x86: don't open code is_any_vex_encoding()
[deliverable/binutils-gdb.git] / gas / config / tc-i386.c
1 /* tc-i386.c -- Assemble code for the Intel 80386
2 Copyright (C) 1989-2019 Free Software Foundation, Inc.
3
4 This file is part of GAS, the GNU Assembler.
5
6 GAS is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
10
11 GAS is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GAS; see the file COPYING. If not, write to the Free
18 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
19 02110-1301, USA. */
20
21 /* Intel 80386 machine specific gas.
22 Written by Eliot Dresselhaus (eliot@mgm.mit.edu).
23 x86_64 support by Jan Hubicka (jh@suse.cz)
24 VIA PadLock support by Michal Ludvig (mludvig@suse.cz)
25 Bugs & suggestions are completely welcome. This is free software.
26 Please help us make it better. */
27
28 #include "as.h"
29 #include "safe-ctype.h"
30 #include "subsegs.h"
31 #include "dwarf2dbg.h"
32 #include "dw2gencfi.h"
33 #include "elf/x86-64.h"
34 #include "opcodes/i386-init.h"
35
36 #ifdef HAVE_LIMITS_H
37 #include <limits.h>
38 #else
39 #ifdef HAVE_SYS_PARAM_H
40 #include <sys/param.h>
41 #endif
42 #ifndef INT_MAX
43 #define INT_MAX (int) (((unsigned) (-1)) >> 1)
44 #endif
45 #endif
46
47 #ifndef REGISTER_WARNINGS
48 #define REGISTER_WARNINGS 1
49 #endif
50
51 #ifndef INFER_ADDR_PREFIX
52 #define INFER_ADDR_PREFIX 1
53 #endif
54
55 #ifndef DEFAULT_ARCH
56 #define DEFAULT_ARCH "i386"
57 #endif
58
59 #ifndef INLINE
60 #if __GNUC__ >= 2
61 #define INLINE __inline__
62 #else
63 #define INLINE
64 #endif
65 #endif
66
67 /* Prefixes will be emitted in the order defined below.
68 WAIT_PREFIX must be the first prefix since FWAIT is really is an
69 instruction, and so must come before any prefixes.
70 The preferred prefix order is SEG_PREFIX, ADDR_PREFIX, DATA_PREFIX,
71 REP_PREFIX/HLE_PREFIX, LOCK_PREFIX. */
72 #define WAIT_PREFIX 0
73 #define SEG_PREFIX 1
74 #define ADDR_PREFIX 2
75 #define DATA_PREFIX 3
76 #define REP_PREFIX 4
77 #define HLE_PREFIX REP_PREFIX
78 #define BND_PREFIX REP_PREFIX
79 #define LOCK_PREFIX 5
80 #define REX_PREFIX 6 /* must come last. */
81 #define MAX_PREFIXES 7 /* max prefixes per opcode */
82
83 /* we define the syntax here (modulo base,index,scale syntax) */
84 #define REGISTER_PREFIX '%'
85 #define IMMEDIATE_PREFIX '$'
86 #define ABSOLUTE_PREFIX '*'
87
88 /* these are the instruction mnemonic suffixes in AT&T syntax or
89 memory operand size in Intel syntax. */
90 #define WORD_MNEM_SUFFIX 'w'
91 #define BYTE_MNEM_SUFFIX 'b'
92 #define SHORT_MNEM_SUFFIX 's'
93 #define LONG_MNEM_SUFFIX 'l'
94 #define QWORD_MNEM_SUFFIX 'q'
95 /* Intel Syntax. Use a non-ascii letter since since it never appears
96 in instructions. */
97 #define LONG_DOUBLE_MNEM_SUFFIX '\1'
98
99 #define END_OF_INSN '\0'
100
101 /*
102 'templates' is for grouping together 'template' structures for opcodes
103 of the same name. This is only used for storing the insns in the grand
104 ole hash table of insns.
105 The templates themselves start at START and range up to (but not including)
106 END.
107 */
108 typedef struct
109 {
110 const insn_template *start;
111 const insn_template *end;
112 }
113 templates;
114
115 /* 386 operand encoding bytes: see 386 book for details of this. */
116 typedef struct
117 {
118 unsigned int regmem; /* codes register or memory operand */
119 unsigned int reg; /* codes register operand (or extended opcode) */
120 unsigned int mode; /* how to interpret regmem & reg */
121 }
122 modrm_byte;
123
124 /* x86-64 extension prefix. */
125 typedef int rex_byte;
126
127 /* 386 opcode byte to code indirect addressing. */
128 typedef struct
129 {
130 unsigned base;
131 unsigned index;
132 unsigned scale;
133 }
134 sib_byte;
135
136 /* x86 arch names, types and features */
137 typedef struct
138 {
139 const char *name; /* arch name */
140 unsigned int len; /* arch string length */
141 enum processor_type type; /* arch type */
142 i386_cpu_flags flags; /* cpu feature flags */
143 unsigned int skip; /* show_arch should skip this. */
144 }
145 arch_entry;
146
147 /* Used to turn off indicated flags. */
148 typedef struct
149 {
150 const char *name; /* arch name */
151 unsigned int len; /* arch string length */
152 i386_cpu_flags flags; /* cpu feature flags */
153 }
154 noarch_entry;
155
156 static void update_code_flag (int, int);
157 static void set_code_flag (int);
158 static void set_16bit_gcc_code_flag (int);
159 static void set_intel_syntax (int);
160 static void set_intel_mnemonic (int);
161 static void set_allow_index_reg (int);
162 static void set_check (int);
163 static void set_cpu_arch (int);
164 #ifdef TE_PE
165 static void pe_directive_secrel (int);
166 #endif
167 static void signed_cons (int);
168 static char *output_invalid (int c);
169 static int i386_finalize_immediate (segT, expressionS *, i386_operand_type,
170 const char *);
171 static int i386_finalize_displacement (segT, expressionS *, i386_operand_type,
172 const char *);
173 static int i386_att_operand (char *);
174 static int i386_intel_operand (char *, int);
175 static int i386_intel_simplify (expressionS *);
176 static int i386_intel_parse_name (const char *, expressionS *);
177 static const reg_entry *parse_register (char *, char **);
178 static char *parse_insn (char *, char *);
179 static char *parse_operands (char *, const char *);
180 static void swap_operands (void);
181 static void swap_2_operands (int, int);
182 static void optimize_imm (void);
183 static void optimize_disp (void);
184 static const insn_template *match_template (char);
185 static int check_string (void);
186 static int process_suffix (void);
187 static int check_byte_reg (void);
188 static int check_long_reg (void);
189 static int check_qword_reg (void);
190 static int check_word_reg (void);
191 static int finalize_imm (void);
192 static int process_operands (void);
193 static const seg_entry *build_modrm_byte (void);
194 static void output_insn (void);
195 static void output_imm (fragS *, offsetT);
196 static void output_disp (fragS *, offsetT);
197 #ifndef I386COFF
198 static void s_bss (int);
199 #endif
200 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
201 static void handle_large_common (int small ATTRIBUTE_UNUSED);
202
203 /* GNU_PROPERTY_X86_ISA_1_USED. */
204 static unsigned int x86_isa_1_used;
205 /* GNU_PROPERTY_X86_FEATURE_2_USED. */
206 static unsigned int x86_feature_2_used;
207 /* Generate x86 used ISA and feature properties. */
208 static unsigned int x86_used_note = DEFAULT_X86_USED_NOTE;
209 #endif
210
211 static const char *default_arch = DEFAULT_ARCH;
212
213 /* This struct describes rounding control and SAE in the instruction. */
214 struct RC_Operation
215 {
216 enum rc_type
217 {
218 rne = 0,
219 rd,
220 ru,
221 rz,
222 saeonly
223 } type;
224 int operand;
225 };
226
227 static struct RC_Operation rc_op;
228
229 /* The struct describes masking, applied to OPERAND in the instruction.
230 MASK is a pointer to the corresponding mask register. ZEROING tells
231 whether merging or zeroing mask is used. */
232 struct Mask_Operation
233 {
234 const reg_entry *mask;
235 unsigned int zeroing;
236 /* The operand where this operation is associated. */
237 int operand;
238 };
239
240 static struct Mask_Operation mask_op;
241
242 /* The struct describes broadcasting, applied to OPERAND. FACTOR is
243 broadcast factor. */
244 struct Broadcast_Operation
245 {
246 /* Type of broadcast: {1to2}, {1to4}, {1to8}, or {1to16}. */
247 int type;
248
249 /* Index of broadcasted operand. */
250 int operand;
251
252 /* Number of bytes to broadcast. */
253 int bytes;
254 };
255
256 static struct Broadcast_Operation broadcast_op;
257
258 /* VEX prefix. */
259 typedef struct
260 {
261 /* VEX prefix is either 2 byte or 3 byte. EVEX is 4 byte. */
262 unsigned char bytes[4];
263 unsigned int length;
264 /* Destination or source register specifier. */
265 const reg_entry *register_specifier;
266 } vex_prefix;
267
268 /* 'md_assemble ()' gathers together information and puts it into a
269 i386_insn. */
270
271 union i386_op
272 {
273 expressionS *disps;
274 expressionS *imms;
275 const reg_entry *regs;
276 };
277
278 enum i386_error
279 {
280 operand_size_mismatch,
281 operand_type_mismatch,
282 register_type_mismatch,
283 number_of_operands_mismatch,
284 invalid_instruction_suffix,
285 bad_imm4,
286 unsupported_with_intel_mnemonic,
287 unsupported_syntax,
288 unsupported,
289 invalid_vsib_address,
290 invalid_vector_register_set,
291 unsupported_vector_index_register,
292 unsupported_broadcast,
293 broadcast_needed,
294 unsupported_masking,
295 mask_not_on_destination,
296 no_default_mask,
297 unsupported_rc_sae,
298 rc_sae_operand_not_last_imm,
299 invalid_register_operand,
300 };
301
302 struct _i386_insn
303 {
304 /* TM holds the template for the insn were currently assembling. */
305 insn_template tm;
306
307 /* SUFFIX holds the instruction size suffix for byte, word, dword
308 or qword, if given. */
309 char suffix;
310
311 /* OPERANDS gives the number of given operands. */
312 unsigned int operands;
313
314 /* REG_OPERANDS, DISP_OPERANDS, MEM_OPERANDS, IMM_OPERANDS give the number
315 of given register, displacement, memory operands and immediate
316 operands. */
317 unsigned int reg_operands, disp_operands, mem_operands, imm_operands;
318
319 /* TYPES [i] is the type (see above #defines) which tells us how to
320 use OP[i] for the corresponding operand. */
321 i386_operand_type types[MAX_OPERANDS];
322
323 /* Displacement expression, immediate expression, or register for each
324 operand. */
325 union i386_op op[MAX_OPERANDS];
326
327 /* Flags for operands. */
328 unsigned int flags[MAX_OPERANDS];
329 #define Operand_PCrel 1
330 #define Operand_Mem 2
331
332 /* Relocation type for operand */
333 enum bfd_reloc_code_real reloc[MAX_OPERANDS];
334
335 /* BASE_REG, INDEX_REG, and LOG2_SCALE_FACTOR are used to encode
336 the base index byte below. */
337 const reg_entry *base_reg;
338 const reg_entry *index_reg;
339 unsigned int log2_scale_factor;
340
341 /* SEG gives the seg_entries of this insn. They are zero unless
342 explicit segment overrides are given. */
343 const seg_entry *seg[2];
344
345 /* Copied first memory operand string, for re-checking. */
346 char *memop1_string;
347
348 /* PREFIX holds all the given prefix opcodes (usually null).
349 PREFIXES is the number of prefix opcodes. */
350 unsigned int prefixes;
351 unsigned char prefix[MAX_PREFIXES];
352
353 /* Has MMX register operands. */
354 bfd_boolean has_regmmx;
355
356 /* Has XMM register operands. */
357 bfd_boolean has_regxmm;
358
359 /* Has YMM register operands. */
360 bfd_boolean has_regymm;
361
362 /* Has ZMM register operands. */
363 bfd_boolean has_regzmm;
364
365 /* RM and SIB are the modrm byte and the sib byte where the
366 addressing modes of this insn are encoded. */
367 modrm_byte rm;
368 rex_byte rex;
369 rex_byte vrex;
370 sib_byte sib;
371 vex_prefix vex;
372
373 /* Masking attributes. */
374 struct Mask_Operation *mask;
375
376 /* Rounding control and SAE attributes. */
377 struct RC_Operation *rounding;
378
379 /* Broadcasting attributes. */
380 struct Broadcast_Operation *broadcast;
381
382 /* Compressed disp8*N attribute. */
383 unsigned int memshift;
384
385 /* Prefer load or store in encoding. */
386 enum
387 {
388 dir_encoding_default = 0,
389 dir_encoding_load,
390 dir_encoding_store,
391 dir_encoding_swap
392 } dir_encoding;
393
394 /* Prefer 8bit or 32bit displacement in encoding. */
395 enum
396 {
397 disp_encoding_default = 0,
398 disp_encoding_8bit,
399 disp_encoding_32bit
400 } disp_encoding;
401
402 /* Prefer the REX byte in encoding. */
403 bfd_boolean rex_encoding;
404
405 /* Disable instruction size optimization. */
406 bfd_boolean no_optimize;
407
408 /* How to encode vector instructions. */
409 enum
410 {
411 vex_encoding_default = 0,
412 vex_encoding_vex2,
413 vex_encoding_vex3,
414 vex_encoding_evex
415 } vec_encoding;
416
417 /* REP prefix. */
418 const char *rep_prefix;
419
420 /* HLE prefix. */
421 const char *hle_prefix;
422
423 /* Have BND prefix. */
424 const char *bnd_prefix;
425
426 /* Have NOTRACK prefix. */
427 const char *notrack_prefix;
428
429 /* Error message. */
430 enum i386_error error;
431 };
432
433 typedef struct _i386_insn i386_insn;
434
435 /* Link RC type with corresponding string, that'll be looked for in
436 asm. */
437 struct RC_name
438 {
439 enum rc_type type;
440 const char *name;
441 unsigned int len;
442 };
443
444 static const struct RC_name RC_NamesTable[] =
445 {
446 { rne, STRING_COMMA_LEN ("rn-sae") },
447 { rd, STRING_COMMA_LEN ("rd-sae") },
448 { ru, STRING_COMMA_LEN ("ru-sae") },
449 { rz, STRING_COMMA_LEN ("rz-sae") },
450 { saeonly, STRING_COMMA_LEN ("sae") },
451 };
452
453 /* List of chars besides those in app.c:symbol_chars that can start an
454 operand. Used to prevent the scrubber eating vital white-space. */
455 const char extra_symbol_chars[] = "*%-([{}"
456 #ifdef LEX_AT
457 "@"
458 #endif
459 #ifdef LEX_QM
460 "?"
461 #endif
462 ;
463
464 #if (defined (TE_I386AIX) \
465 || ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) \
466 && !defined (TE_GNU) \
467 && !defined (TE_LINUX) \
468 && !defined (TE_NACL) \
469 && !defined (TE_FreeBSD) \
470 && !defined (TE_DragonFly) \
471 && !defined (TE_NetBSD)))
472 /* This array holds the chars that always start a comment. If the
473 pre-processor is disabled, these aren't very useful. The option
474 --divide will remove '/' from this list. */
475 const char *i386_comment_chars = "#/";
476 #define SVR4_COMMENT_CHARS 1
477 #define PREFIX_SEPARATOR '\\'
478
479 #else
480 const char *i386_comment_chars = "#";
481 #define PREFIX_SEPARATOR '/'
482 #endif
483
484 /* This array holds the chars that only start a comment at the beginning of
485 a line. If the line seems to have the form '# 123 filename'
486 .line and .file directives will appear in the pre-processed output.
487 Note that input_file.c hand checks for '#' at the beginning of the
488 first line of the input file. This is because the compiler outputs
489 #NO_APP at the beginning of its output.
490 Also note that comments started like this one will always work if
491 '/' isn't otherwise defined. */
492 const char line_comment_chars[] = "#/";
493
494 const char line_separator_chars[] = ";";
495
496 /* Chars that can be used to separate mant from exp in floating point
497 nums. */
498 const char EXP_CHARS[] = "eE";
499
500 /* Chars that mean this number is a floating point constant
501 As in 0f12.456
502 or 0d1.2345e12. */
503 const char FLT_CHARS[] = "fFdDxX";
504
505 /* Tables for lexical analysis. */
506 static char mnemonic_chars[256];
507 static char register_chars[256];
508 static char operand_chars[256];
509 static char identifier_chars[256];
510 static char digit_chars[256];
511
512 /* Lexical macros. */
513 #define is_mnemonic_char(x) (mnemonic_chars[(unsigned char) x])
514 #define is_operand_char(x) (operand_chars[(unsigned char) x])
515 #define is_register_char(x) (register_chars[(unsigned char) x])
516 #define is_space_char(x) ((x) == ' ')
517 #define is_identifier_char(x) (identifier_chars[(unsigned char) x])
518 #define is_digit_char(x) (digit_chars[(unsigned char) x])
519
520 /* All non-digit non-letter characters that may occur in an operand. */
521 static char operand_special_chars[] = "%$-+(,)*._~/<>|&^!:[@]";
522
523 /* md_assemble() always leaves the strings it's passed unaltered. To
524 effect this we maintain a stack of saved characters that we've smashed
525 with '\0's (indicating end of strings for various sub-fields of the
526 assembler instruction). */
527 static char save_stack[32];
528 static char *save_stack_p;
529 #define END_STRING_AND_SAVE(s) \
530 do { *save_stack_p++ = *(s); *(s) = '\0'; } while (0)
531 #define RESTORE_END_STRING(s) \
532 do { *(s) = *--save_stack_p; } while (0)
533
534 /* The instruction we're assembling. */
535 static i386_insn i;
536
537 /* Possible templates for current insn. */
538 static const templates *current_templates;
539
540 /* Per instruction expressionS buffers: max displacements & immediates. */
541 static expressionS disp_expressions[MAX_MEMORY_OPERANDS];
542 static expressionS im_expressions[MAX_IMMEDIATE_OPERANDS];
543
544 /* Current operand we are working on. */
545 static int this_operand = -1;
546
547 /* We support four different modes. FLAG_CODE variable is used to distinguish
548 these. */
549
550 enum flag_code {
551 CODE_32BIT,
552 CODE_16BIT,
553 CODE_64BIT };
554
555 static enum flag_code flag_code;
556 static unsigned int object_64bit;
557 static unsigned int disallow_64bit_reloc;
558 static int use_rela_relocations = 0;
559
560 #if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
561 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
562 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
563
564 /* The ELF ABI to use. */
565 enum x86_elf_abi
566 {
567 I386_ABI,
568 X86_64_ABI,
569 X86_64_X32_ABI
570 };
571
572 static enum x86_elf_abi x86_elf_abi = I386_ABI;
573 #endif
574
575 #if defined (TE_PE) || defined (TE_PEP)
576 /* Use big object file format. */
577 static int use_big_obj = 0;
578 #endif
579
580 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
581 /* 1 if generating code for a shared library. */
582 static int shared = 0;
583 #endif
584
585 /* 1 for intel syntax,
586 0 if att syntax. */
587 static int intel_syntax = 0;
588
589 /* 1 for Intel64 ISA,
590 0 if AMD64 ISA. */
591 static int intel64;
592
593 /* 1 for intel mnemonic,
594 0 if att mnemonic. */
595 static int intel_mnemonic = !SYSV386_COMPAT;
596
597 /* 1 if pseudo registers are permitted. */
598 static int allow_pseudo_reg = 0;
599
600 /* 1 if register prefix % not required. */
601 static int allow_naked_reg = 0;
602
603 /* 1 if the assembler should add BND prefix for all control-transferring
604 instructions supporting it, even if this prefix wasn't specified
605 explicitly. */
606 static int add_bnd_prefix = 0;
607
608 /* 1 if pseudo index register, eiz/riz, is allowed . */
609 static int allow_index_reg = 0;
610
611 /* 1 if the assembler should ignore LOCK prefix, even if it was
612 specified explicitly. */
613 static int omit_lock_prefix = 0;
614
615 /* 1 if the assembler should encode lfence, mfence, and sfence as
616 "lock addl $0, (%{re}sp)". */
617 static int avoid_fence = 0;
618
619 /* 1 if the assembler should generate relax relocations. */
620
621 static int generate_relax_relocations
622 = DEFAULT_GENERATE_X86_RELAX_RELOCATIONS;
623
624 static enum check_kind
625 {
626 check_none = 0,
627 check_warning,
628 check_error
629 }
630 sse_check, operand_check = check_warning;
631
632 /* Optimization:
633 1. Clear the REX_W bit with register operand if possible.
634 2. Above plus use 128bit vector instruction to clear the full vector
635 register.
636 */
637 static int optimize = 0;
638
639 /* Optimization:
640 1. Clear the REX_W bit with register operand if possible.
641 2. Above plus use 128bit vector instruction to clear the full vector
642 register.
643 3. Above plus optimize "test{q,l,w} $imm8,%r{64,32,16}" to
644 "testb $imm7,%r8".
645 */
646 static int optimize_for_space = 0;
647
648 /* Register prefix used for error message. */
649 static const char *register_prefix = "%";
650
651 /* Used in 16 bit gcc mode to add an l suffix to call, ret, enter,
652 leave, push, and pop instructions so that gcc has the same stack
653 frame as in 32 bit mode. */
654 static char stackop_size = '\0';
655
656 /* Non-zero to optimize code alignment. */
657 int optimize_align_code = 1;
658
659 /* Non-zero to quieten some warnings. */
660 static int quiet_warnings = 0;
661
662 /* CPU name. */
663 static const char *cpu_arch_name = NULL;
664 static char *cpu_sub_arch_name = NULL;
665
666 /* CPU feature flags. */
667 static i386_cpu_flags cpu_arch_flags = CPU_UNKNOWN_FLAGS;
668
669 /* If we have selected a cpu we are generating instructions for. */
670 static int cpu_arch_tune_set = 0;
671
672 /* Cpu we are generating instructions for. */
673 enum processor_type cpu_arch_tune = PROCESSOR_UNKNOWN;
674
675 /* CPU feature flags of cpu we are generating instructions for. */
676 static i386_cpu_flags cpu_arch_tune_flags;
677
678 /* CPU instruction set architecture used. */
679 enum processor_type cpu_arch_isa = PROCESSOR_UNKNOWN;
680
681 /* CPU feature flags of instruction set architecture used. */
682 i386_cpu_flags cpu_arch_isa_flags;
683
684 /* If set, conditional jumps are not automatically promoted to handle
685 larger than a byte offset. */
686 static unsigned int no_cond_jump_promotion = 0;
687
688 /* Encode SSE instructions with VEX prefix. */
689 static unsigned int sse2avx;
690
691 /* Encode scalar AVX instructions with specific vector length. */
692 static enum
693 {
694 vex128 = 0,
695 vex256
696 } avxscalar;
697
698 /* Encode VEX WIG instructions with specific vex.w. */
699 static enum
700 {
701 vexw0 = 0,
702 vexw1
703 } vexwig;
704
705 /* Encode scalar EVEX LIG instructions with specific vector length. */
706 static enum
707 {
708 evexl128 = 0,
709 evexl256,
710 evexl512
711 } evexlig;
712
713 /* Encode EVEX WIG instructions with specific evex.w. */
714 static enum
715 {
716 evexw0 = 0,
717 evexw1
718 } evexwig;
719
720 /* Value to encode in EVEX RC bits, for SAE-only instructions. */
721 static enum rc_type evexrcig = rne;
722
723 /* Pre-defined "_GLOBAL_OFFSET_TABLE_". */
724 static symbolS *GOT_symbol;
725
726 /* The dwarf2 return column, adjusted for 32 or 64 bit. */
727 unsigned int x86_dwarf2_return_column;
728
729 /* The dwarf2 data alignment, adjusted for 32 or 64 bit. */
730 int x86_cie_data_alignment;
731
732 /* Interface to relax_segment.
733 There are 3 major relax states for 386 jump insns because the
734 different types of jumps add different sizes to frags when we're
735 figuring out what sort of jump to choose to reach a given label. */
736
737 /* Types. */
738 #define UNCOND_JUMP 0
739 #define COND_JUMP 1
740 #define COND_JUMP86 2
741
742 /* Sizes. */
743 #define CODE16 1
744 #define SMALL 0
745 #define SMALL16 (SMALL | CODE16)
746 #define BIG 2
747 #define BIG16 (BIG | CODE16)
748
749 #ifndef INLINE
750 #ifdef __GNUC__
751 #define INLINE __inline__
752 #else
753 #define INLINE
754 #endif
755 #endif
756
757 #define ENCODE_RELAX_STATE(type, size) \
758 ((relax_substateT) (((type) << 2) | (size)))
759 #define TYPE_FROM_RELAX_STATE(s) \
760 ((s) >> 2)
761 #define DISP_SIZE_FROM_RELAX_STATE(s) \
762 ((((s) & 3) == BIG ? 4 : (((s) & 3) == BIG16 ? 2 : 1)))
763
764 /* This table is used by relax_frag to promote short jumps to long
765 ones where necessary. SMALL (short) jumps may be promoted to BIG
766 (32 bit long) ones, and SMALL16 jumps to BIG16 (16 bit long). We
767 don't allow a short jump in a 32 bit code segment to be promoted to
768 a 16 bit offset jump because it's slower (requires data size
769 prefix), and doesn't work, unless the destination is in the bottom
770 64k of the code segment (The top 16 bits of eip are zeroed). */
771
772 const relax_typeS md_relax_table[] =
773 {
774 /* The fields are:
775 1) most positive reach of this state,
776 2) most negative reach of this state,
777 3) how many bytes this mode will have in the variable part of the frag
778 4) which index into the table to try if we can't fit into this one. */
779
780 /* UNCOND_JUMP states. */
781 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG)},
782 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16)},
783 /* dword jmp adds 4 bytes to frag:
784 0 extra opcode bytes, 4 displacement bytes. */
785 {0, 0, 4, 0},
786 /* word jmp adds 2 byte2 to frag:
787 0 extra opcode bytes, 2 displacement bytes. */
788 {0, 0, 2, 0},
789
790 /* COND_JUMP states. */
791 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG)},
792 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG16)},
793 /* dword conditionals adds 5 bytes to frag:
794 1 extra opcode byte, 4 displacement bytes. */
795 {0, 0, 5, 0},
796 /* word conditionals add 3 bytes to frag:
797 1 extra opcode byte, 2 displacement bytes. */
798 {0, 0, 3, 0},
799
800 /* COND_JUMP86 states. */
801 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG)},
802 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG16)},
803 /* dword conditionals adds 5 bytes to frag:
804 1 extra opcode byte, 4 displacement bytes. */
805 {0, 0, 5, 0},
806 /* word conditionals add 4 bytes to frag:
807 1 displacement byte and a 3 byte long branch insn. */
808 {0, 0, 4, 0}
809 };
810
811 static const arch_entry cpu_arch[] =
812 {
813 /* Do not replace the first two entries - i386_target_format()
814 relies on them being there in this order. */
815 { STRING_COMMA_LEN ("generic32"), PROCESSOR_GENERIC32,
816 CPU_GENERIC32_FLAGS, 0 },
817 { STRING_COMMA_LEN ("generic64"), PROCESSOR_GENERIC64,
818 CPU_GENERIC64_FLAGS, 0 },
819 { STRING_COMMA_LEN ("i8086"), PROCESSOR_UNKNOWN,
820 CPU_NONE_FLAGS, 0 },
821 { STRING_COMMA_LEN ("i186"), PROCESSOR_UNKNOWN,
822 CPU_I186_FLAGS, 0 },
823 { STRING_COMMA_LEN ("i286"), PROCESSOR_UNKNOWN,
824 CPU_I286_FLAGS, 0 },
825 { STRING_COMMA_LEN ("i386"), PROCESSOR_I386,
826 CPU_I386_FLAGS, 0 },
827 { STRING_COMMA_LEN ("i486"), PROCESSOR_I486,
828 CPU_I486_FLAGS, 0 },
829 { STRING_COMMA_LEN ("i586"), PROCESSOR_PENTIUM,
830 CPU_I586_FLAGS, 0 },
831 { STRING_COMMA_LEN ("i686"), PROCESSOR_PENTIUMPRO,
832 CPU_I686_FLAGS, 0 },
833 { STRING_COMMA_LEN ("pentium"), PROCESSOR_PENTIUM,
834 CPU_I586_FLAGS, 0 },
835 { STRING_COMMA_LEN ("pentiumpro"), PROCESSOR_PENTIUMPRO,
836 CPU_PENTIUMPRO_FLAGS, 0 },
837 { STRING_COMMA_LEN ("pentiumii"), PROCESSOR_PENTIUMPRO,
838 CPU_P2_FLAGS, 0 },
839 { STRING_COMMA_LEN ("pentiumiii"),PROCESSOR_PENTIUMPRO,
840 CPU_P3_FLAGS, 0 },
841 { STRING_COMMA_LEN ("pentium4"), PROCESSOR_PENTIUM4,
842 CPU_P4_FLAGS, 0 },
843 { STRING_COMMA_LEN ("prescott"), PROCESSOR_NOCONA,
844 CPU_CORE_FLAGS, 0 },
845 { STRING_COMMA_LEN ("nocona"), PROCESSOR_NOCONA,
846 CPU_NOCONA_FLAGS, 0 },
847 { STRING_COMMA_LEN ("yonah"), PROCESSOR_CORE,
848 CPU_CORE_FLAGS, 1 },
849 { STRING_COMMA_LEN ("core"), PROCESSOR_CORE,
850 CPU_CORE_FLAGS, 0 },
851 { STRING_COMMA_LEN ("merom"), PROCESSOR_CORE2,
852 CPU_CORE2_FLAGS, 1 },
853 { STRING_COMMA_LEN ("core2"), PROCESSOR_CORE2,
854 CPU_CORE2_FLAGS, 0 },
855 { STRING_COMMA_LEN ("corei7"), PROCESSOR_COREI7,
856 CPU_COREI7_FLAGS, 0 },
857 { STRING_COMMA_LEN ("l1om"), PROCESSOR_L1OM,
858 CPU_L1OM_FLAGS, 0 },
859 { STRING_COMMA_LEN ("k1om"), PROCESSOR_K1OM,
860 CPU_K1OM_FLAGS, 0 },
861 { STRING_COMMA_LEN ("iamcu"), PROCESSOR_IAMCU,
862 CPU_IAMCU_FLAGS, 0 },
863 { STRING_COMMA_LEN ("k6"), PROCESSOR_K6,
864 CPU_K6_FLAGS, 0 },
865 { STRING_COMMA_LEN ("k6_2"), PROCESSOR_K6,
866 CPU_K6_2_FLAGS, 0 },
867 { STRING_COMMA_LEN ("athlon"), PROCESSOR_ATHLON,
868 CPU_ATHLON_FLAGS, 0 },
869 { STRING_COMMA_LEN ("sledgehammer"), PROCESSOR_K8,
870 CPU_K8_FLAGS, 1 },
871 { STRING_COMMA_LEN ("opteron"), PROCESSOR_K8,
872 CPU_K8_FLAGS, 0 },
873 { STRING_COMMA_LEN ("k8"), PROCESSOR_K8,
874 CPU_K8_FLAGS, 0 },
875 { STRING_COMMA_LEN ("amdfam10"), PROCESSOR_AMDFAM10,
876 CPU_AMDFAM10_FLAGS, 0 },
877 { STRING_COMMA_LEN ("bdver1"), PROCESSOR_BD,
878 CPU_BDVER1_FLAGS, 0 },
879 { STRING_COMMA_LEN ("bdver2"), PROCESSOR_BD,
880 CPU_BDVER2_FLAGS, 0 },
881 { STRING_COMMA_LEN ("bdver3"), PROCESSOR_BD,
882 CPU_BDVER3_FLAGS, 0 },
883 { STRING_COMMA_LEN ("bdver4"), PROCESSOR_BD,
884 CPU_BDVER4_FLAGS, 0 },
885 { STRING_COMMA_LEN ("znver1"), PROCESSOR_ZNVER,
886 CPU_ZNVER1_FLAGS, 0 },
887 { STRING_COMMA_LEN ("znver2"), PROCESSOR_ZNVER,
888 CPU_ZNVER2_FLAGS, 0 },
889 { STRING_COMMA_LEN ("btver1"), PROCESSOR_BT,
890 CPU_BTVER1_FLAGS, 0 },
891 { STRING_COMMA_LEN ("btver2"), PROCESSOR_BT,
892 CPU_BTVER2_FLAGS, 0 },
893 { STRING_COMMA_LEN (".8087"), PROCESSOR_UNKNOWN,
894 CPU_8087_FLAGS, 0 },
895 { STRING_COMMA_LEN (".287"), PROCESSOR_UNKNOWN,
896 CPU_287_FLAGS, 0 },
897 { STRING_COMMA_LEN (".387"), PROCESSOR_UNKNOWN,
898 CPU_387_FLAGS, 0 },
899 { STRING_COMMA_LEN (".687"), PROCESSOR_UNKNOWN,
900 CPU_687_FLAGS, 0 },
901 { STRING_COMMA_LEN (".cmov"), PROCESSOR_UNKNOWN,
902 CPU_CMOV_FLAGS, 0 },
903 { STRING_COMMA_LEN (".fxsr"), PROCESSOR_UNKNOWN,
904 CPU_FXSR_FLAGS, 0 },
905 { STRING_COMMA_LEN (".mmx"), PROCESSOR_UNKNOWN,
906 CPU_MMX_FLAGS, 0 },
907 { STRING_COMMA_LEN (".sse"), PROCESSOR_UNKNOWN,
908 CPU_SSE_FLAGS, 0 },
909 { STRING_COMMA_LEN (".sse2"), PROCESSOR_UNKNOWN,
910 CPU_SSE2_FLAGS, 0 },
911 { STRING_COMMA_LEN (".sse3"), PROCESSOR_UNKNOWN,
912 CPU_SSE3_FLAGS, 0 },
913 { STRING_COMMA_LEN (".ssse3"), PROCESSOR_UNKNOWN,
914 CPU_SSSE3_FLAGS, 0 },
915 { STRING_COMMA_LEN (".sse4.1"), PROCESSOR_UNKNOWN,
916 CPU_SSE4_1_FLAGS, 0 },
917 { STRING_COMMA_LEN (".sse4.2"), PROCESSOR_UNKNOWN,
918 CPU_SSE4_2_FLAGS, 0 },
919 { STRING_COMMA_LEN (".sse4"), PROCESSOR_UNKNOWN,
920 CPU_SSE4_2_FLAGS, 0 },
921 { STRING_COMMA_LEN (".avx"), PROCESSOR_UNKNOWN,
922 CPU_AVX_FLAGS, 0 },
923 { STRING_COMMA_LEN (".avx2"), PROCESSOR_UNKNOWN,
924 CPU_AVX2_FLAGS, 0 },
925 { STRING_COMMA_LEN (".avx512f"), PROCESSOR_UNKNOWN,
926 CPU_AVX512F_FLAGS, 0 },
927 { STRING_COMMA_LEN (".avx512cd"), PROCESSOR_UNKNOWN,
928 CPU_AVX512CD_FLAGS, 0 },
929 { STRING_COMMA_LEN (".avx512er"), PROCESSOR_UNKNOWN,
930 CPU_AVX512ER_FLAGS, 0 },
931 { STRING_COMMA_LEN (".avx512pf"), PROCESSOR_UNKNOWN,
932 CPU_AVX512PF_FLAGS, 0 },
933 { STRING_COMMA_LEN (".avx512dq"), PROCESSOR_UNKNOWN,
934 CPU_AVX512DQ_FLAGS, 0 },
935 { STRING_COMMA_LEN (".avx512bw"), PROCESSOR_UNKNOWN,
936 CPU_AVX512BW_FLAGS, 0 },
937 { STRING_COMMA_LEN (".avx512vl"), PROCESSOR_UNKNOWN,
938 CPU_AVX512VL_FLAGS, 0 },
939 { STRING_COMMA_LEN (".vmx"), PROCESSOR_UNKNOWN,
940 CPU_VMX_FLAGS, 0 },
941 { STRING_COMMA_LEN (".vmfunc"), PROCESSOR_UNKNOWN,
942 CPU_VMFUNC_FLAGS, 0 },
943 { STRING_COMMA_LEN (".smx"), PROCESSOR_UNKNOWN,
944 CPU_SMX_FLAGS, 0 },
945 { STRING_COMMA_LEN (".xsave"), PROCESSOR_UNKNOWN,
946 CPU_XSAVE_FLAGS, 0 },
947 { STRING_COMMA_LEN (".xsaveopt"), PROCESSOR_UNKNOWN,
948 CPU_XSAVEOPT_FLAGS, 0 },
949 { STRING_COMMA_LEN (".xsavec"), PROCESSOR_UNKNOWN,
950 CPU_XSAVEC_FLAGS, 0 },
951 { STRING_COMMA_LEN (".xsaves"), PROCESSOR_UNKNOWN,
952 CPU_XSAVES_FLAGS, 0 },
953 { STRING_COMMA_LEN (".aes"), PROCESSOR_UNKNOWN,
954 CPU_AES_FLAGS, 0 },
955 { STRING_COMMA_LEN (".pclmul"), PROCESSOR_UNKNOWN,
956 CPU_PCLMUL_FLAGS, 0 },
957 { STRING_COMMA_LEN (".clmul"), PROCESSOR_UNKNOWN,
958 CPU_PCLMUL_FLAGS, 1 },
959 { STRING_COMMA_LEN (".fsgsbase"), PROCESSOR_UNKNOWN,
960 CPU_FSGSBASE_FLAGS, 0 },
961 { STRING_COMMA_LEN (".rdrnd"), PROCESSOR_UNKNOWN,
962 CPU_RDRND_FLAGS, 0 },
963 { STRING_COMMA_LEN (".f16c"), PROCESSOR_UNKNOWN,
964 CPU_F16C_FLAGS, 0 },
965 { STRING_COMMA_LEN (".bmi2"), PROCESSOR_UNKNOWN,
966 CPU_BMI2_FLAGS, 0 },
967 { STRING_COMMA_LEN (".fma"), PROCESSOR_UNKNOWN,
968 CPU_FMA_FLAGS, 0 },
969 { STRING_COMMA_LEN (".fma4"), PROCESSOR_UNKNOWN,
970 CPU_FMA4_FLAGS, 0 },
971 { STRING_COMMA_LEN (".xop"), PROCESSOR_UNKNOWN,
972 CPU_XOP_FLAGS, 0 },
973 { STRING_COMMA_LEN (".lwp"), PROCESSOR_UNKNOWN,
974 CPU_LWP_FLAGS, 0 },
975 { STRING_COMMA_LEN (".movbe"), PROCESSOR_UNKNOWN,
976 CPU_MOVBE_FLAGS, 0 },
977 { STRING_COMMA_LEN (".cx16"), PROCESSOR_UNKNOWN,
978 CPU_CX16_FLAGS, 0 },
979 { STRING_COMMA_LEN (".ept"), PROCESSOR_UNKNOWN,
980 CPU_EPT_FLAGS, 0 },
981 { STRING_COMMA_LEN (".lzcnt"), PROCESSOR_UNKNOWN,
982 CPU_LZCNT_FLAGS, 0 },
983 { STRING_COMMA_LEN (".hle"), PROCESSOR_UNKNOWN,
984 CPU_HLE_FLAGS, 0 },
985 { STRING_COMMA_LEN (".rtm"), PROCESSOR_UNKNOWN,
986 CPU_RTM_FLAGS, 0 },
987 { STRING_COMMA_LEN (".invpcid"), PROCESSOR_UNKNOWN,
988 CPU_INVPCID_FLAGS, 0 },
989 { STRING_COMMA_LEN (".clflush"), PROCESSOR_UNKNOWN,
990 CPU_CLFLUSH_FLAGS, 0 },
991 { STRING_COMMA_LEN (".nop"), PROCESSOR_UNKNOWN,
992 CPU_NOP_FLAGS, 0 },
993 { STRING_COMMA_LEN (".syscall"), PROCESSOR_UNKNOWN,
994 CPU_SYSCALL_FLAGS, 0 },
995 { STRING_COMMA_LEN (".rdtscp"), PROCESSOR_UNKNOWN,
996 CPU_RDTSCP_FLAGS, 0 },
997 { STRING_COMMA_LEN (".3dnow"), PROCESSOR_UNKNOWN,
998 CPU_3DNOW_FLAGS, 0 },
999 { STRING_COMMA_LEN (".3dnowa"), PROCESSOR_UNKNOWN,
1000 CPU_3DNOWA_FLAGS, 0 },
1001 { STRING_COMMA_LEN (".padlock"), PROCESSOR_UNKNOWN,
1002 CPU_PADLOCK_FLAGS, 0 },
1003 { STRING_COMMA_LEN (".pacifica"), PROCESSOR_UNKNOWN,
1004 CPU_SVME_FLAGS, 1 },
1005 { STRING_COMMA_LEN (".svme"), PROCESSOR_UNKNOWN,
1006 CPU_SVME_FLAGS, 0 },
1007 { STRING_COMMA_LEN (".sse4a"), PROCESSOR_UNKNOWN,
1008 CPU_SSE4A_FLAGS, 0 },
1009 { STRING_COMMA_LEN (".abm"), PROCESSOR_UNKNOWN,
1010 CPU_ABM_FLAGS, 0 },
1011 { STRING_COMMA_LEN (".bmi"), PROCESSOR_UNKNOWN,
1012 CPU_BMI_FLAGS, 0 },
1013 { STRING_COMMA_LEN (".tbm"), PROCESSOR_UNKNOWN,
1014 CPU_TBM_FLAGS, 0 },
1015 { STRING_COMMA_LEN (".adx"), PROCESSOR_UNKNOWN,
1016 CPU_ADX_FLAGS, 0 },
1017 { STRING_COMMA_LEN (".rdseed"), PROCESSOR_UNKNOWN,
1018 CPU_RDSEED_FLAGS, 0 },
1019 { STRING_COMMA_LEN (".prfchw"), PROCESSOR_UNKNOWN,
1020 CPU_PRFCHW_FLAGS, 0 },
1021 { STRING_COMMA_LEN (".smap"), PROCESSOR_UNKNOWN,
1022 CPU_SMAP_FLAGS, 0 },
1023 { STRING_COMMA_LEN (".mpx"), PROCESSOR_UNKNOWN,
1024 CPU_MPX_FLAGS, 0 },
1025 { STRING_COMMA_LEN (".sha"), PROCESSOR_UNKNOWN,
1026 CPU_SHA_FLAGS, 0 },
1027 { STRING_COMMA_LEN (".clflushopt"), PROCESSOR_UNKNOWN,
1028 CPU_CLFLUSHOPT_FLAGS, 0 },
1029 { STRING_COMMA_LEN (".prefetchwt1"), PROCESSOR_UNKNOWN,
1030 CPU_PREFETCHWT1_FLAGS, 0 },
1031 { STRING_COMMA_LEN (".se1"), PROCESSOR_UNKNOWN,
1032 CPU_SE1_FLAGS, 0 },
1033 { STRING_COMMA_LEN (".clwb"), PROCESSOR_UNKNOWN,
1034 CPU_CLWB_FLAGS, 0 },
1035 { STRING_COMMA_LEN (".avx512ifma"), PROCESSOR_UNKNOWN,
1036 CPU_AVX512IFMA_FLAGS, 0 },
1037 { STRING_COMMA_LEN (".avx512vbmi"), PROCESSOR_UNKNOWN,
1038 CPU_AVX512VBMI_FLAGS, 0 },
1039 { STRING_COMMA_LEN (".avx512_4fmaps"), PROCESSOR_UNKNOWN,
1040 CPU_AVX512_4FMAPS_FLAGS, 0 },
1041 { STRING_COMMA_LEN (".avx512_4vnniw"), PROCESSOR_UNKNOWN,
1042 CPU_AVX512_4VNNIW_FLAGS, 0 },
1043 { STRING_COMMA_LEN (".avx512_vpopcntdq"), PROCESSOR_UNKNOWN,
1044 CPU_AVX512_VPOPCNTDQ_FLAGS, 0 },
1045 { STRING_COMMA_LEN (".avx512_vbmi2"), PROCESSOR_UNKNOWN,
1046 CPU_AVX512_VBMI2_FLAGS, 0 },
1047 { STRING_COMMA_LEN (".avx512_vnni"), PROCESSOR_UNKNOWN,
1048 CPU_AVX512_VNNI_FLAGS, 0 },
1049 { STRING_COMMA_LEN (".avx512_bitalg"), PROCESSOR_UNKNOWN,
1050 CPU_AVX512_BITALG_FLAGS, 0 },
1051 { STRING_COMMA_LEN (".clzero"), PROCESSOR_UNKNOWN,
1052 CPU_CLZERO_FLAGS, 0 },
1053 { STRING_COMMA_LEN (".mwaitx"), PROCESSOR_UNKNOWN,
1054 CPU_MWAITX_FLAGS, 0 },
1055 { STRING_COMMA_LEN (".ospke"), PROCESSOR_UNKNOWN,
1056 CPU_OSPKE_FLAGS, 0 },
1057 { STRING_COMMA_LEN (".rdpid"), PROCESSOR_UNKNOWN,
1058 CPU_RDPID_FLAGS, 0 },
1059 { STRING_COMMA_LEN (".ptwrite"), PROCESSOR_UNKNOWN,
1060 CPU_PTWRITE_FLAGS, 0 },
1061 { STRING_COMMA_LEN (".ibt"), PROCESSOR_UNKNOWN,
1062 CPU_IBT_FLAGS, 0 },
1063 { STRING_COMMA_LEN (".shstk"), PROCESSOR_UNKNOWN,
1064 CPU_SHSTK_FLAGS, 0 },
1065 { STRING_COMMA_LEN (".gfni"), PROCESSOR_UNKNOWN,
1066 CPU_GFNI_FLAGS, 0 },
1067 { STRING_COMMA_LEN (".vaes"), PROCESSOR_UNKNOWN,
1068 CPU_VAES_FLAGS, 0 },
1069 { STRING_COMMA_LEN (".vpclmulqdq"), PROCESSOR_UNKNOWN,
1070 CPU_VPCLMULQDQ_FLAGS, 0 },
1071 { STRING_COMMA_LEN (".wbnoinvd"), PROCESSOR_UNKNOWN,
1072 CPU_WBNOINVD_FLAGS, 0 },
1073 { STRING_COMMA_LEN (".pconfig"), PROCESSOR_UNKNOWN,
1074 CPU_PCONFIG_FLAGS, 0 },
1075 { STRING_COMMA_LEN (".waitpkg"), PROCESSOR_UNKNOWN,
1076 CPU_WAITPKG_FLAGS, 0 },
1077 { STRING_COMMA_LEN (".cldemote"), PROCESSOR_UNKNOWN,
1078 CPU_CLDEMOTE_FLAGS, 0 },
1079 { STRING_COMMA_LEN (".movdiri"), PROCESSOR_UNKNOWN,
1080 CPU_MOVDIRI_FLAGS, 0 },
1081 { STRING_COMMA_LEN (".movdir64b"), PROCESSOR_UNKNOWN,
1082 CPU_MOVDIR64B_FLAGS, 0 },
1083 { STRING_COMMA_LEN (".avx512_bf16"), PROCESSOR_UNKNOWN,
1084 CPU_AVX512_BF16_FLAGS, 0 },
1085 { STRING_COMMA_LEN (".avx512_vp2intersect"), PROCESSOR_UNKNOWN,
1086 CPU_AVX512_VP2INTERSECT_FLAGS, 0 },
1087 { STRING_COMMA_LEN (".enqcmd"), PROCESSOR_UNKNOWN,
1088 CPU_ENQCMD_FLAGS, 0 },
1089 };
1090
1091 static const noarch_entry cpu_noarch[] =
1092 {
1093 { STRING_COMMA_LEN ("no87"), CPU_ANY_X87_FLAGS },
1094 { STRING_COMMA_LEN ("no287"), CPU_ANY_287_FLAGS },
1095 { STRING_COMMA_LEN ("no387"), CPU_ANY_387_FLAGS },
1096 { STRING_COMMA_LEN ("no687"), CPU_ANY_687_FLAGS },
1097 { STRING_COMMA_LEN ("nocmov"), CPU_ANY_CMOV_FLAGS },
1098 { STRING_COMMA_LEN ("nofxsr"), CPU_ANY_FXSR_FLAGS },
1099 { STRING_COMMA_LEN ("nommx"), CPU_ANY_MMX_FLAGS },
1100 { STRING_COMMA_LEN ("nosse"), CPU_ANY_SSE_FLAGS },
1101 { STRING_COMMA_LEN ("nosse2"), CPU_ANY_SSE2_FLAGS },
1102 { STRING_COMMA_LEN ("nosse3"), CPU_ANY_SSE3_FLAGS },
1103 { STRING_COMMA_LEN ("nossse3"), CPU_ANY_SSSE3_FLAGS },
1104 { STRING_COMMA_LEN ("nosse4.1"), CPU_ANY_SSE4_1_FLAGS },
1105 { STRING_COMMA_LEN ("nosse4.2"), CPU_ANY_SSE4_2_FLAGS },
1106 { STRING_COMMA_LEN ("nosse4"), CPU_ANY_SSE4_1_FLAGS },
1107 { STRING_COMMA_LEN ("noavx"), CPU_ANY_AVX_FLAGS },
1108 { STRING_COMMA_LEN ("noavx2"), CPU_ANY_AVX2_FLAGS },
1109 { STRING_COMMA_LEN ("noavx512f"), CPU_ANY_AVX512F_FLAGS },
1110 { STRING_COMMA_LEN ("noavx512cd"), CPU_ANY_AVX512CD_FLAGS },
1111 { STRING_COMMA_LEN ("noavx512er"), CPU_ANY_AVX512ER_FLAGS },
1112 { STRING_COMMA_LEN ("noavx512pf"), CPU_ANY_AVX512PF_FLAGS },
1113 { STRING_COMMA_LEN ("noavx512dq"), CPU_ANY_AVX512DQ_FLAGS },
1114 { STRING_COMMA_LEN ("noavx512bw"), CPU_ANY_AVX512BW_FLAGS },
1115 { STRING_COMMA_LEN ("noavx512vl"), CPU_ANY_AVX512VL_FLAGS },
1116 { STRING_COMMA_LEN ("noavx512ifma"), CPU_ANY_AVX512IFMA_FLAGS },
1117 { STRING_COMMA_LEN ("noavx512vbmi"), CPU_ANY_AVX512VBMI_FLAGS },
1118 { STRING_COMMA_LEN ("noavx512_4fmaps"), CPU_ANY_AVX512_4FMAPS_FLAGS },
1119 { STRING_COMMA_LEN ("noavx512_4vnniw"), CPU_ANY_AVX512_4VNNIW_FLAGS },
1120 { STRING_COMMA_LEN ("noavx512_vpopcntdq"), CPU_ANY_AVX512_VPOPCNTDQ_FLAGS },
1121 { STRING_COMMA_LEN ("noavx512_vbmi2"), CPU_ANY_AVX512_VBMI2_FLAGS },
1122 { STRING_COMMA_LEN ("noavx512_vnni"), CPU_ANY_AVX512_VNNI_FLAGS },
1123 { STRING_COMMA_LEN ("noavx512_bitalg"), CPU_ANY_AVX512_BITALG_FLAGS },
1124 { STRING_COMMA_LEN ("noibt"), CPU_ANY_IBT_FLAGS },
1125 { STRING_COMMA_LEN ("noshstk"), CPU_ANY_SHSTK_FLAGS },
1126 { STRING_COMMA_LEN ("nomovdiri"), CPU_ANY_MOVDIRI_FLAGS },
1127 { STRING_COMMA_LEN ("nomovdir64b"), CPU_ANY_MOVDIR64B_FLAGS },
1128 { STRING_COMMA_LEN ("noavx512_bf16"), CPU_ANY_AVX512_BF16_FLAGS },
1129 { STRING_COMMA_LEN ("noavx512_vp2intersect"), CPU_ANY_SHSTK_FLAGS },
1130 { STRING_COMMA_LEN ("noenqcmd"), CPU_ANY_ENQCMD_FLAGS },
1131 };
1132
1133 #ifdef I386COFF
1134 /* Like s_lcomm_internal in gas/read.c but the alignment string
1135 is allowed to be optional. */
1136
1137 static symbolS *
1138 pe_lcomm_internal (int needs_align, symbolS *symbolP, addressT size)
1139 {
1140 addressT align = 0;
1141
1142 SKIP_WHITESPACE ();
1143
1144 if (needs_align
1145 && *input_line_pointer == ',')
1146 {
1147 align = parse_align (needs_align - 1);
1148
1149 if (align == (addressT) -1)
1150 return NULL;
1151 }
1152 else
1153 {
1154 if (size >= 8)
1155 align = 3;
1156 else if (size >= 4)
1157 align = 2;
1158 else if (size >= 2)
1159 align = 1;
1160 else
1161 align = 0;
1162 }
1163
1164 bss_alloc (symbolP, size, align);
1165 return symbolP;
1166 }
1167
1168 static void
1169 pe_lcomm (int needs_align)
1170 {
1171 s_comm_internal (needs_align * 2, pe_lcomm_internal);
1172 }
1173 #endif
1174
1175 const pseudo_typeS md_pseudo_table[] =
1176 {
1177 #if !defined(OBJ_AOUT) && !defined(USE_ALIGN_PTWO)
1178 {"align", s_align_bytes, 0},
1179 #else
1180 {"align", s_align_ptwo, 0},
1181 #endif
1182 {"arch", set_cpu_arch, 0},
1183 #ifndef I386COFF
1184 {"bss", s_bss, 0},
1185 #else
1186 {"lcomm", pe_lcomm, 1},
1187 #endif
1188 {"ffloat", float_cons, 'f'},
1189 {"dfloat", float_cons, 'd'},
1190 {"tfloat", float_cons, 'x'},
1191 {"value", cons, 2},
1192 {"slong", signed_cons, 4},
1193 {"noopt", s_ignore, 0},
1194 {"optim", s_ignore, 0},
1195 {"code16gcc", set_16bit_gcc_code_flag, CODE_16BIT},
1196 {"code16", set_code_flag, CODE_16BIT},
1197 {"code32", set_code_flag, CODE_32BIT},
1198 #ifdef BFD64
1199 {"code64", set_code_flag, CODE_64BIT},
1200 #endif
1201 {"intel_syntax", set_intel_syntax, 1},
1202 {"att_syntax", set_intel_syntax, 0},
1203 {"intel_mnemonic", set_intel_mnemonic, 1},
1204 {"att_mnemonic", set_intel_mnemonic, 0},
1205 {"allow_index_reg", set_allow_index_reg, 1},
1206 {"disallow_index_reg", set_allow_index_reg, 0},
1207 {"sse_check", set_check, 0},
1208 {"operand_check", set_check, 1},
1209 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
1210 {"largecomm", handle_large_common, 0},
1211 #else
1212 {"file", dwarf2_directive_file, 0},
1213 {"loc", dwarf2_directive_loc, 0},
1214 {"loc_mark_labels", dwarf2_directive_loc_mark_labels, 0},
1215 #endif
1216 #ifdef TE_PE
1217 {"secrel32", pe_directive_secrel, 0},
1218 #endif
1219 {0, 0, 0}
1220 };
1221
1222 /* For interface with expression (). */
1223 extern char *input_line_pointer;
1224
1225 /* Hash table for instruction mnemonic lookup. */
1226 static struct hash_control *op_hash;
1227
1228 /* Hash table for register lookup. */
1229 static struct hash_control *reg_hash;
1230 \f
1231 /* Various efficient no-op patterns for aligning code labels.
1232 Note: Don't try to assemble the instructions in the comments.
1233 0L and 0w are not legal. */
1234 static const unsigned char f32_1[] =
1235 {0x90}; /* nop */
1236 static const unsigned char f32_2[] =
1237 {0x66,0x90}; /* xchg %ax,%ax */
1238 static const unsigned char f32_3[] =
1239 {0x8d,0x76,0x00}; /* leal 0(%esi),%esi */
1240 static const unsigned char f32_4[] =
1241 {0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
1242 static const unsigned char f32_6[] =
1243 {0x8d,0xb6,0x00,0x00,0x00,0x00}; /* leal 0L(%esi),%esi */
1244 static const unsigned char f32_7[] =
1245 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
1246 static const unsigned char f16_3[] =
1247 {0x8d,0x74,0x00}; /* lea 0(%si),%si */
1248 static const unsigned char f16_4[] =
1249 {0x8d,0xb4,0x00,0x00}; /* lea 0W(%si),%si */
1250 static const unsigned char jump_disp8[] =
1251 {0xeb}; /* jmp disp8 */
1252 static const unsigned char jump32_disp32[] =
1253 {0xe9}; /* jmp disp32 */
1254 static const unsigned char jump16_disp32[] =
1255 {0x66,0xe9}; /* jmp disp32 */
1256 /* 32-bit NOPs patterns. */
1257 static const unsigned char *const f32_patt[] = {
1258 f32_1, f32_2, f32_3, f32_4, NULL, f32_6, f32_7
1259 };
1260 /* 16-bit NOPs patterns. */
1261 static const unsigned char *const f16_patt[] = {
1262 f32_1, f32_2, f16_3, f16_4
1263 };
1264 /* nopl (%[re]ax) */
1265 static const unsigned char alt_3[] =
1266 {0x0f,0x1f,0x00};
1267 /* nopl 0(%[re]ax) */
1268 static const unsigned char alt_4[] =
1269 {0x0f,0x1f,0x40,0x00};
1270 /* nopl 0(%[re]ax,%[re]ax,1) */
1271 static const unsigned char alt_5[] =
1272 {0x0f,0x1f,0x44,0x00,0x00};
1273 /* nopw 0(%[re]ax,%[re]ax,1) */
1274 static const unsigned char alt_6[] =
1275 {0x66,0x0f,0x1f,0x44,0x00,0x00};
1276 /* nopl 0L(%[re]ax) */
1277 static const unsigned char alt_7[] =
1278 {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
1279 /* nopl 0L(%[re]ax,%[re]ax,1) */
1280 static const unsigned char alt_8[] =
1281 {0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1282 /* nopw 0L(%[re]ax,%[re]ax,1) */
1283 static const unsigned char alt_9[] =
1284 {0x66,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1285 /* nopw %cs:0L(%[re]ax,%[re]ax,1) */
1286 static const unsigned char alt_10[] =
1287 {0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1288 /* data16 nopw %cs:0L(%eax,%eax,1) */
1289 static const unsigned char alt_11[] =
1290 {0x66,0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1291 /* 32-bit and 64-bit NOPs patterns. */
1292 static const unsigned char *const alt_patt[] = {
1293 f32_1, f32_2, alt_3, alt_4, alt_5, alt_6, alt_7, alt_8,
1294 alt_9, alt_10, alt_11
1295 };
1296
1297 /* Genenerate COUNT bytes of NOPs to WHERE from PATT with the maximum
1298 size of a single NOP instruction MAX_SINGLE_NOP_SIZE. */
1299
1300 static void
1301 i386_output_nops (char *where, const unsigned char *const *patt,
1302 int count, int max_single_nop_size)
1303
1304 {
1305 /* Place the longer NOP first. */
1306 int last;
1307 int offset;
1308 const unsigned char *nops;
1309
1310 if (max_single_nop_size < 1)
1311 {
1312 as_fatal (_("i386_output_nops called to generate nops of at most %d bytes!"),
1313 max_single_nop_size);
1314 return;
1315 }
1316
1317 nops = patt[max_single_nop_size - 1];
1318
1319 /* Use the smaller one if the requsted one isn't available. */
1320 if (nops == NULL)
1321 {
1322 max_single_nop_size--;
1323 nops = patt[max_single_nop_size - 1];
1324 }
1325
1326 last = count % max_single_nop_size;
1327
1328 count -= last;
1329 for (offset = 0; offset < count; offset += max_single_nop_size)
1330 memcpy (where + offset, nops, max_single_nop_size);
1331
1332 if (last)
1333 {
1334 nops = patt[last - 1];
1335 if (nops == NULL)
1336 {
1337 /* Use the smaller one plus one-byte NOP if the needed one
1338 isn't available. */
1339 last--;
1340 nops = patt[last - 1];
1341 memcpy (where + offset, nops, last);
1342 where[offset + last] = *patt[0];
1343 }
1344 else
1345 memcpy (where + offset, nops, last);
1346 }
1347 }
1348
1349 static INLINE int
1350 fits_in_imm7 (offsetT num)
1351 {
1352 return (num & 0x7f) == num;
1353 }
1354
1355 static INLINE int
1356 fits_in_imm31 (offsetT num)
1357 {
1358 return (num & 0x7fffffff) == num;
1359 }
1360
1361 /* Genenerate COUNT bytes of NOPs to WHERE with the maximum size of a
1362 single NOP instruction LIMIT. */
1363
1364 void
1365 i386_generate_nops (fragS *fragP, char *where, offsetT count, int limit)
1366 {
1367 const unsigned char *const *patt = NULL;
1368 int max_single_nop_size;
1369 /* Maximum number of NOPs before switching to jump over NOPs. */
1370 int max_number_of_nops;
1371
1372 switch (fragP->fr_type)
1373 {
1374 case rs_fill_nop:
1375 case rs_align_code:
1376 break;
1377 default:
1378 return;
1379 }
1380
1381 /* We need to decide which NOP sequence to use for 32bit and
1382 64bit. When -mtune= is used:
1383
1384 1. For PROCESSOR_I386, PROCESSOR_I486, PROCESSOR_PENTIUM and
1385 PROCESSOR_GENERIC32, f32_patt will be used.
1386 2. For the rest, alt_patt will be used.
1387
1388 When -mtune= isn't used, alt_patt will be used if
1389 cpu_arch_isa_flags has CpuNop. Otherwise, f32_patt will
1390 be used.
1391
1392 When -march= or .arch is used, we can't use anything beyond
1393 cpu_arch_isa_flags. */
1394
1395 if (flag_code == CODE_16BIT)
1396 {
1397 patt = f16_patt;
1398 max_single_nop_size = sizeof (f16_patt) / sizeof (f16_patt[0]);
1399 /* Limit number of NOPs to 2 in 16-bit mode. */
1400 max_number_of_nops = 2;
1401 }
1402 else
1403 {
1404 if (fragP->tc_frag_data.isa == PROCESSOR_UNKNOWN)
1405 {
1406 /* PROCESSOR_UNKNOWN means that all ISAs may be used. */
1407 switch (cpu_arch_tune)
1408 {
1409 case PROCESSOR_UNKNOWN:
1410 /* We use cpu_arch_isa_flags to check if we SHOULD
1411 optimize with nops. */
1412 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1413 patt = alt_patt;
1414 else
1415 patt = f32_patt;
1416 break;
1417 case PROCESSOR_PENTIUM4:
1418 case PROCESSOR_NOCONA:
1419 case PROCESSOR_CORE:
1420 case PROCESSOR_CORE2:
1421 case PROCESSOR_COREI7:
1422 case PROCESSOR_L1OM:
1423 case PROCESSOR_K1OM:
1424 case PROCESSOR_GENERIC64:
1425 case PROCESSOR_K6:
1426 case PROCESSOR_ATHLON:
1427 case PROCESSOR_K8:
1428 case PROCESSOR_AMDFAM10:
1429 case PROCESSOR_BD:
1430 case PROCESSOR_ZNVER:
1431 case PROCESSOR_BT:
1432 patt = alt_patt;
1433 break;
1434 case PROCESSOR_I386:
1435 case PROCESSOR_I486:
1436 case PROCESSOR_PENTIUM:
1437 case PROCESSOR_PENTIUMPRO:
1438 case PROCESSOR_IAMCU:
1439 case PROCESSOR_GENERIC32:
1440 patt = f32_patt;
1441 break;
1442 }
1443 }
1444 else
1445 {
1446 switch (fragP->tc_frag_data.tune)
1447 {
1448 case PROCESSOR_UNKNOWN:
1449 /* When cpu_arch_isa is set, cpu_arch_tune shouldn't be
1450 PROCESSOR_UNKNOWN. */
1451 abort ();
1452 break;
1453
1454 case PROCESSOR_I386:
1455 case PROCESSOR_I486:
1456 case PROCESSOR_PENTIUM:
1457 case PROCESSOR_IAMCU:
1458 case PROCESSOR_K6:
1459 case PROCESSOR_ATHLON:
1460 case PROCESSOR_K8:
1461 case PROCESSOR_AMDFAM10:
1462 case PROCESSOR_BD:
1463 case PROCESSOR_ZNVER:
1464 case PROCESSOR_BT:
1465 case PROCESSOR_GENERIC32:
1466 /* We use cpu_arch_isa_flags to check if we CAN optimize
1467 with nops. */
1468 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1469 patt = alt_patt;
1470 else
1471 patt = f32_patt;
1472 break;
1473 case PROCESSOR_PENTIUMPRO:
1474 case PROCESSOR_PENTIUM4:
1475 case PROCESSOR_NOCONA:
1476 case PROCESSOR_CORE:
1477 case PROCESSOR_CORE2:
1478 case PROCESSOR_COREI7:
1479 case PROCESSOR_L1OM:
1480 case PROCESSOR_K1OM:
1481 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1482 patt = alt_patt;
1483 else
1484 patt = f32_patt;
1485 break;
1486 case PROCESSOR_GENERIC64:
1487 patt = alt_patt;
1488 break;
1489 }
1490 }
1491
1492 if (patt == f32_patt)
1493 {
1494 max_single_nop_size = sizeof (f32_patt) / sizeof (f32_patt[0]);
1495 /* Limit number of NOPs to 2 for older processors. */
1496 max_number_of_nops = 2;
1497 }
1498 else
1499 {
1500 max_single_nop_size = sizeof (alt_patt) / sizeof (alt_patt[0]);
1501 /* Limit number of NOPs to 7 for newer processors. */
1502 max_number_of_nops = 7;
1503 }
1504 }
1505
1506 if (limit == 0)
1507 limit = max_single_nop_size;
1508
1509 if (fragP->fr_type == rs_fill_nop)
1510 {
1511 /* Output NOPs for .nop directive. */
1512 if (limit > max_single_nop_size)
1513 {
1514 as_bad_where (fragP->fr_file, fragP->fr_line,
1515 _("invalid single nop size: %d "
1516 "(expect within [0, %d])"),
1517 limit, max_single_nop_size);
1518 return;
1519 }
1520 }
1521 else
1522 fragP->fr_var = count;
1523
1524 if ((count / max_single_nop_size) > max_number_of_nops)
1525 {
1526 /* Generate jump over NOPs. */
1527 offsetT disp = count - 2;
1528 if (fits_in_imm7 (disp))
1529 {
1530 /* Use "jmp disp8" if possible. */
1531 count = disp;
1532 where[0] = jump_disp8[0];
1533 where[1] = count;
1534 where += 2;
1535 }
1536 else
1537 {
1538 unsigned int size_of_jump;
1539
1540 if (flag_code == CODE_16BIT)
1541 {
1542 where[0] = jump16_disp32[0];
1543 where[1] = jump16_disp32[1];
1544 size_of_jump = 2;
1545 }
1546 else
1547 {
1548 where[0] = jump32_disp32[0];
1549 size_of_jump = 1;
1550 }
1551
1552 count -= size_of_jump + 4;
1553 if (!fits_in_imm31 (count))
1554 {
1555 as_bad_where (fragP->fr_file, fragP->fr_line,
1556 _("jump over nop padding out of range"));
1557 return;
1558 }
1559
1560 md_number_to_chars (where + size_of_jump, count, 4);
1561 where += size_of_jump + 4;
1562 }
1563 }
1564
1565 /* Generate multiple NOPs. */
1566 i386_output_nops (where, patt, count, limit);
1567 }
1568
1569 static INLINE int
1570 operand_type_all_zero (const union i386_operand_type *x)
1571 {
1572 switch (ARRAY_SIZE(x->array))
1573 {
1574 case 3:
1575 if (x->array[2])
1576 return 0;
1577 /* Fall through. */
1578 case 2:
1579 if (x->array[1])
1580 return 0;
1581 /* Fall through. */
1582 case 1:
1583 return !x->array[0];
1584 default:
1585 abort ();
1586 }
1587 }
1588
1589 static INLINE void
1590 operand_type_set (union i386_operand_type *x, unsigned int v)
1591 {
1592 switch (ARRAY_SIZE(x->array))
1593 {
1594 case 3:
1595 x->array[2] = v;
1596 /* Fall through. */
1597 case 2:
1598 x->array[1] = v;
1599 /* Fall through. */
1600 case 1:
1601 x->array[0] = v;
1602 /* Fall through. */
1603 break;
1604 default:
1605 abort ();
1606 }
1607 }
1608
1609 static INLINE int
1610 operand_type_equal (const union i386_operand_type *x,
1611 const union i386_operand_type *y)
1612 {
1613 switch (ARRAY_SIZE(x->array))
1614 {
1615 case 3:
1616 if (x->array[2] != y->array[2])
1617 return 0;
1618 /* Fall through. */
1619 case 2:
1620 if (x->array[1] != y->array[1])
1621 return 0;
1622 /* Fall through. */
1623 case 1:
1624 return x->array[0] == y->array[0];
1625 break;
1626 default:
1627 abort ();
1628 }
1629 }
1630
1631 static INLINE int
1632 cpu_flags_all_zero (const union i386_cpu_flags *x)
1633 {
1634 switch (ARRAY_SIZE(x->array))
1635 {
1636 case 4:
1637 if (x->array[3])
1638 return 0;
1639 /* Fall through. */
1640 case 3:
1641 if (x->array[2])
1642 return 0;
1643 /* Fall through. */
1644 case 2:
1645 if (x->array[1])
1646 return 0;
1647 /* Fall through. */
1648 case 1:
1649 return !x->array[0];
1650 default:
1651 abort ();
1652 }
1653 }
1654
1655 static INLINE int
1656 cpu_flags_equal (const union i386_cpu_flags *x,
1657 const union i386_cpu_flags *y)
1658 {
1659 switch (ARRAY_SIZE(x->array))
1660 {
1661 case 4:
1662 if (x->array[3] != y->array[3])
1663 return 0;
1664 /* Fall through. */
1665 case 3:
1666 if (x->array[2] != y->array[2])
1667 return 0;
1668 /* Fall through. */
1669 case 2:
1670 if (x->array[1] != y->array[1])
1671 return 0;
1672 /* Fall through. */
1673 case 1:
1674 return x->array[0] == y->array[0];
1675 break;
1676 default:
1677 abort ();
1678 }
1679 }
1680
1681 static INLINE int
1682 cpu_flags_check_cpu64 (i386_cpu_flags f)
1683 {
1684 return !((flag_code == CODE_64BIT && f.bitfield.cpuno64)
1685 || (flag_code != CODE_64BIT && f.bitfield.cpu64));
1686 }
1687
1688 static INLINE i386_cpu_flags
1689 cpu_flags_and (i386_cpu_flags x, i386_cpu_flags y)
1690 {
1691 switch (ARRAY_SIZE (x.array))
1692 {
1693 case 4:
1694 x.array [3] &= y.array [3];
1695 /* Fall through. */
1696 case 3:
1697 x.array [2] &= y.array [2];
1698 /* Fall through. */
1699 case 2:
1700 x.array [1] &= y.array [1];
1701 /* Fall through. */
1702 case 1:
1703 x.array [0] &= y.array [0];
1704 break;
1705 default:
1706 abort ();
1707 }
1708 return x;
1709 }
1710
1711 static INLINE i386_cpu_flags
1712 cpu_flags_or (i386_cpu_flags x, i386_cpu_flags y)
1713 {
1714 switch (ARRAY_SIZE (x.array))
1715 {
1716 case 4:
1717 x.array [3] |= y.array [3];
1718 /* Fall through. */
1719 case 3:
1720 x.array [2] |= y.array [2];
1721 /* Fall through. */
1722 case 2:
1723 x.array [1] |= y.array [1];
1724 /* Fall through. */
1725 case 1:
1726 x.array [0] |= y.array [0];
1727 break;
1728 default:
1729 abort ();
1730 }
1731 return x;
1732 }
1733
1734 static INLINE i386_cpu_flags
1735 cpu_flags_and_not (i386_cpu_flags x, i386_cpu_flags y)
1736 {
1737 switch (ARRAY_SIZE (x.array))
1738 {
1739 case 4:
1740 x.array [3] &= ~y.array [3];
1741 /* Fall through. */
1742 case 3:
1743 x.array [2] &= ~y.array [2];
1744 /* Fall through. */
1745 case 2:
1746 x.array [1] &= ~y.array [1];
1747 /* Fall through. */
1748 case 1:
1749 x.array [0] &= ~y.array [0];
1750 break;
1751 default:
1752 abort ();
1753 }
1754 return x;
1755 }
1756
1757 #define CPU_FLAGS_ARCH_MATCH 0x1
1758 #define CPU_FLAGS_64BIT_MATCH 0x2
1759
1760 #define CPU_FLAGS_PERFECT_MATCH \
1761 (CPU_FLAGS_ARCH_MATCH | CPU_FLAGS_64BIT_MATCH)
1762
1763 /* Return CPU flags match bits. */
1764
1765 static int
1766 cpu_flags_match (const insn_template *t)
1767 {
1768 i386_cpu_flags x = t->cpu_flags;
1769 int match = cpu_flags_check_cpu64 (x) ? CPU_FLAGS_64BIT_MATCH : 0;
1770
1771 x.bitfield.cpu64 = 0;
1772 x.bitfield.cpuno64 = 0;
1773
1774 if (cpu_flags_all_zero (&x))
1775 {
1776 /* This instruction is available on all archs. */
1777 match |= CPU_FLAGS_ARCH_MATCH;
1778 }
1779 else
1780 {
1781 /* This instruction is available only on some archs. */
1782 i386_cpu_flags cpu = cpu_arch_flags;
1783
1784 /* AVX512VL is no standalone feature - match it and then strip it. */
1785 if (x.bitfield.cpuavx512vl && !cpu.bitfield.cpuavx512vl)
1786 return match;
1787 x.bitfield.cpuavx512vl = 0;
1788
1789 cpu = cpu_flags_and (x, cpu);
1790 if (!cpu_flags_all_zero (&cpu))
1791 {
1792 if (x.bitfield.cpuavx)
1793 {
1794 /* We need to check a few extra flags with AVX. */
1795 if (cpu.bitfield.cpuavx
1796 && (!t->opcode_modifier.sse2avx || sse2avx)
1797 && (!x.bitfield.cpuaes || cpu.bitfield.cpuaes)
1798 && (!x.bitfield.cpugfni || cpu.bitfield.cpugfni)
1799 && (!x.bitfield.cpupclmul || cpu.bitfield.cpupclmul))
1800 match |= CPU_FLAGS_ARCH_MATCH;
1801 }
1802 else if (x.bitfield.cpuavx512f)
1803 {
1804 /* We need to check a few extra flags with AVX512F. */
1805 if (cpu.bitfield.cpuavx512f
1806 && (!x.bitfield.cpugfni || cpu.bitfield.cpugfni)
1807 && (!x.bitfield.cpuvaes || cpu.bitfield.cpuvaes)
1808 && (!x.bitfield.cpuvpclmulqdq || cpu.bitfield.cpuvpclmulqdq))
1809 match |= CPU_FLAGS_ARCH_MATCH;
1810 }
1811 else
1812 match |= CPU_FLAGS_ARCH_MATCH;
1813 }
1814 }
1815 return match;
1816 }
1817
1818 static INLINE i386_operand_type
1819 operand_type_and (i386_operand_type x, i386_operand_type y)
1820 {
1821 switch (ARRAY_SIZE (x.array))
1822 {
1823 case 3:
1824 x.array [2] &= y.array [2];
1825 /* Fall through. */
1826 case 2:
1827 x.array [1] &= y.array [1];
1828 /* Fall through. */
1829 case 1:
1830 x.array [0] &= y.array [0];
1831 break;
1832 default:
1833 abort ();
1834 }
1835 return x;
1836 }
1837
1838 static INLINE i386_operand_type
1839 operand_type_and_not (i386_operand_type x, i386_operand_type y)
1840 {
1841 switch (ARRAY_SIZE (x.array))
1842 {
1843 case 3:
1844 x.array [2] &= ~y.array [2];
1845 /* Fall through. */
1846 case 2:
1847 x.array [1] &= ~y.array [1];
1848 /* Fall through. */
1849 case 1:
1850 x.array [0] &= ~y.array [0];
1851 break;
1852 default:
1853 abort ();
1854 }
1855 return x;
1856 }
1857
1858 static INLINE i386_operand_type
1859 operand_type_or (i386_operand_type x, i386_operand_type y)
1860 {
1861 switch (ARRAY_SIZE (x.array))
1862 {
1863 case 3:
1864 x.array [2] |= y.array [2];
1865 /* Fall through. */
1866 case 2:
1867 x.array [1] |= y.array [1];
1868 /* Fall through. */
1869 case 1:
1870 x.array [0] |= y.array [0];
1871 break;
1872 default:
1873 abort ();
1874 }
1875 return x;
1876 }
1877
1878 static INLINE i386_operand_type
1879 operand_type_xor (i386_operand_type x, i386_operand_type y)
1880 {
1881 switch (ARRAY_SIZE (x.array))
1882 {
1883 case 3:
1884 x.array [2] ^= y.array [2];
1885 /* Fall through. */
1886 case 2:
1887 x.array [1] ^= y.array [1];
1888 /* Fall through. */
1889 case 1:
1890 x.array [0] ^= y.array [0];
1891 break;
1892 default:
1893 abort ();
1894 }
1895 return x;
1896 }
1897
1898 static const i386_operand_type acc32 = OPERAND_TYPE_ACC32;
1899 static const i386_operand_type acc64 = OPERAND_TYPE_ACC64;
1900 static const i386_operand_type disp16 = OPERAND_TYPE_DISP16;
1901 static const i386_operand_type disp32 = OPERAND_TYPE_DISP32;
1902 static const i386_operand_type disp32s = OPERAND_TYPE_DISP32S;
1903 static const i386_operand_type disp16_32 = OPERAND_TYPE_DISP16_32;
1904 static const i386_operand_type anydisp
1905 = OPERAND_TYPE_ANYDISP;
1906 static const i386_operand_type regxmm = OPERAND_TYPE_REGXMM;
1907 static const i386_operand_type regmask = OPERAND_TYPE_REGMASK;
1908 static const i386_operand_type imm8 = OPERAND_TYPE_IMM8;
1909 static const i386_operand_type imm8s = OPERAND_TYPE_IMM8S;
1910 static const i386_operand_type imm16 = OPERAND_TYPE_IMM16;
1911 static const i386_operand_type imm32 = OPERAND_TYPE_IMM32;
1912 static const i386_operand_type imm32s = OPERAND_TYPE_IMM32S;
1913 static const i386_operand_type imm64 = OPERAND_TYPE_IMM64;
1914 static const i386_operand_type imm16_32 = OPERAND_TYPE_IMM16_32;
1915 static const i386_operand_type imm16_32s = OPERAND_TYPE_IMM16_32S;
1916 static const i386_operand_type imm16_32_32s = OPERAND_TYPE_IMM16_32_32S;
1917 static const i386_operand_type vec_imm4 = OPERAND_TYPE_VEC_IMM4;
1918
1919 enum operand_type
1920 {
1921 reg,
1922 imm,
1923 disp,
1924 anymem
1925 };
1926
1927 static INLINE int
1928 operand_type_check (i386_operand_type t, enum operand_type c)
1929 {
1930 switch (c)
1931 {
1932 case reg:
1933 return t.bitfield.reg;
1934
1935 case imm:
1936 return (t.bitfield.imm8
1937 || t.bitfield.imm8s
1938 || t.bitfield.imm16
1939 || t.bitfield.imm32
1940 || t.bitfield.imm32s
1941 || t.bitfield.imm64);
1942
1943 case disp:
1944 return (t.bitfield.disp8
1945 || t.bitfield.disp16
1946 || t.bitfield.disp32
1947 || t.bitfield.disp32s
1948 || t.bitfield.disp64);
1949
1950 case anymem:
1951 return (t.bitfield.disp8
1952 || t.bitfield.disp16
1953 || t.bitfield.disp32
1954 || t.bitfield.disp32s
1955 || t.bitfield.disp64
1956 || t.bitfield.baseindex);
1957
1958 default:
1959 abort ();
1960 }
1961
1962 return 0;
1963 }
1964
1965 /* Return 1 if there is no conflict in 8bit/16bit/32bit/64bit/80bit size
1966 between operand GIVEN and opeand WANTED for instruction template T. */
1967
1968 static INLINE int
1969 match_operand_size (const insn_template *t, unsigned int wanted,
1970 unsigned int given)
1971 {
1972 return !((i.types[given].bitfield.byte
1973 && !t->operand_types[wanted].bitfield.byte)
1974 || (i.types[given].bitfield.word
1975 && !t->operand_types[wanted].bitfield.word)
1976 || (i.types[given].bitfield.dword
1977 && !t->operand_types[wanted].bitfield.dword)
1978 || (i.types[given].bitfield.qword
1979 && !t->operand_types[wanted].bitfield.qword)
1980 || (i.types[given].bitfield.tbyte
1981 && !t->operand_types[wanted].bitfield.tbyte));
1982 }
1983
1984 /* Return 1 if there is no conflict in SIMD register between operand
1985 GIVEN and opeand WANTED for instruction template T. */
1986
1987 static INLINE int
1988 match_simd_size (const insn_template *t, unsigned int wanted,
1989 unsigned int given)
1990 {
1991 return !((i.types[given].bitfield.xmmword
1992 && !t->operand_types[wanted].bitfield.xmmword)
1993 || (i.types[given].bitfield.ymmword
1994 && !t->operand_types[wanted].bitfield.ymmword)
1995 || (i.types[given].bitfield.zmmword
1996 && !t->operand_types[wanted].bitfield.zmmword));
1997 }
1998
1999 /* Return 1 if there is no conflict in any size between operand GIVEN
2000 and opeand WANTED for instruction template T. */
2001
2002 static INLINE int
2003 match_mem_size (const insn_template *t, unsigned int wanted,
2004 unsigned int given)
2005 {
2006 return (match_operand_size (t, wanted, given)
2007 && !((i.types[given].bitfield.unspecified
2008 && !i.broadcast
2009 && !t->operand_types[wanted].bitfield.unspecified)
2010 || (i.types[given].bitfield.fword
2011 && !t->operand_types[wanted].bitfield.fword)
2012 /* For scalar opcode templates to allow register and memory
2013 operands at the same time, some special casing is needed
2014 here. Also for v{,p}broadcast*, {,v}pmov{s,z}*, and
2015 down-conversion vpmov*. */
2016 || ((t->operand_types[wanted].bitfield.regsimd
2017 && !t->opcode_modifier.broadcast
2018 && (t->operand_types[wanted].bitfield.byte
2019 || t->operand_types[wanted].bitfield.word
2020 || t->operand_types[wanted].bitfield.dword
2021 || t->operand_types[wanted].bitfield.qword))
2022 ? (i.types[given].bitfield.xmmword
2023 || i.types[given].bitfield.ymmword
2024 || i.types[given].bitfield.zmmword)
2025 : !match_simd_size(t, wanted, given))));
2026 }
2027
2028 /* Return value has MATCH_STRAIGHT set if there is no size conflict on any
2029 operands for instruction template T, and it has MATCH_REVERSE set if there
2030 is no size conflict on any operands for the template with operands reversed
2031 (and the template allows for reversing in the first place). */
2032
2033 #define MATCH_STRAIGHT 1
2034 #define MATCH_REVERSE 2
2035
2036 static INLINE unsigned int
2037 operand_size_match (const insn_template *t)
2038 {
2039 unsigned int j, match = MATCH_STRAIGHT;
2040
2041 /* Don't check jump instructions. */
2042 if (t->opcode_modifier.jump
2043 || t->opcode_modifier.jumpbyte
2044 || t->opcode_modifier.jumpdword
2045 || t->opcode_modifier.jumpintersegment)
2046 return match;
2047
2048 /* Check memory and accumulator operand size. */
2049 for (j = 0; j < i.operands; j++)
2050 {
2051 if (!i.types[j].bitfield.reg && !i.types[j].bitfield.regsimd
2052 && t->operand_types[j].bitfield.anysize)
2053 continue;
2054
2055 if (t->operand_types[j].bitfield.reg
2056 && !match_operand_size (t, j, j))
2057 {
2058 match = 0;
2059 break;
2060 }
2061
2062 if (t->operand_types[j].bitfield.regsimd
2063 && !match_simd_size (t, j, j))
2064 {
2065 match = 0;
2066 break;
2067 }
2068
2069 if (t->operand_types[j].bitfield.acc
2070 && (!match_operand_size (t, j, j) || !match_simd_size (t, j, j)))
2071 {
2072 match = 0;
2073 break;
2074 }
2075
2076 if ((i.flags[j] & Operand_Mem) && !match_mem_size (t, j, j))
2077 {
2078 match = 0;
2079 break;
2080 }
2081 }
2082
2083 if (!t->opcode_modifier.d)
2084 {
2085 mismatch:
2086 if (!match)
2087 i.error = operand_size_mismatch;
2088 return match;
2089 }
2090
2091 /* Check reverse. */
2092 gas_assert (i.operands >= 2 && i.operands <= 3);
2093
2094 for (j = 0; j < i.operands; j++)
2095 {
2096 unsigned int given = i.operands - j - 1;
2097
2098 if (t->operand_types[j].bitfield.reg
2099 && !match_operand_size (t, j, given))
2100 goto mismatch;
2101
2102 if (t->operand_types[j].bitfield.regsimd
2103 && !match_simd_size (t, j, given))
2104 goto mismatch;
2105
2106 if (t->operand_types[j].bitfield.acc
2107 && (!match_operand_size (t, j, given)
2108 || !match_simd_size (t, j, given)))
2109 goto mismatch;
2110
2111 if ((i.flags[given] & Operand_Mem) && !match_mem_size (t, j, given))
2112 goto mismatch;
2113 }
2114
2115 return match | MATCH_REVERSE;
2116 }
2117
2118 static INLINE int
2119 operand_type_match (i386_operand_type overlap,
2120 i386_operand_type given)
2121 {
2122 i386_operand_type temp = overlap;
2123
2124 temp.bitfield.jumpabsolute = 0;
2125 temp.bitfield.unspecified = 0;
2126 temp.bitfield.byte = 0;
2127 temp.bitfield.word = 0;
2128 temp.bitfield.dword = 0;
2129 temp.bitfield.fword = 0;
2130 temp.bitfield.qword = 0;
2131 temp.bitfield.tbyte = 0;
2132 temp.bitfield.xmmword = 0;
2133 temp.bitfield.ymmword = 0;
2134 temp.bitfield.zmmword = 0;
2135 if (operand_type_all_zero (&temp))
2136 goto mismatch;
2137
2138 if (given.bitfield.baseindex == overlap.bitfield.baseindex
2139 && given.bitfield.jumpabsolute == overlap.bitfield.jumpabsolute)
2140 return 1;
2141
2142 mismatch:
2143 i.error = operand_type_mismatch;
2144 return 0;
2145 }
2146
2147 /* If given types g0 and g1 are registers they must be of the same type
2148 unless the expected operand type register overlap is null.
2149 Memory operand size of certain SIMD instructions is also being checked
2150 here. */
2151
2152 static INLINE int
2153 operand_type_register_match (i386_operand_type g0,
2154 i386_operand_type t0,
2155 i386_operand_type g1,
2156 i386_operand_type t1)
2157 {
2158 if (!g0.bitfield.reg
2159 && !g0.bitfield.regsimd
2160 && (!operand_type_check (g0, anymem)
2161 || g0.bitfield.unspecified
2162 || !t0.bitfield.regsimd))
2163 return 1;
2164
2165 if (!g1.bitfield.reg
2166 && !g1.bitfield.regsimd
2167 && (!operand_type_check (g1, anymem)
2168 || g1.bitfield.unspecified
2169 || !t1.bitfield.regsimd))
2170 return 1;
2171
2172 if (g0.bitfield.byte == g1.bitfield.byte
2173 && g0.bitfield.word == g1.bitfield.word
2174 && g0.bitfield.dword == g1.bitfield.dword
2175 && g0.bitfield.qword == g1.bitfield.qword
2176 && g0.bitfield.xmmword == g1.bitfield.xmmword
2177 && g0.bitfield.ymmword == g1.bitfield.ymmword
2178 && g0.bitfield.zmmword == g1.bitfield.zmmword)
2179 return 1;
2180
2181 if (!(t0.bitfield.byte & t1.bitfield.byte)
2182 && !(t0.bitfield.word & t1.bitfield.word)
2183 && !(t0.bitfield.dword & t1.bitfield.dword)
2184 && !(t0.bitfield.qword & t1.bitfield.qword)
2185 && !(t0.bitfield.xmmword & t1.bitfield.xmmword)
2186 && !(t0.bitfield.ymmword & t1.bitfield.ymmword)
2187 && !(t0.bitfield.zmmword & t1.bitfield.zmmword))
2188 return 1;
2189
2190 i.error = register_type_mismatch;
2191
2192 return 0;
2193 }
2194
2195 static INLINE unsigned int
2196 register_number (const reg_entry *r)
2197 {
2198 unsigned int nr = r->reg_num;
2199
2200 if (r->reg_flags & RegRex)
2201 nr += 8;
2202
2203 if (r->reg_flags & RegVRex)
2204 nr += 16;
2205
2206 return nr;
2207 }
2208
2209 static INLINE unsigned int
2210 mode_from_disp_size (i386_operand_type t)
2211 {
2212 if (t.bitfield.disp8)
2213 return 1;
2214 else if (t.bitfield.disp16
2215 || t.bitfield.disp32
2216 || t.bitfield.disp32s)
2217 return 2;
2218 else
2219 return 0;
2220 }
2221
2222 static INLINE int
2223 fits_in_signed_byte (addressT num)
2224 {
2225 return num + 0x80 <= 0xff;
2226 }
2227
2228 static INLINE int
2229 fits_in_unsigned_byte (addressT num)
2230 {
2231 return num <= 0xff;
2232 }
2233
2234 static INLINE int
2235 fits_in_unsigned_word (addressT num)
2236 {
2237 return num <= 0xffff;
2238 }
2239
2240 static INLINE int
2241 fits_in_signed_word (addressT num)
2242 {
2243 return num + 0x8000 <= 0xffff;
2244 }
2245
2246 static INLINE int
2247 fits_in_signed_long (addressT num ATTRIBUTE_UNUSED)
2248 {
2249 #ifndef BFD64
2250 return 1;
2251 #else
2252 return num + 0x80000000 <= 0xffffffff;
2253 #endif
2254 } /* fits_in_signed_long() */
2255
2256 static INLINE int
2257 fits_in_unsigned_long (addressT num ATTRIBUTE_UNUSED)
2258 {
2259 #ifndef BFD64
2260 return 1;
2261 #else
2262 return num <= 0xffffffff;
2263 #endif
2264 } /* fits_in_unsigned_long() */
2265
2266 static INLINE int
2267 fits_in_disp8 (offsetT num)
2268 {
2269 int shift = i.memshift;
2270 unsigned int mask;
2271
2272 if (shift == -1)
2273 abort ();
2274
2275 mask = (1 << shift) - 1;
2276
2277 /* Return 0 if NUM isn't properly aligned. */
2278 if ((num & mask))
2279 return 0;
2280
2281 /* Check if NUM will fit in 8bit after shift. */
2282 return fits_in_signed_byte (num >> shift);
2283 }
2284
2285 static INLINE int
2286 fits_in_imm4 (offsetT num)
2287 {
2288 return (num & 0xf) == num;
2289 }
2290
2291 static i386_operand_type
2292 smallest_imm_type (offsetT num)
2293 {
2294 i386_operand_type t;
2295
2296 operand_type_set (&t, 0);
2297 t.bitfield.imm64 = 1;
2298
2299 if (cpu_arch_tune != PROCESSOR_I486 && num == 1)
2300 {
2301 /* This code is disabled on the 486 because all the Imm1 forms
2302 in the opcode table are slower on the i486. They're the
2303 versions with the implicitly specified single-position
2304 displacement, which has another syntax if you really want to
2305 use that form. */
2306 t.bitfield.imm1 = 1;
2307 t.bitfield.imm8 = 1;
2308 t.bitfield.imm8s = 1;
2309 t.bitfield.imm16 = 1;
2310 t.bitfield.imm32 = 1;
2311 t.bitfield.imm32s = 1;
2312 }
2313 else if (fits_in_signed_byte (num))
2314 {
2315 t.bitfield.imm8 = 1;
2316 t.bitfield.imm8s = 1;
2317 t.bitfield.imm16 = 1;
2318 t.bitfield.imm32 = 1;
2319 t.bitfield.imm32s = 1;
2320 }
2321 else if (fits_in_unsigned_byte (num))
2322 {
2323 t.bitfield.imm8 = 1;
2324 t.bitfield.imm16 = 1;
2325 t.bitfield.imm32 = 1;
2326 t.bitfield.imm32s = 1;
2327 }
2328 else if (fits_in_signed_word (num) || fits_in_unsigned_word (num))
2329 {
2330 t.bitfield.imm16 = 1;
2331 t.bitfield.imm32 = 1;
2332 t.bitfield.imm32s = 1;
2333 }
2334 else if (fits_in_signed_long (num))
2335 {
2336 t.bitfield.imm32 = 1;
2337 t.bitfield.imm32s = 1;
2338 }
2339 else if (fits_in_unsigned_long (num))
2340 t.bitfield.imm32 = 1;
2341
2342 return t;
2343 }
2344
2345 static offsetT
2346 offset_in_range (offsetT val, int size)
2347 {
2348 addressT mask;
2349
2350 switch (size)
2351 {
2352 case 1: mask = ((addressT) 1 << 8) - 1; break;
2353 case 2: mask = ((addressT) 1 << 16) - 1; break;
2354 case 4: mask = ((addressT) 2 << 31) - 1; break;
2355 #ifdef BFD64
2356 case 8: mask = ((addressT) 2 << 63) - 1; break;
2357 #endif
2358 default: abort ();
2359 }
2360
2361 #ifdef BFD64
2362 /* If BFD64, sign extend val for 32bit address mode. */
2363 if (flag_code != CODE_64BIT
2364 || i.prefix[ADDR_PREFIX])
2365 if ((val & ~(((addressT) 2 << 31) - 1)) == 0)
2366 val = (val ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
2367 #endif
2368
2369 if ((val & ~mask) != 0 && (val & ~mask) != ~mask)
2370 {
2371 char buf1[40], buf2[40];
2372
2373 sprint_value (buf1, val);
2374 sprint_value (buf2, val & mask);
2375 as_warn (_("%s shortened to %s"), buf1, buf2);
2376 }
2377 return val & mask;
2378 }
2379
2380 enum PREFIX_GROUP
2381 {
2382 PREFIX_EXIST = 0,
2383 PREFIX_LOCK,
2384 PREFIX_REP,
2385 PREFIX_DS,
2386 PREFIX_OTHER
2387 };
2388
2389 /* Returns
2390 a. PREFIX_EXIST if attempting to add a prefix where one from the
2391 same class already exists.
2392 b. PREFIX_LOCK if lock prefix is added.
2393 c. PREFIX_REP if rep/repne prefix is added.
2394 d. PREFIX_DS if ds prefix is added.
2395 e. PREFIX_OTHER if other prefix is added.
2396 */
2397
2398 static enum PREFIX_GROUP
2399 add_prefix (unsigned int prefix)
2400 {
2401 enum PREFIX_GROUP ret = PREFIX_OTHER;
2402 unsigned int q;
2403
2404 if (prefix >= REX_OPCODE && prefix < REX_OPCODE + 16
2405 && flag_code == CODE_64BIT)
2406 {
2407 if ((i.prefix[REX_PREFIX] & prefix & REX_W)
2408 || (i.prefix[REX_PREFIX] & prefix & REX_R)
2409 || (i.prefix[REX_PREFIX] & prefix & REX_X)
2410 || (i.prefix[REX_PREFIX] & prefix & REX_B))
2411 ret = PREFIX_EXIST;
2412 q = REX_PREFIX;
2413 }
2414 else
2415 {
2416 switch (prefix)
2417 {
2418 default:
2419 abort ();
2420
2421 case DS_PREFIX_OPCODE:
2422 ret = PREFIX_DS;
2423 /* Fall through. */
2424 case CS_PREFIX_OPCODE:
2425 case ES_PREFIX_OPCODE:
2426 case FS_PREFIX_OPCODE:
2427 case GS_PREFIX_OPCODE:
2428 case SS_PREFIX_OPCODE:
2429 q = SEG_PREFIX;
2430 break;
2431
2432 case REPNE_PREFIX_OPCODE:
2433 case REPE_PREFIX_OPCODE:
2434 q = REP_PREFIX;
2435 ret = PREFIX_REP;
2436 break;
2437
2438 case LOCK_PREFIX_OPCODE:
2439 q = LOCK_PREFIX;
2440 ret = PREFIX_LOCK;
2441 break;
2442
2443 case FWAIT_OPCODE:
2444 q = WAIT_PREFIX;
2445 break;
2446
2447 case ADDR_PREFIX_OPCODE:
2448 q = ADDR_PREFIX;
2449 break;
2450
2451 case DATA_PREFIX_OPCODE:
2452 q = DATA_PREFIX;
2453 break;
2454 }
2455 if (i.prefix[q] != 0)
2456 ret = PREFIX_EXIST;
2457 }
2458
2459 if (ret)
2460 {
2461 if (!i.prefix[q])
2462 ++i.prefixes;
2463 i.prefix[q] |= prefix;
2464 }
2465 else
2466 as_bad (_("same type of prefix used twice"));
2467
2468 return ret;
2469 }
2470
2471 static void
2472 update_code_flag (int value, int check)
2473 {
2474 PRINTF_LIKE ((*as_error));
2475
2476 flag_code = (enum flag_code) value;
2477 if (flag_code == CODE_64BIT)
2478 {
2479 cpu_arch_flags.bitfield.cpu64 = 1;
2480 cpu_arch_flags.bitfield.cpuno64 = 0;
2481 }
2482 else
2483 {
2484 cpu_arch_flags.bitfield.cpu64 = 0;
2485 cpu_arch_flags.bitfield.cpuno64 = 1;
2486 }
2487 if (value == CODE_64BIT && !cpu_arch_flags.bitfield.cpulm )
2488 {
2489 if (check)
2490 as_error = as_fatal;
2491 else
2492 as_error = as_bad;
2493 (*as_error) (_("64bit mode not supported on `%s'."),
2494 cpu_arch_name ? cpu_arch_name : default_arch);
2495 }
2496 if (value == CODE_32BIT && !cpu_arch_flags.bitfield.cpui386)
2497 {
2498 if (check)
2499 as_error = as_fatal;
2500 else
2501 as_error = as_bad;
2502 (*as_error) (_("32bit mode not supported on `%s'."),
2503 cpu_arch_name ? cpu_arch_name : default_arch);
2504 }
2505 stackop_size = '\0';
2506 }
2507
2508 static void
2509 set_code_flag (int value)
2510 {
2511 update_code_flag (value, 0);
2512 }
2513
2514 static void
2515 set_16bit_gcc_code_flag (int new_code_flag)
2516 {
2517 flag_code = (enum flag_code) new_code_flag;
2518 if (flag_code != CODE_16BIT)
2519 abort ();
2520 cpu_arch_flags.bitfield.cpu64 = 0;
2521 cpu_arch_flags.bitfield.cpuno64 = 1;
2522 stackop_size = LONG_MNEM_SUFFIX;
2523 }
2524
2525 static void
2526 set_intel_syntax (int syntax_flag)
2527 {
2528 /* Find out if register prefixing is specified. */
2529 int ask_naked_reg = 0;
2530
2531 SKIP_WHITESPACE ();
2532 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2533 {
2534 char *string;
2535 int e = get_symbol_name (&string);
2536
2537 if (strcmp (string, "prefix") == 0)
2538 ask_naked_reg = 1;
2539 else if (strcmp (string, "noprefix") == 0)
2540 ask_naked_reg = -1;
2541 else
2542 as_bad (_("bad argument to syntax directive."));
2543 (void) restore_line_pointer (e);
2544 }
2545 demand_empty_rest_of_line ();
2546
2547 intel_syntax = syntax_flag;
2548
2549 if (ask_naked_reg == 0)
2550 allow_naked_reg = (intel_syntax
2551 && (bfd_get_symbol_leading_char (stdoutput) != '\0'));
2552 else
2553 allow_naked_reg = (ask_naked_reg < 0);
2554
2555 expr_set_rank (O_full_ptr, syntax_flag ? 10 : 0);
2556
2557 identifier_chars['%'] = intel_syntax && allow_naked_reg ? '%' : 0;
2558 identifier_chars['$'] = intel_syntax ? '$' : 0;
2559 register_prefix = allow_naked_reg ? "" : "%";
2560 }
2561
2562 static void
2563 set_intel_mnemonic (int mnemonic_flag)
2564 {
2565 intel_mnemonic = mnemonic_flag;
2566 }
2567
2568 static void
2569 set_allow_index_reg (int flag)
2570 {
2571 allow_index_reg = flag;
2572 }
2573
2574 static void
2575 set_check (int what)
2576 {
2577 enum check_kind *kind;
2578 const char *str;
2579
2580 if (what)
2581 {
2582 kind = &operand_check;
2583 str = "operand";
2584 }
2585 else
2586 {
2587 kind = &sse_check;
2588 str = "sse";
2589 }
2590
2591 SKIP_WHITESPACE ();
2592
2593 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2594 {
2595 char *string;
2596 int e = get_symbol_name (&string);
2597
2598 if (strcmp (string, "none") == 0)
2599 *kind = check_none;
2600 else if (strcmp (string, "warning") == 0)
2601 *kind = check_warning;
2602 else if (strcmp (string, "error") == 0)
2603 *kind = check_error;
2604 else
2605 as_bad (_("bad argument to %s_check directive."), str);
2606 (void) restore_line_pointer (e);
2607 }
2608 else
2609 as_bad (_("missing argument for %s_check directive"), str);
2610
2611 demand_empty_rest_of_line ();
2612 }
2613
2614 static void
2615 check_cpu_arch_compatible (const char *name ATTRIBUTE_UNUSED,
2616 i386_cpu_flags new_flag ATTRIBUTE_UNUSED)
2617 {
2618 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
2619 static const char *arch;
2620
2621 /* Intel LIOM is only supported on ELF. */
2622 if (!IS_ELF)
2623 return;
2624
2625 if (!arch)
2626 {
2627 /* Use cpu_arch_name if it is set in md_parse_option. Otherwise
2628 use default_arch. */
2629 arch = cpu_arch_name;
2630 if (!arch)
2631 arch = default_arch;
2632 }
2633
2634 /* If we are targeting Intel MCU, we must enable it. */
2635 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_IAMCU
2636 || new_flag.bitfield.cpuiamcu)
2637 return;
2638
2639 /* If we are targeting Intel L1OM, we must enable it. */
2640 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_L1OM
2641 || new_flag.bitfield.cpul1om)
2642 return;
2643
2644 /* If we are targeting Intel K1OM, we must enable it. */
2645 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_K1OM
2646 || new_flag.bitfield.cpuk1om)
2647 return;
2648
2649 as_bad (_("`%s' is not supported on `%s'"), name, arch);
2650 #endif
2651 }
2652
2653 static void
2654 set_cpu_arch (int dummy ATTRIBUTE_UNUSED)
2655 {
2656 SKIP_WHITESPACE ();
2657
2658 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2659 {
2660 char *string;
2661 int e = get_symbol_name (&string);
2662 unsigned int j;
2663 i386_cpu_flags flags;
2664
2665 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
2666 {
2667 if (strcmp (string, cpu_arch[j].name) == 0)
2668 {
2669 check_cpu_arch_compatible (string, cpu_arch[j].flags);
2670
2671 if (*string != '.')
2672 {
2673 cpu_arch_name = cpu_arch[j].name;
2674 cpu_sub_arch_name = NULL;
2675 cpu_arch_flags = cpu_arch[j].flags;
2676 if (flag_code == CODE_64BIT)
2677 {
2678 cpu_arch_flags.bitfield.cpu64 = 1;
2679 cpu_arch_flags.bitfield.cpuno64 = 0;
2680 }
2681 else
2682 {
2683 cpu_arch_flags.bitfield.cpu64 = 0;
2684 cpu_arch_flags.bitfield.cpuno64 = 1;
2685 }
2686 cpu_arch_isa = cpu_arch[j].type;
2687 cpu_arch_isa_flags = cpu_arch[j].flags;
2688 if (!cpu_arch_tune_set)
2689 {
2690 cpu_arch_tune = cpu_arch_isa;
2691 cpu_arch_tune_flags = cpu_arch_isa_flags;
2692 }
2693 break;
2694 }
2695
2696 flags = cpu_flags_or (cpu_arch_flags,
2697 cpu_arch[j].flags);
2698
2699 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
2700 {
2701 if (cpu_sub_arch_name)
2702 {
2703 char *name = cpu_sub_arch_name;
2704 cpu_sub_arch_name = concat (name,
2705 cpu_arch[j].name,
2706 (const char *) NULL);
2707 free (name);
2708 }
2709 else
2710 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
2711 cpu_arch_flags = flags;
2712 cpu_arch_isa_flags = flags;
2713 }
2714 else
2715 cpu_arch_isa_flags
2716 = cpu_flags_or (cpu_arch_isa_flags,
2717 cpu_arch[j].flags);
2718 (void) restore_line_pointer (e);
2719 demand_empty_rest_of_line ();
2720 return;
2721 }
2722 }
2723
2724 if (*string == '.' && j >= ARRAY_SIZE (cpu_arch))
2725 {
2726 /* Disable an ISA extension. */
2727 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
2728 if (strcmp (string + 1, cpu_noarch [j].name) == 0)
2729 {
2730 flags = cpu_flags_and_not (cpu_arch_flags,
2731 cpu_noarch[j].flags);
2732 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
2733 {
2734 if (cpu_sub_arch_name)
2735 {
2736 char *name = cpu_sub_arch_name;
2737 cpu_sub_arch_name = concat (name, string,
2738 (const char *) NULL);
2739 free (name);
2740 }
2741 else
2742 cpu_sub_arch_name = xstrdup (string);
2743 cpu_arch_flags = flags;
2744 cpu_arch_isa_flags = flags;
2745 }
2746 (void) restore_line_pointer (e);
2747 demand_empty_rest_of_line ();
2748 return;
2749 }
2750
2751 j = ARRAY_SIZE (cpu_arch);
2752 }
2753
2754 if (j >= ARRAY_SIZE (cpu_arch))
2755 as_bad (_("no such architecture: `%s'"), string);
2756
2757 *input_line_pointer = e;
2758 }
2759 else
2760 as_bad (_("missing cpu architecture"));
2761
2762 no_cond_jump_promotion = 0;
2763 if (*input_line_pointer == ','
2764 && !is_end_of_line[(unsigned char) input_line_pointer[1]])
2765 {
2766 char *string;
2767 char e;
2768
2769 ++input_line_pointer;
2770 e = get_symbol_name (&string);
2771
2772 if (strcmp (string, "nojumps") == 0)
2773 no_cond_jump_promotion = 1;
2774 else if (strcmp (string, "jumps") == 0)
2775 ;
2776 else
2777 as_bad (_("no such architecture modifier: `%s'"), string);
2778
2779 (void) restore_line_pointer (e);
2780 }
2781
2782 demand_empty_rest_of_line ();
2783 }
2784
2785 enum bfd_architecture
2786 i386_arch (void)
2787 {
2788 if (cpu_arch_isa == PROCESSOR_L1OM)
2789 {
2790 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2791 || flag_code != CODE_64BIT)
2792 as_fatal (_("Intel L1OM is 64bit ELF only"));
2793 return bfd_arch_l1om;
2794 }
2795 else if (cpu_arch_isa == PROCESSOR_K1OM)
2796 {
2797 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2798 || flag_code != CODE_64BIT)
2799 as_fatal (_("Intel K1OM is 64bit ELF only"));
2800 return bfd_arch_k1om;
2801 }
2802 else if (cpu_arch_isa == PROCESSOR_IAMCU)
2803 {
2804 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2805 || flag_code == CODE_64BIT)
2806 as_fatal (_("Intel MCU is 32bit ELF only"));
2807 return bfd_arch_iamcu;
2808 }
2809 else
2810 return bfd_arch_i386;
2811 }
2812
2813 unsigned long
2814 i386_mach (void)
2815 {
2816 if (!strncmp (default_arch, "x86_64", 6))
2817 {
2818 if (cpu_arch_isa == PROCESSOR_L1OM)
2819 {
2820 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2821 || default_arch[6] != '\0')
2822 as_fatal (_("Intel L1OM is 64bit ELF only"));
2823 return bfd_mach_l1om;
2824 }
2825 else if (cpu_arch_isa == PROCESSOR_K1OM)
2826 {
2827 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2828 || default_arch[6] != '\0')
2829 as_fatal (_("Intel K1OM is 64bit ELF only"));
2830 return bfd_mach_k1om;
2831 }
2832 else if (default_arch[6] == '\0')
2833 return bfd_mach_x86_64;
2834 else
2835 return bfd_mach_x64_32;
2836 }
2837 else if (!strcmp (default_arch, "i386")
2838 || !strcmp (default_arch, "iamcu"))
2839 {
2840 if (cpu_arch_isa == PROCESSOR_IAMCU)
2841 {
2842 if (OUTPUT_FLAVOR != bfd_target_elf_flavour)
2843 as_fatal (_("Intel MCU is 32bit ELF only"));
2844 return bfd_mach_i386_iamcu;
2845 }
2846 else
2847 return bfd_mach_i386_i386;
2848 }
2849 else
2850 as_fatal (_("unknown architecture"));
2851 }
2852 \f
2853 void
2854 md_begin (void)
2855 {
2856 const char *hash_err;
2857
2858 /* Support pseudo prefixes like {disp32}. */
2859 lex_type ['{'] = LEX_BEGIN_NAME;
2860
2861 /* Initialize op_hash hash table. */
2862 op_hash = hash_new ();
2863
2864 {
2865 const insn_template *optab;
2866 templates *core_optab;
2867
2868 /* Setup for loop. */
2869 optab = i386_optab;
2870 core_optab = XNEW (templates);
2871 core_optab->start = optab;
2872
2873 while (1)
2874 {
2875 ++optab;
2876 if (optab->name == NULL
2877 || strcmp (optab->name, (optab - 1)->name) != 0)
2878 {
2879 /* different name --> ship out current template list;
2880 add to hash table; & begin anew. */
2881 core_optab->end = optab;
2882 hash_err = hash_insert (op_hash,
2883 (optab - 1)->name,
2884 (void *) core_optab);
2885 if (hash_err)
2886 {
2887 as_fatal (_("can't hash %s: %s"),
2888 (optab - 1)->name,
2889 hash_err);
2890 }
2891 if (optab->name == NULL)
2892 break;
2893 core_optab = XNEW (templates);
2894 core_optab->start = optab;
2895 }
2896 }
2897 }
2898
2899 /* Initialize reg_hash hash table. */
2900 reg_hash = hash_new ();
2901 {
2902 const reg_entry *regtab;
2903 unsigned int regtab_size = i386_regtab_size;
2904
2905 for (regtab = i386_regtab; regtab_size--; regtab++)
2906 {
2907 hash_err = hash_insert (reg_hash, regtab->reg_name, (void *) regtab);
2908 if (hash_err)
2909 as_fatal (_("can't hash %s: %s"),
2910 regtab->reg_name,
2911 hash_err);
2912 }
2913 }
2914
2915 /* Fill in lexical tables: mnemonic_chars, operand_chars. */
2916 {
2917 int c;
2918 char *p;
2919
2920 for (c = 0; c < 256; c++)
2921 {
2922 if (ISDIGIT (c))
2923 {
2924 digit_chars[c] = c;
2925 mnemonic_chars[c] = c;
2926 register_chars[c] = c;
2927 operand_chars[c] = c;
2928 }
2929 else if (ISLOWER (c))
2930 {
2931 mnemonic_chars[c] = c;
2932 register_chars[c] = c;
2933 operand_chars[c] = c;
2934 }
2935 else if (ISUPPER (c))
2936 {
2937 mnemonic_chars[c] = TOLOWER (c);
2938 register_chars[c] = mnemonic_chars[c];
2939 operand_chars[c] = c;
2940 }
2941 else if (c == '{' || c == '}')
2942 {
2943 mnemonic_chars[c] = c;
2944 operand_chars[c] = c;
2945 }
2946
2947 if (ISALPHA (c) || ISDIGIT (c))
2948 identifier_chars[c] = c;
2949 else if (c >= 128)
2950 {
2951 identifier_chars[c] = c;
2952 operand_chars[c] = c;
2953 }
2954 }
2955
2956 #ifdef LEX_AT
2957 identifier_chars['@'] = '@';
2958 #endif
2959 #ifdef LEX_QM
2960 identifier_chars['?'] = '?';
2961 operand_chars['?'] = '?';
2962 #endif
2963 digit_chars['-'] = '-';
2964 mnemonic_chars['_'] = '_';
2965 mnemonic_chars['-'] = '-';
2966 mnemonic_chars['.'] = '.';
2967 identifier_chars['_'] = '_';
2968 identifier_chars['.'] = '.';
2969
2970 for (p = operand_special_chars; *p != '\0'; p++)
2971 operand_chars[(unsigned char) *p] = *p;
2972 }
2973
2974 if (flag_code == CODE_64BIT)
2975 {
2976 #if defined (OBJ_COFF) && defined (TE_PE)
2977 x86_dwarf2_return_column = (OUTPUT_FLAVOR == bfd_target_coff_flavour
2978 ? 32 : 16);
2979 #else
2980 x86_dwarf2_return_column = 16;
2981 #endif
2982 x86_cie_data_alignment = -8;
2983 }
2984 else
2985 {
2986 x86_dwarf2_return_column = 8;
2987 x86_cie_data_alignment = -4;
2988 }
2989 }
2990
2991 void
2992 i386_print_statistics (FILE *file)
2993 {
2994 hash_print_statistics (file, "i386 opcode", op_hash);
2995 hash_print_statistics (file, "i386 register", reg_hash);
2996 }
2997 \f
2998 #ifdef DEBUG386
2999
3000 /* Debugging routines for md_assemble. */
3001 static void pte (insn_template *);
3002 static void pt (i386_operand_type);
3003 static void pe (expressionS *);
3004 static void ps (symbolS *);
3005
3006 static void
3007 pi (char *line, i386_insn *x)
3008 {
3009 unsigned int j;
3010
3011 fprintf (stdout, "%s: template ", line);
3012 pte (&x->tm);
3013 fprintf (stdout, " address: base %s index %s scale %x\n",
3014 x->base_reg ? x->base_reg->reg_name : "none",
3015 x->index_reg ? x->index_reg->reg_name : "none",
3016 x->log2_scale_factor);
3017 fprintf (stdout, " modrm: mode %x reg %x reg/mem %x\n",
3018 x->rm.mode, x->rm.reg, x->rm.regmem);
3019 fprintf (stdout, " sib: base %x index %x scale %x\n",
3020 x->sib.base, x->sib.index, x->sib.scale);
3021 fprintf (stdout, " rex: 64bit %x extX %x extY %x extZ %x\n",
3022 (x->rex & REX_W) != 0,
3023 (x->rex & REX_R) != 0,
3024 (x->rex & REX_X) != 0,
3025 (x->rex & REX_B) != 0);
3026 for (j = 0; j < x->operands; j++)
3027 {
3028 fprintf (stdout, " #%d: ", j + 1);
3029 pt (x->types[j]);
3030 fprintf (stdout, "\n");
3031 if (x->types[j].bitfield.reg
3032 || x->types[j].bitfield.regmmx
3033 || x->types[j].bitfield.regsimd
3034 || x->types[j].bitfield.sreg2
3035 || x->types[j].bitfield.sreg3
3036 || x->types[j].bitfield.control
3037 || x->types[j].bitfield.debug
3038 || x->types[j].bitfield.test)
3039 fprintf (stdout, "%s\n", x->op[j].regs->reg_name);
3040 if (operand_type_check (x->types[j], imm))
3041 pe (x->op[j].imms);
3042 if (operand_type_check (x->types[j], disp))
3043 pe (x->op[j].disps);
3044 }
3045 }
3046
3047 static void
3048 pte (insn_template *t)
3049 {
3050 unsigned int j;
3051 fprintf (stdout, " %d operands ", t->operands);
3052 fprintf (stdout, "opcode %x ", t->base_opcode);
3053 if (t->extension_opcode != None)
3054 fprintf (stdout, "ext %x ", t->extension_opcode);
3055 if (t->opcode_modifier.d)
3056 fprintf (stdout, "D");
3057 if (t->opcode_modifier.w)
3058 fprintf (stdout, "W");
3059 fprintf (stdout, "\n");
3060 for (j = 0; j < t->operands; j++)
3061 {
3062 fprintf (stdout, " #%d type ", j + 1);
3063 pt (t->operand_types[j]);
3064 fprintf (stdout, "\n");
3065 }
3066 }
3067
3068 static void
3069 pe (expressionS *e)
3070 {
3071 fprintf (stdout, " operation %d\n", e->X_op);
3072 fprintf (stdout, " add_number %ld (%lx)\n",
3073 (long) e->X_add_number, (long) e->X_add_number);
3074 if (e->X_add_symbol)
3075 {
3076 fprintf (stdout, " add_symbol ");
3077 ps (e->X_add_symbol);
3078 fprintf (stdout, "\n");
3079 }
3080 if (e->X_op_symbol)
3081 {
3082 fprintf (stdout, " op_symbol ");
3083 ps (e->X_op_symbol);
3084 fprintf (stdout, "\n");
3085 }
3086 }
3087
3088 static void
3089 ps (symbolS *s)
3090 {
3091 fprintf (stdout, "%s type %s%s",
3092 S_GET_NAME (s),
3093 S_IS_EXTERNAL (s) ? "EXTERNAL " : "",
3094 segment_name (S_GET_SEGMENT (s)));
3095 }
3096
3097 static struct type_name
3098 {
3099 i386_operand_type mask;
3100 const char *name;
3101 }
3102 const type_names[] =
3103 {
3104 { OPERAND_TYPE_REG8, "r8" },
3105 { OPERAND_TYPE_REG16, "r16" },
3106 { OPERAND_TYPE_REG32, "r32" },
3107 { OPERAND_TYPE_REG64, "r64" },
3108 { OPERAND_TYPE_IMM8, "i8" },
3109 { OPERAND_TYPE_IMM8, "i8s" },
3110 { OPERAND_TYPE_IMM16, "i16" },
3111 { OPERAND_TYPE_IMM32, "i32" },
3112 { OPERAND_TYPE_IMM32S, "i32s" },
3113 { OPERAND_TYPE_IMM64, "i64" },
3114 { OPERAND_TYPE_IMM1, "i1" },
3115 { OPERAND_TYPE_BASEINDEX, "BaseIndex" },
3116 { OPERAND_TYPE_DISP8, "d8" },
3117 { OPERAND_TYPE_DISP16, "d16" },
3118 { OPERAND_TYPE_DISP32, "d32" },
3119 { OPERAND_TYPE_DISP32S, "d32s" },
3120 { OPERAND_TYPE_DISP64, "d64" },
3121 { OPERAND_TYPE_INOUTPORTREG, "InOutPortReg" },
3122 { OPERAND_TYPE_SHIFTCOUNT, "ShiftCount" },
3123 { OPERAND_TYPE_CONTROL, "control reg" },
3124 { OPERAND_TYPE_TEST, "test reg" },
3125 { OPERAND_TYPE_DEBUG, "debug reg" },
3126 { OPERAND_TYPE_FLOATREG, "FReg" },
3127 { OPERAND_TYPE_FLOATACC, "FAcc" },
3128 { OPERAND_TYPE_SREG2, "SReg2" },
3129 { OPERAND_TYPE_SREG3, "SReg3" },
3130 { OPERAND_TYPE_ACC, "Acc" },
3131 { OPERAND_TYPE_JUMPABSOLUTE, "Jump Absolute" },
3132 { OPERAND_TYPE_REGMMX, "rMMX" },
3133 { OPERAND_TYPE_REGXMM, "rXMM" },
3134 { OPERAND_TYPE_REGYMM, "rYMM" },
3135 { OPERAND_TYPE_REGZMM, "rZMM" },
3136 { OPERAND_TYPE_REGMASK, "Mask reg" },
3137 { OPERAND_TYPE_ESSEG, "es" },
3138 };
3139
3140 static void
3141 pt (i386_operand_type t)
3142 {
3143 unsigned int j;
3144 i386_operand_type a;
3145
3146 for (j = 0; j < ARRAY_SIZE (type_names); j++)
3147 {
3148 a = operand_type_and (t, type_names[j].mask);
3149 if (!operand_type_all_zero (&a))
3150 fprintf (stdout, "%s, ", type_names[j].name);
3151 }
3152 fflush (stdout);
3153 }
3154
3155 #endif /* DEBUG386 */
3156 \f
3157 static bfd_reloc_code_real_type
3158 reloc (unsigned int size,
3159 int pcrel,
3160 int sign,
3161 bfd_reloc_code_real_type other)
3162 {
3163 if (other != NO_RELOC)
3164 {
3165 reloc_howto_type *rel;
3166
3167 if (size == 8)
3168 switch (other)
3169 {
3170 case BFD_RELOC_X86_64_GOT32:
3171 return BFD_RELOC_X86_64_GOT64;
3172 break;
3173 case BFD_RELOC_X86_64_GOTPLT64:
3174 return BFD_RELOC_X86_64_GOTPLT64;
3175 break;
3176 case BFD_RELOC_X86_64_PLTOFF64:
3177 return BFD_RELOC_X86_64_PLTOFF64;
3178 break;
3179 case BFD_RELOC_X86_64_GOTPC32:
3180 other = BFD_RELOC_X86_64_GOTPC64;
3181 break;
3182 case BFD_RELOC_X86_64_GOTPCREL:
3183 other = BFD_RELOC_X86_64_GOTPCREL64;
3184 break;
3185 case BFD_RELOC_X86_64_TPOFF32:
3186 other = BFD_RELOC_X86_64_TPOFF64;
3187 break;
3188 case BFD_RELOC_X86_64_DTPOFF32:
3189 other = BFD_RELOC_X86_64_DTPOFF64;
3190 break;
3191 default:
3192 break;
3193 }
3194
3195 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
3196 if (other == BFD_RELOC_SIZE32)
3197 {
3198 if (size == 8)
3199 other = BFD_RELOC_SIZE64;
3200 if (pcrel)
3201 {
3202 as_bad (_("there are no pc-relative size relocations"));
3203 return NO_RELOC;
3204 }
3205 }
3206 #endif
3207
3208 /* Sign-checking 4-byte relocations in 16-/32-bit code is pointless. */
3209 if (size == 4 && (flag_code != CODE_64BIT || disallow_64bit_reloc))
3210 sign = -1;
3211
3212 rel = bfd_reloc_type_lookup (stdoutput, other);
3213 if (!rel)
3214 as_bad (_("unknown relocation (%u)"), other);
3215 else if (size != bfd_get_reloc_size (rel))
3216 as_bad (_("%u-byte relocation cannot be applied to %u-byte field"),
3217 bfd_get_reloc_size (rel),
3218 size);
3219 else if (pcrel && !rel->pc_relative)
3220 as_bad (_("non-pc-relative relocation for pc-relative field"));
3221 else if ((rel->complain_on_overflow == complain_overflow_signed
3222 && !sign)
3223 || (rel->complain_on_overflow == complain_overflow_unsigned
3224 && sign > 0))
3225 as_bad (_("relocated field and relocation type differ in signedness"));
3226 else
3227 return other;
3228 return NO_RELOC;
3229 }
3230
3231 if (pcrel)
3232 {
3233 if (!sign)
3234 as_bad (_("there are no unsigned pc-relative relocations"));
3235 switch (size)
3236 {
3237 case 1: return BFD_RELOC_8_PCREL;
3238 case 2: return BFD_RELOC_16_PCREL;
3239 case 4: return BFD_RELOC_32_PCREL;
3240 case 8: return BFD_RELOC_64_PCREL;
3241 }
3242 as_bad (_("cannot do %u byte pc-relative relocation"), size);
3243 }
3244 else
3245 {
3246 if (sign > 0)
3247 switch (size)
3248 {
3249 case 4: return BFD_RELOC_X86_64_32S;
3250 }
3251 else
3252 switch (size)
3253 {
3254 case 1: return BFD_RELOC_8;
3255 case 2: return BFD_RELOC_16;
3256 case 4: return BFD_RELOC_32;
3257 case 8: return BFD_RELOC_64;
3258 }
3259 as_bad (_("cannot do %s %u byte relocation"),
3260 sign > 0 ? "signed" : "unsigned", size);
3261 }
3262
3263 return NO_RELOC;
3264 }
3265
3266 /* Here we decide which fixups can be adjusted to make them relative to
3267 the beginning of the section instead of the symbol. Basically we need
3268 to make sure that the dynamic relocations are done correctly, so in
3269 some cases we force the original symbol to be used. */
3270
3271 int
3272 tc_i386_fix_adjustable (fixS *fixP ATTRIBUTE_UNUSED)
3273 {
3274 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
3275 if (!IS_ELF)
3276 return 1;
3277
3278 /* Don't adjust pc-relative references to merge sections in 64-bit
3279 mode. */
3280 if (use_rela_relocations
3281 && (S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_MERGE) != 0
3282 && fixP->fx_pcrel)
3283 return 0;
3284
3285 /* The x86_64 GOTPCREL are represented as 32bit PCrel relocations
3286 and changed later by validate_fix. */
3287 if (GOT_symbol && fixP->fx_subsy == GOT_symbol
3288 && fixP->fx_r_type == BFD_RELOC_32_PCREL)
3289 return 0;
3290
3291 /* Adjust_reloc_syms doesn't know about the GOT. Need to keep symbol
3292 for size relocations. */
3293 if (fixP->fx_r_type == BFD_RELOC_SIZE32
3294 || fixP->fx_r_type == BFD_RELOC_SIZE64
3295 || fixP->fx_r_type == BFD_RELOC_386_GOTOFF
3296 || fixP->fx_r_type == BFD_RELOC_386_PLT32
3297 || fixP->fx_r_type == BFD_RELOC_386_GOT32
3298 || fixP->fx_r_type == BFD_RELOC_386_GOT32X
3299 || fixP->fx_r_type == BFD_RELOC_386_TLS_GD
3300 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDM
3301 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDO_32
3302 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE_32
3303 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE
3304 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTIE
3305 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE_32
3306 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE
3307 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTDESC
3308 || fixP->fx_r_type == BFD_RELOC_386_TLS_DESC_CALL
3309 || fixP->fx_r_type == BFD_RELOC_X86_64_PLT32
3310 || fixP->fx_r_type == BFD_RELOC_X86_64_GOT32
3311 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCREL
3312 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCRELX
3313 || fixP->fx_r_type == BFD_RELOC_X86_64_REX_GOTPCRELX
3314 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSGD
3315 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSLD
3316 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF32
3317 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF64
3318 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTTPOFF
3319 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF32
3320 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF64
3321 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTOFF64
3322 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPC32_TLSDESC
3323 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSDESC_CALL
3324 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
3325 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
3326 return 0;
3327 #endif
3328 return 1;
3329 }
3330
3331 static int
3332 intel_float_operand (const char *mnemonic)
3333 {
3334 /* Note that the value returned is meaningful only for opcodes with (memory)
3335 operands, hence the code here is free to improperly handle opcodes that
3336 have no operands (for better performance and smaller code). */
3337
3338 if (mnemonic[0] != 'f')
3339 return 0; /* non-math */
3340
3341 switch (mnemonic[1])
3342 {
3343 /* fclex, fdecstp, fdisi, femms, feni, fincstp, finit, fsetpm, and
3344 the fs segment override prefix not currently handled because no
3345 call path can make opcodes without operands get here */
3346 case 'i':
3347 return 2 /* integer op */;
3348 case 'l':
3349 if (mnemonic[2] == 'd' && (mnemonic[3] == 'c' || mnemonic[3] == 'e'))
3350 return 3; /* fldcw/fldenv */
3351 break;
3352 case 'n':
3353 if (mnemonic[2] != 'o' /* fnop */)
3354 return 3; /* non-waiting control op */
3355 break;
3356 case 'r':
3357 if (mnemonic[2] == 's')
3358 return 3; /* frstor/frstpm */
3359 break;
3360 case 's':
3361 if (mnemonic[2] == 'a')
3362 return 3; /* fsave */
3363 if (mnemonic[2] == 't')
3364 {
3365 switch (mnemonic[3])
3366 {
3367 case 'c': /* fstcw */
3368 case 'd': /* fstdw */
3369 case 'e': /* fstenv */
3370 case 's': /* fsts[gw] */
3371 return 3;
3372 }
3373 }
3374 break;
3375 case 'x':
3376 if (mnemonic[2] == 'r' || mnemonic[2] == 's')
3377 return 0; /* fxsave/fxrstor are not really math ops */
3378 break;
3379 }
3380
3381 return 1;
3382 }
3383
3384 /* Build the VEX prefix. */
3385
3386 static void
3387 build_vex_prefix (const insn_template *t)
3388 {
3389 unsigned int register_specifier;
3390 unsigned int implied_prefix;
3391 unsigned int vector_length;
3392 unsigned int w;
3393
3394 /* Check register specifier. */
3395 if (i.vex.register_specifier)
3396 {
3397 register_specifier =
3398 ~register_number (i.vex.register_specifier) & 0xf;
3399 gas_assert ((i.vex.register_specifier->reg_flags & RegVRex) == 0);
3400 }
3401 else
3402 register_specifier = 0xf;
3403
3404 /* Use 2-byte VEX prefix by swapping destination and source operand
3405 if there are more than 1 register operand. */
3406 if (i.reg_operands > 1
3407 && i.vec_encoding != vex_encoding_vex3
3408 && i.dir_encoding == dir_encoding_default
3409 && i.operands == i.reg_operands
3410 && operand_type_equal (&i.types[0], &i.types[i.operands - 1])
3411 && i.tm.opcode_modifier.vexopcode == VEX0F
3412 && (i.tm.opcode_modifier.load || i.tm.opcode_modifier.d)
3413 && i.rex == REX_B)
3414 {
3415 unsigned int xchg = i.operands - 1;
3416 union i386_op temp_op;
3417 i386_operand_type temp_type;
3418
3419 temp_type = i.types[xchg];
3420 i.types[xchg] = i.types[0];
3421 i.types[0] = temp_type;
3422 temp_op = i.op[xchg];
3423 i.op[xchg] = i.op[0];
3424 i.op[0] = temp_op;
3425
3426 gas_assert (i.rm.mode == 3);
3427
3428 i.rex = REX_R;
3429 xchg = i.rm.regmem;
3430 i.rm.regmem = i.rm.reg;
3431 i.rm.reg = xchg;
3432
3433 if (i.tm.opcode_modifier.d)
3434 i.tm.base_opcode ^= (i.tm.base_opcode & 0xee) != 0x6e
3435 ? Opcode_SIMD_FloatD : Opcode_SIMD_IntD;
3436 else /* Use the next insn. */
3437 i.tm = t[1];
3438 }
3439
3440 if (i.tm.opcode_modifier.vex == VEXScalar)
3441 vector_length = avxscalar;
3442 else if (i.tm.opcode_modifier.vex == VEX256)
3443 vector_length = 1;
3444 else
3445 {
3446 unsigned int op;
3447
3448 /* Determine vector length from the last multi-length vector
3449 operand. */
3450 vector_length = 0;
3451 for (op = t->operands; op--;)
3452 if (t->operand_types[op].bitfield.xmmword
3453 && t->operand_types[op].bitfield.ymmword
3454 && i.types[op].bitfield.ymmword)
3455 {
3456 vector_length = 1;
3457 break;
3458 }
3459 }
3460
3461 switch ((i.tm.base_opcode >> 8) & 0xff)
3462 {
3463 case 0:
3464 implied_prefix = 0;
3465 break;
3466 case DATA_PREFIX_OPCODE:
3467 implied_prefix = 1;
3468 break;
3469 case REPE_PREFIX_OPCODE:
3470 implied_prefix = 2;
3471 break;
3472 case REPNE_PREFIX_OPCODE:
3473 implied_prefix = 3;
3474 break;
3475 default:
3476 abort ();
3477 }
3478
3479 /* Check the REX.W bit and VEXW. */
3480 if (i.tm.opcode_modifier.vexw == VEXWIG)
3481 w = (vexwig == vexw1 || (i.rex & REX_W)) ? 1 : 0;
3482 else if (i.tm.opcode_modifier.vexw)
3483 w = i.tm.opcode_modifier.vexw == VEXW1 ? 1 : 0;
3484 else
3485 w = (flag_code == CODE_64BIT ? i.rex & REX_W : vexwig == vexw1) ? 1 : 0;
3486
3487 /* Use 2-byte VEX prefix if possible. */
3488 if (w == 0
3489 && i.vec_encoding != vex_encoding_vex3
3490 && i.tm.opcode_modifier.vexopcode == VEX0F
3491 && (i.rex & (REX_W | REX_X | REX_B)) == 0)
3492 {
3493 /* 2-byte VEX prefix. */
3494 unsigned int r;
3495
3496 i.vex.length = 2;
3497 i.vex.bytes[0] = 0xc5;
3498
3499 /* Check the REX.R bit. */
3500 r = (i.rex & REX_R) ? 0 : 1;
3501 i.vex.bytes[1] = (r << 7
3502 | register_specifier << 3
3503 | vector_length << 2
3504 | implied_prefix);
3505 }
3506 else
3507 {
3508 /* 3-byte VEX prefix. */
3509 unsigned int m;
3510
3511 i.vex.length = 3;
3512
3513 switch (i.tm.opcode_modifier.vexopcode)
3514 {
3515 case VEX0F:
3516 m = 0x1;
3517 i.vex.bytes[0] = 0xc4;
3518 break;
3519 case VEX0F38:
3520 m = 0x2;
3521 i.vex.bytes[0] = 0xc4;
3522 break;
3523 case VEX0F3A:
3524 m = 0x3;
3525 i.vex.bytes[0] = 0xc4;
3526 break;
3527 case XOP08:
3528 m = 0x8;
3529 i.vex.bytes[0] = 0x8f;
3530 break;
3531 case XOP09:
3532 m = 0x9;
3533 i.vex.bytes[0] = 0x8f;
3534 break;
3535 case XOP0A:
3536 m = 0xa;
3537 i.vex.bytes[0] = 0x8f;
3538 break;
3539 default:
3540 abort ();
3541 }
3542
3543 /* The high 3 bits of the second VEX byte are 1's compliment
3544 of RXB bits from REX. */
3545 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3546
3547 i.vex.bytes[2] = (w << 7
3548 | register_specifier << 3
3549 | vector_length << 2
3550 | implied_prefix);
3551 }
3552 }
3553
3554 static INLINE bfd_boolean
3555 is_evex_encoding (const insn_template *t)
3556 {
3557 return t->opcode_modifier.evex || t->opcode_modifier.disp8memshift
3558 || t->opcode_modifier.broadcast || t->opcode_modifier.masking
3559 || t->opcode_modifier.staticrounding || t->opcode_modifier.sae;
3560 }
3561
3562 static INLINE bfd_boolean
3563 is_any_vex_encoding (const insn_template *t)
3564 {
3565 return t->opcode_modifier.vex || t->opcode_modifier.vexopcode
3566 || is_evex_encoding (t);
3567 }
3568
3569 /* Build the EVEX prefix. */
3570
3571 static void
3572 build_evex_prefix (void)
3573 {
3574 unsigned int register_specifier;
3575 unsigned int implied_prefix;
3576 unsigned int m, w;
3577 rex_byte vrex_used = 0;
3578
3579 /* Check register specifier. */
3580 if (i.vex.register_specifier)
3581 {
3582 gas_assert ((i.vrex & REX_X) == 0);
3583
3584 register_specifier = i.vex.register_specifier->reg_num;
3585 if ((i.vex.register_specifier->reg_flags & RegRex))
3586 register_specifier += 8;
3587 /* The upper 16 registers are encoded in the fourth byte of the
3588 EVEX prefix. */
3589 if (!(i.vex.register_specifier->reg_flags & RegVRex))
3590 i.vex.bytes[3] = 0x8;
3591 register_specifier = ~register_specifier & 0xf;
3592 }
3593 else
3594 {
3595 register_specifier = 0xf;
3596
3597 /* Encode upper 16 vector index register in the fourth byte of
3598 the EVEX prefix. */
3599 if (!(i.vrex & REX_X))
3600 i.vex.bytes[3] = 0x8;
3601 else
3602 vrex_used |= REX_X;
3603 }
3604
3605 switch ((i.tm.base_opcode >> 8) & 0xff)
3606 {
3607 case 0:
3608 implied_prefix = 0;
3609 break;
3610 case DATA_PREFIX_OPCODE:
3611 implied_prefix = 1;
3612 break;
3613 case REPE_PREFIX_OPCODE:
3614 implied_prefix = 2;
3615 break;
3616 case REPNE_PREFIX_OPCODE:
3617 implied_prefix = 3;
3618 break;
3619 default:
3620 abort ();
3621 }
3622
3623 /* 4 byte EVEX prefix. */
3624 i.vex.length = 4;
3625 i.vex.bytes[0] = 0x62;
3626
3627 /* mmmm bits. */
3628 switch (i.tm.opcode_modifier.vexopcode)
3629 {
3630 case VEX0F:
3631 m = 1;
3632 break;
3633 case VEX0F38:
3634 m = 2;
3635 break;
3636 case VEX0F3A:
3637 m = 3;
3638 break;
3639 default:
3640 abort ();
3641 break;
3642 }
3643
3644 /* The high 3 bits of the second EVEX byte are 1's compliment of RXB
3645 bits from REX. */
3646 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3647
3648 /* The fifth bit of the second EVEX byte is 1's compliment of the
3649 REX_R bit in VREX. */
3650 if (!(i.vrex & REX_R))
3651 i.vex.bytes[1] |= 0x10;
3652 else
3653 vrex_used |= REX_R;
3654
3655 if ((i.reg_operands + i.imm_operands) == i.operands)
3656 {
3657 /* When all operands are registers, the REX_X bit in REX is not
3658 used. We reuse it to encode the upper 16 registers, which is
3659 indicated by the REX_B bit in VREX. The REX_X bit is encoded
3660 as 1's compliment. */
3661 if ((i.vrex & REX_B))
3662 {
3663 vrex_used |= REX_B;
3664 i.vex.bytes[1] &= ~0x40;
3665 }
3666 }
3667
3668 /* EVEX instructions shouldn't need the REX prefix. */
3669 i.vrex &= ~vrex_used;
3670 gas_assert (i.vrex == 0);
3671
3672 /* Check the REX.W bit and VEXW. */
3673 if (i.tm.opcode_modifier.vexw == VEXWIG)
3674 w = (evexwig == evexw1 || (i.rex & REX_W)) ? 1 : 0;
3675 else if (i.tm.opcode_modifier.vexw)
3676 w = i.tm.opcode_modifier.vexw == VEXW1 ? 1 : 0;
3677 else
3678 w = (flag_code == CODE_64BIT ? i.rex & REX_W : evexwig == evexw1) ? 1 : 0;
3679
3680 /* Encode the U bit. */
3681 implied_prefix |= 0x4;
3682
3683 /* The third byte of the EVEX prefix. */
3684 i.vex.bytes[2] = (w << 7 | register_specifier << 3 | implied_prefix);
3685
3686 /* The fourth byte of the EVEX prefix. */
3687 /* The zeroing-masking bit. */
3688 if (i.mask && i.mask->zeroing)
3689 i.vex.bytes[3] |= 0x80;
3690
3691 /* Don't always set the broadcast bit if there is no RC. */
3692 if (!i.rounding)
3693 {
3694 /* Encode the vector length. */
3695 unsigned int vec_length;
3696
3697 if (!i.tm.opcode_modifier.evex
3698 || i.tm.opcode_modifier.evex == EVEXDYN)
3699 {
3700 unsigned int op;
3701
3702 /* Determine vector length from the last multi-length vector
3703 operand. */
3704 vec_length = 0;
3705 for (op = i.operands; op--;)
3706 if (i.tm.operand_types[op].bitfield.xmmword
3707 + i.tm.operand_types[op].bitfield.ymmword
3708 + i.tm.operand_types[op].bitfield.zmmword > 1)
3709 {
3710 if (i.types[op].bitfield.zmmword)
3711 {
3712 i.tm.opcode_modifier.evex = EVEX512;
3713 break;
3714 }
3715 else if (i.types[op].bitfield.ymmword)
3716 {
3717 i.tm.opcode_modifier.evex = EVEX256;
3718 break;
3719 }
3720 else if (i.types[op].bitfield.xmmword)
3721 {
3722 i.tm.opcode_modifier.evex = EVEX128;
3723 break;
3724 }
3725 else if (i.broadcast && (int) op == i.broadcast->operand)
3726 {
3727 switch (i.broadcast->bytes)
3728 {
3729 case 64:
3730 i.tm.opcode_modifier.evex = EVEX512;
3731 break;
3732 case 32:
3733 i.tm.opcode_modifier.evex = EVEX256;
3734 break;
3735 case 16:
3736 i.tm.opcode_modifier.evex = EVEX128;
3737 break;
3738 default:
3739 abort ();
3740 }
3741 break;
3742 }
3743 }
3744
3745 if (op >= MAX_OPERANDS)
3746 abort ();
3747 }
3748
3749 switch (i.tm.opcode_modifier.evex)
3750 {
3751 case EVEXLIG: /* LL' is ignored */
3752 vec_length = evexlig << 5;
3753 break;
3754 case EVEX128:
3755 vec_length = 0 << 5;
3756 break;
3757 case EVEX256:
3758 vec_length = 1 << 5;
3759 break;
3760 case EVEX512:
3761 vec_length = 2 << 5;
3762 break;
3763 default:
3764 abort ();
3765 break;
3766 }
3767 i.vex.bytes[3] |= vec_length;
3768 /* Encode the broadcast bit. */
3769 if (i.broadcast)
3770 i.vex.bytes[3] |= 0x10;
3771 }
3772 else
3773 {
3774 if (i.rounding->type != saeonly)
3775 i.vex.bytes[3] |= 0x10 | (i.rounding->type << 5);
3776 else
3777 i.vex.bytes[3] |= 0x10 | (evexrcig << 5);
3778 }
3779
3780 if (i.mask && i.mask->mask)
3781 i.vex.bytes[3] |= i.mask->mask->reg_num;
3782 }
3783
3784 static void
3785 process_immext (void)
3786 {
3787 expressionS *exp;
3788
3789 if ((i.tm.cpu_flags.bitfield.cpusse3 || i.tm.cpu_flags.bitfield.cpusvme)
3790 && i.operands > 0)
3791 {
3792 /* MONITOR/MWAIT as well as SVME instructions have fixed operands
3793 with an opcode suffix which is coded in the same place as an
3794 8-bit immediate field would be.
3795 Here we check those operands and remove them afterwards. */
3796 unsigned int x;
3797
3798 for (x = 0; x < i.operands; x++)
3799 if (register_number (i.op[x].regs) != x)
3800 as_bad (_("can't use register '%s%s' as operand %d in '%s'."),
3801 register_prefix, i.op[x].regs->reg_name, x + 1,
3802 i.tm.name);
3803
3804 i.operands = 0;
3805 }
3806
3807 if (i.tm.cpu_flags.bitfield.cpumwaitx && i.operands > 0)
3808 {
3809 /* MONITORX/MWAITX instructions have fixed operands with an opcode
3810 suffix which is coded in the same place as an 8-bit immediate
3811 field would be.
3812 Here we check those operands and remove them afterwards. */
3813 unsigned int x;
3814
3815 if (i.operands != 3)
3816 abort();
3817
3818 for (x = 0; x < 2; x++)
3819 if (register_number (i.op[x].regs) != x)
3820 goto bad_register_operand;
3821
3822 /* Check for third operand for mwaitx/monitorx insn. */
3823 if (register_number (i.op[x].regs)
3824 != (x + (i.tm.extension_opcode == 0xfb)))
3825 {
3826 bad_register_operand:
3827 as_bad (_("can't use register '%s%s' as operand %d in '%s'."),
3828 register_prefix, i.op[x].regs->reg_name, x+1,
3829 i.tm.name);
3830 }
3831
3832 i.operands = 0;
3833 }
3834
3835 /* These AMD 3DNow! and SSE2 instructions have an opcode suffix
3836 which is coded in the same place as an 8-bit immediate field
3837 would be. Here we fake an 8-bit immediate operand from the
3838 opcode suffix stored in tm.extension_opcode.
3839
3840 AVX instructions also use this encoding, for some of
3841 3 argument instructions. */
3842
3843 gas_assert (i.imm_operands <= 1
3844 && (i.operands <= 2
3845 || (is_any_vex_encoding (&i.tm)
3846 && i.operands <= 4)));
3847
3848 exp = &im_expressions[i.imm_operands++];
3849 i.op[i.operands].imms = exp;
3850 i.types[i.operands] = imm8;
3851 i.operands++;
3852 exp->X_op = O_constant;
3853 exp->X_add_number = i.tm.extension_opcode;
3854 i.tm.extension_opcode = None;
3855 }
3856
3857
3858 static int
3859 check_hle (void)
3860 {
3861 switch (i.tm.opcode_modifier.hleprefixok)
3862 {
3863 default:
3864 abort ();
3865 case HLEPrefixNone:
3866 as_bad (_("invalid instruction `%s' after `%s'"),
3867 i.tm.name, i.hle_prefix);
3868 return 0;
3869 case HLEPrefixLock:
3870 if (i.prefix[LOCK_PREFIX])
3871 return 1;
3872 as_bad (_("missing `lock' with `%s'"), i.hle_prefix);
3873 return 0;
3874 case HLEPrefixAny:
3875 return 1;
3876 case HLEPrefixRelease:
3877 if (i.prefix[HLE_PREFIX] != XRELEASE_PREFIX_OPCODE)
3878 {
3879 as_bad (_("instruction `%s' after `xacquire' not allowed"),
3880 i.tm.name);
3881 return 0;
3882 }
3883 if (i.mem_operands == 0
3884 || !operand_type_check (i.types[i.operands - 1], anymem))
3885 {
3886 as_bad (_("memory destination needed for instruction `%s'"
3887 " after `xrelease'"), i.tm.name);
3888 return 0;
3889 }
3890 return 1;
3891 }
3892 }
3893
3894 /* Try the shortest encoding by shortening operand size. */
3895
3896 static void
3897 optimize_encoding (void)
3898 {
3899 int j;
3900
3901 if (optimize_for_space
3902 && i.reg_operands == 1
3903 && i.imm_operands == 1
3904 && !i.types[1].bitfield.byte
3905 && i.op[0].imms->X_op == O_constant
3906 && fits_in_imm7 (i.op[0].imms->X_add_number)
3907 && ((i.tm.base_opcode == 0xa8
3908 && i.tm.extension_opcode == None)
3909 || (i.tm.base_opcode == 0xf6
3910 && i.tm.extension_opcode == 0x0)))
3911 {
3912 /* Optimize: -Os:
3913 test $imm7, %r64/%r32/%r16 -> test $imm7, %r8
3914 */
3915 unsigned int base_regnum = i.op[1].regs->reg_num;
3916 if (flag_code == CODE_64BIT || base_regnum < 4)
3917 {
3918 i.types[1].bitfield.byte = 1;
3919 /* Ignore the suffix. */
3920 i.suffix = 0;
3921 if (base_regnum >= 4
3922 && !(i.op[1].regs->reg_flags & RegRex))
3923 {
3924 /* Handle SP, BP, SI and DI registers. */
3925 if (i.types[1].bitfield.word)
3926 j = 16;
3927 else if (i.types[1].bitfield.dword)
3928 j = 32;
3929 else
3930 j = 48;
3931 i.op[1].regs -= j;
3932 }
3933 }
3934 }
3935 else if (flag_code == CODE_64BIT
3936 && ((i.types[1].bitfield.qword
3937 && i.reg_operands == 1
3938 && i.imm_operands == 1
3939 && i.op[0].imms->X_op == O_constant
3940 && ((i.tm.base_opcode == 0xb0
3941 && i.tm.extension_opcode == None
3942 && fits_in_unsigned_long (i.op[0].imms->X_add_number))
3943 || (fits_in_imm31 (i.op[0].imms->X_add_number)
3944 && (((i.tm.base_opcode == 0x24
3945 || i.tm.base_opcode == 0xa8)
3946 && i.tm.extension_opcode == None)
3947 || (i.tm.base_opcode == 0x80
3948 && i.tm.extension_opcode == 0x4)
3949 || ((i.tm.base_opcode == 0xf6
3950 || i.tm.base_opcode == 0xc6)
3951 && i.tm.extension_opcode == 0x0)))
3952 || (fits_in_imm7 (i.op[0].imms->X_add_number)
3953 && i.tm.base_opcode == 0x83
3954 && i.tm.extension_opcode == 0x4)))
3955 || (i.types[0].bitfield.qword
3956 && ((i.reg_operands == 2
3957 && i.op[0].regs == i.op[1].regs
3958 && ((i.tm.base_opcode == 0x30
3959 || i.tm.base_opcode == 0x28)
3960 && i.tm.extension_opcode == None))
3961 || (i.reg_operands == 1
3962 && i.operands == 1
3963 && i.tm.base_opcode == 0x30
3964 && i.tm.extension_opcode == None)))))
3965 {
3966 /* Optimize: -O:
3967 andq $imm31, %r64 -> andl $imm31, %r32
3968 andq $imm7, %r64 -> andl $imm7, %r32
3969 testq $imm31, %r64 -> testl $imm31, %r32
3970 xorq %r64, %r64 -> xorl %r32, %r32
3971 subq %r64, %r64 -> subl %r32, %r32
3972 movq $imm31, %r64 -> movl $imm31, %r32
3973 movq $imm32, %r64 -> movl $imm32, %r32
3974 */
3975 i.tm.opcode_modifier.norex64 = 1;
3976 if (i.tm.base_opcode == 0xb0 || i.tm.base_opcode == 0xc6)
3977 {
3978 /* Handle
3979 movq $imm31, %r64 -> movl $imm31, %r32
3980 movq $imm32, %r64 -> movl $imm32, %r32
3981 */
3982 i.tm.operand_types[0].bitfield.imm32 = 1;
3983 i.tm.operand_types[0].bitfield.imm32s = 0;
3984 i.tm.operand_types[0].bitfield.imm64 = 0;
3985 i.types[0].bitfield.imm32 = 1;
3986 i.types[0].bitfield.imm32s = 0;
3987 i.types[0].bitfield.imm64 = 0;
3988 i.types[1].bitfield.dword = 1;
3989 i.types[1].bitfield.qword = 0;
3990 if (i.tm.base_opcode == 0xc6)
3991 {
3992 /* Handle
3993 movq $imm31, %r64 -> movl $imm31, %r32
3994 */
3995 i.tm.base_opcode = 0xb0;
3996 i.tm.extension_opcode = None;
3997 i.tm.opcode_modifier.shortform = 1;
3998 i.tm.opcode_modifier.modrm = 0;
3999 }
4000 }
4001 }
4002 else if (i.reg_operands == 3
4003 && i.op[0].regs == i.op[1].regs
4004 && !i.types[2].bitfield.xmmword
4005 && (i.tm.opcode_modifier.vex
4006 || ((!i.mask || i.mask->zeroing)
4007 && !i.rounding
4008 && is_evex_encoding (&i.tm)
4009 && (i.vec_encoding != vex_encoding_evex
4010 || cpu_arch_isa_flags.bitfield.cpuavx512vl
4011 || i.tm.cpu_flags.bitfield.cpuavx512vl
4012 || (i.tm.operand_types[2].bitfield.zmmword
4013 && i.types[2].bitfield.ymmword))))
4014 && ((i.tm.base_opcode == 0x55
4015 || i.tm.base_opcode == 0x6655
4016 || i.tm.base_opcode == 0x66df
4017 || i.tm.base_opcode == 0x57
4018 || i.tm.base_opcode == 0x6657
4019 || i.tm.base_opcode == 0x66ef
4020 || i.tm.base_opcode == 0x66f8
4021 || i.tm.base_opcode == 0x66f9
4022 || i.tm.base_opcode == 0x66fa
4023 || i.tm.base_opcode == 0x66fb
4024 || i.tm.base_opcode == 0x42
4025 || i.tm.base_opcode == 0x6642
4026 || i.tm.base_opcode == 0x47
4027 || i.tm.base_opcode == 0x6647)
4028 && i.tm.extension_opcode == None))
4029 {
4030 /* Optimize: -O1:
4031 VOP, one of vandnps, vandnpd, vxorps, vxorpd, vpsubb, vpsubd,
4032 vpsubq and vpsubw:
4033 EVEX VOP %zmmM, %zmmM, %zmmN
4034 -> VEX VOP %xmmM, %xmmM, %xmmN (M and N < 16)
4035 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
4036 EVEX VOP %ymmM, %ymmM, %ymmN
4037 -> VEX VOP %xmmM, %xmmM, %xmmN (M and N < 16)
4038 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
4039 VEX VOP %ymmM, %ymmM, %ymmN
4040 -> VEX VOP %xmmM, %xmmM, %xmmN
4041 VOP, one of vpandn and vpxor:
4042 VEX VOP %ymmM, %ymmM, %ymmN
4043 -> VEX VOP %xmmM, %xmmM, %xmmN
4044 VOP, one of vpandnd and vpandnq:
4045 EVEX VOP %zmmM, %zmmM, %zmmN
4046 -> VEX vpandn %xmmM, %xmmM, %xmmN (M and N < 16)
4047 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
4048 EVEX VOP %ymmM, %ymmM, %ymmN
4049 -> VEX vpandn %xmmM, %xmmM, %xmmN (M and N < 16)
4050 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
4051 VOP, one of vpxord and vpxorq:
4052 EVEX VOP %zmmM, %zmmM, %zmmN
4053 -> VEX vpxor %xmmM, %xmmM, %xmmN (M and N < 16)
4054 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
4055 EVEX VOP %ymmM, %ymmM, %ymmN
4056 -> VEX vpxor %xmmM, %xmmM, %xmmN (M and N < 16)
4057 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
4058 VOP, one of kxord and kxorq:
4059 VEX VOP %kM, %kM, %kN
4060 -> VEX kxorw %kM, %kM, %kN
4061 VOP, one of kandnd and kandnq:
4062 VEX VOP %kM, %kM, %kN
4063 -> VEX kandnw %kM, %kM, %kN
4064 */
4065 if (is_evex_encoding (&i.tm))
4066 {
4067 if (i.vec_encoding != vex_encoding_evex)
4068 {
4069 i.tm.opcode_modifier.vex = VEX128;
4070 i.tm.opcode_modifier.vexw = VEXW0;
4071 i.tm.opcode_modifier.evex = 0;
4072 }
4073 else if (optimize > 1)
4074 i.tm.opcode_modifier.evex = EVEX128;
4075 else
4076 return;
4077 }
4078 else if (i.tm.operand_types[0].bitfield.regmask)
4079 {
4080 i.tm.base_opcode &= 0xff;
4081 i.tm.opcode_modifier.vexw = VEXW0;
4082 }
4083 else
4084 i.tm.opcode_modifier.vex = VEX128;
4085
4086 if (i.tm.opcode_modifier.vex)
4087 for (j = 0; j < 3; j++)
4088 {
4089 i.types[j].bitfield.xmmword = 1;
4090 i.types[j].bitfield.ymmword = 0;
4091 }
4092 }
4093 else if (i.vec_encoding != vex_encoding_evex
4094 && !i.types[0].bitfield.zmmword
4095 && !i.types[1].bitfield.zmmword
4096 && !i.mask
4097 && is_evex_encoding (&i.tm)
4098 && ((i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0x666f
4099 || (i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0xf36f
4100 || (i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0xf26f)
4101 && i.tm.extension_opcode == None)
4102 {
4103 /* Optimize: -O1:
4104 VOP, one of vmovdqa32, vmovdqa64, vmovdqu8, vmovdqu16,
4105 vmovdqu32 and vmovdqu64:
4106 EVEX VOP %xmmM, %xmmN
4107 -> VEX vmovdqa|vmovdqu %xmmM, %xmmN (M and N < 16)
4108 EVEX VOP %ymmM, %ymmN
4109 -> VEX vmovdqa|vmovdqu %ymmM, %ymmN (M and N < 16)
4110 EVEX VOP %xmmM, mem
4111 -> VEX vmovdqa|vmovdqu %xmmM, mem (M < 16)
4112 EVEX VOP %ymmM, mem
4113 -> VEX vmovdqa|vmovdqu %ymmM, mem (M < 16)
4114 EVEX VOP mem, %xmmN
4115 -> VEX mvmovdqa|vmovdquem, %xmmN (N < 16)
4116 EVEX VOP mem, %ymmN
4117 -> VEX vmovdqa|vmovdqu mem, %ymmN (N < 16)
4118 */
4119 for (j = 0; j < 2; j++)
4120 if (operand_type_check (i.types[j], disp)
4121 && i.op[j].disps->X_op == O_constant)
4122 {
4123 /* Since the VEX prefix has 2 or 3 bytes, the EVEX prefix
4124 has 4 bytes, EVEX Disp8 has 1 byte and VEX Disp32 has 4
4125 bytes, we choose EVEX Disp8 over VEX Disp32. */
4126 int evex_disp8, vex_disp8;
4127 unsigned int memshift = i.memshift;
4128 offsetT n = i.op[j].disps->X_add_number;
4129
4130 evex_disp8 = fits_in_disp8 (n);
4131 i.memshift = 0;
4132 vex_disp8 = fits_in_disp8 (n);
4133 if (evex_disp8 != vex_disp8)
4134 {
4135 i.memshift = memshift;
4136 return;
4137 }
4138
4139 i.types[j].bitfield.disp8 = vex_disp8;
4140 break;
4141 }
4142 if ((i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0xf26f)
4143 i.tm.base_opcode ^= 0xf36f ^ 0xf26f;
4144 i.tm.opcode_modifier.vex
4145 = i.types[0].bitfield.ymmword ? VEX256 : VEX128;
4146 i.tm.opcode_modifier.vexw = VEXW0;
4147 i.tm.opcode_modifier.evex = 0;
4148 i.tm.opcode_modifier.masking = 0;
4149 i.tm.opcode_modifier.disp8memshift = 0;
4150 i.memshift = 0;
4151 for (j = 0; j < 2; j++)
4152 if (operand_type_check (i.types[j], disp)
4153 && i.op[j].disps->X_op == O_constant)
4154 {
4155 i.types[j].bitfield.disp8
4156 = fits_in_disp8 (i.op[j].disps->X_add_number);
4157 break;
4158 }
4159 }
4160 }
4161
4162 /* This is the guts of the machine-dependent assembler. LINE points to a
4163 machine dependent instruction. This function is supposed to emit
4164 the frags/bytes it assembles to. */
4165
4166 void
4167 md_assemble (char *line)
4168 {
4169 unsigned int j;
4170 char mnemonic[MAX_MNEM_SIZE], mnem_suffix;
4171 const insn_template *t;
4172
4173 /* Initialize globals. */
4174 memset (&i, '\0', sizeof (i));
4175 for (j = 0; j < MAX_OPERANDS; j++)
4176 i.reloc[j] = NO_RELOC;
4177 memset (disp_expressions, '\0', sizeof (disp_expressions));
4178 memset (im_expressions, '\0', sizeof (im_expressions));
4179 save_stack_p = save_stack;
4180
4181 /* First parse an instruction mnemonic & call i386_operand for the operands.
4182 We assume that the scrubber has arranged it so that line[0] is the valid
4183 start of a (possibly prefixed) mnemonic. */
4184
4185 line = parse_insn (line, mnemonic);
4186 if (line == NULL)
4187 return;
4188 mnem_suffix = i.suffix;
4189
4190 line = parse_operands (line, mnemonic);
4191 this_operand = -1;
4192 xfree (i.memop1_string);
4193 i.memop1_string = NULL;
4194 if (line == NULL)
4195 return;
4196
4197 /* Now we've parsed the mnemonic into a set of templates, and have the
4198 operands at hand. */
4199
4200 /* All intel opcodes have reversed operands except for "bound" and
4201 "enter". We also don't reverse intersegment "jmp" and "call"
4202 instructions with 2 immediate operands so that the immediate segment
4203 precedes the offset, as it does when in AT&T mode. */
4204 if (intel_syntax
4205 && i.operands > 1
4206 && (strcmp (mnemonic, "bound") != 0)
4207 && (strcmp (mnemonic, "invlpga") != 0)
4208 && !(operand_type_check (i.types[0], imm)
4209 && operand_type_check (i.types[1], imm)))
4210 swap_operands ();
4211
4212 /* The order of the immediates should be reversed
4213 for 2 immediates extrq and insertq instructions */
4214 if (i.imm_operands == 2
4215 && (strcmp (mnemonic, "extrq") == 0
4216 || strcmp (mnemonic, "insertq") == 0))
4217 swap_2_operands (0, 1);
4218
4219 if (i.imm_operands)
4220 optimize_imm ();
4221
4222 /* Don't optimize displacement for movabs since it only takes 64bit
4223 displacement. */
4224 if (i.disp_operands
4225 && i.disp_encoding != disp_encoding_32bit
4226 && (flag_code != CODE_64BIT
4227 || strcmp (mnemonic, "movabs") != 0))
4228 optimize_disp ();
4229
4230 /* Next, we find a template that matches the given insn,
4231 making sure the overlap of the given operands types is consistent
4232 with the template operand types. */
4233
4234 if (!(t = match_template (mnem_suffix)))
4235 return;
4236
4237 if (sse_check != check_none
4238 && !i.tm.opcode_modifier.noavx
4239 && !i.tm.cpu_flags.bitfield.cpuavx
4240 && (i.tm.cpu_flags.bitfield.cpusse
4241 || i.tm.cpu_flags.bitfield.cpusse2
4242 || i.tm.cpu_flags.bitfield.cpusse3
4243 || i.tm.cpu_flags.bitfield.cpussse3
4244 || i.tm.cpu_flags.bitfield.cpusse4_1
4245 || i.tm.cpu_flags.bitfield.cpusse4_2
4246 || i.tm.cpu_flags.bitfield.cpupclmul
4247 || i.tm.cpu_flags.bitfield.cpuaes
4248 || i.tm.cpu_flags.bitfield.cpugfni))
4249 {
4250 (sse_check == check_warning
4251 ? as_warn
4252 : as_bad) (_("SSE instruction `%s' is used"), i.tm.name);
4253 }
4254
4255 /* Zap movzx and movsx suffix. The suffix has been set from
4256 "word ptr" or "byte ptr" on the source operand in Intel syntax
4257 or extracted from mnemonic in AT&T syntax. But we'll use
4258 the destination register to choose the suffix for encoding. */
4259 if ((i.tm.base_opcode & ~9) == 0x0fb6)
4260 {
4261 /* In Intel syntax, there must be a suffix. In AT&T syntax, if
4262 there is no suffix, the default will be byte extension. */
4263 if (i.reg_operands != 2
4264 && !i.suffix
4265 && intel_syntax)
4266 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
4267
4268 i.suffix = 0;
4269 }
4270
4271 if (i.tm.opcode_modifier.fwait)
4272 if (!add_prefix (FWAIT_OPCODE))
4273 return;
4274
4275 /* Check if REP prefix is OK. */
4276 if (i.rep_prefix && !i.tm.opcode_modifier.repprefixok)
4277 {
4278 as_bad (_("invalid instruction `%s' after `%s'"),
4279 i.tm.name, i.rep_prefix);
4280 return;
4281 }
4282
4283 /* Check for lock without a lockable instruction. Destination operand
4284 must be memory unless it is xchg (0x86). */
4285 if (i.prefix[LOCK_PREFIX]
4286 && (!i.tm.opcode_modifier.islockable
4287 || i.mem_operands == 0
4288 || (i.tm.base_opcode != 0x86
4289 && !operand_type_check (i.types[i.operands - 1], anymem))))
4290 {
4291 as_bad (_("expecting lockable instruction after `lock'"));
4292 return;
4293 }
4294
4295 /* Check for data size prefix on VEX/XOP/EVEX encoded insns. */
4296 if (i.prefix[DATA_PREFIX] && is_any_vex_encoding (&i.tm))
4297 {
4298 as_bad (_("data size prefix invalid with `%s'"), i.tm.name);
4299 return;
4300 }
4301
4302 /* Check if HLE prefix is OK. */
4303 if (i.hle_prefix && !check_hle ())
4304 return;
4305
4306 /* Check BND prefix. */
4307 if (i.bnd_prefix && !i.tm.opcode_modifier.bndprefixok)
4308 as_bad (_("expecting valid branch instruction after `bnd'"));
4309
4310 /* Check NOTRACK prefix. */
4311 if (i.notrack_prefix && !i.tm.opcode_modifier.notrackprefixok)
4312 as_bad (_("expecting indirect branch instruction after `notrack'"));
4313
4314 if (i.tm.cpu_flags.bitfield.cpumpx)
4315 {
4316 if (flag_code == CODE_64BIT && i.prefix[ADDR_PREFIX])
4317 as_bad (_("32-bit address isn't allowed in 64-bit MPX instructions."));
4318 else if (flag_code != CODE_16BIT
4319 ? i.prefix[ADDR_PREFIX]
4320 : i.mem_operands && !i.prefix[ADDR_PREFIX])
4321 as_bad (_("16-bit address isn't allowed in MPX instructions"));
4322 }
4323
4324 /* Insert BND prefix. */
4325 if (add_bnd_prefix && i.tm.opcode_modifier.bndprefixok)
4326 {
4327 if (!i.prefix[BND_PREFIX])
4328 add_prefix (BND_PREFIX_OPCODE);
4329 else if (i.prefix[BND_PREFIX] != BND_PREFIX_OPCODE)
4330 {
4331 as_warn (_("replacing `rep'/`repe' prefix by `bnd'"));
4332 i.prefix[BND_PREFIX] = BND_PREFIX_OPCODE;
4333 }
4334 }
4335
4336 /* Check string instruction segment overrides. */
4337 if (i.tm.opcode_modifier.isstring && i.mem_operands != 0)
4338 {
4339 if (!check_string ())
4340 return;
4341 i.disp_operands = 0;
4342 }
4343
4344 if (optimize && !i.no_optimize && i.tm.opcode_modifier.optimize)
4345 optimize_encoding ();
4346
4347 if (!process_suffix ())
4348 return;
4349
4350 /* Update operand types. */
4351 for (j = 0; j < i.operands; j++)
4352 i.types[j] = operand_type_and (i.types[j], i.tm.operand_types[j]);
4353
4354 /* Make still unresolved immediate matches conform to size of immediate
4355 given in i.suffix. */
4356 if (!finalize_imm ())
4357 return;
4358
4359 if (i.types[0].bitfield.imm1)
4360 i.imm_operands = 0; /* kludge for shift insns. */
4361
4362 /* We only need to check those implicit registers for instructions
4363 with 3 operands or less. */
4364 if (i.operands <= 3)
4365 for (j = 0; j < i.operands; j++)
4366 if (i.types[j].bitfield.inoutportreg
4367 || i.types[j].bitfield.shiftcount
4368 || (i.types[j].bitfield.acc && !i.types[j].bitfield.xmmword))
4369 i.reg_operands--;
4370
4371 /* ImmExt should be processed after SSE2AVX. */
4372 if (!i.tm.opcode_modifier.sse2avx
4373 && i.tm.opcode_modifier.immext)
4374 process_immext ();
4375
4376 /* For insns with operands there are more diddles to do to the opcode. */
4377 if (i.operands)
4378 {
4379 if (!process_operands ())
4380 return;
4381 }
4382 else if (!quiet_warnings && i.tm.opcode_modifier.ugh)
4383 {
4384 /* UnixWare fsub no args is alias for fsubp, fadd -> faddp, etc. */
4385 as_warn (_("translating to `%sp'"), i.tm.name);
4386 }
4387
4388 if (is_any_vex_encoding (&i.tm))
4389 {
4390 if (flag_code == CODE_16BIT)
4391 {
4392 as_bad (_("instruction `%s' isn't supported in 16-bit mode."),
4393 i.tm.name);
4394 return;
4395 }
4396
4397 if (i.tm.opcode_modifier.vex)
4398 build_vex_prefix (t);
4399 else
4400 build_evex_prefix ();
4401 }
4402
4403 /* Handle conversion of 'int $3' --> special int3 insn. XOP or FMA4
4404 instructions may define INT_OPCODE as well, so avoid this corner
4405 case for those instructions that use MODRM. */
4406 if (i.tm.base_opcode == INT_OPCODE
4407 && !i.tm.opcode_modifier.modrm
4408 && i.op[0].imms->X_add_number == 3)
4409 {
4410 i.tm.base_opcode = INT3_OPCODE;
4411 i.imm_operands = 0;
4412 }
4413
4414 if ((i.tm.opcode_modifier.jump
4415 || i.tm.opcode_modifier.jumpbyte
4416 || i.tm.opcode_modifier.jumpdword)
4417 && i.op[0].disps->X_op == O_constant)
4418 {
4419 /* Convert "jmp constant" (and "call constant") to a jump (call) to
4420 the absolute address given by the constant. Since ix86 jumps and
4421 calls are pc relative, we need to generate a reloc. */
4422 i.op[0].disps->X_add_symbol = &abs_symbol;
4423 i.op[0].disps->X_op = O_symbol;
4424 }
4425
4426 if (i.tm.opcode_modifier.rex64)
4427 i.rex |= REX_W;
4428
4429 /* For 8 bit registers we need an empty rex prefix. Also if the
4430 instruction already has a prefix, we need to convert old
4431 registers to new ones. */
4432
4433 if ((i.types[0].bitfield.reg && i.types[0].bitfield.byte
4434 && (i.op[0].regs->reg_flags & RegRex64) != 0)
4435 || (i.types[1].bitfield.reg && i.types[1].bitfield.byte
4436 && (i.op[1].regs->reg_flags & RegRex64) != 0)
4437 || (((i.types[0].bitfield.reg && i.types[0].bitfield.byte)
4438 || (i.types[1].bitfield.reg && i.types[1].bitfield.byte))
4439 && i.rex != 0))
4440 {
4441 int x;
4442
4443 i.rex |= REX_OPCODE;
4444 for (x = 0; x < 2; x++)
4445 {
4446 /* Look for 8 bit operand that uses old registers. */
4447 if (i.types[x].bitfield.reg && i.types[x].bitfield.byte
4448 && (i.op[x].regs->reg_flags & RegRex64) == 0)
4449 {
4450 /* In case it is "hi" register, give up. */
4451 if (i.op[x].regs->reg_num > 3)
4452 as_bad (_("can't encode register '%s%s' in an "
4453 "instruction requiring REX prefix."),
4454 register_prefix, i.op[x].regs->reg_name);
4455
4456 /* Otherwise it is equivalent to the extended register.
4457 Since the encoding doesn't change this is merely
4458 cosmetic cleanup for debug output. */
4459
4460 i.op[x].regs = i.op[x].regs + 8;
4461 }
4462 }
4463 }
4464
4465 if (i.rex == 0 && i.rex_encoding)
4466 {
4467 /* Check if we can add a REX_OPCODE byte. Look for 8 bit operand
4468 that uses legacy register. If it is "hi" register, don't add
4469 the REX_OPCODE byte. */
4470 int x;
4471 for (x = 0; x < 2; x++)
4472 if (i.types[x].bitfield.reg
4473 && i.types[x].bitfield.byte
4474 && (i.op[x].regs->reg_flags & RegRex64) == 0
4475 && i.op[x].regs->reg_num > 3)
4476 {
4477 i.rex_encoding = FALSE;
4478 break;
4479 }
4480
4481 if (i.rex_encoding)
4482 i.rex = REX_OPCODE;
4483 }
4484
4485 if (i.rex != 0)
4486 add_prefix (REX_OPCODE | i.rex);
4487
4488 /* We are ready to output the insn. */
4489 output_insn ();
4490 }
4491
4492 static char *
4493 parse_insn (char *line, char *mnemonic)
4494 {
4495 char *l = line;
4496 char *token_start = l;
4497 char *mnem_p;
4498 int supported;
4499 const insn_template *t;
4500 char *dot_p = NULL;
4501
4502 while (1)
4503 {
4504 mnem_p = mnemonic;
4505 while ((*mnem_p = mnemonic_chars[(unsigned char) *l]) != 0)
4506 {
4507 if (*mnem_p == '.')
4508 dot_p = mnem_p;
4509 mnem_p++;
4510 if (mnem_p >= mnemonic + MAX_MNEM_SIZE)
4511 {
4512 as_bad (_("no such instruction: `%s'"), token_start);
4513 return NULL;
4514 }
4515 l++;
4516 }
4517 if (!is_space_char (*l)
4518 && *l != END_OF_INSN
4519 && (intel_syntax
4520 || (*l != PREFIX_SEPARATOR
4521 && *l != ',')))
4522 {
4523 as_bad (_("invalid character %s in mnemonic"),
4524 output_invalid (*l));
4525 return NULL;
4526 }
4527 if (token_start == l)
4528 {
4529 if (!intel_syntax && *l == PREFIX_SEPARATOR)
4530 as_bad (_("expecting prefix; got nothing"));
4531 else
4532 as_bad (_("expecting mnemonic; got nothing"));
4533 return NULL;
4534 }
4535
4536 /* Look up instruction (or prefix) via hash table. */
4537 current_templates = (const templates *) hash_find (op_hash, mnemonic);
4538
4539 if (*l != END_OF_INSN
4540 && (!is_space_char (*l) || l[1] != END_OF_INSN)
4541 && current_templates
4542 && current_templates->start->opcode_modifier.isprefix)
4543 {
4544 if (!cpu_flags_check_cpu64 (current_templates->start->cpu_flags))
4545 {
4546 as_bad ((flag_code != CODE_64BIT
4547 ? _("`%s' is only supported in 64-bit mode")
4548 : _("`%s' is not supported in 64-bit mode")),
4549 current_templates->start->name);
4550 return NULL;
4551 }
4552 /* If we are in 16-bit mode, do not allow addr16 or data16.
4553 Similarly, in 32-bit mode, do not allow addr32 or data32. */
4554 if ((current_templates->start->opcode_modifier.size == SIZE16
4555 || current_templates->start->opcode_modifier.size == SIZE32)
4556 && flag_code != CODE_64BIT
4557 && ((current_templates->start->opcode_modifier.size == SIZE32)
4558 ^ (flag_code == CODE_16BIT)))
4559 {
4560 as_bad (_("redundant %s prefix"),
4561 current_templates->start->name);
4562 return NULL;
4563 }
4564 if (current_templates->start->opcode_length == 0)
4565 {
4566 /* Handle pseudo prefixes. */
4567 switch (current_templates->start->base_opcode)
4568 {
4569 case 0x0:
4570 /* {disp8} */
4571 i.disp_encoding = disp_encoding_8bit;
4572 break;
4573 case 0x1:
4574 /* {disp32} */
4575 i.disp_encoding = disp_encoding_32bit;
4576 break;
4577 case 0x2:
4578 /* {load} */
4579 i.dir_encoding = dir_encoding_load;
4580 break;
4581 case 0x3:
4582 /* {store} */
4583 i.dir_encoding = dir_encoding_store;
4584 break;
4585 case 0x4:
4586 /* {vex2} */
4587 i.vec_encoding = vex_encoding_vex2;
4588 break;
4589 case 0x5:
4590 /* {vex3} */
4591 i.vec_encoding = vex_encoding_vex3;
4592 break;
4593 case 0x6:
4594 /* {evex} */
4595 i.vec_encoding = vex_encoding_evex;
4596 break;
4597 case 0x7:
4598 /* {rex} */
4599 i.rex_encoding = TRUE;
4600 break;
4601 case 0x8:
4602 /* {nooptimize} */
4603 i.no_optimize = TRUE;
4604 break;
4605 default:
4606 abort ();
4607 }
4608 }
4609 else
4610 {
4611 /* Add prefix, checking for repeated prefixes. */
4612 switch (add_prefix (current_templates->start->base_opcode))
4613 {
4614 case PREFIX_EXIST:
4615 return NULL;
4616 case PREFIX_DS:
4617 if (current_templates->start->cpu_flags.bitfield.cpuibt)
4618 i.notrack_prefix = current_templates->start->name;
4619 break;
4620 case PREFIX_REP:
4621 if (current_templates->start->cpu_flags.bitfield.cpuhle)
4622 i.hle_prefix = current_templates->start->name;
4623 else if (current_templates->start->cpu_flags.bitfield.cpumpx)
4624 i.bnd_prefix = current_templates->start->name;
4625 else
4626 i.rep_prefix = current_templates->start->name;
4627 break;
4628 default:
4629 break;
4630 }
4631 }
4632 /* Skip past PREFIX_SEPARATOR and reset token_start. */
4633 token_start = ++l;
4634 }
4635 else
4636 break;
4637 }
4638
4639 if (!current_templates)
4640 {
4641 /* Deprecated functionality (new code should use pseudo-prefixes instead):
4642 Check if we should swap operand or force 32bit displacement in
4643 encoding. */
4644 if (mnem_p - 2 == dot_p && dot_p[1] == 's')
4645 i.dir_encoding = dir_encoding_swap;
4646 else if (mnem_p - 3 == dot_p
4647 && dot_p[1] == 'd'
4648 && dot_p[2] == '8')
4649 i.disp_encoding = disp_encoding_8bit;
4650 else if (mnem_p - 4 == dot_p
4651 && dot_p[1] == 'd'
4652 && dot_p[2] == '3'
4653 && dot_p[3] == '2')
4654 i.disp_encoding = disp_encoding_32bit;
4655 else
4656 goto check_suffix;
4657 mnem_p = dot_p;
4658 *dot_p = '\0';
4659 current_templates = (const templates *) hash_find (op_hash, mnemonic);
4660 }
4661
4662 if (!current_templates)
4663 {
4664 check_suffix:
4665 if (mnem_p > mnemonic)
4666 {
4667 /* See if we can get a match by trimming off a suffix. */
4668 switch (mnem_p[-1])
4669 {
4670 case WORD_MNEM_SUFFIX:
4671 if (intel_syntax && (intel_float_operand (mnemonic) & 2))
4672 i.suffix = SHORT_MNEM_SUFFIX;
4673 else
4674 /* Fall through. */
4675 case BYTE_MNEM_SUFFIX:
4676 case QWORD_MNEM_SUFFIX:
4677 i.suffix = mnem_p[-1];
4678 mnem_p[-1] = '\0';
4679 current_templates = (const templates *) hash_find (op_hash,
4680 mnemonic);
4681 break;
4682 case SHORT_MNEM_SUFFIX:
4683 case LONG_MNEM_SUFFIX:
4684 if (!intel_syntax)
4685 {
4686 i.suffix = mnem_p[-1];
4687 mnem_p[-1] = '\0';
4688 current_templates = (const templates *) hash_find (op_hash,
4689 mnemonic);
4690 }
4691 break;
4692
4693 /* Intel Syntax. */
4694 case 'd':
4695 if (intel_syntax)
4696 {
4697 if (intel_float_operand (mnemonic) == 1)
4698 i.suffix = SHORT_MNEM_SUFFIX;
4699 else
4700 i.suffix = LONG_MNEM_SUFFIX;
4701 mnem_p[-1] = '\0';
4702 current_templates = (const templates *) hash_find (op_hash,
4703 mnemonic);
4704 }
4705 break;
4706 }
4707 }
4708
4709 if (!current_templates)
4710 {
4711 as_bad (_("no such instruction: `%s'"), token_start);
4712 return NULL;
4713 }
4714 }
4715
4716 if (current_templates->start->opcode_modifier.jump
4717 || current_templates->start->opcode_modifier.jumpbyte)
4718 {
4719 /* Check for a branch hint. We allow ",pt" and ",pn" for
4720 predict taken and predict not taken respectively.
4721 I'm not sure that branch hints actually do anything on loop
4722 and jcxz insns (JumpByte) for current Pentium4 chips. They
4723 may work in the future and it doesn't hurt to accept them
4724 now. */
4725 if (l[0] == ',' && l[1] == 'p')
4726 {
4727 if (l[2] == 't')
4728 {
4729 if (!add_prefix (DS_PREFIX_OPCODE))
4730 return NULL;
4731 l += 3;
4732 }
4733 else if (l[2] == 'n')
4734 {
4735 if (!add_prefix (CS_PREFIX_OPCODE))
4736 return NULL;
4737 l += 3;
4738 }
4739 }
4740 }
4741 /* Any other comma loses. */
4742 if (*l == ',')
4743 {
4744 as_bad (_("invalid character %s in mnemonic"),
4745 output_invalid (*l));
4746 return NULL;
4747 }
4748
4749 /* Check if instruction is supported on specified architecture. */
4750 supported = 0;
4751 for (t = current_templates->start; t < current_templates->end; ++t)
4752 {
4753 supported |= cpu_flags_match (t);
4754 if (supported == CPU_FLAGS_PERFECT_MATCH)
4755 {
4756 if (!cpu_arch_flags.bitfield.cpui386 && (flag_code != CODE_16BIT))
4757 as_warn (_("use .code16 to ensure correct addressing mode"));
4758
4759 return l;
4760 }
4761 }
4762
4763 if (!(supported & CPU_FLAGS_64BIT_MATCH))
4764 as_bad (flag_code == CODE_64BIT
4765 ? _("`%s' is not supported in 64-bit mode")
4766 : _("`%s' is only supported in 64-bit mode"),
4767 current_templates->start->name);
4768 else
4769 as_bad (_("`%s' is not supported on `%s%s'"),
4770 current_templates->start->name,
4771 cpu_arch_name ? cpu_arch_name : default_arch,
4772 cpu_sub_arch_name ? cpu_sub_arch_name : "");
4773
4774 return NULL;
4775 }
4776
4777 static char *
4778 parse_operands (char *l, const char *mnemonic)
4779 {
4780 char *token_start;
4781
4782 /* 1 if operand is pending after ','. */
4783 unsigned int expecting_operand = 0;
4784
4785 /* Non-zero if operand parens not balanced. */
4786 unsigned int paren_not_balanced;
4787
4788 while (*l != END_OF_INSN)
4789 {
4790 /* Skip optional white space before operand. */
4791 if (is_space_char (*l))
4792 ++l;
4793 if (!is_operand_char (*l) && *l != END_OF_INSN && *l != '"')
4794 {
4795 as_bad (_("invalid character %s before operand %d"),
4796 output_invalid (*l),
4797 i.operands + 1);
4798 return NULL;
4799 }
4800 token_start = l; /* After white space. */
4801 paren_not_balanced = 0;
4802 while (paren_not_balanced || *l != ',')
4803 {
4804 if (*l == END_OF_INSN)
4805 {
4806 if (paren_not_balanced)
4807 {
4808 if (!intel_syntax)
4809 as_bad (_("unbalanced parenthesis in operand %d."),
4810 i.operands + 1);
4811 else
4812 as_bad (_("unbalanced brackets in operand %d."),
4813 i.operands + 1);
4814 return NULL;
4815 }
4816 else
4817 break; /* we are done */
4818 }
4819 else if (!is_operand_char (*l) && !is_space_char (*l) && *l != '"')
4820 {
4821 as_bad (_("invalid character %s in operand %d"),
4822 output_invalid (*l),
4823 i.operands + 1);
4824 return NULL;
4825 }
4826 if (!intel_syntax)
4827 {
4828 if (*l == '(')
4829 ++paren_not_balanced;
4830 if (*l == ')')
4831 --paren_not_balanced;
4832 }
4833 else
4834 {
4835 if (*l == '[')
4836 ++paren_not_balanced;
4837 if (*l == ']')
4838 --paren_not_balanced;
4839 }
4840 l++;
4841 }
4842 if (l != token_start)
4843 { /* Yes, we've read in another operand. */
4844 unsigned int operand_ok;
4845 this_operand = i.operands++;
4846 if (i.operands > MAX_OPERANDS)
4847 {
4848 as_bad (_("spurious operands; (%d operands/instruction max)"),
4849 MAX_OPERANDS);
4850 return NULL;
4851 }
4852 i.types[this_operand].bitfield.unspecified = 1;
4853 /* Now parse operand adding info to 'i' as we go along. */
4854 END_STRING_AND_SAVE (l);
4855
4856 if (i.mem_operands > 1)
4857 {
4858 as_bad (_("too many memory references for `%s'"),
4859 mnemonic);
4860 return 0;
4861 }
4862
4863 if (intel_syntax)
4864 operand_ok =
4865 i386_intel_operand (token_start,
4866 intel_float_operand (mnemonic));
4867 else
4868 operand_ok = i386_att_operand (token_start);
4869
4870 RESTORE_END_STRING (l);
4871 if (!operand_ok)
4872 return NULL;
4873 }
4874 else
4875 {
4876 if (expecting_operand)
4877 {
4878 expecting_operand_after_comma:
4879 as_bad (_("expecting operand after ','; got nothing"));
4880 return NULL;
4881 }
4882 if (*l == ',')
4883 {
4884 as_bad (_("expecting operand before ','; got nothing"));
4885 return NULL;
4886 }
4887 }
4888
4889 /* Now *l must be either ',' or END_OF_INSN. */
4890 if (*l == ',')
4891 {
4892 if (*++l == END_OF_INSN)
4893 {
4894 /* Just skip it, if it's \n complain. */
4895 goto expecting_operand_after_comma;
4896 }
4897 expecting_operand = 1;
4898 }
4899 }
4900 return l;
4901 }
4902
4903 static void
4904 swap_2_operands (int xchg1, int xchg2)
4905 {
4906 union i386_op temp_op;
4907 i386_operand_type temp_type;
4908 unsigned int temp_flags;
4909 enum bfd_reloc_code_real temp_reloc;
4910
4911 temp_type = i.types[xchg2];
4912 i.types[xchg2] = i.types[xchg1];
4913 i.types[xchg1] = temp_type;
4914
4915 temp_flags = i.flags[xchg2];
4916 i.flags[xchg2] = i.flags[xchg1];
4917 i.flags[xchg1] = temp_flags;
4918
4919 temp_op = i.op[xchg2];
4920 i.op[xchg2] = i.op[xchg1];
4921 i.op[xchg1] = temp_op;
4922
4923 temp_reloc = i.reloc[xchg2];
4924 i.reloc[xchg2] = i.reloc[xchg1];
4925 i.reloc[xchg1] = temp_reloc;
4926
4927 if (i.mask)
4928 {
4929 if (i.mask->operand == xchg1)
4930 i.mask->operand = xchg2;
4931 else if (i.mask->operand == xchg2)
4932 i.mask->operand = xchg1;
4933 }
4934 if (i.broadcast)
4935 {
4936 if (i.broadcast->operand == xchg1)
4937 i.broadcast->operand = xchg2;
4938 else if (i.broadcast->operand == xchg2)
4939 i.broadcast->operand = xchg1;
4940 }
4941 if (i.rounding)
4942 {
4943 if (i.rounding->operand == xchg1)
4944 i.rounding->operand = xchg2;
4945 else if (i.rounding->operand == xchg2)
4946 i.rounding->operand = xchg1;
4947 }
4948 }
4949
4950 static void
4951 swap_operands (void)
4952 {
4953 switch (i.operands)
4954 {
4955 case 5:
4956 case 4:
4957 swap_2_operands (1, i.operands - 2);
4958 /* Fall through. */
4959 case 3:
4960 case 2:
4961 swap_2_operands (0, i.operands - 1);
4962 break;
4963 default:
4964 abort ();
4965 }
4966
4967 if (i.mem_operands == 2)
4968 {
4969 const seg_entry *temp_seg;
4970 temp_seg = i.seg[0];
4971 i.seg[0] = i.seg[1];
4972 i.seg[1] = temp_seg;
4973 }
4974 }
4975
4976 /* Try to ensure constant immediates are represented in the smallest
4977 opcode possible. */
4978 static void
4979 optimize_imm (void)
4980 {
4981 char guess_suffix = 0;
4982 int op;
4983
4984 if (i.suffix)
4985 guess_suffix = i.suffix;
4986 else if (i.reg_operands)
4987 {
4988 /* Figure out a suffix from the last register operand specified.
4989 We can't do this properly yet, ie. excluding InOutPortReg,
4990 but the following works for instructions with immediates.
4991 In any case, we can't set i.suffix yet. */
4992 for (op = i.operands; --op >= 0;)
4993 if (i.types[op].bitfield.reg && i.types[op].bitfield.byte)
4994 {
4995 guess_suffix = BYTE_MNEM_SUFFIX;
4996 break;
4997 }
4998 else if (i.types[op].bitfield.reg && i.types[op].bitfield.word)
4999 {
5000 guess_suffix = WORD_MNEM_SUFFIX;
5001 break;
5002 }
5003 else if (i.types[op].bitfield.reg && i.types[op].bitfield.dword)
5004 {
5005 guess_suffix = LONG_MNEM_SUFFIX;
5006 break;
5007 }
5008 else if (i.types[op].bitfield.reg && i.types[op].bitfield.qword)
5009 {
5010 guess_suffix = QWORD_MNEM_SUFFIX;
5011 break;
5012 }
5013 }
5014 else if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
5015 guess_suffix = WORD_MNEM_SUFFIX;
5016
5017 for (op = i.operands; --op >= 0;)
5018 if (operand_type_check (i.types[op], imm))
5019 {
5020 switch (i.op[op].imms->X_op)
5021 {
5022 case O_constant:
5023 /* If a suffix is given, this operand may be shortened. */
5024 switch (guess_suffix)
5025 {
5026 case LONG_MNEM_SUFFIX:
5027 i.types[op].bitfield.imm32 = 1;
5028 i.types[op].bitfield.imm64 = 1;
5029 break;
5030 case WORD_MNEM_SUFFIX:
5031 i.types[op].bitfield.imm16 = 1;
5032 i.types[op].bitfield.imm32 = 1;
5033 i.types[op].bitfield.imm32s = 1;
5034 i.types[op].bitfield.imm64 = 1;
5035 break;
5036 case BYTE_MNEM_SUFFIX:
5037 i.types[op].bitfield.imm8 = 1;
5038 i.types[op].bitfield.imm8s = 1;
5039 i.types[op].bitfield.imm16 = 1;
5040 i.types[op].bitfield.imm32 = 1;
5041 i.types[op].bitfield.imm32s = 1;
5042 i.types[op].bitfield.imm64 = 1;
5043 break;
5044 }
5045
5046 /* If this operand is at most 16 bits, convert it
5047 to a signed 16 bit number before trying to see
5048 whether it will fit in an even smaller size.
5049 This allows a 16-bit operand such as $0xffe0 to
5050 be recognised as within Imm8S range. */
5051 if ((i.types[op].bitfield.imm16)
5052 && (i.op[op].imms->X_add_number & ~(offsetT) 0xffff) == 0)
5053 {
5054 i.op[op].imms->X_add_number =
5055 (((i.op[op].imms->X_add_number & 0xffff) ^ 0x8000) - 0x8000);
5056 }
5057 #ifdef BFD64
5058 /* Store 32-bit immediate in 64-bit for 64-bit BFD. */
5059 if ((i.types[op].bitfield.imm32)
5060 && ((i.op[op].imms->X_add_number & ~(((offsetT) 2 << 31) - 1))
5061 == 0))
5062 {
5063 i.op[op].imms->X_add_number = ((i.op[op].imms->X_add_number
5064 ^ ((offsetT) 1 << 31))
5065 - ((offsetT) 1 << 31));
5066 }
5067 #endif
5068 i.types[op]
5069 = operand_type_or (i.types[op],
5070 smallest_imm_type (i.op[op].imms->X_add_number));
5071
5072 /* We must avoid matching of Imm32 templates when 64bit
5073 only immediate is available. */
5074 if (guess_suffix == QWORD_MNEM_SUFFIX)
5075 i.types[op].bitfield.imm32 = 0;
5076 break;
5077
5078 case O_absent:
5079 case O_register:
5080 abort ();
5081
5082 /* Symbols and expressions. */
5083 default:
5084 /* Convert symbolic operand to proper sizes for matching, but don't
5085 prevent matching a set of insns that only supports sizes other
5086 than those matching the insn suffix. */
5087 {
5088 i386_operand_type mask, allowed;
5089 const insn_template *t;
5090
5091 operand_type_set (&mask, 0);
5092 operand_type_set (&allowed, 0);
5093
5094 for (t = current_templates->start;
5095 t < current_templates->end;
5096 ++t)
5097 allowed = operand_type_or (allowed,
5098 t->operand_types[op]);
5099 switch (guess_suffix)
5100 {
5101 case QWORD_MNEM_SUFFIX:
5102 mask.bitfield.imm64 = 1;
5103 mask.bitfield.imm32s = 1;
5104 break;
5105 case LONG_MNEM_SUFFIX:
5106 mask.bitfield.imm32 = 1;
5107 break;
5108 case WORD_MNEM_SUFFIX:
5109 mask.bitfield.imm16 = 1;
5110 break;
5111 case BYTE_MNEM_SUFFIX:
5112 mask.bitfield.imm8 = 1;
5113 break;
5114 default:
5115 break;
5116 }
5117 allowed = operand_type_and (mask, allowed);
5118 if (!operand_type_all_zero (&allowed))
5119 i.types[op] = operand_type_and (i.types[op], mask);
5120 }
5121 break;
5122 }
5123 }
5124 }
5125
5126 /* Try to use the smallest displacement type too. */
5127 static void
5128 optimize_disp (void)
5129 {
5130 int op;
5131
5132 for (op = i.operands; --op >= 0;)
5133 if (operand_type_check (i.types[op], disp))
5134 {
5135 if (i.op[op].disps->X_op == O_constant)
5136 {
5137 offsetT op_disp = i.op[op].disps->X_add_number;
5138
5139 if (i.types[op].bitfield.disp16
5140 && (op_disp & ~(offsetT) 0xffff) == 0)
5141 {
5142 /* If this operand is at most 16 bits, convert
5143 to a signed 16 bit number and don't use 64bit
5144 displacement. */
5145 op_disp = (((op_disp & 0xffff) ^ 0x8000) - 0x8000);
5146 i.types[op].bitfield.disp64 = 0;
5147 }
5148 #ifdef BFD64
5149 /* Optimize 64-bit displacement to 32-bit for 64-bit BFD. */
5150 if (i.types[op].bitfield.disp32
5151 && (op_disp & ~(((offsetT) 2 << 31) - 1)) == 0)
5152 {
5153 /* If this operand is at most 32 bits, convert
5154 to a signed 32 bit number and don't use 64bit
5155 displacement. */
5156 op_disp &= (((offsetT) 2 << 31) - 1);
5157 op_disp = (op_disp ^ ((offsetT) 1 << 31)) - ((addressT) 1 << 31);
5158 i.types[op].bitfield.disp64 = 0;
5159 }
5160 #endif
5161 if (!op_disp && i.types[op].bitfield.baseindex)
5162 {
5163 i.types[op].bitfield.disp8 = 0;
5164 i.types[op].bitfield.disp16 = 0;
5165 i.types[op].bitfield.disp32 = 0;
5166 i.types[op].bitfield.disp32s = 0;
5167 i.types[op].bitfield.disp64 = 0;
5168 i.op[op].disps = 0;
5169 i.disp_operands--;
5170 }
5171 else if (flag_code == CODE_64BIT)
5172 {
5173 if (fits_in_signed_long (op_disp))
5174 {
5175 i.types[op].bitfield.disp64 = 0;
5176 i.types[op].bitfield.disp32s = 1;
5177 }
5178 if (i.prefix[ADDR_PREFIX]
5179 && fits_in_unsigned_long (op_disp))
5180 i.types[op].bitfield.disp32 = 1;
5181 }
5182 if ((i.types[op].bitfield.disp32
5183 || i.types[op].bitfield.disp32s
5184 || i.types[op].bitfield.disp16)
5185 && fits_in_disp8 (op_disp))
5186 i.types[op].bitfield.disp8 = 1;
5187 }
5188 else if (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
5189 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL)
5190 {
5191 fix_new_exp (frag_now, frag_more (0) - frag_now->fr_literal, 0,
5192 i.op[op].disps, 0, i.reloc[op]);
5193 i.types[op].bitfield.disp8 = 0;
5194 i.types[op].bitfield.disp16 = 0;
5195 i.types[op].bitfield.disp32 = 0;
5196 i.types[op].bitfield.disp32s = 0;
5197 i.types[op].bitfield.disp64 = 0;
5198 }
5199 else
5200 /* We only support 64bit displacement on constants. */
5201 i.types[op].bitfield.disp64 = 0;
5202 }
5203 }
5204
5205 /* Return 1 if there is a match in broadcast bytes between operand
5206 GIVEN and instruction template T. */
5207
5208 static INLINE int
5209 match_broadcast_size (const insn_template *t, unsigned int given)
5210 {
5211 return ((t->opcode_modifier.broadcast == BYTE_BROADCAST
5212 && i.types[given].bitfield.byte)
5213 || (t->opcode_modifier.broadcast == WORD_BROADCAST
5214 && i.types[given].bitfield.word)
5215 || (t->opcode_modifier.broadcast == DWORD_BROADCAST
5216 && i.types[given].bitfield.dword)
5217 || (t->opcode_modifier.broadcast == QWORD_BROADCAST
5218 && i.types[given].bitfield.qword));
5219 }
5220
5221 /* Check if operands are valid for the instruction. */
5222
5223 static int
5224 check_VecOperands (const insn_template *t)
5225 {
5226 unsigned int op;
5227 i386_cpu_flags cpu;
5228 static const i386_cpu_flags avx512 = CPU_ANY_AVX512F_FLAGS;
5229
5230 /* Templates allowing for ZMMword as well as YMMword and/or XMMword for
5231 any one operand are implicity requiring AVX512VL support if the actual
5232 operand size is YMMword or XMMword. Since this function runs after
5233 template matching, there's no need to check for YMMword/XMMword in
5234 the template. */
5235 cpu = cpu_flags_and (t->cpu_flags, avx512);
5236 if (!cpu_flags_all_zero (&cpu)
5237 && !t->cpu_flags.bitfield.cpuavx512vl
5238 && !cpu_arch_flags.bitfield.cpuavx512vl)
5239 {
5240 for (op = 0; op < t->operands; ++op)
5241 {
5242 if (t->operand_types[op].bitfield.zmmword
5243 && (i.types[op].bitfield.ymmword
5244 || i.types[op].bitfield.xmmword))
5245 {
5246 i.error = unsupported;
5247 return 1;
5248 }
5249 }
5250 }
5251
5252 /* Without VSIB byte, we can't have a vector register for index. */
5253 if (!t->opcode_modifier.vecsib
5254 && i.index_reg
5255 && (i.index_reg->reg_type.bitfield.xmmword
5256 || i.index_reg->reg_type.bitfield.ymmword
5257 || i.index_reg->reg_type.bitfield.zmmword))
5258 {
5259 i.error = unsupported_vector_index_register;
5260 return 1;
5261 }
5262
5263 /* Check if default mask is allowed. */
5264 if (t->opcode_modifier.nodefmask
5265 && (!i.mask || i.mask->mask->reg_num == 0))
5266 {
5267 i.error = no_default_mask;
5268 return 1;
5269 }
5270
5271 /* For VSIB byte, we need a vector register for index, and all vector
5272 registers must be distinct. */
5273 if (t->opcode_modifier.vecsib)
5274 {
5275 if (!i.index_reg
5276 || !((t->opcode_modifier.vecsib == VecSIB128
5277 && i.index_reg->reg_type.bitfield.xmmword)
5278 || (t->opcode_modifier.vecsib == VecSIB256
5279 && i.index_reg->reg_type.bitfield.ymmword)
5280 || (t->opcode_modifier.vecsib == VecSIB512
5281 && i.index_reg->reg_type.bitfield.zmmword)))
5282 {
5283 i.error = invalid_vsib_address;
5284 return 1;
5285 }
5286
5287 gas_assert (i.reg_operands == 2 || i.mask);
5288 if (i.reg_operands == 2 && !i.mask)
5289 {
5290 gas_assert (i.types[0].bitfield.regsimd);
5291 gas_assert (i.types[0].bitfield.xmmword
5292 || i.types[0].bitfield.ymmword);
5293 gas_assert (i.types[2].bitfield.regsimd);
5294 gas_assert (i.types[2].bitfield.xmmword
5295 || i.types[2].bitfield.ymmword);
5296 if (operand_check == check_none)
5297 return 0;
5298 if (register_number (i.op[0].regs)
5299 != register_number (i.index_reg)
5300 && register_number (i.op[2].regs)
5301 != register_number (i.index_reg)
5302 && register_number (i.op[0].regs)
5303 != register_number (i.op[2].regs))
5304 return 0;
5305 if (operand_check == check_error)
5306 {
5307 i.error = invalid_vector_register_set;
5308 return 1;
5309 }
5310 as_warn (_("mask, index, and destination registers should be distinct"));
5311 }
5312 else if (i.reg_operands == 1 && i.mask)
5313 {
5314 if (i.types[1].bitfield.regsimd
5315 && (i.types[1].bitfield.xmmword
5316 || i.types[1].bitfield.ymmword
5317 || i.types[1].bitfield.zmmword)
5318 && (register_number (i.op[1].regs)
5319 == register_number (i.index_reg)))
5320 {
5321 if (operand_check == check_error)
5322 {
5323 i.error = invalid_vector_register_set;
5324 return 1;
5325 }
5326 if (operand_check != check_none)
5327 as_warn (_("index and destination registers should be distinct"));
5328 }
5329 }
5330 }
5331
5332 /* Check if broadcast is supported by the instruction and is applied
5333 to the memory operand. */
5334 if (i.broadcast)
5335 {
5336 i386_operand_type type, overlap;
5337
5338 /* Check if specified broadcast is supported in this instruction,
5339 and its broadcast bytes match the memory operand. */
5340 op = i.broadcast->operand;
5341 if (!t->opcode_modifier.broadcast
5342 || !(i.flags[op] & Operand_Mem)
5343 || (!i.types[op].bitfield.unspecified
5344 && !match_broadcast_size (t, op)))
5345 {
5346 bad_broadcast:
5347 i.error = unsupported_broadcast;
5348 return 1;
5349 }
5350
5351 i.broadcast->bytes = ((1 << (t->opcode_modifier.broadcast - 1))
5352 * i.broadcast->type);
5353 operand_type_set (&type, 0);
5354 switch (i.broadcast->bytes)
5355 {
5356 case 2:
5357 type.bitfield.word = 1;
5358 break;
5359 case 4:
5360 type.bitfield.dword = 1;
5361 break;
5362 case 8:
5363 type.bitfield.qword = 1;
5364 break;
5365 case 16:
5366 type.bitfield.xmmword = 1;
5367 break;
5368 case 32:
5369 type.bitfield.ymmword = 1;
5370 break;
5371 case 64:
5372 type.bitfield.zmmword = 1;
5373 break;
5374 default:
5375 goto bad_broadcast;
5376 }
5377
5378 overlap = operand_type_and (type, t->operand_types[op]);
5379 if (operand_type_all_zero (&overlap))
5380 goto bad_broadcast;
5381
5382 if (t->opcode_modifier.checkregsize)
5383 {
5384 unsigned int j;
5385
5386 type.bitfield.baseindex = 1;
5387 for (j = 0; j < i.operands; ++j)
5388 {
5389 if (j != op
5390 && !operand_type_register_match(i.types[j],
5391 t->operand_types[j],
5392 type,
5393 t->operand_types[op]))
5394 goto bad_broadcast;
5395 }
5396 }
5397 }
5398 /* If broadcast is supported in this instruction, we need to check if
5399 operand of one-element size isn't specified without broadcast. */
5400 else if (t->opcode_modifier.broadcast && i.mem_operands)
5401 {
5402 /* Find memory operand. */
5403 for (op = 0; op < i.operands; op++)
5404 if (operand_type_check (i.types[op], anymem))
5405 break;
5406 gas_assert (op < i.operands);
5407 /* Check size of the memory operand. */
5408 if (match_broadcast_size (t, op))
5409 {
5410 i.error = broadcast_needed;
5411 return 1;
5412 }
5413 }
5414 else
5415 op = MAX_OPERANDS - 1; /* Avoid uninitialized variable warning. */
5416
5417 /* Check if requested masking is supported. */
5418 if (i.mask)
5419 {
5420 switch (t->opcode_modifier.masking)
5421 {
5422 case BOTH_MASKING:
5423 break;
5424 case MERGING_MASKING:
5425 if (i.mask->zeroing)
5426 {
5427 case 0:
5428 i.error = unsupported_masking;
5429 return 1;
5430 }
5431 break;
5432 case DYNAMIC_MASKING:
5433 /* Memory destinations allow only merging masking. */
5434 if (i.mask->zeroing && i.mem_operands)
5435 {
5436 /* Find memory operand. */
5437 for (op = 0; op < i.operands; op++)
5438 if (i.flags[op] & Operand_Mem)
5439 break;
5440 gas_assert (op < i.operands);
5441 if (op == i.operands - 1)
5442 {
5443 i.error = unsupported_masking;
5444 return 1;
5445 }
5446 }
5447 break;
5448 default:
5449 abort ();
5450 }
5451 }
5452
5453 /* Check if masking is applied to dest operand. */
5454 if (i.mask && (i.mask->operand != (int) (i.operands - 1)))
5455 {
5456 i.error = mask_not_on_destination;
5457 return 1;
5458 }
5459
5460 /* Check RC/SAE. */
5461 if (i.rounding)
5462 {
5463 if ((i.rounding->type != saeonly
5464 && !t->opcode_modifier.staticrounding)
5465 || (i.rounding->type == saeonly
5466 && (t->opcode_modifier.staticrounding
5467 || !t->opcode_modifier.sae)))
5468 {
5469 i.error = unsupported_rc_sae;
5470 return 1;
5471 }
5472 /* If the instruction has several immediate operands and one of
5473 them is rounding, the rounding operand should be the last
5474 immediate operand. */
5475 if (i.imm_operands > 1
5476 && i.rounding->operand != (int) (i.imm_operands - 1))
5477 {
5478 i.error = rc_sae_operand_not_last_imm;
5479 return 1;
5480 }
5481 }
5482
5483 /* Check vector Disp8 operand. */
5484 if (t->opcode_modifier.disp8memshift
5485 && i.disp_encoding != disp_encoding_32bit)
5486 {
5487 if (i.broadcast)
5488 i.memshift = t->opcode_modifier.broadcast - 1;
5489 else if (t->opcode_modifier.disp8memshift != DISP8_SHIFT_VL)
5490 i.memshift = t->opcode_modifier.disp8memshift;
5491 else
5492 {
5493 const i386_operand_type *type = NULL;
5494
5495 i.memshift = 0;
5496 for (op = 0; op < i.operands; op++)
5497 if (operand_type_check (i.types[op], anymem))
5498 {
5499 if (t->opcode_modifier.evex == EVEXLIG)
5500 i.memshift = 2 + (i.suffix == QWORD_MNEM_SUFFIX);
5501 else if (t->operand_types[op].bitfield.xmmword
5502 + t->operand_types[op].bitfield.ymmword
5503 + t->operand_types[op].bitfield.zmmword <= 1)
5504 type = &t->operand_types[op];
5505 else if (!i.types[op].bitfield.unspecified)
5506 type = &i.types[op];
5507 }
5508 else if (i.types[op].bitfield.regsimd
5509 && t->opcode_modifier.evex != EVEXLIG)
5510 {
5511 if (i.types[op].bitfield.zmmword)
5512 i.memshift = 6;
5513 else if (i.types[op].bitfield.ymmword && i.memshift < 5)
5514 i.memshift = 5;
5515 else if (i.types[op].bitfield.xmmword && i.memshift < 4)
5516 i.memshift = 4;
5517 }
5518
5519 if (type)
5520 {
5521 if (type->bitfield.zmmword)
5522 i.memshift = 6;
5523 else if (type->bitfield.ymmword)
5524 i.memshift = 5;
5525 else if (type->bitfield.xmmword)
5526 i.memshift = 4;
5527 }
5528
5529 /* For the check in fits_in_disp8(). */
5530 if (i.memshift == 0)
5531 i.memshift = -1;
5532 }
5533
5534 for (op = 0; op < i.operands; op++)
5535 if (operand_type_check (i.types[op], disp)
5536 && i.op[op].disps->X_op == O_constant)
5537 {
5538 if (fits_in_disp8 (i.op[op].disps->X_add_number))
5539 {
5540 i.types[op].bitfield.disp8 = 1;
5541 return 0;
5542 }
5543 i.types[op].bitfield.disp8 = 0;
5544 }
5545 }
5546
5547 i.memshift = 0;
5548
5549 return 0;
5550 }
5551
5552 /* Check if operands are valid for the instruction. Update VEX
5553 operand types. */
5554
5555 static int
5556 VEX_check_operands (const insn_template *t)
5557 {
5558 if (i.vec_encoding == vex_encoding_evex)
5559 {
5560 /* This instruction must be encoded with EVEX prefix. */
5561 if (!is_evex_encoding (t))
5562 {
5563 i.error = unsupported;
5564 return 1;
5565 }
5566 return 0;
5567 }
5568
5569 if (!t->opcode_modifier.vex)
5570 {
5571 /* This instruction template doesn't have VEX prefix. */
5572 if (i.vec_encoding != vex_encoding_default)
5573 {
5574 i.error = unsupported;
5575 return 1;
5576 }
5577 return 0;
5578 }
5579
5580 /* Only check VEX_Imm4, which must be the first operand. */
5581 if (t->operand_types[0].bitfield.vec_imm4)
5582 {
5583 if (i.op[0].imms->X_op != O_constant
5584 || !fits_in_imm4 (i.op[0].imms->X_add_number))
5585 {
5586 i.error = bad_imm4;
5587 return 1;
5588 }
5589
5590 /* Turn off Imm8 so that update_imm won't complain. */
5591 i.types[0] = vec_imm4;
5592 }
5593
5594 return 0;
5595 }
5596
5597 static const insn_template *
5598 match_template (char mnem_suffix)
5599 {
5600 /* Points to template once we've found it. */
5601 const insn_template *t;
5602 i386_operand_type overlap0, overlap1, overlap2, overlap3;
5603 i386_operand_type overlap4;
5604 unsigned int found_reverse_match;
5605 i386_opcode_modifier suffix_check, mnemsuf_check;
5606 i386_operand_type operand_types [MAX_OPERANDS];
5607 int addr_prefix_disp;
5608 unsigned int j;
5609 unsigned int found_cpu_match, size_match;
5610 unsigned int check_register;
5611 enum i386_error specific_error = 0;
5612
5613 #if MAX_OPERANDS != 5
5614 # error "MAX_OPERANDS must be 5."
5615 #endif
5616
5617 found_reverse_match = 0;
5618 addr_prefix_disp = -1;
5619
5620 memset (&suffix_check, 0, sizeof (suffix_check));
5621 if (intel_syntax && i.broadcast)
5622 /* nothing */;
5623 else if (i.suffix == BYTE_MNEM_SUFFIX)
5624 suffix_check.no_bsuf = 1;
5625 else if (i.suffix == WORD_MNEM_SUFFIX)
5626 suffix_check.no_wsuf = 1;
5627 else if (i.suffix == SHORT_MNEM_SUFFIX)
5628 suffix_check.no_ssuf = 1;
5629 else if (i.suffix == LONG_MNEM_SUFFIX)
5630 suffix_check.no_lsuf = 1;
5631 else if (i.suffix == QWORD_MNEM_SUFFIX)
5632 suffix_check.no_qsuf = 1;
5633 else if (i.suffix == LONG_DOUBLE_MNEM_SUFFIX)
5634 suffix_check.no_ldsuf = 1;
5635
5636 memset (&mnemsuf_check, 0, sizeof (mnemsuf_check));
5637 if (intel_syntax)
5638 {
5639 switch (mnem_suffix)
5640 {
5641 case BYTE_MNEM_SUFFIX: mnemsuf_check.no_bsuf = 1; break;
5642 case WORD_MNEM_SUFFIX: mnemsuf_check.no_wsuf = 1; break;
5643 case SHORT_MNEM_SUFFIX: mnemsuf_check.no_ssuf = 1; break;
5644 case LONG_MNEM_SUFFIX: mnemsuf_check.no_lsuf = 1; break;
5645 case QWORD_MNEM_SUFFIX: mnemsuf_check.no_qsuf = 1; break;
5646 }
5647 }
5648
5649 /* Must have right number of operands. */
5650 i.error = number_of_operands_mismatch;
5651
5652 for (t = current_templates->start; t < current_templates->end; t++)
5653 {
5654 addr_prefix_disp = -1;
5655 found_reverse_match = 0;
5656
5657 if (i.operands != t->operands)
5658 continue;
5659
5660 /* Check processor support. */
5661 i.error = unsupported;
5662 found_cpu_match = (cpu_flags_match (t)
5663 == CPU_FLAGS_PERFECT_MATCH);
5664 if (!found_cpu_match)
5665 continue;
5666
5667 /* Check AT&T mnemonic. */
5668 i.error = unsupported_with_intel_mnemonic;
5669 if (intel_mnemonic && t->opcode_modifier.attmnemonic)
5670 continue;
5671
5672 /* Check AT&T/Intel syntax and Intel64/AMD64 ISA. */
5673 i.error = unsupported_syntax;
5674 if ((intel_syntax && t->opcode_modifier.attsyntax)
5675 || (!intel_syntax && t->opcode_modifier.intelsyntax)
5676 || (intel64 && t->opcode_modifier.amd64)
5677 || (!intel64 && t->opcode_modifier.intel64))
5678 continue;
5679
5680 /* Check the suffix, except for some instructions in intel mode. */
5681 i.error = invalid_instruction_suffix;
5682 if ((!intel_syntax || !t->opcode_modifier.ignoresize)
5683 && ((t->opcode_modifier.no_bsuf && suffix_check.no_bsuf)
5684 || (t->opcode_modifier.no_wsuf && suffix_check.no_wsuf)
5685 || (t->opcode_modifier.no_lsuf && suffix_check.no_lsuf)
5686 || (t->opcode_modifier.no_ssuf && suffix_check.no_ssuf)
5687 || (t->opcode_modifier.no_qsuf && suffix_check.no_qsuf)
5688 || (t->opcode_modifier.no_ldsuf && suffix_check.no_ldsuf)))
5689 continue;
5690 /* In Intel mode all mnemonic suffixes must be explicitly allowed. */
5691 if ((t->opcode_modifier.no_bsuf && mnemsuf_check.no_bsuf)
5692 || (t->opcode_modifier.no_wsuf && mnemsuf_check.no_wsuf)
5693 || (t->opcode_modifier.no_lsuf && mnemsuf_check.no_lsuf)
5694 || (t->opcode_modifier.no_ssuf && mnemsuf_check.no_ssuf)
5695 || (t->opcode_modifier.no_qsuf && mnemsuf_check.no_qsuf)
5696 || (t->opcode_modifier.no_ldsuf && mnemsuf_check.no_ldsuf))
5697 continue;
5698
5699 size_match = operand_size_match (t);
5700 if (!size_match)
5701 continue;
5702
5703 for (j = 0; j < MAX_OPERANDS; j++)
5704 operand_types[j] = t->operand_types[j];
5705
5706 /* In general, don't allow 64-bit operands in 32-bit mode. */
5707 if (i.suffix == QWORD_MNEM_SUFFIX
5708 && flag_code != CODE_64BIT
5709 && (intel_syntax
5710 ? (!t->opcode_modifier.ignoresize
5711 && !t->opcode_modifier.broadcast
5712 && !intel_float_operand (t->name))
5713 : intel_float_operand (t->name) != 2)
5714 && ((!operand_types[0].bitfield.regmmx
5715 && !operand_types[0].bitfield.regsimd)
5716 || (!operand_types[t->operands > 1].bitfield.regmmx
5717 && !operand_types[t->operands > 1].bitfield.regsimd))
5718 && (t->base_opcode != 0x0fc7
5719 || t->extension_opcode != 1 /* cmpxchg8b */))
5720 continue;
5721
5722 /* In general, don't allow 32-bit operands on pre-386. */
5723 else if (i.suffix == LONG_MNEM_SUFFIX
5724 && !cpu_arch_flags.bitfield.cpui386
5725 && (intel_syntax
5726 ? (!t->opcode_modifier.ignoresize
5727 && !intel_float_operand (t->name))
5728 : intel_float_operand (t->name) != 2)
5729 && ((!operand_types[0].bitfield.regmmx
5730 && !operand_types[0].bitfield.regsimd)
5731 || (!operand_types[t->operands > 1].bitfield.regmmx
5732 && !operand_types[t->operands > 1].bitfield.regsimd)))
5733 continue;
5734
5735 /* Do not verify operands when there are none. */
5736 else
5737 {
5738 if (!t->operands)
5739 /* We've found a match; break out of loop. */
5740 break;
5741 }
5742
5743 /* Address size prefix will turn Disp64/Disp32/Disp16 operand
5744 into Disp32/Disp16/Disp32 operand. */
5745 if (i.prefix[ADDR_PREFIX] != 0)
5746 {
5747 /* There should be only one Disp operand. */
5748 switch (flag_code)
5749 {
5750 case CODE_16BIT:
5751 for (j = 0; j < MAX_OPERANDS; j++)
5752 {
5753 if (operand_types[j].bitfield.disp16)
5754 {
5755 addr_prefix_disp = j;
5756 operand_types[j].bitfield.disp32 = 1;
5757 operand_types[j].bitfield.disp16 = 0;
5758 break;
5759 }
5760 }
5761 break;
5762 case CODE_32BIT:
5763 for (j = 0; j < MAX_OPERANDS; j++)
5764 {
5765 if (operand_types[j].bitfield.disp32)
5766 {
5767 addr_prefix_disp = j;
5768 operand_types[j].bitfield.disp32 = 0;
5769 operand_types[j].bitfield.disp16 = 1;
5770 break;
5771 }
5772 }
5773 break;
5774 case CODE_64BIT:
5775 for (j = 0; j < MAX_OPERANDS; j++)
5776 {
5777 if (operand_types[j].bitfield.disp64)
5778 {
5779 addr_prefix_disp = j;
5780 operand_types[j].bitfield.disp64 = 0;
5781 operand_types[j].bitfield.disp32 = 1;
5782 break;
5783 }
5784 }
5785 break;
5786 }
5787 }
5788
5789 /* Force 0x8b encoding for "mov foo@GOT, %eax". */
5790 if (i.reloc[0] == BFD_RELOC_386_GOT32 && t->base_opcode == 0xa0)
5791 continue;
5792
5793 /* We check register size if needed. */
5794 if (t->opcode_modifier.checkregsize)
5795 {
5796 check_register = (1 << t->operands) - 1;
5797 if (i.broadcast)
5798 check_register &= ~(1 << i.broadcast->operand);
5799 }
5800 else
5801 check_register = 0;
5802
5803 overlap0 = operand_type_and (i.types[0], operand_types[0]);
5804 switch (t->operands)
5805 {
5806 case 1:
5807 if (!operand_type_match (overlap0, i.types[0]))
5808 continue;
5809 break;
5810 case 2:
5811 /* xchg %eax, %eax is a special case. It is an alias for nop
5812 only in 32bit mode and we can use opcode 0x90. In 64bit
5813 mode, we can't use 0x90 for xchg %eax, %eax since it should
5814 zero-extend %eax to %rax. */
5815 if (flag_code == CODE_64BIT
5816 && t->base_opcode == 0x90
5817 && operand_type_equal (&i.types [0], &acc32)
5818 && operand_type_equal (&i.types [1], &acc32))
5819 continue;
5820 /* xrelease mov %eax, <disp> is another special case. It must not
5821 match the accumulator-only encoding of mov. */
5822 if (flag_code != CODE_64BIT
5823 && i.hle_prefix
5824 && t->base_opcode == 0xa0
5825 && i.types[0].bitfield.acc
5826 && operand_type_check (i.types[1], anymem))
5827 continue;
5828 /* Fall through. */
5829
5830 case 3:
5831 if (!(size_match & MATCH_STRAIGHT))
5832 goto check_reverse;
5833 /* Reverse direction of operands if swapping is possible in the first
5834 place (operands need to be symmetric) and
5835 - the load form is requested, and the template is a store form,
5836 - the store form is requested, and the template is a load form,
5837 - the non-default (swapped) form is requested. */
5838 overlap1 = operand_type_and (operand_types[0], operand_types[1]);
5839 if (t->opcode_modifier.d && i.reg_operands == i.operands
5840 && !operand_type_all_zero (&overlap1))
5841 switch (i.dir_encoding)
5842 {
5843 case dir_encoding_load:
5844 if (operand_type_check (operand_types[i.operands - 1], anymem)
5845 || operand_types[i.operands - 1].bitfield.regmem)
5846 goto check_reverse;
5847 break;
5848
5849 case dir_encoding_store:
5850 if (!operand_type_check (operand_types[i.operands - 1], anymem)
5851 && !operand_types[i.operands - 1].bitfield.regmem)
5852 goto check_reverse;
5853 break;
5854
5855 case dir_encoding_swap:
5856 goto check_reverse;
5857
5858 case dir_encoding_default:
5859 break;
5860 }
5861 /* If we want store form, we skip the current load. */
5862 if ((i.dir_encoding == dir_encoding_store
5863 || i.dir_encoding == dir_encoding_swap)
5864 && i.mem_operands == 0
5865 && t->opcode_modifier.load)
5866 continue;
5867 /* Fall through. */
5868 case 4:
5869 case 5:
5870 overlap1 = operand_type_and (i.types[1], operand_types[1]);
5871 if (!operand_type_match (overlap0, i.types[0])
5872 || !operand_type_match (overlap1, i.types[1])
5873 || ((check_register & 3) == 3
5874 && !operand_type_register_match (i.types[0],
5875 operand_types[0],
5876 i.types[1],
5877 operand_types[1])))
5878 {
5879 /* Check if other direction is valid ... */
5880 if (!t->opcode_modifier.d)
5881 continue;
5882
5883 check_reverse:
5884 if (!(size_match & MATCH_REVERSE))
5885 continue;
5886 /* Try reversing direction of operands. */
5887 overlap0 = operand_type_and (i.types[0], operand_types[i.operands - 1]);
5888 overlap1 = operand_type_and (i.types[i.operands - 1], operand_types[0]);
5889 if (!operand_type_match (overlap0, i.types[0])
5890 || !operand_type_match (overlap1, i.types[i.operands - 1])
5891 || (check_register
5892 && !operand_type_register_match (i.types[0],
5893 operand_types[i.operands - 1],
5894 i.types[i.operands - 1],
5895 operand_types[0])))
5896 {
5897 /* Does not match either direction. */
5898 continue;
5899 }
5900 /* found_reverse_match holds which of D or FloatR
5901 we've found. */
5902 if (!t->opcode_modifier.d)
5903 found_reverse_match = 0;
5904 else if (operand_types[0].bitfield.tbyte)
5905 found_reverse_match = Opcode_FloatD;
5906 else if (operand_types[0].bitfield.xmmword
5907 || operand_types[i.operands - 1].bitfield.xmmword
5908 || operand_types[0].bitfield.regmmx
5909 || operand_types[i.operands - 1].bitfield.regmmx
5910 || is_any_vex_encoding(t))
5911 found_reverse_match = (t->base_opcode & 0xee) != 0x6e
5912 ? Opcode_SIMD_FloatD : Opcode_SIMD_IntD;
5913 else
5914 found_reverse_match = Opcode_D;
5915 if (t->opcode_modifier.floatr)
5916 found_reverse_match |= Opcode_FloatR;
5917 }
5918 else
5919 {
5920 /* Found a forward 2 operand match here. */
5921 switch (t->operands)
5922 {
5923 case 5:
5924 overlap4 = operand_type_and (i.types[4],
5925 operand_types[4]);
5926 /* Fall through. */
5927 case 4:
5928 overlap3 = operand_type_and (i.types[3],
5929 operand_types[3]);
5930 /* Fall through. */
5931 case 3:
5932 overlap2 = operand_type_and (i.types[2],
5933 operand_types[2]);
5934 break;
5935 }
5936
5937 switch (t->operands)
5938 {
5939 case 5:
5940 if (!operand_type_match (overlap4, i.types[4])
5941 || !operand_type_register_match (i.types[3],
5942 operand_types[3],
5943 i.types[4],
5944 operand_types[4]))
5945 continue;
5946 /* Fall through. */
5947 case 4:
5948 if (!operand_type_match (overlap3, i.types[3])
5949 || ((check_register & 0xa) == 0xa
5950 && !operand_type_register_match (i.types[1],
5951 operand_types[1],
5952 i.types[3],
5953 operand_types[3]))
5954 || ((check_register & 0xc) == 0xc
5955 && !operand_type_register_match (i.types[2],
5956 operand_types[2],
5957 i.types[3],
5958 operand_types[3])))
5959 continue;
5960 /* Fall through. */
5961 case 3:
5962 /* Here we make use of the fact that there are no
5963 reverse match 3 operand instructions. */
5964 if (!operand_type_match (overlap2, i.types[2])
5965 || ((check_register & 5) == 5
5966 && !operand_type_register_match (i.types[0],
5967 operand_types[0],
5968 i.types[2],
5969 operand_types[2]))
5970 || ((check_register & 6) == 6
5971 && !operand_type_register_match (i.types[1],
5972 operand_types[1],
5973 i.types[2],
5974 operand_types[2])))
5975 continue;
5976 break;
5977 }
5978 }
5979 /* Found either forward/reverse 2, 3 or 4 operand match here:
5980 slip through to break. */
5981 }
5982 if (!found_cpu_match)
5983 continue;
5984
5985 /* Check if vector and VEX operands are valid. */
5986 if (check_VecOperands (t) || VEX_check_operands (t))
5987 {
5988 specific_error = i.error;
5989 continue;
5990 }
5991
5992 /* We've found a match; break out of loop. */
5993 break;
5994 }
5995
5996 if (t == current_templates->end)
5997 {
5998 /* We found no match. */
5999 const char *err_msg;
6000 switch (specific_error ? specific_error : i.error)
6001 {
6002 default:
6003 abort ();
6004 case operand_size_mismatch:
6005 err_msg = _("operand size mismatch");
6006 break;
6007 case operand_type_mismatch:
6008 err_msg = _("operand type mismatch");
6009 break;
6010 case register_type_mismatch:
6011 err_msg = _("register type mismatch");
6012 break;
6013 case number_of_operands_mismatch:
6014 err_msg = _("number of operands mismatch");
6015 break;
6016 case invalid_instruction_suffix:
6017 err_msg = _("invalid instruction suffix");
6018 break;
6019 case bad_imm4:
6020 err_msg = _("constant doesn't fit in 4 bits");
6021 break;
6022 case unsupported_with_intel_mnemonic:
6023 err_msg = _("unsupported with Intel mnemonic");
6024 break;
6025 case unsupported_syntax:
6026 err_msg = _("unsupported syntax");
6027 break;
6028 case unsupported:
6029 as_bad (_("unsupported instruction `%s'"),
6030 current_templates->start->name);
6031 return NULL;
6032 case invalid_vsib_address:
6033 err_msg = _("invalid VSIB address");
6034 break;
6035 case invalid_vector_register_set:
6036 err_msg = _("mask, index, and destination registers must be distinct");
6037 break;
6038 case unsupported_vector_index_register:
6039 err_msg = _("unsupported vector index register");
6040 break;
6041 case unsupported_broadcast:
6042 err_msg = _("unsupported broadcast");
6043 break;
6044 case broadcast_needed:
6045 err_msg = _("broadcast is needed for operand of such type");
6046 break;
6047 case unsupported_masking:
6048 err_msg = _("unsupported masking");
6049 break;
6050 case mask_not_on_destination:
6051 err_msg = _("mask not on destination operand");
6052 break;
6053 case no_default_mask:
6054 err_msg = _("default mask isn't allowed");
6055 break;
6056 case unsupported_rc_sae:
6057 err_msg = _("unsupported static rounding/sae");
6058 break;
6059 case rc_sae_operand_not_last_imm:
6060 if (intel_syntax)
6061 err_msg = _("RC/SAE operand must precede immediate operands");
6062 else
6063 err_msg = _("RC/SAE operand must follow immediate operands");
6064 break;
6065 case invalid_register_operand:
6066 err_msg = _("invalid register operand");
6067 break;
6068 }
6069 as_bad (_("%s for `%s'"), err_msg,
6070 current_templates->start->name);
6071 return NULL;
6072 }
6073
6074 if (!quiet_warnings)
6075 {
6076 if (!intel_syntax
6077 && (i.types[0].bitfield.jumpabsolute
6078 != operand_types[0].bitfield.jumpabsolute))
6079 {
6080 as_warn (_("indirect %s without `*'"), t->name);
6081 }
6082
6083 if (t->opcode_modifier.isprefix
6084 && t->opcode_modifier.ignoresize)
6085 {
6086 /* Warn them that a data or address size prefix doesn't
6087 affect assembly of the next line of code. */
6088 as_warn (_("stand-alone `%s' prefix"), t->name);
6089 }
6090 }
6091
6092 /* Copy the template we found. */
6093 i.tm = *t;
6094
6095 if (addr_prefix_disp != -1)
6096 i.tm.operand_types[addr_prefix_disp]
6097 = operand_types[addr_prefix_disp];
6098
6099 if (found_reverse_match)
6100 {
6101 /* If we found a reverse match we must alter the opcode
6102 direction bit. found_reverse_match holds bits to change
6103 (different for int & float insns). */
6104
6105 i.tm.base_opcode ^= found_reverse_match;
6106
6107 i.tm.operand_types[0] = operand_types[i.operands - 1];
6108 i.tm.operand_types[i.operands - 1] = operand_types[0];
6109 }
6110
6111 return t;
6112 }
6113
6114 static int
6115 check_string (void)
6116 {
6117 int mem_op = operand_type_check (i.types[0], anymem) ? 0 : 1;
6118 if (i.tm.operand_types[mem_op].bitfield.esseg)
6119 {
6120 if (i.seg[0] != NULL && i.seg[0] != &es)
6121 {
6122 as_bad (_("`%s' operand %d must use `%ses' segment"),
6123 i.tm.name,
6124 mem_op + 1,
6125 register_prefix);
6126 return 0;
6127 }
6128 /* There's only ever one segment override allowed per instruction.
6129 This instruction possibly has a legal segment override on the
6130 second operand, so copy the segment to where non-string
6131 instructions store it, allowing common code. */
6132 i.seg[0] = i.seg[1];
6133 }
6134 else if (i.tm.operand_types[mem_op + 1].bitfield.esseg)
6135 {
6136 if (i.seg[1] != NULL && i.seg[1] != &es)
6137 {
6138 as_bad (_("`%s' operand %d must use `%ses' segment"),
6139 i.tm.name,
6140 mem_op + 2,
6141 register_prefix);
6142 return 0;
6143 }
6144 }
6145 return 1;
6146 }
6147
6148 static int
6149 process_suffix (void)
6150 {
6151 /* If matched instruction specifies an explicit instruction mnemonic
6152 suffix, use it. */
6153 if (i.tm.opcode_modifier.size == SIZE16)
6154 i.suffix = WORD_MNEM_SUFFIX;
6155 else if (i.tm.opcode_modifier.size == SIZE32)
6156 i.suffix = LONG_MNEM_SUFFIX;
6157 else if (i.tm.opcode_modifier.size == SIZE64)
6158 i.suffix = QWORD_MNEM_SUFFIX;
6159 else if (i.reg_operands)
6160 {
6161 /* If there's no instruction mnemonic suffix we try to invent one
6162 based on register operands. */
6163 if (!i.suffix)
6164 {
6165 /* We take i.suffix from the last register operand specified,
6166 Destination register type is more significant than source
6167 register type. crc32 in SSE4.2 prefers source register
6168 type. */
6169 if (i.tm.base_opcode == 0xf20f38f0 && i.types[0].bitfield.reg)
6170 {
6171 if (i.types[0].bitfield.byte)
6172 i.suffix = BYTE_MNEM_SUFFIX;
6173 else if (i.types[0].bitfield.word)
6174 i.suffix = WORD_MNEM_SUFFIX;
6175 else if (i.types[0].bitfield.dword)
6176 i.suffix = LONG_MNEM_SUFFIX;
6177 else if (i.types[0].bitfield.qword)
6178 i.suffix = QWORD_MNEM_SUFFIX;
6179 }
6180
6181 if (!i.suffix)
6182 {
6183 int op;
6184
6185 if (i.tm.base_opcode == 0xf20f38f0)
6186 {
6187 /* We have to know the operand size for crc32. */
6188 as_bad (_("ambiguous memory operand size for `%s`"),
6189 i.tm.name);
6190 return 0;
6191 }
6192
6193 for (op = i.operands; --op >= 0;)
6194 if (!i.tm.operand_types[op].bitfield.inoutportreg
6195 && !i.tm.operand_types[op].bitfield.shiftcount)
6196 {
6197 if (!i.types[op].bitfield.reg)
6198 continue;
6199 if (i.types[op].bitfield.byte)
6200 i.suffix = BYTE_MNEM_SUFFIX;
6201 else if (i.types[op].bitfield.word)
6202 i.suffix = WORD_MNEM_SUFFIX;
6203 else if (i.types[op].bitfield.dword)
6204 i.suffix = LONG_MNEM_SUFFIX;
6205 else if (i.types[op].bitfield.qword)
6206 i.suffix = QWORD_MNEM_SUFFIX;
6207 else
6208 continue;
6209 break;
6210 }
6211 }
6212 }
6213 else if (i.suffix == BYTE_MNEM_SUFFIX)
6214 {
6215 if (intel_syntax
6216 && i.tm.opcode_modifier.ignoresize
6217 && i.tm.opcode_modifier.no_bsuf)
6218 i.suffix = 0;
6219 else if (!check_byte_reg ())
6220 return 0;
6221 }
6222 else if (i.suffix == LONG_MNEM_SUFFIX)
6223 {
6224 if (intel_syntax
6225 && i.tm.opcode_modifier.ignoresize
6226 && i.tm.opcode_modifier.no_lsuf
6227 && !i.tm.opcode_modifier.todword
6228 && !i.tm.opcode_modifier.toqword)
6229 i.suffix = 0;
6230 else if (!check_long_reg ())
6231 return 0;
6232 }
6233 else if (i.suffix == QWORD_MNEM_SUFFIX)
6234 {
6235 if (intel_syntax
6236 && i.tm.opcode_modifier.ignoresize
6237 && i.tm.opcode_modifier.no_qsuf
6238 && !i.tm.opcode_modifier.todword
6239 && !i.tm.opcode_modifier.toqword)
6240 i.suffix = 0;
6241 else if (!check_qword_reg ())
6242 return 0;
6243 }
6244 else if (i.suffix == WORD_MNEM_SUFFIX)
6245 {
6246 if (intel_syntax
6247 && i.tm.opcode_modifier.ignoresize
6248 && i.tm.opcode_modifier.no_wsuf)
6249 i.suffix = 0;
6250 else if (!check_word_reg ())
6251 return 0;
6252 }
6253 else if (intel_syntax && i.tm.opcode_modifier.ignoresize)
6254 /* Do nothing if the instruction is going to ignore the prefix. */
6255 ;
6256 else
6257 abort ();
6258 }
6259 else if (i.tm.opcode_modifier.defaultsize
6260 && !i.suffix
6261 /* exclude fldenv/frstor/fsave/fstenv */
6262 && i.tm.opcode_modifier.no_ssuf)
6263 {
6264 if (stackop_size == LONG_MNEM_SUFFIX
6265 && i.tm.base_opcode == 0xcf)
6266 {
6267 /* stackop_size is set to LONG_MNEM_SUFFIX for the
6268 .code16gcc directive to support 16-bit mode with
6269 32-bit address. For IRET without a suffix, generate
6270 16-bit IRET (opcode 0xcf) to return from an interrupt
6271 handler. */
6272 i.suffix = WORD_MNEM_SUFFIX;
6273 as_warn (_("generating 16-bit `iret' for .code16gcc directive"));
6274 }
6275 else
6276 i.suffix = stackop_size;
6277 }
6278 else if (intel_syntax
6279 && !i.suffix
6280 && (i.tm.operand_types[0].bitfield.jumpabsolute
6281 || i.tm.opcode_modifier.jumpbyte
6282 || i.tm.opcode_modifier.jumpintersegment
6283 || (i.tm.base_opcode == 0x0f01 /* [ls][gi]dt */
6284 && i.tm.extension_opcode <= 3)))
6285 {
6286 switch (flag_code)
6287 {
6288 case CODE_64BIT:
6289 if (!i.tm.opcode_modifier.no_qsuf)
6290 {
6291 i.suffix = QWORD_MNEM_SUFFIX;
6292 break;
6293 }
6294 /* Fall through. */
6295 case CODE_32BIT:
6296 if (!i.tm.opcode_modifier.no_lsuf)
6297 i.suffix = LONG_MNEM_SUFFIX;
6298 break;
6299 case CODE_16BIT:
6300 if (!i.tm.opcode_modifier.no_wsuf)
6301 i.suffix = WORD_MNEM_SUFFIX;
6302 break;
6303 }
6304 }
6305
6306 if (!i.suffix)
6307 {
6308 if (!intel_syntax)
6309 {
6310 if (i.tm.opcode_modifier.w)
6311 {
6312 as_bad (_("no instruction mnemonic suffix given and "
6313 "no register operands; can't size instruction"));
6314 return 0;
6315 }
6316 }
6317 else
6318 {
6319 unsigned int suffixes;
6320
6321 suffixes = !i.tm.opcode_modifier.no_bsuf;
6322 if (!i.tm.opcode_modifier.no_wsuf)
6323 suffixes |= 1 << 1;
6324 if (!i.tm.opcode_modifier.no_lsuf)
6325 suffixes |= 1 << 2;
6326 if (!i.tm.opcode_modifier.no_ldsuf)
6327 suffixes |= 1 << 3;
6328 if (!i.tm.opcode_modifier.no_ssuf)
6329 suffixes |= 1 << 4;
6330 if (flag_code == CODE_64BIT && !i.tm.opcode_modifier.no_qsuf)
6331 suffixes |= 1 << 5;
6332
6333 /* There are more than suffix matches. */
6334 if (i.tm.opcode_modifier.w
6335 || ((suffixes & (suffixes - 1))
6336 && !i.tm.opcode_modifier.defaultsize
6337 && !i.tm.opcode_modifier.ignoresize))
6338 {
6339 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
6340 return 0;
6341 }
6342 }
6343 }
6344
6345 /* Change the opcode based on the operand size given by i.suffix. */
6346 switch (i.suffix)
6347 {
6348 /* Size floating point instruction. */
6349 case LONG_MNEM_SUFFIX:
6350 if (i.tm.opcode_modifier.floatmf)
6351 {
6352 i.tm.base_opcode ^= 4;
6353 break;
6354 }
6355 /* fall through */
6356 case WORD_MNEM_SUFFIX:
6357 case QWORD_MNEM_SUFFIX:
6358 /* It's not a byte, select word/dword operation. */
6359 if (i.tm.opcode_modifier.w)
6360 {
6361 if (i.tm.opcode_modifier.shortform)
6362 i.tm.base_opcode |= 8;
6363 else
6364 i.tm.base_opcode |= 1;
6365 }
6366 /* fall through */
6367 case SHORT_MNEM_SUFFIX:
6368 /* Now select between word & dword operations via the operand
6369 size prefix, except for instructions that will ignore this
6370 prefix anyway. */
6371 if (i.reg_operands > 0
6372 && i.types[0].bitfield.reg
6373 && i.tm.opcode_modifier.addrprefixopreg
6374 && (i.tm.opcode_modifier.immext
6375 || i.operands == 1))
6376 {
6377 /* The address size override prefix changes the size of the
6378 first operand. */
6379 if ((flag_code == CODE_32BIT
6380 && i.op[0].regs->reg_type.bitfield.word)
6381 || (flag_code != CODE_32BIT
6382 && i.op[0].regs->reg_type.bitfield.dword))
6383 if (!add_prefix (ADDR_PREFIX_OPCODE))
6384 return 0;
6385 }
6386 else if (i.suffix != QWORD_MNEM_SUFFIX
6387 && !i.tm.opcode_modifier.ignoresize
6388 && !i.tm.opcode_modifier.floatmf
6389 && !is_any_vex_encoding (&i.tm)
6390 && ((i.suffix == LONG_MNEM_SUFFIX) == (flag_code == CODE_16BIT)
6391 || (flag_code == CODE_64BIT
6392 && i.tm.opcode_modifier.jumpbyte)))
6393 {
6394 unsigned int prefix = DATA_PREFIX_OPCODE;
6395
6396 if (i.tm.opcode_modifier.jumpbyte) /* jcxz, loop */
6397 prefix = ADDR_PREFIX_OPCODE;
6398
6399 if (!add_prefix (prefix))
6400 return 0;
6401 }
6402
6403 /* Set mode64 for an operand. */
6404 if (i.suffix == QWORD_MNEM_SUFFIX
6405 && flag_code == CODE_64BIT
6406 && !i.tm.opcode_modifier.norex64
6407 /* Special case for xchg %rax,%rax. It is NOP and doesn't
6408 need rex64. */
6409 && ! (i.operands == 2
6410 && i.tm.base_opcode == 0x90
6411 && i.tm.extension_opcode == None
6412 && operand_type_equal (&i.types [0], &acc64)
6413 && operand_type_equal (&i.types [1], &acc64)))
6414 i.rex |= REX_W;
6415
6416 break;
6417 }
6418
6419 if (i.reg_operands != 0
6420 && i.operands > 1
6421 && i.tm.opcode_modifier.addrprefixopreg
6422 && !i.tm.opcode_modifier.immext)
6423 {
6424 /* Check invalid register operand when the address size override
6425 prefix changes the size of register operands. */
6426 unsigned int op;
6427 enum { need_word, need_dword, need_qword } need;
6428
6429 if (flag_code == CODE_32BIT)
6430 need = i.prefix[ADDR_PREFIX] ? need_word : need_dword;
6431 else
6432 {
6433 if (i.prefix[ADDR_PREFIX])
6434 need = need_dword;
6435 else
6436 need = flag_code == CODE_64BIT ? need_qword : need_word;
6437 }
6438
6439 for (op = 0; op < i.operands; op++)
6440 if (i.types[op].bitfield.reg
6441 && ((need == need_word
6442 && !i.op[op].regs->reg_type.bitfield.word)
6443 || (need == need_dword
6444 && !i.op[op].regs->reg_type.bitfield.dword)
6445 || (need == need_qword
6446 && !i.op[op].regs->reg_type.bitfield.qword)))
6447 {
6448 as_bad (_("invalid register operand size for `%s'"),
6449 i.tm.name);
6450 return 0;
6451 }
6452 }
6453
6454 return 1;
6455 }
6456
6457 static int
6458 check_byte_reg (void)
6459 {
6460 int op;
6461
6462 for (op = i.operands; --op >= 0;)
6463 {
6464 /* Skip non-register operands. */
6465 if (!i.types[op].bitfield.reg)
6466 continue;
6467
6468 /* If this is an eight bit register, it's OK. If it's the 16 or
6469 32 bit version of an eight bit register, we will just use the
6470 low portion, and that's OK too. */
6471 if (i.types[op].bitfield.byte)
6472 continue;
6473
6474 /* I/O port address operands are OK too. */
6475 if (i.tm.operand_types[op].bitfield.inoutportreg)
6476 continue;
6477
6478 /* crc32 doesn't generate this warning. */
6479 if (i.tm.base_opcode == 0xf20f38f0)
6480 continue;
6481
6482 if ((i.types[op].bitfield.word
6483 || i.types[op].bitfield.dword
6484 || i.types[op].bitfield.qword)
6485 && i.op[op].regs->reg_num < 4
6486 /* Prohibit these changes in 64bit mode, since the lowering
6487 would be more complicated. */
6488 && flag_code != CODE_64BIT)
6489 {
6490 #if REGISTER_WARNINGS
6491 if (!quiet_warnings)
6492 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
6493 register_prefix,
6494 (i.op[op].regs + (i.types[op].bitfield.word
6495 ? REGNAM_AL - REGNAM_AX
6496 : REGNAM_AL - REGNAM_EAX))->reg_name,
6497 register_prefix,
6498 i.op[op].regs->reg_name,
6499 i.suffix);
6500 #endif
6501 continue;
6502 }
6503 /* Any other register is bad. */
6504 if (i.types[op].bitfield.reg
6505 || i.types[op].bitfield.regmmx
6506 || i.types[op].bitfield.regsimd
6507 || i.types[op].bitfield.sreg2
6508 || i.types[op].bitfield.sreg3
6509 || i.types[op].bitfield.control
6510 || i.types[op].bitfield.debug
6511 || i.types[op].bitfield.test)
6512 {
6513 as_bad (_("`%s%s' not allowed with `%s%c'"),
6514 register_prefix,
6515 i.op[op].regs->reg_name,
6516 i.tm.name,
6517 i.suffix);
6518 return 0;
6519 }
6520 }
6521 return 1;
6522 }
6523
6524 static int
6525 check_long_reg (void)
6526 {
6527 int op;
6528
6529 for (op = i.operands; --op >= 0;)
6530 /* Skip non-register operands. */
6531 if (!i.types[op].bitfield.reg)
6532 continue;
6533 /* Reject eight bit registers, except where the template requires
6534 them. (eg. movzb) */
6535 else if (i.types[op].bitfield.byte
6536 && (i.tm.operand_types[op].bitfield.reg
6537 || i.tm.operand_types[op].bitfield.acc)
6538 && (i.tm.operand_types[op].bitfield.word
6539 || i.tm.operand_types[op].bitfield.dword))
6540 {
6541 as_bad (_("`%s%s' not allowed with `%s%c'"),
6542 register_prefix,
6543 i.op[op].regs->reg_name,
6544 i.tm.name,
6545 i.suffix);
6546 return 0;
6547 }
6548 /* Warn if the e prefix on a general reg is missing. */
6549 else if ((!quiet_warnings || flag_code == CODE_64BIT)
6550 && i.types[op].bitfield.word
6551 && (i.tm.operand_types[op].bitfield.reg
6552 || i.tm.operand_types[op].bitfield.acc)
6553 && i.tm.operand_types[op].bitfield.dword)
6554 {
6555 /* Prohibit these changes in the 64bit mode, since the
6556 lowering is more complicated. */
6557 if (flag_code == CODE_64BIT)
6558 {
6559 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
6560 register_prefix, i.op[op].regs->reg_name,
6561 i.suffix);
6562 return 0;
6563 }
6564 #if REGISTER_WARNINGS
6565 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
6566 register_prefix,
6567 (i.op[op].regs + REGNAM_EAX - REGNAM_AX)->reg_name,
6568 register_prefix, i.op[op].regs->reg_name, i.suffix);
6569 #endif
6570 }
6571 /* Warn if the r prefix on a general reg is present. */
6572 else if (i.types[op].bitfield.qword
6573 && (i.tm.operand_types[op].bitfield.reg
6574 || i.tm.operand_types[op].bitfield.acc)
6575 && i.tm.operand_types[op].bitfield.dword)
6576 {
6577 if (intel_syntax
6578 && i.tm.opcode_modifier.toqword
6579 && !i.types[0].bitfield.regsimd)
6580 {
6581 /* Convert to QWORD. We want REX byte. */
6582 i.suffix = QWORD_MNEM_SUFFIX;
6583 }
6584 else
6585 {
6586 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
6587 register_prefix, i.op[op].regs->reg_name,
6588 i.suffix);
6589 return 0;
6590 }
6591 }
6592 return 1;
6593 }
6594
6595 static int
6596 check_qword_reg (void)
6597 {
6598 int op;
6599
6600 for (op = i.operands; --op >= 0; )
6601 /* Skip non-register operands. */
6602 if (!i.types[op].bitfield.reg)
6603 continue;
6604 /* Reject eight bit registers, except where the template requires
6605 them. (eg. movzb) */
6606 else if (i.types[op].bitfield.byte
6607 && (i.tm.operand_types[op].bitfield.reg
6608 || i.tm.operand_types[op].bitfield.acc)
6609 && (i.tm.operand_types[op].bitfield.word
6610 || i.tm.operand_types[op].bitfield.dword))
6611 {
6612 as_bad (_("`%s%s' not allowed with `%s%c'"),
6613 register_prefix,
6614 i.op[op].regs->reg_name,
6615 i.tm.name,
6616 i.suffix);
6617 return 0;
6618 }
6619 /* Warn if the r prefix on a general reg is missing. */
6620 else if ((i.types[op].bitfield.word
6621 || i.types[op].bitfield.dword)
6622 && (i.tm.operand_types[op].bitfield.reg
6623 || i.tm.operand_types[op].bitfield.acc)
6624 && i.tm.operand_types[op].bitfield.qword)
6625 {
6626 /* Prohibit these changes in the 64bit mode, since the
6627 lowering is more complicated. */
6628 if (intel_syntax
6629 && i.tm.opcode_modifier.todword
6630 && !i.types[0].bitfield.regsimd)
6631 {
6632 /* Convert to DWORD. We don't want REX byte. */
6633 i.suffix = LONG_MNEM_SUFFIX;
6634 }
6635 else
6636 {
6637 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
6638 register_prefix, i.op[op].regs->reg_name,
6639 i.suffix);
6640 return 0;
6641 }
6642 }
6643 return 1;
6644 }
6645
6646 static int
6647 check_word_reg (void)
6648 {
6649 int op;
6650 for (op = i.operands; --op >= 0;)
6651 /* Skip non-register operands. */
6652 if (!i.types[op].bitfield.reg)
6653 continue;
6654 /* Reject eight bit registers, except where the template requires
6655 them. (eg. movzb) */
6656 else if (i.types[op].bitfield.byte
6657 && (i.tm.operand_types[op].bitfield.reg
6658 || i.tm.operand_types[op].bitfield.acc)
6659 && (i.tm.operand_types[op].bitfield.word
6660 || i.tm.operand_types[op].bitfield.dword))
6661 {
6662 as_bad (_("`%s%s' not allowed with `%s%c'"),
6663 register_prefix,
6664 i.op[op].regs->reg_name,
6665 i.tm.name,
6666 i.suffix);
6667 return 0;
6668 }
6669 /* Warn if the e or r prefix on a general reg is present. */
6670 else if ((!quiet_warnings || flag_code == CODE_64BIT)
6671 && (i.types[op].bitfield.dword
6672 || i.types[op].bitfield.qword)
6673 && (i.tm.operand_types[op].bitfield.reg
6674 || i.tm.operand_types[op].bitfield.acc)
6675 && i.tm.operand_types[op].bitfield.word)
6676 {
6677 /* Prohibit these changes in the 64bit mode, since the
6678 lowering is more complicated. */
6679 if (flag_code == CODE_64BIT)
6680 {
6681 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
6682 register_prefix, i.op[op].regs->reg_name,
6683 i.suffix);
6684 return 0;
6685 }
6686 #if REGISTER_WARNINGS
6687 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
6688 register_prefix,
6689 (i.op[op].regs + REGNAM_AX - REGNAM_EAX)->reg_name,
6690 register_prefix, i.op[op].regs->reg_name, i.suffix);
6691 #endif
6692 }
6693 return 1;
6694 }
6695
6696 static int
6697 update_imm (unsigned int j)
6698 {
6699 i386_operand_type overlap = i.types[j];
6700 if ((overlap.bitfield.imm8
6701 || overlap.bitfield.imm8s
6702 || overlap.bitfield.imm16
6703 || overlap.bitfield.imm32
6704 || overlap.bitfield.imm32s
6705 || overlap.bitfield.imm64)
6706 && !operand_type_equal (&overlap, &imm8)
6707 && !operand_type_equal (&overlap, &imm8s)
6708 && !operand_type_equal (&overlap, &imm16)
6709 && !operand_type_equal (&overlap, &imm32)
6710 && !operand_type_equal (&overlap, &imm32s)
6711 && !operand_type_equal (&overlap, &imm64))
6712 {
6713 if (i.suffix)
6714 {
6715 i386_operand_type temp;
6716
6717 operand_type_set (&temp, 0);
6718 if (i.suffix == BYTE_MNEM_SUFFIX)
6719 {
6720 temp.bitfield.imm8 = overlap.bitfield.imm8;
6721 temp.bitfield.imm8s = overlap.bitfield.imm8s;
6722 }
6723 else if (i.suffix == WORD_MNEM_SUFFIX)
6724 temp.bitfield.imm16 = overlap.bitfield.imm16;
6725 else if (i.suffix == QWORD_MNEM_SUFFIX)
6726 {
6727 temp.bitfield.imm64 = overlap.bitfield.imm64;
6728 temp.bitfield.imm32s = overlap.bitfield.imm32s;
6729 }
6730 else
6731 temp.bitfield.imm32 = overlap.bitfield.imm32;
6732 overlap = temp;
6733 }
6734 else if (operand_type_equal (&overlap, &imm16_32_32s)
6735 || operand_type_equal (&overlap, &imm16_32)
6736 || operand_type_equal (&overlap, &imm16_32s))
6737 {
6738 if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
6739 overlap = imm16;
6740 else
6741 overlap = imm32s;
6742 }
6743 if (!operand_type_equal (&overlap, &imm8)
6744 && !operand_type_equal (&overlap, &imm8s)
6745 && !operand_type_equal (&overlap, &imm16)
6746 && !operand_type_equal (&overlap, &imm32)
6747 && !operand_type_equal (&overlap, &imm32s)
6748 && !operand_type_equal (&overlap, &imm64))
6749 {
6750 as_bad (_("no instruction mnemonic suffix given; "
6751 "can't determine immediate size"));
6752 return 0;
6753 }
6754 }
6755 i.types[j] = overlap;
6756
6757 return 1;
6758 }
6759
6760 static int
6761 finalize_imm (void)
6762 {
6763 unsigned int j, n;
6764
6765 /* Update the first 2 immediate operands. */
6766 n = i.operands > 2 ? 2 : i.operands;
6767 if (n)
6768 {
6769 for (j = 0; j < n; j++)
6770 if (update_imm (j) == 0)
6771 return 0;
6772
6773 /* The 3rd operand can't be immediate operand. */
6774 gas_assert (operand_type_check (i.types[2], imm) == 0);
6775 }
6776
6777 return 1;
6778 }
6779
6780 static int
6781 process_operands (void)
6782 {
6783 /* Default segment register this instruction will use for memory
6784 accesses. 0 means unknown. This is only for optimizing out
6785 unnecessary segment overrides. */
6786 const seg_entry *default_seg = 0;
6787
6788 if (i.tm.opcode_modifier.sse2avx && i.tm.opcode_modifier.vexvvvv)
6789 {
6790 unsigned int dupl = i.operands;
6791 unsigned int dest = dupl - 1;
6792 unsigned int j;
6793
6794 /* The destination must be an xmm register. */
6795 gas_assert (i.reg_operands
6796 && MAX_OPERANDS > dupl
6797 && operand_type_equal (&i.types[dest], &regxmm));
6798
6799 if (i.tm.operand_types[0].bitfield.acc
6800 && i.tm.operand_types[0].bitfield.xmmword)
6801 {
6802 if (i.tm.opcode_modifier.vexsources == VEX3SOURCES)
6803 {
6804 /* Keep xmm0 for instructions with VEX prefix and 3
6805 sources. */
6806 i.tm.operand_types[0].bitfield.acc = 0;
6807 i.tm.operand_types[0].bitfield.regsimd = 1;
6808 goto duplicate;
6809 }
6810 else
6811 {
6812 /* We remove the first xmm0 and keep the number of
6813 operands unchanged, which in fact duplicates the
6814 destination. */
6815 for (j = 1; j < i.operands; j++)
6816 {
6817 i.op[j - 1] = i.op[j];
6818 i.types[j - 1] = i.types[j];
6819 i.tm.operand_types[j - 1] = i.tm.operand_types[j];
6820 }
6821 }
6822 }
6823 else if (i.tm.opcode_modifier.implicit1stxmm0)
6824 {
6825 gas_assert ((MAX_OPERANDS - 1) > dupl
6826 && (i.tm.opcode_modifier.vexsources
6827 == VEX3SOURCES));
6828
6829 /* Add the implicit xmm0 for instructions with VEX prefix
6830 and 3 sources. */
6831 for (j = i.operands; j > 0; j--)
6832 {
6833 i.op[j] = i.op[j - 1];
6834 i.types[j] = i.types[j - 1];
6835 i.tm.operand_types[j] = i.tm.operand_types[j - 1];
6836 }
6837 i.op[0].regs
6838 = (const reg_entry *) hash_find (reg_hash, "xmm0");
6839 i.types[0] = regxmm;
6840 i.tm.operand_types[0] = regxmm;
6841
6842 i.operands += 2;
6843 i.reg_operands += 2;
6844 i.tm.operands += 2;
6845
6846 dupl++;
6847 dest++;
6848 i.op[dupl] = i.op[dest];
6849 i.types[dupl] = i.types[dest];
6850 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
6851 }
6852 else
6853 {
6854 duplicate:
6855 i.operands++;
6856 i.reg_operands++;
6857 i.tm.operands++;
6858
6859 i.op[dupl] = i.op[dest];
6860 i.types[dupl] = i.types[dest];
6861 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
6862 }
6863
6864 if (i.tm.opcode_modifier.immext)
6865 process_immext ();
6866 }
6867 else if (i.tm.operand_types[0].bitfield.acc
6868 && i.tm.operand_types[0].bitfield.xmmword)
6869 {
6870 unsigned int j;
6871
6872 for (j = 1; j < i.operands; j++)
6873 {
6874 i.op[j - 1] = i.op[j];
6875 i.types[j - 1] = i.types[j];
6876
6877 /* We need to adjust fields in i.tm since they are used by
6878 build_modrm_byte. */
6879 i.tm.operand_types [j - 1] = i.tm.operand_types [j];
6880 }
6881
6882 i.operands--;
6883 i.reg_operands--;
6884 i.tm.operands--;
6885 }
6886 else if (i.tm.opcode_modifier.implicitquadgroup)
6887 {
6888 unsigned int regnum, first_reg_in_group, last_reg_in_group;
6889
6890 /* The second operand must be {x,y,z}mmN, where N is a multiple of 4. */
6891 gas_assert (i.operands >= 2 && i.types[1].bitfield.regsimd);
6892 regnum = register_number (i.op[1].regs);
6893 first_reg_in_group = regnum & ~3;
6894 last_reg_in_group = first_reg_in_group + 3;
6895 if (regnum != first_reg_in_group)
6896 as_warn (_("source register `%s%s' implicitly denotes"
6897 " `%s%.3s%u' to `%s%.3s%u' source group in `%s'"),
6898 register_prefix, i.op[1].regs->reg_name,
6899 register_prefix, i.op[1].regs->reg_name, first_reg_in_group,
6900 register_prefix, i.op[1].regs->reg_name, last_reg_in_group,
6901 i.tm.name);
6902 }
6903 else if (i.tm.opcode_modifier.regkludge)
6904 {
6905 /* The imul $imm, %reg instruction is converted into
6906 imul $imm, %reg, %reg, and the clr %reg instruction
6907 is converted into xor %reg, %reg. */
6908
6909 unsigned int first_reg_op;
6910
6911 if (operand_type_check (i.types[0], reg))
6912 first_reg_op = 0;
6913 else
6914 first_reg_op = 1;
6915 /* Pretend we saw the extra register operand. */
6916 gas_assert (i.reg_operands == 1
6917 && i.op[first_reg_op + 1].regs == 0);
6918 i.op[first_reg_op + 1].regs = i.op[first_reg_op].regs;
6919 i.types[first_reg_op + 1] = i.types[first_reg_op];
6920 i.operands++;
6921 i.reg_operands++;
6922 }
6923
6924 if (i.tm.opcode_modifier.shortform)
6925 {
6926 if (i.types[0].bitfield.sreg2
6927 || i.types[0].bitfield.sreg3)
6928 {
6929 if (i.tm.base_opcode == POP_SEG_SHORT
6930 && i.op[0].regs->reg_num == 1)
6931 {
6932 as_bad (_("you can't `pop %scs'"), register_prefix);
6933 return 0;
6934 }
6935 i.tm.base_opcode |= (i.op[0].regs->reg_num << 3);
6936 if ((i.op[0].regs->reg_flags & RegRex) != 0)
6937 i.rex |= REX_B;
6938 }
6939 else
6940 {
6941 /* The register or float register operand is in operand
6942 0 or 1. */
6943 unsigned int op;
6944
6945 if ((i.types[0].bitfield.reg && i.types[0].bitfield.tbyte)
6946 || operand_type_check (i.types[0], reg))
6947 op = 0;
6948 else
6949 op = 1;
6950 /* Register goes in low 3 bits of opcode. */
6951 i.tm.base_opcode |= i.op[op].regs->reg_num;
6952 if ((i.op[op].regs->reg_flags & RegRex) != 0)
6953 i.rex |= REX_B;
6954 if (!quiet_warnings && i.tm.opcode_modifier.ugh)
6955 {
6956 /* Warn about some common errors, but press on regardless.
6957 The first case can be generated by gcc (<= 2.8.1). */
6958 if (i.operands == 2)
6959 {
6960 /* Reversed arguments on faddp, fsubp, etc. */
6961 as_warn (_("translating to `%s %s%s,%s%s'"), i.tm.name,
6962 register_prefix, i.op[!intel_syntax].regs->reg_name,
6963 register_prefix, i.op[intel_syntax].regs->reg_name);
6964 }
6965 else
6966 {
6967 /* Extraneous `l' suffix on fp insn. */
6968 as_warn (_("translating to `%s %s%s'"), i.tm.name,
6969 register_prefix, i.op[0].regs->reg_name);
6970 }
6971 }
6972 }
6973 }
6974 else if (i.tm.opcode_modifier.modrm)
6975 {
6976 /* The opcode is completed (modulo i.tm.extension_opcode which
6977 must be put into the modrm byte). Now, we make the modrm and
6978 index base bytes based on all the info we've collected. */
6979
6980 default_seg = build_modrm_byte ();
6981 }
6982 else if ((i.tm.base_opcode & ~0x3) == MOV_AX_DISP32)
6983 {
6984 default_seg = &ds;
6985 }
6986 else if (i.tm.opcode_modifier.isstring)
6987 {
6988 /* For the string instructions that allow a segment override
6989 on one of their operands, the default segment is ds. */
6990 default_seg = &ds;
6991 }
6992
6993 if (i.tm.base_opcode == 0x8d /* lea */
6994 && i.seg[0]
6995 && !quiet_warnings)
6996 as_warn (_("segment override on `%s' is ineffectual"), i.tm.name);
6997
6998 /* If a segment was explicitly specified, and the specified segment
6999 is not the default, use an opcode prefix to select it. If we
7000 never figured out what the default segment is, then default_seg
7001 will be zero at this point, and the specified segment prefix will
7002 always be used. */
7003 if ((i.seg[0]) && (i.seg[0] != default_seg))
7004 {
7005 if (!add_prefix (i.seg[0]->seg_prefix))
7006 return 0;
7007 }
7008 return 1;
7009 }
7010
7011 static const seg_entry *
7012 build_modrm_byte (void)
7013 {
7014 const seg_entry *default_seg = 0;
7015 unsigned int source, dest;
7016 int vex_3_sources;
7017
7018 vex_3_sources = i.tm.opcode_modifier.vexsources == VEX3SOURCES;
7019 if (vex_3_sources)
7020 {
7021 unsigned int nds, reg_slot;
7022 expressionS *exp;
7023
7024 dest = i.operands - 1;
7025 nds = dest - 1;
7026
7027 /* There are 2 kinds of instructions:
7028 1. 5 operands: 4 register operands or 3 register operands
7029 plus 1 memory operand plus one Vec_Imm4 operand, VexXDS, and
7030 VexW0 or VexW1. The destination must be either XMM, YMM or
7031 ZMM register.
7032 2. 4 operands: 4 register operands or 3 register operands
7033 plus 1 memory operand, with VexXDS. */
7034 gas_assert ((i.reg_operands == 4
7035 || (i.reg_operands == 3 && i.mem_operands == 1))
7036 && i.tm.opcode_modifier.vexvvvv == VEXXDS
7037 && i.tm.opcode_modifier.vexw
7038 && i.tm.operand_types[dest].bitfield.regsimd);
7039
7040 /* If VexW1 is set, the first non-immediate operand is the source and
7041 the second non-immediate one is encoded in the immediate operand. */
7042 if (i.tm.opcode_modifier.vexw == VEXW1)
7043 {
7044 source = i.imm_operands;
7045 reg_slot = i.imm_operands + 1;
7046 }
7047 else
7048 {
7049 source = i.imm_operands + 1;
7050 reg_slot = i.imm_operands;
7051 }
7052
7053 if (i.imm_operands == 0)
7054 {
7055 /* When there is no immediate operand, generate an 8bit
7056 immediate operand to encode the first operand. */
7057 exp = &im_expressions[i.imm_operands++];
7058 i.op[i.operands].imms = exp;
7059 i.types[i.operands] = imm8;
7060 i.operands++;
7061
7062 gas_assert (i.tm.operand_types[reg_slot].bitfield.regsimd);
7063 exp->X_op = O_constant;
7064 exp->X_add_number = register_number (i.op[reg_slot].regs) << 4;
7065 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
7066 }
7067 else
7068 {
7069 unsigned int imm_slot;
7070
7071 gas_assert (i.imm_operands == 1 && i.types[0].bitfield.vec_imm4);
7072
7073 if (i.tm.opcode_modifier.immext)
7074 {
7075 /* When ImmExt is set, the immediate byte is the last
7076 operand. */
7077 imm_slot = i.operands - 1;
7078 source--;
7079 reg_slot--;
7080 }
7081 else
7082 {
7083 imm_slot = 0;
7084
7085 /* Turn on Imm8 so that output_imm will generate it. */
7086 i.types[imm_slot].bitfield.imm8 = 1;
7087 }
7088
7089 gas_assert (i.tm.operand_types[reg_slot].bitfield.regsimd);
7090 i.op[imm_slot].imms->X_add_number
7091 |= register_number (i.op[reg_slot].regs) << 4;
7092 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
7093 }
7094
7095 gas_assert (i.tm.operand_types[nds].bitfield.regsimd);
7096 i.vex.register_specifier = i.op[nds].regs;
7097 }
7098 else
7099 source = dest = 0;
7100
7101 /* i.reg_operands MUST be the number of real register operands;
7102 implicit registers do not count. If there are 3 register
7103 operands, it must be a instruction with VexNDS. For a
7104 instruction with VexNDD, the destination register is encoded
7105 in VEX prefix. If there are 4 register operands, it must be
7106 a instruction with VEX prefix and 3 sources. */
7107 if (i.mem_operands == 0
7108 && ((i.reg_operands == 2
7109 && i.tm.opcode_modifier.vexvvvv <= VEXXDS)
7110 || (i.reg_operands == 3
7111 && i.tm.opcode_modifier.vexvvvv == VEXXDS)
7112 || (i.reg_operands == 4 && vex_3_sources)))
7113 {
7114 switch (i.operands)
7115 {
7116 case 2:
7117 source = 0;
7118 break;
7119 case 3:
7120 /* When there are 3 operands, one of them may be immediate,
7121 which may be the first or the last operand. Otherwise,
7122 the first operand must be shift count register (cl) or it
7123 is an instruction with VexNDS. */
7124 gas_assert (i.imm_operands == 1
7125 || (i.imm_operands == 0
7126 && (i.tm.opcode_modifier.vexvvvv == VEXXDS
7127 || i.types[0].bitfield.shiftcount)));
7128 if (operand_type_check (i.types[0], imm)
7129 || i.types[0].bitfield.shiftcount)
7130 source = 1;
7131 else
7132 source = 0;
7133 break;
7134 case 4:
7135 /* When there are 4 operands, the first two must be 8bit
7136 immediate operands. The source operand will be the 3rd
7137 one.
7138
7139 For instructions with VexNDS, if the first operand
7140 an imm8, the source operand is the 2nd one. If the last
7141 operand is imm8, the source operand is the first one. */
7142 gas_assert ((i.imm_operands == 2
7143 && i.types[0].bitfield.imm8
7144 && i.types[1].bitfield.imm8)
7145 || (i.tm.opcode_modifier.vexvvvv == VEXXDS
7146 && i.imm_operands == 1
7147 && (i.types[0].bitfield.imm8
7148 || i.types[i.operands - 1].bitfield.imm8
7149 || i.rounding)));
7150 if (i.imm_operands == 2)
7151 source = 2;
7152 else
7153 {
7154 if (i.types[0].bitfield.imm8)
7155 source = 1;
7156 else
7157 source = 0;
7158 }
7159 break;
7160 case 5:
7161 if (is_evex_encoding (&i.tm))
7162 {
7163 /* For EVEX instructions, when there are 5 operands, the
7164 first one must be immediate operand. If the second one
7165 is immediate operand, the source operand is the 3th
7166 one. If the last one is immediate operand, the source
7167 operand is the 2nd one. */
7168 gas_assert (i.imm_operands == 2
7169 && i.tm.opcode_modifier.sae
7170 && operand_type_check (i.types[0], imm));
7171 if (operand_type_check (i.types[1], imm))
7172 source = 2;
7173 else if (operand_type_check (i.types[4], imm))
7174 source = 1;
7175 else
7176 abort ();
7177 }
7178 break;
7179 default:
7180 abort ();
7181 }
7182
7183 if (!vex_3_sources)
7184 {
7185 dest = source + 1;
7186
7187 /* RC/SAE operand could be between DEST and SRC. That happens
7188 when one operand is GPR and the other one is XMM/YMM/ZMM
7189 register. */
7190 if (i.rounding && i.rounding->operand == (int) dest)
7191 dest++;
7192
7193 if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
7194 {
7195 /* For instructions with VexNDS, the register-only source
7196 operand must be a 32/64bit integer, XMM, YMM, ZMM, or mask
7197 register. It is encoded in VEX prefix. We need to
7198 clear RegMem bit before calling operand_type_equal. */
7199
7200 i386_operand_type op;
7201 unsigned int vvvv;
7202
7203 /* Check register-only source operand when two source
7204 operands are swapped. */
7205 if (!i.tm.operand_types[source].bitfield.baseindex
7206 && i.tm.operand_types[dest].bitfield.baseindex)
7207 {
7208 vvvv = source;
7209 source = dest;
7210 }
7211 else
7212 vvvv = dest;
7213
7214 op = i.tm.operand_types[vvvv];
7215 op.bitfield.regmem = 0;
7216 if ((dest + 1) >= i.operands
7217 || ((!op.bitfield.reg
7218 || (!op.bitfield.dword && !op.bitfield.qword))
7219 && !op.bitfield.regsimd
7220 && !operand_type_equal (&op, &regmask)))
7221 abort ();
7222 i.vex.register_specifier = i.op[vvvv].regs;
7223 dest++;
7224 }
7225 }
7226
7227 i.rm.mode = 3;
7228 /* One of the register operands will be encoded in the i.tm.reg
7229 field, the other in the combined i.tm.mode and i.tm.regmem
7230 fields. If no form of this instruction supports a memory
7231 destination operand, then we assume the source operand may
7232 sometimes be a memory operand and so we need to store the
7233 destination in the i.rm.reg field. */
7234 if (!i.tm.operand_types[dest].bitfield.regmem
7235 && operand_type_check (i.tm.operand_types[dest], anymem) == 0)
7236 {
7237 i.rm.reg = i.op[dest].regs->reg_num;
7238 i.rm.regmem = i.op[source].regs->reg_num;
7239 if (i.op[dest].regs->reg_type.bitfield.regmmx
7240 || i.op[source].regs->reg_type.bitfield.regmmx)
7241 i.has_regmmx = TRUE;
7242 else if (i.op[dest].regs->reg_type.bitfield.regsimd
7243 || i.op[source].regs->reg_type.bitfield.regsimd)
7244 {
7245 if (i.types[dest].bitfield.zmmword
7246 || i.types[source].bitfield.zmmword)
7247 i.has_regzmm = TRUE;
7248 else if (i.types[dest].bitfield.ymmword
7249 || i.types[source].bitfield.ymmword)
7250 i.has_regymm = TRUE;
7251 else
7252 i.has_regxmm = TRUE;
7253 }
7254 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
7255 i.rex |= REX_R;
7256 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
7257 i.vrex |= REX_R;
7258 if ((i.op[source].regs->reg_flags & RegRex) != 0)
7259 i.rex |= REX_B;
7260 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
7261 i.vrex |= REX_B;
7262 }
7263 else
7264 {
7265 i.rm.reg = i.op[source].regs->reg_num;
7266 i.rm.regmem = i.op[dest].regs->reg_num;
7267 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
7268 i.rex |= REX_B;
7269 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
7270 i.vrex |= REX_B;
7271 if ((i.op[source].regs->reg_flags & RegRex) != 0)
7272 i.rex |= REX_R;
7273 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
7274 i.vrex |= REX_R;
7275 }
7276 if (flag_code != CODE_64BIT && (i.rex & REX_R))
7277 {
7278 if (!i.types[i.tm.operand_types[0].bitfield.regmem].bitfield.control)
7279 abort ();
7280 i.rex &= ~REX_R;
7281 add_prefix (LOCK_PREFIX_OPCODE);
7282 }
7283 }
7284 else
7285 { /* If it's not 2 reg operands... */
7286 unsigned int mem;
7287
7288 if (i.mem_operands)
7289 {
7290 unsigned int fake_zero_displacement = 0;
7291 unsigned int op;
7292
7293 for (op = 0; op < i.operands; op++)
7294 if (operand_type_check (i.types[op], anymem))
7295 break;
7296 gas_assert (op < i.operands);
7297
7298 if (i.tm.opcode_modifier.vecsib)
7299 {
7300 if (i.index_reg->reg_num == RegIZ)
7301 abort ();
7302
7303 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7304 if (!i.base_reg)
7305 {
7306 i.sib.base = NO_BASE_REGISTER;
7307 i.sib.scale = i.log2_scale_factor;
7308 i.types[op].bitfield.disp8 = 0;
7309 i.types[op].bitfield.disp16 = 0;
7310 i.types[op].bitfield.disp64 = 0;
7311 if (flag_code != CODE_64BIT || i.prefix[ADDR_PREFIX])
7312 {
7313 /* Must be 32 bit */
7314 i.types[op].bitfield.disp32 = 1;
7315 i.types[op].bitfield.disp32s = 0;
7316 }
7317 else
7318 {
7319 i.types[op].bitfield.disp32 = 0;
7320 i.types[op].bitfield.disp32s = 1;
7321 }
7322 }
7323 i.sib.index = i.index_reg->reg_num;
7324 if ((i.index_reg->reg_flags & RegRex) != 0)
7325 i.rex |= REX_X;
7326 if ((i.index_reg->reg_flags & RegVRex) != 0)
7327 i.vrex |= REX_X;
7328 }
7329
7330 default_seg = &ds;
7331
7332 if (i.base_reg == 0)
7333 {
7334 i.rm.mode = 0;
7335 if (!i.disp_operands)
7336 fake_zero_displacement = 1;
7337 if (i.index_reg == 0)
7338 {
7339 i386_operand_type newdisp;
7340
7341 gas_assert (!i.tm.opcode_modifier.vecsib);
7342 /* Operand is just <disp> */
7343 if (flag_code == CODE_64BIT)
7344 {
7345 /* 64bit mode overwrites the 32bit absolute
7346 addressing by RIP relative addressing and
7347 absolute addressing is encoded by one of the
7348 redundant SIB forms. */
7349 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7350 i.sib.base = NO_BASE_REGISTER;
7351 i.sib.index = NO_INDEX_REGISTER;
7352 newdisp = (!i.prefix[ADDR_PREFIX] ? disp32s : disp32);
7353 }
7354 else if ((flag_code == CODE_16BIT)
7355 ^ (i.prefix[ADDR_PREFIX] != 0))
7356 {
7357 i.rm.regmem = NO_BASE_REGISTER_16;
7358 newdisp = disp16;
7359 }
7360 else
7361 {
7362 i.rm.regmem = NO_BASE_REGISTER;
7363 newdisp = disp32;
7364 }
7365 i.types[op] = operand_type_and_not (i.types[op], anydisp);
7366 i.types[op] = operand_type_or (i.types[op], newdisp);
7367 }
7368 else if (!i.tm.opcode_modifier.vecsib)
7369 {
7370 /* !i.base_reg && i.index_reg */
7371 if (i.index_reg->reg_num == RegIZ)
7372 i.sib.index = NO_INDEX_REGISTER;
7373 else
7374 i.sib.index = i.index_reg->reg_num;
7375 i.sib.base = NO_BASE_REGISTER;
7376 i.sib.scale = i.log2_scale_factor;
7377 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7378 i.types[op].bitfield.disp8 = 0;
7379 i.types[op].bitfield.disp16 = 0;
7380 i.types[op].bitfield.disp64 = 0;
7381 if (flag_code != CODE_64BIT || i.prefix[ADDR_PREFIX])
7382 {
7383 /* Must be 32 bit */
7384 i.types[op].bitfield.disp32 = 1;
7385 i.types[op].bitfield.disp32s = 0;
7386 }
7387 else
7388 {
7389 i.types[op].bitfield.disp32 = 0;
7390 i.types[op].bitfield.disp32s = 1;
7391 }
7392 if ((i.index_reg->reg_flags & RegRex) != 0)
7393 i.rex |= REX_X;
7394 }
7395 }
7396 /* RIP addressing for 64bit mode. */
7397 else if (i.base_reg->reg_num == RegIP)
7398 {
7399 gas_assert (!i.tm.opcode_modifier.vecsib);
7400 i.rm.regmem = NO_BASE_REGISTER;
7401 i.types[op].bitfield.disp8 = 0;
7402 i.types[op].bitfield.disp16 = 0;
7403 i.types[op].bitfield.disp32 = 0;
7404 i.types[op].bitfield.disp32s = 1;
7405 i.types[op].bitfield.disp64 = 0;
7406 i.flags[op] |= Operand_PCrel;
7407 if (! i.disp_operands)
7408 fake_zero_displacement = 1;
7409 }
7410 else if (i.base_reg->reg_type.bitfield.word)
7411 {
7412 gas_assert (!i.tm.opcode_modifier.vecsib);
7413 switch (i.base_reg->reg_num)
7414 {
7415 case 3: /* (%bx) */
7416 if (i.index_reg == 0)
7417 i.rm.regmem = 7;
7418 else /* (%bx,%si) -> 0, or (%bx,%di) -> 1 */
7419 i.rm.regmem = i.index_reg->reg_num - 6;
7420 break;
7421 case 5: /* (%bp) */
7422 default_seg = &ss;
7423 if (i.index_reg == 0)
7424 {
7425 i.rm.regmem = 6;
7426 if (operand_type_check (i.types[op], disp) == 0)
7427 {
7428 /* fake (%bp) into 0(%bp) */
7429 i.types[op].bitfield.disp8 = 1;
7430 fake_zero_displacement = 1;
7431 }
7432 }
7433 else /* (%bp,%si) -> 2, or (%bp,%di) -> 3 */
7434 i.rm.regmem = i.index_reg->reg_num - 6 + 2;
7435 break;
7436 default: /* (%si) -> 4 or (%di) -> 5 */
7437 i.rm.regmem = i.base_reg->reg_num - 6 + 4;
7438 }
7439 i.rm.mode = mode_from_disp_size (i.types[op]);
7440 }
7441 else /* i.base_reg and 32/64 bit mode */
7442 {
7443 if (flag_code == CODE_64BIT
7444 && operand_type_check (i.types[op], disp))
7445 {
7446 i.types[op].bitfield.disp16 = 0;
7447 i.types[op].bitfield.disp64 = 0;
7448 if (i.prefix[ADDR_PREFIX] == 0)
7449 {
7450 i.types[op].bitfield.disp32 = 0;
7451 i.types[op].bitfield.disp32s = 1;
7452 }
7453 else
7454 {
7455 i.types[op].bitfield.disp32 = 1;
7456 i.types[op].bitfield.disp32s = 0;
7457 }
7458 }
7459
7460 if (!i.tm.opcode_modifier.vecsib)
7461 i.rm.regmem = i.base_reg->reg_num;
7462 if ((i.base_reg->reg_flags & RegRex) != 0)
7463 i.rex |= REX_B;
7464 i.sib.base = i.base_reg->reg_num;
7465 /* x86-64 ignores REX prefix bit here to avoid decoder
7466 complications. */
7467 if (!(i.base_reg->reg_flags & RegRex)
7468 && (i.base_reg->reg_num == EBP_REG_NUM
7469 || i.base_reg->reg_num == ESP_REG_NUM))
7470 default_seg = &ss;
7471 if (i.base_reg->reg_num == 5 && i.disp_operands == 0)
7472 {
7473 fake_zero_displacement = 1;
7474 i.types[op].bitfield.disp8 = 1;
7475 }
7476 i.sib.scale = i.log2_scale_factor;
7477 if (i.index_reg == 0)
7478 {
7479 gas_assert (!i.tm.opcode_modifier.vecsib);
7480 /* <disp>(%esp) becomes two byte modrm with no index
7481 register. We've already stored the code for esp
7482 in i.rm.regmem ie. ESCAPE_TO_TWO_BYTE_ADDRESSING.
7483 Any base register besides %esp will not use the
7484 extra modrm byte. */
7485 i.sib.index = NO_INDEX_REGISTER;
7486 }
7487 else if (!i.tm.opcode_modifier.vecsib)
7488 {
7489 if (i.index_reg->reg_num == RegIZ)
7490 i.sib.index = NO_INDEX_REGISTER;
7491 else
7492 i.sib.index = i.index_reg->reg_num;
7493 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7494 if ((i.index_reg->reg_flags & RegRex) != 0)
7495 i.rex |= REX_X;
7496 }
7497
7498 if (i.disp_operands
7499 && (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
7500 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL))
7501 i.rm.mode = 0;
7502 else
7503 {
7504 if (!fake_zero_displacement
7505 && !i.disp_operands
7506 && i.disp_encoding)
7507 {
7508 fake_zero_displacement = 1;
7509 if (i.disp_encoding == disp_encoding_8bit)
7510 i.types[op].bitfield.disp8 = 1;
7511 else
7512 i.types[op].bitfield.disp32 = 1;
7513 }
7514 i.rm.mode = mode_from_disp_size (i.types[op]);
7515 }
7516 }
7517
7518 if (fake_zero_displacement)
7519 {
7520 /* Fakes a zero displacement assuming that i.types[op]
7521 holds the correct displacement size. */
7522 expressionS *exp;
7523
7524 gas_assert (i.op[op].disps == 0);
7525 exp = &disp_expressions[i.disp_operands++];
7526 i.op[op].disps = exp;
7527 exp->X_op = O_constant;
7528 exp->X_add_number = 0;
7529 exp->X_add_symbol = (symbolS *) 0;
7530 exp->X_op_symbol = (symbolS *) 0;
7531 }
7532
7533 mem = op;
7534 }
7535 else
7536 mem = ~0;
7537
7538 if (i.tm.opcode_modifier.vexsources == XOP2SOURCES)
7539 {
7540 if (operand_type_check (i.types[0], imm))
7541 i.vex.register_specifier = NULL;
7542 else
7543 {
7544 /* VEX.vvvv encodes one of the sources when the first
7545 operand is not an immediate. */
7546 if (i.tm.opcode_modifier.vexw == VEXW0)
7547 i.vex.register_specifier = i.op[0].regs;
7548 else
7549 i.vex.register_specifier = i.op[1].regs;
7550 }
7551
7552 /* Destination is a XMM register encoded in the ModRM.reg
7553 and VEX.R bit. */
7554 i.rm.reg = i.op[2].regs->reg_num;
7555 if ((i.op[2].regs->reg_flags & RegRex) != 0)
7556 i.rex |= REX_R;
7557
7558 /* ModRM.rm and VEX.B encodes the other source. */
7559 if (!i.mem_operands)
7560 {
7561 i.rm.mode = 3;
7562
7563 if (i.tm.opcode_modifier.vexw == VEXW0)
7564 i.rm.regmem = i.op[1].regs->reg_num;
7565 else
7566 i.rm.regmem = i.op[0].regs->reg_num;
7567
7568 if ((i.op[1].regs->reg_flags & RegRex) != 0)
7569 i.rex |= REX_B;
7570 }
7571 }
7572 else if (i.tm.opcode_modifier.vexvvvv == VEXLWP)
7573 {
7574 i.vex.register_specifier = i.op[2].regs;
7575 if (!i.mem_operands)
7576 {
7577 i.rm.mode = 3;
7578 i.rm.regmem = i.op[1].regs->reg_num;
7579 if ((i.op[1].regs->reg_flags & RegRex) != 0)
7580 i.rex |= REX_B;
7581 }
7582 }
7583 /* Fill in i.rm.reg or i.rm.regmem field with register operand
7584 (if any) based on i.tm.extension_opcode. Again, we must be
7585 careful to make sure that segment/control/debug/test/MMX
7586 registers are coded into the i.rm.reg field. */
7587 else if (i.reg_operands)
7588 {
7589 unsigned int op;
7590 unsigned int vex_reg = ~0;
7591
7592 for (op = 0; op < i.operands; op++)
7593 {
7594 if (i.types[op].bitfield.reg
7595 || i.types[op].bitfield.regbnd
7596 || i.types[op].bitfield.regmask
7597 || i.types[op].bitfield.sreg2
7598 || i.types[op].bitfield.sreg3
7599 || i.types[op].bitfield.control
7600 || i.types[op].bitfield.debug
7601 || i.types[op].bitfield.test)
7602 break;
7603 if (i.types[op].bitfield.regsimd)
7604 {
7605 if (i.types[op].bitfield.zmmword)
7606 i.has_regzmm = TRUE;
7607 else if (i.types[op].bitfield.ymmword)
7608 i.has_regymm = TRUE;
7609 else
7610 i.has_regxmm = TRUE;
7611 break;
7612 }
7613 if (i.types[op].bitfield.regmmx)
7614 {
7615 i.has_regmmx = TRUE;
7616 break;
7617 }
7618 }
7619
7620 if (vex_3_sources)
7621 op = dest;
7622 else if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
7623 {
7624 /* For instructions with VexNDS, the register-only
7625 source operand is encoded in VEX prefix. */
7626 gas_assert (mem != (unsigned int) ~0);
7627
7628 if (op > mem)
7629 {
7630 vex_reg = op++;
7631 gas_assert (op < i.operands);
7632 }
7633 else
7634 {
7635 /* Check register-only source operand when two source
7636 operands are swapped. */
7637 if (!i.tm.operand_types[op].bitfield.baseindex
7638 && i.tm.operand_types[op + 1].bitfield.baseindex)
7639 {
7640 vex_reg = op;
7641 op += 2;
7642 gas_assert (mem == (vex_reg + 1)
7643 && op < i.operands);
7644 }
7645 else
7646 {
7647 vex_reg = op + 1;
7648 gas_assert (vex_reg < i.operands);
7649 }
7650 }
7651 }
7652 else if (i.tm.opcode_modifier.vexvvvv == VEXNDD)
7653 {
7654 /* For instructions with VexNDD, the register destination
7655 is encoded in VEX prefix. */
7656 if (i.mem_operands == 0)
7657 {
7658 /* There is no memory operand. */
7659 gas_assert ((op + 2) == i.operands);
7660 vex_reg = op + 1;
7661 }
7662 else
7663 {
7664 /* There are only 2 non-immediate operands. */
7665 gas_assert (op < i.imm_operands + 2
7666 && i.operands == i.imm_operands + 2);
7667 vex_reg = i.imm_operands + 1;
7668 }
7669 }
7670 else
7671 gas_assert (op < i.operands);
7672
7673 if (vex_reg != (unsigned int) ~0)
7674 {
7675 i386_operand_type *type = &i.tm.operand_types[vex_reg];
7676
7677 if ((!type->bitfield.reg
7678 || (!type->bitfield.dword && !type->bitfield.qword))
7679 && !type->bitfield.regsimd
7680 && !operand_type_equal (type, &regmask))
7681 abort ();
7682
7683 i.vex.register_specifier = i.op[vex_reg].regs;
7684 }
7685
7686 /* Don't set OP operand twice. */
7687 if (vex_reg != op)
7688 {
7689 /* If there is an extension opcode to put here, the
7690 register number must be put into the regmem field. */
7691 if (i.tm.extension_opcode != None)
7692 {
7693 i.rm.regmem = i.op[op].regs->reg_num;
7694 if ((i.op[op].regs->reg_flags & RegRex) != 0)
7695 i.rex |= REX_B;
7696 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
7697 i.vrex |= REX_B;
7698 }
7699 else
7700 {
7701 i.rm.reg = i.op[op].regs->reg_num;
7702 if ((i.op[op].regs->reg_flags & RegRex) != 0)
7703 i.rex |= REX_R;
7704 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
7705 i.vrex |= REX_R;
7706 }
7707 }
7708
7709 /* Now, if no memory operand has set i.rm.mode = 0, 1, 2 we
7710 must set it to 3 to indicate this is a register operand
7711 in the regmem field. */
7712 if (!i.mem_operands)
7713 i.rm.mode = 3;
7714 }
7715
7716 /* Fill in i.rm.reg field with extension opcode (if any). */
7717 if (i.tm.extension_opcode != None)
7718 i.rm.reg = i.tm.extension_opcode;
7719 }
7720 return default_seg;
7721 }
7722
7723 static void
7724 output_branch (void)
7725 {
7726 char *p;
7727 int size;
7728 int code16;
7729 int prefix;
7730 relax_substateT subtype;
7731 symbolS *sym;
7732 offsetT off;
7733
7734 code16 = flag_code == CODE_16BIT ? CODE16 : 0;
7735 size = i.disp_encoding == disp_encoding_32bit ? BIG : SMALL;
7736
7737 prefix = 0;
7738 if (i.prefix[DATA_PREFIX] != 0)
7739 {
7740 prefix = 1;
7741 i.prefixes -= 1;
7742 code16 ^= CODE16;
7743 }
7744 /* Pentium4 branch hints. */
7745 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
7746 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
7747 {
7748 prefix++;
7749 i.prefixes--;
7750 }
7751 if (i.prefix[REX_PREFIX] != 0)
7752 {
7753 prefix++;
7754 i.prefixes--;
7755 }
7756
7757 /* BND prefixed jump. */
7758 if (i.prefix[BND_PREFIX] != 0)
7759 {
7760 FRAG_APPEND_1_CHAR (i.prefix[BND_PREFIX]);
7761 i.prefixes -= 1;
7762 }
7763
7764 if (i.prefixes != 0 && !intel_syntax)
7765 as_warn (_("skipping prefixes on this instruction"));
7766
7767 /* It's always a symbol; End frag & setup for relax.
7768 Make sure there is enough room in this frag for the largest
7769 instruction we may generate in md_convert_frag. This is 2
7770 bytes for the opcode and room for the prefix and largest
7771 displacement. */
7772 frag_grow (prefix + 2 + 4);
7773 /* Prefix and 1 opcode byte go in fr_fix. */
7774 p = frag_more (prefix + 1);
7775 if (i.prefix[DATA_PREFIX] != 0)
7776 *p++ = DATA_PREFIX_OPCODE;
7777 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE
7778 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE)
7779 *p++ = i.prefix[SEG_PREFIX];
7780 if (i.prefix[REX_PREFIX] != 0)
7781 *p++ = i.prefix[REX_PREFIX];
7782 *p = i.tm.base_opcode;
7783
7784 if ((unsigned char) *p == JUMP_PC_RELATIVE)
7785 subtype = ENCODE_RELAX_STATE (UNCOND_JUMP, size);
7786 else if (cpu_arch_flags.bitfield.cpui386)
7787 subtype = ENCODE_RELAX_STATE (COND_JUMP, size);
7788 else
7789 subtype = ENCODE_RELAX_STATE (COND_JUMP86, size);
7790 subtype |= code16;
7791
7792 sym = i.op[0].disps->X_add_symbol;
7793 off = i.op[0].disps->X_add_number;
7794
7795 if (i.op[0].disps->X_op != O_constant
7796 && i.op[0].disps->X_op != O_symbol)
7797 {
7798 /* Handle complex expressions. */
7799 sym = make_expr_symbol (i.op[0].disps);
7800 off = 0;
7801 }
7802
7803 /* 1 possible extra opcode + 4 byte displacement go in var part.
7804 Pass reloc in fr_var. */
7805 frag_var (rs_machine_dependent, 5, i.reloc[0], subtype, sym, off, p);
7806 }
7807
7808 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7809 /* Return TRUE iff PLT32 relocation should be used for branching to
7810 symbol S. */
7811
7812 static bfd_boolean
7813 need_plt32_p (symbolS *s)
7814 {
7815 /* PLT32 relocation is ELF only. */
7816 if (!IS_ELF)
7817 return FALSE;
7818
7819 #ifdef TE_SOLARIS
7820 /* Don't emit PLT32 relocation on Solaris: neither native linker nor
7821 krtld support it. */
7822 return FALSE;
7823 #endif
7824
7825 /* Since there is no need to prepare for PLT branch on x86-64, we
7826 can generate R_X86_64_PLT32, instead of R_X86_64_PC32, which can
7827 be used as a marker for 32-bit PC-relative branches. */
7828 if (!object_64bit)
7829 return FALSE;
7830
7831 /* Weak or undefined symbol need PLT32 relocation. */
7832 if (S_IS_WEAK (s) || !S_IS_DEFINED (s))
7833 return TRUE;
7834
7835 /* Non-global symbol doesn't need PLT32 relocation. */
7836 if (! S_IS_EXTERNAL (s))
7837 return FALSE;
7838
7839 /* Other global symbols need PLT32 relocation. NB: Symbol with
7840 non-default visibilities are treated as normal global symbol
7841 so that PLT32 relocation can be used as a marker for 32-bit
7842 PC-relative branches. It is useful for linker relaxation. */
7843 return TRUE;
7844 }
7845 #endif
7846
7847 static void
7848 output_jump (void)
7849 {
7850 char *p;
7851 int size;
7852 fixS *fixP;
7853 bfd_reloc_code_real_type jump_reloc = i.reloc[0];
7854
7855 if (i.tm.opcode_modifier.jumpbyte)
7856 {
7857 /* This is a loop or jecxz type instruction. */
7858 size = 1;
7859 if (i.prefix[ADDR_PREFIX] != 0)
7860 {
7861 FRAG_APPEND_1_CHAR (ADDR_PREFIX_OPCODE);
7862 i.prefixes -= 1;
7863 }
7864 /* Pentium4 branch hints. */
7865 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
7866 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
7867 {
7868 FRAG_APPEND_1_CHAR (i.prefix[SEG_PREFIX]);
7869 i.prefixes--;
7870 }
7871 }
7872 else
7873 {
7874 int code16;
7875
7876 code16 = 0;
7877 if (flag_code == CODE_16BIT)
7878 code16 = CODE16;
7879
7880 if (i.prefix[DATA_PREFIX] != 0)
7881 {
7882 FRAG_APPEND_1_CHAR (DATA_PREFIX_OPCODE);
7883 i.prefixes -= 1;
7884 code16 ^= CODE16;
7885 }
7886
7887 size = 4;
7888 if (code16)
7889 size = 2;
7890 }
7891
7892 if (i.prefix[REX_PREFIX] != 0)
7893 {
7894 FRAG_APPEND_1_CHAR (i.prefix[REX_PREFIX]);
7895 i.prefixes -= 1;
7896 }
7897
7898 /* BND prefixed jump. */
7899 if (i.prefix[BND_PREFIX] != 0)
7900 {
7901 FRAG_APPEND_1_CHAR (i.prefix[BND_PREFIX]);
7902 i.prefixes -= 1;
7903 }
7904
7905 if (i.prefixes != 0 && !intel_syntax)
7906 as_warn (_("skipping prefixes on this instruction"));
7907
7908 p = frag_more (i.tm.opcode_length + size);
7909 switch (i.tm.opcode_length)
7910 {
7911 case 2:
7912 *p++ = i.tm.base_opcode >> 8;
7913 /* Fall through. */
7914 case 1:
7915 *p++ = i.tm.base_opcode;
7916 break;
7917 default:
7918 abort ();
7919 }
7920
7921 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7922 if (size == 4
7923 && jump_reloc == NO_RELOC
7924 && need_plt32_p (i.op[0].disps->X_add_symbol))
7925 jump_reloc = BFD_RELOC_X86_64_PLT32;
7926 #endif
7927
7928 jump_reloc = reloc (size, 1, 1, jump_reloc);
7929
7930 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal, size,
7931 i.op[0].disps, 1, jump_reloc);
7932
7933 /* All jumps handled here are signed, but don't use a signed limit
7934 check for 32 and 16 bit jumps as we want to allow wrap around at
7935 4G and 64k respectively. */
7936 if (size == 1)
7937 fixP->fx_signed = 1;
7938 }
7939
7940 static void
7941 output_interseg_jump (void)
7942 {
7943 char *p;
7944 int size;
7945 int prefix;
7946 int code16;
7947
7948 code16 = 0;
7949 if (flag_code == CODE_16BIT)
7950 code16 = CODE16;
7951
7952 prefix = 0;
7953 if (i.prefix[DATA_PREFIX] != 0)
7954 {
7955 prefix = 1;
7956 i.prefixes -= 1;
7957 code16 ^= CODE16;
7958 }
7959 if (i.prefix[REX_PREFIX] != 0)
7960 {
7961 prefix++;
7962 i.prefixes -= 1;
7963 }
7964
7965 size = 4;
7966 if (code16)
7967 size = 2;
7968
7969 if (i.prefixes != 0 && !intel_syntax)
7970 as_warn (_("skipping prefixes on this instruction"));
7971
7972 /* 1 opcode; 2 segment; offset */
7973 p = frag_more (prefix + 1 + 2 + size);
7974
7975 if (i.prefix[DATA_PREFIX] != 0)
7976 *p++ = DATA_PREFIX_OPCODE;
7977
7978 if (i.prefix[REX_PREFIX] != 0)
7979 *p++ = i.prefix[REX_PREFIX];
7980
7981 *p++ = i.tm.base_opcode;
7982 if (i.op[1].imms->X_op == O_constant)
7983 {
7984 offsetT n = i.op[1].imms->X_add_number;
7985
7986 if (size == 2
7987 && !fits_in_unsigned_word (n)
7988 && !fits_in_signed_word (n))
7989 {
7990 as_bad (_("16-bit jump out of range"));
7991 return;
7992 }
7993 md_number_to_chars (p, n, size);
7994 }
7995 else
7996 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
7997 i.op[1].imms, 0, reloc (size, 0, 0, i.reloc[1]));
7998 if (i.op[0].imms->X_op != O_constant)
7999 as_bad (_("can't handle non absolute segment in `%s'"),
8000 i.tm.name);
8001 md_number_to_chars (p + size, (valueT) i.op[0].imms->X_add_number, 2);
8002 }
8003
8004 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8005 void
8006 x86_cleanup (void)
8007 {
8008 char *p;
8009 asection *seg = now_seg;
8010 subsegT subseg = now_subseg;
8011 asection *sec;
8012 unsigned int alignment, align_size_1;
8013 unsigned int isa_1_descsz, feature_2_descsz, descsz;
8014 unsigned int isa_1_descsz_raw, feature_2_descsz_raw;
8015 unsigned int padding;
8016
8017 if (!IS_ELF || !x86_used_note)
8018 return;
8019
8020 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_X86;
8021
8022 /* The .note.gnu.property section layout:
8023
8024 Field Length Contents
8025 ---- ---- ----
8026 n_namsz 4 4
8027 n_descsz 4 The note descriptor size
8028 n_type 4 NT_GNU_PROPERTY_TYPE_0
8029 n_name 4 "GNU"
8030 n_desc n_descsz The program property array
8031 .... .... ....
8032 */
8033
8034 /* Create the .note.gnu.property section. */
8035 sec = subseg_new (NOTE_GNU_PROPERTY_SECTION_NAME, 0);
8036 bfd_set_section_flags (stdoutput, sec,
8037 (SEC_ALLOC
8038 | SEC_LOAD
8039 | SEC_DATA
8040 | SEC_HAS_CONTENTS
8041 | SEC_READONLY));
8042
8043 if (get_elf_backend_data (stdoutput)->s->elfclass == ELFCLASS64)
8044 {
8045 align_size_1 = 7;
8046 alignment = 3;
8047 }
8048 else
8049 {
8050 align_size_1 = 3;
8051 alignment = 2;
8052 }
8053
8054 bfd_set_section_alignment (stdoutput, sec, alignment);
8055 elf_section_type (sec) = SHT_NOTE;
8056
8057 /* GNU_PROPERTY_X86_ISA_1_USED: 4-byte type + 4-byte data size
8058 + 4-byte data */
8059 isa_1_descsz_raw = 4 + 4 + 4;
8060 /* Align GNU_PROPERTY_X86_ISA_1_USED. */
8061 isa_1_descsz = (isa_1_descsz_raw + align_size_1) & ~align_size_1;
8062
8063 feature_2_descsz_raw = isa_1_descsz;
8064 /* GNU_PROPERTY_X86_FEATURE_2_USED: 4-byte type + 4-byte data size
8065 + 4-byte data */
8066 feature_2_descsz_raw += 4 + 4 + 4;
8067 /* Align GNU_PROPERTY_X86_FEATURE_2_USED. */
8068 feature_2_descsz = ((feature_2_descsz_raw + align_size_1)
8069 & ~align_size_1);
8070
8071 descsz = feature_2_descsz;
8072 /* Section size: n_namsz + n_descsz + n_type + n_name + n_descsz. */
8073 p = frag_more (4 + 4 + 4 + 4 + descsz);
8074
8075 /* Write n_namsz. */
8076 md_number_to_chars (p, (valueT) 4, 4);
8077
8078 /* Write n_descsz. */
8079 md_number_to_chars (p + 4, (valueT) descsz, 4);
8080
8081 /* Write n_type. */
8082 md_number_to_chars (p + 4 * 2, (valueT) NT_GNU_PROPERTY_TYPE_0, 4);
8083
8084 /* Write n_name. */
8085 memcpy (p + 4 * 3, "GNU", 4);
8086
8087 /* Write 4-byte type. */
8088 md_number_to_chars (p + 4 * 4,
8089 (valueT) GNU_PROPERTY_X86_ISA_1_USED, 4);
8090
8091 /* Write 4-byte data size. */
8092 md_number_to_chars (p + 4 * 5, (valueT) 4, 4);
8093
8094 /* Write 4-byte data. */
8095 md_number_to_chars (p + 4 * 6, (valueT) x86_isa_1_used, 4);
8096
8097 /* Zero out paddings. */
8098 padding = isa_1_descsz - isa_1_descsz_raw;
8099 if (padding)
8100 memset (p + 4 * 7, 0, padding);
8101
8102 /* Write 4-byte type. */
8103 md_number_to_chars (p + isa_1_descsz + 4 * 4,
8104 (valueT) GNU_PROPERTY_X86_FEATURE_2_USED, 4);
8105
8106 /* Write 4-byte data size. */
8107 md_number_to_chars (p + isa_1_descsz + 4 * 5, (valueT) 4, 4);
8108
8109 /* Write 4-byte data. */
8110 md_number_to_chars (p + isa_1_descsz + 4 * 6,
8111 (valueT) x86_feature_2_used, 4);
8112
8113 /* Zero out paddings. */
8114 padding = feature_2_descsz - feature_2_descsz_raw;
8115 if (padding)
8116 memset (p + isa_1_descsz + 4 * 7, 0, padding);
8117
8118 /* We probably can't restore the current segment, for there likely
8119 isn't one yet... */
8120 if (seg && subseg)
8121 subseg_set (seg, subseg);
8122 }
8123 #endif
8124
8125 static void
8126 output_insn (void)
8127 {
8128 fragS *insn_start_frag;
8129 offsetT insn_start_off;
8130
8131 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8132 if (IS_ELF && x86_used_note)
8133 {
8134 if (i.tm.cpu_flags.bitfield.cpucmov)
8135 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_CMOV;
8136 if (i.tm.cpu_flags.bitfield.cpusse)
8137 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE;
8138 if (i.tm.cpu_flags.bitfield.cpusse2)
8139 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE2;
8140 if (i.tm.cpu_flags.bitfield.cpusse3)
8141 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE3;
8142 if (i.tm.cpu_flags.bitfield.cpussse3)
8143 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSSE3;
8144 if (i.tm.cpu_flags.bitfield.cpusse4_1)
8145 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE4_1;
8146 if (i.tm.cpu_flags.bitfield.cpusse4_2)
8147 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE4_2;
8148 if (i.tm.cpu_flags.bitfield.cpuavx)
8149 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX;
8150 if (i.tm.cpu_flags.bitfield.cpuavx2)
8151 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX2;
8152 if (i.tm.cpu_flags.bitfield.cpufma)
8153 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_FMA;
8154 if (i.tm.cpu_flags.bitfield.cpuavx512f)
8155 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512F;
8156 if (i.tm.cpu_flags.bitfield.cpuavx512cd)
8157 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512CD;
8158 if (i.tm.cpu_flags.bitfield.cpuavx512er)
8159 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512ER;
8160 if (i.tm.cpu_flags.bitfield.cpuavx512pf)
8161 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512PF;
8162 if (i.tm.cpu_flags.bitfield.cpuavx512vl)
8163 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512VL;
8164 if (i.tm.cpu_flags.bitfield.cpuavx512dq)
8165 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512DQ;
8166 if (i.tm.cpu_flags.bitfield.cpuavx512bw)
8167 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512BW;
8168 if (i.tm.cpu_flags.bitfield.cpuavx512_4fmaps)
8169 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_4FMAPS;
8170 if (i.tm.cpu_flags.bitfield.cpuavx512_4vnniw)
8171 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_4VNNIW;
8172 if (i.tm.cpu_flags.bitfield.cpuavx512_bitalg)
8173 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_BITALG;
8174 if (i.tm.cpu_flags.bitfield.cpuavx512ifma)
8175 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_IFMA;
8176 if (i.tm.cpu_flags.bitfield.cpuavx512vbmi)
8177 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_VBMI;
8178 if (i.tm.cpu_flags.bitfield.cpuavx512_vbmi2)
8179 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_VBMI2;
8180 if (i.tm.cpu_flags.bitfield.cpuavx512_vnni)
8181 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_VNNI;
8182 if (i.tm.cpu_flags.bitfield.cpuavx512_bf16)
8183 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_BF16;
8184
8185 if (i.tm.cpu_flags.bitfield.cpu8087
8186 || i.tm.cpu_flags.bitfield.cpu287
8187 || i.tm.cpu_flags.bitfield.cpu387
8188 || i.tm.cpu_flags.bitfield.cpu687
8189 || i.tm.cpu_flags.bitfield.cpufisttp)
8190 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_X87;
8191 /* Don't set GNU_PROPERTY_X86_FEATURE_2_MMX for prefetchtXXX nor
8192 Xfence instructions. */
8193 if (i.tm.base_opcode != 0xf18
8194 && i.tm.base_opcode != 0xf0d
8195 && i.tm.base_opcode != 0xfae
8196 && (i.has_regmmx
8197 || i.tm.cpu_flags.bitfield.cpummx
8198 || i.tm.cpu_flags.bitfield.cpua3dnow
8199 || i.tm.cpu_flags.bitfield.cpua3dnowa))
8200 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_MMX;
8201 if (i.has_regxmm)
8202 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XMM;
8203 if (i.has_regymm)
8204 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_YMM;
8205 if (i.has_regzmm)
8206 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_ZMM;
8207 if (i.tm.cpu_flags.bitfield.cpufxsr)
8208 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_FXSR;
8209 if (i.tm.cpu_flags.bitfield.cpuxsave)
8210 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XSAVE;
8211 if (i.tm.cpu_flags.bitfield.cpuxsaveopt)
8212 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XSAVEOPT;
8213 if (i.tm.cpu_flags.bitfield.cpuxsavec)
8214 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XSAVEC;
8215 }
8216 #endif
8217
8218 /* Tie dwarf2 debug info to the address at the start of the insn.
8219 We can't do this after the insn has been output as the current
8220 frag may have been closed off. eg. by frag_var. */
8221 dwarf2_emit_insn (0);
8222
8223 insn_start_frag = frag_now;
8224 insn_start_off = frag_now_fix ();
8225
8226 /* Output jumps. */
8227 if (i.tm.opcode_modifier.jump)
8228 output_branch ();
8229 else if (i.tm.opcode_modifier.jumpbyte
8230 || i.tm.opcode_modifier.jumpdword)
8231 output_jump ();
8232 else if (i.tm.opcode_modifier.jumpintersegment)
8233 output_interseg_jump ();
8234 else
8235 {
8236 /* Output normal instructions here. */
8237 char *p;
8238 unsigned char *q;
8239 unsigned int j;
8240 unsigned int prefix;
8241
8242 if (avoid_fence
8243 && i.tm.base_opcode == 0xfae
8244 && i.operands == 1
8245 && i.imm_operands == 1
8246 && (i.op[0].imms->X_add_number == 0xe8
8247 || i.op[0].imms->X_add_number == 0xf0
8248 || i.op[0].imms->X_add_number == 0xf8))
8249 {
8250 /* Encode lfence, mfence, and sfence as
8251 f0 83 04 24 00 lock addl $0x0, (%{re}sp). */
8252 offsetT val = 0x240483f0ULL;
8253 p = frag_more (5);
8254 md_number_to_chars (p, val, 5);
8255 return;
8256 }
8257
8258 /* Some processors fail on LOCK prefix. This options makes
8259 assembler ignore LOCK prefix and serves as a workaround. */
8260 if (omit_lock_prefix)
8261 {
8262 if (i.tm.base_opcode == LOCK_PREFIX_OPCODE)
8263 return;
8264 i.prefix[LOCK_PREFIX] = 0;
8265 }
8266
8267 /* Since the VEX/EVEX prefix contains the implicit prefix, we
8268 don't need the explicit prefix. */
8269 if (!i.tm.opcode_modifier.vex && !i.tm.opcode_modifier.evex)
8270 {
8271 switch (i.tm.opcode_length)
8272 {
8273 case 3:
8274 if (i.tm.base_opcode & 0xff000000)
8275 {
8276 prefix = (i.tm.base_opcode >> 24) & 0xff;
8277 add_prefix (prefix);
8278 }
8279 break;
8280 case 2:
8281 if ((i.tm.base_opcode & 0xff0000) != 0)
8282 {
8283 prefix = (i.tm.base_opcode >> 16) & 0xff;
8284 if (!i.tm.cpu_flags.bitfield.cpupadlock
8285 || prefix != REPE_PREFIX_OPCODE
8286 || (i.prefix[REP_PREFIX] != REPE_PREFIX_OPCODE))
8287 add_prefix (prefix);
8288 }
8289 break;
8290 case 1:
8291 break;
8292 case 0:
8293 /* Check for pseudo prefixes. */
8294 as_bad_where (insn_start_frag->fr_file,
8295 insn_start_frag->fr_line,
8296 _("pseudo prefix without instruction"));
8297 return;
8298 default:
8299 abort ();
8300 }
8301
8302 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
8303 /* For x32, add a dummy REX_OPCODE prefix for mov/add with
8304 R_X86_64_GOTTPOFF relocation so that linker can safely
8305 perform IE->LE optimization. */
8306 if (x86_elf_abi == X86_64_X32_ABI
8307 && i.operands == 2
8308 && i.reloc[0] == BFD_RELOC_X86_64_GOTTPOFF
8309 && i.prefix[REX_PREFIX] == 0)
8310 add_prefix (REX_OPCODE);
8311 #endif
8312
8313 /* The prefix bytes. */
8314 for (j = ARRAY_SIZE (i.prefix), q = i.prefix; j > 0; j--, q++)
8315 if (*q)
8316 FRAG_APPEND_1_CHAR (*q);
8317 }
8318 else
8319 {
8320 for (j = 0, q = i.prefix; j < ARRAY_SIZE (i.prefix); j++, q++)
8321 if (*q)
8322 switch (j)
8323 {
8324 case REX_PREFIX:
8325 /* REX byte is encoded in VEX prefix. */
8326 break;
8327 case SEG_PREFIX:
8328 case ADDR_PREFIX:
8329 FRAG_APPEND_1_CHAR (*q);
8330 break;
8331 default:
8332 /* There should be no other prefixes for instructions
8333 with VEX prefix. */
8334 abort ();
8335 }
8336
8337 /* For EVEX instructions i.vrex should become 0 after
8338 build_evex_prefix. For VEX instructions upper 16 registers
8339 aren't available, so VREX should be 0. */
8340 if (i.vrex)
8341 abort ();
8342 /* Now the VEX prefix. */
8343 p = frag_more (i.vex.length);
8344 for (j = 0; j < i.vex.length; j++)
8345 p[j] = i.vex.bytes[j];
8346 }
8347
8348 /* Now the opcode; be careful about word order here! */
8349 if (i.tm.opcode_length == 1)
8350 {
8351 FRAG_APPEND_1_CHAR (i.tm.base_opcode);
8352 }
8353 else
8354 {
8355 switch (i.tm.opcode_length)
8356 {
8357 case 4:
8358 p = frag_more (4);
8359 *p++ = (i.tm.base_opcode >> 24) & 0xff;
8360 *p++ = (i.tm.base_opcode >> 16) & 0xff;
8361 break;
8362 case 3:
8363 p = frag_more (3);
8364 *p++ = (i.tm.base_opcode >> 16) & 0xff;
8365 break;
8366 case 2:
8367 p = frag_more (2);
8368 break;
8369 default:
8370 abort ();
8371 break;
8372 }
8373
8374 /* Put out high byte first: can't use md_number_to_chars! */
8375 *p++ = (i.tm.base_opcode >> 8) & 0xff;
8376 *p = i.tm.base_opcode & 0xff;
8377 }
8378
8379 /* Now the modrm byte and sib byte (if present). */
8380 if (i.tm.opcode_modifier.modrm)
8381 {
8382 FRAG_APPEND_1_CHAR ((i.rm.regmem << 0
8383 | i.rm.reg << 3
8384 | i.rm.mode << 6));
8385 /* If i.rm.regmem == ESP (4)
8386 && i.rm.mode != (Register mode)
8387 && not 16 bit
8388 ==> need second modrm byte. */
8389 if (i.rm.regmem == ESCAPE_TO_TWO_BYTE_ADDRESSING
8390 && i.rm.mode != 3
8391 && !(i.base_reg && i.base_reg->reg_type.bitfield.word))
8392 FRAG_APPEND_1_CHAR ((i.sib.base << 0
8393 | i.sib.index << 3
8394 | i.sib.scale << 6));
8395 }
8396
8397 if (i.disp_operands)
8398 output_disp (insn_start_frag, insn_start_off);
8399
8400 if (i.imm_operands)
8401 output_imm (insn_start_frag, insn_start_off);
8402 }
8403
8404 #ifdef DEBUG386
8405 if (flag_debug)
8406 {
8407 pi ("" /*line*/, &i);
8408 }
8409 #endif /* DEBUG386 */
8410 }
8411
8412 /* Return the size of the displacement operand N. */
8413
8414 static int
8415 disp_size (unsigned int n)
8416 {
8417 int size = 4;
8418
8419 if (i.types[n].bitfield.disp64)
8420 size = 8;
8421 else if (i.types[n].bitfield.disp8)
8422 size = 1;
8423 else if (i.types[n].bitfield.disp16)
8424 size = 2;
8425 return size;
8426 }
8427
8428 /* Return the size of the immediate operand N. */
8429
8430 static int
8431 imm_size (unsigned int n)
8432 {
8433 int size = 4;
8434 if (i.types[n].bitfield.imm64)
8435 size = 8;
8436 else if (i.types[n].bitfield.imm8 || i.types[n].bitfield.imm8s)
8437 size = 1;
8438 else if (i.types[n].bitfield.imm16)
8439 size = 2;
8440 return size;
8441 }
8442
8443 static void
8444 output_disp (fragS *insn_start_frag, offsetT insn_start_off)
8445 {
8446 char *p;
8447 unsigned int n;
8448
8449 for (n = 0; n < i.operands; n++)
8450 {
8451 if (operand_type_check (i.types[n], disp))
8452 {
8453 if (i.op[n].disps->X_op == O_constant)
8454 {
8455 int size = disp_size (n);
8456 offsetT val = i.op[n].disps->X_add_number;
8457
8458 val = offset_in_range (val >> (size == 1 ? i.memshift : 0),
8459 size);
8460 p = frag_more (size);
8461 md_number_to_chars (p, val, size);
8462 }
8463 else
8464 {
8465 enum bfd_reloc_code_real reloc_type;
8466 int size = disp_size (n);
8467 int sign = i.types[n].bitfield.disp32s;
8468 int pcrel = (i.flags[n] & Operand_PCrel) != 0;
8469 fixS *fixP;
8470
8471 /* We can't have 8 bit displacement here. */
8472 gas_assert (!i.types[n].bitfield.disp8);
8473
8474 /* The PC relative address is computed relative
8475 to the instruction boundary, so in case immediate
8476 fields follows, we need to adjust the value. */
8477 if (pcrel && i.imm_operands)
8478 {
8479 unsigned int n1;
8480 int sz = 0;
8481
8482 for (n1 = 0; n1 < i.operands; n1++)
8483 if (operand_type_check (i.types[n1], imm))
8484 {
8485 /* Only one immediate is allowed for PC
8486 relative address. */
8487 gas_assert (sz == 0);
8488 sz = imm_size (n1);
8489 i.op[n].disps->X_add_number -= sz;
8490 }
8491 /* We should find the immediate. */
8492 gas_assert (sz != 0);
8493 }
8494
8495 p = frag_more (size);
8496 reloc_type = reloc (size, pcrel, sign, i.reloc[n]);
8497 if (GOT_symbol
8498 && GOT_symbol == i.op[n].disps->X_add_symbol
8499 && (((reloc_type == BFD_RELOC_32
8500 || reloc_type == BFD_RELOC_X86_64_32S
8501 || (reloc_type == BFD_RELOC_64
8502 && object_64bit))
8503 && (i.op[n].disps->X_op == O_symbol
8504 || (i.op[n].disps->X_op == O_add
8505 && ((symbol_get_value_expression
8506 (i.op[n].disps->X_op_symbol)->X_op)
8507 == O_subtract))))
8508 || reloc_type == BFD_RELOC_32_PCREL))
8509 {
8510 offsetT add;
8511
8512 if (insn_start_frag == frag_now)
8513 add = (p - frag_now->fr_literal) - insn_start_off;
8514 else
8515 {
8516 fragS *fr;
8517
8518 add = insn_start_frag->fr_fix - insn_start_off;
8519 for (fr = insn_start_frag->fr_next;
8520 fr && fr != frag_now; fr = fr->fr_next)
8521 add += fr->fr_fix;
8522 add += p - frag_now->fr_literal;
8523 }
8524
8525 if (!object_64bit)
8526 {
8527 reloc_type = BFD_RELOC_386_GOTPC;
8528 i.op[n].imms->X_add_number += add;
8529 }
8530 else if (reloc_type == BFD_RELOC_64)
8531 reloc_type = BFD_RELOC_X86_64_GOTPC64;
8532 else
8533 /* Don't do the adjustment for x86-64, as there
8534 the pcrel addressing is relative to the _next_
8535 insn, and that is taken care of in other code. */
8536 reloc_type = BFD_RELOC_X86_64_GOTPC32;
8537 }
8538 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal,
8539 size, i.op[n].disps, pcrel,
8540 reloc_type);
8541 /* Check for "call/jmp *mem", "mov mem, %reg",
8542 "test %reg, mem" and "binop mem, %reg" where binop
8543 is one of adc, add, and, cmp, or, sbb, sub, xor
8544 instructions without data prefix. Always generate
8545 R_386_GOT32X for "sym*GOT" operand in 32-bit mode. */
8546 if (i.prefix[DATA_PREFIX] == 0
8547 && (generate_relax_relocations
8548 || (!object_64bit
8549 && i.rm.mode == 0
8550 && i.rm.regmem == 5))
8551 && (i.rm.mode == 2
8552 || (i.rm.mode == 0 && i.rm.regmem == 5))
8553 && ((i.operands == 1
8554 && i.tm.base_opcode == 0xff
8555 && (i.rm.reg == 2 || i.rm.reg == 4))
8556 || (i.operands == 2
8557 && (i.tm.base_opcode == 0x8b
8558 || i.tm.base_opcode == 0x85
8559 || (i.tm.base_opcode & 0xc7) == 0x03))))
8560 {
8561 if (object_64bit)
8562 {
8563 fixP->fx_tcbit = i.rex != 0;
8564 if (i.base_reg
8565 && (i.base_reg->reg_num == RegIP))
8566 fixP->fx_tcbit2 = 1;
8567 }
8568 else
8569 fixP->fx_tcbit2 = 1;
8570 }
8571 }
8572 }
8573 }
8574 }
8575
8576 static void
8577 output_imm (fragS *insn_start_frag, offsetT insn_start_off)
8578 {
8579 char *p;
8580 unsigned int n;
8581
8582 for (n = 0; n < i.operands; n++)
8583 {
8584 /* Skip SAE/RC Imm operand in EVEX. They are already handled. */
8585 if (i.rounding && (int) n == i.rounding->operand)
8586 continue;
8587
8588 if (operand_type_check (i.types[n], imm))
8589 {
8590 if (i.op[n].imms->X_op == O_constant)
8591 {
8592 int size = imm_size (n);
8593 offsetT val;
8594
8595 val = offset_in_range (i.op[n].imms->X_add_number,
8596 size);
8597 p = frag_more (size);
8598 md_number_to_chars (p, val, size);
8599 }
8600 else
8601 {
8602 /* Not absolute_section.
8603 Need a 32-bit fixup (don't support 8bit
8604 non-absolute imms). Try to support other
8605 sizes ... */
8606 enum bfd_reloc_code_real reloc_type;
8607 int size = imm_size (n);
8608 int sign;
8609
8610 if (i.types[n].bitfield.imm32s
8611 && (i.suffix == QWORD_MNEM_SUFFIX
8612 || (!i.suffix && i.tm.opcode_modifier.no_lsuf)))
8613 sign = 1;
8614 else
8615 sign = 0;
8616
8617 p = frag_more (size);
8618 reloc_type = reloc (size, 0, sign, i.reloc[n]);
8619
8620 /* This is tough to explain. We end up with this one if we
8621 * have operands that look like
8622 * "_GLOBAL_OFFSET_TABLE_+[.-.L284]". The goal here is to
8623 * obtain the absolute address of the GOT, and it is strongly
8624 * preferable from a performance point of view to avoid using
8625 * a runtime relocation for this. The actual sequence of
8626 * instructions often look something like:
8627 *
8628 * call .L66
8629 * .L66:
8630 * popl %ebx
8631 * addl $_GLOBAL_OFFSET_TABLE_+[.-.L66],%ebx
8632 *
8633 * The call and pop essentially return the absolute address
8634 * of the label .L66 and store it in %ebx. The linker itself
8635 * will ultimately change the first operand of the addl so
8636 * that %ebx points to the GOT, but to keep things simple, the
8637 * .o file must have this operand set so that it generates not
8638 * the absolute address of .L66, but the absolute address of
8639 * itself. This allows the linker itself simply treat a GOTPC
8640 * relocation as asking for a pcrel offset to the GOT to be
8641 * added in, and the addend of the relocation is stored in the
8642 * operand field for the instruction itself.
8643 *
8644 * Our job here is to fix the operand so that it would add
8645 * the correct offset so that %ebx would point to itself. The
8646 * thing that is tricky is that .-.L66 will point to the
8647 * beginning of the instruction, so we need to further modify
8648 * the operand so that it will point to itself. There are
8649 * other cases where you have something like:
8650 *
8651 * .long $_GLOBAL_OFFSET_TABLE_+[.-.L66]
8652 *
8653 * and here no correction would be required. Internally in
8654 * the assembler we treat operands of this form as not being
8655 * pcrel since the '.' is explicitly mentioned, and I wonder
8656 * whether it would simplify matters to do it this way. Who
8657 * knows. In earlier versions of the PIC patches, the
8658 * pcrel_adjust field was used to store the correction, but
8659 * since the expression is not pcrel, I felt it would be
8660 * confusing to do it this way. */
8661
8662 if ((reloc_type == BFD_RELOC_32
8663 || reloc_type == BFD_RELOC_X86_64_32S
8664 || reloc_type == BFD_RELOC_64)
8665 && GOT_symbol
8666 && GOT_symbol == i.op[n].imms->X_add_symbol
8667 && (i.op[n].imms->X_op == O_symbol
8668 || (i.op[n].imms->X_op == O_add
8669 && ((symbol_get_value_expression
8670 (i.op[n].imms->X_op_symbol)->X_op)
8671 == O_subtract))))
8672 {
8673 offsetT add;
8674
8675 if (insn_start_frag == frag_now)
8676 add = (p - frag_now->fr_literal) - insn_start_off;
8677 else
8678 {
8679 fragS *fr;
8680
8681 add = insn_start_frag->fr_fix - insn_start_off;
8682 for (fr = insn_start_frag->fr_next;
8683 fr && fr != frag_now; fr = fr->fr_next)
8684 add += fr->fr_fix;
8685 add += p - frag_now->fr_literal;
8686 }
8687
8688 if (!object_64bit)
8689 reloc_type = BFD_RELOC_386_GOTPC;
8690 else if (size == 4)
8691 reloc_type = BFD_RELOC_X86_64_GOTPC32;
8692 else if (size == 8)
8693 reloc_type = BFD_RELOC_X86_64_GOTPC64;
8694 i.op[n].imms->X_add_number += add;
8695 }
8696 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
8697 i.op[n].imms, 0, reloc_type);
8698 }
8699 }
8700 }
8701 }
8702 \f
8703 /* x86_cons_fix_new is called via the expression parsing code when a
8704 reloc is needed. We use this hook to get the correct .got reloc. */
8705 static int cons_sign = -1;
8706
8707 void
8708 x86_cons_fix_new (fragS *frag, unsigned int off, unsigned int len,
8709 expressionS *exp, bfd_reloc_code_real_type r)
8710 {
8711 r = reloc (len, 0, cons_sign, r);
8712
8713 #ifdef TE_PE
8714 if (exp->X_op == O_secrel)
8715 {
8716 exp->X_op = O_symbol;
8717 r = BFD_RELOC_32_SECREL;
8718 }
8719 #endif
8720
8721 fix_new_exp (frag, off, len, exp, 0, r);
8722 }
8723
8724 /* Export the ABI address size for use by TC_ADDRESS_BYTES for the
8725 purpose of the `.dc.a' internal pseudo-op. */
8726
8727 int
8728 x86_address_bytes (void)
8729 {
8730 if ((stdoutput->arch_info->mach & bfd_mach_x64_32))
8731 return 4;
8732 return stdoutput->arch_info->bits_per_address / 8;
8733 }
8734
8735 #if !(defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) || defined (OBJ_MACH_O)) \
8736 || defined (LEX_AT)
8737 # define lex_got(reloc, adjust, types) NULL
8738 #else
8739 /* Parse operands of the form
8740 <symbol>@GOTOFF+<nnn>
8741 and similar .plt or .got references.
8742
8743 If we find one, set up the correct relocation in RELOC and copy the
8744 input string, minus the `@GOTOFF' into a malloc'd buffer for
8745 parsing by the calling routine. Return this buffer, and if ADJUST
8746 is non-null set it to the length of the string we removed from the
8747 input line. Otherwise return NULL. */
8748 static char *
8749 lex_got (enum bfd_reloc_code_real *rel,
8750 int *adjust,
8751 i386_operand_type *types)
8752 {
8753 /* Some of the relocations depend on the size of what field is to
8754 be relocated. But in our callers i386_immediate and i386_displacement
8755 we don't yet know the operand size (this will be set by insn
8756 matching). Hence we record the word32 relocation here,
8757 and adjust the reloc according to the real size in reloc(). */
8758 static const struct {
8759 const char *str;
8760 int len;
8761 const enum bfd_reloc_code_real rel[2];
8762 const i386_operand_type types64;
8763 } gotrel[] = {
8764 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8765 { STRING_COMMA_LEN ("SIZE"), { BFD_RELOC_SIZE32,
8766 BFD_RELOC_SIZE32 },
8767 OPERAND_TYPE_IMM32_64 },
8768 #endif
8769 { STRING_COMMA_LEN ("PLTOFF"), { _dummy_first_bfd_reloc_code_real,
8770 BFD_RELOC_X86_64_PLTOFF64 },
8771 OPERAND_TYPE_IMM64 },
8772 { STRING_COMMA_LEN ("PLT"), { BFD_RELOC_386_PLT32,
8773 BFD_RELOC_X86_64_PLT32 },
8774 OPERAND_TYPE_IMM32_32S_DISP32 },
8775 { STRING_COMMA_LEN ("GOTPLT"), { _dummy_first_bfd_reloc_code_real,
8776 BFD_RELOC_X86_64_GOTPLT64 },
8777 OPERAND_TYPE_IMM64_DISP64 },
8778 { STRING_COMMA_LEN ("GOTOFF"), { BFD_RELOC_386_GOTOFF,
8779 BFD_RELOC_X86_64_GOTOFF64 },
8780 OPERAND_TYPE_IMM64_DISP64 },
8781 { STRING_COMMA_LEN ("GOTPCREL"), { _dummy_first_bfd_reloc_code_real,
8782 BFD_RELOC_X86_64_GOTPCREL },
8783 OPERAND_TYPE_IMM32_32S_DISP32 },
8784 { STRING_COMMA_LEN ("TLSGD"), { BFD_RELOC_386_TLS_GD,
8785 BFD_RELOC_X86_64_TLSGD },
8786 OPERAND_TYPE_IMM32_32S_DISP32 },
8787 { STRING_COMMA_LEN ("TLSLDM"), { BFD_RELOC_386_TLS_LDM,
8788 _dummy_first_bfd_reloc_code_real },
8789 OPERAND_TYPE_NONE },
8790 { STRING_COMMA_LEN ("TLSLD"), { _dummy_first_bfd_reloc_code_real,
8791 BFD_RELOC_X86_64_TLSLD },
8792 OPERAND_TYPE_IMM32_32S_DISP32 },
8793 { STRING_COMMA_LEN ("GOTTPOFF"), { BFD_RELOC_386_TLS_IE_32,
8794 BFD_RELOC_X86_64_GOTTPOFF },
8795 OPERAND_TYPE_IMM32_32S_DISP32 },
8796 { STRING_COMMA_LEN ("TPOFF"), { BFD_RELOC_386_TLS_LE_32,
8797 BFD_RELOC_X86_64_TPOFF32 },
8798 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
8799 { STRING_COMMA_LEN ("NTPOFF"), { BFD_RELOC_386_TLS_LE,
8800 _dummy_first_bfd_reloc_code_real },
8801 OPERAND_TYPE_NONE },
8802 { STRING_COMMA_LEN ("DTPOFF"), { BFD_RELOC_386_TLS_LDO_32,
8803 BFD_RELOC_X86_64_DTPOFF32 },
8804 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
8805 { STRING_COMMA_LEN ("GOTNTPOFF"),{ BFD_RELOC_386_TLS_GOTIE,
8806 _dummy_first_bfd_reloc_code_real },
8807 OPERAND_TYPE_NONE },
8808 { STRING_COMMA_LEN ("INDNTPOFF"),{ BFD_RELOC_386_TLS_IE,
8809 _dummy_first_bfd_reloc_code_real },
8810 OPERAND_TYPE_NONE },
8811 { STRING_COMMA_LEN ("GOT"), { BFD_RELOC_386_GOT32,
8812 BFD_RELOC_X86_64_GOT32 },
8813 OPERAND_TYPE_IMM32_32S_64_DISP32 },
8814 { STRING_COMMA_LEN ("TLSDESC"), { BFD_RELOC_386_TLS_GOTDESC,
8815 BFD_RELOC_X86_64_GOTPC32_TLSDESC },
8816 OPERAND_TYPE_IMM32_32S_DISP32 },
8817 { STRING_COMMA_LEN ("TLSCALL"), { BFD_RELOC_386_TLS_DESC_CALL,
8818 BFD_RELOC_X86_64_TLSDESC_CALL },
8819 OPERAND_TYPE_IMM32_32S_DISP32 },
8820 };
8821 char *cp;
8822 unsigned int j;
8823
8824 #if defined (OBJ_MAYBE_ELF)
8825 if (!IS_ELF)
8826 return NULL;
8827 #endif
8828
8829 for (cp = input_line_pointer; *cp != '@'; cp++)
8830 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
8831 return NULL;
8832
8833 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
8834 {
8835 int len = gotrel[j].len;
8836 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
8837 {
8838 if (gotrel[j].rel[object_64bit] != 0)
8839 {
8840 int first, second;
8841 char *tmpbuf, *past_reloc;
8842
8843 *rel = gotrel[j].rel[object_64bit];
8844
8845 if (types)
8846 {
8847 if (flag_code != CODE_64BIT)
8848 {
8849 types->bitfield.imm32 = 1;
8850 types->bitfield.disp32 = 1;
8851 }
8852 else
8853 *types = gotrel[j].types64;
8854 }
8855
8856 if (j != 0 && GOT_symbol == NULL)
8857 GOT_symbol = symbol_find_or_make (GLOBAL_OFFSET_TABLE_NAME);
8858
8859 /* The length of the first part of our input line. */
8860 first = cp - input_line_pointer;
8861
8862 /* The second part goes from after the reloc token until
8863 (and including) an end_of_line char or comma. */
8864 past_reloc = cp + 1 + len;
8865 cp = past_reloc;
8866 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
8867 ++cp;
8868 second = cp + 1 - past_reloc;
8869
8870 /* Allocate and copy string. The trailing NUL shouldn't
8871 be necessary, but be safe. */
8872 tmpbuf = XNEWVEC (char, first + second + 2);
8873 memcpy (tmpbuf, input_line_pointer, first);
8874 if (second != 0 && *past_reloc != ' ')
8875 /* Replace the relocation token with ' ', so that
8876 errors like foo@GOTOFF1 will be detected. */
8877 tmpbuf[first++] = ' ';
8878 else
8879 /* Increment length by 1 if the relocation token is
8880 removed. */
8881 len++;
8882 if (adjust)
8883 *adjust = len;
8884 memcpy (tmpbuf + first, past_reloc, second);
8885 tmpbuf[first + second] = '\0';
8886 return tmpbuf;
8887 }
8888
8889 as_bad (_("@%s reloc is not supported with %d-bit output format"),
8890 gotrel[j].str, 1 << (5 + object_64bit));
8891 return NULL;
8892 }
8893 }
8894
8895 /* Might be a symbol version string. Don't as_bad here. */
8896 return NULL;
8897 }
8898 #endif
8899
8900 #ifdef TE_PE
8901 #ifdef lex_got
8902 #undef lex_got
8903 #endif
8904 /* Parse operands of the form
8905 <symbol>@SECREL32+<nnn>
8906
8907 If we find one, set up the correct relocation in RELOC and copy the
8908 input string, minus the `@SECREL32' into a malloc'd buffer for
8909 parsing by the calling routine. Return this buffer, and if ADJUST
8910 is non-null set it to the length of the string we removed from the
8911 input line. Otherwise return NULL.
8912
8913 This function is copied from the ELF version above adjusted for PE targets. */
8914
8915 static char *
8916 lex_got (enum bfd_reloc_code_real *rel ATTRIBUTE_UNUSED,
8917 int *adjust ATTRIBUTE_UNUSED,
8918 i386_operand_type *types)
8919 {
8920 static const struct
8921 {
8922 const char *str;
8923 int len;
8924 const enum bfd_reloc_code_real rel[2];
8925 const i386_operand_type types64;
8926 }
8927 gotrel[] =
8928 {
8929 { STRING_COMMA_LEN ("SECREL32"), { BFD_RELOC_32_SECREL,
8930 BFD_RELOC_32_SECREL },
8931 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
8932 };
8933
8934 char *cp;
8935 unsigned j;
8936
8937 for (cp = input_line_pointer; *cp != '@'; cp++)
8938 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
8939 return NULL;
8940
8941 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
8942 {
8943 int len = gotrel[j].len;
8944
8945 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
8946 {
8947 if (gotrel[j].rel[object_64bit] != 0)
8948 {
8949 int first, second;
8950 char *tmpbuf, *past_reloc;
8951
8952 *rel = gotrel[j].rel[object_64bit];
8953 if (adjust)
8954 *adjust = len;
8955
8956 if (types)
8957 {
8958 if (flag_code != CODE_64BIT)
8959 {
8960 types->bitfield.imm32 = 1;
8961 types->bitfield.disp32 = 1;
8962 }
8963 else
8964 *types = gotrel[j].types64;
8965 }
8966
8967 /* The length of the first part of our input line. */
8968 first = cp - input_line_pointer;
8969
8970 /* The second part goes from after the reloc token until
8971 (and including) an end_of_line char or comma. */
8972 past_reloc = cp + 1 + len;
8973 cp = past_reloc;
8974 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
8975 ++cp;
8976 second = cp + 1 - past_reloc;
8977
8978 /* Allocate and copy string. The trailing NUL shouldn't
8979 be necessary, but be safe. */
8980 tmpbuf = XNEWVEC (char, first + second + 2);
8981 memcpy (tmpbuf, input_line_pointer, first);
8982 if (second != 0 && *past_reloc != ' ')
8983 /* Replace the relocation token with ' ', so that
8984 errors like foo@SECLREL321 will be detected. */
8985 tmpbuf[first++] = ' ';
8986 memcpy (tmpbuf + first, past_reloc, second);
8987 tmpbuf[first + second] = '\0';
8988 return tmpbuf;
8989 }
8990
8991 as_bad (_("@%s reloc is not supported with %d-bit output format"),
8992 gotrel[j].str, 1 << (5 + object_64bit));
8993 return NULL;
8994 }
8995 }
8996
8997 /* Might be a symbol version string. Don't as_bad here. */
8998 return NULL;
8999 }
9000
9001 #endif /* TE_PE */
9002
9003 bfd_reloc_code_real_type
9004 x86_cons (expressionS *exp, int size)
9005 {
9006 bfd_reloc_code_real_type got_reloc = NO_RELOC;
9007
9008 intel_syntax = -intel_syntax;
9009
9010 exp->X_md = 0;
9011 if (size == 4 || (object_64bit && size == 8))
9012 {
9013 /* Handle @GOTOFF and the like in an expression. */
9014 char *save;
9015 char *gotfree_input_line;
9016 int adjust = 0;
9017
9018 save = input_line_pointer;
9019 gotfree_input_line = lex_got (&got_reloc, &adjust, NULL);
9020 if (gotfree_input_line)
9021 input_line_pointer = gotfree_input_line;
9022
9023 expression (exp);
9024
9025 if (gotfree_input_line)
9026 {
9027 /* expression () has merrily parsed up to the end of line,
9028 or a comma - in the wrong buffer. Transfer how far
9029 input_line_pointer has moved to the right buffer. */
9030 input_line_pointer = (save
9031 + (input_line_pointer - gotfree_input_line)
9032 + adjust);
9033 free (gotfree_input_line);
9034 if (exp->X_op == O_constant
9035 || exp->X_op == O_absent
9036 || exp->X_op == O_illegal
9037 || exp->X_op == O_register
9038 || exp->X_op == O_big)
9039 {
9040 char c = *input_line_pointer;
9041 *input_line_pointer = 0;
9042 as_bad (_("missing or invalid expression `%s'"), save);
9043 *input_line_pointer = c;
9044 }
9045 else if ((got_reloc == BFD_RELOC_386_PLT32
9046 || got_reloc == BFD_RELOC_X86_64_PLT32)
9047 && exp->X_op != O_symbol)
9048 {
9049 char c = *input_line_pointer;
9050 *input_line_pointer = 0;
9051 as_bad (_("invalid PLT expression `%s'"), save);
9052 *input_line_pointer = c;
9053 }
9054 }
9055 }
9056 else
9057 expression (exp);
9058
9059 intel_syntax = -intel_syntax;
9060
9061 if (intel_syntax)
9062 i386_intel_simplify (exp);
9063
9064 return got_reloc;
9065 }
9066
9067 static void
9068 signed_cons (int size)
9069 {
9070 if (flag_code == CODE_64BIT)
9071 cons_sign = 1;
9072 cons (size);
9073 cons_sign = -1;
9074 }
9075
9076 #ifdef TE_PE
9077 static void
9078 pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
9079 {
9080 expressionS exp;
9081
9082 do
9083 {
9084 expression (&exp);
9085 if (exp.X_op == O_symbol)
9086 exp.X_op = O_secrel;
9087
9088 emit_expr (&exp, 4);
9089 }
9090 while (*input_line_pointer++ == ',');
9091
9092 input_line_pointer--;
9093 demand_empty_rest_of_line ();
9094 }
9095 #endif
9096
9097 /* Handle Vector operations. */
9098
9099 static char *
9100 check_VecOperations (char *op_string, char *op_end)
9101 {
9102 const reg_entry *mask;
9103 const char *saved;
9104 char *end_op;
9105
9106 while (*op_string
9107 && (op_end == NULL || op_string < op_end))
9108 {
9109 saved = op_string;
9110 if (*op_string == '{')
9111 {
9112 op_string++;
9113
9114 /* Check broadcasts. */
9115 if (strncmp (op_string, "1to", 3) == 0)
9116 {
9117 int bcst_type;
9118
9119 if (i.broadcast)
9120 goto duplicated_vec_op;
9121
9122 op_string += 3;
9123 if (*op_string == '8')
9124 bcst_type = 8;
9125 else if (*op_string == '4')
9126 bcst_type = 4;
9127 else if (*op_string == '2')
9128 bcst_type = 2;
9129 else if (*op_string == '1'
9130 && *(op_string+1) == '6')
9131 {
9132 bcst_type = 16;
9133 op_string++;
9134 }
9135 else
9136 {
9137 as_bad (_("Unsupported broadcast: `%s'"), saved);
9138 return NULL;
9139 }
9140 op_string++;
9141
9142 broadcast_op.type = bcst_type;
9143 broadcast_op.operand = this_operand;
9144 broadcast_op.bytes = 0;
9145 i.broadcast = &broadcast_op;
9146 }
9147 /* Check masking operation. */
9148 else if ((mask = parse_register (op_string, &end_op)) != NULL)
9149 {
9150 /* k0 can't be used for write mask. */
9151 if (!mask->reg_type.bitfield.regmask || mask->reg_num == 0)
9152 {
9153 as_bad (_("`%s%s' can't be used for write mask"),
9154 register_prefix, mask->reg_name);
9155 return NULL;
9156 }
9157
9158 if (!i.mask)
9159 {
9160 mask_op.mask = mask;
9161 mask_op.zeroing = 0;
9162 mask_op.operand = this_operand;
9163 i.mask = &mask_op;
9164 }
9165 else
9166 {
9167 if (i.mask->mask)
9168 goto duplicated_vec_op;
9169
9170 i.mask->mask = mask;
9171
9172 /* Only "{z}" is allowed here. No need to check
9173 zeroing mask explicitly. */
9174 if (i.mask->operand != this_operand)
9175 {
9176 as_bad (_("invalid write mask `%s'"), saved);
9177 return NULL;
9178 }
9179 }
9180
9181 op_string = end_op;
9182 }
9183 /* Check zeroing-flag for masking operation. */
9184 else if (*op_string == 'z')
9185 {
9186 if (!i.mask)
9187 {
9188 mask_op.mask = NULL;
9189 mask_op.zeroing = 1;
9190 mask_op.operand = this_operand;
9191 i.mask = &mask_op;
9192 }
9193 else
9194 {
9195 if (i.mask->zeroing)
9196 {
9197 duplicated_vec_op:
9198 as_bad (_("duplicated `%s'"), saved);
9199 return NULL;
9200 }
9201
9202 i.mask->zeroing = 1;
9203
9204 /* Only "{%k}" is allowed here. No need to check mask
9205 register explicitly. */
9206 if (i.mask->operand != this_operand)
9207 {
9208 as_bad (_("invalid zeroing-masking `%s'"),
9209 saved);
9210 return NULL;
9211 }
9212 }
9213
9214 op_string++;
9215 }
9216 else
9217 goto unknown_vec_op;
9218
9219 if (*op_string != '}')
9220 {
9221 as_bad (_("missing `}' in `%s'"), saved);
9222 return NULL;
9223 }
9224 op_string++;
9225
9226 /* Strip whitespace since the addition of pseudo prefixes
9227 changed how the scrubber treats '{'. */
9228 if (is_space_char (*op_string))
9229 ++op_string;
9230
9231 continue;
9232 }
9233 unknown_vec_op:
9234 /* We don't know this one. */
9235 as_bad (_("unknown vector operation: `%s'"), saved);
9236 return NULL;
9237 }
9238
9239 if (i.mask && i.mask->zeroing && !i.mask->mask)
9240 {
9241 as_bad (_("zeroing-masking only allowed with write mask"));
9242 return NULL;
9243 }
9244
9245 return op_string;
9246 }
9247
9248 static int
9249 i386_immediate (char *imm_start)
9250 {
9251 char *save_input_line_pointer;
9252 char *gotfree_input_line;
9253 segT exp_seg = 0;
9254 expressionS *exp;
9255 i386_operand_type types;
9256
9257 operand_type_set (&types, ~0);
9258
9259 if (i.imm_operands == MAX_IMMEDIATE_OPERANDS)
9260 {
9261 as_bad (_("at most %d immediate operands are allowed"),
9262 MAX_IMMEDIATE_OPERANDS);
9263 return 0;
9264 }
9265
9266 exp = &im_expressions[i.imm_operands++];
9267 i.op[this_operand].imms = exp;
9268
9269 if (is_space_char (*imm_start))
9270 ++imm_start;
9271
9272 save_input_line_pointer = input_line_pointer;
9273 input_line_pointer = imm_start;
9274
9275 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
9276 if (gotfree_input_line)
9277 input_line_pointer = gotfree_input_line;
9278
9279 exp_seg = expression (exp);
9280
9281 SKIP_WHITESPACE ();
9282
9283 /* Handle vector operations. */
9284 if (*input_line_pointer == '{')
9285 {
9286 input_line_pointer = check_VecOperations (input_line_pointer,
9287 NULL);
9288 if (input_line_pointer == NULL)
9289 return 0;
9290 }
9291
9292 if (*input_line_pointer)
9293 as_bad (_("junk `%s' after expression"), input_line_pointer);
9294
9295 input_line_pointer = save_input_line_pointer;
9296 if (gotfree_input_line)
9297 {
9298 free (gotfree_input_line);
9299
9300 if (exp->X_op == O_constant || exp->X_op == O_register)
9301 exp->X_op = O_illegal;
9302 }
9303
9304 return i386_finalize_immediate (exp_seg, exp, types, imm_start);
9305 }
9306
9307 static int
9308 i386_finalize_immediate (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
9309 i386_operand_type types, const char *imm_start)
9310 {
9311 if (exp->X_op == O_absent || exp->X_op == O_illegal || exp->X_op == O_big)
9312 {
9313 if (imm_start)
9314 as_bad (_("missing or invalid immediate expression `%s'"),
9315 imm_start);
9316 return 0;
9317 }
9318 else if (exp->X_op == O_constant)
9319 {
9320 /* Size it properly later. */
9321 i.types[this_operand].bitfield.imm64 = 1;
9322 /* If not 64bit, sign extend val. */
9323 if (flag_code != CODE_64BIT
9324 && (exp->X_add_number & ~(((addressT) 2 << 31) - 1)) == 0)
9325 exp->X_add_number
9326 = (exp->X_add_number ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
9327 }
9328 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
9329 else if (OUTPUT_FLAVOR == bfd_target_aout_flavour
9330 && exp_seg != absolute_section
9331 && exp_seg != text_section
9332 && exp_seg != data_section
9333 && exp_seg != bss_section
9334 && exp_seg != undefined_section
9335 && !bfd_is_com_section (exp_seg))
9336 {
9337 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
9338 return 0;
9339 }
9340 #endif
9341 else if (!intel_syntax && exp_seg == reg_section)
9342 {
9343 if (imm_start)
9344 as_bad (_("illegal immediate register operand %s"), imm_start);
9345 return 0;
9346 }
9347 else
9348 {
9349 /* This is an address. The size of the address will be
9350 determined later, depending on destination register,
9351 suffix, or the default for the section. */
9352 i.types[this_operand].bitfield.imm8 = 1;
9353 i.types[this_operand].bitfield.imm16 = 1;
9354 i.types[this_operand].bitfield.imm32 = 1;
9355 i.types[this_operand].bitfield.imm32s = 1;
9356 i.types[this_operand].bitfield.imm64 = 1;
9357 i.types[this_operand] = operand_type_and (i.types[this_operand],
9358 types);
9359 }
9360
9361 return 1;
9362 }
9363
9364 static char *
9365 i386_scale (char *scale)
9366 {
9367 offsetT val;
9368 char *save = input_line_pointer;
9369
9370 input_line_pointer = scale;
9371 val = get_absolute_expression ();
9372
9373 switch (val)
9374 {
9375 case 1:
9376 i.log2_scale_factor = 0;
9377 break;
9378 case 2:
9379 i.log2_scale_factor = 1;
9380 break;
9381 case 4:
9382 i.log2_scale_factor = 2;
9383 break;
9384 case 8:
9385 i.log2_scale_factor = 3;
9386 break;
9387 default:
9388 {
9389 char sep = *input_line_pointer;
9390
9391 *input_line_pointer = '\0';
9392 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
9393 scale);
9394 *input_line_pointer = sep;
9395 input_line_pointer = save;
9396 return NULL;
9397 }
9398 }
9399 if (i.log2_scale_factor != 0 && i.index_reg == 0)
9400 {
9401 as_warn (_("scale factor of %d without an index register"),
9402 1 << i.log2_scale_factor);
9403 i.log2_scale_factor = 0;
9404 }
9405 scale = input_line_pointer;
9406 input_line_pointer = save;
9407 return scale;
9408 }
9409
9410 static int
9411 i386_displacement (char *disp_start, char *disp_end)
9412 {
9413 expressionS *exp;
9414 segT exp_seg = 0;
9415 char *save_input_line_pointer;
9416 char *gotfree_input_line;
9417 int override;
9418 i386_operand_type bigdisp, types = anydisp;
9419 int ret;
9420
9421 if (i.disp_operands == MAX_MEMORY_OPERANDS)
9422 {
9423 as_bad (_("at most %d displacement operands are allowed"),
9424 MAX_MEMORY_OPERANDS);
9425 return 0;
9426 }
9427
9428 operand_type_set (&bigdisp, 0);
9429 if ((i.types[this_operand].bitfield.jumpabsolute)
9430 || (!current_templates->start->opcode_modifier.jump
9431 && !current_templates->start->opcode_modifier.jumpdword))
9432 {
9433 bigdisp.bitfield.disp32 = 1;
9434 override = (i.prefix[ADDR_PREFIX] != 0);
9435 if (flag_code == CODE_64BIT)
9436 {
9437 if (!override)
9438 {
9439 bigdisp.bitfield.disp32s = 1;
9440 bigdisp.bitfield.disp64 = 1;
9441 }
9442 }
9443 else if ((flag_code == CODE_16BIT) ^ override)
9444 {
9445 bigdisp.bitfield.disp32 = 0;
9446 bigdisp.bitfield.disp16 = 1;
9447 }
9448 }
9449 else
9450 {
9451 /* For PC-relative branches, the width of the displacement
9452 is dependent upon data size, not address size. */
9453 override = (i.prefix[DATA_PREFIX] != 0);
9454 if (flag_code == CODE_64BIT)
9455 {
9456 if (override || i.suffix == WORD_MNEM_SUFFIX)
9457 bigdisp.bitfield.disp16 = 1;
9458 else
9459 {
9460 bigdisp.bitfield.disp32 = 1;
9461 bigdisp.bitfield.disp32s = 1;
9462 }
9463 }
9464 else
9465 {
9466 if (!override)
9467 override = (i.suffix == (flag_code != CODE_16BIT
9468 ? WORD_MNEM_SUFFIX
9469 : LONG_MNEM_SUFFIX));
9470 bigdisp.bitfield.disp32 = 1;
9471 if ((flag_code == CODE_16BIT) ^ override)
9472 {
9473 bigdisp.bitfield.disp32 = 0;
9474 bigdisp.bitfield.disp16 = 1;
9475 }
9476 }
9477 }
9478 i.types[this_operand] = operand_type_or (i.types[this_operand],
9479 bigdisp);
9480
9481 exp = &disp_expressions[i.disp_operands];
9482 i.op[this_operand].disps = exp;
9483 i.disp_operands++;
9484 save_input_line_pointer = input_line_pointer;
9485 input_line_pointer = disp_start;
9486 END_STRING_AND_SAVE (disp_end);
9487
9488 #ifndef GCC_ASM_O_HACK
9489 #define GCC_ASM_O_HACK 0
9490 #endif
9491 #if GCC_ASM_O_HACK
9492 END_STRING_AND_SAVE (disp_end + 1);
9493 if (i.types[this_operand].bitfield.baseIndex
9494 && displacement_string_end[-1] == '+')
9495 {
9496 /* This hack is to avoid a warning when using the "o"
9497 constraint within gcc asm statements.
9498 For instance:
9499
9500 #define _set_tssldt_desc(n,addr,limit,type) \
9501 __asm__ __volatile__ ( \
9502 "movw %w2,%0\n\t" \
9503 "movw %w1,2+%0\n\t" \
9504 "rorl $16,%1\n\t" \
9505 "movb %b1,4+%0\n\t" \
9506 "movb %4,5+%0\n\t" \
9507 "movb $0,6+%0\n\t" \
9508 "movb %h1,7+%0\n\t" \
9509 "rorl $16,%1" \
9510 : "=o"(*(n)) : "q" (addr), "ri"(limit), "i"(type))
9511
9512 This works great except that the output assembler ends
9513 up looking a bit weird if it turns out that there is
9514 no offset. You end up producing code that looks like:
9515
9516 #APP
9517 movw $235,(%eax)
9518 movw %dx,2+(%eax)
9519 rorl $16,%edx
9520 movb %dl,4+(%eax)
9521 movb $137,5+(%eax)
9522 movb $0,6+(%eax)
9523 movb %dh,7+(%eax)
9524 rorl $16,%edx
9525 #NO_APP
9526
9527 So here we provide the missing zero. */
9528
9529 *displacement_string_end = '0';
9530 }
9531 #endif
9532 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
9533 if (gotfree_input_line)
9534 input_line_pointer = gotfree_input_line;
9535
9536 exp_seg = expression (exp);
9537
9538 SKIP_WHITESPACE ();
9539 if (*input_line_pointer)
9540 as_bad (_("junk `%s' after expression"), input_line_pointer);
9541 #if GCC_ASM_O_HACK
9542 RESTORE_END_STRING (disp_end + 1);
9543 #endif
9544 input_line_pointer = save_input_line_pointer;
9545 if (gotfree_input_line)
9546 {
9547 free (gotfree_input_line);
9548
9549 if (exp->X_op == O_constant || exp->X_op == O_register)
9550 exp->X_op = O_illegal;
9551 }
9552
9553 ret = i386_finalize_displacement (exp_seg, exp, types, disp_start);
9554
9555 RESTORE_END_STRING (disp_end);
9556
9557 return ret;
9558 }
9559
9560 static int
9561 i386_finalize_displacement (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
9562 i386_operand_type types, const char *disp_start)
9563 {
9564 i386_operand_type bigdisp;
9565 int ret = 1;
9566
9567 /* We do this to make sure that the section symbol is in
9568 the symbol table. We will ultimately change the relocation
9569 to be relative to the beginning of the section. */
9570 if (i.reloc[this_operand] == BFD_RELOC_386_GOTOFF
9571 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL
9572 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
9573 {
9574 if (exp->X_op != O_symbol)
9575 goto inv_disp;
9576
9577 if (S_IS_LOCAL (exp->X_add_symbol)
9578 && S_GET_SEGMENT (exp->X_add_symbol) != undefined_section
9579 && S_GET_SEGMENT (exp->X_add_symbol) != expr_section)
9580 section_symbol (S_GET_SEGMENT (exp->X_add_symbol));
9581 exp->X_op = O_subtract;
9582 exp->X_op_symbol = GOT_symbol;
9583 if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
9584 i.reloc[this_operand] = BFD_RELOC_32_PCREL;
9585 else if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
9586 i.reloc[this_operand] = BFD_RELOC_64;
9587 else
9588 i.reloc[this_operand] = BFD_RELOC_32;
9589 }
9590
9591 else if (exp->X_op == O_absent
9592 || exp->X_op == O_illegal
9593 || exp->X_op == O_big)
9594 {
9595 inv_disp:
9596 as_bad (_("missing or invalid displacement expression `%s'"),
9597 disp_start);
9598 ret = 0;
9599 }
9600
9601 else if (flag_code == CODE_64BIT
9602 && !i.prefix[ADDR_PREFIX]
9603 && exp->X_op == O_constant)
9604 {
9605 /* Since displacement is signed extended to 64bit, don't allow
9606 disp32 and turn off disp32s if they are out of range. */
9607 i.types[this_operand].bitfield.disp32 = 0;
9608 if (!fits_in_signed_long (exp->X_add_number))
9609 {
9610 i.types[this_operand].bitfield.disp32s = 0;
9611 if (i.types[this_operand].bitfield.baseindex)
9612 {
9613 as_bad (_("0x%lx out range of signed 32bit displacement"),
9614 (long) exp->X_add_number);
9615 ret = 0;
9616 }
9617 }
9618 }
9619
9620 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
9621 else if (exp->X_op != O_constant
9622 && OUTPUT_FLAVOR == bfd_target_aout_flavour
9623 && exp_seg != absolute_section
9624 && exp_seg != text_section
9625 && exp_seg != data_section
9626 && exp_seg != bss_section
9627 && exp_seg != undefined_section
9628 && !bfd_is_com_section (exp_seg))
9629 {
9630 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
9631 ret = 0;
9632 }
9633 #endif
9634
9635 /* Check if this is a displacement only operand. */
9636 bigdisp = i.types[this_operand];
9637 bigdisp.bitfield.disp8 = 0;
9638 bigdisp.bitfield.disp16 = 0;
9639 bigdisp.bitfield.disp32 = 0;
9640 bigdisp.bitfield.disp32s = 0;
9641 bigdisp.bitfield.disp64 = 0;
9642 if (operand_type_all_zero (&bigdisp))
9643 i.types[this_operand] = operand_type_and (i.types[this_operand],
9644 types);
9645
9646 return ret;
9647 }
9648
9649 /* Return the active addressing mode, taking address override and
9650 registers forming the address into consideration. Update the
9651 address override prefix if necessary. */
9652
9653 static enum flag_code
9654 i386_addressing_mode (void)
9655 {
9656 enum flag_code addr_mode;
9657
9658 if (i.prefix[ADDR_PREFIX])
9659 addr_mode = flag_code == CODE_32BIT ? CODE_16BIT : CODE_32BIT;
9660 else
9661 {
9662 addr_mode = flag_code;
9663
9664 #if INFER_ADDR_PREFIX
9665 if (i.mem_operands == 0)
9666 {
9667 /* Infer address prefix from the first memory operand. */
9668 const reg_entry *addr_reg = i.base_reg;
9669
9670 if (addr_reg == NULL)
9671 addr_reg = i.index_reg;
9672
9673 if (addr_reg)
9674 {
9675 if (addr_reg->reg_type.bitfield.dword)
9676 addr_mode = CODE_32BIT;
9677 else if (flag_code != CODE_64BIT
9678 && addr_reg->reg_type.bitfield.word)
9679 addr_mode = CODE_16BIT;
9680
9681 if (addr_mode != flag_code)
9682 {
9683 i.prefix[ADDR_PREFIX] = ADDR_PREFIX_OPCODE;
9684 i.prefixes += 1;
9685 /* Change the size of any displacement too. At most one
9686 of Disp16 or Disp32 is set.
9687 FIXME. There doesn't seem to be any real need for
9688 separate Disp16 and Disp32 flags. The same goes for
9689 Imm16 and Imm32. Removing them would probably clean
9690 up the code quite a lot. */
9691 if (flag_code != CODE_64BIT
9692 && (i.types[this_operand].bitfield.disp16
9693 || i.types[this_operand].bitfield.disp32))
9694 i.types[this_operand]
9695 = operand_type_xor (i.types[this_operand], disp16_32);
9696 }
9697 }
9698 }
9699 #endif
9700 }
9701
9702 return addr_mode;
9703 }
9704
9705 /* Make sure the memory operand we've been dealt is valid.
9706 Return 1 on success, 0 on a failure. */
9707
9708 static int
9709 i386_index_check (const char *operand_string)
9710 {
9711 const char *kind = "base/index";
9712 enum flag_code addr_mode = i386_addressing_mode ();
9713
9714 if (current_templates->start->opcode_modifier.isstring
9715 && !current_templates->start->opcode_modifier.immext
9716 && (current_templates->end[-1].opcode_modifier.isstring
9717 || i.mem_operands))
9718 {
9719 /* Memory operands of string insns are special in that they only allow
9720 a single register (rDI, rSI, or rBX) as their memory address. */
9721 const reg_entry *expected_reg;
9722 static const char *di_si[][2] =
9723 {
9724 { "esi", "edi" },
9725 { "si", "di" },
9726 { "rsi", "rdi" }
9727 };
9728 static const char *bx[] = { "ebx", "bx", "rbx" };
9729
9730 kind = "string address";
9731
9732 if (current_templates->start->opcode_modifier.repprefixok)
9733 {
9734 i386_operand_type type = current_templates->end[-1].operand_types[0];
9735
9736 if (!type.bitfield.baseindex
9737 || ((!i.mem_operands != !intel_syntax)
9738 && current_templates->end[-1].operand_types[1]
9739 .bitfield.baseindex))
9740 type = current_templates->end[-1].operand_types[1];
9741 expected_reg = hash_find (reg_hash,
9742 di_si[addr_mode][type.bitfield.esseg]);
9743
9744 }
9745 else
9746 expected_reg = hash_find (reg_hash, bx[addr_mode]);
9747
9748 if (i.base_reg != expected_reg
9749 || i.index_reg
9750 || operand_type_check (i.types[this_operand], disp))
9751 {
9752 /* The second memory operand must have the same size as
9753 the first one. */
9754 if (i.mem_operands
9755 && i.base_reg
9756 && !((addr_mode == CODE_64BIT
9757 && i.base_reg->reg_type.bitfield.qword)
9758 || (addr_mode == CODE_32BIT
9759 ? i.base_reg->reg_type.bitfield.dword
9760 : i.base_reg->reg_type.bitfield.word)))
9761 goto bad_address;
9762
9763 as_warn (_("`%s' is not valid here (expected `%c%s%s%c')"),
9764 operand_string,
9765 intel_syntax ? '[' : '(',
9766 register_prefix,
9767 expected_reg->reg_name,
9768 intel_syntax ? ']' : ')');
9769 return 1;
9770 }
9771 else
9772 return 1;
9773
9774 bad_address:
9775 as_bad (_("`%s' is not a valid %s expression"),
9776 operand_string, kind);
9777 return 0;
9778 }
9779 else
9780 {
9781 if (addr_mode != CODE_16BIT)
9782 {
9783 /* 32-bit/64-bit checks. */
9784 if ((i.base_reg
9785 && ((addr_mode == CODE_64BIT
9786 ? !i.base_reg->reg_type.bitfield.qword
9787 : !i.base_reg->reg_type.bitfield.dword)
9788 || (i.index_reg && i.base_reg->reg_num == RegIP)
9789 || i.base_reg->reg_num == RegIZ))
9790 || (i.index_reg
9791 && !i.index_reg->reg_type.bitfield.xmmword
9792 && !i.index_reg->reg_type.bitfield.ymmword
9793 && !i.index_reg->reg_type.bitfield.zmmword
9794 && ((addr_mode == CODE_64BIT
9795 ? !i.index_reg->reg_type.bitfield.qword
9796 : !i.index_reg->reg_type.bitfield.dword)
9797 || !i.index_reg->reg_type.bitfield.baseindex)))
9798 goto bad_address;
9799
9800 /* bndmk, bndldx, and bndstx have special restrictions. */
9801 if (current_templates->start->base_opcode == 0xf30f1b
9802 || (current_templates->start->base_opcode & ~1) == 0x0f1a)
9803 {
9804 /* They cannot use RIP-relative addressing. */
9805 if (i.base_reg && i.base_reg->reg_num == RegIP)
9806 {
9807 as_bad (_("`%s' cannot be used here"), operand_string);
9808 return 0;
9809 }
9810
9811 /* bndldx and bndstx ignore their scale factor. */
9812 if (current_templates->start->base_opcode != 0xf30f1b
9813 && i.log2_scale_factor)
9814 as_warn (_("register scaling is being ignored here"));
9815 }
9816 }
9817 else
9818 {
9819 /* 16-bit checks. */
9820 if ((i.base_reg
9821 && (!i.base_reg->reg_type.bitfield.word
9822 || !i.base_reg->reg_type.bitfield.baseindex))
9823 || (i.index_reg
9824 && (!i.index_reg->reg_type.bitfield.word
9825 || !i.index_reg->reg_type.bitfield.baseindex
9826 || !(i.base_reg
9827 && i.base_reg->reg_num < 6
9828 && i.index_reg->reg_num >= 6
9829 && i.log2_scale_factor == 0))))
9830 goto bad_address;
9831 }
9832 }
9833 return 1;
9834 }
9835
9836 /* Handle vector immediates. */
9837
9838 static int
9839 RC_SAE_immediate (const char *imm_start)
9840 {
9841 unsigned int match_found, j;
9842 const char *pstr = imm_start;
9843 expressionS *exp;
9844
9845 if (*pstr != '{')
9846 return 0;
9847
9848 pstr++;
9849 match_found = 0;
9850 for (j = 0; j < ARRAY_SIZE (RC_NamesTable); j++)
9851 {
9852 if (!strncmp (pstr, RC_NamesTable[j].name, RC_NamesTable[j].len))
9853 {
9854 if (!i.rounding)
9855 {
9856 rc_op.type = RC_NamesTable[j].type;
9857 rc_op.operand = this_operand;
9858 i.rounding = &rc_op;
9859 }
9860 else
9861 {
9862 as_bad (_("duplicated `%s'"), imm_start);
9863 return 0;
9864 }
9865 pstr += RC_NamesTable[j].len;
9866 match_found = 1;
9867 break;
9868 }
9869 }
9870 if (!match_found)
9871 return 0;
9872
9873 if (*pstr++ != '}')
9874 {
9875 as_bad (_("Missing '}': '%s'"), imm_start);
9876 return 0;
9877 }
9878 /* RC/SAE immediate string should contain nothing more. */;
9879 if (*pstr != 0)
9880 {
9881 as_bad (_("Junk after '}': '%s'"), imm_start);
9882 return 0;
9883 }
9884
9885 exp = &im_expressions[i.imm_operands++];
9886 i.op[this_operand].imms = exp;
9887
9888 exp->X_op = O_constant;
9889 exp->X_add_number = 0;
9890 exp->X_add_symbol = (symbolS *) 0;
9891 exp->X_op_symbol = (symbolS *) 0;
9892
9893 i.types[this_operand].bitfield.imm8 = 1;
9894 return 1;
9895 }
9896
9897 /* Only string instructions can have a second memory operand, so
9898 reduce current_templates to just those if it contains any. */
9899 static int
9900 maybe_adjust_templates (void)
9901 {
9902 const insn_template *t;
9903
9904 gas_assert (i.mem_operands == 1);
9905
9906 for (t = current_templates->start; t < current_templates->end; ++t)
9907 if (t->opcode_modifier.isstring)
9908 break;
9909
9910 if (t < current_templates->end)
9911 {
9912 static templates aux_templates;
9913 bfd_boolean recheck;
9914
9915 aux_templates.start = t;
9916 for (; t < current_templates->end; ++t)
9917 if (!t->opcode_modifier.isstring)
9918 break;
9919 aux_templates.end = t;
9920
9921 /* Determine whether to re-check the first memory operand. */
9922 recheck = (aux_templates.start != current_templates->start
9923 || t != current_templates->end);
9924
9925 current_templates = &aux_templates;
9926
9927 if (recheck)
9928 {
9929 i.mem_operands = 0;
9930 if (i.memop1_string != NULL
9931 && i386_index_check (i.memop1_string) == 0)
9932 return 0;
9933 i.mem_operands = 1;
9934 }
9935 }
9936
9937 return 1;
9938 }
9939
9940 /* Parse OPERAND_STRING into the i386_insn structure I. Returns zero
9941 on error. */
9942
9943 static int
9944 i386_att_operand (char *operand_string)
9945 {
9946 const reg_entry *r;
9947 char *end_op;
9948 char *op_string = operand_string;
9949
9950 if (is_space_char (*op_string))
9951 ++op_string;
9952
9953 /* We check for an absolute prefix (differentiating,
9954 for example, 'jmp pc_relative_label' from 'jmp *absolute_label'. */
9955 if (*op_string == ABSOLUTE_PREFIX)
9956 {
9957 ++op_string;
9958 if (is_space_char (*op_string))
9959 ++op_string;
9960 i.types[this_operand].bitfield.jumpabsolute = 1;
9961 }
9962
9963 /* Check if operand is a register. */
9964 if ((r = parse_register (op_string, &end_op)) != NULL)
9965 {
9966 i386_operand_type temp;
9967
9968 /* Check for a segment override by searching for ':' after a
9969 segment register. */
9970 op_string = end_op;
9971 if (is_space_char (*op_string))
9972 ++op_string;
9973 if (*op_string == ':'
9974 && (r->reg_type.bitfield.sreg2
9975 || r->reg_type.bitfield.sreg3))
9976 {
9977 switch (r->reg_num)
9978 {
9979 case 0:
9980 i.seg[i.mem_operands] = &es;
9981 break;
9982 case 1:
9983 i.seg[i.mem_operands] = &cs;
9984 break;
9985 case 2:
9986 i.seg[i.mem_operands] = &ss;
9987 break;
9988 case 3:
9989 i.seg[i.mem_operands] = &ds;
9990 break;
9991 case 4:
9992 i.seg[i.mem_operands] = &fs;
9993 break;
9994 case 5:
9995 i.seg[i.mem_operands] = &gs;
9996 break;
9997 }
9998
9999 /* Skip the ':' and whitespace. */
10000 ++op_string;
10001 if (is_space_char (*op_string))
10002 ++op_string;
10003
10004 if (!is_digit_char (*op_string)
10005 && !is_identifier_char (*op_string)
10006 && *op_string != '('
10007 && *op_string != ABSOLUTE_PREFIX)
10008 {
10009 as_bad (_("bad memory operand `%s'"), op_string);
10010 return 0;
10011 }
10012 /* Handle case of %es:*foo. */
10013 if (*op_string == ABSOLUTE_PREFIX)
10014 {
10015 ++op_string;
10016 if (is_space_char (*op_string))
10017 ++op_string;
10018 i.types[this_operand].bitfield.jumpabsolute = 1;
10019 }
10020 goto do_memory_reference;
10021 }
10022
10023 /* Handle vector operations. */
10024 if (*op_string == '{')
10025 {
10026 op_string = check_VecOperations (op_string, NULL);
10027 if (op_string == NULL)
10028 return 0;
10029 }
10030
10031 if (*op_string)
10032 {
10033 as_bad (_("junk `%s' after register"), op_string);
10034 return 0;
10035 }
10036 temp = r->reg_type;
10037 temp.bitfield.baseindex = 0;
10038 i.types[this_operand] = operand_type_or (i.types[this_operand],
10039 temp);
10040 i.types[this_operand].bitfield.unspecified = 0;
10041 i.op[this_operand].regs = r;
10042 i.reg_operands++;
10043 }
10044 else if (*op_string == REGISTER_PREFIX)
10045 {
10046 as_bad (_("bad register name `%s'"), op_string);
10047 return 0;
10048 }
10049 else if (*op_string == IMMEDIATE_PREFIX)
10050 {
10051 ++op_string;
10052 if (i.types[this_operand].bitfield.jumpabsolute)
10053 {
10054 as_bad (_("immediate operand illegal with absolute jump"));
10055 return 0;
10056 }
10057 if (!i386_immediate (op_string))
10058 return 0;
10059 }
10060 else if (RC_SAE_immediate (operand_string))
10061 {
10062 /* If it is a RC or SAE immediate, do nothing. */
10063 ;
10064 }
10065 else if (is_digit_char (*op_string)
10066 || is_identifier_char (*op_string)
10067 || *op_string == '"'
10068 || *op_string == '(')
10069 {
10070 /* This is a memory reference of some sort. */
10071 char *base_string;
10072
10073 /* Start and end of displacement string expression (if found). */
10074 char *displacement_string_start;
10075 char *displacement_string_end;
10076 char *vop_start;
10077
10078 do_memory_reference:
10079 if (i.mem_operands == 1 && !maybe_adjust_templates ())
10080 return 0;
10081 if ((i.mem_operands == 1
10082 && !current_templates->start->opcode_modifier.isstring)
10083 || i.mem_operands == 2)
10084 {
10085 as_bad (_("too many memory references for `%s'"),
10086 current_templates->start->name);
10087 return 0;
10088 }
10089
10090 /* Check for base index form. We detect the base index form by
10091 looking for an ')' at the end of the operand, searching
10092 for the '(' matching it, and finding a REGISTER_PREFIX or ','
10093 after the '('. */
10094 base_string = op_string + strlen (op_string);
10095
10096 /* Handle vector operations. */
10097 vop_start = strchr (op_string, '{');
10098 if (vop_start && vop_start < base_string)
10099 {
10100 if (check_VecOperations (vop_start, base_string) == NULL)
10101 return 0;
10102 base_string = vop_start;
10103 }
10104
10105 --base_string;
10106 if (is_space_char (*base_string))
10107 --base_string;
10108
10109 /* If we only have a displacement, set-up for it to be parsed later. */
10110 displacement_string_start = op_string;
10111 displacement_string_end = base_string + 1;
10112
10113 if (*base_string == ')')
10114 {
10115 char *temp_string;
10116 unsigned int parens_balanced = 1;
10117 /* We've already checked that the number of left & right ()'s are
10118 equal, so this loop will not be infinite. */
10119 do
10120 {
10121 base_string--;
10122 if (*base_string == ')')
10123 parens_balanced++;
10124 if (*base_string == '(')
10125 parens_balanced--;
10126 }
10127 while (parens_balanced);
10128
10129 temp_string = base_string;
10130
10131 /* Skip past '(' and whitespace. */
10132 ++base_string;
10133 if (is_space_char (*base_string))
10134 ++base_string;
10135
10136 if (*base_string == ','
10137 || ((i.base_reg = parse_register (base_string, &end_op))
10138 != NULL))
10139 {
10140 displacement_string_end = temp_string;
10141
10142 i.types[this_operand].bitfield.baseindex = 1;
10143
10144 if (i.base_reg)
10145 {
10146 base_string = end_op;
10147 if (is_space_char (*base_string))
10148 ++base_string;
10149 }
10150
10151 /* There may be an index reg or scale factor here. */
10152 if (*base_string == ',')
10153 {
10154 ++base_string;
10155 if (is_space_char (*base_string))
10156 ++base_string;
10157
10158 if ((i.index_reg = parse_register (base_string, &end_op))
10159 != NULL)
10160 {
10161 base_string = end_op;
10162 if (is_space_char (*base_string))
10163 ++base_string;
10164 if (*base_string == ',')
10165 {
10166 ++base_string;
10167 if (is_space_char (*base_string))
10168 ++base_string;
10169 }
10170 else if (*base_string != ')')
10171 {
10172 as_bad (_("expecting `,' or `)' "
10173 "after index register in `%s'"),
10174 operand_string);
10175 return 0;
10176 }
10177 }
10178 else if (*base_string == REGISTER_PREFIX)
10179 {
10180 end_op = strchr (base_string, ',');
10181 if (end_op)
10182 *end_op = '\0';
10183 as_bad (_("bad register name `%s'"), base_string);
10184 return 0;
10185 }
10186
10187 /* Check for scale factor. */
10188 if (*base_string != ')')
10189 {
10190 char *end_scale = i386_scale (base_string);
10191
10192 if (!end_scale)
10193 return 0;
10194
10195 base_string = end_scale;
10196 if (is_space_char (*base_string))
10197 ++base_string;
10198 if (*base_string != ')')
10199 {
10200 as_bad (_("expecting `)' "
10201 "after scale factor in `%s'"),
10202 operand_string);
10203 return 0;
10204 }
10205 }
10206 else if (!i.index_reg)
10207 {
10208 as_bad (_("expecting index register or scale factor "
10209 "after `,'; got '%c'"),
10210 *base_string);
10211 return 0;
10212 }
10213 }
10214 else if (*base_string != ')')
10215 {
10216 as_bad (_("expecting `,' or `)' "
10217 "after base register in `%s'"),
10218 operand_string);
10219 return 0;
10220 }
10221 }
10222 else if (*base_string == REGISTER_PREFIX)
10223 {
10224 end_op = strchr (base_string, ',');
10225 if (end_op)
10226 *end_op = '\0';
10227 as_bad (_("bad register name `%s'"), base_string);
10228 return 0;
10229 }
10230 }
10231
10232 /* If there's an expression beginning the operand, parse it,
10233 assuming displacement_string_start and
10234 displacement_string_end are meaningful. */
10235 if (displacement_string_start != displacement_string_end)
10236 {
10237 if (!i386_displacement (displacement_string_start,
10238 displacement_string_end))
10239 return 0;
10240 }
10241
10242 /* Special case for (%dx) while doing input/output op. */
10243 if (i.base_reg
10244 && i.base_reg->reg_type.bitfield.inoutportreg
10245 && i.index_reg == 0
10246 && i.log2_scale_factor == 0
10247 && i.seg[i.mem_operands] == 0
10248 && !operand_type_check (i.types[this_operand], disp))
10249 {
10250 i.types[this_operand] = i.base_reg->reg_type;
10251 return 1;
10252 }
10253
10254 if (i386_index_check (operand_string) == 0)
10255 return 0;
10256 i.flags[this_operand] |= Operand_Mem;
10257 if (i.mem_operands == 0)
10258 i.memop1_string = xstrdup (operand_string);
10259 i.mem_operands++;
10260 }
10261 else
10262 {
10263 /* It's not a memory operand; argh! */
10264 as_bad (_("invalid char %s beginning operand %d `%s'"),
10265 output_invalid (*op_string),
10266 this_operand + 1,
10267 op_string);
10268 return 0;
10269 }
10270 return 1; /* Normal return. */
10271 }
10272 \f
10273 /* Calculate the maximum variable size (i.e., excluding fr_fix)
10274 that an rs_machine_dependent frag may reach. */
10275
10276 unsigned int
10277 i386_frag_max_var (fragS *frag)
10278 {
10279 /* The only relaxable frags are for jumps.
10280 Unconditional jumps can grow by 4 bytes and others by 5 bytes. */
10281 gas_assert (frag->fr_type == rs_machine_dependent);
10282 return TYPE_FROM_RELAX_STATE (frag->fr_subtype) == UNCOND_JUMP ? 4 : 5;
10283 }
10284
10285 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10286 static int
10287 elf_symbol_resolved_in_segment_p (symbolS *fr_symbol, offsetT fr_var)
10288 {
10289 /* STT_GNU_IFUNC symbol must go through PLT. */
10290 if ((symbol_get_bfdsym (fr_symbol)->flags
10291 & BSF_GNU_INDIRECT_FUNCTION) != 0)
10292 return 0;
10293
10294 if (!S_IS_EXTERNAL (fr_symbol))
10295 /* Symbol may be weak or local. */
10296 return !S_IS_WEAK (fr_symbol);
10297
10298 /* Global symbols with non-default visibility can't be preempted. */
10299 if (ELF_ST_VISIBILITY (S_GET_OTHER (fr_symbol)) != STV_DEFAULT)
10300 return 1;
10301
10302 if (fr_var != NO_RELOC)
10303 switch ((enum bfd_reloc_code_real) fr_var)
10304 {
10305 case BFD_RELOC_386_PLT32:
10306 case BFD_RELOC_X86_64_PLT32:
10307 /* Symbol with PLT relocation may be preempted. */
10308 return 0;
10309 default:
10310 abort ();
10311 }
10312
10313 /* Global symbols with default visibility in a shared library may be
10314 preempted by another definition. */
10315 return !shared;
10316 }
10317 #endif
10318
10319 /* md_estimate_size_before_relax()
10320
10321 Called just before relax() for rs_machine_dependent frags. The x86
10322 assembler uses these frags to handle variable size jump
10323 instructions.
10324
10325 Any symbol that is now undefined will not become defined.
10326 Return the correct fr_subtype in the frag.
10327 Return the initial "guess for variable size of frag" to caller.
10328 The guess is actually the growth beyond the fixed part. Whatever
10329 we do to grow the fixed or variable part contributes to our
10330 returned value. */
10331
10332 int
10333 md_estimate_size_before_relax (fragS *fragP, segT segment)
10334 {
10335 /* We've already got fragP->fr_subtype right; all we have to do is
10336 check for un-relaxable symbols. On an ELF system, we can't relax
10337 an externally visible symbol, because it may be overridden by a
10338 shared library. */
10339 if (S_GET_SEGMENT (fragP->fr_symbol) != segment
10340 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10341 || (IS_ELF
10342 && !elf_symbol_resolved_in_segment_p (fragP->fr_symbol,
10343 fragP->fr_var))
10344 #endif
10345 #if defined (OBJ_COFF) && defined (TE_PE)
10346 || (OUTPUT_FLAVOR == bfd_target_coff_flavour
10347 && S_IS_WEAK (fragP->fr_symbol))
10348 #endif
10349 )
10350 {
10351 /* Symbol is undefined in this segment, or we need to keep a
10352 reloc so that weak symbols can be overridden. */
10353 int size = (fragP->fr_subtype & CODE16) ? 2 : 4;
10354 enum bfd_reloc_code_real reloc_type;
10355 unsigned char *opcode;
10356 int old_fr_fix;
10357
10358 if (fragP->fr_var != NO_RELOC)
10359 reloc_type = (enum bfd_reloc_code_real) fragP->fr_var;
10360 else if (size == 2)
10361 reloc_type = BFD_RELOC_16_PCREL;
10362 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10363 else if (need_plt32_p (fragP->fr_symbol))
10364 reloc_type = BFD_RELOC_X86_64_PLT32;
10365 #endif
10366 else
10367 reloc_type = BFD_RELOC_32_PCREL;
10368
10369 old_fr_fix = fragP->fr_fix;
10370 opcode = (unsigned char *) fragP->fr_opcode;
10371
10372 switch (TYPE_FROM_RELAX_STATE (fragP->fr_subtype))
10373 {
10374 case UNCOND_JUMP:
10375 /* Make jmp (0xeb) a (d)word displacement jump. */
10376 opcode[0] = 0xe9;
10377 fragP->fr_fix += size;
10378 fix_new (fragP, old_fr_fix, size,
10379 fragP->fr_symbol,
10380 fragP->fr_offset, 1,
10381 reloc_type);
10382 break;
10383
10384 case COND_JUMP86:
10385 if (size == 2
10386 && (!no_cond_jump_promotion || fragP->fr_var != NO_RELOC))
10387 {
10388 /* Negate the condition, and branch past an
10389 unconditional jump. */
10390 opcode[0] ^= 1;
10391 opcode[1] = 3;
10392 /* Insert an unconditional jump. */
10393 opcode[2] = 0xe9;
10394 /* We added two extra opcode bytes, and have a two byte
10395 offset. */
10396 fragP->fr_fix += 2 + 2;
10397 fix_new (fragP, old_fr_fix + 2, 2,
10398 fragP->fr_symbol,
10399 fragP->fr_offset, 1,
10400 reloc_type);
10401 break;
10402 }
10403 /* Fall through. */
10404
10405 case COND_JUMP:
10406 if (no_cond_jump_promotion && fragP->fr_var == NO_RELOC)
10407 {
10408 fixS *fixP;
10409
10410 fragP->fr_fix += 1;
10411 fixP = fix_new (fragP, old_fr_fix, 1,
10412 fragP->fr_symbol,
10413 fragP->fr_offset, 1,
10414 BFD_RELOC_8_PCREL);
10415 fixP->fx_signed = 1;
10416 break;
10417 }
10418
10419 /* This changes the byte-displacement jump 0x7N
10420 to the (d)word-displacement jump 0x0f,0x8N. */
10421 opcode[1] = opcode[0] + 0x10;
10422 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
10423 /* We've added an opcode byte. */
10424 fragP->fr_fix += 1 + size;
10425 fix_new (fragP, old_fr_fix + 1, size,
10426 fragP->fr_symbol,
10427 fragP->fr_offset, 1,
10428 reloc_type);
10429 break;
10430
10431 default:
10432 BAD_CASE (fragP->fr_subtype);
10433 break;
10434 }
10435 frag_wane (fragP);
10436 return fragP->fr_fix - old_fr_fix;
10437 }
10438
10439 /* Guess size depending on current relax state. Initially the relax
10440 state will correspond to a short jump and we return 1, because
10441 the variable part of the frag (the branch offset) is one byte
10442 long. However, we can relax a section more than once and in that
10443 case we must either set fr_subtype back to the unrelaxed state,
10444 or return the value for the appropriate branch. */
10445 return md_relax_table[fragP->fr_subtype].rlx_length;
10446 }
10447
10448 /* Called after relax() is finished.
10449
10450 In: Address of frag.
10451 fr_type == rs_machine_dependent.
10452 fr_subtype is what the address relaxed to.
10453
10454 Out: Any fixSs and constants are set up.
10455 Caller will turn frag into a ".space 0". */
10456
10457 void
10458 md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT sec ATTRIBUTE_UNUSED,
10459 fragS *fragP)
10460 {
10461 unsigned char *opcode;
10462 unsigned char *where_to_put_displacement = NULL;
10463 offsetT target_address;
10464 offsetT opcode_address;
10465 unsigned int extension = 0;
10466 offsetT displacement_from_opcode_start;
10467
10468 opcode = (unsigned char *) fragP->fr_opcode;
10469
10470 /* Address we want to reach in file space. */
10471 target_address = S_GET_VALUE (fragP->fr_symbol) + fragP->fr_offset;
10472
10473 /* Address opcode resides at in file space. */
10474 opcode_address = fragP->fr_address + fragP->fr_fix;
10475
10476 /* Displacement from opcode start to fill into instruction. */
10477 displacement_from_opcode_start = target_address - opcode_address;
10478
10479 if ((fragP->fr_subtype & BIG) == 0)
10480 {
10481 /* Don't have to change opcode. */
10482 extension = 1; /* 1 opcode + 1 displacement */
10483 where_to_put_displacement = &opcode[1];
10484 }
10485 else
10486 {
10487 if (no_cond_jump_promotion
10488 && TYPE_FROM_RELAX_STATE (fragP->fr_subtype) != UNCOND_JUMP)
10489 as_warn_where (fragP->fr_file, fragP->fr_line,
10490 _("long jump required"));
10491
10492 switch (fragP->fr_subtype)
10493 {
10494 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG):
10495 extension = 4; /* 1 opcode + 4 displacement */
10496 opcode[0] = 0xe9;
10497 where_to_put_displacement = &opcode[1];
10498 break;
10499
10500 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16):
10501 extension = 2; /* 1 opcode + 2 displacement */
10502 opcode[0] = 0xe9;
10503 where_to_put_displacement = &opcode[1];
10504 break;
10505
10506 case ENCODE_RELAX_STATE (COND_JUMP, BIG):
10507 case ENCODE_RELAX_STATE (COND_JUMP86, BIG):
10508 extension = 5; /* 2 opcode + 4 displacement */
10509 opcode[1] = opcode[0] + 0x10;
10510 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
10511 where_to_put_displacement = &opcode[2];
10512 break;
10513
10514 case ENCODE_RELAX_STATE (COND_JUMP, BIG16):
10515 extension = 3; /* 2 opcode + 2 displacement */
10516 opcode[1] = opcode[0] + 0x10;
10517 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
10518 where_to_put_displacement = &opcode[2];
10519 break;
10520
10521 case ENCODE_RELAX_STATE (COND_JUMP86, BIG16):
10522 extension = 4;
10523 opcode[0] ^= 1;
10524 opcode[1] = 3;
10525 opcode[2] = 0xe9;
10526 where_to_put_displacement = &opcode[3];
10527 break;
10528
10529 default:
10530 BAD_CASE (fragP->fr_subtype);
10531 break;
10532 }
10533 }
10534
10535 /* If size if less then four we are sure that the operand fits,
10536 but if it's 4, then it could be that the displacement is larger
10537 then -/+ 2GB. */
10538 if (DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype) == 4
10539 && object_64bit
10540 && ((addressT) (displacement_from_opcode_start - extension
10541 + ((addressT) 1 << 31))
10542 > (((addressT) 2 << 31) - 1)))
10543 {
10544 as_bad_where (fragP->fr_file, fragP->fr_line,
10545 _("jump target out of range"));
10546 /* Make us emit 0. */
10547 displacement_from_opcode_start = extension;
10548 }
10549 /* Now put displacement after opcode. */
10550 md_number_to_chars ((char *) where_to_put_displacement,
10551 (valueT) (displacement_from_opcode_start - extension),
10552 DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype));
10553 fragP->fr_fix += extension;
10554 }
10555 \f
10556 /* Apply a fixup (fixP) to segment data, once it has been determined
10557 by our caller that we have all the info we need to fix it up.
10558
10559 Parameter valP is the pointer to the value of the bits.
10560
10561 On the 386, immediates, displacements, and data pointers are all in
10562 the same (little-endian) format, so we don't need to care about which
10563 we are handling. */
10564
10565 void
10566 md_apply_fix (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED)
10567 {
10568 char *p = fixP->fx_where + fixP->fx_frag->fr_literal;
10569 valueT value = *valP;
10570
10571 #if !defined (TE_Mach)
10572 if (fixP->fx_pcrel)
10573 {
10574 switch (fixP->fx_r_type)
10575 {
10576 default:
10577 break;
10578
10579 case BFD_RELOC_64:
10580 fixP->fx_r_type = BFD_RELOC_64_PCREL;
10581 break;
10582 case BFD_RELOC_32:
10583 case BFD_RELOC_X86_64_32S:
10584 fixP->fx_r_type = BFD_RELOC_32_PCREL;
10585 break;
10586 case BFD_RELOC_16:
10587 fixP->fx_r_type = BFD_RELOC_16_PCREL;
10588 break;
10589 case BFD_RELOC_8:
10590 fixP->fx_r_type = BFD_RELOC_8_PCREL;
10591 break;
10592 }
10593 }
10594
10595 if (fixP->fx_addsy != NULL
10596 && (fixP->fx_r_type == BFD_RELOC_32_PCREL
10597 || fixP->fx_r_type == BFD_RELOC_64_PCREL
10598 || fixP->fx_r_type == BFD_RELOC_16_PCREL
10599 || fixP->fx_r_type == BFD_RELOC_8_PCREL)
10600 && !use_rela_relocations)
10601 {
10602 /* This is a hack. There should be a better way to handle this.
10603 This covers for the fact that bfd_install_relocation will
10604 subtract the current location (for partial_inplace, PC relative
10605 relocations); see more below. */
10606 #ifndef OBJ_AOUT
10607 if (IS_ELF
10608 #ifdef TE_PE
10609 || OUTPUT_FLAVOR == bfd_target_coff_flavour
10610 #endif
10611 )
10612 value += fixP->fx_where + fixP->fx_frag->fr_address;
10613 #endif
10614 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10615 if (IS_ELF)
10616 {
10617 segT sym_seg = S_GET_SEGMENT (fixP->fx_addsy);
10618
10619 if ((sym_seg == seg
10620 || (symbol_section_p (fixP->fx_addsy)
10621 && sym_seg != absolute_section))
10622 && !generic_force_reloc (fixP))
10623 {
10624 /* Yes, we add the values in twice. This is because
10625 bfd_install_relocation subtracts them out again. I think
10626 bfd_install_relocation is broken, but I don't dare change
10627 it. FIXME. */
10628 value += fixP->fx_where + fixP->fx_frag->fr_address;
10629 }
10630 }
10631 #endif
10632 #if defined (OBJ_COFF) && defined (TE_PE)
10633 /* For some reason, the PE format does not store a
10634 section address offset for a PC relative symbol. */
10635 if (S_GET_SEGMENT (fixP->fx_addsy) != seg
10636 || S_IS_WEAK (fixP->fx_addsy))
10637 value += md_pcrel_from (fixP);
10638 #endif
10639 }
10640 #if defined (OBJ_COFF) && defined (TE_PE)
10641 if (fixP->fx_addsy != NULL
10642 && S_IS_WEAK (fixP->fx_addsy)
10643 /* PR 16858: Do not modify weak function references. */
10644 && ! fixP->fx_pcrel)
10645 {
10646 #if !defined (TE_PEP)
10647 /* For x86 PE weak function symbols are neither PC-relative
10648 nor do they set S_IS_FUNCTION. So the only reliable way
10649 to detect them is to check the flags of their containing
10650 section. */
10651 if (S_GET_SEGMENT (fixP->fx_addsy) != NULL
10652 && S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_CODE)
10653 ;
10654 else
10655 #endif
10656 value -= S_GET_VALUE (fixP->fx_addsy);
10657 }
10658 #endif
10659
10660 /* Fix a few things - the dynamic linker expects certain values here,
10661 and we must not disappoint it. */
10662 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10663 if (IS_ELF && fixP->fx_addsy)
10664 switch (fixP->fx_r_type)
10665 {
10666 case BFD_RELOC_386_PLT32:
10667 case BFD_RELOC_X86_64_PLT32:
10668 /* Make the jump instruction point to the address of the operand.
10669 At runtime we merely add the offset to the actual PLT entry.
10670 NB: Subtract the offset size only for jump instructions. */
10671 if (fixP->fx_pcrel)
10672 value = -4;
10673 break;
10674
10675 case BFD_RELOC_386_TLS_GD:
10676 case BFD_RELOC_386_TLS_LDM:
10677 case BFD_RELOC_386_TLS_IE_32:
10678 case BFD_RELOC_386_TLS_IE:
10679 case BFD_RELOC_386_TLS_GOTIE:
10680 case BFD_RELOC_386_TLS_GOTDESC:
10681 case BFD_RELOC_X86_64_TLSGD:
10682 case BFD_RELOC_X86_64_TLSLD:
10683 case BFD_RELOC_X86_64_GOTTPOFF:
10684 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
10685 value = 0; /* Fully resolved at runtime. No addend. */
10686 /* Fallthrough */
10687 case BFD_RELOC_386_TLS_LE:
10688 case BFD_RELOC_386_TLS_LDO_32:
10689 case BFD_RELOC_386_TLS_LE_32:
10690 case BFD_RELOC_X86_64_DTPOFF32:
10691 case BFD_RELOC_X86_64_DTPOFF64:
10692 case BFD_RELOC_X86_64_TPOFF32:
10693 case BFD_RELOC_X86_64_TPOFF64:
10694 S_SET_THREAD_LOCAL (fixP->fx_addsy);
10695 break;
10696
10697 case BFD_RELOC_386_TLS_DESC_CALL:
10698 case BFD_RELOC_X86_64_TLSDESC_CALL:
10699 value = 0; /* Fully resolved at runtime. No addend. */
10700 S_SET_THREAD_LOCAL (fixP->fx_addsy);
10701 fixP->fx_done = 0;
10702 return;
10703
10704 case BFD_RELOC_VTABLE_INHERIT:
10705 case BFD_RELOC_VTABLE_ENTRY:
10706 fixP->fx_done = 0;
10707 return;
10708
10709 default:
10710 break;
10711 }
10712 #endif /* defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) */
10713 *valP = value;
10714 #endif /* !defined (TE_Mach) */
10715
10716 /* Are we finished with this relocation now? */
10717 if (fixP->fx_addsy == NULL)
10718 fixP->fx_done = 1;
10719 #if defined (OBJ_COFF) && defined (TE_PE)
10720 else if (fixP->fx_addsy != NULL && S_IS_WEAK (fixP->fx_addsy))
10721 {
10722 fixP->fx_done = 0;
10723 /* Remember value for tc_gen_reloc. */
10724 fixP->fx_addnumber = value;
10725 /* Clear out the frag for now. */
10726 value = 0;
10727 }
10728 #endif
10729 else if (use_rela_relocations)
10730 {
10731 fixP->fx_no_overflow = 1;
10732 /* Remember value for tc_gen_reloc. */
10733 fixP->fx_addnumber = value;
10734 value = 0;
10735 }
10736
10737 md_number_to_chars (p, value, fixP->fx_size);
10738 }
10739 \f
10740 const char *
10741 md_atof (int type, char *litP, int *sizeP)
10742 {
10743 /* This outputs the LITTLENUMs in REVERSE order;
10744 in accord with the bigendian 386. */
10745 return ieee_md_atof (type, litP, sizeP, FALSE);
10746 }
10747 \f
10748 static char output_invalid_buf[sizeof (unsigned char) * 2 + 6];
10749
10750 static char *
10751 output_invalid (int c)
10752 {
10753 if (ISPRINT (c))
10754 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
10755 "'%c'", c);
10756 else
10757 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
10758 "(0x%x)", (unsigned char) c);
10759 return output_invalid_buf;
10760 }
10761
10762 /* REG_STRING starts *before* REGISTER_PREFIX. */
10763
10764 static const reg_entry *
10765 parse_real_register (char *reg_string, char **end_op)
10766 {
10767 char *s = reg_string;
10768 char *p;
10769 char reg_name_given[MAX_REG_NAME_SIZE + 1];
10770 const reg_entry *r;
10771
10772 /* Skip possible REGISTER_PREFIX and possible whitespace. */
10773 if (*s == REGISTER_PREFIX)
10774 ++s;
10775
10776 if (is_space_char (*s))
10777 ++s;
10778
10779 p = reg_name_given;
10780 while ((*p++ = register_chars[(unsigned char) *s]) != '\0')
10781 {
10782 if (p >= reg_name_given + MAX_REG_NAME_SIZE)
10783 return (const reg_entry *) NULL;
10784 s++;
10785 }
10786
10787 /* For naked regs, make sure that we are not dealing with an identifier.
10788 This prevents confusing an identifier like `eax_var' with register
10789 `eax'. */
10790 if (allow_naked_reg && identifier_chars[(unsigned char) *s])
10791 return (const reg_entry *) NULL;
10792
10793 *end_op = s;
10794
10795 r = (const reg_entry *) hash_find (reg_hash, reg_name_given);
10796
10797 /* Handle floating point regs, allowing spaces in the (i) part. */
10798 if (r == i386_regtab /* %st is first entry of table */)
10799 {
10800 if (!cpu_arch_flags.bitfield.cpu8087
10801 && !cpu_arch_flags.bitfield.cpu287
10802 && !cpu_arch_flags.bitfield.cpu387)
10803 return (const reg_entry *) NULL;
10804
10805 if (is_space_char (*s))
10806 ++s;
10807 if (*s == '(')
10808 {
10809 ++s;
10810 if (is_space_char (*s))
10811 ++s;
10812 if (*s >= '0' && *s <= '7')
10813 {
10814 int fpr = *s - '0';
10815 ++s;
10816 if (is_space_char (*s))
10817 ++s;
10818 if (*s == ')')
10819 {
10820 *end_op = s + 1;
10821 r = (const reg_entry *) hash_find (reg_hash, "st(0)");
10822 know (r);
10823 return r + fpr;
10824 }
10825 }
10826 /* We have "%st(" then garbage. */
10827 return (const reg_entry *) NULL;
10828 }
10829 }
10830
10831 if (r == NULL || allow_pseudo_reg)
10832 return r;
10833
10834 if (operand_type_all_zero (&r->reg_type))
10835 return (const reg_entry *) NULL;
10836
10837 if ((r->reg_type.bitfield.dword
10838 || r->reg_type.bitfield.sreg3
10839 || r->reg_type.bitfield.control
10840 || r->reg_type.bitfield.debug
10841 || r->reg_type.bitfield.test)
10842 && !cpu_arch_flags.bitfield.cpui386)
10843 return (const reg_entry *) NULL;
10844
10845 if (r->reg_type.bitfield.regmmx && !cpu_arch_flags.bitfield.cpummx)
10846 return (const reg_entry *) NULL;
10847
10848 if (!cpu_arch_flags.bitfield.cpuavx512f)
10849 {
10850 if (r->reg_type.bitfield.zmmword || r->reg_type.bitfield.regmask)
10851 return (const reg_entry *) NULL;
10852
10853 if (!cpu_arch_flags.bitfield.cpuavx)
10854 {
10855 if (r->reg_type.bitfield.ymmword)
10856 return (const reg_entry *) NULL;
10857
10858 if (!cpu_arch_flags.bitfield.cpusse && r->reg_type.bitfield.xmmword)
10859 return (const reg_entry *) NULL;
10860 }
10861 }
10862
10863 if (r->reg_type.bitfield.regbnd && !cpu_arch_flags.bitfield.cpumpx)
10864 return (const reg_entry *) NULL;
10865
10866 /* Don't allow fake index register unless allow_index_reg isn't 0. */
10867 if (!allow_index_reg && r->reg_num == RegIZ)
10868 return (const reg_entry *) NULL;
10869
10870 /* Upper 16 vector registers are only available with VREX in 64bit
10871 mode, and require EVEX encoding. */
10872 if (r->reg_flags & RegVRex)
10873 {
10874 if (!cpu_arch_flags.bitfield.cpuavx512f
10875 || flag_code != CODE_64BIT)
10876 return (const reg_entry *) NULL;
10877
10878 i.vec_encoding = vex_encoding_evex;
10879 }
10880
10881 if (((r->reg_flags & (RegRex64 | RegRex)) || r->reg_type.bitfield.qword)
10882 && (!cpu_arch_flags.bitfield.cpulm || !r->reg_type.bitfield.control)
10883 && flag_code != CODE_64BIT)
10884 return (const reg_entry *) NULL;
10885
10886 if (r->reg_type.bitfield.sreg3 && r->reg_num == RegFlat && !intel_syntax)
10887 return (const reg_entry *) NULL;
10888
10889 return r;
10890 }
10891
10892 /* REG_STRING starts *before* REGISTER_PREFIX. */
10893
10894 static const reg_entry *
10895 parse_register (char *reg_string, char **end_op)
10896 {
10897 const reg_entry *r;
10898
10899 if (*reg_string == REGISTER_PREFIX || allow_naked_reg)
10900 r = parse_real_register (reg_string, end_op);
10901 else
10902 r = NULL;
10903 if (!r)
10904 {
10905 char *save = input_line_pointer;
10906 char c;
10907 symbolS *symbolP;
10908
10909 input_line_pointer = reg_string;
10910 c = get_symbol_name (&reg_string);
10911 symbolP = symbol_find (reg_string);
10912 if (symbolP && S_GET_SEGMENT (symbolP) == reg_section)
10913 {
10914 const expressionS *e = symbol_get_value_expression (symbolP);
10915
10916 know (e->X_op == O_register);
10917 know (e->X_add_number >= 0
10918 && (valueT) e->X_add_number < i386_regtab_size);
10919 r = i386_regtab + e->X_add_number;
10920 if ((r->reg_flags & RegVRex))
10921 i.vec_encoding = vex_encoding_evex;
10922 *end_op = input_line_pointer;
10923 }
10924 *input_line_pointer = c;
10925 input_line_pointer = save;
10926 }
10927 return r;
10928 }
10929
10930 int
10931 i386_parse_name (char *name, expressionS *e, char *nextcharP)
10932 {
10933 const reg_entry *r;
10934 char *end = input_line_pointer;
10935
10936 *end = *nextcharP;
10937 r = parse_register (name, &input_line_pointer);
10938 if (r && end <= input_line_pointer)
10939 {
10940 *nextcharP = *input_line_pointer;
10941 *input_line_pointer = 0;
10942 e->X_op = O_register;
10943 e->X_add_number = r - i386_regtab;
10944 return 1;
10945 }
10946 input_line_pointer = end;
10947 *end = 0;
10948 return intel_syntax ? i386_intel_parse_name (name, e) : 0;
10949 }
10950
10951 void
10952 md_operand (expressionS *e)
10953 {
10954 char *end;
10955 const reg_entry *r;
10956
10957 switch (*input_line_pointer)
10958 {
10959 case REGISTER_PREFIX:
10960 r = parse_real_register (input_line_pointer, &end);
10961 if (r)
10962 {
10963 e->X_op = O_register;
10964 e->X_add_number = r - i386_regtab;
10965 input_line_pointer = end;
10966 }
10967 break;
10968
10969 case '[':
10970 gas_assert (intel_syntax);
10971 end = input_line_pointer++;
10972 expression (e);
10973 if (*input_line_pointer == ']')
10974 {
10975 ++input_line_pointer;
10976 e->X_op_symbol = make_expr_symbol (e);
10977 e->X_add_symbol = NULL;
10978 e->X_add_number = 0;
10979 e->X_op = O_index;
10980 }
10981 else
10982 {
10983 e->X_op = O_absent;
10984 input_line_pointer = end;
10985 }
10986 break;
10987 }
10988 }
10989
10990 \f
10991 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10992 const char *md_shortopts = "kVQ:sqnO::";
10993 #else
10994 const char *md_shortopts = "qnO::";
10995 #endif
10996
10997 #define OPTION_32 (OPTION_MD_BASE + 0)
10998 #define OPTION_64 (OPTION_MD_BASE + 1)
10999 #define OPTION_DIVIDE (OPTION_MD_BASE + 2)
11000 #define OPTION_MARCH (OPTION_MD_BASE + 3)
11001 #define OPTION_MTUNE (OPTION_MD_BASE + 4)
11002 #define OPTION_MMNEMONIC (OPTION_MD_BASE + 5)
11003 #define OPTION_MSYNTAX (OPTION_MD_BASE + 6)
11004 #define OPTION_MINDEX_REG (OPTION_MD_BASE + 7)
11005 #define OPTION_MNAKED_REG (OPTION_MD_BASE + 8)
11006 #define OPTION_MRELAX_RELOCATIONS (OPTION_MD_BASE + 9)
11007 #define OPTION_MSSE2AVX (OPTION_MD_BASE + 10)
11008 #define OPTION_MSSE_CHECK (OPTION_MD_BASE + 11)
11009 #define OPTION_MOPERAND_CHECK (OPTION_MD_BASE + 12)
11010 #define OPTION_MAVXSCALAR (OPTION_MD_BASE + 13)
11011 #define OPTION_X32 (OPTION_MD_BASE + 14)
11012 #define OPTION_MADD_BND_PREFIX (OPTION_MD_BASE + 15)
11013 #define OPTION_MEVEXLIG (OPTION_MD_BASE + 16)
11014 #define OPTION_MEVEXWIG (OPTION_MD_BASE + 17)
11015 #define OPTION_MBIG_OBJ (OPTION_MD_BASE + 18)
11016 #define OPTION_MOMIT_LOCK_PREFIX (OPTION_MD_BASE + 19)
11017 #define OPTION_MEVEXRCIG (OPTION_MD_BASE + 20)
11018 #define OPTION_MSHARED (OPTION_MD_BASE + 21)
11019 #define OPTION_MAMD64 (OPTION_MD_BASE + 22)
11020 #define OPTION_MINTEL64 (OPTION_MD_BASE + 23)
11021 #define OPTION_MFENCE_AS_LOCK_ADD (OPTION_MD_BASE + 24)
11022 #define OPTION_X86_USED_NOTE (OPTION_MD_BASE + 25)
11023 #define OPTION_MVEXWIG (OPTION_MD_BASE + 26)
11024
11025 struct option md_longopts[] =
11026 {
11027 {"32", no_argument, NULL, OPTION_32},
11028 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
11029 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
11030 {"64", no_argument, NULL, OPTION_64},
11031 #endif
11032 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11033 {"x32", no_argument, NULL, OPTION_X32},
11034 {"mshared", no_argument, NULL, OPTION_MSHARED},
11035 {"mx86-used-note", required_argument, NULL, OPTION_X86_USED_NOTE},
11036 #endif
11037 {"divide", no_argument, NULL, OPTION_DIVIDE},
11038 {"march", required_argument, NULL, OPTION_MARCH},
11039 {"mtune", required_argument, NULL, OPTION_MTUNE},
11040 {"mmnemonic", required_argument, NULL, OPTION_MMNEMONIC},
11041 {"msyntax", required_argument, NULL, OPTION_MSYNTAX},
11042 {"mindex-reg", no_argument, NULL, OPTION_MINDEX_REG},
11043 {"mnaked-reg", no_argument, NULL, OPTION_MNAKED_REG},
11044 {"msse2avx", no_argument, NULL, OPTION_MSSE2AVX},
11045 {"msse-check", required_argument, NULL, OPTION_MSSE_CHECK},
11046 {"moperand-check", required_argument, NULL, OPTION_MOPERAND_CHECK},
11047 {"mavxscalar", required_argument, NULL, OPTION_MAVXSCALAR},
11048 {"mvexwig", required_argument, NULL, OPTION_MVEXWIG},
11049 {"madd-bnd-prefix", no_argument, NULL, OPTION_MADD_BND_PREFIX},
11050 {"mevexlig", required_argument, NULL, OPTION_MEVEXLIG},
11051 {"mevexwig", required_argument, NULL, OPTION_MEVEXWIG},
11052 # if defined (TE_PE) || defined (TE_PEP)
11053 {"mbig-obj", no_argument, NULL, OPTION_MBIG_OBJ},
11054 #endif
11055 {"momit-lock-prefix", required_argument, NULL, OPTION_MOMIT_LOCK_PREFIX},
11056 {"mfence-as-lock-add", required_argument, NULL, OPTION_MFENCE_AS_LOCK_ADD},
11057 {"mrelax-relocations", required_argument, NULL, OPTION_MRELAX_RELOCATIONS},
11058 {"mevexrcig", required_argument, NULL, OPTION_MEVEXRCIG},
11059 {"mamd64", no_argument, NULL, OPTION_MAMD64},
11060 {"mintel64", no_argument, NULL, OPTION_MINTEL64},
11061 {NULL, no_argument, NULL, 0}
11062 };
11063 size_t md_longopts_size = sizeof (md_longopts);
11064
11065 int
11066 md_parse_option (int c, const char *arg)
11067 {
11068 unsigned int j;
11069 char *arch, *next, *saved;
11070
11071 switch (c)
11072 {
11073 case 'n':
11074 optimize_align_code = 0;
11075 break;
11076
11077 case 'q':
11078 quiet_warnings = 1;
11079 break;
11080
11081 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11082 /* -Qy, -Qn: SVR4 arguments controlling whether a .comment section
11083 should be emitted or not. FIXME: Not implemented. */
11084 case 'Q':
11085 break;
11086
11087 /* -V: SVR4 argument to print version ID. */
11088 case 'V':
11089 print_version_id ();
11090 break;
11091
11092 /* -k: Ignore for FreeBSD compatibility. */
11093 case 'k':
11094 break;
11095
11096 case 's':
11097 /* -s: On i386 Solaris, this tells the native assembler to use
11098 .stab instead of .stab.excl. We always use .stab anyhow. */
11099 break;
11100
11101 case OPTION_MSHARED:
11102 shared = 1;
11103 break;
11104
11105 case OPTION_X86_USED_NOTE:
11106 if (strcasecmp (arg, "yes") == 0)
11107 x86_used_note = 1;
11108 else if (strcasecmp (arg, "no") == 0)
11109 x86_used_note = 0;
11110 else
11111 as_fatal (_("invalid -mx86-used-note= option: `%s'"), arg);
11112 break;
11113
11114
11115 #endif
11116 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
11117 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
11118 case OPTION_64:
11119 {
11120 const char **list, **l;
11121
11122 list = bfd_target_list ();
11123 for (l = list; *l != NULL; l++)
11124 if (CONST_STRNEQ (*l, "elf64-x86-64")
11125 || strcmp (*l, "coff-x86-64") == 0
11126 || strcmp (*l, "pe-x86-64") == 0
11127 || strcmp (*l, "pei-x86-64") == 0
11128 || strcmp (*l, "mach-o-x86-64") == 0)
11129 {
11130 default_arch = "x86_64";
11131 break;
11132 }
11133 if (*l == NULL)
11134 as_fatal (_("no compiled in support for x86_64"));
11135 free (list);
11136 }
11137 break;
11138 #endif
11139
11140 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11141 case OPTION_X32:
11142 if (IS_ELF)
11143 {
11144 const char **list, **l;
11145
11146 list = bfd_target_list ();
11147 for (l = list; *l != NULL; l++)
11148 if (CONST_STRNEQ (*l, "elf32-x86-64"))
11149 {
11150 default_arch = "x86_64:32";
11151 break;
11152 }
11153 if (*l == NULL)
11154 as_fatal (_("no compiled in support for 32bit x86_64"));
11155 free (list);
11156 }
11157 else
11158 as_fatal (_("32bit x86_64 is only supported for ELF"));
11159 break;
11160 #endif
11161
11162 case OPTION_32:
11163 default_arch = "i386";
11164 break;
11165
11166 case OPTION_DIVIDE:
11167 #ifdef SVR4_COMMENT_CHARS
11168 {
11169 char *n, *t;
11170 const char *s;
11171
11172 n = XNEWVEC (char, strlen (i386_comment_chars) + 1);
11173 t = n;
11174 for (s = i386_comment_chars; *s != '\0'; s++)
11175 if (*s != '/')
11176 *t++ = *s;
11177 *t = '\0';
11178 i386_comment_chars = n;
11179 }
11180 #endif
11181 break;
11182
11183 case OPTION_MARCH:
11184 saved = xstrdup (arg);
11185 arch = saved;
11186 /* Allow -march=+nosse. */
11187 if (*arch == '+')
11188 arch++;
11189 do
11190 {
11191 if (*arch == '.')
11192 as_fatal (_("invalid -march= option: `%s'"), arg);
11193 next = strchr (arch, '+');
11194 if (next)
11195 *next++ = '\0';
11196 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
11197 {
11198 if (strcmp (arch, cpu_arch [j].name) == 0)
11199 {
11200 /* Processor. */
11201 if (! cpu_arch[j].flags.bitfield.cpui386)
11202 continue;
11203
11204 cpu_arch_name = cpu_arch[j].name;
11205 cpu_sub_arch_name = NULL;
11206 cpu_arch_flags = cpu_arch[j].flags;
11207 cpu_arch_isa = cpu_arch[j].type;
11208 cpu_arch_isa_flags = cpu_arch[j].flags;
11209 if (!cpu_arch_tune_set)
11210 {
11211 cpu_arch_tune = cpu_arch_isa;
11212 cpu_arch_tune_flags = cpu_arch_isa_flags;
11213 }
11214 break;
11215 }
11216 else if (*cpu_arch [j].name == '.'
11217 && strcmp (arch, cpu_arch [j].name + 1) == 0)
11218 {
11219 /* ISA extension. */
11220 i386_cpu_flags flags;
11221
11222 flags = cpu_flags_or (cpu_arch_flags,
11223 cpu_arch[j].flags);
11224
11225 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
11226 {
11227 if (cpu_sub_arch_name)
11228 {
11229 char *name = cpu_sub_arch_name;
11230 cpu_sub_arch_name = concat (name,
11231 cpu_arch[j].name,
11232 (const char *) NULL);
11233 free (name);
11234 }
11235 else
11236 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
11237 cpu_arch_flags = flags;
11238 cpu_arch_isa_flags = flags;
11239 }
11240 else
11241 cpu_arch_isa_flags
11242 = cpu_flags_or (cpu_arch_isa_flags,
11243 cpu_arch[j].flags);
11244 break;
11245 }
11246 }
11247
11248 if (j >= ARRAY_SIZE (cpu_arch))
11249 {
11250 /* Disable an ISA extension. */
11251 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
11252 if (strcmp (arch, cpu_noarch [j].name) == 0)
11253 {
11254 i386_cpu_flags flags;
11255
11256 flags = cpu_flags_and_not (cpu_arch_flags,
11257 cpu_noarch[j].flags);
11258 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
11259 {
11260 if (cpu_sub_arch_name)
11261 {
11262 char *name = cpu_sub_arch_name;
11263 cpu_sub_arch_name = concat (arch,
11264 (const char *) NULL);
11265 free (name);
11266 }
11267 else
11268 cpu_sub_arch_name = xstrdup (arch);
11269 cpu_arch_flags = flags;
11270 cpu_arch_isa_flags = flags;
11271 }
11272 break;
11273 }
11274
11275 if (j >= ARRAY_SIZE (cpu_noarch))
11276 j = ARRAY_SIZE (cpu_arch);
11277 }
11278
11279 if (j >= ARRAY_SIZE (cpu_arch))
11280 as_fatal (_("invalid -march= option: `%s'"), arg);
11281
11282 arch = next;
11283 }
11284 while (next != NULL);
11285 free (saved);
11286 break;
11287
11288 case OPTION_MTUNE:
11289 if (*arg == '.')
11290 as_fatal (_("invalid -mtune= option: `%s'"), arg);
11291 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
11292 {
11293 if (strcmp (arg, cpu_arch [j].name) == 0)
11294 {
11295 cpu_arch_tune_set = 1;
11296 cpu_arch_tune = cpu_arch [j].type;
11297 cpu_arch_tune_flags = cpu_arch[j].flags;
11298 break;
11299 }
11300 }
11301 if (j >= ARRAY_SIZE (cpu_arch))
11302 as_fatal (_("invalid -mtune= option: `%s'"), arg);
11303 break;
11304
11305 case OPTION_MMNEMONIC:
11306 if (strcasecmp (arg, "att") == 0)
11307 intel_mnemonic = 0;
11308 else if (strcasecmp (arg, "intel") == 0)
11309 intel_mnemonic = 1;
11310 else
11311 as_fatal (_("invalid -mmnemonic= option: `%s'"), arg);
11312 break;
11313
11314 case OPTION_MSYNTAX:
11315 if (strcasecmp (arg, "att") == 0)
11316 intel_syntax = 0;
11317 else if (strcasecmp (arg, "intel") == 0)
11318 intel_syntax = 1;
11319 else
11320 as_fatal (_("invalid -msyntax= option: `%s'"), arg);
11321 break;
11322
11323 case OPTION_MINDEX_REG:
11324 allow_index_reg = 1;
11325 break;
11326
11327 case OPTION_MNAKED_REG:
11328 allow_naked_reg = 1;
11329 break;
11330
11331 case OPTION_MSSE2AVX:
11332 sse2avx = 1;
11333 break;
11334
11335 case OPTION_MSSE_CHECK:
11336 if (strcasecmp (arg, "error") == 0)
11337 sse_check = check_error;
11338 else if (strcasecmp (arg, "warning") == 0)
11339 sse_check = check_warning;
11340 else if (strcasecmp (arg, "none") == 0)
11341 sse_check = check_none;
11342 else
11343 as_fatal (_("invalid -msse-check= option: `%s'"), arg);
11344 break;
11345
11346 case OPTION_MOPERAND_CHECK:
11347 if (strcasecmp (arg, "error") == 0)
11348 operand_check = check_error;
11349 else if (strcasecmp (arg, "warning") == 0)
11350 operand_check = check_warning;
11351 else if (strcasecmp (arg, "none") == 0)
11352 operand_check = check_none;
11353 else
11354 as_fatal (_("invalid -moperand-check= option: `%s'"), arg);
11355 break;
11356
11357 case OPTION_MAVXSCALAR:
11358 if (strcasecmp (arg, "128") == 0)
11359 avxscalar = vex128;
11360 else if (strcasecmp (arg, "256") == 0)
11361 avxscalar = vex256;
11362 else
11363 as_fatal (_("invalid -mavxscalar= option: `%s'"), arg);
11364 break;
11365
11366 case OPTION_MVEXWIG:
11367 if (strcmp (arg, "0") == 0)
11368 vexwig = evexw0;
11369 else if (strcmp (arg, "1") == 0)
11370 vexwig = evexw1;
11371 else
11372 as_fatal (_("invalid -mvexwig= option: `%s'"), arg);
11373 break;
11374
11375 case OPTION_MADD_BND_PREFIX:
11376 add_bnd_prefix = 1;
11377 break;
11378
11379 case OPTION_MEVEXLIG:
11380 if (strcmp (arg, "128") == 0)
11381 evexlig = evexl128;
11382 else if (strcmp (arg, "256") == 0)
11383 evexlig = evexl256;
11384 else if (strcmp (arg, "512") == 0)
11385 evexlig = evexl512;
11386 else
11387 as_fatal (_("invalid -mevexlig= option: `%s'"), arg);
11388 break;
11389
11390 case OPTION_MEVEXRCIG:
11391 if (strcmp (arg, "rne") == 0)
11392 evexrcig = rne;
11393 else if (strcmp (arg, "rd") == 0)
11394 evexrcig = rd;
11395 else if (strcmp (arg, "ru") == 0)
11396 evexrcig = ru;
11397 else if (strcmp (arg, "rz") == 0)
11398 evexrcig = rz;
11399 else
11400 as_fatal (_("invalid -mevexrcig= option: `%s'"), arg);
11401 break;
11402
11403 case OPTION_MEVEXWIG:
11404 if (strcmp (arg, "0") == 0)
11405 evexwig = evexw0;
11406 else if (strcmp (arg, "1") == 0)
11407 evexwig = evexw1;
11408 else
11409 as_fatal (_("invalid -mevexwig= option: `%s'"), arg);
11410 break;
11411
11412 # if defined (TE_PE) || defined (TE_PEP)
11413 case OPTION_MBIG_OBJ:
11414 use_big_obj = 1;
11415 break;
11416 #endif
11417
11418 case OPTION_MOMIT_LOCK_PREFIX:
11419 if (strcasecmp (arg, "yes") == 0)
11420 omit_lock_prefix = 1;
11421 else if (strcasecmp (arg, "no") == 0)
11422 omit_lock_prefix = 0;
11423 else
11424 as_fatal (_("invalid -momit-lock-prefix= option: `%s'"), arg);
11425 break;
11426
11427 case OPTION_MFENCE_AS_LOCK_ADD:
11428 if (strcasecmp (arg, "yes") == 0)
11429 avoid_fence = 1;
11430 else if (strcasecmp (arg, "no") == 0)
11431 avoid_fence = 0;
11432 else
11433 as_fatal (_("invalid -mfence-as-lock-add= option: `%s'"), arg);
11434 break;
11435
11436 case OPTION_MRELAX_RELOCATIONS:
11437 if (strcasecmp (arg, "yes") == 0)
11438 generate_relax_relocations = 1;
11439 else if (strcasecmp (arg, "no") == 0)
11440 generate_relax_relocations = 0;
11441 else
11442 as_fatal (_("invalid -mrelax-relocations= option: `%s'"), arg);
11443 break;
11444
11445 case OPTION_MAMD64:
11446 intel64 = 0;
11447 break;
11448
11449 case OPTION_MINTEL64:
11450 intel64 = 1;
11451 break;
11452
11453 case 'O':
11454 if (arg == NULL)
11455 {
11456 optimize = 1;
11457 /* Turn off -Os. */
11458 optimize_for_space = 0;
11459 }
11460 else if (*arg == 's')
11461 {
11462 optimize_for_space = 1;
11463 /* Turn on all encoding optimizations. */
11464 optimize = INT_MAX;
11465 }
11466 else
11467 {
11468 optimize = atoi (arg);
11469 /* Turn off -Os. */
11470 optimize_for_space = 0;
11471 }
11472 break;
11473
11474 default:
11475 return 0;
11476 }
11477 return 1;
11478 }
11479
11480 #define MESSAGE_TEMPLATE \
11481 " "
11482
11483 static char *
11484 output_message (FILE *stream, char *p, char *message, char *start,
11485 int *left_p, const char *name, int len)
11486 {
11487 int size = sizeof (MESSAGE_TEMPLATE);
11488 int left = *left_p;
11489
11490 /* Reserve 2 spaces for ", " or ",\0" */
11491 left -= len + 2;
11492
11493 /* Check if there is any room. */
11494 if (left >= 0)
11495 {
11496 if (p != start)
11497 {
11498 *p++ = ',';
11499 *p++ = ' ';
11500 }
11501 p = mempcpy (p, name, len);
11502 }
11503 else
11504 {
11505 /* Output the current message now and start a new one. */
11506 *p++ = ',';
11507 *p = '\0';
11508 fprintf (stream, "%s\n", message);
11509 p = start;
11510 left = size - (start - message) - len - 2;
11511
11512 gas_assert (left >= 0);
11513
11514 p = mempcpy (p, name, len);
11515 }
11516
11517 *left_p = left;
11518 return p;
11519 }
11520
11521 static void
11522 show_arch (FILE *stream, int ext, int check)
11523 {
11524 static char message[] = MESSAGE_TEMPLATE;
11525 char *start = message + 27;
11526 char *p;
11527 int size = sizeof (MESSAGE_TEMPLATE);
11528 int left;
11529 const char *name;
11530 int len;
11531 unsigned int j;
11532
11533 p = start;
11534 left = size - (start - message);
11535 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
11536 {
11537 /* Should it be skipped? */
11538 if (cpu_arch [j].skip)
11539 continue;
11540
11541 name = cpu_arch [j].name;
11542 len = cpu_arch [j].len;
11543 if (*name == '.')
11544 {
11545 /* It is an extension. Skip if we aren't asked to show it. */
11546 if (ext)
11547 {
11548 name++;
11549 len--;
11550 }
11551 else
11552 continue;
11553 }
11554 else if (ext)
11555 {
11556 /* It is an processor. Skip if we show only extension. */
11557 continue;
11558 }
11559 else if (check && ! cpu_arch[j].flags.bitfield.cpui386)
11560 {
11561 /* It is an impossible processor - skip. */
11562 continue;
11563 }
11564
11565 p = output_message (stream, p, message, start, &left, name, len);
11566 }
11567
11568 /* Display disabled extensions. */
11569 if (ext)
11570 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
11571 {
11572 name = cpu_noarch [j].name;
11573 len = cpu_noarch [j].len;
11574 p = output_message (stream, p, message, start, &left, name,
11575 len);
11576 }
11577
11578 *p = '\0';
11579 fprintf (stream, "%s\n", message);
11580 }
11581
11582 void
11583 md_show_usage (FILE *stream)
11584 {
11585 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11586 fprintf (stream, _("\
11587 -Q ignored\n\
11588 -V print assembler version number\n\
11589 -k ignored\n"));
11590 #endif
11591 fprintf (stream, _("\
11592 -n Do not optimize code alignment\n\
11593 -q quieten some warnings\n"));
11594 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11595 fprintf (stream, _("\
11596 -s ignored\n"));
11597 #endif
11598 #if defined BFD64 && (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
11599 || defined (TE_PE) || defined (TE_PEP))
11600 fprintf (stream, _("\
11601 --32/--64/--x32 generate 32bit/64bit/x32 code\n"));
11602 #endif
11603 #ifdef SVR4_COMMENT_CHARS
11604 fprintf (stream, _("\
11605 --divide do not treat `/' as a comment character\n"));
11606 #else
11607 fprintf (stream, _("\
11608 --divide ignored\n"));
11609 #endif
11610 fprintf (stream, _("\
11611 -march=CPU[,+EXTENSION...]\n\
11612 generate code for CPU and EXTENSION, CPU is one of:\n"));
11613 show_arch (stream, 0, 1);
11614 fprintf (stream, _("\
11615 EXTENSION is combination of:\n"));
11616 show_arch (stream, 1, 0);
11617 fprintf (stream, _("\
11618 -mtune=CPU optimize for CPU, CPU is one of:\n"));
11619 show_arch (stream, 0, 0);
11620 fprintf (stream, _("\
11621 -msse2avx encode SSE instructions with VEX prefix\n"));
11622 fprintf (stream, _("\
11623 -msse-check=[none|error|warning] (default: warning)\n\
11624 check SSE instructions\n"));
11625 fprintf (stream, _("\
11626 -moperand-check=[none|error|warning] (default: warning)\n\
11627 check operand combinations for validity\n"));
11628 fprintf (stream, _("\
11629 -mavxscalar=[128|256] (default: 128)\n\
11630 encode scalar AVX instructions with specific vector\n\
11631 length\n"));
11632 fprintf (stream, _("\
11633 -mvexwig=[0|1] (default: 0)\n\
11634 encode VEX instructions with specific VEX.W value\n\
11635 for VEX.W bit ignored instructions\n"));
11636 fprintf (stream, _("\
11637 -mevexlig=[128|256|512] (default: 128)\n\
11638 encode scalar EVEX instructions with specific vector\n\
11639 length\n"));
11640 fprintf (stream, _("\
11641 -mevexwig=[0|1] (default: 0)\n\
11642 encode EVEX instructions with specific EVEX.W value\n\
11643 for EVEX.W bit ignored instructions\n"));
11644 fprintf (stream, _("\
11645 -mevexrcig=[rne|rd|ru|rz] (default: rne)\n\
11646 encode EVEX instructions with specific EVEX.RC value\n\
11647 for SAE-only ignored instructions\n"));
11648 fprintf (stream, _("\
11649 -mmnemonic=[att|intel] "));
11650 if (SYSV386_COMPAT)
11651 fprintf (stream, _("(default: att)\n"));
11652 else
11653 fprintf (stream, _("(default: intel)\n"));
11654 fprintf (stream, _("\
11655 use AT&T/Intel mnemonic\n"));
11656 fprintf (stream, _("\
11657 -msyntax=[att|intel] (default: att)\n\
11658 use AT&T/Intel syntax\n"));
11659 fprintf (stream, _("\
11660 -mindex-reg support pseudo index registers\n"));
11661 fprintf (stream, _("\
11662 -mnaked-reg don't require `%%' prefix for registers\n"));
11663 fprintf (stream, _("\
11664 -madd-bnd-prefix add BND prefix for all valid branches\n"));
11665 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11666 fprintf (stream, _("\
11667 -mshared disable branch optimization for shared code\n"));
11668 fprintf (stream, _("\
11669 -mx86-used-note=[no|yes] "));
11670 if (DEFAULT_X86_USED_NOTE)
11671 fprintf (stream, _("(default: yes)\n"));
11672 else
11673 fprintf (stream, _("(default: no)\n"));
11674 fprintf (stream, _("\
11675 generate x86 used ISA and feature properties\n"));
11676 #endif
11677 #if defined (TE_PE) || defined (TE_PEP)
11678 fprintf (stream, _("\
11679 -mbig-obj generate big object files\n"));
11680 #endif
11681 fprintf (stream, _("\
11682 -momit-lock-prefix=[no|yes] (default: no)\n\
11683 strip all lock prefixes\n"));
11684 fprintf (stream, _("\
11685 -mfence-as-lock-add=[no|yes] (default: no)\n\
11686 encode lfence, mfence and sfence as\n\
11687 lock addl $0x0, (%%{re}sp)\n"));
11688 fprintf (stream, _("\
11689 -mrelax-relocations=[no|yes] "));
11690 if (DEFAULT_GENERATE_X86_RELAX_RELOCATIONS)
11691 fprintf (stream, _("(default: yes)\n"));
11692 else
11693 fprintf (stream, _("(default: no)\n"));
11694 fprintf (stream, _("\
11695 generate relax relocations\n"));
11696 fprintf (stream, _("\
11697 -mamd64 accept only AMD64 ISA [default]\n"));
11698 fprintf (stream, _("\
11699 -mintel64 accept only Intel64 ISA\n"));
11700 }
11701
11702 #if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
11703 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
11704 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
11705
11706 /* Pick the target format to use. */
11707
11708 const char *
11709 i386_target_format (void)
11710 {
11711 if (!strncmp (default_arch, "x86_64", 6))
11712 {
11713 update_code_flag (CODE_64BIT, 1);
11714 if (default_arch[6] == '\0')
11715 x86_elf_abi = X86_64_ABI;
11716 else
11717 x86_elf_abi = X86_64_X32_ABI;
11718 }
11719 else if (!strcmp (default_arch, "i386"))
11720 update_code_flag (CODE_32BIT, 1);
11721 else if (!strcmp (default_arch, "iamcu"))
11722 {
11723 update_code_flag (CODE_32BIT, 1);
11724 if (cpu_arch_isa == PROCESSOR_UNKNOWN)
11725 {
11726 static const i386_cpu_flags iamcu_flags = CPU_IAMCU_FLAGS;
11727 cpu_arch_name = "iamcu";
11728 cpu_sub_arch_name = NULL;
11729 cpu_arch_flags = iamcu_flags;
11730 cpu_arch_isa = PROCESSOR_IAMCU;
11731 cpu_arch_isa_flags = iamcu_flags;
11732 if (!cpu_arch_tune_set)
11733 {
11734 cpu_arch_tune = cpu_arch_isa;
11735 cpu_arch_tune_flags = cpu_arch_isa_flags;
11736 }
11737 }
11738 else if (cpu_arch_isa != PROCESSOR_IAMCU)
11739 as_fatal (_("Intel MCU doesn't support `%s' architecture"),
11740 cpu_arch_name);
11741 }
11742 else
11743 as_fatal (_("unknown architecture"));
11744
11745 if (cpu_flags_all_zero (&cpu_arch_isa_flags))
11746 cpu_arch_isa_flags = cpu_arch[flag_code == CODE_64BIT].flags;
11747 if (cpu_flags_all_zero (&cpu_arch_tune_flags))
11748 cpu_arch_tune_flags = cpu_arch[flag_code == CODE_64BIT].flags;
11749
11750 switch (OUTPUT_FLAVOR)
11751 {
11752 #if defined (OBJ_MAYBE_AOUT) || defined (OBJ_AOUT)
11753 case bfd_target_aout_flavour:
11754 return AOUT_TARGET_FORMAT;
11755 #endif
11756 #if defined (OBJ_MAYBE_COFF) || defined (OBJ_COFF)
11757 # if defined (TE_PE) || defined (TE_PEP)
11758 case bfd_target_coff_flavour:
11759 if (flag_code == CODE_64BIT)
11760 return use_big_obj ? "pe-bigobj-x86-64" : "pe-x86-64";
11761 else
11762 return "pe-i386";
11763 # elif defined (TE_GO32)
11764 case bfd_target_coff_flavour:
11765 return "coff-go32";
11766 # else
11767 case bfd_target_coff_flavour:
11768 return "coff-i386";
11769 # endif
11770 #endif
11771 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
11772 case bfd_target_elf_flavour:
11773 {
11774 const char *format;
11775
11776 switch (x86_elf_abi)
11777 {
11778 default:
11779 format = ELF_TARGET_FORMAT;
11780 break;
11781 case X86_64_ABI:
11782 use_rela_relocations = 1;
11783 object_64bit = 1;
11784 format = ELF_TARGET_FORMAT64;
11785 break;
11786 case X86_64_X32_ABI:
11787 use_rela_relocations = 1;
11788 object_64bit = 1;
11789 disallow_64bit_reloc = 1;
11790 format = ELF_TARGET_FORMAT32;
11791 break;
11792 }
11793 if (cpu_arch_isa == PROCESSOR_L1OM)
11794 {
11795 if (x86_elf_abi != X86_64_ABI)
11796 as_fatal (_("Intel L1OM is 64bit only"));
11797 return ELF_TARGET_L1OM_FORMAT;
11798 }
11799 else if (cpu_arch_isa == PROCESSOR_K1OM)
11800 {
11801 if (x86_elf_abi != X86_64_ABI)
11802 as_fatal (_("Intel K1OM is 64bit only"));
11803 return ELF_TARGET_K1OM_FORMAT;
11804 }
11805 else if (cpu_arch_isa == PROCESSOR_IAMCU)
11806 {
11807 if (x86_elf_abi != I386_ABI)
11808 as_fatal (_("Intel MCU is 32bit only"));
11809 return ELF_TARGET_IAMCU_FORMAT;
11810 }
11811 else
11812 return format;
11813 }
11814 #endif
11815 #if defined (OBJ_MACH_O)
11816 case bfd_target_mach_o_flavour:
11817 if (flag_code == CODE_64BIT)
11818 {
11819 use_rela_relocations = 1;
11820 object_64bit = 1;
11821 return "mach-o-x86-64";
11822 }
11823 else
11824 return "mach-o-i386";
11825 #endif
11826 default:
11827 abort ();
11828 return NULL;
11829 }
11830 }
11831
11832 #endif /* OBJ_MAYBE_ more than one */
11833 \f
11834 symbolS *
11835 md_undefined_symbol (char *name)
11836 {
11837 if (name[0] == GLOBAL_OFFSET_TABLE_NAME[0]
11838 && name[1] == GLOBAL_OFFSET_TABLE_NAME[1]
11839 && name[2] == GLOBAL_OFFSET_TABLE_NAME[2]
11840 && strcmp (name, GLOBAL_OFFSET_TABLE_NAME) == 0)
11841 {
11842 if (!GOT_symbol)
11843 {
11844 if (symbol_find (name))
11845 as_bad (_("GOT already in symbol table"));
11846 GOT_symbol = symbol_new (name, undefined_section,
11847 (valueT) 0, &zero_address_frag);
11848 };
11849 return GOT_symbol;
11850 }
11851 return 0;
11852 }
11853
11854 /* Round up a section size to the appropriate boundary. */
11855
11856 valueT
11857 md_section_align (segT segment ATTRIBUTE_UNUSED, valueT size)
11858 {
11859 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
11860 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
11861 {
11862 /* For a.out, force the section size to be aligned. If we don't do
11863 this, BFD will align it for us, but it will not write out the
11864 final bytes of the section. This may be a bug in BFD, but it is
11865 easier to fix it here since that is how the other a.out targets
11866 work. */
11867 int align;
11868
11869 align = bfd_get_section_alignment (stdoutput, segment);
11870 size = ((size + (1 << align) - 1) & (-((valueT) 1 << align)));
11871 }
11872 #endif
11873
11874 return size;
11875 }
11876
11877 /* On the i386, PC-relative offsets are relative to the start of the
11878 next instruction. That is, the address of the offset, plus its
11879 size, since the offset is always the last part of the insn. */
11880
11881 long
11882 md_pcrel_from (fixS *fixP)
11883 {
11884 return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address;
11885 }
11886
11887 #ifndef I386COFF
11888
11889 static void
11890 s_bss (int ignore ATTRIBUTE_UNUSED)
11891 {
11892 int temp;
11893
11894 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11895 if (IS_ELF)
11896 obj_elf_section_change_hook ();
11897 #endif
11898 temp = get_absolute_expression ();
11899 subseg_set (bss_section, (subsegT) temp);
11900 demand_empty_rest_of_line ();
11901 }
11902
11903 #endif
11904
11905 void
11906 i386_validate_fix (fixS *fixp)
11907 {
11908 if (fixp->fx_subsy)
11909 {
11910 if (fixp->fx_subsy == GOT_symbol)
11911 {
11912 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
11913 {
11914 if (!object_64bit)
11915 abort ();
11916 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11917 if (fixp->fx_tcbit2)
11918 fixp->fx_r_type = (fixp->fx_tcbit
11919 ? BFD_RELOC_X86_64_REX_GOTPCRELX
11920 : BFD_RELOC_X86_64_GOTPCRELX);
11921 else
11922 #endif
11923 fixp->fx_r_type = BFD_RELOC_X86_64_GOTPCREL;
11924 }
11925 else
11926 {
11927 if (!object_64bit)
11928 fixp->fx_r_type = BFD_RELOC_386_GOTOFF;
11929 else
11930 fixp->fx_r_type = BFD_RELOC_X86_64_GOTOFF64;
11931 }
11932 fixp->fx_subsy = 0;
11933 }
11934 }
11935 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11936 else if (!object_64bit)
11937 {
11938 if (fixp->fx_r_type == BFD_RELOC_386_GOT32
11939 && fixp->fx_tcbit2)
11940 fixp->fx_r_type = BFD_RELOC_386_GOT32X;
11941 }
11942 #endif
11943 }
11944
11945 arelent *
11946 tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
11947 {
11948 arelent *rel;
11949 bfd_reloc_code_real_type code;
11950
11951 switch (fixp->fx_r_type)
11952 {
11953 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11954 case BFD_RELOC_SIZE32:
11955 case BFD_RELOC_SIZE64:
11956 if (S_IS_DEFINED (fixp->fx_addsy)
11957 && !S_IS_EXTERNAL (fixp->fx_addsy))
11958 {
11959 /* Resolve size relocation against local symbol to size of
11960 the symbol plus addend. */
11961 valueT value = S_GET_SIZE (fixp->fx_addsy) + fixp->fx_offset;
11962 if (fixp->fx_r_type == BFD_RELOC_SIZE32
11963 && !fits_in_unsigned_long (value))
11964 as_bad_where (fixp->fx_file, fixp->fx_line,
11965 _("symbol size computation overflow"));
11966 fixp->fx_addsy = NULL;
11967 fixp->fx_subsy = NULL;
11968 md_apply_fix (fixp, (valueT *) &value, NULL);
11969 return NULL;
11970 }
11971 #endif
11972 /* Fall through. */
11973
11974 case BFD_RELOC_X86_64_PLT32:
11975 case BFD_RELOC_X86_64_GOT32:
11976 case BFD_RELOC_X86_64_GOTPCREL:
11977 case BFD_RELOC_X86_64_GOTPCRELX:
11978 case BFD_RELOC_X86_64_REX_GOTPCRELX:
11979 case BFD_RELOC_386_PLT32:
11980 case BFD_RELOC_386_GOT32:
11981 case BFD_RELOC_386_GOT32X:
11982 case BFD_RELOC_386_GOTOFF:
11983 case BFD_RELOC_386_GOTPC:
11984 case BFD_RELOC_386_TLS_GD:
11985 case BFD_RELOC_386_TLS_LDM:
11986 case BFD_RELOC_386_TLS_LDO_32:
11987 case BFD_RELOC_386_TLS_IE_32:
11988 case BFD_RELOC_386_TLS_IE:
11989 case BFD_RELOC_386_TLS_GOTIE:
11990 case BFD_RELOC_386_TLS_LE_32:
11991 case BFD_RELOC_386_TLS_LE:
11992 case BFD_RELOC_386_TLS_GOTDESC:
11993 case BFD_RELOC_386_TLS_DESC_CALL:
11994 case BFD_RELOC_X86_64_TLSGD:
11995 case BFD_RELOC_X86_64_TLSLD:
11996 case BFD_RELOC_X86_64_DTPOFF32:
11997 case BFD_RELOC_X86_64_DTPOFF64:
11998 case BFD_RELOC_X86_64_GOTTPOFF:
11999 case BFD_RELOC_X86_64_TPOFF32:
12000 case BFD_RELOC_X86_64_TPOFF64:
12001 case BFD_RELOC_X86_64_GOTOFF64:
12002 case BFD_RELOC_X86_64_GOTPC32:
12003 case BFD_RELOC_X86_64_GOT64:
12004 case BFD_RELOC_X86_64_GOTPCREL64:
12005 case BFD_RELOC_X86_64_GOTPC64:
12006 case BFD_RELOC_X86_64_GOTPLT64:
12007 case BFD_RELOC_X86_64_PLTOFF64:
12008 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
12009 case BFD_RELOC_X86_64_TLSDESC_CALL:
12010 case BFD_RELOC_RVA:
12011 case BFD_RELOC_VTABLE_ENTRY:
12012 case BFD_RELOC_VTABLE_INHERIT:
12013 #ifdef TE_PE
12014 case BFD_RELOC_32_SECREL:
12015 #endif
12016 code = fixp->fx_r_type;
12017 break;
12018 case BFD_RELOC_X86_64_32S:
12019 if (!fixp->fx_pcrel)
12020 {
12021 /* Don't turn BFD_RELOC_X86_64_32S into BFD_RELOC_32. */
12022 code = fixp->fx_r_type;
12023 break;
12024 }
12025 /* Fall through. */
12026 default:
12027 if (fixp->fx_pcrel)
12028 {
12029 switch (fixp->fx_size)
12030 {
12031 default:
12032 as_bad_where (fixp->fx_file, fixp->fx_line,
12033 _("can not do %d byte pc-relative relocation"),
12034 fixp->fx_size);
12035 code = BFD_RELOC_32_PCREL;
12036 break;
12037 case 1: code = BFD_RELOC_8_PCREL; break;
12038 case 2: code = BFD_RELOC_16_PCREL; break;
12039 case 4: code = BFD_RELOC_32_PCREL; break;
12040 #ifdef BFD64
12041 case 8: code = BFD_RELOC_64_PCREL; break;
12042 #endif
12043 }
12044 }
12045 else
12046 {
12047 switch (fixp->fx_size)
12048 {
12049 default:
12050 as_bad_where (fixp->fx_file, fixp->fx_line,
12051 _("can not do %d byte relocation"),
12052 fixp->fx_size);
12053 code = BFD_RELOC_32;
12054 break;
12055 case 1: code = BFD_RELOC_8; break;
12056 case 2: code = BFD_RELOC_16; break;
12057 case 4: code = BFD_RELOC_32; break;
12058 #ifdef BFD64
12059 case 8: code = BFD_RELOC_64; break;
12060 #endif
12061 }
12062 }
12063 break;
12064 }
12065
12066 if ((code == BFD_RELOC_32
12067 || code == BFD_RELOC_32_PCREL
12068 || code == BFD_RELOC_X86_64_32S)
12069 && GOT_symbol
12070 && fixp->fx_addsy == GOT_symbol)
12071 {
12072 if (!object_64bit)
12073 code = BFD_RELOC_386_GOTPC;
12074 else
12075 code = BFD_RELOC_X86_64_GOTPC32;
12076 }
12077 if ((code == BFD_RELOC_64 || code == BFD_RELOC_64_PCREL)
12078 && GOT_symbol
12079 && fixp->fx_addsy == GOT_symbol)
12080 {
12081 code = BFD_RELOC_X86_64_GOTPC64;
12082 }
12083
12084 rel = XNEW (arelent);
12085 rel->sym_ptr_ptr = XNEW (asymbol *);
12086 *rel->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
12087
12088 rel->address = fixp->fx_frag->fr_address + fixp->fx_where;
12089
12090 if (!use_rela_relocations)
12091 {
12092 /* HACK: Since i386 ELF uses Rel instead of Rela, encode the
12093 vtable entry to be used in the relocation's section offset. */
12094 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
12095 rel->address = fixp->fx_offset;
12096 #if defined (OBJ_COFF) && defined (TE_PE)
12097 else if (fixp->fx_addsy && S_IS_WEAK (fixp->fx_addsy))
12098 rel->addend = fixp->fx_addnumber - (S_GET_VALUE (fixp->fx_addsy) * 2);
12099 else
12100 #endif
12101 rel->addend = 0;
12102 }
12103 /* Use the rela in 64bit mode. */
12104 else
12105 {
12106 if (disallow_64bit_reloc)
12107 switch (code)
12108 {
12109 case BFD_RELOC_X86_64_DTPOFF64:
12110 case BFD_RELOC_X86_64_TPOFF64:
12111 case BFD_RELOC_64_PCREL:
12112 case BFD_RELOC_X86_64_GOTOFF64:
12113 case BFD_RELOC_X86_64_GOT64:
12114 case BFD_RELOC_X86_64_GOTPCREL64:
12115 case BFD_RELOC_X86_64_GOTPC64:
12116 case BFD_RELOC_X86_64_GOTPLT64:
12117 case BFD_RELOC_X86_64_PLTOFF64:
12118 as_bad_where (fixp->fx_file, fixp->fx_line,
12119 _("cannot represent relocation type %s in x32 mode"),
12120 bfd_get_reloc_code_name (code));
12121 break;
12122 default:
12123 break;
12124 }
12125
12126 if (!fixp->fx_pcrel)
12127 rel->addend = fixp->fx_offset;
12128 else
12129 switch (code)
12130 {
12131 case BFD_RELOC_X86_64_PLT32:
12132 case BFD_RELOC_X86_64_GOT32:
12133 case BFD_RELOC_X86_64_GOTPCREL:
12134 case BFD_RELOC_X86_64_GOTPCRELX:
12135 case BFD_RELOC_X86_64_REX_GOTPCRELX:
12136 case BFD_RELOC_X86_64_TLSGD:
12137 case BFD_RELOC_X86_64_TLSLD:
12138 case BFD_RELOC_X86_64_GOTTPOFF:
12139 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
12140 case BFD_RELOC_X86_64_TLSDESC_CALL:
12141 rel->addend = fixp->fx_offset - fixp->fx_size;
12142 break;
12143 default:
12144 rel->addend = (section->vma
12145 - fixp->fx_size
12146 + fixp->fx_addnumber
12147 + md_pcrel_from (fixp));
12148 break;
12149 }
12150 }
12151
12152 rel->howto = bfd_reloc_type_lookup (stdoutput, code);
12153 if (rel->howto == NULL)
12154 {
12155 as_bad_where (fixp->fx_file, fixp->fx_line,
12156 _("cannot represent relocation type %s"),
12157 bfd_get_reloc_code_name (code));
12158 /* Set howto to a garbage value so that we can keep going. */
12159 rel->howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_32);
12160 gas_assert (rel->howto != NULL);
12161 }
12162
12163 return rel;
12164 }
12165
12166 #include "tc-i386-intel.c"
12167
12168 void
12169 tc_x86_parse_to_dw2regnum (expressionS *exp)
12170 {
12171 int saved_naked_reg;
12172 char saved_register_dot;
12173
12174 saved_naked_reg = allow_naked_reg;
12175 allow_naked_reg = 1;
12176 saved_register_dot = register_chars['.'];
12177 register_chars['.'] = '.';
12178 allow_pseudo_reg = 1;
12179 expression_and_evaluate (exp);
12180 allow_pseudo_reg = 0;
12181 register_chars['.'] = saved_register_dot;
12182 allow_naked_reg = saved_naked_reg;
12183
12184 if (exp->X_op == O_register && exp->X_add_number >= 0)
12185 {
12186 if ((addressT) exp->X_add_number < i386_regtab_size)
12187 {
12188 exp->X_op = O_constant;
12189 exp->X_add_number = i386_regtab[exp->X_add_number]
12190 .dw2_regnum[flag_code >> 1];
12191 }
12192 else
12193 exp->X_op = O_illegal;
12194 }
12195 }
12196
12197 void
12198 tc_x86_frame_initial_instructions (void)
12199 {
12200 static unsigned int sp_regno[2];
12201
12202 if (!sp_regno[flag_code >> 1])
12203 {
12204 char *saved_input = input_line_pointer;
12205 char sp[][4] = {"esp", "rsp"};
12206 expressionS exp;
12207
12208 input_line_pointer = sp[flag_code >> 1];
12209 tc_x86_parse_to_dw2regnum (&exp);
12210 gas_assert (exp.X_op == O_constant);
12211 sp_regno[flag_code >> 1] = exp.X_add_number;
12212 input_line_pointer = saved_input;
12213 }
12214
12215 cfi_add_CFA_def_cfa (sp_regno[flag_code >> 1], -x86_cie_data_alignment);
12216 cfi_add_CFA_offset (x86_dwarf2_return_column, x86_cie_data_alignment);
12217 }
12218
12219 int
12220 x86_dwarf2_addr_size (void)
12221 {
12222 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
12223 if (x86_elf_abi == X86_64_X32_ABI)
12224 return 4;
12225 #endif
12226 return bfd_arch_bits_per_address (stdoutput) / 8;
12227 }
12228
12229 int
12230 i386_elf_section_type (const char *str, size_t len)
12231 {
12232 if (flag_code == CODE_64BIT
12233 && len == sizeof ("unwind") - 1
12234 && strncmp (str, "unwind", 6) == 0)
12235 return SHT_X86_64_UNWIND;
12236
12237 return -1;
12238 }
12239
12240 #ifdef TE_SOLARIS
12241 void
12242 i386_solaris_fix_up_eh_frame (segT sec)
12243 {
12244 if (flag_code == CODE_64BIT)
12245 elf_section_type (sec) = SHT_X86_64_UNWIND;
12246 }
12247 #endif
12248
12249 #ifdef TE_PE
12250 void
12251 tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
12252 {
12253 expressionS exp;
12254
12255 exp.X_op = O_secrel;
12256 exp.X_add_symbol = symbol;
12257 exp.X_add_number = 0;
12258 emit_expr (&exp, size);
12259 }
12260 #endif
12261
12262 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12263 /* For ELF on x86-64, add support for SHF_X86_64_LARGE. */
12264
12265 bfd_vma
12266 x86_64_section_letter (int letter, const char **ptr_msg)
12267 {
12268 if (flag_code == CODE_64BIT)
12269 {
12270 if (letter == 'l')
12271 return SHF_X86_64_LARGE;
12272
12273 *ptr_msg = _("bad .section directive: want a,l,w,x,M,S,G,T in string");
12274 }
12275 else
12276 *ptr_msg = _("bad .section directive: want a,w,x,M,S,G,T in string");
12277 return -1;
12278 }
12279
12280 bfd_vma
12281 x86_64_section_word (char *str, size_t len)
12282 {
12283 if (len == 5 && flag_code == CODE_64BIT && CONST_STRNEQ (str, "large"))
12284 return SHF_X86_64_LARGE;
12285
12286 return -1;
12287 }
12288
12289 static void
12290 handle_large_common (int small ATTRIBUTE_UNUSED)
12291 {
12292 if (flag_code != CODE_64BIT)
12293 {
12294 s_comm_internal (0, elf_common_parse);
12295 as_warn (_(".largecomm supported only in 64bit mode, producing .comm"));
12296 }
12297 else
12298 {
12299 static segT lbss_section;
12300 asection *saved_com_section_ptr = elf_com_section_ptr;
12301 asection *saved_bss_section = bss_section;
12302
12303 if (lbss_section == NULL)
12304 {
12305 flagword applicable;
12306 segT seg = now_seg;
12307 subsegT subseg = now_subseg;
12308
12309 /* The .lbss section is for local .largecomm symbols. */
12310 lbss_section = subseg_new (".lbss", 0);
12311 applicable = bfd_applicable_section_flags (stdoutput);
12312 bfd_set_section_flags (stdoutput, lbss_section,
12313 applicable & SEC_ALLOC);
12314 seg_info (lbss_section)->bss = 1;
12315
12316 subseg_set (seg, subseg);
12317 }
12318
12319 elf_com_section_ptr = &_bfd_elf_large_com_section;
12320 bss_section = lbss_section;
12321
12322 s_comm_internal (0, elf_common_parse);
12323
12324 elf_com_section_ptr = saved_com_section_ptr;
12325 bss_section = saved_bss_section;
12326 }
12327 }
12328 #endif /* OBJ_ELF || OBJ_MAYBE_ELF */
This page took 0.32276 seconds and 4 git commands to generate.