2007-04-30 H.J. Lu <hongjiu.lu@intel.com>
[deliverable/binutils-gdb.git] / gas / config / tc-i386.c
1 /* tc-i386.c -- Assemble code for the Intel 80386
2 Copyright 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
4 Free Software Foundation, Inc.
5
6 This file is part of GAS, the GNU Assembler.
7
8 GAS is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2, or (at your option)
11 any later version.
12
13 GAS is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GAS; see the file COPYING. If not, write to the Free
20 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
21 02110-1301, USA. */
22
23 /* Intel 80386 machine specific gas.
24 Written by Eliot Dresselhaus (eliot@mgm.mit.edu).
25 x86_64 support by Jan Hubicka (jh@suse.cz)
26 VIA PadLock support by Michal Ludvig (mludvig@suse.cz)
27 Bugs & suggestions are completely welcome. This is free software.
28 Please help us make it better. */
29
30 #include "as.h"
31 #include "safe-ctype.h"
32 #include "subsegs.h"
33 #include "dwarf2dbg.h"
34 #include "dw2gencfi.h"
35 #include "elf/x86-64.h"
36
37 #ifndef REGISTER_WARNINGS
38 #define REGISTER_WARNINGS 1
39 #endif
40
41 #ifndef INFER_ADDR_PREFIX
42 #define INFER_ADDR_PREFIX 1
43 #endif
44
45 #ifndef SCALE1_WHEN_NO_INDEX
46 /* Specifying a scale factor besides 1 when there is no index is
47 futile. eg. `mov (%ebx,2),%al' does exactly the same as
48 `mov (%ebx),%al'. To slavishly follow what the programmer
49 specified, set SCALE1_WHEN_NO_INDEX to 0. */
50 #define SCALE1_WHEN_NO_INDEX 1
51 #endif
52
53 #ifndef DEFAULT_ARCH
54 #define DEFAULT_ARCH "i386"
55 #endif
56
57 #ifndef INLINE
58 #if __GNUC__ >= 2
59 #define INLINE __inline__
60 #else
61 #define INLINE
62 #endif
63 #endif
64
65 static void set_code_flag (int);
66 static void set_16bit_gcc_code_flag (int);
67 static void set_intel_syntax (int);
68 static void set_cpu_arch (int);
69 #ifdef TE_PE
70 static void pe_directive_secrel (int);
71 #endif
72 static void signed_cons (int);
73 static char *output_invalid (int c);
74 static int i386_operand (char *);
75 static int i386_intel_operand (char *, int);
76 static const reg_entry *parse_register (char *, char **);
77 static char *parse_insn (char *, char *);
78 static char *parse_operands (char *, const char *);
79 static void swap_operands (void);
80 static void swap_2_operands (int, int);
81 static void optimize_imm (void);
82 static void optimize_disp (void);
83 static int match_template (void);
84 static int check_string (void);
85 static int process_suffix (void);
86 static int check_byte_reg (void);
87 static int check_long_reg (void);
88 static int check_qword_reg (void);
89 static int check_word_reg (void);
90 static int finalize_imm (void);
91 static int process_operands (void);
92 static const seg_entry *build_modrm_byte (void);
93 static void output_insn (void);
94 static void output_imm (fragS *, offsetT);
95 static void output_disp (fragS *, offsetT);
96 #ifndef I386COFF
97 static void s_bss (int);
98 #endif
99 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
100 static void handle_large_common (int small ATTRIBUTE_UNUSED);
101 #endif
102
103 static const char *default_arch = DEFAULT_ARCH;
104
105 /* 'md_assemble ()' gathers together information and puts it into a
106 i386_insn. */
107
108 union i386_op
109 {
110 expressionS *disps;
111 expressionS *imms;
112 const reg_entry *regs;
113 };
114
115 struct _i386_insn
116 {
117 /* TM holds the template for the insn were currently assembling. */
118 template tm;
119
120 /* SUFFIX holds the instruction mnemonic suffix if given.
121 (e.g. 'l' for 'movl') */
122 char suffix;
123
124 /* OPERANDS gives the number of given operands. */
125 unsigned int operands;
126
127 /* REG_OPERANDS, DISP_OPERANDS, MEM_OPERANDS, IMM_OPERANDS give the number
128 of given register, displacement, memory operands and immediate
129 operands. */
130 unsigned int reg_operands, disp_operands, mem_operands, imm_operands;
131
132 /* TYPES [i] is the type (see above #defines) which tells us how to
133 use OP[i] for the corresponding operand. */
134 unsigned int types[MAX_OPERANDS];
135
136 /* Displacement expression, immediate expression, or register for each
137 operand. */
138 union i386_op op[MAX_OPERANDS];
139
140 /* Flags for operands. */
141 unsigned int flags[MAX_OPERANDS];
142 #define Operand_PCrel 1
143
144 /* Relocation type for operand */
145 enum bfd_reloc_code_real reloc[MAX_OPERANDS];
146
147 /* BASE_REG, INDEX_REG, and LOG2_SCALE_FACTOR are used to encode
148 the base index byte below. */
149 const reg_entry *base_reg;
150 const reg_entry *index_reg;
151 unsigned int log2_scale_factor;
152
153 /* SEG gives the seg_entries of this insn. They are zero unless
154 explicit segment overrides are given. */
155 const seg_entry *seg[2];
156
157 /* PREFIX holds all the given prefix opcodes (usually null).
158 PREFIXES is the number of prefix opcodes. */
159 unsigned int prefixes;
160 unsigned char prefix[MAX_PREFIXES];
161
162 /* RM and SIB are the modrm byte and the sib byte where the
163 addressing modes of this insn are encoded. */
164
165 modrm_byte rm;
166 rex_byte rex;
167 sib_byte sib;
168 };
169
170 typedef struct _i386_insn i386_insn;
171
172 /* List of chars besides those in app.c:symbol_chars that can start an
173 operand. Used to prevent the scrubber eating vital white-space. */
174 const char extra_symbol_chars[] = "*%-(["
175 #ifdef LEX_AT
176 "@"
177 #endif
178 #ifdef LEX_QM
179 "?"
180 #endif
181 ;
182
183 #if (defined (TE_I386AIX) \
184 || ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) \
185 && !defined (TE_GNU) \
186 && !defined (TE_LINUX) \
187 && !defined (TE_NETWARE) \
188 && !defined (TE_FreeBSD) \
189 && !defined (TE_NetBSD)))
190 /* This array holds the chars that always start a comment. If the
191 pre-processor is disabled, these aren't very useful. The option
192 --divide will remove '/' from this list. */
193 const char *i386_comment_chars = "#/";
194 #define SVR4_COMMENT_CHARS 1
195 #define PREFIX_SEPARATOR '\\'
196
197 #else
198 const char *i386_comment_chars = "#";
199 #define PREFIX_SEPARATOR '/'
200 #endif
201
202 /* This array holds the chars that only start a comment at the beginning of
203 a line. If the line seems to have the form '# 123 filename'
204 .line and .file directives will appear in the pre-processed output.
205 Note that input_file.c hand checks for '#' at the beginning of the
206 first line of the input file. This is because the compiler outputs
207 #NO_APP at the beginning of its output.
208 Also note that comments started like this one will always work if
209 '/' isn't otherwise defined. */
210 const char line_comment_chars[] = "#/";
211
212 const char line_separator_chars[] = ";";
213
214 /* Chars that can be used to separate mant from exp in floating point
215 nums. */
216 const char EXP_CHARS[] = "eE";
217
218 /* Chars that mean this number is a floating point constant
219 As in 0f12.456
220 or 0d1.2345e12. */
221 const char FLT_CHARS[] = "fFdDxX";
222
223 /* Tables for lexical analysis. */
224 static char mnemonic_chars[256];
225 static char register_chars[256];
226 static char operand_chars[256];
227 static char identifier_chars[256];
228 static char digit_chars[256];
229
230 /* Lexical macros. */
231 #define is_mnemonic_char(x) (mnemonic_chars[(unsigned char) x])
232 #define is_operand_char(x) (operand_chars[(unsigned char) x])
233 #define is_register_char(x) (register_chars[(unsigned char) x])
234 #define is_space_char(x) ((x) == ' ')
235 #define is_identifier_char(x) (identifier_chars[(unsigned char) x])
236 #define is_digit_char(x) (digit_chars[(unsigned char) x])
237
238 /* All non-digit non-letter characters that may occur in an operand. */
239 static char operand_special_chars[] = "%$-+(,)*._~/<>|&^!:[@]";
240
241 /* md_assemble() always leaves the strings it's passed unaltered. To
242 effect this we maintain a stack of saved characters that we've smashed
243 with '\0's (indicating end of strings for various sub-fields of the
244 assembler instruction). */
245 static char save_stack[32];
246 static char *save_stack_p;
247 #define END_STRING_AND_SAVE(s) \
248 do { *save_stack_p++ = *(s); *(s) = '\0'; } while (0)
249 #define RESTORE_END_STRING(s) \
250 do { *(s) = *--save_stack_p; } while (0)
251
252 /* The instruction we're assembling. */
253 static i386_insn i;
254
255 /* Possible templates for current insn. */
256 static const templates *current_templates;
257
258 /* Per instruction expressionS buffers: max displacements & immediates. */
259 static expressionS disp_expressions[MAX_MEMORY_OPERANDS];
260 static expressionS im_expressions[MAX_IMMEDIATE_OPERANDS];
261
262 /* Current operand we are working on. */
263 static int this_operand;
264
265 /* We support four different modes. FLAG_CODE variable is used to distinguish
266 these. */
267
268 enum flag_code {
269 CODE_32BIT,
270 CODE_16BIT,
271 CODE_64BIT };
272 #define NUM_FLAG_CODE ((int) CODE_64BIT + 1)
273
274 static enum flag_code flag_code;
275 static unsigned int object_64bit;
276 static int use_rela_relocations = 0;
277
278 /* The names used to print error messages. */
279 static const char *flag_code_names[] =
280 {
281 "32",
282 "16",
283 "64"
284 };
285
286 /* 1 for intel syntax,
287 0 if att syntax. */
288 static int intel_syntax = 0;
289
290 /* 1 if register prefix % not required. */
291 static int allow_naked_reg = 0;
292
293 /* Register prefix used for error message. */
294 static const char *register_prefix = "%";
295
296 /* Used in 16 bit gcc mode to add an l suffix to call, ret, enter,
297 leave, push, and pop instructions so that gcc has the same stack
298 frame as in 32 bit mode. */
299 static char stackop_size = '\0';
300
301 /* Non-zero to optimize code alignment. */
302 int optimize_align_code = 1;
303
304 /* Non-zero to quieten some warnings. */
305 static int quiet_warnings = 0;
306
307 /* CPU name. */
308 static const char *cpu_arch_name = NULL;
309 static const char *cpu_sub_arch_name = NULL;
310
311 /* CPU feature flags. */
312 static unsigned int cpu_arch_flags = CpuUnknownFlags | CpuNo64;
313
314 /* If we have selected a cpu we are generating instructions for. */
315 static int cpu_arch_tune_set = 0;
316
317 /* Cpu we are generating instructions for. */
318 static enum processor_type cpu_arch_tune = PROCESSOR_UNKNOWN;
319
320 /* CPU feature flags of cpu we are generating instructions for. */
321 static unsigned int cpu_arch_tune_flags = 0;
322
323 /* CPU instruction set architecture used. */
324 static enum processor_type cpu_arch_isa = PROCESSOR_UNKNOWN;
325
326 /* CPU feature flags of instruction set architecture used. */
327 static unsigned int cpu_arch_isa_flags = 0;
328
329 /* If set, conditional jumps are not automatically promoted to handle
330 larger than a byte offset. */
331 static unsigned int no_cond_jump_promotion = 0;
332
333 /* Pre-defined "_GLOBAL_OFFSET_TABLE_". */
334 static symbolS *GOT_symbol;
335
336 /* The dwarf2 return column, adjusted for 32 or 64 bit. */
337 unsigned int x86_dwarf2_return_column;
338
339 /* The dwarf2 data alignment, adjusted for 32 or 64 bit. */
340 int x86_cie_data_alignment;
341
342 /* Interface to relax_segment.
343 There are 3 major relax states for 386 jump insns because the
344 different types of jumps add different sizes to frags when we're
345 figuring out what sort of jump to choose to reach a given label. */
346
347 /* Types. */
348 #define UNCOND_JUMP 0
349 #define COND_JUMP 1
350 #define COND_JUMP86 2
351
352 /* Sizes. */
353 #define CODE16 1
354 #define SMALL 0
355 #define SMALL16 (SMALL | CODE16)
356 #define BIG 2
357 #define BIG16 (BIG | CODE16)
358
359 #ifndef INLINE
360 #ifdef __GNUC__
361 #define INLINE __inline__
362 #else
363 #define INLINE
364 #endif
365 #endif
366
367 #define ENCODE_RELAX_STATE(type, size) \
368 ((relax_substateT) (((type) << 2) | (size)))
369 #define TYPE_FROM_RELAX_STATE(s) \
370 ((s) >> 2)
371 #define DISP_SIZE_FROM_RELAX_STATE(s) \
372 ((((s) & 3) == BIG ? 4 : (((s) & 3) == BIG16 ? 2 : 1)))
373
374 /* This table is used by relax_frag to promote short jumps to long
375 ones where necessary. SMALL (short) jumps may be promoted to BIG
376 (32 bit long) ones, and SMALL16 jumps to BIG16 (16 bit long). We
377 don't allow a short jump in a 32 bit code segment to be promoted to
378 a 16 bit offset jump because it's slower (requires data size
379 prefix), and doesn't work, unless the destination is in the bottom
380 64k of the code segment (The top 16 bits of eip are zeroed). */
381
382 const relax_typeS md_relax_table[] =
383 {
384 /* The fields are:
385 1) most positive reach of this state,
386 2) most negative reach of this state,
387 3) how many bytes this mode will have in the variable part of the frag
388 4) which index into the table to try if we can't fit into this one. */
389
390 /* UNCOND_JUMP states. */
391 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG)},
392 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16)},
393 /* dword jmp adds 4 bytes to frag:
394 0 extra opcode bytes, 4 displacement bytes. */
395 {0, 0, 4, 0},
396 /* word jmp adds 2 byte2 to frag:
397 0 extra opcode bytes, 2 displacement bytes. */
398 {0, 0, 2, 0},
399
400 /* COND_JUMP states. */
401 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG)},
402 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG16)},
403 /* dword conditionals adds 5 bytes to frag:
404 1 extra opcode byte, 4 displacement bytes. */
405 {0, 0, 5, 0},
406 /* word conditionals add 3 bytes to frag:
407 1 extra opcode byte, 2 displacement bytes. */
408 {0, 0, 3, 0},
409
410 /* COND_JUMP86 states. */
411 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG)},
412 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG16)},
413 /* dword conditionals adds 5 bytes to frag:
414 1 extra opcode byte, 4 displacement bytes. */
415 {0, 0, 5, 0},
416 /* word conditionals add 4 bytes to frag:
417 1 displacement byte and a 3 byte long branch insn. */
418 {0, 0, 4, 0}
419 };
420
421 static const arch_entry cpu_arch[] =
422 {
423 {"generic32", PROCESSOR_GENERIC32,
424 Cpu186|Cpu286|Cpu386},
425 {"generic64", PROCESSOR_GENERIC64,
426 Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuP4|CpuMMX
427 |CpuMMX2|CpuSSE|CpuSSE2},
428 {"i8086", PROCESSOR_UNKNOWN,
429 0},
430 {"i186", PROCESSOR_UNKNOWN,
431 Cpu186},
432 {"i286", PROCESSOR_UNKNOWN,
433 Cpu186|Cpu286},
434 {"i386", PROCESSOR_GENERIC32,
435 Cpu186|Cpu286|Cpu386},
436 {"i486", PROCESSOR_I486,
437 Cpu186|Cpu286|Cpu386|Cpu486},
438 {"i586", PROCESSOR_PENTIUM,
439 Cpu186|Cpu286|Cpu386|Cpu486|Cpu586},
440 {"i686", PROCESSOR_PENTIUMPRO,
441 Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686},
442 {"pentium", PROCESSOR_PENTIUM,
443 Cpu186|Cpu286|Cpu386|Cpu486|Cpu586},
444 {"pentiumpro",PROCESSOR_PENTIUMPRO,
445 Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686},
446 {"pentiumii", PROCESSOR_PENTIUMPRO,
447 Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuMMX},
448 {"pentiumiii",PROCESSOR_PENTIUMPRO,
449 Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuMMX|CpuMMX2|CpuSSE},
450 {"pentium4", PROCESSOR_PENTIUM4,
451 Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuP4|CpuMMX
452 |CpuMMX2|CpuSSE|CpuSSE2},
453 {"prescott", PROCESSOR_NOCONA,
454 Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuP4|CpuMMX
455 |CpuMMX2|CpuSSE|CpuSSE2|CpuSSE3},
456 {"nocona", PROCESSOR_NOCONA,
457 Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuP4|CpuMMX
458 |CpuMMX2|CpuSSE|CpuSSE2|CpuSSE3},
459 {"yonah", PROCESSOR_CORE,
460 Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuP4|CpuMMX
461 |CpuMMX2|CpuSSE|CpuSSE2|CpuSSE3},
462 {"core", PROCESSOR_CORE,
463 Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuP4|CpuMMX
464 |CpuMMX2|CpuSSE|CpuSSE2|CpuSSE3},
465 {"merom", PROCESSOR_CORE2,
466 Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuP4|CpuMMX
467 |CpuMMX2|CpuSSE|CpuSSE2|CpuSSE3|CpuSSSE3},
468 {"core2", PROCESSOR_CORE2,
469 Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuP4|CpuMMX
470 |CpuMMX2|CpuSSE|CpuSSE2|CpuSSE3|CpuSSSE3},
471 {"k6", PROCESSOR_K6,
472 Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|CpuK6|CpuMMX},
473 {"k6_2", PROCESSOR_K6,
474 Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|CpuK6|CpuMMX|Cpu3dnow},
475 {"athlon", PROCESSOR_ATHLON,
476 Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuK6
477 |CpuMMX|CpuMMX2|Cpu3dnow|Cpu3dnowA},
478 {"sledgehammer", PROCESSOR_K8,
479 Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuK6
480 |CpuSledgehammer|CpuMMX|CpuMMX2|Cpu3dnow|Cpu3dnowA|CpuSSE|CpuSSE2},
481 {"opteron", PROCESSOR_K8,
482 Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuK6
483 |CpuSledgehammer|CpuMMX|CpuMMX2|Cpu3dnow|Cpu3dnowA|CpuSSE|CpuSSE2},
484 {"k8", PROCESSOR_K8,
485 Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuK6
486 |CpuSledgehammer|CpuMMX|CpuMMX2|Cpu3dnow|Cpu3dnowA|CpuSSE|CpuSSE2},
487 {"amdfam10", PROCESSOR_AMDFAM10,
488 Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuK6|CpuSledgehammer
489 |CpuMMX|CpuMMX2|Cpu3dnow|Cpu3dnowA|CpuSSE|CpuSSE2|CpuSSE3|CpuSSE4a
490 |CpuABM},
491 {".mmx", PROCESSOR_UNKNOWN,
492 CpuMMX},
493 {".sse", PROCESSOR_UNKNOWN,
494 CpuMMX|CpuMMX2|CpuSSE},
495 {".sse2", PROCESSOR_UNKNOWN,
496 CpuMMX|CpuMMX2|CpuSSE|CpuSSE2},
497 {".sse3", PROCESSOR_UNKNOWN,
498 CpuMMX|CpuMMX2|CpuSSE|CpuSSE2|CpuSSE3},
499 {".ssse3", PROCESSOR_UNKNOWN,
500 CpuMMX|CpuMMX2|CpuSSE|CpuSSE2|CpuSSE3|CpuSSSE3},
501 {".sse4.1", PROCESSOR_UNKNOWN,
502 CpuMMX|CpuMMX2|CpuSSE|CpuSSE2|CpuSSE3|CpuSSSE3|CpuSSE4_1},
503 {".sse4.2", PROCESSOR_UNKNOWN,
504 CpuMMX|CpuMMX2|CpuSSE|CpuSSE2|CpuSSE3|CpuSSSE3|CpuSSE4},
505 {".sse4", PROCESSOR_UNKNOWN,
506 CpuMMX|CpuMMX2|CpuSSE|CpuSSE2|CpuSSE3|CpuSSSE3|CpuSSE4},
507 {".3dnow", PROCESSOR_UNKNOWN,
508 CpuMMX|Cpu3dnow},
509 {".3dnowa", PROCESSOR_UNKNOWN,
510 CpuMMX|CpuMMX2|Cpu3dnow|Cpu3dnowA},
511 {".padlock", PROCESSOR_UNKNOWN,
512 CpuPadLock},
513 {".pacifica", PROCESSOR_UNKNOWN,
514 CpuSVME},
515 {".svme", PROCESSOR_UNKNOWN,
516 CpuSVME},
517 {".sse4a", PROCESSOR_UNKNOWN,
518 CpuMMX|CpuMMX2|CpuSSE|CpuSSE2|CpuSSE3|CpuSSE4a},
519 {".abm", PROCESSOR_UNKNOWN,
520 CpuABM}
521 };
522
523 const pseudo_typeS md_pseudo_table[] =
524 {
525 #if !defined(OBJ_AOUT) && !defined(USE_ALIGN_PTWO)
526 {"align", s_align_bytes, 0},
527 #else
528 {"align", s_align_ptwo, 0},
529 #endif
530 {"arch", set_cpu_arch, 0},
531 #ifndef I386COFF
532 {"bss", s_bss, 0},
533 #endif
534 {"ffloat", float_cons, 'f'},
535 {"dfloat", float_cons, 'd'},
536 {"tfloat", float_cons, 'x'},
537 {"value", cons, 2},
538 {"slong", signed_cons, 4},
539 {"noopt", s_ignore, 0},
540 {"optim", s_ignore, 0},
541 {"code16gcc", set_16bit_gcc_code_flag, CODE_16BIT},
542 {"code16", set_code_flag, CODE_16BIT},
543 {"code32", set_code_flag, CODE_32BIT},
544 {"code64", set_code_flag, CODE_64BIT},
545 {"intel_syntax", set_intel_syntax, 1},
546 {"att_syntax", set_intel_syntax, 0},
547 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
548 {"largecomm", handle_large_common, 0},
549 #else
550 {"file", (void (*) (int)) dwarf2_directive_file, 0},
551 {"loc", dwarf2_directive_loc, 0},
552 {"loc_mark_labels", dwarf2_directive_loc_mark_labels, 0},
553 #endif
554 #ifdef TE_PE
555 {"secrel32", pe_directive_secrel, 0},
556 #endif
557 {0, 0, 0}
558 };
559
560 /* For interface with expression (). */
561 extern char *input_line_pointer;
562
563 /* Hash table for instruction mnemonic lookup. */
564 static struct hash_control *op_hash;
565
566 /* Hash table for register lookup. */
567 static struct hash_control *reg_hash;
568 \f
569 void
570 i386_align_code (fragS *fragP, int count)
571 {
572 /* Various efficient no-op patterns for aligning code labels.
573 Note: Don't try to assemble the instructions in the comments.
574 0L and 0w are not legal. */
575 static const char f32_1[] =
576 {0x90}; /* nop */
577 static const char f32_2[] =
578 {0x66,0x90}; /* xchg %ax,%ax */
579 static const char f32_3[] =
580 {0x8d,0x76,0x00}; /* leal 0(%esi),%esi */
581 static const char f32_4[] =
582 {0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
583 static const char f32_5[] =
584 {0x90, /* nop */
585 0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
586 static const char f32_6[] =
587 {0x8d,0xb6,0x00,0x00,0x00,0x00}; /* leal 0L(%esi),%esi */
588 static const char f32_7[] =
589 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
590 static const char f32_8[] =
591 {0x90, /* nop */
592 0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
593 static const char f32_9[] =
594 {0x89,0xf6, /* movl %esi,%esi */
595 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
596 static const char f32_10[] =
597 {0x8d,0x76,0x00, /* leal 0(%esi),%esi */
598 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
599 static const char f32_11[] =
600 {0x8d,0x74,0x26,0x00, /* leal 0(%esi,1),%esi */
601 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
602 static const char f32_12[] =
603 {0x8d,0xb6,0x00,0x00,0x00,0x00, /* leal 0L(%esi),%esi */
604 0x8d,0xbf,0x00,0x00,0x00,0x00}; /* leal 0L(%edi),%edi */
605 static const char f32_13[] =
606 {0x8d,0xb6,0x00,0x00,0x00,0x00, /* leal 0L(%esi),%esi */
607 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
608 static const char f32_14[] =
609 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00, /* leal 0L(%esi,1),%esi */
610 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
611 static const char f32_15[] =
612 {0xeb,0x0d,0x90,0x90,0x90,0x90,0x90, /* jmp .+15; lotsa nops */
613 0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90};
614 static const char f16_3[] =
615 {0x8d,0x74,0x00}; /* lea 0(%esi),%esi */
616 static const char f16_4[] =
617 {0x8d,0xb4,0x00,0x00}; /* lea 0w(%si),%si */
618 static const char f16_5[] =
619 {0x90, /* nop */
620 0x8d,0xb4,0x00,0x00}; /* lea 0w(%si),%si */
621 static const char f16_6[] =
622 {0x89,0xf6, /* mov %si,%si */
623 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
624 static const char f16_7[] =
625 {0x8d,0x74,0x00, /* lea 0(%si),%si */
626 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
627 static const char f16_8[] =
628 {0x8d,0xb4,0x00,0x00, /* lea 0w(%si),%si */
629 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
630 static const char *const f32_patt[] = {
631 f32_1, f32_2, f32_3, f32_4, f32_5, f32_6, f32_7, f32_8,
632 f32_9, f32_10, f32_11, f32_12, f32_13, f32_14, f32_15
633 };
634 static const char *const f16_patt[] = {
635 f32_1, f32_2, f16_3, f16_4, f16_5, f16_6, f16_7, f16_8,
636 f32_15, f32_15, f32_15, f32_15, f32_15, f32_15, f32_15
637 };
638 /* nopl (%[re]ax) */
639 static const char alt_3[] =
640 {0x0f,0x1f,0x00};
641 /* nopl 0(%[re]ax) */
642 static const char alt_4[] =
643 {0x0f,0x1f,0x40,0x00};
644 /* nopl 0(%[re]ax,%[re]ax,1) */
645 static const char alt_5[] =
646 {0x0f,0x1f,0x44,0x00,0x00};
647 /* nopw 0(%[re]ax,%[re]ax,1) */
648 static const char alt_6[] =
649 {0x66,0x0f,0x1f,0x44,0x00,0x00};
650 /* nopl 0L(%[re]ax) */
651 static const char alt_7[] =
652 {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
653 /* nopl 0L(%[re]ax,%[re]ax,1) */
654 static const char alt_8[] =
655 {0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
656 /* nopw 0L(%[re]ax,%[re]ax,1) */
657 static const char alt_9[] =
658 {0x66,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
659 /* nopw %cs:0L(%[re]ax,%[re]ax,1) */
660 static const char alt_10[] =
661 {0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
662 /* data16
663 nopw %cs:0L(%[re]ax,%[re]ax,1) */
664 static const char alt_long_11[] =
665 {0x66,
666 0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
667 /* data16
668 data16
669 nopw %cs:0L(%[re]ax,%[re]ax,1) */
670 static const char alt_long_12[] =
671 {0x66,
672 0x66,
673 0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
674 /* data16
675 data16
676 data16
677 nopw %cs:0L(%[re]ax,%[re]ax,1) */
678 static const char alt_long_13[] =
679 {0x66,
680 0x66,
681 0x66,
682 0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
683 /* data16
684 data16
685 data16
686 data16
687 nopw %cs:0L(%[re]ax,%[re]ax,1) */
688 static const char alt_long_14[] =
689 {0x66,
690 0x66,
691 0x66,
692 0x66,
693 0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
694 /* data16
695 data16
696 data16
697 data16
698 data16
699 nopw %cs:0L(%[re]ax,%[re]ax,1) */
700 static const char alt_long_15[] =
701 {0x66,
702 0x66,
703 0x66,
704 0x66,
705 0x66,
706 0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
707 /* nopl 0(%[re]ax,%[re]ax,1)
708 nopw 0(%[re]ax,%[re]ax,1) */
709 static const char alt_short_11[] =
710 {0x0f,0x1f,0x44,0x00,0x00,
711 0x66,0x0f,0x1f,0x44,0x00,0x00};
712 /* nopw 0(%[re]ax,%[re]ax,1)
713 nopw 0(%[re]ax,%[re]ax,1) */
714 static const char alt_short_12[] =
715 {0x66,0x0f,0x1f,0x44,0x00,0x00,
716 0x66,0x0f,0x1f,0x44,0x00,0x00};
717 /* nopw 0(%[re]ax,%[re]ax,1)
718 nopl 0L(%[re]ax) */
719 static const char alt_short_13[] =
720 {0x66,0x0f,0x1f,0x44,0x00,0x00,
721 0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
722 /* nopl 0L(%[re]ax)
723 nopl 0L(%[re]ax) */
724 static const char alt_short_14[] =
725 {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00,
726 0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
727 /* nopl 0L(%[re]ax)
728 nopl 0L(%[re]ax,%[re]ax,1) */
729 static const char alt_short_15[] =
730 {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00,
731 0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
732 static const char *const alt_short_patt[] = {
733 f32_1, f32_2, alt_3, alt_4, alt_5, alt_6, alt_7, alt_8,
734 alt_9, alt_10, alt_short_11, alt_short_12, alt_short_13,
735 alt_short_14, alt_short_15
736 };
737 static const char *const alt_long_patt[] = {
738 f32_1, f32_2, alt_3, alt_4, alt_5, alt_6, alt_7, alt_8,
739 alt_9, alt_10, alt_long_11, alt_long_12, alt_long_13,
740 alt_long_14, alt_long_15
741 };
742
743 if (count <= 0 || count > 15)
744 return;
745
746 /* We need to decide which NOP sequence to use for 32bit and
747 64bit. When -mtune= is used:
748
749 1. For PROCESSOR_I486, PROCESSOR_PENTIUM and PROCESSOR_GENERIC32,
750 f32_patt will be used.
751 2. For PROCESSOR_K8 and PROCESSOR_AMDFAM10 in 64bit, NOPs with
752 0x66 prefix will be used.
753 3. For PROCESSOR_CORE2, alt_long_patt will be used.
754 4. For PROCESSOR_PENTIUMPRO, PROCESSOR_PENTIUM4, PROCESSOR_NOCONA,
755 PROCESSOR_CORE, PROCESSOR_CORE2, PROCESSOR_K6, PROCESSOR_ATHLON
756 and PROCESSOR_GENERIC64, alt_short_patt will be used.
757
758 When -mtune= isn't used, alt_short_patt will be used if
759 cpu_arch_isa_flags has Cpu686. Otherwise, f32_patt will be used.
760
761 When -march= or .arch is used, we can't use anything beyond
762 cpu_arch_isa_flags. */
763
764 if (flag_code == CODE_16BIT)
765 {
766 memcpy (fragP->fr_literal + fragP->fr_fix,
767 f16_patt[count - 1], count);
768 if (count > 8)
769 /* Adjust jump offset. */
770 fragP->fr_literal[fragP->fr_fix + 1] = count - 2;
771 }
772 else if (flag_code == CODE_64BIT && cpu_arch_tune == PROCESSOR_K8)
773 {
774 int i;
775 int nnops = (count + 3) / 4;
776 int len = count / nnops;
777 int remains = count - nnops * len;
778 int pos = 0;
779
780 /* The recommended way to pad 64bit code is to use NOPs preceded
781 by maximally four 0x66 prefixes. Balance the size of nops. */
782 for (i = 0; i < remains; i++)
783 {
784 memset (fragP->fr_literal + fragP->fr_fix + pos, 0x66, len);
785 fragP->fr_literal[fragP->fr_fix + pos + len] = 0x90;
786 pos += len + 1;
787 }
788 for (; i < nnops; i++)
789 {
790 memset (fragP->fr_literal + fragP->fr_fix + pos, 0x66, len - 1);
791 fragP->fr_literal[fragP->fr_fix + pos + len - 1] = 0x90;
792 pos += len;
793 }
794 }
795 else
796 {
797 const char *const *patt = NULL;
798
799 if (cpu_arch_isa == PROCESSOR_UNKNOWN)
800 {
801 /* PROCESSOR_UNKNOWN means that all ISAs may be used. */
802 switch (cpu_arch_tune)
803 {
804 case PROCESSOR_UNKNOWN:
805 /* We use cpu_arch_isa_flags to check if we SHOULD
806 optimize for Cpu686. */
807 if ((cpu_arch_isa_flags & Cpu686) != 0)
808 patt = alt_short_patt;
809 else
810 patt = f32_patt;
811 break;
812 case PROCESSOR_CORE2:
813 patt = alt_long_patt;
814 break;
815 case PROCESSOR_PENTIUMPRO:
816 case PROCESSOR_PENTIUM4:
817 case PROCESSOR_NOCONA:
818 case PROCESSOR_CORE:
819 case PROCESSOR_K6:
820 case PROCESSOR_ATHLON:
821 case PROCESSOR_K8:
822 case PROCESSOR_GENERIC64:
823 case PROCESSOR_AMDFAM10:
824 patt = alt_short_patt;
825 break;
826 case PROCESSOR_I486:
827 case PROCESSOR_PENTIUM:
828 case PROCESSOR_GENERIC32:
829 patt = f32_patt;
830 break;
831 }
832 }
833 else
834 {
835 switch (cpu_arch_tune)
836 {
837 case PROCESSOR_UNKNOWN:
838 /* When cpu_arch_isa is net, cpu_arch_tune shouldn't be
839 PROCESSOR_UNKNOWN. */
840 abort ();
841 break;
842
843 case PROCESSOR_I486:
844 case PROCESSOR_PENTIUM:
845 case PROCESSOR_PENTIUMPRO:
846 case PROCESSOR_PENTIUM4:
847 case PROCESSOR_NOCONA:
848 case PROCESSOR_CORE:
849 case PROCESSOR_K6:
850 case PROCESSOR_ATHLON:
851 case PROCESSOR_K8:
852 case PROCESSOR_AMDFAM10:
853 case PROCESSOR_GENERIC32:
854 /* We use cpu_arch_isa_flags to check if we CAN optimize
855 for Cpu686. */
856 if ((cpu_arch_isa_flags & Cpu686) != 0)
857 patt = alt_short_patt;
858 else
859 patt = f32_patt;
860 break;
861 case PROCESSOR_CORE2:
862 if ((cpu_arch_isa_flags & Cpu686) != 0)
863 patt = alt_long_patt;
864 else
865 patt = f32_patt;
866 break;
867 case PROCESSOR_GENERIC64:
868 patt = alt_short_patt;
869 break;
870 }
871 }
872
873 memcpy (fragP->fr_literal + fragP->fr_fix,
874 patt[count - 1], count);
875 }
876 fragP->fr_var = count;
877 }
878
879 static INLINE unsigned int
880 mode_from_disp_size (unsigned int t)
881 {
882 return (t & Disp8) ? 1 : (t & (Disp16 | Disp32 | Disp32S)) ? 2 : 0;
883 }
884
885 static INLINE int
886 fits_in_signed_byte (offsetT num)
887 {
888 return (num >= -128) && (num <= 127);
889 }
890
891 static INLINE int
892 fits_in_unsigned_byte (offsetT num)
893 {
894 return (num & 0xff) == num;
895 }
896
897 static INLINE int
898 fits_in_unsigned_word (offsetT num)
899 {
900 return (num & 0xffff) == num;
901 }
902
903 static INLINE int
904 fits_in_signed_word (offsetT num)
905 {
906 return (-32768 <= num) && (num <= 32767);
907 }
908
909 static INLINE int
910 fits_in_signed_long (offsetT num ATTRIBUTE_UNUSED)
911 {
912 #ifndef BFD64
913 return 1;
914 #else
915 return (!(((offsetT) -1 << 31) & num)
916 || (((offsetT) -1 << 31) & num) == ((offsetT) -1 << 31));
917 #endif
918 } /* fits_in_signed_long() */
919
920 static INLINE int
921 fits_in_unsigned_long (offsetT num ATTRIBUTE_UNUSED)
922 {
923 #ifndef BFD64
924 return 1;
925 #else
926 return (num & (((offsetT) 2 << 31) - 1)) == num;
927 #endif
928 } /* fits_in_unsigned_long() */
929
930 static unsigned int
931 smallest_imm_type (offsetT num)
932 {
933 if (cpu_arch_flags != (Cpu186 | Cpu286 | Cpu386 | Cpu486 | CpuNo64))
934 {
935 /* This code is disabled on the 486 because all the Imm1 forms
936 in the opcode table are slower on the i486. They're the
937 versions with the implicitly specified single-position
938 displacement, which has another syntax if you really want to
939 use that form. */
940 if (num == 1)
941 return Imm1 | Imm8 | Imm8S | Imm16 | Imm32 | Imm32S | Imm64;
942 }
943 return (fits_in_signed_byte (num)
944 ? (Imm8S | Imm8 | Imm16 | Imm32 | Imm32S | Imm64)
945 : fits_in_unsigned_byte (num)
946 ? (Imm8 | Imm16 | Imm32 | Imm32S | Imm64)
947 : (fits_in_signed_word (num) || fits_in_unsigned_word (num))
948 ? (Imm16 | Imm32 | Imm32S | Imm64)
949 : fits_in_signed_long (num)
950 ? (Imm32 | Imm32S | Imm64)
951 : fits_in_unsigned_long (num)
952 ? (Imm32 | Imm64)
953 : Imm64);
954 }
955
956 static offsetT
957 offset_in_range (offsetT val, int size)
958 {
959 addressT mask;
960
961 switch (size)
962 {
963 case 1: mask = ((addressT) 1 << 8) - 1; break;
964 case 2: mask = ((addressT) 1 << 16) - 1; break;
965 case 4: mask = ((addressT) 2 << 31) - 1; break;
966 #ifdef BFD64
967 case 8: mask = ((addressT) 2 << 63) - 1; break;
968 #endif
969 default: abort ();
970 }
971
972 /* If BFD64, sign extend val. */
973 if (!use_rela_relocations)
974 if ((val & ~(((addressT) 2 << 31) - 1)) == 0)
975 val = (val ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
976
977 if ((val & ~mask) != 0 && (val & ~mask) != ~mask)
978 {
979 char buf1[40], buf2[40];
980
981 sprint_value (buf1, val);
982 sprint_value (buf2, val & mask);
983 as_warn (_("%s shortened to %s"), buf1, buf2);
984 }
985 return val & mask;
986 }
987
988 /* Returns 0 if attempting to add a prefix where one from the same
989 class already exists, 1 if non rep/repne added, 2 if rep/repne
990 added. */
991 static int
992 add_prefix (unsigned int prefix)
993 {
994 int ret = 1;
995 unsigned int q;
996
997 if (prefix >= REX_OPCODE && prefix < REX_OPCODE + 16
998 && flag_code == CODE_64BIT)
999 {
1000 if ((i.prefix[REX_PREFIX] & prefix & REX_W)
1001 || ((i.prefix[REX_PREFIX] & (REX_R | REX_X | REX_B))
1002 && (prefix & (REX_R | REX_X | REX_B))))
1003 ret = 0;
1004 q = REX_PREFIX;
1005 }
1006 else
1007 {
1008 switch (prefix)
1009 {
1010 default:
1011 abort ();
1012
1013 case CS_PREFIX_OPCODE:
1014 case DS_PREFIX_OPCODE:
1015 case ES_PREFIX_OPCODE:
1016 case FS_PREFIX_OPCODE:
1017 case GS_PREFIX_OPCODE:
1018 case SS_PREFIX_OPCODE:
1019 q = SEG_PREFIX;
1020 break;
1021
1022 case REPNE_PREFIX_OPCODE:
1023 case REPE_PREFIX_OPCODE:
1024 ret = 2;
1025 /* fall thru */
1026 case LOCK_PREFIX_OPCODE:
1027 q = LOCKREP_PREFIX;
1028 break;
1029
1030 case FWAIT_OPCODE:
1031 q = WAIT_PREFIX;
1032 break;
1033
1034 case ADDR_PREFIX_OPCODE:
1035 q = ADDR_PREFIX;
1036 break;
1037
1038 case DATA_PREFIX_OPCODE:
1039 q = DATA_PREFIX;
1040 break;
1041 }
1042 if (i.prefix[q] != 0)
1043 ret = 0;
1044 }
1045
1046 if (ret)
1047 {
1048 if (!i.prefix[q])
1049 ++i.prefixes;
1050 i.prefix[q] |= prefix;
1051 }
1052 else
1053 as_bad (_("same type of prefix used twice"));
1054
1055 return ret;
1056 }
1057
1058 static void
1059 set_code_flag (int value)
1060 {
1061 flag_code = value;
1062 cpu_arch_flags &= ~(Cpu64 | CpuNo64);
1063 cpu_arch_flags |= (flag_code == CODE_64BIT ? Cpu64 : CpuNo64);
1064 if (value == CODE_64BIT && !(cpu_arch_flags & CpuSledgehammer))
1065 {
1066 as_bad (_("64bit mode not supported on this CPU."));
1067 }
1068 if (value == CODE_32BIT && !(cpu_arch_flags & Cpu386))
1069 {
1070 as_bad (_("32bit mode not supported on this CPU."));
1071 }
1072 stackop_size = '\0';
1073 }
1074
1075 static void
1076 set_16bit_gcc_code_flag (int new_code_flag)
1077 {
1078 flag_code = new_code_flag;
1079 cpu_arch_flags &= ~(Cpu64 | CpuNo64);
1080 cpu_arch_flags |= (flag_code == CODE_64BIT ? Cpu64 : CpuNo64);
1081 stackop_size = LONG_MNEM_SUFFIX;
1082 }
1083
1084 static void
1085 set_intel_syntax (int syntax_flag)
1086 {
1087 /* Find out if register prefixing is specified. */
1088 int ask_naked_reg = 0;
1089
1090 SKIP_WHITESPACE ();
1091 if (!is_end_of_line[(unsigned char) *input_line_pointer])
1092 {
1093 char *string = input_line_pointer;
1094 int e = get_symbol_end ();
1095
1096 if (strcmp (string, "prefix") == 0)
1097 ask_naked_reg = 1;
1098 else if (strcmp (string, "noprefix") == 0)
1099 ask_naked_reg = -1;
1100 else
1101 as_bad (_("bad argument to syntax directive."));
1102 *input_line_pointer = e;
1103 }
1104 demand_empty_rest_of_line ();
1105
1106 intel_syntax = syntax_flag;
1107
1108 if (ask_naked_reg == 0)
1109 allow_naked_reg = (intel_syntax
1110 && (bfd_get_symbol_leading_char (stdoutput) != '\0'));
1111 else
1112 allow_naked_reg = (ask_naked_reg < 0);
1113
1114 identifier_chars['%'] = intel_syntax && allow_naked_reg ? '%' : 0;
1115 identifier_chars['$'] = intel_syntax ? '$' : 0;
1116 register_prefix = allow_naked_reg ? "" : "%";
1117 }
1118
1119 static void
1120 set_cpu_arch (int dummy ATTRIBUTE_UNUSED)
1121 {
1122 SKIP_WHITESPACE ();
1123
1124 if (!is_end_of_line[(unsigned char) *input_line_pointer])
1125 {
1126 char *string = input_line_pointer;
1127 int e = get_symbol_end ();
1128 unsigned int i;
1129
1130 for (i = 0; i < ARRAY_SIZE (cpu_arch); i++)
1131 {
1132 if (strcmp (string, cpu_arch[i].name) == 0)
1133 {
1134 if (*string != '.')
1135 {
1136 cpu_arch_name = cpu_arch[i].name;
1137 cpu_sub_arch_name = NULL;
1138 cpu_arch_flags = (cpu_arch[i].flags
1139 | (flag_code == CODE_64BIT
1140 ? Cpu64 : CpuNo64));
1141 cpu_arch_isa = cpu_arch[i].type;
1142 cpu_arch_isa_flags = cpu_arch[i].flags;
1143 if (!cpu_arch_tune_set)
1144 {
1145 cpu_arch_tune = cpu_arch_isa;
1146 cpu_arch_tune_flags = cpu_arch_isa_flags;
1147 }
1148 break;
1149 }
1150 if ((cpu_arch_flags | cpu_arch[i].flags) != cpu_arch_flags)
1151 {
1152 cpu_sub_arch_name = cpu_arch[i].name;
1153 cpu_arch_flags |= cpu_arch[i].flags;
1154 }
1155 *input_line_pointer = e;
1156 demand_empty_rest_of_line ();
1157 return;
1158 }
1159 }
1160 if (i >= ARRAY_SIZE (cpu_arch))
1161 as_bad (_("no such architecture: `%s'"), string);
1162
1163 *input_line_pointer = e;
1164 }
1165 else
1166 as_bad (_("missing cpu architecture"));
1167
1168 no_cond_jump_promotion = 0;
1169 if (*input_line_pointer == ','
1170 && !is_end_of_line[(unsigned char) input_line_pointer[1]])
1171 {
1172 char *string = ++input_line_pointer;
1173 int e = get_symbol_end ();
1174
1175 if (strcmp (string, "nojumps") == 0)
1176 no_cond_jump_promotion = 1;
1177 else if (strcmp (string, "jumps") == 0)
1178 ;
1179 else
1180 as_bad (_("no such architecture modifier: `%s'"), string);
1181
1182 *input_line_pointer = e;
1183 }
1184
1185 demand_empty_rest_of_line ();
1186 }
1187
1188 unsigned long
1189 i386_mach ()
1190 {
1191 if (!strcmp (default_arch, "x86_64"))
1192 return bfd_mach_x86_64;
1193 else if (!strcmp (default_arch, "i386"))
1194 return bfd_mach_i386_i386;
1195 else
1196 as_fatal (_("Unknown architecture"));
1197 }
1198 \f
1199 void
1200 md_begin ()
1201 {
1202 const char *hash_err;
1203
1204 /* Initialize op_hash hash table. */
1205 op_hash = hash_new ();
1206
1207 {
1208 const template *optab;
1209 templates *core_optab;
1210
1211 /* Setup for loop. */
1212 optab = i386_optab;
1213 core_optab = (templates *) xmalloc (sizeof (templates));
1214 core_optab->start = optab;
1215
1216 while (1)
1217 {
1218 ++optab;
1219 if (optab->name == NULL
1220 || strcmp (optab->name, (optab - 1)->name) != 0)
1221 {
1222 /* different name --> ship out current template list;
1223 add to hash table; & begin anew. */
1224 core_optab->end = optab;
1225 hash_err = hash_insert (op_hash,
1226 (optab - 1)->name,
1227 (PTR) core_optab);
1228 if (hash_err)
1229 {
1230 as_fatal (_("Internal Error: Can't hash %s: %s"),
1231 (optab - 1)->name,
1232 hash_err);
1233 }
1234 if (optab->name == NULL)
1235 break;
1236 core_optab = (templates *) xmalloc (sizeof (templates));
1237 core_optab->start = optab;
1238 }
1239 }
1240 }
1241
1242 /* Initialize reg_hash hash table. */
1243 reg_hash = hash_new ();
1244 {
1245 const reg_entry *regtab;
1246 unsigned int regtab_size = i386_regtab_size;
1247
1248 for (regtab = i386_regtab; regtab_size--; regtab++)
1249 {
1250 hash_err = hash_insert (reg_hash, regtab->reg_name, (PTR) regtab);
1251 if (hash_err)
1252 as_fatal (_("Internal Error: Can't hash %s: %s"),
1253 regtab->reg_name,
1254 hash_err);
1255 }
1256 }
1257
1258 /* Fill in lexical tables: mnemonic_chars, operand_chars. */
1259 {
1260 int c;
1261 char *p;
1262
1263 for (c = 0; c < 256; c++)
1264 {
1265 if (ISDIGIT (c))
1266 {
1267 digit_chars[c] = c;
1268 mnemonic_chars[c] = c;
1269 register_chars[c] = c;
1270 operand_chars[c] = c;
1271 }
1272 else if (ISLOWER (c))
1273 {
1274 mnemonic_chars[c] = c;
1275 register_chars[c] = c;
1276 operand_chars[c] = c;
1277 }
1278 else if (ISUPPER (c))
1279 {
1280 mnemonic_chars[c] = TOLOWER (c);
1281 register_chars[c] = mnemonic_chars[c];
1282 operand_chars[c] = c;
1283 }
1284
1285 if (ISALPHA (c) || ISDIGIT (c))
1286 identifier_chars[c] = c;
1287 else if (c >= 128)
1288 {
1289 identifier_chars[c] = c;
1290 operand_chars[c] = c;
1291 }
1292 }
1293
1294 #ifdef LEX_AT
1295 identifier_chars['@'] = '@';
1296 #endif
1297 #ifdef LEX_QM
1298 identifier_chars['?'] = '?';
1299 operand_chars['?'] = '?';
1300 #endif
1301 digit_chars['-'] = '-';
1302 mnemonic_chars['-'] = '-';
1303 mnemonic_chars['.'] = '.';
1304 identifier_chars['_'] = '_';
1305 identifier_chars['.'] = '.';
1306
1307 for (p = operand_special_chars; *p != '\0'; p++)
1308 operand_chars[(unsigned char) *p] = *p;
1309 }
1310
1311 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
1312 if (IS_ELF)
1313 {
1314 record_alignment (text_section, 2);
1315 record_alignment (data_section, 2);
1316 record_alignment (bss_section, 2);
1317 }
1318 #endif
1319
1320 if (flag_code == CODE_64BIT)
1321 {
1322 x86_dwarf2_return_column = 16;
1323 x86_cie_data_alignment = -8;
1324 }
1325 else
1326 {
1327 x86_dwarf2_return_column = 8;
1328 x86_cie_data_alignment = -4;
1329 }
1330 }
1331
1332 void
1333 i386_print_statistics (FILE *file)
1334 {
1335 hash_print_statistics (file, "i386 opcode", op_hash);
1336 hash_print_statistics (file, "i386 register", reg_hash);
1337 }
1338 \f
1339 #ifdef DEBUG386
1340
1341 /* Debugging routines for md_assemble. */
1342 static void pte (template *);
1343 static void pt (unsigned int);
1344 static void pe (expressionS *);
1345 static void ps (symbolS *);
1346
1347 static void
1348 pi (char *line, i386_insn *x)
1349 {
1350 unsigned int i;
1351
1352 fprintf (stdout, "%s: template ", line);
1353 pte (&x->tm);
1354 fprintf (stdout, " address: base %s index %s scale %x\n",
1355 x->base_reg ? x->base_reg->reg_name : "none",
1356 x->index_reg ? x->index_reg->reg_name : "none",
1357 x->log2_scale_factor);
1358 fprintf (stdout, " modrm: mode %x reg %x reg/mem %x\n",
1359 x->rm.mode, x->rm.reg, x->rm.regmem);
1360 fprintf (stdout, " sib: base %x index %x scale %x\n",
1361 x->sib.base, x->sib.index, x->sib.scale);
1362 fprintf (stdout, " rex: 64bit %x extX %x extY %x extZ %x\n",
1363 (x->rex & REX_W) != 0,
1364 (x->rex & REX_R) != 0,
1365 (x->rex & REX_X) != 0,
1366 (x->rex & REX_B) != 0);
1367 for (i = 0; i < x->operands; i++)
1368 {
1369 fprintf (stdout, " #%d: ", i + 1);
1370 pt (x->types[i]);
1371 fprintf (stdout, "\n");
1372 if (x->types[i]
1373 & (Reg | SReg2 | SReg3 | Control | Debug | Test | RegMMX | RegXMM))
1374 fprintf (stdout, "%s\n", x->op[i].regs->reg_name);
1375 if (x->types[i] & Imm)
1376 pe (x->op[i].imms);
1377 if (x->types[i] & Disp)
1378 pe (x->op[i].disps);
1379 }
1380 }
1381
1382 static void
1383 pte (template *t)
1384 {
1385 unsigned int i;
1386 fprintf (stdout, " %d operands ", t->operands);
1387 fprintf (stdout, "opcode %x ", t->base_opcode);
1388 if (t->extension_opcode != None)
1389 fprintf (stdout, "ext %x ", t->extension_opcode);
1390 if (t->opcode_modifier & D)
1391 fprintf (stdout, "D");
1392 if (t->opcode_modifier & W)
1393 fprintf (stdout, "W");
1394 fprintf (stdout, "\n");
1395 for (i = 0; i < t->operands; i++)
1396 {
1397 fprintf (stdout, " #%d type ", i + 1);
1398 pt (t->operand_types[i]);
1399 fprintf (stdout, "\n");
1400 }
1401 }
1402
1403 static void
1404 pe (expressionS *e)
1405 {
1406 fprintf (stdout, " operation %d\n", e->X_op);
1407 fprintf (stdout, " add_number %ld (%lx)\n",
1408 (long) e->X_add_number, (long) e->X_add_number);
1409 if (e->X_add_symbol)
1410 {
1411 fprintf (stdout, " add_symbol ");
1412 ps (e->X_add_symbol);
1413 fprintf (stdout, "\n");
1414 }
1415 if (e->X_op_symbol)
1416 {
1417 fprintf (stdout, " op_symbol ");
1418 ps (e->X_op_symbol);
1419 fprintf (stdout, "\n");
1420 }
1421 }
1422
1423 static void
1424 ps (symbolS *s)
1425 {
1426 fprintf (stdout, "%s type %s%s",
1427 S_GET_NAME (s),
1428 S_IS_EXTERNAL (s) ? "EXTERNAL " : "",
1429 segment_name (S_GET_SEGMENT (s)));
1430 }
1431
1432 static struct type_name
1433 {
1434 unsigned int mask;
1435 char *tname;
1436 }
1437 const type_names[] =
1438 {
1439 { Reg8, "r8" },
1440 { Reg16, "r16" },
1441 { Reg32, "r32" },
1442 { Reg64, "r64" },
1443 { Imm8, "i8" },
1444 { Imm8S, "i8s" },
1445 { Imm16, "i16" },
1446 { Imm32, "i32" },
1447 { Imm32S, "i32s" },
1448 { Imm64, "i64" },
1449 { Imm1, "i1" },
1450 { BaseIndex, "BaseIndex" },
1451 { Disp8, "d8" },
1452 { Disp16, "d16" },
1453 { Disp32, "d32" },
1454 { Disp32S, "d32s" },
1455 { Disp64, "d64" },
1456 { InOutPortReg, "InOutPortReg" },
1457 { ShiftCount, "ShiftCount" },
1458 { Control, "control reg" },
1459 { Test, "test reg" },
1460 { Debug, "debug reg" },
1461 { FloatReg, "FReg" },
1462 { FloatAcc, "FAcc" },
1463 { SReg2, "SReg2" },
1464 { SReg3, "SReg3" },
1465 { Acc, "Acc" },
1466 { JumpAbsolute, "Jump Absolute" },
1467 { RegMMX, "rMMX" },
1468 { RegXMM, "rXMM" },
1469 { EsSeg, "es" },
1470 { 0, "" }
1471 };
1472
1473 static void
1474 pt (t)
1475 unsigned int t;
1476 {
1477 const struct type_name *ty;
1478
1479 for (ty = type_names; ty->mask; ty++)
1480 if (t & ty->mask)
1481 fprintf (stdout, "%s, ", ty->tname);
1482 fflush (stdout);
1483 }
1484
1485 #endif /* DEBUG386 */
1486 \f
1487 static bfd_reloc_code_real_type
1488 reloc (unsigned int size,
1489 int pcrel,
1490 int sign,
1491 bfd_reloc_code_real_type other)
1492 {
1493 if (other != NO_RELOC)
1494 {
1495 reloc_howto_type *reloc;
1496
1497 if (size == 8)
1498 switch (other)
1499 {
1500 case BFD_RELOC_X86_64_GOT32:
1501 return BFD_RELOC_X86_64_GOT64;
1502 break;
1503 case BFD_RELOC_X86_64_PLTOFF64:
1504 return BFD_RELOC_X86_64_PLTOFF64;
1505 break;
1506 case BFD_RELOC_X86_64_GOTPC32:
1507 other = BFD_RELOC_X86_64_GOTPC64;
1508 break;
1509 case BFD_RELOC_X86_64_GOTPCREL:
1510 other = BFD_RELOC_X86_64_GOTPCREL64;
1511 break;
1512 case BFD_RELOC_X86_64_TPOFF32:
1513 other = BFD_RELOC_X86_64_TPOFF64;
1514 break;
1515 case BFD_RELOC_X86_64_DTPOFF32:
1516 other = BFD_RELOC_X86_64_DTPOFF64;
1517 break;
1518 default:
1519 break;
1520 }
1521
1522 /* Sign-checking 4-byte relocations in 16-/32-bit code is pointless. */
1523 if (size == 4 && flag_code != CODE_64BIT)
1524 sign = -1;
1525
1526 reloc = bfd_reloc_type_lookup (stdoutput, other);
1527 if (!reloc)
1528 as_bad (_("unknown relocation (%u)"), other);
1529 else if (size != bfd_get_reloc_size (reloc))
1530 as_bad (_("%u-byte relocation cannot be applied to %u-byte field"),
1531 bfd_get_reloc_size (reloc),
1532 size);
1533 else if (pcrel && !reloc->pc_relative)
1534 as_bad (_("non-pc-relative relocation for pc-relative field"));
1535 else if ((reloc->complain_on_overflow == complain_overflow_signed
1536 && !sign)
1537 || (reloc->complain_on_overflow == complain_overflow_unsigned
1538 && sign > 0))
1539 as_bad (_("relocated field and relocation type differ in signedness"));
1540 else
1541 return other;
1542 return NO_RELOC;
1543 }
1544
1545 if (pcrel)
1546 {
1547 if (!sign)
1548 as_bad (_("there are no unsigned pc-relative relocations"));
1549 switch (size)
1550 {
1551 case 1: return BFD_RELOC_8_PCREL;
1552 case 2: return BFD_RELOC_16_PCREL;
1553 case 4: return BFD_RELOC_32_PCREL;
1554 case 8: return BFD_RELOC_64_PCREL;
1555 }
1556 as_bad (_("cannot do %u byte pc-relative relocation"), size);
1557 }
1558 else
1559 {
1560 if (sign > 0)
1561 switch (size)
1562 {
1563 case 4: return BFD_RELOC_X86_64_32S;
1564 }
1565 else
1566 switch (size)
1567 {
1568 case 1: return BFD_RELOC_8;
1569 case 2: return BFD_RELOC_16;
1570 case 4: return BFD_RELOC_32;
1571 case 8: return BFD_RELOC_64;
1572 }
1573 as_bad (_("cannot do %s %u byte relocation"),
1574 sign > 0 ? "signed" : "unsigned", size);
1575 }
1576
1577 abort ();
1578 return BFD_RELOC_NONE;
1579 }
1580
1581 /* Here we decide which fixups can be adjusted to make them relative to
1582 the beginning of the section instead of the symbol. Basically we need
1583 to make sure that the dynamic relocations are done correctly, so in
1584 some cases we force the original symbol to be used. */
1585
1586 int
1587 tc_i386_fix_adjustable (fixS *fixP ATTRIBUTE_UNUSED)
1588 {
1589 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
1590 if (!IS_ELF)
1591 return 1;
1592
1593 /* Don't adjust pc-relative references to merge sections in 64-bit
1594 mode. */
1595 if (use_rela_relocations
1596 && (S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_MERGE) != 0
1597 && fixP->fx_pcrel)
1598 return 0;
1599
1600 /* The x86_64 GOTPCREL are represented as 32bit PCrel relocations
1601 and changed later by validate_fix. */
1602 if (GOT_symbol && fixP->fx_subsy == GOT_symbol
1603 && fixP->fx_r_type == BFD_RELOC_32_PCREL)
1604 return 0;
1605
1606 /* adjust_reloc_syms doesn't know about the GOT. */
1607 if (fixP->fx_r_type == BFD_RELOC_386_GOTOFF
1608 || fixP->fx_r_type == BFD_RELOC_386_PLT32
1609 || fixP->fx_r_type == BFD_RELOC_386_GOT32
1610 || fixP->fx_r_type == BFD_RELOC_386_TLS_GD
1611 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDM
1612 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDO_32
1613 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE_32
1614 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE
1615 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTIE
1616 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE_32
1617 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE
1618 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTDESC
1619 || fixP->fx_r_type == BFD_RELOC_386_TLS_DESC_CALL
1620 || fixP->fx_r_type == BFD_RELOC_X86_64_PLT32
1621 || fixP->fx_r_type == BFD_RELOC_X86_64_GOT32
1622 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCREL
1623 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSGD
1624 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSLD
1625 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF32
1626 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF64
1627 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTTPOFF
1628 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF32
1629 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF64
1630 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTOFF64
1631 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPC32_TLSDESC
1632 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSDESC_CALL
1633 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
1634 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
1635 return 0;
1636 #endif
1637 return 1;
1638 }
1639
1640 static int
1641 intel_float_operand (const char *mnemonic)
1642 {
1643 /* Note that the value returned is meaningful only for opcodes with (memory)
1644 operands, hence the code here is free to improperly handle opcodes that
1645 have no operands (for better performance and smaller code). */
1646
1647 if (mnemonic[0] != 'f')
1648 return 0; /* non-math */
1649
1650 switch (mnemonic[1])
1651 {
1652 /* fclex, fdecstp, fdisi, femms, feni, fincstp, finit, fsetpm, and
1653 the fs segment override prefix not currently handled because no
1654 call path can make opcodes without operands get here */
1655 case 'i':
1656 return 2 /* integer op */;
1657 case 'l':
1658 if (mnemonic[2] == 'd' && (mnemonic[3] == 'c' || mnemonic[3] == 'e'))
1659 return 3; /* fldcw/fldenv */
1660 break;
1661 case 'n':
1662 if (mnemonic[2] != 'o' /* fnop */)
1663 return 3; /* non-waiting control op */
1664 break;
1665 case 'r':
1666 if (mnemonic[2] == 's')
1667 return 3; /* frstor/frstpm */
1668 break;
1669 case 's':
1670 if (mnemonic[2] == 'a')
1671 return 3; /* fsave */
1672 if (mnemonic[2] == 't')
1673 {
1674 switch (mnemonic[3])
1675 {
1676 case 'c': /* fstcw */
1677 case 'd': /* fstdw */
1678 case 'e': /* fstenv */
1679 case 's': /* fsts[gw] */
1680 return 3;
1681 }
1682 }
1683 break;
1684 case 'x':
1685 if (mnemonic[2] == 'r' || mnemonic[2] == 's')
1686 return 0; /* fxsave/fxrstor are not really math ops */
1687 break;
1688 }
1689
1690 return 1;
1691 }
1692
1693 /* This is the guts of the machine-dependent assembler. LINE points to a
1694 machine dependent instruction. This function is supposed to emit
1695 the frags/bytes it assembles to. */
1696
1697 void
1698 md_assemble (line)
1699 char *line;
1700 {
1701 int j;
1702 char mnemonic[MAX_MNEM_SIZE];
1703
1704 /* Initialize globals. */
1705 memset (&i, '\0', sizeof (i));
1706 for (j = 0; j < MAX_OPERANDS; j++)
1707 i.reloc[j] = NO_RELOC;
1708 memset (disp_expressions, '\0', sizeof (disp_expressions));
1709 memset (im_expressions, '\0', sizeof (im_expressions));
1710 save_stack_p = save_stack;
1711
1712 /* First parse an instruction mnemonic & call i386_operand for the operands.
1713 We assume that the scrubber has arranged it so that line[0] is the valid
1714 start of a (possibly prefixed) mnemonic. */
1715
1716 line = parse_insn (line, mnemonic);
1717 if (line == NULL)
1718 return;
1719
1720 line = parse_operands (line, mnemonic);
1721 if (line == NULL)
1722 return;
1723
1724 /* The order of the immediates should be reversed
1725 for 2 immediates extrq and insertq instructions */
1726 if ((i.imm_operands == 2)
1727 && ((strcmp (mnemonic, "extrq") == 0)
1728 || (strcmp (mnemonic, "insertq") == 0)))
1729 {
1730 swap_2_operands (0, 1);
1731 /* "extrq" and insertq" are the only two instructions whose operands
1732 have to be reversed even though they have two immediate operands.
1733 */
1734 if (intel_syntax)
1735 swap_operands ();
1736 }
1737
1738 /* Now we've parsed the mnemonic into a set of templates, and have the
1739 operands at hand. */
1740
1741 /* All intel opcodes have reversed operands except for "bound" and
1742 "enter". We also don't reverse intersegment "jmp" and "call"
1743 instructions with 2 immediate operands so that the immediate segment
1744 precedes the offset, as it does when in AT&T mode. */
1745 if (intel_syntax
1746 && i.operands > 1
1747 && (strcmp (mnemonic, "bound") != 0)
1748 && (strcmp (mnemonic, "invlpga") != 0)
1749 && !((i.types[0] & Imm) && (i.types[1] & Imm)))
1750 swap_operands ();
1751
1752 if (i.imm_operands)
1753 optimize_imm ();
1754
1755 /* Don't optimize displacement for movabs since it only takes 64bit
1756 displacement. */
1757 if (i.disp_operands
1758 && (flag_code != CODE_64BIT
1759 || strcmp (mnemonic, "movabs") != 0))
1760 optimize_disp ();
1761
1762 /* Next, we find a template that matches the given insn,
1763 making sure the overlap of the given operands types is consistent
1764 with the template operand types. */
1765
1766 if (!match_template ())
1767 return;
1768
1769 if (intel_syntax)
1770 {
1771 /* Undo SYSV386_COMPAT brokenness when in Intel mode. See i386.h */
1772 if (SYSV386_COMPAT
1773 && (i.tm.base_opcode & 0xfffffde0) == 0xdce0)
1774 i.tm.base_opcode ^= Opcode_FloatR;
1775
1776 /* Zap movzx and movsx suffix. The suffix may have been set from
1777 "word ptr" or "byte ptr" on the source operand, but we'll use
1778 the suffix later to choose the destination register. */
1779 if ((i.tm.base_opcode & ~9) == 0x0fb6)
1780 {
1781 if (i.reg_operands < 2
1782 && !i.suffix
1783 && (~i.tm.opcode_modifier
1784 & (No_bSuf
1785 | No_wSuf
1786 | No_lSuf
1787 | No_sSuf
1788 | No_xSuf
1789 | No_qSuf)))
1790 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
1791
1792 i.suffix = 0;
1793 }
1794 }
1795
1796 if (i.tm.opcode_modifier & FWait)
1797 if (!add_prefix (FWAIT_OPCODE))
1798 return;
1799
1800 /* Check string instruction segment overrides. */
1801 if ((i.tm.opcode_modifier & IsString) != 0 && i.mem_operands != 0)
1802 {
1803 if (!check_string ())
1804 return;
1805 }
1806
1807 if (!process_suffix ())
1808 return;
1809
1810 /* Make still unresolved immediate matches conform to size of immediate
1811 given in i.suffix. */
1812 if (!finalize_imm ())
1813 return;
1814
1815 if (i.types[0] & Imm1)
1816 i.imm_operands = 0; /* kludge for shift insns. */
1817 if (i.types[0] & ImplicitRegister)
1818 i.reg_operands--;
1819 if (i.types[1] & ImplicitRegister)
1820 i.reg_operands--;
1821 if (i.types[2] & ImplicitRegister)
1822 i.reg_operands--;
1823
1824 if (i.tm.opcode_modifier & ImmExt)
1825 {
1826 expressionS *exp;
1827
1828 if ((i.tm.cpu_flags & CpuSSE3) && i.operands > 0)
1829 {
1830 /* Streaming SIMD extensions 3 Instructions have the fixed
1831 operands with an opcode suffix which is coded in the same
1832 place as an 8-bit immediate field would be. Here we check
1833 those operands and remove them afterwards. */
1834 unsigned int x;
1835
1836 for (x = 0; x < i.operands; x++)
1837 if (i.op[x].regs->reg_num != x)
1838 as_bad (_("can't use register '%s%s' as operand %d in '%s'."),
1839 register_prefix,
1840 i.op[x].regs->reg_name,
1841 x + 1,
1842 i.tm.name);
1843 i.operands = 0;
1844 }
1845
1846 /* These AMD 3DNow! and Intel Katmai New Instructions have an
1847 opcode suffix which is coded in the same place as an 8-bit
1848 immediate field would be. Here we fake an 8-bit immediate
1849 operand from the opcode suffix stored in tm.extension_opcode. */
1850
1851 assert (i.imm_operands == 0 && i.operands <= 2 && 2 < MAX_OPERANDS);
1852
1853 exp = &im_expressions[i.imm_operands++];
1854 i.op[i.operands].imms = exp;
1855 i.types[i.operands++] = Imm8;
1856 exp->X_op = O_constant;
1857 exp->X_add_number = i.tm.extension_opcode;
1858 i.tm.extension_opcode = None;
1859 }
1860
1861 /* For insns with operands there are more diddles to do to the opcode. */
1862 if (i.operands)
1863 {
1864 if (!process_operands ())
1865 return;
1866 }
1867 else if (!quiet_warnings && (i.tm.opcode_modifier & Ugh) != 0)
1868 {
1869 /* UnixWare fsub no args is alias for fsubp, fadd -> faddp, etc. */
1870 as_warn (_("translating to `%sp'"), i.tm.name);
1871 }
1872
1873 /* Handle conversion of 'int $3' --> special int3 insn. */
1874 if (i.tm.base_opcode == INT_OPCODE && i.op[0].imms->X_add_number == 3)
1875 {
1876 i.tm.base_opcode = INT3_OPCODE;
1877 i.imm_operands = 0;
1878 }
1879
1880 if ((i.tm.opcode_modifier & (Jump | JumpByte | JumpDword))
1881 && i.op[0].disps->X_op == O_constant)
1882 {
1883 /* Convert "jmp constant" (and "call constant") to a jump (call) to
1884 the absolute address given by the constant. Since ix86 jumps and
1885 calls are pc relative, we need to generate a reloc. */
1886 i.op[0].disps->X_add_symbol = &abs_symbol;
1887 i.op[0].disps->X_op = O_symbol;
1888 }
1889
1890 if ((i.tm.opcode_modifier & Rex64) != 0)
1891 i.rex |= REX_W;
1892
1893 /* For 8 bit registers we need an empty rex prefix. Also if the
1894 instruction already has a prefix, we need to convert old
1895 registers to new ones. */
1896
1897 if (((i.types[0] & Reg8) != 0
1898 && (i.op[0].regs->reg_flags & RegRex64) != 0)
1899 || ((i.types[1] & Reg8) != 0
1900 && (i.op[1].regs->reg_flags & RegRex64) != 0)
1901 || (((i.types[0] & Reg8) != 0 || (i.types[1] & Reg8) != 0)
1902 && i.rex != 0))
1903 {
1904 int x;
1905
1906 i.rex |= REX_OPCODE;
1907 for (x = 0; x < 2; x++)
1908 {
1909 /* Look for 8 bit operand that uses old registers. */
1910 if ((i.types[x] & Reg8) != 0
1911 && (i.op[x].regs->reg_flags & RegRex64) == 0)
1912 {
1913 /* In case it is "hi" register, give up. */
1914 if (i.op[x].regs->reg_num > 3)
1915 as_bad (_("can't encode register '%s%s' in an "
1916 "instruction requiring REX prefix."),
1917 register_prefix, i.op[x].regs->reg_name);
1918
1919 /* Otherwise it is equivalent to the extended register.
1920 Since the encoding doesn't change this is merely
1921 cosmetic cleanup for debug output. */
1922
1923 i.op[x].regs = i.op[x].regs + 8;
1924 }
1925 }
1926 }
1927
1928 if (i.rex != 0)
1929 add_prefix (REX_OPCODE | i.rex);
1930
1931 /* We are ready to output the insn. */
1932 output_insn ();
1933 }
1934
1935 static char *
1936 parse_insn (char *line, char *mnemonic)
1937 {
1938 char *l = line;
1939 char *token_start = l;
1940 char *mnem_p;
1941 int supported;
1942 const template *t;
1943
1944 /* Non-zero if we found a prefix only acceptable with string insns. */
1945 const char *expecting_string_instruction = NULL;
1946
1947 while (1)
1948 {
1949 mnem_p = mnemonic;
1950 while ((*mnem_p = mnemonic_chars[(unsigned char) *l]) != 0)
1951 {
1952 mnem_p++;
1953 if (mnem_p >= mnemonic + MAX_MNEM_SIZE)
1954 {
1955 as_bad (_("no such instruction: `%s'"), token_start);
1956 return NULL;
1957 }
1958 l++;
1959 }
1960 if (!is_space_char (*l)
1961 && *l != END_OF_INSN
1962 && (intel_syntax
1963 || (*l != PREFIX_SEPARATOR
1964 && *l != ',')))
1965 {
1966 as_bad (_("invalid character %s in mnemonic"),
1967 output_invalid (*l));
1968 return NULL;
1969 }
1970 if (token_start == l)
1971 {
1972 if (!intel_syntax && *l == PREFIX_SEPARATOR)
1973 as_bad (_("expecting prefix; got nothing"));
1974 else
1975 as_bad (_("expecting mnemonic; got nothing"));
1976 return NULL;
1977 }
1978
1979 /* Look up instruction (or prefix) via hash table. */
1980 current_templates = hash_find (op_hash, mnemonic);
1981
1982 if (*l != END_OF_INSN
1983 && (!is_space_char (*l) || l[1] != END_OF_INSN)
1984 && current_templates
1985 && (current_templates->start->opcode_modifier & IsPrefix))
1986 {
1987 if (current_templates->start->cpu_flags
1988 & (flag_code != CODE_64BIT ? Cpu64 : CpuNo64))
1989 {
1990 as_bad ((flag_code != CODE_64BIT
1991 ? _("`%s' is only supported in 64-bit mode")
1992 : _("`%s' is not supported in 64-bit mode")),
1993 current_templates->start->name);
1994 return NULL;
1995 }
1996 /* If we are in 16-bit mode, do not allow addr16 or data16.
1997 Similarly, in 32-bit mode, do not allow addr32 or data32. */
1998 if ((current_templates->start->opcode_modifier & (Size16 | Size32))
1999 && flag_code != CODE_64BIT
2000 && (((current_templates->start->opcode_modifier & Size32) != 0)
2001 ^ (flag_code == CODE_16BIT)))
2002 {
2003 as_bad (_("redundant %s prefix"),
2004 current_templates->start->name);
2005 return NULL;
2006 }
2007 /* Add prefix, checking for repeated prefixes. */
2008 switch (add_prefix (current_templates->start->base_opcode))
2009 {
2010 case 0:
2011 return NULL;
2012 case 2:
2013 expecting_string_instruction = current_templates->start->name;
2014 break;
2015 }
2016 /* Skip past PREFIX_SEPARATOR and reset token_start. */
2017 token_start = ++l;
2018 }
2019 else
2020 break;
2021 }
2022
2023 if (!current_templates)
2024 {
2025 /* See if we can get a match by trimming off a suffix. */
2026 switch (mnem_p[-1])
2027 {
2028 case WORD_MNEM_SUFFIX:
2029 if (intel_syntax && (intel_float_operand (mnemonic) & 2))
2030 i.suffix = SHORT_MNEM_SUFFIX;
2031 else
2032 case BYTE_MNEM_SUFFIX:
2033 case QWORD_MNEM_SUFFIX:
2034 i.suffix = mnem_p[-1];
2035 mnem_p[-1] = '\0';
2036 current_templates = hash_find (op_hash, mnemonic);
2037 break;
2038 case SHORT_MNEM_SUFFIX:
2039 case LONG_MNEM_SUFFIX:
2040 if (!intel_syntax)
2041 {
2042 i.suffix = mnem_p[-1];
2043 mnem_p[-1] = '\0';
2044 current_templates = hash_find (op_hash, mnemonic);
2045 }
2046 break;
2047
2048 /* Intel Syntax. */
2049 case 'd':
2050 if (intel_syntax)
2051 {
2052 if (intel_float_operand (mnemonic) == 1)
2053 i.suffix = SHORT_MNEM_SUFFIX;
2054 else
2055 i.suffix = LONG_MNEM_SUFFIX;
2056 mnem_p[-1] = '\0';
2057 current_templates = hash_find (op_hash, mnemonic);
2058 }
2059 break;
2060 }
2061 if (!current_templates)
2062 {
2063 as_bad (_("no such instruction: `%s'"), token_start);
2064 return NULL;
2065 }
2066 }
2067
2068 if (current_templates->start->opcode_modifier & (Jump | JumpByte))
2069 {
2070 /* Check for a branch hint. We allow ",pt" and ",pn" for
2071 predict taken and predict not taken respectively.
2072 I'm not sure that branch hints actually do anything on loop
2073 and jcxz insns (JumpByte) for current Pentium4 chips. They
2074 may work in the future and it doesn't hurt to accept them
2075 now. */
2076 if (l[0] == ',' && l[1] == 'p')
2077 {
2078 if (l[2] == 't')
2079 {
2080 if (!add_prefix (DS_PREFIX_OPCODE))
2081 return NULL;
2082 l += 3;
2083 }
2084 else if (l[2] == 'n')
2085 {
2086 if (!add_prefix (CS_PREFIX_OPCODE))
2087 return NULL;
2088 l += 3;
2089 }
2090 }
2091 }
2092 /* Any other comma loses. */
2093 if (*l == ',')
2094 {
2095 as_bad (_("invalid character %s in mnemonic"),
2096 output_invalid (*l));
2097 return NULL;
2098 }
2099
2100 /* Check if instruction is supported on specified architecture. */
2101 supported = 0;
2102 for (t = current_templates->start; t < current_templates->end; ++t)
2103 {
2104 if (!((t->cpu_flags & ~(Cpu64 | CpuNo64))
2105 & ~(cpu_arch_flags & ~(Cpu64 | CpuNo64))))
2106 supported |= 1;
2107 if (!(t->cpu_flags & (flag_code == CODE_64BIT ? CpuNo64 : Cpu64)))
2108 supported |= 2;
2109 }
2110 if (!(supported & 2))
2111 {
2112 as_bad (flag_code == CODE_64BIT
2113 ? _("`%s' is not supported in 64-bit mode")
2114 : _("`%s' is only supported in 64-bit mode"),
2115 current_templates->start->name);
2116 return NULL;
2117 }
2118 if (!(supported & 1))
2119 {
2120 as_warn (_("`%s' is not supported on `%s%s'"),
2121 current_templates->start->name,
2122 cpu_arch_name,
2123 cpu_sub_arch_name ? cpu_sub_arch_name : "");
2124 }
2125 else if ((Cpu386 & ~cpu_arch_flags) && (flag_code != CODE_16BIT))
2126 {
2127 as_warn (_("use .code16 to ensure correct addressing mode"));
2128 }
2129
2130 /* Check for rep/repne without a string instruction. */
2131 if (expecting_string_instruction)
2132 {
2133 static templates override;
2134
2135 for (t = current_templates->start; t < current_templates->end; ++t)
2136 if (t->opcode_modifier & IsString)
2137 break;
2138 if (t >= current_templates->end)
2139 {
2140 as_bad (_("expecting string instruction after `%s'"),
2141 expecting_string_instruction);
2142 return NULL;
2143 }
2144 for (override.start = t; t < current_templates->end; ++t)
2145 if (!(t->opcode_modifier & IsString))
2146 break;
2147 override.end = t;
2148 current_templates = &override;
2149 }
2150
2151 return l;
2152 }
2153
2154 static char *
2155 parse_operands (char *l, const char *mnemonic)
2156 {
2157 char *token_start;
2158
2159 /* 1 if operand is pending after ','. */
2160 unsigned int expecting_operand = 0;
2161
2162 /* Non-zero if operand parens not balanced. */
2163 unsigned int paren_not_balanced;
2164
2165 while (*l != END_OF_INSN)
2166 {
2167 /* Skip optional white space before operand. */
2168 if (is_space_char (*l))
2169 ++l;
2170 if (!is_operand_char (*l) && *l != END_OF_INSN)
2171 {
2172 as_bad (_("invalid character %s before operand %d"),
2173 output_invalid (*l),
2174 i.operands + 1);
2175 return NULL;
2176 }
2177 token_start = l; /* after white space */
2178 paren_not_balanced = 0;
2179 while (paren_not_balanced || *l != ',')
2180 {
2181 if (*l == END_OF_INSN)
2182 {
2183 if (paren_not_balanced)
2184 {
2185 if (!intel_syntax)
2186 as_bad (_("unbalanced parenthesis in operand %d."),
2187 i.operands + 1);
2188 else
2189 as_bad (_("unbalanced brackets in operand %d."),
2190 i.operands + 1);
2191 return NULL;
2192 }
2193 else
2194 break; /* we are done */
2195 }
2196 else if (!is_operand_char (*l) && !is_space_char (*l))
2197 {
2198 as_bad (_("invalid character %s in operand %d"),
2199 output_invalid (*l),
2200 i.operands + 1);
2201 return NULL;
2202 }
2203 if (!intel_syntax)
2204 {
2205 if (*l == '(')
2206 ++paren_not_balanced;
2207 if (*l == ')')
2208 --paren_not_balanced;
2209 }
2210 else
2211 {
2212 if (*l == '[')
2213 ++paren_not_balanced;
2214 if (*l == ']')
2215 --paren_not_balanced;
2216 }
2217 l++;
2218 }
2219 if (l != token_start)
2220 { /* Yes, we've read in another operand. */
2221 unsigned int operand_ok;
2222 this_operand = i.operands++;
2223 if (i.operands > MAX_OPERANDS)
2224 {
2225 as_bad (_("spurious operands; (%d operands/instruction max)"),
2226 MAX_OPERANDS);
2227 return NULL;
2228 }
2229 /* Now parse operand adding info to 'i' as we go along. */
2230 END_STRING_AND_SAVE (l);
2231
2232 if (intel_syntax)
2233 operand_ok =
2234 i386_intel_operand (token_start,
2235 intel_float_operand (mnemonic));
2236 else
2237 operand_ok = i386_operand (token_start);
2238
2239 RESTORE_END_STRING (l);
2240 if (!operand_ok)
2241 return NULL;
2242 }
2243 else
2244 {
2245 if (expecting_operand)
2246 {
2247 expecting_operand_after_comma:
2248 as_bad (_("expecting operand after ','; got nothing"));
2249 return NULL;
2250 }
2251 if (*l == ',')
2252 {
2253 as_bad (_("expecting operand before ','; got nothing"));
2254 return NULL;
2255 }
2256 }
2257
2258 /* Now *l must be either ',' or END_OF_INSN. */
2259 if (*l == ',')
2260 {
2261 if (*++l == END_OF_INSN)
2262 {
2263 /* Just skip it, if it's \n complain. */
2264 goto expecting_operand_after_comma;
2265 }
2266 expecting_operand = 1;
2267 }
2268 }
2269 return l;
2270 }
2271
2272 static void
2273 swap_2_operands (int xchg1, int xchg2)
2274 {
2275 union i386_op temp_op;
2276 unsigned int temp_type;
2277 enum bfd_reloc_code_real temp_reloc;
2278
2279 temp_type = i.types[xchg2];
2280 i.types[xchg2] = i.types[xchg1];
2281 i.types[xchg1] = temp_type;
2282 temp_op = i.op[xchg2];
2283 i.op[xchg2] = i.op[xchg1];
2284 i.op[xchg1] = temp_op;
2285 temp_reloc = i.reloc[xchg2];
2286 i.reloc[xchg2] = i.reloc[xchg1];
2287 i.reloc[xchg1] = temp_reloc;
2288 }
2289
2290 static void
2291 swap_operands (void)
2292 {
2293 switch (i.operands)
2294 {
2295 case 4:
2296 swap_2_operands (1, i.operands - 2);
2297 case 3:
2298 case 2:
2299 swap_2_operands (0, i.operands - 1);
2300 break;
2301 default:
2302 abort ();
2303 }
2304
2305 if (i.mem_operands == 2)
2306 {
2307 const seg_entry *temp_seg;
2308 temp_seg = i.seg[0];
2309 i.seg[0] = i.seg[1];
2310 i.seg[1] = temp_seg;
2311 }
2312 }
2313
2314 /* Try to ensure constant immediates are represented in the smallest
2315 opcode possible. */
2316 static void
2317 optimize_imm (void)
2318 {
2319 char guess_suffix = 0;
2320 int op;
2321
2322 if (i.suffix)
2323 guess_suffix = i.suffix;
2324 else if (i.reg_operands)
2325 {
2326 /* Figure out a suffix from the last register operand specified.
2327 We can't do this properly yet, ie. excluding InOutPortReg,
2328 but the following works for instructions with immediates.
2329 In any case, we can't set i.suffix yet. */
2330 for (op = i.operands; --op >= 0;)
2331 if (i.types[op] & Reg)
2332 {
2333 if (i.types[op] & Reg8)
2334 guess_suffix = BYTE_MNEM_SUFFIX;
2335 else if (i.types[op] & Reg16)
2336 guess_suffix = WORD_MNEM_SUFFIX;
2337 else if (i.types[op] & Reg32)
2338 guess_suffix = LONG_MNEM_SUFFIX;
2339 else if (i.types[op] & Reg64)
2340 guess_suffix = QWORD_MNEM_SUFFIX;
2341 break;
2342 }
2343 }
2344 else if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
2345 guess_suffix = WORD_MNEM_SUFFIX;
2346
2347 for (op = i.operands; --op >= 0;)
2348 if (i.types[op] & Imm)
2349 {
2350 switch (i.op[op].imms->X_op)
2351 {
2352 case O_constant:
2353 /* If a suffix is given, this operand may be shortened. */
2354 switch (guess_suffix)
2355 {
2356 case LONG_MNEM_SUFFIX:
2357 i.types[op] |= Imm32 | Imm64;
2358 break;
2359 case WORD_MNEM_SUFFIX:
2360 i.types[op] |= Imm16 | Imm32S | Imm32 | Imm64;
2361 break;
2362 case BYTE_MNEM_SUFFIX:
2363 i.types[op] |= Imm16 | Imm8 | Imm8S | Imm32S | Imm32 | Imm64;
2364 break;
2365 }
2366
2367 /* If this operand is at most 16 bits, convert it
2368 to a signed 16 bit number before trying to see
2369 whether it will fit in an even smaller size.
2370 This allows a 16-bit operand such as $0xffe0 to
2371 be recognised as within Imm8S range. */
2372 if ((i.types[op] & Imm16)
2373 && (i.op[op].imms->X_add_number & ~(offsetT) 0xffff) == 0)
2374 {
2375 i.op[op].imms->X_add_number =
2376 (((i.op[op].imms->X_add_number & 0xffff) ^ 0x8000) - 0x8000);
2377 }
2378 if ((i.types[op] & Imm32)
2379 && ((i.op[op].imms->X_add_number & ~(((offsetT) 2 << 31) - 1))
2380 == 0))
2381 {
2382 i.op[op].imms->X_add_number = ((i.op[op].imms->X_add_number
2383 ^ ((offsetT) 1 << 31))
2384 - ((offsetT) 1 << 31));
2385 }
2386 i.types[op] |= smallest_imm_type (i.op[op].imms->X_add_number);
2387
2388 /* We must avoid matching of Imm32 templates when 64bit
2389 only immediate is available. */
2390 if (guess_suffix == QWORD_MNEM_SUFFIX)
2391 i.types[op] &= ~Imm32;
2392 break;
2393
2394 case O_absent:
2395 case O_register:
2396 abort ();
2397
2398 /* Symbols and expressions. */
2399 default:
2400 /* Convert symbolic operand to proper sizes for matching, but don't
2401 prevent matching a set of insns that only supports sizes other
2402 than those matching the insn suffix. */
2403 {
2404 unsigned int mask, allowed = 0;
2405 const template *t;
2406
2407 for (t = current_templates->start;
2408 t < current_templates->end;
2409 ++t)
2410 allowed |= t->operand_types[op];
2411 switch (guess_suffix)
2412 {
2413 case QWORD_MNEM_SUFFIX:
2414 mask = Imm64 | Imm32S;
2415 break;
2416 case LONG_MNEM_SUFFIX:
2417 mask = Imm32;
2418 break;
2419 case WORD_MNEM_SUFFIX:
2420 mask = Imm16;
2421 break;
2422 case BYTE_MNEM_SUFFIX:
2423 mask = Imm8;
2424 break;
2425 default:
2426 mask = 0;
2427 break;
2428 }
2429 if (mask & allowed)
2430 i.types[op] &= mask;
2431 }
2432 break;
2433 }
2434 }
2435 }
2436
2437 /* Try to use the smallest displacement type too. */
2438 static void
2439 optimize_disp (void)
2440 {
2441 int op;
2442
2443 for (op = i.operands; --op >= 0;)
2444 if (i.types[op] & Disp)
2445 {
2446 if (i.op[op].disps->X_op == O_constant)
2447 {
2448 offsetT disp = i.op[op].disps->X_add_number;
2449
2450 if ((i.types[op] & Disp16)
2451 && (disp & ~(offsetT) 0xffff) == 0)
2452 {
2453 /* If this operand is at most 16 bits, convert
2454 to a signed 16 bit number and don't use 64bit
2455 displacement. */
2456 disp = (((disp & 0xffff) ^ 0x8000) - 0x8000);
2457 i.types[op] &= ~Disp64;
2458 }
2459 if ((i.types[op] & Disp32)
2460 && (disp & ~(((offsetT) 2 << 31) - 1)) == 0)
2461 {
2462 /* If this operand is at most 32 bits, convert
2463 to a signed 32 bit number and don't use 64bit
2464 displacement. */
2465 disp &= (((offsetT) 2 << 31) - 1);
2466 disp = (disp ^ ((offsetT) 1 << 31)) - ((addressT) 1 << 31);
2467 i.types[op] &= ~Disp64;
2468 }
2469 if (!disp && (i.types[op] & BaseIndex))
2470 {
2471 i.types[op] &= ~Disp;
2472 i.op[op].disps = 0;
2473 i.disp_operands--;
2474 }
2475 else if (flag_code == CODE_64BIT)
2476 {
2477 if (fits_in_signed_long (disp))
2478 {
2479 i.types[op] &= ~Disp64;
2480 i.types[op] |= Disp32S;
2481 }
2482 if (fits_in_unsigned_long (disp))
2483 i.types[op] |= Disp32;
2484 }
2485 if ((i.types[op] & (Disp32 | Disp32S | Disp16))
2486 && fits_in_signed_byte (disp))
2487 i.types[op] |= Disp8;
2488 }
2489 else if (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
2490 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL)
2491 {
2492 fix_new_exp (frag_now, frag_more (0) - frag_now->fr_literal, 0,
2493 i.op[op].disps, 0, i.reloc[op]);
2494 i.types[op] &= ~Disp;
2495 }
2496 else
2497 /* We only support 64bit displacement on constants. */
2498 i.types[op] &= ~Disp64;
2499 }
2500 }
2501
2502 static int
2503 match_template (void)
2504 {
2505 /* Points to template once we've found it. */
2506 const template *t;
2507 unsigned int overlap0, overlap1, overlap2, overlap3;
2508 unsigned int found_reverse_match;
2509 int suffix_check;
2510 unsigned int operand_types [MAX_OPERANDS];
2511 int addr_prefix_disp;
2512 unsigned int j;
2513
2514 #if MAX_OPERANDS != 4
2515 # error "MAX_OPERANDS must be 4."
2516 #endif
2517
2518 #define MATCH(overlap, given, template) \
2519 ((overlap & ~JumpAbsolute) \
2520 && (((given) & (BaseIndex | JumpAbsolute)) \
2521 == ((overlap) & (BaseIndex | JumpAbsolute))))
2522
2523 /* If given types r0 and r1 are registers they must be of the same type
2524 unless the expected operand type register overlap is null.
2525 Note that Acc in a template matches every size of reg. */
2526 #define CONSISTENT_REGISTER_MATCH(m0, g0, t0, m1, g1, t1) \
2527 (((g0) & Reg) == 0 || ((g1) & Reg) == 0 \
2528 || ((g0) & Reg) == ((g1) & Reg) \
2529 || ((((m0) & Acc) ? Reg : (t0)) & (((m1) & Acc) ? Reg : (t1)) & Reg) == 0 )
2530
2531 overlap0 = 0;
2532 overlap1 = 0;
2533 overlap2 = 0;
2534 overlap3 = 0;
2535 found_reverse_match = 0;
2536 for (j = 0; j < MAX_OPERANDS; j++)
2537 operand_types [j] = 0;
2538 addr_prefix_disp = -1;
2539 suffix_check = (i.suffix == BYTE_MNEM_SUFFIX
2540 ? No_bSuf
2541 : (i.suffix == WORD_MNEM_SUFFIX
2542 ? No_wSuf
2543 : (i.suffix == SHORT_MNEM_SUFFIX
2544 ? No_sSuf
2545 : (i.suffix == LONG_MNEM_SUFFIX
2546 ? No_lSuf
2547 : (i.suffix == QWORD_MNEM_SUFFIX
2548 ? No_qSuf
2549 : (i.suffix == LONG_DOUBLE_MNEM_SUFFIX
2550 ? No_xSuf : 0))))));
2551
2552 for (t = current_templates->start; t < current_templates->end; t++)
2553 {
2554 addr_prefix_disp = -1;
2555
2556 /* Must have right number of operands. */
2557 if (i.operands != t->operands)
2558 continue;
2559
2560 /* Check the suffix, except for some instructions in intel mode. */
2561 if ((t->opcode_modifier & suffix_check)
2562 && !(intel_syntax
2563 && (t->opcode_modifier & IgnoreSize)))
2564 continue;
2565
2566 for (j = 0; j < MAX_OPERANDS; j++)
2567 operand_types [j] = t->operand_types [j];
2568
2569 /* In general, don't allow 64-bit operands in 32-bit mode. */
2570 if (i.suffix == QWORD_MNEM_SUFFIX
2571 && flag_code != CODE_64BIT
2572 && (intel_syntax
2573 ? (!(t->opcode_modifier & IgnoreSize)
2574 && !intel_float_operand (t->name))
2575 : intel_float_operand (t->name) != 2)
2576 && (!(operand_types[0] & (RegMMX | RegXMM))
2577 || !(operand_types[t->operands > 1] & (RegMMX | RegXMM)))
2578 && (t->base_opcode != 0x0fc7
2579 || t->extension_opcode != 1 /* cmpxchg8b */))
2580 continue;
2581
2582 /* Do not verify operands when there are none. */
2583 else if (!t->operands)
2584 {
2585 if (t->cpu_flags & ~cpu_arch_flags)
2586 continue;
2587 /* We've found a match; break out of loop. */
2588 break;
2589 }
2590
2591 /* Address size prefix will turn Disp64/Disp32/Disp16 operand
2592 into Disp32/Disp16/Disp32 operand. */
2593 if (i.prefix[ADDR_PREFIX] != 0)
2594 {
2595 unsigned int DispOn = 0, DispOff = 0;
2596
2597 switch (flag_code)
2598 {
2599 case CODE_16BIT:
2600 DispOn = Disp32;
2601 DispOff = Disp16;
2602 break;
2603 case CODE_32BIT:
2604 DispOn = Disp16;
2605 DispOff = Disp32;
2606 break;
2607 case CODE_64BIT:
2608 DispOn = Disp32;
2609 DispOff = Disp64;
2610 break;
2611 }
2612
2613 for (j = 0; j < MAX_OPERANDS; j++)
2614 {
2615 /* There should be only one Disp operand. */
2616 if ((operand_types[j] & DispOff))
2617 {
2618 addr_prefix_disp = j;
2619 operand_types[j] |= DispOn;
2620 operand_types[j] &= ~DispOff;
2621 break;
2622 }
2623 }
2624 }
2625
2626 overlap0 = i.types[0] & operand_types[0];
2627 switch (t->operands)
2628 {
2629 case 1:
2630 if (!MATCH (overlap0, i.types[0], operand_types[0]))
2631 continue;
2632 break;
2633 case 2:
2634 /* xchg %eax, %eax is a special case. It is an aliase for nop
2635 only in 32bit mode and we can use opcode 0x90. In 64bit
2636 mode, we can't use 0x90 for xchg %eax, %eax since it should
2637 zero-extend %eax to %rax. */
2638 if (flag_code == CODE_64BIT
2639 && t->base_opcode == 0x90
2640 && i.types [0] == (Acc | Reg32)
2641 && i.types [1] == (Acc | Reg32))
2642 continue;
2643 case 3:
2644 case 4:
2645 overlap1 = i.types[1] & operand_types[1];
2646 if (!MATCH (overlap0, i.types[0], operand_types[0])
2647 || !MATCH (overlap1, i.types[1], operand_types[1])
2648 /* monitor in SSE3 is a very special case. The first
2649 register and the second register may have different
2650 sizes. The same applies to crc32 in SSE4.2. */
2651 || !((t->base_opcode == 0x0f01
2652 && t->extension_opcode == 0xc8)
2653 || t->base_opcode == 0xf20f38f1
2654 || CONSISTENT_REGISTER_MATCH (overlap0, i.types[0],
2655 operand_types[0],
2656 overlap1, i.types[1],
2657 operand_types[1])))
2658 {
2659 /* Check if other direction is valid ... */
2660 if ((t->opcode_modifier & (D | FloatD)) == 0)
2661 continue;
2662
2663 /* Try reversing direction of operands. */
2664 overlap0 = i.types[0] & operand_types[1];
2665 overlap1 = i.types[1] & operand_types[0];
2666 if (!MATCH (overlap0, i.types[0], operand_types[1])
2667 || !MATCH (overlap1, i.types[1], operand_types[0])
2668 || !CONSISTENT_REGISTER_MATCH (overlap0, i.types[0],
2669 operand_types[1],
2670 overlap1, i.types[1],
2671 operand_types[0]))
2672 {
2673 /* Does not match either direction. */
2674 continue;
2675 }
2676 /* found_reverse_match holds which of D or FloatDR
2677 we've found. */
2678 if ((t->opcode_modifier & D))
2679 found_reverse_match = Opcode_D;
2680 else if ((t->opcode_modifier & FloatD))
2681 found_reverse_match = Opcode_FloatD;
2682 else
2683 found_reverse_match = 0;
2684 if ((t->opcode_modifier & FloatR))
2685 found_reverse_match |= Opcode_FloatR;
2686 }
2687 else
2688 {
2689 /* Found a forward 2 operand match here. */
2690 switch (t->operands)
2691 {
2692 case 4:
2693 overlap3 = i.types[3] & operand_types[3];
2694 case 3:
2695 overlap2 = i.types[2] & operand_types[2];
2696 break;
2697 }
2698
2699 switch (t->operands)
2700 {
2701 case 4:
2702 if (!MATCH (overlap3, i.types[3], operand_types[3])
2703 || !CONSISTENT_REGISTER_MATCH (overlap2,
2704 i.types[2],
2705 operand_types[2],
2706 overlap3,
2707 i.types[3],
2708 operand_types[3]))
2709 continue;
2710 case 3:
2711 /* Here we make use of the fact that there are no
2712 reverse match 3 operand instructions, and all 3
2713 operand instructions only need to be checked for
2714 register consistency between operands 2 and 3. */
2715 if (!MATCH (overlap2, i.types[2], operand_types[2])
2716 || !CONSISTENT_REGISTER_MATCH (overlap1,
2717 i.types[1],
2718 operand_types[1],
2719 overlap2,
2720 i.types[2],
2721 operand_types[2]))
2722 continue;
2723 break;
2724 }
2725 }
2726 /* Found either forward/reverse 2, 3 or 4 operand match here:
2727 slip through to break. */
2728 }
2729 if (t->cpu_flags & ~cpu_arch_flags)
2730 {
2731 found_reverse_match = 0;
2732 continue;
2733 }
2734 /* We've found a match; break out of loop. */
2735 break;
2736 }
2737
2738 if (t == current_templates->end)
2739 {
2740 /* We found no match. */
2741 as_bad (_("suffix or operands invalid for `%s'"),
2742 current_templates->start->name);
2743 return 0;
2744 }
2745
2746 if (!quiet_warnings)
2747 {
2748 if (!intel_syntax
2749 && ((i.types[0] & JumpAbsolute)
2750 != (operand_types[0] & JumpAbsolute)))
2751 {
2752 as_warn (_("indirect %s without `*'"), t->name);
2753 }
2754
2755 if ((t->opcode_modifier & (IsPrefix | IgnoreSize))
2756 == (IsPrefix | IgnoreSize))
2757 {
2758 /* Warn them that a data or address size prefix doesn't
2759 affect assembly of the next line of code. */
2760 as_warn (_("stand-alone `%s' prefix"), t->name);
2761 }
2762 }
2763
2764 /* Copy the template we found. */
2765 i.tm = *t;
2766
2767 if (addr_prefix_disp != -1)
2768 i.tm.operand_types[addr_prefix_disp]
2769 = operand_types[addr_prefix_disp];
2770
2771 if (found_reverse_match)
2772 {
2773 /* If we found a reverse match we must alter the opcode
2774 direction bit. found_reverse_match holds bits to change
2775 (different for int & float insns). */
2776
2777 i.tm.base_opcode ^= found_reverse_match;
2778
2779 i.tm.operand_types[0] = operand_types[1];
2780 i.tm.operand_types[1] = operand_types[0];
2781 }
2782
2783 return 1;
2784 }
2785
2786 static int
2787 check_string (void)
2788 {
2789 int mem_op = (i.types[0] & AnyMem) ? 0 : 1;
2790 if ((i.tm.operand_types[mem_op] & EsSeg) != 0)
2791 {
2792 if (i.seg[0] != NULL && i.seg[0] != &es)
2793 {
2794 as_bad (_("`%s' operand %d must use `%%es' segment"),
2795 i.tm.name,
2796 mem_op + 1);
2797 return 0;
2798 }
2799 /* There's only ever one segment override allowed per instruction.
2800 This instruction possibly has a legal segment override on the
2801 second operand, so copy the segment to where non-string
2802 instructions store it, allowing common code. */
2803 i.seg[0] = i.seg[1];
2804 }
2805 else if ((i.tm.operand_types[mem_op + 1] & EsSeg) != 0)
2806 {
2807 if (i.seg[1] != NULL && i.seg[1] != &es)
2808 {
2809 as_bad (_("`%s' operand %d must use `%%es' segment"),
2810 i.tm.name,
2811 mem_op + 2);
2812 return 0;
2813 }
2814 }
2815 return 1;
2816 }
2817
2818 static int
2819 process_suffix (void)
2820 {
2821 /* If matched instruction specifies an explicit instruction mnemonic
2822 suffix, use it. */
2823 if (i.tm.opcode_modifier & (Size16 | Size32 | Size64))
2824 {
2825 if (i.tm.opcode_modifier & Size16)
2826 i.suffix = WORD_MNEM_SUFFIX;
2827 else if (i.tm.opcode_modifier & Size64)
2828 i.suffix = QWORD_MNEM_SUFFIX;
2829 else
2830 i.suffix = LONG_MNEM_SUFFIX;
2831 }
2832 else if (i.reg_operands)
2833 {
2834 /* If there's no instruction mnemonic suffix we try to invent one
2835 based on register operands. */
2836 if (!i.suffix)
2837 {
2838 /* We take i.suffix from the last register operand specified,
2839 Destination register type is more significant than source
2840 register type. crc32 in SSE4.2 prefers source register
2841 type. */
2842 if (i.tm.base_opcode == 0xf20f38f1)
2843 {
2844 if ((i.types[0] & Reg))
2845 i.suffix = ((i.types[0] & Reg16) ? WORD_MNEM_SUFFIX :
2846 LONG_MNEM_SUFFIX);
2847 }
2848
2849 if (!i.suffix)
2850 {
2851 int op;
2852
2853 for (op = i.operands; --op >= 0;)
2854 if ((i.types[op] & Reg)
2855 && !(i.tm.operand_types[op] & InOutPortReg))
2856 {
2857 i.suffix = ((i.types[op] & Reg8) ? BYTE_MNEM_SUFFIX :
2858 (i.types[op] & Reg16) ? WORD_MNEM_SUFFIX :
2859 (i.types[op] & Reg64) ? QWORD_MNEM_SUFFIX :
2860 LONG_MNEM_SUFFIX);
2861 break;
2862 }
2863 }
2864 }
2865 else if (i.suffix == BYTE_MNEM_SUFFIX)
2866 {
2867 if (!check_byte_reg ())
2868 return 0;
2869 }
2870 else if (i.suffix == LONG_MNEM_SUFFIX)
2871 {
2872 if (!check_long_reg ())
2873 return 0;
2874 }
2875 else if (i.suffix == QWORD_MNEM_SUFFIX)
2876 {
2877 if (!check_qword_reg ())
2878 return 0;
2879 }
2880 else if (i.suffix == WORD_MNEM_SUFFIX)
2881 {
2882 if (!check_word_reg ())
2883 return 0;
2884 }
2885 else if (intel_syntax && (i.tm.opcode_modifier & IgnoreSize))
2886 /* Do nothing if the instruction is going to ignore the prefix. */
2887 ;
2888 else
2889 abort ();
2890 }
2891 else if ((i.tm.opcode_modifier & DefaultSize)
2892 && !i.suffix
2893 /* exclude fldenv/frstor/fsave/fstenv */
2894 && (i.tm.opcode_modifier & No_sSuf))
2895 {
2896 i.suffix = stackop_size;
2897 }
2898 else if (intel_syntax
2899 && !i.suffix
2900 && ((i.tm.operand_types[0] & JumpAbsolute)
2901 || (i.tm.opcode_modifier & (JumpByte|JumpInterSegment))
2902 || (i.tm.base_opcode == 0x0f01 /* [ls][gi]dt */
2903 && i.tm.extension_opcode <= 3)))
2904 {
2905 switch (flag_code)
2906 {
2907 case CODE_64BIT:
2908 if (!(i.tm.opcode_modifier & No_qSuf))
2909 {
2910 i.suffix = QWORD_MNEM_SUFFIX;
2911 break;
2912 }
2913 case CODE_32BIT:
2914 if (!(i.tm.opcode_modifier & No_lSuf))
2915 i.suffix = LONG_MNEM_SUFFIX;
2916 break;
2917 case CODE_16BIT:
2918 if (!(i.tm.opcode_modifier & No_wSuf))
2919 i.suffix = WORD_MNEM_SUFFIX;
2920 break;
2921 }
2922 }
2923
2924 if (!i.suffix)
2925 {
2926 if (!intel_syntax)
2927 {
2928 if (i.tm.opcode_modifier & W)
2929 {
2930 as_bad (_("no instruction mnemonic suffix given and "
2931 "no register operands; can't size instruction"));
2932 return 0;
2933 }
2934 }
2935 else
2936 {
2937 unsigned int suffixes = (~i.tm.opcode_modifier
2938 & (No_bSuf
2939 | No_wSuf
2940 | No_lSuf
2941 | No_sSuf
2942 | No_xSuf
2943 | No_qSuf));
2944
2945 if ((i.tm.opcode_modifier & W)
2946 || ((suffixes & (suffixes - 1))
2947 && !(i.tm.opcode_modifier & (DefaultSize | IgnoreSize))))
2948 {
2949 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
2950 return 0;
2951 }
2952 }
2953 }
2954
2955 /* Change the opcode based on the operand size given by i.suffix;
2956 We don't need to change things for byte insns. */
2957
2958 if (i.suffix && i.suffix != BYTE_MNEM_SUFFIX)
2959 {
2960 /* It's not a byte, select word/dword operation. */
2961 if (i.tm.opcode_modifier & W)
2962 {
2963 if (i.tm.opcode_modifier & ShortForm)
2964 i.tm.base_opcode |= 8;
2965 else
2966 i.tm.base_opcode |= 1;
2967 }
2968
2969 /* Now select between word & dword operations via the operand
2970 size prefix, except for instructions that will ignore this
2971 prefix anyway. */
2972 if (i.tm.base_opcode == 0x0f01 && i.tm.extension_opcode == 0xc8)
2973 {
2974 /* monitor in SSE3 is a very special case. The default size
2975 of AX is the size of mode. The address size override
2976 prefix will change the size of AX. */
2977 if (i.op->regs[0].reg_type &
2978 (flag_code == CODE_32BIT ? Reg16 : Reg32))
2979 if (!add_prefix (ADDR_PREFIX_OPCODE))
2980 return 0;
2981 }
2982 else if (i.suffix != QWORD_MNEM_SUFFIX
2983 && i.suffix != LONG_DOUBLE_MNEM_SUFFIX
2984 && !(i.tm.opcode_modifier & (IgnoreSize | FloatMF))
2985 && ((i.suffix == LONG_MNEM_SUFFIX) == (flag_code == CODE_16BIT)
2986 || (flag_code == CODE_64BIT
2987 && (i.tm.opcode_modifier & JumpByte))))
2988 {
2989 unsigned int prefix = DATA_PREFIX_OPCODE;
2990
2991 if (i.tm.opcode_modifier & JumpByte) /* jcxz, loop */
2992 prefix = ADDR_PREFIX_OPCODE;
2993
2994 if (!add_prefix (prefix))
2995 return 0;
2996 }
2997
2998 /* Set mode64 for an operand. */
2999 if (i.suffix == QWORD_MNEM_SUFFIX
3000 && flag_code == CODE_64BIT
3001 && (i.tm.opcode_modifier & NoRex64) == 0)
3002 {
3003 /* Special case for xchg %rax,%rax. It is NOP and doesn't
3004 need rex64. */
3005 if (i.operands != 2
3006 || i.types [0] != (Acc | Reg64)
3007 || i.types [1] != (Acc | Reg64)
3008 || i.tm.base_opcode != 0x90)
3009 i.rex |= REX_W;
3010 }
3011
3012 /* Size floating point instruction. */
3013 if (i.suffix == LONG_MNEM_SUFFIX)
3014 if (i.tm.opcode_modifier & FloatMF)
3015 i.tm.base_opcode ^= 4;
3016 }
3017
3018 return 1;
3019 }
3020
3021 static int
3022 check_byte_reg (void)
3023 {
3024 int op;
3025
3026 for (op = i.operands; --op >= 0;)
3027 {
3028 /* If this is an eight bit register, it's OK. If it's the 16 or
3029 32 bit version of an eight bit register, we will just use the
3030 low portion, and that's OK too. */
3031 if (i.types[op] & Reg8)
3032 continue;
3033
3034 /* movzx and movsx should not generate this warning. */
3035 if (intel_syntax
3036 && (i.tm.base_opcode == 0xfb7
3037 || i.tm.base_opcode == 0xfb6
3038 || i.tm.base_opcode == 0x63
3039 || i.tm.base_opcode == 0xfbe
3040 || i.tm.base_opcode == 0xfbf))
3041 continue;
3042
3043 if ((i.types[op] & WordReg) && i.op[op].regs->reg_num < 4)
3044 {
3045 /* Prohibit these changes in the 64bit mode, since the
3046 lowering is more complicated. */
3047 if (flag_code == CODE_64BIT
3048 && (i.tm.operand_types[op] & InOutPortReg) == 0)
3049 {
3050 as_bad (_("Incorrect register `%s%s' used with `%c' suffix"),
3051 register_prefix, i.op[op].regs->reg_name,
3052 i.suffix);
3053 return 0;
3054 }
3055 #if REGISTER_WARNINGS
3056 if (!quiet_warnings
3057 && (i.tm.operand_types[op] & InOutPortReg) == 0)
3058 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
3059 register_prefix,
3060 (i.op[op].regs + (i.types[op] & Reg16
3061 ? REGNAM_AL - REGNAM_AX
3062 : REGNAM_AL - REGNAM_EAX))->reg_name,
3063 register_prefix,
3064 i.op[op].regs->reg_name,
3065 i.suffix);
3066 #endif
3067 continue;
3068 }
3069 /* Any other register is bad. */
3070 if (i.types[op] & (Reg | RegMMX | RegXMM
3071 | SReg2 | SReg3
3072 | Control | Debug | Test
3073 | FloatReg | FloatAcc))
3074 {
3075 as_bad (_("`%s%s' not allowed with `%s%c'"),
3076 register_prefix,
3077 i.op[op].regs->reg_name,
3078 i.tm.name,
3079 i.suffix);
3080 return 0;
3081 }
3082 }
3083 return 1;
3084 }
3085
3086 static int
3087 check_long_reg (void)
3088 {
3089 int op;
3090
3091 for (op = i.operands; --op >= 0;)
3092 /* Reject eight bit registers, except where the template requires
3093 them. (eg. movzb) */
3094 if ((i.types[op] & Reg8) != 0
3095 && (i.tm.operand_types[op] & (Reg16 | Reg32 | Acc)) != 0)
3096 {
3097 as_bad (_("`%s%s' not allowed with `%s%c'"),
3098 register_prefix,
3099 i.op[op].regs->reg_name,
3100 i.tm.name,
3101 i.suffix);
3102 return 0;
3103 }
3104 /* Warn if the e prefix on a general reg is missing. */
3105 else if ((!quiet_warnings || flag_code == CODE_64BIT)
3106 && (i.types[op] & Reg16) != 0
3107 && (i.tm.operand_types[op] & (Reg32 | Acc)) != 0)
3108 {
3109 /* Prohibit these changes in the 64bit mode, since the
3110 lowering is more complicated. */
3111 if (flag_code == CODE_64BIT)
3112 {
3113 as_bad (_("Incorrect register `%s%s' used with `%c' suffix"),
3114 register_prefix, i.op[op].regs->reg_name,
3115 i.suffix);
3116 return 0;
3117 }
3118 #if REGISTER_WARNINGS
3119 else
3120 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
3121 register_prefix,
3122 (i.op[op].regs + REGNAM_EAX - REGNAM_AX)->reg_name,
3123 register_prefix,
3124 i.op[op].regs->reg_name,
3125 i.suffix);
3126 #endif
3127 }
3128 /* Warn if the r prefix on a general reg is missing. */
3129 else if ((i.types[op] & Reg64) != 0
3130 && (i.tm.operand_types[op] & (Reg32 | Acc)) != 0)
3131 {
3132 as_bad (_("Incorrect register `%s%s' used with `%c' suffix"),
3133 register_prefix, i.op[op].regs->reg_name,
3134 i.suffix);
3135 return 0;
3136 }
3137 return 1;
3138 }
3139
3140 static int
3141 check_qword_reg (void)
3142 {
3143 int op;
3144
3145 for (op = i.operands; --op >= 0; )
3146 /* Reject eight bit registers, except where the template requires
3147 them. (eg. movzb) */
3148 if ((i.types[op] & Reg8) != 0
3149 && (i.tm.operand_types[op] & (Reg16 | Reg32 | Acc)) != 0)
3150 {
3151 as_bad (_("`%s%s' not allowed with `%s%c'"),
3152 register_prefix,
3153 i.op[op].regs->reg_name,
3154 i.tm.name,
3155 i.suffix);
3156 return 0;
3157 }
3158 /* Warn if the e prefix on a general reg is missing. */
3159 else if (((i.types[op] & Reg16) != 0
3160 || (i.types[op] & Reg32) != 0)
3161 && (i.tm.operand_types[op] & (Reg32 | Acc)) != 0)
3162 {
3163 /* Prohibit these changes in the 64bit mode, since the
3164 lowering is more complicated. */
3165 as_bad (_("Incorrect register `%s%s' used with `%c' suffix"),
3166 register_prefix, i.op[op].regs->reg_name,
3167 i.suffix);
3168 return 0;
3169 }
3170 return 1;
3171 }
3172
3173 static int
3174 check_word_reg (void)
3175 {
3176 int op;
3177 for (op = i.operands; --op >= 0;)
3178 /* Reject eight bit registers, except where the template requires
3179 them. (eg. movzb) */
3180 if ((i.types[op] & Reg8) != 0
3181 && (i.tm.operand_types[op] & (Reg16 | Reg32 | Acc)) != 0)
3182 {
3183 as_bad (_("`%s%s' not allowed with `%s%c'"),
3184 register_prefix,
3185 i.op[op].regs->reg_name,
3186 i.tm.name,
3187 i.suffix);
3188 return 0;
3189 }
3190 /* Warn if the e prefix on a general reg is present. */
3191 else if ((!quiet_warnings || flag_code == CODE_64BIT)
3192 && (i.types[op] & Reg32) != 0
3193 && (i.tm.operand_types[op] & (Reg16 | Acc)) != 0)
3194 {
3195 /* Prohibit these changes in the 64bit mode, since the
3196 lowering is more complicated. */
3197 if (flag_code == CODE_64BIT)
3198 {
3199 as_bad (_("Incorrect register `%s%s' used with `%c' suffix"),
3200 register_prefix, i.op[op].regs->reg_name,
3201 i.suffix);
3202 return 0;
3203 }
3204 else
3205 #if REGISTER_WARNINGS
3206 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
3207 register_prefix,
3208 (i.op[op].regs + REGNAM_AX - REGNAM_EAX)->reg_name,
3209 register_prefix,
3210 i.op[op].regs->reg_name,
3211 i.suffix);
3212 #endif
3213 }
3214 return 1;
3215 }
3216
3217 static int
3218 finalize_imm (void)
3219 {
3220 unsigned int overlap0, overlap1, overlap2;
3221
3222 overlap0 = i.types[0] & i.tm.operand_types[0];
3223 if ((overlap0 & (Imm8 | Imm8S | Imm16 | Imm32 | Imm32S | Imm64))
3224 && overlap0 != Imm8 && overlap0 != Imm8S
3225 && overlap0 != Imm16 && overlap0 != Imm32S
3226 && overlap0 != Imm32 && overlap0 != Imm64)
3227 {
3228 if (i.suffix)
3229 {
3230 overlap0 &= (i.suffix == BYTE_MNEM_SUFFIX
3231 ? Imm8 | Imm8S
3232 : (i.suffix == WORD_MNEM_SUFFIX
3233 ? Imm16
3234 : (i.suffix == QWORD_MNEM_SUFFIX
3235 ? Imm64 | Imm32S
3236 : Imm32)));
3237 }
3238 else if (overlap0 == (Imm16 | Imm32S | Imm32)
3239 || overlap0 == (Imm16 | Imm32)
3240 || overlap0 == (Imm16 | Imm32S))
3241 {
3242 overlap0 = ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0)
3243 ? Imm16 : Imm32S);
3244 }
3245 if (overlap0 != Imm8 && overlap0 != Imm8S
3246 && overlap0 != Imm16 && overlap0 != Imm32S
3247 && overlap0 != Imm32 && overlap0 != Imm64)
3248 {
3249 as_bad (_("no instruction mnemonic suffix given; "
3250 "can't determine immediate size"));
3251 return 0;
3252 }
3253 }
3254 i.types[0] = overlap0;
3255
3256 overlap1 = i.types[1] & i.tm.operand_types[1];
3257 if ((overlap1 & (Imm8 | Imm8S | Imm16 | Imm32S | Imm32 | Imm64))
3258 && overlap1 != Imm8 && overlap1 != Imm8S
3259 && overlap1 != Imm16 && overlap1 != Imm32S
3260 && overlap1 != Imm32 && overlap1 != Imm64)
3261 {
3262 if (i.suffix)
3263 {
3264 overlap1 &= (i.suffix == BYTE_MNEM_SUFFIX
3265 ? Imm8 | Imm8S
3266 : (i.suffix == WORD_MNEM_SUFFIX
3267 ? Imm16
3268 : (i.suffix == QWORD_MNEM_SUFFIX
3269 ? Imm64 | Imm32S
3270 : Imm32)));
3271 }
3272 else if (overlap1 == (Imm16 | Imm32 | Imm32S)
3273 || overlap1 == (Imm16 | Imm32)
3274 || overlap1 == (Imm16 | Imm32S))
3275 {
3276 overlap1 = ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0)
3277 ? Imm16 : Imm32S);
3278 }
3279 if (overlap1 != Imm8 && overlap1 != Imm8S
3280 && overlap1 != Imm16 && overlap1 != Imm32S
3281 && overlap1 != Imm32 && overlap1 != Imm64)
3282 {
3283 as_bad (_("no instruction mnemonic suffix given; "
3284 "can't determine immediate size %x %c"),
3285 overlap1, i.suffix);
3286 return 0;
3287 }
3288 }
3289 i.types[1] = overlap1;
3290
3291 overlap2 = i.types[2] & i.tm.operand_types[2];
3292 assert ((overlap2 & Imm) == 0);
3293 i.types[2] = overlap2;
3294
3295 return 1;
3296 }
3297
3298 static int
3299 process_operands (void)
3300 {
3301 /* Default segment register this instruction will use for memory
3302 accesses. 0 means unknown. This is only for optimizing out
3303 unnecessary segment overrides. */
3304 const seg_entry *default_seg = 0;
3305
3306 /* The imul $imm, %reg instruction is converted into
3307 imul $imm, %reg, %reg, and the clr %reg instruction
3308 is converted into xor %reg, %reg. */
3309 if (i.tm.opcode_modifier & regKludge)
3310 {
3311 if ((i.tm.cpu_flags & CpuSSE4_1))
3312 {
3313 /* The first operand in instruction blendvpd, blendvps and
3314 pblendvb in SSE4.1 is implicit and must be xmm0. */
3315 assert (i.operands == 3
3316 && i.reg_operands >= 2
3317 && i.types[0] == RegXMM);
3318 if (i.op[0].regs->reg_num != 0)
3319 {
3320 if (intel_syntax)
3321 as_bad (_("the last operand of `%s' must be `%sxmm0'"),
3322 i.tm.name, register_prefix);
3323 else
3324 as_bad (_("the first operand of `%s' must be `%sxmm0'"),
3325 i.tm.name, register_prefix);
3326 return 0;
3327 }
3328 i.op[0] = i.op[1];
3329 i.op[1] = i.op[2];
3330 i.types[0] = i.types[1];
3331 i.types[1] = i.types[2];
3332 i.operands--;
3333 i.reg_operands--;
3334
3335 /* We need to adjust fields in i.tm since they are used by
3336 build_modrm_byte. */
3337 i.tm.operand_types [0] = i.tm.operand_types [1];
3338 i.tm.operand_types [1] = i.tm.operand_types [2];
3339 i.tm.operands--;
3340 }
3341 else
3342 {
3343 unsigned int first_reg_op = (i.types[0] & Reg) ? 0 : 1;
3344 /* Pretend we saw the extra register operand. */
3345 assert (i.reg_operands == 1
3346 && i.op[first_reg_op + 1].regs == 0);
3347 i.op[first_reg_op + 1].regs = i.op[first_reg_op].regs;
3348 i.types[first_reg_op + 1] = i.types[first_reg_op];
3349 i.operands++;
3350 i.reg_operands++;
3351 }
3352 }
3353
3354 if (i.tm.opcode_modifier & ShortForm)
3355 {
3356 if (i.types[0] & (SReg2 | SReg3))
3357 {
3358 if (i.tm.base_opcode == POP_SEG_SHORT
3359 && i.op[0].regs->reg_num == 1)
3360 {
3361 as_bad (_("you can't `pop %%cs'"));
3362 return 0;
3363 }
3364 i.tm.base_opcode |= (i.op[0].regs->reg_num << 3);
3365 if ((i.op[0].regs->reg_flags & RegRex) != 0)
3366 i.rex |= REX_B;
3367 }
3368 else
3369 {
3370 /* The register or float register operand is in operand 0 or 1. */
3371 unsigned int op = (i.types[0] & (Reg | FloatReg)) ? 0 : 1;
3372 /* Register goes in low 3 bits of opcode. */
3373 i.tm.base_opcode |= i.op[op].regs->reg_num;
3374 if ((i.op[op].regs->reg_flags & RegRex) != 0)
3375 i.rex |= REX_B;
3376 if (!quiet_warnings && (i.tm.opcode_modifier & Ugh) != 0)
3377 {
3378 /* Warn about some common errors, but press on regardless.
3379 The first case can be generated by gcc (<= 2.8.1). */
3380 if (i.operands == 2)
3381 {
3382 /* Reversed arguments on faddp, fsubp, etc. */
3383 as_warn (_("translating to `%s %s%s,%s%s'"), i.tm.name,
3384 register_prefix, i.op[1].regs->reg_name,
3385 register_prefix, i.op[0].regs->reg_name);
3386 }
3387 else
3388 {
3389 /* Extraneous `l' suffix on fp insn. */
3390 as_warn (_("translating to `%s %s%s'"), i.tm.name,
3391 register_prefix, i.op[0].regs->reg_name);
3392 }
3393 }
3394 }
3395 }
3396 else if (i.tm.opcode_modifier & Modrm)
3397 {
3398 /* The opcode is completed (modulo i.tm.extension_opcode which
3399 must be put into the modrm byte). Now, we make the modrm and
3400 index base bytes based on all the info we've collected. */
3401
3402 default_seg = build_modrm_byte ();
3403 }
3404 else if ((i.tm.base_opcode & ~0x3) == MOV_AX_DISP32)
3405 {
3406 default_seg = &ds;
3407 }
3408 else if ((i.tm.opcode_modifier & IsString) != 0)
3409 {
3410 /* For the string instructions that allow a segment override
3411 on one of their operands, the default segment is ds. */
3412 default_seg = &ds;
3413 }
3414
3415 if ((i.tm.base_opcode == 0x8d /* lea */
3416 || (i.tm.cpu_flags & CpuSVME))
3417 && i.seg[0] && !quiet_warnings)
3418 as_warn (_("segment override on `%s' is ineffectual"), i.tm.name);
3419
3420 /* If a segment was explicitly specified, and the specified segment
3421 is not the default, use an opcode prefix to select it. If we
3422 never figured out what the default segment is, then default_seg
3423 will be zero at this point, and the specified segment prefix will
3424 always be used. */
3425 if ((i.seg[0]) && (i.seg[0] != default_seg))
3426 {
3427 if (!add_prefix (i.seg[0]->seg_prefix))
3428 return 0;
3429 }
3430 return 1;
3431 }
3432
3433 static const seg_entry *
3434 build_modrm_byte (void)
3435 {
3436 const seg_entry *default_seg = 0;
3437
3438 /* i.reg_operands MUST be the number of real register operands;
3439 implicit registers do not count. */
3440 if (i.reg_operands == 2)
3441 {
3442 unsigned int source, dest;
3443
3444 switch (i.operands)
3445 {
3446 case 2:
3447 source = 0;
3448 break;
3449 case 3:
3450 /* When there are 3 operands, one of them may be immediate,
3451 which may be the first or the last operand. Otherwise,
3452 the first operand must be shift count register (cl). */
3453 assert (i.imm_operands == 1
3454 || (i.imm_operands == 0
3455 && (i.types[0] & ShiftCount)));
3456 source = (i.types[0] & (Imm | ShiftCount)) ? 1 : 0;
3457 break;
3458 case 4:
3459 /* When there are 4 operands, the first two must be immediate
3460 operands. The source operand will be the 3rd one. */
3461 assert (i.imm_operands == 2
3462 && (i.types[0] & Imm)
3463 && (i.types[1] & Imm));
3464 source = 2;
3465 break;
3466 default:
3467 abort ();
3468 }
3469
3470 dest = source + 1;
3471
3472 i.rm.mode = 3;
3473 /* One of the register operands will be encoded in the i.tm.reg
3474 field, the other in the combined i.tm.mode and i.tm.regmem
3475 fields. If no form of this instruction supports a memory
3476 destination operand, then we assume the source operand may
3477 sometimes be a memory operand and so we need to store the
3478 destination in the i.rm.reg field. */
3479 if ((i.tm.operand_types[dest] & (AnyMem | RegMem)) == 0)
3480 {
3481 i.rm.reg = i.op[dest].regs->reg_num;
3482 i.rm.regmem = i.op[source].regs->reg_num;
3483 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
3484 i.rex |= REX_R;
3485 if ((i.op[source].regs->reg_flags & RegRex) != 0)
3486 i.rex |= REX_B;
3487 }
3488 else
3489 {
3490 i.rm.reg = i.op[source].regs->reg_num;
3491 i.rm.regmem = i.op[dest].regs->reg_num;
3492 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
3493 i.rex |= REX_B;
3494 if ((i.op[source].regs->reg_flags & RegRex) != 0)
3495 i.rex |= REX_R;
3496 }
3497 if (flag_code != CODE_64BIT && (i.rex & (REX_R | REX_B)))
3498 {
3499 if (!((i.types[0] | i.types[1]) & Control))
3500 abort ();
3501 i.rex &= ~(REX_R | REX_B);
3502 add_prefix (LOCK_PREFIX_OPCODE);
3503 }
3504 }
3505 else
3506 { /* If it's not 2 reg operands... */
3507 if (i.mem_operands)
3508 {
3509 unsigned int fake_zero_displacement = 0;
3510 unsigned int op;
3511
3512 for (op = 0; op < i.operands; op++)
3513 if ((i.types[op] & AnyMem))
3514 break;
3515 assert (op < i.operands);
3516
3517 default_seg = &ds;
3518
3519 if (i.base_reg == 0)
3520 {
3521 i.rm.mode = 0;
3522 if (!i.disp_operands)
3523 fake_zero_displacement = 1;
3524 if (i.index_reg == 0)
3525 {
3526 /* Operand is just <disp> */
3527 if (flag_code == CODE_64BIT)
3528 {
3529 /* 64bit mode overwrites the 32bit absolute
3530 addressing by RIP relative addressing and
3531 absolute addressing is encoded by one of the
3532 redundant SIB forms. */
3533 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
3534 i.sib.base = NO_BASE_REGISTER;
3535 i.sib.index = NO_INDEX_REGISTER;
3536 i.types[op] = ((i.prefix[ADDR_PREFIX] == 0)
3537 ? Disp32S : Disp32);
3538 }
3539 else if ((flag_code == CODE_16BIT)
3540 ^ (i.prefix[ADDR_PREFIX] != 0))
3541 {
3542 i.rm.regmem = NO_BASE_REGISTER_16;
3543 i.types[op] = Disp16;
3544 }
3545 else
3546 {
3547 i.rm.regmem = NO_BASE_REGISTER;
3548 i.types[op] = Disp32;
3549 }
3550 }
3551 else /* !i.base_reg && i.index_reg */
3552 {
3553 i.sib.index = i.index_reg->reg_num;
3554 i.sib.base = NO_BASE_REGISTER;
3555 i.sib.scale = i.log2_scale_factor;
3556 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
3557 i.types[op] &= ~Disp;
3558 if (flag_code != CODE_64BIT)
3559 i.types[op] |= Disp32; /* Must be 32 bit */
3560 else
3561 i.types[op] |= Disp32S;
3562 if ((i.index_reg->reg_flags & RegRex) != 0)
3563 i.rex |= REX_X;
3564 }
3565 }
3566 /* RIP addressing for 64bit mode. */
3567 else if (i.base_reg->reg_type == BaseIndex)
3568 {
3569 i.rm.regmem = NO_BASE_REGISTER;
3570 i.types[op] &= ~ Disp;
3571 i.types[op] |= Disp32S;
3572 i.flags[op] |= Operand_PCrel;
3573 if (! i.disp_operands)
3574 fake_zero_displacement = 1;
3575 }
3576 else if (i.base_reg->reg_type & Reg16)
3577 {
3578 switch (i.base_reg->reg_num)
3579 {
3580 case 3: /* (%bx) */
3581 if (i.index_reg == 0)
3582 i.rm.regmem = 7;
3583 else /* (%bx,%si) -> 0, or (%bx,%di) -> 1 */
3584 i.rm.regmem = i.index_reg->reg_num - 6;
3585 break;
3586 case 5: /* (%bp) */
3587 default_seg = &ss;
3588 if (i.index_reg == 0)
3589 {
3590 i.rm.regmem = 6;
3591 if ((i.types[op] & Disp) == 0)
3592 {
3593 /* fake (%bp) into 0(%bp) */
3594 i.types[op] |= Disp8;
3595 fake_zero_displacement = 1;
3596 }
3597 }
3598 else /* (%bp,%si) -> 2, or (%bp,%di) -> 3 */
3599 i.rm.regmem = i.index_reg->reg_num - 6 + 2;
3600 break;
3601 default: /* (%si) -> 4 or (%di) -> 5 */
3602 i.rm.regmem = i.base_reg->reg_num - 6 + 4;
3603 }
3604 i.rm.mode = mode_from_disp_size (i.types[op]);
3605 }
3606 else /* i.base_reg and 32/64 bit mode */
3607 {
3608 if (flag_code == CODE_64BIT
3609 && (i.types[op] & Disp))
3610 i.types[op] = ((i.types[op] & Disp8)
3611 | (i.prefix[ADDR_PREFIX] == 0
3612 ? Disp32S : Disp32));
3613
3614 i.rm.regmem = i.base_reg->reg_num;
3615 if ((i.base_reg->reg_flags & RegRex) != 0)
3616 i.rex |= REX_B;
3617 i.sib.base = i.base_reg->reg_num;
3618 /* x86-64 ignores REX prefix bit here to avoid decoder
3619 complications. */
3620 if ((i.base_reg->reg_num & 7) == EBP_REG_NUM)
3621 {
3622 default_seg = &ss;
3623 if (i.disp_operands == 0)
3624 {
3625 fake_zero_displacement = 1;
3626 i.types[op] |= Disp8;
3627 }
3628 }
3629 else if (i.base_reg->reg_num == ESP_REG_NUM)
3630 {
3631 default_seg = &ss;
3632 }
3633 i.sib.scale = i.log2_scale_factor;
3634 if (i.index_reg == 0)
3635 {
3636 /* <disp>(%esp) becomes two byte modrm with no index
3637 register. We've already stored the code for esp
3638 in i.rm.regmem ie. ESCAPE_TO_TWO_BYTE_ADDRESSING.
3639 Any base register besides %esp will not use the
3640 extra modrm byte. */
3641 i.sib.index = NO_INDEX_REGISTER;
3642 #if !SCALE1_WHEN_NO_INDEX
3643 /* Another case where we force the second modrm byte. */
3644 if (i.log2_scale_factor)
3645 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
3646 #endif
3647 }
3648 else
3649 {
3650 i.sib.index = i.index_reg->reg_num;
3651 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
3652 if ((i.index_reg->reg_flags & RegRex) != 0)
3653 i.rex |= REX_X;
3654 }
3655
3656 if (i.disp_operands
3657 && (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
3658 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL))
3659 i.rm.mode = 0;
3660 else
3661 i.rm.mode = mode_from_disp_size (i.types[op]);
3662 }
3663
3664 if (fake_zero_displacement)
3665 {
3666 /* Fakes a zero displacement assuming that i.types[op]
3667 holds the correct displacement size. */
3668 expressionS *exp;
3669
3670 assert (i.op[op].disps == 0);
3671 exp = &disp_expressions[i.disp_operands++];
3672 i.op[op].disps = exp;
3673 exp->X_op = O_constant;
3674 exp->X_add_number = 0;
3675 exp->X_add_symbol = (symbolS *) 0;
3676 exp->X_op_symbol = (symbolS *) 0;
3677 }
3678 }
3679
3680 /* Fill in i.rm.reg or i.rm.regmem field with register operand
3681 (if any) based on i.tm.extension_opcode. Again, we must be
3682 careful to make sure that segment/control/debug/test/MMX
3683 registers are coded into the i.rm.reg field. */
3684 if (i.reg_operands)
3685 {
3686 unsigned int op;
3687
3688 for (op = 0; op < i.operands; op++)
3689 if ((i.types[op] & (Reg | RegMMX | RegXMM
3690 | SReg2 | SReg3
3691 | Control | Debug | Test)))
3692 break;
3693 assert (op < i.operands);
3694
3695 /* If there is an extension opcode to put here, the register
3696 number must be put into the regmem field. */
3697 if (i.tm.extension_opcode != None)
3698 {
3699 i.rm.regmem = i.op[op].regs->reg_num;
3700 if ((i.op[op].regs->reg_flags & RegRex) != 0)
3701 i.rex |= REX_B;
3702 }
3703 else
3704 {
3705 i.rm.reg = i.op[op].regs->reg_num;
3706 if ((i.op[op].regs->reg_flags & RegRex) != 0)
3707 i.rex |= REX_R;
3708 }
3709
3710 /* Now, if no memory operand has set i.rm.mode = 0, 1, 2 we
3711 must set it to 3 to indicate this is a register operand
3712 in the regmem field. */
3713 if (!i.mem_operands)
3714 i.rm.mode = 3;
3715 }
3716
3717 /* Fill in i.rm.reg field with extension opcode (if any). */
3718 if (i.tm.extension_opcode != None)
3719 i.rm.reg = i.tm.extension_opcode;
3720 }
3721 return default_seg;
3722 }
3723
3724 static void
3725 output_branch (void)
3726 {
3727 char *p;
3728 int code16;
3729 int prefix;
3730 relax_substateT subtype;
3731 symbolS *sym;
3732 offsetT off;
3733
3734 code16 = 0;
3735 if (flag_code == CODE_16BIT)
3736 code16 = CODE16;
3737
3738 prefix = 0;
3739 if (i.prefix[DATA_PREFIX] != 0)
3740 {
3741 prefix = 1;
3742 i.prefixes -= 1;
3743 code16 ^= CODE16;
3744 }
3745 /* Pentium4 branch hints. */
3746 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
3747 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
3748 {
3749 prefix++;
3750 i.prefixes--;
3751 }
3752 if (i.prefix[REX_PREFIX] != 0)
3753 {
3754 prefix++;
3755 i.prefixes--;
3756 }
3757
3758 if (i.prefixes != 0 && !intel_syntax)
3759 as_warn (_("skipping prefixes on this instruction"));
3760
3761 /* It's always a symbol; End frag & setup for relax.
3762 Make sure there is enough room in this frag for the largest
3763 instruction we may generate in md_convert_frag. This is 2
3764 bytes for the opcode and room for the prefix and largest
3765 displacement. */
3766 frag_grow (prefix + 2 + 4);
3767 /* Prefix and 1 opcode byte go in fr_fix. */
3768 p = frag_more (prefix + 1);
3769 if (i.prefix[DATA_PREFIX] != 0)
3770 *p++ = DATA_PREFIX_OPCODE;
3771 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE
3772 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE)
3773 *p++ = i.prefix[SEG_PREFIX];
3774 if (i.prefix[REX_PREFIX] != 0)
3775 *p++ = i.prefix[REX_PREFIX];
3776 *p = i.tm.base_opcode;
3777
3778 if ((unsigned char) *p == JUMP_PC_RELATIVE)
3779 subtype = ENCODE_RELAX_STATE (UNCOND_JUMP, SMALL);
3780 else if ((cpu_arch_flags & Cpu386) != 0)
3781 subtype = ENCODE_RELAX_STATE (COND_JUMP, SMALL);
3782 else
3783 subtype = ENCODE_RELAX_STATE (COND_JUMP86, SMALL);
3784 subtype |= code16;
3785
3786 sym = i.op[0].disps->X_add_symbol;
3787 off = i.op[0].disps->X_add_number;
3788
3789 if (i.op[0].disps->X_op != O_constant
3790 && i.op[0].disps->X_op != O_symbol)
3791 {
3792 /* Handle complex expressions. */
3793 sym = make_expr_symbol (i.op[0].disps);
3794 off = 0;
3795 }
3796
3797 /* 1 possible extra opcode + 4 byte displacement go in var part.
3798 Pass reloc in fr_var. */
3799 frag_var (rs_machine_dependent, 5, i.reloc[0], subtype, sym, off, p);
3800 }
3801
3802 static void
3803 output_jump (void)
3804 {
3805 char *p;
3806 int size;
3807 fixS *fixP;
3808
3809 if (i.tm.opcode_modifier & JumpByte)
3810 {
3811 /* This is a loop or jecxz type instruction. */
3812 size = 1;
3813 if (i.prefix[ADDR_PREFIX] != 0)
3814 {
3815 FRAG_APPEND_1_CHAR (ADDR_PREFIX_OPCODE);
3816 i.prefixes -= 1;
3817 }
3818 /* Pentium4 branch hints. */
3819 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
3820 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
3821 {
3822 FRAG_APPEND_1_CHAR (i.prefix[SEG_PREFIX]);
3823 i.prefixes--;
3824 }
3825 }
3826 else
3827 {
3828 int code16;
3829
3830 code16 = 0;
3831 if (flag_code == CODE_16BIT)
3832 code16 = CODE16;
3833
3834 if (i.prefix[DATA_PREFIX] != 0)
3835 {
3836 FRAG_APPEND_1_CHAR (DATA_PREFIX_OPCODE);
3837 i.prefixes -= 1;
3838 code16 ^= CODE16;
3839 }
3840
3841 size = 4;
3842 if (code16)
3843 size = 2;
3844 }
3845
3846 if (i.prefix[REX_PREFIX] != 0)
3847 {
3848 FRAG_APPEND_1_CHAR (i.prefix[REX_PREFIX]);
3849 i.prefixes -= 1;
3850 }
3851
3852 if (i.prefixes != 0 && !intel_syntax)
3853 as_warn (_("skipping prefixes on this instruction"));
3854
3855 p = frag_more (1 + size);
3856 *p++ = i.tm.base_opcode;
3857
3858 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal, size,
3859 i.op[0].disps, 1, reloc (size, 1, 1, i.reloc[0]));
3860
3861 /* All jumps handled here are signed, but don't use a signed limit
3862 check for 32 and 16 bit jumps as we want to allow wrap around at
3863 4G and 64k respectively. */
3864 if (size == 1)
3865 fixP->fx_signed = 1;
3866 }
3867
3868 static void
3869 output_interseg_jump (void)
3870 {
3871 char *p;
3872 int size;
3873 int prefix;
3874 int code16;
3875
3876 code16 = 0;
3877 if (flag_code == CODE_16BIT)
3878 code16 = CODE16;
3879
3880 prefix = 0;
3881 if (i.prefix[DATA_PREFIX] != 0)
3882 {
3883 prefix = 1;
3884 i.prefixes -= 1;
3885 code16 ^= CODE16;
3886 }
3887 if (i.prefix[REX_PREFIX] != 0)
3888 {
3889 prefix++;
3890 i.prefixes -= 1;
3891 }
3892
3893 size = 4;
3894 if (code16)
3895 size = 2;
3896
3897 if (i.prefixes != 0 && !intel_syntax)
3898 as_warn (_("skipping prefixes on this instruction"));
3899
3900 /* 1 opcode; 2 segment; offset */
3901 p = frag_more (prefix + 1 + 2 + size);
3902
3903 if (i.prefix[DATA_PREFIX] != 0)
3904 *p++ = DATA_PREFIX_OPCODE;
3905
3906 if (i.prefix[REX_PREFIX] != 0)
3907 *p++ = i.prefix[REX_PREFIX];
3908
3909 *p++ = i.tm.base_opcode;
3910 if (i.op[1].imms->X_op == O_constant)
3911 {
3912 offsetT n = i.op[1].imms->X_add_number;
3913
3914 if (size == 2
3915 && !fits_in_unsigned_word (n)
3916 && !fits_in_signed_word (n))
3917 {
3918 as_bad (_("16-bit jump out of range"));
3919 return;
3920 }
3921 md_number_to_chars (p, n, size);
3922 }
3923 else
3924 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
3925 i.op[1].imms, 0, reloc (size, 0, 0, i.reloc[1]));
3926 if (i.op[0].imms->X_op != O_constant)
3927 as_bad (_("can't handle non absolute segment in `%s'"),
3928 i.tm.name);
3929 md_number_to_chars (p + size, (valueT) i.op[0].imms->X_add_number, 2);
3930 }
3931
3932 static void
3933 output_insn (void)
3934 {
3935 fragS *insn_start_frag;
3936 offsetT insn_start_off;
3937
3938 /* Tie dwarf2 debug info to the address at the start of the insn.
3939 We can't do this after the insn has been output as the current
3940 frag may have been closed off. eg. by frag_var. */
3941 dwarf2_emit_insn (0);
3942
3943 insn_start_frag = frag_now;
3944 insn_start_off = frag_now_fix ();
3945
3946 /* Output jumps. */
3947 if (i.tm.opcode_modifier & Jump)
3948 output_branch ();
3949 else if (i.tm.opcode_modifier & (JumpByte | JumpDword))
3950 output_jump ();
3951 else if (i.tm.opcode_modifier & JumpInterSegment)
3952 output_interseg_jump ();
3953 else
3954 {
3955 /* Output normal instructions here. */
3956 char *p;
3957 unsigned char *q;
3958 unsigned int prefix;
3959
3960 /* All opcodes on i386 have either 1 or 2 bytes. SSSE3 and
3961 SSE4 instructions have 3 bytes. We may use one more higher
3962 byte to specify a prefix the instruction requires. Exclude
3963 instructions which are in both SSE4 and ABM. */
3964 if ((i.tm.cpu_flags & (CpuSSSE3 | CpuSSE4)) != 0
3965 && (i.tm.cpu_flags & CpuABM) == 0)
3966 {
3967 if (i.tm.base_opcode & 0xff000000)
3968 {
3969 prefix = (i.tm.base_opcode >> 24) & 0xff;
3970 goto check_prefix;
3971 }
3972 }
3973 else if ((i.tm.base_opcode & 0xff0000) != 0)
3974 {
3975 prefix = (i.tm.base_opcode >> 16) & 0xff;
3976 if ((i.tm.cpu_flags & CpuPadLock) != 0)
3977 {
3978 check_prefix:
3979 if (prefix != REPE_PREFIX_OPCODE
3980 || i.prefix[LOCKREP_PREFIX] != REPE_PREFIX_OPCODE)
3981 add_prefix (prefix);
3982 }
3983 else
3984 add_prefix (prefix);
3985 }
3986
3987 /* The prefix bytes. */
3988 for (q = i.prefix;
3989 q < i.prefix + sizeof (i.prefix) / sizeof (i.prefix[0]);
3990 q++)
3991 {
3992 if (*q)
3993 {
3994 p = frag_more (1);
3995 md_number_to_chars (p, (valueT) *q, 1);
3996 }
3997 }
3998
3999 /* Now the opcode; be careful about word order here! */
4000 if (fits_in_unsigned_byte (i.tm.base_opcode))
4001 {
4002 FRAG_APPEND_1_CHAR (i.tm.base_opcode);
4003 }
4004 else
4005 {
4006 if ((i.tm.cpu_flags & (CpuSSSE3 | CpuSSE4)) != 0
4007 && (i.tm.cpu_flags & CpuABM) == 0)
4008 {
4009 p = frag_more (3);
4010 *p++ = (i.tm.base_opcode >> 16) & 0xff;
4011 }
4012 else
4013 p = frag_more (2);
4014
4015 /* Put out high byte first: can't use md_number_to_chars! */
4016 *p++ = (i.tm.base_opcode >> 8) & 0xff;
4017 *p = i.tm.base_opcode & 0xff;
4018 }
4019
4020 /* Now the modrm byte and sib byte (if present). */
4021 if (i.tm.opcode_modifier & Modrm)
4022 {
4023 p = frag_more (1);
4024 md_number_to_chars (p,
4025 (valueT) (i.rm.regmem << 0
4026 | i.rm.reg << 3
4027 | i.rm.mode << 6),
4028 1);
4029 /* If i.rm.regmem == ESP (4)
4030 && i.rm.mode != (Register mode)
4031 && not 16 bit
4032 ==> need second modrm byte. */
4033 if (i.rm.regmem == ESCAPE_TO_TWO_BYTE_ADDRESSING
4034 && i.rm.mode != 3
4035 && !(i.base_reg && (i.base_reg->reg_type & Reg16) != 0))
4036 {
4037 p = frag_more (1);
4038 md_number_to_chars (p,
4039 (valueT) (i.sib.base << 0
4040 | i.sib.index << 3
4041 | i.sib.scale << 6),
4042 1);
4043 }
4044 }
4045
4046 if (i.disp_operands)
4047 output_disp (insn_start_frag, insn_start_off);
4048
4049 if (i.imm_operands)
4050 output_imm (insn_start_frag, insn_start_off);
4051 }
4052
4053 #ifdef DEBUG386
4054 if (flag_debug)
4055 {
4056 pi ("" /*line*/, &i);
4057 }
4058 #endif /* DEBUG386 */
4059 }
4060
4061 static void
4062 output_disp (fragS *insn_start_frag, offsetT insn_start_off)
4063 {
4064 char *p;
4065 unsigned int n;
4066
4067 for (n = 0; n < i.operands; n++)
4068 {
4069 if (i.types[n] & Disp)
4070 {
4071 if (i.op[n].disps->X_op == O_constant)
4072 {
4073 int size;
4074 offsetT val;
4075
4076 size = 4;
4077 if (i.types[n] & (Disp8 | Disp16 | Disp64))
4078 {
4079 size = 2;
4080 if (i.types[n] & Disp8)
4081 size = 1;
4082 if (i.types[n] & Disp64)
4083 size = 8;
4084 }
4085 val = offset_in_range (i.op[n].disps->X_add_number,
4086 size);
4087 p = frag_more (size);
4088 md_number_to_chars (p, val, size);
4089 }
4090 else
4091 {
4092 enum bfd_reloc_code_real reloc_type;
4093 int size = 4;
4094 int sign = 0;
4095 int pcrel = (i.flags[n] & Operand_PCrel) != 0;
4096
4097 /* The PC relative address is computed relative
4098 to the instruction boundary, so in case immediate
4099 fields follows, we need to adjust the value. */
4100 if (pcrel && i.imm_operands)
4101 {
4102 int imm_size = 4;
4103 unsigned int n1;
4104
4105 for (n1 = 0; n1 < i.operands; n1++)
4106 if (i.types[n1] & Imm)
4107 {
4108 if (i.types[n1] & (Imm8 | Imm8S | Imm16 | Imm64))
4109 {
4110 imm_size = 2;
4111 if (i.types[n1] & (Imm8 | Imm8S))
4112 imm_size = 1;
4113 if (i.types[n1] & Imm64)
4114 imm_size = 8;
4115 }
4116 break;
4117 }
4118 /* We should find the immediate. */
4119 if (n1 == i.operands)
4120 abort ();
4121 i.op[n].disps->X_add_number -= imm_size;
4122 }
4123
4124 if (i.types[n] & Disp32S)
4125 sign = 1;
4126
4127 if (i.types[n] & (Disp16 | Disp64))
4128 {
4129 size = 2;
4130 if (i.types[n] & Disp64)
4131 size = 8;
4132 }
4133
4134 p = frag_more (size);
4135 reloc_type = reloc (size, pcrel, sign, i.reloc[n]);
4136 if (GOT_symbol
4137 && GOT_symbol == i.op[n].disps->X_add_symbol
4138 && (((reloc_type == BFD_RELOC_32
4139 || reloc_type == BFD_RELOC_X86_64_32S
4140 || (reloc_type == BFD_RELOC_64
4141 && object_64bit))
4142 && (i.op[n].disps->X_op == O_symbol
4143 || (i.op[n].disps->X_op == O_add
4144 && ((symbol_get_value_expression
4145 (i.op[n].disps->X_op_symbol)->X_op)
4146 == O_subtract))))
4147 || reloc_type == BFD_RELOC_32_PCREL))
4148 {
4149 offsetT add;
4150
4151 if (insn_start_frag == frag_now)
4152 add = (p - frag_now->fr_literal) - insn_start_off;
4153 else
4154 {
4155 fragS *fr;
4156
4157 add = insn_start_frag->fr_fix - insn_start_off;
4158 for (fr = insn_start_frag->fr_next;
4159 fr && fr != frag_now; fr = fr->fr_next)
4160 add += fr->fr_fix;
4161 add += p - frag_now->fr_literal;
4162 }
4163
4164 if (!object_64bit)
4165 {
4166 reloc_type = BFD_RELOC_386_GOTPC;
4167 i.op[n].imms->X_add_number += add;
4168 }
4169 else if (reloc_type == BFD_RELOC_64)
4170 reloc_type = BFD_RELOC_X86_64_GOTPC64;
4171 else
4172 /* Don't do the adjustment for x86-64, as there
4173 the pcrel addressing is relative to the _next_
4174 insn, and that is taken care of in other code. */
4175 reloc_type = BFD_RELOC_X86_64_GOTPC32;
4176 }
4177 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
4178 i.op[n].disps, pcrel, reloc_type);
4179 }
4180 }
4181 }
4182 }
4183
4184 static void
4185 output_imm (fragS *insn_start_frag, offsetT insn_start_off)
4186 {
4187 char *p;
4188 unsigned int n;
4189
4190 for (n = 0; n < i.operands; n++)
4191 {
4192 if (i.types[n] & Imm)
4193 {
4194 if (i.op[n].imms->X_op == O_constant)
4195 {
4196 int size;
4197 offsetT val;
4198
4199 size = 4;
4200 if (i.types[n] & (Imm8 | Imm8S | Imm16 | Imm64))
4201 {
4202 size = 2;
4203 if (i.types[n] & (Imm8 | Imm8S))
4204 size = 1;
4205 else if (i.types[n] & Imm64)
4206 size = 8;
4207 }
4208 val = offset_in_range (i.op[n].imms->X_add_number,
4209 size);
4210 p = frag_more (size);
4211 md_number_to_chars (p, val, size);
4212 }
4213 else
4214 {
4215 /* Not absolute_section.
4216 Need a 32-bit fixup (don't support 8bit
4217 non-absolute imms). Try to support other
4218 sizes ... */
4219 enum bfd_reloc_code_real reloc_type;
4220 int size = 4;
4221 int sign = 0;
4222
4223 if ((i.types[n] & (Imm32S))
4224 && (i.suffix == QWORD_MNEM_SUFFIX
4225 || (!i.suffix && (i.tm.opcode_modifier & No_lSuf))))
4226 sign = 1;
4227 if (i.types[n] & (Imm8 | Imm8S | Imm16 | Imm64))
4228 {
4229 size = 2;
4230 if (i.types[n] & (Imm8 | Imm8S))
4231 size = 1;
4232 if (i.types[n] & Imm64)
4233 size = 8;
4234 }
4235
4236 p = frag_more (size);
4237 reloc_type = reloc (size, 0, sign, i.reloc[n]);
4238
4239 /* This is tough to explain. We end up with this one if we
4240 * have operands that look like
4241 * "_GLOBAL_OFFSET_TABLE_+[.-.L284]". The goal here is to
4242 * obtain the absolute address of the GOT, and it is strongly
4243 * preferable from a performance point of view to avoid using
4244 * a runtime relocation for this. The actual sequence of
4245 * instructions often look something like:
4246 *
4247 * call .L66
4248 * .L66:
4249 * popl %ebx
4250 * addl $_GLOBAL_OFFSET_TABLE_+[.-.L66],%ebx
4251 *
4252 * The call and pop essentially return the absolute address
4253 * of the label .L66 and store it in %ebx. The linker itself
4254 * will ultimately change the first operand of the addl so
4255 * that %ebx points to the GOT, but to keep things simple, the
4256 * .o file must have this operand set so that it generates not
4257 * the absolute address of .L66, but the absolute address of
4258 * itself. This allows the linker itself simply treat a GOTPC
4259 * relocation as asking for a pcrel offset to the GOT to be
4260 * added in, and the addend of the relocation is stored in the
4261 * operand field for the instruction itself.
4262 *
4263 * Our job here is to fix the operand so that it would add
4264 * the correct offset so that %ebx would point to itself. The
4265 * thing that is tricky is that .-.L66 will point to the
4266 * beginning of the instruction, so we need to further modify
4267 * the operand so that it will point to itself. There are
4268 * other cases where you have something like:
4269 *
4270 * .long $_GLOBAL_OFFSET_TABLE_+[.-.L66]
4271 *
4272 * and here no correction would be required. Internally in
4273 * the assembler we treat operands of this form as not being
4274 * pcrel since the '.' is explicitly mentioned, and I wonder
4275 * whether it would simplify matters to do it this way. Who
4276 * knows. In earlier versions of the PIC patches, the
4277 * pcrel_adjust field was used to store the correction, but
4278 * since the expression is not pcrel, I felt it would be
4279 * confusing to do it this way. */
4280
4281 if ((reloc_type == BFD_RELOC_32
4282 || reloc_type == BFD_RELOC_X86_64_32S
4283 || reloc_type == BFD_RELOC_64)
4284 && GOT_symbol
4285 && GOT_symbol == i.op[n].imms->X_add_symbol
4286 && (i.op[n].imms->X_op == O_symbol
4287 || (i.op[n].imms->X_op == O_add
4288 && ((symbol_get_value_expression
4289 (i.op[n].imms->X_op_symbol)->X_op)
4290 == O_subtract))))
4291 {
4292 offsetT add;
4293
4294 if (insn_start_frag == frag_now)
4295 add = (p - frag_now->fr_literal) - insn_start_off;
4296 else
4297 {
4298 fragS *fr;
4299
4300 add = insn_start_frag->fr_fix - insn_start_off;
4301 for (fr = insn_start_frag->fr_next;
4302 fr && fr != frag_now; fr = fr->fr_next)
4303 add += fr->fr_fix;
4304 add += p - frag_now->fr_literal;
4305 }
4306
4307 if (!object_64bit)
4308 reloc_type = BFD_RELOC_386_GOTPC;
4309 else if (size == 4)
4310 reloc_type = BFD_RELOC_X86_64_GOTPC32;
4311 else if (size == 8)
4312 reloc_type = BFD_RELOC_X86_64_GOTPC64;
4313 i.op[n].imms->X_add_number += add;
4314 }
4315 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
4316 i.op[n].imms, 0, reloc_type);
4317 }
4318 }
4319 }
4320 }
4321 \f
4322 /* x86_cons_fix_new is called via the expression parsing code when a
4323 reloc is needed. We use this hook to get the correct .got reloc. */
4324 static enum bfd_reloc_code_real got_reloc = NO_RELOC;
4325 static int cons_sign = -1;
4326
4327 void
4328 x86_cons_fix_new (fragS *frag, unsigned int off, unsigned int len,
4329 expressionS *exp)
4330 {
4331 enum bfd_reloc_code_real r = reloc (len, 0, cons_sign, got_reloc);
4332
4333 got_reloc = NO_RELOC;
4334
4335 #ifdef TE_PE
4336 if (exp->X_op == O_secrel)
4337 {
4338 exp->X_op = O_symbol;
4339 r = BFD_RELOC_32_SECREL;
4340 }
4341 #endif
4342
4343 fix_new_exp (frag, off, len, exp, 0, r);
4344 }
4345
4346 #if (!defined (OBJ_ELF) && !defined (OBJ_MAYBE_ELF)) || defined (LEX_AT)
4347 # define lex_got(reloc, adjust, types) NULL
4348 #else
4349 /* Parse operands of the form
4350 <symbol>@GOTOFF+<nnn>
4351 and similar .plt or .got references.
4352
4353 If we find one, set up the correct relocation in RELOC and copy the
4354 input string, minus the `@GOTOFF' into a malloc'd buffer for
4355 parsing by the calling routine. Return this buffer, and if ADJUST
4356 is non-null set it to the length of the string we removed from the
4357 input line. Otherwise return NULL. */
4358 static char *
4359 lex_got (enum bfd_reloc_code_real *reloc,
4360 int *adjust,
4361 unsigned int *types)
4362 {
4363 /* Some of the relocations depend on the size of what field is to
4364 be relocated. But in our callers i386_immediate and i386_displacement
4365 we don't yet know the operand size (this will be set by insn
4366 matching). Hence we record the word32 relocation here,
4367 and adjust the reloc according to the real size in reloc(). */
4368 static const struct {
4369 const char *str;
4370 const enum bfd_reloc_code_real rel[2];
4371 const unsigned int types64;
4372 } gotrel[] = {
4373 { "PLTOFF", { 0,
4374 BFD_RELOC_X86_64_PLTOFF64 },
4375 Imm64 },
4376 { "PLT", { BFD_RELOC_386_PLT32,
4377 BFD_RELOC_X86_64_PLT32 },
4378 Imm32 | Imm32S | Disp32 },
4379 { "GOTPLT", { 0,
4380 BFD_RELOC_X86_64_GOTPLT64 },
4381 Imm64 | Disp64 },
4382 { "GOTOFF", { BFD_RELOC_386_GOTOFF,
4383 BFD_RELOC_X86_64_GOTOFF64 },
4384 Imm64 | Disp64 },
4385 { "GOTPCREL", { 0,
4386 BFD_RELOC_X86_64_GOTPCREL },
4387 Imm32 | Imm32S | Disp32 },
4388 { "TLSGD", { BFD_RELOC_386_TLS_GD,
4389 BFD_RELOC_X86_64_TLSGD },
4390 Imm32 | Imm32S | Disp32 },
4391 { "TLSLDM", { BFD_RELOC_386_TLS_LDM,
4392 0 },
4393 0 },
4394 { "TLSLD", { 0,
4395 BFD_RELOC_X86_64_TLSLD },
4396 Imm32 | Imm32S | Disp32 },
4397 { "GOTTPOFF", { BFD_RELOC_386_TLS_IE_32,
4398 BFD_RELOC_X86_64_GOTTPOFF },
4399 Imm32 | Imm32S | Disp32 },
4400 { "TPOFF", { BFD_RELOC_386_TLS_LE_32,
4401 BFD_RELOC_X86_64_TPOFF32 },
4402 Imm32 | Imm32S | Imm64 | Disp32 | Disp64 },
4403 { "NTPOFF", { BFD_RELOC_386_TLS_LE,
4404 0 },
4405 0 },
4406 { "DTPOFF", { BFD_RELOC_386_TLS_LDO_32,
4407 BFD_RELOC_X86_64_DTPOFF32 },
4408 Imm32 | Imm32S | Imm64 | Disp32 | Disp64 },
4409 { "GOTNTPOFF",{ BFD_RELOC_386_TLS_GOTIE,
4410 0 },
4411 0 },
4412 { "INDNTPOFF",{ BFD_RELOC_386_TLS_IE,
4413 0 },
4414 0 },
4415 { "GOT", { BFD_RELOC_386_GOT32,
4416 BFD_RELOC_X86_64_GOT32 },
4417 Imm32 | Imm32S | Disp32 | Imm64 },
4418 { "TLSDESC", { BFD_RELOC_386_TLS_GOTDESC,
4419 BFD_RELOC_X86_64_GOTPC32_TLSDESC },
4420 Imm32 | Imm32S | Disp32 },
4421 { "TLSCALL", { BFD_RELOC_386_TLS_DESC_CALL,
4422 BFD_RELOC_X86_64_TLSDESC_CALL },
4423 Imm32 | Imm32S | Disp32 }
4424 };
4425 char *cp;
4426 unsigned int j;
4427
4428 if (!IS_ELF)
4429 return NULL;
4430
4431 for (cp = input_line_pointer; *cp != '@'; cp++)
4432 if (is_end_of_line[(unsigned char) *cp])
4433 return NULL;
4434
4435 for (j = 0; j < sizeof (gotrel) / sizeof (gotrel[0]); j++)
4436 {
4437 int len;
4438
4439 len = strlen (gotrel[j].str);
4440 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
4441 {
4442 if (gotrel[j].rel[object_64bit] != 0)
4443 {
4444 int first, second;
4445 char *tmpbuf, *past_reloc;
4446
4447 *reloc = gotrel[j].rel[object_64bit];
4448 if (adjust)
4449 *adjust = len;
4450
4451 if (types)
4452 {
4453 if (flag_code != CODE_64BIT)
4454 *types = Imm32 | Disp32;
4455 else
4456 *types = gotrel[j].types64;
4457 }
4458
4459 if (GOT_symbol == NULL)
4460 GOT_symbol = symbol_find_or_make (GLOBAL_OFFSET_TABLE_NAME);
4461
4462 /* Replace the relocation token with ' ', so that
4463 errors like foo@GOTOFF1 will be detected. */
4464
4465 /* The length of the first part of our input line. */
4466 first = cp - input_line_pointer;
4467
4468 /* The second part goes from after the reloc token until
4469 (and including) an end_of_line char. Don't use strlen
4470 here as the end_of_line char may not be a NUL. */
4471 past_reloc = cp + 1 + len;
4472 for (cp = past_reloc; !is_end_of_line[(unsigned char) *cp++]; )
4473 ;
4474 second = cp - past_reloc;
4475
4476 /* Allocate and copy string. The trailing NUL shouldn't
4477 be necessary, but be safe. */
4478 tmpbuf = xmalloc (first + second + 2);
4479 memcpy (tmpbuf, input_line_pointer, first);
4480 tmpbuf[first] = ' ';
4481 memcpy (tmpbuf + first + 1, past_reloc, second);
4482 tmpbuf[first + second + 1] = '\0';
4483 return tmpbuf;
4484 }
4485
4486 as_bad (_("@%s reloc is not supported with %d-bit output format"),
4487 gotrel[j].str, 1 << (5 + object_64bit));
4488 return NULL;
4489 }
4490 }
4491
4492 /* Might be a symbol version string. Don't as_bad here. */
4493 return NULL;
4494 }
4495
4496 void
4497 x86_cons (expressionS *exp, int size)
4498 {
4499 if (size == 4 || (object_64bit && size == 8))
4500 {
4501 /* Handle @GOTOFF and the like in an expression. */
4502 char *save;
4503 char *gotfree_input_line;
4504 int adjust;
4505
4506 save = input_line_pointer;
4507 gotfree_input_line = lex_got (&got_reloc, &adjust, NULL);
4508 if (gotfree_input_line)
4509 input_line_pointer = gotfree_input_line;
4510
4511 expression (exp);
4512
4513 if (gotfree_input_line)
4514 {
4515 /* expression () has merrily parsed up to the end of line,
4516 or a comma - in the wrong buffer. Transfer how far
4517 input_line_pointer has moved to the right buffer. */
4518 input_line_pointer = (save
4519 + (input_line_pointer - gotfree_input_line)
4520 + adjust);
4521 free (gotfree_input_line);
4522 }
4523 }
4524 else
4525 expression (exp);
4526 }
4527 #endif
4528
4529 static void signed_cons (int size)
4530 {
4531 if (flag_code == CODE_64BIT)
4532 cons_sign = 1;
4533 cons (size);
4534 cons_sign = -1;
4535 }
4536
4537 #ifdef TE_PE
4538 static void
4539 pe_directive_secrel (dummy)
4540 int dummy ATTRIBUTE_UNUSED;
4541 {
4542 expressionS exp;
4543
4544 do
4545 {
4546 expression (&exp);
4547 if (exp.X_op == O_symbol)
4548 exp.X_op = O_secrel;
4549
4550 emit_expr (&exp, 4);
4551 }
4552 while (*input_line_pointer++ == ',');
4553
4554 input_line_pointer--;
4555 demand_empty_rest_of_line ();
4556 }
4557 #endif
4558
4559 static int
4560 i386_immediate (char *imm_start)
4561 {
4562 char *save_input_line_pointer;
4563 char *gotfree_input_line;
4564 segT exp_seg = 0;
4565 expressionS *exp;
4566 unsigned int types = ~0U;
4567
4568 if (i.imm_operands == MAX_IMMEDIATE_OPERANDS)
4569 {
4570 as_bad (_("at most %d immediate operands are allowed"),
4571 MAX_IMMEDIATE_OPERANDS);
4572 return 0;
4573 }
4574
4575 exp = &im_expressions[i.imm_operands++];
4576 i.op[this_operand].imms = exp;
4577
4578 if (is_space_char (*imm_start))
4579 ++imm_start;
4580
4581 save_input_line_pointer = input_line_pointer;
4582 input_line_pointer = imm_start;
4583
4584 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
4585 if (gotfree_input_line)
4586 input_line_pointer = gotfree_input_line;
4587
4588 exp_seg = expression (exp);
4589
4590 SKIP_WHITESPACE ();
4591 if (*input_line_pointer)
4592 as_bad (_("junk `%s' after expression"), input_line_pointer);
4593
4594 input_line_pointer = save_input_line_pointer;
4595 if (gotfree_input_line)
4596 free (gotfree_input_line);
4597
4598 if (exp->X_op == O_absent || exp->X_op == O_big)
4599 {
4600 /* Missing or bad expr becomes absolute 0. */
4601 as_bad (_("missing or invalid immediate expression `%s' taken as 0"),
4602 imm_start);
4603 exp->X_op = O_constant;
4604 exp->X_add_number = 0;
4605 exp->X_add_symbol = (symbolS *) 0;
4606 exp->X_op_symbol = (symbolS *) 0;
4607 }
4608 else if (exp->X_op == O_constant)
4609 {
4610 /* Size it properly later. */
4611 i.types[this_operand] |= Imm64;
4612 /* If BFD64, sign extend val. */
4613 if (!use_rela_relocations
4614 && (exp->X_add_number & ~(((addressT) 2 << 31) - 1)) == 0)
4615 exp->X_add_number
4616 = (exp->X_add_number ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
4617 }
4618 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
4619 else if (OUTPUT_FLAVOR == bfd_target_aout_flavour
4620 && exp_seg != absolute_section
4621 && exp_seg != text_section
4622 && exp_seg != data_section
4623 && exp_seg != bss_section
4624 && exp_seg != undefined_section
4625 && !bfd_is_com_section (exp_seg))
4626 {
4627 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
4628 return 0;
4629 }
4630 #endif
4631 else if (!intel_syntax && exp->X_op == O_register)
4632 {
4633 as_bad (_("illegal immediate register operand %s"), imm_start);
4634 return 0;
4635 }
4636 else
4637 {
4638 /* This is an address. The size of the address will be
4639 determined later, depending on destination register,
4640 suffix, or the default for the section. */
4641 i.types[this_operand] |= Imm8 | Imm16 | Imm32 | Imm32S | Imm64;
4642 i.types[this_operand] &= types;
4643 }
4644
4645 return 1;
4646 }
4647
4648 static char *
4649 i386_scale (char *scale)
4650 {
4651 offsetT val;
4652 char *save = input_line_pointer;
4653
4654 input_line_pointer = scale;
4655 val = get_absolute_expression ();
4656
4657 switch (val)
4658 {
4659 case 1:
4660 i.log2_scale_factor = 0;
4661 break;
4662 case 2:
4663 i.log2_scale_factor = 1;
4664 break;
4665 case 4:
4666 i.log2_scale_factor = 2;
4667 break;
4668 case 8:
4669 i.log2_scale_factor = 3;
4670 break;
4671 default:
4672 {
4673 char sep = *input_line_pointer;
4674
4675 *input_line_pointer = '\0';
4676 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
4677 scale);
4678 *input_line_pointer = sep;
4679 input_line_pointer = save;
4680 return NULL;
4681 }
4682 }
4683 if (i.log2_scale_factor != 0 && i.index_reg == 0)
4684 {
4685 as_warn (_("scale factor of %d without an index register"),
4686 1 << i.log2_scale_factor);
4687 #if SCALE1_WHEN_NO_INDEX
4688 i.log2_scale_factor = 0;
4689 #endif
4690 }
4691 scale = input_line_pointer;
4692 input_line_pointer = save;
4693 return scale;
4694 }
4695
4696 static int
4697 i386_displacement (char *disp_start, char *disp_end)
4698 {
4699 expressionS *exp;
4700 segT exp_seg = 0;
4701 char *save_input_line_pointer;
4702 char *gotfree_input_line;
4703 int bigdisp, override;
4704 unsigned int types = Disp;
4705
4706 if (i.disp_operands == MAX_MEMORY_OPERANDS)
4707 {
4708 as_bad (_("at most %d displacement operands are allowed"),
4709 MAX_MEMORY_OPERANDS);
4710 return 0;
4711 }
4712
4713 if ((i.types[this_operand] & JumpAbsolute)
4714 || !(current_templates->start->opcode_modifier & (Jump | JumpDword)))
4715 {
4716 bigdisp = Disp32;
4717 override = (i.prefix[ADDR_PREFIX] != 0);
4718 }
4719 else
4720 {
4721 /* For PC-relative branches, the width of the displacement
4722 is dependent upon data size, not address size. */
4723 bigdisp = 0;
4724 override = (i.prefix[DATA_PREFIX] != 0);
4725 }
4726 if (flag_code == CODE_64BIT)
4727 {
4728 if (!bigdisp)
4729 bigdisp = ((override || i.suffix == WORD_MNEM_SUFFIX)
4730 ? Disp16
4731 : Disp32S | Disp32);
4732 else if (!override)
4733 bigdisp = Disp64 | Disp32S | Disp32;
4734 }
4735 else
4736 {
4737 if (!bigdisp)
4738 {
4739 if (!override)
4740 override = (i.suffix == (flag_code != CODE_16BIT
4741 ? WORD_MNEM_SUFFIX
4742 : LONG_MNEM_SUFFIX));
4743 bigdisp = Disp32;
4744 }
4745 if ((flag_code == CODE_16BIT) ^ override)
4746 bigdisp = Disp16;
4747 }
4748 i.types[this_operand] |= bigdisp;
4749
4750 exp = &disp_expressions[i.disp_operands];
4751 i.op[this_operand].disps = exp;
4752 i.disp_operands++;
4753 save_input_line_pointer = input_line_pointer;
4754 input_line_pointer = disp_start;
4755 END_STRING_AND_SAVE (disp_end);
4756
4757 #ifndef GCC_ASM_O_HACK
4758 #define GCC_ASM_O_HACK 0
4759 #endif
4760 #if GCC_ASM_O_HACK
4761 END_STRING_AND_SAVE (disp_end + 1);
4762 if ((i.types[this_operand] & BaseIndex) != 0
4763 && displacement_string_end[-1] == '+')
4764 {
4765 /* This hack is to avoid a warning when using the "o"
4766 constraint within gcc asm statements.
4767 For instance:
4768
4769 #define _set_tssldt_desc(n,addr,limit,type) \
4770 __asm__ __volatile__ ( \
4771 "movw %w2,%0\n\t" \
4772 "movw %w1,2+%0\n\t" \
4773 "rorl $16,%1\n\t" \
4774 "movb %b1,4+%0\n\t" \
4775 "movb %4,5+%0\n\t" \
4776 "movb $0,6+%0\n\t" \
4777 "movb %h1,7+%0\n\t" \
4778 "rorl $16,%1" \
4779 : "=o"(*(n)) : "q" (addr), "ri"(limit), "i"(type))
4780
4781 This works great except that the output assembler ends
4782 up looking a bit weird if it turns out that there is
4783 no offset. You end up producing code that looks like:
4784
4785 #APP
4786 movw $235,(%eax)
4787 movw %dx,2+(%eax)
4788 rorl $16,%edx
4789 movb %dl,4+(%eax)
4790 movb $137,5+(%eax)
4791 movb $0,6+(%eax)
4792 movb %dh,7+(%eax)
4793 rorl $16,%edx
4794 #NO_APP
4795
4796 So here we provide the missing zero. */
4797
4798 *displacement_string_end = '0';
4799 }
4800 #endif
4801 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
4802 if (gotfree_input_line)
4803 input_line_pointer = gotfree_input_line;
4804
4805 exp_seg = expression (exp);
4806
4807 SKIP_WHITESPACE ();
4808 if (*input_line_pointer)
4809 as_bad (_("junk `%s' after expression"), input_line_pointer);
4810 #if GCC_ASM_O_HACK
4811 RESTORE_END_STRING (disp_end + 1);
4812 #endif
4813 RESTORE_END_STRING (disp_end);
4814 input_line_pointer = save_input_line_pointer;
4815 if (gotfree_input_line)
4816 free (gotfree_input_line);
4817
4818 /* We do this to make sure that the section symbol is in
4819 the symbol table. We will ultimately change the relocation
4820 to be relative to the beginning of the section. */
4821 if (i.reloc[this_operand] == BFD_RELOC_386_GOTOFF
4822 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL
4823 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
4824 {
4825 if (exp->X_op != O_symbol)
4826 {
4827 as_bad (_("bad expression used with @%s"),
4828 (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL
4829 ? "GOTPCREL"
4830 : "GOTOFF"));
4831 return 0;
4832 }
4833
4834 if (S_IS_LOCAL (exp->X_add_symbol)
4835 && S_GET_SEGMENT (exp->X_add_symbol) != undefined_section)
4836 section_symbol (S_GET_SEGMENT (exp->X_add_symbol));
4837 exp->X_op = O_subtract;
4838 exp->X_op_symbol = GOT_symbol;
4839 if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
4840 i.reloc[this_operand] = BFD_RELOC_32_PCREL;
4841 else if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
4842 i.reloc[this_operand] = BFD_RELOC_64;
4843 else
4844 i.reloc[this_operand] = BFD_RELOC_32;
4845 }
4846
4847 if (exp->X_op == O_absent || exp->X_op == O_big)
4848 {
4849 /* Missing or bad expr becomes absolute 0. */
4850 as_bad (_("missing or invalid displacement expression `%s' taken as 0"),
4851 disp_start);
4852 exp->X_op = O_constant;
4853 exp->X_add_number = 0;
4854 exp->X_add_symbol = (symbolS *) 0;
4855 exp->X_op_symbol = (symbolS *) 0;
4856 }
4857
4858 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
4859 if (exp->X_op != O_constant
4860 && OUTPUT_FLAVOR == bfd_target_aout_flavour
4861 && exp_seg != absolute_section
4862 && exp_seg != text_section
4863 && exp_seg != data_section
4864 && exp_seg != bss_section
4865 && exp_seg != undefined_section
4866 && !bfd_is_com_section (exp_seg))
4867 {
4868 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
4869 return 0;
4870 }
4871 #endif
4872
4873 if (!(i.types[this_operand] & ~Disp))
4874 i.types[this_operand] &= types;
4875
4876 return 1;
4877 }
4878
4879 /* Make sure the memory operand we've been dealt is valid.
4880 Return 1 on success, 0 on a failure. */
4881
4882 static int
4883 i386_index_check (const char *operand_string)
4884 {
4885 int ok;
4886 #if INFER_ADDR_PREFIX
4887 int fudged = 0;
4888
4889 tryprefix:
4890 #endif
4891 ok = 1;
4892 if ((current_templates->start->cpu_flags & CpuSVME)
4893 && current_templates->end[-1].operand_types[0] == AnyMem)
4894 {
4895 /* Memory operands of SVME insns are special in that they only allow
4896 rAX as their memory address and ignore any segment override. */
4897 unsigned RegXX;
4898
4899 /* SKINIT is even more restrictive: it always requires EAX. */
4900 if (strcmp (current_templates->start->name, "skinit") == 0)
4901 RegXX = Reg32;
4902 else if (flag_code == CODE_64BIT)
4903 RegXX = i.prefix[ADDR_PREFIX] == 0 ? Reg64 : Reg32;
4904 else
4905 RegXX = ((flag_code == CODE_16BIT) ^ (i.prefix[ADDR_PREFIX] != 0)
4906 ? Reg16
4907 : Reg32);
4908 if (!i.base_reg
4909 || !(i.base_reg->reg_type & Acc)
4910 || !(i.base_reg->reg_type & RegXX)
4911 || i.index_reg
4912 || (i.types[0] & Disp))
4913 ok = 0;
4914 }
4915 else if (flag_code == CODE_64BIT)
4916 {
4917 unsigned RegXX = (i.prefix[ADDR_PREFIX] == 0 ? Reg64 : Reg32);
4918
4919 if ((i.base_reg
4920 && ((i.base_reg->reg_type & RegXX) == 0)
4921 && (i.base_reg->reg_type != BaseIndex
4922 || i.index_reg))
4923 || (i.index_reg
4924 && ((i.index_reg->reg_type & (RegXX | BaseIndex))
4925 != (RegXX | BaseIndex))))
4926 ok = 0;
4927 }
4928 else
4929 {
4930 if ((flag_code == CODE_16BIT) ^ (i.prefix[ADDR_PREFIX] != 0))
4931 {
4932 /* 16bit checks. */
4933 if ((i.base_reg
4934 && ((i.base_reg->reg_type & (Reg16 | BaseIndex | RegRex))
4935 != (Reg16 | BaseIndex)))
4936 || (i.index_reg
4937 && (((i.index_reg->reg_type & (Reg16 | BaseIndex))
4938 != (Reg16 | BaseIndex))
4939 || !(i.base_reg
4940 && i.base_reg->reg_num < 6
4941 && i.index_reg->reg_num >= 6
4942 && i.log2_scale_factor == 0))))
4943 ok = 0;
4944 }
4945 else
4946 {
4947 /* 32bit checks. */
4948 if ((i.base_reg
4949 && (i.base_reg->reg_type & (Reg32 | RegRex)) != Reg32)
4950 || (i.index_reg
4951 && ((i.index_reg->reg_type & (Reg32 | BaseIndex | RegRex))
4952 != (Reg32 | BaseIndex))))
4953 ok = 0;
4954 }
4955 }
4956 if (!ok)
4957 {
4958 #if INFER_ADDR_PREFIX
4959 if (i.prefix[ADDR_PREFIX] == 0)
4960 {
4961 i.prefix[ADDR_PREFIX] = ADDR_PREFIX_OPCODE;
4962 i.prefixes += 1;
4963 /* Change the size of any displacement too. At most one of
4964 Disp16 or Disp32 is set.
4965 FIXME. There doesn't seem to be any real need for separate
4966 Disp16 and Disp32 flags. The same goes for Imm16 and Imm32.
4967 Removing them would probably clean up the code quite a lot. */
4968 if (flag_code != CODE_64BIT
4969 && (i.types[this_operand] & (Disp16 | Disp32)))
4970 i.types[this_operand] ^= (Disp16 | Disp32);
4971 fudged = 1;
4972 goto tryprefix;
4973 }
4974 if (fudged)
4975 as_bad (_("`%s' is not a valid base/index expression"),
4976 operand_string);
4977 else
4978 #endif
4979 as_bad (_("`%s' is not a valid %s bit base/index expression"),
4980 operand_string,
4981 flag_code_names[flag_code]);
4982 }
4983 return ok;
4984 }
4985
4986 /* Parse OPERAND_STRING into the i386_insn structure I. Returns non-zero
4987 on error. */
4988
4989 static int
4990 i386_operand (char *operand_string)
4991 {
4992 const reg_entry *r;
4993 char *end_op;
4994 char *op_string = operand_string;
4995
4996 if (is_space_char (*op_string))
4997 ++op_string;
4998
4999 /* We check for an absolute prefix (differentiating,
5000 for example, 'jmp pc_relative_label' from 'jmp *absolute_label'. */
5001 if (*op_string == ABSOLUTE_PREFIX)
5002 {
5003 ++op_string;
5004 if (is_space_char (*op_string))
5005 ++op_string;
5006 i.types[this_operand] |= JumpAbsolute;
5007 }
5008
5009 /* Check if operand is a register. */
5010 if ((r = parse_register (op_string, &end_op)) != NULL)
5011 {
5012 /* Check for a segment override by searching for ':' after a
5013 segment register. */
5014 op_string = end_op;
5015 if (is_space_char (*op_string))
5016 ++op_string;
5017 if (*op_string == ':' && (r->reg_type & (SReg2 | SReg3)))
5018 {
5019 switch (r->reg_num)
5020 {
5021 case 0:
5022 i.seg[i.mem_operands] = &es;
5023 break;
5024 case 1:
5025 i.seg[i.mem_operands] = &cs;
5026 break;
5027 case 2:
5028 i.seg[i.mem_operands] = &ss;
5029 break;
5030 case 3:
5031 i.seg[i.mem_operands] = &ds;
5032 break;
5033 case 4:
5034 i.seg[i.mem_operands] = &fs;
5035 break;
5036 case 5:
5037 i.seg[i.mem_operands] = &gs;
5038 break;
5039 }
5040
5041 /* Skip the ':' and whitespace. */
5042 ++op_string;
5043 if (is_space_char (*op_string))
5044 ++op_string;
5045
5046 if (!is_digit_char (*op_string)
5047 && !is_identifier_char (*op_string)
5048 && *op_string != '('
5049 && *op_string != ABSOLUTE_PREFIX)
5050 {
5051 as_bad (_("bad memory operand `%s'"), op_string);
5052 return 0;
5053 }
5054 /* Handle case of %es:*foo. */
5055 if (*op_string == ABSOLUTE_PREFIX)
5056 {
5057 ++op_string;
5058 if (is_space_char (*op_string))
5059 ++op_string;
5060 i.types[this_operand] |= JumpAbsolute;
5061 }
5062 goto do_memory_reference;
5063 }
5064 if (*op_string)
5065 {
5066 as_bad (_("junk `%s' after register"), op_string);
5067 return 0;
5068 }
5069 i.types[this_operand] |= r->reg_type & ~BaseIndex;
5070 i.op[this_operand].regs = r;
5071 i.reg_operands++;
5072 }
5073 else if (*op_string == REGISTER_PREFIX)
5074 {
5075 as_bad (_("bad register name `%s'"), op_string);
5076 return 0;
5077 }
5078 else if (*op_string == IMMEDIATE_PREFIX)
5079 {
5080 ++op_string;
5081 if (i.types[this_operand] & JumpAbsolute)
5082 {
5083 as_bad (_("immediate operand illegal with absolute jump"));
5084 return 0;
5085 }
5086 if (!i386_immediate (op_string))
5087 return 0;
5088 }
5089 else if (is_digit_char (*op_string)
5090 || is_identifier_char (*op_string)
5091 || *op_string == '(')
5092 {
5093 /* This is a memory reference of some sort. */
5094 char *base_string;
5095
5096 /* Start and end of displacement string expression (if found). */
5097 char *displacement_string_start;
5098 char *displacement_string_end;
5099
5100 do_memory_reference:
5101 if ((i.mem_operands == 1
5102 && (current_templates->start->opcode_modifier & IsString) == 0)
5103 || i.mem_operands == 2)
5104 {
5105 as_bad (_("too many memory references for `%s'"),
5106 current_templates->start->name);
5107 return 0;
5108 }
5109
5110 /* Check for base index form. We detect the base index form by
5111 looking for an ')' at the end of the operand, searching
5112 for the '(' matching it, and finding a REGISTER_PREFIX or ','
5113 after the '('. */
5114 base_string = op_string + strlen (op_string);
5115
5116 --base_string;
5117 if (is_space_char (*base_string))
5118 --base_string;
5119
5120 /* If we only have a displacement, set-up for it to be parsed later. */
5121 displacement_string_start = op_string;
5122 displacement_string_end = base_string + 1;
5123
5124 if (*base_string == ')')
5125 {
5126 char *temp_string;
5127 unsigned int parens_balanced = 1;
5128 /* We've already checked that the number of left & right ()'s are
5129 equal, so this loop will not be infinite. */
5130 do
5131 {
5132 base_string--;
5133 if (*base_string == ')')
5134 parens_balanced++;
5135 if (*base_string == '(')
5136 parens_balanced--;
5137 }
5138 while (parens_balanced);
5139
5140 temp_string = base_string;
5141
5142 /* Skip past '(' and whitespace. */
5143 ++base_string;
5144 if (is_space_char (*base_string))
5145 ++base_string;
5146
5147 if (*base_string == ','
5148 || ((i.base_reg = parse_register (base_string, &end_op))
5149 != NULL))
5150 {
5151 displacement_string_end = temp_string;
5152
5153 i.types[this_operand] |= BaseIndex;
5154
5155 if (i.base_reg)
5156 {
5157 base_string = end_op;
5158 if (is_space_char (*base_string))
5159 ++base_string;
5160 }
5161
5162 /* There may be an index reg or scale factor here. */
5163 if (*base_string == ',')
5164 {
5165 ++base_string;
5166 if (is_space_char (*base_string))
5167 ++base_string;
5168
5169 if ((i.index_reg = parse_register (base_string, &end_op))
5170 != NULL)
5171 {
5172 base_string = end_op;
5173 if (is_space_char (*base_string))
5174 ++base_string;
5175 if (*base_string == ',')
5176 {
5177 ++base_string;
5178 if (is_space_char (*base_string))
5179 ++base_string;
5180 }
5181 else if (*base_string != ')')
5182 {
5183 as_bad (_("expecting `,' or `)' "
5184 "after index register in `%s'"),
5185 operand_string);
5186 return 0;
5187 }
5188 }
5189 else if (*base_string == REGISTER_PREFIX)
5190 {
5191 as_bad (_("bad register name `%s'"), base_string);
5192 return 0;
5193 }
5194
5195 /* Check for scale factor. */
5196 if (*base_string != ')')
5197 {
5198 char *end_scale = i386_scale (base_string);
5199
5200 if (!end_scale)
5201 return 0;
5202
5203 base_string = end_scale;
5204 if (is_space_char (*base_string))
5205 ++base_string;
5206 if (*base_string != ')')
5207 {
5208 as_bad (_("expecting `)' "
5209 "after scale factor in `%s'"),
5210 operand_string);
5211 return 0;
5212 }
5213 }
5214 else if (!i.index_reg)
5215 {
5216 as_bad (_("expecting index register or scale factor "
5217 "after `,'; got '%c'"),
5218 *base_string);
5219 return 0;
5220 }
5221 }
5222 else if (*base_string != ')')
5223 {
5224 as_bad (_("expecting `,' or `)' "
5225 "after base register in `%s'"),
5226 operand_string);
5227 return 0;
5228 }
5229 }
5230 else if (*base_string == REGISTER_PREFIX)
5231 {
5232 as_bad (_("bad register name `%s'"), base_string);
5233 return 0;
5234 }
5235 }
5236
5237 /* If there's an expression beginning the operand, parse it,
5238 assuming displacement_string_start and
5239 displacement_string_end are meaningful. */
5240 if (displacement_string_start != displacement_string_end)
5241 {
5242 if (!i386_displacement (displacement_string_start,
5243 displacement_string_end))
5244 return 0;
5245 }
5246
5247 /* Special case for (%dx) while doing input/output op. */
5248 if (i.base_reg
5249 && i.base_reg->reg_type == (Reg16 | InOutPortReg)
5250 && i.index_reg == 0
5251 && i.log2_scale_factor == 0
5252 && i.seg[i.mem_operands] == 0
5253 && (i.types[this_operand] & Disp) == 0)
5254 {
5255 i.types[this_operand] = InOutPortReg;
5256 return 1;
5257 }
5258
5259 if (i386_index_check (operand_string) == 0)
5260 return 0;
5261 i.mem_operands++;
5262 }
5263 else
5264 {
5265 /* It's not a memory operand; argh! */
5266 as_bad (_("invalid char %s beginning operand %d `%s'"),
5267 output_invalid (*op_string),
5268 this_operand + 1,
5269 op_string);
5270 return 0;
5271 }
5272 return 1; /* Normal return. */
5273 }
5274 \f
5275 /* md_estimate_size_before_relax()
5276
5277 Called just before relax() for rs_machine_dependent frags. The x86
5278 assembler uses these frags to handle variable size jump
5279 instructions.
5280
5281 Any symbol that is now undefined will not become defined.
5282 Return the correct fr_subtype in the frag.
5283 Return the initial "guess for variable size of frag" to caller.
5284 The guess is actually the growth beyond the fixed part. Whatever
5285 we do to grow the fixed or variable part contributes to our
5286 returned value. */
5287
5288 int
5289 md_estimate_size_before_relax (fragP, segment)
5290 fragS *fragP;
5291 segT segment;
5292 {
5293 /* We've already got fragP->fr_subtype right; all we have to do is
5294 check for un-relaxable symbols. On an ELF system, we can't relax
5295 an externally visible symbol, because it may be overridden by a
5296 shared library. */
5297 if (S_GET_SEGMENT (fragP->fr_symbol) != segment
5298 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
5299 || (IS_ELF
5300 && (S_IS_EXTERNAL (fragP->fr_symbol)
5301 || S_IS_WEAK (fragP->fr_symbol)))
5302 #endif
5303 )
5304 {
5305 /* Symbol is undefined in this segment, or we need to keep a
5306 reloc so that weak symbols can be overridden. */
5307 int size = (fragP->fr_subtype & CODE16) ? 2 : 4;
5308 enum bfd_reloc_code_real reloc_type;
5309 unsigned char *opcode;
5310 int old_fr_fix;
5311
5312 if (fragP->fr_var != NO_RELOC)
5313 reloc_type = fragP->fr_var;
5314 else if (size == 2)
5315 reloc_type = BFD_RELOC_16_PCREL;
5316 else
5317 reloc_type = BFD_RELOC_32_PCREL;
5318
5319 old_fr_fix = fragP->fr_fix;
5320 opcode = (unsigned char *) fragP->fr_opcode;
5321
5322 switch (TYPE_FROM_RELAX_STATE (fragP->fr_subtype))
5323 {
5324 case UNCOND_JUMP:
5325 /* Make jmp (0xeb) a (d)word displacement jump. */
5326 opcode[0] = 0xe9;
5327 fragP->fr_fix += size;
5328 fix_new (fragP, old_fr_fix, size,
5329 fragP->fr_symbol,
5330 fragP->fr_offset, 1,
5331 reloc_type);
5332 break;
5333
5334 case COND_JUMP86:
5335 if (size == 2
5336 && (!no_cond_jump_promotion || fragP->fr_var != NO_RELOC))
5337 {
5338 /* Negate the condition, and branch past an
5339 unconditional jump. */
5340 opcode[0] ^= 1;
5341 opcode[1] = 3;
5342 /* Insert an unconditional jump. */
5343 opcode[2] = 0xe9;
5344 /* We added two extra opcode bytes, and have a two byte
5345 offset. */
5346 fragP->fr_fix += 2 + 2;
5347 fix_new (fragP, old_fr_fix + 2, 2,
5348 fragP->fr_symbol,
5349 fragP->fr_offset, 1,
5350 reloc_type);
5351 break;
5352 }
5353 /* Fall through. */
5354
5355 case COND_JUMP:
5356 if (no_cond_jump_promotion && fragP->fr_var == NO_RELOC)
5357 {
5358 fixS *fixP;
5359
5360 fragP->fr_fix += 1;
5361 fixP = fix_new (fragP, old_fr_fix, 1,
5362 fragP->fr_symbol,
5363 fragP->fr_offset, 1,
5364 BFD_RELOC_8_PCREL);
5365 fixP->fx_signed = 1;
5366 break;
5367 }
5368
5369 /* This changes the byte-displacement jump 0x7N
5370 to the (d)word-displacement jump 0x0f,0x8N. */
5371 opcode[1] = opcode[0] + 0x10;
5372 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
5373 /* We've added an opcode byte. */
5374 fragP->fr_fix += 1 + size;
5375 fix_new (fragP, old_fr_fix + 1, size,
5376 fragP->fr_symbol,
5377 fragP->fr_offset, 1,
5378 reloc_type);
5379 break;
5380
5381 default:
5382 BAD_CASE (fragP->fr_subtype);
5383 break;
5384 }
5385 frag_wane (fragP);
5386 return fragP->fr_fix - old_fr_fix;
5387 }
5388
5389 /* Guess size depending on current relax state. Initially the relax
5390 state will correspond to a short jump and we return 1, because
5391 the variable part of the frag (the branch offset) is one byte
5392 long. However, we can relax a section more than once and in that
5393 case we must either set fr_subtype back to the unrelaxed state,
5394 or return the value for the appropriate branch. */
5395 return md_relax_table[fragP->fr_subtype].rlx_length;
5396 }
5397
5398 /* Called after relax() is finished.
5399
5400 In: Address of frag.
5401 fr_type == rs_machine_dependent.
5402 fr_subtype is what the address relaxed to.
5403
5404 Out: Any fixSs and constants are set up.
5405 Caller will turn frag into a ".space 0". */
5406
5407 void
5408 md_convert_frag (abfd, sec, fragP)
5409 bfd *abfd ATTRIBUTE_UNUSED;
5410 segT sec ATTRIBUTE_UNUSED;
5411 fragS *fragP;
5412 {
5413 unsigned char *opcode;
5414 unsigned char *where_to_put_displacement = NULL;
5415 offsetT target_address;
5416 offsetT opcode_address;
5417 unsigned int extension = 0;
5418 offsetT displacement_from_opcode_start;
5419
5420 opcode = (unsigned char *) fragP->fr_opcode;
5421
5422 /* Address we want to reach in file space. */
5423 target_address = S_GET_VALUE (fragP->fr_symbol) + fragP->fr_offset;
5424
5425 /* Address opcode resides at in file space. */
5426 opcode_address = fragP->fr_address + fragP->fr_fix;
5427
5428 /* Displacement from opcode start to fill into instruction. */
5429 displacement_from_opcode_start = target_address - opcode_address;
5430
5431 if ((fragP->fr_subtype & BIG) == 0)
5432 {
5433 /* Don't have to change opcode. */
5434 extension = 1; /* 1 opcode + 1 displacement */
5435 where_to_put_displacement = &opcode[1];
5436 }
5437 else
5438 {
5439 if (no_cond_jump_promotion
5440 && TYPE_FROM_RELAX_STATE (fragP->fr_subtype) != UNCOND_JUMP)
5441 as_warn_where (fragP->fr_file, fragP->fr_line,
5442 _("long jump required"));
5443
5444 switch (fragP->fr_subtype)
5445 {
5446 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG):
5447 extension = 4; /* 1 opcode + 4 displacement */
5448 opcode[0] = 0xe9;
5449 where_to_put_displacement = &opcode[1];
5450 break;
5451
5452 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16):
5453 extension = 2; /* 1 opcode + 2 displacement */
5454 opcode[0] = 0xe9;
5455 where_to_put_displacement = &opcode[1];
5456 break;
5457
5458 case ENCODE_RELAX_STATE (COND_JUMP, BIG):
5459 case ENCODE_RELAX_STATE (COND_JUMP86, BIG):
5460 extension = 5; /* 2 opcode + 4 displacement */
5461 opcode[1] = opcode[0] + 0x10;
5462 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
5463 where_to_put_displacement = &opcode[2];
5464 break;
5465
5466 case ENCODE_RELAX_STATE (COND_JUMP, BIG16):
5467 extension = 3; /* 2 opcode + 2 displacement */
5468 opcode[1] = opcode[0] + 0x10;
5469 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
5470 where_to_put_displacement = &opcode[2];
5471 break;
5472
5473 case ENCODE_RELAX_STATE (COND_JUMP86, BIG16):
5474 extension = 4;
5475 opcode[0] ^= 1;
5476 opcode[1] = 3;
5477 opcode[2] = 0xe9;
5478 where_to_put_displacement = &opcode[3];
5479 break;
5480
5481 default:
5482 BAD_CASE (fragP->fr_subtype);
5483 break;
5484 }
5485 }
5486
5487 /* If size if less then four we are sure that the operand fits,
5488 but if it's 4, then it could be that the displacement is larger
5489 then -/+ 2GB. */
5490 if (DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype) == 4
5491 && object_64bit
5492 && ((addressT) (displacement_from_opcode_start - extension
5493 + ((addressT) 1 << 31))
5494 > (((addressT) 2 << 31) - 1)))
5495 {
5496 as_bad_where (fragP->fr_file, fragP->fr_line,
5497 _("jump target out of range"));
5498 /* Make us emit 0. */
5499 displacement_from_opcode_start = extension;
5500 }
5501 /* Now put displacement after opcode. */
5502 md_number_to_chars ((char *) where_to_put_displacement,
5503 (valueT) (displacement_from_opcode_start - extension),
5504 DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype));
5505 fragP->fr_fix += extension;
5506 }
5507 \f
5508 /* Size of byte displacement jmp. */
5509 int md_short_jump_size = 2;
5510
5511 /* Size of dword displacement jmp. */
5512 int md_long_jump_size = 5;
5513
5514 void
5515 md_create_short_jump (ptr, from_addr, to_addr, frag, to_symbol)
5516 char *ptr;
5517 addressT from_addr, to_addr;
5518 fragS *frag ATTRIBUTE_UNUSED;
5519 symbolS *to_symbol ATTRIBUTE_UNUSED;
5520 {
5521 offsetT offset;
5522
5523 offset = to_addr - (from_addr + 2);
5524 /* Opcode for byte-disp jump. */
5525 md_number_to_chars (ptr, (valueT) 0xeb, 1);
5526 md_number_to_chars (ptr + 1, (valueT) offset, 1);
5527 }
5528
5529 void
5530 md_create_long_jump (ptr, from_addr, to_addr, frag, to_symbol)
5531 char *ptr;
5532 addressT from_addr, to_addr;
5533 fragS *frag ATTRIBUTE_UNUSED;
5534 symbolS *to_symbol ATTRIBUTE_UNUSED;
5535 {
5536 offsetT offset;
5537
5538 offset = to_addr - (from_addr + 5);
5539 md_number_to_chars (ptr, (valueT) 0xe9, 1);
5540 md_number_to_chars (ptr + 1, (valueT) offset, 4);
5541 }
5542 \f
5543 /* Apply a fixup (fixS) to segment data, once it has been determined
5544 by our caller that we have all the info we need to fix it up.
5545
5546 On the 386, immediates, displacements, and data pointers are all in
5547 the same (little-endian) format, so we don't need to care about which
5548 we are handling. */
5549
5550 void
5551 md_apply_fix (fixP, valP, seg)
5552 /* The fix we're to put in. */
5553 fixS *fixP;
5554 /* Pointer to the value of the bits. */
5555 valueT *valP;
5556 /* Segment fix is from. */
5557 segT seg ATTRIBUTE_UNUSED;
5558 {
5559 char *p = fixP->fx_where + fixP->fx_frag->fr_literal;
5560 valueT value = *valP;
5561
5562 #if !defined (TE_Mach)
5563 if (fixP->fx_pcrel)
5564 {
5565 switch (fixP->fx_r_type)
5566 {
5567 default:
5568 break;
5569
5570 case BFD_RELOC_64:
5571 fixP->fx_r_type = BFD_RELOC_64_PCREL;
5572 break;
5573 case BFD_RELOC_32:
5574 case BFD_RELOC_X86_64_32S:
5575 fixP->fx_r_type = BFD_RELOC_32_PCREL;
5576 break;
5577 case BFD_RELOC_16:
5578 fixP->fx_r_type = BFD_RELOC_16_PCREL;
5579 break;
5580 case BFD_RELOC_8:
5581 fixP->fx_r_type = BFD_RELOC_8_PCREL;
5582 break;
5583 }
5584 }
5585
5586 if (fixP->fx_addsy != NULL
5587 && (fixP->fx_r_type == BFD_RELOC_32_PCREL
5588 || fixP->fx_r_type == BFD_RELOC_64_PCREL
5589 || fixP->fx_r_type == BFD_RELOC_16_PCREL
5590 || fixP->fx_r_type == BFD_RELOC_8_PCREL)
5591 && !use_rela_relocations)
5592 {
5593 /* This is a hack. There should be a better way to handle this.
5594 This covers for the fact that bfd_install_relocation will
5595 subtract the current location (for partial_inplace, PC relative
5596 relocations); see more below. */
5597 #ifndef OBJ_AOUT
5598 if (IS_ELF
5599 #ifdef TE_PE
5600 || OUTPUT_FLAVOR == bfd_target_coff_flavour
5601 #endif
5602 )
5603 value += fixP->fx_where + fixP->fx_frag->fr_address;
5604 #endif
5605 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
5606 if (IS_ELF)
5607 {
5608 segT sym_seg = S_GET_SEGMENT (fixP->fx_addsy);
5609
5610 if ((sym_seg == seg
5611 || (symbol_section_p (fixP->fx_addsy)
5612 && sym_seg != absolute_section))
5613 && !generic_force_reloc (fixP))
5614 {
5615 /* Yes, we add the values in twice. This is because
5616 bfd_install_relocation subtracts them out again. I think
5617 bfd_install_relocation is broken, but I don't dare change
5618 it. FIXME. */
5619 value += fixP->fx_where + fixP->fx_frag->fr_address;
5620 }
5621 }
5622 #endif
5623 #if defined (OBJ_COFF) && defined (TE_PE)
5624 /* For some reason, the PE format does not store a
5625 section address offset for a PC relative symbol. */
5626 if (S_GET_SEGMENT (fixP->fx_addsy) != seg
5627 || S_IS_WEAK (fixP->fx_addsy))
5628 value += md_pcrel_from (fixP);
5629 #endif
5630 }
5631
5632 /* Fix a few things - the dynamic linker expects certain values here,
5633 and we must not disappoint it. */
5634 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
5635 if (IS_ELF && fixP->fx_addsy)
5636 switch (fixP->fx_r_type)
5637 {
5638 case BFD_RELOC_386_PLT32:
5639 case BFD_RELOC_X86_64_PLT32:
5640 /* Make the jump instruction point to the address of the operand. At
5641 runtime we merely add the offset to the actual PLT entry. */
5642 value = -4;
5643 break;
5644
5645 case BFD_RELOC_386_TLS_GD:
5646 case BFD_RELOC_386_TLS_LDM:
5647 case BFD_RELOC_386_TLS_IE_32:
5648 case BFD_RELOC_386_TLS_IE:
5649 case BFD_RELOC_386_TLS_GOTIE:
5650 case BFD_RELOC_386_TLS_GOTDESC:
5651 case BFD_RELOC_X86_64_TLSGD:
5652 case BFD_RELOC_X86_64_TLSLD:
5653 case BFD_RELOC_X86_64_GOTTPOFF:
5654 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
5655 value = 0; /* Fully resolved at runtime. No addend. */
5656 /* Fallthrough */
5657 case BFD_RELOC_386_TLS_LE:
5658 case BFD_RELOC_386_TLS_LDO_32:
5659 case BFD_RELOC_386_TLS_LE_32:
5660 case BFD_RELOC_X86_64_DTPOFF32:
5661 case BFD_RELOC_X86_64_DTPOFF64:
5662 case BFD_RELOC_X86_64_TPOFF32:
5663 case BFD_RELOC_X86_64_TPOFF64:
5664 S_SET_THREAD_LOCAL (fixP->fx_addsy);
5665 break;
5666
5667 case BFD_RELOC_386_TLS_DESC_CALL:
5668 case BFD_RELOC_X86_64_TLSDESC_CALL:
5669 value = 0; /* Fully resolved at runtime. No addend. */
5670 S_SET_THREAD_LOCAL (fixP->fx_addsy);
5671 fixP->fx_done = 0;
5672 return;
5673
5674 case BFD_RELOC_386_GOT32:
5675 case BFD_RELOC_X86_64_GOT32:
5676 value = 0; /* Fully resolved at runtime. No addend. */
5677 break;
5678
5679 case BFD_RELOC_VTABLE_INHERIT:
5680 case BFD_RELOC_VTABLE_ENTRY:
5681 fixP->fx_done = 0;
5682 return;
5683
5684 default:
5685 break;
5686 }
5687 #endif /* defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) */
5688 *valP = value;
5689 #endif /* !defined (TE_Mach) */
5690
5691 /* Are we finished with this relocation now? */
5692 if (fixP->fx_addsy == NULL)
5693 fixP->fx_done = 1;
5694 else if (use_rela_relocations)
5695 {
5696 fixP->fx_no_overflow = 1;
5697 /* Remember value for tc_gen_reloc. */
5698 fixP->fx_addnumber = value;
5699 value = 0;
5700 }
5701
5702 md_number_to_chars (p, value, fixP->fx_size);
5703 }
5704 \f
5705 #define MAX_LITTLENUMS 6
5706
5707 /* Turn the string pointed to by litP into a floating point constant
5708 of type TYPE, and emit the appropriate bytes. The number of
5709 LITTLENUMS emitted is stored in *SIZEP. An error message is
5710 returned, or NULL on OK. */
5711
5712 char *
5713 md_atof (type, litP, sizeP)
5714 int type;
5715 char *litP;
5716 int *sizeP;
5717 {
5718 int prec;
5719 LITTLENUM_TYPE words[MAX_LITTLENUMS];
5720 LITTLENUM_TYPE *wordP;
5721 char *t;
5722
5723 switch (type)
5724 {
5725 case 'f':
5726 case 'F':
5727 prec = 2;
5728 break;
5729
5730 case 'd':
5731 case 'D':
5732 prec = 4;
5733 break;
5734
5735 case 'x':
5736 case 'X':
5737 prec = 5;
5738 break;
5739
5740 default:
5741 *sizeP = 0;
5742 return _("Bad call to md_atof ()");
5743 }
5744 t = atof_ieee (input_line_pointer, type, words);
5745 if (t)
5746 input_line_pointer = t;
5747
5748 *sizeP = prec * sizeof (LITTLENUM_TYPE);
5749 /* This loops outputs the LITTLENUMs in REVERSE order; in accord with
5750 the bigendian 386. */
5751 for (wordP = words + prec - 1; prec--;)
5752 {
5753 md_number_to_chars (litP, (valueT) (*wordP--), sizeof (LITTLENUM_TYPE));
5754 litP += sizeof (LITTLENUM_TYPE);
5755 }
5756 return 0;
5757 }
5758 \f
5759 static char output_invalid_buf[sizeof (unsigned char) * 2 + 6];
5760
5761 static char *
5762 output_invalid (int c)
5763 {
5764 if (ISPRINT (c))
5765 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
5766 "'%c'", c);
5767 else
5768 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
5769 "(0x%x)", (unsigned char) c);
5770 return output_invalid_buf;
5771 }
5772
5773 /* REG_STRING starts *before* REGISTER_PREFIX. */
5774
5775 static const reg_entry *
5776 parse_real_register (char *reg_string, char **end_op)
5777 {
5778 char *s = reg_string;
5779 char *p;
5780 char reg_name_given[MAX_REG_NAME_SIZE + 1];
5781 const reg_entry *r;
5782
5783 /* Skip possible REGISTER_PREFIX and possible whitespace. */
5784 if (*s == REGISTER_PREFIX)
5785 ++s;
5786
5787 if (is_space_char (*s))
5788 ++s;
5789
5790 p = reg_name_given;
5791 while ((*p++ = register_chars[(unsigned char) *s]) != '\0')
5792 {
5793 if (p >= reg_name_given + MAX_REG_NAME_SIZE)
5794 return (const reg_entry *) NULL;
5795 s++;
5796 }
5797
5798 /* For naked regs, make sure that we are not dealing with an identifier.
5799 This prevents confusing an identifier like `eax_var' with register
5800 `eax'. */
5801 if (allow_naked_reg && identifier_chars[(unsigned char) *s])
5802 return (const reg_entry *) NULL;
5803
5804 *end_op = s;
5805
5806 r = (const reg_entry *) hash_find (reg_hash, reg_name_given);
5807
5808 /* Handle floating point regs, allowing spaces in the (i) part. */
5809 if (r == i386_regtab /* %st is first entry of table */)
5810 {
5811 if (is_space_char (*s))
5812 ++s;
5813 if (*s == '(')
5814 {
5815 ++s;
5816 if (is_space_char (*s))
5817 ++s;
5818 if (*s >= '0' && *s <= '7')
5819 {
5820 int fpr = *s - '0';
5821 ++s;
5822 if (is_space_char (*s))
5823 ++s;
5824 if (*s == ')')
5825 {
5826 *end_op = s + 1;
5827 r = hash_find (reg_hash, "st(0)");
5828 know (r);
5829 return r + fpr;
5830 }
5831 }
5832 /* We have "%st(" then garbage. */
5833 return (const reg_entry *) NULL;
5834 }
5835 }
5836
5837 if (r != NULL
5838 && ((r->reg_flags & (RegRex64 | RegRex)) | (r->reg_type & Reg64)) != 0
5839 && (r->reg_type != Control || !(cpu_arch_flags & CpuSledgehammer))
5840 && flag_code != CODE_64BIT)
5841 return (const reg_entry *) NULL;
5842
5843 return r;
5844 }
5845
5846 /* REG_STRING starts *before* REGISTER_PREFIX. */
5847
5848 static const reg_entry *
5849 parse_register (char *reg_string, char **end_op)
5850 {
5851 const reg_entry *r;
5852
5853 if (*reg_string == REGISTER_PREFIX || allow_naked_reg)
5854 r = parse_real_register (reg_string, end_op);
5855 else
5856 r = NULL;
5857 if (!r)
5858 {
5859 char *save = input_line_pointer;
5860 char c;
5861 symbolS *symbolP;
5862
5863 input_line_pointer = reg_string;
5864 c = get_symbol_end ();
5865 symbolP = symbol_find (reg_string);
5866 if (symbolP && S_GET_SEGMENT (symbolP) == reg_section)
5867 {
5868 const expressionS *e = symbol_get_value_expression (symbolP);
5869
5870 know (e->X_op == O_register);
5871 know (e->X_add_number >= 0
5872 && (valueT) e->X_add_number < i386_regtab_size);
5873 r = i386_regtab + e->X_add_number;
5874 *end_op = input_line_pointer;
5875 }
5876 *input_line_pointer = c;
5877 input_line_pointer = save;
5878 }
5879 return r;
5880 }
5881
5882 int
5883 i386_parse_name (char *name, expressionS *e, char *nextcharP)
5884 {
5885 const reg_entry *r;
5886 char *end = input_line_pointer;
5887
5888 *end = *nextcharP;
5889 r = parse_register (name, &input_line_pointer);
5890 if (r && end <= input_line_pointer)
5891 {
5892 *nextcharP = *input_line_pointer;
5893 *input_line_pointer = 0;
5894 e->X_op = O_register;
5895 e->X_add_number = r - i386_regtab;
5896 return 1;
5897 }
5898 input_line_pointer = end;
5899 *end = 0;
5900 return 0;
5901 }
5902
5903 void
5904 md_operand (expressionS *e)
5905 {
5906 if (*input_line_pointer == REGISTER_PREFIX)
5907 {
5908 char *end;
5909 const reg_entry *r = parse_real_register (input_line_pointer, &end);
5910
5911 if (r)
5912 {
5913 e->X_op = O_register;
5914 e->X_add_number = r - i386_regtab;
5915 input_line_pointer = end;
5916 }
5917 }
5918 }
5919
5920 \f
5921 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
5922 const char *md_shortopts = "kVQ:sqn";
5923 #else
5924 const char *md_shortopts = "qn";
5925 #endif
5926
5927 #define OPTION_32 (OPTION_MD_BASE + 0)
5928 #define OPTION_64 (OPTION_MD_BASE + 1)
5929 #define OPTION_DIVIDE (OPTION_MD_BASE + 2)
5930 #define OPTION_MARCH (OPTION_MD_BASE + 3)
5931 #define OPTION_MTUNE (OPTION_MD_BASE + 4)
5932
5933 struct option md_longopts[] =
5934 {
5935 {"32", no_argument, NULL, OPTION_32},
5936 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) || defined(TE_PEP)
5937 {"64", no_argument, NULL, OPTION_64},
5938 #endif
5939 {"divide", no_argument, NULL, OPTION_DIVIDE},
5940 {"march", required_argument, NULL, OPTION_MARCH},
5941 {"mtune", required_argument, NULL, OPTION_MTUNE},
5942 {NULL, no_argument, NULL, 0}
5943 };
5944 size_t md_longopts_size = sizeof (md_longopts);
5945
5946 int
5947 md_parse_option (int c, char *arg)
5948 {
5949 unsigned int i;
5950
5951 switch (c)
5952 {
5953 case 'n':
5954 optimize_align_code = 0;
5955 break;
5956
5957 case 'q':
5958 quiet_warnings = 1;
5959 break;
5960
5961 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
5962 /* -Qy, -Qn: SVR4 arguments controlling whether a .comment section
5963 should be emitted or not. FIXME: Not implemented. */
5964 case 'Q':
5965 break;
5966
5967 /* -V: SVR4 argument to print version ID. */
5968 case 'V':
5969 print_version_id ();
5970 break;
5971
5972 /* -k: Ignore for FreeBSD compatibility. */
5973 case 'k':
5974 break;
5975
5976 case 's':
5977 /* -s: On i386 Solaris, this tells the native assembler to use
5978 .stab instead of .stab.excl. We always use .stab anyhow. */
5979 break;
5980 #endif
5981 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) || defined(TE_PEP)
5982 case OPTION_64:
5983 {
5984 const char **list, **l;
5985
5986 list = bfd_target_list ();
5987 for (l = list; *l != NULL; l++)
5988 if (CONST_STRNEQ (*l, "elf64-x86-64")
5989 || strcmp (*l, "coff-x86-64") == 0
5990 || strcmp (*l, "pe-x86-64") == 0
5991 || strcmp (*l, "pei-x86-64") == 0)
5992 {
5993 default_arch = "x86_64";
5994 break;
5995 }
5996 if (*l == NULL)
5997 as_fatal (_("No compiled in support for x86_64"));
5998 free (list);
5999 }
6000 break;
6001 #endif
6002
6003 case OPTION_32:
6004 default_arch = "i386";
6005 break;
6006
6007 case OPTION_DIVIDE:
6008 #ifdef SVR4_COMMENT_CHARS
6009 {
6010 char *n, *t;
6011 const char *s;
6012
6013 n = (char *) xmalloc (strlen (i386_comment_chars) + 1);
6014 t = n;
6015 for (s = i386_comment_chars; *s != '\0'; s++)
6016 if (*s != '/')
6017 *t++ = *s;
6018 *t = '\0';
6019 i386_comment_chars = n;
6020 }
6021 #endif
6022 break;
6023
6024 case OPTION_MARCH:
6025 if (*arg == '.')
6026 as_fatal (_("Invalid -march= option: `%s'"), arg);
6027 for (i = 0; i < ARRAY_SIZE (cpu_arch); i++)
6028 {
6029 if (strcmp (arg, cpu_arch [i].name) == 0)
6030 {
6031 cpu_arch_isa = cpu_arch[i].type;
6032 cpu_arch_isa_flags = cpu_arch[i].flags;
6033 if (!cpu_arch_tune_set)
6034 {
6035 cpu_arch_tune = cpu_arch_isa;
6036 cpu_arch_tune_flags = cpu_arch_isa_flags;
6037 }
6038 break;
6039 }
6040 }
6041 if (i >= ARRAY_SIZE (cpu_arch))
6042 as_fatal (_("Invalid -march= option: `%s'"), arg);
6043 break;
6044
6045 case OPTION_MTUNE:
6046 if (*arg == '.')
6047 as_fatal (_("Invalid -mtune= option: `%s'"), arg);
6048 for (i = 0; i < ARRAY_SIZE (cpu_arch); i++)
6049 {
6050 if (strcmp (arg, cpu_arch [i].name) == 0)
6051 {
6052 cpu_arch_tune_set = 1;
6053 cpu_arch_tune = cpu_arch [i].type;
6054 cpu_arch_tune_flags = cpu_arch[i].flags;
6055 break;
6056 }
6057 }
6058 if (i >= ARRAY_SIZE (cpu_arch))
6059 as_fatal (_("Invalid -mtune= option: `%s'"), arg);
6060 break;
6061
6062 default:
6063 return 0;
6064 }
6065 return 1;
6066 }
6067
6068 void
6069 md_show_usage (stream)
6070 FILE *stream;
6071 {
6072 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
6073 fprintf (stream, _("\
6074 -Q ignored\n\
6075 -V print assembler version number\n\
6076 -k ignored\n"));
6077 #endif
6078 fprintf (stream, _("\
6079 -n Do not optimize code alignment\n\
6080 -q quieten some warnings\n"));
6081 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
6082 fprintf (stream, _("\
6083 -s ignored\n"));
6084 #endif
6085 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) || defined(TE_PEP)
6086 fprintf (stream, _("\
6087 --32/--64 generate 32bit/64bit code\n"));
6088 #endif
6089 #ifdef SVR4_COMMENT_CHARS
6090 fprintf (stream, _("\
6091 --divide do not treat `/' as a comment character\n"));
6092 #else
6093 fprintf (stream, _("\
6094 --divide ignored\n"));
6095 #endif
6096 fprintf (stream, _("\
6097 -march=CPU/-mtune=CPU generate code/optimize for CPU, where CPU is one of:\n\
6098 i386, i486, pentium, pentiumpro, pentium4, nocona,\n\
6099 core, core2, k6, athlon, k8, generic32, generic64\n"));
6100
6101 }
6102
6103 #if defined(TE_PEP)
6104 const char *
6105 x86_64_target_format (void)
6106 {
6107 if (strcmp (default_arch, "x86_64") == 0)
6108 {
6109 set_code_flag (CODE_64BIT);
6110 return COFF_TARGET_FORMAT;
6111 }
6112 else if (strcmp (default_arch, "i386") == 0)
6113 {
6114 set_code_flag (CODE_32BIT);
6115 return "coff-i386";
6116 }
6117
6118 as_fatal (_("Unknown architecture"));
6119 return NULL;
6120 }
6121 #endif
6122
6123 #if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
6124 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF))
6125
6126 /* Pick the target format to use. */
6127
6128 const char *
6129 i386_target_format (void)
6130 {
6131 if (!strcmp (default_arch, "x86_64"))
6132 {
6133 set_code_flag (CODE_64BIT);
6134 if (cpu_arch_isa_flags == 0)
6135 cpu_arch_isa_flags = Cpu186|Cpu286|Cpu386|Cpu486
6136 |Cpu586|Cpu686|CpuP4|CpuMMX|CpuMMX2
6137 |CpuSSE|CpuSSE2;
6138 if (cpu_arch_tune_flags == 0)
6139 cpu_arch_tune_flags = Cpu186|Cpu286|Cpu386|Cpu486
6140 |Cpu586|Cpu686|CpuP4|CpuMMX|CpuMMX2
6141 |CpuSSE|CpuSSE2;
6142 }
6143 else if (!strcmp (default_arch, "i386"))
6144 {
6145 set_code_flag (CODE_32BIT);
6146 if (cpu_arch_isa_flags == 0)
6147 cpu_arch_isa_flags = Cpu186|Cpu286|Cpu386;
6148 if (cpu_arch_tune_flags == 0)
6149 cpu_arch_tune_flags = Cpu186|Cpu286|Cpu386;
6150 }
6151 else
6152 as_fatal (_("Unknown architecture"));
6153 switch (OUTPUT_FLAVOR)
6154 {
6155 #ifdef OBJ_MAYBE_AOUT
6156 case bfd_target_aout_flavour:
6157 return AOUT_TARGET_FORMAT;
6158 #endif
6159 #ifdef OBJ_MAYBE_COFF
6160 case bfd_target_coff_flavour:
6161 return "coff-i386";
6162 #endif
6163 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
6164 case bfd_target_elf_flavour:
6165 {
6166 if (flag_code == CODE_64BIT)
6167 {
6168 object_64bit = 1;
6169 use_rela_relocations = 1;
6170 }
6171 return flag_code == CODE_64BIT ? ELF_TARGET_FORMAT64 : ELF_TARGET_FORMAT;
6172 }
6173 #endif
6174 default:
6175 abort ();
6176 return NULL;
6177 }
6178 }
6179
6180 #endif /* OBJ_MAYBE_ more than one */
6181
6182 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF))
6183 void
6184 i386_elf_emit_arch_note (void)
6185 {
6186 if (IS_ELF && cpu_arch_name != NULL)
6187 {
6188 char *p;
6189 asection *seg = now_seg;
6190 subsegT subseg = now_subseg;
6191 Elf_Internal_Note i_note;
6192 Elf_External_Note e_note;
6193 asection *note_secp;
6194 int len;
6195
6196 /* Create the .note section. */
6197 note_secp = subseg_new (".note", 0);
6198 bfd_set_section_flags (stdoutput,
6199 note_secp,
6200 SEC_HAS_CONTENTS | SEC_READONLY);
6201
6202 /* Process the arch string. */
6203 len = strlen (cpu_arch_name);
6204
6205 i_note.namesz = len + 1;
6206 i_note.descsz = 0;
6207 i_note.type = NT_ARCH;
6208 p = frag_more (sizeof (e_note.namesz));
6209 md_number_to_chars (p, (valueT) i_note.namesz, sizeof (e_note.namesz));
6210 p = frag_more (sizeof (e_note.descsz));
6211 md_number_to_chars (p, (valueT) i_note.descsz, sizeof (e_note.descsz));
6212 p = frag_more (sizeof (e_note.type));
6213 md_number_to_chars (p, (valueT) i_note.type, sizeof (e_note.type));
6214 p = frag_more (len + 1);
6215 strcpy (p, cpu_arch_name);
6216
6217 frag_align (2, 0, 0);
6218
6219 subseg_set (seg, subseg);
6220 }
6221 }
6222 #endif
6223 \f
6224 symbolS *
6225 md_undefined_symbol (name)
6226 char *name;
6227 {
6228 if (name[0] == GLOBAL_OFFSET_TABLE_NAME[0]
6229 && name[1] == GLOBAL_OFFSET_TABLE_NAME[1]
6230 && name[2] == GLOBAL_OFFSET_TABLE_NAME[2]
6231 && strcmp (name, GLOBAL_OFFSET_TABLE_NAME) == 0)
6232 {
6233 if (!GOT_symbol)
6234 {
6235 if (symbol_find (name))
6236 as_bad (_("GOT already in symbol table"));
6237 GOT_symbol = symbol_new (name, undefined_section,
6238 (valueT) 0, &zero_address_frag);
6239 };
6240 return GOT_symbol;
6241 }
6242 return 0;
6243 }
6244
6245 /* Round up a section size to the appropriate boundary. */
6246
6247 valueT
6248 md_section_align (segment, size)
6249 segT segment ATTRIBUTE_UNUSED;
6250 valueT size;
6251 {
6252 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
6253 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
6254 {
6255 /* For a.out, force the section size to be aligned. If we don't do
6256 this, BFD will align it for us, but it will not write out the
6257 final bytes of the section. This may be a bug in BFD, but it is
6258 easier to fix it here since that is how the other a.out targets
6259 work. */
6260 int align;
6261
6262 align = bfd_get_section_alignment (stdoutput, segment);
6263 size = ((size + (1 << align) - 1) & ((valueT) -1 << align));
6264 }
6265 #endif
6266
6267 return size;
6268 }
6269
6270 /* On the i386, PC-relative offsets are relative to the start of the
6271 next instruction. That is, the address of the offset, plus its
6272 size, since the offset is always the last part of the insn. */
6273
6274 long
6275 md_pcrel_from (fixS *fixP)
6276 {
6277 return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address;
6278 }
6279
6280 #ifndef I386COFF
6281
6282 static void
6283 s_bss (int ignore ATTRIBUTE_UNUSED)
6284 {
6285 int temp;
6286
6287 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
6288 if (IS_ELF)
6289 obj_elf_section_change_hook ();
6290 #endif
6291 temp = get_absolute_expression ();
6292 subseg_set (bss_section, (subsegT) temp);
6293 demand_empty_rest_of_line ();
6294 }
6295
6296 #endif
6297
6298 void
6299 i386_validate_fix (fixS *fixp)
6300 {
6301 if (fixp->fx_subsy && fixp->fx_subsy == GOT_symbol)
6302 {
6303 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
6304 {
6305 if (!object_64bit)
6306 abort ();
6307 fixp->fx_r_type = BFD_RELOC_X86_64_GOTPCREL;
6308 }
6309 else
6310 {
6311 if (!object_64bit)
6312 fixp->fx_r_type = BFD_RELOC_386_GOTOFF;
6313 else
6314 fixp->fx_r_type = BFD_RELOC_X86_64_GOTOFF64;
6315 }
6316 fixp->fx_subsy = 0;
6317 }
6318 }
6319
6320 arelent *
6321 tc_gen_reloc (section, fixp)
6322 asection *section ATTRIBUTE_UNUSED;
6323 fixS *fixp;
6324 {
6325 arelent *rel;
6326 bfd_reloc_code_real_type code;
6327
6328 switch (fixp->fx_r_type)
6329 {
6330 case BFD_RELOC_X86_64_PLT32:
6331 case BFD_RELOC_X86_64_GOT32:
6332 case BFD_RELOC_X86_64_GOTPCREL:
6333 case BFD_RELOC_386_PLT32:
6334 case BFD_RELOC_386_GOT32:
6335 case BFD_RELOC_386_GOTOFF:
6336 case BFD_RELOC_386_GOTPC:
6337 case BFD_RELOC_386_TLS_GD:
6338 case BFD_RELOC_386_TLS_LDM:
6339 case BFD_RELOC_386_TLS_LDO_32:
6340 case BFD_RELOC_386_TLS_IE_32:
6341 case BFD_RELOC_386_TLS_IE:
6342 case BFD_RELOC_386_TLS_GOTIE:
6343 case BFD_RELOC_386_TLS_LE_32:
6344 case BFD_RELOC_386_TLS_LE:
6345 case BFD_RELOC_386_TLS_GOTDESC:
6346 case BFD_RELOC_386_TLS_DESC_CALL:
6347 case BFD_RELOC_X86_64_TLSGD:
6348 case BFD_RELOC_X86_64_TLSLD:
6349 case BFD_RELOC_X86_64_DTPOFF32:
6350 case BFD_RELOC_X86_64_DTPOFF64:
6351 case BFD_RELOC_X86_64_GOTTPOFF:
6352 case BFD_RELOC_X86_64_TPOFF32:
6353 case BFD_RELOC_X86_64_TPOFF64:
6354 case BFD_RELOC_X86_64_GOTOFF64:
6355 case BFD_RELOC_X86_64_GOTPC32:
6356 case BFD_RELOC_X86_64_GOT64:
6357 case BFD_RELOC_X86_64_GOTPCREL64:
6358 case BFD_RELOC_X86_64_GOTPC64:
6359 case BFD_RELOC_X86_64_GOTPLT64:
6360 case BFD_RELOC_X86_64_PLTOFF64:
6361 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
6362 case BFD_RELOC_X86_64_TLSDESC_CALL:
6363 case BFD_RELOC_RVA:
6364 case BFD_RELOC_VTABLE_ENTRY:
6365 case BFD_RELOC_VTABLE_INHERIT:
6366 #ifdef TE_PE
6367 case BFD_RELOC_32_SECREL:
6368 #endif
6369 code = fixp->fx_r_type;
6370 break;
6371 case BFD_RELOC_X86_64_32S:
6372 if (!fixp->fx_pcrel)
6373 {
6374 /* Don't turn BFD_RELOC_X86_64_32S into BFD_RELOC_32. */
6375 code = fixp->fx_r_type;
6376 break;
6377 }
6378 default:
6379 if (fixp->fx_pcrel)
6380 {
6381 switch (fixp->fx_size)
6382 {
6383 default:
6384 as_bad_where (fixp->fx_file, fixp->fx_line,
6385 _("can not do %d byte pc-relative relocation"),
6386 fixp->fx_size);
6387 code = BFD_RELOC_32_PCREL;
6388 break;
6389 case 1: code = BFD_RELOC_8_PCREL; break;
6390 case 2: code = BFD_RELOC_16_PCREL; break;
6391 case 4: code = BFD_RELOC_32_PCREL; break;
6392 #ifdef BFD64
6393 case 8: code = BFD_RELOC_64_PCREL; break;
6394 #endif
6395 }
6396 }
6397 else
6398 {
6399 switch (fixp->fx_size)
6400 {
6401 default:
6402 as_bad_where (fixp->fx_file, fixp->fx_line,
6403 _("can not do %d byte relocation"),
6404 fixp->fx_size);
6405 code = BFD_RELOC_32;
6406 break;
6407 case 1: code = BFD_RELOC_8; break;
6408 case 2: code = BFD_RELOC_16; break;
6409 case 4: code = BFD_RELOC_32; break;
6410 #ifdef BFD64
6411 case 8: code = BFD_RELOC_64; break;
6412 #endif
6413 }
6414 }
6415 break;
6416 }
6417
6418 if ((code == BFD_RELOC_32
6419 || code == BFD_RELOC_32_PCREL
6420 || code == BFD_RELOC_X86_64_32S)
6421 && GOT_symbol
6422 && fixp->fx_addsy == GOT_symbol)
6423 {
6424 if (!object_64bit)
6425 code = BFD_RELOC_386_GOTPC;
6426 else
6427 code = BFD_RELOC_X86_64_GOTPC32;
6428 }
6429 if ((code == BFD_RELOC_64 || code == BFD_RELOC_64_PCREL)
6430 && GOT_symbol
6431 && fixp->fx_addsy == GOT_symbol)
6432 {
6433 code = BFD_RELOC_X86_64_GOTPC64;
6434 }
6435
6436 rel = (arelent *) xmalloc (sizeof (arelent));
6437 rel->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
6438 *rel->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
6439
6440 rel->address = fixp->fx_frag->fr_address + fixp->fx_where;
6441
6442 if (!use_rela_relocations)
6443 {
6444 /* HACK: Since i386 ELF uses Rel instead of Rela, encode the
6445 vtable entry to be used in the relocation's section offset. */
6446 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
6447 rel->address = fixp->fx_offset;
6448
6449 rel->addend = 0;
6450 }
6451 /* Use the rela in 64bit mode. */
6452 else
6453 {
6454 if (!fixp->fx_pcrel)
6455 rel->addend = fixp->fx_offset;
6456 else
6457 switch (code)
6458 {
6459 case BFD_RELOC_X86_64_PLT32:
6460 case BFD_RELOC_X86_64_GOT32:
6461 case BFD_RELOC_X86_64_GOTPCREL:
6462 case BFD_RELOC_X86_64_TLSGD:
6463 case BFD_RELOC_X86_64_TLSLD:
6464 case BFD_RELOC_X86_64_GOTTPOFF:
6465 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
6466 case BFD_RELOC_X86_64_TLSDESC_CALL:
6467 rel->addend = fixp->fx_offset - fixp->fx_size;
6468 break;
6469 default:
6470 rel->addend = (section->vma
6471 - fixp->fx_size
6472 + fixp->fx_addnumber
6473 + md_pcrel_from (fixp));
6474 break;
6475 }
6476 }
6477
6478 rel->howto = bfd_reloc_type_lookup (stdoutput, code);
6479 if (rel->howto == NULL)
6480 {
6481 as_bad_where (fixp->fx_file, fixp->fx_line,
6482 _("cannot represent relocation type %s"),
6483 bfd_get_reloc_code_name (code));
6484 /* Set howto to a garbage value so that we can keep going. */
6485 rel->howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_32);
6486 assert (rel->howto != NULL);
6487 }
6488
6489 return rel;
6490 }
6491
6492 \f
6493 /* Parse operands using Intel syntax. This implements a recursive descent
6494 parser based on the BNF grammar published in Appendix B of the MASM 6.1
6495 Programmer's Guide.
6496
6497 FIXME: We do not recognize the full operand grammar defined in the MASM
6498 documentation. In particular, all the structure/union and
6499 high-level macro operands are missing.
6500
6501 Uppercase words are terminals, lower case words are non-terminals.
6502 Objects surrounded by double brackets '[[' ']]' are optional. Vertical
6503 bars '|' denote choices. Most grammar productions are implemented in
6504 functions called 'intel_<production>'.
6505
6506 Initial production is 'expr'.
6507
6508 addOp + | -
6509
6510 alpha [a-zA-Z]
6511
6512 binOp & | AND | \| | OR | ^ | XOR
6513
6514 byteRegister AL | AH | BL | BH | CL | CH | DL | DH
6515
6516 constant digits [[ radixOverride ]]
6517
6518 dataType BYTE | WORD | DWORD | FWORD | QWORD | TBYTE | OWORD | XMMWORD
6519
6520 digits decdigit
6521 | digits decdigit
6522 | digits hexdigit
6523
6524 decdigit [0-9]
6525
6526 e04 e04 addOp e05
6527 | e05
6528
6529 e05 e05 binOp e06
6530 | e06
6531
6532 e06 e06 mulOp e09
6533 | e09
6534
6535 e09 OFFSET e10
6536 | SHORT e10
6537 | + e10
6538 | - e10
6539 | ~ e10
6540 | NOT e10
6541 | e09 PTR e10
6542 | e09 : e10
6543 | e10
6544
6545 e10 e10 [ expr ]
6546 | e11
6547
6548 e11 ( expr )
6549 | [ expr ]
6550 | constant
6551 | dataType
6552 | id
6553 | $
6554 | register
6555
6556 => expr expr cmpOp e04
6557 | e04
6558
6559 gpRegister AX | EAX | BX | EBX | CX | ECX | DX | EDX
6560 | BP | EBP | SP | ESP | DI | EDI | SI | ESI
6561
6562 hexdigit a | b | c | d | e | f
6563 | A | B | C | D | E | F
6564
6565 id alpha
6566 | id alpha
6567 | id decdigit
6568
6569 mulOp * | / | % | MOD | << | SHL | >> | SHR
6570
6571 quote " | '
6572
6573 register specialRegister
6574 | gpRegister
6575 | byteRegister
6576
6577 segmentRegister CS | DS | ES | FS | GS | SS
6578
6579 specialRegister CR0 | CR2 | CR3 | CR4
6580 | DR0 | DR1 | DR2 | DR3 | DR6 | DR7
6581 | TR3 | TR4 | TR5 | TR6 | TR7
6582
6583 We simplify the grammar in obvious places (e.g., register parsing is
6584 done by calling parse_register) and eliminate immediate left recursion
6585 to implement a recursive-descent parser.
6586
6587 expr e04 expr'
6588
6589 expr' cmpOp e04 expr'
6590 | Empty
6591
6592 e04 e05 e04'
6593
6594 e04' addOp e05 e04'
6595 | Empty
6596
6597 e05 e06 e05'
6598
6599 e05' binOp e06 e05'
6600 | Empty
6601
6602 e06 e09 e06'
6603
6604 e06' mulOp e09 e06'
6605 | Empty
6606
6607 e09 OFFSET e10 e09'
6608 | SHORT e10'
6609 | + e10'
6610 | - e10'
6611 | ~ e10'
6612 | NOT e10'
6613 | e10 e09'
6614
6615 e09' PTR e10 e09'
6616 | : e10 e09'
6617 | Empty
6618
6619 e10 e11 e10'
6620
6621 e10' [ expr ] e10'
6622 | Empty
6623
6624 e11 ( expr )
6625 | [ expr ]
6626 | BYTE
6627 | WORD
6628 | DWORD
6629 | FWORD
6630 | QWORD
6631 | TBYTE
6632 | OWORD
6633 | XMMWORD
6634 | .
6635 | $
6636 | register
6637 | id
6638 | constant */
6639
6640 /* Parsing structure for the intel syntax parser. Used to implement the
6641 semantic actions for the operand grammar. */
6642 struct intel_parser_s
6643 {
6644 char *op_string; /* The string being parsed. */
6645 int got_a_float; /* Whether the operand is a float. */
6646 int op_modifier; /* Operand modifier. */
6647 int is_mem; /* 1 if operand is memory reference. */
6648 int in_offset; /* >=1 if parsing operand of offset. */
6649 int in_bracket; /* >=1 if parsing operand in brackets. */
6650 const reg_entry *reg; /* Last register reference found. */
6651 char *disp; /* Displacement string being built. */
6652 char *next_operand; /* Resume point when splitting operands. */
6653 };
6654
6655 static struct intel_parser_s intel_parser;
6656
6657 /* Token structure for parsing intel syntax. */
6658 struct intel_token
6659 {
6660 int code; /* Token code. */
6661 const reg_entry *reg; /* Register entry for register tokens. */
6662 char *str; /* String representation. */
6663 };
6664
6665 static struct intel_token cur_token, prev_token;
6666
6667 /* Token codes for the intel parser. Since T_SHORT is already used
6668 by COFF, undefine it first to prevent a warning. */
6669 #define T_NIL -1
6670 #define T_CONST 1
6671 #define T_REG 2
6672 #define T_BYTE 3
6673 #define T_WORD 4
6674 #define T_DWORD 5
6675 #define T_FWORD 6
6676 #define T_QWORD 7
6677 #define T_TBYTE 8
6678 #define T_XMMWORD 9
6679 #undef T_SHORT
6680 #define T_SHORT 10
6681 #define T_OFFSET 11
6682 #define T_PTR 12
6683 #define T_ID 13
6684 #define T_SHL 14
6685 #define T_SHR 15
6686
6687 /* Prototypes for intel parser functions. */
6688 static int intel_match_token (int);
6689 static void intel_putback_token (void);
6690 static void intel_get_token (void);
6691 static int intel_expr (void);
6692 static int intel_e04 (void);
6693 static int intel_e05 (void);
6694 static int intel_e06 (void);
6695 static int intel_e09 (void);
6696 static int intel_e10 (void);
6697 static int intel_e11 (void);
6698
6699 static int
6700 i386_intel_operand (char *operand_string, int got_a_float)
6701 {
6702 int ret;
6703 char *p;
6704
6705 p = intel_parser.op_string = xstrdup (operand_string);
6706 intel_parser.disp = (char *) xmalloc (strlen (operand_string) + 1);
6707
6708 for (;;)
6709 {
6710 /* Initialize token holders. */
6711 cur_token.code = prev_token.code = T_NIL;
6712 cur_token.reg = prev_token.reg = NULL;
6713 cur_token.str = prev_token.str = NULL;
6714
6715 /* Initialize parser structure. */
6716 intel_parser.got_a_float = got_a_float;
6717 intel_parser.op_modifier = 0;
6718 intel_parser.is_mem = 0;
6719 intel_parser.in_offset = 0;
6720 intel_parser.in_bracket = 0;
6721 intel_parser.reg = NULL;
6722 intel_parser.disp[0] = '\0';
6723 intel_parser.next_operand = NULL;
6724
6725 /* Read the first token and start the parser. */
6726 intel_get_token ();
6727 ret = intel_expr ();
6728
6729 if (!ret)
6730 break;
6731
6732 if (cur_token.code != T_NIL)
6733 {
6734 as_bad (_("invalid operand for '%s' ('%s' unexpected)"),
6735 current_templates->start->name, cur_token.str);
6736 ret = 0;
6737 }
6738 /* If we found a memory reference, hand it over to i386_displacement
6739 to fill in the rest of the operand fields. */
6740 else if (intel_parser.is_mem)
6741 {
6742 if ((i.mem_operands == 1
6743 && (current_templates->start->opcode_modifier & IsString) == 0)
6744 || i.mem_operands == 2)
6745 {
6746 as_bad (_("too many memory references for '%s'"),
6747 current_templates->start->name);
6748 ret = 0;
6749 }
6750 else
6751 {
6752 char *s = intel_parser.disp;
6753 i.mem_operands++;
6754
6755 if (!quiet_warnings && intel_parser.is_mem < 0)
6756 /* See the comments in intel_bracket_expr. */
6757 as_warn (_("Treating `%s' as memory reference"), operand_string);
6758
6759 /* Add the displacement expression. */
6760 if (*s != '\0')
6761 ret = i386_displacement (s, s + strlen (s));
6762 if (ret)
6763 {
6764 /* Swap base and index in 16-bit memory operands like
6765 [si+bx]. Since i386_index_check is also used in AT&T
6766 mode we have to do that here. */
6767 if (i.base_reg
6768 && i.index_reg
6769 && (i.base_reg->reg_type & Reg16)
6770 && (i.index_reg->reg_type & Reg16)
6771 && i.base_reg->reg_num >= 6
6772 && i.index_reg->reg_num < 6)
6773 {
6774 const reg_entry *base = i.index_reg;
6775
6776 i.index_reg = i.base_reg;
6777 i.base_reg = base;
6778 }
6779 ret = i386_index_check (operand_string);
6780 }
6781 }
6782 }
6783
6784 /* Constant and OFFSET expressions are handled by i386_immediate. */
6785 else if ((intel_parser.op_modifier & (1 << T_OFFSET))
6786 || intel_parser.reg == NULL)
6787 ret = i386_immediate (intel_parser.disp);
6788
6789 if (intel_parser.next_operand && this_operand >= MAX_OPERANDS - 1)
6790 ret = 0;
6791 if (!ret || !intel_parser.next_operand)
6792 break;
6793 intel_parser.op_string = intel_parser.next_operand;
6794 this_operand = i.operands++;
6795 }
6796
6797 free (p);
6798 free (intel_parser.disp);
6799
6800 return ret;
6801 }
6802
6803 #define NUM_ADDRESS_REGS (!!i.base_reg + !!i.index_reg)
6804
6805 /* expr e04 expr'
6806
6807 expr' cmpOp e04 expr'
6808 | Empty */
6809 static int
6810 intel_expr (void)
6811 {
6812 /* XXX Implement the comparison operators. */
6813 return intel_e04 ();
6814 }
6815
6816 /* e04 e05 e04'
6817
6818 e04' addOp e05 e04'
6819 | Empty */
6820 static int
6821 intel_e04 (void)
6822 {
6823 int nregs = -1;
6824
6825 for (;;)
6826 {
6827 if (!intel_e05())
6828 return 0;
6829
6830 if (nregs >= 0 && NUM_ADDRESS_REGS > nregs)
6831 i.base_reg = i386_regtab + REGNAM_AL; /* al is invalid as base */
6832
6833 if (cur_token.code == '+')
6834 nregs = -1;
6835 else if (cur_token.code == '-')
6836 nregs = NUM_ADDRESS_REGS;
6837 else
6838 return 1;
6839
6840 strcat (intel_parser.disp, cur_token.str);
6841 intel_match_token (cur_token.code);
6842 }
6843 }
6844
6845 /* e05 e06 e05'
6846
6847 e05' binOp e06 e05'
6848 | Empty */
6849 static int
6850 intel_e05 (void)
6851 {
6852 int nregs = ~NUM_ADDRESS_REGS;
6853
6854 for (;;)
6855 {
6856 if (!intel_e06())
6857 return 0;
6858
6859 if (cur_token.code == '&'
6860 || cur_token.code == '|'
6861 || cur_token.code == '^')
6862 {
6863 char str[2];
6864
6865 str[0] = cur_token.code;
6866 str[1] = 0;
6867 strcat (intel_parser.disp, str);
6868 }
6869 else
6870 break;
6871
6872 intel_match_token (cur_token.code);
6873
6874 if (nregs < 0)
6875 nregs = ~nregs;
6876 }
6877 if (nregs >= 0 && NUM_ADDRESS_REGS > nregs)
6878 i.base_reg = i386_regtab + REGNAM_AL + 1; /* cl is invalid as base */
6879 return 1;
6880 }
6881
6882 /* e06 e09 e06'
6883
6884 e06' mulOp e09 e06'
6885 | Empty */
6886 static int
6887 intel_e06 (void)
6888 {
6889 int nregs = ~NUM_ADDRESS_REGS;
6890
6891 for (;;)
6892 {
6893 if (!intel_e09())
6894 return 0;
6895
6896 if (cur_token.code == '*'
6897 || cur_token.code == '/'
6898 || cur_token.code == '%')
6899 {
6900 char str[2];
6901
6902 str[0] = cur_token.code;
6903 str[1] = 0;
6904 strcat (intel_parser.disp, str);
6905 }
6906 else if (cur_token.code == T_SHL)
6907 strcat (intel_parser.disp, "<<");
6908 else if (cur_token.code == T_SHR)
6909 strcat (intel_parser.disp, ">>");
6910 else
6911 break;
6912
6913 intel_match_token (cur_token.code);
6914
6915 if (nregs < 0)
6916 nregs = ~nregs;
6917 }
6918 if (nregs >= 0 && NUM_ADDRESS_REGS > nregs)
6919 i.base_reg = i386_regtab + REGNAM_AL + 2; /* dl is invalid as base */
6920 return 1;
6921 }
6922
6923 /* e09 OFFSET e09
6924 | SHORT e09
6925 | + e09
6926 | - e09
6927 | ~ e09
6928 | NOT e09
6929 | e10 e09'
6930
6931 e09' PTR e10 e09'
6932 | : e10 e09'
6933 | Empty */
6934 static int
6935 intel_e09 (void)
6936 {
6937 int nregs = ~NUM_ADDRESS_REGS;
6938 int in_offset = 0;
6939
6940 for (;;)
6941 {
6942 /* Don't consume constants here. */
6943 if (cur_token.code == '+' || cur_token.code == '-')
6944 {
6945 /* Need to look one token ahead - if the next token
6946 is a constant, the current token is its sign. */
6947 int next_code;
6948
6949 intel_match_token (cur_token.code);
6950 next_code = cur_token.code;
6951 intel_putback_token ();
6952 if (next_code == T_CONST)
6953 break;
6954 }
6955
6956 /* e09 OFFSET e09 */
6957 if (cur_token.code == T_OFFSET)
6958 {
6959 if (!in_offset++)
6960 ++intel_parser.in_offset;
6961 }
6962
6963 /* e09 SHORT e09 */
6964 else if (cur_token.code == T_SHORT)
6965 intel_parser.op_modifier |= 1 << T_SHORT;
6966
6967 /* e09 + e09 */
6968 else if (cur_token.code == '+')
6969 strcat (intel_parser.disp, "+");
6970
6971 /* e09 - e09
6972 | ~ e09
6973 | NOT e09 */
6974 else if (cur_token.code == '-' || cur_token.code == '~')
6975 {
6976 char str[2];
6977
6978 if (nregs < 0)
6979 nregs = ~nregs;
6980 str[0] = cur_token.code;
6981 str[1] = 0;
6982 strcat (intel_parser.disp, str);
6983 }
6984
6985 /* e09 e10 e09' */
6986 else
6987 break;
6988
6989 intel_match_token (cur_token.code);
6990 }
6991
6992 for (;;)
6993 {
6994 if (!intel_e10 ())
6995 return 0;
6996
6997 /* e09' PTR e10 e09' */
6998 if (cur_token.code == T_PTR)
6999 {
7000 char suffix;
7001
7002 if (prev_token.code == T_BYTE)
7003 suffix = BYTE_MNEM_SUFFIX;
7004
7005 else if (prev_token.code == T_WORD)
7006 {
7007 if (current_templates->start->name[0] == 'l'
7008 && current_templates->start->name[2] == 's'
7009 && current_templates->start->name[3] == 0)
7010 suffix = BYTE_MNEM_SUFFIX; /* so it will cause an error */
7011 else if (intel_parser.got_a_float == 2) /* "fi..." */
7012 suffix = SHORT_MNEM_SUFFIX;
7013 else
7014 suffix = WORD_MNEM_SUFFIX;
7015 }
7016
7017 else if (prev_token.code == T_DWORD)
7018 {
7019 if (current_templates->start->name[0] == 'l'
7020 && current_templates->start->name[2] == 's'
7021 && current_templates->start->name[3] == 0)
7022 suffix = WORD_MNEM_SUFFIX;
7023 else if (flag_code == CODE_16BIT
7024 && (current_templates->start->opcode_modifier
7025 & (Jump | JumpDword)))
7026 suffix = LONG_DOUBLE_MNEM_SUFFIX;
7027 else if (intel_parser.got_a_float == 1) /* "f..." */
7028 suffix = SHORT_MNEM_SUFFIX;
7029 else
7030 suffix = LONG_MNEM_SUFFIX;
7031 }
7032
7033 else if (prev_token.code == T_FWORD)
7034 {
7035 if (current_templates->start->name[0] == 'l'
7036 && current_templates->start->name[2] == 's'
7037 && current_templates->start->name[3] == 0)
7038 suffix = LONG_MNEM_SUFFIX;
7039 else if (!intel_parser.got_a_float)
7040 {
7041 if (flag_code == CODE_16BIT)
7042 add_prefix (DATA_PREFIX_OPCODE);
7043 suffix = LONG_DOUBLE_MNEM_SUFFIX;
7044 }
7045 else
7046 suffix = BYTE_MNEM_SUFFIX; /* so it will cause an error */
7047 }
7048
7049 else if (prev_token.code == T_QWORD)
7050 {
7051 if (intel_parser.got_a_float == 1) /* "f..." */
7052 suffix = LONG_MNEM_SUFFIX;
7053 else
7054 suffix = QWORD_MNEM_SUFFIX;
7055 }
7056
7057 else if (prev_token.code == T_TBYTE)
7058 {
7059 if (intel_parser.got_a_float == 1)
7060 suffix = LONG_DOUBLE_MNEM_SUFFIX;
7061 else
7062 suffix = BYTE_MNEM_SUFFIX; /* so it will cause an error */
7063 }
7064
7065 else if (prev_token.code == T_XMMWORD)
7066 {
7067 /* XXX ignored for now, but accepted since gcc uses it */
7068 suffix = 0;
7069 }
7070
7071 else
7072 {
7073 as_bad (_("Unknown operand modifier `%s'"), prev_token.str);
7074 return 0;
7075 }
7076
7077 /* Operands for jump/call using 'ptr' notation denote absolute
7078 addresses. */
7079 if (current_templates->start->opcode_modifier & (Jump | JumpDword))
7080 i.types[this_operand] |= JumpAbsolute;
7081
7082 if (current_templates->start->base_opcode == 0x8d /* lea */)
7083 ;
7084 else if (!i.suffix)
7085 i.suffix = suffix;
7086 else if (i.suffix != suffix)
7087 {
7088 as_bad (_("Conflicting operand modifiers"));
7089 return 0;
7090 }
7091
7092 }
7093
7094 /* e09' : e10 e09' */
7095 else if (cur_token.code == ':')
7096 {
7097 if (prev_token.code != T_REG)
7098 {
7099 /* While {call,jmp} SSSS:OOOO is MASM syntax only when SSSS is a
7100 segment/group identifier (which we don't have), using comma
7101 as the operand separator there is even less consistent, since
7102 there all branches only have a single operand. */
7103 if (this_operand != 0
7104 || intel_parser.in_offset
7105 || intel_parser.in_bracket
7106 || (!(current_templates->start->opcode_modifier
7107 & (Jump|JumpDword|JumpInterSegment))
7108 && !(current_templates->start->operand_types[0]
7109 & JumpAbsolute)))
7110 return intel_match_token (T_NIL);
7111 /* Remember the start of the 2nd operand and terminate 1st
7112 operand here.
7113 XXX This isn't right, yet (when SSSS:OOOO is right operand of
7114 another expression), but it gets at least the simplest case
7115 (a plain number or symbol on the left side) right. */
7116 intel_parser.next_operand = intel_parser.op_string;
7117 *--intel_parser.op_string = '\0';
7118 return intel_match_token (':');
7119 }
7120 }
7121
7122 /* e09' Empty */
7123 else
7124 break;
7125
7126 intel_match_token (cur_token.code);
7127
7128 }
7129
7130 if (in_offset)
7131 {
7132 --intel_parser.in_offset;
7133 if (nregs < 0)
7134 nregs = ~nregs;
7135 if (NUM_ADDRESS_REGS > nregs)
7136 {
7137 as_bad (_("Invalid operand to `OFFSET'"));
7138 return 0;
7139 }
7140 intel_parser.op_modifier |= 1 << T_OFFSET;
7141 }
7142
7143 if (nregs >= 0 && NUM_ADDRESS_REGS > nregs)
7144 i.base_reg = i386_regtab + REGNAM_AL + 3; /* bl is invalid as base */
7145 return 1;
7146 }
7147
7148 static int
7149 intel_bracket_expr (void)
7150 {
7151 int was_offset = intel_parser.op_modifier & (1 << T_OFFSET);
7152 const char *start = intel_parser.op_string;
7153 int len;
7154
7155 if (i.op[this_operand].regs)
7156 return intel_match_token (T_NIL);
7157
7158 intel_match_token ('[');
7159
7160 /* Mark as a memory operand only if it's not already known to be an
7161 offset expression. If it's an offset expression, we need to keep
7162 the brace in. */
7163 if (!intel_parser.in_offset)
7164 {
7165 ++intel_parser.in_bracket;
7166
7167 /* Operands for jump/call inside brackets denote absolute addresses. */
7168 if (current_templates->start->opcode_modifier & (Jump | JumpDword))
7169 i.types[this_operand] |= JumpAbsolute;
7170
7171 /* Unfortunately gas always diverged from MASM in a respect that can't
7172 be easily fixed without risking to break code sequences likely to be
7173 encountered (the testsuite even check for this): MASM doesn't consider
7174 an expression inside brackets unconditionally as a memory reference.
7175 When that is e.g. a constant, an offset expression, or the sum of the
7176 two, this is still taken as a constant load. gas, however, always
7177 treated these as memory references. As a compromise, we'll try to make
7178 offset expressions inside brackets work the MASM way (since that's
7179 less likely to be found in real world code), but make constants alone
7180 continue to work the traditional gas way. In either case, issue a
7181 warning. */
7182 intel_parser.op_modifier &= ~was_offset;
7183 }
7184 else
7185 strcat (intel_parser.disp, "[");
7186
7187 /* Add a '+' to the displacement string if necessary. */
7188 if (*intel_parser.disp != '\0'
7189 && *(intel_parser.disp + strlen (intel_parser.disp) - 1) != '+')
7190 strcat (intel_parser.disp, "+");
7191
7192 if (intel_expr ()
7193 && (len = intel_parser.op_string - start - 1,
7194 intel_match_token (']')))
7195 {
7196 /* Preserve brackets when the operand is an offset expression. */
7197 if (intel_parser.in_offset)
7198 strcat (intel_parser.disp, "]");
7199 else
7200 {
7201 --intel_parser.in_bracket;
7202 if (i.base_reg || i.index_reg)
7203 intel_parser.is_mem = 1;
7204 if (!intel_parser.is_mem)
7205 {
7206 if (!(intel_parser.op_modifier & (1 << T_OFFSET)))
7207 /* Defer the warning until all of the operand was parsed. */
7208 intel_parser.is_mem = -1;
7209 else if (!quiet_warnings)
7210 as_warn (_("`[%.*s]' taken to mean just `%.*s'"),
7211 len, start, len, start);
7212 }
7213 }
7214 intel_parser.op_modifier |= was_offset;
7215
7216 return 1;
7217 }
7218 return 0;
7219 }
7220
7221 /* e10 e11 e10'
7222
7223 e10' [ expr ] e10'
7224 | Empty */
7225 static int
7226 intel_e10 (void)
7227 {
7228 if (!intel_e11 ())
7229 return 0;
7230
7231 while (cur_token.code == '[')
7232 {
7233 if (!intel_bracket_expr ())
7234 return 0;
7235 }
7236
7237 return 1;
7238 }
7239
7240 /* e11 ( expr )
7241 | [ expr ]
7242 | BYTE
7243 | WORD
7244 | DWORD
7245 | FWORD
7246 | QWORD
7247 | TBYTE
7248 | OWORD
7249 | XMMWORD
7250 | $
7251 | .
7252 | register
7253 | id
7254 | constant */
7255 static int
7256 intel_e11 (void)
7257 {
7258 switch (cur_token.code)
7259 {
7260 /* e11 ( expr ) */
7261 case '(':
7262 intel_match_token ('(');
7263 strcat (intel_parser.disp, "(");
7264
7265 if (intel_expr () && intel_match_token (')'))
7266 {
7267 strcat (intel_parser.disp, ")");
7268 return 1;
7269 }
7270 return 0;
7271
7272 /* e11 [ expr ] */
7273 case '[':
7274 return intel_bracket_expr ();
7275
7276 /* e11 $
7277 | . */
7278 case '.':
7279 strcat (intel_parser.disp, cur_token.str);
7280 intel_match_token (cur_token.code);
7281
7282 /* Mark as a memory operand only if it's not already known to be an
7283 offset expression. */
7284 if (!intel_parser.in_offset)
7285 intel_parser.is_mem = 1;
7286
7287 return 1;
7288
7289 /* e11 register */
7290 case T_REG:
7291 {
7292 const reg_entry *reg = intel_parser.reg = cur_token.reg;
7293
7294 intel_match_token (T_REG);
7295
7296 /* Check for segment change. */
7297 if (cur_token.code == ':')
7298 {
7299 if (!(reg->reg_type & (SReg2 | SReg3)))
7300 {
7301 as_bad (_("`%s' is not a valid segment register"),
7302 reg->reg_name);
7303 return 0;
7304 }
7305 else if (i.seg[i.mem_operands])
7306 as_warn (_("Extra segment override ignored"));
7307 else
7308 {
7309 if (!intel_parser.in_offset)
7310 intel_parser.is_mem = 1;
7311 switch (reg->reg_num)
7312 {
7313 case 0:
7314 i.seg[i.mem_operands] = &es;
7315 break;
7316 case 1:
7317 i.seg[i.mem_operands] = &cs;
7318 break;
7319 case 2:
7320 i.seg[i.mem_operands] = &ss;
7321 break;
7322 case 3:
7323 i.seg[i.mem_operands] = &ds;
7324 break;
7325 case 4:
7326 i.seg[i.mem_operands] = &fs;
7327 break;
7328 case 5:
7329 i.seg[i.mem_operands] = &gs;
7330 break;
7331 }
7332 }
7333 }
7334
7335 /* Not a segment register. Check for register scaling. */
7336 else if (cur_token.code == '*')
7337 {
7338 if (!intel_parser.in_bracket)
7339 {
7340 as_bad (_("Register scaling only allowed in memory operands"));
7341 return 0;
7342 }
7343
7344 if (reg->reg_type & Reg16) /* Disallow things like [si*1]. */
7345 reg = i386_regtab + REGNAM_AX + 4; /* sp is invalid as index */
7346 else if (i.index_reg)
7347 reg = i386_regtab + REGNAM_EAX + 4; /* esp is invalid as index */
7348
7349 /* What follows must be a valid scale. */
7350 intel_match_token ('*');
7351 i.index_reg = reg;
7352 i.types[this_operand] |= BaseIndex;
7353
7354 /* Set the scale after setting the register (otherwise,
7355 i386_scale will complain) */
7356 if (cur_token.code == '+' || cur_token.code == '-')
7357 {
7358 char *str, sign = cur_token.code;
7359 intel_match_token (cur_token.code);
7360 if (cur_token.code != T_CONST)
7361 {
7362 as_bad (_("Syntax error: Expecting a constant, got `%s'"),
7363 cur_token.str);
7364 return 0;
7365 }
7366 str = (char *) xmalloc (strlen (cur_token.str) + 2);
7367 strcpy (str + 1, cur_token.str);
7368 *str = sign;
7369 if (!i386_scale (str))
7370 return 0;
7371 free (str);
7372 }
7373 else if (!i386_scale (cur_token.str))
7374 return 0;
7375 intel_match_token (cur_token.code);
7376 }
7377
7378 /* No scaling. If this is a memory operand, the register is either a
7379 base register (first occurrence) or an index register (second
7380 occurrence). */
7381 else if (intel_parser.in_bracket)
7382 {
7383
7384 if (!i.base_reg)
7385 i.base_reg = reg;
7386 else if (!i.index_reg)
7387 i.index_reg = reg;
7388 else
7389 {
7390 as_bad (_("Too many register references in memory operand"));
7391 return 0;
7392 }
7393
7394 i.types[this_operand] |= BaseIndex;
7395 }
7396
7397 /* It's neither base nor index. */
7398 else if (!intel_parser.in_offset && !intel_parser.is_mem)
7399 {
7400 i.types[this_operand] |= reg->reg_type & ~BaseIndex;
7401 i.op[this_operand].regs = reg;
7402 i.reg_operands++;
7403 }
7404 else
7405 {
7406 as_bad (_("Invalid use of register"));
7407 return 0;
7408 }
7409
7410 /* Since registers are not part of the displacement string (except
7411 when we're parsing offset operands), we may need to remove any
7412 preceding '+' from the displacement string. */
7413 if (*intel_parser.disp != '\0'
7414 && !intel_parser.in_offset)
7415 {
7416 char *s = intel_parser.disp;
7417 s += strlen (s) - 1;
7418 if (*s == '+')
7419 *s = '\0';
7420 }
7421
7422 return 1;
7423 }
7424
7425 /* e11 BYTE
7426 | WORD
7427 | DWORD
7428 | FWORD
7429 | QWORD
7430 | TBYTE
7431 | OWORD
7432 | XMMWORD */
7433 case T_BYTE:
7434 case T_WORD:
7435 case T_DWORD:
7436 case T_FWORD:
7437 case T_QWORD:
7438 case T_TBYTE:
7439 case T_XMMWORD:
7440 intel_match_token (cur_token.code);
7441
7442 if (cur_token.code == T_PTR)
7443 return 1;
7444
7445 /* It must have been an identifier. */
7446 intel_putback_token ();
7447 cur_token.code = T_ID;
7448 /* FALLTHRU */
7449
7450 /* e11 id
7451 | constant */
7452 case T_ID:
7453 if (!intel_parser.in_offset && intel_parser.is_mem <= 0)
7454 {
7455 symbolS *symbolP;
7456
7457 /* The identifier represents a memory reference only if it's not
7458 preceded by an offset modifier and if it's not an equate. */
7459 symbolP = symbol_find(cur_token.str);
7460 if (!symbolP || S_GET_SEGMENT(symbolP) != absolute_section)
7461 intel_parser.is_mem = 1;
7462 }
7463 /* FALLTHRU */
7464
7465 case T_CONST:
7466 case '-':
7467 case '+':
7468 {
7469 char *save_str, sign = 0;
7470
7471 /* Allow constants that start with `+' or `-'. */
7472 if (cur_token.code == '-' || cur_token.code == '+')
7473 {
7474 sign = cur_token.code;
7475 intel_match_token (cur_token.code);
7476 if (cur_token.code != T_CONST)
7477 {
7478 as_bad (_("Syntax error: Expecting a constant, got `%s'"),
7479 cur_token.str);
7480 return 0;
7481 }
7482 }
7483
7484 save_str = (char *) xmalloc (strlen (cur_token.str) + 2);
7485 strcpy (save_str + !!sign, cur_token.str);
7486 if (sign)
7487 *save_str = sign;
7488
7489 /* Get the next token to check for register scaling. */
7490 intel_match_token (cur_token.code);
7491
7492 /* Check if this constant is a scaling factor for an
7493 index register. */
7494 if (cur_token.code == '*')
7495 {
7496 if (intel_match_token ('*') && cur_token.code == T_REG)
7497 {
7498 const reg_entry *reg = cur_token.reg;
7499
7500 if (!intel_parser.in_bracket)
7501 {
7502 as_bad (_("Register scaling only allowed "
7503 "in memory operands"));
7504 return 0;
7505 }
7506
7507 /* Disallow things like [1*si].
7508 sp and esp are invalid as index. */
7509 if (reg->reg_type & Reg16)
7510 reg = i386_regtab + REGNAM_AX + 4;
7511 else if (i.index_reg)
7512 reg = i386_regtab + REGNAM_EAX + 4;
7513
7514 /* The constant is followed by `* reg', so it must be
7515 a valid scale. */
7516 i.index_reg = reg;
7517 i.types[this_operand] |= BaseIndex;
7518
7519 /* Set the scale after setting the register (otherwise,
7520 i386_scale will complain) */
7521 if (!i386_scale (save_str))
7522 return 0;
7523 intel_match_token (T_REG);
7524
7525 /* Since registers are not part of the displacement
7526 string, we may need to remove any preceding '+' from
7527 the displacement string. */
7528 if (*intel_parser.disp != '\0')
7529 {
7530 char *s = intel_parser.disp;
7531 s += strlen (s) - 1;
7532 if (*s == '+')
7533 *s = '\0';
7534 }
7535
7536 free (save_str);
7537
7538 return 1;
7539 }
7540
7541 /* The constant was not used for register scaling. Since we have
7542 already consumed the token following `*' we now need to put it
7543 back in the stream. */
7544 intel_putback_token ();
7545 }
7546
7547 /* Add the constant to the displacement string. */
7548 strcat (intel_parser.disp, save_str);
7549 free (save_str);
7550
7551 return 1;
7552 }
7553 }
7554
7555 as_bad (_("Unrecognized token '%s'"), cur_token.str);
7556 return 0;
7557 }
7558
7559 /* Match the given token against cur_token. If they match, read the next
7560 token from the operand string. */
7561 static int
7562 intel_match_token (int code)
7563 {
7564 if (cur_token.code == code)
7565 {
7566 intel_get_token ();
7567 return 1;
7568 }
7569 else
7570 {
7571 as_bad (_("Unexpected token `%s'"), cur_token.str);
7572 return 0;
7573 }
7574 }
7575
7576 /* Read a new token from intel_parser.op_string and store it in cur_token. */
7577 static void
7578 intel_get_token (void)
7579 {
7580 char *end_op;
7581 const reg_entry *reg;
7582 struct intel_token new_token;
7583
7584 new_token.code = T_NIL;
7585 new_token.reg = NULL;
7586 new_token.str = NULL;
7587
7588 /* Free the memory allocated to the previous token and move
7589 cur_token to prev_token. */
7590 if (prev_token.str)
7591 free (prev_token.str);
7592
7593 prev_token = cur_token;
7594
7595 /* Skip whitespace. */
7596 while (is_space_char (*intel_parser.op_string))
7597 intel_parser.op_string++;
7598
7599 /* Return an empty token if we find nothing else on the line. */
7600 if (*intel_parser.op_string == '\0')
7601 {
7602 cur_token = new_token;
7603 return;
7604 }
7605
7606 /* The new token cannot be larger than the remainder of the operand
7607 string. */
7608 new_token.str = (char *) xmalloc (strlen (intel_parser.op_string) + 1);
7609 new_token.str[0] = '\0';
7610
7611 if (strchr ("0123456789", *intel_parser.op_string))
7612 {
7613 char *p = new_token.str;
7614 char *q = intel_parser.op_string;
7615 new_token.code = T_CONST;
7616
7617 /* Allow any kind of identifier char to encompass floating point and
7618 hexadecimal numbers. */
7619 while (is_identifier_char (*q))
7620 *p++ = *q++;
7621 *p = '\0';
7622
7623 /* Recognize special symbol names [0-9][bf]. */
7624 if (strlen (intel_parser.op_string) == 2
7625 && (intel_parser.op_string[1] == 'b'
7626 || intel_parser.op_string[1] == 'f'))
7627 new_token.code = T_ID;
7628 }
7629
7630 else if ((reg = parse_register (intel_parser.op_string, &end_op)) != NULL)
7631 {
7632 size_t len = end_op - intel_parser.op_string;
7633
7634 new_token.code = T_REG;
7635 new_token.reg = reg;
7636
7637 memcpy (new_token.str, intel_parser.op_string, len);
7638 new_token.str[len] = '\0';
7639 }
7640
7641 else if (is_identifier_char (*intel_parser.op_string))
7642 {
7643 char *p = new_token.str;
7644 char *q = intel_parser.op_string;
7645
7646 /* A '.' or '$' followed by an identifier char is an identifier.
7647 Otherwise, it's operator '.' followed by an expression. */
7648 if ((*q == '.' || *q == '$') && !is_identifier_char (*(q + 1)))
7649 {
7650 new_token.code = '.';
7651 new_token.str[0] = '.';
7652 new_token.str[1] = '\0';
7653 }
7654 else
7655 {
7656 while (is_identifier_char (*q) || *q == '@')
7657 *p++ = *q++;
7658 *p = '\0';
7659
7660 if (strcasecmp (new_token.str, "NOT") == 0)
7661 new_token.code = '~';
7662
7663 else if (strcasecmp (new_token.str, "MOD") == 0)
7664 new_token.code = '%';
7665
7666 else if (strcasecmp (new_token.str, "AND") == 0)
7667 new_token.code = '&';
7668
7669 else if (strcasecmp (new_token.str, "OR") == 0)
7670 new_token.code = '|';
7671
7672 else if (strcasecmp (new_token.str, "XOR") == 0)
7673 new_token.code = '^';
7674
7675 else if (strcasecmp (new_token.str, "SHL") == 0)
7676 new_token.code = T_SHL;
7677
7678 else if (strcasecmp (new_token.str, "SHR") == 0)
7679 new_token.code = T_SHR;
7680
7681 else if (strcasecmp (new_token.str, "BYTE") == 0)
7682 new_token.code = T_BYTE;
7683
7684 else if (strcasecmp (new_token.str, "WORD") == 0)
7685 new_token.code = T_WORD;
7686
7687 else if (strcasecmp (new_token.str, "DWORD") == 0)
7688 new_token.code = T_DWORD;
7689
7690 else if (strcasecmp (new_token.str, "FWORD") == 0)
7691 new_token.code = T_FWORD;
7692
7693 else if (strcasecmp (new_token.str, "QWORD") == 0)
7694 new_token.code = T_QWORD;
7695
7696 else if (strcasecmp (new_token.str, "TBYTE") == 0
7697 /* XXX remove (gcc still uses it) */
7698 || strcasecmp (new_token.str, "XWORD") == 0)
7699 new_token.code = T_TBYTE;
7700
7701 else if (strcasecmp (new_token.str, "XMMWORD") == 0
7702 || strcasecmp (new_token.str, "OWORD") == 0)
7703 new_token.code = T_XMMWORD;
7704
7705 else if (strcasecmp (new_token.str, "PTR") == 0)
7706 new_token.code = T_PTR;
7707
7708 else if (strcasecmp (new_token.str, "SHORT") == 0)
7709 new_token.code = T_SHORT;
7710
7711 else if (strcasecmp (new_token.str, "OFFSET") == 0)
7712 {
7713 new_token.code = T_OFFSET;
7714
7715 /* ??? This is not mentioned in the MASM grammar but gcc
7716 makes use of it with -mintel-syntax. OFFSET may be
7717 followed by FLAT: */
7718 if (strncasecmp (q, " FLAT:", 6) == 0)
7719 strcat (new_token.str, " FLAT:");
7720 }
7721
7722 /* ??? This is not mentioned in the MASM grammar. */
7723 else if (strcasecmp (new_token.str, "FLAT") == 0)
7724 {
7725 new_token.code = T_OFFSET;
7726 if (*q == ':')
7727 strcat (new_token.str, ":");
7728 else
7729 as_bad (_("`:' expected"));
7730 }
7731
7732 else
7733 new_token.code = T_ID;
7734 }
7735 }
7736
7737 else if (strchr ("+-/*%|&^:[]()~", *intel_parser.op_string))
7738 {
7739 new_token.code = *intel_parser.op_string;
7740 new_token.str[0] = *intel_parser.op_string;
7741 new_token.str[1] = '\0';
7742 }
7743
7744 else if (strchr ("<>", *intel_parser.op_string)
7745 && *intel_parser.op_string == *(intel_parser.op_string + 1))
7746 {
7747 new_token.code = *intel_parser.op_string == '<' ? T_SHL : T_SHR;
7748 new_token.str[0] = *intel_parser.op_string;
7749 new_token.str[1] = *intel_parser.op_string;
7750 new_token.str[2] = '\0';
7751 }
7752
7753 else
7754 as_bad (_("Unrecognized token `%s'"), intel_parser.op_string);
7755
7756 intel_parser.op_string += strlen (new_token.str);
7757 cur_token = new_token;
7758 }
7759
7760 /* Put cur_token back into the token stream and make cur_token point to
7761 prev_token. */
7762 static void
7763 intel_putback_token (void)
7764 {
7765 if (cur_token.code != T_NIL)
7766 {
7767 intel_parser.op_string -= strlen (cur_token.str);
7768 free (cur_token.str);
7769 }
7770 cur_token = prev_token;
7771
7772 /* Forget prev_token. */
7773 prev_token.code = T_NIL;
7774 prev_token.reg = NULL;
7775 prev_token.str = NULL;
7776 }
7777
7778 int
7779 tc_x86_regname_to_dw2regnum (char *regname)
7780 {
7781 unsigned int regnum;
7782 unsigned int regnames_count;
7783 static const char *const regnames_32[] =
7784 {
7785 "eax", "ecx", "edx", "ebx",
7786 "esp", "ebp", "esi", "edi",
7787 "eip", "eflags", NULL,
7788 "st0", "st1", "st2", "st3",
7789 "st4", "st5", "st6", "st7",
7790 NULL, NULL,
7791 "xmm0", "xmm1", "xmm2", "xmm3",
7792 "xmm4", "xmm5", "xmm6", "xmm7",
7793 "mm0", "mm1", "mm2", "mm3",
7794 "mm4", "mm5", "mm6", "mm7",
7795 "fcw", "fsw", "mxcsr",
7796 "es", "cs", "ss", "ds", "fs", "gs", NULL, NULL,
7797 "tr", "ldtr"
7798 };
7799 static const char *const regnames_64[] =
7800 {
7801 "rax", "rdx", "rcx", "rbx",
7802 "rsi", "rdi", "rbp", "rsp",
7803 "r8", "r9", "r10", "r11",
7804 "r12", "r13", "r14", "r15",
7805 "rip",
7806 "xmm0", "xmm1", "xmm2", "xmm3",
7807 "xmm4", "xmm5", "xmm6", "xmm7",
7808 "xmm8", "xmm9", "xmm10", "xmm11",
7809 "xmm12", "xmm13", "xmm14", "xmm15",
7810 "st0", "st1", "st2", "st3",
7811 "st4", "st5", "st6", "st7",
7812 "mm0", "mm1", "mm2", "mm3",
7813 "mm4", "mm5", "mm6", "mm7",
7814 "rflags",
7815 "es", "cs", "ss", "ds", "fs", "gs", NULL, NULL,
7816 "fs.base", "gs.base", NULL, NULL,
7817 "tr", "ldtr",
7818 "mxcsr", "fcw", "fsw"
7819 };
7820 const char *const *regnames;
7821
7822 if (flag_code == CODE_64BIT)
7823 {
7824 regnames = regnames_64;
7825 regnames_count = ARRAY_SIZE (regnames_64);
7826 }
7827 else
7828 {
7829 regnames = regnames_32;
7830 regnames_count = ARRAY_SIZE (regnames_32);
7831 }
7832
7833 for (regnum = 0; regnum < regnames_count; regnum++)
7834 if (regnames[regnum] != NULL
7835 && strcmp (regname, regnames[regnum]) == 0)
7836 return regnum;
7837
7838 return -1;
7839 }
7840
7841 void
7842 tc_x86_frame_initial_instructions (void)
7843 {
7844 static unsigned int sp_regno;
7845
7846 if (!sp_regno)
7847 sp_regno = tc_x86_regname_to_dw2regnum (flag_code == CODE_64BIT
7848 ? "rsp" : "esp");
7849
7850 cfi_add_CFA_def_cfa (sp_regno, -x86_cie_data_alignment);
7851 cfi_add_CFA_offset (x86_dwarf2_return_column, x86_cie_data_alignment);
7852 }
7853
7854 int
7855 i386_elf_section_type (const char *str, size_t len)
7856 {
7857 if (flag_code == CODE_64BIT
7858 && len == sizeof ("unwind") - 1
7859 && strncmp (str, "unwind", 6) == 0)
7860 return SHT_X86_64_UNWIND;
7861
7862 return -1;
7863 }
7864
7865 #ifdef TE_PE
7866 void
7867 tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
7868 {
7869 expressionS expr;
7870
7871 expr.X_op = O_secrel;
7872 expr.X_add_symbol = symbol;
7873 expr.X_add_number = 0;
7874 emit_expr (&expr, size);
7875 }
7876 #endif
7877
7878 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7879 /* For ELF on x86-64, add support for SHF_X86_64_LARGE. */
7880
7881 int
7882 x86_64_section_letter (int letter, char **ptr_msg)
7883 {
7884 if (flag_code == CODE_64BIT)
7885 {
7886 if (letter == 'l')
7887 return SHF_X86_64_LARGE;
7888
7889 *ptr_msg = _("Bad .section directive: want a,l,w,x,M,S,G,T in string");
7890 }
7891 else
7892 *ptr_msg = _("Bad .section directive: want a,w,x,M,S,G,T in string");
7893 return -1;
7894 }
7895
7896 int
7897 x86_64_section_word (char *str, size_t len)
7898 {
7899 if (len == 5 && flag_code == CODE_64BIT && CONST_STRNEQ (str, "large"))
7900 return SHF_X86_64_LARGE;
7901
7902 return -1;
7903 }
7904
7905 static void
7906 handle_large_common (int small ATTRIBUTE_UNUSED)
7907 {
7908 if (flag_code != CODE_64BIT)
7909 {
7910 s_comm_internal (0, elf_common_parse);
7911 as_warn (_(".largecomm supported only in 64bit mode, producing .comm"));
7912 }
7913 else
7914 {
7915 static segT lbss_section;
7916 asection *saved_com_section_ptr = elf_com_section_ptr;
7917 asection *saved_bss_section = bss_section;
7918
7919 if (lbss_section == NULL)
7920 {
7921 flagword applicable;
7922 segT seg = now_seg;
7923 subsegT subseg = now_subseg;
7924
7925 /* The .lbss section is for local .largecomm symbols. */
7926 lbss_section = subseg_new (".lbss", 0);
7927 applicable = bfd_applicable_section_flags (stdoutput);
7928 bfd_set_section_flags (stdoutput, lbss_section,
7929 applicable & SEC_ALLOC);
7930 seg_info (lbss_section)->bss = 1;
7931
7932 subseg_set (seg, subseg);
7933 }
7934
7935 elf_com_section_ptr = &_bfd_elf_large_com_section;
7936 bss_section = lbss_section;
7937
7938 s_comm_internal (0, elf_common_parse);
7939
7940 elf_com_section_ptr = saved_com_section_ptr;
7941 bss_section = saved_bss_section;
7942 }
7943 }
7944 #endif /* OBJ_ELF || OBJ_MAYBE_ELF */
This page took 0.21146 seconds and 4 git commands to generate.