[AArch64] Add xgene1.
[deliverable/binutils-gdb.git] / gas / config / tc-i386.c
1 /* tc-i386.c -- Assemble code for the Intel 80386
2 Copyright (C) 1989-2014 Free Software Foundation, Inc.
3
4 This file is part of GAS, the GNU Assembler.
5
6 GAS is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
10
11 GAS is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GAS; see the file COPYING. If not, write to the Free
18 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
19 02110-1301, USA. */
20
21 /* Intel 80386 machine specific gas.
22 Written by Eliot Dresselhaus (eliot@mgm.mit.edu).
23 x86_64 support by Jan Hubicka (jh@suse.cz)
24 VIA PadLock support by Michal Ludvig (mludvig@suse.cz)
25 Bugs & suggestions are completely welcome. This is free software.
26 Please help us make it better. */
27
28 #include "as.h"
29 #include "safe-ctype.h"
30 #include "subsegs.h"
31 #include "dwarf2dbg.h"
32 #include "dw2gencfi.h"
33 #include "elf/x86-64.h"
34 #include "opcodes/i386-init.h"
35
36 #ifndef REGISTER_WARNINGS
37 #define REGISTER_WARNINGS 1
38 #endif
39
40 #ifndef INFER_ADDR_PREFIX
41 #define INFER_ADDR_PREFIX 1
42 #endif
43
44 #ifndef DEFAULT_ARCH
45 #define DEFAULT_ARCH "i386"
46 #endif
47
48 #ifndef INLINE
49 #if __GNUC__ >= 2
50 #define INLINE __inline__
51 #else
52 #define INLINE
53 #endif
54 #endif
55
56 /* Prefixes will be emitted in the order defined below.
57 WAIT_PREFIX must be the first prefix since FWAIT is really is an
58 instruction, and so must come before any prefixes.
59 The preferred prefix order is SEG_PREFIX, ADDR_PREFIX, DATA_PREFIX,
60 REP_PREFIX/HLE_PREFIX, LOCK_PREFIX. */
61 #define WAIT_PREFIX 0
62 #define SEG_PREFIX 1
63 #define ADDR_PREFIX 2
64 #define DATA_PREFIX 3
65 #define REP_PREFIX 4
66 #define HLE_PREFIX REP_PREFIX
67 #define BND_PREFIX REP_PREFIX
68 #define LOCK_PREFIX 5
69 #define REX_PREFIX 6 /* must come last. */
70 #define MAX_PREFIXES 7 /* max prefixes per opcode */
71
72 /* we define the syntax here (modulo base,index,scale syntax) */
73 #define REGISTER_PREFIX '%'
74 #define IMMEDIATE_PREFIX '$'
75 #define ABSOLUTE_PREFIX '*'
76
77 /* these are the instruction mnemonic suffixes in AT&T syntax or
78 memory operand size in Intel syntax. */
79 #define WORD_MNEM_SUFFIX 'w'
80 #define BYTE_MNEM_SUFFIX 'b'
81 #define SHORT_MNEM_SUFFIX 's'
82 #define LONG_MNEM_SUFFIX 'l'
83 #define QWORD_MNEM_SUFFIX 'q'
84 #define XMMWORD_MNEM_SUFFIX 'x'
85 #define YMMWORD_MNEM_SUFFIX 'y'
86 #define ZMMWORD_MNEM_SUFFIX 'z'
87 /* Intel Syntax. Use a non-ascii letter since since it never appears
88 in instructions. */
89 #define LONG_DOUBLE_MNEM_SUFFIX '\1'
90
91 #define END_OF_INSN '\0'
92
93 /*
94 'templates' is for grouping together 'template' structures for opcodes
95 of the same name. This is only used for storing the insns in the grand
96 ole hash table of insns.
97 The templates themselves start at START and range up to (but not including)
98 END.
99 */
100 typedef struct
101 {
102 const insn_template *start;
103 const insn_template *end;
104 }
105 templates;
106
107 /* 386 operand encoding bytes: see 386 book for details of this. */
108 typedef struct
109 {
110 unsigned int regmem; /* codes register or memory operand */
111 unsigned int reg; /* codes register operand (or extended opcode) */
112 unsigned int mode; /* how to interpret regmem & reg */
113 }
114 modrm_byte;
115
116 /* x86-64 extension prefix. */
117 typedef int rex_byte;
118
119 /* 386 opcode byte to code indirect addressing. */
120 typedef struct
121 {
122 unsigned base;
123 unsigned index;
124 unsigned scale;
125 }
126 sib_byte;
127
128 /* x86 arch names, types and features */
129 typedef struct
130 {
131 const char *name; /* arch name */
132 unsigned int len; /* arch string length */
133 enum processor_type type; /* arch type */
134 i386_cpu_flags flags; /* cpu feature flags */
135 unsigned int skip; /* show_arch should skip this. */
136 unsigned int negated; /* turn off indicated flags. */
137 }
138 arch_entry;
139
140 static void update_code_flag (int, int);
141 static void set_code_flag (int);
142 static void set_16bit_gcc_code_flag (int);
143 static void set_intel_syntax (int);
144 static void set_intel_mnemonic (int);
145 static void set_allow_index_reg (int);
146 static void set_check (int);
147 static void set_cpu_arch (int);
148 #ifdef TE_PE
149 static void pe_directive_secrel (int);
150 #endif
151 static void signed_cons (int);
152 static char *output_invalid (int c);
153 static int i386_finalize_immediate (segT, expressionS *, i386_operand_type,
154 const char *);
155 static int i386_finalize_displacement (segT, expressionS *, i386_operand_type,
156 const char *);
157 static int i386_att_operand (char *);
158 static int i386_intel_operand (char *, int);
159 static int i386_intel_simplify (expressionS *);
160 static int i386_intel_parse_name (const char *, expressionS *);
161 static const reg_entry *parse_register (char *, char **);
162 static char *parse_insn (char *, char *);
163 static char *parse_operands (char *, const char *);
164 static void swap_operands (void);
165 static void swap_2_operands (int, int);
166 static void optimize_imm (void);
167 static void optimize_disp (void);
168 static const insn_template *match_template (void);
169 static int check_string (void);
170 static int process_suffix (void);
171 static int check_byte_reg (void);
172 static int check_long_reg (void);
173 static int check_qword_reg (void);
174 static int check_word_reg (void);
175 static int finalize_imm (void);
176 static int process_operands (void);
177 static const seg_entry *build_modrm_byte (void);
178 static void output_insn (void);
179 static void output_imm (fragS *, offsetT);
180 static void output_disp (fragS *, offsetT);
181 #ifndef I386COFF
182 static void s_bss (int);
183 #endif
184 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
185 static void handle_large_common (int small ATTRIBUTE_UNUSED);
186 #endif
187
188 static const char *default_arch = DEFAULT_ARCH;
189
190 /* This struct describes rounding control and SAE in the instruction. */
191 struct RC_Operation
192 {
193 enum rc_type
194 {
195 rne = 0,
196 rd,
197 ru,
198 rz,
199 saeonly
200 } type;
201 int operand;
202 };
203
204 static struct RC_Operation rc_op;
205
206 /* The struct describes masking, applied to OPERAND in the instruction.
207 MASK is a pointer to the corresponding mask register. ZEROING tells
208 whether merging or zeroing mask is used. */
209 struct Mask_Operation
210 {
211 const reg_entry *mask;
212 unsigned int zeroing;
213 /* The operand where this operation is associated. */
214 int operand;
215 };
216
217 static struct Mask_Operation mask_op;
218
219 /* The struct describes broadcasting, applied to OPERAND. FACTOR is
220 broadcast factor. */
221 struct Broadcast_Operation
222 {
223 /* Type of broadcast: no broadcast, {1to8}, or {1to16}. */
224 int type;
225
226 /* Index of broadcasted operand. */
227 int operand;
228 };
229
230 static struct Broadcast_Operation broadcast_op;
231
232 /* VEX prefix. */
233 typedef struct
234 {
235 /* VEX prefix is either 2 byte or 3 byte. EVEX is 4 byte. */
236 unsigned char bytes[4];
237 unsigned int length;
238 /* Destination or source register specifier. */
239 const reg_entry *register_specifier;
240 } vex_prefix;
241
242 /* 'md_assemble ()' gathers together information and puts it into a
243 i386_insn. */
244
245 union i386_op
246 {
247 expressionS *disps;
248 expressionS *imms;
249 const reg_entry *regs;
250 };
251
252 enum i386_error
253 {
254 operand_size_mismatch,
255 operand_type_mismatch,
256 register_type_mismatch,
257 number_of_operands_mismatch,
258 invalid_instruction_suffix,
259 bad_imm4,
260 old_gcc_only,
261 unsupported_with_intel_mnemonic,
262 unsupported_syntax,
263 unsupported,
264 invalid_vsib_address,
265 invalid_vector_register_set,
266 unsupported_vector_index_register,
267 unsupported_broadcast,
268 broadcast_not_on_src_operand,
269 broadcast_needed,
270 unsupported_masking,
271 mask_not_on_destination,
272 no_default_mask,
273 unsupported_rc_sae,
274 rc_sae_operand_not_last_imm,
275 invalid_register_operand,
276 try_vector_disp8
277 };
278
279 struct _i386_insn
280 {
281 /* TM holds the template for the insn were currently assembling. */
282 insn_template tm;
283
284 /* SUFFIX holds the instruction size suffix for byte, word, dword
285 or qword, if given. */
286 char suffix;
287
288 /* OPERANDS gives the number of given operands. */
289 unsigned int operands;
290
291 /* REG_OPERANDS, DISP_OPERANDS, MEM_OPERANDS, IMM_OPERANDS give the number
292 of given register, displacement, memory operands and immediate
293 operands. */
294 unsigned int reg_operands, disp_operands, mem_operands, imm_operands;
295
296 /* TYPES [i] is the type (see above #defines) which tells us how to
297 use OP[i] for the corresponding operand. */
298 i386_operand_type types[MAX_OPERANDS];
299
300 /* Displacement expression, immediate expression, or register for each
301 operand. */
302 union i386_op op[MAX_OPERANDS];
303
304 /* Flags for operands. */
305 unsigned int flags[MAX_OPERANDS];
306 #define Operand_PCrel 1
307
308 /* Relocation type for operand */
309 enum bfd_reloc_code_real reloc[MAX_OPERANDS];
310
311 /* BASE_REG, INDEX_REG, and LOG2_SCALE_FACTOR are used to encode
312 the base index byte below. */
313 const reg_entry *base_reg;
314 const reg_entry *index_reg;
315 unsigned int log2_scale_factor;
316
317 /* SEG gives the seg_entries of this insn. They are zero unless
318 explicit segment overrides are given. */
319 const seg_entry *seg[2];
320
321 /* PREFIX holds all the given prefix opcodes (usually null).
322 PREFIXES is the number of prefix opcodes. */
323 unsigned int prefixes;
324 unsigned char prefix[MAX_PREFIXES];
325
326 /* RM and SIB are the modrm byte and the sib byte where the
327 addressing modes of this insn are encoded. */
328 modrm_byte rm;
329 rex_byte rex;
330 rex_byte vrex;
331 sib_byte sib;
332 vex_prefix vex;
333
334 /* Masking attributes. */
335 struct Mask_Operation *mask;
336
337 /* Rounding control and SAE attributes. */
338 struct RC_Operation *rounding;
339
340 /* Broadcasting attributes. */
341 struct Broadcast_Operation *broadcast;
342
343 /* Compressed disp8*N attribute. */
344 unsigned int memshift;
345
346 /* Swap operand in encoding. */
347 unsigned int swap_operand;
348
349 /* Prefer 8bit or 32bit displacement in encoding. */
350 enum
351 {
352 disp_encoding_default = 0,
353 disp_encoding_8bit,
354 disp_encoding_32bit
355 } disp_encoding;
356
357 /* REP prefix. */
358 const char *rep_prefix;
359
360 /* HLE prefix. */
361 const char *hle_prefix;
362
363 /* Have BND prefix. */
364 const char *bnd_prefix;
365
366 /* Need VREX to support upper 16 registers. */
367 int need_vrex;
368
369 /* Error message. */
370 enum i386_error error;
371 };
372
373 typedef struct _i386_insn i386_insn;
374
375 /* Link RC type with corresponding string, that'll be looked for in
376 asm. */
377 struct RC_name
378 {
379 enum rc_type type;
380 const char *name;
381 unsigned int len;
382 };
383
384 static const struct RC_name RC_NamesTable[] =
385 {
386 { rne, STRING_COMMA_LEN ("rn-sae") },
387 { rd, STRING_COMMA_LEN ("rd-sae") },
388 { ru, STRING_COMMA_LEN ("ru-sae") },
389 { rz, STRING_COMMA_LEN ("rz-sae") },
390 { saeonly, STRING_COMMA_LEN ("sae") },
391 };
392
393 /* List of chars besides those in app.c:symbol_chars that can start an
394 operand. Used to prevent the scrubber eating vital white-space. */
395 const char extra_symbol_chars[] = "*%-([{"
396 #ifdef LEX_AT
397 "@"
398 #endif
399 #ifdef LEX_QM
400 "?"
401 #endif
402 ;
403
404 #if (defined (TE_I386AIX) \
405 || ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) \
406 && !defined (TE_GNU) \
407 && !defined (TE_LINUX) \
408 && !defined (TE_NACL) \
409 && !defined (TE_NETWARE) \
410 && !defined (TE_FreeBSD) \
411 && !defined (TE_DragonFly) \
412 && !defined (TE_NetBSD)))
413 /* This array holds the chars that always start a comment. If the
414 pre-processor is disabled, these aren't very useful. The option
415 --divide will remove '/' from this list. */
416 const char *i386_comment_chars = "#/";
417 #define SVR4_COMMENT_CHARS 1
418 #define PREFIX_SEPARATOR '\\'
419
420 #else
421 const char *i386_comment_chars = "#";
422 #define PREFIX_SEPARATOR '/'
423 #endif
424
425 /* This array holds the chars that only start a comment at the beginning of
426 a line. If the line seems to have the form '# 123 filename'
427 .line and .file directives will appear in the pre-processed output.
428 Note that input_file.c hand checks for '#' at the beginning of the
429 first line of the input file. This is because the compiler outputs
430 #NO_APP at the beginning of its output.
431 Also note that comments started like this one will always work if
432 '/' isn't otherwise defined. */
433 const char line_comment_chars[] = "#/";
434
435 const char line_separator_chars[] = ";";
436
437 /* Chars that can be used to separate mant from exp in floating point
438 nums. */
439 const char EXP_CHARS[] = "eE";
440
441 /* Chars that mean this number is a floating point constant
442 As in 0f12.456
443 or 0d1.2345e12. */
444 const char FLT_CHARS[] = "fFdDxX";
445
446 /* Tables for lexical analysis. */
447 static char mnemonic_chars[256];
448 static char register_chars[256];
449 static char operand_chars[256];
450 static char identifier_chars[256];
451 static char digit_chars[256];
452
453 /* Lexical macros. */
454 #define is_mnemonic_char(x) (mnemonic_chars[(unsigned char) x])
455 #define is_operand_char(x) (operand_chars[(unsigned char) x])
456 #define is_register_char(x) (register_chars[(unsigned char) x])
457 #define is_space_char(x) ((x) == ' ')
458 #define is_identifier_char(x) (identifier_chars[(unsigned char) x])
459 #define is_digit_char(x) (digit_chars[(unsigned char) x])
460
461 /* All non-digit non-letter characters that may occur in an operand. */
462 static char operand_special_chars[] = "%$-+(,)*._~/<>|&^!:[@]";
463
464 /* md_assemble() always leaves the strings it's passed unaltered. To
465 effect this we maintain a stack of saved characters that we've smashed
466 with '\0's (indicating end of strings for various sub-fields of the
467 assembler instruction). */
468 static char save_stack[32];
469 static char *save_stack_p;
470 #define END_STRING_AND_SAVE(s) \
471 do { *save_stack_p++ = *(s); *(s) = '\0'; } while (0)
472 #define RESTORE_END_STRING(s) \
473 do { *(s) = *--save_stack_p; } while (0)
474
475 /* The instruction we're assembling. */
476 static i386_insn i;
477
478 /* Possible templates for current insn. */
479 static const templates *current_templates;
480
481 /* Per instruction expressionS buffers: max displacements & immediates. */
482 static expressionS disp_expressions[MAX_MEMORY_OPERANDS];
483 static expressionS im_expressions[MAX_IMMEDIATE_OPERANDS];
484
485 /* Current operand we are working on. */
486 static int this_operand = -1;
487
488 /* We support four different modes. FLAG_CODE variable is used to distinguish
489 these. */
490
491 enum flag_code {
492 CODE_32BIT,
493 CODE_16BIT,
494 CODE_64BIT };
495
496 static enum flag_code flag_code;
497 static unsigned int object_64bit;
498 static unsigned int disallow_64bit_reloc;
499 static int use_rela_relocations = 0;
500
501 #if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
502 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
503 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
504
505 /* The ELF ABI to use. */
506 enum x86_elf_abi
507 {
508 I386_ABI,
509 X86_64_ABI,
510 X86_64_X32_ABI
511 };
512
513 static enum x86_elf_abi x86_elf_abi = I386_ABI;
514 #endif
515
516 #if defined (TE_PE) || defined (TE_PEP)
517 /* Use big object file format. */
518 static int use_big_obj = 0;
519 #endif
520
521 /* 1 for intel syntax,
522 0 if att syntax. */
523 static int intel_syntax = 0;
524
525 /* 1 for intel mnemonic,
526 0 if att mnemonic. */
527 static int intel_mnemonic = !SYSV386_COMPAT;
528
529 /* 1 if support old (<= 2.8.1) versions of gcc. */
530 static int old_gcc = OLDGCC_COMPAT;
531
532 /* 1 if pseudo registers are permitted. */
533 static int allow_pseudo_reg = 0;
534
535 /* 1 if register prefix % not required. */
536 static int allow_naked_reg = 0;
537
538 /* 1 if the assembler should add BND prefix for all control-tranferring
539 instructions supporting it, even if this prefix wasn't specified
540 explicitly. */
541 static int add_bnd_prefix = 0;
542
543 /* 1 if pseudo index register, eiz/riz, is allowed . */
544 static int allow_index_reg = 0;
545
546 /* 1 if the assembler should ignore LOCK prefix, even if it was
547 specified explicitly. */
548 static int omit_lock_prefix = 0;
549
550 static enum check_kind
551 {
552 check_none = 0,
553 check_warning,
554 check_error
555 }
556 sse_check, operand_check = check_warning;
557
558 /* Register prefix used for error message. */
559 static const char *register_prefix = "%";
560
561 /* Used in 16 bit gcc mode to add an l suffix to call, ret, enter,
562 leave, push, and pop instructions so that gcc has the same stack
563 frame as in 32 bit mode. */
564 static char stackop_size = '\0';
565
566 /* Non-zero to optimize code alignment. */
567 int optimize_align_code = 1;
568
569 /* Non-zero to quieten some warnings. */
570 static int quiet_warnings = 0;
571
572 /* CPU name. */
573 static const char *cpu_arch_name = NULL;
574 static char *cpu_sub_arch_name = NULL;
575
576 /* CPU feature flags. */
577 static i386_cpu_flags cpu_arch_flags = CPU_UNKNOWN_FLAGS;
578
579 /* If we have selected a cpu we are generating instructions for. */
580 static int cpu_arch_tune_set = 0;
581
582 /* Cpu we are generating instructions for. */
583 enum processor_type cpu_arch_tune = PROCESSOR_UNKNOWN;
584
585 /* CPU feature flags of cpu we are generating instructions for. */
586 static i386_cpu_flags cpu_arch_tune_flags;
587
588 /* CPU instruction set architecture used. */
589 enum processor_type cpu_arch_isa = PROCESSOR_UNKNOWN;
590
591 /* CPU feature flags of instruction set architecture used. */
592 i386_cpu_flags cpu_arch_isa_flags;
593
594 /* If set, conditional jumps are not automatically promoted to handle
595 larger than a byte offset. */
596 static unsigned int no_cond_jump_promotion = 0;
597
598 /* Encode SSE instructions with VEX prefix. */
599 static unsigned int sse2avx;
600
601 /* Encode scalar AVX instructions with specific vector length. */
602 static enum
603 {
604 vex128 = 0,
605 vex256
606 } avxscalar;
607
608 /* Encode scalar EVEX LIG instructions with specific vector length. */
609 static enum
610 {
611 evexl128 = 0,
612 evexl256,
613 evexl512
614 } evexlig;
615
616 /* Encode EVEX WIG instructions with specific evex.w. */
617 static enum
618 {
619 evexw0 = 0,
620 evexw1
621 } evexwig;
622
623 /* Value to encode in EVEX RC bits, for SAE-only instructions. */
624 static enum rc_type evexrcig = rne;
625
626 /* Pre-defined "_GLOBAL_OFFSET_TABLE_". */
627 static symbolS *GOT_symbol;
628
629 /* The dwarf2 return column, adjusted for 32 or 64 bit. */
630 unsigned int x86_dwarf2_return_column;
631
632 /* The dwarf2 data alignment, adjusted for 32 or 64 bit. */
633 int x86_cie_data_alignment;
634
635 /* Interface to relax_segment.
636 There are 3 major relax states for 386 jump insns because the
637 different types of jumps add different sizes to frags when we're
638 figuring out what sort of jump to choose to reach a given label. */
639
640 /* Types. */
641 #define UNCOND_JUMP 0
642 #define COND_JUMP 1
643 #define COND_JUMP86 2
644
645 /* Sizes. */
646 #define CODE16 1
647 #define SMALL 0
648 #define SMALL16 (SMALL | CODE16)
649 #define BIG 2
650 #define BIG16 (BIG | CODE16)
651
652 #ifndef INLINE
653 #ifdef __GNUC__
654 #define INLINE __inline__
655 #else
656 #define INLINE
657 #endif
658 #endif
659
660 #define ENCODE_RELAX_STATE(type, size) \
661 ((relax_substateT) (((type) << 2) | (size)))
662 #define TYPE_FROM_RELAX_STATE(s) \
663 ((s) >> 2)
664 #define DISP_SIZE_FROM_RELAX_STATE(s) \
665 ((((s) & 3) == BIG ? 4 : (((s) & 3) == BIG16 ? 2 : 1)))
666
667 /* This table is used by relax_frag to promote short jumps to long
668 ones where necessary. SMALL (short) jumps may be promoted to BIG
669 (32 bit long) ones, and SMALL16 jumps to BIG16 (16 bit long). We
670 don't allow a short jump in a 32 bit code segment to be promoted to
671 a 16 bit offset jump because it's slower (requires data size
672 prefix), and doesn't work, unless the destination is in the bottom
673 64k of the code segment (The top 16 bits of eip are zeroed). */
674
675 const relax_typeS md_relax_table[] =
676 {
677 /* The fields are:
678 1) most positive reach of this state,
679 2) most negative reach of this state,
680 3) how many bytes this mode will have in the variable part of the frag
681 4) which index into the table to try if we can't fit into this one. */
682
683 /* UNCOND_JUMP states. */
684 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG)},
685 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16)},
686 /* dword jmp adds 4 bytes to frag:
687 0 extra opcode bytes, 4 displacement bytes. */
688 {0, 0, 4, 0},
689 /* word jmp adds 2 byte2 to frag:
690 0 extra opcode bytes, 2 displacement bytes. */
691 {0, 0, 2, 0},
692
693 /* COND_JUMP states. */
694 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG)},
695 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG16)},
696 /* dword conditionals adds 5 bytes to frag:
697 1 extra opcode byte, 4 displacement bytes. */
698 {0, 0, 5, 0},
699 /* word conditionals add 3 bytes to frag:
700 1 extra opcode byte, 2 displacement bytes. */
701 {0, 0, 3, 0},
702
703 /* COND_JUMP86 states. */
704 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG)},
705 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG16)},
706 /* dword conditionals adds 5 bytes to frag:
707 1 extra opcode byte, 4 displacement bytes. */
708 {0, 0, 5, 0},
709 /* word conditionals add 4 bytes to frag:
710 1 displacement byte and a 3 byte long branch insn. */
711 {0, 0, 4, 0}
712 };
713
714 static const arch_entry cpu_arch[] =
715 {
716 /* Do not replace the first two entries - i386_target_format()
717 relies on them being there in this order. */
718 { STRING_COMMA_LEN ("generic32"), PROCESSOR_GENERIC32,
719 CPU_GENERIC32_FLAGS, 0, 0 },
720 { STRING_COMMA_LEN ("generic64"), PROCESSOR_GENERIC64,
721 CPU_GENERIC64_FLAGS, 0, 0 },
722 { STRING_COMMA_LEN ("i8086"), PROCESSOR_UNKNOWN,
723 CPU_NONE_FLAGS, 0, 0 },
724 { STRING_COMMA_LEN ("i186"), PROCESSOR_UNKNOWN,
725 CPU_I186_FLAGS, 0, 0 },
726 { STRING_COMMA_LEN ("i286"), PROCESSOR_UNKNOWN,
727 CPU_I286_FLAGS, 0, 0 },
728 { STRING_COMMA_LEN ("i386"), PROCESSOR_I386,
729 CPU_I386_FLAGS, 0, 0 },
730 { STRING_COMMA_LEN ("i486"), PROCESSOR_I486,
731 CPU_I486_FLAGS, 0, 0 },
732 { STRING_COMMA_LEN ("i586"), PROCESSOR_PENTIUM,
733 CPU_I586_FLAGS, 0, 0 },
734 { STRING_COMMA_LEN ("i686"), PROCESSOR_PENTIUMPRO,
735 CPU_I686_FLAGS, 0, 0 },
736 { STRING_COMMA_LEN ("pentium"), PROCESSOR_PENTIUM,
737 CPU_I586_FLAGS, 0, 0 },
738 { STRING_COMMA_LEN ("pentiumpro"), PROCESSOR_PENTIUMPRO,
739 CPU_PENTIUMPRO_FLAGS, 0, 0 },
740 { STRING_COMMA_LEN ("pentiumii"), PROCESSOR_PENTIUMPRO,
741 CPU_P2_FLAGS, 0, 0 },
742 { STRING_COMMA_LEN ("pentiumiii"),PROCESSOR_PENTIUMPRO,
743 CPU_P3_FLAGS, 0, 0 },
744 { STRING_COMMA_LEN ("pentium4"), PROCESSOR_PENTIUM4,
745 CPU_P4_FLAGS, 0, 0 },
746 { STRING_COMMA_LEN ("prescott"), PROCESSOR_NOCONA,
747 CPU_CORE_FLAGS, 0, 0 },
748 { STRING_COMMA_LEN ("nocona"), PROCESSOR_NOCONA,
749 CPU_NOCONA_FLAGS, 0, 0 },
750 { STRING_COMMA_LEN ("yonah"), PROCESSOR_CORE,
751 CPU_CORE_FLAGS, 1, 0 },
752 { STRING_COMMA_LEN ("core"), PROCESSOR_CORE,
753 CPU_CORE_FLAGS, 0, 0 },
754 { STRING_COMMA_LEN ("merom"), PROCESSOR_CORE2,
755 CPU_CORE2_FLAGS, 1, 0 },
756 { STRING_COMMA_LEN ("core2"), PROCESSOR_CORE2,
757 CPU_CORE2_FLAGS, 0, 0 },
758 { STRING_COMMA_LEN ("corei7"), PROCESSOR_COREI7,
759 CPU_COREI7_FLAGS, 0, 0 },
760 { STRING_COMMA_LEN ("l1om"), PROCESSOR_L1OM,
761 CPU_L1OM_FLAGS, 0, 0 },
762 { STRING_COMMA_LEN ("k1om"), PROCESSOR_K1OM,
763 CPU_K1OM_FLAGS, 0, 0 },
764 { STRING_COMMA_LEN ("k6"), PROCESSOR_K6,
765 CPU_K6_FLAGS, 0, 0 },
766 { STRING_COMMA_LEN ("k6_2"), PROCESSOR_K6,
767 CPU_K6_2_FLAGS, 0, 0 },
768 { STRING_COMMA_LEN ("athlon"), PROCESSOR_ATHLON,
769 CPU_ATHLON_FLAGS, 0, 0 },
770 { STRING_COMMA_LEN ("sledgehammer"), PROCESSOR_K8,
771 CPU_K8_FLAGS, 1, 0 },
772 { STRING_COMMA_LEN ("opteron"), PROCESSOR_K8,
773 CPU_K8_FLAGS, 0, 0 },
774 { STRING_COMMA_LEN ("k8"), PROCESSOR_K8,
775 CPU_K8_FLAGS, 0, 0 },
776 { STRING_COMMA_LEN ("amdfam10"), PROCESSOR_AMDFAM10,
777 CPU_AMDFAM10_FLAGS, 0, 0 },
778 { STRING_COMMA_LEN ("bdver1"), PROCESSOR_BD,
779 CPU_BDVER1_FLAGS, 0, 0 },
780 { STRING_COMMA_LEN ("bdver2"), PROCESSOR_BD,
781 CPU_BDVER2_FLAGS, 0, 0 },
782 { STRING_COMMA_LEN ("bdver3"), PROCESSOR_BD,
783 CPU_BDVER3_FLAGS, 0, 0 },
784 { STRING_COMMA_LEN ("bdver4"), PROCESSOR_BD,
785 CPU_BDVER4_FLAGS, 0, 0 },
786 { STRING_COMMA_LEN ("btver1"), PROCESSOR_BT,
787 CPU_BTVER1_FLAGS, 0, 0 },
788 { STRING_COMMA_LEN ("btver2"), PROCESSOR_BT,
789 CPU_BTVER2_FLAGS, 0, 0 },
790 { STRING_COMMA_LEN (".8087"), PROCESSOR_UNKNOWN,
791 CPU_8087_FLAGS, 0, 0 },
792 { STRING_COMMA_LEN (".287"), PROCESSOR_UNKNOWN,
793 CPU_287_FLAGS, 0, 0 },
794 { STRING_COMMA_LEN (".387"), PROCESSOR_UNKNOWN,
795 CPU_387_FLAGS, 0, 0 },
796 { STRING_COMMA_LEN (".no87"), PROCESSOR_UNKNOWN,
797 CPU_ANY87_FLAGS, 0, 1 },
798 { STRING_COMMA_LEN (".mmx"), PROCESSOR_UNKNOWN,
799 CPU_MMX_FLAGS, 0, 0 },
800 { STRING_COMMA_LEN (".nommx"), PROCESSOR_UNKNOWN,
801 CPU_3DNOWA_FLAGS, 0, 1 },
802 { STRING_COMMA_LEN (".sse"), PROCESSOR_UNKNOWN,
803 CPU_SSE_FLAGS, 0, 0 },
804 { STRING_COMMA_LEN (".sse2"), PROCESSOR_UNKNOWN,
805 CPU_SSE2_FLAGS, 0, 0 },
806 { STRING_COMMA_LEN (".sse3"), PROCESSOR_UNKNOWN,
807 CPU_SSE3_FLAGS, 0, 0 },
808 { STRING_COMMA_LEN (".ssse3"), PROCESSOR_UNKNOWN,
809 CPU_SSSE3_FLAGS, 0, 0 },
810 { STRING_COMMA_LEN (".sse4.1"), PROCESSOR_UNKNOWN,
811 CPU_SSE4_1_FLAGS, 0, 0 },
812 { STRING_COMMA_LEN (".sse4.2"), PROCESSOR_UNKNOWN,
813 CPU_SSE4_2_FLAGS, 0, 0 },
814 { STRING_COMMA_LEN (".sse4"), PROCESSOR_UNKNOWN,
815 CPU_SSE4_2_FLAGS, 0, 0 },
816 { STRING_COMMA_LEN (".nosse"), PROCESSOR_UNKNOWN,
817 CPU_ANY_SSE_FLAGS, 0, 1 },
818 { STRING_COMMA_LEN (".avx"), PROCESSOR_UNKNOWN,
819 CPU_AVX_FLAGS, 0, 0 },
820 { STRING_COMMA_LEN (".avx2"), PROCESSOR_UNKNOWN,
821 CPU_AVX2_FLAGS, 0, 0 },
822 { STRING_COMMA_LEN (".avx512f"), PROCESSOR_UNKNOWN,
823 CPU_AVX512F_FLAGS, 0, 0 },
824 { STRING_COMMA_LEN (".avx512cd"), PROCESSOR_UNKNOWN,
825 CPU_AVX512CD_FLAGS, 0, 0 },
826 { STRING_COMMA_LEN (".avx512er"), PROCESSOR_UNKNOWN,
827 CPU_AVX512ER_FLAGS, 0, 0 },
828 { STRING_COMMA_LEN (".avx512pf"), PROCESSOR_UNKNOWN,
829 CPU_AVX512PF_FLAGS, 0, 0 },
830 { STRING_COMMA_LEN (".avx512dq"), PROCESSOR_UNKNOWN,
831 CPU_AVX512DQ_FLAGS, 0, 0 },
832 { STRING_COMMA_LEN (".avx512bw"), PROCESSOR_UNKNOWN,
833 CPU_AVX512BW_FLAGS, 0, 0 },
834 { STRING_COMMA_LEN (".avx512vl"), PROCESSOR_UNKNOWN,
835 CPU_AVX512VL_FLAGS, 0, 0 },
836 { STRING_COMMA_LEN (".noavx"), PROCESSOR_UNKNOWN,
837 CPU_ANY_AVX_FLAGS, 0, 1 },
838 { STRING_COMMA_LEN (".vmx"), PROCESSOR_UNKNOWN,
839 CPU_VMX_FLAGS, 0, 0 },
840 { STRING_COMMA_LEN (".vmfunc"), PROCESSOR_UNKNOWN,
841 CPU_VMFUNC_FLAGS, 0, 0 },
842 { STRING_COMMA_LEN (".smx"), PROCESSOR_UNKNOWN,
843 CPU_SMX_FLAGS, 0, 0 },
844 { STRING_COMMA_LEN (".xsave"), PROCESSOR_UNKNOWN,
845 CPU_XSAVE_FLAGS, 0, 0 },
846 { STRING_COMMA_LEN (".xsaveopt"), PROCESSOR_UNKNOWN,
847 CPU_XSAVEOPT_FLAGS, 0, 0 },
848 { STRING_COMMA_LEN (".xsavec"), PROCESSOR_UNKNOWN,
849 CPU_XSAVEC_FLAGS, 0, 0 },
850 { STRING_COMMA_LEN (".xsaves"), PROCESSOR_UNKNOWN,
851 CPU_XSAVES_FLAGS, 0, 0 },
852 { STRING_COMMA_LEN (".aes"), PROCESSOR_UNKNOWN,
853 CPU_AES_FLAGS, 0, 0 },
854 { STRING_COMMA_LEN (".pclmul"), PROCESSOR_UNKNOWN,
855 CPU_PCLMUL_FLAGS, 0, 0 },
856 { STRING_COMMA_LEN (".clmul"), PROCESSOR_UNKNOWN,
857 CPU_PCLMUL_FLAGS, 1, 0 },
858 { STRING_COMMA_LEN (".fsgsbase"), PROCESSOR_UNKNOWN,
859 CPU_FSGSBASE_FLAGS, 0, 0 },
860 { STRING_COMMA_LEN (".rdrnd"), PROCESSOR_UNKNOWN,
861 CPU_RDRND_FLAGS, 0, 0 },
862 { STRING_COMMA_LEN (".f16c"), PROCESSOR_UNKNOWN,
863 CPU_F16C_FLAGS, 0, 0 },
864 { STRING_COMMA_LEN (".bmi2"), PROCESSOR_UNKNOWN,
865 CPU_BMI2_FLAGS, 0, 0 },
866 { STRING_COMMA_LEN (".fma"), PROCESSOR_UNKNOWN,
867 CPU_FMA_FLAGS, 0, 0 },
868 { STRING_COMMA_LEN (".fma4"), PROCESSOR_UNKNOWN,
869 CPU_FMA4_FLAGS, 0, 0 },
870 { STRING_COMMA_LEN (".xop"), PROCESSOR_UNKNOWN,
871 CPU_XOP_FLAGS, 0, 0 },
872 { STRING_COMMA_LEN (".lwp"), PROCESSOR_UNKNOWN,
873 CPU_LWP_FLAGS, 0, 0 },
874 { STRING_COMMA_LEN (".movbe"), PROCESSOR_UNKNOWN,
875 CPU_MOVBE_FLAGS, 0, 0 },
876 { STRING_COMMA_LEN (".cx16"), PROCESSOR_UNKNOWN,
877 CPU_CX16_FLAGS, 0, 0 },
878 { STRING_COMMA_LEN (".ept"), PROCESSOR_UNKNOWN,
879 CPU_EPT_FLAGS, 0, 0 },
880 { STRING_COMMA_LEN (".lzcnt"), PROCESSOR_UNKNOWN,
881 CPU_LZCNT_FLAGS, 0, 0 },
882 { STRING_COMMA_LEN (".hle"), PROCESSOR_UNKNOWN,
883 CPU_HLE_FLAGS, 0, 0 },
884 { STRING_COMMA_LEN (".rtm"), PROCESSOR_UNKNOWN,
885 CPU_RTM_FLAGS, 0, 0 },
886 { STRING_COMMA_LEN (".invpcid"), PROCESSOR_UNKNOWN,
887 CPU_INVPCID_FLAGS, 0, 0 },
888 { STRING_COMMA_LEN (".clflush"), PROCESSOR_UNKNOWN,
889 CPU_CLFLUSH_FLAGS, 0, 0 },
890 { STRING_COMMA_LEN (".nop"), PROCESSOR_UNKNOWN,
891 CPU_NOP_FLAGS, 0, 0 },
892 { STRING_COMMA_LEN (".syscall"), PROCESSOR_UNKNOWN,
893 CPU_SYSCALL_FLAGS, 0, 0 },
894 { STRING_COMMA_LEN (".rdtscp"), PROCESSOR_UNKNOWN,
895 CPU_RDTSCP_FLAGS, 0, 0 },
896 { STRING_COMMA_LEN (".3dnow"), PROCESSOR_UNKNOWN,
897 CPU_3DNOW_FLAGS, 0, 0 },
898 { STRING_COMMA_LEN (".3dnowa"), PROCESSOR_UNKNOWN,
899 CPU_3DNOWA_FLAGS, 0, 0 },
900 { STRING_COMMA_LEN (".padlock"), PROCESSOR_UNKNOWN,
901 CPU_PADLOCK_FLAGS, 0, 0 },
902 { STRING_COMMA_LEN (".pacifica"), PROCESSOR_UNKNOWN,
903 CPU_SVME_FLAGS, 1, 0 },
904 { STRING_COMMA_LEN (".svme"), PROCESSOR_UNKNOWN,
905 CPU_SVME_FLAGS, 0, 0 },
906 { STRING_COMMA_LEN (".sse4a"), PROCESSOR_UNKNOWN,
907 CPU_SSE4A_FLAGS, 0, 0 },
908 { STRING_COMMA_LEN (".abm"), PROCESSOR_UNKNOWN,
909 CPU_ABM_FLAGS, 0, 0 },
910 { STRING_COMMA_LEN (".bmi"), PROCESSOR_UNKNOWN,
911 CPU_BMI_FLAGS, 0, 0 },
912 { STRING_COMMA_LEN (".tbm"), PROCESSOR_UNKNOWN,
913 CPU_TBM_FLAGS, 0, 0 },
914 { STRING_COMMA_LEN (".adx"), PROCESSOR_UNKNOWN,
915 CPU_ADX_FLAGS, 0, 0 },
916 { STRING_COMMA_LEN (".rdseed"), PROCESSOR_UNKNOWN,
917 CPU_RDSEED_FLAGS, 0, 0 },
918 { STRING_COMMA_LEN (".prfchw"), PROCESSOR_UNKNOWN,
919 CPU_PRFCHW_FLAGS, 0, 0 },
920 { STRING_COMMA_LEN (".smap"), PROCESSOR_UNKNOWN,
921 CPU_SMAP_FLAGS, 0, 0 },
922 { STRING_COMMA_LEN (".mpx"), PROCESSOR_UNKNOWN,
923 CPU_MPX_FLAGS, 0, 0 },
924 { STRING_COMMA_LEN (".sha"), PROCESSOR_UNKNOWN,
925 CPU_SHA_FLAGS, 0, 0 },
926 { STRING_COMMA_LEN (".clflushopt"), PROCESSOR_UNKNOWN,
927 CPU_CLFLUSHOPT_FLAGS, 0, 0 },
928 { STRING_COMMA_LEN (".prefetchwt1"), PROCESSOR_UNKNOWN,
929 CPU_PREFETCHWT1_FLAGS, 0, 0 },
930 { STRING_COMMA_LEN (".se1"), PROCESSOR_UNKNOWN,
931 CPU_SE1_FLAGS, 0, 0 },
932 { STRING_COMMA_LEN (".clwb"), PROCESSOR_UNKNOWN,
933 CPU_CLWB_FLAGS, 0, 0 },
934 { STRING_COMMA_LEN (".pcommit"), PROCESSOR_UNKNOWN,
935 CPU_PCOMMIT_FLAGS, 0, 0 },
936 { STRING_COMMA_LEN (".avx512ifma"), PROCESSOR_UNKNOWN,
937 CPU_AVX512IFMA_FLAGS, 0, 0 },
938 { STRING_COMMA_LEN (".avx512vbmi"), PROCESSOR_UNKNOWN,
939 CPU_AVX512VBMI_FLAGS, 0, 0 },
940 };
941
942 #ifdef I386COFF
943 /* Like s_lcomm_internal in gas/read.c but the alignment string
944 is allowed to be optional. */
945
946 static symbolS *
947 pe_lcomm_internal (int needs_align, symbolS *symbolP, addressT size)
948 {
949 addressT align = 0;
950
951 SKIP_WHITESPACE ();
952
953 if (needs_align
954 && *input_line_pointer == ',')
955 {
956 align = parse_align (needs_align - 1);
957
958 if (align == (addressT) -1)
959 return NULL;
960 }
961 else
962 {
963 if (size >= 8)
964 align = 3;
965 else if (size >= 4)
966 align = 2;
967 else if (size >= 2)
968 align = 1;
969 else
970 align = 0;
971 }
972
973 bss_alloc (symbolP, size, align);
974 return symbolP;
975 }
976
977 static void
978 pe_lcomm (int needs_align)
979 {
980 s_comm_internal (needs_align * 2, pe_lcomm_internal);
981 }
982 #endif
983
984 const pseudo_typeS md_pseudo_table[] =
985 {
986 #if !defined(OBJ_AOUT) && !defined(USE_ALIGN_PTWO)
987 {"align", s_align_bytes, 0},
988 #else
989 {"align", s_align_ptwo, 0},
990 #endif
991 {"arch", set_cpu_arch, 0},
992 #ifndef I386COFF
993 {"bss", s_bss, 0},
994 #else
995 {"lcomm", pe_lcomm, 1},
996 #endif
997 {"ffloat", float_cons, 'f'},
998 {"dfloat", float_cons, 'd'},
999 {"tfloat", float_cons, 'x'},
1000 {"value", cons, 2},
1001 {"slong", signed_cons, 4},
1002 {"noopt", s_ignore, 0},
1003 {"optim", s_ignore, 0},
1004 {"code16gcc", set_16bit_gcc_code_flag, CODE_16BIT},
1005 {"code16", set_code_flag, CODE_16BIT},
1006 {"code32", set_code_flag, CODE_32BIT},
1007 {"code64", set_code_flag, CODE_64BIT},
1008 {"intel_syntax", set_intel_syntax, 1},
1009 {"att_syntax", set_intel_syntax, 0},
1010 {"intel_mnemonic", set_intel_mnemonic, 1},
1011 {"att_mnemonic", set_intel_mnemonic, 0},
1012 {"allow_index_reg", set_allow_index_reg, 1},
1013 {"disallow_index_reg", set_allow_index_reg, 0},
1014 {"sse_check", set_check, 0},
1015 {"operand_check", set_check, 1},
1016 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
1017 {"largecomm", handle_large_common, 0},
1018 #else
1019 {"file", (void (*) (int)) dwarf2_directive_file, 0},
1020 {"loc", dwarf2_directive_loc, 0},
1021 {"loc_mark_labels", dwarf2_directive_loc_mark_labels, 0},
1022 #endif
1023 #ifdef TE_PE
1024 {"secrel32", pe_directive_secrel, 0},
1025 #endif
1026 {0, 0, 0}
1027 };
1028
1029 /* For interface with expression (). */
1030 extern char *input_line_pointer;
1031
1032 /* Hash table for instruction mnemonic lookup. */
1033 static struct hash_control *op_hash;
1034
1035 /* Hash table for register lookup. */
1036 static struct hash_control *reg_hash;
1037 \f
1038 void
1039 i386_align_code (fragS *fragP, int count)
1040 {
1041 /* Various efficient no-op patterns for aligning code labels.
1042 Note: Don't try to assemble the instructions in the comments.
1043 0L and 0w are not legal. */
1044 static const char f32_1[] =
1045 {0x90}; /* nop */
1046 static const char f32_2[] =
1047 {0x66,0x90}; /* xchg %ax,%ax */
1048 static const char f32_3[] =
1049 {0x8d,0x76,0x00}; /* leal 0(%esi),%esi */
1050 static const char f32_4[] =
1051 {0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
1052 static const char f32_5[] =
1053 {0x90, /* nop */
1054 0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
1055 static const char f32_6[] =
1056 {0x8d,0xb6,0x00,0x00,0x00,0x00}; /* leal 0L(%esi),%esi */
1057 static const char f32_7[] =
1058 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
1059 static const char f32_8[] =
1060 {0x90, /* nop */
1061 0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
1062 static const char f32_9[] =
1063 {0x89,0xf6, /* movl %esi,%esi */
1064 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
1065 static const char f32_10[] =
1066 {0x8d,0x76,0x00, /* leal 0(%esi),%esi */
1067 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
1068 static const char f32_11[] =
1069 {0x8d,0x74,0x26,0x00, /* leal 0(%esi,1),%esi */
1070 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
1071 static const char f32_12[] =
1072 {0x8d,0xb6,0x00,0x00,0x00,0x00, /* leal 0L(%esi),%esi */
1073 0x8d,0xbf,0x00,0x00,0x00,0x00}; /* leal 0L(%edi),%edi */
1074 static const char f32_13[] =
1075 {0x8d,0xb6,0x00,0x00,0x00,0x00, /* leal 0L(%esi),%esi */
1076 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
1077 static const char f32_14[] =
1078 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00, /* leal 0L(%esi,1),%esi */
1079 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
1080 static const char f16_3[] =
1081 {0x8d,0x74,0x00}; /* lea 0(%esi),%esi */
1082 static const char f16_4[] =
1083 {0x8d,0xb4,0x00,0x00}; /* lea 0w(%si),%si */
1084 static const char f16_5[] =
1085 {0x90, /* nop */
1086 0x8d,0xb4,0x00,0x00}; /* lea 0w(%si),%si */
1087 static const char f16_6[] =
1088 {0x89,0xf6, /* mov %si,%si */
1089 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
1090 static const char f16_7[] =
1091 {0x8d,0x74,0x00, /* lea 0(%si),%si */
1092 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
1093 static const char f16_8[] =
1094 {0x8d,0xb4,0x00,0x00, /* lea 0w(%si),%si */
1095 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
1096 static const char jump_31[] =
1097 {0xeb,0x1d,0x90,0x90,0x90,0x90,0x90, /* jmp .+31; lotsa nops */
1098 0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90,
1099 0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90,
1100 0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90};
1101 static const char *const f32_patt[] = {
1102 f32_1, f32_2, f32_3, f32_4, f32_5, f32_6, f32_7, f32_8,
1103 f32_9, f32_10, f32_11, f32_12, f32_13, f32_14
1104 };
1105 static const char *const f16_patt[] = {
1106 f32_1, f32_2, f16_3, f16_4, f16_5, f16_6, f16_7, f16_8
1107 };
1108 /* nopl (%[re]ax) */
1109 static const char alt_3[] =
1110 {0x0f,0x1f,0x00};
1111 /* nopl 0(%[re]ax) */
1112 static const char alt_4[] =
1113 {0x0f,0x1f,0x40,0x00};
1114 /* nopl 0(%[re]ax,%[re]ax,1) */
1115 static const char alt_5[] =
1116 {0x0f,0x1f,0x44,0x00,0x00};
1117 /* nopw 0(%[re]ax,%[re]ax,1) */
1118 static const char alt_6[] =
1119 {0x66,0x0f,0x1f,0x44,0x00,0x00};
1120 /* nopl 0L(%[re]ax) */
1121 static const char alt_7[] =
1122 {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
1123 /* nopl 0L(%[re]ax,%[re]ax,1) */
1124 static const char alt_8[] =
1125 {0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1126 /* nopw 0L(%[re]ax,%[re]ax,1) */
1127 static const char alt_9[] =
1128 {0x66,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1129 /* nopw %cs:0L(%[re]ax,%[re]ax,1) */
1130 static const char alt_10[] =
1131 {0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1132 /* data16
1133 nopw %cs:0L(%[re]ax,%[re]ax,1) */
1134 static const char alt_long_11[] =
1135 {0x66,
1136 0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1137 /* data16
1138 data16
1139 nopw %cs:0L(%[re]ax,%[re]ax,1) */
1140 static const char alt_long_12[] =
1141 {0x66,
1142 0x66,
1143 0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1144 /* data16
1145 data16
1146 data16
1147 nopw %cs:0L(%[re]ax,%[re]ax,1) */
1148 static const char alt_long_13[] =
1149 {0x66,
1150 0x66,
1151 0x66,
1152 0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1153 /* data16
1154 data16
1155 data16
1156 data16
1157 nopw %cs:0L(%[re]ax,%[re]ax,1) */
1158 static const char alt_long_14[] =
1159 {0x66,
1160 0x66,
1161 0x66,
1162 0x66,
1163 0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1164 /* data16
1165 data16
1166 data16
1167 data16
1168 data16
1169 nopw %cs:0L(%[re]ax,%[re]ax,1) */
1170 static const char alt_long_15[] =
1171 {0x66,
1172 0x66,
1173 0x66,
1174 0x66,
1175 0x66,
1176 0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1177 /* nopl 0(%[re]ax,%[re]ax,1)
1178 nopw 0(%[re]ax,%[re]ax,1) */
1179 static const char alt_short_11[] =
1180 {0x0f,0x1f,0x44,0x00,0x00,
1181 0x66,0x0f,0x1f,0x44,0x00,0x00};
1182 /* nopw 0(%[re]ax,%[re]ax,1)
1183 nopw 0(%[re]ax,%[re]ax,1) */
1184 static const char alt_short_12[] =
1185 {0x66,0x0f,0x1f,0x44,0x00,0x00,
1186 0x66,0x0f,0x1f,0x44,0x00,0x00};
1187 /* nopw 0(%[re]ax,%[re]ax,1)
1188 nopl 0L(%[re]ax) */
1189 static const char alt_short_13[] =
1190 {0x66,0x0f,0x1f,0x44,0x00,0x00,
1191 0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
1192 /* nopl 0L(%[re]ax)
1193 nopl 0L(%[re]ax) */
1194 static const char alt_short_14[] =
1195 {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00,
1196 0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
1197 /* nopl 0L(%[re]ax)
1198 nopl 0L(%[re]ax,%[re]ax,1) */
1199 static const char alt_short_15[] =
1200 {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00,
1201 0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1202 static const char *const alt_short_patt[] = {
1203 f32_1, f32_2, alt_3, alt_4, alt_5, alt_6, alt_7, alt_8,
1204 alt_9, alt_10, alt_short_11, alt_short_12, alt_short_13,
1205 alt_short_14, alt_short_15
1206 };
1207 static const char *const alt_long_patt[] = {
1208 f32_1, f32_2, alt_3, alt_4, alt_5, alt_6, alt_7, alt_8,
1209 alt_9, alt_10, alt_long_11, alt_long_12, alt_long_13,
1210 alt_long_14, alt_long_15
1211 };
1212
1213 /* Only align for at least a positive non-zero boundary. */
1214 if (count <= 0 || count > MAX_MEM_FOR_RS_ALIGN_CODE)
1215 return;
1216
1217 /* We need to decide which NOP sequence to use for 32bit and
1218 64bit. When -mtune= is used:
1219
1220 1. For PROCESSOR_I386, PROCESSOR_I486, PROCESSOR_PENTIUM and
1221 PROCESSOR_GENERIC32, f32_patt will be used.
1222 2. For PROCESSOR_PENTIUMPRO, PROCESSOR_PENTIUM4, PROCESSOR_NOCONA,
1223 PROCESSOR_CORE, PROCESSOR_CORE2, PROCESSOR_COREI7, and
1224 PROCESSOR_GENERIC64, alt_long_patt will be used.
1225 3. For PROCESSOR_ATHLON, PROCESSOR_K6, PROCESSOR_K8 and
1226 PROCESSOR_AMDFAM10, PROCESSOR_BD and PROCESSOR_BT, alt_short_patt
1227 will be used.
1228
1229 When -mtune= isn't used, alt_long_patt will be used if
1230 cpu_arch_isa_flags has CpuNop. Otherwise, f32_patt will
1231 be used.
1232
1233 When -march= or .arch is used, we can't use anything beyond
1234 cpu_arch_isa_flags. */
1235
1236 if (flag_code == CODE_16BIT)
1237 {
1238 if (count > 8)
1239 {
1240 memcpy (fragP->fr_literal + fragP->fr_fix,
1241 jump_31, count);
1242 /* Adjust jump offset. */
1243 fragP->fr_literal[fragP->fr_fix + 1] = count - 2;
1244 }
1245 else
1246 memcpy (fragP->fr_literal + fragP->fr_fix,
1247 f16_patt[count - 1], count);
1248 }
1249 else
1250 {
1251 const char *const *patt = NULL;
1252
1253 if (fragP->tc_frag_data.isa == PROCESSOR_UNKNOWN)
1254 {
1255 /* PROCESSOR_UNKNOWN means that all ISAs may be used. */
1256 switch (cpu_arch_tune)
1257 {
1258 case PROCESSOR_UNKNOWN:
1259 /* We use cpu_arch_isa_flags to check if we SHOULD
1260 optimize with nops. */
1261 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1262 patt = alt_long_patt;
1263 else
1264 patt = f32_patt;
1265 break;
1266 case PROCESSOR_PENTIUM4:
1267 case PROCESSOR_NOCONA:
1268 case PROCESSOR_CORE:
1269 case PROCESSOR_CORE2:
1270 case PROCESSOR_COREI7:
1271 case PROCESSOR_L1OM:
1272 case PROCESSOR_K1OM:
1273 case PROCESSOR_GENERIC64:
1274 patt = alt_long_patt;
1275 break;
1276 case PROCESSOR_K6:
1277 case PROCESSOR_ATHLON:
1278 case PROCESSOR_K8:
1279 case PROCESSOR_AMDFAM10:
1280 case PROCESSOR_BD:
1281 case PROCESSOR_BT:
1282 patt = alt_short_patt;
1283 break;
1284 case PROCESSOR_I386:
1285 case PROCESSOR_I486:
1286 case PROCESSOR_PENTIUM:
1287 case PROCESSOR_PENTIUMPRO:
1288 case PROCESSOR_GENERIC32:
1289 patt = f32_patt;
1290 break;
1291 }
1292 }
1293 else
1294 {
1295 switch (fragP->tc_frag_data.tune)
1296 {
1297 case PROCESSOR_UNKNOWN:
1298 /* When cpu_arch_isa is set, cpu_arch_tune shouldn't be
1299 PROCESSOR_UNKNOWN. */
1300 abort ();
1301 break;
1302
1303 case PROCESSOR_I386:
1304 case PROCESSOR_I486:
1305 case PROCESSOR_PENTIUM:
1306 case PROCESSOR_K6:
1307 case PROCESSOR_ATHLON:
1308 case PROCESSOR_K8:
1309 case PROCESSOR_AMDFAM10:
1310 case PROCESSOR_BD:
1311 case PROCESSOR_BT:
1312 case PROCESSOR_GENERIC32:
1313 /* We use cpu_arch_isa_flags to check if we CAN optimize
1314 with nops. */
1315 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1316 patt = alt_short_patt;
1317 else
1318 patt = f32_patt;
1319 break;
1320 case PROCESSOR_PENTIUMPRO:
1321 case PROCESSOR_PENTIUM4:
1322 case PROCESSOR_NOCONA:
1323 case PROCESSOR_CORE:
1324 case PROCESSOR_CORE2:
1325 case PROCESSOR_COREI7:
1326 case PROCESSOR_L1OM:
1327 case PROCESSOR_K1OM:
1328 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1329 patt = alt_long_patt;
1330 else
1331 patt = f32_patt;
1332 break;
1333 case PROCESSOR_GENERIC64:
1334 patt = alt_long_patt;
1335 break;
1336 }
1337 }
1338
1339 if (patt == f32_patt)
1340 {
1341 /* If the padding is less than 15 bytes, we use the normal
1342 ones. Otherwise, we use a jump instruction and adjust
1343 its offset. */
1344 int limit;
1345
1346 /* For 64bit, the limit is 3 bytes. */
1347 if (flag_code == CODE_64BIT
1348 && fragP->tc_frag_data.isa_flags.bitfield.cpulm)
1349 limit = 3;
1350 else
1351 limit = 15;
1352 if (count < limit)
1353 memcpy (fragP->fr_literal + fragP->fr_fix,
1354 patt[count - 1], count);
1355 else
1356 {
1357 memcpy (fragP->fr_literal + fragP->fr_fix,
1358 jump_31, count);
1359 /* Adjust jump offset. */
1360 fragP->fr_literal[fragP->fr_fix + 1] = count - 2;
1361 }
1362 }
1363 else
1364 {
1365 /* Maximum length of an instruction is 15 byte. If the
1366 padding is greater than 15 bytes and we don't use jump,
1367 we have to break it into smaller pieces. */
1368 int padding = count;
1369 while (padding > 15)
1370 {
1371 padding -= 15;
1372 memcpy (fragP->fr_literal + fragP->fr_fix + padding,
1373 patt [14], 15);
1374 }
1375
1376 if (padding)
1377 memcpy (fragP->fr_literal + fragP->fr_fix,
1378 patt [padding - 1], padding);
1379 }
1380 }
1381 fragP->fr_var = count;
1382 }
1383
1384 static INLINE int
1385 operand_type_all_zero (const union i386_operand_type *x)
1386 {
1387 switch (ARRAY_SIZE(x->array))
1388 {
1389 case 3:
1390 if (x->array[2])
1391 return 0;
1392 case 2:
1393 if (x->array[1])
1394 return 0;
1395 case 1:
1396 return !x->array[0];
1397 default:
1398 abort ();
1399 }
1400 }
1401
1402 static INLINE void
1403 operand_type_set (union i386_operand_type *x, unsigned int v)
1404 {
1405 switch (ARRAY_SIZE(x->array))
1406 {
1407 case 3:
1408 x->array[2] = v;
1409 case 2:
1410 x->array[1] = v;
1411 case 1:
1412 x->array[0] = v;
1413 break;
1414 default:
1415 abort ();
1416 }
1417 }
1418
1419 static INLINE int
1420 operand_type_equal (const union i386_operand_type *x,
1421 const union i386_operand_type *y)
1422 {
1423 switch (ARRAY_SIZE(x->array))
1424 {
1425 case 3:
1426 if (x->array[2] != y->array[2])
1427 return 0;
1428 case 2:
1429 if (x->array[1] != y->array[1])
1430 return 0;
1431 case 1:
1432 return x->array[0] == y->array[0];
1433 break;
1434 default:
1435 abort ();
1436 }
1437 }
1438
1439 static INLINE int
1440 cpu_flags_all_zero (const union i386_cpu_flags *x)
1441 {
1442 switch (ARRAY_SIZE(x->array))
1443 {
1444 case 3:
1445 if (x->array[2])
1446 return 0;
1447 case 2:
1448 if (x->array[1])
1449 return 0;
1450 case 1:
1451 return !x->array[0];
1452 default:
1453 abort ();
1454 }
1455 }
1456
1457 static INLINE void
1458 cpu_flags_set (union i386_cpu_flags *x, unsigned int v)
1459 {
1460 switch (ARRAY_SIZE(x->array))
1461 {
1462 case 3:
1463 x->array[2] = v;
1464 case 2:
1465 x->array[1] = v;
1466 case 1:
1467 x->array[0] = v;
1468 break;
1469 default:
1470 abort ();
1471 }
1472 }
1473
1474 static INLINE int
1475 cpu_flags_equal (const union i386_cpu_flags *x,
1476 const union i386_cpu_flags *y)
1477 {
1478 switch (ARRAY_SIZE(x->array))
1479 {
1480 case 3:
1481 if (x->array[2] != y->array[2])
1482 return 0;
1483 case 2:
1484 if (x->array[1] != y->array[1])
1485 return 0;
1486 case 1:
1487 return x->array[0] == y->array[0];
1488 break;
1489 default:
1490 abort ();
1491 }
1492 }
1493
1494 static INLINE int
1495 cpu_flags_check_cpu64 (i386_cpu_flags f)
1496 {
1497 return !((flag_code == CODE_64BIT && f.bitfield.cpuno64)
1498 || (flag_code != CODE_64BIT && f.bitfield.cpu64));
1499 }
1500
1501 static INLINE i386_cpu_flags
1502 cpu_flags_and (i386_cpu_flags x, i386_cpu_flags y)
1503 {
1504 switch (ARRAY_SIZE (x.array))
1505 {
1506 case 3:
1507 x.array [2] &= y.array [2];
1508 case 2:
1509 x.array [1] &= y.array [1];
1510 case 1:
1511 x.array [0] &= y.array [0];
1512 break;
1513 default:
1514 abort ();
1515 }
1516 return x;
1517 }
1518
1519 static INLINE i386_cpu_flags
1520 cpu_flags_or (i386_cpu_flags x, i386_cpu_flags y)
1521 {
1522 switch (ARRAY_SIZE (x.array))
1523 {
1524 case 3:
1525 x.array [2] |= y.array [2];
1526 case 2:
1527 x.array [1] |= y.array [1];
1528 case 1:
1529 x.array [0] |= y.array [0];
1530 break;
1531 default:
1532 abort ();
1533 }
1534 return x;
1535 }
1536
1537 static INLINE i386_cpu_flags
1538 cpu_flags_and_not (i386_cpu_flags x, i386_cpu_flags y)
1539 {
1540 switch (ARRAY_SIZE (x.array))
1541 {
1542 case 3:
1543 x.array [2] &= ~y.array [2];
1544 case 2:
1545 x.array [1] &= ~y.array [1];
1546 case 1:
1547 x.array [0] &= ~y.array [0];
1548 break;
1549 default:
1550 abort ();
1551 }
1552 return x;
1553 }
1554
1555 #define CPU_FLAGS_ARCH_MATCH 0x1
1556 #define CPU_FLAGS_64BIT_MATCH 0x2
1557 #define CPU_FLAGS_AES_MATCH 0x4
1558 #define CPU_FLAGS_PCLMUL_MATCH 0x8
1559 #define CPU_FLAGS_AVX_MATCH 0x10
1560
1561 #define CPU_FLAGS_32BIT_MATCH \
1562 (CPU_FLAGS_ARCH_MATCH | CPU_FLAGS_AES_MATCH \
1563 | CPU_FLAGS_PCLMUL_MATCH | CPU_FLAGS_AVX_MATCH)
1564 #define CPU_FLAGS_PERFECT_MATCH \
1565 (CPU_FLAGS_32BIT_MATCH | CPU_FLAGS_64BIT_MATCH)
1566
1567 /* Return CPU flags match bits. */
1568
1569 static int
1570 cpu_flags_match (const insn_template *t)
1571 {
1572 i386_cpu_flags x = t->cpu_flags;
1573 int match = cpu_flags_check_cpu64 (x) ? CPU_FLAGS_64BIT_MATCH : 0;
1574
1575 x.bitfield.cpu64 = 0;
1576 x.bitfield.cpuno64 = 0;
1577
1578 if (cpu_flags_all_zero (&x))
1579 {
1580 /* This instruction is available on all archs. */
1581 match |= CPU_FLAGS_32BIT_MATCH;
1582 }
1583 else
1584 {
1585 /* This instruction is available only on some archs. */
1586 i386_cpu_flags cpu = cpu_arch_flags;
1587
1588 cpu.bitfield.cpu64 = 0;
1589 cpu.bitfield.cpuno64 = 0;
1590 cpu = cpu_flags_and (x, cpu);
1591 if (!cpu_flags_all_zero (&cpu))
1592 {
1593 if (x.bitfield.cpuavx)
1594 {
1595 /* We only need to check AES/PCLMUL/SSE2AVX with AVX. */
1596 if (cpu.bitfield.cpuavx)
1597 {
1598 /* Check SSE2AVX. */
1599 if (!t->opcode_modifier.sse2avx|| sse2avx)
1600 {
1601 match |= (CPU_FLAGS_ARCH_MATCH
1602 | CPU_FLAGS_AVX_MATCH);
1603 /* Check AES. */
1604 if (!x.bitfield.cpuaes || cpu.bitfield.cpuaes)
1605 match |= CPU_FLAGS_AES_MATCH;
1606 /* Check PCLMUL. */
1607 if (!x.bitfield.cpupclmul
1608 || cpu.bitfield.cpupclmul)
1609 match |= CPU_FLAGS_PCLMUL_MATCH;
1610 }
1611 }
1612 else
1613 match |= CPU_FLAGS_ARCH_MATCH;
1614 }
1615 else
1616 match |= CPU_FLAGS_32BIT_MATCH;
1617 }
1618 }
1619 return match;
1620 }
1621
1622 static INLINE i386_operand_type
1623 operand_type_and (i386_operand_type x, i386_operand_type y)
1624 {
1625 switch (ARRAY_SIZE (x.array))
1626 {
1627 case 3:
1628 x.array [2] &= y.array [2];
1629 case 2:
1630 x.array [1] &= y.array [1];
1631 case 1:
1632 x.array [0] &= y.array [0];
1633 break;
1634 default:
1635 abort ();
1636 }
1637 return x;
1638 }
1639
1640 static INLINE i386_operand_type
1641 operand_type_or (i386_operand_type x, i386_operand_type y)
1642 {
1643 switch (ARRAY_SIZE (x.array))
1644 {
1645 case 3:
1646 x.array [2] |= y.array [2];
1647 case 2:
1648 x.array [1] |= y.array [1];
1649 case 1:
1650 x.array [0] |= y.array [0];
1651 break;
1652 default:
1653 abort ();
1654 }
1655 return x;
1656 }
1657
1658 static INLINE i386_operand_type
1659 operand_type_xor (i386_operand_type x, i386_operand_type y)
1660 {
1661 switch (ARRAY_SIZE (x.array))
1662 {
1663 case 3:
1664 x.array [2] ^= y.array [2];
1665 case 2:
1666 x.array [1] ^= y.array [1];
1667 case 1:
1668 x.array [0] ^= y.array [0];
1669 break;
1670 default:
1671 abort ();
1672 }
1673 return x;
1674 }
1675
1676 static const i386_operand_type acc32 = OPERAND_TYPE_ACC32;
1677 static const i386_operand_type acc64 = OPERAND_TYPE_ACC64;
1678 static const i386_operand_type control = OPERAND_TYPE_CONTROL;
1679 static const i386_operand_type inoutportreg
1680 = OPERAND_TYPE_INOUTPORTREG;
1681 static const i386_operand_type reg16_inoutportreg
1682 = OPERAND_TYPE_REG16_INOUTPORTREG;
1683 static const i386_operand_type disp16 = OPERAND_TYPE_DISP16;
1684 static const i386_operand_type disp32 = OPERAND_TYPE_DISP32;
1685 static const i386_operand_type disp32s = OPERAND_TYPE_DISP32S;
1686 static const i386_operand_type disp16_32 = OPERAND_TYPE_DISP16_32;
1687 static const i386_operand_type anydisp
1688 = OPERAND_TYPE_ANYDISP;
1689 static const i386_operand_type regxmm = OPERAND_TYPE_REGXMM;
1690 static const i386_operand_type regymm = OPERAND_TYPE_REGYMM;
1691 static const i386_operand_type regzmm = OPERAND_TYPE_REGZMM;
1692 static const i386_operand_type regmask = OPERAND_TYPE_REGMASK;
1693 static const i386_operand_type imm8 = OPERAND_TYPE_IMM8;
1694 static const i386_operand_type imm8s = OPERAND_TYPE_IMM8S;
1695 static const i386_operand_type imm16 = OPERAND_TYPE_IMM16;
1696 static const i386_operand_type imm32 = OPERAND_TYPE_IMM32;
1697 static const i386_operand_type imm32s = OPERAND_TYPE_IMM32S;
1698 static const i386_operand_type imm64 = OPERAND_TYPE_IMM64;
1699 static const i386_operand_type imm16_32 = OPERAND_TYPE_IMM16_32;
1700 static const i386_operand_type imm16_32s = OPERAND_TYPE_IMM16_32S;
1701 static const i386_operand_type imm16_32_32s = OPERAND_TYPE_IMM16_32_32S;
1702 static const i386_operand_type vec_imm4 = OPERAND_TYPE_VEC_IMM4;
1703
1704 enum operand_type
1705 {
1706 reg,
1707 imm,
1708 disp,
1709 anymem
1710 };
1711
1712 static INLINE int
1713 operand_type_check (i386_operand_type t, enum operand_type c)
1714 {
1715 switch (c)
1716 {
1717 case reg:
1718 return (t.bitfield.reg8
1719 || t.bitfield.reg16
1720 || t.bitfield.reg32
1721 || t.bitfield.reg64);
1722
1723 case imm:
1724 return (t.bitfield.imm8
1725 || t.bitfield.imm8s
1726 || t.bitfield.imm16
1727 || t.bitfield.imm32
1728 || t.bitfield.imm32s
1729 || t.bitfield.imm64);
1730
1731 case disp:
1732 return (t.bitfield.disp8
1733 || t.bitfield.disp16
1734 || t.bitfield.disp32
1735 || t.bitfield.disp32s
1736 || t.bitfield.disp64);
1737
1738 case anymem:
1739 return (t.bitfield.disp8
1740 || t.bitfield.disp16
1741 || t.bitfield.disp32
1742 || t.bitfield.disp32s
1743 || t.bitfield.disp64
1744 || t.bitfield.baseindex);
1745
1746 default:
1747 abort ();
1748 }
1749
1750 return 0;
1751 }
1752
1753 /* Return 1 if there is no conflict in 8bit/16bit/32bit/64bit on
1754 operand J for instruction template T. */
1755
1756 static INLINE int
1757 match_reg_size (const insn_template *t, unsigned int j)
1758 {
1759 return !((i.types[j].bitfield.byte
1760 && !t->operand_types[j].bitfield.byte)
1761 || (i.types[j].bitfield.word
1762 && !t->operand_types[j].bitfield.word)
1763 || (i.types[j].bitfield.dword
1764 && !t->operand_types[j].bitfield.dword)
1765 || (i.types[j].bitfield.qword
1766 && !t->operand_types[j].bitfield.qword));
1767 }
1768
1769 /* Return 1 if there is no conflict in any size on operand J for
1770 instruction template T. */
1771
1772 static INLINE int
1773 match_mem_size (const insn_template *t, unsigned int j)
1774 {
1775 return (match_reg_size (t, j)
1776 && !((i.types[j].bitfield.unspecified
1777 && !t->operand_types[j].bitfield.unspecified)
1778 || (i.types[j].bitfield.fword
1779 && !t->operand_types[j].bitfield.fword)
1780 || (i.types[j].bitfield.tbyte
1781 && !t->operand_types[j].bitfield.tbyte)
1782 || (i.types[j].bitfield.xmmword
1783 && !t->operand_types[j].bitfield.xmmword)
1784 || (i.types[j].bitfield.ymmword
1785 && !t->operand_types[j].bitfield.ymmword)
1786 || (i.types[j].bitfield.zmmword
1787 && !t->operand_types[j].bitfield.zmmword)));
1788 }
1789
1790 /* Return 1 if there is no size conflict on any operands for
1791 instruction template T. */
1792
1793 static INLINE int
1794 operand_size_match (const insn_template *t)
1795 {
1796 unsigned int j;
1797 int match = 1;
1798
1799 /* Don't check jump instructions. */
1800 if (t->opcode_modifier.jump
1801 || t->opcode_modifier.jumpbyte
1802 || t->opcode_modifier.jumpdword
1803 || t->opcode_modifier.jumpintersegment)
1804 return match;
1805
1806 /* Check memory and accumulator operand size. */
1807 for (j = 0; j < i.operands; j++)
1808 {
1809 if (t->operand_types[j].bitfield.anysize)
1810 continue;
1811
1812 if (t->operand_types[j].bitfield.acc && !match_reg_size (t, j))
1813 {
1814 match = 0;
1815 break;
1816 }
1817
1818 if (i.types[j].bitfield.mem && !match_mem_size (t, j))
1819 {
1820 match = 0;
1821 break;
1822 }
1823 }
1824
1825 if (match)
1826 return match;
1827 else if (!t->opcode_modifier.d && !t->opcode_modifier.floatd)
1828 {
1829 mismatch:
1830 i.error = operand_size_mismatch;
1831 return 0;
1832 }
1833
1834 /* Check reverse. */
1835 gas_assert (i.operands == 2);
1836
1837 match = 1;
1838 for (j = 0; j < 2; j++)
1839 {
1840 if (t->operand_types[j].bitfield.acc
1841 && !match_reg_size (t, j ? 0 : 1))
1842 goto mismatch;
1843
1844 if (i.types[j].bitfield.mem
1845 && !match_mem_size (t, j ? 0 : 1))
1846 goto mismatch;
1847 }
1848
1849 return match;
1850 }
1851
1852 static INLINE int
1853 operand_type_match (i386_operand_type overlap,
1854 i386_operand_type given)
1855 {
1856 i386_operand_type temp = overlap;
1857
1858 temp.bitfield.jumpabsolute = 0;
1859 temp.bitfield.unspecified = 0;
1860 temp.bitfield.byte = 0;
1861 temp.bitfield.word = 0;
1862 temp.bitfield.dword = 0;
1863 temp.bitfield.fword = 0;
1864 temp.bitfield.qword = 0;
1865 temp.bitfield.tbyte = 0;
1866 temp.bitfield.xmmword = 0;
1867 temp.bitfield.ymmword = 0;
1868 temp.bitfield.zmmword = 0;
1869 if (operand_type_all_zero (&temp))
1870 goto mismatch;
1871
1872 if (given.bitfield.baseindex == overlap.bitfield.baseindex
1873 && given.bitfield.jumpabsolute == overlap.bitfield.jumpabsolute)
1874 return 1;
1875
1876 mismatch:
1877 i.error = operand_type_mismatch;
1878 return 0;
1879 }
1880
1881 /* If given types g0 and g1 are registers they must be of the same type
1882 unless the expected operand type register overlap is null.
1883 Note that Acc in a template matches every size of reg. */
1884
1885 static INLINE int
1886 operand_type_register_match (i386_operand_type m0,
1887 i386_operand_type g0,
1888 i386_operand_type t0,
1889 i386_operand_type m1,
1890 i386_operand_type g1,
1891 i386_operand_type t1)
1892 {
1893 if (!operand_type_check (g0, reg))
1894 return 1;
1895
1896 if (!operand_type_check (g1, reg))
1897 return 1;
1898
1899 if (g0.bitfield.reg8 == g1.bitfield.reg8
1900 && g0.bitfield.reg16 == g1.bitfield.reg16
1901 && g0.bitfield.reg32 == g1.bitfield.reg32
1902 && g0.bitfield.reg64 == g1.bitfield.reg64)
1903 return 1;
1904
1905 if (m0.bitfield.acc)
1906 {
1907 t0.bitfield.reg8 = 1;
1908 t0.bitfield.reg16 = 1;
1909 t0.bitfield.reg32 = 1;
1910 t0.bitfield.reg64 = 1;
1911 }
1912
1913 if (m1.bitfield.acc)
1914 {
1915 t1.bitfield.reg8 = 1;
1916 t1.bitfield.reg16 = 1;
1917 t1.bitfield.reg32 = 1;
1918 t1.bitfield.reg64 = 1;
1919 }
1920
1921 if (!(t0.bitfield.reg8 & t1.bitfield.reg8)
1922 && !(t0.bitfield.reg16 & t1.bitfield.reg16)
1923 && !(t0.bitfield.reg32 & t1.bitfield.reg32)
1924 && !(t0.bitfield.reg64 & t1.bitfield.reg64))
1925 return 1;
1926
1927 i.error = register_type_mismatch;
1928
1929 return 0;
1930 }
1931
1932 static INLINE unsigned int
1933 register_number (const reg_entry *r)
1934 {
1935 unsigned int nr = r->reg_num;
1936
1937 if (r->reg_flags & RegRex)
1938 nr += 8;
1939
1940 return nr;
1941 }
1942
1943 static INLINE unsigned int
1944 mode_from_disp_size (i386_operand_type t)
1945 {
1946 if (t.bitfield.disp8 || t.bitfield.vec_disp8)
1947 return 1;
1948 else if (t.bitfield.disp16
1949 || t.bitfield.disp32
1950 || t.bitfield.disp32s)
1951 return 2;
1952 else
1953 return 0;
1954 }
1955
1956 static INLINE int
1957 fits_in_signed_byte (addressT num)
1958 {
1959 return num + 0x80 <= 0xff;
1960 }
1961
1962 static INLINE int
1963 fits_in_unsigned_byte (addressT num)
1964 {
1965 return num <= 0xff;
1966 }
1967
1968 static INLINE int
1969 fits_in_unsigned_word (addressT num)
1970 {
1971 return num <= 0xffff;
1972 }
1973
1974 static INLINE int
1975 fits_in_signed_word (addressT num)
1976 {
1977 return num + 0x8000 <= 0xffff;
1978 }
1979
1980 static INLINE int
1981 fits_in_signed_long (addressT num ATTRIBUTE_UNUSED)
1982 {
1983 #ifndef BFD64
1984 return 1;
1985 #else
1986 return num + 0x80000000 <= 0xffffffff;
1987 #endif
1988 } /* fits_in_signed_long() */
1989
1990 static INLINE int
1991 fits_in_unsigned_long (addressT num ATTRIBUTE_UNUSED)
1992 {
1993 #ifndef BFD64
1994 return 1;
1995 #else
1996 return num <= 0xffffffff;
1997 #endif
1998 } /* fits_in_unsigned_long() */
1999
2000 static INLINE int
2001 fits_in_vec_disp8 (offsetT num)
2002 {
2003 int shift = i.memshift;
2004 unsigned int mask;
2005
2006 if (shift == -1)
2007 abort ();
2008
2009 mask = (1 << shift) - 1;
2010
2011 /* Return 0 if NUM isn't properly aligned. */
2012 if ((num & mask))
2013 return 0;
2014
2015 /* Check if NUM will fit in 8bit after shift. */
2016 return fits_in_signed_byte (num >> shift);
2017 }
2018
2019 static INLINE int
2020 fits_in_imm4 (offsetT num)
2021 {
2022 return (num & 0xf) == num;
2023 }
2024
2025 static i386_operand_type
2026 smallest_imm_type (offsetT num)
2027 {
2028 i386_operand_type t;
2029
2030 operand_type_set (&t, 0);
2031 t.bitfield.imm64 = 1;
2032
2033 if (cpu_arch_tune != PROCESSOR_I486 && num == 1)
2034 {
2035 /* This code is disabled on the 486 because all the Imm1 forms
2036 in the opcode table are slower on the i486. They're the
2037 versions with the implicitly specified single-position
2038 displacement, which has another syntax if you really want to
2039 use that form. */
2040 t.bitfield.imm1 = 1;
2041 t.bitfield.imm8 = 1;
2042 t.bitfield.imm8s = 1;
2043 t.bitfield.imm16 = 1;
2044 t.bitfield.imm32 = 1;
2045 t.bitfield.imm32s = 1;
2046 }
2047 else if (fits_in_signed_byte (num))
2048 {
2049 t.bitfield.imm8 = 1;
2050 t.bitfield.imm8s = 1;
2051 t.bitfield.imm16 = 1;
2052 t.bitfield.imm32 = 1;
2053 t.bitfield.imm32s = 1;
2054 }
2055 else if (fits_in_unsigned_byte (num))
2056 {
2057 t.bitfield.imm8 = 1;
2058 t.bitfield.imm16 = 1;
2059 t.bitfield.imm32 = 1;
2060 t.bitfield.imm32s = 1;
2061 }
2062 else if (fits_in_signed_word (num) || fits_in_unsigned_word (num))
2063 {
2064 t.bitfield.imm16 = 1;
2065 t.bitfield.imm32 = 1;
2066 t.bitfield.imm32s = 1;
2067 }
2068 else if (fits_in_signed_long (num))
2069 {
2070 t.bitfield.imm32 = 1;
2071 t.bitfield.imm32s = 1;
2072 }
2073 else if (fits_in_unsigned_long (num))
2074 t.bitfield.imm32 = 1;
2075
2076 return t;
2077 }
2078
2079 static offsetT
2080 offset_in_range (offsetT val, int size)
2081 {
2082 addressT mask;
2083
2084 switch (size)
2085 {
2086 case 1: mask = ((addressT) 1 << 8) - 1; break;
2087 case 2: mask = ((addressT) 1 << 16) - 1; break;
2088 case 4: mask = ((addressT) 2 << 31) - 1; break;
2089 #ifdef BFD64
2090 case 8: mask = ((addressT) 2 << 63) - 1; break;
2091 #endif
2092 default: abort ();
2093 }
2094
2095 #ifdef BFD64
2096 /* If BFD64, sign extend val for 32bit address mode. */
2097 if (flag_code != CODE_64BIT
2098 || i.prefix[ADDR_PREFIX])
2099 if ((val & ~(((addressT) 2 << 31) - 1)) == 0)
2100 val = (val ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
2101 #endif
2102
2103 if ((val & ~mask) != 0 && (val & ~mask) != ~mask)
2104 {
2105 char buf1[40], buf2[40];
2106
2107 sprint_value (buf1, val);
2108 sprint_value (buf2, val & mask);
2109 as_warn (_("%s shortened to %s"), buf1, buf2);
2110 }
2111 return val & mask;
2112 }
2113
2114 enum PREFIX_GROUP
2115 {
2116 PREFIX_EXIST = 0,
2117 PREFIX_LOCK,
2118 PREFIX_REP,
2119 PREFIX_OTHER
2120 };
2121
2122 /* Returns
2123 a. PREFIX_EXIST if attempting to add a prefix where one from the
2124 same class already exists.
2125 b. PREFIX_LOCK if lock prefix is added.
2126 c. PREFIX_REP if rep/repne prefix is added.
2127 d. PREFIX_OTHER if other prefix is added.
2128 */
2129
2130 static enum PREFIX_GROUP
2131 add_prefix (unsigned int prefix)
2132 {
2133 enum PREFIX_GROUP ret = PREFIX_OTHER;
2134 unsigned int q;
2135
2136 if (prefix >= REX_OPCODE && prefix < REX_OPCODE + 16
2137 && flag_code == CODE_64BIT)
2138 {
2139 if ((i.prefix[REX_PREFIX] & prefix & REX_W)
2140 || ((i.prefix[REX_PREFIX] & (REX_R | REX_X | REX_B))
2141 && (prefix & (REX_R | REX_X | REX_B))))
2142 ret = PREFIX_EXIST;
2143 q = REX_PREFIX;
2144 }
2145 else
2146 {
2147 switch (prefix)
2148 {
2149 default:
2150 abort ();
2151
2152 case CS_PREFIX_OPCODE:
2153 case DS_PREFIX_OPCODE:
2154 case ES_PREFIX_OPCODE:
2155 case FS_PREFIX_OPCODE:
2156 case GS_PREFIX_OPCODE:
2157 case SS_PREFIX_OPCODE:
2158 q = SEG_PREFIX;
2159 break;
2160
2161 case REPNE_PREFIX_OPCODE:
2162 case REPE_PREFIX_OPCODE:
2163 q = REP_PREFIX;
2164 ret = PREFIX_REP;
2165 break;
2166
2167 case LOCK_PREFIX_OPCODE:
2168 q = LOCK_PREFIX;
2169 ret = PREFIX_LOCK;
2170 break;
2171
2172 case FWAIT_OPCODE:
2173 q = WAIT_PREFIX;
2174 break;
2175
2176 case ADDR_PREFIX_OPCODE:
2177 q = ADDR_PREFIX;
2178 break;
2179
2180 case DATA_PREFIX_OPCODE:
2181 q = DATA_PREFIX;
2182 break;
2183 }
2184 if (i.prefix[q] != 0)
2185 ret = PREFIX_EXIST;
2186 }
2187
2188 if (ret)
2189 {
2190 if (!i.prefix[q])
2191 ++i.prefixes;
2192 i.prefix[q] |= prefix;
2193 }
2194 else
2195 as_bad (_("same type of prefix used twice"));
2196
2197 return ret;
2198 }
2199
2200 static void
2201 update_code_flag (int value, int check)
2202 {
2203 PRINTF_LIKE ((*as_error));
2204
2205 flag_code = (enum flag_code) value;
2206 if (flag_code == CODE_64BIT)
2207 {
2208 cpu_arch_flags.bitfield.cpu64 = 1;
2209 cpu_arch_flags.bitfield.cpuno64 = 0;
2210 }
2211 else
2212 {
2213 cpu_arch_flags.bitfield.cpu64 = 0;
2214 cpu_arch_flags.bitfield.cpuno64 = 1;
2215 }
2216 if (value == CODE_64BIT && !cpu_arch_flags.bitfield.cpulm )
2217 {
2218 if (check)
2219 as_error = as_fatal;
2220 else
2221 as_error = as_bad;
2222 (*as_error) (_("64bit mode not supported on `%s'."),
2223 cpu_arch_name ? cpu_arch_name : default_arch);
2224 }
2225 if (value == CODE_32BIT && !cpu_arch_flags.bitfield.cpui386)
2226 {
2227 if (check)
2228 as_error = as_fatal;
2229 else
2230 as_error = as_bad;
2231 (*as_error) (_("32bit mode not supported on `%s'."),
2232 cpu_arch_name ? cpu_arch_name : default_arch);
2233 }
2234 stackop_size = '\0';
2235 }
2236
2237 static void
2238 set_code_flag (int value)
2239 {
2240 update_code_flag (value, 0);
2241 }
2242
2243 static void
2244 set_16bit_gcc_code_flag (int new_code_flag)
2245 {
2246 flag_code = (enum flag_code) new_code_flag;
2247 if (flag_code != CODE_16BIT)
2248 abort ();
2249 cpu_arch_flags.bitfield.cpu64 = 0;
2250 cpu_arch_flags.bitfield.cpuno64 = 1;
2251 stackop_size = LONG_MNEM_SUFFIX;
2252 }
2253
2254 static void
2255 set_intel_syntax (int syntax_flag)
2256 {
2257 /* Find out if register prefixing is specified. */
2258 int ask_naked_reg = 0;
2259
2260 SKIP_WHITESPACE ();
2261 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2262 {
2263 char *string = input_line_pointer;
2264 int e = get_symbol_end ();
2265
2266 if (strcmp (string, "prefix") == 0)
2267 ask_naked_reg = 1;
2268 else if (strcmp (string, "noprefix") == 0)
2269 ask_naked_reg = -1;
2270 else
2271 as_bad (_("bad argument to syntax directive."));
2272 *input_line_pointer = e;
2273 }
2274 demand_empty_rest_of_line ();
2275
2276 intel_syntax = syntax_flag;
2277
2278 if (ask_naked_reg == 0)
2279 allow_naked_reg = (intel_syntax
2280 && (bfd_get_symbol_leading_char (stdoutput) != '\0'));
2281 else
2282 allow_naked_reg = (ask_naked_reg < 0);
2283
2284 expr_set_rank (O_full_ptr, syntax_flag ? 10 : 0);
2285
2286 identifier_chars['%'] = intel_syntax && allow_naked_reg ? '%' : 0;
2287 identifier_chars['$'] = intel_syntax ? '$' : 0;
2288 register_prefix = allow_naked_reg ? "" : "%";
2289 }
2290
2291 static void
2292 set_intel_mnemonic (int mnemonic_flag)
2293 {
2294 intel_mnemonic = mnemonic_flag;
2295 }
2296
2297 static void
2298 set_allow_index_reg (int flag)
2299 {
2300 allow_index_reg = flag;
2301 }
2302
2303 static void
2304 set_check (int what)
2305 {
2306 enum check_kind *kind;
2307 const char *str;
2308
2309 if (what)
2310 {
2311 kind = &operand_check;
2312 str = "operand";
2313 }
2314 else
2315 {
2316 kind = &sse_check;
2317 str = "sse";
2318 }
2319
2320 SKIP_WHITESPACE ();
2321
2322 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2323 {
2324 char *string = input_line_pointer;
2325 int e = get_symbol_end ();
2326
2327 if (strcmp (string, "none") == 0)
2328 *kind = check_none;
2329 else if (strcmp (string, "warning") == 0)
2330 *kind = check_warning;
2331 else if (strcmp (string, "error") == 0)
2332 *kind = check_error;
2333 else
2334 as_bad (_("bad argument to %s_check directive."), str);
2335 *input_line_pointer = e;
2336 }
2337 else
2338 as_bad (_("missing argument for %s_check directive"), str);
2339
2340 demand_empty_rest_of_line ();
2341 }
2342
2343 static void
2344 check_cpu_arch_compatible (const char *name ATTRIBUTE_UNUSED,
2345 i386_cpu_flags new_flag ATTRIBUTE_UNUSED)
2346 {
2347 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
2348 static const char *arch;
2349
2350 /* Intel LIOM is only supported on ELF. */
2351 if (!IS_ELF)
2352 return;
2353
2354 if (!arch)
2355 {
2356 /* Use cpu_arch_name if it is set in md_parse_option. Otherwise
2357 use default_arch. */
2358 arch = cpu_arch_name;
2359 if (!arch)
2360 arch = default_arch;
2361 }
2362
2363 /* If we are targeting Intel L1OM, we must enable it. */
2364 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_L1OM
2365 || new_flag.bitfield.cpul1om)
2366 return;
2367
2368 /* If we are targeting Intel K1OM, we must enable it. */
2369 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_K1OM
2370 || new_flag.bitfield.cpuk1om)
2371 return;
2372
2373 as_bad (_("`%s' is not supported on `%s'"), name, arch);
2374 #endif
2375 }
2376
2377 static void
2378 set_cpu_arch (int dummy ATTRIBUTE_UNUSED)
2379 {
2380 SKIP_WHITESPACE ();
2381
2382 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2383 {
2384 char *string = input_line_pointer;
2385 int e = get_symbol_end ();
2386 unsigned int j;
2387 i386_cpu_flags flags;
2388
2389 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
2390 {
2391 if (strcmp (string, cpu_arch[j].name) == 0)
2392 {
2393 check_cpu_arch_compatible (string, cpu_arch[j].flags);
2394
2395 if (*string != '.')
2396 {
2397 cpu_arch_name = cpu_arch[j].name;
2398 cpu_sub_arch_name = NULL;
2399 cpu_arch_flags = cpu_arch[j].flags;
2400 if (flag_code == CODE_64BIT)
2401 {
2402 cpu_arch_flags.bitfield.cpu64 = 1;
2403 cpu_arch_flags.bitfield.cpuno64 = 0;
2404 }
2405 else
2406 {
2407 cpu_arch_flags.bitfield.cpu64 = 0;
2408 cpu_arch_flags.bitfield.cpuno64 = 1;
2409 }
2410 cpu_arch_isa = cpu_arch[j].type;
2411 cpu_arch_isa_flags = cpu_arch[j].flags;
2412 if (!cpu_arch_tune_set)
2413 {
2414 cpu_arch_tune = cpu_arch_isa;
2415 cpu_arch_tune_flags = cpu_arch_isa_flags;
2416 }
2417 break;
2418 }
2419
2420 if (!cpu_arch[j].negated)
2421 flags = cpu_flags_or (cpu_arch_flags,
2422 cpu_arch[j].flags);
2423 else
2424 flags = cpu_flags_and_not (cpu_arch_flags,
2425 cpu_arch[j].flags);
2426 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
2427 {
2428 if (cpu_sub_arch_name)
2429 {
2430 char *name = cpu_sub_arch_name;
2431 cpu_sub_arch_name = concat (name,
2432 cpu_arch[j].name,
2433 (const char *) NULL);
2434 free (name);
2435 }
2436 else
2437 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
2438 cpu_arch_flags = flags;
2439 cpu_arch_isa_flags = flags;
2440 }
2441 *input_line_pointer = e;
2442 demand_empty_rest_of_line ();
2443 return;
2444 }
2445 }
2446 if (j >= ARRAY_SIZE (cpu_arch))
2447 as_bad (_("no such architecture: `%s'"), string);
2448
2449 *input_line_pointer = e;
2450 }
2451 else
2452 as_bad (_("missing cpu architecture"));
2453
2454 no_cond_jump_promotion = 0;
2455 if (*input_line_pointer == ','
2456 && !is_end_of_line[(unsigned char) input_line_pointer[1]])
2457 {
2458 char *string = ++input_line_pointer;
2459 int e = get_symbol_end ();
2460
2461 if (strcmp (string, "nojumps") == 0)
2462 no_cond_jump_promotion = 1;
2463 else if (strcmp (string, "jumps") == 0)
2464 ;
2465 else
2466 as_bad (_("no such architecture modifier: `%s'"), string);
2467
2468 *input_line_pointer = e;
2469 }
2470
2471 demand_empty_rest_of_line ();
2472 }
2473
2474 enum bfd_architecture
2475 i386_arch (void)
2476 {
2477 if (cpu_arch_isa == PROCESSOR_L1OM)
2478 {
2479 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2480 || flag_code != CODE_64BIT)
2481 as_fatal (_("Intel L1OM is 64bit ELF only"));
2482 return bfd_arch_l1om;
2483 }
2484 else if (cpu_arch_isa == PROCESSOR_K1OM)
2485 {
2486 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2487 || flag_code != CODE_64BIT)
2488 as_fatal (_("Intel K1OM is 64bit ELF only"));
2489 return bfd_arch_k1om;
2490 }
2491 else
2492 return bfd_arch_i386;
2493 }
2494
2495 unsigned long
2496 i386_mach (void)
2497 {
2498 if (!strncmp (default_arch, "x86_64", 6))
2499 {
2500 if (cpu_arch_isa == PROCESSOR_L1OM)
2501 {
2502 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2503 || default_arch[6] != '\0')
2504 as_fatal (_("Intel L1OM is 64bit ELF only"));
2505 return bfd_mach_l1om;
2506 }
2507 else if (cpu_arch_isa == PROCESSOR_K1OM)
2508 {
2509 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2510 || default_arch[6] != '\0')
2511 as_fatal (_("Intel K1OM is 64bit ELF only"));
2512 return bfd_mach_k1om;
2513 }
2514 else if (default_arch[6] == '\0')
2515 return bfd_mach_x86_64;
2516 else
2517 return bfd_mach_x64_32;
2518 }
2519 else if (!strcmp (default_arch, "i386"))
2520 return bfd_mach_i386_i386;
2521 else
2522 as_fatal (_("unknown architecture"));
2523 }
2524 \f
2525 void
2526 md_begin (void)
2527 {
2528 const char *hash_err;
2529
2530 /* Initialize op_hash hash table. */
2531 op_hash = hash_new ();
2532
2533 {
2534 const insn_template *optab;
2535 templates *core_optab;
2536
2537 /* Setup for loop. */
2538 optab = i386_optab;
2539 core_optab = (templates *) xmalloc (sizeof (templates));
2540 core_optab->start = optab;
2541
2542 while (1)
2543 {
2544 ++optab;
2545 if (optab->name == NULL
2546 || strcmp (optab->name, (optab - 1)->name) != 0)
2547 {
2548 /* different name --> ship out current template list;
2549 add to hash table; & begin anew. */
2550 core_optab->end = optab;
2551 hash_err = hash_insert (op_hash,
2552 (optab - 1)->name,
2553 (void *) core_optab);
2554 if (hash_err)
2555 {
2556 as_fatal (_("can't hash %s: %s"),
2557 (optab - 1)->name,
2558 hash_err);
2559 }
2560 if (optab->name == NULL)
2561 break;
2562 core_optab = (templates *) xmalloc (sizeof (templates));
2563 core_optab->start = optab;
2564 }
2565 }
2566 }
2567
2568 /* Initialize reg_hash hash table. */
2569 reg_hash = hash_new ();
2570 {
2571 const reg_entry *regtab;
2572 unsigned int regtab_size = i386_regtab_size;
2573
2574 for (regtab = i386_regtab; regtab_size--; regtab++)
2575 {
2576 hash_err = hash_insert (reg_hash, regtab->reg_name, (void *) regtab);
2577 if (hash_err)
2578 as_fatal (_("can't hash %s: %s"),
2579 regtab->reg_name,
2580 hash_err);
2581 }
2582 }
2583
2584 /* Fill in lexical tables: mnemonic_chars, operand_chars. */
2585 {
2586 int c;
2587 char *p;
2588
2589 for (c = 0; c < 256; c++)
2590 {
2591 if (ISDIGIT (c))
2592 {
2593 digit_chars[c] = c;
2594 mnemonic_chars[c] = c;
2595 register_chars[c] = c;
2596 operand_chars[c] = c;
2597 }
2598 else if (ISLOWER (c))
2599 {
2600 mnemonic_chars[c] = c;
2601 register_chars[c] = c;
2602 operand_chars[c] = c;
2603 }
2604 else if (ISUPPER (c))
2605 {
2606 mnemonic_chars[c] = TOLOWER (c);
2607 register_chars[c] = mnemonic_chars[c];
2608 operand_chars[c] = c;
2609 }
2610 else if (c == '{' || c == '}')
2611 operand_chars[c] = c;
2612
2613 if (ISALPHA (c) || ISDIGIT (c))
2614 identifier_chars[c] = c;
2615 else if (c >= 128)
2616 {
2617 identifier_chars[c] = c;
2618 operand_chars[c] = c;
2619 }
2620 }
2621
2622 #ifdef LEX_AT
2623 identifier_chars['@'] = '@';
2624 #endif
2625 #ifdef LEX_QM
2626 identifier_chars['?'] = '?';
2627 operand_chars['?'] = '?';
2628 #endif
2629 digit_chars['-'] = '-';
2630 mnemonic_chars['_'] = '_';
2631 mnemonic_chars['-'] = '-';
2632 mnemonic_chars['.'] = '.';
2633 identifier_chars['_'] = '_';
2634 identifier_chars['.'] = '.';
2635
2636 for (p = operand_special_chars; *p != '\0'; p++)
2637 operand_chars[(unsigned char) *p] = *p;
2638 }
2639
2640 if (flag_code == CODE_64BIT)
2641 {
2642 #if defined (OBJ_COFF) && defined (TE_PE)
2643 x86_dwarf2_return_column = (OUTPUT_FLAVOR == bfd_target_coff_flavour
2644 ? 32 : 16);
2645 #else
2646 x86_dwarf2_return_column = 16;
2647 #endif
2648 x86_cie_data_alignment = -8;
2649 }
2650 else
2651 {
2652 x86_dwarf2_return_column = 8;
2653 x86_cie_data_alignment = -4;
2654 }
2655 }
2656
2657 void
2658 i386_print_statistics (FILE *file)
2659 {
2660 hash_print_statistics (file, "i386 opcode", op_hash);
2661 hash_print_statistics (file, "i386 register", reg_hash);
2662 }
2663 \f
2664 #ifdef DEBUG386
2665
2666 /* Debugging routines for md_assemble. */
2667 static void pte (insn_template *);
2668 static void pt (i386_operand_type);
2669 static void pe (expressionS *);
2670 static void ps (symbolS *);
2671
2672 static void
2673 pi (char *line, i386_insn *x)
2674 {
2675 unsigned int j;
2676
2677 fprintf (stdout, "%s: template ", line);
2678 pte (&x->tm);
2679 fprintf (stdout, " address: base %s index %s scale %x\n",
2680 x->base_reg ? x->base_reg->reg_name : "none",
2681 x->index_reg ? x->index_reg->reg_name : "none",
2682 x->log2_scale_factor);
2683 fprintf (stdout, " modrm: mode %x reg %x reg/mem %x\n",
2684 x->rm.mode, x->rm.reg, x->rm.regmem);
2685 fprintf (stdout, " sib: base %x index %x scale %x\n",
2686 x->sib.base, x->sib.index, x->sib.scale);
2687 fprintf (stdout, " rex: 64bit %x extX %x extY %x extZ %x\n",
2688 (x->rex & REX_W) != 0,
2689 (x->rex & REX_R) != 0,
2690 (x->rex & REX_X) != 0,
2691 (x->rex & REX_B) != 0);
2692 for (j = 0; j < x->operands; j++)
2693 {
2694 fprintf (stdout, " #%d: ", j + 1);
2695 pt (x->types[j]);
2696 fprintf (stdout, "\n");
2697 if (x->types[j].bitfield.reg8
2698 || x->types[j].bitfield.reg16
2699 || x->types[j].bitfield.reg32
2700 || x->types[j].bitfield.reg64
2701 || x->types[j].bitfield.regmmx
2702 || x->types[j].bitfield.regxmm
2703 || x->types[j].bitfield.regymm
2704 || x->types[j].bitfield.regzmm
2705 || x->types[j].bitfield.sreg2
2706 || x->types[j].bitfield.sreg3
2707 || x->types[j].bitfield.control
2708 || x->types[j].bitfield.debug
2709 || x->types[j].bitfield.test)
2710 fprintf (stdout, "%s\n", x->op[j].regs->reg_name);
2711 if (operand_type_check (x->types[j], imm))
2712 pe (x->op[j].imms);
2713 if (operand_type_check (x->types[j], disp))
2714 pe (x->op[j].disps);
2715 }
2716 }
2717
2718 static void
2719 pte (insn_template *t)
2720 {
2721 unsigned int j;
2722 fprintf (stdout, " %d operands ", t->operands);
2723 fprintf (stdout, "opcode %x ", t->base_opcode);
2724 if (t->extension_opcode != None)
2725 fprintf (stdout, "ext %x ", t->extension_opcode);
2726 if (t->opcode_modifier.d)
2727 fprintf (stdout, "D");
2728 if (t->opcode_modifier.w)
2729 fprintf (stdout, "W");
2730 fprintf (stdout, "\n");
2731 for (j = 0; j < t->operands; j++)
2732 {
2733 fprintf (stdout, " #%d type ", j + 1);
2734 pt (t->operand_types[j]);
2735 fprintf (stdout, "\n");
2736 }
2737 }
2738
2739 static void
2740 pe (expressionS *e)
2741 {
2742 fprintf (stdout, " operation %d\n", e->X_op);
2743 fprintf (stdout, " add_number %ld (%lx)\n",
2744 (long) e->X_add_number, (long) e->X_add_number);
2745 if (e->X_add_symbol)
2746 {
2747 fprintf (stdout, " add_symbol ");
2748 ps (e->X_add_symbol);
2749 fprintf (stdout, "\n");
2750 }
2751 if (e->X_op_symbol)
2752 {
2753 fprintf (stdout, " op_symbol ");
2754 ps (e->X_op_symbol);
2755 fprintf (stdout, "\n");
2756 }
2757 }
2758
2759 static void
2760 ps (symbolS *s)
2761 {
2762 fprintf (stdout, "%s type %s%s",
2763 S_GET_NAME (s),
2764 S_IS_EXTERNAL (s) ? "EXTERNAL " : "",
2765 segment_name (S_GET_SEGMENT (s)));
2766 }
2767
2768 static struct type_name
2769 {
2770 i386_operand_type mask;
2771 const char *name;
2772 }
2773 const type_names[] =
2774 {
2775 { OPERAND_TYPE_REG8, "r8" },
2776 { OPERAND_TYPE_REG16, "r16" },
2777 { OPERAND_TYPE_REG32, "r32" },
2778 { OPERAND_TYPE_REG64, "r64" },
2779 { OPERAND_TYPE_IMM8, "i8" },
2780 { OPERAND_TYPE_IMM8, "i8s" },
2781 { OPERAND_TYPE_IMM16, "i16" },
2782 { OPERAND_TYPE_IMM32, "i32" },
2783 { OPERAND_TYPE_IMM32S, "i32s" },
2784 { OPERAND_TYPE_IMM64, "i64" },
2785 { OPERAND_TYPE_IMM1, "i1" },
2786 { OPERAND_TYPE_BASEINDEX, "BaseIndex" },
2787 { OPERAND_TYPE_DISP8, "d8" },
2788 { OPERAND_TYPE_DISP16, "d16" },
2789 { OPERAND_TYPE_DISP32, "d32" },
2790 { OPERAND_TYPE_DISP32S, "d32s" },
2791 { OPERAND_TYPE_DISP64, "d64" },
2792 { OPERAND_TYPE_VEC_DISP8, "Vector d8" },
2793 { OPERAND_TYPE_INOUTPORTREG, "InOutPortReg" },
2794 { OPERAND_TYPE_SHIFTCOUNT, "ShiftCount" },
2795 { OPERAND_TYPE_CONTROL, "control reg" },
2796 { OPERAND_TYPE_TEST, "test reg" },
2797 { OPERAND_TYPE_DEBUG, "debug reg" },
2798 { OPERAND_TYPE_FLOATREG, "FReg" },
2799 { OPERAND_TYPE_FLOATACC, "FAcc" },
2800 { OPERAND_TYPE_SREG2, "SReg2" },
2801 { OPERAND_TYPE_SREG3, "SReg3" },
2802 { OPERAND_TYPE_ACC, "Acc" },
2803 { OPERAND_TYPE_JUMPABSOLUTE, "Jump Absolute" },
2804 { OPERAND_TYPE_REGMMX, "rMMX" },
2805 { OPERAND_TYPE_REGXMM, "rXMM" },
2806 { OPERAND_TYPE_REGYMM, "rYMM" },
2807 { OPERAND_TYPE_REGZMM, "rZMM" },
2808 { OPERAND_TYPE_REGMASK, "Mask reg" },
2809 { OPERAND_TYPE_ESSEG, "es" },
2810 };
2811
2812 static void
2813 pt (i386_operand_type t)
2814 {
2815 unsigned int j;
2816 i386_operand_type a;
2817
2818 for (j = 0; j < ARRAY_SIZE (type_names); j++)
2819 {
2820 a = operand_type_and (t, type_names[j].mask);
2821 if (!operand_type_all_zero (&a))
2822 fprintf (stdout, "%s, ", type_names[j].name);
2823 }
2824 fflush (stdout);
2825 }
2826
2827 #endif /* DEBUG386 */
2828 \f
2829 static bfd_reloc_code_real_type
2830 reloc (unsigned int size,
2831 int pcrel,
2832 int sign,
2833 int bnd_prefix,
2834 bfd_reloc_code_real_type other)
2835 {
2836 if (other != NO_RELOC)
2837 {
2838 reloc_howto_type *rel;
2839
2840 if (size == 8)
2841 switch (other)
2842 {
2843 case BFD_RELOC_X86_64_GOT32:
2844 return BFD_RELOC_X86_64_GOT64;
2845 break;
2846 case BFD_RELOC_X86_64_GOTPLT64:
2847 return BFD_RELOC_X86_64_GOTPLT64;
2848 break;
2849 case BFD_RELOC_X86_64_PLTOFF64:
2850 return BFD_RELOC_X86_64_PLTOFF64;
2851 break;
2852 case BFD_RELOC_X86_64_GOTPC32:
2853 other = BFD_RELOC_X86_64_GOTPC64;
2854 break;
2855 case BFD_RELOC_X86_64_GOTPCREL:
2856 other = BFD_RELOC_X86_64_GOTPCREL64;
2857 break;
2858 case BFD_RELOC_X86_64_TPOFF32:
2859 other = BFD_RELOC_X86_64_TPOFF64;
2860 break;
2861 case BFD_RELOC_X86_64_DTPOFF32:
2862 other = BFD_RELOC_X86_64_DTPOFF64;
2863 break;
2864 default:
2865 break;
2866 }
2867
2868 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
2869 if (other == BFD_RELOC_SIZE32)
2870 {
2871 if (size == 8)
2872 other = BFD_RELOC_SIZE64;
2873 if (pcrel)
2874 {
2875 as_bad (_("there are no pc-relative size relocations"));
2876 return NO_RELOC;
2877 }
2878 }
2879 #endif
2880
2881 /* Sign-checking 4-byte relocations in 16-/32-bit code is pointless. */
2882 if (size == 4 && (flag_code != CODE_64BIT || disallow_64bit_reloc))
2883 sign = -1;
2884
2885 rel = bfd_reloc_type_lookup (stdoutput, other);
2886 if (!rel)
2887 as_bad (_("unknown relocation (%u)"), other);
2888 else if (size != bfd_get_reloc_size (rel))
2889 as_bad (_("%u-byte relocation cannot be applied to %u-byte field"),
2890 bfd_get_reloc_size (rel),
2891 size);
2892 else if (pcrel && !rel->pc_relative)
2893 as_bad (_("non-pc-relative relocation for pc-relative field"));
2894 else if ((rel->complain_on_overflow == complain_overflow_signed
2895 && !sign)
2896 || (rel->complain_on_overflow == complain_overflow_unsigned
2897 && sign > 0))
2898 as_bad (_("relocated field and relocation type differ in signedness"));
2899 else
2900 return other;
2901 return NO_RELOC;
2902 }
2903
2904 if (pcrel)
2905 {
2906 if (!sign)
2907 as_bad (_("there are no unsigned pc-relative relocations"));
2908 switch (size)
2909 {
2910 case 1: return BFD_RELOC_8_PCREL;
2911 case 2: return BFD_RELOC_16_PCREL;
2912 case 4: return (bnd_prefix && object_64bit
2913 ? BFD_RELOC_X86_64_PC32_BND
2914 : BFD_RELOC_32_PCREL);
2915 case 8: return BFD_RELOC_64_PCREL;
2916 }
2917 as_bad (_("cannot do %u byte pc-relative relocation"), size);
2918 }
2919 else
2920 {
2921 if (sign > 0)
2922 switch (size)
2923 {
2924 case 4: return BFD_RELOC_X86_64_32S;
2925 }
2926 else
2927 switch (size)
2928 {
2929 case 1: return BFD_RELOC_8;
2930 case 2: return BFD_RELOC_16;
2931 case 4: return BFD_RELOC_32;
2932 case 8: return BFD_RELOC_64;
2933 }
2934 as_bad (_("cannot do %s %u byte relocation"),
2935 sign > 0 ? "signed" : "unsigned", size);
2936 }
2937
2938 return NO_RELOC;
2939 }
2940
2941 /* Here we decide which fixups can be adjusted to make them relative to
2942 the beginning of the section instead of the symbol. Basically we need
2943 to make sure that the dynamic relocations are done correctly, so in
2944 some cases we force the original symbol to be used. */
2945
2946 int
2947 tc_i386_fix_adjustable (fixS *fixP ATTRIBUTE_UNUSED)
2948 {
2949 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
2950 if (!IS_ELF)
2951 return 1;
2952
2953 /* Don't adjust pc-relative references to merge sections in 64-bit
2954 mode. */
2955 if (use_rela_relocations
2956 && (S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_MERGE) != 0
2957 && fixP->fx_pcrel)
2958 return 0;
2959
2960 /* The x86_64 GOTPCREL are represented as 32bit PCrel relocations
2961 and changed later by validate_fix. */
2962 if (GOT_symbol && fixP->fx_subsy == GOT_symbol
2963 && fixP->fx_r_type == BFD_RELOC_32_PCREL)
2964 return 0;
2965
2966 /* Adjust_reloc_syms doesn't know about the GOT. Need to keep symbol
2967 for size relocations. */
2968 if (fixP->fx_r_type == BFD_RELOC_SIZE32
2969 || fixP->fx_r_type == BFD_RELOC_SIZE64
2970 || fixP->fx_r_type == BFD_RELOC_386_GOTOFF
2971 || fixP->fx_r_type == BFD_RELOC_386_PLT32
2972 || fixP->fx_r_type == BFD_RELOC_386_GOT32
2973 || fixP->fx_r_type == BFD_RELOC_386_TLS_GD
2974 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDM
2975 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDO_32
2976 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE_32
2977 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE
2978 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTIE
2979 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE_32
2980 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE
2981 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTDESC
2982 || fixP->fx_r_type == BFD_RELOC_386_TLS_DESC_CALL
2983 || fixP->fx_r_type == BFD_RELOC_X86_64_PLT32
2984 || fixP->fx_r_type == BFD_RELOC_X86_64_GOT32
2985 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCREL
2986 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSGD
2987 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSLD
2988 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF32
2989 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF64
2990 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTTPOFF
2991 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF32
2992 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF64
2993 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTOFF64
2994 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPC32_TLSDESC
2995 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSDESC_CALL
2996 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
2997 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
2998 return 0;
2999 #endif
3000 return 1;
3001 }
3002
3003 static int
3004 intel_float_operand (const char *mnemonic)
3005 {
3006 /* Note that the value returned is meaningful only for opcodes with (memory)
3007 operands, hence the code here is free to improperly handle opcodes that
3008 have no operands (for better performance and smaller code). */
3009
3010 if (mnemonic[0] != 'f')
3011 return 0; /* non-math */
3012
3013 switch (mnemonic[1])
3014 {
3015 /* fclex, fdecstp, fdisi, femms, feni, fincstp, finit, fsetpm, and
3016 the fs segment override prefix not currently handled because no
3017 call path can make opcodes without operands get here */
3018 case 'i':
3019 return 2 /* integer op */;
3020 case 'l':
3021 if (mnemonic[2] == 'd' && (mnemonic[3] == 'c' || mnemonic[3] == 'e'))
3022 return 3; /* fldcw/fldenv */
3023 break;
3024 case 'n':
3025 if (mnemonic[2] != 'o' /* fnop */)
3026 return 3; /* non-waiting control op */
3027 break;
3028 case 'r':
3029 if (mnemonic[2] == 's')
3030 return 3; /* frstor/frstpm */
3031 break;
3032 case 's':
3033 if (mnemonic[2] == 'a')
3034 return 3; /* fsave */
3035 if (mnemonic[2] == 't')
3036 {
3037 switch (mnemonic[3])
3038 {
3039 case 'c': /* fstcw */
3040 case 'd': /* fstdw */
3041 case 'e': /* fstenv */
3042 case 's': /* fsts[gw] */
3043 return 3;
3044 }
3045 }
3046 break;
3047 case 'x':
3048 if (mnemonic[2] == 'r' || mnemonic[2] == 's')
3049 return 0; /* fxsave/fxrstor are not really math ops */
3050 break;
3051 }
3052
3053 return 1;
3054 }
3055
3056 /* Build the VEX prefix. */
3057
3058 static void
3059 build_vex_prefix (const insn_template *t)
3060 {
3061 unsigned int register_specifier;
3062 unsigned int implied_prefix;
3063 unsigned int vector_length;
3064
3065 /* Check register specifier. */
3066 if (i.vex.register_specifier)
3067 {
3068 register_specifier =
3069 ~register_number (i.vex.register_specifier) & 0xf;
3070 gas_assert ((i.vex.register_specifier->reg_flags & RegVRex) == 0);
3071 }
3072 else
3073 register_specifier = 0xf;
3074
3075 /* Use 2-byte VEX prefix by swappping destination and source
3076 operand. */
3077 if (!i.swap_operand
3078 && i.operands == i.reg_operands
3079 && i.tm.opcode_modifier.vexopcode == VEX0F
3080 && i.tm.opcode_modifier.s
3081 && i.rex == REX_B)
3082 {
3083 unsigned int xchg = i.operands - 1;
3084 union i386_op temp_op;
3085 i386_operand_type temp_type;
3086
3087 temp_type = i.types[xchg];
3088 i.types[xchg] = i.types[0];
3089 i.types[0] = temp_type;
3090 temp_op = i.op[xchg];
3091 i.op[xchg] = i.op[0];
3092 i.op[0] = temp_op;
3093
3094 gas_assert (i.rm.mode == 3);
3095
3096 i.rex = REX_R;
3097 xchg = i.rm.regmem;
3098 i.rm.regmem = i.rm.reg;
3099 i.rm.reg = xchg;
3100
3101 /* Use the next insn. */
3102 i.tm = t[1];
3103 }
3104
3105 if (i.tm.opcode_modifier.vex == VEXScalar)
3106 vector_length = avxscalar;
3107 else
3108 vector_length = i.tm.opcode_modifier.vex == VEX256 ? 1 : 0;
3109
3110 switch ((i.tm.base_opcode >> 8) & 0xff)
3111 {
3112 case 0:
3113 implied_prefix = 0;
3114 break;
3115 case DATA_PREFIX_OPCODE:
3116 implied_prefix = 1;
3117 break;
3118 case REPE_PREFIX_OPCODE:
3119 implied_prefix = 2;
3120 break;
3121 case REPNE_PREFIX_OPCODE:
3122 implied_prefix = 3;
3123 break;
3124 default:
3125 abort ();
3126 }
3127
3128 /* Use 2-byte VEX prefix if possible. */
3129 if (i.tm.opcode_modifier.vexopcode == VEX0F
3130 && i.tm.opcode_modifier.vexw != VEXW1
3131 && (i.rex & (REX_W | REX_X | REX_B)) == 0)
3132 {
3133 /* 2-byte VEX prefix. */
3134 unsigned int r;
3135
3136 i.vex.length = 2;
3137 i.vex.bytes[0] = 0xc5;
3138
3139 /* Check the REX.R bit. */
3140 r = (i.rex & REX_R) ? 0 : 1;
3141 i.vex.bytes[1] = (r << 7
3142 | register_specifier << 3
3143 | vector_length << 2
3144 | implied_prefix);
3145 }
3146 else
3147 {
3148 /* 3-byte VEX prefix. */
3149 unsigned int m, w;
3150
3151 i.vex.length = 3;
3152
3153 switch (i.tm.opcode_modifier.vexopcode)
3154 {
3155 case VEX0F:
3156 m = 0x1;
3157 i.vex.bytes[0] = 0xc4;
3158 break;
3159 case VEX0F38:
3160 m = 0x2;
3161 i.vex.bytes[0] = 0xc4;
3162 break;
3163 case VEX0F3A:
3164 m = 0x3;
3165 i.vex.bytes[0] = 0xc4;
3166 break;
3167 case XOP08:
3168 m = 0x8;
3169 i.vex.bytes[0] = 0x8f;
3170 break;
3171 case XOP09:
3172 m = 0x9;
3173 i.vex.bytes[0] = 0x8f;
3174 break;
3175 case XOP0A:
3176 m = 0xa;
3177 i.vex.bytes[0] = 0x8f;
3178 break;
3179 default:
3180 abort ();
3181 }
3182
3183 /* The high 3 bits of the second VEX byte are 1's compliment
3184 of RXB bits from REX. */
3185 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3186
3187 /* Check the REX.W bit. */
3188 w = (i.rex & REX_W) ? 1 : 0;
3189 if (i.tm.opcode_modifier.vexw == VEXW1)
3190 w = 1;
3191
3192 i.vex.bytes[2] = (w << 7
3193 | register_specifier << 3
3194 | vector_length << 2
3195 | implied_prefix);
3196 }
3197 }
3198
3199 /* Build the EVEX prefix. */
3200
3201 static void
3202 build_evex_prefix (void)
3203 {
3204 unsigned int register_specifier;
3205 unsigned int implied_prefix;
3206 unsigned int m, w;
3207 rex_byte vrex_used = 0;
3208
3209 /* Check register specifier. */
3210 if (i.vex.register_specifier)
3211 {
3212 gas_assert ((i.vrex & REX_X) == 0);
3213
3214 register_specifier = i.vex.register_specifier->reg_num;
3215 if ((i.vex.register_specifier->reg_flags & RegRex))
3216 register_specifier += 8;
3217 /* The upper 16 registers are encoded in the fourth byte of the
3218 EVEX prefix. */
3219 if (!(i.vex.register_specifier->reg_flags & RegVRex))
3220 i.vex.bytes[3] = 0x8;
3221 register_specifier = ~register_specifier & 0xf;
3222 }
3223 else
3224 {
3225 register_specifier = 0xf;
3226
3227 /* Encode upper 16 vector index register in the fourth byte of
3228 the EVEX prefix. */
3229 if (!(i.vrex & REX_X))
3230 i.vex.bytes[3] = 0x8;
3231 else
3232 vrex_used |= REX_X;
3233 }
3234
3235 switch ((i.tm.base_opcode >> 8) & 0xff)
3236 {
3237 case 0:
3238 implied_prefix = 0;
3239 break;
3240 case DATA_PREFIX_OPCODE:
3241 implied_prefix = 1;
3242 break;
3243 case REPE_PREFIX_OPCODE:
3244 implied_prefix = 2;
3245 break;
3246 case REPNE_PREFIX_OPCODE:
3247 implied_prefix = 3;
3248 break;
3249 default:
3250 abort ();
3251 }
3252
3253 /* 4 byte EVEX prefix. */
3254 i.vex.length = 4;
3255 i.vex.bytes[0] = 0x62;
3256
3257 /* mmmm bits. */
3258 switch (i.tm.opcode_modifier.vexopcode)
3259 {
3260 case VEX0F:
3261 m = 1;
3262 break;
3263 case VEX0F38:
3264 m = 2;
3265 break;
3266 case VEX0F3A:
3267 m = 3;
3268 break;
3269 default:
3270 abort ();
3271 break;
3272 }
3273
3274 /* The high 3 bits of the second EVEX byte are 1's compliment of RXB
3275 bits from REX. */
3276 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3277
3278 /* The fifth bit of the second EVEX byte is 1's compliment of the
3279 REX_R bit in VREX. */
3280 if (!(i.vrex & REX_R))
3281 i.vex.bytes[1] |= 0x10;
3282 else
3283 vrex_used |= REX_R;
3284
3285 if ((i.reg_operands + i.imm_operands) == i.operands)
3286 {
3287 /* When all operands are registers, the REX_X bit in REX is not
3288 used. We reuse it to encode the upper 16 registers, which is
3289 indicated by the REX_B bit in VREX. The REX_X bit is encoded
3290 as 1's compliment. */
3291 if ((i.vrex & REX_B))
3292 {
3293 vrex_used |= REX_B;
3294 i.vex.bytes[1] &= ~0x40;
3295 }
3296 }
3297
3298 /* EVEX instructions shouldn't need the REX prefix. */
3299 i.vrex &= ~vrex_used;
3300 gas_assert (i.vrex == 0);
3301
3302 /* Check the REX.W bit. */
3303 w = (i.rex & REX_W) ? 1 : 0;
3304 if (i.tm.opcode_modifier.vexw)
3305 {
3306 if (i.tm.opcode_modifier.vexw == VEXW1)
3307 w = 1;
3308 }
3309 /* If w is not set it means we are dealing with WIG instruction. */
3310 else if (!w)
3311 {
3312 if (evexwig == evexw1)
3313 w = 1;
3314 }
3315
3316 /* Encode the U bit. */
3317 implied_prefix |= 0x4;
3318
3319 /* The third byte of the EVEX prefix. */
3320 i.vex.bytes[2] = (w << 7 | register_specifier << 3 | implied_prefix);
3321
3322 /* The fourth byte of the EVEX prefix. */
3323 /* The zeroing-masking bit. */
3324 if (i.mask && i.mask->zeroing)
3325 i.vex.bytes[3] |= 0x80;
3326
3327 /* Don't always set the broadcast bit if there is no RC. */
3328 if (!i.rounding)
3329 {
3330 /* Encode the vector length. */
3331 unsigned int vec_length;
3332
3333 switch (i.tm.opcode_modifier.evex)
3334 {
3335 case EVEXLIG: /* LL' is ignored */
3336 vec_length = evexlig << 5;
3337 break;
3338 case EVEX128:
3339 vec_length = 0 << 5;
3340 break;
3341 case EVEX256:
3342 vec_length = 1 << 5;
3343 break;
3344 case EVEX512:
3345 vec_length = 2 << 5;
3346 break;
3347 default:
3348 abort ();
3349 break;
3350 }
3351 i.vex.bytes[3] |= vec_length;
3352 /* Encode the broadcast bit. */
3353 if (i.broadcast)
3354 i.vex.bytes[3] |= 0x10;
3355 }
3356 else
3357 {
3358 if (i.rounding->type != saeonly)
3359 i.vex.bytes[3] |= 0x10 | (i.rounding->type << 5);
3360 else
3361 i.vex.bytes[3] |= 0x10 | (evexrcig << 5);
3362 }
3363
3364 if (i.mask && i.mask->mask)
3365 i.vex.bytes[3] |= i.mask->mask->reg_num;
3366 }
3367
3368 static void
3369 process_immext (void)
3370 {
3371 expressionS *exp;
3372
3373 if ((i.tm.cpu_flags.bitfield.cpusse3 || i.tm.cpu_flags.bitfield.cpusvme)
3374 && i.operands > 0)
3375 {
3376 /* MONITOR/MWAIT as well as SVME instructions have fixed operands
3377 with an opcode suffix which is coded in the same place as an
3378 8-bit immediate field would be.
3379 Here we check those operands and remove them afterwards. */
3380 unsigned int x;
3381
3382 for (x = 0; x < i.operands; x++)
3383 if (register_number (i.op[x].regs) != x)
3384 as_bad (_("can't use register '%s%s' as operand %d in '%s'."),
3385 register_prefix, i.op[x].regs->reg_name, x + 1,
3386 i.tm.name);
3387
3388 i.operands = 0;
3389 }
3390
3391 /* These AMD 3DNow! and SSE2 instructions have an opcode suffix
3392 which is coded in the same place as an 8-bit immediate field
3393 would be. Here we fake an 8-bit immediate operand from the
3394 opcode suffix stored in tm.extension_opcode.
3395
3396 AVX instructions also use this encoding, for some of
3397 3 argument instructions. */
3398
3399 gas_assert (i.imm_operands <= 1
3400 && (i.operands <= 2
3401 || ((i.tm.opcode_modifier.vex
3402 || i.tm.opcode_modifier.evex)
3403 && i.operands <= 4)));
3404
3405 exp = &im_expressions[i.imm_operands++];
3406 i.op[i.operands].imms = exp;
3407 i.types[i.operands] = imm8;
3408 i.operands++;
3409 exp->X_op = O_constant;
3410 exp->X_add_number = i.tm.extension_opcode;
3411 i.tm.extension_opcode = None;
3412 }
3413
3414
3415 static int
3416 check_hle (void)
3417 {
3418 switch (i.tm.opcode_modifier.hleprefixok)
3419 {
3420 default:
3421 abort ();
3422 case HLEPrefixNone:
3423 as_bad (_("invalid instruction `%s' after `%s'"),
3424 i.tm.name, i.hle_prefix);
3425 return 0;
3426 case HLEPrefixLock:
3427 if (i.prefix[LOCK_PREFIX])
3428 return 1;
3429 as_bad (_("missing `lock' with `%s'"), i.hle_prefix);
3430 return 0;
3431 case HLEPrefixAny:
3432 return 1;
3433 case HLEPrefixRelease:
3434 if (i.prefix[HLE_PREFIX] != XRELEASE_PREFIX_OPCODE)
3435 {
3436 as_bad (_("instruction `%s' after `xacquire' not allowed"),
3437 i.tm.name);
3438 return 0;
3439 }
3440 if (i.mem_operands == 0
3441 || !operand_type_check (i.types[i.operands - 1], anymem))
3442 {
3443 as_bad (_("memory destination needed for instruction `%s'"
3444 " after `xrelease'"), i.tm.name);
3445 return 0;
3446 }
3447 return 1;
3448 }
3449 }
3450
3451 /* This is the guts of the machine-dependent assembler. LINE points to a
3452 machine dependent instruction. This function is supposed to emit
3453 the frags/bytes it assembles to. */
3454
3455 void
3456 md_assemble (char *line)
3457 {
3458 unsigned int j;
3459 char mnemonic[MAX_MNEM_SIZE];
3460 const insn_template *t;
3461
3462 /* Initialize globals. */
3463 memset (&i, '\0', sizeof (i));
3464 for (j = 0; j < MAX_OPERANDS; j++)
3465 i.reloc[j] = NO_RELOC;
3466 memset (disp_expressions, '\0', sizeof (disp_expressions));
3467 memset (im_expressions, '\0', sizeof (im_expressions));
3468 save_stack_p = save_stack;
3469
3470 /* First parse an instruction mnemonic & call i386_operand for the operands.
3471 We assume that the scrubber has arranged it so that line[0] is the valid
3472 start of a (possibly prefixed) mnemonic. */
3473
3474 line = parse_insn (line, mnemonic);
3475 if (line == NULL)
3476 return;
3477
3478 line = parse_operands (line, mnemonic);
3479 this_operand = -1;
3480 if (line == NULL)
3481 return;
3482
3483 /* Now we've parsed the mnemonic into a set of templates, and have the
3484 operands at hand. */
3485
3486 /* All intel opcodes have reversed operands except for "bound" and
3487 "enter". We also don't reverse intersegment "jmp" and "call"
3488 instructions with 2 immediate operands so that the immediate segment
3489 precedes the offset, as it does when in AT&T mode. */
3490 if (intel_syntax
3491 && i.operands > 1
3492 && (strcmp (mnemonic, "bound") != 0)
3493 && (strcmp (mnemonic, "invlpga") != 0)
3494 && !(operand_type_check (i.types[0], imm)
3495 && operand_type_check (i.types[1], imm)))
3496 swap_operands ();
3497
3498 /* The order of the immediates should be reversed
3499 for 2 immediates extrq and insertq instructions */
3500 if (i.imm_operands == 2
3501 && (strcmp (mnemonic, "extrq") == 0
3502 || strcmp (mnemonic, "insertq") == 0))
3503 swap_2_operands (0, 1);
3504
3505 if (i.imm_operands)
3506 optimize_imm ();
3507
3508 /* Don't optimize displacement for movabs since it only takes 64bit
3509 displacement. */
3510 if (i.disp_operands
3511 && i.disp_encoding != disp_encoding_32bit
3512 && (flag_code != CODE_64BIT
3513 || strcmp (mnemonic, "movabs") != 0))
3514 optimize_disp ();
3515
3516 /* Next, we find a template that matches the given insn,
3517 making sure the overlap of the given operands types is consistent
3518 with the template operand types. */
3519
3520 if (!(t = match_template ()))
3521 return;
3522
3523 if (sse_check != check_none
3524 && !i.tm.opcode_modifier.noavx
3525 && (i.tm.cpu_flags.bitfield.cpusse
3526 || i.tm.cpu_flags.bitfield.cpusse2
3527 || i.tm.cpu_flags.bitfield.cpusse3
3528 || i.tm.cpu_flags.bitfield.cpussse3
3529 || i.tm.cpu_flags.bitfield.cpusse4_1
3530 || i.tm.cpu_flags.bitfield.cpusse4_2))
3531 {
3532 (sse_check == check_warning
3533 ? as_warn
3534 : as_bad) (_("SSE instruction `%s' is used"), i.tm.name);
3535 }
3536
3537 /* Zap movzx and movsx suffix. The suffix has been set from
3538 "word ptr" or "byte ptr" on the source operand in Intel syntax
3539 or extracted from mnemonic in AT&T syntax. But we'll use
3540 the destination register to choose the suffix for encoding. */
3541 if ((i.tm.base_opcode & ~9) == 0x0fb6)
3542 {
3543 /* In Intel syntax, there must be a suffix. In AT&T syntax, if
3544 there is no suffix, the default will be byte extension. */
3545 if (i.reg_operands != 2
3546 && !i.suffix
3547 && intel_syntax)
3548 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
3549
3550 i.suffix = 0;
3551 }
3552
3553 if (i.tm.opcode_modifier.fwait)
3554 if (!add_prefix (FWAIT_OPCODE))
3555 return;
3556
3557 /* Check if REP prefix is OK. */
3558 if (i.rep_prefix && !i.tm.opcode_modifier.repprefixok)
3559 {
3560 as_bad (_("invalid instruction `%s' after `%s'"),
3561 i.tm.name, i.rep_prefix);
3562 return;
3563 }
3564
3565 /* Check for lock without a lockable instruction. Destination operand
3566 must be memory unless it is xchg (0x86). */
3567 if (i.prefix[LOCK_PREFIX]
3568 && (!i.tm.opcode_modifier.islockable
3569 || i.mem_operands == 0
3570 || (i.tm.base_opcode != 0x86
3571 && !operand_type_check (i.types[i.operands - 1], anymem))))
3572 {
3573 as_bad (_("expecting lockable instruction after `lock'"));
3574 return;
3575 }
3576
3577 /* Check if HLE prefix is OK. */
3578 if (i.hle_prefix && !check_hle ())
3579 return;
3580
3581 /* Check BND prefix. */
3582 if (i.bnd_prefix && !i.tm.opcode_modifier.bndprefixok)
3583 as_bad (_("expecting valid branch instruction after `bnd'"));
3584
3585 if (i.tm.cpu_flags.bitfield.cpumpx
3586 && flag_code == CODE_64BIT
3587 && i.prefix[ADDR_PREFIX])
3588 as_bad (_("32-bit address isn't allowed in 64-bit MPX instructions."));
3589
3590 /* Insert BND prefix. */
3591 if (add_bnd_prefix
3592 && i.tm.opcode_modifier.bndprefixok
3593 && !i.prefix[BND_PREFIX])
3594 add_prefix (BND_PREFIX_OPCODE);
3595
3596 /* Check string instruction segment overrides. */
3597 if (i.tm.opcode_modifier.isstring && i.mem_operands != 0)
3598 {
3599 if (!check_string ())
3600 return;
3601 i.disp_operands = 0;
3602 }
3603
3604 if (!process_suffix ())
3605 return;
3606
3607 /* Update operand types. */
3608 for (j = 0; j < i.operands; j++)
3609 i.types[j] = operand_type_and (i.types[j], i.tm.operand_types[j]);
3610
3611 /* Make still unresolved immediate matches conform to size of immediate
3612 given in i.suffix. */
3613 if (!finalize_imm ())
3614 return;
3615
3616 if (i.types[0].bitfield.imm1)
3617 i.imm_operands = 0; /* kludge for shift insns. */
3618
3619 /* We only need to check those implicit registers for instructions
3620 with 3 operands or less. */
3621 if (i.operands <= 3)
3622 for (j = 0; j < i.operands; j++)
3623 if (i.types[j].bitfield.inoutportreg
3624 || i.types[j].bitfield.shiftcount
3625 || i.types[j].bitfield.acc
3626 || i.types[j].bitfield.floatacc)
3627 i.reg_operands--;
3628
3629 /* ImmExt should be processed after SSE2AVX. */
3630 if (!i.tm.opcode_modifier.sse2avx
3631 && i.tm.opcode_modifier.immext)
3632 process_immext ();
3633
3634 /* For insns with operands there are more diddles to do to the opcode. */
3635 if (i.operands)
3636 {
3637 if (!process_operands ())
3638 return;
3639 }
3640 else if (!quiet_warnings && i.tm.opcode_modifier.ugh)
3641 {
3642 /* UnixWare fsub no args is alias for fsubp, fadd -> faddp, etc. */
3643 as_warn (_("translating to `%sp'"), i.tm.name);
3644 }
3645
3646 if (i.tm.opcode_modifier.vex || i.tm.opcode_modifier.evex)
3647 {
3648 if (flag_code == CODE_16BIT)
3649 {
3650 as_bad (_("instruction `%s' isn't supported in 16-bit mode."),
3651 i.tm.name);
3652 return;
3653 }
3654
3655 if (i.tm.opcode_modifier.vex)
3656 build_vex_prefix (t);
3657 else
3658 build_evex_prefix ();
3659 }
3660
3661 /* Handle conversion of 'int $3' --> special int3 insn. XOP or FMA4
3662 instructions may define INT_OPCODE as well, so avoid this corner
3663 case for those instructions that use MODRM. */
3664 if (i.tm.base_opcode == INT_OPCODE
3665 && !i.tm.opcode_modifier.modrm
3666 && i.op[0].imms->X_add_number == 3)
3667 {
3668 i.tm.base_opcode = INT3_OPCODE;
3669 i.imm_operands = 0;
3670 }
3671
3672 if ((i.tm.opcode_modifier.jump
3673 || i.tm.opcode_modifier.jumpbyte
3674 || i.tm.opcode_modifier.jumpdword)
3675 && i.op[0].disps->X_op == O_constant)
3676 {
3677 /* Convert "jmp constant" (and "call constant") to a jump (call) to
3678 the absolute address given by the constant. Since ix86 jumps and
3679 calls are pc relative, we need to generate a reloc. */
3680 i.op[0].disps->X_add_symbol = &abs_symbol;
3681 i.op[0].disps->X_op = O_symbol;
3682 }
3683
3684 if (i.tm.opcode_modifier.rex64)
3685 i.rex |= REX_W;
3686
3687 /* For 8 bit registers we need an empty rex prefix. Also if the
3688 instruction already has a prefix, we need to convert old
3689 registers to new ones. */
3690
3691 if ((i.types[0].bitfield.reg8
3692 && (i.op[0].regs->reg_flags & RegRex64) != 0)
3693 || (i.types[1].bitfield.reg8
3694 && (i.op[1].regs->reg_flags & RegRex64) != 0)
3695 || ((i.types[0].bitfield.reg8
3696 || i.types[1].bitfield.reg8)
3697 && i.rex != 0))
3698 {
3699 int x;
3700
3701 i.rex |= REX_OPCODE;
3702 for (x = 0; x < 2; x++)
3703 {
3704 /* Look for 8 bit operand that uses old registers. */
3705 if (i.types[x].bitfield.reg8
3706 && (i.op[x].regs->reg_flags & RegRex64) == 0)
3707 {
3708 /* In case it is "hi" register, give up. */
3709 if (i.op[x].regs->reg_num > 3)
3710 as_bad (_("can't encode register '%s%s' in an "
3711 "instruction requiring REX prefix."),
3712 register_prefix, i.op[x].regs->reg_name);
3713
3714 /* Otherwise it is equivalent to the extended register.
3715 Since the encoding doesn't change this is merely
3716 cosmetic cleanup for debug output. */
3717
3718 i.op[x].regs = i.op[x].regs + 8;
3719 }
3720 }
3721 }
3722
3723 if (i.rex != 0)
3724 add_prefix (REX_OPCODE | i.rex);
3725
3726 /* We are ready to output the insn. */
3727 output_insn ();
3728 }
3729
3730 static char *
3731 parse_insn (char *line, char *mnemonic)
3732 {
3733 char *l = line;
3734 char *token_start = l;
3735 char *mnem_p;
3736 int supported;
3737 const insn_template *t;
3738 char *dot_p = NULL;
3739
3740 while (1)
3741 {
3742 mnem_p = mnemonic;
3743 while ((*mnem_p = mnemonic_chars[(unsigned char) *l]) != 0)
3744 {
3745 if (*mnem_p == '.')
3746 dot_p = mnem_p;
3747 mnem_p++;
3748 if (mnem_p >= mnemonic + MAX_MNEM_SIZE)
3749 {
3750 as_bad (_("no such instruction: `%s'"), token_start);
3751 return NULL;
3752 }
3753 l++;
3754 }
3755 if (!is_space_char (*l)
3756 && *l != END_OF_INSN
3757 && (intel_syntax
3758 || (*l != PREFIX_SEPARATOR
3759 && *l != ',')))
3760 {
3761 as_bad (_("invalid character %s in mnemonic"),
3762 output_invalid (*l));
3763 return NULL;
3764 }
3765 if (token_start == l)
3766 {
3767 if (!intel_syntax && *l == PREFIX_SEPARATOR)
3768 as_bad (_("expecting prefix; got nothing"));
3769 else
3770 as_bad (_("expecting mnemonic; got nothing"));
3771 return NULL;
3772 }
3773
3774 /* Look up instruction (or prefix) via hash table. */
3775 current_templates = (const templates *) hash_find (op_hash, mnemonic);
3776
3777 if (*l != END_OF_INSN
3778 && (!is_space_char (*l) || l[1] != END_OF_INSN)
3779 && current_templates
3780 && current_templates->start->opcode_modifier.isprefix)
3781 {
3782 if (!cpu_flags_check_cpu64 (current_templates->start->cpu_flags))
3783 {
3784 as_bad ((flag_code != CODE_64BIT
3785 ? _("`%s' is only supported in 64-bit mode")
3786 : _("`%s' is not supported in 64-bit mode")),
3787 current_templates->start->name);
3788 return NULL;
3789 }
3790 /* If we are in 16-bit mode, do not allow addr16 or data16.
3791 Similarly, in 32-bit mode, do not allow addr32 or data32. */
3792 if ((current_templates->start->opcode_modifier.size16
3793 || current_templates->start->opcode_modifier.size32)
3794 && flag_code != CODE_64BIT
3795 && (current_templates->start->opcode_modifier.size32
3796 ^ (flag_code == CODE_16BIT)))
3797 {
3798 as_bad (_("redundant %s prefix"),
3799 current_templates->start->name);
3800 return NULL;
3801 }
3802 /* Add prefix, checking for repeated prefixes. */
3803 switch (add_prefix (current_templates->start->base_opcode))
3804 {
3805 case PREFIX_EXIST:
3806 return NULL;
3807 case PREFIX_REP:
3808 if (current_templates->start->cpu_flags.bitfield.cpuhle)
3809 i.hle_prefix = current_templates->start->name;
3810 else if (current_templates->start->cpu_flags.bitfield.cpumpx)
3811 i.bnd_prefix = current_templates->start->name;
3812 else
3813 i.rep_prefix = current_templates->start->name;
3814 break;
3815 default:
3816 break;
3817 }
3818 /* Skip past PREFIX_SEPARATOR and reset token_start. */
3819 token_start = ++l;
3820 }
3821 else
3822 break;
3823 }
3824
3825 if (!current_templates)
3826 {
3827 /* Check if we should swap operand or force 32bit displacement in
3828 encoding. */
3829 if (mnem_p - 2 == dot_p && dot_p[1] == 's')
3830 i.swap_operand = 1;
3831 else if (mnem_p - 3 == dot_p
3832 && dot_p[1] == 'd'
3833 && dot_p[2] == '8')
3834 i.disp_encoding = disp_encoding_8bit;
3835 else if (mnem_p - 4 == dot_p
3836 && dot_p[1] == 'd'
3837 && dot_p[2] == '3'
3838 && dot_p[3] == '2')
3839 i.disp_encoding = disp_encoding_32bit;
3840 else
3841 goto check_suffix;
3842 mnem_p = dot_p;
3843 *dot_p = '\0';
3844 current_templates = (const templates *) hash_find (op_hash, mnemonic);
3845 }
3846
3847 if (!current_templates)
3848 {
3849 check_suffix:
3850 /* See if we can get a match by trimming off a suffix. */
3851 switch (mnem_p[-1])
3852 {
3853 case WORD_MNEM_SUFFIX:
3854 if (intel_syntax && (intel_float_operand (mnemonic) & 2))
3855 i.suffix = SHORT_MNEM_SUFFIX;
3856 else
3857 case BYTE_MNEM_SUFFIX:
3858 case QWORD_MNEM_SUFFIX:
3859 i.suffix = mnem_p[-1];
3860 mnem_p[-1] = '\0';
3861 current_templates = (const templates *) hash_find (op_hash,
3862 mnemonic);
3863 break;
3864 case SHORT_MNEM_SUFFIX:
3865 case LONG_MNEM_SUFFIX:
3866 if (!intel_syntax)
3867 {
3868 i.suffix = mnem_p[-1];
3869 mnem_p[-1] = '\0';
3870 current_templates = (const templates *) hash_find (op_hash,
3871 mnemonic);
3872 }
3873 break;
3874
3875 /* Intel Syntax. */
3876 case 'd':
3877 if (intel_syntax)
3878 {
3879 if (intel_float_operand (mnemonic) == 1)
3880 i.suffix = SHORT_MNEM_SUFFIX;
3881 else
3882 i.suffix = LONG_MNEM_SUFFIX;
3883 mnem_p[-1] = '\0';
3884 current_templates = (const templates *) hash_find (op_hash,
3885 mnemonic);
3886 }
3887 break;
3888 }
3889 if (!current_templates)
3890 {
3891 as_bad (_("no such instruction: `%s'"), token_start);
3892 return NULL;
3893 }
3894 }
3895
3896 if (current_templates->start->opcode_modifier.jump
3897 || current_templates->start->opcode_modifier.jumpbyte)
3898 {
3899 /* Check for a branch hint. We allow ",pt" and ",pn" for
3900 predict taken and predict not taken respectively.
3901 I'm not sure that branch hints actually do anything on loop
3902 and jcxz insns (JumpByte) for current Pentium4 chips. They
3903 may work in the future and it doesn't hurt to accept them
3904 now. */
3905 if (l[0] == ',' && l[1] == 'p')
3906 {
3907 if (l[2] == 't')
3908 {
3909 if (!add_prefix (DS_PREFIX_OPCODE))
3910 return NULL;
3911 l += 3;
3912 }
3913 else if (l[2] == 'n')
3914 {
3915 if (!add_prefix (CS_PREFIX_OPCODE))
3916 return NULL;
3917 l += 3;
3918 }
3919 }
3920 }
3921 /* Any other comma loses. */
3922 if (*l == ',')
3923 {
3924 as_bad (_("invalid character %s in mnemonic"),
3925 output_invalid (*l));
3926 return NULL;
3927 }
3928
3929 /* Check if instruction is supported on specified architecture. */
3930 supported = 0;
3931 for (t = current_templates->start; t < current_templates->end; ++t)
3932 {
3933 supported |= cpu_flags_match (t);
3934 if (supported == CPU_FLAGS_PERFECT_MATCH)
3935 goto skip;
3936 }
3937
3938 if (!(supported & CPU_FLAGS_64BIT_MATCH))
3939 {
3940 as_bad (flag_code == CODE_64BIT
3941 ? _("`%s' is not supported in 64-bit mode")
3942 : _("`%s' is only supported in 64-bit mode"),
3943 current_templates->start->name);
3944 return NULL;
3945 }
3946 if (supported != CPU_FLAGS_PERFECT_MATCH)
3947 {
3948 as_bad (_("`%s' is not supported on `%s%s'"),
3949 current_templates->start->name,
3950 cpu_arch_name ? cpu_arch_name : default_arch,
3951 cpu_sub_arch_name ? cpu_sub_arch_name : "");
3952 return NULL;
3953 }
3954
3955 skip:
3956 if (!cpu_arch_flags.bitfield.cpui386
3957 && (flag_code != CODE_16BIT))
3958 {
3959 as_warn (_("use .code16 to ensure correct addressing mode"));
3960 }
3961
3962 return l;
3963 }
3964
3965 static char *
3966 parse_operands (char *l, const char *mnemonic)
3967 {
3968 char *token_start;
3969
3970 /* 1 if operand is pending after ','. */
3971 unsigned int expecting_operand = 0;
3972
3973 /* Non-zero if operand parens not balanced. */
3974 unsigned int paren_not_balanced;
3975
3976 while (*l != END_OF_INSN)
3977 {
3978 /* Skip optional white space before operand. */
3979 if (is_space_char (*l))
3980 ++l;
3981 if (!is_operand_char (*l) && *l != END_OF_INSN)
3982 {
3983 as_bad (_("invalid character %s before operand %d"),
3984 output_invalid (*l),
3985 i.operands + 1);
3986 return NULL;
3987 }
3988 token_start = l; /* after white space */
3989 paren_not_balanced = 0;
3990 while (paren_not_balanced || *l != ',')
3991 {
3992 if (*l == END_OF_INSN)
3993 {
3994 if (paren_not_balanced)
3995 {
3996 if (!intel_syntax)
3997 as_bad (_("unbalanced parenthesis in operand %d."),
3998 i.operands + 1);
3999 else
4000 as_bad (_("unbalanced brackets in operand %d."),
4001 i.operands + 1);
4002 return NULL;
4003 }
4004 else
4005 break; /* we are done */
4006 }
4007 else if (!is_operand_char (*l) && !is_space_char (*l))
4008 {
4009 as_bad (_("invalid character %s in operand %d"),
4010 output_invalid (*l),
4011 i.operands + 1);
4012 return NULL;
4013 }
4014 if (!intel_syntax)
4015 {
4016 if (*l == '(')
4017 ++paren_not_balanced;
4018 if (*l == ')')
4019 --paren_not_balanced;
4020 }
4021 else
4022 {
4023 if (*l == '[')
4024 ++paren_not_balanced;
4025 if (*l == ']')
4026 --paren_not_balanced;
4027 }
4028 l++;
4029 }
4030 if (l != token_start)
4031 { /* Yes, we've read in another operand. */
4032 unsigned int operand_ok;
4033 this_operand = i.operands++;
4034 i.types[this_operand].bitfield.unspecified = 1;
4035 if (i.operands > MAX_OPERANDS)
4036 {
4037 as_bad (_("spurious operands; (%d operands/instruction max)"),
4038 MAX_OPERANDS);
4039 return NULL;
4040 }
4041 /* Now parse operand adding info to 'i' as we go along. */
4042 END_STRING_AND_SAVE (l);
4043
4044 if (intel_syntax)
4045 operand_ok =
4046 i386_intel_operand (token_start,
4047 intel_float_operand (mnemonic));
4048 else
4049 operand_ok = i386_att_operand (token_start);
4050
4051 RESTORE_END_STRING (l);
4052 if (!operand_ok)
4053 return NULL;
4054 }
4055 else
4056 {
4057 if (expecting_operand)
4058 {
4059 expecting_operand_after_comma:
4060 as_bad (_("expecting operand after ','; got nothing"));
4061 return NULL;
4062 }
4063 if (*l == ',')
4064 {
4065 as_bad (_("expecting operand before ','; got nothing"));
4066 return NULL;
4067 }
4068 }
4069
4070 /* Now *l must be either ',' or END_OF_INSN. */
4071 if (*l == ',')
4072 {
4073 if (*++l == END_OF_INSN)
4074 {
4075 /* Just skip it, if it's \n complain. */
4076 goto expecting_operand_after_comma;
4077 }
4078 expecting_operand = 1;
4079 }
4080 }
4081 return l;
4082 }
4083
4084 static void
4085 swap_2_operands (int xchg1, int xchg2)
4086 {
4087 union i386_op temp_op;
4088 i386_operand_type temp_type;
4089 enum bfd_reloc_code_real temp_reloc;
4090
4091 temp_type = i.types[xchg2];
4092 i.types[xchg2] = i.types[xchg1];
4093 i.types[xchg1] = temp_type;
4094 temp_op = i.op[xchg2];
4095 i.op[xchg2] = i.op[xchg1];
4096 i.op[xchg1] = temp_op;
4097 temp_reloc = i.reloc[xchg2];
4098 i.reloc[xchg2] = i.reloc[xchg1];
4099 i.reloc[xchg1] = temp_reloc;
4100
4101 if (i.mask)
4102 {
4103 if (i.mask->operand == xchg1)
4104 i.mask->operand = xchg2;
4105 else if (i.mask->operand == xchg2)
4106 i.mask->operand = xchg1;
4107 }
4108 if (i.broadcast)
4109 {
4110 if (i.broadcast->operand == xchg1)
4111 i.broadcast->operand = xchg2;
4112 else if (i.broadcast->operand == xchg2)
4113 i.broadcast->operand = xchg1;
4114 }
4115 if (i.rounding)
4116 {
4117 if (i.rounding->operand == xchg1)
4118 i.rounding->operand = xchg2;
4119 else if (i.rounding->operand == xchg2)
4120 i.rounding->operand = xchg1;
4121 }
4122 }
4123
4124 static void
4125 swap_operands (void)
4126 {
4127 switch (i.operands)
4128 {
4129 case 5:
4130 case 4:
4131 swap_2_operands (1, i.operands - 2);
4132 case 3:
4133 case 2:
4134 swap_2_operands (0, i.operands - 1);
4135 break;
4136 default:
4137 abort ();
4138 }
4139
4140 if (i.mem_operands == 2)
4141 {
4142 const seg_entry *temp_seg;
4143 temp_seg = i.seg[0];
4144 i.seg[0] = i.seg[1];
4145 i.seg[1] = temp_seg;
4146 }
4147 }
4148
4149 /* Try to ensure constant immediates are represented in the smallest
4150 opcode possible. */
4151 static void
4152 optimize_imm (void)
4153 {
4154 char guess_suffix = 0;
4155 int op;
4156
4157 if (i.suffix)
4158 guess_suffix = i.suffix;
4159 else if (i.reg_operands)
4160 {
4161 /* Figure out a suffix from the last register operand specified.
4162 We can't do this properly yet, ie. excluding InOutPortReg,
4163 but the following works for instructions with immediates.
4164 In any case, we can't set i.suffix yet. */
4165 for (op = i.operands; --op >= 0;)
4166 if (i.types[op].bitfield.reg8)
4167 {
4168 guess_suffix = BYTE_MNEM_SUFFIX;
4169 break;
4170 }
4171 else if (i.types[op].bitfield.reg16)
4172 {
4173 guess_suffix = WORD_MNEM_SUFFIX;
4174 break;
4175 }
4176 else if (i.types[op].bitfield.reg32)
4177 {
4178 guess_suffix = LONG_MNEM_SUFFIX;
4179 break;
4180 }
4181 else if (i.types[op].bitfield.reg64)
4182 {
4183 guess_suffix = QWORD_MNEM_SUFFIX;
4184 break;
4185 }
4186 }
4187 else if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
4188 guess_suffix = WORD_MNEM_SUFFIX;
4189
4190 for (op = i.operands; --op >= 0;)
4191 if (operand_type_check (i.types[op], imm))
4192 {
4193 switch (i.op[op].imms->X_op)
4194 {
4195 case O_constant:
4196 /* If a suffix is given, this operand may be shortened. */
4197 switch (guess_suffix)
4198 {
4199 case LONG_MNEM_SUFFIX:
4200 i.types[op].bitfield.imm32 = 1;
4201 i.types[op].bitfield.imm64 = 1;
4202 break;
4203 case WORD_MNEM_SUFFIX:
4204 i.types[op].bitfield.imm16 = 1;
4205 i.types[op].bitfield.imm32 = 1;
4206 i.types[op].bitfield.imm32s = 1;
4207 i.types[op].bitfield.imm64 = 1;
4208 break;
4209 case BYTE_MNEM_SUFFIX:
4210 i.types[op].bitfield.imm8 = 1;
4211 i.types[op].bitfield.imm8s = 1;
4212 i.types[op].bitfield.imm16 = 1;
4213 i.types[op].bitfield.imm32 = 1;
4214 i.types[op].bitfield.imm32s = 1;
4215 i.types[op].bitfield.imm64 = 1;
4216 break;
4217 }
4218
4219 /* If this operand is at most 16 bits, convert it
4220 to a signed 16 bit number before trying to see
4221 whether it will fit in an even smaller size.
4222 This allows a 16-bit operand such as $0xffe0 to
4223 be recognised as within Imm8S range. */
4224 if ((i.types[op].bitfield.imm16)
4225 && (i.op[op].imms->X_add_number & ~(offsetT) 0xffff) == 0)
4226 {
4227 i.op[op].imms->X_add_number =
4228 (((i.op[op].imms->X_add_number & 0xffff) ^ 0x8000) - 0x8000);
4229 }
4230 if ((i.types[op].bitfield.imm32)
4231 && ((i.op[op].imms->X_add_number & ~(((offsetT) 2 << 31) - 1))
4232 == 0))
4233 {
4234 i.op[op].imms->X_add_number = ((i.op[op].imms->X_add_number
4235 ^ ((offsetT) 1 << 31))
4236 - ((offsetT) 1 << 31));
4237 }
4238 i.types[op]
4239 = operand_type_or (i.types[op],
4240 smallest_imm_type (i.op[op].imms->X_add_number));
4241
4242 /* We must avoid matching of Imm32 templates when 64bit
4243 only immediate is available. */
4244 if (guess_suffix == QWORD_MNEM_SUFFIX)
4245 i.types[op].bitfield.imm32 = 0;
4246 break;
4247
4248 case O_absent:
4249 case O_register:
4250 abort ();
4251
4252 /* Symbols and expressions. */
4253 default:
4254 /* Convert symbolic operand to proper sizes for matching, but don't
4255 prevent matching a set of insns that only supports sizes other
4256 than those matching the insn suffix. */
4257 {
4258 i386_operand_type mask, allowed;
4259 const insn_template *t;
4260
4261 operand_type_set (&mask, 0);
4262 operand_type_set (&allowed, 0);
4263
4264 for (t = current_templates->start;
4265 t < current_templates->end;
4266 ++t)
4267 allowed = operand_type_or (allowed,
4268 t->operand_types[op]);
4269 switch (guess_suffix)
4270 {
4271 case QWORD_MNEM_SUFFIX:
4272 mask.bitfield.imm64 = 1;
4273 mask.bitfield.imm32s = 1;
4274 break;
4275 case LONG_MNEM_SUFFIX:
4276 mask.bitfield.imm32 = 1;
4277 break;
4278 case WORD_MNEM_SUFFIX:
4279 mask.bitfield.imm16 = 1;
4280 break;
4281 case BYTE_MNEM_SUFFIX:
4282 mask.bitfield.imm8 = 1;
4283 break;
4284 default:
4285 break;
4286 }
4287 allowed = operand_type_and (mask, allowed);
4288 if (!operand_type_all_zero (&allowed))
4289 i.types[op] = operand_type_and (i.types[op], mask);
4290 }
4291 break;
4292 }
4293 }
4294 }
4295
4296 /* Try to use the smallest displacement type too. */
4297 static void
4298 optimize_disp (void)
4299 {
4300 int op;
4301
4302 for (op = i.operands; --op >= 0;)
4303 if (operand_type_check (i.types[op], disp))
4304 {
4305 if (i.op[op].disps->X_op == O_constant)
4306 {
4307 offsetT op_disp = i.op[op].disps->X_add_number;
4308
4309 if (i.types[op].bitfield.disp16
4310 && (op_disp & ~(offsetT) 0xffff) == 0)
4311 {
4312 /* If this operand is at most 16 bits, convert
4313 to a signed 16 bit number and don't use 64bit
4314 displacement. */
4315 op_disp = (((op_disp & 0xffff) ^ 0x8000) - 0x8000);
4316 i.types[op].bitfield.disp64 = 0;
4317 }
4318 if (i.types[op].bitfield.disp32
4319 && (op_disp & ~(((offsetT) 2 << 31) - 1)) == 0)
4320 {
4321 /* If this operand is at most 32 bits, convert
4322 to a signed 32 bit number and don't use 64bit
4323 displacement. */
4324 op_disp &= (((offsetT) 2 << 31) - 1);
4325 op_disp = (op_disp ^ ((offsetT) 1 << 31)) - ((addressT) 1 << 31);
4326 i.types[op].bitfield.disp64 = 0;
4327 }
4328 if (!op_disp && i.types[op].bitfield.baseindex)
4329 {
4330 i.types[op].bitfield.disp8 = 0;
4331 i.types[op].bitfield.disp16 = 0;
4332 i.types[op].bitfield.disp32 = 0;
4333 i.types[op].bitfield.disp32s = 0;
4334 i.types[op].bitfield.disp64 = 0;
4335 i.op[op].disps = 0;
4336 i.disp_operands--;
4337 }
4338 else if (flag_code == CODE_64BIT)
4339 {
4340 if (fits_in_signed_long (op_disp))
4341 {
4342 i.types[op].bitfield.disp64 = 0;
4343 i.types[op].bitfield.disp32s = 1;
4344 }
4345 if (i.prefix[ADDR_PREFIX]
4346 && fits_in_unsigned_long (op_disp))
4347 i.types[op].bitfield.disp32 = 1;
4348 }
4349 if ((i.types[op].bitfield.disp32
4350 || i.types[op].bitfield.disp32s
4351 || i.types[op].bitfield.disp16)
4352 && fits_in_signed_byte (op_disp))
4353 i.types[op].bitfield.disp8 = 1;
4354 }
4355 else if (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
4356 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL)
4357 {
4358 fix_new_exp (frag_now, frag_more (0) - frag_now->fr_literal, 0,
4359 i.op[op].disps, 0, i.reloc[op]);
4360 i.types[op].bitfield.disp8 = 0;
4361 i.types[op].bitfield.disp16 = 0;
4362 i.types[op].bitfield.disp32 = 0;
4363 i.types[op].bitfield.disp32s = 0;
4364 i.types[op].bitfield.disp64 = 0;
4365 }
4366 else
4367 /* We only support 64bit displacement on constants. */
4368 i.types[op].bitfield.disp64 = 0;
4369 }
4370 }
4371
4372 /* Check if operands are valid for the instruction. */
4373
4374 static int
4375 check_VecOperands (const insn_template *t)
4376 {
4377 unsigned int op;
4378
4379 /* Without VSIB byte, we can't have a vector register for index. */
4380 if (!t->opcode_modifier.vecsib
4381 && i.index_reg
4382 && (i.index_reg->reg_type.bitfield.regxmm
4383 || i.index_reg->reg_type.bitfield.regymm
4384 || i.index_reg->reg_type.bitfield.regzmm))
4385 {
4386 i.error = unsupported_vector_index_register;
4387 return 1;
4388 }
4389
4390 /* Check if default mask is allowed. */
4391 if (t->opcode_modifier.nodefmask
4392 && (!i.mask || i.mask->mask->reg_num == 0))
4393 {
4394 i.error = no_default_mask;
4395 return 1;
4396 }
4397
4398 /* For VSIB byte, we need a vector register for index, and all vector
4399 registers must be distinct. */
4400 if (t->opcode_modifier.vecsib)
4401 {
4402 if (!i.index_reg
4403 || !((t->opcode_modifier.vecsib == VecSIB128
4404 && i.index_reg->reg_type.bitfield.regxmm)
4405 || (t->opcode_modifier.vecsib == VecSIB256
4406 && i.index_reg->reg_type.bitfield.regymm)
4407 || (t->opcode_modifier.vecsib == VecSIB512
4408 && i.index_reg->reg_type.bitfield.regzmm)))
4409 {
4410 i.error = invalid_vsib_address;
4411 return 1;
4412 }
4413
4414 gas_assert (i.reg_operands == 2 || i.mask);
4415 if (i.reg_operands == 2 && !i.mask)
4416 {
4417 gas_assert (i.types[0].bitfield.regxmm
4418 || i.types[0].bitfield.regymm);
4419 gas_assert (i.types[2].bitfield.regxmm
4420 || i.types[2].bitfield.regymm);
4421 if (operand_check == check_none)
4422 return 0;
4423 if (register_number (i.op[0].regs)
4424 != register_number (i.index_reg)
4425 && register_number (i.op[2].regs)
4426 != register_number (i.index_reg)
4427 && register_number (i.op[0].regs)
4428 != register_number (i.op[2].regs))
4429 return 0;
4430 if (operand_check == check_error)
4431 {
4432 i.error = invalid_vector_register_set;
4433 return 1;
4434 }
4435 as_warn (_("mask, index, and destination registers should be distinct"));
4436 }
4437 else if (i.reg_operands == 1 && i.mask)
4438 {
4439 if ((i.types[1].bitfield.regymm
4440 || i.types[1].bitfield.regzmm)
4441 && (register_number (i.op[1].regs)
4442 == register_number (i.index_reg)))
4443 {
4444 if (operand_check == check_error)
4445 {
4446 i.error = invalid_vector_register_set;
4447 return 1;
4448 }
4449 if (operand_check != check_none)
4450 as_warn (_("index and destination registers should be distinct"));
4451 }
4452 }
4453 }
4454
4455 /* Check if broadcast is supported by the instruction and is applied
4456 to the memory operand. */
4457 if (i.broadcast)
4458 {
4459 int broadcasted_opnd_size;
4460
4461 /* Check if specified broadcast is supported in this instruction,
4462 and it's applied to memory operand of DWORD or QWORD type,
4463 depending on VecESize. */
4464 if (i.broadcast->type != t->opcode_modifier.broadcast
4465 || !i.types[i.broadcast->operand].bitfield.mem
4466 || (t->opcode_modifier.vecesize == 0
4467 && !i.types[i.broadcast->operand].bitfield.dword
4468 && !i.types[i.broadcast->operand].bitfield.unspecified)
4469 || (t->opcode_modifier.vecesize == 1
4470 && !i.types[i.broadcast->operand].bitfield.qword
4471 && !i.types[i.broadcast->operand].bitfield.unspecified))
4472 goto bad_broadcast;
4473
4474 broadcasted_opnd_size = t->opcode_modifier.vecesize ? 64 : 32;
4475 if (i.broadcast->type == BROADCAST_1TO16)
4476 broadcasted_opnd_size <<= 4; /* Broadcast 1to16. */
4477 else if (i.broadcast->type == BROADCAST_1TO8)
4478 broadcasted_opnd_size <<= 3; /* Broadcast 1to8. */
4479 else if (i.broadcast->type == BROADCAST_1TO4)
4480 broadcasted_opnd_size <<= 2; /* Broadcast 1to4. */
4481 else if (i.broadcast->type == BROADCAST_1TO2)
4482 broadcasted_opnd_size <<= 1; /* Broadcast 1to2. */
4483 else
4484 goto bad_broadcast;
4485
4486 if ((broadcasted_opnd_size == 256
4487 && !t->operand_types[i.broadcast->operand].bitfield.ymmword)
4488 || (broadcasted_opnd_size == 512
4489 && !t->operand_types[i.broadcast->operand].bitfield.zmmword))
4490 {
4491 bad_broadcast:
4492 i.error = unsupported_broadcast;
4493 return 1;
4494 }
4495 }
4496 /* If broadcast is supported in this instruction, we need to check if
4497 operand of one-element size isn't specified without broadcast. */
4498 else if (t->opcode_modifier.broadcast && i.mem_operands)
4499 {
4500 /* Find memory operand. */
4501 for (op = 0; op < i.operands; op++)
4502 if (operand_type_check (i.types[op], anymem))
4503 break;
4504 gas_assert (op < i.operands);
4505 /* Check size of the memory operand. */
4506 if ((t->opcode_modifier.vecesize == 0
4507 && i.types[op].bitfield.dword)
4508 || (t->opcode_modifier.vecesize == 1
4509 && i.types[op].bitfield.qword))
4510 {
4511 i.error = broadcast_needed;
4512 return 1;
4513 }
4514 }
4515
4516 /* Check if requested masking is supported. */
4517 if (i.mask
4518 && (!t->opcode_modifier.masking
4519 || (i.mask->zeroing
4520 && t->opcode_modifier.masking == MERGING_MASKING)))
4521 {
4522 i.error = unsupported_masking;
4523 return 1;
4524 }
4525
4526 /* Check if masking is applied to dest operand. */
4527 if (i.mask && (i.mask->operand != (int) (i.operands - 1)))
4528 {
4529 i.error = mask_not_on_destination;
4530 return 1;
4531 }
4532
4533 /* Check RC/SAE. */
4534 if (i.rounding)
4535 {
4536 if ((i.rounding->type != saeonly
4537 && !t->opcode_modifier.staticrounding)
4538 || (i.rounding->type == saeonly
4539 && (t->opcode_modifier.staticrounding
4540 || !t->opcode_modifier.sae)))
4541 {
4542 i.error = unsupported_rc_sae;
4543 return 1;
4544 }
4545 /* If the instruction has several immediate operands and one of
4546 them is rounding, the rounding operand should be the last
4547 immediate operand. */
4548 if (i.imm_operands > 1
4549 && i.rounding->operand != (int) (i.imm_operands - 1))
4550 {
4551 i.error = rc_sae_operand_not_last_imm;
4552 return 1;
4553 }
4554 }
4555
4556 /* Check vector Disp8 operand. */
4557 if (t->opcode_modifier.disp8memshift)
4558 {
4559 if (i.broadcast)
4560 i.memshift = t->opcode_modifier.vecesize ? 3 : 2;
4561 else
4562 i.memshift = t->opcode_modifier.disp8memshift;
4563
4564 for (op = 0; op < i.operands; op++)
4565 if (operand_type_check (i.types[op], disp)
4566 && i.op[op].disps->X_op == O_constant)
4567 {
4568 offsetT value = i.op[op].disps->X_add_number;
4569 int vec_disp8_ok = fits_in_vec_disp8 (value);
4570 if (t->operand_types [op].bitfield.vec_disp8)
4571 {
4572 if (vec_disp8_ok)
4573 i.types[op].bitfield.vec_disp8 = 1;
4574 else
4575 {
4576 /* Vector insn can only have Vec_Disp8/Disp32 in
4577 32/64bit modes, and Vec_Disp8/Disp16 in 16bit
4578 mode. */
4579 i.types[op].bitfield.disp8 = 0;
4580 if (flag_code != CODE_16BIT)
4581 i.types[op].bitfield.disp16 = 0;
4582 }
4583 }
4584 else if (flag_code != CODE_16BIT)
4585 {
4586 /* One form of this instruction supports vector Disp8.
4587 Try vector Disp8 if we need to use Disp32. */
4588 if (vec_disp8_ok && !fits_in_signed_byte (value))
4589 {
4590 i.error = try_vector_disp8;
4591 return 1;
4592 }
4593 }
4594 }
4595 }
4596 else
4597 i.memshift = -1;
4598
4599 return 0;
4600 }
4601
4602 /* Check if operands are valid for the instruction. Update VEX
4603 operand types. */
4604
4605 static int
4606 VEX_check_operands (const insn_template *t)
4607 {
4608 /* VREX is only valid with EVEX prefix. */
4609 if (i.need_vrex && !t->opcode_modifier.evex)
4610 {
4611 i.error = invalid_register_operand;
4612 return 1;
4613 }
4614
4615 if (!t->opcode_modifier.vex)
4616 return 0;
4617
4618 /* Only check VEX_Imm4, which must be the first operand. */
4619 if (t->operand_types[0].bitfield.vec_imm4)
4620 {
4621 if (i.op[0].imms->X_op != O_constant
4622 || !fits_in_imm4 (i.op[0].imms->X_add_number))
4623 {
4624 i.error = bad_imm4;
4625 return 1;
4626 }
4627
4628 /* Turn off Imm8 so that update_imm won't complain. */
4629 i.types[0] = vec_imm4;
4630 }
4631
4632 return 0;
4633 }
4634
4635 static const insn_template *
4636 match_template (void)
4637 {
4638 /* Points to template once we've found it. */
4639 const insn_template *t;
4640 i386_operand_type overlap0, overlap1, overlap2, overlap3;
4641 i386_operand_type overlap4;
4642 unsigned int found_reverse_match;
4643 i386_opcode_modifier suffix_check;
4644 i386_operand_type operand_types [MAX_OPERANDS];
4645 int addr_prefix_disp;
4646 unsigned int j;
4647 unsigned int found_cpu_match;
4648 unsigned int check_register;
4649 enum i386_error specific_error = 0;
4650
4651 #if MAX_OPERANDS != 5
4652 # error "MAX_OPERANDS must be 5."
4653 #endif
4654
4655 found_reverse_match = 0;
4656 addr_prefix_disp = -1;
4657
4658 memset (&suffix_check, 0, sizeof (suffix_check));
4659 if (i.suffix == BYTE_MNEM_SUFFIX)
4660 suffix_check.no_bsuf = 1;
4661 else if (i.suffix == WORD_MNEM_SUFFIX)
4662 suffix_check.no_wsuf = 1;
4663 else if (i.suffix == SHORT_MNEM_SUFFIX)
4664 suffix_check.no_ssuf = 1;
4665 else if (i.suffix == LONG_MNEM_SUFFIX)
4666 suffix_check.no_lsuf = 1;
4667 else if (i.suffix == QWORD_MNEM_SUFFIX)
4668 suffix_check.no_qsuf = 1;
4669 else if (i.suffix == LONG_DOUBLE_MNEM_SUFFIX)
4670 suffix_check.no_ldsuf = 1;
4671
4672 /* Must have right number of operands. */
4673 i.error = number_of_operands_mismatch;
4674
4675 for (t = current_templates->start; t < current_templates->end; t++)
4676 {
4677 addr_prefix_disp = -1;
4678
4679 if (i.operands != t->operands)
4680 continue;
4681
4682 /* Check processor support. */
4683 i.error = unsupported;
4684 found_cpu_match = (cpu_flags_match (t)
4685 == CPU_FLAGS_PERFECT_MATCH);
4686 if (!found_cpu_match)
4687 continue;
4688
4689 /* Check old gcc support. */
4690 i.error = old_gcc_only;
4691 if (!old_gcc && t->opcode_modifier.oldgcc)
4692 continue;
4693
4694 /* Check AT&T mnemonic. */
4695 i.error = unsupported_with_intel_mnemonic;
4696 if (intel_mnemonic && t->opcode_modifier.attmnemonic)
4697 continue;
4698
4699 /* Check AT&T/Intel syntax. */
4700 i.error = unsupported_syntax;
4701 if ((intel_syntax && t->opcode_modifier.attsyntax)
4702 || (!intel_syntax && t->opcode_modifier.intelsyntax))
4703 continue;
4704
4705 /* Check the suffix, except for some instructions in intel mode. */
4706 i.error = invalid_instruction_suffix;
4707 if ((!intel_syntax || !t->opcode_modifier.ignoresize)
4708 && ((t->opcode_modifier.no_bsuf && suffix_check.no_bsuf)
4709 || (t->opcode_modifier.no_wsuf && suffix_check.no_wsuf)
4710 || (t->opcode_modifier.no_lsuf && suffix_check.no_lsuf)
4711 || (t->opcode_modifier.no_ssuf && suffix_check.no_ssuf)
4712 || (t->opcode_modifier.no_qsuf && suffix_check.no_qsuf)
4713 || (t->opcode_modifier.no_ldsuf && suffix_check.no_ldsuf)))
4714 continue;
4715
4716 if (!operand_size_match (t))
4717 continue;
4718
4719 for (j = 0; j < MAX_OPERANDS; j++)
4720 operand_types[j] = t->operand_types[j];
4721
4722 /* In general, don't allow 64-bit operands in 32-bit mode. */
4723 if (i.suffix == QWORD_MNEM_SUFFIX
4724 && flag_code != CODE_64BIT
4725 && (intel_syntax
4726 ? (!t->opcode_modifier.ignoresize
4727 && !intel_float_operand (t->name))
4728 : intel_float_operand (t->name) != 2)
4729 && ((!operand_types[0].bitfield.regmmx
4730 && !operand_types[0].bitfield.regxmm
4731 && !operand_types[0].bitfield.regymm
4732 && !operand_types[0].bitfield.regzmm)
4733 || (!operand_types[t->operands > 1].bitfield.regmmx
4734 && operand_types[t->operands > 1].bitfield.regxmm
4735 && operand_types[t->operands > 1].bitfield.regymm
4736 && operand_types[t->operands > 1].bitfield.regzmm))
4737 && (t->base_opcode != 0x0fc7
4738 || t->extension_opcode != 1 /* cmpxchg8b */))
4739 continue;
4740
4741 /* In general, don't allow 32-bit operands on pre-386. */
4742 else if (i.suffix == LONG_MNEM_SUFFIX
4743 && !cpu_arch_flags.bitfield.cpui386
4744 && (intel_syntax
4745 ? (!t->opcode_modifier.ignoresize
4746 && !intel_float_operand (t->name))
4747 : intel_float_operand (t->name) != 2)
4748 && ((!operand_types[0].bitfield.regmmx
4749 && !operand_types[0].bitfield.regxmm)
4750 || (!operand_types[t->operands > 1].bitfield.regmmx
4751 && operand_types[t->operands > 1].bitfield.regxmm)))
4752 continue;
4753
4754 /* Do not verify operands when there are none. */
4755 else
4756 {
4757 if (!t->operands)
4758 /* We've found a match; break out of loop. */
4759 break;
4760 }
4761
4762 /* Address size prefix will turn Disp64/Disp32/Disp16 operand
4763 into Disp32/Disp16/Disp32 operand. */
4764 if (i.prefix[ADDR_PREFIX] != 0)
4765 {
4766 /* There should be only one Disp operand. */
4767 switch (flag_code)
4768 {
4769 case CODE_16BIT:
4770 for (j = 0; j < MAX_OPERANDS; j++)
4771 {
4772 if (operand_types[j].bitfield.disp16)
4773 {
4774 addr_prefix_disp = j;
4775 operand_types[j].bitfield.disp32 = 1;
4776 operand_types[j].bitfield.disp16 = 0;
4777 break;
4778 }
4779 }
4780 break;
4781 case CODE_32BIT:
4782 for (j = 0; j < MAX_OPERANDS; j++)
4783 {
4784 if (operand_types[j].bitfield.disp32)
4785 {
4786 addr_prefix_disp = j;
4787 operand_types[j].bitfield.disp32 = 0;
4788 operand_types[j].bitfield.disp16 = 1;
4789 break;
4790 }
4791 }
4792 break;
4793 case CODE_64BIT:
4794 for (j = 0; j < MAX_OPERANDS; j++)
4795 {
4796 if (operand_types[j].bitfield.disp64)
4797 {
4798 addr_prefix_disp = j;
4799 operand_types[j].bitfield.disp64 = 0;
4800 operand_types[j].bitfield.disp32 = 1;
4801 break;
4802 }
4803 }
4804 break;
4805 }
4806 }
4807
4808 /* We check register size if needed. */
4809 check_register = t->opcode_modifier.checkregsize;
4810 overlap0 = operand_type_and (i.types[0], operand_types[0]);
4811 switch (t->operands)
4812 {
4813 case 1:
4814 if (!operand_type_match (overlap0, i.types[0]))
4815 continue;
4816 break;
4817 case 2:
4818 /* xchg %eax, %eax is a special case. It is an aliase for nop
4819 only in 32bit mode and we can use opcode 0x90. In 64bit
4820 mode, we can't use 0x90 for xchg %eax, %eax since it should
4821 zero-extend %eax to %rax. */
4822 if (flag_code == CODE_64BIT
4823 && t->base_opcode == 0x90
4824 && operand_type_equal (&i.types [0], &acc32)
4825 && operand_type_equal (&i.types [1], &acc32))
4826 continue;
4827 if (i.swap_operand)
4828 {
4829 /* If we swap operand in encoding, we either match
4830 the next one or reverse direction of operands. */
4831 if (t->opcode_modifier.s)
4832 continue;
4833 else if (t->opcode_modifier.d)
4834 goto check_reverse;
4835 }
4836
4837 case 3:
4838 /* If we swap operand in encoding, we match the next one. */
4839 if (i.swap_operand && t->opcode_modifier.s)
4840 continue;
4841 case 4:
4842 case 5:
4843 overlap1 = operand_type_and (i.types[1], operand_types[1]);
4844 if (!operand_type_match (overlap0, i.types[0])
4845 || !operand_type_match (overlap1, i.types[1])
4846 || (check_register
4847 && !operand_type_register_match (overlap0, i.types[0],
4848 operand_types[0],
4849 overlap1, i.types[1],
4850 operand_types[1])))
4851 {
4852 /* Check if other direction is valid ... */
4853 if (!t->opcode_modifier.d && !t->opcode_modifier.floatd)
4854 continue;
4855
4856 check_reverse:
4857 /* Try reversing direction of operands. */
4858 overlap0 = operand_type_and (i.types[0], operand_types[1]);
4859 overlap1 = operand_type_and (i.types[1], operand_types[0]);
4860 if (!operand_type_match (overlap0, i.types[0])
4861 || !operand_type_match (overlap1, i.types[1])
4862 || (check_register
4863 && !operand_type_register_match (overlap0,
4864 i.types[0],
4865 operand_types[1],
4866 overlap1,
4867 i.types[1],
4868 operand_types[0])))
4869 {
4870 /* Does not match either direction. */
4871 continue;
4872 }
4873 /* found_reverse_match holds which of D or FloatDR
4874 we've found. */
4875 if (t->opcode_modifier.d)
4876 found_reverse_match = Opcode_D;
4877 else if (t->opcode_modifier.floatd)
4878 found_reverse_match = Opcode_FloatD;
4879 else
4880 found_reverse_match = 0;
4881 if (t->opcode_modifier.floatr)
4882 found_reverse_match |= Opcode_FloatR;
4883 }
4884 else
4885 {
4886 /* Found a forward 2 operand match here. */
4887 switch (t->operands)
4888 {
4889 case 5:
4890 overlap4 = operand_type_and (i.types[4],
4891 operand_types[4]);
4892 case 4:
4893 overlap3 = operand_type_and (i.types[3],
4894 operand_types[3]);
4895 case 3:
4896 overlap2 = operand_type_and (i.types[2],
4897 operand_types[2]);
4898 break;
4899 }
4900
4901 switch (t->operands)
4902 {
4903 case 5:
4904 if (!operand_type_match (overlap4, i.types[4])
4905 || !operand_type_register_match (overlap3,
4906 i.types[3],
4907 operand_types[3],
4908 overlap4,
4909 i.types[4],
4910 operand_types[4]))
4911 continue;
4912 case 4:
4913 if (!operand_type_match (overlap3, i.types[3])
4914 || (check_register
4915 && !operand_type_register_match (overlap2,
4916 i.types[2],
4917 operand_types[2],
4918 overlap3,
4919 i.types[3],
4920 operand_types[3])))
4921 continue;
4922 case 3:
4923 /* Here we make use of the fact that there are no
4924 reverse match 3 operand instructions, and all 3
4925 operand instructions only need to be checked for
4926 register consistency between operands 2 and 3. */
4927 if (!operand_type_match (overlap2, i.types[2])
4928 || (check_register
4929 && !operand_type_register_match (overlap1,
4930 i.types[1],
4931 operand_types[1],
4932 overlap2,
4933 i.types[2],
4934 operand_types[2])))
4935 continue;
4936 break;
4937 }
4938 }
4939 /* Found either forward/reverse 2, 3 or 4 operand match here:
4940 slip through to break. */
4941 }
4942 if (!found_cpu_match)
4943 {
4944 found_reverse_match = 0;
4945 continue;
4946 }
4947
4948 /* Check if vector and VEX operands are valid. */
4949 if (check_VecOperands (t) || VEX_check_operands (t))
4950 {
4951 specific_error = i.error;
4952 continue;
4953 }
4954
4955 /* We've found a match; break out of loop. */
4956 break;
4957 }
4958
4959 if (t == current_templates->end)
4960 {
4961 /* We found no match. */
4962 const char *err_msg;
4963 switch (specific_error ? specific_error : i.error)
4964 {
4965 default:
4966 abort ();
4967 case operand_size_mismatch:
4968 err_msg = _("operand size mismatch");
4969 break;
4970 case operand_type_mismatch:
4971 err_msg = _("operand type mismatch");
4972 break;
4973 case register_type_mismatch:
4974 err_msg = _("register type mismatch");
4975 break;
4976 case number_of_operands_mismatch:
4977 err_msg = _("number of operands mismatch");
4978 break;
4979 case invalid_instruction_suffix:
4980 err_msg = _("invalid instruction suffix");
4981 break;
4982 case bad_imm4:
4983 err_msg = _("constant doesn't fit in 4 bits");
4984 break;
4985 case old_gcc_only:
4986 err_msg = _("only supported with old gcc");
4987 break;
4988 case unsupported_with_intel_mnemonic:
4989 err_msg = _("unsupported with Intel mnemonic");
4990 break;
4991 case unsupported_syntax:
4992 err_msg = _("unsupported syntax");
4993 break;
4994 case unsupported:
4995 as_bad (_("unsupported instruction `%s'"),
4996 current_templates->start->name);
4997 return NULL;
4998 case invalid_vsib_address:
4999 err_msg = _("invalid VSIB address");
5000 break;
5001 case invalid_vector_register_set:
5002 err_msg = _("mask, index, and destination registers must be distinct");
5003 break;
5004 case unsupported_vector_index_register:
5005 err_msg = _("unsupported vector index register");
5006 break;
5007 case unsupported_broadcast:
5008 err_msg = _("unsupported broadcast");
5009 break;
5010 case broadcast_not_on_src_operand:
5011 err_msg = _("broadcast not on source memory operand");
5012 break;
5013 case broadcast_needed:
5014 err_msg = _("broadcast is needed for operand of such type");
5015 break;
5016 case unsupported_masking:
5017 err_msg = _("unsupported masking");
5018 break;
5019 case mask_not_on_destination:
5020 err_msg = _("mask not on destination operand");
5021 break;
5022 case no_default_mask:
5023 err_msg = _("default mask isn't allowed");
5024 break;
5025 case unsupported_rc_sae:
5026 err_msg = _("unsupported static rounding/sae");
5027 break;
5028 case rc_sae_operand_not_last_imm:
5029 if (intel_syntax)
5030 err_msg = _("RC/SAE operand must precede immediate operands");
5031 else
5032 err_msg = _("RC/SAE operand must follow immediate operands");
5033 break;
5034 case invalid_register_operand:
5035 err_msg = _("invalid register operand");
5036 break;
5037 }
5038 as_bad (_("%s for `%s'"), err_msg,
5039 current_templates->start->name);
5040 return NULL;
5041 }
5042
5043 if (!quiet_warnings)
5044 {
5045 if (!intel_syntax
5046 && (i.types[0].bitfield.jumpabsolute
5047 != operand_types[0].bitfield.jumpabsolute))
5048 {
5049 as_warn (_("indirect %s without `*'"), t->name);
5050 }
5051
5052 if (t->opcode_modifier.isprefix
5053 && t->opcode_modifier.ignoresize)
5054 {
5055 /* Warn them that a data or address size prefix doesn't
5056 affect assembly of the next line of code. */
5057 as_warn (_("stand-alone `%s' prefix"), t->name);
5058 }
5059 }
5060
5061 /* Copy the template we found. */
5062 i.tm = *t;
5063
5064 if (addr_prefix_disp != -1)
5065 i.tm.operand_types[addr_prefix_disp]
5066 = operand_types[addr_prefix_disp];
5067
5068 if (found_reverse_match)
5069 {
5070 /* If we found a reverse match we must alter the opcode
5071 direction bit. found_reverse_match holds bits to change
5072 (different for int & float insns). */
5073
5074 i.tm.base_opcode ^= found_reverse_match;
5075
5076 i.tm.operand_types[0] = operand_types[1];
5077 i.tm.operand_types[1] = operand_types[0];
5078 }
5079
5080 return t;
5081 }
5082
5083 static int
5084 check_string (void)
5085 {
5086 int mem_op = operand_type_check (i.types[0], anymem) ? 0 : 1;
5087 if (i.tm.operand_types[mem_op].bitfield.esseg)
5088 {
5089 if (i.seg[0] != NULL && i.seg[0] != &es)
5090 {
5091 as_bad (_("`%s' operand %d must use `%ses' segment"),
5092 i.tm.name,
5093 mem_op + 1,
5094 register_prefix);
5095 return 0;
5096 }
5097 /* There's only ever one segment override allowed per instruction.
5098 This instruction possibly has a legal segment override on the
5099 second operand, so copy the segment to where non-string
5100 instructions store it, allowing common code. */
5101 i.seg[0] = i.seg[1];
5102 }
5103 else if (i.tm.operand_types[mem_op + 1].bitfield.esseg)
5104 {
5105 if (i.seg[1] != NULL && i.seg[1] != &es)
5106 {
5107 as_bad (_("`%s' operand %d must use `%ses' segment"),
5108 i.tm.name,
5109 mem_op + 2,
5110 register_prefix);
5111 return 0;
5112 }
5113 }
5114 return 1;
5115 }
5116
5117 static int
5118 process_suffix (void)
5119 {
5120 /* If matched instruction specifies an explicit instruction mnemonic
5121 suffix, use it. */
5122 if (i.tm.opcode_modifier.size16)
5123 i.suffix = WORD_MNEM_SUFFIX;
5124 else if (i.tm.opcode_modifier.size32)
5125 i.suffix = LONG_MNEM_SUFFIX;
5126 else if (i.tm.opcode_modifier.size64)
5127 i.suffix = QWORD_MNEM_SUFFIX;
5128 else if (i.reg_operands)
5129 {
5130 /* If there's no instruction mnemonic suffix we try to invent one
5131 based on register operands. */
5132 if (!i.suffix)
5133 {
5134 /* We take i.suffix from the last register operand specified,
5135 Destination register type is more significant than source
5136 register type. crc32 in SSE4.2 prefers source register
5137 type. */
5138 if (i.tm.base_opcode == 0xf20f38f1)
5139 {
5140 if (i.types[0].bitfield.reg16)
5141 i.suffix = WORD_MNEM_SUFFIX;
5142 else if (i.types[0].bitfield.reg32)
5143 i.suffix = LONG_MNEM_SUFFIX;
5144 else if (i.types[0].bitfield.reg64)
5145 i.suffix = QWORD_MNEM_SUFFIX;
5146 }
5147 else if (i.tm.base_opcode == 0xf20f38f0)
5148 {
5149 if (i.types[0].bitfield.reg8)
5150 i.suffix = BYTE_MNEM_SUFFIX;
5151 }
5152
5153 if (!i.suffix)
5154 {
5155 int op;
5156
5157 if (i.tm.base_opcode == 0xf20f38f1
5158 || i.tm.base_opcode == 0xf20f38f0)
5159 {
5160 /* We have to know the operand size for crc32. */
5161 as_bad (_("ambiguous memory operand size for `%s`"),
5162 i.tm.name);
5163 return 0;
5164 }
5165
5166 for (op = i.operands; --op >= 0;)
5167 if (!i.tm.operand_types[op].bitfield.inoutportreg)
5168 {
5169 if (i.types[op].bitfield.reg8)
5170 {
5171 i.suffix = BYTE_MNEM_SUFFIX;
5172 break;
5173 }
5174 else if (i.types[op].bitfield.reg16)
5175 {
5176 i.suffix = WORD_MNEM_SUFFIX;
5177 break;
5178 }
5179 else if (i.types[op].bitfield.reg32)
5180 {
5181 i.suffix = LONG_MNEM_SUFFIX;
5182 break;
5183 }
5184 else if (i.types[op].bitfield.reg64)
5185 {
5186 i.suffix = QWORD_MNEM_SUFFIX;
5187 break;
5188 }
5189 }
5190 }
5191 }
5192 else if (i.suffix == BYTE_MNEM_SUFFIX)
5193 {
5194 if (intel_syntax
5195 && i.tm.opcode_modifier.ignoresize
5196 && i.tm.opcode_modifier.no_bsuf)
5197 i.suffix = 0;
5198 else if (!check_byte_reg ())
5199 return 0;
5200 }
5201 else if (i.suffix == LONG_MNEM_SUFFIX)
5202 {
5203 if (intel_syntax
5204 && i.tm.opcode_modifier.ignoresize
5205 && i.tm.opcode_modifier.no_lsuf)
5206 i.suffix = 0;
5207 else if (!check_long_reg ())
5208 return 0;
5209 }
5210 else if (i.suffix == QWORD_MNEM_SUFFIX)
5211 {
5212 if (intel_syntax
5213 && i.tm.opcode_modifier.ignoresize
5214 && i.tm.opcode_modifier.no_qsuf)
5215 i.suffix = 0;
5216 else if (!check_qword_reg ())
5217 return 0;
5218 }
5219 else if (i.suffix == WORD_MNEM_SUFFIX)
5220 {
5221 if (intel_syntax
5222 && i.tm.opcode_modifier.ignoresize
5223 && i.tm.opcode_modifier.no_wsuf)
5224 i.suffix = 0;
5225 else if (!check_word_reg ())
5226 return 0;
5227 }
5228 else if (i.suffix == XMMWORD_MNEM_SUFFIX
5229 || i.suffix == YMMWORD_MNEM_SUFFIX
5230 || i.suffix == ZMMWORD_MNEM_SUFFIX)
5231 {
5232 /* Skip if the instruction has x/y/z suffix. match_template
5233 should check if it is a valid suffix. */
5234 }
5235 else if (intel_syntax && i.tm.opcode_modifier.ignoresize)
5236 /* Do nothing if the instruction is going to ignore the prefix. */
5237 ;
5238 else
5239 abort ();
5240 }
5241 else if (i.tm.opcode_modifier.defaultsize
5242 && !i.suffix
5243 /* exclude fldenv/frstor/fsave/fstenv */
5244 && i.tm.opcode_modifier.no_ssuf)
5245 {
5246 i.suffix = stackop_size;
5247 }
5248 else if (intel_syntax
5249 && !i.suffix
5250 && (i.tm.operand_types[0].bitfield.jumpabsolute
5251 || i.tm.opcode_modifier.jumpbyte
5252 || i.tm.opcode_modifier.jumpintersegment
5253 || (i.tm.base_opcode == 0x0f01 /* [ls][gi]dt */
5254 && i.tm.extension_opcode <= 3)))
5255 {
5256 switch (flag_code)
5257 {
5258 case CODE_64BIT:
5259 if (!i.tm.opcode_modifier.no_qsuf)
5260 {
5261 i.suffix = QWORD_MNEM_SUFFIX;
5262 break;
5263 }
5264 case CODE_32BIT:
5265 if (!i.tm.opcode_modifier.no_lsuf)
5266 i.suffix = LONG_MNEM_SUFFIX;
5267 break;
5268 case CODE_16BIT:
5269 if (!i.tm.opcode_modifier.no_wsuf)
5270 i.suffix = WORD_MNEM_SUFFIX;
5271 break;
5272 }
5273 }
5274
5275 if (!i.suffix)
5276 {
5277 if (!intel_syntax)
5278 {
5279 if (i.tm.opcode_modifier.w)
5280 {
5281 as_bad (_("no instruction mnemonic suffix given and "
5282 "no register operands; can't size instruction"));
5283 return 0;
5284 }
5285 }
5286 else
5287 {
5288 unsigned int suffixes;
5289
5290 suffixes = !i.tm.opcode_modifier.no_bsuf;
5291 if (!i.tm.opcode_modifier.no_wsuf)
5292 suffixes |= 1 << 1;
5293 if (!i.tm.opcode_modifier.no_lsuf)
5294 suffixes |= 1 << 2;
5295 if (!i.tm.opcode_modifier.no_ldsuf)
5296 suffixes |= 1 << 3;
5297 if (!i.tm.opcode_modifier.no_ssuf)
5298 suffixes |= 1 << 4;
5299 if (!i.tm.opcode_modifier.no_qsuf)
5300 suffixes |= 1 << 5;
5301
5302 /* There are more than suffix matches. */
5303 if (i.tm.opcode_modifier.w
5304 || ((suffixes & (suffixes - 1))
5305 && !i.tm.opcode_modifier.defaultsize
5306 && !i.tm.opcode_modifier.ignoresize))
5307 {
5308 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
5309 return 0;
5310 }
5311 }
5312 }
5313
5314 /* Change the opcode based on the operand size given by i.suffix;
5315 We don't need to change things for byte insns. */
5316
5317 if (i.suffix
5318 && i.suffix != BYTE_MNEM_SUFFIX
5319 && i.suffix != XMMWORD_MNEM_SUFFIX
5320 && i.suffix != YMMWORD_MNEM_SUFFIX
5321 && i.suffix != ZMMWORD_MNEM_SUFFIX)
5322 {
5323 /* It's not a byte, select word/dword operation. */
5324 if (i.tm.opcode_modifier.w)
5325 {
5326 if (i.tm.opcode_modifier.shortform)
5327 i.tm.base_opcode |= 8;
5328 else
5329 i.tm.base_opcode |= 1;
5330 }
5331
5332 /* Now select between word & dword operations via the operand
5333 size prefix, except for instructions that will ignore this
5334 prefix anyway. */
5335 if (i.tm.opcode_modifier.addrprefixop0)
5336 {
5337 /* The address size override prefix changes the size of the
5338 first operand. */
5339 if ((flag_code == CODE_32BIT
5340 && i.op->regs[0].reg_type.bitfield.reg16)
5341 || (flag_code != CODE_32BIT
5342 && i.op->regs[0].reg_type.bitfield.reg32))
5343 if (!add_prefix (ADDR_PREFIX_OPCODE))
5344 return 0;
5345 }
5346 else if (i.suffix != QWORD_MNEM_SUFFIX
5347 && i.suffix != LONG_DOUBLE_MNEM_SUFFIX
5348 && !i.tm.opcode_modifier.ignoresize
5349 && !i.tm.opcode_modifier.floatmf
5350 && ((i.suffix == LONG_MNEM_SUFFIX) == (flag_code == CODE_16BIT)
5351 || (flag_code == CODE_64BIT
5352 && i.tm.opcode_modifier.jumpbyte)))
5353 {
5354 unsigned int prefix = DATA_PREFIX_OPCODE;
5355
5356 if (i.tm.opcode_modifier.jumpbyte) /* jcxz, loop */
5357 prefix = ADDR_PREFIX_OPCODE;
5358
5359 if (!add_prefix (prefix))
5360 return 0;
5361 }
5362
5363 /* Set mode64 for an operand. */
5364 if (i.suffix == QWORD_MNEM_SUFFIX
5365 && flag_code == CODE_64BIT
5366 && !i.tm.opcode_modifier.norex64)
5367 {
5368 /* Special case for xchg %rax,%rax. It is NOP and doesn't
5369 need rex64. cmpxchg8b is also a special case. */
5370 if (! (i.operands == 2
5371 && i.tm.base_opcode == 0x90
5372 && i.tm.extension_opcode == None
5373 && operand_type_equal (&i.types [0], &acc64)
5374 && operand_type_equal (&i.types [1], &acc64))
5375 && ! (i.operands == 1
5376 && i.tm.base_opcode == 0xfc7
5377 && i.tm.extension_opcode == 1
5378 && !operand_type_check (i.types [0], reg)
5379 && operand_type_check (i.types [0], anymem)))
5380 i.rex |= REX_W;
5381 }
5382
5383 /* Size floating point instruction. */
5384 if (i.suffix == LONG_MNEM_SUFFIX)
5385 if (i.tm.opcode_modifier.floatmf)
5386 i.tm.base_opcode ^= 4;
5387 }
5388
5389 return 1;
5390 }
5391
5392 static int
5393 check_byte_reg (void)
5394 {
5395 int op;
5396
5397 for (op = i.operands; --op >= 0;)
5398 {
5399 /* If this is an eight bit register, it's OK. If it's the 16 or
5400 32 bit version of an eight bit register, we will just use the
5401 low portion, and that's OK too. */
5402 if (i.types[op].bitfield.reg8)
5403 continue;
5404
5405 /* I/O port address operands are OK too. */
5406 if (i.tm.operand_types[op].bitfield.inoutportreg)
5407 continue;
5408
5409 /* crc32 doesn't generate this warning. */
5410 if (i.tm.base_opcode == 0xf20f38f0)
5411 continue;
5412
5413 if ((i.types[op].bitfield.reg16
5414 || i.types[op].bitfield.reg32
5415 || i.types[op].bitfield.reg64)
5416 && i.op[op].regs->reg_num < 4
5417 /* Prohibit these changes in 64bit mode, since the lowering
5418 would be more complicated. */
5419 && flag_code != CODE_64BIT)
5420 {
5421 #if REGISTER_WARNINGS
5422 if (!quiet_warnings)
5423 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
5424 register_prefix,
5425 (i.op[op].regs + (i.types[op].bitfield.reg16
5426 ? REGNAM_AL - REGNAM_AX
5427 : REGNAM_AL - REGNAM_EAX))->reg_name,
5428 register_prefix,
5429 i.op[op].regs->reg_name,
5430 i.suffix);
5431 #endif
5432 continue;
5433 }
5434 /* Any other register is bad. */
5435 if (i.types[op].bitfield.reg16
5436 || i.types[op].bitfield.reg32
5437 || i.types[op].bitfield.reg64
5438 || i.types[op].bitfield.regmmx
5439 || i.types[op].bitfield.regxmm
5440 || i.types[op].bitfield.regymm
5441 || i.types[op].bitfield.regzmm
5442 || i.types[op].bitfield.sreg2
5443 || i.types[op].bitfield.sreg3
5444 || i.types[op].bitfield.control
5445 || i.types[op].bitfield.debug
5446 || i.types[op].bitfield.test
5447 || i.types[op].bitfield.floatreg
5448 || i.types[op].bitfield.floatacc)
5449 {
5450 as_bad (_("`%s%s' not allowed with `%s%c'"),
5451 register_prefix,
5452 i.op[op].regs->reg_name,
5453 i.tm.name,
5454 i.suffix);
5455 return 0;
5456 }
5457 }
5458 return 1;
5459 }
5460
5461 static int
5462 check_long_reg (void)
5463 {
5464 int op;
5465
5466 for (op = i.operands; --op >= 0;)
5467 /* Reject eight bit registers, except where the template requires
5468 them. (eg. movzb) */
5469 if (i.types[op].bitfield.reg8
5470 && (i.tm.operand_types[op].bitfield.reg16
5471 || i.tm.operand_types[op].bitfield.reg32
5472 || i.tm.operand_types[op].bitfield.acc))
5473 {
5474 as_bad (_("`%s%s' not allowed with `%s%c'"),
5475 register_prefix,
5476 i.op[op].regs->reg_name,
5477 i.tm.name,
5478 i.suffix);
5479 return 0;
5480 }
5481 /* Warn if the e prefix on a general reg is missing. */
5482 else if ((!quiet_warnings || flag_code == CODE_64BIT)
5483 && i.types[op].bitfield.reg16
5484 && (i.tm.operand_types[op].bitfield.reg32
5485 || i.tm.operand_types[op].bitfield.acc))
5486 {
5487 /* Prohibit these changes in the 64bit mode, since the
5488 lowering is more complicated. */
5489 if (flag_code == CODE_64BIT)
5490 {
5491 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
5492 register_prefix, i.op[op].regs->reg_name,
5493 i.suffix);
5494 return 0;
5495 }
5496 #if REGISTER_WARNINGS
5497 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
5498 register_prefix,
5499 (i.op[op].regs + REGNAM_EAX - REGNAM_AX)->reg_name,
5500 register_prefix, i.op[op].regs->reg_name, i.suffix);
5501 #endif
5502 }
5503 /* Warn if the r prefix on a general reg is present. */
5504 else if (i.types[op].bitfield.reg64
5505 && (i.tm.operand_types[op].bitfield.reg32
5506 || i.tm.operand_types[op].bitfield.acc))
5507 {
5508 if (intel_syntax
5509 && i.tm.opcode_modifier.toqword
5510 && !i.types[0].bitfield.regxmm)
5511 {
5512 /* Convert to QWORD. We want REX byte. */
5513 i.suffix = QWORD_MNEM_SUFFIX;
5514 }
5515 else
5516 {
5517 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
5518 register_prefix, i.op[op].regs->reg_name,
5519 i.suffix);
5520 return 0;
5521 }
5522 }
5523 return 1;
5524 }
5525
5526 static int
5527 check_qword_reg (void)
5528 {
5529 int op;
5530
5531 for (op = i.operands; --op >= 0; )
5532 /* Reject eight bit registers, except where the template requires
5533 them. (eg. movzb) */
5534 if (i.types[op].bitfield.reg8
5535 && (i.tm.operand_types[op].bitfield.reg16
5536 || i.tm.operand_types[op].bitfield.reg32
5537 || i.tm.operand_types[op].bitfield.acc))
5538 {
5539 as_bad (_("`%s%s' not allowed with `%s%c'"),
5540 register_prefix,
5541 i.op[op].regs->reg_name,
5542 i.tm.name,
5543 i.suffix);
5544 return 0;
5545 }
5546 /* Warn if the r prefix on a general reg is missing. */
5547 else if ((i.types[op].bitfield.reg16
5548 || i.types[op].bitfield.reg32)
5549 && (i.tm.operand_types[op].bitfield.reg32
5550 || i.tm.operand_types[op].bitfield.acc))
5551 {
5552 /* Prohibit these changes in the 64bit mode, since the
5553 lowering is more complicated. */
5554 if (intel_syntax
5555 && i.tm.opcode_modifier.todword
5556 && !i.types[0].bitfield.regxmm)
5557 {
5558 /* Convert to DWORD. We don't want REX byte. */
5559 i.suffix = LONG_MNEM_SUFFIX;
5560 }
5561 else
5562 {
5563 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
5564 register_prefix, i.op[op].regs->reg_name,
5565 i.suffix);
5566 return 0;
5567 }
5568 }
5569 return 1;
5570 }
5571
5572 static int
5573 check_word_reg (void)
5574 {
5575 int op;
5576 for (op = i.operands; --op >= 0;)
5577 /* Reject eight bit registers, except where the template requires
5578 them. (eg. movzb) */
5579 if (i.types[op].bitfield.reg8
5580 && (i.tm.operand_types[op].bitfield.reg16
5581 || i.tm.operand_types[op].bitfield.reg32
5582 || i.tm.operand_types[op].bitfield.acc))
5583 {
5584 as_bad (_("`%s%s' not allowed with `%s%c'"),
5585 register_prefix,
5586 i.op[op].regs->reg_name,
5587 i.tm.name,
5588 i.suffix);
5589 return 0;
5590 }
5591 /* Warn if the e or r prefix on a general reg is present. */
5592 else if ((!quiet_warnings || flag_code == CODE_64BIT)
5593 && (i.types[op].bitfield.reg32
5594 || i.types[op].bitfield.reg64)
5595 && (i.tm.operand_types[op].bitfield.reg16
5596 || i.tm.operand_types[op].bitfield.acc))
5597 {
5598 /* Prohibit these changes in the 64bit mode, since the
5599 lowering is more complicated. */
5600 if (flag_code == CODE_64BIT)
5601 {
5602 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
5603 register_prefix, i.op[op].regs->reg_name,
5604 i.suffix);
5605 return 0;
5606 }
5607 #if REGISTER_WARNINGS
5608 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
5609 register_prefix,
5610 (i.op[op].regs + REGNAM_AX - REGNAM_EAX)->reg_name,
5611 register_prefix, i.op[op].regs->reg_name, i.suffix);
5612 #endif
5613 }
5614 return 1;
5615 }
5616
5617 static int
5618 update_imm (unsigned int j)
5619 {
5620 i386_operand_type overlap = i.types[j];
5621 if ((overlap.bitfield.imm8
5622 || overlap.bitfield.imm8s
5623 || overlap.bitfield.imm16
5624 || overlap.bitfield.imm32
5625 || overlap.bitfield.imm32s
5626 || overlap.bitfield.imm64)
5627 && !operand_type_equal (&overlap, &imm8)
5628 && !operand_type_equal (&overlap, &imm8s)
5629 && !operand_type_equal (&overlap, &imm16)
5630 && !operand_type_equal (&overlap, &imm32)
5631 && !operand_type_equal (&overlap, &imm32s)
5632 && !operand_type_equal (&overlap, &imm64))
5633 {
5634 if (i.suffix)
5635 {
5636 i386_operand_type temp;
5637
5638 operand_type_set (&temp, 0);
5639 if (i.suffix == BYTE_MNEM_SUFFIX)
5640 {
5641 temp.bitfield.imm8 = overlap.bitfield.imm8;
5642 temp.bitfield.imm8s = overlap.bitfield.imm8s;
5643 }
5644 else if (i.suffix == WORD_MNEM_SUFFIX)
5645 temp.bitfield.imm16 = overlap.bitfield.imm16;
5646 else if (i.suffix == QWORD_MNEM_SUFFIX)
5647 {
5648 temp.bitfield.imm64 = overlap.bitfield.imm64;
5649 temp.bitfield.imm32s = overlap.bitfield.imm32s;
5650 }
5651 else
5652 temp.bitfield.imm32 = overlap.bitfield.imm32;
5653 overlap = temp;
5654 }
5655 else if (operand_type_equal (&overlap, &imm16_32_32s)
5656 || operand_type_equal (&overlap, &imm16_32)
5657 || operand_type_equal (&overlap, &imm16_32s))
5658 {
5659 if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
5660 overlap = imm16;
5661 else
5662 overlap = imm32s;
5663 }
5664 if (!operand_type_equal (&overlap, &imm8)
5665 && !operand_type_equal (&overlap, &imm8s)
5666 && !operand_type_equal (&overlap, &imm16)
5667 && !operand_type_equal (&overlap, &imm32)
5668 && !operand_type_equal (&overlap, &imm32s)
5669 && !operand_type_equal (&overlap, &imm64))
5670 {
5671 as_bad (_("no instruction mnemonic suffix given; "
5672 "can't determine immediate size"));
5673 return 0;
5674 }
5675 }
5676 i.types[j] = overlap;
5677
5678 return 1;
5679 }
5680
5681 static int
5682 finalize_imm (void)
5683 {
5684 unsigned int j, n;
5685
5686 /* Update the first 2 immediate operands. */
5687 n = i.operands > 2 ? 2 : i.operands;
5688 if (n)
5689 {
5690 for (j = 0; j < n; j++)
5691 if (update_imm (j) == 0)
5692 return 0;
5693
5694 /* The 3rd operand can't be immediate operand. */
5695 gas_assert (operand_type_check (i.types[2], imm) == 0);
5696 }
5697
5698 return 1;
5699 }
5700
5701 static int
5702 bad_implicit_operand (int xmm)
5703 {
5704 const char *ireg = xmm ? "xmm0" : "ymm0";
5705
5706 if (intel_syntax)
5707 as_bad (_("the last operand of `%s' must be `%s%s'"),
5708 i.tm.name, register_prefix, ireg);
5709 else
5710 as_bad (_("the first operand of `%s' must be `%s%s'"),
5711 i.tm.name, register_prefix, ireg);
5712 return 0;
5713 }
5714
5715 static int
5716 process_operands (void)
5717 {
5718 /* Default segment register this instruction will use for memory
5719 accesses. 0 means unknown. This is only for optimizing out
5720 unnecessary segment overrides. */
5721 const seg_entry *default_seg = 0;
5722
5723 if (i.tm.opcode_modifier.sse2avx && i.tm.opcode_modifier.vexvvvv)
5724 {
5725 unsigned int dupl = i.operands;
5726 unsigned int dest = dupl - 1;
5727 unsigned int j;
5728
5729 /* The destination must be an xmm register. */
5730 gas_assert (i.reg_operands
5731 && MAX_OPERANDS > dupl
5732 && operand_type_equal (&i.types[dest], &regxmm));
5733
5734 if (i.tm.opcode_modifier.firstxmm0)
5735 {
5736 /* The first operand is implicit and must be xmm0. */
5737 gas_assert (operand_type_equal (&i.types[0], &regxmm));
5738 if (register_number (i.op[0].regs) != 0)
5739 return bad_implicit_operand (1);
5740
5741 if (i.tm.opcode_modifier.vexsources == VEX3SOURCES)
5742 {
5743 /* Keep xmm0 for instructions with VEX prefix and 3
5744 sources. */
5745 goto duplicate;
5746 }
5747 else
5748 {
5749 /* We remove the first xmm0 and keep the number of
5750 operands unchanged, which in fact duplicates the
5751 destination. */
5752 for (j = 1; j < i.operands; j++)
5753 {
5754 i.op[j - 1] = i.op[j];
5755 i.types[j - 1] = i.types[j];
5756 i.tm.operand_types[j - 1] = i.tm.operand_types[j];
5757 }
5758 }
5759 }
5760 else if (i.tm.opcode_modifier.implicit1stxmm0)
5761 {
5762 gas_assert ((MAX_OPERANDS - 1) > dupl
5763 && (i.tm.opcode_modifier.vexsources
5764 == VEX3SOURCES));
5765
5766 /* Add the implicit xmm0 for instructions with VEX prefix
5767 and 3 sources. */
5768 for (j = i.operands; j > 0; j--)
5769 {
5770 i.op[j] = i.op[j - 1];
5771 i.types[j] = i.types[j - 1];
5772 i.tm.operand_types[j] = i.tm.operand_types[j - 1];
5773 }
5774 i.op[0].regs
5775 = (const reg_entry *) hash_find (reg_hash, "xmm0");
5776 i.types[0] = regxmm;
5777 i.tm.operand_types[0] = regxmm;
5778
5779 i.operands += 2;
5780 i.reg_operands += 2;
5781 i.tm.operands += 2;
5782
5783 dupl++;
5784 dest++;
5785 i.op[dupl] = i.op[dest];
5786 i.types[dupl] = i.types[dest];
5787 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
5788 }
5789 else
5790 {
5791 duplicate:
5792 i.operands++;
5793 i.reg_operands++;
5794 i.tm.operands++;
5795
5796 i.op[dupl] = i.op[dest];
5797 i.types[dupl] = i.types[dest];
5798 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
5799 }
5800
5801 if (i.tm.opcode_modifier.immext)
5802 process_immext ();
5803 }
5804 else if (i.tm.opcode_modifier.firstxmm0)
5805 {
5806 unsigned int j;
5807
5808 /* The first operand is implicit and must be xmm0/ymm0/zmm0. */
5809 gas_assert (i.reg_operands
5810 && (operand_type_equal (&i.types[0], &regxmm)
5811 || operand_type_equal (&i.types[0], &regymm)
5812 || operand_type_equal (&i.types[0], &regzmm)));
5813 if (register_number (i.op[0].regs) != 0)
5814 return bad_implicit_operand (i.types[0].bitfield.regxmm);
5815
5816 for (j = 1; j < i.operands; j++)
5817 {
5818 i.op[j - 1] = i.op[j];
5819 i.types[j - 1] = i.types[j];
5820
5821 /* We need to adjust fields in i.tm since they are used by
5822 build_modrm_byte. */
5823 i.tm.operand_types [j - 1] = i.tm.operand_types [j];
5824 }
5825
5826 i.operands--;
5827 i.reg_operands--;
5828 i.tm.operands--;
5829 }
5830 else if (i.tm.opcode_modifier.regkludge)
5831 {
5832 /* The imul $imm, %reg instruction is converted into
5833 imul $imm, %reg, %reg, and the clr %reg instruction
5834 is converted into xor %reg, %reg. */
5835
5836 unsigned int first_reg_op;
5837
5838 if (operand_type_check (i.types[0], reg))
5839 first_reg_op = 0;
5840 else
5841 first_reg_op = 1;
5842 /* Pretend we saw the extra register operand. */
5843 gas_assert (i.reg_operands == 1
5844 && i.op[first_reg_op + 1].regs == 0);
5845 i.op[first_reg_op + 1].regs = i.op[first_reg_op].regs;
5846 i.types[first_reg_op + 1] = i.types[first_reg_op];
5847 i.operands++;
5848 i.reg_operands++;
5849 }
5850
5851 if (i.tm.opcode_modifier.shortform)
5852 {
5853 if (i.types[0].bitfield.sreg2
5854 || i.types[0].bitfield.sreg3)
5855 {
5856 if (i.tm.base_opcode == POP_SEG_SHORT
5857 && i.op[0].regs->reg_num == 1)
5858 {
5859 as_bad (_("you can't `pop %scs'"), register_prefix);
5860 return 0;
5861 }
5862 i.tm.base_opcode |= (i.op[0].regs->reg_num << 3);
5863 if ((i.op[0].regs->reg_flags & RegRex) != 0)
5864 i.rex |= REX_B;
5865 }
5866 else
5867 {
5868 /* The register or float register operand is in operand
5869 0 or 1. */
5870 unsigned int op;
5871
5872 if (i.types[0].bitfield.floatreg
5873 || operand_type_check (i.types[0], reg))
5874 op = 0;
5875 else
5876 op = 1;
5877 /* Register goes in low 3 bits of opcode. */
5878 i.tm.base_opcode |= i.op[op].regs->reg_num;
5879 if ((i.op[op].regs->reg_flags & RegRex) != 0)
5880 i.rex |= REX_B;
5881 if (!quiet_warnings && i.tm.opcode_modifier.ugh)
5882 {
5883 /* Warn about some common errors, but press on regardless.
5884 The first case can be generated by gcc (<= 2.8.1). */
5885 if (i.operands == 2)
5886 {
5887 /* Reversed arguments on faddp, fsubp, etc. */
5888 as_warn (_("translating to `%s %s%s,%s%s'"), i.tm.name,
5889 register_prefix, i.op[!intel_syntax].regs->reg_name,
5890 register_prefix, i.op[intel_syntax].regs->reg_name);
5891 }
5892 else
5893 {
5894 /* Extraneous `l' suffix on fp insn. */
5895 as_warn (_("translating to `%s %s%s'"), i.tm.name,
5896 register_prefix, i.op[0].regs->reg_name);
5897 }
5898 }
5899 }
5900 }
5901 else if (i.tm.opcode_modifier.modrm)
5902 {
5903 /* The opcode is completed (modulo i.tm.extension_opcode which
5904 must be put into the modrm byte). Now, we make the modrm and
5905 index base bytes based on all the info we've collected. */
5906
5907 default_seg = build_modrm_byte ();
5908 }
5909 else if ((i.tm.base_opcode & ~0x3) == MOV_AX_DISP32)
5910 {
5911 default_seg = &ds;
5912 }
5913 else if (i.tm.opcode_modifier.isstring)
5914 {
5915 /* For the string instructions that allow a segment override
5916 on one of their operands, the default segment is ds. */
5917 default_seg = &ds;
5918 }
5919
5920 if (i.tm.base_opcode == 0x8d /* lea */
5921 && i.seg[0]
5922 && !quiet_warnings)
5923 as_warn (_("segment override on `%s' is ineffectual"), i.tm.name);
5924
5925 /* If a segment was explicitly specified, and the specified segment
5926 is not the default, use an opcode prefix to select it. If we
5927 never figured out what the default segment is, then default_seg
5928 will be zero at this point, and the specified segment prefix will
5929 always be used. */
5930 if ((i.seg[0]) && (i.seg[0] != default_seg))
5931 {
5932 if (!add_prefix (i.seg[0]->seg_prefix))
5933 return 0;
5934 }
5935 return 1;
5936 }
5937
5938 static const seg_entry *
5939 build_modrm_byte (void)
5940 {
5941 const seg_entry *default_seg = 0;
5942 unsigned int source, dest;
5943 int vex_3_sources;
5944
5945 /* The first operand of instructions with VEX prefix and 3 sources
5946 must be VEX_Imm4. */
5947 vex_3_sources = i.tm.opcode_modifier.vexsources == VEX3SOURCES;
5948 if (vex_3_sources)
5949 {
5950 unsigned int nds, reg_slot;
5951 expressionS *exp;
5952
5953 if (i.tm.opcode_modifier.veximmext
5954 && i.tm.opcode_modifier.immext)
5955 {
5956 dest = i.operands - 2;
5957 gas_assert (dest == 3);
5958 }
5959 else
5960 dest = i.operands - 1;
5961 nds = dest - 1;
5962
5963 /* There are 2 kinds of instructions:
5964 1. 5 operands: 4 register operands or 3 register operands
5965 plus 1 memory operand plus one Vec_Imm4 operand, VexXDS, and
5966 VexW0 or VexW1. The destination must be either XMM, YMM or
5967 ZMM register.
5968 2. 4 operands: 4 register operands or 3 register operands
5969 plus 1 memory operand, VexXDS, and VexImmExt */
5970 gas_assert ((i.reg_operands == 4
5971 || (i.reg_operands == 3 && i.mem_operands == 1))
5972 && i.tm.opcode_modifier.vexvvvv == VEXXDS
5973 && (i.tm.opcode_modifier.veximmext
5974 || (i.imm_operands == 1
5975 && i.types[0].bitfield.vec_imm4
5976 && (i.tm.opcode_modifier.vexw == VEXW0
5977 || i.tm.opcode_modifier.vexw == VEXW1)
5978 && (operand_type_equal (&i.tm.operand_types[dest], &regxmm)
5979 || operand_type_equal (&i.tm.operand_types[dest], &regymm)
5980 || operand_type_equal (&i.tm.operand_types[dest], &regzmm)))));
5981
5982 if (i.imm_operands == 0)
5983 {
5984 /* When there is no immediate operand, generate an 8bit
5985 immediate operand to encode the first operand. */
5986 exp = &im_expressions[i.imm_operands++];
5987 i.op[i.operands].imms = exp;
5988 i.types[i.operands] = imm8;
5989 i.operands++;
5990 /* If VexW1 is set, the first operand is the source and
5991 the second operand is encoded in the immediate operand. */
5992 if (i.tm.opcode_modifier.vexw == VEXW1)
5993 {
5994 source = 0;
5995 reg_slot = 1;
5996 }
5997 else
5998 {
5999 source = 1;
6000 reg_slot = 0;
6001 }
6002
6003 /* FMA swaps REG and NDS. */
6004 if (i.tm.cpu_flags.bitfield.cpufma)
6005 {
6006 unsigned int tmp;
6007 tmp = reg_slot;
6008 reg_slot = nds;
6009 nds = tmp;
6010 }
6011
6012 gas_assert (operand_type_equal (&i.tm.operand_types[reg_slot],
6013 &regxmm)
6014 || operand_type_equal (&i.tm.operand_types[reg_slot],
6015 &regymm)
6016 || operand_type_equal (&i.tm.operand_types[reg_slot],
6017 &regzmm));
6018 exp->X_op = O_constant;
6019 exp->X_add_number = register_number (i.op[reg_slot].regs) << 4;
6020 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
6021 }
6022 else
6023 {
6024 unsigned int imm_slot;
6025
6026 if (i.tm.opcode_modifier.vexw == VEXW0)
6027 {
6028 /* If VexW0 is set, the third operand is the source and
6029 the second operand is encoded in the immediate
6030 operand. */
6031 source = 2;
6032 reg_slot = 1;
6033 }
6034 else
6035 {
6036 /* VexW1 is set, the second operand is the source and
6037 the third operand is encoded in the immediate
6038 operand. */
6039 source = 1;
6040 reg_slot = 2;
6041 }
6042
6043 if (i.tm.opcode_modifier.immext)
6044 {
6045 /* When ImmExt is set, the immdiate byte is the last
6046 operand. */
6047 imm_slot = i.operands - 1;
6048 source--;
6049 reg_slot--;
6050 }
6051 else
6052 {
6053 imm_slot = 0;
6054
6055 /* Turn on Imm8 so that output_imm will generate it. */
6056 i.types[imm_slot].bitfield.imm8 = 1;
6057 }
6058
6059 gas_assert (operand_type_equal (&i.tm.operand_types[reg_slot],
6060 &regxmm)
6061 || operand_type_equal (&i.tm.operand_types[reg_slot],
6062 &regymm)
6063 || operand_type_equal (&i.tm.operand_types[reg_slot],
6064 &regzmm));
6065 i.op[imm_slot].imms->X_add_number
6066 |= register_number (i.op[reg_slot].regs) << 4;
6067 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
6068 }
6069
6070 gas_assert (operand_type_equal (&i.tm.operand_types[nds], &regxmm)
6071 || operand_type_equal (&i.tm.operand_types[nds],
6072 &regymm)
6073 || operand_type_equal (&i.tm.operand_types[nds],
6074 &regzmm));
6075 i.vex.register_specifier = i.op[nds].regs;
6076 }
6077 else
6078 source = dest = 0;
6079
6080 /* i.reg_operands MUST be the number of real register operands;
6081 implicit registers do not count. If there are 3 register
6082 operands, it must be a instruction with VexNDS. For a
6083 instruction with VexNDD, the destination register is encoded
6084 in VEX prefix. If there are 4 register operands, it must be
6085 a instruction with VEX prefix and 3 sources. */
6086 if (i.mem_operands == 0
6087 && ((i.reg_operands == 2
6088 && i.tm.opcode_modifier.vexvvvv <= VEXXDS)
6089 || (i.reg_operands == 3
6090 && i.tm.opcode_modifier.vexvvvv == VEXXDS)
6091 || (i.reg_operands == 4 && vex_3_sources)))
6092 {
6093 switch (i.operands)
6094 {
6095 case 2:
6096 source = 0;
6097 break;
6098 case 3:
6099 /* When there are 3 operands, one of them may be immediate,
6100 which may be the first or the last operand. Otherwise,
6101 the first operand must be shift count register (cl) or it
6102 is an instruction with VexNDS. */
6103 gas_assert (i.imm_operands == 1
6104 || (i.imm_operands == 0
6105 && (i.tm.opcode_modifier.vexvvvv == VEXXDS
6106 || i.types[0].bitfield.shiftcount)));
6107 if (operand_type_check (i.types[0], imm)
6108 || i.types[0].bitfield.shiftcount)
6109 source = 1;
6110 else
6111 source = 0;
6112 break;
6113 case 4:
6114 /* When there are 4 operands, the first two must be 8bit
6115 immediate operands. The source operand will be the 3rd
6116 one.
6117
6118 For instructions with VexNDS, if the first operand
6119 an imm8, the source operand is the 2nd one. If the last
6120 operand is imm8, the source operand is the first one. */
6121 gas_assert ((i.imm_operands == 2
6122 && i.types[0].bitfield.imm8
6123 && i.types[1].bitfield.imm8)
6124 || (i.tm.opcode_modifier.vexvvvv == VEXXDS
6125 && i.imm_operands == 1
6126 && (i.types[0].bitfield.imm8
6127 || i.types[i.operands - 1].bitfield.imm8
6128 || i.rounding)));
6129 if (i.imm_operands == 2)
6130 source = 2;
6131 else
6132 {
6133 if (i.types[0].bitfield.imm8)
6134 source = 1;
6135 else
6136 source = 0;
6137 }
6138 break;
6139 case 5:
6140 if (i.tm.opcode_modifier.evex)
6141 {
6142 /* For EVEX instructions, when there are 5 operands, the
6143 first one must be immediate operand. If the second one
6144 is immediate operand, the source operand is the 3th
6145 one. If the last one is immediate operand, the source
6146 operand is the 2nd one. */
6147 gas_assert (i.imm_operands == 2
6148 && i.tm.opcode_modifier.sae
6149 && operand_type_check (i.types[0], imm));
6150 if (operand_type_check (i.types[1], imm))
6151 source = 2;
6152 else if (operand_type_check (i.types[4], imm))
6153 source = 1;
6154 else
6155 abort ();
6156 }
6157 break;
6158 default:
6159 abort ();
6160 }
6161
6162 if (!vex_3_sources)
6163 {
6164 dest = source + 1;
6165
6166 /* RC/SAE operand could be between DEST and SRC. That happens
6167 when one operand is GPR and the other one is XMM/YMM/ZMM
6168 register. */
6169 if (i.rounding && i.rounding->operand == (int) dest)
6170 dest++;
6171
6172 if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
6173 {
6174 /* For instructions with VexNDS, the register-only source
6175 operand must be 32/64bit integer, XMM, YMM or ZMM
6176 register. It is encoded in VEX prefix. We need to
6177 clear RegMem bit before calling operand_type_equal. */
6178
6179 i386_operand_type op;
6180 unsigned int vvvv;
6181
6182 /* Check register-only source operand when two source
6183 operands are swapped. */
6184 if (!i.tm.operand_types[source].bitfield.baseindex
6185 && i.tm.operand_types[dest].bitfield.baseindex)
6186 {
6187 vvvv = source;
6188 source = dest;
6189 }
6190 else
6191 vvvv = dest;
6192
6193 op = i.tm.operand_types[vvvv];
6194 op.bitfield.regmem = 0;
6195 if ((dest + 1) >= i.operands
6196 || (!op.bitfield.reg32
6197 && op.bitfield.reg64
6198 && !operand_type_equal (&op, &regxmm)
6199 && !operand_type_equal (&op, &regymm)
6200 && !operand_type_equal (&op, &regzmm)
6201 && !operand_type_equal (&op, &regmask)))
6202 abort ();
6203 i.vex.register_specifier = i.op[vvvv].regs;
6204 dest++;
6205 }
6206 }
6207
6208 i.rm.mode = 3;
6209 /* One of the register operands will be encoded in the i.tm.reg
6210 field, the other in the combined i.tm.mode and i.tm.regmem
6211 fields. If no form of this instruction supports a memory
6212 destination operand, then we assume the source operand may
6213 sometimes be a memory operand and so we need to store the
6214 destination in the i.rm.reg field. */
6215 if (!i.tm.operand_types[dest].bitfield.regmem
6216 && operand_type_check (i.tm.operand_types[dest], anymem) == 0)
6217 {
6218 i.rm.reg = i.op[dest].regs->reg_num;
6219 i.rm.regmem = i.op[source].regs->reg_num;
6220 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
6221 i.rex |= REX_R;
6222 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
6223 i.vrex |= REX_R;
6224 if ((i.op[source].regs->reg_flags & RegRex) != 0)
6225 i.rex |= REX_B;
6226 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
6227 i.vrex |= REX_B;
6228 }
6229 else
6230 {
6231 i.rm.reg = i.op[source].regs->reg_num;
6232 i.rm.regmem = i.op[dest].regs->reg_num;
6233 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
6234 i.rex |= REX_B;
6235 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
6236 i.vrex |= REX_B;
6237 if ((i.op[source].regs->reg_flags & RegRex) != 0)
6238 i.rex |= REX_R;
6239 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
6240 i.vrex |= REX_R;
6241 }
6242 if (flag_code != CODE_64BIT && (i.rex & (REX_R | REX_B)))
6243 {
6244 if (!i.types[0].bitfield.control
6245 && !i.types[1].bitfield.control)
6246 abort ();
6247 i.rex &= ~(REX_R | REX_B);
6248 add_prefix (LOCK_PREFIX_OPCODE);
6249 }
6250 }
6251 else
6252 { /* If it's not 2 reg operands... */
6253 unsigned int mem;
6254
6255 if (i.mem_operands)
6256 {
6257 unsigned int fake_zero_displacement = 0;
6258 unsigned int op;
6259
6260 for (op = 0; op < i.operands; op++)
6261 if (operand_type_check (i.types[op], anymem))
6262 break;
6263 gas_assert (op < i.operands);
6264
6265 if (i.tm.opcode_modifier.vecsib)
6266 {
6267 if (i.index_reg->reg_num == RegEiz
6268 || i.index_reg->reg_num == RegRiz)
6269 abort ();
6270
6271 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
6272 if (!i.base_reg)
6273 {
6274 i.sib.base = NO_BASE_REGISTER;
6275 i.sib.scale = i.log2_scale_factor;
6276 /* No Vec_Disp8 if there is no base. */
6277 i.types[op].bitfield.vec_disp8 = 0;
6278 i.types[op].bitfield.disp8 = 0;
6279 i.types[op].bitfield.disp16 = 0;
6280 i.types[op].bitfield.disp64 = 0;
6281 if (flag_code != CODE_64BIT)
6282 {
6283 /* Must be 32 bit */
6284 i.types[op].bitfield.disp32 = 1;
6285 i.types[op].bitfield.disp32s = 0;
6286 }
6287 else
6288 {
6289 i.types[op].bitfield.disp32 = 0;
6290 i.types[op].bitfield.disp32s = 1;
6291 }
6292 }
6293 i.sib.index = i.index_reg->reg_num;
6294 if ((i.index_reg->reg_flags & RegRex) != 0)
6295 i.rex |= REX_X;
6296 if ((i.index_reg->reg_flags & RegVRex) != 0)
6297 i.vrex |= REX_X;
6298 }
6299
6300 default_seg = &ds;
6301
6302 if (i.base_reg == 0)
6303 {
6304 i.rm.mode = 0;
6305 if (!i.disp_operands)
6306 {
6307 fake_zero_displacement = 1;
6308 /* Instructions with VSIB byte need 32bit displacement
6309 if there is no base register. */
6310 if (i.tm.opcode_modifier.vecsib)
6311 i.types[op].bitfield.disp32 = 1;
6312 }
6313 if (i.index_reg == 0)
6314 {
6315 gas_assert (!i.tm.opcode_modifier.vecsib);
6316 /* Operand is just <disp> */
6317 if (flag_code == CODE_64BIT)
6318 {
6319 /* 64bit mode overwrites the 32bit absolute
6320 addressing by RIP relative addressing and
6321 absolute addressing is encoded by one of the
6322 redundant SIB forms. */
6323 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
6324 i.sib.base = NO_BASE_REGISTER;
6325 i.sib.index = NO_INDEX_REGISTER;
6326 i.types[op] = ((i.prefix[ADDR_PREFIX] == 0)
6327 ? disp32s : disp32);
6328 }
6329 else if ((flag_code == CODE_16BIT)
6330 ^ (i.prefix[ADDR_PREFIX] != 0))
6331 {
6332 i.rm.regmem = NO_BASE_REGISTER_16;
6333 i.types[op] = disp16;
6334 }
6335 else
6336 {
6337 i.rm.regmem = NO_BASE_REGISTER;
6338 i.types[op] = disp32;
6339 }
6340 }
6341 else if (!i.tm.opcode_modifier.vecsib)
6342 {
6343 /* !i.base_reg && i.index_reg */
6344 if (i.index_reg->reg_num == RegEiz
6345 || i.index_reg->reg_num == RegRiz)
6346 i.sib.index = NO_INDEX_REGISTER;
6347 else
6348 i.sib.index = i.index_reg->reg_num;
6349 i.sib.base = NO_BASE_REGISTER;
6350 i.sib.scale = i.log2_scale_factor;
6351 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
6352 /* No Vec_Disp8 if there is no base. */
6353 i.types[op].bitfield.vec_disp8 = 0;
6354 i.types[op].bitfield.disp8 = 0;
6355 i.types[op].bitfield.disp16 = 0;
6356 i.types[op].bitfield.disp64 = 0;
6357 if (flag_code != CODE_64BIT)
6358 {
6359 /* Must be 32 bit */
6360 i.types[op].bitfield.disp32 = 1;
6361 i.types[op].bitfield.disp32s = 0;
6362 }
6363 else
6364 {
6365 i.types[op].bitfield.disp32 = 0;
6366 i.types[op].bitfield.disp32s = 1;
6367 }
6368 if ((i.index_reg->reg_flags & RegRex) != 0)
6369 i.rex |= REX_X;
6370 }
6371 }
6372 /* RIP addressing for 64bit mode. */
6373 else if (i.base_reg->reg_num == RegRip ||
6374 i.base_reg->reg_num == RegEip)
6375 {
6376 gas_assert (!i.tm.opcode_modifier.vecsib);
6377 i.rm.regmem = NO_BASE_REGISTER;
6378 i.types[op].bitfield.disp8 = 0;
6379 i.types[op].bitfield.disp16 = 0;
6380 i.types[op].bitfield.disp32 = 0;
6381 i.types[op].bitfield.disp32s = 1;
6382 i.types[op].bitfield.disp64 = 0;
6383 i.types[op].bitfield.vec_disp8 = 0;
6384 i.flags[op] |= Operand_PCrel;
6385 if (! i.disp_operands)
6386 fake_zero_displacement = 1;
6387 }
6388 else if (i.base_reg->reg_type.bitfield.reg16)
6389 {
6390 gas_assert (!i.tm.opcode_modifier.vecsib);
6391 switch (i.base_reg->reg_num)
6392 {
6393 case 3: /* (%bx) */
6394 if (i.index_reg == 0)
6395 i.rm.regmem = 7;
6396 else /* (%bx,%si) -> 0, or (%bx,%di) -> 1 */
6397 i.rm.regmem = i.index_reg->reg_num - 6;
6398 break;
6399 case 5: /* (%bp) */
6400 default_seg = &ss;
6401 if (i.index_reg == 0)
6402 {
6403 i.rm.regmem = 6;
6404 if (operand_type_check (i.types[op], disp) == 0)
6405 {
6406 /* fake (%bp) into 0(%bp) */
6407 if (i.tm.operand_types[op].bitfield.vec_disp8)
6408 i.types[op].bitfield.vec_disp8 = 1;
6409 else
6410 i.types[op].bitfield.disp8 = 1;
6411 fake_zero_displacement = 1;
6412 }
6413 }
6414 else /* (%bp,%si) -> 2, or (%bp,%di) -> 3 */
6415 i.rm.regmem = i.index_reg->reg_num - 6 + 2;
6416 break;
6417 default: /* (%si) -> 4 or (%di) -> 5 */
6418 i.rm.regmem = i.base_reg->reg_num - 6 + 4;
6419 }
6420 i.rm.mode = mode_from_disp_size (i.types[op]);
6421 }
6422 else /* i.base_reg and 32/64 bit mode */
6423 {
6424 if (flag_code == CODE_64BIT
6425 && operand_type_check (i.types[op], disp))
6426 {
6427 i386_operand_type temp;
6428 operand_type_set (&temp, 0);
6429 temp.bitfield.disp8 = i.types[op].bitfield.disp8;
6430 temp.bitfield.vec_disp8
6431 = i.types[op].bitfield.vec_disp8;
6432 i.types[op] = temp;
6433 if (i.prefix[ADDR_PREFIX] == 0)
6434 i.types[op].bitfield.disp32s = 1;
6435 else
6436 i.types[op].bitfield.disp32 = 1;
6437 }
6438
6439 if (!i.tm.opcode_modifier.vecsib)
6440 i.rm.regmem = i.base_reg->reg_num;
6441 if ((i.base_reg->reg_flags & RegRex) != 0)
6442 i.rex |= REX_B;
6443 i.sib.base = i.base_reg->reg_num;
6444 /* x86-64 ignores REX prefix bit here to avoid decoder
6445 complications. */
6446 if (!(i.base_reg->reg_flags & RegRex)
6447 && (i.base_reg->reg_num == EBP_REG_NUM
6448 || i.base_reg->reg_num == ESP_REG_NUM))
6449 default_seg = &ss;
6450 if (i.base_reg->reg_num == 5 && i.disp_operands == 0)
6451 {
6452 fake_zero_displacement = 1;
6453 if (i.tm.operand_types [op].bitfield.vec_disp8)
6454 i.types[op].bitfield.vec_disp8 = 1;
6455 else
6456 i.types[op].bitfield.disp8 = 1;
6457 }
6458 i.sib.scale = i.log2_scale_factor;
6459 if (i.index_reg == 0)
6460 {
6461 gas_assert (!i.tm.opcode_modifier.vecsib);
6462 /* <disp>(%esp) becomes two byte modrm with no index
6463 register. We've already stored the code for esp
6464 in i.rm.regmem ie. ESCAPE_TO_TWO_BYTE_ADDRESSING.
6465 Any base register besides %esp will not use the
6466 extra modrm byte. */
6467 i.sib.index = NO_INDEX_REGISTER;
6468 }
6469 else if (!i.tm.opcode_modifier.vecsib)
6470 {
6471 if (i.index_reg->reg_num == RegEiz
6472 || i.index_reg->reg_num == RegRiz)
6473 i.sib.index = NO_INDEX_REGISTER;
6474 else
6475 i.sib.index = i.index_reg->reg_num;
6476 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
6477 if ((i.index_reg->reg_flags & RegRex) != 0)
6478 i.rex |= REX_X;
6479 }
6480
6481 if (i.disp_operands
6482 && (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
6483 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL))
6484 i.rm.mode = 0;
6485 else
6486 {
6487 if (!fake_zero_displacement
6488 && !i.disp_operands
6489 && i.disp_encoding)
6490 {
6491 fake_zero_displacement = 1;
6492 if (i.disp_encoding == disp_encoding_8bit)
6493 i.types[op].bitfield.disp8 = 1;
6494 else
6495 i.types[op].bitfield.disp32 = 1;
6496 }
6497 i.rm.mode = mode_from_disp_size (i.types[op]);
6498 }
6499 }
6500
6501 if (fake_zero_displacement)
6502 {
6503 /* Fakes a zero displacement assuming that i.types[op]
6504 holds the correct displacement size. */
6505 expressionS *exp;
6506
6507 gas_assert (i.op[op].disps == 0);
6508 exp = &disp_expressions[i.disp_operands++];
6509 i.op[op].disps = exp;
6510 exp->X_op = O_constant;
6511 exp->X_add_number = 0;
6512 exp->X_add_symbol = (symbolS *) 0;
6513 exp->X_op_symbol = (symbolS *) 0;
6514 }
6515
6516 mem = op;
6517 }
6518 else
6519 mem = ~0;
6520
6521 if (i.tm.opcode_modifier.vexsources == XOP2SOURCES)
6522 {
6523 if (operand_type_check (i.types[0], imm))
6524 i.vex.register_specifier = NULL;
6525 else
6526 {
6527 /* VEX.vvvv encodes one of the sources when the first
6528 operand is not an immediate. */
6529 if (i.tm.opcode_modifier.vexw == VEXW0)
6530 i.vex.register_specifier = i.op[0].regs;
6531 else
6532 i.vex.register_specifier = i.op[1].regs;
6533 }
6534
6535 /* Destination is a XMM register encoded in the ModRM.reg
6536 and VEX.R bit. */
6537 i.rm.reg = i.op[2].regs->reg_num;
6538 if ((i.op[2].regs->reg_flags & RegRex) != 0)
6539 i.rex |= REX_R;
6540
6541 /* ModRM.rm and VEX.B encodes the other source. */
6542 if (!i.mem_operands)
6543 {
6544 i.rm.mode = 3;
6545
6546 if (i.tm.opcode_modifier.vexw == VEXW0)
6547 i.rm.regmem = i.op[1].regs->reg_num;
6548 else
6549 i.rm.regmem = i.op[0].regs->reg_num;
6550
6551 if ((i.op[1].regs->reg_flags & RegRex) != 0)
6552 i.rex |= REX_B;
6553 }
6554 }
6555 else if (i.tm.opcode_modifier.vexvvvv == VEXLWP)
6556 {
6557 i.vex.register_specifier = i.op[2].regs;
6558 if (!i.mem_operands)
6559 {
6560 i.rm.mode = 3;
6561 i.rm.regmem = i.op[1].regs->reg_num;
6562 if ((i.op[1].regs->reg_flags & RegRex) != 0)
6563 i.rex |= REX_B;
6564 }
6565 }
6566 /* Fill in i.rm.reg or i.rm.regmem field with register operand
6567 (if any) based on i.tm.extension_opcode. Again, we must be
6568 careful to make sure that segment/control/debug/test/MMX
6569 registers are coded into the i.rm.reg field. */
6570 else if (i.reg_operands)
6571 {
6572 unsigned int op;
6573 unsigned int vex_reg = ~0;
6574
6575 for (op = 0; op < i.operands; op++)
6576 if (i.types[op].bitfield.reg8
6577 || i.types[op].bitfield.reg16
6578 || i.types[op].bitfield.reg32
6579 || i.types[op].bitfield.reg64
6580 || i.types[op].bitfield.regmmx
6581 || i.types[op].bitfield.regxmm
6582 || i.types[op].bitfield.regymm
6583 || i.types[op].bitfield.regbnd
6584 || i.types[op].bitfield.regzmm
6585 || i.types[op].bitfield.regmask
6586 || i.types[op].bitfield.sreg2
6587 || i.types[op].bitfield.sreg3
6588 || i.types[op].bitfield.control
6589 || i.types[op].bitfield.debug
6590 || i.types[op].bitfield.test)
6591 break;
6592
6593 if (vex_3_sources)
6594 op = dest;
6595 else if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
6596 {
6597 /* For instructions with VexNDS, the register-only
6598 source operand is encoded in VEX prefix. */
6599 gas_assert (mem != (unsigned int) ~0);
6600
6601 if (op > mem)
6602 {
6603 vex_reg = op++;
6604 gas_assert (op < i.operands);
6605 }
6606 else
6607 {
6608 /* Check register-only source operand when two source
6609 operands are swapped. */
6610 if (!i.tm.operand_types[op].bitfield.baseindex
6611 && i.tm.operand_types[op + 1].bitfield.baseindex)
6612 {
6613 vex_reg = op;
6614 op += 2;
6615 gas_assert (mem == (vex_reg + 1)
6616 && op < i.operands);
6617 }
6618 else
6619 {
6620 vex_reg = op + 1;
6621 gas_assert (vex_reg < i.operands);
6622 }
6623 }
6624 }
6625 else if (i.tm.opcode_modifier.vexvvvv == VEXNDD)
6626 {
6627 /* For instructions with VexNDD, the register destination
6628 is encoded in VEX prefix. */
6629 if (i.mem_operands == 0)
6630 {
6631 /* There is no memory operand. */
6632 gas_assert ((op + 2) == i.operands);
6633 vex_reg = op + 1;
6634 }
6635 else
6636 {
6637 /* There are only 2 operands. */
6638 gas_assert (op < 2 && i.operands == 2);
6639 vex_reg = 1;
6640 }
6641 }
6642 else
6643 gas_assert (op < i.operands);
6644
6645 if (vex_reg != (unsigned int) ~0)
6646 {
6647 i386_operand_type *type = &i.tm.operand_types[vex_reg];
6648
6649 if (type->bitfield.reg32 != 1
6650 && type->bitfield.reg64 != 1
6651 && !operand_type_equal (type, &regxmm)
6652 && !operand_type_equal (type, &regymm)
6653 && !operand_type_equal (type, &regzmm)
6654 && !operand_type_equal (type, &regmask))
6655 abort ();
6656
6657 i.vex.register_specifier = i.op[vex_reg].regs;
6658 }
6659
6660 /* Don't set OP operand twice. */
6661 if (vex_reg != op)
6662 {
6663 /* If there is an extension opcode to put here, the
6664 register number must be put into the regmem field. */
6665 if (i.tm.extension_opcode != None)
6666 {
6667 i.rm.regmem = i.op[op].regs->reg_num;
6668 if ((i.op[op].regs->reg_flags & RegRex) != 0)
6669 i.rex |= REX_B;
6670 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
6671 i.vrex |= REX_B;
6672 }
6673 else
6674 {
6675 i.rm.reg = i.op[op].regs->reg_num;
6676 if ((i.op[op].regs->reg_flags & RegRex) != 0)
6677 i.rex |= REX_R;
6678 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
6679 i.vrex |= REX_R;
6680 }
6681 }
6682
6683 /* Now, if no memory operand has set i.rm.mode = 0, 1, 2 we
6684 must set it to 3 to indicate this is a register operand
6685 in the regmem field. */
6686 if (!i.mem_operands)
6687 i.rm.mode = 3;
6688 }
6689
6690 /* Fill in i.rm.reg field with extension opcode (if any). */
6691 if (i.tm.extension_opcode != None)
6692 i.rm.reg = i.tm.extension_opcode;
6693 }
6694 return default_seg;
6695 }
6696
6697 static void
6698 output_branch (void)
6699 {
6700 char *p;
6701 int size;
6702 int code16;
6703 int prefix;
6704 relax_substateT subtype;
6705 symbolS *sym;
6706 offsetT off;
6707
6708 code16 = flag_code == CODE_16BIT ? CODE16 : 0;
6709 size = i.disp_encoding == disp_encoding_32bit ? BIG : SMALL;
6710
6711 prefix = 0;
6712 if (i.prefix[DATA_PREFIX] != 0)
6713 {
6714 prefix = 1;
6715 i.prefixes -= 1;
6716 code16 ^= CODE16;
6717 }
6718 /* Pentium4 branch hints. */
6719 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
6720 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
6721 {
6722 prefix++;
6723 i.prefixes--;
6724 }
6725 if (i.prefix[REX_PREFIX] != 0)
6726 {
6727 prefix++;
6728 i.prefixes--;
6729 }
6730
6731 /* BND prefixed jump. */
6732 if (i.prefix[BND_PREFIX] != 0)
6733 {
6734 FRAG_APPEND_1_CHAR (i.prefix[BND_PREFIX]);
6735 i.prefixes -= 1;
6736 }
6737
6738 if (i.prefixes != 0 && !intel_syntax)
6739 as_warn (_("skipping prefixes on this instruction"));
6740
6741 /* It's always a symbol; End frag & setup for relax.
6742 Make sure there is enough room in this frag for the largest
6743 instruction we may generate in md_convert_frag. This is 2
6744 bytes for the opcode and room for the prefix and largest
6745 displacement. */
6746 frag_grow (prefix + 2 + 4);
6747 /* Prefix and 1 opcode byte go in fr_fix. */
6748 p = frag_more (prefix + 1);
6749 if (i.prefix[DATA_PREFIX] != 0)
6750 *p++ = DATA_PREFIX_OPCODE;
6751 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE
6752 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE)
6753 *p++ = i.prefix[SEG_PREFIX];
6754 if (i.prefix[REX_PREFIX] != 0)
6755 *p++ = i.prefix[REX_PREFIX];
6756 *p = i.tm.base_opcode;
6757
6758 if ((unsigned char) *p == JUMP_PC_RELATIVE)
6759 subtype = ENCODE_RELAX_STATE (UNCOND_JUMP, size);
6760 else if (cpu_arch_flags.bitfield.cpui386)
6761 subtype = ENCODE_RELAX_STATE (COND_JUMP, size);
6762 else
6763 subtype = ENCODE_RELAX_STATE (COND_JUMP86, size);
6764 subtype |= code16;
6765
6766 sym = i.op[0].disps->X_add_symbol;
6767 off = i.op[0].disps->X_add_number;
6768
6769 if (i.op[0].disps->X_op != O_constant
6770 && i.op[0].disps->X_op != O_symbol)
6771 {
6772 /* Handle complex expressions. */
6773 sym = make_expr_symbol (i.op[0].disps);
6774 off = 0;
6775 }
6776
6777 /* 1 possible extra opcode + 4 byte displacement go in var part.
6778 Pass reloc in fr_var. */
6779 frag_var (rs_machine_dependent, 5,
6780 ((!object_64bit
6781 || i.reloc[0] != NO_RELOC
6782 || (i.bnd_prefix == NULL && !add_bnd_prefix))
6783 ? i.reloc[0]
6784 : BFD_RELOC_X86_64_PC32_BND),
6785 subtype, sym, off, p);
6786 }
6787
6788 static void
6789 output_jump (void)
6790 {
6791 char *p;
6792 int size;
6793 fixS *fixP;
6794
6795 if (i.tm.opcode_modifier.jumpbyte)
6796 {
6797 /* This is a loop or jecxz type instruction. */
6798 size = 1;
6799 if (i.prefix[ADDR_PREFIX] != 0)
6800 {
6801 FRAG_APPEND_1_CHAR (ADDR_PREFIX_OPCODE);
6802 i.prefixes -= 1;
6803 }
6804 /* Pentium4 branch hints. */
6805 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
6806 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
6807 {
6808 FRAG_APPEND_1_CHAR (i.prefix[SEG_PREFIX]);
6809 i.prefixes--;
6810 }
6811 }
6812 else
6813 {
6814 int code16;
6815
6816 code16 = 0;
6817 if (flag_code == CODE_16BIT)
6818 code16 = CODE16;
6819
6820 if (i.prefix[DATA_PREFIX] != 0)
6821 {
6822 FRAG_APPEND_1_CHAR (DATA_PREFIX_OPCODE);
6823 i.prefixes -= 1;
6824 code16 ^= CODE16;
6825 }
6826
6827 size = 4;
6828 if (code16)
6829 size = 2;
6830 }
6831
6832 if (i.prefix[REX_PREFIX] != 0)
6833 {
6834 FRAG_APPEND_1_CHAR (i.prefix[REX_PREFIX]);
6835 i.prefixes -= 1;
6836 }
6837
6838 /* BND prefixed jump. */
6839 if (i.prefix[BND_PREFIX] != 0)
6840 {
6841 FRAG_APPEND_1_CHAR (i.prefix[BND_PREFIX]);
6842 i.prefixes -= 1;
6843 }
6844
6845 if (i.prefixes != 0 && !intel_syntax)
6846 as_warn (_("skipping prefixes on this instruction"));
6847
6848 p = frag_more (i.tm.opcode_length + size);
6849 switch (i.tm.opcode_length)
6850 {
6851 case 2:
6852 *p++ = i.tm.base_opcode >> 8;
6853 case 1:
6854 *p++ = i.tm.base_opcode;
6855 break;
6856 default:
6857 abort ();
6858 }
6859
6860 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal, size,
6861 i.op[0].disps, 1, reloc (size, 1, 1,
6862 (i.bnd_prefix != NULL
6863 || add_bnd_prefix),
6864 i.reloc[0]));
6865
6866 /* All jumps handled here are signed, but don't use a signed limit
6867 check for 32 and 16 bit jumps as we want to allow wrap around at
6868 4G and 64k respectively. */
6869 if (size == 1)
6870 fixP->fx_signed = 1;
6871 }
6872
6873 static void
6874 output_interseg_jump (void)
6875 {
6876 char *p;
6877 int size;
6878 int prefix;
6879 int code16;
6880
6881 code16 = 0;
6882 if (flag_code == CODE_16BIT)
6883 code16 = CODE16;
6884
6885 prefix = 0;
6886 if (i.prefix[DATA_PREFIX] != 0)
6887 {
6888 prefix = 1;
6889 i.prefixes -= 1;
6890 code16 ^= CODE16;
6891 }
6892 if (i.prefix[REX_PREFIX] != 0)
6893 {
6894 prefix++;
6895 i.prefixes -= 1;
6896 }
6897
6898 size = 4;
6899 if (code16)
6900 size = 2;
6901
6902 if (i.prefixes != 0 && !intel_syntax)
6903 as_warn (_("skipping prefixes on this instruction"));
6904
6905 /* 1 opcode; 2 segment; offset */
6906 p = frag_more (prefix + 1 + 2 + size);
6907
6908 if (i.prefix[DATA_PREFIX] != 0)
6909 *p++ = DATA_PREFIX_OPCODE;
6910
6911 if (i.prefix[REX_PREFIX] != 0)
6912 *p++ = i.prefix[REX_PREFIX];
6913
6914 *p++ = i.tm.base_opcode;
6915 if (i.op[1].imms->X_op == O_constant)
6916 {
6917 offsetT n = i.op[1].imms->X_add_number;
6918
6919 if (size == 2
6920 && !fits_in_unsigned_word (n)
6921 && !fits_in_signed_word (n))
6922 {
6923 as_bad (_("16-bit jump out of range"));
6924 return;
6925 }
6926 md_number_to_chars (p, n, size);
6927 }
6928 else
6929 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
6930 i.op[1].imms, 0, reloc (size, 0, 0, 0, i.reloc[1]));
6931 if (i.op[0].imms->X_op != O_constant)
6932 as_bad (_("can't handle non absolute segment in `%s'"),
6933 i.tm.name);
6934 md_number_to_chars (p + size, (valueT) i.op[0].imms->X_add_number, 2);
6935 }
6936
6937 static void
6938 output_insn (void)
6939 {
6940 fragS *insn_start_frag;
6941 offsetT insn_start_off;
6942
6943 /* Tie dwarf2 debug info to the address at the start of the insn.
6944 We can't do this after the insn has been output as the current
6945 frag may have been closed off. eg. by frag_var. */
6946 dwarf2_emit_insn (0);
6947
6948 insn_start_frag = frag_now;
6949 insn_start_off = frag_now_fix ();
6950
6951 /* Output jumps. */
6952 if (i.tm.opcode_modifier.jump)
6953 output_branch ();
6954 else if (i.tm.opcode_modifier.jumpbyte
6955 || i.tm.opcode_modifier.jumpdword)
6956 output_jump ();
6957 else if (i.tm.opcode_modifier.jumpintersegment)
6958 output_interseg_jump ();
6959 else
6960 {
6961 /* Output normal instructions here. */
6962 char *p;
6963 unsigned char *q;
6964 unsigned int j;
6965 unsigned int prefix;
6966
6967 /* Some processors fail on LOCK prefix. This options makes
6968 assembler ignore LOCK prefix and serves as a workaround. */
6969 if (omit_lock_prefix)
6970 {
6971 if (i.tm.base_opcode == LOCK_PREFIX_OPCODE)
6972 return;
6973 i.prefix[LOCK_PREFIX] = 0;
6974 }
6975
6976 /* Since the VEX/EVEX prefix contains the implicit prefix, we
6977 don't need the explicit prefix. */
6978 if (!i.tm.opcode_modifier.vex && !i.tm.opcode_modifier.evex)
6979 {
6980 switch (i.tm.opcode_length)
6981 {
6982 case 3:
6983 if (i.tm.base_opcode & 0xff000000)
6984 {
6985 prefix = (i.tm.base_opcode >> 24) & 0xff;
6986 goto check_prefix;
6987 }
6988 break;
6989 case 2:
6990 if ((i.tm.base_opcode & 0xff0000) != 0)
6991 {
6992 prefix = (i.tm.base_opcode >> 16) & 0xff;
6993 if (i.tm.cpu_flags.bitfield.cpupadlock)
6994 {
6995 check_prefix:
6996 if (prefix != REPE_PREFIX_OPCODE
6997 || (i.prefix[REP_PREFIX]
6998 != REPE_PREFIX_OPCODE))
6999 add_prefix (prefix);
7000 }
7001 else
7002 add_prefix (prefix);
7003 }
7004 break;
7005 case 1:
7006 break;
7007 default:
7008 abort ();
7009 }
7010
7011 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
7012 /* For x32, add a dummy REX_OPCODE prefix for mov/add with
7013 R_X86_64_GOTTPOFF relocation so that linker can safely
7014 perform IE->LE optimization. */
7015 if (x86_elf_abi == X86_64_X32_ABI
7016 && i.operands == 2
7017 && i.reloc[0] == BFD_RELOC_X86_64_GOTTPOFF
7018 && i.prefix[REX_PREFIX] == 0)
7019 add_prefix (REX_OPCODE);
7020 #endif
7021
7022 /* The prefix bytes. */
7023 for (j = ARRAY_SIZE (i.prefix), q = i.prefix; j > 0; j--, q++)
7024 if (*q)
7025 FRAG_APPEND_1_CHAR (*q);
7026 }
7027 else
7028 {
7029 for (j = 0, q = i.prefix; j < ARRAY_SIZE (i.prefix); j++, q++)
7030 if (*q)
7031 switch (j)
7032 {
7033 case REX_PREFIX:
7034 /* REX byte is encoded in VEX prefix. */
7035 break;
7036 case SEG_PREFIX:
7037 case ADDR_PREFIX:
7038 FRAG_APPEND_1_CHAR (*q);
7039 break;
7040 default:
7041 /* There should be no other prefixes for instructions
7042 with VEX prefix. */
7043 abort ();
7044 }
7045
7046 /* For EVEX instructions i.vrex should become 0 after
7047 build_evex_prefix. For VEX instructions upper 16 registers
7048 aren't available, so VREX should be 0. */
7049 if (i.vrex)
7050 abort ();
7051 /* Now the VEX prefix. */
7052 p = frag_more (i.vex.length);
7053 for (j = 0; j < i.vex.length; j++)
7054 p[j] = i.vex.bytes[j];
7055 }
7056
7057 /* Now the opcode; be careful about word order here! */
7058 if (i.tm.opcode_length == 1)
7059 {
7060 FRAG_APPEND_1_CHAR (i.tm.base_opcode);
7061 }
7062 else
7063 {
7064 switch (i.tm.opcode_length)
7065 {
7066 case 4:
7067 p = frag_more (4);
7068 *p++ = (i.tm.base_opcode >> 24) & 0xff;
7069 *p++ = (i.tm.base_opcode >> 16) & 0xff;
7070 break;
7071 case 3:
7072 p = frag_more (3);
7073 *p++ = (i.tm.base_opcode >> 16) & 0xff;
7074 break;
7075 case 2:
7076 p = frag_more (2);
7077 break;
7078 default:
7079 abort ();
7080 break;
7081 }
7082
7083 /* Put out high byte first: can't use md_number_to_chars! */
7084 *p++ = (i.tm.base_opcode >> 8) & 0xff;
7085 *p = i.tm.base_opcode & 0xff;
7086 }
7087
7088 /* Now the modrm byte and sib byte (if present). */
7089 if (i.tm.opcode_modifier.modrm)
7090 {
7091 FRAG_APPEND_1_CHAR ((i.rm.regmem << 0
7092 | i.rm.reg << 3
7093 | i.rm.mode << 6));
7094 /* If i.rm.regmem == ESP (4)
7095 && i.rm.mode != (Register mode)
7096 && not 16 bit
7097 ==> need second modrm byte. */
7098 if (i.rm.regmem == ESCAPE_TO_TWO_BYTE_ADDRESSING
7099 && i.rm.mode != 3
7100 && !(i.base_reg && i.base_reg->reg_type.bitfield.reg16))
7101 FRAG_APPEND_1_CHAR ((i.sib.base << 0
7102 | i.sib.index << 3
7103 | i.sib.scale << 6));
7104 }
7105
7106 if (i.disp_operands)
7107 output_disp (insn_start_frag, insn_start_off);
7108
7109 if (i.imm_operands)
7110 output_imm (insn_start_frag, insn_start_off);
7111 }
7112
7113 #ifdef DEBUG386
7114 if (flag_debug)
7115 {
7116 pi ("" /*line*/, &i);
7117 }
7118 #endif /* DEBUG386 */
7119 }
7120
7121 /* Return the size of the displacement operand N. */
7122
7123 static int
7124 disp_size (unsigned int n)
7125 {
7126 int size = 4;
7127
7128 /* Vec_Disp8 has to be 8bit. */
7129 if (i.types[n].bitfield.vec_disp8)
7130 size = 1;
7131 else if (i.types[n].bitfield.disp64)
7132 size = 8;
7133 else if (i.types[n].bitfield.disp8)
7134 size = 1;
7135 else if (i.types[n].bitfield.disp16)
7136 size = 2;
7137 return size;
7138 }
7139
7140 /* Return the size of the immediate operand N. */
7141
7142 static int
7143 imm_size (unsigned int n)
7144 {
7145 int size = 4;
7146 if (i.types[n].bitfield.imm64)
7147 size = 8;
7148 else if (i.types[n].bitfield.imm8 || i.types[n].bitfield.imm8s)
7149 size = 1;
7150 else if (i.types[n].bitfield.imm16)
7151 size = 2;
7152 return size;
7153 }
7154
7155 static void
7156 output_disp (fragS *insn_start_frag, offsetT insn_start_off)
7157 {
7158 char *p;
7159 unsigned int n;
7160
7161 for (n = 0; n < i.operands; n++)
7162 {
7163 if (i.types[n].bitfield.vec_disp8
7164 || operand_type_check (i.types[n], disp))
7165 {
7166 if (i.op[n].disps->X_op == O_constant)
7167 {
7168 int size = disp_size (n);
7169 offsetT val = i.op[n].disps->X_add_number;
7170
7171 if (i.types[n].bitfield.vec_disp8)
7172 val >>= i.memshift;
7173 val = offset_in_range (val, size);
7174 p = frag_more (size);
7175 md_number_to_chars (p, val, size);
7176 }
7177 else
7178 {
7179 enum bfd_reloc_code_real reloc_type;
7180 int size = disp_size (n);
7181 int sign = i.types[n].bitfield.disp32s;
7182 int pcrel = (i.flags[n] & Operand_PCrel) != 0;
7183
7184 /* We can't have 8 bit displacement here. */
7185 gas_assert (!i.types[n].bitfield.disp8);
7186
7187 /* The PC relative address is computed relative
7188 to the instruction boundary, so in case immediate
7189 fields follows, we need to adjust the value. */
7190 if (pcrel && i.imm_operands)
7191 {
7192 unsigned int n1;
7193 int sz = 0;
7194
7195 for (n1 = 0; n1 < i.operands; n1++)
7196 if (operand_type_check (i.types[n1], imm))
7197 {
7198 /* Only one immediate is allowed for PC
7199 relative address. */
7200 gas_assert (sz == 0);
7201 sz = imm_size (n1);
7202 i.op[n].disps->X_add_number -= sz;
7203 }
7204 /* We should find the immediate. */
7205 gas_assert (sz != 0);
7206 }
7207
7208 p = frag_more (size);
7209 reloc_type = reloc (size, pcrel, sign,
7210 (i.bnd_prefix != NULL
7211 || add_bnd_prefix),
7212 i.reloc[n]);
7213 if (GOT_symbol
7214 && GOT_symbol == i.op[n].disps->X_add_symbol
7215 && (((reloc_type == BFD_RELOC_32
7216 || reloc_type == BFD_RELOC_X86_64_32S
7217 || (reloc_type == BFD_RELOC_64
7218 && object_64bit))
7219 && (i.op[n].disps->X_op == O_symbol
7220 || (i.op[n].disps->X_op == O_add
7221 && ((symbol_get_value_expression
7222 (i.op[n].disps->X_op_symbol)->X_op)
7223 == O_subtract))))
7224 || reloc_type == BFD_RELOC_32_PCREL))
7225 {
7226 offsetT add;
7227
7228 if (insn_start_frag == frag_now)
7229 add = (p - frag_now->fr_literal) - insn_start_off;
7230 else
7231 {
7232 fragS *fr;
7233
7234 add = insn_start_frag->fr_fix - insn_start_off;
7235 for (fr = insn_start_frag->fr_next;
7236 fr && fr != frag_now; fr = fr->fr_next)
7237 add += fr->fr_fix;
7238 add += p - frag_now->fr_literal;
7239 }
7240
7241 if (!object_64bit)
7242 {
7243 reloc_type = BFD_RELOC_386_GOTPC;
7244 i.op[n].imms->X_add_number += add;
7245 }
7246 else if (reloc_type == BFD_RELOC_64)
7247 reloc_type = BFD_RELOC_X86_64_GOTPC64;
7248 else
7249 /* Don't do the adjustment for x86-64, as there
7250 the pcrel addressing is relative to the _next_
7251 insn, and that is taken care of in other code. */
7252 reloc_type = BFD_RELOC_X86_64_GOTPC32;
7253 }
7254 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
7255 i.op[n].disps, pcrel, reloc_type);
7256 }
7257 }
7258 }
7259 }
7260
7261 static void
7262 output_imm (fragS *insn_start_frag, offsetT insn_start_off)
7263 {
7264 char *p;
7265 unsigned int n;
7266
7267 for (n = 0; n < i.operands; n++)
7268 {
7269 /* Skip SAE/RC Imm operand in EVEX. They are already handled. */
7270 if (i.rounding && (int) n == i.rounding->operand)
7271 continue;
7272
7273 if (operand_type_check (i.types[n], imm))
7274 {
7275 if (i.op[n].imms->X_op == O_constant)
7276 {
7277 int size = imm_size (n);
7278 offsetT val;
7279
7280 val = offset_in_range (i.op[n].imms->X_add_number,
7281 size);
7282 p = frag_more (size);
7283 md_number_to_chars (p, val, size);
7284 }
7285 else
7286 {
7287 /* Not absolute_section.
7288 Need a 32-bit fixup (don't support 8bit
7289 non-absolute imms). Try to support other
7290 sizes ... */
7291 enum bfd_reloc_code_real reloc_type;
7292 int size = imm_size (n);
7293 int sign;
7294
7295 if (i.types[n].bitfield.imm32s
7296 && (i.suffix == QWORD_MNEM_SUFFIX
7297 || (!i.suffix && i.tm.opcode_modifier.no_lsuf)))
7298 sign = 1;
7299 else
7300 sign = 0;
7301
7302 p = frag_more (size);
7303 reloc_type = reloc (size, 0, sign, 0, i.reloc[n]);
7304
7305 /* This is tough to explain. We end up with this one if we
7306 * have operands that look like
7307 * "_GLOBAL_OFFSET_TABLE_+[.-.L284]". The goal here is to
7308 * obtain the absolute address of the GOT, and it is strongly
7309 * preferable from a performance point of view to avoid using
7310 * a runtime relocation for this. The actual sequence of
7311 * instructions often look something like:
7312 *
7313 * call .L66
7314 * .L66:
7315 * popl %ebx
7316 * addl $_GLOBAL_OFFSET_TABLE_+[.-.L66],%ebx
7317 *
7318 * The call and pop essentially return the absolute address
7319 * of the label .L66 and store it in %ebx. The linker itself
7320 * will ultimately change the first operand of the addl so
7321 * that %ebx points to the GOT, but to keep things simple, the
7322 * .o file must have this operand set so that it generates not
7323 * the absolute address of .L66, but the absolute address of
7324 * itself. This allows the linker itself simply treat a GOTPC
7325 * relocation as asking for a pcrel offset to the GOT to be
7326 * added in, and the addend of the relocation is stored in the
7327 * operand field for the instruction itself.
7328 *
7329 * Our job here is to fix the operand so that it would add
7330 * the correct offset so that %ebx would point to itself. The
7331 * thing that is tricky is that .-.L66 will point to the
7332 * beginning of the instruction, so we need to further modify
7333 * the operand so that it will point to itself. There are
7334 * other cases where you have something like:
7335 *
7336 * .long $_GLOBAL_OFFSET_TABLE_+[.-.L66]
7337 *
7338 * and here no correction would be required. Internally in
7339 * the assembler we treat operands of this form as not being
7340 * pcrel since the '.' is explicitly mentioned, and I wonder
7341 * whether it would simplify matters to do it this way. Who
7342 * knows. In earlier versions of the PIC patches, the
7343 * pcrel_adjust field was used to store the correction, but
7344 * since the expression is not pcrel, I felt it would be
7345 * confusing to do it this way. */
7346
7347 if ((reloc_type == BFD_RELOC_32
7348 || reloc_type == BFD_RELOC_X86_64_32S
7349 || reloc_type == BFD_RELOC_64)
7350 && GOT_symbol
7351 && GOT_symbol == i.op[n].imms->X_add_symbol
7352 && (i.op[n].imms->X_op == O_symbol
7353 || (i.op[n].imms->X_op == O_add
7354 && ((symbol_get_value_expression
7355 (i.op[n].imms->X_op_symbol)->X_op)
7356 == O_subtract))))
7357 {
7358 offsetT add;
7359
7360 if (insn_start_frag == frag_now)
7361 add = (p - frag_now->fr_literal) - insn_start_off;
7362 else
7363 {
7364 fragS *fr;
7365
7366 add = insn_start_frag->fr_fix - insn_start_off;
7367 for (fr = insn_start_frag->fr_next;
7368 fr && fr != frag_now; fr = fr->fr_next)
7369 add += fr->fr_fix;
7370 add += p - frag_now->fr_literal;
7371 }
7372
7373 if (!object_64bit)
7374 reloc_type = BFD_RELOC_386_GOTPC;
7375 else if (size == 4)
7376 reloc_type = BFD_RELOC_X86_64_GOTPC32;
7377 else if (size == 8)
7378 reloc_type = BFD_RELOC_X86_64_GOTPC64;
7379 i.op[n].imms->X_add_number += add;
7380 }
7381 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
7382 i.op[n].imms, 0, reloc_type);
7383 }
7384 }
7385 }
7386 }
7387 \f
7388 /* x86_cons_fix_new is called via the expression parsing code when a
7389 reloc is needed. We use this hook to get the correct .got reloc. */
7390 static int cons_sign = -1;
7391
7392 void
7393 x86_cons_fix_new (fragS *frag, unsigned int off, unsigned int len,
7394 expressionS *exp, bfd_reloc_code_real_type r)
7395 {
7396 r = reloc (len, 0, cons_sign, 0, r);
7397
7398 #ifdef TE_PE
7399 if (exp->X_op == O_secrel)
7400 {
7401 exp->X_op = O_symbol;
7402 r = BFD_RELOC_32_SECREL;
7403 }
7404 #endif
7405
7406 fix_new_exp (frag, off, len, exp, 0, r);
7407 }
7408
7409 /* Export the ABI address size for use by TC_ADDRESS_BYTES for the
7410 purpose of the `.dc.a' internal pseudo-op. */
7411
7412 int
7413 x86_address_bytes (void)
7414 {
7415 if ((stdoutput->arch_info->mach & bfd_mach_x64_32))
7416 return 4;
7417 return stdoutput->arch_info->bits_per_address / 8;
7418 }
7419
7420 #if !(defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) || defined (OBJ_MACH_O)) \
7421 || defined (LEX_AT)
7422 # define lex_got(reloc, adjust, types, bnd_prefix) NULL
7423 #else
7424 /* Parse operands of the form
7425 <symbol>@GOTOFF+<nnn>
7426 and similar .plt or .got references.
7427
7428 If we find one, set up the correct relocation in RELOC and copy the
7429 input string, minus the `@GOTOFF' into a malloc'd buffer for
7430 parsing by the calling routine. Return this buffer, and if ADJUST
7431 is non-null set it to the length of the string we removed from the
7432 input line. Otherwise return NULL. */
7433 static char *
7434 lex_got (enum bfd_reloc_code_real *rel,
7435 int *adjust,
7436 i386_operand_type *types,
7437 int bnd_prefix)
7438 {
7439 /* Some of the relocations depend on the size of what field is to
7440 be relocated. But in our callers i386_immediate and i386_displacement
7441 we don't yet know the operand size (this will be set by insn
7442 matching). Hence we record the word32 relocation here,
7443 and adjust the reloc according to the real size in reloc(). */
7444 static const struct {
7445 const char *str;
7446 int len;
7447 const enum bfd_reloc_code_real rel[2];
7448 const i386_operand_type types64;
7449 } gotrel[] = {
7450 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7451 { STRING_COMMA_LEN ("SIZE"), { BFD_RELOC_SIZE32,
7452 BFD_RELOC_SIZE32 },
7453 OPERAND_TYPE_IMM32_64 },
7454 #endif
7455 { STRING_COMMA_LEN ("PLTOFF"), { _dummy_first_bfd_reloc_code_real,
7456 BFD_RELOC_X86_64_PLTOFF64 },
7457 OPERAND_TYPE_IMM64 },
7458 { STRING_COMMA_LEN ("PLT"), { BFD_RELOC_386_PLT32,
7459 BFD_RELOC_X86_64_PLT32 },
7460 OPERAND_TYPE_IMM32_32S_DISP32 },
7461 { STRING_COMMA_LEN ("GOTPLT"), { _dummy_first_bfd_reloc_code_real,
7462 BFD_RELOC_X86_64_GOTPLT64 },
7463 OPERAND_TYPE_IMM64_DISP64 },
7464 { STRING_COMMA_LEN ("GOTOFF"), { BFD_RELOC_386_GOTOFF,
7465 BFD_RELOC_X86_64_GOTOFF64 },
7466 OPERAND_TYPE_IMM64_DISP64 },
7467 { STRING_COMMA_LEN ("GOTPCREL"), { _dummy_first_bfd_reloc_code_real,
7468 BFD_RELOC_X86_64_GOTPCREL },
7469 OPERAND_TYPE_IMM32_32S_DISP32 },
7470 { STRING_COMMA_LEN ("TLSGD"), { BFD_RELOC_386_TLS_GD,
7471 BFD_RELOC_X86_64_TLSGD },
7472 OPERAND_TYPE_IMM32_32S_DISP32 },
7473 { STRING_COMMA_LEN ("TLSLDM"), { BFD_RELOC_386_TLS_LDM,
7474 _dummy_first_bfd_reloc_code_real },
7475 OPERAND_TYPE_NONE },
7476 { STRING_COMMA_LEN ("TLSLD"), { _dummy_first_bfd_reloc_code_real,
7477 BFD_RELOC_X86_64_TLSLD },
7478 OPERAND_TYPE_IMM32_32S_DISP32 },
7479 { STRING_COMMA_LEN ("GOTTPOFF"), { BFD_RELOC_386_TLS_IE_32,
7480 BFD_RELOC_X86_64_GOTTPOFF },
7481 OPERAND_TYPE_IMM32_32S_DISP32 },
7482 { STRING_COMMA_LEN ("TPOFF"), { BFD_RELOC_386_TLS_LE_32,
7483 BFD_RELOC_X86_64_TPOFF32 },
7484 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
7485 { STRING_COMMA_LEN ("NTPOFF"), { BFD_RELOC_386_TLS_LE,
7486 _dummy_first_bfd_reloc_code_real },
7487 OPERAND_TYPE_NONE },
7488 { STRING_COMMA_LEN ("DTPOFF"), { BFD_RELOC_386_TLS_LDO_32,
7489 BFD_RELOC_X86_64_DTPOFF32 },
7490 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
7491 { STRING_COMMA_LEN ("GOTNTPOFF"),{ BFD_RELOC_386_TLS_GOTIE,
7492 _dummy_first_bfd_reloc_code_real },
7493 OPERAND_TYPE_NONE },
7494 { STRING_COMMA_LEN ("INDNTPOFF"),{ BFD_RELOC_386_TLS_IE,
7495 _dummy_first_bfd_reloc_code_real },
7496 OPERAND_TYPE_NONE },
7497 { STRING_COMMA_LEN ("GOT"), { BFD_RELOC_386_GOT32,
7498 BFD_RELOC_X86_64_GOT32 },
7499 OPERAND_TYPE_IMM32_32S_64_DISP32 },
7500 { STRING_COMMA_LEN ("TLSDESC"), { BFD_RELOC_386_TLS_GOTDESC,
7501 BFD_RELOC_X86_64_GOTPC32_TLSDESC },
7502 OPERAND_TYPE_IMM32_32S_DISP32 },
7503 { STRING_COMMA_LEN ("TLSCALL"), { BFD_RELOC_386_TLS_DESC_CALL,
7504 BFD_RELOC_X86_64_TLSDESC_CALL },
7505 OPERAND_TYPE_IMM32_32S_DISP32 },
7506 };
7507 char *cp;
7508 unsigned int j;
7509
7510 #if defined (OBJ_MAYBE_ELF)
7511 if (!IS_ELF)
7512 return NULL;
7513 #endif
7514
7515 for (cp = input_line_pointer; *cp != '@'; cp++)
7516 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
7517 return NULL;
7518
7519 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
7520 {
7521 int len = gotrel[j].len;
7522 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
7523 {
7524 if (gotrel[j].rel[object_64bit] != 0)
7525 {
7526 int first, second;
7527 char *tmpbuf, *past_reloc;
7528
7529 *rel = gotrel[j].rel[object_64bit];
7530
7531 if (types)
7532 {
7533 if (flag_code != CODE_64BIT)
7534 {
7535 types->bitfield.imm32 = 1;
7536 types->bitfield.disp32 = 1;
7537 }
7538 else
7539 *types = gotrel[j].types64;
7540 }
7541
7542 if (j != 0 && GOT_symbol == NULL)
7543 GOT_symbol = symbol_find_or_make (GLOBAL_OFFSET_TABLE_NAME);
7544
7545 /* The length of the first part of our input line. */
7546 first = cp - input_line_pointer;
7547
7548 /* The second part goes from after the reloc token until
7549 (and including) an end_of_line char or comma. */
7550 past_reloc = cp + 1 + len;
7551 cp = past_reloc;
7552 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
7553 ++cp;
7554 second = cp + 1 - past_reloc;
7555
7556 /* Allocate and copy string. The trailing NUL shouldn't
7557 be necessary, but be safe. */
7558 tmpbuf = (char *) xmalloc (first + second + 2);
7559 memcpy (tmpbuf, input_line_pointer, first);
7560 if (second != 0 && *past_reloc != ' ')
7561 /* Replace the relocation token with ' ', so that
7562 errors like foo@GOTOFF1 will be detected. */
7563 tmpbuf[first++] = ' ';
7564 else
7565 /* Increment length by 1 if the relocation token is
7566 removed. */
7567 len++;
7568 if (adjust)
7569 *adjust = len;
7570 memcpy (tmpbuf + first, past_reloc, second);
7571 tmpbuf[first + second] = '\0';
7572 if (bnd_prefix && *rel == BFD_RELOC_X86_64_PLT32)
7573 *rel = BFD_RELOC_X86_64_PLT32_BND;
7574 return tmpbuf;
7575 }
7576
7577 as_bad (_("@%s reloc is not supported with %d-bit output format"),
7578 gotrel[j].str, 1 << (5 + object_64bit));
7579 return NULL;
7580 }
7581 }
7582
7583 /* Might be a symbol version string. Don't as_bad here. */
7584 return NULL;
7585 }
7586 #endif
7587
7588 #ifdef TE_PE
7589 #ifdef lex_got
7590 #undef lex_got
7591 #endif
7592 /* Parse operands of the form
7593 <symbol>@SECREL32+<nnn>
7594
7595 If we find one, set up the correct relocation in RELOC and copy the
7596 input string, minus the `@SECREL32' into a malloc'd buffer for
7597 parsing by the calling routine. Return this buffer, and if ADJUST
7598 is non-null set it to the length of the string we removed from the
7599 input line. Otherwise return NULL.
7600
7601 This function is copied from the ELF version above adjusted for PE targets. */
7602
7603 static char *
7604 lex_got (enum bfd_reloc_code_real *rel ATTRIBUTE_UNUSED,
7605 int *adjust ATTRIBUTE_UNUSED,
7606 i386_operand_type *types,
7607 int bnd_prefix ATTRIBUTE_UNUSED)
7608 {
7609 static const struct
7610 {
7611 const char *str;
7612 int len;
7613 const enum bfd_reloc_code_real rel[2];
7614 const i386_operand_type types64;
7615 }
7616 gotrel[] =
7617 {
7618 { STRING_COMMA_LEN ("SECREL32"), { BFD_RELOC_32_SECREL,
7619 BFD_RELOC_32_SECREL },
7620 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
7621 };
7622
7623 char *cp;
7624 unsigned j;
7625
7626 for (cp = input_line_pointer; *cp != '@'; cp++)
7627 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
7628 return NULL;
7629
7630 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
7631 {
7632 int len = gotrel[j].len;
7633
7634 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
7635 {
7636 if (gotrel[j].rel[object_64bit] != 0)
7637 {
7638 int first, second;
7639 char *tmpbuf, *past_reloc;
7640
7641 *rel = gotrel[j].rel[object_64bit];
7642 if (adjust)
7643 *adjust = len;
7644
7645 if (types)
7646 {
7647 if (flag_code != CODE_64BIT)
7648 {
7649 types->bitfield.imm32 = 1;
7650 types->bitfield.disp32 = 1;
7651 }
7652 else
7653 *types = gotrel[j].types64;
7654 }
7655
7656 /* The length of the first part of our input line. */
7657 first = cp - input_line_pointer;
7658
7659 /* The second part goes from after the reloc token until
7660 (and including) an end_of_line char or comma. */
7661 past_reloc = cp + 1 + len;
7662 cp = past_reloc;
7663 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
7664 ++cp;
7665 second = cp + 1 - past_reloc;
7666
7667 /* Allocate and copy string. The trailing NUL shouldn't
7668 be necessary, but be safe. */
7669 tmpbuf = (char *) xmalloc (first + second + 2);
7670 memcpy (tmpbuf, input_line_pointer, first);
7671 if (second != 0 && *past_reloc != ' ')
7672 /* Replace the relocation token with ' ', so that
7673 errors like foo@SECLREL321 will be detected. */
7674 tmpbuf[first++] = ' ';
7675 memcpy (tmpbuf + first, past_reloc, second);
7676 tmpbuf[first + second] = '\0';
7677 return tmpbuf;
7678 }
7679
7680 as_bad (_("@%s reloc is not supported with %d-bit output format"),
7681 gotrel[j].str, 1 << (5 + object_64bit));
7682 return NULL;
7683 }
7684 }
7685
7686 /* Might be a symbol version string. Don't as_bad here. */
7687 return NULL;
7688 }
7689
7690 #endif /* TE_PE */
7691
7692 bfd_reloc_code_real_type
7693 x86_cons (expressionS *exp, int size)
7694 {
7695 bfd_reloc_code_real_type got_reloc = NO_RELOC;
7696
7697 intel_syntax = -intel_syntax;
7698
7699 exp->X_md = 0;
7700 if (size == 4 || (object_64bit && size == 8))
7701 {
7702 /* Handle @GOTOFF and the like in an expression. */
7703 char *save;
7704 char *gotfree_input_line;
7705 int adjust = 0;
7706
7707 save = input_line_pointer;
7708 gotfree_input_line = lex_got (&got_reloc, &adjust, NULL, 0);
7709 if (gotfree_input_line)
7710 input_line_pointer = gotfree_input_line;
7711
7712 expression (exp);
7713
7714 if (gotfree_input_line)
7715 {
7716 /* expression () has merrily parsed up to the end of line,
7717 or a comma - in the wrong buffer. Transfer how far
7718 input_line_pointer has moved to the right buffer. */
7719 input_line_pointer = (save
7720 + (input_line_pointer - gotfree_input_line)
7721 + adjust);
7722 free (gotfree_input_line);
7723 if (exp->X_op == O_constant
7724 || exp->X_op == O_absent
7725 || exp->X_op == O_illegal
7726 || exp->X_op == O_register
7727 || exp->X_op == O_big)
7728 {
7729 char c = *input_line_pointer;
7730 *input_line_pointer = 0;
7731 as_bad (_("missing or invalid expression `%s'"), save);
7732 *input_line_pointer = c;
7733 }
7734 }
7735 }
7736 else
7737 expression (exp);
7738
7739 intel_syntax = -intel_syntax;
7740
7741 if (intel_syntax)
7742 i386_intel_simplify (exp);
7743
7744 return got_reloc;
7745 }
7746
7747 static void
7748 signed_cons (int size)
7749 {
7750 if (flag_code == CODE_64BIT)
7751 cons_sign = 1;
7752 cons (size);
7753 cons_sign = -1;
7754 }
7755
7756 #ifdef TE_PE
7757 static void
7758 pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
7759 {
7760 expressionS exp;
7761
7762 do
7763 {
7764 expression (&exp);
7765 if (exp.X_op == O_symbol)
7766 exp.X_op = O_secrel;
7767
7768 emit_expr (&exp, 4);
7769 }
7770 while (*input_line_pointer++ == ',');
7771
7772 input_line_pointer--;
7773 demand_empty_rest_of_line ();
7774 }
7775 #endif
7776
7777 /* Handle Vector operations. */
7778
7779 static char *
7780 check_VecOperations (char *op_string, char *op_end)
7781 {
7782 const reg_entry *mask;
7783 const char *saved;
7784 char *end_op;
7785
7786 while (*op_string
7787 && (op_end == NULL || op_string < op_end))
7788 {
7789 saved = op_string;
7790 if (*op_string == '{')
7791 {
7792 op_string++;
7793
7794 /* Check broadcasts. */
7795 if (strncmp (op_string, "1to", 3) == 0)
7796 {
7797 int bcst_type;
7798
7799 if (i.broadcast)
7800 goto duplicated_vec_op;
7801
7802 op_string += 3;
7803 if (*op_string == '8')
7804 bcst_type = BROADCAST_1TO8;
7805 else if (*op_string == '4')
7806 bcst_type = BROADCAST_1TO4;
7807 else if (*op_string == '2')
7808 bcst_type = BROADCAST_1TO2;
7809 else if (*op_string == '1'
7810 && *(op_string+1) == '6')
7811 {
7812 bcst_type = BROADCAST_1TO16;
7813 op_string++;
7814 }
7815 else
7816 {
7817 as_bad (_("Unsupported broadcast: `%s'"), saved);
7818 return NULL;
7819 }
7820 op_string++;
7821
7822 broadcast_op.type = bcst_type;
7823 broadcast_op.operand = this_operand;
7824 i.broadcast = &broadcast_op;
7825 }
7826 /* Check masking operation. */
7827 else if ((mask = parse_register (op_string, &end_op)) != NULL)
7828 {
7829 /* k0 can't be used for write mask. */
7830 if (mask->reg_num == 0)
7831 {
7832 as_bad (_("`%s' can't be used for write mask"),
7833 op_string);
7834 return NULL;
7835 }
7836
7837 if (!i.mask)
7838 {
7839 mask_op.mask = mask;
7840 mask_op.zeroing = 0;
7841 mask_op.operand = this_operand;
7842 i.mask = &mask_op;
7843 }
7844 else
7845 {
7846 if (i.mask->mask)
7847 goto duplicated_vec_op;
7848
7849 i.mask->mask = mask;
7850
7851 /* Only "{z}" is allowed here. No need to check
7852 zeroing mask explicitly. */
7853 if (i.mask->operand != this_operand)
7854 {
7855 as_bad (_("invalid write mask `%s'"), saved);
7856 return NULL;
7857 }
7858 }
7859
7860 op_string = end_op;
7861 }
7862 /* Check zeroing-flag for masking operation. */
7863 else if (*op_string == 'z')
7864 {
7865 if (!i.mask)
7866 {
7867 mask_op.mask = NULL;
7868 mask_op.zeroing = 1;
7869 mask_op.operand = this_operand;
7870 i.mask = &mask_op;
7871 }
7872 else
7873 {
7874 if (i.mask->zeroing)
7875 {
7876 duplicated_vec_op:
7877 as_bad (_("duplicated `%s'"), saved);
7878 return NULL;
7879 }
7880
7881 i.mask->zeroing = 1;
7882
7883 /* Only "{%k}" is allowed here. No need to check mask
7884 register explicitly. */
7885 if (i.mask->operand != this_operand)
7886 {
7887 as_bad (_("invalid zeroing-masking `%s'"),
7888 saved);
7889 return NULL;
7890 }
7891 }
7892
7893 op_string++;
7894 }
7895 else
7896 goto unknown_vec_op;
7897
7898 if (*op_string != '}')
7899 {
7900 as_bad (_("missing `}' in `%s'"), saved);
7901 return NULL;
7902 }
7903 op_string++;
7904 continue;
7905 }
7906 unknown_vec_op:
7907 /* We don't know this one. */
7908 as_bad (_("unknown vector operation: `%s'"), saved);
7909 return NULL;
7910 }
7911
7912 return op_string;
7913 }
7914
7915 static int
7916 i386_immediate (char *imm_start)
7917 {
7918 char *save_input_line_pointer;
7919 char *gotfree_input_line;
7920 segT exp_seg = 0;
7921 expressionS *exp;
7922 i386_operand_type types;
7923
7924 operand_type_set (&types, ~0);
7925
7926 if (i.imm_operands == MAX_IMMEDIATE_OPERANDS)
7927 {
7928 as_bad (_("at most %d immediate operands are allowed"),
7929 MAX_IMMEDIATE_OPERANDS);
7930 return 0;
7931 }
7932
7933 exp = &im_expressions[i.imm_operands++];
7934 i.op[this_operand].imms = exp;
7935
7936 if (is_space_char (*imm_start))
7937 ++imm_start;
7938
7939 save_input_line_pointer = input_line_pointer;
7940 input_line_pointer = imm_start;
7941
7942 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types,
7943 (i.bnd_prefix != NULL
7944 || add_bnd_prefix));
7945 if (gotfree_input_line)
7946 input_line_pointer = gotfree_input_line;
7947
7948 exp_seg = expression (exp);
7949
7950 SKIP_WHITESPACE ();
7951
7952 /* Handle vector operations. */
7953 if (*input_line_pointer == '{')
7954 {
7955 input_line_pointer = check_VecOperations (input_line_pointer,
7956 NULL);
7957 if (input_line_pointer == NULL)
7958 return 0;
7959 }
7960
7961 if (*input_line_pointer)
7962 as_bad (_("junk `%s' after expression"), input_line_pointer);
7963
7964 input_line_pointer = save_input_line_pointer;
7965 if (gotfree_input_line)
7966 {
7967 free (gotfree_input_line);
7968
7969 if (exp->X_op == O_constant || exp->X_op == O_register)
7970 exp->X_op = O_illegal;
7971 }
7972
7973 return i386_finalize_immediate (exp_seg, exp, types, imm_start);
7974 }
7975
7976 static int
7977 i386_finalize_immediate (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
7978 i386_operand_type types, const char *imm_start)
7979 {
7980 if (exp->X_op == O_absent || exp->X_op == O_illegal || exp->X_op == O_big)
7981 {
7982 if (imm_start)
7983 as_bad (_("missing or invalid immediate expression `%s'"),
7984 imm_start);
7985 return 0;
7986 }
7987 else if (exp->X_op == O_constant)
7988 {
7989 /* Size it properly later. */
7990 i.types[this_operand].bitfield.imm64 = 1;
7991 /* If not 64bit, sign extend val. */
7992 if (flag_code != CODE_64BIT
7993 && (exp->X_add_number & ~(((addressT) 2 << 31) - 1)) == 0)
7994 exp->X_add_number
7995 = (exp->X_add_number ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
7996 }
7997 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
7998 else if (OUTPUT_FLAVOR == bfd_target_aout_flavour
7999 && exp_seg != absolute_section
8000 && exp_seg != text_section
8001 && exp_seg != data_section
8002 && exp_seg != bss_section
8003 && exp_seg != undefined_section
8004 && !bfd_is_com_section (exp_seg))
8005 {
8006 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
8007 return 0;
8008 }
8009 #endif
8010 else if (!intel_syntax && exp_seg == reg_section)
8011 {
8012 if (imm_start)
8013 as_bad (_("illegal immediate register operand %s"), imm_start);
8014 return 0;
8015 }
8016 else
8017 {
8018 /* This is an address. The size of the address will be
8019 determined later, depending on destination register,
8020 suffix, or the default for the section. */
8021 i.types[this_operand].bitfield.imm8 = 1;
8022 i.types[this_operand].bitfield.imm16 = 1;
8023 i.types[this_operand].bitfield.imm32 = 1;
8024 i.types[this_operand].bitfield.imm32s = 1;
8025 i.types[this_operand].bitfield.imm64 = 1;
8026 i.types[this_operand] = operand_type_and (i.types[this_operand],
8027 types);
8028 }
8029
8030 return 1;
8031 }
8032
8033 static char *
8034 i386_scale (char *scale)
8035 {
8036 offsetT val;
8037 char *save = input_line_pointer;
8038
8039 input_line_pointer = scale;
8040 val = get_absolute_expression ();
8041
8042 switch (val)
8043 {
8044 case 1:
8045 i.log2_scale_factor = 0;
8046 break;
8047 case 2:
8048 i.log2_scale_factor = 1;
8049 break;
8050 case 4:
8051 i.log2_scale_factor = 2;
8052 break;
8053 case 8:
8054 i.log2_scale_factor = 3;
8055 break;
8056 default:
8057 {
8058 char sep = *input_line_pointer;
8059
8060 *input_line_pointer = '\0';
8061 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
8062 scale);
8063 *input_line_pointer = sep;
8064 input_line_pointer = save;
8065 return NULL;
8066 }
8067 }
8068 if (i.log2_scale_factor != 0 && i.index_reg == 0)
8069 {
8070 as_warn (_("scale factor of %d without an index register"),
8071 1 << i.log2_scale_factor);
8072 i.log2_scale_factor = 0;
8073 }
8074 scale = input_line_pointer;
8075 input_line_pointer = save;
8076 return scale;
8077 }
8078
8079 static int
8080 i386_displacement (char *disp_start, char *disp_end)
8081 {
8082 expressionS *exp;
8083 segT exp_seg = 0;
8084 char *save_input_line_pointer;
8085 char *gotfree_input_line;
8086 int override;
8087 i386_operand_type bigdisp, types = anydisp;
8088 int ret;
8089
8090 if (i.disp_operands == MAX_MEMORY_OPERANDS)
8091 {
8092 as_bad (_("at most %d displacement operands are allowed"),
8093 MAX_MEMORY_OPERANDS);
8094 return 0;
8095 }
8096
8097 operand_type_set (&bigdisp, 0);
8098 if ((i.types[this_operand].bitfield.jumpabsolute)
8099 || (!current_templates->start->opcode_modifier.jump
8100 && !current_templates->start->opcode_modifier.jumpdword))
8101 {
8102 bigdisp.bitfield.disp32 = 1;
8103 override = (i.prefix[ADDR_PREFIX] != 0);
8104 if (flag_code == CODE_64BIT)
8105 {
8106 if (!override)
8107 {
8108 bigdisp.bitfield.disp32s = 1;
8109 bigdisp.bitfield.disp64 = 1;
8110 }
8111 }
8112 else if ((flag_code == CODE_16BIT) ^ override)
8113 {
8114 bigdisp.bitfield.disp32 = 0;
8115 bigdisp.bitfield.disp16 = 1;
8116 }
8117 }
8118 else
8119 {
8120 /* For PC-relative branches, the width of the displacement
8121 is dependent upon data size, not address size. */
8122 override = (i.prefix[DATA_PREFIX] != 0);
8123 if (flag_code == CODE_64BIT)
8124 {
8125 if (override || i.suffix == WORD_MNEM_SUFFIX)
8126 bigdisp.bitfield.disp16 = 1;
8127 else
8128 {
8129 bigdisp.bitfield.disp32 = 1;
8130 bigdisp.bitfield.disp32s = 1;
8131 }
8132 }
8133 else
8134 {
8135 if (!override)
8136 override = (i.suffix == (flag_code != CODE_16BIT
8137 ? WORD_MNEM_SUFFIX
8138 : LONG_MNEM_SUFFIX));
8139 bigdisp.bitfield.disp32 = 1;
8140 if ((flag_code == CODE_16BIT) ^ override)
8141 {
8142 bigdisp.bitfield.disp32 = 0;
8143 bigdisp.bitfield.disp16 = 1;
8144 }
8145 }
8146 }
8147 i.types[this_operand] = operand_type_or (i.types[this_operand],
8148 bigdisp);
8149
8150 exp = &disp_expressions[i.disp_operands];
8151 i.op[this_operand].disps = exp;
8152 i.disp_operands++;
8153 save_input_line_pointer = input_line_pointer;
8154 input_line_pointer = disp_start;
8155 END_STRING_AND_SAVE (disp_end);
8156
8157 #ifndef GCC_ASM_O_HACK
8158 #define GCC_ASM_O_HACK 0
8159 #endif
8160 #if GCC_ASM_O_HACK
8161 END_STRING_AND_SAVE (disp_end + 1);
8162 if (i.types[this_operand].bitfield.baseIndex
8163 && displacement_string_end[-1] == '+')
8164 {
8165 /* This hack is to avoid a warning when using the "o"
8166 constraint within gcc asm statements.
8167 For instance:
8168
8169 #define _set_tssldt_desc(n,addr,limit,type) \
8170 __asm__ __volatile__ ( \
8171 "movw %w2,%0\n\t" \
8172 "movw %w1,2+%0\n\t" \
8173 "rorl $16,%1\n\t" \
8174 "movb %b1,4+%0\n\t" \
8175 "movb %4,5+%0\n\t" \
8176 "movb $0,6+%0\n\t" \
8177 "movb %h1,7+%0\n\t" \
8178 "rorl $16,%1" \
8179 : "=o"(*(n)) : "q" (addr), "ri"(limit), "i"(type))
8180
8181 This works great except that the output assembler ends
8182 up looking a bit weird if it turns out that there is
8183 no offset. You end up producing code that looks like:
8184
8185 #APP
8186 movw $235,(%eax)
8187 movw %dx,2+(%eax)
8188 rorl $16,%edx
8189 movb %dl,4+(%eax)
8190 movb $137,5+(%eax)
8191 movb $0,6+(%eax)
8192 movb %dh,7+(%eax)
8193 rorl $16,%edx
8194 #NO_APP
8195
8196 So here we provide the missing zero. */
8197
8198 *displacement_string_end = '0';
8199 }
8200 #endif
8201 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types,
8202 (i.bnd_prefix != NULL
8203 || add_bnd_prefix));
8204 if (gotfree_input_line)
8205 input_line_pointer = gotfree_input_line;
8206
8207 exp_seg = expression (exp);
8208
8209 SKIP_WHITESPACE ();
8210 if (*input_line_pointer)
8211 as_bad (_("junk `%s' after expression"), input_line_pointer);
8212 #if GCC_ASM_O_HACK
8213 RESTORE_END_STRING (disp_end + 1);
8214 #endif
8215 input_line_pointer = save_input_line_pointer;
8216 if (gotfree_input_line)
8217 {
8218 free (gotfree_input_line);
8219
8220 if (exp->X_op == O_constant || exp->X_op == O_register)
8221 exp->X_op = O_illegal;
8222 }
8223
8224 ret = i386_finalize_displacement (exp_seg, exp, types, disp_start);
8225
8226 RESTORE_END_STRING (disp_end);
8227
8228 return ret;
8229 }
8230
8231 static int
8232 i386_finalize_displacement (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
8233 i386_operand_type types, const char *disp_start)
8234 {
8235 i386_operand_type bigdisp;
8236 int ret = 1;
8237
8238 /* We do this to make sure that the section symbol is in
8239 the symbol table. We will ultimately change the relocation
8240 to be relative to the beginning of the section. */
8241 if (i.reloc[this_operand] == BFD_RELOC_386_GOTOFF
8242 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL
8243 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
8244 {
8245 if (exp->X_op != O_symbol)
8246 goto inv_disp;
8247
8248 if (S_IS_LOCAL (exp->X_add_symbol)
8249 && S_GET_SEGMENT (exp->X_add_symbol) != undefined_section
8250 && S_GET_SEGMENT (exp->X_add_symbol) != expr_section)
8251 section_symbol (S_GET_SEGMENT (exp->X_add_symbol));
8252 exp->X_op = O_subtract;
8253 exp->X_op_symbol = GOT_symbol;
8254 if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
8255 i.reloc[this_operand] = BFD_RELOC_32_PCREL;
8256 else if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
8257 i.reloc[this_operand] = BFD_RELOC_64;
8258 else
8259 i.reloc[this_operand] = BFD_RELOC_32;
8260 }
8261
8262 else if (exp->X_op == O_absent
8263 || exp->X_op == O_illegal
8264 || exp->X_op == O_big)
8265 {
8266 inv_disp:
8267 as_bad (_("missing or invalid displacement expression `%s'"),
8268 disp_start);
8269 ret = 0;
8270 }
8271
8272 else if (flag_code == CODE_64BIT
8273 && !i.prefix[ADDR_PREFIX]
8274 && exp->X_op == O_constant)
8275 {
8276 /* Since displacement is signed extended to 64bit, don't allow
8277 disp32 and turn off disp32s if they are out of range. */
8278 i.types[this_operand].bitfield.disp32 = 0;
8279 if (!fits_in_signed_long (exp->X_add_number))
8280 {
8281 i.types[this_operand].bitfield.disp32s = 0;
8282 if (i.types[this_operand].bitfield.baseindex)
8283 {
8284 as_bad (_("0x%lx out range of signed 32bit displacement"),
8285 (long) exp->X_add_number);
8286 ret = 0;
8287 }
8288 }
8289 }
8290
8291 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
8292 else if (exp->X_op != O_constant
8293 && OUTPUT_FLAVOR == bfd_target_aout_flavour
8294 && exp_seg != absolute_section
8295 && exp_seg != text_section
8296 && exp_seg != data_section
8297 && exp_seg != bss_section
8298 && exp_seg != undefined_section
8299 && !bfd_is_com_section (exp_seg))
8300 {
8301 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
8302 ret = 0;
8303 }
8304 #endif
8305
8306 /* Check if this is a displacement only operand. */
8307 bigdisp = i.types[this_operand];
8308 bigdisp.bitfield.disp8 = 0;
8309 bigdisp.bitfield.disp16 = 0;
8310 bigdisp.bitfield.disp32 = 0;
8311 bigdisp.bitfield.disp32s = 0;
8312 bigdisp.bitfield.disp64 = 0;
8313 if (operand_type_all_zero (&bigdisp))
8314 i.types[this_operand] = operand_type_and (i.types[this_operand],
8315 types);
8316
8317 return ret;
8318 }
8319
8320 /* Make sure the memory operand we've been dealt is valid.
8321 Return 1 on success, 0 on a failure. */
8322
8323 static int
8324 i386_index_check (const char *operand_string)
8325 {
8326 const char *kind = "base/index";
8327 enum flag_code addr_mode;
8328
8329 if (i.prefix[ADDR_PREFIX])
8330 addr_mode = flag_code == CODE_32BIT ? CODE_16BIT : CODE_32BIT;
8331 else
8332 {
8333 addr_mode = flag_code;
8334
8335 #if INFER_ADDR_PREFIX
8336 if (i.mem_operands == 0)
8337 {
8338 /* Infer address prefix from the first memory operand. */
8339 const reg_entry *addr_reg = i.base_reg;
8340
8341 if (addr_reg == NULL)
8342 addr_reg = i.index_reg;
8343
8344 if (addr_reg)
8345 {
8346 if (addr_reg->reg_num == RegEip
8347 || addr_reg->reg_num == RegEiz
8348 || addr_reg->reg_type.bitfield.reg32)
8349 addr_mode = CODE_32BIT;
8350 else if (flag_code != CODE_64BIT
8351 && addr_reg->reg_type.bitfield.reg16)
8352 addr_mode = CODE_16BIT;
8353
8354 if (addr_mode != flag_code)
8355 {
8356 i.prefix[ADDR_PREFIX] = ADDR_PREFIX_OPCODE;
8357 i.prefixes += 1;
8358 /* Change the size of any displacement too. At most one
8359 of Disp16 or Disp32 is set.
8360 FIXME. There doesn't seem to be any real need for
8361 separate Disp16 and Disp32 flags. The same goes for
8362 Imm16 and Imm32. Removing them would probably clean
8363 up the code quite a lot. */
8364 if (flag_code != CODE_64BIT
8365 && (i.types[this_operand].bitfield.disp16
8366 || i.types[this_operand].bitfield.disp32))
8367 i.types[this_operand]
8368 = operand_type_xor (i.types[this_operand], disp16_32);
8369 }
8370 }
8371 }
8372 #endif
8373 }
8374
8375 if (current_templates->start->opcode_modifier.isstring
8376 && !current_templates->start->opcode_modifier.immext
8377 && (current_templates->end[-1].opcode_modifier.isstring
8378 || i.mem_operands))
8379 {
8380 /* Memory operands of string insns are special in that they only allow
8381 a single register (rDI, rSI, or rBX) as their memory address. */
8382 const reg_entry *expected_reg;
8383 static const char *di_si[][2] =
8384 {
8385 { "esi", "edi" },
8386 { "si", "di" },
8387 { "rsi", "rdi" }
8388 };
8389 static const char *bx[] = { "ebx", "bx", "rbx" };
8390
8391 kind = "string address";
8392
8393 if (current_templates->start->opcode_modifier.w)
8394 {
8395 i386_operand_type type = current_templates->end[-1].operand_types[0];
8396
8397 if (!type.bitfield.baseindex
8398 || ((!i.mem_operands != !intel_syntax)
8399 && current_templates->end[-1].operand_types[1]
8400 .bitfield.baseindex))
8401 type = current_templates->end[-1].operand_types[1];
8402 expected_reg = hash_find (reg_hash,
8403 di_si[addr_mode][type.bitfield.esseg]);
8404
8405 }
8406 else
8407 expected_reg = hash_find (reg_hash, bx[addr_mode]);
8408
8409 if (i.base_reg != expected_reg
8410 || i.index_reg
8411 || operand_type_check (i.types[this_operand], disp))
8412 {
8413 /* The second memory operand must have the same size as
8414 the first one. */
8415 if (i.mem_operands
8416 && i.base_reg
8417 && !((addr_mode == CODE_64BIT
8418 && i.base_reg->reg_type.bitfield.reg64)
8419 || (addr_mode == CODE_32BIT
8420 ? i.base_reg->reg_type.bitfield.reg32
8421 : i.base_reg->reg_type.bitfield.reg16)))
8422 goto bad_address;
8423
8424 as_warn (_("`%s' is not valid here (expected `%c%s%s%c')"),
8425 operand_string,
8426 intel_syntax ? '[' : '(',
8427 register_prefix,
8428 expected_reg->reg_name,
8429 intel_syntax ? ']' : ')');
8430 return 1;
8431 }
8432 else
8433 return 1;
8434
8435 bad_address:
8436 as_bad (_("`%s' is not a valid %s expression"),
8437 operand_string, kind);
8438 return 0;
8439 }
8440 else
8441 {
8442 if (addr_mode != CODE_16BIT)
8443 {
8444 /* 32-bit/64-bit checks. */
8445 if ((i.base_reg
8446 && (addr_mode == CODE_64BIT
8447 ? !i.base_reg->reg_type.bitfield.reg64
8448 : !i.base_reg->reg_type.bitfield.reg32)
8449 && (i.index_reg
8450 || (i.base_reg->reg_num
8451 != (addr_mode == CODE_64BIT ? RegRip : RegEip))))
8452 || (i.index_reg
8453 && !i.index_reg->reg_type.bitfield.regxmm
8454 && !i.index_reg->reg_type.bitfield.regymm
8455 && !i.index_reg->reg_type.bitfield.regzmm
8456 && ((addr_mode == CODE_64BIT
8457 ? !(i.index_reg->reg_type.bitfield.reg64
8458 || i.index_reg->reg_num == RegRiz)
8459 : !(i.index_reg->reg_type.bitfield.reg32
8460 || i.index_reg->reg_num == RegEiz))
8461 || !i.index_reg->reg_type.bitfield.baseindex)))
8462 goto bad_address;
8463 }
8464 else
8465 {
8466 /* 16-bit checks. */
8467 if ((i.base_reg
8468 && (!i.base_reg->reg_type.bitfield.reg16
8469 || !i.base_reg->reg_type.bitfield.baseindex))
8470 || (i.index_reg
8471 && (!i.index_reg->reg_type.bitfield.reg16
8472 || !i.index_reg->reg_type.bitfield.baseindex
8473 || !(i.base_reg
8474 && i.base_reg->reg_num < 6
8475 && i.index_reg->reg_num >= 6
8476 && i.log2_scale_factor == 0))))
8477 goto bad_address;
8478 }
8479 }
8480 return 1;
8481 }
8482
8483 /* Handle vector immediates. */
8484
8485 static int
8486 RC_SAE_immediate (const char *imm_start)
8487 {
8488 unsigned int match_found, j;
8489 const char *pstr = imm_start;
8490 expressionS *exp;
8491
8492 if (*pstr != '{')
8493 return 0;
8494
8495 pstr++;
8496 match_found = 0;
8497 for (j = 0; j < ARRAY_SIZE (RC_NamesTable); j++)
8498 {
8499 if (!strncmp (pstr, RC_NamesTable[j].name, RC_NamesTable[j].len))
8500 {
8501 if (!i.rounding)
8502 {
8503 rc_op.type = RC_NamesTable[j].type;
8504 rc_op.operand = this_operand;
8505 i.rounding = &rc_op;
8506 }
8507 else
8508 {
8509 as_bad (_("duplicated `%s'"), imm_start);
8510 return 0;
8511 }
8512 pstr += RC_NamesTable[j].len;
8513 match_found = 1;
8514 break;
8515 }
8516 }
8517 if (!match_found)
8518 return 0;
8519
8520 if (*pstr++ != '}')
8521 {
8522 as_bad (_("Missing '}': '%s'"), imm_start);
8523 return 0;
8524 }
8525 /* RC/SAE immediate string should contain nothing more. */;
8526 if (*pstr != 0)
8527 {
8528 as_bad (_("Junk after '}': '%s'"), imm_start);
8529 return 0;
8530 }
8531
8532 exp = &im_expressions[i.imm_operands++];
8533 i.op[this_operand].imms = exp;
8534
8535 exp->X_op = O_constant;
8536 exp->X_add_number = 0;
8537 exp->X_add_symbol = (symbolS *) 0;
8538 exp->X_op_symbol = (symbolS *) 0;
8539
8540 i.types[this_operand].bitfield.imm8 = 1;
8541 return 1;
8542 }
8543
8544 /* Parse OPERAND_STRING into the i386_insn structure I. Returns zero
8545 on error. */
8546
8547 static int
8548 i386_att_operand (char *operand_string)
8549 {
8550 const reg_entry *r;
8551 char *end_op;
8552 char *op_string = operand_string;
8553
8554 if (is_space_char (*op_string))
8555 ++op_string;
8556
8557 /* We check for an absolute prefix (differentiating,
8558 for example, 'jmp pc_relative_label' from 'jmp *absolute_label'. */
8559 if (*op_string == ABSOLUTE_PREFIX)
8560 {
8561 ++op_string;
8562 if (is_space_char (*op_string))
8563 ++op_string;
8564 i.types[this_operand].bitfield.jumpabsolute = 1;
8565 }
8566
8567 /* Check if operand is a register. */
8568 if ((r = parse_register (op_string, &end_op)) != NULL)
8569 {
8570 i386_operand_type temp;
8571
8572 /* Check for a segment override by searching for ':' after a
8573 segment register. */
8574 op_string = end_op;
8575 if (is_space_char (*op_string))
8576 ++op_string;
8577 if (*op_string == ':'
8578 && (r->reg_type.bitfield.sreg2
8579 || r->reg_type.bitfield.sreg3))
8580 {
8581 switch (r->reg_num)
8582 {
8583 case 0:
8584 i.seg[i.mem_operands] = &es;
8585 break;
8586 case 1:
8587 i.seg[i.mem_operands] = &cs;
8588 break;
8589 case 2:
8590 i.seg[i.mem_operands] = &ss;
8591 break;
8592 case 3:
8593 i.seg[i.mem_operands] = &ds;
8594 break;
8595 case 4:
8596 i.seg[i.mem_operands] = &fs;
8597 break;
8598 case 5:
8599 i.seg[i.mem_operands] = &gs;
8600 break;
8601 }
8602
8603 /* Skip the ':' and whitespace. */
8604 ++op_string;
8605 if (is_space_char (*op_string))
8606 ++op_string;
8607
8608 if (!is_digit_char (*op_string)
8609 && !is_identifier_char (*op_string)
8610 && *op_string != '('
8611 && *op_string != ABSOLUTE_PREFIX)
8612 {
8613 as_bad (_("bad memory operand `%s'"), op_string);
8614 return 0;
8615 }
8616 /* Handle case of %es:*foo. */
8617 if (*op_string == ABSOLUTE_PREFIX)
8618 {
8619 ++op_string;
8620 if (is_space_char (*op_string))
8621 ++op_string;
8622 i.types[this_operand].bitfield.jumpabsolute = 1;
8623 }
8624 goto do_memory_reference;
8625 }
8626
8627 /* Handle vector operations. */
8628 if (*op_string == '{')
8629 {
8630 op_string = check_VecOperations (op_string, NULL);
8631 if (op_string == NULL)
8632 return 0;
8633 }
8634
8635 if (*op_string)
8636 {
8637 as_bad (_("junk `%s' after register"), op_string);
8638 return 0;
8639 }
8640 temp = r->reg_type;
8641 temp.bitfield.baseindex = 0;
8642 i.types[this_operand] = operand_type_or (i.types[this_operand],
8643 temp);
8644 i.types[this_operand].bitfield.unspecified = 0;
8645 i.op[this_operand].regs = r;
8646 i.reg_operands++;
8647 }
8648 else if (*op_string == REGISTER_PREFIX)
8649 {
8650 as_bad (_("bad register name `%s'"), op_string);
8651 return 0;
8652 }
8653 else if (*op_string == IMMEDIATE_PREFIX)
8654 {
8655 ++op_string;
8656 if (i.types[this_operand].bitfield.jumpabsolute)
8657 {
8658 as_bad (_("immediate operand illegal with absolute jump"));
8659 return 0;
8660 }
8661 if (!i386_immediate (op_string))
8662 return 0;
8663 }
8664 else if (RC_SAE_immediate (operand_string))
8665 {
8666 /* If it is a RC or SAE immediate, do nothing. */
8667 ;
8668 }
8669 else if (is_digit_char (*op_string)
8670 || is_identifier_char (*op_string)
8671 || *op_string == '(')
8672 {
8673 /* This is a memory reference of some sort. */
8674 char *base_string;
8675
8676 /* Start and end of displacement string expression (if found). */
8677 char *displacement_string_start;
8678 char *displacement_string_end;
8679 char *vop_start;
8680
8681 do_memory_reference:
8682 if ((i.mem_operands == 1
8683 && !current_templates->start->opcode_modifier.isstring)
8684 || i.mem_operands == 2)
8685 {
8686 as_bad (_("too many memory references for `%s'"),
8687 current_templates->start->name);
8688 return 0;
8689 }
8690
8691 /* Check for base index form. We detect the base index form by
8692 looking for an ')' at the end of the operand, searching
8693 for the '(' matching it, and finding a REGISTER_PREFIX or ','
8694 after the '('. */
8695 base_string = op_string + strlen (op_string);
8696
8697 /* Handle vector operations. */
8698 vop_start = strchr (op_string, '{');
8699 if (vop_start && vop_start < base_string)
8700 {
8701 if (check_VecOperations (vop_start, base_string) == NULL)
8702 return 0;
8703 base_string = vop_start;
8704 }
8705
8706 --base_string;
8707 if (is_space_char (*base_string))
8708 --base_string;
8709
8710 /* If we only have a displacement, set-up for it to be parsed later. */
8711 displacement_string_start = op_string;
8712 displacement_string_end = base_string + 1;
8713
8714 if (*base_string == ')')
8715 {
8716 char *temp_string;
8717 unsigned int parens_balanced = 1;
8718 /* We've already checked that the number of left & right ()'s are
8719 equal, so this loop will not be infinite. */
8720 do
8721 {
8722 base_string--;
8723 if (*base_string == ')')
8724 parens_balanced++;
8725 if (*base_string == '(')
8726 parens_balanced--;
8727 }
8728 while (parens_balanced);
8729
8730 temp_string = base_string;
8731
8732 /* Skip past '(' and whitespace. */
8733 ++base_string;
8734 if (is_space_char (*base_string))
8735 ++base_string;
8736
8737 if (*base_string == ','
8738 || ((i.base_reg = parse_register (base_string, &end_op))
8739 != NULL))
8740 {
8741 displacement_string_end = temp_string;
8742
8743 i.types[this_operand].bitfield.baseindex = 1;
8744
8745 if (i.base_reg)
8746 {
8747 base_string = end_op;
8748 if (is_space_char (*base_string))
8749 ++base_string;
8750 }
8751
8752 /* There may be an index reg or scale factor here. */
8753 if (*base_string == ',')
8754 {
8755 ++base_string;
8756 if (is_space_char (*base_string))
8757 ++base_string;
8758
8759 if ((i.index_reg = parse_register (base_string, &end_op))
8760 != NULL)
8761 {
8762 base_string = end_op;
8763 if (is_space_char (*base_string))
8764 ++base_string;
8765 if (*base_string == ',')
8766 {
8767 ++base_string;
8768 if (is_space_char (*base_string))
8769 ++base_string;
8770 }
8771 else if (*base_string != ')')
8772 {
8773 as_bad (_("expecting `,' or `)' "
8774 "after index register in `%s'"),
8775 operand_string);
8776 return 0;
8777 }
8778 }
8779 else if (*base_string == REGISTER_PREFIX)
8780 {
8781 end_op = strchr (base_string, ',');
8782 if (end_op)
8783 *end_op = '\0';
8784 as_bad (_("bad register name `%s'"), base_string);
8785 return 0;
8786 }
8787
8788 /* Check for scale factor. */
8789 if (*base_string != ')')
8790 {
8791 char *end_scale = i386_scale (base_string);
8792
8793 if (!end_scale)
8794 return 0;
8795
8796 base_string = end_scale;
8797 if (is_space_char (*base_string))
8798 ++base_string;
8799 if (*base_string != ')')
8800 {
8801 as_bad (_("expecting `)' "
8802 "after scale factor in `%s'"),
8803 operand_string);
8804 return 0;
8805 }
8806 }
8807 else if (!i.index_reg)
8808 {
8809 as_bad (_("expecting index register or scale factor "
8810 "after `,'; got '%c'"),
8811 *base_string);
8812 return 0;
8813 }
8814 }
8815 else if (*base_string != ')')
8816 {
8817 as_bad (_("expecting `,' or `)' "
8818 "after base register in `%s'"),
8819 operand_string);
8820 return 0;
8821 }
8822 }
8823 else if (*base_string == REGISTER_PREFIX)
8824 {
8825 end_op = strchr (base_string, ',');
8826 if (end_op)
8827 *end_op = '\0';
8828 as_bad (_("bad register name `%s'"), base_string);
8829 return 0;
8830 }
8831 }
8832
8833 /* If there's an expression beginning the operand, parse it,
8834 assuming displacement_string_start and
8835 displacement_string_end are meaningful. */
8836 if (displacement_string_start != displacement_string_end)
8837 {
8838 if (!i386_displacement (displacement_string_start,
8839 displacement_string_end))
8840 return 0;
8841 }
8842
8843 /* Special case for (%dx) while doing input/output op. */
8844 if (i.base_reg
8845 && operand_type_equal (&i.base_reg->reg_type,
8846 &reg16_inoutportreg)
8847 && i.index_reg == 0
8848 && i.log2_scale_factor == 0
8849 && i.seg[i.mem_operands] == 0
8850 && !operand_type_check (i.types[this_operand], disp))
8851 {
8852 i.types[this_operand] = inoutportreg;
8853 return 1;
8854 }
8855
8856 if (i386_index_check (operand_string) == 0)
8857 return 0;
8858 i.types[this_operand].bitfield.mem = 1;
8859 i.mem_operands++;
8860 }
8861 else
8862 {
8863 /* It's not a memory operand; argh! */
8864 as_bad (_("invalid char %s beginning operand %d `%s'"),
8865 output_invalid (*op_string),
8866 this_operand + 1,
8867 op_string);
8868 return 0;
8869 }
8870 return 1; /* Normal return. */
8871 }
8872 \f
8873 /* Calculate the maximum variable size (i.e., excluding fr_fix)
8874 that an rs_machine_dependent frag may reach. */
8875
8876 unsigned int
8877 i386_frag_max_var (fragS *frag)
8878 {
8879 /* The only relaxable frags are for jumps.
8880 Unconditional jumps can grow by 4 bytes and others by 5 bytes. */
8881 gas_assert (frag->fr_type == rs_machine_dependent);
8882 return TYPE_FROM_RELAX_STATE (frag->fr_subtype) == UNCOND_JUMP ? 4 : 5;
8883 }
8884
8885 /* md_estimate_size_before_relax()
8886
8887 Called just before relax() for rs_machine_dependent frags. The x86
8888 assembler uses these frags to handle variable size jump
8889 instructions.
8890
8891 Any symbol that is now undefined will not become defined.
8892 Return the correct fr_subtype in the frag.
8893 Return the initial "guess for variable size of frag" to caller.
8894 The guess is actually the growth beyond the fixed part. Whatever
8895 we do to grow the fixed or variable part contributes to our
8896 returned value. */
8897
8898 int
8899 md_estimate_size_before_relax (fragS *fragP, segT segment)
8900 {
8901 /* We've already got fragP->fr_subtype right; all we have to do is
8902 check for un-relaxable symbols. On an ELF system, we can't relax
8903 an externally visible symbol, because it may be overridden by a
8904 shared library. */
8905 if (S_GET_SEGMENT (fragP->fr_symbol) != segment
8906 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8907 || (IS_ELF
8908 && (S_IS_EXTERNAL (fragP->fr_symbol)
8909 || S_IS_WEAK (fragP->fr_symbol)
8910 || ((symbol_get_bfdsym (fragP->fr_symbol)->flags
8911 & BSF_GNU_INDIRECT_FUNCTION))))
8912 #endif
8913 #if defined (OBJ_COFF) && defined (TE_PE)
8914 || (OUTPUT_FLAVOR == bfd_target_coff_flavour
8915 && S_IS_WEAK (fragP->fr_symbol))
8916 #endif
8917 )
8918 {
8919 /* Symbol is undefined in this segment, or we need to keep a
8920 reloc so that weak symbols can be overridden. */
8921 int size = (fragP->fr_subtype & CODE16) ? 2 : 4;
8922 enum bfd_reloc_code_real reloc_type;
8923 unsigned char *opcode;
8924 int old_fr_fix;
8925
8926 if (fragP->fr_var != NO_RELOC)
8927 reloc_type = (enum bfd_reloc_code_real) fragP->fr_var;
8928 else if (size == 2)
8929 reloc_type = BFD_RELOC_16_PCREL;
8930 else
8931 reloc_type = BFD_RELOC_32_PCREL;
8932
8933 old_fr_fix = fragP->fr_fix;
8934 opcode = (unsigned char *) fragP->fr_opcode;
8935
8936 switch (TYPE_FROM_RELAX_STATE (fragP->fr_subtype))
8937 {
8938 case UNCOND_JUMP:
8939 /* Make jmp (0xeb) a (d)word displacement jump. */
8940 opcode[0] = 0xe9;
8941 fragP->fr_fix += size;
8942 fix_new (fragP, old_fr_fix, size,
8943 fragP->fr_symbol,
8944 fragP->fr_offset, 1,
8945 reloc_type);
8946 break;
8947
8948 case COND_JUMP86:
8949 if (size == 2
8950 && (!no_cond_jump_promotion || fragP->fr_var != NO_RELOC))
8951 {
8952 /* Negate the condition, and branch past an
8953 unconditional jump. */
8954 opcode[0] ^= 1;
8955 opcode[1] = 3;
8956 /* Insert an unconditional jump. */
8957 opcode[2] = 0xe9;
8958 /* We added two extra opcode bytes, and have a two byte
8959 offset. */
8960 fragP->fr_fix += 2 + 2;
8961 fix_new (fragP, old_fr_fix + 2, 2,
8962 fragP->fr_symbol,
8963 fragP->fr_offset, 1,
8964 reloc_type);
8965 break;
8966 }
8967 /* Fall through. */
8968
8969 case COND_JUMP:
8970 if (no_cond_jump_promotion && fragP->fr_var == NO_RELOC)
8971 {
8972 fixS *fixP;
8973
8974 fragP->fr_fix += 1;
8975 fixP = fix_new (fragP, old_fr_fix, 1,
8976 fragP->fr_symbol,
8977 fragP->fr_offset, 1,
8978 BFD_RELOC_8_PCREL);
8979 fixP->fx_signed = 1;
8980 break;
8981 }
8982
8983 /* This changes the byte-displacement jump 0x7N
8984 to the (d)word-displacement jump 0x0f,0x8N. */
8985 opcode[1] = opcode[0] + 0x10;
8986 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
8987 /* We've added an opcode byte. */
8988 fragP->fr_fix += 1 + size;
8989 fix_new (fragP, old_fr_fix + 1, size,
8990 fragP->fr_symbol,
8991 fragP->fr_offset, 1,
8992 reloc_type);
8993 break;
8994
8995 default:
8996 BAD_CASE (fragP->fr_subtype);
8997 break;
8998 }
8999 frag_wane (fragP);
9000 return fragP->fr_fix - old_fr_fix;
9001 }
9002
9003 /* Guess size depending on current relax state. Initially the relax
9004 state will correspond to a short jump and we return 1, because
9005 the variable part of the frag (the branch offset) is one byte
9006 long. However, we can relax a section more than once and in that
9007 case we must either set fr_subtype back to the unrelaxed state,
9008 or return the value for the appropriate branch. */
9009 return md_relax_table[fragP->fr_subtype].rlx_length;
9010 }
9011
9012 /* Called after relax() is finished.
9013
9014 In: Address of frag.
9015 fr_type == rs_machine_dependent.
9016 fr_subtype is what the address relaxed to.
9017
9018 Out: Any fixSs and constants are set up.
9019 Caller will turn frag into a ".space 0". */
9020
9021 void
9022 md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT sec ATTRIBUTE_UNUSED,
9023 fragS *fragP)
9024 {
9025 unsigned char *opcode;
9026 unsigned char *where_to_put_displacement = NULL;
9027 offsetT target_address;
9028 offsetT opcode_address;
9029 unsigned int extension = 0;
9030 offsetT displacement_from_opcode_start;
9031
9032 opcode = (unsigned char *) fragP->fr_opcode;
9033
9034 /* Address we want to reach in file space. */
9035 target_address = S_GET_VALUE (fragP->fr_symbol) + fragP->fr_offset;
9036
9037 /* Address opcode resides at in file space. */
9038 opcode_address = fragP->fr_address + fragP->fr_fix;
9039
9040 /* Displacement from opcode start to fill into instruction. */
9041 displacement_from_opcode_start = target_address - opcode_address;
9042
9043 if ((fragP->fr_subtype & BIG) == 0)
9044 {
9045 /* Don't have to change opcode. */
9046 extension = 1; /* 1 opcode + 1 displacement */
9047 where_to_put_displacement = &opcode[1];
9048 }
9049 else
9050 {
9051 if (no_cond_jump_promotion
9052 && TYPE_FROM_RELAX_STATE (fragP->fr_subtype) != UNCOND_JUMP)
9053 as_warn_where (fragP->fr_file, fragP->fr_line,
9054 _("long jump required"));
9055
9056 switch (fragP->fr_subtype)
9057 {
9058 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG):
9059 extension = 4; /* 1 opcode + 4 displacement */
9060 opcode[0] = 0xe9;
9061 where_to_put_displacement = &opcode[1];
9062 break;
9063
9064 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16):
9065 extension = 2; /* 1 opcode + 2 displacement */
9066 opcode[0] = 0xe9;
9067 where_to_put_displacement = &opcode[1];
9068 break;
9069
9070 case ENCODE_RELAX_STATE (COND_JUMP, BIG):
9071 case ENCODE_RELAX_STATE (COND_JUMP86, BIG):
9072 extension = 5; /* 2 opcode + 4 displacement */
9073 opcode[1] = opcode[0] + 0x10;
9074 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
9075 where_to_put_displacement = &opcode[2];
9076 break;
9077
9078 case ENCODE_RELAX_STATE (COND_JUMP, BIG16):
9079 extension = 3; /* 2 opcode + 2 displacement */
9080 opcode[1] = opcode[0] + 0x10;
9081 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
9082 where_to_put_displacement = &opcode[2];
9083 break;
9084
9085 case ENCODE_RELAX_STATE (COND_JUMP86, BIG16):
9086 extension = 4;
9087 opcode[0] ^= 1;
9088 opcode[1] = 3;
9089 opcode[2] = 0xe9;
9090 where_to_put_displacement = &opcode[3];
9091 break;
9092
9093 default:
9094 BAD_CASE (fragP->fr_subtype);
9095 break;
9096 }
9097 }
9098
9099 /* If size if less then four we are sure that the operand fits,
9100 but if it's 4, then it could be that the displacement is larger
9101 then -/+ 2GB. */
9102 if (DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype) == 4
9103 && object_64bit
9104 && ((addressT) (displacement_from_opcode_start - extension
9105 + ((addressT) 1 << 31))
9106 > (((addressT) 2 << 31) - 1)))
9107 {
9108 as_bad_where (fragP->fr_file, fragP->fr_line,
9109 _("jump target out of range"));
9110 /* Make us emit 0. */
9111 displacement_from_opcode_start = extension;
9112 }
9113 /* Now put displacement after opcode. */
9114 md_number_to_chars ((char *) where_to_put_displacement,
9115 (valueT) (displacement_from_opcode_start - extension),
9116 DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype));
9117 fragP->fr_fix += extension;
9118 }
9119 \f
9120 /* Apply a fixup (fixP) to segment data, once it has been determined
9121 by our caller that we have all the info we need to fix it up.
9122
9123 Parameter valP is the pointer to the value of the bits.
9124
9125 On the 386, immediates, displacements, and data pointers are all in
9126 the same (little-endian) format, so we don't need to care about which
9127 we are handling. */
9128
9129 void
9130 md_apply_fix (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED)
9131 {
9132 char *p = fixP->fx_where + fixP->fx_frag->fr_literal;
9133 valueT value = *valP;
9134
9135 #if !defined (TE_Mach)
9136 if (fixP->fx_pcrel)
9137 {
9138 switch (fixP->fx_r_type)
9139 {
9140 default:
9141 break;
9142
9143 case BFD_RELOC_64:
9144 fixP->fx_r_type = BFD_RELOC_64_PCREL;
9145 break;
9146 case BFD_RELOC_32:
9147 case BFD_RELOC_X86_64_32S:
9148 fixP->fx_r_type = BFD_RELOC_32_PCREL;
9149 break;
9150 case BFD_RELOC_16:
9151 fixP->fx_r_type = BFD_RELOC_16_PCREL;
9152 break;
9153 case BFD_RELOC_8:
9154 fixP->fx_r_type = BFD_RELOC_8_PCREL;
9155 break;
9156 }
9157 }
9158
9159 if (fixP->fx_addsy != NULL
9160 && (fixP->fx_r_type == BFD_RELOC_32_PCREL
9161 || fixP->fx_r_type == BFD_RELOC_64_PCREL
9162 || fixP->fx_r_type == BFD_RELOC_16_PCREL
9163 || fixP->fx_r_type == BFD_RELOC_8_PCREL
9164 || fixP->fx_r_type == BFD_RELOC_X86_64_PC32_BND)
9165 && !use_rela_relocations)
9166 {
9167 /* This is a hack. There should be a better way to handle this.
9168 This covers for the fact that bfd_install_relocation will
9169 subtract the current location (for partial_inplace, PC relative
9170 relocations); see more below. */
9171 #ifndef OBJ_AOUT
9172 if (IS_ELF
9173 #ifdef TE_PE
9174 || OUTPUT_FLAVOR == bfd_target_coff_flavour
9175 #endif
9176 )
9177 value += fixP->fx_where + fixP->fx_frag->fr_address;
9178 #endif
9179 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9180 if (IS_ELF)
9181 {
9182 segT sym_seg = S_GET_SEGMENT (fixP->fx_addsy);
9183
9184 if ((sym_seg == seg
9185 || (symbol_section_p (fixP->fx_addsy)
9186 && sym_seg != absolute_section))
9187 && !generic_force_reloc (fixP))
9188 {
9189 /* Yes, we add the values in twice. This is because
9190 bfd_install_relocation subtracts them out again. I think
9191 bfd_install_relocation is broken, but I don't dare change
9192 it. FIXME. */
9193 value += fixP->fx_where + fixP->fx_frag->fr_address;
9194 }
9195 }
9196 #endif
9197 #if defined (OBJ_COFF) && defined (TE_PE)
9198 /* For some reason, the PE format does not store a
9199 section address offset for a PC relative symbol. */
9200 if (S_GET_SEGMENT (fixP->fx_addsy) != seg
9201 || S_IS_WEAK (fixP->fx_addsy))
9202 value += md_pcrel_from (fixP);
9203 #endif
9204 }
9205 #if defined (OBJ_COFF) && defined (TE_PE)
9206 if (fixP->fx_addsy != NULL
9207 && S_IS_WEAK (fixP->fx_addsy)
9208 /* PR 16858: Do not modify weak function references. */
9209 && ! fixP->fx_pcrel)
9210 {
9211 #if !defined (TE_PEP)
9212 /* For x86 PE weak function symbols are neither PC-relative
9213 nor do they set S_IS_FUNCTION. So the only reliable way
9214 to detect them is to check the flags of their containing
9215 section. */
9216 if (S_GET_SEGMENT (fixP->fx_addsy) != NULL
9217 && S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_CODE)
9218 ;
9219 else
9220 #endif
9221 value -= S_GET_VALUE (fixP->fx_addsy);
9222 }
9223 #endif
9224
9225 /* Fix a few things - the dynamic linker expects certain values here,
9226 and we must not disappoint it. */
9227 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9228 if (IS_ELF && fixP->fx_addsy)
9229 switch (fixP->fx_r_type)
9230 {
9231 case BFD_RELOC_386_PLT32:
9232 case BFD_RELOC_X86_64_PLT32:
9233 case BFD_RELOC_X86_64_PLT32_BND:
9234 /* Make the jump instruction point to the address of the operand. At
9235 runtime we merely add the offset to the actual PLT entry. */
9236 value = -4;
9237 break;
9238
9239 case BFD_RELOC_386_TLS_GD:
9240 case BFD_RELOC_386_TLS_LDM:
9241 case BFD_RELOC_386_TLS_IE_32:
9242 case BFD_RELOC_386_TLS_IE:
9243 case BFD_RELOC_386_TLS_GOTIE:
9244 case BFD_RELOC_386_TLS_GOTDESC:
9245 case BFD_RELOC_X86_64_TLSGD:
9246 case BFD_RELOC_X86_64_TLSLD:
9247 case BFD_RELOC_X86_64_GOTTPOFF:
9248 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
9249 value = 0; /* Fully resolved at runtime. No addend. */
9250 /* Fallthrough */
9251 case BFD_RELOC_386_TLS_LE:
9252 case BFD_RELOC_386_TLS_LDO_32:
9253 case BFD_RELOC_386_TLS_LE_32:
9254 case BFD_RELOC_X86_64_DTPOFF32:
9255 case BFD_RELOC_X86_64_DTPOFF64:
9256 case BFD_RELOC_X86_64_TPOFF32:
9257 case BFD_RELOC_X86_64_TPOFF64:
9258 S_SET_THREAD_LOCAL (fixP->fx_addsy);
9259 break;
9260
9261 case BFD_RELOC_386_TLS_DESC_CALL:
9262 case BFD_RELOC_X86_64_TLSDESC_CALL:
9263 value = 0; /* Fully resolved at runtime. No addend. */
9264 S_SET_THREAD_LOCAL (fixP->fx_addsy);
9265 fixP->fx_done = 0;
9266 return;
9267
9268 case BFD_RELOC_386_GOT32:
9269 case BFD_RELOC_X86_64_GOT32:
9270 value = 0; /* Fully resolved at runtime. No addend. */
9271 break;
9272
9273 case BFD_RELOC_VTABLE_INHERIT:
9274 case BFD_RELOC_VTABLE_ENTRY:
9275 fixP->fx_done = 0;
9276 return;
9277
9278 default:
9279 break;
9280 }
9281 #endif /* defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) */
9282 *valP = value;
9283 #endif /* !defined (TE_Mach) */
9284
9285 /* Are we finished with this relocation now? */
9286 if (fixP->fx_addsy == NULL)
9287 fixP->fx_done = 1;
9288 #if defined (OBJ_COFF) && defined (TE_PE)
9289 else if (fixP->fx_addsy != NULL && S_IS_WEAK (fixP->fx_addsy))
9290 {
9291 fixP->fx_done = 0;
9292 /* Remember value for tc_gen_reloc. */
9293 fixP->fx_addnumber = value;
9294 /* Clear out the frag for now. */
9295 value = 0;
9296 }
9297 #endif
9298 else if (use_rela_relocations)
9299 {
9300 fixP->fx_no_overflow = 1;
9301 /* Remember value for tc_gen_reloc. */
9302 fixP->fx_addnumber = value;
9303 value = 0;
9304 }
9305
9306 md_number_to_chars (p, value, fixP->fx_size);
9307 }
9308 \f
9309 char *
9310 md_atof (int type, char *litP, int *sizeP)
9311 {
9312 /* This outputs the LITTLENUMs in REVERSE order;
9313 in accord with the bigendian 386. */
9314 return ieee_md_atof (type, litP, sizeP, FALSE);
9315 }
9316 \f
9317 static char output_invalid_buf[sizeof (unsigned char) * 2 + 6];
9318
9319 static char *
9320 output_invalid (int c)
9321 {
9322 if (ISPRINT (c))
9323 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
9324 "'%c'", c);
9325 else
9326 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
9327 "(0x%x)", (unsigned char) c);
9328 return output_invalid_buf;
9329 }
9330
9331 /* REG_STRING starts *before* REGISTER_PREFIX. */
9332
9333 static const reg_entry *
9334 parse_real_register (char *reg_string, char **end_op)
9335 {
9336 char *s = reg_string;
9337 char *p;
9338 char reg_name_given[MAX_REG_NAME_SIZE + 1];
9339 const reg_entry *r;
9340
9341 /* Skip possible REGISTER_PREFIX and possible whitespace. */
9342 if (*s == REGISTER_PREFIX)
9343 ++s;
9344
9345 if (is_space_char (*s))
9346 ++s;
9347
9348 p = reg_name_given;
9349 while ((*p++ = register_chars[(unsigned char) *s]) != '\0')
9350 {
9351 if (p >= reg_name_given + MAX_REG_NAME_SIZE)
9352 return (const reg_entry *) NULL;
9353 s++;
9354 }
9355
9356 /* For naked regs, make sure that we are not dealing with an identifier.
9357 This prevents confusing an identifier like `eax_var' with register
9358 `eax'. */
9359 if (allow_naked_reg && identifier_chars[(unsigned char) *s])
9360 return (const reg_entry *) NULL;
9361
9362 *end_op = s;
9363
9364 r = (const reg_entry *) hash_find (reg_hash, reg_name_given);
9365
9366 /* Handle floating point regs, allowing spaces in the (i) part. */
9367 if (r == i386_regtab /* %st is first entry of table */)
9368 {
9369 if (is_space_char (*s))
9370 ++s;
9371 if (*s == '(')
9372 {
9373 ++s;
9374 if (is_space_char (*s))
9375 ++s;
9376 if (*s >= '0' && *s <= '7')
9377 {
9378 int fpr = *s - '0';
9379 ++s;
9380 if (is_space_char (*s))
9381 ++s;
9382 if (*s == ')')
9383 {
9384 *end_op = s + 1;
9385 r = (const reg_entry *) hash_find (reg_hash, "st(0)");
9386 know (r);
9387 return r + fpr;
9388 }
9389 }
9390 /* We have "%st(" then garbage. */
9391 return (const reg_entry *) NULL;
9392 }
9393 }
9394
9395 if (r == NULL || allow_pseudo_reg)
9396 return r;
9397
9398 if (operand_type_all_zero (&r->reg_type))
9399 return (const reg_entry *) NULL;
9400
9401 if ((r->reg_type.bitfield.reg32
9402 || r->reg_type.bitfield.sreg3
9403 || r->reg_type.bitfield.control
9404 || r->reg_type.bitfield.debug
9405 || r->reg_type.bitfield.test)
9406 && !cpu_arch_flags.bitfield.cpui386)
9407 return (const reg_entry *) NULL;
9408
9409 if (r->reg_type.bitfield.floatreg
9410 && !cpu_arch_flags.bitfield.cpu8087
9411 && !cpu_arch_flags.bitfield.cpu287
9412 && !cpu_arch_flags.bitfield.cpu387)
9413 return (const reg_entry *) NULL;
9414
9415 if (r->reg_type.bitfield.regmmx && !cpu_arch_flags.bitfield.cpummx)
9416 return (const reg_entry *) NULL;
9417
9418 if (r->reg_type.bitfield.regxmm && !cpu_arch_flags.bitfield.cpusse)
9419 return (const reg_entry *) NULL;
9420
9421 if (r->reg_type.bitfield.regymm && !cpu_arch_flags.bitfield.cpuavx)
9422 return (const reg_entry *) NULL;
9423
9424 if ((r->reg_type.bitfield.regzmm || r->reg_type.bitfield.regmask)
9425 && !cpu_arch_flags.bitfield.cpuavx512f)
9426 return (const reg_entry *) NULL;
9427
9428 /* Don't allow fake index register unless allow_index_reg isn't 0. */
9429 if (!allow_index_reg
9430 && (r->reg_num == RegEiz || r->reg_num == RegRiz))
9431 return (const reg_entry *) NULL;
9432
9433 /* Upper 16 vector register is only available with VREX in 64bit
9434 mode. */
9435 if ((r->reg_flags & RegVRex))
9436 {
9437 if (!cpu_arch_flags.bitfield.cpuvrex
9438 || flag_code != CODE_64BIT)
9439 return (const reg_entry *) NULL;
9440
9441 i.need_vrex = 1;
9442 }
9443
9444 if (((r->reg_flags & (RegRex64 | RegRex))
9445 || r->reg_type.bitfield.reg64)
9446 && (!cpu_arch_flags.bitfield.cpulm
9447 || !operand_type_equal (&r->reg_type, &control))
9448 && flag_code != CODE_64BIT)
9449 return (const reg_entry *) NULL;
9450
9451 if (r->reg_type.bitfield.sreg3 && r->reg_num == RegFlat && !intel_syntax)
9452 return (const reg_entry *) NULL;
9453
9454 return r;
9455 }
9456
9457 /* REG_STRING starts *before* REGISTER_PREFIX. */
9458
9459 static const reg_entry *
9460 parse_register (char *reg_string, char **end_op)
9461 {
9462 const reg_entry *r;
9463
9464 if (*reg_string == REGISTER_PREFIX || allow_naked_reg)
9465 r = parse_real_register (reg_string, end_op);
9466 else
9467 r = NULL;
9468 if (!r)
9469 {
9470 char *save = input_line_pointer;
9471 char c;
9472 symbolS *symbolP;
9473
9474 input_line_pointer = reg_string;
9475 c = get_symbol_end ();
9476 symbolP = symbol_find (reg_string);
9477 if (symbolP && S_GET_SEGMENT (symbolP) == reg_section)
9478 {
9479 const expressionS *e = symbol_get_value_expression (symbolP);
9480
9481 know (e->X_op == O_register);
9482 know (e->X_add_number >= 0
9483 && (valueT) e->X_add_number < i386_regtab_size);
9484 r = i386_regtab + e->X_add_number;
9485 if ((r->reg_flags & RegVRex))
9486 i.need_vrex = 1;
9487 *end_op = input_line_pointer;
9488 }
9489 *input_line_pointer = c;
9490 input_line_pointer = save;
9491 }
9492 return r;
9493 }
9494
9495 int
9496 i386_parse_name (char *name, expressionS *e, char *nextcharP)
9497 {
9498 const reg_entry *r;
9499 char *end = input_line_pointer;
9500
9501 *end = *nextcharP;
9502 r = parse_register (name, &input_line_pointer);
9503 if (r && end <= input_line_pointer)
9504 {
9505 *nextcharP = *input_line_pointer;
9506 *input_line_pointer = 0;
9507 e->X_op = O_register;
9508 e->X_add_number = r - i386_regtab;
9509 return 1;
9510 }
9511 input_line_pointer = end;
9512 *end = 0;
9513 return intel_syntax ? i386_intel_parse_name (name, e) : 0;
9514 }
9515
9516 void
9517 md_operand (expressionS *e)
9518 {
9519 char *end;
9520 const reg_entry *r;
9521
9522 switch (*input_line_pointer)
9523 {
9524 case REGISTER_PREFIX:
9525 r = parse_real_register (input_line_pointer, &end);
9526 if (r)
9527 {
9528 e->X_op = O_register;
9529 e->X_add_number = r - i386_regtab;
9530 input_line_pointer = end;
9531 }
9532 break;
9533
9534 case '[':
9535 gas_assert (intel_syntax);
9536 end = input_line_pointer++;
9537 expression (e);
9538 if (*input_line_pointer == ']')
9539 {
9540 ++input_line_pointer;
9541 e->X_op_symbol = make_expr_symbol (e);
9542 e->X_add_symbol = NULL;
9543 e->X_add_number = 0;
9544 e->X_op = O_index;
9545 }
9546 else
9547 {
9548 e->X_op = O_absent;
9549 input_line_pointer = end;
9550 }
9551 break;
9552 }
9553 }
9554
9555 \f
9556 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9557 const char *md_shortopts = "kVQ:sqn";
9558 #else
9559 const char *md_shortopts = "qn";
9560 #endif
9561
9562 #define OPTION_32 (OPTION_MD_BASE + 0)
9563 #define OPTION_64 (OPTION_MD_BASE + 1)
9564 #define OPTION_DIVIDE (OPTION_MD_BASE + 2)
9565 #define OPTION_MARCH (OPTION_MD_BASE + 3)
9566 #define OPTION_MTUNE (OPTION_MD_BASE + 4)
9567 #define OPTION_MMNEMONIC (OPTION_MD_BASE + 5)
9568 #define OPTION_MSYNTAX (OPTION_MD_BASE + 6)
9569 #define OPTION_MINDEX_REG (OPTION_MD_BASE + 7)
9570 #define OPTION_MNAKED_REG (OPTION_MD_BASE + 8)
9571 #define OPTION_MOLD_GCC (OPTION_MD_BASE + 9)
9572 #define OPTION_MSSE2AVX (OPTION_MD_BASE + 10)
9573 #define OPTION_MSSE_CHECK (OPTION_MD_BASE + 11)
9574 #define OPTION_MOPERAND_CHECK (OPTION_MD_BASE + 12)
9575 #define OPTION_MAVXSCALAR (OPTION_MD_BASE + 13)
9576 #define OPTION_X32 (OPTION_MD_BASE + 14)
9577 #define OPTION_MADD_BND_PREFIX (OPTION_MD_BASE + 15)
9578 #define OPTION_MEVEXLIG (OPTION_MD_BASE + 16)
9579 #define OPTION_MEVEXWIG (OPTION_MD_BASE + 17)
9580 #define OPTION_MBIG_OBJ (OPTION_MD_BASE + 18)
9581 #define OPTION_OMIT_LOCK_PREFIX (OPTION_MD_BASE + 19)
9582 #define OPTION_MEVEXRCIG (OPTION_MD_BASE + 20)
9583
9584 struct option md_longopts[] =
9585 {
9586 {"32", no_argument, NULL, OPTION_32},
9587 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
9588 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
9589 {"64", no_argument, NULL, OPTION_64},
9590 #endif
9591 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9592 {"x32", no_argument, NULL, OPTION_X32},
9593 #endif
9594 {"divide", no_argument, NULL, OPTION_DIVIDE},
9595 {"march", required_argument, NULL, OPTION_MARCH},
9596 {"mtune", required_argument, NULL, OPTION_MTUNE},
9597 {"mmnemonic", required_argument, NULL, OPTION_MMNEMONIC},
9598 {"msyntax", required_argument, NULL, OPTION_MSYNTAX},
9599 {"mindex-reg", no_argument, NULL, OPTION_MINDEX_REG},
9600 {"mnaked-reg", no_argument, NULL, OPTION_MNAKED_REG},
9601 {"mold-gcc", no_argument, NULL, OPTION_MOLD_GCC},
9602 {"msse2avx", no_argument, NULL, OPTION_MSSE2AVX},
9603 {"msse-check", required_argument, NULL, OPTION_MSSE_CHECK},
9604 {"moperand-check", required_argument, NULL, OPTION_MOPERAND_CHECK},
9605 {"mavxscalar", required_argument, NULL, OPTION_MAVXSCALAR},
9606 {"madd-bnd-prefix", no_argument, NULL, OPTION_MADD_BND_PREFIX},
9607 {"mevexlig", required_argument, NULL, OPTION_MEVEXLIG},
9608 {"mevexwig", required_argument, NULL, OPTION_MEVEXWIG},
9609 # if defined (TE_PE) || defined (TE_PEP)
9610 {"mbig-obj", no_argument, NULL, OPTION_MBIG_OBJ},
9611 #endif
9612 {"momit-lock-prefix", required_argument, NULL, OPTION_OMIT_LOCK_PREFIX},
9613 {"mevexrcig", required_argument, NULL, OPTION_MEVEXRCIG},
9614 {NULL, no_argument, NULL, 0}
9615 };
9616 size_t md_longopts_size = sizeof (md_longopts);
9617
9618 int
9619 md_parse_option (int c, char *arg)
9620 {
9621 unsigned int j;
9622 char *arch, *next;
9623
9624 switch (c)
9625 {
9626 case 'n':
9627 optimize_align_code = 0;
9628 break;
9629
9630 case 'q':
9631 quiet_warnings = 1;
9632 break;
9633
9634 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9635 /* -Qy, -Qn: SVR4 arguments controlling whether a .comment section
9636 should be emitted or not. FIXME: Not implemented. */
9637 case 'Q':
9638 break;
9639
9640 /* -V: SVR4 argument to print version ID. */
9641 case 'V':
9642 print_version_id ();
9643 break;
9644
9645 /* -k: Ignore for FreeBSD compatibility. */
9646 case 'k':
9647 break;
9648
9649 case 's':
9650 /* -s: On i386 Solaris, this tells the native assembler to use
9651 .stab instead of .stab.excl. We always use .stab anyhow. */
9652 break;
9653 #endif
9654 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
9655 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
9656 case OPTION_64:
9657 {
9658 const char **list, **l;
9659
9660 list = bfd_target_list ();
9661 for (l = list; *l != NULL; l++)
9662 if (CONST_STRNEQ (*l, "elf64-x86-64")
9663 || strcmp (*l, "coff-x86-64") == 0
9664 || strcmp (*l, "pe-x86-64") == 0
9665 || strcmp (*l, "pei-x86-64") == 0
9666 || strcmp (*l, "mach-o-x86-64") == 0)
9667 {
9668 default_arch = "x86_64";
9669 break;
9670 }
9671 if (*l == NULL)
9672 as_fatal (_("no compiled in support for x86_64"));
9673 free (list);
9674 }
9675 break;
9676 #endif
9677
9678 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9679 case OPTION_X32:
9680 if (IS_ELF)
9681 {
9682 const char **list, **l;
9683
9684 list = bfd_target_list ();
9685 for (l = list; *l != NULL; l++)
9686 if (CONST_STRNEQ (*l, "elf32-x86-64"))
9687 {
9688 default_arch = "x86_64:32";
9689 break;
9690 }
9691 if (*l == NULL)
9692 as_fatal (_("no compiled in support for 32bit x86_64"));
9693 free (list);
9694 }
9695 else
9696 as_fatal (_("32bit x86_64 is only supported for ELF"));
9697 break;
9698 #endif
9699
9700 case OPTION_32:
9701 default_arch = "i386";
9702 break;
9703
9704 case OPTION_DIVIDE:
9705 #ifdef SVR4_COMMENT_CHARS
9706 {
9707 char *n, *t;
9708 const char *s;
9709
9710 n = (char *) xmalloc (strlen (i386_comment_chars) + 1);
9711 t = n;
9712 for (s = i386_comment_chars; *s != '\0'; s++)
9713 if (*s != '/')
9714 *t++ = *s;
9715 *t = '\0';
9716 i386_comment_chars = n;
9717 }
9718 #endif
9719 break;
9720
9721 case OPTION_MARCH:
9722 arch = xstrdup (arg);
9723 do
9724 {
9725 if (*arch == '.')
9726 as_fatal (_("invalid -march= option: `%s'"), arg);
9727 next = strchr (arch, '+');
9728 if (next)
9729 *next++ = '\0';
9730 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
9731 {
9732 if (strcmp (arch, cpu_arch [j].name) == 0)
9733 {
9734 /* Processor. */
9735 if (! cpu_arch[j].flags.bitfield.cpui386)
9736 continue;
9737
9738 cpu_arch_name = cpu_arch[j].name;
9739 cpu_sub_arch_name = NULL;
9740 cpu_arch_flags = cpu_arch[j].flags;
9741 cpu_arch_isa = cpu_arch[j].type;
9742 cpu_arch_isa_flags = cpu_arch[j].flags;
9743 if (!cpu_arch_tune_set)
9744 {
9745 cpu_arch_tune = cpu_arch_isa;
9746 cpu_arch_tune_flags = cpu_arch_isa_flags;
9747 }
9748 break;
9749 }
9750 else if (*cpu_arch [j].name == '.'
9751 && strcmp (arch, cpu_arch [j].name + 1) == 0)
9752 {
9753 /* ISA entension. */
9754 i386_cpu_flags flags;
9755
9756 if (!cpu_arch[j].negated)
9757 flags = cpu_flags_or (cpu_arch_flags,
9758 cpu_arch[j].flags);
9759 else
9760 flags = cpu_flags_and_not (cpu_arch_flags,
9761 cpu_arch[j].flags);
9762 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
9763 {
9764 if (cpu_sub_arch_name)
9765 {
9766 char *name = cpu_sub_arch_name;
9767 cpu_sub_arch_name = concat (name,
9768 cpu_arch[j].name,
9769 (const char *) NULL);
9770 free (name);
9771 }
9772 else
9773 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
9774 cpu_arch_flags = flags;
9775 cpu_arch_isa_flags = flags;
9776 }
9777 break;
9778 }
9779 }
9780
9781 if (j >= ARRAY_SIZE (cpu_arch))
9782 as_fatal (_("invalid -march= option: `%s'"), arg);
9783
9784 arch = next;
9785 }
9786 while (next != NULL );
9787 break;
9788
9789 case OPTION_MTUNE:
9790 if (*arg == '.')
9791 as_fatal (_("invalid -mtune= option: `%s'"), arg);
9792 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
9793 {
9794 if (strcmp (arg, cpu_arch [j].name) == 0)
9795 {
9796 cpu_arch_tune_set = 1;
9797 cpu_arch_tune = cpu_arch [j].type;
9798 cpu_arch_tune_flags = cpu_arch[j].flags;
9799 break;
9800 }
9801 }
9802 if (j >= ARRAY_SIZE (cpu_arch))
9803 as_fatal (_("invalid -mtune= option: `%s'"), arg);
9804 break;
9805
9806 case OPTION_MMNEMONIC:
9807 if (strcasecmp (arg, "att") == 0)
9808 intel_mnemonic = 0;
9809 else if (strcasecmp (arg, "intel") == 0)
9810 intel_mnemonic = 1;
9811 else
9812 as_fatal (_("invalid -mmnemonic= option: `%s'"), arg);
9813 break;
9814
9815 case OPTION_MSYNTAX:
9816 if (strcasecmp (arg, "att") == 0)
9817 intel_syntax = 0;
9818 else if (strcasecmp (arg, "intel") == 0)
9819 intel_syntax = 1;
9820 else
9821 as_fatal (_("invalid -msyntax= option: `%s'"), arg);
9822 break;
9823
9824 case OPTION_MINDEX_REG:
9825 allow_index_reg = 1;
9826 break;
9827
9828 case OPTION_MNAKED_REG:
9829 allow_naked_reg = 1;
9830 break;
9831
9832 case OPTION_MOLD_GCC:
9833 old_gcc = 1;
9834 break;
9835
9836 case OPTION_MSSE2AVX:
9837 sse2avx = 1;
9838 break;
9839
9840 case OPTION_MSSE_CHECK:
9841 if (strcasecmp (arg, "error") == 0)
9842 sse_check = check_error;
9843 else if (strcasecmp (arg, "warning") == 0)
9844 sse_check = check_warning;
9845 else if (strcasecmp (arg, "none") == 0)
9846 sse_check = check_none;
9847 else
9848 as_fatal (_("invalid -msse-check= option: `%s'"), arg);
9849 break;
9850
9851 case OPTION_MOPERAND_CHECK:
9852 if (strcasecmp (arg, "error") == 0)
9853 operand_check = check_error;
9854 else if (strcasecmp (arg, "warning") == 0)
9855 operand_check = check_warning;
9856 else if (strcasecmp (arg, "none") == 0)
9857 operand_check = check_none;
9858 else
9859 as_fatal (_("invalid -moperand-check= option: `%s'"), arg);
9860 break;
9861
9862 case OPTION_MAVXSCALAR:
9863 if (strcasecmp (arg, "128") == 0)
9864 avxscalar = vex128;
9865 else if (strcasecmp (arg, "256") == 0)
9866 avxscalar = vex256;
9867 else
9868 as_fatal (_("invalid -mavxscalar= option: `%s'"), arg);
9869 break;
9870
9871 case OPTION_MADD_BND_PREFIX:
9872 add_bnd_prefix = 1;
9873 break;
9874
9875 case OPTION_MEVEXLIG:
9876 if (strcmp (arg, "128") == 0)
9877 evexlig = evexl128;
9878 else if (strcmp (arg, "256") == 0)
9879 evexlig = evexl256;
9880 else if (strcmp (arg, "512") == 0)
9881 evexlig = evexl512;
9882 else
9883 as_fatal (_("invalid -mevexlig= option: `%s'"), arg);
9884 break;
9885
9886 case OPTION_MEVEXRCIG:
9887 if (strcmp (arg, "rne") == 0)
9888 evexrcig = rne;
9889 else if (strcmp (arg, "rd") == 0)
9890 evexrcig = rd;
9891 else if (strcmp (arg, "ru") == 0)
9892 evexrcig = ru;
9893 else if (strcmp (arg, "rz") == 0)
9894 evexrcig = rz;
9895 else
9896 as_fatal (_("invalid -mevexrcig= option: `%s'"), arg);
9897 break;
9898
9899 case OPTION_MEVEXWIG:
9900 if (strcmp (arg, "0") == 0)
9901 evexwig = evexw0;
9902 else if (strcmp (arg, "1") == 0)
9903 evexwig = evexw1;
9904 else
9905 as_fatal (_("invalid -mevexwig= option: `%s'"), arg);
9906 break;
9907
9908 # if defined (TE_PE) || defined (TE_PEP)
9909 case OPTION_MBIG_OBJ:
9910 use_big_obj = 1;
9911 break;
9912 #endif
9913
9914 case OPTION_OMIT_LOCK_PREFIX:
9915 if (strcasecmp (arg, "yes") == 0)
9916 omit_lock_prefix = 1;
9917 else if (strcasecmp (arg, "no") == 0)
9918 omit_lock_prefix = 0;
9919 else
9920 as_fatal (_("invalid -momit-lock-prefix= option: `%s'"), arg);
9921 break;
9922
9923 default:
9924 return 0;
9925 }
9926 return 1;
9927 }
9928
9929 #define MESSAGE_TEMPLATE \
9930 " "
9931
9932 static void
9933 show_arch (FILE *stream, int ext, int check)
9934 {
9935 static char message[] = MESSAGE_TEMPLATE;
9936 char *start = message + 27;
9937 char *p;
9938 int size = sizeof (MESSAGE_TEMPLATE);
9939 int left;
9940 const char *name;
9941 int len;
9942 unsigned int j;
9943
9944 p = start;
9945 left = size - (start - message);
9946 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
9947 {
9948 /* Should it be skipped? */
9949 if (cpu_arch [j].skip)
9950 continue;
9951
9952 name = cpu_arch [j].name;
9953 len = cpu_arch [j].len;
9954 if (*name == '.')
9955 {
9956 /* It is an extension. Skip if we aren't asked to show it. */
9957 if (ext)
9958 {
9959 name++;
9960 len--;
9961 }
9962 else
9963 continue;
9964 }
9965 else if (ext)
9966 {
9967 /* It is an processor. Skip if we show only extension. */
9968 continue;
9969 }
9970 else if (check && ! cpu_arch[j].flags.bitfield.cpui386)
9971 {
9972 /* It is an impossible processor - skip. */
9973 continue;
9974 }
9975
9976 /* Reserve 2 spaces for ", " or ",\0" */
9977 left -= len + 2;
9978
9979 /* Check if there is any room. */
9980 if (left >= 0)
9981 {
9982 if (p != start)
9983 {
9984 *p++ = ',';
9985 *p++ = ' ';
9986 }
9987 p = mempcpy (p, name, len);
9988 }
9989 else
9990 {
9991 /* Output the current message now and start a new one. */
9992 *p++ = ',';
9993 *p = '\0';
9994 fprintf (stream, "%s\n", message);
9995 p = start;
9996 left = size - (start - message) - len - 2;
9997
9998 gas_assert (left >= 0);
9999
10000 p = mempcpy (p, name, len);
10001 }
10002 }
10003
10004 *p = '\0';
10005 fprintf (stream, "%s\n", message);
10006 }
10007
10008 void
10009 md_show_usage (FILE *stream)
10010 {
10011 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10012 fprintf (stream, _("\
10013 -Q ignored\n\
10014 -V print assembler version number\n\
10015 -k ignored\n"));
10016 #endif
10017 fprintf (stream, _("\
10018 -n Do not optimize code alignment\n\
10019 -q quieten some warnings\n"));
10020 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10021 fprintf (stream, _("\
10022 -s ignored\n"));
10023 #endif
10024 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
10025 || defined (TE_PE) || defined (TE_PEP))
10026 fprintf (stream, _("\
10027 --32/--64/--x32 generate 32bit/64bit/x32 code\n"));
10028 #endif
10029 #ifdef SVR4_COMMENT_CHARS
10030 fprintf (stream, _("\
10031 --divide do not treat `/' as a comment character\n"));
10032 #else
10033 fprintf (stream, _("\
10034 --divide ignored\n"));
10035 #endif
10036 fprintf (stream, _("\
10037 -march=CPU[,+EXTENSION...]\n\
10038 generate code for CPU and EXTENSION, CPU is one of:\n"));
10039 show_arch (stream, 0, 1);
10040 fprintf (stream, _("\
10041 EXTENSION is combination of:\n"));
10042 show_arch (stream, 1, 0);
10043 fprintf (stream, _("\
10044 -mtune=CPU optimize for CPU, CPU is one of:\n"));
10045 show_arch (stream, 0, 0);
10046 fprintf (stream, _("\
10047 -msse2avx encode SSE instructions with VEX prefix\n"));
10048 fprintf (stream, _("\
10049 -msse-check=[none|error|warning]\n\
10050 check SSE instructions\n"));
10051 fprintf (stream, _("\
10052 -moperand-check=[none|error|warning]\n\
10053 check operand combinations for validity\n"));
10054 fprintf (stream, _("\
10055 -mavxscalar=[128|256] encode scalar AVX instructions with specific vector\n\
10056 length\n"));
10057 fprintf (stream, _("\
10058 -mevexlig=[128|256|512] encode scalar EVEX instructions with specific vector\n\
10059 length\n"));
10060 fprintf (stream, _("\
10061 -mevexwig=[0|1] encode EVEX instructions with specific EVEX.W value\n\
10062 for EVEX.W bit ignored instructions\n"));
10063 fprintf (stream, _("\
10064 -mevexrcig=[rne|rd|ru|rz]\n\
10065 encode EVEX instructions with specific EVEX.RC value\n\
10066 for SAE-only ignored instructions\n"));
10067 fprintf (stream, _("\
10068 -mmnemonic=[att|intel] use AT&T/Intel mnemonic\n"));
10069 fprintf (stream, _("\
10070 -msyntax=[att|intel] use AT&T/Intel syntax\n"));
10071 fprintf (stream, _("\
10072 -mindex-reg support pseudo index registers\n"));
10073 fprintf (stream, _("\
10074 -mnaked-reg don't require `%%' prefix for registers\n"));
10075 fprintf (stream, _("\
10076 -mold-gcc support old (<= 2.8.1) versions of gcc\n"));
10077 fprintf (stream, _("\
10078 -madd-bnd-prefix add BND prefix for all valid branches\n"));
10079 # if defined (TE_PE) || defined (TE_PEP)
10080 fprintf (stream, _("\
10081 -mbig-obj generate big object files\n"));
10082 #endif
10083 fprintf (stream, _("\
10084 -momit-lock-prefix=[no|yes]\n\
10085 strip all lock prefixes\n"));
10086 }
10087
10088 #if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
10089 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
10090 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
10091
10092 /* Pick the target format to use. */
10093
10094 const char *
10095 i386_target_format (void)
10096 {
10097 if (!strncmp (default_arch, "x86_64", 6))
10098 {
10099 update_code_flag (CODE_64BIT, 1);
10100 if (default_arch[6] == '\0')
10101 x86_elf_abi = X86_64_ABI;
10102 else
10103 x86_elf_abi = X86_64_X32_ABI;
10104 }
10105 else if (!strcmp (default_arch, "i386"))
10106 update_code_flag (CODE_32BIT, 1);
10107 else
10108 as_fatal (_("unknown architecture"));
10109
10110 if (cpu_flags_all_zero (&cpu_arch_isa_flags))
10111 cpu_arch_isa_flags = cpu_arch[flag_code == CODE_64BIT].flags;
10112 if (cpu_flags_all_zero (&cpu_arch_tune_flags))
10113 cpu_arch_tune_flags = cpu_arch[flag_code == CODE_64BIT].flags;
10114
10115 switch (OUTPUT_FLAVOR)
10116 {
10117 #if defined (OBJ_MAYBE_AOUT) || defined (OBJ_AOUT)
10118 case bfd_target_aout_flavour:
10119 return AOUT_TARGET_FORMAT;
10120 #endif
10121 #if defined (OBJ_MAYBE_COFF) || defined (OBJ_COFF)
10122 # if defined (TE_PE) || defined (TE_PEP)
10123 case bfd_target_coff_flavour:
10124 if (flag_code == CODE_64BIT)
10125 return use_big_obj ? "pe-bigobj-x86-64" : "pe-x86-64";
10126 else
10127 return "pe-i386";
10128 # elif defined (TE_GO32)
10129 case bfd_target_coff_flavour:
10130 return "coff-go32";
10131 # else
10132 case bfd_target_coff_flavour:
10133 return "coff-i386";
10134 # endif
10135 #endif
10136 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
10137 case bfd_target_elf_flavour:
10138 {
10139 const char *format;
10140
10141 switch (x86_elf_abi)
10142 {
10143 default:
10144 format = ELF_TARGET_FORMAT;
10145 break;
10146 case X86_64_ABI:
10147 use_rela_relocations = 1;
10148 object_64bit = 1;
10149 format = ELF_TARGET_FORMAT64;
10150 break;
10151 case X86_64_X32_ABI:
10152 use_rela_relocations = 1;
10153 object_64bit = 1;
10154 disallow_64bit_reloc = 1;
10155 format = ELF_TARGET_FORMAT32;
10156 break;
10157 }
10158 if (cpu_arch_isa == PROCESSOR_L1OM)
10159 {
10160 if (x86_elf_abi != X86_64_ABI)
10161 as_fatal (_("Intel L1OM is 64bit only"));
10162 return ELF_TARGET_L1OM_FORMAT;
10163 }
10164 if (cpu_arch_isa == PROCESSOR_K1OM)
10165 {
10166 if (x86_elf_abi != X86_64_ABI)
10167 as_fatal (_("Intel K1OM is 64bit only"));
10168 return ELF_TARGET_K1OM_FORMAT;
10169 }
10170 else
10171 return format;
10172 }
10173 #endif
10174 #if defined (OBJ_MACH_O)
10175 case bfd_target_mach_o_flavour:
10176 if (flag_code == CODE_64BIT)
10177 {
10178 use_rela_relocations = 1;
10179 object_64bit = 1;
10180 return "mach-o-x86-64";
10181 }
10182 else
10183 return "mach-o-i386";
10184 #endif
10185 default:
10186 abort ();
10187 return NULL;
10188 }
10189 }
10190
10191 #endif /* OBJ_MAYBE_ more than one */
10192
10193 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF))
10194 void
10195 i386_elf_emit_arch_note (void)
10196 {
10197 if (IS_ELF && cpu_arch_name != NULL)
10198 {
10199 char *p;
10200 asection *seg = now_seg;
10201 subsegT subseg = now_subseg;
10202 Elf_Internal_Note i_note;
10203 Elf_External_Note e_note;
10204 asection *note_secp;
10205 int len;
10206
10207 /* Create the .note section. */
10208 note_secp = subseg_new (".note", 0);
10209 bfd_set_section_flags (stdoutput,
10210 note_secp,
10211 SEC_HAS_CONTENTS | SEC_READONLY);
10212
10213 /* Process the arch string. */
10214 len = strlen (cpu_arch_name);
10215
10216 i_note.namesz = len + 1;
10217 i_note.descsz = 0;
10218 i_note.type = NT_ARCH;
10219 p = frag_more (sizeof (e_note.namesz));
10220 md_number_to_chars (p, (valueT) i_note.namesz, sizeof (e_note.namesz));
10221 p = frag_more (sizeof (e_note.descsz));
10222 md_number_to_chars (p, (valueT) i_note.descsz, sizeof (e_note.descsz));
10223 p = frag_more (sizeof (e_note.type));
10224 md_number_to_chars (p, (valueT) i_note.type, sizeof (e_note.type));
10225 p = frag_more (len + 1);
10226 strcpy (p, cpu_arch_name);
10227
10228 frag_align (2, 0, 0);
10229
10230 subseg_set (seg, subseg);
10231 }
10232 }
10233 #endif
10234 \f
10235 symbolS *
10236 md_undefined_symbol (char *name)
10237 {
10238 if (name[0] == GLOBAL_OFFSET_TABLE_NAME[0]
10239 && name[1] == GLOBAL_OFFSET_TABLE_NAME[1]
10240 && name[2] == GLOBAL_OFFSET_TABLE_NAME[2]
10241 && strcmp (name, GLOBAL_OFFSET_TABLE_NAME) == 0)
10242 {
10243 if (!GOT_symbol)
10244 {
10245 if (symbol_find (name))
10246 as_bad (_("GOT already in symbol table"));
10247 GOT_symbol = symbol_new (name, undefined_section,
10248 (valueT) 0, &zero_address_frag);
10249 };
10250 return GOT_symbol;
10251 }
10252 return 0;
10253 }
10254
10255 /* Round up a section size to the appropriate boundary. */
10256
10257 valueT
10258 md_section_align (segT segment ATTRIBUTE_UNUSED, valueT size)
10259 {
10260 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
10261 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
10262 {
10263 /* For a.out, force the section size to be aligned. If we don't do
10264 this, BFD will align it for us, but it will not write out the
10265 final bytes of the section. This may be a bug in BFD, but it is
10266 easier to fix it here since that is how the other a.out targets
10267 work. */
10268 int align;
10269
10270 align = bfd_get_section_alignment (stdoutput, segment);
10271 size = ((size + (1 << align) - 1) & ((valueT) -1 << align));
10272 }
10273 #endif
10274
10275 return size;
10276 }
10277
10278 /* On the i386, PC-relative offsets are relative to the start of the
10279 next instruction. That is, the address of the offset, plus its
10280 size, since the offset is always the last part of the insn. */
10281
10282 long
10283 md_pcrel_from (fixS *fixP)
10284 {
10285 return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address;
10286 }
10287
10288 #ifndef I386COFF
10289
10290 static void
10291 s_bss (int ignore ATTRIBUTE_UNUSED)
10292 {
10293 int temp;
10294
10295 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10296 if (IS_ELF)
10297 obj_elf_section_change_hook ();
10298 #endif
10299 temp = get_absolute_expression ();
10300 subseg_set (bss_section, (subsegT) temp);
10301 demand_empty_rest_of_line ();
10302 }
10303
10304 #endif
10305
10306 void
10307 i386_validate_fix (fixS *fixp)
10308 {
10309 if (fixp->fx_subsy && fixp->fx_subsy == GOT_symbol)
10310 {
10311 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
10312 {
10313 if (!object_64bit)
10314 abort ();
10315 fixp->fx_r_type = BFD_RELOC_X86_64_GOTPCREL;
10316 }
10317 else
10318 {
10319 if (!object_64bit)
10320 fixp->fx_r_type = BFD_RELOC_386_GOTOFF;
10321 else
10322 fixp->fx_r_type = BFD_RELOC_X86_64_GOTOFF64;
10323 }
10324 fixp->fx_subsy = 0;
10325 }
10326 }
10327
10328 arelent *
10329 tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
10330 {
10331 arelent *rel;
10332 bfd_reloc_code_real_type code;
10333
10334 switch (fixp->fx_r_type)
10335 {
10336 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10337 case BFD_RELOC_SIZE32:
10338 case BFD_RELOC_SIZE64:
10339 if (S_IS_DEFINED (fixp->fx_addsy)
10340 && !S_IS_EXTERNAL (fixp->fx_addsy))
10341 {
10342 /* Resolve size relocation against local symbol to size of
10343 the symbol plus addend. */
10344 valueT value = S_GET_SIZE (fixp->fx_addsy) + fixp->fx_offset;
10345 if (fixp->fx_r_type == BFD_RELOC_SIZE32
10346 && !fits_in_unsigned_long (value))
10347 as_bad_where (fixp->fx_file, fixp->fx_line,
10348 _("symbol size computation overflow"));
10349 fixp->fx_addsy = NULL;
10350 fixp->fx_subsy = NULL;
10351 md_apply_fix (fixp, (valueT *) &value, NULL);
10352 return NULL;
10353 }
10354 #endif
10355
10356 case BFD_RELOC_X86_64_PLT32:
10357 case BFD_RELOC_X86_64_PLT32_BND:
10358 case BFD_RELOC_X86_64_GOT32:
10359 case BFD_RELOC_X86_64_GOTPCREL:
10360 case BFD_RELOC_386_PLT32:
10361 case BFD_RELOC_386_GOT32:
10362 case BFD_RELOC_386_GOTOFF:
10363 case BFD_RELOC_386_GOTPC:
10364 case BFD_RELOC_386_TLS_GD:
10365 case BFD_RELOC_386_TLS_LDM:
10366 case BFD_RELOC_386_TLS_LDO_32:
10367 case BFD_RELOC_386_TLS_IE_32:
10368 case BFD_RELOC_386_TLS_IE:
10369 case BFD_RELOC_386_TLS_GOTIE:
10370 case BFD_RELOC_386_TLS_LE_32:
10371 case BFD_RELOC_386_TLS_LE:
10372 case BFD_RELOC_386_TLS_GOTDESC:
10373 case BFD_RELOC_386_TLS_DESC_CALL:
10374 case BFD_RELOC_X86_64_TLSGD:
10375 case BFD_RELOC_X86_64_TLSLD:
10376 case BFD_RELOC_X86_64_DTPOFF32:
10377 case BFD_RELOC_X86_64_DTPOFF64:
10378 case BFD_RELOC_X86_64_GOTTPOFF:
10379 case BFD_RELOC_X86_64_TPOFF32:
10380 case BFD_RELOC_X86_64_TPOFF64:
10381 case BFD_RELOC_X86_64_GOTOFF64:
10382 case BFD_RELOC_X86_64_GOTPC32:
10383 case BFD_RELOC_X86_64_GOT64:
10384 case BFD_RELOC_X86_64_GOTPCREL64:
10385 case BFD_RELOC_X86_64_GOTPC64:
10386 case BFD_RELOC_X86_64_GOTPLT64:
10387 case BFD_RELOC_X86_64_PLTOFF64:
10388 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
10389 case BFD_RELOC_X86_64_TLSDESC_CALL:
10390 case BFD_RELOC_RVA:
10391 case BFD_RELOC_VTABLE_ENTRY:
10392 case BFD_RELOC_VTABLE_INHERIT:
10393 #ifdef TE_PE
10394 case BFD_RELOC_32_SECREL:
10395 #endif
10396 code = fixp->fx_r_type;
10397 break;
10398 case BFD_RELOC_X86_64_32S:
10399 if (!fixp->fx_pcrel)
10400 {
10401 /* Don't turn BFD_RELOC_X86_64_32S into BFD_RELOC_32. */
10402 code = fixp->fx_r_type;
10403 break;
10404 }
10405 default:
10406 if (fixp->fx_pcrel)
10407 {
10408 switch (fixp->fx_size)
10409 {
10410 default:
10411 as_bad_where (fixp->fx_file, fixp->fx_line,
10412 _("can not do %d byte pc-relative relocation"),
10413 fixp->fx_size);
10414 code = BFD_RELOC_32_PCREL;
10415 break;
10416 case 1: code = BFD_RELOC_8_PCREL; break;
10417 case 2: code = BFD_RELOC_16_PCREL; break;
10418 case 4:
10419 code = (fixp->fx_r_type == BFD_RELOC_X86_64_PC32_BND
10420 ? fixp-> fx_r_type : BFD_RELOC_32_PCREL);
10421 break;
10422 #ifdef BFD64
10423 case 8: code = BFD_RELOC_64_PCREL; break;
10424 #endif
10425 }
10426 }
10427 else
10428 {
10429 switch (fixp->fx_size)
10430 {
10431 default:
10432 as_bad_where (fixp->fx_file, fixp->fx_line,
10433 _("can not do %d byte relocation"),
10434 fixp->fx_size);
10435 code = BFD_RELOC_32;
10436 break;
10437 case 1: code = BFD_RELOC_8; break;
10438 case 2: code = BFD_RELOC_16; break;
10439 case 4: code = BFD_RELOC_32; break;
10440 #ifdef BFD64
10441 case 8: code = BFD_RELOC_64; break;
10442 #endif
10443 }
10444 }
10445 break;
10446 }
10447
10448 if ((code == BFD_RELOC_32
10449 || code == BFD_RELOC_32_PCREL
10450 || code == BFD_RELOC_X86_64_32S)
10451 && GOT_symbol
10452 && fixp->fx_addsy == GOT_symbol)
10453 {
10454 if (!object_64bit)
10455 code = BFD_RELOC_386_GOTPC;
10456 else
10457 code = BFD_RELOC_X86_64_GOTPC32;
10458 }
10459 if ((code == BFD_RELOC_64 || code == BFD_RELOC_64_PCREL)
10460 && GOT_symbol
10461 && fixp->fx_addsy == GOT_symbol)
10462 {
10463 code = BFD_RELOC_X86_64_GOTPC64;
10464 }
10465
10466 rel = (arelent *) xmalloc (sizeof (arelent));
10467 rel->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
10468 *rel->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
10469
10470 rel->address = fixp->fx_frag->fr_address + fixp->fx_where;
10471
10472 if (!use_rela_relocations)
10473 {
10474 /* HACK: Since i386 ELF uses Rel instead of Rela, encode the
10475 vtable entry to be used in the relocation's section offset. */
10476 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
10477 rel->address = fixp->fx_offset;
10478 #if defined (OBJ_COFF) && defined (TE_PE)
10479 else if (fixp->fx_addsy && S_IS_WEAK (fixp->fx_addsy))
10480 rel->addend = fixp->fx_addnumber - (S_GET_VALUE (fixp->fx_addsy) * 2);
10481 else
10482 #endif
10483 rel->addend = 0;
10484 }
10485 /* Use the rela in 64bit mode. */
10486 else
10487 {
10488 if (disallow_64bit_reloc)
10489 switch (code)
10490 {
10491 case BFD_RELOC_X86_64_DTPOFF64:
10492 case BFD_RELOC_X86_64_TPOFF64:
10493 case BFD_RELOC_64_PCREL:
10494 case BFD_RELOC_X86_64_GOTOFF64:
10495 case BFD_RELOC_X86_64_GOT64:
10496 case BFD_RELOC_X86_64_GOTPCREL64:
10497 case BFD_RELOC_X86_64_GOTPC64:
10498 case BFD_RELOC_X86_64_GOTPLT64:
10499 case BFD_RELOC_X86_64_PLTOFF64:
10500 as_bad_where (fixp->fx_file, fixp->fx_line,
10501 _("cannot represent relocation type %s in x32 mode"),
10502 bfd_get_reloc_code_name (code));
10503 break;
10504 default:
10505 break;
10506 }
10507
10508 if (!fixp->fx_pcrel)
10509 rel->addend = fixp->fx_offset;
10510 else
10511 switch (code)
10512 {
10513 case BFD_RELOC_X86_64_PLT32:
10514 case BFD_RELOC_X86_64_PLT32_BND:
10515 case BFD_RELOC_X86_64_GOT32:
10516 case BFD_RELOC_X86_64_GOTPCREL:
10517 case BFD_RELOC_X86_64_TLSGD:
10518 case BFD_RELOC_X86_64_TLSLD:
10519 case BFD_RELOC_X86_64_GOTTPOFF:
10520 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
10521 case BFD_RELOC_X86_64_TLSDESC_CALL:
10522 rel->addend = fixp->fx_offset - fixp->fx_size;
10523 break;
10524 default:
10525 rel->addend = (section->vma
10526 - fixp->fx_size
10527 + fixp->fx_addnumber
10528 + md_pcrel_from (fixp));
10529 break;
10530 }
10531 }
10532
10533 rel->howto = bfd_reloc_type_lookup (stdoutput, code);
10534 if (rel->howto == NULL)
10535 {
10536 as_bad_where (fixp->fx_file, fixp->fx_line,
10537 _("cannot represent relocation type %s"),
10538 bfd_get_reloc_code_name (code));
10539 /* Set howto to a garbage value so that we can keep going. */
10540 rel->howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_32);
10541 gas_assert (rel->howto != NULL);
10542 }
10543
10544 return rel;
10545 }
10546
10547 #include "tc-i386-intel.c"
10548
10549 void
10550 tc_x86_parse_to_dw2regnum (expressionS *exp)
10551 {
10552 int saved_naked_reg;
10553 char saved_register_dot;
10554
10555 saved_naked_reg = allow_naked_reg;
10556 allow_naked_reg = 1;
10557 saved_register_dot = register_chars['.'];
10558 register_chars['.'] = '.';
10559 allow_pseudo_reg = 1;
10560 expression_and_evaluate (exp);
10561 allow_pseudo_reg = 0;
10562 register_chars['.'] = saved_register_dot;
10563 allow_naked_reg = saved_naked_reg;
10564
10565 if (exp->X_op == O_register && exp->X_add_number >= 0)
10566 {
10567 if ((addressT) exp->X_add_number < i386_regtab_size)
10568 {
10569 exp->X_op = O_constant;
10570 exp->X_add_number = i386_regtab[exp->X_add_number]
10571 .dw2_regnum[flag_code >> 1];
10572 }
10573 else
10574 exp->X_op = O_illegal;
10575 }
10576 }
10577
10578 void
10579 tc_x86_frame_initial_instructions (void)
10580 {
10581 static unsigned int sp_regno[2];
10582
10583 if (!sp_regno[flag_code >> 1])
10584 {
10585 char *saved_input = input_line_pointer;
10586 char sp[][4] = {"esp", "rsp"};
10587 expressionS exp;
10588
10589 input_line_pointer = sp[flag_code >> 1];
10590 tc_x86_parse_to_dw2regnum (&exp);
10591 gas_assert (exp.X_op == O_constant);
10592 sp_regno[flag_code >> 1] = exp.X_add_number;
10593 input_line_pointer = saved_input;
10594 }
10595
10596 cfi_add_CFA_def_cfa (sp_regno[flag_code >> 1], -x86_cie_data_alignment);
10597 cfi_add_CFA_offset (x86_dwarf2_return_column, x86_cie_data_alignment);
10598 }
10599
10600 int
10601 x86_dwarf2_addr_size (void)
10602 {
10603 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
10604 if (x86_elf_abi == X86_64_X32_ABI)
10605 return 4;
10606 #endif
10607 return bfd_arch_bits_per_address (stdoutput) / 8;
10608 }
10609
10610 int
10611 i386_elf_section_type (const char *str, size_t len)
10612 {
10613 if (flag_code == CODE_64BIT
10614 && len == sizeof ("unwind") - 1
10615 && strncmp (str, "unwind", 6) == 0)
10616 return SHT_X86_64_UNWIND;
10617
10618 return -1;
10619 }
10620
10621 #ifdef TE_SOLARIS
10622 void
10623 i386_solaris_fix_up_eh_frame (segT sec)
10624 {
10625 if (flag_code == CODE_64BIT)
10626 elf_section_type (sec) = SHT_X86_64_UNWIND;
10627 }
10628 #endif
10629
10630 #ifdef TE_PE
10631 void
10632 tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
10633 {
10634 expressionS exp;
10635
10636 exp.X_op = O_secrel;
10637 exp.X_add_symbol = symbol;
10638 exp.X_add_number = 0;
10639 emit_expr (&exp, size);
10640 }
10641 #endif
10642
10643 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10644 /* For ELF on x86-64, add support for SHF_X86_64_LARGE. */
10645
10646 bfd_vma
10647 x86_64_section_letter (int letter, char **ptr_msg)
10648 {
10649 if (flag_code == CODE_64BIT)
10650 {
10651 if (letter == 'l')
10652 return SHF_X86_64_LARGE;
10653
10654 *ptr_msg = _("bad .section directive: want a,l,w,x,M,S,G,T in string");
10655 }
10656 else
10657 *ptr_msg = _("bad .section directive: want a,w,x,M,S,G,T in string");
10658 return -1;
10659 }
10660
10661 bfd_vma
10662 x86_64_section_word (char *str, size_t len)
10663 {
10664 if (len == 5 && flag_code == CODE_64BIT && CONST_STRNEQ (str, "large"))
10665 return SHF_X86_64_LARGE;
10666
10667 return -1;
10668 }
10669
10670 static void
10671 handle_large_common (int small ATTRIBUTE_UNUSED)
10672 {
10673 if (flag_code != CODE_64BIT)
10674 {
10675 s_comm_internal (0, elf_common_parse);
10676 as_warn (_(".largecomm supported only in 64bit mode, producing .comm"));
10677 }
10678 else
10679 {
10680 static segT lbss_section;
10681 asection *saved_com_section_ptr = elf_com_section_ptr;
10682 asection *saved_bss_section = bss_section;
10683
10684 if (lbss_section == NULL)
10685 {
10686 flagword applicable;
10687 segT seg = now_seg;
10688 subsegT subseg = now_subseg;
10689
10690 /* The .lbss section is for local .largecomm symbols. */
10691 lbss_section = subseg_new (".lbss", 0);
10692 applicable = bfd_applicable_section_flags (stdoutput);
10693 bfd_set_section_flags (stdoutput, lbss_section,
10694 applicable & SEC_ALLOC);
10695 seg_info (lbss_section)->bss = 1;
10696
10697 subseg_set (seg, subseg);
10698 }
10699
10700 elf_com_section_ptr = &_bfd_elf_large_com_section;
10701 bss_section = lbss_section;
10702
10703 s_comm_internal (0, elf_common_parse);
10704
10705 elf_com_section_ptr = saved_com_section_ptr;
10706 bss_section = saved_bss_section;
10707 }
10708 }
10709 #endif /* OBJ_ELF || OBJ_MAYBE_ELF */
This page took 0.532485 seconds and 4 git commands to generate.