x86: Improve -malign-branch
[deliverable/binutils-gdb.git] / gas / config / tc-i386.c
1 /* tc-i386.c -- Assemble code for the Intel 80386
2 Copyright (C) 1989-2020 Free Software Foundation, Inc.
3
4 This file is part of GAS, the GNU Assembler.
5
6 GAS is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
10
11 GAS is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GAS; see the file COPYING. If not, write to the Free
18 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
19 02110-1301, USA. */
20
21 /* Intel 80386 machine specific gas.
22 Written by Eliot Dresselhaus (eliot@mgm.mit.edu).
23 x86_64 support by Jan Hubicka (jh@suse.cz)
24 VIA PadLock support by Michal Ludvig (mludvig@suse.cz)
25 Bugs & suggestions are completely welcome. This is free software.
26 Please help us make it better. */
27
28 #include "as.h"
29 #include "safe-ctype.h"
30 #include "subsegs.h"
31 #include "dwarf2dbg.h"
32 #include "dw2gencfi.h"
33 #include "elf/x86-64.h"
34 #include "opcodes/i386-init.h"
35
36 #ifdef HAVE_LIMITS_H
37 #include <limits.h>
38 #else
39 #ifdef HAVE_SYS_PARAM_H
40 #include <sys/param.h>
41 #endif
42 #ifndef INT_MAX
43 #define INT_MAX (int) (((unsigned) (-1)) >> 1)
44 #endif
45 #endif
46
47 #ifndef INFER_ADDR_PREFIX
48 #define INFER_ADDR_PREFIX 1
49 #endif
50
51 #ifndef DEFAULT_ARCH
52 #define DEFAULT_ARCH "i386"
53 #endif
54
55 #ifndef INLINE
56 #if __GNUC__ >= 2
57 #define INLINE __inline__
58 #else
59 #define INLINE
60 #endif
61 #endif
62
63 /* Prefixes will be emitted in the order defined below.
64 WAIT_PREFIX must be the first prefix since FWAIT is really is an
65 instruction, and so must come before any prefixes.
66 The preferred prefix order is SEG_PREFIX, ADDR_PREFIX, DATA_PREFIX,
67 REP_PREFIX/HLE_PREFIX, LOCK_PREFIX. */
68 #define WAIT_PREFIX 0
69 #define SEG_PREFIX 1
70 #define ADDR_PREFIX 2
71 #define DATA_PREFIX 3
72 #define REP_PREFIX 4
73 #define HLE_PREFIX REP_PREFIX
74 #define BND_PREFIX REP_PREFIX
75 #define LOCK_PREFIX 5
76 #define REX_PREFIX 6 /* must come last. */
77 #define MAX_PREFIXES 7 /* max prefixes per opcode */
78
79 /* we define the syntax here (modulo base,index,scale syntax) */
80 #define REGISTER_PREFIX '%'
81 #define IMMEDIATE_PREFIX '$'
82 #define ABSOLUTE_PREFIX '*'
83
84 /* these are the instruction mnemonic suffixes in AT&T syntax or
85 memory operand size in Intel syntax. */
86 #define WORD_MNEM_SUFFIX 'w'
87 #define BYTE_MNEM_SUFFIX 'b'
88 #define SHORT_MNEM_SUFFIX 's'
89 #define LONG_MNEM_SUFFIX 'l'
90 #define QWORD_MNEM_SUFFIX 'q'
91 /* Intel Syntax. Use a non-ascii letter since since it never appears
92 in instructions. */
93 #define LONG_DOUBLE_MNEM_SUFFIX '\1'
94
95 #define END_OF_INSN '\0'
96
97 /* This matches the C -> StaticRounding alias in the opcode table. */
98 #define commutative staticrounding
99
100 /*
101 'templates' is for grouping together 'template' structures for opcodes
102 of the same name. This is only used for storing the insns in the grand
103 ole hash table of insns.
104 The templates themselves start at START and range up to (but not including)
105 END.
106 */
107 typedef struct
108 {
109 const insn_template *start;
110 const insn_template *end;
111 }
112 templates;
113
114 /* 386 operand encoding bytes: see 386 book for details of this. */
115 typedef struct
116 {
117 unsigned int regmem; /* codes register or memory operand */
118 unsigned int reg; /* codes register operand (or extended opcode) */
119 unsigned int mode; /* how to interpret regmem & reg */
120 }
121 modrm_byte;
122
123 /* x86-64 extension prefix. */
124 typedef int rex_byte;
125
126 /* 386 opcode byte to code indirect addressing. */
127 typedef struct
128 {
129 unsigned base;
130 unsigned index;
131 unsigned scale;
132 }
133 sib_byte;
134
135 /* x86 arch names, types and features */
136 typedef struct
137 {
138 const char *name; /* arch name */
139 unsigned int len; /* arch string length */
140 enum processor_type type; /* arch type */
141 i386_cpu_flags flags; /* cpu feature flags */
142 unsigned int skip; /* show_arch should skip this. */
143 }
144 arch_entry;
145
146 /* Used to turn off indicated flags. */
147 typedef struct
148 {
149 const char *name; /* arch name */
150 unsigned int len; /* arch string length */
151 i386_cpu_flags flags; /* cpu feature flags */
152 }
153 noarch_entry;
154
155 static void update_code_flag (int, int);
156 static void set_code_flag (int);
157 static void set_16bit_gcc_code_flag (int);
158 static void set_intel_syntax (int);
159 static void set_intel_mnemonic (int);
160 static void set_allow_index_reg (int);
161 static void set_check (int);
162 static void set_cpu_arch (int);
163 #ifdef TE_PE
164 static void pe_directive_secrel (int);
165 #endif
166 static void signed_cons (int);
167 static char *output_invalid (int c);
168 static int i386_finalize_immediate (segT, expressionS *, i386_operand_type,
169 const char *);
170 static int i386_finalize_displacement (segT, expressionS *, i386_operand_type,
171 const char *);
172 static int i386_att_operand (char *);
173 static int i386_intel_operand (char *, int);
174 static int i386_intel_simplify (expressionS *);
175 static int i386_intel_parse_name (const char *, expressionS *);
176 static const reg_entry *parse_register (char *, char **);
177 static char *parse_insn (char *, char *);
178 static char *parse_operands (char *, const char *);
179 static void swap_operands (void);
180 static void swap_2_operands (int, int);
181 static enum flag_code i386_addressing_mode (void);
182 static void optimize_imm (void);
183 static void optimize_disp (void);
184 static const insn_template *match_template (char);
185 static int check_string (void);
186 static int process_suffix (void);
187 static int check_byte_reg (void);
188 static int check_long_reg (void);
189 static int check_qword_reg (void);
190 static int check_word_reg (void);
191 static int finalize_imm (void);
192 static int process_operands (void);
193 static const seg_entry *build_modrm_byte (void);
194 static void output_insn (void);
195 static void output_imm (fragS *, offsetT);
196 static void output_disp (fragS *, offsetT);
197 #ifndef I386COFF
198 static void s_bss (int);
199 #endif
200 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
201 static void handle_large_common (int small ATTRIBUTE_UNUSED);
202
203 /* GNU_PROPERTY_X86_ISA_1_USED. */
204 static unsigned int x86_isa_1_used;
205 /* GNU_PROPERTY_X86_FEATURE_2_USED. */
206 static unsigned int x86_feature_2_used;
207 /* Generate x86 used ISA and feature properties. */
208 static unsigned int x86_used_note = DEFAULT_X86_USED_NOTE;
209 #endif
210
211 static const char *default_arch = DEFAULT_ARCH;
212
213 /* This struct describes rounding control and SAE in the instruction. */
214 struct RC_Operation
215 {
216 enum rc_type
217 {
218 rne = 0,
219 rd,
220 ru,
221 rz,
222 saeonly
223 } type;
224 int operand;
225 };
226
227 static struct RC_Operation rc_op;
228
229 /* The struct describes masking, applied to OPERAND in the instruction.
230 MASK is a pointer to the corresponding mask register. ZEROING tells
231 whether merging or zeroing mask is used. */
232 struct Mask_Operation
233 {
234 const reg_entry *mask;
235 unsigned int zeroing;
236 /* The operand where this operation is associated. */
237 int operand;
238 };
239
240 static struct Mask_Operation mask_op;
241
242 /* The struct describes broadcasting, applied to OPERAND. FACTOR is
243 broadcast factor. */
244 struct Broadcast_Operation
245 {
246 /* Type of broadcast: {1to2}, {1to4}, {1to8}, or {1to16}. */
247 int type;
248
249 /* Index of broadcasted operand. */
250 int operand;
251
252 /* Number of bytes to broadcast. */
253 int bytes;
254 };
255
256 static struct Broadcast_Operation broadcast_op;
257
258 /* VEX prefix. */
259 typedef struct
260 {
261 /* VEX prefix is either 2 byte or 3 byte. EVEX is 4 byte. */
262 unsigned char bytes[4];
263 unsigned int length;
264 /* Destination or source register specifier. */
265 const reg_entry *register_specifier;
266 } vex_prefix;
267
268 /* 'md_assemble ()' gathers together information and puts it into a
269 i386_insn. */
270
271 union i386_op
272 {
273 expressionS *disps;
274 expressionS *imms;
275 const reg_entry *regs;
276 };
277
278 enum i386_error
279 {
280 operand_size_mismatch,
281 operand_type_mismatch,
282 register_type_mismatch,
283 number_of_operands_mismatch,
284 invalid_instruction_suffix,
285 bad_imm4,
286 unsupported_with_intel_mnemonic,
287 unsupported_syntax,
288 unsupported,
289 invalid_vsib_address,
290 invalid_vector_register_set,
291 unsupported_vector_index_register,
292 unsupported_broadcast,
293 broadcast_needed,
294 unsupported_masking,
295 mask_not_on_destination,
296 no_default_mask,
297 unsupported_rc_sae,
298 rc_sae_operand_not_last_imm,
299 invalid_register_operand,
300 };
301
302 struct _i386_insn
303 {
304 /* TM holds the template for the insn were currently assembling. */
305 insn_template tm;
306
307 /* SUFFIX holds the instruction size suffix for byte, word, dword
308 or qword, if given. */
309 char suffix;
310
311 /* OPERANDS gives the number of given operands. */
312 unsigned int operands;
313
314 /* REG_OPERANDS, DISP_OPERANDS, MEM_OPERANDS, IMM_OPERANDS give the number
315 of given register, displacement, memory operands and immediate
316 operands. */
317 unsigned int reg_operands, disp_operands, mem_operands, imm_operands;
318
319 /* TYPES [i] is the type (see above #defines) which tells us how to
320 use OP[i] for the corresponding operand. */
321 i386_operand_type types[MAX_OPERANDS];
322
323 /* Displacement expression, immediate expression, or register for each
324 operand. */
325 union i386_op op[MAX_OPERANDS];
326
327 /* Flags for operands. */
328 unsigned int flags[MAX_OPERANDS];
329 #define Operand_PCrel 1
330 #define Operand_Mem 2
331
332 /* Relocation type for operand */
333 enum bfd_reloc_code_real reloc[MAX_OPERANDS];
334
335 /* BASE_REG, INDEX_REG, and LOG2_SCALE_FACTOR are used to encode
336 the base index byte below. */
337 const reg_entry *base_reg;
338 const reg_entry *index_reg;
339 unsigned int log2_scale_factor;
340
341 /* SEG gives the seg_entries of this insn. They are zero unless
342 explicit segment overrides are given. */
343 const seg_entry *seg[2];
344
345 /* Copied first memory operand string, for re-checking. */
346 char *memop1_string;
347
348 /* PREFIX holds all the given prefix opcodes (usually null).
349 PREFIXES is the number of prefix opcodes. */
350 unsigned int prefixes;
351 unsigned char prefix[MAX_PREFIXES];
352
353 /* Register is in low 3 bits of opcode. */
354 bfd_boolean short_form;
355
356 /* The operand to a branch insn indicates an absolute branch. */
357 bfd_boolean jumpabsolute;
358
359 /* Has MMX register operands. */
360 bfd_boolean has_regmmx;
361
362 /* Has XMM register operands. */
363 bfd_boolean has_regxmm;
364
365 /* Has YMM register operands. */
366 bfd_boolean has_regymm;
367
368 /* Has ZMM register operands. */
369 bfd_boolean has_regzmm;
370
371 /* Has GOTPC or TLS relocation. */
372 bfd_boolean has_gotpc_tls_reloc;
373
374 /* RM and SIB are the modrm byte and the sib byte where the
375 addressing modes of this insn are encoded. */
376 modrm_byte rm;
377 rex_byte rex;
378 rex_byte vrex;
379 sib_byte sib;
380 vex_prefix vex;
381
382 /* Masking attributes. */
383 struct Mask_Operation *mask;
384
385 /* Rounding control and SAE attributes. */
386 struct RC_Operation *rounding;
387
388 /* Broadcasting attributes. */
389 struct Broadcast_Operation *broadcast;
390
391 /* Compressed disp8*N attribute. */
392 unsigned int memshift;
393
394 /* Prefer load or store in encoding. */
395 enum
396 {
397 dir_encoding_default = 0,
398 dir_encoding_load,
399 dir_encoding_store,
400 dir_encoding_swap
401 } dir_encoding;
402
403 /* Prefer 8bit or 32bit displacement in encoding. */
404 enum
405 {
406 disp_encoding_default = 0,
407 disp_encoding_8bit,
408 disp_encoding_32bit
409 } disp_encoding;
410
411 /* Prefer the REX byte in encoding. */
412 bfd_boolean rex_encoding;
413
414 /* Disable instruction size optimization. */
415 bfd_boolean no_optimize;
416
417 /* How to encode vector instructions. */
418 enum
419 {
420 vex_encoding_default = 0,
421 vex_encoding_vex,
422 vex_encoding_vex3,
423 vex_encoding_evex
424 } vec_encoding;
425
426 /* REP prefix. */
427 const char *rep_prefix;
428
429 /* HLE prefix. */
430 const char *hle_prefix;
431
432 /* Have BND prefix. */
433 const char *bnd_prefix;
434
435 /* Have NOTRACK prefix. */
436 const char *notrack_prefix;
437
438 /* Error message. */
439 enum i386_error error;
440 };
441
442 typedef struct _i386_insn i386_insn;
443
444 /* Link RC type with corresponding string, that'll be looked for in
445 asm. */
446 struct RC_name
447 {
448 enum rc_type type;
449 const char *name;
450 unsigned int len;
451 };
452
453 static const struct RC_name RC_NamesTable[] =
454 {
455 { rne, STRING_COMMA_LEN ("rn-sae") },
456 { rd, STRING_COMMA_LEN ("rd-sae") },
457 { ru, STRING_COMMA_LEN ("ru-sae") },
458 { rz, STRING_COMMA_LEN ("rz-sae") },
459 { saeonly, STRING_COMMA_LEN ("sae") },
460 };
461
462 /* List of chars besides those in app.c:symbol_chars that can start an
463 operand. Used to prevent the scrubber eating vital white-space. */
464 const char extra_symbol_chars[] = "*%-([{}"
465 #ifdef LEX_AT
466 "@"
467 #endif
468 #ifdef LEX_QM
469 "?"
470 #endif
471 ;
472
473 #if (defined (TE_I386AIX) \
474 || ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) \
475 && !defined (TE_GNU) \
476 && !defined (TE_LINUX) \
477 && !defined (TE_NACL) \
478 && !defined (TE_FreeBSD) \
479 && !defined (TE_DragonFly) \
480 && !defined (TE_NetBSD)))
481 /* This array holds the chars that always start a comment. If the
482 pre-processor is disabled, these aren't very useful. The option
483 --divide will remove '/' from this list. */
484 const char *i386_comment_chars = "#/";
485 #define SVR4_COMMENT_CHARS 1
486 #define PREFIX_SEPARATOR '\\'
487
488 #else
489 const char *i386_comment_chars = "#";
490 #define PREFIX_SEPARATOR '/'
491 #endif
492
493 /* This array holds the chars that only start a comment at the beginning of
494 a line. If the line seems to have the form '# 123 filename'
495 .line and .file directives will appear in the pre-processed output.
496 Note that input_file.c hand checks for '#' at the beginning of the
497 first line of the input file. This is because the compiler outputs
498 #NO_APP at the beginning of its output.
499 Also note that comments started like this one will always work if
500 '/' isn't otherwise defined. */
501 const char line_comment_chars[] = "#/";
502
503 const char line_separator_chars[] = ";";
504
505 /* Chars that can be used to separate mant from exp in floating point
506 nums. */
507 const char EXP_CHARS[] = "eE";
508
509 /* Chars that mean this number is a floating point constant
510 As in 0f12.456
511 or 0d1.2345e12. */
512 const char FLT_CHARS[] = "fFdDxX";
513
514 /* Tables for lexical analysis. */
515 static char mnemonic_chars[256];
516 static char register_chars[256];
517 static char operand_chars[256];
518 static char identifier_chars[256];
519 static char digit_chars[256];
520
521 /* Lexical macros. */
522 #define is_mnemonic_char(x) (mnemonic_chars[(unsigned char) x])
523 #define is_operand_char(x) (operand_chars[(unsigned char) x])
524 #define is_register_char(x) (register_chars[(unsigned char) x])
525 #define is_space_char(x) ((x) == ' ')
526 #define is_identifier_char(x) (identifier_chars[(unsigned char) x])
527 #define is_digit_char(x) (digit_chars[(unsigned char) x])
528
529 /* All non-digit non-letter characters that may occur in an operand. */
530 static char operand_special_chars[] = "%$-+(,)*._~/<>|&^!:[@]";
531
532 /* md_assemble() always leaves the strings it's passed unaltered. To
533 effect this we maintain a stack of saved characters that we've smashed
534 with '\0's (indicating end of strings for various sub-fields of the
535 assembler instruction). */
536 static char save_stack[32];
537 static char *save_stack_p;
538 #define END_STRING_AND_SAVE(s) \
539 do { *save_stack_p++ = *(s); *(s) = '\0'; } while (0)
540 #define RESTORE_END_STRING(s) \
541 do { *(s) = *--save_stack_p; } while (0)
542
543 /* The instruction we're assembling. */
544 static i386_insn i;
545
546 /* Possible templates for current insn. */
547 static const templates *current_templates;
548
549 /* Per instruction expressionS buffers: max displacements & immediates. */
550 static expressionS disp_expressions[MAX_MEMORY_OPERANDS];
551 static expressionS im_expressions[MAX_IMMEDIATE_OPERANDS];
552
553 /* Current operand we are working on. */
554 static int this_operand = -1;
555
556 /* We support four different modes. FLAG_CODE variable is used to distinguish
557 these. */
558
559 enum flag_code {
560 CODE_32BIT,
561 CODE_16BIT,
562 CODE_64BIT };
563
564 static enum flag_code flag_code;
565 static unsigned int object_64bit;
566 static unsigned int disallow_64bit_reloc;
567 static int use_rela_relocations = 0;
568 /* __tls_get_addr/___tls_get_addr symbol for TLS. */
569 static const char *tls_get_addr;
570
571 #if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
572 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
573 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
574
575 /* The ELF ABI to use. */
576 enum x86_elf_abi
577 {
578 I386_ABI,
579 X86_64_ABI,
580 X86_64_X32_ABI
581 };
582
583 static enum x86_elf_abi x86_elf_abi = I386_ABI;
584 #endif
585
586 #if defined (TE_PE) || defined (TE_PEP)
587 /* Use big object file format. */
588 static int use_big_obj = 0;
589 #endif
590
591 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
592 /* 1 if generating code for a shared library. */
593 static int shared = 0;
594 #endif
595
596 /* 1 for intel syntax,
597 0 if att syntax. */
598 static int intel_syntax = 0;
599
600 static enum x86_64_isa
601 {
602 amd64 = 1, /* AMD64 ISA. */
603 intel64 /* Intel64 ISA. */
604 } isa64;
605
606 /* 1 for intel mnemonic,
607 0 if att mnemonic. */
608 static int intel_mnemonic = !SYSV386_COMPAT;
609
610 /* 1 if pseudo registers are permitted. */
611 static int allow_pseudo_reg = 0;
612
613 /* 1 if register prefix % not required. */
614 static int allow_naked_reg = 0;
615
616 /* 1 if the assembler should add BND prefix for all control-transferring
617 instructions supporting it, even if this prefix wasn't specified
618 explicitly. */
619 static int add_bnd_prefix = 0;
620
621 /* 1 if pseudo index register, eiz/riz, is allowed . */
622 static int allow_index_reg = 0;
623
624 /* 1 if the assembler should ignore LOCK prefix, even if it was
625 specified explicitly. */
626 static int omit_lock_prefix = 0;
627
628 /* 1 if the assembler should encode lfence, mfence, and sfence as
629 "lock addl $0, (%{re}sp)". */
630 static int avoid_fence = 0;
631
632 /* Type of the previous instruction. */
633 static struct
634 {
635 segT seg;
636 const char *file;
637 const char *name;
638 unsigned int line;
639 enum last_insn_kind
640 {
641 last_insn_other = 0,
642 last_insn_directive,
643 last_insn_prefix
644 } kind;
645 } last_insn;
646
647 /* 1 if the assembler should generate relax relocations. */
648
649 static int generate_relax_relocations
650 = DEFAULT_GENERATE_X86_RELAX_RELOCATIONS;
651
652 static enum check_kind
653 {
654 check_none = 0,
655 check_warning,
656 check_error
657 }
658 sse_check, operand_check = check_warning;
659
660 /* Non-zero if branches should be aligned within power of 2 boundary. */
661 static int align_branch_power = 0;
662
663 /* Types of branches to align. */
664 enum align_branch_kind
665 {
666 align_branch_none = 0,
667 align_branch_jcc = 1,
668 align_branch_fused = 2,
669 align_branch_jmp = 3,
670 align_branch_call = 4,
671 align_branch_indirect = 5,
672 align_branch_ret = 6
673 };
674
675 /* Type bits of branches to align. */
676 enum align_branch_bit
677 {
678 align_branch_jcc_bit = 1 << align_branch_jcc,
679 align_branch_fused_bit = 1 << align_branch_fused,
680 align_branch_jmp_bit = 1 << align_branch_jmp,
681 align_branch_call_bit = 1 << align_branch_call,
682 align_branch_indirect_bit = 1 << align_branch_indirect,
683 align_branch_ret_bit = 1 << align_branch_ret
684 };
685
686 static unsigned int align_branch = (align_branch_jcc_bit
687 | align_branch_fused_bit
688 | align_branch_jmp_bit);
689
690 /* Types of condition jump used by macro-fusion. */
691 enum mf_jcc_kind
692 {
693 mf_jcc_jo = 0, /* base opcode 0x70 */
694 mf_jcc_jc, /* base opcode 0x72 */
695 mf_jcc_je, /* base opcode 0x74 */
696 mf_jcc_jna, /* base opcode 0x76 */
697 mf_jcc_js, /* base opcode 0x78 */
698 mf_jcc_jp, /* base opcode 0x7a */
699 mf_jcc_jl, /* base opcode 0x7c */
700 mf_jcc_jle, /* base opcode 0x7e */
701 };
702
703 /* Types of compare flag-modifying insntructions used by macro-fusion. */
704 enum mf_cmp_kind
705 {
706 mf_cmp_test_and, /* test/cmp */
707 mf_cmp_alu_cmp, /* add/sub/cmp */
708 mf_cmp_incdec /* inc/dec */
709 };
710
711 /* The maximum padding size for fused jcc. CMP like instruction can
712 be 9 bytes and jcc can be 6 bytes. Leave room just in case for
713 prefixes. */
714 #define MAX_FUSED_JCC_PADDING_SIZE 20
715
716 /* The maximum number of prefixes added for an instruction. */
717 static unsigned int align_branch_prefix_size = 5;
718
719 /* Optimization:
720 1. Clear the REX_W bit with register operand if possible.
721 2. Above plus use 128bit vector instruction to clear the full vector
722 register.
723 */
724 static int optimize = 0;
725
726 /* Optimization:
727 1. Clear the REX_W bit with register operand if possible.
728 2. Above plus use 128bit vector instruction to clear the full vector
729 register.
730 3. Above plus optimize "test{q,l,w} $imm8,%r{64,32,16}" to
731 "testb $imm7,%r8".
732 */
733 static int optimize_for_space = 0;
734
735 /* Register prefix used for error message. */
736 static const char *register_prefix = "%";
737
738 /* Used in 16 bit gcc mode to add an l suffix to call, ret, enter,
739 leave, push, and pop instructions so that gcc has the same stack
740 frame as in 32 bit mode. */
741 static char stackop_size = '\0';
742
743 /* Non-zero to optimize code alignment. */
744 int optimize_align_code = 1;
745
746 /* Non-zero to quieten some warnings. */
747 static int quiet_warnings = 0;
748
749 /* CPU name. */
750 static const char *cpu_arch_name = NULL;
751 static char *cpu_sub_arch_name = NULL;
752
753 /* CPU feature flags. */
754 static i386_cpu_flags cpu_arch_flags = CPU_UNKNOWN_FLAGS;
755
756 /* If we have selected a cpu we are generating instructions for. */
757 static int cpu_arch_tune_set = 0;
758
759 /* Cpu we are generating instructions for. */
760 enum processor_type cpu_arch_tune = PROCESSOR_UNKNOWN;
761
762 /* CPU feature flags of cpu we are generating instructions for. */
763 static i386_cpu_flags cpu_arch_tune_flags;
764
765 /* CPU instruction set architecture used. */
766 enum processor_type cpu_arch_isa = PROCESSOR_UNKNOWN;
767
768 /* CPU feature flags of instruction set architecture used. */
769 i386_cpu_flags cpu_arch_isa_flags;
770
771 /* If set, conditional jumps are not automatically promoted to handle
772 larger than a byte offset. */
773 static unsigned int no_cond_jump_promotion = 0;
774
775 /* Encode SSE instructions with VEX prefix. */
776 static unsigned int sse2avx;
777
778 /* Encode scalar AVX instructions with specific vector length. */
779 static enum
780 {
781 vex128 = 0,
782 vex256
783 } avxscalar;
784
785 /* Encode VEX WIG instructions with specific vex.w. */
786 static enum
787 {
788 vexw0 = 0,
789 vexw1
790 } vexwig;
791
792 /* Encode scalar EVEX LIG instructions with specific vector length. */
793 static enum
794 {
795 evexl128 = 0,
796 evexl256,
797 evexl512
798 } evexlig;
799
800 /* Encode EVEX WIG instructions with specific evex.w. */
801 static enum
802 {
803 evexw0 = 0,
804 evexw1
805 } evexwig;
806
807 /* Value to encode in EVEX RC bits, for SAE-only instructions. */
808 static enum rc_type evexrcig = rne;
809
810 /* Pre-defined "_GLOBAL_OFFSET_TABLE_". */
811 static symbolS *GOT_symbol;
812
813 /* The dwarf2 return column, adjusted for 32 or 64 bit. */
814 unsigned int x86_dwarf2_return_column;
815
816 /* The dwarf2 data alignment, adjusted for 32 or 64 bit. */
817 int x86_cie_data_alignment;
818
819 /* Interface to relax_segment.
820 There are 3 major relax states for 386 jump insns because the
821 different types of jumps add different sizes to frags when we're
822 figuring out what sort of jump to choose to reach a given label.
823
824 BRANCH_PADDING, BRANCH_PREFIX and FUSED_JCC_PADDING are used to align
825 branches which are handled by md_estimate_size_before_relax() and
826 i386_generic_table_relax_frag(). */
827
828 /* Types. */
829 #define UNCOND_JUMP 0
830 #define COND_JUMP 1
831 #define COND_JUMP86 2
832 #define BRANCH_PADDING 3
833 #define BRANCH_PREFIX 4
834 #define FUSED_JCC_PADDING 5
835
836 /* Sizes. */
837 #define CODE16 1
838 #define SMALL 0
839 #define SMALL16 (SMALL | CODE16)
840 #define BIG 2
841 #define BIG16 (BIG | CODE16)
842
843 #ifndef INLINE
844 #ifdef __GNUC__
845 #define INLINE __inline__
846 #else
847 #define INLINE
848 #endif
849 #endif
850
851 #define ENCODE_RELAX_STATE(type, size) \
852 ((relax_substateT) (((type) << 2) | (size)))
853 #define TYPE_FROM_RELAX_STATE(s) \
854 ((s) >> 2)
855 #define DISP_SIZE_FROM_RELAX_STATE(s) \
856 ((((s) & 3) == BIG ? 4 : (((s) & 3) == BIG16 ? 2 : 1)))
857
858 /* This table is used by relax_frag to promote short jumps to long
859 ones where necessary. SMALL (short) jumps may be promoted to BIG
860 (32 bit long) ones, and SMALL16 jumps to BIG16 (16 bit long). We
861 don't allow a short jump in a 32 bit code segment to be promoted to
862 a 16 bit offset jump because it's slower (requires data size
863 prefix), and doesn't work, unless the destination is in the bottom
864 64k of the code segment (The top 16 bits of eip are zeroed). */
865
866 const relax_typeS md_relax_table[] =
867 {
868 /* The fields are:
869 1) most positive reach of this state,
870 2) most negative reach of this state,
871 3) how many bytes this mode will have in the variable part of the frag
872 4) which index into the table to try if we can't fit into this one. */
873
874 /* UNCOND_JUMP states. */
875 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG)},
876 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16)},
877 /* dword jmp adds 4 bytes to frag:
878 0 extra opcode bytes, 4 displacement bytes. */
879 {0, 0, 4, 0},
880 /* word jmp adds 2 byte2 to frag:
881 0 extra opcode bytes, 2 displacement bytes. */
882 {0, 0, 2, 0},
883
884 /* COND_JUMP states. */
885 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG)},
886 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG16)},
887 /* dword conditionals adds 5 bytes to frag:
888 1 extra opcode byte, 4 displacement bytes. */
889 {0, 0, 5, 0},
890 /* word conditionals add 3 bytes to frag:
891 1 extra opcode byte, 2 displacement bytes. */
892 {0, 0, 3, 0},
893
894 /* COND_JUMP86 states. */
895 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG)},
896 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG16)},
897 /* dword conditionals adds 5 bytes to frag:
898 1 extra opcode byte, 4 displacement bytes. */
899 {0, 0, 5, 0},
900 /* word conditionals add 4 bytes to frag:
901 1 displacement byte and a 3 byte long branch insn. */
902 {0, 0, 4, 0}
903 };
904
905 static const arch_entry cpu_arch[] =
906 {
907 /* Do not replace the first two entries - i386_target_format()
908 relies on them being there in this order. */
909 { STRING_COMMA_LEN ("generic32"), PROCESSOR_GENERIC32,
910 CPU_GENERIC32_FLAGS, 0 },
911 { STRING_COMMA_LEN ("generic64"), PROCESSOR_GENERIC64,
912 CPU_GENERIC64_FLAGS, 0 },
913 { STRING_COMMA_LEN ("i8086"), PROCESSOR_UNKNOWN,
914 CPU_NONE_FLAGS, 0 },
915 { STRING_COMMA_LEN ("i186"), PROCESSOR_UNKNOWN,
916 CPU_I186_FLAGS, 0 },
917 { STRING_COMMA_LEN ("i286"), PROCESSOR_UNKNOWN,
918 CPU_I286_FLAGS, 0 },
919 { STRING_COMMA_LEN ("i386"), PROCESSOR_I386,
920 CPU_I386_FLAGS, 0 },
921 { STRING_COMMA_LEN ("i486"), PROCESSOR_I486,
922 CPU_I486_FLAGS, 0 },
923 { STRING_COMMA_LEN ("i586"), PROCESSOR_PENTIUM,
924 CPU_I586_FLAGS, 0 },
925 { STRING_COMMA_LEN ("i686"), PROCESSOR_PENTIUMPRO,
926 CPU_I686_FLAGS, 0 },
927 { STRING_COMMA_LEN ("pentium"), PROCESSOR_PENTIUM,
928 CPU_I586_FLAGS, 0 },
929 { STRING_COMMA_LEN ("pentiumpro"), PROCESSOR_PENTIUMPRO,
930 CPU_PENTIUMPRO_FLAGS, 0 },
931 { STRING_COMMA_LEN ("pentiumii"), PROCESSOR_PENTIUMPRO,
932 CPU_P2_FLAGS, 0 },
933 { STRING_COMMA_LEN ("pentiumiii"),PROCESSOR_PENTIUMPRO,
934 CPU_P3_FLAGS, 0 },
935 { STRING_COMMA_LEN ("pentium4"), PROCESSOR_PENTIUM4,
936 CPU_P4_FLAGS, 0 },
937 { STRING_COMMA_LEN ("prescott"), PROCESSOR_NOCONA,
938 CPU_CORE_FLAGS, 0 },
939 { STRING_COMMA_LEN ("nocona"), PROCESSOR_NOCONA,
940 CPU_NOCONA_FLAGS, 0 },
941 { STRING_COMMA_LEN ("yonah"), PROCESSOR_CORE,
942 CPU_CORE_FLAGS, 1 },
943 { STRING_COMMA_LEN ("core"), PROCESSOR_CORE,
944 CPU_CORE_FLAGS, 0 },
945 { STRING_COMMA_LEN ("merom"), PROCESSOR_CORE2,
946 CPU_CORE2_FLAGS, 1 },
947 { STRING_COMMA_LEN ("core2"), PROCESSOR_CORE2,
948 CPU_CORE2_FLAGS, 0 },
949 { STRING_COMMA_LEN ("corei7"), PROCESSOR_COREI7,
950 CPU_COREI7_FLAGS, 0 },
951 { STRING_COMMA_LEN ("l1om"), PROCESSOR_L1OM,
952 CPU_L1OM_FLAGS, 0 },
953 { STRING_COMMA_LEN ("k1om"), PROCESSOR_K1OM,
954 CPU_K1OM_FLAGS, 0 },
955 { STRING_COMMA_LEN ("iamcu"), PROCESSOR_IAMCU,
956 CPU_IAMCU_FLAGS, 0 },
957 { STRING_COMMA_LEN ("k6"), PROCESSOR_K6,
958 CPU_K6_FLAGS, 0 },
959 { STRING_COMMA_LEN ("k6_2"), PROCESSOR_K6,
960 CPU_K6_2_FLAGS, 0 },
961 { STRING_COMMA_LEN ("athlon"), PROCESSOR_ATHLON,
962 CPU_ATHLON_FLAGS, 0 },
963 { STRING_COMMA_LEN ("sledgehammer"), PROCESSOR_K8,
964 CPU_K8_FLAGS, 1 },
965 { STRING_COMMA_LEN ("opteron"), PROCESSOR_K8,
966 CPU_K8_FLAGS, 0 },
967 { STRING_COMMA_LEN ("k8"), PROCESSOR_K8,
968 CPU_K8_FLAGS, 0 },
969 { STRING_COMMA_LEN ("amdfam10"), PROCESSOR_AMDFAM10,
970 CPU_AMDFAM10_FLAGS, 0 },
971 { STRING_COMMA_LEN ("bdver1"), PROCESSOR_BD,
972 CPU_BDVER1_FLAGS, 0 },
973 { STRING_COMMA_LEN ("bdver2"), PROCESSOR_BD,
974 CPU_BDVER2_FLAGS, 0 },
975 { STRING_COMMA_LEN ("bdver3"), PROCESSOR_BD,
976 CPU_BDVER3_FLAGS, 0 },
977 { STRING_COMMA_LEN ("bdver4"), PROCESSOR_BD,
978 CPU_BDVER4_FLAGS, 0 },
979 { STRING_COMMA_LEN ("znver1"), PROCESSOR_ZNVER,
980 CPU_ZNVER1_FLAGS, 0 },
981 { STRING_COMMA_LEN ("znver2"), PROCESSOR_ZNVER,
982 CPU_ZNVER2_FLAGS, 0 },
983 { STRING_COMMA_LEN ("btver1"), PROCESSOR_BT,
984 CPU_BTVER1_FLAGS, 0 },
985 { STRING_COMMA_LEN ("btver2"), PROCESSOR_BT,
986 CPU_BTVER2_FLAGS, 0 },
987 { STRING_COMMA_LEN (".8087"), PROCESSOR_UNKNOWN,
988 CPU_8087_FLAGS, 0 },
989 { STRING_COMMA_LEN (".287"), PROCESSOR_UNKNOWN,
990 CPU_287_FLAGS, 0 },
991 { STRING_COMMA_LEN (".387"), PROCESSOR_UNKNOWN,
992 CPU_387_FLAGS, 0 },
993 { STRING_COMMA_LEN (".687"), PROCESSOR_UNKNOWN,
994 CPU_687_FLAGS, 0 },
995 { STRING_COMMA_LEN (".cmov"), PROCESSOR_UNKNOWN,
996 CPU_CMOV_FLAGS, 0 },
997 { STRING_COMMA_LEN (".fxsr"), PROCESSOR_UNKNOWN,
998 CPU_FXSR_FLAGS, 0 },
999 { STRING_COMMA_LEN (".mmx"), PROCESSOR_UNKNOWN,
1000 CPU_MMX_FLAGS, 0 },
1001 { STRING_COMMA_LEN (".sse"), PROCESSOR_UNKNOWN,
1002 CPU_SSE_FLAGS, 0 },
1003 { STRING_COMMA_LEN (".sse2"), PROCESSOR_UNKNOWN,
1004 CPU_SSE2_FLAGS, 0 },
1005 { STRING_COMMA_LEN (".sse3"), PROCESSOR_UNKNOWN,
1006 CPU_SSE3_FLAGS, 0 },
1007 { STRING_COMMA_LEN (".sse4a"), PROCESSOR_UNKNOWN,
1008 CPU_SSE4A_FLAGS, 0 },
1009 { STRING_COMMA_LEN (".ssse3"), PROCESSOR_UNKNOWN,
1010 CPU_SSSE3_FLAGS, 0 },
1011 { STRING_COMMA_LEN (".sse4.1"), PROCESSOR_UNKNOWN,
1012 CPU_SSE4_1_FLAGS, 0 },
1013 { STRING_COMMA_LEN (".sse4.2"), PROCESSOR_UNKNOWN,
1014 CPU_SSE4_2_FLAGS, 0 },
1015 { STRING_COMMA_LEN (".sse4"), PROCESSOR_UNKNOWN,
1016 CPU_SSE4_2_FLAGS, 0 },
1017 { STRING_COMMA_LEN (".avx"), PROCESSOR_UNKNOWN,
1018 CPU_AVX_FLAGS, 0 },
1019 { STRING_COMMA_LEN (".avx2"), PROCESSOR_UNKNOWN,
1020 CPU_AVX2_FLAGS, 0 },
1021 { STRING_COMMA_LEN (".avx512f"), PROCESSOR_UNKNOWN,
1022 CPU_AVX512F_FLAGS, 0 },
1023 { STRING_COMMA_LEN (".avx512cd"), PROCESSOR_UNKNOWN,
1024 CPU_AVX512CD_FLAGS, 0 },
1025 { STRING_COMMA_LEN (".avx512er"), PROCESSOR_UNKNOWN,
1026 CPU_AVX512ER_FLAGS, 0 },
1027 { STRING_COMMA_LEN (".avx512pf"), PROCESSOR_UNKNOWN,
1028 CPU_AVX512PF_FLAGS, 0 },
1029 { STRING_COMMA_LEN (".avx512dq"), PROCESSOR_UNKNOWN,
1030 CPU_AVX512DQ_FLAGS, 0 },
1031 { STRING_COMMA_LEN (".avx512bw"), PROCESSOR_UNKNOWN,
1032 CPU_AVX512BW_FLAGS, 0 },
1033 { STRING_COMMA_LEN (".avx512vl"), PROCESSOR_UNKNOWN,
1034 CPU_AVX512VL_FLAGS, 0 },
1035 { STRING_COMMA_LEN (".vmx"), PROCESSOR_UNKNOWN,
1036 CPU_VMX_FLAGS, 0 },
1037 { STRING_COMMA_LEN (".vmfunc"), PROCESSOR_UNKNOWN,
1038 CPU_VMFUNC_FLAGS, 0 },
1039 { STRING_COMMA_LEN (".smx"), PROCESSOR_UNKNOWN,
1040 CPU_SMX_FLAGS, 0 },
1041 { STRING_COMMA_LEN (".xsave"), PROCESSOR_UNKNOWN,
1042 CPU_XSAVE_FLAGS, 0 },
1043 { STRING_COMMA_LEN (".xsaveopt"), PROCESSOR_UNKNOWN,
1044 CPU_XSAVEOPT_FLAGS, 0 },
1045 { STRING_COMMA_LEN (".xsavec"), PROCESSOR_UNKNOWN,
1046 CPU_XSAVEC_FLAGS, 0 },
1047 { STRING_COMMA_LEN (".xsaves"), PROCESSOR_UNKNOWN,
1048 CPU_XSAVES_FLAGS, 0 },
1049 { STRING_COMMA_LEN (".aes"), PROCESSOR_UNKNOWN,
1050 CPU_AES_FLAGS, 0 },
1051 { STRING_COMMA_LEN (".pclmul"), PROCESSOR_UNKNOWN,
1052 CPU_PCLMUL_FLAGS, 0 },
1053 { STRING_COMMA_LEN (".clmul"), PROCESSOR_UNKNOWN,
1054 CPU_PCLMUL_FLAGS, 1 },
1055 { STRING_COMMA_LEN (".fsgsbase"), PROCESSOR_UNKNOWN,
1056 CPU_FSGSBASE_FLAGS, 0 },
1057 { STRING_COMMA_LEN (".rdrnd"), PROCESSOR_UNKNOWN,
1058 CPU_RDRND_FLAGS, 0 },
1059 { STRING_COMMA_LEN (".f16c"), PROCESSOR_UNKNOWN,
1060 CPU_F16C_FLAGS, 0 },
1061 { STRING_COMMA_LEN (".bmi2"), PROCESSOR_UNKNOWN,
1062 CPU_BMI2_FLAGS, 0 },
1063 { STRING_COMMA_LEN (".fma"), PROCESSOR_UNKNOWN,
1064 CPU_FMA_FLAGS, 0 },
1065 { STRING_COMMA_LEN (".fma4"), PROCESSOR_UNKNOWN,
1066 CPU_FMA4_FLAGS, 0 },
1067 { STRING_COMMA_LEN (".xop"), PROCESSOR_UNKNOWN,
1068 CPU_XOP_FLAGS, 0 },
1069 { STRING_COMMA_LEN (".lwp"), PROCESSOR_UNKNOWN,
1070 CPU_LWP_FLAGS, 0 },
1071 { STRING_COMMA_LEN (".movbe"), PROCESSOR_UNKNOWN,
1072 CPU_MOVBE_FLAGS, 0 },
1073 { STRING_COMMA_LEN (".cx16"), PROCESSOR_UNKNOWN,
1074 CPU_CX16_FLAGS, 0 },
1075 { STRING_COMMA_LEN (".ept"), PROCESSOR_UNKNOWN,
1076 CPU_EPT_FLAGS, 0 },
1077 { STRING_COMMA_LEN (".lzcnt"), PROCESSOR_UNKNOWN,
1078 CPU_LZCNT_FLAGS, 0 },
1079 { STRING_COMMA_LEN (".popcnt"), PROCESSOR_UNKNOWN,
1080 CPU_POPCNT_FLAGS, 0 },
1081 { STRING_COMMA_LEN (".hle"), PROCESSOR_UNKNOWN,
1082 CPU_HLE_FLAGS, 0 },
1083 { STRING_COMMA_LEN (".rtm"), PROCESSOR_UNKNOWN,
1084 CPU_RTM_FLAGS, 0 },
1085 { STRING_COMMA_LEN (".invpcid"), PROCESSOR_UNKNOWN,
1086 CPU_INVPCID_FLAGS, 0 },
1087 { STRING_COMMA_LEN (".clflush"), PROCESSOR_UNKNOWN,
1088 CPU_CLFLUSH_FLAGS, 0 },
1089 { STRING_COMMA_LEN (".nop"), PROCESSOR_UNKNOWN,
1090 CPU_NOP_FLAGS, 0 },
1091 { STRING_COMMA_LEN (".syscall"), PROCESSOR_UNKNOWN,
1092 CPU_SYSCALL_FLAGS, 0 },
1093 { STRING_COMMA_LEN (".rdtscp"), PROCESSOR_UNKNOWN,
1094 CPU_RDTSCP_FLAGS, 0 },
1095 { STRING_COMMA_LEN (".3dnow"), PROCESSOR_UNKNOWN,
1096 CPU_3DNOW_FLAGS, 0 },
1097 { STRING_COMMA_LEN (".3dnowa"), PROCESSOR_UNKNOWN,
1098 CPU_3DNOWA_FLAGS, 0 },
1099 { STRING_COMMA_LEN (".padlock"), PROCESSOR_UNKNOWN,
1100 CPU_PADLOCK_FLAGS, 0 },
1101 { STRING_COMMA_LEN (".pacifica"), PROCESSOR_UNKNOWN,
1102 CPU_SVME_FLAGS, 1 },
1103 { STRING_COMMA_LEN (".svme"), PROCESSOR_UNKNOWN,
1104 CPU_SVME_FLAGS, 0 },
1105 { STRING_COMMA_LEN (".sse4a"), PROCESSOR_UNKNOWN,
1106 CPU_SSE4A_FLAGS, 0 },
1107 { STRING_COMMA_LEN (".abm"), PROCESSOR_UNKNOWN,
1108 CPU_ABM_FLAGS, 0 },
1109 { STRING_COMMA_LEN (".bmi"), PROCESSOR_UNKNOWN,
1110 CPU_BMI_FLAGS, 0 },
1111 { STRING_COMMA_LEN (".tbm"), PROCESSOR_UNKNOWN,
1112 CPU_TBM_FLAGS, 0 },
1113 { STRING_COMMA_LEN (".adx"), PROCESSOR_UNKNOWN,
1114 CPU_ADX_FLAGS, 0 },
1115 { STRING_COMMA_LEN (".rdseed"), PROCESSOR_UNKNOWN,
1116 CPU_RDSEED_FLAGS, 0 },
1117 { STRING_COMMA_LEN (".prfchw"), PROCESSOR_UNKNOWN,
1118 CPU_PRFCHW_FLAGS, 0 },
1119 { STRING_COMMA_LEN (".smap"), PROCESSOR_UNKNOWN,
1120 CPU_SMAP_FLAGS, 0 },
1121 { STRING_COMMA_LEN (".mpx"), PROCESSOR_UNKNOWN,
1122 CPU_MPX_FLAGS, 0 },
1123 { STRING_COMMA_LEN (".sha"), PROCESSOR_UNKNOWN,
1124 CPU_SHA_FLAGS, 0 },
1125 { STRING_COMMA_LEN (".clflushopt"), PROCESSOR_UNKNOWN,
1126 CPU_CLFLUSHOPT_FLAGS, 0 },
1127 { STRING_COMMA_LEN (".prefetchwt1"), PROCESSOR_UNKNOWN,
1128 CPU_PREFETCHWT1_FLAGS, 0 },
1129 { STRING_COMMA_LEN (".se1"), PROCESSOR_UNKNOWN,
1130 CPU_SE1_FLAGS, 0 },
1131 { STRING_COMMA_LEN (".clwb"), PROCESSOR_UNKNOWN,
1132 CPU_CLWB_FLAGS, 0 },
1133 { STRING_COMMA_LEN (".avx512ifma"), PROCESSOR_UNKNOWN,
1134 CPU_AVX512IFMA_FLAGS, 0 },
1135 { STRING_COMMA_LEN (".avx512vbmi"), PROCESSOR_UNKNOWN,
1136 CPU_AVX512VBMI_FLAGS, 0 },
1137 { STRING_COMMA_LEN (".avx512_4fmaps"), PROCESSOR_UNKNOWN,
1138 CPU_AVX512_4FMAPS_FLAGS, 0 },
1139 { STRING_COMMA_LEN (".avx512_4vnniw"), PROCESSOR_UNKNOWN,
1140 CPU_AVX512_4VNNIW_FLAGS, 0 },
1141 { STRING_COMMA_LEN (".avx512_vpopcntdq"), PROCESSOR_UNKNOWN,
1142 CPU_AVX512_VPOPCNTDQ_FLAGS, 0 },
1143 { STRING_COMMA_LEN (".avx512_vbmi2"), PROCESSOR_UNKNOWN,
1144 CPU_AVX512_VBMI2_FLAGS, 0 },
1145 { STRING_COMMA_LEN (".avx512_vnni"), PROCESSOR_UNKNOWN,
1146 CPU_AVX512_VNNI_FLAGS, 0 },
1147 { STRING_COMMA_LEN (".avx512_bitalg"), PROCESSOR_UNKNOWN,
1148 CPU_AVX512_BITALG_FLAGS, 0 },
1149 { STRING_COMMA_LEN (".clzero"), PROCESSOR_UNKNOWN,
1150 CPU_CLZERO_FLAGS, 0 },
1151 { STRING_COMMA_LEN (".mwaitx"), PROCESSOR_UNKNOWN,
1152 CPU_MWAITX_FLAGS, 0 },
1153 { STRING_COMMA_LEN (".ospke"), PROCESSOR_UNKNOWN,
1154 CPU_OSPKE_FLAGS, 0 },
1155 { STRING_COMMA_LEN (".rdpid"), PROCESSOR_UNKNOWN,
1156 CPU_RDPID_FLAGS, 0 },
1157 { STRING_COMMA_LEN (".ptwrite"), PROCESSOR_UNKNOWN,
1158 CPU_PTWRITE_FLAGS, 0 },
1159 { STRING_COMMA_LEN (".ibt"), PROCESSOR_UNKNOWN,
1160 CPU_IBT_FLAGS, 0 },
1161 { STRING_COMMA_LEN (".shstk"), PROCESSOR_UNKNOWN,
1162 CPU_SHSTK_FLAGS, 0 },
1163 { STRING_COMMA_LEN (".gfni"), PROCESSOR_UNKNOWN,
1164 CPU_GFNI_FLAGS, 0 },
1165 { STRING_COMMA_LEN (".vaes"), PROCESSOR_UNKNOWN,
1166 CPU_VAES_FLAGS, 0 },
1167 { STRING_COMMA_LEN (".vpclmulqdq"), PROCESSOR_UNKNOWN,
1168 CPU_VPCLMULQDQ_FLAGS, 0 },
1169 { STRING_COMMA_LEN (".wbnoinvd"), PROCESSOR_UNKNOWN,
1170 CPU_WBNOINVD_FLAGS, 0 },
1171 { STRING_COMMA_LEN (".pconfig"), PROCESSOR_UNKNOWN,
1172 CPU_PCONFIG_FLAGS, 0 },
1173 { STRING_COMMA_LEN (".waitpkg"), PROCESSOR_UNKNOWN,
1174 CPU_WAITPKG_FLAGS, 0 },
1175 { STRING_COMMA_LEN (".cldemote"), PROCESSOR_UNKNOWN,
1176 CPU_CLDEMOTE_FLAGS, 0 },
1177 { STRING_COMMA_LEN (".movdiri"), PROCESSOR_UNKNOWN,
1178 CPU_MOVDIRI_FLAGS, 0 },
1179 { STRING_COMMA_LEN (".movdir64b"), PROCESSOR_UNKNOWN,
1180 CPU_MOVDIR64B_FLAGS, 0 },
1181 { STRING_COMMA_LEN (".avx512_bf16"), PROCESSOR_UNKNOWN,
1182 CPU_AVX512_BF16_FLAGS, 0 },
1183 { STRING_COMMA_LEN (".avx512_vp2intersect"), PROCESSOR_UNKNOWN,
1184 CPU_AVX512_VP2INTERSECT_FLAGS, 0 },
1185 { STRING_COMMA_LEN (".enqcmd"), PROCESSOR_UNKNOWN,
1186 CPU_ENQCMD_FLAGS, 0 },
1187 { STRING_COMMA_LEN (".rdpru"), PROCESSOR_UNKNOWN,
1188 CPU_RDPRU_FLAGS, 0 },
1189 { STRING_COMMA_LEN (".mcommit"), PROCESSOR_UNKNOWN,
1190 CPU_MCOMMIT_FLAGS, 0 },
1191 };
1192
1193 static const noarch_entry cpu_noarch[] =
1194 {
1195 { STRING_COMMA_LEN ("no87"), CPU_ANY_X87_FLAGS },
1196 { STRING_COMMA_LEN ("no287"), CPU_ANY_287_FLAGS },
1197 { STRING_COMMA_LEN ("no387"), CPU_ANY_387_FLAGS },
1198 { STRING_COMMA_LEN ("no687"), CPU_ANY_687_FLAGS },
1199 { STRING_COMMA_LEN ("nocmov"), CPU_ANY_CMOV_FLAGS },
1200 { STRING_COMMA_LEN ("nofxsr"), CPU_ANY_FXSR_FLAGS },
1201 { STRING_COMMA_LEN ("nommx"), CPU_ANY_MMX_FLAGS },
1202 { STRING_COMMA_LEN ("nosse"), CPU_ANY_SSE_FLAGS },
1203 { STRING_COMMA_LEN ("nosse2"), CPU_ANY_SSE2_FLAGS },
1204 { STRING_COMMA_LEN ("nosse3"), CPU_ANY_SSE3_FLAGS },
1205 { STRING_COMMA_LEN ("nosse4a"), CPU_ANY_SSE4A_FLAGS },
1206 { STRING_COMMA_LEN ("nossse3"), CPU_ANY_SSSE3_FLAGS },
1207 { STRING_COMMA_LEN ("nosse4.1"), CPU_ANY_SSE4_1_FLAGS },
1208 { STRING_COMMA_LEN ("nosse4.2"), CPU_ANY_SSE4_2_FLAGS },
1209 { STRING_COMMA_LEN ("nosse4"), CPU_ANY_SSE4_1_FLAGS },
1210 { STRING_COMMA_LEN ("noavx"), CPU_ANY_AVX_FLAGS },
1211 { STRING_COMMA_LEN ("noavx2"), CPU_ANY_AVX2_FLAGS },
1212 { STRING_COMMA_LEN ("noavx512f"), CPU_ANY_AVX512F_FLAGS },
1213 { STRING_COMMA_LEN ("noavx512cd"), CPU_ANY_AVX512CD_FLAGS },
1214 { STRING_COMMA_LEN ("noavx512er"), CPU_ANY_AVX512ER_FLAGS },
1215 { STRING_COMMA_LEN ("noavx512pf"), CPU_ANY_AVX512PF_FLAGS },
1216 { STRING_COMMA_LEN ("noavx512dq"), CPU_ANY_AVX512DQ_FLAGS },
1217 { STRING_COMMA_LEN ("noavx512bw"), CPU_ANY_AVX512BW_FLAGS },
1218 { STRING_COMMA_LEN ("noavx512vl"), CPU_ANY_AVX512VL_FLAGS },
1219 { STRING_COMMA_LEN ("noavx512ifma"), CPU_ANY_AVX512IFMA_FLAGS },
1220 { STRING_COMMA_LEN ("noavx512vbmi"), CPU_ANY_AVX512VBMI_FLAGS },
1221 { STRING_COMMA_LEN ("noavx512_4fmaps"), CPU_ANY_AVX512_4FMAPS_FLAGS },
1222 { STRING_COMMA_LEN ("noavx512_4vnniw"), CPU_ANY_AVX512_4VNNIW_FLAGS },
1223 { STRING_COMMA_LEN ("noavx512_vpopcntdq"), CPU_ANY_AVX512_VPOPCNTDQ_FLAGS },
1224 { STRING_COMMA_LEN ("noavx512_vbmi2"), CPU_ANY_AVX512_VBMI2_FLAGS },
1225 { STRING_COMMA_LEN ("noavx512_vnni"), CPU_ANY_AVX512_VNNI_FLAGS },
1226 { STRING_COMMA_LEN ("noavx512_bitalg"), CPU_ANY_AVX512_BITALG_FLAGS },
1227 { STRING_COMMA_LEN ("noibt"), CPU_ANY_IBT_FLAGS },
1228 { STRING_COMMA_LEN ("noshstk"), CPU_ANY_SHSTK_FLAGS },
1229 { STRING_COMMA_LEN ("nomovdiri"), CPU_ANY_MOVDIRI_FLAGS },
1230 { STRING_COMMA_LEN ("nomovdir64b"), CPU_ANY_MOVDIR64B_FLAGS },
1231 { STRING_COMMA_LEN ("noavx512_bf16"), CPU_ANY_AVX512_BF16_FLAGS },
1232 { STRING_COMMA_LEN ("noavx512_vp2intersect"), CPU_ANY_SHSTK_FLAGS },
1233 { STRING_COMMA_LEN ("noenqcmd"), CPU_ANY_ENQCMD_FLAGS },
1234 };
1235
1236 #ifdef I386COFF
1237 /* Like s_lcomm_internal in gas/read.c but the alignment string
1238 is allowed to be optional. */
1239
1240 static symbolS *
1241 pe_lcomm_internal (int needs_align, symbolS *symbolP, addressT size)
1242 {
1243 addressT align = 0;
1244
1245 SKIP_WHITESPACE ();
1246
1247 if (needs_align
1248 && *input_line_pointer == ',')
1249 {
1250 align = parse_align (needs_align - 1);
1251
1252 if (align == (addressT) -1)
1253 return NULL;
1254 }
1255 else
1256 {
1257 if (size >= 8)
1258 align = 3;
1259 else if (size >= 4)
1260 align = 2;
1261 else if (size >= 2)
1262 align = 1;
1263 else
1264 align = 0;
1265 }
1266
1267 bss_alloc (symbolP, size, align);
1268 return symbolP;
1269 }
1270
1271 static void
1272 pe_lcomm (int needs_align)
1273 {
1274 s_comm_internal (needs_align * 2, pe_lcomm_internal);
1275 }
1276 #endif
1277
1278 const pseudo_typeS md_pseudo_table[] =
1279 {
1280 #if !defined(OBJ_AOUT) && !defined(USE_ALIGN_PTWO)
1281 {"align", s_align_bytes, 0},
1282 #else
1283 {"align", s_align_ptwo, 0},
1284 #endif
1285 {"arch", set_cpu_arch, 0},
1286 #ifndef I386COFF
1287 {"bss", s_bss, 0},
1288 #else
1289 {"lcomm", pe_lcomm, 1},
1290 #endif
1291 {"ffloat", float_cons, 'f'},
1292 {"dfloat", float_cons, 'd'},
1293 {"tfloat", float_cons, 'x'},
1294 {"value", cons, 2},
1295 {"slong", signed_cons, 4},
1296 {"noopt", s_ignore, 0},
1297 {"optim", s_ignore, 0},
1298 {"code16gcc", set_16bit_gcc_code_flag, CODE_16BIT},
1299 {"code16", set_code_flag, CODE_16BIT},
1300 {"code32", set_code_flag, CODE_32BIT},
1301 #ifdef BFD64
1302 {"code64", set_code_flag, CODE_64BIT},
1303 #endif
1304 {"intel_syntax", set_intel_syntax, 1},
1305 {"att_syntax", set_intel_syntax, 0},
1306 {"intel_mnemonic", set_intel_mnemonic, 1},
1307 {"att_mnemonic", set_intel_mnemonic, 0},
1308 {"allow_index_reg", set_allow_index_reg, 1},
1309 {"disallow_index_reg", set_allow_index_reg, 0},
1310 {"sse_check", set_check, 0},
1311 {"operand_check", set_check, 1},
1312 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
1313 {"largecomm", handle_large_common, 0},
1314 #else
1315 {"file", dwarf2_directive_file, 0},
1316 {"loc", dwarf2_directive_loc, 0},
1317 {"loc_mark_labels", dwarf2_directive_loc_mark_labels, 0},
1318 #endif
1319 #ifdef TE_PE
1320 {"secrel32", pe_directive_secrel, 0},
1321 #endif
1322 {0, 0, 0}
1323 };
1324
1325 /* For interface with expression (). */
1326 extern char *input_line_pointer;
1327
1328 /* Hash table for instruction mnemonic lookup. */
1329 static struct hash_control *op_hash;
1330
1331 /* Hash table for register lookup. */
1332 static struct hash_control *reg_hash;
1333 \f
1334 /* Various efficient no-op patterns for aligning code labels.
1335 Note: Don't try to assemble the instructions in the comments.
1336 0L and 0w are not legal. */
1337 static const unsigned char f32_1[] =
1338 {0x90}; /* nop */
1339 static const unsigned char f32_2[] =
1340 {0x66,0x90}; /* xchg %ax,%ax */
1341 static const unsigned char f32_3[] =
1342 {0x8d,0x76,0x00}; /* leal 0(%esi),%esi */
1343 static const unsigned char f32_4[] =
1344 {0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
1345 static const unsigned char f32_6[] =
1346 {0x8d,0xb6,0x00,0x00,0x00,0x00}; /* leal 0L(%esi),%esi */
1347 static const unsigned char f32_7[] =
1348 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
1349 static const unsigned char f16_3[] =
1350 {0x8d,0x74,0x00}; /* lea 0(%si),%si */
1351 static const unsigned char f16_4[] =
1352 {0x8d,0xb4,0x00,0x00}; /* lea 0W(%si),%si */
1353 static const unsigned char jump_disp8[] =
1354 {0xeb}; /* jmp disp8 */
1355 static const unsigned char jump32_disp32[] =
1356 {0xe9}; /* jmp disp32 */
1357 static const unsigned char jump16_disp32[] =
1358 {0x66,0xe9}; /* jmp disp32 */
1359 /* 32-bit NOPs patterns. */
1360 static const unsigned char *const f32_patt[] = {
1361 f32_1, f32_2, f32_3, f32_4, NULL, f32_6, f32_7
1362 };
1363 /* 16-bit NOPs patterns. */
1364 static const unsigned char *const f16_patt[] = {
1365 f32_1, f32_2, f16_3, f16_4
1366 };
1367 /* nopl (%[re]ax) */
1368 static const unsigned char alt_3[] =
1369 {0x0f,0x1f,0x00};
1370 /* nopl 0(%[re]ax) */
1371 static const unsigned char alt_4[] =
1372 {0x0f,0x1f,0x40,0x00};
1373 /* nopl 0(%[re]ax,%[re]ax,1) */
1374 static const unsigned char alt_5[] =
1375 {0x0f,0x1f,0x44,0x00,0x00};
1376 /* nopw 0(%[re]ax,%[re]ax,1) */
1377 static const unsigned char alt_6[] =
1378 {0x66,0x0f,0x1f,0x44,0x00,0x00};
1379 /* nopl 0L(%[re]ax) */
1380 static const unsigned char alt_7[] =
1381 {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
1382 /* nopl 0L(%[re]ax,%[re]ax,1) */
1383 static const unsigned char alt_8[] =
1384 {0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1385 /* nopw 0L(%[re]ax,%[re]ax,1) */
1386 static const unsigned char alt_9[] =
1387 {0x66,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1388 /* nopw %cs:0L(%[re]ax,%[re]ax,1) */
1389 static const unsigned char alt_10[] =
1390 {0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1391 /* data16 nopw %cs:0L(%eax,%eax,1) */
1392 static const unsigned char alt_11[] =
1393 {0x66,0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1394 /* 32-bit and 64-bit NOPs patterns. */
1395 static const unsigned char *const alt_patt[] = {
1396 f32_1, f32_2, alt_3, alt_4, alt_5, alt_6, alt_7, alt_8,
1397 alt_9, alt_10, alt_11
1398 };
1399
1400 /* Genenerate COUNT bytes of NOPs to WHERE from PATT with the maximum
1401 size of a single NOP instruction MAX_SINGLE_NOP_SIZE. */
1402
1403 static void
1404 i386_output_nops (char *where, const unsigned char *const *patt,
1405 int count, int max_single_nop_size)
1406
1407 {
1408 /* Place the longer NOP first. */
1409 int last;
1410 int offset;
1411 const unsigned char *nops;
1412
1413 if (max_single_nop_size < 1)
1414 {
1415 as_fatal (_("i386_output_nops called to generate nops of at most %d bytes!"),
1416 max_single_nop_size);
1417 return;
1418 }
1419
1420 nops = patt[max_single_nop_size - 1];
1421
1422 /* Use the smaller one if the requsted one isn't available. */
1423 if (nops == NULL)
1424 {
1425 max_single_nop_size--;
1426 nops = patt[max_single_nop_size - 1];
1427 }
1428
1429 last = count % max_single_nop_size;
1430
1431 count -= last;
1432 for (offset = 0; offset < count; offset += max_single_nop_size)
1433 memcpy (where + offset, nops, max_single_nop_size);
1434
1435 if (last)
1436 {
1437 nops = patt[last - 1];
1438 if (nops == NULL)
1439 {
1440 /* Use the smaller one plus one-byte NOP if the needed one
1441 isn't available. */
1442 last--;
1443 nops = patt[last - 1];
1444 memcpy (where + offset, nops, last);
1445 where[offset + last] = *patt[0];
1446 }
1447 else
1448 memcpy (where + offset, nops, last);
1449 }
1450 }
1451
1452 static INLINE int
1453 fits_in_imm7 (offsetT num)
1454 {
1455 return (num & 0x7f) == num;
1456 }
1457
1458 static INLINE int
1459 fits_in_imm31 (offsetT num)
1460 {
1461 return (num & 0x7fffffff) == num;
1462 }
1463
1464 /* Genenerate COUNT bytes of NOPs to WHERE with the maximum size of a
1465 single NOP instruction LIMIT. */
1466
1467 void
1468 i386_generate_nops (fragS *fragP, char *where, offsetT count, int limit)
1469 {
1470 const unsigned char *const *patt = NULL;
1471 int max_single_nop_size;
1472 /* Maximum number of NOPs before switching to jump over NOPs. */
1473 int max_number_of_nops;
1474
1475 switch (fragP->fr_type)
1476 {
1477 case rs_fill_nop:
1478 case rs_align_code:
1479 break;
1480 case rs_machine_dependent:
1481 /* Allow NOP padding for jumps and calls. */
1482 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PADDING
1483 || TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == FUSED_JCC_PADDING)
1484 break;
1485 /* Fall through. */
1486 default:
1487 return;
1488 }
1489
1490 /* We need to decide which NOP sequence to use for 32bit and
1491 64bit. When -mtune= is used:
1492
1493 1. For PROCESSOR_I386, PROCESSOR_I486, PROCESSOR_PENTIUM and
1494 PROCESSOR_GENERIC32, f32_patt will be used.
1495 2. For the rest, alt_patt will be used.
1496
1497 When -mtune= isn't used, alt_patt will be used if
1498 cpu_arch_isa_flags has CpuNop. Otherwise, f32_patt will
1499 be used.
1500
1501 When -march= or .arch is used, we can't use anything beyond
1502 cpu_arch_isa_flags. */
1503
1504 if (flag_code == CODE_16BIT)
1505 {
1506 patt = f16_patt;
1507 max_single_nop_size = sizeof (f16_patt) / sizeof (f16_patt[0]);
1508 /* Limit number of NOPs to 2 in 16-bit mode. */
1509 max_number_of_nops = 2;
1510 }
1511 else
1512 {
1513 if (fragP->tc_frag_data.isa == PROCESSOR_UNKNOWN)
1514 {
1515 /* PROCESSOR_UNKNOWN means that all ISAs may be used. */
1516 switch (cpu_arch_tune)
1517 {
1518 case PROCESSOR_UNKNOWN:
1519 /* We use cpu_arch_isa_flags to check if we SHOULD
1520 optimize with nops. */
1521 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1522 patt = alt_patt;
1523 else
1524 patt = f32_patt;
1525 break;
1526 case PROCESSOR_PENTIUM4:
1527 case PROCESSOR_NOCONA:
1528 case PROCESSOR_CORE:
1529 case PROCESSOR_CORE2:
1530 case PROCESSOR_COREI7:
1531 case PROCESSOR_L1OM:
1532 case PROCESSOR_K1OM:
1533 case PROCESSOR_GENERIC64:
1534 case PROCESSOR_K6:
1535 case PROCESSOR_ATHLON:
1536 case PROCESSOR_K8:
1537 case PROCESSOR_AMDFAM10:
1538 case PROCESSOR_BD:
1539 case PROCESSOR_ZNVER:
1540 case PROCESSOR_BT:
1541 patt = alt_patt;
1542 break;
1543 case PROCESSOR_I386:
1544 case PROCESSOR_I486:
1545 case PROCESSOR_PENTIUM:
1546 case PROCESSOR_PENTIUMPRO:
1547 case PROCESSOR_IAMCU:
1548 case PROCESSOR_GENERIC32:
1549 patt = f32_patt;
1550 break;
1551 }
1552 }
1553 else
1554 {
1555 switch (fragP->tc_frag_data.tune)
1556 {
1557 case PROCESSOR_UNKNOWN:
1558 /* When cpu_arch_isa is set, cpu_arch_tune shouldn't be
1559 PROCESSOR_UNKNOWN. */
1560 abort ();
1561 break;
1562
1563 case PROCESSOR_I386:
1564 case PROCESSOR_I486:
1565 case PROCESSOR_PENTIUM:
1566 case PROCESSOR_IAMCU:
1567 case PROCESSOR_K6:
1568 case PROCESSOR_ATHLON:
1569 case PROCESSOR_K8:
1570 case PROCESSOR_AMDFAM10:
1571 case PROCESSOR_BD:
1572 case PROCESSOR_ZNVER:
1573 case PROCESSOR_BT:
1574 case PROCESSOR_GENERIC32:
1575 /* We use cpu_arch_isa_flags to check if we CAN optimize
1576 with nops. */
1577 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1578 patt = alt_patt;
1579 else
1580 patt = f32_patt;
1581 break;
1582 case PROCESSOR_PENTIUMPRO:
1583 case PROCESSOR_PENTIUM4:
1584 case PROCESSOR_NOCONA:
1585 case PROCESSOR_CORE:
1586 case PROCESSOR_CORE2:
1587 case PROCESSOR_COREI7:
1588 case PROCESSOR_L1OM:
1589 case PROCESSOR_K1OM:
1590 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1591 patt = alt_patt;
1592 else
1593 patt = f32_patt;
1594 break;
1595 case PROCESSOR_GENERIC64:
1596 patt = alt_patt;
1597 break;
1598 }
1599 }
1600
1601 if (patt == f32_patt)
1602 {
1603 max_single_nop_size = sizeof (f32_patt) / sizeof (f32_patt[0]);
1604 /* Limit number of NOPs to 2 for older processors. */
1605 max_number_of_nops = 2;
1606 }
1607 else
1608 {
1609 max_single_nop_size = sizeof (alt_patt) / sizeof (alt_patt[0]);
1610 /* Limit number of NOPs to 7 for newer processors. */
1611 max_number_of_nops = 7;
1612 }
1613 }
1614
1615 if (limit == 0)
1616 limit = max_single_nop_size;
1617
1618 if (fragP->fr_type == rs_fill_nop)
1619 {
1620 /* Output NOPs for .nop directive. */
1621 if (limit > max_single_nop_size)
1622 {
1623 as_bad_where (fragP->fr_file, fragP->fr_line,
1624 _("invalid single nop size: %d "
1625 "(expect within [0, %d])"),
1626 limit, max_single_nop_size);
1627 return;
1628 }
1629 }
1630 else if (fragP->fr_type != rs_machine_dependent)
1631 fragP->fr_var = count;
1632
1633 if ((count / max_single_nop_size) > max_number_of_nops)
1634 {
1635 /* Generate jump over NOPs. */
1636 offsetT disp = count - 2;
1637 if (fits_in_imm7 (disp))
1638 {
1639 /* Use "jmp disp8" if possible. */
1640 count = disp;
1641 where[0] = jump_disp8[0];
1642 where[1] = count;
1643 where += 2;
1644 }
1645 else
1646 {
1647 unsigned int size_of_jump;
1648
1649 if (flag_code == CODE_16BIT)
1650 {
1651 where[0] = jump16_disp32[0];
1652 where[1] = jump16_disp32[1];
1653 size_of_jump = 2;
1654 }
1655 else
1656 {
1657 where[0] = jump32_disp32[0];
1658 size_of_jump = 1;
1659 }
1660
1661 count -= size_of_jump + 4;
1662 if (!fits_in_imm31 (count))
1663 {
1664 as_bad_where (fragP->fr_file, fragP->fr_line,
1665 _("jump over nop padding out of range"));
1666 return;
1667 }
1668
1669 md_number_to_chars (where + size_of_jump, count, 4);
1670 where += size_of_jump + 4;
1671 }
1672 }
1673
1674 /* Generate multiple NOPs. */
1675 i386_output_nops (where, patt, count, limit);
1676 }
1677
1678 static INLINE int
1679 operand_type_all_zero (const union i386_operand_type *x)
1680 {
1681 switch (ARRAY_SIZE(x->array))
1682 {
1683 case 3:
1684 if (x->array[2])
1685 return 0;
1686 /* Fall through. */
1687 case 2:
1688 if (x->array[1])
1689 return 0;
1690 /* Fall through. */
1691 case 1:
1692 return !x->array[0];
1693 default:
1694 abort ();
1695 }
1696 }
1697
1698 static INLINE void
1699 operand_type_set (union i386_operand_type *x, unsigned int v)
1700 {
1701 switch (ARRAY_SIZE(x->array))
1702 {
1703 case 3:
1704 x->array[2] = v;
1705 /* Fall through. */
1706 case 2:
1707 x->array[1] = v;
1708 /* Fall through. */
1709 case 1:
1710 x->array[0] = v;
1711 /* Fall through. */
1712 break;
1713 default:
1714 abort ();
1715 }
1716
1717 x->bitfield.class = ClassNone;
1718 x->bitfield.instance = InstanceNone;
1719 }
1720
1721 static INLINE int
1722 operand_type_equal (const union i386_operand_type *x,
1723 const union i386_operand_type *y)
1724 {
1725 switch (ARRAY_SIZE(x->array))
1726 {
1727 case 3:
1728 if (x->array[2] != y->array[2])
1729 return 0;
1730 /* Fall through. */
1731 case 2:
1732 if (x->array[1] != y->array[1])
1733 return 0;
1734 /* Fall through. */
1735 case 1:
1736 return x->array[0] == y->array[0];
1737 break;
1738 default:
1739 abort ();
1740 }
1741 }
1742
1743 static INLINE int
1744 cpu_flags_all_zero (const union i386_cpu_flags *x)
1745 {
1746 switch (ARRAY_SIZE(x->array))
1747 {
1748 case 4:
1749 if (x->array[3])
1750 return 0;
1751 /* Fall through. */
1752 case 3:
1753 if (x->array[2])
1754 return 0;
1755 /* Fall through. */
1756 case 2:
1757 if (x->array[1])
1758 return 0;
1759 /* Fall through. */
1760 case 1:
1761 return !x->array[0];
1762 default:
1763 abort ();
1764 }
1765 }
1766
1767 static INLINE int
1768 cpu_flags_equal (const union i386_cpu_flags *x,
1769 const union i386_cpu_flags *y)
1770 {
1771 switch (ARRAY_SIZE(x->array))
1772 {
1773 case 4:
1774 if (x->array[3] != y->array[3])
1775 return 0;
1776 /* Fall through. */
1777 case 3:
1778 if (x->array[2] != y->array[2])
1779 return 0;
1780 /* Fall through. */
1781 case 2:
1782 if (x->array[1] != y->array[1])
1783 return 0;
1784 /* Fall through. */
1785 case 1:
1786 return x->array[0] == y->array[0];
1787 break;
1788 default:
1789 abort ();
1790 }
1791 }
1792
1793 static INLINE int
1794 cpu_flags_check_cpu64 (i386_cpu_flags f)
1795 {
1796 return !((flag_code == CODE_64BIT && f.bitfield.cpuno64)
1797 || (flag_code != CODE_64BIT && f.bitfield.cpu64));
1798 }
1799
1800 static INLINE i386_cpu_flags
1801 cpu_flags_and (i386_cpu_flags x, i386_cpu_flags y)
1802 {
1803 switch (ARRAY_SIZE (x.array))
1804 {
1805 case 4:
1806 x.array [3] &= y.array [3];
1807 /* Fall through. */
1808 case 3:
1809 x.array [2] &= y.array [2];
1810 /* Fall through. */
1811 case 2:
1812 x.array [1] &= y.array [1];
1813 /* Fall through. */
1814 case 1:
1815 x.array [0] &= y.array [0];
1816 break;
1817 default:
1818 abort ();
1819 }
1820 return x;
1821 }
1822
1823 static INLINE i386_cpu_flags
1824 cpu_flags_or (i386_cpu_flags x, i386_cpu_flags y)
1825 {
1826 switch (ARRAY_SIZE (x.array))
1827 {
1828 case 4:
1829 x.array [3] |= y.array [3];
1830 /* Fall through. */
1831 case 3:
1832 x.array [2] |= y.array [2];
1833 /* Fall through. */
1834 case 2:
1835 x.array [1] |= y.array [1];
1836 /* Fall through. */
1837 case 1:
1838 x.array [0] |= y.array [0];
1839 break;
1840 default:
1841 abort ();
1842 }
1843 return x;
1844 }
1845
1846 static INLINE i386_cpu_flags
1847 cpu_flags_and_not (i386_cpu_flags x, i386_cpu_flags y)
1848 {
1849 switch (ARRAY_SIZE (x.array))
1850 {
1851 case 4:
1852 x.array [3] &= ~y.array [3];
1853 /* Fall through. */
1854 case 3:
1855 x.array [2] &= ~y.array [2];
1856 /* Fall through. */
1857 case 2:
1858 x.array [1] &= ~y.array [1];
1859 /* Fall through. */
1860 case 1:
1861 x.array [0] &= ~y.array [0];
1862 break;
1863 default:
1864 abort ();
1865 }
1866 return x;
1867 }
1868
1869 static const i386_cpu_flags avx512 = CPU_ANY_AVX512F_FLAGS;
1870
1871 #define CPU_FLAGS_ARCH_MATCH 0x1
1872 #define CPU_FLAGS_64BIT_MATCH 0x2
1873
1874 #define CPU_FLAGS_PERFECT_MATCH \
1875 (CPU_FLAGS_ARCH_MATCH | CPU_FLAGS_64BIT_MATCH)
1876
1877 /* Return CPU flags match bits. */
1878
1879 static int
1880 cpu_flags_match (const insn_template *t)
1881 {
1882 i386_cpu_flags x = t->cpu_flags;
1883 int match = cpu_flags_check_cpu64 (x) ? CPU_FLAGS_64BIT_MATCH : 0;
1884
1885 x.bitfield.cpu64 = 0;
1886 x.bitfield.cpuno64 = 0;
1887
1888 if (cpu_flags_all_zero (&x))
1889 {
1890 /* This instruction is available on all archs. */
1891 match |= CPU_FLAGS_ARCH_MATCH;
1892 }
1893 else
1894 {
1895 /* This instruction is available only on some archs. */
1896 i386_cpu_flags cpu = cpu_arch_flags;
1897
1898 /* AVX512VL is no standalone feature - match it and then strip it. */
1899 if (x.bitfield.cpuavx512vl && !cpu.bitfield.cpuavx512vl)
1900 return match;
1901 x.bitfield.cpuavx512vl = 0;
1902
1903 cpu = cpu_flags_and (x, cpu);
1904 if (!cpu_flags_all_zero (&cpu))
1905 {
1906 if (x.bitfield.cpuavx)
1907 {
1908 /* We need to check a few extra flags with AVX. */
1909 if (cpu.bitfield.cpuavx
1910 && (!t->opcode_modifier.sse2avx || sse2avx)
1911 && (!x.bitfield.cpuaes || cpu.bitfield.cpuaes)
1912 && (!x.bitfield.cpugfni || cpu.bitfield.cpugfni)
1913 && (!x.bitfield.cpupclmul || cpu.bitfield.cpupclmul))
1914 match |= CPU_FLAGS_ARCH_MATCH;
1915 }
1916 else if (x.bitfield.cpuavx512f)
1917 {
1918 /* We need to check a few extra flags with AVX512F. */
1919 if (cpu.bitfield.cpuavx512f
1920 && (!x.bitfield.cpugfni || cpu.bitfield.cpugfni)
1921 && (!x.bitfield.cpuvaes || cpu.bitfield.cpuvaes)
1922 && (!x.bitfield.cpuvpclmulqdq || cpu.bitfield.cpuvpclmulqdq))
1923 match |= CPU_FLAGS_ARCH_MATCH;
1924 }
1925 else
1926 match |= CPU_FLAGS_ARCH_MATCH;
1927 }
1928 }
1929 return match;
1930 }
1931
1932 static INLINE i386_operand_type
1933 operand_type_and (i386_operand_type x, i386_operand_type y)
1934 {
1935 if (x.bitfield.class != y.bitfield.class)
1936 x.bitfield.class = ClassNone;
1937 if (x.bitfield.instance != y.bitfield.instance)
1938 x.bitfield.instance = InstanceNone;
1939
1940 switch (ARRAY_SIZE (x.array))
1941 {
1942 case 3:
1943 x.array [2] &= y.array [2];
1944 /* Fall through. */
1945 case 2:
1946 x.array [1] &= y.array [1];
1947 /* Fall through. */
1948 case 1:
1949 x.array [0] &= y.array [0];
1950 break;
1951 default:
1952 abort ();
1953 }
1954 return x;
1955 }
1956
1957 static INLINE i386_operand_type
1958 operand_type_and_not (i386_operand_type x, i386_operand_type y)
1959 {
1960 gas_assert (y.bitfield.class == ClassNone);
1961 gas_assert (y.bitfield.instance == InstanceNone);
1962
1963 switch (ARRAY_SIZE (x.array))
1964 {
1965 case 3:
1966 x.array [2] &= ~y.array [2];
1967 /* Fall through. */
1968 case 2:
1969 x.array [1] &= ~y.array [1];
1970 /* Fall through. */
1971 case 1:
1972 x.array [0] &= ~y.array [0];
1973 break;
1974 default:
1975 abort ();
1976 }
1977 return x;
1978 }
1979
1980 static INLINE i386_operand_type
1981 operand_type_or (i386_operand_type x, i386_operand_type y)
1982 {
1983 gas_assert (x.bitfield.class == ClassNone ||
1984 y.bitfield.class == ClassNone ||
1985 x.bitfield.class == y.bitfield.class);
1986 gas_assert (x.bitfield.instance == InstanceNone ||
1987 y.bitfield.instance == InstanceNone ||
1988 x.bitfield.instance == y.bitfield.instance);
1989
1990 switch (ARRAY_SIZE (x.array))
1991 {
1992 case 3:
1993 x.array [2] |= y.array [2];
1994 /* Fall through. */
1995 case 2:
1996 x.array [1] |= y.array [1];
1997 /* Fall through. */
1998 case 1:
1999 x.array [0] |= y.array [0];
2000 break;
2001 default:
2002 abort ();
2003 }
2004 return x;
2005 }
2006
2007 static INLINE i386_operand_type
2008 operand_type_xor (i386_operand_type x, i386_operand_type y)
2009 {
2010 gas_assert (y.bitfield.class == ClassNone);
2011 gas_assert (y.bitfield.instance == InstanceNone);
2012
2013 switch (ARRAY_SIZE (x.array))
2014 {
2015 case 3:
2016 x.array [2] ^= y.array [2];
2017 /* Fall through. */
2018 case 2:
2019 x.array [1] ^= y.array [1];
2020 /* Fall through. */
2021 case 1:
2022 x.array [0] ^= y.array [0];
2023 break;
2024 default:
2025 abort ();
2026 }
2027 return x;
2028 }
2029
2030 static const i386_operand_type disp16 = OPERAND_TYPE_DISP16;
2031 static const i386_operand_type disp32 = OPERAND_TYPE_DISP32;
2032 static const i386_operand_type disp32s = OPERAND_TYPE_DISP32S;
2033 static const i386_operand_type disp16_32 = OPERAND_TYPE_DISP16_32;
2034 static const i386_operand_type anydisp = OPERAND_TYPE_ANYDISP;
2035 static const i386_operand_type anyimm = OPERAND_TYPE_ANYIMM;
2036 static const i386_operand_type regxmm = OPERAND_TYPE_REGXMM;
2037 static const i386_operand_type regmask = OPERAND_TYPE_REGMASK;
2038 static const i386_operand_type imm8 = OPERAND_TYPE_IMM8;
2039 static const i386_operand_type imm8s = OPERAND_TYPE_IMM8S;
2040 static const i386_operand_type imm16 = OPERAND_TYPE_IMM16;
2041 static const i386_operand_type imm32 = OPERAND_TYPE_IMM32;
2042 static const i386_operand_type imm32s = OPERAND_TYPE_IMM32S;
2043 static const i386_operand_type imm64 = OPERAND_TYPE_IMM64;
2044 static const i386_operand_type imm16_32 = OPERAND_TYPE_IMM16_32;
2045 static const i386_operand_type imm16_32s = OPERAND_TYPE_IMM16_32S;
2046 static const i386_operand_type imm16_32_32s = OPERAND_TYPE_IMM16_32_32S;
2047
2048 enum operand_type
2049 {
2050 reg,
2051 imm,
2052 disp,
2053 anymem
2054 };
2055
2056 static INLINE int
2057 operand_type_check (i386_operand_type t, enum operand_type c)
2058 {
2059 switch (c)
2060 {
2061 case reg:
2062 return t.bitfield.class == Reg;
2063
2064 case imm:
2065 return (t.bitfield.imm8
2066 || t.bitfield.imm8s
2067 || t.bitfield.imm16
2068 || t.bitfield.imm32
2069 || t.bitfield.imm32s
2070 || t.bitfield.imm64);
2071
2072 case disp:
2073 return (t.bitfield.disp8
2074 || t.bitfield.disp16
2075 || t.bitfield.disp32
2076 || t.bitfield.disp32s
2077 || t.bitfield.disp64);
2078
2079 case anymem:
2080 return (t.bitfield.disp8
2081 || t.bitfield.disp16
2082 || t.bitfield.disp32
2083 || t.bitfield.disp32s
2084 || t.bitfield.disp64
2085 || t.bitfield.baseindex);
2086
2087 default:
2088 abort ();
2089 }
2090
2091 return 0;
2092 }
2093
2094 /* Return 1 if there is no conflict in 8bit/16bit/32bit/64bit/80bit size
2095 between operand GIVEN and opeand WANTED for instruction template T. */
2096
2097 static INLINE int
2098 match_operand_size (const insn_template *t, unsigned int wanted,
2099 unsigned int given)
2100 {
2101 return !((i.types[given].bitfield.byte
2102 && !t->operand_types[wanted].bitfield.byte)
2103 || (i.types[given].bitfield.word
2104 && !t->operand_types[wanted].bitfield.word)
2105 || (i.types[given].bitfield.dword
2106 && !t->operand_types[wanted].bitfield.dword)
2107 || (i.types[given].bitfield.qword
2108 && !t->operand_types[wanted].bitfield.qword)
2109 || (i.types[given].bitfield.tbyte
2110 && !t->operand_types[wanted].bitfield.tbyte));
2111 }
2112
2113 /* Return 1 if there is no conflict in SIMD register between operand
2114 GIVEN and opeand WANTED for instruction template T. */
2115
2116 static INLINE int
2117 match_simd_size (const insn_template *t, unsigned int wanted,
2118 unsigned int given)
2119 {
2120 return !((i.types[given].bitfield.xmmword
2121 && !t->operand_types[wanted].bitfield.xmmword)
2122 || (i.types[given].bitfield.ymmword
2123 && !t->operand_types[wanted].bitfield.ymmword)
2124 || (i.types[given].bitfield.zmmword
2125 && !t->operand_types[wanted].bitfield.zmmword));
2126 }
2127
2128 /* Return 1 if there is no conflict in any size between operand GIVEN
2129 and opeand WANTED for instruction template T. */
2130
2131 static INLINE int
2132 match_mem_size (const insn_template *t, unsigned int wanted,
2133 unsigned int given)
2134 {
2135 return (match_operand_size (t, wanted, given)
2136 && !((i.types[given].bitfield.unspecified
2137 && !i.broadcast
2138 && !t->operand_types[wanted].bitfield.unspecified)
2139 || (i.types[given].bitfield.fword
2140 && !t->operand_types[wanted].bitfield.fword)
2141 /* For scalar opcode templates to allow register and memory
2142 operands at the same time, some special casing is needed
2143 here. Also for v{,p}broadcast*, {,v}pmov{s,z}*, and
2144 down-conversion vpmov*. */
2145 || ((t->operand_types[wanted].bitfield.class == RegSIMD
2146 && !t->opcode_modifier.broadcast
2147 && (t->operand_types[wanted].bitfield.byte
2148 || t->operand_types[wanted].bitfield.word
2149 || t->operand_types[wanted].bitfield.dword
2150 || t->operand_types[wanted].bitfield.qword))
2151 ? (i.types[given].bitfield.xmmword
2152 || i.types[given].bitfield.ymmword
2153 || i.types[given].bitfield.zmmword)
2154 : !match_simd_size(t, wanted, given))));
2155 }
2156
2157 /* Return value has MATCH_STRAIGHT set if there is no size conflict on any
2158 operands for instruction template T, and it has MATCH_REVERSE set if there
2159 is no size conflict on any operands for the template with operands reversed
2160 (and the template allows for reversing in the first place). */
2161
2162 #define MATCH_STRAIGHT 1
2163 #define MATCH_REVERSE 2
2164
2165 static INLINE unsigned int
2166 operand_size_match (const insn_template *t)
2167 {
2168 unsigned int j, match = MATCH_STRAIGHT;
2169
2170 /* Don't check non-absolute jump instructions. */
2171 if (t->opcode_modifier.jump
2172 && t->opcode_modifier.jump != JUMP_ABSOLUTE)
2173 return match;
2174
2175 /* Check memory and accumulator operand size. */
2176 for (j = 0; j < i.operands; j++)
2177 {
2178 if (i.types[j].bitfield.class != Reg
2179 && i.types[j].bitfield.class != RegSIMD
2180 && t->opcode_modifier.anysize)
2181 continue;
2182
2183 if (t->operand_types[j].bitfield.class == Reg
2184 && !match_operand_size (t, j, j))
2185 {
2186 match = 0;
2187 break;
2188 }
2189
2190 if (t->operand_types[j].bitfield.class == RegSIMD
2191 && !match_simd_size (t, j, j))
2192 {
2193 match = 0;
2194 break;
2195 }
2196
2197 if (t->operand_types[j].bitfield.instance == Accum
2198 && (!match_operand_size (t, j, j) || !match_simd_size (t, j, j)))
2199 {
2200 match = 0;
2201 break;
2202 }
2203
2204 if ((i.flags[j] & Operand_Mem) && !match_mem_size (t, j, j))
2205 {
2206 match = 0;
2207 break;
2208 }
2209 }
2210
2211 if (!t->opcode_modifier.d)
2212 {
2213 mismatch:
2214 if (!match)
2215 i.error = operand_size_mismatch;
2216 return match;
2217 }
2218
2219 /* Check reverse. */
2220 gas_assert (i.operands >= 2 && i.operands <= 3);
2221
2222 for (j = 0; j < i.operands; j++)
2223 {
2224 unsigned int given = i.operands - j - 1;
2225
2226 if (t->operand_types[j].bitfield.class == Reg
2227 && !match_operand_size (t, j, given))
2228 goto mismatch;
2229
2230 if (t->operand_types[j].bitfield.class == RegSIMD
2231 && !match_simd_size (t, j, given))
2232 goto mismatch;
2233
2234 if (t->operand_types[j].bitfield.instance == Accum
2235 && (!match_operand_size (t, j, given)
2236 || !match_simd_size (t, j, given)))
2237 goto mismatch;
2238
2239 if ((i.flags[given] & Operand_Mem) && !match_mem_size (t, j, given))
2240 goto mismatch;
2241 }
2242
2243 return match | MATCH_REVERSE;
2244 }
2245
2246 static INLINE int
2247 operand_type_match (i386_operand_type overlap,
2248 i386_operand_type given)
2249 {
2250 i386_operand_type temp = overlap;
2251
2252 temp.bitfield.unspecified = 0;
2253 temp.bitfield.byte = 0;
2254 temp.bitfield.word = 0;
2255 temp.bitfield.dword = 0;
2256 temp.bitfield.fword = 0;
2257 temp.bitfield.qword = 0;
2258 temp.bitfield.tbyte = 0;
2259 temp.bitfield.xmmword = 0;
2260 temp.bitfield.ymmword = 0;
2261 temp.bitfield.zmmword = 0;
2262 if (operand_type_all_zero (&temp))
2263 goto mismatch;
2264
2265 if (given.bitfield.baseindex == overlap.bitfield.baseindex)
2266 return 1;
2267
2268 mismatch:
2269 i.error = operand_type_mismatch;
2270 return 0;
2271 }
2272
2273 /* If given types g0 and g1 are registers they must be of the same type
2274 unless the expected operand type register overlap is null.
2275 Some Intel syntax memory operand size checking also happens here. */
2276
2277 static INLINE int
2278 operand_type_register_match (i386_operand_type g0,
2279 i386_operand_type t0,
2280 i386_operand_type g1,
2281 i386_operand_type t1)
2282 {
2283 if (g0.bitfield.class != Reg
2284 && g0.bitfield.class != RegSIMD
2285 && (!operand_type_check (g0, anymem)
2286 || g0.bitfield.unspecified
2287 || (t0.bitfield.class != Reg
2288 && t0.bitfield.class != RegSIMD)))
2289 return 1;
2290
2291 if (g1.bitfield.class != Reg
2292 && g1.bitfield.class != RegSIMD
2293 && (!operand_type_check (g1, anymem)
2294 || g1.bitfield.unspecified
2295 || (t1.bitfield.class != Reg
2296 && t1.bitfield.class != RegSIMD)))
2297 return 1;
2298
2299 if (g0.bitfield.byte == g1.bitfield.byte
2300 && g0.bitfield.word == g1.bitfield.word
2301 && g0.bitfield.dword == g1.bitfield.dword
2302 && g0.bitfield.qword == g1.bitfield.qword
2303 && g0.bitfield.xmmword == g1.bitfield.xmmword
2304 && g0.bitfield.ymmword == g1.bitfield.ymmword
2305 && g0.bitfield.zmmword == g1.bitfield.zmmword)
2306 return 1;
2307
2308 if (!(t0.bitfield.byte & t1.bitfield.byte)
2309 && !(t0.bitfield.word & t1.bitfield.word)
2310 && !(t0.bitfield.dword & t1.bitfield.dword)
2311 && !(t0.bitfield.qword & t1.bitfield.qword)
2312 && !(t0.bitfield.xmmword & t1.bitfield.xmmword)
2313 && !(t0.bitfield.ymmword & t1.bitfield.ymmword)
2314 && !(t0.bitfield.zmmword & t1.bitfield.zmmword))
2315 return 1;
2316
2317 i.error = register_type_mismatch;
2318
2319 return 0;
2320 }
2321
2322 static INLINE unsigned int
2323 register_number (const reg_entry *r)
2324 {
2325 unsigned int nr = r->reg_num;
2326
2327 if (r->reg_flags & RegRex)
2328 nr += 8;
2329
2330 if (r->reg_flags & RegVRex)
2331 nr += 16;
2332
2333 return nr;
2334 }
2335
2336 static INLINE unsigned int
2337 mode_from_disp_size (i386_operand_type t)
2338 {
2339 if (t.bitfield.disp8)
2340 return 1;
2341 else if (t.bitfield.disp16
2342 || t.bitfield.disp32
2343 || t.bitfield.disp32s)
2344 return 2;
2345 else
2346 return 0;
2347 }
2348
2349 static INLINE int
2350 fits_in_signed_byte (addressT num)
2351 {
2352 return num + 0x80 <= 0xff;
2353 }
2354
2355 static INLINE int
2356 fits_in_unsigned_byte (addressT num)
2357 {
2358 return num <= 0xff;
2359 }
2360
2361 static INLINE int
2362 fits_in_unsigned_word (addressT num)
2363 {
2364 return num <= 0xffff;
2365 }
2366
2367 static INLINE int
2368 fits_in_signed_word (addressT num)
2369 {
2370 return num + 0x8000 <= 0xffff;
2371 }
2372
2373 static INLINE int
2374 fits_in_signed_long (addressT num ATTRIBUTE_UNUSED)
2375 {
2376 #ifndef BFD64
2377 return 1;
2378 #else
2379 return num + 0x80000000 <= 0xffffffff;
2380 #endif
2381 } /* fits_in_signed_long() */
2382
2383 static INLINE int
2384 fits_in_unsigned_long (addressT num ATTRIBUTE_UNUSED)
2385 {
2386 #ifndef BFD64
2387 return 1;
2388 #else
2389 return num <= 0xffffffff;
2390 #endif
2391 } /* fits_in_unsigned_long() */
2392
2393 static INLINE int
2394 fits_in_disp8 (offsetT num)
2395 {
2396 int shift = i.memshift;
2397 unsigned int mask;
2398
2399 if (shift == -1)
2400 abort ();
2401
2402 mask = (1 << shift) - 1;
2403
2404 /* Return 0 if NUM isn't properly aligned. */
2405 if ((num & mask))
2406 return 0;
2407
2408 /* Check if NUM will fit in 8bit after shift. */
2409 return fits_in_signed_byte (num >> shift);
2410 }
2411
2412 static INLINE int
2413 fits_in_imm4 (offsetT num)
2414 {
2415 return (num & 0xf) == num;
2416 }
2417
2418 static i386_operand_type
2419 smallest_imm_type (offsetT num)
2420 {
2421 i386_operand_type t;
2422
2423 operand_type_set (&t, 0);
2424 t.bitfield.imm64 = 1;
2425
2426 if (cpu_arch_tune != PROCESSOR_I486 && num == 1)
2427 {
2428 /* This code is disabled on the 486 because all the Imm1 forms
2429 in the opcode table are slower on the i486. They're the
2430 versions with the implicitly specified single-position
2431 displacement, which has another syntax if you really want to
2432 use that form. */
2433 t.bitfield.imm1 = 1;
2434 t.bitfield.imm8 = 1;
2435 t.bitfield.imm8s = 1;
2436 t.bitfield.imm16 = 1;
2437 t.bitfield.imm32 = 1;
2438 t.bitfield.imm32s = 1;
2439 }
2440 else if (fits_in_signed_byte (num))
2441 {
2442 t.bitfield.imm8 = 1;
2443 t.bitfield.imm8s = 1;
2444 t.bitfield.imm16 = 1;
2445 t.bitfield.imm32 = 1;
2446 t.bitfield.imm32s = 1;
2447 }
2448 else if (fits_in_unsigned_byte (num))
2449 {
2450 t.bitfield.imm8 = 1;
2451 t.bitfield.imm16 = 1;
2452 t.bitfield.imm32 = 1;
2453 t.bitfield.imm32s = 1;
2454 }
2455 else if (fits_in_signed_word (num) || fits_in_unsigned_word (num))
2456 {
2457 t.bitfield.imm16 = 1;
2458 t.bitfield.imm32 = 1;
2459 t.bitfield.imm32s = 1;
2460 }
2461 else if (fits_in_signed_long (num))
2462 {
2463 t.bitfield.imm32 = 1;
2464 t.bitfield.imm32s = 1;
2465 }
2466 else if (fits_in_unsigned_long (num))
2467 t.bitfield.imm32 = 1;
2468
2469 return t;
2470 }
2471
2472 static offsetT
2473 offset_in_range (offsetT val, int size)
2474 {
2475 addressT mask;
2476
2477 switch (size)
2478 {
2479 case 1: mask = ((addressT) 1 << 8) - 1; break;
2480 case 2: mask = ((addressT) 1 << 16) - 1; break;
2481 case 4: mask = ((addressT) 2 << 31) - 1; break;
2482 #ifdef BFD64
2483 case 8: mask = ((addressT) 2 << 63) - 1; break;
2484 #endif
2485 default: abort ();
2486 }
2487
2488 #ifdef BFD64
2489 /* If BFD64, sign extend val for 32bit address mode. */
2490 if (flag_code != CODE_64BIT
2491 || i.prefix[ADDR_PREFIX])
2492 if ((val & ~(((addressT) 2 << 31) - 1)) == 0)
2493 val = (val ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
2494 #endif
2495
2496 if ((val & ~mask) != 0 && (val & ~mask) != ~mask)
2497 {
2498 char buf1[40], buf2[40];
2499
2500 sprint_value (buf1, val);
2501 sprint_value (buf2, val & mask);
2502 as_warn (_("%s shortened to %s"), buf1, buf2);
2503 }
2504 return val & mask;
2505 }
2506
2507 enum PREFIX_GROUP
2508 {
2509 PREFIX_EXIST = 0,
2510 PREFIX_LOCK,
2511 PREFIX_REP,
2512 PREFIX_DS,
2513 PREFIX_OTHER
2514 };
2515
2516 /* Returns
2517 a. PREFIX_EXIST if attempting to add a prefix where one from the
2518 same class already exists.
2519 b. PREFIX_LOCK if lock prefix is added.
2520 c. PREFIX_REP if rep/repne prefix is added.
2521 d. PREFIX_DS if ds prefix is added.
2522 e. PREFIX_OTHER if other prefix is added.
2523 */
2524
2525 static enum PREFIX_GROUP
2526 add_prefix (unsigned int prefix)
2527 {
2528 enum PREFIX_GROUP ret = PREFIX_OTHER;
2529 unsigned int q;
2530
2531 if (prefix >= REX_OPCODE && prefix < REX_OPCODE + 16
2532 && flag_code == CODE_64BIT)
2533 {
2534 if ((i.prefix[REX_PREFIX] & prefix & REX_W)
2535 || (i.prefix[REX_PREFIX] & prefix & REX_R)
2536 || (i.prefix[REX_PREFIX] & prefix & REX_X)
2537 || (i.prefix[REX_PREFIX] & prefix & REX_B))
2538 ret = PREFIX_EXIST;
2539 q = REX_PREFIX;
2540 }
2541 else
2542 {
2543 switch (prefix)
2544 {
2545 default:
2546 abort ();
2547
2548 case DS_PREFIX_OPCODE:
2549 ret = PREFIX_DS;
2550 /* Fall through. */
2551 case CS_PREFIX_OPCODE:
2552 case ES_PREFIX_OPCODE:
2553 case FS_PREFIX_OPCODE:
2554 case GS_PREFIX_OPCODE:
2555 case SS_PREFIX_OPCODE:
2556 q = SEG_PREFIX;
2557 break;
2558
2559 case REPNE_PREFIX_OPCODE:
2560 case REPE_PREFIX_OPCODE:
2561 q = REP_PREFIX;
2562 ret = PREFIX_REP;
2563 break;
2564
2565 case LOCK_PREFIX_OPCODE:
2566 q = LOCK_PREFIX;
2567 ret = PREFIX_LOCK;
2568 break;
2569
2570 case FWAIT_OPCODE:
2571 q = WAIT_PREFIX;
2572 break;
2573
2574 case ADDR_PREFIX_OPCODE:
2575 q = ADDR_PREFIX;
2576 break;
2577
2578 case DATA_PREFIX_OPCODE:
2579 q = DATA_PREFIX;
2580 break;
2581 }
2582 if (i.prefix[q] != 0)
2583 ret = PREFIX_EXIST;
2584 }
2585
2586 if (ret)
2587 {
2588 if (!i.prefix[q])
2589 ++i.prefixes;
2590 i.prefix[q] |= prefix;
2591 }
2592 else
2593 as_bad (_("same type of prefix used twice"));
2594
2595 return ret;
2596 }
2597
2598 static void
2599 update_code_flag (int value, int check)
2600 {
2601 PRINTF_LIKE ((*as_error));
2602
2603 flag_code = (enum flag_code) value;
2604 if (flag_code == CODE_64BIT)
2605 {
2606 cpu_arch_flags.bitfield.cpu64 = 1;
2607 cpu_arch_flags.bitfield.cpuno64 = 0;
2608 }
2609 else
2610 {
2611 cpu_arch_flags.bitfield.cpu64 = 0;
2612 cpu_arch_flags.bitfield.cpuno64 = 1;
2613 }
2614 if (value == CODE_64BIT && !cpu_arch_flags.bitfield.cpulm )
2615 {
2616 if (check)
2617 as_error = as_fatal;
2618 else
2619 as_error = as_bad;
2620 (*as_error) (_("64bit mode not supported on `%s'."),
2621 cpu_arch_name ? cpu_arch_name : default_arch);
2622 }
2623 if (value == CODE_32BIT && !cpu_arch_flags.bitfield.cpui386)
2624 {
2625 if (check)
2626 as_error = as_fatal;
2627 else
2628 as_error = as_bad;
2629 (*as_error) (_("32bit mode not supported on `%s'."),
2630 cpu_arch_name ? cpu_arch_name : default_arch);
2631 }
2632 stackop_size = '\0';
2633 }
2634
2635 static void
2636 set_code_flag (int value)
2637 {
2638 update_code_flag (value, 0);
2639 }
2640
2641 static void
2642 set_16bit_gcc_code_flag (int new_code_flag)
2643 {
2644 flag_code = (enum flag_code) new_code_flag;
2645 if (flag_code != CODE_16BIT)
2646 abort ();
2647 cpu_arch_flags.bitfield.cpu64 = 0;
2648 cpu_arch_flags.bitfield.cpuno64 = 1;
2649 stackop_size = LONG_MNEM_SUFFIX;
2650 }
2651
2652 static void
2653 set_intel_syntax (int syntax_flag)
2654 {
2655 /* Find out if register prefixing is specified. */
2656 int ask_naked_reg = 0;
2657
2658 SKIP_WHITESPACE ();
2659 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2660 {
2661 char *string;
2662 int e = get_symbol_name (&string);
2663
2664 if (strcmp (string, "prefix") == 0)
2665 ask_naked_reg = 1;
2666 else if (strcmp (string, "noprefix") == 0)
2667 ask_naked_reg = -1;
2668 else
2669 as_bad (_("bad argument to syntax directive."));
2670 (void) restore_line_pointer (e);
2671 }
2672 demand_empty_rest_of_line ();
2673
2674 intel_syntax = syntax_flag;
2675
2676 if (ask_naked_reg == 0)
2677 allow_naked_reg = (intel_syntax
2678 && (bfd_get_symbol_leading_char (stdoutput) != '\0'));
2679 else
2680 allow_naked_reg = (ask_naked_reg < 0);
2681
2682 expr_set_rank (O_full_ptr, syntax_flag ? 10 : 0);
2683
2684 identifier_chars['%'] = intel_syntax && allow_naked_reg ? '%' : 0;
2685 identifier_chars['$'] = intel_syntax ? '$' : 0;
2686 register_prefix = allow_naked_reg ? "" : "%";
2687 }
2688
2689 static void
2690 set_intel_mnemonic (int mnemonic_flag)
2691 {
2692 intel_mnemonic = mnemonic_flag;
2693 }
2694
2695 static void
2696 set_allow_index_reg (int flag)
2697 {
2698 allow_index_reg = flag;
2699 }
2700
2701 static void
2702 set_check (int what)
2703 {
2704 enum check_kind *kind;
2705 const char *str;
2706
2707 if (what)
2708 {
2709 kind = &operand_check;
2710 str = "operand";
2711 }
2712 else
2713 {
2714 kind = &sse_check;
2715 str = "sse";
2716 }
2717
2718 SKIP_WHITESPACE ();
2719
2720 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2721 {
2722 char *string;
2723 int e = get_symbol_name (&string);
2724
2725 if (strcmp (string, "none") == 0)
2726 *kind = check_none;
2727 else if (strcmp (string, "warning") == 0)
2728 *kind = check_warning;
2729 else if (strcmp (string, "error") == 0)
2730 *kind = check_error;
2731 else
2732 as_bad (_("bad argument to %s_check directive."), str);
2733 (void) restore_line_pointer (e);
2734 }
2735 else
2736 as_bad (_("missing argument for %s_check directive"), str);
2737
2738 demand_empty_rest_of_line ();
2739 }
2740
2741 static void
2742 check_cpu_arch_compatible (const char *name ATTRIBUTE_UNUSED,
2743 i386_cpu_flags new_flag ATTRIBUTE_UNUSED)
2744 {
2745 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
2746 static const char *arch;
2747
2748 /* Intel LIOM is only supported on ELF. */
2749 if (!IS_ELF)
2750 return;
2751
2752 if (!arch)
2753 {
2754 /* Use cpu_arch_name if it is set in md_parse_option. Otherwise
2755 use default_arch. */
2756 arch = cpu_arch_name;
2757 if (!arch)
2758 arch = default_arch;
2759 }
2760
2761 /* If we are targeting Intel MCU, we must enable it. */
2762 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_IAMCU
2763 || new_flag.bitfield.cpuiamcu)
2764 return;
2765
2766 /* If we are targeting Intel L1OM, we must enable it. */
2767 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_L1OM
2768 || new_flag.bitfield.cpul1om)
2769 return;
2770
2771 /* If we are targeting Intel K1OM, we must enable it. */
2772 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_K1OM
2773 || new_flag.bitfield.cpuk1om)
2774 return;
2775
2776 as_bad (_("`%s' is not supported on `%s'"), name, arch);
2777 #endif
2778 }
2779
2780 static void
2781 set_cpu_arch (int dummy ATTRIBUTE_UNUSED)
2782 {
2783 SKIP_WHITESPACE ();
2784
2785 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2786 {
2787 char *string;
2788 int e = get_symbol_name (&string);
2789 unsigned int j;
2790 i386_cpu_flags flags;
2791
2792 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
2793 {
2794 if (strcmp (string, cpu_arch[j].name) == 0)
2795 {
2796 check_cpu_arch_compatible (string, cpu_arch[j].flags);
2797
2798 if (*string != '.')
2799 {
2800 cpu_arch_name = cpu_arch[j].name;
2801 cpu_sub_arch_name = NULL;
2802 cpu_arch_flags = cpu_arch[j].flags;
2803 if (flag_code == CODE_64BIT)
2804 {
2805 cpu_arch_flags.bitfield.cpu64 = 1;
2806 cpu_arch_flags.bitfield.cpuno64 = 0;
2807 }
2808 else
2809 {
2810 cpu_arch_flags.bitfield.cpu64 = 0;
2811 cpu_arch_flags.bitfield.cpuno64 = 1;
2812 }
2813 cpu_arch_isa = cpu_arch[j].type;
2814 cpu_arch_isa_flags = cpu_arch[j].flags;
2815 if (!cpu_arch_tune_set)
2816 {
2817 cpu_arch_tune = cpu_arch_isa;
2818 cpu_arch_tune_flags = cpu_arch_isa_flags;
2819 }
2820 break;
2821 }
2822
2823 flags = cpu_flags_or (cpu_arch_flags,
2824 cpu_arch[j].flags);
2825
2826 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
2827 {
2828 if (cpu_sub_arch_name)
2829 {
2830 char *name = cpu_sub_arch_name;
2831 cpu_sub_arch_name = concat (name,
2832 cpu_arch[j].name,
2833 (const char *) NULL);
2834 free (name);
2835 }
2836 else
2837 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
2838 cpu_arch_flags = flags;
2839 cpu_arch_isa_flags = flags;
2840 }
2841 else
2842 cpu_arch_isa_flags
2843 = cpu_flags_or (cpu_arch_isa_flags,
2844 cpu_arch[j].flags);
2845 (void) restore_line_pointer (e);
2846 demand_empty_rest_of_line ();
2847 return;
2848 }
2849 }
2850
2851 if (*string == '.' && j >= ARRAY_SIZE (cpu_arch))
2852 {
2853 /* Disable an ISA extension. */
2854 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
2855 if (strcmp (string + 1, cpu_noarch [j].name) == 0)
2856 {
2857 flags = cpu_flags_and_not (cpu_arch_flags,
2858 cpu_noarch[j].flags);
2859 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
2860 {
2861 if (cpu_sub_arch_name)
2862 {
2863 char *name = cpu_sub_arch_name;
2864 cpu_sub_arch_name = concat (name, string,
2865 (const char *) NULL);
2866 free (name);
2867 }
2868 else
2869 cpu_sub_arch_name = xstrdup (string);
2870 cpu_arch_flags = flags;
2871 cpu_arch_isa_flags = flags;
2872 }
2873 (void) restore_line_pointer (e);
2874 demand_empty_rest_of_line ();
2875 return;
2876 }
2877
2878 j = ARRAY_SIZE (cpu_arch);
2879 }
2880
2881 if (j >= ARRAY_SIZE (cpu_arch))
2882 as_bad (_("no such architecture: `%s'"), string);
2883
2884 *input_line_pointer = e;
2885 }
2886 else
2887 as_bad (_("missing cpu architecture"));
2888
2889 no_cond_jump_promotion = 0;
2890 if (*input_line_pointer == ','
2891 && !is_end_of_line[(unsigned char) input_line_pointer[1]])
2892 {
2893 char *string;
2894 char e;
2895
2896 ++input_line_pointer;
2897 e = get_symbol_name (&string);
2898
2899 if (strcmp (string, "nojumps") == 0)
2900 no_cond_jump_promotion = 1;
2901 else if (strcmp (string, "jumps") == 0)
2902 ;
2903 else
2904 as_bad (_("no such architecture modifier: `%s'"), string);
2905
2906 (void) restore_line_pointer (e);
2907 }
2908
2909 demand_empty_rest_of_line ();
2910 }
2911
2912 enum bfd_architecture
2913 i386_arch (void)
2914 {
2915 if (cpu_arch_isa == PROCESSOR_L1OM)
2916 {
2917 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2918 || flag_code != CODE_64BIT)
2919 as_fatal (_("Intel L1OM is 64bit ELF only"));
2920 return bfd_arch_l1om;
2921 }
2922 else if (cpu_arch_isa == PROCESSOR_K1OM)
2923 {
2924 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2925 || flag_code != CODE_64BIT)
2926 as_fatal (_("Intel K1OM is 64bit ELF only"));
2927 return bfd_arch_k1om;
2928 }
2929 else if (cpu_arch_isa == PROCESSOR_IAMCU)
2930 {
2931 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2932 || flag_code == CODE_64BIT)
2933 as_fatal (_("Intel MCU is 32bit ELF only"));
2934 return bfd_arch_iamcu;
2935 }
2936 else
2937 return bfd_arch_i386;
2938 }
2939
2940 unsigned long
2941 i386_mach (void)
2942 {
2943 if (!strncmp (default_arch, "x86_64", 6))
2944 {
2945 if (cpu_arch_isa == PROCESSOR_L1OM)
2946 {
2947 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2948 || default_arch[6] != '\0')
2949 as_fatal (_("Intel L1OM is 64bit ELF only"));
2950 return bfd_mach_l1om;
2951 }
2952 else if (cpu_arch_isa == PROCESSOR_K1OM)
2953 {
2954 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2955 || default_arch[6] != '\0')
2956 as_fatal (_("Intel K1OM is 64bit ELF only"));
2957 return bfd_mach_k1om;
2958 }
2959 else if (default_arch[6] == '\0')
2960 return bfd_mach_x86_64;
2961 else
2962 return bfd_mach_x64_32;
2963 }
2964 else if (!strcmp (default_arch, "i386")
2965 || !strcmp (default_arch, "iamcu"))
2966 {
2967 if (cpu_arch_isa == PROCESSOR_IAMCU)
2968 {
2969 if (OUTPUT_FLAVOR != bfd_target_elf_flavour)
2970 as_fatal (_("Intel MCU is 32bit ELF only"));
2971 return bfd_mach_i386_iamcu;
2972 }
2973 else
2974 return bfd_mach_i386_i386;
2975 }
2976 else
2977 as_fatal (_("unknown architecture"));
2978 }
2979 \f
2980 void
2981 md_begin (void)
2982 {
2983 const char *hash_err;
2984
2985 /* Support pseudo prefixes like {disp32}. */
2986 lex_type ['{'] = LEX_BEGIN_NAME;
2987
2988 /* Initialize op_hash hash table. */
2989 op_hash = hash_new ();
2990
2991 {
2992 const insn_template *optab;
2993 templates *core_optab;
2994
2995 /* Setup for loop. */
2996 optab = i386_optab;
2997 core_optab = XNEW (templates);
2998 core_optab->start = optab;
2999
3000 while (1)
3001 {
3002 ++optab;
3003 if (optab->name == NULL
3004 || strcmp (optab->name, (optab - 1)->name) != 0)
3005 {
3006 /* different name --> ship out current template list;
3007 add to hash table; & begin anew. */
3008 core_optab->end = optab;
3009 hash_err = hash_insert (op_hash,
3010 (optab - 1)->name,
3011 (void *) core_optab);
3012 if (hash_err)
3013 {
3014 as_fatal (_("can't hash %s: %s"),
3015 (optab - 1)->name,
3016 hash_err);
3017 }
3018 if (optab->name == NULL)
3019 break;
3020 core_optab = XNEW (templates);
3021 core_optab->start = optab;
3022 }
3023 }
3024 }
3025
3026 /* Initialize reg_hash hash table. */
3027 reg_hash = hash_new ();
3028 {
3029 const reg_entry *regtab;
3030 unsigned int regtab_size = i386_regtab_size;
3031
3032 for (regtab = i386_regtab; regtab_size--; regtab++)
3033 {
3034 hash_err = hash_insert (reg_hash, regtab->reg_name, (void *) regtab);
3035 if (hash_err)
3036 as_fatal (_("can't hash %s: %s"),
3037 regtab->reg_name,
3038 hash_err);
3039 }
3040 }
3041
3042 /* Fill in lexical tables: mnemonic_chars, operand_chars. */
3043 {
3044 int c;
3045 char *p;
3046
3047 for (c = 0; c < 256; c++)
3048 {
3049 if (ISDIGIT (c))
3050 {
3051 digit_chars[c] = c;
3052 mnemonic_chars[c] = c;
3053 register_chars[c] = c;
3054 operand_chars[c] = c;
3055 }
3056 else if (ISLOWER (c))
3057 {
3058 mnemonic_chars[c] = c;
3059 register_chars[c] = c;
3060 operand_chars[c] = c;
3061 }
3062 else if (ISUPPER (c))
3063 {
3064 mnemonic_chars[c] = TOLOWER (c);
3065 register_chars[c] = mnemonic_chars[c];
3066 operand_chars[c] = c;
3067 }
3068 else if (c == '{' || c == '}')
3069 {
3070 mnemonic_chars[c] = c;
3071 operand_chars[c] = c;
3072 }
3073
3074 if (ISALPHA (c) || ISDIGIT (c))
3075 identifier_chars[c] = c;
3076 else if (c >= 128)
3077 {
3078 identifier_chars[c] = c;
3079 operand_chars[c] = c;
3080 }
3081 }
3082
3083 #ifdef LEX_AT
3084 identifier_chars['@'] = '@';
3085 #endif
3086 #ifdef LEX_QM
3087 identifier_chars['?'] = '?';
3088 operand_chars['?'] = '?';
3089 #endif
3090 digit_chars['-'] = '-';
3091 mnemonic_chars['_'] = '_';
3092 mnemonic_chars['-'] = '-';
3093 mnemonic_chars['.'] = '.';
3094 identifier_chars['_'] = '_';
3095 identifier_chars['.'] = '.';
3096
3097 for (p = operand_special_chars; *p != '\0'; p++)
3098 operand_chars[(unsigned char) *p] = *p;
3099 }
3100
3101 if (flag_code == CODE_64BIT)
3102 {
3103 #if defined (OBJ_COFF) && defined (TE_PE)
3104 x86_dwarf2_return_column = (OUTPUT_FLAVOR == bfd_target_coff_flavour
3105 ? 32 : 16);
3106 #else
3107 x86_dwarf2_return_column = 16;
3108 #endif
3109 x86_cie_data_alignment = -8;
3110 }
3111 else
3112 {
3113 x86_dwarf2_return_column = 8;
3114 x86_cie_data_alignment = -4;
3115 }
3116
3117 /* NB: FUSED_JCC_PADDING frag must have sufficient room so that it
3118 can be turned into BRANCH_PREFIX frag. */
3119 if (align_branch_prefix_size > MAX_FUSED_JCC_PADDING_SIZE)
3120 abort ();
3121 }
3122
3123 void
3124 i386_print_statistics (FILE *file)
3125 {
3126 hash_print_statistics (file, "i386 opcode", op_hash);
3127 hash_print_statistics (file, "i386 register", reg_hash);
3128 }
3129 \f
3130 #ifdef DEBUG386
3131
3132 /* Debugging routines for md_assemble. */
3133 static void pte (insn_template *);
3134 static void pt (i386_operand_type);
3135 static void pe (expressionS *);
3136 static void ps (symbolS *);
3137
3138 static void
3139 pi (const char *line, i386_insn *x)
3140 {
3141 unsigned int j;
3142
3143 fprintf (stdout, "%s: template ", line);
3144 pte (&x->tm);
3145 fprintf (stdout, " address: base %s index %s scale %x\n",
3146 x->base_reg ? x->base_reg->reg_name : "none",
3147 x->index_reg ? x->index_reg->reg_name : "none",
3148 x->log2_scale_factor);
3149 fprintf (stdout, " modrm: mode %x reg %x reg/mem %x\n",
3150 x->rm.mode, x->rm.reg, x->rm.regmem);
3151 fprintf (stdout, " sib: base %x index %x scale %x\n",
3152 x->sib.base, x->sib.index, x->sib.scale);
3153 fprintf (stdout, " rex: 64bit %x extX %x extY %x extZ %x\n",
3154 (x->rex & REX_W) != 0,
3155 (x->rex & REX_R) != 0,
3156 (x->rex & REX_X) != 0,
3157 (x->rex & REX_B) != 0);
3158 for (j = 0; j < x->operands; j++)
3159 {
3160 fprintf (stdout, " #%d: ", j + 1);
3161 pt (x->types[j]);
3162 fprintf (stdout, "\n");
3163 if (x->types[j].bitfield.class == Reg
3164 || x->types[j].bitfield.class == RegMMX
3165 || x->types[j].bitfield.class == RegSIMD
3166 || x->types[j].bitfield.class == SReg
3167 || x->types[j].bitfield.class == RegCR
3168 || x->types[j].bitfield.class == RegDR
3169 || x->types[j].bitfield.class == RegTR)
3170 fprintf (stdout, "%s\n", x->op[j].regs->reg_name);
3171 if (operand_type_check (x->types[j], imm))
3172 pe (x->op[j].imms);
3173 if (operand_type_check (x->types[j], disp))
3174 pe (x->op[j].disps);
3175 }
3176 }
3177
3178 static void
3179 pte (insn_template *t)
3180 {
3181 unsigned int j;
3182 fprintf (stdout, " %d operands ", t->operands);
3183 fprintf (stdout, "opcode %x ", t->base_opcode);
3184 if (t->extension_opcode != None)
3185 fprintf (stdout, "ext %x ", t->extension_opcode);
3186 if (t->opcode_modifier.d)
3187 fprintf (stdout, "D");
3188 if (t->opcode_modifier.w)
3189 fprintf (stdout, "W");
3190 fprintf (stdout, "\n");
3191 for (j = 0; j < t->operands; j++)
3192 {
3193 fprintf (stdout, " #%d type ", j + 1);
3194 pt (t->operand_types[j]);
3195 fprintf (stdout, "\n");
3196 }
3197 }
3198
3199 static void
3200 pe (expressionS *e)
3201 {
3202 fprintf (stdout, " operation %d\n", e->X_op);
3203 fprintf (stdout, " add_number %ld (%lx)\n",
3204 (long) e->X_add_number, (long) e->X_add_number);
3205 if (e->X_add_symbol)
3206 {
3207 fprintf (stdout, " add_symbol ");
3208 ps (e->X_add_symbol);
3209 fprintf (stdout, "\n");
3210 }
3211 if (e->X_op_symbol)
3212 {
3213 fprintf (stdout, " op_symbol ");
3214 ps (e->X_op_symbol);
3215 fprintf (stdout, "\n");
3216 }
3217 }
3218
3219 static void
3220 ps (symbolS *s)
3221 {
3222 fprintf (stdout, "%s type %s%s",
3223 S_GET_NAME (s),
3224 S_IS_EXTERNAL (s) ? "EXTERNAL " : "",
3225 segment_name (S_GET_SEGMENT (s)));
3226 }
3227
3228 static struct type_name
3229 {
3230 i386_operand_type mask;
3231 const char *name;
3232 }
3233 const type_names[] =
3234 {
3235 { OPERAND_TYPE_REG8, "r8" },
3236 { OPERAND_TYPE_REG16, "r16" },
3237 { OPERAND_TYPE_REG32, "r32" },
3238 { OPERAND_TYPE_REG64, "r64" },
3239 { OPERAND_TYPE_ACC8, "acc8" },
3240 { OPERAND_TYPE_ACC16, "acc16" },
3241 { OPERAND_TYPE_ACC32, "acc32" },
3242 { OPERAND_TYPE_ACC64, "acc64" },
3243 { OPERAND_TYPE_IMM8, "i8" },
3244 { OPERAND_TYPE_IMM8, "i8s" },
3245 { OPERAND_TYPE_IMM16, "i16" },
3246 { OPERAND_TYPE_IMM32, "i32" },
3247 { OPERAND_TYPE_IMM32S, "i32s" },
3248 { OPERAND_TYPE_IMM64, "i64" },
3249 { OPERAND_TYPE_IMM1, "i1" },
3250 { OPERAND_TYPE_BASEINDEX, "BaseIndex" },
3251 { OPERAND_TYPE_DISP8, "d8" },
3252 { OPERAND_TYPE_DISP16, "d16" },
3253 { OPERAND_TYPE_DISP32, "d32" },
3254 { OPERAND_TYPE_DISP32S, "d32s" },
3255 { OPERAND_TYPE_DISP64, "d64" },
3256 { OPERAND_TYPE_INOUTPORTREG, "InOutPortReg" },
3257 { OPERAND_TYPE_SHIFTCOUNT, "ShiftCount" },
3258 { OPERAND_TYPE_CONTROL, "control reg" },
3259 { OPERAND_TYPE_TEST, "test reg" },
3260 { OPERAND_TYPE_DEBUG, "debug reg" },
3261 { OPERAND_TYPE_FLOATREG, "FReg" },
3262 { OPERAND_TYPE_FLOATACC, "FAcc" },
3263 { OPERAND_TYPE_SREG, "SReg" },
3264 { OPERAND_TYPE_REGMMX, "rMMX" },
3265 { OPERAND_TYPE_REGXMM, "rXMM" },
3266 { OPERAND_TYPE_REGYMM, "rYMM" },
3267 { OPERAND_TYPE_REGZMM, "rZMM" },
3268 { OPERAND_TYPE_REGMASK, "Mask reg" },
3269 };
3270
3271 static void
3272 pt (i386_operand_type t)
3273 {
3274 unsigned int j;
3275 i386_operand_type a;
3276
3277 for (j = 0; j < ARRAY_SIZE (type_names); j++)
3278 {
3279 a = operand_type_and (t, type_names[j].mask);
3280 if (operand_type_equal (&a, &type_names[j].mask))
3281 fprintf (stdout, "%s, ", type_names[j].name);
3282 }
3283 fflush (stdout);
3284 }
3285
3286 #endif /* DEBUG386 */
3287 \f
3288 static bfd_reloc_code_real_type
3289 reloc (unsigned int size,
3290 int pcrel,
3291 int sign,
3292 bfd_reloc_code_real_type other)
3293 {
3294 if (other != NO_RELOC)
3295 {
3296 reloc_howto_type *rel;
3297
3298 if (size == 8)
3299 switch (other)
3300 {
3301 case BFD_RELOC_X86_64_GOT32:
3302 return BFD_RELOC_X86_64_GOT64;
3303 break;
3304 case BFD_RELOC_X86_64_GOTPLT64:
3305 return BFD_RELOC_X86_64_GOTPLT64;
3306 break;
3307 case BFD_RELOC_X86_64_PLTOFF64:
3308 return BFD_RELOC_X86_64_PLTOFF64;
3309 break;
3310 case BFD_RELOC_X86_64_GOTPC32:
3311 other = BFD_RELOC_X86_64_GOTPC64;
3312 break;
3313 case BFD_RELOC_X86_64_GOTPCREL:
3314 other = BFD_RELOC_X86_64_GOTPCREL64;
3315 break;
3316 case BFD_RELOC_X86_64_TPOFF32:
3317 other = BFD_RELOC_X86_64_TPOFF64;
3318 break;
3319 case BFD_RELOC_X86_64_DTPOFF32:
3320 other = BFD_RELOC_X86_64_DTPOFF64;
3321 break;
3322 default:
3323 break;
3324 }
3325
3326 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
3327 if (other == BFD_RELOC_SIZE32)
3328 {
3329 if (size == 8)
3330 other = BFD_RELOC_SIZE64;
3331 if (pcrel)
3332 {
3333 as_bad (_("there are no pc-relative size relocations"));
3334 return NO_RELOC;
3335 }
3336 }
3337 #endif
3338
3339 /* Sign-checking 4-byte relocations in 16-/32-bit code is pointless. */
3340 if (size == 4 && (flag_code != CODE_64BIT || disallow_64bit_reloc))
3341 sign = -1;
3342
3343 rel = bfd_reloc_type_lookup (stdoutput, other);
3344 if (!rel)
3345 as_bad (_("unknown relocation (%u)"), other);
3346 else if (size != bfd_get_reloc_size (rel))
3347 as_bad (_("%u-byte relocation cannot be applied to %u-byte field"),
3348 bfd_get_reloc_size (rel),
3349 size);
3350 else if (pcrel && !rel->pc_relative)
3351 as_bad (_("non-pc-relative relocation for pc-relative field"));
3352 else if ((rel->complain_on_overflow == complain_overflow_signed
3353 && !sign)
3354 || (rel->complain_on_overflow == complain_overflow_unsigned
3355 && sign > 0))
3356 as_bad (_("relocated field and relocation type differ in signedness"));
3357 else
3358 return other;
3359 return NO_RELOC;
3360 }
3361
3362 if (pcrel)
3363 {
3364 if (!sign)
3365 as_bad (_("there are no unsigned pc-relative relocations"));
3366 switch (size)
3367 {
3368 case 1: return BFD_RELOC_8_PCREL;
3369 case 2: return BFD_RELOC_16_PCREL;
3370 case 4: return BFD_RELOC_32_PCREL;
3371 case 8: return BFD_RELOC_64_PCREL;
3372 }
3373 as_bad (_("cannot do %u byte pc-relative relocation"), size);
3374 }
3375 else
3376 {
3377 if (sign > 0)
3378 switch (size)
3379 {
3380 case 4: return BFD_RELOC_X86_64_32S;
3381 }
3382 else
3383 switch (size)
3384 {
3385 case 1: return BFD_RELOC_8;
3386 case 2: return BFD_RELOC_16;
3387 case 4: return BFD_RELOC_32;
3388 case 8: return BFD_RELOC_64;
3389 }
3390 as_bad (_("cannot do %s %u byte relocation"),
3391 sign > 0 ? "signed" : "unsigned", size);
3392 }
3393
3394 return NO_RELOC;
3395 }
3396
3397 /* Here we decide which fixups can be adjusted to make them relative to
3398 the beginning of the section instead of the symbol. Basically we need
3399 to make sure that the dynamic relocations are done correctly, so in
3400 some cases we force the original symbol to be used. */
3401
3402 int
3403 tc_i386_fix_adjustable (fixS *fixP ATTRIBUTE_UNUSED)
3404 {
3405 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
3406 if (!IS_ELF)
3407 return 1;
3408
3409 /* Don't adjust pc-relative references to merge sections in 64-bit
3410 mode. */
3411 if (use_rela_relocations
3412 && (S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_MERGE) != 0
3413 && fixP->fx_pcrel)
3414 return 0;
3415
3416 /* The x86_64 GOTPCREL are represented as 32bit PCrel relocations
3417 and changed later by validate_fix. */
3418 if (GOT_symbol && fixP->fx_subsy == GOT_symbol
3419 && fixP->fx_r_type == BFD_RELOC_32_PCREL)
3420 return 0;
3421
3422 /* Adjust_reloc_syms doesn't know about the GOT. Need to keep symbol
3423 for size relocations. */
3424 if (fixP->fx_r_type == BFD_RELOC_SIZE32
3425 || fixP->fx_r_type == BFD_RELOC_SIZE64
3426 || fixP->fx_r_type == BFD_RELOC_386_GOTOFF
3427 || fixP->fx_r_type == BFD_RELOC_386_GOT32
3428 || fixP->fx_r_type == BFD_RELOC_386_GOT32X
3429 || fixP->fx_r_type == BFD_RELOC_386_TLS_GD
3430 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDM
3431 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDO_32
3432 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE_32
3433 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE
3434 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTIE
3435 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE_32
3436 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE
3437 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTDESC
3438 || fixP->fx_r_type == BFD_RELOC_386_TLS_DESC_CALL
3439 || fixP->fx_r_type == BFD_RELOC_X86_64_GOT32
3440 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCREL
3441 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCRELX
3442 || fixP->fx_r_type == BFD_RELOC_X86_64_REX_GOTPCRELX
3443 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSGD
3444 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSLD
3445 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF32
3446 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF64
3447 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTTPOFF
3448 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF32
3449 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF64
3450 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTOFF64
3451 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPC32_TLSDESC
3452 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSDESC_CALL
3453 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
3454 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
3455 return 0;
3456 #endif
3457 return 1;
3458 }
3459
3460 static int
3461 intel_float_operand (const char *mnemonic)
3462 {
3463 /* Note that the value returned is meaningful only for opcodes with (memory)
3464 operands, hence the code here is free to improperly handle opcodes that
3465 have no operands (for better performance and smaller code). */
3466
3467 if (mnemonic[0] != 'f')
3468 return 0; /* non-math */
3469
3470 switch (mnemonic[1])
3471 {
3472 /* fclex, fdecstp, fdisi, femms, feni, fincstp, finit, fsetpm, and
3473 the fs segment override prefix not currently handled because no
3474 call path can make opcodes without operands get here */
3475 case 'i':
3476 return 2 /* integer op */;
3477 case 'l':
3478 if (mnemonic[2] == 'd' && (mnemonic[3] == 'c' || mnemonic[3] == 'e'))
3479 return 3; /* fldcw/fldenv */
3480 break;
3481 case 'n':
3482 if (mnemonic[2] != 'o' /* fnop */)
3483 return 3; /* non-waiting control op */
3484 break;
3485 case 'r':
3486 if (mnemonic[2] == 's')
3487 return 3; /* frstor/frstpm */
3488 break;
3489 case 's':
3490 if (mnemonic[2] == 'a')
3491 return 3; /* fsave */
3492 if (mnemonic[2] == 't')
3493 {
3494 switch (mnemonic[3])
3495 {
3496 case 'c': /* fstcw */
3497 case 'd': /* fstdw */
3498 case 'e': /* fstenv */
3499 case 's': /* fsts[gw] */
3500 return 3;
3501 }
3502 }
3503 break;
3504 case 'x':
3505 if (mnemonic[2] == 'r' || mnemonic[2] == 's')
3506 return 0; /* fxsave/fxrstor are not really math ops */
3507 break;
3508 }
3509
3510 return 1;
3511 }
3512
3513 /* Build the VEX prefix. */
3514
3515 static void
3516 build_vex_prefix (const insn_template *t)
3517 {
3518 unsigned int register_specifier;
3519 unsigned int implied_prefix;
3520 unsigned int vector_length;
3521 unsigned int w;
3522
3523 /* Check register specifier. */
3524 if (i.vex.register_specifier)
3525 {
3526 register_specifier =
3527 ~register_number (i.vex.register_specifier) & 0xf;
3528 gas_assert ((i.vex.register_specifier->reg_flags & RegVRex) == 0);
3529 }
3530 else
3531 register_specifier = 0xf;
3532
3533 /* Use 2-byte VEX prefix by swapping destination and source operand
3534 if there are more than 1 register operand. */
3535 if (i.reg_operands > 1
3536 && i.vec_encoding != vex_encoding_vex3
3537 && i.dir_encoding == dir_encoding_default
3538 && i.operands == i.reg_operands
3539 && operand_type_equal (&i.types[0], &i.types[i.operands - 1])
3540 && i.tm.opcode_modifier.vexopcode == VEX0F
3541 && (i.tm.opcode_modifier.load || i.tm.opcode_modifier.d)
3542 && i.rex == REX_B)
3543 {
3544 unsigned int xchg = i.operands - 1;
3545 union i386_op temp_op;
3546 i386_operand_type temp_type;
3547
3548 temp_type = i.types[xchg];
3549 i.types[xchg] = i.types[0];
3550 i.types[0] = temp_type;
3551 temp_op = i.op[xchg];
3552 i.op[xchg] = i.op[0];
3553 i.op[0] = temp_op;
3554
3555 gas_assert (i.rm.mode == 3);
3556
3557 i.rex = REX_R;
3558 xchg = i.rm.regmem;
3559 i.rm.regmem = i.rm.reg;
3560 i.rm.reg = xchg;
3561
3562 if (i.tm.opcode_modifier.d)
3563 i.tm.base_opcode ^= (i.tm.base_opcode & 0xee) != 0x6e
3564 ? Opcode_SIMD_FloatD : Opcode_SIMD_IntD;
3565 else /* Use the next insn. */
3566 i.tm = t[1];
3567 }
3568
3569 /* Use 2-byte VEX prefix by swapping commutative source operands if there
3570 are no memory operands and at least 3 register ones. */
3571 if (i.reg_operands >= 3
3572 && i.vec_encoding != vex_encoding_vex3
3573 && i.reg_operands == i.operands - i.imm_operands
3574 && i.tm.opcode_modifier.vex
3575 && i.tm.opcode_modifier.commutative
3576 && (i.tm.opcode_modifier.sse2avx || optimize > 1)
3577 && i.rex == REX_B
3578 && i.vex.register_specifier
3579 && !(i.vex.register_specifier->reg_flags & RegRex))
3580 {
3581 unsigned int xchg = i.operands - i.reg_operands;
3582 union i386_op temp_op;
3583 i386_operand_type temp_type;
3584
3585 gas_assert (i.tm.opcode_modifier.vexopcode == VEX0F);
3586 gas_assert (!i.tm.opcode_modifier.sae);
3587 gas_assert (operand_type_equal (&i.types[i.operands - 2],
3588 &i.types[i.operands - 3]));
3589 gas_assert (i.rm.mode == 3);
3590
3591 temp_type = i.types[xchg];
3592 i.types[xchg] = i.types[xchg + 1];
3593 i.types[xchg + 1] = temp_type;
3594 temp_op = i.op[xchg];
3595 i.op[xchg] = i.op[xchg + 1];
3596 i.op[xchg + 1] = temp_op;
3597
3598 i.rex = 0;
3599 xchg = i.rm.regmem | 8;
3600 i.rm.regmem = ~register_specifier & 0xf;
3601 gas_assert (!(i.rm.regmem & 8));
3602 i.vex.register_specifier += xchg - i.rm.regmem;
3603 register_specifier = ~xchg & 0xf;
3604 }
3605
3606 if (i.tm.opcode_modifier.vex == VEXScalar)
3607 vector_length = avxscalar;
3608 else if (i.tm.opcode_modifier.vex == VEX256)
3609 vector_length = 1;
3610 else
3611 {
3612 unsigned int op;
3613
3614 /* Determine vector length from the last multi-length vector
3615 operand. */
3616 vector_length = 0;
3617 for (op = t->operands; op--;)
3618 if (t->operand_types[op].bitfield.xmmword
3619 && t->operand_types[op].bitfield.ymmword
3620 && i.types[op].bitfield.ymmword)
3621 {
3622 vector_length = 1;
3623 break;
3624 }
3625 }
3626
3627 switch ((i.tm.base_opcode >> 8) & 0xff)
3628 {
3629 case 0:
3630 implied_prefix = 0;
3631 break;
3632 case DATA_PREFIX_OPCODE:
3633 implied_prefix = 1;
3634 break;
3635 case REPE_PREFIX_OPCODE:
3636 implied_prefix = 2;
3637 break;
3638 case REPNE_PREFIX_OPCODE:
3639 implied_prefix = 3;
3640 break;
3641 default:
3642 abort ();
3643 }
3644
3645 /* Check the REX.W bit and VEXW. */
3646 if (i.tm.opcode_modifier.vexw == VEXWIG)
3647 w = (vexwig == vexw1 || (i.rex & REX_W)) ? 1 : 0;
3648 else if (i.tm.opcode_modifier.vexw)
3649 w = i.tm.opcode_modifier.vexw == VEXW1 ? 1 : 0;
3650 else
3651 w = (flag_code == CODE_64BIT ? i.rex & REX_W : vexwig == vexw1) ? 1 : 0;
3652
3653 /* Use 2-byte VEX prefix if possible. */
3654 if (w == 0
3655 && i.vec_encoding != vex_encoding_vex3
3656 && i.tm.opcode_modifier.vexopcode == VEX0F
3657 && (i.rex & (REX_W | REX_X | REX_B)) == 0)
3658 {
3659 /* 2-byte VEX prefix. */
3660 unsigned int r;
3661
3662 i.vex.length = 2;
3663 i.vex.bytes[0] = 0xc5;
3664
3665 /* Check the REX.R bit. */
3666 r = (i.rex & REX_R) ? 0 : 1;
3667 i.vex.bytes[1] = (r << 7
3668 | register_specifier << 3
3669 | vector_length << 2
3670 | implied_prefix);
3671 }
3672 else
3673 {
3674 /* 3-byte VEX prefix. */
3675 unsigned int m;
3676
3677 i.vex.length = 3;
3678
3679 switch (i.tm.opcode_modifier.vexopcode)
3680 {
3681 case VEX0F:
3682 m = 0x1;
3683 i.vex.bytes[0] = 0xc4;
3684 break;
3685 case VEX0F38:
3686 m = 0x2;
3687 i.vex.bytes[0] = 0xc4;
3688 break;
3689 case VEX0F3A:
3690 m = 0x3;
3691 i.vex.bytes[0] = 0xc4;
3692 break;
3693 case XOP08:
3694 m = 0x8;
3695 i.vex.bytes[0] = 0x8f;
3696 break;
3697 case XOP09:
3698 m = 0x9;
3699 i.vex.bytes[0] = 0x8f;
3700 break;
3701 case XOP0A:
3702 m = 0xa;
3703 i.vex.bytes[0] = 0x8f;
3704 break;
3705 default:
3706 abort ();
3707 }
3708
3709 /* The high 3 bits of the second VEX byte are 1's compliment
3710 of RXB bits from REX. */
3711 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3712
3713 i.vex.bytes[2] = (w << 7
3714 | register_specifier << 3
3715 | vector_length << 2
3716 | implied_prefix);
3717 }
3718 }
3719
3720 static INLINE bfd_boolean
3721 is_evex_encoding (const insn_template *t)
3722 {
3723 return t->opcode_modifier.evex || t->opcode_modifier.disp8memshift
3724 || t->opcode_modifier.broadcast || t->opcode_modifier.masking
3725 || t->opcode_modifier.sae;
3726 }
3727
3728 static INLINE bfd_boolean
3729 is_any_vex_encoding (const insn_template *t)
3730 {
3731 return t->opcode_modifier.vex || t->opcode_modifier.vexopcode
3732 || is_evex_encoding (t);
3733 }
3734
3735 /* Build the EVEX prefix. */
3736
3737 static void
3738 build_evex_prefix (void)
3739 {
3740 unsigned int register_specifier;
3741 unsigned int implied_prefix;
3742 unsigned int m, w;
3743 rex_byte vrex_used = 0;
3744
3745 /* Check register specifier. */
3746 if (i.vex.register_specifier)
3747 {
3748 gas_assert ((i.vrex & REX_X) == 0);
3749
3750 register_specifier = i.vex.register_specifier->reg_num;
3751 if ((i.vex.register_specifier->reg_flags & RegRex))
3752 register_specifier += 8;
3753 /* The upper 16 registers are encoded in the fourth byte of the
3754 EVEX prefix. */
3755 if (!(i.vex.register_specifier->reg_flags & RegVRex))
3756 i.vex.bytes[3] = 0x8;
3757 register_specifier = ~register_specifier & 0xf;
3758 }
3759 else
3760 {
3761 register_specifier = 0xf;
3762
3763 /* Encode upper 16 vector index register in the fourth byte of
3764 the EVEX prefix. */
3765 if (!(i.vrex & REX_X))
3766 i.vex.bytes[3] = 0x8;
3767 else
3768 vrex_used |= REX_X;
3769 }
3770
3771 switch ((i.tm.base_opcode >> 8) & 0xff)
3772 {
3773 case 0:
3774 implied_prefix = 0;
3775 break;
3776 case DATA_PREFIX_OPCODE:
3777 implied_prefix = 1;
3778 break;
3779 case REPE_PREFIX_OPCODE:
3780 implied_prefix = 2;
3781 break;
3782 case REPNE_PREFIX_OPCODE:
3783 implied_prefix = 3;
3784 break;
3785 default:
3786 abort ();
3787 }
3788
3789 /* 4 byte EVEX prefix. */
3790 i.vex.length = 4;
3791 i.vex.bytes[0] = 0x62;
3792
3793 /* mmmm bits. */
3794 switch (i.tm.opcode_modifier.vexopcode)
3795 {
3796 case VEX0F:
3797 m = 1;
3798 break;
3799 case VEX0F38:
3800 m = 2;
3801 break;
3802 case VEX0F3A:
3803 m = 3;
3804 break;
3805 default:
3806 abort ();
3807 break;
3808 }
3809
3810 /* The high 3 bits of the second EVEX byte are 1's compliment of RXB
3811 bits from REX. */
3812 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3813
3814 /* The fifth bit of the second EVEX byte is 1's compliment of the
3815 REX_R bit in VREX. */
3816 if (!(i.vrex & REX_R))
3817 i.vex.bytes[1] |= 0x10;
3818 else
3819 vrex_used |= REX_R;
3820
3821 if ((i.reg_operands + i.imm_operands) == i.operands)
3822 {
3823 /* When all operands are registers, the REX_X bit in REX is not
3824 used. We reuse it to encode the upper 16 registers, which is
3825 indicated by the REX_B bit in VREX. The REX_X bit is encoded
3826 as 1's compliment. */
3827 if ((i.vrex & REX_B))
3828 {
3829 vrex_used |= REX_B;
3830 i.vex.bytes[1] &= ~0x40;
3831 }
3832 }
3833
3834 /* EVEX instructions shouldn't need the REX prefix. */
3835 i.vrex &= ~vrex_used;
3836 gas_assert (i.vrex == 0);
3837
3838 /* Check the REX.W bit and VEXW. */
3839 if (i.tm.opcode_modifier.vexw == VEXWIG)
3840 w = (evexwig == evexw1 || (i.rex & REX_W)) ? 1 : 0;
3841 else if (i.tm.opcode_modifier.vexw)
3842 w = i.tm.opcode_modifier.vexw == VEXW1 ? 1 : 0;
3843 else
3844 w = (flag_code == CODE_64BIT ? i.rex & REX_W : evexwig == evexw1) ? 1 : 0;
3845
3846 /* Encode the U bit. */
3847 implied_prefix |= 0x4;
3848
3849 /* The third byte of the EVEX prefix. */
3850 i.vex.bytes[2] = (w << 7 | register_specifier << 3 | implied_prefix);
3851
3852 /* The fourth byte of the EVEX prefix. */
3853 /* The zeroing-masking bit. */
3854 if (i.mask && i.mask->zeroing)
3855 i.vex.bytes[3] |= 0x80;
3856
3857 /* Don't always set the broadcast bit if there is no RC. */
3858 if (!i.rounding)
3859 {
3860 /* Encode the vector length. */
3861 unsigned int vec_length;
3862
3863 if (!i.tm.opcode_modifier.evex
3864 || i.tm.opcode_modifier.evex == EVEXDYN)
3865 {
3866 unsigned int op;
3867
3868 /* Determine vector length from the last multi-length vector
3869 operand. */
3870 vec_length = 0;
3871 for (op = i.operands; op--;)
3872 if (i.tm.operand_types[op].bitfield.xmmword
3873 + i.tm.operand_types[op].bitfield.ymmword
3874 + i.tm.operand_types[op].bitfield.zmmword > 1)
3875 {
3876 if (i.types[op].bitfield.zmmword)
3877 {
3878 i.tm.opcode_modifier.evex = EVEX512;
3879 break;
3880 }
3881 else if (i.types[op].bitfield.ymmword)
3882 {
3883 i.tm.opcode_modifier.evex = EVEX256;
3884 break;
3885 }
3886 else if (i.types[op].bitfield.xmmword)
3887 {
3888 i.tm.opcode_modifier.evex = EVEX128;
3889 break;
3890 }
3891 else if (i.broadcast && (int) op == i.broadcast->operand)
3892 {
3893 switch (i.broadcast->bytes)
3894 {
3895 case 64:
3896 i.tm.opcode_modifier.evex = EVEX512;
3897 break;
3898 case 32:
3899 i.tm.opcode_modifier.evex = EVEX256;
3900 break;
3901 case 16:
3902 i.tm.opcode_modifier.evex = EVEX128;
3903 break;
3904 default:
3905 abort ();
3906 }
3907 break;
3908 }
3909 }
3910
3911 if (op >= MAX_OPERANDS)
3912 abort ();
3913 }
3914
3915 switch (i.tm.opcode_modifier.evex)
3916 {
3917 case EVEXLIG: /* LL' is ignored */
3918 vec_length = evexlig << 5;
3919 break;
3920 case EVEX128:
3921 vec_length = 0 << 5;
3922 break;
3923 case EVEX256:
3924 vec_length = 1 << 5;
3925 break;
3926 case EVEX512:
3927 vec_length = 2 << 5;
3928 break;
3929 default:
3930 abort ();
3931 break;
3932 }
3933 i.vex.bytes[3] |= vec_length;
3934 /* Encode the broadcast bit. */
3935 if (i.broadcast)
3936 i.vex.bytes[3] |= 0x10;
3937 }
3938 else
3939 {
3940 if (i.rounding->type != saeonly)
3941 i.vex.bytes[3] |= 0x10 | (i.rounding->type << 5);
3942 else
3943 i.vex.bytes[3] |= 0x10 | (evexrcig << 5);
3944 }
3945
3946 if (i.mask && i.mask->mask)
3947 i.vex.bytes[3] |= i.mask->mask->reg_num;
3948 }
3949
3950 static void
3951 process_immext (void)
3952 {
3953 expressionS *exp;
3954
3955 /* These AMD 3DNow! and SSE2 instructions have an opcode suffix
3956 which is coded in the same place as an 8-bit immediate field
3957 would be. Here we fake an 8-bit immediate operand from the
3958 opcode suffix stored in tm.extension_opcode.
3959
3960 AVX instructions also use this encoding, for some of
3961 3 argument instructions. */
3962
3963 gas_assert (i.imm_operands <= 1
3964 && (i.operands <= 2
3965 || (is_any_vex_encoding (&i.tm)
3966 && i.operands <= 4)));
3967
3968 exp = &im_expressions[i.imm_operands++];
3969 i.op[i.operands].imms = exp;
3970 i.types[i.operands] = imm8;
3971 i.operands++;
3972 exp->X_op = O_constant;
3973 exp->X_add_number = i.tm.extension_opcode;
3974 i.tm.extension_opcode = None;
3975 }
3976
3977
3978 static int
3979 check_hle (void)
3980 {
3981 switch (i.tm.opcode_modifier.hleprefixok)
3982 {
3983 default:
3984 abort ();
3985 case HLEPrefixNone:
3986 as_bad (_("invalid instruction `%s' after `%s'"),
3987 i.tm.name, i.hle_prefix);
3988 return 0;
3989 case HLEPrefixLock:
3990 if (i.prefix[LOCK_PREFIX])
3991 return 1;
3992 as_bad (_("missing `lock' with `%s'"), i.hle_prefix);
3993 return 0;
3994 case HLEPrefixAny:
3995 return 1;
3996 case HLEPrefixRelease:
3997 if (i.prefix[HLE_PREFIX] != XRELEASE_PREFIX_OPCODE)
3998 {
3999 as_bad (_("instruction `%s' after `xacquire' not allowed"),
4000 i.tm.name);
4001 return 0;
4002 }
4003 if (i.mem_operands == 0 || !(i.flags[i.operands - 1] & Operand_Mem))
4004 {
4005 as_bad (_("memory destination needed for instruction `%s'"
4006 " after `xrelease'"), i.tm.name);
4007 return 0;
4008 }
4009 return 1;
4010 }
4011 }
4012
4013 /* Try the shortest encoding by shortening operand size. */
4014
4015 static void
4016 optimize_encoding (void)
4017 {
4018 unsigned int j;
4019
4020 if (optimize_for_space
4021 && !is_any_vex_encoding (&i.tm)
4022 && i.reg_operands == 1
4023 && i.imm_operands == 1
4024 && !i.types[1].bitfield.byte
4025 && i.op[0].imms->X_op == O_constant
4026 && fits_in_imm7 (i.op[0].imms->X_add_number)
4027 && (i.tm.base_opcode == 0xa8
4028 || (i.tm.base_opcode == 0xf6
4029 && i.tm.extension_opcode == 0x0)))
4030 {
4031 /* Optimize: -Os:
4032 test $imm7, %r64/%r32/%r16 -> test $imm7, %r8
4033 */
4034 unsigned int base_regnum = i.op[1].regs->reg_num;
4035 if (flag_code == CODE_64BIT || base_regnum < 4)
4036 {
4037 i.types[1].bitfield.byte = 1;
4038 /* Ignore the suffix. */
4039 i.suffix = 0;
4040 /* Convert to byte registers. */
4041 if (i.types[1].bitfield.word)
4042 j = 16;
4043 else if (i.types[1].bitfield.dword)
4044 j = 32;
4045 else
4046 j = 48;
4047 if (!(i.op[1].regs->reg_flags & RegRex) && base_regnum < 4)
4048 j += 8;
4049 i.op[1].regs -= j;
4050 }
4051 }
4052 else if (flag_code == CODE_64BIT
4053 && !is_any_vex_encoding (&i.tm)
4054 && ((i.types[1].bitfield.qword
4055 && i.reg_operands == 1
4056 && i.imm_operands == 1
4057 && i.op[0].imms->X_op == O_constant
4058 && ((i.tm.base_opcode == 0xb8
4059 && i.tm.extension_opcode == None
4060 && fits_in_unsigned_long (i.op[0].imms->X_add_number))
4061 || (fits_in_imm31 (i.op[0].imms->X_add_number)
4062 && ((i.tm.base_opcode == 0x24
4063 || i.tm.base_opcode == 0xa8)
4064 || (i.tm.base_opcode == 0x80
4065 && i.tm.extension_opcode == 0x4)
4066 || ((i.tm.base_opcode == 0xf6
4067 || (i.tm.base_opcode | 1) == 0xc7)
4068 && i.tm.extension_opcode == 0x0)))
4069 || (fits_in_imm7 (i.op[0].imms->X_add_number)
4070 && i.tm.base_opcode == 0x83
4071 && i.tm.extension_opcode == 0x4)))
4072 || (i.types[0].bitfield.qword
4073 && ((i.reg_operands == 2
4074 && i.op[0].regs == i.op[1].regs
4075 && (i.tm.base_opcode == 0x30
4076 || i.tm.base_opcode == 0x28))
4077 || (i.reg_operands == 1
4078 && i.operands == 1
4079 && i.tm.base_opcode == 0x30)))))
4080 {
4081 /* Optimize: -O:
4082 andq $imm31, %r64 -> andl $imm31, %r32
4083 andq $imm7, %r64 -> andl $imm7, %r32
4084 testq $imm31, %r64 -> testl $imm31, %r32
4085 xorq %r64, %r64 -> xorl %r32, %r32
4086 subq %r64, %r64 -> subl %r32, %r32
4087 movq $imm31, %r64 -> movl $imm31, %r32
4088 movq $imm32, %r64 -> movl $imm32, %r32
4089 */
4090 i.tm.opcode_modifier.norex64 = 1;
4091 if (i.tm.base_opcode == 0xb8 || (i.tm.base_opcode | 1) == 0xc7)
4092 {
4093 /* Handle
4094 movq $imm31, %r64 -> movl $imm31, %r32
4095 movq $imm32, %r64 -> movl $imm32, %r32
4096 */
4097 i.tm.operand_types[0].bitfield.imm32 = 1;
4098 i.tm.operand_types[0].bitfield.imm32s = 0;
4099 i.tm.operand_types[0].bitfield.imm64 = 0;
4100 i.types[0].bitfield.imm32 = 1;
4101 i.types[0].bitfield.imm32s = 0;
4102 i.types[0].bitfield.imm64 = 0;
4103 i.types[1].bitfield.dword = 1;
4104 i.types[1].bitfield.qword = 0;
4105 if ((i.tm.base_opcode | 1) == 0xc7)
4106 {
4107 /* Handle
4108 movq $imm31, %r64 -> movl $imm31, %r32
4109 */
4110 i.tm.base_opcode = 0xb8;
4111 i.tm.extension_opcode = None;
4112 i.tm.opcode_modifier.w = 0;
4113 i.tm.opcode_modifier.modrm = 0;
4114 }
4115 }
4116 }
4117 else if (optimize > 1
4118 && !optimize_for_space
4119 && !is_any_vex_encoding (&i.tm)
4120 && i.reg_operands == 2
4121 && i.op[0].regs == i.op[1].regs
4122 && ((i.tm.base_opcode & ~(Opcode_D | 1)) == 0x8
4123 || (i.tm.base_opcode & ~(Opcode_D | 1)) == 0x20)
4124 && (flag_code != CODE_64BIT || !i.types[0].bitfield.dword))
4125 {
4126 /* Optimize: -O2:
4127 andb %rN, %rN -> testb %rN, %rN
4128 andw %rN, %rN -> testw %rN, %rN
4129 andq %rN, %rN -> testq %rN, %rN
4130 orb %rN, %rN -> testb %rN, %rN
4131 orw %rN, %rN -> testw %rN, %rN
4132 orq %rN, %rN -> testq %rN, %rN
4133
4134 and outside of 64-bit mode
4135
4136 andl %rN, %rN -> testl %rN, %rN
4137 orl %rN, %rN -> testl %rN, %rN
4138 */
4139 i.tm.base_opcode = 0x84 | (i.tm.base_opcode & 1);
4140 }
4141 else if (i.reg_operands == 3
4142 && i.op[0].regs == i.op[1].regs
4143 && !i.types[2].bitfield.xmmword
4144 && (i.tm.opcode_modifier.vex
4145 || ((!i.mask || i.mask->zeroing)
4146 && !i.rounding
4147 && is_evex_encoding (&i.tm)
4148 && (i.vec_encoding != vex_encoding_evex
4149 || cpu_arch_isa_flags.bitfield.cpuavx512vl
4150 || i.tm.cpu_flags.bitfield.cpuavx512vl
4151 || (i.tm.operand_types[2].bitfield.zmmword
4152 && i.types[2].bitfield.ymmword))))
4153 && ((i.tm.base_opcode == 0x55
4154 || i.tm.base_opcode == 0x6655
4155 || i.tm.base_opcode == 0x66df
4156 || i.tm.base_opcode == 0x57
4157 || i.tm.base_opcode == 0x6657
4158 || i.tm.base_opcode == 0x66ef
4159 || i.tm.base_opcode == 0x66f8
4160 || i.tm.base_opcode == 0x66f9
4161 || i.tm.base_opcode == 0x66fa
4162 || i.tm.base_opcode == 0x66fb
4163 || i.tm.base_opcode == 0x42
4164 || i.tm.base_opcode == 0x6642
4165 || i.tm.base_opcode == 0x47
4166 || i.tm.base_opcode == 0x6647)
4167 && i.tm.extension_opcode == None))
4168 {
4169 /* Optimize: -O1:
4170 VOP, one of vandnps, vandnpd, vxorps, vxorpd, vpsubb, vpsubd,
4171 vpsubq and vpsubw:
4172 EVEX VOP %zmmM, %zmmM, %zmmN
4173 -> VEX VOP %xmmM, %xmmM, %xmmN (M and N < 16)
4174 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
4175 EVEX VOP %ymmM, %ymmM, %ymmN
4176 -> VEX VOP %xmmM, %xmmM, %xmmN (M and N < 16)
4177 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
4178 VEX VOP %ymmM, %ymmM, %ymmN
4179 -> VEX VOP %xmmM, %xmmM, %xmmN
4180 VOP, one of vpandn and vpxor:
4181 VEX VOP %ymmM, %ymmM, %ymmN
4182 -> VEX VOP %xmmM, %xmmM, %xmmN
4183 VOP, one of vpandnd and vpandnq:
4184 EVEX VOP %zmmM, %zmmM, %zmmN
4185 -> VEX vpandn %xmmM, %xmmM, %xmmN (M and N < 16)
4186 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
4187 EVEX VOP %ymmM, %ymmM, %ymmN
4188 -> VEX vpandn %xmmM, %xmmM, %xmmN (M and N < 16)
4189 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
4190 VOP, one of vpxord and vpxorq:
4191 EVEX VOP %zmmM, %zmmM, %zmmN
4192 -> VEX vpxor %xmmM, %xmmM, %xmmN (M and N < 16)
4193 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
4194 EVEX VOP %ymmM, %ymmM, %ymmN
4195 -> VEX vpxor %xmmM, %xmmM, %xmmN (M and N < 16)
4196 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
4197 VOP, one of kxord and kxorq:
4198 VEX VOP %kM, %kM, %kN
4199 -> VEX kxorw %kM, %kM, %kN
4200 VOP, one of kandnd and kandnq:
4201 VEX VOP %kM, %kM, %kN
4202 -> VEX kandnw %kM, %kM, %kN
4203 */
4204 if (is_evex_encoding (&i.tm))
4205 {
4206 if (i.vec_encoding != vex_encoding_evex)
4207 {
4208 i.tm.opcode_modifier.vex = VEX128;
4209 i.tm.opcode_modifier.vexw = VEXW0;
4210 i.tm.opcode_modifier.evex = 0;
4211 }
4212 else if (optimize > 1)
4213 i.tm.opcode_modifier.evex = EVEX128;
4214 else
4215 return;
4216 }
4217 else if (i.tm.operand_types[0].bitfield.class == RegMask)
4218 {
4219 i.tm.base_opcode &= 0xff;
4220 i.tm.opcode_modifier.vexw = VEXW0;
4221 }
4222 else
4223 i.tm.opcode_modifier.vex = VEX128;
4224
4225 if (i.tm.opcode_modifier.vex)
4226 for (j = 0; j < 3; j++)
4227 {
4228 i.types[j].bitfield.xmmword = 1;
4229 i.types[j].bitfield.ymmword = 0;
4230 }
4231 }
4232 else if (i.vec_encoding != vex_encoding_evex
4233 && !i.types[0].bitfield.zmmword
4234 && !i.types[1].bitfield.zmmword
4235 && !i.mask
4236 && !i.broadcast
4237 && is_evex_encoding (&i.tm)
4238 && ((i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0x666f
4239 || (i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0xf36f
4240 || (i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0xf26f
4241 || (i.tm.base_opcode & ~4) == 0x66db
4242 || (i.tm.base_opcode & ~4) == 0x66eb)
4243 && i.tm.extension_opcode == None)
4244 {
4245 /* Optimize: -O1:
4246 VOP, one of vmovdqa32, vmovdqa64, vmovdqu8, vmovdqu16,
4247 vmovdqu32 and vmovdqu64:
4248 EVEX VOP %xmmM, %xmmN
4249 -> VEX vmovdqa|vmovdqu %xmmM, %xmmN (M and N < 16)
4250 EVEX VOP %ymmM, %ymmN
4251 -> VEX vmovdqa|vmovdqu %ymmM, %ymmN (M and N < 16)
4252 EVEX VOP %xmmM, mem
4253 -> VEX vmovdqa|vmovdqu %xmmM, mem (M < 16)
4254 EVEX VOP %ymmM, mem
4255 -> VEX vmovdqa|vmovdqu %ymmM, mem (M < 16)
4256 EVEX VOP mem, %xmmN
4257 -> VEX mvmovdqa|vmovdquem, %xmmN (N < 16)
4258 EVEX VOP mem, %ymmN
4259 -> VEX vmovdqa|vmovdqu mem, %ymmN (N < 16)
4260 VOP, one of vpand, vpandn, vpor, vpxor:
4261 EVEX VOP{d,q} %xmmL, %xmmM, %xmmN
4262 -> VEX VOP %xmmL, %xmmM, %xmmN (L, M, and N < 16)
4263 EVEX VOP{d,q} %ymmL, %ymmM, %ymmN
4264 -> VEX VOP %ymmL, %ymmM, %ymmN (L, M, and N < 16)
4265 EVEX VOP{d,q} mem, %xmmM, %xmmN
4266 -> VEX VOP mem, %xmmM, %xmmN (M and N < 16)
4267 EVEX VOP{d,q} mem, %ymmM, %ymmN
4268 -> VEX VOP mem, %ymmM, %ymmN (M and N < 16)
4269 */
4270 for (j = 0; j < i.operands; j++)
4271 if (operand_type_check (i.types[j], disp)
4272 && i.op[j].disps->X_op == O_constant)
4273 {
4274 /* Since the VEX prefix has 2 or 3 bytes, the EVEX prefix
4275 has 4 bytes, EVEX Disp8 has 1 byte and VEX Disp32 has 4
4276 bytes, we choose EVEX Disp8 over VEX Disp32. */
4277 int evex_disp8, vex_disp8;
4278 unsigned int memshift = i.memshift;
4279 offsetT n = i.op[j].disps->X_add_number;
4280
4281 evex_disp8 = fits_in_disp8 (n);
4282 i.memshift = 0;
4283 vex_disp8 = fits_in_disp8 (n);
4284 if (evex_disp8 != vex_disp8)
4285 {
4286 i.memshift = memshift;
4287 return;
4288 }
4289
4290 i.types[j].bitfield.disp8 = vex_disp8;
4291 break;
4292 }
4293 if ((i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0xf26f)
4294 i.tm.base_opcode ^= 0xf36f ^ 0xf26f;
4295 i.tm.opcode_modifier.vex
4296 = i.types[0].bitfield.ymmword ? VEX256 : VEX128;
4297 i.tm.opcode_modifier.vexw = VEXW0;
4298 /* VPAND, VPOR, and VPXOR are commutative. */
4299 if (i.reg_operands == 3 && i.tm.base_opcode != 0x66df)
4300 i.tm.opcode_modifier.commutative = 1;
4301 i.tm.opcode_modifier.evex = 0;
4302 i.tm.opcode_modifier.masking = 0;
4303 i.tm.opcode_modifier.broadcast = 0;
4304 i.tm.opcode_modifier.disp8memshift = 0;
4305 i.memshift = 0;
4306 if (j < i.operands)
4307 i.types[j].bitfield.disp8
4308 = fits_in_disp8 (i.op[j].disps->X_add_number);
4309 }
4310 }
4311
4312 /* This is the guts of the machine-dependent assembler. LINE points to a
4313 machine dependent instruction. This function is supposed to emit
4314 the frags/bytes it assembles to. */
4315
4316 void
4317 md_assemble (char *line)
4318 {
4319 unsigned int j;
4320 char mnemonic[MAX_MNEM_SIZE], mnem_suffix;
4321 const insn_template *t;
4322
4323 /* Initialize globals. */
4324 memset (&i, '\0', sizeof (i));
4325 for (j = 0; j < MAX_OPERANDS; j++)
4326 i.reloc[j] = NO_RELOC;
4327 memset (disp_expressions, '\0', sizeof (disp_expressions));
4328 memset (im_expressions, '\0', sizeof (im_expressions));
4329 save_stack_p = save_stack;
4330
4331 /* First parse an instruction mnemonic & call i386_operand for the operands.
4332 We assume that the scrubber has arranged it so that line[0] is the valid
4333 start of a (possibly prefixed) mnemonic. */
4334
4335 line = parse_insn (line, mnemonic);
4336 if (line == NULL)
4337 return;
4338 mnem_suffix = i.suffix;
4339
4340 line = parse_operands (line, mnemonic);
4341 this_operand = -1;
4342 xfree (i.memop1_string);
4343 i.memop1_string = NULL;
4344 if (line == NULL)
4345 return;
4346
4347 /* Now we've parsed the mnemonic into a set of templates, and have the
4348 operands at hand. */
4349
4350 /* All Intel opcodes have reversed operands except for "bound", "enter"
4351 "monitor*", and "mwait*". We also don't reverse intersegment "jmp"
4352 and "call" instructions with 2 immediate operands so that the immediate
4353 segment precedes the offset, as it does when in AT&T mode. */
4354 if (intel_syntax
4355 && i.operands > 1
4356 && (strcmp (mnemonic, "bound") != 0)
4357 && (strcmp (mnemonic, "invlpga") != 0)
4358 && (strncmp (mnemonic, "monitor", 7) != 0)
4359 && (strncmp (mnemonic, "mwait", 5) != 0)
4360 && !(operand_type_check (i.types[0], imm)
4361 && operand_type_check (i.types[1], imm)))
4362 swap_operands ();
4363
4364 /* The order of the immediates should be reversed
4365 for 2 immediates extrq and insertq instructions */
4366 if (i.imm_operands == 2
4367 && (strcmp (mnemonic, "extrq") == 0
4368 || strcmp (mnemonic, "insertq") == 0))
4369 swap_2_operands (0, 1);
4370
4371 if (i.imm_operands)
4372 optimize_imm ();
4373
4374 /* Don't optimize displacement for movabs since it only takes 64bit
4375 displacement. */
4376 if (i.disp_operands
4377 && i.disp_encoding != disp_encoding_32bit
4378 && (flag_code != CODE_64BIT
4379 || strcmp (mnemonic, "movabs") != 0))
4380 optimize_disp ();
4381
4382 /* Next, we find a template that matches the given insn,
4383 making sure the overlap of the given operands types is consistent
4384 with the template operand types. */
4385
4386 if (!(t = match_template (mnem_suffix)))
4387 return;
4388
4389 if (sse_check != check_none
4390 && !i.tm.opcode_modifier.noavx
4391 && !i.tm.cpu_flags.bitfield.cpuavx
4392 && !i.tm.cpu_flags.bitfield.cpuavx512f
4393 && (i.tm.cpu_flags.bitfield.cpusse
4394 || i.tm.cpu_flags.bitfield.cpusse2
4395 || i.tm.cpu_flags.bitfield.cpusse3
4396 || i.tm.cpu_flags.bitfield.cpussse3
4397 || i.tm.cpu_flags.bitfield.cpusse4_1
4398 || i.tm.cpu_flags.bitfield.cpusse4_2
4399 || i.tm.cpu_flags.bitfield.cpusse4a
4400 || i.tm.cpu_flags.bitfield.cpupclmul
4401 || i.tm.cpu_flags.bitfield.cpuaes
4402 || i.tm.cpu_flags.bitfield.cpusha
4403 || i.tm.cpu_flags.bitfield.cpugfni))
4404 {
4405 (sse_check == check_warning
4406 ? as_warn
4407 : as_bad) (_("SSE instruction `%s' is used"), i.tm.name);
4408 }
4409
4410 if (i.tm.opcode_modifier.fwait)
4411 if (!add_prefix (FWAIT_OPCODE))
4412 return;
4413
4414 /* Check if REP prefix is OK. */
4415 if (i.rep_prefix && !i.tm.opcode_modifier.repprefixok)
4416 {
4417 as_bad (_("invalid instruction `%s' after `%s'"),
4418 i.tm.name, i.rep_prefix);
4419 return;
4420 }
4421
4422 /* Check for lock without a lockable instruction. Destination operand
4423 must be memory unless it is xchg (0x86). */
4424 if (i.prefix[LOCK_PREFIX]
4425 && (!i.tm.opcode_modifier.islockable
4426 || i.mem_operands == 0
4427 || (i.tm.base_opcode != 0x86
4428 && !(i.flags[i.operands - 1] & Operand_Mem))))
4429 {
4430 as_bad (_("expecting lockable instruction after `lock'"));
4431 return;
4432 }
4433
4434 /* Check for data size prefix on VEX/XOP/EVEX encoded insns. */
4435 if (i.prefix[DATA_PREFIX] && is_any_vex_encoding (&i.tm))
4436 {
4437 as_bad (_("data size prefix invalid with `%s'"), i.tm.name);
4438 return;
4439 }
4440
4441 /* Check if HLE prefix is OK. */
4442 if (i.hle_prefix && !check_hle ())
4443 return;
4444
4445 /* Check BND prefix. */
4446 if (i.bnd_prefix && !i.tm.opcode_modifier.bndprefixok)
4447 as_bad (_("expecting valid branch instruction after `bnd'"));
4448
4449 /* Check NOTRACK prefix. */
4450 if (i.notrack_prefix && !i.tm.opcode_modifier.notrackprefixok)
4451 as_bad (_("expecting indirect branch instruction after `notrack'"));
4452
4453 if (i.tm.cpu_flags.bitfield.cpumpx)
4454 {
4455 if (flag_code == CODE_64BIT && i.prefix[ADDR_PREFIX])
4456 as_bad (_("32-bit address isn't allowed in 64-bit MPX instructions."));
4457 else if (flag_code != CODE_16BIT
4458 ? i.prefix[ADDR_PREFIX]
4459 : i.mem_operands && !i.prefix[ADDR_PREFIX])
4460 as_bad (_("16-bit address isn't allowed in MPX instructions"));
4461 }
4462
4463 /* Insert BND prefix. */
4464 if (add_bnd_prefix && i.tm.opcode_modifier.bndprefixok)
4465 {
4466 if (!i.prefix[BND_PREFIX])
4467 add_prefix (BND_PREFIX_OPCODE);
4468 else if (i.prefix[BND_PREFIX] != BND_PREFIX_OPCODE)
4469 {
4470 as_warn (_("replacing `rep'/`repe' prefix by `bnd'"));
4471 i.prefix[BND_PREFIX] = BND_PREFIX_OPCODE;
4472 }
4473 }
4474
4475 /* Check string instruction segment overrides. */
4476 if (i.tm.opcode_modifier.isstring >= IS_STRING_ES_OP0)
4477 {
4478 gas_assert (i.mem_operands);
4479 if (!check_string ())
4480 return;
4481 i.disp_operands = 0;
4482 }
4483
4484 if (optimize && !i.no_optimize && i.tm.opcode_modifier.optimize)
4485 optimize_encoding ();
4486
4487 if (!process_suffix ())
4488 return;
4489
4490 /* Update operand types. */
4491 for (j = 0; j < i.operands; j++)
4492 i.types[j] = operand_type_and (i.types[j], i.tm.operand_types[j]);
4493
4494 /* Make still unresolved immediate matches conform to size of immediate
4495 given in i.suffix. */
4496 if (!finalize_imm ())
4497 return;
4498
4499 if (i.types[0].bitfield.imm1)
4500 i.imm_operands = 0; /* kludge for shift insns. */
4501
4502 /* We only need to check those implicit registers for instructions
4503 with 3 operands or less. */
4504 if (i.operands <= 3)
4505 for (j = 0; j < i.operands; j++)
4506 if (i.types[j].bitfield.instance != InstanceNone
4507 && !i.types[j].bitfield.xmmword)
4508 i.reg_operands--;
4509
4510 /* ImmExt should be processed after SSE2AVX. */
4511 if (!i.tm.opcode_modifier.sse2avx
4512 && i.tm.opcode_modifier.immext)
4513 process_immext ();
4514
4515 /* For insns with operands there are more diddles to do to the opcode. */
4516 if (i.operands)
4517 {
4518 if (!process_operands ())
4519 return;
4520 }
4521 else if (!quiet_warnings && i.tm.opcode_modifier.ugh)
4522 {
4523 /* UnixWare fsub no args is alias for fsubp, fadd -> faddp, etc. */
4524 as_warn (_("translating to `%sp'"), i.tm.name);
4525 }
4526
4527 if (is_any_vex_encoding (&i.tm))
4528 {
4529 if (!cpu_arch_flags.bitfield.cpui286)
4530 {
4531 as_bad (_("instruction `%s' isn't supported outside of protected mode."),
4532 i.tm.name);
4533 return;
4534 }
4535
4536 if (i.tm.opcode_modifier.vex)
4537 build_vex_prefix (t);
4538 else
4539 build_evex_prefix ();
4540 }
4541
4542 /* Handle conversion of 'int $3' --> special int3 insn. XOP or FMA4
4543 instructions may define INT_OPCODE as well, so avoid this corner
4544 case for those instructions that use MODRM. */
4545 if (i.tm.base_opcode == INT_OPCODE
4546 && !i.tm.opcode_modifier.modrm
4547 && i.op[0].imms->X_add_number == 3)
4548 {
4549 i.tm.base_opcode = INT3_OPCODE;
4550 i.imm_operands = 0;
4551 }
4552
4553 if ((i.tm.opcode_modifier.jump == JUMP
4554 || i.tm.opcode_modifier.jump == JUMP_BYTE
4555 || i.tm.opcode_modifier.jump == JUMP_DWORD)
4556 && i.op[0].disps->X_op == O_constant)
4557 {
4558 /* Convert "jmp constant" (and "call constant") to a jump (call) to
4559 the absolute address given by the constant. Since ix86 jumps and
4560 calls are pc relative, we need to generate a reloc. */
4561 i.op[0].disps->X_add_symbol = &abs_symbol;
4562 i.op[0].disps->X_op = O_symbol;
4563 }
4564
4565 if (i.tm.opcode_modifier.rex64)
4566 i.rex |= REX_W;
4567
4568 /* For 8 bit registers we need an empty rex prefix. Also if the
4569 instruction already has a prefix, we need to convert old
4570 registers to new ones. */
4571
4572 if ((i.types[0].bitfield.class == Reg && i.types[0].bitfield.byte
4573 && (i.op[0].regs->reg_flags & RegRex64) != 0)
4574 || (i.types[1].bitfield.class == Reg && i.types[1].bitfield.byte
4575 && (i.op[1].regs->reg_flags & RegRex64) != 0)
4576 || (((i.types[0].bitfield.class == Reg && i.types[0].bitfield.byte)
4577 || (i.types[1].bitfield.class == Reg && i.types[1].bitfield.byte))
4578 && i.rex != 0))
4579 {
4580 int x;
4581
4582 i.rex |= REX_OPCODE;
4583 for (x = 0; x < 2; x++)
4584 {
4585 /* Look for 8 bit operand that uses old registers. */
4586 if (i.types[x].bitfield.class == Reg && i.types[x].bitfield.byte
4587 && (i.op[x].regs->reg_flags & RegRex64) == 0)
4588 {
4589 gas_assert (!(i.op[x].regs->reg_flags & RegRex));
4590 /* In case it is "hi" register, give up. */
4591 if (i.op[x].regs->reg_num > 3)
4592 as_bad (_("can't encode register '%s%s' in an "
4593 "instruction requiring REX prefix."),
4594 register_prefix, i.op[x].regs->reg_name);
4595
4596 /* Otherwise it is equivalent to the extended register.
4597 Since the encoding doesn't change this is merely
4598 cosmetic cleanup for debug output. */
4599
4600 i.op[x].regs = i.op[x].regs + 8;
4601 }
4602 }
4603 }
4604
4605 if (i.rex == 0 && i.rex_encoding)
4606 {
4607 /* Check if we can add a REX_OPCODE byte. Look for 8 bit operand
4608 that uses legacy register. If it is "hi" register, don't add
4609 the REX_OPCODE byte. */
4610 int x;
4611 for (x = 0; x < 2; x++)
4612 if (i.types[x].bitfield.class == Reg
4613 && i.types[x].bitfield.byte
4614 && (i.op[x].regs->reg_flags & RegRex64) == 0
4615 && i.op[x].regs->reg_num > 3)
4616 {
4617 gas_assert (!(i.op[x].regs->reg_flags & RegRex));
4618 i.rex_encoding = FALSE;
4619 break;
4620 }
4621
4622 if (i.rex_encoding)
4623 i.rex = REX_OPCODE;
4624 }
4625
4626 if (i.rex != 0)
4627 add_prefix (REX_OPCODE | i.rex);
4628
4629 /* We are ready to output the insn. */
4630 output_insn ();
4631
4632 last_insn.seg = now_seg;
4633
4634 if (i.tm.opcode_modifier.isprefix)
4635 {
4636 last_insn.kind = last_insn_prefix;
4637 last_insn.name = i.tm.name;
4638 last_insn.file = as_where (&last_insn.line);
4639 }
4640 else
4641 last_insn.kind = last_insn_other;
4642 }
4643
4644 static char *
4645 parse_insn (char *line, char *mnemonic)
4646 {
4647 char *l = line;
4648 char *token_start = l;
4649 char *mnem_p;
4650 int supported;
4651 const insn_template *t;
4652 char *dot_p = NULL;
4653
4654 while (1)
4655 {
4656 mnem_p = mnemonic;
4657 while ((*mnem_p = mnemonic_chars[(unsigned char) *l]) != 0)
4658 {
4659 if (*mnem_p == '.')
4660 dot_p = mnem_p;
4661 mnem_p++;
4662 if (mnem_p >= mnemonic + MAX_MNEM_SIZE)
4663 {
4664 as_bad (_("no such instruction: `%s'"), token_start);
4665 return NULL;
4666 }
4667 l++;
4668 }
4669 if (!is_space_char (*l)
4670 && *l != END_OF_INSN
4671 && (intel_syntax
4672 || (*l != PREFIX_SEPARATOR
4673 && *l != ',')))
4674 {
4675 as_bad (_("invalid character %s in mnemonic"),
4676 output_invalid (*l));
4677 return NULL;
4678 }
4679 if (token_start == l)
4680 {
4681 if (!intel_syntax && *l == PREFIX_SEPARATOR)
4682 as_bad (_("expecting prefix; got nothing"));
4683 else
4684 as_bad (_("expecting mnemonic; got nothing"));
4685 return NULL;
4686 }
4687
4688 /* Look up instruction (or prefix) via hash table. */
4689 current_templates = (const templates *) hash_find (op_hash, mnemonic);
4690
4691 if (*l != END_OF_INSN
4692 && (!is_space_char (*l) || l[1] != END_OF_INSN)
4693 && current_templates
4694 && current_templates->start->opcode_modifier.isprefix)
4695 {
4696 if (!cpu_flags_check_cpu64 (current_templates->start->cpu_flags))
4697 {
4698 as_bad ((flag_code != CODE_64BIT
4699 ? _("`%s' is only supported in 64-bit mode")
4700 : _("`%s' is not supported in 64-bit mode")),
4701 current_templates->start->name);
4702 return NULL;
4703 }
4704 /* If we are in 16-bit mode, do not allow addr16 or data16.
4705 Similarly, in 32-bit mode, do not allow addr32 or data32. */
4706 if ((current_templates->start->opcode_modifier.size == SIZE16
4707 || current_templates->start->opcode_modifier.size == SIZE32)
4708 && flag_code != CODE_64BIT
4709 && ((current_templates->start->opcode_modifier.size == SIZE32)
4710 ^ (flag_code == CODE_16BIT)))
4711 {
4712 as_bad (_("redundant %s prefix"),
4713 current_templates->start->name);
4714 return NULL;
4715 }
4716 if (current_templates->start->opcode_length == 0)
4717 {
4718 /* Handle pseudo prefixes. */
4719 switch (current_templates->start->base_opcode)
4720 {
4721 case 0x0:
4722 /* {disp8} */
4723 i.disp_encoding = disp_encoding_8bit;
4724 break;
4725 case 0x1:
4726 /* {disp32} */
4727 i.disp_encoding = disp_encoding_32bit;
4728 break;
4729 case 0x2:
4730 /* {load} */
4731 i.dir_encoding = dir_encoding_load;
4732 break;
4733 case 0x3:
4734 /* {store} */
4735 i.dir_encoding = dir_encoding_store;
4736 break;
4737 case 0x4:
4738 /* {vex} */
4739 i.vec_encoding = vex_encoding_vex;
4740 break;
4741 case 0x5:
4742 /* {vex3} */
4743 i.vec_encoding = vex_encoding_vex3;
4744 break;
4745 case 0x6:
4746 /* {evex} */
4747 i.vec_encoding = vex_encoding_evex;
4748 break;
4749 case 0x7:
4750 /* {rex} */
4751 i.rex_encoding = TRUE;
4752 break;
4753 case 0x8:
4754 /* {nooptimize} */
4755 i.no_optimize = TRUE;
4756 break;
4757 default:
4758 abort ();
4759 }
4760 }
4761 else
4762 {
4763 /* Add prefix, checking for repeated prefixes. */
4764 switch (add_prefix (current_templates->start->base_opcode))
4765 {
4766 case PREFIX_EXIST:
4767 return NULL;
4768 case PREFIX_DS:
4769 if (current_templates->start->cpu_flags.bitfield.cpuibt)
4770 i.notrack_prefix = current_templates->start->name;
4771 break;
4772 case PREFIX_REP:
4773 if (current_templates->start->cpu_flags.bitfield.cpuhle)
4774 i.hle_prefix = current_templates->start->name;
4775 else if (current_templates->start->cpu_flags.bitfield.cpumpx)
4776 i.bnd_prefix = current_templates->start->name;
4777 else
4778 i.rep_prefix = current_templates->start->name;
4779 break;
4780 default:
4781 break;
4782 }
4783 }
4784 /* Skip past PREFIX_SEPARATOR and reset token_start. */
4785 token_start = ++l;
4786 }
4787 else
4788 break;
4789 }
4790
4791 if (!current_templates)
4792 {
4793 /* Deprecated functionality (new code should use pseudo-prefixes instead):
4794 Check if we should swap operand or force 32bit displacement in
4795 encoding. */
4796 if (mnem_p - 2 == dot_p && dot_p[1] == 's')
4797 i.dir_encoding = dir_encoding_swap;
4798 else if (mnem_p - 3 == dot_p
4799 && dot_p[1] == 'd'
4800 && dot_p[2] == '8')
4801 i.disp_encoding = disp_encoding_8bit;
4802 else if (mnem_p - 4 == dot_p
4803 && dot_p[1] == 'd'
4804 && dot_p[2] == '3'
4805 && dot_p[3] == '2')
4806 i.disp_encoding = disp_encoding_32bit;
4807 else
4808 goto check_suffix;
4809 mnem_p = dot_p;
4810 *dot_p = '\0';
4811 current_templates = (const templates *) hash_find (op_hash, mnemonic);
4812 }
4813
4814 if (!current_templates)
4815 {
4816 check_suffix:
4817 if (mnem_p > mnemonic)
4818 {
4819 /* See if we can get a match by trimming off a suffix. */
4820 switch (mnem_p[-1])
4821 {
4822 case WORD_MNEM_SUFFIX:
4823 if (intel_syntax && (intel_float_operand (mnemonic) & 2))
4824 i.suffix = SHORT_MNEM_SUFFIX;
4825 else
4826 /* Fall through. */
4827 case BYTE_MNEM_SUFFIX:
4828 case QWORD_MNEM_SUFFIX:
4829 i.suffix = mnem_p[-1];
4830 mnem_p[-1] = '\0';
4831 current_templates = (const templates *) hash_find (op_hash,
4832 mnemonic);
4833 break;
4834 case SHORT_MNEM_SUFFIX:
4835 case LONG_MNEM_SUFFIX:
4836 if (!intel_syntax)
4837 {
4838 i.suffix = mnem_p[-1];
4839 mnem_p[-1] = '\0';
4840 current_templates = (const templates *) hash_find (op_hash,
4841 mnemonic);
4842 }
4843 break;
4844
4845 /* Intel Syntax. */
4846 case 'd':
4847 if (intel_syntax)
4848 {
4849 if (intel_float_operand (mnemonic) == 1)
4850 i.suffix = SHORT_MNEM_SUFFIX;
4851 else
4852 i.suffix = LONG_MNEM_SUFFIX;
4853 mnem_p[-1] = '\0';
4854 current_templates = (const templates *) hash_find (op_hash,
4855 mnemonic);
4856 }
4857 break;
4858 }
4859 }
4860
4861 if (!current_templates)
4862 {
4863 as_bad (_("no such instruction: `%s'"), token_start);
4864 return NULL;
4865 }
4866 }
4867
4868 if (current_templates->start->opcode_modifier.jump == JUMP
4869 || current_templates->start->opcode_modifier.jump == JUMP_BYTE)
4870 {
4871 /* Check for a branch hint. We allow ",pt" and ",pn" for
4872 predict taken and predict not taken respectively.
4873 I'm not sure that branch hints actually do anything on loop
4874 and jcxz insns (JumpByte) for current Pentium4 chips. They
4875 may work in the future and it doesn't hurt to accept them
4876 now. */
4877 if (l[0] == ',' && l[1] == 'p')
4878 {
4879 if (l[2] == 't')
4880 {
4881 if (!add_prefix (DS_PREFIX_OPCODE))
4882 return NULL;
4883 l += 3;
4884 }
4885 else if (l[2] == 'n')
4886 {
4887 if (!add_prefix (CS_PREFIX_OPCODE))
4888 return NULL;
4889 l += 3;
4890 }
4891 }
4892 }
4893 /* Any other comma loses. */
4894 if (*l == ',')
4895 {
4896 as_bad (_("invalid character %s in mnemonic"),
4897 output_invalid (*l));
4898 return NULL;
4899 }
4900
4901 /* Check if instruction is supported on specified architecture. */
4902 supported = 0;
4903 for (t = current_templates->start; t < current_templates->end; ++t)
4904 {
4905 supported |= cpu_flags_match (t);
4906 if (supported == CPU_FLAGS_PERFECT_MATCH)
4907 {
4908 if (!cpu_arch_flags.bitfield.cpui386 && (flag_code != CODE_16BIT))
4909 as_warn (_("use .code16 to ensure correct addressing mode"));
4910
4911 return l;
4912 }
4913 }
4914
4915 if (!(supported & CPU_FLAGS_64BIT_MATCH))
4916 as_bad (flag_code == CODE_64BIT
4917 ? _("`%s' is not supported in 64-bit mode")
4918 : _("`%s' is only supported in 64-bit mode"),
4919 current_templates->start->name);
4920 else
4921 as_bad (_("`%s' is not supported on `%s%s'"),
4922 current_templates->start->name,
4923 cpu_arch_name ? cpu_arch_name : default_arch,
4924 cpu_sub_arch_name ? cpu_sub_arch_name : "");
4925
4926 return NULL;
4927 }
4928
4929 static char *
4930 parse_operands (char *l, const char *mnemonic)
4931 {
4932 char *token_start;
4933
4934 /* 1 if operand is pending after ','. */
4935 unsigned int expecting_operand = 0;
4936
4937 /* Non-zero if operand parens not balanced. */
4938 unsigned int paren_not_balanced;
4939
4940 while (*l != END_OF_INSN)
4941 {
4942 /* Skip optional white space before operand. */
4943 if (is_space_char (*l))
4944 ++l;
4945 if (!is_operand_char (*l) && *l != END_OF_INSN && *l != '"')
4946 {
4947 as_bad (_("invalid character %s before operand %d"),
4948 output_invalid (*l),
4949 i.operands + 1);
4950 return NULL;
4951 }
4952 token_start = l; /* After white space. */
4953 paren_not_balanced = 0;
4954 while (paren_not_balanced || *l != ',')
4955 {
4956 if (*l == END_OF_INSN)
4957 {
4958 if (paren_not_balanced)
4959 {
4960 if (!intel_syntax)
4961 as_bad (_("unbalanced parenthesis in operand %d."),
4962 i.operands + 1);
4963 else
4964 as_bad (_("unbalanced brackets in operand %d."),
4965 i.operands + 1);
4966 return NULL;
4967 }
4968 else
4969 break; /* we are done */
4970 }
4971 else if (!is_operand_char (*l) && !is_space_char (*l) && *l != '"')
4972 {
4973 as_bad (_("invalid character %s in operand %d"),
4974 output_invalid (*l),
4975 i.operands + 1);
4976 return NULL;
4977 }
4978 if (!intel_syntax)
4979 {
4980 if (*l == '(')
4981 ++paren_not_balanced;
4982 if (*l == ')')
4983 --paren_not_balanced;
4984 }
4985 else
4986 {
4987 if (*l == '[')
4988 ++paren_not_balanced;
4989 if (*l == ']')
4990 --paren_not_balanced;
4991 }
4992 l++;
4993 }
4994 if (l != token_start)
4995 { /* Yes, we've read in another operand. */
4996 unsigned int operand_ok;
4997 this_operand = i.operands++;
4998 if (i.operands > MAX_OPERANDS)
4999 {
5000 as_bad (_("spurious operands; (%d operands/instruction max)"),
5001 MAX_OPERANDS);
5002 return NULL;
5003 }
5004 i.types[this_operand].bitfield.unspecified = 1;
5005 /* Now parse operand adding info to 'i' as we go along. */
5006 END_STRING_AND_SAVE (l);
5007
5008 if (i.mem_operands > 1)
5009 {
5010 as_bad (_("too many memory references for `%s'"),
5011 mnemonic);
5012 return 0;
5013 }
5014
5015 if (intel_syntax)
5016 operand_ok =
5017 i386_intel_operand (token_start,
5018 intel_float_operand (mnemonic));
5019 else
5020 operand_ok = i386_att_operand (token_start);
5021
5022 RESTORE_END_STRING (l);
5023 if (!operand_ok)
5024 return NULL;
5025 }
5026 else
5027 {
5028 if (expecting_operand)
5029 {
5030 expecting_operand_after_comma:
5031 as_bad (_("expecting operand after ','; got nothing"));
5032 return NULL;
5033 }
5034 if (*l == ',')
5035 {
5036 as_bad (_("expecting operand before ','; got nothing"));
5037 return NULL;
5038 }
5039 }
5040
5041 /* Now *l must be either ',' or END_OF_INSN. */
5042 if (*l == ',')
5043 {
5044 if (*++l == END_OF_INSN)
5045 {
5046 /* Just skip it, if it's \n complain. */
5047 goto expecting_operand_after_comma;
5048 }
5049 expecting_operand = 1;
5050 }
5051 }
5052 return l;
5053 }
5054
5055 static void
5056 swap_2_operands (int xchg1, int xchg2)
5057 {
5058 union i386_op temp_op;
5059 i386_operand_type temp_type;
5060 unsigned int temp_flags;
5061 enum bfd_reloc_code_real temp_reloc;
5062
5063 temp_type = i.types[xchg2];
5064 i.types[xchg2] = i.types[xchg1];
5065 i.types[xchg1] = temp_type;
5066
5067 temp_flags = i.flags[xchg2];
5068 i.flags[xchg2] = i.flags[xchg1];
5069 i.flags[xchg1] = temp_flags;
5070
5071 temp_op = i.op[xchg2];
5072 i.op[xchg2] = i.op[xchg1];
5073 i.op[xchg1] = temp_op;
5074
5075 temp_reloc = i.reloc[xchg2];
5076 i.reloc[xchg2] = i.reloc[xchg1];
5077 i.reloc[xchg1] = temp_reloc;
5078
5079 if (i.mask)
5080 {
5081 if (i.mask->operand == xchg1)
5082 i.mask->operand = xchg2;
5083 else if (i.mask->operand == xchg2)
5084 i.mask->operand = xchg1;
5085 }
5086 if (i.broadcast)
5087 {
5088 if (i.broadcast->operand == xchg1)
5089 i.broadcast->operand = xchg2;
5090 else if (i.broadcast->operand == xchg2)
5091 i.broadcast->operand = xchg1;
5092 }
5093 if (i.rounding)
5094 {
5095 if (i.rounding->operand == xchg1)
5096 i.rounding->operand = xchg2;
5097 else if (i.rounding->operand == xchg2)
5098 i.rounding->operand = xchg1;
5099 }
5100 }
5101
5102 static void
5103 swap_operands (void)
5104 {
5105 switch (i.operands)
5106 {
5107 case 5:
5108 case 4:
5109 swap_2_operands (1, i.operands - 2);
5110 /* Fall through. */
5111 case 3:
5112 case 2:
5113 swap_2_operands (0, i.operands - 1);
5114 break;
5115 default:
5116 abort ();
5117 }
5118
5119 if (i.mem_operands == 2)
5120 {
5121 const seg_entry *temp_seg;
5122 temp_seg = i.seg[0];
5123 i.seg[0] = i.seg[1];
5124 i.seg[1] = temp_seg;
5125 }
5126 }
5127
5128 /* Try to ensure constant immediates are represented in the smallest
5129 opcode possible. */
5130 static void
5131 optimize_imm (void)
5132 {
5133 char guess_suffix = 0;
5134 int op;
5135
5136 if (i.suffix)
5137 guess_suffix = i.suffix;
5138 else if (i.reg_operands)
5139 {
5140 /* Figure out a suffix from the last register operand specified.
5141 We can't do this properly yet, i.e. excluding special register
5142 instances, but the following works for instructions with
5143 immediates. In any case, we can't set i.suffix yet. */
5144 for (op = i.operands; --op >= 0;)
5145 if (i.types[op].bitfield.class != Reg)
5146 continue;
5147 else if (i.types[op].bitfield.byte)
5148 {
5149 guess_suffix = BYTE_MNEM_SUFFIX;
5150 break;
5151 }
5152 else if (i.types[op].bitfield.word)
5153 {
5154 guess_suffix = WORD_MNEM_SUFFIX;
5155 break;
5156 }
5157 else if (i.types[op].bitfield.dword)
5158 {
5159 guess_suffix = LONG_MNEM_SUFFIX;
5160 break;
5161 }
5162 else if (i.types[op].bitfield.qword)
5163 {
5164 guess_suffix = QWORD_MNEM_SUFFIX;
5165 break;
5166 }
5167 }
5168 else if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
5169 guess_suffix = WORD_MNEM_SUFFIX;
5170
5171 for (op = i.operands; --op >= 0;)
5172 if (operand_type_check (i.types[op], imm))
5173 {
5174 switch (i.op[op].imms->X_op)
5175 {
5176 case O_constant:
5177 /* If a suffix is given, this operand may be shortened. */
5178 switch (guess_suffix)
5179 {
5180 case LONG_MNEM_SUFFIX:
5181 i.types[op].bitfield.imm32 = 1;
5182 i.types[op].bitfield.imm64 = 1;
5183 break;
5184 case WORD_MNEM_SUFFIX:
5185 i.types[op].bitfield.imm16 = 1;
5186 i.types[op].bitfield.imm32 = 1;
5187 i.types[op].bitfield.imm32s = 1;
5188 i.types[op].bitfield.imm64 = 1;
5189 break;
5190 case BYTE_MNEM_SUFFIX:
5191 i.types[op].bitfield.imm8 = 1;
5192 i.types[op].bitfield.imm8s = 1;
5193 i.types[op].bitfield.imm16 = 1;
5194 i.types[op].bitfield.imm32 = 1;
5195 i.types[op].bitfield.imm32s = 1;
5196 i.types[op].bitfield.imm64 = 1;
5197 break;
5198 }
5199
5200 /* If this operand is at most 16 bits, convert it
5201 to a signed 16 bit number before trying to see
5202 whether it will fit in an even smaller size.
5203 This allows a 16-bit operand such as $0xffe0 to
5204 be recognised as within Imm8S range. */
5205 if ((i.types[op].bitfield.imm16)
5206 && (i.op[op].imms->X_add_number & ~(offsetT) 0xffff) == 0)
5207 {
5208 i.op[op].imms->X_add_number =
5209 (((i.op[op].imms->X_add_number & 0xffff) ^ 0x8000) - 0x8000);
5210 }
5211 #ifdef BFD64
5212 /* Store 32-bit immediate in 64-bit for 64-bit BFD. */
5213 if ((i.types[op].bitfield.imm32)
5214 && ((i.op[op].imms->X_add_number & ~(((offsetT) 2 << 31) - 1))
5215 == 0))
5216 {
5217 i.op[op].imms->X_add_number = ((i.op[op].imms->X_add_number
5218 ^ ((offsetT) 1 << 31))
5219 - ((offsetT) 1 << 31));
5220 }
5221 #endif
5222 i.types[op]
5223 = operand_type_or (i.types[op],
5224 smallest_imm_type (i.op[op].imms->X_add_number));
5225
5226 /* We must avoid matching of Imm32 templates when 64bit
5227 only immediate is available. */
5228 if (guess_suffix == QWORD_MNEM_SUFFIX)
5229 i.types[op].bitfield.imm32 = 0;
5230 break;
5231
5232 case O_absent:
5233 case O_register:
5234 abort ();
5235
5236 /* Symbols and expressions. */
5237 default:
5238 /* Convert symbolic operand to proper sizes for matching, but don't
5239 prevent matching a set of insns that only supports sizes other
5240 than those matching the insn suffix. */
5241 {
5242 i386_operand_type mask, allowed;
5243 const insn_template *t;
5244
5245 operand_type_set (&mask, 0);
5246 operand_type_set (&allowed, 0);
5247
5248 for (t = current_templates->start;
5249 t < current_templates->end;
5250 ++t)
5251 {
5252 allowed = operand_type_or (allowed, t->operand_types[op]);
5253 allowed = operand_type_and (allowed, anyimm);
5254 }
5255 switch (guess_suffix)
5256 {
5257 case QWORD_MNEM_SUFFIX:
5258 mask.bitfield.imm64 = 1;
5259 mask.bitfield.imm32s = 1;
5260 break;
5261 case LONG_MNEM_SUFFIX:
5262 mask.bitfield.imm32 = 1;
5263 break;
5264 case WORD_MNEM_SUFFIX:
5265 mask.bitfield.imm16 = 1;
5266 break;
5267 case BYTE_MNEM_SUFFIX:
5268 mask.bitfield.imm8 = 1;
5269 break;
5270 default:
5271 break;
5272 }
5273 allowed = operand_type_and (mask, allowed);
5274 if (!operand_type_all_zero (&allowed))
5275 i.types[op] = operand_type_and (i.types[op], mask);
5276 }
5277 break;
5278 }
5279 }
5280 }
5281
5282 /* Try to use the smallest displacement type too. */
5283 static void
5284 optimize_disp (void)
5285 {
5286 int op;
5287
5288 for (op = i.operands; --op >= 0;)
5289 if (operand_type_check (i.types[op], disp))
5290 {
5291 if (i.op[op].disps->X_op == O_constant)
5292 {
5293 offsetT op_disp = i.op[op].disps->X_add_number;
5294
5295 if (i.types[op].bitfield.disp16
5296 && (op_disp & ~(offsetT) 0xffff) == 0)
5297 {
5298 /* If this operand is at most 16 bits, convert
5299 to a signed 16 bit number and don't use 64bit
5300 displacement. */
5301 op_disp = (((op_disp & 0xffff) ^ 0x8000) - 0x8000);
5302 i.types[op].bitfield.disp64 = 0;
5303 }
5304 #ifdef BFD64
5305 /* Optimize 64-bit displacement to 32-bit for 64-bit BFD. */
5306 if (i.types[op].bitfield.disp32
5307 && (op_disp & ~(((offsetT) 2 << 31) - 1)) == 0)
5308 {
5309 /* If this operand is at most 32 bits, convert
5310 to a signed 32 bit number and don't use 64bit
5311 displacement. */
5312 op_disp &= (((offsetT) 2 << 31) - 1);
5313 op_disp = (op_disp ^ ((offsetT) 1 << 31)) - ((addressT) 1 << 31);
5314 i.types[op].bitfield.disp64 = 0;
5315 }
5316 #endif
5317 if (!op_disp && i.types[op].bitfield.baseindex)
5318 {
5319 i.types[op].bitfield.disp8 = 0;
5320 i.types[op].bitfield.disp16 = 0;
5321 i.types[op].bitfield.disp32 = 0;
5322 i.types[op].bitfield.disp32s = 0;
5323 i.types[op].bitfield.disp64 = 0;
5324 i.op[op].disps = 0;
5325 i.disp_operands--;
5326 }
5327 else if (flag_code == CODE_64BIT)
5328 {
5329 if (fits_in_signed_long (op_disp))
5330 {
5331 i.types[op].bitfield.disp64 = 0;
5332 i.types[op].bitfield.disp32s = 1;
5333 }
5334 if (i.prefix[ADDR_PREFIX]
5335 && fits_in_unsigned_long (op_disp))
5336 i.types[op].bitfield.disp32 = 1;
5337 }
5338 if ((i.types[op].bitfield.disp32
5339 || i.types[op].bitfield.disp32s
5340 || i.types[op].bitfield.disp16)
5341 && fits_in_disp8 (op_disp))
5342 i.types[op].bitfield.disp8 = 1;
5343 }
5344 else if (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
5345 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL)
5346 {
5347 fix_new_exp (frag_now, frag_more (0) - frag_now->fr_literal, 0,
5348 i.op[op].disps, 0, i.reloc[op]);
5349 i.types[op].bitfield.disp8 = 0;
5350 i.types[op].bitfield.disp16 = 0;
5351 i.types[op].bitfield.disp32 = 0;
5352 i.types[op].bitfield.disp32s = 0;
5353 i.types[op].bitfield.disp64 = 0;
5354 }
5355 else
5356 /* We only support 64bit displacement on constants. */
5357 i.types[op].bitfield.disp64 = 0;
5358 }
5359 }
5360
5361 /* Return 1 if there is a match in broadcast bytes between operand
5362 GIVEN and instruction template T. */
5363
5364 static INLINE int
5365 match_broadcast_size (const insn_template *t, unsigned int given)
5366 {
5367 return ((t->opcode_modifier.broadcast == BYTE_BROADCAST
5368 && i.types[given].bitfield.byte)
5369 || (t->opcode_modifier.broadcast == WORD_BROADCAST
5370 && i.types[given].bitfield.word)
5371 || (t->opcode_modifier.broadcast == DWORD_BROADCAST
5372 && i.types[given].bitfield.dword)
5373 || (t->opcode_modifier.broadcast == QWORD_BROADCAST
5374 && i.types[given].bitfield.qword));
5375 }
5376
5377 /* Check if operands are valid for the instruction. */
5378
5379 static int
5380 check_VecOperands (const insn_template *t)
5381 {
5382 unsigned int op;
5383 i386_cpu_flags cpu;
5384
5385 /* Templates allowing for ZMMword as well as YMMword and/or XMMword for
5386 any one operand are implicity requiring AVX512VL support if the actual
5387 operand size is YMMword or XMMword. Since this function runs after
5388 template matching, there's no need to check for YMMword/XMMword in
5389 the template. */
5390 cpu = cpu_flags_and (t->cpu_flags, avx512);
5391 if (!cpu_flags_all_zero (&cpu)
5392 && !t->cpu_flags.bitfield.cpuavx512vl
5393 && !cpu_arch_flags.bitfield.cpuavx512vl)
5394 {
5395 for (op = 0; op < t->operands; ++op)
5396 {
5397 if (t->operand_types[op].bitfield.zmmword
5398 && (i.types[op].bitfield.ymmword
5399 || i.types[op].bitfield.xmmword))
5400 {
5401 i.error = unsupported;
5402 return 1;
5403 }
5404 }
5405 }
5406
5407 /* Without VSIB byte, we can't have a vector register for index. */
5408 if (!t->opcode_modifier.vecsib
5409 && i.index_reg
5410 && (i.index_reg->reg_type.bitfield.xmmword
5411 || i.index_reg->reg_type.bitfield.ymmword
5412 || i.index_reg->reg_type.bitfield.zmmword))
5413 {
5414 i.error = unsupported_vector_index_register;
5415 return 1;
5416 }
5417
5418 /* Check if default mask is allowed. */
5419 if (t->opcode_modifier.nodefmask
5420 && (!i.mask || i.mask->mask->reg_num == 0))
5421 {
5422 i.error = no_default_mask;
5423 return 1;
5424 }
5425
5426 /* For VSIB byte, we need a vector register for index, and all vector
5427 registers must be distinct. */
5428 if (t->opcode_modifier.vecsib)
5429 {
5430 if (!i.index_reg
5431 || !((t->opcode_modifier.vecsib == VecSIB128
5432 && i.index_reg->reg_type.bitfield.xmmword)
5433 || (t->opcode_modifier.vecsib == VecSIB256
5434 && i.index_reg->reg_type.bitfield.ymmword)
5435 || (t->opcode_modifier.vecsib == VecSIB512
5436 && i.index_reg->reg_type.bitfield.zmmword)))
5437 {
5438 i.error = invalid_vsib_address;
5439 return 1;
5440 }
5441
5442 gas_assert (i.reg_operands == 2 || i.mask);
5443 if (i.reg_operands == 2 && !i.mask)
5444 {
5445 gas_assert (i.types[0].bitfield.class == RegSIMD);
5446 gas_assert (i.types[0].bitfield.xmmword
5447 || i.types[0].bitfield.ymmword);
5448 gas_assert (i.types[2].bitfield.class == RegSIMD);
5449 gas_assert (i.types[2].bitfield.xmmword
5450 || i.types[2].bitfield.ymmword);
5451 if (operand_check == check_none)
5452 return 0;
5453 if (register_number (i.op[0].regs)
5454 != register_number (i.index_reg)
5455 && register_number (i.op[2].regs)
5456 != register_number (i.index_reg)
5457 && register_number (i.op[0].regs)
5458 != register_number (i.op[2].regs))
5459 return 0;
5460 if (operand_check == check_error)
5461 {
5462 i.error = invalid_vector_register_set;
5463 return 1;
5464 }
5465 as_warn (_("mask, index, and destination registers should be distinct"));
5466 }
5467 else if (i.reg_operands == 1 && i.mask)
5468 {
5469 if (i.types[1].bitfield.class == RegSIMD
5470 && (i.types[1].bitfield.xmmword
5471 || i.types[1].bitfield.ymmword
5472 || i.types[1].bitfield.zmmword)
5473 && (register_number (i.op[1].regs)
5474 == register_number (i.index_reg)))
5475 {
5476 if (operand_check == check_error)
5477 {
5478 i.error = invalid_vector_register_set;
5479 return 1;
5480 }
5481 if (operand_check != check_none)
5482 as_warn (_("index and destination registers should be distinct"));
5483 }
5484 }
5485 }
5486
5487 /* Check if broadcast is supported by the instruction and is applied
5488 to the memory operand. */
5489 if (i.broadcast)
5490 {
5491 i386_operand_type type, overlap;
5492
5493 /* Check if specified broadcast is supported in this instruction,
5494 and its broadcast bytes match the memory operand. */
5495 op = i.broadcast->operand;
5496 if (!t->opcode_modifier.broadcast
5497 || !(i.flags[op] & Operand_Mem)
5498 || (!i.types[op].bitfield.unspecified
5499 && !match_broadcast_size (t, op)))
5500 {
5501 bad_broadcast:
5502 i.error = unsupported_broadcast;
5503 return 1;
5504 }
5505
5506 i.broadcast->bytes = ((1 << (t->opcode_modifier.broadcast - 1))
5507 * i.broadcast->type);
5508 operand_type_set (&type, 0);
5509 switch (i.broadcast->bytes)
5510 {
5511 case 2:
5512 type.bitfield.word = 1;
5513 break;
5514 case 4:
5515 type.bitfield.dword = 1;
5516 break;
5517 case 8:
5518 type.bitfield.qword = 1;
5519 break;
5520 case 16:
5521 type.bitfield.xmmword = 1;
5522 break;
5523 case 32:
5524 type.bitfield.ymmword = 1;
5525 break;
5526 case 64:
5527 type.bitfield.zmmword = 1;
5528 break;
5529 default:
5530 goto bad_broadcast;
5531 }
5532
5533 overlap = operand_type_and (type, t->operand_types[op]);
5534 if (operand_type_all_zero (&overlap))
5535 goto bad_broadcast;
5536
5537 if (t->opcode_modifier.checkregsize)
5538 {
5539 unsigned int j;
5540
5541 type.bitfield.baseindex = 1;
5542 for (j = 0; j < i.operands; ++j)
5543 {
5544 if (j != op
5545 && !operand_type_register_match(i.types[j],
5546 t->operand_types[j],
5547 type,
5548 t->operand_types[op]))
5549 goto bad_broadcast;
5550 }
5551 }
5552 }
5553 /* If broadcast is supported in this instruction, we need to check if
5554 operand of one-element size isn't specified without broadcast. */
5555 else if (t->opcode_modifier.broadcast && i.mem_operands)
5556 {
5557 /* Find memory operand. */
5558 for (op = 0; op < i.operands; op++)
5559 if (i.flags[op] & Operand_Mem)
5560 break;
5561 gas_assert (op < i.operands);
5562 /* Check size of the memory operand. */
5563 if (match_broadcast_size (t, op))
5564 {
5565 i.error = broadcast_needed;
5566 return 1;
5567 }
5568 }
5569 else
5570 op = MAX_OPERANDS - 1; /* Avoid uninitialized variable warning. */
5571
5572 /* Check if requested masking is supported. */
5573 if (i.mask)
5574 {
5575 switch (t->opcode_modifier.masking)
5576 {
5577 case BOTH_MASKING:
5578 break;
5579 case MERGING_MASKING:
5580 if (i.mask->zeroing)
5581 {
5582 case 0:
5583 i.error = unsupported_masking;
5584 return 1;
5585 }
5586 break;
5587 case DYNAMIC_MASKING:
5588 /* Memory destinations allow only merging masking. */
5589 if (i.mask->zeroing && i.mem_operands)
5590 {
5591 /* Find memory operand. */
5592 for (op = 0; op < i.operands; op++)
5593 if (i.flags[op] & Operand_Mem)
5594 break;
5595 gas_assert (op < i.operands);
5596 if (op == i.operands - 1)
5597 {
5598 i.error = unsupported_masking;
5599 return 1;
5600 }
5601 }
5602 break;
5603 default:
5604 abort ();
5605 }
5606 }
5607
5608 /* Check if masking is applied to dest operand. */
5609 if (i.mask && (i.mask->operand != (int) (i.operands - 1)))
5610 {
5611 i.error = mask_not_on_destination;
5612 return 1;
5613 }
5614
5615 /* Check RC/SAE. */
5616 if (i.rounding)
5617 {
5618 if (!t->opcode_modifier.sae
5619 || (i.rounding->type != saeonly && !t->opcode_modifier.staticrounding))
5620 {
5621 i.error = unsupported_rc_sae;
5622 return 1;
5623 }
5624 /* If the instruction has several immediate operands and one of
5625 them is rounding, the rounding operand should be the last
5626 immediate operand. */
5627 if (i.imm_operands > 1
5628 && i.rounding->operand != (int) (i.imm_operands - 1))
5629 {
5630 i.error = rc_sae_operand_not_last_imm;
5631 return 1;
5632 }
5633 }
5634
5635 /* Check vector Disp8 operand. */
5636 if (t->opcode_modifier.disp8memshift
5637 && i.disp_encoding != disp_encoding_32bit)
5638 {
5639 if (i.broadcast)
5640 i.memshift = t->opcode_modifier.broadcast - 1;
5641 else if (t->opcode_modifier.disp8memshift != DISP8_SHIFT_VL)
5642 i.memshift = t->opcode_modifier.disp8memshift;
5643 else
5644 {
5645 const i386_operand_type *type = NULL;
5646
5647 i.memshift = 0;
5648 for (op = 0; op < i.operands; op++)
5649 if (i.flags[op] & Operand_Mem)
5650 {
5651 if (t->opcode_modifier.evex == EVEXLIG)
5652 i.memshift = 2 + (i.suffix == QWORD_MNEM_SUFFIX);
5653 else if (t->operand_types[op].bitfield.xmmword
5654 + t->operand_types[op].bitfield.ymmword
5655 + t->operand_types[op].bitfield.zmmword <= 1)
5656 type = &t->operand_types[op];
5657 else if (!i.types[op].bitfield.unspecified)
5658 type = &i.types[op];
5659 }
5660 else if (i.types[op].bitfield.class == RegSIMD
5661 && t->opcode_modifier.evex != EVEXLIG)
5662 {
5663 if (i.types[op].bitfield.zmmword)
5664 i.memshift = 6;
5665 else if (i.types[op].bitfield.ymmword && i.memshift < 5)
5666 i.memshift = 5;
5667 else if (i.types[op].bitfield.xmmword && i.memshift < 4)
5668 i.memshift = 4;
5669 }
5670
5671 if (type)
5672 {
5673 if (type->bitfield.zmmword)
5674 i.memshift = 6;
5675 else if (type->bitfield.ymmword)
5676 i.memshift = 5;
5677 else if (type->bitfield.xmmword)
5678 i.memshift = 4;
5679 }
5680
5681 /* For the check in fits_in_disp8(). */
5682 if (i.memshift == 0)
5683 i.memshift = -1;
5684 }
5685
5686 for (op = 0; op < i.operands; op++)
5687 if (operand_type_check (i.types[op], disp)
5688 && i.op[op].disps->X_op == O_constant)
5689 {
5690 if (fits_in_disp8 (i.op[op].disps->X_add_number))
5691 {
5692 i.types[op].bitfield.disp8 = 1;
5693 return 0;
5694 }
5695 i.types[op].bitfield.disp8 = 0;
5696 }
5697 }
5698
5699 i.memshift = 0;
5700
5701 return 0;
5702 }
5703
5704 /* Check if operands are valid for the instruction. Update VEX
5705 operand types. */
5706
5707 static int
5708 VEX_check_operands (const insn_template *t)
5709 {
5710 if (i.vec_encoding == vex_encoding_evex)
5711 {
5712 /* This instruction must be encoded with EVEX prefix. */
5713 if (!is_evex_encoding (t))
5714 {
5715 i.error = unsupported;
5716 return 1;
5717 }
5718 return 0;
5719 }
5720
5721 if (!t->opcode_modifier.vex)
5722 {
5723 /* This instruction template doesn't have VEX prefix. */
5724 if (i.vec_encoding != vex_encoding_default)
5725 {
5726 i.error = unsupported;
5727 return 1;
5728 }
5729 return 0;
5730 }
5731
5732 /* Check the special Imm4 cases; must be the first operand. */
5733 if (t->cpu_flags.bitfield.cpuxop && t->operands == 5)
5734 {
5735 if (i.op[0].imms->X_op != O_constant
5736 || !fits_in_imm4 (i.op[0].imms->X_add_number))
5737 {
5738 i.error = bad_imm4;
5739 return 1;
5740 }
5741
5742 /* Turn off Imm<N> so that update_imm won't complain. */
5743 operand_type_set (&i.types[0], 0);
5744 }
5745
5746 return 0;
5747 }
5748
5749 static const insn_template *
5750 match_template (char mnem_suffix)
5751 {
5752 /* Points to template once we've found it. */
5753 const insn_template *t;
5754 i386_operand_type overlap0, overlap1, overlap2, overlap3;
5755 i386_operand_type overlap4;
5756 unsigned int found_reverse_match;
5757 i386_opcode_modifier suffix_check;
5758 i386_operand_type operand_types [MAX_OPERANDS];
5759 int addr_prefix_disp;
5760 unsigned int j, size_match, check_register;
5761 enum i386_error specific_error = 0;
5762
5763 #if MAX_OPERANDS != 5
5764 # error "MAX_OPERANDS must be 5."
5765 #endif
5766
5767 found_reverse_match = 0;
5768 addr_prefix_disp = -1;
5769
5770 /* Prepare for mnemonic suffix check. */
5771 memset (&suffix_check, 0, sizeof (suffix_check));
5772 switch (mnem_suffix)
5773 {
5774 case BYTE_MNEM_SUFFIX:
5775 suffix_check.no_bsuf = 1;
5776 break;
5777 case WORD_MNEM_SUFFIX:
5778 suffix_check.no_wsuf = 1;
5779 break;
5780 case SHORT_MNEM_SUFFIX:
5781 suffix_check.no_ssuf = 1;
5782 break;
5783 case LONG_MNEM_SUFFIX:
5784 suffix_check.no_lsuf = 1;
5785 break;
5786 case QWORD_MNEM_SUFFIX:
5787 suffix_check.no_qsuf = 1;
5788 break;
5789 default:
5790 /* NB: In Intel syntax, normally we can check for memory operand
5791 size when there is no mnemonic suffix. But jmp and call have
5792 2 different encodings with Dword memory operand size, one with
5793 No_ldSuf and the other without. i.suffix is set to
5794 LONG_DOUBLE_MNEM_SUFFIX to skip the one with No_ldSuf. */
5795 if (i.suffix == LONG_DOUBLE_MNEM_SUFFIX)
5796 suffix_check.no_ldsuf = 1;
5797 }
5798
5799 /* Must have right number of operands. */
5800 i.error = number_of_operands_mismatch;
5801
5802 for (t = current_templates->start; t < current_templates->end; t++)
5803 {
5804 addr_prefix_disp = -1;
5805 found_reverse_match = 0;
5806
5807 if (i.operands != t->operands)
5808 continue;
5809
5810 /* Check processor support. */
5811 i.error = unsupported;
5812 if (cpu_flags_match (t) != CPU_FLAGS_PERFECT_MATCH)
5813 continue;
5814
5815 /* Check AT&T mnemonic. */
5816 i.error = unsupported_with_intel_mnemonic;
5817 if (intel_mnemonic && t->opcode_modifier.attmnemonic)
5818 continue;
5819
5820 /* Check AT&T/Intel syntax. */
5821 i.error = unsupported_syntax;
5822 if ((intel_syntax && t->opcode_modifier.attsyntax)
5823 || (!intel_syntax && t->opcode_modifier.intelsyntax))
5824 continue;
5825
5826 /* Check Intel64/AMD64 ISA. */
5827 switch (isa64)
5828 {
5829 default:
5830 /* Default: Don't accept Intel64. */
5831 if (t->opcode_modifier.isa64 == INTEL64)
5832 continue;
5833 break;
5834 case amd64:
5835 /* -mamd64: Don't accept Intel64 and Intel64 only. */
5836 if (t->opcode_modifier.isa64 >= INTEL64)
5837 continue;
5838 break;
5839 case intel64:
5840 /* -mintel64: Don't accept AMD64. */
5841 if (t->opcode_modifier.isa64 == AMD64 && flag_code == CODE_64BIT)
5842 continue;
5843 break;
5844 }
5845
5846 /* Check the suffix. */
5847 i.error = invalid_instruction_suffix;
5848 if ((t->opcode_modifier.no_bsuf && suffix_check.no_bsuf)
5849 || (t->opcode_modifier.no_wsuf && suffix_check.no_wsuf)
5850 || (t->opcode_modifier.no_lsuf && suffix_check.no_lsuf)
5851 || (t->opcode_modifier.no_ssuf && suffix_check.no_ssuf)
5852 || (t->opcode_modifier.no_qsuf && suffix_check.no_qsuf)
5853 || (t->opcode_modifier.no_ldsuf && suffix_check.no_ldsuf))
5854 continue;
5855
5856 size_match = operand_size_match (t);
5857 if (!size_match)
5858 continue;
5859
5860 /* This is intentionally not
5861
5862 if (i.jumpabsolute != (t->opcode_modifier.jump == JUMP_ABSOLUTE))
5863
5864 as the case of a missing * on the operand is accepted (perhaps with
5865 a warning, issued further down). */
5866 if (i.jumpabsolute && t->opcode_modifier.jump != JUMP_ABSOLUTE)
5867 {
5868 i.error = operand_type_mismatch;
5869 continue;
5870 }
5871
5872 for (j = 0; j < MAX_OPERANDS; j++)
5873 operand_types[j] = t->operand_types[j];
5874
5875 /* In general, don't allow 64-bit operands in 32-bit mode. */
5876 if (i.suffix == QWORD_MNEM_SUFFIX
5877 && flag_code != CODE_64BIT
5878 && (intel_syntax
5879 ? (!t->opcode_modifier.ignoresize
5880 && !t->opcode_modifier.broadcast
5881 && !intel_float_operand (t->name))
5882 : intel_float_operand (t->name) != 2)
5883 && ((operand_types[0].bitfield.class != RegMMX
5884 && operand_types[0].bitfield.class != RegSIMD)
5885 || (operand_types[t->operands > 1].bitfield.class != RegMMX
5886 && operand_types[t->operands > 1].bitfield.class != RegSIMD))
5887 && (t->base_opcode != 0x0fc7
5888 || t->extension_opcode != 1 /* cmpxchg8b */))
5889 continue;
5890
5891 /* In general, don't allow 32-bit operands on pre-386. */
5892 else if (i.suffix == LONG_MNEM_SUFFIX
5893 && !cpu_arch_flags.bitfield.cpui386
5894 && (intel_syntax
5895 ? (!t->opcode_modifier.ignoresize
5896 && !intel_float_operand (t->name))
5897 : intel_float_operand (t->name) != 2)
5898 && ((operand_types[0].bitfield.class != RegMMX
5899 && operand_types[0].bitfield.class != RegSIMD)
5900 || (operand_types[t->operands > 1].bitfield.class != RegMMX
5901 && operand_types[t->operands > 1].bitfield.class
5902 != RegSIMD)))
5903 continue;
5904
5905 /* Do not verify operands when there are none. */
5906 else
5907 {
5908 if (!t->operands)
5909 /* We've found a match; break out of loop. */
5910 break;
5911 }
5912
5913 if (!t->opcode_modifier.jump
5914 || t->opcode_modifier.jump == JUMP_ABSOLUTE)
5915 {
5916 /* There should be only one Disp operand. */
5917 for (j = 0; j < MAX_OPERANDS; j++)
5918 if (operand_type_check (operand_types[j], disp))
5919 break;
5920 if (j < MAX_OPERANDS)
5921 {
5922 bfd_boolean override = (i.prefix[ADDR_PREFIX] != 0);
5923
5924 addr_prefix_disp = j;
5925
5926 /* Address size prefix will turn Disp64/Disp32S/Disp32/Disp16
5927 operand into Disp32/Disp32/Disp16/Disp32 operand. */
5928 switch (flag_code)
5929 {
5930 case CODE_16BIT:
5931 override = !override;
5932 /* Fall through. */
5933 case CODE_32BIT:
5934 if (operand_types[j].bitfield.disp32
5935 && operand_types[j].bitfield.disp16)
5936 {
5937 operand_types[j].bitfield.disp16 = override;
5938 operand_types[j].bitfield.disp32 = !override;
5939 }
5940 operand_types[j].bitfield.disp32s = 0;
5941 operand_types[j].bitfield.disp64 = 0;
5942 break;
5943
5944 case CODE_64BIT:
5945 if (operand_types[j].bitfield.disp32s
5946 || operand_types[j].bitfield.disp64)
5947 {
5948 operand_types[j].bitfield.disp64 &= !override;
5949 operand_types[j].bitfield.disp32s &= !override;
5950 operand_types[j].bitfield.disp32 = override;
5951 }
5952 operand_types[j].bitfield.disp16 = 0;
5953 break;
5954 }
5955 }
5956 }
5957
5958 /* Force 0x8b encoding for "mov foo@GOT, %eax". */
5959 if (i.reloc[0] == BFD_RELOC_386_GOT32 && t->base_opcode == 0xa0)
5960 continue;
5961
5962 /* We check register size if needed. */
5963 if (t->opcode_modifier.checkregsize)
5964 {
5965 check_register = (1 << t->operands) - 1;
5966 if (i.broadcast)
5967 check_register &= ~(1 << i.broadcast->operand);
5968 }
5969 else
5970 check_register = 0;
5971
5972 overlap0 = operand_type_and (i.types[0], operand_types[0]);
5973 switch (t->operands)
5974 {
5975 case 1:
5976 if (!operand_type_match (overlap0, i.types[0]))
5977 continue;
5978 break;
5979 case 2:
5980 /* xchg %eax, %eax is a special case. It is an alias for nop
5981 only in 32bit mode and we can use opcode 0x90. In 64bit
5982 mode, we can't use 0x90 for xchg %eax, %eax since it should
5983 zero-extend %eax to %rax. */
5984 if (flag_code == CODE_64BIT
5985 && t->base_opcode == 0x90
5986 && i.types[0].bitfield.instance == Accum
5987 && i.types[0].bitfield.dword
5988 && i.types[1].bitfield.instance == Accum
5989 && i.types[1].bitfield.dword)
5990 continue;
5991 /* xrelease mov %eax, <disp> is another special case. It must not
5992 match the accumulator-only encoding of mov. */
5993 if (flag_code != CODE_64BIT
5994 && i.hle_prefix
5995 && t->base_opcode == 0xa0
5996 && i.types[0].bitfield.instance == Accum
5997 && (i.flags[1] & Operand_Mem))
5998 continue;
5999 /* Fall through. */
6000
6001 case 3:
6002 if (!(size_match & MATCH_STRAIGHT))
6003 goto check_reverse;
6004 /* Reverse direction of operands if swapping is possible in the first
6005 place (operands need to be symmetric) and
6006 - the load form is requested, and the template is a store form,
6007 - the store form is requested, and the template is a load form,
6008 - the non-default (swapped) form is requested. */
6009 overlap1 = operand_type_and (operand_types[0], operand_types[1]);
6010 if (t->opcode_modifier.d && i.reg_operands == i.operands
6011 && !operand_type_all_zero (&overlap1))
6012 switch (i.dir_encoding)
6013 {
6014 case dir_encoding_load:
6015 if (operand_type_check (operand_types[i.operands - 1], anymem)
6016 || t->opcode_modifier.regmem)
6017 goto check_reverse;
6018 break;
6019
6020 case dir_encoding_store:
6021 if (!operand_type_check (operand_types[i.operands - 1], anymem)
6022 && !t->opcode_modifier.regmem)
6023 goto check_reverse;
6024 break;
6025
6026 case dir_encoding_swap:
6027 goto check_reverse;
6028
6029 case dir_encoding_default:
6030 break;
6031 }
6032 /* If we want store form, we skip the current load. */
6033 if ((i.dir_encoding == dir_encoding_store
6034 || i.dir_encoding == dir_encoding_swap)
6035 && i.mem_operands == 0
6036 && t->opcode_modifier.load)
6037 continue;
6038 /* Fall through. */
6039 case 4:
6040 case 5:
6041 overlap1 = operand_type_and (i.types[1], operand_types[1]);
6042 if (!operand_type_match (overlap0, i.types[0])
6043 || !operand_type_match (overlap1, i.types[1])
6044 || ((check_register & 3) == 3
6045 && !operand_type_register_match (i.types[0],
6046 operand_types[0],
6047 i.types[1],
6048 operand_types[1])))
6049 {
6050 /* Check if other direction is valid ... */
6051 if (!t->opcode_modifier.d)
6052 continue;
6053
6054 check_reverse:
6055 if (!(size_match & MATCH_REVERSE))
6056 continue;
6057 /* Try reversing direction of operands. */
6058 overlap0 = operand_type_and (i.types[0], operand_types[i.operands - 1]);
6059 overlap1 = operand_type_and (i.types[i.operands - 1], operand_types[0]);
6060 if (!operand_type_match (overlap0, i.types[0])
6061 || !operand_type_match (overlap1, i.types[i.operands - 1])
6062 || (check_register
6063 && !operand_type_register_match (i.types[0],
6064 operand_types[i.operands - 1],
6065 i.types[i.operands - 1],
6066 operand_types[0])))
6067 {
6068 /* Does not match either direction. */
6069 continue;
6070 }
6071 /* found_reverse_match holds which of D or FloatR
6072 we've found. */
6073 if (!t->opcode_modifier.d)
6074 found_reverse_match = 0;
6075 else if (operand_types[0].bitfield.tbyte)
6076 found_reverse_match = Opcode_FloatD;
6077 else if (operand_types[0].bitfield.xmmword
6078 || operand_types[i.operands - 1].bitfield.xmmword
6079 || operand_types[0].bitfield.class == RegMMX
6080 || operand_types[i.operands - 1].bitfield.class == RegMMX
6081 || is_any_vex_encoding(t))
6082 found_reverse_match = (t->base_opcode & 0xee) != 0x6e
6083 ? Opcode_SIMD_FloatD : Opcode_SIMD_IntD;
6084 else
6085 found_reverse_match = Opcode_D;
6086 if (t->opcode_modifier.floatr)
6087 found_reverse_match |= Opcode_FloatR;
6088 }
6089 else
6090 {
6091 /* Found a forward 2 operand match here. */
6092 switch (t->operands)
6093 {
6094 case 5:
6095 overlap4 = operand_type_and (i.types[4],
6096 operand_types[4]);
6097 /* Fall through. */
6098 case 4:
6099 overlap3 = operand_type_and (i.types[3],
6100 operand_types[3]);
6101 /* Fall through. */
6102 case 3:
6103 overlap2 = operand_type_and (i.types[2],
6104 operand_types[2]);
6105 break;
6106 }
6107
6108 switch (t->operands)
6109 {
6110 case 5:
6111 if (!operand_type_match (overlap4, i.types[4])
6112 || !operand_type_register_match (i.types[3],
6113 operand_types[3],
6114 i.types[4],
6115 operand_types[4]))
6116 continue;
6117 /* Fall through. */
6118 case 4:
6119 if (!operand_type_match (overlap3, i.types[3])
6120 || ((check_register & 0xa) == 0xa
6121 && !operand_type_register_match (i.types[1],
6122 operand_types[1],
6123 i.types[3],
6124 operand_types[3]))
6125 || ((check_register & 0xc) == 0xc
6126 && !operand_type_register_match (i.types[2],
6127 operand_types[2],
6128 i.types[3],
6129 operand_types[3])))
6130 continue;
6131 /* Fall through. */
6132 case 3:
6133 /* Here we make use of the fact that there are no
6134 reverse match 3 operand instructions. */
6135 if (!operand_type_match (overlap2, i.types[2])
6136 || ((check_register & 5) == 5
6137 && !operand_type_register_match (i.types[0],
6138 operand_types[0],
6139 i.types[2],
6140 operand_types[2]))
6141 || ((check_register & 6) == 6
6142 && !operand_type_register_match (i.types[1],
6143 operand_types[1],
6144 i.types[2],
6145 operand_types[2])))
6146 continue;
6147 break;
6148 }
6149 }
6150 /* Found either forward/reverse 2, 3 or 4 operand match here:
6151 slip through to break. */
6152 }
6153
6154 /* Check if vector and VEX operands are valid. */
6155 if (check_VecOperands (t) || VEX_check_operands (t))
6156 {
6157 specific_error = i.error;
6158 continue;
6159 }
6160
6161 /* We've found a match; break out of loop. */
6162 break;
6163 }
6164
6165 if (t == current_templates->end)
6166 {
6167 /* We found no match. */
6168 const char *err_msg;
6169 switch (specific_error ? specific_error : i.error)
6170 {
6171 default:
6172 abort ();
6173 case operand_size_mismatch:
6174 err_msg = _("operand size mismatch");
6175 break;
6176 case operand_type_mismatch:
6177 err_msg = _("operand type mismatch");
6178 break;
6179 case register_type_mismatch:
6180 err_msg = _("register type mismatch");
6181 break;
6182 case number_of_operands_mismatch:
6183 err_msg = _("number of operands mismatch");
6184 break;
6185 case invalid_instruction_suffix:
6186 err_msg = _("invalid instruction suffix");
6187 break;
6188 case bad_imm4:
6189 err_msg = _("constant doesn't fit in 4 bits");
6190 break;
6191 case unsupported_with_intel_mnemonic:
6192 err_msg = _("unsupported with Intel mnemonic");
6193 break;
6194 case unsupported_syntax:
6195 err_msg = _("unsupported syntax");
6196 break;
6197 case unsupported:
6198 as_bad (_("unsupported instruction `%s'"),
6199 current_templates->start->name);
6200 return NULL;
6201 case invalid_vsib_address:
6202 err_msg = _("invalid VSIB address");
6203 break;
6204 case invalid_vector_register_set:
6205 err_msg = _("mask, index, and destination registers must be distinct");
6206 break;
6207 case unsupported_vector_index_register:
6208 err_msg = _("unsupported vector index register");
6209 break;
6210 case unsupported_broadcast:
6211 err_msg = _("unsupported broadcast");
6212 break;
6213 case broadcast_needed:
6214 err_msg = _("broadcast is needed for operand of such type");
6215 break;
6216 case unsupported_masking:
6217 err_msg = _("unsupported masking");
6218 break;
6219 case mask_not_on_destination:
6220 err_msg = _("mask not on destination operand");
6221 break;
6222 case no_default_mask:
6223 err_msg = _("default mask isn't allowed");
6224 break;
6225 case unsupported_rc_sae:
6226 err_msg = _("unsupported static rounding/sae");
6227 break;
6228 case rc_sae_operand_not_last_imm:
6229 if (intel_syntax)
6230 err_msg = _("RC/SAE operand must precede immediate operands");
6231 else
6232 err_msg = _("RC/SAE operand must follow immediate operands");
6233 break;
6234 case invalid_register_operand:
6235 err_msg = _("invalid register operand");
6236 break;
6237 }
6238 as_bad (_("%s for `%s'"), err_msg,
6239 current_templates->start->name);
6240 return NULL;
6241 }
6242
6243 if (!quiet_warnings)
6244 {
6245 if (!intel_syntax
6246 && (i.jumpabsolute != (t->opcode_modifier.jump == JUMP_ABSOLUTE)))
6247 as_warn (_("indirect %s without `*'"), t->name);
6248
6249 if (t->opcode_modifier.isprefix
6250 && t->opcode_modifier.ignoresize)
6251 {
6252 /* Warn them that a data or address size prefix doesn't
6253 affect assembly of the next line of code. */
6254 as_warn (_("stand-alone `%s' prefix"), t->name);
6255 }
6256 }
6257
6258 /* Copy the template we found. */
6259 i.tm = *t;
6260
6261 if (addr_prefix_disp != -1)
6262 i.tm.operand_types[addr_prefix_disp]
6263 = operand_types[addr_prefix_disp];
6264
6265 if (found_reverse_match)
6266 {
6267 /* If we found a reverse match we must alter the opcode direction
6268 bit and clear/flip the regmem modifier one. found_reverse_match
6269 holds bits to change (different for int & float insns). */
6270
6271 i.tm.base_opcode ^= found_reverse_match;
6272
6273 i.tm.operand_types[0] = operand_types[i.operands - 1];
6274 i.tm.operand_types[i.operands - 1] = operand_types[0];
6275
6276 /* Certain SIMD insns have their load forms specified in the opcode
6277 table, and hence we need to _set_ RegMem instead of clearing it.
6278 We need to avoid setting the bit though on insns like KMOVW. */
6279 i.tm.opcode_modifier.regmem
6280 = i.tm.opcode_modifier.modrm && i.tm.opcode_modifier.d
6281 && i.tm.operands > 2U - i.tm.opcode_modifier.sse2avx
6282 && !i.tm.opcode_modifier.regmem;
6283 }
6284
6285 return t;
6286 }
6287
6288 static int
6289 check_string (void)
6290 {
6291 unsigned int es_op = i.tm.opcode_modifier.isstring - IS_STRING_ES_OP0;
6292 unsigned int op = i.tm.operand_types[0].bitfield.baseindex ? es_op : 0;
6293
6294 if (i.seg[op] != NULL && i.seg[op] != &es)
6295 {
6296 as_bad (_("`%s' operand %u must use `%ses' segment"),
6297 i.tm.name,
6298 intel_syntax ? i.tm.operands - es_op : es_op + 1,
6299 register_prefix);
6300 return 0;
6301 }
6302
6303 /* There's only ever one segment override allowed per instruction.
6304 This instruction possibly has a legal segment override on the
6305 second operand, so copy the segment to where non-string
6306 instructions store it, allowing common code. */
6307 i.seg[op] = i.seg[1];
6308
6309 return 1;
6310 }
6311
6312 static int
6313 process_suffix (void)
6314 {
6315 /* If matched instruction specifies an explicit instruction mnemonic
6316 suffix, use it. */
6317 if (i.tm.opcode_modifier.size == SIZE16)
6318 i.suffix = WORD_MNEM_SUFFIX;
6319 else if (i.tm.opcode_modifier.size == SIZE32)
6320 i.suffix = LONG_MNEM_SUFFIX;
6321 else if (i.tm.opcode_modifier.size == SIZE64)
6322 i.suffix = QWORD_MNEM_SUFFIX;
6323 else if (i.reg_operands
6324 && (i.operands > 1 || i.types[0].bitfield.class == Reg)
6325 && !i.tm.opcode_modifier.addrprefixopreg)
6326 {
6327 unsigned int numop = i.operands;
6328
6329 /* movsx/movzx want only their source operand considered here, for the
6330 ambiguity checking below. The suffix will be replaced afterwards
6331 to represent the destination (register). */
6332 if (((i.tm.base_opcode | 8) == 0xfbe && i.tm.opcode_modifier.w)
6333 || (i.tm.base_opcode == 0x63 && i.tm.cpu_flags.bitfield.cpu64))
6334 --i.operands;
6335
6336 /* If there's no instruction mnemonic suffix we try to invent one
6337 based on GPR operands. */
6338 if (!i.suffix)
6339 {
6340 /* We take i.suffix from the last register operand specified,
6341 Destination register type is more significant than source
6342 register type. crc32 in SSE4.2 prefers source register
6343 type. */
6344 unsigned int op = i.tm.base_opcode != 0xf20f38f0 ? i.operands : 1;
6345
6346 while (op--)
6347 if (i.tm.operand_types[op].bitfield.instance == InstanceNone
6348 || i.tm.operand_types[op].bitfield.instance == Accum)
6349 {
6350 if (i.types[op].bitfield.class != Reg)
6351 continue;
6352 if (i.types[op].bitfield.byte)
6353 i.suffix = BYTE_MNEM_SUFFIX;
6354 else if (i.types[op].bitfield.word)
6355 i.suffix = WORD_MNEM_SUFFIX;
6356 else if (i.types[op].bitfield.dword)
6357 i.suffix = LONG_MNEM_SUFFIX;
6358 else if (i.types[op].bitfield.qword)
6359 i.suffix = QWORD_MNEM_SUFFIX;
6360 else
6361 continue;
6362 break;
6363 }
6364
6365 /* As an exception, movsx/movzx silently default to a byte source
6366 in AT&T mode. */
6367 if ((i.tm.base_opcode | 8) == 0xfbe && i.tm.opcode_modifier.w
6368 && !i.suffix && !intel_syntax)
6369 i.suffix = BYTE_MNEM_SUFFIX;
6370 }
6371 else if (i.suffix == BYTE_MNEM_SUFFIX)
6372 {
6373 if (intel_syntax
6374 && i.tm.opcode_modifier.ignoresize
6375 && i.tm.opcode_modifier.no_bsuf)
6376 i.suffix = 0;
6377 else if (!check_byte_reg ())
6378 return 0;
6379 }
6380 else if (i.suffix == LONG_MNEM_SUFFIX)
6381 {
6382 if (intel_syntax
6383 && i.tm.opcode_modifier.ignoresize
6384 && i.tm.opcode_modifier.no_lsuf
6385 && !i.tm.opcode_modifier.todword
6386 && !i.tm.opcode_modifier.toqword)
6387 i.suffix = 0;
6388 else if (!check_long_reg ())
6389 return 0;
6390 }
6391 else if (i.suffix == QWORD_MNEM_SUFFIX)
6392 {
6393 if (intel_syntax
6394 && i.tm.opcode_modifier.ignoresize
6395 && i.tm.opcode_modifier.no_qsuf
6396 && !i.tm.opcode_modifier.todword
6397 && !i.tm.opcode_modifier.toqword)
6398 i.suffix = 0;
6399 else if (!check_qword_reg ())
6400 return 0;
6401 }
6402 else if (i.suffix == WORD_MNEM_SUFFIX)
6403 {
6404 if (intel_syntax
6405 && i.tm.opcode_modifier.ignoresize
6406 && i.tm.opcode_modifier.no_wsuf)
6407 i.suffix = 0;
6408 else if (!check_word_reg ())
6409 return 0;
6410 }
6411 else if (intel_syntax && i.tm.opcode_modifier.ignoresize)
6412 /* Do nothing if the instruction is going to ignore the prefix. */
6413 ;
6414 else
6415 abort ();
6416
6417 /* Undo the movsx/movzx change done above. */
6418 i.operands = numop;
6419 }
6420 else if (i.tm.opcode_modifier.defaultsize && !i.suffix)
6421 {
6422 i.suffix = stackop_size;
6423 if (stackop_size == LONG_MNEM_SUFFIX)
6424 {
6425 /* stackop_size is set to LONG_MNEM_SUFFIX for the
6426 .code16gcc directive to support 16-bit mode with
6427 32-bit address. For IRET without a suffix, generate
6428 16-bit IRET (opcode 0xcf) to return from an interrupt
6429 handler. */
6430 if (i.tm.base_opcode == 0xcf)
6431 {
6432 i.suffix = WORD_MNEM_SUFFIX;
6433 as_warn (_("generating 16-bit `iret' for .code16gcc directive"));
6434 }
6435 /* Warn about changed behavior for segment register push/pop. */
6436 else if ((i.tm.base_opcode | 1) == 0x07)
6437 as_warn (_("generating 32-bit `%s', unlike earlier gas versions"),
6438 i.tm.name);
6439 }
6440 }
6441 else if (!i.suffix
6442 && (i.tm.opcode_modifier.jump == JUMP_ABSOLUTE
6443 || i.tm.opcode_modifier.jump == JUMP_BYTE
6444 || i.tm.opcode_modifier.jump == JUMP_INTERSEGMENT
6445 || (i.tm.base_opcode == 0x0f01 /* [ls][gi]dt */
6446 && i.tm.extension_opcode <= 3)))
6447 {
6448 switch (flag_code)
6449 {
6450 case CODE_64BIT:
6451 if (!i.tm.opcode_modifier.no_qsuf)
6452 {
6453 i.suffix = QWORD_MNEM_SUFFIX;
6454 break;
6455 }
6456 /* Fall through. */
6457 case CODE_32BIT:
6458 if (!i.tm.opcode_modifier.no_lsuf)
6459 i.suffix = LONG_MNEM_SUFFIX;
6460 break;
6461 case CODE_16BIT:
6462 if (!i.tm.opcode_modifier.no_wsuf)
6463 i.suffix = WORD_MNEM_SUFFIX;
6464 break;
6465 }
6466 }
6467
6468 if (!i.suffix
6469 && (!i.tm.opcode_modifier.defaultsize
6470 /* Also cover lret/retf/iret in 64-bit mode. */
6471 || (flag_code == CODE_64BIT
6472 && !i.tm.opcode_modifier.no_lsuf
6473 && !i.tm.opcode_modifier.no_qsuf))
6474 && !i.tm.opcode_modifier.ignoresize
6475 /* Accept FLDENV et al without suffix. */
6476 && (i.tm.opcode_modifier.no_ssuf || i.tm.opcode_modifier.floatmf))
6477 {
6478 unsigned int suffixes, evex = 0;
6479
6480 suffixes = !i.tm.opcode_modifier.no_bsuf;
6481 if (!i.tm.opcode_modifier.no_wsuf)
6482 suffixes |= 1 << 1;
6483 if (!i.tm.opcode_modifier.no_lsuf)
6484 suffixes |= 1 << 2;
6485 if (!i.tm.opcode_modifier.no_ldsuf)
6486 suffixes |= 1 << 3;
6487 if (!i.tm.opcode_modifier.no_ssuf)
6488 suffixes |= 1 << 4;
6489 if (flag_code == CODE_64BIT && !i.tm.opcode_modifier.no_qsuf)
6490 suffixes |= 1 << 5;
6491
6492 /* For [XYZ]MMWORD operands inspect operand sizes. While generally
6493 also suitable for AT&T syntax mode, it was requested that this be
6494 restricted to just Intel syntax. */
6495 if (intel_syntax && is_any_vex_encoding (&i.tm) && !i.broadcast)
6496 {
6497 unsigned int op;
6498
6499 for (op = 0; op < i.tm.operands; ++op)
6500 {
6501 if (is_evex_encoding (&i.tm)
6502 && !cpu_arch_flags.bitfield.cpuavx512vl)
6503 {
6504 if (i.tm.operand_types[op].bitfield.ymmword)
6505 i.tm.operand_types[op].bitfield.xmmword = 0;
6506 if (i.tm.operand_types[op].bitfield.zmmword)
6507 i.tm.operand_types[op].bitfield.ymmword = 0;
6508 if (!i.tm.opcode_modifier.evex
6509 || i.tm.opcode_modifier.evex == EVEXDYN)
6510 i.tm.opcode_modifier.evex = EVEX512;
6511 }
6512
6513 if (i.tm.operand_types[op].bitfield.xmmword
6514 + i.tm.operand_types[op].bitfield.ymmword
6515 + i.tm.operand_types[op].bitfield.zmmword < 2)
6516 continue;
6517
6518 /* Any properly sized operand disambiguates the insn. */
6519 if (i.types[op].bitfield.xmmword
6520 || i.types[op].bitfield.ymmword
6521 || i.types[op].bitfield.zmmword)
6522 {
6523 suffixes &= ~(7 << 6);
6524 evex = 0;
6525 break;
6526 }
6527
6528 if ((i.flags[op] & Operand_Mem)
6529 && i.tm.operand_types[op].bitfield.unspecified)
6530 {
6531 if (i.tm.operand_types[op].bitfield.xmmword)
6532 suffixes |= 1 << 6;
6533 if (i.tm.operand_types[op].bitfield.ymmword)
6534 suffixes |= 1 << 7;
6535 if (i.tm.operand_types[op].bitfield.zmmword)
6536 suffixes |= 1 << 8;
6537 if (is_evex_encoding (&i.tm))
6538 evex = EVEX512;
6539 }
6540 }
6541 }
6542
6543 /* Are multiple suffixes / operand sizes allowed? */
6544 if (suffixes & (suffixes - 1))
6545 {
6546 if (intel_syntax
6547 && (!i.tm.opcode_modifier.defaultsize
6548 || operand_check == check_error))
6549 {
6550 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
6551 return 0;
6552 }
6553 if (operand_check == check_error)
6554 {
6555 as_bad (_("no instruction mnemonic suffix given and "
6556 "no register operands; can't size `%s'"), i.tm.name);
6557 return 0;
6558 }
6559 if (operand_check == check_warning)
6560 as_warn (_("%s; using default for `%s'"),
6561 intel_syntax
6562 ? _("ambiguous operand size")
6563 : _("no instruction mnemonic suffix given and "
6564 "no register operands"),
6565 i.tm.name);
6566
6567 if (i.tm.opcode_modifier.floatmf)
6568 i.suffix = SHORT_MNEM_SUFFIX;
6569 else if ((i.tm.base_opcode | 8) == 0xfbe
6570 || (i.tm.base_opcode == 0x63
6571 && i.tm.cpu_flags.bitfield.cpu64))
6572 /* handled below */;
6573 else if (evex)
6574 i.tm.opcode_modifier.evex = evex;
6575 else if (flag_code == CODE_16BIT)
6576 i.suffix = WORD_MNEM_SUFFIX;
6577 else if (!i.tm.opcode_modifier.no_lsuf)
6578 i.suffix = LONG_MNEM_SUFFIX;
6579 else
6580 i.suffix = QWORD_MNEM_SUFFIX;
6581 }
6582 }
6583
6584 if ((i.tm.base_opcode | 8) == 0xfbe
6585 || (i.tm.base_opcode == 0x63 && i.tm.cpu_flags.bitfield.cpu64))
6586 {
6587 /* In Intel syntax, movsx/movzx must have a "suffix" (checked above).
6588 In AT&T syntax, if there is no suffix (warned about above), the default
6589 will be byte extension. */
6590 if (i.tm.opcode_modifier.w && i.suffix && i.suffix != BYTE_MNEM_SUFFIX)
6591 i.tm.base_opcode |= 1;
6592
6593 /* For further processing, the suffix should represent the destination
6594 (register). This is already the case when one was used with
6595 mov[sz][bw]*, but we need to replace it for mov[sz]x, or if there was
6596 no suffix to begin with. */
6597 if (i.tm.opcode_modifier.w || i.tm.base_opcode == 0x63 || !i.suffix)
6598 {
6599 if (i.types[1].bitfield.word)
6600 i.suffix = WORD_MNEM_SUFFIX;
6601 else if (i.types[1].bitfield.qword)
6602 i.suffix = QWORD_MNEM_SUFFIX;
6603 else
6604 i.suffix = LONG_MNEM_SUFFIX;
6605
6606 i.tm.opcode_modifier.w = 0;
6607 }
6608 }
6609
6610 if (!i.tm.opcode_modifier.modrm && i.reg_operands && i.tm.operands < 3)
6611 i.short_form = (i.tm.operand_types[0].bitfield.class == Reg)
6612 != (i.tm.operand_types[1].bitfield.class == Reg);
6613
6614 /* Change the opcode based on the operand size given by i.suffix. */
6615 switch (i.suffix)
6616 {
6617 /* Size floating point instruction. */
6618 case LONG_MNEM_SUFFIX:
6619 if (i.tm.opcode_modifier.floatmf)
6620 {
6621 i.tm.base_opcode ^= 4;
6622 break;
6623 }
6624 /* fall through */
6625 case WORD_MNEM_SUFFIX:
6626 case QWORD_MNEM_SUFFIX:
6627 /* It's not a byte, select word/dword operation. */
6628 if (i.tm.opcode_modifier.w)
6629 {
6630 if (i.short_form)
6631 i.tm.base_opcode |= 8;
6632 else
6633 i.tm.base_opcode |= 1;
6634 }
6635 /* fall through */
6636 case SHORT_MNEM_SUFFIX:
6637 /* Now select between word & dword operations via the operand
6638 size prefix, except for instructions that will ignore this
6639 prefix anyway. */
6640 if (i.suffix != QWORD_MNEM_SUFFIX
6641 && !i.tm.opcode_modifier.ignoresize
6642 && !i.tm.opcode_modifier.floatmf
6643 && !is_any_vex_encoding (&i.tm)
6644 && ((i.suffix == LONG_MNEM_SUFFIX) == (flag_code == CODE_16BIT)
6645 || (flag_code == CODE_64BIT
6646 && i.tm.opcode_modifier.jump == JUMP_BYTE)))
6647 {
6648 unsigned int prefix = DATA_PREFIX_OPCODE;
6649
6650 if (i.tm.opcode_modifier.jump == JUMP_BYTE) /* jcxz, loop */
6651 prefix = ADDR_PREFIX_OPCODE;
6652
6653 if (!add_prefix (prefix))
6654 return 0;
6655 }
6656
6657 /* Set mode64 for an operand. */
6658 if (i.suffix == QWORD_MNEM_SUFFIX
6659 && flag_code == CODE_64BIT
6660 && !i.tm.opcode_modifier.norex64
6661 /* Special case for xchg %rax,%rax. It is NOP and doesn't
6662 need rex64. */
6663 && ! (i.operands == 2
6664 && i.tm.base_opcode == 0x90
6665 && i.tm.extension_opcode == None
6666 && i.types[0].bitfield.instance == Accum
6667 && i.types[0].bitfield.qword
6668 && i.types[1].bitfield.instance == Accum
6669 && i.types[1].bitfield.qword))
6670 i.rex |= REX_W;
6671
6672 break;
6673 }
6674
6675 if (i.tm.opcode_modifier.addrprefixopreg)
6676 {
6677 gas_assert (!i.suffix);
6678 gas_assert (i.reg_operands);
6679
6680 if (i.tm.operand_types[0].bitfield.instance == Accum
6681 || i.operands == 1)
6682 {
6683 /* The address size override prefix changes the size of the
6684 first operand. */
6685 if (flag_code == CODE_64BIT
6686 && i.op[0].regs->reg_type.bitfield.word)
6687 {
6688 as_bad (_("16-bit addressing unavailable for `%s'"),
6689 i.tm.name);
6690 return 0;
6691 }
6692
6693 if ((flag_code == CODE_32BIT
6694 ? i.op[0].regs->reg_type.bitfield.word
6695 : i.op[0].regs->reg_type.bitfield.dword)
6696 && !add_prefix (ADDR_PREFIX_OPCODE))
6697 return 0;
6698 }
6699 else
6700 {
6701 /* Check invalid register operand when the address size override
6702 prefix changes the size of register operands. */
6703 unsigned int op;
6704 enum { need_word, need_dword, need_qword } need;
6705
6706 if (flag_code == CODE_32BIT)
6707 need = i.prefix[ADDR_PREFIX] ? need_word : need_dword;
6708 else if (i.prefix[ADDR_PREFIX])
6709 need = need_dword;
6710 else
6711 need = flag_code == CODE_64BIT ? need_qword : need_word;
6712
6713 for (op = 0; op < i.operands; op++)
6714 {
6715 if (i.types[op].bitfield.class != Reg)
6716 continue;
6717
6718 switch (need)
6719 {
6720 case need_word:
6721 if (i.op[op].regs->reg_type.bitfield.word)
6722 continue;
6723 break;
6724 case need_dword:
6725 if (i.op[op].regs->reg_type.bitfield.dword)
6726 continue;
6727 break;
6728 case need_qword:
6729 if (i.op[op].regs->reg_type.bitfield.qword)
6730 continue;
6731 break;
6732 }
6733
6734 as_bad (_("invalid register operand size for `%s'"),
6735 i.tm.name);
6736 return 0;
6737 }
6738 }
6739 }
6740
6741 return 1;
6742 }
6743
6744 static int
6745 check_byte_reg (void)
6746 {
6747 int op;
6748
6749 for (op = i.operands; --op >= 0;)
6750 {
6751 /* Skip non-register operands. */
6752 if (i.types[op].bitfield.class != Reg)
6753 continue;
6754
6755 /* If this is an eight bit register, it's OK. If it's the 16 or
6756 32 bit version of an eight bit register, we will just use the
6757 low portion, and that's OK too. */
6758 if (i.types[op].bitfield.byte)
6759 continue;
6760
6761 /* I/O port address operands are OK too. */
6762 if (i.tm.operand_types[op].bitfield.instance == RegD
6763 && i.tm.operand_types[op].bitfield.word)
6764 continue;
6765
6766 /* crc32 only wants its source operand checked here. */
6767 if (i.tm.base_opcode == 0xf20f38f0 && op)
6768 continue;
6769
6770 /* Any other register is bad. */
6771 if (i.types[op].bitfield.class == Reg
6772 || i.types[op].bitfield.class == RegMMX
6773 || i.types[op].bitfield.class == RegSIMD
6774 || i.types[op].bitfield.class == SReg
6775 || i.types[op].bitfield.class == RegCR
6776 || i.types[op].bitfield.class == RegDR
6777 || i.types[op].bitfield.class == RegTR)
6778 {
6779 as_bad (_("`%s%s' not allowed with `%s%c'"),
6780 register_prefix,
6781 i.op[op].regs->reg_name,
6782 i.tm.name,
6783 i.suffix);
6784 return 0;
6785 }
6786 }
6787 return 1;
6788 }
6789
6790 static int
6791 check_long_reg (void)
6792 {
6793 int op;
6794
6795 for (op = i.operands; --op >= 0;)
6796 /* Skip non-register operands. */
6797 if (i.types[op].bitfield.class != Reg)
6798 continue;
6799 /* Reject eight bit registers, except where the template requires
6800 them. (eg. movzb) */
6801 else if (i.types[op].bitfield.byte
6802 && (i.tm.operand_types[op].bitfield.class == Reg
6803 || i.tm.operand_types[op].bitfield.instance == Accum)
6804 && (i.tm.operand_types[op].bitfield.word
6805 || i.tm.operand_types[op].bitfield.dword))
6806 {
6807 as_bad (_("`%s%s' not allowed with `%s%c'"),
6808 register_prefix,
6809 i.op[op].regs->reg_name,
6810 i.tm.name,
6811 i.suffix);
6812 return 0;
6813 }
6814 /* Error if the e prefix on a general reg is missing. */
6815 else if (i.types[op].bitfield.word
6816 && (i.tm.operand_types[op].bitfield.class == Reg
6817 || i.tm.operand_types[op].bitfield.instance == Accum)
6818 && i.tm.operand_types[op].bitfield.dword)
6819 {
6820 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
6821 register_prefix, i.op[op].regs->reg_name,
6822 i.suffix);
6823 return 0;
6824 }
6825 /* Warn if the r prefix on a general reg is present. */
6826 else if (i.types[op].bitfield.qword
6827 && (i.tm.operand_types[op].bitfield.class == Reg
6828 || i.tm.operand_types[op].bitfield.instance == Accum)
6829 && i.tm.operand_types[op].bitfield.dword)
6830 {
6831 if (intel_syntax
6832 && i.tm.opcode_modifier.toqword
6833 && i.types[0].bitfield.class != RegSIMD)
6834 {
6835 /* Convert to QWORD. We want REX byte. */
6836 i.suffix = QWORD_MNEM_SUFFIX;
6837 }
6838 else
6839 {
6840 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
6841 register_prefix, i.op[op].regs->reg_name,
6842 i.suffix);
6843 return 0;
6844 }
6845 }
6846 return 1;
6847 }
6848
6849 static int
6850 check_qword_reg (void)
6851 {
6852 int op;
6853
6854 for (op = i.operands; --op >= 0; )
6855 /* Skip non-register operands. */
6856 if (i.types[op].bitfield.class != Reg)
6857 continue;
6858 /* Reject eight bit registers, except where the template requires
6859 them. (eg. movzb) */
6860 else if (i.types[op].bitfield.byte
6861 && (i.tm.operand_types[op].bitfield.class == Reg
6862 || i.tm.operand_types[op].bitfield.instance == Accum)
6863 && (i.tm.operand_types[op].bitfield.word
6864 || i.tm.operand_types[op].bitfield.dword))
6865 {
6866 as_bad (_("`%s%s' not allowed with `%s%c'"),
6867 register_prefix,
6868 i.op[op].regs->reg_name,
6869 i.tm.name,
6870 i.suffix);
6871 return 0;
6872 }
6873 /* Warn if the r prefix on a general reg is missing. */
6874 else if ((i.types[op].bitfield.word
6875 || i.types[op].bitfield.dword)
6876 && (i.tm.operand_types[op].bitfield.class == Reg
6877 || i.tm.operand_types[op].bitfield.instance == Accum)
6878 && i.tm.operand_types[op].bitfield.qword)
6879 {
6880 /* Prohibit these changes in the 64bit mode, since the
6881 lowering is more complicated. */
6882 if (intel_syntax
6883 && i.tm.opcode_modifier.todword
6884 && i.types[0].bitfield.class != RegSIMD)
6885 {
6886 /* Convert to DWORD. We don't want REX byte. */
6887 i.suffix = LONG_MNEM_SUFFIX;
6888 }
6889 else
6890 {
6891 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
6892 register_prefix, i.op[op].regs->reg_name,
6893 i.suffix);
6894 return 0;
6895 }
6896 }
6897 return 1;
6898 }
6899
6900 static int
6901 check_word_reg (void)
6902 {
6903 int op;
6904 for (op = i.operands; --op >= 0;)
6905 /* Skip non-register operands. */
6906 if (i.types[op].bitfield.class != Reg)
6907 continue;
6908 /* Reject eight bit registers, except where the template requires
6909 them. (eg. movzb) */
6910 else if (i.types[op].bitfield.byte
6911 && (i.tm.operand_types[op].bitfield.class == Reg
6912 || i.tm.operand_types[op].bitfield.instance == Accum)
6913 && (i.tm.operand_types[op].bitfield.word
6914 || i.tm.operand_types[op].bitfield.dword))
6915 {
6916 as_bad (_("`%s%s' not allowed with `%s%c'"),
6917 register_prefix,
6918 i.op[op].regs->reg_name,
6919 i.tm.name,
6920 i.suffix);
6921 return 0;
6922 }
6923 /* Error if the e or r prefix on a general reg is present. */
6924 else if ((i.types[op].bitfield.dword
6925 || i.types[op].bitfield.qword)
6926 && (i.tm.operand_types[op].bitfield.class == Reg
6927 || i.tm.operand_types[op].bitfield.instance == Accum)
6928 && i.tm.operand_types[op].bitfield.word)
6929 {
6930 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
6931 register_prefix, i.op[op].regs->reg_name,
6932 i.suffix);
6933 return 0;
6934 }
6935 return 1;
6936 }
6937
6938 static int
6939 update_imm (unsigned int j)
6940 {
6941 i386_operand_type overlap = i.types[j];
6942 if ((overlap.bitfield.imm8
6943 || overlap.bitfield.imm8s
6944 || overlap.bitfield.imm16
6945 || overlap.bitfield.imm32
6946 || overlap.bitfield.imm32s
6947 || overlap.bitfield.imm64)
6948 && !operand_type_equal (&overlap, &imm8)
6949 && !operand_type_equal (&overlap, &imm8s)
6950 && !operand_type_equal (&overlap, &imm16)
6951 && !operand_type_equal (&overlap, &imm32)
6952 && !operand_type_equal (&overlap, &imm32s)
6953 && !operand_type_equal (&overlap, &imm64))
6954 {
6955 if (i.suffix)
6956 {
6957 i386_operand_type temp;
6958
6959 operand_type_set (&temp, 0);
6960 if (i.suffix == BYTE_MNEM_SUFFIX)
6961 {
6962 temp.bitfield.imm8 = overlap.bitfield.imm8;
6963 temp.bitfield.imm8s = overlap.bitfield.imm8s;
6964 }
6965 else if (i.suffix == WORD_MNEM_SUFFIX)
6966 temp.bitfield.imm16 = overlap.bitfield.imm16;
6967 else if (i.suffix == QWORD_MNEM_SUFFIX)
6968 {
6969 temp.bitfield.imm64 = overlap.bitfield.imm64;
6970 temp.bitfield.imm32s = overlap.bitfield.imm32s;
6971 }
6972 else
6973 temp.bitfield.imm32 = overlap.bitfield.imm32;
6974 overlap = temp;
6975 }
6976 else if (operand_type_equal (&overlap, &imm16_32_32s)
6977 || operand_type_equal (&overlap, &imm16_32)
6978 || operand_type_equal (&overlap, &imm16_32s))
6979 {
6980 if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
6981 overlap = imm16;
6982 else
6983 overlap = imm32s;
6984 }
6985 if (!operand_type_equal (&overlap, &imm8)
6986 && !operand_type_equal (&overlap, &imm8s)
6987 && !operand_type_equal (&overlap, &imm16)
6988 && !operand_type_equal (&overlap, &imm32)
6989 && !operand_type_equal (&overlap, &imm32s)
6990 && !operand_type_equal (&overlap, &imm64))
6991 {
6992 as_bad (_("no instruction mnemonic suffix given; "
6993 "can't determine immediate size"));
6994 return 0;
6995 }
6996 }
6997 i.types[j] = overlap;
6998
6999 return 1;
7000 }
7001
7002 static int
7003 finalize_imm (void)
7004 {
7005 unsigned int j, n;
7006
7007 /* Update the first 2 immediate operands. */
7008 n = i.operands > 2 ? 2 : i.operands;
7009 if (n)
7010 {
7011 for (j = 0; j < n; j++)
7012 if (update_imm (j) == 0)
7013 return 0;
7014
7015 /* The 3rd operand can't be immediate operand. */
7016 gas_assert (operand_type_check (i.types[2], imm) == 0);
7017 }
7018
7019 return 1;
7020 }
7021
7022 static int
7023 process_operands (void)
7024 {
7025 /* Default segment register this instruction will use for memory
7026 accesses. 0 means unknown. This is only for optimizing out
7027 unnecessary segment overrides. */
7028 const seg_entry *default_seg = 0;
7029
7030 if (i.tm.opcode_modifier.sse2avx && i.tm.opcode_modifier.vexvvvv)
7031 {
7032 unsigned int dupl = i.operands;
7033 unsigned int dest = dupl - 1;
7034 unsigned int j;
7035
7036 /* The destination must be an xmm register. */
7037 gas_assert (i.reg_operands
7038 && MAX_OPERANDS > dupl
7039 && operand_type_equal (&i.types[dest], &regxmm));
7040
7041 if (i.tm.operand_types[0].bitfield.instance == Accum
7042 && i.tm.operand_types[0].bitfield.xmmword)
7043 {
7044 if (i.tm.opcode_modifier.vexsources == VEX3SOURCES)
7045 {
7046 /* Keep xmm0 for instructions with VEX prefix and 3
7047 sources. */
7048 i.tm.operand_types[0].bitfield.instance = InstanceNone;
7049 i.tm.operand_types[0].bitfield.class = RegSIMD;
7050 goto duplicate;
7051 }
7052 else
7053 {
7054 /* We remove the first xmm0 and keep the number of
7055 operands unchanged, which in fact duplicates the
7056 destination. */
7057 for (j = 1; j < i.operands; j++)
7058 {
7059 i.op[j - 1] = i.op[j];
7060 i.types[j - 1] = i.types[j];
7061 i.tm.operand_types[j - 1] = i.tm.operand_types[j];
7062 i.flags[j - 1] = i.flags[j];
7063 }
7064 }
7065 }
7066 else if (i.tm.opcode_modifier.implicit1stxmm0)
7067 {
7068 gas_assert ((MAX_OPERANDS - 1) > dupl
7069 && (i.tm.opcode_modifier.vexsources
7070 == VEX3SOURCES));
7071
7072 /* Add the implicit xmm0 for instructions with VEX prefix
7073 and 3 sources. */
7074 for (j = i.operands; j > 0; j--)
7075 {
7076 i.op[j] = i.op[j - 1];
7077 i.types[j] = i.types[j - 1];
7078 i.tm.operand_types[j] = i.tm.operand_types[j - 1];
7079 i.flags[j] = i.flags[j - 1];
7080 }
7081 i.op[0].regs
7082 = (const reg_entry *) hash_find (reg_hash, "xmm0");
7083 i.types[0] = regxmm;
7084 i.tm.operand_types[0] = regxmm;
7085
7086 i.operands += 2;
7087 i.reg_operands += 2;
7088 i.tm.operands += 2;
7089
7090 dupl++;
7091 dest++;
7092 i.op[dupl] = i.op[dest];
7093 i.types[dupl] = i.types[dest];
7094 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
7095 i.flags[dupl] = i.flags[dest];
7096 }
7097 else
7098 {
7099 duplicate:
7100 i.operands++;
7101 i.reg_operands++;
7102 i.tm.operands++;
7103
7104 i.op[dupl] = i.op[dest];
7105 i.types[dupl] = i.types[dest];
7106 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
7107 i.flags[dupl] = i.flags[dest];
7108 }
7109
7110 if (i.tm.opcode_modifier.immext)
7111 process_immext ();
7112 }
7113 else if (i.tm.operand_types[0].bitfield.instance == Accum
7114 && i.tm.operand_types[0].bitfield.xmmword)
7115 {
7116 unsigned int j;
7117
7118 for (j = 1; j < i.operands; j++)
7119 {
7120 i.op[j - 1] = i.op[j];
7121 i.types[j - 1] = i.types[j];
7122
7123 /* We need to adjust fields in i.tm since they are used by
7124 build_modrm_byte. */
7125 i.tm.operand_types [j - 1] = i.tm.operand_types [j];
7126
7127 i.flags[j - 1] = i.flags[j];
7128 }
7129
7130 i.operands--;
7131 i.reg_operands--;
7132 i.tm.operands--;
7133 }
7134 else if (i.tm.opcode_modifier.implicitquadgroup)
7135 {
7136 unsigned int regnum, first_reg_in_group, last_reg_in_group;
7137
7138 /* The second operand must be {x,y,z}mmN, where N is a multiple of 4. */
7139 gas_assert (i.operands >= 2 && i.types[1].bitfield.class == RegSIMD);
7140 regnum = register_number (i.op[1].regs);
7141 first_reg_in_group = regnum & ~3;
7142 last_reg_in_group = first_reg_in_group + 3;
7143 if (regnum != first_reg_in_group)
7144 as_warn (_("source register `%s%s' implicitly denotes"
7145 " `%s%.3s%u' to `%s%.3s%u' source group in `%s'"),
7146 register_prefix, i.op[1].regs->reg_name,
7147 register_prefix, i.op[1].regs->reg_name, first_reg_in_group,
7148 register_prefix, i.op[1].regs->reg_name, last_reg_in_group,
7149 i.tm.name);
7150 }
7151 else if (i.tm.opcode_modifier.regkludge)
7152 {
7153 /* The imul $imm, %reg instruction is converted into
7154 imul $imm, %reg, %reg, and the clr %reg instruction
7155 is converted into xor %reg, %reg. */
7156
7157 unsigned int first_reg_op;
7158
7159 if (operand_type_check (i.types[0], reg))
7160 first_reg_op = 0;
7161 else
7162 first_reg_op = 1;
7163 /* Pretend we saw the extra register operand. */
7164 gas_assert (i.reg_operands == 1
7165 && i.op[first_reg_op + 1].regs == 0);
7166 i.op[first_reg_op + 1].regs = i.op[first_reg_op].regs;
7167 i.types[first_reg_op + 1] = i.types[first_reg_op];
7168 i.operands++;
7169 i.reg_operands++;
7170 }
7171
7172 if (i.tm.opcode_modifier.modrm)
7173 {
7174 /* The opcode is completed (modulo i.tm.extension_opcode which
7175 must be put into the modrm byte). Now, we make the modrm and
7176 index base bytes based on all the info we've collected. */
7177
7178 default_seg = build_modrm_byte ();
7179 }
7180 else if (i.types[0].bitfield.class == SReg)
7181 {
7182 if (flag_code != CODE_64BIT
7183 ? i.tm.base_opcode == POP_SEG_SHORT
7184 && i.op[0].regs->reg_num == 1
7185 : (i.tm.base_opcode | 1) == POP_SEG386_SHORT
7186 && i.op[0].regs->reg_num < 4)
7187 {
7188 as_bad (_("you can't `%s %s%s'"),
7189 i.tm.name, register_prefix, i.op[0].regs->reg_name);
7190 return 0;
7191 }
7192 if ( i.op[0].regs->reg_num > 3 && i.tm.opcode_length == 1 )
7193 {
7194 i.tm.base_opcode ^= POP_SEG_SHORT ^ POP_SEG386_SHORT;
7195 i.tm.opcode_length = 2;
7196 }
7197 i.tm.base_opcode |= (i.op[0].regs->reg_num << 3);
7198 }
7199 else if ((i.tm.base_opcode & ~0x3) == MOV_AX_DISP32)
7200 {
7201 default_seg = &ds;
7202 }
7203 else if (i.tm.opcode_modifier.isstring)
7204 {
7205 /* For the string instructions that allow a segment override
7206 on one of their operands, the default segment is ds. */
7207 default_seg = &ds;
7208 }
7209 else if (i.short_form)
7210 {
7211 /* The register or float register operand is in operand
7212 0 or 1. */
7213 unsigned int op = i.tm.operand_types[0].bitfield.class != Reg;
7214
7215 /* Register goes in low 3 bits of opcode. */
7216 i.tm.base_opcode |= i.op[op].regs->reg_num;
7217 if ((i.op[op].regs->reg_flags & RegRex) != 0)
7218 i.rex |= REX_B;
7219 if (!quiet_warnings && i.tm.opcode_modifier.ugh)
7220 {
7221 /* Warn about some common errors, but press on regardless.
7222 The first case can be generated by gcc (<= 2.8.1). */
7223 if (i.operands == 2)
7224 {
7225 /* Reversed arguments on faddp, fsubp, etc. */
7226 as_warn (_("translating to `%s %s%s,%s%s'"), i.tm.name,
7227 register_prefix, i.op[!intel_syntax].regs->reg_name,
7228 register_prefix, i.op[intel_syntax].regs->reg_name);
7229 }
7230 else
7231 {
7232 /* Extraneous `l' suffix on fp insn. */
7233 as_warn (_("translating to `%s %s%s'"), i.tm.name,
7234 register_prefix, i.op[0].regs->reg_name);
7235 }
7236 }
7237 }
7238
7239 if ((i.seg[0] || i.prefix[SEG_PREFIX])
7240 && i.tm.base_opcode == 0x8d /* lea */
7241 && !is_any_vex_encoding(&i.tm))
7242 {
7243 if (!quiet_warnings)
7244 as_warn (_("segment override on `%s' is ineffectual"), i.tm.name);
7245 if (optimize)
7246 {
7247 i.seg[0] = NULL;
7248 i.prefix[SEG_PREFIX] = 0;
7249 }
7250 }
7251
7252 /* If a segment was explicitly specified, and the specified segment
7253 is neither the default nor the one already recorded from a prefix,
7254 use an opcode prefix to select it. If we never figured out what
7255 the default segment is, then default_seg will be zero at this
7256 point, and the specified segment prefix will always be used. */
7257 if (i.seg[0]
7258 && i.seg[0] != default_seg
7259 && i.seg[0]->seg_prefix != i.prefix[SEG_PREFIX])
7260 {
7261 if (!add_prefix (i.seg[0]->seg_prefix))
7262 return 0;
7263 }
7264 return 1;
7265 }
7266
7267 static const seg_entry *
7268 build_modrm_byte (void)
7269 {
7270 const seg_entry *default_seg = 0;
7271 unsigned int source, dest;
7272 int vex_3_sources;
7273
7274 vex_3_sources = i.tm.opcode_modifier.vexsources == VEX3SOURCES;
7275 if (vex_3_sources)
7276 {
7277 unsigned int nds, reg_slot;
7278 expressionS *exp;
7279
7280 dest = i.operands - 1;
7281 nds = dest - 1;
7282
7283 /* There are 2 kinds of instructions:
7284 1. 5 operands: 4 register operands or 3 register operands
7285 plus 1 memory operand plus one Imm4 operand, VexXDS, and
7286 VexW0 or VexW1. The destination must be either XMM, YMM or
7287 ZMM register.
7288 2. 4 operands: 4 register operands or 3 register operands
7289 plus 1 memory operand, with VexXDS. */
7290 gas_assert ((i.reg_operands == 4
7291 || (i.reg_operands == 3 && i.mem_operands == 1))
7292 && i.tm.opcode_modifier.vexvvvv == VEXXDS
7293 && i.tm.opcode_modifier.vexw
7294 && i.tm.operand_types[dest].bitfield.class == RegSIMD);
7295
7296 /* If VexW1 is set, the first non-immediate operand is the source and
7297 the second non-immediate one is encoded in the immediate operand. */
7298 if (i.tm.opcode_modifier.vexw == VEXW1)
7299 {
7300 source = i.imm_operands;
7301 reg_slot = i.imm_operands + 1;
7302 }
7303 else
7304 {
7305 source = i.imm_operands + 1;
7306 reg_slot = i.imm_operands;
7307 }
7308
7309 if (i.imm_operands == 0)
7310 {
7311 /* When there is no immediate operand, generate an 8bit
7312 immediate operand to encode the first operand. */
7313 exp = &im_expressions[i.imm_operands++];
7314 i.op[i.operands].imms = exp;
7315 i.types[i.operands] = imm8;
7316 i.operands++;
7317
7318 gas_assert (i.tm.operand_types[reg_slot].bitfield.class == RegSIMD);
7319 exp->X_op = O_constant;
7320 exp->X_add_number = register_number (i.op[reg_slot].regs) << 4;
7321 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
7322 }
7323 else
7324 {
7325 gas_assert (i.imm_operands == 1);
7326 gas_assert (fits_in_imm4 (i.op[0].imms->X_add_number));
7327 gas_assert (!i.tm.opcode_modifier.immext);
7328
7329 /* Turn on Imm8 again so that output_imm will generate it. */
7330 i.types[0].bitfield.imm8 = 1;
7331
7332 gas_assert (i.tm.operand_types[reg_slot].bitfield.class == RegSIMD);
7333 i.op[0].imms->X_add_number
7334 |= register_number (i.op[reg_slot].regs) << 4;
7335 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
7336 }
7337
7338 gas_assert (i.tm.operand_types[nds].bitfield.class == RegSIMD);
7339 i.vex.register_specifier = i.op[nds].regs;
7340 }
7341 else
7342 source = dest = 0;
7343
7344 /* i.reg_operands MUST be the number of real register operands;
7345 implicit registers do not count. If there are 3 register
7346 operands, it must be a instruction with VexNDS. For a
7347 instruction with VexNDD, the destination register is encoded
7348 in VEX prefix. If there are 4 register operands, it must be
7349 a instruction with VEX prefix and 3 sources. */
7350 if (i.mem_operands == 0
7351 && ((i.reg_operands == 2
7352 && i.tm.opcode_modifier.vexvvvv <= VEXXDS)
7353 || (i.reg_operands == 3
7354 && i.tm.opcode_modifier.vexvvvv == VEXXDS)
7355 || (i.reg_operands == 4 && vex_3_sources)))
7356 {
7357 switch (i.operands)
7358 {
7359 case 2:
7360 source = 0;
7361 break;
7362 case 3:
7363 /* When there are 3 operands, one of them may be immediate,
7364 which may be the first or the last operand. Otherwise,
7365 the first operand must be shift count register (cl) or it
7366 is an instruction with VexNDS. */
7367 gas_assert (i.imm_operands == 1
7368 || (i.imm_operands == 0
7369 && (i.tm.opcode_modifier.vexvvvv == VEXXDS
7370 || (i.types[0].bitfield.instance == RegC
7371 && i.types[0].bitfield.byte))));
7372 if (operand_type_check (i.types[0], imm)
7373 || (i.types[0].bitfield.instance == RegC
7374 && i.types[0].bitfield.byte))
7375 source = 1;
7376 else
7377 source = 0;
7378 break;
7379 case 4:
7380 /* When there are 4 operands, the first two must be 8bit
7381 immediate operands. The source operand will be the 3rd
7382 one.
7383
7384 For instructions with VexNDS, if the first operand
7385 an imm8, the source operand is the 2nd one. If the last
7386 operand is imm8, the source operand is the first one. */
7387 gas_assert ((i.imm_operands == 2
7388 && i.types[0].bitfield.imm8
7389 && i.types[1].bitfield.imm8)
7390 || (i.tm.opcode_modifier.vexvvvv == VEXXDS
7391 && i.imm_operands == 1
7392 && (i.types[0].bitfield.imm8
7393 || i.types[i.operands - 1].bitfield.imm8
7394 || i.rounding)));
7395 if (i.imm_operands == 2)
7396 source = 2;
7397 else
7398 {
7399 if (i.types[0].bitfield.imm8)
7400 source = 1;
7401 else
7402 source = 0;
7403 }
7404 break;
7405 case 5:
7406 if (is_evex_encoding (&i.tm))
7407 {
7408 /* For EVEX instructions, when there are 5 operands, the
7409 first one must be immediate operand. If the second one
7410 is immediate operand, the source operand is the 3th
7411 one. If the last one is immediate operand, the source
7412 operand is the 2nd one. */
7413 gas_assert (i.imm_operands == 2
7414 && i.tm.opcode_modifier.sae
7415 && operand_type_check (i.types[0], imm));
7416 if (operand_type_check (i.types[1], imm))
7417 source = 2;
7418 else if (operand_type_check (i.types[4], imm))
7419 source = 1;
7420 else
7421 abort ();
7422 }
7423 break;
7424 default:
7425 abort ();
7426 }
7427
7428 if (!vex_3_sources)
7429 {
7430 dest = source + 1;
7431
7432 /* RC/SAE operand could be between DEST and SRC. That happens
7433 when one operand is GPR and the other one is XMM/YMM/ZMM
7434 register. */
7435 if (i.rounding && i.rounding->operand == (int) dest)
7436 dest++;
7437
7438 if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
7439 {
7440 /* For instructions with VexNDS, the register-only source
7441 operand must be a 32/64bit integer, XMM, YMM, ZMM, or mask
7442 register. It is encoded in VEX prefix. */
7443
7444 i386_operand_type op;
7445 unsigned int vvvv;
7446
7447 /* Check register-only source operand when two source
7448 operands are swapped. */
7449 if (!i.tm.operand_types[source].bitfield.baseindex
7450 && i.tm.operand_types[dest].bitfield.baseindex)
7451 {
7452 vvvv = source;
7453 source = dest;
7454 }
7455 else
7456 vvvv = dest;
7457
7458 op = i.tm.operand_types[vvvv];
7459 if ((dest + 1) >= i.operands
7460 || ((op.bitfield.class != Reg
7461 || (!op.bitfield.dword && !op.bitfield.qword))
7462 && op.bitfield.class != RegSIMD
7463 && !operand_type_equal (&op, &regmask)))
7464 abort ();
7465 i.vex.register_specifier = i.op[vvvv].regs;
7466 dest++;
7467 }
7468 }
7469
7470 i.rm.mode = 3;
7471 /* One of the register operands will be encoded in the i.rm.reg
7472 field, the other in the combined i.rm.mode and i.rm.regmem
7473 fields. If no form of this instruction supports a memory
7474 destination operand, then we assume the source operand may
7475 sometimes be a memory operand and so we need to store the
7476 destination in the i.rm.reg field. */
7477 if (!i.tm.opcode_modifier.regmem
7478 && operand_type_check (i.tm.operand_types[dest], anymem) == 0)
7479 {
7480 i.rm.reg = i.op[dest].regs->reg_num;
7481 i.rm.regmem = i.op[source].regs->reg_num;
7482 if (i.op[dest].regs->reg_type.bitfield.class == RegMMX
7483 || i.op[source].regs->reg_type.bitfield.class == RegMMX)
7484 i.has_regmmx = TRUE;
7485 else if (i.op[dest].regs->reg_type.bitfield.class == RegSIMD
7486 || i.op[source].regs->reg_type.bitfield.class == RegSIMD)
7487 {
7488 if (i.types[dest].bitfield.zmmword
7489 || i.types[source].bitfield.zmmword)
7490 i.has_regzmm = TRUE;
7491 else if (i.types[dest].bitfield.ymmword
7492 || i.types[source].bitfield.ymmword)
7493 i.has_regymm = TRUE;
7494 else
7495 i.has_regxmm = TRUE;
7496 }
7497 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
7498 i.rex |= REX_R;
7499 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
7500 i.vrex |= REX_R;
7501 if ((i.op[source].regs->reg_flags & RegRex) != 0)
7502 i.rex |= REX_B;
7503 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
7504 i.vrex |= REX_B;
7505 }
7506 else
7507 {
7508 i.rm.reg = i.op[source].regs->reg_num;
7509 i.rm.regmem = i.op[dest].regs->reg_num;
7510 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
7511 i.rex |= REX_B;
7512 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
7513 i.vrex |= REX_B;
7514 if ((i.op[source].regs->reg_flags & RegRex) != 0)
7515 i.rex |= REX_R;
7516 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
7517 i.vrex |= REX_R;
7518 }
7519 if (flag_code != CODE_64BIT && (i.rex & REX_R))
7520 {
7521 if (i.types[!i.tm.opcode_modifier.regmem].bitfield.class != RegCR)
7522 abort ();
7523 i.rex &= ~REX_R;
7524 add_prefix (LOCK_PREFIX_OPCODE);
7525 }
7526 }
7527 else
7528 { /* If it's not 2 reg operands... */
7529 unsigned int mem;
7530
7531 if (i.mem_operands)
7532 {
7533 unsigned int fake_zero_displacement = 0;
7534 unsigned int op;
7535
7536 for (op = 0; op < i.operands; op++)
7537 if (i.flags[op] & Operand_Mem)
7538 break;
7539 gas_assert (op < i.operands);
7540
7541 if (i.tm.opcode_modifier.vecsib)
7542 {
7543 if (i.index_reg->reg_num == RegIZ)
7544 abort ();
7545
7546 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7547 if (!i.base_reg)
7548 {
7549 i.sib.base = NO_BASE_REGISTER;
7550 i.sib.scale = i.log2_scale_factor;
7551 i.types[op].bitfield.disp8 = 0;
7552 i.types[op].bitfield.disp16 = 0;
7553 i.types[op].bitfield.disp64 = 0;
7554 if (flag_code != CODE_64BIT || i.prefix[ADDR_PREFIX])
7555 {
7556 /* Must be 32 bit */
7557 i.types[op].bitfield.disp32 = 1;
7558 i.types[op].bitfield.disp32s = 0;
7559 }
7560 else
7561 {
7562 i.types[op].bitfield.disp32 = 0;
7563 i.types[op].bitfield.disp32s = 1;
7564 }
7565 }
7566 i.sib.index = i.index_reg->reg_num;
7567 if ((i.index_reg->reg_flags & RegRex) != 0)
7568 i.rex |= REX_X;
7569 if ((i.index_reg->reg_flags & RegVRex) != 0)
7570 i.vrex |= REX_X;
7571 }
7572
7573 default_seg = &ds;
7574
7575 if (i.base_reg == 0)
7576 {
7577 i.rm.mode = 0;
7578 if (!i.disp_operands)
7579 fake_zero_displacement = 1;
7580 if (i.index_reg == 0)
7581 {
7582 i386_operand_type newdisp;
7583
7584 gas_assert (!i.tm.opcode_modifier.vecsib);
7585 /* Operand is just <disp> */
7586 if (flag_code == CODE_64BIT)
7587 {
7588 /* 64bit mode overwrites the 32bit absolute
7589 addressing by RIP relative addressing and
7590 absolute addressing is encoded by one of the
7591 redundant SIB forms. */
7592 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7593 i.sib.base = NO_BASE_REGISTER;
7594 i.sib.index = NO_INDEX_REGISTER;
7595 newdisp = (!i.prefix[ADDR_PREFIX] ? disp32s : disp32);
7596 }
7597 else if ((flag_code == CODE_16BIT)
7598 ^ (i.prefix[ADDR_PREFIX] != 0))
7599 {
7600 i.rm.regmem = NO_BASE_REGISTER_16;
7601 newdisp = disp16;
7602 }
7603 else
7604 {
7605 i.rm.regmem = NO_BASE_REGISTER;
7606 newdisp = disp32;
7607 }
7608 i.types[op] = operand_type_and_not (i.types[op], anydisp);
7609 i.types[op] = operand_type_or (i.types[op], newdisp);
7610 }
7611 else if (!i.tm.opcode_modifier.vecsib)
7612 {
7613 /* !i.base_reg && i.index_reg */
7614 if (i.index_reg->reg_num == RegIZ)
7615 i.sib.index = NO_INDEX_REGISTER;
7616 else
7617 i.sib.index = i.index_reg->reg_num;
7618 i.sib.base = NO_BASE_REGISTER;
7619 i.sib.scale = i.log2_scale_factor;
7620 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7621 i.types[op].bitfield.disp8 = 0;
7622 i.types[op].bitfield.disp16 = 0;
7623 i.types[op].bitfield.disp64 = 0;
7624 if (flag_code != CODE_64BIT || i.prefix[ADDR_PREFIX])
7625 {
7626 /* Must be 32 bit */
7627 i.types[op].bitfield.disp32 = 1;
7628 i.types[op].bitfield.disp32s = 0;
7629 }
7630 else
7631 {
7632 i.types[op].bitfield.disp32 = 0;
7633 i.types[op].bitfield.disp32s = 1;
7634 }
7635 if ((i.index_reg->reg_flags & RegRex) != 0)
7636 i.rex |= REX_X;
7637 }
7638 }
7639 /* RIP addressing for 64bit mode. */
7640 else if (i.base_reg->reg_num == RegIP)
7641 {
7642 gas_assert (!i.tm.opcode_modifier.vecsib);
7643 i.rm.regmem = NO_BASE_REGISTER;
7644 i.types[op].bitfield.disp8 = 0;
7645 i.types[op].bitfield.disp16 = 0;
7646 i.types[op].bitfield.disp32 = 0;
7647 i.types[op].bitfield.disp32s = 1;
7648 i.types[op].bitfield.disp64 = 0;
7649 i.flags[op] |= Operand_PCrel;
7650 if (! i.disp_operands)
7651 fake_zero_displacement = 1;
7652 }
7653 else if (i.base_reg->reg_type.bitfield.word)
7654 {
7655 gas_assert (!i.tm.opcode_modifier.vecsib);
7656 switch (i.base_reg->reg_num)
7657 {
7658 case 3: /* (%bx) */
7659 if (i.index_reg == 0)
7660 i.rm.regmem = 7;
7661 else /* (%bx,%si) -> 0, or (%bx,%di) -> 1 */
7662 i.rm.regmem = i.index_reg->reg_num - 6;
7663 break;
7664 case 5: /* (%bp) */
7665 default_seg = &ss;
7666 if (i.index_reg == 0)
7667 {
7668 i.rm.regmem = 6;
7669 if (operand_type_check (i.types[op], disp) == 0)
7670 {
7671 /* fake (%bp) into 0(%bp) */
7672 i.types[op].bitfield.disp8 = 1;
7673 fake_zero_displacement = 1;
7674 }
7675 }
7676 else /* (%bp,%si) -> 2, or (%bp,%di) -> 3 */
7677 i.rm.regmem = i.index_reg->reg_num - 6 + 2;
7678 break;
7679 default: /* (%si) -> 4 or (%di) -> 5 */
7680 i.rm.regmem = i.base_reg->reg_num - 6 + 4;
7681 }
7682 i.rm.mode = mode_from_disp_size (i.types[op]);
7683 }
7684 else /* i.base_reg and 32/64 bit mode */
7685 {
7686 if (flag_code == CODE_64BIT
7687 && operand_type_check (i.types[op], disp))
7688 {
7689 i.types[op].bitfield.disp16 = 0;
7690 i.types[op].bitfield.disp64 = 0;
7691 if (i.prefix[ADDR_PREFIX] == 0)
7692 {
7693 i.types[op].bitfield.disp32 = 0;
7694 i.types[op].bitfield.disp32s = 1;
7695 }
7696 else
7697 {
7698 i.types[op].bitfield.disp32 = 1;
7699 i.types[op].bitfield.disp32s = 0;
7700 }
7701 }
7702
7703 if (!i.tm.opcode_modifier.vecsib)
7704 i.rm.regmem = i.base_reg->reg_num;
7705 if ((i.base_reg->reg_flags & RegRex) != 0)
7706 i.rex |= REX_B;
7707 i.sib.base = i.base_reg->reg_num;
7708 /* x86-64 ignores REX prefix bit here to avoid decoder
7709 complications. */
7710 if (!(i.base_reg->reg_flags & RegRex)
7711 && (i.base_reg->reg_num == EBP_REG_NUM
7712 || i.base_reg->reg_num == ESP_REG_NUM))
7713 default_seg = &ss;
7714 if (i.base_reg->reg_num == 5 && i.disp_operands == 0)
7715 {
7716 fake_zero_displacement = 1;
7717 i.types[op].bitfield.disp8 = 1;
7718 }
7719 i.sib.scale = i.log2_scale_factor;
7720 if (i.index_reg == 0)
7721 {
7722 gas_assert (!i.tm.opcode_modifier.vecsib);
7723 /* <disp>(%esp) becomes two byte modrm with no index
7724 register. We've already stored the code for esp
7725 in i.rm.regmem ie. ESCAPE_TO_TWO_BYTE_ADDRESSING.
7726 Any base register besides %esp will not use the
7727 extra modrm byte. */
7728 i.sib.index = NO_INDEX_REGISTER;
7729 }
7730 else if (!i.tm.opcode_modifier.vecsib)
7731 {
7732 if (i.index_reg->reg_num == RegIZ)
7733 i.sib.index = NO_INDEX_REGISTER;
7734 else
7735 i.sib.index = i.index_reg->reg_num;
7736 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7737 if ((i.index_reg->reg_flags & RegRex) != 0)
7738 i.rex |= REX_X;
7739 }
7740
7741 if (i.disp_operands
7742 && (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
7743 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL))
7744 i.rm.mode = 0;
7745 else
7746 {
7747 if (!fake_zero_displacement
7748 && !i.disp_operands
7749 && i.disp_encoding)
7750 {
7751 fake_zero_displacement = 1;
7752 if (i.disp_encoding == disp_encoding_8bit)
7753 i.types[op].bitfield.disp8 = 1;
7754 else
7755 i.types[op].bitfield.disp32 = 1;
7756 }
7757 i.rm.mode = mode_from_disp_size (i.types[op]);
7758 }
7759 }
7760
7761 if (fake_zero_displacement)
7762 {
7763 /* Fakes a zero displacement assuming that i.types[op]
7764 holds the correct displacement size. */
7765 expressionS *exp;
7766
7767 gas_assert (i.op[op].disps == 0);
7768 exp = &disp_expressions[i.disp_operands++];
7769 i.op[op].disps = exp;
7770 exp->X_op = O_constant;
7771 exp->X_add_number = 0;
7772 exp->X_add_symbol = (symbolS *) 0;
7773 exp->X_op_symbol = (symbolS *) 0;
7774 }
7775
7776 mem = op;
7777 }
7778 else
7779 mem = ~0;
7780
7781 if (i.tm.opcode_modifier.vexsources == XOP2SOURCES)
7782 {
7783 if (operand_type_check (i.types[0], imm))
7784 i.vex.register_specifier = NULL;
7785 else
7786 {
7787 /* VEX.vvvv encodes one of the sources when the first
7788 operand is not an immediate. */
7789 if (i.tm.opcode_modifier.vexw == VEXW0)
7790 i.vex.register_specifier = i.op[0].regs;
7791 else
7792 i.vex.register_specifier = i.op[1].regs;
7793 }
7794
7795 /* Destination is a XMM register encoded in the ModRM.reg
7796 and VEX.R bit. */
7797 i.rm.reg = i.op[2].regs->reg_num;
7798 if ((i.op[2].regs->reg_flags & RegRex) != 0)
7799 i.rex |= REX_R;
7800
7801 /* ModRM.rm and VEX.B encodes the other source. */
7802 if (!i.mem_operands)
7803 {
7804 i.rm.mode = 3;
7805
7806 if (i.tm.opcode_modifier.vexw == VEXW0)
7807 i.rm.regmem = i.op[1].regs->reg_num;
7808 else
7809 i.rm.regmem = i.op[0].regs->reg_num;
7810
7811 if ((i.op[1].regs->reg_flags & RegRex) != 0)
7812 i.rex |= REX_B;
7813 }
7814 }
7815 else if (i.tm.opcode_modifier.vexvvvv == VEXLWP)
7816 {
7817 i.vex.register_specifier = i.op[2].regs;
7818 if (!i.mem_operands)
7819 {
7820 i.rm.mode = 3;
7821 i.rm.regmem = i.op[1].regs->reg_num;
7822 if ((i.op[1].regs->reg_flags & RegRex) != 0)
7823 i.rex |= REX_B;
7824 }
7825 }
7826 /* Fill in i.rm.reg or i.rm.regmem field with register operand
7827 (if any) based on i.tm.extension_opcode. Again, we must be
7828 careful to make sure that segment/control/debug/test/MMX
7829 registers are coded into the i.rm.reg field. */
7830 else if (i.reg_operands)
7831 {
7832 unsigned int op;
7833 unsigned int vex_reg = ~0;
7834
7835 for (op = 0; op < i.operands; op++)
7836 {
7837 if (i.types[op].bitfield.class == Reg
7838 || i.types[op].bitfield.class == RegBND
7839 || i.types[op].bitfield.class == RegMask
7840 || i.types[op].bitfield.class == SReg
7841 || i.types[op].bitfield.class == RegCR
7842 || i.types[op].bitfield.class == RegDR
7843 || i.types[op].bitfield.class == RegTR)
7844 break;
7845 if (i.types[op].bitfield.class == RegSIMD)
7846 {
7847 if (i.types[op].bitfield.zmmword)
7848 i.has_regzmm = TRUE;
7849 else if (i.types[op].bitfield.ymmword)
7850 i.has_regymm = TRUE;
7851 else
7852 i.has_regxmm = TRUE;
7853 break;
7854 }
7855 if (i.types[op].bitfield.class == RegMMX)
7856 {
7857 i.has_regmmx = TRUE;
7858 break;
7859 }
7860 }
7861
7862 if (vex_3_sources)
7863 op = dest;
7864 else if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
7865 {
7866 /* For instructions with VexNDS, the register-only
7867 source operand is encoded in VEX prefix. */
7868 gas_assert (mem != (unsigned int) ~0);
7869
7870 if (op > mem)
7871 {
7872 vex_reg = op++;
7873 gas_assert (op < i.operands);
7874 }
7875 else
7876 {
7877 /* Check register-only source operand when two source
7878 operands are swapped. */
7879 if (!i.tm.operand_types[op].bitfield.baseindex
7880 && i.tm.operand_types[op + 1].bitfield.baseindex)
7881 {
7882 vex_reg = op;
7883 op += 2;
7884 gas_assert (mem == (vex_reg + 1)
7885 && op < i.operands);
7886 }
7887 else
7888 {
7889 vex_reg = op + 1;
7890 gas_assert (vex_reg < i.operands);
7891 }
7892 }
7893 }
7894 else if (i.tm.opcode_modifier.vexvvvv == VEXNDD)
7895 {
7896 /* For instructions with VexNDD, the register destination
7897 is encoded in VEX prefix. */
7898 if (i.mem_operands == 0)
7899 {
7900 /* There is no memory operand. */
7901 gas_assert ((op + 2) == i.operands);
7902 vex_reg = op + 1;
7903 }
7904 else
7905 {
7906 /* There are only 2 non-immediate operands. */
7907 gas_assert (op < i.imm_operands + 2
7908 && i.operands == i.imm_operands + 2);
7909 vex_reg = i.imm_operands + 1;
7910 }
7911 }
7912 else
7913 gas_assert (op < i.operands);
7914
7915 if (vex_reg != (unsigned int) ~0)
7916 {
7917 i386_operand_type *type = &i.tm.operand_types[vex_reg];
7918
7919 if ((type->bitfield.class != Reg
7920 || (!type->bitfield.dword && !type->bitfield.qword))
7921 && type->bitfield.class != RegSIMD
7922 && !operand_type_equal (type, &regmask))
7923 abort ();
7924
7925 i.vex.register_specifier = i.op[vex_reg].regs;
7926 }
7927
7928 /* Don't set OP operand twice. */
7929 if (vex_reg != op)
7930 {
7931 /* If there is an extension opcode to put here, the
7932 register number must be put into the regmem field. */
7933 if (i.tm.extension_opcode != None)
7934 {
7935 i.rm.regmem = i.op[op].regs->reg_num;
7936 if ((i.op[op].regs->reg_flags & RegRex) != 0)
7937 i.rex |= REX_B;
7938 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
7939 i.vrex |= REX_B;
7940 }
7941 else
7942 {
7943 i.rm.reg = i.op[op].regs->reg_num;
7944 if ((i.op[op].regs->reg_flags & RegRex) != 0)
7945 i.rex |= REX_R;
7946 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
7947 i.vrex |= REX_R;
7948 }
7949 }
7950
7951 /* Now, if no memory operand has set i.rm.mode = 0, 1, 2 we
7952 must set it to 3 to indicate this is a register operand
7953 in the regmem field. */
7954 if (!i.mem_operands)
7955 i.rm.mode = 3;
7956 }
7957
7958 /* Fill in i.rm.reg field with extension opcode (if any). */
7959 if (i.tm.extension_opcode != None)
7960 i.rm.reg = i.tm.extension_opcode;
7961 }
7962 return default_seg;
7963 }
7964
7965 static unsigned int
7966 flip_code16 (unsigned int code16)
7967 {
7968 gas_assert (i.tm.operands == 1);
7969
7970 return !(i.prefix[REX_PREFIX] & REX_W)
7971 && (code16 ? i.tm.operand_types[0].bitfield.disp32
7972 || i.tm.operand_types[0].bitfield.disp32s
7973 : i.tm.operand_types[0].bitfield.disp16)
7974 ? CODE16 : 0;
7975 }
7976
7977 static void
7978 output_branch (void)
7979 {
7980 char *p;
7981 int size;
7982 int code16;
7983 int prefix;
7984 relax_substateT subtype;
7985 symbolS *sym;
7986 offsetT off;
7987
7988 code16 = flag_code == CODE_16BIT ? CODE16 : 0;
7989 size = i.disp_encoding == disp_encoding_32bit ? BIG : SMALL;
7990
7991 prefix = 0;
7992 if (i.prefix[DATA_PREFIX] != 0)
7993 {
7994 prefix = 1;
7995 i.prefixes -= 1;
7996 code16 ^= flip_code16(code16);
7997 }
7998 /* Pentium4 branch hints. */
7999 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
8000 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
8001 {
8002 prefix++;
8003 i.prefixes--;
8004 }
8005 if (i.prefix[REX_PREFIX] != 0)
8006 {
8007 prefix++;
8008 i.prefixes--;
8009 }
8010
8011 /* BND prefixed jump. */
8012 if (i.prefix[BND_PREFIX] != 0)
8013 {
8014 prefix++;
8015 i.prefixes--;
8016 }
8017
8018 if (i.prefixes != 0)
8019 as_warn (_("skipping prefixes on `%s'"), i.tm.name);
8020
8021 /* It's always a symbol; End frag & setup for relax.
8022 Make sure there is enough room in this frag for the largest
8023 instruction we may generate in md_convert_frag. This is 2
8024 bytes for the opcode and room for the prefix and largest
8025 displacement. */
8026 frag_grow (prefix + 2 + 4);
8027 /* Prefix and 1 opcode byte go in fr_fix. */
8028 p = frag_more (prefix + 1);
8029 if (i.prefix[DATA_PREFIX] != 0)
8030 *p++ = DATA_PREFIX_OPCODE;
8031 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE
8032 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE)
8033 *p++ = i.prefix[SEG_PREFIX];
8034 if (i.prefix[BND_PREFIX] != 0)
8035 *p++ = BND_PREFIX_OPCODE;
8036 if (i.prefix[REX_PREFIX] != 0)
8037 *p++ = i.prefix[REX_PREFIX];
8038 *p = i.tm.base_opcode;
8039
8040 if ((unsigned char) *p == JUMP_PC_RELATIVE)
8041 subtype = ENCODE_RELAX_STATE (UNCOND_JUMP, size);
8042 else if (cpu_arch_flags.bitfield.cpui386)
8043 subtype = ENCODE_RELAX_STATE (COND_JUMP, size);
8044 else
8045 subtype = ENCODE_RELAX_STATE (COND_JUMP86, size);
8046 subtype |= code16;
8047
8048 sym = i.op[0].disps->X_add_symbol;
8049 off = i.op[0].disps->X_add_number;
8050
8051 if (i.op[0].disps->X_op != O_constant
8052 && i.op[0].disps->X_op != O_symbol)
8053 {
8054 /* Handle complex expressions. */
8055 sym = make_expr_symbol (i.op[0].disps);
8056 off = 0;
8057 }
8058
8059 /* 1 possible extra opcode + 4 byte displacement go in var part.
8060 Pass reloc in fr_var. */
8061 frag_var (rs_machine_dependent, 5, i.reloc[0], subtype, sym, off, p);
8062 }
8063
8064 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8065 /* Return TRUE iff PLT32 relocation should be used for branching to
8066 symbol S. */
8067
8068 static bfd_boolean
8069 need_plt32_p (symbolS *s)
8070 {
8071 /* PLT32 relocation is ELF only. */
8072 if (!IS_ELF)
8073 return FALSE;
8074
8075 #ifdef TE_SOLARIS
8076 /* Don't emit PLT32 relocation on Solaris: neither native linker nor
8077 krtld support it. */
8078 return FALSE;
8079 #endif
8080
8081 /* Since there is no need to prepare for PLT branch on x86-64, we
8082 can generate R_X86_64_PLT32, instead of R_X86_64_PC32, which can
8083 be used as a marker for 32-bit PC-relative branches. */
8084 if (!object_64bit)
8085 return FALSE;
8086
8087 /* Weak or undefined symbol need PLT32 relocation. */
8088 if (S_IS_WEAK (s) || !S_IS_DEFINED (s))
8089 return TRUE;
8090
8091 /* Non-global symbol doesn't need PLT32 relocation. */
8092 if (! S_IS_EXTERNAL (s))
8093 return FALSE;
8094
8095 /* Other global symbols need PLT32 relocation. NB: Symbol with
8096 non-default visibilities are treated as normal global symbol
8097 so that PLT32 relocation can be used as a marker for 32-bit
8098 PC-relative branches. It is useful for linker relaxation. */
8099 return TRUE;
8100 }
8101 #endif
8102
8103 static void
8104 output_jump (void)
8105 {
8106 char *p;
8107 int size;
8108 fixS *fixP;
8109 bfd_reloc_code_real_type jump_reloc = i.reloc[0];
8110
8111 if (i.tm.opcode_modifier.jump == JUMP_BYTE)
8112 {
8113 /* This is a loop or jecxz type instruction. */
8114 size = 1;
8115 if (i.prefix[ADDR_PREFIX] != 0)
8116 {
8117 FRAG_APPEND_1_CHAR (ADDR_PREFIX_OPCODE);
8118 i.prefixes -= 1;
8119 }
8120 /* Pentium4 branch hints. */
8121 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
8122 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
8123 {
8124 FRAG_APPEND_1_CHAR (i.prefix[SEG_PREFIX]);
8125 i.prefixes--;
8126 }
8127 }
8128 else
8129 {
8130 int code16;
8131
8132 code16 = 0;
8133 if (flag_code == CODE_16BIT)
8134 code16 = CODE16;
8135
8136 if (i.prefix[DATA_PREFIX] != 0)
8137 {
8138 FRAG_APPEND_1_CHAR (DATA_PREFIX_OPCODE);
8139 i.prefixes -= 1;
8140 code16 ^= flip_code16(code16);
8141 }
8142
8143 size = 4;
8144 if (code16)
8145 size = 2;
8146 }
8147
8148 /* BND prefixed jump. */
8149 if (i.prefix[BND_PREFIX] != 0)
8150 {
8151 FRAG_APPEND_1_CHAR (i.prefix[BND_PREFIX]);
8152 i.prefixes -= 1;
8153 }
8154
8155 if (i.prefix[REX_PREFIX] != 0)
8156 {
8157 FRAG_APPEND_1_CHAR (i.prefix[REX_PREFIX]);
8158 i.prefixes -= 1;
8159 }
8160
8161 if (i.prefixes != 0)
8162 as_warn (_("skipping prefixes on `%s'"), i.tm.name);
8163
8164 p = frag_more (i.tm.opcode_length + size);
8165 switch (i.tm.opcode_length)
8166 {
8167 case 2:
8168 *p++ = i.tm.base_opcode >> 8;
8169 /* Fall through. */
8170 case 1:
8171 *p++ = i.tm.base_opcode;
8172 break;
8173 default:
8174 abort ();
8175 }
8176
8177 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8178 if (size == 4
8179 && jump_reloc == NO_RELOC
8180 && need_plt32_p (i.op[0].disps->X_add_symbol))
8181 jump_reloc = BFD_RELOC_X86_64_PLT32;
8182 #endif
8183
8184 jump_reloc = reloc (size, 1, 1, jump_reloc);
8185
8186 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal, size,
8187 i.op[0].disps, 1, jump_reloc);
8188
8189 /* All jumps handled here are signed, but don't use a signed limit
8190 check for 32 and 16 bit jumps as we want to allow wrap around at
8191 4G and 64k respectively. */
8192 if (size == 1)
8193 fixP->fx_signed = 1;
8194 }
8195
8196 static void
8197 output_interseg_jump (void)
8198 {
8199 char *p;
8200 int size;
8201 int prefix;
8202 int code16;
8203
8204 code16 = 0;
8205 if (flag_code == CODE_16BIT)
8206 code16 = CODE16;
8207
8208 prefix = 0;
8209 if (i.prefix[DATA_PREFIX] != 0)
8210 {
8211 prefix = 1;
8212 i.prefixes -= 1;
8213 code16 ^= CODE16;
8214 }
8215
8216 gas_assert (!i.prefix[REX_PREFIX]);
8217
8218 size = 4;
8219 if (code16)
8220 size = 2;
8221
8222 if (i.prefixes != 0)
8223 as_warn (_("skipping prefixes on `%s'"), i.tm.name);
8224
8225 /* 1 opcode; 2 segment; offset */
8226 p = frag_more (prefix + 1 + 2 + size);
8227
8228 if (i.prefix[DATA_PREFIX] != 0)
8229 *p++ = DATA_PREFIX_OPCODE;
8230
8231 if (i.prefix[REX_PREFIX] != 0)
8232 *p++ = i.prefix[REX_PREFIX];
8233
8234 *p++ = i.tm.base_opcode;
8235 if (i.op[1].imms->X_op == O_constant)
8236 {
8237 offsetT n = i.op[1].imms->X_add_number;
8238
8239 if (size == 2
8240 && !fits_in_unsigned_word (n)
8241 && !fits_in_signed_word (n))
8242 {
8243 as_bad (_("16-bit jump out of range"));
8244 return;
8245 }
8246 md_number_to_chars (p, n, size);
8247 }
8248 else
8249 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
8250 i.op[1].imms, 0, reloc (size, 0, 0, i.reloc[1]));
8251 if (i.op[0].imms->X_op != O_constant)
8252 as_bad (_("can't handle non absolute segment in `%s'"),
8253 i.tm.name);
8254 md_number_to_chars (p + size, (valueT) i.op[0].imms->X_add_number, 2);
8255 }
8256
8257 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8258 void
8259 x86_cleanup (void)
8260 {
8261 char *p;
8262 asection *seg = now_seg;
8263 subsegT subseg = now_subseg;
8264 asection *sec;
8265 unsigned int alignment, align_size_1;
8266 unsigned int isa_1_descsz, feature_2_descsz, descsz;
8267 unsigned int isa_1_descsz_raw, feature_2_descsz_raw;
8268 unsigned int padding;
8269
8270 if (!IS_ELF || !x86_used_note)
8271 return;
8272
8273 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_X86;
8274
8275 /* The .note.gnu.property section layout:
8276
8277 Field Length Contents
8278 ---- ---- ----
8279 n_namsz 4 4
8280 n_descsz 4 The note descriptor size
8281 n_type 4 NT_GNU_PROPERTY_TYPE_0
8282 n_name 4 "GNU"
8283 n_desc n_descsz The program property array
8284 .... .... ....
8285 */
8286
8287 /* Create the .note.gnu.property section. */
8288 sec = subseg_new (NOTE_GNU_PROPERTY_SECTION_NAME, 0);
8289 bfd_set_section_flags (sec,
8290 (SEC_ALLOC
8291 | SEC_LOAD
8292 | SEC_DATA
8293 | SEC_HAS_CONTENTS
8294 | SEC_READONLY));
8295
8296 if (get_elf_backend_data (stdoutput)->s->elfclass == ELFCLASS64)
8297 {
8298 align_size_1 = 7;
8299 alignment = 3;
8300 }
8301 else
8302 {
8303 align_size_1 = 3;
8304 alignment = 2;
8305 }
8306
8307 bfd_set_section_alignment (sec, alignment);
8308 elf_section_type (sec) = SHT_NOTE;
8309
8310 /* GNU_PROPERTY_X86_ISA_1_USED: 4-byte type + 4-byte data size
8311 + 4-byte data */
8312 isa_1_descsz_raw = 4 + 4 + 4;
8313 /* Align GNU_PROPERTY_X86_ISA_1_USED. */
8314 isa_1_descsz = (isa_1_descsz_raw + align_size_1) & ~align_size_1;
8315
8316 feature_2_descsz_raw = isa_1_descsz;
8317 /* GNU_PROPERTY_X86_FEATURE_2_USED: 4-byte type + 4-byte data size
8318 + 4-byte data */
8319 feature_2_descsz_raw += 4 + 4 + 4;
8320 /* Align GNU_PROPERTY_X86_FEATURE_2_USED. */
8321 feature_2_descsz = ((feature_2_descsz_raw + align_size_1)
8322 & ~align_size_1);
8323
8324 descsz = feature_2_descsz;
8325 /* Section size: n_namsz + n_descsz + n_type + n_name + n_descsz. */
8326 p = frag_more (4 + 4 + 4 + 4 + descsz);
8327
8328 /* Write n_namsz. */
8329 md_number_to_chars (p, (valueT) 4, 4);
8330
8331 /* Write n_descsz. */
8332 md_number_to_chars (p + 4, (valueT) descsz, 4);
8333
8334 /* Write n_type. */
8335 md_number_to_chars (p + 4 * 2, (valueT) NT_GNU_PROPERTY_TYPE_0, 4);
8336
8337 /* Write n_name. */
8338 memcpy (p + 4 * 3, "GNU", 4);
8339
8340 /* Write 4-byte type. */
8341 md_number_to_chars (p + 4 * 4,
8342 (valueT) GNU_PROPERTY_X86_ISA_1_USED, 4);
8343
8344 /* Write 4-byte data size. */
8345 md_number_to_chars (p + 4 * 5, (valueT) 4, 4);
8346
8347 /* Write 4-byte data. */
8348 md_number_to_chars (p + 4 * 6, (valueT) x86_isa_1_used, 4);
8349
8350 /* Zero out paddings. */
8351 padding = isa_1_descsz - isa_1_descsz_raw;
8352 if (padding)
8353 memset (p + 4 * 7, 0, padding);
8354
8355 /* Write 4-byte type. */
8356 md_number_to_chars (p + isa_1_descsz + 4 * 4,
8357 (valueT) GNU_PROPERTY_X86_FEATURE_2_USED, 4);
8358
8359 /* Write 4-byte data size. */
8360 md_number_to_chars (p + isa_1_descsz + 4 * 5, (valueT) 4, 4);
8361
8362 /* Write 4-byte data. */
8363 md_number_to_chars (p + isa_1_descsz + 4 * 6,
8364 (valueT) x86_feature_2_used, 4);
8365
8366 /* Zero out paddings. */
8367 padding = feature_2_descsz - feature_2_descsz_raw;
8368 if (padding)
8369 memset (p + isa_1_descsz + 4 * 7, 0, padding);
8370
8371 /* We probably can't restore the current segment, for there likely
8372 isn't one yet... */
8373 if (seg && subseg)
8374 subseg_set (seg, subseg);
8375 }
8376 #endif
8377
8378 static unsigned int
8379 encoding_length (const fragS *start_frag, offsetT start_off,
8380 const char *frag_now_ptr)
8381 {
8382 unsigned int len = 0;
8383
8384 if (start_frag != frag_now)
8385 {
8386 const fragS *fr = start_frag;
8387
8388 do {
8389 len += fr->fr_fix;
8390 fr = fr->fr_next;
8391 } while (fr && fr != frag_now);
8392 }
8393
8394 return len - start_off + (frag_now_ptr - frag_now->fr_literal);
8395 }
8396
8397 /* Return 1 for test, and, cmp, add, sub, inc and dec which may
8398 be macro-fused with conditional jumps.
8399 NB: If TEST/AND/CMP/ADD/SUB/INC/DEC is of RIP relative address,
8400 or is one of the following format:
8401
8402 cmp m, imm
8403 add m, imm
8404 sub m, imm
8405 test m, imm
8406 and m, imm
8407 inc m
8408 dec m
8409
8410 it is unfusible. */
8411
8412 static int
8413 maybe_fused_with_jcc_p (enum mf_cmp_kind* mf_cmp_p)
8414 {
8415 /* No RIP address. */
8416 if (i.base_reg && i.base_reg->reg_num == RegIP)
8417 return 0;
8418
8419 /* No VEX/EVEX encoding. */
8420 if (is_any_vex_encoding (&i.tm))
8421 return 0;
8422
8423 /* add, sub without add/sub m, imm. */
8424 if (i.tm.base_opcode <= 5
8425 || (i.tm.base_opcode >= 0x28 && i.tm.base_opcode <= 0x2d)
8426 || ((i.tm.base_opcode | 3) == 0x83
8427 && (i.tm.extension_opcode == 0x5
8428 || i.tm.extension_opcode == 0x0)))
8429 {
8430 *mf_cmp_p = mf_cmp_alu_cmp;
8431 return !(i.mem_operands && i.imm_operands);
8432 }
8433
8434 /* and without and m, imm. */
8435 if ((i.tm.base_opcode >= 0x20 && i.tm.base_opcode <= 0x25)
8436 || ((i.tm.base_opcode | 3) == 0x83
8437 && i.tm.extension_opcode == 0x4))
8438 {
8439 *mf_cmp_p = mf_cmp_test_and;
8440 return !(i.mem_operands && i.imm_operands);
8441 }
8442
8443 /* test without test m imm. */
8444 if ((i.tm.base_opcode | 1) == 0x85
8445 || (i.tm.base_opcode | 1) == 0xa9
8446 || ((i.tm.base_opcode | 1) == 0xf7
8447 && i.tm.extension_opcode == 0))
8448 {
8449 *mf_cmp_p = mf_cmp_test_and;
8450 return !(i.mem_operands && i.imm_operands);
8451 }
8452
8453 /* cmp without cmp m, imm. */
8454 if ((i.tm.base_opcode >= 0x38 && i.tm.base_opcode <= 0x3d)
8455 || ((i.tm.base_opcode | 3) == 0x83
8456 && (i.tm.extension_opcode == 0x7)))
8457 {
8458 *mf_cmp_p = mf_cmp_alu_cmp;
8459 return !(i.mem_operands && i.imm_operands);
8460 }
8461
8462 /* inc, dec without inc/dec m. */
8463 if ((i.tm.cpu_flags.bitfield.cpuno64
8464 && (i.tm.base_opcode | 0xf) == 0x4f)
8465 || ((i.tm.base_opcode | 1) == 0xff
8466 && i.tm.extension_opcode <= 0x1))
8467 {
8468 *mf_cmp_p = mf_cmp_incdec;
8469 return !i.mem_operands;
8470 }
8471
8472 return 0;
8473 }
8474
8475 /* Return 1 if a FUSED_JCC_PADDING frag should be generated. */
8476
8477 static int
8478 add_fused_jcc_padding_frag_p (enum mf_cmp_kind* mf_cmp_p)
8479 {
8480 /* NB: Don't work with COND_JUMP86 without i386. */
8481 if (!align_branch_power
8482 || now_seg == absolute_section
8483 || !cpu_arch_flags.bitfield.cpui386
8484 || !(align_branch & align_branch_fused_bit))
8485 return 0;
8486
8487 if (maybe_fused_with_jcc_p (mf_cmp_p))
8488 {
8489 if (last_insn.kind == last_insn_other
8490 || last_insn.seg != now_seg)
8491 return 1;
8492 if (flag_debug)
8493 as_warn_where (last_insn.file, last_insn.line,
8494 _("`%s` skips -malign-branch-boundary on `%s`"),
8495 last_insn.name, i.tm.name);
8496 }
8497
8498 return 0;
8499 }
8500
8501 /* Return 1 if a BRANCH_PREFIX frag should be generated. */
8502
8503 static int
8504 add_branch_prefix_frag_p (void)
8505 {
8506 /* NB: Don't work with COND_JUMP86 without i386. Don't add prefix
8507 to PadLock instructions since they include prefixes in opcode. */
8508 if (!align_branch_power
8509 || !align_branch_prefix_size
8510 || now_seg == absolute_section
8511 || i.tm.cpu_flags.bitfield.cpupadlock
8512 || !cpu_arch_flags.bitfield.cpui386)
8513 return 0;
8514
8515 /* Don't add prefix if it is a prefix or there is no operand in case
8516 that segment prefix is special. */
8517 if (!i.operands || i.tm.opcode_modifier.isprefix)
8518 return 0;
8519
8520 if (last_insn.kind == last_insn_other
8521 || last_insn.seg != now_seg)
8522 return 1;
8523
8524 if (flag_debug)
8525 as_warn_where (last_insn.file, last_insn.line,
8526 _("`%s` skips -malign-branch-boundary on `%s`"),
8527 last_insn.name, i.tm.name);
8528
8529 return 0;
8530 }
8531
8532 /* Return 1 if a BRANCH_PADDING frag should be generated. */
8533
8534 static int
8535 add_branch_padding_frag_p (enum align_branch_kind *branch_p,
8536 enum mf_jcc_kind *mf_jcc_p)
8537 {
8538 int add_padding;
8539
8540 /* NB: Don't work with COND_JUMP86 without i386. */
8541 if (!align_branch_power
8542 || now_seg == absolute_section
8543 || !cpu_arch_flags.bitfield.cpui386)
8544 return 0;
8545
8546 add_padding = 0;
8547
8548 /* Check for jcc and direct jmp. */
8549 if (i.tm.opcode_modifier.jump == JUMP)
8550 {
8551 if (i.tm.base_opcode == JUMP_PC_RELATIVE)
8552 {
8553 *branch_p = align_branch_jmp;
8554 add_padding = align_branch & align_branch_jmp_bit;
8555 }
8556 else
8557 {
8558 /* Because J<cc> and JN<cc> share same group in macro-fusible table,
8559 igore the lowest bit. */
8560 *mf_jcc_p = (i.tm.base_opcode & 0x0e) >> 1;
8561 *branch_p = align_branch_jcc;
8562 if ((align_branch & align_branch_jcc_bit))
8563 add_padding = 1;
8564 }
8565 }
8566 else if (is_any_vex_encoding (&i.tm))
8567 return 0;
8568 else if ((i.tm.base_opcode | 1) == 0xc3)
8569 {
8570 /* Near ret. */
8571 *branch_p = align_branch_ret;
8572 if ((align_branch & align_branch_ret_bit))
8573 add_padding = 1;
8574 }
8575 else
8576 {
8577 /* Check for indirect jmp, direct and indirect calls. */
8578 if (i.tm.base_opcode == 0xe8)
8579 {
8580 /* Direct call. */
8581 *branch_p = align_branch_call;
8582 if ((align_branch & align_branch_call_bit))
8583 add_padding = 1;
8584 }
8585 else if (i.tm.base_opcode == 0xff
8586 && (i.tm.extension_opcode == 2
8587 || i.tm.extension_opcode == 4))
8588 {
8589 /* Indirect call and jmp. */
8590 *branch_p = align_branch_indirect;
8591 if ((align_branch & align_branch_indirect_bit))
8592 add_padding = 1;
8593 }
8594
8595 if (add_padding
8596 && i.disp_operands
8597 && tls_get_addr
8598 && (i.op[0].disps->X_op == O_symbol
8599 || (i.op[0].disps->X_op == O_subtract
8600 && i.op[0].disps->X_op_symbol == GOT_symbol)))
8601 {
8602 symbolS *s = i.op[0].disps->X_add_symbol;
8603 /* No padding to call to global or undefined tls_get_addr. */
8604 if ((S_IS_EXTERNAL (s) || !S_IS_DEFINED (s))
8605 && strcmp (S_GET_NAME (s), tls_get_addr) == 0)
8606 return 0;
8607 }
8608 }
8609
8610 if (add_padding
8611 && last_insn.kind != last_insn_other
8612 && last_insn.seg == now_seg)
8613 {
8614 if (flag_debug)
8615 as_warn_where (last_insn.file, last_insn.line,
8616 _("`%s` skips -malign-branch-boundary on `%s`"),
8617 last_insn.name, i.tm.name);
8618 return 0;
8619 }
8620
8621 return add_padding;
8622 }
8623
8624 static void
8625 output_insn (void)
8626 {
8627 fragS *insn_start_frag;
8628 offsetT insn_start_off;
8629 fragS *fragP = NULL;
8630 enum align_branch_kind branch = align_branch_none;
8631 /* The initializer is arbitrary just to avoid uninitialized error.
8632 it's actually either assigned in add_branch_padding_frag_p
8633 or never be used. */
8634 enum mf_jcc_kind mf_jcc = mf_jcc_jo;
8635
8636 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8637 if (IS_ELF && x86_used_note)
8638 {
8639 if (i.tm.cpu_flags.bitfield.cpucmov)
8640 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_CMOV;
8641 if (i.tm.cpu_flags.bitfield.cpusse)
8642 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE;
8643 if (i.tm.cpu_flags.bitfield.cpusse2)
8644 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE2;
8645 if (i.tm.cpu_flags.bitfield.cpusse3)
8646 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE3;
8647 if (i.tm.cpu_flags.bitfield.cpussse3)
8648 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSSE3;
8649 if (i.tm.cpu_flags.bitfield.cpusse4_1)
8650 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE4_1;
8651 if (i.tm.cpu_flags.bitfield.cpusse4_2)
8652 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE4_2;
8653 if (i.tm.cpu_flags.bitfield.cpuavx)
8654 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX;
8655 if (i.tm.cpu_flags.bitfield.cpuavx2)
8656 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX2;
8657 if (i.tm.cpu_flags.bitfield.cpufma)
8658 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_FMA;
8659 if (i.tm.cpu_flags.bitfield.cpuavx512f)
8660 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512F;
8661 if (i.tm.cpu_flags.bitfield.cpuavx512cd)
8662 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512CD;
8663 if (i.tm.cpu_flags.bitfield.cpuavx512er)
8664 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512ER;
8665 if (i.tm.cpu_flags.bitfield.cpuavx512pf)
8666 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512PF;
8667 if (i.tm.cpu_flags.bitfield.cpuavx512vl)
8668 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512VL;
8669 if (i.tm.cpu_flags.bitfield.cpuavx512dq)
8670 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512DQ;
8671 if (i.tm.cpu_flags.bitfield.cpuavx512bw)
8672 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512BW;
8673 if (i.tm.cpu_flags.bitfield.cpuavx512_4fmaps)
8674 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_4FMAPS;
8675 if (i.tm.cpu_flags.bitfield.cpuavx512_4vnniw)
8676 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_4VNNIW;
8677 if (i.tm.cpu_flags.bitfield.cpuavx512_bitalg)
8678 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_BITALG;
8679 if (i.tm.cpu_flags.bitfield.cpuavx512ifma)
8680 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_IFMA;
8681 if (i.tm.cpu_flags.bitfield.cpuavx512vbmi)
8682 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_VBMI;
8683 if (i.tm.cpu_flags.bitfield.cpuavx512_vbmi2)
8684 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_VBMI2;
8685 if (i.tm.cpu_flags.bitfield.cpuavx512_vnni)
8686 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_VNNI;
8687 if (i.tm.cpu_flags.bitfield.cpuavx512_bf16)
8688 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_BF16;
8689
8690 if (i.tm.cpu_flags.bitfield.cpu8087
8691 || i.tm.cpu_flags.bitfield.cpu287
8692 || i.tm.cpu_flags.bitfield.cpu387
8693 || i.tm.cpu_flags.bitfield.cpu687
8694 || i.tm.cpu_flags.bitfield.cpufisttp)
8695 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_X87;
8696 if (i.has_regmmx
8697 || i.tm.base_opcode == 0xf77 /* emms */
8698 || i.tm.base_opcode == 0xf0e /* femms */
8699 || i.tm.base_opcode == 0xf2a /* cvtpi2ps */
8700 || i.tm.base_opcode == 0x660f2a /* cvtpi2pd */)
8701 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_MMX;
8702 if (i.has_regxmm)
8703 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XMM;
8704 if (i.has_regymm)
8705 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_YMM;
8706 if (i.has_regzmm)
8707 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_ZMM;
8708 if (i.tm.cpu_flags.bitfield.cpufxsr)
8709 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_FXSR;
8710 if (i.tm.cpu_flags.bitfield.cpuxsave)
8711 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XSAVE;
8712 if (i.tm.cpu_flags.bitfield.cpuxsaveopt)
8713 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XSAVEOPT;
8714 if (i.tm.cpu_flags.bitfield.cpuxsavec)
8715 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XSAVEC;
8716 }
8717 #endif
8718
8719 /* Tie dwarf2 debug info to the address at the start of the insn.
8720 We can't do this after the insn has been output as the current
8721 frag may have been closed off. eg. by frag_var. */
8722 dwarf2_emit_insn (0);
8723
8724 insn_start_frag = frag_now;
8725 insn_start_off = frag_now_fix ();
8726
8727 if (add_branch_padding_frag_p (&branch, &mf_jcc))
8728 {
8729 char *p;
8730 /* Branch can be 8 bytes. Leave some room for prefixes. */
8731 unsigned int max_branch_padding_size = 14;
8732
8733 /* Align section to boundary. */
8734 record_alignment (now_seg, align_branch_power);
8735
8736 /* Make room for padding. */
8737 frag_grow (max_branch_padding_size);
8738
8739 /* Start of the padding. */
8740 p = frag_more (0);
8741
8742 fragP = frag_now;
8743
8744 frag_var (rs_machine_dependent, max_branch_padding_size, 0,
8745 ENCODE_RELAX_STATE (BRANCH_PADDING, 0),
8746 NULL, 0, p);
8747
8748 fragP->tc_frag_data.mf_type = mf_jcc;
8749 fragP->tc_frag_data.branch_type = branch;
8750 fragP->tc_frag_data.max_bytes = max_branch_padding_size;
8751 }
8752
8753 /* Output jumps. */
8754 if (i.tm.opcode_modifier.jump == JUMP)
8755 output_branch ();
8756 else if (i.tm.opcode_modifier.jump == JUMP_BYTE
8757 || i.tm.opcode_modifier.jump == JUMP_DWORD)
8758 output_jump ();
8759 else if (i.tm.opcode_modifier.jump == JUMP_INTERSEGMENT)
8760 output_interseg_jump ();
8761 else
8762 {
8763 /* Output normal instructions here. */
8764 char *p;
8765 unsigned char *q;
8766 unsigned int j;
8767 unsigned int prefix;
8768 enum mf_cmp_kind mf_cmp;
8769
8770 if (avoid_fence
8771 && (i.tm.base_opcode == 0xfaee8
8772 || i.tm.base_opcode == 0xfaef0
8773 || i.tm.base_opcode == 0xfaef8))
8774 {
8775 /* Encode lfence, mfence, and sfence as
8776 f0 83 04 24 00 lock addl $0x0, (%{re}sp). */
8777 offsetT val = 0x240483f0ULL;
8778 p = frag_more (5);
8779 md_number_to_chars (p, val, 5);
8780 return;
8781 }
8782
8783 /* Some processors fail on LOCK prefix. This options makes
8784 assembler ignore LOCK prefix and serves as a workaround. */
8785 if (omit_lock_prefix)
8786 {
8787 if (i.tm.base_opcode == LOCK_PREFIX_OPCODE)
8788 return;
8789 i.prefix[LOCK_PREFIX] = 0;
8790 }
8791
8792 if (branch)
8793 /* Skip if this is a branch. */
8794 ;
8795 else if (add_fused_jcc_padding_frag_p (&mf_cmp))
8796 {
8797 /* Make room for padding. */
8798 frag_grow (MAX_FUSED_JCC_PADDING_SIZE);
8799 p = frag_more (0);
8800
8801 fragP = frag_now;
8802
8803 frag_var (rs_machine_dependent, MAX_FUSED_JCC_PADDING_SIZE, 0,
8804 ENCODE_RELAX_STATE (FUSED_JCC_PADDING, 0),
8805 NULL, 0, p);
8806
8807 fragP->tc_frag_data.mf_type = mf_cmp;
8808 fragP->tc_frag_data.branch_type = align_branch_fused;
8809 fragP->tc_frag_data.max_bytes = MAX_FUSED_JCC_PADDING_SIZE;
8810 }
8811 else if (add_branch_prefix_frag_p ())
8812 {
8813 unsigned int max_prefix_size = align_branch_prefix_size;
8814
8815 /* Make room for padding. */
8816 frag_grow (max_prefix_size);
8817 p = frag_more (0);
8818
8819 fragP = frag_now;
8820
8821 frag_var (rs_machine_dependent, max_prefix_size, 0,
8822 ENCODE_RELAX_STATE (BRANCH_PREFIX, 0),
8823 NULL, 0, p);
8824
8825 fragP->tc_frag_data.max_bytes = max_prefix_size;
8826 }
8827
8828 /* Since the VEX/EVEX prefix contains the implicit prefix, we
8829 don't need the explicit prefix. */
8830 if (!i.tm.opcode_modifier.vex && !i.tm.opcode_modifier.evex)
8831 {
8832 switch (i.tm.opcode_length)
8833 {
8834 case 3:
8835 if (i.tm.base_opcode & 0xff000000)
8836 {
8837 prefix = (i.tm.base_opcode >> 24) & 0xff;
8838 if (!i.tm.cpu_flags.bitfield.cpupadlock
8839 || prefix != REPE_PREFIX_OPCODE
8840 || (i.prefix[REP_PREFIX] != REPE_PREFIX_OPCODE))
8841 add_prefix (prefix);
8842 }
8843 break;
8844 case 2:
8845 if ((i.tm.base_opcode & 0xff0000) != 0)
8846 {
8847 prefix = (i.tm.base_opcode >> 16) & 0xff;
8848 add_prefix (prefix);
8849 }
8850 break;
8851 case 1:
8852 break;
8853 case 0:
8854 /* Check for pseudo prefixes. */
8855 as_bad_where (insn_start_frag->fr_file,
8856 insn_start_frag->fr_line,
8857 _("pseudo prefix without instruction"));
8858 return;
8859 default:
8860 abort ();
8861 }
8862
8863 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
8864 /* For x32, add a dummy REX_OPCODE prefix for mov/add with
8865 R_X86_64_GOTTPOFF relocation so that linker can safely
8866 perform IE->LE optimization. A dummy REX_OPCODE prefix
8867 is also needed for lea with R_X86_64_GOTPC32_TLSDESC
8868 relocation for GDesc -> IE/LE optimization. */
8869 if (x86_elf_abi == X86_64_X32_ABI
8870 && i.operands == 2
8871 && (i.reloc[0] == BFD_RELOC_X86_64_GOTTPOFF
8872 || i.reloc[0] == BFD_RELOC_X86_64_GOTPC32_TLSDESC)
8873 && i.prefix[REX_PREFIX] == 0)
8874 add_prefix (REX_OPCODE);
8875 #endif
8876
8877 /* The prefix bytes. */
8878 for (j = ARRAY_SIZE (i.prefix), q = i.prefix; j > 0; j--, q++)
8879 if (*q)
8880 FRAG_APPEND_1_CHAR (*q);
8881 }
8882 else
8883 {
8884 for (j = 0, q = i.prefix; j < ARRAY_SIZE (i.prefix); j++, q++)
8885 if (*q)
8886 switch (j)
8887 {
8888 case REX_PREFIX:
8889 /* REX byte is encoded in VEX prefix. */
8890 break;
8891 case SEG_PREFIX:
8892 case ADDR_PREFIX:
8893 FRAG_APPEND_1_CHAR (*q);
8894 break;
8895 default:
8896 /* There should be no other prefixes for instructions
8897 with VEX prefix. */
8898 abort ();
8899 }
8900
8901 /* For EVEX instructions i.vrex should become 0 after
8902 build_evex_prefix. For VEX instructions upper 16 registers
8903 aren't available, so VREX should be 0. */
8904 if (i.vrex)
8905 abort ();
8906 /* Now the VEX prefix. */
8907 p = frag_more (i.vex.length);
8908 for (j = 0; j < i.vex.length; j++)
8909 p[j] = i.vex.bytes[j];
8910 }
8911
8912 /* Now the opcode; be careful about word order here! */
8913 if (i.tm.opcode_length == 1)
8914 {
8915 FRAG_APPEND_1_CHAR (i.tm.base_opcode);
8916 }
8917 else
8918 {
8919 switch (i.tm.opcode_length)
8920 {
8921 case 4:
8922 p = frag_more (4);
8923 *p++ = (i.tm.base_opcode >> 24) & 0xff;
8924 *p++ = (i.tm.base_opcode >> 16) & 0xff;
8925 break;
8926 case 3:
8927 p = frag_more (3);
8928 *p++ = (i.tm.base_opcode >> 16) & 0xff;
8929 break;
8930 case 2:
8931 p = frag_more (2);
8932 break;
8933 default:
8934 abort ();
8935 break;
8936 }
8937
8938 /* Put out high byte first: can't use md_number_to_chars! */
8939 *p++ = (i.tm.base_opcode >> 8) & 0xff;
8940 *p = i.tm.base_opcode & 0xff;
8941 }
8942
8943 /* Now the modrm byte and sib byte (if present). */
8944 if (i.tm.opcode_modifier.modrm)
8945 {
8946 FRAG_APPEND_1_CHAR ((i.rm.regmem << 0
8947 | i.rm.reg << 3
8948 | i.rm.mode << 6));
8949 /* If i.rm.regmem == ESP (4)
8950 && i.rm.mode != (Register mode)
8951 && not 16 bit
8952 ==> need second modrm byte. */
8953 if (i.rm.regmem == ESCAPE_TO_TWO_BYTE_ADDRESSING
8954 && i.rm.mode != 3
8955 && !(i.base_reg && i.base_reg->reg_type.bitfield.word))
8956 FRAG_APPEND_1_CHAR ((i.sib.base << 0
8957 | i.sib.index << 3
8958 | i.sib.scale << 6));
8959 }
8960
8961 if (i.disp_operands)
8962 output_disp (insn_start_frag, insn_start_off);
8963
8964 if (i.imm_operands)
8965 output_imm (insn_start_frag, insn_start_off);
8966
8967 /*
8968 * frag_now_fix () returning plain abs_section_offset when we're in the
8969 * absolute section, and abs_section_offset not getting updated as data
8970 * gets added to the frag breaks the logic below.
8971 */
8972 if (now_seg != absolute_section)
8973 {
8974 j = encoding_length (insn_start_frag, insn_start_off, frag_more (0));
8975 if (j > 15)
8976 as_warn (_("instruction length of %u bytes exceeds the limit of 15"),
8977 j);
8978 else if (fragP)
8979 {
8980 /* NB: Don't add prefix with GOTPC relocation since
8981 output_disp() above depends on the fixed encoding
8982 length. Can't add prefix with TLS relocation since
8983 it breaks TLS linker optimization. */
8984 unsigned int max = i.has_gotpc_tls_reloc ? 0 : 15 - j;
8985 /* Prefix count on the current instruction. */
8986 unsigned int count = i.vex.length;
8987 unsigned int k;
8988 for (k = 0; k < ARRAY_SIZE (i.prefix); k++)
8989 /* REX byte is encoded in VEX/EVEX prefix. */
8990 if (i.prefix[k] && (k != REX_PREFIX || !i.vex.length))
8991 count++;
8992
8993 /* Count prefixes for extended opcode maps. */
8994 if (!i.vex.length)
8995 switch (i.tm.opcode_length)
8996 {
8997 case 3:
8998 if (((i.tm.base_opcode >> 16) & 0xff) == 0xf)
8999 {
9000 count++;
9001 switch ((i.tm.base_opcode >> 8) & 0xff)
9002 {
9003 case 0x38:
9004 case 0x3a:
9005 count++;
9006 break;
9007 default:
9008 break;
9009 }
9010 }
9011 break;
9012 case 2:
9013 if (((i.tm.base_opcode >> 8) & 0xff) == 0xf)
9014 count++;
9015 break;
9016 case 1:
9017 break;
9018 default:
9019 abort ();
9020 }
9021
9022 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype)
9023 == BRANCH_PREFIX)
9024 {
9025 /* Set the maximum prefix size in BRANCH_PREFIX
9026 frag. */
9027 if (fragP->tc_frag_data.max_bytes > max)
9028 fragP->tc_frag_data.max_bytes = max;
9029 if (fragP->tc_frag_data.max_bytes > count)
9030 fragP->tc_frag_data.max_bytes -= count;
9031 else
9032 fragP->tc_frag_data.max_bytes = 0;
9033 }
9034 else
9035 {
9036 /* Remember the maximum prefix size in FUSED_JCC_PADDING
9037 frag. */
9038 unsigned int max_prefix_size;
9039 if (align_branch_prefix_size > max)
9040 max_prefix_size = max;
9041 else
9042 max_prefix_size = align_branch_prefix_size;
9043 if (max_prefix_size > count)
9044 fragP->tc_frag_data.max_prefix_length
9045 = max_prefix_size - count;
9046 }
9047
9048 /* Use existing segment prefix if possible. Use CS
9049 segment prefix in 64-bit mode. In 32-bit mode, use SS
9050 segment prefix with ESP/EBP base register and use DS
9051 segment prefix without ESP/EBP base register. */
9052 if (i.prefix[SEG_PREFIX])
9053 fragP->tc_frag_data.default_prefix = i.prefix[SEG_PREFIX];
9054 else if (flag_code == CODE_64BIT)
9055 fragP->tc_frag_data.default_prefix = CS_PREFIX_OPCODE;
9056 else if (i.base_reg
9057 && (i.base_reg->reg_num == 4
9058 || i.base_reg->reg_num == 5))
9059 fragP->tc_frag_data.default_prefix = SS_PREFIX_OPCODE;
9060 else
9061 fragP->tc_frag_data.default_prefix = DS_PREFIX_OPCODE;
9062 }
9063 }
9064 }
9065
9066 /* NB: Don't work with COND_JUMP86 without i386. */
9067 if (align_branch_power
9068 && now_seg != absolute_section
9069 && cpu_arch_flags.bitfield.cpui386)
9070 {
9071 /* Terminate each frag so that we can add prefix and check for
9072 fused jcc. */
9073 frag_wane (frag_now);
9074 frag_new (0);
9075 }
9076
9077 #ifdef DEBUG386
9078 if (flag_debug)
9079 {
9080 pi ("" /*line*/, &i);
9081 }
9082 #endif /* DEBUG386 */
9083 }
9084
9085 /* Return the size of the displacement operand N. */
9086
9087 static int
9088 disp_size (unsigned int n)
9089 {
9090 int size = 4;
9091
9092 if (i.types[n].bitfield.disp64)
9093 size = 8;
9094 else if (i.types[n].bitfield.disp8)
9095 size = 1;
9096 else if (i.types[n].bitfield.disp16)
9097 size = 2;
9098 return size;
9099 }
9100
9101 /* Return the size of the immediate operand N. */
9102
9103 static int
9104 imm_size (unsigned int n)
9105 {
9106 int size = 4;
9107 if (i.types[n].bitfield.imm64)
9108 size = 8;
9109 else if (i.types[n].bitfield.imm8 || i.types[n].bitfield.imm8s)
9110 size = 1;
9111 else if (i.types[n].bitfield.imm16)
9112 size = 2;
9113 return size;
9114 }
9115
9116 static void
9117 output_disp (fragS *insn_start_frag, offsetT insn_start_off)
9118 {
9119 char *p;
9120 unsigned int n;
9121
9122 for (n = 0; n < i.operands; n++)
9123 {
9124 if (operand_type_check (i.types[n], disp))
9125 {
9126 if (i.op[n].disps->X_op == O_constant)
9127 {
9128 int size = disp_size (n);
9129 offsetT val = i.op[n].disps->X_add_number;
9130
9131 val = offset_in_range (val >> (size == 1 ? i.memshift : 0),
9132 size);
9133 p = frag_more (size);
9134 md_number_to_chars (p, val, size);
9135 }
9136 else
9137 {
9138 enum bfd_reloc_code_real reloc_type;
9139 int size = disp_size (n);
9140 int sign = i.types[n].bitfield.disp32s;
9141 int pcrel = (i.flags[n] & Operand_PCrel) != 0;
9142 fixS *fixP;
9143
9144 /* We can't have 8 bit displacement here. */
9145 gas_assert (!i.types[n].bitfield.disp8);
9146
9147 /* The PC relative address is computed relative
9148 to the instruction boundary, so in case immediate
9149 fields follows, we need to adjust the value. */
9150 if (pcrel && i.imm_operands)
9151 {
9152 unsigned int n1;
9153 int sz = 0;
9154
9155 for (n1 = 0; n1 < i.operands; n1++)
9156 if (operand_type_check (i.types[n1], imm))
9157 {
9158 /* Only one immediate is allowed for PC
9159 relative address. */
9160 gas_assert (sz == 0);
9161 sz = imm_size (n1);
9162 i.op[n].disps->X_add_number -= sz;
9163 }
9164 /* We should find the immediate. */
9165 gas_assert (sz != 0);
9166 }
9167
9168 p = frag_more (size);
9169 reloc_type = reloc (size, pcrel, sign, i.reloc[n]);
9170 if (GOT_symbol
9171 && GOT_symbol == i.op[n].disps->X_add_symbol
9172 && (((reloc_type == BFD_RELOC_32
9173 || reloc_type == BFD_RELOC_X86_64_32S
9174 || (reloc_type == BFD_RELOC_64
9175 && object_64bit))
9176 && (i.op[n].disps->X_op == O_symbol
9177 || (i.op[n].disps->X_op == O_add
9178 && ((symbol_get_value_expression
9179 (i.op[n].disps->X_op_symbol)->X_op)
9180 == O_subtract))))
9181 || reloc_type == BFD_RELOC_32_PCREL))
9182 {
9183 if (!object_64bit)
9184 {
9185 reloc_type = BFD_RELOC_386_GOTPC;
9186 i.has_gotpc_tls_reloc = TRUE;
9187 i.op[n].imms->X_add_number +=
9188 encoding_length (insn_start_frag, insn_start_off, p);
9189 }
9190 else if (reloc_type == BFD_RELOC_64)
9191 reloc_type = BFD_RELOC_X86_64_GOTPC64;
9192 else
9193 /* Don't do the adjustment for x86-64, as there
9194 the pcrel addressing is relative to the _next_
9195 insn, and that is taken care of in other code. */
9196 reloc_type = BFD_RELOC_X86_64_GOTPC32;
9197 }
9198 else if (align_branch_power)
9199 {
9200 switch (reloc_type)
9201 {
9202 case BFD_RELOC_386_TLS_GD:
9203 case BFD_RELOC_386_TLS_LDM:
9204 case BFD_RELOC_386_TLS_IE:
9205 case BFD_RELOC_386_TLS_IE_32:
9206 case BFD_RELOC_386_TLS_GOTIE:
9207 case BFD_RELOC_386_TLS_GOTDESC:
9208 case BFD_RELOC_386_TLS_DESC_CALL:
9209 case BFD_RELOC_X86_64_TLSGD:
9210 case BFD_RELOC_X86_64_TLSLD:
9211 case BFD_RELOC_X86_64_GOTTPOFF:
9212 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
9213 case BFD_RELOC_X86_64_TLSDESC_CALL:
9214 i.has_gotpc_tls_reloc = TRUE;
9215 default:
9216 break;
9217 }
9218 }
9219 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal,
9220 size, i.op[n].disps, pcrel,
9221 reloc_type);
9222 /* Check for "call/jmp *mem", "mov mem, %reg",
9223 "test %reg, mem" and "binop mem, %reg" where binop
9224 is one of adc, add, and, cmp, or, sbb, sub, xor
9225 instructions without data prefix. Always generate
9226 R_386_GOT32X for "sym*GOT" operand in 32-bit mode. */
9227 if (i.prefix[DATA_PREFIX] == 0
9228 && (generate_relax_relocations
9229 || (!object_64bit
9230 && i.rm.mode == 0
9231 && i.rm.regmem == 5))
9232 && (i.rm.mode == 2
9233 || (i.rm.mode == 0 && i.rm.regmem == 5))
9234 && !is_any_vex_encoding(&i.tm)
9235 && ((i.operands == 1
9236 && i.tm.base_opcode == 0xff
9237 && (i.rm.reg == 2 || i.rm.reg == 4))
9238 || (i.operands == 2
9239 && (i.tm.base_opcode == 0x8b
9240 || i.tm.base_opcode == 0x85
9241 || (i.tm.base_opcode & ~0x38) == 0x03))))
9242 {
9243 if (object_64bit)
9244 {
9245 fixP->fx_tcbit = i.rex != 0;
9246 if (i.base_reg
9247 && (i.base_reg->reg_num == RegIP))
9248 fixP->fx_tcbit2 = 1;
9249 }
9250 else
9251 fixP->fx_tcbit2 = 1;
9252 }
9253 }
9254 }
9255 }
9256 }
9257
9258 static void
9259 output_imm (fragS *insn_start_frag, offsetT insn_start_off)
9260 {
9261 char *p;
9262 unsigned int n;
9263
9264 for (n = 0; n < i.operands; n++)
9265 {
9266 /* Skip SAE/RC Imm operand in EVEX. They are already handled. */
9267 if (i.rounding && (int) n == i.rounding->operand)
9268 continue;
9269
9270 if (operand_type_check (i.types[n], imm))
9271 {
9272 if (i.op[n].imms->X_op == O_constant)
9273 {
9274 int size = imm_size (n);
9275 offsetT val;
9276
9277 val = offset_in_range (i.op[n].imms->X_add_number,
9278 size);
9279 p = frag_more (size);
9280 md_number_to_chars (p, val, size);
9281 }
9282 else
9283 {
9284 /* Not absolute_section.
9285 Need a 32-bit fixup (don't support 8bit
9286 non-absolute imms). Try to support other
9287 sizes ... */
9288 enum bfd_reloc_code_real reloc_type;
9289 int size = imm_size (n);
9290 int sign;
9291
9292 if (i.types[n].bitfield.imm32s
9293 && (i.suffix == QWORD_MNEM_SUFFIX
9294 || (!i.suffix && i.tm.opcode_modifier.no_lsuf)))
9295 sign = 1;
9296 else
9297 sign = 0;
9298
9299 p = frag_more (size);
9300 reloc_type = reloc (size, 0, sign, i.reloc[n]);
9301
9302 /* This is tough to explain. We end up with this one if we
9303 * have operands that look like
9304 * "_GLOBAL_OFFSET_TABLE_+[.-.L284]". The goal here is to
9305 * obtain the absolute address of the GOT, and it is strongly
9306 * preferable from a performance point of view to avoid using
9307 * a runtime relocation for this. The actual sequence of
9308 * instructions often look something like:
9309 *
9310 * call .L66
9311 * .L66:
9312 * popl %ebx
9313 * addl $_GLOBAL_OFFSET_TABLE_+[.-.L66],%ebx
9314 *
9315 * The call and pop essentially return the absolute address
9316 * of the label .L66 and store it in %ebx. The linker itself
9317 * will ultimately change the first operand of the addl so
9318 * that %ebx points to the GOT, but to keep things simple, the
9319 * .o file must have this operand set so that it generates not
9320 * the absolute address of .L66, but the absolute address of
9321 * itself. This allows the linker itself simply treat a GOTPC
9322 * relocation as asking for a pcrel offset to the GOT to be
9323 * added in, and the addend of the relocation is stored in the
9324 * operand field for the instruction itself.
9325 *
9326 * Our job here is to fix the operand so that it would add
9327 * the correct offset so that %ebx would point to itself. The
9328 * thing that is tricky is that .-.L66 will point to the
9329 * beginning of the instruction, so we need to further modify
9330 * the operand so that it will point to itself. There are
9331 * other cases where you have something like:
9332 *
9333 * .long $_GLOBAL_OFFSET_TABLE_+[.-.L66]
9334 *
9335 * and here no correction would be required. Internally in
9336 * the assembler we treat operands of this form as not being
9337 * pcrel since the '.' is explicitly mentioned, and I wonder
9338 * whether it would simplify matters to do it this way. Who
9339 * knows. In earlier versions of the PIC patches, the
9340 * pcrel_adjust field was used to store the correction, but
9341 * since the expression is not pcrel, I felt it would be
9342 * confusing to do it this way. */
9343
9344 if ((reloc_type == BFD_RELOC_32
9345 || reloc_type == BFD_RELOC_X86_64_32S
9346 || reloc_type == BFD_RELOC_64)
9347 && GOT_symbol
9348 && GOT_symbol == i.op[n].imms->X_add_symbol
9349 && (i.op[n].imms->X_op == O_symbol
9350 || (i.op[n].imms->X_op == O_add
9351 && ((symbol_get_value_expression
9352 (i.op[n].imms->X_op_symbol)->X_op)
9353 == O_subtract))))
9354 {
9355 if (!object_64bit)
9356 reloc_type = BFD_RELOC_386_GOTPC;
9357 else if (size == 4)
9358 reloc_type = BFD_RELOC_X86_64_GOTPC32;
9359 else if (size == 8)
9360 reloc_type = BFD_RELOC_X86_64_GOTPC64;
9361 i.has_gotpc_tls_reloc = TRUE;
9362 i.op[n].imms->X_add_number +=
9363 encoding_length (insn_start_frag, insn_start_off, p);
9364 }
9365 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
9366 i.op[n].imms, 0, reloc_type);
9367 }
9368 }
9369 }
9370 }
9371 \f
9372 /* x86_cons_fix_new is called via the expression parsing code when a
9373 reloc is needed. We use this hook to get the correct .got reloc. */
9374 static int cons_sign = -1;
9375
9376 void
9377 x86_cons_fix_new (fragS *frag, unsigned int off, unsigned int len,
9378 expressionS *exp, bfd_reloc_code_real_type r)
9379 {
9380 r = reloc (len, 0, cons_sign, r);
9381
9382 #ifdef TE_PE
9383 if (exp->X_op == O_secrel)
9384 {
9385 exp->X_op = O_symbol;
9386 r = BFD_RELOC_32_SECREL;
9387 }
9388 #endif
9389
9390 fix_new_exp (frag, off, len, exp, 0, r);
9391 }
9392
9393 /* Export the ABI address size for use by TC_ADDRESS_BYTES for the
9394 purpose of the `.dc.a' internal pseudo-op. */
9395
9396 int
9397 x86_address_bytes (void)
9398 {
9399 if ((stdoutput->arch_info->mach & bfd_mach_x64_32))
9400 return 4;
9401 return stdoutput->arch_info->bits_per_address / 8;
9402 }
9403
9404 #if !(defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) || defined (OBJ_MACH_O)) \
9405 || defined (LEX_AT)
9406 # define lex_got(reloc, adjust, types) NULL
9407 #else
9408 /* Parse operands of the form
9409 <symbol>@GOTOFF+<nnn>
9410 and similar .plt or .got references.
9411
9412 If we find one, set up the correct relocation in RELOC and copy the
9413 input string, minus the `@GOTOFF' into a malloc'd buffer for
9414 parsing by the calling routine. Return this buffer, and if ADJUST
9415 is non-null set it to the length of the string we removed from the
9416 input line. Otherwise return NULL. */
9417 static char *
9418 lex_got (enum bfd_reloc_code_real *rel,
9419 int *adjust,
9420 i386_operand_type *types)
9421 {
9422 /* Some of the relocations depend on the size of what field is to
9423 be relocated. But in our callers i386_immediate and i386_displacement
9424 we don't yet know the operand size (this will be set by insn
9425 matching). Hence we record the word32 relocation here,
9426 and adjust the reloc according to the real size in reloc(). */
9427 static const struct {
9428 const char *str;
9429 int len;
9430 const enum bfd_reloc_code_real rel[2];
9431 const i386_operand_type types64;
9432 } gotrel[] = {
9433 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9434 { STRING_COMMA_LEN ("SIZE"), { BFD_RELOC_SIZE32,
9435 BFD_RELOC_SIZE32 },
9436 OPERAND_TYPE_IMM32_64 },
9437 #endif
9438 { STRING_COMMA_LEN ("PLTOFF"), { _dummy_first_bfd_reloc_code_real,
9439 BFD_RELOC_X86_64_PLTOFF64 },
9440 OPERAND_TYPE_IMM64 },
9441 { STRING_COMMA_LEN ("PLT"), { BFD_RELOC_386_PLT32,
9442 BFD_RELOC_X86_64_PLT32 },
9443 OPERAND_TYPE_IMM32_32S_DISP32 },
9444 { STRING_COMMA_LEN ("GOTPLT"), { _dummy_first_bfd_reloc_code_real,
9445 BFD_RELOC_X86_64_GOTPLT64 },
9446 OPERAND_TYPE_IMM64_DISP64 },
9447 { STRING_COMMA_LEN ("GOTOFF"), { BFD_RELOC_386_GOTOFF,
9448 BFD_RELOC_X86_64_GOTOFF64 },
9449 OPERAND_TYPE_IMM64_DISP64 },
9450 { STRING_COMMA_LEN ("GOTPCREL"), { _dummy_first_bfd_reloc_code_real,
9451 BFD_RELOC_X86_64_GOTPCREL },
9452 OPERAND_TYPE_IMM32_32S_DISP32 },
9453 { STRING_COMMA_LEN ("TLSGD"), { BFD_RELOC_386_TLS_GD,
9454 BFD_RELOC_X86_64_TLSGD },
9455 OPERAND_TYPE_IMM32_32S_DISP32 },
9456 { STRING_COMMA_LEN ("TLSLDM"), { BFD_RELOC_386_TLS_LDM,
9457 _dummy_first_bfd_reloc_code_real },
9458 OPERAND_TYPE_NONE },
9459 { STRING_COMMA_LEN ("TLSLD"), { _dummy_first_bfd_reloc_code_real,
9460 BFD_RELOC_X86_64_TLSLD },
9461 OPERAND_TYPE_IMM32_32S_DISP32 },
9462 { STRING_COMMA_LEN ("GOTTPOFF"), { BFD_RELOC_386_TLS_IE_32,
9463 BFD_RELOC_X86_64_GOTTPOFF },
9464 OPERAND_TYPE_IMM32_32S_DISP32 },
9465 { STRING_COMMA_LEN ("TPOFF"), { BFD_RELOC_386_TLS_LE_32,
9466 BFD_RELOC_X86_64_TPOFF32 },
9467 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
9468 { STRING_COMMA_LEN ("NTPOFF"), { BFD_RELOC_386_TLS_LE,
9469 _dummy_first_bfd_reloc_code_real },
9470 OPERAND_TYPE_NONE },
9471 { STRING_COMMA_LEN ("DTPOFF"), { BFD_RELOC_386_TLS_LDO_32,
9472 BFD_RELOC_X86_64_DTPOFF32 },
9473 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
9474 { STRING_COMMA_LEN ("GOTNTPOFF"),{ BFD_RELOC_386_TLS_GOTIE,
9475 _dummy_first_bfd_reloc_code_real },
9476 OPERAND_TYPE_NONE },
9477 { STRING_COMMA_LEN ("INDNTPOFF"),{ BFD_RELOC_386_TLS_IE,
9478 _dummy_first_bfd_reloc_code_real },
9479 OPERAND_TYPE_NONE },
9480 { STRING_COMMA_LEN ("GOT"), { BFD_RELOC_386_GOT32,
9481 BFD_RELOC_X86_64_GOT32 },
9482 OPERAND_TYPE_IMM32_32S_64_DISP32 },
9483 { STRING_COMMA_LEN ("TLSDESC"), { BFD_RELOC_386_TLS_GOTDESC,
9484 BFD_RELOC_X86_64_GOTPC32_TLSDESC },
9485 OPERAND_TYPE_IMM32_32S_DISP32 },
9486 { STRING_COMMA_LEN ("TLSCALL"), { BFD_RELOC_386_TLS_DESC_CALL,
9487 BFD_RELOC_X86_64_TLSDESC_CALL },
9488 OPERAND_TYPE_IMM32_32S_DISP32 },
9489 };
9490 char *cp;
9491 unsigned int j;
9492
9493 #if defined (OBJ_MAYBE_ELF)
9494 if (!IS_ELF)
9495 return NULL;
9496 #endif
9497
9498 for (cp = input_line_pointer; *cp != '@'; cp++)
9499 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
9500 return NULL;
9501
9502 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
9503 {
9504 int len = gotrel[j].len;
9505 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
9506 {
9507 if (gotrel[j].rel[object_64bit] != 0)
9508 {
9509 int first, second;
9510 char *tmpbuf, *past_reloc;
9511
9512 *rel = gotrel[j].rel[object_64bit];
9513
9514 if (types)
9515 {
9516 if (flag_code != CODE_64BIT)
9517 {
9518 types->bitfield.imm32 = 1;
9519 types->bitfield.disp32 = 1;
9520 }
9521 else
9522 *types = gotrel[j].types64;
9523 }
9524
9525 if (j != 0 && GOT_symbol == NULL)
9526 GOT_symbol = symbol_find_or_make (GLOBAL_OFFSET_TABLE_NAME);
9527
9528 /* The length of the first part of our input line. */
9529 first = cp - input_line_pointer;
9530
9531 /* The second part goes from after the reloc token until
9532 (and including) an end_of_line char or comma. */
9533 past_reloc = cp + 1 + len;
9534 cp = past_reloc;
9535 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
9536 ++cp;
9537 second = cp + 1 - past_reloc;
9538
9539 /* Allocate and copy string. The trailing NUL shouldn't
9540 be necessary, but be safe. */
9541 tmpbuf = XNEWVEC (char, first + second + 2);
9542 memcpy (tmpbuf, input_line_pointer, first);
9543 if (second != 0 && *past_reloc != ' ')
9544 /* Replace the relocation token with ' ', so that
9545 errors like foo@GOTOFF1 will be detected. */
9546 tmpbuf[first++] = ' ';
9547 else
9548 /* Increment length by 1 if the relocation token is
9549 removed. */
9550 len++;
9551 if (adjust)
9552 *adjust = len;
9553 memcpy (tmpbuf + first, past_reloc, second);
9554 tmpbuf[first + second] = '\0';
9555 return tmpbuf;
9556 }
9557
9558 as_bad (_("@%s reloc is not supported with %d-bit output format"),
9559 gotrel[j].str, 1 << (5 + object_64bit));
9560 return NULL;
9561 }
9562 }
9563
9564 /* Might be a symbol version string. Don't as_bad here. */
9565 return NULL;
9566 }
9567 #endif
9568
9569 #ifdef TE_PE
9570 #ifdef lex_got
9571 #undef lex_got
9572 #endif
9573 /* Parse operands of the form
9574 <symbol>@SECREL32+<nnn>
9575
9576 If we find one, set up the correct relocation in RELOC and copy the
9577 input string, minus the `@SECREL32' into a malloc'd buffer for
9578 parsing by the calling routine. Return this buffer, and if ADJUST
9579 is non-null set it to the length of the string we removed from the
9580 input line. Otherwise return NULL.
9581
9582 This function is copied from the ELF version above adjusted for PE targets. */
9583
9584 static char *
9585 lex_got (enum bfd_reloc_code_real *rel ATTRIBUTE_UNUSED,
9586 int *adjust ATTRIBUTE_UNUSED,
9587 i386_operand_type *types)
9588 {
9589 static const struct
9590 {
9591 const char *str;
9592 int len;
9593 const enum bfd_reloc_code_real rel[2];
9594 const i386_operand_type types64;
9595 }
9596 gotrel[] =
9597 {
9598 { STRING_COMMA_LEN ("SECREL32"), { BFD_RELOC_32_SECREL,
9599 BFD_RELOC_32_SECREL },
9600 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
9601 };
9602
9603 char *cp;
9604 unsigned j;
9605
9606 for (cp = input_line_pointer; *cp != '@'; cp++)
9607 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
9608 return NULL;
9609
9610 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
9611 {
9612 int len = gotrel[j].len;
9613
9614 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
9615 {
9616 if (gotrel[j].rel[object_64bit] != 0)
9617 {
9618 int first, second;
9619 char *tmpbuf, *past_reloc;
9620
9621 *rel = gotrel[j].rel[object_64bit];
9622 if (adjust)
9623 *adjust = len;
9624
9625 if (types)
9626 {
9627 if (flag_code != CODE_64BIT)
9628 {
9629 types->bitfield.imm32 = 1;
9630 types->bitfield.disp32 = 1;
9631 }
9632 else
9633 *types = gotrel[j].types64;
9634 }
9635
9636 /* The length of the first part of our input line. */
9637 first = cp - input_line_pointer;
9638
9639 /* The second part goes from after the reloc token until
9640 (and including) an end_of_line char or comma. */
9641 past_reloc = cp + 1 + len;
9642 cp = past_reloc;
9643 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
9644 ++cp;
9645 second = cp + 1 - past_reloc;
9646
9647 /* Allocate and copy string. The trailing NUL shouldn't
9648 be necessary, but be safe. */
9649 tmpbuf = XNEWVEC (char, first + second + 2);
9650 memcpy (tmpbuf, input_line_pointer, first);
9651 if (second != 0 && *past_reloc != ' ')
9652 /* Replace the relocation token with ' ', so that
9653 errors like foo@SECLREL321 will be detected. */
9654 tmpbuf[first++] = ' ';
9655 memcpy (tmpbuf + first, past_reloc, second);
9656 tmpbuf[first + second] = '\0';
9657 return tmpbuf;
9658 }
9659
9660 as_bad (_("@%s reloc is not supported with %d-bit output format"),
9661 gotrel[j].str, 1 << (5 + object_64bit));
9662 return NULL;
9663 }
9664 }
9665
9666 /* Might be a symbol version string. Don't as_bad here. */
9667 return NULL;
9668 }
9669
9670 #endif /* TE_PE */
9671
9672 bfd_reloc_code_real_type
9673 x86_cons (expressionS *exp, int size)
9674 {
9675 bfd_reloc_code_real_type got_reloc = NO_RELOC;
9676
9677 intel_syntax = -intel_syntax;
9678
9679 exp->X_md = 0;
9680 if (size == 4 || (object_64bit && size == 8))
9681 {
9682 /* Handle @GOTOFF and the like in an expression. */
9683 char *save;
9684 char *gotfree_input_line;
9685 int adjust = 0;
9686
9687 save = input_line_pointer;
9688 gotfree_input_line = lex_got (&got_reloc, &adjust, NULL);
9689 if (gotfree_input_line)
9690 input_line_pointer = gotfree_input_line;
9691
9692 expression (exp);
9693
9694 if (gotfree_input_line)
9695 {
9696 /* expression () has merrily parsed up to the end of line,
9697 or a comma - in the wrong buffer. Transfer how far
9698 input_line_pointer has moved to the right buffer. */
9699 input_line_pointer = (save
9700 + (input_line_pointer - gotfree_input_line)
9701 + adjust);
9702 free (gotfree_input_line);
9703 if (exp->X_op == O_constant
9704 || exp->X_op == O_absent
9705 || exp->X_op == O_illegal
9706 || exp->X_op == O_register
9707 || exp->X_op == O_big)
9708 {
9709 char c = *input_line_pointer;
9710 *input_line_pointer = 0;
9711 as_bad (_("missing or invalid expression `%s'"), save);
9712 *input_line_pointer = c;
9713 }
9714 else if ((got_reloc == BFD_RELOC_386_PLT32
9715 || got_reloc == BFD_RELOC_X86_64_PLT32)
9716 && exp->X_op != O_symbol)
9717 {
9718 char c = *input_line_pointer;
9719 *input_line_pointer = 0;
9720 as_bad (_("invalid PLT expression `%s'"), save);
9721 *input_line_pointer = c;
9722 }
9723 }
9724 }
9725 else
9726 expression (exp);
9727
9728 intel_syntax = -intel_syntax;
9729
9730 if (intel_syntax)
9731 i386_intel_simplify (exp);
9732
9733 return got_reloc;
9734 }
9735
9736 static void
9737 signed_cons (int size)
9738 {
9739 if (flag_code == CODE_64BIT)
9740 cons_sign = 1;
9741 cons (size);
9742 cons_sign = -1;
9743 }
9744
9745 #ifdef TE_PE
9746 static void
9747 pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
9748 {
9749 expressionS exp;
9750
9751 do
9752 {
9753 expression (&exp);
9754 if (exp.X_op == O_symbol)
9755 exp.X_op = O_secrel;
9756
9757 emit_expr (&exp, 4);
9758 }
9759 while (*input_line_pointer++ == ',');
9760
9761 input_line_pointer--;
9762 demand_empty_rest_of_line ();
9763 }
9764 #endif
9765
9766 /* Handle Vector operations. */
9767
9768 static char *
9769 check_VecOperations (char *op_string, char *op_end)
9770 {
9771 const reg_entry *mask;
9772 const char *saved;
9773 char *end_op;
9774
9775 while (*op_string
9776 && (op_end == NULL || op_string < op_end))
9777 {
9778 saved = op_string;
9779 if (*op_string == '{')
9780 {
9781 op_string++;
9782
9783 /* Check broadcasts. */
9784 if (strncmp (op_string, "1to", 3) == 0)
9785 {
9786 int bcst_type;
9787
9788 if (i.broadcast)
9789 goto duplicated_vec_op;
9790
9791 op_string += 3;
9792 if (*op_string == '8')
9793 bcst_type = 8;
9794 else if (*op_string == '4')
9795 bcst_type = 4;
9796 else if (*op_string == '2')
9797 bcst_type = 2;
9798 else if (*op_string == '1'
9799 && *(op_string+1) == '6')
9800 {
9801 bcst_type = 16;
9802 op_string++;
9803 }
9804 else
9805 {
9806 as_bad (_("Unsupported broadcast: `%s'"), saved);
9807 return NULL;
9808 }
9809 op_string++;
9810
9811 broadcast_op.type = bcst_type;
9812 broadcast_op.operand = this_operand;
9813 broadcast_op.bytes = 0;
9814 i.broadcast = &broadcast_op;
9815 }
9816 /* Check masking operation. */
9817 else if ((mask = parse_register (op_string, &end_op)) != NULL)
9818 {
9819 /* k0 can't be used for write mask. */
9820 if (mask->reg_type.bitfield.class != RegMask || !mask->reg_num)
9821 {
9822 as_bad (_("`%s%s' can't be used for write mask"),
9823 register_prefix, mask->reg_name);
9824 return NULL;
9825 }
9826
9827 if (!i.mask)
9828 {
9829 mask_op.mask = mask;
9830 mask_op.zeroing = 0;
9831 mask_op.operand = this_operand;
9832 i.mask = &mask_op;
9833 }
9834 else
9835 {
9836 if (i.mask->mask)
9837 goto duplicated_vec_op;
9838
9839 i.mask->mask = mask;
9840
9841 /* Only "{z}" is allowed here. No need to check
9842 zeroing mask explicitly. */
9843 if (i.mask->operand != this_operand)
9844 {
9845 as_bad (_("invalid write mask `%s'"), saved);
9846 return NULL;
9847 }
9848 }
9849
9850 op_string = end_op;
9851 }
9852 /* Check zeroing-flag for masking operation. */
9853 else if (*op_string == 'z')
9854 {
9855 if (!i.mask)
9856 {
9857 mask_op.mask = NULL;
9858 mask_op.zeroing = 1;
9859 mask_op.operand = this_operand;
9860 i.mask = &mask_op;
9861 }
9862 else
9863 {
9864 if (i.mask->zeroing)
9865 {
9866 duplicated_vec_op:
9867 as_bad (_("duplicated `%s'"), saved);
9868 return NULL;
9869 }
9870
9871 i.mask->zeroing = 1;
9872
9873 /* Only "{%k}" is allowed here. No need to check mask
9874 register explicitly. */
9875 if (i.mask->operand != this_operand)
9876 {
9877 as_bad (_("invalid zeroing-masking `%s'"),
9878 saved);
9879 return NULL;
9880 }
9881 }
9882
9883 op_string++;
9884 }
9885 else
9886 goto unknown_vec_op;
9887
9888 if (*op_string != '}')
9889 {
9890 as_bad (_("missing `}' in `%s'"), saved);
9891 return NULL;
9892 }
9893 op_string++;
9894
9895 /* Strip whitespace since the addition of pseudo prefixes
9896 changed how the scrubber treats '{'. */
9897 if (is_space_char (*op_string))
9898 ++op_string;
9899
9900 continue;
9901 }
9902 unknown_vec_op:
9903 /* We don't know this one. */
9904 as_bad (_("unknown vector operation: `%s'"), saved);
9905 return NULL;
9906 }
9907
9908 if (i.mask && i.mask->zeroing && !i.mask->mask)
9909 {
9910 as_bad (_("zeroing-masking only allowed with write mask"));
9911 return NULL;
9912 }
9913
9914 return op_string;
9915 }
9916
9917 static int
9918 i386_immediate (char *imm_start)
9919 {
9920 char *save_input_line_pointer;
9921 char *gotfree_input_line;
9922 segT exp_seg = 0;
9923 expressionS *exp;
9924 i386_operand_type types;
9925
9926 operand_type_set (&types, ~0);
9927
9928 if (i.imm_operands == MAX_IMMEDIATE_OPERANDS)
9929 {
9930 as_bad (_("at most %d immediate operands are allowed"),
9931 MAX_IMMEDIATE_OPERANDS);
9932 return 0;
9933 }
9934
9935 exp = &im_expressions[i.imm_operands++];
9936 i.op[this_operand].imms = exp;
9937
9938 if (is_space_char (*imm_start))
9939 ++imm_start;
9940
9941 save_input_line_pointer = input_line_pointer;
9942 input_line_pointer = imm_start;
9943
9944 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
9945 if (gotfree_input_line)
9946 input_line_pointer = gotfree_input_line;
9947
9948 exp_seg = expression (exp);
9949
9950 SKIP_WHITESPACE ();
9951
9952 /* Handle vector operations. */
9953 if (*input_line_pointer == '{')
9954 {
9955 input_line_pointer = check_VecOperations (input_line_pointer,
9956 NULL);
9957 if (input_line_pointer == NULL)
9958 return 0;
9959 }
9960
9961 if (*input_line_pointer)
9962 as_bad (_("junk `%s' after expression"), input_line_pointer);
9963
9964 input_line_pointer = save_input_line_pointer;
9965 if (gotfree_input_line)
9966 {
9967 free (gotfree_input_line);
9968
9969 if (exp->X_op == O_constant || exp->X_op == O_register)
9970 exp->X_op = O_illegal;
9971 }
9972
9973 return i386_finalize_immediate (exp_seg, exp, types, imm_start);
9974 }
9975
9976 static int
9977 i386_finalize_immediate (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
9978 i386_operand_type types, const char *imm_start)
9979 {
9980 if (exp->X_op == O_absent || exp->X_op == O_illegal || exp->X_op == O_big)
9981 {
9982 if (imm_start)
9983 as_bad (_("missing or invalid immediate expression `%s'"),
9984 imm_start);
9985 return 0;
9986 }
9987 else if (exp->X_op == O_constant)
9988 {
9989 /* Size it properly later. */
9990 i.types[this_operand].bitfield.imm64 = 1;
9991 /* If not 64bit, sign extend val. */
9992 if (flag_code != CODE_64BIT
9993 && (exp->X_add_number & ~(((addressT) 2 << 31) - 1)) == 0)
9994 exp->X_add_number
9995 = (exp->X_add_number ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
9996 }
9997 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
9998 else if (OUTPUT_FLAVOR == bfd_target_aout_flavour
9999 && exp_seg != absolute_section
10000 && exp_seg != text_section
10001 && exp_seg != data_section
10002 && exp_seg != bss_section
10003 && exp_seg != undefined_section
10004 && !bfd_is_com_section (exp_seg))
10005 {
10006 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
10007 return 0;
10008 }
10009 #endif
10010 else if (!intel_syntax && exp_seg == reg_section)
10011 {
10012 if (imm_start)
10013 as_bad (_("illegal immediate register operand %s"), imm_start);
10014 return 0;
10015 }
10016 else
10017 {
10018 /* This is an address. The size of the address will be
10019 determined later, depending on destination register,
10020 suffix, or the default for the section. */
10021 i.types[this_operand].bitfield.imm8 = 1;
10022 i.types[this_operand].bitfield.imm16 = 1;
10023 i.types[this_operand].bitfield.imm32 = 1;
10024 i.types[this_operand].bitfield.imm32s = 1;
10025 i.types[this_operand].bitfield.imm64 = 1;
10026 i.types[this_operand] = operand_type_and (i.types[this_operand],
10027 types);
10028 }
10029
10030 return 1;
10031 }
10032
10033 static char *
10034 i386_scale (char *scale)
10035 {
10036 offsetT val;
10037 char *save = input_line_pointer;
10038
10039 input_line_pointer = scale;
10040 val = get_absolute_expression ();
10041
10042 switch (val)
10043 {
10044 case 1:
10045 i.log2_scale_factor = 0;
10046 break;
10047 case 2:
10048 i.log2_scale_factor = 1;
10049 break;
10050 case 4:
10051 i.log2_scale_factor = 2;
10052 break;
10053 case 8:
10054 i.log2_scale_factor = 3;
10055 break;
10056 default:
10057 {
10058 char sep = *input_line_pointer;
10059
10060 *input_line_pointer = '\0';
10061 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
10062 scale);
10063 *input_line_pointer = sep;
10064 input_line_pointer = save;
10065 return NULL;
10066 }
10067 }
10068 if (i.log2_scale_factor != 0 && i.index_reg == 0)
10069 {
10070 as_warn (_("scale factor of %d without an index register"),
10071 1 << i.log2_scale_factor);
10072 i.log2_scale_factor = 0;
10073 }
10074 scale = input_line_pointer;
10075 input_line_pointer = save;
10076 return scale;
10077 }
10078
10079 static int
10080 i386_displacement (char *disp_start, char *disp_end)
10081 {
10082 expressionS *exp;
10083 segT exp_seg = 0;
10084 char *save_input_line_pointer;
10085 char *gotfree_input_line;
10086 int override;
10087 i386_operand_type bigdisp, types = anydisp;
10088 int ret;
10089
10090 if (i.disp_operands == MAX_MEMORY_OPERANDS)
10091 {
10092 as_bad (_("at most %d displacement operands are allowed"),
10093 MAX_MEMORY_OPERANDS);
10094 return 0;
10095 }
10096
10097 operand_type_set (&bigdisp, 0);
10098 if (i.jumpabsolute
10099 || i.types[this_operand].bitfield.baseindex
10100 || (current_templates->start->opcode_modifier.jump != JUMP
10101 && current_templates->start->opcode_modifier.jump != JUMP_DWORD))
10102 {
10103 i386_addressing_mode ();
10104 override = (i.prefix[ADDR_PREFIX] != 0);
10105 if (flag_code == CODE_64BIT)
10106 {
10107 if (!override)
10108 {
10109 bigdisp.bitfield.disp32s = 1;
10110 bigdisp.bitfield.disp64 = 1;
10111 }
10112 else
10113 bigdisp.bitfield.disp32 = 1;
10114 }
10115 else if ((flag_code == CODE_16BIT) ^ override)
10116 bigdisp.bitfield.disp16 = 1;
10117 else
10118 bigdisp.bitfield.disp32 = 1;
10119 }
10120 else
10121 {
10122 /* For PC-relative branches, the width of the displacement may be
10123 dependent upon data size, but is never dependent upon address size.
10124 Also make sure to not unintentionally match against a non-PC-relative
10125 branch template. */
10126 static templates aux_templates;
10127 const insn_template *t = current_templates->start;
10128 bfd_boolean has_intel64 = FALSE;
10129
10130 aux_templates.start = t;
10131 while (++t < current_templates->end)
10132 {
10133 if (t->opcode_modifier.jump
10134 != current_templates->start->opcode_modifier.jump)
10135 break;
10136 if ((t->opcode_modifier.isa64 >= INTEL64))
10137 has_intel64 = TRUE;
10138 }
10139 if (t < current_templates->end)
10140 {
10141 aux_templates.end = t;
10142 current_templates = &aux_templates;
10143 }
10144
10145 override = (i.prefix[DATA_PREFIX] != 0);
10146 if (flag_code == CODE_64BIT)
10147 {
10148 if ((override || i.suffix == WORD_MNEM_SUFFIX)
10149 && (!intel64 || !has_intel64))
10150 bigdisp.bitfield.disp16 = 1;
10151 else
10152 bigdisp.bitfield.disp32s = 1;
10153 }
10154 else
10155 {
10156 if (!override)
10157 override = (i.suffix == (flag_code != CODE_16BIT
10158 ? WORD_MNEM_SUFFIX
10159 : LONG_MNEM_SUFFIX));
10160 bigdisp.bitfield.disp32 = 1;
10161 if ((flag_code == CODE_16BIT) ^ override)
10162 {
10163 bigdisp.bitfield.disp32 = 0;
10164 bigdisp.bitfield.disp16 = 1;
10165 }
10166 }
10167 }
10168 i.types[this_operand] = operand_type_or (i.types[this_operand],
10169 bigdisp);
10170
10171 exp = &disp_expressions[i.disp_operands];
10172 i.op[this_operand].disps = exp;
10173 i.disp_operands++;
10174 save_input_line_pointer = input_line_pointer;
10175 input_line_pointer = disp_start;
10176 END_STRING_AND_SAVE (disp_end);
10177
10178 #ifndef GCC_ASM_O_HACK
10179 #define GCC_ASM_O_HACK 0
10180 #endif
10181 #if GCC_ASM_O_HACK
10182 END_STRING_AND_SAVE (disp_end + 1);
10183 if (i.types[this_operand].bitfield.baseIndex
10184 && displacement_string_end[-1] == '+')
10185 {
10186 /* This hack is to avoid a warning when using the "o"
10187 constraint within gcc asm statements.
10188 For instance:
10189
10190 #define _set_tssldt_desc(n,addr,limit,type) \
10191 __asm__ __volatile__ ( \
10192 "movw %w2,%0\n\t" \
10193 "movw %w1,2+%0\n\t" \
10194 "rorl $16,%1\n\t" \
10195 "movb %b1,4+%0\n\t" \
10196 "movb %4,5+%0\n\t" \
10197 "movb $0,6+%0\n\t" \
10198 "movb %h1,7+%0\n\t" \
10199 "rorl $16,%1" \
10200 : "=o"(*(n)) : "q" (addr), "ri"(limit), "i"(type))
10201
10202 This works great except that the output assembler ends
10203 up looking a bit weird if it turns out that there is
10204 no offset. You end up producing code that looks like:
10205
10206 #APP
10207 movw $235,(%eax)
10208 movw %dx,2+(%eax)
10209 rorl $16,%edx
10210 movb %dl,4+(%eax)
10211 movb $137,5+(%eax)
10212 movb $0,6+(%eax)
10213 movb %dh,7+(%eax)
10214 rorl $16,%edx
10215 #NO_APP
10216
10217 So here we provide the missing zero. */
10218
10219 *displacement_string_end = '0';
10220 }
10221 #endif
10222 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
10223 if (gotfree_input_line)
10224 input_line_pointer = gotfree_input_line;
10225
10226 exp_seg = expression (exp);
10227
10228 SKIP_WHITESPACE ();
10229 if (*input_line_pointer)
10230 as_bad (_("junk `%s' after expression"), input_line_pointer);
10231 #if GCC_ASM_O_HACK
10232 RESTORE_END_STRING (disp_end + 1);
10233 #endif
10234 input_line_pointer = save_input_line_pointer;
10235 if (gotfree_input_line)
10236 {
10237 free (gotfree_input_line);
10238
10239 if (exp->X_op == O_constant || exp->X_op == O_register)
10240 exp->X_op = O_illegal;
10241 }
10242
10243 ret = i386_finalize_displacement (exp_seg, exp, types, disp_start);
10244
10245 RESTORE_END_STRING (disp_end);
10246
10247 return ret;
10248 }
10249
10250 static int
10251 i386_finalize_displacement (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
10252 i386_operand_type types, const char *disp_start)
10253 {
10254 i386_operand_type bigdisp;
10255 int ret = 1;
10256
10257 /* We do this to make sure that the section symbol is in
10258 the symbol table. We will ultimately change the relocation
10259 to be relative to the beginning of the section. */
10260 if (i.reloc[this_operand] == BFD_RELOC_386_GOTOFF
10261 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL
10262 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
10263 {
10264 if (exp->X_op != O_symbol)
10265 goto inv_disp;
10266
10267 if (S_IS_LOCAL (exp->X_add_symbol)
10268 && S_GET_SEGMENT (exp->X_add_symbol) != undefined_section
10269 && S_GET_SEGMENT (exp->X_add_symbol) != expr_section)
10270 section_symbol (S_GET_SEGMENT (exp->X_add_symbol));
10271 exp->X_op = O_subtract;
10272 exp->X_op_symbol = GOT_symbol;
10273 if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
10274 i.reloc[this_operand] = BFD_RELOC_32_PCREL;
10275 else if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
10276 i.reloc[this_operand] = BFD_RELOC_64;
10277 else
10278 i.reloc[this_operand] = BFD_RELOC_32;
10279 }
10280
10281 else if (exp->X_op == O_absent
10282 || exp->X_op == O_illegal
10283 || exp->X_op == O_big)
10284 {
10285 inv_disp:
10286 as_bad (_("missing or invalid displacement expression `%s'"),
10287 disp_start);
10288 ret = 0;
10289 }
10290
10291 else if (flag_code == CODE_64BIT
10292 && !i.prefix[ADDR_PREFIX]
10293 && exp->X_op == O_constant)
10294 {
10295 /* Since displacement is signed extended to 64bit, don't allow
10296 disp32 and turn off disp32s if they are out of range. */
10297 i.types[this_operand].bitfield.disp32 = 0;
10298 if (!fits_in_signed_long (exp->X_add_number))
10299 {
10300 i.types[this_operand].bitfield.disp32s = 0;
10301 if (i.types[this_operand].bitfield.baseindex)
10302 {
10303 as_bad (_("0x%lx out range of signed 32bit displacement"),
10304 (long) exp->X_add_number);
10305 ret = 0;
10306 }
10307 }
10308 }
10309
10310 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
10311 else if (exp->X_op != O_constant
10312 && OUTPUT_FLAVOR == bfd_target_aout_flavour
10313 && exp_seg != absolute_section
10314 && exp_seg != text_section
10315 && exp_seg != data_section
10316 && exp_seg != bss_section
10317 && exp_seg != undefined_section
10318 && !bfd_is_com_section (exp_seg))
10319 {
10320 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
10321 ret = 0;
10322 }
10323 #endif
10324
10325 if (current_templates->start->opcode_modifier.jump == JUMP_BYTE
10326 /* Constants get taken care of by optimize_disp(). */
10327 && exp->X_op != O_constant)
10328 i.types[this_operand].bitfield.disp8 = 1;
10329
10330 /* Check if this is a displacement only operand. */
10331 bigdisp = i.types[this_operand];
10332 bigdisp.bitfield.disp8 = 0;
10333 bigdisp.bitfield.disp16 = 0;
10334 bigdisp.bitfield.disp32 = 0;
10335 bigdisp.bitfield.disp32s = 0;
10336 bigdisp.bitfield.disp64 = 0;
10337 if (operand_type_all_zero (&bigdisp))
10338 i.types[this_operand] = operand_type_and (i.types[this_operand],
10339 types);
10340
10341 return ret;
10342 }
10343
10344 /* Return the active addressing mode, taking address override and
10345 registers forming the address into consideration. Update the
10346 address override prefix if necessary. */
10347
10348 static enum flag_code
10349 i386_addressing_mode (void)
10350 {
10351 enum flag_code addr_mode;
10352
10353 if (i.prefix[ADDR_PREFIX])
10354 addr_mode = flag_code == CODE_32BIT ? CODE_16BIT : CODE_32BIT;
10355 else
10356 {
10357 addr_mode = flag_code;
10358
10359 #if INFER_ADDR_PREFIX
10360 if (i.mem_operands == 0)
10361 {
10362 /* Infer address prefix from the first memory operand. */
10363 const reg_entry *addr_reg = i.base_reg;
10364
10365 if (addr_reg == NULL)
10366 addr_reg = i.index_reg;
10367
10368 if (addr_reg)
10369 {
10370 if (addr_reg->reg_type.bitfield.dword)
10371 addr_mode = CODE_32BIT;
10372 else if (flag_code != CODE_64BIT
10373 && addr_reg->reg_type.bitfield.word)
10374 addr_mode = CODE_16BIT;
10375
10376 if (addr_mode != flag_code)
10377 {
10378 i.prefix[ADDR_PREFIX] = ADDR_PREFIX_OPCODE;
10379 i.prefixes += 1;
10380 /* Change the size of any displacement too. At most one
10381 of Disp16 or Disp32 is set.
10382 FIXME. There doesn't seem to be any real need for
10383 separate Disp16 and Disp32 flags. The same goes for
10384 Imm16 and Imm32. Removing them would probably clean
10385 up the code quite a lot. */
10386 if (flag_code != CODE_64BIT
10387 && (i.types[this_operand].bitfield.disp16
10388 || i.types[this_operand].bitfield.disp32))
10389 i.types[this_operand]
10390 = operand_type_xor (i.types[this_operand], disp16_32);
10391 }
10392 }
10393 }
10394 #endif
10395 }
10396
10397 return addr_mode;
10398 }
10399
10400 /* Make sure the memory operand we've been dealt is valid.
10401 Return 1 on success, 0 on a failure. */
10402
10403 static int
10404 i386_index_check (const char *operand_string)
10405 {
10406 const char *kind = "base/index";
10407 enum flag_code addr_mode = i386_addressing_mode ();
10408
10409 if (current_templates->start->opcode_modifier.isstring
10410 && !current_templates->start->cpu_flags.bitfield.cpupadlock
10411 && (current_templates->end[-1].opcode_modifier.isstring
10412 || i.mem_operands))
10413 {
10414 /* Memory operands of string insns are special in that they only allow
10415 a single register (rDI, rSI, or rBX) as their memory address. */
10416 const reg_entry *expected_reg;
10417 static const char *di_si[][2] =
10418 {
10419 { "esi", "edi" },
10420 { "si", "di" },
10421 { "rsi", "rdi" }
10422 };
10423 static const char *bx[] = { "ebx", "bx", "rbx" };
10424
10425 kind = "string address";
10426
10427 if (current_templates->start->opcode_modifier.repprefixok)
10428 {
10429 int es_op = current_templates->end[-1].opcode_modifier.isstring
10430 - IS_STRING_ES_OP0;
10431 int op = 0;
10432
10433 if (!current_templates->end[-1].operand_types[0].bitfield.baseindex
10434 || ((!i.mem_operands != !intel_syntax)
10435 && current_templates->end[-1].operand_types[1]
10436 .bitfield.baseindex))
10437 op = 1;
10438 expected_reg = hash_find (reg_hash, di_si[addr_mode][op == es_op]);
10439 }
10440 else
10441 expected_reg = hash_find (reg_hash, bx[addr_mode]);
10442
10443 if (i.base_reg != expected_reg
10444 || i.index_reg
10445 || operand_type_check (i.types[this_operand], disp))
10446 {
10447 /* The second memory operand must have the same size as
10448 the first one. */
10449 if (i.mem_operands
10450 && i.base_reg
10451 && !((addr_mode == CODE_64BIT
10452 && i.base_reg->reg_type.bitfield.qword)
10453 || (addr_mode == CODE_32BIT
10454 ? i.base_reg->reg_type.bitfield.dword
10455 : i.base_reg->reg_type.bitfield.word)))
10456 goto bad_address;
10457
10458 as_warn (_("`%s' is not valid here (expected `%c%s%s%c')"),
10459 operand_string,
10460 intel_syntax ? '[' : '(',
10461 register_prefix,
10462 expected_reg->reg_name,
10463 intel_syntax ? ']' : ')');
10464 return 1;
10465 }
10466 else
10467 return 1;
10468
10469 bad_address:
10470 as_bad (_("`%s' is not a valid %s expression"),
10471 operand_string, kind);
10472 return 0;
10473 }
10474 else
10475 {
10476 if (addr_mode != CODE_16BIT)
10477 {
10478 /* 32-bit/64-bit checks. */
10479 if ((i.base_reg
10480 && ((addr_mode == CODE_64BIT
10481 ? !i.base_reg->reg_type.bitfield.qword
10482 : !i.base_reg->reg_type.bitfield.dword)
10483 || (i.index_reg && i.base_reg->reg_num == RegIP)
10484 || i.base_reg->reg_num == RegIZ))
10485 || (i.index_reg
10486 && !i.index_reg->reg_type.bitfield.xmmword
10487 && !i.index_reg->reg_type.bitfield.ymmword
10488 && !i.index_reg->reg_type.bitfield.zmmword
10489 && ((addr_mode == CODE_64BIT
10490 ? !i.index_reg->reg_type.bitfield.qword
10491 : !i.index_reg->reg_type.bitfield.dword)
10492 || !i.index_reg->reg_type.bitfield.baseindex)))
10493 goto bad_address;
10494
10495 /* bndmk, bndldx, and bndstx have special restrictions. */
10496 if (current_templates->start->base_opcode == 0xf30f1b
10497 || (current_templates->start->base_opcode & ~1) == 0x0f1a)
10498 {
10499 /* They cannot use RIP-relative addressing. */
10500 if (i.base_reg && i.base_reg->reg_num == RegIP)
10501 {
10502 as_bad (_("`%s' cannot be used here"), operand_string);
10503 return 0;
10504 }
10505
10506 /* bndldx and bndstx ignore their scale factor. */
10507 if (current_templates->start->base_opcode != 0xf30f1b
10508 && i.log2_scale_factor)
10509 as_warn (_("register scaling is being ignored here"));
10510 }
10511 }
10512 else
10513 {
10514 /* 16-bit checks. */
10515 if ((i.base_reg
10516 && (!i.base_reg->reg_type.bitfield.word
10517 || !i.base_reg->reg_type.bitfield.baseindex))
10518 || (i.index_reg
10519 && (!i.index_reg->reg_type.bitfield.word
10520 || !i.index_reg->reg_type.bitfield.baseindex
10521 || !(i.base_reg
10522 && i.base_reg->reg_num < 6
10523 && i.index_reg->reg_num >= 6
10524 && i.log2_scale_factor == 0))))
10525 goto bad_address;
10526 }
10527 }
10528 return 1;
10529 }
10530
10531 /* Handle vector immediates. */
10532
10533 static int
10534 RC_SAE_immediate (const char *imm_start)
10535 {
10536 unsigned int match_found, j;
10537 const char *pstr = imm_start;
10538 expressionS *exp;
10539
10540 if (*pstr != '{')
10541 return 0;
10542
10543 pstr++;
10544 match_found = 0;
10545 for (j = 0; j < ARRAY_SIZE (RC_NamesTable); j++)
10546 {
10547 if (!strncmp (pstr, RC_NamesTable[j].name, RC_NamesTable[j].len))
10548 {
10549 if (!i.rounding)
10550 {
10551 rc_op.type = RC_NamesTable[j].type;
10552 rc_op.operand = this_operand;
10553 i.rounding = &rc_op;
10554 }
10555 else
10556 {
10557 as_bad (_("duplicated `%s'"), imm_start);
10558 return 0;
10559 }
10560 pstr += RC_NamesTable[j].len;
10561 match_found = 1;
10562 break;
10563 }
10564 }
10565 if (!match_found)
10566 return 0;
10567
10568 if (*pstr++ != '}')
10569 {
10570 as_bad (_("Missing '}': '%s'"), imm_start);
10571 return 0;
10572 }
10573 /* RC/SAE immediate string should contain nothing more. */;
10574 if (*pstr != 0)
10575 {
10576 as_bad (_("Junk after '}': '%s'"), imm_start);
10577 return 0;
10578 }
10579
10580 exp = &im_expressions[i.imm_operands++];
10581 i.op[this_operand].imms = exp;
10582
10583 exp->X_op = O_constant;
10584 exp->X_add_number = 0;
10585 exp->X_add_symbol = (symbolS *) 0;
10586 exp->X_op_symbol = (symbolS *) 0;
10587
10588 i.types[this_operand].bitfield.imm8 = 1;
10589 return 1;
10590 }
10591
10592 /* Only string instructions can have a second memory operand, so
10593 reduce current_templates to just those if it contains any. */
10594 static int
10595 maybe_adjust_templates (void)
10596 {
10597 const insn_template *t;
10598
10599 gas_assert (i.mem_operands == 1);
10600
10601 for (t = current_templates->start; t < current_templates->end; ++t)
10602 if (t->opcode_modifier.isstring)
10603 break;
10604
10605 if (t < current_templates->end)
10606 {
10607 static templates aux_templates;
10608 bfd_boolean recheck;
10609
10610 aux_templates.start = t;
10611 for (; t < current_templates->end; ++t)
10612 if (!t->opcode_modifier.isstring)
10613 break;
10614 aux_templates.end = t;
10615
10616 /* Determine whether to re-check the first memory operand. */
10617 recheck = (aux_templates.start != current_templates->start
10618 || t != current_templates->end);
10619
10620 current_templates = &aux_templates;
10621
10622 if (recheck)
10623 {
10624 i.mem_operands = 0;
10625 if (i.memop1_string != NULL
10626 && i386_index_check (i.memop1_string) == 0)
10627 return 0;
10628 i.mem_operands = 1;
10629 }
10630 }
10631
10632 return 1;
10633 }
10634
10635 /* Parse OPERAND_STRING into the i386_insn structure I. Returns zero
10636 on error. */
10637
10638 static int
10639 i386_att_operand (char *operand_string)
10640 {
10641 const reg_entry *r;
10642 char *end_op;
10643 char *op_string = operand_string;
10644
10645 if (is_space_char (*op_string))
10646 ++op_string;
10647
10648 /* We check for an absolute prefix (differentiating,
10649 for example, 'jmp pc_relative_label' from 'jmp *absolute_label'. */
10650 if (*op_string == ABSOLUTE_PREFIX)
10651 {
10652 ++op_string;
10653 if (is_space_char (*op_string))
10654 ++op_string;
10655 i.jumpabsolute = TRUE;
10656 }
10657
10658 /* Check if operand is a register. */
10659 if ((r = parse_register (op_string, &end_op)) != NULL)
10660 {
10661 i386_operand_type temp;
10662
10663 /* Check for a segment override by searching for ':' after a
10664 segment register. */
10665 op_string = end_op;
10666 if (is_space_char (*op_string))
10667 ++op_string;
10668 if (*op_string == ':' && r->reg_type.bitfield.class == SReg)
10669 {
10670 switch (r->reg_num)
10671 {
10672 case 0:
10673 i.seg[i.mem_operands] = &es;
10674 break;
10675 case 1:
10676 i.seg[i.mem_operands] = &cs;
10677 break;
10678 case 2:
10679 i.seg[i.mem_operands] = &ss;
10680 break;
10681 case 3:
10682 i.seg[i.mem_operands] = &ds;
10683 break;
10684 case 4:
10685 i.seg[i.mem_operands] = &fs;
10686 break;
10687 case 5:
10688 i.seg[i.mem_operands] = &gs;
10689 break;
10690 }
10691
10692 /* Skip the ':' and whitespace. */
10693 ++op_string;
10694 if (is_space_char (*op_string))
10695 ++op_string;
10696
10697 if (!is_digit_char (*op_string)
10698 && !is_identifier_char (*op_string)
10699 && *op_string != '('
10700 && *op_string != ABSOLUTE_PREFIX)
10701 {
10702 as_bad (_("bad memory operand `%s'"), op_string);
10703 return 0;
10704 }
10705 /* Handle case of %es:*foo. */
10706 if (*op_string == ABSOLUTE_PREFIX)
10707 {
10708 ++op_string;
10709 if (is_space_char (*op_string))
10710 ++op_string;
10711 i.jumpabsolute = TRUE;
10712 }
10713 goto do_memory_reference;
10714 }
10715
10716 /* Handle vector operations. */
10717 if (*op_string == '{')
10718 {
10719 op_string = check_VecOperations (op_string, NULL);
10720 if (op_string == NULL)
10721 return 0;
10722 }
10723
10724 if (*op_string)
10725 {
10726 as_bad (_("junk `%s' after register"), op_string);
10727 return 0;
10728 }
10729 temp = r->reg_type;
10730 temp.bitfield.baseindex = 0;
10731 i.types[this_operand] = operand_type_or (i.types[this_operand],
10732 temp);
10733 i.types[this_operand].bitfield.unspecified = 0;
10734 i.op[this_operand].regs = r;
10735 i.reg_operands++;
10736 }
10737 else if (*op_string == REGISTER_PREFIX)
10738 {
10739 as_bad (_("bad register name `%s'"), op_string);
10740 return 0;
10741 }
10742 else if (*op_string == IMMEDIATE_PREFIX)
10743 {
10744 ++op_string;
10745 if (i.jumpabsolute)
10746 {
10747 as_bad (_("immediate operand illegal with absolute jump"));
10748 return 0;
10749 }
10750 if (!i386_immediate (op_string))
10751 return 0;
10752 }
10753 else if (RC_SAE_immediate (operand_string))
10754 {
10755 /* If it is a RC or SAE immediate, do nothing. */
10756 ;
10757 }
10758 else if (is_digit_char (*op_string)
10759 || is_identifier_char (*op_string)
10760 || *op_string == '"'
10761 || *op_string == '(')
10762 {
10763 /* This is a memory reference of some sort. */
10764 char *base_string;
10765
10766 /* Start and end of displacement string expression (if found). */
10767 char *displacement_string_start;
10768 char *displacement_string_end;
10769 char *vop_start;
10770
10771 do_memory_reference:
10772 if (i.mem_operands == 1 && !maybe_adjust_templates ())
10773 return 0;
10774 if ((i.mem_operands == 1
10775 && !current_templates->start->opcode_modifier.isstring)
10776 || i.mem_operands == 2)
10777 {
10778 as_bad (_("too many memory references for `%s'"),
10779 current_templates->start->name);
10780 return 0;
10781 }
10782
10783 /* Check for base index form. We detect the base index form by
10784 looking for an ')' at the end of the operand, searching
10785 for the '(' matching it, and finding a REGISTER_PREFIX or ','
10786 after the '('. */
10787 base_string = op_string + strlen (op_string);
10788
10789 /* Handle vector operations. */
10790 vop_start = strchr (op_string, '{');
10791 if (vop_start && vop_start < base_string)
10792 {
10793 if (check_VecOperations (vop_start, base_string) == NULL)
10794 return 0;
10795 base_string = vop_start;
10796 }
10797
10798 --base_string;
10799 if (is_space_char (*base_string))
10800 --base_string;
10801
10802 /* If we only have a displacement, set-up for it to be parsed later. */
10803 displacement_string_start = op_string;
10804 displacement_string_end = base_string + 1;
10805
10806 if (*base_string == ')')
10807 {
10808 char *temp_string;
10809 unsigned int parens_balanced = 1;
10810 /* We've already checked that the number of left & right ()'s are
10811 equal, so this loop will not be infinite. */
10812 do
10813 {
10814 base_string--;
10815 if (*base_string == ')')
10816 parens_balanced++;
10817 if (*base_string == '(')
10818 parens_balanced--;
10819 }
10820 while (parens_balanced);
10821
10822 temp_string = base_string;
10823
10824 /* Skip past '(' and whitespace. */
10825 ++base_string;
10826 if (is_space_char (*base_string))
10827 ++base_string;
10828
10829 if (*base_string == ','
10830 || ((i.base_reg = parse_register (base_string, &end_op))
10831 != NULL))
10832 {
10833 displacement_string_end = temp_string;
10834
10835 i.types[this_operand].bitfield.baseindex = 1;
10836
10837 if (i.base_reg)
10838 {
10839 base_string = end_op;
10840 if (is_space_char (*base_string))
10841 ++base_string;
10842 }
10843
10844 /* There may be an index reg or scale factor here. */
10845 if (*base_string == ',')
10846 {
10847 ++base_string;
10848 if (is_space_char (*base_string))
10849 ++base_string;
10850
10851 if ((i.index_reg = parse_register (base_string, &end_op))
10852 != NULL)
10853 {
10854 base_string = end_op;
10855 if (is_space_char (*base_string))
10856 ++base_string;
10857 if (*base_string == ',')
10858 {
10859 ++base_string;
10860 if (is_space_char (*base_string))
10861 ++base_string;
10862 }
10863 else if (*base_string != ')')
10864 {
10865 as_bad (_("expecting `,' or `)' "
10866 "after index register in `%s'"),
10867 operand_string);
10868 return 0;
10869 }
10870 }
10871 else if (*base_string == REGISTER_PREFIX)
10872 {
10873 end_op = strchr (base_string, ',');
10874 if (end_op)
10875 *end_op = '\0';
10876 as_bad (_("bad register name `%s'"), base_string);
10877 return 0;
10878 }
10879
10880 /* Check for scale factor. */
10881 if (*base_string != ')')
10882 {
10883 char *end_scale = i386_scale (base_string);
10884
10885 if (!end_scale)
10886 return 0;
10887
10888 base_string = end_scale;
10889 if (is_space_char (*base_string))
10890 ++base_string;
10891 if (*base_string != ')')
10892 {
10893 as_bad (_("expecting `)' "
10894 "after scale factor in `%s'"),
10895 operand_string);
10896 return 0;
10897 }
10898 }
10899 else if (!i.index_reg)
10900 {
10901 as_bad (_("expecting index register or scale factor "
10902 "after `,'; got '%c'"),
10903 *base_string);
10904 return 0;
10905 }
10906 }
10907 else if (*base_string != ')')
10908 {
10909 as_bad (_("expecting `,' or `)' "
10910 "after base register in `%s'"),
10911 operand_string);
10912 return 0;
10913 }
10914 }
10915 else if (*base_string == REGISTER_PREFIX)
10916 {
10917 end_op = strchr (base_string, ',');
10918 if (end_op)
10919 *end_op = '\0';
10920 as_bad (_("bad register name `%s'"), base_string);
10921 return 0;
10922 }
10923 }
10924
10925 /* If there's an expression beginning the operand, parse it,
10926 assuming displacement_string_start and
10927 displacement_string_end are meaningful. */
10928 if (displacement_string_start != displacement_string_end)
10929 {
10930 if (!i386_displacement (displacement_string_start,
10931 displacement_string_end))
10932 return 0;
10933 }
10934
10935 /* Special case for (%dx) while doing input/output op. */
10936 if (i.base_reg
10937 && i.base_reg->reg_type.bitfield.instance == RegD
10938 && i.base_reg->reg_type.bitfield.word
10939 && i.index_reg == 0
10940 && i.log2_scale_factor == 0
10941 && i.seg[i.mem_operands] == 0
10942 && !operand_type_check (i.types[this_operand], disp))
10943 {
10944 i.types[this_operand] = i.base_reg->reg_type;
10945 return 1;
10946 }
10947
10948 if (i386_index_check (operand_string) == 0)
10949 return 0;
10950 i.flags[this_operand] |= Operand_Mem;
10951 if (i.mem_operands == 0)
10952 i.memop1_string = xstrdup (operand_string);
10953 i.mem_operands++;
10954 }
10955 else
10956 {
10957 /* It's not a memory operand; argh! */
10958 as_bad (_("invalid char %s beginning operand %d `%s'"),
10959 output_invalid (*op_string),
10960 this_operand + 1,
10961 op_string);
10962 return 0;
10963 }
10964 return 1; /* Normal return. */
10965 }
10966 \f
10967 /* Calculate the maximum variable size (i.e., excluding fr_fix)
10968 that an rs_machine_dependent frag may reach. */
10969
10970 unsigned int
10971 i386_frag_max_var (fragS *frag)
10972 {
10973 /* The only relaxable frags are for jumps.
10974 Unconditional jumps can grow by 4 bytes and others by 5 bytes. */
10975 gas_assert (frag->fr_type == rs_machine_dependent);
10976 return TYPE_FROM_RELAX_STATE (frag->fr_subtype) == UNCOND_JUMP ? 4 : 5;
10977 }
10978
10979 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10980 static int
10981 elf_symbol_resolved_in_segment_p (symbolS *fr_symbol, offsetT fr_var)
10982 {
10983 /* STT_GNU_IFUNC symbol must go through PLT. */
10984 if ((symbol_get_bfdsym (fr_symbol)->flags
10985 & BSF_GNU_INDIRECT_FUNCTION) != 0)
10986 return 0;
10987
10988 if (!S_IS_EXTERNAL (fr_symbol))
10989 /* Symbol may be weak or local. */
10990 return !S_IS_WEAK (fr_symbol);
10991
10992 /* Global symbols with non-default visibility can't be preempted. */
10993 if (ELF_ST_VISIBILITY (S_GET_OTHER (fr_symbol)) != STV_DEFAULT)
10994 return 1;
10995
10996 if (fr_var != NO_RELOC)
10997 switch ((enum bfd_reloc_code_real) fr_var)
10998 {
10999 case BFD_RELOC_386_PLT32:
11000 case BFD_RELOC_X86_64_PLT32:
11001 /* Symbol with PLT relocation may be preempted. */
11002 return 0;
11003 default:
11004 abort ();
11005 }
11006
11007 /* Global symbols with default visibility in a shared library may be
11008 preempted by another definition. */
11009 return !shared;
11010 }
11011 #endif
11012
11013 /* Table 3-2. Macro-Fusible Instructions in Haswell Microarchitecture
11014 Note also work for Skylake and Cascadelake.
11015 ---------------------------------------------------------------------
11016 | JCC | ADD/SUB/CMP | INC/DEC | TEST/AND |
11017 | ------ | ----------- | ------- | -------- |
11018 | Jo | N | N | Y |
11019 | Jno | N | N | Y |
11020 | Jc/Jb | Y | N | Y |
11021 | Jae/Jnb | Y | N | Y |
11022 | Je/Jz | Y | Y | Y |
11023 | Jne/Jnz | Y | Y | Y |
11024 | Jna/Jbe | Y | N | Y |
11025 | Ja/Jnbe | Y | N | Y |
11026 | Js | N | N | Y |
11027 | Jns | N | N | Y |
11028 | Jp/Jpe | N | N | Y |
11029 | Jnp/Jpo | N | N | Y |
11030 | Jl/Jnge | Y | Y | Y |
11031 | Jge/Jnl | Y | Y | Y |
11032 | Jle/Jng | Y | Y | Y |
11033 | Jg/Jnle | Y | Y | Y |
11034 --------------------------------------------------------------------- */
11035 static int
11036 i386_macro_fusible_p (enum mf_cmp_kind mf_cmp, enum mf_jcc_kind mf_jcc)
11037 {
11038 if (mf_cmp == mf_cmp_alu_cmp)
11039 return ((mf_jcc >= mf_jcc_jc && mf_jcc <= mf_jcc_jna)
11040 || mf_jcc == mf_jcc_jl || mf_jcc == mf_jcc_jle);
11041 if (mf_cmp == mf_cmp_incdec)
11042 return (mf_jcc == mf_jcc_je || mf_jcc == mf_jcc_jl
11043 || mf_jcc == mf_jcc_jle);
11044 if (mf_cmp == mf_cmp_test_and)
11045 return 1;
11046 return 0;
11047 }
11048
11049 /* Return the next non-empty frag. */
11050
11051 static fragS *
11052 i386_next_non_empty_frag (fragS *fragP)
11053 {
11054 /* There may be a frag with a ".fill 0" when there is no room in
11055 the current frag for frag_grow in output_insn. */
11056 for (fragP = fragP->fr_next;
11057 (fragP != NULL
11058 && fragP->fr_type == rs_fill
11059 && fragP->fr_fix == 0);
11060 fragP = fragP->fr_next)
11061 ;
11062 return fragP;
11063 }
11064
11065 /* Return the next jcc frag after BRANCH_PADDING. */
11066
11067 static fragS *
11068 i386_next_fusible_jcc_frag (fragS *maybe_cmp_fragP, fragS *pad_fragP)
11069 {
11070 fragS *branch_fragP;
11071 if (!pad_fragP)
11072 return NULL;
11073
11074 if (pad_fragP->fr_type == rs_machine_dependent
11075 && (TYPE_FROM_RELAX_STATE (pad_fragP->fr_subtype)
11076 == BRANCH_PADDING))
11077 {
11078 branch_fragP = i386_next_non_empty_frag (pad_fragP);
11079 if (branch_fragP->fr_type != rs_machine_dependent)
11080 return NULL;
11081 if (TYPE_FROM_RELAX_STATE (branch_fragP->fr_subtype) == COND_JUMP
11082 && i386_macro_fusible_p (maybe_cmp_fragP->tc_frag_data.mf_type,
11083 pad_fragP->tc_frag_data.mf_type))
11084 return branch_fragP;
11085 }
11086
11087 return NULL;
11088 }
11089
11090 /* Classify BRANCH_PADDING, BRANCH_PREFIX and FUSED_JCC_PADDING frags. */
11091
11092 static void
11093 i386_classify_machine_dependent_frag (fragS *fragP)
11094 {
11095 fragS *cmp_fragP;
11096 fragS *pad_fragP;
11097 fragS *branch_fragP;
11098 fragS *next_fragP;
11099 unsigned int max_prefix_length;
11100
11101 if (fragP->tc_frag_data.classified)
11102 return;
11103
11104 /* First scan for BRANCH_PADDING and FUSED_JCC_PADDING. Convert
11105 FUSED_JCC_PADDING and merge BRANCH_PADDING. */
11106 for (next_fragP = fragP;
11107 next_fragP != NULL;
11108 next_fragP = next_fragP->fr_next)
11109 {
11110 next_fragP->tc_frag_data.classified = 1;
11111 if (next_fragP->fr_type == rs_machine_dependent)
11112 switch (TYPE_FROM_RELAX_STATE (next_fragP->fr_subtype))
11113 {
11114 case BRANCH_PADDING:
11115 /* The BRANCH_PADDING frag must be followed by a branch
11116 frag. */
11117 branch_fragP = i386_next_non_empty_frag (next_fragP);
11118 next_fragP->tc_frag_data.u.branch_fragP = branch_fragP;
11119 break;
11120 case FUSED_JCC_PADDING:
11121 /* Check if this is a fused jcc:
11122 FUSED_JCC_PADDING
11123 CMP like instruction
11124 BRANCH_PADDING
11125 COND_JUMP
11126 */
11127 cmp_fragP = i386_next_non_empty_frag (next_fragP);
11128 pad_fragP = i386_next_non_empty_frag (cmp_fragP);
11129 branch_fragP = i386_next_fusible_jcc_frag (next_fragP, pad_fragP);
11130 if (branch_fragP)
11131 {
11132 /* The BRANCH_PADDING frag is merged with the
11133 FUSED_JCC_PADDING frag. */
11134 next_fragP->tc_frag_data.u.branch_fragP = branch_fragP;
11135 /* CMP like instruction size. */
11136 next_fragP->tc_frag_data.cmp_size = cmp_fragP->fr_fix;
11137 frag_wane (pad_fragP);
11138 /* Skip to branch_fragP. */
11139 next_fragP = branch_fragP;
11140 }
11141 else if (next_fragP->tc_frag_data.max_prefix_length)
11142 {
11143 /* Turn FUSED_JCC_PADDING into BRANCH_PREFIX if it isn't
11144 a fused jcc. */
11145 next_fragP->fr_subtype
11146 = ENCODE_RELAX_STATE (BRANCH_PREFIX, 0);
11147 next_fragP->tc_frag_data.max_bytes
11148 = next_fragP->tc_frag_data.max_prefix_length;
11149 /* This will be updated in the BRANCH_PREFIX scan. */
11150 next_fragP->tc_frag_data.max_prefix_length = 0;
11151 }
11152 else
11153 frag_wane (next_fragP);
11154 break;
11155 }
11156 }
11157
11158 /* Stop if there is no BRANCH_PREFIX. */
11159 if (!align_branch_prefix_size)
11160 return;
11161
11162 /* Scan for BRANCH_PREFIX. */
11163 for (; fragP != NULL; fragP = fragP->fr_next)
11164 {
11165 if (fragP->fr_type != rs_machine_dependent
11166 || (TYPE_FROM_RELAX_STATE (fragP->fr_subtype)
11167 != BRANCH_PREFIX))
11168 continue;
11169
11170 /* Count all BRANCH_PREFIX frags before BRANCH_PADDING and
11171 COND_JUMP_PREFIX. */
11172 max_prefix_length = 0;
11173 for (next_fragP = fragP;
11174 next_fragP != NULL;
11175 next_fragP = next_fragP->fr_next)
11176 {
11177 if (next_fragP->fr_type == rs_fill)
11178 /* Skip rs_fill frags. */
11179 continue;
11180 else if (next_fragP->fr_type != rs_machine_dependent)
11181 /* Stop for all other frags. */
11182 break;
11183
11184 /* rs_machine_dependent frags. */
11185 if (TYPE_FROM_RELAX_STATE (next_fragP->fr_subtype)
11186 == BRANCH_PREFIX)
11187 {
11188 /* Count BRANCH_PREFIX frags. */
11189 if (max_prefix_length >= MAX_FUSED_JCC_PADDING_SIZE)
11190 {
11191 max_prefix_length = MAX_FUSED_JCC_PADDING_SIZE;
11192 frag_wane (next_fragP);
11193 }
11194 else
11195 max_prefix_length
11196 += next_fragP->tc_frag_data.max_bytes;
11197 }
11198 else if ((TYPE_FROM_RELAX_STATE (next_fragP->fr_subtype)
11199 == BRANCH_PADDING)
11200 || (TYPE_FROM_RELAX_STATE (next_fragP->fr_subtype)
11201 == FUSED_JCC_PADDING))
11202 {
11203 /* Stop at BRANCH_PADDING and FUSED_JCC_PADDING. */
11204 fragP->tc_frag_data.u.padding_fragP = next_fragP;
11205 break;
11206 }
11207 else
11208 /* Stop for other rs_machine_dependent frags. */
11209 break;
11210 }
11211
11212 fragP->tc_frag_data.max_prefix_length = max_prefix_length;
11213
11214 /* Skip to the next frag. */
11215 fragP = next_fragP;
11216 }
11217 }
11218
11219 /* Compute padding size for
11220
11221 FUSED_JCC_PADDING
11222 CMP like instruction
11223 BRANCH_PADDING
11224 COND_JUMP/UNCOND_JUMP
11225
11226 or
11227
11228 BRANCH_PADDING
11229 COND_JUMP/UNCOND_JUMP
11230 */
11231
11232 static int
11233 i386_branch_padding_size (fragS *fragP, offsetT address)
11234 {
11235 unsigned int offset, size, padding_size;
11236 fragS *branch_fragP = fragP->tc_frag_data.u.branch_fragP;
11237
11238 /* The start address of the BRANCH_PADDING or FUSED_JCC_PADDING frag. */
11239 if (!address)
11240 address = fragP->fr_address;
11241 address += fragP->fr_fix;
11242
11243 /* CMP like instrunction size. */
11244 size = fragP->tc_frag_data.cmp_size;
11245
11246 /* The base size of the branch frag. */
11247 size += branch_fragP->fr_fix;
11248
11249 /* Add opcode and displacement bytes for the rs_machine_dependent
11250 branch frag. */
11251 if (branch_fragP->fr_type == rs_machine_dependent)
11252 size += md_relax_table[branch_fragP->fr_subtype].rlx_length;
11253
11254 /* Check if branch is within boundary and doesn't end at the last
11255 byte. */
11256 offset = address & ((1U << align_branch_power) - 1);
11257 if ((offset + size) >= (1U << align_branch_power))
11258 /* Padding needed to avoid crossing boundary. */
11259 padding_size = (1U << align_branch_power) - offset;
11260 else
11261 /* No padding needed. */
11262 padding_size = 0;
11263
11264 /* The return value may be saved in tc_frag_data.length which is
11265 unsigned byte. */
11266 if (!fits_in_unsigned_byte (padding_size))
11267 abort ();
11268
11269 return padding_size;
11270 }
11271
11272 /* i386_generic_table_relax_frag()
11273
11274 Handle BRANCH_PADDING, BRANCH_PREFIX and FUSED_JCC_PADDING frags to
11275 grow/shrink padding to align branch frags. Hand others to
11276 relax_frag(). */
11277
11278 long
11279 i386_generic_table_relax_frag (segT segment, fragS *fragP, long stretch)
11280 {
11281 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PADDING
11282 || TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == FUSED_JCC_PADDING)
11283 {
11284 long padding_size = i386_branch_padding_size (fragP, 0);
11285 long grow = padding_size - fragP->tc_frag_data.length;
11286
11287 /* When the BRANCH_PREFIX frag is used, the computed address
11288 must match the actual address and there should be no padding. */
11289 if (fragP->tc_frag_data.padding_address
11290 && (fragP->tc_frag_data.padding_address != fragP->fr_address
11291 || padding_size))
11292 abort ();
11293
11294 /* Update the padding size. */
11295 if (grow)
11296 fragP->tc_frag_data.length = padding_size;
11297
11298 return grow;
11299 }
11300 else if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PREFIX)
11301 {
11302 fragS *padding_fragP, *next_fragP;
11303 long padding_size, left_size, last_size;
11304
11305 padding_fragP = fragP->tc_frag_data.u.padding_fragP;
11306 if (!padding_fragP)
11307 /* Use the padding set by the leading BRANCH_PREFIX frag. */
11308 return (fragP->tc_frag_data.length
11309 - fragP->tc_frag_data.last_length);
11310
11311 /* Compute the relative address of the padding frag in the very
11312 first time where the BRANCH_PREFIX frag sizes are zero. */
11313 if (!fragP->tc_frag_data.padding_address)
11314 fragP->tc_frag_data.padding_address
11315 = padding_fragP->fr_address - (fragP->fr_address - stretch);
11316
11317 /* First update the last length from the previous interation. */
11318 left_size = fragP->tc_frag_data.prefix_length;
11319 for (next_fragP = fragP;
11320 next_fragP != padding_fragP;
11321 next_fragP = next_fragP->fr_next)
11322 if (next_fragP->fr_type == rs_machine_dependent
11323 && (TYPE_FROM_RELAX_STATE (next_fragP->fr_subtype)
11324 == BRANCH_PREFIX))
11325 {
11326 if (left_size)
11327 {
11328 int max = next_fragP->tc_frag_data.max_bytes;
11329 if (max)
11330 {
11331 int size;
11332 if (max > left_size)
11333 size = left_size;
11334 else
11335 size = max;
11336 left_size -= size;
11337 next_fragP->tc_frag_data.last_length = size;
11338 }
11339 }
11340 else
11341 next_fragP->tc_frag_data.last_length = 0;
11342 }
11343
11344 /* Check the padding size for the padding frag. */
11345 padding_size = i386_branch_padding_size
11346 (padding_fragP, (fragP->fr_address
11347 + fragP->tc_frag_data.padding_address));
11348
11349 last_size = fragP->tc_frag_data.prefix_length;
11350 /* Check if there is change from the last interation. */
11351 if (padding_size == last_size)
11352 {
11353 /* Update the expected address of the padding frag. */
11354 padding_fragP->tc_frag_data.padding_address
11355 = (fragP->fr_address + padding_size
11356 + fragP->tc_frag_data.padding_address);
11357 return 0;
11358 }
11359
11360 if (padding_size > fragP->tc_frag_data.max_prefix_length)
11361 {
11362 /* No padding if there is no sufficient room. Clear the
11363 expected address of the padding frag. */
11364 padding_fragP->tc_frag_data.padding_address = 0;
11365 padding_size = 0;
11366 }
11367 else
11368 /* Store the expected address of the padding frag. */
11369 padding_fragP->tc_frag_data.padding_address
11370 = (fragP->fr_address + padding_size
11371 + fragP->tc_frag_data.padding_address);
11372
11373 fragP->tc_frag_data.prefix_length = padding_size;
11374
11375 /* Update the length for the current interation. */
11376 left_size = padding_size;
11377 for (next_fragP = fragP;
11378 next_fragP != padding_fragP;
11379 next_fragP = next_fragP->fr_next)
11380 if (next_fragP->fr_type == rs_machine_dependent
11381 && (TYPE_FROM_RELAX_STATE (next_fragP->fr_subtype)
11382 == BRANCH_PREFIX))
11383 {
11384 if (left_size)
11385 {
11386 int max = next_fragP->tc_frag_data.max_bytes;
11387 if (max)
11388 {
11389 int size;
11390 if (max > left_size)
11391 size = left_size;
11392 else
11393 size = max;
11394 left_size -= size;
11395 next_fragP->tc_frag_data.length = size;
11396 }
11397 }
11398 else
11399 next_fragP->tc_frag_data.length = 0;
11400 }
11401
11402 return (fragP->tc_frag_data.length
11403 - fragP->tc_frag_data.last_length);
11404 }
11405 return relax_frag (segment, fragP, stretch);
11406 }
11407
11408 /* md_estimate_size_before_relax()
11409
11410 Called just before relax() for rs_machine_dependent frags. The x86
11411 assembler uses these frags to handle variable size jump
11412 instructions.
11413
11414 Any symbol that is now undefined will not become defined.
11415 Return the correct fr_subtype in the frag.
11416 Return the initial "guess for variable size of frag" to caller.
11417 The guess is actually the growth beyond the fixed part. Whatever
11418 we do to grow the fixed or variable part contributes to our
11419 returned value. */
11420
11421 int
11422 md_estimate_size_before_relax (fragS *fragP, segT segment)
11423 {
11424 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PADDING
11425 || TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PREFIX
11426 || TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == FUSED_JCC_PADDING)
11427 {
11428 i386_classify_machine_dependent_frag (fragP);
11429 return fragP->tc_frag_data.length;
11430 }
11431
11432 /* We've already got fragP->fr_subtype right; all we have to do is
11433 check for un-relaxable symbols. On an ELF system, we can't relax
11434 an externally visible symbol, because it may be overridden by a
11435 shared library. */
11436 if (S_GET_SEGMENT (fragP->fr_symbol) != segment
11437 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11438 || (IS_ELF
11439 && !elf_symbol_resolved_in_segment_p (fragP->fr_symbol,
11440 fragP->fr_var))
11441 #endif
11442 #if defined (OBJ_COFF) && defined (TE_PE)
11443 || (OUTPUT_FLAVOR == bfd_target_coff_flavour
11444 && S_IS_WEAK (fragP->fr_symbol))
11445 #endif
11446 )
11447 {
11448 /* Symbol is undefined in this segment, or we need to keep a
11449 reloc so that weak symbols can be overridden. */
11450 int size = (fragP->fr_subtype & CODE16) ? 2 : 4;
11451 enum bfd_reloc_code_real reloc_type;
11452 unsigned char *opcode;
11453 int old_fr_fix;
11454
11455 if (fragP->fr_var != NO_RELOC)
11456 reloc_type = (enum bfd_reloc_code_real) fragP->fr_var;
11457 else if (size == 2)
11458 reloc_type = BFD_RELOC_16_PCREL;
11459 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11460 else if (need_plt32_p (fragP->fr_symbol))
11461 reloc_type = BFD_RELOC_X86_64_PLT32;
11462 #endif
11463 else
11464 reloc_type = BFD_RELOC_32_PCREL;
11465
11466 old_fr_fix = fragP->fr_fix;
11467 opcode = (unsigned char *) fragP->fr_opcode;
11468
11469 switch (TYPE_FROM_RELAX_STATE (fragP->fr_subtype))
11470 {
11471 case UNCOND_JUMP:
11472 /* Make jmp (0xeb) a (d)word displacement jump. */
11473 opcode[0] = 0xe9;
11474 fragP->fr_fix += size;
11475 fix_new (fragP, old_fr_fix, size,
11476 fragP->fr_symbol,
11477 fragP->fr_offset, 1,
11478 reloc_type);
11479 break;
11480
11481 case COND_JUMP86:
11482 if (size == 2
11483 && (!no_cond_jump_promotion || fragP->fr_var != NO_RELOC))
11484 {
11485 /* Negate the condition, and branch past an
11486 unconditional jump. */
11487 opcode[0] ^= 1;
11488 opcode[1] = 3;
11489 /* Insert an unconditional jump. */
11490 opcode[2] = 0xe9;
11491 /* We added two extra opcode bytes, and have a two byte
11492 offset. */
11493 fragP->fr_fix += 2 + 2;
11494 fix_new (fragP, old_fr_fix + 2, 2,
11495 fragP->fr_symbol,
11496 fragP->fr_offset, 1,
11497 reloc_type);
11498 break;
11499 }
11500 /* Fall through. */
11501
11502 case COND_JUMP:
11503 if (no_cond_jump_promotion && fragP->fr_var == NO_RELOC)
11504 {
11505 fixS *fixP;
11506
11507 fragP->fr_fix += 1;
11508 fixP = fix_new (fragP, old_fr_fix, 1,
11509 fragP->fr_symbol,
11510 fragP->fr_offset, 1,
11511 BFD_RELOC_8_PCREL);
11512 fixP->fx_signed = 1;
11513 break;
11514 }
11515
11516 /* This changes the byte-displacement jump 0x7N
11517 to the (d)word-displacement jump 0x0f,0x8N. */
11518 opcode[1] = opcode[0] + 0x10;
11519 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
11520 /* We've added an opcode byte. */
11521 fragP->fr_fix += 1 + size;
11522 fix_new (fragP, old_fr_fix + 1, size,
11523 fragP->fr_symbol,
11524 fragP->fr_offset, 1,
11525 reloc_type);
11526 break;
11527
11528 default:
11529 BAD_CASE (fragP->fr_subtype);
11530 break;
11531 }
11532 frag_wane (fragP);
11533 return fragP->fr_fix - old_fr_fix;
11534 }
11535
11536 /* Guess size depending on current relax state. Initially the relax
11537 state will correspond to a short jump and we return 1, because
11538 the variable part of the frag (the branch offset) is one byte
11539 long. However, we can relax a section more than once and in that
11540 case we must either set fr_subtype back to the unrelaxed state,
11541 or return the value for the appropriate branch. */
11542 return md_relax_table[fragP->fr_subtype].rlx_length;
11543 }
11544
11545 /* Called after relax() is finished.
11546
11547 In: Address of frag.
11548 fr_type == rs_machine_dependent.
11549 fr_subtype is what the address relaxed to.
11550
11551 Out: Any fixSs and constants are set up.
11552 Caller will turn frag into a ".space 0". */
11553
11554 void
11555 md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT sec ATTRIBUTE_UNUSED,
11556 fragS *fragP)
11557 {
11558 unsigned char *opcode;
11559 unsigned char *where_to_put_displacement = NULL;
11560 offsetT target_address;
11561 offsetT opcode_address;
11562 unsigned int extension = 0;
11563 offsetT displacement_from_opcode_start;
11564
11565 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PADDING
11566 || TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == FUSED_JCC_PADDING
11567 || TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PREFIX)
11568 {
11569 /* Generate nop padding. */
11570 unsigned int size = fragP->tc_frag_data.length;
11571 if (size)
11572 {
11573 if (size > fragP->tc_frag_data.max_bytes)
11574 abort ();
11575
11576 if (flag_debug)
11577 {
11578 const char *msg;
11579 const char *branch = "branch";
11580 const char *prefix = "";
11581 fragS *padding_fragP;
11582 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype)
11583 == BRANCH_PREFIX)
11584 {
11585 padding_fragP = fragP->tc_frag_data.u.padding_fragP;
11586 switch (fragP->tc_frag_data.default_prefix)
11587 {
11588 default:
11589 abort ();
11590 break;
11591 case CS_PREFIX_OPCODE:
11592 prefix = " cs";
11593 break;
11594 case DS_PREFIX_OPCODE:
11595 prefix = " ds";
11596 break;
11597 case ES_PREFIX_OPCODE:
11598 prefix = " es";
11599 break;
11600 case FS_PREFIX_OPCODE:
11601 prefix = " fs";
11602 break;
11603 case GS_PREFIX_OPCODE:
11604 prefix = " gs";
11605 break;
11606 case SS_PREFIX_OPCODE:
11607 prefix = " ss";
11608 break;
11609 }
11610 if (padding_fragP)
11611 msg = _("%s:%u: add %d%s at 0x%llx to align "
11612 "%s within %d-byte boundary\n");
11613 else
11614 msg = _("%s:%u: add additional %d%s at 0x%llx to "
11615 "align %s within %d-byte boundary\n");
11616 }
11617 else
11618 {
11619 padding_fragP = fragP;
11620 msg = _("%s:%u: add %d%s-byte nop at 0x%llx to align "
11621 "%s within %d-byte boundary\n");
11622 }
11623
11624 if (padding_fragP)
11625 switch (padding_fragP->tc_frag_data.branch_type)
11626 {
11627 case align_branch_jcc:
11628 branch = "jcc";
11629 break;
11630 case align_branch_fused:
11631 branch = "fused jcc";
11632 break;
11633 case align_branch_jmp:
11634 branch = "jmp";
11635 break;
11636 case align_branch_call:
11637 branch = "call";
11638 break;
11639 case align_branch_indirect:
11640 branch = "indiret branch";
11641 break;
11642 case align_branch_ret:
11643 branch = "ret";
11644 break;
11645 default:
11646 break;
11647 }
11648
11649 fprintf (stdout, msg,
11650 fragP->fr_file, fragP->fr_line, size, prefix,
11651 (long long) fragP->fr_address, branch,
11652 1 << align_branch_power);
11653 }
11654 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PREFIX)
11655 memset (fragP->fr_opcode,
11656 fragP->tc_frag_data.default_prefix, size);
11657 else
11658 i386_generate_nops (fragP, (char *) fragP->fr_opcode,
11659 size, 0);
11660 fragP->fr_fix += size;
11661 }
11662 return;
11663 }
11664
11665 opcode = (unsigned char *) fragP->fr_opcode;
11666
11667 /* Address we want to reach in file space. */
11668 target_address = S_GET_VALUE (fragP->fr_symbol) + fragP->fr_offset;
11669
11670 /* Address opcode resides at in file space. */
11671 opcode_address = fragP->fr_address + fragP->fr_fix;
11672
11673 /* Displacement from opcode start to fill into instruction. */
11674 displacement_from_opcode_start = target_address - opcode_address;
11675
11676 if ((fragP->fr_subtype & BIG) == 0)
11677 {
11678 /* Don't have to change opcode. */
11679 extension = 1; /* 1 opcode + 1 displacement */
11680 where_to_put_displacement = &opcode[1];
11681 }
11682 else
11683 {
11684 if (no_cond_jump_promotion
11685 && TYPE_FROM_RELAX_STATE (fragP->fr_subtype) != UNCOND_JUMP)
11686 as_warn_where (fragP->fr_file, fragP->fr_line,
11687 _("long jump required"));
11688
11689 switch (fragP->fr_subtype)
11690 {
11691 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG):
11692 extension = 4; /* 1 opcode + 4 displacement */
11693 opcode[0] = 0xe9;
11694 where_to_put_displacement = &opcode[1];
11695 break;
11696
11697 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16):
11698 extension = 2; /* 1 opcode + 2 displacement */
11699 opcode[0] = 0xe9;
11700 where_to_put_displacement = &opcode[1];
11701 break;
11702
11703 case ENCODE_RELAX_STATE (COND_JUMP, BIG):
11704 case ENCODE_RELAX_STATE (COND_JUMP86, BIG):
11705 extension = 5; /* 2 opcode + 4 displacement */
11706 opcode[1] = opcode[0] + 0x10;
11707 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
11708 where_to_put_displacement = &opcode[2];
11709 break;
11710
11711 case ENCODE_RELAX_STATE (COND_JUMP, BIG16):
11712 extension = 3; /* 2 opcode + 2 displacement */
11713 opcode[1] = opcode[0] + 0x10;
11714 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
11715 where_to_put_displacement = &opcode[2];
11716 break;
11717
11718 case ENCODE_RELAX_STATE (COND_JUMP86, BIG16):
11719 extension = 4;
11720 opcode[0] ^= 1;
11721 opcode[1] = 3;
11722 opcode[2] = 0xe9;
11723 where_to_put_displacement = &opcode[3];
11724 break;
11725
11726 default:
11727 BAD_CASE (fragP->fr_subtype);
11728 break;
11729 }
11730 }
11731
11732 /* If size if less then four we are sure that the operand fits,
11733 but if it's 4, then it could be that the displacement is larger
11734 then -/+ 2GB. */
11735 if (DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype) == 4
11736 && object_64bit
11737 && ((addressT) (displacement_from_opcode_start - extension
11738 + ((addressT) 1 << 31))
11739 > (((addressT) 2 << 31) - 1)))
11740 {
11741 as_bad_where (fragP->fr_file, fragP->fr_line,
11742 _("jump target out of range"));
11743 /* Make us emit 0. */
11744 displacement_from_opcode_start = extension;
11745 }
11746 /* Now put displacement after opcode. */
11747 md_number_to_chars ((char *) where_to_put_displacement,
11748 (valueT) (displacement_from_opcode_start - extension),
11749 DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype));
11750 fragP->fr_fix += extension;
11751 }
11752 \f
11753 /* Apply a fixup (fixP) to segment data, once it has been determined
11754 by our caller that we have all the info we need to fix it up.
11755
11756 Parameter valP is the pointer to the value of the bits.
11757
11758 On the 386, immediates, displacements, and data pointers are all in
11759 the same (little-endian) format, so we don't need to care about which
11760 we are handling. */
11761
11762 void
11763 md_apply_fix (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED)
11764 {
11765 char *p = fixP->fx_where + fixP->fx_frag->fr_literal;
11766 valueT value = *valP;
11767
11768 #if !defined (TE_Mach)
11769 if (fixP->fx_pcrel)
11770 {
11771 switch (fixP->fx_r_type)
11772 {
11773 default:
11774 break;
11775
11776 case BFD_RELOC_64:
11777 fixP->fx_r_type = BFD_RELOC_64_PCREL;
11778 break;
11779 case BFD_RELOC_32:
11780 case BFD_RELOC_X86_64_32S:
11781 fixP->fx_r_type = BFD_RELOC_32_PCREL;
11782 break;
11783 case BFD_RELOC_16:
11784 fixP->fx_r_type = BFD_RELOC_16_PCREL;
11785 break;
11786 case BFD_RELOC_8:
11787 fixP->fx_r_type = BFD_RELOC_8_PCREL;
11788 break;
11789 }
11790 }
11791
11792 if (fixP->fx_addsy != NULL
11793 && (fixP->fx_r_type == BFD_RELOC_32_PCREL
11794 || fixP->fx_r_type == BFD_RELOC_64_PCREL
11795 || fixP->fx_r_type == BFD_RELOC_16_PCREL
11796 || fixP->fx_r_type == BFD_RELOC_8_PCREL)
11797 && !use_rela_relocations)
11798 {
11799 /* This is a hack. There should be a better way to handle this.
11800 This covers for the fact that bfd_install_relocation will
11801 subtract the current location (for partial_inplace, PC relative
11802 relocations); see more below. */
11803 #ifndef OBJ_AOUT
11804 if (IS_ELF
11805 #ifdef TE_PE
11806 || OUTPUT_FLAVOR == bfd_target_coff_flavour
11807 #endif
11808 )
11809 value += fixP->fx_where + fixP->fx_frag->fr_address;
11810 #endif
11811 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11812 if (IS_ELF)
11813 {
11814 segT sym_seg = S_GET_SEGMENT (fixP->fx_addsy);
11815
11816 if ((sym_seg == seg
11817 || (symbol_section_p (fixP->fx_addsy)
11818 && sym_seg != absolute_section))
11819 && !generic_force_reloc (fixP))
11820 {
11821 /* Yes, we add the values in twice. This is because
11822 bfd_install_relocation subtracts them out again. I think
11823 bfd_install_relocation is broken, but I don't dare change
11824 it. FIXME. */
11825 value += fixP->fx_where + fixP->fx_frag->fr_address;
11826 }
11827 }
11828 #endif
11829 #if defined (OBJ_COFF) && defined (TE_PE)
11830 /* For some reason, the PE format does not store a
11831 section address offset for a PC relative symbol. */
11832 if (S_GET_SEGMENT (fixP->fx_addsy) != seg
11833 || S_IS_WEAK (fixP->fx_addsy))
11834 value += md_pcrel_from (fixP);
11835 #endif
11836 }
11837 #if defined (OBJ_COFF) && defined (TE_PE)
11838 if (fixP->fx_addsy != NULL
11839 && S_IS_WEAK (fixP->fx_addsy)
11840 /* PR 16858: Do not modify weak function references. */
11841 && ! fixP->fx_pcrel)
11842 {
11843 #if !defined (TE_PEP)
11844 /* For x86 PE weak function symbols are neither PC-relative
11845 nor do they set S_IS_FUNCTION. So the only reliable way
11846 to detect them is to check the flags of their containing
11847 section. */
11848 if (S_GET_SEGMENT (fixP->fx_addsy) != NULL
11849 && S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_CODE)
11850 ;
11851 else
11852 #endif
11853 value -= S_GET_VALUE (fixP->fx_addsy);
11854 }
11855 #endif
11856
11857 /* Fix a few things - the dynamic linker expects certain values here,
11858 and we must not disappoint it. */
11859 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11860 if (IS_ELF && fixP->fx_addsy)
11861 switch (fixP->fx_r_type)
11862 {
11863 case BFD_RELOC_386_PLT32:
11864 case BFD_RELOC_X86_64_PLT32:
11865 /* Make the jump instruction point to the address of the operand.
11866 At runtime we merely add the offset to the actual PLT entry.
11867 NB: Subtract the offset size only for jump instructions. */
11868 if (fixP->fx_pcrel)
11869 value = -4;
11870 break;
11871
11872 case BFD_RELOC_386_TLS_GD:
11873 case BFD_RELOC_386_TLS_LDM:
11874 case BFD_RELOC_386_TLS_IE_32:
11875 case BFD_RELOC_386_TLS_IE:
11876 case BFD_RELOC_386_TLS_GOTIE:
11877 case BFD_RELOC_386_TLS_GOTDESC:
11878 case BFD_RELOC_X86_64_TLSGD:
11879 case BFD_RELOC_X86_64_TLSLD:
11880 case BFD_RELOC_X86_64_GOTTPOFF:
11881 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
11882 value = 0; /* Fully resolved at runtime. No addend. */
11883 /* Fallthrough */
11884 case BFD_RELOC_386_TLS_LE:
11885 case BFD_RELOC_386_TLS_LDO_32:
11886 case BFD_RELOC_386_TLS_LE_32:
11887 case BFD_RELOC_X86_64_DTPOFF32:
11888 case BFD_RELOC_X86_64_DTPOFF64:
11889 case BFD_RELOC_X86_64_TPOFF32:
11890 case BFD_RELOC_X86_64_TPOFF64:
11891 S_SET_THREAD_LOCAL (fixP->fx_addsy);
11892 break;
11893
11894 case BFD_RELOC_386_TLS_DESC_CALL:
11895 case BFD_RELOC_X86_64_TLSDESC_CALL:
11896 value = 0; /* Fully resolved at runtime. No addend. */
11897 S_SET_THREAD_LOCAL (fixP->fx_addsy);
11898 fixP->fx_done = 0;
11899 return;
11900
11901 case BFD_RELOC_VTABLE_INHERIT:
11902 case BFD_RELOC_VTABLE_ENTRY:
11903 fixP->fx_done = 0;
11904 return;
11905
11906 default:
11907 break;
11908 }
11909 #endif /* defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) */
11910 *valP = value;
11911 #endif /* !defined (TE_Mach) */
11912
11913 /* Are we finished with this relocation now? */
11914 if (fixP->fx_addsy == NULL)
11915 fixP->fx_done = 1;
11916 #if defined (OBJ_COFF) && defined (TE_PE)
11917 else if (fixP->fx_addsy != NULL && S_IS_WEAK (fixP->fx_addsy))
11918 {
11919 fixP->fx_done = 0;
11920 /* Remember value for tc_gen_reloc. */
11921 fixP->fx_addnumber = value;
11922 /* Clear out the frag for now. */
11923 value = 0;
11924 }
11925 #endif
11926 else if (use_rela_relocations)
11927 {
11928 fixP->fx_no_overflow = 1;
11929 /* Remember value for tc_gen_reloc. */
11930 fixP->fx_addnumber = value;
11931 value = 0;
11932 }
11933
11934 md_number_to_chars (p, value, fixP->fx_size);
11935 }
11936 \f
11937 const char *
11938 md_atof (int type, char *litP, int *sizeP)
11939 {
11940 /* This outputs the LITTLENUMs in REVERSE order;
11941 in accord with the bigendian 386. */
11942 return ieee_md_atof (type, litP, sizeP, FALSE);
11943 }
11944 \f
11945 static char output_invalid_buf[sizeof (unsigned char) * 2 + 6];
11946
11947 static char *
11948 output_invalid (int c)
11949 {
11950 if (ISPRINT (c))
11951 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
11952 "'%c'", c);
11953 else
11954 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
11955 "(0x%x)", (unsigned char) c);
11956 return output_invalid_buf;
11957 }
11958
11959 /* REG_STRING starts *before* REGISTER_PREFIX. */
11960
11961 static const reg_entry *
11962 parse_real_register (char *reg_string, char **end_op)
11963 {
11964 char *s = reg_string;
11965 char *p;
11966 char reg_name_given[MAX_REG_NAME_SIZE + 1];
11967 const reg_entry *r;
11968
11969 /* Skip possible REGISTER_PREFIX and possible whitespace. */
11970 if (*s == REGISTER_PREFIX)
11971 ++s;
11972
11973 if (is_space_char (*s))
11974 ++s;
11975
11976 p = reg_name_given;
11977 while ((*p++ = register_chars[(unsigned char) *s]) != '\0')
11978 {
11979 if (p >= reg_name_given + MAX_REG_NAME_SIZE)
11980 return (const reg_entry *) NULL;
11981 s++;
11982 }
11983
11984 /* For naked regs, make sure that we are not dealing with an identifier.
11985 This prevents confusing an identifier like `eax_var' with register
11986 `eax'. */
11987 if (allow_naked_reg && identifier_chars[(unsigned char) *s])
11988 return (const reg_entry *) NULL;
11989
11990 *end_op = s;
11991
11992 r = (const reg_entry *) hash_find (reg_hash, reg_name_given);
11993
11994 /* Handle floating point regs, allowing spaces in the (i) part. */
11995 if (r == i386_regtab /* %st is first entry of table */)
11996 {
11997 if (!cpu_arch_flags.bitfield.cpu8087
11998 && !cpu_arch_flags.bitfield.cpu287
11999 && !cpu_arch_flags.bitfield.cpu387)
12000 return (const reg_entry *) NULL;
12001
12002 if (is_space_char (*s))
12003 ++s;
12004 if (*s == '(')
12005 {
12006 ++s;
12007 if (is_space_char (*s))
12008 ++s;
12009 if (*s >= '0' && *s <= '7')
12010 {
12011 int fpr = *s - '0';
12012 ++s;
12013 if (is_space_char (*s))
12014 ++s;
12015 if (*s == ')')
12016 {
12017 *end_op = s + 1;
12018 r = (const reg_entry *) hash_find (reg_hash, "st(0)");
12019 know (r);
12020 return r + fpr;
12021 }
12022 }
12023 /* We have "%st(" then garbage. */
12024 return (const reg_entry *) NULL;
12025 }
12026 }
12027
12028 if (r == NULL || allow_pseudo_reg)
12029 return r;
12030
12031 if (operand_type_all_zero (&r->reg_type))
12032 return (const reg_entry *) NULL;
12033
12034 if ((r->reg_type.bitfield.dword
12035 || (r->reg_type.bitfield.class == SReg && r->reg_num > 3)
12036 || r->reg_type.bitfield.class == RegCR
12037 || r->reg_type.bitfield.class == RegDR
12038 || r->reg_type.bitfield.class == RegTR)
12039 && !cpu_arch_flags.bitfield.cpui386)
12040 return (const reg_entry *) NULL;
12041
12042 if (r->reg_type.bitfield.class == RegMMX && !cpu_arch_flags.bitfield.cpummx)
12043 return (const reg_entry *) NULL;
12044
12045 if (!cpu_arch_flags.bitfield.cpuavx512f)
12046 {
12047 if (r->reg_type.bitfield.zmmword
12048 || r->reg_type.bitfield.class == RegMask)
12049 return (const reg_entry *) NULL;
12050
12051 if (!cpu_arch_flags.bitfield.cpuavx)
12052 {
12053 if (r->reg_type.bitfield.ymmword)
12054 return (const reg_entry *) NULL;
12055
12056 if (!cpu_arch_flags.bitfield.cpusse && r->reg_type.bitfield.xmmword)
12057 return (const reg_entry *) NULL;
12058 }
12059 }
12060
12061 if (r->reg_type.bitfield.class == RegBND && !cpu_arch_flags.bitfield.cpumpx)
12062 return (const reg_entry *) NULL;
12063
12064 /* Don't allow fake index register unless allow_index_reg isn't 0. */
12065 if (!allow_index_reg && r->reg_num == RegIZ)
12066 return (const reg_entry *) NULL;
12067
12068 /* Upper 16 vector registers are only available with VREX in 64bit
12069 mode, and require EVEX encoding. */
12070 if (r->reg_flags & RegVRex)
12071 {
12072 if (!cpu_arch_flags.bitfield.cpuavx512f
12073 || flag_code != CODE_64BIT)
12074 return (const reg_entry *) NULL;
12075
12076 i.vec_encoding = vex_encoding_evex;
12077 }
12078
12079 if (((r->reg_flags & (RegRex64 | RegRex)) || r->reg_type.bitfield.qword)
12080 && (!cpu_arch_flags.bitfield.cpulm || r->reg_type.bitfield.class != RegCR)
12081 && flag_code != CODE_64BIT)
12082 return (const reg_entry *) NULL;
12083
12084 if (r->reg_type.bitfield.class == SReg && r->reg_num == RegFlat
12085 && !intel_syntax)
12086 return (const reg_entry *) NULL;
12087
12088 return r;
12089 }
12090
12091 /* REG_STRING starts *before* REGISTER_PREFIX. */
12092
12093 static const reg_entry *
12094 parse_register (char *reg_string, char **end_op)
12095 {
12096 const reg_entry *r;
12097
12098 if (*reg_string == REGISTER_PREFIX || allow_naked_reg)
12099 r = parse_real_register (reg_string, end_op);
12100 else
12101 r = NULL;
12102 if (!r)
12103 {
12104 char *save = input_line_pointer;
12105 char c;
12106 symbolS *symbolP;
12107
12108 input_line_pointer = reg_string;
12109 c = get_symbol_name (&reg_string);
12110 symbolP = symbol_find (reg_string);
12111 if (symbolP && S_GET_SEGMENT (symbolP) == reg_section)
12112 {
12113 const expressionS *e = symbol_get_value_expression (symbolP);
12114
12115 know (e->X_op == O_register);
12116 know (e->X_add_number >= 0
12117 && (valueT) e->X_add_number < i386_regtab_size);
12118 r = i386_regtab + e->X_add_number;
12119 if ((r->reg_flags & RegVRex))
12120 i.vec_encoding = vex_encoding_evex;
12121 *end_op = input_line_pointer;
12122 }
12123 *input_line_pointer = c;
12124 input_line_pointer = save;
12125 }
12126 return r;
12127 }
12128
12129 int
12130 i386_parse_name (char *name, expressionS *e, char *nextcharP)
12131 {
12132 const reg_entry *r;
12133 char *end = input_line_pointer;
12134
12135 *end = *nextcharP;
12136 r = parse_register (name, &input_line_pointer);
12137 if (r && end <= input_line_pointer)
12138 {
12139 *nextcharP = *input_line_pointer;
12140 *input_line_pointer = 0;
12141 e->X_op = O_register;
12142 e->X_add_number = r - i386_regtab;
12143 return 1;
12144 }
12145 input_line_pointer = end;
12146 *end = 0;
12147 return intel_syntax ? i386_intel_parse_name (name, e) : 0;
12148 }
12149
12150 void
12151 md_operand (expressionS *e)
12152 {
12153 char *end;
12154 const reg_entry *r;
12155
12156 switch (*input_line_pointer)
12157 {
12158 case REGISTER_PREFIX:
12159 r = parse_real_register (input_line_pointer, &end);
12160 if (r)
12161 {
12162 e->X_op = O_register;
12163 e->X_add_number = r - i386_regtab;
12164 input_line_pointer = end;
12165 }
12166 break;
12167
12168 case '[':
12169 gas_assert (intel_syntax);
12170 end = input_line_pointer++;
12171 expression (e);
12172 if (*input_line_pointer == ']')
12173 {
12174 ++input_line_pointer;
12175 e->X_op_symbol = make_expr_symbol (e);
12176 e->X_add_symbol = NULL;
12177 e->X_add_number = 0;
12178 e->X_op = O_index;
12179 }
12180 else
12181 {
12182 e->X_op = O_absent;
12183 input_line_pointer = end;
12184 }
12185 break;
12186 }
12187 }
12188
12189 \f
12190 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12191 const char *md_shortopts = "kVQ:sqnO::";
12192 #else
12193 const char *md_shortopts = "qnO::";
12194 #endif
12195
12196 #define OPTION_32 (OPTION_MD_BASE + 0)
12197 #define OPTION_64 (OPTION_MD_BASE + 1)
12198 #define OPTION_DIVIDE (OPTION_MD_BASE + 2)
12199 #define OPTION_MARCH (OPTION_MD_BASE + 3)
12200 #define OPTION_MTUNE (OPTION_MD_BASE + 4)
12201 #define OPTION_MMNEMONIC (OPTION_MD_BASE + 5)
12202 #define OPTION_MSYNTAX (OPTION_MD_BASE + 6)
12203 #define OPTION_MINDEX_REG (OPTION_MD_BASE + 7)
12204 #define OPTION_MNAKED_REG (OPTION_MD_BASE + 8)
12205 #define OPTION_MRELAX_RELOCATIONS (OPTION_MD_BASE + 9)
12206 #define OPTION_MSSE2AVX (OPTION_MD_BASE + 10)
12207 #define OPTION_MSSE_CHECK (OPTION_MD_BASE + 11)
12208 #define OPTION_MOPERAND_CHECK (OPTION_MD_BASE + 12)
12209 #define OPTION_MAVXSCALAR (OPTION_MD_BASE + 13)
12210 #define OPTION_X32 (OPTION_MD_BASE + 14)
12211 #define OPTION_MADD_BND_PREFIX (OPTION_MD_BASE + 15)
12212 #define OPTION_MEVEXLIG (OPTION_MD_BASE + 16)
12213 #define OPTION_MEVEXWIG (OPTION_MD_BASE + 17)
12214 #define OPTION_MBIG_OBJ (OPTION_MD_BASE + 18)
12215 #define OPTION_MOMIT_LOCK_PREFIX (OPTION_MD_BASE + 19)
12216 #define OPTION_MEVEXRCIG (OPTION_MD_BASE + 20)
12217 #define OPTION_MSHARED (OPTION_MD_BASE + 21)
12218 #define OPTION_MAMD64 (OPTION_MD_BASE + 22)
12219 #define OPTION_MINTEL64 (OPTION_MD_BASE + 23)
12220 #define OPTION_MFENCE_AS_LOCK_ADD (OPTION_MD_BASE + 24)
12221 #define OPTION_X86_USED_NOTE (OPTION_MD_BASE + 25)
12222 #define OPTION_MVEXWIG (OPTION_MD_BASE + 26)
12223 #define OPTION_MALIGN_BRANCH_BOUNDARY (OPTION_MD_BASE + 27)
12224 #define OPTION_MALIGN_BRANCH_PREFIX_SIZE (OPTION_MD_BASE + 28)
12225 #define OPTION_MALIGN_BRANCH (OPTION_MD_BASE + 29)
12226 #define OPTION_MBRANCHES_WITH_32B_BOUNDARIES (OPTION_MD_BASE + 30)
12227
12228 struct option md_longopts[] =
12229 {
12230 {"32", no_argument, NULL, OPTION_32},
12231 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
12232 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
12233 {"64", no_argument, NULL, OPTION_64},
12234 #endif
12235 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12236 {"x32", no_argument, NULL, OPTION_X32},
12237 {"mshared", no_argument, NULL, OPTION_MSHARED},
12238 {"mx86-used-note", required_argument, NULL, OPTION_X86_USED_NOTE},
12239 #endif
12240 {"divide", no_argument, NULL, OPTION_DIVIDE},
12241 {"march", required_argument, NULL, OPTION_MARCH},
12242 {"mtune", required_argument, NULL, OPTION_MTUNE},
12243 {"mmnemonic", required_argument, NULL, OPTION_MMNEMONIC},
12244 {"msyntax", required_argument, NULL, OPTION_MSYNTAX},
12245 {"mindex-reg", no_argument, NULL, OPTION_MINDEX_REG},
12246 {"mnaked-reg", no_argument, NULL, OPTION_MNAKED_REG},
12247 {"msse2avx", no_argument, NULL, OPTION_MSSE2AVX},
12248 {"msse-check", required_argument, NULL, OPTION_MSSE_CHECK},
12249 {"moperand-check", required_argument, NULL, OPTION_MOPERAND_CHECK},
12250 {"mavxscalar", required_argument, NULL, OPTION_MAVXSCALAR},
12251 {"mvexwig", required_argument, NULL, OPTION_MVEXWIG},
12252 {"madd-bnd-prefix", no_argument, NULL, OPTION_MADD_BND_PREFIX},
12253 {"mevexlig", required_argument, NULL, OPTION_MEVEXLIG},
12254 {"mevexwig", required_argument, NULL, OPTION_MEVEXWIG},
12255 # if defined (TE_PE) || defined (TE_PEP)
12256 {"mbig-obj", no_argument, NULL, OPTION_MBIG_OBJ},
12257 #endif
12258 {"momit-lock-prefix", required_argument, NULL, OPTION_MOMIT_LOCK_PREFIX},
12259 {"mfence-as-lock-add", required_argument, NULL, OPTION_MFENCE_AS_LOCK_ADD},
12260 {"mrelax-relocations", required_argument, NULL, OPTION_MRELAX_RELOCATIONS},
12261 {"mevexrcig", required_argument, NULL, OPTION_MEVEXRCIG},
12262 {"malign-branch-boundary", required_argument, NULL, OPTION_MALIGN_BRANCH_BOUNDARY},
12263 {"malign-branch-prefix-size", required_argument, NULL, OPTION_MALIGN_BRANCH_PREFIX_SIZE},
12264 {"malign-branch", required_argument, NULL, OPTION_MALIGN_BRANCH},
12265 {"mbranches-within-32B-boundaries", no_argument, NULL, OPTION_MBRANCHES_WITH_32B_BOUNDARIES},
12266 {"mamd64", no_argument, NULL, OPTION_MAMD64},
12267 {"mintel64", no_argument, NULL, OPTION_MINTEL64},
12268 {NULL, no_argument, NULL, 0}
12269 };
12270 size_t md_longopts_size = sizeof (md_longopts);
12271
12272 int
12273 md_parse_option (int c, const char *arg)
12274 {
12275 unsigned int j;
12276 char *arch, *next, *saved, *type;
12277
12278 switch (c)
12279 {
12280 case 'n':
12281 optimize_align_code = 0;
12282 break;
12283
12284 case 'q':
12285 quiet_warnings = 1;
12286 break;
12287
12288 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12289 /* -Qy, -Qn: SVR4 arguments controlling whether a .comment section
12290 should be emitted or not. FIXME: Not implemented. */
12291 case 'Q':
12292 if ((arg[0] != 'y' && arg[0] != 'n') || arg[1])
12293 return 0;
12294 break;
12295
12296 /* -V: SVR4 argument to print version ID. */
12297 case 'V':
12298 print_version_id ();
12299 break;
12300
12301 /* -k: Ignore for FreeBSD compatibility. */
12302 case 'k':
12303 break;
12304
12305 case 's':
12306 /* -s: On i386 Solaris, this tells the native assembler to use
12307 .stab instead of .stab.excl. We always use .stab anyhow. */
12308 break;
12309
12310 case OPTION_MSHARED:
12311 shared = 1;
12312 break;
12313
12314 case OPTION_X86_USED_NOTE:
12315 if (strcasecmp (arg, "yes") == 0)
12316 x86_used_note = 1;
12317 else if (strcasecmp (arg, "no") == 0)
12318 x86_used_note = 0;
12319 else
12320 as_fatal (_("invalid -mx86-used-note= option: `%s'"), arg);
12321 break;
12322
12323
12324 #endif
12325 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
12326 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
12327 case OPTION_64:
12328 {
12329 const char **list, **l;
12330
12331 list = bfd_target_list ();
12332 for (l = list; *l != NULL; l++)
12333 if (CONST_STRNEQ (*l, "elf64-x86-64")
12334 || strcmp (*l, "coff-x86-64") == 0
12335 || strcmp (*l, "pe-x86-64") == 0
12336 || strcmp (*l, "pei-x86-64") == 0
12337 || strcmp (*l, "mach-o-x86-64") == 0)
12338 {
12339 default_arch = "x86_64";
12340 break;
12341 }
12342 if (*l == NULL)
12343 as_fatal (_("no compiled in support for x86_64"));
12344 free (list);
12345 }
12346 break;
12347 #endif
12348
12349 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12350 case OPTION_X32:
12351 if (IS_ELF)
12352 {
12353 const char **list, **l;
12354
12355 list = bfd_target_list ();
12356 for (l = list; *l != NULL; l++)
12357 if (CONST_STRNEQ (*l, "elf32-x86-64"))
12358 {
12359 default_arch = "x86_64:32";
12360 break;
12361 }
12362 if (*l == NULL)
12363 as_fatal (_("no compiled in support for 32bit x86_64"));
12364 free (list);
12365 }
12366 else
12367 as_fatal (_("32bit x86_64 is only supported for ELF"));
12368 break;
12369 #endif
12370
12371 case OPTION_32:
12372 default_arch = "i386";
12373 break;
12374
12375 case OPTION_DIVIDE:
12376 #ifdef SVR4_COMMENT_CHARS
12377 {
12378 char *n, *t;
12379 const char *s;
12380
12381 n = XNEWVEC (char, strlen (i386_comment_chars) + 1);
12382 t = n;
12383 for (s = i386_comment_chars; *s != '\0'; s++)
12384 if (*s != '/')
12385 *t++ = *s;
12386 *t = '\0';
12387 i386_comment_chars = n;
12388 }
12389 #endif
12390 break;
12391
12392 case OPTION_MARCH:
12393 saved = xstrdup (arg);
12394 arch = saved;
12395 /* Allow -march=+nosse. */
12396 if (*arch == '+')
12397 arch++;
12398 do
12399 {
12400 if (*arch == '.')
12401 as_fatal (_("invalid -march= option: `%s'"), arg);
12402 next = strchr (arch, '+');
12403 if (next)
12404 *next++ = '\0';
12405 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
12406 {
12407 if (strcmp (arch, cpu_arch [j].name) == 0)
12408 {
12409 /* Processor. */
12410 if (! cpu_arch[j].flags.bitfield.cpui386)
12411 continue;
12412
12413 cpu_arch_name = cpu_arch[j].name;
12414 cpu_sub_arch_name = NULL;
12415 cpu_arch_flags = cpu_arch[j].flags;
12416 cpu_arch_isa = cpu_arch[j].type;
12417 cpu_arch_isa_flags = cpu_arch[j].flags;
12418 if (!cpu_arch_tune_set)
12419 {
12420 cpu_arch_tune = cpu_arch_isa;
12421 cpu_arch_tune_flags = cpu_arch_isa_flags;
12422 }
12423 break;
12424 }
12425 else if (*cpu_arch [j].name == '.'
12426 && strcmp (arch, cpu_arch [j].name + 1) == 0)
12427 {
12428 /* ISA extension. */
12429 i386_cpu_flags flags;
12430
12431 flags = cpu_flags_or (cpu_arch_flags,
12432 cpu_arch[j].flags);
12433
12434 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
12435 {
12436 if (cpu_sub_arch_name)
12437 {
12438 char *name = cpu_sub_arch_name;
12439 cpu_sub_arch_name = concat (name,
12440 cpu_arch[j].name,
12441 (const char *) NULL);
12442 free (name);
12443 }
12444 else
12445 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
12446 cpu_arch_flags = flags;
12447 cpu_arch_isa_flags = flags;
12448 }
12449 else
12450 cpu_arch_isa_flags
12451 = cpu_flags_or (cpu_arch_isa_flags,
12452 cpu_arch[j].flags);
12453 break;
12454 }
12455 }
12456
12457 if (j >= ARRAY_SIZE (cpu_arch))
12458 {
12459 /* Disable an ISA extension. */
12460 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
12461 if (strcmp (arch, cpu_noarch [j].name) == 0)
12462 {
12463 i386_cpu_flags flags;
12464
12465 flags = cpu_flags_and_not (cpu_arch_flags,
12466 cpu_noarch[j].flags);
12467 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
12468 {
12469 if (cpu_sub_arch_name)
12470 {
12471 char *name = cpu_sub_arch_name;
12472 cpu_sub_arch_name = concat (arch,
12473 (const char *) NULL);
12474 free (name);
12475 }
12476 else
12477 cpu_sub_arch_name = xstrdup (arch);
12478 cpu_arch_flags = flags;
12479 cpu_arch_isa_flags = flags;
12480 }
12481 break;
12482 }
12483
12484 if (j >= ARRAY_SIZE (cpu_noarch))
12485 j = ARRAY_SIZE (cpu_arch);
12486 }
12487
12488 if (j >= ARRAY_SIZE (cpu_arch))
12489 as_fatal (_("invalid -march= option: `%s'"), arg);
12490
12491 arch = next;
12492 }
12493 while (next != NULL);
12494 free (saved);
12495 break;
12496
12497 case OPTION_MTUNE:
12498 if (*arg == '.')
12499 as_fatal (_("invalid -mtune= option: `%s'"), arg);
12500 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
12501 {
12502 if (strcmp (arg, cpu_arch [j].name) == 0)
12503 {
12504 cpu_arch_tune_set = 1;
12505 cpu_arch_tune = cpu_arch [j].type;
12506 cpu_arch_tune_flags = cpu_arch[j].flags;
12507 break;
12508 }
12509 }
12510 if (j >= ARRAY_SIZE (cpu_arch))
12511 as_fatal (_("invalid -mtune= option: `%s'"), arg);
12512 break;
12513
12514 case OPTION_MMNEMONIC:
12515 if (strcasecmp (arg, "att") == 0)
12516 intel_mnemonic = 0;
12517 else if (strcasecmp (arg, "intel") == 0)
12518 intel_mnemonic = 1;
12519 else
12520 as_fatal (_("invalid -mmnemonic= option: `%s'"), arg);
12521 break;
12522
12523 case OPTION_MSYNTAX:
12524 if (strcasecmp (arg, "att") == 0)
12525 intel_syntax = 0;
12526 else if (strcasecmp (arg, "intel") == 0)
12527 intel_syntax = 1;
12528 else
12529 as_fatal (_("invalid -msyntax= option: `%s'"), arg);
12530 break;
12531
12532 case OPTION_MINDEX_REG:
12533 allow_index_reg = 1;
12534 break;
12535
12536 case OPTION_MNAKED_REG:
12537 allow_naked_reg = 1;
12538 break;
12539
12540 case OPTION_MSSE2AVX:
12541 sse2avx = 1;
12542 break;
12543
12544 case OPTION_MSSE_CHECK:
12545 if (strcasecmp (arg, "error") == 0)
12546 sse_check = check_error;
12547 else if (strcasecmp (arg, "warning") == 0)
12548 sse_check = check_warning;
12549 else if (strcasecmp (arg, "none") == 0)
12550 sse_check = check_none;
12551 else
12552 as_fatal (_("invalid -msse-check= option: `%s'"), arg);
12553 break;
12554
12555 case OPTION_MOPERAND_CHECK:
12556 if (strcasecmp (arg, "error") == 0)
12557 operand_check = check_error;
12558 else if (strcasecmp (arg, "warning") == 0)
12559 operand_check = check_warning;
12560 else if (strcasecmp (arg, "none") == 0)
12561 operand_check = check_none;
12562 else
12563 as_fatal (_("invalid -moperand-check= option: `%s'"), arg);
12564 break;
12565
12566 case OPTION_MAVXSCALAR:
12567 if (strcasecmp (arg, "128") == 0)
12568 avxscalar = vex128;
12569 else if (strcasecmp (arg, "256") == 0)
12570 avxscalar = vex256;
12571 else
12572 as_fatal (_("invalid -mavxscalar= option: `%s'"), arg);
12573 break;
12574
12575 case OPTION_MVEXWIG:
12576 if (strcmp (arg, "0") == 0)
12577 vexwig = vexw0;
12578 else if (strcmp (arg, "1") == 0)
12579 vexwig = vexw1;
12580 else
12581 as_fatal (_("invalid -mvexwig= option: `%s'"), arg);
12582 break;
12583
12584 case OPTION_MADD_BND_PREFIX:
12585 add_bnd_prefix = 1;
12586 break;
12587
12588 case OPTION_MEVEXLIG:
12589 if (strcmp (arg, "128") == 0)
12590 evexlig = evexl128;
12591 else if (strcmp (arg, "256") == 0)
12592 evexlig = evexl256;
12593 else if (strcmp (arg, "512") == 0)
12594 evexlig = evexl512;
12595 else
12596 as_fatal (_("invalid -mevexlig= option: `%s'"), arg);
12597 break;
12598
12599 case OPTION_MEVEXRCIG:
12600 if (strcmp (arg, "rne") == 0)
12601 evexrcig = rne;
12602 else if (strcmp (arg, "rd") == 0)
12603 evexrcig = rd;
12604 else if (strcmp (arg, "ru") == 0)
12605 evexrcig = ru;
12606 else if (strcmp (arg, "rz") == 0)
12607 evexrcig = rz;
12608 else
12609 as_fatal (_("invalid -mevexrcig= option: `%s'"), arg);
12610 break;
12611
12612 case OPTION_MEVEXWIG:
12613 if (strcmp (arg, "0") == 0)
12614 evexwig = evexw0;
12615 else if (strcmp (arg, "1") == 0)
12616 evexwig = evexw1;
12617 else
12618 as_fatal (_("invalid -mevexwig= option: `%s'"), arg);
12619 break;
12620
12621 # if defined (TE_PE) || defined (TE_PEP)
12622 case OPTION_MBIG_OBJ:
12623 use_big_obj = 1;
12624 break;
12625 #endif
12626
12627 case OPTION_MOMIT_LOCK_PREFIX:
12628 if (strcasecmp (arg, "yes") == 0)
12629 omit_lock_prefix = 1;
12630 else if (strcasecmp (arg, "no") == 0)
12631 omit_lock_prefix = 0;
12632 else
12633 as_fatal (_("invalid -momit-lock-prefix= option: `%s'"), arg);
12634 break;
12635
12636 case OPTION_MFENCE_AS_LOCK_ADD:
12637 if (strcasecmp (arg, "yes") == 0)
12638 avoid_fence = 1;
12639 else if (strcasecmp (arg, "no") == 0)
12640 avoid_fence = 0;
12641 else
12642 as_fatal (_("invalid -mfence-as-lock-add= option: `%s'"), arg);
12643 break;
12644
12645 case OPTION_MRELAX_RELOCATIONS:
12646 if (strcasecmp (arg, "yes") == 0)
12647 generate_relax_relocations = 1;
12648 else if (strcasecmp (arg, "no") == 0)
12649 generate_relax_relocations = 0;
12650 else
12651 as_fatal (_("invalid -mrelax-relocations= option: `%s'"), arg);
12652 break;
12653
12654 case OPTION_MALIGN_BRANCH_BOUNDARY:
12655 {
12656 char *end;
12657 long int align = strtoul (arg, &end, 0);
12658 if (*end == '\0')
12659 {
12660 if (align == 0)
12661 {
12662 align_branch_power = 0;
12663 break;
12664 }
12665 else if (align >= 16)
12666 {
12667 int align_power;
12668 for (align_power = 0;
12669 (align & 1) == 0;
12670 align >>= 1, align_power++)
12671 continue;
12672 /* Limit alignment power to 31. */
12673 if (align == 1 && align_power < 32)
12674 {
12675 align_branch_power = align_power;
12676 break;
12677 }
12678 }
12679 }
12680 as_fatal (_("invalid -malign-branch-boundary= value: %s"), arg);
12681 }
12682 break;
12683
12684 case OPTION_MALIGN_BRANCH_PREFIX_SIZE:
12685 {
12686 char *end;
12687 int align = strtoul (arg, &end, 0);
12688 /* Some processors only support 5 prefixes. */
12689 if (*end == '\0' && align >= 0 && align < 6)
12690 {
12691 align_branch_prefix_size = align;
12692 break;
12693 }
12694 as_fatal (_("invalid -malign-branch-prefix-size= value: %s"),
12695 arg);
12696 }
12697 break;
12698
12699 case OPTION_MALIGN_BRANCH:
12700 align_branch = 0;
12701 saved = xstrdup (arg);
12702 type = saved;
12703 do
12704 {
12705 next = strchr (type, '+');
12706 if (next)
12707 *next++ = '\0';
12708 if (strcasecmp (type, "jcc") == 0)
12709 align_branch |= align_branch_jcc_bit;
12710 else if (strcasecmp (type, "fused") == 0)
12711 align_branch |= align_branch_fused_bit;
12712 else if (strcasecmp (type, "jmp") == 0)
12713 align_branch |= align_branch_jmp_bit;
12714 else if (strcasecmp (type, "call") == 0)
12715 align_branch |= align_branch_call_bit;
12716 else if (strcasecmp (type, "ret") == 0)
12717 align_branch |= align_branch_ret_bit;
12718 else if (strcasecmp (type, "indirect") == 0)
12719 align_branch |= align_branch_indirect_bit;
12720 else
12721 as_fatal (_("invalid -malign-branch= option: `%s'"), arg);
12722 type = next;
12723 }
12724 while (next != NULL);
12725 free (saved);
12726 break;
12727
12728 case OPTION_MBRANCHES_WITH_32B_BOUNDARIES:
12729 align_branch_power = 5;
12730 align_branch_prefix_size = 5;
12731 align_branch = (align_branch_jcc_bit
12732 | align_branch_fused_bit
12733 | align_branch_jmp_bit);
12734 break;
12735
12736 case OPTION_MAMD64:
12737 isa64 = amd64;
12738 break;
12739
12740 case OPTION_MINTEL64:
12741 isa64 = intel64;
12742 break;
12743
12744 case 'O':
12745 if (arg == NULL)
12746 {
12747 optimize = 1;
12748 /* Turn off -Os. */
12749 optimize_for_space = 0;
12750 }
12751 else if (*arg == 's')
12752 {
12753 optimize_for_space = 1;
12754 /* Turn on all encoding optimizations. */
12755 optimize = INT_MAX;
12756 }
12757 else
12758 {
12759 optimize = atoi (arg);
12760 /* Turn off -Os. */
12761 optimize_for_space = 0;
12762 }
12763 break;
12764
12765 default:
12766 return 0;
12767 }
12768 return 1;
12769 }
12770
12771 #define MESSAGE_TEMPLATE \
12772 " "
12773
12774 static char *
12775 output_message (FILE *stream, char *p, char *message, char *start,
12776 int *left_p, const char *name, int len)
12777 {
12778 int size = sizeof (MESSAGE_TEMPLATE);
12779 int left = *left_p;
12780
12781 /* Reserve 2 spaces for ", " or ",\0" */
12782 left -= len + 2;
12783
12784 /* Check if there is any room. */
12785 if (left >= 0)
12786 {
12787 if (p != start)
12788 {
12789 *p++ = ',';
12790 *p++ = ' ';
12791 }
12792 p = mempcpy (p, name, len);
12793 }
12794 else
12795 {
12796 /* Output the current message now and start a new one. */
12797 *p++ = ',';
12798 *p = '\0';
12799 fprintf (stream, "%s\n", message);
12800 p = start;
12801 left = size - (start - message) - len - 2;
12802
12803 gas_assert (left >= 0);
12804
12805 p = mempcpy (p, name, len);
12806 }
12807
12808 *left_p = left;
12809 return p;
12810 }
12811
12812 static void
12813 show_arch (FILE *stream, int ext, int check)
12814 {
12815 static char message[] = MESSAGE_TEMPLATE;
12816 char *start = message + 27;
12817 char *p;
12818 int size = sizeof (MESSAGE_TEMPLATE);
12819 int left;
12820 const char *name;
12821 int len;
12822 unsigned int j;
12823
12824 p = start;
12825 left = size - (start - message);
12826 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
12827 {
12828 /* Should it be skipped? */
12829 if (cpu_arch [j].skip)
12830 continue;
12831
12832 name = cpu_arch [j].name;
12833 len = cpu_arch [j].len;
12834 if (*name == '.')
12835 {
12836 /* It is an extension. Skip if we aren't asked to show it. */
12837 if (ext)
12838 {
12839 name++;
12840 len--;
12841 }
12842 else
12843 continue;
12844 }
12845 else if (ext)
12846 {
12847 /* It is an processor. Skip if we show only extension. */
12848 continue;
12849 }
12850 else if (check && ! cpu_arch[j].flags.bitfield.cpui386)
12851 {
12852 /* It is an impossible processor - skip. */
12853 continue;
12854 }
12855
12856 p = output_message (stream, p, message, start, &left, name, len);
12857 }
12858
12859 /* Display disabled extensions. */
12860 if (ext)
12861 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
12862 {
12863 name = cpu_noarch [j].name;
12864 len = cpu_noarch [j].len;
12865 p = output_message (stream, p, message, start, &left, name,
12866 len);
12867 }
12868
12869 *p = '\0';
12870 fprintf (stream, "%s\n", message);
12871 }
12872
12873 void
12874 md_show_usage (FILE *stream)
12875 {
12876 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12877 fprintf (stream, _("\
12878 -Qy, -Qn ignored\n\
12879 -V print assembler version number\n\
12880 -k ignored\n"));
12881 #endif
12882 fprintf (stream, _("\
12883 -n Do not optimize code alignment\n\
12884 -q quieten some warnings\n"));
12885 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12886 fprintf (stream, _("\
12887 -s ignored\n"));
12888 #endif
12889 #if defined BFD64 && (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
12890 || defined (TE_PE) || defined (TE_PEP))
12891 fprintf (stream, _("\
12892 --32/--64/--x32 generate 32bit/64bit/x32 code\n"));
12893 #endif
12894 #ifdef SVR4_COMMENT_CHARS
12895 fprintf (stream, _("\
12896 --divide do not treat `/' as a comment character\n"));
12897 #else
12898 fprintf (stream, _("\
12899 --divide ignored\n"));
12900 #endif
12901 fprintf (stream, _("\
12902 -march=CPU[,+EXTENSION...]\n\
12903 generate code for CPU and EXTENSION, CPU is one of:\n"));
12904 show_arch (stream, 0, 1);
12905 fprintf (stream, _("\
12906 EXTENSION is combination of:\n"));
12907 show_arch (stream, 1, 0);
12908 fprintf (stream, _("\
12909 -mtune=CPU optimize for CPU, CPU is one of:\n"));
12910 show_arch (stream, 0, 0);
12911 fprintf (stream, _("\
12912 -msse2avx encode SSE instructions with VEX prefix\n"));
12913 fprintf (stream, _("\
12914 -msse-check=[none|error|warning] (default: warning)\n\
12915 check SSE instructions\n"));
12916 fprintf (stream, _("\
12917 -moperand-check=[none|error|warning] (default: warning)\n\
12918 check operand combinations for validity\n"));
12919 fprintf (stream, _("\
12920 -mavxscalar=[128|256] (default: 128)\n\
12921 encode scalar AVX instructions with specific vector\n\
12922 length\n"));
12923 fprintf (stream, _("\
12924 -mvexwig=[0|1] (default: 0)\n\
12925 encode VEX instructions with specific VEX.W value\n\
12926 for VEX.W bit ignored instructions\n"));
12927 fprintf (stream, _("\
12928 -mevexlig=[128|256|512] (default: 128)\n\
12929 encode scalar EVEX instructions with specific vector\n\
12930 length\n"));
12931 fprintf (stream, _("\
12932 -mevexwig=[0|1] (default: 0)\n\
12933 encode EVEX instructions with specific EVEX.W value\n\
12934 for EVEX.W bit ignored instructions\n"));
12935 fprintf (stream, _("\
12936 -mevexrcig=[rne|rd|ru|rz] (default: rne)\n\
12937 encode EVEX instructions with specific EVEX.RC value\n\
12938 for SAE-only ignored instructions\n"));
12939 fprintf (stream, _("\
12940 -mmnemonic=[att|intel] "));
12941 if (SYSV386_COMPAT)
12942 fprintf (stream, _("(default: att)\n"));
12943 else
12944 fprintf (stream, _("(default: intel)\n"));
12945 fprintf (stream, _("\
12946 use AT&T/Intel mnemonic\n"));
12947 fprintf (stream, _("\
12948 -msyntax=[att|intel] (default: att)\n\
12949 use AT&T/Intel syntax\n"));
12950 fprintf (stream, _("\
12951 -mindex-reg support pseudo index registers\n"));
12952 fprintf (stream, _("\
12953 -mnaked-reg don't require `%%' prefix for registers\n"));
12954 fprintf (stream, _("\
12955 -madd-bnd-prefix add BND prefix for all valid branches\n"));
12956 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12957 fprintf (stream, _("\
12958 -mshared disable branch optimization for shared code\n"));
12959 fprintf (stream, _("\
12960 -mx86-used-note=[no|yes] "));
12961 if (DEFAULT_X86_USED_NOTE)
12962 fprintf (stream, _("(default: yes)\n"));
12963 else
12964 fprintf (stream, _("(default: no)\n"));
12965 fprintf (stream, _("\
12966 generate x86 used ISA and feature properties\n"));
12967 #endif
12968 #if defined (TE_PE) || defined (TE_PEP)
12969 fprintf (stream, _("\
12970 -mbig-obj generate big object files\n"));
12971 #endif
12972 fprintf (stream, _("\
12973 -momit-lock-prefix=[no|yes] (default: no)\n\
12974 strip all lock prefixes\n"));
12975 fprintf (stream, _("\
12976 -mfence-as-lock-add=[no|yes] (default: no)\n\
12977 encode lfence, mfence and sfence as\n\
12978 lock addl $0x0, (%%{re}sp)\n"));
12979 fprintf (stream, _("\
12980 -mrelax-relocations=[no|yes] "));
12981 if (DEFAULT_GENERATE_X86_RELAX_RELOCATIONS)
12982 fprintf (stream, _("(default: yes)\n"));
12983 else
12984 fprintf (stream, _("(default: no)\n"));
12985 fprintf (stream, _("\
12986 generate relax relocations\n"));
12987 fprintf (stream, _("\
12988 -malign-branch-boundary=NUM (default: 0)\n\
12989 align branches within NUM byte boundary\n"));
12990 fprintf (stream, _("\
12991 -malign-branch=TYPE[+TYPE...] (default: jcc+fused+jmp)\n\
12992 TYPE is combination of jcc, fused, jmp, call, ret,\n\
12993 indirect\n\
12994 specify types of branches to align\n"));
12995 fprintf (stream, _("\
12996 -malign-branch-prefix-size=NUM (default: 5)\n\
12997 align branches with NUM prefixes per instruction\n"));
12998 fprintf (stream, _("\
12999 -mbranches-within-32B-boundaries\n\
13000 align branches within 32 byte boundary\n"));
13001 fprintf (stream, _("\
13002 -mamd64 accept only AMD64 ISA [default]\n"));
13003 fprintf (stream, _("\
13004 -mintel64 accept only Intel64 ISA\n"));
13005 }
13006
13007 #if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
13008 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
13009 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
13010
13011 /* Pick the target format to use. */
13012
13013 const char *
13014 i386_target_format (void)
13015 {
13016 if (!strncmp (default_arch, "x86_64", 6))
13017 {
13018 update_code_flag (CODE_64BIT, 1);
13019 if (default_arch[6] == '\0')
13020 x86_elf_abi = X86_64_ABI;
13021 else
13022 x86_elf_abi = X86_64_X32_ABI;
13023 }
13024 else if (!strcmp (default_arch, "i386"))
13025 update_code_flag (CODE_32BIT, 1);
13026 else if (!strcmp (default_arch, "iamcu"))
13027 {
13028 update_code_flag (CODE_32BIT, 1);
13029 if (cpu_arch_isa == PROCESSOR_UNKNOWN)
13030 {
13031 static const i386_cpu_flags iamcu_flags = CPU_IAMCU_FLAGS;
13032 cpu_arch_name = "iamcu";
13033 cpu_sub_arch_name = NULL;
13034 cpu_arch_flags = iamcu_flags;
13035 cpu_arch_isa = PROCESSOR_IAMCU;
13036 cpu_arch_isa_flags = iamcu_flags;
13037 if (!cpu_arch_tune_set)
13038 {
13039 cpu_arch_tune = cpu_arch_isa;
13040 cpu_arch_tune_flags = cpu_arch_isa_flags;
13041 }
13042 }
13043 else if (cpu_arch_isa != PROCESSOR_IAMCU)
13044 as_fatal (_("Intel MCU doesn't support `%s' architecture"),
13045 cpu_arch_name);
13046 }
13047 else
13048 as_fatal (_("unknown architecture"));
13049
13050 if (cpu_flags_all_zero (&cpu_arch_isa_flags))
13051 cpu_arch_isa_flags = cpu_arch[flag_code == CODE_64BIT].flags;
13052 if (cpu_flags_all_zero (&cpu_arch_tune_flags))
13053 cpu_arch_tune_flags = cpu_arch[flag_code == CODE_64BIT].flags;
13054
13055 switch (OUTPUT_FLAVOR)
13056 {
13057 #if defined (OBJ_MAYBE_AOUT) || defined (OBJ_AOUT)
13058 case bfd_target_aout_flavour:
13059 return AOUT_TARGET_FORMAT;
13060 #endif
13061 #if defined (OBJ_MAYBE_COFF) || defined (OBJ_COFF)
13062 # if defined (TE_PE) || defined (TE_PEP)
13063 case bfd_target_coff_flavour:
13064 if (flag_code == CODE_64BIT)
13065 return use_big_obj ? "pe-bigobj-x86-64" : "pe-x86-64";
13066 else
13067 return "pe-i386";
13068 # elif defined (TE_GO32)
13069 case bfd_target_coff_flavour:
13070 return "coff-go32";
13071 # else
13072 case bfd_target_coff_flavour:
13073 return "coff-i386";
13074 # endif
13075 #endif
13076 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
13077 case bfd_target_elf_flavour:
13078 {
13079 const char *format;
13080
13081 switch (x86_elf_abi)
13082 {
13083 default:
13084 format = ELF_TARGET_FORMAT;
13085 #ifndef TE_SOLARIS
13086 tls_get_addr = "___tls_get_addr";
13087 #endif
13088 break;
13089 case X86_64_ABI:
13090 use_rela_relocations = 1;
13091 object_64bit = 1;
13092 #ifndef TE_SOLARIS
13093 tls_get_addr = "__tls_get_addr";
13094 #endif
13095 format = ELF_TARGET_FORMAT64;
13096 break;
13097 case X86_64_X32_ABI:
13098 use_rela_relocations = 1;
13099 object_64bit = 1;
13100 #ifndef TE_SOLARIS
13101 tls_get_addr = "__tls_get_addr";
13102 #endif
13103 disallow_64bit_reloc = 1;
13104 format = ELF_TARGET_FORMAT32;
13105 break;
13106 }
13107 if (cpu_arch_isa == PROCESSOR_L1OM)
13108 {
13109 if (x86_elf_abi != X86_64_ABI)
13110 as_fatal (_("Intel L1OM is 64bit only"));
13111 return ELF_TARGET_L1OM_FORMAT;
13112 }
13113 else if (cpu_arch_isa == PROCESSOR_K1OM)
13114 {
13115 if (x86_elf_abi != X86_64_ABI)
13116 as_fatal (_("Intel K1OM is 64bit only"));
13117 return ELF_TARGET_K1OM_FORMAT;
13118 }
13119 else if (cpu_arch_isa == PROCESSOR_IAMCU)
13120 {
13121 if (x86_elf_abi != I386_ABI)
13122 as_fatal (_("Intel MCU is 32bit only"));
13123 return ELF_TARGET_IAMCU_FORMAT;
13124 }
13125 else
13126 return format;
13127 }
13128 #endif
13129 #if defined (OBJ_MACH_O)
13130 case bfd_target_mach_o_flavour:
13131 if (flag_code == CODE_64BIT)
13132 {
13133 use_rela_relocations = 1;
13134 object_64bit = 1;
13135 return "mach-o-x86-64";
13136 }
13137 else
13138 return "mach-o-i386";
13139 #endif
13140 default:
13141 abort ();
13142 return NULL;
13143 }
13144 }
13145
13146 #endif /* OBJ_MAYBE_ more than one */
13147 \f
13148 symbolS *
13149 md_undefined_symbol (char *name)
13150 {
13151 if (name[0] == GLOBAL_OFFSET_TABLE_NAME[0]
13152 && name[1] == GLOBAL_OFFSET_TABLE_NAME[1]
13153 && name[2] == GLOBAL_OFFSET_TABLE_NAME[2]
13154 && strcmp (name, GLOBAL_OFFSET_TABLE_NAME) == 0)
13155 {
13156 if (!GOT_symbol)
13157 {
13158 if (symbol_find (name))
13159 as_bad (_("GOT already in symbol table"));
13160 GOT_symbol = symbol_new (name, undefined_section,
13161 (valueT) 0, &zero_address_frag);
13162 };
13163 return GOT_symbol;
13164 }
13165 return 0;
13166 }
13167
13168 /* Round up a section size to the appropriate boundary. */
13169
13170 valueT
13171 md_section_align (segT segment ATTRIBUTE_UNUSED, valueT size)
13172 {
13173 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
13174 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
13175 {
13176 /* For a.out, force the section size to be aligned. If we don't do
13177 this, BFD will align it for us, but it will not write out the
13178 final bytes of the section. This may be a bug in BFD, but it is
13179 easier to fix it here since that is how the other a.out targets
13180 work. */
13181 int align;
13182
13183 align = bfd_section_alignment (segment);
13184 size = ((size + (1 << align) - 1) & (-((valueT) 1 << align)));
13185 }
13186 #endif
13187
13188 return size;
13189 }
13190
13191 /* On the i386, PC-relative offsets are relative to the start of the
13192 next instruction. That is, the address of the offset, plus its
13193 size, since the offset is always the last part of the insn. */
13194
13195 long
13196 md_pcrel_from (fixS *fixP)
13197 {
13198 return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address;
13199 }
13200
13201 #ifndef I386COFF
13202
13203 static void
13204 s_bss (int ignore ATTRIBUTE_UNUSED)
13205 {
13206 int temp;
13207
13208 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
13209 if (IS_ELF)
13210 obj_elf_section_change_hook ();
13211 #endif
13212 temp = get_absolute_expression ();
13213 subseg_set (bss_section, (subsegT) temp);
13214 demand_empty_rest_of_line ();
13215 }
13216
13217 #endif
13218
13219 /* Remember constant directive. */
13220
13221 void
13222 i386_cons_align (int ignore ATTRIBUTE_UNUSED)
13223 {
13224 if (last_insn.kind != last_insn_directive
13225 && (bfd_section_flags (now_seg) & SEC_CODE))
13226 {
13227 last_insn.seg = now_seg;
13228 last_insn.kind = last_insn_directive;
13229 last_insn.name = "constant directive";
13230 last_insn.file = as_where (&last_insn.line);
13231 }
13232 }
13233
13234 void
13235 i386_validate_fix (fixS *fixp)
13236 {
13237 if (fixp->fx_subsy)
13238 {
13239 if (fixp->fx_subsy == GOT_symbol)
13240 {
13241 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
13242 {
13243 if (!object_64bit)
13244 abort ();
13245 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
13246 if (fixp->fx_tcbit2)
13247 fixp->fx_r_type = (fixp->fx_tcbit
13248 ? BFD_RELOC_X86_64_REX_GOTPCRELX
13249 : BFD_RELOC_X86_64_GOTPCRELX);
13250 else
13251 #endif
13252 fixp->fx_r_type = BFD_RELOC_X86_64_GOTPCREL;
13253 }
13254 else
13255 {
13256 if (!object_64bit)
13257 fixp->fx_r_type = BFD_RELOC_386_GOTOFF;
13258 else
13259 fixp->fx_r_type = BFD_RELOC_X86_64_GOTOFF64;
13260 }
13261 fixp->fx_subsy = 0;
13262 }
13263 }
13264 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
13265 else if (!object_64bit)
13266 {
13267 if (fixp->fx_r_type == BFD_RELOC_386_GOT32
13268 && fixp->fx_tcbit2)
13269 fixp->fx_r_type = BFD_RELOC_386_GOT32X;
13270 }
13271 #endif
13272 }
13273
13274 arelent *
13275 tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
13276 {
13277 arelent *rel;
13278 bfd_reloc_code_real_type code;
13279
13280 switch (fixp->fx_r_type)
13281 {
13282 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
13283 case BFD_RELOC_SIZE32:
13284 case BFD_RELOC_SIZE64:
13285 if (S_IS_DEFINED (fixp->fx_addsy)
13286 && !S_IS_EXTERNAL (fixp->fx_addsy))
13287 {
13288 /* Resolve size relocation against local symbol to size of
13289 the symbol plus addend. */
13290 valueT value = S_GET_SIZE (fixp->fx_addsy) + fixp->fx_offset;
13291 if (fixp->fx_r_type == BFD_RELOC_SIZE32
13292 && !fits_in_unsigned_long (value))
13293 as_bad_where (fixp->fx_file, fixp->fx_line,
13294 _("symbol size computation overflow"));
13295 fixp->fx_addsy = NULL;
13296 fixp->fx_subsy = NULL;
13297 md_apply_fix (fixp, (valueT *) &value, NULL);
13298 return NULL;
13299 }
13300 #endif
13301 /* Fall through. */
13302
13303 case BFD_RELOC_X86_64_PLT32:
13304 case BFD_RELOC_X86_64_GOT32:
13305 case BFD_RELOC_X86_64_GOTPCREL:
13306 case BFD_RELOC_X86_64_GOTPCRELX:
13307 case BFD_RELOC_X86_64_REX_GOTPCRELX:
13308 case BFD_RELOC_386_PLT32:
13309 case BFD_RELOC_386_GOT32:
13310 case BFD_RELOC_386_GOT32X:
13311 case BFD_RELOC_386_GOTOFF:
13312 case BFD_RELOC_386_GOTPC:
13313 case BFD_RELOC_386_TLS_GD:
13314 case BFD_RELOC_386_TLS_LDM:
13315 case BFD_RELOC_386_TLS_LDO_32:
13316 case BFD_RELOC_386_TLS_IE_32:
13317 case BFD_RELOC_386_TLS_IE:
13318 case BFD_RELOC_386_TLS_GOTIE:
13319 case BFD_RELOC_386_TLS_LE_32:
13320 case BFD_RELOC_386_TLS_LE:
13321 case BFD_RELOC_386_TLS_GOTDESC:
13322 case BFD_RELOC_386_TLS_DESC_CALL:
13323 case BFD_RELOC_X86_64_TLSGD:
13324 case BFD_RELOC_X86_64_TLSLD:
13325 case BFD_RELOC_X86_64_DTPOFF32:
13326 case BFD_RELOC_X86_64_DTPOFF64:
13327 case BFD_RELOC_X86_64_GOTTPOFF:
13328 case BFD_RELOC_X86_64_TPOFF32:
13329 case BFD_RELOC_X86_64_TPOFF64:
13330 case BFD_RELOC_X86_64_GOTOFF64:
13331 case BFD_RELOC_X86_64_GOTPC32:
13332 case BFD_RELOC_X86_64_GOT64:
13333 case BFD_RELOC_X86_64_GOTPCREL64:
13334 case BFD_RELOC_X86_64_GOTPC64:
13335 case BFD_RELOC_X86_64_GOTPLT64:
13336 case BFD_RELOC_X86_64_PLTOFF64:
13337 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
13338 case BFD_RELOC_X86_64_TLSDESC_CALL:
13339 case BFD_RELOC_RVA:
13340 case BFD_RELOC_VTABLE_ENTRY:
13341 case BFD_RELOC_VTABLE_INHERIT:
13342 #ifdef TE_PE
13343 case BFD_RELOC_32_SECREL:
13344 #endif
13345 code = fixp->fx_r_type;
13346 break;
13347 case BFD_RELOC_X86_64_32S:
13348 if (!fixp->fx_pcrel)
13349 {
13350 /* Don't turn BFD_RELOC_X86_64_32S into BFD_RELOC_32. */
13351 code = fixp->fx_r_type;
13352 break;
13353 }
13354 /* Fall through. */
13355 default:
13356 if (fixp->fx_pcrel)
13357 {
13358 switch (fixp->fx_size)
13359 {
13360 default:
13361 as_bad_where (fixp->fx_file, fixp->fx_line,
13362 _("can not do %d byte pc-relative relocation"),
13363 fixp->fx_size);
13364 code = BFD_RELOC_32_PCREL;
13365 break;
13366 case 1: code = BFD_RELOC_8_PCREL; break;
13367 case 2: code = BFD_RELOC_16_PCREL; break;
13368 case 4: code = BFD_RELOC_32_PCREL; break;
13369 #ifdef BFD64
13370 case 8: code = BFD_RELOC_64_PCREL; break;
13371 #endif
13372 }
13373 }
13374 else
13375 {
13376 switch (fixp->fx_size)
13377 {
13378 default:
13379 as_bad_where (fixp->fx_file, fixp->fx_line,
13380 _("can not do %d byte relocation"),
13381 fixp->fx_size);
13382 code = BFD_RELOC_32;
13383 break;
13384 case 1: code = BFD_RELOC_8; break;
13385 case 2: code = BFD_RELOC_16; break;
13386 case 4: code = BFD_RELOC_32; break;
13387 #ifdef BFD64
13388 case 8: code = BFD_RELOC_64; break;
13389 #endif
13390 }
13391 }
13392 break;
13393 }
13394
13395 if ((code == BFD_RELOC_32
13396 || code == BFD_RELOC_32_PCREL
13397 || code == BFD_RELOC_X86_64_32S)
13398 && GOT_symbol
13399 && fixp->fx_addsy == GOT_symbol)
13400 {
13401 if (!object_64bit)
13402 code = BFD_RELOC_386_GOTPC;
13403 else
13404 code = BFD_RELOC_X86_64_GOTPC32;
13405 }
13406 if ((code == BFD_RELOC_64 || code == BFD_RELOC_64_PCREL)
13407 && GOT_symbol
13408 && fixp->fx_addsy == GOT_symbol)
13409 {
13410 code = BFD_RELOC_X86_64_GOTPC64;
13411 }
13412
13413 rel = XNEW (arelent);
13414 rel->sym_ptr_ptr = XNEW (asymbol *);
13415 *rel->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
13416
13417 rel->address = fixp->fx_frag->fr_address + fixp->fx_where;
13418
13419 if (!use_rela_relocations)
13420 {
13421 /* HACK: Since i386 ELF uses Rel instead of Rela, encode the
13422 vtable entry to be used in the relocation's section offset. */
13423 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
13424 rel->address = fixp->fx_offset;
13425 #if defined (OBJ_COFF) && defined (TE_PE)
13426 else if (fixp->fx_addsy && S_IS_WEAK (fixp->fx_addsy))
13427 rel->addend = fixp->fx_addnumber - (S_GET_VALUE (fixp->fx_addsy) * 2);
13428 else
13429 #endif
13430 rel->addend = 0;
13431 }
13432 /* Use the rela in 64bit mode. */
13433 else
13434 {
13435 if (disallow_64bit_reloc)
13436 switch (code)
13437 {
13438 case BFD_RELOC_X86_64_DTPOFF64:
13439 case BFD_RELOC_X86_64_TPOFF64:
13440 case BFD_RELOC_64_PCREL:
13441 case BFD_RELOC_X86_64_GOTOFF64:
13442 case BFD_RELOC_X86_64_GOT64:
13443 case BFD_RELOC_X86_64_GOTPCREL64:
13444 case BFD_RELOC_X86_64_GOTPC64:
13445 case BFD_RELOC_X86_64_GOTPLT64:
13446 case BFD_RELOC_X86_64_PLTOFF64:
13447 as_bad_where (fixp->fx_file, fixp->fx_line,
13448 _("cannot represent relocation type %s in x32 mode"),
13449 bfd_get_reloc_code_name (code));
13450 break;
13451 default:
13452 break;
13453 }
13454
13455 if (!fixp->fx_pcrel)
13456 rel->addend = fixp->fx_offset;
13457 else
13458 switch (code)
13459 {
13460 case BFD_RELOC_X86_64_PLT32:
13461 case BFD_RELOC_X86_64_GOT32:
13462 case BFD_RELOC_X86_64_GOTPCREL:
13463 case BFD_RELOC_X86_64_GOTPCRELX:
13464 case BFD_RELOC_X86_64_REX_GOTPCRELX:
13465 case BFD_RELOC_X86_64_TLSGD:
13466 case BFD_RELOC_X86_64_TLSLD:
13467 case BFD_RELOC_X86_64_GOTTPOFF:
13468 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
13469 case BFD_RELOC_X86_64_TLSDESC_CALL:
13470 rel->addend = fixp->fx_offset - fixp->fx_size;
13471 break;
13472 default:
13473 rel->addend = (section->vma
13474 - fixp->fx_size
13475 + fixp->fx_addnumber
13476 + md_pcrel_from (fixp));
13477 break;
13478 }
13479 }
13480
13481 rel->howto = bfd_reloc_type_lookup (stdoutput, code);
13482 if (rel->howto == NULL)
13483 {
13484 as_bad_where (fixp->fx_file, fixp->fx_line,
13485 _("cannot represent relocation type %s"),
13486 bfd_get_reloc_code_name (code));
13487 /* Set howto to a garbage value so that we can keep going. */
13488 rel->howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_32);
13489 gas_assert (rel->howto != NULL);
13490 }
13491
13492 return rel;
13493 }
13494
13495 #include "tc-i386-intel.c"
13496
13497 void
13498 tc_x86_parse_to_dw2regnum (expressionS *exp)
13499 {
13500 int saved_naked_reg;
13501 char saved_register_dot;
13502
13503 saved_naked_reg = allow_naked_reg;
13504 allow_naked_reg = 1;
13505 saved_register_dot = register_chars['.'];
13506 register_chars['.'] = '.';
13507 allow_pseudo_reg = 1;
13508 expression_and_evaluate (exp);
13509 allow_pseudo_reg = 0;
13510 register_chars['.'] = saved_register_dot;
13511 allow_naked_reg = saved_naked_reg;
13512
13513 if (exp->X_op == O_register && exp->X_add_number >= 0)
13514 {
13515 if ((addressT) exp->X_add_number < i386_regtab_size)
13516 {
13517 exp->X_op = O_constant;
13518 exp->X_add_number = i386_regtab[exp->X_add_number]
13519 .dw2_regnum[flag_code >> 1];
13520 }
13521 else
13522 exp->X_op = O_illegal;
13523 }
13524 }
13525
13526 void
13527 tc_x86_frame_initial_instructions (void)
13528 {
13529 static unsigned int sp_regno[2];
13530
13531 if (!sp_regno[flag_code >> 1])
13532 {
13533 char *saved_input = input_line_pointer;
13534 char sp[][4] = {"esp", "rsp"};
13535 expressionS exp;
13536
13537 input_line_pointer = sp[flag_code >> 1];
13538 tc_x86_parse_to_dw2regnum (&exp);
13539 gas_assert (exp.X_op == O_constant);
13540 sp_regno[flag_code >> 1] = exp.X_add_number;
13541 input_line_pointer = saved_input;
13542 }
13543
13544 cfi_add_CFA_def_cfa (sp_regno[flag_code >> 1], -x86_cie_data_alignment);
13545 cfi_add_CFA_offset (x86_dwarf2_return_column, x86_cie_data_alignment);
13546 }
13547
13548 int
13549 x86_dwarf2_addr_size (void)
13550 {
13551 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
13552 if (x86_elf_abi == X86_64_X32_ABI)
13553 return 4;
13554 #endif
13555 return bfd_arch_bits_per_address (stdoutput) / 8;
13556 }
13557
13558 int
13559 i386_elf_section_type (const char *str, size_t len)
13560 {
13561 if (flag_code == CODE_64BIT
13562 && len == sizeof ("unwind") - 1
13563 && strncmp (str, "unwind", 6) == 0)
13564 return SHT_X86_64_UNWIND;
13565
13566 return -1;
13567 }
13568
13569 #ifdef TE_SOLARIS
13570 void
13571 i386_solaris_fix_up_eh_frame (segT sec)
13572 {
13573 if (flag_code == CODE_64BIT)
13574 elf_section_type (sec) = SHT_X86_64_UNWIND;
13575 }
13576 #endif
13577
13578 #ifdef TE_PE
13579 void
13580 tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
13581 {
13582 expressionS exp;
13583
13584 exp.X_op = O_secrel;
13585 exp.X_add_symbol = symbol;
13586 exp.X_add_number = 0;
13587 emit_expr (&exp, size);
13588 }
13589 #endif
13590
13591 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
13592 /* For ELF on x86-64, add support for SHF_X86_64_LARGE. */
13593
13594 bfd_vma
13595 x86_64_section_letter (int letter, const char **ptr_msg)
13596 {
13597 if (flag_code == CODE_64BIT)
13598 {
13599 if (letter == 'l')
13600 return SHF_X86_64_LARGE;
13601
13602 *ptr_msg = _("bad .section directive: want a,l,w,x,M,S,G,T in string");
13603 }
13604 else
13605 *ptr_msg = _("bad .section directive: want a,w,x,M,S,G,T in string");
13606 return -1;
13607 }
13608
13609 bfd_vma
13610 x86_64_section_word (char *str, size_t len)
13611 {
13612 if (len == 5 && flag_code == CODE_64BIT && CONST_STRNEQ (str, "large"))
13613 return SHF_X86_64_LARGE;
13614
13615 return -1;
13616 }
13617
13618 static void
13619 handle_large_common (int small ATTRIBUTE_UNUSED)
13620 {
13621 if (flag_code != CODE_64BIT)
13622 {
13623 s_comm_internal (0, elf_common_parse);
13624 as_warn (_(".largecomm supported only in 64bit mode, producing .comm"));
13625 }
13626 else
13627 {
13628 static segT lbss_section;
13629 asection *saved_com_section_ptr = elf_com_section_ptr;
13630 asection *saved_bss_section = bss_section;
13631
13632 if (lbss_section == NULL)
13633 {
13634 flagword applicable;
13635 segT seg = now_seg;
13636 subsegT subseg = now_subseg;
13637
13638 /* The .lbss section is for local .largecomm symbols. */
13639 lbss_section = subseg_new (".lbss", 0);
13640 applicable = bfd_applicable_section_flags (stdoutput);
13641 bfd_set_section_flags (lbss_section, applicable & SEC_ALLOC);
13642 seg_info (lbss_section)->bss = 1;
13643
13644 subseg_set (seg, subseg);
13645 }
13646
13647 elf_com_section_ptr = &_bfd_elf_large_com_section;
13648 bss_section = lbss_section;
13649
13650 s_comm_internal (0, elf_common_parse);
13651
13652 elf_com_section_ptr = saved_com_section_ptr;
13653 bss_section = saved_bss_section;
13654 }
13655 }
13656 #endif /* OBJ_ELF || OBJ_MAYBE_ELF */
This page took 0.433704 seconds and 4 git commands to generate.