1 /* tc-i386.c -- Assemble code for the Intel 80386
2 Copyright (C) 1989-2015 Free Software Foundation, Inc.
4 This file is part of GAS, the GNU Assembler.
6 GAS is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
11 GAS is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with GAS; see the file COPYING. If not, write to the Free
18 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
21 /* Intel 80386 machine specific gas.
22 Written by Eliot Dresselhaus (eliot@mgm.mit.edu).
23 x86_64 support by Jan Hubicka (jh@suse.cz)
24 VIA PadLock support by Michal Ludvig (mludvig@suse.cz)
25 Bugs & suggestions are completely welcome. This is free software.
26 Please help us make it better. */
29 #include "safe-ctype.h"
31 #include "dwarf2dbg.h"
32 #include "dw2gencfi.h"
33 #include "elf/x86-64.h"
34 #include "opcodes/i386-init.h"
36 #ifndef REGISTER_WARNINGS
37 #define REGISTER_WARNINGS 1
40 #ifndef INFER_ADDR_PREFIX
41 #define INFER_ADDR_PREFIX 1
45 #define DEFAULT_ARCH "i386"
50 #define INLINE __inline__
56 /* Prefixes will be emitted in the order defined below.
57 WAIT_PREFIX must be the first prefix since FWAIT is really is an
58 instruction, and so must come before any prefixes.
59 The preferred prefix order is SEG_PREFIX, ADDR_PREFIX, DATA_PREFIX,
60 REP_PREFIX/HLE_PREFIX, LOCK_PREFIX. */
66 #define HLE_PREFIX REP_PREFIX
67 #define BND_PREFIX REP_PREFIX
69 #define REX_PREFIX 6 /* must come last. */
70 #define MAX_PREFIXES 7 /* max prefixes per opcode */
72 /* we define the syntax here (modulo base,index,scale syntax) */
73 #define REGISTER_PREFIX '%'
74 #define IMMEDIATE_PREFIX '$'
75 #define ABSOLUTE_PREFIX '*'
77 /* these are the instruction mnemonic suffixes in AT&T syntax or
78 memory operand size in Intel syntax. */
79 #define WORD_MNEM_SUFFIX 'w'
80 #define BYTE_MNEM_SUFFIX 'b'
81 #define SHORT_MNEM_SUFFIX 's'
82 #define LONG_MNEM_SUFFIX 'l'
83 #define QWORD_MNEM_SUFFIX 'q'
84 #define XMMWORD_MNEM_SUFFIX 'x'
85 #define YMMWORD_MNEM_SUFFIX 'y'
86 #define ZMMWORD_MNEM_SUFFIX 'z'
87 /* Intel Syntax. Use a non-ascii letter since since it never appears
89 #define LONG_DOUBLE_MNEM_SUFFIX '\1'
91 #define END_OF_INSN '\0'
94 'templates' is for grouping together 'template' structures for opcodes
95 of the same name. This is only used for storing the insns in the grand
96 ole hash table of insns.
97 The templates themselves start at START and range up to (but not including)
102 const insn_template
*start
;
103 const insn_template
*end
;
107 /* 386 operand encoding bytes: see 386 book for details of this. */
110 unsigned int regmem
; /* codes register or memory operand */
111 unsigned int reg
; /* codes register operand (or extended opcode) */
112 unsigned int mode
; /* how to interpret regmem & reg */
116 /* x86-64 extension prefix. */
117 typedef int rex_byte
;
119 /* 386 opcode byte to code indirect addressing. */
128 /* x86 arch names, types and features */
131 const char *name
; /* arch name */
132 unsigned int len
; /* arch string length */
133 enum processor_type type
; /* arch type */
134 i386_cpu_flags flags
; /* cpu feature flags */
135 unsigned int skip
; /* show_arch should skip this. */
136 unsigned int negated
; /* turn off indicated flags. */
140 static void update_code_flag (int, int);
141 static void set_code_flag (int);
142 static void set_16bit_gcc_code_flag (int);
143 static void set_intel_syntax (int);
144 static void set_intel_mnemonic (int);
145 static void set_allow_index_reg (int);
146 static void set_check (int);
147 static void set_cpu_arch (int);
149 static void pe_directive_secrel (int);
151 static void signed_cons (int);
152 static char *output_invalid (int c
);
153 static int i386_finalize_immediate (segT
, expressionS
*, i386_operand_type
,
155 static int i386_finalize_displacement (segT
, expressionS
*, i386_operand_type
,
157 static int i386_att_operand (char *);
158 static int i386_intel_operand (char *, int);
159 static int i386_intel_simplify (expressionS
*);
160 static int i386_intel_parse_name (const char *, expressionS
*);
161 static const reg_entry
*parse_register (char *, char **);
162 static char *parse_insn (char *, char *);
163 static char *parse_operands (char *, const char *);
164 static void swap_operands (void);
165 static void swap_2_operands (int, int);
166 static void optimize_imm (void);
167 static void optimize_disp (void);
168 static const insn_template
*match_template (void);
169 static int check_string (void);
170 static int process_suffix (void);
171 static int check_byte_reg (void);
172 static int check_long_reg (void);
173 static int check_qword_reg (void);
174 static int check_word_reg (void);
175 static int finalize_imm (void);
176 static int process_operands (void);
177 static const seg_entry
*build_modrm_byte (void);
178 static void output_insn (void);
179 static void output_imm (fragS
*, offsetT
);
180 static void output_disp (fragS
*, offsetT
);
182 static void s_bss (int);
184 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
185 static void handle_large_common (int small ATTRIBUTE_UNUSED
);
188 static const char *default_arch
= DEFAULT_ARCH
;
190 /* This struct describes rounding control and SAE in the instruction. */
204 static struct RC_Operation rc_op
;
206 /* The struct describes masking, applied to OPERAND in the instruction.
207 MASK is a pointer to the corresponding mask register. ZEROING tells
208 whether merging or zeroing mask is used. */
209 struct Mask_Operation
211 const reg_entry
*mask
;
212 unsigned int zeroing
;
213 /* The operand where this operation is associated. */
217 static struct Mask_Operation mask_op
;
219 /* The struct describes broadcasting, applied to OPERAND. FACTOR is
221 struct Broadcast_Operation
223 /* Type of broadcast: no broadcast, {1to8}, or {1to16}. */
226 /* Index of broadcasted operand. */
230 static struct Broadcast_Operation broadcast_op
;
235 /* VEX prefix is either 2 byte or 3 byte. EVEX is 4 byte. */
236 unsigned char bytes
[4];
238 /* Destination or source register specifier. */
239 const reg_entry
*register_specifier
;
242 /* 'md_assemble ()' gathers together information and puts it into a
249 const reg_entry
*regs
;
254 operand_size_mismatch
,
255 operand_type_mismatch
,
256 register_type_mismatch
,
257 number_of_operands_mismatch
,
258 invalid_instruction_suffix
,
261 unsupported_with_intel_mnemonic
,
264 invalid_vsib_address
,
265 invalid_vector_register_set
,
266 unsupported_vector_index_register
,
267 unsupported_broadcast
,
268 broadcast_not_on_src_operand
,
271 mask_not_on_destination
,
274 rc_sae_operand_not_last_imm
,
275 invalid_register_operand
,
281 /* TM holds the template for the insn were currently assembling. */
284 /* SUFFIX holds the instruction size suffix for byte, word, dword
285 or qword, if given. */
288 /* OPERANDS gives the number of given operands. */
289 unsigned int operands
;
291 /* REG_OPERANDS, DISP_OPERANDS, MEM_OPERANDS, IMM_OPERANDS give the number
292 of given register, displacement, memory operands and immediate
294 unsigned int reg_operands
, disp_operands
, mem_operands
, imm_operands
;
296 /* TYPES [i] is the type (see above #defines) which tells us how to
297 use OP[i] for the corresponding operand. */
298 i386_operand_type types
[MAX_OPERANDS
];
300 /* Displacement expression, immediate expression, or register for each
302 union i386_op op
[MAX_OPERANDS
];
304 /* Flags for operands. */
305 unsigned int flags
[MAX_OPERANDS
];
306 #define Operand_PCrel 1
308 /* Relocation type for operand */
309 enum bfd_reloc_code_real reloc
[MAX_OPERANDS
];
311 /* BASE_REG, INDEX_REG, and LOG2_SCALE_FACTOR are used to encode
312 the base index byte below. */
313 const reg_entry
*base_reg
;
314 const reg_entry
*index_reg
;
315 unsigned int log2_scale_factor
;
317 /* SEG gives the seg_entries of this insn. They are zero unless
318 explicit segment overrides are given. */
319 const seg_entry
*seg
[2];
321 /* PREFIX holds all the given prefix opcodes (usually null).
322 PREFIXES is the number of prefix opcodes. */
323 unsigned int prefixes
;
324 unsigned char prefix
[MAX_PREFIXES
];
326 /* RM and SIB are the modrm byte and the sib byte where the
327 addressing modes of this insn are encoded. */
334 /* Masking attributes. */
335 struct Mask_Operation
*mask
;
337 /* Rounding control and SAE attributes. */
338 struct RC_Operation
*rounding
;
340 /* Broadcasting attributes. */
341 struct Broadcast_Operation
*broadcast
;
343 /* Compressed disp8*N attribute. */
344 unsigned int memshift
;
346 /* Swap operand in encoding. */
347 unsigned int swap_operand
;
349 /* Prefer 8bit or 32bit displacement in encoding. */
352 disp_encoding_default
= 0,
358 const char *rep_prefix
;
361 const char *hle_prefix
;
363 /* Have BND prefix. */
364 const char *bnd_prefix
;
366 /* Need VREX to support upper 16 registers. */
370 enum i386_error error
;
373 typedef struct _i386_insn i386_insn
;
375 /* Link RC type with corresponding string, that'll be looked for in
384 static const struct RC_name RC_NamesTable
[] =
386 { rne
, STRING_COMMA_LEN ("rn-sae") },
387 { rd
, STRING_COMMA_LEN ("rd-sae") },
388 { ru
, STRING_COMMA_LEN ("ru-sae") },
389 { rz
, STRING_COMMA_LEN ("rz-sae") },
390 { saeonly
, STRING_COMMA_LEN ("sae") },
393 /* List of chars besides those in app.c:symbol_chars that can start an
394 operand. Used to prevent the scrubber eating vital white-space. */
395 const char extra_symbol_chars
[] = "*%-([{"
404 #if (defined (TE_I386AIX) \
405 || ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) \
406 && !defined (TE_GNU) \
407 && !defined (TE_LINUX) \
408 && !defined (TE_NACL) \
409 && !defined (TE_NETWARE) \
410 && !defined (TE_FreeBSD) \
411 && !defined (TE_DragonFly) \
412 && !defined (TE_NetBSD)))
413 /* This array holds the chars that always start a comment. If the
414 pre-processor is disabled, these aren't very useful. The option
415 --divide will remove '/' from this list. */
416 const char *i386_comment_chars
= "#/";
417 #define SVR4_COMMENT_CHARS 1
418 #define PREFIX_SEPARATOR '\\'
421 const char *i386_comment_chars
= "#";
422 #define PREFIX_SEPARATOR '/'
425 /* This array holds the chars that only start a comment at the beginning of
426 a line. If the line seems to have the form '# 123 filename'
427 .line and .file directives will appear in the pre-processed output.
428 Note that input_file.c hand checks for '#' at the beginning of the
429 first line of the input file. This is because the compiler outputs
430 #NO_APP at the beginning of its output.
431 Also note that comments started like this one will always work if
432 '/' isn't otherwise defined. */
433 const char line_comment_chars
[] = "#/";
435 const char line_separator_chars
[] = ";";
437 /* Chars that can be used to separate mant from exp in floating point
439 const char EXP_CHARS
[] = "eE";
441 /* Chars that mean this number is a floating point constant
444 const char FLT_CHARS
[] = "fFdDxX";
446 /* Tables for lexical analysis. */
447 static char mnemonic_chars
[256];
448 static char register_chars
[256];
449 static char operand_chars
[256];
450 static char identifier_chars
[256];
451 static char digit_chars
[256];
453 /* Lexical macros. */
454 #define is_mnemonic_char(x) (mnemonic_chars[(unsigned char) x])
455 #define is_operand_char(x) (operand_chars[(unsigned char) x])
456 #define is_register_char(x) (register_chars[(unsigned char) x])
457 #define is_space_char(x) ((x) == ' ')
458 #define is_identifier_char(x) (identifier_chars[(unsigned char) x])
459 #define is_digit_char(x) (digit_chars[(unsigned char) x])
461 /* All non-digit non-letter characters that may occur in an operand. */
462 static char operand_special_chars
[] = "%$-+(,)*._~/<>|&^!:[@]";
464 /* md_assemble() always leaves the strings it's passed unaltered. To
465 effect this we maintain a stack of saved characters that we've smashed
466 with '\0's (indicating end of strings for various sub-fields of the
467 assembler instruction). */
468 static char save_stack
[32];
469 static char *save_stack_p
;
470 #define END_STRING_AND_SAVE(s) \
471 do { *save_stack_p++ = *(s); *(s) = '\0'; } while (0)
472 #define RESTORE_END_STRING(s) \
473 do { *(s) = *--save_stack_p; } while (0)
475 /* The instruction we're assembling. */
478 /* Possible templates for current insn. */
479 static const templates
*current_templates
;
481 /* Per instruction expressionS buffers: max displacements & immediates. */
482 static expressionS disp_expressions
[MAX_MEMORY_OPERANDS
];
483 static expressionS im_expressions
[MAX_IMMEDIATE_OPERANDS
];
485 /* Current operand we are working on. */
486 static int this_operand
= -1;
488 /* We support four different modes. FLAG_CODE variable is used to distinguish
496 static enum flag_code flag_code
;
497 static unsigned int object_64bit
;
498 static unsigned int disallow_64bit_reloc
;
499 static int use_rela_relocations
= 0;
501 #if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
502 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
503 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
505 /* The ELF ABI to use. */
513 static enum x86_elf_abi x86_elf_abi
= I386_ABI
;
516 #if defined (TE_PE) || defined (TE_PEP)
517 /* Use big object file format. */
518 static int use_big_obj
= 0;
521 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
522 /* 1 if generating code for a shared library. */
523 static int shared
= 0;
526 /* 1 for intel syntax,
528 static int intel_syntax
= 0;
530 /* 1 for intel mnemonic,
531 0 if att mnemonic. */
532 static int intel_mnemonic
= !SYSV386_COMPAT
;
534 /* 1 if support old (<= 2.8.1) versions of gcc. */
535 static int old_gcc
= OLDGCC_COMPAT
;
537 /* 1 if pseudo registers are permitted. */
538 static int allow_pseudo_reg
= 0;
540 /* 1 if register prefix % not required. */
541 static int allow_naked_reg
= 0;
543 /* 1 if the assembler should add BND prefix for all control-tranferring
544 instructions supporting it, even if this prefix wasn't specified
546 static int add_bnd_prefix
= 0;
548 /* 1 if pseudo index register, eiz/riz, is allowed . */
549 static int allow_index_reg
= 0;
551 /* 1 if the assembler should ignore LOCK prefix, even if it was
552 specified explicitly. */
553 static int omit_lock_prefix
= 0;
555 static enum check_kind
561 sse_check
, operand_check
= check_warning
;
563 /* Register prefix used for error message. */
564 static const char *register_prefix
= "%";
566 /* Used in 16 bit gcc mode to add an l suffix to call, ret, enter,
567 leave, push, and pop instructions so that gcc has the same stack
568 frame as in 32 bit mode. */
569 static char stackop_size
= '\0';
571 /* Non-zero to optimize code alignment. */
572 int optimize_align_code
= 1;
574 /* Non-zero to quieten some warnings. */
575 static int quiet_warnings
= 0;
578 static const char *cpu_arch_name
= NULL
;
579 static char *cpu_sub_arch_name
= NULL
;
581 /* CPU feature flags. */
582 static i386_cpu_flags cpu_arch_flags
= CPU_UNKNOWN_FLAGS
;
584 /* If we have selected a cpu we are generating instructions for. */
585 static int cpu_arch_tune_set
= 0;
587 /* Cpu we are generating instructions for. */
588 enum processor_type cpu_arch_tune
= PROCESSOR_UNKNOWN
;
590 /* CPU feature flags of cpu we are generating instructions for. */
591 static i386_cpu_flags cpu_arch_tune_flags
;
593 /* CPU instruction set architecture used. */
594 enum processor_type cpu_arch_isa
= PROCESSOR_UNKNOWN
;
596 /* CPU feature flags of instruction set architecture used. */
597 i386_cpu_flags cpu_arch_isa_flags
;
599 /* If set, conditional jumps are not automatically promoted to handle
600 larger than a byte offset. */
601 static unsigned int no_cond_jump_promotion
= 0;
603 /* Encode SSE instructions with VEX prefix. */
604 static unsigned int sse2avx
;
606 /* Encode scalar AVX instructions with specific vector length. */
613 /* Encode scalar EVEX LIG instructions with specific vector length. */
621 /* Encode EVEX WIG instructions with specific evex.w. */
628 /* Value to encode in EVEX RC bits, for SAE-only instructions. */
629 static enum rc_type evexrcig
= rne
;
631 /* Pre-defined "_GLOBAL_OFFSET_TABLE_". */
632 static symbolS
*GOT_symbol
;
634 /* The dwarf2 return column, adjusted for 32 or 64 bit. */
635 unsigned int x86_dwarf2_return_column
;
637 /* The dwarf2 data alignment, adjusted for 32 or 64 bit. */
638 int x86_cie_data_alignment
;
640 /* Interface to relax_segment.
641 There are 3 major relax states for 386 jump insns because the
642 different types of jumps add different sizes to frags when we're
643 figuring out what sort of jump to choose to reach a given label. */
646 #define UNCOND_JUMP 0
648 #define COND_JUMP86 2
653 #define SMALL16 (SMALL | CODE16)
655 #define BIG16 (BIG | CODE16)
659 #define INLINE __inline__
665 #define ENCODE_RELAX_STATE(type, size) \
666 ((relax_substateT) (((type) << 2) | (size)))
667 #define TYPE_FROM_RELAX_STATE(s) \
669 #define DISP_SIZE_FROM_RELAX_STATE(s) \
670 ((((s) & 3) == BIG ? 4 : (((s) & 3) == BIG16 ? 2 : 1)))
672 /* This table is used by relax_frag to promote short jumps to long
673 ones where necessary. SMALL (short) jumps may be promoted to BIG
674 (32 bit long) ones, and SMALL16 jumps to BIG16 (16 bit long). We
675 don't allow a short jump in a 32 bit code segment to be promoted to
676 a 16 bit offset jump because it's slower (requires data size
677 prefix), and doesn't work, unless the destination is in the bottom
678 64k of the code segment (The top 16 bits of eip are zeroed). */
680 const relax_typeS md_relax_table
[] =
683 1) most positive reach of this state,
684 2) most negative reach of this state,
685 3) how many bytes this mode will have in the variable part of the frag
686 4) which index into the table to try if we can't fit into this one. */
688 /* UNCOND_JUMP states. */
689 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP
, BIG
)},
690 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP
, BIG16
)},
691 /* dword jmp adds 4 bytes to frag:
692 0 extra opcode bytes, 4 displacement bytes. */
694 /* word jmp adds 2 byte2 to frag:
695 0 extra opcode bytes, 2 displacement bytes. */
698 /* COND_JUMP states. */
699 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP
, BIG
)},
700 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP
, BIG16
)},
701 /* dword conditionals adds 5 bytes to frag:
702 1 extra opcode byte, 4 displacement bytes. */
704 /* word conditionals add 3 bytes to frag:
705 1 extra opcode byte, 2 displacement bytes. */
708 /* COND_JUMP86 states. */
709 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86
, BIG
)},
710 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86
, BIG16
)},
711 /* dword conditionals adds 5 bytes to frag:
712 1 extra opcode byte, 4 displacement bytes. */
714 /* word conditionals add 4 bytes to frag:
715 1 displacement byte and a 3 byte long branch insn. */
719 static const arch_entry cpu_arch
[] =
721 /* Do not replace the first two entries - i386_target_format()
722 relies on them being there in this order. */
723 { STRING_COMMA_LEN ("generic32"), PROCESSOR_GENERIC32
,
724 CPU_GENERIC32_FLAGS
, 0, 0 },
725 { STRING_COMMA_LEN ("generic64"), PROCESSOR_GENERIC64
,
726 CPU_GENERIC64_FLAGS
, 0, 0 },
727 { STRING_COMMA_LEN ("i8086"), PROCESSOR_UNKNOWN
,
728 CPU_NONE_FLAGS
, 0, 0 },
729 { STRING_COMMA_LEN ("i186"), PROCESSOR_UNKNOWN
,
730 CPU_I186_FLAGS
, 0, 0 },
731 { STRING_COMMA_LEN ("i286"), PROCESSOR_UNKNOWN
,
732 CPU_I286_FLAGS
, 0, 0 },
733 { STRING_COMMA_LEN ("i386"), PROCESSOR_I386
,
734 CPU_I386_FLAGS
, 0, 0 },
735 { STRING_COMMA_LEN ("i486"), PROCESSOR_I486
,
736 CPU_I486_FLAGS
, 0, 0 },
737 { STRING_COMMA_LEN ("i586"), PROCESSOR_PENTIUM
,
738 CPU_I586_FLAGS
, 0, 0 },
739 { STRING_COMMA_LEN ("i686"), PROCESSOR_PENTIUMPRO
,
740 CPU_I686_FLAGS
, 0, 0 },
741 { STRING_COMMA_LEN ("pentium"), PROCESSOR_PENTIUM
,
742 CPU_I586_FLAGS
, 0, 0 },
743 { STRING_COMMA_LEN ("pentiumpro"), PROCESSOR_PENTIUMPRO
,
744 CPU_PENTIUMPRO_FLAGS
, 0, 0 },
745 { STRING_COMMA_LEN ("pentiumii"), PROCESSOR_PENTIUMPRO
,
746 CPU_P2_FLAGS
, 0, 0 },
747 { STRING_COMMA_LEN ("pentiumiii"),PROCESSOR_PENTIUMPRO
,
748 CPU_P3_FLAGS
, 0, 0 },
749 { STRING_COMMA_LEN ("pentium4"), PROCESSOR_PENTIUM4
,
750 CPU_P4_FLAGS
, 0, 0 },
751 { STRING_COMMA_LEN ("prescott"), PROCESSOR_NOCONA
,
752 CPU_CORE_FLAGS
, 0, 0 },
753 { STRING_COMMA_LEN ("nocona"), PROCESSOR_NOCONA
,
754 CPU_NOCONA_FLAGS
, 0, 0 },
755 { STRING_COMMA_LEN ("yonah"), PROCESSOR_CORE
,
756 CPU_CORE_FLAGS
, 1, 0 },
757 { STRING_COMMA_LEN ("core"), PROCESSOR_CORE
,
758 CPU_CORE_FLAGS
, 0, 0 },
759 { STRING_COMMA_LEN ("merom"), PROCESSOR_CORE2
,
760 CPU_CORE2_FLAGS
, 1, 0 },
761 { STRING_COMMA_LEN ("core2"), PROCESSOR_CORE2
,
762 CPU_CORE2_FLAGS
, 0, 0 },
763 { STRING_COMMA_LEN ("corei7"), PROCESSOR_COREI7
,
764 CPU_COREI7_FLAGS
, 0, 0 },
765 { STRING_COMMA_LEN ("l1om"), PROCESSOR_L1OM
,
766 CPU_L1OM_FLAGS
, 0, 0 },
767 { STRING_COMMA_LEN ("k1om"), PROCESSOR_K1OM
,
768 CPU_K1OM_FLAGS
, 0, 0 },
769 { STRING_COMMA_LEN ("iamcu"), PROCESSOR_IAMCU
,
770 CPU_IAMCU_FLAGS
, 0, 0 },
771 { STRING_COMMA_LEN ("k6"), PROCESSOR_K6
,
772 CPU_K6_FLAGS
, 0, 0 },
773 { STRING_COMMA_LEN ("k6_2"), PROCESSOR_K6
,
774 CPU_K6_2_FLAGS
, 0, 0 },
775 { STRING_COMMA_LEN ("athlon"), PROCESSOR_ATHLON
,
776 CPU_ATHLON_FLAGS
, 0, 0 },
777 { STRING_COMMA_LEN ("sledgehammer"), PROCESSOR_K8
,
778 CPU_K8_FLAGS
, 1, 0 },
779 { STRING_COMMA_LEN ("opteron"), PROCESSOR_K8
,
780 CPU_K8_FLAGS
, 0, 0 },
781 { STRING_COMMA_LEN ("k8"), PROCESSOR_K8
,
782 CPU_K8_FLAGS
, 0, 0 },
783 { STRING_COMMA_LEN ("amdfam10"), PROCESSOR_AMDFAM10
,
784 CPU_AMDFAM10_FLAGS
, 0, 0 },
785 { STRING_COMMA_LEN ("bdver1"), PROCESSOR_BD
,
786 CPU_BDVER1_FLAGS
, 0, 0 },
787 { STRING_COMMA_LEN ("bdver2"), PROCESSOR_BD
,
788 CPU_BDVER2_FLAGS
, 0, 0 },
789 { STRING_COMMA_LEN ("bdver3"), PROCESSOR_BD
,
790 CPU_BDVER3_FLAGS
, 0, 0 },
791 { STRING_COMMA_LEN ("bdver4"), PROCESSOR_BD
,
792 CPU_BDVER4_FLAGS
, 0, 0 },
793 { STRING_COMMA_LEN ("znver1"), PROCESSOR_ZNVER
,
794 CPU_ZNVER1_FLAGS
, 0, 0 },
795 { STRING_COMMA_LEN ("btver1"), PROCESSOR_BT
,
796 CPU_BTVER1_FLAGS
, 0, 0 },
797 { STRING_COMMA_LEN ("btver2"), PROCESSOR_BT
,
798 CPU_BTVER2_FLAGS
, 0, 0 },
799 { STRING_COMMA_LEN (".8087"), PROCESSOR_UNKNOWN
,
800 CPU_8087_FLAGS
, 0, 0 },
801 { STRING_COMMA_LEN (".287"), PROCESSOR_UNKNOWN
,
802 CPU_287_FLAGS
, 0, 0 },
803 { STRING_COMMA_LEN (".387"), PROCESSOR_UNKNOWN
,
804 CPU_387_FLAGS
, 0, 0 },
805 { STRING_COMMA_LEN (".no87"), PROCESSOR_UNKNOWN
,
806 CPU_ANY87_FLAGS
, 0, 1 },
807 { STRING_COMMA_LEN (".mmx"), PROCESSOR_UNKNOWN
,
808 CPU_MMX_FLAGS
, 0, 0 },
809 { STRING_COMMA_LEN (".nommx"), PROCESSOR_UNKNOWN
,
810 CPU_3DNOWA_FLAGS
, 0, 1 },
811 { STRING_COMMA_LEN (".sse"), PROCESSOR_UNKNOWN
,
812 CPU_SSE_FLAGS
, 0, 0 },
813 { STRING_COMMA_LEN (".sse2"), PROCESSOR_UNKNOWN
,
814 CPU_SSE2_FLAGS
, 0, 0 },
815 { STRING_COMMA_LEN (".sse3"), PROCESSOR_UNKNOWN
,
816 CPU_SSE3_FLAGS
, 0, 0 },
817 { STRING_COMMA_LEN (".ssse3"), PROCESSOR_UNKNOWN
,
818 CPU_SSSE3_FLAGS
, 0, 0 },
819 { STRING_COMMA_LEN (".sse4.1"), PROCESSOR_UNKNOWN
,
820 CPU_SSE4_1_FLAGS
, 0, 0 },
821 { STRING_COMMA_LEN (".sse4.2"), PROCESSOR_UNKNOWN
,
822 CPU_SSE4_2_FLAGS
, 0, 0 },
823 { STRING_COMMA_LEN (".sse4"), PROCESSOR_UNKNOWN
,
824 CPU_SSE4_2_FLAGS
, 0, 0 },
825 { STRING_COMMA_LEN (".nosse"), PROCESSOR_UNKNOWN
,
826 CPU_ANY_SSE_FLAGS
, 0, 1 },
827 { STRING_COMMA_LEN (".avx"), PROCESSOR_UNKNOWN
,
828 CPU_AVX_FLAGS
, 0, 0 },
829 { STRING_COMMA_LEN (".avx2"), PROCESSOR_UNKNOWN
,
830 CPU_AVX2_FLAGS
, 0, 0 },
831 { STRING_COMMA_LEN (".avx512f"), PROCESSOR_UNKNOWN
,
832 CPU_AVX512F_FLAGS
, 0, 0 },
833 { STRING_COMMA_LEN (".avx512cd"), PROCESSOR_UNKNOWN
,
834 CPU_AVX512CD_FLAGS
, 0, 0 },
835 { STRING_COMMA_LEN (".avx512er"), PROCESSOR_UNKNOWN
,
836 CPU_AVX512ER_FLAGS
, 0, 0 },
837 { STRING_COMMA_LEN (".avx512pf"), PROCESSOR_UNKNOWN
,
838 CPU_AVX512PF_FLAGS
, 0, 0 },
839 { STRING_COMMA_LEN (".avx512dq"), PROCESSOR_UNKNOWN
,
840 CPU_AVX512DQ_FLAGS
, 0, 0 },
841 { STRING_COMMA_LEN (".avx512bw"), PROCESSOR_UNKNOWN
,
842 CPU_AVX512BW_FLAGS
, 0, 0 },
843 { STRING_COMMA_LEN (".avx512vl"), PROCESSOR_UNKNOWN
,
844 CPU_AVX512VL_FLAGS
, 0, 0 },
845 { STRING_COMMA_LEN (".noavx"), PROCESSOR_UNKNOWN
,
846 CPU_ANY_AVX_FLAGS
, 0, 1 },
847 { STRING_COMMA_LEN (".vmx"), PROCESSOR_UNKNOWN
,
848 CPU_VMX_FLAGS
, 0, 0 },
849 { STRING_COMMA_LEN (".vmfunc"), PROCESSOR_UNKNOWN
,
850 CPU_VMFUNC_FLAGS
, 0, 0 },
851 { STRING_COMMA_LEN (".smx"), PROCESSOR_UNKNOWN
,
852 CPU_SMX_FLAGS
, 0, 0 },
853 { STRING_COMMA_LEN (".xsave"), PROCESSOR_UNKNOWN
,
854 CPU_XSAVE_FLAGS
, 0, 0 },
855 { STRING_COMMA_LEN (".xsaveopt"), PROCESSOR_UNKNOWN
,
856 CPU_XSAVEOPT_FLAGS
, 0, 0 },
857 { STRING_COMMA_LEN (".xsavec"), PROCESSOR_UNKNOWN
,
858 CPU_XSAVEC_FLAGS
, 0, 0 },
859 { STRING_COMMA_LEN (".xsaves"), PROCESSOR_UNKNOWN
,
860 CPU_XSAVES_FLAGS
, 0, 0 },
861 { STRING_COMMA_LEN (".aes"), PROCESSOR_UNKNOWN
,
862 CPU_AES_FLAGS
, 0, 0 },
863 { STRING_COMMA_LEN (".pclmul"), PROCESSOR_UNKNOWN
,
864 CPU_PCLMUL_FLAGS
, 0, 0 },
865 { STRING_COMMA_LEN (".clmul"), PROCESSOR_UNKNOWN
,
866 CPU_PCLMUL_FLAGS
, 1, 0 },
867 { STRING_COMMA_LEN (".fsgsbase"), PROCESSOR_UNKNOWN
,
868 CPU_FSGSBASE_FLAGS
, 0, 0 },
869 { STRING_COMMA_LEN (".rdrnd"), PROCESSOR_UNKNOWN
,
870 CPU_RDRND_FLAGS
, 0, 0 },
871 { STRING_COMMA_LEN (".f16c"), PROCESSOR_UNKNOWN
,
872 CPU_F16C_FLAGS
, 0, 0 },
873 { STRING_COMMA_LEN (".bmi2"), PROCESSOR_UNKNOWN
,
874 CPU_BMI2_FLAGS
, 0, 0 },
875 { STRING_COMMA_LEN (".fma"), PROCESSOR_UNKNOWN
,
876 CPU_FMA_FLAGS
, 0, 0 },
877 { STRING_COMMA_LEN (".fma4"), PROCESSOR_UNKNOWN
,
878 CPU_FMA4_FLAGS
, 0, 0 },
879 { STRING_COMMA_LEN (".xop"), PROCESSOR_UNKNOWN
,
880 CPU_XOP_FLAGS
, 0, 0 },
881 { STRING_COMMA_LEN (".lwp"), PROCESSOR_UNKNOWN
,
882 CPU_LWP_FLAGS
, 0, 0 },
883 { STRING_COMMA_LEN (".movbe"), PROCESSOR_UNKNOWN
,
884 CPU_MOVBE_FLAGS
, 0, 0 },
885 { STRING_COMMA_LEN (".cx16"), PROCESSOR_UNKNOWN
,
886 CPU_CX16_FLAGS
, 0, 0 },
887 { STRING_COMMA_LEN (".ept"), PROCESSOR_UNKNOWN
,
888 CPU_EPT_FLAGS
, 0, 0 },
889 { STRING_COMMA_LEN (".lzcnt"), PROCESSOR_UNKNOWN
,
890 CPU_LZCNT_FLAGS
, 0, 0 },
891 { STRING_COMMA_LEN (".hle"), PROCESSOR_UNKNOWN
,
892 CPU_HLE_FLAGS
, 0, 0 },
893 { STRING_COMMA_LEN (".rtm"), PROCESSOR_UNKNOWN
,
894 CPU_RTM_FLAGS
, 0, 0 },
895 { STRING_COMMA_LEN (".invpcid"), PROCESSOR_UNKNOWN
,
896 CPU_INVPCID_FLAGS
, 0, 0 },
897 { STRING_COMMA_LEN (".clflush"), PROCESSOR_UNKNOWN
,
898 CPU_CLFLUSH_FLAGS
, 0, 0 },
899 { STRING_COMMA_LEN (".nop"), PROCESSOR_UNKNOWN
,
900 CPU_NOP_FLAGS
, 0, 0 },
901 { STRING_COMMA_LEN (".syscall"), PROCESSOR_UNKNOWN
,
902 CPU_SYSCALL_FLAGS
, 0, 0 },
903 { STRING_COMMA_LEN (".rdtscp"), PROCESSOR_UNKNOWN
,
904 CPU_RDTSCP_FLAGS
, 0, 0 },
905 { STRING_COMMA_LEN (".3dnow"), PROCESSOR_UNKNOWN
,
906 CPU_3DNOW_FLAGS
, 0, 0 },
907 { STRING_COMMA_LEN (".3dnowa"), PROCESSOR_UNKNOWN
,
908 CPU_3DNOWA_FLAGS
, 0, 0 },
909 { STRING_COMMA_LEN (".padlock"), PROCESSOR_UNKNOWN
,
910 CPU_PADLOCK_FLAGS
, 0, 0 },
911 { STRING_COMMA_LEN (".pacifica"), PROCESSOR_UNKNOWN
,
912 CPU_SVME_FLAGS
, 1, 0 },
913 { STRING_COMMA_LEN (".svme"), PROCESSOR_UNKNOWN
,
914 CPU_SVME_FLAGS
, 0, 0 },
915 { STRING_COMMA_LEN (".sse4a"), PROCESSOR_UNKNOWN
,
916 CPU_SSE4A_FLAGS
, 0, 0 },
917 { STRING_COMMA_LEN (".abm"), PROCESSOR_UNKNOWN
,
918 CPU_ABM_FLAGS
, 0, 0 },
919 { STRING_COMMA_LEN (".bmi"), PROCESSOR_UNKNOWN
,
920 CPU_BMI_FLAGS
, 0, 0 },
921 { STRING_COMMA_LEN (".tbm"), PROCESSOR_UNKNOWN
,
922 CPU_TBM_FLAGS
, 0, 0 },
923 { STRING_COMMA_LEN (".adx"), PROCESSOR_UNKNOWN
,
924 CPU_ADX_FLAGS
, 0, 0 },
925 { STRING_COMMA_LEN (".rdseed"), PROCESSOR_UNKNOWN
,
926 CPU_RDSEED_FLAGS
, 0, 0 },
927 { STRING_COMMA_LEN (".prfchw"), PROCESSOR_UNKNOWN
,
928 CPU_PRFCHW_FLAGS
, 0, 0 },
929 { STRING_COMMA_LEN (".smap"), PROCESSOR_UNKNOWN
,
930 CPU_SMAP_FLAGS
, 0, 0 },
931 { STRING_COMMA_LEN (".mpx"), PROCESSOR_UNKNOWN
,
932 CPU_MPX_FLAGS
, 0, 0 },
933 { STRING_COMMA_LEN (".sha"), PROCESSOR_UNKNOWN
,
934 CPU_SHA_FLAGS
, 0, 0 },
935 { STRING_COMMA_LEN (".clflushopt"), PROCESSOR_UNKNOWN
,
936 CPU_CLFLUSHOPT_FLAGS
, 0, 0 },
937 { STRING_COMMA_LEN (".prefetchwt1"), PROCESSOR_UNKNOWN
,
938 CPU_PREFETCHWT1_FLAGS
, 0, 0 },
939 { STRING_COMMA_LEN (".se1"), PROCESSOR_UNKNOWN
,
940 CPU_SE1_FLAGS
, 0, 0 },
941 { STRING_COMMA_LEN (".clwb"), PROCESSOR_UNKNOWN
,
942 CPU_CLWB_FLAGS
, 0, 0 },
943 { STRING_COMMA_LEN (".pcommit"), PROCESSOR_UNKNOWN
,
944 CPU_PCOMMIT_FLAGS
, 0, 0 },
945 { STRING_COMMA_LEN (".avx512ifma"), PROCESSOR_UNKNOWN
,
946 CPU_AVX512IFMA_FLAGS
, 0, 0 },
947 { STRING_COMMA_LEN (".avx512vbmi"), PROCESSOR_UNKNOWN
,
948 CPU_AVX512VBMI_FLAGS
, 0, 0 },
949 { STRING_COMMA_LEN (".clzero"), PROCESSOR_UNKNOWN
,
950 CPU_CLZERO_FLAGS
, 0, 0 },
951 { STRING_COMMA_LEN (".mwaitx"), PROCESSOR_UNKNOWN
,
952 CPU_MWAITX_FLAGS
, 0, 0 },
956 /* Like s_lcomm_internal in gas/read.c but the alignment string
957 is allowed to be optional. */
960 pe_lcomm_internal (int needs_align
, symbolS
*symbolP
, addressT size
)
967 && *input_line_pointer
== ',')
969 align
= parse_align (needs_align
- 1);
971 if (align
== (addressT
) -1)
986 bss_alloc (symbolP
, size
, align
);
991 pe_lcomm (int needs_align
)
993 s_comm_internal (needs_align
* 2, pe_lcomm_internal
);
997 const pseudo_typeS md_pseudo_table
[] =
999 #if !defined(OBJ_AOUT) && !defined(USE_ALIGN_PTWO)
1000 {"align", s_align_bytes
, 0},
1002 {"align", s_align_ptwo
, 0},
1004 {"arch", set_cpu_arch
, 0},
1008 {"lcomm", pe_lcomm
, 1},
1010 {"ffloat", float_cons
, 'f'},
1011 {"dfloat", float_cons
, 'd'},
1012 {"tfloat", float_cons
, 'x'},
1014 {"slong", signed_cons
, 4},
1015 {"noopt", s_ignore
, 0},
1016 {"optim", s_ignore
, 0},
1017 {"code16gcc", set_16bit_gcc_code_flag
, CODE_16BIT
},
1018 {"code16", set_code_flag
, CODE_16BIT
},
1019 {"code32", set_code_flag
, CODE_32BIT
},
1020 {"code64", set_code_flag
, CODE_64BIT
},
1021 {"intel_syntax", set_intel_syntax
, 1},
1022 {"att_syntax", set_intel_syntax
, 0},
1023 {"intel_mnemonic", set_intel_mnemonic
, 1},
1024 {"att_mnemonic", set_intel_mnemonic
, 0},
1025 {"allow_index_reg", set_allow_index_reg
, 1},
1026 {"disallow_index_reg", set_allow_index_reg
, 0},
1027 {"sse_check", set_check
, 0},
1028 {"operand_check", set_check
, 1},
1029 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
1030 {"largecomm", handle_large_common
, 0},
1032 {"file", (void (*) (int)) dwarf2_directive_file
, 0},
1033 {"loc", dwarf2_directive_loc
, 0},
1034 {"loc_mark_labels", dwarf2_directive_loc_mark_labels
, 0},
1037 {"secrel32", pe_directive_secrel
, 0},
1042 /* For interface with expression (). */
1043 extern char *input_line_pointer
;
1045 /* Hash table for instruction mnemonic lookup. */
1046 static struct hash_control
*op_hash
;
1048 /* Hash table for register lookup. */
1049 static struct hash_control
*reg_hash
;
1052 i386_align_code (fragS
*fragP
, int count
)
1054 /* Various efficient no-op patterns for aligning code labels.
1055 Note: Don't try to assemble the instructions in the comments.
1056 0L and 0w are not legal. */
1057 static const char f32_1
[] =
1059 static const char f32_2
[] =
1060 {0x66,0x90}; /* xchg %ax,%ax */
1061 static const char f32_3
[] =
1062 {0x8d,0x76,0x00}; /* leal 0(%esi),%esi */
1063 static const char f32_4
[] =
1064 {0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
1065 static const char f32_5
[] =
1067 0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
1068 static const char f32_6
[] =
1069 {0x8d,0xb6,0x00,0x00,0x00,0x00}; /* leal 0L(%esi),%esi */
1070 static const char f32_7
[] =
1071 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
1072 static const char f32_8
[] =
1074 0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
1075 static const char f32_9
[] =
1076 {0x89,0xf6, /* movl %esi,%esi */
1077 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
1078 static const char f32_10
[] =
1079 {0x8d,0x76,0x00, /* leal 0(%esi),%esi */
1080 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
1081 static const char f32_11
[] =
1082 {0x8d,0x74,0x26,0x00, /* leal 0(%esi,1),%esi */
1083 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
1084 static const char f32_12
[] =
1085 {0x8d,0xb6,0x00,0x00,0x00,0x00, /* leal 0L(%esi),%esi */
1086 0x8d,0xbf,0x00,0x00,0x00,0x00}; /* leal 0L(%edi),%edi */
1087 static const char f32_13
[] =
1088 {0x8d,0xb6,0x00,0x00,0x00,0x00, /* leal 0L(%esi),%esi */
1089 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
1090 static const char f32_14
[] =
1091 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00, /* leal 0L(%esi,1),%esi */
1092 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
1093 static const char f16_3
[] =
1094 {0x8d,0x74,0x00}; /* lea 0(%esi),%esi */
1095 static const char f16_4
[] =
1096 {0x8d,0xb4,0x00,0x00}; /* lea 0w(%si),%si */
1097 static const char f16_5
[] =
1099 0x8d,0xb4,0x00,0x00}; /* lea 0w(%si),%si */
1100 static const char f16_6
[] =
1101 {0x89,0xf6, /* mov %si,%si */
1102 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
1103 static const char f16_7
[] =
1104 {0x8d,0x74,0x00, /* lea 0(%si),%si */
1105 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
1106 static const char f16_8
[] =
1107 {0x8d,0xb4,0x00,0x00, /* lea 0w(%si),%si */
1108 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
1109 static const char jump_31
[] =
1110 {0xeb,0x1d,0x90,0x90,0x90,0x90,0x90, /* jmp .+31; lotsa nops */
1111 0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90,
1112 0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90,
1113 0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90};
1114 static const char *const f32_patt
[] = {
1115 f32_1
, f32_2
, f32_3
, f32_4
, f32_5
, f32_6
, f32_7
, f32_8
,
1116 f32_9
, f32_10
, f32_11
, f32_12
, f32_13
, f32_14
1118 static const char *const f16_patt
[] = {
1119 f32_1
, f32_2
, f16_3
, f16_4
, f16_5
, f16_6
, f16_7
, f16_8
1121 /* nopl (%[re]ax) */
1122 static const char alt_3
[] =
1124 /* nopl 0(%[re]ax) */
1125 static const char alt_4
[] =
1126 {0x0f,0x1f,0x40,0x00};
1127 /* nopl 0(%[re]ax,%[re]ax,1) */
1128 static const char alt_5
[] =
1129 {0x0f,0x1f,0x44,0x00,0x00};
1130 /* nopw 0(%[re]ax,%[re]ax,1) */
1131 static const char alt_6
[] =
1132 {0x66,0x0f,0x1f,0x44,0x00,0x00};
1133 /* nopl 0L(%[re]ax) */
1134 static const char alt_7
[] =
1135 {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
1136 /* nopl 0L(%[re]ax,%[re]ax,1) */
1137 static const char alt_8
[] =
1138 {0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1139 /* nopw 0L(%[re]ax,%[re]ax,1) */
1140 static const char alt_9
[] =
1141 {0x66,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1142 /* nopw %cs:0L(%[re]ax,%[re]ax,1) */
1143 static const char alt_10
[] =
1144 {0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1145 static const char *const alt_patt
[] = {
1146 f32_1
, f32_2
, alt_3
, alt_4
, alt_5
, alt_6
, alt_7
, alt_8
,
1150 /* Only align for at least a positive non-zero boundary. */
1151 if (count
<= 0 || count
> MAX_MEM_FOR_RS_ALIGN_CODE
)
1154 /* We need to decide which NOP sequence to use for 32bit and
1155 64bit. When -mtune= is used:
1157 1. For PROCESSOR_I386, PROCESSOR_I486, PROCESSOR_PENTIUM and
1158 PROCESSOR_GENERIC32, f32_patt will be used.
1159 2. For the rest, alt_patt will be used.
1161 When -mtune= isn't used, alt_patt will be used if
1162 cpu_arch_isa_flags has CpuNop. Otherwise, f32_patt will
1165 When -march= or .arch is used, we can't use anything beyond
1166 cpu_arch_isa_flags. */
1168 if (flag_code
== CODE_16BIT
)
1172 memcpy (fragP
->fr_literal
+ fragP
->fr_fix
,
1174 /* Adjust jump offset. */
1175 fragP
->fr_literal
[fragP
->fr_fix
+ 1] = count
- 2;
1178 memcpy (fragP
->fr_literal
+ fragP
->fr_fix
,
1179 f16_patt
[count
- 1], count
);
1183 const char *const *patt
= NULL
;
1185 if (fragP
->tc_frag_data
.isa
== PROCESSOR_UNKNOWN
)
1187 /* PROCESSOR_UNKNOWN means that all ISAs may be used. */
1188 switch (cpu_arch_tune
)
1190 case PROCESSOR_UNKNOWN
:
1191 /* We use cpu_arch_isa_flags to check if we SHOULD
1192 optimize with nops. */
1193 if (fragP
->tc_frag_data
.isa_flags
.bitfield
.cpunop
)
1198 case PROCESSOR_PENTIUM4
:
1199 case PROCESSOR_NOCONA
:
1200 case PROCESSOR_CORE
:
1201 case PROCESSOR_CORE2
:
1202 case PROCESSOR_COREI7
:
1203 case PROCESSOR_L1OM
:
1204 case PROCESSOR_K1OM
:
1205 case PROCESSOR_GENERIC64
:
1207 case PROCESSOR_ATHLON
:
1209 case PROCESSOR_AMDFAM10
:
1211 case PROCESSOR_ZNVER
:
1215 case PROCESSOR_I386
:
1216 case PROCESSOR_I486
:
1217 case PROCESSOR_PENTIUM
:
1218 case PROCESSOR_PENTIUMPRO
:
1219 case PROCESSOR_IAMCU
:
1220 case PROCESSOR_GENERIC32
:
1227 switch (fragP
->tc_frag_data
.tune
)
1229 case PROCESSOR_UNKNOWN
:
1230 /* When cpu_arch_isa is set, cpu_arch_tune shouldn't be
1231 PROCESSOR_UNKNOWN. */
1235 case PROCESSOR_I386
:
1236 case PROCESSOR_I486
:
1237 case PROCESSOR_PENTIUM
:
1238 case PROCESSOR_IAMCU
:
1240 case PROCESSOR_ATHLON
:
1242 case PROCESSOR_AMDFAM10
:
1244 case PROCESSOR_ZNVER
:
1246 case PROCESSOR_GENERIC32
:
1247 /* We use cpu_arch_isa_flags to check if we CAN optimize
1249 if (fragP
->tc_frag_data
.isa_flags
.bitfield
.cpunop
)
1254 case PROCESSOR_PENTIUMPRO
:
1255 case PROCESSOR_PENTIUM4
:
1256 case PROCESSOR_NOCONA
:
1257 case PROCESSOR_CORE
:
1258 case PROCESSOR_CORE2
:
1259 case PROCESSOR_COREI7
:
1260 case PROCESSOR_L1OM
:
1261 case PROCESSOR_K1OM
:
1262 if (fragP
->tc_frag_data
.isa_flags
.bitfield
.cpunop
)
1267 case PROCESSOR_GENERIC64
:
1273 if (patt
== f32_patt
)
1275 /* If the padding is less than 15 bytes, we use the normal
1276 ones. Otherwise, we use a jump instruction and adjust
1280 /* For 64bit, the limit is 3 bytes. */
1281 if (flag_code
== CODE_64BIT
1282 && fragP
->tc_frag_data
.isa_flags
.bitfield
.cpulm
)
1287 memcpy (fragP
->fr_literal
+ fragP
->fr_fix
,
1288 patt
[count
- 1], count
);
1291 memcpy (fragP
->fr_literal
+ fragP
->fr_fix
,
1293 /* Adjust jump offset. */
1294 fragP
->fr_literal
[fragP
->fr_fix
+ 1] = count
- 2;
1299 /* Maximum length of an instruction is 10 byte. If the
1300 padding is greater than 10 bytes and we don't use jump,
1301 we have to break it into smaller pieces. */
1302 int padding
= count
;
1303 while (padding
> 10)
1306 memcpy (fragP
->fr_literal
+ fragP
->fr_fix
+ padding
,
1311 memcpy (fragP
->fr_literal
+ fragP
->fr_fix
,
1312 patt
[padding
- 1], padding
);
1315 fragP
->fr_var
= count
;
1319 operand_type_all_zero (const union i386_operand_type
*x
)
1321 switch (ARRAY_SIZE(x
->array
))
1330 return !x
->array
[0];
1337 operand_type_set (union i386_operand_type
*x
, unsigned int v
)
1339 switch (ARRAY_SIZE(x
->array
))
1354 operand_type_equal (const union i386_operand_type
*x
,
1355 const union i386_operand_type
*y
)
1357 switch (ARRAY_SIZE(x
->array
))
1360 if (x
->array
[2] != y
->array
[2])
1363 if (x
->array
[1] != y
->array
[1])
1366 return x
->array
[0] == y
->array
[0];
1374 cpu_flags_all_zero (const union i386_cpu_flags
*x
)
1376 switch (ARRAY_SIZE(x
->array
))
1385 return !x
->array
[0];
1392 cpu_flags_equal (const union i386_cpu_flags
*x
,
1393 const union i386_cpu_flags
*y
)
1395 switch (ARRAY_SIZE(x
->array
))
1398 if (x
->array
[2] != y
->array
[2])
1401 if (x
->array
[1] != y
->array
[1])
1404 return x
->array
[0] == y
->array
[0];
1412 cpu_flags_check_cpu64 (i386_cpu_flags f
)
1414 return !((flag_code
== CODE_64BIT
&& f
.bitfield
.cpuno64
)
1415 || (flag_code
!= CODE_64BIT
&& f
.bitfield
.cpu64
));
1418 static INLINE i386_cpu_flags
1419 cpu_flags_and (i386_cpu_flags x
, i386_cpu_flags y
)
1421 switch (ARRAY_SIZE (x
.array
))
1424 x
.array
[2] &= y
.array
[2];
1426 x
.array
[1] &= y
.array
[1];
1428 x
.array
[0] &= y
.array
[0];
1436 static INLINE i386_cpu_flags
1437 cpu_flags_or (i386_cpu_flags x
, i386_cpu_flags y
)
1439 switch (ARRAY_SIZE (x
.array
))
1442 x
.array
[2] |= y
.array
[2];
1444 x
.array
[1] |= y
.array
[1];
1446 x
.array
[0] |= y
.array
[0];
1454 static INLINE i386_cpu_flags
1455 cpu_flags_and_not (i386_cpu_flags x
, i386_cpu_flags y
)
1457 switch (ARRAY_SIZE (x
.array
))
1460 x
.array
[2] &= ~y
.array
[2];
1462 x
.array
[1] &= ~y
.array
[1];
1464 x
.array
[0] &= ~y
.array
[0];
1473 valid_iamcu_cpu_flags (const i386_cpu_flags
*flags
)
1475 if (cpu_arch_isa
== PROCESSOR_IAMCU
)
1477 static const i386_cpu_flags iamcu_flags
= CPU_IAMCU_COMPAT_FLAGS
;
1478 i386_cpu_flags compat_flags
;
1479 compat_flags
= cpu_flags_and_not (*flags
, iamcu_flags
);
1480 return cpu_flags_all_zero (&compat_flags
);
1486 #define CPU_FLAGS_ARCH_MATCH 0x1
1487 #define CPU_FLAGS_64BIT_MATCH 0x2
1488 #define CPU_FLAGS_AES_MATCH 0x4
1489 #define CPU_FLAGS_PCLMUL_MATCH 0x8
1490 #define CPU_FLAGS_AVX_MATCH 0x10
1492 #define CPU_FLAGS_32BIT_MATCH \
1493 (CPU_FLAGS_ARCH_MATCH | CPU_FLAGS_AES_MATCH \
1494 | CPU_FLAGS_PCLMUL_MATCH | CPU_FLAGS_AVX_MATCH)
1495 #define CPU_FLAGS_PERFECT_MATCH \
1496 (CPU_FLAGS_32BIT_MATCH | CPU_FLAGS_64BIT_MATCH)
1498 /* Return CPU flags match bits. */
1501 cpu_flags_match (const insn_template
*t
)
1503 i386_cpu_flags x
= t
->cpu_flags
;
1504 int match
= cpu_flags_check_cpu64 (x
) ? CPU_FLAGS_64BIT_MATCH
: 0;
1506 x
.bitfield
.cpu64
= 0;
1507 x
.bitfield
.cpuno64
= 0;
1509 if (cpu_flags_all_zero (&x
))
1511 /* This instruction is available on all archs. */
1512 match
|= CPU_FLAGS_32BIT_MATCH
;
1516 /* This instruction is available only on some archs. */
1517 i386_cpu_flags cpu
= cpu_arch_flags
;
1519 cpu
.bitfield
.cpu64
= 0;
1520 cpu
.bitfield
.cpuno64
= 0;
1521 cpu
= cpu_flags_and (x
, cpu
);
1522 if (!cpu_flags_all_zero (&cpu
))
1524 if (x
.bitfield
.cpuavx
)
1526 /* We only need to check AES/PCLMUL/SSE2AVX with AVX. */
1527 if (cpu
.bitfield
.cpuavx
)
1529 /* Check SSE2AVX. */
1530 if (!t
->opcode_modifier
.sse2avx
|| sse2avx
)
1532 match
|= (CPU_FLAGS_ARCH_MATCH
1533 | CPU_FLAGS_AVX_MATCH
);
1535 if (!x
.bitfield
.cpuaes
|| cpu
.bitfield
.cpuaes
)
1536 match
|= CPU_FLAGS_AES_MATCH
;
1538 if (!x
.bitfield
.cpupclmul
1539 || cpu
.bitfield
.cpupclmul
)
1540 match
|= CPU_FLAGS_PCLMUL_MATCH
;
1544 match
|= CPU_FLAGS_ARCH_MATCH
;
1547 match
|= CPU_FLAGS_32BIT_MATCH
;
1553 static INLINE i386_operand_type
1554 operand_type_and (i386_operand_type x
, i386_operand_type y
)
1556 switch (ARRAY_SIZE (x
.array
))
1559 x
.array
[2] &= y
.array
[2];
1561 x
.array
[1] &= y
.array
[1];
1563 x
.array
[0] &= y
.array
[0];
1571 static INLINE i386_operand_type
1572 operand_type_or (i386_operand_type x
, i386_operand_type y
)
1574 switch (ARRAY_SIZE (x
.array
))
1577 x
.array
[2] |= y
.array
[2];
1579 x
.array
[1] |= y
.array
[1];
1581 x
.array
[0] |= y
.array
[0];
1589 static INLINE i386_operand_type
1590 operand_type_xor (i386_operand_type x
, i386_operand_type y
)
1592 switch (ARRAY_SIZE (x
.array
))
1595 x
.array
[2] ^= y
.array
[2];
1597 x
.array
[1] ^= y
.array
[1];
1599 x
.array
[0] ^= y
.array
[0];
1607 static const i386_operand_type acc32
= OPERAND_TYPE_ACC32
;
1608 static const i386_operand_type acc64
= OPERAND_TYPE_ACC64
;
1609 static const i386_operand_type control
= OPERAND_TYPE_CONTROL
;
1610 static const i386_operand_type inoutportreg
1611 = OPERAND_TYPE_INOUTPORTREG
;
1612 static const i386_operand_type reg16_inoutportreg
1613 = OPERAND_TYPE_REG16_INOUTPORTREG
;
1614 static const i386_operand_type disp16
= OPERAND_TYPE_DISP16
;
1615 static const i386_operand_type disp32
= OPERAND_TYPE_DISP32
;
1616 static const i386_operand_type disp32s
= OPERAND_TYPE_DISP32S
;
1617 static const i386_operand_type disp16_32
= OPERAND_TYPE_DISP16_32
;
1618 static const i386_operand_type anydisp
1619 = OPERAND_TYPE_ANYDISP
;
1620 static const i386_operand_type regxmm
= OPERAND_TYPE_REGXMM
;
1621 static const i386_operand_type regymm
= OPERAND_TYPE_REGYMM
;
1622 static const i386_operand_type regzmm
= OPERAND_TYPE_REGZMM
;
1623 static const i386_operand_type regmask
= OPERAND_TYPE_REGMASK
;
1624 static const i386_operand_type imm8
= OPERAND_TYPE_IMM8
;
1625 static const i386_operand_type imm8s
= OPERAND_TYPE_IMM8S
;
1626 static const i386_operand_type imm16
= OPERAND_TYPE_IMM16
;
1627 static const i386_operand_type imm32
= OPERAND_TYPE_IMM32
;
1628 static const i386_operand_type imm32s
= OPERAND_TYPE_IMM32S
;
1629 static const i386_operand_type imm64
= OPERAND_TYPE_IMM64
;
1630 static const i386_operand_type imm16_32
= OPERAND_TYPE_IMM16_32
;
1631 static const i386_operand_type imm16_32s
= OPERAND_TYPE_IMM16_32S
;
1632 static const i386_operand_type imm16_32_32s
= OPERAND_TYPE_IMM16_32_32S
;
1633 static const i386_operand_type vec_imm4
= OPERAND_TYPE_VEC_IMM4
;
1644 operand_type_check (i386_operand_type t
, enum operand_type c
)
1649 return (t
.bitfield
.reg8
1652 || t
.bitfield
.reg64
);
1655 return (t
.bitfield
.imm8
1659 || t
.bitfield
.imm32s
1660 || t
.bitfield
.imm64
);
1663 return (t
.bitfield
.disp8
1664 || t
.bitfield
.disp16
1665 || t
.bitfield
.disp32
1666 || t
.bitfield
.disp32s
1667 || t
.bitfield
.disp64
);
1670 return (t
.bitfield
.disp8
1671 || t
.bitfield
.disp16
1672 || t
.bitfield
.disp32
1673 || t
.bitfield
.disp32s
1674 || t
.bitfield
.disp64
1675 || t
.bitfield
.baseindex
);
1684 /* Return 1 if there is no conflict in 8bit/16bit/32bit/64bit on
1685 operand J for instruction template T. */
1688 match_reg_size (const insn_template
*t
, unsigned int j
)
1690 return !((i
.types
[j
].bitfield
.byte
1691 && !t
->operand_types
[j
].bitfield
.byte
)
1692 || (i
.types
[j
].bitfield
.word
1693 && !t
->operand_types
[j
].bitfield
.word
)
1694 || (i
.types
[j
].bitfield
.dword
1695 && !t
->operand_types
[j
].bitfield
.dword
)
1696 || (i
.types
[j
].bitfield
.qword
1697 && !t
->operand_types
[j
].bitfield
.qword
));
1700 /* Return 1 if there is no conflict in any size on operand J for
1701 instruction template T. */
1704 match_mem_size (const insn_template
*t
, unsigned int j
)
1706 return (match_reg_size (t
, j
)
1707 && !((i
.types
[j
].bitfield
.unspecified
1709 && !t
->operand_types
[j
].bitfield
.unspecified
)
1710 || (i
.types
[j
].bitfield
.fword
1711 && !t
->operand_types
[j
].bitfield
.fword
)
1712 || (i
.types
[j
].bitfield
.tbyte
1713 && !t
->operand_types
[j
].bitfield
.tbyte
)
1714 || (i
.types
[j
].bitfield
.xmmword
1715 && !t
->operand_types
[j
].bitfield
.xmmword
)
1716 || (i
.types
[j
].bitfield
.ymmword
1717 && !t
->operand_types
[j
].bitfield
.ymmword
)
1718 || (i
.types
[j
].bitfield
.zmmword
1719 && !t
->operand_types
[j
].bitfield
.zmmword
)));
1722 /* Return 1 if there is no size conflict on any operands for
1723 instruction template T. */
1726 operand_size_match (const insn_template
*t
)
1731 /* Don't check jump instructions. */
1732 if (t
->opcode_modifier
.jump
1733 || t
->opcode_modifier
.jumpbyte
1734 || t
->opcode_modifier
.jumpdword
1735 || t
->opcode_modifier
.jumpintersegment
)
1738 /* Check memory and accumulator operand size. */
1739 for (j
= 0; j
< i
.operands
; j
++)
1741 if (t
->operand_types
[j
].bitfield
.anysize
)
1744 if (t
->operand_types
[j
].bitfield
.acc
&& !match_reg_size (t
, j
))
1750 if (i
.types
[j
].bitfield
.mem
&& !match_mem_size (t
, j
))
1759 else if (!t
->opcode_modifier
.d
&& !t
->opcode_modifier
.floatd
)
1762 i
.error
= operand_size_mismatch
;
1766 /* Check reverse. */
1767 gas_assert (i
.operands
== 2);
1770 for (j
= 0; j
< 2; j
++)
1772 if (t
->operand_types
[j
].bitfield
.acc
1773 && !match_reg_size (t
, j
? 0 : 1))
1776 if (i
.types
[j
].bitfield
.mem
1777 && !match_mem_size (t
, j
? 0 : 1))
1785 operand_type_match (i386_operand_type overlap
,
1786 i386_operand_type given
)
1788 i386_operand_type temp
= overlap
;
1790 temp
.bitfield
.jumpabsolute
= 0;
1791 temp
.bitfield
.unspecified
= 0;
1792 temp
.bitfield
.byte
= 0;
1793 temp
.bitfield
.word
= 0;
1794 temp
.bitfield
.dword
= 0;
1795 temp
.bitfield
.fword
= 0;
1796 temp
.bitfield
.qword
= 0;
1797 temp
.bitfield
.tbyte
= 0;
1798 temp
.bitfield
.xmmword
= 0;
1799 temp
.bitfield
.ymmword
= 0;
1800 temp
.bitfield
.zmmword
= 0;
1801 if (operand_type_all_zero (&temp
))
1804 if (given
.bitfield
.baseindex
== overlap
.bitfield
.baseindex
1805 && given
.bitfield
.jumpabsolute
== overlap
.bitfield
.jumpabsolute
)
1809 i
.error
= operand_type_mismatch
;
1813 /* If given types g0 and g1 are registers they must be of the same type
1814 unless the expected operand type register overlap is null.
1815 Note that Acc in a template matches every size of reg. */
1818 operand_type_register_match (i386_operand_type m0
,
1819 i386_operand_type g0
,
1820 i386_operand_type t0
,
1821 i386_operand_type m1
,
1822 i386_operand_type g1
,
1823 i386_operand_type t1
)
1825 if (!operand_type_check (g0
, reg
))
1828 if (!operand_type_check (g1
, reg
))
1831 if (g0
.bitfield
.reg8
== g1
.bitfield
.reg8
1832 && g0
.bitfield
.reg16
== g1
.bitfield
.reg16
1833 && g0
.bitfield
.reg32
== g1
.bitfield
.reg32
1834 && g0
.bitfield
.reg64
== g1
.bitfield
.reg64
)
1837 if (m0
.bitfield
.acc
)
1839 t0
.bitfield
.reg8
= 1;
1840 t0
.bitfield
.reg16
= 1;
1841 t0
.bitfield
.reg32
= 1;
1842 t0
.bitfield
.reg64
= 1;
1845 if (m1
.bitfield
.acc
)
1847 t1
.bitfield
.reg8
= 1;
1848 t1
.bitfield
.reg16
= 1;
1849 t1
.bitfield
.reg32
= 1;
1850 t1
.bitfield
.reg64
= 1;
1853 if (!(t0
.bitfield
.reg8
& t1
.bitfield
.reg8
)
1854 && !(t0
.bitfield
.reg16
& t1
.bitfield
.reg16
)
1855 && !(t0
.bitfield
.reg32
& t1
.bitfield
.reg32
)
1856 && !(t0
.bitfield
.reg64
& t1
.bitfield
.reg64
))
1859 i
.error
= register_type_mismatch
;
1864 static INLINE
unsigned int
1865 register_number (const reg_entry
*r
)
1867 unsigned int nr
= r
->reg_num
;
1869 if (r
->reg_flags
& RegRex
)
1875 static INLINE
unsigned int
1876 mode_from_disp_size (i386_operand_type t
)
1878 if (t
.bitfield
.disp8
|| t
.bitfield
.vec_disp8
)
1880 else if (t
.bitfield
.disp16
1881 || t
.bitfield
.disp32
1882 || t
.bitfield
.disp32s
)
1889 fits_in_signed_byte (addressT num
)
1891 return num
+ 0x80 <= 0xff;
1895 fits_in_unsigned_byte (addressT num
)
1901 fits_in_unsigned_word (addressT num
)
1903 return num
<= 0xffff;
1907 fits_in_signed_word (addressT num
)
1909 return num
+ 0x8000 <= 0xffff;
1913 fits_in_signed_long (addressT num ATTRIBUTE_UNUSED
)
1918 return num
+ 0x80000000 <= 0xffffffff;
1920 } /* fits_in_signed_long() */
1923 fits_in_unsigned_long (addressT num ATTRIBUTE_UNUSED
)
1928 return num
<= 0xffffffff;
1930 } /* fits_in_unsigned_long() */
1933 fits_in_vec_disp8 (offsetT num
)
1935 int shift
= i
.memshift
;
1941 mask
= (1 << shift
) - 1;
1943 /* Return 0 if NUM isn't properly aligned. */
1947 /* Check if NUM will fit in 8bit after shift. */
1948 return fits_in_signed_byte (num
>> shift
);
1952 fits_in_imm4 (offsetT num
)
1954 return (num
& 0xf) == num
;
1957 static i386_operand_type
1958 smallest_imm_type (offsetT num
)
1960 i386_operand_type t
;
1962 operand_type_set (&t
, 0);
1963 t
.bitfield
.imm64
= 1;
1965 if (cpu_arch_tune
!= PROCESSOR_I486
&& num
== 1)
1967 /* This code is disabled on the 486 because all the Imm1 forms
1968 in the opcode table are slower on the i486. They're the
1969 versions with the implicitly specified single-position
1970 displacement, which has another syntax if you really want to
1972 t
.bitfield
.imm1
= 1;
1973 t
.bitfield
.imm8
= 1;
1974 t
.bitfield
.imm8s
= 1;
1975 t
.bitfield
.imm16
= 1;
1976 t
.bitfield
.imm32
= 1;
1977 t
.bitfield
.imm32s
= 1;
1979 else if (fits_in_signed_byte (num
))
1981 t
.bitfield
.imm8
= 1;
1982 t
.bitfield
.imm8s
= 1;
1983 t
.bitfield
.imm16
= 1;
1984 t
.bitfield
.imm32
= 1;
1985 t
.bitfield
.imm32s
= 1;
1987 else if (fits_in_unsigned_byte (num
))
1989 t
.bitfield
.imm8
= 1;
1990 t
.bitfield
.imm16
= 1;
1991 t
.bitfield
.imm32
= 1;
1992 t
.bitfield
.imm32s
= 1;
1994 else if (fits_in_signed_word (num
) || fits_in_unsigned_word (num
))
1996 t
.bitfield
.imm16
= 1;
1997 t
.bitfield
.imm32
= 1;
1998 t
.bitfield
.imm32s
= 1;
2000 else if (fits_in_signed_long (num
))
2002 t
.bitfield
.imm32
= 1;
2003 t
.bitfield
.imm32s
= 1;
2005 else if (fits_in_unsigned_long (num
))
2006 t
.bitfield
.imm32
= 1;
2012 offset_in_range (offsetT val
, int size
)
2018 case 1: mask
= ((addressT
) 1 << 8) - 1; break;
2019 case 2: mask
= ((addressT
) 1 << 16) - 1; break;
2020 case 4: mask
= ((addressT
) 2 << 31) - 1; break;
2022 case 8: mask
= ((addressT
) 2 << 63) - 1; break;
2028 /* If BFD64, sign extend val for 32bit address mode. */
2029 if (flag_code
!= CODE_64BIT
2030 || i
.prefix
[ADDR_PREFIX
])
2031 if ((val
& ~(((addressT
) 2 << 31) - 1)) == 0)
2032 val
= (val
^ ((addressT
) 1 << 31)) - ((addressT
) 1 << 31);
2035 if ((val
& ~mask
) != 0 && (val
& ~mask
) != ~mask
)
2037 char buf1
[40], buf2
[40];
2039 sprint_value (buf1
, val
);
2040 sprint_value (buf2
, val
& mask
);
2041 as_warn (_("%s shortened to %s"), buf1
, buf2
);
2055 a. PREFIX_EXIST if attempting to add a prefix where one from the
2056 same class already exists.
2057 b. PREFIX_LOCK if lock prefix is added.
2058 c. PREFIX_REP if rep/repne prefix is added.
2059 d. PREFIX_OTHER if other prefix is added.
2062 static enum PREFIX_GROUP
2063 add_prefix (unsigned int prefix
)
2065 enum PREFIX_GROUP ret
= PREFIX_OTHER
;
2068 if (prefix
>= REX_OPCODE
&& prefix
< REX_OPCODE
+ 16
2069 && flag_code
== CODE_64BIT
)
2071 if ((i
.prefix
[REX_PREFIX
] & prefix
& REX_W
)
2072 || ((i
.prefix
[REX_PREFIX
] & (REX_R
| REX_X
| REX_B
))
2073 && (prefix
& (REX_R
| REX_X
| REX_B
))))
2084 case CS_PREFIX_OPCODE
:
2085 case DS_PREFIX_OPCODE
:
2086 case ES_PREFIX_OPCODE
:
2087 case FS_PREFIX_OPCODE
:
2088 case GS_PREFIX_OPCODE
:
2089 case SS_PREFIX_OPCODE
:
2093 case REPNE_PREFIX_OPCODE
:
2094 case REPE_PREFIX_OPCODE
:
2099 case LOCK_PREFIX_OPCODE
:
2108 case ADDR_PREFIX_OPCODE
:
2112 case DATA_PREFIX_OPCODE
:
2116 if (i
.prefix
[q
] != 0)
2124 i
.prefix
[q
] |= prefix
;
2127 as_bad (_("same type of prefix used twice"));
2133 update_code_flag (int value
, int check
)
2135 PRINTF_LIKE ((*as_error
));
2137 flag_code
= (enum flag_code
) value
;
2138 if (flag_code
== CODE_64BIT
)
2140 cpu_arch_flags
.bitfield
.cpu64
= 1;
2141 cpu_arch_flags
.bitfield
.cpuno64
= 0;
2145 cpu_arch_flags
.bitfield
.cpu64
= 0;
2146 cpu_arch_flags
.bitfield
.cpuno64
= 1;
2148 if (value
== CODE_64BIT
&& !cpu_arch_flags
.bitfield
.cpulm
)
2151 as_error
= as_fatal
;
2154 (*as_error
) (_("64bit mode not supported on `%s'."),
2155 cpu_arch_name
? cpu_arch_name
: default_arch
);
2157 if (value
== CODE_32BIT
&& !cpu_arch_flags
.bitfield
.cpui386
)
2160 as_error
= as_fatal
;
2163 (*as_error
) (_("32bit mode not supported on `%s'."),
2164 cpu_arch_name
? cpu_arch_name
: default_arch
);
2166 stackop_size
= '\0';
2170 set_code_flag (int value
)
2172 update_code_flag (value
, 0);
2176 set_16bit_gcc_code_flag (int new_code_flag
)
2178 flag_code
= (enum flag_code
) new_code_flag
;
2179 if (flag_code
!= CODE_16BIT
)
2181 cpu_arch_flags
.bitfield
.cpu64
= 0;
2182 cpu_arch_flags
.bitfield
.cpuno64
= 1;
2183 stackop_size
= LONG_MNEM_SUFFIX
;
2187 set_intel_syntax (int syntax_flag
)
2189 /* Find out if register prefixing is specified. */
2190 int ask_naked_reg
= 0;
2193 if (!is_end_of_line
[(unsigned char) *input_line_pointer
])
2196 int e
= get_symbol_name (&string
);
2198 if (strcmp (string
, "prefix") == 0)
2200 else if (strcmp (string
, "noprefix") == 0)
2203 as_bad (_("bad argument to syntax directive."));
2204 (void) restore_line_pointer (e
);
2206 demand_empty_rest_of_line ();
2208 intel_syntax
= syntax_flag
;
2210 if (ask_naked_reg
== 0)
2211 allow_naked_reg
= (intel_syntax
2212 && (bfd_get_symbol_leading_char (stdoutput
) != '\0'));
2214 allow_naked_reg
= (ask_naked_reg
< 0);
2216 expr_set_rank (O_full_ptr
, syntax_flag
? 10 : 0);
2218 identifier_chars
['%'] = intel_syntax
&& allow_naked_reg
? '%' : 0;
2219 identifier_chars
['$'] = intel_syntax
? '$' : 0;
2220 register_prefix
= allow_naked_reg
? "" : "%";
2224 set_intel_mnemonic (int mnemonic_flag
)
2226 intel_mnemonic
= mnemonic_flag
;
2230 set_allow_index_reg (int flag
)
2232 allow_index_reg
= flag
;
2236 set_check (int what
)
2238 enum check_kind
*kind
;
2243 kind
= &operand_check
;
2254 if (!is_end_of_line
[(unsigned char) *input_line_pointer
])
2257 int e
= get_symbol_name (&string
);
2259 if (strcmp (string
, "none") == 0)
2261 else if (strcmp (string
, "warning") == 0)
2262 *kind
= check_warning
;
2263 else if (strcmp (string
, "error") == 0)
2264 *kind
= check_error
;
2266 as_bad (_("bad argument to %s_check directive."), str
);
2267 (void) restore_line_pointer (e
);
2270 as_bad (_("missing argument for %s_check directive"), str
);
2272 demand_empty_rest_of_line ();
2276 check_cpu_arch_compatible (const char *name ATTRIBUTE_UNUSED
,
2277 i386_cpu_flags new_flag ATTRIBUTE_UNUSED
)
2279 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
2280 static const char *arch
;
2282 /* Intel LIOM is only supported on ELF. */
2288 /* Use cpu_arch_name if it is set in md_parse_option. Otherwise
2289 use default_arch. */
2290 arch
= cpu_arch_name
;
2292 arch
= default_arch
;
2295 /* If we are targeting Intel MCU, we must enable it. */
2296 if (get_elf_backend_data (stdoutput
)->elf_machine_code
!= EM_IAMCU
2297 || new_flag
.bitfield
.cpuiamcu
)
2300 /* If we are targeting Intel L1OM, we must enable it. */
2301 if (get_elf_backend_data (stdoutput
)->elf_machine_code
!= EM_L1OM
2302 || new_flag
.bitfield
.cpul1om
)
2305 /* If we are targeting Intel K1OM, we must enable it. */
2306 if (get_elf_backend_data (stdoutput
)->elf_machine_code
!= EM_K1OM
2307 || new_flag
.bitfield
.cpuk1om
)
2310 as_bad (_("`%s' is not supported on `%s'"), name
, arch
);
2315 set_cpu_arch (int dummy ATTRIBUTE_UNUSED
)
2319 if (!is_end_of_line
[(unsigned char) *input_line_pointer
])
2322 int e
= get_symbol_name (&string
);
2324 i386_cpu_flags flags
;
2326 for (j
= 0; j
< ARRAY_SIZE (cpu_arch
); j
++)
2328 if (strcmp (string
, cpu_arch
[j
].name
) == 0)
2330 check_cpu_arch_compatible (string
, cpu_arch
[j
].flags
);
2334 cpu_arch_name
= cpu_arch
[j
].name
;
2335 cpu_sub_arch_name
= NULL
;
2336 cpu_arch_flags
= cpu_arch
[j
].flags
;
2337 if (flag_code
== CODE_64BIT
)
2339 cpu_arch_flags
.bitfield
.cpu64
= 1;
2340 cpu_arch_flags
.bitfield
.cpuno64
= 0;
2344 cpu_arch_flags
.bitfield
.cpu64
= 0;
2345 cpu_arch_flags
.bitfield
.cpuno64
= 1;
2347 cpu_arch_isa
= cpu_arch
[j
].type
;
2348 cpu_arch_isa_flags
= cpu_arch
[j
].flags
;
2349 if (!cpu_arch_tune_set
)
2351 cpu_arch_tune
= cpu_arch_isa
;
2352 cpu_arch_tune_flags
= cpu_arch_isa_flags
;
2357 if (!cpu_arch
[j
].negated
)
2358 flags
= cpu_flags_or (cpu_arch_flags
,
2361 flags
= cpu_flags_and_not (cpu_arch_flags
,
2364 if (!valid_iamcu_cpu_flags (&flags
))
2365 as_fatal (_("`%s' isn't valid for Intel MCU"),
2367 else if (!cpu_flags_equal (&flags
, &cpu_arch_flags
))
2369 if (cpu_sub_arch_name
)
2371 char *name
= cpu_sub_arch_name
;
2372 cpu_sub_arch_name
= concat (name
,
2374 (const char *) NULL
);
2378 cpu_sub_arch_name
= xstrdup (cpu_arch
[j
].name
);
2379 cpu_arch_flags
= flags
;
2380 cpu_arch_isa_flags
= flags
;
2382 (void) restore_line_pointer (e
);
2383 demand_empty_rest_of_line ();
2387 if (j
>= ARRAY_SIZE (cpu_arch
))
2388 as_bad (_("no such architecture: `%s'"), string
);
2390 *input_line_pointer
= e
;
2393 as_bad (_("missing cpu architecture"));
2395 no_cond_jump_promotion
= 0;
2396 if (*input_line_pointer
== ','
2397 && !is_end_of_line
[(unsigned char) input_line_pointer
[1]])
2402 ++input_line_pointer
;
2403 e
= get_symbol_name (&string
);
2405 if (strcmp (string
, "nojumps") == 0)
2406 no_cond_jump_promotion
= 1;
2407 else if (strcmp (string
, "jumps") == 0)
2410 as_bad (_("no such architecture modifier: `%s'"), string
);
2412 (void) restore_line_pointer (e
);
2415 demand_empty_rest_of_line ();
2418 enum bfd_architecture
2421 if (cpu_arch_isa
== PROCESSOR_L1OM
)
2423 if (OUTPUT_FLAVOR
!= bfd_target_elf_flavour
2424 || flag_code
!= CODE_64BIT
)
2425 as_fatal (_("Intel L1OM is 64bit ELF only"));
2426 return bfd_arch_l1om
;
2428 else if (cpu_arch_isa
== PROCESSOR_K1OM
)
2430 if (OUTPUT_FLAVOR
!= bfd_target_elf_flavour
2431 || flag_code
!= CODE_64BIT
)
2432 as_fatal (_("Intel K1OM is 64bit ELF only"));
2433 return bfd_arch_k1om
;
2435 else if (cpu_arch_isa
== PROCESSOR_IAMCU
)
2437 if (OUTPUT_FLAVOR
!= bfd_target_elf_flavour
2438 || flag_code
== CODE_64BIT
)
2439 as_fatal (_("Intel MCU is 32bit ELF only"));
2440 return bfd_arch_iamcu
;
2443 return bfd_arch_i386
;
2449 if (!strncmp (default_arch
, "x86_64", 6))
2451 if (cpu_arch_isa
== PROCESSOR_L1OM
)
2453 if (OUTPUT_FLAVOR
!= bfd_target_elf_flavour
2454 || default_arch
[6] != '\0')
2455 as_fatal (_("Intel L1OM is 64bit ELF only"));
2456 return bfd_mach_l1om
;
2458 else if (cpu_arch_isa
== PROCESSOR_K1OM
)
2460 if (OUTPUT_FLAVOR
!= bfd_target_elf_flavour
2461 || default_arch
[6] != '\0')
2462 as_fatal (_("Intel K1OM is 64bit ELF only"));
2463 return bfd_mach_k1om
;
2465 else if (default_arch
[6] == '\0')
2466 return bfd_mach_x86_64
;
2468 return bfd_mach_x64_32
;
2470 else if (!strcmp (default_arch
, "i386")
2471 || !strcmp (default_arch
, "iamcu"))
2473 if (cpu_arch_isa
== PROCESSOR_IAMCU
)
2475 if (OUTPUT_FLAVOR
!= bfd_target_elf_flavour
)
2476 as_fatal (_("Intel MCU is 32bit ELF only"));
2477 return bfd_mach_i386_iamcu
;
2480 return bfd_mach_i386_i386
;
2483 as_fatal (_("unknown architecture"));
2489 const char *hash_err
;
2491 /* Initialize op_hash hash table. */
2492 op_hash
= hash_new ();
2495 const insn_template
*optab
;
2496 templates
*core_optab
;
2498 /* Setup for loop. */
2500 core_optab
= (templates
*) xmalloc (sizeof (templates
));
2501 core_optab
->start
= optab
;
2506 if (optab
->name
== NULL
2507 || strcmp (optab
->name
, (optab
- 1)->name
) != 0)
2509 /* different name --> ship out current template list;
2510 add to hash table; & begin anew. */
2511 core_optab
->end
= optab
;
2512 hash_err
= hash_insert (op_hash
,
2514 (void *) core_optab
);
2517 as_fatal (_("can't hash %s: %s"),
2521 if (optab
->name
== NULL
)
2523 core_optab
= (templates
*) xmalloc (sizeof (templates
));
2524 core_optab
->start
= optab
;
2529 /* Initialize reg_hash hash table. */
2530 reg_hash
= hash_new ();
2532 const reg_entry
*regtab
;
2533 unsigned int regtab_size
= i386_regtab_size
;
2535 for (regtab
= i386_regtab
; regtab_size
--; regtab
++)
2537 hash_err
= hash_insert (reg_hash
, regtab
->reg_name
, (void *) regtab
);
2539 as_fatal (_("can't hash %s: %s"),
2545 /* Fill in lexical tables: mnemonic_chars, operand_chars. */
2550 for (c
= 0; c
< 256; c
++)
2555 mnemonic_chars
[c
] = c
;
2556 register_chars
[c
] = c
;
2557 operand_chars
[c
] = c
;
2559 else if (ISLOWER (c
))
2561 mnemonic_chars
[c
] = c
;
2562 register_chars
[c
] = c
;
2563 operand_chars
[c
] = c
;
2565 else if (ISUPPER (c
))
2567 mnemonic_chars
[c
] = TOLOWER (c
);
2568 register_chars
[c
] = mnemonic_chars
[c
];
2569 operand_chars
[c
] = c
;
2571 else if (c
== '{' || c
== '}')
2572 operand_chars
[c
] = c
;
2574 if (ISALPHA (c
) || ISDIGIT (c
))
2575 identifier_chars
[c
] = c
;
2578 identifier_chars
[c
] = c
;
2579 operand_chars
[c
] = c
;
2584 identifier_chars
['@'] = '@';
2587 identifier_chars
['?'] = '?';
2588 operand_chars
['?'] = '?';
2590 digit_chars
['-'] = '-';
2591 mnemonic_chars
['_'] = '_';
2592 mnemonic_chars
['-'] = '-';
2593 mnemonic_chars
['.'] = '.';
2594 identifier_chars
['_'] = '_';
2595 identifier_chars
['.'] = '.';
2597 for (p
= operand_special_chars
; *p
!= '\0'; p
++)
2598 operand_chars
[(unsigned char) *p
] = *p
;
2601 if (flag_code
== CODE_64BIT
)
2603 #if defined (OBJ_COFF) && defined (TE_PE)
2604 x86_dwarf2_return_column
= (OUTPUT_FLAVOR
== bfd_target_coff_flavour
2607 x86_dwarf2_return_column
= 16;
2609 x86_cie_data_alignment
= -8;
2613 x86_dwarf2_return_column
= 8;
2614 x86_cie_data_alignment
= -4;
2619 i386_print_statistics (FILE *file
)
2621 hash_print_statistics (file
, "i386 opcode", op_hash
);
2622 hash_print_statistics (file
, "i386 register", reg_hash
);
2627 /* Debugging routines for md_assemble. */
2628 static void pte (insn_template
*);
2629 static void pt (i386_operand_type
);
2630 static void pe (expressionS
*);
2631 static void ps (symbolS
*);
2634 pi (char *line
, i386_insn
*x
)
2638 fprintf (stdout
, "%s: template ", line
);
2640 fprintf (stdout
, " address: base %s index %s scale %x\n",
2641 x
->base_reg
? x
->base_reg
->reg_name
: "none",
2642 x
->index_reg
? x
->index_reg
->reg_name
: "none",
2643 x
->log2_scale_factor
);
2644 fprintf (stdout
, " modrm: mode %x reg %x reg/mem %x\n",
2645 x
->rm
.mode
, x
->rm
.reg
, x
->rm
.regmem
);
2646 fprintf (stdout
, " sib: base %x index %x scale %x\n",
2647 x
->sib
.base
, x
->sib
.index
, x
->sib
.scale
);
2648 fprintf (stdout
, " rex: 64bit %x extX %x extY %x extZ %x\n",
2649 (x
->rex
& REX_W
) != 0,
2650 (x
->rex
& REX_R
) != 0,
2651 (x
->rex
& REX_X
) != 0,
2652 (x
->rex
& REX_B
) != 0);
2653 for (j
= 0; j
< x
->operands
; j
++)
2655 fprintf (stdout
, " #%d: ", j
+ 1);
2657 fprintf (stdout
, "\n");
2658 if (x
->types
[j
].bitfield
.reg8
2659 || x
->types
[j
].bitfield
.reg16
2660 || x
->types
[j
].bitfield
.reg32
2661 || x
->types
[j
].bitfield
.reg64
2662 || x
->types
[j
].bitfield
.regmmx
2663 || x
->types
[j
].bitfield
.regxmm
2664 || x
->types
[j
].bitfield
.regymm
2665 || x
->types
[j
].bitfield
.regzmm
2666 || x
->types
[j
].bitfield
.sreg2
2667 || x
->types
[j
].bitfield
.sreg3
2668 || x
->types
[j
].bitfield
.control
2669 || x
->types
[j
].bitfield
.debug
2670 || x
->types
[j
].bitfield
.test
)
2671 fprintf (stdout
, "%s\n", x
->op
[j
].regs
->reg_name
);
2672 if (operand_type_check (x
->types
[j
], imm
))
2674 if (operand_type_check (x
->types
[j
], disp
))
2675 pe (x
->op
[j
].disps
);
2680 pte (insn_template
*t
)
2683 fprintf (stdout
, " %d operands ", t
->operands
);
2684 fprintf (stdout
, "opcode %x ", t
->base_opcode
);
2685 if (t
->extension_opcode
!= None
)
2686 fprintf (stdout
, "ext %x ", t
->extension_opcode
);
2687 if (t
->opcode_modifier
.d
)
2688 fprintf (stdout
, "D");
2689 if (t
->opcode_modifier
.w
)
2690 fprintf (stdout
, "W");
2691 fprintf (stdout
, "\n");
2692 for (j
= 0; j
< t
->operands
; j
++)
2694 fprintf (stdout
, " #%d type ", j
+ 1);
2695 pt (t
->operand_types
[j
]);
2696 fprintf (stdout
, "\n");
2703 fprintf (stdout
, " operation %d\n", e
->X_op
);
2704 fprintf (stdout
, " add_number %ld (%lx)\n",
2705 (long) e
->X_add_number
, (long) e
->X_add_number
);
2706 if (e
->X_add_symbol
)
2708 fprintf (stdout
, " add_symbol ");
2709 ps (e
->X_add_symbol
);
2710 fprintf (stdout
, "\n");
2714 fprintf (stdout
, " op_symbol ");
2715 ps (e
->X_op_symbol
);
2716 fprintf (stdout
, "\n");
2723 fprintf (stdout
, "%s type %s%s",
2725 S_IS_EXTERNAL (s
) ? "EXTERNAL " : "",
2726 segment_name (S_GET_SEGMENT (s
)));
2729 static struct type_name
2731 i386_operand_type mask
;
2734 const type_names
[] =
2736 { OPERAND_TYPE_REG8
, "r8" },
2737 { OPERAND_TYPE_REG16
, "r16" },
2738 { OPERAND_TYPE_REG32
, "r32" },
2739 { OPERAND_TYPE_REG64
, "r64" },
2740 { OPERAND_TYPE_IMM8
, "i8" },
2741 { OPERAND_TYPE_IMM8
, "i8s" },
2742 { OPERAND_TYPE_IMM16
, "i16" },
2743 { OPERAND_TYPE_IMM32
, "i32" },
2744 { OPERAND_TYPE_IMM32S
, "i32s" },
2745 { OPERAND_TYPE_IMM64
, "i64" },
2746 { OPERAND_TYPE_IMM1
, "i1" },
2747 { OPERAND_TYPE_BASEINDEX
, "BaseIndex" },
2748 { OPERAND_TYPE_DISP8
, "d8" },
2749 { OPERAND_TYPE_DISP16
, "d16" },
2750 { OPERAND_TYPE_DISP32
, "d32" },
2751 { OPERAND_TYPE_DISP32S
, "d32s" },
2752 { OPERAND_TYPE_DISP64
, "d64" },
2753 { OPERAND_TYPE_VEC_DISP8
, "Vector d8" },
2754 { OPERAND_TYPE_INOUTPORTREG
, "InOutPortReg" },
2755 { OPERAND_TYPE_SHIFTCOUNT
, "ShiftCount" },
2756 { OPERAND_TYPE_CONTROL
, "control reg" },
2757 { OPERAND_TYPE_TEST
, "test reg" },
2758 { OPERAND_TYPE_DEBUG
, "debug reg" },
2759 { OPERAND_TYPE_FLOATREG
, "FReg" },
2760 { OPERAND_TYPE_FLOATACC
, "FAcc" },
2761 { OPERAND_TYPE_SREG2
, "SReg2" },
2762 { OPERAND_TYPE_SREG3
, "SReg3" },
2763 { OPERAND_TYPE_ACC
, "Acc" },
2764 { OPERAND_TYPE_JUMPABSOLUTE
, "Jump Absolute" },
2765 { OPERAND_TYPE_REGMMX
, "rMMX" },
2766 { OPERAND_TYPE_REGXMM
, "rXMM" },
2767 { OPERAND_TYPE_REGYMM
, "rYMM" },
2768 { OPERAND_TYPE_REGZMM
, "rZMM" },
2769 { OPERAND_TYPE_REGMASK
, "Mask reg" },
2770 { OPERAND_TYPE_ESSEG
, "es" },
2774 pt (i386_operand_type t
)
2777 i386_operand_type a
;
2779 for (j
= 0; j
< ARRAY_SIZE (type_names
); j
++)
2781 a
= operand_type_and (t
, type_names
[j
].mask
);
2782 if (!operand_type_all_zero (&a
))
2783 fprintf (stdout
, "%s, ", type_names
[j
].name
);
2788 #endif /* DEBUG386 */
2790 static bfd_reloc_code_real_type
2791 reloc (unsigned int size
,
2794 bfd_reloc_code_real_type other
)
2796 if (other
!= NO_RELOC
)
2798 reloc_howto_type
*rel
;
2803 case BFD_RELOC_X86_64_GOT32
:
2804 return BFD_RELOC_X86_64_GOT64
;
2806 case BFD_RELOC_X86_64_GOTPLT64
:
2807 return BFD_RELOC_X86_64_GOTPLT64
;
2809 case BFD_RELOC_X86_64_PLTOFF64
:
2810 return BFD_RELOC_X86_64_PLTOFF64
;
2812 case BFD_RELOC_X86_64_GOTPC32
:
2813 other
= BFD_RELOC_X86_64_GOTPC64
;
2815 case BFD_RELOC_X86_64_GOTPCREL
:
2816 other
= BFD_RELOC_X86_64_GOTPCREL64
;
2818 case BFD_RELOC_X86_64_TPOFF32
:
2819 other
= BFD_RELOC_X86_64_TPOFF64
;
2821 case BFD_RELOC_X86_64_DTPOFF32
:
2822 other
= BFD_RELOC_X86_64_DTPOFF64
;
2828 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
2829 if (other
== BFD_RELOC_SIZE32
)
2832 other
= BFD_RELOC_SIZE64
;
2835 as_bad (_("there are no pc-relative size relocations"));
2841 /* Sign-checking 4-byte relocations in 16-/32-bit code is pointless. */
2842 if (size
== 4 && (flag_code
!= CODE_64BIT
|| disallow_64bit_reloc
))
2845 rel
= bfd_reloc_type_lookup (stdoutput
, other
);
2847 as_bad (_("unknown relocation (%u)"), other
);
2848 else if (size
!= bfd_get_reloc_size (rel
))
2849 as_bad (_("%u-byte relocation cannot be applied to %u-byte field"),
2850 bfd_get_reloc_size (rel
),
2852 else if (pcrel
&& !rel
->pc_relative
)
2853 as_bad (_("non-pc-relative relocation for pc-relative field"));
2854 else if ((rel
->complain_on_overflow
== complain_overflow_signed
2856 || (rel
->complain_on_overflow
== complain_overflow_unsigned
2858 as_bad (_("relocated field and relocation type differ in signedness"));
2867 as_bad (_("there are no unsigned pc-relative relocations"));
2870 case 1: return BFD_RELOC_8_PCREL
;
2871 case 2: return BFD_RELOC_16_PCREL
;
2872 case 4: return BFD_RELOC_32_PCREL
;
2873 case 8: return BFD_RELOC_64_PCREL
;
2875 as_bad (_("cannot do %u byte pc-relative relocation"), size
);
2882 case 4: return BFD_RELOC_X86_64_32S
;
2887 case 1: return BFD_RELOC_8
;
2888 case 2: return BFD_RELOC_16
;
2889 case 4: return BFD_RELOC_32
;
2890 case 8: return BFD_RELOC_64
;
2892 as_bad (_("cannot do %s %u byte relocation"),
2893 sign
> 0 ? "signed" : "unsigned", size
);
2899 /* Here we decide which fixups can be adjusted to make them relative to
2900 the beginning of the section instead of the symbol. Basically we need
2901 to make sure that the dynamic relocations are done correctly, so in
2902 some cases we force the original symbol to be used. */
2905 tc_i386_fix_adjustable (fixS
*fixP ATTRIBUTE_UNUSED
)
2907 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
2911 /* Don't adjust pc-relative references to merge sections in 64-bit
2913 if (use_rela_relocations
2914 && (S_GET_SEGMENT (fixP
->fx_addsy
)->flags
& SEC_MERGE
) != 0
2918 /* The x86_64 GOTPCREL are represented as 32bit PCrel relocations
2919 and changed later by validate_fix. */
2920 if (GOT_symbol
&& fixP
->fx_subsy
== GOT_symbol
2921 && fixP
->fx_r_type
== BFD_RELOC_32_PCREL
)
2924 /* Adjust_reloc_syms doesn't know about the GOT. Need to keep symbol
2925 for size relocations. */
2926 if (fixP
->fx_r_type
== BFD_RELOC_SIZE32
2927 || fixP
->fx_r_type
== BFD_RELOC_SIZE64
2928 || fixP
->fx_r_type
== BFD_RELOC_386_GOTOFF
2929 || fixP
->fx_r_type
== BFD_RELOC_386_PLT32
2930 || fixP
->fx_r_type
== BFD_RELOC_386_GOT32
2931 || fixP
->fx_r_type
== BFD_RELOC_386_GOT32X
2932 || fixP
->fx_r_type
== BFD_RELOC_386_TLS_GD
2933 || fixP
->fx_r_type
== BFD_RELOC_386_TLS_LDM
2934 || fixP
->fx_r_type
== BFD_RELOC_386_TLS_LDO_32
2935 || fixP
->fx_r_type
== BFD_RELOC_386_TLS_IE_32
2936 || fixP
->fx_r_type
== BFD_RELOC_386_TLS_IE
2937 || fixP
->fx_r_type
== BFD_RELOC_386_TLS_GOTIE
2938 || fixP
->fx_r_type
== BFD_RELOC_386_TLS_LE_32
2939 || fixP
->fx_r_type
== BFD_RELOC_386_TLS_LE
2940 || fixP
->fx_r_type
== BFD_RELOC_386_TLS_GOTDESC
2941 || fixP
->fx_r_type
== BFD_RELOC_386_TLS_DESC_CALL
2942 || fixP
->fx_r_type
== BFD_RELOC_X86_64_PLT32
2943 || fixP
->fx_r_type
== BFD_RELOC_X86_64_GOT32
2944 || fixP
->fx_r_type
== BFD_RELOC_X86_64_GOTPCREL
2945 || fixP
->fx_r_type
== BFD_RELOC_X86_64_GOTPCRELX
2946 || fixP
->fx_r_type
== BFD_RELOC_X86_64_REX_GOTPCRELX
2947 || fixP
->fx_r_type
== BFD_RELOC_X86_64_TLSGD
2948 || fixP
->fx_r_type
== BFD_RELOC_X86_64_TLSLD
2949 || fixP
->fx_r_type
== BFD_RELOC_X86_64_DTPOFF32
2950 || fixP
->fx_r_type
== BFD_RELOC_X86_64_DTPOFF64
2951 || fixP
->fx_r_type
== BFD_RELOC_X86_64_GOTTPOFF
2952 || fixP
->fx_r_type
== BFD_RELOC_X86_64_TPOFF32
2953 || fixP
->fx_r_type
== BFD_RELOC_X86_64_TPOFF64
2954 || fixP
->fx_r_type
== BFD_RELOC_X86_64_GOTOFF64
2955 || fixP
->fx_r_type
== BFD_RELOC_X86_64_GOTPC32_TLSDESC
2956 || fixP
->fx_r_type
== BFD_RELOC_X86_64_TLSDESC_CALL
2957 || fixP
->fx_r_type
== BFD_RELOC_VTABLE_INHERIT
2958 || fixP
->fx_r_type
== BFD_RELOC_VTABLE_ENTRY
)
2965 intel_float_operand (const char *mnemonic
)
2967 /* Note that the value returned is meaningful only for opcodes with (memory)
2968 operands, hence the code here is free to improperly handle opcodes that
2969 have no operands (for better performance and smaller code). */
2971 if (mnemonic
[0] != 'f')
2972 return 0; /* non-math */
2974 switch (mnemonic
[1])
2976 /* fclex, fdecstp, fdisi, femms, feni, fincstp, finit, fsetpm, and
2977 the fs segment override prefix not currently handled because no
2978 call path can make opcodes without operands get here */
2980 return 2 /* integer op */;
2982 if (mnemonic
[2] == 'd' && (mnemonic
[3] == 'c' || mnemonic
[3] == 'e'))
2983 return 3; /* fldcw/fldenv */
2986 if (mnemonic
[2] != 'o' /* fnop */)
2987 return 3; /* non-waiting control op */
2990 if (mnemonic
[2] == 's')
2991 return 3; /* frstor/frstpm */
2994 if (mnemonic
[2] == 'a')
2995 return 3; /* fsave */
2996 if (mnemonic
[2] == 't')
2998 switch (mnemonic
[3])
3000 case 'c': /* fstcw */
3001 case 'd': /* fstdw */
3002 case 'e': /* fstenv */
3003 case 's': /* fsts[gw] */
3009 if (mnemonic
[2] == 'r' || mnemonic
[2] == 's')
3010 return 0; /* fxsave/fxrstor are not really math ops */
3017 /* Build the VEX prefix. */
3020 build_vex_prefix (const insn_template
*t
)
3022 unsigned int register_specifier
;
3023 unsigned int implied_prefix
;
3024 unsigned int vector_length
;
3026 /* Check register specifier. */
3027 if (i
.vex
.register_specifier
)
3029 register_specifier
=
3030 ~register_number (i
.vex
.register_specifier
) & 0xf;
3031 gas_assert ((i
.vex
.register_specifier
->reg_flags
& RegVRex
) == 0);
3034 register_specifier
= 0xf;
3036 /* Use 2-byte VEX prefix by swappping destination and source
3039 && i
.operands
== i
.reg_operands
3040 && i
.tm
.opcode_modifier
.vexopcode
== VEX0F
3041 && i
.tm
.opcode_modifier
.s
3044 unsigned int xchg
= i
.operands
- 1;
3045 union i386_op temp_op
;
3046 i386_operand_type temp_type
;
3048 temp_type
= i
.types
[xchg
];
3049 i
.types
[xchg
] = i
.types
[0];
3050 i
.types
[0] = temp_type
;
3051 temp_op
= i
.op
[xchg
];
3052 i
.op
[xchg
] = i
.op
[0];
3055 gas_assert (i
.rm
.mode
== 3);
3059 i
.rm
.regmem
= i
.rm
.reg
;
3062 /* Use the next insn. */
3066 if (i
.tm
.opcode_modifier
.vex
== VEXScalar
)
3067 vector_length
= avxscalar
;
3069 vector_length
= i
.tm
.opcode_modifier
.vex
== VEX256
? 1 : 0;
3071 switch ((i
.tm
.base_opcode
>> 8) & 0xff)
3076 case DATA_PREFIX_OPCODE
:
3079 case REPE_PREFIX_OPCODE
:
3082 case REPNE_PREFIX_OPCODE
:
3089 /* Use 2-byte VEX prefix if possible. */
3090 if (i
.tm
.opcode_modifier
.vexopcode
== VEX0F
3091 && i
.tm
.opcode_modifier
.vexw
!= VEXW1
3092 && (i
.rex
& (REX_W
| REX_X
| REX_B
)) == 0)
3094 /* 2-byte VEX prefix. */
3098 i
.vex
.bytes
[0] = 0xc5;
3100 /* Check the REX.R bit. */
3101 r
= (i
.rex
& REX_R
) ? 0 : 1;
3102 i
.vex
.bytes
[1] = (r
<< 7
3103 | register_specifier
<< 3
3104 | vector_length
<< 2
3109 /* 3-byte VEX prefix. */
3114 switch (i
.tm
.opcode_modifier
.vexopcode
)
3118 i
.vex
.bytes
[0] = 0xc4;
3122 i
.vex
.bytes
[0] = 0xc4;
3126 i
.vex
.bytes
[0] = 0xc4;
3130 i
.vex
.bytes
[0] = 0x8f;
3134 i
.vex
.bytes
[0] = 0x8f;
3138 i
.vex
.bytes
[0] = 0x8f;
3144 /* The high 3 bits of the second VEX byte are 1's compliment
3145 of RXB bits from REX. */
3146 i
.vex
.bytes
[1] = (~i
.rex
& 0x7) << 5 | m
;
3148 /* Check the REX.W bit. */
3149 w
= (i
.rex
& REX_W
) ? 1 : 0;
3150 if (i
.tm
.opcode_modifier
.vexw
== VEXW1
)
3153 i
.vex
.bytes
[2] = (w
<< 7
3154 | register_specifier
<< 3
3155 | vector_length
<< 2
3160 /* Build the EVEX prefix. */
3163 build_evex_prefix (void)
3165 unsigned int register_specifier
;
3166 unsigned int implied_prefix
;
3168 rex_byte vrex_used
= 0;
3170 /* Check register specifier. */
3171 if (i
.vex
.register_specifier
)
3173 gas_assert ((i
.vrex
& REX_X
) == 0);
3175 register_specifier
= i
.vex
.register_specifier
->reg_num
;
3176 if ((i
.vex
.register_specifier
->reg_flags
& RegRex
))
3177 register_specifier
+= 8;
3178 /* The upper 16 registers are encoded in the fourth byte of the
3180 if (!(i
.vex
.register_specifier
->reg_flags
& RegVRex
))
3181 i
.vex
.bytes
[3] = 0x8;
3182 register_specifier
= ~register_specifier
& 0xf;
3186 register_specifier
= 0xf;
3188 /* Encode upper 16 vector index register in the fourth byte of
3190 if (!(i
.vrex
& REX_X
))
3191 i
.vex
.bytes
[3] = 0x8;
3196 switch ((i
.tm
.base_opcode
>> 8) & 0xff)
3201 case DATA_PREFIX_OPCODE
:
3204 case REPE_PREFIX_OPCODE
:
3207 case REPNE_PREFIX_OPCODE
:
3214 /* 4 byte EVEX prefix. */
3216 i
.vex
.bytes
[0] = 0x62;
3219 switch (i
.tm
.opcode_modifier
.vexopcode
)
3235 /* The high 3 bits of the second EVEX byte are 1's compliment of RXB
3237 i
.vex
.bytes
[1] = (~i
.rex
& 0x7) << 5 | m
;
3239 /* The fifth bit of the second EVEX byte is 1's compliment of the
3240 REX_R bit in VREX. */
3241 if (!(i
.vrex
& REX_R
))
3242 i
.vex
.bytes
[1] |= 0x10;
3246 if ((i
.reg_operands
+ i
.imm_operands
) == i
.operands
)
3248 /* When all operands are registers, the REX_X bit in REX is not
3249 used. We reuse it to encode the upper 16 registers, which is
3250 indicated by the REX_B bit in VREX. The REX_X bit is encoded
3251 as 1's compliment. */
3252 if ((i
.vrex
& REX_B
))
3255 i
.vex
.bytes
[1] &= ~0x40;
3259 /* EVEX instructions shouldn't need the REX prefix. */
3260 i
.vrex
&= ~vrex_used
;
3261 gas_assert (i
.vrex
== 0);
3263 /* Check the REX.W bit. */
3264 w
= (i
.rex
& REX_W
) ? 1 : 0;
3265 if (i
.tm
.opcode_modifier
.vexw
)
3267 if (i
.tm
.opcode_modifier
.vexw
== VEXW1
)
3270 /* If w is not set it means we are dealing with WIG instruction. */
3273 if (evexwig
== evexw1
)
3277 /* Encode the U bit. */
3278 implied_prefix
|= 0x4;
3280 /* The third byte of the EVEX prefix. */
3281 i
.vex
.bytes
[2] = (w
<< 7 | register_specifier
<< 3 | implied_prefix
);
3283 /* The fourth byte of the EVEX prefix. */
3284 /* The zeroing-masking bit. */
3285 if (i
.mask
&& i
.mask
->zeroing
)
3286 i
.vex
.bytes
[3] |= 0x80;
3288 /* Don't always set the broadcast bit if there is no RC. */
3291 /* Encode the vector length. */
3292 unsigned int vec_length
;
3294 switch (i
.tm
.opcode_modifier
.evex
)
3296 case EVEXLIG
: /* LL' is ignored */
3297 vec_length
= evexlig
<< 5;
3300 vec_length
= 0 << 5;
3303 vec_length
= 1 << 5;
3306 vec_length
= 2 << 5;
3312 i
.vex
.bytes
[3] |= vec_length
;
3313 /* Encode the broadcast bit. */
3315 i
.vex
.bytes
[3] |= 0x10;
3319 if (i
.rounding
->type
!= saeonly
)
3320 i
.vex
.bytes
[3] |= 0x10 | (i
.rounding
->type
<< 5);
3322 i
.vex
.bytes
[3] |= 0x10 | (evexrcig
<< 5);
3325 if (i
.mask
&& i
.mask
->mask
)
3326 i
.vex
.bytes
[3] |= i
.mask
->mask
->reg_num
;
3330 process_immext (void)
3334 if ((i
.tm
.cpu_flags
.bitfield
.cpusse3
|| i
.tm
.cpu_flags
.bitfield
.cpusvme
)
3337 /* MONITOR/MWAIT as well as SVME instructions have fixed operands
3338 with an opcode suffix which is coded in the same place as an
3339 8-bit immediate field would be.
3340 Here we check those operands and remove them afterwards. */
3343 for (x
= 0; x
< i
.operands
; x
++)
3344 if (register_number (i
.op
[x
].regs
) != x
)
3345 as_bad (_("can't use register '%s%s' as operand %d in '%s'."),
3346 register_prefix
, i
.op
[x
].regs
->reg_name
, x
+ 1,
3352 if (i
.tm
.cpu_flags
.bitfield
.cpumwaitx
&& i
.operands
> 0)
3354 /* MONITORX/MWAITX instructions have fixed operands with an opcode
3355 suffix which is coded in the same place as an 8-bit immediate
3357 Here we check those operands and remove them afterwards. */
3360 if (i
.operands
!= 3)
3363 for (x
= 0; x
< 2; x
++)
3364 if (register_number (i
.op
[x
].regs
) != x
)
3365 goto bad_register_operand
;
3367 /* Check for third operand for mwaitx/monitorx insn. */
3368 if (register_number (i
.op
[x
].regs
)
3369 != (x
+ (i
.tm
.extension_opcode
== 0xfb)))
3371 bad_register_operand
:
3372 as_bad (_("can't use register '%s%s' as operand %d in '%s'."),
3373 register_prefix
, i
.op
[x
].regs
->reg_name
, x
+1,
3380 /* These AMD 3DNow! and SSE2 instructions have an opcode suffix
3381 which is coded in the same place as an 8-bit immediate field
3382 would be. Here we fake an 8-bit immediate operand from the
3383 opcode suffix stored in tm.extension_opcode.
3385 AVX instructions also use this encoding, for some of
3386 3 argument instructions. */
3388 gas_assert (i
.imm_operands
<= 1
3390 || ((i
.tm
.opcode_modifier
.vex
3391 || i
.tm
.opcode_modifier
.evex
)
3392 && i
.operands
<= 4)));
3394 exp
= &im_expressions
[i
.imm_operands
++];
3395 i
.op
[i
.operands
].imms
= exp
;
3396 i
.types
[i
.operands
] = imm8
;
3398 exp
->X_op
= O_constant
;
3399 exp
->X_add_number
= i
.tm
.extension_opcode
;
3400 i
.tm
.extension_opcode
= None
;
3407 switch (i
.tm
.opcode_modifier
.hleprefixok
)
3412 as_bad (_("invalid instruction `%s' after `%s'"),
3413 i
.tm
.name
, i
.hle_prefix
);
3416 if (i
.prefix
[LOCK_PREFIX
])
3418 as_bad (_("missing `lock' with `%s'"), i
.hle_prefix
);
3422 case HLEPrefixRelease
:
3423 if (i
.prefix
[HLE_PREFIX
] != XRELEASE_PREFIX_OPCODE
)
3425 as_bad (_("instruction `%s' after `xacquire' not allowed"),
3429 if (i
.mem_operands
== 0
3430 || !operand_type_check (i
.types
[i
.operands
- 1], anymem
))
3432 as_bad (_("memory destination needed for instruction `%s'"
3433 " after `xrelease'"), i
.tm
.name
);
3440 /* This is the guts of the machine-dependent assembler. LINE points to a
3441 machine dependent instruction. This function is supposed to emit
3442 the frags/bytes it assembles to. */
3445 md_assemble (char *line
)
3448 char mnemonic
[MAX_MNEM_SIZE
];
3449 const insn_template
*t
;
3451 /* Initialize globals. */
3452 memset (&i
, '\0', sizeof (i
));
3453 for (j
= 0; j
< MAX_OPERANDS
; j
++)
3454 i
.reloc
[j
] = NO_RELOC
;
3455 memset (disp_expressions
, '\0', sizeof (disp_expressions
));
3456 memset (im_expressions
, '\0', sizeof (im_expressions
));
3457 save_stack_p
= save_stack
;
3459 /* First parse an instruction mnemonic & call i386_operand for the operands.
3460 We assume that the scrubber has arranged it so that line[0] is the valid
3461 start of a (possibly prefixed) mnemonic. */
3463 line
= parse_insn (line
, mnemonic
);
3467 line
= parse_operands (line
, mnemonic
);
3472 /* Now we've parsed the mnemonic into a set of templates, and have the
3473 operands at hand. */
3475 /* All intel opcodes have reversed operands except for "bound" and
3476 "enter". We also don't reverse intersegment "jmp" and "call"
3477 instructions with 2 immediate operands so that the immediate segment
3478 precedes the offset, as it does when in AT&T mode. */
3481 && (strcmp (mnemonic
, "bound") != 0)
3482 && (strcmp (mnemonic
, "invlpga") != 0)
3483 && !(operand_type_check (i
.types
[0], imm
)
3484 && operand_type_check (i
.types
[1], imm
)))
3487 /* The order of the immediates should be reversed
3488 for 2 immediates extrq and insertq instructions */
3489 if (i
.imm_operands
== 2
3490 && (strcmp (mnemonic
, "extrq") == 0
3491 || strcmp (mnemonic
, "insertq") == 0))
3492 swap_2_operands (0, 1);
3497 /* Don't optimize displacement for movabs since it only takes 64bit
3500 && i
.disp_encoding
!= disp_encoding_32bit
3501 && (flag_code
!= CODE_64BIT
3502 || strcmp (mnemonic
, "movabs") != 0))
3505 /* Next, we find a template that matches the given insn,
3506 making sure the overlap of the given operands types is consistent
3507 with the template operand types. */
3509 if (!(t
= match_template ()))
3512 if (sse_check
!= check_none
3513 && !i
.tm
.opcode_modifier
.noavx
3514 && (i
.tm
.cpu_flags
.bitfield
.cpusse
3515 || i
.tm
.cpu_flags
.bitfield
.cpusse2
3516 || i
.tm
.cpu_flags
.bitfield
.cpusse3
3517 || i
.tm
.cpu_flags
.bitfield
.cpussse3
3518 || i
.tm
.cpu_flags
.bitfield
.cpusse4_1
3519 || i
.tm
.cpu_flags
.bitfield
.cpusse4_2
))
3521 (sse_check
== check_warning
3523 : as_bad
) (_("SSE instruction `%s' is used"), i
.tm
.name
);
3526 /* Zap movzx and movsx suffix. The suffix has been set from
3527 "word ptr" or "byte ptr" on the source operand in Intel syntax
3528 or extracted from mnemonic in AT&T syntax. But we'll use
3529 the destination register to choose the suffix for encoding. */
3530 if ((i
.tm
.base_opcode
& ~9) == 0x0fb6)
3532 /* In Intel syntax, there must be a suffix. In AT&T syntax, if
3533 there is no suffix, the default will be byte extension. */
3534 if (i
.reg_operands
!= 2
3537 as_bad (_("ambiguous operand size for `%s'"), i
.tm
.name
);
3542 if (i
.tm
.opcode_modifier
.fwait
)
3543 if (!add_prefix (FWAIT_OPCODE
))
3546 /* Check if REP prefix is OK. */
3547 if (i
.rep_prefix
&& !i
.tm
.opcode_modifier
.repprefixok
)
3549 as_bad (_("invalid instruction `%s' after `%s'"),
3550 i
.tm
.name
, i
.rep_prefix
);
3554 /* Check for lock without a lockable instruction. Destination operand
3555 must be memory unless it is xchg (0x86). */
3556 if (i
.prefix
[LOCK_PREFIX
]
3557 && (!i
.tm
.opcode_modifier
.islockable
3558 || i
.mem_operands
== 0
3559 || (i
.tm
.base_opcode
!= 0x86
3560 && !operand_type_check (i
.types
[i
.operands
- 1], anymem
))))
3562 as_bad (_("expecting lockable instruction after `lock'"));
3566 /* Check if HLE prefix is OK. */
3567 if (i
.hle_prefix
&& !check_hle ())
3570 /* Check BND prefix. */
3571 if (i
.bnd_prefix
&& !i
.tm
.opcode_modifier
.bndprefixok
)
3572 as_bad (_("expecting valid branch instruction after `bnd'"));
3574 if (i
.tm
.cpu_flags
.bitfield
.cpumpx
3575 && flag_code
== CODE_64BIT
3576 && i
.prefix
[ADDR_PREFIX
])
3577 as_bad (_("32-bit address isn't allowed in 64-bit MPX instructions."));
3579 /* Insert BND prefix. */
3581 && i
.tm
.opcode_modifier
.bndprefixok
3582 && !i
.prefix
[BND_PREFIX
])
3583 add_prefix (BND_PREFIX_OPCODE
);
3585 /* Check string instruction segment overrides. */
3586 if (i
.tm
.opcode_modifier
.isstring
&& i
.mem_operands
!= 0)
3588 if (!check_string ())
3590 i
.disp_operands
= 0;
3593 if (!process_suffix ())
3596 /* Update operand types. */
3597 for (j
= 0; j
< i
.operands
; j
++)
3598 i
.types
[j
] = operand_type_and (i
.types
[j
], i
.tm
.operand_types
[j
]);
3600 /* Make still unresolved immediate matches conform to size of immediate
3601 given in i.suffix. */
3602 if (!finalize_imm ())
3605 if (i
.types
[0].bitfield
.imm1
)
3606 i
.imm_operands
= 0; /* kludge for shift insns. */
3608 /* We only need to check those implicit registers for instructions
3609 with 3 operands or less. */
3610 if (i
.operands
<= 3)
3611 for (j
= 0; j
< i
.operands
; j
++)
3612 if (i
.types
[j
].bitfield
.inoutportreg
3613 || i
.types
[j
].bitfield
.shiftcount
3614 || i
.types
[j
].bitfield
.acc
3615 || i
.types
[j
].bitfield
.floatacc
)
3618 /* ImmExt should be processed after SSE2AVX. */
3619 if (!i
.tm
.opcode_modifier
.sse2avx
3620 && i
.tm
.opcode_modifier
.immext
)
3623 /* For insns with operands there are more diddles to do to the opcode. */
3626 if (!process_operands ())
3629 else if (!quiet_warnings
&& i
.tm
.opcode_modifier
.ugh
)
3631 /* UnixWare fsub no args is alias for fsubp, fadd -> faddp, etc. */
3632 as_warn (_("translating to `%sp'"), i
.tm
.name
);
3635 if (i
.tm
.opcode_modifier
.vex
|| i
.tm
.opcode_modifier
.evex
)
3637 if (flag_code
== CODE_16BIT
)
3639 as_bad (_("instruction `%s' isn't supported in 16-bit mode."),
3644 if (i
.tm
.opcode_modifier
.vex
)
3645 build_vex_prefix (t
);
3647 build_evex_prefix ();
3650 /* Handle conversion of 'int $3' --> special int3 insn. XOP or FMA4
3651 instructions may define INT_OPCODE as well, so avoid this corner
3652 case for those instructions that use MODRM. */
3653 if (i
.tm
.base_opcode
== INT_OPCODE
3654 && !i
.tm
.opcode_modifier
.modrm
3655 && i
.op
[0].imms
->X_add_number
== 3)
3657 i
.tm
.base_opcode
= INT3_OPCODE
;
3661 if ((i
.tm
.opcode_modifier
.jump
3662 || i
.tm
.opcode_modifier
.jumpbyte
3663 || i
.tm
.opcode_modifier
.jumpdword
)
3664 && i
.op
[0].disps
->X_op
== O_constant
)
3666 /* Convert "jmp constant" (and "call constant") to a jump (call) to
3667 the absolute address given by the constant. Since ix86 jumps and
3668 calls are pc relative, we need to generate a reloc. */
3669 i
.op
[0].disps
->X_add_symbol
= &abs_symbol
;
3670 i
.op
[0].disps
->X_op
= O_symbol
;
3673 if (i
.tm
.opcode_modifier
.rex64
)
3676 /* For 8 bit registers we need an empty rex prefix. Also if the
3677 instruction already has a prefix, we need to convert old
3678 registers to new ones. */
3680 if ((i
.types
[0].bitfield
.reg8
3681 && (i
.op
[0].regs
->reg_flags
& RegRex64
) != 0)
3682 || (i
.types
[1].bitfield
.reg8
3683 && (i
.op
[1].regs
->reg_flags
& RegRex64
) != 0)
3684 || ((i
.types
[0].bitfield
.reg8
3685 || i
.types
[1].bitfield
.reg8
)
3690 i
.rex
|= REX_OPCODE
;
3691 for (x
= 0; x
< 2; x
++)
3693 /* Look for 8 bit operand that uses old registers. */
3694 if (i
.types
[x
].bitfield
.reg8
3695 && (i
.op
[x
].regs
->reg_flags
& RegRex64
) == 0)
3697 /* In case it is "hi" register, give up. */
3698 if (i
.op
[x
].regs
->reg_num
> 3)
3699 as_bad (_("can't encode register '%s%s' in an "
3700 "instruction requiring REX prefix."),
3701 register_prefix
, i
.op
[x
].regs
->reg_name
);
3703 /* Otherwise it is equivalent to the extended register.
3704 Since the encoding doesn't change this is merely
3705 cosmetic cleanup for debug output. */
3707 i
.op
[x
].regs
= i
.op
[x
].regs
+ 8;
3713 add_prefix (REX_OPCODE
| i
.rex
);
3715 /* We are ready to output the insn. */
3720 parse_insn (char *line
, char *mnemonic
)
3723 char *token_start
= l
;
3726 const insn_template
*t
;
3732 while ((*mnem_p
= mnemonic_chars
[(unsigned char) *l
]) != 0)
3737 if (mnem_p
>= mnemonic
+ MAX_MNEM_SIZE
)
3739 as_bad (_("no such instruction: `%s'"), token_start
);
3744 if (!is_space_char (*l
)
3745 && *l
!= END_OF_INSN
3747 || (*l
!= PREFIX_SEPARATOR
3750 as_bad (_("invalid character %s in mnemonic"),
3751 output_invalid (*l
));
3754 if (token_start
== l
)
3756 if (!intel_syntax
&& *l
== PREFIX_SEPARATOR
)
3757 as_bad (_("expecting prefix; got nothing"));
3759 as_bad (_("expecting mnemonic; got nothing"));
3763 /* Look up instruction (or prefix) via hash table. */
3764 current_templates
= (const templates
*) hash_find (op_hash
, mnemonic
);
3766 if (*l
!= END_OF_INSN
3767 && (!is_space_char (*l
) || l
[1] != END_OF_INSN
)
3768 && current_templates
3769 && current_templates
->start
->opcode_modifier
.isprefix
)
3771 if (!cpu_flags_check_cpu64 (current_templates
->start
->cpu_flags
))
3773 as_bad ((flag_code
!= CODE_64BIT
3774 ? _("`%s' is only supported in 64-bit mode")
3775 : _("`%s' is not supported in 64-bit mode")),
3776 current_templates
->start
->name
);
3779 /* If we are in 16-bit mode, do not allow addr16 or data16.
3780 Similarly, in 32-bit mode, do not allow addr32 or data32. */
3781 if ((current_templates
->start
->opcode_modifier
.size16
3782 || current_templates
->start
->opcode_modifier
.size32
)
3783 && flag_code
!= CODE_64BIT
3784 && (current_templates
->start
->opcode_modifier
.size32
3785 ^ (flag_code
== CODE_16BIT
)))
3787 as_bad (_("redundant %s prefix"),
3788 current_templates
->start
->name
);
3791 /* Add prefix, checking for repeated prefixes. */
3792 switch (add_prefix (current_templates
->start
->base_opcode
))
3797 if (current_templates
->start
->cpu_flags
.bitfield
.cpuhle
)
3798 i
.hle_prefix
= current_templates
->start
->name
;
3799 else if (current_templates
->start
->cpu_flags
.bitfield
.cpumpx
)
3800 i
.bnd_prefix
= current_templates
->start
->name
;
3802 i
.rep_prefix
= current_templates
->start
->name
;
3807 /* Skip past PREFIX_SEPARATOR and reset token_start. */
3814 if (!current_templates
)
3816 /* Check if we should swap operand or force 32bit displacement in
3818 if (mnem_p
- 2 == dot_p
&& dot_p
[1] == 's')
3820 else if (mnem_p
- 3 == dot_p
3823 i
.disp_encoding
= disp_encoding_8bit
;
3824 else if (mnem_p
- 4 == dot_p
3828 i
.disp_encoding
= disp_encoding_32bit
;
3833 current_templates
= (const templates
*) hash_find (op_hash
, mnemonic
);
3836 if (!current_templates
)
3839 /* See if we can get a match by trimming off a suffix. */
3842 case WORD_MNEM_SUFFIX
:
3843 if (intel_syntax
&& (intel_float_operand (mnemonic
) & 2))
3844 i
.suffix
= SHORT_MNEM_SUFFIX
;
3846 case BYTE_MNEM_SUFFIX
:
3847 case QWORD_MNEM_SUFFIX
:
3848 i
.suffix
= mnem_p
[-1];
3850 current_templates
= (const templates
*) hash_find (op_hash
,
3853 case SHORT_MNEM_SUFFIX
:
3854 case LONG_MNEM_SUFFIX
:
3857 i
.suffix
= mnem_p
[-1];
3859 current_templates
= (const templates
*) hash_find (op_hash
,
3868 if (intel_float_operand (mnemonic
) == 1)
3869 i
.suffix
= SHORT_MNEM_SUFFIX
;
3871 i
.suffix
= LONG_MNEM_SUFFIX
;
3873 current_templates
= (const templates
*) hash_find (op_hash
,
3878 if (!current_templates
)
3880 as_bad (_("no such instruction: `%s'"), token_start
);
3885 if (current_templates
->start
->opcode_modifier
.jump
3886 || current_templates
->start
->opcode_modifier
.jumpbyte
)
3888 /* Check for a branch hint. We allow ",pt" and ",pn" for
3889 predict taken and predict not taken respectively.
3890 I'm not sure that branch hints actually do anything on loop
3891 and jcxz insns (JumpByte) for current Pentium4 chips. They
3892 may work in the future and it doesn't hurt to accept them
3894 if (l
[0] == ',' && l
[1] == 'p')
3898 if (!add_prefix (DS_PREFIX_OPCODE
))
3902 else if (l
[2] == 'n')
3904 if (!add_prefix (CS_PREFIX_OPCODE
))
3910 /* Any other comma loses. */
3913 as_bad (_("invalid character %s in mnemonic"),
3914 output_invalid (*l
));
3918 /* Check if instruction is supported on specified architecture. */
3920 for (t
= current_templates
->start
; t
< current_templates
->end
; ++t
)
3922 supported
|= cpu_flags_match (t
);
3923 if (supported
== CPU_FLAGS_PERFECT_MATCH
)
3927 if (!(supported
& CPU_FLAGS_64BIT_MATCH
))
3929 as_bad (flag_code
== CODE_64BIT
3930 ? _("`%s' is not supported in 64-bit mode")
3931 : _("`%s' is only supported in 64-bit mode"),
3932 current_templates
->start
->name
);
3935 if (supported
!= CPU_FLAGS_PERFECT_MATCH
)
3937 as_bad (_("`%s' is not supported on `%s%s'"),
3938 current_templates
->start
->name
,
3939 cpu_arch_name
? cpu_arch_name
: default_arch
,
3940 cpu_sub_arch_name
? cpu_sub_arch_name
: "");
3945 if (!cpu_arch_flags
.bitfield
.cpui386
3946 && (flag_code
!= CODE_16BIT
))
3948 as_warn (_("use .code16 to ensure correct addressing mode"));
3955 parse_operands (char *l
, const char *mnemonic
)
3959 /* 1 if operand is pending after ','. */
3960 unsigned int expecting_operand
= 0;
3962 /* Non-zero if operand parens not balanced. */
3963 unsigned int paren_not_balanced
;
3965 while (*l
!= END_OF_INSN
)
3967 /* Skip optional white space before operand. */
3968 if (is_space_char (*l
))
3970 if (!is_operand_char (*l
) && *l
!= END_OF_INSN
&& *l
!= '"')
3972 as_bad (_("invalid character %s before operand %d"),
3973 output_invalid (*l
),
3977 token_start
= l
; /* After white space. */
3978 paren_not_balanced
= 0;
3979 while (paren_not_balanced
|| *l
!= ',')
3981 if (*l
== END_OF_INSN
)
3983 if (paren_not_balanced
)
3986 as_bad (_("unbalanced parenthesis in operand %d."),
3989 as_bad (_("unbalanced brackets in operand %d."),
3994 break; /* we are done */
3996 else if (!is_operand_char (*l
) && !is_space_char (*l
) && *l
!= '"')
3998 as_bad (_("invalid character %s in operand %d"),
3999 output_invalid (*l
),
4006 ++paren_not_balanced
;
4008 --paren_not_balanced
;
4013 ++paren_not_balanced
;
4015 --paren_not_balanced
;
4019 if (l
!= token_start
)
4020 { /* Yes, we've read in another operand. */
4021 unsigned int operand_ok
;
4022 this_operand
= i
.operands
++;
4023 i
.types
[this_operand
].bitfield
.unspecified
= 1;
4024 if (i
.operands
> MAX_OPERANDS
)
4026 as_bad (_("spurious operands; (%d operands/instruction max)"),
4030 /* Now parse operand adding info to 'i' as we go along. */
4031 END_STRING_AND_SAVE (l
);
4035 i386_intel_operand (token_start
,
4036 intel_float_operand (mnemonic
));
4038 operand_ok
= i386_att_operand (token_start
);
4040 RESTORE_END_STRING (l
);
4046 if (expecting_operand
)
4048 expecting_operand_after_comma
:
4049 as_bad (_("expecting operand after ','; got nothing"));
4054 as_bad (_("expecting operand before ','; got nothing"));
4059 /* Now *l must be either ',' or END_OF_INSN. */
4062 if (*++l
== END_OF_INSN
)
4064 /* Just skip it, if it's \n complain. */
4065 goto expecting_operand_after_comma
;
4067 expecting_operand
= 1;
4074 swap_2_operands (int xchg1
, int xchg2
)
4076 union i386_op temp_op
;
4077 i386_operand_type temp_type
;
4078 enum bfd_reloc_code_real temp_reloc
;
4080 temp_type
= i
.types
[xchg2
];
4081 i
.types
[xchg2
] = i
.types
[xchg1
];
4082 i
.types
[xchg1
] = temp_type
;
4083 temp_op
= i
.op
[xchg2
];
4084 i
.op
[xchg2
] = i
.op
[xchg1
];
4085 i
.op
[xchg1
] = temp_op
;
4086 temp_reloc
= i
.reloc
[xchg2
];
4087 i
.reloc
[xchg2
] = i
.reloc
[xchg1
];
4088 i
.reloc
[xchg1
] = temp_reloc
;
4092 if (i
.mask
->operand
== xchg1
)
4093 i
.mask
->operand
= xchg2
;
4094 else if (i
.mask
->operand
== xchg2
)
4095 i
.mask
->operand
= xchg1
;
4099 if (i
.broadcast
->operand
== xchg1
)
4100 i
.broadcast
->operand
= xchg2
;
4101 else if (i
.broadcast
->operand
== xchg2
)
4102 i
.broadcast
->operand
= xchg1
;
4106 if (i
.rounding
->operand
== xchg1
)
4107 i
.rounding
->operand
= xchg2
;
4108 else if (i
.rounding
->operand
== xchg2
)
4109 i
.rounding
->operand
= xchg1
;
4114 swap_operands (void)
4120 swap_2_operands (1, i
.operands
- 2);
4123 swap_2_operands (0, i
.operands
- 1);
4129 if (i
.mem_operands
== 2)
4131 const seg_entry
*temp_seg
;
4132 temp_seg
= i
.seg
[0];
4133 i
.seg
[0] = i
.seg
[1];
4134 i
.seg
[1] = temp_seg
;
4138 /* Try to ensure constant immediates are represented in the smallest
4143 char guess_suffix
= 0;
4147 guess_suffix
= i
.suffix
;
4148 else if (i
.reg_operands
)
4150 /* Figure out a suffix from the last register operand specified.
4151 We can't do this properly yet, ie. excluding InOutPortReg,
4152 but the following works for instructions with immediates.
4153 In any case, we can't set i.suffix yet. */
4154 for (op
= i
.operands
; --op
>= 0;)
4155 if (i
.types
[op
].bitfield
.reg8
)
4157 guess_suffix
= BYTE_MNEM_SUFFIX
;
4160 else if (i
.types
[op
].bitfield
.reg16
)
4162 guess_suffix
= WORD_MNEM_SUFFIX
;
4165 else if (i
.types
[op
].bitfield
.reg32
)
4167 guess_suffix
= LONG_MNEM_SUFFIX
;
4170 else if (i
.types
[op
].bitfield
.reg64
)
4172 guess_suffix
= QWORD_MNEM_SUFFIX
;
4176 else if ((flag_code
== CODE_16BIT
) ^ (i
.prefix
[DATA_PREFIX
] != 0))
4177 guess_suffix
= WORD_MNEM_SUFFIX
;
4179 for (op
= i
.operands
; --op
>= 0;)
4180 if (operand_type_check (i
.types
[op
], imm
))
4182 switch (i
.op
[op
].imms
->X_op
)
4185 /* If a suffix is given, this operand may be shortened. */
4186 switch (guess_suffix
)
4188 case LONG_MNEM_SUFFIX
:
4189 i
.types
[op
].bitfield
.imm32
= 1;
4190 i
.types
[op
].bitfield
.imm64
= 1;
4192 case WORD_MNEM_SUFFIX
:
4193 i
.types
[op
].bitfield
.imm16
= 1;
4194 i
.types
[op
].bitfield
.imm32
= 1;
4195 i
.types
[op
].bitfield
.imm32s
= 1;
4196 i
.types
[op
].bitfield
.imm64
= 1;
4198 case BYTE_MNEM_SUFFIX
:
4199 i
.types
[op
].bitfield
.imm8
= 1;
4200 i
.types
[op
].bitfield
.imm8s
= 1;
4201 i
.types
[op
].bitfield
.imm16
= 1;
4202 i
.types
[op
].bitfield
.imm32
= 1;
4203 i
.types
[op
].bitfield
.imm32s
= 1;
4204 i
.types
[op
].bitfield
.imm64
= 1;
4208 /* If this operand is at most 16 bits, convert it
4209 to a signed 16 bit number before trying to see
4210 whether it will fit in an even smaller size.
4211 This allows a 16-bit operand such as $0xffe0 to
4212 be recognised as within Imm8S range. */
4213 if ((i
.types
[op
].bitfield
.imm16
)
4214 && (i
.op
[op
].imms
->X_add_number
& ~(offsetT
) 0xffff) == 0)
4216 i
.op
[op
].imms
->X_add_number
=
4217 (((i
.op
[op
].imms
->X_add_number
& 0xffff) ^ 0x8000) - 0x8000);
4219 if ((i
.types
[op
].bitfield
.imm32
)
4220 && ((i
.op
[op
].imms
->X_add_number
& ~(((offsetT
) 2 << 31) - 1))
4223 i
.op
[op
].imms
->X_add_number
= ((i
.op
[op
].imms
->X_add_number
4224 ^ ((offsetT
) 1 << 31))
4225 - ((offsetT
) 1 << 31));
4228 = operand_type_or (i
.types
[op
],
4229 smallest_imm_type (i
.op
[op
].imms
->X_add_number
));
4231 /* We must avoid matching of Imm32 templates when 64bit
4232 only immediate is available. */
4233 if (guess_suffix
== QWORD_MNEM_SUFFIX
)
4234 i
.types
[op
].bitfield
.imm32
= 0;
4241 /* Symbols and expressions. */
4243 /* Convert symbolic operand to proper sizes for matching, but don't
4244 prevent matching a set of insns that only supports sizes other
4245 than those matching the insn suffix. */
4247 i386_operand_type mask
, allowed
;
4248 const insn_template
*t
;
4250 operand_type_set (&mask
, 0);
4251 operand_type_set (&allowed
, 0);
4253 for (t
= current_templates
->start
;
4254 t
< current_templates
->end
;
4256 allowed
= operand_type_or (allowed
,
4257 t
->operand_types
[op
]);
4258 switch (guess_suffix
)
4260 case QWORD_MNEM_SUFFIX
:
4261 mask
.bitfield
.imm64
= 1;
4262 mask
.bitfield
.imm32s
= 1;
4264 case LONG_MNEM_SUFFIX
:
4265 mask
.bitfield
.imm32
= 1;
4267 case WORD_MNEM_SUFFIX
:
4268 mask
.bitfield
.imm16
= 1;
4270 case BYTE_MNEM_SUFFIX
:
4271 mask
.bitfield
.imm8
= 1;
4276 allowed
= operand_type_and (mask
, allowed
);
4277 if (!operand_type_all_zero (&allowed
))
4278 i
.types
[op
] = operand_type_and (i
.types
[op
], mask
);
4285 /* Try to use the smallest displacement type too. */
4287 optimize_disp (void)
4291 for (op
= i
.operands
; --op
>= 0;)
4292 if (operand_type_check (i
.types
[op
], disp
))
4294 if (i
.op
[op
].disps
->X_op
== O_constant
)
4296 offsetT op_disp
= i
.op
[op
].disps
->X_add_number
;
4298 if (i
.types
[op
].bitfield
.disp16
4299 && (op_disp
& ~(offsetT
) 0xffff) == 0)
4301 /* If this operand is at most 16 bits, convert
4302 to a signed 16 bit number and don't use 64bit
4304 op_disp
= (((op_disp
& 0xffff) ^ 0x8000) - 0x8000);
4305 i
.types
[op
].bitfield
.disp64
= 0;
4307 if (i
.types
[op
].bitfield
.disp32
4308 && (op_disp
& ~(((offsetT
) 2 << 31) - 1)) == 0)
4310 /* If this operand is at most 32 bits, convert
4311 to a signed 32 bit number and don't use 64bit
4313 op_disp
&= (((offsetT
) 2 << 31) - 1);
4314 op_disp
= (op_disp
^ ((offsetT
) 1 << 31)) - ((addressT
) 1 << 31);
4315 i
.types
[op
].bitfield
.disp64
= 0;
4317 if (!op_disp
&& i
.types
[op
].bitfield
.baseindex
)
4319 i
.types
[op
].bitfield
.disp8
= 0;
4320 i
.types
[op
].bitfield
.disp16
= 0;
4321 i
.types
[op
].bitfield
.disp32
= 0;
4322 i
.types
[op
].bitfield
.disp32s
= 0;
4323 i
.types
[op
].bitfield
.disp64
= 0;
4327 else if (flag_code
== CODE_64BIT
)
4329 if (fits_in_signed_long (op_disp
))
4331 i
.types
[op
].bitfield
.disp64
= 0;
4332 i
.types
[op
].bitfield
.disp32s
= 1;
4334 if (i
.prefix
[ADDR_PREFIX
]
4335 && fits_in_unsigned_long (op_disp
))
4336 i
.types
[op
].bitfield
.disp32
= 1;
4338 if ((i
.types
[op
].bitfield
.disp32
4339 || i
.types
[op
].bitfield
.disp32s
4340 || i
.types
[op
].bitfield
.disp16
)
4341 && fits_in_signed_byte (op_disp
))
4342 i
.types
[op
].bitfield
.disp8
= 1;
4344 else if (i
.reloc
[op
] == BFD_RELOC_386_TLS_DESC_CALL
4345 || i
.reloc
[op
] == BFD_RELOC_X86_64_TLSDESC_CALL
)
4347 fix_new_exp (frag_now
, frag_more (0) - frag_now
->fr_literal
, 0,
4348 i
.op
[op
].disps
, 0, i
.reloc
[op
]);
4349 i
.types
[op
].bitfield
.disp8
= 0;
4350 i
.types
[op
].bitfield
.disp16
= 0;
4351 i
.types
[op
].bitfield
.disp32
= 0;
4352 i
.types
[op
].bitfield
.disp32s
= 0;
4353 i
.types
[op
].bitfield
.disp64
= 0;
4356 /* We only support 64bit displacement on constants. */
4357 i
.types
[op
].bitfield
.disp64
= 0;
4361 /* Check if operands are valid for the instruction. */
4364 check_VecOperands (const insn_template
*t
)
4368 /* Without VSIB byte, we can't have a vector register for index. */
4369 if (!t
->opcode_modifier
.vecsib
4371 && (i
.index_reg
->reg_type
.bitfield
.regxmm
4372 || i
.index_reg
->reg_type
.bitfield
.regymm
4373 || i
.index_reg
->reg_type
.bitfield
.regzmm
))
4375 i
.error
= unsupported_vector_index_register
;
4379 /* Check if default mask is allowed. */
4380 if (t
->opcode_modifier
.nodefmask
4381 && (!i
.mask
|| i
.mask
->mask
->reg_num
== 0))
4383 i
.error
= no_default_mask
;
4387 /* For VSIB byte, we need a vector register for index, and all vector
4388 registers must be distinct. */
4389 if (t
->opcode_modifier
.vecsib
)
4392 || !((t
->opcode_modifier
.vecsib
== VecSIB128
4393 && i
.index_reg
->reg_type
.bitfield
.regxmm
)
4394 || (t
->opcode_modifier
.vecsib
== VecSIB256
4395 && i
.index_reg
->reg_type
.bitfield
.regymm
)
4396 || (t
->opcode_modifier
.vecsib
== VecSIB512
4397 && i
.index_reg
->reg_type
.bitfield
.regzmm
)))
4399 i
.error
= invalid_vsib_address
;
4403 gas_assert (i
.reg_operands
== 2 || i
.mask
);
4404 if (i
.reg_operands
== 2 && !i
.mask
)
4406 gas_assert (i
.types
[0].bitfield
.regxmm
4407 || i
.types
[0].bitfield
.regymm
);
4408 gas_assert (i
.types
[2].bitfield
.regxmm
4409 || i
.types
[2].bitfield
.regymm
);
4410 if (operand_check
== check_none
)
4412 if (register_number (i
.op
[0].regs
)
4413 != register_number (i
.index_reg
)
4414 && register_number (i
.op
[2].regs
)
4415 != register_number (i
.index_reg
)
4416 && register_number (i
.op
[0].regs
)
4417 != register_number (i
.op
[2].regs
))
4419 if (operand_check
== check_error
)
4421 i
.error
= invalid_vector_register_set
;
4424 as_warn (_("mask, index, and destination registers should be distinct"));
4426 else if (i
.reg_operands
== 1 && i
.mask
)
4428 if ((i
.types
[1].bitfield
.regymm
4429 || i
.types
[1].bitfield
.regzmm
)
4430 && (register_number (i
.op
[1].regs
)
4431 == register_number (i
.index_reg
)))
4433 if (operand_check
== check_error
)
4435 i
.error
= invalid_vector_register_set
;
4438 if (operand_check
!= check_none
)
4439 as_warn (_("index and destination registers should be distinct"));
4444 /* Check if broadcast is supported by the instruction and is applied
4445 to the memory operand. */
4448 int broadcasted_opnd_size
;
4450 /* Check if specified broadcast is supported in this instruction,
4451 and it's applied to memory operand of DWORD or QWORD type,
4452 depending on VecESize. */
4453 if (i
.broadcast
->type
!= t
->opcode_modifier
.broadcast
4454 || !i
.types
[i
.broadcast
->operand
].bitfield
.mem
4455 || (t
->opcode_modifier
.vecesize
== 0
4456 && !i
.types
[i
.broadcast
->operand
].bitfield
.dword
4457 && !i
.types
[i
.broadcast
->operand
].bitfield
.unspecified
)
4458 || (t
->opcode_modifier
.vecesize
== 1
4459 && !i
.types
[i
.broadcast
->operand
].bitfield
.qword
4460 && !i
.types
[i
.broadcast
->operand
].bitfield
.unspecified
))
4463 broadcasted_opnd_size
= t
->opcode_modifier
.vecesize
? 64 : 32;
4464 if (i
.broadcast
->type
== BROADCAST_1TO16
)
4465 broadcasted_opnd_size
<<= 4; /* Broadcast 1to16. */
4466 else if (i
.broadcast
->type
== BROADCAST_1TO8
)
4467 broadcasted_opnd_size
<<= 3; /* Broadcast 1to8. */
4468 else if (i
.broadcast
->type
== BROADCAST_1TO4
)
4469 broadcasted_opnd_size
<<= 2; /* Broadcast 1to4. */
4470 else if (i
.broadcast
->type
== BROADCAST_1TO2
)
4471 broadcasted_opnd_size
<<= 1; /* Broadcast 1to2. */
4475 if ((broadcasted_opnd_size
== 256
4476 && !t
->operand_types
[i
.broadcast
->operand
].bitfield
.ymmword
)
4477 || (broadcasted_opnd_size
== 512
4478 && !t
->operand_types
[i
.broadcast
->operand
].bitfield
.zmmword
))
4481 i
.error
= unsupported_broadcast
;
4485 /* If broadcast is supported in this instruction, we need to check if
4486 operand of one-element size isn't specified without broadcast. */
4487 else if (t
->opcode_modifier
.broadcast
&& i
.mem_operands
)
4489 /* Find memory operand. */
4490 for (op
= 0; op
< i
.operands
; op
++)
4491 if (operand_type_check (i
.types
[op
], anymem
))
4493 gas_assert (op
< i
.operands
);
4494 /* Check size of the memory operand. */
4495 if ((t
->opcode_modifier
.vecesize
== 0
4496 && i
.types
[op
].bitfield
.dword
)
4497 || (t
->opcode_modifier
.vecesize
== 1
4498 && i
.types
[op
].bitfield
.qword
))
4500 i
.error
= broadcast_needed
;
4505 /* Check if requested masking is supported. */
4507 && (!t
->opcode_modifier
.masking
4509 && t
->opcode_modifier
.masking
== MERGING_MASKING
)))
4511 i
.error
= unsupported_masking
;
4515 /* Check if masking is applied to dest operand. */
4516 if (i
.mask
&& (i
.mask
->operand
!= (int) (i
.operands
- 1)))
4518 i
.error
= mask_not_on_destination
;
4525 if ((i
.rounding
->type
!= saeonly
4526 && !t
->opcode_modifier
.staticrounding
)
4527 || (i
.rounding
->type
== saeonly
4528 && (t
->opcode_modifier
.staticrounding
4529 || !t
->opcode_modifier
.sae
)))
4531 i
.error
= unsupported_rc_sae
;
4534 /* If the instruction has several immediate operands and one of
4535 them is rounding, the rounding operand should be the last
4536 immediate operand. */
4537 if (i
.imm_operands
> 1
4538 && i
.rounding
->operand
!= (int) (i
.imm_operands
- 1))
4540 i
.error
= rc_sae_operand_not_last_imm
;
4545 /* Check vector Disp8 operand. */
4546 if (t
->opcode_modifier
.disp8memshift
)
4549 i
.memshift
= t
->opcode_modifier
.vecesize
? 3 : 2;
4551 i
.memshift
= t
->opcode_modifier
.disp8memshift
;
4553 for (op
= 0; op
< i
.operands
; op
++)
4554 if (operand_type_check (i
.types
[op
], disp
)
4555 && i
.op
[op
].disps
->X_op
== O_constant
)
4557 offsetT value
= i
.op
[op
].disps
->X_add_number
;
4558 int vec_disp8_ok
= fits_in_vec_disp8 (value
);
4559 if (t
->operand_types
[op
].bitfield
.vec_disp8
)
4562 i
.types
[op
].bitfield
.vec_disp8
= 1;
4565 /* Vector insn can only have Vec_Disp8/Disp32 in
4566 32/64bit modes, and Vec_Disp8/Disp16 in 16bit
4568 i
.types
[op
].bitfield
.disp8
= 0;
4569 if (flag_code
!= CODE_16BIT
)
4570 i
.types
[op
].bitfield
.disp16
= 0;
4573 else if (flag_code
!= CODE_16BIT
)
4575 /* One form of this instruction supports vector Disp8.
4576 Try vector Disp8 if we need to use Disp32. */
4577 if (vec_disp8_ok
&& !fits_in_signed_byte (value
))
4579 i
.error
= try_vector_disp8
;
4591 /* Check if operands are valid for the instruction. Update VEX
4595 VEX_check_operands (const insn_template
*t
)
4597 /* VREX is only valid with EVEX prefix. */
4598 if (i
.need_vrex
&& !t
->opcode_modifier
.evex
)
4600 i
.error
= invalid_register_operand
;
4604 if (!t
->opcode_modifier
.vex
)
4607 /* Only check VEX_Imm4, which must be the first operand. */
4608 if (t
->operand_types
[0].bitfield
.vec_imm4
)
4610 if (i
.op
[0].imms
->X_op
!= O_constant
4611 || !fits_in_imm4 (i
.op
[0].imms
->X_add_number
))
4617 /* Turn off Imm8 so that update_imm won't complain. */
4618 i
.types
[0] = vec_imm4
;
4624 static const insn_template
*
4625 match_template (void)
4627 /* Points to template once we've found it. */
4628 const insn_template
*t
;
4629 i386_operand_type overlap0
, overlap1
, overlap2
, overlap3
;
4630 i386_operand_type overlap4
;
4631 unsigned int found_reverse_match
;
4632 i386_opcode_modifier suffix_check
;
4633 i386_operand_type operand_types
[MAX_OPERANDS
];
4634 int addr_prefix_disp
;
4636 unsigned int found_cpu_match
;
4637 unsigned int check_register
;
4638 enum i386_error specific_error
= 0;
4640 #if MAX_OPERANDS != 5
4641 # error "MAX_OPERANDS must be 5."
4644 found_reverse_match
= 0;
4645 addr_prefix_disp
= -1;
4647 memset (&suffix_check
, 0, sizeof (suffix_check
));
4648 if (i
.suffix
== BYTE_MNEM_SUFFIX
)
4649 suffix_check
.no_bsuf
= 1;
4650 else if (i
.suffix
== WORD_MNEM_SUFFIX
)
4651 suffix_check
.no_wsuf
= 1;
4652 else if (i
.suffix
== SHORT_MNEM_SUFFIX
)
4653 suffix_check
.no_ssuf
= 1;
4654 else if (i
.suffix
== LONG_MNEM_SUFFIX
)
4655 suffix_check
.no_lsuf
= 1;
4656 else if (i
.suffix
== QWORD_MNEM_SUFFIX
)
4657 suffix_check
.no_qsuf
= 1;
4658 else if (i
.suffix
== LONG_DOUBLE_MNEM_SUFFIX
)
4659 suffix_check
.no_ldsuf
= 1;
4661 /* Must have right number of operands. */
4662 i
.error
= number_of_operands_mismatch
;
4664 for (t
= current_templates
->start
; t
< current_templates
->end
; t
++)
4666 addr_prefix_disp
= -1;
4668 if (i
.operands
!= t
->operands
)
4671 /* Check processor support. */
4672 i
.error
= unsupported
;
4673 found_cpu_match
= (cpu_flags_match (t
)
4674 == CPU_FLAGS_PERFECT_MATCH
);
4675 if (!found_cpu_match
)
4678 /* Check old gcc support. */
4679 i
.error
= old_gcc_only
;
4680 if (!old_gcc
&& t
->opcode_modifier
.oldgcc
)
4683 /* Check AT&T mnemonic. */
4684 i
.error
= unsupported_with_intel_mnemonic
;
4685 if (intel_mnemonic
&& t
->opcode_modifier
.attmnemonic
)
4688 /* Check AT&T/Intel syntax. */
4689 i
.error
= unsupported_syntax
;
4690 if ((intel_syntax
&& t
->opcode_modifier
.attsyntax
)
4691 || (!intel_syntax
&& t
->opcode_modifier
.intelsyntax
))
4694 /* Check the suffix, except for some instructions in intel mode. */
4695 i
.error
= invalid_instruction_suffix
;
4696 if ((!intel_syntax
|| !t
->opcode_modifier
.ignoresize
)
4697 && ((t
->opcode_modifier
.no_bsuf
&& suffix_check
.no_bsuf
)
4698 || (t
->opcode_modifier
.no_wsuf
&& suffix_check
.no_wsuf
)
4699 || (t
->opcode_modifier
.no_lsuf
&& suffix_check
.no_lsuf
)
4700 || (t
->opcode_modifier
.no_ssuf
&& suffix_check
.no_ssuf
)
4701 || (t
->opcode_modifier
.no_qsuf
&& suffix_check
.no_qsuf
)
4702 || (t
->opcode_modifier
.no_ldsuf
&& suffix_check
.no_ldsuf
)))
4705 if (!operand_size_match (t
))
4708 for (j
= 0; j
< MAX_OPERANDS
; j
++)
4709 operand_types
[j
] = t
->operand_types
[j
];
4711 /* In general, don't allow 64-bit operands in 32-bit mode. */
4712 if (i
.suffix
== QWORD_MNEM_SUFFIX
4713 && flag_code
!= CODE_64BIT
4715 ? (!t
->opcode_modifier
.ignoresize
4716 && !intel_float_operand (t
->name
))
4717 : intel_float_operand (t
->name
) != 2)
4718 && ((!operand_types
[0].bitfield
.regmmx
4719 && !operand_types
[0].bitfield
.regxmm
4720 && !operand_types
[0].bitfield
.regymm
4721 && !operand_types
[0].bitfield
.regzmm
)
4722 || (!operand_types
[t
->operands
> 1].bitfield
.regmmx
4723 && operand_types
[t
->operands
> 1].bitfield
.regxmm
4724 && operand_types
[t
->operands
> 1].bitfield
.regymm
4725 && operand_types
[t
->operands
> 1].bitfield
.regzmm
))
4726 && (t
->base_opcode
!= 0x0fc7
4727 || t
->extension_opcode
!= 1 /* cmpxchg8b */))
4730 /* In general, don't allow 32-bit operands on pre-386. */
4731 else if (i
.suffix
== LONG_MNEM_SUFFIX
4732 && !cpu_arch_flags
.bitfield
.cpui386
4734 ? (!t
->opcode_modifier
.ignoresize
4735 && !intel_float_operand (t
->name
))
4736 : intel_float_operand (t
->name
) != 2)
4737 && ((!operand_types
[0].bitfield
.regmmx
4738 && !operand_types
[0].bitfield
.regxmm
)
4739 || (!operand_types
[t
->operands
> 1].bitfield
.regmmx
4740 && operand_types
[t
->operands
> 1].bitfield
.regxmm
)))
4743 /* Do not verify operands when there are none. */
4747 /* We've found a match; break out of loop. */
4751 /* Address size prefix will turn Disp64/Disp32/Disp16 operand
4752 into Disp32/Disp16/Disp32 operand. */
4753 if (i
.prefix
[ADDR_PREFIX
] != 0)
4755 /* There should be only one Disp operand. */
4759 for (j
= 0; j
< MAX_OPERANDS
; j
++)
4761 if (operand_types
[j
].bitfield
.disp16
)
4763 addr_prefix_disp
= j
;
4764 operand_types
[j
].bitfield
.disp32
= 1;
4765 operand_types
[j
].bitfield
.disp16
= 0;
4771 for (j
= 0; j
< MAX_OPERANDS
; j
++)
4773 if (operand_types
[j
].bitfield
.disp32
)
4775 addr_prefix_disp
= j
;
4776 operand_types
[j
].bitfield
.disp32
= 0;
4777 operand_types
[j
].bitfield
.disp16
= 1;
4783 for (j
= 0; j
< MAX_OPERANDS
; j
++)
4785 if (operand_types
[j
].bitfield
.disp64
)
4787 addr_prefix_disp
= j
;
4788 operand_types
[j
].bitfield
.disp64
= 0;
4789 operand_types
[j
].bitfield
.disp32
= 1;
4797 /* Force 0x8b encoding for "mov foo@GOT, %eax". */
4798 if (i
.reloc
[0] == BFD_RELOC_386_GOT32
&& t
->base_opcode
== 0xa0)
4801 /* We check register size if needed. */
4802 check_register
= t
->opcode_modifier
.checkregsize
;
4803 overlap0
= operand_type_and (i
.types
[0], operand_types
[0]);
4804 switch (t
->operands
)
4807 if (!operand_type_match (overlap0
, i
.types
[0]))
4811 /* xchg %eax, %eax is a special case. It is an aliase for nop
4812 only in 32bit mode and we can use opcode 0x90. In 64bit
4813 mode, we can't use 0x90 for xchg %eax, %eax since it should
4814 zero-extend %eax to %rax. */
4815 if (flag_code
== CODE_64BIT
4816 && t
->base_opcode
== 0x90
4817 && operand_type_equal (&i
.types
[0], &acc32
)
4818 && operand_type_equal (&i
.types
[1], &acc32
))
4822 /* If we swap operand in encoding, we either match
4823 the next one or reverse direction of operands. */
4824 if (t
->opcode_modifier
.s
)
4826 else if (t
->opcode_modifier
.d
)
4831 /* If we swap operand in encoding, we match the next one. */
4832 if (i
.swap_operand
&& t
->opcode_modifier
.s
)
4836 overlap1
= operand_type_and (i
.types
[1], operand_types
[1]);
4837 if (!operand_type_match (overlap0
, i
.types
[0])
4838 || !operand_type_match (overlap1
, i
.types
[1])
4840 && !operand_type_register_match (overlap0
, i
.types
[0],
4842 overlap1
, i
.types
[1],
4845 /* Check if other direction is valid ... */
4846 if (!t
->opcode_modifier
.d
&& !t
->opcode_modifier
.floatd
)
4850 /* Try reversing direction of operands. */
4851 overlap0
= operand_type_and (i
.types
[0], operand_types
[1]);
4852 overlap1
= operand_type_and (i
.types
[1], operand_types
[0]);
4853 if (!operand_type_match (overlap0
, i
.types
[0])
4854 || !operand_type_match (overlap1
, i
.types
[1])
4856 && !operand_type_register_match (overlap0
,
4863 /* Does not match either direction. */
4866 /* found_reverse_match holds which of D or FloatDR
4868 if (t
->opcode_modifier
.d
)
4869 found_reverse_match
= Opcode_D
;
4870 else if (t
->opcode_modifier
.floatd
)
4871 found_reverse_match
= Opcode_FloatD
;
4873 found_reverse_match
= 0;
4874 if (t
->opcode_modifier
.floatr
)
4875 found_reverse_match
|= Opcode_FloatR
;
4879 /* Found a forward 2 operand match here. */
4880 switch (t
->operands
)
4883 overlap4
= operand_type_and (i
.types
[4],
4886 overlap3
= operand_type_and (i
.types
[3],
4889 overlap2
= operand_type_and (i
.types
[2],
4894 switch (t
->operands
)
4897 if (!operand_type_match (overlap4
, i
.types
[4])
4898 || !operand_type_register_match (overlap3
,
4906 if (!operand_type_match (overlap3
, i
.types
[3])
4908 && !operand_type_register_match (overlap2
,
4916 /* Here we make use of the fact that there are no
4917 reverse match 3 operand instructions, and all 3
4918 operand instructions only need to be checked for
4919 register consistency between operands 2 and 3. */
4920 if (!operand_type_match (overlap2
, i
.types
[2])
4922 && !operand_type_register_match (overlap1
,
4932 /* Found either forward/reverse 2, 3 or 4 operand match here:
4933 slip through to break. */
4935 if (!found_cpu_match
)
4937 found_reverse_match
= 0;
4941 /* Check if vector and VEX operands are valid. */
4942 if (check_VecOperands (t
) || VEX_check_operands (t
))
4944 specific_error
= i
.error
;
4948 /* We've found a match; break out of loop. */
4952 if (t
== current_templates
->end
)
4954 /* We found no match. */
4955 const char *err_msg
;
4956 switch (specific_error
? specific_error
: i
.error
)
4960 case operand_size_mismatch
:
4961 err_msg
= _("operand size mismatch");
4963 case operand_type_mismatch
:
4964 err_msg
= _("operand type mismatch");
4966 case register_type_mismatch
:
4967 err_msg
= _("register type mismatch");
4969 case number_of_operands_mismatch
:
4970 err_msg
= _("number of operands mismatch");
4972 case invalid_instruction_suffix
:
4973 err_msg
= _("invalid instruction suffix");
4976 err_msg
= _("constant doesn't fit in 4 bits");
4979 err_msg
= _("only supported with old gcc");
4981 case unsupported_with_intel_mnemonic
:
4982 err_msg
= _("unsupported with Intel mnemonic");
4984 case unsupported_syntax
:
4985 err_msg
= _("unsupported syntax");
4988 as_bad (_("unsupported instruction `%s'"),
4989 current_templates
->start
->name
);
4991 case invalid_vsib_address
:
4992 err_msg
= _("invalid VSIB address");
4994 case invalid_vector_register_set
:
4995 err_msg
= _("mask, index, and destination registers must be distinct");
4997 case unsupported_vector_index_register
:
4998 err_msg
= _("unsupported vector index register");
5000 case unsupported_broadcast
:
5001 err_msg
= _("unsupported broadcast");
5003 case broadcast_not_on_src_operand
:
5004 err_msg
= _("broadcast not on source memory operand");
5006 case broadcast_needed
:
5007 err_msg
= _("broadcast is needed for operand of such type");
5009 case unsupported_masking
:
5010 err_msg
= _("unsupported masking");
5012 case mask_not_on_destination
:
5013 err_msg
= _("mask not on destination operand");
5015 case no_default_mask
:
5016 err_msg
= _("default mask isn't allowed");
5018 case unsupported_rc_sae
:
5019 err_msg
= _("unsupported static rounding/sae");
5021 case rc_sae_operand_not_last_imm
:
5023 err_msg
= _("RC/SAE operand must precede immediate operands");
5025 err_msg
= _("RC/SAE operand must follow immediate operands");
5027 case invalid_register_operand
:
5028 err_msg
= _("invalid register operand");
5031 as_bad (_("%s for `%s'"), err_msg
,
5032 current_templates
->start
->name
);
5036 if (!quiet_warnings
)
5039 && (i
.types
[0].bitfield
.jumpabsolute
5040 != operand_types
[0].bitfield
.jumpabsolute
))
5042 as_warn (_("indirect %s without `*'"), t
->name
);
5045 if (t
->opcode_modifier
.isprefix
5046 && t
->opcode_modifier
.ignoresize
)
5048 /* Warn them that a data or address size prefix doesn't
5049 affect assembly of the next line of code. */
5050 as_warn (_("stand-alone `%s' prefix"), t
->name
);
5054 /* Copy the template we found. */
5057 if (addr_prefix_disp
!= -1)
5058 i
.tm
.operand_types
[addr_prefix_disp
]
5059 = operand_types
[addr_prefix_disp
];
5061 if (found_reverse_match
)
5063 /* If we found a reverse match we must alter the opcode
5064 direction bit. found_reverse_match holds bits to change
5065 (different for int & float insns). */
5067 i
.tm
.base_opcode
^= found_reverse_match
;
5069 i
.tm
.operand_types
[0] = operand_types
[1];
5070 i
.tm
.operand_types
[1] = operand_types
[0];
5079 int mem_op
= operand_type_check (i
.types
[0], anymem
) ? 0 : 1;
5080 if (i
.tm
.operand_types
[mem_op
].bitfield
.esseg
)
5082 if (i
.seg
[0] != NULL
&& i
.seg
[0] != &es
)
5084 as_bad (_("`%s' operand %d must use `%ses' segment"),
5090 /* There's only ever one segment override allowed per instruction.
5091 This instruction possibly has a legal segment override on the
5092 second operand, so copy the segment to where non-string
5093 instructions store it, allowing common code. */
5094 i
.seg
[0] = i
.seg
[1];
5096 else if (i
.tm
.operand_types
[mem_op
+ 1].bitfield
.esseg
)
5098 if (i
.seg
[1] != NULL
&& i
.seg
[1] != &es
)
5100 as_bad (_("`%s' operand %d must use `%ses' segment"),
5111 process_suffix (void)
5113 /* If matched instruction specifies an explicit instruction mnemonic
5115 if (i
.tm
.opcode_modifier
.size16
)
5116 i
.suffix
= WORD_MNEM_SUFFIX
;
5117 else if (i
.tm
.opcode_modifier
.size32
)
5118 i
.suffix
= LONG_MNEM_SUFFIX
;
5119 else if (i
.tm
.opcode_modifier
.size64
)
5120 i
.suffix
= QWORD_MNEM_SUFFIX
;
5121 else if (i
.reg_operands
)
5123 /* If there's no instruction mnemonic suffix we try to invent one
5124 based on register operands. */
5127 /* We take i.suffix from the last register operand specified,
5128 Destination register type is more significant than source
5129 register type. crc32 in SSE4.2 prefers source register
5131 if (i
.tm
.base_opcode
== 0xf20f38f1)
5133 if (i
.types
[0].bitfield
.reg16
)
5134 i
.suffix
= WORD_MNEM_SUFFIX
;
5135 else if (i
.types
[0].bitfield
.reg32
)
5136 i
.suffix
= LONG_MNEM_SUFFIX
;
5137 else if (i
.types
[0].bitfield
.reg64
)
5138 i
.suffix
= QWORD_MNEM_SUFFIX
;
5140 else if (i
.tm
.base_opcode
== 0xf20f38f0)
5142 if (i
.types
[0].bitfield
.reg8
)
5143 i
.suffix
= BYTE_MNEM_SUFFIX
;
5150 if (i
.tm
.base_opcode
== 0xf20f38f1
5151 || i
.tm
.base_opcode
== 0xf20f38f0)
5153 /* We have to know the operand size for crc32. */
5154 as_bad (_("ambiguous memory operand size for `%s`"),
5159 for (op
= i
.operands
; --op
>= 0;)
5160 if (!i
.tm
.operand_types
[op
].bitfield
.inoutportreg
)
5162 if (i
.types
[op
].bitfield
.reg8
)
5164 i
.suffix
= BYTE_MNEM_SUFFIX
;
5167 else if (i
.types
[op
].bitfield
.reg16
)
5169 i
.suffix
= WORD_MNEM_SUFFIX
;
5172 else if (i
.types
[op
].bitfield
.reg32
)
5174 i
.suffix
= LONG_MNEM_SUFFIX
;
5177 else if (i
.types
[op
].bitfield
.reg64
)
5179 i
.suffix
= QWORD_MNEM_SUFFIX
;
5185 else if (i
.suffix
== BYTE_MNEM_SUFFIX
)
5188 && i
.tm
.opcode_modifier
.ignoresize
5189 && i
.tm
.opcode_modifier
.no_bsuf
)
5191 else if (!check_byte_reg ())
5194 else if (i
.suffix
== LONG_MNEM_SUFFIX
)
5197 && i
.tm
.opcode_modifier
.ignoresize
5198 && i
.tm
.opcode_modifier
.no_lsuf
)
5200 else if (!check_long_reg ())
5203 else if (i
.suffix
== QWORD_MNEM_SUFFIX
)
5206 && i
.tm
.opcode_modifier
.ignoresize
5207 && i
.tm
.opcode_modifier
.no_qsuf
)
5209 else if (!check_qword_reg ())
5212 else if (i
.suffix
== WORD_MNEM_SUFFIX
)
5215 && i
.tm
.opcode_modifier
.ignoresize
5216 && i
.tm
.opcode_modifier
.no_wsuf
)
5218 else if (!check_word_reg ())
5221 else if (i
.suffix
== XMMWORD_MNEM_SUFFIX
5222 || i
.suffix
== YMMWORD_MNEM_SUFFIX
5223 || i
.suffix
== ZMMWORD_MNEM_SUFFIX
)
5225 /* Skip if the instruction has x/y/z suffix. match_template
5226 should check if it is a valid suffix. */
5228 else if (intel_syntax
&& i
.tm
.opcode_modifier
.ignoresize
)
5229 /* Do nothing if the instruction is going to ignore the prefix. */
5234 else if (i
.tm
.opcode_modifier
.defaultsize
5236 /* exclude fldenv/frstor/fsave/fstenv */
5237 && i
.tm
.opcode_modifier
.no_ssuf
)
5239 i
.suffix
= stackop_size
;
5241 else if (intel_syntax
5243 && (i
.tm
.operand_types
[0].bitfield
.jumpabsolute
5244 || i
.tm
.opcode_modifier
.jumpbyte
5245 || i
.tm
.opcode_modifier
.jumpintersegment
5246 || (i
.tm
.base_opcode
== 0x0f01 /* [ls][gi]dt */
5247 && i
.tm
.extension_opcode
<= 3)))
5252 if (!i
.tm
.opcode_modifier
.no_qsuf
)
5254 i
.suffix
= QWORD_MNEM_SUFFIX
;
5258 if (!i
.tm
.opcode_modifier
.no_lsuf
)
5259 i
.suffix
= LONG_MNEM_SUFFIX
;
5262 if (!i
.tm
.opcode_modifier
.no_wsuf
)
5263 i
.suffix
= WORD_MNEM_SUFFIX
;
5272 if (i
.tm
.opcode_modifier
.w
)
5274 as_bad (_("no instruction mnemonic suffix given and "
5275 "no register operands; can't size instruction"));
5281 unsigned int suffixes
;
5283 suffixes
= !i
.tm
.opcode_modifier
.no_bsuf
;
5284 if (!i
.tm
.opcode_modifier
.no_wsuf
)
5286 if (!i
.tm
.opcode_modifier
.no_lsuf
)
5288 if (!i
.tm
.opcode_modifier
.no_ldsuf
)
5290 if (!i
.tm
.opcode_modifier
.no_ssuf
)
5292 if (!i
.tm
.opcode_modifier
.no_qsuf
)
5295 /* There are more than suffix matches. */
5296 if (i
.tm
.opcode_modifier
.w
5297 || ((suffixes
& (suffixes
- 1))
5298 && !i
.tm
.opcode_modifier
.defaultsize
5299 && !i
.tm
.opcode_modifier
.ignoresize
))
5301 as_bad (_("ambiguous operand size for `%s'"), i
.tm
.name
);
5307 /* Change the opcode based on the operand size given by i.suffix;
5308 We don't need to change things for byte insns. */
5311 && i
.suffix
!= BYTE_MNEM_SUFFIX
5312 && i
.suffix
!= XMMWORD_MNEM_SUFFIX
5313 && i
.suffix
!= YMMWORD_MNEM_SUFFIX
5314 && i
.suffix
!= ZMMWORD_MNEM_SUFFIX
)
5316 /* It's not a byte, select word/dword operation. */
5317 if (i
.tm
.opcode_modifier
.w
)
5319 if (i
.tm
.opcode_modifier
.shortform
)
5320 i
.tm
.base_opcode
|= 8;
5322 i
.tm
.base_opcode
|= 1;
5325 /* Now select between word & dword operations via the operand
5326 size prefix, except for instructions that will ignore this
5328 if (i
.tm
.opcode_modifier
.addrprefixop0
)
5330 /* The address size override prefix changes the size of the
5332 if ((flag_code
== CODE_32BIT
5333 && i
.op
->regs
[0].reg_type
.bitfield
.reg16
)
5334 || (flag_code
!= CODE_32BIT
5335 && i
.op
->regs
[0].reg_type
.bitfield
.reg32
))
5336 if (!add_prefix (ADDR_PREFIX_OPCODE
))
5339 else if (i
.suffix
!= QWORD_MNEM_SUFFIX
5340 && i
.suffix
!= LONG_DOUBLE_MNEM_SUFFIX
5341 && !i
.tm
.opcode_modifier
.ignoresize
5342 && !i
.tm
.opcode_modifier
.floatmf
5343 && ((i
.suffix
== LONG_MNEM_SUFFIX
) == (flag_code
== CODE_16BIT
)
5344 || (flag_code
== CODE_64BIT
5345 && i
.tm
.opcode_modifier
.jumpbyte
)))
5347 unsigned int prefix
= DATA_PREFIX_OPCODE
;
5349 if (i
.tm
.opcode_modifier
.jumpbyte
) /* jcxz, loop */
5350 prefix
= ADDR_PREFIX_OPCODE
;
5352 if (!add_prefix (prefix
))
5356 /* Set mode64 for an operand. */
5357 if (i
.suffix
== QWORD_MNEM_SUFFIX
5358 && flag_code
== CODE_64BIT
5359 && !i
.tm
.opcode_modifier
.norex64
)
5361 /* Special case for xchg %rax,%rax. It is NOP and doesn't
5362 need rex64. cmpxchg8b is also a special case. */
5363 if (! (i
.operands
== 2
5364 && i
.tm
.base_opcode
== 0x90
5365 && i
.tm
.extension_opcode
== None
5366 && operand_type_equal (&i
.types
[0], &acc64
)
5367 && operand_type_equal (&i
.types
[1], &acc64
))
5368 && ! (i
.operands
== 1
5369 && i
.tm
.base_opcode
== 0xfc7
5370 && i
.tm
.extension_opcode
== 1
5371 && !operand_type_check (i
.types
[0], reg
)
5372 && operand_type_check (i
.types
[0], anymem
)))
5376 /* Size floating point instruction. */
5377 if (i
.suffix
== LONG_MNEM_SUFFIX
)
5378 if (i
.tm
.opcode_modifier
.floatmf
)
5379 i
.tm
.base_opcode
^= 4;
5386 check_byte_reg (void)
5390 for (op
= i
.operands
; --op
>= 0;)
5392 /* If this is an eight bit register, it's OK. If it's the 16 or
5393 32 bit version of an eight bit register, we will just use the
5394 low portion, and that's OK too. */
5395 if (i
.types
[op
].bitfield
.reg8
)
5398 /* I/O port address operands are OK too. */
5399 if (i
.tm
.operand_types
[op
].bitfield
.inoutportreg
)
5402 /* crc32 doesn't generate this warning. */
5403 if (i
.tm
.base_opcode
== 0xf20f38f0)
5406 if ((i
.types
[op
].bitfield
.reg16
5407 || i
.types
[op
].bitfield
.reg32
5408 || i
.types
[op
].bitfield
.reg64
)
5409 && i
.op
[op
].regs
->reg_num
< 4
5410 /* Prohibit these changes in 64bit mode, since the lowering
5411 would be more complicated. */
5412 && flag_code
!= CODE_64BIT
)
5414 #if REGISTER_WARNINGS
5415 if (!quiet_warnings
)
5416 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
5418 (i
.op
[op
].regs
+ (i
.types
[op
].bitfield
.reg16
5419 ? REGNAM_AL
- REGNAM_AX
5420 : REGNAM_AL
- REGNAM_EAX
))->reg_name
,
5422 i
.op
[op
].regs
->reg_name
,
5427 /* Any other register is bad. */
5428 if (i
.types
[op
].bitfield
.reg16
5429 || i
.types
[op
].bitfield
.reg32
5430 || i
.types
[op
].bitfield
.reg64
5431 || i
.types
[op
].bitfield
.regmmx
5432 || i
.types
[op
].bitfield
.regxmm
5433 || i
.types
[op
].bitfield
.regymm
5434 || i
.types
[op
].bitfield
.regzmm
5435 || i
.types
[op
].bitfield
.sreg2
5436 || i
.types
[op
].bitfield
.sreg3
5437 || i
.types
[op
].bitfield
.control
5438 || i
.types
[op
].bitfield
.debug
5439 || i
.types
[op
].bitfield
.test
5440 || i
.types
[op
].bitfield
.floatreg
5441 || i
.types
[op
].bitfield
.floatacc
)
5443 as_bad (_("`%s%s' not allowed with `%s%c'"),
5445 i
.op
[op
].regs
->reg_name
,
5455 check_long_reg (void)
5459 for (op
= i
.operands
; --op
>= 0;)
5460 /* Reject eight bit registers, except where the template requires
5461 them. (eg. movzb) */
5462 if (i
.types
[op
].bitfield
.reg8
5463 && (i
.tm
.operand_types
[op
].bitfield
.reg16
5464 || i
.tm
.operand_types
[op
].bitfield
.reg32
5465 || i
.tm
.operand_types
[op
].bitfield
.acc
))
5467 as_bad (_("`%s%s' not allowed with `%s%c'"),
5469 i
.op
[op
].regs
->reg_name
,
5474 /* Warn if the e prefix on a general reg is missing. */
5475 else if ((!quiet_warnings
|| flag_code
== CODE_64BIT
)
5476 && i
.types
[op
].bitfield
.reg16
5477 && (i
.tm
.operand_types
[op
].bitfield
.reg32
5478 || i
.tm
.operand_types
[op
].bitfield
.acc
))
5480 /* Prohibit these changes in the 64bit mode, since the
5481 lowering is more complicated. */
5482 if (flag_code
== CODE_64BIT
)
5484 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
5485 register_prefix
, i
.op
[op
].regs
->reg_name
,
5489 #if REGISTER_WARNINGS
5490 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
5492 (i
.op
[op
].regs
+ REGNAM_EAX
- REGNAM_AX
)->reg_name
,
5493 register_prefix
, i
.op
[op
].regs
->reg_name
, i
.suffix
);
5496 /* Warn if the r prefix on a general reg is present. */
5497 else if (i
.types
[op
].bitfield
.reg64
5498 && (i
.tm
.operand_types
[op
].bitfield
.reg32
5499 || i
.tm
.operand_types
[op
].bitfield
.acc
))
5502 && i
.tm
.opcode_modifier
.toqword
5503 && !i
.types
[0].bitfield
.regxmm
)
5505 /* Convert to QWORD. We want REX byte. */
5506 i
.suffix
= QWORD_MNEM_SUFFIX
;
5510 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
5511 register_prefix
, i
.op
[op
].regs
->reg_name
,
5520 check_qword_reg (void)
5524 for (op
= i
.operands
; --op
>= 0; )
5525 /* Reject eight bit registers, except where the template requires
5526 them. (eg. movzb) */
5527 if (i
.types
[op
].bitfield
.reg8
5528 && (i
.tm
.operand_types
[op
].bitfield
.reg16
5529 || i
.tm
.operand_types
[op
].bitfield
.reg32
5530 || i
.tm
.operand_types
[op
].bitfield
.acc
))
5532 as_bad (_("`%s%s' not allowed with `%s%c'"),
5534 i
.op
[op
].regs
->reg_name
,
5539 /* Warn if the r prefix on a general reg is missing. */
5540 else if ((i
.types
[op
].bitfield
.reg16
5541 || i
.types
[op
].bitfield
.reg32
)
5542 && (i
.tm
.operand_types
[op
].bitfield
.reg32
5543 || i
.tm
.operand_types
[op
].bitfield
.acc
))
5545 /* Prohibit these changes in the 64bit mode, since the
5546 lowering is more complicated. */
5548 && i
.tm
.opcode_modifier
.todword
5549 && !i
.types
[0].bitfield
.regxmm
)
5551 /* Convert to DWORD. We don't want REX byte. */
5552 i
.suffix
= LONG_MNEM_SUFFIX
;
5556 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
5557 register_prefix
, i
.op
[op
].regs
->reg_name
,
5566 check_word_reg (void)
5569 for (op
= i
.operands
; --op
>= 0;)
5570 /* Reject eight bit registers, except where the template requires
5571 them. (eg. movzb) */
5572 if (i
.types
[op
].bitfield
.reg8
5573 && (i
.tm
.operand_types
[op
].bitfield
.reg16
5574 || i
.tm
.operand_types
[op
].bitfield
.reg32
5575 || i
.tm
.operand_types
[op
].bitfield
.acc
))
5577 as_bad (_("`%s%s' not allowed with `%s%c'"),
5579 i
.op
[op
].regs
->reg_name
,
5584 /* Warn if the e or r prefix on a general reg is present. */
5585 else if ((!quiet_warnings
|| flag_code
== CODE_64BIT
)
5586 && (i
.types
[op
].bitfield
.reg32
5587 || i
.types
[op
].bitfield
.reg64
)
5588 && (i
.tm
.operand_types
[op
].bitfield
.reg16
5589 || i
.tm
.operand_types
[op
].bitfield
.acc
))
5591 /* Prohibit these changes in the 64bit mode, since the
5592 lowering is more complicated. */
5593 if (flag_code
== CODE_64BIT
)
5595 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
5596 register_prefix
, i
.op
[op
].regs
->reg_name
,
5600 #if REGISTER_WARNINGS
5601 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
5603 (i
.op
[op
].regs
+ REGNAM_AX
- REGNAM_EAX
)->reg_name
,
5604 register_prefix
, i
.op
[op
].regs
->reg_name
, i
.suffix
);
5611 update_imm (unsigned int j
)
5613 i386_operand_type overlap
= i
.types
[j
];
5614 if ((overlap
.bitfield
.imm8
5615 || overlap
.bitfield
.imm8s
5616 || overlap
.bitfield
.imm16
5617 || overlap
.bitfield
.imm32
5618 || overlap
.bitfield
.imm32s
5619 || overlap
.bitfield
.imm64
)
5620 && !operand_type_equal (&overlap
, &imm8
)
5621 && !operand_type_equal (&overlap
, &imm8s
)
5622 && !operand_type_equal (&overlap
, &imm16
)
5623 && !operand_type_equal (&overlap
, &imm32
)
5624 && !operand_type_equal (&overlap
, &imm32s
)
5625 && !operand_type_equal (&overlap
, &imm64
))
5629 i386_operand_type temp
;
5631 operand_type_set (&temp
, 0);
5632 if (i
.suffix
== BYTE_MNEM_SUFFIX
)
5634 temp
.bitfield
.imm8
= overlap
.bitfield
.imm8
;
5635 temp
.bitfield
.imm8s
= overlap
.bitfield
.imm8s
;
5637 else if (i
.suffix
== WORD_MNEM_SUFFIX
)
5638 temp
.bitfield
.imm16
= overlap
.bitfield
.imm16
;
5639 else if (i
.suffix
== QWORD_MNEM_SUFFIX
)
5641 temp
.bitfield
.imm64
= overlap
.bitfield
.imm64
;
5642 temp
.bitfield
.imm32s
= overlap
.bitfield
.imm32s
;
5645 temp
.bitfield
.imm32
= overlap
.bitfield
.imm32
;
5648 else if (operand_type_equal (&overlap
, &imm16_32_32s
)
5649 || operand_type_equal (&overlap
, &imm16_32
)
5650 || operand_type_equal (&overlap
, &imm16_32s
))
5652 if ((flag_code
== CODE_16BIT
) ^ (i
.prefix
[DATA_PREFIX
] != 0))
5657 if (!operand_type_equal (&overlap
, &imm8
)
5658 && !operand_type_equal (&overlap
, &imm8s
)
5659 && !operand_type_equal (&overlap
, &imm16
)
5660 && !operand_type_equal (&overlap
, &imm32
)
5661 && !operand_type_equal (&overlap
, &imm32s
)
5662 && !operand_type_equal (&overlap
, &imm64
))
5664 as_bad (_("no instruction mnemonic suffix given; "
5665 "can't determine immediate size"));
5669 i
.types
[j
] = overlap
;
5679 /* Update the first 2 immediate operands. */
5680 n
= i
.operands
> 2 ? 2 : i
.operands
;
5683 for (j
= 0; j
< n
; j
++)
5684 if (update_imm (j
) == 0)
5687 /* The 3rd operand can't be immediate operand. */
5688 gas_assert (operand_type_check (i
.types
[2], imm
) == 0);
5695 bad_implicit_operand (int xmm
)
5697 const char *ireg
= xmm
? "xmm0" : "ymm0";
5700 as_bad (_("the last operand of `%s' must be `%s%s'"),
5701 i
.tm
.name
, register_prefix
, ireg
);
5703 as_bad (_("the first operand of `%s' must be `%s%s'"),
5704 i
.tm
.name
, register_prefix
, ireg
);
5709 process_operands (void)
5711 /* Default segment register this instruction will use for memory
5712 accesses. 0 means unknown. This is only for optimizing out
5713 unnecessary segment overrides. */
5714 const seg_entry
*default_seg
= 0;
5716 if (i
.tm
.opcode_modifier
.sse2avx
&& i
.tm
.opcode_modifier
.vexvvvv
)
5718 unsigned int dupl
= i
.operands
;
5719 unsigned int dest
= dupl
- 1;
5722 /* The destination must be an xmm register. */
5723 gas_assert (i
.reg_operands
5724 && MAX_OPERANDS
> dupl
5725 && operand_type_equal (&i
.types
[dest
], ®xmm
));
5727 if (i
.tm
.opcode_modifier
.firstxmm0
)
5729 /* The first operand is implicit and must be xmm0. */
5730 gas_assert (operand_type_equal (&i
.types
[0], ®xmm
));
5731 if (register_number (i
.op
[0].regs
) != 0)
5732 return bad_implicit_operand (1);
5734 if (i
.tm
.opcode_modifier
.vexsources
== VEX3SOURCES
)
5736 /* Keep xmm0 for instructions with VEX prefix and 3
5742 /* We remove the first xmm0 and keep the number of
5743 operands unchanged, which in fact duplicates the
5745 for (j
= 1; j
< i
.operands
; j
++)
5747 i
.op
[j
- 1] = i
.op
[j
];
5748 i
.types
[j
- 1] = i
.types
[j
];
5749 i
.tm
.operand_types
[j
- 1] = i
.tm
.operand_types
[j
];
5753 else if (i
.tm
.opcode_modifier
.implicit1stxmm0
)
5755 gas_assert ((MAX_OPERANDS
- 1) > dupl
5756 && (i
.tm
.opcode_modifier
.vexsources
5759 /* Add the implicit xmm0 for instructions with VEX prefix
5761 for (j
= i
.operands
; j
> 0; j
--)
5763 i
.op
[j
] = i
.op
[j
- 1];
5764 i
.types
[j
] = i
.types
[j
- 1];
5765 i
.tm
.operand_types
[j
] = i
.tm
.operand_types
[j
- 1];
5768 = (const reg_entry
*) hash_find (reg_hash
, "xmm0");
5769 i
.types
[0] = regxmm
;
5770 i
.tm
.operand_types
[0] = regxmm
;
5773 i
.reg_operands
+= 2;
5778 i
.op
[dupl
] = i
.op
[dest
];
5779 i
.types
[dupl
] = i
.types
[dest
];
5780 i
.tm
.operand_types
[dupl
] = i
.tm
.operand_types
[dest
];
5789 i
.op
[dupl
] = i
.op
[dest
];
5790 i
.types
[dupl
] = i
.types
[dest
];
5791 i
.tm
.operand_types
[dupl
] = i
.tm
.operand_types
[dest
];
5794 if (i
.tm
.opcode_modifier
.immext
)
5797 else if (i
.tm
.opcode_modifier
.firstxmm0
)
5801 /* The first operand is implicit and must be xmm0/ymm0/zmm0. */
5802 gas_assert (i
.reg_operands
5803 && (operand_type_equal (&i
.types
[0], ®xmm
)
5804 || operand_type_equal (&i
.types
[0], ®ymm
)
5805 || operand_type_equal (&i
.types
[0], ®zmm
)));
5806 if (register_number (i
.op
[0].regs
) != 0)
5807 return bad_implicit_operand (i
.types
[0].bitfield
.regxmm
);
5809 for (j
= 1; j
< i
.operands
; j
++)
5811 i
.op
[j
- 1] = i
.op
[j
];
5812 i
.types
[j
- 1] = i
.types
[j
];
5814 /* We need to adjust fields in i.tm since they are used by
5815 build_modrm_byte. */
5816 i
.tm
.operand_types
[j
- 1] = i
.tm
.operand_types
[j
];
5823 else if (i
.tm
.opcode_modifier
.regkludge
)
5825 /* The imul $imm, %reg instruction is converted into
5826 imul $imm, %reg, %reg, and the clr %reg instruction
5827 is converted into xor %reg, %reg. */
5829 unsigned int first_reg_op
;
5831 if (operand_type_check (i
.types
[0], reg
))
5835 /* Pretend we saw the extra register operand. */
5836 gas_assert (i
.reg_operands
== 1
5837 && i
.op
[first_reg_op
+ 1].regs
== 0);
5838 i
.op
[first_reg_op
+ 1].regs
= i
.op
[first_reg_op
].regs
;
5839 i
.types
[first_reg_op
+ 1] = i
.types
[first_reg_op
];
5844 if (i
.tm
.opcode_modifier
.shortform
)
5846 if (i
.types
[0].bitfield
.sreg2
5847 || i
.types
[0].bitfield
.sreg3
)
5849 if (i
.tm
.base_opcode
== POP_SEG_SHORT
5850 && i
.op
[0].regs
->reg_num
== 1)
5852 as_bad (_("you can't `pop %scs'"), register_prefix
);
5855 i
.tm
.base_opcode
|= (i
.op
[0].regs
->reg_num
<< 3);
5856 if ((i
.op
[0].regs
->reg_flags
& RegRex
) != 0)
5861 /* The register or float register operand is in operand
5865 if (i
.types
[0].bitfield
.floatreg
5866 || operand_type_check (i
.types
[0], reg
))
5870 /* Register goes in low 3 bits of opcode. */
5871 i
.tm
.base_opcode
|= i
.op
[op
].regs
->reg_num
;
5872 if ((i
.op
[op
].regs
->reg_flags
& RegRex
) != 0)
5874 if (!quiet_warnings
&& i
.tm
.opcode_modifier
.ugh
)
5876 /* Warn about some common errors, but press on regardless.
5877 The first case can be generated by gcc (<= 2.8.1). */
5878 if (i
.operands
== 2)
5880 /* Reversed arguments on faddp, fsubp, etc. */
5881 as_warn (_("translating to `%s %s%s,%s%s'"), i
.tm
.name
,
5882 register_prefix
, i
.op
[!intel_syntax
].regs
->reg_name
,
5883 register_prefix
, i
.op
[intel_syntax
].regs
->reg_name
);
5887 /* Extraneous `l' suffix on fp insn. */
5888 as_warn (_("translating to `%s %s%s'"), i
.tm
.name
,
5889 register_prefix
, i
.op
[0].regs
->reg_name
);
5894 else if (i
.tm
.opcode_modifier
.modrm
)
5896 /* The opcode is completed (modulo i.tm.extension_opcode which
5897 must be put into the modrm byte). Now, we make the modrm and
5898 index base bytes based on all the info we've collected. */
5900 default_seg
= build_modrm_byte ();
5902 else if ((i
.tm
.base_opcode
& ~0x3) == MOV_AX_DISP32
)
5906 else if (i
.tm
.opcode_modifier
.isstring
)
5908 /* For the string instructions that allow a segment override
5909 on one of their operands, the default segment is ds. */
5913 if (i
.tm
.base_opcode
== 0x8d /* lea */
5916 as_warn (_("segment override on `%s' is ineffectual"), i
.tm
.name
);
5918 /* If a segment was explicitly specified, and the specified segment
5919 is not the default, use an opcode prefix to select it. If we
5920 never figured out what the default segment is, then default_seg
5921 will be zero at this point, and the specified segment prefix will
5923 if ((i
.seg
[0]) && (i
.seg
[0] != default_seg
))
5925 if (!add_prefix (i
.seg
[0]->seg_prefix
))
5931 static const seg_entry
*
5932 build_modrm_byte (void)
5934 const seg_entry
*default_seg
= 0;
5935 unsigned int source
, dest
;
5938 /* The first operand of instructions with VEX prefix and 3 sources
5939 must be VEX_Imm4. */
5940 vex_3_sources
= i
.tm
.opcode_modifier
.vexsources
== VEX3SOURCES
;
5943 unsigned int nds
, reg_slot
;
5946 if (i
.tm
.opcode_modifier
.veximmext
5947 && i
.tm
.opcode_modifier
.immext
)
5949 dest
= i
.operands
- 2;
5950 gas_assert (dest
== 3);
5953 dest
= i
.operands
- 1;
5956 /* There are 2 kinds of instructions:
5957 1. 5 operands: 4 register operands or 3 register operands
5958 plus 1 memory operand plus one Vec_Imm4 operand, VexXDS, and
5959 VexW0 or VexW1. The destination must be either XMM, YMM or
5961 2. 4 operands: 4 register operands or 3 register operands
5962 plus 1 memory operand, VexXDS, and VexImmExt */
5963 gas_assert ((i
.reg_operands
== 4
5964 || (i
.reg_operands
== 3 && i
.mem_operands
== 1))
5965 && i
.tm
.opcode_modifier
.vexvvvv
== VEXXDS
5966 && (i
.tm
.opcode_modifier
.veximmext
5967 || (i
.imm_operands
== 1
5968 && i
.types
[0].bitfield
.vec_imm4
5969 && (i
.tm
.opcode_modifier
.vexw
== VEXW0
5970 || i
.tm
.opcode_modifier
.vexw
== VEXW1
)
5971 && (operand_type_equal (&i
.tm
.operand_types
[dest
], ®xmm
)
5972 || operand_type_equal (&i
.tm
.operand_types
[dest
], ®ymm
)
5973 || operand_type_equal (&i
.tm
.operand_types
[dest
], ®zmm
)))));
5975 if (i
.imm_operands
== 0)
5977 /* When there is no immediate operand, generate an 8bit
5978 immediate operand to encode the first operand. */
5979 exp
= &im_expressions
[i
.imm_operands
++];
5980 i
.op
[i
.operands
].imms
= exp
;
5981 i
.types
[i
.operands
] = imm8
;
5983 /* If VexW1 is set, the first operand is the source and
5984 the second operand is encoded in the immediate operand. */
5985 if (i
.tm
.opcode_modifier
.vexw
== VEXW1
)
5996 /* FMA swaps REG and NDS. */
5997 if (i
.tm
.cpu_flags
.bitfield
.cpufma
)
6005 gas_assert (operand_type_equal (&i
.tm
.operand_types
[reg_slot
],
6007 || operand_type_equal (&i
.tm
.operand_types
[reg_slot
],
6009 || operand_type_equal (&i
.tm
.operand_types
[reg_slot
],
6011 exp
->X_op
= O_constant
;
6012 exp
->X_add_number
= register_number (i
.op
[reg_slot
].regs
) << 4;
6013 gas_assert ((i
.op
[reg_slot
].regs
->reg_flags
& RegVRex
) == 0);
6017 unsigned int imm_slot
;
6019 if (i
.tm
.opcode_modifier
.vexw
== VEXW0
)
6021 /* If VexW0 is set, the third operand is the source and
6022 the second operand is encoded in the immediate
6029 /* VexW1 is set, the second operand is the source and
6030 the third operand is encoded in the immediate
6036 if (i
.tm
.opcode_modifier
.immext
)
6038 /* When ImmExt is set, the immdiate byte is the last
6040 imm_slot
= i
.operands
- 1;
6048 /* Turn on Imm8 so that output_imm will generate it. */
6049 i
.types
[imm_slot
].bitfield
.imm8
= 1;
6052 gas_assert (operand_type_equal (&i
.tm
.operand_types
[reg_slot
],
6054 || operand_type_equal (&i
.tm
.operand_types
[reg_slot
],
6056 || operand_type_equal (&i
.tm
.operand_types
[reg_slot
],
6058 i
.op
[imm_slot
].imms
->X_add_number
6059 |= register_number (i
.op
[reg_slot
].regs
) << 4;
6060 gas_assert ((i
.op
[reg_slot
].regs
->reg_flags
& RegVRex
) == 0);
6063 gas_assert (operand_type_equal (&i
.tm
.operand_types
[nds
], ®xmm
)
6064 || operand_type_equal (&i
.tm
.operand_types
[nds
],
6066 || operand_type_equal (&i
.tm
.operand_types
[nds
],
6068 i
.vex
.register_specifier
= i
.op
[nds
].regs
;
6073 /* i.reg_operands MUST be the number of real register operands;
6074 implicit registers do not count. If there are 3 register
6075 operands, it must be a instruction with VexNDS. For a
6076 instruction with VexNDD, the destination register is encoded
6077 in VEX prefix. If there are 4 register operands, it must be
6078 a instruction with VEX prefix and 3 sources. */
6079 if (i
.mem_operands
== 0
6080 && ((i
.reg_operands
== 2
6081 && i
.tm
.opcode_modifier
.vexvvvv
<= VEXXDS
)
6082 || (i
.reg_operands
== 3
6083 && i
.tm
.opcode_modifier
.vexvvvv
== VEXXDS
)
6084 || (i
.reg_operands
== 4 && vex_3_sources
)))
6092 /* When there are 3 operands, one of them may be immediate,
6093 which may be the first or the last operand. Otherwise,
6094 the first operand must be shift count register (cl) or it
6095 is an instruction with VexNDS. */
6096 gas_assert (i
.imm_operands
== 1
6097 || (i
.imm_operands
== 0
6098 && (i
.tm
.opcode_modifier
.vexvvvv
== VEXXDS
6099 || i
.types
[0].bitfield
.shiftcount
)));
6100 if (operand_type_check (i
.types
[0], imm
)
6101 || i
.types
[0].bitfield
.shiftcount
)
6107 /* When there are 4 operands, the first two must be 8bit
6108 immediate operands. The source operand will be the 3rd
6111 For instructions with VexNDS, if the first operand
6112 an imm8, the source operand is the 2nd one. If the last
6113 operand is imm8, the source operand is the first one. */
6114 gas_assert ((i
.imm_operands
== 2
6115 && i
.types
[0].bitfield
.imm8
6116 && i
.types
[1].bitfield
.imm8
)
6117 || (i
.tm
.opcode_modifier
.vexvvvv
== VEXXDS
6118 && i
.imm_operands
== 1
6119 && (i
.types
[0].bitfield
.imm8
6120 || i
.types
[i
.operands
- 1].bitfield
.imm8
6122 if (i
.imm_operands
== 2)
6126 if (i
.types
[0].bitfield
.imm8
)
6133 if (i
.tm
.opcode_modifier
.evex
)
6135 /* For EVEX instructions, when there are 5 operands, the
6136 first one must be immediate operand. If the second one
6137 is immediate operand, the source operand is the 3th
6138 one. If the last one is immediate operand, the source
6139 operand is the 2nd one. */
6140 gas_assert (i
.imm_operands
== 2
6141 && i
.tm
.opcode_modifier
.sae
6142 && operand_type_check (i
.types
[0], imm
));
6143 if (operand_type_check (i
.types
[1], imm
))
6145 else if (operand_type_check (i
.types
[4], imm
))
6159 /* RC/SAE operand could be between DEST and SRC. That happens
6160 when one operand is GPR and the other one is XMM/YMM/ZMM
6162 if (i
.rounding
&& i
.rounding
->operand
== (int) dest
)
6165 if (i
.tm
.opcode_modifier
.vexvvvv
== VEXXDS
)
6167 /* For instructions with VexNDS, the register-only source
6168 operand must be 32/64bit integer, XMM, YMM or ZMM
6169 register. It is encoded in VEX prefix. We need to
6170 clear RegMem bit before calling operand_type_equal. */
6172 i386_operand_type op
;
6175 /* Check register-only source operand when two source
6176 operands are swapped. */
6177 if (!i
.tm
.operand_types
[source
].bitfield
.baseindex
6178 && i
.tm
.operand_types
[dest
].bitfield
.baseindex
)
6186 op
= i
.tm
.operand_types
[vvvv
];
6187 op
.bitfield
.regmem
= 0;
6188 if ((dest
+ 1) >= i
.operands
6189 || (!op
.bitfield
.reg32
6190 && op
.bitfield
.reg64
6191 && !operand_type_equal (&op
, ®xmm
)
6192 && !operand_type_equal (&op
, ®ymm
)
6193 && !operand_type_equal (&op
, ®zmm
)
6194 && !operand_type_equal (&op
, ®mask
)))
6196 i
.vex
.register_specifier
= i
.op
[vvvv
].regs
;
6202 /* One of the register operands will be encoded in the i.tm.reg
6203 field, the other in the combined i.tm.mode and i.tm.regmem
6204 fields. If no form of this instruction supports a memory
6205 destination operand, then we assume the source operand may
6206 sometimes be a memory operand and so we need to store the
6207 destination in the i.rm.reg field. */
6208 if (!i
.tm
.operand_types
[dest
].bitfield
.regmem
6209 && operand_type_check (i
.tm
.operand_types
[dest
], anymem
) == 0)
6211 i
.rm
.reg
= i
.op
[dest
].regs
->reg_num
;
6212 i
.rm
.regmem
= i
.op
[source
].regs
->reg_num
;
6213 if ((i
.op
[dest
].regs
->reg_flags
& RegRex
) != 0)
6215 if ((i
.op
[dest
].regs
->reg_flags
& RegVRex
) != 0)
6217 if ((i
.op
[source
].regs
->reg_flags
& RegRex
) != 0)
6219 if ((i
.op
[source
].regs
->reg_flags
& RegVRex
) != 0)
6224 i
.rm
.reg
= i
.op
[source
].regs
->reg_num
;
6225 i
.rm
.regmem
= i
.op
[dest
].regs
->reg_num
;
6226 if ((i
.op
[dest
].regs
->reg_flags
& RegRex
) != 0)
6228 if ((i
.op
[dest
].regs
->reg_flags
& RegVRex
) != 0)
6230 if ((i
.op
[source
].regs
->reg_flags
& RegRex
) != 0)
6232 if ((i
.op
[source
].regs
->reg_flags
& RegVRex
) != 0)
6235 if (flag_code
!= CODE_64BIT
&& (i
.rex
& (REX_R
| REX_B
)))
6237 if (!i
.types
[0].bitfield
.control
6238 && !i
.types
[1].bitfield
.control
)
6240 i
.rex
&= ~(REX_R
| REX_B
);
6241 add_prefix (LOCK_PREFIX_OPCODE
);
6245 { /* If it's not 2 reg operands... */
6250 unsigned int fake_zero_displacement
= 0;
6253 for (op
= 0; op
< i
.operands
; op
++)
6254 if (operand_type_check (i
.types
[op
], anymem
))
6256 gas_assert (op
< i
.operands
);
6258 if (i
.tm
.opcode_modifier
.vecsib
)
6260 if (i
.index_reg
->reg_num
== RegEiz
6261 || i
.index_reg
->reg_num
== RegRiz
)
6264 i
.rm
.regmem
= ESCAPE_TO_TWO_BYTE_ADDRESSING
;
6267 i
.sib
.base
= NO_BASE_REGISTER
;
6268 i
.sib
.scale
= i
.log2_scale_factor
;
6269 /* No Vec_Disp8 if there is no base. */
6270 i
.types
[op
].bitfield
.vec_disp8
= 0;
6271 i
.types
[op
].bitfield
.disp8
= 0;
6272 i
.types
[op
].bitfield
.disp16
= 0;
6273 i
.types
[op
].bitfield
.disp64
= 0;
6274 if (flag_code
!= CODE_64BIT
)
6276 /* Must be 32 bit */
6277 i
.types
[op
].bitfield
.disp32
= 1;
6278 i
.types
[op
].bitfield
.disp32s
= 0;
6282 i
.types
[op
].bitfield
.disp32
= 0;
6283 i
.types
[op
].bitfield
.disp32s
= 1;
6286 i
.sib
.index
= i
.index_reg
->reg_num
;
6287 if ((i
.index_reg
->reg_flags
& RegRex
) != 0)
6289 if ((i
.index_reg
->reg_flags
& RegVRex
) != 0)
6295 if (i
.base_reg
== 0)
6298 if (!i
.disp_operands
)
6300 fake_zero_displacement
= 1;
6301 /* Instructions with VSIB byte need 32bit displacement
6302 if there is no base register. */
6303 if (i
.tm
.opcode_modifier
.vecsib
)
6304 i
.types
[op
].bitfield
.disp32
= 1;
6306 if (i
.index_reg
== 0)
6308 gas_assert (!i
.tm
.opcode_modifier
.vecsib
);
6309 /* Operand is just <disp> */
6310 if (flag_code
== CODE_64BIT
)
6312 /* 64bit mode overwrites the 32bit absolute
6313 addressing by RIP relative addressing and
6314 absolute addressing is encoded by one of the
6315 redundant SIB forms. */
6316 i
.rm
.regmem
= ESCAPE_TO_TWO_BYTE_ADDRESSING
;
6317 i
.sib
.base
= NO_BASE_REGISTER
;
6318 i
.sib
.index
= NO_INDEX_REGISTER
;
6319 i
.types
[op
] = ((i
.prefix
[ADDR_PREFIX
] == 0)
6320 ? disp32s
: disp32
);
6322 else if ((flag_code
== CODE_16BIT
)
6323 ^ (i
.prefix
[ADDR_PREFIX
] != 0))
6325 i
.rm
.regmem
= NO_BASE_REGISTER_16
;
6326 i
.types
[op
] = disp16
;
6330 i
.rm
.regmem
= NO_BASE_REGISTER
;
6331 i
.types
[op
] = disp32
;
6334 else if (!i
.tm
.opcode_modifier
.vecsib
)
6336 /* !i.base_reg && i.index_reg */
6337 if (i
.index_reg
->reg_num
== RegEiz
6338 || i
.index_reg
->reg_num
== RegRiz
)
6339 i
.sib
.index
= NO_INDEX_REGISTER
;
6341 i
.sib
.index
= i
.index_reg
->reg_num
;
6342 i
.sib
.base
= NO_BASE_REGISTER
;
6343 i
.sib
.scale
= i
.log2_scale_factor
;
6344 i
.rm
.regmem
= ESCAPE_TO_TWO_BYTE_ADDRESSING
;
6345 /* No Vec_Disp8 if there is no base. */
6346 i
.types
[op
].bitfield
.vec_disp8
= 0;
6347 i
.types
[op
].bitfield
.disp8
= 0;
6348 i
.types
[op
].bitfield
.disp16
= 0;
6349 i
.types
[op
].bitfield
.disp64
= 0;
6350 if (flag_code
!= CODE_64BIT
)
6352 /* Must be 32 bit */
6353 i
.types
[op
].bitfield
.disp32
= 1;
6354 i
.types
[op
].bitfield
.disp32s
= 0;
6358 i
.types
[op
].bitfield
.disp32
= 0;
6359 i
.types
[op
].bitfield
.disp32s
= 1;
6361 if ((i
.index_reg
->reg_flags
& RegRex
) != 0)
6365 /* RIP addressing for 64bit mode. */
6366 else if (i
.base_reg
->reg_num
== RegRip
||
6367 i
.base_reg
->reg_num
== RegEip
)
6369 gas_assert (!i
.tm
.opcode_modifier
.vecsib
);
6370 i
.rm
.regmem
= NO_BASE_REGISTER
;
6371 i
.types
[op
].bitfield
.disp8
= 0;
6372 i
.types
[op
].bitfield
.disp16
= 0;
6373 i
.types
[op
].bitfield
.disp32
= 0;
6374 i
.types
[op
].bitfield
.disp32s
= 1;
6375 i
.types
[op
].bitfield
.disp64
= 0;
6376 i
.types
[op
].bitfield
.vec_disp8
= 0;
6377 i
.flags
[op
] |= Operand_PCrel
;
6378 if (! i
.disp_operands
)
6379 fake_zero_displacement
= 1;
6381 else if (i
.base_reg
->reg_type
.bitfield
.reg16
)
6383 gas_assert (!i
.tm
.opcode_modifier
.vecsib
);
6384 switch (i
.base_reg
->reg_num
)
6387 if (i
.index_reg
== 0)
6389 else /* (%bx,%si) -> 0, or (%bx,%di) -> 1 */
6390 i
.rm
.regmem
= i
.index_reg
->reg_num
- 6;
6394 if (i
.index_reg
== 0)
6397 if (operand_type_check (i
.types
[op
], disp
) == 0)
6399 /* fake (%bp) into 0(%bp) */
6400 if (i
.tm
.operand_types
[op
].bitfield
.vec_disp8
)
6401 i
.types
[op
].bitfield
.vec_disp8
= 1;
6403 i
.types
[op
].bitfield
.disp8
= 1;
6404 fake_zero_displacement
= 1;
6407 else /* (%bp,%si) -> 2, or (%bp,%di) -> 3 */
6408 i
.rm
.regmem
= i
.index_reg
->reg_num
- 6 + 2;
6410 default: /* (%si) -> 4 or (%di) -> 5 */
6411 i
.rm
.regmem
= i
.base_reg
->reg_num
- 6 + 4;
6413 i
.rm
.mode
= mode_from_disp_size (i
.types
[op
]);
6415 else /* i.base_reg and 32/64 bit mode */
6417 if (flag_code
== CODE_64BIT
6418 && operand_type_check (i
.types
[op
], disp
))
6420 i386_operand_type temp
;
6421 operand_type_set (&temp
, 0);
6422 temp
.bitfield
.disp8
= i
.types
[op
].bitfield
.disp8
;
6423 temp
.bitfield
.vec_disp8
6424 = i
.types
[op
].bitfield
.vec_disp8
;
6426 if (i
.prefix
[ADDR_PREFIX
] == 0)
6427 i
.types
[op
].bitfield
.disp32s
= 1;
6429 i
.types
[op
].bitfield
.disp32
= 1;
6432 if (!i
.tm
.opcode_modifier
.vecsib
)
6433 i
.rm
.regmem
= i
.base_reg
->reg_num
;
6434 if ((i
.base_reg
->reg_flags
& RegRex
) != 0)
6436 i
.sib
.base
= i
.base_reg
->reg_num
;
6437 /* x86-64 ignores REX prefix bit here to avoid decoder
6439 if (!(i
.base_reg
->reg_flags
& RegRex
)
6440 && (i
.base_reg
->reg_num
== EBP_REG_NUM
6441 || i
.base_reg
->reg_num
== ESP_REG_NUM
))
6443 if (i
.base_reg
->reg_num
== 5 && i
.disp_operands
== 0)
6445 fake_zero_displacement
= 1;
6446 if (i
.tm
.operand_types
[op
].bitfield
.vec_disp8
)
6447 i
.types
[op
].bitfield
.vec_disp8
= 1;
6449 i
.types
[op
].bitfield
.disp8
= 1;
6451 i
.sib
.scale
= i
.log2_scale_factor
;
6452 if (i
.index_reg
== 0)
6454 gas_assert (!i
.tm
.opcode_modifier
.vecsib
);
6455 /* <disp>(%esp) becomes two byte modrm with no index
6456 register. We've already stored the code for esp
6457 in i.rm.regmem ie. ESCAPE_TO_TWO_BYTE_ADDRESSING.
6458 Any base register besides %esp will not use the
6459 extra modrm byte. */
6460 i
.sib
.index
= NO_INDEX_REGISTER
;
6462 else if (!i
.tm
.opcode_modifier
.vecsib
)
6464 if (i
.index_reg
->reg_num
== RegEiz
6465 || i
.index_reg
->reg_num
== RegRiz
)
6466 i
.sib
.index
= NO_INDEX_REGISTER
;
6468 i
.sib
.index
= i
.index_reg
->reg_num
;
6469 i
.rm
.regmem
= ESCAPE_TO_TWO_BYTE_ADDRESSING
;
6470 if ((i
.index_reg
->reg_flags
& RegRex
) != 0)
6475 && (i
.reloc
[op
] == BFD_RELOC_386_TLS_DESC_CALL
6476 || i
.reloc
[op
] == BFD_RELOC_X86_64_TLSDESC_CALL
))
6480 if (!fake_zero_displacement
6484 fake_zero_displacement
= 1;
6485 if (i
.disp_encoding
== disp_encoding_8bit
)
6486 i
.types
[op
].bitfield
.disp8
= 1;
6488 i
.types
[op
].bitfield
.disp32
= 1;
6490 i
.rm
.mode
= mode_from_disp_size (i
.types
[op
]);
6494 if (fake_zero_displacement
)
6496 /* Fakes a zero displacement assuming that i.types[op]
6497 holds the correct displacement size. */
6500 gas_assert (i
.op
[op
].disps
== 0);
6501 exp
= &disp_expressions
[i
.disp_operands
++];
6502 i
.op
[op
].disps
= exp
;
6503 exp
->X_op
= O_constant
;
6504 exp
->X_add_number
= 0;
6505 exp
->X_add_symbol
= (symbolS
*) 0;
6506 exp
->X_op_symbol
= (symbolS
*) 0;
6514 if (i
.tm
.opcode_modifier
.vexsources
== XOP2SOURCES
)
6516 if (operand_type_check (i
.types
[0], imm
))
6517 i
.vex
.register_specifier
= NULL
;
6520 /* VEX.vvvv encodes one of the sources when the first
6521 operand is not an immediate. */
6522 if (i
.tm
.opcode_modifier
.vexw
== VEXW0
)
6523 i
.vex
.register_specifier
= i
.op
[0].regs
;
6525 i
.vex
.register_specifier
= i
.op
[1].regs
;
6528 /* Destination is a XMM register encoded in the ModRM.reg
6530 i
.rm
.reg
= i
.op
[2].regs
->reg_num
;
6531 if ((i
.op
[2].regs
->reg_flags
& RegRex
) != 0)
6534 /* ModRM.rm and VEX.B encodes the other source. */
6535 if (!i
.mem_operands
)
6539 if (i
.tm
.opcode_modifier
.vexw
== VEXW0
)
6540 i
.rm
.regmem
= i
.op
[1].regs
->reg_num
;
6542 i
.rm
.regmem
= i
.op
[0].regs
->reg_num
;
6544 if ((i
.op
[1].regs
->reg_flags
& RegRex
) != 0)
6548 else if (i
.tm
.opcode_modifier
.vexvvvv
== VEXLWP
)
6550 i
.vex
.register_specifier
= i
.op
[2].regs
;
6551 if (!i
.mem_operands
)
6554 i
.rm
.regmem
= i
.op
[1].regs
->reg_num
;
6555 if ((i
.op
[1].regs
->reg_flags
& RegRex
) != 0)
6559 /* Fill in i.rm.reg or i.rm.regmem field with register operand
6560 (if any) based on i.tm.extension_opcode. Again, we must be
6561 careful to make sure that segment/control/debug/test/MMX
6562 registers are coded into the i.rm.reg field. */
6563 else if (i
.reg_operands
)
6566 unsigned int vex_reg
= ~0;
6568 for (op
= 0; op
< i
.operands
; op
++)
6569 if (i
.types
[op
].bitfield
.reg8
6570 || i
.types
[op
].bitfield
.reg16
6571 || i
.types
[op
].bitfield
.reg32
6572 || i
.types
[op
].bitfield
.reg64
6573 || i
.types
[op
].bitfield
.regmmx
6574 || i
.types
[op
].bitfield
.regxmm
6575 || i
.types
[op
].bitfield
.regymm
6576 || i
.types
[op
].bitfield
.regbnd
6577 || i
.types
[op
].bitfield
.regzmm
6578 || i
.types
[op
].bitfield
.regmask
6579 || i
.types
[op
].bitfield
.sreg2
6580 || i
.types
[op
].bitfield
.sreg3
6581 || i
.types
[op
].bitfield
.control
6582 || i
.types
[op
].bitfield
.debug
6583 || i
.types
[op
].bitfield
.test
)
6588 else if (i
.tm
.opcode_modifier
.vexvvvv
== VEXXDS
)
6590 /* For instructions with VexNDS, the register-only
6591 source operand is encoded in VEX prefix. */
6592 gas_assert (mem
!= (unsigned int) ~0);
6597 gas_assert (op
< i
.operands
);
6601 /* Check register-only source operand when two source
6602 operands are swapped. */
6603 if (!i
.tm
.operand_types
[op
].bitfield
.baseindex
6604 && i
.tm
.operand_types
[op
+ 1].bitfield
.baseindex
)
6608 gas_assert (mem
== (vex_reg
+ 1)
6609 && op
< i
.operands
);
6614 gas_assert (vex_reg
< i
.operands
);
6618 else if (i
.tm
.opcode_modifier
.vexvvvv
== VEXNDD
)
6620 /* For instructions with VexNDD, the register destination
6621 is encoded in VEX prefix. */
6622 if (i
.mem_operands
== 0)
6624 /* There is no memory operand. */
6625 gas_assert ((op
+ 2) == i
.operands
);
6630 /* There are only 2 operands. */
6631 gas_assert (op
< 2 && i
.operands
== 2);
6636 gas_assert (op
< i
.operands
);
6638 if (vex_reg
!= (unsigned int) ~0)
6640 i386_operand_type
*type
= &i
.tm
.operand_types
[vex_reg
];
6642 if (type
->bitfield
.reg32
!= 1
6643 && type
->bitfield
.reg64
!= 1
6644 && !operand_type_equal (type
, ®xmm
)
6645 && !operand_type_equal (type
, ®ymm
)
6646 && !operand_type_equal (type
, ®zmm
)
6647 && !operand_type_equal (type
, ®mask
))
6650 i
.vex
.register_specifier
= i
.op
[vex_reg
].regs
;
6653 /* Don't set OP operand twice. */
6656 /* If there is an extension opcode to put here, the
6657 register number must be put into the regmem field. */
6658 if (i
.tm
.extension_opcode
!= None
)
6660 i
.rm
.regmem
= i
.op
[op
].regs
->reg_num
;
6661 if ((i
.op
[op
].regs
->reg_flags
& RegRex
) != 0)
6663 if ((i
.op
[op
].regs
->reg_flags
& RegVRex
) != 0)
6668 i
.rm
.reg
= i
.op
[op
].regs
->reg_num
;
6669 if ((i
.op
[op
].regs
->reg_flags
& RegRex
) != 0)
6671 if ((i
.op
[op
].regs
->reg_flags
& RegVRex
) != 0)
6676 /* Now, if no memory operand has set i.rm.mode = 0, 1, 2 we
6677 must set it to 3 to indicate this is a register operand
6678 in the regmem field. */
6679 if (!i
.mem_operands
)
6683 /* Fill in i.rm.reg field with extension opcode (if any). */
6684 if (i
.tm
.extension_opcode
!= None
)
6685 i
.rm
.reg
= i
.tm
.extension_opcode
;
6691 output_branch (void)
6697 relax_substateT subtype
;
6701 code16
= flag_code
== CODE_16BIT
? CODE16
: 0;
6702 size
= i
.disp_encoding
== disp_encoding_32bit
? BIG
: SMALL
;
6705 if (i
.prefix
[DATA_PREFIX
] != 0)
6711 /* Pentium4 branch hints. */
6712 if (i
.prefix
[SEG_PREFIX
] == CS_PREFIX_OPCODE
/* not taken */
6713 || i
.prefix
[SEG_PREFIX
] == DS_PREFIX_OPCODE
/* taken */)
6718 if (i
.prefix
[REX_PREFIX
] != 0)
6724 /* BND prefixed jump. */
6725 if (i
.prefix
[BND_PREFIX
] != 0)
6727 FRAG_APPEND_1_CHAR (i
.prefix
[BND_PREFIX
]);
6731 if (i
.prefixes
!= 0 && !intel_syntax
)
6732 as_warn (_("skipping prefixes on this instruction"));
6734 /* It's always a symbol; End frag & setup for relax.
6735 Make sure there is enough room in this frag for the largest
6736 instruction we may generate in md_convert_frag. This is 2
6737 bytes for the opcode and room for the prefix and largest
6739 frag_grow (prefix
+ 2 + 4);
6740 /* Prefix and 1 opcode byte go in fr_fix. */
6741 p
= frag_more (prefix
+ 1);
6742 if (i
.prefix
[DATA_PREFIX
] != 0)
6743 *p
++ = DATA_PREFIX_OPCODE
;
6744 if (i
.prefix
[SEG_PREFIX
] == CS_PREFIX_OPCODE
6745 || i
.prefix
[SEG_PREFIX
] == DS_PREFIX_OPCODE
)
6746 *p
++ = i
.prefix
[SEG_PREFIX
];
6747 if (i
.prefix
[REX_PREFIX
] != 0)
6748 *p
++ = i
.prefix
[REX_PREFIX
];
6749 *p
= i
.tm
.base_opcode
;
6751 if ((unsigned char) *p
== JUMP_PC_RELATIVE
)
6752 subtype
= ENCODE_RELAX_STATE (UNCOND_JUMP
, size
);
6753 else if (cpu_arch_flags
.bitfield
.cpui386
)
6754 subtype
= ENCODE_RELAX_STATE (COND_JUMP
, size
);
6756 subtype
= ENCODE_RELAX_STATE (COND_JUMP86
, size
);
6759 sym
= i
.op
[0].disps
->X_add_symbol
;
6760 off
= i
.op
[0].disps
->X_add_number
;
6762 if (i
.op
[0].disps
->X_op
!= O_constant
6763 && i
.op
[0].disps
->X_op
!= O_symbol
)
6765 /* Handle complex expressions. */
6766 sym
= make_expr_symbol (i
.op
[0].disps
);
6770 /* 1 possible extra opcode + 4 byte displacement go in var part.
6771 Pass reloc in fr_var. */
6772 frag_var (rs_machine_dependent
, 5, i
.reloc
[0], subtype
, sym
, off
, p
);
6782 if (i
.tm
.opcode_modifier
.jumpbyte
)
6784 /* This is a loop or jecxz type instruction. */
6786 if (i
.prefix
[ADDR_PREFIX
] != 0)
6788 FRAG_APPEND_1_CHAR (ADDR_PREFIX_OPCODE
);
6791 /* Pentium4 branch hints. */
6792 if (i
.prefix
[SEG_PREFIX
] == CS_PREFIX_OPCODE
/* not taken */
6793 || i
.prefix
[SEG_PREFIX
] == DS_PREFIX_OPCODE
/* taken */)
6795 FRAG_APPEND_1_CHAR (i
.prefix
[SEG_PREFIX
]);
6804 if (flag_code
== CODE_16BIT
)
6807 if (i
.prefix
[DATA_PREFIX
] != 0)
6809 FRAG_APPEND_1_CHAR (DATA_PREFIX_OPCODE
);
6819 if (i
.prefix
[REX_PREFIX
] != 0)
6821 FRAG_APPEND_1_CHAR (i
.prefix
[REX_PREFIX
]);
6825 /* BND prefixed jump. */
6826 if (i
.prefix
[BND_PREFIX
] != 0)
6828 FRAG_APPEND_1_CHAR (i
.prefix
[BND_PREFIX
]);
6832 if (i
.prefixes
!= 0 && !intel_syntax
)
6833 as_warn (_("skipping prefixes on this instruction"));
6835 p
= frag_more (i
.tm
.opcode_length
+ size
);
6836 switch (i
.tm
.opcode_length
)
6839 *p
++ = i
.tm
.base_opcode
>> 8;
6841 *p
++ = i
.tm
.base_opcode
;
6847 fixP
= fix_new_exp (frag_now
, p
- frag_now
->fr_literal
, size
,
6848 i
.op
[0].disps
, 1, reloc (size
, 1, 1, i
.reloc
[0]));
6850 /* All jumps handled here are signed, but don't use a signed limit
6851 check for 32 and 16 bit jumps as we want to allow wrap around at
6852 4G and 64k respectively. */
6854 fixP
->fx_signed
= 1;
6858 output_interseg_jump (void)
6866 if (flag_code
== CODE_16BIT
)
6870 if (i
.prefix
[DATA_PREFIX
] != 0)
6876 if (i
.prefix
[REX_PREFIX
] != 0)
6886 if (i
.prefixes
!= 0 && !intel_syntax
)
6887 as_warn (_("skipping prefixes on this instruction"));
6889 /* 1 opcode; 2 segment; offset */
6890 p
= frag_more (prefix
+ 1 + 2 + size
);
6892 if (i
.prefix
[DATA_PREFIX
] != 0)
6893 *p
++ = DATA_PREFIX_OPCODE
;
6895 if (i
.prefix
[REX_PREFIX
] != 0)
6896 *p
++ = i
.prefix
[REX_PREFIX
];
6898 *p
++ = i
.tm
.base_opcode
;
6899 if (i
.op
[1].imms
->X_op
== O_constant
)
6901 offsetT n
= i
.op
[1].imms
->X_add_number
;
6904 && !fits_in_unsigned_word (n
)
6905 && !fits_in_signed_word (n
))
6907 as_bad (_("16-bit jump out of range"));
6910 md_number_to_chars (p
, n
, size
);
6913 fix_new_exp (frag_now
, p
- frag_now
->fr_literal
, size
,
6914 i
.op
[1].imms
, 0, reloc (size
, 0, 0, i
.reloc
[1]));
6915 if (i
.op
[0].imms
->X_op
!= O_constant
)
6916 as_bad (_("can't handle non absolute segment in `%s'"),
6918 md_number_to_chars (p
+ size
, (valueT
) i
.op
[0].imms
->X_add_number
, 2);
6924 fragS
*insn_start_frag
;
6925 offsetT insn_start_off
;
6927 /* Tie dwarf2 debug info to the address at the start of the insn.
6928 We can't do this after the insn has been output as the current
6929 frag may have been closed off. eg. by frag_var. */
6930 dwarf2_emit_insn (0);
6932 insn_start_frag
= frag_now
;
6933 insn_start_off
= frag_now_fix ();
6936 if (i
.tm
.opcode_modifier
.jump
)
6938 else if (i
.tm
.opcode_modifier
.jumpbyte
6939 || i
.tm
.opcode_modifier
.jumpdword
)
6941 else if (i
.tm
.opcode_modifier
.jumpintersegment
)
6942 output_interseg_jump ();
6945 /* Output normal instructions here. */
6949 unsigned int prefix
;
6951 /* Some processors fail on LOCK prefix. This options makes
6952 assembler ignore LOCK prefix and serves as a workaround. */
6953 if (omit_lock_prefix
)
6955 if (i
.tm
.base_opcode
== LOCK_PREFIX_OPCODE
)
6957 i
.prefix
[LOCK_PREFIX
] = 0;
6960 /* Since the VEX/EVEX prefix contains the implicit prefix, we
6961 don't need the explicit prefix. */
6962 if (!i
.tm
.opcode_modifier
.vex
&& !i
.tm
.opcode_modifier
.evex
)
6964 switch (i
.tm
.opcode_length
)
6967 if (i
.tm
.base_opcode
& 0xff000000)
6969 prefix
= (i
.tm
.base_opcode
>> 24) & 0xff;
6974 if ((i
.tm
.base_opcode
& 0xff0000) != 0)
6976 prefix
= (i
.tm
.base_opcode
>> 16) & 0xff;
6977 if (i
.tm
.cpu_flags
.bitfield
.cpupadlock
)
6980 if (prefix
!= REPE_PREFIX_OPCODE
6981 || (i
.prefix
[REP_PREFIX
]
6982 != REPE_PREFIX_OPCODE
))
6983 add_prefix (prefix
);
6986 add_prefix (prefix
);
6995 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
6996 /* For x32, add a dummy REX_OPCODE prefix for mov/add with
6997 R_X86_64_GOTTPOFF relocation so that linker can safely
6998 perform IE->LE optimization. */
6999 if (x86_elf_abi
== X86_64_X32_ABI
7001 && i
.reloc
[0] == BFD_RELOC_X86_64_GOTTPOFF
7002 && i
.prefix
[REX_PREFIX
] == 0)
7003 add_prefix (REX_OPCODE
);
7006 /* The prefix bytes. */
7007 for (j
= ARRAY_SIZE (i
.prefix
), q
= i
.prefix
; j
> 0; j
--, q
++)
7009 FRAG_APPEND_1_CHAR (*q
);
7013 for (j
= 0, q
= i
.prefix
; j
< ARRAY_SIZE (i
.prefix
); j
++, q
++)
7018 /* REX byte is encoded in VEX prefix. */
7022 FRAG_APPEND_1_CHAR (*q
);
7025 /* There should be no other prefixes for instructions
7030 /* For EVEX instructions i.vrex should become 0 after
7031 build_evex_prefix. For VEX instructions upper 16 registers
7032 aren't available, so VREX should be 0. */
7035 /* Now the VEX prefix. */
7036 p
= frag_more (i
.vex
.length
);
7037 for (j
= 0; j
< i
.vex
.length
; j
++)
7038 p
[j
] = i
.vex
.bytes
[j
];
7041 /* Now the opcode; be careful about word order here! */
7042 if (i
.tm
.opcode_length
== 1)
7044 FRAG_APPEND_1_CHAR (i
.tm
.base_opcode
);
7048 switch (i
.tm
.opcode_length
)
7052 *p
++ = (i
.tm
.base_opcode
>> 24) & 0xff;
7053 *p
++ = (i
.tm
.base_opcode
>> 16) & 0xff;
7057 *p
++ = (i
.tm
.base_opcode
>> 16) & 0xff;
7067 /* Put out high byte first: can't use md_number_to_chars! */
7068 *p
++ = (i
.tm
.base_opcode
>> 8) & 0xff;
7069 *p
= i
.tm
.base_opcode
& 0xff;
7072 /* Now the modrm byte and sib byte (if present). */
7073 if (i
.tm
.opcode_modifier
.modrm
)
7075 FRAG_APPEND_1_CHAR ((i
.rm
.regmem
<< 0
7078 /* If i.rm.regmem == ESP (4)
7079 && i.rm.mode != (Register mode)
7081 ==> need second modrm byte. */
7082 if (i
.rm
.regmem
== ESCAPE_TO_TWO_BYTE_ADDRESSING
7084 && !(i
.base_reg
&& i
.base_reg
->reg_type
.bitfield
.reg16
))
7085 FRAG_APPEND_1_CHAR ((i
.sib
.base
<< 0
7087 | i
.sib
.scale
<< 6));
7090 if (i
.disp_operands
)
7091 output_disp (insn_start_frag
, insn_start_off
);
7094 output_imm (insn_start_frag
, insn_start_off
);
7100 pi ("" /*line*/, &i
);
7102 #endif /* DEBUG386 */
7105 /* Return the size of the displacement operand N. */
7108 disp_size (unsigned int n
)
7112 /* Vec_Disp8 has to be 8bit. */
7113 if (i
.types
[n
].bitfield
.vec_disp8
)
7115 else if (i
.types
[n
].bitfield
.disp64
)
7117 else if (i
.types
[n
].bitfield
.disp8
)
7119 else if (i
.types
[n
].bitfield
.disp16
)
7124 /* Return the size of the immediate operand N. */
7127 imm_size (unsigned int n
)
7130 if (i
.types
[n
].bitfield
.imm64
)
7132 else if (i
.types
[n
].bitfield
.imm8
|| i
.types
[n
].bitfield
.imm8s
)
7134 else if (i
.types
[n
].bitfield
.imm16
)
7140 output_disp (fragS
*insn_start_frag
, offsetT insn_start_off
)
7145 for (n
= 0; n
< i
.operands
; n
++)
7147 if (i
.types
[n
].bitfield
.vec_disp8
7148 || operand_type_check (i
.types
[n
], disp
))
7150 if (i
.op
[n
].disps
->X_op
== O_constant
)
7152 int size
= disp_size (n
);
7153 offsetT val
= i
.op
[n
].disps
->X_add_number
;
7155 if (i
.types
[n
].bitfield
.vec_disp8
)
7157 val
= offset_in_range (val
, size
);
7158 p
= frag_more (size
);
7159 md_number_to_chars (p
, val
, size
);
7163 enum bfd_reloc_code_real reloc_type
;
7164 int size
= disp_size (n
);
7165 int sign
= i
.types
[n
].bitfield
.disp32s
;
7166 int pcrel
= (i
.flags
[n
] & Operand_PCrel
) != 0;
7169 /* We can't have 8 bit displacement here. */
7170 gas_assert (!i
.types
[n
].bitfield
.disp8
);
7172 /* The PC relative address is computed relative
7173 to the instruction boundary, so in case immediate
7174 fields follows, we need to adjust the value. */
7175 if (pcrel
&& i
.imm_operands
)
7180 for (n1
= 0; n1
< i
.operands
; n1
++)
7181 if (operand_type_check (i
.types
[n1
], imm
))
7183 /* Only one immediate is allowed for PC
7184 relative address. */
7185 gas_assert (sz
== 0);
7187 i
.op
[n
].disps
->X_add_number
-= sz
;
7189 /* We should find the immediate. */
7190 gas_assert (sz
!= 0);
7193 p
= frag_more (size
);
7194 reloc_type
= reloc (size
, pcrel
, sign
, i
.reloc
[n
]);
7196 && GOT_symbol
== i
.op
[n
].disps
->X_add_symbol
7197 && (((reloc_type
== BFD_RELOC_32
7198 || reloc_type
== BFD_RELOC_X86_64_32S
7199 || (reloc_type
== BFD_RELOC_64
7201 && (i
.op
[n
].disps
->X_op
== O_symbol
7202 || (i
.op
[n
].disps
->X_op
== O_add
7203 && ((symbol_get_value_expression
7204 (i
.op
[n
].disps
->X_op_symbol
)->X_op
)
7206 || reloc_type
== BFD_RELOC_32_PCREL
))
7210 if (insn_start_frag
== frag_now
)
7211 add
= (p
- frag_now
->fr_literal
) - insn_start_off
;
7216 add
= insn_start_frag
->fr_fix
- insn_start_off
;
7217 for (fr
= insn_start_frag
->fr_next
;
7218 fr
&& fr
!= frag_now
; fr
= fr
->fr_next
)
7220 add
+= p
- frag_now
->fr_literal
;
7225 reloc_type
= BFD_RELOC_386_GOTPC
;
7226 i
.op
[n
].imms
->X_add_number
+= add
;
7228 else if (reloc_type
== BFD_RELOC_64
)
7229 reloc_type
= BFD_RELOC_X86_64_GOTPC64
;
7231 /* Don't do the adjustment for x86-64, as there
7232 the pcrel addressing is relative to the _next_
7233 insn, and that is taken care of in other code. */
7234 reloc_type
= BFD_RELOC_X86_64_GOTPC32
;
7236 fixP
= fix_new_exp (frag_now
, p
- frag_now
->fr_literal
,
7237 size
, i
.op
[n
].disps
, pcrel
,
7239 /* Check for "call/jmp *mem", "mov mem, %reg",
7240 "test %reg, mem" and "binop mem, %reg" where binop
7241 is one of adc, add, and, cmp, or, sbb, sub, xor
7244 || (i
.rm
.mode
== 0 && i
.rm
.regmem
== 5))
7245 && ((i
.operands
== 1
7246 && i
.tm
.base_opcode
== 0xff
7247 && (i
.rm
.reg
== 2 || i
.rm
.reg
== 4))
7249 && (i
.tm
.base_opcode
== 0x8b
7250 || i
.tm
.base_opcode
== 0x85
7251 || (i
.tm
.base_opcode
& 0xc7) == 0x03))))
7255 fixP
->fx_tcbit
= i
.rex
!= 0;
7257 && (i
.base_reg
->reg_num
== RegRip
7258 || i
.base_reg
->reg_num
== RegEip
))
7259 fixP
->fx_tcbit2
= 1;
7262 fixP
->fx_tcbit2
= 1;
7270 output_imm (fragS
*insn_start_frag
, offsetT insn_start_off
)
7275 for (n
= 0; n
< i
.operands
; n
++)
7277 /* Skip SAE/RC Imm operand in EVEX. They are already handled. */
7278 if (i
.rounding
&& (int) n
== i
.rounding
->operand
)
7281 if (operand_type_check (i
.types
[n
], imm
))
7283 if (i
.op
[n
].imms
->X_op
== O_constant
)
7285 int size
= imm_size (n
);
7288 val
= offset_in_range (i
.op
[n
].imms
->X_add_number
,
7290 p
= frag_more (size
);
7291 md_number_to_chars (p
, val
, size
);
7295 /* Not absolute_section.
7296 Need a 32-bit fixup (don't support 8bit
7297 non-absolute imms). Try to support other
7299 enum bfd_reloc_code_real reloc_type
;
7300 int size
= imm_size (n
);
7303 if (i
.types
[n
].bitfield
.imm32s
7304 && (i
.suffix
== QWORD_MNEM_SUFFIX
7305 || (!i
.suffix
&& i
.tm
.opcode_modifier
.no_lsuf
)))
7310 p
= frag_more (size
);
7311 reloc_type
= reloc (size
, 0, sign
, i
.reloc
[n
]);
7313 /* This is tough to explain. We end up with this one if we
7314 * have operands that look like
7315 * "_GLOBAL_OFFSET_TABLE_+[.-.L284]". The goal here is to
7316 * obtain the absolute address of the GOT, and it is strongly
7317 * preferable from a performance point of view to avoid using
7318 * a runtime relocation for this. The actual sequence of
7319 * instructions often look something like:
7324 * addl $_GLOBAL_OFFSET_TABLE_+[.-.L66],%ebx
7326 * The call and pop essentially return the absolute address
7327 * of the label .L66 and store it in %ebx. The linker itself
7328 * will ultimately change the first operand of the addl so
7329 * that %ebx points to the GOT, but to keep things simple, the
7330 * .o file must have this operand set so that it generates not
7331 * the absolute address of .L66, but the absolute address of
7332 * itself. This allows the linker itself simply treat a GOTPC
7333 * relocation as asking for a pcrel offset to the GOT to be
7334 * added in, and the addend of the relocation is stored in the
7335 * operand field for the instruction itself.
7337 * Our job here is to fix the operand so that it would add
7338 * the correct offset so that %ebx would point to itself. The
7339 * thing that is tricky is that .-.L66 will point to the
7340 * beginning of the instruction, so we need to further modify
7341 * the operand so that it will point to itself. There are
7342 * other cases where you have something like:
7344 * .long $_GLOBAL_OFFSET_TABLE_+[.-.L66]
7346 * and here no correction would be required. Internally in
7347 * the assembler we treat operands of this form as not being
7348 * pcrel since the '.' is explicitly mentioned, and I wonder
7349 * whether it would simplify matters to do it this way. Who
7350 * knows. In earlier versions of the PIC patches, the
7351 * pcrel_adjust field was used to store the correction, but
7352 * since the expression is not pcrel, I felt it would be
7353 * confusing to do it this way. */
7355 if ((reloc_type
== BFD_RELOC_32
7356 || reloc_type
== BFD_RELOC_X86_64_32S
7357 || reloc_type
== BFD_RELOC_64
)
7359 && GOT_symbol
== i
.op
[n
].imms
->X_add_symbol
7360 && (i
.op
[n
].imms
->X_op
== O_symbol
7361 || (i
.op
[n
].imms
->X_op
== O_add
7362 && ((symbol_get_value_expression
7363 (i
.op
[n
].imms
->X_op_symbol
)->X_op
)
7368 if (insn_start_frag
== frag_now
)
7369 add
= (p
- frag_now
->fr_literal
) - insn_start_off
;
7374 add
= insn_start_frag
->fr_fix
- insn_start_off
;
7375 for (fr
= insn_start_frag
->fr_next
;
7376 fr
&& fr
!= frag_now
; fr
= fr
->fr_next
)
7378 add
+= p
- frag_now
->fr_literal
;
7382 reloc_type
= BFD_RELOC_386_GOTPC
;
7384 reloc_type
= BFD_RELOC_X86_64_GOTPC32
;
7386 reloc_type
= BFD_RELOC_X86_64_GOTPC64
;
7387 i
.op
[n
].imms
->X_add_number
+= add
;
7389 fix_new_exp (frag_now
, p
- frag_now
->fr_literal
, size
,
7390 i
.op
[n
].imms
, 0, reloc_type
);
7396 /* x86_cons_fix_new is called via the expression parsing code when a
7397 reloc is needed. We use this hook to get the correct .got reloc. */
7398 static int cons_sign
= -1;
7401 x86_cons_fix_new (fragS
*frag
, unsigned int off
, unsigned int len
,
7402 expressionS
*exp
, bfd_reloc_code_real_type r
)
7404 r
= reloc (len
, 0, cons_sign
, r
);
7407 if (exp
->X_op
== O_secrel
)
7409 exp
->X_op
= O_symbol
;
7410 r
= BFD_RELOC_32_SECREL
;
7414 fix_new_exp (frag
, off
, len
, exp
, 0, r
);
7417 /* Export the ABI address size for use by TC_ADDRESS_BYTES for the
7418 purpose of the `.dc.a' internal pseudo-op. */
7421 x86_address_bytes (void)
7423 if ((stdoutput
->arch_info
->mach
& bfd_mach_x64_32
))
7425 return stdoutput
->arch_info
->bits_per_address
/ 8;
7428 #if !(defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) || defined (OBJ_MACH_O)) \
7430 # define lex_got(reloc, adjust, types) NULL
7432 /* Parse operands of the form
7433 <symbol>@GOTOFF+<nnn>
7434 and similar .plt or .got references.
7436 If we find one, set up the correct relocation in RELOC and copy the
7437 input string, minus the `@GOTOFF' into a malloc'd buffer for
7438 parsing by the calling routine. Return this buffer, and if ADJUST
7439 is non-null set it to the length of the string we removed from the
7440 input line. Otherwise return NULL. */
7442 lex_got (enum bfd_reloc_code_real
*rel
,
7444 i386_operand_type
*types
)
7446 /* Some of the relocations depend on the size of what field is to
7447 be relocated. But in our callers i386_immediate and i386_displacement
7448 we don't yet know the operand size (this will be set by insn
7449 matching). Hence we record the word32 relocation here,
7450 and adjust the reloc according to the real size in reloc(). */
7451 static const struct {
7454 const enum bfd_reloc_code_real rel
[2];
7455 const i386_operand_type types64
;
7457 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7458 { STRING_COMMA_LEN ("SIZE"), { BFD_RELOC_SIZE32
,
7460 OPERAND_TYPE_IMM32_64
},
7462 { STRING_COMMA_LEN ("PLTOFF"), { _dummy_first_bfd_reloc_code_real
,
7463 BFD_RELOC_X86_64_PLTOFF64
},
7464 OPERAND_TYPE_IMM64
},
7465 { STRING_COMMA_LEN ("PLT"), { BFD_RELOC_386_PLT32
,
7466 BFD_RELOC_X86_64_PLT32
},
7467 OPERAND_TYPE_IMM32_32S_DISP32
},
7468 { STRING_COMMA_LEN ("GOTPLT"), { _dummy_first_bfd_reloc_code_real
,
7469 BFD_RELOC_X86_64_GOTPLT64
},
7470 OPERAND_TYPE_IMM64_DISP64
},
7471 { STRING_COMMA_LEN ("GOTOFF"), { BFD_RELOC_386_GOTOFF
,
7472 BFD_RELOC_X86_64_GOTOFF64
},
7473 OPERAND_TYPE_IMM64_DISP64
},
7474 { STRING_COMMA_LEN ("GOTPCREL"), { _dummy_first_bfd_reloc_code_real
,
7475 BFD_RELOC_X86_64_GOTPCREL
},
7476 OPERAND_TYPE_IMM32_32S_DISP32
},
7477 { STRING_COMMA_LEN ("TLSGD"), { BFD_RELOC_386_TLS_GD
,
7478 BFD_RELOC_X86_64_TLSGD
},
7479 OPERAND_TYPE_IMM32_32S_DISP32
},
7480 { STRING_COMMA_LEN ("TLSLDM"), { BFD_RELOC_386_TLS_LDM
,
7481 _dummy_first_bfd_reloc_code_real
},
7482 OPERAND_TYPE_NONE
},
7483 { STRING_COMMA_LEN ("TLSLD"), { _dummy_first_bfd_reloc_code_real
,
7484 BFD_RELOC_X86_64_TLSLD
},
7485 OPERAND_TYPE_IMM32_32S_DISP32
},
7486 { STRING_COMMA_LEN ("GOTTPOFF"), { BFD_RELOC_386_TLS_IE_32
,
7487 BFD_RELOC_X86_64_GOTTPOFF
},
7488 OPERAND_TYPE_IMM32_32S_DISP32
},
7489 { STRING_COMMA_LEN ("TPOFF"), { BFD_RELOC_386_TLS_LE_32
,
7490 BFD_RELOC_X86_64_TPOFF32
},
7491 OPERAND_TYPE_IMM32_32S_64_DISP32_64
},
7492 { STRING_COMMA_LEN ("NTPOFF"), { BFD_RELOC_386_TLS_LE
,
7493 _dummy_first_bfd_reloc_code_real
},
7494 OPERAND_TYPE_NONE
},
7495 { STRING_COMMA_LEN ("DTPOFF"), { BFD_RELOC_386_TLS_LDO_32
,
7496 BFD_RELOC_X86_64_DTPOFF32
},
7497 OPERAND_TYPE_IMM32_32S_64_DISP32_64
},
7498 { STRING_COMMA_LEN ("GOTNTPOFF"),{ BFD_RELOC_386_TLS_GOTIE
,
7499 _dummy_first_bfd_reloc_code_real
},
7500 OPERAND_TYPE_NONE
},
7501 { STRING_COMMA_LEN ("INDNTPOFF"),{ BFD_RELOC_386_TLS_IE
,
7502 _dummy_first_bfd_reloc_code_real
},
7503 OPERAND_TYPE_NONE
},
7504 { STRING_COMMA_LEN ("GOT"), { BFD_RELOC_386_GOT32
,
7505 BFD_RELOC_X86_64_GOT32
},
7506 OPERAND_TYPE_IMM32_32S_64_DISP32
},
7507 { STRING_COMMA_LEN ("TLSDESC"), { BFD_RELOC_386_TLS_GOTDESC
,
7508 BFD_RELOC_X86_64_GOTPC32_TLSDESC
},
7509 OPERAND_TYPE_IMM32_32S_DISP32
},
7510 { STRING_COMMA_LEN ("TLSCALL"), { BFD_RELOC_386_TLS_DESC_CALL
,
7511 BFD_RELOC_X86_64_TLSDESC_CALL
},
7512 OPERAND_TYPE_IMM32_32S_DISP32
},
7517 #if defined (OBJ_MAYBE_ELF)
7522 for (cp
= input_line_pointer
; *cp
!= '@'; cp
++)
7523 if (is_end_of_line
[(unsigned char) *cp
] || *cp
== ',')
7526 for (j
= 0; j
< ARRAY_SIZE (gotrel
); j
++)
7528 int len
= gotrel
[j
].len
;
7529 if (strncasecmp (cp
+ 1, gotrel
[j
].str
, len
) == 0)
7531 if (gotrel
[j
].rel
[object_64bit
] != 0)
7534 char *tmpbuf
, *past_reloc
;
7536 *rel
= gotrel
[j
].rel
[object_64bit
];
7540 if (flag_code
!= CODE_64BIT
)
7542 types
->bitfield
.imm32
= 1;
7543 types
->bitfield
.disp32
= 1;
7546 *types
= gotrel
[j
].types64
;
7549 if (j
!= 0 && GOT_symbol
== NULL
)
7550 GOT_symbol
= symbol_find_or_make (GLOBAL_OFFSET_TABLE_NAME
);
7552 /* The length of the first part of our input line. */
7553 first
= cp
- input_line_pointer
;
7555 /* The second part goes from after the reloc token until
7556 (and including) an end_of_line char or comma. */
7557 past_reloc
= cp
+ 1 + len
;
7559 while (!is_end_of_line
[(unsigned char) *cp
] && *cp
!= ',')
7561 second
= cp
+ 1 - past_reloc
;
7563 /* Allocate and copy string. The trailing NUL shouldn't
7564 be necessary, but be safe. */
7565 tmpbuf
= (char *) xmalloc (first
+ second
+ 2);
7566 memcpy (tmpbuf
, input_line_pointer
, first
);
7567 if (second
!= 0 && *past_reloc
!= ' ')
7568 /* Replace the relocation token with ' ', so that
7569 errors like foo@GOTOFF1 will be detected. */
7570 tmpbuf
[first
++] = ' ';
7572 /* Increment length by 1 if the relocation token is
7577 memcpy (tmpbuf
+ first
, past_reloc
, second
);
7578 tmpbuf
[first
+ second
] = '\0';
7582 as_bad (_("@%s reloc is not supported with %d-bit output format"),
7583 gotrel
[j
].str
, 1 << (5 + object_64bit
));
7588 /* Might be a symbol version string. Don't as_bad here. */
7597 /* Parse operands of the form
7598 <symbol>@SECREL32+<nnn>
7600 If we find one, set up the correct relocation in RELOC and copy the
7601 input string, minus the `@SECREL32' into a malloc'd buffer for
7602 parsing by the calling routine. Return this buffer, and if ADJUST
7603 is non-null set it to the length of the string we removed from the
7604 input line. Otherwise return NULL.
7606 This function is copied from the ELF version above adjusted for PE targets. */
7609 lex_got (enum bfd_reloc_code_real
*rel ATTRIBUTE_UNUSED
,
7610 int *adjust ATTRIBUTE_UNUSED
,
7611 i386_operand_type
*types
)
7617 const enum bfd_reloc_code_real rel
[2];
7618 const i386_operand_type types64
;
7622 { STRING_COMMA_LEN ("SECREL32"), { BFD_RELOC_32_SECREL
,
7623 BFD_RELOC_32_SECREL
},
7624 OPERAND_TYPE_IMM32_32S_64_DISP32_64
},
7630 for (cp
= input_line_pointer
; *cp
!= '@'; cp
++)
7631 if (is_end_of_line
[(unsigned char) *cp
] || *cp
== ',')
7634 for (j
= 0; j
< ARRAY_SIZE (gotrel
); j
++)
7636 int len
= gotrel
[j
].len
;
7638 if (strncasecmp (cp
+ 1, gotrel
[j
].str
, len
) == 0)
7640 if (gotrel
[j
].rel
[object_64bit
] != 0)
7643 char *tmpbuf
, *past_reloc
;
7645 *rel
= gotrel
[j
].rel
[object_64bit
];
7651 if (flag_code
!= CODE_64BIT
)
7653 types
->bitfield
.imm32
= 1;
7654 types
->bitfield
.disp32
= 1;
7657 *types
= gotrel
[j
].types64
;
7660 /* The length of the first part of our input line. */
7661 first
= cp
- input_line_pointer
;
7663 /* The second part goes from after the reloc token until
7664 (and including) an end_of_line char or comma. */
7665 past_reloc
= cp
+ 1 + len
;
7667 while (!is_end_of_line
[(unsigned char) *cp
] && *cp
!= ',')
7669 second
= cp
+ 1 - past_reloc
;
7671 /* Allocate and copy string. The trailing NUL shouldn't
7672 be necessary, but be safe. */
7673 tmpbuf
= (char *) xmalloc (first
+ second
+ 2);
7674 memcpy (tmpbuf
, input_line_pointer
, first
);
7675 if (second
!= 0 && *past_reloc
!= ' ')
7676 /* Replace the relocation token with ' ', so that
7677 errors like foo@SECLREL321 will be detected. */
7678 tmpbuf
[first
++] = ' ';
7679 memcpy (tmpbuf
+ first
, past_reloc
, second
);
7680 tmpbuf
[first
+ second
] = '\0';
7684 as_bad (_("@%s reloc is not supported with %d-bit output format"),
7685 gotrel
[j
].str
, 1 << (5 + object_64bit
));
7690 /* Might be a symbol version string. Don't as_bad here. */
7696 bfd_reloc_code_real_type
7697 x86_cons (expressionS
*exp
, int size
)
7699 bfd_reloc_code_real_type got_reloc
= NO_RELOC
;
7701 intel_syntax
= -intel_syntax
;
7704 if (size
== 4 || (object_64bit
&& size
== 8))
7706 /* Handle @GOTOFF and the like in an expression. */
7708 char *gotfree_input_line
;
7711 save
= input_line_pointer
;
7712 gotfree_input_line
= lex_got (&got_reloc
, &adjust
, NULL
);
7713 if (gotfree_input_line
)
7714 input_line_pointer
= gotfree_input_line
;
7718 if (gotfree_input_line
)
7720 /* expression () has merrily parsed up to the end of line,
7721 or a comma - in the wrong buffer. Transfer how far
7722 input_line_pointer has moved to the right buffer. */
7723 input_line_pointer
= (save
7724 + (input_line_pointer
- gotfree_input_line
)
7726 free (gotfree_input_line
);
7727 if (exp
->X_op
== O_constant
7728 || exp
->X_op
== O_absent
7729 || exp
->X_op
== O_illegal
7730 || exp
->X_op
== O_register
7731 || exp
->X_op
== O_big
)
7733 char c
= *input_line_pointer
;
7734 *input_line_pointer
= 0;
7735 as_bad (_("missing or invalid expression `%s'"), save
);
7736 *input_line_pointer
= c
;
7743 intel_syntax
= -intel_syntax
;
7746 i386_intel_simplify (exp
);
7752 signed_cons (int size
)
7754 if (flag_code
== CODE_64BIT
)
7762 pe_directive_secrel (int dummy ATTRIBUTE_UNUSED
)
7769 if (exp
.X_op
== O_symbol
)
7770 exp
.X_op
= O_secrel
;
7772 emit_expr (&exp
, 4);
7774 while (*input_line_pointer
++ == ',');
7776 input_line_pointer
--;
7777 demand_empty_rest_of_line ();
7781 /* Handle Vector operations. */
7784 check_VecOperations (char *op_string
, char *op_end
)
7786 const reg_entry
*mask
;
7791 && (op_end
== NULL
|| op_string
< op_end
))
7794 if (*op_string
== '{')
7798 /* Check broadcasts. */
7799 if (strncmp (op_string
, "1to", 3) == 0)
7804 goto duplicated_vec_op
;
7807 if (*op_string
== '8')
7808 bcst_type
= BROADCAST_1TO8
;
7809 else if (*op_string
== '4')
7810 bcst_type
= BROADCAST_1TO4
;
7811 else if (*op_string
== '2')
7812 bcst_type
= BROADCAST_1TO2
;
7813 else if (*op_string
== '1'
7814 && *(op_string
+1) == '6')
7816 bcst_type
= BROADCAST_1TO16
;
7821 as_bad (_("Unsupported broadcast: `%s'"), saved
);
7826 broadcast_op
.type
= bcst_type
;
7827 broadcast_op
.operand
= this_operand
;
7828 i
.broadcast
= &broadcast_op
;
7830 /* Check masking operation. */
7831 else if ((mask
= parse_register (op_string
, &end_op
)) != NULL
)
7833 /* k0 can't be used for write mask. */
7834 if (mask
->reg_num
== 0)
7836 as_bad (_("`%s' can't be used for write mask"),
7843 mask_op
.mask
= mask
;
7844 mask_op
.zeroing
= 0;
7845 mask_op
.operand
= this_operand
;
7851 goto duplicated_vec_op
;
7853 i
.mask
->mask
= mask
;
7855 /* Only "{z}" is allowed here. No need to check
7856 zeroing mask explicitly. */
7857 if (i
.mask
->operand
!= this_operand
)
7859 as_bad (_("invalid write mask `%s'"), saved
);
7866 /* Check zeroing-flag for masking operation. */
7867 else if (*op_string
== 'z')
7871 mask_op
.mask
= NULL
;
7872 mask_op
.zeroing
= 1;
7873 mask_op
.operand
= this_operand
;
7878 if (i
.mask
->zeroing
)
7881 as_bad (_("duplicated `%s'"), saved
);
7885 i
.mask
->zeroing
= 1;
7887 /* Only "{%k}" is allowed here. No need to check mask
7888 register explicitly. */
7889 if (i
.mask
->operand
!= this_operand
)
7891 as_bad (_("invalid zeroing-masking `%s'"),
7900 goto unknown_vec_op
;
7902 if (*op_string
!= '}')
7904 as_bad (_("missing `}' in `%s'"), saved
);
7911 /* We don't know this one. */
7912 as_bad (_("unknown vector operation: `%s'"), saved
);
7920 i386_immediate (char *imm_start
)
7922 char *save_input_line_pointer
;
7923 char *gotfree_input_line
;
7926 i386_operand_type types
;
7928 operand_type_set (&types
, ~0);
7930 if (i
.imm_operands
== MAX_IMMEDIATE_OPERANDS
)
7932 as_bad (_("at most %d immediate operands are allowed"),
7933 MAX_IMMEDIATE_OPERANDS
);
7937 exp
= &im_expressions
[i
.imm_operands
++];
7938 i
.op
[this_operand
].imms
= exp
;
7940 if (is_space_char (*imm_start
))
7943 save_input_line_pointer
= input_line_pointer
;
7944 input_line_pointer
= imm_start
;
7946 gotfree_input_line
= lex_got (&i
.reloc
[this_operand
], NULL
, &types
);
7947 if (gotfree_input_line
)
7948 input_line_pointer
= gotfree_input_line
;
7950 exp_seg
= expression (exp
);
7954 /* Handle vector operations. */
7955 if (*input_line_pointer
== '{')
7957 input_line_pointer
= check_VecOperations (input_line_pointer
,
7959 if (input_line_pointer
== NULL
)
7963 if (*input_line_pointer
)
7964 as_bad (_("junk `%s' after expression"), input_line_pointer
);
7966 input_line_pointer
= save_input_line_pointer
;
7967 if (gotfree_input_line
)
7969 free (gotfree_input_line
);
7971 if (exp
->X_op
== O_constant
|| exp
->X_op
== O_register
)
7972 exp
->X_op
= O_illegal
;
7975 return i386_finalize_immediate (exp_seg
, exp
, types
, imm_start
);
7979 i386_finalize_immediate (segT exp_seg ATTRIBUTE_UNUSED
, expressionS
*exp
,
7980 i386_operand_type types
, const char *imm_start
)
7982 if (exp
->X_op
== O_absent
|| exp
->X_op
== O_illegal
|| exp
->X_op
== O_big
)
7985 as_bad (_("missing or invalid immediate expression `%s'"),
7989 else if (exp
->X_op
== O_constant
)
7991 /* Size it properly later. */
7992 i
.types
[this_operand
].bitfield
.imm64
= 1;
7993 /* If not 64bit, sign extend val. */
7994 if (flag_code
!= CODE_64BIT
7995 && (exp
->X_add_number
& ~(((addressT
) 2 << 31) - 1)) == 0)
7997 = (exp
->X_add_number
^ ((addressT
) 1 << 31)) - ((addressT
) 1 << 31);
7999 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
8000 else if (OUTPUT_FLAVOR
== bfd_target_aout_flavour
8001 && exp_seg
!= absolute_section
8002 && exp_seg
!= text_section
8003 && exp_seg
!= data_section
8004 && exp_seg
!= bss_section
8005 && exp_seg
!= undefined_section
8006 && !bfd_is_com_section (exp_seg
))
8008 as_bad (_("unimplemented segment %s in operand"), exp_seg
->name
);
8012 else if (!intel_syntax
&& exp_seg
== reg_section
)
8015 as_bad (_("illegal immediate register operand %s"), imm_start
);
8020 /* This is an address. The size of the address will be
8021 determined later, depending on destination register,
8022 suffix, or the default for the section. */
8023 i
.types
[this_operand
].bitfield
.imm8
= 1;
8024 i
.types
[this_operand
].bitfield
.imm16
= 1;
8025 i
.types
[this_operand
].bitfield
.imm32
= 1;
8026 i
.types
[this_operand
].bitfield
.imm32s
= 1;
8027 i
.types
[this_operand
].bitfield
.imm64
= 1;
8028 i
.types
[this_operand
] = operand_type_and (i
.types
[this_operand
],
8036 i386_scale (char *scale
)
8039 char *save
= input_line_pointer
;
8041 input_line_pointer
= scale
;
8042 val
= get_absolute_expression ();
8047 i
.log2_scale_factor
= 0;
8050 i
.log2_scale_factor
= 1;
8053 i
.log2_scale_factor
= 2;
8056 i
.log2_scale_factor
= 3;
8060 char sep
= *input_line_pointer
;
8062 *input_line_pointer
= '\0';
8063 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
8065 *input_line_pointer
= sep
;
8066 input_line_pointer
= save
;
8070 if (i
.log2_scale_factor
!= 0 && i
.index_reg
== 0)
8072 as_warn (_("scale factor of %d without an index register"),
8073 1 << i
.log2_scale_factor
);
8074 i
.log2_scale_factor
= 0;
8076 scale
= input_line_pointer
;
8077 input_line_pointer
= save
;
8082 i386_displacement (char *disp_start
, char *disp_end
)
8086 char *save_input_line_pointer
;
8087 char *gotfree_input_line
;
8089 i386_operand_type bigdisp
, types
= anydisp
;
8092 if (i
.disp_operands
== MAX_MEMORY_OPERANDS
)
8094 as_bad (_("at most %d displacement operands are allowed"),
8095 MAX_MEMORY_OPERANDS
);
8099 operand_type_set (&bigdisp
, 0);
8100 if ((i
.types
[this_operand
].bitfield
.jumpabsolute
)
8101 || (!current_templates
->start
->opcode_modifier
.jump
8102 && !current_templates
->start
->opcode_modifier
.jumpdword
))
8104 bigdisp
.bitfield
.disp32
= 1;
8105 override
= (i
.prefix
[ADDR_PREFIX
] != 0);
8106 if (flag_code
== CODE_64BIT
)
8110 bigdisp
.bitfield
.disp32s
= 1;
8111 bigdisp
.bitfield
.disp64
= 1;
8114 else if ((flag_code
== CODE_16BIT
) ^ override
)
8116 bigdisp
.bitfield
.disp32
= 0;
8117 bigdisp
.bitfield
.disp16
= 1;
8122 /* For PC-relative branches, the width of the displacement
8123 is dependent upon data size, not address size. */
8124 override
= (i
.prefix
[DATA_PREFIX
] != 0);
8125 if (flag_code
== CODE_64BIT
)
8127 if (override
|| i
.suffix
== WORD_MNEM_SUFFIX
)
8128 bigdisp
.bitfield
.disp16
= 1;
8131 bigdisp
.bitfield
.disp32
= 1;
8132 bigdisp
.bitfield
.disp32s
= 1;
8138 override
= (i
.suffix
== (flag_code
!= CODE_16BIT
8140 : LONG_MNEM_SUFFIX
));
8141 bigdisp
.bitfield
.disp32
= 1;
8142 if ((flag_code
== CODE_16BIT
) ^ override
)
8144 bigdisp
.bitfield
.disp32
= 0;
8145 bigdisp
.bitfield
.disp16
= 1;
8149 i
.types
[this_operand
] = operand_type_or (i
.types
[this_operand
],
8152 exp
= &disp_expressions
[i
.disp_operands
];
8153 i
.op
[this_operand
].disps
= exp
;
8155 save_input_line_pointer
= input_line_pointer
;
8156 input_line_pointer
= disp_start
;
8157 END_STRING_AND_SAVE (disp_end
);
8159 #ifndef GCC_ASM_O_HACK
8160 #define GCC_ASM_O_HACK 0
8163 END_STRING_AND_SAVE (disp_end
+ 1);
8164 if (i
.types
[this_operand
].bitfield
.baseIndex
8165 && displacement_string_end
[-1] == '+')
8167 /* This hack is to avoid a warning when using the "o"
8168 constraint within gcc asm statements.
8171 #define _set_tssldt_desc(n,addr,limit,type) \
8172 __asm__ __volatile__ ( \
8174 "movw %w1,2+%0\n\t" \
8176 "movb %b1,4+%0\n\t" \
8177 "movb %4,5+%0\n\t" \
8178 "movb $0,6+%0\n\t" \
8179 "movb %h1,7+%0\n\t" \
8181 : "=o"(*(n)) : "q" (addr), "ri"(limit), "i"(type))
8183 This works great except that the output assembler ends
8184 up looking a bit weird if it turns out that there is
8185 no offset. You end up producing code that looks like:
8198 So here we provide the missing zero. */
8200 *displacement_string_end
= '0';
8203 gotfree_input_line
= lex_got (&i
.reloc
[this_operand
], NULL
, &types
);
8204 if (gotfree_input_line
)
8205 input_line_pointer
= gotfree_input_line
;
8207 exp_seg
= expression (exp
);
8210 if (*input_line_pointer
)
8211 as_bad (_("junk `%s' after expression"), input_line_pointer
);
8213 RESTORE_END_STRING (disp_end
+ 1);
8215 input_line_pointer
= save_input_line_pointer
;
8216 if (gotfree_input_line
)
8218 free (gotfree_input_line
);
8220 if (exp
->X_op
== O_constant
|| exp
->X_op
== O_register
)
8221 exp
->X_op
= O_illegal
;
8224 ret
= i386_finalize_displacement (exp_seg
, exp
, types
, disp_start
);
8226 RESTORE_END_STRING (disp_end
);
8232 i386_finalize_displacement (segT exp_seg ATTRIBUTE_UNUSED
, expressionS
*exp
,
8233 i386_operand_type types
, const char *disp_start
)
8235 i386_operand_type bigdisp
;
8238 /* We do this to make sure that the section symbol is in
8239 the symbol table. We will ultimately change the relocation
8240 to be relative to the beginning of the section. */
8241 if (i
.reloc
[this_operand
] == BFD_RELOC_386_GOTOFF
8242 || i
.reloc
[this_operand
] == BFD_RELOC_X86_64_GOTPCREL
8243 || i
.reloc
[this_operand
] == BFD_RELOC_X86_64_GOTOFF64
)
8245 if (exp
->X_op
!= O_symbol
)
8248 if (S_IS_LOCAL (exp
->X_add_symbol
)
8249 && S_GET_SEGMENT (exp
->X_add_symbol
) != undefined_section
8250 && S_GET_SEGMENT (exp
->X_add_symbol
) != expr_section
)
8251 section_symbol (S_GET_SEGMENT (exp
->X_add_symbol
));
8252 exp
->X_op
= O_subtract
;
8253 exp
->X_op_symbol
= GOT_symbol
;
8254 if (i
.reloc
[this_operand
] == BFD_RELOC_X86_64_GOTPCREL
)
8255 i
.reloc
[this_operand
] = BFD_RELOC_32_PCREL
;
8256 else if (i
.reloc
[this_operand
] == BFD_RELOC_X86_64_GOTOFF64
)
8257 i
.reloc
[this_operand
] = BFD_RELOC_64
;
8259 i
.reloc
[this_operand
] = BFD_RELOC_32
;
8262 else if (exp
->X_op
== O_absent
8263 || exp
->X_op
== O_illegal
8264 || exp
->X_op
== O_big
)
8267 as_bad (_("missing or invalid displacement expression `%s'"),
8272 else if (flag_code
== CODE_64BIT
8273 && !i
.prefix
[ADDR_PREFIX
]
8274 && exp
->X_op
== O_constant
)
8276 /* Since displacement is signed extended to 64bit, don't allow
8277 disp32 and turn off disp32s if they are out of range. */
8278 i
.types
[this_operand
].bitfield
.disp32
= 0;
8279 if (!fits_in_signed_long (exp
->X_add_number
))
8281 i
.types
[this_operand
].bitfield
.disp32s
= 0;
8282 if (i
.types
[this_operand
].bitfield
.baseindex
)
8284 as_bad (_("0x%lx out range of signed 32bit displacement"),
8285 (long) exp
->X_add_number
);
8291 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
8292 else if (exp
->X_op
!= O_constant
8293 && OUTPUT_FLAVOR
== bfd_target_aout_flavour
8294 && exp_seg
!= absolute_section
8295 && exp_seg
!= text_section
8296 && exp_seg
!= data_section
8297 && exp_seg
!= bss_section
8298 && exp_seg
!= undefined_section
8299 && !bfd_is_com_section (exp_seg
))
8301 as_bad (_("unimplemented segment %s in operand"), exp_seg
->name
);
8306 /* Check if this is a displacement only operand. */
8307 bigdisp
= i
.types
[this_operand
];
8308 bigdisp
.bitfield
.disp8
= 0;
8309 bigdisp
.bitfield
.disp16
= 0;
8310 bigdisp
.bitfield
.disp32
= 0;
8311 bigdisp
.bitfield
.disp32s
= 0;
8312 bigdisp
.bitfield
.disp64
= 0;
8313 if (operand_type_all_zero (&bigdisp
))
8314 i
.types
[this_operand
] = operand_type_and (i
.types
[this_operand
],
8320 /* Make sure the memory operand we've been dealt is valid.
8321 Return 1 on success, 0 on a failure. */
8324 i386_index_check (const char *operand_string
)
8326 const char *kind
= "base/index";
8327 enum flag_code addr_mode
;
8329 if (i
.prefix
[ADDR_PREFIX
])
8330 addr_mode
= flag_code
== CODE_32BIT
? CODE_16BIT
: CODE_32BIT
;
8333 addr_mode
= flag_code
;
8335 #if INFER_ADDR_PREFIX
8336 if (i
.mem_operands
== 0)
8338 /* Infer address prefix from the first memory operand. */
8339 const reg_entry
*addr_reg
= i
.base_reg
;
8341 if (addr_reg
== NULL
)
8342 addr_reg
= i
.index_reg
;
8346 if (addr_reg
->reg_num
== RegEip
8347 || addr_reg
->reg_num
== RegEiz
8348 || addr_reg
->reg_type
.bitfield
.reg32
)
8349 addr_mode
= CODE_32BIT
;
8350 else if (flag_code
!= CODE_64BIT
8351 && addr_reg
->reg_type
.bitfield
.reg16
)
8352 addr_mode
= CODE_16BIT
;
8354 if (addr_mode
!= flag_code
)
8356 i
.prefix
[ADDR_PREFIX
] = ADDR_PREFIX_OPCODE
;
8358 /* Change the size of any displacement too. At most one
8359 of Disp16 or Disp32 is set.
8360 FIXME. There doesn't seem to be any real need for
8361 separate Disp16 and Disp32 flags. The same goes for
8362 Imm16 and Imm32. Removing them would probably clean
8363 up the code quite a lot. */
8364 if (flag_code
!= CODE_64BIT
8365 && (i
.types
[this_operand
].bitfield
.disp16
8366 || i
.types
[this_operand
].bitfield
.disp32
))
8367 i
.types
[this_operand
]
8368 = operand_type_xor (i
.types
[this_operand
], disp16_32
);
8375 if (current_templates
->start
->opcode_modifier
.isstring
8376 && !current_templates
->start
->opcode_modifier
.immext
8377 && (current_templates
->end
[-1].opcode_modifier
.isstring
8380 /* Memory operands of string insns are special in that they only allow
8381 a single register (rDI, rSI, or rBX) as their memory address. */
8382 const reg_entry
*expected_reg
;
8383 static const char *di_si
[][2] =
8389 static const char *bx
[] = { "ebx", "bx", "rbx" };
8391 kind
= "string address";
8393 if (current_templates
->start
->opcode_modifier
.w
)
8395 i386_operand_type type
= current_templates
->end
[-1].operand_types
[0];
8397 if (!type
.bitfield
.baseindex
8398 || ((!i
.mem_operands
!= !intel_syntax
)
8399 && current_templates
->end
[-1].operand_types
[1]
8400 .bitfield
.baseindex
))
8401 type
= current_templates
->end
[-1].operand_types
[1];
8402 expected_reg
= hash_find (reg_hash
,
8403 di_si
[addr_mode
][type
.bitfield
.esseg
]);
8407 expected_reg
= hash_find (reg_hash
, bx
[addr_mode
]);
8409 if (i
.base_reg
!= expected_reg
8411 || operand_type_check (i
.types
[this_operand
], disp
))
8413 /* The second memory operand must have the same size as
8417 && !((addr_mode
== CODE_64BIT
8418 && i
.base_reg
->reg_type
.bitfield
.reg64
)
8419 || (addr_mode
== CODE_32BIT
8420 ? i
.base_reg
->reg_type
.bitfield
.reg32
8421 : i
.base_reg
->reg_type
.bitfield
.reg16
)))
8424 as_warn (_("`%s' is not valid here (expected `%c%s%s%c')"),
8426 intel_syntax
? '[' : '(',
8428 expected_reg
->reg_name
,
8429 intel_syntax
? ']' : ')');
8436 as_bad (_("`%s' is not a valid %s expression"),
8437 operand_string
, kind
);
8442 if (addr_mode
!= CODE_16BIT
)
8444 /* 32-bit/64-bit checks. */
8446 && (addr_mode
== CODE_64BIT
8447 ? !i
.base_reg
->reg_type
.bitfield
.reg64
8448 : !i
.base_reg
->reg_type
.bitfield
.reg32
)
8450 || (i
.base_reg
->reg_num
8451 != (addr_mode
== CODE_64BIT
? RegRip
: RegEip
))))
8453 && !i
.index_reg
->reg_type
.bitfield
.regxmm
8454 && !i
.index_reg
->reg_type
.bitfield
.regymm
8455 && !i
.index_reg
->reg_type
.bitfield
.regzmm
8456 && ((addr_mode
== CODE_64BIT
8457 ? !(i
.index_reg
->reg_type
.bitfield
.reg64
8458 || i
.index_reg
->reg_num
== RegRiz
)
8459 : !(i
.index_reg
->reg_type
.bitfield
.reg32
8460 || i
.index_reg
->reg_num
== RegEiz
))
8461 || !i
.index_reg
->reg_type
.bitfield
.baseindex
)))
8466 /* 16-bit checks. */
8468 && (!i
.base_reg
->reg_type
.bitfield
.reg16
8469 || !i
.base_reg
->reg_type
.bitfield
.baseindex
))
8471 && (!i
.index_reg
->reg_type
.bitfield
.reg16
8472 || !i
.index_reg
->reg_type
.bitfield
.baseindex
8474 && i
.base_reg
->reg_num
< 6
8475 && i
.index_reg
->reg_num
>= 6
8476 && i
.log2_scale_factor
== 0))))
8483 /* Handle vector immediates. */
8486 RC_SAE_immediate (const char *imm_start
)
8488 unsigned int match_found
, j
;
8489 const char *pstr
= imm_start
;
8497 for (j
= 0; j
< ARRAY_SIZE (RC_NamesTable
); j
++)
8499 if (!strncmp (pstr
, RC_NamesTable
[j
].name
, RC_NamesTable
[j
].len
))
8503 rc_op
.type
= RC_NamesTable
[j
].type
;
8504 rc_op
.operand
= this_operand
;
8505 i
.rounding
= &rc_op
;
8509 as_bad (_("duplicated `%s'"), imm_start
);
8512 pstr
+= RC_NamesTable
[j
].len
;
8522 as_bad (_("Missing '}': '%s'"), imm_start
);
8525 /* RC/SAE immediate string should contain nothing more. */;
8528 as_bad (_("Junk after '}': '%s'"), imm_start
);
8532 exp
= &im_expressions
[i
.imm_operands
++];
8533 i
.op
[this_operand
].imms
= exp
;
8535 exp
->X_op
= O_constant
;
8536 exp
->X_add_number
= 0;
8537 exp
->X_add_symbol
= (symbolS
*) 0;
8538 exp
->X_op_symbol
= (symbolS
*) 0;
8540 i
.types
[this_operand
].bitfield
.imm8
= 1;
8544 /* Parse OPERAND_STRING into the i386_insn structure I. Returns zero
8548 i386_att_operand (char *operand_string
)
8552 char *op_string
= operand_string
;
8554 if (is_space_char (*op_string
))
8557 /* We check for an absolute prefix (differentiating,
8558 for example, 'jmp pc_relative_label' from 'jmp *absolute_label'. */
8559 if (*op_string
== ABSOLUTE_PREFIX
)
8562 if (is_space_char (*op_string
))
8564 i
.types
[this_operand
].bitfield
.jumpabsolute
= 1;
8567 /* Check if operand is a register. */
8568 if ((r
= parse_register (op_string
, &end_op
)) != NULL
)
8570 i386_operand_type temp
;
8572 /* Check for a segment override by searching for ':' after a
8573 segment register. */
8575 if (is_space_char (*op_string
))
8577 if (*op_string
== ':'
8578 && (r
->reg_type
.bitfield
.sreg2
8579 || r
->reg_type
.bitfield
.sreg3
))
8584 i
.seg
[i
.mem_operands
] = &es
;
8587 i
.seg
[i
.mem_operands
] = &cs
;
8590 i
.seg
[i
.mem_operands
] = &ss
;
8593 i
.seg
[i
.mem_operands
] = &ds
;
8596 i
.seg
[i
.mem_operands
] = &fs
;
8599 i
.seg
[i
.mem_operands
] = &gs
;
8603 /* Skip the ':' and whitespace. */
8605 if (is_space_char (*op_string
))
8608 if (!is_digit_char (*op_string
)
8609 && !is_identifier_char (*op_string
)
8610 && *op_string
!= '('
8611 && *op_string
!= ABSOLUTE_PREFIX
)
8613 as_bad (_("bad memory operand `%s'"), op_string
);
8616 /* Handle case of %es:*foo. */
8617 if (*op_string
== ABSOLUTE_PREFIX
)
8620 if (is_space_char (*op_string
))
8622 i
.types
[this_operand
].bitfield
.jumpabsolute
= 1;
8624 goto do_memory_reference
;
8627 /* Handle vector operations. */
8628 if (*op_string
== '{')
8630 op_string
= check_VecOperations (op_string
, NULL
);
8631 if (op_string
== NULL
)
8637 as_bad (_("junk `%s' after register"), op_string
);
8641 temp
.bitfield
.baseindex
= 0;
8642 i
.types
[this_operand
] = operand_type_or (i
.types
[this_operand
],
8644 i
.types
[this_operand
].bitfield
.unspecified
= 0;
8645 i
.op
[this_operand
].regs
= r
;
8648 else if (*op_string
== REGISTER_PREFIX
)
8650 as_bad (_("bad register name `%s'"), op_string
);
8653 else if (*op_string
== IMMEDIATE_PREFIX
)
8656 if (i
.types
[this_operand
].bitfield
.jumpabsolute
)
8658 as_bad (_("immediate operand illegal with absolute jump"));
8661 if (!i386_immediate (op_string
))
8664 else if (RC_SAE_immediate (operand_string
))
8666 /* If it is a RC or SAE immediate, do nothing. */
8669 else if (is_digit_char (*op_string
)
8670 || is_identifier_char (*op_string
)
8671 || *op_string
== '"'
8672 || *op_string
== '(')
8674 /* This is a memory reference of some sort. */
8677 /* Start and end of displacement string expression (if found). */
8678 char *displacement_string_start
;
8679 char *displacement_string_end
;
8682 do_memory_reference
:
8683 if ((i
.mem_operands
== 1
8684 && !current_templates
->start
->opcode_modifier
.isstring
)
8685 || i
.mem_operands
== 2)
8687 as_bad (_("too many memory references for `%s'"),
8688 current_templates
->start
->name
);
8692 /* Check for base index form. We detect the base index form by
8693 looking for an ')' at the end of the operand, searching
8694 for the '(' matching it, and finding a REGISTER_PREFIX or ','
8696 base_string
= op_string
+ strlen (op_string
);
8698 /* Handle vector operations. */
8699 vop_start
= strchr (op_string
, '{');
8700 if (vop_start
&& vop_start
< base_string
)
8702 if (check_VecOperations (vop_start
, base_string
) == NULL
)
8704 base_string
= vop_start
;
8708 if (is_space_char (*base_string
))
8711 /* If we only have a displacement, set-up for it to be parsed later. */
8712 displacement_string_start
= op_string
;
8713 displacement_string_end
= base_string
+ 1;
8715 if (*base_string
== ')')
8718 unsigned int parens_balanced
= 1;
8719 /* We've already checked that the number of left & right ()'s are
8720 equal, so this loop will not be infinite. */
8724 if (*base_string
== ')')
8726 if (*base_string
== '(')
8729 while (parens_balanced
);
8731 temp_string
= base_string
;
8733 /* Skip past '(' and whitespace. */
8735 if (is_space_char (*base_string
))
8738 if (*base_string
== ','
8739 || ((i
.base_reg
= parse_register (base_string
, &end_op
))
8742 displacement_string_end
= temp_string
;
8744 i
.types
[this_operand
].bitfield
.baseindex
= 1;
8748 base_string
= end_op
;
8749 if (is_space_char (*base_string
))
8753 /* There may be an index reg or scale factor here. */
8754 if (*base_string
== ',')
8757 if (is_space_char (*base_string
))
8760 if ((i
.index_reg
= parse_register (base_string
, &end_op
))
8763 base_string
= end_op
;
8764 if (is_space_char (*base_string
))
8766 if (*base_string
== ',')
8769 if (is_space_char (*base_string
))
8772 else if (*base_string
!= ')')
8774 as_bad (_("expecting `,' or `)' "
8775 "after index register in `%s'"),
8780 else if (*base_string
== REGISTER_PREFIX
)
8782 end_op
= strchr (base_string
, ',');
8785 as_bad (_("bad register name `%s'"), base_string
);
8789 /* Check for scale factor. */
8790 if (*base_string
!= ')')
8792 char *end_scale
= i386_scale (base_string
);
8797 base_string
= end_scale
;
8798 if (is_space_char (*base_string
))
8800 if (*base_string
!= ')')
8802 as_bad (_("expecting `)' "
8803 "after scale factor in `%s'"),
8808 else if (!i
.index_reg
)
8810 as_bad (_("expecting index register or scale factor "
8811 "after `,'; got '%c'"),
8816 else if (*base_string
!= ')')
8818 as_bad (_("expecting `,' or `)' "
8819 "after base register in `%s'"),
8824 else if (*base_string
== REGISTER_PREFIX
)
8826 end_op
= strchr (base_string
, ',');
8829 as_bad (_("bad register name `%s'"), base_string
);
8834 /* If there's an expression beginning the operand, parse it,
8835 assuming displacement_string_start and
8836 displacement_string_end are meaningful. */
8837 if (displacement_string_start
!= displacement_string_end
)
8839 if (!i386_displacement (displacement_string_start
,
8840 displacement_string_end
))
8844 /* Special case for (%dx) while doing input/output op. */
8846 && operand_type_equal (&i
.base_reg
->reg_type
,
8847 ®16_inoutportreg
)
8849 && i
.log2_scale_factor
== 0
8850 && i
.seg
[i
.mem_operands
] == 0
8851 && !operand_type_check (i
.types
[this_operand
], disp
))
8853 i
.types
[this_operand
] = inoutportreg
;
8857 if (i386_index_check (operand_string
) == 0)
8859 i
.types
[this_operand
].bitfield
.mem
= 1;
8864 /* It's not a memory operand; argh! */
8865 as_bad (_("invalid char %s beginning operand %d `%s'"),
8866 output_invalid (*op_string
),
8871 return 1; /* Normal return. */
8874 /* Calculate the maximum variable size (i.e., excluding fr_fix)
8875 that an rs_machine_dependent frag may reach. */
8878 i386_frag_max_var (fragS
*frag
)
8880 /* The only relaxable frags are for jumps.
8881 Unconditional jumps can grow by 4 bytes and others by 5 bytes. */
8882 gas_assert (frag
->fr_type
== rs_machine_dependent
);
8883 return TYPE_FROM_RELAX_STATE (frag
->fr_subtype
) == UNCOND_JUMP
? 4 : 5;
8886 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8888 elf_symbol_resolved_in_segment_p (symbolS
*fr_symbol
, offsetT fr_var
)
8890 /* STT_GNU_IFUNC symbol must go through PLT. */
8891 if ((symbol_get_bfdsym (fr_symbol
)->flags
8892 & BSF_GNU_INDIRECT_FUNCTION
) != 0)
8895 if (!S_IS_EXTERNAL (fr_symbol
))
8896 /* Symbol may be weak or local. */
8897 return !S_IS_WEAK (fr_symbol
);
8899 /* Global symbols with non-default visibility can't be preempted. */
8900 if (ELF_ST_VISIBILITY (S_GET_OTHER (fr_symbol
)) != STV_DEFAULT
)
8903 if (fr_var
!= NO_RELOC
)
8904 switch ((enum bfd_reloc_code_real
) fr_var
)
8906 case BFD_RELOC_386_PLT32
:
8907 case BFD_RELOC_X86_64_PLT32
:
8908 /* Symbol with PLT relocatin may be preempted. */
8914 /* Global symbols with default visibility in a shared library may be
8915 preempted by another definition. */
8920 /* md_estimate_size_before_relax()
8922 Called just before relax() for rs_machine_dependent frags. The x86
8923 assembler uses these frags to handle variable size jump
8926 Any symbol that is now undefined will not become defined.
8927 Return the correct fr_subtype in the frag.
8928 Return the initial "guess for variable size of frag" to caller.
8929 The guess is actually the growth beyond the fixed part. Whatever
8930 we do to grow the fixed or variable part contributes to our
8934 md_estimate_size_before_relax (fragS
*fragP
, segT segment
)
8936 /* We've already got fragP->fr_subtype right; all we have to do is
8937 check for un-relaxable symbols. On an ELF system, we can't relax
8938 an externally visible symbol, because it may be overridden by a
8940 if (S_GET_SEGMENT (fragP
->fr_symbol
) != segment
8941 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8943 && !elf_symbol_resolved_in_segment_p (fragP
->fr_symbol
,
8946 #if defined (OBJ_COFF) && defined (TE_PE)
8947 || (OUTPUT_FLAVOR
== bfd_target_coff_flavour
8948 && S_IS_WEAK (fragP
->fr_symbol
))
8952 /* Symbol is undefined in this segment, or we need to keep a
8953 reloc so that weak symbols can be overridden. */
8954 int size
= (fragP
->fr_subtype
& CODE16
) ? 2 : 4;
8955 enum bfd_reloc_code_real reloc_type
;
8956 unsigned char *opcode
;
8959 if (fragP
->fr_var
!= NO_RELOC
)
8960 reloc_type
= (enum bfd_reloc_code_real
) fragP
->fr_var
;
8962 reloc_type
= BFD_RELOC_16_PCREL
;
8964 reloc_type
= BFD_RELOC_32_PCREL
;
8966 old_fr_fix
= fragP
->fr_fix
;
8967 opcode
= (unsigned char *) fragP
->fr_opcode
;
8969 switch (TYPE_FROM_RELAX_STATE (fragP
->fr_subtype
))
8972 /* Make jmp (0xeb) a (d)word displacement jump. */
8974 fragP
->fr_fix
+= size
;
8975 fix_new (fragP
, old_fr_fix
, size
,
8977 fragP
->fr_offset
, 1,
8983 && (!no_cond_jump_promotion
|| fragP
->fr_var
!= NO_RELOC
))
8985 /* Negate the condition, and branch past an
8986 unconditional jump. */
8989 /* Insert an unconditional jump. */
8991 /* We added two extra opcode bytes, and have a two byte
8993 fragP
->fr_fix
+= 2 + 2;
8994 fix_new (fragP
, old_fr_fix
+ 2, 2,
8996 fragP
->fr_offset
, 1,
9003 if (no_cond_jump_promotion
&& fragP
->fr_var
== NO_RELOC
)
9008 fixP
= fix_new (fragP
, old_fr_fix
, 1,
9010 fragP
->fr_offset
, 1,
9012 fixP
->fx_signed
= 1;
9016 /* This changes the byte-displacement jump 0x7N
9017 to the (d)word-displacement jump 0x0f,0x8N. */
9018 opcode
[1] = opcode
[0] + 0x10;
9019 opcode
[0] = TWO_BYTE_OPCODE_ESCAPE
;
9020 /* We've added an opcode byte. */
9021 fragP
->fr_fix
+= 1 + size
;
9022 fix_new (fragP
, old_fr_fix
+ 1, size
,
9024 fragP
->fr_offset
, 1,
9029 BAD_CASE (fragP
->fr_subtype
);
9033 return fragP
->fr_fix
- old_fr_fix
;
9036 /* Guess size depending on current relax state. Initially the relax
9037 state will correspond to a short jump and we return 1, because
9038 the variable part of the frag (the branch offset) is one byte
9039 long. However, we can relax a section more than once and in that
9040 case we must either set fr_subtype back to the unrelaxed state,
9041 or return the value for the appropriate branch. */
9042 return md_relax_table
[fragP
->fr_subtype
].rlx_length
;
9045 /* Called after relax() is finished.
9047 In: Address of frag.
9048 fr_type == rs_machine_dependent.
9049 fr_subtype is what the address relaxed to.
9051 Out: Any fixSs and constants are set up.
9052 Caller will turn frag into a ".space 0". */
9055 md_convert_frag (bfd
*abfd ATTRIBUTE_UNUSED
, segT sec ATTRIBUTE_UNUSED
,
9058 unsigned char *opcode
;
9059 unsigned char *where_to_put_displacement
= NULL
;
9060 offsetT target_address
;
9061 offsetT opcode_address
;
9062 unsigned int extension
= 0;
9063 offsetT displacement_from_opcode_start
;
9065 opcode
= (unsigned char *) fragP
->fr_opcode
;
9067 /* Address we want to reach in file space. */
9068 target_address
= S_GET_VALUE (fragP
->fr_symbol
) + fragP
->fr_offset
;
9070 /* Address opcode resides at in file space. */
9071 opcode_address
= fragP
->fr_address
+ fragP
->fr_fix
;
9073 /* Displacement from opcode start to fill into instruction. */
9074 displacement_from_opcode_start
= target_address
- opcode_address
;
9076 if ((fragP
->fr_subtype
& BIG
) == 0)
9078 /* Don't have to change opcode. */
9079 extension
= 1; /* 1 opcode + 1 displacement */
9080 where_to_put_displacement
= &opcode
[1];
9084 if (no_cond_jump_promotion
9085 && TYPE_FROM_RELAX_STATE (fragP
->fr_subtype
) != UNCOND_JUMP
)
9086 as_warn_where (fragP
->fr_file
, fragP
->fr_line
,
9087 _("long jump required"));
9089 switch (fragP
->fr_subtype
)
9091 case ENCODE_RELAX_STATE (UNCOND_JUMP
, BIG
):
9092 extension
= 4; /* 1 opcode + 4 displacement */
9094 where_to_put_displacement
= &opcode
[1];
9097 case ENCODE_RELAX_STATE (UNCOND_JUMP
, BIG16
):
9098 extension
= 2; /* 1 opcode + 2 displacement */
9100 where_to_put_displacement
= &opcode
[1];
9103 case ENCODE_RELAX_STATE (COND_JUMP
, BIG
):
9104 case ENCODE_RELAX_STATE (COND_JUMP86
, BIG
):
9105 extension
= 5; /* 2 opcode + 4 displacement */
9106 opcode
[1] = opcode
[0] + 0x10;
9107 opcode
[0] = TWO_BYTE_OPCODE_ESCAPE
;
9108 where_to_put_displacement
= &opcode
[2];
9111 case ENCODE_RELAX_STATE (COND_JUMP
, BIG16
):
9112 extension
= 3; /* 2 opcode + 2 displacement */
9113 opcode
[1] = opcode
[0] + 0x10;
9114 opcode
[0] = TWO_BYTE_OPCODE_ESCAPE
;
9115 where_to_put_displacement
= &opcode
[2];
9118 case ENCODE_RELAX_STATE (COND_JUMP86
, BIG16
):
9123 where_to_put_displacement
= &opcode
[3];
9127 BAD_CASE (fragP
->fr_subtype
);
9132 /* If size if less then four we are sure that the operand fits,
9133 but if it's 4, then it could be that the displacement is larger
9135 if (DISP_SIZE_FROM_RELAX_STATE (fragP
->fr_subtype
) == 4
9137 && ((addressT
) (displacement_from_opcode_start
- extension
9138 + ((addressT
) 1 << 31))
9139 > (((addressT
) 2 << 31) - 1)))
9141 as_bad_where (fragP
->fr_file
, fragP
->fr_line
,
9142 _("jump target out of range"));
9143 /* Make us emit 0. */
9144 displacement_from_opcode_start
= extension
;
9146 /* Now put displacement after opcode. */
9147 md_number_to_chars ((char *) where_to_put_displacement
,
9148 (valueT
) (displacement_from_opcode_start
- extension
),
9149 DISP_SIZE_FROM_RELAX_STATE (fragP
->fr_subtype
));
9150 fragP
->fr_fix
+= extension
;
9153 /* Apply a fixup (fixP) to segment data, once it has been determined
9154 by our caller that we have all the info we need to fix it up.
9156 Parameter valP is the pointer to the value of the bits.
9158 On the 386, immediates, displacements, and data pointers are all in
9159 the same (little-endian) format, so we don't need to care about which
9163 md_apply_fix (fixS
*fixP
, valueT
*valP
, segT seg ATTRIBUTE_UNUSED
)
9165 char *p
= fixP
->fx_where
+ fixP
->fx_frag
->fr_literal
;
9166 valueT value
= *valP
;
9168 #if !defined (TE_Mach)
9171 switch (fixP
->fx_r_type
)
9177 fixP
->fx_r_type
= BFD_RELOC_64_PCREL
;
9180 case BFD_RELOC_X86_64_32S
:
9181 fixP
->fx_r_type
= BFD_RELOC_32_PCREL
;
9184 fixP
->fx_r_type
= BFD_RELOC_16_PCREL
;
9187 fixP
->fx_r_type
= BFD_RELOC_8_PCREL
;
9192 if (fixP
->fx_addsy
!= NULL
9193 && (fixP
->fx_r_type
== BFD_RELOC_32_PCREL
9194 || fixP
->fx_r_type
== BFD_RELOC_64_PCREL
9195 || fixP
->fx_r_type
== BFD_RELOC_16_PCREL
9196 || fixP
->fx_r_type
== BFD_RELOC_8_PCREL
)
9197 && !use_rela_relocations
)
9199 /* This is a hack. There should be a better way to handle this.
9200 This covers for the fact that bfd_install_relocation will
9201 subtract the current location (for partial_inplace, PC relative
9202 relocations); see more below. */
9206 || OUTPUT_FLAVOR
== bfd_target_coff_flavour
9209 value
+= fixP
->fx_where
+ fixP
->fx_frag
->fr_address
;
9211 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9214 segT sym_seg
= S_GET_SEGMENT (fixP
->fx_addsy
);
9217 || (symbol_section_p (fixP
->fx_addsy
)
9218 && sym_seg
!= absolute_section
))
9219 && !generic_force_reloc (fixP
))
9221 /* Yes, we add the values in twice. This is because
9222 bfd_install_relocation subtracts them out again. I think
9223 bfd_install_relocation is broken, but I don't dare change
9225 value
+= fixP
->fx_where
+ fixP
->fx_frag
->fr_address
;
9229 #if defined (OBJ_COFF) && defined (TE_PE)
9230 /* For some reason, the PE format does not store a
9231 section address offset for a PC relative symbol. */
9232 if (S_GET_SEGMENT (fixP
->fx_addsy
) != seg
9233 || S_IS_WEAK (fixP
->fx_addsy
))
9234 value
+= md_pcrel_from (fixP
);
9237 #if defined (OBJ_COFF) && defined (TE_PE)
9238 if (fixP
->fx_addsy
!= NULL
9239 && S_IS_WEAK (fixP
->fx_addsy
)
9240 /* PR 16858: Do not modify weak function references. */
9241 && ! fixP
->fx_pcrel
)
9243 #if !defined (TE_PEP)
9244 /* For x86 PE weak function symbols are neither PC-relative
9245 nor do they set S_IS_FUNCTION. So the only reliable way
9246 to detect them is to check the flags of their containing
9248 if (S_GET_SEGMENT (fixP
->fx_addsy
) != NULL
9249 && S_GET_SEGMENT (fixP
->fx_addsy
)->flags
& SEC_CODE
)
9253 value
-= S_GET_VALUE (fixP
->fx_addsy
);
9257 /* Fix a few things - the dynamic linker expects certain values here,
9258 and we must not disappoint it. */
9259 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9260 if (IS_ELF
&& fixP
->fx_addsy
)
9261 switch (fixP
->fx_r_type
)
9263 case BFD_RELOC_386_PLT32
:
9264 case BFD_RELOC_X86_64_PLT32
:
9265 /* Make the jump instruction point to the address of the operand. At
9266 runtime we merely add the offset to the actual PLT entry. */
9270 case BFD_RELOC_386_TLS_GD
:
9271 case BFD_RELOC_386_TLS_LDM
:
9272 case BFD_RELOC_386_TLS_IE_32
:
9273 case BFD_RELOC_386_TLS_IE
:
9274 case BFD_RELOC_386_TLS_GOTIE
:
9275 case BFD_RELOC_386_TLS_GOTDESC
:
9276 case BFD_RELOC_X86_64_TLSGD
:
9277 case BFD_RELOC_X86_64_TLSLD
:
9278 case BFD_RELOC_X86_64_GOTTPOFF
:
9279 case BFD_RELOC_X86_64_GOTPC32_TLSDESC
:
9280 value
= 0; /* Fully resolved at runtime. No addend. */
9282 case BFD_RELOC_386_TLS_LE
:
9283 case BFD_RELOC_386_TLS_LDO_32
:
9284 case BFD_RELOC_386_TLS_LE_32
:
9285 case BFD_RELOC_X86_64_DTPOFF32
:
9286 case BFD_RELOC_X86_64_DTPOFF64
:
9287 case BFD_RELOC_X86_64_TPOFF32
:
9288 case BFD_RELOC_X86_64_TPOFF64
:
9289 S_SET_THREAD_LOCAL (fixP
->fx_addsy
);
9292 case BFD_RELOC_386_TLS_DESC_CALL
:
9293 case BFD_RELOC_X86_64_TLSDESC_CALL
:
9294 value
= 0; /* Fully resolved at runtime. No addend. */
9295 S_SET_THREAD_LOCAL (fixP
->fx_addsy
);
9299 case BFD_RELOC_386_GOT32
:
9300 case BFD_RELOC_X86_64_GOT32
:
9301 value
= 0; /* Fully resolved at runtime. No addend. */
9304 case BFD_RELOC_VTABLE_INHERIT
:
9305 case BFD_RELOC_VTABLE_ENTRY
:
9312 #endif /* defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) */
9314 #endif /* !defined (TE_Mach) */
9316 /* Are we finished with this relocation now? */
9317 if (fixP
->fx_addsy
== NULL
)
9319 #if defined (OBJ_COFF) && defined (TE_PE)
9320 else if (fixP
->fx_addsy
!= NULL
&& S_IS_WEAK (fixP
->fx_addsy
))
9323 /* Remember value for tc_gen_reloc. */
9324 fixP
->fx_addnumber
= value
;
9325 /* Clear out the frag for now. */
9329 else if (use_rela_relocations
)
9331 fixP
->fx_no_overflow
= 1;
9332 /* Remember value for tc_gen_reloc. */
9333 fixP
->fx_addnumber
= value
;
9337 md_number_to_chars (p
, value
, fixP
->fx_size
);
9341 md_atof (int type
, char *litP
, int *sizeP
)
9343 /* This outputs the LITTLENUMs in REVERSE order;
9344 in accord with the bigendian 386. */
9345 return ieee_md_atof (type
, litP
, sizeP
, FALSE
);
9348 static char output_invalid_buf
[sizeof (unsigned char) * 2 + 6];
9351 output_invalid (int c
)
9354 snprintf (output_invalid_buf
, sizeof (output_invalid_buf
),
9357 snprintf (output_invalid_buf
, sizeof (output_invalid_buf
),
9358 "(0x%x)", (unsigned char) c
);
9359 return output_invalid_buf
;
9362 /* REG_STRING starts *before* REGISTER_PREFIX. */
9364 static const reg_entry
*
9365 parse_real_register (char *reg_string
, char **end_op
)
9367 char *s
= reg_string
;
9369 char reg_name_given
[MAX_REG_NAME_SIZE
+ 1];
9372 /* Skip possible REGISTER_PREFIX and possible whitespace. */
9373 if (*s
== REGISTER_PREFIX
)
9376 if (is_space_char (*s
))
9380 while ((*p
++ = register_chars
[(unsigned char) *s
]) != '\0')
9382 if (p
>= reg_name_given
+ MAX_REG_NAME_SIZE
)
9383 return (const reg_entry
*) NULL
;
9387 /* For naked regs, make sure that we are not dealing with an identifier.
9388 This prevents confusing an identifier like `eax_var' with register
9390 if (allow_naked_reg
&& identifier_chars
[(unsigned char) *s
])
9391 return (const reg_entry
*) NULL
;
9395 r
= (const reg_entry
*) hash_find (reg_hash
, reg_name_given
);
9397 /* Handle floating point regs, allowing spaces in the (i) part. */
9398 if (r
== i386_regtab
/* %st is first entry of table */)
9400 if (is_space_char (*s
))
9405 if (is_space_char (*s
))
9407 if (*s
>= '0' && *s
<= '7')
9411 if (is_space_char (*s
))
9416 r
= (const reg_entry
*) hash_find (reg_hash
, "st(0)");
9421 /* We have "%st(" then garbage. */
9422 return (const reg_entry
*) NULL
;
9426 if (r
== NULL
|| allow_pseudo_reg
)
9429 if (operand_type_all_zero (&r
->reg_type
))
9430 return (const reg_entry
*) NULL
;
9432 if ((r
->reg_type
.bitfield
.reg32
9433 || r
->reg_type
.bitfield
.sreg3
9434 || r
->reg_type
.bitfield
.control
9435 || r
->reg_type
.bitfield
.debug
9436 || r
->reg_type
.bitfield
.test
)
9437 && !cpu_arch_flags
.bitfield
.cpui386
)
9438 return (const reg_entry
*) NULL
;
9440 if (r
->reg_type
.bitfield
.floatreg
9441 && !cpu_arch_flags
.bitfield
.cpu8087
9442 && !cpu_arch_flags
.bitfield
.cpu287
9443 && !cpu_arch_flags
.bitfield
.cpu387
)
9444 return (const reg_entry
*) NULL
;
9446 if (r
->reg_type
.bitfield
.regmmx
&& !cpu_arch_flags
.bitfield
.cpummx
)
9447 return (const reg_entry
*) NULL
;
9449 if (r
->reg_type
.bitfield
.regxmm
&& !cpu_arch_flags
.bitfield
.cpusse
)
9450 return (const reg_entry
*) NULL
;
9452 if (r
->reg_type
.bitfield
.regymm
&& !cpu_arch_flags
.bitfield
.cpuavx
)
9453 return (const reg_entry
*) NULL
;
9455 if ((r
->reg_type
.bitfield
.regzmm
|| r
->reg_type
.bitfield
.regmask
)
9456 && !cpu_arch_flags
.bitfield
.cpuavx512f
)
9457 return (const reg_entry
*) NULL
;
9459 /* Don't allow fake index register unless allow_index_reg isn't 0. */
9460 if (!allow_index_reg
9461 && (r
->reg_num
== RegEiz
|| r
->reg_num
== RegRiz
))
9462 return (const reg_entry
*) NULL
;
9464 /* Upper 16 vector register is only available with VREX in 64bit
9466 if ((r
->reg_flags
& RegVRex
))
9468 if (!cpu_arch_flags
.bitfield
.cpuvrex
9469 || flag_code
!= CODE_64BIT
)
9470 return (const reg_entry
*) NULL
;
9475 if (((r
->reg_flags
& (RegRex64
| RegRex
))
9476 || r
->reg_type
.bitfield
.reg64
)
9477 && (!cpu_arch_flags
.bitfield
.cpulm
9478 || !operand_type_equal (&r
->reg_type
, &control
))
9479 && flag_code
!= CODE_64BIT
)
9480 return (const reg_entry
*) NULL
;
9482 if (r
->reg_type
.bitfield
.sreg3
&& r
->reg_num
== RegFlat
&& !intel_syntax
)
9483 return (const reg_entry
*) NULL
;
9488 /* REG_STRING starts *before* REGISTER_PREFIX. */
9490 static const reg_entry
*
9491 parse_register (char *reg_string
, char **end_op
)
9495 if (*reg_string
== REGISTER_PREFIX
|| allow_naked_reg
)
9496 r
= parse_real_register (reg_string
, end_op
);
9501 char *save
= input_line_pointer
;
9505 input_line_pointer
= reg_string
;
9506 c
= get_symbol_name (®_string
);
9507 symbolP
= symbol_find (reg_string
);
9508 if (symbolP
&& S_GET_SEGMENT (symbolP
) == reg_section
)
9510 const expressionS
*e
= symbol_get_value_expression (symbolP
);
9512 know (e
->X_op
== O_register
);
9513 know (e
->X_add_number
>= 0
9514 && (valueT
) e
->X_add_number
< i386_regtab_size
);
9515 r
= i386_regtab
+ e
->X_add_number
;
9516 if ((r
->reg_flags
& RegVRex
))
9518 *end_op
= input_line_pointer
;
9520 *input_line_pointer
= c
;
9521 input_line_pointer
= save
;
9527 i386_parse_name (char *name
, expressionS
*e
, char *nextcharP
)
9530 char *end
= input_line_pointer
;
9533 r
= parse_register (name
, &input_line_pointer
);
9534 if (r
&& end
<= input_line_pointer
)
9536 *nextcharP
= *input_line_pointer
;
9537 *input_line_pointer
= 0;
9538 e
->X_op
= O_register
;
9539 e
->X_add_number
= r
- i386_regtab
;
9542 input_line_pointer
= end
;
9544 return intel_syntax
? i386_intel_parse_name (name
, e
) : 0;
9548 md_operand (expressionS
*e
)
9553 switch (*input_line_pointer
)
9555 case REGISTER_PREFIX
:
9556 r
= parse_real_register (input_line_pointer
, &end
);
9559 e
->X_op
= O_register
;
9560 e
->X_add_number
= r
- i386_regtab
;
9561 input_line_pointer
= end
;
9566 gas_assert (intel_syntax
);
9567 end
= input_line_pointer
++;
9569 if (*input_line_pointer
== ']')
9571 ++input_line_pointer
;
9572 e
->X_op_symbol
= make_expr_symbol (e
);
9573 e
->X_add_symbol
= NULL
;
9574 e
->X_add_number
= 0;
9580 input_line_pointer
= end
;
9587 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9588 const char *md_shortopts
= "kVQ:sqn";
9590 const char *md_shortopts
= "qn";
9593 #define OPTION_32 (OPTION_MD_BASE + 0)
9594 #define OPTION_64 (OPTION_MD_BASE + 1)
9595 #define OPTION_DIVIDE (OPTION_MD_BASE + 2)
9596 #define OPTION_MARCH (OPTION_MD_BASE + 3)
9597 #define OPTION_MTUNE (OPTION_MD_BASE + 4)
9598 #define OPTION_MMNEMONIC (OPTION_MD_BASE + 5)
9599 #define OPTION_MSYNTAX (OPTION_MD_BASE + 6)
9600 #define OPTION_MINDEX_REG (OPTION_MD_BASE + 7)
9601 #define OPTION_MNAKED_REG (OPTION_MD_BASE + 8)
9602 #define OPTION_MOLD_GCC (OPTION_MD_BASE + 9)
9603 #define OPTION_MSSE2AVX (OPTION_MD_BASE + 10)
9604 #define OPTION_MSSE_CHECK (OPTION_MD_BASE + 11)
9605 #define OPTION_MOPERAND_CHECK (OPTION_MD_BASE + 12)
9606 #define OPTION_MAVXSCALAR (OPTION_MD_BASE + 13)
9607 #define OPTION_X32 (OPTION_MD_BASE + 14)
9608 #define OPTION_MADD_BND_PREFIX (OPTION_MD_BASE + 15)
9609 #define OPTION_MEVEXLIG (OPTION_MD_BASE + 16)
9610 #define OPTION_MEVEXWIG (OPTION_MD_BASE + 17)
9611 #define OPTION_MBIG_OBJ (OPTION_MD_BASE + 18)
9612 #define OPTION_OMIT_LOCK_PREFIX (OPTION_MD_BASE + 19)
9613 #define OPTION_MEVEXRCIG (OPTION_MD_BASE + 20)
9614 #define OPTION_MSHARED (OPTION_MD_BASE + 21)
9615 #define OPTION_MAMD64 (OPTION_MD_BASE + 22)
9616 #define OPTION_MINTEL64 (OPTION_MD_BASE + 23)
9618 struct option md_longopts
[] =
9620 {"32", no_argument
, NULL
, OPTION_32
},
9621 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
9622 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
9623 {"64", no_argument
, NULL
, OPTION_64
},
9625 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9626 {"x32", no_argument
, NULL
, OPTION_X32
},
9627 {"mshared", no_argument
, NULL
, OPTION_MSHARED
},
9629 {"divide", no_argument
, NULL
, OPTION_DIVIDE
},
9630 {"march", required_argument
, NULL
, OPTION_MARCH
},
9631 {"mtune", required_argument
, NULL
, OPTION_MTUNE
},
9632 {"mmnemonic", required_argument
, NULL
, OPTION_MMNEMONIC
},
9633 {"msyntax", required_argument
, NULL
, OPTION_MSYNTAX
},
9634 {"mindex-reg", no_argument
, NULL
, OPTION_MINDEX_REG
},
9635 {"mnaked-reg", no_argument
, NULL
, OPTION_MNAKED_REG
},
9636 {"mold-gcc", no_argument
, NULL
, OPTION_MOLD_GCC
},
9637 {"msse2avx", no_argument
, NULL
, OPTION_MSSE2AVX
},
9638 {"msse-check", required_argument
, NULL
, OPTION_MSSE_CHECK
},
9639 {"moperand-check", required_argument
, NULL
, OPTION_MOPERAND_CHECK
},
9640 {"mavxscalar", required_argument
, NULL
, OPTION_MAVXSCALAR
},
9641 {"madd-bnd-prefix", no_argument
, NULL
, OPTION_MADD_BND_PREFIX
},
9642 {"mevexlig", required_argument
, NULL
, OPTION_MEVEXLIG
},
9643 {"mevexwig", required_argument
, NULL
, OPTION_MEVEXWIG
},
9644 # if defined (TE_PE) || defined (TE_PEP)
9645 {"mbig-obj", no_argument
, NULL
, OPTION_MBIG_OBJ
},
9647 {"momit-lock-prefix", required_argument
, NULL
, OPTION_OMIT_LOCK_PREFIX
},
9648 {"mevexrcig", required_argument
, NULL
, OPTION_MEVEXRCIG
},
9649 {"mamd64", no_argument
, NULL
, OPTION_MAMD64
},
9650 {"mintel64", no_argument
, NULL
, OPTION_MINTEL64
},
9651 {NULL
, no_argument
, NULL
, 0}
9653 size_t md_longopts_size
= sizeof (md_longopts
);
9656 md_parse_option (int c
, char *arg
)
9664 optimize_align_code
= 0;
9671 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9672 /* -Qy, -Qn: SVR4 arguments controlling whether a .comment section
9673 should be emitted or not. FIXME: Not implemented. */
9677 /* -V: SVR4 argument to print version ID. */
9679 print_version_id ();
9682 /* -k: Ignore for FreeBSD compatibility. */
9687 /* -s: On i386 Solaris, this tells the native assembler to use
9688 .stab instead of .stab.excl. We always use .stab anyhow. */
9691 case OPTION_MSHARED
:
9695 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
9696 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
9699 const char **list
, **l
;
9701 list
= bfd_target_list ();
9702 for (l
= list
; *l
!= NULL
; l
++)
9703 if (CONST_STRNEQ (*l
, "elf64-x86-64")
9704 || strcmp (*l
, "coff-x86-64") == 0
9705 || strcmp (*l
, "pe-x86-64") == 0
9706 || strcmp (*l
, "pei-x86-64") == 0
9707 || strcmp (*l
, "mach-o-x86-64") == 0)
9709 default_arch
= "x86_64";
9713 as_fatal (_("no compiled in support for x86_64"));
9719 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9723 const char **list
, **l
;
9725 list
= bfd_target_list ();
9726 for (l
= list
; *l
!= NULL
; l
++)
9727 if (CONST_STRNEQ (*l
, "elf32-x86-64"))
9729 default_arch
= "x86_64:32";
9733 as_fatal (_("no compiled in support for 32bit x86_64"));
9737 as_fatal (_("32bit x86_64 is only supported for ELF"));
9742 default_arch
= "i386";
9746 #ifdef SVR4_COMMENT_CHARS
9751 n
= (char *) xmalloc (strlen (i386_comment_chars
) + 1);
9753 for (s
= i386_comment_chars
; *s
!= '\0'; s
++)
9757 i386_comment_chars
= n
;
9763 arch
= xstrdup (arg
);
9767 as_fatal (_("invalid -march= option: `%s'"), arg
);
9768 next
= strchr (arch
, '+');
9771 for (j
= 0; j
< ARRAY_SIZE (cpu_arch
); j
++)
9773 if (strcmp (arch
, cpu_arch
[j
].name
) == 0)
9776 if (! cpu_arch
[j
].flags
.bitfield
.cpui386
)
9779 cpu_arch_name
= cpu_arch
[j
].name
;
9780 cpu_sub_arch_name
= NULL
;
9781 cpu_arch_flags
= cpu_arch
[j
].flags
;
9782 cpu_arch_isa
= cpu_arch
[j
].type
;
9783 cpu_arch_isa_flags
= cpu_arch
[j
].flags
;
9784 if (!cpu_arch_tune_set
)
9786 cpu_arch_tune
= cpu_arch_isa
;
9787 cpu_arch_tune_flags
= cpu_arch_isa_flags
;
9791 else if (*cpu_arch
[j
].name
== '.'
9792 && strcmp (arch
, cpu_arch
[j
].name
+ 1) == 0)
9794 /* ISA entension. */
9795 i386_cpu_flags flags
;
9797 if (!cpu_arch
[j
].negated
)
9798 flags
= cpu_flags_or (cpu_arch_flags
,
9801 flags
= cpu_flags_and_not (cpu_arch_flags
,
9804 if (!valid_iamcu_cpu_flags (&flags
))
9805 as_fatal (_("`%s' isn't valid for Intel MCU"), arch
);
9806 else if (!cpu_flags_equal (&flags
, &cpu_arch_flags
))
9808 if (cpu_sub_arch_name
)
9810 char *name
= cpu_sub_arch_name
;
9811 cpu_sub_arch_name
= concat (name
,
9813 (const char *) NULL
);
9817 cpu_sub_arch_name
= xstrdup (cpu_arch
[j
].name
);
9818 cpu_arch_flags
= flags
;
9819 cpu_arch_isa_flags
= flags
;
9825 if (j
>= ARRAY_SIZE (cpu_arch
))
9826 as_fatal (_("invalid -march= option: `%s'"), arg
);
9830 while (next
!= NULL
);
9835 as_fatal (_("invalid -mtune= option: `%s'"), arg
);
9836 for (j
= 0; j
< ARRAY_SIZE (cpu_arch
); j
++)
9838 if (strcmp (arg
, cpu_arch
[j
].name
) == 0)
9840 cpu_arch_tune_set
= 1;
9841 cpu_arch_tune
= cpu_arch
[j
].type
;
9842 cpu_arch_tune_flags
= cpu_arch
[j
].flags
;
9846 if (j
>= ARRAY_SIZE (cpu_arch
))
9847 as_fatal (_("invalid -mtune= option: `%s'"), arg
);
9850 case OPTION_MMNEMONIC
:
9851 if (strcasecmp (arg
, "att") == 0)
9853 else if (strcasecmp (arg
, "intel") == 0)
9856 as_fatal (_("invalid -mmnemonic= option: `%s'"), arg
);
9859 case OPTION_MSYNTAX
:
9860 if (strcasecmp (arg
, "att") == 0)
9862 else if (strcasecmp (arg
, "intel") == 0)
9865 as_fatal (_("invalid -msyntax= option: `%s'"), arg
);
9868 case OPTION_MINDEX_REG
:
9869 allow_index_reg
= 1;
9872 case OPTION_MNAKED_REG
:
9873 allow_naked_reg
= 1;
9876 case OPTION_MOLD_GCC
:
9880 case OPTION_MSSE2AVX
:
9884 case OPTION_MSSE_CHECK
:
9885 if (strcasecmp (arg
, "error") == 0)
9886 sse_check
= check_error
;
9887 else if (strcasecmp (arg
, "warning") == 0)
9888 sse_check
= check_warning
;
9889 else if (strcasecmp (arg
, "none") == 0)
9890 sse_check
= check_none
;
9892 as_fatal (_("invalid -msse-check= option: `%s'"), arg
);
9895 case OPTION_MOPERAND_CHECK
:
9896 if (strcasecmp (arg
, "error") == 0)
9897 operand_check
= check_error
;
9898 else if (strcasecmp (arg
, "warning") == 0)
9899 operand_check
= check_warning
;
9900 else if (strcasecmp (arg
, "none") == 0)
9901 operand_check
= check_none
;
9903 as_fatal (_("invalid -moperand-check= option: `%s'"), arg
);
9906 case OPTION_MAVXSCALAR
:
9907 if (strcasecmp (arg
, "128") == 0)
9909 else if (strcasecmp (arg
, "256") == 0)
9912 as_fatal (_("invalid -mavxscalar= option: `%s'"), arg
);
9915 case OPTION_MADD_BND_PREFIX
:
9919 case OPTION_MEVEXLIG
:
9920 if (strcmp (arg
, "128") == 0)
9922 else if (strcmp (arg
, "256") == 0)
9924 else if (strcmp (arg
, "512") == 0)
9927 as_fatal (_("invalid -mevexlig= option: `%s'"), arg
);
9930 case OPTION_MEVEXRCIG
:
9931 if (strcmp (arg
, "rne") == 0)
9933 else if (strcmp (arg
, "rd") == 0)
9935 else if (strcmp (arg
, "ru") == 0)
9937 else if (strcmp (arg
, "rz") == 0)
9940 as_fatal (_("invalid -mevexrcig= option: `%s'"), arg
);
9943 case OPTION_MEVEXWIG
:
9944 if (strcmp (arg
, "0") == 0)
9946 else if (strcmp (arg
, "1") == 0)
9949 as_fatal (_("invalid -mevexwig= option: `%s'"), arg
);
9952 # if defined (TE_PE) || defined (TE_PEP)
9953 case OPTION_MBIG_OBJ
:
9958 case OPTION_OMIT_LOCK_PREFIX
:
9959 if (strcasecmp (arg
, "yes") == 0)
9960 omit_lock_prefix
= 1;
9961 else if (strcasecmp (arg
, "no") == 0)
9962 omit_lock_prefix
= 0;
9964 as_fatal (_("invalid -momit-lock-prefix= option: `%s'"), arg
);
9968 cpu_arch_flags
.bitfield
.cpuamd64
= 1;
9969 cpu_arch_flags
.bitfield
.cpuintel64
= 0;
9970 cpu_arch_isa_flags
.bitfield
.cpuamd64
= 1;
9971 cpu_arch_isa_flags
.bitfield
.cpuintel64
= 0;
9974 case OPTION_MINTEL64
:
9975 cpu_arch_flags
.bitfield
.cpuamd64
= 0;
9976 cpu_arch_flags
.bitfield
.cpuintel64
= 1;
9977 cpu_arch_isa_flags
.bitfield
.cpuamd64
= 0;
9978 cpu_arch_isa_flags
.bitfield
.cpuintel64
= 1;
9987 #define MESSAGE_TEMPLATE \
9991 show_arch (FILE *stream
, int ext
, int check
)
9993 static char message
[] = MESSAGE_TEMPLATE
;
9994 char *start
= message
+ 27;
9996 int size
= sizeof (MESSAGE_TEMPLATE
);
10003 left
= size
- (start
- message
);
10004 for (j
= 0; j
< ARRAY_SIZE (cpu_arch
); j
++)
10006 /* Should it be skipped? */
10007 if (cpu_arch
[j
].skip
)
10010 name
= cpu_arch
[j
].name
;
10011 len
= cpu_arch
[j
].len
;
10014 /* It is an extension. Skip if we aren't asked to show it. */
10025 /* It is an processor. Skip if we show only extension. */
10028 else if (check
&& ! cpu_arch
[j
].flags
.bitfield
.cpui386
)
10030 /* It is an impossible processor - skip. */
10034 /* Reserve 2 spaces for ", " or ",\0" */
10037 /* Check if there is any room. */
10045 p
= mempcpy (p
, name
, len
);
10049 /* Output the current message now and start a new one. */
10052 fprintf (stream
, "%s\n", message
);
10054 left
= size
- (start
- message
) - len
- 2;
10056 gas_assert (left
>= 0);
10058 p
= mempcpy (p
, name
, len
);
10063 fprintf (stream
, "%s\n", message
);
10067 md_show_usage (FILE *stream
)
10069 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10070 fprintf (stream
, _("\
10072 -V print assembler version number\n\
10075 fprintf (stream
, _("\
10076 -n Do not optimize code alignment\n\
10077 -q quieten some warnings\n"));
10078 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10079 fprintf (stream
, _("\
10082 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
10083 || defined (TE_PE) || defined (TE_PEP))
10084 fprintf (stream
, _("\
10085 --32/--64/--x32 generate 32bit/64bit/x32 code\n"));
10087 #ifdef SVR4_COMMENT_CHARS
10088 fprintf (stream
, _("\
10089 --divide do not treat `/' as a comment character\n"));
10091 fprintf (stream
, _("\
10092 --divide ignored\n"));
10094 fprintf (stream
, _("\
10095 -march=CPU[,+EXTENSION...]\n\
10096 generate code for CPU and EXTENSION, CPU is one of:\n"));
10097 show_arch (stream
, 0, 1);
10098 fprintf (stream
, _("\
10099 EXTENSION is combination of:\n"));
10100 show_arch (stream
, 1, 0);
10101 fprintf (stream
, _("\
10102 -mtune=CPU optimize for CPU, CPU is one of:\n"));
10103 show_arch (stream
, 0, 0);
10104 fprintf (stream
, _("\
10105 -msse2avx encode SSE instructions with VEX prefix\n"));
10106 fprintf (stream
, _("\
10107 -msse-check=[none|error|warning]\n\
10108 check SSE instructions\n"));
10109 fprintf (stream
, _("\
10110 -moperand-check=[none|error|warning]\n\
10111 check operand combinations for validity\n"));
10112 fprintf (stream
, _("\
10113 -mavxscalar=[128|256] encode scalar AVX instructions with specific vector\n\
10115 fprintf (stream
, _("\
10116 -mevexlig=[128|256|512] encode scalar EVEX instructions with specific vector\n\
10118 fprintf (stream
, _("\
10119 -mevexwig=[0|1] encode EVEX instructions with specific EVEX.W value\n\
10120 for EVEX.W bit ignored instructions\n"));
10121 fprintf (stream
, _("\
10122 -mevexrcig=[rne|rd|ru|rz]\n\
10123 encode EVEX instructions with specific EVEX.RC value\n\
10124 for SAE-only ignored instructions\n"));
10125 fprintf (stream
, _("\
10126 -mmnemonic=[att|intel] use AT&T/Intel mnemonic\n"));
10127 fprintf (stream
, _("\
10128 -msyntax=[att|intel] use AT&T/Intel syntax\n"));
10129 fprintf (stream
, _("\
10130 -mindex-reg support pseudo index registers\n"));
10131 fprintf (stream
, _("\
10132 -mnaked-reg don't require `%%' prefix for registers\n"));
10133 fprintf (stream
, _("\
10134 -mold-gcc support old (<= 2.8.1) versions of gcc\n"));
10135 fprintf (stream
, _("\
10136 -madd-bnd-prefix add BND prefix for all valid branches\n"));
10137 fprintf (stream
, _("\
10138 -mshared disable branch optimization for shared code\n"));
10139 # if defined (TE_PE) || defined (TE_PEP)
10140 fprintf (stream
, _("\
10141 -mbig-obj generate big object files\n"));
10143 fprintf (stream
, _("\
10144 -momit-lock-prefix=[no|yes]\n\
10145 strip all lock prefixes\n"));
10146 fprintf (stream
, _("\
10147 -mamd64 accept only AMD64 ISA\n"));
10148 fprintf (stream
, _("\
10149 -mintel64 accept only Intel64 ISA\n"));
10152 #if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
10153 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
10154 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
10156 /* Pick the target format to use. */
10159 i386_target_format (void)
10161 if (!strncmp (default_arch
, "x86_64", 6))
10163 update_code_flag (CODE_64BIT
, 1);
10164 if (default_arch
[6] == '\0')
10165 x86_elf_abi
= X86_64_ABI
;
10167 x86_elf_abi
= X86_64_X32_ABI
;
10169 else if (!strcmp (default_arch
, "i386"))
10170 update_code_flag (CODE_32BIT
, 1);
10171 else if (!strcmp (default_arch
, "iamcu"))
10173 update_code_flag (CODE_32BIT
, 1);
10174 if (cpu_arch_isa
== PROCESSOR_UNKNOWN
)
10176 static const i386_cpu_flags iamcu_flags
= CPU_IAMCU_FLAGS
;
10177 cpu_arch_name
= "iamcu";
10178 cpu_sub_arch_name
= NULL
;
10179 cpu_arch_flags
= iamcu_flags
;
10180 cpu_arch_isa
= PROCESSOR_IAMCU
;
10181 cpu_arch_isa_flags
= iamcu_flags
;
10182 if (!cpu_arch_tune_set
)
10184 cpu_arch_tune
= cpu_arch_isa
;
10185 cpu_arch_tune_flags
= cpu_arch_isa_flags
;
10189 as_fatal (_("Intel MCU doesn't support `%s' architecture"),
10193 as_fatal (_("unknown architecture"));
10195 if (cpu_flags_all_zero (&cpu_arch_isa_flags
))
10196 cpu_arch_isa_flags
= cpu_arch
[flag_code
== CODE_64BIT
].flags
;
10197 if (cpu_flags_all_zero (&cpu_arch_tune_flags
))
10198 cpu_arch_tune_flags
= cpu_arch
[flag_code
== CODE_64BIT
].flags
;
10200 switch (OUTPUT_FLAVOR
)
10202 #if defined (OBJ_MAYBE_AOUT) || defined (OBJ_AOUT)
10203 case bfd_target_aout_flavour
:
10204 return AOUT_TARGET_FORMAT
;
10206 #if defined (OBJ_MAYBE_COFF) || defined (OBJ_COFF)
10207 # if defined (TE_PE) || defined (TE_PEP)
10208 case bfd_target_coff_flavour
:
10209 if (flag_code
== CODE_64BIT
)
10210 return use_big_obj
? "pe-bigobj-x86-64" : "pe-x86-64";
10213 # elif defined (TE_GO32)
10214 case bfd_target_coff_flavour
:
10215 return "coff-go32";
10217 case bfd_target_coff_flavour
:
10218 return "coff-i386";
10221 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
10222 case bfd_target_elf_flavour
:
10224 const char *format
;
10226 switch (x86_elf_abi
)
10229 format
= ELF_TARGET_FORMAT
;
10232 use_rela_relocations
= 1;
10234 format
= ELF_TARGET_FORMAT64
;
10236 case X86_64_X32_ABI
:
10237 use_rela_relocations
= 1;
10239 disallow_64bit_reloc
= 1;
10240 format
= ELF_TARGET_FORMAT32
;
10243 if (cpu_arch_isa
== PROCESSOR_L1OM
)
10245 if (x86_elf_abi
!= X86_64_ABI
)
10246 as_fatal (_("Intel L1OM is 64bit only"));
10247 return ELF_TARGET_L1OM_FORMAT
;
10249 else if (cpu_arch_isa
== PROCESSOR_K1OM
)
10251 if (x86_elf_abi
!= X86_64_ABI
)
10252 as_fatal (_("Intel K1OM is 64bit only"));
10253 return ELF_TARGET_K1OM_FORMAT
;
10255 else if (cpu_arch_isa
== PROCESSOR_IAMCU
)
10257 if (x86_elf_abi
!= I386_ABI
)
10258 as_fatal (_("Intel MCU is 32bit only"));
10259 return ELF_TARGET_IAMCU_FORMAT
;
10265 #if defined (OBJ_MACH_O)
10266 case bfd_target_mach_o_flavour
:
10267 if (flag_code
== CODE_64BIT
)
10269 use_rela_relocations
= 1;
10271 return "mach-o-x86-64";
10274 return "mach-o-i386";
10282 #endif /* OBJ_MAYBE_ more than one */
10285 md_undefined_symbol (char *name
)
10287 if (name
[0] == GLOBAL_OFFSET_TABLE_NAME
[0]
10288 && name
[1] == GLOBAL_OFFSET_TABLE_NAME
[1]
10289 && name
[2] == GLOBAL_OFFSET_TABLE_NAME
[2]
10290 && strcmp (name
, GLOBAL_OFFSET_TABLE_NAME
) == 0)
10294 if (symbol_find (name
))
10295 as_bad (_("GOT already in symbol table"));
10296 GOT_symbol
= symbol_new (name
, undefined_section
,
10297 (valueT
) 0, &zero_address_frag
);
10304 /* Round up a section size to the appropriate boundary. */
10307 md_section_align (segT segment ATTRIBUTE_UNUSED
, valueT size
)
10309 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
10310 if (OUTPUT_FLAVOR
== bfd_target_aout_flavour
)
10312 /* For a.out, force the section size to be aligned. If we don't do
10313 this, BFD will align it for us, but it will not write out the
10314 final bytes of the section. This may be a bug in BFD, but it is
10315 easier to fix it here since that is how the other a.out targets
10319 align
= bfd_get_section_alignment (stdoutput
, segment
);
10320 size
= ((size
+ (1 << align
) - 1) & (-((valueT
) 1 << align
)));
10327 /* On the i386, PC-relative offsets are relative to the start of the
10328 next instruction. That is, the address of the offset, plus its
10329 size, since the offset is always the last part of the insn. */
10332 md_pcrel_from (fixS
*fixP
)
10334 return fixP
->fx_size
+ fixP
->fx_where
+ fixP
->fx_frag
->fr_address
;
10340 s_bss (int ignore ATTRIBUTE_UNUSED
)
10344 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10346 obj_elf_section_change_hook ();
10348 temp
= get_absolute_expression ();
10349 subseg_set (bss_section
, (subsegT
) temp
);
10350 demand_empty_rest_of_line ();
10356 i386_validate_fix (fixS
*fixp
)
10358 if (fixp
->fx_subsy
)
10360 if (fixp
->fx_subsy
== GOT_symbol
)
10362 if (fixp
->fx_r_type
== BFD_RELOC_32_PCREL
)
10366 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10367 if (fixp
->fx_tcbit2
)
10368 fixp
->fx_r_type
= (fixp
->fx_tcbit
10369 ? BFD_RELOC_X86_64_REX_GOTPCRELX
10370 : BFD_RELOC_X86_64_GOTPCRELX
);
10373 fixp
->fx_r_type
= BFD_RELOC_X86_64_GOTPCREL
;
10378 fixp
->fx_r_type
= BFD_RELOC_386_GOTOFF
;
10380 fixp
->fx_r_type
= BFD_RELOC_X86_64_GOTOFF64
;
10382 fixp
->fx_subsy
= 0;
10385 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10386 else if (!object_64bit
)
10388 if (fixp
->fx_r_type
== BFD_RELOC_386_GOT32
10389 && fixp
->fx_tcbit2
)
10390 fixp
->fx_r_type
= BFD_RELOC_386_GOT32X
;
10396 tc_gen_reloc (asection
*section ATTRIBUTE_UNUSED
, fixS
*fixp
)
10399 bfd_reloc_code_real_type code
;
10401 switch (fixp
->fx_r_type
)
10403 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10404 case BFD_RELOC_SIZE32
:
10405 case BFD_RELOC_SIZE64
:
10406 if (S_IS_DEFINED (fixp
->fx_addsy
)
10407 && !S_IS_EXTERNAL (fixp
->fx_addsy
))
10409 /* Resolve size relocation against local symbol to size of
10410 the symbol plus addend. */
10411 valueT value
= S_GET_SIZE (fixp
->fx_addsy
) + fixp
->fx_offset
;
10412 if (fixp
->fx_r_type
== BFD_RELOC_SIZE32
10413 && !fits_in_unsigned_long (value
))
10414 as_bad_where (fixp
->fx_file
, fixp
->fx_line
,
10415 _("symbol size computation overflow"));
10416 fixp
->fx_addsy
= NULL
;
10417 fixp
->fx_subsy
= NULL
;
10418 md_apply_fix (fixp
, (valueT
*) &value
, NULL
);
10423 case BFD_RELOC_X86_64_PLT32
:
10424 case BFD_RELOC_X86_64_GOT32
:
10425 case BFD_RELOC_X86_64_GOTPCREL
:
10426 case BFD_RELOC_X86_64_GOTPCRELX
:
10427 case BFD_RELOC_X86_64_REX_GOTPCRELX
:
10428 case BFD_RELOC_386_PLT32
:
10429 case BFD_RELOC_386_GOT32
:
10430 case BFD_RELOC_386_GOT32X
:
10431 case BFD_RELOC_386_GOTOFF
:
10432 case BFD_RELOC_386_GOTPC
:
10433 case BFD_RELOC_386_TLS_GD
:
10434 case BFD_RELOC_386_TLS_LDM
:
10435 case BFD_RELOC_386_TLS_LDO_32
:
10436 case BFD_RELOC_386_TLS_IE_32
:
10437 case BFD_RELOC_386_TLS_IE
:
10438 case BFD_RELOC_386_TLS_GOTIE
:
10439 case BFD_RELOC_386_TLS_LE_32
:
10440 case BFD_RELOC_386_TLS_LE
:
10441 case BFD_RELOC_386_TLS_GOTDESC
:
10442 case BFD_RELOC_386_TLS_DESC_CALL
:
10443 case BFD_RELOC_X86_64_TLSGD
:
10444 case BFD_RELOC_X86_64_TLSLD
:
10445 case BFD_RELOC_X86_64_DTPOFF32
:
10446 case BFD_RELOC_X86_64_DTPOFF64
:
10447 case BFD_RELOC_X86_64_GOTTPOFF
:
10448 case BFD_RELOC_X86_64_TPOFF32
:
10449 case BFD_RELOC_X86_64_TPOFF64
:
10450 case BFD_RELOC_X86_64_GOTOFF64
:
10451 case BFD_RELOC_X86_64_GOTPC32
:
10452 case BFD_RELOC_X86_64_GOT64
:
10453 case BFD_RELOC_X86_64_GOTPCREL64
:
10454 case BFD_RELOC_X86_64_GOTPC64
:
10455 case BFD_RELOC_X86_64_GOTPLT64
:
10456 case BFD_RELOC_X86_64_PLTOFF64
:
10457 case BFD_RELOC_X86_64_GOTPC32_TLSDESC
:
10458 case BFD_RELOC_X86_64_TLSDESC_CALL
:
10459 case BFD_RELOC_RVA
:
10460 case BFD_RELOC_VTABLE_ENTRY
:
10461 case BFD_RELOC_VTABLE_INHERIT
:
10463 case BFD_RELOC_32_SECREL
:
10465 code
= fixp
->fx_r_type
;
10467 case BFD_RELOC_X86_64_32S
:
10468 if (!fixp
->fx_pcrel
)
10470 /* Don't turn BFD_RELOC_X86_64_32S into BFD_RELOC_32. */
10471 code
= fixp
->fx_r_type
;
10475 if (fixp
->fx_pcrel
)
10477 switch (fixp
->fx_size
)
10480 as_bad_where (fixp
->fx_file
, fixp
->fx_line
,
10481 _("can not do %d byte pc-relative relocation"),
10483 code
= BFD_RELOC_32_PCREL
;
10485 case 1: code
= BFD_RELOC_8_PCREL
; break;
10486 case 2: code
= BFD_RELOC_16_PCREL
; break;
10487 case 4: code
= BFD_RELOC_32_PCREL
; break;
10489 case 8: code
= BFD_RELOC_64_PCREL
; break;
10495 switch (fixp
->fx_size
)
10498 as_bad_where (fixp
->fx_file
, fixp
->fx_line
,
10499 _("can not do %d byte relocation"),
10501 code
= BFD_RELOC_32
;
10503 case 1: code
= BFD_RELOC_8
; break;
10504 case 2: code
= BFD_RELOC_16
; break;
10505 case 4: code
= BFD_RELOC_32
; break;
10507 case 8: code
= BFD_RELOC_64
; break;
10514 if ((code
== BFD_RELOC_32
10515 || code
== BFD_RELOC_32_PCREL
10516 || code
== BFD_RELOC_X86_64_32S
)
10518 && fixp
->fx_addsy
== GOT_symbol
)
10521 code
= BFD_RELOC_386_GOTPC
;
10523 code
= BFD_RELOC_X86_64_GOTPC32
;
10525 if ((code
== BFD_RELOC_64
|| code
== BFD_RELOC_64_PCREL
)
10527 && fixp
->fx_addsy
== GOT_symbol
)
10529 code
= BFD_RELOC_X86_64_GOTPC64
;
10532 rel
= (arelent
*) xmalloc (sizeof (arelent
));
10533 rel
->sym_ptr_ptr
= (asymbol
**) xmalloc (sizeof (asymbol
*));
10534 *rel
->sym_ptr_ptr
= symbol_get_bfdsym (fixp
->fx_addsy
);
10536 rel
->address
= fixp
->fx_frag
->fr_address
+ fixp
->fx_where
;
10538 if (!use_rela_relocations
)
10540 /* HACK: Since i386 ELF uses Rel instead of Rela, encode the
10541 vtable entry to be used in the relocation's section offset. */
10542 if (fixp
->fx_r_type
== BFD_RELOC_VTABLE_ENTRY
)
10543 rel
->address
= fixp
->fx_offset
;
10544 #if defined (OBJ_COFF) && defined (TE_PE)
10545 else if (fixp
->fx_addsy
&& S_IS_WEAK (fixp
->fx_addsy
))
10546 rel
->addend
= fixp
->fx_addnumber
- (S_GET_VALUE (fixp
->fx_addsy
) * 2);
10551 /* Use the rela in 64bit mode. */
10554 if (disallow_64bit_reloc
)
10557 case BFD_RELOC_X86_64_DTPOFF64
:
10558 case BFD_RELOC_X86_64_TPOFF64
:
10559 case BFD_RELOC_64_PCREL
:
10560 case BFD_RELOC_X86_64_GOTOFF64
:
10561 case BFD_RELOC_X86_64_GOT64
:
10562 case BFD_RELOC_X86_64_GOTPCREL64
:
10563 case BFD_RELOC_X86_64_GOTPC64
:
10564 case BFD_RELOC_X86_64_GOTPLT64
:
10565 case BFD_RELOC_X86_64_PLTOFF64
:
10566 as_bad_where (fixp
->fx_file
, fixp
->fx_line
,
10567 _("cannot represent relocation type %s in x32 mode"),
10568 bfd_get_reloc_code_name (code
));
10574 if (!fixp
->fx_pcrel
)
10575 rel
->addend
= fixp
->fx_offset
;
10579 case BFD_RELOC_X86_64_PLT32
:
10580 case BFD_RELOC_X86_64_GOT32
:
10581 case BFD_RELOC_X86_64_GOTPCREL
:
10582 case BFD_RELOC_X86_64_GOTPCRELX
:
10583 case BFD_RELOC_X86_64_REX_GOTPCRELX
:
10584 case BFD_RELOC_X86_64_TLSGD
:
10585 case BFD_RELOC_X86_64_TLSLD
:
10586 case BFD_RELOC_X86_64_GOTTPOFF
:
10587 case BFD_RELOC_X86_64_GOTPC32_TLSDESC
:
10588 case BFD_RELOC_X86_64_TLSDESC_CALL
:
10589 rel
->addend
= fixp
->fx_offset
- fixp
->fx_size
;
10592 rel
->addend
= (section
->vma
10594 + fixp
->fx_addnumber
10595 + md_pcrel_from (fixp
));
10600 rel
->howto
= bfd_reloc_type_lookup (stdoutput
, code
);
10601 if (rel
->howto
== NULL
)
10603 as_bad_where (fixp
->fx_file
, fixp
->fx_line
,
10604 _("cannot represent relocation type %s"),
10605 bfd_get_reloc_code_name (code
));
10606 /* Set howto to a garbage value so that we can keep going. */
10607 rel
->howto
= bfd_reloc_type_lookup (stdoutput
, BFD_RELOC_32
);
10608 gas_assert (rel
->howto
!= NULL
);
10614 #include "tc-i386-intel.c"
10617 tc_x86_parse_to_dw2regnum (expressionS
*exp
)
10619 int saved_naked_reg
;
10620 char saved_register_dot
;
10622 saved_naked_reg
= allow_naked_reg
;
10623 allow_naked_reg
= 1;
10624 saved_register_dot
= register_chars
['.'];
10625 register_chars
['.'] = '.';
10626 allow_pseudo_reg
= 1;
10627 expression_and_evaluate (exp
);
10628 allow_pseudo_reg
= 0;
10629 register_chars
['.'] = saved_register_dot
;
10630 allow_naked_reg
= saved_naked_reg
;
10632 if (exp
->X_op
== O_register
&& exp
->X_add_number
>= 0)
10634 if ((addressT
) exp
->X_add_number
< i386_regtab_size
)
10636 exp
->X_op
= O_constant
;
10637 exp
->X_add_number
= i386_regtab
[exp
->X_add_number
]
10638 .dw2_regnum
[flag_code
>> 1];
10641 exp
->X_op
= O_illegal
;
10646 tc_x86_frame_initial_instructions (void)
10648 static unsigned int sp_regno
[2];
10650 if (!sp_regno
[flag_code
>> 1])
10652 char *saved_input
= input_line_pointer
;
10653 char sp
[][4] = {"esp", "rsp"};
10656 input_line_pointer
= sp
[flag_code
>> 1];
10657 tc_x86_parse_to_dw2regnum (&exp
);
10658 gas_assert (exp
.X_op
== O_constant
);
10659 sp_regno
[flag_code
>> 1] = exp
.X_add_number
;
10660 input_line_pointer
= saved_input
;
10663 cfi_add_CFA_def_cfa (sp_regno
[flag_code
>> 1], -x86_cie_data_alignment
);
10664 cfi_add_CFA_offset (x86_dwarf2_return_column
, x86_cie_data_alignment
);
10668 x86_dwarf2_addr_size (void)
10670 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
10671 if (x86_elf_abi
== X86_64_X32_ABI
)
10674 return bfd_arch_bits_per_address (stdoutput
) / 8;
10678 i386_elf_section_type (const char *str
, size_t len
)
10680 if (flag_code
== CODE_64BIT
10681 && len
== sizeof ("unwind") - 1
10682 && strncmp (str
, "unwind", 6) == 0)
10683 return SHT_X86_64_UNWIND
;
10690 i386_solaris_fix_up_eh_frame (segT sec
)
10692 if (flag_code
== CODE_64BIT
)
10693 elf_section_type (sec
) = SHT_X86_64_UNWIND
;
10699 tc_pe_dwarf2_emit_offset (symbolS
*symbol
, unsigned int size
)
10703 exp
.X_op
= O_secrel
;
10704 exp
.X_add_symbol
= symbol
;
10705 exp
.X_add_number
= 0;
10706 emit_expr (&exp
, size
);
10710 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10711 /* For ELF on x86-64, add support for SHF_X86_64_LARGE. */
10714 x86_64_section_letter (int letter
, char **ptr_msg
)
10716 if (flag_code
== CODE_64BIT
)
10719 return SHF_X86_64_LARGE
;
10721 *ptr_msg
= _("bad .section directive: want a,l,w,x,M,S,G,T in string");
10724 *ptr_msg
= _("bad .section directive: want a,w,x,M,S,G,T in string");
10729 x86_64_section_word (char *str
, size_t len
)
10731 if (len
== 5 && flag_code
== CODE_64BIT
&& CONST_STRNEQ (str
, "large"))
10732 return SHF_X86_64_LARGE
;
10738 handle_large_common (int small ATTRIBUTE_UNUSED
)
10740 if (flag_code
!= CODE_64BIT
)
10742 s_comm_internal (0, elf_common_parse
);
10743 as_warn (_(".largecomm supported only in 64bit mode, producing .comm"));
10747 static segT lbss_section
;
10748 asection
*saved_com_section_ptr
= elf_com_section_ptr
;
10749 asection
*saved_bss_section
= bss_section
;
10751 if (lbss_section
== NULL
)
10753 flagword applicable
;
10754 segT seg
= now_seg
;
10755 subsegT subseg
= now_subseg
;
10757 /* The .lbss section is for local .largecomm symbols. */
10758 lbss_section
= subseg_new (".lbss", 0);
10759 applicable
= bfd_applicable_section_flags (stdoutput
);
10760 bfd_set_section_flags (stdoutput
, lbss_section
,
10761 applicable
& SEC_ALLOC
);
10762 seg_info (lbss_section
)->bss
= 1;
10764 subseg_set (seg
, subseg
);
10767 elf_com_section_ptr
= &_bfd_elf_large_com_section
;
10768 bss_section
= lbss_section
;
10770 s_comm_internal (0, elf_common_parse
);
10772 elf_com_section_ptr
= saved_com_section_ptr
;
10773 bss_section
= saved_bss_section
;
10776 #endif /* OBJ_ELF || OBJ_MAYBE_ELF */