2006-06-16 H.J. Lu <hongjiu.lu@intel.com>
[deliverable/binutils-gdb.git] / gas / config / tc-i386.c
1 /* i386.c -- Assemble code for the Intel 80386
2 Copyright 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001, 2002, 2003, 2004, 2005, 2006
4 Free Software Foundation, Inc.
5
6 This file is part of GAS, the GNU Assembler.
7
8 GAS is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2, or (at your option)
11 any later version.
12
13 GAS is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GAS; see the file COPYING. If not, write to the Free
20 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
21 02110-1301, USA. */
22
23 /* Intel 80386 machine specific gas.
24 Written by Eliot Dresselhaus (eliot@mgm.mit.edu).
25 x86_64 support by Jan Hubicka (jh@suse.cz)
26 VIA PadLock support by Michal Ludvig (mludvig@suse.cz)
27 Bugs & suggestions are completely welcome. This is free software.
28 Please help us make it better. */
29
30 #include "as.h"
31 #include "safe-ctype.h"
32 #include "subsegs.h"
33 #include "dwarf2dbg.h"
34 #include "dw2gencfi.h"
35 #include "opcode/i386.h"
36 #include "elf/x86-64.h"
37
38 #ifndef REGISTER_WARNINGS
39 #define REGISTER_WARNINGS 1
40 #endif
41
42 #ifndef INFER_ADDR_PREFIX
43 #define INFER_ADDR_PREFIX 1
44 #endif
45
46 #ifndef SCALE1_WHEN_NO_INDEX
47 /* Specifying a scale factor besides 1 when there is no index is
48 futile. eg. `mov (%ebx,2),%al' does exactly the same as
49 `mov (%ebx),%al'. To slavishly follow what the programmer
50 specified, set SCALE1_WHEN_NO_INDEX to 0. */
51 #define SCALE1_WHEN_NO_INDEX 1
52 #endif
53
54 #ifndef DEFAULT_ARCH
55 #define DEFAULT_ARCH "i386"
56 #endif
57
58 #ifndef INLINE
59 #if __GNUC__ >= 2
60 #define INLINE __inline__
61 #else
62 #define INLINE
63 #endif
64 #endif
65
66 static INLINE unsigned int mode_from_disp_size PARAMS ((unsigned int));
67 static INLINE int fits_in_signed_byte PARAMS ((offsetT));
68 static INLINE int fits_in_unsigned_byte PARAMS ((offsetT));
69 static INLINE int fits_in_unsigned_word PARAMS ((offsetT));
70 static INLINE int fits_in_signed_word PARAMS ((offsetT));
71 static INLINE int fits_in_unsigned_long PARAMS ((offsetT));
72 static INLINE int fits_in_signed_long PARAMS ((offsetT));
73 static int smallest_imm_type PARAMS ((offsetT));
74 static offsetT offset_in_range PARAMS ((offsetT, int));
75 static int add_prefix PARAMS ((unsigned int));
76 static void set_code_flag PARAMS ((int));
77 static void set_16bit_gcc_code_flag PARAMS ((int));
78 static void set_intel_syntax PARAMS ((int));
79 static void set_cpu_arch PARAMS ((int));
80 #ifdef TE_PE
81 static void pe_directive_secrel PARAMS ((int));
82 #endif
83 static void signed_cons PARAMS ((int));
84 static char *output_invalid PARAMS ((int c));
85 static int i386_operand PARAMS ((char *operand_string));
86 static int i386_intel_operand PARAMS ((char *operand_string, int got_a_float));
87 static const reg_entry *parse_register PARAMS ((char *reg_string,
88 char **end_op));
89 static char *parse_insn PARAMS ((char *, char *));
90 static char *parse_operands PARAMS ((char *, const char *));
91 static void swap_operands PARAMS ((void));
92 static void optimize_imm PARAMS ((void));
93 static void optimize_disp PARAMS ((void));
94 static int match_template PARAMS ((void));
95 static int check_string PARAMS ((void));
96 static int process_suffix PARAMS ((void));
97 static int check_byte_reg PARAMS ((void));
98 static int check_long_reg PARAMS ((void));
99 static int check_qword_reg PARAMS ((void));
100 static int check_word_reg PARAMS ((void));
101 static int finalize_imm PARAMS ((void));
102 static int process_operands PARAMS ((void));
103 static const seg_entry *build_modrm_byte PARAMS ((void));
104 static void output_insn PARAMS ((void));
105 static void output_branch PARAMS ((void));
106 static void output_jump PARAMS ((void));
107 static void output_interseg_jump PARAMS ((void));
108 static void output_imm PARAMS ((fragS *insn_start_frag,
109 offsetT insn_start_off));
110 static void output_disp PARAMS ((fragS *insn_start_frag,
111 offsetT insn_start_off));
112 #ifndef I386COFF
113 static void s_bss PARAMS ((int));
114 #endif
115 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
116 static void handle_large_common (int small ATTRIBUTE_UNUSED);
117 #endif
118
119 static const char *default_arch = DEFAULT_ARCH;
120
121 /* 'md_assemble ()' gathers together information and puts it into a
122 i386_insn. */
123
124 union i386_op
125 {
126 expressionS *disps;
127 expressionS *imms;
128 const reg_entry *regs;
129 };
130
131 struct _i386_insn
132 {
133 /* TM holds the template for the insn were currently assembling. */
134 template tm;
135
136 /* SUFFIX holds the instruction mnemonic suffix if given.
137 (e.g. 'l' for 'movl') */
138 char suffix;
139
140 /* OPERANDS gives the number of given operands. */
141 unsigned int operands;
142
143 /* REG_OPERANDS, DISP_OPERANDS, MEM_OPERANDS, IMM_OPERANDS give the number
144 of given register, displacement, memory operands and immediate
145 operands. */
146 unsigned int reg_operands, disp_operands, mem_operands, imm_operands;
147
148 /* TYPES [i] is the type (see above #defines) which tells us how to
149 use OP[i] for the corresponding operand. */
150 unsigned int types[MAX_OPERANDS];
151
152 /* Displacement expression, immediate expression, or register for each
153 operand. */
154 union i386_op op[MAX_OPERANDS];
155
156 /* Flags for operands. */
157 unsigned int flags[MAX_OPERANDS];
158 #define Operand_PCrel 1
159
160 /* Relocation type for operand */
161 enum bfd_reloc_code_real reloc[MAX_OPERANDS];
162
163 /* BASE_REG, INDEX_REG, and LOG2_SCALE_FACTOR are used to encode
164 the base index byte below. */
165 const reg_entry *base_reg;
166 const reg_entry *index_reg;
167 unsigned int log2_scale_factor;
168
169 /* SEG gives the seg_entries of this insn. They are zero unless
170 explicit segment overrides are given. */
171 const seg_entry *seg[2];
172
173 /* PREFIX holds all the given prefix opcodes (usually null).
174 PREFIXES is the number of prefix opcodes. */
175 unsigned int prefixes;
176 unsigned char prefix[MAX_PREFIXES];
177
178 /* RM and SIB are the modrm byte and the sib byte where the
179 addressing modes of this insn are encoded. */
180
181 modrm_byte rm;
182 rex_byte rex;
183 sib_byte sib;
184 };
185
186 typedef struct _i386_insn i386_insn;
187
188 /* List of chars besides those in app.c:symbol_chars that can start an
189 operand. Used to prevent the scrubber eating vital white-space. */
190 const char extra_symbol_chars[] = "*%-(["
191 #ifdef LEX_AT
192 "@"
193 #endif
194 #ifdef LEX_QM
195 "?"
196 #endif
197 ;
198
199 #if (defined (TE_I386AIX) \
200 || ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) \
201 && !defined (TE_GNU) \
202 && !defined (TE_LINUX) \
203 && !defined (TE_NETWARE) \
204 && !defined (TE_FreeBSD) \
205 && !defined (TE_NetBSD)))
206 /* This array holds the chars that always start a comment. If the
207 pre-processor is disabled, these aren't very useful. The option
208 --divide will remove '/' from this list. */
209 const char *i386_comment_chars = "#/";
210 #define SVR4_COMMENT_CHARS 1
211 #define PREFIX_SEPARATOR '\\'
212
213 #else
214 const char *i386_comment_chars = "#";
215 #define PREFIX_SEPARATOR '/'
216 #endif
217
218 /* This array holds the chars that only start a comment at the beginning of
219 a line. If the line seems to have the form '# 123 filename'
220 .line and .file directives will appear in the pre-processed output.
221 Note that input_file.c hand checks for '#' at the beginning of the
222 first line of the input file. This is because the compiler outputs
223 #NO_APP at the beginning of its output.
224 Also note that comments started like this one will always work if
225 '/' isn't otherwise defined. */
226 const char line_comment_chars[] = "#/";
227
228 const char line_separator_chars[] = ";";
229
230 /* Chars that can be used to separate mant from exp in floating point
231 nums. */
232 const char EXP_CHARS[] = "eE";
233
234 /* Chars that mean this number is a floating point constant
235 As in 0f12.456
236 or 0d1.2345e12. */
237 const char FLT_CHARS[] = "fFdDxX";
238
239 /* Tables for lexical analysis. */
240 static char mnemonic_chars[256];
241 static char register_chars[256];
242 static char operand_chars[256];
243 static char identifier_chars[256];
244 static char digit_chars[256];
245
246 /* Lexical macros. */
247 #define is_mnemonic_char(x) (mnemonic_chars[(unsigned char) x])
248 #define is_operand_char(x) (operand_chars[(unsigned char) x])
249 #define is_register_char(x) (register_chars[(unsigned char) x])
250 #define is_space_char(x) ((x) == ' ')
251 #define is_identifier_char(x) (identifier_chars[(unsigned char) x])
252 #define is_digit_char(x) (digit_chars[(unsigned char) x])
253
254 /* All non-digit non-letter characters that may occur in an operand. */
255 static char operand_special_chars[] = "%$-+(,)*._~/<>|&^!:[@]";
256
257 /* md_assemble() always leaves the strings it's passed unaltered. To
258 effect this we maintain a stack of saved characters that we've smashed
259 with '\0's (indicating end of strings for various sub-fields of the
260 assembler instruction). */
261 static char save_stack[32];
262 static char *save_stack_p;
263 #define END_STRING_AND_SAVE(s) \
264 do { *save_stack_p++ = *(s); *(s) = '\0'; } while (0)
265 #define RESTORE_END_STRING(s) \
266 do { *(s) = *--save_stack_p; } while (0)
267
268 /* The instruction we're assembling. */
269 static i386_insn i;
270
271 /* Possible templates for current insn. */
272 static const templates *current_templates;
273
274 /* Per instruction expressionS buffers: 2 displacements & 2 immediate max. */
275 static expressionS disp_expressions[2], im_expressions[2];
276
277 /* Current operand we are working on. */
278 static int this_operand;
279
280 /* We support four different modes. FLAG_CODE variable is used to distinguish
281 these. */
282
283 enum flag_code {
284 CODE_32BIT,
285 CODE_16BIT,
286 CODE_64BIT };
287 #define NUM_FLAG_CODE ((int) CODE_64BIT + 1)
288
289 static enum flag_code flag_code;
290 static unsigned int object_64bit;
291 static int use_rela_relocations = 0;
292
293 /* The names used to print error messages. */
294 static const char *flag_code_names[] =
295 {
296 "32",
297 "16",
298 "64"
299 };
300
301 /* 1 for intel syntax,
302 0 if att syntax. */
303 static int intel_syntax = 0;
304
305 /* 1 if register prefix % not required. */
306 static int allow_naked_reg = 0;
307
308 /* Used in 16 bit gcc mode to add an l suffix to call, ret, enter,
309 leave, push, and pop instructions so that gcc has the same stack
310 frame as in 32 bit mode. */
311 static char stackop_size = '\0';
312
313 /* Non-zero to optimize code alignment. */
314 int optimize_align_code = 1;
315
316 /* Non-zero to quieten some warnings. */
317 static int quiet_warnings = 0;
318
319 /* CPU name. */
320 static const char *cpu_arch_name = NULL;
321 static const char *cpu_sub_arch_name = NULL;
322
323 /* CPU feature flags. */
324 static unsigned int cpu_arch_flags = CpuUnknownFlags | CpuNo64;
325
326 /* Cpu we are generating instructions for. */
327 static enum processor_type cpu_arch_tune = PROCESSOR_UNKNOWN;
328
329 /* CPU feature flags of cpu we are generating instructions for. */
330 static unsigned int cpu_arch_tune_flags = 0;
331
332 /* CPU feature flags of instruction set architecture used. */
333 static unsigned int cpu_arch_isa_flags = 0;
334
335 /* If set, conditional jumps are not automatically promoted to handle
336 larger than a byte offset. */
337 static unsigned int no_cond_jump_promotion = 0;
338
339 /* Pre-defined "_GLOBAL_OFFSET_TABLE_". */
340 static symbolS *GOT_symbol;
341
342 /* The dwarf2 return column, adjusted for 32 or 64 bit. */
343 unsigned int x86_dwarf2_return_column;
344
345 /* The dwarf2 data alignment, adjusted for 32 or 64 bit. */
346 int x86_cie_data_alignment;
347
348 /* Interface to relax_segment.
349 There are 3 major relax states for 386 jump insns because the
350 different types of jumps add different sizes to frags when we're
351 figuring out what sort of jump to choose to reach a given label. */
352
353 /* Types. */
354 #define UNCOND_JUMP 0
355 #define COND_JUMP 1
356 #define COND_JUMP86 2
357
358 /* Sizes. */
359 #define CODE16 1
360 #define SMALL 0
361 #define SMALL16 (SMALL | CODE16)
362 #define BIG 2
363 #define BIG16 (BIG | CODE16)
364
365 #ifndef INLINE
366 #ifdef __GNUC__
367 #define INLINE __inline__
368 #else
369 #define INLINE
370 #endif
371 #endif
372
373 #define ENCODE_RELAX_STATE(type, size) \
374 ((relax_substateT) (((type) << 2) | (size)))
375 #define TYPE_FROM_RELAX_STATE(s) \
376 ((s) >> 2)
377 #define DISP_SIZE_FROM_RELAX_STATE(s) \
378 ((((s) & 3) == BIG ? 4 : (((s) & 3) == BIG16 ? 2 : 1)))
379
380 /* This table is used by relax_frag to promote short jumps to long
381 ones where necessary. SMALL (short) jumps may be promoted to BIG
382 (32 bit long) ones, and SMALL16 jumps to BIG16 (16 bit long). We
383 don't allow a short jump in a 32 bit code segment to be promoted to
384 a 16 bit offset jump because it's slower (requires data size
385 prefix), and doesn't work, unless the destination is in the bottom
386 64k of the code segment (The top 16 bits of eip are zeroed). */
387
388 const relax_typeS md_relax_table[] =
389 {
390 /* The fields are:
391 1) most positive reach of this state,
392 2) most negative reach of this state,
393 3) how many bytes this mode will have in the variable part of the frag
394 4) which index into the table to try if we can't fit into this one. */
395
396 /* UNCOND_JUMP states. */
397 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG)},
398 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16)},
399 /* dword jmp adds 4 bytes to frag:
400 0 extra opcode bytes, 4 displacement bytes. */
401 {0, 0, 4, 0},
402 /* word jmp adds 2 byte2 to frag:
403 0 extra opcode bytes, 2 displacement bytes. */
404 {0, 0, 2, 0},
405
406 /* COND_JUMP states. */
407 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG)},
408 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG16)},
409 /* dword conditionals adds 5 bytes to frag:
410 1 extra opcode byte, 4 displacement bytes. */
411 {0, 0, 5, 0},
412 /* word conditionals add 3 bytes to frag:
413 1 extra opcode byte, 2 displacement bytes. */
414 {0, 0, 3, 0},
415
416 /* COND_JUMP86 states. */
417 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG)},
418 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG16)},
419 /* dword conditionals adds 5 bytes to frag:
420 1 extra opcode byte, 4 displacement bytes. */
421 {0, 0, 5, 0},
422 /* word conditionals add 4 bytes to frag:
423 1 displacement byte and a 3 byte long branch insn. */
424 {0, 0, 4, 0}
425 };
426
427 static const arch_entry cpu_arch[] =
428 {
429 {"generic32", PROCESSOR_GENERIC32,
430 Cpu086|Cpu186|Cpu286|Cpu386},
431 {"generic64", PROCESSOR_GENERIC64,
432 Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuP4|CpuMMX
433 |CpuMMX2|CpuSSE|CpuSSE2},
434 {"i8086", PROCESSOR_UNKNOWN,
435 Cpu086},
436 {"i186", PROCESSOR_UNKNOWN,
437 Cpu086|Cpu186},
438 {"i286", PROCESSOR_UNKNOWN,
439 Cpu086|Cpu186|Cpu286},
440 {"i386", PROCESSOR_GENERIC32,
441 Cpu086|Cpu186|Cpu286|Cpu386},
442 {"i486", PROCESSOR_I486,
443 Cpu086|Cpu186|Cpu286|Cpu386|Cpu486},
444 {"i586", PROCESSOR_PENTIUM,
445 Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586},
446 {"i686", PROCESSOR_PENTIUMPRO,
447 Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686},
448 {"pentium", PROCESSOR_PENTIUM,
449 Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586},
450 {"pentiumpro",PROCESSOR_PENTIUMPRO,
451 Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686},
452 {"pentiumii", PROCESSOR_PENTIUMPRO,
453 Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuMMX},
454 {"pentiumiii",PROCESSOR_PENTIUMPRO,
455 Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuMMX|CpuMMX2
456 |CpuSSE},
457 {"pentium4", PROCESSOR_PENTIUM4,
458 Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuP4|CpuMMX
459 |CpuMMX2|CpuSSE|CpuSSE2},
460 {"prescott", PROCESSOR_NOCONA,
461 Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuP4|CpuMMX
462 |CpuMMX2|CpuSSE|CpuSSE2|CpuSSE3},
463 {"nocona", PROCESSOR_NOCONA,
464 Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuP4|CpuMMX
465 |CpuMMX2|CpuSSE|CpuSSE2|CpuSSE3},
466 {"yonah", PROCESSOR_YONAH,
467 Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuP4|CpuMMX
468 |CpuMMX2|CpuSSE|CpuSSE2|CpuSSE3},
469 {"merom", PROCESSOR_MEROM,
470 Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuP4|CpuMMX
471 |CpuMMX2|CpuSSE|CpuSSE2|CpuSSE3|CpuMNI},
472 {"k6", PROCESSOR_K6,
473 Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|CpuK6|CpuMMX},
474 {"k6_2", PROCESSOR_K6,
475 Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|CpuK6|CpuMMX|Cpu3dnow},
476 {"athlon", PROCESSOR_ATHLON,
477 Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuK6|CpuAthlon
478 |CpuMMX|CpuMMX2|Cpu3dnow|Cpu3dnowA},
479 {"sledgehammer", PROCESSOR_K8,
480 Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuK6|CpuAthlon
481 |CpuSledgehammer|CpuMMX|CpuMMX2|Cpu3dnow|Cpu3dnowA|CpuSSE|CpuSSE2},
482 {"opteron", PROCESSOR_K8,
483 Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuK6|CpuAthlon
484 |CpuSledgehammer|CpuMMX|CpuMMX2|Cpu3dnow|Cpu3dnowA|CpuSSE|CpuSSE2},
485 {"k8", PROCESSOR_K8,
486 Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuK6|CpuAthlon
487 |CpuSledgehammer|CpuMMX|CpuMMX2|Cpu3dnow|Cpu3dnowA|CpuSSE|CpuSSE2},
488 {".mmx", PROCESSOR_UNKNOWN,
489 CpuMMX},
490 {".sse", PROCESSOR_UNKNOWN,
491 CpuMMX|CpuMMX2|CpuSSE},
492 {".sse2", PROCESSOR_UNKNOWN,
493 CpuMMX|CpuMMX2|CpuSSE|CpuSSE2},
494 {".sse3", PROCESSOR_UNKNOWN,
495 CpuMMX|CpuMMX2|CpuSSE|CpuSSE2|CpuSSE3},
496 {".3dnow", PROCESSOR_UNKNOWN,
497 CpuMMX|Cpu3dnow},
498 {".3dnowa", PROCESSOR_UNKNOWN,
499 CpuMMX|CpuMMX2|Cpu3dnow|Cpu3dnowA},
500 {".padlock", PROCESSOR_UNKNOWN,
501 CpuPadLock},
502 {".pacifica", PROCESSOR_UNKNOWN,
503 CpuSVME},
504 {".svme", PROCESSOR_UNKNOWN,
505 CpuSVME}
506 };
507
508 const pseudo_typeS md_pseudo_table[] =
509 {
510 #if !defined(OBJ_AOUT) && !defined(USE_ALIGN_PTWO)
511 {"align", s_align_bytes, 0},
512 #else
513 {"align", s_align_ptwo, 0},
514 #endif
515 {"arch", set_cpu_arch, 0},
516 #ifndef I386COFF
517 {"bss", s_bss, 0},
518 #endif
519 {"ffloat", float_cons, 'f'},
520 {"dfloat", float_cons, 'd'},
521 {"tfloat", float_cons, 'x'},
522 {"value", cons, 2},
523 {"slong", signed_cons, 4},
524 {"noopt", s_ignore, 0},
525 {"optim", s_ignore, 0},
526 {"code16gcc", set_16bit_gcc_code_flag, CODE_16BIT},
527 {"code16", set_code_flag, CODE_16BIT},
528 {"code32", set_code_flag, CODE_32BIT},
529 {"code64", set_code_flag, CODE_64BIT},
530 {"intel_syntax", set_intel_syntax, 1},
531 {"att_syntax", set_intel_syntax, 0},
532 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
533 {"largecomm", handle_large_common, 0},
534 #else
535 {"file", (void (*) PARAMS ((int))) dwarf2_directive_file, 0},
536 {"loc", dwarf2_directive_loc, 0},
537 {"loc_mark_labels", dwarf2_directive_loc_mark_labels, 0},
538 #endif
539 #ifdef TE_PE
540 {"secrel32", pe_directive_secrel, 0},
541 #endif
542 {0, 0, 0}
543 };
544
545 /* For interface with expression (). */
546 extern char *input_line_pointer;
547
548 /* Hash table for instruction mnemonic lookup. */
549 static struct hash_control *op_hash;
550
551 /* Hash table for register lookup. */
552 static struct hash_control *reg_hash;
553 \f
554 void
555 i386_align_code (fragP, count)
556 fragS *fragP;
557 int count;
558 {
559 /* Various efficient no-op patterns for aligning code labels.
560 Note: Don't try to assemble the instructions in the comments.
561 0L and 0w are not legal. */
562 static const char f32_1[] =
563 {0x90}; /* nop */
564 static const char f32_2[] =
565 {0x89,0xf6}; /* movl %esi,%esi */
566 static const char f32_3[] =
567 {0x8d,0x76,0x00}; /* leal 0(%esi),%esi */
568 static const char f32_4[] =
569 {0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
570 static const char f32_5[] =
571 {0x90, /* nop */
572 0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
573 static const char f32_6[] =
574 {0x8d,0xb6,0x00,0x00,0x00,0x00}; /* leal 0L(%esi),%esi */
575 static const char f32_7[] =
576 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
577 static const char f32_8[] =
578 {0x90, /* nop */
579 0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
580 static const char f32_9[] =
581 {0x89,0xf6, /* movl %esi,%esi */
582 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
583 static const char f32_10[] =
584 {0x8d,0x76,0x00, /* leal 0(%esi),%esi */
585 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
586 static const char f32_11[] =
587 {0x8d,0x74,0x26,0x00, /* leal 0(%esi,1),%esi */
588 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
589 static const char f32_12[] =
590 {0x8d,0xb6,0x00,0x00,0x00,0x00, /* leal 0L(%esi),%esi */
591 0x8d,0xbf,0x00,0x00,0x00,0x00}; /* leal 0L(%edi),%edi */
592 static const char f32_13[] =
593 {0x8d,0xb6,0x00,0x00,0x00,0x00, /* leal 0L(%esi),%esi */
594 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
595 static const char f32_14[] =
596 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00, /* leal 0L(%esi,1),%esi */
597 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
598 static const char f32_15[] =
599 {0xeb,0x0d,0x90,0x90,0x90,0x90,0x90, /* jmp .+15; lotsa nops */
600 0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90};
601 static const char f16_3[] =
602 {0x8d,0x74,0x00}; /* lea 0(%esi),%esi */
603 static const char f16_4[] =
604 {0x8d,0xb4,0x00,0x00}; /* lea 0w(%si),%si */
605 static const char f16_5[] =
606 {0x90, /* nop */
607 0x8d,0xb4,0x00,0x00}; /* lea 0w(%si),%si */
608 static const char f16_6[] =
609 {0x89,0xf6, /* mov %si,%si */
610 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
611 static const char f16_7[] =
612 {0x8d,0x74,0x00, /* lea 0(%si),%si */
613 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
614 static const char f16_8[] =
615 {0x8d,0xb4,0x00,0x00, /* lea 0w(%si),%si */
616 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
617 static const char *const f32_patt[] = {
618 f32_1, f32_2, f32_3, f32_4, f32_5, f32_6, f32_7, f32_8,
619 f32_9, f32_10, f32_11, f32_12, f32_13, f32_14, f32_15
620 };
621 static const char *const f16_patt[] = {
622 f32_1, f32_2, f16_3, f16_4, f16_5, f16_6, f16_7, f16_8,
623 f32_15, f32_15, f32_15, f32_15, f32_15, f32_15, f32_15
624 };
625
626 if (count <= 0 || count > 15)
627 return;
628
629 /* The recommended way to pad 64bit code is to use NOPs preceded by
630 maximally four 0x66 prefixes. Balance the size of nops. */
631 if (flag_code == CODE_64BIT)
632 {
633 int i;
634 int nnops = (count + 3) / 4;
635 int len = count / nnops;
636 int remains = count - nnops * len;
637 int pos = 0;
638
639 for (i = 0; i < remains; i++)
640 {
641 memset (fragP->fr_literal + fragP->fr_fix + pos, 0x66, len);
642 fragP->fr_literal[fragP->fr_fix + pos + len] = 0x90;
643 pos += len + 1;
644 }
645 for (; i < nnops; i++)
646 {
647 memset (fragP->fr_literal + fragP->fr_fix + pos, 0x66, len - 1);
648 fragP->fr_literal[fragP->fr_fix + pos + len - 1] = 0x90;
649 pos += len;
650 }
651 }
652 else
653 if (flag_code == CODE_16BIT)
654 {
655 memcpy (fragP->fr_literal + fragP->fr_fix,
656 f16_patt[count - 1], count);
657 if (count > 8)
658 /* Adjust jump offset. */
659 fragP->fr_literal[fragP->fr_fix + 1] = count - 2;
660 }
661 else
662 memcpy (fragP->fr_literal + fragP->fr_fix,
663 f32_patt[count - 1], count);
664 fragP->fr_var = count;
665 }
666
667 static INLINE unsigned int
668 mode_from_disp_size (t)
669 unsigned int t;
670 {
671 return (t & Disp8) ? 1 : (t & (Disp16 | Disp32 | Disp32S)) ? 2 : 0;
672 }
673
674 static INLINE int
675 fits_in_signed_byte (num)
676 offsetT num;
677 {
678 return (num >= -128) && (num <= 127);
679 }
680
681 static INLINE int
682 fits_in_unsigned_byte (num)
683 offsetT num;
684 {
685 return (num & 0xff) == num;
686 }
687
688 static INLINE int
689 fits_in_unsigned_word (num)
690 offsetT num;
691 {
692 return (num & 0xffff) == num;
693 }
694
695 static INLINE int
696 fits_in_signed_word (num)
697 offsetT num;
698 {
699 return (-32768 <= num) && (num <= 32767);
700 }
701 static INLINE int
702 fits_in_signed_long (num)
703 offsetT num ATTRIBUTE_UNUSED;
704 {
705 #ifndef BFD64
706 return 1;
707 #else
708 return (!(((offsetT) -1 << 31) & num)
709 || (((offsetT) -1 << 31) & num) == ((offsetT) -1 << 31));
710 #endif
711 } /* fits_in_signed_long() */
712 static INLINE int
713 fits_in_unsigned_long (num)
714 offsetT num ATTRIBUTE_UNUSED;
715 {
716 #ifndef BFD64
717 return 1;
718 #else
719 return (num & (((offsetT) 2 << 31) - 1)) == num;
720 #endif
721 } /* fits_in_unsigned_long() */
722
723 static int
724 smallest_imm_type (num)
725 offsetT num;
726 {
727 if (cpu_arch_flags != (Cpu086 | Cpu186 | Cpu286 | Cpu386 | Cpu486 | CpuNo64))
728 {
729 /* This code is disabled on the 486 because all the Imm1 forms
730 in the opcode table are slower on the i486. They're the
731 versions with the implicitly specified single-position
732 displacement, which has another syntax if you really want to
733 use that form. */
734 if (num == 1)
735 return Imm1 | Imm8 | Imm8S | Imm16 | Imm32 | Imm32S | Imm64;
736 }
737 return (fits_in_signed_byte (num)
738 ? (Imm8S | Imm8 | Imm16 | Imm32 | Imm32S | Imm64)
739 : fits_in_unsigned_byte (num)
740 ? (Imm8 | Imm16 | Imm32 | Imm32S | Imm64)
741 : (fits_in_signed_word (num) || fits_in_unsigned_word (num))
742 ? (Imm16 | Imm32 | Imm32S | Imm64)
743 : fits_in_signed_long (num)
744 ? (Imm32 | Imm32S | Imm64)
745 : fits_in_unsigned_long (num)
746 ? (Imm32 | Imm64)
747 : Imm64);
748 }
749
750 static offsetT
751 offset_in_range (val, size)
752 offsetT val;
753 int size;
754 {
755 addressT mask;
756
757 switch (size)
758 {
759 case 1: mask = ((addressT) 1 << 8) - 1; break;
760 case 2: mask = ((addressT) 1 << 16) - 1; break;
761 case 4: mask = ((addressT) 2 << 31) - 1; break;
762 #ifdef BFD64
763 case 8: mask = ((addressT) 2 << 63) - 1; break;
764 #endif
765 default: abort ();
766 }
767
768 /* If BFD64, sign extend val. */
769 if (!use_rela_relocations)
770 if ((val & ~(((addressT) 2 << 31) - 1)) == 0)
771 val = (val ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
772
773 if ((val & ~mask) != 0 && (val & ~mask) != ~mask)
774 {
775 char buf1[40], buf2[40];
776
777 sprint_value (buf1, val);
778 sprint_value (buf2, val & mask);
779 as_warn (_("%s shortened to %s"), buf1, buf2);
780 }
781 return val & mask;
782 }
783
784 /* Returns 0 if attempting to add a prefix where one from the same
785 class already exists, 1 if non rep/repne added, 2 if rep/repne
786 added. */
787 static int
788 add_prefix (prefix)
789 unsigned int prefix;
790 {
791 int ret = 1;
792 unsigned int q;
793
794 if (prefix >= REX_OPCODE && prefix < REX_OPCODE + 16
795 && flag_code == CODE_64BIT)
796 {
797 if ((i.prefix[REX_PREFIX] & prefix & REX_MODE64)
798 || ((i.prefix[REX_PREFIX] & (REX_EXTX | REX_EXTY | REX_EXTZ))
799 && (prefix & (REX_EXTX | REX_EXTY | REX_EXTZ))))
800 ret = 0;
801 q = REX_PREFIX;
802 }
803 else
804 {
805 switch (prefix)
806 {
807 default:
808 abort ();
809
810 case CS_PREFIX_OPCODE:
811 case DS_PREFIX_OPCODE:
812 case ES_PREFIX_OPCODE:
813 case FS_PREFIX_OPCODE:
814 case GS_PREFIX_OPCODE:
815 case SS_PREFIX_OPCODE:
816 q = SEG_PREFIX;
817 break;
818
819 case REPNE_PREFIX_OPCODE:
820 case REPE_PREFIX_OPCODE:
821 ret = 2;
822 /* fall thru */
823 case LOCK_PREFIX_OPCODE:
824 q = LOCKREP_PREFIX;
825 break;
826
827 case FWAIT_OPCODE:
828 q = WAIT_PREFIX;
829 break;
830
831 case ADDR_PREFIX_OPCODE:
832 q = ADDR_PREFIX;
833 break;
834
835 case DATA_PREFIX_OPCODE:
836 q = DATA_PREFIX;
837 break;
838 }
839 if (i.prefix[q] != 0)
840 ret = 0;
841 }
842
843 if (ret)
844 {
845 if (!i.prefix[q])
846 ++i.prefixes;
847 i.prefix[q] |= prefix;
848 }
849 else
850 as_bad (_("same type of prefix used twice"));
851
852 return ret;
853 }
854
855 static void
856 set_code_flag (value)
857 int value;
858 {
859 flag_code = value;
860 cpu_arch_flags &= ~(Cpu64 | CpuNo64);
861 cpu_arch_flags |= (flag_code == CODE_64BIT ? Cpu64 : CpuNo64);
862 if (value == CODE_64BIT && !(cpu_arch_flags & CpuSledgehammer))
863 {
864 as_bad (_("64bit mode not supported on this CPU."));
865 }
866 if (value == CODE_32BIT && !(cpu_arch_flags & Cpu386))
867 {
868 as_bad (_("32bit mode not supported on this CPU."));
869 }
870 stackop_size = '\0';
871 }
872
873 static void
874 set_16bit_gcc_code_flag (new_code_flag)
875 int new_code_flag;
876 {
877 flag_code = new_code_flag;
878 cpu_arch_flags &= ~(Cpu64 | CpuNo64);
879 cpu_arch_flags |= (flag_code == CODE_64BIT ? Cpu64 : CpuNo64);
880 stackop_size = LONG_MNEM_SUFFIX;
881 }
882
883 static void
884 set_intel_syntax (syntax_flag)
885 int syntax_flag;
886 {
887 /* Find out if register prefixing is specified. */
888 int ask_naked_reg = 0;
889
890 SKIP_WHITESPACE ();
891 if (!is_end_of_line[(unsigned char) *input_line_pointer])
892 {
893 char *string = input_line_pointer;
894 int e = get_symbol_end ();
895
896 if (strcmp (string, "prefix") == 0)
897 ask_naked_reg = 1;
898 else if (strcmp (string, "noprefix") == 0)
899 ask_naked_reg = -1;
900 else
901 as_bad (_("bad argument to syntax directive."));
902 *input_line_pointer = e;
903 }
904 demand_empty_rest_of_line ();
905
906 intel_syntax = syntax_flag;
907
908 if (ask_naked_reg == 0)
909 allow_naked_reg = (intel_syntax
910 && (bfd_get_symbol_leading_char (stdoutput) != '\0'));
911 else
912 allow_naked_reg = (ask_naked_reg < 0);
913
914 identifier_chars['%'] = intel_syntax && allow_naked_reg ? '%' : 0;
915 identifier_chars['$'] = intel_syntax ? '$' : 0;
916 }
917
918 static void
919 set_cpu_arch (dummy)
920 int dummy ATTRIBUTE_UNUSED;
921 {
922 SKIP_WHITESPACE ();
923
924 if (!is_end_of_line[(unsigned char) *input_line_pointer])
925 {
926 char *string = input_line_pointer;
927 int e = get_symbol_end ();
928 unsigned int i;
929
930 for (i = 0; i < ARRAY_SIZE (cpu_arch); i++)
931 {
932 if (strcmp (string, cpu_arch[i].name) == 0)
933 {
934 if (*string != '.')
935 {
936 cpu_arch_name = cpu_arch[i].name;
937 cpu_sub_arch_name = NULL;
938 cpu_arch_flags = (cpu_arch[i].flags
939 | (flag_code == CODE_64BIT ? Cpu64 : CpuNo64));
940 cpu_arch_isa_flags = cpu_arch[i].flags;
941 break;
942 }
943 if ((cpu_arch_flags | cpu_arch[i].flags) != cpu_arch_flags)
944 {
945 cpu_sub_arch_name = cpu_arch[i].name;
946 cpu_arch_flags |= cpu_arch[i].flags;
947 }
948 *input_line_pointer = e;
949 demand_empty_rest_of_line ();
950 return;
951 }
952 }
953 if (i >= ARRAY_SIZE (cpu_arch))
954 as_bad (_("no such architecture: `%s'"), string);
955
956 *input_line_pointer = e;
957 }
958 else
959 as_bad (_("missing cpu architecture"));
960
961 no_cond_jump_promotion = 0;
962 if (*input_line_pointer == ','
963 && !is_end_of_line[(unsigned char) input_line_pointer[1]])
964 {
965 char *string = ++input_line_pointer;
966 int e = get_symbol_end ();
967
968 if (strcmp (string, "nojumps") == 0)
969 no_cond_jump_promotion = 1;
970 else if (strcmp (string, "jumps") == 0)
971 ;
972 else
973 as_bad (_("no such architecture modifier: `%s'"), string);
974
975 *input_line_pointer = e;
976 }
977
978 demand_empty_rest_of_line ();
979 }
980
981 unsigned long
982 i386_mach ()
983 {
984 if (!strcmp (default_arch, "x86_64"))
985 return bfd_mach_x86_64;
986 else if (!strcmp (default_arch, "i386"))
987 return bfd_mach_i386_i386;
988 else
989 as_fatal (_("Unknown architecture"));
990 }
991 \f
992 void
993 md_begin ()
994 {
995 const char *hash_err;
996
997 /* Initialize op_hash hash table. */
998 op_hash = hash_new ();
999
1000 {
1001 const template *optab;
1002 templates *core_optab;
1003
1004 /* Setup for loop. */
1005 optab = i386_optab;
1006 core_optab = (templates *) xmalloc (sizeof (templates));
1007 core_optab->start = optab;
1008
1009 while (1)
1010 {
1011 ++optab;
1012 if (optab->name == NULL
1013 || strcmp (optab->name, (optab - 1)->name) != 0)
1014 {
1015 /* different name --> ship out current template list;
1016 add to hash table; & begin anew. */
1017 core_optab->end = optab;
1018 hash_err = hash_insert (op_hash,
1019 (optab - 1)->name,
1020 (PTR) core_optab);
1021 if (hash_err)
1022 {
1023 as_fatal (_("Internal Error: Can't hash %s: %s"),
1024 (optab - 1)->name,
1025 hash_err);
1026 }
1027 if (optab->name == NULL)
1028 break;
1029 core_optab = (templates *) xmalloc (sizeof (templates));
1030 core_optab->start = optab;
1031 }
1032 }
1033 }
1034
1035 /* Initialize reg_hash hash table. */
1036 reg_hash = hash_new ();
1037 {
1038 const reg_entry *regtab;
1039
1040 for (regtab = i386_regtab;
1041 regtab < i386_regtab + sizeof (i386_regtab) / sizeof (i386_regtab[0]);
1042 regtab++)
1043 {
1044 hash_err = hash_insert (reg_hash, regtab->reg_name, (PTR) regtab);
1045 if (hash_err)
1046 as_fatal (_("Internal Error: Can't hash %s: %s"),
1047 regtab->reg_name,
1048 hash_err);
1049 }
1050 }
1051
1052 /* Fill in lexical tables: mnemonic_chars, operand_chars. */
1053 {
1054 int c;
1055 char *p;
1056
1057 for (c = 0; c < 256; c++)
1058 {
1059 if (ISDIGIT (c))
1060 {
1061 digit_chars[c] = c;
1062 mnemonic_chars[c] = c;
1063 register_chars[c] = c;
1064 operand_chars[c] = c;
1065 }
1066 else if (ISLOWER (c))
1067 {
1068 mnemonic_chars[c] = c;
1069 register_chars[c] = c;
1070 operand_chars[c] = c;
1071 }
1072 else if (ISUPPER (c))
1073 {
1074 mnemonic_chars[c] = TOLOWER (c);
1075 register_chars[c] = mnemonic_chars[c];
1076 operand_chars[c] = c;
1077 }
1078
1079 if (ISALPHA (c) || ISDIGIT (c))
1080 identifier_chars[c] = c;
1081 else if (c >= 128)
1082 {
1083 identifier_chars[c] = c;
1084 operand_chars[c] = c;
1085 }
1086 }
1087
1088 #ifdef LEX_AT
1089 identifier_chars['@'] = '@';
1090 #endif
1091 #ifdef LEX_QM
1092 identifier_chars['?'] = '?';
1093 operand_chars['?'] = '?';
1094 #endif
1095 digit_chars['-'] = '-';
1096 mnemonic_chars['-'] = '-';
1097 identifier_chars['_'] = '_';
1098 identifier_chars['.'] = '.';
1099
1100 for (p = operand_special_chars; *p != '\0'; p++)
1101 operand_chars[(unsigned char) *p] = *p;
1102 }
1103
1104 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
1105 if (IS_ELF)
1106 {
1107 record_alignment (text_section, 2);
1108 record_alignment (data_section, 2);
1109 record_alignment (bss_section, 2);
1110 }
1111 #endif
1112
1113 if (flag_code == CODE_64BIT)
1114 {
1115 x86_dwarf2_return_column = 16;
1116 x86_cie_data_alignment = -8;
1117 }
1118 else
1119 {
1120 x86_dwarf2_return_column = 8;
1121 x86_cie_data_alignment = -4;
1122 }
1123 }
1124
1125 void
1126 i386_print_statistics (file)
1127 FILE *file;
1128 {
1129 hash_print_statistics (file, "i386 opcode", op_hash);
1130 hash_print_statistics (file, "i386 register", reg_hash);
1131 }
1132 \f
1133 #ifdef DEBUG386
1134
1135 /* Debugging routines for md_assemble. */
1136 static void pi PARAMS ((char *, i386_insn *));
1137 static void pte PARAMS ((template *));
1138 static void pt PARAMS ((unsigned int));
1139 static void pe PARAMS ((expressionS *));
1140 static void ps PARAMS ((symbolS *));
1141
1142 static void
1143 pi (line, x)
1144 char *line;
1145 i386_insn *x;
1146 {
1147 unsigned int i;
1148
1149 fprintf (stdout, "%s: template ", line);
1150 pte (&x->tm);
1151 fprintf (stdout, " address: base %s index %s scale %x\n",
1152 x->base_reg ? x->base_reg->reg_name : "none",
1153 x->index_reg ? x->index_reg->reg_name : "none",
1154 x->log2_scale_factor);
1155 fprintf (stdout, " modrm: mode %x reg %x reg/mem %x\n",
1156 x->rm.mode, x->rm.reg, x->rm.regmem);
1157 fprintf (stdout, " sib: base %x index %x scale %x\n",
1158 x->sib.base, x->sib.index, x->sib.scale);
1159 fprintf (stdout, " rex: 64bit %x extX %x extY %x extZ %x\n",
1160 (x->rex & REX_MODE64) != 0,
1161 (x->rex & REX_EXTX) != 0,
1162 (x->rex & REX_EXTY) != 0,
1163 (x->rex & REX_EXTZ) != 0);
1164 for (i = 0; i < x->operands; i++)
1165 {
1166 fprintf (stdout, " #%d: ", i + 1);
1167 pt (x->types[i]);
1168 fprintf (stdout, "\n");
1169 if (x->types[i]
1170 & (Reg | SReg2 | SReg3 | Control | Debug | Test | RegMMX | RegXMM))
1171 fprintf (stdout, "%s\n", x->op[i].regs->reg_name);
1172 if (x->types[i] & Imm)
1173 pe (x->op[i].imms);
1174 if (x->types[i] & Disp)
1175 pe (x->op[i].disps);
1176 }
1177 }
1178
1179 static void
1180 pte (t)
1181 template *t;
1182 {
1183 unsigned int i;
1184 fprintf (stdout, " %d operands ", t->operands);
1185 fprintf (stdout, "opcode %x ", t->base_opcode);
1186 if (t->extension_opcode != None)
1187 fprintf (stdout, "ext %x ", t->extension_opcode);
1188 if (t->opcode_modifier & D)
1189 fprintf (stdout, "D");
1190 if (t->opcode_modifier & W)
1191 fprintf (stdout, "W");
1192 fprintf (stdout, "\n");
1193 for (i = 0; i < t->operands; i++)
1194 {
1195 fprintf (stdout, " #%d type ", i + 1);
1196 pt (t->operand_types[i]);
1197 fprintf (stdout, "\n");
1198 }
1199 }
1200
1201 static void
1202 pe (e)
1203 expressionS *e;
1204 {
1205 fprintf (stdout, " operation %d\n", e->X_op);
1206 fprintf (stdout, " add_number %ld (%lx)\n",
1207 (long) e->X_add_number, (long) e->X_add_number);
1208 if (e->X_add_symbol)
1209 {
1210 fprintf (stdout, " add_symbol ");
1211 ps (e->X_add_symbol);
1212 fprintf (stdout, "\n");
1213 }
1214 if (e->X_op_symbol)
1215 {
1216 fprintf (stdout, " op_symbol ");
1217 ps (e->X_op_symbol);
1218 fprintf (stdout, "\n");
1219 }
1220 }
1221
1222 static void
1223 ps (s)
1224 symbolS *s;
1225 {
1226 fprintf (stdout, "%s type %s%s",
1227 S_GET_NAME (s),
1228 S_IS_EXTERNAL (s) ? "EXTERNAL " : "",
1229 segment_name (S_GET_SEGMENT (s)));
1230 }
1231
1232 static struct type_name
1233 {
1234 unsigned int mask;
1235 char *tname;
1236 }
1237 const type_names[] =
1238 {
1239 { Reg8, "r8" },
1240 { Reg16, "r16" },
1241 { Reg32, "r32" },
1242 { Reg64, "r64" },
1243 { Imm8, "i8" },
1244 { Imm8S, "i8s" },
1245 { Imm16, "i16" },
1246 { Imm32, "i32" },
1247 { Imm32S, "i32s" },
1248 { Imm64, "i64" },
1249 { Imm1, "i1" },
1250 { BaseIndex, "BaseIndex" },
1251 { Disp8, "d8" },
1252 { Disp16, "d16" },
1253 { Disp32, "d32" },
1254 { Disp32S, "d32s" },
1255 { Disp64, "d64" },
1256 { InOutPortReg, "InOutPortReg" },
1257 { ShiftCount, "ShiftCount" },
1258 { Control, "control reg" },
1259 { Test, "test reg" },
1260 { Debug, "debug reg" },
1261 { FloatReg, "FReg" },
1262 { FloatAcc, "FAcc" },
1263 { SReg2, "SReg2" },
1264 { SReg3, "SReg3" },
1265 { Acc, "Acc" },
1266 { JumpAbsolute, "Jump Absolute" },
1267 { RegMMX, "rMMX" },
1268 { RegXMM, "rXMM" },
1269 { EsSeg, "es" },
1270 { 0, "" }
1271 };
1272
1273 static void
1274 pt (t)
1275 unsigned int t;
1276 {
1277 const struct type_name *ty;
1278
1279 for (ty = type_names; ty->mask; ty++)
1280 if (t & ty->mask)
1281 fprintf (stdout, "%s, ", ty->tname);
1282 fflush (stdout);
1283 }
1284
1285 #endif /* DEBUG386 */
1286 \f
1287 static bfd_reloc_code_real_type
1288 reloc (unsigned int size,
1289 int pcrel,
1290 int sign,
1291 bfd_reloc_code_real_type other)
1292 {
1293 if (other != NO_RELOC)
1294 {
1295 reloc_howto_type *reloc;
1296
1297 if (size == 8)
1298 switch (other)
1299 {
1300 case BFD_RELOC_X86_64_GOT32:
1301 return BFD_RELOC_X86_64_GOT64;
1302 break;
1303 case BFD_RELOC_X86_64_PLTOFF64:
1304 return BFD_RELOC_X86_64_PLTOFF64;
1305 break;
1306 case BFD_RELOC_X86_64_GOTPC32:
1307 other = BFD_RELOC_X86_64_GOTPC64;
1308 break;
1309 case BFD_RELOC_X86_64_GOTPCREL:
1310 other = BFD_RELOC_X86_64_GOTPCREL64;
1311 break;
1312 case BFD_RELOC_X86_64_TPOFF32:
1313 other = BFD_RELOC_X86_64_TPOFF64;
1314 break;
1315 case BFD_RELOC_X86_64_DTPOFF32:
1316 other = BFD_RELOC_X86_64_DTPOFF64;
1317 break;
1318 default:
1319 break;
1320 }
1321
1322 /* Sign-checking 4-byte relocations in 16-/32-bit code is pointless. */
1323 if (size == 4 && flag_code != CODE_64BIT)
1324 sign = -1;
1325
1326 reloc = bfd_reloc_type_lookup (stdoutput, other);
1327 if (!reloc)
1328 as_bad (_("unknown relocation (%u)"), other);
1329 else if (size != bfd_get_reloc_size (reloc))
1330 as_bad (_("%u-byte relocation cannot be applied to %u-byte field"),
1331 bfd_get_reloc_size (reloc),
1332 size);
1333 else if (pcrel && !reloc->pc_relative)
1334 as_bad (_("non-pc-relative relocation for pc-relative field"));
1335 else if ((reloc->complain_on_overflow == complain_overflow_signed
1336 && !sign)
1337 || (reloc->complain_on_overflow == complain_overflow_unsigned
1338 && sign > 0))
1339 as_bad (_("relocated field and relocation type differ in signedness"));
1340 else
1341 return other;
1342 return NO_RELOC;
1343 }
1344
1345 if (pcrel)
1346 {
1347 if (!sign)
1348 as_bad (_("there are no unsigned pc-relative relocations"));
1349 switch (size)
1350 {
1351 case 1: return BFD_RELOC_8_PCREL;
1352 case 2: return BFD_RELOC_16_PCREL;
1353 case 4: return BFD_RELOC_32_PCREL;
1354 case 8: return BFD_RELOC_64_PCREL;
1355 }
1356 as_bad (_("cannot do %u byte pc-relative relocation"), size);
1357 }
1358 else
1359 {
1360 if (sign > 0)
1361 switch (size)
1362 {
1363 case 4: return BFD_RELOC_X86_64_32S;
1364 }
1365 else
1366 switch (size)
1367 {
1368 case 1: return BFD_RELOC_8;
1369 case 2: return BFD_RELOC_16;
1370 case 4: return BFD_RELOC_32;
1371 case 8: return BFD_RELOC_64;
1372 }
1373 as_bad (_("cannot do %s %u byte relocation"),
1374 sign > 0 ? "signed" : "unsigned", size);
1375 }
1376
1377 abort ();
1378 return BFD_RELOC_NONE;
1379 }
1380
1381 /* Here we decide which fixups can be adjusted to make them relative to
1382 the beginning of the section instead of the symbol. Basically we need
1383 to make sure that the dynamic relocations are done correctly, so in
1384 some cases we force the original symbol to be used. */
1385
1386 int
1387 tc_i386_fix_adjustable (fixP)
1388 fixS *fixP ATTRIBUTE_UNUSED;
1389 {
1390 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
1391 if (!IS_ELF)
1392 return 1;
1393
1394 /* Don't adjust pc-relative references to merge sections in 64-bit
1395 mode. */
1396 if (use_rela_relocations
1397 && (S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_MERGE) != 0
1398 && fixP->fx_pcrel)
1399 return 0;
1400
1401 /* The x86_64 GOTPCREL are represented as 32bit PCrel relocations
1402 and changed later by validate_fix. */
1403 if (GOT_symbol && fixP->fx_subsy == GOT_symbol
1404 && fixP->fx_r_type == BFD_RELOC_32_PCREL)
1405 return 0;
1406
1407 /* adjust_reloc_syms doesn't know about the GOT. */
1408 if (fixP->fx_r_type == BFD_RELOC_386_GOTOFF
1409 || fixP->fx_r_type == BFD_RELOC_386_PLT32
1410 || fixP->fx_r_type == BFD_RELOC_386_GOT32
1411 || fixP->fx_r_type == BFD_RELOC_386_TLS_GD
1412 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDM
1413 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDO_32
1414 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE_32
1415 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE
1416 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTIE
1417 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE_32
1418 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE
1419 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTDESC
1420 || fixP->fx_r_type == BFD_RELOC_386_TLS_DESC_CALL
1421 || fixP->fx_r_type == BFD_RELOC_X86_64_PLT32
1422 || fixP->fx_r_type == BFD_RELOC_X86_64_GOT32
1423 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCREL
1424 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSGD
1425 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSLD
1426 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF32
1427 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF64
1428 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTTPOFF
1429 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF32
1430 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF64
1431 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTOFF64
1432 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPC32_TLSDESC
1433 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSDESC_CALL
1434 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
1435 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
1436 return 0;
1437 #endif
1438 return 1;
1439 }
1440
1441 static int intel_float_operand PARAMS ((const char *mnemonic));
1442
1443 static int
1444 intel_float_operand (mnemonic)
1445 const char *mnemonic;
1446 {
1447 /* Note that the value returned is meaningful only for opcodes with (memory)
1448 operands, hence the code here is free to improperly handle opcodes that
1449 have no operands (for better performance and smaller code). */
1450
1451 if (mnemonic[0] != 'f')
1452 return 0; /* non-math */
1453
1454 switch (mnemonic[1])
1455 {
1456 /* fclex, fdecstp, fdisi, femms, feni, fincstp, finit, fsetpm, and
1457 the fs segment override prefix not currently handled because no
1458 call path can make opcodes without operands get here */
1459 case 'i':
1460 return 2 /* integer op */;
1461 case 'l':
1462 if (mnemonic[2] == 'd' && (mnemonic[3] == 'c' || mnemonic[3] == 'e'))
1463 return 3; /* fldcw/fldenv */
1464 break;
1465 case 'n':
1466 if (mnemonic[2] != 'o' /* fnop */)
1467 return 3; /* non-waiting control op */
1468 break;
1469 case 'r':
1470 if (mnemonic[2] == 's')
1471 return 3; /* frstor/frstpm */
1472 break;
1473 case 's':
1474 if (mnemonic[2] == 'a')
1475 return 3; /* fsave */
1476 if (mnemonic[2] == 't')
1477 {
1478 switch (mnemonic[3])
1479 {
1480 case 'c': /* fstcw */
1481 case 'd': /* fstdw */
1482 case 'e': /* fstenv */
1483 case 's': /* fsts[gw] */
1484 return 3;
1485 }
1486 }
1487 break;
1488 case 'x':
1489 if (mnemonic[2] == 'r' || mnemonic[2] == 's')
1490 return 0; /* fxsave/fxrstor are not really math ops */
1491 break;
1492 }
1493
1494 return 1;
1495 }
1496
1497 /* This is the guts of the machine-dependent assembler. LINE points to a
1498 machine dependent instruction. This function is supposed to emit
1499 the frags/bytes it assembles to. */
1500
1501 void
1502 md_assemble (line)
1503 char *line;
1504 {
1505 int j;
1506 char mnemonic[MAX_MNEM_SIZE];
1507
1508 /* Initialize globals. */
1509 memset (&i, '\0', sizeof (i));
1510 for (j = 0; j < MAX_OPERANDS; j++)
1511 i.reloc[j] = NO_RELOC;
1512 memset (disp_expressions, '\0', sizeof (disp_expressions));
1513 memset (im_expressions, '\0', sizeof (im_expressions));
1514 save_stack_p = save_stack;
1515
1516 /* First parse an instruction mnemonic & call i386_operand for the operands.
1517 We assume that the scrubber has arranged it so that line[0] is the valid
1518 start of a (possibly prefixed) mnemonic. */
1519
1520 line = parse_insn (line, mnemonic);
1521 if (line == NULL)
1522 return;
1523
1524 line = parse_operands (line, mnemonic);
1525 if (line == NULL)
1526 return;
1527
1528 /* Now we've parsed the mnemonic into a set of templates, and have the
1529 operands at hand. */
1530
1531 /* All intel opcodes have reversed operands except for "bound" and
1532 "enter". We also don't reverse intersegment "jmp" and "call"
1533 instructions with 2 immediate operands so that the immediate segment
1534 precedes the offset, as it does when in AT&T mode. "enter" and the
1535 intersegment "jmp" and "call" instructions are the only ones that
1536 have two immediate operands. */
1537 if (intel_syntax && i.operands > 1
1538 && (strcmp (mnemonic, "bound") != 0)
1539 && (strcmp (mnemonic, "invlpga") != 0)
1540 && !((i.types[0] & Imm) && (i.types[1] & Imm)))
1541 swap_operands ();
1542
1543 if (i.imm_operands)
1544 optimize_imm ();
1545
1546 /* Don't optimize displacement for movabs since it only takes 64bit
1547 displacement. */
1548 if (i.disp_operands
1549 && (flag_code != CODE_64BIT
1550 || strcmp (mnemonic, "movabs") != 0))
1551 optimize_disp ();
1552
1553 /* Next, we find a template that matches the given insn,
1554 making sure the overlap of the given operands types is consistent
1555 with the template operand types. */
1556
1557 if (!match_template ())
1558 return;
1559
1560 if (intel_syntax)
1561 {
1562 /* Undo SYSV386_COMPAT brokenness when in Intel mode. See i386.h */
1563 if (SYSV386_COMPAT
1564 && (i.tm.base_opcode & 0xfffffde0) == 0xdce0)
1565 i.tm.base_opcode ^= FloatR;
1566
1567 /* Zap movzx and movsx suffix. The suffix may have been set from
1568 "word ptr" or "byte ptr" on the source operand, but we'll use
1569 the suffix later to choose the destination register. */
1570 if ((i.tm.base_opcode & ~9) == 0x0fb6)
1571 {
1572 if (i.reg_operands < 2
1573 && !i.suffix
1574 && (~i.tm.opcode_modifier
1575 & (No_bSuf
1576 | No_wSuf
1577 | No_lSuf
1578 | No_sSuf
1579 | No_xSuf
1580 | No_qSuf)))
1581 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
1582
1583 i.suffix = 0;
1584 }
1585 }
1586
1587 if (i.tm.opcode_modifier & FWait)
1588 if (!add_prefix (FWAIT_OPCODE))
1589 return;
1590
1591 /* Check string instruction segment overrides. */
1592 if ((i.tm.opcode_modifier & IsString) != 0 && i.mem_operands != 0)
1593 {
1594 if (!check_string ())
1595 return;
1596 }
1597
1598 if (!process_suffix ())
1599 return;
1600
1601 /* Make still unresolved immediate matches conform to size of immediate
1602 given in i.suffix. */
1603 if (!finalize_imm ())
1604 return;
1605
1606 if (i.types[0] & Imm1)
1607 i.imm_operands = 0; /* kludge for shift insns. */
1608 if (i.types[0] & ImplicitRegister)
1609 i.reg_operands--;
1610 if (i.types[1] & ImplicitRegister)
1611 i.reg_operands--;
1612 if (i.types[2] & ImplicitRegister)
1613 i.reg_operands--;
1614
1615 if (i.tm.opcode_modifier & ImmExt)
1616 {
1617 expressionS *exp;
1618
1619 if ((i.tm.cpu_flags & CpuPNI) && i.operands > 0)
1620 {
1621 /* These Intel Prescott New Instructions have the fixed
1622 operands with an opcode suffix which is coded in the same
1623 place as an 8-bit immediate field would be. Here we check
1624 those operands and remove them afterwards. */
1625 unsigned int x;
1626
1627 for (x = 0; x < i.operands; x++)
1628 if (i.op[x].regs->reg_num != x)
1629 as_bad (_("can't use register '%%%s' as operand %d in '%s'."),
1630 i.op[x].regs->reg_name, x + 1, i.tm.name);
1631 i.operands = 0;
1632 }
1633
1634 /* These AMD 3DNow! and Intel Katmai New Instructions have an
1635 opcode suffix which is coded in the same place as an 8-bit
1636 immediate field would be. Here we fake an 8-bit immediate
1637 operand from the opcode suffix stored in tm.extension_opcode. */
1638
1639 assert (i.imm_operands == 0 && i.operands <= 2 && 2 < MAX_OPERANDS);
1640
1641 exp = &im_expressions[i.imm_operands++];
1642 i.op[i.operands].imms = exp;
1643 i.types[i.operands++] = Imm8;
1644 exp->X_op = O_constant;
1645 exp->X_add_number = i.tm.extension_opcode;
1646 i.tm.extension_opcode = None;
1647 }
1648
1649 /* For insns with operands there are more diddles to do to the opcode. */
1650 if (i.operands)
1651 {
1652 if (!process_operands ())
1653 return;
1654 }
1655 else if (!quiet_warnings && (i.tm.opcode_modifier & Ugh) != 0)
1656 {
1657 /* UnixWare fsub no args is alias for fsubp, fadd -> faddp, etc. */
1658 as_warn (_("translating to `%sp'"), i.tm.name);
1659 }
1660
1661 /* Handle conversion of 'int $3' --> special int3 insn. */
1662 if (i.tm.base_opcode == INT_OPCODE && i.op[0].imms->X_add_number == 3)
1663 {
1664 i.tm.base_opcode = INT3_OPCODE;
1665 i.imm_operands = 0;
1666 }
1667
1668 if ((i.tm.opcode_modifier & (Jump | JumpByte | JumpDword))
1669 && i.op[0].disps->X_op == O_constant)
1670 {
1671 /* Convert "jmp constant" (and "call constant") to a jump (call) to
1672 the absolute address given by the constant. Since ix86 jumps and
1673 calls are pc relative, we need to generate a reloc. */
1674 i.op[0].disps->X_add_symbol = &abs_symbol;
1675 i.op[0].disps->X_op = O_symbol;
1676 }
1677
1678 if ((i.tm.opcode_modifier & Rex64) != 0)
1679 i.rex |= REX_MODE64;
1680
1681 /* For 8 bit registers we need an empty rex prefix. Also if the
1682 instruction already has a prefix, we need to convert old
1683 registers to new ones. */
1684
1685 if (((i.types[0] & Reg8) != 0
1686 && (i.op[0].regs->reg_flags & RegRex64) != 0)
1687 || ((i.types[1] & Reg8) != 0
1688 && (i.op[1].regs->reg_flags & RegRex64) != 0)
1689 || (((i.types[0] & Reg8) != 0 || (i.types[1] & Reg8) != 0)
1690 && i.rex != 0))
1691 {
1692 int x;
1693
1694 i.rex |= REX_OPCODE;
1695 for (x = 0; x < 2; x++)
1696 {
1697 /* Look for 8 bit operand that uses old registers. */
1698 if ((i.types[x] & Reg8) != 0
1699 && (i.op[x].regs->reg_flags & RegRex64) == 0)
1700 {
1701 /* In case it is "hi" register, give up. */
1702 if (i.op[x].regs->reg_num > 3)
1703 as_bad (_("can't encode register '%%%s' in an instruction requiring REX prefix."),
1704 i.op[x].regs->reg_name);
1705
1706 /* Otherwise it is equivalent to the extended register.
1707 Since the encoding doesn't change this is merely
1708 cosmetic cleanup for debug output. */
1709
1710 i.op[x].regs = i.op[x].regs + 8;
1711 }
1712 }
1713 }
1714
1715 if (i.rex != 0)
1716 add_prefix (REX_OPCODE | i.rex);
1717
1718 /* Record what ISA we have generated so far. */
1719 cpu_arch_isa_flags |= i.tm.cpu_flags;
1720
1721 /* We are ready to output the insn. */
1722 output_insn ();
1723 }
1724
1725 static char *
1726 parse_insn (line, mnemonic)
1727 char *line;
1728 char *mnemonic;
1729 {
1730 char *l = line;
1731 char *token_start = l;
1732 char *mnem_p;
1733 int supported;
1734 const template *t;
1735
1736 /* Non-zero if we found a prefix only acceptable with string insns. */
1737 const char *expecting_string_instruction = NULL;
1738
1739 while (1)
1740 {
1741 mnem_p = mnemonic;
1742 while ((*mnem_p = mnemonic_chars[(unsigned char) *l]) != 0)
1743 {
1744 mnem_p++;
1745 if (mnem_p >= mnemonic + MAX_MNEM_SIZE)
1746 {
1747 as_bad (_("no such instruction: `%s'"), token_start);
1748 return NULL;
1749 }
1750 l++;
1751 }
1752 if (!is_space_char (*l)
1753 && *l != END_OF_INSN
1754 && (intel_syntax
1755 || (*l != PREFIX_SEPARATOR
1756 && *l != ',')))
1757 {
1758 as_bad (_("invalid character %s in mnemonic"),
1759 output_invalid (*l));
1760 return NULL;
1761 }
1762 if (token_start == l)
1763 {
1764 if (!intel_syntax && *l == PREFIX_SEPARATOR)
1765 as_bad (_("expecting prefix; got nothing"));
1766 else
1767 as_bad (_("expecting mnemonic; got nothing"));
1768 return NULL;
1769 }
1770
1771 /* Look up instruction (or prefix) via hash table. */
1772 current_templates = hash_find (op_hash, mnemonic);
1773
1774 if (*l != END_OF_INSN
1775 && (!is_space_char (*l) || l[1] != END_OF_INSN)
1776 && current_templates
1777 && (current_templates->start->opcode_modifier & IsPrefix))
1778 {
1779 if (current_templates->start->cpu_flags
1780 & (flag_code != CODE_64BIT ? Cpu64 : CpuNo64))
1781 {
1782 as_bad ((flag_code != CODE_64BIT
1783 ? _("`%s' is only supported in 64-bit mode")
1784 : _("`%s' is not supported in 64-bit mode")),
1785 current_templates->start->name);
1786 return NULL;
1787 }
1788 /* If we are in 16-bit mode, do not allow addr16 or data16.
1789 Similarly, in 32-bit mode, do not allow addr32 or data32. */
1790 if ((current_templates->start->opcode_modifier & (Size16 | Size32))
1791 && flag_code != CODE_64BIT
1792 && (((current_templates->start->opcode_modifier & Size32) != 0)
1793 ^ (flag_code == CODE_16BIT)))
1794 {
1795 as_bad (_("redundant %s prefix"),
1796 current_templates->start->name);
1797 return NULL;
1798 }
1799 /* Add prefix, checking for repeated prefixes. */
1800 switch (add_prefix (current_templates->start->base_opcode))
1801 {
1802 case 0:
1803 return NULL;
1804 case 2:
1805 expecting_string_instruction = current_templates->start->name;
1806 break;
1807 }
1808 /* Skip past PREFIX_SEPARATOR and reset token_start. */
1809 token_start = ++l;
1810 }
1811 else
1812 break;
1813 }
1814
1815 if (!current_templates)
1816 {
1817 /* See if we can get a match by trimming off a suffix. */
1818 switch (mnem_p[-1])
1819 {
1820 case WORD_MNEM_SUFFIX:
1821 if (intel_syntax && (intel_float_operand (mnemonic) & 2))
1822 i.suffix = SHORT_MNEM_SUFFIX;
1823 else
1824 case BYTE_MNEM_SUFFIX:
1825 case QWORD_MNEM_SUFFIX:
1826 i.suffix = mnem_p[-1];
1827 mnem_p[-1] = '\0';
1828 current_templates = hash_find (op_hash, mnemonic);
1829 break;
1830 case SHORT_MNEM_SUFFIX:
1831 case LONG_MNEM_SUFFIX:
1832 if (!intel_syntax)
1833 {
1834 i.suffix = mnem_p[-1];
1835 mnem_p[-1] = '\0';
1836 current_templates = hash_find (op_hash, mnemonic);
1837 }
1838 break;
1839
1840 /* Intel Syntax. */
1841 case 'd':
1842 if (intel_syntax)
1843 {
1844 if (intel_float_operand (mnemonic) == 1)
1845 i.suffix = SHORT_MNEM_SUFFIX;
1846 else
1847 i.suffix = LONG_MNEM_SUFFIX;
1848 mnem_p[-1] = '\0';
1849 current_templates = hash_find (op_hash, mnemonic);
1850 }
1851 break;
1852 }
1853 if (!current_templates)
1854 {
1855 as_bad (_("no such instruction: `%s'"), token_start);
1856 return NULL;
1857 }
1858 }
1859
1860 if (current_templates->start->opcode_modifier & (Jump | JumpByte))
1861 {
1862 /* Check for a branch hint. We allow ",pt" and ",pn" for
1863 predict taken and predict not taken respectively.
1864 I'm not sure that branch hints actually do anything on loop
1865 and jcxz insns (JumpByte) for current Pentium4 chips. They
1866 may work in the future and it doesn't hurt to accept them
1867 now. */
1868 if (l[0] == ',' && l[1] == 'p')
1869 {
1870 if (l[2] == 't')
1871 {
1872 if (!add_prefix (DS_PREFIX_OPCODE))
1873 return NULL;
1874 l += 3;
1875 }
1876 else if (l[2] == 'n')
1877 {
1878 if (!add_prefix (CS_PREFIX_OPCODE))
1879 return NULL;
1880 l += 3;
1881 }
1882 }
1883 }
1884 /* Any other comma loses. */
1885 if (*l == ',')
1886 {
1887 as_bad (_("invalid character %s in mnemonic"),
1888 output_invalid (*l));
1889 return NULL;
1890 }
1891
1892 /* Check if instruction is supported on specified architecture. */
1893 supported = 0;
1894 for (t = current_templates->start; t < current_templates->end; ++t)
1895 {
1896 if (!((t->cpu_flags & ~(Cpu64 | CpuNo64))
1897 & ~(cpu_arch_flags & ~(Cpu64 | CpuNo64))))
1898 supported |= 1;
1899 if (!(t->cpu_flags & (flag_code == CODE_64BIT ? CpuNo64 : Cpu64)))
1900 supported |= 2;
1901 }
1902 if (!(supported & 2))
1903 {
1904 as_bad (flag_code == CODE_64BIT
1905 ? _("`%s' is not supported in 64-bit mode")
1906 : _("`%s' is only supported in 64-bit mode"),
1907 current_templates->start->name);
1908 return NULL;
1909 }
1910 if (!(supported & 1))
1911 {
1912 as_warn (_("`%s' is not supported on `%s%s'"),
1913 current_templates->start->name,
1914 cpu_arch_name,
1915 cpu_sub_arch_name ? cpu_sub_arch_name : "");
1916 }
1917 else if ((Cpu386 & ~cpu_arch_flags) && (flag_code != CODE_16BIT))
1918 {
1919 as_warn (_("use .code16 to ensure correct addressing mode"));
1920 }
1921
1922 /* Check for rep/repne without a string instruction. */
1923 if (expecting_string_instruction)
1924 {
1925 static templates override;
1926
1927 for (t = current_templates->start; t < current_templates->end; ++t)
1928 if (t->opcode_modifier & IsString)
1929 break;
1930 if (t >= current_templates->end)
1931 {
1932 as_bad (_("expecting string instruction after `%s'"),
1933 expecting_string_instruction);
1934 return NULL;
1935 }
1936 for (override.start = t; t < current_templates->end; ++t)
1937 if (!(t->opcode_modifier & IsString))
1938 break;
1939 override.end = t;
1940 current_templates = &override;
1941 }
1942
1943 return l;
1944 }
1945
1946 static char *
1947 parse_operands (l, mnemonic)
1948 char *l;
1949 const char *mnemonic;
1950 {
1951 char *token_start;
1952
1953 /* 1 if operand is pending after ','. */
1954 unsigned int expecting_operand = 0;
1955
1956 /* Non-zero if operand parens not balanced. */
1957 unsigned int paren_not_balanced;
1958
1959 while (*l != END_OF_INSN)
1960 {
1961 /* Skip optional white space before operand. */
1962 if (is_space_char (*l))
1963 ++l;
1964 if (!is_operand_char (*l) && *l != END_OF_INSN)
1965 {
1966 as_bad (_("invalid character %s before operand %d"),
1967 output_invalid (*l),
1968 i.operands + 1);
1969 return NULL;
1970 }
1971 token_start = l; /* after white space */
1972 paren_not_balanced = 0;
1973 while (paren_not_balanced || *l != ',')
1974 {
1975 if (*l == END_OF_INSN)
1976 {
1977 if (paren_not_balanced)
1978 {
1979 if (!intel_syntax)
1980 as_bad (_("unbalanced parenthesis in operand %d."),
1981 i.operands + 1);
1982 else
1983 as_bad (_("unbalanced brackets in operand %d."),
1984 i.operands + 1);
1985 return NULL;
1986 }
1987 else
1988 break; /* we are done */
1989 }
1990 else if (!is_operand_char (*l) && !is_space_char (*l))
1991 {
1992 as_bad (_("invalid character %s in operand %d"),
1993 output_invalid (*l),
1994 i.operands + 1);
1995 return NULL;
1996 }
1997 if (!intel_syntax)
1998 {
1999 if (*l == '(')
2000 ++paren_not_balanced;
2001 if (*l == ')')
2002 --paren_not_balanced;
2003 }
2004 else
2005 {
2006 if (*l == '[')
2007 ++paren_not_balanced;
2008 if (*l == ']')
2009 --paren_not_balanced;
2010 }
2011 l++;
2012 }
2013 if (l != token_start)
2014 { /* Yes, we've read in another operand. */
2015 unsigned int operand_ok;
2016 this_operand = i.operands++;
2017 if (i.operands > MAX_OPERANDS)
2018 {
2019 as_bad (_("spurious operands; (%d operands/instruction max)"),
2020 MAX_OPERANDS);
2021 return NULL;
2022 }
2023 /* Now parse operand adding info to 'i' as we go along. */
2024 END_STRING_AND_SAVE (l);
2025
2026 if (intel_syntax)
2027 operand_ok =
2028 i386_intel_operand (token_start,
2029 intel_float_operand (mnemonic));
2030 else
2031 operand_ok = i386_operand (token_start);
2032
2033 RESTORE_END_STRING (l);
2034 if (!operand_ok)
2035 return NULL;
2036 }
2037 else
2038 {
2039 if (expecting_operand)
2040 {
2041 expecting_operand_after_comma:
2042 as_bad (_("expecting operand after ','; got nothing"));
2043 return NULL;
2044 }
2045 if (*l == ',')
2046 {
2047 as_bad (_("expecting operand before ','; got nothing"));
2048 return NULL;
2049 }
2050 }
2051
2052 /* Now *l must be either ',' or END_OF_INSN. */
2053 if (*l == ',')
2054 {
2055 if (*++l == END_OF_INSN)
2056 {
2057 /* Just skip it, if it's \n complain. */
2058 goto expecting_operand_after_comma;
2059 }
2060 expecting_operand = 1;
2061 }
2062 }
2063 return l;
2064 }
2065
2066 static void
2067 swap_operands ()
2068 {
2069 union i386_op temp_op;
2070 unsigned int temp_type;
2071 enum bfd_reloc_code_real temp_reloc;
2072 int xchg1 = 0;
2073 int xchg2 = 0;
2074
2075 if (i.operands == 2)
2076 {
2077 xchg1 = 0;
2078 xchg2 = 1;
2079 }
2080 else if (i.operands == 3)
2081 {
2082 xchg1 = 0;
2083 xchg2 = 2;
2084 }
2085 temp_type = i.types[xchg2];
2086 i.types[xchg2] = i.types[xchg1];
2087 i.types[xchg1] = temp_type;
2088 temp_op = i.op[xchg2];
2089 i.op[xchg2] = i.op[xchg1];
2090 i.op[xchg1] = temp_op;
2091 temp_reloc = i.reloc[xchg2];
2092 i.reloc[xchg2] = i.reloc[xchg1];
2093 i.reloc[xchg1] = temp_reloc;
2094
2095 if (i.mem_operands == 2)
2096 {
2097 const seg_entry *temp_seg;
2098 temp_seg = i.seg[0];
2099 i.seg[0] = i.seg[1];
2100 i.seg[1] = temp_seg;
2101 }
2102 }
2103
2104 /* Try to ensure constant immediates are represented in the smallest
2105 opcode possible. */
2106 static void
2107 optimize_imm ()
2108 {
2109 char guess_suffix = 0;
2110 int op;
2111
2112 if (i.suffix)
2113 guess_suffix = i.suffix;
2114 else if (i.reg_operands)
2115 {
2116 /* Figure out a suffix from the last register operand specified.
2117 We can't do this properly yet, ie. excluding InOutPortReg,
2118 but the following works for instructions with immediates.
2119 In any case, we can't set i.suffix yet. */
2120 for (op = i.operands; --op >= 0;)
2121 if (i.types[op] & Reg)
2122 {
2123 if (i.types[op] & Reg8)
2124 guess_suffix = BYTE_MNEM_SUFFIX;
2125 else if (i.types[op] & Reg16)
2126 guess_suffix = WORD_MNEM_SUFFIX;
2127 else if (i.types[op] & Reg32)
2128 guess_suffix = LONG_MNEM_SUFFIX;
2129 else if (i.types[op] & Reg64)
2130 guess_suffix = QWORD_MNEM_SUFFIX;
2131 break;
2132 }
2133 }
2134 else if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
2135 guess_suffix = WORD_MNEM_SUFFIX;
2136
2137 for (op = i.operands; --op >= 0;)
2138 if (i.types[op] & Imm)
2139 {
2140 switch (i.op[op].imms->X_op)
2141 {
2142 case O_constant:
2143 /* If a suffix is given, this operand may be shortened. */
2144 switch (guess_suffix)
2145 {
2146 case LONG_MNEM_SUFFIX:
2147 i.types[op] |= Imm32 | Imm64;
2148 break;
2149 case WORD_MNEM_SUFFIX:
2150 i.types[op] |= Imm16 | Imm32S | Imm32 | Imm64;
2151 break;
2152 case BYTE_MNEM_SUFFIX:
2153 i.types[op] |= Imm16 | Imm8 | Imm8S | Imm32S | Imm32 | Imm64;
2154 break;
2155 }
2156
2157 /* If this operand is at most 16 bits, convert it
2158 to a signed 16 bit number before trying to see
2159 whether it will fit in an even smaller size.
2160 This allows a 16-bit operand such as $0xffe0 to
2161 be recognised as within Imm8S range. */
2162 if ((i.types[op] & Imm16)
2163 && (i.op[op].imms->X_add_number & ~(offsetT) 0xffff) == 0)
2164 {
2165 i.op[op].imms->X_add_number =
2166 (((i.op[op].imms->X_add_number & 0xffff) ^ 0x8000) - 0x8000);
2167 }
2168 if ((i.types[op] & Imm32)
2169 && ((i.op[op].imms->X_add_number & ~(((offsetT) 2 << 31) - 1))
2170 == 0))
2171 {
2172 i.op[op].imms->X_add_number = ((i.op[op].imms->X_add_number
2173 ^ ((offsetT) 1 << 31))
2174 - ((offsetT) 1 << 31));
2175 }
2176 i.types[op] |= smallest_imm_type (i.op[op].imms->X_add_number);
2177
2178 /* We must avoid matching of Imm32 templates when 64bit
2179 only immediate is available. */
2180 if (guess_suffix == QWORD_MNEM_SUFFIX)
2181 i.types[op] &= ~Imm32;
2182 break;
2183
2184 case O_absent:
2185 case O_register:
2186 abort ();
2187
2188 /* Symbols and expressions. */
2189 default:
2190 /* Convert symbolic operand to proper sizes for matching, but don't
2191 prevent matching a set of insns that only supports sizes other
2192 than those matching the insn suffix. */
2193 {
2194 unsigned int mask, allowed = 0;
2195 const template *t;
2196
2197 for (t = current_templates->start; t < current_templates->end; ++t)
2198 allowed |= t->operand_types[op];
2199 switch (guess_suffix)
2200 {
2201 case QWORD_MNEM_SUFFIX:
2202 mask = Imm64 | Imm32S;
2203 break;
2204 case LONG_MNEM_SUFFIX:
2205 mask = Imm32;
2206 break;
2207 case WORD_MNEM_SUFFIX:
2208 mask = Imm16;
2209 break;
2210 case BYTE_MNEM_SUFFIX:
2211 mask = Imm8;
2212 break;
2213 default:
2214 mask = 0;
2215 break;
2216 }
2217 if (mask & allowed)
2218 i.types[op] &= mask;
2219 }
2220 break;
2221 }
2222 }
2223 }
2224
2225 /* Try to use the smallest displacement type too. */
2226 static void
2227 optimize_disp ()
2228 {
2229 int op;
2230
2231 for (op = i.operands; --op >= 0;)
2232 if (i.types[op] & Disp)
2233 {
2234 if (i.op[op].disps->X_op == O_constant)
2235 {
2236 offsetT disp = i.op[op].disps->X_add_number;
2237
2238 if ((i.types[op] & Disp16)
2239 && (disp & ~(offsetT) 0xffff) == 0)
2240 {
2241 /* If this operand is at most 16 bits, convert
2242 to a signed 16 bit number and don't use 64bit
2243 displacement. */
2244 disp = (((disp & 0xffff) ^ 0x8000) - 0x8000);
2245 i.types[op] &= ~Disp64;
2246 }
2247 if ((i.types[op] & Disp32)
2248 && (disp & ~(((offsetT) 2 << 31) - 1)) == 0)
2249 {
2250 /* If this operand is at most 32 bits, convert
2251 to a signed 32 bit number and don't use 64bit
2252 displacement. */
2253 disp &= (((offsetT) 2 << 31) - 1);
2254 disp = (disp ^ ((offsetT) 1 << 31)) - ((addressT) 1 << 31);
2255 i.types[op] &= ~Disp64;
2256 }
2257 if (!disp && (i.types[op] & BaseIndex))
2258 {
2259 i.types[op] &= ~Disp;
2260 i.op[op].disps = 0;
2261 i.disp_operands--;
2262 }
2263 else if (flag_code == CODE_64BIT)
2264 {
2265 if (fits_in_signed_long (disp))
2266 {
2267 i.types[op] &= ~Disp64;
2268 i.types[op] |= Disp32S;
2269 }
2270 if (fits_in_unsigned_long (disp))
2271 i.types[op] |= Disp32;
2272 }
2273 if ((i.types[op] & (Disp32 | Disp32S | Disp16))
2274 && fits_in_signed_byte (disp))
2275 i.types[op] |= Disp8;
2276 }
2277 else if (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
2278 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL)
2279 {
2280 fix_new_exp (frag_now, frag_more (0) - frag_now->fr_literal, 0,
2281 i.op[op].disps, 0, i.reloc[op]);
2282 i.types[op] &= ~Disp;
2283 }
2284 else
2285 /* We only support 64bit displacement on constants. */
2286 i.types[op] &= ~Disp64;
2287 }
2288 }
2289
2290 static int
2291 match_template ()
2292 {
2293 /* Points to template once we've found it. */
2294 const template *t;
2295 unsigned int overlap0, overlap1, overlap2;
2296 unsigned int found_reverse_match;
2297 int suffix_check;
2298
2299 #define MATCH(overlap, given, template) \
2300 ((overlap & ~JumpAbsolute) \
2301 && (((given) & (BaseIndex | JumpAbsolute)) \
2302 == ((overlap) & (BaseIndex | JumpAbsolute))))
2303
2304 /* If given types r0 and r1 are registers they must be of the same type
2305 unless the expected operand type register overlap is null.
2306 Note that Acc in a template matches every size of reg. */
2307 #define CONSISTENT_REGISTER_MATCH(m0, g0, t0, m1, g1, t1) \
2308 (((g0) & Reg) == 0 || ((g1) & Reg) == 0 \
2309 || ((g0) & Reg) == ((g1) & Reg) \
2310 || ((((m0) & Acc) ? Reg : (t0)) & (((m1) & Acc) ? Reg : (t1)) & Reg) == 0 )
2311
2312 overlap0 = 0;
2313 overlap1 = 0;
2314 overlap2 = 0;
2315 found_reverse_match = 0;
2316 suffix_check = (i.suffix == BYTE_MNEM_SUFFIX
2317 ? No_bSuf
2318 : (i.suffix == WORD_MNEM_SUFFIX
2319 ? No_wSuf
2320 : (i.suffix == SHORT_MNEM_SUFFIX
2321 ? No_sSuf
2322 : (i.suffix == LONG_MNEM_SUFFIX
2323 ? No_lSuf
2324 : (i.suffix == QWORD_MNEM_SUFFIX
2325 ? No_qSuf
2326 : (i.suffix == LONG_DOUBLE_MNEM_SUFFIX
2327 ? No_xSuf : 0))))));
2328
2329 for (t = current_templates->start; t < current_templates->end; t++)
2330 {
2331 /* Must have right number of operands. */
2332 if (i.operands != t->operands)
2333 continue;
2334
2335 /* Check the suffix, except for some instructions in intel mode. */
2336 if ((t->opcode_modifier & suffix_check)
2337 && !(intel_syntax
2338 && (t->opcode_modifier & IgnoreSize)))
2339 continue;
2340
2341 /* In general, don't allow 64-bit operands in 32-bit mode. */
2342 if (i.suffix == QWORD_MNEM_SUFFIX
2343 && flag_code != CODE_64BIT
2344 && (intel_syntax
2345 ? (!(t->opcode_modifier & IgnoreSize)
2346 && !intel_float_operand (t->name))
2347 : intel_float_operand (t->name) != 2)
2348 && (!(t->operand_types[0] & (RegMMX | RegXMM))
2349 || !(t->operand_types[t->operands > 1] & (RegMMX | RegXMM)))
2350 && (t->base_opcode != 0x0fc7
2351 || t->extension_opcode != 1 /* cmpxchg8b */))
2352 continue;
2353
2354 /* Do not verify operands when there are none. */
2355 else if (!t->operands)
2356 {
2357 if (t->cpu_flags & ~cpu_arch_flags)
2358 continue;
2359 /* We've found a match; break out of loop. */
2360 break;
2361 }
2362
2363 overlap0 = i.types[0] & t->operand_types[0];
2364 switch (t->operands)
2365 {
2366 case 1:
2367 if (!MATCH (overlap0, i.types[0], t->operand_types[0]))
2368 continue;
2369 break;
2370 case 2:
2371 case 3:
2372 overlap1 = i.types[1] & t->operand_types[1];
2373 if (!MATCH (overlap0, i.types[0], t->operand_types[0])
2374 || !MATCH (overlap1, i.types[1], t->operand_types[1])
2375 /* monitor in SSE3 is a very special case. The first
2376 register and the second register may have different
2377 sizes. */
2378 || !((t->base_opcode == 0x0f01
2379 && t->extension_opcode == 0xc8)
2380 || CONSISTENT_REGISTER_MATCH (overlap0, i.types[0],
2381 t->operand_types[0],
2382 overlap1, i.types[1],
2383 t->operand_types[1])))
2384 {
2385 /* Check if other direction is valid ... */
2386 if ((t->opcode_modifier & (D | FloatD)) == 0)
2387 continue;
2388
2389 /* Try reversing direction of operands. */
2390 overlap0 = i.types[0] & t->operand_types[1];
2391 overlap1 = i.types[1] & t->operand_types[0];
2392 if (!MATCH (overlap0, i.types[0], t->operand_types[1])
2393 || !MATCH (overlap1, i.types[1], t->operand_types[0])
2394 || !CONSISTENT_REGISTER_MATCH (overlap0, i.types[0],
2395 t->operand_types[1],
2396 overlap1, i.types[1],
2397 t->operand_types[0]))
2398 {
2399 /* Does not match either direction. */
2400 continue;
2401 }
2402 /* found_reverse_match holds which of D or FloatDR
2403 we've found. */
2404 found_reverse_match = t->opcode_modifier & (D | FloatDR);
2405 }
2406 /* Found a forward 2 operand match here. */
2407 else if (t->operands == 3)
2408 {
2409 /* Here we make use of the fact that there are no
2410 reverse match 3 operand instructions, and all 3
2411 operand instructions only need to be checked for
2412 register consistency between operands 2 and 3. */
2413 overlap2 = i.types[2] & t->operand_types[2];
2414 if (!MATCH (overlap2, i.types[2], t->operand_types[2])
2415 || !CONSISTENT_REGISTER_MATCH (overlap1, i.types[1],
2416 t->operand_types[1],
2417 overlap2, i.types[2],
2418 t->operand_types[2]))
2419
2420 continue;
2421 }
2422 /* Found either forward/reverse 2 or 3 operand match here:
2423 slip through to break. */
2424 }
2425 if (t->cpu_flags & ~cpu_arch_flags)
2426 {
2427 found_reverse_match = 0;
2428 continue;
2429 }
2430 /* We've found a match; break out of loop. */
2431 break;
2432 }
2433
2434 if (t == current_templates->end)
2435 {
2436 /* We found no match. */
2437 as_bad (_("suffix or operands invalid for `%s'"),
2438 current_templates->start->name);
2439 return 0;
2440 }
2441
2442 if (!quiet_warnings)
2443 {
2444 if (!intel_syntax
2445 && ((i.types[0] & JumpAbsolute)
2446 != (t->operand_types[0] & JumpAbsolute)))
2447 {
2448 as_warn (_("indirect %s without `*'"), t->name);
2449 }
2450
2451 if ((t->opcode_modifier & (IsPrefix | IgnoreSize))
2452 == (IsPrefix | IgnoreSize))
2453 {
2454 /* Warn them that a data or address size prefix doesn't
2455 affect assembly of the next line of code. */
2456 as_warn (_("stand-alone `%s' prefix"), t->name);
2457 }
2458 }
2459
2460 /* Copy the template we found. */
2461 i.tm = *t;
2462 if (found_reverse_match)
2463 {
2464 /* If we found a reverse match we must alter the opcode
2465 direction bit. found_reverse_match holds bits to change
2466 (different for int & float insns). */
2467
2468 i.tm.base_opcode ^= found_reverse_match;
2469
2470 i.tm.operand_types[0] = t->operand_types[1];
2471 i.tm.operand_types[1] = t->operand_types[0];
2472 }
2473
2474 return 1;
2475 }
2476
2477 static int
2478 check_string ()
2479 {
2480 int mem_op = (i.types[0] & AnyMem) ? 0 : 1;
2481 if ((i.tm.operand_types[mem_op] & EsSeg) != 0)
2482 {
2483 if (i.seg[0] != NULL && i.seg[0] != &es)
2484 {
2485 as_bad (_("`%s' operand %d must use `%%es' segment"),
2486 i.tm.name,
2487 mem_op + 1);
2488 return 0;
2489 }
2490 /* There's only ever one segment override allowed per instruction.
2491 This instruction possibly has a legal segment override on the
2492 second operand, so copy the segment to where non-string
2493 instructions store it, allowing common code. */
2494 i.seg[0] = i.seg[1];
2495 }
2496 else if ((i.tm.operand_types[mem_op + 1] & EsSeg) != 0)
2497 {
2498 if (i.seg[1] != NULL && i.seg[1] != &es)
2499 {
2500 as_bad (_("`%s' operand %d must use `%%es' segment"),
2501 i.tm.name,
2502 mem_op + 2);
2503 return 0;
2504 }
2505 }
2506 return 1;
2507 }
2508
2509 static int
2510 process_suffix (void)
2511 {
2512 /* If matched instruction specifies an explicit instruction mnemonic
2513 suffix, use it. */
2514 if (i.tm.opcode_modifier & (Size16 | Size32 | Size64))
2515 {
2516 if (i.tm.opcode_modifier & Size16)
2517 i.suffix = WORD_MNEM_SUFFIX;
2518 else if (i.tm.opcode_modifier & Size64)
2519 i.suffix = QWORD_MNEM_SUFFIX;
2520 else
2521 i.suffix = LONG_MNEM_SUFFIX;
2522 }
2523 else if (i.reg_operands)
2524 {
2525 /* If there's no instruction mnemonic suffix we try to invent one
2526 based on register operands. */
2527 if (!i.suffix)
2528 {
2529 /* We take i.suffix from the last register operand specified,
2530 Destination register type is more significant than source
2531 register type. */
2532 int op;
2533
2534 for (op = i.operands; --op >= 0;)
2535 if ((i.types[op] & Reg)
2536 && !(i.tm.operand_types[op] & InOutPortReg))
2537 {
2538 i.suffix = ((i.types[op] & Reg8) ? BYTE_MNEM_SUFFIX :
2539 (i.types[op] & Reg16) ? WORD_MNEM_SUFFIX :
2540 (i.types[op] & Reg64) ? QWORD_MNEM_SUFFIX :
2541 LONG_MNEM_SUFFIX);
2542 break;
2543 }
2544 }
2545 else if (i.suffix == BYTE_MNEM_SUFFIX)
2546 {
2547 if (!check_byte_reg ())
2548 return 0;
2549 }
2550 else if (i.suffix == LONG_MNEM_SUFFIX)
2551 {
2552 if (!check_long_reg ())
2553 return 0;
2554 }
2555 else if (i.suffix == QWORD_MNEM_SUFFIX)
2556 {
2557 if (!check_qword_reg ())
2558 return 0;
2559 }
2560 else if (i.suffix == WORD_MNEM_SUFFIX)
2561 {
2562 if (!check_word_reg ())
2563 return 0;
2564 }
2565 else if (intel_syntax && (i.tm.opcode_modifier & IgnoreSize))
2566 /* Do nothing if the instruction is going to ignore the prefix. */
2567 ;
2568 else
2569 abort ();
2570 }
2571 else if ((i.tm.opcode_modifier & DefaultSize)
2572 && !i.suffix
2573 /* exclude fldenv/frstor/fsave/fstenv */
2574 && (i.tm.opcode_modifier & No_sSuf))
2575 {
2576 i.suffix = stackop_size;
2577 }
2578 else if (intel_syntax
2579 && !i.suffix
2580 && ((i.tm.operand_types[0] & JumpAbsolute)
2581 || (i.tm.opcode_modifier & (JumpByte|JumpInterSegment))
2582 || (i.tm.base_opcode == 0x0f01 /* [ls][gi]dt */
2583 && i.tm.extension_opcode <= 3)))
2584 {
2585 switch (flag_code)
2586 {
2587 case CODE_64BIT:
2588 if (!(i.tm.opcode_modifier & No_qSuf))
2589 {
2590 i.suffix = QWORD_MNEM_SUFFIX;
2591 break;
2592 }
2593 case CODE_32BIT:
2594 if (!(i.tm.opcode_modifier & No_lSuf))
2595 i.suffix = LONG_MNEM_SUFFIX;
2596 break;
2597 case CODE_16BIT:
2598 if (!(i.tm.opcode_modifier & No_wSuf))
2599 i.suffix = WORD_MNEM_SUFFIX;
2600 break;
2601 }
2602 }
2603
2604 if (!i.suffix)
2605 {
2606 if (!intel_syntax)
2607 {
2608 if (i.tm.opcode_modifier & W)
2609 {
2610 as_bad (_("no instruction mnemonic suffix given and no register operands; can't size instruction"));
2611 return 0;
2612 }
2613 }
2614 else
2615 {
2616 unsigned int suffixes = (~i.tm.opcode_modifier
2617 & (No_bSuf
2618 | No_wSuf
2619 | No_lSuf
2620 | No_sSuf
2621 | No_xSuf
2622 | No_qSuf));
2623
2624 if ((i.tm.opcode_modifier & W)
2625 || ((suffixes & (suffixes - 1))
2626 && !(i.tm.opcode_modifier & (DefaultSize | IgnoreSize))))
2627 {
2628 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
2629 return 0;
2630 }
2631 }
2632 }
2633
2634 /* Change the opcode based on the operand size given by i.suffix;
2635 We don't need to change things for byte insns. */
2636
2637 if (i.suffix && i.suffix != BYTE_MNEM_SUFFIX)
2638 {
2639 /* It's not a byte, select word/dword operation. */
2640 if (i.tm.opcode_modifier & W)
2641 {
2642 if (i.tm.opcode_modifier & ShortForm)
2643 i.tm.base_opcode |= 8;
2644 else
2645 i.tm.base_opcode |= 1;
2646 }
2647
2648 /* Now select between word & dword operations via the operand
2649 size prefix, except for instructions that will ignore this
2650 prefix anyway. */
2651 if (i.tm.base_opcode == 0x0f01 && i.tm.extension_opcode == 0xc8)
2652 {
2653 /* monitor in SSE3 is a very special case. The default size
2654 of AX is the size of mode. The address size override
2655 prefix will change the size of AX. */
2656 if (i.op->regs[0].reg_type &
2657 (flag_code == CODE_32BIT ? Reg16 : Reg32))
2658 if (!add_prefix (ADDR_PREFIX_OPCODE))
2659 return 0;
2660 }
2661 else if (i.suffix != QWORD_MNEM_SUFFIX
2662 && i.suffix != LONG_DOUBLE_MNEM_SUFFIX
2663 && !(i.tm.opcode_modifier & (IgnoreSize | FloatMF))
2664 && ((i.suffix == LONG_MNEM_SUFFIX) == (flag_code == CODE_16BIT)
2665 || (flag_code == CODE_64BIT
2666 && (i.tm.opcode_modifier & JumpByte))))
2667 {
2668 unsigned int prefix = DATA_PREFIX_OPCODE;
2669
2670 if (i.tm.opcode_modifier & JumpByte) /* jcxz, loop */
2671 prefix = ADDR_PREFIX_OPCODE;
2672
2673 if (!add_prefix (prefix))
2674 return 0;
2675 }
2676
2677 /* Set mode64 for an operand. */
2678 if (i.suffix == QWORD_MNEM_SUFFIX
2679 && flag_code == CODE_64BIT
2680 && (i.tm.opcode_modifier & NoRex64) == 0)
2681 {
2682 /* Special case for xchg %rax,%rax. It is NOP and doesn't
2683 need rex64. */
2684 if (i.operands != 2
2685 || i.types [0] != (Acc | Reg64)
2686 || i.types [1] != (Acc | Reg64)
2687 || strcmp (i.tm.name, "xchg") != 0)
2688 i.rex |= REX_MODE64;
2689 }
2690
2691 /* Size floating point instruction. */
2692 if (i.suffix == LONG_MNEM_SUFFIX)
2693 if (i.tm.opcode_modifier & FloatMF)
2694 i.tm.base_opcode ^= 4;
2695 }
2696
2697 return 1;
2698 }
2699
2700 static int
2701 check_byte_reg (void)
2702 {
2703 int op;
2704
2705 for (op = i.operands; --op >= 0;)
2706 {
2707 /* If this is an eight bit register, it's OK. If it's the 16 or
2708 32 bit version of an eight bit register, we will just use the
2709 low portion, and that's OK too. */
2710 if (i.types[op] & Reg8)
2711 continue;
2712
2713 /* movzx and movsx should not generate this warning. */
2714 if (intel_syntax
2715 && (i.tm.base_opcode == 0xfb7
2716 || i.tm.base_opcode == 0xfb6
2717 || i.tm.base_opcode == 0x63
2718 || i.tm.base_opcode == 0xfbe
2719 || i.tm.base_opcode == 0xfbf))
2720 continue;
2721
2722 if ((i.types[op] & WordReg) && i.op[op].regs->reg_num < 4)
2723 {
2724 /* Prohibit these changes in the 64bit mode, since the
2725 lowering is more complicated. */
2726 if (flag_code == CODE_64BIT
2727 && (i.tm.operand_types[op] & InOutPortReg) == 0)
2728 {
2729 as_bad (_("Incorrect register `%%%s' used with `%c' suffix"),
2730 i.op[op].regs->reg_name,
2731 i.suffix);
2732 return 0;
2733 }
2734 #if REGISTER_WARNINGS
2735 if (!quiet_warnings
2736 && (i.tm.operand_types[op] & InOutPortReg) == 0)
2737 as_warn (_("using `%%%s' instead of `%%%s' due to `%c' suffix"),
2738 (i.op[op].regs + (i.types[op] & Reg16
2739 ? REGNAM_AL - REGNAM_AX
2740 : REGNAM_AL - REGNAM_EAX))->reg_name,
2741 i.op[op].regs->reg_name,
2742 i.suffix);
2743 #endif
2744 continue;
2745 }
2746 /* Any other register is bad. */
2747 if (i.types[op] & (Reg | RegMMX | RegXMM
2748 | SReg2 | SReg3
2749 | Control | Debug | Test
2750 | FloatReg | FloatAcc))
2751 {
2752 as_bad (_("`%%%s' not allowed with `%s%c'"),
2753 i.op[op].regs->reg_name,
2754 i.tm.name,
2755 i.suffix);
2756 return 0;
2757 }
2758 }
2759 return 1;
2760 }
2761
2762 static int
2763 check_long_reg ()
2764 {
2765 int op;
2766
2767 for (op = i.operands; --op >= 0;)
2768 /* Reject eight bit registers, except where the template requires
2769 them. (eg. movzb) */
2770 if ((i.types[op] & Reg8) != 0
2771 && (i.tm.operand_types[op] & (Reg16 | Reg32 | Acc)) != 0)
2772 {
2773 as_bad (_("`%%%s' not allowed with `%s%c'"),
2774 i.op[op].regs->reg_name,
2775 i.tm.name,
2776 i.suffix);
2777 return 0;
2778 }
2779 /* Warn if the e prefix on a general reg is missing. */
2780 else if ((!quiet_warnings || flag_code == CODE_64BIT)
2781 && (i.types[op] & Reg16) != 0
2782 && (i.tm.operand_types[op] & (Reg32 | Acc)) != 0)
2783 {
2784 /* Prohibit these changes in the 64bit mode, since the
2785 lowering is more complicated. */
2786 if (flag_code == CODE_64BIT)
2787 {
2788 as_bad (_("Incorrect register `%%%s' used with `%c' suffix"),
2789 i.op[op].regs->reg_name,
2790 i.suffix);
2791 return 0;
2792 }
2793 #if REGISTER_WARNINGS
2794 else
2795 as_warn (_("using `%%%s' instead of `%%%s' due to `%c' suffix"),
2796 (i.op[op].regs + REGNAM_EAX - REGNAM_AX)->reg_name,
2797 i.op[op].regs->reg_name,
2798 i.suffix);
2799 #endif
2800 }
2801 /* Warn if the r prefix on a general reg is missing. */
2802 else if ((i.types[op] & Reg64) != 0
2803 && (i.tm.operand_types[op] & (Reg32 | Acc)) != 0)
2804 {
2805 as_bad (_("Incorrect register `%%%s' used with `%c' suffix"),
2806 i.op[op].regs->reg_name,
2807 i.suffix);
2808 return 0;
2809 }
2810 return 1;
2811 }
2812
2813 static int
2814 check_qword_reg ()
2815 {
2816 int op;
2817
2818 for (op = i.operands; --op >= 0; )
2819 /* Reject eight bit registers, except where the template requires
2820 them. (eg. movzb) */
2821 if ((i.types[op] & Reg8) != 0
2822 && (i.tm.operand_types[op] & (Reg16 | Reg32 | Acc)) != 0)
2823 {
2824 as_bad (_("`%%%s' not allowed with `%s%c'"),
2825 i.op[op].regs->reg_name,
2826 i.tm.name,
2827 i.suffix);
2828 return 0;
2829 }
2830 /* Warn if the e prefix on a general reg is missing. */
2831 else if (((i.types[op] & Reg16) != 0
2832 || (i.types[op] & Reg32) != 0)
2833 && (i.tm.operand_types[op] & (Reg32 | Acc)) != 0)
2834 {
2835 /* Prohibit these changes in the 64bit mode, since the
2836 lowering is more complicated. */
2837 as_bad (_("Incorrect register `%%%s' used with `%c' suffix"),
2838 i.op[op].regs->reg_name,
2839 i.suffix);
2840 return 0;
2841 }
2842 return 1;
2843 }
2844
2845 static int
2846 check_word_reg ()
2847 {
2848 int op;
2849 for (op = i.operands; --op >= 0;)
2850 /* Reject eight bit registers, except where the template requires
2851 them. (eg. movzb) */
2852 if ((i.types[op] & Reg8) != 0
2853 && (i.tm.operand_types[op] & (Reg16 | Reg32 | Acc)) != 0)
2854 {
2855 as_bad (_("`%%%s' not allowed with `%s%c'"),
2856 i.op[op].regs->reg_name,
2857 i.tm.name,
2858 i.suffix);
2859 return 0;
2860 }
2861 /* Warn if the e prefix on a general reg is present. */
2862 else if ((!quiet_warnings || flag_code == CODE_64BIT)
2863 && (i.types[op] & Reg32) != 0
2864 && (i.tm.operand_types[op] & (Reg16 | Acc)) != 0)
2865 {
2866 /* Prohibit these changes in the 64bit mode, since the
2867 lowering is more complicated. */
2868 if (flag_code == CODE_64BIT)
2869 {
2870 as_bad (_("Incorrect register `%%%s' used with `%c' suffix"),
2871 i.op[op].regs->reg_name,
2872 i.suffix);
2873 return 0;
2874 }
2875 else
2876 #if REGISTER_WARNINGS
2877 as_warn (_("using `%%%s' instead of `%%%s' due to `%c' suffix"),
2878 (i.op[op].regs + REGNAM_AX - REGNAM_EAX)->reg_name,
2879 i.op[op].regs->reg_name,
2880 i.suffix);
2881 #endif
2882 }
2883 return 1;
2884 }
2885
2886 static int
2887 finalize_imm ()
2888 {
2889 unsigned int overlap0, overlap1, overlap2;
2890
2891 overlap0 = i.types[0] & i.tm.operand_types[0];
2892 if ((overlap0 & (Imm8 | Imm8S | Imm16 | Imm32 | Imm32S | Imm64))
2893 && overlap0 != Imm8 && overlap0 != Imm8S
2894 && overlap0 != Imm16 && overlap0 != Imm32S
2895 && overlap0 != Imm32 && overlap0 != Imm64)
2896 {
2897 if (i.suffix)
2898 {
2899 overlap0 &= (i.suffix == BYTE_MNEM_SUFFIX
2900 ? Imm8 | Imm8S
2901 : (i.suffix == WORD_MNEM_SUFFIX
2902 ? Imm16
2903 : (i.suffix == QWORD_MNEM_SUFFIX
2904 ? Imm64 | Imm32S
2905 : Imm32)));
2906 }
2907 else if (overlap0 == (Imm16 | Imm32S | Imm32)
2908 || overlap0 == (Imm16 | Imm32)
2909 || overlap0 == (Imm16 | Imm32S))
2910 {
2911 overlap0 = ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0)
2912 ? Imm16 : Imm32S);
2913 }
2914 if (overlap0 != Imm8 && overlap0 != Imm8S
2915 && overlap0 != Imm16 && overlap0 != Imm32S
2916 && overlap0 != Imm32 && overlap0 != Imm64)
2917 {
2918 as_bad (_("no instruction mnemonic suffix given; can't determine immediate size"));
2919 return 0;
2920 }
2921 }
2922 i.types[0] = overlap0;
2923
2924 overlap1 = i.types[1] & i.tm.operand_types[1];
2925 if ((overlap1 & (Imm8 | Imm8S | Imm16 | Imm32S | Imm32 | Imm64))
2926 && overlap1 != Imm8 && overlap1 != Imm8S
2927 && overlap1 != Imm16 && overlap1 != Imm32S
2928 && overlap1 != Imm32 && overlap1 != Imm64)
2929 {
2930 if (i.suffix)
2931 {
2932 overlap1 &= (i.suffix == BYTE_MNEM_SUFFIX
2933 ? Imm8 | Imm8S
2934 : (i.suffix == WORD_MNEM_SUFFIX
2935 ? Imm16
2936 : (i.suffix == QWORD_MNEM_SUFFIX
2937 ? Imm64 | Imm32S
2938 : Imm32)));
2939 }
2940 else if (overlap1 == (Imm16 | Imm32 | Imm32S)
2941 || overlap1 == (Imm16 | Imm32)
2942 || overlap1 == (Imm16 | Imm32S))
2943 {
2944 overlap1 = ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0)
2945 ? Imm16 : Imm32S);
2946 }
2947 if (overlap1 != Imm8 && overlap1 != Imm8S
2948 && overlap1 != Imm16 && overlap1 != Imm32S
2949 && overlap1 != Imm32 && overlap1 != Imm64)
2950 {
2951 as_bad (_("no instruction mnemonic suffix given; can't determine immediate size %x %c"),overlap1, i.suffix);
2952 return 0;
2953 }
2954 }
2955 i.types[1] = overlap1;
2956
2957 overlap2 = i.types[2] & i.tm.operand_types[2];
2958 assert ((overlap2 & Imm) == 0);
2959 i.types[2] = overlap2;
2960
2961 return 1;
2962 }
2963
2964 static int
2965 process_operands ()
2966 {
2967 /* Default segment register this instruction will use for memory
2968 accesses. 0 means unknown. This is only for optimizing out
2969 unnecessary segment overrides. */
2970 const seg_entry *default_seg = 0;
2971
2972 /* The imul $imm, %reg instruction is converted into
2973 imul $imm, %reg, %reg, and the clr %reg instruction
2974 is converted into xor %reg, %reg. */
2975 if (i.tm.opcode_modifier & regKludge)
2976 {
2977 unsigned int first_reg_op = (i.types[0] & Reg) ? 0 : 1;
2978 /* Pretend we saw the extra register operand. */
2979 assert (i.op[first_reg_op + 1].regs == 0);
2980 i.op[first_reg_op + 1].regs = i.op[first_reg_op].regs;
2981 i.types[first_reg_op + 1] = i.types[first_reg_op];
2982 i.reg_operands = 2;
2983 }
2984
2985 if (i.tm.opcode_modifier & ShortForm)
2986 {
2987 /* The register or float register operand is in operand 0 or 1. */
2988 unsigned int op = (i.types[0] & (Reg | FloatReg)) ? 0 : 1;
2989 /* Register goes in low 3 bits of opcode. */
2990 i.tm.base_opcode |= i.op[op].regs->reg_num;
2991 if ((i.op[op].regs->reg_flags & RegRex) != 0)
2992 i.rex |= REX_EXTZ;
2993 if (!quiet_warnings && (i.tm.opcode_modifier & Ugh) != 0)
2994 {
2995 /* Warn about some common errors, but press on regardless.
2996 The first case can be generated by gcc (<= 2.8.1). */
2997 if (i.operands == 2)
2998 {
2999 /* Reversed arguments on faddp, fsubp, etc. */
3000 as_warn (_("translating to `%s %%%s,%%%s'"), i.tm.name,
3001 i.op[1].regs->reg_name,
3002 i.op[0].regs->reg_name);
3003 }
3004 else
3005 {
3006 /* Extraneous `l' suffix on fp insn. */
3007 as_warn (_("translating to `%s %%%s'"), i.tm.name,
3008 i.op[0].regs->reg_name);
3009 }
3010 }
3011 }
3012 else if (i.tm.opcode_modifier & Modrm)
3013 {
3014 /* The opcode is completed (modulo i.tm.extension_opcode which
3015 must be put into the modrm byte). Now, we make the modrm and
3016 index base bytes based on all the info we've collected. */
3017
3018 default_seg = build_modrm_byte ();
3019 }
3020 else if (i.tm.opcode_modifier & (Seg2ShortForm | Seg3ShortForm))
3021 {
3022 if (i.tm.base_opcode == POP_SEG_SHORT
3023 && i.op[0].regs->reg_num == 1)
3024 {
3025 as_bad (_("you can't `pop %%cs'"));
3026 return 0;
3027 }
3028 i.tm.base_opcode |= (i.op[0].regs->reg_num << 3);
3029 if ((i.op[0].regs->reg_flags & RegRex) != 0)
3030 i.rex |= REX_EXTZ;
3031 }
3032 else if ((i.tm.base_opcode & ~(D | W)) == MOV_AX_DISP32)
3033 {
3034 default_seg = &ds;
3035 }
3036 else if ((i.tm.opcode_modifier & IsString) != 0)
3037 {
3038 /* For the string instructions that allow a segment override
3039 on one of their operands, the default segment is ds. */
3040 default_seg = &ds;
3041 }
3042
3043 if ((i.tm.base_opcode == 0x8d /* lea */
3044 || (i.tm.cpu_flags & CpuSVME))
3045 && i.seg[0] && !quiet_warnings)
3046 as_warn (_("segment override on `%s' is ineffectual"), i.tm.name);
3047
3048 /* If a segment was explicitly specified, and the specified segment
3049 is not the default, use an opcode prefix to select it. If we
3050 never figured out what the default segment is, then default_seg
3051 will be zero at this point, and the specified segment prefix will
3052 always be used. */
3053 if ((i.seg[0]) && (i.seg[0] != default_seg))
3054 {
3055 if (!add_prefix (i.seg[0]->seg_prefix))
3056 return 0;
3057 }
3058 return 1;
3059 }
3060
3061 static const seg_entry *
3062 build_modrm_byte ()
3063 {
3064 const seg_entry *default_seg = 0;
3065
3066 /* i.reg_operands MUST be the number of real register operands;
3067 implicit registers do not count. */
3068 if (i.reg_operands == 2)
3069 {
3070 unsigned int source, dest;
3071 source = ((i.types[0]
3072 & (Reg | RegMMX | RegXMM
3073 | SReg2 | SReg3
3074 | Control | Debug | Test))
3075 ? 0 : 1);
3076 dest = source + 1;
3077
3078 i.rm.mode = 3;
3079 /* One of the register operands will be encoded in the i.tm.reg
3080 field, the other in the combined i.tm.mode and i.tm.regmem
3081 fields. If no form of this instruction supports a memory
3082 destination operand, then we assume the source operand may
3083 sometimes be a memory operand and so we need to store the
3084 destination in the i.rm.reg field. */
3085 if ((i.tm.operand_types[dest] & AnyMem) == 0)
3086 {
3087 i.rm.reg = i.op[dest].regs->reg_num;
3088 i.rm.regmem = i.op[source].regs->reg_num;
3089 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
3090 i.rex |= REX_EXTX;
3091 if ((i.op[source].regs->reg_flags & RegRex) != 0)
3092 i.rex |= REX_EXTZ;
3093 }
3094 else
3095 {
3096 i.rm.reg = i.op[source].regs->reg_num;
3097 i.rm.regmem = i.op[dest].regs->reg_num;
3098 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
3099 i.rex |= REX_EXTZ;
3100 if ((i.op[source].regs->reg_flags & RegRex) != 0)
3101 i.rex |= REX_EXTX;
3102 }
3103 if (flag_code != CODE_64BIT && (i.rex & (REX_EXTX | REX_EXTZ)))
3104 {
3105 if (!((i.types[0] | i.types[1]) & Control))
3106 abort ();
3107 i.rex &= ~(REX_EXTX | REX_EXTZ);
3108 add_prefix (LOCK_PREFIX_OPCODE);
3109 }
3110 }
3111 else
3112 { /* If it's not 2 reg operands... */
3113 if (i.mem_operands)
3114 {
3115 unsigned int fake_zero_displacement = 0;
3116 unsigned int op = ((i.types[0] & AnyMem)
3117 ? 0
3118 : (i.types[1] & AnyMem) ? 1 : 2);
3119
3120 default_seg = &ds;
3121
3122 if (i.base_reg == 0)
3123 {
3124 i.rm.mode = 0;
3125 if (!i.disp_operands)
3126 fake_zero_displacement = 1;
3127 if (i.index_reg == 0)
3128 {
3129 /* Operand is just <disp> */
3130 if (flag_code == CODE_64BIT)
3131 {
3132 /* 64bit mode overwrites the 32bit absolute
3133 addressing by RIP relative addressing and
3134 absolute addressing is encoded by one of the
3135 redundant SIB forms. */
3136 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
3137 i.sib.base = NO_BASE_REGISTER;
3138 i.sib.index = NO_INDEX_REGISTER;
3139 i.types[op] = ((i.prefix[ADDR_PREFIX] == 0) ? Disp32S : Disp32);
3140 }
3141 else if ((flag_code == CODE_16BIT) ^ (i.prefix[ADDR_PREFIX] != 0))
3142 {
3143 i.rm.regmem = NO_BASE_REGISTER_16;
3144 i.types[op] = Disp16;
3145 }
3146 else
3147 {
3148 i.rm.regmem = NO_BASE_REGISTER;
3149 i.types[op] = Disp32;
3150 }
3151 }
3152 else /* !i.base_reg && i.index_reg */
3153 {
3154 i.sib.index = i.index_reg->reg_num;
3155 i.sib.base = NO_BASE_REGISTER;
3156 i.sib.scale = i.log2_scale_factor;
3157 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
3158 i.types[op] &= ~Disp;
3159 if (flag_code != CODE_64BIT)
3160 i.types[op] |= Disp32; /* Must be 32 bit */
3161 else
3162 i.types[op] |= Disp32S;
3163 if ((i.index_reg->reg_flags & RegRex) != 0)
3164 i.rex |= REX_EXTY;
3165 }
3166 }
3167 /* RIP addressing for 64bit mode. */
3168 else if (i.base_reg->reg_type == BaseIndex)
3169 {
3170 i.rm.regmem = NO_BASE_REGISTER;
3171 i.types[op] &= ~ Disp;
3172 i.types[op] |= Disp32S;
3173 i.flags[op] = Operand_PCrel;
3174 if (! i.disp_operands)
3175 fake_zero_displacement = 1;
3176 }
3177 else if (i.base_reg->reg_type & Reg16)
3178 {
3179 switch (i.base_reg->reg_num)
3180 {
3181 case 3: /* (%bx) */
3182 if (i.index_reg == 0)
3183 i.rm.regmem = 7;
3184 else /* (%bx,%si) -> 0, or (%bx,%di) -> 1 */
3185 i.rm.regmem = i.index_reg->reg_num - 6;
3186 break;
3187 case 5: /* (%bp) */
3188 default_seg = &ss;
3189 if (i.index_reg == 0)
3190 {
3191 i.rm.regmem = 6;
3192 if ((i.types[op] & Disp) == 0)
3193 {
3194 /* fake (%bp) into 0(%bp) */
3195 i.types[op] |= Disp8;
3196 fake_zero_displacement = 1;
3197 }
3198 }
3199 else /* (%bp,%si) -> 2, or (%bp,%di) -> 3 */
3200 i.rm.regmem = i.index_reg->reg_num - 6 + 2;
3201 break;
3202 default: /* (%si) -> 4 or (%di) -> 5 */
3203 i.rm.regmem = i.base_reg->reg_num - 6 + 4;
3204 }
3205 i.rm.mode = mode_from_disp_size (i.types[op]);
3206 }
3207 else /* i.base_reg and 32/64 bit mode */
3208 {
3209 if (flag_code == CODE_64BIT
3210 && (i.types[op] & Disp))
3211 i.types[op] = (i.types[op] & Disp8) | (i.prefix[ADDR_PREFIX] == 0 ? Disp32S : Disp32);
3212
3213 i.rm.regmem = i.base_reg->reg_num;
3214 if ((i.base_reg->reg_flags & RegRex) != 0)
3215 i.rex |= REX_EXTZ;
3216 i.sib.base = i.base_reg->reg_num;
3217 /* x86-64 ignores REX prefix bit here to avoid decoder
3218 complications. */
3219 if ((i.base_reg->reg_num & 7) == EBP_REG_NUM)
3220 {
3221 default_seg = &ss;
3222 if (i.disp_operands == 0)
3223 {
3224 fake_zero_displacement = 1;
3225 i.types[op] |= Disp8;
3226 }
3227 }
3228 else if (i.base_reg->reg_num == ESP_REG_NUM)
3229 {
3230 default_seg = &ss;
3231 }
3232 i.sib.scale = i.log2_scale_factor;
3233 if (i.index_reg == 0)
3234 {
3235 /* <disp>(%esp) becomes two byte modrm with no index
3236 register. We've already stored the code for esp
3237 in i.rm.regmem ie. ESCAPE_TO_TWO_BYTE_ADDRESSING.
3238 Any base register besides %esp will not use the
3239 extra modrm byte. */
3240 i.sib.index = NO_INDEX_REGISTER;
3241 #if !SCALE1_WHEN_NO_INDEX
3242 /* Another case where we force the second modrm byte. */
3243 if (i.log2_scale_factor)
3244 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
3245 #endif
3246 }
3247 else
3248 {
3249 i.sib.index = i.index_reg->reg_num;
3250 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
3251 if ((i.index_reg->reg_flags & RegRex) != 0)
3252 i.rex |= REX_EXTY;
3253 }
3254
3255 if (i.disp_operands
3256 && (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
3257 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL))
3258 i.rm.mode = 0;
3259 else
3260 i.rm.mode = mode_from_disp_size (i.types[op]);
3261 }
3262
3263 if (fake_zero_displacement)
3264 {
3265 /* Fakes a zero displacement assuming that i.types[op]
3266 holds the correct displacement size. */
3267 expressionS *exp;
3268
3269 assert (i.op[op].disps == 0);
3270 exp = &disp_expressions[i.disp_operands++];
3271 i.op[op].disps = exp;
3272 exp->X_op = O_constant;
3273 exp->X_add_number = 0;
3274 exp->X_add_symbol = (symbolS *) 0;
3275 exp->X_op_symbol = (symbolS *) 0;
3276 }
3277 }
3278
3279 /* Fill in i.rm.reg or i.rm.regmem field with register operand
3280 (if any) based on i.tm.extension_opcode. Again, we must be
3281 careful to make sure that segment/control/debug/test/MMX
3282 registers are coded into the i.rm.reg field. */
3283 if (i.reg_operands)
3284 {
3285 unsigned int op =
3286 ((i.types[0]
3287 & (Reg | RegMMX | RegXMM
3288 | SReg2 | SReg3
3289 | Control | Debug | Test))
3290 ? 0
3291 : ((i.types[1]
3292 & (Reg | RegMMX | RegXMM
3293 | SReg2 | SReg3
3294 | Control | Debug | Test))
3295 ? 1
3296 : 2));
3297 /* If there is an extension opcode to put here, the register
3298 number must be put into the regmem field. */
3299 if (i.tm.extension_opcode != None)
3300 {
3301 i.rm.regmem = i.op[op].regs->reg_num;
3302 if ((i.op[op].regs->reg_flags & RegRex) != 0)
3303 i.rex |= REX_EXTZ;
3304 }
3305 else
3306 {
3307 i.rm.reg = i.op[op].regs->reg_num;
3308 if ((i.op[op].regs->reg_flags & RegRex) != 0)
3309 i.rex |= REX_EXTX;
3310 }
3311
3312 /* Now, if no memory operand has set i.rm.mode = 0, 1, 2 we
3313 must set it to 3 to indicate this is a register operand
3314 in the regmem field. */
3315 if (!i.mem_operands)
3316 i.rm.mode = 3;
3317 }
3318
3319 /* Fill in i.rm.reg field with extension opcode (if any). */
3320 if (i.tm.extension_opcode != None)
3321 i.rm.reg = i.tm.extension_opcode;
3322 }
3323 return default_seg;
3324 }
3325
3326 static void
3327 output_branch ()
3328 {
3329 char *p;
3330 int code16;
3331 int prefix;
3332 relax_substateT subtype;
3333 symbolS *sym;
3334 offsetT off;
3335
3336 code16 = 0;
3337 if (flag_code == CODE_16BIT)
3338 code16 = CODE16;
3339
3340 prefix = 0;
3341 if (i.prefix[DATA_PREFIX] != 0)
3342 {
3343 prefix = 1;
3344 i.prefixes -= 1;
3345 code16 ^= CODE16;
3346 }
3347 /* Pentium4 branch hints. */
3348 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
3349 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
3350 {
3351 prefix++;
3352 i.prefixes--;
3353 }
3354 if (i.prefix[REX_PREFIX] != 0)
3355 {
3356 prefix++;
3357 i.prefixes--;
3358 }
3359
3360 if (i.prefixes != 0 && !intel_syntax)
3361 as_warn (_("skipping prefixes on this instruction"));
3362
3363 /* It's always a symbol; End frag & setup for relax.
3364 Make sure there is enough room in this frag for the largest
3365 instruction we may generate in md_convert_frag. This is 2
3366 bytes for the opcode and room for the prefix and largest
3367 displacement. */
3368 frag_grow (prefix + 2 + 4);
3369 /* Prefix and 1 opcode byte go in fr_fix. */
3370 p = frag_more (prefix + 1);
3371 if (i.prefix[DATA_PREFIX] != 0)
3372 *p++ = DATA_PREFIX_OPCODE;
3373 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE
3374 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE)
3375 *p++ = i.prefix[SEG_PREFIX];
3376 if (i.prefix[REX_PREFIX] != 0)
3377 *p++ = i.prefix[REX_PREFIX];
3378 *p = i.tm.base_opcode;
3379
3380 if ((unsigned char) *p == JUMP_PC_RELATIVE)
3381 subtype = ENCODE_RELAX_STATE (UNCOND_JUMP, SMALL);
3382 else if ((cpu_arch_flags & Cpu386) != 0)
3383 subtype = ENCODE_RELAX_STATE (COND_JUMP, SMALL);
3384 else
3385 subtype = ENCODE_RELAX_STATE (COND_JUMP86, SMALL);
3386 subtype |= code16;
3387
3388 sym = i.op[0].disps->X_add_symbol;
3389 off = i.op[0].disps->X_add_number;
3390
3391 if (i.op[0].disps->X_op != O_constant
3392 && i.op[0].disps->X_op != O_symbol)
3393 {
3394 /* Handle complex expressions. */
3395 sym = make_expr_symbol (i.op[0].disps);
3396 off = 0;
3397 }
3398
3399 /* 1 possible extra opcode + 4 byte displacement go in var part.
3400 Pass reloc in fr_var. */
3401 frag_var (rs_machine_dependent, 5, i.reloc[0], subtype, sym, off, p);
3402 }
3403
3404 static void
3405 output_jump ()
3406 {
3407 char *p;
3408 int size;
3409 fixS *fixP;
3410
3411 if (i.tm.opcode_modifier & JumpByte)
3412 {
3413 /* This is a loop or jecxz type instruction. */
3414 size = 1;
3415 if (i.prefix[ADDR_PREFIX] != 0)
3416 {
3417 FRAG_APPEND_1_CHAR (ADDR_PREFIX_OPCODE);
3418 i.prefixes -= 1;
3419 }
3420 /* Pentium4 branch hints. */
3421 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
3422 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
3423 {
3424 FRAG_APPEND_1_CHAR (i.prefix[SEG_PREFIX]);
3425 i.prefixes--;
3426 }
3427 }
3428 else
3429 {
3430 int code16;
3431
3432 code16 = 0;
3433 if (flag_code == CODE_16BIT)
3434 code16 = CODE16;
3435
3436 if (i.prefix[DATA_PREFIX] != 0)
3437 {
3438 FRAG_APPEND_1_CHAR (DATA_PREFIX_OPCODE);
3439 i.prefixes -= 1;
3440 code16 ^= CODE16;
3441 }
3442
3443 size = 4;
3444 if (code16)
3445 size = 2;
3446 }
3447
3448 if (i.prefix[REX_PREFIX] != 0)
3449 {
3450 FRAG_APPEND_1_CHAR (i.prefix[REX_PREFIX]);
3451 i.prefixes -= 1;
3452 }
3453
3454 if (i.prefixes != 0 && !intel_syntax)
3455 as_warn (_("skipping prefixes on this instruction"));
3456
3457 p = frag_more (1 + size);
3458 *p++ = i.tm.base_opcode;
3459
3460 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal, size,
3461 i.op[0].disps, 1, reloc (size, 1, 1, i.reloc[0]));
3462
3463 /* All jumps handled here are signed, but don't use a signed limit
3464 check for 32 and 16 bit jumps as we want to allow wrap around at
3465 4G and 64k respectively. */
3466 if (size == 1)
3467 fixP->fx_signed = 1;
3468 }
3469
3470 static void
3471 output_interseg_jump ()
3472 {
3473 char *p;
3474 int size;
3475 int prefix;
3476 int code16;
3477
3478 code16 = 0;
3479 if (flag_code == CODE_16BIT)
3480 code16 = CODE16;
3481
3482 prefix = 0;
3483 if (i.prefix[DATA_PREFIX] != 0)
3484 {
3485 prefix = 1;
3486 i.prefixes -= 1;
3487 code16 ^= CODE16;
3488 }
3489 if (i.prefix[REX_PREFIX] != 0)
3490 {
3491 prefix++;
3492 i.prefixes -= 1;
3493 }
3494
3495 size = 4;
3496 if (code16)
3497 size = 2;
3498
3499 if (i.prefixes != 0 && !intel_syntax)
3500 as_warn (_("skipping prefixes on this instruction"));
3501
3502 /* 1 opcode; 2 segment; offset */
3503 p = frag_more (prefix + 1 + 2 + size);
3504
3505 if (i.prefix[DATA_PREFIX] != 0)
3506 *p++ = DATA_PREFIX_OPCODE;
3507
3508 if (i.prefix[REX_PREFIX] != 0)
3509 *p++ = i.prefix[REX_PREFIX];
3510
3511 *p++ = i.tm.base_opcode;
3512 if (i.op[1].imms->X_op == O_constant)
3513 {
3514 offsetT n = i.op[1].imms->X_add_number;
3515
3516 if (size == 2
3517 && !fits_in_unsigned_word (n)
3518 && !fits_in_signed_word (n))
3519 {
3520 as_bad (_("16-bit jump out of range"));
3521 return;
3522 }
3523 md_number_to_chars (p, n, size);
3524 }
3525 else
3526 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
3527 i.op[1].imms, 0, reloc (size, 0, 0, i.reloc[1]));
3528 if (i.op[0].imms->X_op != O_constant)
3529 as_bad (_("can't handle non absolute segment in `%s'"),
3530 i.tm.name);
3531 md_number_to_chars (p + size, (valueT) i.op[0].imms->X_add_number, 2);
3532 }
3533
3534 static void
3535 output_insn ()
3536 {
3537 fragS *insn_start_frag;
3538 offsetT insn_start_off;
3539
3540 /* Tie dwarf2 debug info to the address at the start of the insn.
3541 We can't do this after the insn has been output as the current
3542 frag may have been closed off. eg. by frag_var. */
3543 dwarf2_emit_insn (0);
3544
3545 insn_start_frag = frag_now;
3546 insn_start_off = frag_now_fix ();
3547
3548 /* Output jumps. */
3549 if (i.tm.opcode_modifier & Jump)
3550 output_branch ();
3551 else if (i.tm.opcode_modifier & (JumpByte | JumpDword))
3552 output_jump ();
3553 else if (i.tm.opcode_modifier & JumpInterSegment)
3554 output_interseg_jump ();
3555 else
3556 {
3557 /* Output normal instructions here. */
3558 char *p;
3559 unsigned char *q;
3560 unsigned int prefix;
3561
3562 /* All opcodes on i386 have either 1 or 2 bytes. Merom New
3563 Instructions have 3 bytes. We may use one more higher byte
3564 to specify a prefix the instruction requires. */
3565 if ((i.tm.cpu_flags & CpuMNI) != 0)
3566 {
3567 if (i.tm.base_opcode & 0xff000000)
3568 {
3569 prefix = (i.tm.base_opcode >> 24) & 0xff;
3570 goto check_prefix;
3571 }
3572 }
3573 else if ((i.tm.base_opcode & 0xff0000) != 0)
3574 {
3575 prefix = (i.tm.base_opcode >> 16) & 0xff;
3576 if ((i.tm.cpu_flags & CpuPadLock) != 0)
3577 {
3578 check_prefix:
3579 if (prefix != REPE_PREFIX_OPCODE
3580 || i.prefix[LOCKREP_PREFIX] != REPE_PREFIX_OPCODE)
3581 add_prefix (prefix);
3582 }
3583 else
3584 add_prefix (prefix);
3585 }
3586
3587 /* The prefix bytes. */
3588 for (q = i.prefix;
3589 q < i.prefix + sizeof (i.prefix) / sizeof (i.prefix[0]);
3590 q++)
3591 {
3592 if (*q)
3593 {
3594 p = frag_more (1);
3595 md_number_to_chars (p, (valueT) *q, 1);
3596 }
3597 }
3598
3599 /* Now the opcode; be careful about word order here! */
3600 if (fits_in_unsigned_byte (i.tm.base_opcode))
3601 {
3602 FRAG_APPEND_1_CHAR (i.tm.base_opcode);
3603 }
3604 else
3605 {
3606 if ((i.tm.cpu_flags & CpuMNI) != 0)
3607 {
3608 p = frag_more (3);
3609 *p++ = (i.tm.base_opcode >> 16) & 0xff;
3610 }
3611 else
3612 p = frag_more (2);
3613
3614 /* Put out high byte first: can't use md_number_to_chars! */
3615 *p++ = (i.tm.base_opcode >> 8) & 0xff;
3616 *p = i.tm.base_opcode & 0xff;
3617 }
3618
3619 /* Now the modrm byte and sib byte (if present). */
3620 if (i.tm.opcode_modifier & Modrm)
3621 {
3622 p = frag_more (1);
3623 md_number_to_chars (p,
3624 (valueT) (i.rm.regmem << 0
3625 | i.rm.reg << 3
3626 | i.rm.mode << 6),
3627 1);
3628 /* If i.rm.regmem == ESP (4)
3629 && i.rm.mode != (Register mode)
3630 && not 16 bit
3631 ==> need second modrm byte. */
3632 if (i.rm.regmem == ESCAPE_TO_TWO_BYTE_ADDRESSING
3633 && i.rm.mode != 3
3634 && !(i.base_reg && (i.base_reg->reg_type & Reg16) != 0))
3635 {
3636 p = frag_more (1);
3637 md_number_to_chars (p,
3638 (valueT) (i.sib.base << 0
3639 | i.sib.index << 3
3640 | i.sib.scale << 6),
3641 1);
3642 }
3643 }
3644
3645 if (i.disp_operands)
3646 output_disp (insn_start_frag, insn_start_off);
3647
3648 if (i.imm_operands)
3649 output_imm (insn_start_frag, insn_start_off);
3650 }
3651
3652 #ifdef DEBUG386
3653 if (flag_debug)
3654 {
3655 pi ("" /*line*/, &i);
3656 }
3657 #endif /* DEBUG386 */
3658 }
3659
3660 static void
3661 output_disp (fragS *insn_start_frag, offsetT insn_start_off)
3662 {
3663 char *p;
3664 unsigned int n;
3665
3666 for (n = 0; n < i.operands; n++)
3667 {
3668 if (i.types[n] & Disp)
3669 {
3670 if (i.op[n].disps->X_op == O_constant)
3671 {
3672 int size;
3673 offsetT val;
3674
3675 size = 4;
3676 if (i.types[n] & (Disp8 | Disp16 | Disp64))
3677 {
3678 size = 2;
3679 if (i.types[n] & Disp8)
3680 size = 1;
3681 if (i.types[n] & Disp64)
3682 size = 8;
3683 }
3684 val = offset_in_range (i.op[n].disps->X_add_number,
3685 size);
3686 p = frag_more (size);
3687 md_number_to_chars (p, val, size);
3688 }
3689 else
3690 {
3691 enum bfd_reloc_code_real reloc_type;
3692 int size = 4;
3693 int sign = 0;
3694 int pcrel = (i.flags[n] & Operand_PCrel) != 0;
3695
3696 /* The PC relative address is computed relative
3697 to the instruction boundary, so in case immediate
3698 fields follows, we need to adjust the value. */
3699 if (pcrel && i.imm_operands)
3700 {
3701 int imm_size = 4;
3702 unsigned int n1;
3703
3704 for (n1 = 0; n1 < i.operands; n1++)
3705 if (i.types[n1] & Imm)
3706 {
3707 if (i.types[n1] & (Imm8 | Imm8S | Imm16 | Imm64))
3708 {
3709 imm_size = 2;
3710 if (i.types[n1] & (Imm8 | Imm8S))
3711 imm_size = 1;
3712 if (i.types[n1] & Imm64)
3713 imm_size = 8;
3714 }
3715 break;
3716 }
3717 /* We should find the immediate. */
3718 if (n1 == i.operands)
3719 abort ();
3720 i.op[n].disps->X_add_number -= imm_size;
3721 }
3722
3723 if (i.types[n] & Disp32S)
3724 sign = 1;
3725
3726 if (i.types[n] & (Disp16 | Disp64))
3727 {
3728 size = 2;
3729 if (i.types[n] & Disp64)
3730 size = 8;
3731 }
3732
3733 p = frag_more (size);
3734 reloc_type = reloc (size, pcrel, sign, i.reloc[n]);
3735 if (GOT_symbol
3736 && GOT_symbol == i.op[n].disps->X_add_symbol
3737 && (((reloc_type == BFD_RELOC_32
3738 || reloc_type == BFD_RELOC_X86_64_32S
3739 || (reloc_type == BFD_RELOC_64
3740 && object_64bit))
3741 && (i.op[n].disps->X_op == O_symbol
3742 || (i.op[n].disps->X_op == O_add
3743 && ((symbol_get_value_expression
3744 (i.op[n].disps->X_op_symbol)->X_op)
3745 == O_subtract))))
3746 || reloc_type == BFD_RELOC_32_PCREL))
3747 {
3748 offsetT add;
3749
3750 if (insn_start_frag == frag_now)
3751 add = (p - frag_now->fr_literal) - insn_start_off;
3752 else
3753 {
3754 fragS *fr;
3755
3756 add = insn_start_frag->fr_fix - insn_start_off;
3757 for (fr = insn_start_frag->fr_next;
3758 fr && fr != frag_now; fr = fr->fr_next)
3759 add += fr->fr_fix;
3760 add += p - frag_now->fr_literal;
3761 }
3762
3763 if (!object_64bit)
3764 {
3765 reloc_type = BFD_RELOC_386_GOTPC;
3766 i.op[n].imms->X_add_number += add;
3767 }
3768 else if (reloc_type == BFD_RELOC_64)
3769 reloc_type = BFD_RELOC_X86_64_GOTPC64;
3770 else
3771 /* Don't do the adjustment for x86-64, as there
3772 the pcrel addressing is relative to the _next_
3773 insn, and that is taken care of in other code. */
3774 reloc_type = BFD_RELOC_X86_64_GOTPC32;
3775 }
3776 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
3777 i.op[n].disps, pcrel, reloc_type);
3778 }
3779 }
3780 }
3781 }
3782
3783 static void
3784 output_imm (fragS *insn_start_frag, offsetT insn_start_off)
3785 {
3786 char *p;
3787 unsigned int n;
3788
3789 for (n = 0; n < i.operands; n++)
3790 {
3791 if (i.types[n] & Imm)
3792 {
3793 if (i.op[n].imms->X_op == O_constant)
3794 {
3795 int size;
3796 offsetT val;
3797
3798 size = 4;
3799 if (i.types[n] & (Imm8 | Imm8S | Imm16 | Imm64))
3800 {
3801 size = 2;
3802 if (i.types[n] & (Imm8 | Imm8S))
3803 size = 1;
3804 else if (i.types[n] & Imm64)
3805 size = 8;
3806 }
3807 val = offset_in_range (i.op[n].imms->X_add_number,
3808 size);
3809 p = frag_more (size);
3810 md_number_to_chars (p, val, size);
3811 }
3812 else
3813 {
3814 /* Not absolute_section.
3815 Need a 32-bit fixup (don't support 8bit
3816 non-absolute imms). Try to support other
3817 sizes ... */
3818 enum bfd_reloc_code_real reloc_type;
3819 int size = 4;
3820 int sign = 0;
3821
3822 if ((i.types[n] & (Imm32S))
3823 && (i.suffix == QWORD_MNEM_SUFFIX
3824 || (!i.suffix && (i.tm.opcode_modifier & No_lSuf))))
3825 sign = 1;
3826 if (i.types[n] & (Imm8 | Imm8S | Imm16 | Imm64))
3827 {
3828 size = 2;
3829 if (i.types[n] & (Imm8 | Imm8S))
3830 size = 1;
3831 if (i.types[n] & Imm64)
3832 size = 8;
3833 }
3834
3835 p = frag_more (size);
3836 reloc_type = reloc (size, 0, sign, i.reloc[n]);
3837
3838 /* This is tough to explain. We end up with this one if we
3839 * have operands that look like
3840 * "_GLOBAL_OFFSET_TABLE_+[.-.L284]". The goal here is to
3841 * obtain the absolute address of the GOT, and it is strongly
3842 * preferable from a performance point of view to avoid using
3843 * a runtime relocation for this. The actual sequence of
3844 * instructions often look something like:
3845 *
3846 * call .L66
3847 * .L66:
3848 * popl %ebx
3849 * addl $_GLOBAL_OFFSET_TABLE_+[.-.L66],%ebx
3850 *
3851 * The call and pop essentially return the absolute address
3852 * of the label .L66 and store it in %ebx. The linker itself
3853 * will ultimately change the first operand of the addl so
3854 * that %ebx points to the GOT, but to keep things simple, the
3855 * .o file must have this operand set so that it generates not
3856 * the absolute address of .L66, but the absolute address of
3857 * itself. This allows the linker itself simply treat a GOTPC
3858 * relocation as asking for a pcrel offset to the GOT to be
3859 * added in, and the addend of the relocation is stored in the
3860 * operand field for the instruction itself.
3861 *
3862 * Our job here is to fix the operand so that it would add
3863 * the correct offset so that %ebx would point to itself. The
3864 * thing that is tricky is that .-.L66 will point to the
3865 * beginning of the instruction, so we need to further modify
3866 * the operand so that it will point to itself. There are
3867 * other cases where you have something like:
3868 *
3869 * .long $_GLOBAL_OFFSET_TABLE_+[.-.L66]
3870 *
3871 * and here no correction would be required. Internally in
3872 * the assembler we treat operands of this form as not being
3873 * pcrel since the '.' is explicitly mentioned, and I wonder
3874 * whether it would simplify matters to do it this way. Who
3875 * knows. In earlier versions of the PIC patches, the
3876 * pcrel_adjust field was used to store the correction, but
3877 * since the expression is not pcrel, I felt it would be
3878 * confusing to do it this way. */
3879
3880 if ((reloc_type == BFD_RELOC_32
3881 || reloc_type == BFD_RELOC_X86_64_32S
3882 || reloc_type == BFD_RELOC_64)
3883 && GOT_symbol
3884 && GOT_symbol == i.op[n].imms->X_add_symbol
3885 && (i.op[n].imms->X_op == O_symbol
3886 || (i.op[n].imms->X_op == O_add
3887 && ((symbol_get_value_expression
3888 (i.op[n].imms->X_op_symbol)->X_op)
3889 == O_subtract))))
3890 {
3891 offsetT add;
3892
3893 if (insn_start_frag == frag_now)
3894 add = (p - frag_now->fr_literal) - insn_start_off;
3895 else
3896 {
3897 fragS *fr;
3898
3899 add = insn_start_frag->fr_fix - insn_start_off;
3900 for (fr = insn_start_frag->fr_next;
3901 fr && fr != frag_now; fr = fr->fr_next)
3902 add += fr->fr_fix;
3903 add += p - frag_now->fr_literal;
3904 }
3905
3906 if (!object_64bit)
3907 reloc_type = BFD_RELOC_386_GOTPC;
3908 else if (size == 4)
3909 reloc_type = BFD_RELOC_X86_64_GOTPC32;
3910 else if (size == 8)
3911 reloc_type = BFD_RELOC_X86_64_GOTPC64;
3912 i.op[n].imms->X_add_number += add;
3913 }
3914 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
3915 i.op[n].imms, 0, reloc_type);
3916 }
3917 }
3918 }
3919 }
3920 \f
3921 /* x86_cons_fix_new is called via the expression parsing code when a
3922 reloc is needed. We use this hook to get the correct .got reloc. */
3923 static enum bfd_reloc_code_real got_reloc = NO_RELOC;
3924 static int cons_sign = -1;
3925
3926 void
3927 x86_cons_fix_new (fragS *frag,
3928 unsigned int off,
3929 unsigned int len,
3930 expressionS *exp)
3931 {
3932 enum bfd_reloc_code_real r = reloc (len, 0, cons_sign, got_reloc);
3933
3934 got_reloc = NO_RELOC;
3935
3936 #ifdef TE_PE
3937 if (exp->X_op == O_secrel)
3938 {
3939 exp->X_op = O_symbol;
3940 r = BFD_RELOC_32_SECREL;
3941 }
3942 #endif
3943
3944 fix_new_exp (frag, off, len, exp, 0, r);
3945 }
3946
3947 #if (!defined (OBJ_ELF) && !defined (OBJ_MAYBE_ELF)) || defined (LEX_AT)
3948 # define lex_got(reloc, adjust, types) NULL
3949 #else
3950 /* Parse operands of the form
3951 <symbol>@GOTOFF+<nnn>
3952 and similar .plt or .got references.
3953
3954 If we find one, set up the correct relocation in RELOC and copy the
3955 input string, minus the `@GOTOFF' into a malloc'd buffer for
3956 parsing by the calling routine. Return this buffer, and if ADJUST
3957 is non-null set it to the length of the string we removed from the
3958 input line. Otherwise return NULL. */
3959 static char *
3960 lex_got (enum bfd_reloc_code_real *reloc,
3961 int *adjust,
3962 unsigned int *types)
3963 {
3964 /* Some of the relocations depend on the size of what field is to
3965 be relocated. But in our callers i386_immediate and i386_displacement
3966 we don't yet know the operand size (this will be set by insn
3967 matching). Hence we record the word32 relocation here,
3968 and adjust the reloc according to the real size in reloc(). */
3969 static const struct {
3970 const char *str;
3971 const enum bfd_reloc_code_real rel[2];
3972 const unsigned int types64;
3973 } gotrel[] = {
3974 { "PLTOFF", { 0, BFD_RELOC_X86_64_PLTOFF64 }, Imm64 },
3975 { "PLT", { BFD_RELOC_386_PLT32, BFD_RELOC_X86_64_PLT32 }, Imm32|Imm32S|Disp32 },
3976 { "GOTPLT", { 0, BFD_RELOC_X86_64_GOTPLT64 }, Imm64|Disp64 },
3977 { "GOTOFF", { BFD_RELOC_386_GOTOFF, BFD_RELOC_X86_64_GOTOFF64 }, Imm64|Disp64 },
3978 { "GOTPCREL", { 0, BFD_RELOC_X86_64_GOTPCREL }, Imm32|Imm32S|Disp32 },
3979 { "TLSGD", { BFD_RELOC_386_TLS_GD, BFD_RELOC_X86_64_TLSGD }, Imm32|Imm32S|Disp32 },
3980 { "TLSLDM", { BFD_RELOC_386_TLS_LDM, 0 }, 0 },
3981 { "TLSLD", { 0, BFD_RELOC_X86_64_TLSLD }, Imm32|Imm32S|Disp32 },
3982 { "GOTTPOFF", { BFD_RELOC_386_TLS_IE_32, BFD_RELOC_X86_64_GOTTPOFF }, Imm32|Imm32S|Disp32 },
3983 { "TPOFF", { BFD_RELOC_386_TLS_LE_32, BFD_RELOC_X86_64_TPOFF32 }, Imm32|Imm32S|Imm64|Disp32|Disp64 },
3984 { "NTPOFF", { BFD_RELOC_386_TLS_LE, 0 }, 0 },
3985 { "DTPOFF", { BFD_RELOC_386_TLS_LDO_32, BFD_RELOC_X86_64_DTPOFF32 }, Imm32|Imm32S|Imm64|Disp32|Disp64 },
3986 { "GOTNTPOFF",{ BFD_RELOC_386_TLS_GOTIE, 0 }, 0 },
3987 { "INDNTPOFF",{ BFD_RELOC_386_TLS_IE, 0 }, 0 },
3988 { "GOT", { BFD_RELOC_386_GOT32, BFD_RELOC_X86_64_GOT32 }, Imm32|Imm32S|Disp32|Imm64 },
3989 { "TLSDESC", { BFD_RELOC_386_TLS_GOTDESC, BFD_RELOC_X86_64_GOTPC32_TLSDESC }, Imm32|Imm32S|Disp32 },
3990 { "TLSCALL", { BFD_RELOC_386_TLS_DESC_CALL, BFD_RELOC_X86_64_TLSDESC_CALL }, Imm32|Imm32S|Disp32 }
3991 };
3992 char *cp;
3993 unsigned int j;
3994
3995 if (!IS_ELF)
3996 return NULL;
3997
3998 for (cp = input_line_pointer; *cp != '@'; cp++)
3999 if (is_end_of_line[(unsigned char) *cp])
4000 return NULL;
4001
4002 for (j = 0; j < sizeof (gotrel) / sizeof (gotrel[0]); j++)
4003 {
4004 int len;
4005
4006 len = strlen (gotrel[j].str);
4007 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
4008 {
4009 if (gotrel[j].rel[object_64bit] != 0)
4010 {
4011 int first, second;
4012 char *tmpbuf, *past_reloc;
4013
4014 *reloc = gotrel[j].rel[object_64bit];
4015 if (adjust)
4016 *adjust = len;
4017
4018 if (types)
4019 {
4020 if (flag_code != CODE_64BIT)
4021 *types = Imm32|Disp32;
4022 else
4023 *types = gotrel[j].types64;
4024 }
4025
4026 if (GOT_symbol == NULL)
4027 GOT_symbol = symbol_find_or_make (GLOBAL_OFFSET_TABLE_NAME);
4028
4029 /* Replace the relocation token with ' ', so that
4030 errors like foo@GOTOFF1 will be detected. */
4031
4032 /* The length of the first part of our input line. */
4033 first = cp - input_line_pointer;
4034
4035 /* The second part goes from after the reloc token until
4036 (and including) an end_of_line char. Don't use strlen
4037 here as the end_of_line char may not be a NUL. */
4038 past_reloc = cp + 1 + len;
4039 for (cp = past_reloc; !is_end_of_line[(unsigned char) *cp++]; )
4040 ;
4041 second = cp - past_reloc;
4042
4043 /* Allocate and copy string. The trailing NUL shouldn't
4044 be necessary, but be safe. */
4045 tmpbuf = xmalloc (first + second + 2);
4046 memcpy (tmpbuf, input_line_pointer, first);
4047 tmpbuf[first] = ' ';
4048 memcpy (tmpbuf + first + 1, past_reloc, second);
4049 tmpbuf[first + second + 1] = '\0';
4050 return tmpbuf;
4051 }
4052
4053 as_bad (_("@%s reloc is not supported with %d-bit output format"),
4054 gotrel[j].str, 1 << (5 + object_64bit));
4055 return NULL;
4056 }
4057 }
4058
4059 /* Might be a symbol version string. Don't as_bad here. */
4060 return NULL;
4061 }
4062
4063 void
4064 x86_cons (exp, size)
4065 expressionS *exp;
4066 int size;
4067 {
4068 if (size == 4 || (object_64bit && size == 8))
4069 {
4070 /* Handle @GOTOFF and the like in an expression. */
4071 char *save;
4072 char *gotfree_input_line;
4073 int adjust;
4074
4075 save = input_line_pointer;
4076 gotfree_input_line = lex_got (&got_reloc, &adjust, NULL);
4077 if (gotfree_input_line)
4078 input_line_pointer = gotfree_input_line;
4079
4080 expression (exp);
4081
4082 if (gotfree_input_line)
4083 {
4084 /* expression () has merrily parsed up to the end of line,
4085 or a comma - in the wrong buffer. Transfer how far
4086 input_line_pointer has moved to the right buffer. */
4087 input_line_pointer = (save
4088 + (input_line_pointer - gotfree_input_line)
4089 + adjust);
4090 free (gotfree_input_line);
4091 }
4092 }
4093 else
4094 expression (exp);
4095 }
4096 #endif
4097
4098 static void signed_cons (int size)
4099 {
4100 if (flag_code == CODE_64BIT)
4101 cons_sign = 1;
4102 cons (size);
4103 cons_sign = -1;
4104 }
4105
4106 #ifdef TE_PE
4107 static void
4108 pe_directive_secrel (dummy)
4109 int dummy ATTRIBUTE_UNUSED;
4110 {
4111 expressionS exp;
4112
4113 do
4114 {
4115 expression (&exp);
4116 if (exp.X_op == O_symbol)
4117 exp.X_op = O_secrel;
4118
4119 emit_expr (&exp, 4);
4120 }
4121 while (*input_line_pointer++ == ',');
4122
4123 input_line_pointer--;
4124 demand_empty_rest_of_line ();
4125 }
4126 #endif
4127
4128 static int i386_immediate PARAMS ((char *));
4129
4130 static int
4131 i386_immediate (imm_start)
4132 char *imm_start;
4133 {
4134 char *save_input_line_pointer;
4135 char *gotfree_input_line;
4136 segT exp_seg = 0;
4137 expressionS *exp;
4138 unsigned int types = ~0U;
4139
4140 if (i.imm_operands == MAX_IMMEDIATE_OPERANDS)
4141 {
4142 as_bad (_("only 1 or 2 immediate operands are allowed"));
4143 return 0;
4144 }
4145
4146 exp = &im_expressions[i.imm_operands++];
4147 i.op[this_operand].imms = exp;
4148
4149 if (is_space_char (*imm_start))
4150 ++imm_start;
4151
4152 save_input_line_pointer = input_line_pointer;
4153 input_line_pointer = imm_start;
4154
4155 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
4156 if (gotfree_input_line)
4157 input_line_pointer = gotfree_input_line;
4158
4159 exp_seg = expression (exp);
4160
4161 SKIP_WHITESPACE ();
4162 if (*input_line_pointer)
4163 as_bad (_("junk `%s' after expression"), input_line_pointer);
4164
4165 input_line_pointer = save_input_line_pointer;
4166 if (gotfree_input_line)
4167 free (gotfree_input_line);
4168
4169 if (exp->X_op == O_absent || exp->X_op == O_big)
4170 {
4171 /* Missing or bad expr becomes absolute 0. */
4172 as_bad (_("missing or invalid immediate expression `%s' taken as 0"),
4173 imm_start);
4174 exp->X_op = O_constant;
4175 exp->X_add_number = 0;
4176 exp->X_add_symbol = (symbolS *) 0;
4177 exp->X_op_symbol = (symbolS *) 0;
4178 }
4179 else if (exp->X_op == O_constant)
4180 {
4181 /* Size it properly later. */
4182 i.types[this_operand] |= Imm64;
4183 /* If BFD64, sign extend val. */
4184 if (!use_rela_relocations)
4185 if ((exp->X_add_number & ~(((addressT) 2 << 31) - 1)) == 0)
4186 exp->X_add_number = (exp->X_add_number ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
4187 }
4188 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
4189 else if (OUTPUT_FLAVOR == bfd_target_aout_flavour
4190 && exp_seg != absolute_section
4191 && exp_seg != text_section
4192 && exp_seg != data_section
4193 && exp_seg != bss_section
4194 && exp_seg != undefined_section
4195 && !bfd_is_com_section (exp_seg))
4196 {
4197 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
4198 return 0;
4199 }
4200 #endif
4201 else if (!intel_syntax && exp->X_op == O_register)
4202 {
4203 as_bad (_("illegal immediate register operand %s"), imm_start);
4204 return 0;
4205 }
4206 else
4207 {
4208 /* This is an address. The size of the address will be
4209 determined later, depending on destination register,
4210 suffix, or the default for the section. */
4211 i.types[this_operand] |= Imm8 | Imm16 | Imm32 | Imm32S | Imm64;
4212 i.types[this_operand] &= types;
4213 }
4214
4215 return 1;
4216 }
4217
4218 static char *i386_scale PARAMS ((char *));
4219
4220 static char *
4221 i386_scale (scale)
4222 char *scale;
4223 {
4224 offsetT val;
4225 char *save = input_line_pointer;
4226
4227 input_line_pointer = scale;
4228 val = get_absolute_expression ();
4229
4230 switch (val)
4231 {
4232 case 1:
4233 i.log2_scale_factor = 0;
4234 break;
4235 case 2:
4236 i.log2_scale_factor = 1;
4237 break;
4238 case 4:
4239 i.log2_scale_factor = 2;
4240 break;
4241 case 8:
4242 i.log2_scale_factor = 3;
4243 break;
4244 default:
4245 {
4246 char sep = *input_line_pointer;
4247
4248 *input_line_pointer = '\0';
4249 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
4250 scale);
4251 *input_line_pointer = sep;
4252 input_line_pointer = save;
4253 return NULL;
4254 }
4255 }
4256 if (i.log2_scale_factor != 0 && i.index_reg == 0)
4257 {
4258 as_warn (_("scale factor of %d without an index register"),
4259 1 << i.log2_scale_factor);
4260 #if SCALE1_WHEN_NO_INDEX
4261 i.log2_scale_factor = 0;
4262 #endif
4263 }
4264 scale = input_line_pointer;
4265 input_line_pointer = save;
4266 return scale;
4267 }
4268
4269 static int i386_displacement PARAMS ((char *, char *));
4270
4271 static int
4272 i386_displacement (disp_start, disp_end)
4273 char *disp_start;
4274 char *disp_end;
4275 {
4276 expressionS *exp;
4277 segT exp_seg = 0;
4278 char *save_input_line_pointer;
4279 char *gotfree_input_line;
4280 int bigdisp, override;
4281 unsigned int types = Disp;
4282
4283 if ((i.types[this_operand] & JumpAbsolute)
4284 || !(current_templates->start->opcode_modifier & (Jump | JumpDword)))
4285 {
4286 bigdisp = Disp32;
4287 override = (i.prefix[ADDR_PREFIX] != 0);
4288 }
4289 else
4290 {
4291 /* For PC-relative branches, the width of the displacement
4292 is dependent upon data size, not address size. */
4293 bigdisp = 0;
4294 override = (i.prefix[DATA_PREFIX] != 0);
4295 }
4296 if (flag_code == CODE_64BIT)
4297 {
4298 if (!bigdisp)
4299 bigdisp = ((override || i.suffix == WORD_MNEM_SUFFIX)
4300 ? Disp16
4301 : Disp32S | Disp32);
4302 else if (!override)
4303 bigdisp = Disp64 | Disp32S | Disp32;
4304 }
4305 else
4306 {
4307 if (!bigdisp)
4308 {
4309 if (!override)
4310 override = (i.suffix == (flag_code != CODE_16BIT
4311 ? WORD_MNEM_SUFFIX
4312 : LONG_MNEM_SUFFIX));
4313 bigdisp = Disp32;
4314 }
4315 if ((flag_code == CODE_16BIT) ^ override)
4316 bigdisp = Disp16;
4317 }
4318 i.types[this_operand] |= bigdisp;
4319
4320 exp = &disp_expressions[i.disp_operands];
4321 i.op[this_operand].disps = exp;
4322 i.disp_operands++;
4323 save_input_line_pointer = input_line_pointer;
4324 input_line_pointer = disp_start;
4325 END_STRING_AND_SAVE (disp_end);
4326
4327 #ifndef GCC_ASM_O_HACK
4328 #define GCC_ASM_O_HACK 0
4329 #endif
4330 #if GCC_ASM_O_HACK
4331 END_STRING_AND_SAVE (disp_end + 1);
4332 if ((i.types[this_operand] & BaseIndex) != 0
4333 && displacement_string_end[-1] == '+')
4334 {
4335 /* This hack is to avoid a warning when using the "o"
4336 constraint within gcc asm statements.
4337 For instance:
4338
4339 #define _set_tssldt_desc(n,addr,limit,type) \
4340 __asm__ __volatile__ ( \
4341 "movw %w2,%0\n\t" \
4342 "movw %w1,2+%0\n\t" \
4343 "rorl $16,%1\n\t" \
4344 "movb %b1,4+%0\n\t" \
4345 "movb %4,5+%0\n\t" \
4346 "movb $0,6+%0\n\t" \
4347 "movb %h1,7+%0\n\t" \
4348 "rorl $16,%1" \
4349 : "=o"(*(n)) : "q" (addr), "ri"(limit), "i"(type))
4350
4351 This works great except that the output assembler ends
4352 up looking a bit weird if it turns out that there is
4353 no offset. You end up producing code that looks like:
4354
4355 #APP
4356 movw $235,(%eax)
4357 movw %dx,2+(%eax)
4358 rorl $16,%edx
4359 movb %dl,4+(%eax)
4360 movb $137,5+(%eax)
4361 movb $0,6+(%eax)
4362 movb %dh,7+(%eax)
4363 rorl $16,%edx
4364 #NO_APP
4365
4366 So here we provide the missing zero. */
4367
4368 *displacement_string_end = '0';
4369 }
4370 #endif
4371 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
4372 if (gotfree_input_line)
4373 input_line_pointer = gotfree_input_line;
4374
4375 exp_seg = expression (exp);
4376
4377 SKIP_WHITESPACE ();
4378 if (*input_line_pointer)
4379 as_bad (_("junk `%s' after expression"), input_line_pointer);
4380 #if GCC_ASM_O_HACK
4381 RESTORE_END_STRING (disp_end + 1);
4382 #endif
4383 RESTORE_END_STRING (disp_end);
4384 input_line_pointer = save_input_line_pointer;
4385 if (gotfree_input_line)
4386 free (gotfree_input_line);
4387
4388 /* We do this to make sure that the section symbol is in
4389 the symbol table. We will ultimately change the relocation
4390 to be relative to the beginning of the section. */
4391 if (i.reloc[this_operand] == BFD_RELOC_386_GOTOFF
4392 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL
4393 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
4394 {
4395 if (exp->X_op != O_symbol)
4396 {
4397 as_bad (_("bad expression used with @%s"),
4398 (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL
4399 ? "GOTPCREL"
4400 : "GOTOFF"));
4401 return 0;
4402 }
4403
4404 if (S_IS_LOCAL (exp->X_add_symbol)
4405 && S_GET_SEGMENT (exp->X_add_symbol) != undefined_section)
4406 section_symbol (S_GET_SEGMENT (exp->X_add_symbol));
4407 exp->X_op = O_subtract;
4408 exp->X_op_symbol = GOT_symbol;
4409 if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
4410 i.reloc[this_operand] = BFD_RELOC_32_PCREL;
4411 else if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
4412 i.reloc[this_operand] = BFD_RELOC_64;
4413 else
4414 i.reloc[this_operand] = BFD_RELOC_32;
4415 }
4416
4417 if (exp->X_op == O_absent || exp->X_op == O_big)
4418 {
4419 /* Missing or bad expr becomes absolute 0. */
4420 as_bad (_("missing or invalid displacement expression `%s' taken as 0"),
4421 disp_start);
4422 exp->X_op = O_constant;
4423 exp->X_add_number = 0;
4424 exp->X_add_symbol = (symbolS *) 0;
4425 exp->X_op_symbol = (symbolS *) 0;
4426 }
4427
4428 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
4429 if (exp->X_op != O_constant
4430 && OUTPUT_FLAVOR == bfd_target_aout_flavour
4431 && exp_seg != absolute_section
4432 && exp_seg != text_section
4433 && exp_seg != data_section
4434 && exp_seg != bss_section
4435 && exp_seg != undefined_section
4436 && !bfd_is_com_section (exp_seg))
4437 {
4438 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
4439 return 0;
4440 }
4441 #endif
4442
4443 if (!(i.types[this_operand] & ~Disp))
4444 i.types[this_operand] &= types;
4445
4446 return 1;
4447 }
4448
4449 static int i386_index_check PARAMS ((const char *));
4450
4451 /* Make sure the memory operand we've been dealt is valid.
4452 Return 1 on success, 0 on a failure. */
4453
4454 static int
4455 i386_index_check (operand_string)
4456 const char *operand_string;
4457 {
4458 int ok;
4459 #if INFER_ADDR_PREFIX
4460 int fudged = 0;
4461
4462 tryprefix:
4463 #endif
4464 ok = 1;
4465 if ((current_templates->start->cpu_flags & CpuSVME)
4466 && current_templates->end[-1].operand_types[0] == AnyMem)
4467 {
4468 /* Memory operands of SVME insns are special in that they only allow
4469 rAX as their memory address and ignore any segment override. */
4470 unsigned RegXX;
4471
4472 /* SKINIT is even more restrictive: it always requires EAX. */
4473 if (strcmp (current_templates->start->name, "skinit") == 0)
4474 RegXX = Reg32;
4475 else if (flag_code == CODE_64BIT)
4476 RegXX = i.prefix[ADDR_PREFIX] == 0 ? Reg64 : Reg32;
4477 else
4478 RegXX = ((flag_code == CODE_16BIT) ^ (i.prefix[ADDR_PREFIX] != 0)
4479 ? Reg16
4480 : Reg32);
4481 if (!i.base_reg
4482 || !(i.base_reg->reg_type & Acc)
4483 || !(i.base_reg->reg_type & RegXX)
4484 || i.index_reg
4485 || (i.types[0] & Disp))
4486 ok = 0;
4487 }
4488 else if (flag_code == CODE_64BIT)
4489 {
4490 unsigned RegXX = (i.prefix[ADDR_PREFIX] == 0 ? Reg64 : Reg32);
4491
4492 if ((i.base_reg
4493 && ((i.base_reg->reg_type & RegXX) == 0)
4494 && (i.base_reg->reg_type != BaseIndex
4495 || i.index_reg))
4496 || (i.index_reg
4497 && ((i.index_reg->reg_type & (RegXX | BaseIndex))
4498 != (RegXX | BaseIndex))))
4499 ok = 0;
4500 }
4501 else
4502 {
4503 if ((flag_code == CODE_16BIT) ^ (i.prefix[ADDR_PREFIX] != 0))
4504 {
4505 /* 16bit checks. */
4506 if ((i.base_reg
4507 && ((i.base_reg->reg_type & (Reg16 | BaseIndex | RegRex))
4508 != (Reg16 | BaseIndex)))
4509 || (i.index_reg
4510 && (((i.index_reg->reg_type & (Reg16 | BaseIndex))
4511 != (Reg16 | BaseIndex))
4512 || !(i.base_reg
4513 && i.base_reg->reg_num < 6
4514 && i.index_reg->reg_num >= 6
4515 && i.log2_scale_factor == 0))))
4516 ok = 0;
4517 }
4518 else
4519 {
4520 /* 32bit checks. */
4521 if ((i.base_reg
4522 && (i.base_reg->reg_type & (Reg32 | RegRex)) != Reg32)
4523 || (i.index_reg
4524 && ((i.index_reg->reg_type & (Reg32 | BaseIndex | RegRex))
4525 != (Reg32 | BaseIndex))))
4526 ok = 0;
4527 }
4528 }
4529 if (!ok)
4530 {
4531 #if INFER_ADDR_PREFIX
4532 if (i.prefix[ADDR_PREFIX] == 0)
4533 {
4534 i.prefix[ADDR_PREFIX] = ADDR_PREFIX_OPCODE;
4535 i.prefixes += 1;
4536 /* Change the size of any displacement too. At most one of
4537 Disp16 or Disp32 is set.
4538 FIXME. There doesn't seem to be any real need for separate
4539 Disp16 and Disp32 flags. The same goes for Imm16 and Imm32.
4540 Removing them would probably clean up the code quite a lot. */
4541 if (flag_code != CODE_64BIT && (i.types[this_operand] & (Disp16 | Disp32)))
4542 i.types[this_operand] ^= (Disp16 | Disp32);
4543 fudged = 1;
4544 goto tryprefix;
4545 }
4546 if (fudged)
4547 as_bad (_("`%s' is not a valid base/index expression"),
4548 operand_string);
4549 else
4550 #endif
4551 as_bad (_("`%s' is not a valid %s bit base/index expression"),
4552 operand_string,
4553 flag_code_names[flag_code]);
4554 }
4555 return ok;
4556 }
4557
4558 /* Parse OPERAND_STRING into the i386_insn structure I. Returns non-zero
4559 on error. */
4560
4561 static int
4562 i386_operand (operand_string)
4563 char *operand_string;
4564 {
4565 const reg_entry *r;
4566 char *end_op;
4567 char *op_string = operand_string;
4568
4569 if (is_space_char (*op_string))
4570 ++op_string;
4571
4572 /* We check for an absolute prefix (differentiating,
4573 for example, 'jmp pc_relative_label' from 'jmp *absolute_label'. */
4574 if (*op_string == ABSOLUTE_PREFIX)
4575 {
4576 ++op_string;
4577 if (is_space_char (*op_string))
4578 ++op_string;
4579 i.types[this_operand] |= JumpAbsolute;
4580 }
4581
4582 /* Check if operand is a register. */
4583 if ((r = parse_register (op_string, &end_op)) != NULL)
4584 {
4585 /* Check for a segment override by searching for ':' after a
4586 segment register. */
4587 op_string = end_op;
4588 if (is_space_char (*op_string))
4589 ++op_string;
4590 if (*op_string == ':' && (r->reg_type & (SReg2 | SReg3)))
4591 {
4592 switch (r->reg_num)
4593 {
4594 case 0:
4595 i.seg[i.mem_operands] = &es;
4596 break;
4597 case 1:
4598 i.seg[i.mem_operands] = &cs;
4599 break;
4600 case 2:
4601 i.seg[i.mem_operands] = &ss;
4602 break;
4603 case 3:
4604 i.seg[i.mem_operands] = &ds;
4605 break;
4606 case 4:
4607 i.seg[i.mem_operands] = &fs;
4608 break;
4609 case 5:
4610 i.seg[i.mem_operands] = &gs;
4611 break;
4612 }
4613
4614 /* Skip the ':' and whitespace. */
4615 ++op_string;
4616 if (is_space_char (*op_string))
4617 ++op_string;
4618
4619 if (!is_digit_char (*op_string)
4620 && !is_identifier_char (*op_string)
4621 && *op_string != '('
4622 && *op_string != ABSOLUTE_PREFIX)
4623 {
4624 as_bad (_("bad memory operand `%s'"), op_string);
4625 return 0;
4626 }
4627 /* Handle case of %es:*foo. */
4628 if (*op_string == ABSOLUTE_PREFIX)
4629 {
4630 ++op_string;
4631 if (is_space_char (*op_string))
4632 ++op_string;
4633 i.types[this_operand] |= JumpAbsolute;
4634 }
4635 goto do_memory_reference;
4636 }
4637 if (*op_string)
4638 {
4639 as_bad (_("junk `%s' after register"), op_string);
4640 return 0;
4641 }
4642 i.types[this_operand] |= r->reg_type & ~BaseIndex;
4643 i.op[this_operand].regs = r;
4644 i.reg_operands++;
4645 }
4646 else if (*op_string == REGISTER_PREFIX)
4647 {
4648 as_bad (_("bad register name `%s'"), op_string);
4649 return 0;
4650 }
4651 else if (*op_string == IMMEDIATE_PREFIX)
4652 {
4653 ++op_string;
4654 if (i.types[this_operand] & JumpAbsolute)
4655 {
4656 as_bad (_("immediate operand illegal with absolute jump"));
4657 return 0;
4658 }
4659 if (!i386_immediate (op_string))
4660 return 0;
4661 }
4662 else if (is_digit_char (*op_string)
4663 || is_identifier_char (*op_string)
4664 || *op_string == '(')
4665 {
4666 /* This is a memory reference of some sort. */
4667 char *base_string;
4668
4669 /* Start and end of displacement string expression (if found). */
4670 char *displacement_string_start;
4671 char *displacement_string_end;
4672
4673 do_memory_reference:
4674 if ((i.mem_operands == 1
4675 && (current_templates->start->opcode_modifier & IsString) == 0)
4676 || i.mem_operands == 2)
4677 {
4678 as_bad (_("too many memory references for `%s'"),
4679 current_templates->start->name);
4680 return 0;
4681 }
4682
4683 /* Check for base index form. We detect the base index form by
4684 looking for an ')' at the end of the operand, searching
4685 for the '(' matching it, and finding a REGISTER_PREFIX or ','
4686 after the '('. */
4687 base_string = op_string + strlen (op_string);
4688
4689 --base_string;
4690 if (is_space_char (*base_string))
4691 --base_string;
4692
4693 /* If we only have a displacement, set-up for it to be parsed later. */
4694 displacement_string_start = op_string;
4695 displacement_string_end = base_string + 1;
4696
4697 if (*base_string == ')')
4698 {
4699 char *temp_string;
4700 unsigned int parens_balanced = 1;
4701 /* We've already checked that the number of left & right ()'s are
4702 equal, so this loop will not be infinite. */
4703 do
4704 {
4705 base_string--;
4706 if (*base_string == ')')
4707 parens_balanced++;
4708 if (*base_string == '(')
4709 parens_balanced--;
4710 }
4711 while (parens_balanced);
4712
4713 temp_string = base_string;
4714
4715 /* Skip past '(' and whitespace. */
4716 ++base_string;
4717 if (is_space_char (*base_string))
4718 ++base_string;
4719
4720 if (*base_string == ','
4721 || ((i.base_reg = parse_register (base_string, &end_op)) != NULL))
4722 {
4723 displacement_string_end = temp_string;
4724
4725 i.types[this_operand] |= BaseIndex;
4726
4727 if (i.base_reg)
4728 {
4729 base_string = end_op;
4730 if (is_space_char (*base_string))
4731 ++base_string;
4732 }
4733
4734 /* There may be an index reg or scale factor here. */
4735 if (*base_string == ',')
4736 {
4737 ++base_string;
4738 if (is_space_char (*base_string))
4739 ++base_string;
4740
4741 if ((i.index_reg = parse_register (base_string, &end_op)) != NULL)
4742 {
4743 base_string = end_op;
4744 if (is_space_char (*base_string))
4745 ++base_string;
4746 if (*base_string == ',')
4747 {
4748 ++base_string;
4749 if (is_space_char (*base_string))
4750 ++base_string;
4751 }
4752 else if (*base_string != ')')
4753 {
4754 as_bad (_("expecting `,' or `)' after index register in `%s'"),
4755 operand_string);
4756 return 0;
4757 }
4758 }
4759 else if (*base_string == REGISTER_PREFIX)
4760 {
4761 as_bad (_("bad register name `%s'"), base_string);
4762 return 0;
4763 }
4764
4765 /* Check for scale factor. */
4766 if (*base_string != ')')
4767 {
4768 char *end_scale = i386_scale (base_string);
4769
4770 if (!end_scale)
4771 return 0;
4772
4773 base_string = end_scale;
4774 if (is_space_char (*base_string))
4775 ++base_string;
4776 if (*base_string != ')')
4777 {
4778 as_bad (_("expecting `)' after scale factor in `%s'"),
4779 operand_string);
4780 return 0;
4781 }
4782 }
4783 else if (!i.index_reg)
4784 {
4785 as_bad (_("expecting index register or scale factor after `,'; got '%c'"),
4786 *base_string);
4787 return 0;
4788 }
4789 }
4790 else if (*base_string != ')')
4791 {
4792 as_bad (_("expecting `,' or `)' after base register in `%s'"),
4793 operand_string);
4794 return 0;
4795 }
4796 }
4797 else if (*base_string == REGISTER_PREFIX)
4798 {
4799 as_bad (_("bad register name `%s'"), base_string);
4800 return 0;
4801 }
4802 }
4803
4804 /* If there's an expression beginning the operand, parse it,
4805 assuming displacement_string_start and
4806 displacement_string_end are meaningful. */
4807 if (displacement_string_start != displacement_string_end)
4808 {
4809 if (!i386_displacement (displacement_string_start,
4810 displacement_string_end))
4811 return 0;
4812 }
4813
4814 /* Special case for (%dx) while doing input/output op. */
4815 if (i.base_reg
4816 && i.base_reg->reg_type == (Reg16 | InOutPortReg)
4817 && i.index_reg == 0
4818 && i.log2_scale_factor == 0
4819 && i.seg[i.mem_operands] == 0
4820 && (i.types[this_operand] & Disp) == 0)
4821 {
4822 i.types[this_operand] = InOutPortReg;
4823 return 1;
4824 }
4825
4826 if (i386_index_check (operand_string) == 0)
4827 return 0;
4828 i.mem_operands++;
4829 }
4830 else
4831 {
4832 /* It's not a memory operand; argh! */
4833 as_bad (_("invalid char %s beginning operand %d `%s'"),
4834 output_invalid (*op_string),
4835 this_operand + 1,
4836 op_string);
4837 return 0;
4838 }
4839 return 1; /* Normal return. */
4840 }
4841 \f
4842 /* md_estimate_size_before_relax()
4843
4844 Called just before relax() for rs_machine_dependent frags. The x86
4845 assembler uses these frags to handle variable size jump
4846 instructions.
4847
4848 Any symbol that is now undefined will not become defined.
4849 Return the correct fr_subtype in the frag.
4850 Return the initial "guess for variable size of frag" to caller.
4851 The guess is actually the growth beyond the fixed part. Whatever
4852 we do to grow the fixed or variable part contributes to our
4853 returned value. */
4854
4855 int
4856 md_estimate_size_before_relax (fragP, segment)
4857 fragS *fragP;
4858 segT segment;
4859 {
4860 /* We've already got fragP->fr_subtype right; all we have to do is
4861 check for un-relaxable symbols. On an ELF system, we can't relax
4862 an externally visible symbol, because it may be overridden by a
4863 shared library. */
4864 if (S_GET_SEGMENT (fragP->fr_symbol) != segment
4865 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
4866 || (IS_ELF
4867 && (S_IS_EXTERNAL (fragP->fr_symbol)
4868 || S_IS_WEAK (fragP->fr_symbol)))
4869 #endif
4870 )
4871 {
4872 /* Symbol is undefined in this segment, or we need to keep a
4873 reloc so that weak symbols can be overridden. */
4874 int size = (fragP->fr_subtype & CODE16) ? 2 : 4;
4875 enum bfd_reloc_code_real reloc_type;
4876 unsigned char *opcode;
4877 int old_fr_fix;
4878
4879 if (fragP->fr_var != NO_RELOC)
4880 reloc_type = fragP->fr_var;
4881 else if (size == 2)
4882 reloc_type = BFD_RELOC_16_PCREL;
4883 else
4884 reloc_type = BFD_RELOC_32_PCREL;
4885
4886 old_fr_fix = fragP->fr_fix;
4887 opcode = (unsigned char *) fragP->fr_opcode;
4888
4889 switch (TYPE_FROM_RELAX_STATE (fragP->fr_subtype))
4890 {
4891 case UNCOND_JUMP:
4892 /* Make jmp (0xeb) a (d)word displacement jump. */
4893 opcode[0] = 0xe9;
4894 fragP->fr_fix += size;
4895 fix_new (fragP, old_fr_fix, size,
4896 fragP->fr_symbol,
4897 fragP->fr_offset, 1,
4898 reloc_type);
4899 break;
4900
4901 case COND_JUMP86:
4902 if (size == 2
4903 && (!no_cond_jump_promotion || fragP->fr_var != NO_RELOC))
4904 {
4905 /* Negate the condition, and branch past an
4906 unconditional jump. */
4907 opcode[0] ^= 1;
4908 opcode[1] = 3;
4909 /* Insert an unconditional jump. */
4910 opcode[2] = 0xe9;
4911 /* We added two extra opcode bytes, and have a two byte
4912 offset. */
4913 fragP->fr_fix += 2 + 2;
4914 fix_new (fragP, old_fr_fix + 2, 2,
4915 fragP->fr_symbol,
4916 fragP->fr_offset, 1,
4917 reloc_type);
4918 break;
4919 }
4920 /* Fall through. */
4921
4922 case COND_JUMP:
4923 if (no_cond_jump_promotion && fragP->fr_var == NO_RELOC)
4924 {
4925 fixS *fixP;
4926
4927 fragP->fr_fix += 1;
4928 fixP = fix_new (fragP, old_fr_fix, 1,
4929 fragP->fr_symbol,
4930 fragP->fr_offset, 1,
4931 BFD_RELOC_8_PCREL);
4932 fixP->fx_signed = 1;
4933 break;
4934 }
4935
4936 /* This changes the byte-displacement jump 0x7N
4937 to the (d)word-displacement jump 0x0f,0x8N. */
4938 opcode[1] = opcode[0] + 0x10;
4939 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
4940 /* We've added an opcode byte. */
4941 fragP->fr_fix += 1 + size;
4942 fix_new (fragP, old_fr_fix + 1, size,
4943 fragP->fr_symbol,
4944 fragP->fr_offset, 1,
4945 reloc_type);
4946 break;
4947
4948 default:
4949 BAD_CASE (fragP->fr_subtype);
4950 break;
4951 }
4952 frag_wane (fragP);
4953 return fragP->fr_fix - old_fr_fix;
4954 }
4955
4956 /* Guess size depending on current relax state. Initially the relax
4957 state will correspond to a short jump and we return 1, because
4958 the variable part of the frag (the branch offset) is one byte
4959 long. However, we can relax a section more than once and in that
4960 case we must either set fr_subtype back to the unrelaxed state,
4961 or return the value for the appropriate branch. */
4962 return md_relax_table[fragP->fr_subtype].rlx_length;
4963 }
4964
4965 /* Called after relax() is finished.
4966
4967 In: Address of frag.
4968 fr_type == rs_machine_dependent.
4969 fr_subtype is what the address relaxed to.
4970
4971 Out: Any fixSs and constants are set up.
4972 Caller will turn frag into a ".space 0". */
4973
4974 void
4975 md_convert_frag (abfd, sec, fragP)
4976 bfd *abfd ATTRIBUTE_UNUSED;
4977 segT sec ATTRIBUTE_UNUSED;
4978 fragS *fragP;
4979 {
4980 unsigned char *opcode;
4981 unsigned char *where_to_put_displacement = NULL;
4982 offsetT target_address;
4983 offsetT opcode_address;
4984 unsigned int extension = 0;
4985 offsetT displacement_from_opcode_start;
4986
4987 opcode = (unsigned char *) fragP->fr_opcode;
4988
4989 /* Address we want to reach in file space. */
4990 target_address = S_GET_VALUE (fragP->fr_symbol) + fragP->fr_offset;
4991
4992 /* Address opcode resides at in file space. */
4993 opcode_address = fragP->fr_address + fragP->fr_fix;
4994
4995 /* Displacement from opcode start to fill into instruction. */
4996 displacement_from_opcode_start = target_address - opcode_address;
4997
4998 if ((fragP->fr_subtype & BIG) == 0)
4999 {
5000 /* Don't have to change opcode. */
5001 extension = 1; /* 1 opcode + 1 displacement */
5002 where_to_put_displacement = &opcode[1];
5003 }
5004 else
5005 {
5006 if (no_cond_jump_promotion
5007 && TYPE_FROM_RELAX_STATE (fragP->fr_subtype) != UNCOND_JUMP)
5008 as_warn_where (fragP->fr_file, fragP->fr_line, _("long jump required"));
5009
5010 switch (fragP->fr_subtype)
5011 {
5012 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG):
5013 extension = 4; /* 1 opcode + 4 displacement */
5014 opcode[0] = 0xe9;
5015 where_to_put_displacement = &opcode[1];
5016 break;
5017
5018 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16):
5019 extension = 2; /* 1 opcode + 2 displacement */
5020 opcode[0] = 0xe9;
5021 where_to_put_displacement = &opcode[1];
5022 break;
5023
5024 case ENCODE_RELAX_STATE (COND_JUMP, BIG):
5025 case ENCODE_RELAX_STATE (COND_JUMP86, BIG):
5026 extension = 5; /* 2 opcode + 4 displacement */
5027 opcode[1] = opcode[0] + 0x10;
5028 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
5029 where_to_put_displacement = &opcode[2];
5030 break;
5031
5032 case ENCODE_RELAX_STATE (COND_JUMP, BIG16):
5033 extension = 3; /* 2 opcode + 2 displacement */
5034 opcode[1] = opcode[0] + 0x10;
5035 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
5036 where_to_put_displacement = &opcode[2];
5037 break;
5038
5039 case ENCODE_RELAX_STATE (COND_JUMP86, BIG16):
5040 extension = 4;
5041 opcode[0] ^= 1;
5042 opcode[1] = 3;
5043 opcode[2] = 0xe9;
5044 where_to_put_displacement = &opcode[3];
5045 break;
5046
5047 default:
5048 BAD_CASE (fragP->fr_subtype);
5049 break;
5050 }
5051 }
5052
5053 /* If size if less then four we are sure that the operand fits,
5054 but if it's 4, then it could be that the displacement is larger
5055 then -/+ 2GB. */
5056 if (DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype) == 4
5057 && object_64bit
5058 && ((addressT) (displacement_from_opcode_start - extension
5059 + ((addressT) 1 << 31))
5060 > (((addressT) 2 << 31) - 1)))
5061 {
5062 as_bad_where (fragP->fr_file, fragP->fr_line,
5063 _("jump target out of range"));
5064 /* Make us emit 0. */
5065 displacement_from_opcode_start = extension;
5066 }
5067 /* Now put displacement after opcode. */
5068 md_number_to_chars ((char *) where_to_put_displacement,
5069 (valueT) (displacement_from_opcode_start - extension),
5070 DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype));
5071 fragP->fr_fix += extension;
5072 }
5073 \f
5074 /* Size of byte displacement jmp. */
5075 int md_short_jump_size = 2;
5076
5077 /* Size of dword displacement jmp. */
5078 int md_long_jump_size = 5;
5079
5080 void
5081 md_create_short_jump (ptr, from_addr, to_addr, frag, to_symbol)
5082 char *ptr;
5083 addressT from_addr, to_addr;
5084 fragS *frag ATTRIBUTE_UNUSED;
5085 symbolS *to_symbol ATTRIBUTE_UNUSED;
5086 {
5087 offsetT offset;
5088
5089 offset = to_addr - (from_addr + 2);
5090 /* Opcode for byte-disp jump. */
5091 md_number_to_chars (ptr, (valueT) 0xeb, 1);
5092 md_number_to_chars (ptr + 1, (valueT) offset, 1);
5093 }
5094
5095 void
5096 md_create_long_jump (ptr, from_addr, to_addr, frag, to_symbol)
5097 char *ptr;
5098 addressT from_addr, to_addr;
5099 fragS *frag ATTRIBUTE_UNUSED;
5100 symbolS *to_symbol ATTRIBUTE_UNUSED;
5101 {
5102 offsetT offset;
5103
5104 offset = to_addr - (from_addr + 5);
5105 md_number_to_chars (ptr, (valueT) 0xe9, 1);
5106 md_number_to_chars (ptr + 1, (valueT) offset, 4);
5107 }
5108 \f
5109 /* Apply a fixup (fixS) to segment data, once it has been determined
5110 by our caller that we have all the info we need to fix it up.
5111
5112 On the 386, immediates, displacements, and data pointers are all in
5113 the same (little-endian) format, so we don't need to care about which
5114 we are handling. */
5115
5116 void
5117 md_apply_fix (fixP, valP, seg)
5118 /* The fix we're to put in. */
5119 fixS *fixP;
5120 /* Pointer to the value of the bits. */
5121 valueT *valP;
5122 /* Segment fix is from. */
5123 segT seg ATTRIBUTE_UNUSED;
5124 {
5125 char *p = fixP->fx_where + fixP->fx_frag->fr_literal;
5126 valueT value = *valP;
5127
5128 #if !defined (TE_Mach)
5129 if (fixP->fx_pcrel)
5130 {
5131 switch (fixP->fx_r_type)
5132 {
5133 default:
5134 break;
5135
5136 case BFD_RELOC_64:
5137 fixP->fx_r_type = BFD_RELOC_64_PCREL;
5138 break;
5139 case BFD_RELOC_32:
5140 case BFD_RELOC_X86_64_32S:
5141 fixP->fx_r_type = BFD_RELOC_32_PCREL;
5142 break;
5143 case BFD_RELOC_16:
5144 fixP->fx_r_type = BFD_RELOC_16_PCREL;
5145 break;
5146 case BFD_RELOC_8:
5147 fixP->fx_r_type = BFD_RELOC_8_PCREL;
5148 break;
5149 }
5150 }
5151
5152 if (fixP->fx_addsy != NULL
5153 && (fixP->fx_r_type == BFD_RELOC_32_PCREL
5154 || fixP->fx_r_type == BFD_RELOC_64_PCREL
5155 || fixP->fx_r_type == BFD_RELOC_16_PCREL
5156 || fixP->fx_r_type == BFD_RELOC_8_PCREL)
5157 && !use_rela_relocations)
5158 {
5159 /* This is a hack. There should be a better way to handle this.
5160 This covers for the fact that bfd_install_relocation will
5161 subtract the current location (for partial_inplace, PC relative
5162 relocations); see more below. */
5163 #ifndef OBJ_AOUT
5164 if (IS_ELF
5165 #ifdef TE_PE
5166 || OUTPUT_FLAVOR == bfd_target_coff_flavour
5167 #endif
5168 )
5169 value += fixP->fx_where + fixP->fx_frag->fr_address;
5170 #endif
5171 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
5172 if (IS_ELF)
5173 {
5174 segT sym_seg = S_GET_SEGMENT (fixP->fx_addsy);
5175
5176 if ((sym_seg == seg
5177 || (symbol_section_p (fixP->fx_addsy)
5178 && sym_seg != absolute_section))
5179 && !generic_force_reloc (fixP))
5180 {
5181 /* Yes, we add the values in twice. This is because
5182 bfd_install_relocation subtracts them out again. I think
5183 bfd_install_relocation is broken, but I don't dare change
5184 it. FIXME. */
5185 value += fixP->fx_where + fixP->fx_frag->fr_address;
5186 }
5187 }
5188 #endif
5189 #if defined (OBJ_COFF) && defined (TE_PE)
5190 /* For some reason, the PE format does not store a
5191 section address offset for a PC relative symbol. */
5192 if (S_GET_SEGMENT (fixP->fx_addsy) != seg
5193 || S_IS_WEAK (fixP->fx_addsy))
5194 value += md_pcrel_from (fixP);
5195 #endif
5196 }
5197
5198 /* Fix a few things - the dynamic linker expects certain values here,
5199 and we must not disappoint it. */
5200 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
5201 if (IS_ELF && fixP->fx_addsy)
5202 switch (fixP->fx_r_type)
5203 {
5204 case BFD_RELOC_386_PLT32:
5205 case BFD_RELOC_X86_64_PLT32:
5206 /* Make the jump instruction point to the address of the operand. At
5207 runtime we merely add the offset to the actual PLT entry. */
5208 value = -4;
5209 break;
5210
5211 case BFD_RELOC_386_TLS_GD:
5212 case BFD_RELOC_386_TLS_LDM:
5213 case BFD_RELOC_386_TLS_IE_32:
5214 case BFD_RELOC_386_TLS_IE:
5215 case BFD_RELOC_386_TLS_GOTIE:
5216 case BFD_RELOC_386_TLS_GOTDESC:
5217 case BFD_RELOC_X86_64_TLSGD:
5218 case BFD_RELOC_X86_64_TLSLD:
5219 case BFD_RELOC_X86_64_GOTTPOFF:
5220 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
5221 value = 0; /* Fully resolved at runtime. No addend. */
5222 /* Fallthrough */
5223 case BFD_RELOC_386_TLS_LE:
5224 case BFD_RELOC_386_TLS_LDO_32:
5225 case BFD_RELOC_386_TLS_LE_32:
5226 case BFD_RELOC_X86_64_DTPOFF32:
5227 case BFD_RELOC_X86_64_DTPOFF64:
5228 case BFD_RELOC_X86_64_TPOFF32:
5229 case BFD_RELOC_X86_64_TPOFF64:
5230 S_SET_THREAD_LOCAL (fixP->fx_addsy);
5231 break;
5232
5233 case BFD_RELOC_386_TLS_DESC_CALL:
5234 case BFD_RELOC_X86_64_TLSDESC_CALL:
5235 value = 0; /* Fully resolved at runtime. No addend. */
5236 S_SET_THREAD_LOCAL (fixP->fx_addsy);
5237 fixP->fx_done = 0;
5238 return;
5239
5240 case BFD_RELOC_386_GOT32:
5241 case BFD_RELOC_X86_64_GOT32:
5242 value = 0; /* Fully resolved at runtime. No addend. */
5243 break;
5244
5245 case BFD_RELOC_VTABLE_INHERIT:
5246 case BFD_RELOC_VTABLE_ENTRY:
5247 fixP->fx_done = 0;
5248 return;
5249
5250 default:
5251 break;
5252 }
5253 #endif /* defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) */
5254 *valP = value;
5255 #endif /* !defined (TE_Mach) */
5256
5257 /* Are we finished with this relocation now? */
5258 if (fixP->fx_addsy == NULL)
5259 fixP->fx_done = 1;
5260 else if (use_rela_relocations)
5261 {
5262 fixP->fx_no_overflow = 1;
5263 /* Remember value for tc_gen_reloc. */
5264 fixP->fx_addnumber = value;
5265 value = 0;
5266 }
5267
5268 md_number_to_chars (p, value, fixP->fx_size);
5269 }
5270 \f
5271 #define MAX_LITTLENUMS 6
5272
5273 /* Turn the string pointed to by litP into a floating point constant
5274 of type TYPE, and emit the appropriate bytes. The number of
5275 LITTLENUMS emitted is stored in *SIZEP. An error message is
5276 returned, or NULL on OK. */
5277
5278 char *
5279 md_atof (type, litP, sizeP)
5280 int type;
5281 char *litP;
5282 int *sizeP;
5283 {
5284 int prec;
5285 LITTLENUM_TYPE words[MAX_LITTLENUMS];
5286 LITTLENUM_TYPE *wordP;
5287 char *t;
5288
5289 switch (type)
5290 {
5291 case 'f':
5292 case 'F':
5293 prec = 2;
5294 break;
5295
5296 case 'd':
5297 case 'D':
5298 prec = 4;
5299 break;
5300
5301 case 'x':
5302 case 'X':
5303 prec = 5;
5304 break;
5305
5306 default:
5307 *sizeP = 0;
5308 return _("Bad call to md_atof ()");
5309 }
5310 t = atof_ieee (input_line_pointer, type, words);
5311 if (t)
5312 input_line_pointer = t;
5313
5314 *sizeP = prec * sizeof (LITTLENUM_TYPE);
5315 /* This loops outputs the LITTLENUMs in REVERSE order; in accord with
5316 the bigendian 386. */
5317 for (wordP = words + prec - 1; prec--;)
5318 {
5319 md_number_to_chars (litP, (valueT) (*wordP--), sizeof (LITTLENUM_TYPE));
5320 litP += sizeof (LITTLENUM_TYPE);
5321 }
5322 return 0;
5323 }
5324 \f
5325 static char output_invalid_buf[sizeof (unsigned char) * 2 + 6];
5326
5327 static char *
5328 output_invalid (c)
5329 int c;
5330 {
5331 if (ISPRINT (c))
5332 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
5333 "'%c'", c);
5334 else
5335 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
5336 "(0x%x)", (unsigned char) c);
5337 return output_invalid_buf;
5338 }
5339
5340 /* REG_STRING starts *before* REGISTER_PREFIX. */
5341
5342 static const reg_entry *
5343 parse_real_register (char *reg_string, char **end_op)
5344 {
5345 char *s = reg_string;
5346 char *p;
5347 char reg_name_given[MAX_REG_NAME_SIZE + 1];
5348 const reg_entry *r;
5349
5350 /* Skip possible REGISTER_PREFIX and possible whitespace. */
5351 if (*s == REGISTER_PREFIX)
5352 ++s;
5353
5354 if (is_space_char (*s))
5355 ++s;
5356
5357 p = reg_name_given;
5358 while ((*p++ = register_chars[(unsigned char) *s]) != '\0')
5359 {
5360 if (p >= reg_name_given + MAX_REG_NAME_SIZE)
5361 return (const reg_entry *) NULL;
5362 s++;
5363 }
5364
5365 /* For naked regs, make sure that we are not dealing with an identifier.
5366 This prevents confusing an identifier like `eax_var' with register
5367 `eax'. */
5368 if (allow_naked_reg && identifier_chars[(unsigned char) *s])
5369 return (const reg_entry *) NULL;
5370
5371 *end_op = s;
5372
5373 r = (const reg_entry *) hash_find (reg_hash, reg_name_given);
5374
5375 /* Handle floating point regs, allowing spaces in the (i) part. */
5376 if (r == i386_regtab /* %st is first entry of table */)
5377 {
5378 if (is_space_char (*s))
5379 ++s;
5380 if (*s == '(')
5381 {
5382 ++s;
5383 if (is_space_char (*s))
5384 ++s;
5385 if (*s >= '0' && *s <= '7')
5386 {
5387 r = &i386_float_regtab[*s - '0'];
5388 ++s;
5389 if (is_space_char (*s))
5390 ++s;
5391 if (*s == ')')
5392 {
5393 *end_op = s + 1;
5394 return r;
5395 }
5396 }
5397 /* We have "%st(" then garbage. */
5398 return (const reg_entry *) NULL;
5399 }
5400 }
5401
5402 if (r != NULL
5403 && ((r->reg_flags & (RegRex64 | RegRex)) | (r->reg_type & Reg64)) != 0
5404 && (r->reg_type != Control || !(cpu_arch_flags & CpuSledgehammer))
5405 && flag_code != CODE_64BIT)
5406 return (const reg_entry *) NULL;
5407
5408 return r;
5409 }
5410
5411 /* REG_STRING starts *before* REGISTER_PREFIX. */
5412
5413 static const reg_entry *
5414 parse_register (char *reg_string, char **end_op)
5415 {
5416 const reg_entry *r;
5417
5418 if (*reg_string == REGISTER_PREFIX || allow_naked_reg)
5419 r = parse_real_register (reg_string, end_op);
5420 else
5421 r = NULL;
5422 if (!r)
5423 {
5424 char *save = input_line_pointer;
5425 char c;
5426 symbolS *symbolP;
5427
5428 input_line_pointer = reg_string;
5429 c = get_symbol_end ();
5430 symbolP = symbol_find (reg_string);
5431 if (symbolP && S_GET_SEGMENT (symbolP) == reg_section)
5432 {
5433 const expressionS *e = symbol_get_value_expression (symbolP);
5434
5435 know (e->X_op == O_register);
5436 know (e->X_add_number >= 0 && (valueT) e->X_add_number < ARRAY_SIZE (i386_regtab));
5437 r = i386_regtab + e->X_add_number;
5438 *end_op = input_line_pointer;
5439 }
5440 *input_line_pointer = c;
5441 input_line_pointer = save;
5442 }
5443 return r;
5444 }
5445
5446 int
5447 i386_parse_name (char *name, expressionS *e, char *nextcharP)
5448 {
5449 const reg_entry *r;
5450 char *end = input_line_pointer;
5451
5452 *end = *nextcharP;
5453 r = parse_register (name, &input_line_pointer);
5454 if (r && end <= input_line_pointer)
5455 {
5456 *nextcharP = *input_line_pointer;
5457 *input_line_pointer = 0;
5458 e->X_op = O_register;
5459 e->X_add_number = r - i386_regtab;
5460 return 1;
5461 }
5462 input_line_pointer = end;
5463 *end = 0;
5464 return 0;
5465 }
5466
5467 void
5468 md_operand (expressionS *e)
5469 {
5470 if (*input_line_pointer == REGISTER_PREFIX)
5471 {
5472 char *end;
5473 const reg_entry *r = parse_real_register (input_line_pointer, &end);
5474
5475 if (r)
5476 {
5477 e->X_op = O_register;
5478 e->X_add_number = r - i386_regtab;
5479 input_line_pointer = end;
5480 }
5481 }
5482 }
5483
5484 \f
5485 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
5486 const char *md_shortopts = "kVQ:sqn";
5487 #else
5488 const char *md_shortopts = "qn";
5489 #endif
5490
5491 #define OPTION_32 (OPTION_MD_BASE + 0)
5492 #define OPTION_64 (OPTION_MD_BASE + 1)
5493 #define OPTION_DIVIDE (OPTION_MD_BASE + 2)
5494 #define OPTION_MARCH (OPTION_MD_BASE + 3)
5495 #define OPTION_MTUNE (OPTION_MD_BASE + 4)
5496
5497 struct option md_longopts[] = {
5498 {"32", no_argument, NULL, OPTION_32},
5499 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
5500 {"64", no_argument, NULL, OPTION_64},
5501 #endif
5502 {"divide", no_argument, NULL, OPTION_DIVIDE},
5503 {"march", required_argument, NULL, OPTION_MARCH},
5504 {"mtune", required_argument, NULL, OPTION_MTUNE},
5505 {NULL, no_argument, NULL, 0}
5506 };
5507 size_t md_longopts_size = sizeof (md_longopts);
5508
5509 int
5510 md_parse_option (int c, char *arg)
5511 {
5512 unsigned int i;
5513
5514 switch (c)
5515 {
5516 case 'n':
5517 optimize_align_code = 0;
5518 break;
5519
5520 case 'q':
5521 quiet_warnings = 1;
5522 break;
5523
5524 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
5525 /* -Qy, -Qn: SVR4 arguments controlling whether a .comment section
5526 should be emitted or not. FIXME: Not implemented. */
5527 case 'Q':
5528 break;
5529
5530 /* -V: SVR4 argument to print version ID. */
5531 case 'V':
5532 print_version_id ();
5533 break;
5534
5535 /* -k: Ignore for FreeBSD compatibility. */
5536 case 'k':
5537 break;
5538
5539 case 's':
5540 /* -s: On i386 Solaris, this tells the native assembler to use
5541 .stab instead of .stab.excl. We always use .stab anyhow. */
5542 break;
5543
5544 case OPTION_64:
5545 {
5546 const char **list, **l;
5547
5548 list = bfd_target_list ();
5549 for (l = list; *l != NULL; l++)
5550 if (strcmp (*l, "elf64-x86-64") == 0)
5551 {
5552 default_arch = "x86_64";
5553 break;
5554 }
5555 if (*l == NULL)
5556 as_fatal (_("No compiled in support for x86_64"));
5557 free (list);
5558 }
5559 break;
5560 #endif
5561
5562 case OPTION_32:
5563 default_arch = "i386";
5564 break;
5565
5566 case OPTION_DIVIDE:
5567 #ifdef SVR4_COMMENT_CHARS
5568 {
5569 char *n, *t;
5570 const char *s;
5571
5572 n = (char *) xmalloc (strlen (i386_comment_chars) + 1);
5573 t = n;
5574 for (s = i386_comment_chars; *s != '\0'; s++)
5575 if (*s != '/')
5576 *t++ = *s;
5577 *t = '\0';
5578 i386_comment_chars = n;
5579 }
5580 #endif
5581 break;
5582
5583 case OPTION_MARCH:
5584 if (*arg == '.')
5585 as_fatal (_("Invalid -march= option: `%s'"), arg);
5586 for (i = 0; i < ARRAY_SIZE (cpu_arch); i++)
5587 {
5588 if (strcmp (arg, cpu_arch [i].name) == 0)
5589 {
5590 cpu_arch_isa_flags = cpu_arch[i].flags;
5591 break;
5592 }
5593 }
5594 if (i >= ARRAY_SIZE (cpu_arch))
5595 as_fatal (_("Invalid -march= option: `%s'"), arg);
5596 break;
5597
5598 case OPTION_MTUNE:
5599 if (*arg == '.')
5600 as_fatal (_("Invalid -mtune= option: `%s'"), arg);
5601 for (i = 0; i < ARRAY_SIZE (cpu_arch); i++)
5602 {
5603 if (strcmp (arg, cpu_arch [i].name) == 0)
5604 {
5605 cpu_arch_tune = cpu_arch [i].type;
5606 cpu_arch_tune_flags = cpu_arch[i].flags;
5607 break;
5608 }
5609 }
5610 if (i >= ARRAY_SIZE (cpu_arch))
5611 as_fatal (_("Invalid -mtune= option: `%s'"), arg);
5612 break;
5613
5614 default:
5615 return 0;
5616 }
5617 return 1;
5618 }
5619
5620 void
5621 md_show_usage (stream)
5622 FILE *stream;
5623 {
5624 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
5625 fprintf (stream, _("\
5626 -Q ignored\n\
5627 -V print assembler version number\n\
5628 -k ignored\n"));
5629 #endif
5630 fprintf (stream, _("\
5631 -n Do not optimize code alignment\n\
5632 -q quieten some warnings\n"));
5633 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
5634 fprintf (stream, _("\
5635 -s ignored\n"));
5636 #endif
5637 #ifdef SVR4_COMMENT_CHARS
5638 fprintf (stream, _("\
5639 --divide do not treat `/' as a comment character\n"));
5640 #else
5641 fprintf (stream, _("\
5642 --divide ignored\n"));
5643 #endif
5644 fprintf (stream, _("\
5645 -march=CPU/-mtune=CPU generate code/optimize for CPU, where CPU is one of:\n\
5646 i386, i486, pentium, pentiumpro, pentium4, nocona,\n\
5647 yonah, merom, k6, athlon, k8, generic32, generic64\n"));
5648
5649 }
5650
5651 #if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
5652 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF))
5653
5654 /* Pick the target format to use. */
5655
5656 const char *
5657 i386_target_format ()
5658 {
5659 if (!strcmp (default_arch, "x86_64"))
5660 {
5661 set_code_flag (CODE_64BIT);
5662 if (cpu_arch_isa_flags == 0)
5663 cpu_arch_isa_flags = Cpu086|Cpu186|Cpu286|Cpu386|Cpu486
5664 |Cpu586|Cpu686|CpuP4|CpuMMX|CpuMMX2
5665 |CpuSSE|CpuSSE2;
5666 if (cpu_arch_tune == PROCESSOR_UNKNOWN)
5667 {
5668 cpu_arch_tune = PROCESSOR_GENERIC64;
5669 cpu_arch_tune_flags = Cpu086|Cpu186|Cpu286|Cpu386|Cpu486
5670 |Cpu586|Cpu686|CpuP4|CpuMMX|CpuMMX2
5671 |CpuSSE|CpuSSE2;
5672 }
5673 }
5674 else if (!strcmp (default_arch, "i386"))
5675 {
5676 set_code_flag (CODE_32BIT);
5677 if (cpu_arch_isa_flags == 0)
5678 cpu_arch_isa_flags = Cpu086|Cpu186|Cpu286|Cpu386;
5679 if (cpu_arch_tune == PROCESSOR_UNKNOWN)
5680 {
5681 cpu_arch_tune = PROCESSOR_GENERIC32;
5682 cpu_arch_tune_flags = Cpu086|Cpu186|Cpu286|Cpu386;
5683 }
5684 }
5685 else
5686 as_fatal (_("Unknown architecture"));
5687 switch (OUTPUT_FLAVOR)
5688 {
5689 #ifdef OBJ_MAYBE_AOUT
5690 case bfd_target_aout_flavour:
5691 return AOUT_TARGET_FORMAT;
5692 #endif
5693 #ifdef OBJ_MAYBE_COFF
5694 case bfd_target_coff_flavour:
5695 return "coff-i386";
5696 #endif
5697 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
5698 case bfd_target_elf_flavour:
5699 {
5700 if (flag_code == CODE_64BIT)
5701 {
5702 object_64bit = 1;
5703 use_rela_relocations = 1;
5704 }
5705 return flag_code == CODE_64BIT ? "elf64-x86-64" : ELF_TARGET_FORMAT;
5706 }
5707 #endif
5708 default:
5709 abort ();
5710 return NULL;
5711 }
5712 }
5713
5714 #endif /* OBJ_MAYBE_ more than one */
5715
5716 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF))
5717 void i386_elf_emit_arch_note ()
5718 {
5719 if (IS_ELF && cpu_arch_name != NULL)
5720 {
5721 char *p;
5722 asection *seg = now_seg;
5723 subsegT subseg = now_subseg;
5724 Elf_Internal_Note i_note;
5725 Elf_External_Note e_note;
5726 asection *note_secp;
5727 int len;
5728
5729 /* Create the .note section. */
5730 note_secp = subseg_new (".note", 0);
5731 bfd_set_section_flags (stdoutput,
5732 note_secp,
5733 SEC_HAS_CONTENTS | SEC_READONLY);
5734
5735 /* Process the arch string. */
5736 len = strlen (cpu_arch_name);
5737
5738 i_note.namesz = len + 1;
5739 i_note.descsz = 0;
5740 i_note.type = NT_ARCH;
5741 p = frag_more (sizeof (e_note.namesz));
5742 md_number_to_chars (p, (valueT) i_note.namesz, sizeof (e_note.namesz));
5743 p = frag_more (sizeof (e_note.descsz));
5744 md_number_to_chars (p, (valueT) i_note.descsz, sizeof (e_note.descsz));
5745 p = frag_more (sizeof (e_note.type));
5746 md_number_to_chars (p, (valueT) i_note.type, sizeof (e_note.type));
5747 p = frag_more (len + 1);
5748 strcpy (p, cpu_arch_name);
5749
5750 frag_align (2, 0, 0);
5751
5752 subseg_set (seg, subseg);
5753 }
5754 }
5755 #endif
5756 \f
5757 symbolS *
5758 md_undefined_symbol (name)
5759 char *name;
5760 {
5761 if (name[0] == GLOBAL_OFFSET_TABLE_NAME[0]
5762 && name[1] == GLOBAL_OFFSET_TABLE_NAME[1]
5763 && name[2] == GLOBAL_OFFSET_TABLE_NAME[2]
5764 && strcmp (name, GLOBAL_OFFSET_TABLE_NAME) == 0)
5765 {
5766 if (!GOT_symbol)
5767 {
5768 if (symbol_find (name))
5769 as_bad (_("GOT already in symbol table"));
5770 GOT_symbol = symbol_new (name, undefined_section,
5771 (valueT) 0, &zero_address_frag);
5772 };
5773 return GOT_symbol;
5774 }
5775 return 0;
5776 }
5777
5778 /* Round up a section size to the appropriate boundary. */
5779
5780 valueT
5781 md_section_align (segment, size)
5782 segT segment ATTRIBUTE_UNUSED;
5783 valueT size;
5784 {
5785 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
5786 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
5787 {
5788 /* For a.out, force the section size to be aligned. If we don't do
5789 this, BFD will align it for us, but it will not write out the
5790 final bytes of the section. This may be a bug in BFD, but it is
5791 easier to fix it here since that is how the other a.out targets
5792 work. */
5793 int align;
5794
5795 align = bfd_get_section_alignment (stdoutput, segment);
5796 size = ((size + (1 << align) - 1) & ((valueT) -1 << align));
5797 }
5798 #endif
5799
5800 return size;
5801 }
5802
5803 /* On the i386, PC-relative offsets are relative to the start of the
5804 next instruction. That is, the address of the offset, plus its
5805 size, since the offset is always the last part of the insn. */
5806
5807 long
5808 md_pcrel_from (fixP)
5809 fixS *fixP;
5810 {
5811 return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address;
5812 }
5813
5814 #ifndef I386COFF
5815
5816 static void
5817 s_bss (ignore)
5818 int ignore ATTRIBUTE_UNUSED;
5819 {
5820 int temp;
5821
5822 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
5823 if (IS_ELF)
5824 obj_elf_section_change_hook ();
5825 #endif
5826 temp = get_absolute_expression ();
5827 subseg_set (bss_section, (subsegT) temp);
5828 demand_empty_rest_of_line ();
5829 }
5830
5831 #endif
5832
5833 void
5834 i386_validate_fix (fixp)
5835 fixS *fixp;
5836 {
5837 if (fixp->fx_subsy && fixp->fx_subsy == GOT_symbol)
5838 {
5839 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
5840 {
5841 if (!object_64bit)
5842 abort ();
5843 fixp->fx_r_type = BFD_RELOC_X86_64_GOTPCREL;
5844 }
5845 else
5846 {
5847 if (!object_64bit)
5848 fixp->fx_r_type = BFD_RELOC_386_GOTOFF;
5849 else
5850 fixp->fx_r_type = BFD_RELOC_X86_64_GOTOFF64;
5851 }
5852 fixp->fx_subsy = 0;
5853 }
5854 }
5855
5856 arelent *
5857 tc_gen_reloc (section, fixp)
5858 asection *section ATTRIBUTE_UNUSED;
5859 fixS *fixp;
5860 {
5861 arelent *rel;
5862 bfd_reloc_code_real_type code;
5863
5864 switch (fixp->fx_r_type)
5865 {
5866 case BFD_RELOC_X86_64_PLT32:
5867 case BFD_RELOC_X86_64_GOT32:
5868 case BFD_RELOC_X86_64_GOTPCREL:
5869 case BFD_RELOC_386_PLT32:
5870 case BFD_RELOC_386_GOT32:
5871 case BFD_RELOC_386_GOTOFF:
5872 case BFD_RELOC_386_GOTPC:
5873 case BFD_RELOC_386_TLS_GD:
5874 case BFD_RELOC_386_TLS_LDM:
5875 case BFD_RELOC_386_TLS_LDO_32:
5876 case BFD_RELOC_386_TLS_IE_32:
5877 case BFD_RELOC_386_TLS_IE:
5878 case BFD_RELOC_386_TLS_GOTIE:
5879 case BFD_RELOC_386_TLS_LE_32:
5880 case BFD_RELOC_386_TLS_LE:
5881 case BFD_RELOC_386_TLS_GOTDESC:
5882 case BFD_RELOC_386_TLS_DESC_CALL:
5883 case BFD_RELOC_X86_64_TLSGD:
5884 case BFD_RELOC_X86_64_TLSLD:
5885 case BFD_RELOC_X86_64_DTPOFF32:
5886 case BFD_RELOC_X86_64_DTPOFF64:
5887 case BFD_RELOC_X86_64_GOTTPOFF:
5888 case BFD_RELOC_X86_64_TPOFF32:
5889 case BFD_RELOC_X86_64_TPOFF64:
5890 case BFD_RELOC_X86_64_GOTOFF64:
5891 case BFD_RELOC_X86_64_GOTPC32:
5892 case BFD_RELOC_X86_64_GOT64:
5893 case BFD_RELOC_X86_64_GOTPCREL64:
5894 case BFD_RELOC_X86_64_GOTPC64:
5895 case BFD_RELOC_X86_64_GOTPLT64:
5896 case BFD_RELOC_X86_64_PLTOFF64:
5897 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
5898 case BFD_RELOC_X86_64_TLSDESC_CALL:
5899 case BFD_RELOC_RVA:
5900 case BFD_RELOC_VTABLE_ENTRY:
5901 case BFD_RELOC_VTABLE_INHERIT:
5902 #ifdef TE_PE
5903 case BFD_RELOC_32_SECREL:
5904 #endif
5905 code = fixp->fx_r_type;
5906 break;
5907 case BFD_RELOC_X86_64_32S:
5908 if (!fixp->fx_pcrel)
5909 {
5910 /* Don't turn BFD_RELOC_X86_64_32S into BFD_RELOC_32. */
5911 code = fixp->fx_r_type;
5912 break;
5913 }
5914 default:
5915 if (fixp->fx_pcrel)
5916 {
5917 switch (fixp->fx_size)
5918 {
5919 default:
5920 as_bad_where (fixp->fx_file, fixp->fx_line,
5921 _("can not do %d byte pc-relative relocation"),
5922 fixp->fx_size);
5923 code = BFD_RELOC_32_PCREL;
5924 break;
5925 case 1: code = BFD_RELOC_8_PCREL; break;
5926 case 2: code = BFD_RELOC_16_PCREL; break;
5927 case 4: code = BFD_RELOC_32_PCREL; break;
5928 #ifdef BFD64
5929 case 8: code = BFD_RELOC_64_PCREL; break;
5930 #endif
5931 }
5932 }
5933 else
5934 {
5935 switch (fixp->fx_size)
5936 {
5937 default:
5938 as_bad_where (fixp->fx_file, fixp->fx_line,
5939 _("can not do %d byte relocation"),
5940 fixp->fx_size);
5941 code = BFD_RELOC_32;
5942 break;
5943 case 1: code = BFD_RELOC_8; break;
5944 case 2: code = BFD_RELOC_16; break;
5945 case 4: code = BFD_RELOC_32; break;
5946 #ifdef BFD64
5947 case 8: code = BFD_RELOC_64; break;
5948 #endif
5949 }
5950 }
5951 break;
5952 }
5953
5954 if ((code == BFD_RELOC_32
5955 || code == BFD_RELOC_32_PCREL
5956 || code == BFD_RELOC_X86_64_32S)
5957 && GOT_symbol
5958 && fixp->fx_addsy == GOT_symbol)
5959 {
5960 if (!object_64bit)
5961 code = BFD_RELOC_386_GOTPC;
5962 else
5963 code = BFD_RELOC_X86_64_GOTPC32;
5964 }
5965 if ((code == BFD_RELOC_64 || code == BFD_RELOC_64_PCREL)
5966 && GOT_symbol
5967 && fixp->fx_addsy == GOT_symbol)
5968 {
5969 code = BFD_RELOC_X86_64_GOTPC64;
5970 }
5971
5972 rel = (arelent *) xmalloc (sizeof (arelent));
5973 rel->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
5974 *rel->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
5975
5976 rel->address = fixp->fx_frag->fr_address + fixp->fx_where;
5977
5978 if (!use_rela_relocations)
5979 {
5980 /* HACK: Since i386 ELF uses Rel instead of Rela, encode the
5981 vtable entry to be used in the relocation's section offset. */
5982 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
5983 rel->address = fixp->fx_offset;
5984
5985 rel->addend = 0;
5986 }
5987 /* Use the rela in 64bit mode. */
5988 else
5989 {
5990 if (!fixp->fx_pcrel)
5991 rel->addend = fixp->fx_offset;
5992 else
5993 switch (code)
5994 {
5995 case BFD_RELOC_X86_64_PLT32:
5996 case BFD_RELOC_X86_64_GOT32:
5997 case BFD_RELOC_X86_64_GOTPCREL:
5998 case BFD_RELOC_X86_64_TLSGD:
5999 case BFD_RELOC_X86_64_TLSLD:
6000 case BFD_RELOC_X86_64_GOTTPOFF:
6001 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
6002 case BFD_RELOC_X86_64_TLSDESC_CALL:
6003 rel->addend = fixp->fx_offset - fixp->fx_size;
6004 break;
6005 default:
6006 rel->addend = (section->vma
6007 - fixp->fx_size
6008 + fixp->fx_addnumber
6009 + md_pcrel_from (fixp));
6010 break;
6011 }
6012 }
6013
6014 rel->howto = bfd_reloc_type_lookup (stdoutput, code);
6015 if (rel->howto == NULL)
6016 {
6017 as_bad_where (fixp->fx_file, fixp->fx_line,
6018 _("cannot represent relocation type %s"),
6019 bfd_get_reloc_code_name (code));
6020 /* Set howto to a garbage value so that we can keep going. */
6021 rel->howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_32);
6022 assert (rel->howto != NULL);
6023 }
6024
6025 return rel;
6026 }
6027
6028 \f
6029 /* Parse operands using Intel syntax. This implements a recursive descent
6030 parser based on the BNF grammar published in Appendix B of the MASM 6.1
6031 Programmer's Guide.
6032
6033 FIXME: We do not recognize the full operand grammar defined in the MASM
6034 documentation. In particular, all the structure/union and
6035 high-level macro operands are missing.
6036
6037 Uppercase words are terminals, lower case words are non-terminals.
6038 Objects surrounded by double brackets '[[' ']]' are optional. Vertical
6039 bars '|' denote choices. Most grammar productions are implemented in
6040 functions called 'intel_<production>'.
6041
6042 Initial production is 'expr'.
6043
6044 addOp + | -
6045
6046 alpha [a-zA-Z]
6047
6048 binOp & | AND | \| | OR | ^ | XOR
6049
6050 byteRegister AL | AH | BL | BH | CL | CH | DL | DH
6051
6052 constant digits [[ radixOverride ]]
6053
6054 dataType BYTE | WORD | DWORD | FWORD | QWORD | TBYTE | OWORD | XMMWORD
6055
6056 digits decdigit
6057 | digits decdigit
6058 | digits hexdigit
6059
6060 decdigit [0-9]
6061
6062 e04 e04 addOp e05
6063 | e05
6064
6065 e05 e05 binOp e06
6066 | e06
6067
6068 e06 e06 mulOp e09
6069 | e09
6070
6071 e09 OFFSET e10
6072 | SHORT e10
6073 | + e10
6074 | - e10
6075 | ~ e10
6076 | NOT e10
6077 | e09 PTR e10
6078 | e09 : e10
6079 | e10
6080
6081 e10 e10 [ expr ]
6082 | e11
6083
6084 e11 ( expr )
6085 | [ expr ]
6086 | constant
6087 | dataType
6088 | id
6089 | $
6090 | register
6091
6092 => expr expr cmpOp e04
6093 | e04
6094
6095 gpRegister AX | EAX | BX | EBX | CX | ECX | DX | EDX
6096 | BP | EBP | SP | ESP | DI | EDI | SI | ESI
6097
6098 hexdigit a | b | c | d | e | f
6099 | A | B | C | D | E | F
6100
6101 id alpha
6102 | id alpha
6103 | id decdigit
6104
6105 mulOp * | / | % | MOD | << | SHL | >> | SHR
6106
6107 quote " | '
6108
6109 register specialRegister
6110 | gpRegister
6111 | byteRegister
6112
6113 segmentRegister CS | DS | ES | FS | GS | SS
6114
6115 specialRegister CR0 | CR2 | CR3 | CR4
6116 | DR0 | DR1 | DR2 | DR3 | DR6 | DR7
6117 | TR3 | TR4 | TR5 | TR6 | TR7
6118
6119 We simplify the grammar in obvious places (e.g., register parsing is
6120 done by calling parse_register) and eliminate immediate left recursion
6121 to implement a recursive-descent parser.
6122
6123 expr e04 expr'
6124
6125 expr' cmpOp e04 expr'
6126 | Empty
6127
6128 e04 e05 e04'
6129
6130 e04' addOp e05 e04'
6131 | Empty
6132
6133 e05 e06 e05'
6134
6135 e05' binOp e06 e05'
6136 | Empty
6137
6138 e06 e09 e06'
6139
6140 e06' mulOp e09 e06'
6141 | Empty
6142
6143 e09 OFFSET e10 e09'
6144 | SHORT e10'
6145 | + e10'
6146 | - e10'
6147 | ~ e10'
6148 | NOT e10'
6149 | e10 e09'
6150
6151 e09' PTR e10 e09'
6152 | : e10 e09'
6153 | Empty
6154
6155 e10 e11 e10'
6156
6157 e10' [ expr ] e10'
6158 | Empty
6159
6160 e11 ( expr )
6161 | [ expr ]
6162 | BYTE
6163 | WORD
6164 | DWORD
6165 | FWORD
6166 | QWORD
6167 | TBYTE
6168 | OWORD
6169 | XMMWORD
6170 | .
6171 | $
6172 | register
6173 | id
6174 | constant */
6175
6176 /* Parsing structure for the intel syntax parser. Used to implement the
6177 semantic actions for the operand grammar. */
6178 struct intel_parser_s
6179 {
6180 char *op_string; /* The string being parsed. */
6181 int got_a_float; /* Whether the operand is a float. */
6182 int op_modifier; /* Operand modifier. */
6183 int is_mem; /* 1 if operand is memory reference. */
6184 int in_offset; /* >=1 if parsing operand of offset. */
6185 int in_bracket; /* >=1 if parsing operand in brackets. */
6186 const reg_entry *reg; /* Last register reference found. */
6187 char *disp; /* Displacement string being built. */
6188 char *next_operand; /* Resume point when splitting operands. */
6189 };
6190
6191 static struct intel_parser_s intel_parser;
6192
6193 /* Token structure for parsing intel syntax. */
6194 struct intel_token
6195 {
6196 int code; /* Token code. */
6197 const reg_entry *reg; /* Register entry for register tokens. */
6198 char *str; /* String representation. */
6199 };
6200
6201 static struct intel_token cur_token, prev_token;
6202
6203 /* Token codes for the intel parser. Since T_SHORT is already used
6204 by COFF, undefine it first to prevent a warning. */
6205 #define T_NIL -1
6206 #define T_CONST 1
6207 #define T_REG 2
6208 #define T_BYTE 3
6209 #define T_WORD 4
6210 #define T_DWORD 5
6211 #define T_FWORD 6
6212 #define T_QWORD 7
6213 #define T_TBYTE 8
6214 #define T_XMMWORD 9
6215 #undef T_SHORT
6216 #define T_SHORT 10
6217 #define T_OFFSET 11
6218 #define T_PTR 12
6219 #define T_ID 13
6220 #define T_SHL 14
6221 #define T_SHR 15
6222
6223 /* Prototypes for intel parser functions. */
6224 static int intel_match_token PARAMS ((int code));
6225 static void intel_get_token PARAMS ((void));
6226 static void intel_putback_token PARAMS ((void));
6227 static int intel_expr PARAMS ((void));
6228 static int intel_e04 PARAMS ((void));
6229 static int intel_e05 PARAMS ((void));
6230 static int intel_e06 PARAMS ((void));
6231 static int intel_e09 PARAMS ((void));
6232 static int intel_bracket_expr PARAMS ((void));
6233 static int intel_e10 PARAMS ((void));
6234 static int intel_e11 PARAMS ((void));
6235
6236 static int
6237 i386_intel_operand (operand_string, got_a_float)
6238 char *operand_string;
6239 int got_a_float;
6240 {
6241 int ret;
6242 char *p;
6243
6244 p = intel_parser.op_string = xstrdup (operand_string);
6245 intel_parser.disp = (char *) xmalloc (strlen (operand_string) + 1);
6246
6247 for (;;)
6248 {
6249 /* Initialize token holders. */
6250 cur_token.code = prev_token.code = T_NIL;
6251 cur_token.reg = prev_token.reg = NULL;
6252 cur_token.str = prev_token.str = NULL;
6253
6254 /* Initialize parser structure. */
6255 intel_parser.got_a_float = got_a_float;
6256 intel_parser.op_modifier = 0;
6257 intel_parser.is_mem = 0;
6258 intel_parser.in_offset = 0;
6259 intel_parser.in_bracket = 0;
6260 intel_parser.reg = NULL;
6261 intel_parser.disp[0] = '\0';
6262 intel_parser.next_operand = NULL;
6263
6264 /* Read the first token and start the parser. */
6265 intel_get_token ();
6266 ret = intel_expr ();
6267
6268 if (!ret)
6269 break;
6270
6271 if (cur_token.code != T_NIL)
6272 {
6273 as_bad (_("invalid operand for '%s' ('%s' unexpected)"),
6274 current_templates->start->name, cur_token.str);
6275 ret = 0;
6276 }
6277 /* If we found a memory reference, hand it over to i386_displacement
6278 to fill in the rest of the operand fields. */
6279 else if (intel_parser.is_mem)
6280 {
6281 if ((i.mem_operands == 1
6282 && (current_templates->start->opcode_modifier & IsString) == 0)
6283 || i.mem_operands == 2)
6284 {
6285 as_bad (_("too many memory references for '%s'"),
6286 current_templates->start->name);
6287 ret = 0;
6288 }
6289 else
6290 {
6291 char *s = intel_parser.disp;
6292 i.mem_operands++;
6293
6294 if (!quiet_warnings && intel_parser.is_mem < 0)
6295 /* See the comments in intel_bracket_expr. */
6296 as_warn (_("Treating `%s' as memory reference"), operand_string);
6297
6298 /* Add the displacement expression. */
6299 if (*s != '\0')
6300 ret = i386_displacement (s, s + strlen (s));
6301 if (ret)
6302 {
6303 /* Swap base and index in 16-bit memory operands like
6304 [si+bx]. Since i386_index_check is also used in AT&T
6305 mode we have to do that here. */
6306 if (i.base_reg
6307 && i.index_reg
6308 && (i.base_reg->reg_type & Reg16)
6309 && (i.index_reg->reg_type & Reg16)
6310 && i.base_reg->reg_num >= 6
6311 && i.index_reg->reg_num < 6)
6312 {
6313 const reg_entry *base = i.index_reg;
6314
6315 i.index_reg = i.base_reg;
6316 i.base_reg = base;
6317 }
6318 ret = i386_index_check (operand_string);
6319 }
6320 }
6321 }
6322
6323 /* Constant and OFFSET expressions are handled by i386_immediate. */
6324 else if ((intel_parser.op_modifier & (1 << T_OFFSET))
6325 || intel_parser.reg == NULL)
6326 ret = i386_immediate (intel_parser.disp);
6327
6328 if (intel_parser.next_operand && this_operand >= MAX_OPERANDS - 1)
6329 ret = 0;
6330 if (!ret || !intel_parser.next_operand)
6331 break;
6332 intel_parser.op_string = intel_parser.next_operand;
6333 this_operand = i.operands++;
6334 }
6335
6336 free (p);
6337 free (intel_parser.disp);
6338
6339 return ret;
6340 }
6341
6342 #define NUM_ADDRESS_REGS (!!i.base_reg + !!i.index_reg)
6343
6344 /* expr e04 expr'
6345
6346 expr' cmpOp e04 expr'
6347 | Empty */
6348 static int
6349 intel_expr ()
6350 {
6351 /* XXX Implement the comparison operators. */
6352 return intel_e04 ();
6353 }
6354
6355 /* e04 e05 e04'
6356
6357 e04' addOp e05 e04'
6358 | Empty */
6359 static int
6360 intel_e04 ()
6361 {
6362 int nregs = -1;
6363
6364 for (;;)
6365 {
6366 if (!intel_e05())
6367 return 0;
6368
6369 if (nregs >= 0 && NUM_ADDRESS_REGS > nregs)
6370 i.base_reg = i386_regtab + REGNAM_AL; /* al is invalid as base */
6371
6372 if (cur_token.code == '+')
6373 nregs = -1;
6374 else if (cur_token.code == '-')
6375 nregs = NUM_ADDRESS_REGS;
6376 else
6377 return 1;
6378
6379 strcat (intel_parser.disp, cur_token.str);
6380 intel_match_token (cur_token.code);
6381 }
6382 }
6383
6384 /* e05 e06 e05'
6385
6386 e05' binOp e06 e05'
6387 | Empty */
6388 static int
6389 intel_e05 ()
6390 {
6391 int nregs = ~NUM_ADDRESS_REGS;
6392
6393 for (;;)
6394 {
6395 if (!intel_e06())
6396 return 0;
6397
6398 if (cur_token.code == '&' || cur_token.code == '|' || cur_token.code == '^')
6399 {
6400 char str[2];
6401
6402 str[0] = cur_token.code;
6403 str[1] = 0;
6404 strcat (intel_parser.disp, str);
6405 }
6406 else
6407 break;
6408
6409 intel_match_token (cur_token.code);
6410
6411 if (nregs < 0)
6412 nregs = ~nregs;
6413 }
6414 if (nregs >= 0 && NUM_ADDRESS_REGS > nregs)
6415 i.base_reg = i386_regtab + REGNAM_AL + 1; /* cl is invalid as base */
6416 return 1;
6417 }
6418
6419 /* e06 e09 e06'
6420
6421 e06' mulOp e09 e06'
6422 | Empty */
6423 static int
6424 intel_e06 ()
6425 {
6426 int nregs = ~NUM_ADDRESS_REGS;
6427
6428 for (;;)
6429 {
6430 if (!intel_e09())
6431 return 0;
6432
6433 if (cur_token.code == '*' || cur_token.code == '/' || cur_token.code == '%')
6434 {
6435 char str[2];
6436
6437 str[0] = cur_token.code;
6438 str[1] = 0;
6439 strcat (intel_parser.disp, str);
6440 }
6441 else if (cur_token.code == T_SHL)
6442 strcat (intel_parser.disp, "<<");
6443 else if (cur_token.code == T_SHR)
6444 strcat (intel_parser.disp, ">>");
6445 else
6446 break;
6447
6448 intel_match_token (cur_token.code);
6449
6450 if (nregs < 0)
6451 nregs = ~nregs;
6452 }
6453 if (nregs >= 0 && NUM_ADDRESS_REGS > nregs)
6454 i.base_reg = i386_regtab + REGNAM_AL + 2; /* dl is invalid as base */
6455 return 1;
6456 }
6457
6458 /* e09 OFFSET e09
6459 | SHORT e09
6460 | + e09
6461 | - e09
6462 | ~ e09
6463 | NOT e09
6464 | e10 e09'
6465
6466 e09' PTR e10 e09'
6467 | : e10 e09'
6468 | Empty */
6469 static int
6470 intel_e09 ()
6471 {
6472 int nregs = ~NUM_ADDRESS_REGS;
6473 int in_offset = 0;
6474
6475 for (;;)
6476 {
6477 /* Don't consume constants here. */
6478 if (cur_token.code == '+' || cur_token.code == '-')
6479 {
6480 /* Need to look one token ahead - if the next token
6481 is a constant, the current token is its sign. */
6482 int next_code;
6483
6484 intel_match_token (cur_token.code);
6485 next_code = cur_token.code;
6486 intel_putback_token ();
6487 if (next_code == T_CONST)
6488 break;
6489 }
6490
6491 /* e09 OFFSET e09 */
6492 if (cur_token.code == T_OFFSET)
6493 {
6494 if (!in_offset++)
6495 ++intel_parser.in_offset;
6496 }
6497
6498 /* e09 SHORT e09 */
6499 else if (cur_token.code == T_SHORT)
6500 intel_parser.op_modifier |= 1 << T_SHORT;
6501
6502 /* e09 + e09 */
6503 else if (cur_token.code == '+')
6504 strcat (intel_parser.disp, "+");
6505
6506 /* e09 - e09
6507 | ~ e09
6508 | NOT e09 */
6509 else if (cur_token.code == '-' || cur_token.code == '~')
6510 {
6511 char str[2];
6512
6513 if (nregs < 0)
6514 nregs = ~nregs;
6515 str[0] = cur_token.code;
6516 str[1] = 0;
6517 strcat (intel_parser.disp, str);
6518 }
6519
6520 /* e09 e10 e09' */
6521 else
6522 break;
6523
6524 intel_match_token (cur_token.code);
6525 }
6526
6527 for (;;)
6528 {
6529 if (!intel_e10 ())
6530 return 0;
6531
6532 /* e09' PTR e10 e09' */
6533 if (cur_token.code == T_PTR)
6534 {
6535 char suffix;
6536
6537 if (prev_token.code == T_BYTE)
6538 suffix = BYTE_MNEM_SUFFIX;
6539
6540 else if (prev_token.code == T_WORD)
6541 {
6542 if (current_templates->start->name[0] == 'l'
6543 && current_templates->start->name[2] == 's'
6544 && current_templates->start->name[3] == 0)
6545 suffix = BYTE_MNEM_SUFFIX; /* so it will cause an error */
6546 else if (intel_parser.got_a_float == 2) /* "fi..." */
6547 suffix = SHORT_MNEM_SUFFIX;
6548 else
6549 suffix = WORD_MNEM_SUFFIX;
6550 }
6551
6552 else if (prev_token.code == T_DWORD)
6553 {
6554 if (current_templates->start->name[0] == 'l'
6555 && current_templates->start->name[2] == 's'
6556 && current_templates->start->name[3] == 0)
6557 suffix = WORD_MNEM_SUFFIX;
6558 else if (flag_code == CODE_16BIT
6559 && (current_templates->start->opcode_modifier
6560 & (Jump | JumpDword)))
6561 suffix = LONG_DOUBLE_MNEM_SUFFIX;
6562 else if (intel_parser.got_a_float == 1) /* "f..." */
6563 suffix = SHORT_MNEM_SUFFIX;
6564 else
6565 suffix = LONG_MNEM_SUFFIX;
6566 }
6567
6568 else if (prev_token.code == T_FWORD)
6569 {
6570 if (current_templates->start->name[0] == 'l'
6571 && current_templates->start->name[2] == 's'
6572 && current_templates->start->name[3] == 0)
6573 suffix = LONG_MNEM_SUFFIX;
6574 else if (!intel_parser.got_a_float)
6575 {
6576 if (flag_code == CODE_16BIT)
6577 add_prefix (DATA_PREFIX_OPCODE);
6578 suffix = LONG_DOUBLE_MNEM_SUFFIX;
6579 }
6580 else
6581 suffix = BYTE_MNEM_SUFFIX; /* so it will cause an error */
6582 }
6583
6584 else if (prev_token.code == T_QWORD)
6585 {
6586 if (intel_parser.got_a_float == 1) /* "f..." */
6587 suffix = LONG_MNEM_SUFFIX;
6588 else
6589 suffix = QWORD_MNEM_SUFFIX;
6590 }
6591
6592 else if (prev_token.code == T_TBYTE)
6593 {
6594 if (intel_parser.got_a_float == 1)
6595 suffix = LONG_DOUBLE_MNEM_SUFFIX;
6596 else
6597 suffix = BYTE_MNEM_SUFFIX; /* so it will cause an error */
6598 }
6599
6600 else if (prev_token.code == T_XMMWORD)
6601 {
6602 /* XXX ignored for now, but accepted since gcc uses it */
6603 suffix = 0;
6604 }
6605
6606 else
6607 {
6608 as_bad (_("Unknown operand modifier `%s'"), prev_token.str);
6609 return 0;
6610 }
6611
6612 /* Operands for jump/call using 'ptr' notation denote absolute
6613 addresses. */
6614 if (current_templates->start->opcode_modifier & (Jump | JumpDword))
6615 i.types[this_operand] |= JumpAbsolute;
6616
6617 if (current_templates->start->base_opcode == 0x8d /* lea */)
6618 ;
6619 else if (!i.suffix)
6620 i.suffix = suffix;
6621 else if (i.suffix != suffix)
6622 {
6623 as_bad (_("Conflicting operand modifiers"));
6624 return 0;
6625 }
6626
6627 }
6628
6629 /* e09' : e10 e09' */
6630 else if (cur_token.code == ':')
6631 {
6632 if (prev_token.code != T_REG)
6633 {
6634 /* While {call,jmp} SSSS:OOOO is MASM syntax only when SSSS is a
6635 segment/group identifier (which we don't have), using comma
6636 as the operand separator there is even less consistent, since
6637 there all branches only have a single operand. */
6638 if (this_operand != 0
6639 || intel_parser.in_offset
6640 || intel_parser.in_bracket
6641 || (!(current_templates->start->opcode_modifier
6642 & (Jump|JumpDword|JumpInterSegment))
6643 && !(current_templates->start->operand_types[0]
6644 & JumpAbsolute)))
6645 return intel_match_token (T_NIL);
6646 /* Remember the start of the 2nd operand and terminate 1st
6647 operand here.
6648 XXX This isn't right, yet (when SSSS:OOOO is right operand of
6649 another expression), but it gets at least the simplest case
6650 (a plain number or symbol on the left side) right. */
6651 intel_parser.next_operand = intel_parser.op_string;
6652 *--intel_parser.op_string = '\0';
6653 return intel_match_token (':');
6654 }
6655 }
6656
6657 /* e09' Empty */
6658 else
6659 break;
6660
6661 intel_match_token (cur_token.code);
6662
6663 }
6664
6665 if (in_offset)
6666 {
6667 --intel_parser.in_offset;
6668 if (nregs < 0)
6669 nregs = ~nregs;
6670 if (NUM_ADDRESS_REGS > nregs)
6671 {
6672 as_bad (_("Invalid operand to `OFFSET'"));
6673 return 0;
6674 }
6675 intel_parser.op_modifier |= 1 << T_OFFSET;
6676 }
6677
6678 if (nregs >= 0 && NUM_ADDRESS_REGS > nregs)
6679 i.base_reg = i386_regtab + REGNAM_AL + 3; /* bl is invalid as base */
6680 return 1;
6681 }
6682
6683 static int
6684 intel_bracket_expr ()
6685 {
6686 int was_offset = intel_parser.op_modifier & (1 << T_OFFSET);
6687 const char *start = intel_parser.op_string;
6688 int len;
6689
6690 if (i.op[this_operand].regs)
6691 return intel_match_token (T_NIL);
6692
6693 intel_match_token ('[');
6694
6695 /* Mark as a memory operand only if it's not already known to be an
6696 offset expression. If it's an offset expression, we need to keep
6697 the brace in. */
6698 if (!intel_parser.in_offset)
6699 {
6700 ++intel_parser.in_bracket;
6701
6702 /* Operands for jump/call inside brackets denote absolute addresses. */
6703 if (current_templates->start->opcode_modifier & (Jump | JumpDword))
6704 i.types[this_operand] |= JumpAbsolute;
6705
6706 /* Unfortunately gas always diverged from MASM in a respect that can't
6707 be easily fixed without risking to break code sequences likely to be
6708 encountered (the testsuite even check for this): MASM doesn't consider
6709 an expression inside brackets unconditionally as a memory reference.
6710 When that is e.g. a constant, an offset expression, or the sum of the
6711 two, this is still taken as a constant load. gas, however, always
6712 treated these as memory references. As a compromise, we'll try to make
6713 offset expressions inside brackets work the MASM way (since that's
6714 less likely to be found in real world code), but make constants alone
6715 continue to work the traditional gas way. In either case, issue a
6716 warning. */
6717 intel_parser.op_modifier &= ~was_offset;
6718 }
6719 else
6720 strcat (intel_parser.disp, "[");
6721
6722 /* Add a '+' to the displacement string if necessary. */
6723 if (*intel_parser.disp != '\0'
6724 && *(intel_parser.disp + strlen (intel_parser.disp) - 1) != '+')
6725 strcat (intel_parser.disp, "+");
6726
6727 if (intel_expr ()
6728 && (len = intel_parser.op_string - start - 1,
6729 intel_match_token (']')))
6730 {
6731 /* Preserve brackets when the operand is an offset expression. */
6732 if (intel_parser.in_offset)
6733 strcat (intel_parser.disp, "]");
6734 else
6735 {
6736 --intel_parser.in_bracket;
6737 if (i.base_reg || i.index_reg)
6738 intel_parser.is_mem = 1;
6739 if (!intel_parser.is_mem)
6740 {
6741 if (!(intel_parser.op_modifier & (1 << T_OFFSET)))
6742 /* Defer the warning until all of the operand was parsed. */
6743 intel_parser.is_mem = -1;
6744 else if (!quiet_warnings)
6745 as_warn (_("`[%.*s]' taken to mean just `%.*s'"), len, start, len, start);
6746 }
6747 }
6748 intel_parser.op_modifier |= was_offset;
6749
6750 return 1;
6751 }
6752 return 0;
6753 }
6754
6755 /* e10 e11 e10'
6756
6757 e10' [ expr ] e10'
6758 | Empty */
6759 static int
6760 intel_e10 ()
6761 {
6762 if (!intel_e11 ())
6763 return 0;
6764
6765 while (cur_token.code == '[')
6766 {
6767 if (!intel_bracket_expr ())
6768 return 0;
6769 }
6770
6771 return 1;
6772 }
6773
6774 /* e11 ( expr )
6775 | [ expr ]
6776 | BYTE
6777 | WORD
6778 | DWORD
6779 | FWORD
6780 | QWORD
6781 | TBYTE
6782 | OWORD
6783 | XMMWORD
6784 | $
6785 | .
6786 | register
6787 | id
6788 | constant */
6789 static int
6790 intel_e11 ()
6791 {
6792 switch (cur_token.code)
6793 {
6794 /* e11 ( expr ) */
6795 case '(':
6796 intel_match_token ('(');
6797 strcat (intel_parser.disp, "(");
6798
6799 if (intel_expr () && intel_match_token (')'))
6800 {
6801 strcat (intel_parser.disp, ")");
6802 return 1;
6803 }
6804 return 0;
6805
6806 /* e11 [ expr ] */
6807 case '[':
6808 return intel_bracket_expr ();
6809
6810 /* e11 $
6811 | . */
6812 case '.':
6813 strcat (intel_parser.disp, cur_token.str);
6814 intel_match_token (cur_token.code);
6815
6816 /* Mark as a memory operand only if it's not already known to be an
6817 offset expression. */
6818 if (!intel_parser.in_offset)
6819 intel_parser.is_mem = 1;
6820
6821 return 1;
6822
6823 /* e11 register */
6824 case T_REG:
6825 {
6826 const reg_entry *reg = intel_parser.reg = cur_token.reg;
6827
6828 intel_match_token (T_REG);
6829
6830 /* Check for segment change. */
6831 if (cur_token.code == ':')
6832 {
6833 if (!(reg->reg_type & (SReg2 | SReg3)))
6834 {
6835 as_bad (_("`%s' is not a valid segment register"), reg->reg_name);
6836 return 0;
6837 }
6838 else if (i.seg[i.mem_operands])
6839 as_warn (_("Extra segment override ignored"));
6840 else
6841 {
6842 if (!intel_parser.in_offset)
6843 intel_parser.is_mem = 1;
6844 switch (reg->reg_num)
6845 {
6846 case 0:
6847 i.seg[i.mem_operands] = &es;
6848 break;
6849 case 1:
6850 i.seg[i.mem_operands] = &cs;
6851 break;
6852 case 2:
6853 i.seg[i.mem_operands] = &ss;
6854 break;
6855 case 3:
6856 i.seg[i.mem_operands] = &ds;
6857 break;
6858 case 4:
6859 i.seg[i.mem_operands] = &fs;
6860 break;
6861 case 5:
6862 i.seg[i.mem_operands] = &gs;
6863 break;
6864 }
6865 }
6866 }
6867
6868 /* Not a segment register. Check for register scaling. */
6869 else if (cur_token.code == '*')
6870 {
6871 if (!intel_parser.in_bracket)
6872 {
6873 as_bad (_("Register scaling only allowed in memory operands"));
6874 return 0;
6875 }
6876
6877 if (reg->reg_type & Reg16) /* Disallow things like [si*1]. */
6878 reg = i386_regtab + REGNAM_AX + 4; /* sp is invalid as index */
6879 else if (i.index_reg)
6880 reg = i386_regtab + REGNAM_EAX + 4; /* esp is invalid as index */
6881
6882 /* What follows must be a valid scale. */
6883 intel_match_token ('*');
6884 i.index_reg = reg;
6885 i.types[this_operand] |= BaseIndex;
6886
6887 /* Set the scale after setting the register (otherwise,
6888 i386_scale will complain) */
6889 if (cur_token.code == '+' || cur_token.code == '-')
6890 {
6891 char *str, sign = cur_token.code;
6892 intel_match_token (cur_token.code);
6893 if (cur_token.code != T_CONST)
6894 {
6895 as_bad (_("Syntax error: Expecting a constant, got `%s'"),
6896 cur_token.str);
6897 return 0;
6898 }
6899 str = (char *) xmalloc (strlen (cur_token.str) + 2);
6900 strcpy (str + 1, cur_token.str);
6901 *str = sign;
6902 if (!i386_scale (str))
6903 return 0;
6904 free (str);
6905 }
6906 else if (!i386_scale (cur_token.str))
6907 return 0;
6908 intel_match_token (cur_token.code);
6909 }
6910
6911 /* No scaling. If this is a memory operand, the register is either a
6912 base register (first occurrence) or an index register (second
6913 occurrence). */
6914 else if (intel_parser.in_bracket)
6915 {
6916
6917 if (!i.base_reg)
6918 i.base_reg = reg;
6919 else if (!i.index_reg)
6920 i.index_reg = reg;
6921 else
6922 {
6923 as_bad (_("Too many register references in memory operand"));
6924 return 0;
6925 }
6926
6927 i.types[this_operand] |= BaseIndex;
6928 }
6929
6930 /* It's neither base nor index. */
6931 else if (!intel_parser.in_offset && !intel_parser.is_mem)
6932 {
6933 i.types[this_operand] |= reg->reg_type & ~BaseIndex;
6934 i.op[this_operand].regs = reg;
6935 i.reg_operands++;
6936 }
6937 else
6938 {
6939 as_bad (_("Invalid use of register"));
6940 return 0;
6941 }
6942
6943 /* Since registers are not part of the displacement string (except
6944 when we're parsing offset operands), we may need to remove any
6945 preceding '+' from the displacement string. */
6946 if (*intel_parser.disp != '\0'
6947 && !intel_parser.in_offset)
6948 {
6949 char *s = intel_parser.disp;
6950 s += strlen (s) - 1;
6951 if (*s == '+')
6952 *s = '\0';
6953 }
6954
6955 return 1;
6956 }
6957
6958 /* e11 BYTE
6959 | WORD
6960 | DWORD
6961 | FWORD
6962 | QWORD
6963 | TBYTE
6964 | OWORD
6965 | XMMWORD */
6966 case T_BYTE:
6967 case T_WORD:
6968 case T_DWORD:
6969 case T_FWORD:
6970 case T_QWORD:
6971 case T_TBYTE:
6972 case T_XMMWORD:
6973 intel_match_token (cur_token.code);
6974
6975 if (cur_token.code == T_PTR)
6976 return 1;
6977
6978 /* It must have been an identifier. */
6979 intel_putback_token ();
6980 cur_token.code = T_ID;
6981 /* FALLTHRU */
6982
6983 /* e11 id
6984 | constant */
6985 case T_ID:
6986 if (!intel_parser.in_offset && intel_parser.is_mem <= 0)
6987 {
6988 symbolS *symbolP;
6989
6990 /* The identifier represents a memory reference only if it's not
6991 preceded by an offset modifier and if it's not an equate. */
6992 symbolP = symbol_find(cur_token.str);
6993 if (!symbolP || S_GET_SEGMENT(symbolP) != absolute_section)
6994 intel_parser.is_mem = 1;
6995 }
6996 /* FALLTHRU */
6997
6998 case T_CONST:
6999 case '-':
7000 case '+':
7001 {
7002 char *save_str, sign = 0;
7003
7004 /* Allow constants that start with `+' or `-'. */
7005 if (cur_token.code == '-' || cur_token.code == '+')
7006 {
7007 sign = cur_token.code;
7008 intel_match_token (cur_token.code);
7009 if (cur_token.code != T_CONST)
7010 {
7011 as_bad (_("Syntax error: Expecting a constant, got `%s'"),
7012 cur_token.str);
7013 return 0;
7014 }
7015 }
7016
7017 save_str = (char *) xmalloc (strlen (cur_token.str) + 2);
7018 strcpy (save_str + !!sign, cur_token.str);
7019 if (sign)
7020 *save_str = sign;
7021
7022 /* Get the next token to check for register scaling. */
7023 intel_match_token (cur_token.code);
7024
7025 /* Check if this constant is a scaling factor for an index register. */
7026 if (cur_token.code == '*')
7027 {
7028 if (intel_match_token ('*') && cur_token.code == T_REG)
7029 {
7030 const reg_entry *reg = cur_token.reg;
7031
7032 if (!intel_parser.in_bracket)
7033 {
7034 as_bad (_("Register scaling only allowed in memory operands"));
7035 return 0;
7036 }
7037
7038 if (reg->reg_type & Reg16) /* Disallow things like [1*si]. */
7039 reg = i386_regtab + REGNAM_AX + 4; /* sp is invalid as index */
7040 else if (i.index_reg)
7041 reg = i386_regtab + REGNAM_EAX + 4; /* esp is invalid as index */
7042
7043 /* The constant is followed by `* reg', so it must be
7044 a valid scale. */
7045 i.index_reg = reg;
7046 i.types[this_operand] |= BaseIndex;
7047
7048 /* Set the scale after setting the register (otherwise,
7049 i386_scale will complain) */
7050 if (!i386_scale (save_str))
7051 return 0;
7052 intel_match_token (T_REG);
7053
7054 /* Since registers are not part of the displacement
7055 string, we may need to remove any preceding '+' from
7056 the displacement string. */
7057 if (*intel_parser.disp != '\0')
7058 {
7059 char *s = intel_parser.disp;
7060 s += strlen (s) - 1;
7061 if (*s == '+')
7062 *s = '\0';
7063 }
7064
7065 free (save_str);
7066
7067 return 1;
7068 }
7069
7070 /* The constant was not used for register scaling. Since we have
7071 already consumed the token following `*' we now need to put it
7072 back in the stream. */
7073 intel_putback_token ();
7074 }
7075
7076 /* Add the constant to the displacement string. */
7077 strcat (intel_parser.disp, save_str);
7078 free (save_str);
7079
7080 return 1;
7081 }
7082 }
7083
7084 as_bad (_("Unrecognized token '%s'"), cur_token.str);
7085 return 0;
7086 }
7087
7088 /* Match the given token against cur_token. If they match, read the next
7089 token from the operand string. */
7090 static int
7091 intel_match_token (code)
7092 int code;
7093 {
7094 if (cur_token.code == code)
7095 {
7096 intel_get_token ();
7097 return 1;
7098 }
7099 else
7100 {
7101 as_bad (_("Unexpected token `%s'"), cur_token.str);
7102 return 0;
7103 }
7104 }
7105
7106 /* Read a new token from intel_parser.op_string and store it in cur_token. */
7107 static void
7108 intel_get_token ()
7109 {
7110 char *end_op;
7111 const reg_entry *reg;
7112 struct intel_token new_token;
7113
7114 new_token.code = T_NIL;
7115 new_token.reg = NULL;
7116 new_token.str = NULL;
7117
7118 /* Free the memory allocated to the previous token and move
7119 cur_token to prev_token. */
7120 if (prev_token.str)
7121 free (prev_token.str);
7122
7123 prev_token = cur_token;
7124
7125 /* Skip whitespace. */
7126 while (is_space_char (*intel_parser.op_string))
7127 intel_parser.op_string++;
7128
7129 /* Return an empty token if we find nothing else on the line. */
7130 if (*intel_parser.op_string == '\0')
7131 {
7132 cur_token = new_token;
7133 return;
7134 }
7135
7136 /* The new token cannot be larger than the remainder of the operand
7137 string. */
7138 new_token.str = (char *) xmalloc (strlen (intel_parser.op_string) + 1);
7139 new_token.str[0] = '\0';
7140
7141 if (strchr ("0123456789", *intel_parser.op_string))
7142 {
7143 char *p = new_token.str;
7144 char *q = intel_parser.op_string;
7145 new_token.code = T_CONST;
7146
7147 /* Allow any kind of identifier char to encompass floating point and
7148 hexadecimal numbers. */
7149 while (is_identifier_char (*q))
7150 *p++ = *q++;
7151 *p = '\0';
7152
7153 /* Recognize special symbol names [0-9][bf]. */
7154 if (strlen (intel_parser.op_string) == 2
7155 && (intel_parser.op_string[1] == 'b'
7156 || intel_parser.op_string[1] == 'f'))
7157 new_token.code = T_ID;
7158 }
7159
7160 else if ((reg = parse_register (intel_parser.op_string, &end_op)) != NULL)
7161 {
7162 size_t len = end_op - intel_parser.op_string;
7163
7164 new_token.code = T_REG;
7165 new_token.reg = reg;
7166
7167 memcpy (new_token.str, intel_parser.op_string, len);
7168 new_token.str[len] = '\0';
7169 }
7170
7171 else if (is_identifier_char (*intel_parser.op_string))
7172 {
7173 char *p = new_token.str;
7174 char *q = intel_parser.op_string;
7175
7176 /* A '.' or '$' followed by an identifier char is an identifier.
7177 Otherwise, it's operator '.' followed by an expression. */
7178 if ((*q == '.' || *q == '$') && !is_identifier_char (*(q + 1)))
7179 {
7180 new_token.code = '.';
7181 new_token.str[0] = '.';
7182 new_token.str[1] = '\0';
7183 }
7184 else
7185 {
7186 while (is_identifier_char (*q) || *q == '@')
7187 *p++ = *q++;
7188 *p = '\0';
7189
7190 if (strcasecmp (new_token.str, "NOT") == 0)
7191 new_token.code = '~';
7192
7193 else if (strcasecmp (new_token.str, "MOD") == 0)
7194 new_token.code = '%';
7195
7196 else if (strcasecmp (new_token.str, "AND") == 0)
7197 new_token.code = '&';
7198
7199 else if (strcasecmp (new_token.str, "OR") == 0)
7200 new_token.code = '|';
7201
7202 else if (strcasecmp (new_token.str, "XOR") == 0)
7203 new_token.code = '^';
7204
7205 else if (strcasecmp (new_token.str, "SHL") == 0)
7206 new_token.code = T_SHL;
7207
7208 else if (strcasecmp (new_token.str, "SHR") == 0)
7209 new_token.code = T_SHR;
7210
7211 else if (strcasecmp (new_token.str, "BYTE") == 0)
7212 new_token.code = T_BYTE;
7213
7214 else if (strcasecmp (new_token.str, "WORD") == 0)
7215 new_token.code = T_WORD;
7216
7217 else if (strcasecmp (new_token.str, "DWORD") == 0)
7218 new_token.code = T_DWORD;
7219
7220 else if (strcasecmp (new_token.str, "FWORD") == 0)
7221 new_token.code = T_FWORD;
7222
7223 else if (strcasecmp (new_token.str, "QWORD") == 0)
7224 new_token.code = T_QWORD;
7225
7226 else if (strcasecmp (new_token.str, "TBYTE") == 0
7227 /* XXX remove (gcc still uses it) */
7228 || strcasecmp (new_token.str, "XWORD") == 0)
7229 new_token.code = T_TBYTE;
7230
7231 else if (strcasecmp (new_token.str, "XMMWORD") == 0
7232 || strcasecmp (new_token.str, "OWORD") == 0)
7233 new_token.code = T_XMMWORD;
7234
7235 else if (strcasecmp (new_token.str, "PTR") == 0)
7236 new_token.code = T_PTR;
7237
7238 else if (strcasecmp (new_token.str, "SHORT") == 0)
7239 new_token.code = T_SHORT;
7240
7241 else if (strcasecmp (new_token.str, "OFFSET") == 0)
7242 {
7243 new_token.code = T_OFFSET;
7244
7245 /* ??? This is not mentioned in the MASM grammar but gcc
7246 makes use of it with -mintel-syntax. OFFSET may be
7247 followed by FLAT: */
7248 if (strncasecmp (q, " FLAT:", 6) == 0)
7249 strcat (new_token.str, " FLAT:");
7250 }
7251
7252 /* ??? This is not mentioned in the MASM grammar. */
7253 else if (strcasecmp (new_token.str, "FLAT") == 0)
7254 {
7255 new_token.code = T_OFFSET;
7256 if (*q == ':')
7257 strcat (new_token.str, ":");
7258 else
7259 as_bad (_("`:' expected"));
7260 }
7261
7262 else
7263 new_token.code = T_ID;
7264 }
7265 }
7266
7267 else if (strchr ("+-/*%|&^:[]()~", *intel_parser.op_string))
7268 {
7269 new_token.code = *intel_parser.op_string;
7270 new_token.str[0] = *intel_parser.op_string;
7271 new_token.str[1] = '\0';
7272 }
7273
7274 else if (strchr ("<>", *intel_parser.op_string)
7275 && *intel_parser.op_string == *(intel_parser.op_string + 1))
7276 {
7277 new_token.code = *intel_parser.op_string == '<' ? T_SHL : T_SHR;
7278 new_token.str[0] = *intel_parser.op_string;
7279 new_token.str[1] = *intel_parser.op_string;
7280 new_token.str[2] = '\0';
7281 }
7282
7283 else
7284 as_bad (_("Unrecognized token `%s'"), intel_parser.op_string);
7285
7286 intel_parser.op_string += strlen (new_token.str);
7287 cur_token = new_token;
7288 }
7289
7290 /* Put cur_token back into the token stream and make cur_token point to
7291 prev_token. */
7292 static void
7293 intel_putback_token ()
7294 {
7295 if (cur_token.code != T_NIL)
7296 {
7297 intel_parser.op_string -= strlen (cur_token.str);
7298 free (cur_token.str);
7299 }
7300 cur_token = prev_token;
7301
7302 /* Forget prev_token. */
7303 prev_token.code = T_NIL;
7304 prev_token.reg = NULL;
7305 prev_token.str = NULL;
7306 }
7307
7308 int
7309 tc_x86_regname_to_dw2regnum (char *regname)
7310 {
7311 unsigned int regnum;
7312 unsigned int regnames_count;
7313 static const char *const regnames_32[] =
7314 {
7315 "eax", "ecx", "edx", "ebx",
7316 "esp", "ebp", "esi", "edi",
7317 "eip", "eflags", NULL,
7318 "st0", "st1", "st2", "st3",
7319 "st4", "st5", "st6", "st7",
7320 NULL, NULL,
7321 "xmm0", "xmm1", "xmm2", "xmm3",
7322 "xmm4", "xmm5", "xmm6", "xmm7",
7323 "mm0", "mm1", "mm2", "mm3",
7324 "mm4", "mm5", "mm6", "mm7",
7325 "fcw", "fsw", "mxcsr",
7326 "es", "cs", "ss", "ds", "fs", "gs", NULL, NULL,
7327 "tr", "ldtr"
7328 };
7329 static const char *const regnames_64[] =
7330 {
7331 "rax", "rdx", "rcx", "rbx",
7332 "rsi", "rdi", "rbp", "rsp",
7333 "r8", "r9", "r10", "r11",
7334 "r12", "r13", "r14", "r15",
7335 "rip",
7336 "xmm0", "xmm1", "xmm2", "xmm3",
7337 "xmm4", "xmm5", "xmm6", "xmm7",
7338 "xmm8", "xmm9", "xmm10", "xmm11",
7339 "xmm12", "xmm13", "xmm14", "xmm15",
7340 "st0", "st1", "st2", "st3",
7341 "st4", "st5", "st6", "st7",
7342 "mm0", "mm1", "mm2", "mm3",
7343 "mm4", "mm5", "mm6", "mm7",
7344 "rflags",
7345 "es", "cs", "ss", "ds", "fs", "gs", NULL, NULL,
7346 "fs.base", "gs.base", NULL, NULL,
7347 "tr", "ldtr",
7348 "mxcsr", "fcw", "fsw"
7349 };
7350 const char *const *regnames;
7351
7352 if (flag_code == CODE_64BIT)
7353 {
7354 regnames = regnames_64;
7355 regnames_count = ARRAY_SIZE (regnames_64);
7356 }
7357 else
7358 {
7359 regnames = regnames_32;
7360 regnames_count = ARRAY_SIZE (regnames_32);
7361 }
7362
7363 for (regnum = 0; regnum < regnames_count; regnum++)
7364 if (regnames[regnum] != NULL
7365 && strcmp (regname, regnames[regnum]) == 0)
7366 return regnum;
7367
7368 return -1;
7369 }
7370
7371 void
7372 tc_x86_frame_initial_instructions (void)
7373 {
7374 static unsigned int sp_regno;
7375
7376 if (!sp_regno)
7377 sp_regno = tc_x86_regname_to_dw2regnum (flag_code == CODE_64BIT
7378 ? "rsp" : "esp");
7379
7380 cfi_add_CFA_def_cfa (sp_regno, -x86_cie_data_alignment);
7381 cfi_add_CFA_offset (x86_dwarf2_return_column, x86_cie_data_alignment);
7382 }
7383
7384 int
7385 i386_elf_section_type (const char *str, size_t len)
7386 {
7387 if (flag_code == CODE_64BIT
7388 && len == sizeof ("unwind") - 1
7389 && strncmp (str, "unwind", 6) == 0)
7390 return SHT_X86_64_UNWIND;
7391
7392 return -1;
7393 }
7394
7395 #ifdef TE_PE
7396 void
7397 tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
7398 {
7399 expressionS expr;
7400
7401 expr.X_op = O_secrel;
7402 expr.X_add_symbol = symbol;
7403 expr.X_add_number = 0;
7404 emit_expr (&expr, size);
7405 }
7406 #endif
7407
7408 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7409 /* For ELF on x86-64, add support for SHF_X86_64_LARGE. */
7410
7411 int
7412 x86_64_section_letter (int letter, char **ptr_msg)
7413 {
7414 if (flag_code == CODE_64BIT)
7415 {
7416 if (letter == 'l')
7417 return SHF_X86_64_LARGE;
7418
7419 *ptr_msg = _("Bad .section directive: want a,l,w,x,M,S,G,T in string");
7420 }
7421 else
7422 *ptr_msg = _("Bad .section directive: want a,w,x,M,S,G,T in string");
7423 return -1;
7424 }
7425
7426 int
7427 x86_64_section_word (char *str, size_t len)
7428 {
7429 if (len == 5 && flag_code == CODE_64BIT && strncmp (str, "large", 5) == 0)
7430 return SHF_X86_64_LARGE;
7431
7432 return -1;
7433 }
7434
7435 static void
7436 handle_large_common (int small ATTRIBUTE_UNUSED)
7437 {
7438 if (flag_code != CODE_64BIT)
7439 {
7440 s_comm_internal (0, elf_common_parse);
7441 as_warn (_(".largecomm supported only in 64bit mode, producing .comm"));
7442 }
7443 else
7444 {
7445 static segT lbss_section;
7446 asection *saved_com_section_ptr = elf_com_section_ptr;
7447 asection *saved_bss_section = bss_section;
7448
7449 if (lbss_section == NULL)
7450 {
7451 flagword applicable;
7452 segT seg = now_seg;
7453 subsegT subseg = now_subseg;
7454
7455 /* The .lbss section is for local .largecomm symbols. */
7456 lbss_section = subseg_new (".lbss", 0);
7457 applicable = bfd_applicable_section_flags (stdoutput);
7458 bfd_set_section_flags (stdoutput, lbss_section,
7459 applicable & SEC_ALLOC);
7460 seg_info (lbss_section)->bss = 1;
7461
7462 subseg_set (seg, subseg);
7463 }
7464
7465 elf_com_section_ptr = &_bfd_elf_large_com_section;
7466 bss_section = lbss_section;
7467
7468 s_comm_internal (0, elf_common_parse);
7469
7470 elf_com_section_ptr = saved_com_section_ptr;
7471 bss_section = saved_bss_section;
7472 }
7473 }
7474 #endif /* OBJ_ELF || OBJ_MAYBE_ELF */
This page took 0.265498 seconds and 4 git commands to generate.