gas/
[deliverable/binutils-gdb.git] / gas / config / tc-i386.c
1 /* tc-i386.c -- Assemble code for the Intel 80386
2 Copyright 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
4 Free Software Foundation, Inc.
5
6 This file is part of GAS, the GNU Assembler.
7
8 GAS is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
12
13 GAS is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GAS; see the file COPYING. If not, write to the Free
20 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
21 02110-1301, USA. */
22
23 /* Intel 80386 machine specific gas.
24 Written by Eliot Dresselhaus (eliot@mgm.mit.edu).
25 x86_64 support by Jan Hubicka (jh@suse.cz)
26 VIA PadLock support by Michal Ludvig (mludvig@suse.cz)
27 Bugs & suggestions are completely welcome. This is free software.
28 Please help us make it better. */
29
30 #include "as.h"
31 #include "safe-ctype.h"
32 #include "subsegs.h"
33 #include "dwarf2dbg.h"
34 #include "dw2gencfi.h"
35 #include "elf/x86-64.h"
36
37 #ifndef REGISTER_WARNINGS
38 #define REGISTER_WARNINGS 1
39 #endif
40
41 #ifndef INFER_ADDR_PREFIX
42 #define INFER_ADDR_PREFIX 1
43 #endif
44
45 #ifndef SCALE1_WHEN_NO_INDEX
46 /* Specifying a scale factor besides 1 when there is no index is
47 futile. eg. `mov (%ebx,2),%al' does exactly the same as
48 `mov (%ebx),%al'. To slavishly follow what the programmer
49 specified, set SCALE1_WHEN_NO_INDEX to 0. */
50 #define SCALE1_WHEN_NO_INDEX 1
51 #endif
52
53 #ifndef DEFAULT_ARCH
54 #define DEFAULT_ARCH "i386"
55 #endif
56
57 #ifndef INLINE
58 #if __GNUC__ >= 2
59 #define INLINE __inline__
60 #else
61 #define INLINE
62 #endif
63 #endif
64
65 static void set_code_flag (int);
66 static void set_16bit_gcc_code_flag (int);
67 static void set_intel_syntax (int);
68 static void set_cpu_arch (int);
69 #ifdef TE_PE
70 static void pe_directive_secrel (int);
71 #endif
72 static void signed_cons (int);
73 static char *output_invalid (int c);
74 static int i386_operand (char *);
75 static int i386_intel_operand (char *, int);
76 static const reg_entry *parse_register (char *, char **);
77 static char *parse_insn (char *, char *);
78 static char *parse_operands (char *, const char *);
79 static void swap_operands (void);
80 static void swap_2_operands (int, int);
81 static void optimize_imm (void);
82 static void optimize_disp (void);
83 static int match_template (void);
84 static int check_string (void);
85 static int process_suffix (void);
86 static int check_byte_reg (void);
87 static int check_long_reg (void);
88 static int check_qword_reg (void);
89 static int check_word_reg (void);
90 static int finalize_imm (void);
91 static int process_operands (void);
92 static const seg_entry *build_modrm_byte (void);
93 static void output_insn (void);
94 static void output_imm (fragS *, offsetT);
95 static void output_disp (fragS *, offsetT);
96 #ifndef I386COFF
97 static void s_bss (int);
98 #endif
99 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
100 static void handle_large_common (int small ATTRIBUTE_UNUSED);
101 #endif
102
103 static const char *default_arch = DEFAULT_ARCH;
104
105 /* 'md_assemble ()' gathers together information and puts it into a
106 i386_insn. */
107
108 union i386_op
109 {
110 expressionS *disps;
111 expressionS *imms;
112 const reg_entry *regs;
113 };
114
115 struct _i386_insn
116 {
117 /* TM holds the template for the insn were currently assembling. */
118 template tm;
119
120 /* SUFFIX holds the instruction mnemonic suffix if given.
121 (e.g. 'l' for 'movl') */
122 char suffix;
123
124 /* OPERANDS gives the number of given operands. */
125 unsigned int operands;
126
127 /* REG_OPERANDS, DISP_OPERANDS, MEM_OPERANDS, IMM_OPERANDS give the number
128 of given register, displacement, memory operands and immediate
129 operands. */
130 unsigned int reg_operands, disp_operands, mem_operands, imm_operands;
131
132 /* TYPES [i] is the type (see above #defines) which tells us how to
133 use OP[i] for the corresponding operand. */
134 unsigned int types[MAX_OPERANDS];
135
136 /* Displacement expression, immediate expression, or register for each
137 operand. */
138 union i386_op op[MAX_OPERANDS];
139
140 /* Flags for operands. */
141 unsigned int flags[MAX_OPERANDS];
142 #define Operand_PCrel 1
143
144 /* Relocation type for operand */
145 enum bfd_reloc_code_real reloc[MAX_OPERANDS];
146
147 /* BASE_REG, INDEX_REG, and LOG2_SCALE_FACTOR are used to encode
148 the base index byte below. */
149 const reg_entry *base_reg;
150 const reg_entry *index_reg;
151 unsigned int log2_scale_factor;
152
153 /* SEG gives the seg_entries of this insn. They are zero unless
154 explicit segment overrides are given. */
155 const seg_entry *seg[2];
156
157 /* PREFIX holds all the given prefix opcodes (usually null).
158 PREFIXES is the number of prefix opcodes. */
159 unsigned int prefixes;
160 unsigned char prefix[MAX_PREFIXES];
161
162 /* RM and SIB are the modrm byte and the sib byte where the
163 addressing modes of this insn are encoded. */
164
165 modrm_byte rm;
166 rex_byte rex;
167 sib_byte sib;
168 };
169
170 typedef struct _i386_insn i386_insn;
171
172 /* List of chars besides those in app.c:symbol_chars that can start an
173 operand. Used to prevent the scrubber eating vital white-space. */
174 const char extra_symbol_chars[] = "*%-(["
175 #ifdef LEX_AT
176 "@"
177 #endif
178 #ifdef LEX_QM
179 "?"
180 #endif
181 ;
182
183 #if (defined (TE_I386AIX) \
184 || ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) \
185 && !defined (TE_GNU) \
186 && !defined (TE_LINUX) \
187 && !defined (TE_NETWARE) \
188 && !defined (TE_FreeBSD) \
189 && !defined (TE_NetBSD)))
190 /* This array holds the chars that always start a comment. If the
191 pre-processor is disabled, these aren't very useful. The option
192 --divide will remove '/' from this list. */
193 const char *i386_comment_chars = "#/";
194 #define SVR4_COMMENT_CHARS 1
195 #define PREFIX_SEPARATOR '\\'
196
197 #else
198 const char *i386_comment_chars = "#";
199 #define PREFIX_SEPARATOR '/'
200 #endif
201
202 /* This array holds the chars that only start a comment at the beginning of
203 a line. If the line seems to have the form '# 123 filename'
204 .line and .file directives will appear in the pre-processed output.
205 Note that input_file.c hand checks for '#' at the beginning of the
206 first line of the input file. This is because the compiler outputs
207 #NO_APP at the beginning of its output.
208 Also note that comments started like this one will always work if
209 '/' isn't otherwise defined. */
210 const char line_comment_chars[] = "#/";
211
212 const char line_separator_chars[] = ";";
213
214 /* Chars that can be used to separate mant from exp in floating point
215 nums. */
216 const char EXP_CHARS[] = "eE";
217
218 /* Chars that mean this number is a floating point constant
219 As in 0f12.456
220 or 0d1.2345e12. */
221 const char FLT_CHARS[] = "fFdDxX";
222
223 /* Tables for lexical analysis. */
224 static char mnemonic_chars[256];
225 static char register_chars[256];
226 static char operand_chars[256];
227 static char identifier_chars[256];
228 static char digit_chars[256];
229
230 /* Lexical macros. */
231 #define is_mnemonic_char(x) (mnemonic_chars[(unsigned char) x])
232 #define is_operand_char(x) (operand_chars[(unsigned char) x])
233 #define is_register_char(x) (register_chars[(unsigned char) x])
234 #define is_space_char(x) ((x) == ' ')
235 #define is_identifier_char(x) (identifier_chars[(unsigned char) x])
236 #define is_digit_char(x) (digit_chars[(unsigned char) x])
237
238 /* All non-digit non-letter characters that may occur in an operand. */
239 static char operand_special_chars[] = "%$-+(,)*._~/<>|&^!:[@]";
240
241 /* md_assemble() always leaves the strings it's passed unaltered. To
242 effect this we maintain a stack of saved characters that we've smashed
243 with '\0's (indicating end of strings for various sub-fields of the
244 assembler instruction). */
245 static char save_stack[32];
246 static char *save_stack_p;
247 #define END_STRING_AND_SAVE(s) \
248 do { *save_stack_p++ = *(s); *(s) = '\0'; } while (0)
249 #define RESTORE_END_STRING(s) \
250 do { *(s) = *--save_stack_p; } while (0)
251
252 /* The instruction we're assembling. */
253 static i386_insn i;
254
255 /* Possible templates for current insn. */
256 static const templates *current_templates;
257
258 /* Per instruction expressionS buffers: max displacements & immediates. */
259 static expressionS disp_expressions[MAX_MEMORY_OPERANDS];
260 static expressionS im_expressions[MAX_IMMEDIATE_OPERANDS];
261
262 /* Current operand we are working on. */
263 static int this_operand;
264
265 /* We support four different modes. FLAG_CODE variable is used to distinguish
266 these. */
267
268 enum flag_code {
269 CODE_32BIT,
270 CODE_16BIT,
271 CODE_64BIT };
272 #define NUM_FLAG_CODE ((int) CODE_64BIT + 1)
273
274 static enum flag_code flag_code;
275 static unsigned int object_64bit;
276 static int use_rela_relocations = 0;
277
278 /* The names used to print error messages. */
279 static const char *flag_code_names[] =
280 {
281 "32",
282 "16",
283 "64"
284 };
285
286 /* 1 for intel syntax,
287 0 if att syntax. */
288 static int intel_syntax = 0;
289
290 /* 1 if register prefix % not required. */
291 static int allow_naked_reg = 0;
292
293 /* Register prefix used for error message. */
294 static const char *register_prefix = "%";
295
296 /* Used in 16 bit gcc mode to add an l suffix to call, ret, enter,
297 leave, push, and pop instructions so that gcc has the same stack
298 frame as in 32 bit mode. */
299 static char stackop_size = '\0';
300
301 /* Non-zero to optimize code alignment. */
302 int optimize_align_code = 1;
303
304 /* Non-zero to quieten some warnings. */
305 static int quiet_warnings = 0;
306
307 /* CPU name. */
308 static const char *cpu_arch_name = NULL;
309 static const char *cpu_sub_arch_name = NULL;
310
311 /* CPU feature flags. */
312 static unsigned int cpu_arch_flags = CpuUnknownFlags | CpuNo64;
313
314 /* If we have selected a cpu we are generating instructions for. */
315 static int cpu_arch_tune_set = 0;
316
317 /* Cpu we are generating instructions for. */
318 static enum processor_type cpu_arch_tune = PROCESSOR_UNKNOWN;
319
320 /* CPU feature flags of cpu we are generating instructions for. */
321 static unsigned int cpu_arch_tune_flags = 0;
322
323 /* CPU instruction set architecture used. */
324 static enum processor_type cpu_arch_isa = PROCESSOR_UNKNOWN;
325
326 /* CPU feature flags of instruction set architecture used. */
327 static unsigned int cpu_arch_isa_flags = 0;
328
329 /* If set, conditional jumps are not automatically promoted to handle
330 larger than a byte offset. */
331 static unsigned int no_cond_jump_promotion = 0;
332
333 /* Pre-defined "_GLOBAL_OFFSET_TABLE_". */
334 static symbolS *GOT_symbol;
335
336 /* The dwarf2 return column, adjusted for 32 or 64 bit. */
337 unsigned int x86_dwarf2_return_column;
338
339 /* The dwarf2 data alignment, adjusted for 32 or 64 bit. */
340 int x86_cie_data_alignment;
341
342 /* Interface to relax_segment.
343 There are 3 major relax states for 386 jump insns because the
344 different types of jumps add different sizes to frags when we're
345 figuring out what sort of jump to choose to reach a given label. */
346
347 /* Types. */
348 #define UNCOND_JUMP 0
349 #define COND_JUMP 1
350 #define COND_JUMP86 2
351
352 /* Sizes. */
353 #define CODE16 1
354 #define SMALL 0
355 #define SMALL16 (SMALL | CODE16)
356 #define BIG 2
357 #define BIG16 (BIG | CODE16)
358
359 #ifndef INLINE
360 #ifdef __GNUC__
361 #define INLINE __inline__
362 #else
363 #define INLINE
364 #endif
365 #endif
366
367 #define ENCODE_RELAX_STATE(type, size) \
368 ((relax_substateT) (((type) << 2) | (size)))
369 #define TYPE_FROM_RELAX_STATE(s) \
370 ((s) >> 2)
371 #define DISP_SIZE_FROM_RELAX_STATE(s) \
372 ((((s) & 3) == BIG ? 4 : (((s) & 3) == BIG16 ? 2 : 1)))
373
374 /* This table is used by relax_frag to promote short jumps to long
375 ones where necessary. SMALL (short) jumps may be promoted to BIG
376 (32 bit long) ones, and SMALL16 jumps to BIG16 (16 bit long). We
377 don't allow a short jump in a 32 bit code segment to be promoted to
378 a 16 bit offset jump because it's slower (requires data size
379 prefix), and doesn't work, unless the destination is in the bottom
380 64k of the code segment (The top 16 bits of eip are zeroed). */
381
382 const relax_typeS md_relax_table[] =
383 {
384 /* The fields are:
385 1) most positive reach of this state,
386 2) most negative reach of this state,
387 3) how many bytes this mode will have in the variable part of the frag
388 4) which index into the table to try if we can't fit into this one. */
389
390 /* UNCOND_JUMP states. */
391 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG)},
392 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16)},
393 /* dword jmp adds 4 bytes to frag:
394 0 extra opcode bytes, 4 displacement bytes. */
395 {0, 0, 4, 0},
396 /* word jmp adds 2 byte2 to frag:
397 0 extra opcode bytes, 2 displacement bytes. */
398 {0, 0, 2, 0},
399
400 /* COND_JUMP states. */
401 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG)},
402 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG16)},
403 /* dword conditionals adds 5 bytes to frag:
404 1 extra opcode byte, 4 displacement bytes. */
405 {0, 0, 5, 0},
406 /* word conditionals add 3 bytes to frag:
407 1 extra opcode byte, 2 displacement bytes. */
408 {0, 0, 3, 0},
409
410 /* COND_JUMP86 states. */
411 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG)},
412 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG16)},
413 /* dword conditionals adds 5 bytes to frag:
414 1 extra opcode byte, 4 displacement bytes. */
415 {0, 0, 5, 0},
416 /* word conditionals add 4 bytes to frag:
417 1 displacement byte and a 3 byte long branch insn. */
418 {0, 0, 4, 0}
419 };
420
421 static const arch_entry cpu_arch[] =
422 {
423 {"generic32", PROCESSOR_GENERIC32,
424 Cpu186|Cpu286|Cpu386},
425 {"generic64", PROCESSOR_GENERIC64,
426 Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuP4|CpuMMX
427 |CpuMMX2|CpuSSE|CpuSSE2},
428 {"i8086", PROCESSOR_UNKNOWN,
429 0},
430 {"i186", PROCESSOR_UNKNOWN,
431 Cpu186},
432 {"i286", PROCESSOR_UNKNOWN,
433 Cpu186|Cpu286},
434 {"i386", PROCESSOR_I386,
435 Cpu186|Cpu286|Cpu386},
436 {"i486", PROCESSOR_I486,
437 Cpu186|Cpu286|Cpu386|Cpu486},
438 {"i586", PROCESSOR_PENTIUM,
439 Cpu186|Cpu286|Cpu386|Cpu486|Cpu586},
440 {"i686", PROCESSOR_PENTIUMPRO,
441 Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686},
442 {"pentium", PROCESSOR_PENTIUM,
443 Cpu186|Cpu286|Cpu386|Cpu486|Cpu586},
444 {"pentiumpro",PROCESSOR_PENTIUMPRO,
445 Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686},
446 {"pentiumii", PROCESSOR_PENTIUMPRO,
447 Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuMMX},
448 {"pentiumiii",PROCESSOR_PENTIUMPRO,
449 Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuMMX|CpuMMX2|CpuSSE},
450 {"pentium4", PROCESSOR_PENTIUM4,
451 Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuP4|CpuMMX
452 |CpuMMX2|CpuSSE|CpuSSE2},
453 {"prescott", PROCESSOR_NOCONA,
454 Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuP4|CpuMMX
455 |CpuMMX2|CpuSSE|CpuSSE2|CpuSSE3},
456 {"nocona", PROCESSOR_NOCONA,
457 Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuP4|CpuMMX
458 |CpuMMX2|CpuSSE|CpuSSE2|CpuSSE3},
459 {"yonah", PROCESSOR_CORE,
460 Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuP4|CpuMMX
461 |CpuMMX2|CpuSSE|CpuSSE2|CpuSSE3},
462 {"core", PROCESSOR_CORE,
463 Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuP4|CpuMMX
464 |CpuMMX2|CpuSSE|CpuSSE2|CpuSSE3},
465 {"merom", PROCESSOR_CORE2,
466 Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuP4|CpuMMX
467 |CpuMMX2|CpuSSE|CpuSSE2|CpuSSE3|CpuSSSE3},
468 {"core2", PROCESSOR_CORE2,
469 Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuP4|CpuMMX
470 |CpuMMX2|CpuSSE|CpuSSE2|CpuSSE3|CpuSSSE3},
471 {"k6", PROCESSOR_K6,
472 Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|CpuK6|CpuMMX},
473 {"k6_2", PROCESSOR_K6,
474 Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|CpuK6|CpuMMX|Cpu3dnow},
475 {"athlon", PROCESSOR_ATHLON,
476 Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuK6
477 |CpuMMX|CpuMMX2|Cpu3dnow|Cpu3dnowA},
478 {"sledgehammer", PROCESSOR_K8,
479 Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuK6
480 |CpuSledgehammer|CpuMMX|CpuMMX2|Cpu3dnow|Cpu3dnowA|CpuSSE|CpuSSE2},
481 {"opteron", PROCESSOR_K8,
482 Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuK6
483 |CpuSledgehammer|CpuMMX|CpuMMX2|Cpu3dnow|Cpu3dnowA|CpuSSE|CpuSSE2},
484 {"k8", PROCESSOR_K8,
485 Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuK6
486 |CpuSledgehammer|CpuMMX|CpuMMX2|Cpu3dnow|Cpu3dnowA|CpuSSE|CpuSSE2},
487 {"amdfam10", PROCESSOR_AMDFAM10,
488 Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuK6|CpuSledgehammer
489 |CpuMMX|CpuMMX2|Cpu3dnow|Cpu3dnowA|CpuSSE|CpuSSE2|CpuSSE3|CpuSSE4a
490 |CpuABM},
491 {".mmx", PROCESSOR_UNKNOWN,
492 CpuMMX},
493 {".sse", PROCESSOR_UNKNOWN,
494 CpuMMX|CpuMMX2|CpuSSE},
495 {".sse2", PROCESSOR_UNKNOWN,
496 CpuMMX|CpuMMX2|CpuSSE|CpuSSE2},
497 {".sse3", PROCESSOR_UNKNOWN,
498 CpuMMX|CpuMMX2|CpuSSE|CpuSSE2|CpuSSE3},
499 {".ssse3", PROCESSOR_UNKNOWN,
500 CpuMMX|CpuMMX2|CpuSSE|CpuSSE2|CpuSSE3|CpuSSSE3},
501 {".sse4.1", PROCESSOR_UNKNOWN,
502 CpuMMX|CpuMMX2|CpuSSE|CpuSSE2|CpuSSE3|CpuSSSE3|CpuSSE4_1},
503 {".sse4.2", PROCESSOR_UNKNOWN,
504 CpuMMX|CpuMMX2|CpuSSE|CpuSSE2|CpuSSE3|CpuSSSE3|CpuSSE4},
505 {".sse4", PROCESSOR_UNKNOWN,
506 CpuMMX|CpuMMX2|CpuSSE|CpuSSE2|CpuSSE3|CpuSSSE3|CpuSSE4},
507 {".3dnow", PROCESSOR_UNKNOWN,
508 CpuMMX|Cpu3dnow},
509 {".3dnowa", PROCESSOR_UNKNOWN,
510 CpuMMX|CpuMMX2|Cpu3dnow|Cpu3dnowA},
511 {".padlock", PROCESSOR_UNKNOWN,
512 CpuPadLock},
513 {".pacifica", PROCESSOR_UNKNOWN,
514 CpuSVME},
515 {".svme", PROCESSOR_UNKNOWN,
516 CpuSVME},
517 {".sse4a", PROCESSOR_UNKNOWN,
518 CpuMMX|CpuMMX2|CpuSSE|CpuSSE2|CpuSSE3|CpuSSE4a},
519 {".abm", PROCESSOR_UNKNOWN,
520 CpuABM}
521 };
522
523 const pseudo_typeS md_pseudo_table[] =
524 {
525 #if !defined(OBJ_AOUT) && !defined(USE_ALIGN_PTWO)
526 {"align", s_align_bytes, 0},
527 #else
528 {"align", s_align_ptwo, 0},
529 #endif
530 {"arch", set_cpu_arch, 0},
531 #ifndef I386COFF
532 {"bss", s_bss, 0},
533 #endif
534 {"ffloat", float_cons, 'f'},
535 {"dfloat", float_cons, 'd'},
536 {"tfloat", float_cons, 'x'},
537 {"value", cons, 2},
538 {"slong", signed_cons, 4},
539 {"noopt", s_ignore, 0},
540 {"optim", s_ignore, 0},
541 {"code16gcc", set_16bit_gcc_code_flag, CODE_16BIT},
542 {"code16", set_code_flag, CODE_16BIT},
543 {"code32", set_code_flag, CODE_32BIT},
544 {"code64", set_code_flag, CODE_64BIT},
545 {"intel_syntax", set_intel_syntax, 1},
546 {"att_syntax", set_intel_syntax, 0},
547 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
548 {"largecomm", handle_large_common, 0},
549 #else
550 {"file", (void (*) (int)) dwarf2_directive_file, 0},
551 {"loc", dwarf2_directive_loc, 0},
552 {"loc_mark_labels", dwarf2_directive_loc_mark_labels, 0},
553 #endif
554 #ifdef TE_PE
555 {"secrel32", pe_directive_secrel, 0},
556 #endif
557 {0, 0, 0}
558 };
559
560 /* For interface with expression (). */
561 extern char *input_line_pointer;
562
563 /* Hash table for instruction mnemonic lookup. */
564 static struct hash_control *op_hash;
565
566 /* Hash table for register lookup. */
567 static struct hash_control *reg_hash;
568 \f
569 void
570 i386_align_code (fragS *fragP, int count)
571 {
572 /* Various efficient no-op patterns for aligning code labels.
573 Note: Don't try to assemble the instructions in the comments.
574 0L and 0w are not legal. */
575 static const char f32_1[] =
576 {0x90}; /* nop */
577 static const char f32_2[] =
578 {0x66,0x90}; /* xchg %ax,%ax */
579 static const char f32_3[] =
580 {0x8d,0x76,0x00}; /* leal 0(%esi),%esi */
581 static const char f32_4[] =
582 {0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
583 static const char f32_5[] =
584 {0x90, /* nop */
585 0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
586 static const char f32_6[] =
587 {0x8d,0xb6,0x00,0x00,0x00,0x00}; /* leal 0L(%esi),%esi */
588 static const char f32_7[] =
589 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
590 static const char f32_8[] =
591 {0x90, /* nop */
592 0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
593 static const char f32_9[] =
594 {0x89,0xf6, /* movl %esi,%esi */
595 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
596 static const char f32_10[] =
597 {0x8d,0x76,0x00, /* leal 0(%esi),%esi */
598 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
599 static const char f32_11[] =
600 {0x8d,0x74,0x26,0x00, /* leal 0(%esi,1),%esi */
601 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
602 static const char f32_12[] =
603 {0x8d,0xb6,0x00,0x00,0x00,0x00, /* leal 0L(%esi),%esi */
604 0x8d,0xbf,0x00,0x00,0x00,0x00}; /* leal 0L(%edi),%edi */
605 static const char f32_13[] =
606 {0x8d,0xb6,0x00,0x00,0x00,0x00, /* leal 0L(%esi),%esi */
607 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
608 static const char f32_14[] =
609 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00, /* leal 0L(%esi,1),%esi */
610 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
611 static const char f16_3[] =
612 {0x8d,0x74,0x00}; /* lea 0(%esi),%esi */
613 static const char f16_4[] =
614 {0x8d,0xb4,0x00,0x00}; /* lea 0w(%si),%si */
615 static const char f16_5[] =
616 {0x90, /* nop */
617 0x8d,0xb4,0x00,0x00}; /* lea 0w(%si),%si */
618 static const char f16_6[] =
619 {0x89,0xf6, /* mov %si,%si */
620 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
621 static const char f16_7[] =
622 {0x8d,0x74,0x00, /* lea 0(%si),%si */
623 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
624 static const char f16_8[] =
625 {0x8d,0xb4,0x00,0x00, /* lea 0w(%si),%si */
626 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
627 static const char jump_31[] =
628 {0xeb,0x1d,0x90,0x90,0x90,0x90,0x90, /* jmp .+31; lotsa nops */
629 0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90,
630 0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90,
631 0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90};
632 static const char *const f32_patt[] = {
633 f32_1, f32_2, f32_3, f32_4, f32_5, f32_6, f32_7, f32_8,
634 f32_9, f32_10, f32_11, f32_12, f32_13, f32_14
635 };
636 static const char *const f16_patt[] = {
637 f32_1, f32_2, f16_3, f16_4, f16_5, f16_6, f16_7, f16_8
638 };
639 /* nopl (%[re]ax) */
640 static const char alt_3[] =
641 {0x0f,0x1f,0x00};
642 /* nopl 0(%[re]ax) */
643 static const char alt_4[] =
644 {0x0f,0x1f,0x40,0x00};
645 /* nopl 0(%[re]ax,%[re]ax,1) */
646 static const char alt_5[] =
647 {0x0f,0x1f,0x44,0x00,0x00};
648 /* nopw 0(%[re]ax,%[re]ax,1) */
649 static const char alt_6[] =
650 {0x66,0x0f,0x1f,0x44,0x00,0x00};
651 /* nopl 0L(%[re]ax) */
652 static const char alt_7[] =
653 {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
654 /* nopl 0L(%[re]ax,%[re]ax,1) */
655 static const char alt_8[] =
656 {0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
657 /* nopw 0L(%[re]ax,%[re]ax,1) */
658 static const char alt_9[] =
659 {0x66,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
660 /* nopw %cs:0L(%[re]ax,%[re]ax,1) */
661 static const char alt_10[] =
662 {0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
663 /* data16
664 nopw %cs:0L(%[re]ax,%[re]ax,1) */
665 static const char alt_long_11[] =
666 {0x66,
667 0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
668 /* data16
669 data16
670 nopw %cs:0L(%[re]ax,%[re]ax,1) */
671 static const char alt_long_12[] =
672 {0x66,
673 0x66,
674 0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
675 /* data16
676 data16
677 data16
678 nopw %cs:0L(%[re]ax,%[re]ax,1) */
679 static const char alt_long_13[] =
680 {0x66,
681 0x66,
682 0x66,
683 0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
684 /* data16
685 data16
686 data16
687 data16
688 nopw %cs:0L(%[re]ax,%[re]ax,1) */
689 static const char alt_long_14[] =
690 {0x66,
691 0x66,
692 0x66,
693 0x66,
694 0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
695 /* data16
696 data16
697 data16
698 data16
699 data16
700 nopw %cs:0L(%[re]ax,%[re]ax,1) */
701 static const char alt_long_15[] =
702 {0x66,
703 0x66,
704 0x66,
705 0x66,
706 0x66,
707 0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
708 /* nopl 0(%[re]ax,%[re]ax,1)
709 nopw 0(%[re]ax,%[re]ax,1) */
710 static const char alt_short_11[] =
711 {0x0f,0x1f,0x44,0x00,0x00,
712 0x66,0x0f,0x1f,0x44,0x00,0x00};
713 /* nopw 0(%[re]ax,%[re]ax,1)
714 nopw 0(%[re]ax,%[re]ax,1) */
715 static const char alt_short_12[] =
716 {0x66,0x0f,0x1f,0x44,0x00,0x00,
717 0x66,0x0f,0x1f,0x44,0x00,0x00};
718 /* nopw 0(%[re]ax,%[re]ax,1)
719 nopl 0L(%[re]ax) */
720 static const char alt_short_13[] =
721 {0x66,0x0f,0x1f,0x44,0x00,0x00,
722 0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
723 /* nopl 0L(%[re]ax)
724 nopl 0L(%[re]ax) */
725 static const char alt_short_14[] =
726 {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00,
727 0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
728 /* nopl 0L(%[re]ax)
729 nopl 0L(%[re]ax,%[re]ax,1) */
730 static const char alt_short_15[] =
731 {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00,
732 0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
733 static const char *const alt_short_patt[] = {
734 f32_1, f32_2, alt_3, alt_4, alt_5, alt_6, alt_7, alt_8,
735 alt_9, alt_10, alt_short_11, alt_short_12, alt_short_13,
736 alt_short_14, alt_short_15
737 };
738 static const char *const alt_long_patt[] = {
739 f32_1, f32_2, alt_3, alt_4, alt_5, alt_6, alt_7, alt_8,
740 alt_9, alt_10, alt_long_11, alt_long_12, alt_long_13,
741 alt_long_14, alt_long_15
742 };
743
744 /* Only align for at least a positive non-zero boundary. */
745 if (count <= 0 || count > MAX_MEM_FOR_RS_ALIGN_CODE)
746 return;
747
748 /* We need to decide which NOP sequence to use for 32bit and
749 64bit. When -mtune= is used:
750
751 1. For PROCESSOR_I386, PROCESSOR_I486, PROCESSOR_PENTIUM and
752 PROCESSOR_GENERIC32, f32_patt will be used.
753 2. For PROCESSOR_PENTIUMPRO, PROCESSOR_PENTIUM4, PROCESSOR_NOCONA,
754 PROCESSOR_CORE, PROCESSOR_CORE2, and PROCESSOR_GENERIC64,
755 alt_long_patt will be used.
756 3. For PROCESSOR_ATHLON, PROCESSOR_K6, PROCESSOR_K8 and
757 PROCESSOR_AMDFAM10, alt_short_patt will be used.
758
759 When -mtune= isn't used, alt_long_patt will be used if
760 cpu_arch_isa_flags has Cpu686. Otherwise, f32_patt will
761 be used.
762
763 When -march= or .arch is used, we can't use anything beyond
764 cpu_arch_isa_flags. */
765
766 if (flag_code == CODE_16BIT)
767 {
768 if (count > 8)
769 {
770 memcpy (fragP->fr_literal + fragP->fr_fix,
771 jump_31, count);
772 /* Adjust jump offset. */
773 fragP->fr_literal[fragP->fr_fix + 1] = count - 2;
774 }
775 else
776 memcpy (fragP->fr_literal + fragP->fr_fix,
777 f16_patt[count - 1], count);
778 }
779 else
780 {
781 const char *const *patt = NULL;
782
783 if (cpu_arch_isa == PROCESSOR_UNKNOWN)
784 {
785 /* PROCESSOR_UNKNOWN means that all ISAs may be used. */
786 switch (cpu_arch_tune)
787 {
788 case PROCESSOR_UNKNOWN:
789 /* We use cpu_arch_isa_flags to check if we SHOULD
790 optimize for Cpu686. */
791 if ((cpu_arch_isa_flags & Cpu686) != 0)
792 patt = alt_long_patt;
793 else
794 patt = f32_patt;
795 break;
796 case PROCESSOR_PENTIUMPRO:
797 case PROCESSOR_PENTIUM4:
798 case PROCESSOR_NOCONA:
799 case PROCESSOR_CORE:
800 case PROCESSOR_CORE2:
801 case PROCESSOR_GENERIC64:
802 patt = alt_long_patt;
803 break;
804 case PROCESSOR_K6:
805 case PROCESSOR_ATHLON:
806 case PROCESSOR_K8:
807 case PROCESSOR_AMDFAM10:
808 patt = alt_short_patt;
809 break;
810 case PROCESSOR_I386:
811 case PROCESSOR_I486:
812 case PROCESSOR_PENTIUM:
813 case PROCESSOR_GENERIC32:
814 patt = f32_patt;
815 break;
816 }
817 }
818 else
819 {
820 switch (cpu_arch_tune)
821 {
822 case PROCESSOR_UNKNOWN:
823 /* When cpu_arch_isa is net, cpu_arch_tune shouldn't be
824 PROCESSOR_UNKNOWN. */
825 abort ();
826 break;
827
828 case PROCESSOR_I386:
829 case PROCESSOR_I486:
830 case PROCESSOR_PENTIUM:
831 case PROCESSOR_K6:
832 case PROCESSOR_ATHLON:
833 case PROCESSOR_K8:
834 case PROCESSOR_AMDFAM10:
835 case PROCESSOR_GENERIC32:
836 /* We use cpu_arch_isa_flags to check if we CAN optimize
837 for Cpu686. */
838 if ((cpu_arch_isa_flags & Cpu686) != 0)
839 patt = alt_short_patt;
840 else
841 patt = f32_patt;
842 break;
843 case PROCESSOR_PENTIUMPRO:
844 case PROCESSOR_PENTIUM4:
845 case PROCESSOR_NOCONA:
846 case PROCESSOR_CORE:
847 case PROCESSOR_CORE2:
848 if ((cpu_arch_isa_flags & Cpu686) != 0)
849 patt = alt_long_patt;
850 else
851 patt = f32_patt;
852 break;
853 case PROCESSOR_GENERIC64:
854 patt = alt_long_patt;
855 break;
856 }
857 }
858
859 if (patt == f32_patt)
860 {
861 /* If the padding is less than 15 bytes, we use the normal
862 ones. Otherwise, we use a jump instruction and adjust
863 its offset. */
864 if (count < 15)
865 memcpy (fragP->fr_literal + fragP->fr_fix,
866 patt[count - 1], count);
867 else
868 {
869 memcpy (fragP->fr_literal + fragP->fr_fix,
870 jump_31, count);
871 /* Adjust jump offset. */
872 fragP->fr_literal[fragP->fr_fix + 1] = count - 2;
873 }
874 }
875 else
876 {
877 /* Maximum length of an instruction is 15 byte. If the
878 padding is greater than 15 bytes and we don't use jump,
879 we have to break it into smaller pieces. */
880 int padding = count;
881 while (padding > 15)
882 {
883 padding -= 15;
884 memcpy (fragP->fr_literal + fragP->fr_fix + padding,
885 patt [14], 15);
886 }
887
888 if (padding)
889 memcpy (fragP->fr_literal + fragP->fr_fix,
890 patt [padding - 1], padding);
891 }
892 }
893 fragP->fr_var = count;
894 }
895
896 static INLINE unsigned int
897 mode_from_disp_size (unsigned int t)
898 {
899 return (t & Disp8) ? 1 : (t & (Disp16 | Disp32 | Disp32S)) ? 2 : 0;
900 }
901
902 static INLINE int
903 fits_in_signed_byte (offsetT num)
904 {
905 return (num >= -128) && (num <= 127);
906 }
907
908 static INLINE int
909 fits_in_unsigned_byte (offsetT num)
910 {
911 return (num & 0xff) == num;
912 }
913
914 static INLINE int
915 fits_in_unsigned_word (offsetT num)
916 {
917 return (num & 0xffff) == num;
918 }
919
920 static INLINE int
921 fits_in_signed_word (offsetT num)
922 {
923 return (-32768 <= num) && (num <= 32767);
924 }
925
926 static INLINE int
927 fits_in_signed_long (offsetT num ATTRIBUTE_UNUSED)
928 {
929 #ifndef BFD64
930 return 1;
931 #else
932 return (!(((offsetT) -1 << 31) & num)
933 || (((offsetT) -1 << 31) & num) == ((offsetT) -1 << 31));
934 #endif
935 } /* fits_in_signed_long() */
936
937 static INLINE int
938 fits_in_unsigned_long (offsetT num ATTRIBUTE_UNUSED)
939 {
940 #ifndef BFD64
941 return 1;
942 #else
943 return (num & (((offsetT) 2 << 31) - 1)) == num;
944 #endif
945 } /* fits_in_unsigned_long() */
946
947 static unsigned int
948 smallest_imm_type (offsetT num)
949 {
950 if (cpu_arch_flags != (Cpu186 | Cpu286 | Cpu386 | Cpu486 | CpuNo64))
951 {
952 /* This code is disabled on the 486 because all the Imm1 forms
953 in the opcode table are slower on the i486. They're the
954 versions with the implicitly specified single-position
955 displacement, which has another syntax if you really want to
956 use that form. */
957 if (num == 1)
958 return Imm1 | Imm8 | Imm8S | Imm16 | Imm32 | Imm32S | Imm64;
959 }
960 return (fits_in_signed_byte (num)
961 ? (Imm8S | Imm8 | Imm16 | Imm32 | Imm32S | Imm64)
962 : fits_in_unsigned_byte (num)
963 ? (Imm8 | Imm16 | Imm32 | Imm32S | Imm64)
964 : (fits_in_signed_word (num) || fits_in_unsigned_word (num))
965 ? (Imm16 | Imm32 | Imm32S | Imm64)
966 : fits_in_signed_long (num)
967 ? (Imm32 | Imm32S | Imm64)
968 : fits_in_unsigned_long (num)
969 ? (Imm32 | Imm64)
970 : Imm64);
971 }
972
973 static offsetT
974 offset_in_range (offsetT val, int size)
975 {
976 addressT mask;
977
978 switch (size)
979 {
980 case 1: mask = ((addressT) 1 << 8) - 1; break;
981 case 2: mask = ((addressT) 1 << 16) - 1; break;
982 case 4: mask = ((addressT) 2 << 31) - 1; break;
983 #ifdef BFD64
984 case 8: mask = ((addressT) 2 << 63) - 1; break;
985 #endif
986 default: abort ();
987 }
988
989 /* If BFD64, sign extend val. */
990 if (!use_rela_relocations)
991 if ((val & ~(((addressT) 2 << 31) - 1)) == 0)
992 val = (val ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
993
994 if ((val & ~mask) != 0 && (val & ~mask) != ~mask)
995 {
996 char buf1[40], buf2[40];
997
998 sprint_value (buf1, val);
999 sprint_value (buf2, val & mask);
1000 as_warn (_("%s shortened to %s"), buf1, buf2);
1001 }
1002 return val & mask;
1003 }
1004
1005 /* Returns 0 if attempting to add a prefix where one from the same
1006 class already exists, 1 if non rep/repne added, 2 if rep/repne
1007 added. */
1008 static int
1009 add_prefix (unsigned int prefix)
1010 {
1011 int ret = 1;
1012 unsigned int q;
1013
1014 if (prefix >= REX_OPCODE && prefix < REX_OPCODE + 16
1015 && flag_code == CODE_64BIT)
1016 {
1017 if ((i.prefix[REX_PREFIX] & prefix & REX_W)
1018 || ((i.prefix[REX_PREFIX] & (REX_R | REX_X | REX_B))
1019 && (prefix & (REX_R | REX_X | REX_B))))
1020 ret = 0;
1021 q = REX_PREFIX;
1022 }
1023 else
1024 {
1025 switch (prefix)
1026 {
1027 default:
1028 abort ();
1029
1030 case CS_PREFIX_OPCODE:
1031 case DS_PREFIX_OPCODE:
1032 case ES_PREFIX_OPCODE:
1033 case FS_PREFIX_OPCODE:
1034 case GS_PREFIX_OPCODE:
1035 case SS_PREFIX_OPCODE:
1036 q = SEG_PREFIX;
1037 break;
1038
1039 case REPNE_PREFIX_OPCODE:
1040 case REPE_PREFIX_OPCODE:
1041 ret = 2;
1042 /* fall thru */
1043 case LOCK_PREFIX_OPCODE:
1044 q = LOCKREP_PREFIX;
1045 break;
1046
1047 case FWAIT_OPCODE:
1048 q = WAIT_PREFIX;
1049 break;
1050
1051 case ADDR_PREFIX_OPCODE:
1052 q = ADDR_PREFIX;
1053 break;
1054
1055 case DATA_PREFIX_OPCODE:
1056 q = DATA_PREFIX;
1057 break;
1058 }
1059 if (i.prefix[q] != 0)
1060 ret = 0;
1061 }
1062
1063 if (ret)
1064 {
1065 if (!i.prefix[q])
1066 ++i.prefixes;
1067 i.prefix[q] |= prefix;
1068 }
1069 else
1070 as_bad (_("same type of prefix used twice"));
1071
1072 return ret;
1073 }
1074
1075 static void
1076 set_code_flag (int value)
1077 {
1078 flag_code = value;
1079 cpu_arch_flags &= ~(Cpu64 | CpuNo64);
1080 cpu_arch_flags |= (flag_code == CODE_64BIT ? Cpu64 : CpuNo64);
1081 if (value == CODE_64BIT && !(cpu_arch_flags & CpuSledgehammer))
1082 {
1083 as_bad (_("64bit mode not supported on this CPU."));
1084 }
1085 if (value == CODE_32BIT && !(cpu_arch_flags & Cpu386))
1086 {
1087 as_bad (_("32bit mode not supported on this CPU."));
1088 }
1089 stackop_size = '\0';
1090 }
1091
1092 static void
1093 set_16bit_gcc_code_flag (int new_code_flag)
1094 {
1095 flag_code = new_code_flag;
1096 cpu_arch_flags &= ~(Cpu64 | CpuNo64);
1097 cpu_arch_flags |= (flag_code == CODE_64BIT ? Cpu64 : CpuNo64);
1098 stackop_size = LONG_MNEM_SUFFIX;
1099 }
1100
1101 static void
1102 set_intel_syntax (int syntax_flag)
1103 {
1104 /* Find out if register prefixing is specified. */
1105 int ask_naked_reg = 0;
1106
1107 SKIP_WHITESPACE ();
1108 if (!is_end_of_line[(unsigned char) *input_line_pointer])
1109 {
1110 char *string = input_line_pointer;
1111 int e = get_symbol_end ();
1112
1113 if (strcmp (string, "prefix") == 0)
1114 ask_naked_reg = 1;
1115 else if (strcmp (string, "noprefix") == 0)
1116 ask_naked_reg = -1;
1117 else
1118 as_bad (_("bad argument to syntax directive."));
1119 *input_line_pointer = e;
1120 }
1121 demand_empty_rest_of_line ();
1122
1123 intel_syntax = syntax_flag;
1124
1125 if (ask_naked_reg == 0)
1126 allow_naked_reg = (intel_syntax
1127 && (bfd_get_symbol_leading_char (stdoutput) != '\0'));
1128 else
1129 allow_naked_reg = (ask_naked_reg < 0);
1130
1131 identifier_chars['%'] = intel_syntax && allow_naked_reg ? '%' : 0;
1132 identifier_chars['$'] = intel_syntax ? '$' : 0;
1133 register_prefix = allow_naked_reg ? "" : "%";
1134 }
1135
1136 static void
1137 set_cpu_arch (int dummy ATTRIBUTE_UNUSED)
1138 {
1139 SKIP_WHITESPACE ();
1140
1141 if (!is_end_of_line[(unsigned char) *input_line_pointer])
1142 {
1143 char *string = input_line_pointer;
1144 int e = get_symbol_end ();
1145 unsigned int i;
1146
1147 for (i = 0; i < ARRAY_SIZE (cpu_arch); i++)
1148 {
1149 if (strcmp (string, cpu_arch[i].name) == 0)
1150 {
1151 if (*string != '.')
1152 {
1153 cpu_arch_name = cpu_arch[i].name;
1154 cpu_sub_arch_name = NULL;
1155 cpu_arch_flags = (cpu_arch[i].flags
1156 | (flag_code == CODE_64BIT
1157 ? Cpu64 : CpuNo64));
1158 cpu_arch_isa = cpu_arch[i].type;
1159 cpu_arch_isa_flags = cpu_arch[i].flags;
1160 if (!cpu_arch_tune_set)
1161 {
1162 cpu_arch_tune = cpu_arch_isa;
1163 cpu_arch_tune_flags = cpu_arch_isa_flags;
1164 }
1165 break;
1166 }
1167 if ((cpu_arch_flags | cpu_arch[i].flags) != cpu_arch_flags)
1168 {
1169 cpu_sub_arch_name = cpu_arch[i].name;
1170 cpu_arch_flags |= cpu_arch[i].flags;
1171 }
1172 *input_line_pointer = e;
1173 demand_empty_rest_of_line ();
1174 return;
1175 }
1176 }
1177 if (i >= ARRAY_SIZE (cpu_arch))
1178 as_bad (_("no such architecture: `%s'"), string);
1179
1180 *input_line_pointer = e;
1181 }
1182 else
1183 as_bad (_("missing cpu architecture"));
1184
1185 no_cond_jump_promotion = 0;
1186 if (*input_line_pointer == ','
1187 && !is_end_of_line[(unsigned char) input_line_pointer[1]])
1188 {
1189 char *string = ++input_line_pointer;
1190 int e = get_symbol_end ();
1191
1192 if (strcmp (string, "nojumps") == 0)
1193 no_cond_jump_promotion = 1;
1194 else if (strcmp (string, "jumps") == 0)
1195 ;
1196 else
1197 as_bad (_("no such architecture modifier: `%s'"), string);
1198
1199 *input_line_pointer = e;
1200 }
1201
1202 demand_empty_rest_of_line ();
1203 }
1204
1205 unsigned long
1206 i386_mach ()
1207 {
1208 if (!strcmp (default_arch, "x86_64"))
1209 return bfd_mach_x86_64;
1210 else if (!strcmp (default_arch, "i386"))
1211 return bfd_mach_i386_i386;
1212 else
1213 as_fatal (_("Unknown architecture"));
1214 }
1215 \f
1216 void
1217 md_begin ()
1218 {
1219 const char *hash_err;
1220
1221 /* Initialize op_hash hash table. */
1222 op_hash = hash_new ();
1223
1224 {
1225 const template *optab;
1226 templates *core_optab;
1227
1228 /* Setup for loop. */
1229 optab = i386_optab;
1230 core_optab = (templates *) xmalloc (sizeof (templates));
1231 core_optab->start = optab;
1232
1233 while (1)
1234 {
1235 ++optab;
1236 if (optab->name == NULL
1237 || strcmp (optab->name, (optab - 1)->name) != 0)
1238 {
1239 /* different name --> ship out current template list;
1240 add to hash table; & begin anew. */
1241 core_optab->end = optab;
1242 hash_err = hash_insert (op_hash,
1243 (optab - 1)->name,
1244 (PTR) core_optab);
1245 if (hash_err)
1246 {
1247 as_fatal (_("Internal Error: Can't hash %s: %s"),
1248 (optab - 1)->name,
1249 hash_err);
1250 }
1251 if (optab->name == NULL)
1252 break;
1253 core_optab = (templates *) xmalloc (sizeof (templates));
1254 core_optab->start = optab;
1255 }
1256 }
1257 }
1258
1259 /* Initialize reg_hash hash table. */
1260 reg_hash = hash_new ();
1261 {
1262 const reg_entry *regtab;
1263 unsigned int regtab_size = i386_regtab_size;
1264
1265 for (regtab = i386_regtab; regtab_size--; regtab++)
1266 {
1267 hash_err = hash_insert (reg_hash, regtab->reg_name, (PTR) regtab);
1268 if (hash_err)
1269 as_fatal (_("Internal Error: Can't hash %s: %s"),
1270 regtab->reg_name,
1271 hash_err);
1272 }
1273 }
1274
1275 /* Fill in lexical tables: mnemonic_chars, operand_chars. */
1276 {
1277 int c;
1278 char *p;
1279
1280 for (c = 0; c < 256; c++)
1281 {
1282 if (ISDIGIT (c))
1283 {
1284 digit_chars[c] = c;
1285 mnemonic_chars[c] = c;
1286 register_chars[c] = c;
1287 operand_chars[c] = c;
1288 }
1289 else if (ISLOWER (c))
1290 {
1291 mnemonic_chars[c] = c;
1292 register_chars[c] = c;
1293 operand_chars[c] = c;
1294 }
1295 else if (ISUPPER (c))
1296 {
1297 mnemonic_chars[c] = TOLOWER (c);
1298 register_chars[c] = mnemonic_chars[c];
1299 operand_chars[c] = c;
1300 }
1301
1302 if (ISALPHA (c) || ISDIGIT (c))
1303 identifier_chars[c] = c;
1304 else if (c >= 128)
1305 {
1306 identifier_chars[c] = c;
1307 operand_chars[c] = c;
1308 }
1309 }
1310
1311 #ifdef LEX_AT
1312 identifier_chars['@'] = '@';
1313 #endif
1314 #ifdef LEX_QM
1315 identifier_chars['?'] = '?';
1316 operand_chars['?'] = '?';
1317 #endif
1318 digit_chars['-'] = '-';
1319 mnemonic_chars['-'] = '-';
1320 mnemonic_chars['.'] = '.';
1321 identifier_chars['_'] = '_';
1322 identifier_chars['.'] = '.';
1323
1324 for (p = operand_special_chars; *p != '\0'; p++)
1325 operand_chars[(unsigned char) *p] = *p;
1326 }
1327
1328 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
1329 if (IS_ELF)
1330 {
1331 record_alignment (text_section, 2);
1332 record_alignment (data_section, 2);
1333 record_alignment (bss_section, 2);
1334 }
1335 #endif
1336
1337 if (flag_code == CODE_64BIT)
1338 {
1339 x86_dwarf2_return_column = 16;
1340 x86_cie_data_alignment = -8;
1341 }
1342 else
1343 {
1344 x86_dwarf2_return_column = 8;
1345 x86_cie_data_alignment = -4;
1346 }
1347 }
1348
1349 void
1350 i386_print_statistics (FILE *file)
1351 {
1352 hash_print_statistics (file, "i386 opcode", op_hash);
1353 hash_print_statistics (file, "i386 register", reg_hash);
1354 }
1355 \f
1356 #ifdef DEBUG386
1357
1358 /* Debugging routines for md_assemble. */
1359 static void pte (template *);
1360 static void pt (unsigned int);
1361 static void pe (expressionS *);
1362 static void ps (symbolS *);
1363
1364 static void
1365 pi (char *line, i386_insn *x)
1366 {
1367 unsigned int i;
1368
1369 fprintf (stdout, "%s: template ", line);
1370 pte (&x->tm);
1371 fprintf (stdout, " address: base %s index %s scale %x\n",
1372 x->base_reg ? x->base_reg->reg_name : "none",
1373 x->index_reg ? x->index_reg->reg_name : "none",
1374 x->log2_scale_factor);
1375 fprintf (stdout, " modrm: mode %x reg %x reg/mem %x\n",
1376 x->rm.mode, x->rm.reg, x->rm.regmem);
1377 fprintf (stdout, " sib: base %x index %x scale %x\n",
1378 x->sib.base, x->sib.index, x->sib.scale);
1379 fprintf (stdout, " rex: 64bit %x extX %x extY %x extZ %x\n",
1380 (x->rex & REX_W) != 0,
1381 (x->rex & REX_R) != 0,
1382 (x->rex & REX_X) != 0,
1383 (x->rex & REX_B) != 0);
1384 for (i = 0; i < x->operands; i++)
1385 {
1386 fprintf (stdout, " #%d: ", i + 1);
1387 pt (x->types[i]);
1388 fprintf (stdout, "\n");
1389 if (x->types[i]
1390 & (Reg | SReg2 | SReg3 | Control | Debug | Test | RegMMX | RegXMM))
1391 fprintf (stdout, "%s\n", x->op[i].regs->reg_name);
1392 if (x->types[i] & Imm)
1393 pe (x->op[i].imms);
1394 if (x->types[i] & Disp)
1395 pe (x->op[i].disps);
1396 }
1397 }
1398
1399 static void
1400 pte (template *t)
1401 {
1402 unsigned int i;
1403 fprintf (stdout, " %d operands ", t->operands);
1404 fprintf (stdout, "opcode %x ", t->base_opcode);
1405 if (t->extension_opcode != None)
1406 fprintf (stdout, "ext %x ", t->extension_opcode);
1407 if (t->opcode_modifier & D)
1408 fprintf (stdout, "D");
1409 if (t->opcode_modifier & W)
1410 fprintf (stdout, "W");
1411 fprintf (stdout, "\n");
1412 for (i = 0; i < t->operands; i++)
1413 {
1414 fprintf (stdout, " #%d type ", i + 1);
1415 pt (t->operand_types[i]);
1416 fprintf (stdout, "\n");
1417 }
1418 }
1419
1420 static void
1421 pe (expressionS *e)
1422 {
1423 fprintf (stdout, " operation %d\n", e->X_op);
1424 fprintf (stdout, " add_number %ld (%lx)\n",
1425 (long) e->X_add_number, (long) e->X_add_number);
1426 if (e->X_add_symbol)
1427 {
1428 fprintf (stdout, " add_symbol ");
1429 ps (e->X_add_symbol);
1430 fprintf (stdout, "\n");
1431 }
1432 if (e->X_op_symbol)
1433 {
1434 fprintf (stdout, " op_symbol ");
1435 ps (e->X_op_symbol);
1436 fprintf (stdout, "\n");
1437 }
1438 }
1439
1440 static void
1441 ps (symbolS *s)
1442 {
1443 fprintf (stdout, "%s type %s%s",
1444 S_GET_NAME (s),
1445 S_IS_EXTERNAL (s) ? "EXTERNAL " : "",
1446 segment_name (S_GET_SEGMENT (s)));
1447 }
1448
1449 static struct type_name
1450 {
1451 unsigned int mask;
1452 char *tname;
1453 }
1454 const type_names[] =
1455 {
1456 { Reg8, "r8" },
1457 { Reg16, "r16" },
1458 { Reg32, "r32" },
1459 { Reg64, "r64" },
1460 { Imm8, "i8" },
1461 { Imm8S, "i8s" },
1462 { Imm16, "i16" },
1463 { Imm32, "i32" },
1464 { Imm32S, "i32s" },
1465 { Imm64, "i64" },
1466 { Imm1, "i1" },
1467 { BaseIndex, "BaseIndex" },
1468 { Disp8, "d8" },
1469 { Disp16, "d16" },
1470 { Disp32, "d32" },
1471 { Disp32S, "d32s" },
1472 { Disp64, "d64" },
1473 { InOutPortReg, "InOutPortReg" },
1474 { ShiftCount, "ShiftCount" },
1475 { Control, "control reg" },
1476 { Test, "test reg" },
1477 { Debug, "debug reg" },
1478 { FloatReg, "FReg" },
1479 { FloatAcc, "FAcc" },
1480 { SReg2, "SReg2" },
1481 { SReg3, "SReg3" },
1482 { Acc, "Acc" },
1483 { JumpAbsolute, "Jump Absolute" },
1484 { RegMMX, "rMMX" },
1485 { RegXMM, "rXMM" },
1486 { EsSeg, "es" },
1487 { 0, "" }
1488 };
1489
1490 static void
1491 pt (t)
1492 unsigned int t;
1493 {
1494 const struct type_name *ty;
1495
1496 for (ty = type_names; ty->mask; ty++)
1497 if (t & ty->mask)
1498 fprintf (stdout, "%s, ", ty->tname);
1499 fflush (stdout);
1500 }
1501
1502 #endif /* DEBUG386 */
1503 \f
1504 static bfd_reloc_code_real_type
1505 reloc (unsigned int size,
1506 int pcrel,
1507 int sign,
1508 bfd_reloc_code_real_type other)
1509 {
1510 if (other != NO_RELOC)
1511 {
1512 reloc_howto_type *reloc;
1513
1514 if (size == 8)
1515 switch (other)
1516 {
1517 case BFD_RELOC_X86_64_GOT32:
1518 return BFD_RELOC_X86_64_GOT64;
1519 break;
1520 case BFD_RELOC_X86_64_PLTOFF64:
1521 return BFD_RELOC_X86_64_PLTOFF64;
1522 break;
1523 case BFD_RELOC_X86_64_GOTPC32:
1524 other = BFD_RELOC_X86_64_GOTPC64;
1525 break;
1526 case BFD_RELOC_X86_64_GOTPCREL:
1527 other = BFD_RELOC_X86_64_GOTPCREL64;
1528 break;
1529 case BFD_RELOC_X86_64_TPOFF32:
1530 other = BFD_RELOC_X86_64_TPOFF64;
1531 break;
1532 case BFD_RELOC_X86_64_DTPOFF32:
1533 other = BFD_RELOC_X86_64_DTPOFF64;
1534 break;
1535 default:
1536 break;
1537 }
1538
1539 /* Sign-checking 4-byte relocations in 16-/32-bit code is pointless. */
1540 if (size == 4 && flag_code != CODE_64BIT)
1541 sign = -1;
1542
1543 reloc = bfd_reloc_type_lookup (stdoutput, other);
1544 if (!reloc)
1545 as_bad (_("unknown relocation (%u)"), other);
1546 else if (size != bfd_get_reloc_size (reloc))
1547 as_bad (_("%u-byte relocation cannot be applied to %u-byte field"),
1548 bfd_get_reloc_size (reloc),
1549 size);
1550 else if (pcrel && !reloc->pc_relative)
1551 as_bad (_("non-pc-relative relocation for pc-relative field"));
1552 else if ((reloc->complain_on_overflow == complain_overflow_signed
1553 && !sign)
1554 || (reloc->complain_on_overflow == complain_overflow_unsigned
1555 && sign > 0))
1556 as_bad (_("relocated field and relocation type differ in signedness"));
1557 else
1558 return other;
1559 return NO_RELOC;
1560 }
1561
1562 if (pcrel)
1563 {
1564 if (!sign)
1565 as_bad (_("there are no unsigned pc-relative relocations"));
1566 switch (size)
1567 {
1568 case 1: return BFD_RELOC_8_PCREL;
1569 case 2: return BFD_RELOC_16_PCREL;
1570 case 4: return BFD_RELOC_32_PCREL;
1571 case 8: return BFD_RELOC_64_PCREL;
1572 }
1573 as_bad (_("cannot do %u byte pc-relative relocation"), size);
1574 }
1575 else
1576 {
1577 if (sign > 0)
1578 switch (size)
1579 {
1580 case 4: return BFD_RELOC_X86_64_32S;
1581 }
1582 else
1583 switch (size)
1584 {
1585 case 1: return BFD_RELOC_8;
1586 case 2: return BFD_RELOC_16;
1587 case 4: return BFD_RELOC_32;
1588 case 8: return BFD_RELOC_64;
1589 }
1590 as_bad (_("cannot do %s %u byte relocation"),
1591 sign > 0 ? "signed" : "unsigned", size);
1592 }
1593
1594 abort ();
1595 return BFD_RELOC_NONE;
1596 }
1597
1598 /* Here we decide which fixups can be adjusted to make them relative to
1599 the beginning of the section instead of the symbol. Basically we need
1600 to make sure that the dynamic relocations are done correctly, so in
1601 some cases we force the original symbol to be used. */
1602
1603 int
1604 tc_i386_fix_adjustable (fixS *fixP ATTRIBUTE_UNUSED)
1605 {
1606 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
1607 if (!IS_ELF)
1608 return 1;
1609
1610 /* Don't adjust pc-relative references to merge sections in 64-bit
1611 mode. */
1612 if (use_rela_relocations
1613 && (S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_MERGE) != 0
1614 && fixP->fx_pcrel)
1615 return 0;
1616
1617 /* The x86_64 GOTPCREL are represented as 32bit PCrel relocations
1618 and changed later by validate_fix. */
1619 if (GOT_symbol && fixP->fx_subsy == GOT_symbol
1620 && fixP->fx_r_type == BFD_RELOC_32_PCREL)
1621 return 0;
1622
1623 /* adjust_reloc_syms doesn't know about the GOT. */
1624 if (fixP->fx_r_type == BFD_RELOC_386_GOTOFF
1625 || fixP->fx_r_type == BFD_RELOC_386_PLT32
1626 || fixP->fx_r_type == BFD_RELOC_386_GOT32
1627 || fixP->fx_r_type == BFD_RELOC_386_TLS_GD
1628 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDM
1629 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDO_32
1630 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE_32
1631 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE
1632 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTIE
1633 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE_32
1634 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE
1635 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTDESC
1636 || fixP->fx_r_type == BFD_RELOC_386_TLS_DESC_CALL
1637 || fixP->fx_r_type == BFD_RELOC_X86_64_PLT32
1638 || fixP->fx_r_type == BFD_RELOC_X86_64_GOT32
1639 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCREL
1640 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSGD
1641 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSLD
1642 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF32
1643 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF64
1644 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTTPOFF
1645 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF32
1646 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF64
1647 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTOFF64
1648 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPC32_TLSDESC
1649 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSDESC_CALL
1650 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
1651 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
1652 return 0;
1653 #endif
1654 return 1;
1655 }
1656
1657 static int
1658 intel_float_operand (const char *mnemonic)
1659 {
1660 /* Note that the value returned is meaningful only for opcodes with (memory)
1661 operands, hence the code here is free to improperly handle opcodes that
1662 have no operands (for better performance and smaller code). */
1663
1664 if (mnemonic[0] != 'f')
1665 return 0; /* non-math */
1666
1667 switch (mnemonic[1])
1668 {
1669 /* fclex, fdecstp, fdisi, femms, feni, fincstp, finit, fsetpm, and
1670 the fs segment override prefix not currently handled because no
1671 call path can make opcodes without operands get here */
1672 case 'i':
1673 return 2 /* integer op */;
1674 case 'l':
1675 if (mnemonic[2] == 'd' && (mnemonic[3] == 'c' || mnemonic[3] == 'e'))
1676 return 3; /* fldcw/fldenv */
1677 break;
1678 case 'n':
1679 if (mnemonic[2] != 'o' /* fnop */)
1680 return 3; /* non-waiting control op */
1681 break;
1682 case 'r':
1683 if (mnemonic[2] == 's')
1684 return 3; /* frstor/frstpm */
1685 break;
1686 case 's':
1687 if (mnemonic[2] == 'a')
1688 return 3; /* fsave */
1689 if (mnemonic[2] == 't')
1690 {
1691 switch (mnemonic[3])
1692 {
1693 case 'c': /* fstcw */
1694 case 'd': /* fstdw */
1695 case 'e': /* fstenv */
1696 case 's': /* fsts[gw] */
1697 return 3;
1698 }
1699 }
1700 break;
1701 case 'x':
1702 if (mnemonic[2] == 'r' || mnemonic[2] == 's')
1703 return 0; /* fxsave/fxrstor are not really math ops */
1704 break;
1705 }
1706
1707 return 1;
1708 }
1709
1710 /* This is the guts of the machine-dependent assembler. LINE points to a
1711 machine dependent instruction. This function is supposed to emit
1712 the frags/bytes it assembles to. */
1713
1714 void
1715 md_assemble (line)
1716 char *line;
1717 {
1718 int j;
1719 char mnemonic[MAX_MNEM_SIZE];
1720
1721 /* Initialize globals. */
1722 memset (&i, '\0', sizeof (i));
1723 for (j = 0; j < MAX_OPERANDS; j++)
1724 i.reloc[j] = NO_RELOC;
1725 memset (disp_expressions, '\0', sizeof (disp_expressions));
1726 memset (im_expressions, '\0', sizeof (im_expressions));
1727 save_stack_p = save_stack;
1728
1729 /* First parse an instruction mnemonic & call i386_operand for the operands.
1730 We assume that the scrubber has arranged it so that line[0] is the valid
1731 start of a (possibly prefixed) mnemonic. */
1732
1733 line = parse_insn (line, mnemonic);
1734 if (line == NULL)
1735 return;
1736
1737 line = parse_operands (line, mnemonic);
1738 if (line == NULL)
1739 return;
1740
1741 /* The order of the immediates should be reversed
1742 for 2 immediates extrq and insertq instructions */
1743 if ((i.imm_operands == 2)
1744 && ((strcmp (mnemonic, "extrq") == 0)
1745 || (strcmp (mnemonic, "insertq") == 0)))
1746 {
1747 swap_2_operands (0, 1);
1748 /* "extrq" and insertq" are the only two instructions whose operands
1749 have to be reversed even though they have two immediate operands.
1750 */
1751 if (intel_syntax)
1752 swap_operands ();
1753 }
1754
1755 /* Now we've parsed the mnemonic into a set of templates, and have the
1756 operands at hand. */
1757
1758 /* All intel opcodes have reversed operands except for "bound" and
1759 "enter". We also don't reverse intersegment "jmp" and "call"
1760 instructions with 2 immediate operands so that the immediate segment
1761 precedes the offset, as it does when in AT&T mode. */
1762 if (intel_syntax
1763 && i.operands > 1
1764 && (strcmp (mnemonic, "bound") != 0)
1765 && (strcmp (mnemonic, "invlpga") != 0)
1766 && !((i.types[0] & Imm) && (i.types[1] & Imm)))
1767 swap_operands ();
1768
1769 if (i.imm_operands)
1770 optimize_imm ();
1771
1772 /* Don't optimize displacement for movabs since it only takes 64bit
1773 displacement. */
1774 if (i.disp_operands
1775 && (flag_code != CODE_64BIT
1776 || strcmp (mnemonic, "movabs") != 0))
1777 optimize_disp ();
1778
1779 /* Next, we find a template that matches the given insn,
1780 making sure the overlap of the given operands types is consistent
1781 with the template operand types. */
1782
1783 if (!match_template ())
1784 return;
1785
1786 if (intel_syntax)
1787 {
1788 /* Undo SYSV386_COMPAT brokenness when in Intel mode. See i386.h */
1789 if (SYSV386_COMPAT
1790 && (i.tm.base_opcode & 0xfffffde0) == 0xdce0)
1791 i.tm.base_opcode ^= Opcode_FloatR;
1792
1793 /* Zap movzx and movsx suffix. The suffix may have been set from
1794 "word ptr" or "byte ptr" on the source operand, but we'll use
1795 the suffix later to choose the destination register. */
1796 if ((i.tm.base_opcode & ~9) == 0x0fb6)
1797 {
1798 if (i.reg_operands < 2
1799 && !i.suffix
1800 && (~i.tm.opcode_modifier
1801 & (No_bSuf
1802 | No_wSuf
1803 | No_lSuf
1804 | No_sSuf
1805 | No_xSuf
1806 | No_qSuf)))
1807 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
1808
1809 i.suffix = 0;
1810 }
1811 }
1812
1813 if (i.tm.opcode_modifier & FWait)
1814 if (!add_prefix (FWAIT_OPCODE))
1815 return;
1816
1817 /* Check string instruction segment overrides. */
1818 if ((i.tm.opcode_modifier & IsString) != 0 && i.mem_operands != 0)
1819 {
1820 if (!check_string ())
1821 return;
1822 }
1823
1824 if (!process_suffix ())
1825 return;
1826
1827 /* Make still unresolved immediate matches conform to size of immediate
1828 given in i.suffix. */
1829 if (!finalize_imm ())
1830 return;
1831
1832 if (i.types[0] & Imm1)
1833 i.imm_operands = 0; /* kludge for shift insns. */
1834 if (i.types[0] & ImplicitRegister)
1835 i.reg_operands--;
1836 if (i.types[1] & ImplicitRegister)
1837 i.reg_operands--;
1838 if (i.types[2] & ImplicitRegister)
1839 i.reg_operands--;
1840
1841 if (i.tm.opcode_modifier & ImmExt)
1842 {
1843 expressionS *exp;
1844
1845 if ((i.tm.cpu_flags & CpuSSE3) && i.operands > 0)
1846 {
1847 /* Streaming SIMD extensions 3 Instructions have the fixed
1848 operands with an opcode suffix which is coded in the same
1849 place as an 8-bit immediate field would be. Here we check
1850 those operands and remove them afterwards. */
1851 unsigned int x;
1852
1853 for (x = 0; x < i.operands; x++)
1854 if (i.op[x].regs->reg_num != x)
1855 as_bad (_("can't use register '%s%s' as operand %d in '%s'."),
1856 register_prefix,
1857 i.op[x].regs->reg_name,
1858 x + 1,
1859 i.tm.name);
1860 i.operands = 0;
1861 }
1862
1863 /* These AMD 3DNow! and Intel Katmai New Instructions have an
1864 opcode suffix which is coded in the same place as an 8-bit
1865 immediate field would be. Here we fake an 8-bit immediate
1866 operand from the opcode suffix stored in tm.extension_opcode. */
1867
1868 assert (i.imm_operands == 0 && i.operands <= 2 && 2 < MAX_OPERANDS);
1869
1870 exp = &im_expressions[i.imm_operands++];
1871 i.op[i.operands].imms = exp;
1872 i.types[i.operands++] = Imm8;
1873 exp->X_op = O_constant;
1874 exp->X_add_number = i.tm.extension_opcode;
1875 i.tm.extension_opcode = None;
1876 }
1877
1878 /* For insns with operands there are more diddles to do to the opcode. */
1879 if (i.operands)
1880 {
1881 if (!process_operands ())
1882 return;
1883 }
1884 else if (!quiet_warnings && (i.tm.opcode_modifier & Ugh) != 0)
1885 {
1886 /* UnixWare fsub no args is alias for fsubp, fadd -> faddp, etc. */
1887 as_warn (_("translating to `%sp'"), i.tm.name);
1888 }
1889
1890 /* Handle conversion of 'int $3' --> special int3 insn. */
1891 if (i.tm.base_opcode == INT_OPCODE && i.op[0].imms->X_add_number == 3)
1892 {
1893 i.tm.base_opcode = INT3_OPCODE;
1894 i.imm_operands = 0;
1895 }
1896
1897 if ((i.tm.opcode_modifier & (Jump | JumpByte | JumpDword))
1898 && i.op[0].disps->X_op == O_constant)
1899 {
1900 /* Convert "jmp constant" (and "call constant") to a jump (call) to
1901 the absolute address given by the constant. Since ix86 jumps and
1902 calls are pc relative, we need to generate a reloc. */
1903 i.op[0].disps->X_add_symbol = &abs_symbol;
1904 i.op[0].disps->X_op = O_symbol;
1905 }
1906
1907 if ((i.tm.opcode_modifier & Rex64) != 0)
1908 i.rex |= REX_W;
1909
1910 /* For 8 bit registers we need an empty rex prefix. Also if the
1911 instruction already has a prefix, we need to convert old
1912 registers to new ones. */
1913
1914 if (((i.types[0] & Reg8) != 0
1915 && (i.op[0].regs->reg_flags & RegRex64) != 0)
1916 || ((i.types[1] & Reg8) != 0
1917 && (i.op[1].regs->reg_flags & RegRex64) != 0)
1918 || (((i.types[0] & Reg8) != 0 || (i.types[1] & Reg8) != 0)
1919 && i.rex != 0))
1920 {
1921 int x;
1922
1923 i.rex |= REX_OPCODE;
1924 for (x = 0; x < 2; x++)
1925 {
1926 /* Look for 8 bit operand that uses old registers. */
1927 if ((i.types[x] & Reg8) != 0
1928 && (i.op[x].regs->reg_flags & RegRex64) == 0)
1929 {
1930 /* In case it is "hi" register, give up. */
1931 if (i.op[x].regs->reg_num > 3)
1932 as_bad (_("can't encode register '%s%s' in an "
1933 "instruction requiring REX prefix."),
1934 register_prefix, i.op[x].regs->reg_name);
1935
1936 /* Otherwise it is equivalent to the extended register.
1937 Since the encoding doesn't change this is merely
1938 cosmetic cleanup for debug output. */
1939
1940 i.op[x].regs = i.op[x].regs + 8;
1941 }
1942 }
1943 }
1944
1945 if (i.rex != 0)
1946 add_prefix (REX_OPCODE | i.rex);
1947
1948 /* We are ready to output the insn. */
1949 output_insn ();
1950 }
1951
1952 static char *
1953 parse_insn (char *line, char *mnemonic)
1954 {
1955 char *l = line;
1956 char *token_start = l;
1957 char *mnem_p;
1958 int supported;
1959 const template *t;
1960
1961 /* Non-zero if we found a prefix only acceptable with string insns. */
1962 const char *expecting_string_instruction = NULL;
1963
1964 while (1)
1965 {
1966 mnem_p = mnemonic;
1967 while ((*mnem_p = mnemonic_chars[(unsigned char) *l]) != 0)
1968 {
1969 mnem_p++;
1970 if (mnem_p >= mnemonic + MAX_MNEM_SIZE)
1971 {
1972 as_bad (_("no such instruction: `%s'"), token_start);
1973 return NULL;
1974 }
1975 l++;
1976 }
1977 if (!is_space_char (*l)
1978 && *l != END_OF_INSN
1979 && (intel_syntax
1980 || (*l != PREFIX_SEPARATOR
1981 && *l != ',')))
1982 {
1983 as_bad (_("invalid character %s in mnemonic"),
1984 output_invalid (*l));
1985 return NULL;
1986 }
1987 if (token_start == l)
1988 {
1989 if (!intel_syntax && *l == PREFIX_SEPARATOR)
1990 as_bad (_("expecting prefix; got nothing"));
1991 else
1992 as_bad (_("expecting mnemonic; got nothing"));
1993 return NULL;
1994 }
1995
1996 /* Look up instruction (or prefix) via hash table. */
1997 current_templates = hash_find (op_hash, mnemonic);
1998
1999 if (*l != END_OF_INSN
2000 && (!is_space_char (*l) || l[1] != END_OF_INSN)
2001 && current_templates
2002 && (current_templates->start->opcode_modifier & IsPrefix))
2003 {
2004 if (current_templates->start->cpu_flags
2005 & (flag_code != CODE_64BIT ? Cpu64 : CpuNo64))
2006 {
2007 as_bad ((flag_code != CODE_64BIT
2008 ? _("`%s' is only supported in 64-bit mode")
2009 : _("`%s' is not supported in 64-bit mode")),
2010 current_templates->start->name);
2011 return NULL;
2012 }
2013 /* If we are in 16-bit mode, do not allow addr16 or data16.
2014 Similarly, in 32-bit mode, do not allow addr32 or data32. */
2015 if ((current_templates->start->opcode_modifier & (Size16 | Size32))
2016 && flag_code != CODE_64BIT
2017 && (((current_templates->start->opcode_modifier & Size32) != 0)
2018 ^ (flag_code == CODE_16BIT)))
2019 {
2020 as_bad (_("redundant %s prefix"),
2021 current_templates->start->name);
2022 return NULL;
2023 }
2024 /* Add prefix, checking for repeated prefixes. */
2025 switch (add_prefix (current_templates->start->base_opcode))
2026 {
2027 case 0:
2028 return NULL;
2029 case 2:
2030 expecting_string_instruction = current_templates->start->name;
2031 break;
2032 }
2033 /* Skip past PREFIX_SEPARATOR and reset token_start. */
2034 token_start = ++l;
2035 }
2036 else
2037 break;
2038 }
2039
2040 if (!current_templates)
2041 {
2042 /* See if we can get a match by trimming off a suffix. */
2043 switch (mnem_p[-1])
2044 {
2045 case WORD_MNEM_SUFFIX:
2046 if (intel_syntax && (intel_float_operand (mnemonic) & 2))
2047 i.suffix = SHORT_MNEM_SUFFIX;
2048 else
2049 case BYTE_MNEM_SUFFIX:
2050 case QWORD_MNEM_SUFFIX:
2051 i.suffix = mnem_p[-1];
2052 mnem_p[-1] = '\0';
2053 current_templates = hash_find (op_hash, mnemonic);
2054 break;
2055 case SHORT_MNEM_SUFFIX:
2056 case LONG_MNEM_SUFFIX:
2057 if (!intel_syntax)
2058 {
2059 i.suffix = mnem_p[-1];
2060 mnem_p[-1] = '\0';
2061 current_templates = hash_find (op_hash, mnemonic);
2062 }
2063 break;
2064
2065 /* Intel Syntax. */
2066 case 'd':
2067 if (intel_syntax)
2068 {
2069 if (intel_float_operand (mnemonic) == 1)
2070 i.suffix = SHORT_MNEM_SUFFIX;
2071 else
2072 i.suffix = LONG_MNEM_SUFFIX;
2073 mnem_p[-1] = '\0';
2074 current_templates = hash_find (op_hash, mnemonic);
2075 }
2076 break;
2077 }
2078 if (!current_templates)
2079 {
2080 as_bad (_("no such instruction: `%s'"), token_start);
2081 return NULL;
2082 }
2083 }
2084
2085 if (current_templates->start->opcode_modifier & (Jump | JumpByte))
2086 {
2087 /* Check for a branch hint. We allow ",pt" and ",pn" for
2088 predict taken and predict not taken respectively.
2089 I'm not sure that branch hints actually do anything on loop
2090 and jcxz insns (JumpByte) for current Pentium4 chips. They
2091 may work in the future and it doesn't hurt to accept them
2092 now. */
2093 if (l[0] == ',' && l[1] == 'p')
2094 {
2095 if (l[2] == 't')
2096 {
2097 if (!add_prefix (DS_PREFIX_OPCODE))
2098 return NULL;
2099 l += 3;
2100 }
2101 else if (l[2] == 'n')
2102 {
2103 if (!add_prefix (CS_PREFIX_OPCODE))
2104 return NULL;
2105 l += 3;
2106 }
2107 }
2108 }
2109 /* Any other comma loses. */
2110 if (*l == ',')
2111 {
2112 as_bad (_("invalid character %s in mnemonic"),
2113 output_invalid (*l));
2114 return NULL;
2115 }
2116
2117 /* Check if instruction is supported on specified architecture. */
2118 supported = 0;
2119 for (t = current_templates->start; t < current_templates->end; ++t)
2120 {
2121 if (!((t->cpu_flags & ~(Cpu64 | CpuNo64))
2122 & ~(cpu_arch_flags & ~(Cpu64 | CpuNo64))))
2123 supported |= 1;
2124 if (!(t->cpu_flags & (flag_code == CODE_64BIT ? CpuNo64 : Cpu64)))
2125 supported |= 2;
2126 }
2127 if (!(supported & 2))
2128 {
2129 as_bad (flag_code == CODE_64BIT
2130 ? _("`%s' is not supported in 64-bit mode")
2131 : _("`%s' is only supported in 64-bit mode"),
2132 current_templates->start->name);
2133 return NULL;
2134 }
2135 if (!(supported & 1))
2136 {
2137 as_warn (_("`%s' is not supported on `%s%s'"),
2138 current_templates->start->name,
2139 cpu_arch_name,
2140 cpu_sub_arch_name ? cpu_sub_arch_name : "");
2141 }
2142 else if ((Cpu386 & ~cpu_arch_flags) && (flag_code != CODE_16BIT))
2143 {
2144 as_warn (_("use .code16 to ensure correct addressing mode"));
2145 }
2146
2147 /* Check for rep/repne without a string instruction. */
2148 if (expecting_string_instruction)
2149 {
2150 static templates override;
2151
2152 for (t = current_templates->start; t < current_templates->end; ++t)
2153 if (t->opcode_modifier & IsString)
2154 break;
2155 if (t >= current_templates->end)
2156 {
2157 as_bad (_("expecting string instruction after `%s'"),
2158 expecting_string_instruction);
2159 return NULL;
2160 }
2161 for (override.start = t; t < current_templates->end; ++t)
2162 if (!(t->opcode_modifier & IsString))
2163 break;
2164 override.end = t;
2165 current_templates = &override;
2166 }
2167
2168 return l;
2169 }
2170
2171 static char *
2172 parse_operands (char *l, const char *mnemonic)
2173 {
2174 char *token_start;
2175
2176 /* 1 if operand is pending after ','. */
2177 unsigned int expecting_operand = 0;
2178
2179 /* Non-zero if operand parens not balanced. */
2180 unsigned int paren_not_balanced;
2181
2182 while (*l != END_OF_INSN)
2183 {
2184 /* Skip optional white space before operand. */
2185 if (is_space_char (*l))
2186 ++l;
2187 if (!is_operand_char (*l) && *l != END_OF_INSN)
2188 {
2189 as_bad (_("invalid character %s before operand %d"),
2190 output_invalid (*l),
2191 i.operands + 1);
2192 return NULL;
2193 }
2194 token_start = l; /* after white space */
2195 paren_not_balanced = 0;
2196 while (paren_not_balanced || *l != ',')
2197 {
2198 if (*l == END_OF_INSN)
2199 {
2200 if (paren_not_balanced)
2201 {
2202 if (!intel_syntax)
2203 as_bad (_("unbalanced parenthesis in operand %d."),
2204 i.operands + 1);
2205 else
2206 as_bad (_("unbalanced brackets in operand %d."),
2207 i.operands + 1);
2208 return NULL;
2209 }
2210 else
2211 break; /* we are done */
2212 }
2213 else if (!is_operand_char (*l) && !is_space_char (*l))
2214 {
2215 as_bad (_("invalid character %s in operand %d"),
2216 output_invalid (*l),
2217 i.operands + 1);
2218 return NULL;
2219 }
2220 if (!intel_syntax)
2221 {
2222 if (*l == '(')
2223 ++paren_not_balanced;
2224 if (*l == ')')
2225 --paren_not_balanced;
2226 }
2227 else
2228 {
2229 if (*l == '[')
2230 ++paren_not_balanced;
2231 if (*l == ']')
2232 --paren_not_balanced;
2233 }
2234 l++;
2235 }
2236 if (l != token_start)
2237 { /* Yes, we've read in another operand. */
2238 unsigned int operand_ok;
2239 this_operand = i.operands++;
2240 if (i.operands > MAX_OPERANDS)
2241 {
2242 as_bad (_("spurious operands; (%d operands/instruction max)"),
2243 MAX_OPERANDS);
2244 return NULL;
2245 }
2246 /* Now parse operand adding info to 'i' as we go along. */
2247 END_STRING_AND_SAVE (l);
2248
2249 if (intel_syntax)
2250 operand_ok =
2251 i386_intel_operand (token_start,
2252 intel_float_operand (mnemonic));
2253 else
2254 operand_ok = i386_operand (token_start);
2255
2256 RESTORE_END_STRING (l);
2257 if (!operand_ok)
2258 return NULL;
2259 }
2260 else
2261 {
2262 if (expecting_operand)
2263 {
2264 expecting_operand_after_comma:
2265 as_bad (_("expecting operand after ','; got nothing"));
2266 return NULL;
2267 }
2268 if (*l == ',')
2269 {
2270 as_bad (_("expecting operand before ','; got nothing"));
2271 return NULL;
2272 }
2273 }
2274
2275 /* Now *l must be either ',' or END_OF_INSN. */
2276 if (*l == ',')
2277 {
2278 if (*++l == END_OF_INSN)
2279 {
2280 /* Just skip it, if it's \n complain. */
2281 goto expecting_operand_after_comma;
2282 }
2283 expecting_operand = 1;
2284 }
2285 }
2286 return l;
2287 }
2288
2289 static void
2290 swap_2_operands (int xchg1, int xchg2)
2291 {
2292 union i386_op temp_op;
2293 unsigned int temp_type;
2294 enum bfd_reloc_code_real temp_reloc;
2295
2296 temp_type = i.types[xchg2];
2297 i.types[xchg2] = i.types[xchg1];
2298 i.types[xchg1] = temp_type;
2299 temp_op = i.op[xchg2];
2300 i.op[xchg2] = i.op[xchg1];
2301 i.op[xchg1] = temp_op;
2302 temp_reloc = i.reloc[xchg2];
2303 i.reloc[xchg2] = i.reloc[xchg1];
2304 i.reloc[xchg1] = temp_reloc;
2305 }
2306
2307 static void
2308 swap_operands (void)
2309 {
2310 switch (i.operands)
2311 {
2312 case 4:
2313 swap_2_operands (1, i.operands - 2);
2314 case 3:
2315 case 2:
2316 swap_2_operands (0, i.operands - 1);
2317 break;
2318 default:
2319 abort ();
2320 }
2321
2322 if (i.mem_operands == 2)
2323 {
2324 const seg_entry *temp_seg;
2325 temp_seg = i.seg[0];
2326 i.seg[0] = i.seg[1];
2327 i.seg[1] = temp_seg;
2328 }
2329 }
2330
2331 /* Try to ensure constant immediates are represented in the smallest
2332 opcode possible. */
2333 static void
2334 optimize_imm (void)
2335 {
2336 char guess_suffix = 0;
2337 int op;
2338
2339 if (i.suffix)
2340 guess_suffix = i.suffix;
2341 else if (i.reg_operands)
2342 {
2343 /* Figure out a suffix from the last register operand specified.
2344 We can't do this properly yet, ie. excluding InOutPortReg,
2345 but the following works for instructions with immediates.
2346 In any case, we can't set i.suffix yet. */
2347 for (op = i.operands; --op >= 0;)
2348 if (i.types[op] & Reg)
2349 {
2350 if (i.types[op] & Reg8)
2351 guess_suffix = BYTE_MNEM_SUFFIX;
2352 else if (i.types[op] & Reg16)
2353 guess_suffix = WORD_MNEM_SUFFIX;
2354 else if (i.types[op] & Reg32)
2355 guess_suffix = LONG_MNEM_SUFFIX;
2356 else if (i.types[op] & Reg64)
2357 guess_suffix = QWORD_MNEM_SUFFIX;
2358 break;
2359 }
2360 }
2361 else if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
2362 guess_suffix = WORD_MNEM_SUFFIX;
2363
2364 for (op = i.operands; --op >= 0;)
2365 if (i.types[op] & Imm)
2366 {
2367 switch (i.op[op].imms->X_op)
2368 {
2369 case O_constant:
2370 /* If a suffix is given, this operand may be shortened. */
2371 switch (guess_suffix)
2372 {
2373 case LONG_MNEM_SUFFIX:
2374 i.types[op] |= Imm32 | Imm64;
2375 break;
2376 case WORD_MNEM_SUFFIX:
2377 i.types[op] |= Imm16 | Imm32S | Imm32 | Imm64;
2378 break;
2379 case BYTE_MNEM_SUFFIX:
2380 i.types[op] |= Imm16 | Imm8 | Imm8S | Imm32S | Imm32 | Imm64;
2381 break;
2382 }
2383
2384 /* If this operand is at most 16 bits, convert it
2385 to a signed 16 bit number before trying to see
2386 whether it will fit in an even smaller size.
2387 This allows a 16-bit operand such as $0xffe0 to
2388 be recognised as within Imm8S range. */
2389 if ((i.types[op] & Imm16)
2390 && (i.op[op].imms->X_add_number & ~(offsetT) 0xffff) == 0)
2391 {
2392 i.op[op].imms->X_add_number =
2393 (((i.op[op].imms->X_add_number & 0xffff) ^ 0x8000) - 0x8000);
2394 }
2395 if ((i.types[op] & Imm32)
2396 && ((i.op[op].imms->X_add_number & ~(((offsetT) 2 << 31) - 1))
2397 == 0))
2398 {
2399 i.op[op].imms->X_add_number = ((i.op[op].imms->X_add_number
2400 ^ ((offsetT) 1 << 31))
2401 - ((offsetT) 1 << 31));
2402 }
2403 i.types[op] |= smallest_imm_type (i.op[op].imms->X_add_number);
2404
2405 /* We must avoid matching of Imm32 templates when 64bit
2406 only immediate is available. */
2407 if (guess_suffix == QWORD_MNEM_SUFFIX)
2408 i.types[op] &= ~Imm32;
2409 break;
2410
2411 case O_absent:
2412 case O_register:
2413 abort ();
2414
2415 /* Symbols and expressions. */
2416 default:
2417 /* Convert symbolic operand to proper sizes for matching, but don't
2418 prevent matching a set of insns that only supports sizes other
2419 than those matching the insn suffix. */
2420 {
2421 unsigned int mask, allowed = 0;
2422 const template *t;
2423
2424 for (t = current_templates->start;
2425 t < current_templates->end;
2426 ++t)
2427 allowed |= t->operand_types[op];
2428 switch (guess_suffix)
2429 {
2430 case QWORD_MNEM_SUFFIX:
2431 mask = Imm64 | Imm32S;
2432 break;
2433 case LONG_MNEM_SUFFIX:
2434 mask = Imm32;
2435 break;
2436 case WORD_MNEM_SUFFIX:
2437 mask = Imm16;
2438 break;
2439 case BYTE_MNEM_SUFFIX:
2440 mask = Imm8;
2441 break;
2442 default:
2443 mask = 0;
2444 break;
2445 }
2446 if (mask & allowed)
2447 i.types[op] &= mask;
2448 }
2449 break;
2450 }
2451 }
2452 }
2453
2454 /* Try to use the smallest displacement type too. */
2455 static void
2456 optimize_disp (void)
2457 {
2458 int op;
2459
2460 for (op = i.operands; --op >= 0;)
2461 if (i.types[op] & Disp)
2462 {
2463 if (i.op[op].disps->X_op == O_constant)
2464 {
2465 offsetT disp = i.op[op].disps->X_add_number;
2466
2467 if ((i.types[op] & Disp16)
2468 && (disp & ~(offsetT) 0xffff) == 0)
2469 {
2470 /* If this operand is at most 16 bits, convert
2471 to a signed 16 bit number and don't use 64bit
2472 displacement. */
2473 disp = (((disp & 0xffff) ^ 0x8000) - 0x8000);
2474 i.types[op] &= ~Disp64;
2475 }
2476 if ((i.types[op] & Disp32)
2477 && (disp & ~(((offsetT) 2 << 31) - 1)) == 0)
2478 {
2479 /* If this operand is at most 32 bits, convert
2480 to a signed 32 bit number and don't use 64bit
2481 displacement. */
2482 disp &= (((offsetT) 2 << 31) - 1);
2483 disp = (disp ^ ((offsetT) 1 << 31)) - ((addressT) 1 << 31);
2484 i.types[op] &= ~Disp64;
2485 }
2486 if (!disp && (i.types[op] & BaseIndex))
2487 {
2488 i.types[op] &= ~Disp;
2489 i.op[op].disps = 0;
2490 i.disp_operands--;
2491 }
2492 else if (flag_code == CODE_64BIT)
2493 {
2494 if (fits_in_signed_long (disp))
2495 {
2496 i.types[op] &= ~Disp64;
2497 i.types[op] |= Disp32S;
2498 }
2499 if (fits_in_unsigned_long (disp))
2500 i.types[op] |= Disp32;
2501 }
2502 if ((i.types[op] & (Disp32 | Disp32S | Disp16))
2503 && fits_in_signed_byte (disp))
2504 i.types[op] |= Disp8;
2505 }
2506 else if (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
2507 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL)
2508 {
2509 fix_new_exp (frag_now, frag_more (0) - frag_now->fr_literal, 0,
2510 i.op[op].disps, 0, i.reloc[op]);
2511 i.types[op] &= ~Disp;
2512 }
2513 else
2514 /* We only support 64bit displacement on constants. */
2515 i.types[op] &= ~Disp64;
2516 }
2517 }
2518
2519 static int
2520 match_template (void)
2521 {
2522 /* Points to template once we've found it. */
2523 const template *t;
2524 unsigned int overlap0, overlap1, overlap2, overlap3;
2525 unsigned int found_reverse_match;
2526 int suffix_check;
2527 unsigned int operand_types [MAX_OPERANDS];
2528 int addr_prefix_disp;
2529 unsigned int j;
2530
2531 #if MAX_OPERANDS != 4
2532 # error "MAX_OPERANDS must be 4."
2533 #endif
2534
2535 #define MATCH(overlap, given, template) \
2536 ((overlap & ~JumpAbsolute) \
2537 && (((given) & (BaseIndex | JumpAbsolute)) \
2538 == ((overlap) & (BaseIndex | JumpAbsolute))))
2539
2540 /* If given types r0 and r1 are registers they must be of the same type
2541 unless the expected operand type register overlap is null.
2542 Note that Acc in a template matches every size of reg. */
2543 #define CONSISTENT_REGISTER_MATCH(m0, g0, t0, m1, g1, t1) \
2544 (((g0) & Reg) == 0 || ((g1) & Reg) == 0 \
2545 || ((g0) & Reg) == ((g1) & Reg) \
2546 || ((((m0) & Acc) ? Reg : (t0)) & (((m1) & Acc) ? Reg : (t1)) & Reg) == 0 )
2547
2548 overlap0 = 0;
2549 overlap1 = 0;
2550 overlap2 = 0;
2551 overlap3 = 0;
2552 found_reverse_match = 0;
2553 for (j = 0; j < MAX_OPERANDS; j++)
2554 operand_types [j] = 0;
2555 addr_prefix_disp = -1;
2556 suffix_check = (i.suffix == BYTE_MNEM_SUFFIX
2557 ? No_bSuf
2558 : (i.suffix == WORD_MNEM_SUFFIX
2559 ? No_wSuf
2560 : (i.suffix == SHORT_MNEM_SUFFIX
2561 ? No_sSuf
2562 : (i.suffix == LONG_MNEM_SUFFIX
2563 ? No_lSuf
2564 : (i.suffix == QWORD_MNEM_SUFFIX
2565 ? No_qSuf
2566 : (i.suffix == LONG_DOUBLE_MNEM_SUFFIX
2567 ? No_xSuf : 0))))));
2568
2569 for (t = current_templates->start; t < current_templates->end; t++)
2570 {
2571 addr_prefix_disp = -1;
2572
2573 /* Must have right number of operands. */
2574 if (i.operands != t->operands)
2575 continue;
2576
2577 /* Check the suffix, except for some instructions in intel mode. */
2578 if ((t->opcode_modifier & suffix_check)
2579 && !(intel_syntax
2580 && (t->opcode_modifier & IgnoreSize)))
2581 continue;
2582
2583 for (j = 0; j < MAX_OPERANDS; j++)
2584 operand_types [j] = t->operand_types [j];
2585
2586 /* In general, don't allow 64-bit operands in 32-bit mode. */
2587 if (i.suffix == QWORD_MNEM_SUFFIX
2588 && flag_code != CODE_64BIT
2589 && (intel_syntax
2590 ? (!(t->opcode_modifier & IgnoreSize)
2591 && !intel_float_operand (t->name))
2592 : intel_float_operand (t->name) != 2)
2593 && (!(operand_types[0] & (RegMMX | RegXMM))
2594 || !(operand_types[t->operands > 1] & (RegMMX | RegXMM)))
2595 && (t->base_opcode != 0x0fc7
2596 || t->extension_opcode != 1 /* cmpxchg8b */))
2597 continue;
2598
2599 /* Do not verify operands when there are none. */
2600 else if (!t->operands)
2601 {
2602 if (t->cpu_flags & ~cpu_arch_flags)
2603 continue;
2604 /* We've found a match; break out of loop. */
2605 break;
2606 }
2607
2608 /* Address size prefix will turn Disp64/Disp32/Disp16 operand
2609 into Disp32/Disp16/Disp32 operand. */
2610 if (i.prefix[ADDR_PREFIX] != 0)
2611 {
2612 unsigned int DispOn = 0, DispOff = 0;
2613
2614 switch (flag_code)
2615 {
2616 case CODE_16BIT:
2617 DispOn = Disp32;
2618 DispOff = Disp16;
2619 break;
2620 case CODE_32BIT:
2621 DispOn = Disp16;
2622 DispOff = Disp32;
2623 break;
2624 case CODE_64BIT:
2625 DispOn = Disp32;
2626 DispOff = Disp64;
2627 break;
2628 }
2629
2630 for (j = 0; j < MAX_OPERANDS; j++)
2631 {
2632 /* There should be only one Disp operand. */
2633 if ((operand_types[j] & DispOff))
2634 {
2635 addr_prefix_disp = j;
2636 operand_types[j] |= DispOn;
2637 operand_types[j] &= ~DispOff;
2638 break;
2639 }
2640 }
2641 }
2642
2643 overlap0 = i.types[0] & operand_types[0];
2644 switch (t->operands)
2645 {
2646 case 1:
2647 if (!MATCH (overlap0, i.types[0], operand_types[0]))
2648 continue;
2649 break;
2650 case 2:
2651 /* xchg %eax, %eax is a special case. It is an aliase for nop
2652 only in 32bit mode and we can use opcode 0x90. In 64bit
2653 mode, we can't use 0x90 for xchg %eax, %eax since it should
2654 zero-extend %eax to %rax. */
2655 if (flag_code == CODE_64BIT
2656 && t->base_opcode == 0x90
2657 && i.types [0] == (Acc | Reg32)
2658 && i.types [1] == (Acc | Reg32))
2659 continue;
2660 case 3:
2661 case 4:
2662 overlap1 = i.types[1] & operand_types[1];
2663 if (!MATCH (overlap0, i.types[0], operand_types[0])
2664 || !MATCH (overlap1, i.types[1], operand_types[1])
2665 /* monitor in SSE3 is a very special case. The first
2666 register and the second register may have different
2667 sizes. The same applies to crc32 in SSE4.2. */
2668 || !((t->base_opcode == 0x0f01
2669 && t->extension_opcode == 0xc8)
2670 || t->base_opcode == 0xf20f38f1
2671 || CONSISTENT_REGISTER_MATCH (overlap0, i.types[0],
2672 operand_types[0],
2673 overlap1, i.types[1],
2674 operand_types[1])))
2675 {
2676 /* Check if other direction is valid ... */
2677 if ((t->opcode_modifier & (D | FloatD)) == 0)
2678 continue;
2679
2680 /* Try reversing direction of operands. */
2681 overlap0 = i.types[0] & operand_types[1];
2682 overlap1 = i.types[1] & operand_types[0];
2683 if (!MATCH (overlap0, i.types[0], operand_types[1])
2684 || !MATCH (overlap1, i.types[1], operand_types[0])
2685 || !CONSISTENT_REGISTER_MATCH (overlap0, i.types[0],
2686 operand_types[1],
2687 overlap1, i.types[1],
2688 operand_types[0]))
2689 {
2690 /* Does not match either direction. */
2691 continue;
2692 }
2693 /* found_reverse_match holds which of D or FloatDR
2694 we've found. */
2695 if ((t->opcode_modifier & D))
2696 found_reverse_match = Opcode_D;
2697 else if ((t->opcode_modifier & FloatD))
2698 found_reverse_match = Opcode_FloatD;
2699 else
2700 found_reverse_match = 0;
2701 if ((t->opcode_modifier & FloatR))
2702 found_reverse_match |= Opcode_FloatR;
2703 }
2704 else
2705 {
2706 /* Found a forward 2 operand match here. */
2707 switch (t->operands)
2708 {
2709 case 4:
2710 overlap3 = i.types[3] & operand_types[3];
2711 case 3:
2712 overlap2 = i.types[2] & operand_types[2];
2713 break;
2714 }
2715
2716 switch (t->operands)
2717 {
2718 case 4:
2719 if (!MATCH (overlap3, i.types[3], operand_types[3])
2720 || !CONSISTENT_REGISTER_MATCH (overlap2,
2721 i.types[2],
2722 operand_types[2],
2723 overlap3,
2724 i.types[3],
2725 operand_types[3]))
2726 continue;
2727 case 3:
2728 /* Here we make use of the fact that there are no
2729 reverse match 3 operand instructions, and all 3
2730 operand instructions only need to be checked for
2731 register consistency between operands 2 and 3. */
2732 if (!MATCH (overlap2, i.types[2], operand_types[2])
2733 || !CONSISTENT_REGISTER_MATCH (overlap1,
2734 i.types[1],
2735 operand_types[1],
2736 overlap2,
2737 i.types[2],
2738 operand_types[2]))
2739 continue;
2740 break;
2741 }
2742 }
2743 /* Found either forward/reverse 2, 3 or 4 operand match here:
2744 slip through to break. */
2745 }
2746 if (t->cpu_flags & ~cpu_arch_flags)
2747 {
2748 found_reverse_match = 0;
2749 continue;
2750 }
2751 /* We've found a match; break out of loop. */
2752 break;
2753 }
2754
2755 if (t == current_templates->end)
2756 {
2757 /* We found no match. */
2758 as_bad (_("suffix or operands invalid for `%s'"),
2759 current_templates->start->name);
2760 return 0;
2761 }
2762
2763 if (!quiet_warnings)
2764 {
2765 if (!intel_syntax
2766 && ((i.types[0] & JumpAbsolute)
2767 != (operand_types[0] & JumpAbsolute)))
2768 {
2769 as_warn (_("indirect %s without `*'"), t->name);
2770 }
2771
2772 if ((t->opcode_modifier & (IsPrefix | IgnoreSize))
2773 == (IsPrefix | IgnoreSize))
2774 {
2775 /* Warn them that a data or address size prefix doesn't
2776 affect assembly of the next line of code. */
2777 as_warn (_("stand-alone `%s' prefix"), t->name);
2778 }
2779 }
2780
2781 /* Copy the template we found. */
2782 i.tm = *t;
2783
2784 if (addr_prefix_disp != -1)
2785 i.tm.operand_types[addr_prefix_disp]
2786 = operand_types[addr_prefix_disp];
2787
2788 if (found_reverse_match)
2789 {
2790 /* If we found a reverse match we must alter the opcode
2791 direction bit. found_reverse_match holds bits to change
2792 (different for int & float insns). */
2793
2794 i.tm.base_opcode ^= found_reverse_match;
2795
2796 i.tm.operand_types[0] = operand_types[1];
2797 i.tm.operand_types[1] = operand_types[0];
2798 }
2799
2800 return 1;
2801 }
2802
2803 static int
2804 check_string (void)
2805 {
2806 int mem_op = (i.types[0] & AnyMem) ? 0 : 1;
2807 if ((i.tm.operand_types[mem_op] & EsSeg) != 0)
2808 {
2809 if (i.seg[0] != NULL && i.seg[0] != &es)
2810 {
2811 as_bad (_("`%s' operand %d must use `%%es' segment"),
2812 i.tm.name,
2813 mem_op + 1);
2814 return 0;
2815 }
2816 /* There's only ever one segment override allowed per instruction.
2817 This instruction possibly has a legal segment override on the
2818 second operand, so copy the segment to where non-string
2819 instructions store it, allowing common code. */
2820 i.seg[0] = i.seg[1];
2821 }
2822 else if ((i.tm.operand_types[mem_op + 1] & EsSeg) != 0)
2823 {
2824 if (i.seg[1] != NULL && i.seg[1] != &es)
2825 {
2826 as_bad (_("`%s' operand %d must use `%%es' segment"),
2827 i.tm.name,
2828 mem_op + 2);
2829 return 0;
2830 }
2831 }
2832 return 1;
2833 }
2834
2835 static int
2836 process_suffix (void)
2837 {
2838 /* If matched instruction specifies an explicit instruction mnemonic
2839 suffix, use it. */
2840 if (i.tm.opcode_modifier & (Size16 | Size32 | Size64))
2841 {
2842 if (i.tm.opcode_modifier & Size16)
2843 i.suffix = WORD_MNEM_SUFFIX;
2844 else if (i.tm.opcode_modifier & Size64)
2845 i.suffix = QWORD_MNEM_SUFFIX;
2846 else
2847 i.suffix = LONG_MNEM_SUFFIX;
2848 }
2849 else if (i.reg_operands)
2850 {
2851 /* If there's no instruction mnemonic suffix we try to invent one
2852 based on register operands. */
2853 if (!i.suffix)
2854 {
2855 /* We take i.suffix from the last register operand specified,
2856 Destination register type is more significant than source
2857 register type. crc32 in SSE4.2 prefers source register
2858 type. */
2859 if (i.tm.base_opcode == 0xf20f38f1)
2860 {
2861 if ((i.types[0] & Reg))
2862 i.suffix = ((i.types[0] & Reg16) ? WORD_MNEM_SUFFIX :
2863 LONG_MNEM_SUFFIX);
2864 }
2865 else if (i.tm.base_opcode == 0xf20f38f0)
2866 {
2867 if ((i.types[0] & Reg8))
2868 i.suffix = BYTE_MNEM_SUFFIX;
2869 }
2870
2871 if (!i.suffix)
2872 {
2873 int op;
2874
2875 if (i.tm.base_opcode == 0xf20f38f1
2876 || i.tm.base_opcode == 0xf20f38f0)
2877 {
2878 /* We have to know the operand size for crc32. */
2879 as_bad (_("ambiguous memory operand size for `%s`"),
2880 i.tm.name);
2881 return 0;
2882 }
2883
2884 for (op = i.operands; --op >= 0;)
2885 if ((i.types[op] & Reg)
2886 && !(i.tm.operand_types[op] & InOutPortReg))
2887 {
2888 i.suffix = ((i.types[op] & Reg8) ? BYTE_MNEM_SUFFIX :
2889 (i.types[op] & Reg16) ? WORD_MNEM_SUFFIX :
2890 (i.types[op] & Reg64) ? QWORD_MNEM_SUFFIX :
2891 LONG_MNEM_SUFFIX);
2892 break;
2893 }
2894 }
2895 }
2896 else if (i.suffix == BYTE_MNEM_SUFFIX)
2897 {
2898 if (!check_byte_reg ())
2899 return 0;
2900 }
2901 else if (i.suffix == LONG_MNEM_SUFFIX)
2902 {
2903 if (!check_long_reg ())
2904 return 0;
2905 }
2906 else if (i.suffix == QWORD_MNEM_SUFFIX)
2907 {
2908 if (!check_qword_reg ())
2909 return 0;
2910 }
2911 else if (i.suffix == WORD_MNEM_SUFFIX)
2912 {
2913 if (!check_word_reg ())
2914 return 0;
2915 }
2916 else if (intel_syntax && (i.tm.opcode_modifier & IgnoreSize))
2917 /* Do nothing if the instruction is going to ignore the prefix. */
2918 ;
2919 else
2920 abort ();
2921 }
2922 else if ((i.tm.opcode_modifier & DefaultSize)
2923 && !i.suffix
2924 /* exclude fldenv/frstor/fsave/fstenv */
2925 && (i.tm.opcode_modifier & No_sSuf))
2926 {
2927 i.suffix = stackop_size;
2928 }
2929 else if (intel_syntax
2930 && !i.suffix
2931 && ((i.tm.operand_types[0] & JumpAbsolute)
2932 || (i.tm.opcode_modifier & (JumpByte|JumpInterSegment))
2933 || (i.tm.base_opcode == 0x0f01 /* [ls][gi]dt */
2934 && i.tm.extension_opcode <= 3)))
2935 {
2936 switch (flag_code)
2937 {
2938 case CODE_64BIT:
2939 if (!(i.tm.opcode_modifier & No_qSuf))
2940 {
2941 i.suffix = QWORD_MNEM_SUFFIX;
2942 break;
2943 }
2944 case CODE_32BIT:
2945 if (!(i.tm.opcode_modifier & No_lSuf))
2946 i.suffix = LONG_MNEM_SUFFIX;
2947 break;
2948 case CODE_16BIT:
2949 if (!(i.tm.opcode_modifier & No_wSuf))
2950 i.suffix = WORD_MNEM_SUFFIX;
2951 break;
2952 }
2953 }
2954
2955 if (!i.suffix)
2956 {
2957 if (!intel_syntax)
2958 {
2959 if (i.tm.opcode_modifier & W)
2960 {
2961 as_bad (_("no instruction mnemonic suffix given and "
2962 "no register operands; can't size instruction"));
2963 return 0;
2964 }
2965 }
2966 else
2967 {
2968 unsigned int suffixes = (~i.tm.opcode_modifier
2969 & (No_bSuf
2970 | No_wSuf
2971 | No_lSuf
2972 | No_sSuf
2973 | No_xSuf
2974 | No_qSuf));
2975
2976 if ((i.tm.opcode_modifier & W)
2977 || ((suffixes & (suffixes - 1))
2978 && !(i.tm.opcode_modifier & (DefaultSize | IgnoreSize))))
2979 {
2980 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
2981 return 0;
2982 }
2983 }
2984 }
2985
2986 /* Change the opcode based on the operand size given by i.suffix;
2987 We don't need to change things for byte insns. */
2988
2989 if (i.suffix && i.suffix != BYTE_MNEM_SUFFIX)
2990 {
2991 /* It's not a byte, select word/dword operation. */
2992 if (i.tm.opcode_modifier & W)
2993 {
2994 if (i.tm.opcode_modifier & ShortForm)
2995 i.tm.base_opcode |= 8;
2996 else
2997 i.tm.base_opcode |= 1;
2998 }
2999
3000 /* Now select between word & dword operations via the operand
3001 size prefix, except for instructions that will ignore this
3002 prefix anyway. */
3003 if (i.tm.base_opcode == 0x0f01 && i.tm.extension_opcode == 0xc8)
3004 {
3005 /* monitor in SSE3 is a very special case. The default size
3006 of AX is the size of mode. The address size override
3007 prefix will change the size of AX. */
3008 if (i.op->regs[0].reg_type &
3009 (flag_code == CODE_32BIT ? Reg16 : Reg32))
3010 if (!add_prefix (ADDR_PREFIX_OPCODE))
3011 return 0;
3012 }
3013 else if (i.suffix != QWORD_MNEM_SUFFIX
3014 && i.suffix != LONG_DOUBLE_MNEM_SUFFIX
3015 && !(i.tm.opcode_modifier & (IgnoreSize | FloatMF))
3016 && ((i.suffix == LONG_MNEM_SUFFIX) == (flag_code == CODE_16BIT)
3017 || (flag_code == CODE_64BIT
3018 && (i.tm.opcode_modifier & JumpByte))))
3019 {
3020 unsigned int prefix = DATA_PREFIX_OPCODE;
3021
3022 if (i.tm.opcode_modifier & JumpByte) /* jcxz, loop */
3023 prefix = ADDR_PREFIX_OPCODE;
3024
3025 if (!add_prefix (prefix))
3026 return 0;
3027 }
3028
3029 /* Set mode64 for an operand. */
3030 if (i.suffix == QWORD_MNEM_SUFFIX
3031 && flag_code == CODE_64BIT
3032 && (i.tm.opcode_modifier & NoRex64) == 0)
3033 {
3034 /* Special case for xchg %rax,%rax. It is NOP and doesn't
3035 need rex64. */
3036 if (i.operands != 2
3037 || i.types [0] != (Acc | Reg64)
3038 || i.types [1] != (Acc | Reg64)
3039 || i.tm.base_opcode != 0x90)
3040 i.rex |= REX_W;
3041 }
3042
3043 /* Size floating point instruction. */
3044 if (i.suffix == LONG_MNEM_SUFFIX)
3045 if (i.tm.opcode_modifier & FloatMF)
3046 i.tm.base_opcode ^= 4;
3047 }
3048
3049 return 1;
3050 }
3051
3052 static int
3053 check_byte_reg (void)
3054 {
3055 int op;
3056
3057 for (op = i.operands; --op >= 0;)
3058 {
3059 /* If this is an eight bit register, it's OK. If it's the 16 or
3060 32 bit version of an eight bit register, we will just use the
3061 low portion, and that's OK too. */
3062 if (i.types[op] & Reg8)
3063 continue;
3064
3065 /* movzx and movsx should not generate this warning. */
3066 if (intel_syntax
3067 && (i.tm.base_opcode == 0xfb7
3068 || i.tm.base_opcode == 0xfb6
3069 || i.tm.base_opcode == 0x63
3070 || i.tm.base_opcode == 0xfbe
3071 || i.tm.base_opcode == 0xfbf))
3072 continue;
3073
3074 /* crc32 doesn't generate this warning. */
3075 if (i.tm.base_opcode == 0xf20f38f0)
3076 continue;
3077
3078 if ((i.types[op] & WordReg) && i.op[op].regs->reg_num < 4)
3079 {
3080 /* Prohibit these changes in the 64bit mode, since the
3081 lowering is more complicated. */
3082 if (flag_code == CODE_64BIT
3083 && (i.tm.operand_types[op] & InOutPortReg) == 0)
3084 {
3085 as_bad (_("Incorrect register `%s%s' used with `%c' suffix"),
3086 register_prefix, i.op[op].regs->reg_name,
3087 i.suffix);
3088 return 0;
3089 }
3090 #if REGISTER_WARNINGS
3091 if (!quiet_warnings
3092 && (i.tm.operand_types[op] & InOutPortReg) == 0)
3093 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
3094 register_prefix,
3095 (i.op[op].regs + (i.types[op] & Reg16
3096 ? REGNAM_AL - REGNAM_AX
3097 : REGNAM_AL - REGNAM_EAX))->reg_name,
3098 register_prefix,
3099 i.op[op].regs->reg_name,
3100 i.suffix);
3101 #endif
3102 continue;
3103 }
3104 /* Any other register is bad. */
3105 if (i.types[op] & (Reg | RegMMX | RegXMM
3106 | SReg2 | SReg3
3107 | Control | Debug | Test
3108 | FloatReg | FloatAcc))
3109 {
3110 as_bad (_("`%s%s' not allowed with `%s%c'"),
3111 register_prefix,
3112 i.op[op].regs->reg_name,
3113 i.tm.name,
3114 i.suffix);
3115 return 0;
3116 }
3117 }
3118 return 1;
3119 }
3120
3121 static int
3122 check_long_reg (void)
3123 {
3124 int op;
3125
3126 for (op = i.operands; --op >= 0;)
3127 /* Reject eight bit registers, except where the template requires
3128 them. (eg. movzb) */
3129 if ((i.types[op] & Reg8) != 0
3130 && (i.tm.operand_types[op] & (Reg16 | Reg32 | Acc)) != 0)
3131 {
3132 as_bad (_("`%s%s' not allowed with `%s%c'"),
3133 register_prefix,
3134 i.op[op].regs->reg_name,
3135 i.tm.name,
3136 i.suffix);
3137 return 0;
3138 }
3139 /* Warn if the e prefix on a general reg is missing. */
3140 else if ((!quiet_warnings || flag_code == CODE_64BIT)
3141 && (i.types[op] & Reg16) != 0
3142 && (i.tm.operand_types[op] & (Reg32 | Acc)) != 0)
3143 {
3144 /* Prohibit these changes in the 64bit mode, since the
3145 lowering is more complicated. */
3146 if (flag_code == CODE_64BIT)
3147 {
3148 as_bad (_("Incorrect register `%s%s' used with `%c' suffix"),
3149 register_prefix, i.op[op].regs->reg_name,
3150 i.suffix);
3151 return 0;
3152 }
3153 #if REGISTER_WARNINGS
3154 else
3155 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
3156 register_prefix,
3157 (i.op[op].regs + REGNAM_EAX - REGNAM_AX)->reg_name,
3158 register_prefix,
3159 i.op[op].regs->reg_name,
3160 i.suffix);
3161 #endif
3162 }
3163 /* Warn if the r prefix on a general reg is missing. */
3164 else if ((i.types[op] & Reg64) != 0
3165 && (i.tm.operand_types[op] & (Reg32 | Acc)) != 0)
3166 {
3167 if (intel_syntax
3168 && i.tm.base_opcode == 0xf30f2d
3169 && (i.types[0] & RegXMM) == 0)
3170 {
3171 /* cvtss2si converts DWORD memory to Reg64. We want
3172 REX byte. */
3173 i.suffix = QWORD_MNEM_SUFFIX;
3174 }
3175 else
3176 {
3177 as_bad (_("Incorrect register `%s%s' used with `%c' suffix"),
3178 register_prefix, i.op[op].regs->reg_name,
3179 i.suffix);
3180 return 0;
3181 }
3182 }
3183 return 1;
3184 }
3185
3186 static int
3187 check_qword_reg (void)
3188 {
3189 int op;
3190
3191 for (op = i.operands; --op >= 0; )
3192 /* Reject eight bit registers, except where the template requires
3193 them. (eg. movzb) */
3194 if ((i.types[op] & Reg8) != 0
3195 && (i.tm.operand_types[op] & (Reg16 | Reg32 | Acc)) != 0)
3196 {
3197 as_bad (_("`%s%s' not allowed with `%s%c'"),
3198 register_prefix,
3199 i.op[op].regs->reg_name,
3200 i.tm.name,
3201 i.suffix);
3202 return 0;
3203 }
3204 /* Warn if the e prefix on a general reg is missing. */
3205 else if ((i.types[op] & (Reg16 | Reg32)) != 0
3206 && (i.tm.operand_types[op] & (Reg32 | Acc)) != 0)
3207 {
3208 /* Prohibit these changes in the 64bit mode, since the
3209 lowering is more complicated. */
3210 if (intel_syntax
3211 && i.tm.base_opcode == 0xf20f2d
3212 && (i.types[0] & RegXMM) == 0)
3213 {
3214 /* cvtsd2si converts QWORD memory to Reg32. We don't want
3215 REX byte. */
3216 i.suffix = LONG_MNEM_SUFFIX;
3217 }
3218 else
3219 {
3220 as_bad (_("Incorrect register `%s%s' used with `%c' suffix"),
3221 register_prefix, i.op[op].regs->reg_name,
3222 i.suffix);
3223 return 0;
3224 }
3225 }
3226 return 1;
3227 }
3228
3229 static int
3230 check_word_reg (void)
3231 {
3232 int op;
3233 for (op = i.operands; --op >= 0;)
3234 /* Reject eight bit registers, except where the template requires
3235 them. (eg. movzb) */
3236 if ((i.types[op] & Reg8) != 0
3237 && (i.tm.operand_types[op] & (Reg16 | Reg32 | Acc)) != 0)
3238 {
3239 as_bad (_("`%s%s' not allowed with `%s%c'"),
3240 register_prefix,
3241 i.op[op].regs->reg_name,
3242 i.tm.name,
3243 i.suffix);
3244 return 0;
3245 }
3246 /* Warn if the e prefix on a general reg is present. */
3247 else if ((!quiet_warnings || flag_code == CODE_64BIT)
3248 && (i.types[op] & Reg32) != 0
3249 && (i.tm.operand_types[op] & (Reg16 | Acc)) != 0)
3250 {
3251 /* Prohibit these changes in the 64bit mode, since the
3252 lowering is more complicated. */
3253 if (flag_code == CODE_64BIT)
3254 {
3255 as_bad (_("Incorrect register `%s%s' used with `%c' suffix"),
3256 register_prefix, i.op[op].regs->reg_name,
3257 i.suffix);
3258 return 0;
3259 }
3260 else
3261 #if REGISTER_WARNINGS
3262 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
3263 register_prefix,
3264 (i.op[op].regs + REGNAM_AX - REGNAM_EAX)->reg_name,
3265 register_prefix,
3266 i.op[op].regs->reg_name,
3267 i.suffix);
3268 #endif
3269 }
3270 return 1;
3271 }
3272
3273 static int
3274 finalize_imm (void)
3275 {
3276 unsigned int overlap0, overlap1, overlap2;
3277
3278 overlap0 = i.types[0] & i.tm.operand_types[0];
3279 if ((overlap0 & (Imm8 | Imm8S | Imm16 | Imm32 | Imm32S | Imm64))
3280 && overlap0 != Imm8 && overlap0 != Imm8S
3281 && overlap0 != Imm16 && overlap0 != Imm32S
3282 && overlap0 != Imm32 && overlap0 != Imm64)
3283 {
3284 if (i.suffix)
3285 {
3286 overlap0 &= (i.suffix == BYTE_MNEM_SUFFIX
3287 ? Imm8 | Imm8S
3288 : (i.suffix == WORD_MNEM_SUFFIX
3289 ? Imm16
3290 : (i.suffix == QWORD_MNEM_SUFFIX
3291 ? Imm64 | Imm32S
3292 : Imm32)));
3293 }
3294 else if (overlap0 == (Imm16 | Imm32S | Imm32)
3295 || overlap0 == (Imm16 | Imm32)
3296 || overlap0 == (Imm16 | Imm32S))
3297 {
3298 overlap0 = ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0)
3299 ? Imm16 : Imm32S);
3300 }
3301 if (overlap0 != Imm8 && overlap0 != Imm8S
3302 && overlap0 != Imm16 && overlap0 != Imm32S
3303 && overlap0 != Imm32 && overlap0 != Imm64)
3304 {
3305 as_bad (_("no instruction mnemonic suffix given; "
3306 "can't determine immediate size"));
3307 return 0;
3308 }
3309 }
3310 i.types[0] = overlap0;
3311
3312 overlap1 = i.types[1] & i.tm.operand_types[1];
3313 if ((overlap1 & (Imm8 | Imm8S | Imm16 | Imm32S | Imm32 | Imm64))
3314 && overlap1 != Imm8 && overlap1 != Imm8S
3315 && overlap1 != Imm16 && overlap1 != Imm32S
3316 && overlap1 != Imm32 && overlap1 != Imm64)
3317 {
3318 if (i.suffix)
3319 {
3320 overlap1 &= (i.suffix == BYTE_MNEM_SUFFIX
3321 ? Imm8 | Imm8S
3322 : (i.suffix == WORD_MNEM_SUFFIX
3323 ? Imm16
3324 : (i.suffix == QWORD_MNEM_SUFFIX
3325 ? Imm64 | Imm32S
3326 : Imm32)));
3327 }
3328 else if (overlap1 == (Imm16 | Imm32 | Imm32S)
3329 || overlap1 == (Imm16 | Imm32)
3330 || overlap1 == (Imm16 | Imm32S))
3331 {
3332 overlap1 = ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0)
3333 ? Imm16 : Imm32S);
3334 }
3335 if (overlap1 != Imm8 && overlap1 != Imm8S
3336 && overlap1 != Imm16 && overlap1 != Imm32S
3337 && overlap1 != Imm32 && overlap1 != Imm64)
3338 {
3339 as_bad (_("no instruction mnemonic suffix given; "
3340 "can't determine immediate size %x %c"),
3341 overlap1, i.suffix);
3342 return 0;
3343 }
3344 }
3345 i.types[1] = overlap1;
3346
3347 overlap2 = i.types[2] & i.tm.operand_types[2];
3348 assert ((overlap2 & Imm) == 0);
3349 i.types[2] = overlap2;
3350
3351 return 1;
3352 }
3353
3354 static int
3355 process_operands (void)
3356 {
3357 /* Default segment register this instruction will use for memory
3358 accesses. 0 means unknown. This is only for optimizing out
3359 unnecessary segment overrides. */
3360 const seg_entry *default_seg = 0;
3361
3362 /* The imul $imm, %reg instruction is converted into
3363 imul $imm, %reg, %reg, and the clr %reg instruction
3364 is converted into xor %reg, %reg. */
3365 if (i.tm.opcode_modifier & RegKludge)
3366 {
3367 if ((i.tm.cpu_flags & CpuSSE4_1))
3368 {
3369 /* The first operand in instruction blendvpd, blendvps and
3370 pblendvb in SSE4.1 is implicit and must be xmm0. */
3371 assert (i.operands == 3
3372 && i.reg_operands >= 2
3373 && i.types[0] == RegXMM);
3374 if (i.op[0].regs->reg_num != 0)
3375 {
3376 if (intel_syntax)
3377 as_bad (_("the last operand of `%s' must be `%sxmm0'"),
3378 i.tm.name, register_prefix);
3379 else
3380 as_bad (_("the first operand of `%s' must be `%sxmm0'"),
3381 i.tm.name, register_prefix);
3382 return 0;
3383 }
3384 i.op[0] = i.op[1];
3385 i.op[1] = i.op[2];
3386 i.types[0] = i.types[1];
3387 i.types[1] = i.types[2];
3388 i.operands--;
3389 i.reg_operands--;
3390
3391 /* We need to adjust fields in i.tm since they are used by
3392 build_modrm_byte. */
3393 i.tm.operand_types [0] = i.tm.operand_types [1];
3394 i.tm.operand_types [1] = i.tm.operand_types [2];
3395 i.tm.operands--;
3396 }
3397 else
3398 {
3399 unsigned int first_reg_op = (i.types[0] & Reg) ? 0 : 1;
3400 /* Pretend we saw the extra register operand. */
3401 assert (i.reg_operands == 1
3402 && i.op[first_reg_op + 1].regs == 0);
3403 i.op[first_reg_op + 1].regs = i.op[first_reg_op].regs;
3404 i.types[first_reg_op + 1] = i.types[first_reg_op];
3405 i.operands++;
3406 i.reg_operands++;
3407 }
3408 }
3409
3410 if (i.tm.opcode_modifier & ShortForm)
3411 {
3412 if (i.types[0] & (SReg2 | SReg3))
3413 {
3414 if (i.tm.base_opcode == POP_SEG_SHORT
3415 && i.op[0].regs->reg_num == 1)
3416 {
3417 as_bad (_("you can't `pop %%cs'"));
3418 return 0;
3419 }
3420 i.tm.base_opcode |= (i.op[0].regs->reg_num << 3);
3421 if ((i.op[0].regs->reg_flags & RegRex) != 0)
3422 i.rex |= REX_B;
3423 }
3424 else
3425 {
3426 /* The register or float register operand is in operand 0 or 1. */
3427 unsigned int op = (i.types[0] & (Reg | FloatReg)) ? 0 : 1;
3428 /* Register goes in low 3 bits of opcode. */
3429 i.tm.base_opcode |= i.op[op].regs->reg_num;
3430 if ((i.op[op].regs->reg_flags & RegRex) != 0)
3431 i.rex |= REX_B;
3432 if (!quiet_warnings && (i.tm.opcode_modifier & Ugh) != 0)
3433 {
3434 /* Warn about some common errors, but press on regardless.
3435 The first case can be generated by gcc (<= 2.8.1). */
3436 if (i.operands == 2)
3437 {
3438 /* Reversed arguments on faddp, fsubp, etc. */
3439 as_warn (_("translating to `%s %s%s,%s%s'"), i.tm.name,
3440 register_prefix, i.op[1].regs->reg_name,
3441 register_prefix, i.op[0].regs->reg_name);
3442 }
3443 else
3444 {
3445 /* Extraneous `l' suffix on fp insn. */
3446 as_warn (_("translating to `%s %s%s'"), i.tm.name,
3447 register_prefix, i.op[0].regs->reg_name);
3448 }
3449 }
3450 }
3451 }
3452 else if (i.tm.opcode_modifier & Modrm)
3453 {
3454 /* The opcode is completed (modulo i.tm.extension_opcode which
3455 must be put into the modrm byte). Now, we make the modrm and
3456 index base bytes based on all the info we've collected. */
3457
3458 default_seg = build_modrm_byte ();
3459 }
3460 else if ((i.tm.base_opcode & ~0x3) == MOV_AX_DISP32)
3461 {
3462 default_seg = &ds;
3463 }
3464 else if ((i.tm.opcode_modifier & IsString) != 0)
3465 {
3466 /* For the string instructions that allow a segment override
3467 on one of their operands, the default segment is ds. */
3468 default_seg = &ds;
3469 }
3470
3471 if ((i.tm.base_opcode == 0x8d /* lea */
3472 || (i.tm.cpu_flags & CpuSVME))
3473 && i.seg[0] && !quiet_warnings)
3474 as_warn (_("segment override on `%s' is ineffectual"), i.tm.name);
3475
3476 /* If a segment was explicitly specified, and the specified segment
3477 is not the default, use an opcode prefix to select it. If we
3478 never figured out what the default segment is, then default_seg
3479 will be zero at this point, and the specified segment prefix will
3480 always be used. */
3481 if ((i.seg[0]) && (i.seg[0] != default_seg))
3482 {
3483 if (!add_prefix (i.seg[0]->seg_prefix))
3484 return 0;
3485 }
3486 return 1;
3487 }
3488
3489 static const seg_entry *
3490 build_modrm_byte (void)
3491 {
3492 const seg_entry *default_seg = 0;
3493
3494 /* i.reg_operands MUST be the number of real register operands;
3495 implicit registers do not count. */
3496 if (i.reg_operands == 2)
3497 {
3498 unsigned int source, dest;
3499
3500 switch (i.operands)
3501 {
3502 case 2:
3503 source = 0;
3504 break;
3505 case 3:
3506 /* When there are 3 operands, one of them may be immediate,
3507 which may be the first or the last operand. Otherwise,
3508 the first operand must be shift count register (cl). */
3509 assert (i.imm_operands == 1
3510 || (i.imm_operands == 0
3511 && (i.types[0] & ShiftCount)));
3512 source = (i.types[0] & (Imm | ShiftCount)) ? 1 : 0;
3513 break;
3514 case 4:
3515 /* When there are 4 operands, the first two must be immediate
3516 operands. The source operand will be the 3rd one. */
3517 assert (i.imm_operands == 2
3518 && (i.types[0] & Imm)
3519 && (i.types[1] & Imm));
3520 source = 2;
3521 break;
3522 default:
3523 abort ();
3524 }
3525
3526 dest = source + 1;
3527
3528 i.rm.mode = 3;
3529 /* One of the register operands will be encoded in the i.tm.reg
3530 field, the other in the combined i.tm.mode and i.tm.regmem
3531 fields. If no form of this instruction supports a memory
3532 destination operand, then we assume the source operand may
3533 sometimes be a memory operand and so we need to store the
3534 destination in the i.rm.reg field. */
3535 if ((i.tm.operand_types[dest] & (AnyMem | RegMem)) == 0)
3536 {
3537 i.rm.reg = i.op[dest].regs->reg_num;
3538 i.rm.regmem = i.op[source].regs->reg_num;
3539 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
3540 i.rex |= REX_R;
3541 if ((i.op[source].regs->reg_flags & RegRex) != 0)
3542 i.rex |= REX_B;
3543 }
3544 else
3545 {
3546 i.rm.reg = i.op[source].regs->reg_num;
3547 i.rm.regmem = i.op[dest].regs->reg_num;
3548 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
3549 i.rex |= REX_B;
3550 if ((i.op[source].regs->reg_flags & RegRex) != 0)
3551 i.rex |= REX_R;
3552 }
3553 if (flag_code != CODE_64BIT && (i.rex & (REX_R | REX_B)))
3554 {
3555 if (!((i.types[0] | i.types[1]) & Control))
3556 abort ();
3557 i.rex &= ~(REX_R | REX_B);
3558 add_prefix (LOCK_PREFIX_OPCODE);
3559 }
3560 }
3561 else
3562 { /* If it's not 2 reg operands... */
3563 if (i.mem_operands)
3564 {
3565 unsigned int fake_zero_displacement = 0;
3566 unsigned int op;
3567
3568 for (op = 0; op < i.operands; op++)
3569 if ((i.types[op] & AnyMem))
3570 break;
3571 assert (op < i.operands);
3572
3573 default_seg = &ds;
3574
3575 if (i.base_reg == 0)
3576 {
3577 i.rm.mode = 0;
3578 if (!i.disp_operands)
3579 fake_zero_displacement = 1;
3580 if (i.index_reg == 0)
3581 {
3582 /* Operand is just <disp> */
3583 if (flag_code == CODE_64BIT)
3584 {
3585 /* 64bit mode overwrites the 32bit absolute
3586 addressing by RIP relative addressing and
3587 absolute addressing is encoded by one of the
3588 redundant SIB forms. */
3589 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
3590 i.sib.base = NO_BASE_REGISTER;
3591 i.sib.index = NO_INDEX_REGISTER;
3592 i.types[op] = ((i.prefix[ADDR_PREFIX] == 0)
3593 ? Disp32S : Disp32);
3594 }
3595 else if ((flag_code == CODE_16BIT)
3596 ^ (i.prefix[ADDR_PREFIX] != 0))
3597 {
3598 i.rm.regmem = NO_BASE_REGISTER_16;
3599 i.types[op] = Disp16;
3600 }
3601 else
3602 {
3603 i.rm.regmem = NO_BASE_REGISTER;
3604 i.types[op] = Disp32;
3605 }
3606 }
3607 else /* !i.base_reg && i.index_reg */
3608 {
3609 i.sib.index = i.index_reg->reg_num;
3610 i.sib.base = NO_BASE_REGISTER;
3611 i.sib.scale = i.log2_scale_factor;
3612 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
3613 i.types[op] &= ~Disp;
3614 if (flag_code != CODE_64BIT)
3615 i.types[op] |= Disp32; /* Must be 32 bit */
3616 else
3617 i.types[op] |= Disp32S;
3618 if ((i.index_reg->reg_flags & RegRex) != 0)
3619 i.rex |= REX_X;
3620 }
3621 }
3622 /* RIP addressing for 64bit mode. */
3623 else if (i.base_reg->reg_type == BaseIndex)
3624 {
3625 i.rm.regmem = NO_BASE_REGISTER;
3626 i.types[op] &= ~ Disp;
3627 i.types[op] |= Disp32S;
3628 i.flags[op] |= Operand_PCrel;
3629 if (! i.disp_operands)
3630 fake_zero_displacement = 1;
3631 }
3632 else if (i.base_reg->reg_type & Reg16)
3633 {
3634 switch (i.base_reg->reg_num)
3635 {
3636 case 3: /* (%bx) */
3637 if (i.index_reg == 0)
3638 i.rm.regmem = 7;
3639 else /* (%bx,%si) -> 0, or (%bx,%di) -> 1 */
3640 i.rm.regmem = i.index_reg->reg_num - 6;
3641 break;
3642 case 5: /* (%bp) */
3643 default_seg = &ss;
3644 if (i.index_reg == 0)
3645 {
3646 i.rm.regmem = 6;
3647 if ((i.types[op] & Disp) == 0)
3648 {
3649 /* fake (%bp) into 0(%bp) */
3650 i.types[op] |= Disp8;
3651 fake_zero_displacement = 1;
3652 }
3653 }
3654 else /* (%bp,%si) -> 2, or (%bp,%di) -> 3 */
3655 i.rm.regmem = i.index_reg->reg_num - 6 + 2;
3656 break;
3657 default: /* (%si) -> 4 or (%di) -> 5 */
3658 i.rm.regmem = i.base_reg->reg_num - 6 + 4;
3659 }
3660 i.rm.mode = mode_from_disp_size (i.types[op]);
3661 }
3662 else /* i.base_reg and 32/64 bit mode */
3663 {
3664 if (flag_code == CODE_64BIT
3665 && (i.types[op] & Disp))
3666 i.types[op] = ((i.types[op] & Disp8)
3667 | (i.prefix[ADDR_PREFIX] == 0
3668 ? Disp32S : Disp32));
3669
3670 i.rm.regmem = i.base_reg->reg_num;
3671 if ((i.base_reg->reg_flags & RegRex) != 0)
3672 i.rex |= REX_B;
3673 i.sib.base = i.base_reg->reg_num;
3674 /* x86-64 ignores REX prefix bit here to avoid decoder
3675 complications. */
3676 if ((i.base_reg->reg_num & 7) == EBP_REG_NUM)
3677 {
3678 default_seg = &ss;
3679 if (i.disp_operands == 0)
3680 {
3681 fake_zero_displacement = 1;
3682 i.types[op] |= Disp8;
3683 }
3684 }
3685 else if (i.base_reg->reg_num == ESP_REG_NUM)
3686 {
3687 default_seg = &ss;
3688 }
3689 i.sib.scale = i.log2_scale_factor;
3690 if (i.index_reg == 0)
3691 {
3692 /* <disp>(%esp) becomes two byte modrm with no index
3693 register. We've already stored the code for esp
3694 in i.rm.regmem ie. ESCAPE_TO_TWO_BYTE_ADDRESSING.
3695 Any base register besides %esp will not use the
3696 extra modrm byte. */
3697 i.sib.index = NO_INDEX_REGISTER;
3698 #if !SCALE1_WHEN_NO_INDEX
3699 /* Another case where we force the second modrm byte. */
3700 if (i.log2_scale_factor)
3701 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
3702 #endif
3703 }
3704 else
3705 {
3706 i.sib.index = i.index_reg->reg_num;
3707 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
3708 if ((i.index_reg->reg_flags & RegRex) != 0)
3709 i.rex |= REX_X;
3710 }
3711
3712 if (i.disp_operands
3713 && (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
3714 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL))
3715 i.rm.mode = 0;
3716 else
3717 i.rm.mode = mode_from_disp_size (i.types[op]);
3718 }
3719
3720 if (fake_zero_displacement)
3721 {
3722 /* Fakes a zero displacement assuming that i.types[op]
3723 holds the correct displacement size. */
3724 expressionS *exp;
3725
3726 assert (i.op[op].disps == 0);
3727 exp = &disp_expressions[i.disp_operands++];
3728 i.op[op].disps = exp;
3729 exp->X_op = O_constant;
3730 exp->X_add_number = 0;
3731 exp->X_add_symbol = (symbolS *) 0;
3732 exp->X_op_symbol = (symbolS *) 0;
3733 }
3734 }
3735
3736 /* Fill in i.rm.reg or i.rm.regmem field with register operand
3737 (if any) based on i.tm.extension_opcode. Again, we must be
3738 careful to make sure that segment/control/debug/test/MMX
3739 registers are coded into the i.rm.reg field. */
3740 if (i.reg_operands)
3741 {
3742 unsigned int op;
3743
3744 for (op = 0; op < i.operands; op++)
3745 if ((i.types[op] & (Reg | RegMMX | RegXMM
3746 | SReg2 | SReg3
3747 | Control | Debug | Test)))
3748 break;
3749 assert (op < i.operands);
3750
3751 /* If there is an extension opcode to put here, the register
3752 number must be put into the regmem field. */
3753 if (i.tm.extension_opcode != None)
3754 {
3755 i.rm.regmem = i.op[op].regs->reg_num;
3756 if ((i.op[op].regs->reg_flags & RegRex) != 0)
3757 i.rex |= REX_B;
3758 }
3759 else
3760 {
3761 i.rm.reg = i.op[op].regs->reg_num;
3762 if ((i.op[op].regs->reg_flags & RegRex) != 0)
3763 i.rex |= REX_R;
3764 }
3765
3766 /* Now, if no memory operand has set i.rm.mode = 0, 1, 2 we
3767 must set it to 3 to indicate this is a register operand
3768 in the regmem field. */
3769 if (!i.mem_operands)
3770 i.rm.mode = 3;
3771 }
3772
3773 /* Fill in i.rm.reg field with extension opcode (if any). */
3774 if (i.tm.extension_opcode != None)
3775 i.rm.reg = i.tm.extension_opcode;
3776 }
3777 return default_seg;
3778 }
3779
3780 static void
3781 output_branch (void)
3782 {
3783 char *p;
3784 int code16;
3785 int prefix;
3786 relax_substateT subtype;
3787 symbolS *sym;
3788 offsetT off;
3789
3790 code16 = 0;
3791 if (flag_code == CODE_16BIT)
3792 code16 = CODE16;
3793
3794 prefix = 0;
3795 if (i.prefix[DATA_PREFIX] != 0)
3796 {
3797 prefix = 1;
3798 i.prefixes -= 1;
3799 code16 ^= CODE16;
3800 }
3801 /* Pentium4 branch hints. */
3802 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
3803 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
3804 {
3805 prefix++;
3806 i.prefixes--;
3807 }
3808 if (i.prefix[REX_PREFIX] != 0)
3809 {
3810 prefix++;
3811 i.prefixes--;
3812 }
3813
3814 if (i.prefixes != 0 && !intel_syntax)
3815 as_warn (_("skipping prefixes on this instruction"));
3816
3817 /* It's always a symbol; End frag & setup for relax.
3818 Make sure there is enough room in this frag for the largest
3819 instruction we may generate in md_convert_frag. This is 2
3820 bytes for the opcode and room for the prefix and largest
3821 displacement. */
3822 frag_grow (prefix + 2 + 4);
3823 /* Prefix and 1 opcode byte go in fr_fix. */
3824 p = frag_more (prefix + 1);
3825 if (i.prefix[DATA_PREFIX] != 0)
3826 *p++ = DATA_PREFIX_OPCODE;
3827 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE
3828 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE)
3829 *p++ = i.prefix[SEG_PREFIX];
3830 if (i.prefix[REX_PREFIX] != 0)
3831 *p++ = i.prefix[REX_PREFIX];
3832 *p = i.tm.base_opcode;
3833
3834 if ((unsigned char) *p == JUMP_PC_RELATIVE)
3835 subtype = ENCODE_RELAX_STATE (UNCOND_JUMP, SMALL);
3836 else if ((cpu_arch_flags & Cpu386) != 0)
3837 subtype = ENCODE_RELAX_STATE (COND_JUMP, SMALL);
3838 else
3839 subtype = ENCODE_RELAX_STATE (COND_JUMP86, SMALL);
3840 subtype |= code16;
3841
3842 sym = i.op[0].disps->X_add_symbol;
3843 off = i.op[0].disps->X_add_number;
3844
3845 if (i.op[0].disps->X_op != O_constant
3846 && i.op[0].disps->X_op != O_symbol)
3847 {
3848 /* Handle complex expressions. */
3849 sym = make_expr_symbol (i.op[0].disps);
3850 off = 0;
3851 }
3852
3853 /* 1 possible extra opcode + 4 byte displacement go in var part.
3854 Pass reloc in fr_var. */
3855 frag_var (rs_machine_dependent, 5, i.reloc[0], subtype, sym, off, p);
3856 }
3857
3858 static void
3859 output_jump (void)
3860 {
3861 char *p;
3862 int size;
3863 fixS *fixP;
3864
3865 if (i.tm.opcode_modifier & JumpByte)
3866 {
3867 /* This is a loop or jecxz type instruction. */
3868 size = 1;
3869 if (i.prefix[ADDR_PREFIX] != 0)
3870 {
3871 FRAG_APPEND_1_CHAR (ADDR_PREFIX_OPCODE);
3872 i.prefixes -= 1;
3873 }
3874 /* Pentium4 branch hints. */
3875 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
3876 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
3877 {
3878 FRAG_APPEND_1_CHAR (i.prefix[SEG_PREFIX]);
3879 i.prefixes--;
3880 }
3881 }
3882 else
3883 {
3884 int code16;
3885
3886 code16 = 0;
3887 if (flag_code == CODE_16BIT)
3888 code16 = CODE16;
3889
3890 if (i.prefix[DATA_PREFIX] != 0)
3891 {
3892 FRAG_APPEND_1_CHAR (DATA_PREFIX_OPCODE);
3893 i.prefixes -= 1;
3894 code16 ^= CODE16;
3895 }
3896
3897 size = 4;
3898 if (code16)
3899 size = 2;
3900 }
3901
3902 if (i.prefix[REX_PREFIX] != 0)
3903 {
3904 FRAG_APPEND_1_CHAR (i.prefix[REX_PREFIX]);
3905 i.prefixes -= 1;
3906 }
3907
3908 if (i.prefixes != 0 && !intel_syntax)
3909 as_warn (_("skipping prefixes on this instruction"));
3910
3911 p = frag_more (1 + size);
3912 *p++ = i.tm.base_opcode;
3913
3914 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal, size,
3915 i.op[0].disps, 1, reloc (size, 1, 1, i.reloc[0]));
3916
3917 /* All jumps handled here are signed, but don't use a signed limit
3918 check for 32 and 16 bit jumps as we want to allow wrap around at
3919 4G and 64k respectively. */
3920 if (size == 1)
3921 fixP->fx_signed = 1;
3922 }
3923
3924 static void
3925 output_interseg_jump (void)
3926 {
3927 char *p;
3928 int size;
3929 int prefix;
3930 int code16;
3931
3932 code16 = 0;
3933 if (flag_code == CODE_16BIT)
3934 code16 = CODE16;
3935
3936 prefix = 0;
3937 if (i.prefix[DATA_PREFIX] != 0)
3938 {
3939 prefix = 1;
3940 i.prefixes -= 1;
3941 code16 ^= CODE16;
3942 }
3943 if (i.prefix[REX_PREFIX] != 0)
3944 {
3945 prefix++;
3946 i.prefixes -= 1;
3947 }
3948
3949 size = 4;
3950 if (code16)
3951 size = 2;
3952
3953 if (i.prefixes != 0 && !intel_syntax)
3954 as_warn (_("skipping prefixes on this instruction"));
3955
3956 /* 1 opcode; 2 segment; offset */
3957 p = frag_more (prefix + 1 + 2 + size);
3958
3959 if (i.prefix[DATA_PREFIX] != 0)
3960 *p++ = DATA_PREFIX_OPCODE;
3961
3962 if (i.prefix[REX_PREFIX] != 0)
3963 *p++ = i.prefix[REX_PREFIX];
3964
3965 *p++ = i.tm.base_opcode;
3966 if (i.op[1].imms->X_op == O_constant)
3967 {
3968 offsetT n = i.op[1].imms->X_add_number;
3969
3970 if (size == 2
3971 && !fits_in_unsigned_word (n)
3972 && !fits_in_signed_word (n))
3973 {
3974 as_bad (_("16-bit jump out of range"));
3975 return;
3976 }
3977 md_number_to_chars (p, n, size);
3978 }
3979 else
3980 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
3981 i.op[1].imms, 0, reloc (size, 0, 0, i.reloc[1]));
3982 if (i.op[0].imms->X_op != O_constant)
3983 as_bad (_("can't handle non absolute segment in `%s'"),
3984 i.tm.name);
3985 md_number_to_chars (p + size, (valueT) i.op[0].imms->X_add_number, 2);
3986 }
3987
3988 static void
3989 output_insn (void)
3990 {
3991 fragS *insn_start_frag;
3992 offsetT insn_start_off;
3993
3994 /* Tie dwarf2 debug info to the address at the start of the insn.
3995 We can't do this after the insn has been output as the current
3996 frag may have been closed off. eg. by frag_var. */
3997 dwarf2_emit_insn (0);
3998
3999 insn_start_frag = frag_now;
4000 insn_start_off = frag_now_fix ();
4001
4002 /* Output jumps. */
4003 if (i.tm.opcode_modifier & Jump)
4004 output_branch ();
4005 else if (i.tm.opcode_modifier & (JumpByte | JumpDword))
4006 output_jump ();
4007 else if (i.tm.opcode_modifier & JumpInterSegment)
4008 output_interseg_jump ();
4009 else
4010 {
4011 /* Output normal instructions here. */
4012 char *p;
4013 unsigned char *q;
4014 unsigned int prefix;
4015
4016 /* All opcodes on i386 have either 1 or 2 bytes. SSSE3 and
4017 SSE4 instructions have 3 bytes. We may use one more higher
4018 byte to specify a prefix the instruction requires. Exclude
4019 instructions which are in both SSE4 and ABM. */
4020 if ((i.tm.cpu_flags & (CpuSSSE3 | CpuSSE4)) != 0
4021 && (i.tm.cpu_flags & CpuABM) == 0)
4022 {
4023 if (i.tm.base_opcode & 0xff000000)
4024 {
4025 prefix = (i.tm.base_opcode >> 24) & 0xff;
4026 goto check_prefix;
4027 }
4028 }
4029 else if ((i.tm.base_opcode & 0xff0000) != 0)
4030 {
4031 prefix = (i.tm.base_opcode >> 16) & 0xff;
4032 if ((i.tm.cpu_flags & CpuPadLock) != 0)
4033 {
4034 check_prefix:
4035 if (prefix != REPE_PREFIX_OPCODE
4036 || i.prefix[LOCKREP_PREFIX] != REPE_PREFIX_OPCODE)
4037 add_prefix (prefix);
4038 }
4039 else
4040 add_prefix (prefix);
4041 }
4042
4043 /* The prefix bytes. */
4044 for (q = i.prefix;
4045 q < i.prefix + sizeof (i.prefix) / sizeof (i.prefix[0]);
4046 q++)
4047 {
4048 if (*q)
4049 {
4050 p = frag_more (1);
4051 md_number_to_chars (p, (valueT) *q, 1);
4052 }
4053 }
4054
4055 /* Now the opcode; be careful about word order here! */
4056 if (fits_in_unsigned_byte (i.tm.base_opcode))
4057 {
4058 FRAG_APPEND_1_CHAR (i.tm.base_opcode);
4059 }
4060 else
4061 {
4062 if ((i.tm.cpu_flags & (CpuSSSE3 | CpuSSE4)) != 0
4063 && (i.tm.cpu_flags & CpuABM) == 0)
4064 {
4065 p = frag_more (3);
4066 *p++ = (i.tm.base_opcode >> 16) & 0xff;
4067 }
4068 else
4069 p = frag_more (2);
4070
4071 /* Put out high byte first: can't use md_number_to_chars! */
4072 *p++ = (i.tm.base_opcode >> 8) & 0xff;
4073 *p = i.tm.base_opcode & 0xff;
4074 }
4075
4076 /* Now the modrm byte and sib byte (if present). */
4077 if (i.tm.opcode_modifier & Modrm)
4078 {
4079 p = frag_more (1);
4080 md_number_to_chars (p,
4081 (valueT) (i.rm.regmem << 0
4082 | i.rm.reg << 3
4083 | i.rm.mode << 6),
4084 1);
4085 /* If i.rm.regmem == ESP (4)
4086 && i.rm.mode != (Register mode)
4087 && not 16 bit
4088 ==> need second modrm byte. */
4089 if (i.rm.regmem == ESCAPE_TO_TWO_BYTE_ADDRESSING
4090 && i.rm.mode != 3
4091 && !(i.base_reg && (i.base_reg->reg_type & Reg16) != 0))
4092 {
4093 p = frag_more (1);
4094 md_number_to_chars (p,
4095 (valueT) (i.sib.base << 0
4096 | i.sib.index << 3
4097 | i.sib.scale << 6),
4098 1);
4099 }
4100 }
4101
4102 if (i.disp_operands)
4103 output_disp (insn_start_frag, insn_start_off);
4104
4105 if (i.imm_operands)
4106 output_imm (insn_start_frag, insn_start_off);
4107 }
4108
4109 #ifdef DEBUG386
4110 if (flag_debug)
4111 {
4112 pi ("" /*line*/, &i);
4113 }
4114 #endif /* DEBUG386 */
4115 }
4116
4117 /* Return the size of the displacement operand N. */
4118
4119 static int
4120 disp_size (unsigned int n)
4121 {
4122 int size = 4;
4123 if (i.types[n] & (Disp8 | Disp16 | Disp64))
4124 {
4125 size = 2;
4126 if (i.types[n] & Disp8)
4127 size = 1;
4128 if (i.types[n] & Disp64)
4129 size = 8;
4130 }
4131 return size;
4132 }
4133
4134 /* Return the size of the immediate operand N. */
4135
4136 static int
4137 imm_size (unsigned int n)
4138 {
4139 int size = 4;
4140 if (i.types[n] & (Imm8 | Imm8S | Imm16 | Imm64))
4141 {
4142 size = 2;
4143 if (i.types[n] & (Imm8 | Imm8S))
4144 size = 1;
4145 if (i.types[n] & Imm64)
4146 size = 8;
4147 }
4148 return size;
4149 }
4150
4151 static void
4152 output_disp (fragS *insn_start_frag, offsetT insn_start_off)
4153 {
4154 char *p;
4155 unsigned int n;
4156
4157 for (n = 0; n < i.operands; n++)
4158 {
4159 if (i.types[n] & Disp)
4160 {
4161 if (i.op[n].disps->X_op == O_constant)
4162 {
4163 int size = disp_size (n);
4164 offsetT val;
4165
4166 val = offset_in_range (i.op[n].disps->X_add_number,
4167 size);
4168 p = frag_more (size);
4169 md_number_to_chars (p, val, size);
4170 }
4171 else
4172 {
4173 enum bfd_reloc_code_real reloc_type;
4174 int size = disp_size (n);
4175 int sign = (i.types[n] & Disp32S) != 0;
4176 int pcrel = (i.flags[n] & Operand_PCrel) != 0;
4177
4178 /* We can't have 8 bit displacement here. */
4179 assert ((i.types[n] & Disp8) == 0);
4180
4181 /* The PC relative address is computed relative
4182 to the instruction boundary, so in case immediate
4183 fields follows, we need to adjust the value. */
4184 if (pcrel && i.imm_operands)
4185 {
4186 unsigned int n1;
4187 int sz = 0;
4188
4189 for (n1 = 0; n1 < i.operands; n1++)
4190 if (i.types[n1] & Imm)
4191 {
4192 /* Only one immediate is allowed for PC
4193 relative address. */
4194 assert (sz == 0);
4195 sz = imm_size (n1);
4196 i.op[n].disps->X_add_number -= sz;
4197 }
4198 /* We should find the immediate. */
4199 assert (sz != 0);
4200 }
4201
4202 p = frag_more (size);
4203 reloc_type = reloc (size, pcrel, sign, i.reloc[n]);
4204 if (GOT_symbol
4205 && GOT_symbol == i.op[n].disps->X_add_symbol
4206 && (((reloc_type == BFD_RELOC_32
4207 || reloc_type == BFD_RELOC_X86_64_32S
4208 || (reloc_type == BFD_RELOC_64
4209 && object_64bit))
4210 && (i.op[n].disps->X_op == O_symbol
4211 || (i.op[n].disps->X_op == O_add
4212 && ((symbol_get_value_expression
4213 (i.op[n].disps->X_op_symbol)->X_op)
4214 == O_subtract))))
4215 || reloc_type == BFD_RELOC_32_PCREL))
4216 {
4217 offsetT add;
4218
4219 if (insn_start_frag == frag_now)
4220 add = (p - frag_now->fr_literal) - insn_start_off;
4221 else
4222 {
4223 fragS *fr;
4224
4225 add = insn_start_frag->fr_fix - insn_start_off;
4226 for (fr = insn_start_frag->fr_next;
4227 fr && fr != frag_now; fr = fr->fr_next)
4228 add += fr->fr_fix;
4229 add += p - frag_now->fr_literal;
4230 }
4231
4232 if (!object_64bit)
4233 {
4234 reloc_type = BFD_RELOC_386_GOTPC;
4235 i.op[n].imms->X_add_number += add;
4236 }
4237 else if (reloc_type == BFD_RELOC_64)
4238 reloc_type = BFD_RELOC_X86_64_GOTPC64;
4239 else
4240 /* Don't do the adjustment for x86-64, as there
4241 the pcrel addressing is relative to the _next_
4242 insn, and that is taken care of in other code. */
4243 reloc_type = BFD_RELOC_X86_64_GOTPC32;
4244 }
4245 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
4246 i.op[n].disps, pcrel, reloc_type);
4247 }
4248 }
4249 }
4250 }
4251
4252 static void
4253 output_imm (fragS *insn_start_frag, offsetT insn_start_off)
4254 {
4255 char *p;
4256 unsigned int n;
4257
4258 for (n = 0; n < i.operands; n++)
4259 {
4260 if (i.types[n] & Imm)
4261 {
4262 if (i.op[n].imms->X_op == O_constant)
4263 {
4264 int size = imm_size (n);
4265 offsetT val;
4266
4267 val = offset_in_range (i.op[n].imms->X_add_number,
4268 size);
4269 p = frag_more (size);
4270 md_number_to_chars (p, val, size);
4271 }
4272 else
4273 {
4274 /* Not absolute_section.
4275 Need a 32-bit fixup (don't support 8bit
4276 non-absolute imms). Try to support other
4277 sizes ... */
4278 enum bfd_reloc_code_real reloc_type;
4279 int size = imm_size (n);
4280 int sign;
4281
4282 if ((i.types[n] & (Imm32S))
4283 && (i.suffix == QWORD_MNEM_SUFFIX
4284 || (!i.suffix && (i.tm.opcode_modifier & No_lSuf))))
4285 sign = 1;
4286 else
4287 sign = 0;
4288
4289 p = frag_more (size);
4290 reloc_type = reloc (size, 0, sign, i.reloc[n]);
4291
4292 /* This is tough to explain. We end up with this one if we
4293 * have operands that look like
4294 * "_GLOBAL_OFFSET_TABLE_+[.-.L284]". The goal here is to
4295 * obtain the absolute address of the GOT, and it is strongly
4296 * preferable from a performance point of view to avoid using
4297 * a runtime relocation for this. The actual sequence of
4298 * instructions often look something like:
4299 *
4300 * call .L66
4301 * .L66:
4302 * popl %ebx
4303 * addl $_GLOBAL_OFFSET_TABLE_+[.-.L66],%ebx
4304 *
4305 * The call and pop essentially return the absolute address
4306 * of the label .L66 and store it in %ebx. The linker itself
4307 * will ultimately change the first operand of the addl so
4308 * that %ebx points to the GOT, but to keep things simple, the
4309 * .o file must have this operand set so that it generates not
4310 * the absolute address of .L66, but the absolute address of
4311 * itself. This allows the linker itself simply treat a GOTPC
4312 * relocation as asking for a pcrel offset to the GOT to be
4313 * added in, and the addend of the relocation is stored in the
4314 * operand field for the instruction itself.
4315 *
4316 * Our job here is to fix the operand so that it would add
4317 * the correct offset so that %ebx would point to itself. The
4318 * thing that is tricky is that .-.L66 will point to the
4319 * beginning of the instruction, so we need to further modify
4320 * the operand so that it will point to itself. There are
4321 * other cases where you have something like:
4322 *
4323 * .long $_GLOBAL_OFFSET_TABLE_+[.-.L66]
4324 *
4325 * and here no correction would be required. Internally in
4326 * the assembler we treat operands of this form as not being
4327 * pcrel since the '.' is explicitly mentioned, and I wonder
4328 * whether it would simplify matters to do it this way. Who
4329 * knows. In earlier versions of the PIC patches, the
4330 * pcrel_adjust field was used to store the correction, but
4331 * since the expression is not pcrel, I felt it would be
4332 * confusing to do it this way. */
4333
4334 if ((reloc_type == BFD_RELOC_32
4335 || reloc_type == BFD_RELOC_X86_64_32S
4336 || reloc_type == BFD_RELOC_64)
4337 && GOT_symbol
4338 && GOT_symbol == i.op[n].imms->X_add_symbol
4339 && (i.op[n].imms->X_op == O_symbol
4340 || (i.op[n].imms->X_op == O_add
4341 && ((symbol_get_value_expression
4342 (i.op[n].imms->X_op_symbol)->X_op)
4343 == O_subtract))))
4344 {
4345 offsetT add;
4346
4347 if (insn_start_frag == frag_now)
4348 add = (p - frag_now->fr_literal) - insn_start_off;
4349 else
4350 {
4351 fragS *fr;
4352
4353 add = insn_start_frag->fr_fix - insn_start_off;
4354 for (fr = insn_start_frag->fr_next;
4355 fr && fr != frag_now; fr = fr->fr_next)
4356 add += fr->fr_fix;
4357 add += p - frag_now->fr_literal;
4358 }
4359
4360 if (!object_64bit)
4361 reloc_type = BFD_RELOC_386_GOTPC;
4362 else if (size == 4)
4363 reloc_type = BFD_RELOC_X86_64_GOTPC32;
4364 else if (size == 8)
4365 reloc_type = BFD_RELOC_X86_64_GOTPC64;
4366 i.op[n].imms->X_add_number += add;
4367 }
4368 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
4369 i.op[n].imms, 0, reloc_type);
4370 }
4371 }
4372 }
4373 }
4374 \f
4375 /* x86_cons_fix_new is called via the expression parsing code when a
4376 reloc is needed. We use this hook to get the correct .got reloc. */
4377 static enum bfd_reloc_code_real got_reloc = NO_RELOC;
4378 static int cons_sign = -1;
4379
4380 void
4381 x86_cons_fix_new (fragS *frag, unsigned int off, unsigned int len,
4382 expressionS *exp)
4383 {
4384 enum bfd_reloc_code_real r = reloc (len, 0, cons_sign, got_reloc);
4385
4386 got_reloc = NO_RELOC;
4387
4388 #ifdef TE_PE
4389 if (exp->X_op == O_secrel)
4390 {
4391 exp->X_op = O_symbol;
4392 r = BFD_RELOC_32_SECREL;
4393 }
4394 #endif
4395
4396 fix_new_exp (frag, off, len, exp, 0, r);
4397 }
4398
4399 #if (!defined (OBJ_ELF) && !defined (OBJ_MAYBE_ELF)) || defined (LEX_AT)
4400 # define lex_got(reloc, adjust, types) NULL
4401 #else
4402 /* Parse operands of the form
4403 <symbol>@GOTOFF+<nnn>
4404 and similar .plt or .got references.
4405
4406 If we find one, set up the correct relocation in RELOC and copy the
4407 input string, minus the `@GOTOFF' into a malloc'd buffer for
4408 parsing by the calling routine. Return this buffer, and if ADJUST
4409 is non-null set it to the length of the string we removed from the
4410 input line. Otherwise return NULL. */
4411 static char *
4412 lex_got (enum bfd_reloc_code_real *reloc,
4413 int *adjust,
4414 unsigned int *types)
4415 {
4416 /* Some of the relocations depend on the size of what field is to
4417 be relocated. But in our callers i386_immediate and i386_displacement
4418 we don't yet know the operand size (this will be set by insn
4419 matching). Hence we record the word32 relocation here,
4420 and adjust the reloc according to the real size in reloc(). */
4421 static const struct {
4422 const char *str;
4423 const enum bfd_reloc_code_real rel[2];
4424 const unsigned int types64;
4425 } gotrel[] = {
4426 { "PLTOFF", { 0,
4427 BFD_RELOC_X86_64_PLTOFF64 },
4428 Imm64 },
4429 { "PLT", { BFD_RELOC_386_PLT32,
4430 BFD_RELOC_X86_64_PLT32 },
4431 Imm32 | Imm32S | Disp32 },
4432 { "GOTPLT", { 0,
4433 BFD_RELOC_X86_64_GOTPLT64 },
4434 Imm64 | Disp64 },
4435 { "GOTOFF", { BFD_RELOC_386_GOTOFF,
4436 BFD_RELOC_X86_64_GOTOFF64 },
4437 Imm64 | Disp64 },
4438 { "GOTPCREL", { 0,
4439 BFD_RELOC_X86_64_GOTPCREL },
4440 Imm32 | Imm32S | Disp32 },
4441 { "TLSGD", { BFD_RELOC_386_TLS_GD,
4442 BFD_RELOC_X86_64_TLSGD },
4443 Imm32 | Imm32S | Disp32 },
4444 { "TLSLDM", { BFD_RELOC_386_TLS_LDM,
4445 0 },
4446 0 },
4447 { "TLSLD", { 0,
4448 BFD_RELOC_X86_64_TLSLD },
4449 Imm32 | Imm32S | Disp32 },
4450 { "GOTTPOFF", { BFD_RELOC_386_TLS_IE_32,
4451 BFD_RELOC_X86_64_GOTTPOFF },
4452 Imm32 | Imm32S | Disp32 },
4453 { "TPOFF", { BFD_RELOC_386_TLS_LE_32,
4454 BFD_RELOC_X86_64_TPOFF32 },
4455 Imm32 | Imm32S | Imm64 | Disp32 | Disp64 },
4456 { "NTPOFF", { BFD_RELOC_386_TLS_LE,
4457 0 },
4458 0 },
4459 { "DTPOFF", { BFD_RELOC_386_TLS_LDO_32,
4460 BFD_RELOC_X86_64_DTPOFF32 },
4461 Imm32 | Imm32S | Imm64 | Disp32 | Disp64 },
4462 { "GOTNTPOFF",{ BFD_RELOC_386_TLS_GOTIE,
4463 0 },
4464 0 },
4465 { "INDNTPOFF",{ BFD_RELOC_386_TLS_IE,
4466 0 },
4467 0 },
4468 { "GOT", { BFD_RELOC_386_GOT32,
4469 BFD_RELOC_X86_64_GOT32 },
4470 Imm32 | Imm32S | Disp32 | Imm64 },
4471 { "TLSDESC", { BFD_RELOC_386_TLS_GOTDESC,
4472 BFD_RELOC_X86_64_GOTPC32_TLSDESC },
4473 Imm32 | Imm32S | Disp32 },
4474 { "TLSCALL", { BFD_RELOC_386_TLS_DESC_CALL,
4475 BFD_RELOC_X86_64_TLSDESC_CALL },
4476 Imm32 | Imm32S | Disp32 }
4477 };
4478 char *cp;
4479 unsigned int j;
4480
4481 if (!IS_ELF)
4482 return NULL;
4483
4484 for (cp = input_line_pointer; *cp != '@'; cp++)
4485 if (is_end_of_line[(unsigned char) *cp])
4486 return NULL;
4487
4488 for (j = 0; j < sizeof (gotrel) / sizeof (gotrel[0]); j++)
4489 {
4490 int len;
4491
4492 len = strlen (gotrel[j].str);
4493 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
4494 {
4495 if (gotrel[j].rel[object_64bit] != 0)
4496 {
4497 int first, second;
4498 char *tmpbuf, *past_reloc;
4499
4500 *reloc = gotrel[j].rel[object_64bit];
4501 if (adjust)
4502 *adjust = len;
4503
4504 if (types)
4505 {
4506 if (flag_code != CODE_64BIT)
4507 *types = Imm32 | Disp32;
4508 else
4509 *types = gotrel[j].types64;
4510 }
4511
4512 if (GOT_symbol == NULL)
4513 GOT_symbol = symbol_find_or_make (GLOBAL_OFFSET_TABLE_NAME);
4514
4515 /* The length of the first part of our input line. */
4516 first = cp - input_line_pointer;
4517
4518 /* The second part goes from after the reloc token until
4519 (and including) an end_of_line char. Don't use strlen
4520 here as the end_of_line char may not be a NUL. */
4521 past_reloc = cp + 1 + len;
4522 for (cp = past_reloc; !is_end_of_line[(unsigned char) *cp++]; )
4523 ;
4524 second = cp - past_reloc;
4525
4526 /* Allocate and copy string. The trailing NUL shouldn't
4527 be necessary, but be safe. */
4528 tmpbuf = xmalloc (first + second + 2);
4529 memcpy (tmpbuf, input_line_pointer, first);
4530 if (second != 0 && *past_reloc != ' ')
4531 /* Replace the relocation token with ' ', so that
4532 errors like foo@GOTOFF1 will be detected. */
4533 tmpbuf[first++] = ' ';
4534 memcpy (tmpbuf + first, past_reloc, second);
4535 tmpbuf[first + second] = '\0';
4536 return tmpbuf;
4537 }
4538
4539 as_bad (_("@%s reloc is not supported with %d-bit output format"),
4540 gotrel[j].str, 1 << (5 + object_64bit));
4541 return NULL;
4542 }
4543 }
4544
4545 /* Might be a symbol version string. Don't as_bad here. */
4546 return NULL;
4547 }
4548
4549 void
4550 x86_cons (expressionS *exp, int size)
4551 {
4552 if (size == 4 || (object_64bit && size == 8))
4553 {
4554 /* Handle @GOTOFF and the like in an expression. */
4555 char *save;
4556 char *gotfree_input_line;
4557 int adjust;
4558
4559 save = input_line_pointer;
4560 gotfree_input_line = lex_got (&got_reloc, &adjust, NULL);
4561 if (gotfree_input_line)
4562 input_line_pointer = gotfree_input_line;
4563
4564 expression (exp);
4565
4566 if (gotfree_input_line)
4567 {
4568 /* expression () has merrily parsed up to the end of line,
4569 or a comma - in the wrong buffer. Transfer how far
4570 input_line_pointer has moved to the right buffer. */
4571 input_line_pointer = (save
4572 + (input_line_pointer - gotfree_input_line)
4573 + adjust);
4574 free (gotfree_input_line);
4575 }
4576 }
4577 else
4578 expression (exp);
4579 }
4580 #endif
4581
4582 static void signed_cons (int size)
4583 {
4584 if (flag_code == CODE_64BIT)
4585 cons_sign = 1;
4586 cons (size);
4587 cons_sign = -1;
4588 }
4589
4590 #ifdef TE_PE
4591 static void
4592 pe_directive_secrel (dummy)
4593 int dummy ATTRIBUTE_UNUSED;
4594 {
4595 expressionS exp;
4596
4597 do
4598 {
4599 expression (&exp);
4600 if (exp.X_op == O_symbol)
4601 exp.X_op = O_secrel;
4602
4603 emit_expr (&exp, 4);
4604 }
4605 while (*input_line_pointer++ == ',');
4606
4607 input_line_pointer--;
4608 demand_empty_rest_of_line ();
4609 }
4610 #endif
4611
4612 static int
4613 i386_immediate (char *imm_start)
4614 {
4615 char *save_input_line_pointer;
4616 char *gotfree_input_line;
4617 segT exp_seg = 0;
4618 expressionS *exp;
4619 unsigned int types = ~0U;
4620
4621 if (i.imm_operands == MAX_IMMEDIATE_OPERANDS)
4622 {
4623 as_bad (_("at most %d immediate operands are allowed"),
4624 MAX_IMMEDIATE_OPERANDS);
4625 return 0;
4626 }
4627
4628 exp = &im_expressions[i.imm_operands++];
4629 i.op[this_operand].imms = exp;
4630
4631 if (is_space_char (*imm_start))
4632 ++imm_start;
4633
4634 save_input_line_pointer = input_line_pointer;
4635 input_line_pointer = imm_start;
4636
4637 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
4638 if (gotfree_input_line)
4639 input_line_pointer = gotfree_input_line;
4640
4641 exp_seg = expression (exp);
4642
4643 SKIP_WHITESPACE ();
4644 if (*input_line_pointer)
4645 as_bad (_("junk `%s' after expression"), input_line_pointer);
4646
4647 input_line_pointer = save_input_line_pointer;
4648 if (gotfree_input_line)
4649 free (gotfree_input_line);
4650
4651 if (exp->X_op == O_absent || exp->X_op == O_big)
4652 {
4653 /* Missing or bad expr becomes absolute 0. */
4654 as_bad (_("missing or invalid immediate expression `%s' taken as 0"),
4655 imm_start);
4656 exp->X_op = O_constant;
4657 exp->X_add_number = 0;
4658 exp->X_add_symbol = (symbolS *) 0;
4659 exp->X_op_symbol = (symbolS *) 0;
4660 }
4661 else if (exp->X_op == O_constant)
4662 {
4663 /* Size it properly later. */
4664 i.types[this_operand] |= Imm64;
4665 /* If BFD64, sign extend val. */
4666 if (!use_rela_relocations
4667 && (exp->X_add_number & ~(((addressT) 2 << 31) - 1)) == 0)
4668 exp->X_add_number
4669 = (exp->X_add_number ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
4670 }
4671 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
4672 else if (OUTPUT_FLAVOR == bfd_target_aout_flavour
4673 && exp_seg != absolute_section
4674 && exp_seg != text_section
4675 && exp_seg != data_section
4676 && exp_seg != bss_section
4677 && exp_seg != undefined_section
4678 && !bfd_is_com_section (exp_seg))
4679 {
4680 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
4681 return 0;
4682 }
4683 #endif
4684 else if (!intel_syntax && exp->X_op == O_register)
4685 {
4686 as_bad (_("illegal immediate register operand %s"), imm_start);
4687 return 0;
4688 }
4689 else
4690 {
4691 /* This is an address. The size of the address will be
4692 determined later, depending on destination register,
4693 suffix, or the default for the section. */
4694 i.types[this_operand] |= Imm8 | Imm16 | Imm32 | Imm32S | Imm64;
4695 i.types[this_operand] &= types;
4696 }
4697
4698 return 1;
4699 }
4700
4701 static char *
4702 i386_scale (char *scale)
4703 {
4704 offsetT val;
4705 char *save = input_line_pointer;
4706
4707 input_line_pointer = scale;
4708 val = get_absolute_expression ();
4709
4710 switch (val)
4711 {
4712 case 1:
4713 i.log2_scale_factor = 0;
4714 break;
4715 case 2:
4716 i.log2_scale_factor = 1;
4717 break;
4718 case 4:
4719 i.log2_scale_factor = 2;
4720 break;
4721 case 8:
4722 i.log2_scale_factor = 3;
4723 break;
4724 default:
4725 {
4726 char sep = *input_line_pointer;
4727
4728 *input_line_pointer = '\0';
4729 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
4730 scale);
4731 *input_line_pointer = sep;
4732 input_line_pointer = save;
4733 return NULL;
4734 }
4735 }
4736 if (i.log2_scale_factor != 0 && i.index_reg == 0)
4737 {
4738 as_warn (_("scale factor of %d without an index register"),
4739 1 << i.log2_scale_factor);
4740 #if SCALE1_WHEN_NO_INDEX
4741 i.log2_scale_factor = 0;
4742 #endif
4743 }
4744 scale = input_line_pointer;
4745 input_line_pointer = save;
4746 return scale;
4747 }
4748
4749 static int
4750 i386_displacement (char *disp_start, char *disp_end)
4751 {
4752 expressionS *exp;
4753 segT exp_seg = 0;
4754 char *save_input_line_pointer;
4755 char *gotfree_input_line;
4756 int bigdisp, override;
4757 unsigned int types = Disp;
4758
4759 if (i.disp_operands == MAX_MEMORY_OPERANDS)
4760 {
4761 as_bad (_("at most %d displacement operands are allowed"),
4762 MAX_MEMORY_OPERANDS);
4763 return 0;
4764 }
4765
4766 if ((i.types[this_operand] & JumpAbsolute)
4767 || !(current_templates->start->opcode_modifier & (Jump | JumpDword)))
4768 {
4769 bigdisp = Disp32;
4770 override = (i.prefix[ADDR_PREFIX] != 0);
4771 }
4772 else
4773 {
4774 /* For PC-relative branches, the width of the displacement
4775 is dependent upon data size, not address size. */
4776 bigdisp = 0;
4777 override = (i.prefix[DATA_PREFIX] != 0);
4778 }
4779 if (flag_code == CODE_64BIT)
4780 {
4781 if (!bigdisp)
4782 bigdisp = ((override || i.suffix == WORD_MNEM_SUFFIX)
4783 ? Disp16
4784 : Disp32S | Disp32);
4785 else if (!override)
4786 bigdisp = Disp64 | Disp32S | Disp32;
4787 }
4788 else
4789 {
4790 if (!bigdisp)
4791 {
4792 if (!override)
4793 override = (i.suffix == (flag_code != CODE_16BIT
4794 ? WORD_MNEM_SUFFIX
4795 : LONG_MNEM_SUFFIX));
4796 bigdisp = Disp32;
4797 }
4798 if ((flag_code == CODE_16BIT) ^ override)
4799 bigdisp = Disp16;
4800 }
4801 i.types[this_operand] |= bigdisp;
4802
4803 exp = &disp_expressions[i.disp_operands];
4804 i.op[this_operand].disps = exp;
4805 i.disp_operands++;
4806 save_input_line_pointer = input_line_pointer;
4807 input_line_pointer = disp_start;
4808 END_STRING_AND_SAVE (disp_end);
4809
4810 #ifndef GCC_ASM_O_HACK
4811 #define GCC_ASM_O_HACK 0
4812 #endif
4813 #if GCC_ASM_O_HACK
4814 END_STRING_AND_SAVE (disp_end + 1);
4815 if ((i.types[this_operand] & BaseIndex) != 0
4816 && displacement_string_end[-1] == '+')
4817 {
4818 /* This hack is to avoid a warning when using the "o"
4819 constraint within gcc asm statements.
4820 For instance:
4821
4822 #define _set_tssldt_desc(n,addr,limit,type) \
4823 __asm__ __volatile__ ( \
4824 "movw %w2,%0\n\t" \
4825 "movw %w1,2+%0\n\t" \
4826 "rorl $16,%1\n\t" \
4827 "movb %b1,4+%0\n\t" \
4828 "movb %4,5+%0\n\t" \
4829 "movb $0,6+%0\n\t" \
4830 "movb %h1,7+%0\n\t" \
4831 "rorl $16,%1" \
4832 : "=o"(*(n)) : "q" (addr), "ri"(limit), "i"(type))
4833
4834 This works great except that the output assembler ends
4835 up looking a bit weird if it turns out that there is
4836 no offset. You end up producing code that looks like:
4837
4838 #APP
4839 movw $235,(%eax)
4840 movw %dx,2+(%eax)
4841 rorl $16,%edx
4842 movb %dl,4+(%eax)
4843 movb $137,5+(%eax)
4844 movb $0,6+(%eax)
4845 movb %dh,7+(%eax)
4846 rorl $16,%edx
4847 #NO_APP
4848
4849 So here we provide the missing zero. */
4850
4851 *displacement_string_end = '0';
4852 }
4853 #endif
4854 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
4855 if (gotfree_input_line)
4856 input_line_pointer = gotfree_input_line;
4857
4858 exp_seg = expression (exp);
4859
4860 SKIP_WHITESPACE ();
4861 if (*input_line_pointer)
4862 as_bad (_("junk `%s' after expression"), input_line_pointer);
4863 #if GCC_ASM_O_HACK
4864 RESTORE_END_STRING (disp_end + 1);
4865 #endif
4866 RESTORE_END_STRING (disp_end);
4867 input_line_pointer = save_input_line_pointer;
4868 if (gotfree_input_line)
4869 free (gotfree_input_line);
4870
4871 /* We do this to make sure that the section symbol is in
4872 the symbol table. We will ultimately change the relocation
4873 to be relative to the beginning of the section. */
4874 if (i.reloc[this_operand] == BFD_RELOC_386_GOTOFF
4875 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL
4876 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
4877 {
4878 if (exp->X_op != O_symbol)
4879 {
4880 as_bad (_("bad expression used with @%s"),
4881 (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL
4882 ? "GOTPCREL"
4883 : "GOTOFF"));
4884 return 0;
4885 }
4886
4887 if (S_IS_LOCAL (exp->X_add_symbol)
4888 && S_GET_SEGMENT (exp->X_add_symbol) != undefined_section)
4889 section_symbol (S_GET_SEGMENT (exp->X_add_symbol));
4890 exp->X_op = O_subtract;
4891 exp->X_op_symbol = GOT_symbol;
4892 if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
4893 i.reloc[this_operand] = BFD_RELOC_32_PCREL;
4894 else if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
4895 i.reloc[this_operand] = BFD_RELOC_64;
4896 else
4897 i.reloc[this_operand] = BFD_RELOC_32;
4898 }
4899
4900 if (exp->X_op == O_absent || exp->X_op == O_big)
4901 {
4902 /* Missing or bad expr becomes absolute 0. */
4903 as_bad (_("missing or invalid displacement expression `%s' taken as 0"),
4904 disp_start);
4905 exp->X_op = O_constant;
4906 exp->X_add_number = 0;
4907 exp->X_add_symbol = (symbolS *) 0;
4908 exp->X_op_symbol = (symbolS *) 0;
4909 }
4910
4911 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
4912 if (exp->X_op != O_constant
4913 && OUTPUT_FLAVOR == bfd_target_aout_flavour
4914 && exp_seg != absolute_section
4915 && exp_seg != text_section
4916 && exp_seg != data_section
4917 && exp_seg != bss_section
4918 && exp_seg != undefined_section
4919 && !bfd_is_com_section (exp_seg))
4920 {
4921 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
4922 return 0;
4923 }
4924 #endif
4925
4926 if (!(i.types[this_operand] & ~Disp))
4927 i.types[this_operand] &= types;
4928
4929 return 1;
4930 }
4931
4932 /* Make sure the memory operand we've been dealt is valid.
4933 Return 1 on success, 0 on a failure. */
4934
4935 static int
4936 i386_index_check (const char *operand_string)
4937 {
4938 int ok;
4939 #if INFER_ADDR_PREFIX
4940 int fudged = 0;
4941
4942 tryprefix:
4943 #endif
4944 ok = 1;
4945 if ((current_templates->start->cpu_flags & CpuSVME)
4946 && current_templates->end[-1].operand_types[0] == AnyMem)
4947 {
4948 /* Memory operands of SVME insns are special in that they only allow
4949 rAX as their memory address and ignore any segment override. */
4950 unsigned RegXX;
4951
4952 /* SKINIT is even more restrictive: it always requires EAX. */
4953 if (strcmp (current_templates->start->name, "skinit") == 0)
4954 RegXX = Reg32;
4955 else if (flag_code == CODE_64BIT)
4956 RegXX = i.prefix[ADDR_PREFIX] == 0 ? Reg64 : Reg32;
4957 else
4958 RegXX = ((flag_code == CODE_16BIT) ^ (i.prefix[ADDR_PREFIX] != 0)
4959 ? Reg16
4960 : Reg32);
4961 if (!i.base_reg
4962 || !(i.base_reg->reg_type & Acc)
4963 || !(i.base_reg->reg_type & RegXX)
4964 || i.index_reg
4965 || (i.types[0] & Disp))
4966 ok = 0;
4967 }
4968 else if (flag_code == CODE_64BIT)
4969 {
4970 unsigned RegXX = (i.prefix[ADDR_PREFIX] == 0 ? Reg64 : Reg32);
4971
4972 if ((i.base_reg
4973 && ((i.base_reg->reg_type & RegXX) == 0)
4974 && (i.base_reg->reg_type != BaseIndex
4975 || i.index_reg))
4976 || (i.index_reg
4977 && ((i.index_reg->reg_type & (RegXX | BaseIndex))
4978 != (RegXX | BaseIndex))))
4979 ok = 0;
4980 }
4981 else
4982 {
4983 if ((flag_code == CODE_16BIT) ^ (i.prefix[ADDR_PREFIX] != 0))
4984 {
4985 /* 16bit checks. */
4986 if ((i.base_reg
4987 && ((i.base_reg->reg_type & (Reg16 | BaseIndex | RegRex))
4988 != (Reg16 | BaseIndex)))
4989 || (i.index_reg
4990 && (((i.index_reg->reg_type & (Reg16 | BaseIndex))
4991 != (Reg16 | BaseIndex))
4992 || !(i.base_reg
4993 && i.base_reg->reg_num < 6
4994 && i.index_reg->reg_num >= 6
4995 && i.log2_scale_factor == 0))))
4996 ok = 0;
4997 }
4998 else
4999 {
5000 /* 32bit checks. */
5001 if ((i.base_reg
5002 && (i.base_reg->reg_type & (Reg32 | RegRex)) != Reg32)
5003 || (i.index_reg
5004 && ((i.index_reg->reg_type & (Reg32 | BaseIndex | RegRex))
5005 != (Reg32 | BaseIndex))))
5006 ok = 0;
5007 }
5008 }
5009 if (!ok)
5010 {
5011 #if INFER_ADDR_PREFIX
5012 if (i.prefix[ADDR_PREFIX] == 0)
5013 {
5014 i.prefix[ADDR_PREFIX] = ADDR_PREFIX_OPCODE;
5015 i.prefixes += 1;
5016 /* Change the size of any displacement too. At most one of
5017 Disp16 or Disp32 is set.
5018 FIXME. There doesn't seem to be any real need for separate
5019 Disp16 and Disp32 flags. The same goes for Imm16 and Imm32.
5020 Removing them would probably clean up the code quite a lot. */
5021 if (flag_code != CODE_64BIT
5022 && (i.types[this_operand] & (Disp16 | Disp32)))
5023 i.types[this_operand] ^= (Disp16 | Disp32);
5024 fudged = 1;
5025 goto tryprefix;
5026 }
5027 if (fudged)
5028 as_bad (_("`%s' is not a valid base/index expression"),
5029 operand_string);
5030 else
5031 #endif
5032 as_bad (_("`%s' is not a valid %s bit base/index expression"),
5033 operand_string,
5034 flag_code_names[flag_code]);
5035 }
5036 return ok;
5037 }
5038
5039 /* Parse OPERAND_STRING into the i386_insn structure I. Returns non-zero
5040 on error. */
5041
5042 static int
5043 i386_operand (char *operand_string)
5044 {
5045 const reg_entry *r;
5046 char *end_op;
5047 char *op_string = operand_string;
5048
5049 if (is_space_char (*op_string))
5050 ++op_string;
5051
5052 /* We check for an absolute prefix (differentiating,
5053 for example, 'jmp pc_relative_label' from 'jmp *absolute_label'. */
5054 if (*op_string == ABSOLUTE_PREFIX)
5055 {
5056 ++op_string;
5057 if (is_space_char (*op_string))
5058 ++op_string;
5059 i.types[this_operand] |= JumpAbsolute;
5060 }
5061
5062 /* Check if operand is a register. */
5063 if ((r = parse_register (op_string, &end_op)) != NULL)
5064 {
5065 /* Check for a segment override by searching for ':' after a
5066 segment register. */
5067 op_string = end_op;
5068 if (is_space_char (*op_string))
5069 ++op_string;
5070 if (*op_string == ':' && (r->reg_type & (SReg2 | SReg3)))
5071 {
5072 switch (r->reg_num)
5073 {
5074 case 0:
5075 i.seg[i.mem_operands] = &es;
5076 break;
5077 case 1:
5078 i.seg[i.mem_operands] = &cs;
5079 break;
5080 case 2:
5081 i.seg[i.mem_operands] = &ss;
5082 break;
5083 case 3:
5084 i.seg[i.mem_operands] = &ds;
5085 break;
5086 case 4:
5087 i.seg[i.mem_operands] = &fs;
5088 break;
5089 case 5:
5090 i.seg[i.mem_operands] = &gs;
5091 break;
5092 }
5093
5094 /* Skip the ':' and whitespace. */
5095 ++op_string;
5096 if (is_space_char (*op_string))
5097 ++op_string;
5098
5099 if (!is_digit_char (*op_string)
5100 && !is_identifier_char (*op_string)
5101 && *op_string != '('
5102 && *op_string != ABSOLUTE_PREFIX)
5103 {
5104 as_bad (_("bad memory operand `%s'"), op_string);
5105 return 0;
5106 }
5107 /* Handle case of %es:*foo. */
5108 if (*op_string == ABSOLUTE_PREFIX)
5109 {
5110 ++op_string;
5111 if (is_space_char (*op_string))
5112 ++op_string;
5113 i.types[this_operand] |= JumpAbsolute;
5114 }
5115 goto do_memory_reference;
5116 }
5117 if (*op_string)
5118 {
5119 as_bad (_("junk `%s' after register"), op_string);
5120 return 0;
5121 }
5122 i.types[this_operand] |= r->reg_type & ~BaseIndex;
5123 i.op[this_operand].regs = r;
5124 i.reg_operands++;
5125 }
5126 else if (*op_string == REGISTER_PREFIX)
5127 {
5128 as_bad (_("bad register name `%s'"), op_string);
5129 return 0;
5130 }
5131 else if (*op_string == IMMEDIATE_PREFIX)
5132 {
5133 ++op_string;
5134 if (i.types[this_operand] & JumpAbsolute)
5135 {
5136 as_bad (_("immediate operand illegal with absolute jump"));
5137 return 0;
5138 }
5139 if (!i386_immediate (op_string))
5140 return 0;
5141 }
5142 else if (is_digit_char (*op_string)
5143 || is_identifier_char (*op_string)
5144 || *op_string == '(')
5145 {
5146 /* This is a memory reference of some sort. */
5147 char *base_string;
5148
5149 /* Start and end of displacement string expression (if found). */
5150 char *displacement_string_start;
5151 char *displacement_string_end;
5152
5153 do_memory_reference:
5154 if ((i.mem_operands == 1
5155 && (current_templates->start->opcode_modifier & IsString) == 0)
5156 || i.mem_operands == 2)
5157 {
5158 as_bad (_("too many memory references for `%s'"),
5159 current_templates->start->name);
5160 return 0;
5161 }
5162
5163 /* Check for base index form. We detect the base index form by
5164 looking for an ')' at the end of the operand, searching
5165 for the '(' matching it, and finding a REGISTER_PREFIX or ','
5166 after the '('. */
5167 base_string = op_string + strlen (op_string);
5168
5169 --base_string;
5170 if (is_space_char (*base_string))
5171 --base_string;
5172
5173 /* If we only have a displacement, set-up for it to be parsed later. */
5174 displacement_string_start = op_string;
5175 displacement_string_end = base_string + 1;
5176
5177 if (*base_string == ')')
5178 {
5179 char *temp_string;
5180 unsigned int parens_balanced = 1;
5181 /* We've already checked that the number of left & right ()'s are
5182 equal, so this loop will not be infinite. */
5183 do
5184 {
5185 base_string--;
5186 if (*base_string == ')')
5187 parens_balanced++;
5188 if (*base_string == '(')
5189 parens_balanced--;
5190 }
5191 while (parens_balanced);
5192
5193 temp_string = base_string;
5194
5195 /* Skip past '(' and whitespace. */
5196 ++base_string;
5197 if (is_space_char (*base_string))
5198 ++base_string;
5199
5200 if (*base_string == ','
5201 || ((i.base_reg = parse_register (base_string, &end_op))
5202 != NULL))
5203 {
5204 displacement_string_end = temp_string;
5205
5206 i.types[this_operand] |= BaseIndex;
5207
5208 if (i.base_reg)
5209 {
5210 base_string = end_op;
5211 if (is_space_char (*base_string))
5212 ++base_string;
5213 }
5214
5215 /* There may be an index reg or scale factor here. */
5216 if (*base_string == ',')
5217 {
5218 ++base_string;
5219 if (is_space_char (*base_string))
5220 ++base_string;
5221
5222 if ((i.index_reg = parse_register (base_string, &end_op))
5223 != NULL)
5224 {
5225 base_string = end_op;
5226 if (is_space_char (*base_string))
5227 ++base_string;
5228 if (*base_string == ',')
5229 {
5230 ++base_string;
5231 if (is_space_char (*base_string))
5232 ++base_string;
5233 }
5234 else if (*base_string != ')')
5235 {
5236 as_bad (_("expecting `,' or `)' "
5237 "after index register in `%s'"),
5238 operand_string);
5239 return 0;
5240 }
5241 }
5242 else if (*base_string == REGISTER_PREFIX)
5243 {
5244 as_bad (_("bad register name `%s'"), base_string);
5245 return 0;
5246 }
5247
5248 /* Check for scale factor. */
5249 if (*base_string != ')')
5250 {
5251 char *end_scale = i386_scale (base_string);
5252
5253 if (!end_scale)
5254 return 0;
5255
5256 base_string = end_scale;
5257 if (is_space_char (*base_string))
5258 ++base_string;
5259 if (*base_string != ')')
5260 {
5261 as_bad (_("expecting `)' "
5262 "after scale factor in `%s'"),
5263 operand_string);
5264 return 0;
5265 }
5266 }
5267 else if (!i.index_reg)
5268 {
5269 as_bad (_("expecting index register or scale factor "
5270 "after `,'; got '%c'"),
5271 *base_string);
5272 return 0;
5273 }
5274 }
5275 else if (*base_string != ')')
5276 {
5277 as_bad (_("expecting `,' or `)' "
5278 "after base register in `%s'"),
5279 operand_string);
5280 return 0;
5281 }
5282 }
5283 else if (*base_string == REGISTER_PREFIX)
5284 {
5285 as_bad (_("bad register name `%s'"), base_string);
5286 return 0;
5287 }
5288 }
5289
5290 /* If there's an expression beginning the operand, parse it,
5291 assuming displacement_string_start and
5292 displacement_string_end are meaningful. */
5293 if (displacement_string_start != displacement_string_end)
5294 {
5295 if (!i386_displacement (displacement_string_start,
5296 displacement_string_end))
5297 return 0;
5298 }
5299
5300 /* Special case for (%dx) while doing input/output op. */
5301 if (i.base_reg
5302 && i.base_reg->reg_type == (Reg16 | InOutPortReg)
5303 && i.index_reg == 0
5304 && i.log2_scale_factor == 0
5305 && i.seg[i.mem_operands] == 0
5306 && (i.types[this_operand] & Disp) == 0)
5307 {
5308 i.types[this_operand] = InOutPortReg;
5309 return 1;
5310 }
5311
5312 if (i386_index_check (operand_string) == 0)
5313 return 0;
5314 i.mem_operands++;
5315 }
5316 else
5317 {
5318 /* It's not a memory operand; argh! */
5319 as_bad (_("invalid char %s beginning operand %d `%s'"),
5320 output_invalid (*op_string),
5321 this_operand + 1,
5322 op_string);
5323 return 0;
5324 }
5325 return 1; /* Normal return. */
5326 }
5327 \f
5328 /* md_estimate_size_before_relax()
5329
5330 Called just before relax() for rs_machine_dependent frags. The x86
5331 assembler uses these frags to handle variable size jump
5332 instructions.
5333
5334 Any symbol that is now undefined will not become defined.
5335 Return the correct fr_subtype in the frag.
5336 Return the initial "guess for variable size of frag" to caller.
5337 The guess is actually the growth beyond the fixed part. Whatever
5338 we do to grow the fixed or variable part contributes to our
5339 returned value. */
5340
5341 int
5342 md_estimate_size_before_relax (fragP, segment)
5343 fragS *fragP;
5344 segT segment;
5345 {
5346 /* We've already got fragP->fr_subtype right; all we have to do is
5347 check for un-relaxable symbols. On an ELF system, we can't relax
5348 an externally visible symbol, because it may be overridden by a
5349 shared library. */
5350 if (S_GET_SEGMENT (fragP->fr_symbol) != segment
5351 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
5352 || (IS_ELF
5353 && (S_IS_EXTERNAL (fragP->fr_symbol)
5354 || S_IS_WEAK (fragP->fr_symbol)))
5355 #endif
5356 )
5357 {
5358 /* Symbol is undefined in this segment, or we need to keep a
5359 reloc so that weak symbols can be overridden. */
5360 int size = (fragP->fr_subtype & CODE16) ? 2 : 4;
5361 enum bfd_reloc_code_real reloc_type;
5362 unsigned char *opcode;
5363 int old_fr_fix;
5364
5365 if (fragP->fr_var != NO_RELOC)
5366 reloc_type = fragP->fr_var;
5367 else if (size == 2)
5368 reloc_type = BFD_RELOC_16_PCREL;
5369 else
5370 reloc_type = BFD_RELOC_32_PCREL;
5371
5372 old_fr_fix = fragP->fr_fix;
5373 opcode = (unsigned char *) fragP->fr_opcode;
5374
5375 switch (TYPE_FROM_RELAX_STATE (fragP->fr_subtype))
5376 {
5377 case UNCOND_JUMP:
5378 /* Make jmp (0xeb) a (d)word displacement jump. */
5379 opcode[0] = 0xe9;
5380 fragP->fr_fix += size;
5381 fix_new (fragP, old_fr_fix, size,
5382 fragP->fr_symbol,
5383 fragP->fr_offset, 1,
5384 reloc_type);
5385 break;
5386
5387 case COND_JUMP86:
5388 if (size == 2
5389 && (!no_cond_jump_promotion || fragP->fr_var != NO_RELOC))
5390 {
5391 /* Negate the condition, and branch past an
5392 unconditional jump. */
5393 opcode[0] ^= 1;
5394 opcode[1] = 3;
5395 /* Insert an unconditional jump. */
5396 opcode[2] = 0xe9;
5397 /* We added two extra opcode bytes, and have a two byte
5398 offset. */
5399 fragP->fr_fix += 2 + 2;
5400 fix_new (fragP, old_fr_fix + 2, 2,
5401 fragP->fr_symbol,
5402 fragP->fr_offset, 1,
5403 reloc_type);
5404 break;
5405 }
5406 /* Fall through. */
5407
5408 case COND_JUMP:
5409 if (no_cond_jump_promotion && fragP->fr_var == NO_RELOC)
5410 {
5411 fixS *fixP;
5412
5413 fragP->fr_fix += 1;
5414 fixP = fix_new (fragP, old_fr_fix, 1,
5415 fragP->fr_symbol,
5416 fragP->fr_offset, 1,
5417 BFD_RELOC_8_PCREL);
5418 fixP->fx_signed = 1;
5419 break;
5420 }
5421
5422 /* This changes the byte-displacement jump 0x7N
5423 to the (d)word-displacement jump 0x0f,0x8N. */
5424 opcode[1] = opcode[0] + 0x10;
5425 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
5426 /* We've added an opcode byte. */
5427 fragP->fr_fix += 1 + size;
5428 fix_new (fragP, old_fr_fix + 1, size,
5429 fragP->fr_symbol,
5430 fragP->fr_offset, 1,
5431 reloc_type);
5432 break;
5433
5434 default:
5435 BAD_CASE (fragP->fr_subtype);
5436 break;
5437 }
5438 frag_wane (fragP);
5439 return fragP->fr_fix - old_fr_fix;
5440 }
5441
5442 /* Guess size depending on current relax state. Initially the relax
5443 state will correspond to a short jump and we return 1, because
5444 the variable part of the frag (the branch offset) is one byte
5445 long. However, we can relax a section more than once and in that
5446 case we must either set fr_subtype back to the unrelaxed state,
5447 or return the value for the appropriate branch. */
5448 return md_relax_table[fragP->fr_subtype].rlx_length;
5449 }
5450
5451 /* Called after relax() is finished.
5452
5453 In: Address of frag.
5454 fr_type == rs_machine_dependent.
5455 fr_subtype is what the address relaxed to.
5456
5457 Out: Any fixSs and constants are set up.
5458 Caller will turn frag into a ".space 0". */
5459
5460 void
5461 md_convert_frag (abfd, sec, fragP)
5462 bfd *abfd ATTRIBUTE_UNUSED;
5463 segT sec ATTRIBUTE_UNUSED;
5464 fragS *fragP;
5465 {
5466 unsigned char *opcode;
5467 unsigned char *where_to_put_displacement = NULL;
5468 offsetT target_address;
5469 offsetT opcode_address;
5470 unsigned int extension = 0;
5471 offsetT displacement_from_opcode_start;
5472
5473 opcode = (unsigned char *) fragP->fr_opcode;
5474
5475 /* Address we want to reach in file space. */
5476 target_address = S_GET_VALUE (fragP->fr_symbol) + fragP->fr_offset;
5477
5478 /* Address opcode resides at in file space. */
5479 opcode_address = fragP->fr_address + fragP->fr_fix;
5480
5481 /* Displacement from opcode start to fill into instruction. */
5482 displacement_from_opcode_start = target_address - opcode_address;
5483
5484 if ((fragP->fr_subtype & BIG) == 0)
5485 {
5486 /* Don't have to change opcode. */
5487 extension = 1; /* 1 opcode + 1 displacement */
5488 where_to_put_displacement = &opcode[1];
5489 }
5490 else
5491 {
5492 if (no_cond_jump_promotion
5493 && TYPE_FROM_RELAX_STATE (fragP->fr_subtype) != UNCOND_JUMP)
5494 as_warn_where (fragP->fr_file, fragP->fr_line,
5495 _("long jump required"));
5496
5497 switch (fragP->fr_subtype)
5498 {
5499 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG):
5500 extension = 4; /* 1 opcode + 4 displacement */
5501 opcode[0] = 0xe9;
5502 where_to_put_displacement = &opcode[1];
5503 break;
5504
5505 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16):
5506 extension = 2; /* 1 opcode + 2 displacement */
5507 opcode[0] = 0xe9;
5508 where_to_put_displacement = &opcode[1];
5509 break;
5510
5511 case ENCODE_RELAX_STATE (COND_JUMP, BIG):
5512 case ENCODE_RELAX_STATE (COND_JUMP86, BIG):
5513 extension = 5; /* 2 opcode + 4 displacement */
5514 opcode[1] = opcode[0] + 0x10;
5515 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
5516 where_to_put_displacement = &opcode[2];
5517 break;
5518
5519 case ENCODE_RELAX_STATE (COND_JUMP, BIG16):
5520 extension = 3; /* 2 opcode + 2 displacement */
5521 opcode[1] = opcode[0] + 0x10;
5522 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
5523 where_to_put_displacement = &opcode[2];
5524 break;
5525
5526 case ENCODE_RELAX_STATE (COND_JUMP86, BIG16):
5527 extension = 4;
5528 opcode[0] ^= 1;
5529 opcode[1] = 3;
5530 opcode[2] = 0xe9;
5531 where_to_put_displacement = &opcode[3];
5532 break;
5533
5534 default:
5535 BAD_CASE (fragP->fr_subtype);
5536 break;
5537 }
5538 }
5539
5540 /* If size if less then four we are sure that the operand fits,
5541 but if it's 4, then it could be that the displacement is larger
5542 then -/+ 2GB. */
5543 if (DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype) == 4
5544 && object_64bit
5545 && ((addressT) (displacement_from_opcode_start - extension
5546 + ((addressT) 1 << 31))
5547 > (((addressT) 2 << 31) - 1)))
5548 {
5549 as_bad_where (fragP->fr_file, fragP->fr_line,
5550 _("jump target out of range"));
5551 /* Make us emit 0. */
5552 displacement_from_opcode_start = extension;
5553 }
5554 /* Now put displacement after opcode. */
5555 md_number_to_chars ((char *) where_to_put_displacement,
5556 (valueT) (displacement_from_opcode_start - extension),
5557 DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype));
5558 fragP->fr_fix += extension;
5559 }
5560 \f
5561 /* Size of byte displacement jmp. */
5562 int md_short_jump_size = 2;
5563
5564 /* Size of dword displacement jmp. */
5565 int md_long_jump_size = 5;
5566
5567 void
5568 md_create_short_jump (ptr, from_addr, to_addr, frag, to_symbol)
5569 char *ptr;
5570 addressT from_addr, to_addr;
5571 fragS *frag ATTRIBUTE_UNUSED;
5572 symbolS *to_symbol ATTRIBUTE_UNUSED;
5573 {
5574 offsetT offset;
5575
5576 offset = to_addr - (from_addr + 2);
5577 /* Opcode for byte-disp jump. */
5578 md_number_to_chars (ptr, (valueT) 0xeb, 1);
5579 md_number_to_chars (ptr + 1, (valueT) offset, 1);
5580 }
5581
5582 void
5583 md_create_long_jump (ptr, from_addr, to_addr, frag, to_symbol)
5584 char *ptr;
5585 addressT from_addr, to_addr;
5586 fragS *frag ATTRIBUTE_UNUSED;
5587 symbolS *to_symbol ATTRIBUTE_UNUSED;
5588 {
5589 offsetT offset;
5590
5591 offset = to_addr - (from_addr + 5);
5592 md_number_to_chars (ptr, (valueT) 0xe9, 1);
5593 md_number_to_chars (ptr + 1, (valueT) offset, 4);
5594 }
5595 \f
5596 /* Apply a fixup (fixS) to segment data, once it has been determined
5597 by our caller that we have all the info we need to fix it up.
5598
5599 On the 386, immediates, displacements, and data pointers are all in
5600 the same (little-endian) format, so we don't need to care about which
5601 we are handling. */
5602
5603 void
5604 md_apply_fix (fixP, valP, seg)
5605 /* The fix we're to put in. */
5606 fixS *fixP;
5607 /* Pointer to the value of the bits. */
5608 valueT *valP;
5609 /* Segment fix is from. */
5610 segT seg ATTRIBUTE_UNUSED;
5611 {
5612 char *p = fixP->fx_where + fixP->fx_frag->fr_literal;
5613 valueT value = *valP;
5614
5615 #if !defined (TE_Mach)
5616 if (fixP->fx_pcrel)
5617 {
5618 switch (fixP->fx_r_type)
5619 {
5620 default:
5621 break;
5622
5623 case BFD_RELOC_64:
5624 fixP->fx_r_type = BFD_RELOC_64_PCREL;
5625 break;
5626 case BFD_RELOC_32:
5627 case BFD_RELOC_X86_64_32S:
5628 fixP->fx_r_type = BFD_RELOC_32_PCREL;
5629 break;
5630 case BFD_RELOC_16:
5631 fixP->fx_r_type = BFD_RELOC_16_PCREL;
5632 break;
5633 case BFD_RELOC_8:
5634 fixP->fx_r_type = BFD_RELOC_8_PCREL;
5635 break;
5636 }
5637 }
5638
5639 if (fixP->fx_addsy != NULL
5640 && (fixP->fx_r_type == BFD_RELOC_32_PCREL
5641 || fixP->fx_r_type == BFD_RELOC_64_PCREL
5642 || fixP->fx_r_type == BFD_RELOC_16_PCREL
5643 || fixP->fx_r_type == BFD_RELOC_8_PCREL)
5644 && !use_rela_relocations)
5645 {
5646 /* This is a hack. There should be a better way to handle this.
5647 This covers for the fact that bfd_install_relocation will
5648 subtract the current location (for partial_inplace, PC relative
5649 relocations); see more below. */
5650 #ifndef OBJ_AOUT
5651 if (IS_ELF
5652 #ifdef TE_PE
5653 || OUTPUT_FLAVOR == bfd_target_coff_flavour
5654 #endif
5655 )
5656 value += fixP->fx_where + fixP->fx_frag->fr_address;
5657 #endif
5658 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
5659 if (IS_ELF)
5660 {
5661 segT sym_seg = S_GET_SEGMENT (fixP->fx_addsy);
5662
5663 if ((sym_seg == seg
5664 || (symbol_section_p (fixP->fx_addsy)
5665 && sym_seg != absolute_section))
5666 && !generic_force_reloc (fixP))
5667 {
5668 /* Yes, we add the values in twice. This is because
5669 bfd_install_relocation subtracts them out again. I think
5670 bfd_install_relocation is broken, but I don't dare change
5671 it. FIXME. */
5672 value += fixP->fx_where + fixP->fx_frag->fr_address;
5673 }
5674 }
5675 #endif
5676 #if defined (OBJ_COFF) && defined (TE_PE)
5677 /* For some reason, the PE format does not store a
5678 section address offset for a PC relative symbol. */
5679 if (S_GET_SEGMENT (fixP->fx_addsy) != seg
5680 || S_IS_WEAK (fixP->fx_addsy))
5681 value += md_pcrel_from (fixP);
5682 #endif
5683 }
5684
5685 /* Fix a few things - the dynamic linker expects certain values here,
5686 and we must not disappoint it. */
5687 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
5688 if (IS_ELF && fixP->fx_addsy)
5689 switch (fixP->fx_r_type)
5690 {
5691 case BFD_RELOC_386_PLT32:
5692 case BFD_RELOC_X86_64_PLT32:
5693 /* Make the jump instruction point to the address of the operand. At
5694 runtime we merely add the offset to the actual PLT entry. */
5695 value = -4;
5696 break;
5697
5698 case BFD_RELOC_386_TLS_GD:
5699 case BFD_RELOC_386_TLS_LDM:
5700 case BFD_RELOC_386_TLS_IE_32:
5701 case BFD_RELOC_386_TLS_IE:
5702 case BFD_RELOC_386_TLS_GOTIE:
5703 case BFD_RELOC_386_TLS_GOTDESC:
5704 case BFD_RELOC_X86_64_TLSGD:
5705 case BFD_RELOC_X86_64_TLSLD:
5706 case BFD_RELOC_X86_64_GOTTPOFF:
5707 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
5708 value = 0; /* Fully resolved at runtime. No addend. */
5709 /* Fallthrough */
5710 case BFD_RELOC_386_TLS_LE:
5711 case BFD_RELOC_386_TLS_LDO_32:
5712 case BFD_RELOC_386_TLS_LE_32:
5713 case BFD_RELOC_X86_64_DTPOFF32:
5714 case BFD_RELOC_X86_64_DTPOFF64:
5715 case BFD_RELOC_X86_64_TPOFF32:
5716 case BFD_RELOC_X86_64_TPOFF64:
5717 S_SET_THREAD_LOCAL (fixP->fx_addsy);
5718 break;
5719
5720 case BFD_RELOC_386_TLS_DESC_CALL:
5721 case BFD_RELOC_X86_64_TLSDESC_CALL:
5722 value = 0; /* Fully resolved at runtime. No addend. */
5723 S_SET_THREAD_LOCAL (fixP->fx_addsy);
5724 fixP->fx_done = 0;
5725 return;
5726
5727 case BFD_RELOC_386_GOT32:
5728 case BFD_RELOC_X86_64_GOT32:
5729 value = 0; /* Fully resolved at runtime. No addend. */
5730 break;
5731
5732 case BFD_RELOC_VTABLE_INHERIT:
5733 case BFD_RELOC_VTABLE_ENTRY:
5734 fixP->fx_done = 0;
5735 return;
5736
5737 default:
5738 break;
5739 }
5740 #endif /* defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) */
5741 *valP = value;
5742 #endif /* !defined (TE_Mach) */
5743
5744 /* Are we finished with this relocation now? */
5745 if (fixP->fx_addsy == NULL)
5746 fixP->fx_done = 1;
5747 else if (use_rela_relocations)
5748 {
5749 fixP->fx_no_overflow = 1;
5750 /* Remember value for tc_gen_reloc. */
5751 fixP->fx_addnumber = value;
5752 value = 0;
5753 }
5754
5755 md_number_to_chars (p, value, fixP->fx_size);
5756 }
5757 \f
5758 #define MAX_LITTLENUMS 6
5759
5760 /* Turn the string pointed to by litP into a floating point constant
5761 of type TYPE, and emit the appropriate bytes. The number of
5762 LITTLENUMS emitted is stored in *SIZEP. An error message is
5763 returned, or NULL on OK. */
5764
5765 char *
5766 md_atof (type, litP, sizeP)
5767 int type;
5768 char *litP;
5769 int *sizeP;
5770 {
5771 int prec;
5772 LITTLENUM_TYPE words[MAX_LITTLENUMS];
5773 LITTLENUM_TYPE *wordP;
5774 char *t;
5775
5776 switch (type)
5777 {
5778 case 'f':
5779 case 'F':
5780 prec = 2;
5781 break;
5782
5783 case 'd':
5784 case 'D':
5785 prec = 4;
5786 break;
5787
5788 case 'x':
5789 case 'X':
5790 prec = 5;
5791 break;
5792
5793 default:
5794 *sizeP = 0;
5795 return _("Bad call to md_atof ()");
5796 }
5797 t = atof_ieee (input_line_pointer, type, words);
5798 if (t)
5799 input_line_pointer = t;
5800
5801 *sizeP = prec * sizeof (LITTLENUM_TYPE);
5802 /* This loops outputs the LITTLENUMs in REVERSE order; in accord with
5803 the bigendian 386. */
5804 for (wordP = words + prec - 1; prec--;)
5805 {
5806 md_number_to_chars (litP, (valueT) (*wordP--), sizeof (LITTLENUM_TYPE));
5807 litP += sizeof (LITTLENUM_TYPE);
5808 }
5809 return 0;
5810 }
5811 \f
5812 static char output_invalid_buf[sizeof (unsigned char) * 2 + 6];
5813
5814 static char *
5815 output_invalid (int c)
5816 {
5817 if (ISPRINT (c))
5818 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
5819 "'%c'", c);
5820 else
5821 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
5822 "(0x%x)", (unsigned char) c);
5823 return output_invalid_buf;
5824 }
5825
5826 /* REG_STRING starts *before* REGISTER_PREFIX. */
5827
5828 static const reg_entry *
5829 parse_real_register (char *reg_string, char **end_op)
5830 {
5831 char *s = reg_string;
5832 char *p;
5833 char reg_name_given[MAX_REG_NAME_SIZE + 1];
5834 const reg_entry *r;
5835
5836 /* Skip possible REGISTER_PREFIX and possible whitespace. */
5837 if (*s == REGISTER_PREFIX)
5838 ++s;
5839
5840 if (is_space_char (*s))
5841 ++s;
5842
5843 p = reg_name_given;
5844 while ((*p++ = register_chars[(unsigned char) *s]) != '\0')
5845 {
5846 if (p >= reg_name_given + MAX_REG_NAME_SIZE)
5847 return (const reg_entry *) NULL;
5848 s++;
5849 }
5850
5851 /* For naked regs, make sure that we are not dealing with an identifier.
5852 This prevents confusing an identifier like `eax_var' with register
5853 `eax'. */
5854 if (allow_naked_reg && identifier_chars[(unsigned char) *s])
5855 return (const reg_entry *) NULL;
5856
5857 *end_op = s;
5858
5859 r = (const reg_entry *) hash_find (reg_hash, reg_name_given);
5860
5861 /* Handle floating point regs, allowing spaces in the (i) part. */
5862 if (r == i386_regtab /* %st is first entry of table */)
5863 {
5864 if (is_space_char (*s))
5865 ++s;
5866 if (*s == '(')
5867 {
5868 ++s;
5869 if (is_space_char (*s))
5870 ++s;
5871 if (*s >= '0' && *s <= '7')
5872 {
5873 int fpr = *s - '0';
5874 ++s;
5875 if (is_space_char (*s))
5876 ++s;
5877 if (*s == ')')
5878 {
5879 *end_op = s + 1;
5880 r = hash_find (reg_hash, "st(0)");
5881 know (r);
5882 return r + fpr;
5883 }
5884 }
5885 /* We have "%st(" then garbage. */
5886 return (const reg_entry *) NULL;
5887 }
5888 }
5889
5890 if (r != NULL
5891 && ((r->reg_flags & (RegRex64 | RegRex)) | (r->reg_type & Reg64)) != 0
5892 && (r->reg_type != Control || !(cpu_arch_flags & CpuSledgehammer))
5893 && flag_code != CODE_64BIT)
5894 return (const reg_entry *) NULL;
5895
5896 return r;
5897 }
5898
5899 /* REG_STRING starts *before* REGISTER_PREFIX. */
5900
5901 static const reg_entry *
5902 parse_register (char *reg_string, char **end_op)
5903 {
5904 const reg_entry *r;
5905
5906 if (*reg_string == REGISTER_PREFIX || allow_naked_reg)
5907 r = parse_real_register (reg_string, end_op);
5908 else
5909 r = NULL;
5910 if (!r)
5911 {
5912 char *save = input_line_pointer;
5913 char c;
5914 symbolS *symbolP;
5915
5916 input_line_pointer = reg_string;
5917 c = get_symbol_end ();
5918 symbolP = symbol_find (reg_string);
5919 if (symbolP && S_GET_SEGMENT (symbolP) == reg_section)
5920 {
5921 const expressionS *e = symbol_get_value_expression (symbolP);
5922
5923 know (e->X_op == O_register);
5924 know (e->X_add_number >= 0
5925 && (valueT) e->X_add_number < i386_regtab_size);
5926 r = i386_regtab + e->X_add_number;
5927 *end_op = input_line_pointer;
5928 }
5929 *input_line_pointer = c;
5930 input_line_pointer = save;
5931 }
5932 return r;
5933 }
5934
5935 int
5936 i386_parse_name (char *name, expressionS *e, char *nextcharP)
5937 {
5938 const reg_entry *r;
5939 char *end = input_line_pointer;
5940
5941 *end = *nextcharP;
5942 r = parse_register (name, &input_line_pointer);
5943 if (r && end <= input_line_pointer)
5944 {
5945 *nextcharP = *input_line_pointer;
5946 *input_line_pointer = 0;
5947 e->X_op = O_register;
5948 e->X_add_number = r - i386_regtab;
5949 return 1;
5950 }
5951 input_line_pointer = end;
5952 *end = 0;
5953 return 0;
5954 }
5955
5956 void
5957 md_operand (expressionS *e)
5958 {
5959 if (*input_line_pointer == REGISTER_PREFIX)
5960 {
5961 char *end;
5962 const reg_entry *r = parse_real_register (input_line_pointer, &end);
5963
5964 if (r)
5965 {
5966 e->X_op = O_register;
5967 e->X_add_number = r - i386_regtab;
5968 input_line_pointer = end;
5969 }
5970 }
5971 }
5972
5973 \f
5974 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
5975 const char *md_shortopts = "kVQ:sqn";
5976 #else
5977 const char *md_shortopts = "qn";
5978 #endif
5979
5980 #define OPTION_32 (OPTION_MD_BASE + 0)
5981 #define OPTION_64 (OPTION_MD_BASE + 1)
5982 #define OPTION_DIVIDE (OPTION_MD_BASE + 2)
5983 #define OPTION_MARCH (OPTION_MD_BASE + 3)
5984 #define OPTION_MTUNE (OPTION_MD_BASE + 4)
5985
5986 struct option md_longopts[] =
5987 {
5988 {"32", no_argument, NULL, OPTION_32},
5989 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) || defined(TE_PEP)
5990 {"64", no_argument, NULL, OPTION_64},
5991 #endif
5992 {"divide", no_argument, NULL, OPTION_DIVIDE},
5993 {"march", required_argument, NULL, OPTION_MARCH},
5994 {"mtune", required_argument, NULL, OPTION_MTUNE},
5995 {NULL, no_argument, NULL, 0}
5996 };
5997 size_t md_longopts_size = sizeof (md_longopts);
5998
5999 int
6000 md_parse_option (int c, char *arg)
6001 {
6002 unsigned int i;
6003
6004 switch (c)
6005 {
6006 case 'n':
6007 optimize_align_code = 0;
6008 break;
6009
6010 case 'q':
6011 quiet_warnings = 1;
6012 break;
6013
6014 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
6015 /* -Qy, -Qn: SVR4 arguments controlling whether a .comment section
6016 should be emitted or not. FIXME: Not implemented. */
6017 case 'Q':
6018 break;
6019
6020 /* -V: SVR4 argument to print version ID. */
6021 case 'V':
6022 print_version_id ();
6023 break;
6024
6025 /* -k: Ignore for FreeBSD compatibility. */
6026 case 'k':
6027 break;
6028
6029 case 's':
6030 /* -s: On i386 Solaris, this tells the native assembler to use
6031 .stab instead of .stab.excl. We always use .stab anyhow. */
6032 break;
6033 #endif
6034 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) || defined(TE_PEP)
6035 case OPTION_64:
6036 {
6037 const char **list, **l;
6038
6039 list = bfd_target_list ();
6040 for (l = list; *l != NULL; l++)
6041 if (CONST_STRNEQ (*l, "elf64-x86-64")
6042 || strcmp (*l, "coff-x86-64") == 0
6043 || strcmp (*l, "pe-x86-64") == 0
6044 || strcmp (*l, "pei-x86-64") == 0)
6045 {
6046 default_arch = "x86_64";
6047 break;
6048 }
6049 if (*l == NULL)
6050 as_fatal (_("No compiled in support for x86_64"));
6051 free (list);
6052 }
6053 break;
6054 #endif
6055
6056 case OPTION_32:
6057 default_arch = "i386";
6058 break;
6059
6060 case OPTION_DIVIDE:
6061 #ifdef SVR4_COMMENT_CHARS
6062 {
6063 char *n, *t;
6064 const char *s;
6065
6066 n = (char *) xmalloc (strlen (i386_comment_chars) + 1);
6067 t = n;
6068 for (s = i386_comment_chars; *s != '\0'; s++)
6069 if (*s != '/')
6070 *t++ = *s;
6071 *t = '\0';
6072 i386_comment_chars = n;
6073 }
6074 #endif
6075 break;
6076
6077 case OPTION_MARCH:
6078 if (*arg == '.')
6079 as_fatal (_("Invalid -march= option: `%s'"), arg);
6080 for (i = 0; i < ARRAY_SIZE (cpu_arch); i++)
6081 {
6082 if (strcmp (arg, cpu_arch [i].name) == 0)
6083 {
6084 cpu_arch_isa = cpu_arch[i].type;
6085 cpu_arch_isa_flags = cpu_arch[i].flags;
6086 if (!cpu_arch_tune_set)
6087 {
6088 cpu_arch_tune = cpu_arch_isa;
6089 cpu_arch_tune_flags = cpu_arch_isa_flags;
6090 }
6091 break;
6092 }
6093 }
6094 if (i >= ARRAY_SIZE (cpu_arch))
6095 as_fatal (_("Invalid -march= option: `%s'"), arg);
6096 break;
6097
6098 case OPTION_MTUNE:
6099 if (*arg == '.')
6100 as_fatal (_("Invalid -mtune= option: `%s'"), arg);
6101 for (i = 0; i < ARRAY_SIZE (cpu_arch); i++)
6102 {
6103 if (strcmp (arg, cpu_arch [i].name) == 0)
6104 {
6105 cpu_arch_tune_set = 1;
6106 cpu_arch_tune = cpu_arch [i].type;
6107 cpu_arch_tune_flags = cpu_arch[i].flags;
6108 break;
6109 }
6110 }
6111 if (i >= ARRAY_SIZE (cpu_arch))
6112 as_fatal (_("Invalid -mtune= option: `%s'"), arg);
6113 break;
6114
6115 default:
6116 return 0;
6117 }
6118 return 1;
6119 }
6120
6121 void
6122 md_show_usage (stream)
6123 FILE *stream;
6124 {
6125 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
6126 fprintf (stream, _("\
6127 -Q ignored\n\
6128 -V print assembler version number\n\
6129 -k ignored\n"));
6130 #endif
6131 fprintf (stream, _("\
6132 -n Do not optimize code alignment\n\
6133 -q quieten some warnings\n"));
6134 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
6135 fprintf (stream, _("\
6136 -s ignored\n"));
6137 #endif
6138 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) || defined(TE_PEP)
6139 fprintf (stream, _("\
6140 --32/--64 generate 32bit/64bit code\n"));
6141 #endif
6142 #ifdef SVR4_COMMENT_CHARS
6143 fprintf (stream, _("\
6144 --divide do not treat `/' as a comment character\n"));
6145 #else
6146 fprintf (stream, _("\
6147 --divide ignored\n"));
6148 #endif
6149 fprintf (stream, _("\
6150 -march=CPU/-mtune=CPU generate code/optimize for CPU, where CPU is one of:\n\
6151 i386, i486, pentium, pentiumpro, pentium4, nocona,\n\
6152 core, core2, k6, athlon, k8, generic32, generic64\n"));
6153
6154 }
6155
6156 #if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
6157 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) || defined (TE_PEP))
6158
6159 /* Pick the target format to use. */
6160
6161 const char *
6162 i386_target_format (void)
6163 {
6164 if (!strcmp (default_arch, "x86_64"))
6165 {
6166 set_code_flag (CODE_64BIT);
6167 if (cpu_arch_isa_flags == 0)
6168 cpu_arch_isa_flags = Cpu186|Cpu286|Cpu386|Cpu486
6169 |Cpu586|Cpu686|CpuP4|CpuMMX|CpuMMX2
6170 |CpuSSE|CpuSSE2;
6171 if (cpu_arch_tune_flags == 0)
6172 cpu_arch_tune_flags = Cpu186|Cpu286|Cpu386|Cpu486
6173 |Cpu586|Cpu686|CpuP4|CpuMMX|CpuMMX2
6174 |CpuSSE|CpuSSE2;
6175 }
6176 else if (!strcmp (default_arch, "i386"))
6177 {
6178 set_code_flag (CODE_32BIT);
6179 if (cpu_arch_isa_flags == 0)
6180 cpu_arch_isa_flags = Cpu186|Cpu286|Cpu386;
6181 if (cpu_arch_tune_flags == 0)
6182 cpu_arch_tune_flags = Cpu186|Cpu286|Cpu386;
6183 }
6184 else
6185 as_fatal (_("Unknown architecture"));
6186 switch (OUTPUT_FLAVOR)
6187 {
6188 #ifdef TE_PEP
6189 case bfd_target_coff_flavour:
6190 return flag_code == CODE_64BIT ? COFF_TARGET_FORMAT : "coff-i386";
6191 break;
6192 #endif
6193 #ifdef OBJ_MAYBE_AOUT
6194 case bfd_target_aout_flavour:
6195 return AOUT_TARGET_FORMAT;
6196 #endif
6197 #ifdef OBJ_MAYBE_COFF
6198 case bfd_target_coff_flavour:
6199 return "coff-i386";
6200 #endif
6201 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
6202 case bfd_target_elf_flavour:
6203 {
6204 if (flag_code == CODE_64BIT)
6205 {
6206 object_64bit = 1;
6207 use_rela_relocations = 1;
6208 }
6209 return flag_code == CODE_64BIT ? ELF_TARGET_FORMAT64 : ELF_TARGET_FORMAT;
6210 }
6211 #endif
6212 default:
6213 abort ();
6214 return NULL;
6215 }
6216 }
6217
6218 #endif /* OBJ_MAYBE_ more than one */
6219
6220 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF))
6221 void
6222 i386_elf_emit_arch_note (void)
6223 {
6224 if (IS_ELF && cpu_arch_name != NULL)
6225 {
6226 char *p;
6227 asection *seg = now_seg;
6228 subsegT subseg = now_subseg;
6229 Elf_Internal_Note i_note;
6230 Elf_External_Note e_note;
6231 asection *note_secp;
6232 int len;
6233
6234 /* Create the .note section. */
6235 note_secp = subseg_new (".note", 0);
6236 bfd_set_section_flags (stdoutput,
6237 note_secp,
6238 SEC_HAS_CONTENTS | SEC_READONLY);
6239
6240 /* Process the arch string. */
6241 len = strlen (cpu_arch_name);
6242
6243 i_note.namesz = len + 1;
6244 i_note.descsz = 0;
6245 i_note.type = NT_ARCH;
6246 p = frag_more (sizeof (e_note.namesz));
6247 md_number_to_chars (p, (valueT) i_note.namesz, sizeof (e_note.namesz));
6248 p = frag_more (sizeof (e_note.descsz));
6249 md_number_to_chars (p, (valueT) i_note.descsz, sizeof (e_note.descsz));
6250 p = frag_more (sizeof (e_note.type));
6251 md_number_to_chars (p, (valueT) i_note.type, sizeof (e_note.type));
6252 p = frag_more (len + 1);
6253 strcpy (p, cpu_arch_name);
6254
6255 frag_align (2, 0, 0);
6256
6257 subseg_set (seg, subseg);
6258 }
6259 }
6260 #endif
6261 \f
6262 symbolS *
6263 md_undefined_symbol (name)
6264 char *name;
6265 {
6266 if (name[0] == GLOBAL_OFFSET_TABLE_NAME[0]
6267 && name[1] == GLOBAL_OFFSET_TABLE_NAME[1]
6268 && name[2] == GLOBAL_OFFSET_TABLE_NAME[2]
6269 && strcmp (name, GLOBAL_OFFSET_TABLE_NAME) == 0)
6270 {
6271 if (!GOT_symbol)
6272 {
6273 if (symbol_find (name))
6274 as_bad (_("GOT already in symbol table"));
6275 GOT_symbol = symbol_new (name, undefined_section,
6276 (valueT) 0, &zero_address_frag);
6277 };
6278 return GOT_symbol;
6279 }
6280 return 0;
6281 }
6282
6283 /* Round up a section size to the appropriate boundary. */
6284
6285 valueT
6286 md_section_align (segment, size)
6287 segT segment ATTRIBUTE_UNUSED;
6288 valueT size;
6289 {
6290 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
6291 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
6292 {
6293 /* For a.out, force the section size to be aligned. If we don't do
6294 this, BFD will align it for us, but it will not write out the
6295 final bytes of the section. This may be a bug in BFD, but it is
6296 easier to fix it here since that is how the other a.out targets
6297 work. */
6298 int align;
6299
6300 align = bfd_get_section_alignment (stdoutput, segment);
6301 size = ((size + (1 << align) - 1) & ((valueT) -1 << align));
6302 }
6303 #endif
6304
6305 return size;
6306 }
6307
6308 /* On the i386, PC-relative offsets are relative to the start of the
6309 next instruction. That is, the address of the offset, plus its
6310 size, since the offset is always the last part of the insn. */
6311
6312 long
6313 md_pcrel_from (fixS *fixP)
6314 {
6315 return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address;
6316 }
6317
6318 #ifndef I386COFF
6319
6320 static void
6321 s_bss (int ignore ATTRIBUTE_UNUSED)
6322 {
6323 int temp;
6324
6325 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
6326 if (IS_ELF)
6327 obj_elf_section_change_hook ();
6328 #endif
6329 temp = get_absolute_expression ();
6330 subseg_set (bss_section, (subsegT) temp);
6331 demand_empty_rest_of_line ();
6332 }
6333
6334 #endif
6335
6336 void
6337 i386_validate_fix (fixS *fixp)
6338 {
6339 if (fixp->fx_subsy && fixp->fx_subsy == GOT_symbol)
6340 {
6341 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
6342 {
6343 if (!object_64bit)
6344 abort ();
6345 fixp->fx_r_type = BFD_RELOC_X86_64_GOTPCREL;
6346 }
6347 else
6348 {
6349 if (!object_64bit)
6350 fixp->fx_r_type = BFD_RELOC_386_GOTOFF;
6351 else
6352 fixp->fx_r_type = BFD_RELOC_X86_64_GOTOFF64;
6353 }
6354 fixp->fx_subsy = 0;
6355 }
6356 }
6357
6358 arelent *
6359 tc_gen_reloc (section, fixp)
6360 asection *section ATTRIBUTE_UNUSED;
6361 fixS *fixp;
6362 {
6363 arelent *rel;
6364 bfd_reloc_code_real_type code;
6365
6366 switch (fixp->fx_r_type)
6367 {
6368 case BFD_RELOC_X86_64_PLT32:
6369 case BFD_RELOC_X86_64_GOT32:
6370 case BFD_RELOC_X86_64_GOTPCREL:
6371 case BFD_RELOC_386_PLT32:
6372 case BFD_RELOC_386_GOT32:
6373 case BFD_RELOC_386_GOTOFF:
6374 case BFD_RELOC_386_GOTPC:
6375 case BFD_RELOC_386_TLS_GD:
6376 case BFD_RELOC_386_TLS_LDM:
6377 case BFD_RELOC_386_TLS_LDO_32:
6378 case BFD_RELOC_386_TLS_IE_32:
6379 case BFD_RELOC_386_TLS_IE:
6380 case BFD_RELOC_386_TLS_GOTIE:
6381 case BFD_RELOC_386_TLS_LE_32:
6382 case BFD_RELOC_386_TLS_LE:
6383 case BFD_RELOC_386_TLS_GOTDESC:
6384 case BFD_RELOC_386_TLS_DESC_CALL:
6385 case BFD_RELOC_X86_64_TLSGD:
6386 case BFD_RELOC_X86_64_TLSLD:
6387 case BFD_RELOC_X86_64_DTPOFF32:
6388 case BFD_RELOC_X86_64_DTPOFF64:
6389 case BFD_RELOC_X86_64_GOTTPOFF:
6390 case BFD_RELOC_X86_64_TPOFF32:
6391 case BFD_RELOC_X86_64_TPOFF64:
6392 case BFD_RELOC_X86_64_GOTOFF64:
6393 case BFD_RELOC_X86_64_GOTPC32:
6394 case BFD_RELOC_X86_64_GOT64:
6395 case BFD_RELOC_X86_64_GOTPCREL64:
6396 case BFD_RELOC_X86_64_GOTPC64:
6397 case BFD_RELOC_X86_64_GOTPLT64:
6398 case BFD_RELOC_X86_64_PLTOFF64:
6399 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
6400 case BFD_RELOC_X86_64_TLSDESC_CALL:
6401 case BFD_RELOC_RVA:
6402 case BFD_RELOC_VTABLE_ENTRY:
6403 case BFD_RELOC_VTABLE_INHERIT:
6404 #ifdef TE_PE
6405 case BFD_RELOC_32_SECREL:
6406 #endif
6407 code = fixp->fx_r_type;
6408 break;
6409 case BFD_RELOC_X86_64_32S:
6410 if (!fixp->fx_pcrel)
6411 {
6412 /* Don't turn BFD_RELOC_X86_64_32S into BFD_RELOC_32. */
6413 code = fixp->fx_r_type;
6414 break;
6415 }
6416 default:
6417 if (fixp->fx_pcrel)
6418 {
6419 switch (fixp->fx_size)
6420 {
6421 default:
6422 as_bad_where (fixp->fx_file, fixp->fx_line,
6423 _("can not do %d byte pc-relative relocation"),
6424 fixp->fx_size);
6425 code = BFD_RELOC_32_PCREL;
6426 break;
6427 case 1: code = BFD_RELOC_8_PCREL; break;
6428 case 2: code = BFD_RELOC_16_PCREL; break;
6429 case 4: code = BFD_RELOC_32_PCREL; break;
6430 #ifdef BFD64
6431 case 8: code = BFD_RELOC_64_PCREL; break;
6432 #endif
6433 }
6434 }
6435 else
6436 {
6437 switch (fixp->fx_size)
6438 {
6439 default:
6440 as_bad_where (fixp->fx_file, fixp->fx_line,
6441 _("can not do %d byte relocation"),
6442 fixp->fx_size);
6443 code = BFD_RELOC_32;
6444 break;
6445 case 1: code = BFD_RELOC_8; break;
6446 case 2: code = BFD_RELOC_16; break;
6447 case 4: code = BFD_RELOC_32; break;
6448 #ifdef BFD64
6449 case 8: code = BFD_RELOC_64; break;
6450 #endif
6451 }
6452 }
6453 break;
6454 }
6455
6456 if ((code == BFD_RELOC_32
6457 || code == BFD_RELOC_32_PCREL
6458 || code == BFD_RELOC_X86_64_32S)
6459 && GOT_symbol
6460 && fixp->fx_addsy == GOT_symbol)
6461 {
6462 if (!object_64bit)
6463 code = BFD_RELOC_386_GOTPC;
6464 else
6465 code = BFD_RELOC_X86_64_GOTPC32;
6466 }
6467 if ((code == BFD_RELOC_64 || code == BFD_RELOC_64_PCREL)
6468 && GOT_symbol
6469 && fixp->fx_addsy == GOT_symbol)
6470 {
6471 code = BFD_RELOC_X86_64_GOTPC64;
6472 }
6473
6474 rel = (arelent *) xmalloc (sizeof (arelent));
6475 rel->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
6476 *rel->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
6477
6478 rel->address = fixp->fx_frag->fr_address + fixp->fx_where;
6479
6480 if (!use_rela_relocations)
6481 {
6482 /* HACK: Since i386 ELF uses Rel instead of Rela, encode the
6483 vtable entry to be used in the relocation's section offset. */
6484 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
6485 rel->address = fixp->fx_offset;
6486
6487 rel->addend = 0;
6488 }
6489 /* Use the rela in 64bit mode. */
6490 else
6491 {
6492 if (!fixp->fx_pcrel)
6493 rel->addend = fixp->fx_offset;
6494 else
6495 switch (code)
6496 {
6497 case BFD_RELOC_X86_64_PLT32:
6498 case BFD_RELOC_X86_64_GOT32:
6499 case BFD_RELOC_X86_64_GOTPCREL:
6500 case BFD_RELOC_X86_64_TLSGD:
6501 case BFD_RELOC_X86_64_TLSLD:
6502 case BFD_RELOC_X86_64_GOTTPOFF:
6503 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
6504 case BFD_RELOC_X86_64_TLSDESC_CALL:
6505 rel->addend = fixp->fx_offset - fixp->fx_size;
6506 break;
6507 default:
6508 rel->addend = (section->vma
6509 - fixp->fx_size
6510 + fixp->fx_addnumber
6511 + md_pcrel_from (fixp));
6512 break;
6513 }
6514 }
6515
6516 rel->howto = bfd_reloc_type_lookup (stdoutput, code);
6517 if (rel->howto == NULL)
6518 {
6519 as_bad_where (fixp->fx_file, fixp->fx_line,
6520 _("cannot represent relocation type %s"),
6521 bfd_get_reloc_code_name (code));
6522 /* Set howto to a garbage value so that we can keep going. */
6523 rel->howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_32);
6524 assert (rel->howto != NULL);
6525 }
6526
6527 return rel;
6528 }
6529
6530 \f
6531 /* Parse operands using Intel syntax. This implements a recursive descent
6532 parser based on the BNF grammar published in Appendix B of the MASM 6.1
6533 Programmer's Guide.
6534
6535 FIXME: We do not recognize the full operand grammar defined in the MASM
6536 documentation. In particular, all the structure/union and
6537 high-level macro operands are missing.
6538
6539 Uppercase words are terminals, lower case words are non-terminals.
6540 Objects surrounded by double brackets '[[' ']]' are optional. Vertical
6541 bars '|' denote choices. Most grammar productions are implemented in
6542 functions called 'intel_<production>'.
6543
6544 Initial production is 'expr'.
6545
6546 addOp + | -
6547
6548 alpha [a-zA-Z]
6549
6550 binOp & | AND | \| | OR | ^ | XOR
6551
6552 byteRegister AL | AH | BL | BH | CL | CH | DL | DH
6553
6554 constant digits [[ radixOverride ]]
6555
6556 dataType BYTE | WORD | DWORD | FWORD | QWORD | TBYTE | OWORD | XMMWORD
6557
6558 digits decdigit
6559 | digits decdigit
6560 | digits hexdigit
6561
6562 decdigit [0-9]
6563
6564 e04 e04 addOp e05
6565 | e05
6566
6567 e05 e05 binOp e06
6568 | e06
6569
6570 e06 e06 mulOp e09
6571 | e09
6572
6573 e09 OFFSET e10
6574 | SHORT e10
6575 | + e10
6576 | - e10
6577 | ~ e10
6578 | NOT e10
6579 | e09 PTR e10
6580 | e09 : e10
6581 | e10
6582
6583 e10 e10 [ expr ]
6584 | e11
6585
6586 e11 ( expr )
6587 | [ expr ]
6588 | constant
6589 | dataType
6590 | id
6591 | $
6592 | register
6593
6594 => expr expr cmpOp e04
6595 | e04
6596
6597 gpRegister AX | EAX | BX | EBX | CX | ECX | DX | EDX
6598 | BP | EBP | SP | ESP | DI | EDI | SI | ESI
6599
6600 hexdigit a | b | c | d | e | f
6601 | A | B | C | D | E | F
6602
6603 id alpha
6604 | id alpha
6605 | id decdigit
6606
6607 mulOp * | / | % | MOD | << | SHL | >> | SHR
6608
6609 quote " | '
6610
6611 register specialRegister
6612 | gpRegister
6613 | byteRegister
6614
6615 segmentRegister CS | DS | ES | FS | GS | SS
6616
6617 specialRegister CR0 | CR2 | CR3 | CR4
6618 | DR0 | DR1 | DR2 | DR3 | DR6 | DR7
6619 | TR3 | TR4 | TR5 | TR6 | TR7
6620
6621 We simplify the grammar in obvious places (e.g., register parsing is
6622 done by calling parse_register) and eliminate immediate left recursion
6623 to implement a recursive-descent parser.
6624
6625 expr e04 expr'
6626
6627 expr' cmpOp e04 expr'
6628 | Empty
6629
6630 e04 e05 e04'
6631
6632 e04' addOp e05 e04'
6633 | Empty
6634
6635 e05 e06 e05'
6636
6637 e05' binOp e06 e05'
6638 | Empty
6639
6640 e06 e09 e06'
6641
6642 e06' mulOp e09 e06'
6643 | Empty
6644
6645 e09 OFFSET e10 e09'
6646 | SHORT e10'
6647 | + e10'
6648 | - e10'
6649 | ~ e10'
6650 | NOT e10'
6651 | e10 e09'
6652
6653 e09' PTR e10 e09'
6654 | : e10 e09'
6655 | Empty
6656
6657 e10 e11 e10'
6658
6659 e10' [ expr ] e10'
6660 | Empty
6661
6662 e11 ( expr )
6663 | [ expr ]
6664 | BYTE
6665 | WORD
6666 | DWORD
6667 | FWORD
6668 | QWORD
6669 | TBYTE
6670 | OWORD
6671 | XMMWORD
6672 | .
6673 | $
6674 | register
6675 | id
6676 | constant */
6677
6678 /* Parsing structure for the intel syntax parser. Used to implement the
6679 semantic actions for the operand grammar. */
6680 struct intel_parser_s
6681 {
6682 char *op_string; /* The string being parsed. */
6683 int got_a_float; /* Whether the operand is a float. */
6684 int op_modifier; /* Operand modifier. */
6685 int is_mem; /* 1 if operand is memory reference. */
6686 int in_offset; /* >=1 if parsing operand of offset. */
6687 int in_bracket; /* >=1 if parsing operand in brackets. */
6688 const reg_entry *reg; /* Last register reference found. */
6689 char *disp; /* Displacement string being built. */
6690 char *next_operand; /* Resume point when splitting operands. */
6691 };
6692
6693 static struct intel_parser_s intel_parser;
6694
6695 /* Token structure for parsing intel syntax. */
6696 struct intel_token
6697 {
6698 int code; /* Token code. */
6699 const reg_entry *reg; /* Register entry for register tokens. */
6700 char *str; /* String representation. */
6701 };
6702
6703 static struct intel_token cur_token, prev_token;
6704
6705 /* Token codes for the intel parser. Since T_SHORT is already used
6706 by COFF, undefine it first to prevent a warning. */
6707 #define T_NIL -1
6708 #define T_CONST 1
6709 #define T_REG 2
6710 #define T_BYTE 3
6711 #define T_WORD 4
6712 #define T_DWORD 5
6713 #define T_FWORD 6
6714 #define T_QWORD 7
6715 #define T_TBYTE 8
6716 #define T_XMMWORD 9
6717 #undef T_SHORT
6718 #define T_SHORT 10
6719 #define T_OFFSET 11
6720 #define T_PTR 12
6721 #define T_ID 13
6722 #define T_SHL 14
6723 #define T_SHR 15
6724
6725 /* Prototypes for intel parser functions. */
6726 static int intel_match_token (int);
6727 static void intel_putback_token (void);
6728 static void intel_get_token (void);
6729 static int intel_expr (void);
6730 static int intel_e04 (void);
6731 static int intel_e05 (void);
6732 static int intel_e06 (void);
6733 static int intel_e09 (void);
6734 static int intel_e10 (void);
6735 static int intel_e11 (void);
6736
6737 static int
6738 i386_intel_operand (char *operand_string, int got_a_float)
6739 {
6740 int ret;
6741 char *p;
6742
6743 p = intel_parser.op_string = xstrdup (operand_string);
6744 intel_parser.disp = (char *) xmalloc (strlen (operand_string) + 1);
6745
6746 for (;;)
6747 {
6748 /* Initialize token holders. */
6749 cur_token.code = prev_token.code = T_NIL;
6750 cur_token.reg = prev_token.reg = NULL;
6751 cur_token.str = prev_token.str = NULL;
6752
6753 /* Initialize parser structure. */
6754 intel_parser.got_a_float = got_a_float;
6755 intel_parser.op_modifier = 0;
6756 intel_parser.is_mem = 0;
6757 intel_parser.in_offset = 0;
6758 intel_parser.in_bracket = 0;
6759 intel_parser.reg = NULL;
6760 intel_parser.disp[0] = '\0';
6761 intel_parser.next_operand = NULL;
6762
6763 /* Read the first token and start the parser. */
6764 intel_get_token ();
6765 ret = intel_expr ();
6766
6767 if (!ret)
6768 break;
6769
6770 if (cur_token.code != T_NIL)
6771 {
6772 as_bad (_("invalid operand for '%s' ('%s' unexpected)"),
6773 current_templates->start->name, cur_token.str);
6774 ret = 0;
6775 }
6776 /* If we found a memory reference, hand it over to i386_displacement
6777 to fill in the rest of the operand fields. */
6778 else if (intel_parser.is_mem)
6779 {
6780 if ((i.mem_operands == 1
6781 && (current_templates->start->opcode_modifier & IsString) == 0)
6782 || i.mem_operands == 2)
6783 {
6784 as_bad (_("too many memory references for '%s'"),
6785 current_templates->start->name);
6786 ret = 0;
6787 }
6788 else
6789 {
6790 char *s = intel_parser.disp;
6791 i.mem_operands++;
6792
6793 if (!quiet_warnings && intel_parser.is_mem < 0)
6794 /* See the comments in intel_bracket_expr. */
6795 as_warn (_("Treating `%s' as memory reference"), operand_string);
6796
6797 /* Add the displacement expression. */
6798 if (*s != '\0')
6799 ret = i386_displacement (s, s + strlen (s));
6800 if (ret)
6801 {
6802 /* Swap base and index in 16-bit memory operands like
6803 [si+bx]. Since i386_index_check is also used in AT&T
6804 mode we have to do that here. */
6805 if (i.base_reg
6806 && i.index_reg
6807 && (i.base_reg->reg_type & Reg16)
6808 && (i.index_reg->reg_type & Reg16)
6809 && i.base_reg->reg_num >= 6
6810 && i.index_reg->reg_num < 6)
6811 {
6812 const reg_entry *base = i.index_reg;
6813
6814 i.index_reg = i.base_reg;
6815 i.base_reg = base;
6816 }
6817 ret = i386_index_check (operand_string);
6818 }
6819 }
6820 }
6821
6822 /* Constant and OFFSET expressions are handled by i386_immediate. */
6823 else if ((intel_parser.op_modifier & (1 << T_OFFSET))
6824 || intel_parser.reg == NULL)
6825 ret = i386_immediate (intel_parser.disp);
6826
6827 if (intel_parser.next_operand && this_operand >= MAX_OPERANDS - 1)
6828 ret = 0;
6829 if (!ret || !intel_parser.next_operand)
6830 break;
6831 intel_parser.op_string = intel_parser.next_operand;
6832 this_operand = i.operands++;
6833 }
6834
6835 free (p);
6836 free (intel_parser.disp);
6837
6838 return ret;
6839 }
6840
6841 #define NUM_ADDRESS_REGS (!!i.base_reg + !!i.index_reg)
6842
6843 /* expr e04 expr'
6844
6845 expr' cmpOp e04 expr'
6846 | Empty */
6847 static int
6848 intel_expr (void)
6849 {
6850 /* XXX Implement the comparison operators. */
6851 return intel_e04 ();
6852 }
6853
6854 /* e04 e05 e04'
6855
6856 e04' addOp e05 e04'
6857 | Empty */
6858 static int
6859 intel_e04 (void)
6860 {
6861 int nregs = -1;
6862
6863 for (;;)
6864 {
6865 if (!intel_e05())
6866 return 0;
6867
6868 if (nregs >= 0 && NUM_ADDRESS_REGS > nregs)
6869 i.base_reg = i386_regtab + REGNAM_AL; /* al is invalid as base */
6870
6871 if (cur_token.code == '+')
6872 nregs = -1;
6873 else if (cur_token.code == '-')
6874 nregs = NUM_ADDRESS_REGS;
6875 else
6876 return 1;
6877
6878 strcat (intel_parser.disp, cur_token.str);
6879 intel_match_token (cur_token.code);
6880 }
6881 }
6882
6883 /* e05 e06 e05'
6884
6885 e05' binOp e06 e05'
6886 | Empty */
6887 static int
6888 intel_e05 (void)
6889 {
6890 int nregs = ~NUM_ADDRESS_REGS;
6891
6892 for (;;)
6893 {
6894 if (!intel_e06())
6895 return 0;
6896
6897 if (cur_token.code == '&'
6898 || cur_token.code == '|'
6899 || cur_token.code == '^')
6900 {
6901 char str[2];
6902
6903 str[0] = cur_token.code;
6904 str[1] = 0;
6905 strcat (intel_parser.disp, str);
6906 }
6907 else
6908 break;
6909
6910 intel_match_token (cur_token.code);
6911
6912 if (nregs < 0)
6913 nregs = ~nregs;
6914 }
6915 if (nregs >= 0 && NUM_ADDRESS_REGS > nregs)
6916 i.base_reg = i386_regtab + REGNAM_AL + 1; /* cl is invalid as base */
6917 return 1;
6918 }
6919
6920 /* e06 e09 e06'
6921
6922 e06' mulOp e09 e06'
6923 | Empty */
6924 static int
6925 intel_e06 (void)
6926 {
6927 int nregs = ~NUM_ADDRESS_REGS;
6928
6929 for (;;)
6930 {
6931 if (!intel_e09())
6932 return 0;
6933
6934 if (cur_token.code == '*'
6935 || cur_token.code == '/'
6936 || cur_token.code == '%')
6937 {
6938 char str[2];
6939
6940 str[0] = cur_token.code;
6941 str[1] = 0;
6942 strcat (intel_parser.disp, str);
6943 }
6944 else if (cur_token.code == T_SHL)
6945 strcat (intel_parser.disp, "<<");
6946 else if (cur_token.code == T_SHR)
6947 strcat (intel_parser.disp, ">>");
6948 else
6949 break;
6950
6951 intel_match_token (cur_token.code);
6952
6953 if (nregs < 0)
6954 nregs = ~nregs;
6955 }
6956 if (nregs >= 0 && NUM_ADDRESS_REGS > nregs)
6957 i.base_reg = i386_regtab + REGNAM_AL + 2; /* dl is invalid as base */
6958 return 1;
6959 }
6960
6961 /* e09 OFFSET e09
6962 | SHORT e09
6963 | + e09
6964 | - e09
6965 | ~ e09
6966 | NOT e09
6967 | e10 e09'
6968
6969 e09' PTR e10 e09'
6970 | : e10 e09'
6971 | Empty */
6972 static int
6973 intel_e09 (void)
6974 {
6975 int nregs = ~NUM_ADDRESS_REGS;
6976 int in_offset = 0;
6977
6978 for (;;)
6979 {
6980 /* Don't consume constants here. */
6981 if (cur_token.code == '+' || cur_token.code == '-')
6982 {
6983 /* Need to look one token ahead - if the next token
6984 is a constant, the current token is its sign. */
6985 int next_code;
6986
6987 intel_match_token (cur_token.code);
6988 next_code = cur_token.code;
6989 intel_putback_token ();
6990 if (next_code == T_CONST)
6991 break;
6992 }
6993
6994 /* e09 OFFSET e09 */
6995 if (cur_token.code == T_OFFSET)
6996 {
6997 if (!in_offset++)
6998 ++intel_parser.in_offset;
6999 }
7000
7001 /* e09 SHORT e09 */
7002 else if (cur_token.code == T_SHORT)
7003 intel_parser.op_modifier |= 1 << T_SHORT;
7004
7005 /* e09 + e09 */
7006 else if (cur_token.code == '+')
7007 strcat (intel_parser.disp, "+");
7008
7009 /* e09 - e09
7010 | ~ e09
7011 | NOT e09 */
7012 else if (cur_token.code == '-' || cur_token.code == '~')
7013 {
7014 char str[2];
7015
7016 if (nregs < 0)
7017 nregs = ~nregs;
7018 str[0] = cur_token.code;
7019 str[1] = 0;
7020 strcat (intel_parser.disp, str);
7021 }
7022
7023 /* e09 e10 e09' */
7024 else
7025 break;
7026
7027 intel_match_token (cur_token.code);
7028 }
7029
7030 for (;;)
7031 {
7032 if (!intel_e10 ())
7033 return 0;
7034
7035 /* e09' PTR e10 e09' */
7036 if (cur_token.code == T_PTR)
7037 {
7038 char suffix;
7039
7040 if (prev_token.code == T_BYTE)
7041 suffix = BYTE_MNEM_SUFFIX;
7042
7043 else if (prev_token.code == T_WORD)
7044 {
7045 if (current_templates->start->name[0] == 'l'
7046 && current_templates->start->name[2] == 's'
7047 && current_templates->start->name[3] == 0)
7048 suffix = BYTE_MNEM_SUFFIX; /* so it will cause an error */
7049 else if (intel_parser.got_a_float == 2) /* "fi..." */
7050 suffix = SHORT_MNEM_SUFFIX;
7051 else
7052 suffix = WORD_MNEM_SUFFIX;
7053 }
7054
7055 else if (prev_token.code == T_DWORD)
7056 {
7057 if (current_templates->start->name[0] == 'l'
7058 && current_templates->start->name[2] == 's'
7059 && current_templates->start->name[3] == 0)
7060 suffix = WORD_MNEM_SUFFIX;
7061 else if (flag_code == CODE_16BIT
7062 && (current_templates->start->opcode_modifier
7063 & (Jump | JumpDword)))
7064 suffix = LONG_DOUBLE_MNEM_SUFFIX;
7065 else if (intel_parser.got_a_float == 1) /* "f..." */
7066 suffix = SHORT_MNEM_SUFFIX;
7067 else
7068 suffix = LONG_MNEM_SUFFIX;
7069 }
7070
7071 else if (prev_token.code == T_FWORD)
7072 {
7073 if (current_templates->start->name[0] == 'l'
7074 && current_templates->start->name[2] == 's'
7075 && current_templates->start->name[3] == 0)
7076 suffix = LONG_MNEM_SUFFIX;
7077 else if (!intel_parser.got_a_float)
7078 {
7079 if (flag_code == CODE_16BIT)
7080 add_prefix (DATA_PREFIX_OPCODE);
7081 suffix = LONG_DOUBLE_MNEM_SUFFIX;
7082 }
7083 else
7084 suffix = BYTE_MNEM_SUFFIX; /* so it will cause an error */
7085 }
7086
7087 else if (prev_token.code == T_QWORD)
7088 {
7089 if (intel_parser.got_a_float == 1) /* "f..." */
7090 suffix = LONG_MNEM_SUFFIX;
7091 else
7092 suffix = QWORD_MNEM_SUFFIX;
7093 }
7094
7095 else if (prev_token.code == T_TBYTE)
7096 {
7097 if (intel_parser.got_a_float == 1)
7098 suffix = LONG_DOUBLE_MNEM_SUFFIX;
7099 else
7100 suffix = BYTE_MNEM_SUFFIX; /* so it will cause an error */
7101 }
7102
7103 else if (prev_token.code == T_XMMWORD)
7104 {
7105 /* XXX ignored for now, but accepted since gcc uses it */
7106 suffix = 0;
7107 }
7108
7109 else
7110 {
7111 as_bad (_("Unknown operand modifier `%s'"), prev_token.str);
7112 return 0;
7113 }
7114
7115 /* Operands for jump/call using 'ptr' notation denote absolute
7116 addresses. */
7117 if (current_templates->start->opcode_modifier & (Jump | JumpDword))
7118 i.types[this_operand] |= JumpAbsolute;
7119
7120 if (current_templates->start->base_opcode == 0x8d /* lea */)
7121 ;
7122 else if (!i.suffix)
7123 i.suffix = suffix;
7124 else if (i.suffix != suffix)
7125 {
7126 as_bad (_("Conflicting operand modifiers"));
7127 return 0;
7128 }
7129
7130 }
7131
7132 /* e09' : e10 e09' */
7133 else if (cur_token.code == ':')
7134 {
7135 if (prev_token.code != T_REG)
7136 {
7137 /* While {call,jmp} SSSS:OOOO is MASM syntax only when SSSS is a
7138 segment/group identifier (which we don't have), using comma
7139 as the operand separator there is even less consistent, since
7140 there all branches only have a single operand. */
7141 if (this_operand != 0
7142 || intel_parser.in_offset
7143 || intel_parser.in_bracket
7144 || (!(current_templates->start->opcode_modifier
7145 & (Jump|JumpDword|JumpInterSegment))
7146 && !(current_templates->start->operand_types[0]
7147 & JumpAbsolute)))
7148 return intel_match_token (T_NIL);
7149 /* Remember the start of the 2nd operand and terminate 1st
7150 operand here.
7151 XXX This isn't right, yet (when SSSS:OOOO is right operand of
7152 another expression), but it gets at least the simplest case
7153 (a plain number or symbol on the left side) right. */
7154 intel_parser.next_operand = intel_parser.op_string;
7155 *--intel_parser.op_string = '\0';
7156 return intel_match_token (':');
7157 }
7158 }
7159
7160 /* e09' Empty */
7161 else
7162 break;
7163
7164 intel_match_token (cur_token.code);
7165
7166 }
7167
7168 if (in_offset)
7169 {
7170 --intel_parser.in_offset;
7171 if (nregs < 0)
7172 nregs = ~nregs;
7173 if (NUM_ADDRESS_REGS > nregs)
7174 {
7175 as_bad (_("Invalid operand to `OFFSET'"));
7176 return 0;
7177 }
7178 intel_parser.op_modifier |= 1 << T_OFFSET;
7179 }
7180
7181 if (nregs >= 0 && NUM_ADDRESS_REGS > nregs)
7182 i.base_reg = i386_regtab + REGNAM_AL + 3; /* bl is invalid as base */
7183 return 1;
7184 }
7185
7186 static int
7187 intel_bracket_expr (void)
7188 {
7189 int was_offset = intel_parser.op_modifier & (1 << T_OFFSET);
7190 const char *start = intel_parser.op_string;
7191 int len;
7192
7193 if (i.op[this_operand].regs)
7194 return intel_match_token (T_NIL);
7195
7196 intel_match_token ('[');
7197
7198 /* Mark as a memory operand only if it's not already known to be an
7199 offset expression. If it's an offset expression, we need to keep
7200 the brace in. */
7201 if (!intel_parser.in_offset)
7202 {
7203 ++intel_parser.in_bracket;
7204
7205 /* Operands for jump/call inside brackets denote absolute addresses. */
7206 if (current_templates->start->opcode_modifier & (Jump | JumpDword))
7207 i.types[this_operand] |= JumpAbsolute;
7208
7209 /* Unfortunately gas always diverged from MASM in a respect that can't
7210 be easily fixed without risking to break code sequences likely to be
7211 encountered (the testsuite even check for this): MASM doesn't consider
7212 an expression inside brackets unconditionally as a memory reference.
7213 When that is e.g. a constant, an offset expression, or the sum of the
7214 two, this is still taken as a constant load. gas, however, always
7215 treated these as memory references. As a compromise, we'll try to make
7216 offset expressions inside brackets work the MASM way (since that's
7217 less likely to be found in real world code), but make constants alone
7218 continue to work the traditional gas way. In either case, issue a
7219 warning. */
7220 intel_parser.op_modifier &= ~was_offset;
7221 }
7222 else
7223 strcat (intel_parser.disp, "[");
7224
7225 /* Add a '+' to the displacement string if necessary. */
7226 if (*intel_parser.disp != '\0'
7227 && *(intel_parser.disp + strlen (intel_parser.disp) - 1) != '+')
7228 strcat (intel_parser.disp, "+");
7229
7230 if (intel_expr ()
7231 && (len = intel_parser.op_string - start - 1,
7232 intel_match_token (']')))
7233 {
7234 /* Preserve brackets when the operand is an offset expression. */
7235 if (intel_parser.in_offset)
7236 strcat (intel_parser.disp, "]");
7237 else
7238 {
7239 --intel_parser.in_bracket;
7240 if (i.base_reg || i.index_reg)
7241 intel_parser.is_mem = 1;
7242 if (!intel_parser.is_mem)
7243 {
7244 if (!(intel_parser.op_modifier & (1 << T_OFFSET)))
7245 /* Defer the warning until all of the operand was parsed. */
7246 intel_parser.is_mem = -1;
7247 else if (!quiet_warnings)
7248 as_warn (_("`[%.*s]' taken to mean just `%.*s'"),
7249 len, start, len, start);
7250 }
7251 }
7252 intel_parser.op_modifier |= was_offset;
7253
7254 return 1;
7255 }
7256 return 0;
7257 }
7258
7259 /* e10 e11 e10'
7260
7261 e10' [ expr ] e10'
7262 | Empty */
7263 static int
7264 intel_e10 (void)
7265 {
7266 if (!intel_e11 ())
7267 return 0;
7268
7269 while (cur_token.code == '[')
7270 {
7271 if (!intel_bracket_expr ())
7272 return 0;
7273 }
7274
7275 return 1;
7276 }
7277
7278 /* e11 ( expr )
7279 | [ expr ]
7280 | BYTE
7281 | WORD
7282 | DWORD
7283 | FWORD
7284 | QWORD
7285 | TBYTE
7286 | OWORD
7287 | XMMWORD
7288 | $
7289 | .
7290 | register
7291 | id
7292 | constant */
7293 static int
7294 intel_e11 (void)
7295 {
7296 switch (cur_token.code)
7297 {
7298 /* e11 ( expr ) */
7299 case '(':
7300 intel_match_token ('(');
7301 strcat (intel_parser.disp, "(");
7302
7303 if (intel_expr () && intel_match_token (')'))
7304 {
7305 strcat (intel_parser.disp, ")");
7306 return 1;
7307 }
7308 return 0;
7309
7310 /* e11 [ expr ] */
7311 case '[':
7312 return intel_bracket_expr ();
7313
7314 /* e11 $
7315 | . */
7316 case '.':
7317 strcat (intel_parser.disp, cur_token.str);
7318 intel_match_token (cur_token.code);
7319
7320 /* Mark as a memory operand only if it's not already known to be an
7321 offset expression. */
7322 if (!intel_parser.in_offset)
7323 intel_parser.is_mem = 1;
7324
7325 return 1;
7326
7327 /* e11 register */
7328 case T_REG:
7329 {
7330 const reg_entry *reg = intel_parser.reg = cur_token.reg;
7331
7332 intel_match_token (T_REG);
7333
7334 /* Check for segment change. */
7335 if (cur_token.code == ':')
7336 {
7337 if (!(reg->reg_type & (SReg2 | SReg3)))
7338 {
7339 as_bad (_("`%s' is not a valid segment register"),
7340 reg->reg_name);
7341 return 0;
7342 }
7343 else if (i.seg[i.mem_operands])
7344 as_warn (_("Extra segment override ignored"));
7345 else
7346 {
7347 if (!intel_parser.in_offset)
7348 intel_parser.is_mem = 1;
7349 switch (reg->reg_num)
7350 {
7351 case 0:
7352 i.seg[i.mem_operands] = &es;
7353 break;
7354 case 1:
7355 i.seg[i.mem_operands] = &cs;
7356 break;
7357 case 2:
7358 i.seg[i.mem_operands] = &ss;
7359 break;
7360 case 3:
7361 i.seg[i.mem_operands] = &ds;
7362 break;
7363 case 4:
7364 i.seg[i.mem_operands] = &fs;
7365 break;
7366 case 5:
7367 i.seg[i.mem_operands] = &gs;
7368 break;
7369 }
7370 }
7371 }
7372
7373 /* Not a segment register. Check for register scaling. */
7374 else if (cur_token.code == '*')
7375 {
7376 if (!intel_parser.in_bracket)
7377 {
7378 as_bad (_("Register scaling only allowed in memory operands"));
7379 return 0;
7380 }
7381
7382 if (reg->reg_type & Reg16) /* Disallow things like [si*1]. */
7383 reg = i386_regtab + REGNAM_AX + 4; /* sp is invalid as index */
7384 else if (i.index_reg)
7385 reg = i386_regtab + REGNAM_EAX + 4; /* esp is invalid as index */
7386
7387 /* What follows must be a valid scale. */
7388 intel_match_token ('*');
7389 i.index_reg = reg;
7390 i.types[this_operand] |= BaseIndex;
7391
7392 /* Set the scale after setting the register (otherwise,
7393 i386_scale will complain) */
7394 if (cur_token.code == '+' || cur_token.code == '-')
7395 {
7396 char *str, sign = cur_token.code;
7397 intel_match_token (cur_token.code);
7398 if (cur_token.code != T_CONST)
7399 {
7400 as_bad (_("Syntax error: Expecting a constant, got `%s'"),
7401 cur_token.str);
7402 return 0;
7403 }
7404 str = (char *) xmalloc (strlen (cur_token.str) + 2);
7405 strcpy (str + 1, cur_token.str);
7406 *str = sign;
7407 if (!i386_scale (str))
7408 return 0;
7409 free (str);
7410 }
7411 else if (!i386_scale (cur_token.str))
7412 return 0;
7413 intel_match_token (cur_token.code);
7414 }
7415
7416 /* No scaling. If this is a memory operand, the register is either a
7417 base register (first occurrence) or an index register (second
7418 occurrence). */
7419 else if (intel_parser.in_bracket)
7420 {
7421
7422 if (!i.base_reg)
7423 i.base_reg = reg;
7424 else if (!i.index_reg)
7425 i.index_reg = reg;
7426 else
7427 {
7428 as_bad (_("Too many register references in memory operand"));
7429 return 0;
7430 }
7431
7432 i.types[this_operand] |= BaseIndex;
7433 }
7434
7435 /* It's neither base nor index. */
7436 else if (!intel_parser.in_offset && !intel_parser.is_mem)
7437 {
7438 i.types[this_operand] |= reg->reg_type & ~BaseIndex;
7439 i.op[this_operand].regs = reg;
7440 i.reg_operands++;
7441 }
7442 else
7443 {
7444 as_bad (_("Invalid use of register"));
7445 return 0;
7446 }
7447
7448 /* Since registers are not part of the displacement string (except
7449 when we're parsing offset operands), we may need to remove any
7450 preceding '+' from the displacement string. */
7451 if (*intel_parser.disp != '\0'
7452 && !intel_parser.in_offset)
7453 {
7454 char *s = intel_parser.disp;
7455 s += strlen (s) - 1;
7456 if (*s == '+')
7457 *s = '\0';
7458 }
7459
7460 return 1;
7461 }
7462
7463 /* e11 BYTE
7464 | WORD
7465 | DWORD
7466 | FWORD
7467 | QWORD
7468 | TBYTE
7469 | OWORD
7470 | XMMWORD */
7471 case T_BYTE:
7472 case T_WORD:
7473 case T_DWORD:
7474 case T_FWORD:
7475 case T_QWORD:
7476 case T_TBYTE:
7477 case T_XMMWORD:
7478 intel_match_token (cur_token.code);
7479
7480 if (cur_token.code == T_PTR)
7481 return 1;
7482
7483 /* It must have been an identifier. */
7484 intel_putback_token ();
7485 cur_token.code = T_ID;
7486 /* FALLTHRU */
7487
7488 /* e11 id
7489 | constant */
7490 case T_ID:
7491 if (!intel_parser.in_offset && intel_parser.is_mem <= 0)
7492 {
7493 symbolS *symbolP;
7494
7495 /* The identifier represents a memory reference only if it's not
7496 preceded by an offset modifier and if it's not an equate. */
7497 symbolP = symbol_find(cur_token.str);
7498 if (!symbolP || S_GET_SEGMENT(symbolP) != absolute_section)
7499 intel_parser.is_mem = 1;
7500 }
7501 /* FALLTHRU */
7502
7503 case T_CONST:
7504 case '-':
7505 case '+':
7506 {
7507 char *save_str, sign = 0;
7508
7509 /* Allow constants that start with `+' or `-'. */
7510 if (cur_token.code == '-' || cur_token.code == '+')
7511 {
7512 sign = cur_token.code;
7513 intel_match_token (cur_token.code);
7514 if (cur_token.code != T_CONST)
7515 {
7516 as_bad (_("Syntax error: Expecting a constant, got `%s'"),
7517 cur_token.str);
7518 return 0;
7519 }
7520 }
7521
7522 save_str = (char *) xmalloc (strlen (cur_token.str) + 2);
7523 strcpy (save_str + !!sign, cur_token.str);
7524 if (sign)
7525 *save_str = sign;
7526
7527 /* Get the next token to check for register scaling. */
7528 intel_match_token (cur_token.code);
7529
7530 /* Check if this constant is a scaling factor for an
7531 index register. */
7532 if (cur_token.code == '*')
7533 {
7534 if (intel_match_token ('*') && cur_token.code == T_REG)
7535 {
7536 const reg_entry *reg = cur_token.reg;
7537
7538 if (!intel_parser.in_bracket)
7539 {
7540 as_bad (_("Register scaling only allowed "
7541 "in memory operands"));
7542 return 0;
7543 }
7544
7545 /* Disallow things like [1*si].
7546 sp and esp are invalid as index. */
7547 if (reg->reg_type & Reg16)
7548 reg = i386_regtab + REGNAM_AX + 4;
7549 else if (i.index_reg)
7550 reg = i386_regtab + REGNAM_EAX + 4;
7551
7552 /* The constant is followed by `* reg', so it must be
7553 a valid scale. */
7554 i.index_reg = reg;
7555 i.types[this_operand] |= BaseIndex;
7556
7557 /* Set the scale after setting the register (otherwise,
7558 i386_scale will complain) */
7559 if (!i386_scale (save_str))
7560 return 0;
7561 intel_match_token (T_REG);
7562
7563 /* Since registers are not part of the displacement
7564 string, we may need to remove any preceding '+' from
7565 the displacement string. */
7566 if (*intel_parser.disp != '\0')
7567 {
7568 char *s = intel_parser.disp;
7569 s += strlen (s) - 1;
7570 if (*s == '+')
7571 *s = '\0';
7572 }
7573
7574 free (save_str);
7575
7576 return 1;
7577 }
7578
7579 /* The constant was not used for register scaling. Since we have
7580 already consumed the token following `*' we now need to put it
7581 back in the stream. */
7582 intel_putback_token ();
7583 }
7584
7585 /* Add the constant to the displacement string. */
7586 strcat (intel_parser.disp, save_str);
7587 free (save_str);
7588
7589 return 1;
7590 }
7591 }
7592
7593 as_bad (_("Unrecognized token '%s'"), cur_token.str);
7594 return 0;
7595 }
7596
7597 /* Match the given token against cur_token. If they match, read the next
7598 token from the operand string. */
7599 static int
7600 intel_match_token (int code)
7601 {
7602 if (cur_token.code == code)
7603 {
7604 intel_get_token ();
7605 return 1;
7606 }
7607 else
7608 {
7609 as_bad (_("Unexpected token `%s'"), cur_token.str);
7610 return 0;
7611 }
7612 }
7613
7614 /* Read a new token from intel_parser.op_string and store it in cur_token. */
7615 static void
7616 intel_get_token (void)
7617 {
7618 char *end_op;
7619 const reg_entry *reg;
7620 struct intel_token new_token;
7621
7622 new_token.code = T_NIL;
7623 new_token.reg = NULL;
7624 new_token.str = NULL;
7625
7626 /* Free the memory allocated to the previous token and move
7627 cur_token to prev_token. */
7628 if (prev_token.str)
7629 free (prev_token.str);
7630
7631 prev_token = cur_token;
7632
7633 /* Skip whitespace. */
7634 while (is_space_char (*intel_parser.op_string))
7635 intel_parser.op_string++;
7636
7637 /* Return an empty token if we find nothing else on the line. */
7638 if (*intel_parser.op_string == '\0')
7639 {
7640 cur_token = new_token;
7641 return;
7642 }
7643
7644 /* The new token cannot be larger than the remainder of the operand
7645 string. */
7646 new_token.str = (char *) xmalloc (strlen (intel_parser.op_string) + 1);
7647 new_token.str[0] = '\0';
7648
7649 if (strchr ("0123456789", *intel_parser.op_string))
7650 {
7651 char *p = new_token.str;
7652 char *q = intel_parser.op_string;
7653 new_token.code = T_CONST;
7654
7655 /* Allow any kind of identifier char to encompass floating point and
7656 hexadecimal numbers. */
7657 while (is_identifier_char (*q))
7658 *p++ = *q++;
7659 *p = '\0';
7660
7661 /* Recognize special symbol names [0-9][bf]. */
7662 if (strlen (intel_parser.op_string) == 2
7663 && (intel_parser.op_string[1] == 'b'
7664 || intel_parser.op_string[1] == 'f'))
7665 new_token.code = T_ID;
7666 }
7667
7668 else if ((reg = parse_register (intel_parser.op_string, &end_op)) != NULL)
7669 {
7670 size_t len = end_op - intel_parser.op_string;
7671
7672 new_token.code = T_REG;
7673 new_token.reg = reg;
7674
7675 memcpy (new_token.str, intel_parser.op_string, len);
7676 new_token.str[len] = '\0';
7677 }
7678
7679 else if (is_identifier_char (*intel_parser.op_string))
7680 {
7681 char *p = new_token.str;
7682 char *q = intel_parser.op_string;
7683
7684 /* A '.' or '$' followed by an identifier char is an identifier.
7685 Otherwise, it's operator '.' followed by an expression. */
7686 if ((*q == '.' || *q == '$') && !is_identifier_char (*(q + 1)))
7687 {
7688 new_token.code = '.';
7689 new_token.str[0] = '.';
7690 new_token.str[1] = '\0';
7691 }
7692 else
7693 {
7694 while (is_identifier_char (*q) || *q == '@')
7695 *p++ = *q++;
7696 *p = '\0';
7697
7698 if (strcasecmp (new_token.str, "NOT") == 0)
7699 new_token.code = '~';
7700
7701 else if (strcasecmp (new_token.str, "MOD") == 0)
7702 new_token.code = '%';
7703
7704 else if (strcasecmp (new_token.str, "AND") == 0)
7705 new_token.code = '&';
7706
7707 else if (strcasecmp (new_token.str, "OR") == 0)
7708 new_token.code = '|';
7709
7710 else if (strcasecmp (new_token.str, "XOR") == 0)
7711 new_token.code = '^';
7712
7713 else if (strcasecmp (new_token.str, "SHL") == 0)
7714 new_token.code = T_SHL;
7715
7716 else if (strcasecmp (new_token.str, "SHR") == 0)
7717 new_token.code = T_SHR;
7718
7719 else if (strcasecmp (new_token.str, "BYTE") == 0)
7720 new_token.code = T_BYTE;
7721
7722 else if (strcasecmp (new_token.str, "WORD") == 0)
7723 new_token.code = T_WORD;
7724
7725 else if (strcasecmp (new_token.str, "DWORD") == 0)
7726 new_token.code = T_DWORD;
7727
7728 else if (strcasecmp (new_token.str, "FWORD") == 0)
7729 new_token.code = T_FWORD;
7730
7731 else if (strcasecmp (new_token.str, "QWORD") == 0)
7732 new_token.code = T_QWORD;
7733
7734 else if (strcasecmp (new_token.str, "TBYTE") == 0
7735 /* XXX remove (gcc still uses it) */
7736 || strcasecmp (new_token.str, "XWORD") == 0)
7737 new_token.code = T_TBYTE;
7738
7739 else if (strcasecmp (new_token.str, "XMMWORD") == 0
7740 || strcasecmp (new_token.str, "OWORD") == 0)
7741 new_token.code = T_XMMWORD;
7742
7743 else if (strcasecmp (new_token.str, "PTR") == 0)
7744 new_token.code = T_PTR;
7745
7746 else if (strcasecmp (new_token.str, "SHORT") == 0)
7747 new_token.code = T_SHORT;
7748
7749 else if (strcasecmp (new_token.str, "OFFSET") == 0)
7750 {
7751 new_token.code = T_OFFSET;
7752
7753 /* ??? This is not mentioned in the MASM grammar but gcc
7754 makes use of it with -mintel-syntax. OFFSET may be
7755 followed by FLAT: */
7756 if (strncasecmp (q, " FLAT:", 6) == 0)
7757 strcat (new_token.str, " FLAT:");
7758 }
7759
7760 /* ??? This is not mentioned in the MASM grammar. */
7761 else if (strcasecmp (new_token.str, "FLAT") == 0)
7762 {
7763 new_token.code = T_OFFSET;
7764 if (*q == ':')
7765 strcat (new_token.str, ":");
7766 else
7767 as_bad (_("`:' expected"));
7768 }
7769
7770 else
7771 new_token.code = T_ID;
7772 }
7773 }
7774
7775 else if (strchr ("+-/*%|&^:[]()~", *intel_parser.op_string))
7776 {
7777 new_token.code = *intel_parser.op_string;
7778 new_token.str[0] = *intel_parser.op_string;
7779 new_token.str[1] = '\0';
7780 }
7781
7782 else if (strchr ("<>", *intel_parser.op_string)
7783 && *intel_parser.op_string == *(intel_parser.op_string + 1))
7784 {
7785 new_token.code = *intel_parser.op_string == '<' ? T_SHL : T_SHR;
7786 new_token.str[0] = *intel_parser.op_string;
7787 new_token.str[1] = *intel_parser.op_string;
7788 new_token.str[2] = '\0';
7789 }
7790
7791 else
7792 as_bad (_("Unrecognized token `%s'"), intel_parser.op_string);
7793
7794 intel_parser.op_string += strlen (new_token.str);
7795 cur_token = new_token;
7796 }
7797
7798 /* Put cur_token back into the token stream and make cur_token point to
7799 prev_token. */
7800 static void
7801 intel_putback_token (void)
7802 {
7803 if (cur_token.code != T_NIL)
7804 {
7805 intel_parser.op_string -= strlen (cur_token.str);
7806 free (cur_token.str);
7807 }
7808 cur_token = prev_token;
7809
7810 /* Forget prev_token. */
7811 prev_token.code = T_NIL;
7812 prev_token.reg = NULL;
7813 prev_token.str = NULL;
7814 }
7815
7816 int
7817 tc_x86_regname_to_dw2regnum (char *regname)
7818 {
7819 unsigned int regnum;
7820 unsigned int regnames_count;
7821 static const char *const regnames_32[] =
7822 {
7823 "eax", "ecx", "edx", "ebx",
7824 "esp", "ebp", "esi", "edi",
7825 "eip", "eflags", NULL,
7826 "st0", "st1", "st2", "st3",
7827 "st4", "st5", "st6", "st7",
7828 NULL, NULL,
7829 "xmm0", "xmm1", "xmm2", "xmm3",
7830 "xmm4", "xmm5", "xmm6", "xmm7",
7831 "mm0", "mm1", "mm2", "mm3",
7832 "mm4", "mm5", "mm6", "mm7",
7833 "fcw", "fsw", "mxcsr",
7834 "es", "cs", "ss", "ds", "fs", "gs", NULL, NULL,
7835 "tr", "ldtr"
7836 };
7837 static const char *const regnames_64[] =
7838 {
7839 "rax", "rdx", "rcx", "rbx",
7840 "rsi", "rdi", "rbp", "rsp",
7841 "r8", "r9", "r10", "r11",
7842 "r12", "r13", "r14", "r15",
7843 "rip",
7844 "xmm0", "xmm1", "xmm2", "xmm3",
7845 "xmm4", "xmm5", "xmm6", "xmm7",
7846 "xmm8", "xmm9", "xmm10", "xmm11",
7847 "xmm12", "xmm13", "xmm14", "xmm15",
7848 "st0", "st1", "st2", "st3",
7849 "st4", "st5", "st6", "st7",
7850 "mm0", "mm1", "mm2", "mm3",
7851 "mm4", "mm5", "mm6", "mm7",
7852 "rflags",
7853 "es", "cs", "ss", "ds", "fs", "gs", NULL, NULL,
7854 "fs.base", "gs.base", NULL, NULL,
7855 "tr", "ldtr",
7856 "mxcsr", "fcw", "fsw"
7857 };
7858 const char *const *regnames;
7859
7860 if (flag_code == CODE_64BIT)
7861 {
7862 regnames = regnames_64;
7863 regnames_count = ARRAY_SIZE (regnames_64);
7864 }
7865 else
7866 {
7867 regnames = regnames_32;
7868 regnames_count = ARRAY_SIZE (regnames_32);
7869 }
7870
7871 for (regnum = 0; regnum < regnames_count; regnum++)
7872 if (regnames[regnum] != NULL
7873 && strcmp (regname, regnames[regnum]) == 0)
7874 return regnum;
7875
7876 return -1;
7877 }
7878
7879 void
7880 tc_x86_frame_initial_instructions (void)
7881 {
7882 static unsigned int sp_regno;
7883
7884 if (!sp_regno)
7885 sp_regno = tc_x86_regname_to_dw2regnum (flag_code == CODE_64BIT
7886 ? "rsp" : "esp");
7887
7888 cfi_add_CFA_def_cfa (sp_regno, -x86_cie_data_alignment);
7889 cfi_add_CFA_offset (x86_dwarf2_return_column, x86_cie_data_alignment);
7890 }
7891
7892 int
7893 i386_elf_section_type (const char *str, size_t len)
7894 {
7895 if (flag_code == CODE_64BIT
7896 && len == sizeof ("unwind") - 1
7897 && strncmp (str, "unwind", 6) == 0)
7898 return SHT_X86_64_UNWIND;
7899
7900 return -1;
7901 }
7902
7903 #ifdef TE_PE
7904 void
7905 tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
7906 {
7907 expressionS expr;
7908
7909 expr.X_op = O_secrel;
7910 expr.X_add_symbol = symbol;
7911 expr.X_add_number = 0;
7912 emit_expr (&expr, size);
7913 }
7914 #endif
7915
7916 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7917 /* For ELF on x86-64, add support for SHF_X86_64_LARGE. */
7918
7919 int
7920 x86_64_section_letter (int letter, char **ptr_msg)
7921 {
7922 if (flag_code == CODE_64BIT)
7923 {
7924 if (letter == 'l')
7925 return SHF_X86_64_LARGE;
7926
7927 *ptr_msg = _("Bad .section directive: want a,l,w,x,M,S,G,T in string");
7928 }
7929 else
7930 *ptr_msg = _("Bad .section directive: want a,w,x,M,S,G,T in string");
7931 return -1;
7932 }
7933
7934 int
7935 x86_64_section_word (char *str, size_t len)
7936 {
7937 if (len == 5 && flag_code == CODE_64BIT && CONST_STRNEQ (str, "large"))
7938 return SHF_X86_64_LARGE;
7939
7940 return -1;
7941 }
7942
7943 static void
7944 handle_large_common (int small ATTRIBUTE_UNUSED)
7945 {
7946 if (flag_code != CODE_64BIT)
7947 {
7948 s_comm_internal (0, elf_common_parse);
7949 as_warn (_(".largecomm supported only in 64bit mode, producing .comm"));
7950 }
7951 else
7952 {
7953 static segT lbss_section;
7954 asection *saved_com_section_ptr = elf_com_section_ptr;
7955 asection *saved_bss_section = bss_section;
7956
7957 if (lbss_section == NULL)
7958 {
7959 flagword applicable;
7960 segT seg = now_seg;
7961 subsegT subseg = now_subseg;
7962
7963 /* The .lbss section is for local .largecomm symbols. */
7964 lbss_section = subseg_new (".lbss", 0);
7965 applicable = bfd_applicable_section_flags (stdoutput);
7966 bfd_set_section_flags (stdoutput, lbss_section,
7967 applicable & SEC_ALLOC);
7968 seg_info (lbss_section)->bss = 1;
7969
7970 subseg_set (seg, subseg);
7971 }
7972
7973 elf_com_section_ptr = &_bfd_elf_large_com_section;
7974 bss_section = lbss_section;
7975
7976 s_comm_internal (0, elf_common_parse);
7977
7978 elf_com_section_ptr = saved_com_section_ptr;
7979 bss_section = saved_bss_section;
7980 }
7981 }
7982 #endif /* OBJ_ELF || OBJ_MAYBE_ELF */
This page took 0.195146 seconds and 4 git commands to generate.