* config/tc-h8300.c (md_assemble): Make sure characters after
[deliverable/binutils-gdb.git] / gas / config / tc-i386.c
1 /* i386.c -- Assemble code for the Intel 80386
2 Copyright 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001, 2002, 2003
4 Free Software Foundation, Inc.
5
6 This file is part of GAS, the GNU Assembler.
7
8 GAS is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2, or (at your option)
11 any later version.
12
13 GAS is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GAS; see the file COPYING. If not, write to the Free
20 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
21 02111-1307, USA. */
22
23 /* Intel 80386 machine specific gas.
24 Written by Eliot Dresselhaus (eliot@mgm.mit.edu).
25 x86_64 support by Jan Hubicka (jh@suse.cz)
26 Bugs & suggestions are completely welcome. This is free software.
27 Please help us make it better. */
28
29 #include "as.h"
30 #include "safe-ctype.h"
31 #include "subsegs.h"
32 #include "dwarf2dbg.h"
33 #include "dw2gencfi.h"
34 #include "opcode/i386.h"
35
36 #ifndef REGISTER_WARNINGS
37 #define REGISTER_WARNINGS 1
38 #endif
39
40 #ifndef INFER_ADDR_PREFIX
41 #define INFER_ADDR_PREFIX 1
42 #endif
43
44 #ifndef SCALE1_WHEN_NO_INDEX
45 /* Specifying a scale factor besides 1 when there is no index is
46 futile. eg. `mov (%ebx,2),%al' does exactly the same as
47 `mov (%ebx),%al'. To slavishly follow what the programmer
48 specified, set SCALE1_WHEN_NO_INDEX to 0. */
49 #define SCALE1_WHEN_NO_INDEX 1
50 #endif
51
52 #ifdef BFD_ASSEMBLER
53 #define RELOC_ENUM enum bfd_reloc_code_real
54 #else
55 #define RELOC_ENUM int
56 #endif
57
58 #ifndef DEFAULT_ARCH
59 #define DEFAULT_ARCH "i386"
60 #endif
61
62 #ifndef INLINE
63 #if __GNUC__ >= 2
64 #define INLINE __inline__
65 #else
66 #define INLINE
67 #endif
68 #endif
69
70 static INLINE unsigned int mode_from_disp_size PARAMS ((unsigned int));
71 static INLINE int fits_in_signed_byte PARAMS ((offsetT));
72 static INLINE int fits_in_unsigned_byte PARAMS ((offsetT));
73 static INLINE int fits_in_unsigned_word PARAMS ((offsetT));
74 static INLINE int fits_in_signed_word PARAMS ((offsetT));
75 static INLINE int fits_in_unsigned_long PARAMS ((offsetT));
76 static INLINE int fits_in_signed_long PARAMS ((offsetT));
77 static int smallest_imm_type PARAMS ((offsetT));
78 static offsetT offset_in_range PARAMS ((offsetT, int));
79 static int add_prefix PARAMS ((unsigned int));
80 static void set_code_flag PARAMS ((int));
81 static void set_16bit_gcc_code_flag PARAMS ((int));
82 static void set_intel_syntax PARAMS ((int));
83 static void set_cpu_arch PARAMS ((int));
84 static char *output_invalid PARAMS ((int c));
85 static int i386_operand PARAMS ((char *operand_string));
86 static int i386_intel_operand PARAMS ((char *operand_string, int got_a_float));
87 static const reg_entry *parse_register PARAMS ((char *reg_string,
88 char **end_op));
89 static char *parse_insn PARAMS ((char *, char *));
90 static char *parse_operands PARAMS ((char *, const char *));
91 static void swap_operands PARAMS ((void));
92 static void optimize_imm PARAMS ((void));
93 static void optimize_disp PARAMS ((void));
94 static int match_template PARAMS ((void));
95 static int check_string PARAMS ((void));
96 static int process_suffix PARAMS ((void));
97 static int check_byte_reg PARAMS ((void));
98 static int check_long_reg PARAMS ((void));
99 static int check_qword_reg PARAMS ((void));
100 static int check_word_reg PARAMS ((void));
101 static int finalize_imm PARAMS ((void));
102 static int process_operands PARAMS ((void));
103 static const seg_entry *build_modrm_byte PARAMS ((void));
104 static void output_insn PARAMS ((void));
105 static void output_branch PARAMS ((void));
106 static void output_jump PARAMS ((void));
107 static void output_interseg_jump PARAMS ((void));
108 static void output_imm PARAMS ((fragS *insn_start_frag,
109 offsetT insn_start_off));
110 static void output_disp PARAMS ((fragS *insn_start_frag,
111 offsetT insn_start_off));
112 #ifndef I386COFF
113 static void s_bss PARAMS ((int));
114 #endif
115
116 static const char *default_arch = DEFAULT_ARCH;
117
118 /* 'md_assemble ()' gathers together information and puts it into a
119 i386_insn. */
120
121 union i386_op
122 {
123 expressionS *disps;
124 expressionS *imms;
125 const reg_entry *regs;
126 };
127
128 struct _i386_insn
129 {
130 /* TM holds the template for the insn were currently assembling. */
131 template tm;
132
133 /* SUFFIX holds the instruction mnemonic suffix if given.
134 (e.g. 'l' for 'movl') */
135 char suffix;
136
137 /* OPERANDS gives the number of given operands. */
138 unsigned int operands;
139
140 /* REG_OPERANDS, DISP_OPERANDS, MEM_OPERANDS, IMM_OPERANDS give the number
141 of given register, displacement, memory operands and immediate
142 operands. */
143 unsigned int reg_operands, disp_operands, mem_operands, imm_operands;
144
145 /* TYPES [i] is the type (see above #defines) which tells us how to
146 use OP[i] for the corresponding operand. */
147 unsigned int types[MAX_OPERANDS];
148
149 /* Displacement expression, immediate expression, or register for each
150 operand. */
151 union i386_op op[MAX_OPERANDS];
152
153 /* Flags for operands. */
154 unsigned int flags[MAX_OPERANDS];
155 #define Operand_PCrel 1
156
157 /* Relocation type for operand */
158 RELOC_ENUM reloc[MAX_OPERANDS];
159
160 /* BASE_REG, INDEX_REG, and LOG2_SCALE_FACTOR are used to encode
161 the base index byte below. */
162 const reg_entry *base_reg;
163 const reg_entry *index_reg;
164 unsigned int log2_scale_factor;
165
166 /* SEG gives the seg_entries of this insn. They are zero unless
167 explicit segment overrides are given. */
168 const seg_entry *seg[2];
169
170 /* PREFIX holds all the given prefix opcodes (usually null).
171 PREFIXES is the number of prefix opcodes. */
172 unsigned int prefixes;
173 unsigned char prefix[MAX_PREFIXES];
174
175 /* RM and SIB are the modrm byte and the sib byte where the
176 addressing modes of this insn are encoded. */
177
178 modrm_byte rm;
179 rex_byte rex;
180 sib_byte sib;
181 };
182
183 typedef struct _i386_insn i386_insn;
184
185 /* List of chars besides those in app.c:symbol_chars that can start an
186 operand. Used to prevent the scrubber eating vital white-space. */
187 #ifdef LEX_AT
188 const char extra_symbol_chars[] = "*%-(@[";
189 #else
190 const char extra_symbol_chars[] = "*%-([";
191 #endif
192
193 #if (defined (TE_I386AIX) \
194 || ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) \
195 && !defined (TE_LINUX) \
196 && !defined (TE_FreeBSD) \
197 && !defined (TE_NetBSD)))
198 /* This array holds the chars that always start a comment. If the
199 pre-processor is disabled, these aren't very useful. */
200 const char comment_chars[] = "#/";
201 #define PREFIX_SEPARATOR '\\'
202
203 /* This array holds the chars that only start a comment at the beginning of
204 a line. If the line seems to have the form '# 123 filename'
205 .line and .file directives will appear in the pre-processed output.
206 Note that input_file.c hand checks for '#' at the beginning of the
207 first line of the input file. This is because the compiler outputs
208 #NO_APP at the beginning of its output.
209 Also note that comments started like this one will always work if
210 '/' isn't otherwise defined. */
211 const char line_comment_chars[] = "#";
212
213 #else
214 /* Putting '/' here makes it impossible to use the divide operator.
215 However, we need it for compatibility with SVR4 systems. */
216 const char comment_chars[] = "#";
217 #define PREFIX_SEPARATOR '/'
218
219 const char line_comment_chars[] = "/#";
220 #endif
221
222 const char line_separator_chars[] = ";";
223
224 /* Chars that can be used to separate mant from exp in floating point
225 nums. */
226 const char EXP_CHARS[] = "eE";
227
228 /* Chars that mean this number is a floating point constant
229 As in 0f12.456
230 or 0d1.2345e12. */
231 const char FLT_CHARS[] = "fFdDxX";
232
233 /* Tables for lexical analysis. */
234 static char mnemonic_chars[256];
235 static char register_chars[256];
236 static char operand_chars[256];
237 static char identifier_chars[256];
238 static char digit_chars[256];
239
240 /* Lexical macros. */
241 #define is_mnemonic_char(x) (mnemonic_chars[(unsigned char) x])
242 #define is_operand_char(x) (operand_chars[(unsigned char) x])
243 #define is_register_char(x) (register_chars[(unsigned char) x])
244 #define is_space_char(x) ((x) == ' ')
245 #define is_identifier_char(x) (identifier_chars[(unsigned char) x])
246 #define is_digit_char(x) (digit_chars[(unsigned char) x])
247
248 /* All non-digit non-letter charcters that may occur in an operand. */
249 static char operand_special_chars[] = "%$-+(,)*._~/<>|&^!:[@]";
250
251 /* md_assemble() always leaves the strings it's passed unaltered. To
252 effect this we maintain a stack of saved characters that we've smashed
253 with '\0's (indicating end of strings for various sub-fields of the
254 assembler instruction). */
255 static char save_stack[32];
256 static char *save_stack_p;
257 #define END_STRING_AND_SAVE(s) \
258 do { *save_stack_p++ = *(s); *(s) = '\0'; } while (0)
259 #define RESTORE_END_STRING(s) \
260 do { *(s) = *--save_stack_p; } while (0)
261
262 /* The instruction we're assembling. */
263 static i386_insn i;
264
265 /* Possible templates for current insn. */
266 static const templates *current_templates;
267
268 /* Per instruction expressionS buffers: 2 displacements & 2 immediate max. */
269 static expressionS disp_expressions[2], im_expressions[2];
270
271 /* Current operand we are working on. */
272 static int this_operand;
273
274 /* We support four different modes. FLAG_CODE variable is used to distinguish
275 these. */
276
277 enum flag_code {
278 CODE_32BIT,
279 CODE_16BIT,
280 CODE_64BIT };
281 #define NUM_FLAG_CODE ((int) CODE_64BIT + 1)
282
283 static enum flag_code flag_code;
284 static int use_rela_relocations = 0;
285
286 /* The names used to print error messages. */
287 static const char *flag_code_names[] =
288 {
289 "32",
290 "16",
291 "64"
292 };
293
294 /* 1 for intel syntax,
295 0 if att syntax. */
296 static int intel_syntax = 0;
297
298 /* 1 if register prefix % not required. */
299 static int allow_naked_reg = 0;
300
301 /* Used in 16 bit gcc mode to add an l suffix to call, ret, enter,
302 leave, push, and pop instructions so that gcc has the same stack
303 frame as in 32 bit mode. */
304 static char stackop_size = '\0';
305
306 /* Non-zero to optimize code alignment. */
307 int optimize_align_code = 1;
308
309 /* Non-zero to quieten some warnings. */
310 static int quiet_warnings = 0;
311
312 /* CPU name. */
313 static const char *cpu_arch_name = NULL;
314
315 /* CPU feature flags. */
316 static unsigned int cpu_arch_flags = CpuUnknownFlags | CpuNo64;
317
318 /* If set, conditional jumps are not automatically promoted to handle
319 larger than a byte offset. */
320 static unsigned int no_cond_jump_promotion = 0;
321
322 /* Pre-defined "_GLOBAL_OFFSET_TABLE_". */
323 symbolS *GOT_symbol;
324
325 /* The dwarf2 return column, adjusted for 32 or 64 bit. */
326 unsigned int x86_dwarf2_return_column;
327
328 /* The dwarf2 data alignment, adjusted for 32 or 64 bit. */
329 int x86_cie_data_alignment;
330
331 /* Interface to relax_segment.
332 There are 3 major relax states for 386 jump insns because the
333 different types of jumps add different sizes to frags when we're
334 figuring out what sort of jump to choose to reach a given label. */
335
336 /* Types. */
337 #define UNCOND_JUMP 0
338 #define COND_JUMP 1
339 #define COND_JUMP86 2
340
341 /* Sizes. */
342 #define CODE16 1
343 #define SMALL 0
344 #define SMALL16 (SMALL | CODE16)
345 #define BIG 2
346 #define BIG16 (BIG | CODE16)
347
348 #ifndef INLINE
349 #ifdef __GNUC__
350 #define INLINE __inline__
351 #else
352 #define INLINE
353 #endif
354 #endif
355
356 #define ENCODE_RELAX_STATE(type, size) \
357 ((relax_substateT) (((type) << 2) | (size)))
358 #define TYPE_FROM_RELAX_STATE(s) \
359 ((s) >> 2)
360 #define DISP_SIZE_FROM_RELAX_STATE(s) \
361 ((((s) & 3) == BIG ? 4 : (((s) & 3) == BIG16 ? 2 : 1)))
362
363 /* This table is used by relax_frag to promote short jumps to long
364 ones where necessary. SMALL (short) jumps may be promoted to BIG
365 (32 bit long) ones, and SMALL16 jumps to BIG16 (16 bit long). We
366 don't allow a short jump in a 32 bit code segment to be promoted to
367 a 16 bit offset jump because it's slower (requires data size
368 prefix), and doesn't work, unless the destination is in the bottom
369 64k of the code segment (The top 16 bits of eip are zeroed). */
370
371 const relax_typeS md_relax_table[] =
372 {
373 /* The fields are:
374 1) most positive reach of this state,
375 2) most negative reach of this state,
376 3) how many bytes this mode will have in the variable part of the frag
377 4) which index into the table to try if we can't fit into this one. */
378
379 /* UNCOND_JUMP states. */
380 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG)},
381 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16)},
382 /* dword jmp adds 4 bytes to frag:
383 0 extra opcode bytes, 4 displacement bytes. */
384 {0, 0, 4, 0},
385 /* word jmp adds 2 byte2 to frag:
386 0 extra opcode bytes, 2 displacement bytes. */
387 {0, 0, 2, 0},
388
389 /* COND_JUMP states. */
390 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG)},
391 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG16)},
392 /* dword conditionals adds 5 bytes to frag:
393 1 extra opcode byte, 4 displacement bytes. */
394 {0, 0, 5, 0},
395 /* word conditionals add 3 bytes to frag:
396 1 extra opcode byte, 2 displacement bytes. */
397 {0, 0, 3, 0},
398
399 /* COND_JUMP86 states. */
400 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG)},
401 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG16)},
402 /* dword conditionals adds 5 bytes to frag:
403 1 extra opcode byte, 4 displacement bytes. */
404 {0, 0, 5, 0},
405 /* word conditionals add 4 bytes to frag:
406 1 displacement byte and a 3 byte long branch insn. */
407 {0, 0, 4, 0}
408 };
409
410 static const arch_entry cpu_arch[] = {
411 {"i8086", Cpu086 },
412 {"i186", Cpu086|Cpu186 },
413 {"i286", Cpu086|Cpu186|Cpu286 },
414 {"i386", Cpu086|Cpu186|Cpu286|Cpu386 },
415 {"i486", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486 },
416 {"i586", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|CpuMMX },
417 {"i686", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuMMX|CpuSSE },
418 {"pentium", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|CpuMMX },
419 {"pentiumpro",Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuMMX|CpuSSE },
420 {"pentium4", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuP4|CpuMMX|CpuSSE|CpuSSE2 },
421 {"k6", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|CpuK6|CpuMMX|Cpu3dnow },
422 {"athlon", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuK6|CpuAthlon|CpuMMX|Cpu3dnow },
423 {"sledgehammer",Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuK6|CpuAthlon|CpuSledgehammer|CpuMMX|Cpu3dnow|CpuSSE|CpuSSE2 },
424 {NULL, 0 }
425 };
426
427 const pseudo_typeS md_pseudo_table[] =
428 {
429 #if !defined(OBJ_AOUT) && !defined(USE_ALIGN_PTWO)
430 {"align", s_align_bytes, 0},
431 #else
432 {"align", s_align_ptwo, 0},
433 #endif
434 {"arch", set_cpu_arch, 0},
435 #ifndef I386COFF
436 {"bss", s_bss, 0},
437 #endif
438 {"ffloat", float_cons, 'f'},
439 {"dfloat", float_cons, 'd'},
440 {"tfloat", float_cons, 'x'},
441 {"value", cons, 2},
442 {"noopt", s_ignore, 0},
443 {"optim", s_ignore, 0},
444 {"code16gcc", set_16bit_gcc_code_flag, CODE_16BIT},
445 {"code16", set_code_flag, CODE_16BIT},
446 {"code32", set_code_flag, CODE_32BIT},
447 {"code64", set_code_flag, CODE_64BIT},
448 {"intel_syntax", set_intel_syntax, 1},
449 {"att_syntax", set_intel_syntax, 0},
450 {"file", (void (*) PARAMS ((int))) dwarf2_directive_file, 0},
451 {"loc", dwarf2_directive_loc, 0},
452 {0, 0, 0}
453 };
454
455 /* For interface with expression (). */
456 extern char *input_line_pointer;
457
458 /* Hash table for instruction mnemonic lookup. */
459 static struct hash_control *op_hash;
460
461 /* Hash table for register lookup. */
462 static struct hash_control *reg_hash;
463 \f
464 void
465 i386_align_code (fragP, count)
466 fragS *fragP;
467 int count;
468 {
469 /* Various efficient no-op patterns for aligning code labels.
470 Note: Don't try to assemble the instructions in the comments.
471 0L and 0w are not legal. */
472 static const char f32_1[] =
473 {0x90}; /* nop */
474 static const char f32_2[] =
475 {0x89,0xf6}; /* movl %esi,%esi */
476 static const char f32_3[] =
477 {0x8d,0x76,0x00}; /* leal 0(%esi),%esi */
478 static const char f32_4[] =
479 {0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
480 static const char f32_5[] =
481 {0x90, /* nop */
482 0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
483 static const char f32_6[] =
484 {0x8d,0xb6,0x00,0x00,0x00,0x00}; /* leal 0L(%esi),%esi */
485 static const char f32_7[] =
486 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
487 static const char f32_8[] =
488 {0x90, /* nop */
489 0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
490 static const char f32_9[] =
491 {0x89,0xf6, /* movl %esi,%esi */
492 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
493 static const char f32_10[] =
494 {0x8d,0x76,0x00, /* leal 0(%esi),%esi */
495 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
496 static const char f32_11[] =
497 {0x8d,0x74,0x26,0x00, /* leal 0(%esi,1),%esi */
498 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
499 static const char f32_12[] =
500 {0x8d,0xb6,0x00,0x00,0x00,0x00, /* leal 0L(%esi),%esi */
501 0x8d,0xbf,0x00,0x00,0x00,0x00}; /* leal 0L(%edi),%edi */
502 static const char f32_13[] =
503 {0x8d,0xb6,0x00,0x00,0x00,0x00, /* leal 0L(%esi),%esi */
504 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
505 static const char f32_14[] =
506 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00, /* leal 0L(%esi,1),%esi */
507 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
508 static const char f32_15[] =
509 {0xeb,0x0d,0x90,0x90,0x90,0x90,0x90, /* jmp .+15; lotsa nops */
510 0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90};
511 static const char f16_3[] =
512 {0x8d,0x74,0x00}; /* lea 0(%esi),%esi */
513 static const char f16_4[] =
514 {0x8d,0xb4,0x00,0x00}; /* lea 0w(%si),%si */
515 static const char f16_5[] =
516 {0x90, /* nop */
517 0x8d,0xb4,0x00,0x00}; /* lea 0w(%si),%si */
518 static const char f16_6[] =
519 {0x89,0xf6, /* mov %si,%si */
520 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
521 static const char f16_7[] =
522 {0x8d,0x74,0x00, /* lea 0(%si),%si */
523 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
524 static const char f16_8[] =
525 {0x8d,0xb4,0x00,0x00, /* lea 0w(%si),%si */
526 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
527 static const char *const f32_patt[] = {
528 f32_1, f32_2, f32_3, f32_4, f32_5, f32_6, f32_7, f32_8,
529 f32_9, f32_10, f32_11, f32_12, f32_13, f32_14, f32_15
530 };
531 static const char *const f16_patt[] = {
532 f32_1, f32_2, f16_3, f16_4, f16_5, f16_6, f16_7, f16_8,
533 f32_15, f32_15, f32_15, f32_15, f32_15, f32_15, f32_15
534 };
535
536 if (count <= 0 || count > 15)
537 return;
538
539 /* The recommended way to pad 64bit code is to use NOPs preceded by
540 maximally four 0x66 prefixes. Balance the size of nops. */
541 if (flag_code == CODE_64BIT)
542 {
543 int i;
544 int nnops = (count + 3) / 4;
545 int len = count / nnops;
546 int remains = count - nnops * len;
547 int pos = 0;
548
549 for (i = 0; i < remains; i++)
550 {
551 memset (fragP->fr_literal + fragP->fr_fix + pos, 0x66, len);
552 fragP->fr_literal[fragP->fr_fix + pos + len] = 0x90;
553 pos += len + 1;
554 }
555 for (; i < nnops; i++)
556 {
557 memset (fragP->fr_literal + fragP->fr_fix + pos, 0x66, len - 1);
558 fragP->fr_literal[fragP->fr_fix + pos + len - 1] = 0x90;
559 pos += len;
560 }
561 }
562 else
563 if (flag_code == CODE_16BIT)
564 {
565 memcpy (fragP->fr_literal + fragP->fr_fix,
566 f16_patt[count - 1], count);
567 if (count > 8)
568 /* Adjust jump offset. */
569 fragP->fr_literal[fragP->fr_fix + 1] = count - 2;
570 }
571 else
572 memcpy (fragP->fr_literal + fragP->fr_fix,
573 f32_patt[count - 1], count);
574 fragP->fr_var = count;
575 }
576
577 static INLINE unsigned int
578 mode_from_disp_size (t)
579 unsigned int t;
580 {
581 return (t & Disp8) ? 1 : (t & (Disp16 | Disp32 | Disp32S)) ? 2 : 0;
582 }
583
584 static INLINE int
585 fits_in_signed_byte (num)
586 offsetT num;
587 {
588 return (num >= -128) && (num <= 127);
589 }
590
591 static INLINE int
592 fits_in_unsigned_byte (num)
593 offsetT num;
594 {
595 return (num & 0xff) == num;
596 }
597
598 static INLINE int
599 fits_in_unsigned_word (num)
600 offsetT num;
601 {
602 return (num & 0xffff) == num;
603 }
604
605 static INLINE int
606 fits_in_signed_word (num)
607 offsetT num;
608 {
609 return (-32768 <= num) && (num <= 32767);
610 }
611 static INLINE int
612 fits_in_signed_long (num)
613 offsetT num ATTRIBUTE_UNUSED;
614 {
615 #ifndef BFD64
616 return 1;
617 #else
618 return (!(((offsetT) -1 << 31) & num)
619 || (((offsetT) -1 << 31) & num) == ((offsetT) -1 << 31));
620 #endif
621 } /* fits_in_signed_long() */
622 static INLINE int
623 fits_in_unsigned_long (num)
624 offsetT num ATTRIBUTE_UNUSED;
625 {
626 #ifndef BFD64
627 return 1;
628 #else
629 return (num & (((offsetT) 2 << 31) - 1)) == num;
630 #endif
631 } /* fits_in_unsigned_long() */
632
633 static int
634 smallest_imm_type (num)
635 offsetT num;
636 {
637 if (cpu_arch_flags != (Cpu086 | Cpu186 | Cpu286 | Cpu386 | Cpu486 | CpuNo64))
638 {
639 /* This code is disabled on the 486 because all the Imm1 forms
640 in the opcode table are slower on the i486. They're the
641 versions with the implicitly specified single-position
642 displacement, which has another syntax if you really want to
643 use that form. */
644 if (num == 1)
645 return Imm1 | Imm8 | Imm8S | Imm16 | Imm32 | Imm32S | Imm64;
646 }
647 return (fits_in_signed_byte (num)
648 ? (Imm8S | Imm8 | Imm16 | Imm32 | Imm32S | Imm64)
649 : fits_in_unsigned_byte (num)
650 ? (Imm8 | Imm16 | Imm32 | Imm32S | Imm64)
651 : (fits_in_signed_word (num) || fits_in_unsigned_word (num))
652 ? (Imm16 | Imm32 | Imm32S | Imm64)
653 : fits_in_signed_long (num)
654 ? (Imm32 | Imm32S | Imm64)
655 : fits_in_unsigned_long (num)
656 ? (Imm32 | Imm64)
657 : Imm64);
658 }
659
660 static offsetT
661 offset_in_range (val, size)
662 offsetT val;
663 int size;
664 {
665 addressT mask;
666
667 switch (size)
668 {
669 case 1: mask = ((addressT) 1 << 8) - 1; break;
670 case 2: mask = ((addressT) 1 << 16) - 1; break;
671 case 4: mask = ((addressT) 2 << 31) - 1; break;
672 #ifdef BFD64
673 case 8: mask = ((addressT) 2 << 63) - 1; break;
674 #endif
675 default: abort ();
676 }
677
678 /* If BFD64, sign extend val. */
679 if (!use_rela_relocations)
680 if ((val & ~(((addressT) 2 << 31) - 1)) == 0)
681 val = (val ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
682
683 if ((val & ~mask) != 0 && (val & ~mask) != ~mask)
684 {
685 char buf1[40], buf2[40];
686
687 sprint_value (buf1, val);
688 sprint_value (buf2, val & mask);
689 as_warn (_("%s shortened to %s"), buf1, buf2);
690 }
691 return val & mask;
692 }
693
694 /* Returns 0 if attempting to add a prefix where one from the same
695 class already exists, 1 if non rep/repne added, 2 if rep/repne
696 added. */
697 static int
698 add_prefix (prefix)
699 unsigned int prefix;
700 {
701 int ret = 1;
702 int q;
703
704 if (prefix >= REX_OPCODE && prefix < REX_OPCODE + 16
705 && flag_code == CODE_64BIT)
706 q = REX_PREFIX;
707 else
708 switch (prefix)
709 {
710 default:
711 abort ();
712
713 case CS_PREFIX_OPCODE:
714 case DS_PREFIX_OPCODE:
715 case ES_PREFIX_OPCODE:
716 case FS_PREFIX_OPCODE:
717 case GS_PREFIX_OPCODE:
718 case SS_PREFIX_OPCODE:
719 q = SEG_PREFIX;
720 break;
721
722 case REPNE_PREFIX_OPCODE:
723 case REPE_PREFIX_OPCODE:
724 ret = 2;
725 /* fall thru */
726 case LOCK_PREFIX_OPCODE:
727 q = LOCKREP_PREFIX;
728 break;
729
730 case FWAIT_OPCODE:
731 q = WAIT_PREFIX;
732 break;
733
734 case ADDR_PREFIX_OPCODE:
735 q = ADDR_PREFIX;
736 break;
737
738 case DATA_PREFIX_OPCODE:
739 q = DATA_PREFIX;
740 break;
741 }
742
743 if (i.prefix[q] != 0)
744 {
745 as_bad (_("same type of prefix used twice"));
746 return 0;
747 }
748
749 i.prefixes += 1;
750 i.prefix[q] = prefix;
751 return ret;
752 }
753
754 static void
755 set_code_flag (value)
756 int value;
757 {
758 flag_code = value;
759 cpu_arch_flags &= ~(Cpu64 | CpuNo64);
760 cpu_arch_flags |= (flag_code == CODE_64BIT ? Cpu64 : CpuNo64);
761 if (value == CODE_64BIT && !(cpu_arch_flags & CpuSledgehammer))
762 {
763 as_bad (_("64bit mode not supported on this CPU."));
764 }
765 if (value == CODE_32BIT && !(cpu_arch_flags & Cpu386))
766 {
767 as_bad (_("32bit mode not supported on this CPU."));
768 }
769 stackop_size = '\0';
770 }
771
772 static void
773 set_16bit_gcc_code_flag (new_code_flag)
774 int new_code_flag;
775 {
776 flag_code = new_code_flag;
777 cpu_arch_flags &= ~(Cpu64 | CpuNo64);
778 cpu_arch_flags |= (flag_code == CODE_64BIT ? Cpu64 : CpuNo64);
779 stackop_size = 'l';
780 }
781
782 static void
783 set_intel_syntax (syntax_flag)
784 int syntax_flag;
785 {
786 /* Find out if register prefixing is specified. */
787 int ask_naked_reg = 0;
788
789 SKIP_WHITESPACE ();
790 if (!is_end_of_line[(unsigned char) *input_line_pointer])
791 {
792 char *string = input_line_pointer;
793 int e = get_symbol_end ();
794
795 if (strcmp (string, "prefix") == 0)
796 ask_naked_reg = 1;
797 else if (strcmp (string, "noprefix") == 0)
798 ask_naked_reg = -1;
799 else
800 as_bad (_("bad argument to syntax directive."));
801 *input_line_pointer = e;
802 }
803 demand_empty_rest_of_line ();
804
805 intel_syntax = syntax_flag;
806
807 if (ask_naked_reg == 0)
808 {
809 #ifdef BFD_ASSEMBLER
810 allow_naked_reg = (intel_syntax
811 && (bfd_get_symbol_leading_char (stdoutput) != '\0'));
812 #else
813 /* Conservative default. */
814 allow_naked_reg = 0;
815 #endif
816 }
817 else
818 allow_naked_reg = (ask_naked_reg < 0);
819 }
820
821 static void
822 set_cpu_arch (dummy)
823 int dummy ATTRIBUTE_UNUSED;
824 {
825 SKIP_WHITESPACE ();
826
827 if (!is_end_of_line[(unsigned char) *input_line_pointer])
828 {
829 char *string = input_line_pointer;
830 int e = get_symbol_end ();
831 int i;
832
833 for (i = 0; cpu_arch[i].name; i++)
834 {
835 if (strcmp (string, cpu_arch[i].name) == 0)
836 {
837 cpu_arch_name = cpu_arch[i].name;
838 cpu_arch_flags = (cpu_arch[i].flags
839 | (flag_code == CODE_64BIT ? Cpu64 : CpuNo64));
840 break;
841 }
842 }
843 if (!cpu_arch[i].name)
844 as_bad (_("no such architecture: `%s'"), string);
845
846 *input_line_pointer = e;
847 }
848 else
849 as_bad (_("missing cpu architecture"));
850
851 no_cond_jump_promotion = 0;
852 if (*input_line_pointer == ','
853 && !is_end_of_line[(unsigned char) input_line_pointer[1]])
854 {
855 char *string = ++input_line_pointer;
856 int e = get_symbol_end ();
857
858 if (strcmp (string, "nojumps") == 0)
859 no_cond_jump_promotion = 1;
860 else if (strcmp (string, "jumps") == 0)
861 ;
862 else
863 as_bad (_("no such architecture modifier: `%s'"), string);
864
865 *input_line_pointer = e;
866 }
867
868 demand_empty_rest_of_line ();
869 }
870
871 #ifdef BFD_ASSEMBLER
872 unsigned long
873 i386_mach ()
874 {
875 if (!strcmp (default_arch, "x86_64"))
876 return bfd_mach_x86_64;
877 else if (!strcmp (default_arch, "i386"))
878 return bfd_mach_i386_i386;
879 else
880 as_fatal (_("Unknown architecture"));
881 }
882 #endif
883 \f
884 void
885 md_begin ()
886 {
887 const char *hash_err;
888
889 /* Initialize op_hash hash table. */
890 op_hash = hash_new ();
891
892 {
893 const template *optab;
894 templates *core_optab;
895
896 /* Setup for loop. */
897 optab = i386_optab;
898 core_optab = (templates *) xmalloc (sizeof (templates));
899 core_optab->start = optab;
900
901 while (1)
902 {
903 ++optab;
904 if (optab->name == NULL
905 || strcmp (optab->name, (optab - 1)->name) != 0)
906 {
907 /* different name --> ship out current template list;
908 add to hash table; & begin anew. */
909 core_optab->end = optab;
910 hash_err = hash_insert (op_hash,
911 (optab - 1)->name,
912 (PTR) core_optab);
913 if (hash_err)
914 {
915 as_fatal (_("Internal Error: Can't hash %s: %s"),
916 (optab - 1)->name,
917 hash_err);
918 }
919 if (optab->name == NULL)
920 break;
921 core_optab = (templates *) xmalloc (sizeof (templates));
922 core_optab->start = optab;
923 }
924 }
925 }
926
927 /* Initialize reg_hash hash table. */
928 reg_hash = hash_new ();
929 {
930 const reg_entry *regtab;
931
932 for (regtab = i386_regtab;
933 regtab < i386_regtab + sizeof (i386_regtab) / sizeof (i386_regtab[0]);
934 regtab++)
935 {
936 hash_err = hash_insert (reg_hash, regtab->reg_name, (PTR) regtab);
937 if (hash_err)
938 as_fatal (_("Internal Error: Can't hash %s: %s"),
939 regtab->reg_name,
940 hash_err);
941 }
942 }
943
944 /* Fill in lexical tables: mnemonic_chars, operand_chars. */
945 {
946 int c;
947 char *p;
948
949 for (c = 0; c < 256; c++)
950 {
951 if (ISDIGIT (c))
952 {
953 digit_chars[c] = c;
954 mnemonic_chars[c] = c;
955 register_chars[c] = c;
956 operand_chars[c] = c;
957 }
958 else if (ISLOWER (c))
959 {
960 mnemonic_chars[c] = c;
961 register_chars[c] = c;
962 operand_chars[c] = c;
963 }
964 else if (ISUPPER (c))
965 {
966 mnemonic_chars[c] = TOLOWER (c);
967 register_chars[c] = mnemonic_chars[c];
968 operand_chars[c] = c;
969 }
970
971 if (ISALPHA (c) || ISDIGIT (c))
972 identifier_chars[c] = c;
973 else if (c >= 128)
974 {
975 identifier_chars[c] = c;
976 operand_chars[c] = c;
977 }
978 }
979
980 #ifdef LEX_AT
981 identifier_chars['@'] = '@';
982 #endif
983 digit_chars['-'] = '-';
984 identifier_chars['_'] = '_';
985 identifier_chars['.'] = '.';
986
987 for (p = operand_special_chars; *p != '\0'; p++)
988 operand_chars[(unsigned char) *p] = *p;
989 }
990
991 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
992 if (OUTPUT_FLAVOR == bfd_target_elf_flavour)
993 {
994 record_alignment (text_section, 2);
995 record_alignment (data_section, 2);
996 record_alignment (bss_section, 2);
997 }
998 #endif
999
1000 if (flag_code == CODE_64BIT)
1001 {
1002 x86_dwarf2_return_column = 16;
1003 x86_cie_data_alignment = -8;
1004 }
1005 else
1006 {
1007 x86_dwarf2_return_column = 8;
1008 x86_cie_data_alignment = -4;
1009 }
1010 }
1011
1012 void
1013 i386_print_statistics (file)
1014 FILE *file;
1015 {
1016 hash_print_statistics (file, "i386 opcode", op_hash);
1017 hash_print_statistics (file, "i386 register", reg_hash);
1018 }
1019 \f
1020 #ifdef DEBUG386
1021
1022 /* Debugging routines for md_assemble. */
1023 static void pi PARAMS ((char *, i386_insn *));
1024 static void pte PARAMS ((template *));
1025 static void pt PARAMS ((unsigned int));
1026 static void pe PARAMS ((expressionS *));
1027 static void ps PARAMS ((symbolS *));
1028
1029 static void
1030 pi (line, x)
1031 char *line;
1032 i386_insn *x;
1033 {
1034 unsigned int i;
1035
1036 fprintf (stdout, "%s: template ", line);
1037 pte (&x->tm);
1038 fprintf (stdout, " address: base %s index %s scale %x\n",
1039 x->base_reg ? x->base_reg->reg_name : "none",
1040 x->index_reg ? x->index_reg->reg_name : "none",
1041 x->log2_scale_factor);
1042 fprintf (stdout, " modrm: mode %x reg %x reg/mem %x\n",
1043 x->rm.mode, x->rm.reg, x->rm.regmem);
1044 fprintf (stdout, " sib: base %x index %x scale %x\n",
1045 x->sib.base, x->sib.index, x->sib.scale);
1046 fprintf (stdout, " rex: 64bit %x extX %x extY %x extZ %x\n",
1047 (x->rex & REX_MODE64) != 0,
1048 (x->rex & REX_EXTX) != 0,
1049 (x->rex & REX_EXTY) != 0,
1050 (x->rex & REX_EXTZ) != 0);
1051 for (i = 0; i < x->operands; i++)
1052 {
1053 fprintf (stdout, " #%d: ", i + 1);
1054 pt (x->types[i]);
1055 fprintf (stdout, "\n");
1056 if (x->types[i]
1057 & (Reg | SReg2 | SReg3 | Control | Debug | Test | RegMMX | RegXMM))
1058 fprintf (stdout, "%s\n", x->op[i].regs->reg_name);
1059 if (x->types[i] & Imm)
1060 pe (x->op[i].imms);
1061 if (x->types[i] & Disp)
1062 pe (x->op[i].disps);
1063 }
1064 }
1065
1066 static void
1067 pte (t)
1068 template *t;
1069 {
1070 unsigned int i;
1071 fprintf (stdout, " %d operands ", t->operands);
1072 fprintf (stdout, "opcode %x ", t->base_opcode);
1073 if (t->extension_opcode != None)
1074 fprintf (stdout, "ext %x ", t->extension_opcode);
1075 if (t->opcode_modifier & D)
1076 fprintf (stdout, "D");
1077 if (t->opcode_modifier & W)
1078 fprintf (stdout, "W");
1079 fprintf (stdout, "\n");
1080 for (i = 0; i < t->operands; i++)
1081 {
1082 fprintf (stdout, " #%d type ", i + 1);
1083 pt (t->operand_types[i]);
1084 fprintf (stdout, "\n");
1085 }
1086 }
1087
1088 static void
1089 pe (e)
1090 expressionS *e;
1091 {
1092 fprintf (stdout, " operation %d\n", e->X_op);
1093 fprintf (stdout, " add_number %ld (%lx)\n",
1094 (long) e->X_add_number, (long) e->X_add_number);
1095 if (e->X_add_symbol)
1096 {
1097 fprintf (stdout, " add_symbol ");
1098 ps (e->X_add_symbol);
1099 fprintf (stdout, "\n");
1100 }
1101 if (e->X_op_symbol)
1102 {
1103 fprintf (stdout, " op_symbol ");
1104 ps (e->X_op_symbol);
1105 fprintf (stdout, "\n");
1106 }
1107 }
1108
1109 static void
1110 ps (s)
1111 symbolS *s;
1112 {
1113 fprintf (stdout, "%s type %s%s",
1114 S_GET_NAME (s),
1115 S_IS_EXTERNAL (s) ? "EXTERNAL " : "",
1116 segment_name (S_GET_SEGMENT (s)));
1117 }
1118
1119 struct type_name
1120 {
1121 unsigned int mask;
1122 char *tname;
1123 }
1124
1125 static const type_names[] =
1126 {
1127 { Reg8, "r8" },
1128 { Reg16, "r16" },
1129 { Reg32, "r32" },
1130 { Reg64, "r64" },
1131 { Imm8, "i8" },
1132 { Imm8S, "i8s" },
1133 { Imm16, "i16" },
1134 { Imm32, "i32" },
1135 { Imm32S, "i32s" },
1136 { Imm64, "i64" },
1137 { Imm1, "i1" },
1138 { BaseIndex, "BaseIndex" },
1139 { Disp8, "d8" },
1140 { Disp16, "d16" },
1141 { Disp32, "d32" },
1142 { Disp32S, "d32s" },
1143 { Disp64, "d64" },
1144 { InOutPortReg, "InOutPortReg" },
1145 { ShiftCount, "ShiftCount" },
1146 { Control, "control reg" },
1147 { Test, "test reg" },
1148 { Debug, "debug reg" },
1149 { FloatReg, "FReg" },
1150 { FloatAcc, "FAcc" },
1151 { SReg2, "SReg2" },
1152 { SReg3, "SReg3" },
1153 { Acc, "Acc" },
1154 { JumpAbsolute, "Jump Absolute" },
1155 { RegMMX, "rMMX" },
1156 { RegXMM, "rXMM" },
1157 { EsSeg, "es" },
1158 { 0, "" }
1159 };
1160
1161 static void
1162 pt (t)
1163 unsigned int t;
1164 {
1165 const struct type_name *ty;
1166
1167 for (ty = type_names; ty->mask; ty++)
1168 if (t & ty->mask)
1169 fprintf (stdout, "%s, ", ty->tname);
1170 fflush (stdout);
1171 }
1172
1173 #endif /* DEBUG386 */
1174 \f
1175 #ifdef BFD_ASSEMBLER
1176 static bfd_reloc_code_real_type reloc
1177 PARAMS ((int, int, int, bfd_reloc_code_real_type));
1178
1179 static bfd_reloc_code_real_type
1180 reloc (size, pcrel, sign, other)
1181 int size;
1182 int pcrel;
1183 int sign;
1184 bfd_reloc_code_real_type other;
1185 {
1186 if (other != NO_RELOC)
1187 return other;
1188
1189 if (pcrel)
1190 {
1191 if (!sign)
1192 as_bad (_("There are no unsigned pc-relative relocations"));
1193 switch (size)
1194 {
1195 case 1: return BFD_RELOC_8_PCREL;
1196 case 2: return BFD_RELOC_16_PCREL;
1197 case 4: return BFD_RELOC_32_PCREL;
1198 }
1199 as_bad (_("can not do %d byte pc-relative relocation"), size);
1200 }
1201 else
1202 {
1203 if (sign)
1204 switch (size)
1205 {
1206 case 4: return BFD_RELOC_X86_64_32S;
1207 }
1208 else
1209 switch (size)
1210 {
1211 case 1: return BFD_RELOC_8;
1212 case 2: return BFD_RELOC_16;
1213 case 4: return BFD_RELOC_32;
1214 case 8: return BFD_RELOC_64;
1215 }
1216 as_bad (_("can not do %s %d byte relocation"),
1217 sign ? "signed" : "unsigned", size);
1218 }
1219
1220 abort ();
1221 return BFD_RELOC_NONE;
1222 }
1223
1224 /* Here we decide which fixups can be adjusted to make them relative to
1225 the beginning of the section instead of the symbol. Basically we need
1226 to make sure that the dynamic relocations are done correctly, so in
1227 some cases we force the original symbol to be used. */
1228
1229 int
1230 tc_i386_fix_adjustable (fixP)
1231 fixS *fixP ATTRIBUTE_UNUSED;
1232 {
1233 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
1234 if (OUTPUT_FLAVOR != bfd_target_elf_flavour)
1235 return 1;
1236
1237 /* Don't adjust pc-relative references to merge sections in 64-bit
1238 mode. */
1239 if (use_rela_relocations
1240 && (S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_MERGE) != 0
1241 && fixP->fx_pcrel)
1242 return 0;
1243
1244 /* adjust_reloc_syms doesn't know about the GOT. */
1245 if (fixP->fx_r_type == BFD_RELOC_386_GOTOFF
1246 || fixP->fx_r_type == BFD_RELOC_386_PLT32
1247 || fixP->fx_r_type == BFD_RELOC_386_GOT32
1248 || fixP->fx_r_type == BFD_RELOC_386_TLS_GD
1249 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDM
1250 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDO_32
1251 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE_32
1252 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE
1253 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTIE
1254 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE_32
1255 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE
1256 || fixP->fx_r_type == BFD_RELOC_X86_64_PLT32
1257 || fixP->fx_r_type == BFD_RELOC_X86_64_GOT32
1258 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCREL
1259 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSGD
1260 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSLD
1261 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF32
1262 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTTPOFF
1263 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF32
1264 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
1265 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
1266 return 0;
1267 #endif
1268 return 1;
1269 }
1270 #else
1271 #define reloc(SIZE,PCREL,SIGN,OTHER) 0
1272 #define BFD_RELOC_8 0
1273 #define BFD_RELOC_16 0
1274 #define BFD_RELOC_32 0
1275 #define BFD_RELOC_8_PCREL 0
1276 #define BFD_RELOC_16_PCREL 0
1277 #define BFD_RELOC_32_PCREL 0
1278 #define BFD_RELOC_386_PLT32 0
1279 #define BFD_RELOC_386_GOT32 0
1280 #define BFD_RELOC_386_GOTOFF 0
1281 #define BFD_RELOC_386_TLS_GD 0
1282 #define BFD_RELOC_386_TLS_LDM 0
1283 #define BFD_RELOC_386_TLS_LDO_32 0
1284 #define BFD_RELOC_386_TLS_IE_32 0
1285 #define BFD_RELOC_386_TLS_IE 0
1286 #define BFD_RELOC_386_TLS_GOTIE 0
1287 #define BFD_RELOC_386_TLS_LE_32 0
1288 #define BFD_RELOC_386_TLS_LE 0
1289 #define BFD_RELOC_X86_64_PLT32 0
1290 #define BFD_RELOC_X86_64_GOT32 0
1291 #define BFD_RELOC_X86_64_GOTPCREL 0
1292 #define BFD_RELOC_X86_64_TLSGD 0
1293 #define BFD_RELOC_X86_64_TLSLD 0
1294 #define BFD_RELOC_X86_64_DTPOFF32 0
1295 #define BFD_RELOC_X86_64_GOTTPOFF 0
1296 #define BFD_RELOC_X86_64_TPOFF32 0
1297 #endif
1298
1299 static int intel_float_operand PARAMS ((const char *mnemonic));
1300
1301 static int
1302 intel_float_operand (mnemonic)
1303 const char *mnemonic;
1304 {
1305 if (mnemonic[0] == 'f' && mnemonic[1] == 'i')
1306 return 2;
1307
1308 if (mnemonic[0] == 'f')
1309 return 1;
1310
1311 return 0;
1312 }
1313
1314 /* This is the guts of the machine-dependent assembler. LINE points to a
1315 machine dependent instruction. This function is supposed to emit
1316 the frags/bytes it assembles to. */
1317
1318 void
1319 md_assemble (line)
1320 char *line;
1321 {
1322 int j;
1323 char mnemonic[MAX_MNEM_SIZE];
1324
1325 /* Initialize globals. */
1326 memset (&i, '\0', sizeof (i));
1327 for (j = 0; j < MAX_OPERANDS; j++)
1328 i.reloc[j] = NO_RELOC;
1329 memset (disp_expressions, '\0', sizeof (disp_expressions));
1330 memset (im_expressions, '\0', sizeof (im_expressions));
1331 save_stack_p = save_stack;
1332
1333 /* First parse an instruction mnemonic & call i386_operand for the operands.
1334 We assume that the scrubber has arranged it so that line[0] is the valid
1335 start of a (possibly prefixed) mnemonic. */
1336
1337 line = parse_insn (line, mnemonic);
1338 if (line == NULL)
1339 return;
1340
1341 line = parse_operands (line, mnemonic);
1342 if (line == NULL)
1343 return;
1344
1345 /* Now we've parsed the mnemonic into a set of templates, and have the
1346 operands at hand. */
1347
1348 /* All intel opcodes have reversed operands except for "bound" and
1349 "enter". We also don't reverse intersegment "jmp" and "call"
1350 instructions with 2 immediate operands so that the immediate segment
1351 precedes the offset, as it does when in AT&T mode. "enter" and the
1352 intersegment "jmp" and "call" instructions are the only ones that
1353 have two immediate operands. */
1354 if (intel_syntax && i.operands > 1
1355 && (strcmp (mnemonic, "bound") != 0)
1356 && !((i.types[0] & Imm) && (i.types[1] & Imm)))
1357 swap_operands ();
1358
1359 if (i.imm_operands)
1360 optimize_imm ();
1361
1362 if (i.disp_operands)
1363 optimize_disp ();
1364
1365 /* Next, we find a template that matches the given insn,
1366 making sure the overlap of the given operands types is consistent
1367 with the template operand types. */
1368
1369 if (!match_template ())
1370 return;
1371
1372 if (intel_syntax)
1373 {
1374 /* Undo SYSV386_COMPAT brokenness when in Intel mode. See i386.h */
1375 if (SYSV386_COMPAT
1376 && (i.tm.base_opcode & 0xfffffde0) == 0xdce0)
1377 i.tm.base_opcode ^= FloatR;
1378
1379 /* Zap movzx and movsx suffix. The suffix may have been set from
1380 "word ptr" or "byte ptr" on the source operand, but we'll use
1381 the suffix later to choose the destination register. */
1382 if ((i.tm.base_opcode & ~9) == 0x0fb6)
1383 i.suffix = 0;
1384 }
1385
1386 if (i.tm.opcode_modifier & FWait)
1387 if (!add_prefix (FWAIT_OPCODE))
1388 return;
1389
1390 /* Check string instruction segment overrides. */
1391 if ((i.tm.opcode_modifier & IsString) != 0 && i.mem_operands != 0)
1392 {
1393 if (!check_string ())
1394 return;
1395 }
1396
1397 if (!process_suffix ())
1398 return;
1399
1400 /* Make still unresolved immediate matches conform to size of immediate
1401 given in i.suffix. */
1402 if (!finalize_imm ())
1403 return;
1404
1405 if (i.types[0] & Imm1)
1406 i.imm_operands = 0; /* kludge for shift insns. */
1407 if (i.types[0] & ImplicitRegister)
1408 i.reg_operands--;
1409 if (i.types[1] & ImplicitRegister)
1410 i.reg_operands--;
1411 if (i.types[2] & ImplicitRegister)
1412 i.reg_operands--;
1413
1414 if (i.tm.opcode_modifier & ImmExt)
1415 {
1416 expressionS *exp;
1417
1418 if ((i.tm.cpu_flags & CpuPNI) && i.operands > 0)
1419 {
1420 /* These Intel Precott New Instructions have the fixed
1421 operands with an opcode suffix which is coded in the same
1422 place as an 8-bit immediate field would be. Here we check
1423 those operands and remove them afterwards. */
1424 unsigned int x;
1425
1426 for (x = 0; x < i.operands; x++)
1427 if (i.op[x].regs->reg_num != x)
1428 as_bad (_("can't use register '%%%s' as operand %d in '%s'."),
1429 i.op[x].regs->reg_name, x + 1, i.tm.name);
1430 i.operands = 0;
1431 }
1432
1433 /* These AMD 3DNow! and Intel Katmai New Instructions have an
1434 opcode suffix which is coded in the same place as an 8-bit
1435 immediate field would be. Here we fake an 8-bit immediate
1436 operand from the opcode suffix stored in tm.extension_opcode. */
1437
1438 assert (i.imm_operands == 0 && i.operands <= 2 && 2 < MAX_OPERANDS);
1439
1440 exp = &im_expressions[i.imm_operands++];
1441 i.op[i.operands].imms = exp;
1442 i.types[i.operands++] = Imm8;
1443 exp->X_op = O_constant;
1444 exp->X_add_number = i.tm.extension_opcode;
1445 i.tm.extension_opcode = None;
1446 }
1447
1448 /* For insns with operands there are more diddles to do to the opcode. */
1449 if (i.operands)
1450 {
1451 if (!process_operands ())
1452 return;
1453 }
1454 else if (!quiet_warnings && (i.tm.opcode_modifier & Ugh) != 0)
1455 {
1456 /* UnixWare fsub no args is alias for fsubp, fadd -> faddp, etc. */
1457 as_warn (_("translating to `%sp'"), i.tm.name);
1458 }
1459
1460 /* Handle conversion of 'int $3' --> special int3 insn. */
1461 if (i.tm.base_opcode == INT_OPCODE && i.op[0].imms->X_add_number == 3)
1462 {
1463 i.tm.base_opcode = INT3_OPCODE;
1464 i.imm_operands = 0;
1465 }
1466
1467 if ((i.tm.opcode_modifier & (Jump | JumpByte | JumpDword))
1468 && i.op[0].disps->X_op == O_constant)
1469 {
1470 /* Convert "jmp constant" (and "call constant") to a jump (call) to
1471 the absolute address given by the constant. Since ix86 jumps and
1472 calls are pc relative, we need to generate a reloc. */
1473 i.op[0].disps->X_add_symbol = &abs_symbol;
1474 i.op[0].disps->X_op = O_symbol;
1475 }
1476
1477 if ((i.tm.opcode_modifier & Rex64) != 0)
1478 i.rex |= REX_MODE64;
1479
1480 /* For 8 bit registers we need an empty rex prefix. Also if the
1481 instruction already has a prefix, we need to convert old
1482 registers to new ones. */
1483
1484 if (((i.types[0] & Reg8) != 0
1485 && (i.op[0].regs->reg_flags & RegRex64) != 0)
1486 || ((i.types[1] & Reg8) != 0
1487 && (i.op[1].regs->reg_flags & RegRex64) != 0)
1488 || (((i.types[0] & Reg8) != 0 || (i.types[1] & Reg8) != 0)
1489 && i.rex != 0))
1490 {
1491 int x;
1492
1493 i.rex |= REX_OPCODE;
1494 for (x = 0; x < 2; x++)
1495 {
1496 /* Look for 8 bit operand that uses old registers. */
1497 if ((i.types[x] & Reg8) != 0
1498 && (i.op[x].regs->reg_flags & RegRex64) == 0)
1499 {
1500 /* In case it is "hi" register, give up. */
1501 if (i.op[x].regs->reg_num > 3)
1502 as_bad (_("can't encode register '%%%s' in an instruction requiring REX prefix.\n"),
1503 i.op[x].regs->reg_name);
1504
1505 /* Otherwise it is equivalent to the extended register.
1506 Since the encoding doesn't change this is merely
1507 cosmetic cleanup for debug output. */
1508
1509 i.op[x].regs = i.op[x].regs + 8;
1510 }
1511 }
1512 }
1513
1514 if (i.rex != 0)
1515 add_prefix (REX_OPCODE | i.rex);
1516
1517 /* We are ready to output the insn. */
1518 output_insn ();
1519 }
1520
1521 static char *
1522 parse_insn (line, mnemonic)
1523 char *line;
1524 char *mnemonic;
1525 {
1526 char *l = line;
1527 char *token_start = l;
1528 char *mnem_p;
1529
1530 /* Non-zero if we found a prefix only acceptable with string insns. */
1531 const char *expecting_string_instruction = NULL;
1532
1533 while (1)
1534 {
1535 mnem_p = mnemonic;
1536 while ((*mnem_p = mnemonic_chars[(unsigned char) *l]) != 0)
1537 {
1538 mnem_p++;
1539 if (mnem_p >= mnemonic + MAX_MNEM_SIZE)
1540 {
1541 as_bad (_("no such instruction: `%s'"), token_start);
1542 return NULL;
1543 }
1544 l++;
1545 }
1546 if (!is_space_char (*l)
1547 && *l != END_OF_INSN
1548 && *l != PREFIX_SEPARATOR
1549 && *l != ',')
1550 {
1551 as_bad (_("invalid character %s in mnemonic"),
1552 output_invalid (*l));
1553 return NULL;
1554 }
1555 if (token_start == l)
1556 {
1557 if (*l == PREFIX_SEPARATOR)
1558 as_bad (_("expecting prefix; got nothing"));
1559 else
1560 as_bad (_("expecting mnemonic; got nothing"));
1561 return NULL;
1562 }
1563
1564 /* Look up instruction (or prefix) via hash table. */
1565 current_templates = hash_find (op_hash, mnemonic);
1566
1567 if (*l != END_OF_INSN
1568 && (!is_space_char (*l) || l[1] != END_OF_INSN)
1569 && current_templates
1570 && (current_templates->start->opcode_modifier & IsPrefix))
1571 {
1572 /* If we are in 16-bit mode, do not allow addr16 or data16.
1573 Similarly, in 32-bit mode, do not allow addr32 or data32. */
1574 if ((current_templates->start->opcode_modifier & (Size16 | Size32))
1575 && flag_code != CODE_64BIT
1576 && (((current_templates->start->opcode_modifier & Size32) != 0)
1577 ^ (flag_code == CODE_16BIT)))
1578 {
1579 as_bad (_("redundant %s prefix"),
1580 current_templates->start->name);
1581 return NULL;
1582 }
1583 /* Add prefix, checking for repeated prefixes. */
1584 switch (add_prefix (current_templates->start->base_opcode))
1585 {
1586 case 0:
1587 return NULL;
1588 case 2:
1589 expecting_string_instruction = current_templates->start->name;
1590 break;
1591 }
1592 /* Skip past PREFIX_SEPARATOR and reset token_start. */
1593 token_start = ++l;
1594 }
1595 else
1596 break;
1597 }
1598
1599 if (!current_templates)
1600 {
1601 /* See if we can get a match by trimming off a suffix. */
1602 switch (mnem_p[-1])
1603 {
1604 case WORD_MNEM_SUFFIX:
1605 case BYTE_MNEM_SUFFIX:
1606 case QWORD_MNEM_SUFFIX:
1607 i.suffix = mnem_p[-1];
1608 mnem_p[-1] = '\0';
1609 current_templates = hash_find (op_hash, mnemonic);
1610 break;
1611 case SHORT_MNEM_SUFFIX:
1612 case LONG_MNEM_SUFFIX:
1613 if (!intel_syntax)
1614 {
1615 i.suffix = mnem_p[-1];
1616 mnem_p[-1] = '\0';
1617 current_templates = hash_find (op_hash, mnemonic);
1618 }
1619 break;
1620
1621 /* Intel Syntax. */
1622 case 'd':
1623 if (intel_syntax)
1624 {
1625 if (intel_float_operand (mnemonic))
1626 i.suffix = SHORT_MNEM_SUFFIX;
1627 else
1628 i.suffix = LONG_MNEM_SUFFIX;
1629 mnem_p[-1] = '\0';
1630 current_templates = hash_find (op_hash, mnemonic);
1631 }
1632 break;
1633 }
1634 if (!current_templates)
1635 {
1636 as_bad (_("no such instruction: `%s'"), token_start);
1637 return NULL;
1638 }
1639 }
1640
1641 if (current_templates->start->opcode_modifier & (Jump | JumpByte))
1642 {
1643 /* Check for a branch hint. We allow ",pt" and ",pn" for
1644 predict taken and predict not taken respectively.
1645 I'm not sure that branch hints actually do anything on loop
1646 and jcxz insns (JumpByte) for current Pentium4 chips. They
1647 may work in the future and it doesn't hurt to accept them
1648 now. */
1649 if (l[0] == ',' && l[1] == 'p')
1650 {
1651 if (l[2] == 't')
1652 {
1653 if (!add_prefix (DS_PREFIX_OPCODE))
1654 return NULL;
1655 l += 3;
1656 }
1657 else if (l[2] == 'n')
1658 {
1659 if (!add_prefix (CS_PREFIX_OPCODE))
1660 return NULL;
1661 l += 3;
1662 }
1663 }
1664 }
1665 /* Any other comma loses. */
1666 if (*l == ',')
1667 {
1668 as_bad (_("invalid character %s in mnemonic"),
1669 output_invalid (*l));
1670 return NULL;
1671 }
1672
1673 /* Check if instruction is supported on specified architecture. */
1674 if ((current_templates->start->cpu_flags & ~(Cpu64 | CpuNo64))
1675 & ~(cpu_arch_flags & ~(Cpu64 | CpuNo64)))
1676 {
1677 as_warn (_("`%s' is not supported on `%s'"),
1678 current_templates->start->name, cpu_arch_name);
1679 }
1680 else if ((Cpu386 & ~cpu_arch_flags) && (flag_code != CODE_16BIT))
1681 {
1682 as_warn (_("use .code16 to ensure correct addressing mode"));
1683 }
1684
1685 /* Check for rep/repne without a string instruction. */
1686 if (expecting_string_instruction
1687 && !(current_templates->start->opcode_modifier & IsString))
1688 {
1689 as_bad (_("expecting string instruction after `%s'"),
1690 expecting_string_instruction);
1691 return NULL;
1692 }
1693
1694 return l;
1695 }
1696
1697 static char *
1698 parse_operands (l, mnemonic)
1699 char *l;
1700 const char *mnemonic;
1701 {
1702 char *token_start;
1703
1704 /* 1 if operand is pending after ','. */
1705 unsigned int expecting_operand = 0;
1706
1707 /* Non-zero if operand parens not balanced. */
1708 unsigned int paren_not_balanced;
1709
1710 while (*l != END_OF_INSN)
1711 {
1712 /* Skip optional white space before operand. */
1713 if (is_space_char (*l))
1714 ++l;
1715 if (!is_operand_char (*l) && *l != END_OF_INSN)
1716 {
1717 as_bad (_("invalid character %s before operand %d"),
1718 output_invalid (*l),
1719 i.operands + 1);
1720 return NULL;
1721 }
1722 token_start = l; /* after white space */
1723 paren_not_balanced = 0;
1724 while (paren_not_balanced || *l != ',')
1725 {
1726 if (*l == END_OF_INSN)
1727 {
1728 if (paren_not_balanced)
1729 {
1730 if (!intel_syntax)
1731 as_bad (_("unbalanced parenthesis in operand %d."),
1732 i.operands + 1);
1733 else
1734 as_bad (_("unbalanced brackets in operand %d."),
1735 i.operands + 1);
1736 return NULL;
1737 }
1738 else
1739 break; /* we are done */
1740 }
1741 else if (!is_operand_char (*l) && !is_space_char (*l))
1742 {
1743 as_bad (_("invalid character %s in operand %d"),
1744 output_invalid (*l),
1745 i.operands + 1);
1746 return NULL;
1747 }
1748 if (!intel_syntax)
1749 {
1750 if (*l == '(')
1751 ++paren_not_balanced;
1752 if (*l == ')')
1753 --paren_not_balanced;
1754 }
1755 else
1756 {
1757 if (*l == '[')
1758 ++paren_not_balanced;
1759 if (*l == ']')
1760 --paren_not_balanced;
1761 }
1762 l++;
1763 }
1764 if (l != token_start)
1765 { /* Yes, we've read in another operand. */
1766 unsigned int operand_ok;
1767 this_operand = i.operands++;
1768 if (i.operands > MAX_OPERANDS)
1769 {
1770 as_bad (_("spurious operands; (%d operands/instruction max)"),
1771 MAX_OPERANDS);
1772 return NULL;
1773 }
1774 /* Now parse operand adding info to 'i' as we go along. */
1775 END_STRING_AND_SAVE (l);
1776
1777 if (intel_syntax)
1778 operand_ok =
1779 i386_intel_operand (token_start,
1780 intel_float_operand (mnemonic));
1781 else
1782 operand_ok = i386_operand (token_start);
1783
1784 RESTORE_END_STRING (l);
1785 if (!operand_ok)
1786 return NULL;
1787 }
1788 else
1789 {
1790 if (expecting_operand)
1791 {
1792 expecting_operand_after_comma:
1793 as_bad (_("expecting operand after ','; got nothing"));
1794 return NULL;
1795 }
1796 if (*l == ',')
1797 {
1798 as_bad (_("expecting operand before ','; got nothing"));
1799 return NULL;
1800 }
1801 }
1802
1803 /* Now *l must be either ',' or END_OF_INSN. */
1804 if (*l == ',')
1805 {
1806 if (*++l == END_OF_INSN)
1807 {
1808 /* Just skip it, if it's \n complain. */
1809 goto expecting_operand_after_comma;
1810 }
1811 expecting_operand = 1;
1812 }
1813 }
1814 return l;
1815 }
1816
1817 static void
1818 swap_operands ()
1819 {
1820 union i386_op temp_op;
1821 unsigned int temp_type;
1822 RELOC_ENUM temp_reloc;
1823 int xchg1 = 0;
1824 int xchg2 = 0;
1825
1826 if (i.operands == 2)
1827 {
1828 xchg1 = 0;
1829 xchg2 = 1;
1830 }
1831 else if (i.operands == 3)
1832 {
1833 xchg1 = 0;
1834 xchg2 = 2;
1835 }
1836 temp_type = i.types[xchg2];
1837 i.types[xchg2] = i.types[xchg1];
1838 i.types[xchg1] = temp_type;
1839 temp_op = i.op[xchg2];
1840 i.op[xchg2] = i.op[xchg1];
1841 i.op[xchg1] = temp_op;
1842 temp_reloc = i.reloc[xchg2];
1843 i.reloc[xchg2] = i.reloc[xchg1];
1844 i.reloc[xchg1] = temp_reloc;
1845
1846 if (i.mem_operands == 2)
1847 {
1848 const seg_entry *temp_seg;
1849 temp_seg = i.seg[0];
1850 i.seg[0] = i.seg[1];
1851 i.seg[1] = temp_seg;
1852 }
1853 }
1854
1855 /* Try to ensure constant immediates are represented in the smallest
1856 opcode possible. */
1857 static void
1858 optimize_imm ()
1859 {
1860 char guess_suffix = 0;
1861 int op;
1862
1863 if (i.suffix)
1864 guess_suffix = i.suffix;
1865 else if (i.reg_operands)
1866 {
1867 /* Figure out a suffix from the last register operand specified.
1868 We can't do this properly yet, ie. excluding InOutPortReg,
1869 but the following works for instructions with immediates.
1870 In any case, we can't set i.suffix yet. */
1871 for (op = i.operands; --op >= 0;)
1872 if (i.types[op] & Reg)
1873 {
1874 if (i.types[op] & Reg8)
1875 guess_suffix = BYTE_MNEM_SUFFIX;
1876 else if (i.types[op] & Reg16)
1877 guess_suffix = WORD_MNEM_SUFFIX;
1878 else if (i.types[op] & Reg32)
1879 guess_suffix = LONG_MNEM_SUFFIX;
1880 else if (i.types[op] & Reg64)
1881 guess_suffix = QWORD_MNEM_SUFFIX;
1882 break;
1883 }
1884 }
1885 else if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
1886 guess_suffix = WORD_MNEM_SUFFIX;
1887
1888 for (op = i.operands; --op >= 0;)
1889 if (i.types[op] & Imm)
1890 {
1891 switch (i.op[op].imms->X_op)
1892 {
1893 case O_constant:
1894 /* If a suffix is given, this operand may be shortened. */
1895 switch (guess_suffix)
1896 {
1897 case LONG_MNEM_SUFFIX:
1898 i.types[op] |= Imm32 | Imm64;
1899 break;
1900 case WORD_MNEM_SUFFIX:
1901 i.types[op] |= Imm16 | Imm32S | Imm32 | Imm64;
1902 break;
1903 case BYTE_MNEM_SUFFIX:
1904 i.types[op] |= Imm16 | Imm8 | Imm8S | Imm32S | Imm32 | Imm64;
1905 break;
1906 }
1907
1908 /* If this operand is at most 16 bits, convert it
1909 to a signed 16 bit number before trying to see
1910 whether it will fit in an even smaller size.
1911 This allows a 16-bit operand such as $0xffe0 to
1912 be recognised as within Imm8S range. */
1913 if ((i.types[op] & Imm16)
1914 && (i.op[op].imms->X_add_number & ~(offsetT) 0xffff) == 0)
1915 {
1916 i.op[op].imms->X_add_number =
1917 (((i.op[op].imms->X_add_number & 0xffff) ^ 0x8000) - 0x8000);
1918 }
1919 if ((i.types[op] & Imm32)
1920 && ((i.op[op].imms->X_add_number & ~(((offsetT) 2 << 31) - 1))
1921 == 0))
1922 {
1923 i.op[op].imms->X_add_number = ((i.op[op].imms->X_add_number
1924 ^ ((offsetT) 1 << 31))
1925 - ((offsetT) 1 << 31));
1926 }
1927 i.types[op] |= smallest_imm_type (i.op[op].imms->X_add_number);
1928
1929 /* We must avoid matching of Imm32 templates when 64bit
1930 only immediate is available. */
1931 if (guess_suffix == QWORD_MNEM_SUFFIX)
1932 i.types[op] &= ~Imm32;
1933 break;
1934
1935 case O_absent:
1936 case O_register:
1937 abort ();
1938
1939 /* Symbols and expressions. */
1940 default:
1941 /* Convert symbolic operand to proper sizes for matching. */
1942 switch (guess_suffix)
1943 {
1944 case QWORD_MNEM_SUFFIX:
1945 i.types[op] = Imm64 | Imm32S;
1946 break;
1947 case LONG_MNEM_SUFFIX:
1948 i.types[op] = Imm32 | Imm64;
1949 break;
1950 case WORD_MNEM_SUFFIX:
1951 i.types[op] = Imm16 | Imm32 | Imm64;
1952 break;
1953 break;
1954 case BYTE_MNEM_SUFFIX:
1955 i.types[op] = Imm8 | Imm8S | Imm16 | Imm32S | Imm32;
1956 break;
1957 break;
1958 }
1959 break;
1960 }
1961 }
1962 }
1963
1964 /* Try to use the smallest displacement type too. */
1965 static void
1966 optimize_disp ()
1967 {
1968 int op;
1969
1970 for (op = i.operands; --op >= 0;)
1971 if ((i.types[op] & Disp) && i.op[op].disps->X_op == O_constant)
1972 {
1973 offsetT disp = i.op[op].disps->X_add_number;
1974
1975 if (i.types[op] & Disp16)
1976 {
1977 /* We know this operand is at most 16 bits, so
1978 convert to a signed 16 bit number before trying
1979 to see whether it will fit in an even smaller
1980 size. */
1981
1982 disp = (((disp & 0xffff) ^ 0x8000) - 0x8000);
1983 }
1984 else if (i.types[op] & Disp32)
1985 {
1986 /* We know this operand is at most 32 bits, so convert to a
1987 signed 32 bit number before trying to see whether it will
1988 fit in an even smaller size. */
1989 disp &= (((offsetT) 2 << 31) - 1);
1990 disp = (disp ^ ((offsetT) 1 << 31)) - ((addressT) 1 << 31);
1991 }
1992 if (flag_code == CODE_64BIT)
1993 {
1994 if (fits_in_signed_long (disp))
1995 i.types[op] |= Disp32S;
1996 if (fits_in_unsigned_long (disp))
1997 i.types[op] |= Disp32;
1998 }
1999 if ((i.types[op] & (Disp32 | Disp32S | Disp16))
2000 && fits_in_signed_byte (disp))
2001 i.types[op] |= Disp8;
2002 }
2003 }
2004
2005 static int
2006 match_template ()
2007 {
2008 /* Points to template once we've found it. */
2009 const template *t;
2010 unsigned int overlap0, overlap1, overlap2;
2011 unsigned int found_reverse_match;
2012 int suffix_check;
2013
2014 #define MATCH(overlap, given, template) \
2015 ((overlap & ~JumpAbsolute) \
2016 && (((given) & (BaseIndex | JumpAbsolute)) \
2017 == ((overlap) & (BaseIndex | JumpAbsolute))))
2018
2019 /* If given types r0 and r1 are registers they must be of the same type
2020 unless the expected operand type register overlap is null.
2021 Note that Acc in a template matches every size of reg. */
2022 #define CONSISTENT_REGISTER_MATCH(m0, g0, t0, m1, g1, t1) \
2023 (((g0) & Reg) == 0 || ((g1) & Reg) == 0 \
2024 || ((g0) & Reg) == ((g1) & Reg) \
2025 || ((((m0) & Acc) ? Reg : (t0)) & (((m1) & Acc) ? Reg : (t1)) & Reg) == 0 )
2026
2027 overlap0 = 0;
2028 overlap1 = 0;
2029 overlap2 = 0;
2030 found_reverse_match = 0;
2031 suffix_check = (i.suffix == BYTE_MNEM_SUFFIX
2032 ? No_bSuf
2033 : (i.suffix == WORD_MNEM_SUFFIX
2034 ? No_wSuf
2035 : (i.suffix == SHORT_MNEM_SUFFIX
2036 ? No_sSuf
2037 : (i.suffix == LONG_MNEM_SUFFIX
2038 ? No_lSuf
2039 : (i.suffix == QWORD_MNEM_SUFFIX
2040 ? No_qSuf
2041 : (i.suffix == LONG_DOUBLE_MNEM_SUFFIX
2042 ? No_xSuf : 0))))));
2043
2044 for (t = current_templates->start;
2045 t < current_templates->end;
2046 t++)
2047 {
2048 /* Must have right number of operands. */
2049 if (i.operands != t->operands)
2050 continue;
2051
2052 /* Check the suffix, except for some instructions in intel mode. */
2053 if ((t->opcode_modifier & suffix_check)
2054 && !(intel_syntax
2055 && (t->opcode_modifier & IgnoreSize))
2056 && !(intel_syntax
2057 && t->base_opcode == 0xd9
2058 && (t->extension_opcode == 5 /* 0xd9,5 "fldcw" */
2059 || t->extension_opcode == 7))) /* 0xd9,7 "f{n}stcw" */
2060 continue;
2061
2062 /* Do not verify operands when there are none. */
2063 else if (!t->operands)
2064 {
2065 if (t->cpu_flags & ~cpu_arch_flags)
2066 continue;
2067 /* We've found a match; break out of loop. */
2068 break;
2069 }
2070
2071 overlap0 = i.types[0] & t->operand_types[0];
2072 switch (t->operands)
2073 {
2074 case 1:
2075 if (!MATCH (overlap0, i.types[0], t->operand_types[0]))
2076 continue;
2077 break;
2078 case 2:
2079 case 3:
2080 overlap1 = i.types[1] & t->operand_types[1];
2081 if (!MATCH (overlap0, i.types[0], t->operand_types[0])
2082 || !MATCH (overlap1, i.types[1], t->operand_types[1])
2083 || !CONSISTENT_REGISTER_MATCH (overlap0, i.types[0],
2084 t->operand_types[0],
2085 overlap1, i.types[1],
2086 t->operand_types[1]))
2087 {
2088 /* Check if other direction is valid ... */
2089 if ((t->opcode_modifier & (D | FloatD)) == 0)
2090 continue;
2091
2092 /* Try reversing direction of operands. */
2093 overlap0 = i.types[0] & t->operand_types[1];
2094 overlap1 = i.types[1] & t->operand_types[0];
2095 if (!MATCH (overlap0, i.types[0], t->operand_types[1])
2096 || !MATCH (overlap1, i.types[1], t->operand_types[0])
2097 || !CONSISTENT_REGISTER_MATCH (overlap0, i.types[0],
2098 t->operand_types[1],
2099 overlap1, i.types[1],
2100 t->operand_types[0]))
2101 {
2102 /* Does not match either direction. */
2103 continue;
2104 }
2105 /* found_reverse_match holds which of D or FloatDR
2106 we've found. */
2107 found_reverse_match = t->opcode_modifier & (D | FloatDR);
2108 }
2109 /* Found a forward 2 operand match here. */
2110 else if (t->operands == 3)
2111 {
2112 /* Here we make use of the fact that there are no
2113 reverse match 3 operand instructions, and all 3
2114 operand instructions only need to be checked for
2115 register consistency between operands 2 and 3. */
2116 overlap2 = i.types[2] & t->operand_types[2];
2117 if (!MATCH (overlap2, i.types[2], t->operand_types[2])
2118 || !CONSISTENT_REGISTER_MATCH (overlap1, i.types[1],
2119 t->operand_types[1],
2120 overlap2, i.types[2],
2121 t->operand_types[2]))
2122
2123 continue;
2124 }
2125 /* Found either forward/reverse 2 or 3 operand match here:
2126 slip through to break. */
2127 }
2128 if (t->cpu_flags & ~cpu_arch_flags)
2129 {
2130 found_reverse_match = 0;
2131 continue;
2132 }
2133 /* We've found a match; break out of loop. */
2134 break;
2135 }
2136
2137 if (t == current_templates->end)
2138 {
2139 /* We found no match. */
2140 as_bad (_("suffix or operands invalid for `%s'"),
2141 current_templates->start->name);
2142 return 0;
2143 }
2144
2145 if (!quiet_warnings)
2146 {
2147 if (!intel_syntax
2148 && ((i.types[0] & JumpAbsolute)
2149 != (t->operand_types[0] & JumpAbsolute)))
2150 {
2151 as_warn (_("indirect %s without `*'"), t->name);
2152 }
2153
2154 if ((t->opcode_modifier & (IsPrefix | IgnoreSize))
2155 == (IsPrefix | IgnoreSize))
2156 {
2157 /* Warn them that a data or address size prefix doesn't
2158 affect assembly of the next line of code. */
2159 as_warn (_("stand-alone `%s' prefix"), t->name);
2160 }
2161 }
2162
2163 /* Copy the template we found. */
2164 i.tm = *t;
2165 if (found_reverse_match)
2166 {
2167 /* If we found a reverse match we must alter the opcode
2168 direction bit. found_reverse_match holds bits to change
2169 (different for int & float insns). */
2170
2171 i.tm.base_opcode ^= found_reverse_match;
2172
2173 i.tm.operand_types[0] = t->operand_types[1];
2174 i.tm.operand_types[1] = t->operand_types[0];
2175 }
2176
2177 return 1;
2178 }
2179
2180 static int
2181 check_string ()
2182 {
2183 int mem_op = (i.types[0] & AnyMem) ? 0 : 1;
2184 if ((i.tm.operand_types[mem_op] & EsSeg) != 0)
2185 {
2186 if (i.seg[0] != NULL && i.seg[0] != &es)
2187 {
2188 as_bad (_("`%s' operand %d must use `%%es' segment"),
2189 i.tm.name,
2190 mem_op + 1);
2191 return 0;
2192 }
2193 /* There's only ever one segment override allowed per instruction.
2194 This instruction possibly has a legal segment override on the
2195 second operand, so copy the segment to where non-string
2196 instructions store it, allowing common code. */
2197 i.seg[0] = i.seg[1];
2198 }
2199 else if ((i.tm.operand_types[mem_op + 1] & EsSeg) != 0)
2200 {
2201 if (i.seg[1] != NULL && i.seg[1] != &es)
2202 {
2203 as_bad (_("`%s' operand %d must use `%%es' segment"),
2204 i.tm.name,
2205 mem_op + 2);
2206 return 0;
2207 }
2208 }
2209 return 1;
2210 }
2211
2212 static int
2213 process_suffix ()
2214 {
2215 /* If matched instruction specifies an explicit instruction mnemonic
2216 suffix, use it. */
2217 if (i.tm.opcode_modifier & (Size16 | Size32 | Size64))
2218 {
2219 if (i.tm.opcode_modifier & Size16)
2220 i.suffix = WORD_MNEM_SUFFIX;
2221 else if (i.tm.opcode_modifier & Size64)
2222 i.suffix = QWORD_MNEM_SUFFIX;
2223 else
2224 i.suffix = LONG_MNEM_SUFFIX;
2225 }
2226 else if (i.reg_operands)
2227 {
2228 /* If there's no instruction mnemonic suffix we try to invent one
2229 based on register operands. */
2230 if (!i.suffix)
2231 {
2232 /* We take i.suffix from the last register operand specified,
2233 Destination register type is more significant than source
2234 register type. */
2235 int op;
2236 for (op = i.operands; --op >= 0;)
2237 if ((i.types[op] & Reg)
2238 && !(i.tm.operand_types[op] & InOutPortReg))
2239 {
2240 i.suffix = ((i.types[op] & Reg8) ? BYTE_MNEM_SUFFIX :
2241 (i.types[op] & Reg16) ? WORD_MNEM_SUFFIX :
2242 (i.types[op] & Reg64) ? QWORD_MNEM_SUFFIX :
2243 LONG_MNEM_SUFFIX);
2244 break;
2245 }
2246 }
2247 else if (i.suffix == BYTE_MNEM_SUFFIX)
2248 {
2249 if (!check_byte_reg ())
2250 return 0;
2251 }
2252 else if (i.suffix == LONG_MNEM_SUFFIX)
2253 {
2254 if (!check_long_reg ())
2255 return 0;
2256 }
2257 else if (i.suffix == QWORD_MNEM_SUFFIX)
2258 {
2259 if (!check_qword_reg ())
2260 return 0;
2261 }
2262 else if (i.suffix == WORD_MNEM_SUFFIX)
2263 {
2264 if (!check_word_reg ())
2265 return 0;
2266 }
2267 else if (intel_syntax && (i.tm.opcode_modifier & IgnoreSize))
2268 /* Do nothing if the instruction is going to ignore the prefix. */
2269 ;
2270 else
2271 abort ();
2272 }
2273 else if ((i.tm.opcode_modifier & DefaultSize) && !i.suffix)
2274 {
2275 i.suffix = stackop_size;
2276 }
2277
2278 /* Change the opcode based on the operand size given by i.suffix;
2279 We need not change things for byte insns. */
2280
2281 if (!i.suffix && (i.tm.opcode_modifier & W))
2282 {
2283 as_bad (_("no instruction mnemonic suffix given and no register operands; can't size instruction"));
2284 return 0;
2285 }
2286
2287 if (i.suffix && i.suffix != BYTE_MNEM_SUFFIX)
2288 {
2289 /* It's not a byte, select word/dword operation. */
2290 if (i.tm.opcode_modifier & W)
2291 {
2292 if (i.tm.opcode_modifier & ShortForm)
2293 i.tm.base_opcode |= 8;
2294 else
2295 i.tm.base_opcode |= 1;
2296 }
2297
2298 /* Now select between word & dword operations via the operand
2299 size prefix, except for instructions that will ignore this
2300 prefix anyway. */
2301 if (i.suffix != QWORD_MNEM_SUFFIX
2302 && !(i.tm.opcode_modifier & IgnoreSize)
2303 && ((i.suffix == LONG_MNEM_SUFFIX) == (flag_code == CODE_16BIT)
2304 || (flag_code == CODE_64BIT
2305 && (i.tm.opcode_modifier & JumpByte))))
2306 {
2307 unsigned int prefix = DATA_PREFIX_OPCODE;
2308 if (i.tm.opcode_modifier & JumpByte) /* jcxz, loop */
2309 prefix = ADDR_PREFIX_OPCODE;
2310
2311 if (!add_prefix (prefix))
2312 return 0;
2313 }
2314
2315 /* Set mode64 for an operand. */
2316 if (i.suffix == QWORD_MNEM_SUFFIX
2317 && flag_code == CODE_64BIT
2318 && (i.tm.opcode_modifier & NoRex64) == 0)
2319 i.rex |= REX_MODE64;
2320
2321 /* Size floating point instruction. */
2322 if (i.suffix == LONG_MNEM_SUFFIX)
2323 {
2324 if (i.tm.opcode_modifier & FloatMF)
2325 i.tm.base_opcode ^= 4;
2326 }
2327 }
2328
2329 return 1;
2330 }
2331
2332 static int
2333 check_byte_reg ()
2334 {
2335 int op;
2336 for (op = i.operands; --op >= 0;)
2337 {
2338 /* If this is an eight bit register, it's OK. If it's the 16 or
2339 32 bit version of an eight bit register, we will just use the
2340 low portion, and that's OK too. */
2341 if (i.types[op] & Reg8)
2342 continue;
2343
2344 /* movzx and movsx should not generate this warning. */
2345 if (intel_syntax
2346 && (i.tm.base_opcode == 0xfb7
2347 || i.tm.base_opcode == 0xfb6
2348 || i.tm.base_opcode == 0x63
2349 || i.tm.base_opcode == 0xfbe
2350 || i.tm.base_opcode == 0xfbf))
2351 continue;
2352
2353 if ((i.types[op] & WordReg) && i.op[op].regs->reg_num < 4
2354 #if 0
2355 /* Check that the template allows eight bit regs. This
2356 kills insns such as `orb $1,%edx', which maybe should be
2357 allowed. */
2358 && (i.tm.operand_types[op] & (Reg8 | InOutPortReg))
2359 #endif
2360 )
2361 {
2362 /* Prohibit these changes in the 64bit mode, since the
2363 lowering is more complicated. */
2364 if (flag_code == CODE_64BIT
2365 && (i.tm.operand_types[op] & InOutPortReg) == 0)
2366 {
2367 as_bad (_("Incorrect register `%%%s' used with `%c' suffix"),
2368 i.op[op].regs->reg_name,
2369 i.suffix);
2370 return 0;
2371 }
2372 #if REGISTER_WARNINGS
2373 if (!quiet_warnings
2374 && (i.tm.operand_types[op] & InOutPortReg) == 0)
2375 as_warn (_("using `%%%s' instead of `%%%s' due to `%c' suffix"),
2376 (i.op[op].regs + (i.types[op] & Reg16
2377 ? REGNAM_AL - REGNAM_AX
2378 : REGNAM_AL - REGNAM_EAX))->reg_name,
2379 i.op[op].regs->reg_name,
2380 i.suffix);
2381 #endif
2382 continue;
2383 }
2384 /* Any other register is bad. */
2385 if (i.types[op] & (Reg | RegMMX | RegXMM
2386 | SReg2 | SReg3
2387 | Control | Debug | Test
2388 | FloatReg | FloatAcc))
2389 {
2390 as_bad (_("`%%%s' not allowed with `%s%c'"),
2391 i.op[op].regs->reg_name,
2392 i.tm.name,
2393 i.suffix);
2394 return 0;
2395 }
2396 }
2397 return 1;
2398 }
2399
2400 static int
2401 check_long_reg ()
2402 {
2403 int op;
2404
2405 for (op = i.operands; --op >= 0;)
2406 /* Reject eight bit registers, except where the template requires
2407 them. (eg. movzb) */
2408 if ((i.types[op] & Reg8) != 0
2409 && (i.tm.operand_types[op] & (Reg16 | Reg32 | Acc)) != 0)
2410 {
2411 as_bad (_("`%%%s' not allowed with `%s%c'"),
2412 i.op[op].regs->reg_name,
2413 i.tm.name,
2414 i.suffix);
2415 return 0;
2416 }
2417 /* Warn if the e prefix on a general reg is missing. */
2418 else if ((!quiet_warnings || flag_code == CODE_64BIT)
2419 && (i.types[op] & Reg16) != 0
2420 && (i.tm.operand_types[op] & (Reg32 | Acc)) != 0)
2421 {
2422 /* Prohibit these changes in the 64bit mode, since the
2423 lowering is more complicated. */
2424 if (flag_code == CODE_64BIT)
2425 {
2426 as_bad (_("Incorrect register `%%%s' used with `%c' suffix"),
2427 i.op[op].regs->reg_name,
2428 i.suffix);
2429 return 0;
2430 }
2431 #if REGISTER_WARNINGS
2432 else
2433 as_warn (_("using `%%%s' instead of `%%%s' due to `%c' suffix"),
2434 (i.op[op].regs + REGNAM_EAX - REGNAM_AX)->reg_name,
2435 i.op[op].regs->reg_name,
2436 i.suffix);
2437 #endif
2438 }
2439 /* Warn if the r prefix on a general reg is missing. */
2440 else if ((i.types[op] & Reg64) != 0
2441 && (i.tm.operand_types[op] & (Reg32 | Acc)) != 0)
2442 {
2443 as_bad (_("Incorrect register `%%%s' used with `%c' suffix"),
2444 i.op[op].regs->reg_name,
2445 i.suffix);
2446 return 0;
2447 }
2448 return 1;
2449 }
2450
2451 static int
2452 check_qword_reg ()
2453 {
2454 int op;
2455
2456 for (op = i.operands; --op >= 0; )
2457 /* Reject eight bit registers, except where the template requires
2458 them. (eg. movzb) */
2459 if ((i.types[op] & Reg8) != 0
2460 && (i.tm.operand_types[op] & (Reg16 | Reg32 | Acc)) != 0)
2461 {
2462 as_bad (_("`%%%s' not allowed with `%s%c'"),
2463 i.op[op].regs->reg_name,
2464 i.tm.name,
2465 i.suffix);
2466 return 0;
2467 }
2468 /* Warn if the e prefix on a general reg is missing. */
2469 else if (((i.types[op] & Reg16) != 0
2470 || (i.types[op] & Reg32) != 0)
2471 && (i.tm.operand_types[op] & (Reg32 | Acc)) != 0)
2472 {
2473 /* Prohibit these changes in the 64bit mode, since the
2474 lowering is more complicated. */
2475 as_bad (_("Incorrect register `%%%s' used with `%c' suffix"),
2476 i.op[op].regs->reg_name,
2477 i.suffix);
2478 return 0;
2479 }
2480 return 1;
2481 }
2482
2483 static int
2484 check_word_reg ()
2485 {
2486 int op;
2487 for (op = i.operands; --op >= 0;)
2488 /* Reject eight bit registers, except where the template requires
2489 them. (eg. movzb) */
2490 if ((i.types[op] & Reg8) != 0
2491 && (i.tm.operand_types[op] & (Reg16 | Reg32 | Acc)) != 0)
2492 {
2493 as_bad (_("`%%%s' not allowed with `%s%c'"),
2494 i.op[op].regs->reg_name,
2495 i.tm.name,
2496 i.suffix);
2497 return 0;
2498 }
2499 /* Warn if the e prefix on a general reg is present. */
2500 else if ((!quiet_warnings || flag_code == CODE_64BIT)
2501 && (i.types[op] & Reg32) != 0
2502 && (i.tm.operand_types[op] & (Reg16 | Acc)) != 0)
2503 {
2504 /* Prohibit these changes in the 64bit mode, since the
2505 lowering is more complicated. */
2506 if (flag_code == CODE_64BIT)
2507 {
2508 as_bad (_("Incorrect register `%%%s' used with `%c' suffix"),
2509 i.op[op].regs->reg_name,
2510 i.suffix);
2511 return 0;
2512 }
2513 else
2514 #if REGISTER_WARNINGS
2515 as_warn (_("using `%%%s' instead of `%%%s' due to `%c' suffix"),
2516 (i.op[op].regs + REGNAM_AX - REGNAM_EAX)->reg_name,
2517 i.op[op].regs->reg_name,
2518 i.suffix);
2519 #endif
2520 }
2521 return 1;
2522 }
2523
2524 static int
2525 finalize_imm ()
2526 {
2527 unsigned int overlap0, overlap1, overlap2;
2528
2529 overlap0 = i.types[0] & i.tm.operand_types[0];
2530 if ((overlap0 & (Imm8 | Imm8S | Imm16 | Imm32 | Imm32S))
2531 && overlap0 != Imm8 && overlap0 != Imm8S
2532 && overlap0 != Imm16 && overlap0 != Imm32S
2533 && overlap0 != Imm32 && overlap0 != Imm64)
2534 {
2535 if (i.suffix)
2536 {
2537 overlap0 &= (i.suffix == BYTE_MNEM_SUFFIX
2538 ? Imm8 | Imm8S
2539 : (i.suffix == WORD_MNEM_SUFFIX
2540 ? Imm16
2541 : (i.suffix == QWORD_MNEM_SUFFIX
2542 ? Imm64 | Imm32S
2543 : Imm32)));
2544 }
2545 else if (overlap0 == (Imm16 | Imm32S | Imm32)
2546 || overlap0 == (Imm16 | Imm32)
2547 || overlap0 == (Imm16 | Imm32S))
2548 {
2549 overlap0 = ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0)
2550 ? Imm16 : Imm32S);
2551 }
2552 if (overlap0 != Imm8 && overlap0 != Imm8S
2553 && overlap0 != Imm16 && overlap0 != Imm32S
2554 && overlap0 != Imm32 && overlap0 != Imm64)
2555 {
2556 as_bad (_("no instruction mnemonic suffix given; can't determine immediate size"));
2557 return 0;
2558 }
2559 }
2560 i.types[0] = overlap0;
2561
2562 overlap1 = i.types[1] & i.tm.operand_types[1];
2563 if ((overlap1 & (Imm8 | Imm8S | Imm16 | Imm32S | Imm32))
2564 && overlap1 != Imm8 && overlap1 != Imm8S
2565 && overlap1 != Imm16 && overlap1 != Imm32S
2566 && overlap1 != Imm32 && overlap1 != Imm64)
2567 {
2568 if (i.suffix)
2569 {
2570 overlap1 &= (i.suffix == BYTE_MNEM_SUFFIX
2571 ? Imm8 | Imm8S
2572 : (i.suffix == WORD_MNEM_SUFFIX
2573 ? Imm16
2574 : (i.suffix == QWORD_MNEM_SUFFIX
2575 ? Imm64 | Imm32S
2576 : Imm32)));
2577 }
2578 else if (overlap1 == (Imm16 | Imm32 | Imm32S)
2579 || overlap1 == (Imm16 | Imm32)
2580 || overlap1 == (Imm16 | Imm32S))
2581 {
2582 overlap1 = ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0)
2583 ? Imm16 : Imm32S);
2584 }
2585 if (overlap1 != Imm8 && overlap1 != Imm8S
2586 && overlap1 != Imm16 && overlap1 != Imm32S
2587 && overlap1 != Imm32 && overlap1 != Imm64)
2588 {
2589 as_bad (_("no instruction mnemonic suffix given; can't determine immediate size %x %c"),overlap1, i.suffix);
2590 return 0;
2591 }
2592 }
2593 i.types[1] = overlap1;
2594
2595 overlap2 = i.types[2] & i.tm.operand_types[2];
2596 assert ((overlap2 & Imm) == 0);
2597 i.types[2] = overlap2;
2598
2599 return 1;
2600 }
2601
2602 static int
2603 process_operands ()
2604 {
2605 /* Default segment register this instruction will use for memory
2606 accesses. 0 means unknown. This is only for optimizing out
2607 unnecessary segment overrides. */
2608 const seg_entry *default_seg = 0;
2609
2610 /* The imul $imm, %reg instruction is converted into
2611 imul $imm, %reg, %reg, and the clr %reg instruction
2612 is converted into xor %reg, %reg. */
2613 if (i.tm.opcode_modifier & regKludge)
2614 {
2615 unsigned int first_reg_op = (i.types[0] & Reg) ? 0 : 1;
2616 /* Pretend we saw the extra register operand. */
2617 assert (i.op[first_reg_op + 1].regs == 0);
2618 i.op[first_reg_op + 1].regs = i.op[first_reg_op].regs;
2619 i.types[first_reg_op + 1] = i.types[first_reg_op];
2620 i.reg_operands = 2;
2621 }
2622
2623 if (i.tm.opcode_modifier & ShortForm)
2624 {
2625 /* The register or float register operand is in operand 0 or 1. */
2626 unsigned int op = (i.types[0] & (Reg | FloatReg)) ? 0 : 1;
2627 /* Register goes in low 3 bits of opcode. */
2628 i.tm.base_opcode |= i.op[op].regs->reg_num;
2629 if ((i.op[op].regs->reg_flags & RegRex) != 0)
2630 i.rex |= REX_EXTZ;
2631 if (!quiet_warnings && (i.tm.opcode_modifier & Ugh) != 0)
2632 {
2633 /* Warn about some common errors, but press on regardless.
2634 The first case can be generated by gcc (<= 2.8.1). */
2635 if (i.operands == 2)
2636 {
2637 /* Reversed arguments on faddp, fsubp, etc. */
2638 as_warn (_("translating to `%s %%%s,%%%s'"), i.tm.name,
2639 i.op[1].regs->reg_name,
2640 i.op[0].regs->reg_name);
2641 }
2642 else
2643 {
2644 /* Extraneous `l' suffix on fp insn. */
2645 as_warn (_("translating to `%s %%%s'"), i.tm.name,
2646 i.op[0].regs->reg_name);
2647 }
2648 }
2649 }
2650 else if (i.tm.opcode_modifier & Modrm)
2651 {
2652 /* The opcode is completed (modulo i.tm.extension_opcode which
2653 must be put into the modrm byte). Now, we make the modrm and
2654 index base bytes based on all the info we've collected. */
2655
2656 default_seg = build_modrm_byte ();
2657 }
2658 else if (i.tm.opcode_modifier & (Seg2ShortForm | Seg3ShortForm))
2659 {
2660 if (i.tm.base_opcode == POP_SEG_SHORT
2661 && i.op[0].regs->reg_num == 1)
2662 {
2663 as_bad (_("you can't `pop %%cs'"));
2664 return 0;
2665 }
2666 i.tm.base_opcode |= (i.op[0].regs->reg_num << 3);
2667 if ((i.op[0].regs->reg_flags & RegRex) != 0)
2668 i.rex |= REX_EXTZ;
2669 }
2670 else if ((i.tm.base_opcode & ~(D | W)) == MOV_AX_DISP32)
2671 {
2672 default_seg = &ds;
2673 }
2674 else if ((i.tm.opcode_modifier & IsString) != 0)
2675 {
2676 /* For the string instructions that allow a segment override
2677 on one of their operands, the default segment is ds. */
2678 default_seg = &ds;
2679 }
2680
2681 if (i.tm.base_opcode == 0x8d /* lea */ && i.seg[0] && !quiet_warnings)
2682 as_warn (_("segment override on `lea' is ineffectual"));
2683
2684 /* If a segment was explicitly specified, and the specified segment
2685 is not the default, use an opcode prefix to select it. If we
2686 never figured out what the default segment is, then default_seg
2687 will be zero at this point, and the specified segment prefix will
2688 always be used. */
2689 if ((i.seg[0]) && (i.seg[0] != default_seg))
2690 {
2691 if (!add_prefix (i.seg[0]->seg_prefix))
2692 return 0;
2693 }
2694 return 1;
2695 }
2696
2697 static const seg_entry *
2698 build_modrm_byte ()
2699 {
2700 const seg_entry *default_seg = 0;
2701
2702 /* i.reg_operands MUST be the number of real register operands;
2703 implicit registers do not count. */
2704 if (i.reg_operands == 2)
2705 {
2706 unsigned int source, dest;
2707 source = ((i.types[0]
2708 & (Reg | RegMMX | RegXMM
2709 | SReg2 | SReg3
2710 | Control | Debug | Test))
2711 ? 0 : 1);
2712 dest = source + 1;
2713
2714 i.rm.mode = 3;
2715 /* One of the register operands will be encoded in the i.tm.reg
2716 field, the other in the combined i.tm.mode and i.tm.regmem
2717 fields. If no form of this instruction supports a memory
2718 destination operand, then we assume the source operand may
2719 sometimes be a memory operand and so we need to store the
2720 destination in the i.rm.reg field. */
2721 if ((i.tm.operand_types[dest] & AnyMem) == 0)
2722 {
2723 i.rm.reg = i.op[dest].regs->reg_num;
2724 i.rm.regmem = i.op[source].regs->reg_num;
2725 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
2726 i.rex |= REX_EXTX;
2727 if ((i.op[source].regs->reg_flags & RegRex) != 0)
2728 i.rex |= REX_EXTZ;
2729 }
2730 else
2731 {
2732 i.rm.reg = i.op[source].regs->reg_num;
2733 i.rm.regmem = i.op[dest].regs->reg_num;
2734 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
2735 i.rex |= REX_EXTZ;
2736 if ((i.op[source].regs->reg_flags & RegRex) != 0)
2737 i.rex |= REX_EXTX;
2738 }
2739 }
2740 else
2741 { /* If it's not 2 reg operands... */
2742 if (i.mem_operands)
2743 {
2744 unsigned int fake_zero_displacement = 0;
2745 unsigned int op = ((i.types[0] & AnyMem)
2746 ? 0
2747 : (i.types[1] & AnyMem) ? 1 : 2);
2748
2749 default_seg = &ds;
2750
2751 if (i.base_reg == 0)
2752 {
2753 i.rm.mode = 0;
2754 if (!i.disp_operands)
2755 fake_zero_displacement = 1;
2756 if (i.index_reg == 0)
2757 {
2758 /* Operand is just <disp> */
2759 if ((flag_code == CODE_16BIT) ^ (i.prefix[ADDR_PREFIX] != 0)
2760 && (flag_code != CODE_64BIT))
2761 {
2762 i.rm.regmem = NO_BASE_REGISTER_16;
2763 i.types[op] &= ~Disp;
2764 i.types[op] |= Disp16;
2765 }
2766 else if (flag_code != CODE_64BIT
2767 || (i.prefix[ADDR_PREFIX] != 0))
2768 {
2769 i.rm.regmem = NO_BASE_REGISTER;
2770 i.types[op] &= ~Disp;
2771 i.types[op] |= Disp32;
2772 }
2773 else
2774 {
2775 /* 64bit mode overwrites the 32bit absolute
2776 addressing by RIP relative addressing and
2777 absolute addressing is encoded by one of the
2778 redundant SIB forms. */
2779 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
2780 i.sib.base = NO_BASE_REGISTER;
2781 i.sib.index = NO_INDEX_REGISTER;
2782 i.types[op] &= ~Disp;
2783 i.types[op] |= Disp32S;
2784 }
2785 }
2786 else /* !i.base_reg && i.index_reg */
2787 {
2788 i.sib.index = i.index_reg->reg_num;
2789 i.sib.base = NO_BASE_REGISTER;
2790 i.sib.scale = i.log2_scale_factor;
2791 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
2792 i.types[op] &= ~Disp;
2793 if (flag_code != CODE_64BIT)
2794 i.types[op] |= Disp32; /* Must be 32 bit */
2795 else
2796 i.types[op] |= Disp32S;
2797 if ((i.index_reg->reg_flags & RegRex) != 0)
2798 i.rex |= REX_EXTY;
2799 }
2800 }
2801 /* RIP addressing for 64bit mode. */
2802 else if (i.base_reg->reg_type == BaseIndex)
2803 {
2804 i.rm.regmem = NO_BASE_REGISTER;
2805 i.types[op] &= ~Disp;
2806 i.types[op] |= Disp32S;
2807 i.flags[op] = Operand_PCrel;
2808 }
2809 else if (i.base_reg->reg_type & Reg16)
2810 {
2811 switch (i.base_reg->reg_num)
2812 {
2813 case 3: /* (%bx) */
2814 if (i.index_reg == 0)
2815 i.rm.regmem = 7;
2816 else /* (%bx,%si) -> 0, or (%bx,%di) -> 1 */
2817 i.rm.regmem = i.index_reg->reg_num - 6;
2818 break;
2819 case 5: /* (%bp) */
2820 default_seg = &ss;
2821 if (i.index_reg == 0)
2822 {
2823 i.rm.regmem = 6;
2824 if ((i.types[op] & Disp) == 0)
2825 {
2826 /* fake (%bp) into 0(%bp) */
2827 i.types[op] |= Disp8;
2828 fake_zero_displacement = 1;
2829 }
2830 }
2831 else /* (%bp,%si) -> 2, or (%bp,%di) -> 3 */
2832 i.rm.regmem = i.index_reg->reg_num - 6 + 2;
2833 break;
2834 default: /* (%si) -> 4 or (%di) -> 5 */
2835 i.rm.regmem = i.base_reg->reg_num - 6 + 4;
2836 }
2837 i.rm.mode = mode_from_disp_size (i.types[op]);
2838 }
2839 else /* i.base_reg and 32/64 bit mode */
2840 {
2841 if (flag_code == CODE_64BIT
2842 && (i.types[op] & Disp))
2843 {
2844 if (i.types[op] & Disp8)
2845 i.types[op] = Disp8 | Disp32S;
2846 else
2847 i.types[op] = Disp32S;
2848 }
2849 i.rm.regmem = i.base_reg->reg_num;
2850 if ((i.base_reg->reg_flags & RegRex) != 0)
2851 i.rex |= REX_EXTZ;
2852 i.sib.base = i.base_reg->reg_num;
2853 /* x86-64 ignores REX prefix bit here to avoid decoder
2854 complications. */
2855 if ((i.base_reg->reg_num & 7) == EBP_REG_NUM)
2856 {
2857 default_seg = &ss;
2858 if (i.disp_operands == 0)
2859 {
2860 fake_zero_displacement = 1;
2861 i.types[op] |= Disp8;
2862 }
2863 }
2864 else if (i.base_reg->reg_num == ESP_REG_NUM)
2865 {
2866 default_seg = &ss;
2867 }
2868 i.sib.scale = i.log2_scale_factor;
2869 if (i.index_reg == 0)
2870 {
2871 /* <disp>(%esp) becomes two byte modrm with no index
2872 register. We've already stored the code for esp
2873 in i.rm.regmem ie. ESCAPE_TO_TWO_BYTE_ADDRESSING.
2874 Any base register besides %esp will not use the
2875 extra modrm byte. */
2876 i.sib.index = NO_INDEX_REGISTER;
2877 #if !SCALE1_WHEN_NO_INDEX
2878 /* Another case where we force the second modrm byte. */
2879 if (i.log2_scale_factor)
2880 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
2881 #endif
2882 }
2883 else
2884 {
2885 i.sib.index = i.index_reg->reg_num;
2886 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
2887 if ((i.index_reg->reg_flags & RegRex) != 0)
2888 i.rex |= REX_EXTY;
2889 }
2890 i.rm.mode = mode_from_disp_size (i.types[op]);
2891 }
2892
2893 if (fake_zero_displacement)
2894 {
2895 /* Fakes a zero displacement assuming that i.types[op]
2896 holds the correct displacement size. */
2897 expressionS *exp;
2898
2899 assert (i.op[op].disps == 0);
2900 exp = &disp_expressions[i.disp_operands++];
2901 i.op[op].disps = exp;
2902 exp->X_op = O_constant;
2903 exp->X_add_number = 0;
2904 exp->X_add_symbol = (symbolS *) 0;
2905 exp->X_op_symbol = (symbolS *) 0;
2906 }
2907 }
2908
2909 /* Fill in i.rm.reg or i.rm.regmem field with register operand
2910 (if any) based on i.tm.extension_opcode. Again, we must be
2911 careful to make sure that segment/control/debug/test/MMX
2912 registers are coded into the i.rm.reg field. */
2913 if (i.reg_operands)
2914 {
2915 unsigned int op =
2916 ((i.types[0]
2917 & (Reg | RegMMX | RegXMM
2918 | SReg2 | SReg3
2919 | Control | Debug | Test))
2920 ? 0
2921 : ((i.types[1]
2922 & (Reg | RegMMX | RegXMM
2923 | SReg2 | SReg3
2924 | Control | Debug | Test))
2925 ? 1
2926 : 2));
2927 /* If there is an extension opcode to put here, the register
2928 number must be put into the regmem field. */
2929 if (i.tm.extension_opcode != None)
2930 {
2931 i.rm.regmem = i.op[op].regs->reg_num;
2932 if ((i.op[op].regs->reg_flags & RegRex) != 0)
2933 i.rex |= REX_EXTZ;
2934 }
2935 else
2936 {
2937 i.rm.reg = i.op[op].regs->reg_num;
2938 if ((i.op[op].regs->reg_flags & RegRex) != 0)
2939 i.rex |= REX_EXTX;
2940 }
2941
2942 /* Now, if no memory operand has set i.rm.mode = 0, 1, 2 we
2943 must set it to 3 to indicate this is a register operand
2944 in the regmem field. */
2945 if (!i.mem_operands)
2946 i.rm.mode = 3;
2947 }
2948
2949 /* Fill in i.rm.reg field with extension opcode (if any). */
2950 if (i.tm.extension_opcode != None)
2951 i.rm.reg = i.tm.extension_opcode;
2952 }
2953 return default_seg;
2954 }
2955
2956 static void
2957 output_branch ()
2958 {
2959 char *p;
2960 int code16;
2961 int prefix;
2962 relax_substateT subtype;
2963 symbolS *sym;
2964 offsetT off;
2965
2966 code16 = 0;
2967 if (flag_code == CODE_16BIT)
2968 code16 = CODE16;
2969
2970 prefix = 0;
2971 if (i.prefix[DATA_PREFIX] != 0)
2972 {
2973 prefix = 1;
2974 i.prefixes -= 1;
2975 code16 ^= CODE16;
2976 }
2977 /* Pentium4 branch hints. */
2978 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
2979 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
2980 {
2981 prefix++;
2982 i.prefixes--;
2983 }
2984 if (i.prefix[REX_PREFIX] != 0)
2985 {
2986 prefix++;
2987 i.prefixes--;
2988 }
2989
2990 if (i.prefixes != 0 && !intel_syntax)
2991 as_warn (_("skipping prefixes on this instruction"));
2992
2993 /* It's always a symbol; End frag & setup for relax.
2994 Make sure there is enough room in this frag for the largest
2995 instruction we may generate in md_convert_frag. This is 2
2996 bytes for the opcode and room for the prefix and largest
2997 displacement. */
2998 frag_grow (prefix + 2 + 4);
2999 /* Prefix and 1 opcode byte go in fr_fix. */
3000 p = frag_more (prefix + 1);
3001 if (i.prefix[DATA_PREFIX] != 0)
3002 *p++ = DATA_PREFIX_OPCODE;
3003 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE
3004 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE)
3005 *p++ = i.prefix[SEG_PREFIX];
3006 if (i.prefix[REX_PREFIX] != 0)
3007 *p++ = i.prefix[REX_PREFIX];
3008 *p = i.tm.base_opcode;
3009
3010 if ((unsigned char) *p == JUMP_PC_RELATIVE)
3011 subtype = ENCODE_RELAX_STATE (UNCOND_JUMP, SMALL);
3012 else if ((cpu_arch_flags & Cpu386) != 0)
3013 subtype = ENCODE_RELAX_STATE (COND_JUMP, SMALL);
3014 else
3015 subtype = ENCODE_RELAX_STATE (COND_JUMP86, SMALL);
3016 subtype |= code16;
3017
3018 sym = i.op[0].disps->X_add_symbol;
3019 off = i.op[0].disps->X_add_number;
3020
3021 if (i.op[0].disps->X_op != O_constant
3022 && i.op[0].disps->X_op != O_symbol)
3023 {
3024 /* Handle complex expressions. */
3025 sym = make_expr_symbol (i.op[0].disps);
3026 off = 0;
3027 }
3028
3029 /* 1 possible extra opcode + 4 byte displacement go in var part.
3030 Pass reloc in fr_var. */
3031 frag_var (rs_machine_dependent, 5, i.reloc[0], subtype, sym, off, p);
3032 }
3033
3034 static void
3035 output_jump ()
3036 {
3037 char *p;
3038 int size;
3039 fixS *fixP;
3040
3041 if (i.tm.opcode_modifier & JumpByte)
3042 {
3043 /* This is a loop or jecxz type instruction. */
3044 size = 1;
3045 if (i.prefix[ADDR_PREFIX] != 0)
3046 {
3047 FRAG_APPEND_1_CHAR (ADDR_PREFIX_OPCODE);
3048 i.prefixes -= 1;
3049 }
3050 /* Pentium4 branch hints. */
3051 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
3052 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
3053 {
3054 FRAG_APPEND_1_CHAR (i.prefix[SEG_PREFIX]);
3055 i.prefixes--;
3056 }
3057 }
3058 else
3059 {
3060 int code16;
3061
3062 code16 = 0;
3063 if (flag_code == CODE_16BIT)
3064 code16 = CODE16;
3065
3066 if (i.prefix[DATA_PREFIX] != 0)
3067 {
3068 FRAG_APPEND_1_CHAR (DATA_PREFIX_OPCODE);
3069 i.prefixes -= 1;
3070 code16 ^= CODE16;
3071 }
3072
3073 size = 4;
3074 if (code16)
3075 size = 2;
3076 }
3077
3078 if (i.prefix[REX_PREFIX] != 0)
3079 {
3080 FRAG_APPEND_1_CHAR (i.prefix[REX_PREFIX]);
3081 i.prefixes -= 1;
3082 }
3083
3084 if (i.prefixes != 0 && !intel_syntax)
3085 as_warn (_("skipping prefixes on this instruction"));
3086
3087 p = frag_more (1 + size);
3088 *p++ = i.tm.base_opcode;
3089
3090 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal, size,
3091 i.op[0].disps, 1, reloc (size, 1, 1, i.reloc[0]));
3092
3093 /* All jumps handled here are signed, but don't use a signed limit
3094 check for 32 and 16 bit jumps as we want to allow wrap around at
3095 4G and 64k respectively. */
3096 if (size == 1)
3097 fixP->fx_signed = 1;
3098 }
3099
3100 static void
3101 output_interseg_jump ()
3102 {
3103 char *p;
3104 int size;
3105 int prefix;
3106 int code16;
3107
3108 code16 = 0;
3109 if (flag_code == CODE_16BIT)
3110 code16 = CODE16;
3111
3112 prefix = 0;
3113 if (i.prefix[DATA_PREFIX] != 0)
3114 {
3115 prefix = 1;
3116 i.prefixes -= 1;
3117 code16 ^= CODE16;
3118 }
3119 if (i.prefix[REX_PREFIX] != 0)
3120 {
3121 prefix++;
3122 i.prefixes -= 1;
3123 }
3124
3125 size = 4;
3126 if (code16)
3127 size = 2;
3128
3129 if (i.prefixes != 0 && !intel_syntax)
3130 as_warn (_("skipping prefixes on this instruction"));
3131
3132 /* 1 opcode; 2 segment; offset */
3133 p = frag_more (prefix + 1 + 2 + size);
3134
3135 if (i.prefix[DATA_PREFIX] != 0)
3136 *p++ = DATA_PREFIX_OPCODE;
3137
3138 if (i.prefix[REX_PREFIX] != 0)
3139 *p++ = i.prefix[REX_PREFIX];
3140
3141 *p++ = i.tm.base_opcode;
3142 if (i.op[1].imms->X_op == O_constant)
3143 {
3144 offsetT n = i.op[1].imms->X_add_number;
3145
3146 if (size == 2
3147 && !fits_in_unsigned_word (n)
3148 && !fits_in_signed_word (n))
3149 {
3150 as_bad (_("16-bit jump out of range"));
3151 return;
3152 }
3153 md_number_to_chars (p, n, size);
3154 }
3155 else
3156 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
3157 i.op[1].imms, 0, reloc (size, 0, 0, i.reloc[1]));
3158 if (i.op[0].imms->X_op != O_constant)
3159 as_bad (_("can't handle non absolute segment in `%s'"),
3160 i.tm.name);
3161 md_number_to_chars (p + size, (valueT) i.op[0].imms->X_add_number, 2);
3162 }
3163
3164
3165 static void
3166 output_insn ()
3167 {
3168 fragS *insn_start_frag;
3169 offsetT insn_start_off;
3170
3171 /* Tie dwarf2 debug info to the address at the start of the insn.
3172 We can't do this after the insn has been output as the current
3173 frag may have been closed off. eg. by frag_var. */
3174 dwarf2_emit_insn (0);
3175
3176 insn_start_frag = frag_now;
3177 insn_start_off = frag_now_fix ();
3178
3179 /* Output jumps. */
3180 if (i.tm.opcode_modifier & Jump)
3181 output_branch ();
3182 else if (i.tm.opcode_modifier & (JumpByte | JumpDword))
3183 output_jump ();
3184 else if (i.tm.opcode_modifier & JumpInterSegment)
3185 output_interseg_jump ();
3186 else
3187 {
3188 /* Output normal instructions here. */
3189 char *p;
3190 unsigned char *q;
3191
3192 /* All opcodes on i386 have either 1 or 2 bytes. We may use third
3193 byte for the SSE instructions to specify a prefix they require. */
3194 if (i.tm.base_opcode & 0xff0000)
3195 add_prefix ((i.tm.base_opcode >> 16) & 0xff);
3196
3197 /* The prefix bytes. */
3198 for (q = i.prefix;
3199 q < i.prefix + sizeof (i.prefix) / sizeof (i.prefix[0]);
3200 q++)
3201 {
3202 if (*q)
3203 {
3204 p = frag_more (1);
3205 md_number_to_chars (p, (valueT) *q, 1);
3206 }
3207 }
3208
3209 /* Now the opcode; be careful about word order here! */
3210 if (fits_in_unsigned_byte (i.tm.base_opcode))
3211 {
3212 FRAG_APPEND_1_CHAR (i.tm.base_opcode);
3213 }
3214 else
3215 {
3216 p = frag_more (2);
3217 /* Put out high byte first: can't use md_number_to_chars! */
3218 *p++ = (i.tm.base_opcode >> 8) & 0xff;
3219 *p = i.tm.base_opcode & 0xff;
3220 }
3221
3222 /* Now the modrm byte and sib byte (if present). */
3223 if (i.tm.opcode_modifier & Modrm)
3224 {
3225 p = frag_more (1);
3226 md_number_to_chars (p,
3227 (valueT) (i.rm.regmem << 0
3228 | i.rm.reg << 3
3229 | i.rm.mode << 6),
3230 1);
3231 /* If i.rm.regmem == ESP (4)
3232 && i.rm.mode != (Register mode)
3233 && not 16 bit
3234 ==> need second modrm byte. */
3235 if (i.rm.regmem == ESCAPE_TO_TWO_BYTE_ADDRESSING
3236 && i.rm.mode != 3
3237 && !(i.base_reg && (i.base_reg->reg_type & Reg16) != 0))
3238 {
3239 p = frag_more (1);
3240 md_number_to_chars (p,
3241 (valueT) (i.sib.base << 0
3242 | i.sib.index << 3
3243 | i.sib.scale << 6),
3244 1);
3245 }
3246 }
3247
3248 if (i.disp_operands)
3249 output_disp (insn_start_frag, insn_start_off);
3250
3251 if (i.imm_operands)
3252 output_imm (insn_start_frag, insn_start_off);
3253 }
3254
3255 #ifdef DEBUG386
3256 if (flag_debug)
3257 {
3258 pi (line, &i);
3259 }
3260 #endif /* DEBUG386 */
3261 }
3262
3263 static void
3264 output_disp (insn_start_frag, insn_start_off)
3265 fragS *insn_start_frag;
3266 offsetT insn_start_off;
3267 {
3268 char *p;
3269 unsigned int n;
3270
3271 for (n = 0; n < i.operands; n++)
3272 {
3273 if (i.types[n] & Disp)
3274 {
3275 if (i.op[n].disps->X_op == O_constant)
3276 {
3277 int size;
3278 offsetT val;
3279
3280 size = 4;
3281 if (i.types[n] & (Disp8 | Disp16 | Disp64))
3282 {
3283 size = 2;
3284 if (i.types[n] & Disp8)
3285 size = 1;
3286 if (i.types[n] & Disp64)
3287 size = 8;
3288 }
3289 val = offset_in_range (i.op[n].disps->X_add_number,
3290 size);
3291 p = frag_more (size);
3292 md_number_to_chars (p, val, size);
3293 }
3294 else
3295 {
3296 RELOC_ENUM reloc_type;
3297 int size = 4;
3298 int sign = 0;
3299 int pcrel = (i.flags[n] & Operand_PCrel) != 0;
3300
3301 /* The PC relative address is computed relative
3302 to the instruction boundary, so in case immediate
3303 fields follows, we need to adjust the value. */
3304 if (pcrel && i.imm_operands)
3305 {
3306 int imm_size = 4;
3307 unsigned int n1;
3308
3309 for (n1 = 0; n1 < i.operands; n1++)
3310 if (i.types[n1] & Imm)
3311 {
3312 if (i.types[n1] & (Imm8 | Imm8S | Imm16 | Imm64))
3313 {
3314 imm_size = 2;
3315 if (i.types[n1] & (Imm8 | Imm8S))
3316 imm_size = 1;
3317 if (i.types[n1] & Imm64)
3318 imm_size = 8;
3319 }
3320 break;
3321 }
3322 /* We should find the immediate. */
3323 if (n1 == i.operands)
3324 abort ();
3325 i.op[n].disps->X_add_number -= imm_size;
3326 }
3327
3328 if (i.types[n] & Disp32S)
3329 sign = 1;
3330
3331 if (i.types[n] & (Disp16 | Disp64))
3332 {
3333 size = 2;
3334 if (i.types[n] & Disp64)
3335 size = 8;
3336 }
3337
3338 p = frag_more (size);
3339 reloc_type = reloc (size, pcrel, sign, i.reloc[n]);
3340 #ifdef BFD_ASSEMBLER
3341 if (reloc_type == BFD_RELOC_32
3342 && GOT_symbol
3343 && GOT_symbol == i.op[n].disps->X_add_symbol
3344 && (i.op[n].disps->X_op == O_symbol
3345 || (i.op[n].disps->X_op == O_add
3346 && ((symbol_get_value_expression
3347 (i.op[n].disps->X_op_symbol)->X_op)
3348 == O_subtract))))
3349 {
3350 offsetT add;
3351
3352 if (insn_start_frag == frag_now)
3353 add = (p - frag_now->fr_literal) - insn_start_off;
3354 else
3355 {
3356 fragS *fr;
3357
3358 add = insn_start_frag->fr_fix - insn_start_off;
3359 for (fr = insn_start_frag->fr_next;
3360 fr && fr != frag_now; fr = fr->fr_next)
3361 add += fr->fr_fix;
3362 add += p - frag_now->fr_literal;
3363 }
3364
3365 /* We don't support dynamic linking on x86-64 yet. */
3366 if (flag_code == CODE_64BIT)
3367 abort ();
3368 reloc_type = BFD_RELOC_386_GOTPC;
3369 i.op[n].disps->X_add_number += add;
3370 }
3371 #endif
3372 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
3373 i.op[n].disps, pcrel, reloc_type);
3374 }
3375 }
3376 }
3377 }
3378
3379 static void
3380 output_imm (insn_start_frag, insn_start_off)
3381 fragS *insn_start_frag;
3382 offsetT insn_start_off;
3383 {
3384 char *p;
3385 unsigned int n;
3386
3387 for (n = 0; n < i.operands; n++)
3388 {
3389 if (i.types[n] & Imm)
3390 {
3391 if (i.op[n].imms->X_op == O_constant)
3392 {
3393 int size;
3394 offsetT val;
3395
3396 size = 4;
3397 if (i.types[n] & (Imm8 | Imm8S | Imm16 | Imm64))
3398 {
3399 size = 2;
3400 if (i.types[n] & (Imm8 | Imm8S))
3401 size = 1;
3402 else if (i.types[n] & Imm64)
3403 size = 8;
3404 }
3405 val = offset_in_range (i.op[n].imms->X_add_number,
3406 size);
3407 p = frag_more (size);
3408 md_number_to_chars (p, val, size);
3409 }
3410 else
3411 {
3412 /* Not absolute_section.
3413 Need a 32-bit fixup (don't support 8bit
3414 non-absolute imms). Try to support other
3415 sizes ... */
3416 RELOC_ENUM reloc_type;
3417 int size = 4;
3418 int sign = 0;
3419
3420 if ((i.types[n] & (Imm32S))
3421 && i.suffix == QWORD_MNEM_SUFFIX)
3422 sign = 1;
3423 if (i.types[n] & (Imm8 | Imm8S | Imm16 | Imm64))
3424 {
3425 size = 2;
3426 if (i.types[n] & (Imm8 | Imm8S))
3427 size = 1;
3428 if (i.types[n] & Imm64)
3429 size = 8;
3430 }
3431
3432 p = frag_more (size);
3433 reloc_type = reloc (size, 0, sign, i.reloc[n]);
3434 #ifdef BFD_ASSEMBLER
3435 /* This is tough to explain. We end up with this one if we
3436 * have operands that look like
3437 * "_GLOBAL_OFFSET_TABLE_+[.-.L284]". The goal here is to
3438 * obtain the absolute address of the GOT, and it is strongly
3439 * preferable from a performance point of view to avoid using
3440 * a runtime relocation for this. The actual sequence of
3441 * instructions often look something like:
3442 *
3443 * call .L66
3444 * .L66:
3445 * popl %ebx
3446 * addl $_GLOBAL_OFFSET_TABLE_+[.-.L66],%ebx
3447 *
3448 * The call and pop essentially return the absolute address
3449 * of the label .L66 and store it in %ebx. The linker itself
3450 * will ultimately change the first operand of the addl so
3451 * that %ebx points to the GOT, but to keep things simple, the
3452 * .o file must have this operand set so that it generates not
3453 * the absolute address of .L66, but the absolute address of
3454 * itself. This allows the linker itself simply treat a GOTPC
3455 * relocation as asking for a pcrel offset to the GOT to be
3456 * added in, and the addend of the relocation is stored in the
3457 * operand field for the instruction itself.
3458 *
3459 * Our job here is to fix the operand so that it would add
3460 * the correct offset so that %ebx would point to itself. The
3461 * thing that is tricky is that .-.L66 will point to the
3462 * beginning of the instruction, so we need to further modify
3463 * the operand so that it will point to itself. There are
3464 * other cases where you have something like:
3465 *
3466 * .long $_GLOBAL_OFFSET_TABLE_+[.-.L66]
3467 *
3468 * and here no correction would be required. Internally in
3469 * the assembler we treat operands of this form as not being
3470 * pcrel since the '.' is explicitly mentioned, and I wonder
3471 * whether it would simplify matters to do it this way. Who
3472 * knows. In earlier versions of the PIC patches, the
3473 * pcrel_adjust field was used to store the correction, but
3474 * since the expression is not pcrel, I felt it would be
3475 * confusing to do it this way. */
3476
3477 if (reloc_type == BFD_RELOC_32
3478 && GOT_symbol
3479 && GOT_symbol == i.op[n].imms->X_add_symbol
3480 && (i.op[n].imms->X_op == O_symbol
3481 || (i.op[n].imms->X_op == O_add
3482 && ((symbol_get_value_expression
3483 (i.op[n].imms->X_op_symbol)->X_op)
3484 == O_subtract))))
3485 {
3486 offsetT add;
3487
3488 if (insn_start_frag == frag_now)
3489 add = (p - frag_now->fr_literal) - insn_start_off;
3490 else
3491 {
3492 fragS *fr;
3493
3494 add = insn_start_frag->fr_fix - insn_start_off;
3495 for (fr = insn_start_frag->fr_next;
3496 fr && fr != frag_now; fr = fr->fr_next)
3497 add += fr->fr_fix;
3498 add += p - frag_now->fr_literal;
3499 }
3500
3501 /* We don't support dynamic linking on x86-64 yet. */
3502 if (flag_code == CODE_64BIT)
3503 abort ();
3504 reloc_type = BFD_RELOC_386_GOTPC;
3505 i.op[n].imms->X_add_number += add;
3506 }
3507 #endif
3508 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
3509 i.op[n].imms, 0, reloc_type);
3510 }
3511 }
3512 }
3513 }
3514 \f
3515 #ifndef LEX_AT
3516 static char *lex_got PARAMS ((RELOC_ENUM *, int *));
3517
3518 /* Parse operands of the form
3519 <symbol>@GOTOFF+<nnn>
3520 and similar .plt or .got references.
3521
3522 If we find one, set up the correct relocation in RELOC and copy the
3523 input string, minus the `@GOTOFF' into a malloc'd buffer for
3524 parsing by the calling routine. Return this buffer, and if ADJUST
3525 is non-null set it to the length of the string we removed from the
3526 input line. Otherwise return NULL. */
3527 static char *
3528 lex_got (reloc, adjust)
3529 RELOC_ENUM *reloc;
3530 int *adjust;
3531 {
3532 static const char * const mode_name[NUM_FLAG_CODE] = { "32", "16", "64" };
3533 static const struct {
3534 const char *str;
3535 const RELOC_ENUM rel[NUM_FLAG_CODE];
3536 } gotrel[] = {
3537 { "PLT", { BFD_RELOC_386_PLT32, 0, BFD_RELOC_X86_64_PLT32 } },
3538 { "GOTOFF", { BFD_RELOC_386_GOTOFF, 0, 0 } },
3539 { "GOTPCREL", { 0, 0, BFD_RELOC_X86_64_GOTPCREL } },
3540 { "TLSGD", { BFD_RELOC_386_TLS_GD, 0, BFD_RELOC_X86_64_TLSGD } },
3541 { "TLSLDM", { BFD_RELOC_386_TLS_LDM, 0, 0 } },
3542 { "TLSLD", { 0, 0, BFD_RELOC_X86_64_TLSLD } },
3543 { "GOTTPOFF", { BFD_RELOC_386_TLS_IE_32, 0, BFD_RELOC_X86_64_GOTTPOFF } },
3544 { "TPOFF", { BFD_RELOC_386_TLS_LE_32, 0, BFD_RELOC_X86_64_TPOFF32 } },
3545 { "NTPOFF", { BFD_RELOC_386_TLS_LE, 0, 0 } },
3546 { "DTPOFF", { BFD_RELOC_386_TLS_LDO_32, 0, BFD_RELOC_X86_64_DTPOFF32 } },
3547 { "GOTNTPOFF",{ BFD_RELOC_386_TLS_GOTIE, 0, 0 } },
3548 { "INDNTPOFF",{ BFD_RELOC_386_TLS_IE, 0, 0 } },
3549 { "GOT", { BFD_RELOC_386_GOT32, 0, BFD_RELOC_X86_64_GOT32 } }
3550 };
3551 char *cp;
3552 unsigned int j;
3553
3554 for (cp = input_line_pointer; *cp != '@'; cp++)
3555 if (is_end_of_line[(unsigned char) *cp])
3556 return NULL;
3557
3558 for (j = 0; j < sizeof (gotrel) / sizeof (gotrel[0]); j++)
3559 {
3560 int len;
3561
3562 len = strlen (gotrel[j].str);
3563 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
3564 {
3565 if (gotrel[j].rel[(unsigned int) flag_code] != 0)
3566 {
3567 int first, second;
3568 char *tmpbuf, *past_reloc;
3569
3570 *reloc = gotrel[j].rel[(unsigned int) flag_code];
3571 if (adjust)
3572 *adjust = len;
3573
3574 if (GOT_symbol == NULL)
3575 GOT_symbol = symbol_find_or_make (GLOBAL_OFFSET_TABLE_NAME);
3576
3577 /* Replace the relocation token with ' ', so that
3578 errors like foo@GOTOFF1 will be detected. */
3579
3580 /* The length of the first part of our input line. */
3581 first = cp - input_line_pointer;
3582
3583 /* The second part goes from after the reloc token until
3584 (and including) an end_of_line char. Don't use strlen
3585 here as the end_of_line char may not be a NUL. */
3586 past_reloc = cp + 1 + len;
3587 for (cp = past_reloc; !is_end_of_line[(unsigned char) *cp++]; )
3588 ;
3589 second = cp - past_reloc;
3590
3591 /* Allocate and copy string. The trailing NUL shouldn't
3592 be necessary, but be safe. */
3593 tmpbuf = xmalloc (first + second + 2);
3594 memcpy (tmpbuf, input_line_pointer, first);
3595 tmpbuf[first] = ' ';
3596 memcpy (tmpbuf + first + 1, past_reloc, second);
3597 tmpbuf[first + second + 1] = '\0';
3598 return tmpbuf;
3599 }
3600
3601 as_bad (_("@%s reloc is not supported in %s bit mode"),
3602 gotrel[j].str, mode_name[(unsigned int) flag_code]);
3603 return NULL;
3604 }
3605 }
3606
3607 /* Might be a symbol version string. Don't as_bad here. */
3608 return NULL;
3609 }
3610
3611 /* x86_cons_fix_new is called via the expression parsing code when a
3612 reloc is needed. We use this hook to get the correct .got reloc. */
3613 static RELOC_ENUM got_reloc = NO_RELOC;
3614
3615 void
3616 x86_cons_fix_new (frag, off, len, exp)
3617 fragS *frag;
3618 unsigned int off;
3619 unsigned int len;
3620 expressionS *exp;
3621 {
3622 RELOC_ENUM r = reloc (len, 0, 0, got_reloc);
3623 got_reloc = NO_RELOC;
3624 fix_new_exp (frag, off, len, exp, 0, r);
3625 }
3626
3627 void
3628 x86_cons (exp, size)
3629 expressionS *exp;
3630 int size;
3631 {
3632 if (size == 4)
3633 {
3634 /* Handle @GOTOFF and the like in an expression. */
3635 char *save;
3636 char *gotfree_input_line;
3637 int adjust;
3638
3639 save = input_line_pointer;
3640 gotfree_input_line = lex_got (&got_reloc, &adjust);
3641 if (gotfree_input_line)
3642 input_line_pointer = gotfree_input_line;
3643
3644 expression (exp);
3645
3646 if (gotfree_input_line)
3647 {
3648 /* expression () has merrily parsed up to the end of line,
3649 or a comma - in the wrong buffer. Transfer how far
3650 input_line_pointer has moved to the right buffer. */
3651 input_line_pointer = (save
3652 + (input_line_pointer - gotfree_input_line)
3653 + adjust);
3654 free (gotfree_input_line);
3655 }
3656 }
3657 else
3658 expression (exp);
3659 }
3660 #endif
3661
3662 static int i386_immediate PARAMS ((char *));
3663
3664 static int
3665 i386_immediate (imm_start)
3666 char *imm_start;
3667 {
3668 char *save_input_line_pointer;
3669 #ifndef LEX_AT
3670 char *gotfree_input_line;
3671 #endif
3672 segT exp_seg = 0;
3673 expressionS *exp;
3674
3675 if (i.imm_operands == MAX_IMMEDIATE_OPERANDS)
3676 {
3677 as_bad (_("only 1 or 2 immediate operands are allowed"));
3678 return 0;
3679 }
3680
3681 exp = &im_expressions[i.imm_operands++];
3682 i.op[this_operand].imms = exp;
3683
3684 if (is_space_char (*imm_start))
3685 ++imm_start;
3686
3687 save_input_line_pointer = input_line_pointer;
3688 input_line_pointer = imm_start;
3689
3690 #ifndef LEX_AT
3691 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL);
3692 if (gotfree_input_line)
3693 input_line_pointer = gotfree_input_line;
3694 #endif
3695
3696 exp_seg = expression (exp);
3697
3698 SKIP_WHITESPACE ();
3699 if (*input_line_pointer)
3700 as_bad (_("junk `%s' after expression"), input_line_pointer);
3701
3702 input_line_pointer = save_input_line_pointer;
3703 #ifndef LEX_AT
3704 if (gotfree_input_line)
3705 free (gotfree_input_line);
3706 #endif
3707
3708 if (exp->X_op == O_absent || exp->X_op == O_big)
3709 {
3710 /* Missing or bad expr becomes absolute 0. */
3711 as_bad (_("missing or invalid immediate expression `%s' taken as 0"),
3712 imm_start);
3713 exp->X_op = O_constant;
3714 exp->X_add_number = 0;
3715 exp->X_add_symbol = (symbolS *) 0;
3716 exp->X_op_symbol = (symbolS *) 0;
3717 }
3718 else if (exp->X_op == O_constant)
3719 {
3720 /* Size it properly later. */
3721 i.types[this_operand] |= Imm64;
3722 /* If BFD64, sign extend val. */
3723 if (!use_rela_relocations)
3724 if ((exp->X_add_number & ~(((addressT) 2 << 31) - 1)) == 0)
3725 exp->X_add_number = (exp->X_add_number ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
3726 }
3727 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
3728 else if (1
3729 #ifdef BFD_ASSEMBLER
3730 && OUTPUT_FLAVOR == bfd_target_aout_flavour
3731 #endif
3732 && exp_seg != absolute_section
3733 && exp_seg != text_section
3734 && exp_seg != data_section
3735 && exp_seg != bss_section
3736 && exp_seg != undefined_section
3737 #ifdef BFD_ASSEMBLER
3738 && !bfd_is_com_section (exp_seg)
3739 #endif
3740 )
3741 {
3742 #ifdef BFD_ASSEMBLER
3743 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
3744 #else
3745 as_bad (_("unimplemented segment type %d in operand"), exp_seg);
3746 #endif
3747 return 0;
3748 }
3749 #endif
3750 else
3751 {
3752 /* This is an address. The size of the address will be
3753 determined later, depending on destination register,
3754 suffix, or the default for the section. */
3755 i.types[this_operand] |= Imm8 | Imm16 | Imm32 | Imm32S | Imm64;
3756 }
3757
3758 return 1;
3759 }
3760
3761 static char *i386_scale PARAMS ((char *));
3762
3763 static char *
3764 i386_scale (scale)
3765 char *scale;
3766 {
3767 offsetT val;
3768 char *save = input_line_pointer;
3769
3770 input_line_pointer = scale;
3771 val = get_absolute_expression ();
3772
3773 switch (val)
3774 {
3775 case 0:
3776 case 1:
3777 i.log2_scale_factor = 0;
3778 break;
3779 case 2:
3780 i.log2_scale_factor = 1;
3781 break;
3782 case 4:
3783 i.log2_scale_factor = 2;
3784 break;
3785 case 8:
3786 i.log2_scale_factor = 3;
3787 break;
3788 default:
3789 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
3790 scale);
3791 input_line_pointer = save;
3792 return NULL;
3793 }
3794 if (i.log2_scale_factor != 0 && i.index_reg == 0)
3795 {
3796 as_warn (_("scale factor of %d without an index register"),
3797 1 << i.log2_scale_factor);
3798 #if SCALE1_WHEN_NO_INDEX
3799 i.log2_scale_factor = 0;
3800 #endif
3801 }
3802 scale = input_line_pointer;
3803 input_line_pointer = save;
3804 return scale;
3805 }
3806
3807 static int i386_displacement PARAMS ((char *, char *));
3808
3809 static int
3810 i386_displacement (disp_start, disp_end)
3811 char *disp_start;
3812 char *disp_end;
3813 {
3814 expressionS *exp;
3815 segT exp_seg = 0;
3816 char *save_input_line_pointer;
3817 #ifndef LEX_AT
3818 char *gotfree_input_line;
3819 #endif
3820 int bigdisp = Disp32;
3821
3822 if (flag_code == CODE_64BIT)
3823 {
3824 if (i.prefix[ADDR_PREFIX] == 0)
3825 bigdisp = Disp64;
3826 }
3827 else if ((flag_code == CODE_16BIT) ^ (i.prefix[ADDR_PREFIX] != 0))
3828 bigdisp = Disp16;
3829 i.types[this_operand] |= bigdisp;
3830
3831 exp = &disp_expressions[i.disp_operands];
3832 i.op[this_operand].disps = exp;
3833 i.disp_operands++;
3834 save_input_line_pointer = input_line_pointer;
3835 input_line_pointer = disp_start;
3836 END_STRING_AND_SAVE (disp_end);
3837
3838 #ifndef GCC_ASM_O_HACK
3839 #define GCC_ASM_O_HACK 0
3840 #endif
3841 #if GCC_ASM_O_HACK
3842 END_STRING_AND_SAVE (disp_end + 1);
3843 if ((i.types[this_operand] & BaseIndex) != 0
3844 && displacement_string_end[-1] == '+')
3845 {
3846 /* This hack is to avoid a warning when using the "o"
3847 constraint within gcc asm statements.
3848 For instance:
3849
3850 #define _set_tssldt_desc(n,addr,limit,type) \
3851 __asm__ __volatile__ ( \
3852 "movw %w2,%0\n\t" \
3853 "movw %w1,2+%0\n\t" \
3854 "rorl $16,%1\n\t" \
3855 "movb %b1,4+%0\n\t" \
3856 "movb %4,5+%0\n\t" \
3857 "movb $0,6+%0\n\t" \
3858 "movb %h1,7+%0\n\t" \
3859 "rorl $16,%1" \
3860 : "=o"(*(n)) : "q" (addr), "ri"(limit), "i"(type))
3861
3862 This works great except that the output assembler ends
3863 up looking a bit weird if it turns out that there is
3864 no offset. You end up producing code that looks like:
3865
3866 #APP
3867 movw $235,(%eax)
3868 movw %dx,2+(%eax)
3869 rorl $16,%edx
3870 movb %dl,4+(%eax)
3871 movb $137,5+(%eax)
3872 movb $0,6+(%eax)
3873 movb %dh,7+(%eax)
3874 rorl $16,%edx
3875 #NO_APP
3876
3877 So here we provide the missing zero. */
3878
3879 *displacement_string_end = '0';
3880 }
3881 #endif
3882 #ifndef LEX_AT
3883 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL);
3884 if (gotfree_input_line)
3885 input_line_pointer = gotfree_input_line;
3886 #endif
3887
3888 exp_seg = expression (exp);
3889
3890 SKIP_WHITESPACE ();
3891 if (*input_line_pointer)
3892 as_bad (_("junk `%s' after expression"), input_line_pointer);
3893 #if GCC_ASM_O_HACK
3894 RESTORE_END_STRING (disp_end + 1);
3895 #endif
3896 RESTORE_END_STRING (disp_end);
3897 input_line_pointer = save_input_line_pointer;
3898 #ifndef LEX_AT
3899 if (gotfree_input_line)
3900 free (gotfree_input_line);
3901 #endif
3902
3903 #ifdef BFD_ASSEMBLER
3904 /* We do this to make sure that the section symbol is in
3905 the symbol table. We will ultimately change the relocation
3906 to be relative to the beginning of the section. */
3907 if (i.reloc[this_operand] == BFD_RELOC_386_GOTOFF
3908 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
3909 {
3910 if (exp->X_op != O_symbol)
3911 {
3912 as_bad (_("bad expression used with @%s"),
3913 (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL
3914 ? "GOTPCREL"
3915 : "GOTOFF"));
3916 return 0;
3917 }
3918
3919 if (S_IS_LOCAL (exp->X_add_symbol)
3920 && S_GET_SEGMENT (exp->X_add_symbol) != undefined_section)
3921 section_symbol (S_GET_SEGMENT (exp->X_add_symbol));
3922 exp->X_op = O_subtract;
3923 exp->X_op_symbol = GOT_symbol;
3924 if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
3925 i.reloc[this_operand] = BFD_RELOC_32_PCREL;
3926 else
3927 i.reloc[this_operand] = BFD_RELOC_32;
3928 }
3929 #endif
3930
3931 if (exp->X_op == O_absent || exp->X_op == O_big)
3932 {
3933 /* Missing or bad expr becomes absolute 0. */
3934 as_bad (_("missing or invalid displacement expression `%s' taken as 0"),
3935 disp_start);
3936 exp->X_op = O_constant;
3937 exp->X_add_number = 0;
3938 exp->X_add_symbol = (symbolS *) 0;
3939 exp->X_op_symbol = (symbolS *) 0;
3940 }
3941
3942 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
3943 if (exp->X_op != O_constant
3944 #ifdef BFD_ASSEMBLER
3945 && OUTPUT_FLAVOR == bfd_target_aout_flavour
3946 #endif
3947 && exp_seg != absolute_section
3948 && exp_seg != text_section
3949 && exp_seg != data_section
3950 && exp_seg != bss_section
3951 && exp_seg != undefined_section
3952 #ifdef BFD_ASSEMBLER
3953 && !bfd_is_com_section (exp_seg)
3954 #endif
3955 )
3956 {
3957 #ifdef BFD_ASSEMBLER
3958 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
3959 #else
3960 as_bad (_("unimplemented segment type %d in operand"), exp_seg);
3961 #endif
3962 return 0;
3963 }
3964 #endif
3965 else if (flag_code == CODE_64BIT)
3966 i.types[this_operand] |= Disp32S | Disp32;
3967 return 1;
3968 }
3969
3970 static int i386_index_check PARAMS ((const char *));
3971
3972 /* Make sure the memory operand we've been dealt is valid.
3973 Return 1 on success, 0 on a failure. */
3974
3975 static int
3976 i386_index_check (operand_string)
3977 const char *operand_string;
3978 {
3979 int ok;
3980 #if INFER_ADDR_PREFIX
3981 int fudged = 0;
3982
3983 tryprefix:
3984 #endif
3985 ok = 1;
3986 if (flag_code == CODE_64BIT)
3987 {
3988 if (i.prefix[ADDR_PREFIX] == 0)
3989 {
3990 /* 64bit checks. */
3991 if ((i.base_reg
3992 && ((i.base_reg->reg_type & Reg64) == 0)
3993 && (i.base_reg->reg_type != BaseIndex
3994 || i.index_reg))
3995 || (i.index_reg
3996 && ((i.index_reg->reg_type & (Reg64 | BaseIndex))
3997 != (Reg64 | BaseIndex))))
3998 ok = 0;
3999 }
4000 else
4001 {
4002 /* 32bit checks. */
4003 if ((i.base_reg
4004 && (i.base_reg->reg_type & (Reg32 | RegRex)) != Reg32)
4005 || (i.index_reg
4006 && ((i.index_reg->reg_type & (Reg32 | BaseIndex | RegRex))
4007 != (Reg32 | BaseIndex))))
4008 ok = 0;
4009 }
4010 }
4011 else
4012 {
4013 if ((flag_code == CODE_16BIT) ^ (i.prefix[ADDR_PREFIX] != 0))
4014 {
4015 /* 16bit checks. */
4016 if ((i.base_reg
4017 && ((i.base_reg->reg_type & (Reg16 | BaseIndex | RegRex))
4018 != (Reg16 | BaseIndex)))
4019 || (i.index_reg
4020 && (((i.index_reg->reg_type & (Reg16 | BaseIndex))
4021 != (Reg16 | BaseIndex))
4022 || !(i.base_reg
4023 && i.base_reg->reg_num < 6
4024 && i.index_reg->reg_num >= 6
4025 && i.log2_scale_factor == 0))))
4026 ok = 0;
4027 }
4028 else
4029 {
4030 /* 32bit checks. */
4031 if ((i.base_reg
4032 && (i.base_reg->reg_type & (Reg32 | RegRex)) != Reg32)
4033 || (i.index_reg
4034 && ((i.index_reg->reg_type & (Reg32 | BaseIndex | RegRex))
4035 != (Reg32 | BaseIndex))))
4036 ok = 0;
4037 }
4038 }
4039 if (!ok)
4040 {
4041 #if INFER_ADDR_PREFIX
4042 if (flag_code != CODE_64BIT
4043 && i.prefix[ADDR_PREFIX] == 0 && stackop_size != '\0')
4044 {
4045 i.prefix[ADDR_PREFIX] = ADDR_PREFIX_OPCODE;
4046 i.prefixes += 1;
4047 /* Change the size of any displacement too. At most one of
4048 Disp16 or Disp32 is set.
4049 FIXME. There doesn't seem to be any real need for separate
4050 Disp16 and Disp32 flags. The same goes for Imm16 and Imm32.
4051 Removing them would probably clean up the code quite a lot. */
4052 if (i.types[this_operand] & (Disp16 | Disp32))
4053 i.types[this_operand] ^= (Disp16 | Disp32);
4054 fudged = 1;
4055 goto tryprefix;
4056 }
4057 if (fudged)
4058 as_bad (_("`%s' is not a valid base/index expression"),
4059 operand_string);
4060 else
4061 #endif
4062 as_bad (_("`%s' is not a valid %s bit base/index expression"),
4063 operand_string,
4064 flag_code_names[flag_code]);
4065 return 0;
4066 }
4067 return 1;
4068 }
4069
4070 /* Parse OPERAND_STRING into the i386_insn structure I. Returns non-zero
4071 on error. */
4072
4073 static int
4074 i386_operand (operand_string)
4075 char *operand_string;
4076 {
4077 const reg_entry *r;
4078 char *end_op;
4079 char *op_string = operand_string;
4080
4081 if (is_space_char (*op_string))
4082 ++op_string;
4083
4084 /* We check for an absolute prefix (differentiating,
4085 for example, 'jmp pc_relative_label' from 'jmp *absolute_label'. */
4086 if (*op_string == ABSOLUTE_PREFIX)
4087 {
4088 ++op_string;
4089 if (is_space_char (*op_string))
4090 ++op_string;
4091 i.types[this_operand] |= JumpAbsolute;
4092 }
4093
4094 /* Check if operand is a register. */
4095 if ((*op_string == REGISTER_PREFIX || allow_naked_reg)
4096 && (r = parse_register (op_string, &end_op)) != NULL)
4097 {
4098 /* Check for a segment override by searching for ':' after a
4099 segment register. */
4100 op_string = end_op;
4101 if (is_space_char (*op_string))
4102 ++op_string;
4103 if (*op_string == ':' && (r->reg_type & (SReg2 | SReg3)))
4104 {
4105 switch (r->reg_num)
4106 {
4107 case 0:
4108 i.seg[i.mem_operands] = &es;
4109 break;
4110 case 1:
4111 i.seg[i.mem_operands] = &cs;
4112 break;
4113 case 2:
4114 i.seg[i.mem_operands] = &ss;
4115 break;
4116 case 3:
4117 i.seg[i.mem_operands] = &ds;
4118 break;
4119 case 4:
4120 i.seg[i.mem_operands] = &fs;
4121 break;
4122 case 5:
4123 i.seg[i.mem_operands] = &gs;
4124 break;
4125 }
4126
4127 /* Skip the ':' and whitespace. */
4128 ++op_string;
4129 if (is_space_char (*op_string))
4130 ++op_string;
4131
4132 if (!is_digit_char (*op_string)
4133 && !is_identifier_char (*op_string)
4134 && *op_string != '('
4135 && *op_string != ABSOLUTE_PREFIX)
4136 {
4137 as_bad (_("bad memory operand `%s'"), op_string);
4138 return 0;
4139 }
4140 /* Handle case of %es:*foo. */
4141 if (*op_string == ABSOLUTE_PREFIX)
4142 {
4143 ++op_string;
4144 if (is_space_char (*op_string))
4145 ++op_string;
4146 i.types[this_operand] |= JumpAbsolute;
4147 }
4148 goto do_memory_reference;
4149 }
4150 if (*op_string)
4151 {
4152 as_bad (_("junk `%s' after register"), op_string);
4153 return 0;
4154 }
4155 i.types[this_operand] |= r->reg_type & ~BaseIndex;
4156 i.op[this_operand].regs = r;
4157 i.reg_operands++;
4158 }
4159 else if (*op_string == REGISTER_PREFIX)
4160 {
4161 as_bad (_("bad register name `%s'"), op_string);
4162 return 0;
4163 }
4164 else if (*op_string == IMMEDIATE_PREFIX)
4165 {
4166 ++op_string;
4167 if (i.types[this_operand] & JumpAbsolute)
4168 {
4169 as_bad (_("immediate operand illegal with absolute jump"));
4170 return 0;
4171 }
4172 if (!i386_immediate (op_string))
4173 return 0;
4174 }
4175 else if (is_digit_char (*op_string)
4176 || is_identifier_char (*op_string)
4177 || *op_string == '(')
4178 {
4179 /* This is a memory reference of some sort. */
4180 char *base_string;
4181
4182 /* Start and end of displacement string expression (if found). */
4183 char *displacement_string_start;
4184 char *displacement_string_end;
4185
4186 do_memory_reference:
4187 if ((i.mem_operands == 1
4188 && (current_templates->start->opcode_modifier & IsString) == 0)
4189 || i.mem_operands == 2)
4190 {
4191 as_bad (_("too many memory references for `%s'"),
4192 current_templates->start->name);
4193 return 0;
4194 }
4195
4196 /* Check for base index form. We detect the base index form by
4197 looking for an ')' at the end of the operand, searching
4198 for the '(' matching it, and finding a REGISTER_PREFIX or ','
4199 after the '('. */
4200 base_string = op_string + strlen (op_string);
4201
4202 --base_string;
4203 if (is_space_char (*base_string))
4204 --base_string;
4205
4206 /* If we only have a displacement, set-up for it to be parsed later. */
4207 displacement_string_start = op_string;
4208 displacement_string_end = base_string + 1;
4209
4210 if (*base_string == ')')
4211 {
4212 char *temp_string;
4213 unsigned int parens_balanced = 1;
4214 /* We've already checked that the number of left & right ()'s are
4215 equal, so this loop will not be infinite. */
4216 do
4217 {
4218 base_string--;
4219 if (*base_string == ')')
4220 parens_balanced++;
4221 if (*base_string == '(')
4222 parens_balanced--;
4223 }
4224 while (parens_balanced);
4225
4226 temp_string = base_string;
4227
4228 /* Skip past '(' and whitespace. */
4229 ++base_string;
4230 if (is_space_char (*base_string))
4231 ++base_string;
4232
4233 if (*base_string == ','
4234 || ((*base_string == REGISTER_PREFIX || allow_naked_reg)
4235 && (i.base_reg = parse_register (base_string, &end_op)) != NULL))
4236 {
4237 displacement_string_end = temp_string;
4238
4239 i.types[this_operand] |= BaseIndex;
4240
4241 if (i.base_reg)
4242 {
4243 base_string = end_op;
4244 if (is_space_char (*base_string))
4245 ++base_string;
4246 }
4247
4248 /* There may be an index reg or scale factor here. */
4249 if (*base_string == ',')
4250 {
4251 ++base_string;
4252 if (is_space_char (*base_string))
4253 ++base_string;
4254
4255 if ((*base_string == REGISTER_PREFIX || allow_naked_reg)
4256 && (i.index_reg = parse_register (base_string, &end_op)) != NULL)
4257 {
4258 base_string = end_op;
4259 if (is_space_char (*base_string))
4260 ++base_string;
4261 if (*base_string == ',')
4262 {
4263 ++base_string;
4264 if (is_space_char (*base_string))
4265 ++base_string;
4266 }
4267 else if (*base_string != ')')
4268 {
4269 as_bad (_("expecting `,' or `)' after index register in `%s'"),
4270 operand_string);
4271 return 0;
4272 }
4273 }
4274 else if (*base_string == REGISTER_PREFIX)
4275 {
4276 as_bad (_("bad register name `%s'"), base_string);
4277 return 0;
4278 }
4279
4280 /* Check for scale factor. */
4281 if (*base_string != ')')
4282 {
4283 char *end_scale = i386_scale (base_string);
4284
4285 if (!end_scale)
4286 return 0;
4287
4288 base_string = end_scale;
4289 if (is_space_char (*base_string))
4290 ++base_string;
4291 if (*base_string != ')')
4292 {
4293 as_bad (_("expecting `)' after scale factor in `%s'"),
4294 operand_string);
4295 return 0;
4296 }
4297 }
4298 else if (!i.index_reg)
4299 {
4300 as_bad (_("expecting index register or scale factor after `,'; got '%c'"),
4301 *base_string);
4302 return 0;
4303 }
4304 }
4305 else if (*base_string != ')')
4306 {
4307 as_bad (_("expecting `,' or `)' after base register in `%s'"),
4308 operand_string);
4309 return 0;
4310 }
4311 }
4312 else if (*base_string == REGISTER_PREFIX)
4313 {
4314 as_bad (_("bad register name `%s'"), base_string);
4315 return 0;
4316 }
4317 }
4318
4319 /* If there's an expression beginning the operand, parse it,
4320 assuming displacement_string_start and
4321 displacement_string_end are meaningful. */
4322 if (displacement_string_start != displacement_string_end)
4323 {
4324 if (!i386_displacement (displacement_string_start,
4325 displacement_string_end))
4326 return 0;
4327 }
4328
4329 /* Special case for (%dx) while doing input/output op. */
4330 if (i.base_reg
4331 && i.base_reg->reg_type == (Reg16 | InOutPortReg)
4332 && i.index_reg == 0
4333 && i.log2_scale_factor == 0
4334 && i.seg[i.mem_operands] == 0
4335 && (i.types[this_operand] & Disp) == 0)
4336 {
4337 i.types[this_operand] = InOutPortReg;
4338 return 1;
4339 }
4340
4341 if (i386_index_check (operand_string) == 0)
4342 return 0;
4343 i.mem_operands++;
4344 }
4345 else
4346 {
4347 /* It's not a memory operand; argh! */
4348 as_bad (_("invalid char %s beginning operand %d `%s'"),
4349 output_invalid (*op_string),
4350 this_operand + 1,
4351 op_string);
4352 return 0;
4353 }
4354 return 1; /* Normal return. */
4355 }
4356 \f
4357 /* md_estimate_size_before_relax()
4358
4359 Called just before relax() for rs_machine_dependent frags. The x86
4360 assembler uses these frags to handle variable size jump
4361 instructions.
4362
4363 Any symbol that is now undefined will not become defined.
4364 Return the correct fr_subtype in the frag.
4365 Return the initial "guess for variable size of frag" to caller.
4366 The guess is actually the growth beyond the fixed part. Whatever
4367 we do to grow the fixed or variable part contributes to our
4368 returned value. */
4369
4370 int
4371 md_estimate_size_before_relax (fragP, segment)
4372 fragS *fragP;
4373 segT segment;
4374 {
4375 /* We've already got fragP->fr_subtype right; all we have to do is
4376 check for un-relaxable symbols. On an ELF system, we can't relax
4377 an externally visible symbol, because it may be overridden by a
4378 shared library. */
4379 if (S_GET_SEGMENT (fragP->fr_symbol) != segment
4380 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
4381 || (OUTPUT_FLAVOR == bfd_target_elf_flavour
4382 && (S_IS_EXTERNAL (fragP->fr_symbol)
4383 || S_IS_WEAK (fragP->fr_symbol)))
4384 #endif
4385 )
4386 {
4387 /* Symbol is undefined in this segment, or we need to keep a
4388 reloc so that weak symbols can be overridden. */
4389 int size = (fragP->fr_subtype & CODE16) ? 2 : 4;
4390 RELOC_ENUM reloc_type;
4391 unsigned char *opcode;
4392 int old_fr_fix;
4393
4394 if (fragP->fr_var != NO_RELOC)
4395 reloc_type = fragP->fr_var;
4396 else if (size == 2)
4397 reloc_type = BFD_RELOC_16_PCREL;
4398 else
4399 reloc_type = BFD_RELOC_32_PCREL;
4400
4401 old_fr_fix = fragP->fr_fix;
4402 opcode = (unsigned char *) fragP->fr_opcode;
4403
4404 switch (TYPE_FROM_RELAX_STATE (fragP->fr_subtype))
4405 {
4406 case UNCOND_JUMP:
4407 /* Make jmp (0xeb) a (d)word displacement jump. */
4408 opcode[0] = 0xe9;
4409 fragP->fr_fix += size;
4410 fix_new (fragP, old_fr_fix, size,
4411 fragP->fr_symbol,
4412 fragP->fr_offset, 1,
4413 reloc_type);
4414 break;
4415
4416 case COND_JUMP86:
4417 if (size == 2
4418 && (!no_cond_jump_promotion || fragP->fr_var != NO_RELOC))
4419 {
4420 /* Negate the condition, and branch past an
4421 unconditional jump. */
4422 opcode[0] ^= 1;
4423 opcode[1] = 3;
4424 /* Insert an unconditional jump. */
4425 opcode[2] = 0xe9;
4426 /* We added two extra opcode bytes, and have a two byte
4427 offset. */
4428 fragP->fr_fix += 2 + 2;
4429 fix_new (fragP, old_fr_fix + 2, 2,
4430 fragP->fr_symbol,
4431 fragP->fr_offset, 1,
4432 reloc_type);
4433 break;
4434 }
4435 /* Fall through. */
4436
4437 case COND_JUMP:
4438 if (no_cond_jump_promotion && fragP->fr_var == NO_RELOC)
4439 {
4440 fixS *fixP;
4441
4442 fragP->fr_fix += 1;
4443 fixP = fix_new (fragP, old_fr_fix, 1,
4444 fragP->fr_symbol,
4445 fragP->fr_offset, 1,
4446 BFD_RELOC_8_PCREL);
4447 fixP->fx_signed = 1;
4448 break;
4449 }
4450
4451 /* This changes the byte-displacement jump 0x7N
4452 to the (d)word-displacement jump 0x0f,0x8N. */
4453 opcode[1] = opcode[0] + 0x10;
4454 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
4455 /* We've added an opcode byte. */
4456 fragP->fr_fix += 1 + size;
4457 fix_new (fragP, old_fr_fix + 1, size,
4458 fragP->fr_symbol,
4459 fragP->fr_offset, 1,
4460 reloc_type);
4461 break;
4462
4463 default:
4464 BAD_CASE (fragP->fr_subtype);
4465 break;
4466 }
4467 frag_wane (fragP);
4468 return fragP->fr_fix - old_fr_fix;
4469 }
4470
4471 /* Guess size depending on current relax state. Initially the relax
4472 state will correspond to a short jump and we return 1, because
4473 the variable part of the frag (the branch offset) is one byte
4474 long. However, we can relax a section more than once and in that
4475 case we must either set fr_subtype back to the unrelaxed state,
4476 or return the value for the appropriate branch. */
4477 return md_relax_table[fragP->fr_subtype].rlx_length;
4478 }
4479
4480 /* Called after relax() is finished.
4481
4482 In: Address of frag.
4483 fr_type == rs_machine_dependent.
4484 fr_subtype is what the address relaxed to.
4485
4486 Out: Any fixSs and constants are set up.
4487 Caller will turn frag into a ".space 0". */
4488
4489 #ifndef BFD_ASSEMBLER
4490 void
4491 md_convert_frag (headers, sec, fragP)
4492 object_headers *headers ATTRIBUTE_UNUSED;
4493 segT sec ATTRIBUTE_UNUSED;
4494 fragS *fragP;
4495 #else
4496 void
4497 md_convert_frag (abfd, sec, fragP)
4498 bfd *abfd ATTRIBUTE_UNUSED;
4499 segT sec ATTRIBUTE_UNUSED;
4500 fragS *fragP;
4501 #endif
4502 {
4503 unsigned char *opcode;
4504 unsigned char *where_to_put_displacement = NULL;
4505 offsetT target_address;
4506 offsetT opcode_address;
4507 unsigned int extension = 0;
4508 offsetT displacement_from_opcode_start;
4509
4510 opcode = (unsigned char *) fragP->fr_opcode;
4511
4512 /* Address we want to reach in file space. */
4513 target_address = S_GET_VALUE (fragP->fr_symbol) + fragP->fr_offset;
4514
4515 /* Address opcode resides at in file space. */
4516 opcode_address = fragP->fr_address + fragP->fr_fix;
4517
4518 /* Displacement from opcode start to fill into instruction. */
4519 displacement_from_opcode_start = target_address - opcode_address;
4520
4521 if ((fragP->fr_subtype & BIG) == 0)
4522 {
4523 /* Don't have to change opcode. */
4524 extension = 1; /* 1 opcode + 1 displacement */
4525 where_to_put_displacement = &opcode[1];
4526 }
4527 else
4528 {
4529 if (no_cond_jump_promotion
4530 && TYPE_FROM_RELAX_STATE (fragP->fr_subtype) != UNCOND_JUMP)
4531 as_warn_where (fragP->fr_file, fragP->fr_line, _("long jump required"));
4532
4533 switch (fragP->fr_subtype)
4534 {
4535 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG):
4536 extension = 4; /* 1 opcode + 4 displacement */
4537 opcode[0] = 0xe9;
4538 where_to_put_displacement = &opcode[1];
4539 break;
4540
4541 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16):
4542 extension = 2; /* 1 opcode + 2 displacement */
4543 opcode[0] = 0xe9;
4544 where_to_put_displacement = &opcode[1];
4545 break;
4546
4547 case ENCODE_RELAX_STATE (COND_JUMP, BIG):
4548 case ENCODE_RELAX_STATE (COND_JUMP86, BIG):
4549 extension = 5; /* 2 opcode + 4 displacement */
4550 opcode[1] = opcode[0] + 0x10;
4551 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
4552 where_to_put_displacement = &opcode[2];
4553 break;
4554
4555 case ENCODE_RELAX_STATE (COND_JUMP, BIG16):
4556 extension = 3; /* 2 opcode + 2 displacement */
4557 opcode[1] = opcode[0] + 0x10;
4558 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
4559 where_to_put_displacement = &opcode[2];
4560 break;
4561
4562 case ENCODE_RELAX_STATE (COND_JUMP86, BIG16):
4563 extension = 4;
4564 opcode[0] ^= 1;
4565 opcode[1] = 3;
4566 opcode[2] = 0xe9;
4567 where_to_put_displacement = &opcode[3];
4568 break;
4569
4570 default:
4571 BAD_CASE (fragP->fr_subtype);
4572 break;
4573 }
4574 }
4575
4576 /* Now put displacement after opcode. */
4577 md_number_to_chars ((char *) where_to_put_displacement,
4578 (valueT) (displacement_from_opcode_start - extension),
4579 DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype));
4580 fragP->fr_fix += extension;
4581 }
4582 \f
4583 /* Size of byte displacement jmp. */
4584 int md_short_jump_size = 2;
4585
4586 /* Size of dword displacement jmp. */
4587 int md_long_jump_size = 5;
4588
4589 /* Size of relocation record. */
4590 const int md_reloc_size = 8;
4591
4592 void
4593 md_create_short_jump (ptr, from_addr, to_addr, frag, to_symbol)
4594 char *ptr;
4595 addressT from_addr, to_addr;
4596 fragS *frag ATTRIBUTE_UNUSED;
4597 symbolS *to_symbol ATTRIBUTE_UNUSED;
4598 {
4599 offsetT offset;
4600
4601 offset = to_addr - (from_addr + 2);
4602 /* Opcode for byte-disp jump. */
4603 md_number_to_chars (ptr, (valueT) 0xeb, 1);
4604 md_number_to_chars (ptr + 1, (valueT) offset, 1);
4605 }
4606
4607 void
4608 md_create_long_jump (ptr, from_addr, to_addr, frag, to_symbol)
4609 char *ptr;
4610 addressT from_addr, to_addr;
4611 fragS *frag ATTRIBUTE_UNUSED;
4612 symbolS *to_symbol ATTRIBUTE_UNUSED;
4613 {
4614 offsetT offset;
4615
4616 offset = to_addr - (from_addr + 5);
4617 md_number_to_chars (ptr, (valueT) 0xe9, 1);
4618 md_number_to_chars (ptr + 1, (valueT) offset, 4);
4619 }
4620 \f
4621 /* Apply a fixup (fixS) to segment data, once it has been determined
4622 by our caller that we have all the info we need to fix it up.
4623
4624 On the 386, immediates, displacements, and data pointers are all in
4625 the same (little-endian) format, so we don't need to care about which
4626 we are handling. */
4627
4628 void
4629 md_apply_fix3 (fixP, valP, seg)
4630 /* The fix we're to put in. */
4631 fixS *fixP;
4632 /* Pointer to the value of the bits. */
4633 valueT *valP;
4634 /* Segment fix is from. */
4635 segT seg ATTRIBUTE_UNUSED;
4636 {
4637 char *p = fixP->fx_where + fixP->fx_frag->fr_literal;
4638 valueT value = *valP;
4639
4640 #if defined (BFD_ASSEMBLER) && !defined (TE_Mach)
4641 if (fixP->fx_pcrel)
4642 {
4643 switch (fixP->fx_r_type)
4644 {
4645 default:
4646 break;
4647
4648 case BFD_RELOC_32:
4649 fixP->fx_r_type = BFD_RELOC_32_PCREL;
4650 break;
4651 case BFD_RELOC_16:
4652 fixP->fx_r_type = BFD_RELOC_16_PCREL;
4653 break;
4654 case BFD_RELOC_8:
4655 fixP->fx_r_type = BFD_RELOC_8_PCREL;
4656 break;
4657 }
4658 }
4659
4660 if (fixP->fx_addsy != NULL
4661 && (fixP->fx_r_type == BFD_RELOC_32_PCREL
4662 || fixP->fx_r_type == BFD_RELOC_16_PCREL
4663 || fixP->fx_r_type == BFD_RELOC_8_PCREL)
4664 && !use_rela_relocations)
4665 {
4666 /* This is a hack. There should be a better way to handle this.
4667 This covers for the fact that bfd_install_relocation will
4668 subtract the current location (for partial_inplace, PC relative
4669 relocations); see more below. */
4670 #ifndef OBJ_AOUT
4671 if (OUTPUT_FLAVOR == bfd_target_elf_flavour
4672 #ifdef TE_PE
4673 || OUTPUT_FLAVOR == bfd_target_coff_flavour
4674 #endif
4675 )
4676 value += fixP->fx_where + fixP->fx_frag->fr_address;
4677 #endif
4678 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
4679 if (OUTPUT_FLAVOR == bfd_target_elf_flavour)
4680 {
4681 segT sym_seg = S_GET_SEGMENT (fixP->fx_addsy);
4682
4683 if ((sym_seg == seg
4684 || (symbol_section_p (fixP->fx_addsy)
4685 && sym_seg != absolute_section))
4686 && !generic_force_reloc (fixP))
4687 {
4688 /* Yes, we add the values in twice. This is because
4689 bfd_install_relocation subtracts them out again. I think
4690 bfd_install_relocation is broken, but I don't dare change
4691 it. FIXME. */
4692 value += fixP->fx_where + fixP->fx_frag->fr_address;
4693 }
4694 }
4695 #endif
4696 #if defined (OBJ_COFF) && defined (TE_PE)
4697 /* For some reason, the PE format does not store a section
4698 address offset for a PC relative symbol. */
4699 if (S_GET_SEGMENT (fixP->fx_addsy) != seg)
4700 value += md_pcrel_from (fixP);
4701 #endif
4702 }
4703
4704 /* Fix a few things - the dynamic linker expects certain values here,
4705 and we must not dissappoint it. */
4706 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
4707 if (OUTPUT_FLAVOR == bfd_target_elf_flavour
4708 && fixP->fx_addsy)
4709 switch (fixP->fx_r_type)
4710 {
4711 case BFD_RELOC_386_PLT32:
4712 case BFD_RELOC_X86_64_PLT32:
4713 /* Make the jump instruction point to the address of the operand. At
4714 runtime we merely add the offset to the actual PLT entry. */
4715 value = -4;
4716 break;
4717
4718 case BFD_RELOC_386_TLS_GD:
4719 case BFD_RELOC_386_TLS_LDM:
4720 case BFD_RELOC_386_TLS_IE_32:
4721 case BFD_RELOC_386_TLS_IE:
4722 case BFD_RELOC_386_TLS_GOTIE:
4723 case BFD_RELOC_X86_64_TLSGD:
4724 case BFD_RELOC_X86_64_TLSLD:
4725 case BFD_RELOC_X86_64_GOTTPOFF:
4726 value = 0; /* Fully resolved at runtime. No addend. */
4727 /* Fallthrough */
4728 case BFD_RELOC_386_TLS_LE:
4729 case BFD_RELOC_386_TLS_LDO_32:
4730 case BFD_RELOC_386_TLS_LE_32:
4731 case BFD_RELOC_X86_64_DTPOFF32:
4732 case BFD_RELOC_X86_64_TPOFF32:
4733 S_SET_THREAD_LOCAL (fixP->fx_addsy);
4734 break;
4735
4736 case BFD_RELOC_386_GOT32:
4737 case BFD_RELOC_X86_64_GOT32:
4738 value = 0; /* Fully resolved at runtime. No addend. */
4739 break;
4740
4741 case BFD_RELOC_VTABLE_INHERIT:
4742 case BFD_RELOC_VTABLE_ENTRY:
4743 fixP->fx_done = 0;
4744 return;
4745
4746 default:
4747 break;
4748 }
4749 #endif /* defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) */
4750 *valP = value;
4751 #endif /* defined (BFD_ASSEMBLER) && !defined (TE_Mach) */
4752
4753 /* Are we finished with this relocation now? */
4754 if (fixP->fx_addsy == NULL)
4755 fixP->fx_done = 1;
4756 #ifdef BFD_ASSEMBLER
4757 else if (use_rela_relocations)
4758 {
4759 fixP->fx_no_overflow = 1;
4760 /* Remember value for tc_gen_reloc. */
4761 fixP->fx_addnumber = value;
4762 value = 0;
4763 }
4764 #endif
4765 md_number_to_chars (p, value, fixP->fx_size);
4766 }
4767 \f
4768 #define MAX_LITTLENUMS 6
4769
4770 /* Turn the string pointed to by litP into a floating point constant
4771 of type TYPE, and emit the appropriate bytes. The number of
4772 LITTLENUMS emitted is stored in *SIZEP. An error message is
4773 returned, or NULL on OK. */
4774
4775 char *
4776 md_atof (type, litP, sizeP)
4777 int type;
4778 char *litP;
4779 int *sizeP;
4780 {
4781 int prec;
4782 LITTLENUM_TYPE words[MAX_LITTLENUMS];
4783 LITTLENUM_TYPE *wordP;
4784 char *t;
4785
4786 switch (type)
4787 {
4788 case 'f':
4789 case 'F':
4790 prec = 2;
4791 break;
4792
4793 case 'd':
4794 case 'D':
4795 prec = 4;
4796 break;
4797
4798 case 'x':
4799 case 'X':
4800 prec = 5;
4801 break;
4802
4803 default:
4804 *sizeP = 0;
4805 return _("Bad call to md_atof ()");
4806 }
4807 t = atof_ieee (input_line_pointer, type, words);
4808 if (t)
4809 input_line_pointer = t;
4810
4811 *sizeP = prec * sizeof (LITTLENUM_TYPE);
4812 /* This loops outputs the LITTLENUMs in REVERSE order; in accord with
4813 the bigendian 386. */
4814 for (wordP = words + prec - 1; prec--;)
4815 {
4816 md_number_to_chars (litP, (valueT) (*wordP--), sizeof (LITTLENUM_TYPE));
4817 litP += sizeof (LITTLENUM_TYPE);
4818 }
4819 return 0;
4820 }
4821 \f
4822 char output_invalid_buf[8];
4823
4824 static char *
4825 output_invalid (c)
4826 int c;
4827 {
4828 if (ISPRINT (c))
4829 sprintf (output_invalid_buf, "'%c'", c);
4830 else
4831 sprintf (output_invalid_buf, "(0x%x)", (unsigned) c);
4832 return output_invalid_buf;
4833 }
4834
4835 /* REG_STRING starts *before* REGISTER_PREFIX. */
4836
4837 static const reg_entry *
4838 parse_register (reg_string, end_op)
4839 char *reg_string;
4840 char **end_op;
4841 {
4842 char *s = reg_string;
4843 char *p;
4844 char reg_name_given[MAX_REG_NAME_SIZE + 1];
4845 const reg_entry *r;
4846
4847 /* Skip possible REGISTER_PREFIX and possible whitespace. */
4848 if (*s == REGISTER_PREFIX)
4849 ++s;
4850
4851 if (is_space_char (*s))
4852 ++s;
4853
4854 p = reg_name_given;
4855 while ((*p++ = register_chars[(unsigned char) *s]) != '\0')
4856 {
4857 if (p >= reg_name_given + MAX_REG_NAME_SIZE)
4858 return (const reg_entry *) NULL;
4859 s++;
4860 }
4861
4862 /* For naked regs, make sure that we are not dealing with an identifier.
4863 This prevents confusing an identifier like `eax_var' with register
4864 `eax'. */
4865 if (allow_naked_reg && identifier_chars[(unsigned char) *s])
4866 return (const reg_entry *) NULL;
4867
4868 *end_op = s;
4869
4870 r = (const reg_entry *) hash_find (reg_hash, reg_name_given);
4871
4872 /* Handle floating point regs, allowing spaces in the (i) part. */
4873 if (r == i386_regtab /* %st is first entry of table */)
4874 {
4875 if (is_space_char (*s))
4876 ++s;
4877 if (*s == '(')
4878 {
4879 ++s;
4880 if (is_space_char (*s))
4881 ++s;
4882 if (*s >= '0' && *s <= '7')
4883 {
4884 r = &i386_float_regtab[*s - '0'];
4885 ++s;
4886 if (is_space_char (*s))
4887 ++s;
4888 if (*s == ')')
4889 {
4890 *end_op = s + 1;
4891 return r;
4892 }
4893 }
4894 /* We have "%st(" then garbage. */
4895 return (const reg_entry *) NULL;
4896 }
4897 }
4898
4899 if (r != NULL
4900 && (r->reg_flags & (RegRex64 | RegRex)) != 0
4901 && flag_code != CODE_64BIT)
4902 {
4903 return (const reg_entry *) NULL;
4904 }
4905
4906 return r;
4907 }
4908 \f
4909 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
4910 const char *md_shortopts = "kVQ:sqn";
4911 #else
4912 const char *md_shortopts = "qn";
4913 #endif
4914
4915 struct option md_longopts[] = {
4916 #define OPTION_32 (OPTION_MD_BASE + 0)
4917 {"32", no_argument, NULL, OPTION_32},
4918 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
4919 #define OPTION_64 (OPTION_MD_BASE + 1)
4920 {"64", no_argument, NULL, OPTION_64},
4921 #endif
4922 {NULL, no_argument, NULL, 0}
4923 };
4924 size_t md_longopts_size = sizeof (md_longopts);
4925
4926 int
4927 md_parse_option (c, arg)
4928 int c;
4929 char *arg ATTRIBUTE_UNUSED;
4930 {
4931 switch (c)
4932 {
4933 case 'n':
4934 optimize_align_code = 0;
4935 break;
4936
4937 case 'q':
4938 quiet_warnings = 1;
4939 break;
4940
4941 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
4942 /* -Qy, -Qn: SVR4 arguments controlling whether a .comment section
4943 should be emitted or not. FIXME: Not implemented. */
4944 case 'Q':
4945 break;
4946
4947 /* -V: SVR4 argument to print version ID. */
4948 case 'V':
4949 print_version_id ();
4950 break;
4951
4952 /* -k: Ignore for FreeBSD compatibility. */
4953 case 'k':
4954 break;
4955
4956 case 's':
4957 /* -s: On i386 Solaris, this tells the native assembler to use
4958 .stab instead of .stab.excl. We always use .stab anyhow. */
4959 break;
4960
4961 case OPTION_64:
4962 {
4963 const char **list, **l;
4964
4965 list = bfd_target_list ();
4966 for (l = list; *l != NULL; l++)
4967 if (strcmp (*l, "elf64-x86-64") == 0)
4968 {
4969 default_arch = "x86_64";
4970 break;
4971 }
4972 if (*l == NULL)
4973 as_fatal (_("No compiled in support for x86_64"));
4974 free (list);
4975 }
4976 break;
4977 #endif
4978
4979 case OPTION_32:
4980 default_arch = "i386";
4981 break;
4982
4983 default:
4984 return 0;
4985 }
4986 return 1;
4987 }
4988
4989 void
4990 md_show_usage (stream)
4991 FILE *stream;
4992 {
4993 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
4994 fprintf (stream, _("\
4995 -Q ignored\n\
4996 -V print assembler version number\n\
4997 -k ignored\n\
4998 -n Do not optimize code alignment\n\
4999 -q quieten some warnings\n\
5000 -s ignored\n"));
5001 #else
5002 fprintf (stream, _("\
5003 -n Do not optimize code alignment\n\
5004 -q quieten some warnings\n"));
5005 #endif
5006 }
5007
5008 #ifdef BFD_ASSEMBLER
5009 #if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
5010 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF))
5011
5012 /* Pick the target format to use. */
5013
5014 const char *
5015 i386_target_format ()
5016 {
5017 if (!strcmp (default_arch, "x86_64"))
5018 set_code_flag (CODE_64BIT);
5019 else if (!strcmp (default_arch, "i386"))
5020 set_code_flag (CODE_32BIT);
5021 else
5022 as_fatal (_("Unknown architecture"));
5023 switch (OUTPUT_FLAVOR)
5024 {
5025 #ifdef OBJ_MAYBE_AOUT
5026 case bfd_target_aout_flavour:
5027 return AOUT_TARGET_FORMAT;
5028 #endif
5029 #ifdef OBJ_MAYBE_COFF
5030 case bfd_target_coff_flavour:
5031 return "coff-i386";
5032 #endif
5033 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
5034 case bfd_target_elf_flavour:
5035 {
5036 if (flag_code == CODE_64BIT)
5037 use_rela_relocations = 1;
5038 return flag_code == CODE_64BIT ? "elf64-x86-64" : ELF_TARGET_FORMAT;
5039 }
5040 #endif
5041 default:
5042 abort ();
5043 return NULL;
5044 }
5045 }
5046
5047 #endif /* OBJ_MAYBE_ more than one */
5048
5049 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF))
5050 void i386_elf_emit_arch_note ()
5051 {
5052 if (OUTPUT_FLAVOR == bfd_target_elf_flavour
5053 && cpu_arch_name != NULL)
5054 {
5055 char *p;
5056 asection *seg = now_seg;
5057 subsegT subseg = now_subseg;
5058 Elf_Internal_Note i_note;
5059 Elf_External_Note e_note;
5060 asection *note_secp;
5061 int len;
5062
5063 /* Create the .note section. */
5064 note_secp = subseg_new (".note", 0);
5065 bfd_set_section_flags (stdoutput,
5066 note_secp,
5067 SEC_HAS_CONTENTS | SEC_READONLY);
5068
5069 /* Process the arch string. */
5070 len = strlen (cpu_arch_name);
5071
5072 i_note.namesz = len + 1;
5073 i_note.descsz = 0;
5074 i_note.type = NT_ARCH;
5075 p = frag_more (sizeof (e_note.namesz));
5076 md_number_to_chars (p, (valueT) i_note.namesz, sizeof (e_note.namesz));
5077 p = frag_more (sizeof (e_note.descsz));
5078 md_number_to_chars (p, (valueT) i_note.descsz, sizeof (e_note.descsz));
5079 p = frag_more (sizeof (e_note.type));
5080 md_number_to_chars (p, (valueT) i_note.type, sizeof (e_note.type));
5081 p = frag_more (len + 1);
5082 strcpy (p, cpu_arch_name);
5083
5084 frag_align (2, 0, 0);
5085
5086 subseg_set (seg, subseg);
5087 }
5088 }
5089 #endif
5090 #endif /* BFD_ASSEMBLER */
5091 \f
5092 symbolS *
5093 md_undefined_symbol (name)
5094 char *name;
5095 {
5096 if (name[0] == GLOBAL_OFFSET_TABLE_NAME[0]
5097 && name[1] == GLOBAL_OFFSET_TABLE_NAME[1]
5098 && name[2] == GLOBAL_OFFSET_TABLE_NAME[2]
5099 && strcmp (name, GLOBAL_OFFSET_TABLE_NAME) == 0)
5100 {
5101 if (!GOT_symbol)
5102 {
5103 if (symbol_find (name))
5104 as_bad (_("GOT already in symbol table"));
5105 GOT_symbol = symbol_new (name, undefined_section,
5106 (valueT) 0, &zero_address_frag);
5107 };
5108 return GOT_symbol;
5109 }
5110 return 0;
5111 }
5112
5113 /* Round up a section size to the appropriate boundary. */
5114
5115 valueT
5116 md_section_align (segment, size)
5117 segT segment ATTRIBUTE_UNUSED;
5118 valueT size;
5119 {
5120 #ifdef BFD_ASSEMBLER
5121 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
5122 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
5123 {
5124 /* For a.out, force the section size to be aligned. If we don't do
5125 this, BFD will align it for us, but it will not write out the
5126 final bytes of the section. This may be a bug in BFD, but it is
5127 easier to fix it here since that is how the other a.out targets
5128 work. */
5129 int align;
5130
5131 align = bfd_get_section_alignment (stdoutput, segment);
5132 size = ((size + (1 << align) - 1) & ((valueT) -1 << align));
5133 }
5134 #endif
5135 #endif
5136
5137 return size;
5138 }
5139
5140 /* On the i386, PC-relative offsets are relative to the start of the
5141 next instruction. That is, the address of the offset, plus its
5142 size, since the offset is always the last part of the insn. */
5143
5144 long
5145 md_pcrel_from (fixP)
5146 fixS *fixP;
5147 {
5148 return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address;
5149 }
5150
5151 #ifndef I386COFF
5152
5153 static void
5154 s_bss (ignore)
5155 int ignore ATTRIBUTE_UNUSED;
5156 {
5157 int temp;
5158
5159 temp = get_absolute_expression ();
5160 subseg_set (bss_section, (subsegT) temp);
5161 demand_empty_rest_of_line ();
5162 }
5163
5164 #endif
5165
5166 #ifdef BFD_ASSEMBLER
5167
5168 void
5169 i386_validate_fix (fixp)
5170 fixS *fixp;
5171 {
5172 if (fixp->fx_subsy && fixp->fx_subsy == GOT_symbol)
5173 {
5174 /* GOTOFF relocation are nonsense in 64bit mode. */
5175 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
5176 {
5177 if (flag_code != CODE_64BIT)
5178 abort ();
5179 fixp->fx_r_type = BFD_RELOC_X86_64_GOTPCREL;
5180 }
5181 else
5182 {
5183 if (flag_code == CODE_64BIT)
5184 abort ();
5185 fixp->fx_r_type = BFD_RELOC_386_GOTOFF;
5186 }
5187 fixp->fx_subsy = 0;
5188 }
5189 }
5190
5191 arelent *
5192 tc_gen_reloc (section, fixp)
5193 asection *section ATTRIBUTE_UNUSED;
5194 fixS *fixp;
5195 {
5196 arelent *rel;
5197 bfd_reloc_code_real_type code;
5198
5199 switch (fixp->fx_r_type)
5200 {
5201 case BFD_RELOC_X86_64_PLT32:
5202 case BFD_RELOC_X86_64_GOT32:
5203 case BFD_RELOC_X86_64_GOTPCREL:
5204 case BFD_RELOC_386_PLT32:
5205 case BFD_RELOC_386_GOT32:
5206 case BFD_RELOC_386_GOTOFF:
5207 case BFD_RELOC_386_GOTPC:
5208 case BFD_RELOC_386_TLS_GD:
5209 case BFD_RELOC_386_TLS_LDM:
5210 case BFD_RELOC_386_TLS_LDO_32:
5211 case BFD_RELOC_386_TLS_IE_32:
5212 case BFD_RELOC_386_TLS_IE:
5213 case BFD_RELOC_386_TLS_GOTIE:
5214 case BFD_RELOC_386_TLS_LE_32:
5215 case BFD_RELOC_386_TLS_LE:
5216 case BFD_RELOC_X86_64_32S:
5217 case BFD_RELOC_X86_64_TLSGD:
5218 case BFD_RELOC_X86_64_TLSLD:
5219 case BFD_RELOC_X86_64_DTPOFF32:
5220 case BFD_RELOC_X86_64_GOTTPOFF:
5221 case BFD_RELOC_X86_64_TPOFF32:
5222 case BFD_RELOC_RVA:
5223 case BFD_RELOC_VTABLE_ENTRY:
5224 case BFD_RELOC_VTABLE_INHERIT:
5225 code = fixp->fx_r_type;
5226 break;
5227 default:
5228 if (fixp->fx_pcrel)
5229 {
5230 switch (fixp->fx_size)
5231 {
5232 default:
5233 as_bad_where (fixp->fx_file, fixp->fx_line,
5234 _("can not do %d byte pc-relative relocation"),
5235 fixp->fx_size);
5236 code = BFD_RELOC_32_PCREL;
5237 break;
5238 case 1: code = BFD_RELOC_8_PCREL; break;
5239 case 2: code = BFD_RELOC_16_PCREL; break;
5240 case 4: code = BFD_RELOC_32_PCREL; break;
5241 }
5242 }
5243 else
5244 {
5245 switch (fixp->fx_size)
5246 {
5247 default:
5248 as_bad_where (fixp->fx_file, fixp->fx_line,
5249 _("can not do %d byte relocation"),
5250 fixp->fx_size);
5251 code = BFD_RELOC_32;
5252 break;
5253 case 1: code = BFD_RELOC_8; break;
5254 case 2: code = BFD_RELOC_16; break;
5255 case 4: code = BFD_RELOC_32; break;
5256 #ifdef BFD64
5257 case 8: code = BFD_RELOC_64; break;
5258 #endif
5259 }
5260 }
5261 break;
5262 }
5263
5264 if (code == BFD_RELOC_32
5265 && GOT_symbol
5266 && fixp->fx_addsy == GOT_symbol)
5267 {
5268 /* We don't support GOTPC on 64bit targets. */
5269 if (flag_code == CODE_64BIT)
5270 abort ();
5271 code = BFD_RELOC_386_GOTPC;
5272 }
5273
5274 rel = (arelent *) xmalloc (sizeof (arelent));
5275 rel->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
5276 *rel->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
5277
5278 rel->address = fixp->fx_frag->fr_address + fixp->fx_where;
5279 if (!use_rela_relocations)
5280 {
5281 /* HACK: Since i386 ELF uses Rel instead of Rela, encode the
5282 vtable entry to be used in the relocation's section offset. */
5283 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
5284 rel->address = fixp->fx_offset;
5285
5286 rel->addend = 0;
5287 }
5288 /* Use the rela in 64bit mode. */
5289 else
5290 {
5291 if (!fixp->fx_pcrel)
5292 rel->addend = fixp->fx_offset;
5293 else
5294 switch (code)
5295 {
5296 case BFD_RELOC_X86_64_PLT32:
5297 case BFD_RELOC_X86_64_GOT32:
5298 case BFD_RELOC_X86_64_GOTPCREL:
5299 case BFD_RELOC_X86_64_TLSGD:
5300 case BFD_RELOC_X86_64_TLSLD:
5301 case BFD_RELOC_X86_64_GOTTPOFF:
5302 rel->addend = fixp->fx_offset - fixp->fx_size;
5303 break;
5304 default:
5305 rel->addend = (section->vma
5306 - fixp->fx_size
5307 + fixp->fx_addnumber
5308 + md_pcrel_from (fixp));
5309 break;
5310 }
5311 }
5312
5313 rel->howto = bfd_reloc_type_lookup (stdoutput, code);
5314 if (rel->howto == NULL)
5315 {
5316 as_bad_where (fixp->fx_file, fixp->fx_line,
5317 _("cannot represent relocation type %s"),
5318 bfd_get_reloc_code_name (code));
5319 /* Set howto to a garbage value so that we can keep going. */
5320 rel->howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_32);
5321 assert (rel->howto != NULL);
5322 }
5323
5324 return rel;
5325 }
5326
5327 #else /* !BFD_ASSEMBLER */
5328
5329 #if (defined(OBJ_AOUT) | defined(OBJ_BOUT))
5330 void
5331 tc_aout_fix_to_chars (where, fixP, segment_address_in_file)
5332 char *where;
5333 fixS *fixP;
5334 relax_addressT segment_address_in_file;
5335 {
5336 /* In: length of relocation (or of address) in chars: 1, 2 or 4.
5337 Out: GNU LD relocation length code: 0, 1, or 2. */
5338
5339 static const unsigned char nbytes_r_length[] = { 42, 0, 1, 42, 2 };
5340 long r_symbolnum;
5341
5342 know (fixP->fx_addsy != NULL);
5343
5344 md_number_to_chars (where,
5345 (valueT) (fixP->fx_frag->fr_address
5346 + fixP->fx_where - segment_address_in_file),
5347 4);
5348
5349 r_symbolnum = (S_IS_DEFINED (fixP->fx_addsy)
5350 ? S_GET_TYPE (fixP->fx_addsy)
5351 : fixP->fx_addsy->sy_number);
5352
5353 where[6] = (r_symbolnum >> 16) & 0x0ff;
5354 where[5] = (r_symbolnum >> 8) & 0x0ff;
5355 where[4] = r_symbolnum & 0x0ff;
5356 where[7] = ((((!S_IS_DEFINED (fixP->fx_addsy)) << 3) & 0x08)
5357 | ((nbytes_r_length[fixP->fx_size] << 1) & 0x06)
5358 | (((fixP->fx_pcrel << 0) & 0x01) & 0x0f));
5359 }
5360
5361 #endif /* OBJ_AOUT or OBJ_BOUT. */
5362
5363 #if defined (I386COFF)
5364
5365 short
5366 tc_coff_fix2rtype (fixP)
5367 fixS *fixP;
5368 {
5369 if (fixP->fx_r_type == R_IMAGEBASE)
5370 return R_IMAGEBASE;
5371
5372 return (fixP->fx_pcrel ?
5373 (fixP->fx_size == 1 ? R_PCRBYTE :
5374 fixP->fx_size == 2 ? R_PCRWORD :
5375 R_PCRLONG) :
5376 (fixP->fx_size == 1 ? R_RELBYTE :
5377 fixP->fx_size == 2 ? R_RELWORD :
5378 R_DIR32));
5379 }
5380
5381 int
5382 tc_coff_sizemachdep (frag)
5383 fragS *frag;
5384 {
5385 if (frag->fr_next)
5386 return (frag->fr_next->fr_address - frag->fr_address);
5387 else
5388 return 0;
5389 }
5390
5391 #endif /* I386COFF */
5392
5393 #endif /* !BFD_ASSEMBLER */
5394 \f
5395 /* Parse operands using Intel syntax. This implements a recursive descent
5396 parser based on the BNF grammar published in Appendix B of the MASM 6.1
5397 Programmer's Guide.
5398
5399 FIXME: We do not recognize the full operand grammar defined in the MASM
5400 documentation. In particular, all the structure/union and
5401 high-level macro operands are missing.
5402
5403 Uppercase words are terminals, lower case words are non-terminals.
5404 Objects surrounded by double brackets '[[' ']]' are optional. Vertical
5405 bars '|' denote choices. Most grammar productions are implemented in
5406 functions called 'intel_<production>'.
5407
5408 Initial production is 'expr'.
5409
5410 addOp + | -
5411
5412 alpha [a-zA-Z]
5413
5414 byteRegister AL | AH | BL | BH | CL | CH | DL | DH
5415
5416 constant digits [[ radixOverride ]]
5417
5418 dataType BYTE | WORD | DWORD | QWORD | XWORD
5419
5420 digits decdigit
5421 | digits decdigit
5422 | digits hexdigit
5423
5424 decdigit [0-9]
5425
5426 e05 e05 addOp e06
5427 | e06
5428
5429 e06 e06 mulOp e09
5430 | e09
5431
5432 e09 OFFSET e10
5433 | e09 PTR e10
5434 | e09 : e10
5435 | e10
5436
5437 e10 e10 [ expr ]
5438 | e11
5439
5440 e11 ( expr )
5441 | [ expr ]
5442 | constant
5443 | dataType
5444 | id
5445 | $
5446 | register
5447
5448 => expr SHORT e05
5449 | e05
5450
5451 gpRegister AX | EAX | BX | EBX | CX | ECX | DX | EDX
5452 | BP | EBP | SP | ESP | DI | EDI | SI | ESI
5453
5454 hexdigit a | b | c | d | e | f
5455 | A | B | C | D | E | F
5456
5457 id alpha
5458 | id alpha
5459 | id decdigit
5460
5461 mulOp * | / | MOD
5462
5463 quote " | '
5464
5465 register specialRegister
5466 | gpRegister
5467 | byteRegister
5468
5469 segmentRegister CS | DS | ES | FS | GS | SS
5470
5471 specialRegister CR0 | CR2 | CR3
5472 | DR0 | DR1 | DR2 | DR3 | DR6 | DR7
5473 | TR3 | TR4 | TR5 | TR6 | TR7
5474
5475 We simplify the grammar in obvious places (e.g., register parsing is
5476 done by calling parse_register) and eliminate immediate left recursion
5477 to implement a recursive-descent parser.
5478
5479 expr SHORT e05
5480 | e05
5481
5482 e05 e06 e05'
5483
5484 e05' addOp e06 e05'
5485 | Empty
5486
5487 e06 e09 e06'
5488
5489 e06' mulOp e09 e06'
5490 | Empty
5491
5492 e09 OFFSET e10 e09'
5493 | e10 e09'
5494
5495 e09' PTR e10 e09'
5496 | : e10 e09'
5497 | Empty
5498
5499 e10 e11 e10'
5500
5501 e10' [ expr ] e10'
5502 | Empty
5503
5504 e11 ( expr )
5505 | [ expr ]
5506 | BYTE
5507 | WORD
5508 | DWORD
5509 | QWORD
5510 | XWORD
5511 | .
5512 | $
5513 | register
5514 | id
5515 | constant */
5516
5517 /* Parsing structure for the intel syntax parser. Used to implement the
5518 semantic actions for the operand grammar. */
5519 struct intel_parser_s
5520 {
5521 char *op_string; /* The string being parsed. */
5522 int got_a_float; /* Whether the operand is a float. */
5523 int op_modifier; /* Operand modifier. */
5524 int is_mem; /* 1 if operand is memory reference. */
5525 const reg_entry *reg; /* Last register reference found. */
5526 char *disp; /* Displacement string being built. */
5527 };
5528
5529 static struct intel_parser_s intel_parser;
5530
5531 /* Token structure for parsing intel syntax. */
5532 struct intel_token
5533 {
5534 int code; /* Token code. */
5535 const reg_entry *reg; /* Register entry for register tokens. */
5536 char *str; /* String representation. */
5537 };
5538
5539 static struct intel_token cur_token, prev_token;
5540
5541 /* Token codes for the intel parser. Since T_SHORT is already used
5542 by COFF, undefine it first to prevent a warning. */
5543 #define T_NIL -1
5544 #define T_CONST 1
5545 #define T_REG 2
5546 #define T_BYTE 3
5547 #define T_WORD 4
5548 #define T_DWORD 5
5549 #define T_QWORD 6
5550 #define T_XWORD 7
5551 #undef T_SHORT
5552 #define T_SHORT 8
5553 #define T_OFFSET 9
5554 #define T_PTR 10
5555 #define T_ID 11
5556
5557 /* Prototypes for intel parser functions. */
5558 static int intel_match_token PARAMS ((int code));
5559 static void intel_get_token PARAMS ((void));
5560 static void intel_putback_token PARAMS ((void));
5561 static int intel_expr PARAMS ((void));
5562 static int intel_e05 PARAMS ((void));
5563 static int intel_e05_1 PARAMS ((void));
5564 static int intel_e06 PARAMS ((void));
5565 static int intel_e06_1 PARAMS ((void));
5566 static int intel_e09 PARAMS ((void));
5567 static int intel_e09_1 PARAMS ((void));
5568 static int intel_e10 PARAMS ((void));
5569 static int intel_e10_1 PARAMS ((void));
5570 static int intel_e11 PARAMS ((void));
5571
5572 static int
5573 i386_intel_operand (operand_string, got_a_float)
5574 char *operand_string;
5575 int got_a_float;
5576 {
5577 int ret;
5578 char *p;
5579
5580 /* Initialize token holders. */
5581 cur_token.code = prev_token.code = T_NIL;
5582 cur_token.reg = prev_token.reg = NULL;
5583 cur_token.str = prev_token.str = NULL;
5584
5585 /* Initialize parser structure. */
5586 p = intel_parser.op_string = (char *) malloc (strlen (operand_string) + 1);
5587 if (p == NULL)
5588 abort ();
5589 strcpy (intel_parser.op_string, operand_string);
5590 intel_parser.got_a_float = got_a_float;
5591 intel_parser.op_modifier = -1;
5592 intel_parser.is_mem = 0;
5593 intel_parser.reg = NULL;
5594 intel_parser.disp = (char *) malloc (strlen (operand_string) + 1);
5595 if (intel_parser.disp == NULL)
5596 abort ();
5597 intel_parser.disp[0] = '\0';
5598
5599 /* Read the first token and start the parser. */
5600 intel_get_token ();
5601 ret = intel_expr ();
5602
5603 if (ret)
5604 {
5605 /* If we found a memory reference, hand it over to i386_displacement
5606 to fill in the rest of the operand fields. */
5607 if (intel_parser.is_mem)
5608 {
5609 if ((i.mem_operands == 1
5610 && (current_templates->start->opcode_modifier & IsString) == 0)
5611 || i.mem_operands == 2)
5612 {
5613 as_bad (_("too many memory references for '%s'"),
5614 current_templates->start->name);
5615 ret = 0;
5616 }
5617 else
5618 {
5619 char *s = intel_parser.disp;
5620 i.mem_operands++;
5621
5622 /* Add the displacement expression. */
5623 if (*s != '\0')
5624 ret = i386_displacement (s, s + strlen (s))
5625 && i386_index_check (s);
5626 }
5627 }
5628
5629 /* Constant and OFFSET expressions are handled by i386_immediate. */
5630 else if (intel_parser.op_modifier == OFFSET_FLAT
5631 || intel_parser.reg == NULL)
5632 ret = i386_immediate (intel_parser.disp);
5633 }
5634
5635 free (p);
5636 free (intel_parser.disp);
5637
5638 return ret;
5639 }
5640
5641 /* expr SHORT e05
5642 | e05 */
5643 static int
5644 intel_expr ()
5645 {
5646 /* expr SHORT e05 */
5647 if (cur_token.code == T_SHORT)
5648 {
5649 intel_parser.op_modifier = SHORT;
5650 intel_match_token (T_SHORT);
5651
5652 return (intel_e05 ());
5653 }
5654
5655 /* expr e05 */
5656 else
5657 return intel_e05 ();
5658 }
5659
5660 /* e05 e06 e05'
5661
5662 e05' addOp e06 e05'
5663 | Empty */
5664 static int
5665 intel_e05 ()
5666 {
5667 return (intel_e06 () && intel_e05_1 ());
5668 }
5669
5670 static int
5671 intel_e05_1 ()
5672 {
5673 /* e05' addOp e06 e05' */
5674 if (cur_token.code == '+' || cur_token.code == '-')
5675 {
5676 strcat (intel_parser.disp, cur_token.str);
5677 intel_match_token (cur_token.code);
5678
5679 return (intel_e06 () && intel_e05_1 ());
5680 }
5681
5682 /* e05' Empty */
5683 else
5684 return 1;
5685 }
5686
5687 /* e06 e09 e06'
5688
5689 e06' mulOp e09 e06'
5690 | Empty */
5691 static int
5692 intel_e06 ()
5693 {
5694 return (intel_e09 () && intel_e06_1 ());
5695 }
5696
5697 static int
5698 intel_e06_1 ()
5699 {
5700 /* e06' mulOp e09 e06' */
5701 if (cur_token.code == '*' || cur_token.code == '/')
5702 {
5703 strcat (intel_parser.disp, cur_token.str);
5704 intel_match_token (cur_token.code);
5705
5706 return (intel_e09 () && intel_e06_1 ());
5707 }
5708
5709 /* e06' Empty */
5710 else
5711 return 1;
5712 }
5713
5714 /* e09 OFFSET e10 e09'
5715 | e10 e09'
5716
5717 e09' PTR e10 e09'
5718 | : e10 e09'
5719 | Empty */
5720 static int
5721 intel_e09 ()
5722 {
5723 /* e09 OFFSET e10 e09' */
5724 if (cur_token.code == T_OFFSET)
5725 {
5726 intel_parser.is_mem = 0;
5727 intel_parser.op_modifier = OFFSET_FLAT;
5728 intel_match_token (T_OFFSET);
5729
5730 return (intel_e10 () && intel_e09_1 ());
5731 }
5732
5733 /* e09 e10 e09' */
5734 else
5735 return (intel_e10 () && intel_e09_1 ());
5736 }
5737
5738 static int
5739 intel_e09_1 ()
5740 {
5741 /* e09' PTR e10 e09' */
5742 if (cur_token.code == T_PTR)
5743 {
5744 if (prev_token.code == T_BYTE)
5745 i.suffix = BYTE_MNEM_SUFFIX;
5746
5747 else if (prev_token.code == T_WORD)
5748 {
5749 if (intel_parser.got_a_float == 2) /* "fi..." */
5750 i.suffix = SHORT_MNEM_SUFFIX;
5751 else
5752 i.suffix = WORD_MNEM_SUFFIX;
5753 }
5754
5755 else if (prev_token.code == T_DWORD)
5756 {
5757 if (intel_parser.got_a_float == 1) /* "f..." */
5758 i.suffix = SHORT_MNEM_SUFFIX;
5759 else
5760 i.suffix = LONG_MNEM_SUFFIX;
5761 }
5762
5763 else if (prev_token.code == T_QWORD)
5764 {
5765 if (intel_parser.got_a_float == 1) /* "f..." */
5766 i.suffix = LONG_MNEM_SUFFIX;
5767 else
5768 i.suffix = QWORD_MNEM_SUFFIX;
5769 }
5770
5771 else if (prev_token.code == T_XWORD)
5772 i.suffix = LONG_DOUBLE_MNEM_SUFFIX;
5773
5774 else
5775 {
5776 as_bad (_("Unknown operand modifier `%s'\n"), prev_token.str);
5777 return 0;
5778 }
5779
5780 intel_match_token (T_PTR);
5781
5782 return (intel_e10 () && intel_e09_1 ());
5783 }
5784
5785 /* e09 : e10 e09' */
5786 else if (cur_token.code == ':')
5787 {
5788 /* Mark as a memory operand only if it's not already known to be an
5789 offset expression. */
5790 if (intel_parser.op_modifier != OFFSET_FLAT)
5791 intel_parser.is_mem = 1;
5792
5793 return (intel_match_token (':') && intel_e10 () && intel_e09_1 ());
5794 }
5795
5796 /* e09' Empty */
5797 else
5798 return 1;
5799 }
5800
5801 /* e10 e11 e10'
5802
5803 e10' [ expr ] e10'
5804 | Empty */
5805 static int
5806 intel_e10 ()
5807 {
5808 return (intel_e11 () && intel_e10_1 ());
5809 }
5810
5811 static int
5812 intel_e10_1 ()
5813 {
5814 /* e10' [ expr ] e10' */
5815 if (cur_token.code == '[')
5816 {
5817 intel_match_token ('[');
5818
5819 /* Mark as a memory operand only if it's not already known to be an
5820 offset expression. If it's an offset expression, we need to keep
5821 the brace in. */
5822 if (intel_parser.op_modifier != OFFSET_FLAT)
5823 intel_parser.is_mem = 1;
5824 else
5825 strcat (intel_parser.disp, "[");
5826
5827 /* Add a '+' to the displacement string if necessary. */
5828 if (*intel_parser.disp != '\0'
5829 && *(intel_parser.disp + strlen (intel_parser.disp) - 1) != '+')
5830 strcat (intel_parser.disp, "+");
5831
5832 if (intel_expr () && intel_match_token (']'))
5833 {
5834 /* Preserve brackets when the operand is an offset expression. */
5835 if (intel_parser.op_modifier == OFFSET_FLAT)
5836 strcat (intel_parser.disp, "]");
5837
5838 return intel_e10_1 ();
5839 }
5840 else
5841 return 0;
5842 }
5843
5844 /* e10' Empty */
5845 else
5846 return 1;
5847 }
5848
5849 /* e11 ( expr )
5850 | [ expr ]
5851 | BYTE
5852 | WORD
5853 | DWORD
5854 | QWORD
5855 | XWORD
5856 | $
5857 | .
5858 | register
5859 | id
5860 | constant */
5861 static int
5862 intel_e11 ()
5863 {
5864 /* e11 ( expr ) */
5865 if (cur_token.code == '(')
5866 {
5867 intel_match_token ('(');
5868 strcat (intel_parser.disp, "(");
5869
5870 if (intel_expr () && intel_match_token (')'))
5871 {
5872 strcat (intel_parser.disp, ")");
5873 return 1;
5874 }
5875 else
5876 return 0;
5877 }
5878
5879 /* e11 [ expr ] */
5880 else if (cur_token.code == '[')
5881 {
5882 intel_match_token ('[');
5883
5884 /* Mark as a memory operand only if it's not already known to be an
5885 offset expression. If it's an offset expression, we need to keep
5886 the brace in. */
5887 if (intel_parser.op_modifier != OFFSET_FLAT)
5888 intel_parser.is_mem = 1;
5889 else
5890 strcat (intel_parser.disp, "[");
5891
5892 /* Operands for jump/call inside brackets denote absolute addresses. */
5893 if (current_templates->start->opcode_modifier & Jump
5894 || current_templates->start->opcode_modifier & JumpDword
5895 || current_templates->start->opcode_modifier & JumpByte
5896 || current_templates->start->opcode_modifier & JumpInterSegment)
5897 i.types[this_operand] |= JumpAbsolute;
5898
5899 /* Add a '+' to the displacement string if necessary. */
5900 if (*intel_parser.disp != '\0'
5901 && *(intel_parser.disp + strlen (intel_parser.disp) - 1) != '+')
5902 strcat (intel_parser.disp, "+");
5903
5904 if (intel_expr () && intel_match_token (']'))
5905 {
5906 /* Preserve brackets when the operand is an offset expression. */
5907 if (intel_parser.op_modifier == OFFSET_FLAT)
5908 strcat (intel_parser.disp, "]");
5909
5910 return 1;
5911 }
5912 else
5913 return 0;
5914 }
5915
5916 /* e11 BYTE
5917 | WORD
5918 | DWORD
5919 | QWORD
5920 | XWORD */
5921 else if (cur_token.code == T_BYTE
5922 || cur_token.code == T_WORD
5923 || cur_token.code == T_DWORD
5924 || cur_token.code == T_QWORD
5925 || cur_token.code == T_XWORD)
5926 {
5927 intel_match_token (cur_token.code);
5928
5929 return 1;
5930 }
5931
5932 /* e11 $
5933 | . */
5934 else if (cur_token.code == '$' || cur_token.code == '.')
5935 {
5936 strcat (intel_parser.disp, cur_token.str);
5937 intel_match_token (cur_token.code);
5938
5939 /* Mark as a memory operand only if it's not already known to be an
5940 offset expression. */
5941 if (intel_parser.op_modifier != OFFSET_FLAT)
5942 intel_parser.is_mem = 1;
5943
5944 return 1;
5945 }
5946
5947 /* e11 register */
5948 else if (cur_token.code == T_REG)
5949 {
5950 const reg_entry *reg = intel_parser.reg = cur_token.reg;
5951
5952 intel_match_token (T_REG);
5953
5954 /* Check for segment change. */
5955 if (cur_token.code == ':')
5956 {
5957 if (reg->reg_type & (SReg2 | SReg3))
5958 {
5959 switch (reg->reg_num)
5960 {
5961 case 0:
5962 i.seg[i.mem_operands] = &es;
5963 break;
5964 case 1:
5965 i.seg[i.mem_operands] = &cs;
5966 break;
5967 case 2:
5968 i.seg[i.mem_operands] = &ss;
5969 break;
5970 case 3:
5971 i.seg[i.mem_operands] = &ds;
5972 break;
5973 case 4:
5974 i.seg[i.mem_operands] = &fs;
5975 break;
5976 case 5:
5977 i.seg[i.mem_operands] = &gs;
5978 break;
5979 }
5980 }
5981 else
5982 {
5983 as_bad (_("`%s' is not a valid segment register"), reg->reg_name);
5984 return 0;
5985 }
5986 }
5987
5988 /* Not a segment register. Check for register scaling. */
5989 else if (cur_token.code == '*')
5990 {
5991 if (!intel_parser.is_mem)
5992 {
5993 as_bad (_("Register scaling only allowed in memory operands."));
5994 return 0;
5995 }
5996
5997 /* What follows must be a valid scale. */
5998 if (intel_match_token ('*')
5999 && strchr ("01248", *cur_token.str))
6000 {
6001 i.index_reg = reg;
6002 i.types[this_operand] |= BaseIndex;
6003
6004 /* Set the scale after setting the register (otherwise,
6005 i386_scale will complain) */
6006 i386_scale (cur_token.str);
6007 intel_match_token (T_CONST);
6008 }
6009 else
6010 {
6011 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
6012 cur_token.str);
6013 return 0;
6014 }
6015 }
6016
6017 /* No scaling. If this is a memory operand, the register is either a
6018 base register (first occurrence) or an index register (second
6019 occurrence). */
6020 else if (intel_parser.is_mem && !(reg->reg_type & (SReg2 | SReg3)))
6021 {
6022 if (i.base_reg && i.index_reg)
6023 {
6024 as_bad (_("Too many register references in memory operand.\n"));
6025 return 0;
6026 }
6027
6028 if (i.base_reg == NULL)
6029 i.base_reg = reg;
6030 else
6031 i.index_reg = reg;
6032
6033 i.types[this_operand] |= BaseIndex;
6034 }
6035
6036 /* Offset modifier. Add the register to the displacement string to be
6037 parsed as an immediate expression after we're done. */
6038 else if (intel_parser.op_modifier == OFFSET_FLAT)
6039 strcat (intel_parser.disp, reg->reg_name);
6040
6041 /* It's neither base nor index nor offset. */
6042 else
6043 {
6044 i.types[this_operand] |= reg->reg_type & ~BaseIndex;
6045 i.op[this_operand].regs = reg;
6046 i.reg_operands++;
6047 }
6048
6049 /* Since registers are not part of the displacement string (except
6050 when we're parsing offset operands), we may need to remove any
6051 preceding '+' from the displacement string. */
6052 if (*intel_parser.disp != '\0'
6053 && intel_parser.op_modifier != OFFSET_FLAT)
6054 {
6055 char *s = intel_parser.disp;
6056 s += strlen (s) - 1;
6057 if (*s == '+')
6058 *s = '\0';
6059 }
6060
6061 return 1;
6062 }
6063
6064 /* e11 id */
6065 else if (cur_token.code == T_ID)
6066 {
6067 /* Add the identifier to the displacement string. */
6068 strcat (intel_parser.disp, cur_token.str);
6069 intel_match_token (T_ID);
6070
6071 /* The identifier represents a memory reference only if it's not
6072 preceded by an offset modifier. */
6073 if (intel_parser.op_modifier != OFFSET_FLAT)
6074 intel_parser.is_mem = 1;
6075
6076 return 1;
6077 }
6078
6079 /* e11 constant */
6080 else if (cur_token.code == T_CONST
6081 || cur_token.code == '-'
6082 || cur_token.code == '+')
6083 {
6084 char *save_str;
6085
6086 /* Allow constants that start with `+' or `-'. */
6087 if (cur_token.code == '-' || cur_token.code == '+')
6088 {
6089 strcat (intel_parser.disp, cur_token.str);
6090 intel_match_token (cur_token.code);
6091 if (cur_token.code != T_CONST)
6092 {
6093 as_bad (_("Syntax error. Expecting a constant. Got `%s'.\n"),
6094 cur_token.str);
6095 return 0;
6096 }
6097 }
6098
6099 save_str = (char *) malloc (strlen (cur_token.str) + 1);
6100 if (save_str == NULL)
6101 abort ();
6102 strcpy (save_str, cur_token.str);
6103
6104 /* Get the next token to check for register scaling. */
6105 intel_match_token (cur_token.code);
6106
6107 /* Check if this constant is a scaling factor for an index register. */
6108 if (cur_token.code == '*')
6109 {
6110 if (intel_match_token ('*') && cur_token.code == T_REG)
6111 {
6112 if (!intel_parser.is_mem)
6113 {
6114 as_bad (_("Register scaling only allowed in memory operands."));
6115 return 0;
6116 }
6117
6118 /* The constant is followed by `* reg', so it must be
6119 a valid scale. */
6120 if (strchr ("01248", *save_str))
6121 {
6122 i.index_reg = cur_token.reg;
6123 i.types[this_operand] |= BaseIndex;
6124
6125 /* Set the scale after setting the register (otherwise,
6126 i386_scale will complain) */
6127 i386_scale (save_str);
6128 intel_match_token (T_REG);
6129
6130 /* Since registers are not part of the displacement
6131 string, we may need to remove any preceding '+' from
6132 the displacement string. */
6133 if (*intel_parser.disp != '\0')
6134 {
6135 char *s = intel_parser.disp;
6136 s += strlen (s) - 1;
6137 if (*s == '+')
6138 *s = '\0';
6139 }
6140
6141 free (save_str);
6142
6143 return 1;
6144 }
6145 else
6146 return 0;
6147 }
6148
6149 /* The constant was not used for register scaling. Since we have
6150 already consumed the token following `*' we now need to put it
6151 back in the stream. */
6152 else
6153 intel_putback_token ();
6154 }
6155
6156 /* Add the constant to the displacement string. */
6157 strcat (intel_parser.disp, save_str);
6158 free (save_str);
6159
6160 return 1;
6161 }
6162
6163 as_bad (_("Unrecognized token '%s'"), cur_token.str);
6164 return 0;
6165 }
6166
6167 /* Match the given token against cur_token. If they match, read the next
6168 token from the operand string. */
6169 static int
6170 intel_match_token (code)
6171 int code;
6172 {
6173 if (cur_token.code == code)
6174 {
6175 intel_get_token ();
6176 return 1;
6177 }
6178 else
6179 {
6180 as_bad (_("Unexpected token `%s'\n"), cur_token.str);
6181 return 0;
6182 }
6183 }
6184
6185 /* Read a new token from intel_parser.op_string and store it in cur_token. */
6186 static void
6187 intel_get_token ()
6188 {
6189 char *end_op;
6190 const reg_entry *reg;
6191 struct intel_token new_token;
6192
6193 new_token.code = T_NIL;
6194 new_token.reg = NULL;
6195 new_token.str = NULL;
6196
6197 /* Free the memory allocated to the previous token and move
6198 cur_token to prev_token. */
6199 if (prev_token.str)
6200 free (prev_token.str);
6201
6202 prev_token = cur_token;
6203
6204 /* Skip whitespace. */
6205 while (is_space_char (*intel_parser.op_string))
6206 intel_parser.op_string++;
6207
6208 /* Return an empty token if we find nothing else on the line. */
6209 if (*intel_parser.op_string == '\0')
6210 {
6211 cur_token = new_token;
6212 return;
6213 }
6214
6215 /* The new token cannot be larger than the remainder of the operand
6216 string. */
6217 new_token.str = (char *) malloc (strlen (intel_parser.op_string) + 1);
6218 if (new_token.str == NULL)
6219 abort ();
6220 new_token.str[0] = '\0';
6221
6222 if (strchr ("0123456789", *intel_parser.op_string))
6223 {
6224 char *p = new_token.str;
6225 char *q = intel_parser.op_string;
6226 new_token.code = T_CONST;
6227
6228 /* Allow any kind of identifier char to encompass floating point and
6229 hexadecimal numbers. */
6230 while (is_identifier_char (*q))
6231 *p++ = *q++;
6232 *p = '\0';
6233
6234 /* Recognize special symbol names [0-9][bf]. */
6235 if (strlen (intel_parser.op_string) == 2
6236 && (intel_parser.op_string[1] == 'b'
6237 || intel_parser.op_string[1] == 'f'))
6238 new_token.code = T_ID;
6239 }
6240
6241 else if (strchr ("+-/*:[]()", *intel_parser.op_string))
6242 {
6243 new_token.code = *intel_parser.op_string;
6244 new_token.str[0] = *intel_parser.op_string;
6245 new_token.str[1] = '\0';
6246 }
6247
6248 else if ((*intel_parser.op_string == REGISTER_PREFIX || allow_naked_reg)
6249 && ((reg = parse_register (intel_parser.op_string, &end_op)) != NULL))
6250 {
6251 new_token.code = T_REG;
6252 new_token.reg = reg;
6253
6254 if (*intel_parser.op_string == REGISTER_PREFIX)
6255 {
6256 new_token.str[0] = REGISTER_PREFIX;
6257 new_token.str[1] = '\0';
6258 }
6259
6260 strcat (new_token.str, reg->reg_name);
6261 }
6262
6263 else if (is_identifier_char (*intel_parser.op_string))
6264 {
6265 char *p = new_token.str;
6266 char *q = intel_parser.op_string;
6267
6268 /* A '.' or '$' followed by an identifier char is an identifier.
6269 Otherwise, it's operator '.' followed by an expression. */
6270 if ((*q == '.' || *q == '$') && !is_identifier_char (*(q + 1)))
6271 {
6272 new_token.code = *q;
6273 new_token.str[0] = *q;
6274 new_token.str[1] = '\0';
6275 }
6276 else
6277 {
6278 while (is_identifier_char (*q) || *q == '@')
6279 *p++ = *q++;
6280 *p = '\0';
6281
6282 if (strcasecmp (new_token.str, "BYTE") == 0)
6283 new_token.code = T_BYTE;
6284
6285 else if (strcasecmp (new_token.str, "WORD") == 0)
6286 new_token.code = T_WORD;
6287
6288 else if (strcasecmp (new_token.str, "DWORD") == 0)
6289 new_token.code = T_DWORD;
6290
6291 else if (strcasecmp (new_token.str, "QWORD") == 0)
6292 new_token.code = T_QWORD;
6293
6294 else if (strcasecmp (new_token.str, "XWORD") == 0)
6295 new_token.code = T_XWORD;
6296
6297 else if (strcasecmp (new_token.str, "PTR") == 0)
6298 new_token.code = T_PTR;
6299
6300 else if (strcasecmp (new_token.str, "SHORT") == 0)
6301 new_token.code = T_SHORT;
6302
6303 else if (strcasecmp (new_token.str, "OFFSET") == 0)
6304 {
6305 new_token.code = T_OFFSET;
6306
6307 /* ??? This is not mentioned in the MASM grammar but gcc
6308 makes use of it with -mintel-syntax. OFFSET may be
6309 followed by FLAT: */
6310 if (strncasecmp (q, " FLAT:", 6) == 0)
6311 strcat (new_token.str, " FLAT:");
6312 }
6313
6314 /* ??? This is not mentioned in the MASM grammar. */
6315 else if (strcasecmp (new_token.str, "FLAT") == 0)
6316 new_token.code = T_OFFSET;
6317
6318 else
6319 new_token.code = T_ID;
6320 }
6321 }
6322
6323 else
6324 as_bad (_("Unrecognized token `%s'\n"), intel_parser.op_string);
6325
6326 intel_parser.op_string += strlen (new_token.str);
6327 cur_token = new_token;
6328 }
6329
6330 /* Put cur_token back into the token stream and make cur_token point to
6331 prev_token. */
6332 static void
6333 intel_putback_token ()
6334 {
6335 intel_parser.op_string -= strlen (cur_token.str);
6336 free (cur_token.str);
6337 cur_token = prev_token;
6338
6339 /* Forget prev_token. */
6340 prev_token.code = T_NIL;
6341 prev_token.reg = NULL;
6342 prev_token.str = NULL;
6343 }
6344
6345 int
6346 tc_x86_regname_to_dw2regnum (const char *regname)
6347 {
6348 unsigned int regnum;
6349 unsigned int regnames_count;
6350 char *regnames_32[] =
6351 {
6352 "eax", "ecx", "edx", "ebx",
6353 "esp", "ebp", "esi", "edi",
6354 "eip"
6355 };
6356 char *regnames_64[] =
6357 {
6358 "rax", "rbx", "rcx", "rdx",
6359 "rdi", "rsi", "rbp", "rsp",
6360 "r8", "r9", "r10", "r11",
6361 "r12", "r13", "r14", "r15",
6362 "rip"
6363 };
6364 char **regnames;
6365
6366 if (flag_code == CODE_64BIT)
6367 {
6368 regnames = regnames_64;
6369 regnames_count = ARRAY_SIZE (regnames_64);
6370 }
6371 else
6372 {
6373 regnames = regnames_32;
6374 regnames_count = ARRAY_SIZE (regnames_32);
6375 }
6376
6377 for (regnum = 0; regnum < regnames_count; regnum++)
6378 if (strcmp (regname, regnames[regnum]) == 0)
6379 return regnum;
6380
6381 return -1;
6382 }
6383
6384 void
6385 tc_x86_frame_initial_instructions (void)
6386 {
6387 static unsigned int sp_regno;
6388
6389 if (!sp_regno)
6390 sp_regno = tc_x86_regname_to_dw2regnum (flag_code == CODE_64BIT
6391 ? "rsp" : "esp");
6392
6393 cfi_add_CFA_def_cfa (sp_regno, -x86_cie_data_alignment);
6394 cfi_add_CFA_offset (x86_dwarf2_return_column, x86_cie_data_alignment);
6395 }
This page took 0.163524 seconds and 4 git commands to generate.