Updated sources to avoid using the identifier name "new", which is a
[deliverable/binutils-gdb.git] / gas / config / tc-i386.c
1 /* tc-i386.c -- Assemble code for the Intel 80386
2 Copyright 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
4 Free Software Foundation, Inc.
5
6 This file is part of GAS, the GNU Assembler.
7
8 GAS is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
12
13 GAS is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GAS; see the file COPYING. If not, write to the Free
20 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
21 02110-1301, USA. */
22
23 /* Intel 80386 machine specific gas.
24 Written by Eliot Dresselhaus (eliot@mgm.mit.edu).
25 x86_64 support by Jan Hubicka (jh@suse.cz)
26 VIA PadLock support by Michal Ludvig (mludvig@suse.cz)
27 Bugs & suggestions are completely welcome. This is free software.
28 Please help us make it better. */
29
30 #include "as.h"
31 #include "safe-ctype.h"
32 #include "subsegs.h"
33 #include "dwarf2dbg.h"
34 #include "dw2gencfi.h"
35 #include "elf/x86-64.h"
36 #include "opcodes/i386-init.h"
37
38 #ifndef REGISTER_WARNINGS
39 #define REGISTER_WARNINGS 1
40 #endif
41
42 #ifndef INFER_ADDR_PREFIX
43 #define INFER_ADDR_PREFIX 1
44 #endif
45
46 #ifndef DEFAULT_ARCH
47 #define DEFAULT_ARCH "i386"
48 #endif
49
50 #ifndef INLINE
51 #if __GNUC__ >= 2
52 #define INLINE __inline__
53 #else
54 #define INLINE
55 #endif
56 #endif
57
58 /* Prefixes will be emitted in the order defined below.
59 WAIT_PREFIX must be the first prefix since FWAIT is really is an
60 instruction, and so must come before any prefixes.
61 The preferred prefix order is SEG_PREFIX, ADDR_PREFIX, DATA_PREFIX,
62 LOCKREP_PREFIX. */
63 #define WAIT_PREFIX 0
64 #define SEG_PREFIX 1
65 #define ADDR_PREFIX 2
66 #define DATA_PREFIX 3
67 #define LOCKREP_PREFIX 4
68 #define REX_PREFIX 5 /* must come last. */
69 #define MAX_PREFIXES 6 /* max prefixes per opcode */
70
71 /* we define the syntax here (modulo base,index,scale syntax) */
72 #define REGISTER_PREFIX '%'
73 #define IMMEDIATE_PREFIX '$'
74 #define ABSOLUTE_PREFIX '*'
75
76 /* these are the instruction mnemonic suffixes in AT&T syntax or
77 memory operand size in Intel syntax. */
78 #define WORD_MNEM_SUFFIX 'w'
79 #define BYTE_MNEM_SUFFIX 'b'
80 #define SHORT_MNEM_SUFFIX 's'
81 #define LONG_MNEM_SUFFIX 'l'
82 #define QWORD_MNEM_SUFFIX 'q'
83 #define XMMWORD_MNEM_SUFFIX 'x'
84 #define YMMWORD_MNEM_SUFFIX 'y'
85 /* Intel Syntax. Use a non-ascii letter since since it never appears
86 in instructions. */
87 #define LONG_DOUBLE_MNEM_SUFFIX '\1'
88
89 #define END_OF_INSN '\0'
90
91 /*
92 'templates' is for grouping together 'template' structures for opcodes
93 of the same name. This is only used for storing the insns in the grand
94 ole hash table of insns.
95 The templates themselves start at START and range up to (but not including)
96 END.
97 */
98 typedef struct
99 {
100 const insn_template *start;
101 const insn_template *end;
102 }
103 templates;
104
105 /* 386 operand encoding bytes: see 386 book for details of this. */
106 typedef struct
107 {
108 unsigned int regmem; /* codes register or memory operand */
109 unsigned int reg; /* codes register operand (or extended opcode) */
110 unsigned int mode; /* how to interpret regmem & reg */
111 }
112 modrm_byte;
113
114 /* x86-64 extension prefix. */
115 typedef int rex_byte;
116
117 /* 386 opcode byte to code indirect addressing. */
118 typedef struct
119 {
120 unsigned base;
121 unsigned index;
122 unsigned scale;
123 }
124 sib_byte;
125
126 /* x86 arch names, types and features */
127 typedef struct
128 {
129 const char *name; /* arch name */
130 enum processor_type type; /* arch type */
131 i386_cpu_flags flags; /* cpu feature flags */
132 }
133 arch_entry;
134
135 static void set_code_flag (int);
136 static void set_16bit_gcc_code_flag (int);
137 static void set_intel_syntax (int);
138 static void set_intel_mnemonic (int);
139 static void set_allow_index_reg (int);
140 static void set_sse_check (int);
141 static void set_cpu_arch (int);
142 #ifdef TE_PE
143 static void pe_directive_secrel (int);
144 #endif
145 static void signed_cons (int);
146 static char *output_invalid (int c);
147 static int i386_finalize_immediate (segT, expressionS *, i386_operand_type,
148 const char *);
149 static int i386_finalize_displacement (segT, expressionS *, i386_operand_type,
150 const char *);
151 static int i386_att_operand (char *);
152 static int i386_intel_operand (char *, int);
153 static int i386_intel_simplify (expressionS *);
154 static int i386_intel_parse_name (const char *, expressionS *);
155 static const reg_entry *parse_register (char *, char **);
156 static char *parse_insn (char *, char *);
157 static char *parse_operands (char *, const char *);
158 static void swap_operands (void);
159 static void swap_2_operands (int, int);
160 static void optimize_imm (void);
161 static void optimize_disp (void);
162 static const insn_template *match_template (void);
163 static int check_string (void);
164 static int process_suffix (void);
165 static int check_byte_reg (void);
166 static int check_long_reg (void);
167 static int check_qword_reg (void);
168 static int check_word_reg (void);
169 static int finalize_imm (void);
170 static int process_operands (void);
171 static const seg_entry *build_modrm_byte (void);
172 static void output_insn (void);
173 static void output_imm (fragS *, offsetT);
174 static void output_disp (fragS *, offsetT);
175 #ifndef I386COFF
176 static void s_bss (int);
177 #endif
178 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
179 static void handle_large_common (int small ATTRIBUTE_UNUSED);
180 #endif
181
182 static const char *default_arch = DEFAULT_ARCH;
183
184 /* VEX prefix. */
185 typedef struct
186 {
187 /* VEX prefix is either 2 byte or 3 byte. */
188 unsigned char bytes[3];
189 unsigned int length;
190 /* Destination or source register specifier. */
191 const reg_entry *register_specifier;
192 } vex_prefix;
193
194 /* 'md_assemble ()' gathers together information and puts it into a
195 i386_insn. */
196
197 union i386_op
198 {
199 expressionS *disps;
200 expressionS *imms;
201 const reg_entry *regs;
202 };
203
204 struct _i386_insn
205 {
206 /* TM holds the template for the insn were currently assembling. */
207 insn_template tm;
208
209 /* SUFFIX holds the instruction size suffix for byte, word, dword
210 or qword, if given. */
211 char suffix;
212
213 /* OPERANDS gives the number of given operands. */
214 unsigned int operands;
215
216 /* REG_OPERANDS, DISP_OPERANDS, MEM_OPERANDS, IMM_OPERANDS give the number
217 of given register, displacement, memory operands and immediate
218 operands. */
219 unsigned int reg_operands, disp_operands, mem_operands, imm_operands;
220
221 /* TYPES [i] is the type (see above #defines) which tells us how to
222 use OP[i] for the corresponding operand. */
223 i386_operand_type types[MAX_OPERANDS];
224
225 /* Displacement expression, immediate expression, or register for each
226 operand. */
227 union i386_op op[MAX_OPERANDS];
228
229 /* Flags for operands. */
230 unsigned int flags[MAX_OPERANDS];
231 #define Operand_PCrel 1
232
233 /* Relocation type for operand */
234 enum bfd_reloc_code_real reloc[MAX_OPERANDS];
235
236 /* BASE_REG, INDEX_REG, and LOG2_SCALE_FACTOR are used to encode
237 the base index byte below. */
238 const reg_entry *base_reg;
239 const reg_entry *index_reg;
240 unsigned int log2_scale_factor;
241
242 /* SEG gives the seg_entries of this insn. They are zero unless
243 explicit segment overrides are given. */
244 const seg_entry *seg[2];
245
246 /* PREFIX holds all the given prefix opcodes (usually null).
247 PREFIXES is the number of prefix opcodes. */
248 unsigned int prefixes;
249 unsigned char prefix[MAX_PREFIXES];
250
251 /* RM and SIB are the modrm byte and the sib byte where the
252 addressing modes of this insn are encoded. */
253 modrm_byte rm;
254 rex_byte rex;
255 sib_byte sib;
256 vex_prefix vex;
257
258 /* Swap operand in encoding. */
259 unsigned int swap_operand : 1;
260 };
261
262 typedef struct _i386_insn i386_insn;
263
264 /* List of chars besides those in app.c:symbol_chars that can start an
265 operand. Used to prevent the scrubber eating vital white-space. */
266 const char extra_symbol_chars[] = "*%-(["
267 #ifdef LEX_AT
268 "@"
269 #endif
270 #ifdef LEX_QM
271 "?"
272 #endif
273 ;
274
275 #if (defined (TE_I386AIX) \
276 || ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) \
277 && !defined (TE_GNU) \
278 && !defined (TE_LINUX) \
279 && !defined (TE_NETWARE) \
280 && !defined (TE_FreeBSD) \
281 && !defined (TE_NetBSD)))
282 /* This array holds the chars that always start a comment. If the
283 pre-processor is disabled, these aren't very useful. The option
284 --divide will remove '/' from this list. */
285 const char *i386_comment_chars = "#/";
286 #define SVR4_COMMENT_CHARS 1
287 #define PREFIX_SEPARATOR '\\'
288
289 #else
290 const char *i386_comment_chars = "#";
291 #define PREFIX_SEPARATOR '/'
292 #endif
293
294 /* This array holds the chars that only start a comment at the beginning of
295 a line. If the line seems to have the form '# 123 filename'
296 .line and .file directives will appear in the pre-processed output.
297 Note that input_file.c hand checks for '#' at the beginning of the
298 first line of the input file. This is because the compiler outputs
299 #NO_APP at the beginning of its output.
300 Also note that comments started like this one will always work if
301 '/' isn't otherwise defined. */
302 const char line_comment_chars[] = "#/";
303
304 const char line_separator_chars[] = ";";
305
306 /* Chars that can be used to separate mant from exp in floating point
307 nums. */
308 const char EXP_CHARS[] = "eE";
309
310 /* Chars that mean this number is a floating point constant
311 As in 0f12.456
312 or 0d1.2345e12. */
313 const char FLT_CHARS[] = "fFdDxX";
314
315 /* Tables for lexical analysis. */
316 static char mnemonic_chars[256];
317 static char register_chars[256];
318 static char operand_chars[256];
319 static char identifier_chars[256];
320 static char digit_chars[256];
321
322 /* Lexical macros. */
323 #define is_mnemonic_char(x) (mnemonic_chars[(unsigned char) x])
324 #define is_operand_char(x) (operand_chars[(unsigned char) x])
325 #define is_register_char(x) (register_chars[(unsigned char) x])
326 #define is_space_char(x) ((x) == ' ')
327 #define is_identifier_char(x) (identifier_chars[(unsigned char) x])
328 #define is_digit_char(x) (digit_chars[(unsigned char) x])
329
330 /* All non-digit non-letter characters that may occur in an operand. */
331 static char operand_special_chars[] = "%$-+(,)*._~/<>|&^!:[@]";
332
333 /* md_assemble() always leaves the strings it's passed unaltered. To
334 effect this we maintain a stack of saved characters that we've smashed
335 with '\0's (indicating end of strings for various sub-fields of the
336 assembler instruction). */
337 static char save_stack[32];
338 static char *save_stack_p;
339 #define END_STRING_AND_SAVE(s) \
340 do { *save_stack_p++ = *(s); *(s) = '\0'; } while (0)
341 #define RESTORE_END_STRING(s) \
342 do { *(s) = *--save_stack_p; } while (0)
343
344 /* The instruction we're assembling. */
345 static i386_insn i;
346
347 /* Possible templates for current insn. */
348 static const templates *current_templates;
349
350 /* Per instruction expressionS buffers: max displacements & immediates. */
351 static expressionS disp_expressions[MAX_MEMORY_OPERANDS];
352 static expressionS im_expressions[MAX_IMMEDIATE_OPERANDS];
353
354 /* Current operand we are working on. */
355 static int this_operand = -1;
356
357 /* We support four different modes. FLAG_CODE variable is used to distinguish
358 these. */
359
360 enum flag_code {
361 CODE_32BIT,
362 CODE_16BIT,
363 CODE_64BIT };
364
365 static enum flag_code flag_code;
366 static unsigned int object_64bit;
367 static int use_rela_relocations = 0;
368
369 /* The names used to print error messages. */
370 static const char *flag_code_names[] =
371 {
372 "32",
373 "16",
374 "64"
375 };
376
377 /* 1 for intel syntax,
378 0 if att syntax. */
379 static int intel_syntax = 0;
380
381 /* 1 for intel mnemonic,
382 0 if att mnemonic. */
383 static int intel_mnemonic = !SYSV386_COMPAT;
384
385 /* 1 if support old (<= 2.8.1) versions of gcc. */
386 static int old_gcc = OLDGCC_COMPAT;
387
388 /* 1 if pseudo registers are permitted. */
389 static int allow_pseudo_reg = 0;
390
391 /* 1 if register prefix % not required. */
392 static int allow_naked_reg = 0;
393
394 /* 1 if pseudo index register, eiz/riz, is allowed . */
395 static int allow_index_reg = 0;
396
397 static enum
398 {
399 sse_check_none = 0,
400 sse_check_warning,
401 sse_check_error
402 }
403 sse_check;
404
405 /* Register prefix used for error message. */
406 static const char *register_prefix = "%";
407
408 /* Used in 16 bit gcc mode to add an l suffix to call, ret, enter,
409 leave, push, and pop instructions so that gcc has the same stack
410 frame as in 32 bit mode. */
411 static char stackop_size = '\0';
412
413 /* Non-zero to optimize code alignment. */
414 int optimize_align_code = 1;
415
416 /* Non-zero to quieten some warnings. */
417 static int quiet_warnings = 0;
418
419 /* CPU name. */
420 static const char *cpu_arch_name = NULL;
421 static char *cpu_sub_arch_name = NULL;
422
423 /* CPU feature flags. */
424 static i386_cpu_flags cpu_arch_flags = CPU_UNKNOWN_FLAGS;
425
426 /* If we have selected a cpu we are generating instructions for. */
427 static int cpu_arch_tune_set = 0;
428
429 /* Cpu we are generating instructions for. */
430 enum processor_type cpu_arch_tune = PROCESSOR_UNKNOWN;
431
432 /* CPU feature flags of cpu we are generating instructions for. */
433 static i386_cpu_flags cpu_arch_tune_flags;
434
435 /* CPU instruction set architecture used. */
436 enum processor_type cpu_arch_isa = PROCESSOR_UNKNOWN;
437
438 /* CPU feature flags of instruction set architecture used. */
439 i386_cpu_flags cpu_arch_isa_flags;
440
441 /* If set, conditional jumps are not automatically promoted to handle
442 larger than a byte offset. */
443 static unsigned int no_cond_jump_promotion = 0;
444
445 /* Encode SSE instructions with VEX prefix. */
446 static unsigned int sse2avx;
447
448 /* Pre-defined "_GLOBAL_OFFSET_TABLE_". */
449 static symbolS *GOT_symbol;
450
451 /* The dwarf2 return column, adjusted for 32 or 64 bit. */
452 unsigned int x86_dwarf2_return_column;
453
454 /* The dwarf2 data alignment, adjusted for 32 or 64 bit. */
455 int x86_cie_data_alignment;
456
457 /* Interface to relax_segment.
458 There are 3 major relax states for 386 jump insns because the
459 different types of jumps add different sizes to frags when we're
460 figuring out what sort of jump to choose to reach a given label. */
461
462 /* Types. */
463 #define UNCOND_JUMP 0
464 #define COND_JUMP 1
465 #define COND_JUMP86 2
466
467 /* Sizes. */
468 #define CODE16 1
469 #define SMALL 0
470 #define SMALL16 (SMALL | CODE16)
471 #define BIG 2
472 #define BIG16 (BIG | CODE16)
473
474 #ifndef INLINE
475 #ifdef __GNUC__
476 #define INLINE __inline__
477 #else
478 #define INLINE
479 #endif
480 #endif
481
482 #define ENCODE_RELAX_STATE(type, size) \
483 ((relax_substateT) (((type) << 2) | (size)))
484 #define TYPE_FROM_RELAX_STATE(s) \
485 ((s) >> 2)
486 #define DISP_SIZE_FROM_RELAX_STATE(s) \
487 ((((s) & 3) == BIG ? 4 : (((s) & 3) == BIG16 ? 2 : 1)))
488
489 /* This table is used by relax_frag to promote short jumps to long
490 ones where necessary. SMALL (short) jumps may be promoted to BIG
491 (32 bit long) ones, and SMALL16 jumps to BIG16 (16 bit long). We
492 don't allow a short jump in a 32 bit code segment to be promoted to
493 a 16 bit offset jump because it's slower (requires data size
494 prefix), and doesn't work, unless the destination is in the bottom
495 64k of the code segment (The top 16 bits of eip are zeroed). */
496
497 const relax_typeS md_relax_table[] =
498 {
499 /* The fields are:
500 1) most positive reach of this state,
501 2) most negative reach of this state,
502 3) how many bytes this mode will have in the variable part of the frag
503 4) which index into the table to try if we can't fit into this one. */
504
505 /* UNCOND_JUMP states. */
506 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG)},
507 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16)},
508 /* dword jmp adds 4 bytes to frag:
509 0 extra opcode bytes, 4 displacement bytes. */
510 {0, 0, 4, 0},
511 /* word jmp adds 2 byte2 to frag:
512 0 extra opcode bytes, 2 displacement bytes. */
513 {0, 0, 2, 0},
514
515 /* COND_JUMP states. */
516 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG)},
517 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG16)},
518 /* dword conditionals adds 5 bytes to frag:
519 1 extra opcode byte, 4 displacement bytes. */
520 {0, 0, 5, 0},
521 /* word conditionals add 3 bytes to frag:
522 1 extra opcode byte, 2 displacement bytes. */
523 {0, 0, 3, 0},
524
525 /* COND_JUMP86 states. */
526 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG)},
527 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG16)},
528 /* dword conditionals adds 5 bytes to frag:
529 1 extra opcode byte, 4 displacement bytes. */
530 {0, 0, 5, 0},
531 /* word conditionals add 4 bytes to frag:
532 1 displacement byte and a 3 byte long branch insn. */
533 {0, 0, 4, 0}
534 };
535
536 static const arch_entry cpu_arch[] =
537 {
538 { "generic32", PROCESSOR_GENERIC32,
539 CPU_GENERIC32_FLAGS },
540 { "generic64", PROCESSOR_GENERIC64,
541 CPU_GENERIC64_FLAGS },
542 { "i8086", PROCESSOR_UNKNOWN,
543 CPU_NONE_FLAGS },
544 { "i186", PROCESSOR_UNKNOWN,
545 CPU_I186_FLAGS },
546 { "i286", PROCESSOR_UNKNOWN,
547 CPU_I286_FLAGS },
548 { "i386", PROCESSOR_I386,
549 CPU_I386_FLAGS },
550 { "i486", PROCESSOR_I486,
551 CPU_I486_FLAGS },
552 { "i586", PROCESSOR_PENTIUM,
553 CPU_I586_FLAGS },
554 { "i686", PROCESSOR_PENTIUMPRO,
555 CPU_I686_FLAGS },
556 { "pentium", PROCESSOR_PENTIUM,
557 CPU_I586_FLAGS },
558 { "pentiumpro", PROCESSOR_PENTIUMPRO,
559 CPU_I686_FLAGS },
560 { "pentiumii", PROCESSOR_PENTIUMPRO,
561 CPU_P2_FLAGS },
562 { "pentiumiii",PROCESSOR_PENTIUMPRO,
563 CPU_P3_FLAGS },
564 { "pentium4", PROCESSOR_PENTIUM4,
565 CPU_P4_FLAGS },
566 { "prescott", PROCESSOR_NOCONA,
567 CPU_CORE_FLAGS },
568 { "nocona", PROCESSOR_NOCONA,
569 CPU_NOCONA_FLAGS },
570 { "yonah", PROCESSOR_CORE,
571 CPU_CORE_FLAGS },
572 { "core", PROCESSOR_CORE,
573 CPU_CORE_FLAGS },
574 { "merom", PROCESSOR_CORE2,
575 CPU_CORE2_FLAGS },
576 { "core2", PROCESSOR_CORE2,
577 CPU_CORE2_FLAGS },
578 { "corei7", PROCESSOR_COREI7,
579 CPU_COREI7_FLAGS },
580 { "l1om", PROCESSOR_L1OM,
581 CPU_L1OM_FLAGS },
582 { "k6", PROCESSOR_K6,
583 CPU_K6_FLAGS },
584 { "k6_2", PROCESSOR_K6,
585 CPU_K6_2_FLAGS },
586 { "athlon", PROCESSOR_ATHLON,
587 CPU_ATHLON_FLAGS },
588 { "sledgehammer", PROCESSOR_K8,
589 CPU_K8_FLAGS },
590 { "opteron", PROCESSOR_K8,
591 CPU_K8_FLAGS },
592 { "k8", PROCESSOR_K8,
593 CPU_K8_FLAGS },
594 { "amdfam10", PROCESSOR_AMDFAM10,
595 CPU_AMDFAM10_FLAGS },
596 { ".8087", PROCESSOR_UNKNOWN,
597 CPU_8087_FLAGS },
598 { ".287", PROCESSOR_UNKNOWN,
599 CPU_287_FLAGS },
600 { ".387", PROCESSOR_UNKNOWN,
601 CPU_387_FLAGS },
602 { ".no87", PROCESSOR_UNKNOWN,
603 CPU_ANY87_FLAGS },
604 { ".mmx", PROCESSOR_UNKNOWN,
605 CPU_MMX_FLAGS },
606 { ".nommx", PROCESSOR_UNKNOWN,
607 CPU_3DNOWA_FLAGS },
608 { ".sse", PROCESSOR_UNKNOWN,
609 CPU_SSE_FLAGS },
610 { ".sse2", PROCESSOR_UNKNOWN,
611 CPU_SSE2_FLAGS },
612 { ".sse3", PROCESSOR_UNKNOWN,
613 CPU_SSE3_FLAGS },
614 { ".ssse3", PROCESSOR_UNKNOWN,
615 CPU_SSSE3_FLAGS },
616 { ".sse4.1", PROCESSOR_UNKNOWN,
617 CPU_SSE4_1_FLAGS },
618 { ".sse4.2", PROCESSOR_UNKNOWN,
619 CPU_SSE4_2_FLAGS },
620 { ".sse4", PROCESSOR_UNKNOWN,
621 CPU_SSE4_2_FLAGS },
622 { ".nosse", PROCESSOR_UNKNOWN,
623 CPU_ANY_SSE_FLAGS },
624 { ".avx", PROCESSOR_UNKNOWN,
625 CPU_AVX_FLAGS },
626 { ".noavx", PROCESSOR_UNKNOWN,
627 CPU_ANY_AVX_FLAGS },
628 { ".vmx", PROCESSOR_UNKNOWN,
629 CPU_VMX_FLAGS },
630 { ".smx", PROCESSOR_UNKNOWN,
631 CPU_SMX_FLAGS },
632 { ".xsave", PROCESSOR_UNKNOWN,
633 CPU_XSAVE_FLAGS },
634 { ".aes", PROCESSOR_UNKNOWN,
635 CPU_AES_FLAGS },
636 { ".pclmul", PROCESSOR_UNKNOWN,
637 CPU_PCLMUL_FLAGS },
638 { ".clmul", PROCESSOR_UNKNOWN,
639 CPU_PCLMUL_FLAGS },
640 { ".fma", PROCESSOR_UNKNOWN,
641 CPU_FMA_FLAGS },
642 { ".fma4", PROCESSOR_UNKNOWN,
643 CPU_FMA4_FLAGS },
644 { ".movbe", PROCESSOR_UNKNOWN,
645 CPU_MOVBE_FLAGS },
646 { ".ept", PROCESSOR_UNKNOWN,
647 CPU_EPT_FLAGS },
648 { ".clflush", PROCESSOR_UNKNOWN,
649 CPU_CLFLUSH_FLAGS },
650 { ".syscall", PROCESSOR_UNKNOWN,
651 CPU_SYSCALL_FLAGS },
652 { ".rdtscp", PROCESSOR_UNKNOWN,
653 CPU_RDTSCP_FLAGS },
654 { ".3dnow", PROCESSOR_UNKNOWN,
655 CPU_3DNOW_FLAGS },
656 { ".3dnowa", PROCESSOR_UNKNOWN,
657 CPU_3DNOWA_FLAGS },
658 { ".padlock", PROCESSOR_UNKNOWN,
659 CPU_PADLOCK_FLAGS },
660 { ".pacifica", PROCESSOR_UNKNOWN,
661 CPU_SVME_FLAGS },
662 { ".svme", PROCESSOR_UNKNOWN,
663 CPU_SVME_FLAGS },
664 { ".sse4a", PROCESSOR_UNKNOWN,
665 CPU_SSE4A_FLAGS },
666 { ".abm", PROCESSOR_UNKNOWN,
667 CPU_ABM_FLAGS },
668 };
669
670 #ifdef I386COFF
671 /* Like s_lcomm_internal in gas/read.c but the alignment string
672 is allowed to be optional. */
673
674 static symbolS *
675 pe_lcomm_internal (int needs_align, symbolS *symbolP, addressT size)
676 {
677 addressT align = 0;
678
679 SKIP_WHITESPACE ();
680
681 if (needs_align
682 && *input_line_pointer == ',')
683 {
684 align = parse_align (needs_align - 1);
685
686 if (align == (addressT) -1)
687 return NULL;
688 }
689 else
690 {
691 if (size >= 8)
692 align = 3;
693 else if (size >= 4)
694 align = 2;
695 else if (size >= 2)
696 align = 1;
697 else
698 align = 0;
699 }
700
701 bss_alloc (symbolP, size, align);
702 return symbolP;
703 }
704
705 static void
706 pe_lcomm (int needs_align)
707 {
708 s_comm_internal (needs_align * 2, pe_lcomm_internal);
709 }
710 #endif
711
712 const pseudo_typeS md_pseudo_table[] =
713 {
714 #if !defined(OBJ_AOUT) && !defined(USE_ALIGN_PTWO)
715 {"align", s_align_bytes, 0},
716 #else
717 {"align", s_align_ptwo, 0},
718 #endif
719 {"arch", set_cpu_arch, 0},
720 #ifndef I386COFF
721 {"bss", s_bss, 0},
722 #else
723 {"lcomm", pe_lcomm, 1},
724 #endif
725 {"ffloat", float_cons, 'f'},
726 {"dfloat", float_cons, 'd'},
727 {"tfloat", float_cons, 'x'},
728 {"value", cons, 2},
729 {"slong", signed_cons, 4},
730 {"noopt", s_ignore, 0},
731 {"optim", s_ignore, 0},
732 {"code16gcc", set_16bit_gcc_code_flag, CODE_16BIT},
733 {"code16", set_code_flag, CODE_16BIT},
734 {"code32", set_code_flag, CODE_32BIT},
735 {"code64", set_code_flag, CODE_64BIT},
736 {"intel_syntax", set_intel_syntax, 1},
737 {"att_syntax", set_intel_syntax, 0},
738 {"intel_mnemonic", set_intel_mnemonic, 1},
739 {"att_mnemonic", set_intel_mnemonic, 0},
740 {"allow_index_reg", set_allow_index_reg, 1},
741 {"disallow_index_reg", set_allow_index_reg, 0},
742 {"sse_check", set_sse_check, 0},
743 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
744 {"largecomm", handle_large_common, 0},
745 #else
746 {"file", (void (*) (int)) dwarf2_directive_file, 0},
747 {"loc", dwarf2_directive_loc, 0},
748 {"loc_mark_labels", dwarf2_directive_loc_mark_labels, 0},
749 #endif
750 #ifdef TE_PE
751 {"secrel32", pe_directive_secrel, 0},
752 #endif
753 {0, 0, 0}
754 };
755
756 /* For interface with expression (). */
757 extern char *input_line_pointer;
758
759 /* Hash table for instruction mnemonic lookup. */
760 static struct hash_control *op_hash;
761
762 /* Hash table for register lookup. */
763 static struct hash_control *reg_hash;
764 \f
765 void
766 i386_align_code (fragS *fragP, int count)
767 {
768 /* Various efficient no-op patterns for aligning code labels.
769 Note: Don't try to assemble the instructions in the comments.
770 0L and 0w are not legal. */
771 static const char f32_1[] =
772 {0x90}; /* nop */
773 static const char f32_2[] =
774 {0x66,0x90}; /* xchg %ax,%ax */
775 static const char f32_3[] =
776 {0x8d,0x76,0x00}; /* leal 0(%esi),%esi */
777 static const char f32_4[] =
778 {0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
779 static const char f32_5[] =
780 {0x90, /* nop */
781 0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
782 static const char f32_6[] =
783 {0x8d,0xb6,0x00,0x00,0x00,0x00}; /* leal 0L(%esi),%esi */
784 static const char f32_7[] =
785 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
786 static const char f32_8[] =
787 {0x90, /* nop */
788 0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
789 static const char f32_9[] =
790 {0x89,0xf6, /* movl %esi,%esi */
791 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
792 static const char f32_10[] =
793 {0x8d,0x76,0x00, /* leal 0(%esi),%esi */
794 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
795 static const char f32_11[] =
796 {0x8d,0x74,0x26,0x00, /* leal 0(%esi,1),%esi */
797 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
798 static const char f32_12[] =
799 {0x8d,0xb6,0x00,0x00,0x00,0x00, /* leal 0L(%esi),%esi */
800 0x8d,0xbf,0x00,0x00,0x00,0x00}; /* leal 0L(%edi),%edi */
801 static const char f32_13[] =
802 {0x8d,0xb6,0x00,0x00,0x00,0x00, /* leal 0L(%esi),%esi */
803 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
804 static const char f32_14[] =
805 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00, /* leal 0L(%esi,1),%esi */
806 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
807 static const char f16_3[] =
808 {0x8d,0x74,0x00}; /* lea 0(%esi),%esi */
809 static const char f16_4[] =
810 {0x8d,0xb4,0x00,0x00}; /* lea 0w(%si),%si */
811 static const char f16_5[] =
812 {0x90, /* nop */
813 0x8d,0xb4,0x00,0x00}; /* lea 0w(%si),%si */
814 static const char f16_6[] =
815 {0x89,0xf6, /* mov %si,%si */
816 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
817 static const char f16_7[] =
818 {0x8d,0x74,0x00, /* lea 0(%si),%si */
819 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
820 static const char f16_8[] =
821 {0x8d,0xb4,0x00,0x00, /* lea 0w(%si),%si */
822 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
823 static const char jump_31[] =
824 {0xeb,0x1d,0x90,0x90,0x90,0x90,0x90, /* jmp .+31; lotsa nops */
825 0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90,
826 0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90,
827 0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90};
828 static const char *const f32_patt[] = {
829 f32_1, f32_2, f32_3, f32_4, f32_5, f32_6, f32_7, f32_8,
830 f32_9, f32_10, f32_11, f32_12, f32_13, f32_14
831 };
832 static const char *const f16_patt[] = {
833 f32_1, f32_2, f16_3, f16_4, f16_5, f16_6, f16_7, f16_8
834 };
835 /* nopl (%[re]ax) */
836 static const char alt_3[] =
837 {0x0f,0x1f,0x00};
838 /* nopl 0(%[re]ax) */
839 static const char alt_4[] =
840 {0x0f,0x1f,0x40,0x00};
841 /* nopl 0(%[re]ax,%[re]ax,1) */
842 static const char alt_5[] =
843 {0x0f,0x1f,0x44,0x00,0x00};
844 /* nopw 0(%[re]ax,%[re]ax,1) */
845 static const char alt_6[] =
846 {0x66,0x0f,0x1f,0x44,0x00,0x00};
847 /* nopl 0L(%[re]ax) */
848 static const char alt_7[] =
849 {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
850 /* nopl 0L(%[re]ax,%[re]ax,1) */
851 static const char alt_8[] =
852 {0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
853 /* nopw 0L(%[re]ax,%[re]ax,1) */
854 static const char alt_9[] =
855 {0x66,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
856 /* nopw %cs:0L(%[re]ax,%[re]ax,1) */
857 static const char alt_10[] =
858 {0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
859 /* data16
860 nopw %cs:0L(%[re]ax,%[re]ax,1) */
861 static const char alt_long_11[] =
862 {0x66,
863 0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
864 /* data16
865 data16
866 nopw %cs:0L(%[re]ax,%[re]ax,1) */
867 static const char alt_long_12[] =
868 {0x66,
869 0x66,
870 0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
871 /* data16
872 data16
873 data16
874 nopw %cs:0L(%[re]ax,%[re]ax,1) */
875 static const char alt_long_13[] =
876 {0x66,
877 0x66,
878 0x66,
879 0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
880 /* data16
881 data16
882 data16
883 data16
884 nopw %cs:0L(%[re]ax,%[re]ax,1) */
885 static const char alt_long_14[] =
886 {0x66,
887 0x66,
888 0x66,
889 0x66,
890 0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
891 /* data16
892 data16
893 data16
894 data16
895 data16
896 nopw %cs:0L(%[re]ax,%[re]ax,1) */
897 static const char alt_long_15[] =
898 {0x66,
899 0x66,
900 0x66,
901 0x66,
902 0x66,
903 0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
904 /* nopl 0(%[re]ax,%[re]ax,1)
905 nopw 0(%[re]ax,%[re]ax,1) */
906 static const char alt_short_11[] =
907 {0x0f,0x1f,0x44,0x00,0x00,
908 0x66,0x0f,0x1f,0x44,0x00,0x00};
909 /* nopw 0(%[re]ax,%[re]ax,1)
910 nopw 0(%[re]ax,%[re]ax,1) */
911 static const char alt_short_12[] =
912 {0x66,0x0f,0x1f,0x44,0x00,0x00,
913 0x66,0x0f,0x1f,0x44,0x00,0x00};
914 /* nopw 0(%[re]ax,%[re]ax,1)
915 nopl 0L(%[re]ax) */
916 static const char alt_short_13[] =
917 {0x66,0x0f,0x1f,0x44,0x00,0x00,
918 0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
919 /* nopl 0L(%[re]ax)
920 nopl 0L(%[re]ax) */
921 static const char alt_short_14[] =
922 {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00,
923 0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
924 /* nopl 0L(%[re]ax)
925 nopl 0L(%[re]ax,%[re]ax,1) */
926 static const char alt_short_15[] =
927 {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00,
928 0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
929 static const char *const alt_short_patt[] = {
930 f32_1, f32_2, alt_3, alt_4, alt_5, alt_6, alt_7, alt_8,
931 alt_9, alt_10, alt_short_11, alt_short_12, alt_short_13,
932 alt_short_14, alt_short_15
933 };
934 static const char *const alt_long_patt[] = {
935 f32_1, f32_2, alt_3, alt_4, alt_5, alt_6, alt_7, alt_8,
936 alt_9, alt_10, alt_long_11, alt_long_12, alt_long_13,
937 alt_long_14, alt_long_15
938 };
939
940 /* Only align for at least a positive non-zero boundary. */
941 if (count <= 0 || count > MAX_MEM_FOR_RS_ALIGN_CODE)
942 return;
943
944 /* We need to decide which NOP sequence to use for 32bit and
945 64bit. When -mtune= is used:
946
947 1. For PROCESSOR_I386, PROCESSOR_I486, PROCESSOR_PENTIUM and
948 PROCESSOR_GENERIC32, f32_patt will be used.
949 2. For PROCESSOR_PENTIUMPRO, PROCESSOR_PENTIUM4, PROCESSOR_NOCONA,
950 PROCESSOR_CORE, PROCESSOR_CORE2, PROCESSOR_COREI7, and
951 PROCESSOR_GENERIC64, alt_long_patt will be used.
952 3. For PROCESSOR_ATHLON, PROCESSOR_K6, PROCESSOR_K8 and
953 PROCESSOR_AMDFAM10, alt_short_patt will be used.
954
955 When -mtune= isn't used, alt_long_patt will be used if
956 cpu_arch_isa_flags has Cpu686. Otherwise, f32_patt will
957 be used.
958
959 When -march= or .arch is used, we can't use anything beyond
960 cpu_arch_isa_flags. */
961
962 if (flag_code == CODE_16BIT)
963 {
964 if (count > 8)
965 {
966 memcpy (fragP->fr_literal + fragP->fr_fix,
967 jump_31, count);
968 /* Adjust jump offset. */
969 fragP->fr_literal[fragP->fr_fix + 1] = count - 2;
970 }
971 else
972 memcpy (fragP->fr_literal + fragP->fr_fix,
973 f16_patt[count - 1], count);
974 }
975 else
976 {
977 const char *const *patt = NULL;
978
979 if (fragP->tc_frag_data.isa == PROCESSOR_UNKNOWN)
980 {
981 /* PROCESSOR_UNKNOWN means that all ISAs may be used. */
982 switch (cpu_arch_tune)
983 {
984 case PROCESSOR_UNKNOWN:
985 /* We use cpu_arch_isa_flags to check if we SHOULD
986 optimize for Cpu686. */
987 if (fragP->tc_frag_data.isa_flags.bitfield.cpui686)
988 patt = alt_long_patt;
989 else
990 patt = f32_patt;
991 break;
992 case PROCESSOR_PENTIUMPRO:
993 case PROCESSOR_PENTIUM4:
994 case PROCESSOR_NOCONA:
995 case PROCESSOR_CORE:
996 case PROCESSOR_CORE2:
997 case PROCESSOR_COREI7:
998 case PROCESSOR_L1OM:
999 case PROCESSOR_GENERIC64:
1000 patt = alt_long_patt;
1001 break;
1002 case PROCESSOR_K6:
1003 case PROCESSOR_ATHLON:
1004 case PROCESSOR_K8:
1005 case PROCESSOR_AMDFAM10:
1006 patt = alt_short_patt;
1007 break;
1008 case PROCESSOR_I386:
1009 case PROCESSOR_I486:
1010 case PROCESSOR_PENTIUM:
1011 case PROCESSOR_GENERIC32:
1012 patt = f32_patt;
1013 break;
1014 }
1015 }
1016 else
1017 {
1018 switch (fragP->tc_frag_data.tune)
1019 {
1020 case PROCESSOR_UNKNOWN:
1021 /* When cpu_arch_isa is set, cpu_arch_tune shouldn't be
1022 PROCESSOR_UNKNOWN. */
1023 abort ();
1024 break;
1025
1026 case PROCESSOR_I386:
1027 case PROCESSOR_I486:
1028 case PROCESSOR_PENTIUM:
1029 case PROCESSOR_K6:
1030 case PROCESSOR_ATHLON:
1031 case PROCESSOR_K8:
1032 case PROCESSOR_AMDFAM10:
1033 case PROCESSOR_GENERIC32:
1034 /* We use cpu_arch_isa_flags to check if we CAN optimize
1035 for Cpu686. */
1036 if (fragP->tc_frag_data.isa_flags.bitfield.cpui686)
1037 patt = alt_short_patt;
1038 else
1039 patt = f32_patt;
1040 break;
1041 case PROCESSOR_PENTIUMPRO:
1042 case PROCESSOR_PENTIUM4:
1043 case PROCESSOR_NOCONA:
1044 case PROCESSOR_CORE:
1045 case PROCESSOR_CORE2:
1046 case PROCESSOR_COREI7:
1047 case PROCESSOR_L1OM:
1048 if (fragP->tc_frag_data.isa_flags.bitfield.cpui686)
1049 patt = alt_long_patt;
1050 else
1051 patt = f32_patt;
1052 break;
1053 case PROCESSOR_GENERIC64:
1054 patt = alt_long_patt;
1055 break;
1056 }
1057 }
1058
1059 if (patt == f32_patt)
1060 {
1061 /* If the padding is less than 15 bytes, we use the normal
1062 ones. Otherwise, we use a jump instruction and adjust
1063 its offset. */
1064 int limit;
1065
1066 /* For 64bit, the limit is 3 bytes. */
1067 if (flag_code == CODE_64BIT
1068 && fragP->tc_frag_data.isa_flags.bitfield.cpulm)
1069 limit = 3;
1070 else
1071 limit = 15;
1072 if (count < limit)
1073 memcpy (fragP->fr_literal + fragP->fr_fix,
1074 patt[count - 1], count);
1075 else
1076 {
1077 memcpy (fragP->fr_literal + fragP->fr_fix,
1078 jump_31, count);
1079 /* Adjust jump offset. */
1080 fragP->fr_literal[fragP->fr_fix + 1] = count - 2;
1081 }
1082 }
1083 else
1084 {
1085 /* Maximum length of an instruction is 15 byte. If the
1086 padding is greater than 15 bytes and we don't use jump,
1087 we have to break it into smaller pieces. */
1088 int padding = count;
1089 while (padding > 15)
1090 {
1091 padding -= 15;
1092 memcpy (fragP->fr_literal + fragP->fr_fix + padding,
1093 patt [14], 15);
1094 }
1095
1096 if (padding)
1097 memcpy (fragP->fr_literal + fragP->fr_fix,
1098 patt [padding - 1], padding);
1099 }
1100 }
1101 fragP->fr_var = count;
1102 }
1103
1104 static INLINE int
1105 operand_type_all_zero (const union i386_operand_type *x)
1106 {
1107 switch (ARRAY_SIZE(x->array))
1108 {
1109 case 3:
1110 if (x->array[2])
1111 return 0;
1112 case 2:
1113 if (x->array[1])
1114 return 0;
1115 case 1:
1116 return !x->array[0];
1117 default:
1118 abort ();
1119 }
1120 }
1121
1122 static INLINE void
1123 operand_type_set (union i386_operand_type *x, unsigned int v)
1124 {
1125 switch (ARRAY_SIZE(x->array))
1126 {
1127 case 3:
1128 x->array[2] = v;
1129 case 2:
1130 x->array[1] = v;
1131 case 1:
1132 x->array[0] = v;
1133 break;
1134 default:
1135 abort ();
1136 }
1137 }
1138
1139 static INLINE int
1140 operand_type_equal (const union i386_operand_type *x,
1141 const union i386_operand_type *y)
1142 {
1143 switch (ARRAY_SIZE(x->array))
1144 {
1145 case 3:
1146 if (x->array[2] != y->array[2])
1147 return 0;
1148 case 2:
1149 if (x->array[1] != y->array[1])
1150 return 0;
1151 case 1:
1152 return x->array[0] == y->array[0];
1153 break;
1154 default:
1155 abort ();
1156 }
1157 }
1158
1159 static INLINE int
1160 cpu_flags_all_zero (const union i386_cpu_flags *x)
1161 {
1162 switch (ARRAY_SIZE(x->array))
1163 {
1164 case 3:
1165 if (x->array[2])
1166 return 0;
1167 case 2:
1168 if (x->array[1])
1169 return 0;
1170 case 1:
1171 return !x->array[0];
1172 default:
1173 abort ();
1174 }
1175 }
1176
1177 static INLINE void
1178 cpu_flags_set (union i386_cpu_flags *x, unsigned int v)
1179 {
1180 switch (ARRAY_SIZE(x->array))
1181 {
1182 case 3:
1183 x->array[2] = v;
1184 case 2:
1185 x->array[1] = v;
1186 case 1:
1187 x->array[0] = v;
1188 break;
1189 default:
1190 abort ();
1191 }
1192 }
1193
1194 static INLINE int
1195 cpu_flags_equal (const union i386_cpu_flags *x,
1196 const union i386_cpu_flags *y)
1197 {
1198 switch (ARRAY_SIZE(x->array))
1199 {
1200 case 3:
1201 if (x->array[2] != y->array[2])
1202 return 0;
1203 case 2:
1204 if (x->array[1] != y->array[1])
1205 return 0;
1206 case 1:
1207 return x->array[0] == y->array[0];
1208 break;
1209 default:
1210 abort ();
1211 }
1212 }
1213
1214 static INLINE int
1215 cpu_flags_check_cpu64 (i386_cpu_flags f)
1216 {
1217 return !((flag_code == CODE_64BIT && f.bitfield.cpuno64)
1218 || (flag_code != CODE_64BIT && f.bitfield.cpu64));
1219 }
1220
1221 static INLINE i386_cpu_flags
1222 cpu_flags_and (i386_cpu_flags x, i386_cpu_flags y)
1223 {
1224 switch (ARRAY_SIZE (x.array))
1225 {
1226 case 3:
1227 x.array [2] &= y.array [2];
1228 case 2:
1229 x.array [1] &= y.array [1];
1230 case 1:
1231 x.array [0] &= y.array [0];
1232 break;
1233 default:
1234 abort ();
1235 }
1236 return x;
1237 }
1238
1239 static INLINE i386_cpu_flags
1240 cpu_flags_or (i386_cpu_flags x, i386_cpu_flags y)
1241 {
1242 switch (ARRAY_SIZE (x.array))
1243 {
1244 case 3:
1245 x.array [2] |= y.array [2];
1246 case 2:
1247 x.array [1] |= y.array [1];
1248 case 1:
1249 x.array [0] |= y.array [0];
1250 break;
1251 default:
1252 abort ();
1253 }
1254 return x;
1255 }
1256
1257 static INLINE i386_cpu_flags
1258 cpu_flags_and_not (i386_cpu_flags x, i386_cpu_flags y)
1259 {
1260 switch (ARRAY_SIZE (x.array))
1261 {
1262 case 3:
1263 x.array [2] &= ~y.array [2];
1264 case 2:
1265 x.array [1] &= ~y.array [1];
1266 case 1:
1267 x.array [0] &= ~y.array [0];
1268 break;
1269 default:
1270 abort ();
1271 }
1272 return x;
1273 }
1274
1275 #define CPU_FLAGS_ARCH_MATCH 0x1
1276 #define CPU_FLAGS_64BIT_MATCH 0x2
1277 #define CPU_FLAGS_AES_MATCH 0x4
1278 #define CPU_FLAGS_PCLMUL_MATCH 0x8
1279 #define CPU_FLAGS_AVX_MATCH 0x10
1280
1281 #define CPU_FLAGS_32BIT_MATCH \
1282 (CPU_FLAGS_ARCH_MATCH | CPU_FLAGS_AES_MATCH \
1283 | CPU_FLAGS_PCLMUL_MATCH | CPU_FLAGS_AVX_MATCH)
1284 #define CPU_FLAGS_PERFECT_MATCH \
1285 (CPU_FLAGS_32BIT_MATCH | CPU_FLAGS_64BIT_MATCH)
1286
1287 /* Return CPU flags match bits. */
1288
1289 static int
1290 cpu_flags_match (const insn_template *t)
1291 {
1292 i386_cpu_flags x = t->cpu_flags;
1293 int match = cpu_flags_check_cpu64 (x) ? CPU_FLAGS_64BIT_MATCH : 0;
1294
1295 x.bitfield.cpu64 = 0;
1296 x.bitfield.cpuno64 = 0;
1297
1298 if (cpu_flags_all_zero (&x))
1299 {
1300 /* This instruction is available on all archs. */
1301 match |= CPU_FLAGS_32BIT_MATCH;
1302 }
1303 else
1304 {
1305 /* This instruction is available only on some archs. */
1306 i386_cpu_flags cpu = cpu_arch_flags;
1307
1308 cpu.bitfield.cpu64 = 0;
1309 cpu.bitfield.cpuno64 = 0;
1310 cpu = cpu_flags_and (x, cpu);
1311 if (!cpu_flags_all_zero (&cpu))
1312 {
1313 if (x.bitfield.cpuavx)
1314 {
1315 /* We only need to check AES/PCLMUL/SSE2AVX with AVX. */
1316 if (cpu.bitfield.cpuavx)
1317 {
1318 /* Check SSE2AVX. */
1319 if (!t->opcode_modifier.sse2avx|| sse2avx)
1320 {
1321 match |= (CPU_FLAGS_ARCH_MATCH
1322 | CPU_FLAGS_AVX_MATCH);
1323 /* Check AES. */
1324 if (!x.bitfield.cpuaes || cpu.bitfield.cpuaes)
1325 match |= CPU_FLAGS_AES_MATCH;
1326 /* Check PCLMUL. */
1327 if (!x.bitfield.cpupclmul
1328 || cpu.bitfield.cpupclmul)
1329 match |= CPU_FLAGS_PCLMUL_MATCH;
1330 }
1331 }
1332 else
1333 match |= CPU_FLAGS_ARCH_MATCH;
1334 }
1335 else
1336 match |= CPU_FLAGS_32BIT_MATCH;
1337 }
1338 }
1339 return match;
1340 }
1341
1342 static INLINE i386_operand_type
1343 operand_type_and (i386_operand_type x, i386_operand_type y)
1344 {
1345 switch (ARRAY_SIZE (x.array))
1346 {
1347 case 3:
1348 x.array [2] &= y.array [2];
1349 case 2:
1350 x.array [1] &= y.array [1];
1351 case 1:
1352 x.array [0] &= y.array [0];
1353 break;
1354 default:
1355 abort ();
1356 }
1357 return x;
1358 }
1359
1360 static INLINE i386_operand_type
1361 operand_type_or (i386_operand_type x, i386_operand_type y)
1362 {
1363 switch (ARRAY_SIZE (x.array))
1364 {
1365 case 3:
1366 x.array [2] |= y.array [2];
1367 case 2:
1368 x.array [1] |= y.array [1];
1369 case 1:
1370 x.array [0] |= y.array [0];
1371 break;
1372 default:
1373 abort ();
1374 }
1375 return x;
1376 }
1377
1378 static INLINE i386_operand_type
1379 operand_type_xor (i386_operand_type x, i386_operand_type y)
1380 {
1381 switch (ARRAY_SIZE (x.array))
1382 {
1383 case 3:
1384 x.array [2] ^= y.array [2];
1385 case 2:
1386 x.array [1] ^= y.array [1];
1387 case 1:
1388 x.array [0] ^= y.array [0];
1389 break;
1390 default:
1391 abort ();
1392 }
1393 return x;
1394 }
1395
1396 static const i386_operand_type acc32 = OPERAND_TYPE_ACC32;
1397 static const i386_operand_type acc64 = OPERAND_TYPE_ACC64;
1398 static const i386_operand_type control = OPERAND_TYPE_CONTROL;
1399 static const i386_operand_type inoutportreg
1400 = OPERAND_TYPE_INOUTPORTREG;
1401 static const i386_operand_type reg16_inoutportreg
1402 = OPERAND_TYPE_REG16_INOUTPORTREG;
1403 static const i386_operand_type disp16 = OPERAND_TYPE_DISP16;
1404 static const i386_operand_type disp32 = OPERAND_TYPE_DISP32;
1405 static const i386_operand_type disp32s = OPERAND_TYPE_DISP32S;
1406 static const i386_operand_type disp16_32 = OPERAND_TYPE_DISP16_32;
1407 static const i386_operand_type anydisp
1408 = OPERAND_TYPE_ANYDISP;
1409 static const i386_operand_type regxmm = OPERAND_TYPE_REGXMM;
1410 static const i386_operand_type regymm = OPERAND_TYPE_REGYMM;
1411 static const i386_operand_type imm8 = OPERAND_TYPE_IMM8;
1412 static const i386_operand_type imm8s = OPERAND_TYPE_IMM8S;
1413 static const i386_operand_type imm16 = OPERAND_TYPE_IMM16;
1414 static const i386_operand_type imm32 = OPERAND_TYPE_IMM32;
1415 static const i386_operand_type imm32s = OPERAND_TYPE_IMM32S;
1416 static const i386_operand_type imm64 = OPERAND_TYPE_IMM64;
1417 static const i386_operand_type imm16_32 = OPERAND_TYPE_IMM16_32;
1418 static const i386_operand_type imm16_32s = OPERAND_TYPE_IMM16_32S;
1419 static const i386_operand_type imm16_32_32s = OPERAND_TYPE_IMM16_32_32S;
1420
1421 enum operand_type
1422 {
1423 reg,
1424 imm,
1425 disp,
1426 anymem
1427 };
1428
1429 static INLINE int
1430 operand_type_check (i386_operand_type t, enum operand_type c)
1431 {
1432 switch (c)
1433 {
1434 case reg:
1435 return (t.bitfield.reg8
1436 || t.bitfield.reg16
1437 || t.bitfield.reg32
1438 || t.bitfield.reg64);
1439
1440 case imm:
1441 return (t.bitfield.imm8
1442 || t.bitfield.imm8s
1443 || t.bitfield.imm16
1444 || t.bitfield.imm32
1445 || t.bitfield.imm32s
1446 || t.bitfield.imm64);
1447
1448 case disp:
1449 return (t.bitfield.disp8
1450 || t.bitfield.disp16
1451 || t.bitfield.disp32
1452 || t.bitfield.disp32s
1453 || t.bitfield.disp64);
1454
1455 case anymem:
1456 return (t.bitfield.disp8
1457 || t.bitfield.disp16
1458 || t.bitfield.disp32
1459 || t.bitfield.disp32s
1460 || t.bitfield.disp64
1461 || t.bitfield.baseindex);
1462
1463 default:
1464 abort ();
1465 }
1466
1467 return 0;
1468 }
1469
1470 /* Return 1 if there is no conflict in 8bit/16bit/32bit/64bit on
1471 operand J for instruction template T. */
1472
1473 static INLINE int
1474 match_reg_size (const insn_template *t, unsigned int j)
1475 {
1476 return !((i.types[j].bitfield.byte
1477 && !t->operand_types[j].bitfield.byte)
1478 || (i.types[j].bitfield.word
1479 && !t->operand_types[j].bitfield.word)
1480 || (i.types[j].bitfield.dword
1481 && !t->operand_types[j].bitfield.dword)
1482 || (i.types[j].bitfield.qword
1483 && !t->operand_types[j].bitfield.qword));
1484 }
1485
1486 /* Return 1 if there is no conflict in any size on operand J for
1487 instruction template T. */
1488
1489 static INLINE int
1490 match_mem_size (const insn_template *t, unsigned int j)
1491 {
1492 return (match_reg_size (t, j)
1493 && !((i.types[j].bitfield.unspecified
1494 && !t->operand_types[j].bitfield.unspecified)
1495 || (i.types[j].bitfield.fword
1496 && !t->operand_types[j].bitfield.fword)
1497 || (i.types[j].bitfield.tbyte
1498 && !t->operand_types[j].bitfield.tbyte)
1499 || (i.types[j].bitfield.xmmword
1500 && !t->operand_types[j].bitfield.xmmword)
1501 || (i.types[j].bitfield.ymmword
1502 && !t->operand_types[j].bitfield.ymmword)));
1503 }
1504
1505 /* Return 1 if there is no size conflict on any operands for
1506 instruction template T. */
1507
1508 static INLINE int
1509 operand_size_match (const insn_template *t)
1510 {
1511 unsigned int j;
1512 int match = 1;
1513
1514 /* Don't check jump instructions. */
1515 if (t->opcode_modifier.jump
1516 || t->opcode_modifier.jumpbyte
1517 || t->opcode_modifier.jumpdword
1518 || t->opcode_modifier.jumpintersegment)
1519 return match;
1520
1521 /* Check memory and accumulator operand size. */
1522 for (j = 0; j < i.operands; j++)
1523 {
1524 if (t->operand_types[j].bitfield.anysize)
1525 continue;
1526
1527 if (t->operand_types[j].bitfield.acc && !match_reg_size (t, j))
1528 {
1529 match = 0;
1530 break;
1531 }
1532
1533 if (i.types[j].bitfield.mem && !match_mem_size (t, j))
1534 {
1535 match = 0;
1536 break;
1537 }
1538 }
1539
1540 if (match
1541 || (!t->opcode_modifier.d && !t->opcode_modifier.floatd))
1542 return match;
1543
1544 /* Check reverse. */
1545 gas_assert (i.operands == 2);
1546
1547 match = 1;
1548 for (j = 0; j < 2; j++)
1549 {
1550 if (t->operand_types[j].bitfield.acc
1551 && !match_reg_size (t, j ? 0 : 1))
1552 {
1553 match = 0;
1554 break;
1555 }
1556
1557 if (i.types[j].bitfield.mem
1558 && !match_mem_size (t, j ? 0 : 1))
1559 {
1560 match = 0;
1561 break;
1562 }
1563 }
1564
1565 return match;
1566 }
1567
1568 static INLINE int
1569 operand_type_match (i386_operand_type overlap,
1570 i386_operand_type given)
1571 {
1572 i386_operand_type temp = overlap;
1573
1574 temp.bitfield.jumpabsolute = 0;
1575 temp.bitfield.unspecified = 0;
1576 temp.bitfield.byte = 0;
1577 temp.bitfield.word = 0;
1578 temp.bitfield.dword = 0;
1579 temp.bitfield.fword = 0;
1580 temp.bitfield.qword = 0;
1581 temp.bitfield.tbyte = 0;
1582 temp.bitfield.xmmword = 0;
1583 temp.bitfield.ymmword = 0;
1584 if (operand_type_all_zero (&temp))
1585 return 0;
1586
1587 return (given.bitfield.baseindex == overlap.bitfield.baseindex
1588 && given.bitfield.jumpabsolute == overlap.bitfield.jumpabsolute);
1589 }
1590
1591 /* If given types g0 and g1 are registers they must be of the same type
1592 unless the expected operand type register overlap is null.
1593 Note that Acc in a template matches every size of reg. */
1594
1595 static INLINE int
1596 operand_type_register_match (i386_operand_type m0,
1597 i386_operand_type g0,
1598 i386_operand_type t0,
1599 i386_operand_type m1,
1600 i386_operand_type g1,
1601 i386_operand_type t1)
1602 {
1603 if (!operand_type_check (g0, reg))
1604 return 1;
1605
1606 if (!operand_type_check (g1, reg))
1607 return 1;
1608
1609 if (g0.bitfield.reg8 == g1.bitfield.reg8
1610 && g0.bitfield.reg16 == g1.bitfield.reg16
1611 && g0.bitfield.reg32 == g1.bitfield.reg32
1612 && g0.bitfield.reg64 == g1.bitfield.reg64)
1613 return 1;
1614
1615 if (m0.bitfield.acc)
1616 {
1617 t0.bitfield.reg8 = 1;
1618 t0.bitfield.reg16 = 1;
1619 t0.bitfield.reg32 = 1;
1620 t0.bitfield.reg64 = 1;
1621 }
1622
1623 if (m1.bitfield.acc)
1624 {
1625 t1.bitfield.reg8 = 1;
1626 t1.bitfield.reg16 = 1;
1627 t1.bitfield.reg32 = 1;
1628 t1.bitfield.reg64 = 1;
1629 }
1630
1631 return (!(t0.bitfield.reg8 & t1.bitfield.reg8)
1632 && !(t0.bitfield.reg16 & t1.bitfield.reg16)
1633 && !(t0.bitfield.reg32 & t1.bitfield.reg32)
1634 && !(t0.bitfield.reg64 & t1.bitfield.reg64));
1635 }
1636
1637 static INLINE unsigned int
1638 mode_from_disp_size (i386_operand_type t)
1639 {
1640 if (t.bitfield.disp8)
1641 return 1;
1642 else if (t.bitfield.disp16
1643 || t.bitfield.disp32
1644 || t.bitfield.disp32s)
1645 return 2;
1646 else
1647 return 0;
1648 }
1649
1650 static INLINE int
1651 fits_in_signed_byte (offsetT num)
1652 {
1653 return (num >= -128) && (num <= 127);
1654 }
1655
1656 static INLINE int
1657 fits_in_unsigned_byte (offsetT num)
1658 {
1659 return (num & 0xff) == num;
1660 }
1661
1662 static INLINE int
1663 fits_in_unsigned_word (offsetT num)
1664 {
1665 return (num & 0xffff) == num;
1666 }
1667
1668 static INLINE int
1669 fits_in_signed_word (offsetT num)
1670 {
1671 return (-32768 <= num) && (num <= 32767);
1672 }
1673
1674 static INLINE int
1675 fits_in_signed_long (offsetT num ATTRIBUTE_UNUSED)
1676 {
1677 #ifndef BFD64
1678 return 1;
1679 #else
1680 return (!(((offsetT) -1 << 31) & num)
1681 || (((offsetT) -1 << 31) & num) == ((offsetT) -1 << 31));
1682 #endif
1683 } /* fits_in_signed_long() */
1684
1685 static INLINE int
1686 fits_in_unsigned_long (offsetT num ATTRIBUTE_UNUSED)
1687 {
1688 #ifndef BFD64
1689 return 1;
1690 #else
1691 return (num & (((offsetT) 2 << 31) - 1)) == num;
1692 #endif
1693 } /* fits_in_unsigned_long() */
1694
1695 static i386_operand_type
1696 smallest_imm_type (offsetT num)
1697 {
1698 i386_operand_type t;
1699
1700 operand_type_set (&t, 0);
1701 t.bitfield.imm64 = 1;
1702
1703 if (cpu_arch_tune != PROCESSOR_I486 && num == 1)
1704 {
1705 /* This code is disabled on the 486 because all the Imm1 forms
1706 in the opcode table are slower on the i486. They're the
1707 versions with the implicitly specified single-position
1708 displacement, which has another syntax if you really want to
1709 use that form. */
1710 t.bitfield.imm1 = 1;
1711 t.bitfield.imm8 = 1;
1712 t.bitfield.imm8s = 1;
1713 t.bitfield.imm16 = 1;
1714 t.bitfield.imm32 = 1;
1715 t.bitfield.imm32s = 1;
1716 }
1717 else if (fits_in_signed_byte (num))
1718 {
1719 t.bitfield.imm8 = 1;
1720 t.bitfield.imm8s = 1;
1721 t.bitfield.imm16 = 1;
1722 t.bitfield.imm32 = 1;
1723 t.bitfield.imm32s = 1;
1724 }
1725 else if (fits_in_unsigned_byte (num))
1726 {
1727 t.bitfield.imm8 = 1;
1728 t.bitfield.imm16 = 1;
1729 t.bitfield.imm32 = 1;
1730 t.bitfield.imm32s = 1;
1731 }
1732 else if (fits_in_signed_word (num) || fits_in_unsigned_word (num))
1733 {
1734 t.bitfield.imm16 = 1;
1735 t.bitfield.imm32 = 1;
1736 t.bitfield.imm32s = 1;
1737 }
1738 else if (fits_in_signed_long (num))
1739 {
1740 t.bitfield.imm32 = 1;
1741 t.bitfield.imm32s = 1;
1742 }
1743 else if (fits_in_unsigned_long (num))
1744 t.bitfield.imm32 = 1;
1745
1746 return t;
1747 }
1748
1749 static offsetT
1750 offset_in_range (offsetT val, int size)
1751 {
1752 addressT mask;
1753
1754 switch (size)
1755 {
1756 case 1: mask = ((addressT) 1 << 8) - 1; break;
1757 case 2: mask = ((addressT) 1 << 16) - 1; break;
1758 case 4: mask = ((addressT) 2 << 31) - 1; break;
1759 #ifdef BFD64
1760 case 8: mask = ((addressT) 2 << 63) - 1; break;
1761 #endif
1762 default: abort ();
1763 }
1764
1765 /* If BFD64, sign extend val. */
1766 if (!use_rela_relocations)
1767 if ((val & ~(((addressT) 2 << 31) - 1)) == 0)
1768 val = (val ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
1769
1770 if ((val & ~mask) != 0 && (val & ~mask) != ~mask)
1771 {
1772 char buf1[40], buf2[40];
1773
1774 sprint_value (buf1, val);
1775 sprint_value (buf2, val & mask);
1776 as_warn (_("%s shortened to %s"), buf1, buf2);
1777 }
1778 return val & mask;
1779 }
1780
1781 /* Returns 0 if attempting to add a prefix where one from the same
1782 class already exists, 1 if non rep/repne added, 2 if rep/repne
1783 added. */
1784 static int
1785 add_prefix (unsigned int prefix)
1786 {
1787 int ret = 1;
1788 unsigned int q;
1789
1790 if (prefix >= REX_OPCODE && prefix < REX_OPCODE + 16
1791 && flag_code == CODE_64BIT)
1792 {
1793 if ((i.prefix[REX_PREFIX] & prefix & REX_W)
1794 || ((i.prefix[REX_PREFIX] & (REX_R | REX_X | REX_B))
1795 && (prefix & (REX_R | REX_X | REX_B))))
1796 ret = 0;
1797 q = REX_PREFIX;
1798 }
1799 else
1800 {
1801 switch (prefix)
1802 {
1803 default:
1804 abort ();
1805
1806 case CS_PREFIX_OPCODE:
1807 case DS_PREFIX_OPCODE:
1808 case ES_PREFIX_OPCODE:
1809 case FS_PREFIX_OPCODE:
1810 case GS_PREFIX_OPCODE:
1811 case SS_PREFIX_OPCODE:
1812 q = SEG_PREFIX;
1813 break;
1814
1815 case REPNE_PREFIX_OPCODE:
1816 case REPE_PREFIX_OPCODE:
1817 ret = 2;
1818 /* fall thru */
1819 case LOCK_PREFIX_OPCODE:
1820 q = LOCKREP_PREFIX;
1821 break;
1822
1823 case FWAIT_OPCODE:
1824 q = WAIT_PREFIX;
1825 break;
1826
1827 case ADDR_PREFIX_OPCODE:
1828 q = ADDR_PREFIX;
1829 break;
1830
1831 case DATA_PREFIX_OPCODE:
1832 q = DATA_PREFIX;
1833 break;
1834 }
1835 if (i.prefix[q] != 0)
1836 ret = 0;
1837 }
1838
1839 if (ret)
1840 {
1841 if (!i.prefix[q])
1842 ++i.prefixes;
1843 i.prefix[q] |= prefix;
1844 }
1845 else
1846 as_bad (_("same type of prefix used twice"));
1847
1848 return ret;
1849 }
1850
1851 static void
1852 set_code_flag (int value)
1853 {
1854 flag_code = value;
1855 if (flag_code == CODE_64BIT)
1856 {
1857 cpu_arch_flags.bitfield.cpu64 = 1;
1858 cpu_arch_flags.bitfield.cpuno64 = 0;
1859 }
1860 else
1861 {
1862 cpu_arch_flags.bitfield.cpu64 = 0;
1863 cpu_arch_flags.bitfield.cpuno64 = 1;
1864 }
1865 if (value == CODE_64BIT && !cpu_arch_flags.bitfield.cpulm )
1866 {
1867 as_bad (_("64bit mode not supported on this CPU."));
1868 }
1869 if (value == CODE_32BIT && !cpu_arch_flags.bitfield.cpui386)
1870 {
1871 as_bad (_("32bit mode not supported on this CPU."));
1872 }
1873 stackop_size = '\0';
1874 }
1875
1876 static void
1877 set_16bit_gcc_code_flag (int new_code_flag)
1878 {
1879 flag_code = new_code_flag;
1880 if (flag_code != CODE_16BIT)
1881 abort ();
1882 cpu_arch_flags.bitfield.cpu64 = 0;
1883 cpu_arch_flags.bitfield.cpuno64 = 1;
1884 stackop_size = LONG_MNEM_SUFFIX;
1885 }
1886
1887 static void
1888 set_intel_syntax (int syntax_flag)
1889 {
1890 /* Find out if register prefixing is specified. */
1891 int ask_naked_reg = 0;
1892
1893 SKIP_WHITESPACE ();
1894 if (!is_end_of_line[(unsigned char) *input_line_pointer])
1895 {
1896 char *string = input_line_pointer;
1897 int e = get_symbol_end ();
1898
1899 if (strcmp (string, "prefix") == 0)
1900 ask_naked_reg = 1;
1901 else if (strcmp (string, "noprefix") == 0)
1902 ask_naked_reg = -1;
1903 else
1904 as_bad (_("bad argument to syntax directive."));
1905 *input_line_pointer = e;
1906 }
1907 demand_empty_rest_of_line ();
1908
1909 intel_syntax = syntax_flag;
1910
1911 if (ask_naked_reg == 0)
1912 allow_naked_reg = (intel_syntax
1913 && (bfd_get_symbol_leading_char (stdoutput) != '\0'));
1914 else
1915 allow_naked_reg = (ask_naked_reg < 0);
1916
1917 expr_set_rank (O_full_ptr, syntax_flag ? 10 : 0);
1918
1919 identifier_chars['%'] = intel_syntax && allow_naked_reg ? '%' : 0;
1920 identifier_chars['$'] = intel_syntax ? '$' : 0;
1921 register_prefix = allow_naked_reg ? "" : "%";
1922 }
1923
1924 static void
1925 set_intel_mnemonic (int mnemonic_flag)
1926 {
1927 intel_mnemonic = mnemonic_flag;
1928 }
1929
1930 static void
1931 set_allow_index_reg (int flag)
1932 {
1933 allow_index_reg = flag;
1934 }
1935
1936 static void
1937 set_sse_check (int dummy ATTRIBUTE_UNUSED)
1938 {
1939 SKIP_WHITESPACE ();
1940
1941 if (!is_end_of_line[(unsigned char) *input_line_pointer])
1942 {
1943 char *string = input_line_pointer;
1944 int e = get_symbol_end ();
1945
1946 if (strcmp (string, "none") == 0)
1947 sse_check = sse_check_none;
1948 else if (strcmp (string, "warning") == 0)
1949 sse_check = sse_check_warning;
1950 else if (strcmp (string, "error") == 0)
1951 sse_check = sse_check_error;
1952 else
1953 as_bad (_("bad argument to sse_check directive."));
1954 *input_line_pointer = e;
1955 }
1956 else
1957 as_bad (_("missing argument for sse_check directive"));
1958
1959 demand_empty_rest_of_line ();
1960 }
1961
1962 static void
1963 check_cpu_arch_compatible (const char *name ATTRIBUTE_UNUSED,
1964 i386_cpu_flags new ATTRIBUTE_UNUSED)
1965 {
1966 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
1967 static const char *arch;
1968
1969 /* Intel LIOM is only supported on ELF. */
1970 if (!IS_ELF)
1971 return;
1972
1973 if (!arch)
1974 {
1975 /* Use cpu_arch_name if it is set in md_parse_option. Otherwise
1976 use default_arch. */
1977 arch = cpu_arch_name;
1978 if (!arch)
1979 arch = default_arch;
1980 }
1981
1982 /* If we are targeting Intel L1OM, we must enable it. */
1983 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_L1OM
1984 || new.bitfield.cpul1om)
1985 return;
1986
1987 as_bad (_("`%s' is not supported on `%s'"), name, arch);
1988 #endif
1989 }
1990
1991 static void
1992 set_cpu_arch (int dummy ATTRIBUTE_UNUSED)
1993 {
1994 SKIP_WHITESPACE ();
1995
1996 if (!is_end_of_line[(unsigned char) *input_line_pointer])
1997 {
1998 char *string = input_line_pointer;
1999 int e = get_symbol_end ();
2000 unsigned int i;
2001 i386_cpu_flags flags;
2002
2003 for (i = 0; i < ARRAY_SIZE (cpu_arch); i++)
2004 {
2005 if (strcmp (string, cpu_arch[i].name) == 0)
2006 {
2007 check_cpu_arch_compatible (string, cpu_arch[i].flags);
2008
2009 if (*string != '.')
2010 {
2011 cpu_arch_name = cpu_arch[i].name;
2012 cpu_sub_arch_name = NULL;
2013 cpu_arch_flags = cpu_arch[i].flags;
2014 if (flag_code == CODE_64BIT)
2015 {
2016 cpu_arch_flags.bitfield.cpu64 = 1;
2017 cpu_arch_flags.bitfield.cpuno64 = 0;
2018 }
2019 else
2020 {
2021 cpu_arch_flags.bitfield.cpu64 = 0;
2022 cpu_arch_flags.bitfield.cpuno64 = 1;
2023 }
2024 cpu_arch_isa = cpu_arch[i].type;
2025 cpu_arch_isa_flags = cpu_arch[i].flags;
2026 if (!cpu_arch_tune_set)
2027 {
2028 cpu_arch_tune = cpu_arch_isa;
2029 cpu_arch_tune_flags = cpu_arch_isa_flags;
2030 }
2031 break;
2032 }
2033
2034 if (strncmp (string + 1, "no", 2))
2035 flags = cpu_flags_or (cpu_arch_flags,
2036 cpu_arch[i].flags);
2037 else
2038 flags = cpu_flags_and_not (cpu_arch_flags,
2039 cpu_arch[i].flags);
2040 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
2041 {
2042 if (cpu_sub_arch_name)
2043 {
2044 char *name = cpu_sub_arch_name;
2045 cpu_sub_arch_name = concat (name,
2046 cpu_arch[i].name,
2047 (const char *) NULL);
2048 free (name);
2049 }
2050 else
2051 cpu_sub_arch_name = xstrdup (cpu_arch[i].name);
2052 cpu_arch_flags = flags;
2053 }
2054 *input_line_pointer = e;
2055 demand_empty_rest_of_line ();
2056 return;
2057 }
2058 }
2059 if (i >= ARRAY_SIZE (cpu_arch))
2060 as_bad (_("no such architecture: `%s'"), string);
2061
2062 *input_line_pointer = e;
2063 }
2064 else
2065 as_bad (_("missing cpu architecture"));
2066
2067 no_cond_jump_promotion = 0;
2068 if (*input_line_pointer == ','
2069 && !is_end_of_line[(unsigned char) input_line_pointer[1]])
2070 {
2071 char *string = ++input_line_pointer;
2072 int e = get_symbol_end ();
2073
2074 if (strcmp (string, "nojumps") == 0)
2075 no_cond_jump_promotion = 1;
2076 else if (strcmp (string, "jumps") == 0)
2077 ;
2078 else
2079 as_bad (_("no such architecture modifier: `%s'"), string);
2080
2081 *input_line_pointer = e;
2082 }
2083
2084 demand_empty_rest_of_line ();
2085 }
2086
2087 enum bfd_architecture
2088 i386_arch (void)
2089 {
2090 if (cpu_arch_isa == PROCESSOR_L1OM)
2091 {
2092 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2093 || flag_code != CODE_64BIT)
2094 as_fatal (_("Intel L1OM is 64bit ELF only"));
2095 return bfd_arch_l1om;
2096 }
2097 else
2098 return bfd_arch_i386;
2099 }
2100
2101 unsigned long
2102 i386_mach ()
2103 {
2104 if (!strcmp (default_arch, "x86_64"))
2105 {
2106 if (cpu_arch_isa == PROCESSOR_L1OM)
2107 {
2108 if (OUTPUT_FLAVOR != bfd_target_elf_flavour)
2109 as_fatal (_("Intel L1OM is 64bit ELF only"));
2110 return bfd_mach_l1om;
2111 }
2112 else
2113 return bfd_mach_x86_64;
2114 }
2115 else if (!strcmp (default_arch, "i386"))
2116 return bfd_mach_i386_i386;
2117 else
2118 as_fatal (_("Unknown architecture"));
2119 }
2120 \f
2121 void
2122 md_begin ()
2123 {
2124 const char *hash_err;
2125
2126 /* Initialize op_hash hash table. */
2127 op_hash = hash_new ();
2128
2129 {
2130 const insn_template *optab;
2131 templates *core_optab;
2132
2133 /* Setup for loop. */
2134 optab = i386_optab;
2135 core_optab = (templates *) xmalloc (sizeof (templates));
2136 core_optab->start = optab;
2137
2138 while (1)
2139 {
2140 ++optab;
2141 if (optab->name == NULL
2142 || strcmp (optab->name, (optab - 1)->name) != 0)
2143 {
2144 /* different name --> ship out current template list;
2145 add to hash table; & begin anew. */
2146 core_optab->end = optab;
2147 hash_err = hash_insert (op_hash,
2148 (optab - 1)->name,
2149 (void *) core_optab);
2150 if (hash_err)
2151 {
2152 as_fatal (_("Internal Error: Can't hash %s: %s"),
2153 (optab - 1)->name,
2154 hash_err);
2155 }
2156 if (optab->name == NULL)
2157 break;
2158 core_optab = (templates *) xmalloc (sizeof (templates));
2159 core_optab->start = optab;
2160 }
2161 }
2162 }
2163
2164 /* Initialize reg_hash hash table. */
2165 reg_hash = hash_new ();
2166 {
2167 const reg_entry *regtab;
2168 unsigned int regtab_size = i386_regtab_size;
2169
2170 for (regtab = i386_regtab; regtab_size--; regtab++)
2171 {
2172 hash_err = hash_insert (reg_hash, regtab->reg_name, (void *) regtab);
2173 if (hash_err)
2174 as_fatal (_("Internal Error: Can't hash %s: %s"),
2175 regtab->reg_name,
2176 hash_err);
2177 }
2178 }
2179
2180 /* Fill in lexical tables: mnemonic_chars, operand_chars. */
2181 {
2182 int c;
2183 char *p;
2184
2185 for (c = 0; c < 256; c++)
2186 {
2187 if (ISDIGIT (c))
2188 {
2189 digit_chars[c] = c;
2190 mnemonic_chars[c] = c;
2191 register_chars[c] = c;
2192 operand_chars[c] = c;
2193 }
2194 else if (ISLOWER (c))
2195 {
2196 mnemonic_chars[c] = c;
2197 register_chars[c] = c;
2198 operand_chars[c] = c;
2199 }
2200 else if (ISUPPER (c))
2201 {
2202 mnemonic_chars[c] = TOLOWER (c);
2203 register_chars[c] = mnemonic_chars[c];
2204 operand_chars[c] = c;
2205 }
2206
2207 if (ISALPHA (c) || ISDIGIT (c))
2208 identifier_chars[c] = c;
2209 else if (c >= 128)
2210 {
2211 identifier_chars[c] = c;
2212 operand_chars[c] = c;
2213 }
2214 }
2215
2216 #ifdef LEX_AT
2217 identifier_chars['@'] = '@';
2218 #endif
2219 #ifdef LEX_QM
2220 identifier_chars['?'] = '?';
2221 operand_chars['?'] = '?';
2222 #endif
2223 digit_chars['-'] = '-';
2224 mnemonic_chars['_'] = '_';
2225 mnemonic_chars['-'] = '-';
2226 mnemonic_chars['.'] = '.';
2227 identifier_chars['_'] = '_';
2228 identifier_chars['.'] = '.';
2229
2230 for (p = operand_special_chars; *p != '\0'; p++)
2231 operand_chars[(unsigned char) *p] = *p;
2232 }
2233
2234 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
2235 if (IS_ELF)
2236 {
2237 record_alignment (text_section, 2);
2238 record_alignment (data_section, 2);
2239 record_alignment (bss_section, 2);
2240 }
2241 #endif
2242
2243 if (flag_code == CODE_64BIT)
2244 {
2245 x86_dwarf2_return_column = 16;
2246 x86_cie_data_alignment = -8;
2247 }
2248 else
2249 {
2250 x86_dwarf2_return_column = 8;
2251 x86_cie_data_alignment = -4;
2252 }
2253 }
2254
2255 void
2256 i386_print_statistics (FILE *file)
2257 {
2258 hash_print_statistics (file, "i386 opcode", op_hash);
2259 hash_print_statistics (file, "i386 register", reg_hash);
2260 }
2261 \f
2262 #ifdef DEBUG386
2263
2264 /* Debugging routines for md_assemble. */
2265 static void pte (insn_template *);
2266 static void pt (i386_operand_type);
2267 static void pe (expressionS *);
2268 static void ps (symbolS *);
2269
2270 static void
2271 pi (char *line, i386_insn *x)
2272 {
2273 unsigned int i;
2274
2275 fprintf (stdout, "%s: template ", line);
2276 pte (&x->tm);
2277 fprintf (stdout, " address: base %s index %s scale %x\n",
2278 x->base_reg ? x->base_reg->reg_name : "none",
2279 x->index_reg ? x->index_reg->reg_name : "none",
2280 x->log2_scale_factor);
2281 fprintf (stdout, " modrm: mode %x reg %x reg/mem %x\n",
2282 x->rm.mode, x->rm.reg, x->rm.regmem);
2283 fprintf (stdout, " sib: base %x index %x scale %x\n",
2284 x->sib.base, x->sib.index, x->sib.scale);
2285 fprintf (stdout, " rex: 64bit %x extX %x extY %x extZ %x\n",
2286 (x->rex & REX_W) != 0,
2287 (x->rex & REX_R) != 0,
2288 (x->rex & REX_X) != 0,
2289 (x->rex & REX_B) != 0);
2290 for (i = 0; i < x->operands; i++)
2291 {
2292 fprintf (stdout, " #%d: ", i + 1);
2293 pt (x->types[i]);
2294 fprintf (stdout, "\n");
2295 if (x->types[i].bitfield.reg8
2296 || x->types[i].bitfield.reg16
2297 || x->types[i].bitfield.reg32
2298 || x->types[i].bitfield.reg64
2299 || x->types[i].bitfield.regmmx
2300 || x->types[i].bitfield.regxmm
2301 || x->types[i].bitfield.regymm
2302 || x->types[i].bitfield.sreg2
2303 || x->types[i].bitfield.sreg3
2304 || x->types[i].bitfield.control
2305 || x->types[i].bitfield.debug
2306 || x->types[i].bitfield.test)
2307 fprintf (stdout, "%s\n", x->op[i].regs->reg_name);
2308 if (operand_type_check (x->types[i], imm))
2309 pe (x->op[i].imms);
2310 if (operand_type_check (x->types[i], disp))
2311 pe (x->op[i].disps);
2312 }
2313 }
2314
2315 static void
2316 pte (insn_template *t)
2317 {
2318 unsigned int i;
2319 fprintf (stdout, " %d operands ", t->operands);
2320 fprintf (stdout, "opcode %x ", t->base_opcode);
2321 if (t->extension_opcode != None)
2322 fprintf (stdout, "ext %x ", t->extension_opcode);
2323 if (t->opcode_modifier.d)
2324 fprintf (stdout, "D");
2325 if (t->opcode_modifier.w)
2326 fprintf (stdout, "W");
2327 fprintf (stdout, "\n");
2328 for (i = 0; i < t->operands; i++)
2329 {
2330 fprintf (stdout, " #%d type ", i + 1);
2331 pt (t->operand_types[i]);
2332 fprintf (stdout, "\n");
2333 }
2334 }
2335
2336 static void
2337 pe (expressionS *e)
2338 {
2339 fprintf (stdout, " operation %d\n", e->X_op);
2340 fprintf (stdout, " add_number %ld (%lx)\n",
2341 (long) e->X_add_number, (long) e->X_add_number);
2342 if (e->X_add_symbol)
2343 {
2344 fprintf (stdout, " add_symbol ");
2345 ps (e->X_add_symbol);
2346 fprintf (stdout, "\n");
2347 }
2348 if (e->X_op_symbol)
2349 {
2350 fprintf (stdout, " op_symbol ");
2351 ps (e->X_op_symbol);
2352 fprintf (stdout, "\n");
2353 }
2354 }
2355
2356 static void
2357 ps (symbolS *s)
2358 {
2359 fprintf (stdout, "%s type %s%s",
2360 S_GET_NAME (s),
2361 S_IS_EXTERNAL (s) ? "EXTERNAL " : "",
2362 segment_name (S_GET_SEGMENT (s)));
2363 }
2364
2365 static struct type_name
2366 {
2367 i386_operand_type mask;
2368 const char *name;
2369 }
2370 const type_names[] =
2371 {
2372 { OPERAND_TYPE_REG8, "r8" },
2373 { OPERAND_TYPE_REG16, "r16" },
2374 { OPERAND_TYPE_REG32, "r32" },
2375 { OPERAND_TYPE_REG64, "r64" },
2376 { OPERAND_TYPE_IMM8, "i8" },
2377 { OPERAND_TYPE_IMM8, "i8s" },
2378 { OPERAND_TYPE_IMM16, "i16" },
2379 { OPERAND_TYPE_IMM32, "i32" },
2380 { OPERAND_TYPE_IMM32S, "i32s" },
2381 { OPERAND_TYPE_IMM64, "i64" },
2382 { OPERAND_TYPE_IMM1, "i1" },
2383 { OPERAND_TYPE_BASEINDEX, "BaseIndex" },
2384 { OPERAND_TYPE_DISP8, "d8" },
2385 { OPERAND_TYPE_DISP16, "d16" },
2386 { OPERAND_TYPE_DISP32, "d32" },
2387 { OPERAND_TYPE_DISP32S, "d32s" },
2388 { OPERAND_TYPE_DISP64, "d64" },
2389 { OPERAND_TYPE_INOUTPORTREG, "InOutPortReg" },
2390 { OPERAND_TYPE_SHIFTCOUNT, "ShiftCount" },
2391 { OPERAND_TYPE_CONTROL, "control reg" },
2392 { OPERAND_TYPE_TEST, "test reg" },
2393 { OPERAND_TYPE_DEBUG, "debug reg" },
2394 { OPERAND_TYPE_FLOATREG, "FReg" },
2395 { OPERAND_TYPE_FLOATACC, "FAcc" },
2396 { OPERAND_TYPE_SREG2, "SReg2" },
2397 { OPERAND_TYPE_SREG3, "SReg3" },
2398 { OPERAND_TYPE_ACC, "Acc" },
2399 { OPERAND_TYPE_JUMPABSOLUTE, "Jump Absolute" },
2400 { OPERAND_TYPE_REGMMX, "rMMX" },
2401 { OPERAND_TYPE_REGXMM, "rXMM" },
2402 { OPERAND_TYPE_REGYMM, "rYMM" },
2403 { OPERAND_TYPE_ESSEG, "es" },
2404 };
2405
2406 static void
2407 pt (i386_operand_type t)
2408 {
2409 unsigned int j;
2410 i386_operand_type a;
2411
2412 for (j = 0; j < ARRAY_SIZE (type_names); j++)
2413 {
2414 a = operand_type_and (t, type_names[j].mask);
2415 if (!operand_type_all_zero (&a))
2416 fprintf (stdout, "%s, ", type_names[j].name);
2417 }
2418 fflush (stdout);
2419 }
2420
2421 #endif /* DEBUG386 */
2422 \f
2423 static bfd_reloc_code_real_type
2424 reloc (unsigned int size,
2425 int pcrel,
2426 int sign,
2427 bfd_reloc_code_real_type other)
2428 {
2429 if (other != NO_RELOC)
2430 {
2431 reloc_howto_type *reloc;
2432
2433 if (size == 8)
2434 switch (other)
2435 {
2436 case BFD_RELOC_X86_64_GOT32:
2437 return BFD_RELOC_X86_64_GOT64;
2438 break;
2439 case BFD_RELOC_X86_64_PLTOFF64:
2440 return BFD_RELOC_X86_64_PLTOFF64;
2441 break;
2442 case BFD_RELOC_X86_64_GOTPC32:
2443 other = BFD_RELOC_X86_64_GOTPC64;
2444 break;
2445 case BFD_RELOC_X86_64_GOTPCREL:
2446 other = BFD_RELOC_X86_64_GOTPCREL64;
2447 break;
2448 case BFD_RELOC_X86_64_TPOFF32:
2449 other = BFD_RELOC_X86_64_TPOFF64;
2450 break;
2451 case BFD_RELOC_X86_64_DTPOFF32:
2452 other = BFD_RELOC_X86_64_DTPOFF64;
2453 break;
2454 default:
2455 break;
2456 }
2457
2458 /* Sign-checking 4-byte relocations in 16-/32-bit code is pointless. */
2459 if (size == 4 && flag_code != CODE_64BIT)
2460 sign = -1;
2461
2462 reloc = bfd_reloc_type_lookup (stdoutput, other);
2463 if (!reloc)
2464 as_bad (_("unknown relocation (%u)"), other);
2465 else if (size != bfd_get_reloc_size (reloc))
2466 as_bad (_("%u-byte relocation cannot be applied to %u-byte field"),
2467 bfd_get_reloc_size (reloc),
2468 size);
2469 else if (pcrel && !reloc->pc_relative)
2470 as_bad (_("non-pc-relative relocation for pc-relative field"));
2471 else if ((reloc->complain_on_overflow == complain_overflow_signed
2472 && !sign)
2473 || (reloc->complain_on_overflow == complain_overflow_unsigned
2474 && sign > 0))
2475 as_bad (_("relocated field and relocation type differ in signedness"));
2476 else
2477 return other;
2478 return NO_RELOC;
2479 }
2480
2481 if (pcrel)
2482 {
2483 if (!sign)
2484 as_bad (_("there are no unsigned pc-relative relocations"));
2485 switch (size)
2486 {
2487 case 1: return BFD_RELOC_8_PCREL;
2488 case 2: return BFD_RELOC_16_PCREL;
2489 case 4: return BFD_RELOC_32_PCREL;
2490 case 8: return BFD_RELOC_64_PCREL;
2491 }
2492 as_bad (_("cannot do %u byte pc-relative relocation"), size);
2493 }
2494 else
2495 {
2496 if (sign > 0)
2497 switch (size)
2498 {
2499 case 4: return BFD_RELOC_X86_64_32S;
2500 }
2501 else
2502 switch (size)
2503 {
2504 case 1: return BFD_RELOC_8;
2505 case 2: return BFD_RELOC_16;
2506 case 4: return BFD_RELOC_32;
2507 case 8: return BFD_RELOC_64;
2508 }
2509 as_bad (_("cannot do %s %u byte relocation"),
2510 sign > 0 ? "signed" : "unsigned", size);
2511 }
2512
2513 return NO_RELOC;
2514 }
2515
2516 /* Here we decide which fixups can be adjusted to make them relative to
2517 the beginning of the section instead of the symbol. Basically we need
2518 to make sure that the dynamic relocations are done correctly, so in
2519 some cases we force the original symbol to be used. */
2520
2521 int
2522 tc_i386_fix_adjustable (fixS *fixP ATTRIBUTE_UNUSED)
2523 {
2524 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
2525 if (!IS_ELF)
2526 return 1;
2527
2528 /* Don't adjust pc-relative references to merge sections in 64-bit
2529 mode. */
2530 if (use_rela_relocations
2531 && (S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_MERGE) != 0
2532 && fixP->fx_pcrel)
2533 return 0;
2534
2535 /* The x86_64 GOTPCREL are represented as 32bit PCrel relocations
2536 and changed later by validate_fix. */
2537 if (GOT_symbol && fixP->fx_subsy == GOT_symbol
2538 && fixP->fx_r_type == BFD_RELOC_32_PCREL)
2539 return 0;
2540
2541 /* adjust_reloc_syms doesn't know about the GOT. */
2542 if (fixP->fx_r_type == BFD_RELOC_386_GOTOFF
2543 || fixP->fx_r_type == BFD_RELOC_386_PLT32
2544 || fixP->fx_r_type == BFD_RELOC_386_GOT32
2545 || fixP->fx_r_type == BFD_RELOC_386_TLS_GD
2546 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDM
2547 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDO_32
2548 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE_32
2549 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE
2550 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTIE
2551 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE_32
2552 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE
2553 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTDESC
2554 || fixP->fx_r_type == BFD_RELOC_386_TLS_DESC_CALL
2555 || fixP->fx_r_type == BFD_RELOC_X86_64_PLT32
2556 || fixP->fx_r_type == BFD_RELOC_X86_64_GOT32
2557 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCREL
2558 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSGD
2559 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSLD
2560 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF32
2561 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF64
2562 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTTPOFF
2563 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF32
2564 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF64
2565 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTOFF64
2566 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPC32_TLSDESC
2567 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSDESC_CALL
2568 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
2569 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
2570 return 0;
2571 #endif
2572 return 1;
2573 }
2574
2575 static int
2576 intel_float_operand (const char *mnemonic)
2577 {
2578 /* Note that the value returned is meaningful only for opcodes with (memory)
2579 operands, hence the code here is free to improperly handle opcodes that
2580 have no operands (for better performance and smaller code). */
2581
2582 if (mnemonic[0] != 'f')
2583 return 0; /* non-math */
2584
2585 switch (mnemonic[1])
2586 {
2587 /* fclex, fdecstp, fdisi, femms, feni, fincstp, finit, fsetpm, and
2588 the fs segment override prefix not currently handled because no
2589 call path can make opcodes without operands get here */
2590 case 'i':
2591 return 2 /* integer op */;
2592 case 'l':
2593 if (mnemonic[2] == 'd' && (mnemonic[3] == 'c' || mnemonic[3] == 'e'))
2594 return 3; /* fldcw/fldenv */
2595 break;
2596 case 'n':
2597 if (mnemonic[2] != 'o' /* fnop */)
2598 return 3; /* non-waiting control op */
2599 break;
2600 case 'r':
2601 if (mnemonic[2] == 's')
2602 return 3; /* frstor/frstpm */
2603 break;
2604 case 's':
2605 if (mnemonic[2] == 'a')
2606 return 3; /* fsave */
2607 if (mnemonic[2] == 't')
2608 {
2609 switch (mnemonic[3])
2610 {
2611 case 'c': /* fstcw */
2612 case 'd': /* fstdw */
2613 case 'e': /* fstenv */
2614 case 's': /* fsts[gw] */
2615 return 3;
2616 }
2617 }
2618 break;
2619 case 'x':
2620 if (mnemonic[2] == 'r' || mnemonic[2] == 's')
2621 return 0; /* fxsave/fxrstor are not really math ops */
2622 break;
2623 }
2624
2625 return 1;
2626 }
2627
2628 /* Build the VEX prefix. */
2629
2630 static void
2631 build_vex_prefix (const insn_template *t)
2632 {
2633 unsigned int register_specifier;
2634 unsigned int implied_prefix;
2635 unsigned int vector_length;
2636
2637 /* Check register specifier. */
2638 if (i.vex.register_specifier)
2639 {
2640 register_specifier = i.vex.register_specifier->reg_num;
2641 if ((i.vex.register_specifier->reg_flags & RegRex))
2642 register_specifier += 8;
2643 register_specifier = ~register_specifier & 0xf;
2644 }
2645 else
2646 register_specifier = 0xf;
2647
2648 /* Use 2-byte VEX prefix by swappping destination and source
2649 operand. */
2650 if (!i.swap_operand
2651 && i.operands == i.reg_operands
2652 && i.tm.opcode_modifier.vex0f
2653 && i.tm.opcode_modifier.s
2654 && i.rex == REX_B)
2655 {
2656 unsigned int xchg = i.operands - 1;
2657 union i386_op temp_op;
2658 i386_operand_type temp_type;
2659
2660 temp_type = i.types[xchg];
2661 i.types[xchg] = i.types[0];
2662 i.types[0] = temp_type;
2663 temp_op = i.op[xchg];
2664 i.op[xchg] = i.op[0];
2665 i.op[0] = temp_op;
2666
2667 gas_assert (i.rm.mode == 3);
2668
2669 i.rex = REX_R;
2670 xchg = i.rm.regmem;
2671 i.rm.regmem = i.rm.reg;
2672 i.rm.reg = xchg;
2673
2674 /* Use the next insn. */
2675 i.tm = t[1];
2676 }
2677
2678 vector_length = i.tm.opcode_modifier.vex256 ? 1 : 0;
2679
2680 switch ((i.tm.base_opcode >> 8) & 0xff)
2681 {
2682 case 0:
2683 implied_prefix = 0;
2684 break;
2685 case DATA_PREFIX_OPCODE:
2686 implied_prefix = 1;
2687 break;
2688 case REPE_PREFIX_OPCODE:
2689 implied_prefix = 2;
2690 break;
2691 case REPNE_PREFIX_OPCODE:
2692 implied_prefix = 3;
2693 break;
2694 default:
2695 abort ();
2696 }
2697
2698 /* Use 2-byte VEX prefix if possible. */
2699 if (i.tm.opcode_modifier.vex0f
2700 && (i.rex & (REX_W | REX_X | REX_B)) == 0)
2701 {
2702 /* 2-byte VEX prefix. */
2703 unsigned int r;
2704
2705 i.vex.length = 2;
2706 i.vex.bytes[0] = 0xc5;
2707
2708 /* Check the REX.R bit. */
2709 r = (i.rex & REX_R) ? 0 : 1;
2710 i.vex.bytes[1] = (r << 7
2711 | register_specifier << 3
2712 | vector_length << 2
2713 | implied_prefix);
2714 }
2715 else
2716 {
2717 /* 3-byte VEX prefix. */
2718 unsigned int m, w;
2719
2720 if (i.tm.opcode_modifier.vex0f)
2721 m = 0x1;
2722 else if (i.tm.opcode_modifier.vex0f38)
2723 m = 0x2;
2724 else if (i.tm.opcode_modifier.vex0f3a)
2725 m = 0x3;
2726 else
2727 abort ();
2728
2729 i.vex.length = 3;
2730 i.vex.bytes[0] = 0xc4;
2731
2732 /* The high 3 bits of the second VEX byte are 1's compliment
2733 of RXB bits from REX. */
2734 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
2735
2736 /* Check the REX.W bit. */
2737 w = (i.rex & REX_W) ? 1 : 0;
2738 if (i.tm.opcode_modifier.vexw0 || i.tm.opcode_modifier.vexw1)
2739 {
2740 if (w)
2741 abort ();
2742
2743 if (i.tm.opcode_modifier.vexw1)
2744 w = 1;
2745 }
2746
2747 i.vex.bytes[2] = (w << 7
2748 | register_specifier << 3
2749 | vector_length << 2
2750 | implied_prefix);
2751 }
2752 }
2753
2754 static void
2755 process_immext (void)
2756 {
2757 expressionS *exp;
2758
2759 if (i.tm.cpu_flags.bitfield.cpusse3 && i.operands > 0)
2760 {
2761 /* SSE3 Instructions have the fixed operands with an opcode
2762 suffix which is coded in the same place as an 8-bit immediate
2763 field would be. Here we check those operands and remove them
2764 afterwards. */
2765 unsigned int x;
2766
2767 for (x = 0; x < i.operands; x++)
2768 if (i.op[x].regs->reg_num != x)
2769 as_bad (_("can't use register '%s%s' as operand %d in '%s'."),
2770 register_prefix, i.op[x].regs->reg_name, x + 1,
2771 i.tm.name);
2772
2773 i.operands = 0;
2774 }
2775
2776 /* These AMD 3DNow! and SSE2 instructions have an opcode suffix
2777 which is coded in the same place as an 8-bit immediate field
2778 would be. Here we fake an 8-bit immediate operand from the
2779 opcode suffix stored in tm.extension_opcode.
2780
2781 AVX instructions also use this encoding, for some of
2782 3 argument instructions. */
2783
2784 gas_assert (i.imm_operands == 0
2785 && (i.operands <= 2
2786 || (i.tm.opcode_modifier.vex
2787 && i.operands <= 4)));
2788
2789 exp = &im_expressions[i.imm_operands++];
2790 i.op[i.operands].imms = exp;
2791 i.types[i.operands] = imm8;
2792 i.operands++;
2793 exp->X_op = O_constant;
2794 exp->X_add_number = i.tm.extension_opcode;
2795 i.tm.extension_opcode = None;
2796 }
2797
2798 /* This is the guts of the machine-dependent assembler. LINE points to a
2799 machine dependent instruction. This function is supposed to emit
2800 the frags/bytes it assembles to. */
2801
2802 void
2803 md_assemble (char *line)
2804 {
2805 unsigned int j;
2806 char mnemonic[MAX_MNEM_SIZE];
2807 const insn_template *t;
2808
2809 /* Initialize globals. */
2810 memset (&i, '\0', sizeof (i));
2811 for (j = 0; j < MAX_OPERANDS; j++)
2812 i.reloc[j] = NO_RELOC;
2813 memset (disp_expressions, '\0', sizeof (disp_expressions));
2814 memset (im_expressions, '\0', sizeof (im_expressions));
2815 save_stack_p = save_stack;
2816
2817 /* First parse an instruction mnemonic & call i386_operand for the operands.
2818 We assume that the scrubber has arranged it so that line[0] is the valid
2819 start of a (possibly prefixed) mnemonic. */
2820
2821 line = parse_insn (line, mnemonic);
2822 if (line == NULL)
2823 return;
2824
2825 line = parse_operands (line, mnemonic);
2826 this_operand = -1;
2827 if (line == NULL)
2828 return;
2829
2830 /* Now we've parsed the mnemonic into a set of templates, and have the
2831 operands at hand. */
2832
2833 /* All intel opcodes have reversed operands except for "bound" and
2834 "enter". We also don't reverse intersegment "jmp" and "call"
2835 instructions with 2 immediate operands so that the immediate segment
2836 precedes the offset, as it does when in AT&T mode. */
2837 if (intel_syntax
2838 && i.operands > 1
2839 && (strcmp (mnemonic, "bound") != 0)
2840 && (strcmp (mnemonic, "invlpga") != 0)
2841 && !(operand_type_check (i.types[0], imm)
2842 && operand_type_check (i.types[1], imm)))
2843 swap_operands ();
2844
2845 /* The order of the immediates should be reversed
2846 for 2 immediates extrq and insertq instructions */
2847 if (i.imm_operands == 2
2848 && (strcmp (mnemonic, "extrq") == 0
2849 || strcmp (mnemonic, "insertq") == 0))
2850 swap_2_operands (0, 1);
2851
2852 if (i.imm_operands)
2853 optimize_imm ();
2854
2855 /* Don't optimize displacement for movabs since it only takes 64bit
2856 displacement. */
2857 if (i.disp_operands
2858 && (flag_code != CODE_64BIT
2859 || strcmp (mnemonic, "movabs") != 0))
2860 optimize_disp ();
2861
2862 /* Next, we find a template that matches the given insn,
2863 making sure the overlap of the given operands types is consistent
2864 with the template operand types. */
2865
2866 if (!(t = match_template ()))
2867 return;
2868
2869 if (sse_check != sse_check_none
2870 && !i.tm.opcode_modifier.noavx
2871 && (i.tm.cpu_flags.bitfield.cpusse
2872 || i.tm.cpu_flags.bitfield.cpusse2
2873 || i.tm.cpu_flags.bitfield.cpusse3
2874 || i.tm.cpu_flags.bitfield.cpussse3
2875 || i.tm.cpu_flags.bitfield.cpusse4_1
2876 || i.tm.cpu_flags.bitfield.cpusse4_2))
2877 {
2878 (sse_check == sse_check_warning
2879 ? as_warn
2880 : as_bad) (_("SSE instruction `%s' is used"), i.tm.name);
2881 }
2882
2883 /* Zap movzx and movsx suffix. The suffix has been set from
2884 "word ptr" or "byte ptr" on the source operand in Intel syntax
2885 or extracted from mnemonic in AT&T syntax. But we'll use
2886 the destination register to choose the suffix for encoding. */
2887 if ((i.tm.base_opcode & ~9) == 0x0fb6)
2888 {
2889 /* In Intel syntax, there must be a suffix. In AT&T syntax, if
2890 there is no suffix, the default will be byte extension. */
2891 if (i.reg_operands != 2
2892 && !i.suffix
2893 && intel_syntax)
2894 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
2895
2896 i.suffix = 0;
2897 }
2898
2899 if (i.tm.opcode_modifier.fwait)
2900 if (!add_prefix (FWAIT_OPCODE))
2901 return;
2902
2903 /* Check string instruction segment overrides. */
2904 if (i.tm.opcode_modifier.isstring && i.mem_operands != 0)
2905 {
2906 if (!check_string ())
2907 return;
2908 i.disp_operands = 0;
2909 }
2910
2911 if (!process_suffix ())
2912 return;
2913
2914 /* Update operand types. */
2915 for (j = 0; j < i.operands; j++)
2916 i.types[j] = operand_type_and (i.types[j], i.tm.operand_types[j]);
2917
2918 /* Make still unresolved immediate matches conform to size of immediate
2919 given in i.suffix. */
2920 if (!finalize_imm ())
2921 return;
2922
2923 if (i.types[0].bitfield.imm1)
2924 i.imm_operands = 0; /* kludge for shift insns. */
2925
2926 /* We only need to check those implicit registers for instructions
2927 with 3 operands or less. */
2928 if (i.operands <= 3)
2929 for (j = 0; j < i.operands; j++)
2930 if (i.types[j].bitfield.inoutportreg
2931 || i.types[j].bitfield.shiftcount
2932 || i.types[j].bitfield.acc
2933 || i.types[j].bitfield.floatacc)
2934 i.reg_operands--;
2935
2936 /* ImmExt should be processed after SSE2AVX. */
2937 if (!i.tm.opcode_modifier.sse2avx
2938 && i.tm.opcode_modifier.immext)
2939 process_immext ();
2940
2941 /* For insns with operands there are more diddles to do to the opcode. */
2942 if (i.operands)
2943 {
2944 if (!process_operands ())
2945 return;
2946 }
2947 else if (!quiet_warnings && i.tm.opcode_modifier.ugh)
2948 {
2949 /* UnixWare fsub no args is alias for fsubp, fadd -> faddp, etc. */
2950 as_warn (_("translating to `%sp'"), i.tm.name);
2951 }
2952
2953 if (i.tm.opcode_modifier.vex)
2954 build_vex_prefix (t);
2955
2956 /* Handle conversion of 'int $3' --> special int3 insn. */
2957 if (i.tm.base_opcode == INT_OPCODE && i.op[0].imms->X_add_number == 3)
2958 {
2959 i.tm.base_opcode = INT3_OPCODE;
2960 i.imm_operands = 0;
2961 }
2962
2963 if ((i.tm.opcode_modifier.jump
2964 || i.tm.opcode_modifier.jumpbyte
2965 || i.tm.opcode_modifier.jumpdword)
2966 && i.op[0].disps->X_op == O_constant)
2967 {
2968 /* Convert "jmp constant" (and "call constant") to a jump (call) to
2969 the absolute address given by the constant. Since ix86 jumps and
2970 calls are pc relative, we need to generate a reloc. */
2971 i.op[0].disps->X_add_symbol = &abs_symbol;
2972 i.op[0].disps->X_op = O_symbol;
2973 }
2974
2975 if (i.tm.opcode_modifier.rex64)
2976 i.rex |= REX_W;
2977
2978 /* For 8 bit registers we need an empty rex prefix. Also if the
2979 instruction already has a prefix, we need to convert old
2980 registers to new ones. */
2981
2982 if ((i.types[0].bitfield.reg8
2983 && (i.op[0].regs->reg_flags & RegRex64) != 0)
2984 || (i.types[1].bitfield.reg8
2985 && (i.op[1].regs->reg_flags & RegRex64) != 0)
2986 || ((i.types[0].bitfield.reg8
2987 || i.types[1].bitfield.reg8)
2988 && i.rex != 0))
2989 {
2990 int x;
2991
2992 i.rex |= REX_OPCODE;
2993 for (x = 0; x < 2; x++)
2994 {
2995 /* Look for 8 bit operand that uses old registers. */
2996 if (i.types[x].bitfield.reg8
2997 && (i.op[x].regs->reg_flags & RegRex64) == 0)
2998 {
2999 /* In case it is "hi" register, give up. */
3000 if (i.op[x].regs->reg_num > 3)
3001 as_bad (_("can't encode register '%s%s' in an "
3002 "instruction requiring REX prefix."),
3003 register_prefix, i.op[x].regs->reg_name);
3004
3005 /* Otherwise it is equivalent to the extended register.
3006 Since the encoding doesn't change this is merely
3007 cosmetic cleanup for debug output. */
3008
3009 i.op[x].regs = i.op[x].regs + 8;
3010 }
3011 }
3012 }
3013
3014 if (i.rex != 0)
3015 add_prefix (REX_OPCODE | i.rex);
3016
3017 /* We are ready to output the insn. */
3018 output_insn ();
3019 }
3020
3021 static char *
3022 parse_insn (char *line, char *mnemonic)
3023 {
3024 char *l = line;
3025 char *token_start = l;
3026 char *mnem_p;
3027 int supported;
3028 const insn_template *t;
3029 char *dot_p = NULL;
3030
3031 /* Non-zero if we found a prefix only acceptable with string insns. */
3032 const char *expecting_string_instruction = NULL;
3033
3034 while (1)
3035 {
3036 mnem_p = mnemonic;
3037 while ((*mnem_p = mnemonic_chars[(unsigned char) *l]) != 0)
3038 {
3039 if (*mnem_p == '.')
3040 dot_p = mnem_p;
3041 mnem_p++;
3042 if (mnem_p >= mnemonic + MAX_MNEM_SIZE)
3043 {
3044 as_bad (_("no such instruction: `%s'"), token_start);
3045 return NULL;
3046 }
3047 l++;
3048 }
3049 if (!is_space_char (*l)
3050 && *l != END_OF_INSN
3051 && (intel_syntax
3052 || (*l != PREFIX_SEPARATOR
3053 && *l != ',')))
3054 {
3055 as_bad (_("invalid character %s in mnemonic"),
3056 output_invalid (*l));
3057 return NULL;
3058 }
3059 if (token_start == l)
3060 {
3061 if (!intel_syntax && *l == PREFIX_SEPARATOR)
3062 as_bad (_("expecting prefix; got nothing"));
3063 else
3064 as_bad (_("expecting mnemonic; got nothing"));
3065 return NULL;
3066 }
3067
3068 /* Look up instruction (or prefix) via hash table. */
3069 current_templates = (const templates *) hash_find (op_hash, mnemonic);
3070
3071 if (*l != END_OF_INSN
3072 && (!is_space_char (*l) || l[1] != END_OF_INSN)
3073 && current_templates
3074 && current_templates->start->opcode_modifier.isprefix)
3075 {
3076 if (!cpu_flags_check_cpu64 (current_templates->start->cpu_flags))
3077 {
3078 as_bad ((flag_code != CODE_64BIT
3079 ? _("`%s' is only supported in 64-bit mode")
3080 : _("`%s' is not supported in 64-bit mode")),
3081 current_templates->start->name);
3082 return NULL;
3083 }
3084 /* If we are in 16-bit mode, do not allow addr16 or data16.
3085 Similarly, in 32-bit mode, do not allow addr32 or data32. */
3086 if ((current_templates->start->opcode_modifier.size16
3087 || current_templates->start->opcode_modifier.size32)
3088 && flag_code != CODE_64BIT
3089 && (current_templates->start->opcode_modifier.size32
3090 ^ (flag_code == CODE_16BIT)))
3091 {
3092 as_bad (_("redundant %s prefix"),
3093 current_templates->start->name);
3094 return NULL;
3095 }
3096 /* Add prefix, checking for repeated prefixes. */
3097 switch (add_prefix (current_templates->start->base_opcode))
3098 {
3099 case 0:
3100 return NULL;
3101 case 2:
3102 expecting_string_instruction = current_templates->start->name;
3103 break;
3104 }
3105 /* Skip past PREFIX_SEPARATOR and reset token_start. */
3106 token_start = ++l;
3107 }
3108 else
3109 break;
3110 }
3111
3112 if (!current_templates)
3113 {
3114 /* Check if we should swap operand in encoding. */
3115 if (mnem_p - 2 == dot_p && dot_p[1] == 's')
3116 i.swap_operand = 1;
3117 else
3118 goto check_suffix;
3119 mnem_p = dot_p;
3120 *dot_p = '\0';
3121 current_templates = (const templates *) hash_find (op_hash, mnemonic);
3122 }
3123
3124 if (!current_templates)
3125 {
3126 check_suffix:
3127 /* See if we can get a match by trimming off a suffix. */
3128 switch (mnem_p[-1])
3129 {
3130 case WORD_MNEM_SUFFIX:
3131 if (intel_syntax && (intel_float_operand (mnemonic) & 2))
3132 i.suffix = SHORT_MNEM_SUFFIX;
3133 else
3134 case BYTE_MNEM_SUFFIX:
3135 case QWORD_MNEM_SUFFIX:
3136 i.suffix = mnem_p[-1];
3137 mnem_p[-1] = '\0';
3138 current_templates = (const templates *) hash_find (op_hash,
3139 mnemonic);
3140 break;
3141 case SHORT_MNEM_SUFFIX:
3142 case LONG_MNEM_SUFFIX:
3143 if (!intel_syntax)
3144 {
3145 i.suffix = mnem_p[-1];
3146 mnem_p[-1] = '\0';
3147 current_templates = (const templates *) hash_find (op_hash,
3148 mnemonic);
3149 }
3150 break;
3151
3152 /* Intel Syntax. */
3153 case 'd':
3154 if (intel_syntax)
3155 {
3156 if (intel_float_operand (mnemonic) == 1)
3157 i.suffix = SHORT_MNEM_SUFFIX;
3158 else
3159 i.suffix = LONG_MNEM_SUFFIX;
3160 mnem_p[-1] = '\0';
3161 current_templates = (const templates *) hash_find (op_hash,
3162 mnemonic);
3163 }
3164 break;
3165 }
3166 if (!current_templates)
3167 {
3168 as_bad (_("no such instruction: `%s'"), token_start);
3169 return NULL;
3170 }
3171 }
3172
3173 if (current_templates->start->opcode_modifier.jump
3174 || current_templates->start->opcode_modifier.jumpbyte)
3175 {
3176 /* Check for a branch hint. We allow ",pt" and ",pn" for
3177 predict taken and predict not taken respectively.
3178 I'm not sure that branch hints actually do anything on loop
3179 and jcxz insns (JumpByte) for current Pentium4 chips. They
3180 may work in the future and it doesn't hurt to accept them
3181 now. */
3182 if (l[0] == ',' && l[1] == 'p')
3183 {
3184 if (l[2] == 't')
3185 {
3186 if (!add_prefix (DS_PREFIX_OPCODE))
3187 return NULL;
3188 l += 3;
3189 }
3190 else if (l[2] == 'n')
3191 {
3192 if (!add_prefix (CS_PREFIX_OPCODE))
3193 return NULL;
3194 l += 3;
3195 }
3196 }
3197 }
3198 /* Any other comma loses. */
3199 if (*l == ',')
3200 {
3201 as_bad (_("invalid character %s in mnemonic"),
3202 output_invalid (*l));
3203 return NULL;
3204 }
3205
3206 /* Check if instruction is supported on specified architecture. */
3207 supported = 0;
3208 for (t = current_templates->start; t < current_templates->end; ++t)
3209 {
3210 supported |= cpu_flags_match (t);
3211 if (supported == CPU_FLAGS_PERFECT_MATCH)
3212 goto skip;
3213 }
3214
3215 if (!(supported & CPU_FLAGS_64BIT_MATCH))
3216 {
3217 as_bad (flag_code == CODE_64BIT
3218 ? _("`%s' is not supported in 64-bit mode")
3219 : _("`%s' is only supported in 64-bit mode"),
3220 current_templates->start->name);
3221 return NULL;
3222 }
3223 if (supported != CPU_FLAGS_PERFECT_MATCH)
3224 {
3225 as_bad (_("`%s' is not supported on `%s%s'"),
3226 current_templates->start->name,
3227 cpu_arch_name ? cpu_arch_name : default_arch,
3228 cpu_sub_arch_name ? cpu_sub_arch_name : "");
3229 return NULL;
3230 }
3231
3232 skip:
3233 if (!cpu_arch_flags.bitfield.cpui386
3234 && (flag_code != CODE_16BIT))
3235 {
3236 as_warn (_("use .code16 to ensure correct addressing mode"));
3237 }
3238
3239 /* Check for rep/repne without a string instruction. */
3240 if (expecting_string_instruction)
3241 {
3242 static templates override;
3243
3244 for (t = current_templates->start; t < current_templates->end; ++t)
3245 if (t->opcode_modifier.isstring)
3246 break;
3247 if (t >= current_templates->end)
3248 {
3249 as_bad (_("expecting string instruction after `%s'"),
3250 expecting_string_instruction);
3251 return NULL;
3252 }
3253 for (override.start = t; t < current_templates->end; ++t)
3254 if (!t->opcode_modifier.isstring)
3255 break;
3256 override.end = t;
3257 current_templates = &override;
3258 }
3259
3260 return l;
3261 }
3262
3263 static char *
3264 parse_operands (char *l, const char *mnemonic)
3265 {
3266 char *token_start;
3267
3268 /* 1 if operand is pending after ','. */
3269 unsigned int expecting_operand = 0;
3270
3271 /* Non-zero if operand parens not balanced. */
3272 unsigned int paren_not_balanced;
3273
3274 while (*l != END_OF_INSN)
3275 {
3276 /* Skip optional white space before operand. */
3277 if (is_space_char (*l))
3278 ++l;
3279 if (!is_operand_char (*l) && *l != END_OF_INSN)
3280 {
3281 as_bad (_("invalid character %s before operand %d"),
3282 output_invalid (*l),
3283 i.operands + 1);
3284 return NULL;
3285 }
3286 token_start = l; /* after white space */
3287 paren_not_balanced = 0;
3288 while (paren_not_balanced || *l != ',')
3289 {
3290 if (*l == END_OF_INSN)
3291 {
3292 if (paren_not_balanced)
3293 {
3294 if (!intel_syntax)
3295 as_bad (_("unbalanced parenthesis in operand %d."),
3296 i.operands + 1);
3297 else
3298 as_bad (_("unbalanced brackets in operand %d."),
3299 i.operands + 1);
3300 return NULL;
3301 }
3302 else
3303 break; /* we are done */
3304 }
3305 else if (!is_operand_char (*l) && !is_space_char (*l))
3306 {
3307 as_bad (_("invalid character %s in operand %d"),
3308 output_invalid (*l),
3309 i.operands + 1);
3310 return NULL;
3311 }
3312 if (!intel_syntax)
3313 {
3314 if (*l == '(')
3315 ++paren_not_balanced;
3316 if (*l == ')')
3317 --paren_not_balanced;
3318 }
3319 else
3320 {
3321 if (*l == '[')
3322 ++paren_not_balanced;
3323 if (*l == ']')
3324 --paren_not_balanced;
3325 }
3326 l++;
3327 }
3328 if (l != token_start)
3329 { /* Yes, we've read in another operand. */
3330 unsigned int operand_ok;
3331 this_operand = i.operands++;
3332 i.types[this_operand].bitfield.unspecified = 1;
3333 if (i.operands > MAX_OPERANDS)
3334 {
3335 as_bad (_("spurious operands; (%d operands/instruction max)"),
3336 MAX_OPERANDS);
3337 return NULL;
3338 }
3339 /* Now parse operand adding info to 'i' as we go along. */
3340 END_STRING_AND_SAVE (l);
3341
3342 if (intel_syntax)
3343 operand_ok =
3344 i386_intel_operand (token_start,
3345 intel_float_operand (mnemonic));
3346 else
3347 operand_ok = i386_att_operand (token_start);
3348
3349 RESTORE_END_STRING (l);
3350 if (!operand_ok)
3351 return NULL;
3352 }
3353 else
3354 {
3355 if (expecting_operand)
3356 {
3357 expecting_operand_after_comma:
3358 as_bad (_("expecting operand after ','; got nothing"));
3359 return NULL;
3360 }
3361 if (*l == ',')
3362 {
3363 as_bad (_("expecting operand before ','; got nothing"));
3364 return NULL;
3365 }
3366 }
3367
3368 /* Now *l must be either ',' or END_OF_INSN. */
3369 if (*l == ',')
3370 {
3371 if (*++l == END_OF_INSN)
3372 {
3373 /* Just skip it, if it's \n complain. */
3374 goto expecting_operand_after_comma;
3375 }
3376 expecting_operand = 1;
3377 }
3378 }
3379 return l;
3380 }
3381
3382 static void
3383 swap_2_operands (int xchg1, int xchg2)
3384 {
3385 union i386_op temp_op;
3386 i386_operand_type temp_type;
3387 enum bfd_reloc_code_real temp_reloc;
3388
3389 temp_type = i.types[xchg2];
3390 i.types[xchg2] = i.types[xchg1];
3391 i.types[xchg1] = temp_type;
3392 temp_op = i.op[xchg2];
3393 i.op[xchg2] = i.op[xchg1];
3394 i.op[xchg1] = temp_op;
3395 temp_reloc = i.reloc[xchg2];
3396 i.reloc[xchg2] = i.reloc[xchg1];
3397 i.reloc[xchg1] = temp_reloc;
3398 }
3399
3400 static void
3401 swap_operands (void)
3402 {
3403 switch (i.operands)
3404 {
3405 case 5:
3406 case 4:
3407 swap_2_operands (1, i.operands - 2);
3408 case 3:
3409 case 2:
3410 swap_2_operands (0, i.operands - 1);
3411 break;
3412 default:
3413 abort ();
3414 }
3415
3416 if (i.mem_operands == 2)
3417 {
3418 const seg_entry *temp_seg;
3419 temp_seg = i.seg[0];
3420 i.seg[0] = i.seg[1];
3421 i.seg[1] = temp_seg;
3422 }
3423 }
3424
3425 /* Try to ensure constant immediates are represented in the smallest
3426 opcode possible. */
3427 static void
3428 optimize_imm (void)
3429 {
3430 char guess_suffix = 0;
3431 int op;
3432
3433 if (i.suffix)
3434 guess_suffix = i.suffix;
3435 else if (i.reg_operands)
3436 {
3437 /* Figure out a suffix from the last register operand specified.
3438 We can't do this properly yet, ie. excluding InOutPortReg,
3439 but the following works for instructions with immediates.
3440 In any case, we can't set i.suffix yet. */
3441 for (op = i.operands; --op >= 0;)
3442 if (i.types[op].bitfield.reg8)
3443 {
3444 guess_suffix = BYTE_MNEM_SUFFIX;
3445 break;
3446 }
3447 else if (i.types[op].bitfield.reg16)
3448 {
3449 guess_suffix = WORD_MNEM_SUFFIX;
3450 break;
3451 }
3452 else if (i.types[op].bitfield.reg32)
3453 {
3454 guess_suffix = LONG_MNEM_SUFFIX;
3455 break;
3456 }
3457 else if (i.types[op].bitfield.reg64)
3458 {
3459 guess_suffix = QWORD_MNEM_SUFFIX;
3460 break;
3461 }
3462 }
3463 else if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
3464 guess_suffix = WORD_MNEM_SUFFIX;
3465
3466 for (op = i.operands; --op >= 0;)
3467 if (operand_type_check (i.types[op], imm))
3468 {
3469 switch (i.op[op].imms->X_op)
3470 {
3471 case O_constant:
3472 /* If a suffix is given, this operand may be shortened. */
3473 switch (guess_suffix)
3474 {
3475 case LONG_MNEM_SUFFIX:
3476 i.types[op].bitfield.imm32 = 1;
3477 i.types[op].bitfield.imm64 = 1;
3478 break;
3479 case WORD_MNEM_SUFFIX:
3480 i.types[op].bitfield.imm16 = 1;
3481 i.types[op].bitfield.imm32 = 1;
3482 i.types[op].bitfield.imm32s = 1;
3483 i.types[op].bitfield.imm64 = 1;
3484 break;
3485 case BYTE_MNEM_SUFFIX:
3486 i.types[op].bitfield.imm8 = 1;
3487 i.types[op].bitfield.imm8s = 1;
3488 i.types[op].bitfield.imm16 = 1;
3489 i.types[op].bitfield.imm32 = 1;
3490 i.types[op].bitfield.imm32s = 1;
3491 i.types[op].bitfield.imm64 = 1;
3492 break;
3493 }
3494
3495 /* If this operand is at most 16 bits, convert it
3496 to a signed 16 bit number before trying to see
3497 whether it will fit in an even smaller size.
3498 This allows a 16-bit operand such as $0xffe0 to
3499 be recognised as within Imm8S range. */
3500 if ((i.types[op].bitfield.imm16)
3501 && (i.op[op].imms->X_add_number & ~(offsetT) 0xffff) == 0)
3502 {
3503 i.op[op].imms->X_add_number =
3504 (((i.op[op].imms->X_add_number & 0xffff) ^ 0x8000) - 0x8000);
3505 }
3506 if ((i.types[op].bitfield.imm32)
3507 && ((i.op[op].imms->X_add_number & ~(((offsetT) 2 << 31) - 1))
3508 == 0))
3509 {
3510 i.op[op].imms->X_add_number = ((i.op[op].imms->X_add_number
3511 ^ ((offsetT) 1 << 31))
3512 - ((offsetT) 1 << 31));
3513 }
3514 i.types[op]
3515 = operand_type_or (i.types[op],
3516 smallest_imm_type (i.op[op].imms->X_add_number));
3517
3518 /* We must avoid matching of Imm32 templates when 64bit
3519 only immediate is available. */
3520 if (guess_suffix == QWORD_MNEM_SUFFIX)
3521 i.types[op].bitfield.imm32 = 0;
3522 break;
3523
3524 case O_absent:
3525 case O_register:
3526 abort ();
3527
3528 /* Symbols and expressions. */
3529 default:
3530 /* Convert symbolic operand to proper sizes for matching, but don't
3531 prevent matching a set of insns that only supports sizes other
3532 than those matching the insn suffix. */
3533 {
3534 i386_operand_type mask, allowed;
3535 const insn_template *t;
3536
3537 operand_type_set (&mask, 0);
3538 operand_type_set (&allowed, 0);
3539
3540 for (t = current_templates->start;
3541 t < current_templates->end;
3542 ++t)
3543 allowed = operand_type_or (allowed,
3544 t->operand_types[op]);
3545 switch (guess_suffix)
3546 {
3547 case QWORD_MNEM_SUFFIX:
3548 mask.bitfield.imm64 = 1;
3549 mask.bitfield.imm32s = 1;
3550 break;
3551 case LONG_MNEM_SUFFIX:
3552 mask.bitfield.imm32 = 1;
3553 break;
3554 case WORD_MNEM_SUFFIX:
3555 mask.bitfield.imm16 = 1;
3556 break;
3557 case BYTE_MNEM_SUFFIX:
3558 mask.bitfield.imm8 = 1;
3559 break;
3560 default:
3561 break;
3562 }
3563 allowed = operand_type_and (mask, allowed);
3564 if (!operand_type_all_zero (&allowed))
3565 i.types[op] = operand_type_and (i.types[op], mask);
3566 }
3567 break;
3568 }
3569 }
3570 }
3571
3572 /* Try to use the smallest displacement type too. */
3573 static void
3574 optimize_disp (void)
3575 {
3576 int op;
3577
3578 for (op = i.operands; --op >= 0;)
3579 if (operand_type_check (i.types[op], disp))
3580 {
3581 if (i.op[op].disps->X_op == O_constant)
3582 {
3583 offsetT disp = i.op[op].disps->X_add_number;
3584
3585 if (i.types[op].bitfield.disp16
3586 && (disp & ~(offsetT) 0xffff) == 0)
3587 {
3588 /* If this operand is at most 16 bits, convert
3589 to a signed 16 bit number and don't use 64bit
3590 displacement. */
3591 disp = (((disp & 0xffff) ^ 0x8000) - 0x8000);
3592 i.types[op].bitfield.disp64 = 0;
3593 }
3594 if (i.types[op].bitfield.disp32
3595 && (disp & ~(((offsetT) 2 << 31) - 1)) == 0)
3596 {
3597 /* If this operand is at most 32 bits, convert
3598 to a signed 32 bit number and don't use 64bit
3599 displacement. */
3600 disp &= (((offsetT) 2 << 31) - 1);
3601 disp = (disp ^ ((offsetT) 1 << 31)) - ((addressT) 1 << 31);
3602 i.types[op].bitfield.disp64 = 0;
3603 }
3604 if (!disp && i.types[op].bitfield.baseindex)
3605 {
3606 i.types[op].bitfield.disp8 = 0;
3607 i.types[op].bitfield.disp16 = 0;
3608 i.types[op].bitfield.disp32 = 0;
3609 i.types[op].bitfield.disp32s = 0;
3610 i.types[op].bitfield.disp64 = 0;
3611 i.op[op].disps = 0;
3612 i.disp_operands--;
3613 }
3614 else if (flag_code == CODE_64BIT)
3615 {
3616 if (fits_in_signed_long (disp))
3617 {
3618 i.types[op].bitfield.disp64 = 0;
3619 i.types[op].bitfield.disp32s = 1;
3620 }
3621 if (fits_in_unsigned_long (disp))
3622 i.types[op].bitfield.disp32 = 1;
3623 }
3624 if ((i.types[op].bitfield.disp32
3625 || i.types[op].bitfield.disp32s
3626 || i.types[op].bitfield.disp16)
3627 && fits_in_signed_byte (disp))
3628 i.types[op].bitfield.disp8 = 1;
3629 }
3630 else if (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
3631 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL)
3632 {
3633 fix_new_exp (frag_now, frag_more (0) - frag_now->fr_literal, 0,
3634 i.op[op].disps, 0, i.reloc[op]);
3635 i.types[op].bitfield.disp8 = 0;
3636 i.types[op].bitfield.disp16 = 0;
3637 i.types[op].bitfield.disp32 = 0;
3638 i.types[op].bitfield.disp32s = 0;
3639 i.types[op].bitfield.disp64 = 0;
3640 }
3641 else
3642 /* We only support 64bit displacement on constants. */
3643 i.types[op].bitfield.disp64 = 0;
3644 }
3645 }
3646
3647 static const insn_template *
3648 match_template (void)
3649 {
3650 /* Points to template once we've found it. */
3651 const insn_template *t;
3652 i386_operand_type overlap0, overlap1, overlap2, overlap3;
3653 i386_operand_type overlap4;
3654 unsigned int found_reverse_match;
3655 i386_opcode_modifier suffix_check;
3656 i386_operand_type operand_types [MAX_OPERANDS];
3657 int addr_prefix_disp;
3658 unsigned int j;
3659 unsigned int found_cpu_match;
3660 unsigned int check_register;
3661
3662 #if MAX_OPERANDS != 5
3663 # error "MAX_OPERANDS must be 5."
3664 #endif
3665
3666 found_reverse_match = 0;
3667 addr_prefix_disp = -1;
3668
3669 memset (&suffix_check, 0, sizeof (suffix_check));
3670 if (i.suffix == BYTE_MNEM_SUFFIX)
3671 suffix_check.no_bsuf = 1;
3672 else if (i.suffix == WORD_MNEM_SUFFIX)
3673 suffix_check.no_wsuf = 1;
3674 else if (i.suffix == SHORT_MNEM_SUFFIX)
3675 suffix_check.no_ssuf = 1;
3676 else if (i.suffix == LONG_MNEM_SUFFIX)
3677 suffix_check.no_lsuf = 1;
3678 else if (i.suffix == QWORD_MNEM_SUFFIX)
3679 suffix_check.no_qsuf = 1;
3680 else if (i.suffix == LONG_DOUBLE_MNEM_SUFFIX)
3681 suffix_check.no_ldsuf = 1;
3682
3683 for (t = current_templates->start; t < current_templates->end; t++)
3684 {
3685 addr_prefix_disp = -1;
3686
3687 /* Must have right number of operands. */
3688 if (i.operands != t->operands)
3689 continue;
3690
3691 /* Check processor support. */
3692 found_cpu_match = (cpu_flags_match (t)
3693 == CPU_FLAGS_PERFECT_MATCH);
3694 if (!found_cpu_match)
3695 continue;
3696
3697 /* Check old gcc support. */
3698 if (!old_gcc && t->opcode_modifier.oldgcc)
3699 continue;
3700
3701 /* Check AT&T mnemonic. */
3702 if (intel_mnemonic && t->opcode_modifier.attmnemonic)
3703 continue;
3704
3705 /* Check AT&T syntax Intel syntax. */
3706 if ((intel_syntax && t->opcode_modifier.attsyntax)
3707 || (!intel_syntax && t->opcode_modifier.intelsyntax))
3708 continue;
3709
3710 /* Check the suffix, except for some instructions in intel mode. */
3711 if ((!intel_syntax || !t->opcode_modifier.ignoresize)
3712 && ((t->opcode_modifier.no_bsuf && suffix_check.no_bsuf)
3713 || (t->opcode_modifier.no_wsuf && suffix_check.no_wsuf)
3714 || (t->opcode_modifier.no_lsuf && suffix_check.no_lsuf)
3715 || (t->opcode_modifier.no_ssuf && suffix_check.no_ssuf)
3716 || (t->opcode_modifier.no_qsuf && suffix_check.no_qsuf)
3717 || (t->opcode_modifier.no_ldsuf && suffix_check.no_ldsuf)))
3718 continue;
3719
3720 if (!operand_size_match (t))
3721 continue;
3722
3723 for (j = 0; j < MAX_OPERANDS; j++)
3724 operand_types[j] = t->operand_types[j];
3725
3726 /* In general, don't allow 64-bit operands in 32-bit mode. */
3727 if (i.suffix == QWORD_MNEM_SUFFIX
3728 && flag_code != CODE_64BIT
3729 && (intel_syntax
3730 ? (!t->opcode_modifier.ignoresize
3731 && !intel_float_operand (t->name))
3732 : intel_float_operand (t->name) != 2)
3733 && ((!operand_types[0].bitfield.regmmx
3734 && !operand_types[0].bitfield.regxmm
3735 && !operand_types[0].bitfield.regymm)
3736 || (!operand_types[t->operands > 1].bitfield.regmmx
3737 && !!operand_types[t->operands > 1].bitfield.regxmm
3738 && !!operand_types[t->operands > 1].bitfield.regymm))
3739 && (t->base_opcode != 0x0fc7
3740 || t->extension_opcode != 1 /* cmpxchg8b */))
3741 continue;
3742
3743 /* In general, don't allow 32-bit operands on pre-386. */
3744 else if (i.suffix == LONG_MNEM_SUFFIX
3745 && !cpu_arch_flags.bitfield.cpui386
3746 && (intel_syntax
3747 ? (!t->opcode_modifier.ignoresize
3748 && !intel_float_operand (t->name))
3749 : intel_float_operand (t->name) != 2)
3750 && ((!operand_types[0].bitfield.regmmx
3751 && !operand_types[0].bitfield.regxmm)
3752 || (!operand_types[t->operands > 1].bitfield.regmmx
3753 && !!operand_types[t->operands > 1].bitfield.regxmm)))
3754 continue;
3755
3756 /* Do not verify operands when there are none. */
3757 else
3758 {
3759 if (!t->operands)
3760 /* We've found a match; break out of loop. */
3761 break;
3762 }
3763
3764 /* Address size prefix will turn Disp64/Disp32/Disp16 operand
3765 into Disp32/Disp16/Disp32 operand. */
3766 if (i.prefix[ADDR_PREFIX] != 0)
3767 {
3768 /* There should be only one Disp operand. */
3769 switch (flag_code)
3770 {
3771 case CODE_16BIT:
3772 for (j = 0; j < MAX_OPERANDS; j++)
3773 {
3774 if (operand_types[j].bitfield.disp16)
3775 {
3776 addr_prefix_disp = j;
3777 operand_types[j].bitfield.disp32 = 1;
3778 operand_types[j].bitfield.disp16 = 0;
3779 break;
3780 }
3781 }
3782 break;
3783 case CODE_32BIT:
3784 for (j = 0; j < MAX_OPERANDS; j++)
3785 {
3786 if (operand_types[j].bitfield.disp32)
3787 {
3788 addr_prefix_disp = j;
3789 operand_types[j].bitfield.disp32 = 0;
3790 operand_types[j].bitfield.disp16 = 1;
3791 break;
3792 }
3793 }
3794 break;
3795 case CODE_64BIT:
3796 for (j = 0; j < MAX_OPERANDS; j++)
3797 {
3798 if (operand_types[j].bitfield.disp64)
3799 {
3800 addr_prefix_disp = j;
3801 operand_types[j].bitfield.disp64 = 0;
3802 operand_types[j].bitfield.disp32 = 1;
3803 break;
3804 }
3805 }
3806 break;
3807 }
3808 }
3809
3810 /* We check register size only if size of operands can be
3811 encoded the canonical way. */
3812 check_register = t->opcode_modifier.w;
3813 overlap0 = operand_type_and (i.types[0], operand_types[0]);
3814 switch (t->operands)
3815 {
3816 case 1:
3817 if (!operand_type_match (overlap0, i.types[0]))
3818 continue;
3819 break;
3820 case 2:
3821 /* xchg %eax, %eax is a special case. It is an aliase for nop
3822 only in 32bit mode and we can use opcode 0x90. In 64bit
3823 mode, we can't use 0x90 for xchg %eax, %eax since it should
3824 zero-extend %eax to %rax. */
3825 if (flag_code == CODE_64BIT
3826 && t->base_opcode == 0x90
3827 && operand_type_equal (&i.types [0], &acc32)
3828 && operand_type_equal (&i.types [1], &acc32))
3829 continue;
3830 if (i.swap_operand)
3831 {
3832 /* If we swap operand in encoding, we either match
3833 the next one or reverse direction of operands. */
3834 if (t->opcode_modifier.s)
3835 continue;
3836 else if (t->opcode_modifier.d)
3837 goto check_reverse;
3838 }
3839
3840 case 3:
3841 /* If we swap operand in encoding, we match the next one. */
3842 if (i.swap_operand && t->opcode_modifier.s)
3843 continue;
3844 case 4:
3845 case 5:
3846 overlap1 = operand_type_and (i.types[1], operand_types[1]);
3847 if (!operand_type_match (overlap0, i.types[0])
3848 || !operand_type_match (overlap1, i.types[1])
3849 || (check_register
3850 && !operand_type_register_match (overlap0, i.types[0],
3851 operand_types[0],
3852 overlap1, i.types[1],
3853 operand_types[1])))
3854 {
3855 /* Check if other direction is valid ... */
3856 if (!t->opcode_modifier.d && !t->opcode_modifier.floatd)
3857 continue;
3858
3859 check_reverse:
3860 /* Try reversing direction of operands. */
3861 overlap0 = operand_type_and (i.types[0], operand_types[1]);
3862 overlap1 = operand_type_and (i.types[1], operand_types[0]);
3863 if (!operand_type_match (overlap0, i.types[0])
3864 || !operand_type_match (overlap1, i.types[1])
3865 || (check_register
3866 && !operand_type_register_match (overlap0,
3867 i.types[0],
3868 operand_types[1],
3869 overlap1,
3870 i.types[1],
3871 operand_types[0])))
3872 {
3873 /* Does not match either direction. */
3874 continue;
3875 }
3876 /* found_reverse_match holds which of D or FloatDR
3877 we've found. */
3878 if (t->opcode_modifier.d)
3879 found_reverse_match = Opcode_D;
3880 else if (t->opcode_modifier.floatd)
3881 found_reverse_match = Opcode_FloatD;
3882 else
3883 found_reverse_match = 0;
3884 if (t->opcode_modifier.floatr)
3885 found_reverse_match |= Opcode_FloatR;
3886 }
3887 else
3888 {
3889 /* Found a forward 2 operand match here. */
3890 switch (t->operands)
3891 {
3892 case 5:
3893 overlap4 = operand_type_and (i.types[4],
3894 operand_types[4]);
3895 case 4:
3896 overlap3 = operand_type_and (i.types[3],
3897 operand_types[3]);
3898 case 3:
3899 overlap2 = operand_type_and (i.types[2],
3900 operand_types[2]);
3901 break;
3902 }
3903
3904 switch (t->operands)
3905 {
3906 case 5:
3907 if (!operand_type_match (overlap4, i.types[4])
3908 || !operand_type_register_match (overlap3,
3909 i.types[3],
3910 operand_types[3],
3911 overlap4,
3912 i.types[4],
3913 operand_types[4]))
3914 continue;
3915 case 4:
3916 if (!operand_type_match (overlap3, i.types[3])
3917 || (check_register
3918 && !operand_type_register_match (overlap2,
3919 i.types[2],
3920 operand_types[2],
3921 overlap3,
3922 i.types[3],
3923 operand_types[3])))
3924 continue;
3925 case 3:
3926 /* Here we make use of the fact that there are no
3927 reverse match 3 operand instructions, and all 3
3928 operand instructions only need to be checked for
3929 register consistency between operands 2 and 3. */
3930 if (!operand_type_match (overlap2, i.types[2])
3931 || (check_register
3932 && !operand_type_register_match (overlap1,
3933 i.types[1],
3934 operand_types[1],
3935 overlap2,
3936 i.types[2],
3937 operand_types[2])))
3938 continue;
3939 break;
3940 }
3941 }
3942 /* Found either forward/reverse 2, 3 or 4 operand match here:
3943 slip through to break. */
3944 }
3945 if (!found_cpu_match)
3946 {
3947 found_reverse_match = 0;
3948 continue;
3949 }
3950
3951 /* We've found a match; break out of loop. */
3952 break;
3953 }
3954
3955 if (t == current_templates->end)
3956 {
3957 /* We found no match. */
3958 if (intel_syntax)
3959 as_bad (_("ambiguous operand size or operands invalid for `%s'"),
3960 current_templates->start->name);
3961 else
3962 as_bad (_("suffix or operands invalid for `%s'"),
3963 current_templates->start->name);
3964 return NULL;
3965 }
3966
3967 if (!quiet_warnings)
3968 {
3969 if (!intel_syntax
3970 && (i.types[0].bitfield.jumpabsolute
3971 != operand_types[0].bitfield.jumpabsolute))
3972 {
3973 as_warn (_("indirect %s without `*'"), t->name);
3974 }
3975
3976 if (t->opcode_modifier.isprefix
3977 && t->opcode_modifier.ignoresize)
3978 {
3979 /* Warn them that a data or address size prefix doesn't
3980 affect assembly of the next line of code. */
3981 as_warn (_("stand-alone `%s' prefix"), t->name);
3982 }
3983 }
3984
3985 /* Copy the template we found. */
3986 i.tm = *t;
3987
3988 if (addr_prefix_disp != -1)
3989 i.tm.operand_types[addr_prefix_disp]
3990 = operand_types[addr_prefix_disp];
3991
3992 if (found_reverse_match)
3993 {
3994 /* If we found a reverse match we must alter the opcode
3995 direction bit. found_reverse_match holds bits to change
3996 (different for int & float insns). */
3997
3998 i.tm.base_opcode ^= found_reverse_match;
3999
4000 i.tm.operand_types[0] = operand_types[1];
4001 i.tm.operand_types[1] = operand_types[0];
4002 }
4003
4004 return t;
4005 }
4006
4007 static int
4008 check_string (void)
4009 {
4010 int mem_op = operand_type_check (i.types[0], anymem) ? 0 : 1;
4011 if (i.tm.operand_types[mem_op].bitfield.esseg)
4012 {
4013 if (i.seg[0] != NULL && i.seg[0] != &es)
4014 {
4015 as_bad (_("`%s' operand %d must use `%ses' segment"),
4016 i.tm.name,
4017 mem_op + 1,
4018 register_prefix);
4019 return 0;
4020 }
4021 /* There's only ever one segment override allowed per instruction.
4022 This instruction possibly has a legal segment override on the
4023 second operand, so copy the segment to where non-string
4024 instructions store it, allowing common code. */
4025 i.seg[0] = i.seg[1];
4026 }
4027 else if (i.tm.operand_types[mem_op + 1].bitfield.esseg)
4028 {
4029 if (i.seg[1] != NULL && i.seg[1] != &es)
4030 {
4031 as_bad (_("`%s' operand %d must use `%ses' segment"),
4032 i.tm.name,
4033 mem_op + 2,
4034 register_prefix);
4035 return 0;
4036 }
4037 }
4038 return 1;
4039 }
4040
4041 static int
4042 process_suffix (void)
4043 {
4044 /* If matched instruction specifies an explicit instruction mnemonic
4045 suffix, use it. */
4046 if (i.tm.opcode_modifier.size16)
4047 i.suffix = WORD_MNEM_SUFFIX;
4048 else if (i.tm.opcode_modifier.size32)
4049 i.suffix = LONG_MNEM_SUFFIX;
4050 else if (i.tm.opcode_modifier.size64)
4051 i.suffix = QWORD_MNEM_SUFFIX;
4052 else if (i.reg_operands)
4053 {
4054 /* If there's no instruction mnemonic suffix we try to invent one
4055 based on register operands. */
4056 if (!i.suffix)
4057 {
4058 /* We take i.suffix from the last register operand specified,
4059 Destination register type is more significant than source
4060 register type. crc32 in SSE4.2 prefers source register
4061 type. */
4062 if (i.tm.base_opcode == 0xf20f38f1)
4063 {
4064 if (i.types[0].bitfield.reg16)
4065 i.suffix = WORD_MNEM_SUFFIX;
4066 else if (i.types[0].bitfield.reg32)
4067 i.suffix = LONG_MNEM_SUFFIX;
4068 else if (i.types[0].bitfield.reg64)
4069 i.suffix = QWORD_MNEM_SUFFIX;
4070 }
4071 else if (i.tm.base_opcode == 0xf20f38f0)
4072 {
4073 if (i.types[0].bitfield.reg8)
4074 i.suffix = BYTE_MNEM_SUFFIX;
4075 }
4076
4077 if (!i.suffix)
4078 {
4079 int op;
4080
4081 if (i.tm.base_opcode == 0xf20f38f1
4082 || i.tm.base_opcode == 0xf20f38f0)
4083 {
4084 /* We have to know the operand size for crc32. */
4085 as_bad (_("ambiguous memory operand size for `%s`"),
4086 i.tm.name);
4087 return 0;
4088 }
4089
4090 for (op = i.operands; --op >= 0;)
4091 if (!i.tm.operand_types[op].bitfield.inoutportreg)
4092 {
4093 if (i.types[op].bitfield.reg8)
4094 {
4095 i.suffix = BYTE_MNEM_SUFFIX;
4096 break;
4097 }
4098 else if (i.types[op].bitfield.reg16)
4099 {
4100 i.suffix = WORD_MNEM_SUFFIX;
4101 break;
4102 }
4103 else if (i.types[op].bitfield.reg32)
4104 {
4105 i.suffix = LONG_MNEM_SUFFIX;
4106 break;
4107 }
4108 else if (i.types[op].bitfield.reg64)
4109 {
4110 i.suffix = QWORD_MNEM_SUFFIX;
4111 break;
4112 }
4113 }
4114 }
4115 }
4116 else if (i.suffix == BYTE_MNEM_SUFFIX)
4117 {
4118 if (!check_byte_reg ())
4119 return 0;
4120 }
4121 else if (i.suffix == LONG_MNEM_SUFFIX)
4122 {
4123 if (!check_long_reg ())
4124 return 0;
4125 }
4126 else if (i.suffix == QWORD_MNEM_SUFFIX)
4127 {
4128 if (intel_syntax
4129 && i.tm.opcode_modifier.ignoresize
4130 && i.tm.opcode_modifier.no_qsuf)
4131 i.suffix = 0;
4132 else if (!check_qword_reg ())
4133 return 0;
4134 }
4135 else if (i.suffix == WORD_MNEM_SUFFIX)
4136 {
4137 if (!check_word_reg ())
4138 return 0;
4139 }
4140 else if (i.suffix == XMMWORD_MNEM_SUFFIX
4141 || i.suffix == YMMWORD_MNEM_SUFFIX)
4142 {
4143 /* Skip if the instruction has x/y suffix. match_template
4144 should check if it is a valid suffix. */
4145 }
4146 else if (intel_syntax && i.tm.opcode_modifier.ignoresize)
4147 /* Do nothing if the instruction is going to ignore the prefix. */
4148 ;
4149 else
4150 abort ();
4151 }
4152 else if (i.tm.opcode_modifier.defaultsize
4153 && !i.suffix
4154 /* exclude fldenv/frstor/fsave/fstenv */
4155 && i.tm.opcode_modifier.no_ssuf)
4156 {
4157 i.suffix = stackop_size;
4158 }
4159 else if (intel_syntax
4160 && !i.suffix
4161 && (i.tm.operand_types[0].bitfield.jumpabsolute
4162 || i.tm.opcode_modifier.jumpbyte
4163 || i.tm.opcode_modifier.jumpintersegment
4164 || (i.tm.base_opcode == 0x0f01 /* [ls][gi]dt */
4165 && i.tm.extension_opcode <= 3)))
4166 {
4167 switch (flag_code)
4168 {
4169 case CODE_64BIT:
4170 if (!i.tm.opcode_modifier.no_qsuf)
4171 {
4172 i.suffix = QWORD_MNEM_SUFFIX;
4173 break;
4174 }
4175 case CODE_32BIT:
4176 if (!i.tm.opcode_modifier.no_lsuf)
4177 i.suffix = LONG_MNEM_SUFFIX;
4178 break;
4179 case CODE_16BIT:
4180 if (!i.tm.opcode_modifier.no_wsuf)
4181 i.suffix = WORD_MNEM_SUFFIX;
4182 break;
4183 }
4184 }
4185
4186 if (!i.suffix)
4187 {
4188 if (!intel_syntax)
4189 {
4190 if (i.tm.opcode_modifier.w)
4191 {
4192 as_bad (_("no instruction mnemonic suffix given and "
4193 "no register operands; can't size instruction"));
4194 return 0;
4195 }
4196 }
4197 else
4198 {
4199 unsigned int suffixes;
4200
4201 suffixes = !i.tm.opcode_modifier.no_bsuf;
4202 if (!i.tm.opcode_modifier.no_wsuf)
4203 suffixes |= 1 << 1;
4204 if (!i.tm.opcode_modifier.no_lsuf)
4205 suffixes |= 1 << 2;
4206 if (!i.tm.opcode_modifier.no_ldsuf)
4207 suffixes |= 1 << 3;
4208 if (!i.tm.opcode_modifier.no_ssuf)
4209 suffixes |= 1 << 4;
4210 if (!i.tm.opcode_modifier.no_qsuf)
4211 suffixes |= 1 << 5;
4212
4213 /* There are more than suffix matches. */
4214 if (i.tm.opcode_modifier.w
4215 || ((suffixes & (suffixes - 1))
4216 && !i.tm.opcode_modifier.defaultsize
4217 && !i.tm.opcode_modifier.ignoresize))
4218 {
4219 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
4220 return 0;
4221 }
4222 }
4223 }
4224
4225 /* Change the opcode based on the operand size given by i.suffix;
4226 We don't need to change things for byte insns. */
4227
4228 if (i.suffix
4229 && i.suffix != BYTE_MNEM_SUFFIX
4230 && i.suffix != XMMWORD_MNEM_SUFFIX
4231 && i.suffix != YMMWORD_MNEM_SUFFIX)
4232 {
4233 /* It's not a byte, select word/dword operation. */
4234 if (i.tm.opcode_modifier.w)
4235 {
4236 if (i.tm.opcode_modifier.shortform)
4237 i.tm.base_opcode |= 8;
4238 else
4239 i.tm.base_opcode |= 1;
4240 }
4241
4242 /* Now select between word & dword operations via the operand
4243 size prefix, except for instructions that will ignore this
4244 prefix anyway. */
4245 if (i.tm.opcode_modifier.addrprefixop0)
4246 {
4247 /* The address size override prefix changes the size of the
4248 first operand. */
4249 if ((flag_code == CODE_32BIT
4250 && i.op->regs[0].reg_type.bitfield.reg16)
4251 || (flag_code != CODE_32BIT
4252 && i.op->regs[0].reg_type.bitfield.reg32))
4253 if (!add_prefix (ADDR_PREFIX_OPCODE))
4254 return 0;
4255 }
4256 else if (i.suffix != QWORD_MNEM_SUFFIX
4257 && i.suffix != LONG_DOUBLE_MNEM_SUFFIX
4258 && !i.tm.opcode_modifier.ignoresize
4259 && !i.tm.opcode_modifier.floatmf
4260 && ((i.suffix == LONG_MNEM_SUFFIX) == (flag_code == CODE_16BIT)
4261 || (flag_code == CODE_64BIT
4262 && i.tm.opcode_modifier.jumpbyte)))
4263 {
4264 unsigned int prefix = DATA_PREFIX_OPCODE;
4265
4266 if (i.tm.opcode_modifier.jumpbyte) /* jcxz, loop */
4267 prefix = ADDR_PREFIX_OPCODE;
4268
4269 if (!add_prefix (prefix))
4270 return 0;
4271 }
4272
4273 /* Set mode64 for an operand. */
4274 if (i.suffix == QWORD_MNEM_SUFFIX
4275 && flag_code == CODE_64BIT
4276 && !i.tm.opcode_modifier.norex64)
4277 {
4278 /* Special case for xchg %rax,%rax. It is NOP and doesn't
4279 need rex64. cmpxchg8b is also a special case. */
4280 if (! (i.operands == 2
4281 && i.tm.base_opcode == 0x90
4282 && i.tm.extension_opcode == None
4283 && operand_type_equal (&i.types [0], &acc64)
4284 && operand_type_equal (&i.types [1], &acc64))
4285 && ! (i.operands == 1
4286 && i.tm.base_opcode == 0xfc7
4287 && i.tm.extension_opcode == 1
4288 && !operand_type_check (i.types [0], reg)
4289 && operand_type_check (i.types [0], anymem)))
4290 i.rex |= REX_W;
4291 }
4292
4293 /* Size floating point instruction. */
4294 if (i.suffix == LONG_MNEM_SUFFIX)
4295 if (i.tm.opcode_modifier.floatmf)
4296 i.tm.base_opcode ^= 4;
4297 }
4298
4299 return 1;
4300 }
4301
4302 static int
4303 check_byte_reg (void)
4304 {
4305 int op;
4306
4307 for (op = i.operands; --op >= 0;)
4308 {
4309 /* If this is an eight bit register, it's OK. If it's the 16 or
4310 32 bit version of an eight bit register, we will just use the
4311 low portion, and that's OK too. */
4312 if (i.types[op].bitfield.reg8)
4313 continue;
4314
4315 /* Don't generate this warning if not needed. */
4316 if (intel_syntax && i.tm.opcode_modifier.byteokintel)
4317 continue;
4318
4319 /* crc32 doesn't generate this warning. */
4320 if (i.tm.base_opcode == 0xf20f38f0)
4321 continue;
4322
4323 if ((i.types[op].bitfield.reg16
4324 || i.types[op].bitfield.reg32
4325 || i.types[op].bitfield.reg64)
4326 && i.op[op].regs->reg_num < 4)
4327 {
4328 /* Prohibit these changes in the 64bit mode, since the
4329 lowering is more complicated. */
4330 if (flag_code == CODE_64BIT
4331 && !i.tm.operand_types[op].bitfield.inoutportreg)
4332 {
4333 as_bad (_("Incorrect register `%s%s' used with `%c' suffix"),
4334 register_prefix, i.op[op].regs->reg_name,
4335 i.suffix);
4336 return 0;
4337 }
4338 #if REGISTER_WARNINGS
4339 if (!quiet_warnings
4340 && !i.tm.operand_types[op].bitfield.inoutportreg)
4341 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
4342 register_prefix,
4343 (i.op[op].regs + (i.types[op].bitfield.reg16
4344 ? REGNAM_AL - REGNAM_AX
4345 : REGNAM_AL - REGNAM_EAX))->reg_name,
4346 register_prefix,
4347 i.op[op].regs->reg_name,
4348 i.suffix);
4349 #endif
4350 continue;
4351 }
4352 /* Any other register is bad. */
4353 if (i.types[op].bitfield.reg16
4354 || i.types[op].bitfield.reg32
4355 || i.types[op].bitfield.reg64
4356 || i.types[op].bitfield.regmmx
4357 || i.types[op].bitfield.regxmm
4358 || i.types[op].bitfield.regymm
4359 || i.types[op].bitfield.sreg2
4360 || i.types[op].bitfield.sreg3
4361 || i.types[op].bitfield.control
4362 || i.types[op].bitfield.debug
4363 || i.types[op].bitfield.test
4364 || i.types[op].bitfield.floatreg
4365 || i.types[op].bitfield.floatacc)
4366 {
4367 as_bad (_("`%s%s' not allowed with `%s%c'"),
4368 register_prefix,
4369 i.op[op].regs->reg_name,
4370 i.tm.name,
4371 i.suffix);
4372 return 0;
4373 }
4374 }
4375 return 1;
4376 }
4377
4378 static int
4379 check_long_reg (void)
4380 {
4381 int op;
4382
4383 for (op = i.operands; --op >= 0;)
4384 /* Reject eight bit registers, except where the template requires
4385 them. (eg. movzb) */
4386 if (i.types[op].bitfield.reg8
4387 && (i.tm.operand_types[op].bitfield.reg16
4388 || i.tm.operand_types[op].bitfield.reg32
4389 || i.tm.operand_types[op].bitfield.acc))
4390 {
4391 as_bad (_("`%s%s' not allowed with `%s%c'"),
4392 register_prefix,
4393 i.op[op].regs->reg_name,
4394 i.tm.name,
4395 i.suffix);
4396 return 0;
4397 }
4398 /* Warn if the e prefix on a general reg is missing. */
4399 else if ((!quiet_warnings || flag_code == CODE_64BIT)
4400 && i.types[op].bitfield.reg16
4401 && (i.tm.operand_types[op].bitfield.reg32
4402 || i.tm.operand_types[op].bitfield.acc))
4403 {
4404 /* Prohibit these changes in the 64bit mode, since the
4405 lowering is more complicated. */
4406 if (flag_code == CODE_64BIT)
4407 {
4408 as_bad (_("Incorrect register `%s%s' used with `%c' suffix"),
4409 register_prefix, i.op[op].regs->reg_name,
4410 i.suffix);
4411 return 0;
4412 }
4413 #if REGISTER_WARNINGS
4414 else
4415 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
4416 register_prefix,
4417 (i.op[op].regs + REGNAM_EAX - REGNAM_AX)->reg_name,
4418 register_prefix,
4419 i.op[op].regs->reg_name,
4420 i.suffix);
4421 #endif
4422 }
4423 /* Warn if the r prefix on a general reg is missing. */
4424 else if (i.types[op].bitfield.reg64
4425 && (i.tm.operand_types[op].bitfield.reg32
4426 || i.tm.operand_types[op].bitfield.acc))
4427 {
4428 if (intel_syntax
4429 && i.tm.opcode_modifier.toqword
4430 && !i.types[0].bitfield.regxmm)
4431 {
4432 /* Convert to QWORD. We want REX byte. */
4433 i.suffix = QWORD_MNEM_SUFFIX;
4434 }
4435 else
4436 {
4437 as_bad (_("Incorrect register `%s%s' used with `%c' suffix"),
4438 register_prefix, i.op[op].regs->reg_name,
4439 i.suffix);
4440 return 0;
4441 }
4442 }
4443 return 1;
4444 }
4445
4446 static int
4447 check_qword_reg (void)
4448 {
4449 int op;
4450
4451 for (op = i.operands; --op >= 0; )
4452 /* Reject eight bit registers, except where the template requires
4453 them. (eg. movzb) */
4454 if (i.types[op].bitfield.reg8
4455 && (i.tm.operand_types[op].bitfield.reg16
4456 || i.tm.operand_types[op].bitfield.reg32
4457 || i.tm.operand_types[op].bitfield.acc))
4458 {
4459 as_bad (_("`%s%s' not allowed with `%s%c'"),
4460 register_prefix,
4461 i.op[op].regs->reg_name,
4462 i.tm.name,
4463 i.suffix);
4464 return 0;
4465 }
4466 /* Warn if the e prefix on a general reg is missing. */
4467 else if ((i.types[op].bitfield.reg16
4468 || i.types[op].bitfield.reg32)
4469 && (i.tm.operand_types[op].bitfield.reg32
4470 || i.tm.operand_types[op].bitfield.acc))
4471 {
4472 /* Prohibit these changes in the 64bit mode, since the
4473 lowering is more complicated. */
4474 if (intel_syntax
4475 && i.tm.opcode_modifier.todword
4476 && !i.types[0].bitfield.regxmm)
4477 {
4478 /* Convert to DWORD. We don't want REX byte. */
4479 i.suffix = LONG_MNEM_SUFFIX;
4480 }
4481 else
4482 {
4483 as_bad (_("Incorrect register `%s%s' used with `%c' suffix"),
4484 register_prefix, i.op[op].regs->reg_name,
4485 i.suffix);
4486 return 0;
4487 }
4488 }
4489 return 1;
4490 }
4491
4492 static int
4493 check_word_reg (void)
4494 {
4495 int op;
4496 for (op = i.operands; --op >= 0;)
4497 /* Reject eight bit registers, except where the template requires
4498 them. (eg. movzb) */
4499 if (i.types[op].bitfield.reg8
4500 && (i.tm.operand_types[op].bitfield.reg16
4501 || i.tm.operand_types[op].bitfield.reg32
4502 || i.tm.operand_types[op].bitfield.acc))
4503 {
4504 as_bad (_("`%s%s' not allowed with `%s%c'"),
4505 register_prefix,
4506 i.op[op].regs->reg_name,
4507 i.tm.name,
4508 i.suffix);
4509 return 0;
4510 }
4511 /* Warn if the e prefix on a general reg is present. */
4512 else if ((!quiet_warnings || flag_code == CODE_64BIT)
4513 && i.types[op].bitfield.reg32
4514 && (i.tm.operand_types[op].bitfield.reg16
4515 || i.tm.operand_types[op].bitfield.acc))
4516 {
4517 /* Prohibit these changes in the 64bit mode, since the
4518 lowering is more complicated. */
4519 if (flag_code == CODE_64BIT)
4520 {
4521 as_bad (_("Incorrect register `%s%s' used with `%c' suffix"),
4522 register_prefix, i.op[op].regs->reg_name,
4523 i.suffix);
4524 return 0;
4525 }
4526 else
4527 #if REGISTER_WARNINGS
4528 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
4529 register_prefix,
4530 (i.op[op].regs + REGNAM_AX - REGNAM_EAX)->reg_name,
4531 register_prefix,
4532 i.op[op].regs->reg_name,
4533 i.suffix);
4534 #endif
4535 }
4536 return 1;
4537 }
4538
4539 static int
4540 update_imm (unsigned int j)
4541 {
4542 i386_operand_type overlap = i.types[j];
4543 if ((overlap.bitfield.imm8
4544 || overlap.bitfield.imm8s
4545 || overlap.bitfield.imm16
4546 || overlap.bitfield.imm32
4547 || overlap.bitfield.imm32s
4548 || overlap.bitfield.imm64)
4549 && !operand_type_equal (&overlap, &imm8)
4550 && !operand_type_equal (&overlap, &imm8s)
4551 && !operand_type_equal (&overlap, &imm16)
4552 && !operand_type_equal (&overlap, &imm32)
4553 && !operand_type_equal (&overlap, &imm32s)
4554 && !operand_type_equal (&overlap, &imm64))
4555 {
4556 if (i.suffix)
4557 {
4558 i386_operand_type temp;
4559
4560 operand_type_set (&temp, 0);
4561 if (i.suffix == BYTE_MNEM_SUFFIX)
4562 {
4563 temp.bitfield.imm8 = overlap.bitfield.imm8;
4564 temp.bitfield.imm8s = overlap.bitfield.imm8s;
4565 }
4566 else if (i.suffix == WORD_MNEM_SUFFIX)
4567 temp.bitfield.imm16 = overlap.bitfield.imm16;
4568 else if (i.suffix == QWORD_MNEM_SUFFIX)
4569 {
4570 temp.bitfield.imm64 = overlap.bitfield.imm64;
4571 temp.bitfield.imm32s = overlap.bitfield.imm32s;
4572 }
4573 else
4574 temp.bitfield.imm32 = overlap.bitfield.imm32;
4575 overlap = temp;
4576 }
4577 else if (operand_type_equal (&overlap, &imm16_32_32s)
4578 || operand_type_equal (&overlap, &imm16_32)
4579 || operand_type_equal (&overlap, &imm16_32s))
4580 {
4581 if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
4582 overlap = imm16;
4583 else
4584 overlap = imm32s;
4585 }
4586 if (!operand_type_equal (&overlap, &imm8)
4587 && !operand_type_equal (&overlap, &imm8s)
4588 && !operand_type_equal (&overlap, &imm16)
4589 && !operand_type_equal (&overlap, &imm32)
4590 && !operand_type_equal (&overlap, &imm32s)
4591 && !operand_type_equal (&overlap, &imm64))
4592 {
4593 as_bad (_("no instruction mnemonic suffix given; "
4594 "can't determine immediate size"));
4595 return 0;
4596 }
4597 }
4598 i.types[j] = overlap;
4599
4600 return 1;
4601 }
4602
4603 static int
4604 finalize_imm (void)
4605 {
4606 unsigned int j, n;
4607
4608 /* Update the first 2 immediate operands. */
4609 n = i.operands > 2 ? 2 : i.operands;
4610 if (n)
4611 {
4612 for (j = 0; j < n; j++)
4613 if (update_imm (j) == 0)
4614 return 0;
4615
4616 /* The 3rd operand can't be immediate operand. */
4617 gas_assert (operand_type_check (i.types[2], imm) == 0);
4618 }
4619
4620 return 1;
4621 }
4622
4623 static int
4624 bad_implicit_operand (int xmm)
4625 {
4626 const char *reg = xmm ? "xmm0" : "ymm0";
4627 if (intel_syntax)
4628 as_bad (_("the last operand of `%s' must be `%s%s'"),
4629 i.tm.name, register_prefix, reg);
4630 else
4631 as_bad (_("the first operand of `%s' must be `%s%s'"),
4632 i.tm.name, register_prefix, reg);
4633 return 0;
4634 }
4635
4636 static int
4637 process_operands (void)
4638 {
4639 /* Default segment register this instruction will use for memory
4640 accesses. 0 means unknown. This is only for optimizing out
4641 unnecessary segment overrides. */
4642 const seg_entry *default_seg = 0;
4643
4644 if (i.tm.opcode_modifier.sse2avx
4645 && (i.tm.opcode_modifier.vexnds
4646 || i.tm.opcode_modifier.vexndd))
4647 {
4648 unsigned int dup = i.operands;
4649 unsigned int dest = dup - 1;
4650 unsigned int j;
4651
4652 /* The destination must be an xmm register. */
4653 gas_assert (i.reg_operands
4654 && MAX_OPERANDS > dup
4655 && operand_type_equal (&i.types[dest], &regxmm));
4656
4657 if (i.tm.opcode_modifier.firstxmm0)
4658 {
4659 /* The first operand is implicit and must be xmm0. */
4660 gas_assert (operand_type_equal (&i.types[0], &regxmm));
4661 if (i.op[0].regs->reg_num != 0)
4662 return bad_implicit_operand (1);
4663
4664 if (i.tm.opcode_modifier.vex3sources)
4665 {
4666 /* Keep xmm0 for instructions with VEX prefix and 3
4667 sources. */
4668 goto duplicate;
4669 }
4670 else
4671 {
4672 /* We remove the first xmm0 and keep the number of
4673 operands unchanged, which in fact duplicates the
4674 destination. */
4675 for (j = 1; j < i.operands; j++)
4676 {
4677 i.op[j - 1] = i.op[j];
4678 i.types[j - 1] = i.types[j];
4679 i.tm.operand_types[j - 1] = i.tm.operand_types[j];
4680 }
4681 }
4682 }
4683 else if (i.tm.opcode_modifier.implicit1stxmm0)
4684 {
4685 gas_assert ((MAX_OPERANDS - 1) > dup
4686 && i.tm.opcode_modifier.vex3sources);
4687
4688 /* Add the implicit xmm0 for instructions with VEX prefix
4689 and 3 sources. */
4690 for (j = i.operands; j > 0; j--)
4691 {
4692 i.op[j] = i.op[j - 1];
4693 i.types[j] = i.types[j - 1];
4694 i.tm.operand_types[j] = i.tm.operand_types[j - 1];
4695 }
4696 i.op[0].regs
4697 = (const reg_entry *) hash_find (reg_hash, "xmm0");
4698 i.types[0] = regxmm;
4699 i.tm.operand_types[0] = regxmm;
4700
4701 i.operands += 2;
4702 i.reg_operands += 2;
4703 i.tm.operands += 2;
4704
4705 dup++;
4706 dest++;
4707 i.op[dup] = i.op[dest];
4708 i.types[dup] = i.types[dest];
4709 i.tm.operand_types[dup] = i.tm.operand_types[dest];
4710 }
4711 else
4712 {
4713 duplicate:
4714 i.operands++;
4715 i.reg_operands++;
4716 i.tm.operands++;
4717
4718 i.op[dup] = i.op[dest];
4719 i.types[dup] = i.types[dest];
4720 i.tm.operand_types[dup] = i.tm.operand_types[dest];
4721 }
4722
4723 if (i.tm.opcode_modifier.immext)
4724 process_immext ();
4725 }
4726 else if (i.tm.opcode_modifier.firstxmm0)
4727 {
4728 unsigned int j;
4729
4730 /* The first operand is implicit and must be xmm0/ymm0. */
4731 gas_assert (i.reg_operands
4732 && (operand_type_equal (&i.types[0], &regxmm)
4733 || operand_type_equal (&i.types[0], &regymm)));
4734 if (i.op[0].regs->reg_num != 0)
4735 return bad_implicit_operand (i.types[0].bitfield.regxmm);
4736
4737 for (j = 1; j < i.operands; j++)
4738 {
4739 i.op[j - 1] = i.op[j];
4740 i.types[j - 1] = i.types[j];
4741
4742 /* We need to adjust fields in i.tm since they are used by
4743 build_modrm_byte. */
4744 i.tm.operand_types [j - 1] = i.tm.operand_types [j];
4745 }
4746
4747 i.operands--;
4748 i.reg_operands--;
4749 i.tm.operands--;
4750 }
4751 else if (i.tm.opcode_modifier.regkludge)
4752 {
4753 /* The imul $imm, %reg instruction is converted into
4754 imul $imm, %reg, %reg, and the clr %reg instruction
4755 is converted into xor %reg, %reg. */
4756
4757 unsigned int first_reg_op;
4758
4759 if (operand_type_check (i.types[0], reg))
4760 first_reg_op = 0;
4761 else
4762 first_reg_op = 1;
4763 /* Pretend we saw the extra register operand. */
4764 gas_assert (i.reg_operands == 1
4765 && i.op[first_reg_op + 1].regs == 0);
4766 i.op[first_reg_op + 1].regs = i.op[first_reg_op].regs;
4767 i.types[first_reg_op + 1] = i.types[first_reg_op];
4768 i.operands++;
4769 i.reg_operands++;
4770 }
4771
4772 if (i.tm.opcode_modifier.shortform)
4773 {
4774 if (i.types[0].bitfield.sreg2
4775 || i.types[0].bitfield.sreg3)
4776 {
4777 if (i.tm.base_opcode == POP_SEG_SHORT
4778 && i.op[0].regs->reg_num == 1)
4779 {
4780 as_bad (_("you can't `pop %scs'"), register_prefix);
4781 return 0;
4782 }
4783 i.tm.base_opcode |= (i.op[0].regs->reg_num << 3);
4784 if ((i.op[0].regs->reg_flags & RegRex) != 0)
4785 i.rex |= REX_B;
4786 }
4787 else
4788 {
4789 /* The register or float register operand is in operand
4790 0 or 1. */
4791 unsigned int op;
4792
4793 if (i.types[0].bitfield.floatreg
4794 || operand_type_check (i.types[0], reg))
4795 op = 0;
4796 else
4797 op = 1;
4798 /* Register goes in low 3 bits of opcode. */
4799 i.tm.base_opcode |= i.op[op].regs->reg_num;
4800 if ((i.op[op].regs->reg_flags & RegRex) != 0)
4801 i.rex |= REX_B;
4802 if (!quiet_warnings && i.tm.opcode_modifier.ugh)
4803 {
4804 /* Warn about some common errors, but press on regardless.
4805 The first case can be generated by gcc (<= 2.8.1). */
4806 if (i.operands == 2)
4807 {
4808 /* Reversed arguments on faddp, fsubp, etc. */
4809 as_warn (_("translating to `%s %s%s,%s%s'"), i.tm.name,
4810 register_prefix, i.op[!intel_syntax].regs->reg_name,
4811 register_prefix, i.op[intel_syntax].regs->reg_name);
4812 }
4813 else
4814 {
4815 /* Extraneous `l' suffix on fp insn. */
4816 as_warn (_("translating to `%s %s%s'"), i.tm.name,
4817 register_prefix, i.op[0].regs->reg_name);
4818 }
4819 }
4820 }
4821 }
4822 else if (i.tm.opcode_modifier.modrm)
4823 {
4824 /* The opcode is completed (modulo i.tm.extension_opcode which
4825 must be put into the modrm byte). Now, we make the modrm and
4826 index base bytes based on all the info we've collected. */
4827
4828 default_seg = build_modrm_byte ();
4829 }
4830 else if ((i.tm.base_opcode & ~0x3) == MOV_AX_DISP32)
4831 {
4832 default_seg = &ds;
4833 }
4834 else if (i.tm.opcode_modifier.isstring)
4835 {
4836 /* For the string instructions that allow a segment override
4837 on one of their operands, the default segment is ds. */
4838 default_seg = &ds;
4839 }
4840
4841 if (i.tm.base_opcode == 0x8d /* lea */
4842 && i.seg[0]
4843 && !quiet_warnings)
4844 as_warn (_("segment override on `%s' is ineffectual"), i.tm.name);
4845
4846 /* If a segment was explicitly specified, and the specified segment
4847 is not the default, use an opcode prefix to select it. If we
4848 never figured out what the default segment is, then default_seg
4849 will be zero at this point, and the specified segment prefix will
4850 always be used. */
4851 if ((i.seg[0]) && (i.seg[0] != default_seg))
4852 {
4853 if (!add_prefix (i.seg[0]->seg_prefix))
4854 return 0;
4855 }
4856 return 1;
4857 }
4858
4859 static const seg_entry *
4860 build_modrm_byte (void)
4861 {
4862 const seg_entry *default_seg = 0;
4863 unsigned int source, dest;
4864 int vex_3_sources;
4865
4866 /* The first operand of instructions with VEX prefix and 3 sources
4867 must be VEX_Imm4. */
4868 vex_3_sources = i.tm.opcode_modifier.vex3sources;
4869 if (vex_3_sources)
4870 {
4871 unsigned int nds, reg;
4872
4873 if (i.tm.opcode_modifier.veximmext
4874 && i.tm.opcode_modifier.immext)
4875 {
4876 dest = i.operands - 2;
4877 gas_assert (dest == 3);
4878 }
4879 else
4880 dest = i.operands - 1;
4881 nds = dest - 1;
4882
4883 /* This instruction must have 4 register operands
4884 or 3 register operands plus 1 memory operand.
4885 It must have VexNDS and VexImmExt. */
4886 gas_assert ((i.reg_operands == 4
4887 || (i.reg_operands == 3 && i.mem_operands == 1))
4888 && i.tm.opcode_modifier.vexnds
4889 && i.tm.opcode_modifier.veximmext
4890 && (operand_type_equal (&i.tm.operand_types[dest], &regxmm)
4891 || operand_type_equal (&i.tm.operand_types[dest], &regymm)));
4892
4893 /* Generate an 8bit immediate operand to encode the register
4894 operand. */
4895 expressionS *exp = &im_expressions[i.imm_operands++];
4896 i.op[i.operands].imms = exp;
4897 i.types[i.operands] = imm8;
4898 i.operands++;
4899 /* If VexW1 is set, the first operand is the source and
4900 the second operand is encoded in the immediate operand. */
4901 if (i.tm.opcode_modifier.vexw1)
4902 {
4903 source = 0;
4904 reg = 1;
4905 }
4906 else
4907 {
4908 source = 1;
4909 reg = 0;
4910 }
4911 /* FMA4 swaps REG and NDS. */
4912 if (i.tm.cpu_flags.bitfield.cpufma4)
4913 {
4914 unsigned int tmp;
4915 tmp = reg;
4916 reg = nds;
4917 nds = tmp;
4918 }
4919 gas_assert ((operand_type_equal (&i.tm.operand_types[reg], &regxmm)
4920 || operand_type_equal (&i.tm.operand_types[reg],
4921 &regymm))
4922 && (operand_type_equal (&i.tm.operand_types[nds], &regxmm)
4923 || operand_type_equal (&i.tm.operand_types[nds],
4924 &regymm)));
4925 exp->X_op = O_constant;
4926 exp->X_add_number
4927 = ((i.op[reg].regs->reg_num
4928 + ((i.op[reg].regs->reg_flags & RegRex) ? 8 : 0)) << 4);
4929 i.vex.register_specifier = i.op[nds].regs;
4930 }
4931 else
4932 source = dest = 0;
4933
4934 /* i.reg_operands MUST be the number of real register operands;
4935 implicit registers do not count. If there are 3 register
4936 operands, it must be a instruction with VexNDS. For a
4937 instruction with VexNDD, the destination register is encoded
4938 in VEX prefix. If there are 4 register operands, it must be
4939 a instruction with VEX prefix and 3 sources. */
4940 if (i.mem_operands == 0
4941 && ((i.reg_operands == 2
4942 && !i.tm.opcode_modifier.vexndd)
4943 || (i.reg_operands == 3
4944 && i.tm.opcode_modifier.vexnds)
4945 || (i.reg_operands == 4 && vex_3_sources)))
4946 {
4947 switch (i.operands)
4948 {
4949 case 2:
4950 source = 0;
4951 break;
4952 case 3:
4953 /* When there are 3 operands, one of them may be immediate,
4954 which may be the first or the last operand. Otherwise,
4955 the first operand must be shift count register (cl) or it
4956 is an instruction with VexNDS. */
4957 gas_assert (i.imm_operands == 1
4958 || (i.imm_operands == 0
4959 && (i.tm.opcode_modifier.vexnds
4960 || i.types[0].bitfield.shiftcount)));
4961 if (operand_type_check (i.types[0], imm)
4962 || i.types[0].bitfield.shiftcount)
4963 source = 1;
4964 else
4965 source = 0;
4966 break;
4967 case 4:
4968 /* When there are 4 operands, the first two must be 8bit
4969 immediate operands. The source operand will be the 3rd
4970 one.
4971
4972 For instructions with VexNDS, if the first operand
4973 an imm8, the source operand is the 2nd one. If the last
4974 operand is imm8, the source operand is the first one. */
4975 gas_assert ((i.imm_operands == 2
4976 && i.types[0].bitfield.imm8
4977 && i.types[1].bitfield.imm8)
4978 || (i.tm.opcode_modifier.vexnds
4979 && i.imm_operands == 1
4980 && (i.types[0].bitfield.imm8
4981 || i.types[i.operands - 1].bitfield.imm8)));
4982 if (i.tm.opcode_modifier.vexnds)
4983 {
4984 if (i.types[0].bitfield.imm8)
4985 source = 1;
4986 else
4987 source = 0;
4988 }
4989 else
4990 source = 2;
4991 break;
4992 case 5:
4993 break;
4994 default:
4995 abort ();
4996 }
4997
4998 if (!vex_3_sources)
4999 {
5000 dest = source + 1;
5001
5002 if (i.tm.opcode_modifier.vexnds)
5003 {
5004 /* For instructions with VexNDS, the register-only
5005 source operand must be XMM or YMM register. It is
5006 encoded in VEX prefix. We need to clear RegMem bit
5007 before calling operand_type_equal. */
5008 i386_operand_type op = i.tm.operand_types[dest];
5009 op.bitfield.regmem = 0;
5010 if ((dest + 1) >= i.operands
5011 || (!operand_type_equal (&op, &regxmm)
5012 && !operand_type_equal (&op, &regymm)))
5013 abort ();
5014 i.vex.register_specifier = i.op[dest].regs;
5015 dest++;
5016 }
5017 }
5018
5019 i.rm.mode = 3;
5020 /* One of the register operands will be encoded in the i.tm.reg
5021 field, the other in the combined i.tm.mode and i.tm.regmem
5022 fields. If no form of this instruction supports a memory
5023 destination operand, then we assume the source operand may
5024 sometimes be a memory operand and so we need to store the
5025 destination in the i.rm.reg field. */
5026 if (!i.tm.operand_types[dest].bitfield.regmem
5027 && operand_type_check (i.tm.operand_types[dest], anymem) == 0)
5028 {
5029 i.rm.reg = i.op[dest].regs->reg_num;
5030 i.rm.regmem = i.op[source].regs->reg_num;
5031 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
5032 i.rex |= REX_R;
5033 if ((i.op[source].regs->reg_flags & RegRex) != 0)
5034 i.rex |= REX_B;
5035 }
5036 else
5037 {
5038 i.rm.reg = i.op[source].regs->reg_num;
5039 i.rm.regmem = i.op[dest].regs->reg_num;
5040 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
5041 i.rex |= REX_B;
5042 if ((i.op[source].regs->reg_flags & RegRex) != 0)
5043 i.rex |= REX_R;
5044 }
5045 if (flag_code != CODE_64BIT && (i.rex & (REX_R | REX_B)))
5046 {
5047 if (!i.types[0].bitfield.control
5048 && !i.types[1].bitfield.control)
5049 abort ();
5050 i.rex &= ~(REX_R | REX_B);
5051 add_prefix (LOCK_PREFIX_OPCODE);
5052 }
5053 }
5054 else
5055 { /* If it's not 2 reg operands... */
5056 unsigned int mem;
5057
5058 if (i.mem_operands)
5059 {
5060 unsigned int fake_zero_displacement = 0;
5061 unsigned int op;
5062
5063 for (op = 0; op < i.operands; op++)
5064 if (operand_type_check (i.types[op], anymem))
5065 break;
5066 gas_assert (op < i.operands);
5067
5068 default_seg = &ds;
5069
5070 if (i.base_reg == 0)
5071 {
5072 i.rm.mode = 0;
5073 if (!i.disp_operands)
5074 fake_zero_displacement = 1;
5075 if (i.index_reg == 0)
5076 {
5077 /* Operand is just <disp> */
5078 if (flag_code == CODE_64BIT)
5079 {
5080 /* 64bit mode overwrites the 32bit absolute
5081 addressing by RIP relative addressing and
5082 absolute addressing is encoded by one of the
5083 redundant SIB forms. */
5084 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
5085 i.sib.base = NO_BASE_REGISTER;
5086 i.sib.index = NO_INDEX_REGISTER;
5087 i.types[op] = ((i.prefix[ADDR_PREFIX] == 0)
5088 ? disp32s : disp32);
5089 }
5090 else if ((flag_code == CODE_16BIT)
5091 ^ (i.prefix[ADDR_PREFIX] != 0))
5092 {
5093 i.rm.regmem = NO_BASE_REGISTER_16;
5094 i.types[op] = disp16;
5095 }
5096 else
5097 {
5098 i.rm.regmem = NO_BASE_REGISTER;
5099 i.types[op] = disp32;
5100 }
5101 }
5102 else /* !i.base_reg && i.index_reg */
5103 {
5104 if (i.index_reg->reg_num == RegEiz
5105 || i.index_reg->reg_num == RegRiz)
5106 i.sib.index = NO_INDEX_REGISTER;
5107 else
5108 i.sib.index = i.index_reg->reg_num;
5109 i.sib.base = NO_BASE_REGISTER;
5110 i.sib.scale = i.log2_scale_factor;
5111 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
5112 i.types[op].bitfield.disp8 = 0;
5113 i.types[op].bitfield.disp16 = 0;
5114 i.types[op].bitfield.disp64 = 0;
5115 if (flag_code != CODE_64BIT)
5116 {
5117 /* Must be 32 bit */
5118 i.types[op].bitfield.disp32 = 1;
5119 i.types[op].bitfield.disp32s = 0;
5120 }
5121 else
5122 {
5123 i.types[op].bitfield.disp32 = 0;
5124 i.types[op].bitfield.disp32s = 1;
5125 }
5126 if ((i.index_reg->reg_flags & RegRex) != 0)
5127 i.rex |= REX_X;
5128 }
5129 }
5130 /* RIP addressing for 64bit mode. */
5131 else if (i.base_reg->reg_num == RegRip ||
5132 i.base_reg->reg_num == RegEip)
5133 {
5134 i.rm.regmem = NO_BASE_REGISTER;
5135 i.types[op].bitfield.disp8 = 0;
5136 i.types[op].bitfield.disp16 = 0;
5137 i.types[op].bitfield.disp32 = 0;
5138 i.types[op].bitfield.disp32s = 1;
5139 i.types[op].bitfield.disp64 = 0;
5140 i.flags[op] |= Operand_PCrel;
5141 if (! i.disp_operands)
5142 fake_zero_displacement = 1;
5143 }
5144 else if (i.base_reg->reg_type.bitfield.reg16)
5145 {
5146 switch (i.base_reg->reg_num)
5147 {
5148 case 3: /* (%bx) */
5149 if (i.index_reg == 0)
5150 i.rm.regmem = 7;
5151 else /* (%bx,%si) -> 0, or (%bx,%di) -> 1 */
5152 i.rm.regmem = i.index_reg->reg_num - 6;
5153 break;
5154 case 5: /* (%bp) */
5155 default_seg = &ss;
5156 if (i.index_reg == 0)
5157 {
5158 i.rm.regmem = 6;
5159 if (operand_type_check (i.types[op], disp) == 0)
5160 {
5161 /* fake (%bp) into 0(%bp) */
5162 i.types[op].bitfield.disp8 = 1;
5163 fake_zero_displacement = 1;
5164 }
5165 }
5166 else /* (%bp,%si) -> 2, or (%bp,%di) -> 3 */
5167 i.rm.regmem = i.index_reg->reg_num - 6 + 2;
5168 break;
5169 default: /* (%si) -> 4 or (%di) -> 5 */
5170 i.rm.regmem = i.base_reg->reg_num - 6 + 4;
5171 }
5172 i.rm.mode = mode_from_disp_size (i.types[op]);
5173 }
5174 else /* i.base_reg and 32/64 bit mode */
5175 {
5176 if (flag_code == CODE_64BIT
5177 && operand_type_check (i.types[op], disp))
5178 {
5179 i386_operand_type temp;
5180 operand_type_set (&temp, 0);
5181 temp.bitfield.disp8 = i.types[op].bitfield.disp8;
5182 i.types[op] = temp;
5183 if (i.prefix[ADDR_PREFIX] == 0)
5184 i.types[op].bitfield.disp32s = 1;
5185 else
5186 i.types[op].bitfield.disp32 = 1;
5187 }
5188
5189 i.rm.regmem = i.base_reg->reg_num;
5190 if ((i.base_reg->reg_flags & RegRex) != 0)
5191 i.rex |= REX_B;
5192 i.sib.base = i.base_reg->reg_num;
5193 /* x86-64 ignores REX prefix bit here to avoid decoder
5194 complications. */
5195 if ((i.base_reg->reg_num & 7) == EBP_REG_NUM)
5196 {
5197 default_seg = &ss;
5198 if (i.disp_operands == 0)
5199 {
5200 fake_zero_displacement = 1;
5201 i.types[op].bitfield.disp8 = 1;
5202 }
5203 }
5204 else if (i.base_reg->reg_num == ESP_REG_NUM)
5205 {
5206 default_seg = &ss;
5207 }
5208 i.sib.scale = i.log2_scale_factor;
5209 if (i.index_reg == 0)
5210 {
5211 /* <disp>(%esp) becomes two byte modrm with no index
5212 register. We've already stored the code for esp
5213 in i.rm.regmem ie. ESCAPE_TO_TWO_BYTE_ADDRESSING.
5214 Any base register besides %esp will not use the
5215 extra modrm byte. */
5216 i.sib.index = NO_INDEX_REGISTER;
5217 }
5218 else
5219 {
5220 if (i.index_reg->reg_num == RegEiz
5221 || i.index_reg->reg_num == RegRiz)
5222 i.sib.index = NO_INDEX_REGISTER;
5223 else
5224 i.sib.index = i.index_reg->reg_num;
5225 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
5226 if ((i.index_reg->reg_flags & RegRex) != 0)
5227 i.rex |= REX_X;
5228 }
5229
5230 if (i.disp_operands
5231 && (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
5232 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL))
5233 i.rm.mode = 0;
5234 else
5235 i.rm.mode = mode_from_disp_size (i.types[op]);
5236 }
5237
5238 if (fake_zero_displacement)
5239 {
5240 /* Fakes a zero displacement assuming that i.types[op]
5241 holds the correct displacement size. */
5242 expressionS *exp;
5243
5244 gas_assert (i.op[op].disps == 0);
5245 exp = &disp_expressions[i.disp_operands++];
5246 i.op[op].disps = exp;
5247 exp->X_op = O_constant;
5248 exp->X_add_number = 0;
5249 exp->X_add_symbol = (symbolS *) 0;
5250 exp->X_op_symbol = (symbolS *) 0;
5251 }
5252
5253 mem = op;
5254 }
5255 else
5256 mem = ~0;
5257
5258 /* Fill in i.rm.reg or i.rm.regmem field with register operand
5259 (if any) based on i.tm.extension_opcode. Again, we must be
5260 careful to make sure that segment/control/debug/test/MMX
5261 registers are coded into the i.rm.reg field. */
5262 if (i.reg_operands)
5263 {
5264 unsigned int op;
5265 unsigned int vex_reg = ~0;
5266
5267 for (op = 0; op < i.operands; op++)
5268 if (i.types[op].bitfield.reg8
5269 || i.types[op].bitfield.reg16
5270 || i.types[op].bitfield.reg32
5271 || i.types[op].bitfield.reg64
5272 || i.types[op].bitfield.regmmx
5273 || i.types[op].bitfield.regxmm
5274 || i.types[op].bitfield.regymm
5275 || i.types[op].bitfield.sreg2
5276 || i.types[op].bitfield.sreg3
5277 || i.types[op].bitfield.control
5278 || i.types[op].bitfield.debug
5279 || i.types[op].bitfield.test)
5280 break;
5281
5282 if (vex_3_sources)
5283 op = dest;
5284 else if (i.tm.opcode_modifier.vexnds)
5285 {
5286 /* For instructions with VexNDS, the register-only
5287 source operand is encoded in VEX prefix. */
5288 gas_assert (mem != (unsigned int) ~0);
5289
5290 if (op > mem)
5291 {
5292 vex_reg = op++;
5293 gas_assert (op < i.operands);
5294 }
5295 else
5296 {
5297 vex_reg = op + 1;
5298 gas_assert (vex_reg < i.operands);
5299 }
5300 }
5301 else if (i.tm.opcode_modifier.vexndd)
5302 {
5303 /* For instructions with VexNDD, there should be
5304 no memory operand and the register destination
5305 is encoded in VEX prefix. */
5306 gas_assert (i.mem_operands == 0
5307 && (op + 2) == i.operands);
5308 vex_reg = op + 1;
5309 }
5310 else
5311 gas_assert (op < i.operands);
5312
5313 if (vex_reg != (unsigned int) ~0)
5314 {
5315 gas_assert (i.reg_operands == 2);
5316
5317 if (!operand_type_equal (&i.tm.operand_types[vex_reg],
5318 & regxmm)
5319 && !operand_type_equal (&i.tm.operand_types[vex_reg],
5320 &regymm))
5321 abort ();
5322 i.vex.register_specifier = i.op[vex_reg].regs;
5323 }
5324
5325 /* If there is an extension opcode to put here, the
5326 register number must be put into the regmem field. */
5327 if (i.tm.extension_opcode != None)
5328 {
5329 i.rm.regmem = i.op[op].regs->reg_num;
5330 if ((i.op[op].regs->reg_flags & RegRex) != 0)
5331 i.rex |= REX_B;
5332 }
5333 else
5334 {
5335 i.rm.reg = i.op[op].regs->reg_num;
5336 if ((i.op[op].regs->reg_flags & RegRex) != 0)
5337 i.rex |= REX_R;
5338 }
5339
5340 /* Now, if no memory operand has set i.rm.mode = 0, 1, 2 we
5341 must set it to 3 to indicate this is a register operand
5342 in the regmem field. */
5343 if (!i.mem_operands)
5344 i.rm.mode = 3;
5345 }
5346
5347 /* Fill in i.rm.reg field with extension opcode (if any). */
5348 if (i.tm.extension_opcode != None)
5349 i.rm.reg = i.tm.extension_opcode;
5350 }
5351 return default_seg;
5352 }
5353
5354 static void
5355 output_branch (void)
5356 {
5357 char *p;
5358 int code16;
5359 int prefix;
5360 relax_substateT subtype;
5361 symbolS *sym;
5362 offsetT off;
5363
5364 code16 = 0;
5365 if (flag_code == CODE_16BIT)
5366 code16 = CODE16;
5367
5368 prefix = 0;
5369 if (i.prefix[DATA_PREFIX] != 0)
5370 {
5371 prefix = 1;
5372 i.prefixes -= 1;
5373 code16 ^= CODE16;
5374 }
5375 /* Pentium4 branch hints. */
5376 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
5377 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
5378 {
5379 prefix++;
5380 i.prefixes--;
5381 }
5382 if (i.prefix[REX_PREFIX] != 0)
5383 {
5384 prefix++;
5385 i.prefixes--;
5386 }
5387
5388 if (i.prefixes != 0 && !intel_syntax)
5389 as_warn (_("skipping prefixes on this instruction"));
5390
5391 /* It's always a symbol; End frag & setup for relax.
5392 Make sure there is enough room in this frag for the largest
5393 instruction we may generate in md_convert_frag. This is 2
5394 bytes for the opcode and room for the prefix and largest
5395 displacement. */
5396 frag_grow (prefix + 2 + 4);
5397 /* Prefix and 1 opcode byte go in fr_fix. */
5398 p = frag_more (prefix + 1);
5399 if (i.prefix[DATA_PREFIX] != 0)
5400 *p++ = DATA_PREFIX_OPCODE;
5401 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE
5402 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE)
5403 *p++ = i.prefix[SEG_PREFIX];
5404 if (i.prefix[REX_PREFIX] != 0)
5405 *p++ = i.prefix[REX_PREFIX];
5406 *p = i.tm.base_opcode;
5407
5408 if ((unsigned char) *p == JUMP_PC_RELATIVE)
5409 subtype = ENCODE_RELAX_STATE (UNCOND_JUMP, SMALL);
5410 else if (cpu_arch_flags.bitfield.cpui386)
5411 subtype = ENCODE_RELAX_STATE (COND_JUMP, SMALL);
5412 else
5413 subtype = ENCODE_RELAX_STATE (COND_JUMP86, SMALL);
5414 subtype |= code16;
5415
5416 sym = i.op[0].disps->X_add_symbol;
5417 off = i.op[0].disps->X_add_number;
5418
5419 if (i.op[0].disps->X_op != O_constant
5420 && i.op[0].disps->X_op != O_symbol)
5421 {
5422 /* Handle complex expressions. */
5423 sym = make_expr_symbol (i.op[0].disps);
5424 off = 0;
5425 }
5426
5427 /* 1 possible extra opcode + 4 byte displacement go in var part.
5428 Pass reloc in fr_var. */
5429 frag_var (rs_machine_dependent, 5, i.reloc[0], subtype, sym, off, p);
5430 }
5431
5432 static void
5433 output_jump (void)
5434 {
5435 char *p;
5436 int size;
5437 fixS *fixP;
5438
5439 if (i.tm.opcode_modifier.jumpbyte)
5440 {
5441 /* This is a loop or jecxz type instruction. */
5442 size = 1;
5443 if (i.prefix[ADDR_PREFIX] != 0)
5444 {
5445 FRAG_APPEND_1_CHAR (ADDR_PREFIX_OPCODE);
5446 i.prefixes -= 1;
5447 }
5448 /* Pentium4 branch hints. */
5449 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
5450 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
5451 {
5452 FRAG_APPEND_1_CHAR (i.prefix[SEG_PREFIX]);
5453 i.prefixes--;
5454 }
5455 }
5456 else
5457 {
5458 int code16;
5459
5460 code16 = 0;
5461 if (flag_code == CODE_16BIT)
5462 code16 = CODE16;
5463
5464 if (i.prefix[DATA_PREFIX] != 0)
5465 {
5466 FRAG_APPEND_1_CHAR (DATA_PREFIX_OPCODE);
5467 i.prefixes -= 1;
5468 code16 ^= CODE16;
5469 }
5470
5471 size = 4;
5472 if (code16)
5473 size = 2;
5474 }
5475
5476 if (i.prefix[REX_PREFIX] != 0)
5477 {
5478 FRAG_APPEND_1_CHAR (i.prefix[REX_PREFIX]);
5479 i.prefixes -= 1;
5480 }
5481
5482 if (i.prefixes != 0 && !intel_syntax)
5483 as_warn (_("skipping prefixes on this instruction"));
5484
5485 p = frag_more (1 + size);
5486 *p++ = i.tm.base_opcode;
5487
5488 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal, size,
5489 i.op[0].disps, 1, reloc (size, 1, 1, i.reloc[0]));
5490
5491 /* All jumps handled here are signed, but don't use a signed limit
5492 check for 32 and 16 bit jumps as we want to allow wrap around at
5493 4G and 64k respectively. */
5494 if (size == 1)
5495 fixP->fx_signed = 1;
5496 }
5497
5498 static void
5499 output_interseg_jump (void)
5500 {
5501 char *p;
5502 int size;
5503 int prefix;
5504 int code16;
5505
5506 code16 = 0;
5507 if (flag_code == CODE_16BIT)
5508 code16 = CODE16;
5509
5510 prefix = 0;
5511 if (i.prefix[DATA_PREFIX] != 0)
5512 {
5513 prefix = 1;
5514 i.prefixes -= 1;
5515 code16 ^= CODE16;
5516 }
5517 if (i.prefix[REX_PREFIX] != 0)
5518 {
5519 prefix++;
5520 i.prefixes -= 1;
5521 }
5522
5523 size = 4;
5524 if (code16)
5525 size = 2;
5526
5527 if (i.prefixes != 0 && !intel_syntax)
5528 as_warn (_("skipping prefixes on this instruction"));
5529
5530 /* 1 opcode; 2 segment; offset */
5531 p = frag_more (prefix + 1 + 2 + size);
5532
5533 if (i.prefix[DATA_PREFIX] != 0)
5534 *p++ = DATA_PREFIX_OPCODE;
5535
5536 if (i.prefix[REX_PREFIX] != 0)
5537 *p++ = i.prefix[REX_PREFIX];
5538
5539 *p++ = i.tm.base_opcode;
5540 if (i.op[1].imms->X_op == O_constant)
5541 {
5542 offsetT n = i.op[1].imms->X_add_number;
5543
5544 if (size == 2
5545 && !fits_in_unsigned_word (n)
5546 && !fits_in_signed_word (n))
5547 {
5548 as_bad (_("16-bit jump out of range"));
5549 return;
5550 }
5551 md_number_to_chars (p, n, size);
5552 }
5553 else
5554 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
5555 i.op[1].imms, 0, reloc (size, 0, 0, i.reloc[1]));
5556 if (i.op[0].imms->X_op != O_constant)
5557 as_bad (_("can't handle non absolute segment in `%s'"),
5558 i.tm.name);
5559 md_number_to_chars (p + size, (valueT) i.op[0].imms->X_add_number, 2);
5560 }
5561
5562 static void
5563 output_insn (void)
5564 {
5565 fragS *insn_start_frag;
5566 offsetT insn_start_off;
5567
5568 /* Tie dwarf2 debug info to the address at the start of the insn.
5569 We can't do this after the insn has been output as the current
5570 frag may have been closed off. eg. by frag_var. */
5571 dwarf2_emit_insn (0);
5572
5573 insn_start_frag = frag_now;
5574 insn_start_off = frag_now_fix ();
5575
5576 /* Output jumps. */
5577 if (i.tm.opcode_modifier.jump)
5578 output_branch ();
5579 else if (i.tm.opcode_modifier.jumpbyte
5580 || i.tm.opcode_modifier.jumpdword)
5581 output_jump ();
5582 else if (i.tm.opcode_modifier.jumpintersegment)
5583 output_interseg_jump ();
5584 else
5585 {
5586 /* Output normal instructions here. */
5587 char *p;
5588 unsigned char *q;
5589 unsigned int j;
5590 unsigned int prefix;
5591
5592 /* Since the VEX prefix contains the implicit prefix, we don't
5593 need the explicit prefix. */
5594 if (!i.tm.opcode_modifier.vex)
5595 {
5596 switch (i.tm.opcode_length)
5597 {
5598 case 3:
5599 if (i.tm.base_opcode & 0xff000000)
5600 {
5601 prefix = (i.tm.base_opcode >> 24) & 0xff;
5602 goto check_prefix;
5603 }
5604 break;
5605 case 2:
5606 if ((i.tm.base_opcode & 0xff0000) != 0)
5607 {
5608 prefix = (i.tm.base_opcode >> 16) & 0xff;
5609 if (i.tm.cpu_flags.bitfield.cpupadlock)
5610 {
5611 check_prefix:
5612 if (prefix != REPE_PREFIX_OPCODE
5613 || (i.prefix[LOCKREP_PREFIX]
5614 != REPE_PREFIX_OPCODE))
5615 add_prefix (prefix);
5616 }
5617 else
5618 add_prefix (prefix);
5619 }
5620 break;
5621 case 1:
5622 break;
5623 default:
5624 abort ();
5625 }
5626
5627 /* The prefix bytes. */
5628 for (j = ARRAY_SIZE (i.prefix), q = i.prefix; j > 0; j--, q++)
5629 if (*q)
5630 FRAG_APPEND_1_CHAR (*q);
5631 }
5632
5633 if (i.tm.opcode_modifier.vex)
5634 {
5635 for (j = 0, q = i.prefix; j < ARRAY_SIZE (i.prefix); j++, q++)
5636 if (*q)
5637 switch (j)
5638 {
5639 case REX_PREFIX:
5640 /* REX byte is encoded in VEX prefix. */
5641 break;
5642 case SEG_PREFIX:
5643 case ADDR_PREFIX:
5644 FRAG_APPEND_1_CHAR (*q);
5645 break;
5646 default:
5647 /* There should be no other prefixes for instructions
5648 with VEX prefix. */
5649 abort ();
5650 }
5651
5652 /* Now the VEX prefix. */
5653 p = frag_more (i.vex.length);
5654 for (j = 0; j < i.vex.length; j++)
5655 p[j] = i.vex.bytes[j];
5656 }
5657
5658 /* Now the opcode; be careful about word order here! */
5659 if (i.tm.opcode_length == 1)
5660 {
5661 FRAG_APPEND_1_CHAR (i.tm.base_opcode);
5662 }
5663 else
5664 {
5665 switch (i.tm.opcode_length)
5666 {
5667 case 3:
5668 p = frag_more (3);
5669 *p++ = (i.tm.base_opcode >> 16) & 0xff;
5670 break;
5671 case 2:
5672 p = frag_more (2);
5673 break;
5674 default:
5675 abort ();
5676 break;
5677 }
5678
5679 /* Put out high byte first: can't use md_number_to_chars! */
5680 *p++ = (i.tm.base_opcode >> 8) & 0xff;
5681 *p = i.tm.base_opcode & 0xff;
5682 }
5683
5684 /* Now the modrm byte and sib byte (if present). */
5685 if (i.tm.opcode_modifier.modrm)
5686 {
5687 FRAG_APPEND_1_CHAR ((i.rm.regmem << 0
5688 | i.rm.reg << 3
5689 | i.rm.mode << 6));
5690 /* If i.rm.regmem == ESP (4)
5691 && i.rm.mode != (Register mode)
5692 && not 16 bit
5693 ==> need second modrm byte. */
5694 if (i.rm.regmem == ESCAPE_TO_TWO_BYTE_ADDRESSING
5695 && i.rm.mode != 3
5696 && !(i.base_reg && i.base_reg->reg_type.bitfield.reg16))
5697 FRAG_APPEND_1_CHAR ((i.sib.base << 0
5698 | i.sib.index << 3
5699 | i.sib.scale << 6));
5700 }
5701
5702 if (i.disp_operands)
5703 output_disp (insn_start_frag, insn_start_off);
5704
5705 if (i.imm_operands)
5706 output_imm (insn_start_frag, insn_start_off);
5707 }
5708
5709 #ifdef DEBUG386
5710 if (flag_debug)
5711 {
5712 pi ("" /*line*/, &i);
5713 }
5714 #endif /* DEBUG386 */
5715 }
5716
5717 /* Return the size of the displacement operand N. */
5718
5719 static int
5720 disp_size (unsigned int n)
5721 {
5722 int size = 4;
5723 if (i.types[n].bitfield.disp64)
5724 size = 8;
5725 else if (i.types[n].bitfield.disp8)
5726 size = 1;
5727 else if (i.types[n].bitfield.disp16)
5728 size = 2;
5729 return size;
5730 }
5731
5732 /* Return the size of the immediate operand N. */
5733
5734 static int
5735 imm_size (unsigned int n)
5736 {
5737 int size = 4;
5738 if (i.types[n].bitfield.imm64)
5739 size = 8;
5740 else if (i.types[n].bitfield.imm8 || i.types[n].bitfield.imm8s)
5741 size = 1;
5742 else if (i.types[n].bitfield.imm16)
5743 size = 2;
5744 return size;
5745 }
5746
5747 static void
5748 output_disp (fragS *insn_start_frag, offsetT insn_start_off)
5749 {
5750 char *p;
5751 unsigned int n;
5752
5753 for (n = 0; n < i.operands; n++)
5754 {
5755 if (operand_type_check (i.types[n], disp))
5756 {
5757 if (i.op[n].disps->X_op == O_constant)
5758 {
5759 int size = disp_size (n);
5760 offsetT val;
5761
5762 val = offset_in_range (i.op[n].disps->X_add_number,
5763 size);
5764 p = frag_more (size);
5765 md_number_to_chars (p, val, size);
5766 }
5767 else
5768 {
5769 enum bfd_reloc_code_real reloc_type;
5770 int size = disp_size (n);
5771 int sign = i.types[n].bitfield.disp32s;
5772 int pcrel = (i.flags[n] & Operand_PCrel) != 0;
5773
5774 /* We can't have 8 bit displacement here. */
5775 gas_assert (!i.types[n].bitfield.disp8);
5776
5777 /* The PC relative address is computed relative
5778 to the instruction boundary, so in case immediate
5779 fields follows, we need to adjust the value. */
5780 if (pcrel && i.imm_operands)
5781 {
5782 unsigned int n1;
5783 int sz = 0;
5784
5785 for (n1 = 0; n1 < i.operands; n1++)
5786 if (operand_type_check (i.types[n1], imm))
5787 {
5788 /* Only one immediate is allowed for PC
5789 relative address. */
5790 gas_assert (sz == 0);
5791 sz = imm_size (n1);
5792 i.op[n].disps->X_add_number -= sz;
5793 }
5794 /* We should find the immediate. */
5795 gas_assert (sz != 0);
5796 }
5797
5798 p = frag_more (size);
5799 reloc_type = reloc (size, pcrel, sign, i.reloc[n]);
5800 if (GOT_symbol
5801 && GOT_symbol == i.op[n].disps->X_add_symbol
5802 && (((reloc_type == BFD_RELOC_32
5803 || reloc_type == BFD_RELOC_X86_64_32S
5804 || (reloc_type == BFD_RELOC_64
5805 && object_64bit))
5806 && (i.op[n].disps->X_op == O_symbol
5807 || (i.op[n].disps->X_op == O_add
5808 && ((symbol_get_value_expression
5809 (i.op[n].disps->X_op_symbol)->X_op)
5810 == O_subtract))))
5811 || reloc_type == BFD_RELOC_32_PCREL))
5812 {
5813 offsetT add;
5814
5815 if (insn_start_frag == frag_now)
5816 add = (p - frag_now->fr_literal) - insn_start_off;
5817 else
5818 {
5819 fragS *fr;
5820
5821 add = insn_start_frag->fr_fix - insn_start_off;
5822 for (fr = insn_start_frag->fr_next;
5823 fr && fr != frag_now; fr = fr->fr_next)
5824 add += fr->fr_fix;
5825 add += p - frag_now->fr_literal;
5826 }
5827
5828 if (!object_64bit)
5829 {
5830 reloc_type = BFD_RELOC_386_GOTPC;
5831 i.op[n].imms->X_add_number += add;
5832 }
5833 else if (reloc_type == BFD_RELOC_64)
5834 reloc_type = BFD_RELOC_X86_64_GOTPC64;
5835 else
5836 /* Don't do the adjustment for x86-64, as there
5837 the pcrel addressing is relative to the _next_
5838 insn, and that is taken care of in other code. */
5839 reloc_type = BFD_RELOC_X86_64_GOTPC32;
5840 }
5841 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
5842 i.op[n].disps, pcrel, reloc_type);
5843 }
5844 }
5845 }
5846 }
5847
5848 static void
5849 output_imm (fragS *insn_start_frag, offsetT insn_start_off)
5850 {
5851 char *p;
5852 unsigned int n;
5853
5854 for (n = 0; n < i.operands; n++)
5855 {
5856 if (operand_type_check (i.types[n], imm))
5857 {
5858 if (i.op[n].imms->X_op == O_constant)
5859 {
5860 int size = imm_size (n);
5861 offsetT val;
5862
5863 val = offset_in_range (i.op[n].imms->X_add_number,
5864 size);
5865 p = frag_more (size);
5866 md_number_to_chars (p, val, size);
5867 }
5868 else
5869 {
5870 /* Not absolute_section.
5871 Need a 32-bit fixup (don't support 8bit
5872 non-absolute imms). Try to support other
5873 sizes ... */
5874 enum bfd_reloc_code_real reloc_type;
5875 int size = imm_size (n);
5876 int sign;
5877
5878 if (i.types[n].bitfield.imm32s
5879 && (i.suffix == QWORD_MNEM_SUFFIX
5880 || (!i.suffix && i.tm.opcode_modifier.no_lsuf)))
5881 sign = 1;
5882 else
5883 sign = 0;
5884
5885 p = frag_more (size);
5886 reloc_type = reloc (size, 0, sign, i.reloc[n]);
5887
5888 /* This is tough to explain. We end up with this one if we
5889 * have operands that look like
5890 * "_GLOBAL_OFFSET_TABLE_+[.-.L284]". The goal here is to
5891 * obtain the absolute address of the GOT, and it is strongly
5892 * preferable from a performance point of view to avoid using
5893 * a runtime relocation for this. The actual sequence of
5894 * instructions often look something like:
5895 *
5896 * call .L66
5897 * .L66:
5898 * popl %ebx
5899 * addl $_GLOBAL_OFFSET_TABLE_+[.-.L66],%ebx
5900 *
5901 * The call and pop essentially return the absolute address
5902 * of the label .L66 and store it in %ebx. The linker itself
5903 * will ultimately change the first operand of the addl so
5904 * that %ebx points to the GOT, but to keep things simple, the
5905 * .o file must have this operand set so that it generates not
5906 * the absolute address of .L66, but the absolute address of
5907 * itself. This allows the linker itself simply treat a GOTPC
5908 * relocation as asking for a pcrel offset to the GOT to be
5909 * added in, and the addend of the relocation is stored in the
5910 * operand field for the instruction itself.
5911 *
5912 * Our job here is to fix the operand so that it would add
5913 * the correct offset so that %ebx would point to itself. The
5914 * thing that is tricky is that .-.L66 will point to the
5915 * beginning of the instruction, so we need to further modify
5916 * the operand so that it will point to itself. There are
5917 * other cases where you have something like:
5918 *
5919 * .long $_GLOBAL_OFFSET_TABLE_+[.-.L66]
5920 *
5921 * and here no correction would be required. Internally in
5922 * the assembler we treat operands of this form as not being
5923 * pcrel since the '.' is explicitly mentioned, and I wonder
5924 * whether it would simplify matters to do it this way. Who
5925 * knows. In earlier versions of the PIC patches, the
5926 * pcrel_adjust field was used to store the correction, but
5927 * since the expression is not pcrel, I felt it would be
5928 * confusing to do it this way. */
5929
5930 if ((reloc_type == BFD_RELOC_32
5931 || reloc_type == BFD_RELOC_X86_64_32S
5932 || reloc_type == BFD_RELOC_64)
5933 && GOT_symbol
5934 && GOT_symbol == i.op[n].imms->X_add_symbol
5935 && (i.op[n].imms->X_op == O_symbol
5936 || (i.op[n].imms->X_op == O_add
5937 && ((symbol_get_value_expression
5938 (i.op[n].imms->X_op_symbol)->X_op)
5939 == O_subtract))))
5940 {
5941 offsetT add;
5942
5943 if (insn_start_frag == frag_now)
5944 add = (p - frag_now->fr_literal) - insn_start_off;
5945 else
5946 {
5947 fragS *fr;
5948
5949 add = insn_start_frag->fr_fix - insn_start_off;
5950 for (fr = insn_start_frag->fr_next;
5951 fr && fr != frag_now; fr = fr->fr_next)
5952 add += fr->fr_fix;
5953 add += p - frag_now->fr_literal;
5954 }
5955
5956 if (!object_64bit)
5957 reloc_type = BFD_RELOC_386_GOTPC;
5958 else if (size == 4)
5959 reloc_type = BFD_RELOC_X86_64_GOTPC32;
5960 else if (size == 8)
5961 reloc_type = BFD_RELOC_X86_64_GOTPC64;
5962 i.op[n].imms->X_add_number += add;
5963 }
5964 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
5965 i.op[n].imms, 0, reloc_type);
5966 }
5967 }
5968 }
5969 }
5970 \f
5971 /* x86_cons_fix_new is called via the expression parsing code when a
5972 reloc is needed. We use this hook to get the correct .got reloc. */
5973 static enum bfd_reloc_code_real got_reloc = NO_RELOC;
5974 static int cons_sign = -1;
5975
5976 void
5977 x86_cons_fix_new (fragS *frag, unsigned int off, unsigned int len,
5978 expressionS *exp)
5979 {
5980 enum bfd_reloc_code_real r = reloc (len, 0, cons_sign, got_reloc);
5981
5982 got_reloc = NO_RELOC;
5983
5984 #ifdef TE_PE
5985 if (exp->X_op == O_secrel)
5986 {
5987 exp->X_op = O_symbol;
5988 r = BFD_RELOC_32_SECREL;
5989 }
5990 #endif
5991
5992 fix_new_exp (frag, off, len, exp, 0, r);
5993 }
5994
5995 #if (!defined (OBJ_ELF) && !defined (OBJ_MAYBE_ELF)) || defined (LEX_AT)
5996 # define lex_got(reloc, adjust, types) NULL
5997 #else
5998 /* Parse operands of the form
5999 <symbol>@GOTOFF+<nnn>
6000 and similar .plt or .got references.
6001
6002 If we find one, set up the correct relocation in RELOC and copy the
6003 input string, minus the `@GOTOFF' into a malloc'd buffer for
6004 parsing by the calling routine. Return this buffer, and if ADJUST
6005 is non-null set it to the length of the string we removed from the
6006 input line. Otherwise return NULL. */
6007 static char *
6008 lex_got (enum bfd_reloc_code_real *reloc,
6009 int *adjust,
6010 i386_operand_type *types)
6011 {
6012 /* Some of the relocations depend on the size of what field is to
6013 be relocated. But in our callers i386_immediate and i386_displacement
6014 we don't yet know the operand size (this will be set by insn
6015 matching). Hence we record the word32 relocation here,
6016 and adjust the reloc according to the real size in reloc(). */
6017 static const struct {
6018 const char *str;
6019 const enum bfd_reloc_code_real rel[2];
6020 const i386_operand_type types64;
6021 } gotrel[] = {
6022 { "PLTOFF", { 0,
6023 BFD_RELOC_X86_64_PLTOFF64 },
6024 OPERAND_TYPE_IMM64 },
6025 { "PLT", { BFD_RELOC_386_PLT32,
6026 BFD_RELOC_X86_64_PLT32 },
6027 OPERAND_TYPE_IMM32_32S_DISP32 },
6028 { "GOTPLT", { 0,
6029 BFD_RELOC_X86_64_GOTPLT64 },
6030 OPERAND_TYPE_IMM64_DISP64 },
6031 { "GOTOFF", { BFD_RELOC_386_GOTOFF,
6032 BFD_RELOC_X86_64_GOTOFF64 },
6033 OPERAND_TYPE_IMM64_DISP64 },
6034 { "GOTPCREL", { 0,
6035 BFD_RELOC_X86_64_GOTPCREL },
6036 OPERAND_TYPE_IMM32_32S_DISP32 },
6037 { "TLSGD", { BFD_RELOC_386_TLS_GD,
6038 BFD_RELOC_X86_64_TLSGD },
6039 OPERAND_TYPE_IMM32_32S_DISP32 },
6040 { "TLSLDM", { BFD_RELOC_386_TLS_LDM,
6041 0 },
6042 OPERAND_TYPE_NONE },
6043 { "TLSLD", { 0,
6044 BFD_RELOC_X86_64_TLSLD },
6045 OPERAND_TYPE_IMM32_32S_DISP32 },
6046 { "GOTTPOFF", { BFD_RELOC_386_TLS_IE_32,
6047 BFD_RELOC_X86_64_GOTTPOFF },
6048 OPERAND_TYPE_IMM32_32S_DISP32 },
6049 { "TPOFF", { BFD_RELOC_386_TLS_LE_32,
6050 BFD_RELOC_X86_64_TPOFF32 },
6051 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
6052 { "NTPOFF", { BFD_RELOC_386_TLS_LE,
6053 0 },
6054 OPERAND_TYPE_NONE },
6055 { "DTPOFF", { BFD_RELOC_386_TLS_LDO_32,
6056 BFD_RELOC_X86_64_DTPOFF32 },
6057
6058 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
6059 { "GOTNTPOFF",{ BFD_RELOC_386_TLS_GOTIE,
6060 0 },
6061 OPERAND_TYPE_NONE },
6062 { "INDNTPOFF",{ BFD_RELOC_386_TLS_IE,
6063 0 },
6064 OPERAND_TYPE_NONE },
6065 { "GOT", { BFD_RELOC_386_GOT32,
6066 BFD_RELOC_X86_64_GOT32 },
6067 OPERAND_TYPE_IMM32_32S_64_DISP32 },
6068 { "TLSDESC", { BFD_RELOC_386_TLS_GOTDESC,
6069 BFD_RELOC_X86_64_GOTPC32_TLSDESC },
6070 OPERAND_TYPE_IMM32_32S_DISP32 },
6071 { "TLSCALL", { BFD_RELOC_386_TLS_DESC_CALL,
6072 BFD_RELOC_X86_64_TLSDESC_CALL },
6073 OPERAND_TYPE_IMM32_32S_DISP32 },
6074 };
6075 char *cp;
6076 unsigned int j;
6077
6078 if (!IS_ELF)
6079 return NULL;
6080
6081 for (cp = input_line_pointer; *cp != '@'; cp++)
6082 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
6083 return NULL;
6084
6085 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
6086 {
6087 int len;
6088
6089 len = strlen (gotrel[j].str);
6090 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
6091 {
6092 if (gotrel[j].rel[object_64bit] != 0)
6093 {
6094 int first, second;
6095 char *tmpbuf, *past_reloc;
6096
6097 *reloc = gotrel[j].rel[object_64bit];
6098 if (adjust)
6099 *adjust = len;
6100
6101 if (types)
6102 {
6103 if (flag_code != CODE_64BIT)
6104 {
6105 types->bitfield.imm32 = 1;
6106 types->bitfield.disp32 = 1;
6107 }
6108 else
6109 *types = gotrel[j].types64;
6110 }
6111
6112 if (GOT_symbol == NULL)
6113 GOT_symbol = symbol_find_or_make (GLOBAL_OFFSET_TABLE_NAME);
6114
6115 /* The length of the first part of our input line. */
6116 first = cp - input_line_pointer;
6117
6118 /* The second part goes from after the reloc token until
6119 (and including) an end_of_line char or comma. */
6120 past_reloc = cp + 1 + len;
6121 cp = past_reloc;
6122 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
6123 ++cp;
6124 second = cp + 1 - past_reloc;
6125
6126 /* Allocate and copy string. The trailing NUL shouldn't
6127 be necessary, but be safe. */
6128 tmpbuf = xmalloc (first + second + 2);
6129 memcpy (tmpbuf, input_line_pointer, first);
6130 if (second != 0 && *past_reloc != ' ')
6131 /* Replace the relocation token with ' ', so that
6132 errors like foo@GOTOFF1 will be detected. */
6133 tmpbuf[first++] = ' ';
6134 memcpy (tmpbuf + first, past_reloc, second);
6135 tmpbuf[first + second] = '\0';
6136 return tmpbuf;
6137 }
6138
6139 as_bad (_("@%s reloc is not supported with %d-bit output format"),
6140 gotrel[j].str, 1 << (5 + object_64bit));
6141 return NULL;
6142 }
6143 }
6144
6145 /* Might be a symbol version string. Don't as_bad here. */
6146 return NULL;
6147 }
6148
6149 void
6150 x86_cons (expressionS *exp, int size)
6151 {
6152 intel_syntax = -intel_syntax;
6153
6154 if (size == 4 || (object_64bit && size == 8))
6155 {
6156 /* Handle @GOTOFF and the like in an expression. */
6157 char *save;
6158 char *gotfree_input_line;
6159 int adjust;
6160
6161 save = input_line_pointer;
6162 gotfree_input_line = lex_got (&got_reloc, &adjust, NULL);
6163 if (gotfree_input_line)
6164 input_line_pointer = gotfree_input_line;
6165
6166 expression (exp);
6167
6168 if (gotfree_input_line)
6169 {
6170 /* expression () has merrily parsed up to the end of line,
6171 or a comma - in the wrong buffer. Transfer how far
6172 input_line_pointer has moved to the right buffer. */
6173 input_line_pointer = (save
6174 + (input_line_pointer - gotfree_input_line)
6175 + adjust);
6176 free (gotfree_input_line);
6177 if (exp->X_op == O_constant
6178 || exp->X_op == O_absent
6179 || exp->X_op == O_illegal
6180 || exp->X_op == O_register
6181 || exp->X_op == O_big)
6182 {
6183 char c = *input_line_pointer;
6184 *input_line_pointer = 0;
6185 as_bad (_("missing or invalid expression `%s'"), save);
6186 *input_line_pointer = c;
6187 }
6188 }
6189 }
6190 else
6191 expression (exp);
6192
6193 intel_syntax = -intel_syntax;
6194
6195 if (intel_syntax)
6196 i386_intel_simplify (exp);
6197 }
6198 #endif
6199
6200 static void signed_cons (int size)
6201 {
6202 if (flag_code == CODE_64BIT)
6203 cons_sign = 1;
6204 cons (size);
6205 cons_sign = -1;
6206 }
6207
6208 #ifdef TE_PE
6209 static void
6210 pe_directive_secrel (dummy)
6211 int dummy ATTRIBUTE_UNUSED;
6212 {
6213 expressionS exp;
6214
6215 do
6216 {
6217 expression (&exp);
6218 if (exp.X_op == O_symbol)
6219 exp.X_op = O_secrel;
6220
6221 emit_expr (&exp, 4);
6222 }
6223 while (*input_line_pointer++ == ',');
6224
6225 input_line_pointer--;
6226 demand_empty_rest_of_line ();
6227 }
6228 #endif
6229
6230 static int
6231 i386_immediate (char *imm_start)
6232 {
6233 char *save_input_line_pointer;
6234 char *gotfree_input_line;
6235 segT exp_seg = 0;
6236 expressionS *exp;
6237 i386_operand_type types;
6238
6239 operand_type_set (&types, ~0);
6240
6241 if (i.imm_operands == MAX_IMMEDIATE_OPERANDS)
6242 {
6243 as_bad (_("at most %d immediate operands are allowed"),
6244 MAX_IMMEDIATE_OPERANDS);
6245 return 0;
6246 }
6247
6248 exp = &im_expressions[i.imm_operands++];
6249 i.op[this_operand].imms = exp;
6250
6251 if (is_space_char (*imm_start))
6252 ++imm_start;
6253
6254 save_input_line_pointer = input_line_pointer;
6255 input_line_pointer = imm_start;
6256
6257 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
6258 if (gotfree_input_line)
6259 input_line_pointer = gotfree_input_line;
6260
6261 exp_seg = expression (exp);
6262
6263 SKIP_WHITESPACE ();
6264 if (*input_line_pointer)
6265 as_bad (_("junk `%s' after expression"), input_line_pointer);
6266
6267 input_line_pointer = save_input_line_pointer;
6268 if (gotfree_input_line)
6269 {
6270 free (gotfree_input_line);
6271
6272 if (exp->X_op == O_constant || exp->X_op == O_register)
6273 exp->X_op = O_illegal;
6274 }
6275
6276 return i386_finalize_immediate (exp_seg, exp, types, imm_start);
6277 }
6278
6279 static int
6280 i386_finalize_immediate (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
6281 i386_operand_type types, const char *imm_start)
6282 {
6283 if (exp->X_op == O_absent || exp->X_op == O_illegal || exp->X_op == O_big)
6284 {
6285 as_bad (_("missing or invalid immediate expression `%s'"),
6286 imm_start);
6287 return 0;
6288 }
6289 else if (exp->X_op == O_constant)
6290 {
6291 /* Size it properly later. */
6292 i.types[this_operand].bitfield.imm64 = 1;
6293 /* If BFD64, sign extend val. */
6294 if (!use_rela_relocations
6295 && (exp->X_add_number & ~(((addressT) 2 << 31) - 1)) == 0)
6296 exp->X_add_number
6297 = (exp->X_add_number ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
6298 }
6299 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
6300 else if (OUTPUT_FLAVOR == bfd_target_aout_flavour
6301 && exp_seg != absolute_section
6302 && exp_seg != text_section
6303 && exp_seg != data_section
6304 && exp_seg != bss_section
6305 && exp_seg != undefined_section
6306 && !bfd_is_com_section (exp_seg))
6307 {
6308 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
6309 return 0;
6310 }
6311 #endif
6312 else if (!intel_syntax && exp->X_op == O_register)
6313 {
6314 as_bad (_("illegal immediate register operand %s"), imm_start);
6315 return 0;
6316 }
6317 else
6318 {
6319 /* This is an address. The size of the address will be
6320 determined later, depending on destination register,
6321 suffix, or the default for the section. */
6322 i.types[this_operand].bitfield.imm8 = 1;
6323 i.types[this_operand].bitfield.imm16 = 1;
6324 i.types[this_operand].bitfield.imm32 = 1;
6325 i.types[this_operand].bitfield.imm32s = 1;
6326 i.types[this_operand].bitfield.imm64 = 1;
6327 i.types[this_operand] = operand_type_and (i.types[this_operand],
6328 types);
6329 }
6330
6331 return 1;
6332 }
6333
6334 static char *
6335 i386_scale (char *scale)
6336 {
6337 offsetT val;
6338 char *save = input_line_pointer;
6339
6340 input_line_pointer = scale;
6341 val = get_absolute_expression ();
6342
6343 switch (val)
6344 {
6345 case 1:
6346 i.log2_scale_factor = 0;
6347 break;
6348 case 2:
6349 i.log2_scale_factor = 1;
6350 break;
6351 case 4:
6352 i.log2_scale_factor = 2;
6353 break;
6354 case 8:
6355 i.log2_scale_factor = 3;
6356 break;
6357 default:
6358 {
6359 char sep = *input_line_pointer;
6360
6361 *input_line_pointer = '\0';
6362 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
6363 scale);
6364 *input_line_pointer = sep;
6365 input_line_pointer = save;
6366 return NULL;
6367 }
6368 }
6369 if (i.log2_scale_factor != 0 && i.index_reg == 0)
6370 {
6371 as_warn (_("scale factor of %d without an index register"),
6372 1 << i.log2_scale_factor);
6373 i.log2_scale_factor = 0;
6374 }
6375 scale = input_line_pointer;
6376 input_line_pointer = save;
6377 return scale;
6378 }
6379
6380 static int
6381 i386_displacement (char *disp_start, char *disp_end)
6382 {
6383 expressionS *exp;
6384 segT exp_seg = 0;
6385 char *save_input_line_pointer;
6386 char *gotfree_input_line;
6387 int override;
6388 i386_operand_type bigdisp, types = anydisp;
6389 int ret;
6390
6391 if (i.disp_operands == MAX_MEMORY_OPERANDS)
6392 {
6393 as_bad (_("at most %d displacement operands are allowed"),
6394 MAX_MEMORY_OPERANDS);
6395 return 0;
6396 }
6397
6398 operand_type_set (&bigdisp, 0);
6399 if ((i.types[this_operand].bitfield.jumpabsolute)
6400 || (!current_templates->start->opcode_modifier.jump
6401 && !current_templates->start->opcode_modifier.jumpdword))
6402 {
6403 bigdisp.bitfield.disp32 = 1;
6404 override = (i.prefix[ADDR_PREFIX] != 0);
6405 if (flag_code == CODE_64BIT)
6406 {
6407 if (!override)
6408 {
6409 bigdisp.bitfield.disp32s = 1;
6410 bigdisp.bitfield.disp64 = 1;
6411 }
6412 }
6413 else if ((flag_code == CODE_16BIT) ^ override)
6414 {
6415 bigdisp.bitfield.disp32 = 0;
6416 bigdisp.bitfield.disp16 = 1;
6417 }
6418 }
6419 else
6420 {
6421 /* For PC-relative branches, the width of the displacement
6422 is dependent upon data size, not address size. */
6423 override = (i.prefix[DATA_PREFIX] != 0);
6424 if (flag_code == CODE_64BIT)
6425 {
6426 if (override || i.suffix == WORD_MNEM_SUFFIX)
6427 bigdisp.bitfield.disp16 = 1;
6428 else
6429 {
6430 bigdisp.bitfield.disp32 = 1;
6431 bigdisp.bitfield.disp32s = 1;
6432 }
6433 }
6434 else
6435 {
6436 if (!override)
6437 override = (i.suffix == (flag_code != CODE_16BIT
6438 ? WORD_MNEM_SUFFIX
6439 : LONG_MNEM_SUFFIX));
6440 bigdisp.bitfield.disp32 = 1;
6441 if ((flag_code == CODE_16BIT) ^ override)
6442 {
6443 bigdisp.bitfield.disp32 = 0;
6444 bigdisp.bitfield.disp16 = 1;
6445 }
6446 }
6447 }
6448 i.types[this_operand] = operand_type_or (i.types[this_operand],
6449 bigdisp);
6450
6451 exp = &disp_expressions[i.disp_operands];
6452 i.op[this_operand].disps = exp;
6453 i.disp_operands++;
6454 save_input_line_pointer = input_line_pointer;
6455 input_line_pointer = disp_start;
6456 END_STRING_AND_SAVE (disp_end);
6457
6458 #ifndef GCC_ASM_O_HACK
6459 #define GCC_ASM_O_HACK 0
6460 #endif
6461 #if GCC_ASM_O_HACK
6462 END_STRING_AND_SAVE (disp_end + 1);
6463 if (i.types[this_operand].bitfield.baseIndex
6464 && displacement_string_end[-1] == '+')
6465 {
6466 /* This hack is to avoid a warning when using the "o"
6467 constraint within gcc asm statements.
6468 For instance:
6469
6470 #define _set_tssldt_desc(n,addr,limit,type) \
6471 __asm__ __volatile__ ( \
6472 "movw %w2,%0\n\t" \
6473 "movw %w1,2+%0\n\t" \
6474 "rorl $16,%1\n\t" \
6475 "movb %b1,4+%0\n\t" \
6476 "movb %4,5+%0\n\t" \
6477 "movb $0,6+%0\n\t" \
6478 "movb %h1,7+%0\n\t" \
6479 "rorl $16,%1" \
6480 : "=o"(*(n)) : "q" (addr), "ri"(limit), "i"(type))
6481
6482 This works great except that the output assembler ends
6483 up looking a bit weird if it turns out that there is
6484 no offset. You end up producing code that looks like:
6485
6486 #APP
6487 movw $235,(%eax)
6488 movw %dx,2+(%eax)
6489 rorl $16,%edx
6490 movb %dl,4+(%eax)
6491 movb $137,5+(%eax)
6492 movb $0,6+(%eax)
6493 movb %dh,7+(%eax)
6494 rorl $16,%edx
6495 #NO_APP
6496
6497 So here we provide the missing zero. */
6498
6499 *displacement_string_end = '0';
6500 }
6501 #endif
6502 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
6503 if (gotfree_input_line)
6504 input_line_pointer = gotfree_input_line;
6505
6506 exp_seg = expression (exp);
6507
6508 SKIP_WHITESPACE ();
6509 if (*input_line_pointer)
6510 as_bad (_("junk `%s' after expression"), input_line_pointer);
6511 #if GCC_ASM_O_HACK
6512 RESTORE_END_STRING (disp_end + 1);
6513 #endif
6514 input_line_pointer = save_input_line_pointer;
6515 if (gotfree_input_line)
6516 {
6517 free (gotfree_input_line);
6518
6519 if (exp->X_op == O_constant || exp->X_op == O_register)
6520 exp->X_op = O_illegal;
6521 }
6522
6523 ret = i386_finalize_displacement (exp_seg, exp, types, disp_start);
6524
6525 RESTORE_END_STRING (disp_end);
6526
6527 return ret;
6528 }
6529
6530 static int
6531 i386_finalize_displacement (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
6532 i386_operand_type types, const char *disp_start)
6533 {
6534 i386_operand_type bigdisp;
6535 int ret = 1;
6536
6537 /* We do this to make sure that the section symbol is in
6538 the symbol table. We will ultimately change the relocation
6539 to be relative to the beginning of the section. */
6540 if (i.reloc[this_operand] == BFD_RELOC_386_GOTOFF
6541 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL
6542 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
6543 {
6544 if (exp->X_op != O_symbol)
6545 goto inv_disp;
6546
6547 if (S_IS_LOCAL (exp->X_add_symbol)
6548 && S_GET_SEGMENT (exp->X_add_symbol) != undefined_section)
6549 section_symbol (S_GET_SEGMENT (exp->X_add_symbol));
6550 exp->X_op = O_subtract;
6551 exp->X_op_symbol = GOT_symbol;
6552 if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
6553 i.reloc[this_operand] = BFD_RELOC_32_PCREL;
6554 else if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
6555 i.reloc[this_operand] = BFD_RELOC_64;
6556 else
6557 i.reloc[this_operand] = BFD_RELOC_32;
6558 }
6559
6560 else if (exp->X_op == O_absent
6561 || exp->X_op == O_illegal
6562 || exp->X_op == O_big)
6563 {
6564 inv_disp:
6565 as_bad (_("missing or invalid displacement expression `%s'"),
6566 disp_start);
6567 ret = 0;
6568 }
6569
6570 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
6571 else if (exp->X_op != O_constant
6572 && OUTPUT_FLAVOR == bfd_target_aout_flavour
6573 && exp_seg != absolute_section
6574 && exp_seg != text_section
6575 && exp_seg != data_section
6576 && exp_seg != bss_section
6577 && exp_seg != undefined_section
6578 && !bfd_is_com_section (exp_seg))
6579 {
6580 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
6581 ret = 0;
6582 }
6583 #endif
6584
6585 /* Check if this is a displacement only operand. */
6586 bigdisp = i.types[this_operand];
6587 bigdisp.bitfield.disp8 = 0;
6588 bigdisp.bitfield.disp16 = 0;
6589 bigdisp.bitfield.disp32 = 0;
6590 bigdisp.bitfield.disp32s = 0;
6591 bigdisp.bitfield.disp64 = 0;
6592 if (operand_type_all_zero (&bigdisp))
6593 i.types[this_operand] = operand_type_and (i.types[this_operand],
6594 types);
6595
6596 return ret;
6597 }
6598
6599 /* Make sure the memory operand we've been dealt is valid.
6600 Return 1 on success, 0 on a failure. */
6601
6602 static int
6603 i386_index_check (const char *operand_string)
6604 {
6605 int ok;
6606 const char *kind = "base/index";
6607 #if INFER_ADDR_PREFIX
6608 int fudged = 0;
6609
6610 tryprefix:
6611 #endif
6612 ok = 1;
6613 if (current_templates->start->opcode_modifier.isstring
6614 && !current_templates->start->opcode_modifier.immext
6615 && (current_templates->end[-1].opcode_modifier.isstring
6616 || i.mem_operands))
6617 {
6618 /* Memory operands of string insns are special in that they only allow
6619 a single register (rDI, rSI, or rBX) as their memory address. */
6620 unsigned int expected;
6621
6622 kind = "string address";
6623
6624 if (current_templates->start->opcode_modifier.w)
6625 {
6626 i386_operand_type type = current_templates->end[-1].operand_types[0];
6627
6628 if (!type.bitfield.baseindex
6629 || ((!i.mem_operands != !intel_syntax)
6630 && current_templates->end[-1].operand_types[1]
6631 .bitfield.baseindex))
6632 type = current_templates->end[-1].operand_types[1];
6633 expected = type.bitfield.esseg ? 7 /* rDI */ : 6 /* rSI */;
6634 }
6635 else
6636 expected = 3 /* rBX */;
6637
6638 if (!i.base_reg || i.index_reg
6639 || operand_type_check (i.types[this_operand], disp))
6640 ok = -1;
6641 else if (!(flag_code == CODE_64BIT
6642 ? i.prefix[ADDR_PREFIX]
6643 ? i.base_reg->reg_type.bitfield.reg32
6644 : i.base_reg->reg_type.bitfield.reg64
6645 : (flag_code == CODE_16BIT) ^ !i.prefix[ADDR_PREFIX]
6646 ? i.base_reg->reg_type.bitfield.reg32
6647 : i.base_reg->reg_type.bitfield.reg16))
6648 ok = 0;
6649 else if (i.base_reg->reg_num != expected)
6650 ok = -1;
6651
6652 if (ok < 0)
6653 {
6654 unsigned int j;
6655
6656 for (j = 0; j < i386_regtab_size; ++j)
6657 if ((flag_code == CODE_64BIT
6658 ? i.prefix[ADDR_PREFIX]
6659 ? i386_regtab[j].reg_type.bitfield.reg32
6660 : i386_regtab[j].reg_type.bitfield.reg64
6661 : (flag_code == CODE_16BIT) ^ !i.prefix[ADDR_PREFIX]
6662 ? i386_regtab[j].reg_type.bitfield.reg32
6663 : i386_regtab[j].reg_type.bitfield.reg16)
6664 && i386_regtab[j].reg_num == expected)
6665 break;
6666 gas_assert (j < i386_regtab_size);
6667 as_warn (_("`%s' is not valid here (expected `%c%s%s%c')"),
6668 operand_string,
6669 intel_syntax ? '[' : '(',
6670 register_prefix,
6671 i386_regtab[j].reg_name,
6672 intel_syntax ? ']' : ')');
6673 ok = 1;
6674 }
6675 }
6676 else if (flag_code == CODE_64BIT)
6677 {
6678 if ((i.base_reg
6679 && ((i.prefix[ADDR_PREFIX] == 0
6680 && !i.base_reg->reg_type.bitfield.reg64)
6681 || (i.prefix[ADDR_PREFIX]
6682 && !i.base_reg->reg_type.bitfield.reg32))
6683 && (i.index_reg
6684 || i.base_reg->reg_num !=
6685 (i.prefix[ADDR_PREFIX] == 0 ? RegRip : RegEip)))
6686 || (i.index_reg
6687 && (!i.index_reg->reg_type.bitfield.baseindex
6688 || (i.prefix[ADDR_PREFIX] == 0
6689 && i.index_reg->reg_num != RegRiz
6690 && !i.index_reg->reg_type.bitfield.reg64
6691 )
6692 || (i.prefix[ADDR_PREFIX]
6693 && i.index_reg->reg_num != RegEiz
6694 && !i.index_reg->reg_type.bitfield.reg32))))
6695 ok = 0;
6696 }
6697 else
6698 {
6699 if ((flag_code == CODE_16BIT) ^ (i.prefix[ADDR_PREFIX] != 0))
6700 {
6701 /* 16bit checks. */
6702 if ((i.base_reg
6703 && (!i.base_reg->reg_type.bitfield.reg16
6704 || !i.base_reg->reg_type.bitfield.baseindex))
6705 || (i.index_reg
6706 && (!i.index_reg->reg_type.bitfield.reg16
6707 || !i.index_reg->reg_type.bitfield.baseindex
6708 || !(i.base_reg
6709 && i.base_reg->reg_num < 6
6710 && i.index_reg->reg_num >= 6
6711 && i.log2_scale_factor == 0))))
6712 ok = 0;
6713 }
6714 else
6715 {
6716 /* 32bit checks. */
6717 if ((i.base_reg
6718 && !i.base_reg->reg_type.bitfield.reg32)
6719 || (i.index_reg
6720 && ((!i.index_reg->reg_type.bitfield.reg32
6721 && i.index_reg->reg_num != RegEiz)
6722 || !i.index_reg->reg_type.bitfield.baseindex)))
6723 ok = 0;
6724 }
6725 }
6726 if (!ok)
6727 {
6728 #if INFER_ADDR_PREFIX
6729 if (!i.mem_operands && !i.prefix[ADDR_PREFIX])
6730 {
6731 i.prefix[ADDR_PREFIX] = ADDR_PREFIX_OPCODE;
6732 i.prefixes += 1;
6733 /* Change the size of any displacement too. At most one of
6734 Disp16 or Disp32 is set.
6735 FIXME. There doesn't seem to be any real need for separate
6736 Disp16 and Disp32 flags. The same goes for Imm16 and Imm32.
6737 Removing them would probably clean up the code quite a lot. */
6738 if (flag_code != CODE_64BIT
6739 && (i.types[this_operand].bitfield.disp16
6740 || i.types[this_operand].bitfield.disp32))
6741 i.types[this_operand]
6742 = operand_type_xor (i.types[this_operand], disp16_32);
6743 fudged = 1;
6744 goto tryprefix;
6745 }
6746 if (fudged)
6747 as_bad (_("`%s' is not a valid %s expression"),
6748 operand_string,
6749 kind);
6750 else
6751 #endif
6752 as_bad (_("`%s' is not a valid %s-bit %s expression"),
6753 operand_string,
6754 flag_code_names[i.prefix[ADDR_PREFIX]
6755 ? flag_code == CODE_32BIT
6756 ? CODE_16BIT
6757 : CODE_32BIT
6758 : flag_code],
6759 kind);
6760 }
6761 return ok;
6762 }
6763
6764 /* Parse OPERAND_STRING into the i386_insn structure I. Returns zero
6765 on error. */
6766
6767 static int
6768 i386_att_operand (char *operand_string)
6769 {
6770 const reg_entry *r;
6771 char *end_op;
6772 char *op_string = operand_string;
6773
6774 if (is_space_char (*op_string))
6775 ++op_string;
6776
6777 /* We check for an absolute prefix (differentiating,
6778 for example, 'jmp pc_relative_label' from 'jmp *absolute_label'. */
6779 if (*op_string == ABSOLUTE_PREFIX)
6780 {
6781 ++op_string;
6782 if (is_space_char (*op_string))
6783 ++op_string;
6784 i.types[this_operand].bitfield.jumpabsolute = 1;
6785 }
6786
6787 /* Check if operand is a register. */
6788 if ((r = parse_register (op_string, &end_op)) != NULL)
6789 {
6790 i386_operand_type temp;
6791
6792 /* Check for a segment override by searching for ':' after a
6793 segment register. */
6794 op_string = end_op;
6795 if (is_space_char (*op_string))
6796 ++op_string;
6797 if (*op_string == ':'
6798 && (r->reg_type.bitfield.sreg2
6799 || r->reg_type.bitfield.sreg3))
6800 {
6801 switch (r->reg_num)
6802 {
6803 case 0:
6804 i.seg[i.mem_operands] = &es;
6805 break;
6806 case 1:
6807 i.seg[i.mem_operands] = &cs;
6808 break;
6809 case 2:
6810 i.seg[i.mem_operands] = &ss;
6811 break;
6812 case 3:
6813 i.seg[i.mem_operands] = &ds;
6814 break;
6815 case 4:
6816 i.seg[i.mem_operands] = &fs;
6817 break;
6818 case 5:
6819 i.seg[i.mem_operands] = &gs;
6820 break;
6821 }
6822
6823 /* Skip the ':' and whitespace. */
6824 ++op_string;
6825 if (is_space_char (*op_string))
6826 ++op_string;
6827
6828 if (!is_digit_char (*op_string)
6829 && !is_identifier_char (*op_string)
6830 && *op_string != '('
6831 && *op_string != ABSOLUTE_PREFIX)
6832 {
6833 as_bad (_("bad memory operand `%s'"), op_string);
6834 return 0;
6835 }
6836 /* Handle case of %es:*foo. */
6837 if (*op_string == ABSOLUTE_PREFIX)
6838 {
6839 ++op_string;
6840 if (is_space_char (*op_string))
6841 ++op_string;
6842 i.types[this_operand].bitfield.jumpabsolute = 1;
6843 }
6844 goto do_memory_reference;
6845 }
6846 if (*op_string)
6847 {
6848 as_bad (_("junk `%s' after register"), op_string);
6849 return 0;
6850 }
6851 temp = r->reg_type;
6852 temp.bitfield.baseindex = 0;
6853 i.types[this_operand] = operand_type_or (i.types[this_operand],
6854 temp);
6855 i.types[this_operand].bitfield.unspecified = 0;
6856 i.op[this_operand].regs = r;
6857 i.reg_operands++;
6858 }
6859 else if (*op_string == REGISTER_PREFIX)
6860 {
6861 as_bad (_("bad register name `%s'"), op_string);
6862 return 0;
6863 }
6864 else if (*op_string == IMMEDIATE_PREFIX)
6865 {
6866 ++op_string;
6867 if (i.types[this_operand].bitfield.jumpabsolute)
6868 {
6869 as_bad (_("immediate operand illegal with absolute jump"));
6870 return 0;
6871 }
6872 if (!i386_immediate (op_string))
6873 return 0;
6874 }
6875 else if (is_digit_char (*op_string)
6876 || is_identifier_char (*op_string)
6877 || *op_string == '(')
6878 {
6879 /* This is a memory reference of some sort. */
6880 char *base_string;
6881
6882 /* Start and end of displacement string expression (if found). */
6883 char *displacement_string_start;
6884 char *displacement_string_end;
6885
6886 do_memory_reference:
6887 if ((i.mem_operands == 1
6888 && !current_templates->start->opcode_modifier.isstring)
6889 || i.mem_operands == 2)
6890 {
6891 as_bad (_("too many memory references for `%s'"),
6892 current_templates->start->name);
6893 return 0;
6894 }
6895
6896 /* Check for base index form. We detect the base index form by
6897 looking for an ')' at the end of the operand, searching
6898 for the '(' matching it, and finding a REGISTER_PREFIX or ','
6899 after the '('. */
6900 base_string = op_string + strlen (op_string);
6901
6902 --base_string;
6903 if (is_space_char (*base_string))
6904 --base_string;
6905
6906 /* If we only have a displacement, set-up for it to be parsed later. */
6907 displacement_string_start = op_string;
6908 displacement_string_end = base_string + 1;
6909
6910 if (*base_string == ')')
6911 {
6912 char *temp_string;
6913 unsigned int parens_balanced = 1;
6914 /* We've already checked that the number of left & right ()'s are
6915 equal, so this loop will not be infinite. */
6916 do
6917 {
6918 base_string--;
6919 if (*base_string == ')')
6920 parens_balanced++;
6921 if (*base_string == '(')
6922 parens_balanced--;
6923 }
6924 while (parens_balanced);
6925
6926 temp_string = base_string;
6927
6928 /* Skip past '(' and whitespace. */
6929 ++base_string;
6930 if (is_space_char (*base_string))
6931 ++base_string;
6932
6933 if (*base_string == ','
6934 || ((i.base_reg = parse_register (base_string, &end_op))
6935 != NULL))
6936 {
6937 displacement_string_end = temp_string;
6938
6939 i.types[this_operand].bitfield.baseindex = 1;
6940
6941 if (i.base_reg)
6942 {
6943 base_string = end_op;
6944 if (is_space_char (*base_string))
6945 ++base_string;
6946 }
6947
6948 /* There may be an index reg or scale factor here. */
6949 if (*base_string == ',')
6950 {
6951 ++base_string;
6952 if (is_space_char (*base_string))
6953 ++base_string;
6954
6955 if ((i.index_reg = parse_register (base_string, &end_op))
6956 != NULL)
6957 {
6958 base_string = end_op;
6959 if (is_space_char (*base_string))
6960 ++base_string;
6961 if (*base_string == ',')
6962 {
6963 ++base_string;
6964 if (is_space_char (*base_string))
6965 ++base_string;
6966 }
6967 else if (*base_string != ')')
6968 {
6969 as_bad (_("expecting `,' or `)' "
6970 "after index register in `%s'"),
6971 operand_string);
6972 return 0;
6973 }
6974 }
6975 else if (*base_string == REGISTER_PREFIX)
6976 {
6977 as_bad (_("bad register name `%s'"), base_string);
6978 return 0;
6979 }
6980
6981 /* Check for scale factor. */
6982 if (*base_string != ')')
6983 {
6984 char *end_scale = i386_scale (base_string);
6985
6986 if (!end_scale)
6987 return 0;
6988
6989 base_string = end_scale;
6990 if (is_space_char (*base_string))
6991 ++base_string;
6992 if (*base_string != ')')
6993 {
6994 as_bad (_("expecting `)' "
6995 "after scale factor in `%s'"),
6996 operand_string);
6997 return 0;
6998 }
6999 }
7000 else if (!i.index_reg)
7001 {
7002 as_bad (_("expecting index register or scale factor "
7003 "after `,'; got '%c'"),
7004 *base_string);
7005 return 0;
7006 }
7007 }
7008 else if (*base_string != ')')
7009 {
7010 as_bad (_("expecting `,' or `)' "
7011 "after base register in `%s'"),
7012 operand_string);
7013 return 0;
7014 }
7015 }
7016 else if (*base_string == REGISTER_PREFIX)
7017 {
7018 as_bad (_("bad register name `%s'"), base_string);
7019 return 0;
7020 }
7021 }
7022
7023 /* If there's an expression beginning the operand, parse it,
7024 assuming displacement_string_start and
7025 displacement_string_end are meaningful. */
7026 if (displacement_string_start != displacement_string_end)
7027 {
7028 if (!i386_displacement (displacement_string_start,
7029 displacement_string_end))
7030 return 0;
7031 }
7032
7033 /* Special case for (%dx) while doing input/output op. */
7034 if (i.base_reg
7035 && operand_type_equal (&i.base_reg->reg_type,
7036 &reg16_inoutportreg)
7037 && i.index_reg == 0
7038 && i.log2_scale_factor == 0
7039 && i.seg[i.mem_operands] == 0
7040 && !operand_type_check (i.types[this_operand], disp))
7041 {
7042 i.types[this_operand] = inoutportreg;
7043 return 1;
7044 }
7045
7046 if (i386_index_check (operand_string) == 0)
7047 return 0;
7048 i.types[this_operand].bitfield.mem = 1;
7049 i.mem_operands++;
7050 }
7051 else
7052 {
7053 /* It's not a memory operand; argh! */
7054 as_bad (_("invalid char %s beginning operand %d `%s'"),
7055 output_invalid (*op_string),
7056 this_operand + 1,
7057 op_string);
7058 return 0;
7059 }
7060 return 1; /* Normal return. */
7061 }
7062 \f
7063 /* md_estimate_size_before_relax()
7064
7065 Called just before relax() for rs_machine_dependent frags. The x86
7066 assembler uses these frags to handle variable size jump
7067 instructions.
7068
7069 Any symbol that is now undefined will not become defined.
7070 Return the correct fr_subtype in the frag.
7071 Return the initial "guess for variable size of frag" to caller.
7072 The guess is actually the growth beyond the fixed part. Whatever
7073 we do to grow the fixed or variable part contributes to our
7074 returned value. */
7075
7076 int
7077 md_estimate_size_before_relax (fragP, segment)
7078 fragS *fragP;
7079 segT segment;
7080 {
7081 /* We've already got fragP->fr_subtype right; all we have to do is
7082 check for un-relaxable symbols. On an ELF system, we can't relax
7083 an externally visible symbol, because it may be overridden by a
7084 shared library. */
7085 if (S_GET_SEGMENT (fragP->fr_symbol) != segment
7086 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7087 || (IS_ELF
7088 && (S_IS_EXTERNAL (fragP->fr_symbol)
7089 || S_IS_WEAK (fragP->fr_symbol)
7090 || ((symbol_get_bfdsym (fragP->fr_symbol)->flags
7091 & BSF_GNU_INDIRECT_FUNCTION))))
7092 #endif
7093 #if defined (OBJ_COFF) && defined (TE_PE)
7094 || (OUTPUT_FLAVOR == bfd_target_coff_flavour
7095 && S_IS_WEAK (fragP->fr_symbol))
7096 #endif
7097 )
7098 {
7099 /* Symbol is undefined in this segment, or we need to keep a
7100 reloc so that weak symbols can be overridden. */
7101 int size = (fragP->fr_subtype & CODE16) ? 2 : 4;
7102 enum bfd_reloc_code_real reloc_type;
7103 unsigned char *opcode;
7104 int old_fr_fix;
7105
7106 if (fragP->fr_var != NO_RELOC)
7107 reloc_type = fragP->fr_var;
7108 else if (size == 2)
7109 reloc_type = BFD_RELOC_16_PCREL;
7110 else
7111 reloc_type = BFD_RELOC_32_PCREL;
7112
7113 old_fr_fix = fragP->fr_fix;
7114 opcode = (unsigned char *) fragP->fr_opcode;
7115
7116 switch (TYPE_FROM_RELAX_STATE (fragP->fr_subtype))
7117 {
7118 case UNCOND_JUMP:
7119 /* Make jmp (0xeb) a (d)word displacement jump. */
7120 opcode[0] = 0xe9;
7121 fragP->fr_fix += size;
7122 fix_new (fragP, old_fr_fix, size,
7123 fragP->fr_symbol,
7124 fragP->fr_offset, 1,
7125 reloc_type);
7126 break;
7127
7128 case COND_JUMP86:
7129 if (size == 2
7130 && (!no_cond_jump_promotion || fragP->fr_var != NO_RELOC))
7131 {
7132 /* Negate the condition, and branch past an
7133 unconditional jump. */
7134 opcode[0] ^= 1;
7135 opcode[1] = 3;
7136 /* Insert an unconditional jump. */
7137 opcode[2] = 0xe9;
7138 /* We added two extra opcode bytes, and have a two byte
7139 offset. */
7140 fragP->fr_fix += 2 + 2;
7141 fix_new (fragP, old_fr_fix + 2, 2,
7142 fragP->fr_symbol,
7143 fragP->fr_offset, 1,
7144 reloc_type);
7145 break;
7146 }
7147 /* Fall through. */
7148
7149 case COND_JUMP:
7150 if (no_cond_jump_promotion && fragP->fr_var == NO_RELOC)
7151 {
7152 fixS *fixP;
7153
7154 fragP->fr_fix += 1;
7155 fixP = fix_new (fragP, old_fr_fix, 1,
7156 fragP->fr_symbol,
7157 fragP->fr_offset, 1,
7158 BFD_RELOC_8_PCREL);
7159 fixP->fx_signed = 1;
7160 break;
7161 }
7162
7163 /* This changes the byte-displacement jump 0x7N
7164 to the (d)word-displacement jump 0x0f,0x8N. */
7165 opcode[1] = opcode[0] + 0x10;
7166 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
7167 /* We've added an opcode byte. */
7168 fragP->fr_fix += 1 + size;
7169 fix_new (fragP, old_fr_fix + 1, size,
7170 fragP->fr_symbol,
7171 fragP->fr_offset, 1,
7172 reloc_type);
7173 break;
7174
7175 default:
7176 BAD_CASE (fragP->fr_subtype);
7177 break;
7178 }
7179 frag_wane (fragP);
7180 return fragP->fr_fix - old_fr_fix;
7181 }
7182
7183 /* Guess size depending on current relax state. Initially the relax
7184 state will correspond to a short jump and we return 1, because
7185 the variable part of the frag (the branch offset) is one byte
7186 long. However, we can relax a section more than once and in that
7187 case we must either set fr_subtype back to the unrelaxed state,
7188 or return the value for the appropriate branch. */
7189 return md_relax_table[fragP->fr_subtype].rlx_length;
7190 }
7191
7192 /* Called after relax() is finished.
7193
7194 In: Address of frag.
7195 fr_type == rs_machine_dependent.
7196 fr_subtype is what the address relaxed to.
7197
7198 Out: Any fixSs and constants are set up.
7199 Caller will turn frag into a ".space 0". */
7200
7201 void
7202 md_convert_frag (abfd, sec, fragP)
7203 bfd *abfd ATTRIBUTE_UNUSED;
7204 segT sec ATTRIBUTE_UNUSED;
7205 fragS *fragP;
7206 {
7207 unsigned char *opcode;
7208 unsigned char *where_to_put_displacement = NULL;
7209 offsetT target_address;
7210 offsetT opcode_address;
7211 unsigned int extension = 0;
7212 offsetT displacement_from_opcode_start;
7213
7214 opcode = (unsigned char *) fragP->fr_opcode;
7215
7216 /* Address we want to reach in file space. */
7217 target_address = S_GET_VALUE (fragP->fr_symbol) + fragP->fr_offset;
7218
7219 /* Address opcode resides at in file space. */
7220 opcode_address = fragP->fr_address + fragP->fr_fix;
7221
7222 /* Displacement from opcode start to fill into instruction. */
7223 displacement_from_opcode_start = target_address - opcode_address;
7224
7225 if ((fragP->fr_subtype & BIG) == 0)
7226 {
7227 /* Don't have to change opcode. */
7228 extension = 1; /* 1 opcode + 1 displacement */
7229 where_to_put_displacement = &opcode[1];
7230 }
7231 else
7232 {
7233 if (no_cond_jump_promotion
7234 && TYPE_FROM_RELAX_STATE (fragP->fr_subtype) != UNCOND_JUMP)
7235 as_warn_where (fragP->fr_file, fragP->fr_line,
7236 _("long jump required"));
7237
7238 switch (fragP->fr_subtype)
7239 {
7240 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG):
7241 extension = 4; /* 1 opcode + 4 displacement */
7242 opcode[0] = 0xe9;
7243 where_to_put_displacement = &opcode[1];
7244 break;
7245
7246 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16):
7247 extension = 2; /* 1 opcode + 2 displacement */
7248 opcode[0] = 0xe9;
7249 where_to_put_displacement = &opcode[1];
7250 break;
7251
7252 case ENCODE_RELAX_STATE (COND_JUMP, BIG):
7253 case ENCODE_RELAX_STATE (COND_JUMP86, BIG):
7254 extension = 5; /* 2 opcode + 4 displacement */
7255 opcode[1] = opcode[0] + 0x10;
7256 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
7257 where_to_put_displacement = &opcode[2];
7258 break;
7259
7260 case ENCODE_RELAX_STATE (COND_JUMP, BIG16):
7261 extension = 3; /* 2 opcode + 2 displacement */
7262 opcode[1] = opcode[0] + 0x10;
7263 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
7264 where_to_put_displacement = &opcode[2];
7265 break;
7266
7267 case ENCODE_RELAX_STATE (COND_JUMP86, BIG16):
7268 extension = 4;
7269 opcode[0] ^= 1;
7270 opcode[1] = 3;
7271 opcode[2] = 0xe9;
7272 where_to_put_displacement = &opcode[3];
7273 break;
7274
7275 default:
7276 BAD_CASE (fragP->fr_subtype);
7277 break;
7278 }
7279 }
7280
7281 /* If size if less then four we are sure that the operand fits,
7282 but if it's 4, then it could be that the displacement is larger
7283 then -/+ 2GB. */
7284 if (DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype) == 4
7285 && object_64bit
7286 && ((addressT) (displacement_from_opcode_start - extension
7287 + ((addressT) 1 << 31))
7288 > (((addressT) 2 << 31) - 1)))
7289 {
7290 as_bad_where (fragP->fr_file, fragP->fr_line,
7291 _("jump target out of range"));
7292 /* Make us emit 0. */
7293 displacement_from_opcode_start = extension;
7294 }
7295 /* Now put displacement after opcode. */
7296 md_number_to_chars ((char *) where_to_put_displacement,
7297 (valueT) (displacement_from_opcode_start - extension),
7298 DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype));
7299 fragP->fr_fix += extension;
7300 }
7301 \f
7302 /* Apply a fixup (fixS) to segment data, once it has been determined
7303 by our caller that we have all the info we need to fix it up.
7304
7305 On the 386, immediates, displacements, and data pointers are all in
7306 the same (little-endian) format, so we don't need to care about which
7307 we are handling. */
7308
7309 void
7310 md_apply_fix (fixP, valP, seg)
7311 /* The fix we're to put in. */
7312 fixS *fixP;
7313 /* Pointer to the value of the bits. */
7314 valueT *valP;
7315 /* Segment fix is from. */
7316 segT seg ATTRIBUTE_UNUSED;
7317 {
7318 char *p = fixP->fx_where + fixP->fx_frag->fr_literal;
7319 valueT value = *valP;
7320
7321 #if !defined (TE_Mach)
7322 if (fixP->fx_pcrel)
7323 {
7324 switch (fixP->fx_r_type)
7325 {
7326 default:
7327 break;
7328
7329 case BFD_RELOC_64:
7330 fixP->fx_r_type = BFD_RELOC_64_PCREL;
7331 break;
7332 case BFD_RELOC_32:
7333 case BFD_RELOC_X86_64_32S:
7334 fixP->fx_r_type = BFD_RELOC_32_PCREL;
7335 break;
7336 case BFD_RELOC_16:
7337 fixP->fx_r_type = BFD_RELOC_16_PCREL;
7338 break;
7339 case BFD_RELOC_8:
7340 fixP->fx_r_type = BFD_RELOC_8_PCREL;
7341 break;
7342 }
7343 }
7344
7345 if (fixP->fx_addsy != NULL
7346 && (fixP->fx_r_type == BFD_RELOC_32_PCREL
7347 || fixP->fx_r_type == BFD_RELOC_64_PCREL
7348 || fixP->fx_r_type == BFD_RELOC_16_PCREL
7349 || fixP->fx_r_type == BFD_RELOC_8_PCREL)
7350 && !use_rela_relocations)
7351 {
7352 /* This is a hack. There should be a better way to handle this.
7353 This covers for the fact that bfd_install_relocation will
7354 subtract the current location (for partial_inplace, PC relative
7355 relocations); see more below. */
7356 #ifndef OBJ_AOUT
7357 if (IS_ELF
7358 #ifdef TE_PE
7359 || OUTPUT_FLAVOR == bfd_target_coff_flavour
7360 #endif
7361 )
7362 value += fixP->fx_where + fixP->fx_frag->fr_address;
7363 #endif
7364 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7365 if (IS_ELF)
7366 {
7367 segT sym_seg = S_GET_SEGMENT (fixP->fx_addsy);
7368
7369 if ((sym_seg == seg
7370 || (symbol_section_p (fixP->fx_addsy)
7371 && sym_seg != absolute_section))
7372 && !generic_force_reloc (fixP))
7373 {
7374 /* Yes, we add the values in twice. This is because
7375 bfd_install_relocation subtracts them out again. I think
7376 bfd_install_relocation is broken, but I don't dare change
7377 it. FIXME. */
7378 value += fixP->fx_where + fixP->fx_frag->fr_address;
7379 }
7380 }
7381 #endif
7382 #if defined (OBJ_COFF) && defined (TE_PE)
7383 /* For some reason, the PE format does not store a
7384 section address offset for a PC relative symbol. */
7385 if (S_GET_SEGMENT (fixP->fx_addsy) != seg
7386 || S_IS_WEAK (fixP->fx_addsy))
7387 value += md_pcrel_from (fixP);
7388 #endif
7389 }
7390 #if defined (OBJ_COFF) && defined (TE_PE)
7391 if (fixP->fx_addsy != NULL && S_IS_WEAK (fixP->fx_addsy))
7392 {
7393 value -= S_GET_VALUE (fixP->fx_addsy);
7394 }
7395 #endif
7396
7397 /* Fix a few things - the dynamic linker expects certain values here,
7398 and we must not disappoint it. */
7399 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7400 if (IS_ELF && fixP->fx_addsy)
7401 switch (fixP->fx_r_type)
7402 {
7403 case BFD_RELOC_386_PLT32:
7404 case BFD_RELOC_X86_64_PLT32:
7405 /* Make the jump instruction point to the address of the operand. At
7406 runtime we merely add the offset to the actual PLT entry. */
7407 value = -4;
7408 break;
7409
7410 case BFD_RELOC_386_TLS_GD:
7411 case BFD_RELOC_386_TLS_LDM:
7412 case BFD_RELOC_386_TLS_IE_32:
7413 case BFD_RELOC_386_TLS_IE:
7414 case BFD_RELOC_386_TLS_GOTIE:
7415 case BFD_RELOC_386_TLS_GOTDESC:
7416 case BFD_RELOC_X86_64_TLSGD:
7417 case BFD_RELOC_X86_64_TLSLD:
7418 case BFD_RELOC_X86_64_GOTTPOFF:
7419 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
7420 value = 0; /* Fully resolved at runtime. No addend. */
7421 /* Fallthrough */
7422 case BFD_RELOC_386_TLS_LE:
7423 case BFD_RELOC_386_TLS_LDO_32:
7424 case BFD_RELOC_386_TLS_LE_32:
7425 case BFD_RELOC_X86_64_DTPOFF32:
7426 case BFD_RELOC_X86_64_DTPOFF64:
7427 case BFD_RELOC_X86_64_TPOFF32:
7428 case BFD_RELOC_X86_64_TPOFF64:
7429 S_SET_THREAD_LOCAL (fixP->fx_addsy);
7430 break;
7431
7432 case BFD_RELOC_386_TLS_DESC_CALL:
7433 case BFD_RELOC_X86_64_TLSDESC_CALL:
7434 value = 0; /* Fully resolved at runtime. No addend. */
7435 S_SET_THREAD_LOCAL (fixP->fx_addsy);
7436 fixP->fx_done = 0;
7437 return;
7438
7439 case BFD_RELOC_386_GOT32:
7440 case BFD_RELOC_X86_64_GOT32:
7441 value = 0; /* Fully resolved at runtime. No addend. */
7442 break;
7443
7444 case BFD_RELOC_VTABLE_INHERIT:
7445 case BFD_RELOC_VTABLE_ENTRY:
7446 fixP->fx_done = 0;
7447 return;
7448
7449 default:
7450 break;
7451 }
7452 #endif /* defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) */
7453 *valP = value;
7454 #endif /* !defined (TE_Mach) */
7455
7456 /* Are we finished with this relocation now? */
7457 if (fixP->fx_addsy == NULL)
7458 fixP->fx_done = 1;
7459 #if defined (OBJ_COFF) && defined (TE_PE)
7460 else if (fixP->fx_addsy != NULL && S_IS_WEAK (fixP->fx_addsy))
7461 {
7462 fixP->fx_done = 0;
7463 /* Remember value for tc_gen_reloc. */
7464 fixP->fx_addnumber = value;
7465 /* Clear out the frag for now. */
7466 value = 0;
7467 }
7468 #endif
7469 else if (use_rela_relocations)
7470 {
7471 fixP->fx_no_overflow = 1;
7472 /* Remember value for tc_gen_reloc. */
7473 fixP->fx_addnumber = value;
7474 value = 0;
7475 }
7476
7477 md_number_to_chars (p, value, fixP->fx_size);
7478 }
7479 \f
7480 char *
7481 md_atof (int type, char *litP, int *sizeP)
7482 {
7483 /* This outputs the LITTLENUMs in REVERSE order;
7484 in accord with the bigendian 386. */
7485 return ieee_md_atof (type, litP, sizeP, FALSE);
7486 }
7487 \f
7488 static char output_invalid_buf[sizeof (unsigned char) * 2 + 6];
7489
7490 static char *
7491 output_invalid (int c)
7492 {
7493 if (ISPRINT (c))
7494 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
7495 "'%c'", c);
7496 else
7497 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
7498 "(0x%x)", (unsigned char) c);
7499 return output_invalid_buf;
7500 }
7501
7502 /* REG_STRING starts *before* REGISTER_PREFIX. */
7503
7504 static const reg_entry *
7505 parse_real_register (char *reg_string, char **end_op)
7506 {
7507 char *s = reg_string;
7508 char *p;
7509 char reg_name_given[MAX_REG_NAME_SIZE + 1];
7510 const reg_entry *r;
7511
7512 /* Skip possible REGISTER_PREFIX and possible whitespace. */
7513 if (*s == REGISTER_PREFIX)
7514 ++s;
7515
7516 if (is_space_char (*s))
7517 ++s;
7518
7519 p = reg_name_given;
7520 while ((*p++ = register_chars[(unsigned char) *s]) != '\0')
7521 {
7522 if (p >= reg_name_given + MAX_REG_NAME_SIZE)
7523 return (const reg_entry *) NULL;
7524 s++;
7525 }
7526
7527 /* For naked regs, make sure that we are not dealing with an identifier.
7528 This prevents confusing an identifier like `eax_var' with register
7529 `eax'. */
7530 if (allow_naked_reg && identifier_chars[(unsigned char) *s])
7531 return (const reg_entry *) NULL;
7532
7533 *end_op = s;
7534
7535 r = (const reg_entry *) hash_find (reg_hash, reg_name_given);
7536
7537 /* Handle floating point regs, allowing spaces in the (i) part. */
7538 if (r == i386_regtab /* %st is first entry of table */)
7539 {
7540 if (is_space_char (*s))
7541 ++s;
7542 if (*s == '(')
7543 {
7544 ++s;
7545 if (is_space_char (*s))
7546 ++s;
7547 if (*s >= '0' && *s <= '7')
7548 {
7549 int fpr = *s - '0';
7550 ++s;
7551 if (is_space_char (*s))
7552 ++s;
7553 if (*s == ')')
7554 {
7555 *end_op = s + 1;
7556 r = hash_find (reg_hash, "st(0)");
7557 know (r);
7558 return r + fpr;
7559 }
7560 }
7561 /* We have "%st(" then garbage. */
7562 return (const reg_entry *) NULL;
7563 }
7564 }
7565
7566 if (r == NULL || allow_pseudo_reg)
7567 return r;
7568
7569 if (operand_type_all_zero (&r->reg_type))
7570 return (const reg_entry *) NULL;
7571
7572 if ((r->reg_type.bitfield.reg32
7573 || r->reg_type.bitfield.sreg3
7574 || r->reg_type.bitfield.control
7575 || r->reg_type.bitfield.debug
7576 || r->reg_type.bitfield.test)
7577 && !cpu_arch_flags.bitfield.cpui386)
7578 return (const reg_entry *) NULL;
7579
7580 if (r->reg_type.bitfield.floatreg
7581 && !cpu_arch_flags.bitfield.cpu8087
7582 && !cpu_arch_flags.bitfield.cpu287
7583 && !cpu_arch_flags.bitfield.cpu387)
7584 return (const reg_entry *) NULL;
7585
7586 if (r->reg_type.bitfield.regmmx && !cpu_arch_flags.bitfield.cpummx)
7587 return (const reg_entry *) NULL;
7588
7589 if (r->reg_type.bitfield.regxmm && !cpu_arch_flags.bitfield.cpusse)
7590 return (const reg_entry *) NULL;
7591
7592 if (r->reg_type.bitfield.regymm && !cpu_arch_flags.bitfield.cpuavx)
7593 return (const reg_entry *) NULL;
7594
7595 /* Don't allow fake index register unless allow_index_reg isn't 0. */
7596 if (!allow_index_reg
7597 && (r->reg_num == RegEiz || r->reg_num == RegRiz))
7598 return (const reg_entry *) NULL;
7599
7600 if (((r->reg_flags & (RegRex64 | RegRex))
7601 || r->reg_type.bitfield.reg64)
7602 && (!cpu_arch_flags.bitfield.cpulm
7603 || !operand_type_equal (&r->reg_type, &control))
7604 && flag_code != CODE_64BIT)
7605 return (const reg_entry *) NULL;
7606
7607 if (r->reg_type.bitfield.sreg3 && r->reg_num == RegFlat && !intel_syntax)
7608 return (const reg_entry *) NULL;
7609
7610 return r;
7611 }
7612
7613 /* REG_STRING starts *before* REGISTER_PREFIX. */
7614
7615 static const reg_entry *
7616 parse_register (char *reg_string, char **end_op)
7617 {
7618 const reg_entry *r;
7619
7620 if (*reg_string == REGISTER_PREFIX || allow_naked_reg)
7621 r = parse_real_register (reg_string, end_op);
7622 else
7623 r = NULL;
7624 if (!r)
7625 {
7626 char *save = input_line_pointer;
7627 char c;
7628 symbolS *symbolP;
7629
7630 input_line_pointer = reg_string;
7631 c = get_symbol_end ();
7632 symbolP = symbol_find (reg_string);
7633 if (symbolP && S_GET_SEGMENT (symbolP) == reg_section)
7634 {
7635 const expressionS *e = symbol_get_value_expression (symbolP);
7636
7637 know (e->X_op == O_register);
7638 know (e->X_add_number >= 0
7639 && (valueT) e->X_add_number < i386_regtab_size);
7640 r = i386_regtab + e->X_add_number;
7641 *end_op = input_line_pointer;
7642 }
7643 *input_line_pointer = c;
7644 input_line_pointer = save;
7645 }
7646 return r;
7647 }
7648
7649 int
7650 i386_parse_name (char *name, expressionS *e, char *nextcharP)
7651 {
7652 const reg_entry *r;
7653 char *end = input_line_pointer;
7654
7655 *end = *nextcharP;
7656 r = parse_register (name, &input_line_pointer);
7657 if (r && end <= input_line_pointer)
7658 {
7659 *nextcharP = *input_line_pointer;
7660 *input_line_pointer = 0;
7661 e->X_op = O_register;
7662 e->X_add_number = r - i386_regtab;
7663 return 1;
7664 }
7665 input_line_pointer = end;
7666 *end = 0;
7667 return intel_syntax ? i386_intel_parse_name (name, e) : 0;
7668 }
7669
7670 void
7671 md_operand (expressionS *e)
7672 {
7673 char *end;
7674 const reg_entry *r;
7675
7676 switch (*input_line_pointer)
7677 {
7678 case REGISTER_PREFIX:
7679 r = parse_real_register (input_line_pointer, &end);
7680 if (r)
7681 {
7682 e->X_op = O_register;
7683 e->X_add_number = r - i386_regtab;
7684 input_line_pointer = end;
7685 }
7686 break;
7687
7688 case '[':
7689 gas_assert (intel_syntax);
7690 end = input_line_pointer++;
7691 expression (e);
7692 if (*input_line_pointer == ']')
7693 {
7694 ++input_line_pointer;
7695 e->X_op_symbol = make_expr_symbol (e);
7696 e->X_add_symbol = NULL;
7697 e->X_add_number = 0;
7698 e->X_op = O_index;
7699 }
7700 else
7701 {
7702 e->X_op = O_absent;
7703 input_line_pointer = end;
7704 }
7705 break;
7706 }
7707 }
7708
7709 \f
7710 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7711 const char *md_shortopts = "kVQ:sqn";
7712 #else
7713 const char *md_shortopts = "qn";
7714 #endif
7715
7716 #define OPTION_32 (OPTION_MD_BASE + 0)
7717 #define OPTION_64 (OPTION_MD_BASE + 1)
7718 #define OPTION_DIVIDE (OPTION_MD_BASE + 2)
7719 #define OPTION_MARCH (OPTION_MD_BASE + 3)
7720 #define OPTION_MTUNE (OPTION_MD_BASE + 4)
7721 #define OPTION_MMNEMONIC (OPTION_MD_BASE + 5)
7722 #define OPTION_MSYNTAX (OPTION_MD_BASE + 6)
7723 #define OPTION_MINDEX_REG (OPTION_MD_BASE + 7)
7724 #define OPTION_MNAKED_REG (OPTION_MD_BASE + 8)
7725 #define OPTION_MOLD_GCC (OPTION_MD_BASE + 9)
7726 #define OPTION_MSSE2AVX (OPTION_MD_BASE + 10)
7727 #define OPTION_MSSE_CHECK (OPTION_MD_BASE + 11)
7728
7729 struct option md_longopts[] =
7730 {
7731 {"32", no_argument, NULL, OPTION_32},
7732 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
7733 || defined (TE_PE) || defined (TE_PEP))
7734 {"64", no_argument, NULL, OPTION_64},
7735 #endif
7736 {"divide", no_argument, NULL, OPTION_DIVIDE},
7737 {"march", required_argument, NULL, OPTION_MARCH},
7738 {"mtune", required_argument, NULL, OPTION_MTUNE},
7739 {"mmnemonic", required_argument, NULL, OPTION_MMNEMONIC},
7740 {"msyntax", required_argument, NULL, OPTION_MSYNTAX},
7741 {"mindex-reg", no_argument, NULL, OPTION_MINDEX_REG},
7742 {"mnaked-reg", no_argument, NULL, OPTION_MNAKED_REG},
7743 {"mold-gcc", no_argument, NULL, OPTION_MOLD_GCC},
7744 {"msse2avx", no_argument, NULL, OPTION_MSSE2AVX},
7745 {"msse-check", required_argument, NULL, OPTION_MSSE_CHECK},
7746 {NULL, no_argument, NULL, 0}
7747 };
7748 size_t md_longopts_size = sizeof (md_longopts);
7749
7750 int
7751 md_parse_option (int c, char *arg)
7752 {
7753 unsigned int i;
7754 char *arch, *next;
7755
7756 switch (c)
7757 {
7758 case 'n':
7759 optimize_align_code = 0;
7760 break;
7761
7762 case 'q':
7763 quiet_warnings = 1;
7764 break;
7765
7766 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7767 /* -Qy, -Qn: SVR4 arguments controlling whether a .comment section
7768 should be emitted or not. FIXME: Not implemented. */
7769 case 'Q':
7770 break;
7771
7772 /* -V: SVR4 argument to print version ID. */
7773 case 'V':
7774 print_version_id ();
7775 break;
7776
7777 /* -k: Ignore for FreeBSD compatibility. */
7778 case 'k':
7779 break;
7780
7781 case 's':
7782 /* -s: On i386 Solaris, this tells the native assembler to use
7783 .stab instead of .stab.excl. We always use .stab anyhow. */
7784 break;
7785 #endif
7786 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
7787 || defined (TE_PE) || defined (TE_PEP))
7788 case OPTION_64:
7789 {
7790 const char **list, **l;
7791
7792 list = bfd_target_list ();
7793 for (l = list; *l != NULL; l++)
7794 if (CONST_STRNEQ (*l, "elf64-x86-64")
7795 || strcmp (*l, "coff-x86-64") == 0
7796 || strcmp (*l, "pe-x86-64") == 0
7797 || strcmp (*l, "pei-x86-64") == 0)
7798 {
7799 default_arch = "x86_64";
7800 break;
7801 }
7802 if (*l == NULL)
7803 as_fatal (_("No compiled in support for x86_64"));
7804 free (list);
7805 }
7806 break;
7807 #endif
7808
7809 case OPTION_32:
7810 default_arch = "i386";
7811 break;
7812
7813 case OPTION_DIVIDE:
7814 #ifdef SVR4_COMMENT_CHARS
7815 {
7816 char *n, *t;
7817 const char *s;
7818
7819 n = (char *) xmalloc (strlen (i386_comment_chars) + 1);
7820 t = n;
7821 for (s = i386_comment_chars; *s != '\0'; s++)
7822 if (*s != '/')
7823 *t++ = *s;
7824 *t = '\0';
7825 i386_comment_chars = n;
7826 }
7827 #endif
7828 break;
7829
7830 case OPTION_MARCH:
7831 arch = xstrdup (arg);
7832 do
7833 {
7834 if (*arch == '.')
7835 as_fatal (_("Invalid -march= option: `%s'"), arg);
7836 next = strchr (arch, '+');
7837 if (next)
7838 *next++ = '\0';
7839 for (i = 0; i < ARRAY_SIZE (cpu_arch); i++)
7840 {
7841 if (strcmp (arch, cpu_arch [i].name) == 0)
7842 {
7843 /* Processor. */
7844 cpu_arch_name = cpu_arch[i].name;
7845 cpu_sub_arch_name = NULL;
7846 cpu_arch_flags = cpu_arch[i].flags;
7847 cpu_arch_isa = cpu_arch[i].type;
7848 cpu_arch_isa_flags = cpu_arch[i].flags;
7849 if (!cpu_arch_tune_set)
7850 {
7851 cpu_arch_tune = cpu_arch_isa;
7852 cpu_arch_tune_flags = cpu_arch_isa_flags;
7853 }
7854 break;
7855 }
7856 else if (*cpu_arch [i].name == '.'
7857 && strcmp (arch, cpu_arch [i].name + 1) == 0)
7858 {
7859 /* ISA entension. */
7860 i386_cpu_flags flags;
7861
7862 if (strncmp (arch, "no", 2))
7863 flags = cpu_flags_or (cpu_arch_flags,
7864 cpu_arch[i].flags);
7865 else
7866 flags = cpu_flags_and_not (cpu_arch_flags,
7867 cpu_arch[i].flags);
7868 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
7869 {
7870 if (cpu_sub_arch_name)
7871 {
7872 char *name = cpu_sub_arch_name;
7873 cpu_sub_arch_name = concat (name,
7874 cpu_arch[i].name,
7875 (const char *) NULL);
7876 free (name);
7877 }
7878 else
7879 cpu_sub_arch_name = xstrdup (cpu_arch[i].name);
7880 cpu_arch_flags = flags;
7881 }
7882 break;
7883 }
7884 }
7885
7886 if (i >= ARRAY_SIZE (cpu_arch))
7887 as_fatal (_("Invalid -march= option: `%s'"), arg);
7888
7889 arch = next;
7890 }
7891 while (next != NULL );
7892 break;
7893
7894 case OPTION_MTUNE:
7895 if (*arg == '.')
7896 as_fatal (_("Invalid -mtune= option: `%s'"), arg);
7897 for (i = 0; i < ARRAY_SIZE (cpu_arch); i++)
7898 {
7899 if (strcmp (arg, cpu_arch [i].name) == 0)
7900 {
7901 cpu_arch_tune_set = 1;
7902 cpu_arch_tune = cpu_arch [i].type;
7903 cpu_arch_tune_flags = cpu_arch[i].flags;
7904 break;
7905 }
7906 }
7907 if (i >= ARRAY_SIZE (cpu_arch))
7908 as_fatal (_("Invalid -mtune= option: `%s'"), arg);
7909 break;
7910
7911 case OPTION_MMNEMONIC:
7912 if (strcasecmp (arg, "att") == 0)
7913 intel_mnemonic = 0;
7914 else if (strcasecmp (arg, "intel") == 0)
7915 intel_mnemonic = 1;
7916 else
7917 as_fatal (_("Invalid -mmnemonic= option: `%s'"), arg);
7918 break;
7919
7920 case OPTION_MSYNTAX:
7921 if (strcasecmp (arg, "att") == 0)
7922 intel_syntax = 0;
7923 else if (strcasecmp (arg, "intel") == 0)
7924 intel_syntax = 1;
7925 else
7926 as_fatal (_("Invalid -msyntax= option: `%s'"), arg);
7927 break;
7928
7929 case OPTION_MINDEX_REG:
7930 allow_index_reg = 1;
7931 break;
7932
7933 case OPTION_MNAKED_REG:
7934 allow_naked_reg = 1;
7935 break;
7936
7937 case OPTION_MOLD_GCC:
7938 old_gcc = 1;
7939 break;
7940
7941 case OPTION_MSSE2AVX:
7942 sse2avx = 1;
7943 break;
7944
7945 case OPTION_MSSE_CHECK:
7946 if (strcasecmp (arg, "error") == 0)
7947 sse_check = sse_check_error;
7948 else if (strcasecmp (arg, "warning") == 0)
7949 sse_check = sse_check_warning;
7950 else if (strcasecmp (arg, "none") == 0)
7951 sse_check = sse_check_none;
7952 else
7953 as_fatal (_("Invalid -msse-check= option: `%s'"), arg);
7954 break;
7955
7956 default:
7957 return 0;
7958 }
7959 return 1;
7960 }
7961
7962 void
7963 md_show_usage (stream)
7964 FILE *stream;
7965 {
7966 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7967 fprintf (stream, _("\
7968 -Q ignored\n\
7969 -V print assembler version number\n\
7970 -k ignored\n"));
7971 #endif
7972 fprintf (stream, _("\
7973 -n Do not optimize code alignment\n\
7974 -q quieten some warnings\n"));
7975 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7976 fprintf (stream, _("\
7977 -s ignored\n"));
7978 #endif
7979 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
7980 || defined (TE_PE) || defined (TE_PEP))
7981 fprintf (stream, _("\
7982 --32/--64 generate 32bit/64bit code\n"));
7983 #endif
7984 #ifdef SVR4_COMMENT_CHARS
7985 fprintf (stream, _("\
7986 --divide do not treat `/' as a comment character\n"));
7987 #else
7988 fprintf (stream, _("\
7989 --divide ignored\n"));
7990 #endif
7991 fprintf (stream, _("\
7992 -march=CPU[,+EXTENSION...]\n\
7993 generate code for CPU and EXTENSION, CPU is one of:\n\
7994 i8086, i186, i286, i386, i486, pentium, pentiumpro,\n\
7995 pentiumii, pentiumiii, pentium4, prescott, nocona,\n\
7996 core, core2, corei7, l1om, k6, k6_2, athlon, k8,\n\
7997 amdfam10, generic32, generic64\n\
7998 EXTENSION is combination of:\n\
7999 8087, 287, 387, no87, mmx, nommx, sse, sse2, sse3,\n\
8000 ssse3, sse4.1, sse4.2, sse4, nosse, avx, noavx,\n\
8001 vmx, smx, xsave, movbe, ept, aes, pclmul, fma,\n\
8002 clflush, syscall, rdtscp, 3dnow, 3dnowa, sse4a,\n\
8003 svme, abm, padlock, fma4\n"));
8004 fprintf (stream, _("\
8005 -mtune=CPU optimize for CPU, CPU is one of:\n\
8006 i8086, i186, i286, i386, i486, pentium, pentiumpro,\n\
8007 pentiumii, pentiumiii, pentium4, prescott, nocona,\n\
8008 core, core2, corei7, l1om, k6, k6_2, athlon, k8,\n\
8009 amdfam10, generic32, generic64\n"));
8010 fprintf (stream, _("\
8011 -msse2avx encode SSE instructions with VEX prefix\n"));
8012 fprintf (stream, _("\
8013 -msse-check=[none|error|warning]\n\
8014 check SSE instructions\n"));
8015 fprintf (stream, _("\
8016 -mmnemonic=[att|intel] use AT&T/Intel mnemonic\n"));
8017 fprintf (stream, _("\
8018 -msyntax=[att|intel] use AT&T/Intel syntax\n"));
8019 fprintf (stream, _("\
8020 -mindex-reg support pseudo index registers\n"));
8021 fprintf (stream, _("\
8022 -mnaked-reg don't require `%%' prefix for registers\n"));
8023 fprintf (stream, _("\
8024 -mold-gcc support old (<= 2.8.1) versions of gcc\n"));
8025 }
8026
8027 #if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
8028 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
8029 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
8030
8031 /* Pick the target format to use. */
8032
8033 const char *
8034 i386_target_format (void)
8035 {
8036 if (!strcmp (default_arch, "x86_64"))
8037 {
8038 set_code_flag (CODE_64BIT);
8039 if (cpu_flags_all_zero (&cpu_arch_isa_flags))
8040 {
8041 cpu_arch_isa_flags.bitfield.cpui186 = 1;
8042 cpu_arch_isa_flags.bitfield.cpui286 = 1;
8043 cpu_arch_isa_flags.bitfield.cpui386 = 1;
8044 cpu_arch_isa_flags.bitfield.cpui486 = 1;
8045 cpu_arch_isa_flags.bitfield.cpui586 = 1;
8046 cpu_arch_isa_flags.bitfield.cpui686 = 1;
8047 cpu_arch_isa_flags.bitfield.cpuclflush = 1;
8048 cpu_arch_isa_flags.bitfield.cpummx= 1;
8049 cpu_arch_isa_flags.bitfield.cpusse = 1;
8050 cpu_arch_isa_flags.bitfield.cpusse2 = 1;
8051 cpu_arch_isa_flags.bitfield.cpulm = 1;
8052 }
8053 if (cpu_flags_all_zero (&cpu_arch_tune_flags))
8054 {
8055 cpu_arch_tune_flags.bitfield.cpui186 = 1;
8056 cpu_arch_tune_flags.bitfield.cpui286 = 1;
8057 cpu_arch_tune_flags.bitfield.cpui386 = 1;
8058 cpu_arch_tune_flags.bitfield.cpui486 = 1;
8059 cpu_arch_tune_flags.bitfield.cpui586 = 1;
8060 cpu_arch_tune_flags.bitfield.cpui686 = 1;
8061 cpu_arch_tune_flags.bitfield.cpuclflush = 1;
8062 cpu_arch_tune_flags.bitfield.cpummx= 1;
8063 cpu_arch_tune_flags.bitfield.cpusse = 1;
8064 cpu_arch_tune_flags.bitfield.cpusse2 = 1;
8065 }
8066 }
8067 else if (!strcmp (default_arch, "i386"))
8068 {
8069 set_code_flag (CODE_32BIT);
8070 if (cpu_flags_all_zero (&cpu_arch_isa_flags))
8071 {
8072 cpu_arch_isa_flags.bitfield.cpui186 = 1;
8073 cpu_arch_isa_flags.bitfield.cpui286 = 1;
8074 cpu_arch_isa_flags.bitfield.cpui386 = 1;
8075 }
8076 if (cpu_flags_all_zero (&cpu_arch_tune_flags))
8077 {
8078 cpu_arch_tune_flags.bitfield.cpui186 = 1;
8079 cpu_arch_tune_flags.bitfield.cpui286 = 1;
8080 cpu_arch_tune_flags.bitfield.cpui386 = 1;
8081 }
8082 }
8083 else
8084 as_fatal (_("Unknown architecture"));
8085 switch (OUTPUT_FLAVOR)
8086 {
8087 #if defined (TE_PE) || defined (TE_PEP)
8088 case bfd_target_coff_flavour:
8089 return flag_code == CODE_64BIT ? "pe-x86-64" : "pe-i386";
8090 #endif
8091 #ifdef OBJ_MAYBE_AOUT
8092 case bfd_target_aout_flavour:
8093 return AOUT_TARGET_FORMAT;
8094 #endif
8095 #ifdef TE_GO32
8096 case bfd_target_coff_flavour:
8097 return "coff-go32";
8098 #elif defined (OBJ_MAYBE_COFF)
8099 case bfd_target_coff_flavour:
8100 return "coff-i386";
8101 #endif
8102 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
8103 case bfd_target_elf_flavour:
8104 {
8105 if (flag_code == CODE_64BIT)
8106 {
8107 object_64bit = 1;
8108 use_rela_relocations = 1;
8109 }
8110 if (cpu_arch_isa == PROCESSOR_L1OM)
8111 {
8112 if (flag_code != CODE_64BIT)
8113 as_fatal (_("Intel L1OM is 64bit only"));
8114 return ELF_TARGET_L1OM_FORMAT;
8115 }
8116 else
8117 return (flag_code == CODE_64BIT
8118 ? ELF_TARGET_FORMAT64 : ELF_TARGET_FORMAT);
8119 }
8120 #endif
8121 #if defined (OBJ_MACH_O)
8122 case bfd_target_mach_o_flavour:
8123 return flag_code == CODE_64BIT ? "mach-o-x86-64" : "mach-o-i386";
8124 #endif
8125 default:
8126 abort ();
8127 return NULL;
8128 }
8129 }
8130
8131 #endif /* OBJ_MAYBE_ more than one */
8132
8133 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF))
8134 void
8135 i386_elf_emit_arch_note (void)
8136 {
8137 if (IS_ELF && cpu_arch_name != NULL)
8138 {
8139 char *p;
8140 asection *seg = now_seg;
8141 subsegT subseg = now_subseg;
8142 Elf_Internal_Note i_note;
8143 Elf_External_Note e_note;
8144 asection *note_secp;
8145 int len;
8146
8147 /* Create the .note section. */
8148 note_secp = subseg_new (".note", 0);
8149 bfd_set_section_flags (stdoutput,
8150 note_secp,
8151 SEC_HAS_CONTENTS | SEC_READONLY);
8152
8153 /* Process the arch string. */
8154 len = strlen (cpu_arch_name);
8155
8156 i_note.namesz = len + 1;
8157 i_note.descsz = 0;
8158 i_note.type = NT_ARCH;
8159 p = frag_more (sizeof (e_note.namesz));
8160 md_number_to_chars (p, (valueT) i_note.namesz, sizeof (e_note.namesz));
8161 p = frag_more (sizeof (e_note.descsz));
8162 md_number_to_chars (p, (valueT) i_note.descsz, sizeof (e_note.descsz));
8163 p = frag_more (sizeof (e_note.type));
8164 md_number_to_chars (p, (valueT) i_note.type, sizeof (e_note.type));
8165 p = frag_more (len + 1);
8166 strcpy (p, cpu_arch_name);
8167
8168 frag_align (2, 0, 0);
8169
8170 subseg_set (seg, subseg);
8171 }
8172 }
8173 #endif
8174 \f
8175 symbolS *
8176 md_undefined_symbol (name)
8177 char *name;
8178 {
8179 if (name[0] == GLOBAL_OFFSET_TABLE_NAME[0]
8180 && name[1] == GLOBAL_OFFSET_TABLE_NAME[1]
8181 && name[2] == GLOBAL_OFFSET_TABLE_NAME[2]
8182 && strcmp (name, GLOBAL_OFFSET_TABLE_NAME) == 0)
8183 {
8184 if (!GOT_symbol)
8185 {
8186 if (symbol_find (name))
8187 as_bad (_("GOT already in symbol table"));
8188 GOT_symbol = symbol_new (name, undefined_section,
8189 (valueT) 0, &zero_address_frag);
8190 };
8191 return GOT_symbol;
8192 }
8193 return 0;
8194 }
8195
8196 /* Round up a section size to the appropriate boundary. */
8197
8198 valueT
8199 md_section_align (segment, size)
8200 segT segment ATTRIBUTE_UNUSED;
8201 valueT size;
8202 {
8203 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
8204 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
8205 {
8206 /* For a.out, force the section size to be aligned. If we don't do
8207 this, BFD will align it for us, but it will not write out the
8208 final bytes of the section. This may be a bug in BFD, but it is
8209 easier to fix it here since that is how the other a.out targets
8210 work. */
8211 int align;
8212
8213 align = bfd_get_section_alignment (stdoutput, segment);
8214 size = ((size + (1 << align) - 1) & ((valueT) -1 << align));
8215 }
8216 #endif
8217
8218 return size;
8219 }
8220
8221 /* On the i386, PC-relative offsets are relative to the start of the
8222 next instruction. That is, the address of the offset, plus its
8223 size, since the offset is always the last part of the insn. */
8224
8225 long
8226 md_pcrel_from (fixS *fixP)
8227 {
8228 return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address;
8229 }
8230
8231 #ifndef I386COFF
8232
8233 static void
8234 s_bss (int ignore ATTRIBUTE_UNUSED)
8235 {
8236 int temp;
8237
8238 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8239 if (IS_ELF)
8240 obj_elf_section_change_hook ();
8241 #endif
8242 temp = get_absolute_expression ();
8243 subseg_set (bss_section, (subsegT) temp);
8244 demand_empty_rest_of_line ();
8245 }
8246
8247 #endif
8248
8249 void
8250 i386_validate_fix (fixS *fixp)
8251 {
8252 if (fixp->fx_subsy && fixp->fx_subsy == GOT_symbol)
8253 {
8254 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
8255 {
8256 if (!object_64bit)
8257 abort ();
8258 fixp->fx_r_type = BFD_RELOC_X86_64_GOTPCREL;
8259 }
8260 else
8261 {
8262 if (!object_64bit)
8263 fixp->fx_r_type = BFD_RELOC_386_GOTOFF;
8264 else
8265 fixp->fx_r_type = BFD_RELOC_X86_64_GOTOFF64;
8266 }
8267 fixp->fx_subsy = 0;
8268 }
8269 }
8270
8271 arelent *
8272 tc_gen_reloc (section, fixp)
8273 asection *section ATTRIBUTE_UNUSED;
8274 fixS *fixp;
8275 {
8276 arelent *rel;
8277 bfd_reloc_code_real_type code;
8278
8279 switch (fixp->fx_r_type)
8280 {
8281 case BFD_RELOC_X86_64_PLT32:
8282 case BFD_RELOC_X86_64_GOT32:
8283 case BFD_RELOC_X86_64_GOTPCREL:
8284 case BFD_RELOC_386_PLT32:
8285 case BFD_RELOC_386_GOT32:
8286 case BFD_RELOC_386_GOTOFF:
8287 case BFD_RELOC_386_GOTPC:
8288 case BFD_RELOC_386_TLS_GD:
8289 case BFD_RELOC_386_TLS_LDM:
8290 case BFD_RELOC_386_TLS_LDO_32:
8291 case BFD_RELOC_386_TLS_IE_32:
8292 case BFD_RELOC_386_TLS_IE:
8293 case BFD_RELOC_386_TLS_GOTIE:
8294 case BFD_RELOC_386_TLS_LE_32:
8295 case BFD_RELOC_386_TLS_LE:
8296 case BFD_RELOC_386_TLS_GOTDESC:
8297 case BFD_RELOC_386_TLS_DESC_CALL:
8298 case BFD_RELOC_X86_64_TLSGD:
8299 case BFD_RELOC_X86_64_TLSLD:
8300 case BFD_RELOC_X86_64_DTPOFF32:
8301 case BFD_RELOC_X86_64_DTPOFF64:
8302 case BFD_RELOC_X86_64_GOTTPOFF:
8303 case BFD_RELOC_X86_64_TPOFF32:
8304 case BFD_RELOC_X86_64_TPOFF64:
8305 case BFD_RELOC_X86_64_GOTOFF64:
8306 case BFD_RELOC_X86_64_GOTPC32:
8307 case BFD_RELOC_X86_64_GOT64:
8308 case BFD_RELOC_X86_64_GOTPCREL64:
8309 case BFD_RELOC_X86_64_GOTPC64:
8310 case BFD_RELOC_X86_64_GOTPLT64:
8311 case BFD_RELOC_X86_64_PLTOFF64:
8312 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
8313 case BFD_RELOC_X86_64_TLSDESC_CALL:
8314 case BFD_RELOC_RVA:
8315 case BFD_RELOC_VTABLE_ENTRY:
8316 case BFD_RELOC_VTABLE_INHERIT:
8317 #ifdef TE_PE
8318 case BFD_RELOC_32_SECREL:
8319 #endif
8320 code = fixp->fx_r_type;
8321 break;
8322 case BFD_RELOC_X86_64_32S:
8323 if (!fixp->fx_pcrel)
8324 {
8325 /* Don't turn BFD_RELOC_X86_64_32S into BFD_RELOC_32. */
8326 code = fixp->fx_r_type;
8327 break;
8328 }
8329 default:
8330 if (fixp->fx_pcrel)
8331 {
8332 switch (fixp->fx_size)
8333 {
8334 default:
8335 as_bad_where (fixp->fx_file, fixp->fx_line,
8336 _("can not do %d byte pc-relative relocation"),
8337 fixp->fx_size);
8338 code = BFD_RELOC_32_PCREL;
8339 break;
8340 case 1: code = BFD_RELOC_8_PCREL; break;
8341 case 2: code = BFD_RELOC_16_PCREL; break;
8342 case 4: code = BFD_RELOC_32_PCREL; break;
8343 #ifdef BFD64
8344 case 8: code = BFD_RELOC_64_PCREL; break;
8345 #endif
8346 }
8347 }
8348 else
8349 {
8350 switch (fixp->fx_size)
8351 {
8352 default:
8353 as_bad_where (fixp->fx_file, fixp->fx_line,
8354 _("can not do %d byte relocation"),
8355 fixp->fx_size);
8356 code = BFD_RELOC_32;
8357 break;
8358 case 1: code = BFD_RELOC_8; break;
8359 case 2: code = BFD_RELOC_16; break;
8360 case 4: code = BFD_RELOC_32; break;
8361 #ifdef BFD64
8362 case 8: code = BFD_RELOC_64; break;
8363 #endif
8364 }
8365 }
8366 break;
8367 }
8368
8369 if ((code == BFD_RELOC_32
8370 || code == BFD_RELOC_32_PCREL
8371 || code == BFD_RELOC_X86_64_32S)
8372 && GOT_symbol
8373 && fixp->fx_addsy == GOT_symbol)
8374 {
8375 if (!object_64bit)
8376 code = BFD_RELOC_386_GOTPC;
8377 else
8378 code = BFD_RELOC_X86_64_GOTPC32;
8379 }
8380 if ((code == BFD_RELOC_64 || code == BFD_RELOC_64_PCREL)
8381 && GOT_symbol
8382 && fixp->fx_addsy == GOT_symbol)
8383 {
8384 code = BFD_RELOC_X86_64_GOTPC64;
8385 }
8386
8387 rel = (arelent *) xmalloc (sizeof (arelent));
8388 rel->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
8389 *rel->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
8390
8391 rel->address = fixp->fx_frag->fr_address + fixp->fx_where;
8392
8393 if (!use_rela_relocations)
8394 {
8395 /* HACK: Since i386 ELF uses Rel instead of Rela, encode the
8396 vtable entry to be used in the relocation's section offset. */
8397 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
8398 rel->address = fixp->fx_offset;
8399 #if defined (OBJ_COFF) && defined (TE_PE)
8400 else if (fixp->fx_addsy && S_IS_WEAK (fixp->fx_addsy))
8401 rel->addend = fixp->fx_addnumber - (S_GET_VALUE (fixp->fx_addsy) * 2);
8402 else
8403 #endif
8404 rel->addend = 0;
8405 }
8406 /* Use the rela in 64bit mode. */
8407 else
8408 {
8409 if (!fixp->fx_pcrel)
8410 rel->addend = fixp->fx_offset;
8411 else
8412 switch (code)
8413 {
8414 case BFD_RELOC_X86_64_PLT32:
8415 case BFD_RELOC_X86_64_GOT32:
8416 case BFD_RELOC_X86_64_GOTPCREL:
8417 case BFD_RELOC_X86_64_TLSGD:
8418 case BFD_RELOC_X86_64_TLSLD:
8419 case BFD_RELOC_X86_64_GOTTPOFF:
8420 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
8421 case BFD_RELOC_X86_64_TLSDESC_CALL:
8422 rel->addend = fixp->fx_offset - fixp->fx_size;
8423 break;
8424 default:
8425 rel->addend = (section->vma
8426 - fixp->fx_size
8427 + fixp->fx_addnumber
8428 + md_pcrel_from (fixp));
8429 break;
8430 }
8431 }
8432
8433 rel->howto = bfd_reloc_type_lookup (stdoutput, code);
8434 if (rel->howto == NULL)
8435 {
8436 as_bad_where (fixp->fx_file, fixp->fx_line,
8437 _("cannot represent relocation type %s"),
8438 bfd_get_reloc_code_name (code));
8439 /* Set howto to a garbage value so that we can keep going. */
8440 rel->howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_32);
8441 gas_assert (rel->howto != NULL);
8442 }
8443
8444 return rel;
8445 }
8446
8447 #include "tc-i386-intel.c"
8448
8449 void
8450 tc_x86_parse_to_dw2regnum (expressionS *exp)
8451 {
8452 int saved_naked_reg;
8453 char saved_register_dot;
8454
8455 saved_naked_reg = allow_naked_reg;
8456 allow_naked_reg = 1;
8457 saved_register_dot = register_chars['.'];
8458 register_chars['.'] = '.';
8459 allow_pseudo_reg = 1;
8460 expression_and_evaluate (exp);
8461 allow_pseudo_reg = 0;
8462 register_chars['.'] = saved_register_dot;
8463 allow_naked_reg = saved_naked_reg;
8464
8465 if (exp->X_op == O_register && exp->X_add_number >= 0)
8466 {
8467 if ((addressT) exp->X_add_number < i386_regtab_size)
8468 {
8469 exp->X_op = O_constant;
8470 exp->X_add_number = i386_regtab[exp->X_add_number]
8471 .dw2_regnum[flag_code >> 1];
8472 }
8473 else
8474 exp->X_op = O_illegal;
8475 }
8476 }
8477
8478 void
8479 tc_x86_frame_initial_instructions (void)
8480 {
8481 static unsigned int sp_regno[2];
8482
8483 if (!sp_regno[flag_code >> 1])
8484 {
8485 char *saved_input = input_line_pointer;
8486 char sp[][4] = {"esp", "rsp"};
8487 expressionS exp;
8488
8489 input_line_pointer = sp[flag_code >> 1];
8490 tc_x86_parse_to_dw2regnum (&exp);
8491 gas_assert (exp.X_op == O_constant);
8492 sp_regno[flag_code >> 1] = exp.X_add_number;
8493 input_line_pointer = saved_input;
8494 }
8495
8496 cfi_add_CFA_def_cfa (sp_regno[flag_code >> 1], -x86_cie_data_alignment);
8497 cfi_add_CFA_offset (x86_dwarf2_return_column, x86_cie_data_alignment);
8498 }
8499
8500 int
8501 i386_elf_section_type (const char *str, size_t len)
8502 {
8503 if (flag_code == CODE_64BIT
8504 && len == sizeof ("unwind") - 1
8505 && strncmp (str, "unwind", 6) == 0)
8506 return SHT_X86_64_UNWIND;
8507
8508 return -1;
8509 }
8510
8511 #ifdef TE_SOLARIS
8512 void
8513 i386_solaris_fix_up_eh_frame (segT sec)
8514 {
8515 if (flag_code == CODE_64BIT)
8516 elf_section_type (sec) = SHT_X86_64_UNWIND;
8517 }
8518 #endif
8519
8520 #ifdef TE_PE
8521 void
8522 tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
8523 {
8524 expressionS expr;
8525
8526 expr.X_op = O_secrel;
8527 expr.X_add_symbol = symbol;
8528 expr.X_add_number = 0;
8529 emit_expr (&expr, size);
8530 }
8531 #endif
8532
8533 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8534 /* For ELF on x86-64, add support for SHF_X86_64_LARGE. */
8535
8536 bfd_vma
8537 x86_64_section_letter (int letter, char **ptr_msg)
8538 {
8539 if (flag_code == CODE_64BIT)
8540 {
8541 if (letter == 'l')
8542 return SHF_X86_64_LARGE;
8543
8544 *ptr_msg = _("Bad .section directive: want a,l,w,x,M,S,G,T in string");
8545 }
8546 else
8547 *ptr_msg = _("Bad .section directive: want a,w,x,M,S,G,T in string");
8548 return -1;
8549 }
8550
8551 bfd_vma
8552 x86_64_section_word (char *str, size_t len)
8553 {
8554 if (len == 5 && flag_code == CODE_64BIT && CONST_STRNEQ (str, "large"))
8555 return SHF_X86_64_LARGE;
8556
8557 return -1;
8558 }
8559
8560 static void
8561 handle_large_common (int small ATTRIBUTE_UNUSED)
8562 {
8563 if (flag_code != CODE_64BIT)
8564 {
8565 s_comm_internal (0, elf_common_parse);
8566 as_warn (_(".largecomm supported only in 64bit mode, producing .comm"));
8567 }
8568 else
8569 {
8570 static segT lbss_section;
8571 asection *saved_com_section_ptr = elf_com_section_ptr;
8572 asection *saved_bss_section = bss_section;
8573
8574 if (lbss_section == NULL)
8575 {
8576 flagword applicable;
8577 segT seg = now_seg;
8578 subsegT subseg = now_subseg;
8579
8580 /* The .lbss section is for local .largecomm symbols. */
8581 lbss_section = subseg_new (".lbss", 0);
8582 applicable = bfd_applicable_section_flags (stdoutput);
8583 bfd_set_section_flags (stdoutput, lbss_section,
8584 applicable & SEC_ALLOC);
8585 seg_info (lbss_section)->bss = 1;
8586
8587 subseg_set (seg, subseg);
8588 }
8589
8590 elf_com_section_ptr = &_bfd_elf_large_com_section;
8591 bss_section = lbss_section;
8592
8593 s_comm_internal (0, elf_common_parse);
8594
8595 elf_com_section_ptr = saved_com_section_ptr;
8596 bss_section = saved_bss_section;
8597 }
8598 }
8599 #endif /* OBJ_ELF || OBJ_MAYBE_ELF */
This page took 0.211392 seconds and 4 git commands to generate.