In earlier versions of the PIC patches, the
8739 * pcrel_adjust field was used to store the correction, but
8740 * since the expression is not pcrel, I felt it would be
8741 * confusing to do it this way. */
8742
8743 if ((reloc_type == BFD_RELOC_32
8744 || reloc_type == BFD_RELOC_X86_64_32S
8745 || reloc_type == BFD_RELOC_64)
8746 && GOT_symbol
8747 && GOT_symbol == i.op[n].imms->X_add_symbol
8748 && (i.op[n].imms->X_op == O_symbol
8749 || (i.op[n].imms->X_op == O_add
8750 && ((symbol_get_value_expression
8751 (i.op[n].imms->X_op_symbol)->X_op)
8752 == O_subtract))))
8753 {
8754 if (!object_64bit)
8755 reloc_type = BFD_RELOC_386_GOTPC;
8756 else if (size == 4)
8757 reloc_type = BFD_RELOC_X86_64_GOTPC32;
8758 else if (size == 8)
8759 reloc_type = BFD_RELOC_X86_64_GOTPC64;
8760 i.op[n].imms->X_add_number +=
8761 encoding_length (insn_start_frag, insn_start_off, p);
8762 }
8763 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
8764 i.op[n].imms, 0, reloc_type);
8765 }
8766 }
8767 }
8768 }
8769 \f
8770 /* x86_cons_fix_new is called via the expression parsing code when a
8771 reloc is needed. We use this hook to get the correct .got reloc. */
8772 static int cons_sign = -1;
8773
8774 void
8775 x86_cons_fix_new (fragS *frag, unsigned int off, unsigned int len,
8776 expressionS *exp, bfd_reloc_code_real_type r)
8777 {
8778 r = reloc (len, 0, cons_sign, r);
8779
8780 #ifdef TE_PE
8781 if (exp->X_op == O_secrel)
8782 {
8783 exp->X_op = O_symbol;
8784 r = BFD_RELOC_32_SECREL;
8785 }
8786 #endif
8787
8788 fix_new_exp (frag, off, len, exp, 0, r);
8789 }
8790
8791 /* Export the ABI address size for use by TC_ADDRESS_BYTES for the
8792 purpose of the `.dc.a' internal pseudo-op. */
8793
8794 int
8795 x86_address_bytes (void)
8796 {
8797 if ((stdoutput->arch_info->mach & bfd_mach_x64_32))
8798 return 4;
8799 return stdoutput->arch_info->bits_per_address / 8;
8800 }
8801
8802 #if !(defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) || defined (OBJ_MACH_O)) \
8803 || defined (LEX_AT)
8804 # define lex_got(reloc, adjust, types) NULL
8805 #else
8806 /* Parse operands of the form
8807 <symbol>@GOTOFF+<nnn>
8808 and similar .plt or .got references.
8809
8810 If we find one, set up the correct relocation in RELOC and copy the
8811 input string, minus the `@GOTOFF' into a malloc'd buffer for
8812 parsing by the calling routine. Return this buffer, and if ADJUST
8813 is non-null set it to the length of the string we removed from the
8814 input line. Otherwise return NULL. */
8815 static char *
8816 lex_got (enum bfd_reloc_code_real *rel,
8817 int *adjust,
8818 i386_operand_type *types)
8819 {
8820 /* Some of the relocations depend on the size of what field is to
8821 be relocated. But in our callers i386_immediate and i386_displacement
8822 we don't yet know the operand size (this will be set by insn
8823 matching). Hence we record the word32 relocation here,
8824 and adjust the reloc according to the real size in reloc(). */
8825 static const struct {
8826 const char *str;
8827 int len;
8828 const enum bfd_reloc_code_real rel[2];
8829 const i386_operand_type types64;
8830 } gotrel[] = {
8831 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8832 { STRING_COMMA_LEN ("SIZE"), { BFD_RELOC_SIZE32,
8833 BFD_RELOC_SIZE32 },
8834 OPERAND_TYPE_IMM32_64 },
8835 #endif
8836 { STRING_COMMA_LEN ("PLTOFF"), { _dummy_first_bfd_reloc_code_real,
8837 BFD_RELOC_X86_64_PLTOFF64 },
8838 OPERAND_TYPE_IMM64 },
8839 { STRING_COMMA_LEN ("PLT"), { BFD_RELOC_386_PLT32,
8840 BFD_RELOC_X86_64_PLT32 },
8841 OPERAND_TYPE_IMM32_32S_DISP32 },
8842 { STRING_COMMA_LEN ("GOTPLT"), { _dummy_first_bfd_reloc_code_real,
8843 BFD_RELOC_X86_64_GOTPLT64 },
8844 OPERAND_TYPE_IMM64_DISP64 },
8845 { STRING_COMMA_LEN ("GOTOFF"), { BFD_RELOC_386_GOTOFF,
8846 BFD_RELOC_X86_64_GOTOFF64 },
8847 OPERAND_TYPE_IMM64_DISP64 },
8848 { STRING_COMMA_LEN ("GOTPCREL"), { _dummy_first_bfd_reloc_code_real,
8849 BFD_RELOC_X86_64_GOTPCREL },
8850 OPERAND_TYPE_IMM32_32S_DISP32 },
8851 { STRING_COMMA_LEN ("TLSGD"), { BFD_RELOC_386_TLS_GD,
8852 BFD_RELOC_X86_64_TLSGD },
8853 OPERAND_TYPE_IMM32_32S_DISP32 },
8854 { STRING_COMMA_LEN ("TLSLDM"), { BFD_RELOC_386_TLS_LDM,
8855 _dummy_first_bfd_reloc_code_real },
8856 OPERAND_TYPE_NONE },
8857 { STRING_COMMA_LEN ("TLSLD"), { _dummy_first_bfd_reloc_code_real,
8858 BFD_RELOC_X86_64_TLSLD },
8859 OPERAND_TYPE_IMM32_32S_DISP32 },
8860 { STRING_COMMA_LEN ("GOTTPOFF"), { BFD_RELOC_386_TLS_IE_32,
8861 BFD_RELOC_X86_64_GOTTPOFF },
8862 OPERAND_TYPE_IMM32_32S_DISP32 },
8863 { STRING_COMMA_LEN ("TPOFF"), { BFD_RELOC_386_TLS_LE_32,
8864 BFD_RELOC_X86_64_TPOFF32 },
8865 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
8866 { STRING_COMMA_LEN ("NTPOFF"), { BFD_RELOC_386_TLS_LE,
8867 _dummy_first_bfd_reloc_code_real },
8868 OPERAND_TYPE_NONE },
8869 { STRING_COMMA_LEN ("DTPOFF"), { BFD_RELOC_386_TLS_LDO_32,
8870 BFD_RELOC_X86_64_DTPOFF32 },
8871 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
8872 { STRING_COMMA_LEN ("GOTNTPOFF"),{ BFD_RELOC_386_TLS_GOTIE,
8873 _dummy_first_bfd_reloc_code_real },
8874 OPERAND_TYPE_NONE },
8875 { STRING_COMMA_LEN ("INDNTPOFF"),{ BFD_RELOC_386_TLS_IE,
8876 _dummy_first_bfd_reloc_code_real },
8877 OPERAND_TYPE_NONE },
8878 { STRING_COMMA_LEN ("GOT"), { BFD_RELOC_386_GOT32,
8879 BFD_RELOC_X86_64_GOT32 },
8880 OPERAND_TYPE_IMM32_32S_64_DISP32 },
8881 { STRING_COMMA_LEN ("TLSDESC"), { BFD_RELOC_386_TLS_GOTDESC,
8882 BFD_RELOC_X86_64_GOTPC32_TLSDESC },
8883 OPERAND_TYPE_IMM32_32S_DISP32 },
8884 { STRING_COMMA_LEN ("TLSCALL"), { BFD_RELOC_386_TLS_DESC_CALL,
8885 BFD_RELOC_X86_64_TLSDESC_CALL },
8886 OPERAND_TYPE_IMM32_32S_DISP32 },
8887 };
8888 char *cp;
8889 unsigned int j;
8890
8891 #if defined (OBJ_MAYBE_ELF)
8892 if (!IS_ELF)
8893 return NULL;
8894 #endif
8895
8896 for (cp = input_line_pointer; *cp != '@'; cp++)
8897 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
8898 return NULL;
8899
8900 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
8901 {
8902 int len = gotrel[j].len;
8903 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
8904 {
8905 if (gotrel[j].rel[object_64bit] != 0)
8906 {
8907 int first, second;
8908 char *tmpbuf, *past_reloc;
8909
8910 *rel = gotrel[j].rel[object_64bit];
8911
8912 if (types)
8913 {
8914 if (flag_code != CODE_64BIT)
8915 {
8916 types->bitfield.imm32 = 1;
8917 types->bitfield.disp32 = 1;
8918 }
8919 else
8920 *types = gotrel[j].types64;
8921 }
8922
8923 if (j != 0 && GOT_symbol == NULL)
8924 GOT_symbol = symbol_find_or_make (GLOBAL_OFFSET_TABLE_NAME);
8925
8926 /* The length of the first part of our input line. */
8927 first = cp - input_line_pointer;
8928
8929 /* The second part goes from after the reloc token until
8930 (and including) an end_of_line char or comma. */
8931 past_reloc = cp + 1 + len;
8932 cp = past_reloc;
8933 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
8934 ++cp;
8935 second = cp + 1 - past_reloc;
8936
8937 /* Allocate and copy string. The trailing NUL shouldn't
8938 be necessary, but be safe. */
8939 tmpbuf = XNEWVEC (char, first + second + 2);
8940 memcpy (tmpbuf, input_line_pointer, first);
8941 if (second != 0 && *past_reloc != ' ')
8942 /* Replace the relocation token with ' ', so that
8943 errors like foo@GOTOFF1 will be detected. */
8944 tmpbuf[first++] = ' ';
8945 else
8946 /* Increment length by 1 if the relocation token is
8947 removed. */
8948 len++;
8949 if (adjust)
8950 *adjust = len;
8951 memcpy (tmpbuf + first, past_reloc, second);
8952 tmpbuf[first + second] = '\0';
8953 return tmpbuf;
8954 }
8955
8956 as_bad (_("@%s reloc is not supported with %d-bit output format"),
8957 gotrel[j].str, 1 << (5 + object_64bit));
8958 return NULL;
8959 }
8960 }
8961
8962 /* Might be a symbol version string. Don't as_bad here. */
8963 return NULL;
8964 }
8965 #endif
8966
8967 #ifdef TE_PE
8968 #ifdef lex_got
8969 #undef lex_got
8970 #endif
8971 /* Parse operands of the form
8972 <symbol>@SECREL32+<nnn>
8973
8974 If we find one, set up the correct relocation in RELOC and copy the
8975 input string, minus the `@SECREL32' into a malloc'd buffer for
8976 parsing by the calling routine. Return this buffer, and if ADJUST
8977 is non-null set it to the length of the string we removed from the
8978 input line. Otherwise return NULL.
8979
8980 This function is copied from the ELF version above adjusted for PE targets. */
8981
8982 static char *
8983 lex_got (enum bfd_reloc_code_real *rel ATTRIBUTE_UNUSED,
8984 int *adjust ATTRIBUTE_UNUSED,
8985 i386_operand_type *types)
8986 {
8987 static const struct
8988 {
8989 const char *str;
8990 int len;
8991 const enum bfd_reloc_code_real rel[2];
8992 const i386_operand_type types64;
8993 }
8994 gotrel[] =
8995 {
8996 { STRING_COMMA_LEN ("SECREL32"), { BFD_RELOC_32_SECREL,
8997 BFD_RELOC_32_SECREL },
8998 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
8999 };
9000
9001 char *cp;
9002 unsigned j;
9003
9004 for (cp = input_line_pointer; *cp != '@'; cp++)
9005 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
9006 return NULL;
9007
9008 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
9009 {
9010 int len = gotrel[j].len;
9011
9012 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
9013 {
9014 if (gotrel[j].rel[object_64bit] != 0)
9015 {
9016 int first, second;
9017 char *tmpbuf, *past_reloc;
9018
9019 *rel = gotrel[j].rel[object_64bit];
9020 if (adjust)
9021 *adjust = len;
9022
9023 if (types)
9024 {
9025 if (flag_code != CODE_64BIT)
9026 {
9027 types->bitfield.imm32 = 1;
9028 types->bitfield.disp32 = 1;
9029 }
9030 else
9031 *types = gotrel[j].types64;
9032 }
9033
9034 /* The length of the first part of our input line. */
9035 first = cp - input_line_pointer;
9036
9037 /* The second part goes from after the reloc token until
9038 (and including) an end_of_line char or comma. */
9039 past_reloc = cp + 1 + len;
9040 cp = past_reloc;
9041 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
9042 ++cp;
9043 second = cp + 1 - past_reloc;
9044
9045 /* Allocate and copy string. The trailing NUL shouldn't
9046 be necessary, but be safe. */
9047 tmpbuf = XNEWVEC (char, first + second + 2);
9048 memcpy (tmpbuf, input_line_pointer, first);
9049 if (second != 0 && *past_reloc != ' ')
9050 /* Replace the relocation token with ' ', so that
9051 errors like foo@SECLREL321 will be detected. */
9052 tmpbuf[first++] = ' ';
9053 memcpy (tmpbuf + first, past_reloc, second);
9054 tmpbuf[first + second] = '\0';
9055 return tmpbuf;
9056 }
9057
9058 as_bad (_("@%s reloc is not supported with %d-bit output format"),
9059 gotrel[j].str, 1 << (5 + object_64bit));
9060 return NULL;
9061 }
9062 }
9063
9064 /* Might be a symbol version string. Don't as_bad here. */
9065 return NULL;
9066 }
9067
9068 #endif /* TE_PE */
9069
9070 bfd_reloc_code_real_type
9071 x86_cons (expressionS *exp, int size)
9072 {
9073 bfd_reloc_code_real_type got_reloc = NO_RELOC;
9074
9075 intel_syntax = -intel_syntax;
9076
9077 exp->X_md = 0;
9078 if (size == 4 || (object_64bit && size == 8))
9079 {
9080 /* Handle @GOTOFF and the like in an expression. */
9081 char *save;
9082 char *gotfree_input_line;
9083 int adjust = 0;
9084
9085 save = input_line_pointer;
9086 gotfree_input_line = lex_got (&got_reloc, &adjust, NULL);
9087 if (gotfree_input_line)
9088 input_line_pointer = gotfree_input_line;
9089
9090 expression (exp);
9091
9092 if (gotfree_input_line)
9093 {
9094 /* expression () has merrily parsed up to the end of line,
9095 or a comma - in the wrong buffer. Transfer how far
9096 input_line_pointer has moved to the right buffer. */
9097 input_line_pointer = (save
9098 + (input_line_pointer - gotfree_input_line)
9099 + adjust);
9100 free (gotfree_input_line);
9101 if (exp->X_op == O_constant
9102 || exp->X_op == O_absent
9103 || exp->X_op == O_illegal
9104 || exp->X_op == O_register
9105 || exp->X_op == O_big)
9106 {
9107 char c = *input_line_pointer;
9108 *input_line_pointer = 0;
9109 as_bad (_("missing or invalid expression `%s'"), save);
9110 *input_line_pointer = c;
9111 }
9112 else if ((got_reloc == BFD_RELOC_386_PLT32
9113 || got_reloc == BFD_RELOC_X86_64_PLT32)
9114 && exp->X_op != O_symbol)
9115 {
9116 char c = *input_line_pointer;
9117 *input_line_pointer = 0;
9118 as_bad (_("invalid PLT expression `%s'"), save);
9119 *input_line_pointer = c;
9120 }
9121 }
9122 }
9123 else
9124 expression (exp);
9125
9126 intel_syntax = -intel_syntax;
9127
9128 if (intel_syntax)
9129 i386_intel_simplify (exp);
9130
9131 return got_reloc;
9132 }
9133
9134 static void
9135 signed_cons (int size)
9136 {
9137 if (flag_code == CODE_64BIT)
9138 cons_sign = 1;
9139 cons (size);
9140 cons_sign = -1;
9141 }
9142
9143 #ifdef TE_PE
9144 static void
9145 pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
9146 {
9147 expressionS exp;
9148
9149 do
9150 {
9151 expression (&exp);
9152 if (exp.X_op == O_symbol)
9153 exp.X_op = O_secrel;
9154
9155 emit_expr (&exp, 4);
9156 }
9157 while (*input_line_pointer++ == ',');
9158
9159 input_line_pointer--;
9160 demand_empty_rest_of_line ();
9161 }
9162 #endif
9163
9164 /* Handle Vector operations. */
9165
9166 static char *
9167 check_VecOperations (char *op_string, char *op_end)
9168 {
9169 const reg_entry *mask;
9170 const char *saved;
9171 char *end_op;
9172
9173 while (*op_string
9174 && (op_end == NULL || op_string < op_end))
9175 {
9176 saved = op_string;
9177 if (*op_string == '{')
9178 {
9179 op_string++;
9180
9181 /* Check broadcasts. */
9182 if (strncmp (op_string, "1to", 3) == 0)
9183 {
9184 int bcst_type;
9185
9186 if (i.broadcast)
9187 goto duplicated_vec_op;
9188
9189 op_string += 3;
9190 if (*op_string == '8')
9191 bcst_type = 8;
9192 else if (*op_string == '4')
9193 bcst_type = 4;
9194 else if (*op_string == '2')
9195 bcst_type = 2;
9196 else if (*op_string == '1'
9197 && *(op_string+1) == '6')
9198 {
9199 bcst_type = 16;
9200 op_string++;
9201 }
9202 else
9203 {
9204 as_bad (_("Unsupported broadcast: `%s'"), saved);
9205 return NULL;
9206 }
9207 op_string++;
9208
9209 broadcast_op.type = bcst_type;
9210 broadcast_op.operand = this_operand;
9211 broadcast_op.bytes = 0;
9212 i.broadcast = &broadcast_op;
9213 }
9214 /* Check masking operation. */
9215 else if ((mask = parse_register (op_string, &end_op)) != NULL)
9216 {
9217 /* k0 can't be used for write mask. */
9218 if (!mask->reg_type.bitfield.regmask || mask->reg_num == 0)
9219 {
9220 as_bad (_("`%s%s' can't be used for write mask"),
9221 register_prefix, mask->reg_name);
9222 return NULL;
9223 }
9224
9225 if (!i.mask)
9226 {
9227 mask_op.mask = mask;
9228 mask_op.zeroing = 0;
9229 mask_op.operand = this_operand;
9230 i.mask = &mask_op;
9231 }
9232 else
9233 {
9234 if (i.mask->mask)
9235 goto duplicated_vec_op;
9236
9237 i.mask->mask = mask;
9238
9239 /* Only "{z}" is allowed here. No need to check
9240 zeroing mask explicitly. */
9241 if (i.mask->operand != this_operand)
9242 {
9243 as_bad (_("invalid write mask `%s'"), saved);
9244 return NULL;
9245 }
9246 }
9247
9248 op_string = end_op;
9249 }
9250 /* Check zeroing-flag for masking operation. */
9251 else if (*op_string == 'z')
9252 {
9253 if (!i.mask)
9254 {
9255 mask_op.mask = NULL;
9256 mask_op.zeroing = 1;
9257 mask_op.operand = this_operand;
9258 i.mask = &mask_op;
9259 }
9260 else
9261 {
9262 if (i.mask->zeroing)
9263 {
9264 duplicated_vec_op:
9265 as_bad (_("duplicated `%s'"), saved);
9266 return NULL;
9267 }
9268
9269 i.mask->zeroing = 1;
9270
9271 /* Only "{%k}" is allowed here. No need to check mask
9272 register explicitly. */
9273 if (i.mask->operand != this_operand)
9274 {
9275 as_bad (_("invalid zeroing-masking `%s'"),
9276 saved);
9277 return NULL;
9278 }
9279 }
9280
9281 op_string++;
9282 }
9283 else
9284 goto unknown_vec_op;
9285
9286 if (*op_string != '}')
9287 {
9288 as_bad (_("missing `}' in `%s'"), saved);
9289 return NULL;
9290 }
9291 op_string++;
9292
9293 /* Strip whitespace since the addition of pseudo prefixes
9294 changed how the scrubber treats '{'. */
9295 if (is_space_char (*op_string))
9296 ++op_string;
9297
9298 continue;
9299 }
9300 unknown_vec_op:
9301 /* We don't know this one. */
9302 as_bad (_("unknown vector operation: `%s'"), saved);
9303 return NULL;
9304 }
9305
9306 if (i.mask && i.mask->zeroing && !i.mask->mask)
9307 {
9308 as_bad (_("zeroing-masking only allowed with write mask"));
9309 return NULL;
9310 }
9311
9312 return op_string;
9313 }
9314
9315 static int
9316 i386_immediate (char *imm_start)
9317 {
9318 char *save_input_line_pointer;
9319 char *gotfree_input_line;
9320 segT exp_seg = 0;
9321 expressionS *exp;
9322 i386_operand_type types;
9323
9324 operand_type_set (&types, ~0);
9325
9326 if (i.imm_operands == MAX_IMMEDIATE_OPERANDS)
9327 {
9328 as_bad (_("at most %d immediate operands are allowed"),
9329 MAX_IMMEDIATE_OPERANDS);
9330 return 0;
9331 }
9332
9333 exp = &im_expressions[i.imm_operands++];
9334 i.op[this_operand].imms = exp;
9335
9336 if (is_space_char (*imm_start))
9337 ++imm_start;
9338
9339 save_input_line_pointer = input_line_pointer;
9340 input_line_pointer = imm_start;
9341
9342 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
9343 if (gotfree_input_line)
9344 input_line_pointer = gotfree_input_line;
9345
9346 exp_seg = expression (exp);
9347
9348 SKIP_WHITESPACE ();
9349
9350 /* Handle vector operations. */
9351 if (*input_line_pointer == '{')
9352 {
9353 input_line_pointer = check_VecOperations (input_line_pointer,
9354 NULL);
9355 if (input_line_pointer == NULL)
9356 return 0;
9357 }
9358
9359 if (*input_line_pointer)
9360 as_bad (_("junk `%s' after expression"), input_line_pointer);
9361
9362 input_line_pointer = save_input_line_pointer;
9363 if (gotfree_input_line)
9364 {
9365 free (gotfree_input_line);
9366
9367 if (exp->X_op == O_constant || exp->X_op == O_register)
9368 exp->X_op = O_illegal;
9369 }
9370
9371 return i386_finalize_immediate (exp_seg, exp, types, imm_start);
9372 }
9373
9374 static int
9375 i386_finalize_immediate (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
9376 i386_operand_type types, const char *imm_start)
9377 {
9378 if (exp->X_op == O_absent || exp->X_op == O_illegal || exp->X_op == O_big)
9379 {
9380 if (imm_start)
9381 as_bad (_("missing or invalid immediate expression `%s'"),
9382 imm_start);
9383 return 0;
9384 }
9385 else if (exp->X_op == O_constant)
9386 {
9387 /* Size it properly later. */
9388 i.types[this_operand].bitfield.imm64 = 1;
9389 /* If not 64bit, sign extend val. */
9390 if (flag_code != CODE_64BIT
9391 && (exp->X_add_number & ~(((addressT) 2 << 31) - 1)) == 0)
9392 exp->X_add_number
9393 = (exp->X_add_number ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
9394 }
9395 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
9396 else if (OUTPUT_FLAVOR == bfd_target_aout_flavour
9397 && exp_seg != absolute_section
9398 && exp_seg != text_section
9399 && exp_seg != data_section
9400 && exp_seg != bss_section
9401 && exp_seg != undefined_section
9402 && !bfd_is_com_section (exp_seg))
9403 {
9404 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
9405 return 0;
9406 }
9407 #endif
9408 else if (!intel_syntax && exp_seg == reg_section)
9409 {
9410 if (imm_start)
9411 as_bad (_("illegal immediate register operand %s"), imm_start);
9412 return 0;
9413 }
9414 else
9415 {
9416 /* This is an address. The size of the address will be
9417 determined later, depending on destination register,
9418 suffix, or the default for the section. */
9419 i.types[this_operand].bitfield.imm8 = 1;
9420 i.types[this_operand].bitfield.imm16 = 1;
9421 i.types[this_operand].bitfield.imm32 = 1;
9422 i.types[this_operand].bitfield.imm32s = 1;
9423 i.types[this_operand].bitfield.imm64 = 1;
9424 i.types[this_operand] = operand_type_and (i.types[this_operand],
9425 types);
9426 }
9427
9428 return 1;
9429 }
9430
9431 static char *
9432 i386_scale (char *scale)
9433 {
9434 offsetT val;
9435 char *save = input_line_pointer;
9436
9437 input_line_pointer = scale;
9438 val = get_absolute_expression ();
9439
9440 switch (val)
9441 {
9442 case 1:
9443 i.log2_scale_factor = 0;
9444 break;
9445 case 2:
9446 i.log2_scale_factor = 1;
9447 break;
9448 case 4:
9449 i.log2_scale_factor = 2;
9450 break;
9451 case 8:
9452 i.log2_scale_factor = 3;
9453 break;
9454 default:
9455 {
9456 char sep = *input_line_pointer;
9457
9458 *input_line_pointer = '\0';
9459 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
9460 scale);
9461 *input_line_pointer = sep;
9462 input_line_pointer = save;
9463 return NULL;
9464 }
9465 }
9466 if (i.log2_scale_factor != 0 && i.index_reg == 0)
9467 {
9468 as_warn (_("scale factor of %d without an index register"),
9469 1 << i.log2_scale_factor);
9470 i.log2_scale_factor = 0;
9471 }
9472 scale = input_line_pointer;
9473 input_line_pointer = save;
9474 return scale;
9475 }
9476
9477 static int
9478 i386_displacement (char *disp_start, char *disp_end)
9479 {
9480 expressionS *exp;
9481 segT exp_seg = 0;
9482 char *save_input_line_pointer;
9483 char *gotfree_input_line;
9484 int override;
9485 i386_operand_type bigdisp, types = anydisp;
9486 int ret;
9487
9488 if (i.disp_operands == MAX_MEMORY_OPERANDS)
9489 {
9490 as_bad (_("at most %d displacement operands are allowed"),
9491 MAX_MEMORY_OPERANDS);
9492 return 0;
9493 }
9494
9495 operand_type_set (&bigdisp, 0);
9496 if ((i.types[this_operand].bitfield.jumpabsolute)
9497 || (!current_templates->start->opcode_modifier.jump
9498 && !current_templates->start->opcode_modifier.jumpdword))
9499 {
9500 bigdisp.bitfield.disp32 = 1;
9501 override = (i.prefix[ADDR_PREFIX] != 0);
9502 if (flag_code == CODE_64BIT)
9503 {
9504 if (!override)
9505 {
9506 bigdisp.bitfield.disp32s = 1;
9507 bigdisp.bitfield.disp64 = 1;
9508 }
9509 }
9510 else if ((flag_code == CODE_16BIT) ^ override)
9511 {
9512 bigdisp.bitfield.disp32 = 0;
9513 bigdisp.bitfield.disp16 = 1;
9514 }
9515 }
9516 else
9517 {
9518 /* For PC-relative branches, the width of the displacement
9519 is dependent upon data size, not address size. */
9520 override = (i.prefix[DATA_PREFIX] != 0);
9521 if (flag_code == CODE_64BIT)
9522 {
9523 if (override || i.suffix == WORD_MNEM_SUFFIX)
9524 bigdisp.bitfield.disp16 = 1;
9525 else
9526 {
9527 bigdisp.bitfield.disp32 = 1;
9528 bigdisp.bitfield.disp32s = 1;
9529 }
9530 }
9531 else
9532 {
9533 if (!override)
9534 override = (i.suffix == (flag_code != CODE_16BIT
9535 ? WORD_MNEM_SUFFIX
9536 : LONG_MNEM_SUFFIX));
9537 bigdisp.bitfield.disp32 = 1;
9538 if ((flag_code == CODE_16BIT) ^ override)
9539 {
9540 bigdisp.bitfield.disp32 = 0;
9541 bigdisp.bitfield.disp16 = 1;
9542 }
9543 }
9544 }
9545 i.types[this_operand] = operand_type_or (i.types[this_operand],
9546 bigdisp);
9547
9548 exp = &disp_expressions[i.disp_operands];
9549 i.op[this_operand].disps = exp;
9550 i.disp_operands++;
9551 save_input_line_pointer = input_line_pointer;
9552 input_line_pointer = disp_start;
9553 END_STRING_AND_SAVE (disp_end);
9554
9555 #ifndef GCC_ASM_O_HACK
9556 #define GCC_ASM_O_HACK 0
9557 #endif
9558 #if GCC_ASM_O_HACK
9559 END_STRING_AND_SAVE (disp_end + 1);
9560 if (i.types[this_operand].bitfield.baseIndex
9561 && displacement_string_end[-1] == '+')
9562 {
9563 /* This hack is to avoid a warning when using the "o"
9564 constraint within gcc asm statements.
9565 For instance:
9566
9567 #define _set_tssldt_desc(n,addr,limit,type) \
9568 __asm__ __volatile__ ( \
9569 "movw %w2,%0\n\t" \
9570 "movw %w1,2+%0\n\t" \
9571 "rorl $16,%1\n\t" \
9572 "movb %b1,4+%0\n\t" \
9573 "movb %4,5+%0\n\t" \
9574 "movb $0,6+%0\n\t" \
9575 "movb %h1,7+%0\n\t" \
9576 "rorl $16,%1" \
9577 : "=o"(*(n)) : "q" (addr), "ri"(limit), "i"(type))
9578
9579 This works great except that the output assembler ends
9580 up looking a bit weird if it turns out that there is
9581 no offset. You end up producing code that looks like:
9582
9583 #APP
9584 movw $235,(%eax)
9585 movw %dx,2+(%eax)
9586 rorl $16,%edx
9587 movb %dl,4+(%eax)
9588 movb $137,5+(%eax)
9589 movb $0,6+(%eax)
9590 movb %dh,7+(%eax)
9591 rorl $16,%edx
9592 #NO_APP
9593
9594 So here we provide the missing zero. */
9595
9596 *displacement_string_end = '0';
9597 }
9598 #endif
9599 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
9600 if (gotfree_input_line)
9601 input_line_pointer = gotfree_input_line;
9602
9603 exp_seg = expression (exp);
9604
9605 SKIP_WHITESPACE ();
9606 if (*input_line_pointer)
9607 as_bad (_("junk `%s' after expression"), input_line_pointer);
9608 #if GCC_ASM_O_HACK
9609 RESTORE_END_STRING (disp_end + 1);
9610 #endif
9611 input_line_pointer = save_input_line_pointer;
9612 if (gotfree_input_line)
9613 {
9614 free (gotfree_input_line);
9615
9616 if (exp->X_op == O_constant || exp->X_op == O_register)
9617 exp->X_op = O_illegal;
9618 }
9619
9620 ret = i386_finalize_displacement (exp_seg, exp, types, disp_start);
9621
9622 RESTORE_END_STRING (disp_end);
9623
9624 return ret;
9625 }
9626
9627 static int
9628 i386_finalize_displacement (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
9629 i386_operand_type types, const char *disp_start)
9630 {
9631 i386_operand_type bigdisp;
9632 int ret = 1;
9633
9634 /* We do this to make sure that the section symbol is in
9635 the symbol table. We will ultimately change the relocation
9636 to be relative to the beginning of the section. */
9637 if (i.reloc[this_operand] == BFD_RELOC_386_GOTOFF
9638 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL
9639 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
9640 {
9641 if (exp->X_op != O_symbol)
9642 goto inv_disp;
9643
9644 if (S_IS_LOCAL (exp->X_add_symbol)
9645 && S_GET_SEGMENT (exp->X_add_symbol) != undefined_section
9646 && S_GET_SEGMENT (exp->X_add_symbol) != expr_section)
9647 section_symbol (S_GET_SEGMENT (exp->X_add_symbol));
9648 exp->X_op = O_subtract;
9649 exp->X_op_symbol = GOT_symbol;
9650 if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
9651 i.reloc[this_operand] = BFD_RELOC_32_PCREL;
9652 else if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
9653 i.reloc[this_operand] = BFD_RELOC_64;
9654 else
9655 i.reloc[this_operand] = BFD_RELOC_32;
9656 }
9657
9658 else if (exp->X_op == O_absent
9659 || exp->X_op == O_illegal
9660 || exp->X_op == O_big)
9661 {
9662 inv_disp:
9663 as_bad (_("missing or invalid displacement expression `%s'"),
9664 disp_start);
9665 ret = 0;
9666 }
9667
9668 else if (flag_code == CODE_64BIT
9669 && !i.prefix[ADDR_PREFIX]
9670 && exp->X_op == O_constant)
9671 {
9672 /* Since displacement is signed extended to 64bit, don't allow
9673 disp32 and turn off disp32s if they are out of range. */
9674 i.types[this_operand].bitfield.disp32 = 0;
9675 if (!fits_in_signed_long (exp->X_add_number))
9676 {
9677 i.types[this_operand].bitfield.disp32s = 0;
9678 if (i.types[this_operand].bitfield.baseindex)
9679 {
9680 as_bad (_("0x%lx out range of signed 32bit displacement"),
9681 (long) exp->X_add_number);
9682 ret = 0;
9683 }
9684 }
9685 }
9686
9687 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
9688 else if (exp->X_op != O_constant
9689 && OUTPUT_FLAVOR == bfd_target_aout_flavour
9690 && exp_seg != absolute_section
9691 && exp_seg != text_section
9692 && exp_seg != data_section
9693 && exp_seg != bss_section
9694 && exp_seg != undefined_section
9695 && !bfd_is_com_section (exp_seg))
9696 {
9697 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
9698 ret = 0;
9699 }
9700 #endif
9701
9702 /* Check if this is a displacement only operand. */
9703 bigdisp = i.types[this_operand];
9704 bigdisp.bitfield.disp8 = 0;
9705 bigdisp.bitfield.disp16 = 0;
9706 bigdisp.bitfield.disp32 = 0;
9707 bigdisp.bitfield.disp32s = 0;
9708 bigdisp.bitfield.disp64 = 0;
9709 if (operand_type_all_zero (&bigdisp))
9710 i.types[this_operand] = operand_type_and (i.types[this_operand],
9711 types);
9712
9713 return ret;
9714 }
9715
9716 /* Return the active addressing mode, taking address override and
9717 registers forming the address into consideration. Update the
9718 address override prefix if necessary. */
9719
9720 static enum flag_code
9721 i386_addressing_mode (void)
9722 {
9723 enum flag_code addr_mode;
9724
9725 if (i.prefix[ADDR_PREFIX])
9726 addr_mode = flag_code == CODE_32BIT ? CODE_16BIT : CODE_32BIT;
9727 else
9728 {
9729 addr_mode = flag_code;
9730
9731 #if INFER_ADDR_PREFIX
9732 if (i.mem_operands == 0)
9733 {
9734 /* Infer address prefix from the first memory operand. */
9735 const reg_entry *addr_reg = i.base_reg;
9736
9737 if (addr_reg == NULL)
9738 addr_reg = i.index_reg;
9739
9740 if (addr_reg)
9741 {
9742 if (addr_reg->reg_type.bitfield.dword)
9743 addr_mode = CODE_32BIT;
9744 else if (flag_code != CODE_64BIT
9745 && addr_reg->reg_type.bitfield.word)
9746 addr_mode = CODE_16BIT;
9747
9748 if (addr_mode != flag_code)
9749 {
9750 i.prefix[ADDR_PREFIX] = ADDR_PREFIX_OPCODE;
9751 i.prefixes += 1;
9752 /* Change the size of any displacement too. At most one
9753 of Disp16 or Disp32 is set.
9754 FIXME. There doesn't seem to be any real need for
9755 separate Disp16 and Disp32 flags. The same goes for
9756 Imm16 and Imm32. Removing them would probably clean
9757 up the code quite a lot. */
9758 if (flag_code != CODE_64BIT
9759 && (i.types[this_operand].bitfield.disp16
9760 || i.types[this_operand].bitfield.disp32))
9761 i.types[this_operand]
9762 = operand_type_xor (i.types[this_operand], disp16_32);
9763 }
9764 }
9765 }
9766 #endif
9767 }
9768
9769 return addr_mode;
9770 }
9771
9772 /* Make sure the memory operand we've been dealt is valid.
9773 Return 1 on success, 0 on a failure. */
9774
9775 static int
9776 i386_index_check (const char *operand_string)
9777 {
9778 const char *kind = "base/index";
9779 enum flag_code addr_mode = i386_addressing_mode ();
9780
9781 if (current_templates->start->opcode_modifier.isstring
9782 && !current_templates->start->cpu_flags.bitfield.cpupadlock
9783 && (current_templates->end[-1].opcode_modifier.isstring
9784 || i.mem_operands))
9785 {
9786 /* Memory operands of string insns are special in that they only allow
9787 a single register (rDI, rSI, or rBX) as their memory address. */
9788 const reg_entry *expected_reg;
9789 static const char *di_si[][2] =
9790 {
9791 { "esi", "edi" },
9792 { "si", "di" },
9793 { "rsi", "rdi" }
9794 };
9795 static const char *bx[] = { "ebx", "bx", "rbx" };
9796
9797 kind = "string address";
9798
9799 if (current_templates->start->opcode_modifier.repprefixok)
9800 {
9801 i386_operand_type type = current_templates->end[-1].operand_types[0];
9802
9803 if (!type.bitfield.baseindex
9804 || ((!i.mem_operands != !intel_syntax)
9805 && current_templates->end[-1].operand_types[1]
9806 .bitfield.baseindex))
9807 type = current_templates->end[-1].operand_types[1];
9808 expected_reg = hash_find (reg_hash,
9809 di_si[addr_mode][type.bitfield.esseg]);
9810
9811 }
9812 else
9813 expected_reg = hash_find (reg_hash, bx[addr_mode]);
9814
9815 if (i.base_reg != expected_reg
9816 || i.index_reg
9817 || operand_type_check (i.types[this_operand], disp))
9818 {
9819 /* The second memory operand must have the same size as
9820 the first one. */
9821 if (i.mem_operands
9822 && i.base_reg
9823 && !((addr_mode == CODE_64BIT
9824 && i.base_reg->reg_type.bitfield.qword)
9825 || (addr_mode == CODE_32BIT
9826 ? i.base_reg->reg_type.bitfield.dword
9827 : i.base_reg->reg_type.bitfield.word)))
9828 goto bad_address;
9829
9830 as_warn (_("`%s' is not valid here (expected `%c%s%s%c')"),
9831 operand_string,
9832 intel_syntax ? '[' : '(',
9833 register_prefix,
9834 expected_reg->reg_name,
9835 intel_syntax ? ']' : ')');
9836 return 1;
9837 }
9838 else
9839 return 1;
9840
9841 bad_address:
9842 as_bad (_("`%s' is not a valid %s expression"),
9843 operand_string, kind);
9844 return 0;
9845 }
9846 else
9847 {
9848 if (addr_mode != CODE_16BIT)
9849 {
9850 /* 32-bit/64-bit checks. */
9851 if ((i.base_reg
9852 && ((addr_mode == CODE_64BIT
9853 ? !i.base_reg->reg_type.bitfield.qword
9854 : !i.base_reg->reg_type.bitfield.dword)
9855 || (i.index_reg && i.base_reg->reg_num == RegIP)
9856 || i.base_reg->reg_num == RegIZ))
9857 || (i.index_reg
9858 && !i.index_reg->reg_type.bitfield.xmmword
9859 && !i.index_reg->reg_type.bitfield.ymmword
9860 && !i.index_reg->reg_type.bitfield.zmmword
9861 && ((addr_mode == CODE_64BIT
9862 ? !i.index_reg->reg_type.bitfield.qword
9863 : !i.index_reg->reg_type.bitfield.dword)
9864 || !i.index_reg->reg_type.bitfield.baseindex)))
9865 goto bad_address;
9866
9867 /* bndmk, bndldx, and bndstx have special restrictions. */
9868 if (current_templates->start->base_opcode == 0xf30f1b
9869 || (current_templates->start->base_opcode & ~1) == 0x0f1a)
9870 {
9871 /* They cannot use RIP-relative addressing. */
9872 if (i.base_reg && i.base_reg->reg_num == RegIP)
9873 {
9874 as_bad (_("`%s' cannot be used here"), operand_string);
9875 return 0;
9876 }
9877
9878 /* bndldx and bndstx ignore their scale factor. */
9879 if (current_templates->start->base_opcode != 0xf30f1b
9880 && i.log2_scale_factor)
9881 as_warn (_("register scaling is being ignored here"));
9882 }
9883 }
9884 else
9885 {
9886 /* 16-bit checks. */
9887 if ((i.base_reg
9888 && (!i.base_reg->reg_type.bitfield.word
9889 || !i.base_reg->reg_type.bitfield.baseindex))
9890 || (i.index_reg
9891 && (!i.index_reg->reg_type.bitfield.word
9892 || !i.index_reg->reg_type.bitfield.baseindex
9893 || !(i.base_reg
9894 && i.base_reg->reg_num < 6
9895 && i.index_reg->reg_num >= 6
9896 && i.log2_scale_factor == 0))))
9897 goto bad_address;
9898 }
9899 }
9900 return 1;
9901 }
9902
9903 /* Handle vector immediates. */
9904
9905 static int
9906 RC_SAE_immediate (const char *imm_start)
9907 {
9908 unsigned int match_found, j;
9909 const char *pstr = imm_start;
9910 expressionS *exp;
9911
9912 if (*pstr != '{')
9913 return 0;
9914
9915 pstr++;
9916 match_found = 0;
9917 for (j = 0; j < ARRAY_SIZE (RC_NamesTable); j++)
9918 {
9919 if (!strncmp (pstr, RC_NamesTable[j].name, RC_NamesTable[j].len))
9920 {
9921 if (!i.rounding)
9922 {
9923 rc_op.type = RC_NamesTable[j].type;
9924 rc_op.operand = this_operand;
9925 i.rounding = &rc_op;
9926 }
9927 else
9928 {
9929 as_bad (_("duplicated `%s'"), imm_start);
9930 return 0;
9931 }
9932 pstr += RC_NamesTable[j].len;
9933 match_found = 1;
9934 break;
9935 }
9936 }
9937 if (!match_found)
9938 return 0;
9939
9940 if (*pstr++ != '}')
9941 {
9942 as_bad (_("Missing '}': '%s'"), imm_start);
9943 return 0;
9944 }
9945 /* RC/SAE immediate string should contain nothing more. */;
9946 if (*pstr != 0)
9947 {
9948 as_bad (_("Junk after '}': '%s'"), imm_start);
9949 return 0;
9950 }
9951
9952 exp = &im_expressions[i.imm_operands++];
9953 i.op[this_operand].imms = exp;
9954
9955 exp->X_op = O_constant;
9956 exp->X_add_number = 0;
9957 exp->X_add_symbol = (symbolS *) 0;
9958 exp->X_op_symbol = (symbolS *) 0;
9959
9960 i.types[this_operand].bitfield.imm8 = 1;
9961 return 1;
9962 }
9963
9964 /* Only string instructions can have a second memory operand, so
9965 reduce current_templates to just those if it contains any. */
9966 static int
9967 maybe_adjust_templates (void)
9968 {
9969 const insn_template *t;
9970
9971 gas_assert (i.mem_operands == 1);
9972
9973 for (t = current_templates->start; t < current_templates->end; ++t)
9974 if (t->opcode_modifier.isstring)
9975 break;
9976
9977 if (t < current_templates->end)
9978 {
9979 static templates aux_templates;
9980 bfd_boolean recheck;
9981
9982 aux_templates.start = t;
9983 for (; t < current_templates->end; ++t)
9984 if (!t->opcode_modifier.isstring)
9985 break;
9986 aux_templates.end = t;
9987
9988 /* Determine whether to re-check the first memory operand. */
9989 recheck = (aux_templates.start != current_templates->start
9990 || t != current_templates->end);
9991
9992 current_templates = &aux_templates;
9993
9994 if (recheck)
9995 {
9996 i.mem_operands = 0;
9997 if (i.memop1_string != NULL
9998 && i386_index_check (i.memop1_string) == 0)
9999 return 0;
10000 i.mem_operands = 1;
10001 }
10002 }
10003
10004 return 1;
10005 }
10006
10007 /* Parse OPERAND_STRING into the i386_insn structure I. Returns zero
10008 on error. */
10009
10010 static int
10011 i386_att_operand (char *operand_string)
10012 {
10013 const reg_entry *r;
10014 char *end_op;
10015 char *op_string = operand_string;
10016
10017 if (is_space_char (*op_string))
10018 ++op_string;
10019
10020 /* We check for an absolute prefix (differentiating,
10021 for example, 'jmp pc_relative_label' from 'jmp *absolute_label'. */
10022 if (*op_string == ABSOLUTE_PREFIX)
10023 {
10024 ++op_string;
10025 if (is_space_char (*op_string))
10026 ++op_string;
10027 i.types[this_operand].bitfield.jumpabsolute = 1;
10028 }
10029
10030 /* Check if operand is a register. */
10031 if ((r = parse_register (op_string, &end_op)) != NULL)
10032 {
10033 i386_operand_type temp;
10034
10035 /* Check for a segment override by searching for ':' after a
10036 segment register. */
10037 op_string = end_op;
10038 if (is_space_char (*op_string))
10039 ++op_string;
10040 if (*op_string == ':' && r->reg_type.bitfield.sreg)
10041 {
10042 switch (r->reg_num)
10043 {
10044 case 0:
10045 i.seg[i.mem_operands] = &es;
10046 break;
10047 case 1:
10048 i.seg[i.mem_operands] = &cs;
10049 break;
10050 case 2:
10051 i.seg[i.mem_operands] = &ss;
10052 break;
10053 case 3:
10054 i.seg[i.mem_operands] = &ds;
10055 break;
10056 case 4:
10057 i.seg[i.mem_operands] = &fs;
10058 break;
10059 case 5:
10060 i.seg[i.mem_operands] = &gs;
10061 break;
10062 }
10063
10064 /* Skip the ':' and whitespace. */
10065 ++op_string;
10066 if (is_space_char (*op_string))
10067 ++op_string;
10068
10069 if (!is_digit_char (*op_string)
10070 && !is_identifier_char (*op_string)
10071 && *op_string != '('
10072 && *op_string != ABSOLUTE_PREFIX)
10073 {
10074 as_bad (_("bad memory operand `%s'"), op_string);
10075 return 0;
10076 }
10077 /* Handle case of %es:*foo. */
10078 if (*op_string == ABSOLUTE_PREFIX)
10079 {
10080 ++op_string;
10081 if (is_space_char (*op_string))
10082 ++op_string;
10083 i.types[this_operand].bitfield.jumpabsolute = 1;
10084 }
10085 goto do_memory_reference;
10086 }
10087
10088 /* Handle vector operations. */
10089 if (*op_string == '{')
10090 {
10091 op_string = check_VecOperations (op_string, NULL);
10092 if (op_string == NULL)
10093 return 0;
10094 }
10095
10096 if (*op_string)
10097 {
10098 as_bad (_("junk `%s' after register"), op_string);
10099 return 0;
10100 }
10101 temp = r->reg_type;
10102 temp.bitfield.baseindex = 0;
10103 i.types[this_operand] = operand_type_or (i.types[this_operand],
10104 temp);
10105 i.types[this_operand].bitfield.unspecified = 0;
10106 i.op[this_operand].regs = r;
10107 i.reg_operands++;
10108 }
10109 else if (*op_string == REGISTER_PREFIX)
10110 {
10111 as_bad (_("bad register name `%s'"), op_string);
10112 return 0;
10113 }
10114 else if (*op_string == IMMEDIATE_PREFIX)
10115 {
10116 ++op_string;
10117 if (i.types[this_operand].bitfield.jumpabsolute)
10118 {
10119 as_bad (_("immediate operand illegal with absolute jump"));
10120 return 0;
10121 }
10122 if (!i386_immediate (op_string))
10123 return 0;
10124 }
10125 else if (RC_SAE_immediate (operand_string))
10126 {
10127 /* If it is a RC or SAE immediate, do nothing. */
10128 ;
10129 }
10130 else if (is_digit_char (*op_string)
10131 || is_identifier_char (*op_string)
10132 || *op_string == '"'
10133 || *op_string == '(')
10134 {
10135 /* This is a memory reference of some sort. */
10136 char *base_string;
10137
10138 /* Start and end of displacement string expression (if found). */
10139 char *displacement_string_start;
10140 char *displacement_string_end;
10141 char *vop_start;
10142
10143 do_memory_reference:
10144 if (i.mem_operands == 1 && !maybe_adjust_templates ())
10145 return 0;
10146 if ((i.mem_operands == 1
10147 && !current_templates->start->opcode_modifier.isstring)
10148 || i.mem_operands == 2)
10149 {
10150 as_bad (_("too many memory references for `%s'"),
10151 current_templates->start->name);
10152 return 0;
10153 }
10154
10155 /* Check for base index form. We detect the base index form by
10156 looking for an ')' at the end of the operand, searching
10157 for the '(' matching it, and finding a REGISTER_PREFIX or ','
10158 after the '('. */
10159 base_string = op_string + strlen (op_string);
10160
10161 /* Handle vector operations. */
10162 vop_start = strchr (op_string, '{');
10163 if (vop_start && vop_start < base_string)
10164 {
10165 if (check_VecOperations (vop_start, base_string) == NULL)
10166 return 0;
10167 base_string = vop_start;
10168 }
10169
10170 --base_string;
10171 if (is_space_char (*base_string))
10172 --base_string;
10173
10174 /* If we only have a displacement, set-up for it to be parsed later. */
10175 displacement_string_start = op_string;
10176 displacement_string_end = base_string + 1;
10177
10178 if (*base_string == ')')
10179 {
10180 char *temp_string;
10181 unsigned int parens_balanced = 1;
10182 /* We've already checked that the number of left & right ()'s are
10183 equal, so this loop will not be infinite. */
10184 do
10185 {
10186 base_string--;
10187 if (*base_string == ')')
10188 parens_balanced++;
10189 if (*base_string == '(')
10190 parens_balanced--;
10191 }
10192 while (parens_balanced);
10193
10194 temp_string = base_string;
10195
10196 /* Skip past '(' and whitespace. */
10197 ++base_string;
10198 if (is_space_char (*base_string))
10199 ++base_string;
10200
10201 if (*base_string == ','
10202 || ((i.base_reg = parse_register (base_string, &end_op))
10203 != NULL))
10204 {
10205 displacement_string_end = temp_string;
10206
10207 i.types[this_operand].bitfield.baseindex = 1;
10208
10209 if (i.base_reg)
10210 {
10211 base_string = end_op;
10212 if (is_space_char (*base_string))
10213 ++base_string;
10214 }
10215
10216 /* There may be an index reg or scale factor here. */
10217 if (*base_string == ',')
10218 {
10219 ++base_string;
10220 if (is_space_char (*base_string))
10221 ++base_string;
10222
10223 if ((i.index_reg = parse_register (base_string, &end_op))
10224 != NULL)
10225 {
10226 base_string = end_op;
10227 if (is_space_char (*base_string))
10228 ++base_string;
10229 if (*base_string == ',')
10230 {
10231 ++base_string;
10232 if (is_space_char (*base_string))
10233 ++base_string;
10234 }
10235 else if (*base_string != ')')
10236 {
10237 as_bad (_("expecting `,' or `)' "
10238 "after index register in `%s'"),
10239 operand_string);
10240 return 0;
10241 }
10242 }
10243 else if (*base_string == REGISTER_PREFIX)
10244 {
10245 end_op = strchr (base_string, ',');
10246 if (end_op)
10247 *end_op = '\0';
10248 as_bad (_("bad register name `%s'"), base_string);
10249 return 0;
10250 }
10251
10252 /* Check for scale factor. */
10253 if (*base_string != ')')
10254 {
10255 char *end_scale = i386_scale (base_string);
10256
10257 if (!end_scale)
10258 return 0;
10259
10260 base_string = end_scale;
10261 if (is_space_char (*base_string))
10262 ++base_string;
10263 if (*base_string != ')')
10264 {
10265 as_bad (_("expecting `)' "
10266 "after scale factor in `%s'"),
10267 operand_string);
10268 return 0;
10269 }
10270 }
10271 else if (!i.index_reg)
10272 {
10273 as_bad (_("expecting index register or scale factor "
10274 "after `,'; got '%c'"),
10275 *base_string);
10276 return 0;
10277 }
10278 }
10279 else if (*base_string != ')')
10280 {
10281 as_bad (_("expecting `,' or `)' "
10282 "after base register in `%s'"),
10283 operand_string);
10284 return 0;
10285 }
10286 }
10287 else if (*base_string == REGISTER_PREFIX)
10288 {
10289 end_op = strchr (base_string, ',');
10290 if (end_op)
10291 *end_op = '\0';
10292 as_bad (_("bad register name `%s'"), base_string);
10293 return 0;
10294 }
10295 }
10296
10297 /* If there's an expression beginning the operand, parse it,
10298 assuming displacement_string_start and
10299 displacement_string_end are meaningful. */
10300 if (displacement_string_start != displacement_string_end)
10301 {
10302 if (!i386_displacement (displacement_string_start,
10303 displacement_string_end))
10304 return 0;
10305 }
10306
10307 /* Special case for (%dx) while doing input/output op. */
10308 if (i.base_reg
10309 && i.base_reg->reg_type.bitfield.inoutportreg
10310 && i.index_reg == 0
10311 && i.log2_scale_factor == 0
10312 && i.seg[i.mem_operands] == 0
10313 && !operand_type_check (i.types[this_operand], disp))
10314 {
10315 i.types[this_operand] = i.base_reg->reg_type;
10316 return 1;
10317 }
10318
10319 if (i386_index_check (operand_string) == 0)
10320 return 0;
10321 i.flags[this_operand] |= Operand_Mem;
10322 if (i.mem_operands == 0)
10323 i.memop1_string = xstrdup (operand_string);
10324 i.mem_operands++;
10325 }
10326 else
10327 {
10328 /* It's not a memory operand; argh! */
10329 as_bad (_("invalid char %s beginning operand %d `%s'"),
10330 output_invalid (*op_string),
10331 this_operand + 1,
10332 op_string);
10333 return 0;
10334 }
10335 return 1; /* Normal return. */
10336 }
10337 \f
10338 /* Calculate the maximum variable size (i.e., excluding fr_fix)
10339 that an rs_machine_dependent frag may reach. */
10340
10341 unsigned int
10342 i386_frag_max_var (fragS *frag)
10343 {
10344 /* The only relaxable frags are for jumps.
10345 Unconditional jumps can grow by 4 bytes and others by 5 bytes. */
10346 gas_assert (frag->fr_type == rs_machine_dependent);
10347 return TYPE_FROM_RELAX_STATE (frag->fr_subtype) == UNCOND_JUMP ? 4 : 5;
10348 }
10349
10350 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10351 static int
10352 elf_symbol_resolved_in_segment_p (symbolS *fr_symbol, offsetT fr_var)
10353 {
10354 /* STT_GNU_IFUNC symbol must go through PLT. */
10355 if ((symbol_get_bfdsym (fr_symbol)->flags
10356 & BSF_GNU_INDIRECT_FUNCTION) != 0)
10357 return 0;
10358
10359 if (!S_IS_EXTERNAL (fr_symbol))
10360 /* Symbol may be weak or local. */
10361 return !S_IS_WEAK (fr_symbol);
10362
10363 /* Global symbols with non-default visibility can't be preempted. */
10364 if (ELF_ST_VISIBILITY (S_GET_OTHER (fr_symbol)) != STV_DEFAULT)
10365 return 1;
10366
10367 if (fr_var != NO_RELOC)
10368 switch ((enum bfd_reloc_code_real) fr_var)
10369 {
10370 case BFD_RELOC_386_PLT32:
10371 case BFD_RELOC_X86_64_PLT32:
10372 /* Symbol with PLT relocation may be preempted. */
10373 return 0;
10374 default:
10375 abort ();
10376 }
10377
10378 /* Global symbols with default visibility in a shared library may be
10379 preempted by another definition. */
10380 return !shared;
10381 }
10382 #endif
10383
10384 /* md_estimate_size_before_relax()
10385
10386 Called just before relax() for rs_machine_dependent frags. The x86
10387 assembler uses these frags to handle variable size jump
10388 instructions.
10389
10390 Any symbol that is now undefined will not become defined.
10391 Return the correct fr_subtype in the frag.
10392 Return the initial "guess for variable size of frag" to caller.
10393 The guess is actually the growth beyond the fixed part. Whatever
10394 we do to grow the fixed or variable part contributes to our
10395 returned value. */
10396
10397 int
10398 md_estimate_size_before_relax (fragS *fragP, segT segment)
10399 {
10400 /* We've already got fragP->fr_subtype right; all we have to do is
10401 check for un-relaxable symbols. On an ELF system, we can't relax
10402 an externally visible symbol, because it may be overridden by a
10403 shared library. */
10404 if (S_GET_SEGMENT (fragP->fr_symbol) != segment
10405 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10406 || (IS_ELF
10407 && !elf_symbol_resolved_in_segment_p (fragP->fr_symbol,
10408 fragP->fr_var))
10409 #endif
10410 #if defined (OBJ_COFF) && defined (TE_PE)
10411 || (OUTPUT_FLAVOR == bfd_target_coff_flavour
10412 && S_IS_WEAK (fragP->fr_symbol))
10413 #endif
10414 )
10415 {
10416 /* Symbol is undefined in this segment, or we need to keep a
10417 reloc so that weak symbols can be overridden. */
10418 int size = (fragP->fr_subtype & CODE16) ? 2 : 4;
10419 enum bfd_reloc_code_real reloc_type;
10420 unsigned char *opcode;
10421 int old_fr_fix;
10422
10423 if (fragP->fr_var != NO_RELOC)
10424 reloc_type = (enum bfd_reloc_code_real) fragP->fr_var;
10425 else if (size == 2)
10426 reloc_type = BFD_RELOC_16_PCREL;
10427 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10428 else if (need_plt32_p (fragP->fr_symbol))
10429 reloc_type = BFD_RELOC_X86_64_PLT32;
10430 #endif
10431 else
10432 reloc_type = BFD_RELOC_32_PCREL;
10433
10434 old_fr_fix = fragP->fr_fix;
10435 opcode = (unsigned char *) fragP->fr_opcode;
10436
10437 switch (TYPE_FROM_RELAX_STATE (fragP->fr_subtype))
10438 {
10439 case UNCOND_JUMP:
10440 /* Make jmp (0xeb) a (d)word displacement jump. */
10441 opcode[0] = 0xe9;
10442 fragP->fr_fix += size;
10443 fix_new (fragP, old_fr_fix, size,
10444 fragP->fr_symbol,
10445 fragP->fr_offset, 1,
10446 reloc_type);
10447 break;
10448
10449 case COND_JUMP86:
10450 if (size == 2
10451 && (!no_cond_jump_promotion || fragP->fr_var != NO_RELOC))
10452 {
10453 /* Negate the condition, and branch past an
10454 unconditional jump. */
10455 opcode[0] ^= 1;
10456 opcode[1] = 3;
10457 /* Insert an unconditional jump. */
10458 opcode[2] = 0xe9;
10459 /* We added two extra opcode bytes, and have a two byte
10460 offset. */
10461 fragP->fr_fix += 2 + 2;
10462 fix_new (fragP, old_fr_fix + 2, 2,
10463 fragP->fr_symbol,
10464 fragP->fr_offset, 1,
10465 reloc_type);
10466 break;
10467 }
10468 /* Fall through. */
10469
10470 case COND_JUMP:
10471 if (no_cond_jump_promotion && fragP->fr_var == NO_RELOC)
10472 {
10473 fixS *fixP;
10474
10475 fragP->fr_fix += 1;
10476 fixP = fix_new (fragP, old_fr_fix, 1,
10477 fragP->fr_symbol,
10478 fragP->fr_offset, 1,
10479 BFD_RELOC_8_PCREL);
10480 fixP->fx_signed = 1;
10481 break;
10482 }
10483
10484 /* This changes the byte-displacement jump 0x7N
10485 to the (d)word-displacement jump 0x0f,0x8N. */
10486 opcode[1] = opcode[0] + 0x10;
10487 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
10488 /* We've added an opcode byte. */
10489 fragP->fr_fix += 1 + size;
10490 fix_new (fragP, old_fr_fix + 1, size,
10491 fragP->fr_symbol,
10492 fragP->fr_offset, 1,
10493 reloc_type);
10494 break;
10495
10496 default:
10497 BAD_CASE (fragP->fr_subtype);
10498 break;
10499 }
10500 frag_wane (fragP);
10501 return fragP->fr_fix - old_fr_fix;
10502 }
10503
10504 /* Guess size depending on current relax state. Initially the relax
10505 state will correspond to a short jump and we return 1, because
10506 the variable part of the frag (the branch offset) is one byte
10507 long. However, we can relax a section more than once and in that
10508 case we must either set fr_subtype back to the unrelaxed state,
10509 or return the value for the appropriate branch. */
10510 return md_relax_table[fragP->fr_subtype].rlx_length;
10511 }
10512
10513 /* Called after relax() is finished.
10514
10515 In: Address of frag.
10516 fr_type == rs_machine_dependent.
10517 fr_subtype is what the address relaxed to.
10518
10519 Out: Any fixSs and constants are set up.
10520 Caller will turn frag into a ".space 0". */
10521
10522 void
10523 md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT sec ATTRIBUTE_UNUSED,
10524 fragS *fragP)
10525 {
10526 unsigned char *opcode;
10527 unsigned char *where_to_put_displacement = NULL;
10528 offsetT target_address;
10529 offsetT opcode_address;
10530 unsigned int extension = 0;
10531 offsetT displacement_from_opcode_start;
10532
10533 opcode = (unsigned char *) fragP->fr_opcode;
10534
10535 /* Address we want to reach in file space. */
10536 target_address = S_GET_VALUE (fragP->fr_symbol) + fragP->fr_offset;
10537
10538 /* Address opcode resides at in file space. */
10539 opcode_address = fragP->fr_address + fragP->fr_fix;
10540
10541 /* Displacement from opcode start to fill into instruction. */
10542 displacement_from_opcode_start = target_address - opcode_address;
10543
10544 if ((fragP->fr_subtype & BIG) == 0)
10545 {
10546 /* Don't have to change opcode. */
10547 extension = 1; /* 1 opcode + 1 displacement */
10548 where_to_put_displacement = &opcode[1];
10549 }
10550 else
10551 {
10552 if (no_cond_jump_promotion
10553 && TYPE_FROM_RELAX_STATE (fragP->fr_subtype) != UNCOND_JUMP)
10554 as_warn_where (fragP->fr_file, fragP->fr_line,
10555 _("long jump required"));
10556
10557 switch (fragP->fr_subtype)
10558 {
10559 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG):
10560 extension = 4; /* 1 opcode + 4 displacement */
10561 opcode[0] = 0xe9;
10562 where_to_put_displacement = &opcode[1];
10563 break;
10564
10565 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16):
10566 extension = 2; /* 1 opcode + 2 displacement */
10567 opcode[0] = 0xe9;
10568 where_to_put_displacement = &opcode[1];
10569 break;
10570
10571 case ENCODE_RELAX_STATE (COND_JUMP, BIG):
10572 case ENCODE_RELAX_STATE (COND_JUMP86, BIG):
10573 extension = 5; /* 2 opcode + 4 displacement */
10574 opcode[1] = opcode[0] + 0x10;
10575 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
10576 where_to_put_displacement = &opcode[2];
10577 break;
10578
10579 case ENCODE_RELAX_STATE (COND_JUMP, BIG16):
10580 extension = 3; /* 2 opcode + 2 displacement */
10581 opcode[1] = opcode[0] + 0x10;
10582 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
10583 where_to_put_displacement = &opcode[2];
10584 break;
10585
10586 case ENCODE_RELAX_STATE (COND_JUMP86, BIG16):
10587 extension = 4;
10588 opcode[0] ^= 1;
10589 opcode[1] = 3;
10590 opcode[2] = 0xe9;
10591 where_to_put_displacement = &opcode[3];
10592 break;
10593
10594 default:
10595 BAD_CASE (fragP->fr_subtype);
10596 break;
10597 }
10598 }
10599
10600 /* If size if less then four we are sure that the operand fits,
10601 but if it's 4, then it could be that the displacement is larger
10602 then -/+ 2GB. */
10603 if (DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype) == 4
10604 && object_64bit
10605 && ((addressT) (displacement_from_opcode_start - extension
10606 + ((addressT) 1 << 31))
10607 > (((addressT) 2 << 31) - 1)))
10608 {
10609 as_bad_where (fragP->fr_file, fragP->fr_line,
10610 _("jump target out of range"));
10611 /* Make us emit 0. */
10612 displacement_from_opcode_start = extension;
10613 }
10614 /* Now put displacement after opcode. */
10615 md_number_to_chars ((char *) where_to_put_displacement,
10616 (valueT) (displacement_from_opcode_start - extension),
10617 DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype));
10618 fragP->fr_fix += extension;
10619 }
10620 \f
10621 /* Apply a fixup (fixP) to segment data, once it has been determined
10622 by our caller that we have all the info we need to fix it up.
10623
10624 Parameter valP is the pointer to the value of the bits.
10625
10626 On the 386, immediates, displacements, and data pointers are all in
10627 the same (little-endian) format, so we don't need to care about which
10628 we are handling. */
10629
10630 void
10631 md_apply_fix (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED)
10632 {
10633 char *p = fixP->fx_where + fixP->fx_frag->fr_literal;
10634 valueT value = *valP;
10635
10636 #if !defined (TE_Mach)
10637 if (fixP->fx_pcrel)
10638 {
10639 switch (fixP->fx_r_type)
10640 {
10641 default:
10642 break;
10643
10644 case BFD_RELOC_64:
10645 fixP->fx_r_type = BFD_RELOC_64_PCREL;
10646 break;
10647 case BFD_RELOC_32:
10648 case BFD_RELOC_X86_64_32S:
10649 fixP->fx_r_type = BFD_RELOC_32_PCREL;
10650 break;
10651 case BFD_RELOC_16:
10652 fixP->fx_r_type = BFD_RELOC_16_PCREL;
10653 break;
10654 case BFD_RELOC_8:
10655 fixP->fx_r_type = BFD_RELOC_8_PCREL;
10656 break;
10657 }
10658 }
10659
10660 if (fixP->fx_addsy != NULL
10661 && (fixP->fx_r_type == BFD_RELOC_32_PCREL
10662 || fixP->fx_r_type == BFD_RELOC_64_PCREL
10663 || fixP->fx_r_type == BFD_RELOC_16_PCREL
10664 || fixP->fx_r_type == BFD_RELOC_8_PCREL)
10665 && !use_rela_relocations)
10666 {
10667 /* This is a hack. There should be a better way to handle this.
10668 This covers for the fact that bfd_install_relocation will
10669 subtract the current location (for partial_inplace, PC relative
10670 relocations); see more below. */
10671 #ifndef OBJ_AOUT
10672 if (IS_ELF
10673 #ifdef TE_PE
10674 || OUTPUT_FLAVOR == bfd_target_coff_flavour
10675 #endif
10676 )
10677 value += fixP->fx_where + fixP->fx_frag->fr_address;
10678 #endif
10679 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10680 if (IS_ELF)
10681 {
10682 segT sym_seg = S_GET_SEGMENT (fixP->fx_addsy);
10683
10684 if ((sym_seg == seg
10685 || (symbol_section_p (fixP->fx_addsy)
10686 && sym_seg != absolute_section))
10687 && !generic_force_reloc (fixP))
10688 {
10689 /* Yes, we add the values in twice. This is because
10690 bfd_install_relocation subtracts them out again. I think
10691 bfd_install_relocation is broken, but I don't dare change
10692 it. FIXME. */
10693 value += fixP->fx_where + fixP->fx_frag->fr_address;
10694 }
10695 }
10696 #endif
10697 #if defined (OBJ_COFF) && defined (TE_PE)
10698 /* For some reason, the PE format does not store a
10699 section address offset for a PC relative symbol. */
10700 if (S_GET_SEGMENT (fixP->fx_addsy) != seg
10701 || S_IS_WEAK (fixP->fx_addsy))
10702 value += md_pcrel_from (fixP);
10703 #endif
10704 }
10705 #if defined (OBJ_COFF) && defined (TE_PE)
10706 if (fixP->fx_addsy != NULL
10707 && S_IS_WEAK (fixP->fx_addsy)
10708 /* PR 16858: Do not modify weak function references. */
10709 && ! fixP->fx_pcrel)
10710 {
10711 #if !defined (TE_PEP)
10712 /* For x86 PE weak function symbols are neither PC-relative
10713 nor do they set S_IS_FUNCTION. So the only reliable way
10714 to detect them is to check the flags of their containing
10715 section. */
10716 if (S_GET_SEGMENT (fixP->fx_addsy) != NULL
10717 && S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_CODE)
10718 ;
10719 else
10720 #endif
10721 value -= S_GET_VALUE (fixP->fx_addsy);
10722 }
10723 #endif
10724
10725 /* Fix a few things - the dynamic linker expects certain values here,
10726 and we must not disappoint it. */
10727 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10728 if (IS_ELF && fixP->fx_addsy)
10729 switch (fixP->fx_r_type)
10730 {
10731 case BFD_RELOC_386_PLT32:
10732 case BFD_RELOC_X86_64_PLT32:
10733 /* Make the jump instruction point to the address of the operand.
10734 At runtime we merely add the offset to the actual PLT entry.
10735 NB: Subtract the offset size only for jump instructions. */
10736 if (fixP->fx_pcrel)
10737 value = -4;
10738 break;
10739
10740 case BFD_RELOC_386_TLS_GD:
10741 case BFD_RELOC_386_TLS_LDM:
10742 case BFD_RELOC_386_TLS_IE_32:
10743 case BFD_RELOC_386_TLS_IE:
10744 case BFD_RELOC_386_TLS_GOTIE:
10745 case BFD_RELOC_386_TLS_GOTDESC:
10746 case BFD_RELOC_X86_64_TLSGD:
10747 case BFD_RELOC_X86_64_TLSLD:
10748 case BFD_RELOC_X86_64_GOTTPOFF:
10749 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
10750 value = 0; /* Fully resolved at runtime. No addend. */
10751 /* Fallthrough */
10752 case BFD_RELOC_386_TLS_LE:
10753 case BFD_RELOC_386_TLS_LDO_32:
10754 case BFD_RELOC_386_TLS_LE_32:
10755 case BFD_RELOC_X86_64_DTPOFF32:
10756 case BFD_RELOC_X86_64_DTPOFF64:
10757 case BFD_RELOC_X86_64_TPOFF32:
10758 case BFD_RELOC_X86_64_TPOFF64:
10759 S_SET_THREAD_LOCAL (fixP->fx_addsy);
10760 break;
10761
10762 case BFD_RELOC_386_TLS_DESC_CALL:
10763 case BFD_RELOC_X86_64_TLSDESC_CALL:
10764 value = 0; /* Fully resolved at runtime. No addend. */
10765 S_SET_THREAD_LOCAL (fixP->fx_addsy);
10766 fixP->fx_done = 0;
10767 return;
10768
10769 case BFD_RELOC_VTABLE_INHERIT:
10770 case BFD_RELOC_VTABLE_ENTRY:
10771 fixP->fx_done = 0;
10772 return;
10773
10774 default:
10775 break;
10776 }
10777 #endif /* defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) */
10778 *valP = value;
10779 #endif /* !defined (TE_Mach) */
10780
10781 /* Are we finished with this relocation now? */
10782 if (fixP->fx_addsy == NULL)
10783 fixP->fx_done = 1;
10784 #if defined (OBJ_COFF) && defined (TE_PE)
10785 else if (fixP->fx_addsy != NULL && S_IS_WEAK (fixP->fx_addsy))
10786 {
10787 fixP->fx_done = 0;
10788 /* Remember value for tc_gen_reloc. */
10789 fixP->fx_addnumber = value;
10790 /* Clear out the frag for now. */
10791 value = 0;
10792 }
10793 #endif
10794 else if (use_rela_relocations)
10795 {
10796 fixP->fx_no_overflow = 1;
10797 /* Remember value for tc_gen_reloc. */
10798 fixP->fx_addnumber = value;
10799 value = 0;
10800 }
10801
10802 md_number_to_chars (p, value, fixP->fx_size);
10803 }
10804 \f
10805 const char *
10806 md_atof (int type, char *litP, int *sizeP)
10807 {
10808 /* This outputs the LITTLENUMs in REVERSE order;
10809 in accord with the bigendian 386. */
10810 return ieee_md_atof (type, litP, sizeP, FALSE);
10811 }
10812 \f
10813 static char output_invalid_buf[sizeof (unsigned char) * 2 + 6];
10814
10815 static char *
10816 output_invalid (int c)
10817 {
10818 if (ISPRINT (c))
10819 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
10820 "'%c'", c);
10821 else
10822 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
10823 "(0x%x)", (unsigned char) c);
10824 return output_invalid_buf;
10825 }
10826
10827 /* REG_STRING starts *before* REGISTER_PREFIX. */
10828
10829 static const reg_entry *
10830 parse_real_register (char *reg_string, char **end_op)
10831 {
10832 char *s = reg_string;
10833 char *p;
10834 char reg_name_given[MAX_REG_NAME_SIZE + 1];
10835 const reg_entry *r;
10836
10837 /* Skip possible REGISTER_PREFIX and possible whitespace. */
10838 if (*s == REGISTER_PREFIX)
10839 ++s;
10840
10841 if (is_space_char (*s))
10842 ++s;
10843
10844 p = reg_name_given;
10845 while ((*p++ = register_chars[(unsigned char) *s]) != '\0')
10846 {
10847 if (p >= reg_name_given + MAX_REG_NAME_SIZE)
10848 return (const reg_entry *) NULL;
10849 s++;
10850 }
10851
10852 /* For naked regs, make sure that we are not dealing with an identifier.
10853 This prevents confusing an identifier like `eax_var' with register
10854 `eax'. */
10855 if (allow_naked_reg && identifier_chars[(unsigned char) *s])
10856 return (const reg_entry *) NULL;
10857
10858 *end_op = s;
10859
10860 r = (const reg_entry *) hash_find (reg_hash, reg_name_given);
10861
10862 /* Handle floating point regs, allowing spaces in the (i) part. */
10863 if (r == i386_regtab /* %st is first entry of table */)
10864 {
10865 if (!cpu_arch_flags.bitfield.cpu8087
10866 && !cpu_arch_flags.bitfield.cpu287
10867 && !cpu_arch_flags.bitfield.cpu387)
10868 return (const reg_entry *) NULL;
10869
10870 if (is_space_char (*s))
10871 ++s;
10872 if (*s == '(')
10873 {
10874 ++s;
10875 if (is_space_char (*s))
10876 ++s;
10877 if (*s >= '0' && *s <= '7')
10878 {
10879 int fpr = *s - '0';
10880 ++s;
10881 if (is_space_char (*s))
10882 ++s;
10883 if (*s == ')')
10884 {
10885 *end_op = s + 1;
10886 r = (const reg_entry *) hash_find (reg_hash, "st(0)");
10887 know (r);
10888 return r + fpr;
10889 }
10890 }
10891 /* We have "%st(" then garbage. */
10892 return (const reg_entry *) NULL;
10893 }
10894 }
10895
10896 if (r == NULL || allow_pseudo_reg)
10897 return r;
10898
10899 if (operand_type_all_zero (&r->reg_type))
10900 return (const reg_entry *) NULL;
10901
10902 if ((r->reg_type.bitfield.dword
10903 || (r->reg_type.bitfield.sreg && r->reg_num > 3)
10904 || r->reg_type.bitfield.control
10905 || r->reg_type.bitfield.debug
10906 || r->reg_type.bitfield.test)
10907 && !cpu_arch_flags.bitfield.cpui386)
10908 return (const reg_entry *) NULL;
10909
10910 if (r->reg_type.bitfield.regmmx && !cpu_arch_flags.bitfield.cpummx)
10911 return (const reg_entry *) NULL;
10912
10913 if (!cpu_arch_flags.bitfield.cpuavx512f)
10914 {
10915 if (r->reg_type.bitfield.zmmword || r->reg_type.bitfield.regmask)
10916 return (const reg_entry *) NULL;
10917
10918 if (!cpu_arch_flags.bitfield.cpuavx)
10919 {
10920 if (r->reg_type.bitfield.ymmword)
10921 return (const reg_entry *) NULL;
10922
10923 if (!cpu_arch_flags.bitfield.cpusse && r->reg_type.bitfield.xmmword)
10924 return (const reg_entry *) NULL;
10925 }
10926 }
10927
10928 if (r->reg_type.bitfield.regbnd && !cpu_arch_flags.bitfield.cpumpx)
10929 return (const reg_entry *) NULL;
10930
10931 /* Don't allow fake index register unless allow_index_reg isn't 0. */
10932 if (!allow_index_reg && r->reg_num == RegIZ)
10933 return (const reg_entry *) NULL;
10934
10935 /* Upper 16 vector registers are only available with VREX in 64bit
10936 mode, and require EVEX encoding. */
10937 if (r->reg_flags & RegVRex)
10938 {
10939 if (!cpu_arch_flags.bitfield.cpuavx512f
10940 || flag_code != CODE_64BIT)
10941 return (const reg_entry *) NULL;
10942
10943 i.vec_encoding = vex_encoding_evex;
10944 }
10945
10946 if (((r->reg_flags & (RegRex64 | RegRex)) || r->reg_type.bitfield.qword)
10947 && (!cpu_arch_flags.bitfield.cpulm || !r->reg_type.bitfield.control)
10948 && flag_code != CODE_64BIT)
10949 return (const reg_entry *) NULL;
10950
10951 if (r->reg_type.bitfield.sreg && r->reg_num == RegFlat && !intel_syntax)
10952 return (const reg_entry *) NULL;
10953
10954 return r;
10955 }
10956
10957 /* REG_STRING starts *before* REGISTER_PREFIX. */
10958
10959 static const reg_entry *
10960 parse_register (char *reg_string, char **end_op)
10961 {
10962 const reg_entry *r;
10963
10964 if (*reg_string == REGISTER_PREFIX || allow_naked_reg)
10965 r = parse_real_register (reg_string, end_op);
10966 else
10967 r = NULL;
10968 if (!r)
10969 {
10970 char *save = input_line_pointer;
10971 char c;
10972 symbolS *symbolP;
10973
10974 input_line_pointer = reg_string;
10975 c = get_symbol_name (&reg_string);
10976 symbolP = symbol_find (reg_string);
10977 if (symbolP && S_GET_SEGMENT (symbolP) == reg_section)
10978 {
10979 const expressionS *e = symbol_get_value_expression (symbolP);
10980
10981 know (e->X_op == O_register);
10982 know (e->X_add_number >= 0
10983 && (valueT) e->X_add_number < i386_regtab_size);
10984 r = i386_regtab + e->X_add_number;
10985 if ((r->reg_flags & RegVRex))
10986 i.vec_encoding = vex_encoding_evex;
10987 *end_op = input_line_pointer;
10988 }
10989 *input_line_pointer = c;
10990 input_line_pointer = save;
10991 }
10992 return r;
10993 }
10994
10995 int
10996 i386_parse_name (char *name, expressionS *e, char *nextcharP)
10997 {
10998 const reg_entry *r;
10999 char *end = input_line_pointer;
11000
11001 *end = *nextcharP;
11002 r = parse_register (name, &input_line_pointer);
11003 if (r && end <= input_line_pointer)
11004 {
11005 *nextcharP = *input_line_pointer;
11006 *input_line_pointer = 0;
11007 e->X_op = O_register;
11008 e->X_add_number = r - i386_regtab;
11009 return 1;
11010 }
11011 input_line_pointer = end;
11012 *end = 0;
11013 return intel_syntax ? i386_intel_parse_name (name, e) : 0;
11014 }
11015
11016 void
11017 md_operand (expressionS *e)
11018 {
11019 char *end;
11020 const reg_entry *r;
11021
11022 switch (*input_line_pointer)
11023 {
11024 case REGISTER_PREFIX:
11025 r = parse_real_register (input_line_pointer, &end);
11026 if (r)
11027 {
11028 e->X_op = O_register;
11029 e->X_add_number = r - i386_regtab;
11030 input_line_pointer = end;
11031 }
11032 break;
11033
11034 case '[':
11035 gas_assert (intel_syntax);
11036 end = input_line_pointer++;
11037 expression (e);
11038 if (*input_line_pointer == ']')
11039 {
11040 ++input_line_pointer;
11041 e->X_op_symbol = make_expr_symbol (e);
11042 e->X_add_symbol = NULL;
11043 e->X_add_number = 0;
11044 e->X_op = O_index;
11045 }
11046 else
11047 {
11048 e->X_op = O_absent;
11049 input_line_pointer = end;
11050 }
11051 break;
11052 }
11053 }
11054
11055 \f
11056 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11057 const char *md_shortopts = "kVQ:sqnO::";
11058 #else
11059 const char *md_shortopts = "qnO::";
11060 #endif
11061
11062 #define OPTION_32 (OPTION_MD_BASE + 0)
11063 #define OPTION_64 (OPTION_MD_BASE + 1)
11064 #define OPTION_DIVIDE (OPTION_MD_BASE + 2)
11065 #define OPTION_MARCH (OPTION_MD_BASE + 3)
11066 #define OPTION_MTUNE (OPTION_MD_BASE + 4)
11067 #define OPTION_MMNEMONIC (OPTION_MD_BASE + 5)
11068 #define OPTION_MSYNTAX (OPTION_MD_BASE + 6)
11069 #define OPTION_MINDEX_REG (OPTION_MD_BASE + 7)
11070 #define OPTION_MNAKED_REG (OPTION_MD_BASE + 8)
11071 #define OPTION_MRELAX_RELOCATIONS (OPTION_MD_BASE + 9)
11072 #define OPTION_MSSE2AVX (OPTION_MD_BASE + 10)
11073 #define OPTION_MSSE_CHECK (OPTION_MD_BASE + 11)
11074 #define OPTION_MOPERAND_CHECK (OPTION_MD_BASE + 12)
11075 #define OPTION_MAVXSCALAR (OPTION_MD_BASE + 13)
11076 #define OPTION_X32 (OPTION_MD_BASE + 14)
11077 #define OPTION_MADD_BND_PREFIX (OPTION_MD_BASE + 15)
11078 #define OPTION_MEVEXLIG (OPTION_MD_BASE + 16)
11079 #define OPTION_MEVEXWIG (OPTION_MD_BASE + 17)
11080 #define OPTION_MBIG_OBJ (OPTION_MD_BASE + 18)
11081 #define OPTION_MOMIT_LOCK_PREFIX (OPTION_MD_BASE + 19)
11082 #define OPTION_MEVEXRCIG (OPTION_MD_BASE + 20)
11083 #define OPTION_MSHARED (OPTION_MD_BASE + 21)
11084 #define OPTION_MAMD64 (OPTION_MD_BASE + 22)
11085 #define OPTION_MINTEL64 (OPTION_MD_BASE + 23)
11086 #define OPTION_MFENCE_AS_LOCK_ADD (OPTION_MD_BASE + 24)
11087 #define OPTION_X86_USED_NOTE (OPTION_MD_BASE + 25)
11088 #define OPTION_MVEXWIG (OPTION_MD_BASE + 26)
11089
11090 struct option md_longopts[] =
11091 {
11092 {"32", no_argument, NULL, OPTION_32},
11093 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
11094 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
11095 {"64", no_argument, NULL, OPTION_64},
11096 #endif
11097 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11098 {"x32", no_argument, NULL, OPTION_X32},
11099 {"mshared", no_argument, NULL, OPTION_MSHARED},
11100 {"mx86-used-note", required_argument, NULL, OPTION_X86_USED_NOTE},
11101 #endif
11102 {"divide", no_argument, NULL, OPTION_DIVIDE},
11103 {"march", required_argument, NULL, OPTION_MARCH},
11104 {"mtune", required_argument, NULL, OPTION_MTUNE},
11105 {"mmnemonic", required_argument, NULL, OPTION_MMNEMONIC},
11106 {"msyntax", required_argument, NULL, OPTION_MSYNTAX},
11107 {"mindex-reg", no_argument, NULL, OPTION_MINDEX_REG},
11108 {"mnaked-reg", no_argument, NULL, OPTION_MNAKED_REG},
11109 {"msse2avx", no_argument, NULL, OPTION_MSSE2AVX},
11110 {"msse-check", required_argument, NULL, OPTION_MSSE_CHECK},
11111 {"moperand-check", required_argument, NULL, OPTION_MOPERAND_CHECK},
11112 {"mavxscalar", required_argument, NULL, OPTION_MAVXSCALAR},
11113 {"mvexwig", required_argument, NULL, OPTION_MVEXWIG},
11114 {"madd-bnd-prefix", no_argument, NULL, OPTION_MADD_BND_PREFIX},
11115 {"mevexlig", required_argument, NULL, OPTION_MEVEXLIG},
11116 {"mevexwig", required_argument, NULL, OPTION_MEVEXWIG},
11117 # if defined (TE_PE) || defined (TE_PEP)
11118 {"mbig-obj", no_argument, NULL, OPTION_MBIG_OBJ},
11119 #endif
11120 {"momit-lock-prefix", required_argument, NULL, OPTION_MOMIT_LOCK_PREFIX},
11121 {"mfence-as-lock-add", required_argument, NULL, OPTION_MFENCE_AS_LOCK_ADD},
11122 {"mrelax-relocations", required_argument, NULL, OPTION_MRELAX_RELOCATIONS},
11123 {"mevexrcig", required_argument, NULL, OPTION_MEVEXRCIG},
11124 {"mamd64", no_argument, NULL, OPTION_MAMD64},
11125 {"mintel64", no_argument, NULL, OPTION_MINTEL64},
11126 {NULL, no_argument, NULL, 0}
11127 };
11128 size_t md_longopts_size = sizeof (md_longopts);
11129
11130 int
11131 md_parse_option (int c, const char *arg)
11132 {
11133 unsigned int j;
11134 char *arch, *next, *saved;
11135
11136 switch (c)
11137 {
11138 case 'n':
11139 optimize_align_code = 0;
11140 break;
11141
11142 case 'q':
11143 quiet_warnings = 1;
11144 break;
11145
11146 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11147 /* -Qy, -Qn: SVR4 arguments controlling whether a .comment section
11148 should be emitted or not. FIXME: Not implemented. */
11149 case 'Q':
11150 if ((arg[0] != 'y' && arg[0] != 'n') || arg[1])
11151 return 0;
11152 break;
11153
11154 /* -V: SVR4 argument to print version ID. */
11155 case 'V':
11156 print_version_id ();
11157 break;
11158
11159 /* -k: Ignore for FreeBSD compatibility. */
11160 case 'k':
11161 break;
11162
11163 case 's':
11164 /* -s: On i386 Solaris, this tells the native assembler to use
11165 .stab instead of .stab.excl. We always use .stab anyhow. */
11166 break;
11167
11168 case OPTION_MSHARED:
11169 shared = 1;
11170 break;
11171
11172 case OPTION_X86_USED_NOTE:
11173 if (strcasecmp (arg, "yes") == 0)
11174 x86_used_note = 1;
11175 else if (strcasecmp (arg, "no") == 0)
11176 x86_used_note = 0;
11177 else
11178 as_fatal (_("invalid -mx86-used-note= option: `%s'"), arg);
11179 break;
11180
11181
11182 #endif
11183 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
11184 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
11185 case OPTION_64:
11186 {
11187 const char **list, **l;
11188
11189 list = bfd_target_list ();
11190 for (l = list; *l != NULL; l++)
11191 if (CONST_STRNEQ (*l, "elf64-x86-64")
11192 || strcmp (*l, "coff-x86-64") == 0
11193 || strcmp (*l, "pe-x86-64") == 0
11194 || strcmp (*l, "pei-x86-64") == 0
11195 || strcmp (*l, "mach-o-x86-64") == 0)
11196 {
11197 default_arch = "x86_64";
11198 break;
11199 }
11200 if (*l == NULL)
11201 as_fatal (_("no compiled in support for x86_64"));
11202 free (list);
11203 }
11204 break;
11205 #endif
11206
11207 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11208 case OPTION_X32:
11209 if (IS_ELF)
11210 {
11211 const char **list, **l;
11212
11213 list = bfd_target_list ();
11214 for (l = list; *l != NULL; l++)
11215 if (CONST_STRNEQ (*l, "elf32-x86-64"))
11216 {
11217 default_arch = "x86_64:32";
11218 break;
11219 }
11220 if (*l == NULL)
11221 as_fatal (_("no compiled in support for 32bit x86_64"));
11222 free (list);
11223 }
11224 else
11225 as_fatal (_("32bit x86_64 is only supported for ELF"));
11226 break;
11227 #endif
11228
11229 case OPTION_32:
11230 default_arch = "i386";
11231 break;
11232
11233 case OPTION_DIVIDE:
11234 #ifdef SVR4_COMMENT_CHARS
11235 {
11236 char *n, *t;
11237 const char *s;
11238
11239 n = XNEWVEC (char, strlen (i386_comment_chars) + 1);
11240 t = n;
11241 for (s = i386_comment_chars; *s != '\0'; s++)
11242 if (*s != '/')
11243 *t++ = *s;
11244 *t = '\0';
11245 i386_comment_chars = n;
11246 }
11247 #endif
11248 break;
11249
11250 case OPTION_MARCH:
11251 saved = xstrdup (arg);
11252 arch = saved;
11253 /* Allow -march=+nosse. */
11254 if (*arch == '+')
11255 arch++;
11256 do
11257 {
11258 if (*arch == '.')
11259 as_fatal (_("invalid -march= option: `%s'"), arg);
11260 next = strchr (arch, '+');
11261 if (next)
11262 *next++ = '\0';
11263 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
11264 {
11265 if (strcmp (arch, cpu_arch [j].name) == 0)
11266 {
11267 /* Processor. */
11268 if (! cpu_arch[j].flags.bitfield.cpui386)
11269 continue;
11270
11271 cpu_arch_name = cpu_arch[j].name;
11272 cpu_sub_arch_name = NULL;
11273 cpu_arch_flags = cpu_arch[j].flags;
11274 cpu_arch_isa = cpu_arch[j].type;
11275 cpu_arch_isa_flags = cpu_arch[j].flags;
11276 if (!cpu_arch_tune_set)
11277 {
11278 cpu_arch_tune = cpu_arch_isa;
11279 cpu_arch_tune_flags = cpu_arch_isa_flags;
11280 }
11281 break;
11282 }
11283 else if (*cpu_arch [j].name == '.'
11284 && strcmp (arch, cpu_arch [j].name + 1) == 0)
11285 {
11286 /* ISA extension. */
11287 i386_cpu_flags flags;
11288
11289 flags = cpu_flags_or (cpu_arch_flags,
11290 cpu_arch[j].flags);
11291
11292 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
11293 {
11294 if (cpu_sub_arch_name)
11295 {
11296 char *name = cpu_sub_arch_name;
11297 cpu_sub_arch_name = concat (name,
11298 cpu_arch[j].name,
11299 (const char *) NULL);
11300 free (name);
11301 }
11302 else
11303 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
11304 cpu_arch_flags = flags;
11305 cpu_arch_isa_flags = flags;
11306 }
11307 else
11308 cpu_arch_isa_flags
11309 = cpu_flags_or (cpu_arch_isa_flags,
11310 cpu_arch[j].flags);
11311 break;
11312 }
11313 }
11314
11315 if (j >= ARRAY_SIZE (cpu_arch))
11316 {
11317 /* Disable an ISA extension. */
11318 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
11319 if (strcmp (arch, cpu_noarch [j].name) == 0)
11320 {
11321 i386_cpu_flags flags;
11322
11323 flags = cpu_flags_and_not (cpu_arch_flags,
11324 cpu_noarch[j].flags);
11325 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
11326 {
11327 if (cpu_sub_arch_name)
11328 {
11329 char *name = cpu_sub_arch_name;
11330 cpu_sub_arch_name = concat (arch,
11331 (const char *) NULL);
11332 free (name);
11333 }
11334 else
11335 cpu_sub_arch_name = xstrdup (arch);
11336 cpu_arch_flags = flags;
11337 cpu_arch_isa_flags = flags;
11338 }
11339 break;
11340 }
11341
11342 if (j >= ARRAY_SIZE (cpu_noarch))
11343 j = ARRAY_SIZE (cpu_arch);
11344 }
11345
11346 if (j >= ARRAY_SIZE (cpu_arch))
11347 as_fatal (_("invalid -march= option: `%s'"), arg);
11348
11349 arch = next;
11350 }
11351 while (next != NULL);
11352 free (saved);
11353 break;
11354
11355 case OPTION_MTUNE:
11356 if (*arg == '.')
11357 as_fatal (_("invalid -mtune= option: `%s'"), arg);
11358 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
11359 {
11360 if (strcmp (arg, cpu_arch [j].name) == 0)
11361 {
11362 cpu_arch_tune_set = 1;
11363 cpu_arch_tune = cpu_arch [j].type;
11364 cpu_arch_tune_flags = cpu_arch[j].flags;
11365 break;
11366 }
11367 }
11368 if (j >= ARRAY_SIZE (cpu_arch))
11369 as_fatal (_("invalid -mtune= option: `%s'"), arg);
11370 break;
11371
11372 case OPTION_MMNEMONIC:
11373 if (strcasecmp (arg, "att") == 0)
11374 intel_mnemonic = 0;
11375 else if (strcasecmp (arg, "intel") == 0)
11376 intel_mnemonic = 1;
11377 else
11378 as_fatal (_("invalid -mmnemonic= option: `%s'"), arg);
11379 break;
11380
11381 case OPTION_MSYNTAX:
11382 if (strcasecmp (arg, "att") == 0)
11383 intel_syntax = 0;
11384 else if (strcasecmp (arg, "intel") == 0)
11385 intel_syntax = 1;
11386 else
11387 as_fatal (_("invalid -msyntax= option: `%s'"), arg);
11388 break;
11389
11390 case OPTION_MINDEX_REG:
11391 allow_index_reg = 1;
11392 break;
11393
11394 case OPTION_MNAKED_REG:
11395 allow_naked_reg = 1;
11396 break;
11397
11398 case OPTION_MSSE2AVX:
11399 sse2avx = 1;
11400 break;
11401
11402 case OPTION_MSSE_CHECK:
11403 if (strcasecmp (arg, "error") == 0)
11404 sse_check = check_error;
11405 else if (strcasecmp (arg, "warning") == 0)
11406 sse_check = check_warning;
11407 else if (strcasecmp (arg, "none") == 0)
11408 sse_check = check_none;
11409 else
11410 as_fatal (_("invalid -msse-check= option: `%s'"), arg);
11411 break;
11412
11413 case OPTION_MOPERAND_CHECK:
11414 if (strcasecmp (arg, "error") == 0)
11415 operand_check = check_error;
11416 else if (strcasecmp (arg, "warning") == 0)
11417 operand_check = check_warning;
11418 else if (strcasecmp (arg, "none") == 0)
11419 operand_check = check_none;
11420 else
11421 as_fatal (_("invalid -moperand-check= option: `%s'"), arg);
11422 break;
11423
11424 case OPTION_MAVXSCALAR:
11425 if (strcasecmp (arg, "128") == 0)
11426 avxscalar = vex128;
11427 else if (strcasecmp (arg, "256") == 0)
11428 avxscalar = vex256;
11429 else
11430 as_fatal (_("invalid -mavxscalar= option: `%s'"), arg);
11431 break;
11432
11433 case OPTION_MVEXWIG:
11434 if (strcmp (arg, "0") == 0)
11435 vexwig = evexw0;
11436 else if (strcmp (arg, "1") == 0)
11437 vexwig = evexw1;
11438 else
11439 as_fatal (_("invalid -mvexwig= option: `%s'"), arg);
11440 break;
11441
11442 case OPTION_MADD_BND_PREFIX:
11443 add_bnd_prefix = 1;
11444 break;
11445
11446 case OPTION_MEVEXLIG:
11447 if (strcmp (arg, "128") == 0)
11448 evexlig = evexl128;
11449 else if (strcmp (arg, "256") == 0)
11450 evexlig = evexl256;
11451 else if (strcmp (arg, "512") == 0)
11452 evexlig = evexl512;
11453 else
11454 as_fatal (_("invalid -mevexlig= option: `%s'"), arg);
11455 break;
11456
11457 case OPTION_MEVEXRCIG:
11458 if (strcmp (arg, "rne") == 0)
11459 evexrcig = rne;
11460 else if (strcmp (arg, "rd") == 0)
11461 evexrcig = rd;
11462 else if (strcmp (arg, "ru") == 0)
11463 evexrcig = ru;
11464 else if (strcmp (arg, "rz") == 0)
11465 evexrcig = rz;
11466 else
11467 as_fatal (_("invalid -mevexrcig= option: `%s'"), arg);
11468 break;
11469
11470 case OPTION_MEVEXWIG:
11471 if (strcmp (arg, "0") == 0)
11472 evexwig = evexw0;
11473 else if (strcmp (arg, "1") == 0)
11474 evexwig = evexw1;
11475 else
11476 as_fatal (_("invalid -mevexwig= option: `%s'"), arg);
11477 break;
11478
11479 # if defined (TE_PE) || defined (TE_PEP)
11480 case OPTION_MBIG_OBJ:
11481 use_big_obj = 1;
11482 break;
11483 #endif
11484
11485 case OPTION_MOMIT_LOCK_PREFIX:
11486 if (strcasecmp (arg, "yes") == 0)
11487 omit_lock_prefix = 1;
11488 else if (strcasecmp (arg, "no") == 0)
11489 omit_lock_prefix = 0;
11490 else
11491 as_fatal (_("invalid -momit-lock-prefix= option: `%s'"), arg);
11492 break;
11493
11494 case OPTION_MFENCE_AS_LOCK_ADD:
11495 if (strcasecmp (arg, "yes") == 0)
11496 avoid_fence = 1;
11497 else if (strcasecmp (arg, "no") == 0)
11498 avoid_fence = 0;
11499 else
11500 as_fatal (_("invalid -mfence-as-lock-add= option: `%s'"), arg);
11501 break;
11502
11503 case OPTION_MRELAX_RELOCATIONS:
11504 if (strcasecmp (arg, "yes") == 0)
11505 generate_relax_relocations = 1;
11506 else if (strcasecmp (arg, "no") == 0)
11507 generate_relax_relocations = 0;
11508 else
11509 as_fatal (_("invalid -mrelax-relocations= option: `%s'"), arg);
11510 break;
11511
11512 case OPTION_MAMD64:
11513 intel64 = 0;
11514 break;
11515
11516 case OPTION_MINTEL64:
11517 intel64 = 1;
11518 break;
11519
11520 case 'O':
11521 if (arg == NULL)
11522 {
11523 optimize = 1;
11524 /* Turn off -Os. */
11525 optimize_for_space = 0;
11526 }
11527 else if (*arg == 's')
11528 {
11529 optimize_for_space = 1;
11530 /* Turn on all encoding optimizations. */
11531 optimize = INT_MAX;
11532 }
11533 else
11534 {
11535 optimize = atoi (arg);
11536 /* Turn off -Os. */
11537 optimize_for_space = 0;
11538 }
11539 break;
11540
11541 default:
11542 return 0;
11543 }
11544 return 1;
11545 }
11546
11547 #define MESSAGE_TEMPLATE \
11548 " "
11549
11550 static char *
11551 output_message (FILE *stream, char *p, char *message, char *start,
11552 int *left_p, const char *name, int len)
11553 {
11554 int size = sizeof (MESSAGE_TEMPLATE);
11555 int left = *left_p;
11556
11557 /* Reserve 2 spaces for ", " or ",\0" */
11558 left -= len + 2;
11559
11560 /* Check if there is any room. */
11561 if (left >= 0)
11562 {
11563 if (p != start)
11564 {
11565 *p++ = ',';
11566 *p++ = ' ';
11567 }
11568 p = mempcpy (p, name, len);
11569 }
11570 else
11571 {
11572 /* Output the current message now and start a new one. */
11573 *p++ = ',';
11574 *p = '\0';
11575 fprintf (stream, "%s\n", message);
11576 p = start;
11577 left = size - (start - message) - len - 2;
11578
11579 gas_assert (left >= 0);
11580
11581 p = mempcpy (p, name, len);
11582 }
11583
11584 *left_p = left;
11585 return p;
11586 }
11587
11588 static void
11589 show_arch (FILE *stream, int ext, int check)
11590 {
11591 static char message[] = MESSAGE_TEMPLATE;
11592 char *start = message + 27;
11593 char *p;
11594 int size = sizeof (MESSAGE_TEMPLATE);
11595 int left;
11596 const char *name;
11597 int len;
11598 unsigned int j;
11599
11600 p = start;
11601 left = size - (start - message);
11602 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
11603 {
11604 /* Should it be skipped? */
11605 if (cpu_arch [j].skip)
11606 continue;
11607
11608 name = cpu_arch [j].name;
11609 len = cpu_arch [j].len;
11610 if (*name == '.')
11611 {
11612 /* It is an extension. Skip if we aren't asked to show it. */
11613 if (ext)
11614 {
11615 name++;
11616 len--;
11617 }
11618 else
11619 continue;
11620 }
11621 else if (ext)
11622 {
11623 /* It is an processor. Skip if we show only extension. */
11624 continue;
11625 }
11626 else if (check && ! cpu_arch[j].flags.bitfield.cpui386)
11627 {
11628 /* It is an impossible processor - skip. */
11629 continue;
11630 }
11631
11632 p = output_message (stream, p, message, start, &left, name, len);
11633 }
11634
11635 /* Display disabled extensions. */
11636 if (ext)
11637 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
11638 {
11639 name = cpu_noarch [j].name;
11640 len = cpu_noarch [j].len;
11641 p = output_message (stream, p, message, start, &left, name,
11642 len);
11643 }
11644
11645 *p = '\0';
11646 fprintf (stream, "%s\n", message);
11647 }
11648
11649 void
11650 md_show_usage (FILE *stream)
11651 {
11652 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11653 fprintf (stream, _("\
11654 -Qy, -Qn ignored\n\
11655 -V print assembler version number\n\
11656 -k ignored\n"));
11657 #endif
11658 fprintf (stream, _("\
11659 -n Do not optimize code alignment\n\
11660 -q quieten some warnings\n"));
11661 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11662 fprintf (stream, _("\
11663 -s ignored\n"));
11664 #endif
11665 #if defined BFD64 && (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
11666 || defined (TE_PE) || defined (TE_PEP))
11667 fprintf (stream, _("\
11668 --32/--64/--x32 generate 32bit/64bit/x32 code\n"));
11669 #endif
11670 #ifdef SVR4_COMMENT_CHARS
11671 fprintf (stream, _("\
11672 --divide do not treat `/' as a comment character\n"));
11673 #else
11674 fprintf (stream, _("\
11675 --divide ignored\n"));
11676 #endif
11677 fprintf (stream, _("\
11678 -march=CPU[,+EXTENSION...]\n\
11679 generate code for CPU and EXTENSION, CPU is one of:\n"));
11680 show_arch (stream, 0, 1);
11681 fprintf (stream, _("\
11682 EXTENSION is combination of:\n"));
11683 show_arch (stream, 1, 0);
11684 fprintf (stream, _("\
11685 -mtune=CPU optimize for CPU, CPU is one of:\n"));
11686 show_arch (stream, 0, 0);
11687 fprintf (stream, _("\
11688 -msse2avx encode SSE instructions with VEX prefix\n"));
11689 fprintf (stream, _("\
11690 -msse-check=[none|error|warning] (default: warning)\n\
11691 check SSE instructions\n"));
11692 fprintf (stream, _("\
11693 -moperand-check=[none|error|warning] (default: warning)\n\
11694 check operand combinations for validity\n"));
11695 fprintf (stream, _("\
11696 -mavxscalar=[128|256] (default: 128)\n\
11697 encode scalar AVX instructions with specific vector\n\
11698 length\n"));
11699 fprintf (stream, _("\
11700 -mvexwig=[0|1] (default: 0)\n\
11701 encode VEX instructions with specific VEX.W value\n\
11702 for VEX.W bit ignored instructions\n"));
11703 fprintf (stream, _("\
11704 -mevexlig=[128|256|512] (default: 128)\n\
11705 encode scalar EVEX instructions with specific vector\n\
11706 length\n"));
11707 fprintf (stream, _("\
11708 -mevexwig=[0|1] (default: 0)\n\
11709 encode EVEX instructions with specific EVEX.W value\n\
11710 for EVEX.W bit ignored instructions\n"));
11711 fprintf (stream, _("\
11712 -mevexrcig=[rne|rd|ru|rz] (default: rne)\n\
11713 encode EVEX instructions with specific EVEX.RC value\n\
11714 for SAE-only ignored instructions\n"));
11715 fprintf (stream, _("\
11716 -mmnemonic=[att|intel] "));
11717 if (SYSV386_COMPAT)
11718 fprintf (stream, _("(default: att)\n"));
11719 else
11720 fprintf (stream, _("(default: intel)\n"));
11721 fprintf (stream, _("\
11722 use AT&T/Intel mnemonic\n"));
11723 fprintf (stream, _("\
11724 -msyntax=[att|intel] (default: att)\n\
11725 use AT&T/Intel syntax\n"));
11726 fprintf (stream, _("\
11727 -mindex-reg support pseudo index registers\n"));
11728 fprintf (stream, _("\
11729 -mnaked-reg don't require `%%' prefix for registers\n"));
11730 fprintf (stream, _("\
11731 -madd-bnd-prefix add BND prefix for all valid branches\n"));
11732 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11733 fprintf (stream, _("\
11734 -mshared disable branch optimization for shared code\n"));
11735 fprintf (stream, _("\
11736 -mx86-used-note=[no|yes] "));
11737 if (DEFAULT_X86_USED_NOTE)
11738 fprintf (stream, _("(default: yes)\n"));
11739 else
11740 fprintf (stream, _("(default: no)\n"));
11741 fprintf (stream, _("\
11742 generate x86 used ISA and feature properties\n"));
11743 #endif
11744 #if defined (TE_PE) || defined (TE_PEP)
11745 fprintf (stream, _("\
11746 -mbig-obj generate big object files\n"));
11747 #endif
11748 fprintf (stream, _("\
11749 -momit-lock-prefix=[no|yes] (default: no)\n\
11750 strip all lock prefixes\n"));
11751 fprintf (stream, _("\
11752 -mfence-as-lock-add=[no|yes] (default: no)\n\
11753 encode lfence, mfence and sfence as\n\
11754 lock addl $0x0, (%%{re}sp)\n"));
11755 fprintf (stream, _("\
11756 -mrelax-relocations=[no|yes] "));
11757 if (DEFAULT_GENERATE_X86_RELAX_RELOCATIONS)
11758 fprintf (stream, _("(default: yes)\n"));
11759 else
11760 fprintf (stream, _("(default: no)\n"));
11761 fprintf (stream, _("\
11762 generate relax relocations\n"));
11763 fprintf (stream, _("\
11764 -mamd64 accept only AMD64 ISA [default]\n"));
11765 fprintf (stream, _("\
11766 -mintel64 accept only Intel64 ISA\n"));
11767 }
11768
11769 #if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
11770 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
11771 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
11772
11773 /* Pick the target format to use. */
11774
11775 const char *
11776 i386_target_format (void)
11777 {
11778 if (!strncmp (default_arch, "x86_64", 6))
11779 {
11780 update_code_flag (CODE_64BIT, 1);
11781 if (default_arch[6] == '\0')
11782 x86_elf_abi = X86_64_ABI;
11783 else
11784 x86_elf_abi = X86_64_X32_ABI;
11785 }
11786 else if (!strcmp (default_arch, "i386"))
11787 update_code_flag (CODE_32BIT, 1);
11788 else if (!strcmp (default_arch, "iamcu"))
11789 {
11790 update_code_flag (CODE_32BIT, 1);
11791 if (cpu_arch_isa == PROCESSOR_UNKNOWN)
11792 {
11793 static const i386_cpu_flags iamcu_flags = CPU_IAMCU_FLAGS;
11794 cpu_arch_name = "iamcu";
11795 cpu_sub_arch_name = NULL;
11796 cpu_arch_flags = iamcu_flags;
11797 cpu_arch_isa = PROCESSOR_IAMCU;
11798 cpu_arch_isa_flags = iamcu_flags;
11799 if (!cpu_arch_tune_set)
11800 {
11801 cpu_arch_tune = cpu_arch_isa;
11802 cpu_arch_tune_flags = cpu_arch_isa_flags;
11803 }
11804 }
11805 else if (cpu_arch_isa != PROCESSOR_IAMCU)
11806 as_fatal (_("Intel MCU doesn't support `%s' architecture"),
11807 cpu_arch_name);
11808 }
11809 else
11810 as_fatal (_("unknown architecture"));
11811
11812 if (cpu_flags_all_zero (&cpu_arch_isa_flags))
11813 cpu_arch_isa_flags = cpu_arch[flag_code == CODE_64BIT].flags;
11814 if (cpu_flags_all_zero (&cpu_arch_tune_flags))
11815 cpu_arch_tune_flags = cpu_arch[flag_code == CODE_64BIT].flags;
11816
11817 switch (OUTPUT_FLAVOR)
11818 {
11819 #if defined (OBJ_MAYBE_AOUT) || defined (OBJ_AOUT)
11820 case bfd_target_aout_flavour:
11821 return AOUT_TARGET_FORMAT;
11822 #endif
11823 #if defined (OBJ_MAYBE_COFF) || defined (OBJ_COFF)
11824 # if defined (TE_PE) || defined (TE_PEP)
11825 case bfd_target_coff_flavour:
11826 if (flag_code == CODE_64BIT)
11827 return use_big_obj ? "pe-bigobj-x86-64" : "pe-x86-64";
11828 else
11829 return "pe-i386";
11830 # elif defined (TE_GO32)
11831 case bfd_target_coff_flavour:
11832 return "coff-go32";
11833 # else
11834 case bfd_target_coff_flavour:
11835 return "coff-i386";
11836 # endif
11837 #endif
11838 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
11839 case bfd_target_elf_flavour:
11840 {
11841 const char *format;
11842
11843 switch (x86_elf_abi)
11844 {
11845 default:
11846 format = ELF_TARGET_FORMAT;
11847 break;
11848 case X86_64_ABI:
11849 use_rela_relocations = 1;
11850 object_64bit = 1;
11851 format = ELF_TARGET_FORMAT64;
11852 break;
11853 case X86_64_X32_ABI:
11854 use_rela_relocations = 1;
11855 object_64bit = 1;
11856 disallow_64bit_reloc = 1;
11857 format = ELF_TARGET_FORMAT32;
11858 break;
11859 }
11860 if (cpu_arch_isa == PROCESSOR_L1OM)
11861 {
11862 if (x86_elf_abi != X86_64_ABI)
11863 as_fatal (_("Intel L1OM is 64bit only"));
11864 return ELF_TARGET_L1OM_FORMAT;
11865 }
11866 else if (cpu_arch_isa == PROCESSOR_K1OM)
11867 {
11868 if (x86_elf_abi != X86_64_ABI)
11869 as_fatal (_("Intel K1OM is 64bit only"));
11870 return ELF_TARGET_K1OM_FORMAT;
11871 }
11872 else if (cpu_arch_isa == PROCESSOR_IAMCU)
11873 {
11874 if (x86_elf_abi != I386_ABI)
11875 as_fatal (_("Intel MCU is 32bit only"));
11876 return ELF_TARGET_IAMCU_FORMAT;
11877 }
11878 else
11879 return format;
11880 }
11881 #endif
11882 #if defined (OBJ_MACH_O)
11883 case bfd_target_mach_o_flavour:
11884 if (flag_code == CODE_64BIT)
11885 {
11886 use_rela_relocations = 1;
11887 object_64bit = 1;
11888 return "mach-o-x86-64";
11889 }
11890 else
11891 return "mach-o-i386";
11892 #endif
11893 default:
11894 abort ();
11895 return NULL;
11896 }
11897 }
11898
11899 #endif /* OBJ_MAYBE_ more than one */
11900 \f
11901 symbolS *
11902 md_undefined_symbol (char *name)
11903 {
11904 if (name[0] == GLOBAL_OFFSET_TABLE_NAME[0]
11905 && name[1] == GLOBAL_OFFSET_TABLE_NAME[1]
11906 && name[2] == GLOBAL_OFFSET_TABLE_NAME[2]
11907 && strcmp (name, GLOBAL_OFFSET_TABLE_NAME) == 0)
11908 {
11909 if (!GOT_symbol)
11910 {
11911 if (symbol_find (name))
11912 as_bad (_("GOT already in symbol table"));
11913 GOT_symbol = symbol_new (name, undefined_section,
11914 (valueT) 0, &zero_address_frag);
11915 };
11916 return GOT_symbol;
11917 }
11918 return 0;
11919 }
11920
11921 /* Round up a section size to the appropriate boundary. */
11922
11923 valueT
11924 md_section_align (segT segment ATTRIBUTE_UNUSED, valueT size)
11925 {
11926 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
11927 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
11928 {
11929 /* For a.out, force the section size to be aligned. If we don't do
11930 this, BFD will align it for us, but it will not write out the
11931 final bytes of the section. This may be a bug in BFD, but it is
11932 easier to fix it here since that is how the other a.out targets
11933 work. */
11934 int align;
11935
11936 align = bfd_get_section_alignment (stdoutput, segment);
11937 size = ((size + (1 << align) - 1) & (-((valueT) 1 << align)));
11938 }
11939 #endif
11940
11941 return size;
11942 }
11943
11944 /* On the i386, PC-relative offsets are relative to the start of the
11945 next instruction. That is, the address of the offset, plus its
11946 size, since the offset is always the last part of the insn. */
11947
11948 long
11949 md_pcrel_from (fixS *fixP)
11950 {
11951 return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address;
11952 }
11953
11954 #ifndef I386COFF
11955
11956 static void
11957 s_bss (int ignore ATTRIBUTE_UNUSED)
11958 {
11959 int temp;
11960
11961 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11962 if (IS_ELF)
11963 obj_elf_section_change_hook ();
11964 #endif
11965 temp = get_absolute_expression ();
11966 subseg_set (bss_section, (subsegT) temp);
11967 demand_empty_rest_of_line ();
11968 }
11969
11970 #endif
11971
11972 void
11973 i386_validate_fix (fixS *fixp)
11974 {
11975 if (fixp->fx_subsy)
11976 {
11977 if (fixp->fx_subsy == GOT_symbol)
11978 {
11979 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
11980 {
11981 if (!object_64bit)
11982 abort ();
11983 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11984 if (fixp->fx_tcbit2)
11985 fixp->fx_r_type = (fixp->fx_tcbit
11986 ? BFD_RELOC_X86_64_REX_GOTPCRELX
11987 : BFD_RELOC_X86_64_GOTPCRELX);
11988 else
11989 #endif
11990 fixp->fx_r_type = BFD_RELOC_X86_64_GOTPCREL;
11991 }
11992 else
11993 {
11994 if (!object_64bit)
11995 fixp->fx_r_type = BFD_RELOC_386_GOTOFF;
11996 else
11997 fixp->fx_r_type = BFD_RELOC_X86_64_GOTOFF64;
11998 }
11999 fixp->fx_subsy = 0;
12000 }
12001 }
12002 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12003 else if (!object_64bit)
12004 {
12005 if (fixp->fx_r_type == BFD_RELOC_386_GOT32
12006 && fixp->fx_tcbit2)
12007 fixp->fx_r_type = BFD_RELOC_386_GOT32X;
12008 }
12009 #endif
12010 }
12011
12012 arelent *
12013 tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
12014 {
12015 arelent *rel;
12016 bfd_reloc_code_real_type code;
12017
12018 switch (fixp->fx_r_type)
12019 {
12020 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12021 case BFD_RELOC_SIZE32:
12022 case BFD_RELOC_SIZE64:
12023 if (S_IS_DEFINED (fixp->fx_addsy)
12024 && !S_IS_EXTERNAL (fixp->fx_addsy))
12025 {
12026 /* Resolve size relocation against local symbol to size of
12027 the symbol plus addend. */
12028 valueT value = S_GET_SIZE (fixp->fx_addsy) + fixp->fx_offset;
12029 if (fixp->fx_r_type == BFD_RELOC_SIZE32
12030 && !fits_in_unsigned_long (value))
12031 as_bad_where (fixp->fx_file, fixp->fx_line,
12032 _("symbol size computation overflow"));
12033 fixp->fx_addsy = NULL;
12034 fixp->fx_subsy = NULL;
12035 md_apply_fix (fixp, (valueT *) &value, NULL);
12036 return NULL;
12037 }
12038 #endif
12039 /* Fall through. */
12040
12041 case BFD_RELOC_X86_64_PLT32:
12042 case BFD_RELOC_X86_64_GOT32:
12043 case BFD_RELOC_X86_64_GOTPCREL:
12044 case BFD_RELOC_X86_64_GOTPCRELX:
12045 case BFD_RELOC_X86_64_REX_GOTPCRELX:
12046 case BFD_RELOC_386_PLT32:
12047 case BFD_RELOC_386_GOT32:
12048 case BFD_RELOC_386_GOT32X:
12049 case BFD_RELOC_386_GOTOFF:
12050 case BFD_RELOC_386_GOTPC:
12051 case BFD_RELOC_386_TLS_GD:
12052 case BFD_RELOC_386_TLS_LDM:
12053 case BFD_RELOC_386_TLS_LDO_32:
12054 case BFD_RELOC_386_TLS_IE_32:
12055 case BFD_RELOC_386_TLS_IE:
12056 case BFD_RELOC_386_TLS_GOTIE:
12057 case BFD_RELOC_386_TLS_LE_32:
12058 case BFD_RELOC_386_TLS_LE:
12059 case BFD_RELOC_386_TLS_GOTDESC:
12060 case BFD_RELOC_386_TLS_DESC_CALL:
12061 case BFD_RELOC_X86_64_TLSGD:
12062 case BFD_RELOC_X86_64_TLSLD:
12063 case BFD_RELOC_X86_64_DTPOFF32:
12064 case BFD_RELOC_X86_64_DTPOFF64:
12065 case BFD_RELOC_X86_64_GOTTPOFF:
12066 case BFD_RELOC_X86_64_TPOFF32:
12067 case BFD_RELOC_X86_64_TPOFF64:
12068 case BFD_RELOC_X86_64_GOTOFF64:
12069 case BFD_RELOC_X86_64_GOTPC32:
12070 case BFD_RELOC_X86_64_GOT64:
12071 case BFD_RELOC_X86_64_GOTPCREL64:
12072 case BFD_RELOC_X86_64_GOTPC64:
12073 case BFD_RELOC_X86_64_GOTPLT64:
12074 case BFD_RELOC_X86_64_PLTOFF64:
12075 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
12076 case BFD_RELOC_X86_64_TLSDESC_CALL:
12077 case BFD_RELOC_RVA:
12078 case BFD_RELOC_VTABLE_ENTRY:
12079 case BFD_RELOC_VTABLE_INHERIT:
12080 #ifdef TE_PE
12081 case BFD_RELOC_32_SECREL:
12082 #endif
12083 code = fixp->fx_r_type;
12084 break;
12085 case BFD_RELOC_X86_64_32S:
12086 if (!fixp->fx_pcrel)
12087 {
12088 /* Don't turn BFD_RELOC_X86_64_32S into BFD_RELOC_32. */
12089 code = fixp->fx_r_type;
12090 break;
12091 }
12092 /* Fall through. */
12093 default:
12094 if (fixp->fx_pcrel)
12095 {
12096 switch (fixp->fx_size)
12097 {
12098 default:
12099 as_bad_where (fixp->fx_file, fixp->fx_line,
12100 _("can not do %d byte pc-relative relocation"),
12101 fixp->fx_size);
12102 code = BFD_RELOC_32_PCREL;
12103 break;
12104 case 1: code = BFD_RELOC_8_PCREL; break;
12105 case 2: code = BFD_RELOC_16_PCREL; break;
12106 case 4: code = BFD_RELOC_32_PCREL; break;
12107 #ifdef BFD64
12108 case 8: code = BFD_RELOC_64_PCREL; break;
12109 #endif
12110 }
12111 }
12112 else
12113 {
12114 switch (fixp->fx_size)
12115 {
12116 default:
12117 as_bad_where (fixp->fx_file, fixp->fx_line,
12118 _("can not do %d byte relocation"),
12119 fixp->fx_size);
12120 code = BFD_RELOC_32;
12121 break;
12122 case 1: code = BFD_RELOC_8; break;
12123 case 2: code = BFD_RELOC_16; break;
12124 case 4: code = BFD_RELOC_32; break;
12125 #ifdef BFD64
12126 case 8: code = BFD_RELOC_64; break;
12127 #endif
12128 }
12129 }
12130 break;
12131 }
12132
12133 if ((code == BFD_RELOC_32
12134 || code == BFD_RELOC_32_PCREL
12135 || code == BFD_RELOC_X86_64_32S)
12136 && GOT_symbol
12137 && fixp->fx_addsy == GOT_symbol)
12138 {
12139 if (!object_64bit)
12140 code = BFD_RELOC_386_GOTPC;
12141 else
12142 code = BFD_RELOC_X86_64_GOTPC32;
12143 }
12144 if ((code == BFD_RELOC_64 || code == BFD_RELOC_64_PCREL)
12145 && GOT_symbol
12146 && fixp->fx_addsy == GOT_symbol)
12147 {
12148 code = BFD_RELOC_X86_64_GOTPC64;
12149 }
12150
12151 rel = XNEW (arelent);
12152 rel->sym_ptr_ptr = XNEW (asymbol *);
12153 *rel->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
12154
12155 rel->address = fixp->fx_frag->fr_address + fixp->fx_where;
12156
12157 if (!use_rela_relocations)
12158 {
12159 /* HACK: Since i386 ELF uses Rel instead of Rela, encode the
12160 vtable entry to be used in the relocation's section offset. */
12161 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
12162 rel->address = fixp->fx_offset;
12163 #if defined (OBJ_COFF) && defined (TE_PE)
12164 else if (fixp->fx_addsy && S_IS_WEAK (fixp->fx_addsy))
12165 rel->addend = fixp->fx_addnumber - (S_GET_VALUE (fixp->fx_addsy) * 2);
12166 else
12167 #endif
12168 rel->addend = 0;
12169 }
12170 /* Use the rela in 64bit mode. */
12171 else
12172 {
12173 if (disallow_64bit_reloc)
12174 switch (code)
12175 {
12176 case BFD_RELOC_X86_64_DTPOFF64:
12177 case BFD_RELOC_X86_64_TPOFF64:
12178 case BFD_RELOC_64_PCREL:
12179 case BFD_RELOC_X86_64_GOTOFF64:
12180 case BFD_RELOC_X86_64_GOT64:
12181 case BFD_RELOC_X86_64_GOTPCREL64:
12182 case BFD_RELOC_X86_64_GOTPC64:
12183 case BFD_RELOC_X86_64_GOTPLT64:
12184 case BFD_RELOC_X86_64_PLTOFF64:
12185 as_bad_where (fixp->fx_file, fixp->fx_line,
12186 _("cannot represent relocation type %s in x32 mode"),
12187 bfd_get_reloc_code_name (code));
12188 break;
12189 default:
12190 break;
12191 }
12192
12193 if (!fixp->fx_pcrel)
12194 rel->addend = fixp->fx_offset;
12195 else
12196 switch (code)
12197 {
12198 case BFD_RELOC_X86_64_PLT32:
12199 case BFD_RELOC_X86_64_GOT32:
12200 case BFD_RELOC_X86_64_GOTPCREL:
12201 case BFD_RELOC_X86_64_GOTPCRELX:
12202 case BFD_RELOC_X86_64_REX_GOTPCRELX:
12203 case BFD_RELOC_X86_64_TLSGD:
12204 case BFD_RELOC_X86_64_TLSLD:
12205 case BFD_RELOC_X86_64_GOTTPOFF:
12206 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
12207 case BFD_RELOC_X86_64_TLSDESC_CALL:
12208 rel->addend = fixp->fx_offset - fixp->fx_size;
12209 break;
12210 default:
12211 rel->addend = (section->vma
12212 - fixp->fx_size
12213 + fixp->fx_addnumber
12214 + md_pcrel_from (fixp));
12215 break;
12216 }
12217 }
12218
12219 rel->howto = bfd_reloc_type_lookup (stdoutput, code);
12220 if (rel->howto == NULL)
12221 {
12222 as_bad_where (fixp->fx_file, fixp->fx_line,
12223 _("cannot represent relocation type %s"),
12224 bfd_get_reloc_code_name (code));
12225 /* Set howto to a garbage value so that we can keep going. */
12226 rel->howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_32);
12227 gas_assert (rel->howto != NULL);
12228 }
12229
12230 return rel;
12231 }
12232
12233 #include "tc-i386-intel.c"
12234
12235 void
12236 tc_x86_parse_to_dw2regnum (expressionS *exp)
12237 {
12238 int saved_naked_reg;
12239 char saved_register_dot;
12240
12241 saved_naked_reg = allow_naked_reg;
12242 allow_naked_reg = 1;
12243 saved_register_dot = register_chars['.'];
12244 register_chars['.'] = '.';
12245 allow_pseudo_reg = 1;
12246 expression_and_evaluate (exp);
12247 allow_pseudo_reg = 0;
12248 register_chars['.'] = saved_register_dot;
12249 allow_naked_reg = saved_naked_reg;
12250
12251 if (exp->X_op == O_register && exp->X_add_number >= 0)
12252 {
12253 if ((addressT) exp->X_add_number < i386_regtab_size)
12254 {
12255 exp->X_op = O_constant;
12256 exp->X_add_number = i386_regtab[exp->X_add_number]
12257 .dw2_regnum[flag_code >> 1];
12258 }
12259 else
12260 exp->X_op = O_illegal;
12261 }
12262 }
12263
12264 void
12265 tc_x86_frame_initial_instructions (void)
12266 {
12267 static unsigned int sp_regno[2];
12268
12269 if (!sp_regno[flag_code >> 1])
12270 {
12271 char *saved_input = input_line_pointer;
12272 char sp[][4] = {"esp", "rsp"};
12273 expressionS exp;
12274
12275 input_line_pointer = sp[flag_code >> 1];
12276 tc_x86_parse_to_dw2regnum (&exp);
12277 gas_assert (exp.X_op == O_constant);
12278 sp_regno[flag_code >> 1] = exp.X_add_number;
12279 input_line_pointer = saved_input;
12280 }
12281
12282 cfi_add_CFA_def_cfa (sp_regno[flag_code >> 1], -x86_cie_data_alignment);
12283 cfi_add_CFA_offset (x86_dwarf2_return_column, x86_cie_data_alignment);
12284 }
12285
12286 int
12287 x86_dwarf2_addr_size (void)
12288 {
12289 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
12290 if (x86_elf_abi == X86_64_X32_ABI)
12291 return 4;
12292 #endif
12293 return bfd_arch_bits_per_address (stdoutput) / 8;
12294 }
12295
12296 int
12297 i386_elf_section_type (const char *str, size_t len)
12298 {
12299 if (flag_code == CODE_64BIT
12300 && len == sizeof ("unwind") - 1
12301 && strncmp (str, "unwind", 6) == 0)
12302 return SHT_X86_64_UNWIND;
12303
12304 return -1;
12305 }
12306
12307 #ifdef TE_SOLARIS
12308 void
12309 i386_solaris_fix_up_eh_frame (segT sec)
12310 {
12311 if (flag_code == CODE_64BIT)
12312 elf_section_type (sec) = SHT_X86_64_UNWIND;
12313 }
12314 #endif
12315
12316 #ifdef TE_PE
12317 void
12318 tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
12319 {
12320 expressionS exp;
12321
12322 exp.X_op = O_secrel;
12323 exp.X_add_symbol = symbol;
12324 exp.X_add_number = 0;
12325 emit_expr (&exp, size);
12326 }
12327 #endif
12328
12329 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12330 /* For ELF on x86-64, add support for SHF_X86_64_LARGE. */
12331
12332 bfd_vma
12333 x86_64_section_letter (int letter, const char **ptr_msg)
12334 {
12335 if (flag_code == CODE_64BIT)
12336 {
12337 if (letter == 'l')
12338 return SHF_X86_64_LARGE;
12339
12340 *ptr_msg = _("bad .section directive: want a,l,w,x,M,S,G,T in string");
12341 }
12342 else
12343 *ptr_msg = _("bad .section directive: want a,w,x,M,S,G,T in string");
12344 return -1;
12345 }
12346
12347 bfd_vma
12348 x86_64_section_word (char *str, size_t len)
12349 {
12350 if (len == 5 && flag_code == CODE_64BIT && CONST_STRNEQ (str, "large"))
12351 return SHF_X86_64_LARGE;
12352
12353 return -1;
12354 }
12355
12356 static void
12357 handle_large_common (int small ATTRIBUTE_UNUSED)
12358 {
12359 if (flag_code != CODE_64BIT)
12360 {
12361 s_comm_internal (0, elf_common_parse);
12362 as_warn (_(".largecomm supported only in 64bit mode, producing .comm"));
12363 }
12364 else
12365 {
12366 static segT lbss_section;
12367 asection *saved_com_section_ptr = elf_com_section_ptr;
12368 asection *saved_bss_section = bss_section;
12369
12370 if (lbss_section == NULL)
12371 {
12372 flagword applicable;
12373 segT seg = now_seg;
12374 subsegT subseg = now_subseg;
12375
12376 /* The .lbss section is for local .largecomm symbols. */
12377 lbss_section = subseg_new (".lbss", 0);
12378 applicable = bfd_applicable_section_flags (stdoutput);
12379 bfd_set_section_flags (stdoutput, lbss_section,
12380 applicable & SEC_ALLOC);
12381 seg_info (lbss_section)->bss = 1;
12382
12383 subseg_set (seg, subseg);
12384 }
12385
12386 elf_com_section_ptr = &_bfd_elf_large_com_section;
12387 bss_section = lbss_section;
12388
12389 s_comm_internal (0, elf_common_parse);
12390
12391 elf_com_section_ptr = saved_com_section_ptr;
12392 bss_section = saved_bss_section;
12393 }
12394 }
12395 #endif /* OBJ_ELF || OBJ_MAYBE_ELF */
This page took 0.841459 seconds and 4 git commands to generate.