ed8cfe1ad31afd8c218a042c045645b911223d98
[deliverable/binutils-gdb.git] / gas / config / tc-i386.c
1 /* tc-i386.c -- Assemble code for the Intel 80386
2 Copyright (C) 1989-2019 Free Software Foundation, Inc.
3
4 This file is part of GAS, the GNU Assembler.
5
6 GAS is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
10
11 GAS is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GAS; see the file COPYING. If not, write to the Free
18 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
19 02110-1301, USA. */
20
21 /* Intel 80386 machine specific gas.
22 Written by Eliot Dresselhaus (eliot@mgm.mit.edu).
23 x86_64 support by Jan Hubicka (jh@suse.cz)
24 VIA PadLock support by Michal Ludvig (mludvig@suse.cz)
25 Bugs & suggestions are completely welcome. This is free software.
26 Please help us make it better. */
27
28 #include "as.h"
29 #include "safe-ctype.h"
30 #include "subsegs.h"
31 #include "dwarf2dbg.h"
32 #include "dw2gencfi.h"
33 #include "elf/x86-64.h"
34 #include "opcodes/i386-init.h"
35
36 #ifdef HAVE_LIMITS_H
37 #include <limits.h>
38 #else
39 #ifdef HAVE_SYS_PARAM_H
40 #include <sys/param.h>
41 #endif
42 #ifndef INT_MAX
43 #define INT_MAX (int) (((unsigned) (-1)) >> 1)
44 #endif
45 #endif
46
47 #ifndef REGISTER_WARNINGS
48 #define REGISTER_WARNINGS 1
49 #endif
50
51 #ifndef INFER_ADDR_PREFIX
52 #define INFER_ADDR_PREFIX 1
53 #endif
54
55 #ifndef DEFAULT_ARCH
56 #define DEFAULT_ARCH "i386"
57 #endif
58
59 #ifndef INLINE
60 #if __GNUC__ >= 2
61 #define INLINE __inline__
62 #else
63 #define INLINE
64 #endif
65 #endif
66
67 /* Prefixes will be emitted in the order defined below.
68 WAIT_PREFIX must be the first prefix since FWAIT is really is an
69 instruction, and so must come before any prefixes.
70 The preferred prefix order is SEG_PREFIX, ADDR_PREFIX, DATA_PREFIX,
71 REP_PREFIX/HLE_PREFIX, LOCK_PREFIX. */
72 #define WAIT_PREFIX 0
73 #define SEG_PREFIX 1
74 #define ADDR_PREFIX 2
75 #define DATA_PREFIX 3
76 #define REP_PREFIX 4
77 #define HLE_PREFIX REP_PREFIX
78 #define BND_PREFIX REP_PREFIX
79 #define LOCK_PREFIX 5
80 #define REX_PREFIX 6 /* must come last. */
81 #define MAX_PREFIXES 7 /* max prefixes per opcode */
82
83 /* we define the syntax here (modulo base,index,scale syntax) */
84 #define REGISTER_PREFIX '%'
85 #define IMMEDIATE_PREFIX '$'
86 #define ABSOLUTE_PREFIX '*'
87
88 /* these are the instruction mnemonic suffixes in AT&T syntax or
89 memory operand size in Intel syntax. */
90 #define WORD_MNEM_SUFFIX 'w'
91 #define BYTE_MNEM_SUFFIX 'b'
92 #define SHORT_MNEM_SUFFIX 's'
93 #define LONG_MNEM_SUFFIX 'l'
94 #define QWORD_MNEM_SUFFIX 'q'
95 /* Intel Syntax. Use a non-ascii letter since since it never appears
96 in instructions. */
97 #define LONG_DOUBLE_MNEM_SUFFIX '\1'
98
99 #define END_OF_INSN '\0'
100
101 /*
102 'templates' is for grouping together 'template' structures for opcodes
103 of the same name. This is only used for storing the insns in the grand
104 ole hash table of insns.
105 The templates themselves start at START and range up to (but not including)
106 END.
107 */
108 typedef struct
109 {
110 const insn_template *start;
111 const insn_template *end;
112 }
113 templates;
114
115 /* 386 operand encoding bytes: see 386 book for details of this. */
116 typedef struct
117 {
118 unsigned int regmem; /* codes register or memory operand */
119 unsigned int reg; /* codes register operand (or extended opcode) */
120 unsigned int mode; /* how to interpret regmem & reg */
121 }
122 modrm_byte;
123
124 /* x86-64 extension prefix. */
125 typedef int rex_byte;
126
127 /* 386 opcode byte to code indirect addressing. */
128 typedef struct
129 {
130 unsigned base;
131 unsigned index;
132 unsigned scale;
133 }
134 sib_byte;
135
136 /* x86 arch names, types and features */
137 typedef struct
138 {
139 const char *name; /* arch name */
140 unsigned int len; /* arch string length */
141 enum processor_type type; /* arch type */
142 i386_cpu_flags flags; /* cpu feature flags */
143 unsigned int skip; /* show_arch should skip this. */
144 }
145 arch_entry;
146
147 /* Used to turn off indicated flags. */
148 typedef struct
149 {
150 const char *name; /* arch name */
151 unsigned int len; /* arch string length */
152 i386_cpu_flags flags; /* cpu feature flags */
153 }
154 noarch_entry;
155
156 static void update_code_flag (int, int);
157 static void set_code_flag (int);
158 static void set_16bit_gcc_code_flag (int);
159 static void set_intel_syntax (int);
160 static void set_intel_mnemonic (int);
161 static void set_allow_index_reg (int);
162 static void set_check (int);
163 static void set_cpu_arch (int);
164 #ifdef TE_PE
165 static void pe_directive_secrel (int);
166 #endif
167 static void signed_cons (int);
168 static char *output_invalid (int c);
169 static int i386_finalize_immediate (segT, expressionS *, i386_operand_type,
170 const char *);
171 static int i386_finalize_displacement (segT, expressionS *, i386_operand_type,
172 const char *);
173 static int i386_att_operand (char *);
174 static int i386_intel_operand (char *, int);
175 static int i386_intel_simplify (expressionS *);
176 static int i386_intel_parse_name (const char *, expressionS *);
177 static const reg_entry *parse_register (char *, char **);
178 static char *parse_insn (char *, char *);
179 static char *parse_operands (char *, const char *);
180 static void swap_operands (void);
181 static void swap_2_operands (int, int);
182 static void optimize_imm (void);
183 static void optimize_disp (void);
184 static const insn_template *match_template (char);
185 static int check_string (void);
186 static int process_suffix (void);
187 static int check_byte_reg (void);
188 static int check_long_reg (void);
189 static int check_qword_reg (void);
190 static int check_word_reg (void);
191 static int finalize_imm (void);
192 static int process_operands (void);
193 static const seg_entry *build_modrm_byte (void);
194 static void output_insn (void);
195 static void output_imm (fragS *, offsetT);
196 static void output_disp (fragS *, offsetT);
197 #ifndef I386COFF
198 static void s_bss (int);
199 #endif
200 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
201 static void handle_large_common (int small ATTRIBUTE_UNUSED);
202
203 /* GNU_PROPERTY_X86_ISA_1_USED. */
204 static unsigned int x86_isa_1_used;
205 /* GNU_PROPERTY_X86_FEATURE_2_USED. */
206 static unsigned int x86_feature_2_used;
207 /* Generate x86 used ISA and feature properties. */
208 static unsigned int x86_used_note = DEFAULT_X86_USED_NOTE;
209 #endif
210
211 static const char *default_arch = DEFAULT_ARCH;
212
213 /* This struct describes rounding control and SAE in the instruction. */
214 struct RC_Operation
215 {
216 enum rc_type
217 {
218 rne = 0,
219 rd,
220 ru,
221 rz,
222 saeonly
223 } type;
224 int operand;
225 };
226
227 static struct RC_Operation rc_op;
228
229 /* The struct describes masking, applied to OPERAND in the instruction.
230 MASK is a pointer to the corresponding mask register. ZEROING tells
231 whether merging or zeroing mask is used. */
232 struct Mask_Operation
233 {
234 const reg_entry *mask;
235 unsigned int zeroing;
236 /* The operand where this operation is associated. */
237 int operand;
238 };
239
240 static struct Mask_Operation mask_op;
241
242 /* The struct describes broadcasting, applied to OPERAND. FACTOR is
243 broadcast factor. */
244 struct Broadcast_Operation
245 {
246 /* Type of broadcast: {1to2}, {1to4}, {1to8}, or {1to16}. */
247 int type;
248
249 /* Index of broadcasted operand. */
250 int operand;
251
252 /* Number of bytes to broadcast. */
253 int bytes;
254 };
255
256 static struct Broadcast_Operation broadcast_op;
257
258 /* VEX prefix. */
259 typedef struct
260 {
261 /* VEX prefix is either 2 byte or 3 byte. EVEX is 4 byte. */
262 unsigned char bytes[4];
263 unsigned int length;
264 /* Destination or source register specifier. */
265 const reg_entry *register_specifier;
266 } vex_prefix;
267
268 /* 'md_assemble ()' gathers together information and puts it into a
269 i386_insn. */
270
271 union i386_op
272 {
273 expressionS *disps;
274 expressionS *imms;
275 const reg_entry *regs;
276 };
277
278 enum i386_error
279 {
280 operand_size_mismatch,
281 operand_type_mismatch,
282 register_type_mismatch,
283 number_of_operands_mismatch,
284 invalid_instruction_suffix,
285 bad_imm4,
286 unsupported_with_intel_mnemonic,
287 unsupported_syntax,
288 unsupported,
289 invalid_vsib_address,
290 invalid_vector_register_set,
291 unsupported_vector_index_register,
292 unsupported_broadcast,
293 broadcast_needed,
294 unsupported_masking,
295 mask_not_on_destination,
296 no_default_mask,
297 unsupported_rc_sae,
298 rc_sae_operand_not_last_imm,
299 invalid_register_operand,
300 };
301
302 struct _i386_insn
303 {
304 /* TM holds the template for the insn were currently assembling. */
305 insn_template tm;
306
307 /* SUFFIX holds the instruction size suffix for byte, word, dword
308 or qword, if given. */
309 char suffix;
310
311 /* OPERANDS gives the number of given operands. */
312 unsigned int operands;
313
314 /* REG_OPERANDS, DISP_OPERANDS, MEM_OPERANDS, IMM_OPERANDS give the number
315 of given register, displacement, memory operands and immediate
316 operands. */
317 unsigned int reg_operands, disp_operands, mem_operands, imm_operands;
318
319 /* TYPES [i] is the type (see above #defines) which tells us how to
320 use OP[i] for the corresponding operand. */
321 i386_operand_type types[MAX_OPERANDS];
322
323 /* Displacement expression, immediate expression, or register for each
324 operand. */
325 union i386_op op[MAX_OPERANDS];
326
327 /* Flags for operands. */
328 unsigned int flags[MAX_OPERANDS];
329 #define Operand_PCrel 1
330 #define Operand_Mem 2
331
332 /* Relocation type for operand */
333 enum bfd_reloc_code_real reloc[MAX_OPERANDS];
334
335 /* BASE_REG, INDEX_REG, and LOG2_SCALE_FACTOR are used to encode
336 the base index byte below. */
337 const reg_entry *base_reg;
338 const reg_entry *index_reg;
339 unsigned int log2_scale_factor;
340
341 /* SEG gives the seg_entries of this insn. They are zero unless
342 explicit segment overrides are given. */
343 const seg_entry *seg[2];
344
345 /* Copied first memory operand string, for re-checking. */
346 char *memop1_string;
347
348 /* PREFIX holds all the given prefix opcodes (usually null).
349 PREFIXES is the number of prefix opcodes. */
350 unsigned int prefixes;
351 unsigned char prefix[MAX_PREFIXES];
352
353 /* Has MMX register operands. */
354 bfd_boolean has_regmmx;
355
356 /* Has XMM register operands. */
357 bfd_boolean has_regxmm;
358
359 /* Has YMM register operands. */
360 bfd_boolean has_regymm;
361
362 /* Has ZMM register operands. */
363 bfd_boolean has_regzmm;
364
365 /* RM and SIB are the modrm byte and the sib byte where the
366 addressing modes of this insn are encoded. */
367 modrm_byte rm;
368 rex_byte rex;
369 rex_byte vrex;
370 sib_byte sib;
371 vex_prefix vex;
372
373 /* Masking attributes. */
374 struct Mask_Operation *mask;
375
376 /* Rounding control and SAE attributes. */
377 struct RC_Operation *rounding;
378
379 /* Broadcasting attributes. */
380 struct Broadcast_Operation *broadcast;
381
382 /* Compressed disp8*N attribute. */
383 unsigned int memshift;
384
385 /* Prefer load or store in encoding. */
386 enum
387 {
388 dir_encoding_default = 0,
389 dir_encoding_load,
390 dir_encoding_store,
391 dir_encoding_swap
392 } dir_encoding;
393
394 /* Prefer 8bit or 32bit displacement in encoding. */
395 enum
396 {
397 disp_encoding_default = 0,
398 disp_encoding_8bit,
399 disp_encoding_32bit
400 } disp_encoding;
401
402 /* Prefer the REX byte in encoding. */
403 bfd_boolean rex_encoding;
404
405 /* Disable instruction size optimization. */
406 bfd_boolean no_optimize;
407
408 /* How to encode vector instructions. */
409 enum
410 {
411 vex_encoding_default = 0,
412 vex_encoding_vex2,
413 vex_encoding_vex3,
414 vex_encoding_evex
415 } vec_encoding;
416
417 /* REP prefix. */
418 const char *rep_prefix;
419
420 /* HLE prefix. */
421 const char *hle_prefix;
422
423 /* Have BND prefix. */
424 const char *bnd_prefix;
425
426 /* Have NOTRACK prefix. */
427 const char *notrack_prefix;
428
429 /* Error message. */
430 enum i386_error error;
431 };
432
433 typedef struct _i386_insn i386_insn;
434
435 /* Link RC type with corresponding string, that'll be looked for in
436 asm. */
437 struct RC_name
438 {
439 enum rc_type type;
440 const char *name;
441 unsigned int len;
442 };
443
444 static const struct RC_name RC_NamesTable[] =
445 {
446 { rne, STRING_COMMA_LEN ("rn-sae") },
447 { rd, STRING_COMMA_LEN ("rd-sae") },
448 { ru, STRING_COMMA_LEN ("ru-sae") },
449 { rz, STRING_COMMA_LEN ("rz-sae") },
450 { saeonly, STRING_COMMA_LEN ("sae") },
451 };
452
453 /* List of chars besides those in app.c:symbol_chars that can start an
454 operand. Used to prevent the scrubber eating vital white-space. */
455 const char extra_symbol_chars[] = "*%-([{}"
456 #ifdef LEX_AT
457 "@"
458 #endif
459 #ifdef LEX_QM
460 "?"
461 #endif
462 ;
463
464 #if (defined (TE_I386AIX) \
465 || ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) \
466 && !defined (TE_GNU) \
467 && !defined (TE_LINUX) \
468 && !defined (TE_NACL) \
469 && !defined (TE_FreeBSD) \
470 && !defined (TE_DragonFly) \
471 && !defined (TE_NetBSD)))
472 /* This array holds the chars that always start a comment. If the
473 pre-processor is disabled, these aren't very useful. The option
474 --divide will remove '/' from this list. */
475 const char *i386_comment_chars = "#/";
476 #define SVR4_COMMENT_CHARS 1
477 #define PREFIX_SEPARATOR '\\'
478
479 #else
480 const char *i386_comment_chars = "#";
481 #define PREFIX_SEPARATOR '/'
482 #endif
483
484 /* This array holds the chars that only start a comment at the beginning of
485 a line. If the line seems to have the form '# 123 filename'
486 .line and .file directives will appear in the pre-processed output.
487 Note that input_file.c hand checks for '#' at the beginning of the
488 first line of the input file. This is because the compiler outputs
489 #NO_APP at the beginning of its output.
490 Also note that comments started like this one will always work if
491 '/' isn't otherwise defined. */
492 const char line_comment_chars[] = "#/";
493
494 const char line_separator_chars[] = ";";
495
496 /* Chars that can be used to separate mant from exp in floating point
497 nums. */
498 const char EXP_CHARS[] = "eE";
499
500 /* Chars that mean this number is a floating point constant
501 As in 0f12.456
502 or 0d1.2345e12. */
503 const char FLT_CHARS[] = "fFdDxX";
504
505 /* Tables for lexical analysis. */
506 static char mnemonic_chars[256];
507 static char register_chars[256];
508 static char operand_chars[256];
509 static char identifier_chars[256];
510 static char digit_chars[256];
511
512 /* Lexical macros. */
513 #define is_mnemonic_char(x) (mnemonic_chars[(unsigned char) x])
514 #define is_operand_char(x) (operand_chars[(unsigned char) x])
515 #define is_register_char(x) (register_chars[(unsigned char) x])
516 #define is_space_char(x) ((x) == ' ')
517 #define is_identifier_char(x) (identifier_chars[(unsigned char) x])
518 #define is_digit_char(x) (digit_chars[(unsigned char) x])
519
520 /* All non-digit non-letter characters that may occur in an operand. */
521 static char operand_special_chars[] = "%$-+(,)*._~/<>|&^!:[@]";
522
523 /* md_assemble() always leaves the strings it's passed unaltered. To
524 effect this we maintain a stack of saved characters that we've smashed
525 with '\0's (indicating end of strings for various sub-fields of the
526 assembler instruction). */
527 static char save_stack[32];
528 static char *save_stack_p;
529 #define END_STRING_AND_SAVE(s) \
530 do { *save_stack_p++ = *(s); *(s) = '\0'; } while (0)
531 #define RESTORE_END_STRING(s) \
532 do { *(s) = *--save_stack_p; } while (0)
533
534 /* The instruction we're assembling. */
535 static i386_insn i;
536
537 /* Possible templates for current insn. */
538 static const templates *current_templates;
539
540 /* Per instruction expressionS buffers: max displacements & immediates. */
541 static expressionS disp_expressions[MAX_MEMORY_OPERANDS];
542 static expressionS im_expressions[MAX_IMMEDIATE_OPERANDS];
543
544 /* Current operand we are working on. */
545 static int this_operand = -1;
546
547 /* We support four different modes. FLAG_CODE variable is used to distinguish
548 these. */
549
550 enum flag_code {
551 CODE_32BIT,
552 CODE_16BIT,
553 CODE_64BIT };
554
555 static enum flag_code flag_code;
556 static unsigned int object_64bit;
557 static unsigned int disallow_64bit_reloc;
558 static int use_rela_relocations = 0;
559
560 #if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
561 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
562 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
563
564 /* The ELF ABI to use. */
565 enum x86_elf_abi
566 {
567 I386_ABI,
568 X86_64_ABI,
569 X86_64_X32_ABI
570 };
571
572 static enum x86_elf_abi x86_elf_abi = I386_ABI;
573 #endif
574
575 #if defined (TE_PE) || defined (TE_PEP)
576 /* Use big object file format. */
577 static int use_big_obj = 0;
578 #endif
579
580 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
581 /* 1 if generating code for a shared library. */
582 static int shared = 0;
583 #endif
584
585 /* 1 for intel syntax,
586 0 if att syntax. */
587 static int intel_syntax = 0;
588
589 /* 1 for Intel64 ISA,
590 0 if AMD64 ISA. */
591 static int intel64;
592
593 /* 1 for intel mnemonic,
594 0 if att mnemonic. */
595 static int intel_mnemonic = !SYSV386_COMPAT;
596
597 /* 1 if pseudo registers are permitted. */
598 static int allow_pseudo_reg = 0;
599
600 /* 1 if register prefix % not required. */
601 static int allow_naked_reg = 0;
602
603 /* 1 if the assembler should add BND prefix for all control-transferring
604 instructions supporting it, even if this prefix wasn't specified
605 explicitly. */
606 static int add_bnd_prefix = 0;
607
608 /* 1 if pseudo index register, eiz/riz, is allowed . */
609 static int allow_index_reg = 0;
610
611 /* 1 if the assembler should ignore LOCK prefix, even if it was
612 specified explicitly. */
613 static int omit_lock_prefix = 0;
614
615 /* 1 if the assembler should encode lfence, mfence, and sfence as
616 "lock addl $0, (%{re}sp)". */
617 static int avoid_fence = 0;
618
619 /* 1 if the assembler should generate relax relocations. */
620
621 static int generate_relax_relocations
622 = DEFAULT_GENERATE_X86_RELAX_RELOCATIONS;
623
624 static enum check_kind
625 {
626 check_none = 0,
627 check_warning,
628 check_error
629 }
630 sse_check, operand_check = check_warning;
631
632 /* Optimization:
633 1. Clear the REX_W bit with register operand if possible.
634 2. Above plus use 128bit vector instruction to clear the full vector
635 register.
636 */
637 static int optimize = 0;
638
639 /* Optimization:
640 1. Clear the REX_W bit with register operand if possible.
641 2. Above plus use 128bit vector instruction to clear the full vector
642 register.
643 3. Above plus optimize "test{q,l,w} $imm8,%r{64,32,16}" to
644 "testb $imm7,%r8".
645 */
646 static int optimize_for_space = 0;
647
648 /* Register prefix used for error message. */
649 static const char *register_prefix = "%";
650
651 /* Used in 16 bit gcc mode to add an l suffix to call, ret, enter,
652 leave, push, and pop instructions so that gcc has the same stack
653 frame as in 32 bit mode. */
654 static char stackop_size = '\0';
655
656 /* Non-zero to optimize code alignment. */
657 int optimize_align_code = 1;
658
659 /* Non-zero to quieten some warnings. */
660 static int quiet_warnings = 0;
661
662 /* CPU name. */
663 static const char *cpu_arch_name = NULL;
664 static char *cpu_sub_arch_name = NULL;
665
666 /* CPU feature flags. */
667 static i386_cpu_flags cpu_arch_flags = CPU_UNKNOWN_FLAGS;
668
669 /* If we have selected a cpu we are generating instructions for. */
670 static int cpu_arch_tune_set = 0;
671
672 /* Cpu we are generating instructions for. */
673 enum processor_type cpu_arch_tune = PROCESSOR_UNKNOWN;
674
675 /* CPU feature flags of cpu we are generating instructions for. */
676 static i386_cpu_flags cpu_arch_tune_flags;
677
678 /* CPU instruction set architecture used. */
679 enum processor_type cpu_arch_isa = PROCESSOR_UNKNOWN;
680
681 /* CPU feature flags of instruction set architecture used. */
682 i386_cpu_flags cpu_arch_isa_flags;
683
684 /* If set, conditional jumps are not automatically promoted to handle
685 larger than a byte offset. */
686 static unsigned int no_cond_jump_promotion = 0;
687
688 /* Encode SSE instructions with VEX prefix. */
689 static unsigned int sse2avx;
690
691 /* Encode scalar AVX instructions with specific vector length. */
692 static enum
693 {
694 vex128 = 0,
695 vex256
696 } avxscalar;
697
698 /* Encode VEX WIG instructions with specific vex.w. */
699 static enum
700 {
701 vexw0 = 0,
702 vexw1
703 } vexwig;
704
705 /* Encode scalar EVEX LIG instructions with specific vector length. */
706 static enum
707 {
708 evexl128 = 0,
709 evexl256,
710 evexl512
711 } evexlig;
712
713 /* Encode EVEX WIG instructions with specific evex.w. */
714 static enum
715 {
716 evexw0 = 0,
717 evexw1
718 } evexwig;
719
720 /* Value to encode in EVEX RC bits, for SAE-only instructions. */
721 static enum rc_type evexrcig = rne;
722
723 /* Pre-defined "_GLOBAL_OFFSET_TABLE_". */
724 static symbolS *GOT_symbol;
725
726 /* The dwarf2 return column, adjusted for 32 or 64 bit. */
727 unsigned int x86_dwarf2_return_column;
728
729 /* The dwarf2 data alignment, adjusted for 32 or 64 bit. */
730 int x86_cie_data_alignment;
731
732 /* Interface to relax_segment.
733 There are 3 major relax states for 386 jump insns because the
734 different types of jumps add different sizes to frags when we're
735 figuring out what sort of jump to choose to reach a given label. */
736
737 /* Types. */
738 #define UNCOND_JUMP 0
739 #define COND_JUMP 1
740 #define COND_JUMP86 2
741
742 /* Sizes. */
743 #define CODE16 1
744 #define SMALL 0
745 #define SMALL16 (SMALL | CODE16)
746 #define BIG 2
747 #define BIG16 (BIG | CODE16)
748
749 #ifndef INLINE
750 #ifdef __GNUC__
751 #define INLINE __inline__
752 #else
753 #define INLINE
754 #endif
755 #endif
756
757 #define ENCODE_RELAX_STATE(type, size) \
758 ((relax_substateT) (((type) << 2) | (size)))
759 #define TYPE_FROM_RELAX_STATE(s) \
760 ((s) >> 2)
761 #define DISP_SIZE_FROM_RELAX_STATE(s) \
762 ((((s) & 3) == BIG ? 4 : (((s) & 3) == BIG16 ? 2 : 1)))
763
764 /* This table is used by relax_frag to promote short jumps to long
765 ones where necessary. SMALL (short) jumps may be promoted to BIG
766 (32 bit long) ones, and SMALL16 jumps to BIG16 (16 bit long). We
767 don't allow a short jump in a 32 bit code segment to be promoted to
768 a 16 bit offset jump because it's slower (requires data size
769 prefix), and doesn't work, unless the destination is in the bottom
770 64k of the code segment (The top 16 bits of eip are zeroed). */
771
772 const relax_typeS md_relax_table[] =
773 {
774 /* The fields are:
775 1) most positive reach of this state,
776 2) most negative reach of this state,
777 3) how many bytes this mode will have in the variable part of the frag
778 4) which index into the table to try if we can't fit into this one. */
779
780 /* UNCOND_JUMP states. */
781 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG)},
782 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16)},
783 /* dword jmp adds 4 bytes to frag:
784 0 extra opcode bytes, 4 displacement bytes. */
785 {0, 0, 4, 0},
786 /* word jmp adds 2 byte2 to frag:
787 0 extra opcode bytes, 2 displacement bytes. */
788 {0, 0, 2, 0},
789
790 /* COND_JUMP states. */
791 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG)},
792 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG16)},
793 /* dword conditionals adds 5 bytes to frag:
794 1 extra opcode byte, 4 displacement bytes. */
795 {0, 0, 5, 0},
796 /* word conditionals add 3 bytes to frag:
797 1 extra opcode byte, 2 displacement bytes. */
798 {0, 0, 3, 0},
799
800 /* COND_JUMP86 states. */
801 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG)},
802 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG16)},
803 /* dword conditionals adds 5 bytes to frag:
804 1 extra opcode byte, 4 displacement bytes. */
805 {0, 0, 5, 0},
806 /* word conditionals add 4 bytes to frag:
807 1 displacement byte and a 3 byte long branch insn. */
808 {0, 0, 4, 0}
809 };
810
811 static const arch_entry cpu_arch[] =
812 {
813 /* Do not replace the first two entries - i386_target_format()
814 relies on them being there in this order. */
815 { STRING_COMMA_LEN ("generic32"), PROCESSOR_GENERIC32,
816 CPU_GENERIC32_FLAGS, 0 },
817 { STRING_COMMA_LEN ("generic64"), PROCESSOR_GENERIC64,
818 CPU_GENERIC64_FLAGS, 0 },
819 { STRING_COMMA_LEN ("i8086"), PROCESSOR_UNKNOWN,
820 CPU_NONE_FLAGS, 0 },
821 { STRING_COMMA_LEN ("i186"), PROCESSOR_UNKNOWN,
822 CPU_I186_FLAGS, 0 },
823 { STRING_COMMA_LEN ("i286"), PROCESSOR_UNKNOWN,
824 CPU_I286_FLAGS, 0 },
825 { STRING_COMMA_LEN ("i386"), PROCESSOR_I386,
826 CPU_I386_FLAGS, 0 },
827 { STRING_COMMA_LEN ("i486"), PROCESSOR_I486,
828 CPU_I486_FLAGS, 0 },
829 { STRING_COMMA_LEN ("i586"), PROCESSOR_PENTIUM,
830 CPU_I586_FLAGS, 0 },
831 { STRING_COMMA_LEN ("i686"), PROCESSOR_PENTIUMPRO,
832 CPU_I686_FLAGS, 0 },
833 { STRING_COMMA_LEN ("pentium"), PROCESSOR_PENTIUM,
834 CPU_I586_FLAGS, 0 },
835 { STRING_COMMA_LEN ("pentiumpro"), PROCESSOR_PENTIUMPRO,
836 CPU_PENTIUMPRO_FLAGS, 0 },
837 { STRING_COMMA_LEN ("pentiumii"), PROCESSOR_PENTIUMPRO,
838 CPU_P2_FLAGS, 0 },
839 { STRING_COMMA_LEN ("pentiumiii"),PROCESSOR_PENTIUMPRO,
840 CPU_P3_FLAGS, 0 },
841 { STRING_COMMA_LEN ("pentium4"), PROCESSOR_PENTIUM4,
842 CPU_P4_FLAGS, 0 },
843 { STRING_COMMA_LEN ("prescott"), PROCESSOR_NOCONA,
844 CPU_CORE_FLAGS, 0 },
845 { STRING_COMMA_LEN ("nocona"), PROCESSOR_NOCONA,
846 CPU_NOCONA_FLAGS, 0 },
847 { STRING_COMMA_LEN ("yonah"), PROCESSOR_CORE,
848 CPU_CORE_FLAGS, 1 },
849 { STRING_COMMA_LEN ("core"), PROCESSOR_CORE,
850 CPU_CORE_FLAGS, 0 },
851 { STRING_COMMA_LEN ("merom"), PROCESSOR_CORE2,
852 CPU_CORE2_FLAGS, 1 },
853 { STRING_COMMA_LEN ("core2"), PROCESSOR_CORE2,
854 CPU_CORE2_FLAGS, 0 },
855 { STRING_COMMA_LEN ("corei7"), PROCESSOR_COREI7,
856 CPU_COREI7_FLAGS, 0 },
857 { STRING_COMMA_LEN ("l1om"), PROCESSOR_L1OM,
858 CPU_L1OM_FLAGS, 0 },
859 { STRING_COMMA_LEN ("k1om"), PROCESSOR_K1OM,
860 CPU_K1OM_FLAGS, 0 },
861 { STRING_COMMA_LEN ("iamcu"), PROCESSOR_IAMCU,
862 CPU_IAMCU_FLAGS, 0 },
863 { STRING_COMMA_LEN ("k6"), PROCESSOR_K6,
864 CPU_K6_FLAGS, 0 },
865 { STRING_COMMA_LEN ("k6_2"), PROCESSOR_K6,
866 CPU_K6_2_FLAGS, 0 },
867 { STRING_COMMA_LEN ("athlon"), PROCESSOR_ATHLON,
868 CPU_ATHLON_FLAGS, 0 },
869 { STRING_COMMA_LEN ("sledgehammer"), PROCESSOR_K8,
870 CPU_K8_FLAGS, 1 },
871 { STRING_COMMA_LEN ("opteron"), PROCESSOR_K8,
872 CPU_K8_FLAGS, 0 },
873 { STRING_COMMA_LEN ("k8"), PROCESSOR_K8,
874 CPU_K8_FLAGS, 0 },
875 { STRING_COMMA_LEN ("amdfam10"), PROCESSOR_AMDFAM10,
876 CPU_AMDFAM10_FLAGS, 0 },
877 { STRING_COMMA_LEN ("bdver1"), PROCESSOR_BD,
878 CPU_BDVER1_FLAGS, 0 },
879 { STRING_COMMA_LEN ("bdver2"), PROCESSOR_BD,
880 CPU_BDVER2_FLAGS, 0 },
881 { STRING_COMMA_LEN ("bdver3"), PROCESSOR_BD,
882 CPU_BDVER3_FLAGS, 0 },
883 { STRING_COMMA_LEN ("bdver4"), PROCESSOR_BD,
884 CPU_BDVER4_FLAGS, 0 },
885 { STRING_COMMA_LEN ("znver1"), PROCESSOR_ZNVER,
886 CPU_ZNVER1_FLAGS, 0 },
887 { STRING_COMMA_LEN ("znver2"), PROCESSOR_ZNVER,
888 CPU_ZNVER2_FLAGS, 0 },
889 { STRING_COMMA_LEN ("btver1"), PROCESSOR_BT,
890 CPU_BTVER1_FLAGS, 0 },
891 { STRING_COMMA_LEN ("btver2"), PROCESSOR_BT,
892 CPU_BTVER2_FLAGS, 0 },
893 { STRING_COMMA_LEN (".8087"), PROCESSOR_UNKNOWN,
894 CPU_8087_FLAGS, 0 },
895 { STRING_COMMA_LEN (".287"), PROCESSOR_UNKNOWN,
896 CPU_287_FLAGS, 0 },
897 { STRING_COMMA_LEN (".387"), PROCESSOR_UNKNOWN,
898 CPU_387_FLAGS, 0 },
899 { STRING_COMMA_LEN (".687"), PROCESSOR_UNKNOWN,
900 CPU_687_FLAGS, 0 },
901 { STRING_COMMA_LEN (".cmov"), PROCESSOR_UNKNOWN,
902 CPU_CMOV_FLAGS, 0 },
903 { STRING_COMMA_LEN (".fxsr"), PROCESSOR_UNKNOWN,
904 CPU_FXSR_FLAGS, 0 },
905 { STRING_COMMA_LEN (".mmx"), PROCESSOR_UNKNOWN,
906 CPU_MMX_FLAGS, 0 },
907 { STRING_COMMA_LEN (".sse"), PROCESSOR_UNKNOWN,
908 CPU_SSE_FLAGS, 0 },
909 { STRING_COMMA_LEN (".sse2"), PROCESSOR_UNKNOWN,
910 CPU_SSE2_FLAGS, 0 },
911 { STRING_COMMA_LEN (".sse3"), PROCESSOR_UNKNOWN,
912 CPU_SSE3_FLAGS, 0 },
913 { STRING_COMMA_LEN (".ssse3"), PROCESSOR_UNKNOWN,
914 CPU_SSSE3_FLAGS, 0 },
915 { STRING_COMMA_LEN (".sse4.1"), PROCESSOR_UNKNOWN,
916 CPU_SSE4_1_FLAGS, 0 },
917 { STRING_COMMA_LEN (".sse4.2"), PROCESSOR_UNKNOWN,
918 CPU_SSE4_2_FLAGS, 0 },
919 { STRING_COMMA_LEN (".sse4"), PROCESSOR_UNKNOWN,
920 CPU_SSE4_2_FLAGS, 0 },
921 { STRING_COMMA_LEN (".avx"), PROCESSOR_UNKNOWN,
922 CPU_AVX_FLAGS, 0 },
923 { STRING_COMMA_LEN (".avx2"), PROCESSOR_UNKNOWN,
924 CPU_AVX2_FLAGS, 0 },
925 { STRING_COMMA_LEN (".avx512f"), PROCESSOR_UNKNOWN,
926 CPU_AVX512F_FLAGS, 0 },
927 { STRING_COMMA_LEN (".avx512cd"), PROCESSOR_UNKNOWN,
928 CPU_AVX512CD_FLAGS, 0 },
929 { STRING_COMMA_LEN (".avx512er"), PROCESSOR_UNKNOWN,
930 CPU_AVX512ER_FLAGS, 0 },
931 { STRING_COMMA_LEN (".avx512pf"), PROCESSOR_UNKNOWN,
932 CPU_AVX512PF_FLAGS, 0 },
933 { STRING_COMMA_LEN (".avx512dq"), PROCESSOR_UNKNOWN,
934 CPU_AVX512DQ_FLAGS, 0 },
935 { STRING_COMMA_LEN (".avx512bw"), PROCESSOR_UNKNOWN,
936 CPU_AVX512BW_FLAGS, 0 },
937 { STRING_COMMA_LEN (".avx512vl"), PROCESSOR_UNKNOWN,
938 CPU_AVX512VL_FLAGS, 0 },
939 { STRING_COMMA_LEN (".vmx"), PROCESSOR_UNKNOWN,
940 CPU_VMX_FLAGS, 0 },
941 { STRING_COMMA_LEN (".vmfunc"), PROCESSOR_UNKNOWN,
942 CPU_VMFUNC_FLAGS, 0 },
943 { STRING_COMMA_LEN (".smx"), PROCESSOR_UNKNOWN,
944 CPU_SMX_FLAGS, 0 },
945 { STRING_COMMA_LEN (".xsave"), PROCESSOR_UNKNOWN,
946 CPU_XSAVE_FLAGS, 0 },
947 { STRING_COMMA_LEN (".xsaveopt"), PROCESSOR_UNKNOWN,
948 CPU_XSAVEOPT_FLAGS, 0 },
949 { STRING_COMMA_LEN (".xsavec"), PROCESSOR_UNKNOWN,
950 CPU_XSAVEC_FLAGS, 0 },
951 { STRING_COMMA_LEN (".xsaves"), PROCESSOR_UNKNOWN,
952 CPU_XSAVES_FLAGS, 0 },
953 { STRING_COMMA_LEN (".aes"), PROCESSOR_UNKNOWN,
954 CPU_AES_FLAGS, 0 },
955 { STRING_COMMA_LEN (".pclmul"), PROCESSOR_UNKNOWN,
956 CPU_PCLMUL_FLAGS, 0 },
957 { STRING_COMMA_LEN (".clmul"), PROCESSOR_UNKNOWN,
958 CPU_PCLMUL_FLAGS, 1 },
959 { STRING_COMMA_LEN (".fsgsbase"), PROCESSOR_UNKNOWN,
960 CPU_FSGSBASE_FLAGS, 0 },
961 { STRING_COMMA_LEN (".rdrnd"), PROCESSOR_UNKNOWN,
962 CPU_RDRND_FLAGS, 0 },
963 { STRING_COMMA_LEN (".f16c"), PROCESSOR_UNKNOWN,
964 CPU_F16C_FLAGS, 0 },
965 { STRING_COMMA_LEN (".bmi2"), PROCESSOR_UNKNOWN,
966 CPU_BMI2_FLAGS, 0 },
967 { STRING_COMMA_LEN (".fma"), PROCESSOR_UNKNOWN,
968 CPU_FMA_FLAGS, 0 },
969 { STRING_COMMA_LEN (".fma4"), PROCESSOR_UNKNOWN,
970 CPU_FMA4_FLAGS, 0 },
971 { STRING_COMMA_LEN (".xop"), PROCESSOR_UNKNOWN,
972 CPU_XOP_FLAGS, 0 },
973 { STRING_COMMA_LEN (".lwp"), PROCESSOR_UNKNOWN,
974 CPU_LWP_FLAGS, 0 },
975 { STRING_COMMA_LEN (".movbe"), PROCESSOR_UNKNOWN,
976 CPU_MOVBE_FLAGS, 0 },
977 { STRING_COMMA_LEN (".cx16"), PROCESSOR_UNKNOWN,
978 CPU_CX16_FLAGS, 0 },
979 { STRING_COMMA_LEN (".ept"), PROCESSOR_UNKNOWN,
980 CPU_EPT_FLAGS, 0 },
981 { STRING_COMMA_LEN (".lzcnt"), PROCESSOR_UNKNOWN,
982 CPU_LZCNT_FLAGS, 0 },
983 { STRING_COMMA_LEN (".hle"), PROCESSOR_UNKNOWN,
984 CPU_HLE_FLAGS, 0 },
985 { STRING_COMMA_LEN (".rtm"), PROCESSOR_UNKNOWN,
986 CPU_RTM_FLAGS, 0 },
987 { STRING_COMMA_LEN (".invpcid"), PROCESSOR_UNKNOWN,
988 CPU_INVPCID_FLAGS, 0 },
989 { STRING_COMMA_LEN (".clflush"), PROCESSOR_UNKNOWN,
990 CPU_CLFLUSH_FLAGS, 0 },
991 { STRING_COMMA_LEN (".nop"), PROCESSOR_UNKNOWN,
992 CPU_NOP_FLAGS, 0 },
993 { STRING_COMMA_LEN (".syscall"), PROCESSOR_UNKNOWN,
994 CPU_SYSCALL_FLAGS, 0 },
995 { STRING_COMMA_LEN (".rdtscp"), PROCESSOR_UNKNOWN,
996 CPU_RDTSCP_FLAGS, 0 },
997 { STRING_COMMA_LEN (".3dnow"), PROCESSOR_UNKNOWN,
998 CPU_3DNOW_FLAGS, 0 },
999 { STRING_COMMA_LEN (".3dnowa"), PROCESSOR_UNKNOWN,
1000 CPU_3DNOWA_FLAGS, 0 },
1001 { STRING_COMMA_LEN (".padlock"), PROCESSOR_UNKNOWN,
1002 CPU_PADLOCK_FLAGS, 0 },
1003 { STRING_COMMA_LEN (".pacifica"), PROCESSOR_UNKNOWN,
1004 CPU_SVME_FLAGS, 1 },
1005 { STRING_COMMA_LEN (".svme"), PROCESSOR_UNKNOWN,
1006 CPU_SVME_FLAGS, 0 },
1007 { STRING_COMMA_LEN (".sse4a"), PROCESSOR_UNKNOWN,
1008 CPU_SSE4A_FLAGS, 0 },
1009 { STRING_COMMA_LEN (".abm"), PROCESSOR_UNKNOWN,
1010 CPU_ABM_FLAGS, 0 },
1011 { STRING_COMMA_LEN (".bmi"), PROCESSOR_UNKNOWN,
1012 CPU_BMI_FLAGS, 0 },
1013 { STRING_COMMA_LEN (".tbm"), PROCESSOR_UNKNOWN,
1014 CPU_TBM_FLAGS, 0 },
1015 { STRING_COMMA_LEN (".adx"), PROCESSOR_UNKNOWN,
1016 CPU_ADX_FLAGS, 0 },
1017 { STRING_COMMA_LEN (".rdseed"), PROCESSOR_UNKNOWN,
1018 CPU_RDSEED_FLAGS, 0 },
1019 { STRING_COMMA_LEN (".prfchw"), PROCESSOR_UNKNOWN,
1020 CPU_PRFCHW_FLAGS, 0 },
1021 { STRING_COMMA_LEN (".smap"), PROCESSOR_UNKNOWN,
1022 CPU_SMAP_FLAGS, 0 },
1023 { STRING_COMMA_LEN (".mpx"), PROCESSOR_UNKNOWN,
1024 CPU_MPX_FLAGS, 0 },
1025 { STRING_COMMA_LEN (".sha"), PROCESSOR_UNKNOWN,
1026 CPU_SHA_FLAGS, 0 },
1027 { STRING_COMMA_LEN (".clflushopt"), PROCESSOR_UNKNOWN,
1028 CPU_CLFLUSHOPT_FLAGS, 0 },
1029 { STRING_COMMA_LEN (".prefetchwt1"), PROCESSOR_UNKNOWN,
1030 CPU_PREFETCHWT1_FLAGS, 0 },
1031 { STRING_COMMA_LEN (".se1"), PROCESSOR_UNKNOWN,
1032 CPU_SE1_FLAGS, 0 },
1033 { STRING_COMMA_LEN (".clwb"), PROCESSOR_UNKNOWN,
1034 CPU_CLWB_FLAGS, 0 },
1035 { STRING_COMMA_LEN (".avx512ifma"), PROCESSOR_UNKNOWN,
1036 CPU_AVX512IFMA_FLAGS, 0 },
1037 { STRING_COMMA_LEN (".avx512vbmi"), PROCESSOR_UNKNOWN,
1038 CPU_AVX512VBMI_FLAGS, 0 },
1039 { STRING_COMMA_LEN (".avx512_4fmaps"), PROCESSOR_UNKNOWN,
1040 CPU_AVX512_4FMAPS_FLAGS, 0 },
1041 { STRING_COMMA_LEN (".avx512_4vnniw"), PROCESSOR_UNKNOWN,
1042 CPU_AVX512_4VNNIW_FLAGS, 0 },
1043 { STRING_COMMA_LEN (".avx512_vpopcntdq"), PROCESSOR_UNKNOWN,
1044 CPU_AVX512_VPOPCNTDQ_FLAGS, 0 },
1045 { STRING_COMMA_LEN (".avx512_vbmi2"), PROCESSOR_UNKNOWN,
1046 CPU_AVX512_VBMI2_FLAGS, 0 },
1047 { STRING_COMMA_LEN (".avx512_vnni"), PROCESSOR_UNKNOWN,
1048 CPU_AVX512_VNNI_FLAGS, 0 },
1049 { STRING_COMMA_LEN (".avx512_bitalg"), PROCESSOR_UNKNOWN,
1050 CPU_AVX512_BITALG_FLAGS, 0 },
1051 { STRING_COMMA_LEN (".clzero"), PROCESSOR_UNKNOWN,
1052 CPU_CLZERO_FLAGS, 0 },
1053 { STRING_COMMA_LEN (".mwaitx"), PROCESSOR_UNKNOWN,
1054 CPU_MWAITX_FLAGS, 0 },
1055 { STRING_COMMA_LEN (".ospke"), PROCESSOR_UNKNOWN,
1056 CPU_OSPKE_FLAGS, 0 },
1057 { STRING_COMMA_LEN (".rdpid"), PROCESSOR_UNKNOWN,
1058 CPU_RDPID_FLAGS, 0 },
1059 { STRING_COMMA_LEN (".ptwrite"), PROCESSOR_UNKNOWN,
1060 CPU_PTWRITE_FLAGS, 0 },
1061 { STRING_COMMA_LEN (".ibt"), PROCESSOR_UNKNOWN,
1062 CPU_IBT_FLAGS, 0 },
1063 { STRING_COMMA_LEN (".shstk"), PROCESSOR_UNKNOWN,
1064 CPU_SHSTK_FLAGS, 0 },
1065 { STRING_COMMA_LEN (".gfni"), PROCESSOR_UNKNOWN,
1066 CPU_GFNI_FLAGS, 0 },
1067 { STRING_COMMA_LEN (".vaes"), PROCESSOR_UNKNOWN,
1068 CPU_VAES_FLAGS, 0 },
1069 { STRING_COMMA_LEN (".vpclmulqdq"), PROCESSOR_UNKNOWN,
1070 CPU_VPCLMULQDQ_FLAGS, 0 },
1071 { STRING_COMMA_LEN (".wbnoinvd"), PROCESSOR_UNKNOWN,
1072 CPU_WBNOINVD_FLAGS, 0 },
1073 { STRING_COMMA_LEN (".pconfig"), PROCESSOR_UNKNOWN,
1074 CPU_PCONFIG_FLAGS, 0 },
1075 { STRING_COMMA_LEN (".waitpkg"), PROCESSOR_UNKNOWN,
1076 CPU_WAITPKG_FLAGS, 0 },
1077 { STRING_COMMA_LEN (".cldemote"), PROCESSOR_UNKNOWN,
1078 CPU_CLDEMOTE_FLAGS, 0 },
1079 { STRING_COMMA_LEN (".movdiri"), PROCESSOR_UNKNOWN,
1080 CPU_MOVDIRI_FLAGS, 0 },
1081 { STRING_COMMA_LEN (".movdir64b"), PROCESSOR_UNKNOWN,
1082 CPU_MOVDIR64B_FLAGS, 0 },
1083 { STRING_COMMA_LEN (".avx512_bf16"), PROCESSOR_UNKNOWN,
1084 CPU_AVX512_BF16_FLAGS, 0 },
1085 };
1086
1087 static const noarch_entry cpu_noarch[] =
1088 {
1089 { STRING_COMMA_LEN ("no87"), CPU_ANY_X87_FLAGS },
1090 { STRING_COMMA_LEN ("no287"), CPU_ANY_287_FLAGS },
1091 { STRING_COMMA_LEN ("no387"), CPU_ANY_387_FLAGS },
1092 { STRING_COMMA_LEN ("no687"), CPU_ANY_687_FLAGS },
1093 { STRING_COMMA_LEN ("nocmov"), CPU_ANY_CMOV_FLAGS },
1094 { STRING_COMMA_LEN ("nofxsr"), CPU_ANY_FXSR_FLAGS },
1095 { STRING_COMMA_LEN ("nommx"), CPU_ANY_MMX_FLAGS },
1096 { STRING_COMMA_LEN ("nosse"), CPU_ANY_SSE_FLAGS },
1097 { STRING_COMMA_LEN ("nosse2"), CPU_ANY_SSE2_FLAGS },
1098 { STRING_COMMA_LEN ("nosse3"), CPU_ANY_SSE3_FLAGS },
1099 { STRING_COMMA_LEN ("nossse3"), CPU_ANY_SSSE3_FLAGS },
1100 { STRING_COMMA_LEN ("nosse4.1"), CPU_ANY_SSE4_1_FLAGS },
1101 { STRING_COMMA_LEN ("nosse4.2"), CPU_ANY_SSE4_2_FLAGS },
1102 { STRING_COMMA_LEN ("nosse4"), CPU_ANY_SSE4_1_FLAGS },
1103 { STRING_COMMA_LEN ("noavx"), CPU_ANY_AVX_FLAGS },
1104 { STRING_COMMA_LEN ("noavx2"), CPU_ANY_AVX2_FLAGS },
1105 { STRING_COMMA_LEN ("noavx512f"), CPU_ANY_AVX512F_FLAGS },
1106 { STRING_COMMA_LEN ("noavx512cd"), CPU_ANY_AVX512CD_FLAGS },
1107 { STRING_COMMA_LEN ("noavx512er"), CPU_ANY_AVX512ER_FLAGS },
1108 { STRING_COMMA_LEN ("noavx512pf"), CPU_ANY_AVX512PF_FLAGS },
1109 { STRING_COMMA_LEN ("noavx512dq"), CPU_ANY_AVX512DQ_FLAGS },
1110 { STRING_COMMA_LEN ("noavx512bw"), CPU_ANY_AVX512BW_FLAGS },
1111 { STRING_COMMA_LEN ("noavx512vl"), CPU_ANY_AVX512VL_FLAGS },
1112 { STRING_COMMA_LEN ("noavx512ifma"), CPU_ANY_AVX512IFMA_FLAGS },
1113 { STRING_COMMA_LEN ("noavx512vbmi"), CPU_ANY_AVX512VBMI_FLAGS },
1114 { STRING_COMMA_LEN ("noavx512_4fmaps"), CPU_ANY_AVX512_4FMAPS_FLAGS },
1115 { STRING_COMMA_LEN ("noavx512_4vnniw"), CPU_ANY_AVX512_4VNNIW_FLAGS },
1116 { STRING_COMMA_LEN ("noavx512_vpopcntdq"), CPU_ANY_AVX512_VPOPCNTDQ_FLAGS },
1117 { STRING_COMMA_LEN ("noavx512_vbmi2"), CPU_ANY_AVX512_VBMI2_FLAGS },
1118 { STRING_COMMA_LEN ("noavx512_vnni"), CPU_ANY_AVX512_VNNI_FLAGS },
1119 { STRING_COMMA_LEN ("noavx512_bitalg"), CPU_ANY_AVX512_BITALG_FLAGS },
1120 { STRING_COMMA_LEN ("noibt"), CPU_ANY_IBT_FLAGS },
1121 { STRING_COMMA_LEN ("noshstk"), CPU_ANY_SHSTK_FLAGS },
1122 { STRING_COMMA_LEN ("nomovdiri"), CPU_ANY_MOVDIRI_FLAGS },
1123 { STRING_COMMA_LEN ("nomovdir64b"), CPU_ANY_MOVDIR64B_FLAGS },
1124 { STRING_COMMA_LEN ("noavx512_bf16"), CPU_ANY_AVX512_BF16_FLAGS },
1125 };
1126
1127 #ifdef I386COFF
1128 /* Like s_lcomm_internal in gas/read.c but the alignment string
1129 is allowed to be optional. */
1130
1131 static symbolS *
1132 pe_lcomm_internal (int needs_align, symbolS *symbolP, addressT size)
1133 {
1134 addressT align = 0;
1135
1136 SKIP_WHITESPACE ();
1137
1138 if (needs_align
1139 && *input_line_pointer == ',')
1140 {
1141 align = parse_align (needs_align - 1);
1142
1143 if (align == (addressT) -1)
1144 return NULL;
1145 }
1146 else
1147 {
1148 if (size >= 8)
1149 align = 3;
1150 else if (size >= 4)
1151 align = 2;
1152 else if (size >= 2)
1153 align = 1;
1154 else
1155 align = 0;
1156 }
1157
1158 bss_alloc (symbolP, size, align);
1159 return symbolP;
1160 }
1161
1162 static void
1163 pe_lcomm (int needs_align)
1164 {
1165 s_comm_internal (needs_align * 2, pe_lcomm_internal);
1166 }
1167 #endif
1168
1169 const pseudo_typeS md_pseudo_table[] =
1170 {
1171 #if !defined(OBJ_AOUT) && !defined(USE_ALIGN_PTWO)
1172 {"align", s_align_bytes, 0},
1173 #else
1174 {"align", s_align_ptwo, 0},
1175 #endif
1176 {"arch", set_cpu_arch, 0},
1177 #ifndef I386COFF
1178 {"bss", s_bss, 0},
1179 #else
1180 {"lcomm", pe_lcomm, 1},
1181 #endif
1182 {"ffloat", float_cons, 'f'},
1183 {"dfloat", float_cons, 'd'},
1184 {"tfloat", float_cons, 'x'},
1185 {"value", cons, 2},
1186 {"slong", signed_cons, 4},
1187 {"noopt", s_ignore, 0},
1188 {"optim", s_ignore, 0},
1189 {"code16gcc", set_16bit_gcc_code_flag, CODE_16BIT},
1190 {"code16", set_code_flag, CODE_16BIT},
1191 {"code32", set_code_flag, CODE_32BIT},
1192 #ifdef BFD64
1193 {"code64", set_code_flag, CODE_64BIT},
1194 #endif
1195 {"intel_syntax", set_intel_syntax, 1},
1196 {"att_syntax", set_intel_syntax, 0},
1197 {"intel_mnemonic", set_intel_mnemonic, 1},
1198 {"att_mnemonic", set_intel_mnemonic, 0},
1199 {"allow_index_reg", set_allow_index_reg, 1},
1200 {"disallow_index_reg", set_allow_index_reg, 0},
1201 {"sse_check", set_check, 0},
1202 {"operand_check", set_check, 1},
1203 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
1204 {"largecomm", handle_large_common, 0},
1205 #else
1206 {"file", dwarf2_directive_file, 0},
1207 {"loc", dwarf2_directive_loc, 0},
1208 {"loc_mark_labels", dwarf2_directive_loc_mark_labels, 0},
1209 #endif
1210 #ifdef TE_PE
1211 {"secrel32", pe_directive_secrel, 0},
1212 #endif
1213 {0, 0, 0}
1214 };
1215
1216 /* For interface with expression (). */
1217 extern char *input_line_pointer;
1218
1219 /* Hash table for instruction mnemonic lookup. */
1220 static struct hash_control *op_hash;
1221
1222 /* Hash table for register lookup. */
1223 static struct hash_control *reg_hash;
1224 \f
1225 /* Various efficient no-op patterns for aligning code labels.
1226 Note: Don't try to assemble the instructions in the comments.
1227 0L and 0w are not legal. */
1228 static const unsigned char f32_1[] =
1229 {0x90}; /* nop */
1230 static const unsigned char f32_2[] =
1231 {0x66,0x90}; /* xchg %ax,%ax */
1232 static const unsigned char f32_3[] =
1233 {0x8d,0x76,0x00}; /* leal 0(%esi),%esi */
1234 static const unsigned char f32_4[] =
1235 {0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
1236 static const unsigned char f32_6[] =
1237 {0x8d,0xb6,0x00,0x00,0x00,0x00}; /* leal 0L(%esi),%esi */
1238 static const unsigned char f32_7[] =
1239 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
1240 static const unsigned char f16_3[] =
1241 {0x8d,0x74,0x00}; /* lea 0(%si),%si */
1242 static const unsigned char f16_4[] =
1243 {0x8d,0xb4,0x00,0x00}; /* lea 0W(%si),%si */
1244 static const unsigned char jump_disp8[] =
1245 {0xeb}; /* jmp disp8 */
1246 static const unsigned char jump32_disp32[] =
1247 {0xe9}; /* jmp disp32 */
1248 static const unsigned char jump16_disp32[] =
1249 {0x66,0xe9}; /* jmp disp32 */
1250 /* 32-bit NOPs patterns. */
1251 static const unsigned char *const f32_patt[] = {
1252 f32_1, f32_2, f32_3, f32_4, NULL, f32_6, f32_7
1253 };
1254 /* 16-bit NOPs patterns. */
1255 static const unsigned char *const f16_patt[] = {
1256 f32_1, f32_2, f16_3, f16_4
1257 };
1258 /* nopl (%[re]ax) */
1259 static const unsigned char alt_3[] =
1260 {0x0f,0x1f,0x00};
1261 /* nopl 0(%[re]ax) */
1262 static const unsigned char alt_4[] =
1263 {0x0f,0x1f,0x40,0x00};
1264 /* nopl 0(%[re]ax,%[re]ax,1) */
1265 static const unsigned char alt_5[] =
1266 {0x0f,0x1f,0x44,0x00,0x00};
1267 /* nopw 0(%[re]ax,%[re]ax,1) */
1268 static const unsigned char alt_6[] =
1269 {0x66,0x0f,0x1f,0x44,0x00,0x00};
1270 /* nopl 0L(%[re]ax) */
1271 static const unsigned char alt_7[] =
1272 {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
1273 /* nopl 0L(%[re]ax,%[re]ax,1) */
1274 static const unsigned char alt_8[] =
1275 {0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1276 /* nopw 0L(%[re]ax,%[re]ax,1) */
1277 static const unsigned char alt_9[] =
1278 {0x66,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1279 /* nopw %cs:0L(%[re]ax,%[re]ax,1) */
1280 static const unsigned char alt_10[] =
1281 {0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1282 /* data16 nopw %cs:0L(%eax,%eax,1) */
1283 static const unsigned char alt_11[] =
1284 {0x66,0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1285 /* 32-bit and 64-bit NOPs patterns. */
1286 static const unsigned char *const alt_patt[] = {
1287 f32_1, f32_2, alt_3, alt_4, alt_5, alt_6, alt_7, alt_8,
1288 alt_9, alt_10, alt_11
1289 };
1290
1291 /* Genenerate COUNT bytes of NOPs to WHERE from PATT with the maximum
1292 size of a single NOP instruction MAX_SINGLE_NOP_SIZE. */
1293
1294 static void
1295 i386_output_nops (char *where, const unsigned char *const *patt,
1296 int count, int max_single_nop_size)
1297
1298 {
1299 /* Place the longer NOP first. */
1300 int last;
1301 int offset;
1302 const unsigned char *nops = patt[max_single_nop_size - 1];
1303
1304 /* Use the smaller one if the requsted one isn't available. */
1305 if (nops == NULL)
1306 {
1307 max_single_nop_size--;
1308 nops = patt[max_single_nop_size - 1];
1309 }
1310
1311 last = count % max_single_nop_size;
1312
1313 count -= last;
1314 for (offset = 0; offset < count; offset += max_single_nop_size)
1315 memcpy (where + offset, nops, max_single_nop_size);
1316
1317 if (last)
1318 {
1319 nops = patt[last - 1];
1320 if (nops == NULL)
1321 {
1322 /* Use the smaller one plus one-byte NOP if the needed one
1323 isn't available. */
1324 last--;
1325 nops = patt[last - 1];
1326 memcpy (where + offset, nops, last);
1327 where[offset + last] = *patt[0];
1328 }
1329 else
1330 memcpy (where + offset, nops, last);
1331 }
1332 }
1333
1334 static INLINE int
1335 fits_in_imm7 (offsetT num)
1336 {
1337 return (num & 0x7f) == num;
1338 }
1339
1340 static INLINE int
1341 fits_in_imm31 (offsetT num)
1342 {
1343 return (num & 0x7fffffff) == num;
1344 }
1345
1346 /* Genenerate COUNT bytes of NOPs to WHERE with the maximum size of a
1347 single NOP instruction LIMIT. */
1348
1349 void
1350 i386_generate_nops (fragS *fragP, char *where, offsetT count, int limit)
1351 {
1352 const unsigned char *const *patt = NULL;
1353 int max_single_nop_size;
1354 /* Maximum number of NOPs before switching to jump over NOPs. */
1355 int max_number_of_nops;
1356
1357 switch (fragP->fr_type)
1358 {
1359 case rs_fill_nop:
1360 case rs_align_code:
1361 break;
1362 default:
1363 return;
1364 }
1365
1366 /* We need to decide which NOP sequence to use for 32bit and
1367 64bit. When -mtune= is used:
1368
1369 1. For PROCESSOR_I386, PROCESSOR_I486, PROCESSOR_PENTIUM and
1370 PROCESSOR_GENERIC32, f32_patt will be used.
1371 2. For the rest, alt_patt will be used.
1372
1373 When -mtune= isn't used, alt_patt will be used if
1374 cpu_arch_isa_flags has CpuNop. Otherwise, f32_patt will
1375 be used.
1376
1377 When -march= or .arch is used, we can't use anything beyond
1378 cpu_arch_isa_flags. */
1379
1380 if (flag_code == CODE_16BIT)
1381 {
1382 patt = f16_patt;
1383 max_single_nop_size = sizeof (f16_patt) / sizeof (f16_patt[0]);
1384 /* Limit number of NOPs to 2 in 16-bit mode. */
1385 max_number_of_nops = 2;
1386 }
1387 else
1388 {
1389 if (fragP->tc_frag_data.isa == PROCESSOR_UNKNOWN)
1390 {
1391 /* PROCESSOR_UNKNOWN means that all ISAs may be used. */
1392 switch (cpu_arch_tune)
1393 {
1394 case PROCESSOR_UNKNOWN:
1395 /* We use cpu_arch_isa_flags to check if we SHOULD
1396 optimize with nops. */
1397 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1398 patt = alt_patt;
1399 else
1400 patt = f32_patt;
1401 break;
1402 case PROCESSOR_PENTIUM4:
1403 case PROCESSOR_NOCONA:
1404 case PROCESSOR_CORE:
1405 case PROCESSOR_CORE2:
1406 case PROCESSOR_COREI7:
1407 case PROCESSOR_L1OM:
1408 case PROCESSOR_K1OM:
1409 case PROCESSOR_GENERIC64:
1410 case PROCESSOR_K6:
1411 case PROCESSOR_ATHLON:
1412 case PROCESSOR_K8:
1413 case PROCESSOR_AMDFAM10:
1414 case PROCESSOR_BD:
1415 case PROCESSOR_ZNVER:
1416 case PROCESSOR_BT:
1417 patt = alt_patt;
1418 break;
1419 case PROCESSOR_I386:
1420 case PROCESSOR_I486:
1421 case PROCESSOR_PENTIUM:
1422 case PROCESSOR_PENTIUMPRO:
1423 case PROCESSOR_IAMCU:
1424 case PROCESSOR_GENERIC32:
1425 patt = f32_patt;
1426 break;
1427 }
1428 }
1429 else
1430 {
1431 switch (fragP->tc_frag_data.tune)
1432 {
1433 case PROCESSOR_UNKNOWN:
1434 /* When cpu_arch_isa is set, cpu_arch_tune shouldn't be
1435 PROCESSOR_UNKNOWN. */
1436 abort ();
1437 break;
1438
1439 case PROCESSOR_I386:
1440 case PROCESSOR_I486:
1441 case PROCESSOR_PENTIUM:
1442 case PROCESSOR_IAMCU:
1443 case PROCESSOR_K6:
1444 case PROCESSOR_ATHLON:
1445 case PROCESSOR_K8:
1446 case PROCESSOR_AMDFAM10:
1447 case PROCESSOR_BD:
1448 case PROCESSOR_ZNVER:
1449 case PROCESSOR_BT:
1450 case PROCESSOR_GENERIC32:
1451 /* We use cpu_arch_isa_flags to check if we CAN optimize
1452 with nops. */
1453 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1454 patt = alt_patt;
1455 else
1456 patt = f32_patt;
1457 break;
1458 case PROCESSOR_PENTIUMPRO:
1459 case PROCESSOR_PENTIUM4:
1460 case PROCESSOR_NOCONA:
1461 case PROCESSOR_CORE:
1462 case PROCESSOR_CORE2:
1463 case PROCESSOR_COREI7:
1464 case PROCESSOR_L1OM:
1465 case PROCESSOR_K1OM:
1466 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1467 patt = alt_patt;
1468 else
1469 patt = f32_patt;
1470 break;
1471 case PROCESSOR_GENERIC64:
1472 patt = alt_patt;
1473 break;
1474 }
1475 }
1476
1477 if (patt == f32_patt)
1478 {
1479 max_single_nop_size = sizeof (f32_patt) / sizeof (f32_patt[0]);
1480 /* Limit number of NOPs to 2 for older processors. */
1481 max_number_of_nops = 2;
1482 }
1483 else
1484 {
1485 max_single_nop_size = sizeof (alt_patt) / sizeof (alt_patt[0]);
1486 /* Limit number of NOPs to 7 for newer processors. */
1487 max_number_of_nops = 7;
1488 }
1489 }
1490
1491 if (limit == 0)
1492 limit = max_single_nop_size;
1493
1494 if (fragP->fr_type == rs_fill_nop)
1495 {
1496 /* Output NOPs for .nop directive. */
1497 if (limit > max_single_nop_size)
1498 {
1499 as_bad_where (fragP->fr_file, fragP->fr_line,
1500 _("invalid single nop size: %d "
1501 "(expect within [0, %d])"),
1502 limit, max_single_nop_size);
1503 return;
1504 }
1505 }
1506 else
1507 fragP->fr_var = count;
1508
1509 if ((count / max_single_nop_size) > max_number_of_nops)
1510 {
1511 /* Generate jump over NOPs. */
1512 offsetT disp = count - 2;
1513 if (fits_in_imm7 (disp))
1514 {
1515 /* Use "jmp disp8" if possible. */
1516 count = disp;
1517 where[0] = jump_disp8[0];
1518 where[1] = count;
1519 where += 2;
1520 }
1521 else
1522 {
1523 unsigned int size_of_jump;
1524
1525 if (flag_code == CODE_16BIT)
1526 {
1527 where[0] = jump16_disp32[0];
1528 where[1] = jump16_disp32[1];
1529 size_of_jump = 2;
1530 }
1531 else
1532 {
1533 where[0] = jump32_disp32[0];
1534 size_of_jump = 1;
1535 }
1536
1537 count -= size_of_jump + 4;
1538 if (!fits_in_imm31 (count))
1539 {
1540 as_bad_where (fragP->fr_file, fragP->fr_line,
1541 _("jump over nop padding out of range"));
1542 return;
1543 }
1544
1545 md_number_to_chars (where + size_of_jump, count, 4);
1546 where += size_of_jump + 4;
1547 }
1548 }
1549
1550 /* Generate multiple NOPs. */
1551 i386_output_nops (where, patt, count, limit);
1552 }
1553
1554 static INLINE int
1555 operand_type_all_zero (const union i386_operand_type *x)
1556 {
1557 switch (ARRAY_SIZE(x->array))
1558 {
1559 case 3:
1560 if (x->array[2])
1561 return 0;
1562 /* Fall through. */
1563 case 2:
1564 if (x->array[1])
1565 return 0;
1566 /* Fall through. */
1567 case 1:
1568 return !x->array[0];
1569 default:
1570 abort ();
1571 }
1572 }
1573
1574 static INLINE void
1575 operand_type_set (union i386_operand_type *x, unsigned int v)
1576 {
1577 switch (ARRAY_SIZE(x->array))
1578 {
1579 case 3:
1580 x->array[2] = v;
1581 /* Fall through. */
1582 case 2:
1583 x->array[1] = v;
1584 /* Fall through. */
1585 case 1:
1586 x->array[0] = v;
1587 /* Fall through. */
1588 break;
1589 default:
1590 abort ();
1591 }
1592 }
1593
1594 static INLINE int
1595 operand_type_equal (const union i386_operand_type *x,
1596 const union i386_operand_type *y)
1597 {
1598 switch (ARRAY_SIZE(x->array))
1599 {
1600 case 3:
1601 if (x->array[2] != y->array[2])
1602 return 0;
1603 /* Fall through. */
1604 case 2:
1605 if (x->array[1] != y->array[1])
1606 return 0;
1607 /* Fall through. */
1608 case 1:
1609 return x->array[0] == y->array[0];
1610 break;
1611 default:
1612 abort ();
1613 }
1614 }
1615
1616 static INLINE int
1617 cpu_flags_all_zero (const union i386_cpu_flags *x)
1618 {
1619 switch (ARRAY_SIZE(x->array))
1620 {
1621 case 4:
1622 if (x->array[3])
1623 return 0;
1624 /* Fall through. */
1625 case 3:
1626 if (x->array[2])
1627 return 0;
1628 /* Fall through. */
1629 case 2:
1630 if (x->array[1])
1631 return 0;
1632 /* Fall through. */
1633 case 1:
1634 return !x->array[0];
1635 default:
1636 abort ();
1637 }
1638 }
1639
1640 static INLINE int
1641 cpu_flags_equal (const union i386_cpu_flags *x,
1642 const union i386_cpu_flags *y)
1643 {
1644 switch (ARRAY_SIZE(x->array))
1645 {
1646 case 4:
1647 if (x->array[3] != y->array[3])
1648 return 0;
1649 /* Fall through. */
1650 case 3:
1651 if (x->array[2] != y->array[2])
1652 return 0;
1653 /* Fall through. */
1654 case 2:
1655 if (x->array[1] != y->array[1])
1656 return 0;
1657 /* Fall through. */
1658 case 1:
1659 return x->array[0] == y->array[0];
1660 break;
1661 default:
1662 abort ();
1663 }
1664 }
1665
1666 static INLINE int
1667 cpu_flags_check_cpu64 (i386_cpu_flags f)
1668 {
1669 return !((flag_code == CODE_64BIT && f.bitfield.cpuno64)
1670 || (flag_code != CODE_64BIT && f.bitfield.cpu64));
1671 }
1672
1673 static INLINE i386_cpu_flags
1674 cpu_flags_and (i386_cpu_flags x, i386_cpu_flags y)
1675 {
1676 switch (ARRAY_SIZE (x.array))
1677 {
1678 case 4:
1679 x.array [3] &= y.array [3];
1680 /* Fall through. */
1681 case 3:
1682 x.array [2] &= y.array [2];
1683 /* Fall through. */
1684 case 2:
1685 x.array [1] &= y.array [1];
1686 /* Fall through. */
1687 case 1:
1688 x.array [0] &= y.array [0];
1689 break;
1690 default:
1691 abort ();
1692 }
1693 return x;
1694 }
1695
1696 static INLINE i386_cpu_flags
1697 cpu_flags_or (i386_cpu_flags x, i386_cpu_flags y)
1698 {
1699 switch (ARRAY_SIZE (x.array))
1700 {
1701 case 4:
1702 x.array [3] |= y.array [3];
1703 /* Fall through. */
1704 case 3:
1705 x.array [2] |= y.array [2];
1706 /* Fall through. */
1707 case 2:
1708 x.array [1] |= y.array [1];
1709 /* Fall through. */
1710 case 1:
1711 x.array [0] |= y.array [0];
1712 break;
1713 default:
1714 abort ();
1715 }
1716 return x;
1717 }
1718
1719 static INLINE i386_cpu_flags
1720 cpu_flags_and_not (i386_cpu_flags x, i386_cpu_flags y)
1721 {
1722 switch (ARRAY_SIZE (x.array))
1723 {
1724 case 4:
1725 x.array [3] &= ~y.array [3];
1726 /* Fall through. */
1727 case 3:
1728 x.array [2] &= ~y.array [2];
1729 /* Fall through. */
1730 case 2:
1731 x.array [1] &= ~y.array [1];
1732 /* Fall through. */
1733 case 1:
1734 x.array [0] &= ~y.array [0];
1735 break;
1736 default:
1737 abort ();
1738 }
1739 return x;
1740 }
1741
1742 #define CPU_FLAGS_ARCH_MATCH 0x1
1743 #define CPU_FLAGS_64BIT_MATCH 0x2
1744
1745 #define CPU_FLAGS_PERFECT_MATCH \
1746 (CPU_FLAGS_ARCH_MATCH | CPU_FLAGS_64BIT_MATCH)
1747
1748 /* Return CPU flags match bits. */
1749
1750 static int
1751 cpu_flags_match (const insn_template *t)
1752 {
1753 i386_cpu_flags x = t->cpu_flags;
1754 int match = cpu_flags_check_cpu64 (x) ? CPU_FLAGS_64BIT_MATCH : 0;
1755
1756 x.bitfield.cpu64 = 0;
1757 x.bitfield.cpuno64 = 0;
1758
1759 if (cpu_flags_all_zero (&x))
1760 {
1761 /* This instruction is available on all archs. */
1762 match |= CPU_FLAGS_ARCH_MATCH;
1763 }
1764 else
1765 {
1766 /* This instruction is available only on some archs. */
1767 i386_cpu_flags cpu = cpu_arch_flags;
1768
1769 /* AVX512VL is no standalone feature - match it and then strip it. */
1770 if (x.bitfield.cpuavx512vl && !cpu.bitfield.cpuavx512vl)
1771 return match;
1772 x.bitfield.cpuavx512vl = 0;
1773
1774 cpu = cpu_flags_and (x, cpu);
1775 if (!cpu_flags_all_zero (&cpu))
1776 {
1777 if (x.bitfield.cpuavx)
1778 {
1779 /* We need to check a few extra flags with AVX. */
1780 if (cpu.bitfield.cpuavx
1781 && (!t->opcode_modifier.sse2avx || sse2avx)
1782 && (!x.bitfield.cpuaes || cpu.bitfield.cpuaes)
1783 && (!x.bitfield.cpugfni || cpu.bitfield.cpugfni)
1784 && (!x.bitfield.cpupclmul || cpu.bitfield.cpupclmul))
1785 match |= CPU_FLAGS_ARCH_MATCH;
1786 }
1787 else if (x.bitfield.cpuavx512f)
1788 {
1789 /* We need to check a few extra flags with AVX512F. */
1790 if (cpu.bitfield.cpuavx512f
1791 && (!x.bitfield.cpugfni || cpu.bitfield.cpugfni)
1792 && (!x.bitfield.cpuvaes || cpu.bitfield.cpuvaes)
1793 && (!x.bitfield.cpuvpclmulqdq || cpu.bitfield.cpuvpclmulqdq))
1794 match |= CPU_FLAGS_ARCH_MATCH;
1795 }
1796 else
1797 match |= CPU_FLAGS_ARCH_MATCH;
1798 }
1799 }
1800 return match;
1801 }
1802
1803 static INLINE i386_operand_type
1804 operand_type_and (i386_operand_type x, i386_operand_type y)
1805 {
1806 switch (ARRAY_SIZE (x.array))
1807 {
1808 case 3:
1809 x.array [2] &= y.array [2];
1810 /* Fall through. */
1811 case 2:
1812 x.array [1] &= y.array [1];
1813 /* Fall through. */
1814 case 1:
1815 x.array [0] &= y.array [0];
1816 break;
1817 default:
1818 abort ();
1819 }
1820 return x;
1821 }
1822
1823 static INLINE i386_operand_type
1824 operand_type_and_not (i386_operand_type x, i386_operand_type y)
1825 {
1826 switch (ARRAY_SIZE (x.array))
1827 {
1828 case 3:
1829 x.array [2] &= ~y.array [2];
1830 /* Fall through. */
1831 case 2:
1832 x.array [1] &= ~y.array [1];
1833 /* Fall through. */
1834 case 1:
1835 x.array [0] &= ~y.array [0];
1836 break;
1837 default:
1838 abort ();
1839 }
1840 return x;
1841 }
1842
1843 static INLINE i386_operand_type
1844 operand_type_or (i386_operand_type x, i386_operand_type y)
1845 {
1846 switch (ARRAY_SIZE (x.array))
1847 {
1848 case 3:
1849 x.array [2] |= y.array [2];
1850 /* Fall through. */
1851 case 2:
1852 x.array [1] |= y.array [1];
1853 /* Fall through. */
1854 case 1:
1855 x.array [0] |= y.array [0];
1856 break;
1857 default:
1858 abort ();
1859 }
1860 return x;
1861 }
1862
1863 static INLINE i386_operand_type
1864 operand_type_xor (i386_operand_type x, i386_operand_type y)
1865 {
1866 switch (ARRAY_SIZE (x.array))
1867 {
1868 case 3:
1869 x.array [2] ^= y.array [2];
1870 /* Fall through. */
1871 case 2:
1872 x.array [1] ^= y.array [1];
1873 /* Fall through. */
1874 case 1:
1875 x.array [0] ^= y.array [0];
1876 break;
1877 default:
1878 abort ();
1879 }
1880 return x;
1881 }
1882
1883 static const i386_operand_type acc32 = OPERAND_TYPE_ACC32;
1884 static const i386_operand_type acc64 = OPERAND_TYPE_ACC64;
1885 static const i386_operand_type disp16 = OPERAND_TYPE_DISP16;
1886 static const i386_operand_type disp32 = OPERAND_TYPE_DISP32;
1887 static const i386_operand_type disp32s = OPERAND_TYPE_DISP32S;
1888 static const i386_operand_type disp16_32 = OPERAND_TYPE_DISP16_32;
1889 static const i386_operand_type anydisp
1890 = OPERAND_TYPE_ANYDISP;
1891 static const i386_operand_type regxmm = OPERAND_TYPE_REGXMM;
1892 static const i386_operand_type regmask = OPERAND_TYPE_REGMASK;
1893 static const i386_operand_type imm8 = OPERAND_TYPE_IMM8;
1894 static const i386_operand_type imm8s = OPERAND_TYPE_IMM8S;
1895 static const i386_operand_type imm16 = OPERAND_TYPE_IMM16;
1896 static const i386_operand_type imm32 = OPERAND_TYPE_IMM32;
1897 static const i386_operand_type imm32s = OPERAND_TYPE_IMM32S;
1898 static const i386_operand_type imm64 = OPERAND_TYPE_IMM64;
1899 static const i386_operand_type imm16_32 = OPERAND_TYPE_IMM16_32;
1900 static const i386_operand_type imm16_32s = OPERAND_TYPE_IMM16_32S;
1901 static const i386_operand_type imm16_32_32s = OPERAND_TYPE_IMM16_32_32S;
1902 static const i386_operand_type vec_imm4 = OPERAND_TYPE_VEC_IMM4;
1903
1904 enum operand_type
1905 {
1906 reg,
1907 imm,
1908 disp,
1909 anymem
1910 };
1911
1912 static INLINE int
1913 operand_type_check (i386_operand_type t, enum operand_type c)
1914 {
1915 switch (c)
1916 {
1917 case reg:
1918 return t.bitfield.reg;
1919
1920 case imm:
1921 return (t.bitfield.imm8
1922 || t.bitfield.imm8s
1923 || t.bitfield.imm16
1924 || t.bitfield.imm32
1925 || t.bitfield.imm32s
1926 || t.bitfield.imm64);
1927
1928 case disp:
1929 return (t.bitfield.disp8
1930 || t.bitfield.disp16
1931 || t.bitfield.disp32
1932 || t.bitfield.disp32s
1933 || t.bitfield.disp64);
1934
1935 case anymem:
1936 return (t.bitfield.disp8
1937 || t.bitfield.disp16
1938 || t.bitfield.disp32
1939 || t.bitfield.disp32s
1940 || t.bitfield.disp64
1941 || t.bitfield.baseindex);
1942
1943 default:
1944 abort ();
1945 }
1946
1947 return 0;
1948 }
1949
1950 /* Return 1 if there is no conflict in 8bit/16bit/32bit/64bit/80bit size
1951 between operand GIVEN and opeand WANTED for instruction template T. */
1952
1953 static INLINE int
1954 match_operand_size (const insn_template *t, unsigned int wanted,
1955 unsigned int given)
1956 {
1957 return !((i.types[given].bitfield.byte
1958 && !t->operand_types[wanted].bitfield.byte)
1959 || (i.types[given].bitfield.word
1960 && !t->operand_types[wanted].bitfield.word)
1961 || (i.types[given].bitfield.dword
1962 && !t->operand_types[wanted].bitfield.dword)
1963 || (i.types[given].bitfield.qword
1964 && !t->operand_types[wanted].bitfield.qword)
1965 || (i.types[given].bitfield.tbyte
1966 && !t->operand_types[wanted].bitfield.tbyte));
1967 }
1968
1969 /* Return 1 if there is no conflict in SIMD register between operand
1970 GIVEN and opeand WANTED for instruction template T. */
1971
1972 static INLINE int
1973 match_simd_size (const insn_template *t, unsigned int wanted,
1974 unsigned int given)
1975 {
1976 return !((i.types[given].bitfield.xmmword
1977 && !t->operand_types[wanted].bitfield.xmmword)
1978 || (i.types[given].bitfield.ymmword
1979 && !t->operand_types[wanted].bitfield.ymmword)
1980 || (i.types[given].bitfield.zmmword
1981 && !t->operand_types[wanted].bitfield.zmmword));
1982 }
1983
1984 /* Return 1 if there is no conflict in any size between operand GIVEN
1985 and opeand WANTED for instruction template T. */
1986
1987 static INLINE int
1988 match_mem_size (const insn_template *t, unsigned int wanted,
1989 unsigned int given)
1990 {
1991 return (match_operand_size (t, wanted, given)
1992 && !((i.types[given].bitfield.unspecified
1993 && !i.broadcast
1994 && !t->operand_types[wanted].bitfield.unspecified)
1995 || (i.types[given].bitfield.fword
1996 && !t->operand_types[wanted].bitfield.fword)
1997 /* For scalar opcode templates to allow register and memory
1998 operands at the same time, some special casing is needed
1999 here. Also for v{,p}broadcast*, {,v}pmov{s,z}*, and
2000 down-conversion vpmov*. */
2001 || ((t->operand_types[wanted].bitfield.regsimd
2002 && !t->opcode_modifier.broadcast
2003 && (t->operand_types[wanted].bitfield.byte
2004 || t->operand_types[wanted].bitfield.word
2005 || t->operand_types[wanted].bitfield.dword
2006 || t->operand_types[wanted].bitfield.qword))
2007 ? (i.types[given].bitfield.xmmword
2008 || i.types[given].bitfield.ymmword
2009 || i.types[given].bitfield.zmmword)
2010 : !match_simd_size(t, wanted, given))));
2011 }
2012
2013 /* Return value has MATCH_STRAIGHT set if there is no size conflict on any
2014 operands for instruction template T, and it has MATCH_REVERSE set if there
2015 is no size conflict on any operands for the template with operands reversed
2016 (and the template allows for reversing in the first place). */
2017
2018 #define MATCH_STRAIGHT 1
2019 #define MATCH_REVERSE 2
2020
2021 static INLINE unsigned int
2022 operand_size_match (const insn_template *t)
2023 {
2024 unsigned int j, match = MATCH_STRAIGHT;
2025
2026 /* Don't check jump instructions. */
2027 if (t->opcode_modifier.jump
2028 || t->opcode_modifier.jumpbyte
2029 || t->opcode_modifier.jumpdword
2030 || t->opcode_modifier.jumpintersegment)
2031 return match;
2032
2033 /* Check memory and accumulator operand size. */
2034 for (j = 0; j < i.operands; j++)
2035 {
2036 if (!i.types[j].bitfield.reg && !i.types[j].bitfield.regsimd
2037 && t->operand_types[j].bitfield.anysize)
2038 continue;
2039
2040 if (t->operand_types[j].bitfield.reg
2041 && !match_operand_size (t, j, j))
2042 {
2043 match = 0;
2044 break;
2045 }
2046
2047 if (t->operand_types[j].bitfield.regsimd
2048 && !match_simd_size (t, j, j))
2049 {
2050 match = 0;
2051 break;
2052 }
2053
2054 if (t->operand_types[j].bitfield.acc
2055 && (!match_operand_size (t, j, j) || !match_simd_size (t, j, j)))
2056 {
2057 match = 0;
2058 break;
2059 }
2060
2061 if ((i.flags[j] & Operand_Mem) && !match_mem_size (t, j, j))
2062 {
2063 match = 0;
2064 break;
2065 }
2066 }
2067
2068 if (!t->opcode_modifier.d)
2069 {
2070 mismatch:
2071 if (!match)
2072 i.error = operand_size_mismatch;
2073 return match;
2074 }
2075
2076 /* Check reverse. */
2077 gas_assert (i.operands >= 2 && i.operands <= 3);
2078
2079 for (j = 0; j < i.operands; j++)
2080 {
2081 unsigned int given = i.operands - j - 1;
2082
2083 if (t->operand_types[j].bitfield.reg
2084 && !match_operand_size (t, j, given))
2085 goto mismatch;
2086
2087 if (t->operand_types[j].bitfield.regsimd
2088 && !match_simd_size (t, j, given))
2089 goto mismatch;
2090
2091 if (t->operand_types[j].bitfield.acc
2092 && (!match_operand_size (t, j, given)
2093 || !match_simd_size (t, j, given)))
2094 goto mismatch;
2095
2096 if ((i.flags[given] & Operand_Mem) && !match_mem_size (t, j, given))
2097 goto mismatch;
2098 }
2099
2100 return match | MATCH_REVERSE;
2101 }
2102
2103 static INLINE int
2104 operand_type_match (i386_operand_type overlap,
2105 i386_operand_type given)
2106 {
2107 i386_operand_type temp = overlap;
2108
2109 temp.bitfield.jumpabsolute = 0;
2110 temp.bitfield.unspecified = 0;
2111 temp.bitfield.byte = 0;
2112 temp.bitfield.word = 0;
2113 temp.bitfield.dword = 0;
2114 temp.bitfield.fword = 0;
2115 temp.bitfield.qword = 0;
2116 temp.bitfield.tbyte = 0;
2117 temp.bitfield.xmmword = 0;
2118 temp.bitfield.ymmword = 0;
2119 temp.bitfield.zmmword = 0;
2120 if (operand_type_all_zero (&temp))
2121 goto mismatch;
2122
2123 if (given.bitfield.baseindex == overlap.bitfield.baseindex
2124 && given.bitfield.jumpabsolute == overlap.bitfield.jumpabsolute)
2125 return 1;
2126
2127 mismatch:
2128 i.error = operand_type_mismatch;
2129 return 0;
2130 }
2131
2132 /* If given types g0 and g1 are registers they must be of the same type
2133 unless the expected operand type register overlap is null.
2134 Memory operand size of certain SIMD instructions is also being checked
2135 here. */
2136
2137 static INLINE int
2138 operand_type_register_match (i386_operand_type g0,
2139 i386_operand_type t0,
2140 i386_operand_type g1,
2141 i386_operand_type t1)
2142 {
2143 if (!g0.bitfield.reg
2144 && !g0.bitfield.regsimd
2145 && (!operand_type_check (g0, anymem)
2146 || g0.bitfield.unspecified
2147 || !t0.bitfield.regsimd))
2148 return 1;
2149
2150 if (!g1.bitfield.reg
2151 && !g1.bitfield.regsimd
2152 && (!operand_type_check (g1, anymem)
2153 || g1.bitfield.unspecified
2154 || !t1.bitfield.regsimd))
2155 return 1;
2156
2157 if (g0.bitfield.byte == g1.bitfield.byte
2158 && g0.bitfield.word == g1.bitfield.word
2159 && g0.bitfield.dword == g1.bitfield.dword
2160 && g0.bitfield.qword == g1.bitfield.qword
2161 && g0.bitfield.xmmword == g1.bitfield.xmmword
2162 && g0.bitfield.ymmword == g1.bitfield.ymmword
2163 && g0.bitfield.zmmword == g1.bitfield.zmmword)
2164 return 1;
2165
2166 if (!(t0.bitfield.byte & t1.bitfield.byte)
2167 && !(t0.bitfield.word & t1.bitfield.word)
2168 && !(t0.bitfield.dword & t1.bitfield.dword)
2169 && !(t0.bitfield.qword & t1.bitfield.qword)
2170 && !(t0.bitfield.xmmword & t1.bitfield.xmmword)
2171 && !(t0.bitfield.ymmword & t1.bitfield.ymmword)
2172 && !(t0.bitfield.zmmword & t1.bitfield.zmmword))
2173 return 1;
2174
2175 i.error = register_type_mismatch;
2176
2177 return 0;
2178 }
2179
2180 static INLINE unsigned int
2181 register_number (const reg_entry *r)
2182 {
2183 unsigned int nr = r->reg_num;
2184
2185 if (r->reg_flags & RegRex)
2186 nr += 8;
2187
2188 if (r->reg_flags & RegVRex)
2189 nr += 16;
2190
2191 return nr;
2192 }
2193
2194 static INLINE unsigned int
2195 mode_from_disp_size (i386_operand_type t)
2196 {
2197 if (t.bitfield.disp8)
2198 return 1;
2199 else if (t.bitfield.disp16
2200 || t.bitfield.disp32
2201 || t.bitfield.disp32s)
2202 return 2;
2203 else
2204 return 0;
2205 }
2206
2207 static INLINE int
2208 fits_in_signed_byte (addressT num)
2209 {
2210 return num + 0x80 <= 0xff;
2211 }
2212
2213 static INLINE int
2214 fits_in_unsigned_byte (addressT num)
2215 {
2216 return num <= 0xff;
2217 }
2218
2219 static INLINE int
2220 fits_in_unsigned_word (addressT num)
2221 {
2222 return num <= 0xffff;
2223 }
2224
2225 static INLINE int
2226 fits_in_signed_word (addressT num)
2227 {
2228 return num + 0x8000 <= 0xffff;
2229 }
2230
2231 static INLINE int
2232 fits_in_signed_long (addressT num ATTRIBUTE_UNUSED)
2233 {
2234 #ifndef BFD64
2235 return 1;
2236 #else
2237 return num + 0x80000000 <= 0xffffffff;
2238 #endif
2239 } /* fits_in_signed_long() */
2240
2241 static INLINE int
2242 fits_in_unsigned_long (addressT num ATTRIBUTE_UNUSED)
2243 {
2244 #ifndef BFD64
2245 return 1;
2246 #else
2247 return num <= 0xffffffff;
2248 #endif
2249 } /* fits_in_unsigned_long() */
2250
2251 static INLINE int
2252 fits_in_disp8 (offsetT num)
2253 {
2254 int shift = i.memshift;
2255 unsigned int mask;
2256
2257 if (shift == -1)
2258 abort ();
2259
2260 mask = (1 << shift) - 1;
2261
2262 /* Return 0 if NUM isn't properly aligned. */
2263 if ((num & mask))
2264 return 0;
2265
2266 /* Check if NUM will fit in 8bit after shift. */
2267 return fits_in_signed_byte (num >> shift);
2268 }
2269
2270 static INLINE int
2271 fits_in_imm4 (offsetT num)
2272 {
2273 return (num & 0xf) == num;
2274 }
2275
2276 static i386_operand_type
2277 smallest_imm_type (offsetT num)
2278 {
2279 i386_operand_type t;
2280
2281 operand_type_set (&t, 0);
2282 t.bitfield.imm64 = 1;
2283
2284 if (cpu_arch_tune != PROCESSOR_I486 && num == 1)
2285 {
2286 /* This code is disabled on the 486 because all the Imm1 forms
2287 in the opcode table are slower on the i486. They're the
2288 versions with the implicitly specified single-position
2289 displacement, which has another syntax if you really want to
2290 use that form. */
2291 t.bitfield.imm1 = 1;
2292 t.bitfield.imm8 = 1;
2293 t.bitfield.imm8s = 1;
2294 t.bitfield.imm16 = 1;
2295 t.bitfield.imm32 = 1;
2296 t.bitfield.imm32s = 1;
2297 }
2298 else if (fits_in_signed_byte (num))
2299 {
2300 t.bitfield.imm8 = 1;
2301 t.bitfield.imm8s = 1;
2302 t.bitfield.imm16 = 1;
2303 t.bitfield.imm32 = 1;
2304 t.bitfield.imm32s = 1;
2305 }
2306 else if (fits_in_unsigned_byte (num))
2307 {
2308 t.bitfield.imm8 = 1;
2309 t.bitfield.imm16 = 1;
2310 t.bitfield.imm32 = 1;
2311 t.bitfield.imm32s = 1;
2312 }
2313 else if (fits_in_signed_word (num) || fits_in_unsigned_word (num))
2314 {
2315 t.bitfield.imm16 = 1;
2316 t.bitfield.imm32 = 1;
2317 t.bitfield.imm32s = 1;
2318 }
2319 else if (fits_in_signed_long (num))
2320 {
2321 t.bitfield.imm32 = 1;
2322 t.bitfield.imm32s = 1;
2323 }
2324 else if (fits_in_unsigned_long (num))
2325 t.bitfield.imm32 = 1;
2326
2327 return t;
2328 }
2329
2330 static offsetT
2331 offset_in_range (offsetT val, int size)
2332 {
2333 addressT mask;
2334
2335 switch (size)
2336 {
2337 case 1: mask = ((addressT) 1 << 8) - 1; break;
2338 case 2: mask = ((addressT) 1 << 16) - 1; break;
2339 case 4: mask = ((addressT) 2 << 31) - 1; break;
2340 #ifdef BFD64
2341 case 8: mask = ((addressT) 2 << 63) - 1; break;
2342 #endif
2343 default: abort ();
2344 }
2345
2346 #ifdef BFD64
2347 /* If BFD64, sign extend val for 32bit address mode. */
2348 if (flag_code != CODE_64BIT
2349 || i.prefix[ADDR_PREFIX])
2350 if ((val & ~(((addressT) 2 << 31) - 1)) == 0)
2351 val = (val ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
2352 #endif
2353
2354 if ((val & ~mask) != 0 && (val & ~mask) != ~mask)
2355 {
2356 char buf1[40], buf2[40];
2357
2358 sprint_value (buf1, val);
2359 sprint_value (buf2, val & mask);
2360 as_warn (_("%s shortened to %s"), buf1, buf2);
2361 }
2362 return val & mask;
2363 }
2364
2365 enum PREFIX_GROUP
2366 {
2367 PREFIX_EXIST = 0,
2368 PREFIX_LOCK,
2369 PREFIX_REP,
2370 PREFIX_DS,
2371 PREFIX_OTHER
2372 };
2373
2374 /* Returns
2375 a. PREFIX_EXIST if attempting to add a prefix where one from the
2376 same class already exists.
2377 b. PREFIX_LOCK if lock prefix is added.
2378 c. PREFIX_REP if rep/repne prefix is added.
2379 d. PREFIX_DS if ds prefix is added.
2380 e. PREFIX_OTHER if other prefix is added.
2381 */
2382
2383 static enum PREFIX_GROUP
2384 add_prefix (unsigned int prefix)
2385 {
2386 enum PREFIX_GROUP ret = PREFIX_OTHER;
2387 unsigned int q;
2388
2389 if (prefix >= REX_OPCODE && prefix < REX_OPCODE + 16
2390 && flag_code == CODE_64BIT)
2391 {
2392 if ((i.prefix[REX_PREFIX] & prefix & REX_W)
2393 || (i.prefix[REX_PREFIX] & prefix & REX_R)
2394 || (i.prefix[REX_PREFIX] & prefix & REX_X)
2395 || (i.prefix[REX_PREFIX] & prefix & REX_B))
2396 ret = PREFIX_EXIST;
2397 q = REX_PREFIX;
2398 }
2399 else
2400 {
2401 switch (prefix)
2402 {
2403 default:
2404 abort ();
2405
2406 case DS_PREFIX_OPCODE:
2407 ret = PREFIX_DS;
2408 /* Fall through. */
2409 case CS_PREFIX_OPCODE:
2410 case ES_PREFIX_OPCODE:
2411 case FS_PREFIX_OPCODE:
2412 case GS_PREFIX_OPCODE:
2413 case SS_PREFIX_OPCODE:
2414 q = SEG_PREFIX;
2415 break;
2416
2417 case REPNE_PREFIX_OPCODE:
2418 case REPE_PREFIX_OPCODE:
2419 q = REP_PREFIX;
2420 ret = PREFIX_REP;
2421 break;
2422
2423 case LOCK_PREFIX_OPCODE:
2424 q = LOCK_PREFIX;
2425 ret = PREFIX_LOCK;
2426 break;
2427
2428 case FWAIT_OPCODE:
2429 q = WAIT_PREFIX;
2430 break;
2431
2432 case ADDR_PREFIX_OPCODE:
2433 q = ADDR_PREFIX;
2434 break;
2435
2436 case DATA_PREFIX_OPCODE:
2437 q = DATA_PREFIX;
2438 break;
2439 }
2440 if (i.prefix[q] != 0)
2441 ret = PREFIX_EXIST;
2442 }
2443
2444 if (ret)
2445 {
2446 if (!i.prefix[q])
2447 ++i.prefixes;
2448 i.prefix[q] |= prefix;
2449 }
2450 else
2451 as_bad (_("same type of prefix used twice"));
2452
2453 return ret;
2454 }
2455
2456 static void
2457 update_code_flag (int value, int check)
2458 {
2459 PRINTF_LIKE ((*as_error));
2460
2461 flag_code = (enum flag_code) value;
2462 if (flag_code == CODE_64BIT)
2463 {
2464 cpu_arch_flags.bitfield.cpu64 = 1;
2465 cpu_arch_flags.bitfield.cpuno64 = 0;
2466 }
2467 else
2468 {
2469 cpu_arch_flags.bitfield.cpu64 = 0;
2470 cpu_arch_flags.bitfield.cpuno64 = 1;
2471 }
2472 if (value == CODE_64BIT && !cpu_arch_flags.bitfield.cpulm )
2473 {
2474 if (check)
2475 as_error = as_fatal;
2476 else
2477 as_error = as_bad;
2478 (*as_error) (_("64bit mode not supported on `%s'."),
2479 cpu_arch_name ? cpu_arch_name : default_arch);
2480 }
2481 if (value == CODE_32BIT && !cpu_arch_flags.bitfield.cpui386)
2482 {
2483 if (check)
2484 as_error = as_fatal;
2485 else
2486 as_error = as_bad;
2487 (*as_error) (_("32bit mode not supported on `%s'."),
2488 cpu_arch_name ? cpu_arch_name : default_arch);
2489 }
2490 stackop_size = '\0';
2491 }
2492
2493 static void
2494 set_code_flag (int value)
2495 {
2496 update_code_flag (value, 0);
2497 }
2498
2499 static void
2500 set_16bit_gcc_code_flag (int new_code_flag)
2501 {
2502 flag_code = (enum flag_code) new_code_flag;
2503 if (flag_code != CODE_16BIT)
2504 abort ();
2505 cpu_arch_flags.bitfield.cpu64 = 0;
2506 cpu_arch_flags.bitfield.cpuno64 = 1;
2507 stackop_size = LONG_MNEM_SUFFIX;
2508 }
2509
2510 static void
2511 set_intel_syntax (int syntax_flag)
2512 {
2513 /* Find out if register prefixing is specified. */
2514 int ask_naked_reg = 0;
2515
2516 SKIP_WHITESPACE ();
2517 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2518 {
2519 char *string;
2520 int e = get_symbol_name (&string);
2521
2522 if (strcmp (string, "prefix") == 0)
2523 ask_naked_reg = 1;
2524 else if (strcmp (string, "noprefix") == 0)
2525 ask_naked_reg = -1;
2526 else
2527 as_bad (_("bad argument to syntax directive."));
2528 (void) restore_line_pointer (e);
2529 }
2530 demand_empty_rest_of_line ();
2531
2532 intel_syntax = syntax_flag;
2533
2534 if (ask_naked_reg == 0)
2535 allow_naked_reg = (intel_syntax
2536 && (bfd_get_symbol_leading_char (stdoutput) != '\0'));
2537 else
2538 allow_naked_reg = (ask_naked_reg < 0);
2539
2540 expr_set_rank (O_full_ptr, syntax_flag ? 10 : 0);
2541
2542 identifier_chars['%'] = intel_syntax && allow_naked_reg ? '%' : 0;
2543 identifier_chars['$'] = intel_syntax ? '$' : 0;
2544 register_prefix = allow_naked_reg ? "" : "%";
2545 }
2546
2547 static void
2548 set_intel_mnemonic (int mnemonic_flag)
2549 {
2550 intel_mnemonic = mnemonic_flag;
2551 }
2552
2553 static void
2554 set_allow_index_reg (int flag)
2555 {
2556 allow_index_reg = flag;
2557 }
2558
2559 static void
2560 set_check (int what)
2561 {
2562 enum check_kind *kind;
2563 const char *str;
2564
2565 if (what)
2566 {
2567 kind = &operand_check;
2568 str = "operand";
2569 }
2570 else
2571 {
2572 kind = &sse_check;
2573 str = "sse";
2574 }
2575
2576 SKIP_WHITESPACE ();
2577
2578 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2579 {
2580 char *string;
2581 int e = get_symbol_name (&string);
2582
2583 if (strcmp (string, "none") == 0)
2584 *kind = check_none;
2585 else if (strcmp (string, "warning") == 0)
2586 *kind = check_warning;
2587 else if (strcmp (string, "error") == 0)
2588 *kind = check_error;
2589 else
2590 as_bad (_("bad argument to %s_check directive."), str);
2591 (void) restore_line_pointer (e);
2592 }
2593 else
2594 as_bad (_("missing argument for %s_check directive"), str);
2595
2596 demand_empty_rest_of_line ();
2597 }
2598
2599 static void
2600 check_cpu_arch_compatible (const char *name ATTRIBUTE_UNUSED,
2601 i386_cpu_flags new_flag ATTRIBUTE_UNUSED)
2602 {
2603 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
2604 static const char *arch;
2605
2606 /* Intel LIOM is only supported on ELF. */
2607 if (!IS_ELF)
2608 return;
2609
2610 if (!arch)
2611 {
2612 /* Use cpu_arch_name if it is set in md_parse_option. Otherwise
2613 use default_arch. */
2614 arch = cpu_arch_name;
2615 if (!arch)
2616 arch = default_arch;
2617 }
2618
2619 /* If we are targeting Intel MCU, we must enable it. */
2620 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_IAMCU
2621 || new_flag.bitfield.cpuiamcu)
2622 return;
2623
2624 /* If we are targeting Intel L1OM, we must enable it. */
2625 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_L1OM
2626 || new_flag.bitfield.cpul1om)
2627 return;
2628
2629 /* If we are targeting Intel K1OM, we must enable it. */
2630 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_K1OM
2631 || new_flag.bitfield.cpuk1om)
2632 return;
2633
2634 as_bad (_("`%s' is not supported on `%s'"), name, arch);
2635 #endif
2636 }
2637
2638 static void
2639 set_cpu_arch (int dummy ATTRIBUTE_UNUSED)
2640 {
2641 SKIP_WHITESPACE ();
2642
2643 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2644 {
2645 char *string;
2646 int e = get_symbol_name (&string);
2647 unsigned int j;
2648 i386_cpu_flags flags;
2649
2650 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
2651 {
2652 if (strcmp (string, cpu_arch[j].name) == 0)
2653 {
2654 check_cpu_arch_compatible (string, cpu_arch[j].flags);
2655
2656 if (*string != '.')
2657 {
2658 cpu_arch_name = cpu_arch[j].name;
2659 cpu_sub_arch_name = NULL;
2660 cpu_arch_flags = cpu_arch[j].flags;
2661 if (flag_code == CODE_64BIT)
2662 {
2663 cpu_arch_flags.bitfield.cpu64 = 1;
2664 cpu_arch_flags.bitfield.cpuno64 = 0;
2665 }
2666 else
2667 {
2668 cpu_arch_flags.bitfield.cpu64 = 0;
2669 cpu_arch_flags.bitfield.cpuno64 = 1;
2670 }
2671 cpu_arch_isa = cpu_arch[j].type;
2672 cpu_arch_isa_flags = cpu_arch[j].flags;
2673 if (!cpu_arch_tune_set)
2674 {
2675 cpu_arch_tune = cpu_arch_isa;
2676 cpu_arch_tune_flags = cpu_arch_isa_flags;
2677 }
2678 break;
2679 }
2680
2681 flags = cpu_flags_or (cpu_arch_flags,
2682 cpu_arch[j].flags);
2683
2684 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
2685 {
2686 if (cpu_sub_arch_name)
2687 {
2688 char *name = cpu_sub_arch_name;
2689 cpu_sub_arch_name = concat (name,
2690 cpu_arch[j].name,
2691 (const char *) NULL);
2692 free (name);
2693 }
2694 else
2695 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
2696 cpu_arch_flags = flags;
2697 cpu_arch_isa_flags = flags;
2698 }
2699 else
2700 cpu_arch_isa_flags
2701 = cpu_flags_or (cpu_arch_isa_flags,
2702 cpu_arch[j].flags);
2703 (void) restore_line_pointer (e);
2704 demand_empty_rest_of_line ();
2705 return;
2706 }
2707 }
2708
2709 if (*string == '.' && j >= ARRAY_SIZE (cpu_arch))
2710 {
2711 /* Disable an ISA extension. */
2712 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
2713 if (strcmp (string + 1, cpu_noarch [j].name) == 0)
2714 {
2715 flags = cpu_flags_and_not (cpu_arch_flags,
2716 cpu_noarch[j].flags);
2717 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
2718 {
2719 if (cpu_sub_arch_name)
2720 {
2721 char *name = cpu_sub_arch_name;
2722 cpu_sub_arch_name = concat (name, string,
2723 (const char *) NULL);
2724 free (name);
2725 }
2726 else
2727 cpu_sub_arch_name = xstrdup (string);
2728 cpu_arch_flags = flags;
2729 cpu_arch_isa_flags = flags;
2730 }
2731 (void) restore_line_pointer (e);
2732 demand_empty_rest_of_line ();
2733 return;
2734 }
2735
2736 j = ARRAY_SIZE (cpu_arch);
2737 }
2738
2739 if (j >= ARRAY_SIZE (cpu_arch))
2740 as_bad (_("no such architecture: `%s'"), string);
2741
2742 *input_line_pointer = e;
2743 }
2744 else
2745 as_bad (_("missing cpu architecture"));
2746
2747 no_cond_jump_promotion = 0;
2748 if (*input_line_pointer == ','
2749 && !is_end_of_line[(unsigned char) input_line_pointer[1]])
2750 {
2751 char *string;
2752 char e;
2753
2754 ++input_line_pointer;
2755 e = get_symbol_name (&string);
2756
2757 if (strcmp (string, "nojumps") == 0)
2758 no_cond_jump_promotion = 1;
2759 else if (strcmp (string, "jumps") == 0)
2760 ;
2761 else
2762 as_bad (_("no such architecture modifier: `%s'"), string);
2763
2764 (void) restore_line_pointer (e);
2765 }
2766
2767 demand_empty_rest_of_line ();
2768 }
2769
2770 enum bfd_architecture
2771 i386_arch (void)
2772 {
2773 if (cpu_arch_isa == PROCESSOR_L1OM)
2774 {
2775 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2776 || flag_code != CODE_64BIT)
2777 as_fatal (_("Intel L1OM is 64bit ELF only"));
2778 return bfd_arch_l1om;
2779 }
2780 else if (cpu_arch_isa == PROCESSOR_K1OM)
2781 {
2782 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2783 || flag_code != CODE_64BIT)
2784 as_fatal (_("Intel K1OM is 64bit ELF only"));
2785 return bfd_arch_k1om;
2786 }
2787 else if (cpu_arch_isa == PROCESSOR_IAMCU)
2788 {
2789 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2790 || flag_code == CODE_64BIT)
2791 as_fatal (_("Intel MCU is 32bit ELF only"));
2792 return bfd_arch_iamcu;
2793 }
2794 else
2795 return bfd_arch_i386;
2796 }
2797
2798 unsigned long
2799 i386_mach (void)
2800 {
2801 if (!strncmp (default_arch, "x86_64", 6))
2802 {
2803 if (cpu_arch_isa == PROCESSOR_L1OM)
2804 {
2805 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2806 || default_arch[6] != '\0')
2807 as_fatal (_("Intel L1OM is 64bit ELF only"));
2808 return bfd_mach_l1om;
2809 }
2810 else if (cpu_arch_isa == PROCESSOR_K1OM)
2811 {
2812 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2813 || default_arch[6] != '\0')
2814 as_fatal (_("Intel K1OM is 64bit ELF only"));
2815 return bfd_mach_k1om;
2816 }
2817 else if (default_arch[6] == '\0')
2818 return bfd_mach_x86_64;
2819 else
2820 return bfd_mach_x64_32;
2821 }
2822 else if (!strcmp (default_arch, "i386")
2823 || !strcmp (default_arch, "iamcu"))
2824 {
2825 if (cpu_arch_isa == PROCESSOR_IAMCU)
2826 {
2827 if (OUTPUT_FLAVOR != bfd_target_elf_flavour)
2828 as_fatal (_("Intel MCU is 32bit ELF only"));
2829 return bfd_mach_i386_iamcu;
2830 }
2831 else
2832 return bfd_mach_i386_i386;
2833 }
2834 else
2835 as_fatal (_("unknown architecture"));
2836 }
2837 \f
2838 void
2839 md_begin (void)
2840 {
2841 const char *hash_err;
2842
2843 /* Support pseudo prefixes like {disp32}. */
2844 lex_type ['{'] = LEX_BEGIN_NAME;
2845
2846 /* Initialize op_hash hash table. */
2847 op_hash = hash_new ();
2848
2849 {
2850 const insn_template *optab;
2851 templates *core_optab;
2852
2853 /* Setup for loop. */
2854 optab = i386_optab;
2855 core_optab = XNEW (templates);
2856 core_optab->start = optab;
2857
2858 while (1)
2859 {
2860 ++optab;
2861 if (optab->name == NULL
2862 || strcmp (optab->name, (optab - 1)->name) != 0)
2863 {
2864 /* different name --> ship out current template list;
2865 add to hash table; & begin anew. */
2866 core_optab->end = optab;
2867 hash_err = hash_insert (op_hash,
2868 (optab - 1)->name,
2869 (void *) core_optab);
2870 if (hash_err)
2871 {
2872 as_fatal (_("can't hash %s: %s"),
2873 (optab - 1)->name,
2874 hash_err);
2875 }
2876 if (optab->name == NULL)
2877 break;
2878 core_optab = XNEW (templates);
2879 core_optab->start = optab;
2880 }
2881 }
2882 }
2883
2884 /* Initialize reg_hash hash table. */
2885 reg_hash = hash_new ();
2886 {
2887 const reg_entry *regtab;
2888 unsigned int regtab_size = i386_regtab_size;
2889
2890 for (regtab = i386_regtab; regtab_size--; regtab++)
2891 {
2892 hash_err = hash_insert (reg_hash, regtab->reg_name, (void *) regtab);
2893 if (hash_err)
2894 as_fatal (_("can't hash %s: %s"),
2895 regtab->reg_name,
2896 hash_err);
2897 }
2898 }
2899
2900 /* Fill in lexical tables: mnemonic_chars, operand_chars. */
2901 {
2902 int c;
2903 char *p;
2904
2905 for (c = 0; c < 256; c++)
2906 {
2907 if (ISDIGIT (c))
2908 {
2909 digit_chars[c] = c;
2910 mnemonic_chars[c] = c;
2911 register_chars[c] = c;
2912 operand_chars[c] = c;
2913 }
2914 else if (ISLOWER (c))
2915 {
2916 mnemonic_chars[c] = c;
2917 register_chars[c] = c;
2918 operand_chars[c] = c;
2919 }
2920 else if (ISUPPER (c))
2921 {
2922 mnemonic_chars[c] = TOLOWER (c);
2923 register_chars[c] = mnemonic_chars[c];
2924 operand_chars[c] = c;
2925 }
2926 else if (c == '{' || c == '}')
2927 {
2928 mnemonic_chars[c] = c;
2929 operand_chars[c] = c;
2930 }
2931
2932 if (ISALPHA (c) || ISDIGIT (c))
2933 identifier_chars[c] = c;
2934 else if (c >= 128)
2935 {
2936 identifier_chars[c] = c;
2937 operand_chars[c] = c;
2938 }
2939 }
2940
2941 #ifdef LEX_AT
2942 identifier_chars['@'] = '@';
2943 #endif
2944 #ifdef LEX_QM
2945 identifier_chars['?'] = '?';
2946 operand_chars['?'] = '?';
2947 #endif
2948 digit_chars['-'] = '-';
2949 mnemonic_chars['_'] = '_';
2950 mnemonic_chars['-'] = '-';
2951 mnemonic_chars['.'] = '.';
2952 identifier_chars['_'] = '_';
2953 identifier_chars['.'] = '.';
2954
2955 for (p = operand_special_chars; *p != '\0'; p++)
2956 operand_chars[(unsigned char) *p] = *p;
2957 }
2958
2959 if (flag_code == CODE_64BIT)
2960 {
2961 #if defined (OBJ_COFF) && defined (TE_PE)
2962 x86_dwarf2_return_column = (OUTPUT_FLAVOR == bfd_target_coff_flavour
2963 ? 32 : 16);
2964 #else
2965 x86_dwarf2_return_column = 16;
2966 #endif
2967 x86_cie_data_alignment = -8;
2968 }
2969 else
2970 {
2971 x86_dwarf2_return_column = 8;
2972 x86_cie_data_alignment = -4;
2973 }
2974 }
2975
2976 void
2977 i386_print_statistics (FILE *file)
2978 {
2979 hash_print_statistics (file, "i386 opcode", op_hash);
2980 hash_print_statistics (file, "i386 register", reg_hash);
2981 }
2982 \f
2983 #ifdef DEBUG386
2984
2985 /* Debugging routines for md_assemble. */
2986 static void pte (insn_template *);
2987 static void pt (i386_operand_type);
2988 static void pe (expressionS *);
2989 static void ps (symbolS *);
2990
2991 static void
2992 pi (char *line, i386_insn *x)
2993 {
2994 unsigned int j;
2995
2996 fprintf (stdout, "%s: template ", line);
2997 pte (&x->tm);
2998 fprintf (stdout, " address: base %s index %s scale %x\n",
2999 x->base_reg ? x->base_reg->reg_name : "none",
3000 x->index_reg ? x->index_reg->reg_name : "none",
3001 x->log2_scale_factor);
3002 fprintf (stdout, " modrm: mode %x reg %x reg/mem %x\n",
3003 x->rm.mode, x->rm.reg, x->rm.regmem);
3004 fprintf (stdout, " sib: base %x index %x scale %x\n",
3005 x->sib.base, x->sib.index, x->sib.scale);
3006 fprintf (stdout, " rex: 64bit %x extX %x extY %x extZ %x\n",
3007 (x->rex & REX_W) != 0,
3008 (x->rex & REX_R) != 0,
3009 (x->rex & REX_X) != 0,
3010 (x->rex & REX_B) != 0);
3011 for (j = 0; j < x->operands; j++)
3012 {
3013 fprintf (stdout, " #%d: ", j + 1);
3014 pt (x->types[j]);
3015 fprintf (stdout, "\n");
3016 if (x->types[j].bitfield.reg
3017 || x->types[j].bitfield.regmmx
3018 || x->types[j].bitfield.regsimd
3019 || x->types[j].bitfield.sreg2
3020 || x->types[j].bitfield.sreg3
3021 || x->types[j].bitfield.control
3022 || x->types[j].bitfield.debug
3023 || x->types[j].bitfield.test)
3024 fprintf (stdout, "%s\n", x->op[j].regs->reg_name);
3025 if (operand_type_check (x->types[j], imm))
3026 pe (x->op[j].imms);
3027 if (operand_type_check (x->types[j], disp))
3028 pe (x->op[j].disps);
3029 }
3030 }
3031
3032 static void
3033 pte (insn_template *t)
3034 {
3035 unsigned int j;
3036 fprintf (stdout, " %d operands ", t->operands);
3037 fprintf (stdout, "opcode %x ", t->base_opcode);
3038 if (t->extension_opcode != None)
3039 fprintf (stdout, "ext %x ", t->extension_opcode);
3040 if (t->opcode_modifier.d)
3041 fprintf (stdout, "D");
3042 if (t->opcode_modifier.w)
3043 fprintf (stdout, "W");
3044 fprintf (stdout, "\n");
3045 for (j = 0; j < t->operands; j++)
3046 {
3047 fprintf (stdout, " #%d type ", j + 1);
3048 pt (t->operand_types[j]);
3049 fprintf (stdout, "\n");
3050 }
3051 }
3052
3053 static void
3054 pe (expressionS *e)
3055 {
3056 fprintf (stdout, " operation %d\n", e->X_op);
3057 fprintf (stdout, " add_number %ld (%lx)\n",
3058 (long) e->X_add_number, (long) e->X_add_number);
3059 if (e->X_add_symbol)
3060 {
3061 fprintf (stdout, " add_symbol ");
3062 ps (e->X_add_symbol);
3063 fprintf (stdout, "\n");
3064 }
3065 if (e->X_op_symbol)
3066 {
3067 fprintf (stdout, " op_symbol ");
3068 ps (e->X_op_symbol);
3069 fprintf (stdout, "\n");
3070 }
3071 }
3072
3073 static void
3074 ps (symbolS *s)
3075 {
3076 fprintf (stdout, "%s type %s%s",
3077 S_GET_NAME (s),
3078 S_IS_EXTERNAL (s) ? "EXTERNAL " : "",
3079 segment_name (S_GET_SEGMENT (s)));
3080 }
3081
3082 static struct type_name
3083 {
3084 i386_operand_type mask;
3085 const char *name;
3086 }
3087 const type_names[] =
3088 {
3089 { OPERAND_TYPE_REG8, "r8" },
3090 { OPERAND_TYPE_REG16, "r16" },
3091 { OPERAND_TYPE_REG32, "r32" },
3092 { OPERAND_TYPE_REG64, "r64" },
3093 { OPERAND_TYPE_IMM8, "i8" },
3094 { OPERAND_TYPE_IMM8, "i8s" },
3095 { OPERAND_TYPE_IMM16, "i16" },
3096 { OPERAND_TYPE_IMM32, "i32" },
3097 { OPERAND_TYPE_IMM32S, "i32s" },
3098 { OPERAND_TYPE_IMM64, "i64" },
3099 { OPERAND_TYPE_IMM1, "i1" },
3100 { OPERAND_TYPE_BASEINDEX, "BaseIndex" },
3101 { OPERAND_TYPE_DISP8, "d8" },
3102 { OPERAND_TYPE_DISP16, "d16" },
3103 { OPERAND_TYPE_DISP32, "d32" },
3104 { OPERAND_TYPE_DISP32S, "d32s" },
3105 { OPERAND_TYPE_DISP64, "d64" },
3106 { OPERAND_TYPE_INOUTPORTREG, "InOutPortReg" },
3107 { OPERAND_TYPE_SHIFTCOUNT, "ShiftCount" },
3108 { OPERAND_TYPE_CONTROL, "control reg" },
3109 { OPERAND_TYPE_TEST, "test reg" },
3110 { OPERAND_TYPE_DEBUG, "debug reg" },
3111 { OPERAND_TYPE_FLOATREG, "FReg" },
3112 { OPERAND_TYPE_FLOATACC, "FAcc" },
3113 { OPERAND_TYPE_SREG2, "SReg2" },
3114 { OPERAND_TYPE_SREG3, "SReg3" },
3115 { OPERAND_TYPE_ACC, "Acc" },
3116 { OPERAND_TYPE_JUMPABSOLUTE, "Jump Absolute" },
3117 { OPERAND_TYPE_REGMMX, "rMMX" },
3118 { OPERAND_TYPE_REGXMM, "rXMM" },
3119 { OPERAND_TYPE_REGYMM, "rYMM" },
3120 { OPERAND_TYPE_REGZMM, "rZMM" },
3121 { OPERAND_TYPE_REGMASK, "Mask reg" },
3122 { OPERAND_TYPE_ESSEG, "es" },
3123 };
3124
3125 static void
3126 pt (i386_operand_type t)
3127 {
3128 unsigned int j;
3129 i386_operand_type a;
3130
3131 for (j = 0; j < ARRAY_SIZE (type_names); j++)
3132 {
3133 a = operand_type_and (t, type_names[j].mask);
3134 if (!operand_type_all_zero (&a))
3135 fprintf (stdout, "%s, ", type_names[j].name);
3136 }
3137 fflush (stdout);
3138 }
3139
3140 #endif /* DEBUG386 */
3141 \f
3142 static bfd_reloc_code_real_type
3143 reloc (unsigned int size,
3144 int pcrel,
3145 int sign,
3146 bfd_reloc_code_real_type other)
3147 {
3148 if (other != NO_RELOC)
3149 {
3150 reloc_howto_type *rel;
3151
3152 if (size == 8)
3153 switch (other)
3154 {
3155 case BFD_RELOC_X86_64_GOT32:
3156 return BFD_RELOC_X86_64_GOT64;
3157 break;
3158 case BFD_RELOC_X86_64_GOTPLT64:
3159 return BFD_RELOC_X86_64_GOTPLT64;
3160 break;
3161 case BFD_RELOC_X86_64_PLTOFF64:
3162 return BFD_RELOC_X86_64_PLTOFF64;
3163 break;
3164 case BFD_RELOC_X86_64_GOTPC32:
3165 other = BFD_RELOC_X86_64_GOTPC64;
3166 break;
3167 case BFD_RELOC_X86_64_GOTPCREL:
3168 other = BFD_RELOC_X86_64_GOTPCREL64;
3169 break;
3170 case BFD_RELOC_X86_64_TPOFF32:
3171 other = BFD_RELOC_X86_64_TPOFF64;
3172 break;
3173 case BFD_RELOC_X86_64_DTPOFF32:
3174 other = BFD_RELOC_X86_64_DTPOFF64;
3175 break;
3176 default:
3177 break;
3178 }
3179
3180 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
3181 if (other == BFD_RELOC_SIZE32)
3182 {
3183 if (size == 8)
3184 other = BFD_RELOC_SIZE64;
3185 if (pcrel)
3186 {
3187 as_bad (_("there are no pc-relative size relocations"));
3188 return NO_RELOC;
3189 }
3190 }
3191 #endif
3192
3193 /* Sign-checking 4-byte relocations in 16-/32-bit code is pointless. */
3194 if (size == 4 && (flag_code != CODE_64BIT || disallow_64bit_reloc))
3195 sign = -1;
3196
3197 rel = bfd_reloc_type_lookup (stdoutput, other);
3198 if (!rel)
3199 as_bad (_("unknown relocation (%u)"), other);
3200 else if (size != bfd_get_reloc_size (rel))
3201 as_bad (_("%u-byte relocation cannot be applied to %u-byte field"),
3202 bfd_get_reloc_size (rel),
3203 size);
3204 else if (pcrel && !rel->pc_relative)
3205 as_bad (_("non-pc-relative relocation for pc-relative field"));
3206 else if ((rel->complain_on_overflow == complain_overflow_signed
3207 && !sign)
3208 || (rel->complain_on_overflow == complain_overflow_unsigned
3209 && sign > 0))
3210 as_bad (_("relocated field and relocation type differ in signedness"));
3211 else
3212 return other;
3213 return NO_RELOC;
3214 }
3215
3216 if (pcrel)
3217 {
3218 if (!sign)
3219 as_bad (_("there are no unsigned pc-relative relocations"));
3220 switch (size)
3221 {
3222 case 1: return BFD_RELOC_8_PCREL;
3223 case 2: return BFD_RELOC_16_PCREL;
3224 case 4: return BFD_RELOC_32_PCREL;
3225 case 8: return BFD_RELOC_64_PCREL;
3226 }
3227 as_bad (_("cannot do %u byte pc-relative relocation"), size);
3228 }
3229 else
3230 {
3231 if (sign > 0)
3232 switch (size)
3233 {
3234 case 4: return BFD_RELOC_X86_64_32S;
3235 }
3236 else
3237 switch (size)
3238 {
3239 case 1: return BFD_RELOC_8;
3240 case 2: return BFD_RELOC_16;
3241 case 4: return BFD_RELOC_32;
3242 case 8: return BFD_RELOC_64;
3243 }
3244 as_bad (_("cannot do %s %u byte relocation"),
3245 sign > 0 ? "signed" : "unsigned", size);
3246 }
3247
3248 return NO_RELOC;
3249 }
3250
3251 /* Here we decide which fixups can be adjusted to make them relative to
3252 the beginning of the section instead of the symbol. Basically we need
3253 to make sure that the dynamic relocations are done correctly, so in
3254 some cases we force the original symbol to be used. */
3255
3256 int
3257 tc_i386_fix_adjustable (fixS *fixP ATTRIBUTE_UNUSED)
3258 {
3259 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
3260 if (!IS_ELF)
3261 return 1;
3262
3263 /* Don't adjust pc-relative references to merge sections in 64-bit
3264 mode. */
3265 if (use_rela_relocations
3266 && (S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_MERGE) != 0
3267 && fixP->fx_pcrel)
3268 return 0;
3269
3270 /* The x86_64 GOTPCREL are represented as 32bit PCrel relocations
3271 and changed later by validate_fix. */
3272 if (GOT_symbol && fixP->fx_subsy == GOT_symbol
3273 && fixP->fx_r_type == BFD_RELOC_32_PCREL)
3274 return 0;
3275
3276 /* Adjust_reloc_syms doesn't know about the GOT. Need to keep symbol
3277 for size relocations. */
3278 if (fixP->fx_r_type == BFD_RELOC_SIZE32
3279 || fixP->fx_r_type == BFD_RELOC_SIZE64
3280 || fixP->fx_r_type == BFD_RELOC_386_GOTOFF
3281 || fixP->fx_r_type == BFD_RELOC_386_PLT32
3282 || fixP->fx_r_type == BFD_RELOC_386_GOT32
3283 || fixP->fx_r_type == BFD_RELOC_386_GOT32X
3284 || fixP->fx_r_type == BFD_RELOC_386_TLS_GD
3285 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDM
3286 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDO_32
3287 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE_32
3288 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE
3289 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTIE
3290 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE_32
3291 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE
3292 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTDESC
3293 || fixP->fx_r_type == BFD_RELOC_386_TLS_DESC_CALL
3294 || fixP->fx_r_type == BFD_RELOC_X86_64_PLT32
3295 || fixP->fx_r_type == BFD_RELOC_X86_64_GOT32
3296 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCREL
3297 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCRELX
3298 || fixP->fx_r_type == BFD_RELOC_X86_64_REX_GOTPCRELX
3299 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSGD
3300 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSLD
3301 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF32
3302 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF64
3303 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTTPOFF
3304 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF32
3305 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF64
3306 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTOFF64
3307 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPC32_TLSDESC
3308 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSDESC_CALL
3309 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
3310 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
3311 return 0;
3312 #endif
3313 return 1;
3314 }
3315
3316 static int
3317 intel_float_operand (const char *mnemonic)
3318 {
3319 /* Note that the value returned is meaningful only for opcodes with (memory)
3320 operands, hence the code here is free to improperly handle opcodes that
3321 have no operands (for better performance and smaller code). */
3322
3323 if (mnemonic[0] != 'f')
3324 return 0; /* non-math */
3325
3326 switch (mnemonic[1])
3327 {
3328 /* fclex, fdecstp, fdisi, femms, feni, fincstp, finit, fsetpm, and
3329 the fs segment override prefix not currently handled because no
3330 call path can make opcodes without operands get here */
3331 case 'i':
3332 return 2 /* integer op */;
3333 case 'l':
3334 if (mnemonic[2] == 'd' && (mnemonic[3] == 'c' || mnemonic[3] == 'e'))
3335 return 3; /* fldcw/fldenv */
3336 break;
3337 case 'n':
3338 if (mnemonic[2] != 'o' /* fnop */)
3339 return 3; /* non-waiting control op */
3340 break;
3341 case 'r':
3342 if (mnemonic[2] == 's')
3343 return 3; /* frstor/frstpm */
3344 break;
3345 case 's':
3346 if (mnemonic[2] == 'a')
3347 return 3; /* fsave */
3348 if (mnemonic[2] == 't')
3349 {
3350 switch (mnemonic[3])
3351 {
3352 case 'c': /* fstcw */
3353 case 'd': /* fstdw */
3354 case 'e': /* fstenv */
3355 case 's': /* fsts[gw] */
3356 return 3;
3357 }
3358 }
3359 break;
3360 case 'x':
3361 if (mnemonic[2] == 'r' || mnemonic[2] == 's')
3362 return 0; /* fxsave/fxrstor are not really math ops */
3363 break;
3364 }
3365
3366 return 1;
3367 }
3368
3369 /* Build the VEX prefix. */
3370
3371 static void
3372 build_vex_prefix (const insn_template *t)
3373 {
3374 unsigned int register_specifier;
3375 unsigned int implied_prefix;
3376 unsigned int vector_length;
3377 unsigned int w;
3378
3379 /* Check register specifier. */
3380 if (i.vex.register_specifier)
3381 {
3382 register_specifier =
3383 ~register_number (i.vex.register_specifier) & 0xf;
3384 gas_assert ((i.vex.register_specifier->reg_flags & RegVRex) == 0);
3385 }
3386 else
3387 register_specifier = 0xf;
3388
3389 /* Use 2-byte VEX prefix by swapping destination and source operand
3390 if there are more than 1 register operand. */
3391 if (i.reg_operands > 1
3392 && i.vec_encoding != vex_encoding_vex3
3393 && i.dir_encoding == dir_encoding_default
3394 && i.operands == i.reg_operands
3395 && operand_type_equal (&i.types[0], &i.types[i.operands - 1])
3396 && i.tm.opcode_modifier.vexopcode == VEX0F
3397 && (i.tm.opcode_modifier.load || i.tm.opcode_modifier.d)
3398 && i.rex == REX_B)
3399 {
3400 unsigned int xchg = i.operands - 1;
3401 union i386_op temp_op;
3402 i386_operand_type temp_type;
3403
3404 temp_type = i.types[xchg];
3405 i.types[xchg] = i.types[0];
3406 i.types[0] = temp_type;
3407 temp_op = i.op[xchg];
3408 i.op[xchg] = i.op[0];
3409 i.op[0] = temp_op;
3410
3411 gas_assert (i.rm.mode == 3);
3412
3413 i.rex = REX_R;
3414 xchg = i.rm.regmem;
3415 i.rm.regmem = i.rm.reg;
3416 i.rm.reg = xchg;
3417
3418 if (i.tm.opcode_modifier.d)
3419 i.tm.base_opcode ^= (i.tm.base_opcode & 0xee) != 0x6e
3420 ? Opcode_SIMD_FloatD : Opcode_SIMD_IntD;
3421 else /* Use the next insn. */
3422 i.tm = t[1];
3423 }
3424
3425 if (i.tm.opcode_modifier.vex == VEXScalar)
3426 vector_length = avxscalar;
3427 else if (i.tm.opcode_modifier.vex == VEX256)
3428 vector_length = 1;
3429 else
3430 {
3431 unsigned int op;
3432
3433 /* Determine vector length from the last multi-length vector
3434 operand. */
3435 vector_length = 0;
3436 for (op = t->operands; op--;)
3437 if (t->operand_types[op].bitfield.xmmword
3438 && t->operand_types[op].bitfield.ymmword
3439 && i.types[op].bitfield.ymmword)
3440 {
3441 vector_length = 1;
3442 break;
3443 }
3444 }
3445
3446 switch ((i.tm.base_opcode >> 8) & 0xff)
3447 {
3448 case 0:
3449 implied_prefix = 0;
3450 break;
3451 case DATA_PREFIX_OPCODE:
3452 implied_prefix = 1;
3453 break;
3454 case REPE_PREFIX_OPCODE:
3455 implied_prefix = 2;
3456 break;
3457 case REPNE_PREFIX_OPCODE:
3458 implied_prefix = 3;
3459 break;
3460 default:
3461 abort ();
3462 }
3463
3464 /* Check the REX.W bit and VEXW. */
3465 if (i.tm.opcode_modifier.vexw == VEXWIG)
3466 w = (vexwig == vexw1 || (i.rex & REX_W)) ? 1 : 0;
3467 else if (i.tm.opcode_modifier.vexw)
3468 w = i.tm.opcode_modifier.vexw == VEXW1 ? 1 : 0;
3469 else
3470 w = (flag_code == CODE_64BIT ? i.rex & REX_W : vexwig == vexw1) ? 1 : 0;
3471
3472 /* Use 2-byte VEX prefix if possible. */
3473 if (w == 0
3474 && i.vec_encoding != vex_encoding_vex3
3475 && i.tm.opcode_modifier.vexopcode == VEX0F
3476 && (i.rex & (REX_W | REX_X | REX_B)) == 0)
3477 {
3478 /* 2-byte VEX prefix. */
3479 unsigned int r;
3480
3481 i.vex.length = 2;
3482 i.vex.bytes[0] = 0xc5;
3483
3484 /* Check the REX.R bit. */
3485 r = (i.rex & REX_R) ? 0 : 1;
3486 i.vex.bytes[1] = (r << 7
3487 | register_specifier << 3
3488 | vector_length << 2
3489 | implied_prefix);
3490 }
3491 else
3492 {
3493 /* 3-byte VEX prefix. */
3494 unsigned int m;
3495
3496 i.vex.length = 3;
3497
3498 switch (i.tm.opcode_modifier.vexopcode)
3499 {
3500 case VEX0F:
3501 m = 0x1;
3502 i.vex.bytes[0] = 0xc4;
3503 break;
3504 case VEX0F38:
3505 m = 0x2;
3506 i.vex.bytes[0] = 0xc4;
3507 break;
3508 case VEX0F3A:
3509 m = 0x3;
3510 i.vex.bytes[0] = 0xc4;
3511 break;
3512 case XOP08:
3513 m = 0x8;
3514 i.vex.bytes[0] = 0x8f;
3515 break;
3516 case XOP09:
3517 m = 0x9;
3518 i.vex.bytes[0] = 0x8f;
3519 break;
3520 case XOP0A:
3521 m = 0xa;
3522 i.vex.bytes[0] = 0x8f;
3523 break;
3524 default:
3525 abort ();
3526 }
3527
3528 /* The high 3 bits of the second VEX byte are 1's compliment
3529 of RXB bits from REX. */
3530 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3531
3532 i.vex.bytes[2] = (w << 7
3533 | register_specifier << 3
3534 | vector_length << 2
3535 | implied_prefix);
3536 }
3537 }
3538
3539 static INLINE bfd_boolean
3540 is_evex_encoding (const insn_template *t)
3541 {
3542 return t->opcode_modifier.evex || t->opcode_modifier.disp8memshift
3543 || t->opcode_modifier.broadcast || t->opcode_modifier.masking
3544 || t->opcode_modifier.staticrounding || t->opcode_modifier.sae;
3545 }
3546
3547 static INLINE bfd_boolean
3548 is_any_vex_encoding (const insn_template *t)
3549 {
3550 return t->opcode_modifier.vex || t->opcode_modifier.vexopcode
3551 || is_evex_encoding (t);
3552 }
3553
3554 /* Build the EVEX prefix. */
3555
3556 static void
3557 build_evex_prefix (void)
3558 {
3559 unsigned int register_specifier;
3560 unsigned int implied_prefix;
3561 unsigned int m, w;
3562 rex_byte vrex_used = 0;
3563
3564 /* Check register specifier. */
3565 if (i.vex.register_specifier)
3566 {
3567 gas_assert ((i.vrex & REX_X) == 0);
3568
3569 register_specifier = i.vex.register_specifier->reg_num;
3570 if ((i.vex.register_specifier->reg_flags & RegRex))
3571 register_specifier += 8;
3572 /* The upper 16 registers are encoded in the fourth byte of the
3573 EVEX prefix. */
3574 if (!(i.vex.register_specifier->reg_flags & RegVRex))
3575 i.vex.bytes[3] = 0x8;
3576 register_specifier = ~register_specifier & 0xf;
3577 }
3578 else
3579 {
3580 register_specifier = 0xf;
3581
3582 /* Encode upper 16 vector index register in the fourth byte of
3583 the EVEX prefix. */
3584 if (!(i.vrex & REX_X))
3585 i.vex.bytes[3] = 0x8;
3586 else
3587 vrex_used |= REX_X;
3588 }
3589
3590 switch ((i.tm.base_opcode >> 8) & 0xff)
3591 {
3592 case 0:
3593 implied_prefix = 0;
3594 break;
3595 case DATA_PREFIX_OPCODE:
3596 implied_prefix = 1;
3597 break;
3598 case REPE_PREFIX_OPCODE:
3599 implied_prefix = 2;
3600 break;
3601 case REPNE_PREFIX_OPCODE:
3602 implied_prefix = 3;
3603 break;
3604 default:
3605 abort ();
3606 }
3607
3608 /* 4 byte EVEX prefix. */
3609 i.vex.length = 4;
3610 i.vex.bytes[0] = 0x62;
3611
3612 /* mmmm bits. */
3613 switch (i.tm.opcode_modifier.vexopcode)
3614 {
3615 case VEX0F:
3616 m = 1;
3617 break;
3618 case VEX0F38:
3619 m = 2;
3620 break;
3621 case VEX0F3A:
3622 m = 3;
3623 break;
3624 default:
3625 abort ();
3626 break;
3627 }
3628
3629 /* The high 3 bits of the second EVEX byte are 1's compliment of RXB
3630 bits from REX. */
3631 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3632
3633 /* The fifth bit of the second EVEX byte is 1's compliment of the
3634 REX_R bit in VREX. */
3635 if (!(i.vrex & REX_R))
3636 i.vex.bytes[1] |= 0x10;
3637 else
3638 vrex_used |= REX_R;
3639
3640 if ((i.reg_operands + i.imm_operands) == i.operands)
3641 {
3642 /* When all operands are registers, the REX_X bit in REX is not
3643 used. We reuse it to encode the upper 16 registers, which is
3644 indicated by the REX_B bit in VREX. The REX_X bit is encoded
3645 as 1's compliment. */
3646 if ((i.vrex & REX_B))
3647 {
3648 vrex_used |= REX_B;
3649 i.vex.bytes[1] &= ~0x40;
3650 }
3651 }
3652
3653 /* EVEX instructions shouldn't need the REX prefix. */
3654 i.vrex &= ~vrex_used;
3655 gas_assert (i.vrex == 0);
3656
3657 /* Check the REX.W bit and VEXW. */
3658 if (i.tm.opcode_modifier.vexw == VEXWIG)
3659 w = (evexwig == evexw1 || (i.rex & REX_W)) ? 1 : 0;
3660 else if (i.tm.opcode_modifier.vexw)
3661 w = i.tm.opcode_modifier.vexw == VEXW1 ? 1 : 0;
3662 else
3663 w = (flag_code == CODE_64BIT ? i.rex & REX_W : evexwig == evexw1) ? 1 : 0;
3664
3665 /* Encode the U bit. */
3666 implied_prefix |= 0x4;
3667
3668 /* The third byte of the EVEX prefix. */
3669 i.vex.bytes[2] = (w << 7 | register_specifier << 3 | implied_prefix);
3670
3671 /* The fourth byte of the EVEX prefix. */
3672 /* The zeroing-masking bit. */
3673 if (i.mask && i.mask->zeroing)
3674 i.vex.bytes[3] |= 0x80;
3675
3676 /* Don't always set the broadcast bit if there is no RC. */
3677 if (!i.rounding)
3678 {
3679 /* Encode the vector length. */
3680 unsigned int vec_length;
3681
3682 if (!i.tm.opcode_modifier.evex
3683 || i.tm.opcode_modifier.evex == EVEXDYN)
3684 {
3685 unsigned int op;
3686
3687 /* Determine vector length from the last multi-length vector
3688 operand. */
3689 vec_length = 0;
3690 for (op = i.operands; op--;)
3691 if (i.tm.operand_types[op].bitfield.xmmword
3692 + i.tm.operand_types[op].bitfield.ymmword
3693 + i.tm.operand_types[op].bitfield.zmmword > 1)
3694 {
3695 if (i.types[op].bitfield.zmmword)
3696 {
3697 i.tm.opcode_modifier.evex = EVEX512;
3698 break;
3699 }
3700 else if (i.types[op].bitfield.ymmword)
3701 {
3702 i.tm.opcode_modifier.evex = EVEX256;
3703 break;
3704 }
3705 else if (i.types[op].bitfield.xmmword)
3706 {
3707 i.tm.opcode_modifier.evex = EVEX128;
3708 break;
3709 }
3710 else if (i.broadcast && (int) op == i.broadcast->operand)
3711 {
3712 switch (i.broadcast->bytes)
3713 {
3714 case 64:
3715 i.tm.opcode_modifier.evex = EVEX512;
3716 break;
3717 case 32:
3718 i.tm.opcode_modifier.evex = EVEX256;
3719 break;
3720 case 16:
3721 i.tm.opcode_modifier.evex = EVEX128;
3722 break;
3723 default:
3724 abort ();
3725 }
3726 break;
3727 }
3728 }
3729
3730 if (op >= MAX_OPERANDS)
3731 abort ();
3732 }
3733
3734 switch (i.tm.opcode_modifier.evex)
3735 {
3736 case EVEXLIG: /* LL' is ignored */
3737 vec_length = evexlig << 5;
3738 break;
3739 case EVEX128:
3740 vec_length = 0 << 5;
3741 break;
3742 case EVEX256:
3743 vec_length = 1 << 5;
3744 break;
3745 case EVEX512:
3746 vec_length = 2 << 5;
3747 break;
3748 default:
3749 abort ();
3750 break;
3751 }
3752 i.vex.bytes[3] |= vec_length;
3753 /* Encode the broadcast bit. */
3754 if (i.broadcast)
3755 i.vex.bytes[3] |= 0x10;
3756 }
3757 else
3758 {
3759 if (i.rounding->type != saeonly)
3760 i.vex.bytes[3] |= 0x10 | (i.rounding->type << 5);
3761 else
3762 i.vex.bytes[3] |= 0x10 | (evexrcig << 5);
3763 }
3764
3765 if (i.mask && i.mask->mask)
3766 i.vex.bytes[3] |= i.mask->mask->reg_num;
3767 }
3768
3769 static void
3770 process_immext (void)
3771 {
3772 expressionS *exp;
3773
3774 if ((i.tm.cpu_flags.bitfield.cpusse3 || i.tm.cpu_flags.bitfield.cpusvme)
3775 && i.operands > 0)
3776 {
3777 /* MONITOR/MWAIT as well as SVME instructions have fixed operands
3778 with an opcode suffix which is coded in the same place as an
3779 8-bit immediate field would be.
3780 Here we check those operands and remove them afterwards. */
3781 unsigned int x;
3782
3783 for (x = 0; x < i.operands; x++)
3784 if (register_number (i.op[x].regs) != x)
3785 as_bad (_("can't use register '%s%s' as operand %d in '%s'."),
3786 register_prefix, i.op[x].regs->reg_name, x + 1,
3787 i.tm.name);
3788
3789 i.operands = 0;
3790 }
3791
3792 if (i.tm.cpu_flags.bitfield.cpumwaitx && i.operands > 0)
3793 {
3794 /* MONITORX/MWAITX instructions have fixed operands with an opcode
3795 suffix which is coded in the same place as an 8-bit immediate
3796 field would be.
3797 Here we check those operands and remove them afterwards. */
3798 unsigned int x;
3799
3800 if (i.operands != 3)
3801 abort();
3802
3803 for (x = 0; x < 2; x++)
3804 if (register_number (i.op[x].regs) != x)
3805 goto bad_register_operand;
3806
3807 /* Check for third operand for mwaitx/monitorx insn. */
3808 if (register_number (i.op[x].regs)
3809 != (x + (i.tm.extension_opcode == 0xfb)))
3810 {
3811 bad_register_operand:
3812 as_bad (_("can't use register '%s%s' as operand %d in '%s'."),
3813 register_prefix, i.op[x].regs->reg_name, x+1,
3814 i.tm.name);
3815 }
3816
3817 i.operands = 0;
3818 }
3819
3820 /* These AMD 3DNow! and SSE2 instructions have an opcode suffix
3821 which is coded in the same place as an 8-bit immediate field
3822 would be. Here we fake an 8-bit immediate operand from the
3823 opcode suffix stored in tm.extension_opcode.
3824
3825 AVX instructions also use this encoding, for some of
3826 3 argument instructions. */
3827
3828 gas_assert (i.imm_operands <= 1
3829 && (i.operands <= 2
3830 || (is_any_vex_encoding (&i.tm)
3831 && i.operands <= 4)));
3832
3833 exp = &im_expressions[i.imm_operands++];
3834 i.op[i.operands].imms = exp;
3835 i.types[i.operands] = imm8;
3836 i.operands++;
3837 exp->X_op = O_constant;
3838 exp->X_add_number = i.tm.extension_opcode;
3839 i.tm.extension_opcode = None;
3840 }
3841
3842
3843 static int
3844 check_hle (void)
3845 {
3846 switch (i.tm.opcode_modifier.hleprefixok)
3847 {
3848 default:
3849 abort ();
3850 case HLEPrefixNone:
3851 as_bad (_("invalid instruction `%s' after `%s'"),
3852 i.tm.name, i.hle_prefix);
3853 return 0;
3854 case HLEPrefixLock:
3855 if (i.prefix[LOCK_PREFIX])
3856 return 1;
3857 as_bad (_("missing `lock' with `%s'"), i.hle_prefix);
3858 return 0;
3859 case HLEPrefixAny:
3860 return 1;
3861 case HLEPrefixRelease:
3862 if (i.prefix[HLE_PREFIX] != XRELEASE_PREFIX_OPCODE)
3863 {
3864 as_bad (_("instruction `%s' after `xacquire' not allowed"),
3865 i.tm.name);
3866 return 0;
3867 }
3868 if (i.mem_operands == 0
3869 || !operand_type_check (i.types[i.operands - 1], anymem))
3870 {
3871 as_bad (_("memory destination needed for instruction `%s'"
3872 " after `xrelease'"), i.tm.name);
3873 return 0;
3874 }
3875 return 1;
3876 }
3877 }
3878
3879 /* Try the shortest encoding by shortening operand size. */
3880
3881 static void
3882 optimize_encoding (void)
3883 {
3884 int j;
3885
3886 if (optimize_for_space
3887 && i.reg_operands == 1
3888 && i.imm_operands == 1
3889 && !i.types[1].bitfield.byte
3890 && i.op[0].imms->X_op == O_constant
3891 && fits_in_imm7 (i.op[0].imms->X_add_number)
3892 && ((i.tm.base_opcode == 0xa8
3893 && i.tm.extension_opcode == None)
3894 || (i.tm.base_opcode == 0xf6
3895 && i.tm.extension_opcode == 0x0)))
3896 {
3897 /* Optimize: -Os:
3898 test $imm7, %r64/%r32/%r16 -> test $imm7, %r8
3899 */
3900 unsigned int base_regnum = i.op[1].regs->reg_num;
3901 if (flag_code == CODE_64BIT || base_regnum < 4)
3902 {
3903 i.types[1].bitfield.byte = 1;
3904 /* Ignore the suffix. */
3905 i.suffix = 0;
3906 if (base_regnum >= 4
3907 && !(i.op[1].regs->reg_flags & RegRex))
3908 {
3909 /* Handle SP, BP, SI and DI registers. */
3910 if (i.types[1].bitfield.word)
3911 j = 16;
3912 else if (i.types[1].bitfield.dword)
3913 j = 32;
3914 else
3915 j = 48;
3916 i.op[1].regs -= j;
3917 }
3918 }
3919 }
3920 else if (flag_code == CODE_64BIT
3921 && ((i.types[1].bitfield.qword
3922 && i.reg_operands == 1
3923 && i.imm_operands == 1
3924 && i.op[0].imms->X_op == O_constant
3925 && ((i.tm.base_opcode == 0xb0
3926 && i.tm.extension_opcode == None
3927 && fits_in_unsigned_long (i.op[0].imms->X_add_number))
3928 || (fits_in_imm31 (i.op[0].imms->X_add_number)
3929 && (((i.tm.base_opcode == 0x24
3930 || i.tm.base_opcode == 0xa8)
3931 && i.tm.extension_opcode == None)
3932 || (i.tm.base_opcode == 0x80
3933 && i.tm.extension_opcode == 0x4)
3934 || ((i.tm.base_opcode == 0xf6
3935 || i.tm.base_opcode == 0xc6)
3936 && i.tm.extension_opcode == 0x0)))))
3937 || (i.types[0].bitfield.qword
3938 && ((i.reg_operands == 2
3939 && i.op[0].regs == i.op[1].regs
3940 && ((i.tm.base_opcode == 0x30
3941 || i.tm.base_opcode == 0x28)
3942 && i.tm.extension_opcode == None))
3943 || (i.reg_operands == 1
3944 && i.operands == 1
3945 && i.tm.base_opcode == 0x30
3946 && i.tm.extension_opcode == None)))))
3947 {
3948 /* Optimize: -O:
3949 andq $imm31, %r64 -> andl $imm31, %r32
3950 testq $imm31, %r64 -> testl $imm31, %r32
3951 xorq %r64, %r64 -> xorl %r32, %r32
3952 subq %r64, %r64 -> subl %r32, %r32
3953 movq $imm31, %r64 -> movl $imm31, %r32
3954 movq $imm32, %r64 -> movl $imm32, %r32
3955 */
3956 i.tm.opcode_modifier.norex64 = 1;
3957 if (i.tm.base_opcode == 0xb0 || i.tm.base_opcode == 0xc6)
3958 {
3959 /* Handle
3960 movq $imm31, %r64 -> movl $imm31, %r32
3961 movq $imm32, %r64 -> movl $imm32, %r32
3962 */
3963 i.tm.operand_types[0].bitfield.imm32 = 1;
3964 i.tm.operand_types[0].bitfield.imm32s = 0;
3965 i.tm.operand_types[0].bitfield.imm64 = 0;
3966 i.types[0].bitfield.imm32 = 1;
3967 i.types[0].bitfield.imm32s = 0;
3968 i.types[0].bitfield.imm64 = 0;
3969 i.types[1].bitfield.dword = 1;
3970 i.types[1].bitfield.qword = 0;
3971 if (i.tm.base_opcode == 0xc6)
3972 {
3973 /* Handle
3974 movq $imm31, %r64 -> movl $imm31, %r32
3975 */
3976 i.tm.base_opcode = 0xb0;
3977 i.tm.extension_opcode = None;
3978 i.tm.opcode_modifier.shortform = 1;
3979 i.tm.opcode_modifier.modrm = 0;
3980 }
3981 }
3982 }
3983 else if (i.reg_operands == 3
3984 && i.op[0].regs == i.op[1].regs
3985 && !i.types[2].bitfield.xmmword
3986 && (i.tm.opcode_modifier.vex
3987 || ((!i.mask || i.mask->zeroing)
3988 && !i.rounding
3989 && is_evex_encoding (&i.tm)
3990 && (i.vec_encoding != vex_encoding_evex
3991 || cpu_arch_isa_flags.bitfield.cpuavx512vl
3992 || i.tm.cpu_flags.bitfield.cpuavx512vl
3993 || (i.tm.operand_types[2].bitfield.zmmword
3994 && i.types[2].bitfield.ymmword))))
3995 && ((i.tm.base_opcode == 0x55
3996 || i.tm.base_opcode == 0x6655
3997 || i.tm.base_opcode == 0x66df
3998 || i.tm.base_opcode == 0x57
3999 || i.tm.base_opcode == 0x6657
4000 || i.tm.base_opcode == 0x66ef
4001 || i.tm.base_opcode == 0x66f8
4002 || i.tm.base_opcode == 0x66f9
4003 || i.tm.base_opcode == 0x66fa
4004 || i.tm.base_opcode == 0x66fb
4005 || i.tm.base_opcode == 0x42
4006 || i.tm.base_opcode == 0x6642
4007 || i.tm.base_opcode == 0x47
4008 || i.tm.base_opcode == 0x6647)
4009 && i.tm.extension_opcode == None))
4010 {
4011 /* Optimize: -O1:
4012 VOP, one of vandnps, vandnpd, vxorps, vxorpd, vpsubb, vpsubd,
4013 vpsubq and vpsubw:
4014 EVEX VOP %zmmM, %zmmM, %zmmN
4015 -> VEX VOP %xmmM, %xmmM, %xmmN (M and N < 16)
4016 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
4017 EVEX VOP %ymmM, %ymmM, %ymmN
4018 -> VEX VOP %xmmM, %xmmM, %xmmN (M and N < 16)
4019 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
4020 VEX VOP %ymmM, %ymmM, %ymmN
4021 -> VEX VOP %xmmM, %xmmM, %xmmN
4022 VOP, one of vpandn and vpxor:
4023 VEX VOP %ymmM, %ymmM, %ymmN
4024 -> VEX VOP %xmmM, %xmmM, %xmmN
4025 VOP, one of vpandnd and vpandnq:
4026 EVEX VOP %zmmM, %zmmM, %zmmN
4027 -> VEX vpandn %xmmM, %xmmM, %xmmN (M and N < 16)
4028 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
4029 EVEX VOP %ymmM, %ymmM, %ymmN
4030 -> VEX vpandn %xmmM, %xmmM, %xmmN (M and N < 16)
4031 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
4032 VOP, one of vpxord and vpxorq:
4033 EVEX VOP %zmmM, %zmmM, %zmmN
4034 -> VEX vpxor %xmmM, %xmmM, %xmmN (M and N < 16)
4035 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
4036 EVEX VOP %ymmM, %ymmM, %ymmN
4037 -> VEX vpxor %xmmM, %xmmM, %xmmN (M and N < 16)
4038 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
4039 VOP, one of kxord and kxorq:
4040 VEX VOP %kM, %kM, %kN
4041 -> VEX kxorw %kM, %kM, %kN
4042 VOP, one of kandnd and kandnq:
4043 VEX VOP %kM, %kM, %kN
4044 -> VEX kandnw %kM, %kM, %kN
4045 */
4046 if (is_evex_encoding (&i.tm))
4047 {
4048 if (i.vec_encoding != vex_encoding_evex)
4049 {
4050 i.tm.opcode_modifier.vex = VEX128;
4051 i.tm.opcode_modifier.vexw = VEXW0;
4052 i.tm.opcode_modifier.evex = 0;
4053 }
4054 else if (optimize > 1)
4055 i.tm.opcode_modifier.evex = EVEX128;
4056 else
4057 return;
4058 }
4059 else if (i.tm.operand_types[0].bitfield.regmask)
4060 {
4061 i.tm.base_opcode &= 0xff;
4062 i.tm.opcode_modifier.vexw = VEXW0;
4063 }
4064 else
4065 i.tm.opcode_modifier.vex = VEX128;
4066
4067 if (i.tm.opcode_modifier.vex)
4068 for (j = 0; j < 3; j++)
4069 {
4070 i.types[j].bitfield.xmmword = 1;
4071 i.types[j].bitfield.ymmword = 0;
4072 }
4073 }
4074 else if (i.vec_encoding != vex_encoding_evex
4075 && !i.types[0].bitfield.zmmword
4076 && !i.types[1].bitfield.zmmword
4077 && !i.mask
4078 && is_evex_encoding (&i.tm)
4079 && ((i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0x666f
4080 || (i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0xf36f
4081 || (i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0xf26f)
4082 && i.tm.extension_opcode == None)
4083 {
4084 /* Optimize: -O1:
4085 VOP, one of vmovdqa32, vmovdqa64, vmovdqu8, vmovdqu16,
4086 vmovdqu32 and vmovdqu64:
4087 EVEX VOP %xmmM, %xmmN
4088 -> VEX vmovdqa|vmovdqu %xmmM, %xmmN (M and N < 16)
4089 EVEX VOP %ymmM, %ymmN
4090 -> VEX vmovdqa|vmovdqu %ymmM, %ymmN (M and N < 16)
4091 EVEX VOP %xmmM, mem
4092 -> VEX vmovdqa|vmovdqu %xmmM, mem (M < 16)
4093 EVEX VOP %ymmM, mem
4094 -> VEX vmovdqa|vmovdqu %ymmM, mem (M < 16)
4095 EVEX VOP mem, %xmmN
4096 -> VEX mvmovdqa|vmovdquem, %xmmN (N < 16)
4097 EVEX VOP mem, %ymmN
4098 -> VEX vmovdqa|vmovdqu mem, %ymmN (N < 16)
4099 */
4100 for (j = 0; j < 2; j++)
4101 if (operand_type_check (i.types[j], disp)
4102 && i.op[j].disps->X_op == O_constant)
4103 {
4104 /* Since the VEX prefix has 2 or 3 bytes, the EVEX prefix
4105 has 4 bytes, EVEX Disp8 has 1 byte and VEX Disp32 has 4
4106 bytes, we choose EVEX Disp8 over VEX Disp32. */
4107 int evex_disp8, vex_disp8;
4108 unsigned int memshift = i.memshift;
4109 offsetT n = i.op[j].disps->X_add_number;
4110
4111 evex_disp8 = fits_in_disp8 (n);
4112 i.memshift = 0;
4113 vex_disp8 = fits_in_disp8 (n);
4114 if (evex_disp8 != vex_disp8)
4115 {
4116 i.memshift = memshift;
4117 return;
4118 }
4119
4120 i.types[j].bitfield.disp8 = vex_disp8;
4121 break;
4122 }
4123 if ((i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0xf26f)
4124 i.tm.base_opcode ^= 0xf36f ^ 0xf26f;
4125 i.tm.opcode_modifier.vex
4126 = i.types[0].bitfield.ymmword ? VEX256 : VEX128;
4127 i.tm.opcode_modifier.vexw = VEXW0;
4128 i.tm.opcode_modifier.evex = 0;
4129 i.tm.opcode_modifier.masking = 0;
4130 i.tm.opcode_modifier.disp8memshift = 0;
4131 i.memshift = 0;
4132 for (j = 0; j < 2; j++)
4133 if (operand_type_check (i.types[j], disp)
4134 && i.op[j].disps->X_op == O_constant)
4135 {
4136 i.types[j].bitfield.disp8
4137 = fits_in_disp8 (i.op[j].disps->X_add_number);
4138 break;
4139 }
4140 }
4141 }
4142
4143 /* This is the guts of the machine-dependent assembler. LINE points to a
4144 machine dependent instruction. This function is supposed to emit
4145 the frags/bytes it assembles to. */
4146
4147 void
4148 md_assemble (char *line)
4149 {
4150 unsigned int j;
4151 char mnemonic[MAX_MNEM_SIZE], mnem_suffix;
4152 const insn_template *t;
4153
4154 /* Initialize globals. */
4155 memset (&i, '\0', sizeof (i));
4156 for (j = 0; j < MAX_OPERANDS; j++)
4157 i.reloc[j] = NO_RELOC;
4158 memset (disp_expressions, '\0', sizeof (disp_expressions));
4159 memset (im_expressions, '\0', sizeof (im_expressions));
4160 save_stack_p = save_stack;
4161
4162 /* First parse an instruction mnemonic & call i386_operand for the operands.
4163 We assume that the scrubber has arranged it so that line[0] is the valid
4164 start of a (possibly prefixed) mnemonic. */
4165
4166 line = parse_insn (line, mnemonic);
4167 if (line == NULL)
4168 return;
4169 mnem_suffix = i.suffix;
4170
4171 line = parse_operands (line, mnemonic);
4172 this_operand = -1;
4173 xfree (i.memop1_string);
4174 i.memop1_string = NULL;
4175 if (line == NULL)
4176 return;
4177
4178 /* Now we've parsed the mnemonic into a set of templates, and have the
4179 operands at hand. */
4180
4181 /* All intel opcodes have reversed operands except for "bound" and
4182 "enter". We also don't reverse intersegment "jmp" and "call"
4183 instructions with 2 immediate operands so that the immediate segment
4184 precedes the offset, as it does when in AT&T mode. */
4185 if (intel_syntax
4186 && i.operands > 1
4187 && (strcmp (mnemonic, "bound") != 0)
4188 && (strcmp (mnemonic, "invlpga") != 0)
4189 && !(operand_type_check (i.types[0], imm)
4190 && operand_type_check (i.types[1], imm)))
4191 swap_operands ();
4192
4193 /* The order of the immediates should be reversed
4194 for 2 immediates extrq and insertq instructions */
4195 if (i.imm_operands == 2
4196 && (strcmp (mnemonic, "extrq") == 0
4197 || strcmp (mnemonic, "insertq") == 0))
4198 swap_2_operands (0, 1);
4199
4200 if (i.imm_operands)
4201 optimize_imm ();
4202
4203 /* Don't optimize displacement for movabs since it only takes 64bit
4204 displacement. */
4205 if (i.disp_operands
4206 && i.disp_encoding != disp_encoding_32bit
4207 && (flag_code != CODE_64BIT
4208 || strcmp (mnemonic, "movabs") != 0))
4209 optimize_disp ();
4210
4211 /* Next, we find a template that matches the given insn,
4212 making sure the overlap of the given operands types is consistent
4213 with the template operand types. */
4214
4215 if (!(t = match_template (mnem_suffix)))
4216 return;
4217
4218 if (sse_check != check_none
4219 && !i.tm.opcode_modifier.noavx
4220 && !i.tm.cpu_flags.bitfield.cpuavx
4221 && (i.tm.cpu_flags.bitfield.cpusse
4222 || i.tm.cpu_flags.bitfield.cpusse2
4223 || i.tm.cpu_flags.bitfield.cpusse3
4224 || i.tm.cpu_flags.bitfield.cpussse3
4225 || i.tm.cpu_flags.bitfield.cpusse4_1
4226 || i.tm.cpu_flags.bitfield.cpusse4_2
4227 || i.tm.cpu_flags.bitfield.cpupclmul
4228 || i.tm.cpu_flags.bitfield.cpuaes
4229 || i.tm.cpu_flags.bitfield.cpugfni))
4230 {
4231 (sse_check == check_warning
4232 ? as_warn
4233 : as_bad) (_("SSE instruction `%s' is used"), i.tm.name);
4234 }
4235
4236 /* Zap movzx and movsx suffix. The suffix has been set from
4237 "word ptr" or "byte ptr" on the source operand in Intel syntax
4238 or extracted from mnemonic in AT&T syntax. But we'll use
4239 the destination register to choose the suffix for encoding. */
4240 if ((i.tm.base_opcode & ~9) == 0x0fb6)
4241 {
4242 /* In Intel syntax, there must be a suffix. In AT&T syntax, if
4243 there is no suffix, the default will be byte extension. */
4244 if (i.reg_operands != 2
4245 && !i.suffix
4246 && intel_syntax)
4247 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
4248
4249 i.suffix = 0;
4250 }
4251
4252 if (i.tm.opcode_modifier.fwait)
4253 if (!add_prefix (FWAIT_OPCODE))
4254 return;
4255
4256 /* Check if REP prefix is OK. */
4257 if (i.rep_prefix && !i.tm.opcode_modifier.repprefixok)
4258 {
4259 as_bad (_("invalid instruction `%s' after `%s'"),
4260 i.tm.name, i.rep_prefix);
4261 return;
4262 }
4263
4264 /* Check for lock without a lockable instruction. Destination operand
4265 must be memory unless it is xchg (0x86). */
4266 if (i.prefix[LOCK_PREFIX]
4267 && (!i.tm.opcode_modifier.islockable
4268 || i.mem_operands == 0
4269 || (i.tm.base_opcode != 0x86
4270 && !operand_type_check (i.types[i.operands - 1], anymem))))
4271 {
4272 as_bad (_("expecting lockable instruction after `lock'"));
4273 return;
4274 }
4275
4276 /* Check for data size prefix on VEX/XOP/EVEX encoded insns. */
4277 if (i.prefix[DATA_PREFIX] && is_any_vex_encoding (&i.tm))
4278 {
4279 as_bad (_("data size prefix invalid with `%s'"), i.tm.name);
4280 return;
4281 }
4282
4283 /* Check if HLE prefix is OK. */
4284 if (i.hle_prefix && !check_hle ())
4285 return;
4286
4287 /* Check BND prefix. */
4288 if (i.bnd_prefix && !i.tm.opcode_modifier.bndprefixok)
4289 as_bad (_("expecting valid branch instruction after `bnd'"));
4290
4291 /* Check NOTRACK prefix. */
4292 if (i.notrack_prefix && !i.tm.opcode_modifier.notrackprefixok)
4293 as_bad (_("expecting indirect branch instruction after `notrack'"));
4294
4295 if (i.tm.cpu_flags.bitfield.cpumpx)
4296 {
4297 if (flag_code == CODE_64BIT && i.prefix[ADDR_PREFIX])
4298 as_bad (_("32-bit address isn't allowed in 64-bit MPX instructions."));
4299 else if (flag_code != CODE_16BIT
4300 ? i.prefix[ADDR_PREFIX]
4301 : i.mem_operands && !i.prefix[ADDR_PREFIX])
4302 as_bad (_("16-bit address isn't allowed in MPX instructions"));
4303 }
4304
4305 /* Insert BND prefix. */
4306 if (add_bnd_prefix && i.tm.opcode_modifier.bndprefixok)
4307 {
4308 if (!i.prefix[BND_PREFIX])
4309 add_prefix (BND_PREFIX_OPCODE);
4310 else if (i.prefix[BND_PREFIX] != BND_PREFIX_OPCODE)
4311 {
4312 as_warn (_("replacing `rep'/`repe' prefix by `bnd'"));
4313 i.prefix[BND_PREFIX] = BND_PREFIX_OPCODE;
4314 }
4315 }
4316
4317 /* Check string instruction segment overrides. */
4318 if (i.tm.opcode_modifier.isstring && i.mem_operands != 0)
4319 {
4320 if (!check_string ())
4321 return;
4322 i.disp_operands = 0;
4323 }
4324
4325 if (optimize && !i.no_optimize && i.tm.opcode_modifier.optimize)
4326 optimize_encoding ();
4327
4328 if (!process_suffix ())
4329 return;
4330
4331 /* Update operand types. */
4332 for (j = 0; j < i.operands; j++)
4333 i.types[j] = operand_type_and (i.types[j], i.tm.operand_types[j]);
4334
4335 /* Make still unresolved immediate matches conform to size of immediate
4336 given in i.suffix. */
4337 if (!finalize_imm ())
4338 return;
4339
4340 if (i.types[0].bitfield.imm1)
4341 i.imm_operands = 0; /* kludge for shift insns. */
4342
4343 /* We only need to check those implicit registers for instructions
4344 with 3 operands or less. */
4345 if (i.operands <= 3)
4346 for (j = 0; j < i.operands; j++)
4347 if (i.types[j].bitfield.inoutportreg
4348 || i.types[j].bitfield.shiftcount
4349 || (i.types[j].bitfield.acc && !i.types[j].bitfield.xmmword))
4350 i.reg_operands--;
4351
4352 /* ImmExt should be processed after SSE2AVX. */
4353 if (!i.tm.opcode_modifier.sse2avx
4354 && i.tm.opcode_modifier.immext)
4355 process_immext ();
4356
4357 /* For insns with operands there are more diddles to do to the opcode. */
4358 if (i.operands)
4359 {
4360 if (!process_operands ())
4361 return;
4362 }
4363 else if (!quiet_warnings && i.tm.opcode_modifier.ugh)
4364 {
4365 /* UnixWare fsub no args is alias for fsubp, fadd -> faddp, etc. */
4366 as_warn (_("translating to `%sp'"), i.tm.name);
4367 }
4368
4369 if (is_any_vex_encoding (&i.tm))
4370 {
4371 if (flag_code == CODE_16BIT)
4372 {
4373 as_bad (_("instruction `%s' isn't supported in 16-bit mode."),
4374 i.tm.name);
4375 return;
4376 }
4377
4378 if (i.tm.opcode_modifier.vex)
4379 build_vex_prefix (t);
4380 else
4381 build_evex_prefix ();
4382 }
4383
4384 /* Handle conversion of 'int $3' --> special int3 insn. XOP or FMA4
4385 instructions may define INT_OPCODE as well, so avoid this corner
4386 case for those instructions that use MODRM. */
4387 if (i.tm.base_opcode == INT_OPCODE
4388 && !i.tm.opcode_modifier.modrm
4389 && i.op[0].imms->X_add_number == 3)
4390 {
4391 i.tm.base_opcode = INT3_OPCODE;
4392 i.imm_operands = 0;
4393 }
4394
4395 if ((i.tm.opcode_modifier.jump
4396 || i.tm.opcode_modifier.jumpbyte
4397 || i.tm.opcode_modifier.jumpdword)
4398 && i.op[0].disps->X_op == O_constant)
4399 {
4400 /* Convert "jmp constant" (and "call constant") to a jump (call) to
4401 the absolute address given by the constant. Since ix86 jumps and
4402 calls are pc relative, we need to generate a reloc. */
4403 i.op[0].disps->X_add_symbol = &abs_symbol;
4404 i.op[0].disps->X_op = O_symbol;
4405 }
4406
4407 if (i.tm.opcode_modifier.rex64)
4408 i.rex |= REX_W;
4409
4410 /* For 8 bit registers we need an empty rex prefix. Also if the
4411 instruction already has a prefix, we need to convert old
4412 registers to new ones. */
4413
4414 if ((i.types[0].bitfield.reg && i.types[0].bitfield.byte
4415 && (i.op[0].regs->reg_flags & RegRex64) != 0)
4416 || (i.types[1].bitfield.reg && i.types[1].bitfield.byte
4417 && (i.op[1].regs->reg_flags & RegRex64) != 0)
4418 || (((i.types[0].bitfield.reg && i.types[0].bitfield.byte)
4419 || (i.types[1].bitfield.reg && i.types[1].bitfield.byte))
4420 && i.rex != 0))
4421 {
4422 int x;
4423
4424 i.rex |= REX_OPCODE;
4425 for (x = 0; x < 2; x++)
4426 {
4427 /* Look for 8 bit operand that uses old registers. */
4428 if (i.types[x].bitfield.reg && i.types[x].bitfield.byte
4429 && (i.op[x].regs->reg_flags & RegRex64) == 0)
4430 {
4431 /* In case it is "hi" register, give up. */
4432 if (i.op[x].regs->reg_num > 3)
4433 as_bad (_("can't encode register '%s%s' in an "
4434 "instruction requiring REX prefix."),
4435 register_prefix, i.op[x].regs->reg_name);
4436
4437 /* Otherwise it is equivalent to the extended register.
4438 Since the encoding doesn't change this is merely
4439 cosmetic cleanup for debug output. */
4440
4441 i.op[x].regs = i.op[x].regs + 8;
4442 }
4443 }
4444 }
4445
4446 if (i.rex == 0 && i.rex_encoding)
4447 {
4448 /* Check if we can add a REX_OPCODE byte. Look for 8 bit operand
4449 that uses legacy register. If it is "hi" register, don't add
4450 the REX_OPCODE byte. */
4451 int x;
4452 for (x = 0; x < 2; x++)
4453 if (i.types[x].bitfield.reg
4454 && i.types[x].bitfield.byte
4455 && (i.op[x].regs->reg_flags & RegRex64) == 0
4456 && i.op[x].regs->reg_num > 3)
4457 {
4458 i.rex_encoding = FALSE;
4459 break;
4460 }
4461
4462 if (i.rex_encoding)
4463 i.rex = REX_OPCODE;
4464 }
4465
4466 if (i.rex != 0)
4467 add_prefix (REX_OPCODE | i.rex);
4468
4469 /* We are ready to output the insn. */
4470 output_insn ();
4471 }
4472
4473 static char *
4474 parse_insn (char *line, char *mnemonic)
4475 {
4476 char *l = line;
4477 char *token_start = l;
4478 char *mnem_p;
4479 int supported;
4480 const insn_template *t;
4481 char *dot_p = NULL;
4482
4483 while (1)
4484 {
4485 mnem_p = mnemonic;
4486 while ((*mnem_p = mnemonic_chars[(unsigned char) *l]) != 0)
4487 {
4488 if (*mnem_p == '.')
4489 dot_p = mnem_p;
4490 mnem_p++;
4491 if (mnem_p >= mnemonic + MAX_MNEM_SIZE)
4492 {
4493 as_bad (_("no such instruction: `%s'"), token_start);
4494 return NULL;
4495 }
4496 l++;
4497 }
4498 if (!is_space_char (*l)
4499 && *l != END_OF_INSN
4500 && (intel_syntax
4501 || (*l != PREFIX_SEPARATOR
4502 && *l != ',')))
4503 {
4504 as_bad (_("invalid character %s in mnemonic"),
4505 output_invalid (*l));
4506 return NULL;
4507 }
4508 if (token_start == l)
4509 {
4510 if (!intel_syntax && *l == PREFIX_SEPARATOR)
4511 as_bad (_("expecting prefix; got nothing"));
4512 else
4513 as_bad (_("expecting mnemonic; got nothing"));
4514 return NULL;
4515 }
4516
4517 /* Look up instruction (or prefix) via hash table. */
4518 current_templates = (const templates *) hash_find (op_hash, mnemonic);
4519
4520 if (*l != END_OF_INSN
4521 && (!is_space_char (*l) || l[1] != END_OF_INSN)
4522 && current_templates
4523 && current_templates->start->opcode_modifier.isprefix)
4524 {
4525 if (!cpu_flags_check_cpu64 (current_templates->start->cpu_flags))
4526 {
4527 as_bad ((flag_code != CODE_64BIT
4528 ? _("`%s' is only supported in 64-bit mode")
4529 : _("`%s' is not supported in 64-bit mode")),
4530 current_templates->start->name);
4531 return NULL;
4532 }
4533 /* If we are in 16-bit mode, do not allow addr16 or data16.
4534 Similarly, in 32-bit mode, do not allow addr32 or data32. */
4535 if ((current_templates->start->opcode_modifier.size == SIZE16
4536 || current_templates->start->opcode_modifier.size == SIZE32)
4537 && flag_code != CODE_64BIT
4538 && ((current_templates->start->opcode_modifier.size == SIZE32)
4539 ^ (flag_code == CODE_16BIT)))
4540 {
4541 as_bad (_("redundant %s prefix"),
4542 current_templates->start->name);
4543 return NULL;
4544 }
4545 if (current_templates->start->opcode_length == 0)
4546 {
4547 /* Handle pseudo prefixes. */
4548 switch (current_templates->start->base_opcode)
4549 {
4550 case 0x0:
4551 /* {disp8} */
4552 i.disp_encoding = disp_encoding_8bit;
4553 break;
4554 case 0x1:
4555 /* {disp32} */
4556 i.disp_encoding = disp_encoding_32bit;
4557 break;
4558 case 0x2:
4559 /* {load} */
4560 i.dir_encoding = dir_encoding_load;
4561 break;
4562 case 0x3:
4563 /* {store} */
4564 i.dir_encoding = dir_encoding_store;
4565 break;
4566 case 0x4:
4567 /* {vex2} */
4568 i.vec_encoding = vex_encoding_vex2;
4569 break;
4570 case 0x5:
4571 /* {vex3} */
4572 i.vec_encoding = vex_encoding_vex3;
4573 break;
4574 case 0x6:
4575 /* {evex} */
4576 i.vec_encoding = vex_encoding_evex;
4577 break;
4578 case 0x7:
4579 /* {rex} */
4580 i.rex_encoding = TRUE;
4581 break;
4582 case 0x8:
4583 /* {nooptimize} */
4584 i.no_optimize = TRUE;
4585 break;
4586 default:
4587 abort ();
4588 }
4589 }
4590 else
4591 {
4592 /* Add prefix, checking for repeated prefixes. */
4593 switch (add_prefix (current_templates->start->base_opcode))
4594 {
4595 case PREFIX_EXIST:
4596 return NULL;
4597 case PREFIX_DS:
4598 if (current_templates->start->cpu_flags.bitfield.cpuibt)
4599 i.notrack_prefix = current_templates->start->name;
4600 break;
4601 case PREFIX_REP:
4602 if (current_templates->start->cpu_flags.bitfield.cpuhle)
4603 i.hle_prefix = current_templates->start->name;
4604 else if (current_templates->start->cpu_flags.bitfield.cpumpx)
4605 i.bnd_prefix = current_templates->start->name;
4606 else
4607 i.rep_prefix = current_templates->start->name;
4608 break;
4609 default:
4610 break;
4611 }
4612 }
4613 /* Skip past PREFIX_SEPARATOR and reset token_start. */
4614 token_start = ++l;
4615 }
4616 else
4617 break;
4618 }
4619
4620 if (!current_templates)
4621 {
4622 /* Deprecated functionality (new code should use pseudo-prefixes instead):
4623 Check if we should swap operand or force 32bit displacement in
4624 encoding. */
4625 if (mnem_p - 2 == dot_p && dot_p[1] == 's')
4626 i.dir_encoding = dir_encoding_swap;
4627 else if (mnem_p - 3 == dot_p
4628 && dot_p[1] == 'd'
4629 && dot_p[2] == '8')
4630 i.disp_encoding = disp_encoding_8bit;
4631 else if (mnem_p - 4 == dot_p
4632 && dot_p[1] == 'd'
4633 && dot_p[2] == '3'
4634 && dot_p[3] == '2')
4635 i.disp_encoding = disp_encoding_32bit;
4636 else
4637 goto check_suffix;
4638 mnem_p = dot_p;
4639 *dot_p = '\0';
4640 current_templates = (const templates *) hash_find (op_hash, mnemonic);
4641 }
4642
4643 if (!current_templates)
4644 {
4645 check_suffix:
4646 if (mnem_p > mnemonic)
4647 {
4648 /* See if we can get a match by trimming off a suffix. */
4649 switch (mnem_p[-1])
4650 {
4651 case WORD_MNEM_SUFFIX:
4652 if (intel_syntax && (intel_float_operand (mnemonic) & 2))
4653 i.suffix = SHORT_MNEM_SUFFIX;
4654 else
4655 /* Fall through. */
4656 case BYTE_MNEM_SUFFIX:
4657 case QWORD_MNEM_SUFFIX:
4658 i.suffix = mnem_p[-1];
4659 mnem_p[-1] = '\0';
4660 current_templates = (const templates *) hash_find (op_hash,
4661 mnemonic);
4662 break;
4663 case SHORT_MNEM_SUFFIX:
4664 case LONG_MNEM_SUFFIX:
4665 if (!intel_syntax)
4666 {
4667 i.suffix = mnem_p[-1];
4668 mnem_p[-1] = '\0';
4669 current_templates = (const templates *) hash_find (op_hash,
4670 mnemonic);
4671 }
4672 break;
4673
4674 /* Intel Syntax. */
4675 case 'd':
4676 if (intel_syntax)
4677 {
4678 if (intel_float_operand (mnemonic) == 1)
4679 i.suffix = SHORT_MNEM_SUFFIX;
4680 else
4681 i.suffix = LONG_MNEM_SUFFIX;
4682 mnem_p[-1] = '\0';
4683 current_templates = (const templates *) hash_find (op_hash,
4684 mnemonic);
4685 }
4686 break;
4687 }
4688 }
4689
4690 if (!current_templates)
4691 {
4692 as_bad (_("no such instruction: `%s'"), token_start);
4693 return NULL;
4694 }
4695 }
4696
4697 if (current_templates->start->opcode_modifier.jump
4698 || current_templates->start->opcode_modifier.jumpbyte)
4699 {
4700 /* Check for a branch hint. We allow ",pt" and ",pn" for
4701 predict taken and predict not taken respectively.
4702 I'm not sure that branch hints actually do anything on loop
4703 and jcxz insns (JumpByte) for current Pentium4 chips. They
4704 may work in the future and it doesn't hurt to accept them
4705 now. */
4706 if (l[0] == ',' && l[1] == 'p')
4707 {
4708 if (l[2] == 't')
4709 {
4710 if (!add_prefix (DS_PREFIX_OPCODE))
4711 return NULL;
4712 l += 3;
4713 }
4714 else if (l[2] == 'n')
4715 {
4716 if (!add_prefix (CS_PREFIX_OPCODE))
4717 return NULL;
4718 l += 3;
4719 }
4720 }
4721 }
4722 /* Any other comma loses. */
4723 if (*l == ',')
4724 {
4725 as_bad (_("invalid character %s in mnemonic"),
4726 output_invalid (*l));
4727 return NULL;
4728 }
4729
4730 /* Check if instruction is supported on specified architecture. */
4731 supported = 0;
4732 for (t = current_templates->start; t < current_templates->end; ++t)
4733 {
4734 supported |= cpu_flags_match (t);
4735 if (supported == CPU_FLAGS_PERFECT_MATCH)
4736 {
4737 if (!cpu_arch_flags.bitfield.cpui386 && (flag_code != CODE_16BIT))
4738 as_warn (_("use .code16 to ensure correct addressing mode"));
4739
4740 return l;
4741 }
4742 }
4743
4744 if (!(supported & CPU_FLAGS_64BIT_MATCH))
4745 as_bad (flag_code == CODE_64BIT
4746 ? _("`%s' is not supported in 64-bit mode")
4747 : _("`%s' is only supported in 64-bit mode"),
4748 current_templates->start->name);
4749 else
4750 as_bad (_("`%s' is not supported on `%s%s'"),
4751 current_templates->start->name,
4752 cpu_arch_name ? cpu_arch_name : default_arch,
4753 cpu_sub_arch_name ? cpu_sub_arch_name : "");
4754
4755 return NULL;
4756 }
4757
4758 static char *
4759 parse_operands (char *l, const char *mnemonic)
4760 {
4761 char *token_start;
4762
4763 /* 1 if operand is pending after ','. */
4764 unsigned int expecting_operand = 0;
4765
4766 /* Non-zero if operand parens not balanced. */
4767 unsigned int paren_not_balanced;
4768
4769 while (*l != END_OF_INSN)
4770 {
4771 /* Skip optional white space before operand. */
4772 if (is_space_char (*l))
4773 ++l;
4774 if (!is_operand_char (*l) && *l != END_OF_INSN && *l != '"')
4775 {
4776 as_bad (_("invalid character %s before operand %d"),
4777 output_invalid (*l),
4778 i.operands + 1);
4779 return NULL;
4780 }
4781 token_start = l; /* After white space. */
4782 paren_not_balanced = 0;
4783 while (paren_not_balanced || *l != ',')
4784 {
4785 if (*l == END_OF_INSN)
4786 {
4787 if (paren_not_balanced)
4788 {
4789 if (!intel_syntax)
4790 as_bad (_("unbalanced parenthesis in operand %d."),
4791 i.operands + 1);
4792 else
4793 as_bad (_("unbalanced brackets in operand %d."),
4794 i.operands + 1);
4795 return NULL;
4796 }
4797 else
4798 break; /* we are done */
4799 }
4800 else if (!is_operand_char (*l) && !is_space_char (*l) && *l != '"')
4801 {
4802 as_bad (_("invalid character %s in operand %d"),
4803 output_invalid (*l),
4804 i.operands + 1);
4805 return NULL;
4806 }
4807 if (!intel_syntax)
4808 {
4809 if (*l == '(')
4810 ++paren_not_balanced;
4811 if (*l == ')')
4812 --paren_not_balanced;
4813 }
4814 else
4815 {
4816 if (*l == '[')
4817 ++paren_not_balanced;
4818 if (*l == ']')
4819 --paren_not_balanced;
4820 }
4821 l++;
4822 }
4823 if (l != token_start)
4824 { /* Yes, we've read in another operand. */
4825 unsigned int operand_ok;
4826 this_operand = i.operands++;
4827 if (i.operands > MAX_OPERANDS)
4828 {
4829 as_bad (_("spurious operands; (%d operands/instruction max)"),
4830 MAX_OPERANDS);
4831 return NULL;
4832 }
4833 i.types[this_operand].bitfield.unspecified = 1;
4834 /* Now parse operand adding info to 'i' as we go along. */
4835 END_STRING_AND_SAVE (l);
4836
4837 if (i.mem_operands > 1)
4838 {
4839 as_bad (_("too many memory references for `%s'"),
4840 mnemonic);
4841 return 0;
4842 }
4843
4844 if (intel_syntax)
4845 operand_ok =
4846 i386_intel_operand (token_start,
4847 intel_float_operand (mnemonic));
4848 else
4849 operand_ok = i386_att_operand (token_start);
4850
4851 RESTORE_END_STRING (l);
4852 if (!operand_ok)
4853 return NULL;
4854 }
4855 else
4856 {
4857 if (expecting_operand)
4858 {
4859 expecting_operand_after_comma:
4860 as_bad (_("expecting operand after ','; got nothing"));
4861 return NULL;
4862 }
4863 if (*l == ',')
4864 {
4865 as_bad (_("expecting operand before ','; got nothing"));
4866 return NULL;
4867 }
4868 }
4869
4870 /* Now *l must be either ',' or END_OF_INSN. */
4871 if (*l == ',')
4872 {
4873 if (*++l == END_OF_INSN)
4874 {
4875 /* Just skip it, if it's \n complain. */
4876 goto expecting_operand_after_comma;
4877 }
4878 expecting_operand = 1;
4879 }
4880 }
4881 return l;
4882 }
4883
4884 static void
4885 swap_2_operands (int xchg1, int xchg2)
4886 {
4887 union i386_op temp_op;
4888 i386_operand_type temp_type;
4889 unsigned int temp_flags;
4890 enum bfd_reloc_code_real temp_reloc;
4891
4892 temp_type = i.types[xchg2];
4893 i.types[xchg2] = i.types[xchg1];
4894 i.types[xchg1] = temp_type;
4895
4896 temp_flags = i.flags[xchg2];
4897 i.flags[xchg2] = i.flags[xchg1];
4898 i.flags[xchg1] = temp_flags;
4899
4900 temp_op = i.op[xchg2];
4901 i.op[xchg2] = i.op[xchg1];
4902 i.op[xchg1] = temp_op;
4903
4904 temp_reloc = i.reloc[xchg2];
4905 i.reloc[xchg2] = i.reloc[xchg1];
4906 i.reloc[xchg1] = temp_reloc;
4907
4908 if (i.mask)
4909 {
4910 if (i.mask->operand == xchg1)
4911 i.mask->operand = xchg2;
4912 else if (i.mask->operand == xchg2)
4913 i.mask->operand = xchg1;
4914 }
4915 if (i.broadcast)
4916 {
4917 if (i.broadcast->operand == xchg1)
4918 i.broadcast->operand = xchg2;
4919 else if (i.broadcast->operand == xchg2)
4920 i.broadcast->operand = xchg1;
4921 }
4922 if (i.rounding)
4923 {
4924 if (i.rounding->operand == xchg1)
4925 i.rounding->operand = xchg2;
4926 else if (i.rounding->operand == xchg2)
4927 i.rounding->operand = xchg1;
4928 }
4929 }
4930
4931 static void
4932 swap_operands (void)
4933 {
4934 switch (i.operands)
4935 {
4936 case 5:
4937 case 4:
4938 swap_2_operands (1, i.operands - 2);
4939 /* Fall through. */
4940 case 3:
4941 case 2:
4942 swap_2_operands (0, i.operands - 1);
4943 break;
4944 default:
4945 abort ();
4946 }
4947
4948 if (i.mem_operands == 2)
4949 {
4950 const seg_entry *temp_seg;
4951 temp_seg = i.seg[0];
4952 i.seg[0] = i.seg[1];
4953 i.seg[1] = temp_seg;
4954 }
4955 }
4956
4957 /* Try to ensure constant immediates are represented in the smallest
4958 opcode possible. */
4959 static void
4960 optimize_imm (void)
4961 {
4962 char guess_suffix = 0;
4963 int op;
4964
4965 if (i.suffix)
4966 guess_suffix = i.suffix;
4967 else if (i.reg_operands)
4968 {
4969 /* Figure out a suffix from the last register operand specified.
4970 We can't do this properly yet, ie. excluding InOutPortReg,
4971 but the following works for instructions with immediates.
4972 In any case, we can't set i.suffix yet. */
4973 for (op = i.operands; --op >= 0;)
4974 if (i.types[op].bitfield.reg && i.types[op].bitfield.byte)
4975 {
4976 guess_suffix = BYTE_MNEM_SUFFIX;
4977 break;
4978 }
4979 else if (i.types[op].bitfield.reg && i.types[op].bitfield.word)
4980 {
4981 guess_suffix = WORD_MNEM_SUFFIX;
4982 break;
4983 }
4984 else if (i.types[op].bitfield.reg && i.types[op].bitfield.dword)
4985 {
4986 guess_suffix = LONG_MNEM_SUFFIX;
4987 break;
4988 }
4989 else if (i.types[op].bitfield.reg && i.types[op].bitfield.qword)
4990 {
4991 guess_suffix = QWORD_MNEM_SUFFIX;
4992 break;
4993 }
4994 }
4995 else if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
4996 guess_suffix = WORD_MNEM_SUFFIX;
4997
4998 for (op = i.operands; --op >= 0;)
4999 if (operand_type_check (i.types[op], imm))
5000 {
5001 switch (i.op[op].imms->X_op)
5002 {
5003 case O_constant:
5004 /* If a suffix is given, this operand may be shortened. */
5005 switch (guess_suffix)
5006 {
5007 case LONG_MNEM_SUFFIX:
5008 i.types[op].bitfield.imm32 = 1;
5009 i.types[op].bitfield.imm64 = 1;
5010 break;
5011 case WORD_MNEM_SUFFIX:
5012 i.types[op].bitfield.imm16 = 1;
5013 i.types[op].bitfield.imm32 = 1;
5014 i.types[op].bitfield.imm32s = 1;
5015 i.types[op].bitfield.imm64 = 1;
5016 break;
5017 case BYTE_MNEM_SUFFIX:
5018 i.types[op].bitfield.imm8 = 1;
5019 i.types[op].bitfield.imm8s = 1;
5020 i.types[op].bitfield.imm16 = 1;
5021 i.types[op].bitfield.imm32 = 1;
5022 i.types[op].bitfield.imm32s = 1;
5023 i.types[op].bitfield.imm64 = 1;
5024 break;
5025 }
5026
5027 /* If this operand is at most 16 bits, convert it
5028 to a signed 16 bit number before trying to see
5029 whether it will fit in an even smaller size.
5030 This allows a 16-bit operand such as $0xffe0 to
5031 be recognised as within Imm8S range. */
5032 if ((i.types[op].bitfield.imm16)
5033 && (i.op[op].imms->X_add_number & ~(offsetT) 0xffff) == 0)
5034 {
5035 i.op[op].imms->X_add_number =
5036 (((i.op[op].imms->X_add_number & 0xffff) ^ 0x8000) - 0x8000);
5037 }
5038 #ifdef BFD64
5039 /* Store 32-bit immediate in 64-bit for 64-bit BFD. */
5040 if ((i.types[op].bitfield.imm32)
5041 && ((i.op[op].imms->X_add_number & ~(((offsetT) 2 << 31) - 1))
5042 == 0))
5043 {
5044 i.op[op].imms->X_add_number = ((i.op[op].imms->X_add_number
5045 ^ ((offsetT) 1 << 31))
5046 - ((offsetT) 1 << 31));
5047 }
5048 #endif
5049 i.types[op]
5050 = operand_type_or (i.types[op],
5051 smallest_imm_type (i.op[op].imms->X_add_number));
5052
5053 /* We must avoid matching of Imm32 templates when 64bit
5054 only immediate is available. */
5055 if (guess_suffix == QWORD_MNEM_SUFFIX)
5056 i.types[op].bitfield.imm32 = 0;
5057 break;
5058
5059 case O_absent:
5060 case O_register:
5061 abort ();
5062
5063 /* Symbols and expressions. */
5064 default:
5065 /* Convert symbolic operand to proper sizes for matching, but don't
5066 prevent matching a set of insns that only supports sizes other
5067 than those matching the insn suffix. */
5068 {
5069 i386_operand_type mask, allowed;
5070 const insn_template *t;
5071
5072 operand_type_set (&mask, 0);
5073 operand_type_set (&allowed, 0);
5074
5075 for (t = current_templates->start;
5076 t < current_templates->end;
5077 ++t)
5078 allowed = operand_type_or (allowed,
5079 t->operand_types[op]);
5080 switch (guess_suffix)
5081 {
5082 case QWORD_MNEM_SUFFIX:
5083 mask.bitfield.imm64 = 1;
5084 mask.bitfield.imm32s = 1;
5085 break;
5086 case LONG_MNEM_SUFFIX:
5087 mask.bitfield.imm32 = 1;
5088 break;
5089 case WORD_MNEM_SUFFIX:
5090 mask.bitfield.imm16 = 1;
5091 break;
5092 case BYTE_MNEM_SUFFIX:
5093 mask.bitfield.imm8 = 1;
5094 break;
5095 default:
5096 break;
5097 }
5098 allowed = operand_type_and (mask, allowed);
5099 if (!operand_type_all_zero (&allowed))
5100 i.types[op] = operand_type_and (i.types[op], mask);
5101 }
5102 break;
5103 }
5104 }
5105 }
5106
5107 /* Try to use the smallest displacement type too. */
5108 static void
5109 optimize_disp (void)
5110 {
5111 int op;
5112
5113 for (op = i.operands; --op >= 0;)
5114 if (operand_type_check (i.types[op], disp))
5115 {
5116 if (i.op[op].disps->X_op == O_constant)
5117 {
5118 offsetT op_disp = i.op[op].disps->X_add_number;
5119
5120 if (i.types[op].bitfield.disp16
5121 && (op_disp & ~(offsetT) 0xffff) == 0)
5122 {
5123 /* If this operand is at most 16 bits, convert
5124 to a signed 16 bit number and don't use 64bit
5125 displacement. */
5126 op_disp = (((op_disp & 0xffff) ^ 0x8000) - 0x8000);
5127 i.types[op].bitfield.disp64 = 0;
5128 }
5129 #ifdef BFD64
5130 /* Optimize 64-bit displacement to 32-bit for 64-bit BFD. */
5131 if (i.types[op].bitfield.disp32
5132 && (op_disp & ~(((offsetT) 2 << 31) - 1)) == 0)
5133 {
5134 /* If this operand is at most 32 bits, convert
5135 to a signed 32 bit number and don't use 64bit
5136 displacement. */
5137 op_disp &= (((offsetT) 2 << 31) - 1);
5138 op_disp = (op_disp ^ ((offsetT) 1 << 31)) - ((addressT) 1 << 31);
5139 i.types[op].bitfield.disp64 = 0;
5140 }
5141 #endif
5142 if (!op_disp && i.types[op].bitfield.baseindex)
5143 {
5144 i.types[op].bitfield.disp8 = 0;
5145 i.types[op].bitfield.disp16 = 0;
5146 i.types[op].bitfield.disp32 = 0;
5147 i.types[op].bitfield.disp32s = 0;
5148 i.types[op].bitfield.disp64 = 0;
5149 i.op[op].disps = 0;
5150 i.disp_operands--;
5151 }
5152 else if (flag_code == CODE_64BIT)
5153 {
5154 if (fits_in_signed_long (op_disp))
5155 {
5156 i.types[op].bitfield.disp64 = 0;
5157 i.types[op].bitfield.disp32s = 1;
5158 }
5159 if (i.prefix[ADDR_PREFIX]
5160 && fits_in_unsigned_long (op_disp))
5161 i.types[op].bitfield.disp32 = 1;
5162 }
5163 if ((i.types[op].bitfield.disp32
5164 || i.types[op].bitfield.disp32s
5165 || i.types[op].bitfield.disp16)
5166 && fits_in_disp8 (op_disp))
5167 i.types[op].bitfield.disp8 = 1;
5168 }
5169 else if (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
5170 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL)
5171 {
5172 fix_new_exp (frag_now, frag_more (0) - frag_now->fr_literal, 0,
5173 i.op[op].disps, 0, i.reloc[op]);
5174 i.types[op].bitfield.disp8 = 0;
5175 i.types[op].bitfield.disp16 = 0;
5176 i.types[op].bitfield.disp32 = 0;
5177 i.types[op].bitfield.disp32s = 0;
5178 i.types[op].bitfield.disp64 = 0;
5179 }
5180 else
5181 /* We only support 64bit displacement on constants. */
5182 i.types[op].bitfield.disp64 = 0;
5183 }
5184 }
5185
5186 /* Return 1 if there is a match in broadcast bytes between operand
5187 GIVEN and instruction template T. */
5188
5189 static INLINE int
5190 match_broadcast_size (const insn_template *t, unsigned int given)
5191 {
5192 return ((t->opcode_modifier.broadcast == BYTE_BROADCAST
5193 && i.types[given].bitfield.byte)
5194 || (t->opcode_modifier.broadcast == WORD_BROADCAST
5195 && i.types[given].bitfield.word)
5196 || (t->opcode_modifier.broadcast == DWORD_BROADCAST
5197 && i.types[given].bitfield.dword)
5198 || (t->opcode_modifier.broadcast == QWORD_BROADCAST
5199 && i.types[given].bitfield.qword));
5200 }
5201
5202 /* Check if operands are valid for the instruction. */
5203
5204 static int
5205 check_VecOperands (const insn_template *t)
5206 {
5207 unsigned int op;
5208 i386_cpu_flags cpu;
5209 static const i386_cpu_flags avx512 = CPU_ANY_AVX512F_FLAGS;
5210
5211 /* Templates allowing for ZMMword as well as YMMword and/or XMMword for
5212 any one operand are implicity requiring AVX512VL support if the actual
5213 operand size is YMMword or XMMword. Since this function runs after
5214 template matching, there's no need to check for YMMword/XMMword in
5215 the template. */
5216 cpu = cpu_flags_and (t->cpu_flags, avx512);
5217 if (!cpu_flags_all_zero (&cpu)
5218 && !t->cpu_flags.bitfield.cpuavx512vl
5219 && !cpu_arch_flags.bitfield.cpuavx512vl)
5220 {
5221 for (op = 0; op < t->operands; ++op)
5222 {
5223 if (t->operand_types[op].bitfield.zmmword
5224 && (i.types[op].bitfield.ymmword
5225 || i.types[op].bitfield.xmmword))
5226 {
5227 i.error = unsupported;
5228 return 1;
5229 }
5230 }
5231 }
5232
5233 /* Without VSIB byte, we can't have a vector register for index. */
5234 if (!t->opcode_modifier.vecsib
5235 && i.index_reg
5236 && (i.index_reg->reg_type.bitfield.xmmword
5237 || i.index_reg->reg_type.bitfield.ymmword
5238 || i.index_reg->reg_type.bitfield.zmmword))
5239 {
5240 i.error = unsupported_vector_index_register;
5241 return 1;
5242 }
5243
5244 /* Check if default mask is allowed. */
5245 if (t->opcode_modifier.nodefmask
5246 && (!i.mask || i.mask->mask->reg_num == 0))
5247 {
5248 i.error = no_default_mask;
5249 return 1;
5250 }
5251
5252 /* For VSIB byte, we need a vector register for index, and all vector
5253 registers must be distinct. */
5254 if (t->opcode_modifier.vecsib)
5255 {
5256 if (!i.index_reg
5257 || !((t->opcode_modifier.vecsib == VecSIB128
5258 && i.index_reg->reg_type.bitfield.xmmword)
5259 || (t->opcode_modifier.vecsib == VecSIB256
5260 && i.index_reg->reg_type.bitfield.ymmword)
5261 || (t->opcode_modifier.vecsib == VecSIB512
5262 && i.index_reg->reg_type.bitfield.zmmword)))
5263 {
5264 i.error = invalid_vsib_address;
5265 return 1;
5266 }
5267
5268 gas_assert (i.reg_operands == 2 || i.mask);
5269 if (i.reg_operands == 2 && !i.mask)
5270 {
5271 gas_assert (i.types[0].bitfield.regsimd);
5272 gas_assert (i.types[0].bitfield.xmmword
5273 || i.types[0].bitfield.ymmword);
5274 gas_assert (i.types[2].bitfield.regsimd);
5275 gas_assert (i.types[2].bitfield.xmmword
5276 || i.types[2].bitfield.ymmword);
5277 if (operand_check == check_none)
5278 return 0;
5279 if (register_number (i.op[0].regs)
5280 != register_number (i.index_reg)
5281 && register_number (i.op[2].regs)
5282 != register_number (i.index_reg)
5283 && register_number (i.op[0].regs)
5284 != register_number (i.op[2].regs))
5285 return 0;
5286 if (operand_check == check_error)
5287 {
5288 i.error = invalid_vector_register_set;
5289 return 1;
5290 }
5291 as_warn (_("mask, index, and destination registers should be distinct"));
5292 }
5293 else if (i.reg_operands == 1 && i.mask)
5294 {
5295 if (i.types[1].bitfield.regsimd
5296 && (i.types[1].bitfield.xmmword
5297 || i.types[1].bitfield.ymmword
5298 || i.types[1].bitfield.zmmword)
5299 && (register_number (i.op[1].regs)
5300 == register_number (i.index_reg)))
5301 {
5302 if (operand_check == check_error)
5303 {
5304 i.error = invalid_vector_register_set;
5305 return 1;
5306 }
5307 if (operand_check != check_none)
5308 as_warn (_("index and destination registers should be distinct"));
5309 }
5310 }
5311 }
5312
5313 /* Check if broadcast is supported by the instruction and is applied
5314 to the memory operand. */
5315 if (i.broadcast)
5316 {
5317 i386_operand_type type, overlap;
5318
5319 /* Check if specified broadcast is supported in this instruction,
5320 and its broadcast bytes match the memory operand. */
5321 op = i.broadcast->operand;
5322 if (!t->opcode_modifier.broadcast
5323 || !(i.flags[op] & Operand_Mem)
5324 || (!i.types[op].bitfield.unspecified
5325 && !match_broadcast_size (t, op)))
5326 {
5327 bad_broadcast:
5328 i.error = unsupported_broadcast;
5329 return 1;
5330 }
5331
5332 i.broadcast->bytes = ((1 << (t->opcode_modifier.broadcast - 1))
5333 * i.broadcast->type);
5334 operand_type_set (&type, 0);
5335 switch (i.broadcast->bytes)
5336 {
5337 case 2:
5338 type.bitfield.word = 1;
5339 break;
5340 case 4:
5341 type.bitfield.dword = 1;
5342 break;
5343 case 8:
5344 type.bitfield.qword = 1;
5345 break;
5346 case 16:
5347 type.bitfield.xmmword = 1;
5348 break;
5349 case 32:
5350 type.bitfield.ymmword = 1;
5351 break;
5352 case 64:
5353 type.bitfield.zmmword = 1;
5354 break;
5355 default:
5356 goto bad_broadcast;
5357 }
5358
5359 overlap = operand_type_and (type, t->operand_types[op]);
5360 if (operand_type_all_zero (&overlap))
5361 goto bad_broadcast;
5362
5363 if (t->opcode_modifier.checkregsize)
5364 {
5365 unsigned int j;
5366
5367 type.bitfield.baseindex = 1;
5368 for (j = 0; j < i.operands; ++j)
5369 {
5370 if (j != op
5371 && !operand_type_register_match(i.types[j],
5372 t->operand_types[j],
5373 type,
5374 t->operand_types[op]))
5375 goto bad_broadcast;
5376 }
5377 }
5378 }
5379 /* If broadcast is supported in this instruction, we need to check if
5380 operand of one-element size isn't specified without broadcast. */
5381 else if (t->opcode_modifier.broadcast && i.mem_operands)
5382 {
5383 /* Find memory operand. */
5384 for (op = 0; op < i.operands; op++)
5385 if (operand_type_check (i.types[op], anymem))
5386 break;
5387 gas_assert (op < i.operands);
5388 /* Check size of the memory operand. */
5389 if (match_broadcast_size (t, op))
5390 {
5391 i.error = broadcast_needed;
5392 return 1;
5393 }
5394 }
5395 else
5396 op = MAX_OPERANDS - 1; /* Avoid uninitialized variable warning. */
5397
5398 /* Check if requested masking is supported. */
5399 if (i.mask)
5400 {
5401 switch (t->opcode_modifier.masking)
5402 {
5403 case BOTH_MASKING:
5404 break;
5405 case MERGING_MASKING:
5406 if (i.mask->zeroing)
5407 {
5408 case 0:
5409 i.error = unsupported_masking;
5410 return 1;
5411 }
5412 break;
5413 case DYNAMIC_MASKING:
5414 /* Memory destinations allow only merging masking. */
5415 if (i.mask->zeroing && i.mem_operands)
5416 {
5417 /* Find memory operand. */
5418 for (op = 0; op < i.operands; op++)
5419 if (i.flags[op] & Operand_Mem)
5420 break;
5421 gas_assert (op < i.operands);
5422 if (op == i.operands - 1)
5423 {
5424 i.error = unsupported_masking;
5425 return 1;
5426 }
5427 }
5428 break;
5429 default:
5430 abort ();
5431 }
5432 }
5433
5434 /* Check if masking is applied to dest operand. */
5435 if (i.mask && (i.mask->operand != (int) (i.operands - 1)))
5436 {
5437 i.error = mask_not_on_destination;
5438 return 1;
5439 }
5440
5441 /* Check RC/SAE. */
5442 if (i.rounding)
5443 {
5444 if ((i.rounding->type != saeonly
5445 && !t->opcode_modifier.staticrounding)
5446 || (i.rounding->type == saeonly
5447 && (t->opcode_modifier.staticrounding
5448 || !t->opcode_modifier.sae)))
5449 {
5450 i.error = unsupported_rc_sae;
5451 return 1;
5452 }
5453 /* If the instruction has several immediate operands and one of
5454 them is rounding, the rounding operand should be the last
5455 immediate operand. */
5456 if (i.imm_operands > 1
5457 && i.rounding->operand != (int) (i.imm_operands - 1))
5458 {
5459 i.error = rc_sae_operand_not_last_imm;
5460 return 1;
5461 }
5462 }
5463
5464 /* Check vector Disp8 operand. */
5465 if (t->opcode_modifier.disp8memshift
5466 && i.disp_encoding != disp_encoding_32bit)
5467 {
5468 if (i.broadcast)
5469 i.memshift = t->opcode_modifier.broadcast - 1;
5470 else if (t->opcode_modifier.disp8memshift != DISP8_SHIFT_VL)
5471 i.memshift = t->opcode_modifier.disp8memshift;
5472 else
5473 {
5474 const i386_operand_type *type = NULL;
5475
5476 i.memshift = 0;
5477 for (op = 0; op < i.operands; op++)
5478 if (operand_type_check (i.types[op], anymem))
5479 {
5480 if (t->opcode_modifier.evex == EVEXLIG)
5481 i.memshift = 2 + (i.suffix == QWORD_MNEM_SUFFIX);
5482 else if (t->operand_types[op].bitfield.xmmword
5483 + t->operand_types[op].bitfield.ymmword
5484 + t->operand_types[op].bitfield.zmmword <= 1)
5485 type = &t->operand_types[op];
5486 else if (!i.types[op].bitfield.unspecified)
5487 type = &i.types[op];
5488 }
5489 else if (i.types[op].bitfield.regsimd
5490 && t->opcode_modifier.evex != EVEXLIG)
5491 {
5492 if (i.types[op].bitfield.zmmword)
5493 i.memshift = 6;
5494 else if (i.types[op].bitfield.ymmword && i.memshift < 5)
5495 i.memshift = 5;
5496 else if (i.types[op].bitfield.xmmword && i.memshift < 4)
5497 i.memshift = 4;
5498 }
5499
5500 if (type)
5501 {
5502 if (type->bitfield.zmmword)
5503 i.memshift = 6;
5504 else if (type->bitfield.ymmword)
5505 i.memshift = 5;
5506 else if (type->bitfield.xmmword)
5507 i.memshift = 4;
5508 }
5509
5510 /* For the check in fits_in_disp8(). */
5511 if (i.memshift == 0)
5512 i.memshift = -1;
5513 }
5514
5515 for (op = 0; op < i.operands; op++)
5516 if (operand_type_check (i.types[op], disp)
5517 && i.op[op].disps->X_op == O_constant)
5518 {
5519 if (fits_in_disp8 (i.op[op].disps->X_add_number))
5520 {
5521 i.types[op].bitfield.disp8 = 1;
5522 return 0;
5523 }
5524 i.types[op].bitfield.disp8 = 0;
5525 }
5526 }
5527
5528 i.memshift = 0;
5529
5530 return 0;
5531 }
5532
5533 /* Check if operands are valid for the instruction. Update VEX
5534 operand types. */
5535
5536 static int
5537 VEX_check_operands (const insn_template *t)
5538 {
5539 if (i.vec_encoding == vex_encoding_evex)
5540 {
5541 /* This instruction must be encoded with EVEX prefix. */
5542 if (!is_evex_encoding (t))
5543 {
5544 i.error = unsupported;
5545 return 1;
5546 }
5547 return 0;
5548 }
5549
5550 if (!t->opcode_modifier.vex)
5551 {
5552 /* This instruction template doesn't have VEX prefix. */
5553 if (i.vec_encoding != vex_encoding_default)
5554 {
5555 i.error = unsupported;
5556 return 1;
5557 }
5558 return 0;
5559 }
5560
5561 /* Only check VEX_Imm4, which must be the first operand. */
5562 if (t->operand_types[0].bitfield.vec_imm4)
5563 {
5564 if (i.op[0].imms->X_op != O_constant
5565 || !fits_in_imm4 (i.op[0].imms->X_add_number))
5566 {
5567 i.error = bad_imm4;
5568 return 1;
5569 }
5570
5571 /* Turn off Imm8 so that update_imm won't complain. */
5572 i.types[0] = vec_imm4;
5573 }
5574
5575 return 0;
5576 }
5577
5578 static const insn_template *
5579 match_template (char mnem_suffix)
5580 {
5581 /* Points to template once we've found it. */
5582 const insn_template *t;
5583 i386_operand_type overlap0, overlap1, overlap2, overlap3;
5584 i386_operand_type overlap4;
5585 unsigned int found_reverse_match;
5586 i386_opcode_modifier suffix_check, mnemsuf_check;
5587 i386_operand_type operand_types [MAX_OPERANDS];
5588 int addr_prefix_disp;
5589 unsigned int j;
5590 unsigned int found_cpu_match, size_match;
5591 unsigned int check_register;
5592 enum i386_error specific_error = 0;
5593
5594 #if MAX_OPERANDS != 5
5595 # error "MAX_OPERANDS must be 5."
5596 #endif
5597
5598 found_reverse_match = 0;
5599 addr_prefix_disp = -1;
5600
5601 memset (&suffix_check, 0, sizeof (suffix_check));
5602 if (intel_syntax && i.broadcast)
5603 /* nothing */;
5604 else if (i.suffix == BYTE_MNEM_SUFFIX)
5605 suffix_check.no_bsuf = 1;
5606 else if (i.suffix == WORD_MNEM_SUFFIX)
5607 suffix_check.no_wsuf = 1;
5608 else if (i.suffix == SHORT_MNEM_SUFFIX)
5609 suffix_check.no_ssuf = 1;
5610 else if (i.suffix == LONG_MNEM_SUFFIX)
5611 suffix_check.no_lsuf = 1;
5612 else if (i.suffix == QWORD_MNEM_SUFFIX)
5613 suffix_check.no_qsuf = 1;
5614 else if (i.suffix == LONG_DOUBLE_MNEM_SUFFIX)
5615 suffix_check.no_ldsuf = 1;
5616
5617 memset (&mnemsuf_check, 0, sizeof (mnemsuf_check));
5618 if (intel_syntax)
5619 {
5620 switch (mnem_suffix)
5621 {
5622 case BYTE_MNEM_SUFFIX: mnemsuf_check.no_bsuf = 1; break;
5623 case WORD_MNEM_SUFFIX: mnemsuf_check.no_wsuf = 1; break;
5624 case SHORT_MNEM_SUFFIX: mnemsuf_check.no_ssuf = 1; break;
5625 case LONG_MNEM_SUFFIX: mnemsuf_check.no_lsuf = 1; break;
5626 case QWORD_MNEM_SUFFIX: mnemsuf_check.no_qsuf = 1; break;
5627 }
5628 }
5629
5630 /* Must have right number of operands. */
5631 i.error = number_of_operands_mismatch;
5632
5633 for (t = current_templates->start; t < current_templates->end; t++)
5634 {
5635 addr_prefix_disp = -1;
5636 found_reverse_match = 0;
5637
5638 if (i.operands != t->operands)
5639 continue;
5640
5641 /* Check processor support. */
5642 i.error = unsupported;
5643 found_cpu_match = (cpu_flags_match (t)
5644 == CPU_FLAGS_PERFECT_MATCH);
5645 if (!found_cpu_match)
5646 continue;
5647
5648 /* Check AT&T mnemonic. */
5649 i.error = unsupported_with_intel_mnemonic;
5650 if (intel_mnemonic && t->opcode_modifier.attmnemonic)
5651 continue;
5652
5653 /* Check AT&T/Intel syntax and Intel64/AMD64 ISA. */
5654 i.error = unsupported_syntax;
5655 if ((intel_syntax && t->opcode_modifier.attsyntax)
5656 || (!intel_syntax && t->opcode_modifier.intelsyntax)
5657 || (intel64 && t->opcode_modifier.amd64)
5658 || (!intel64 && t->opcode_modifier.intel64))
5659 continue;
5660
5661 /* Check the suffix, except for some instructions in intel mode. */
5662 i.error = invalid_instruction_suffix;
5663 if ((!intel_syntax || !t->opcode_modifier.ignoresize)
5664 && ((t->opcode_modifier.no_bsuf && suffix_check.no_bsuf)
5665 || (t->opcode_modifier.no_wsuf && suffix_check.no_wsuf)
5666 || (t->opcode_modifier.no_lsuf && suffix_check.no_lsuf)
5667 || (t->opcode_modifier.no_ssuf && suffix_check.no_ssuf)
5668 || (t->opcode_modifier.no_qsuf && suffix_check.no_qsuf)
5669 || (t->opcode_modifier.no_ldsuf && suffix_check.no_ldsuf)))
5670 continue;
5671 /* In Intel mode all mnemonic suffixes must be explicitly allowed. */
5672 if ((t->opcode_modifier.no_bsuf && mnemsuf_check.no_bsuf)
5673 || (t->opcode_modifier.no_wsuf && mnemsuf_check.no_wsuf)
5674 || (t->opcode_modifier.no_lsuf && mnemsuf_check.no_lsuf)
5675 || (t->opcode_modifier.no_ssuf && mnemsuf_check.no_ssuf)
5676 || (t->opcode_modifier.no_qsuf && mnemsuf_check.no_qsuf)
5677 || (t->opcode_modifier.no_ldsuf && mnemsuf_check.no_ldsuf))
5678 continue;
5679
5680 size_match = operand_size_match (t);
5681 if (!size_match)
5682 continue;
5683
5684 for (j = 0; j < MAX_OPERANDS; j++)
5685 operand_types[j] = t->operand_types[j];
5686
5687 /* In general, don't allow 64-bit operands in 32-bit mode. */
5688 if (i.suffix == QWORD_MNEM_SUFFIX
5689 && flag_code != CODE_64BIT
5690 && (intel_syntax
5691 ? (!t->opcode_modifier.ignoresize
5692 && !t->opcode_modifier.broadcast
5693 && !intel_float_operand (t->name))
5694 : intel_float_operand (t->name) != 2)
5695 && ((!operand_types[0].bitfield.regmmx
5696 && !operand_types[0].bitfield.regsimd)
5697 || (!operand_types[t->operands > 1].bitfield.regmmx
5698 && !operand_types[t->operands > 1].bitfield.regsimd))
5699 && (t->base_opcode != 0x0fc7
5700 || t->extension_opcode != 1 /* cmpxchg8b */))
5701 continue;
5702
5703 /* In general, don't allow 32-bit operands on pre-386. */
5704 else if (i.suffix == LONG_MNEM_SUFFIX
5705 && !cpu_arch_flags.bitfield.cpui386
5706 && (intel_syntax
5707 ? (!t->opcode_modifier.ignoresize
5708 && !intel_float_operand (t->name))
5709 : intel_float_operand (t->name) != 2)
5710 && ((!operand_types[0].bitfield.regmmx
5711 && !operand_types[0].bitfield.regsimd)
5712 || (!operand_types[t->operands > 1].bitfield.regmmx
5713 && !operand_types[t->operands > 1].bitfield.regsimd)))
5714 continue;
5715
5716 /* Do not verify operands when there are none. */
5717 else
5718 {
5719 if (!t->operands)
5720 /* We've found a match; break out of loop. */
5721 break;
5722 }
5723
5724 /* Address size prefix will turn Disp64/Disp32/Disp16 operand
5725 into Disp32/Disp16/Disp32 operand. */
5726 if (i.prefix[ADDR_PREFIX] != 0)
5727 {
5728 /* There should be only one Disp operand. */
5729 switch (flag_code)
5730 {
5731 case CODE_16BIT:
5732 for (j = 0; j < MAX_OPERANDS; j++)
5733 {
5734 if (operand_types[j].bitfield.disp16)
5735 {
5736 addr_prefix_disp = j;
5737 operand_types[j].bitfield.disp32 = 1;
5738 operand_types[j].bitfield.disp16 = 0;
5739 break;
5740 }
5741 }
5742 break;
5743 case CODE_32BIT:
5744 for (j = 0; j < MAX_OPERANDS; j++)
5745 {
5746 if (operand_types[j].bitfield.disp32)
5747 {
5748 addr_prefix_disp = j;
5749 operand_types[j].bitfield.disp32 = 0;
5750 operand_types[j].bitfield.disp16 = 1;
5751 break;
5752 }
5753 }
5754 break;
5755 case CODE_64BIT:
5756 for (j = 0; j < MAX_OPERANDS; j++)
5757 {
5758 if (operand_types[j].bitfield.disp64)
5759 {
5760 addr_prefix_disp = j;
5761 operand_types[j].bitfield.disp64 = 0;
5762 operand_types[j].bitfield.disp32 = 1;
5763 break;
5764 }
5765 }
5766 break;
5767 }
5768 }
5769
5770 /* Force 0x8b encoding for "mov foo@GOT, %eax". */
5771 if (i.reloc[0] == BFD_RELOC_386_GOT32 && t->base_opcode == 0xa0)
5772 continue;
5773
5774 /* We check register size if needed. */
5775 if (t->opcode_modifier.checkregsize)
5776 {
5777 check_register = (1 << t->operands) - 1;
5778 if (i.broadcast)
5779 check_register &= ~(1 << i.broadcast->operand);
5780 }
5781 else
5782 check_register = 0;
5783
5784 overlap0 = operand_type_and (i.types[0], operand_types[0]);
5785 switch (t->operands)
5786 {
5787 case 1:
5788 if (!operand_type_match (overlap0, i.types[0]))
5789 continue;
5790 break;
5791 case 2:
5792 /* xchg %eax, %eax is a special case. It is an alias for nop
5793 only in 32bit mode and we can use opcode 0x90. In 64bit
5794 mode, we can't use 0x90 for xchg %eax, %eax since it should
5795 zero-extend %eax to %rax. */
5796 if (flag_code == CODE_64BIT
5797 && t->base_opcode == 0x90
5798 && operand_type_equal (&i.types [0], &acc32)
5799 && operand_type_equal (&i.types [1], &acc32))
5800 continue;
5801 /* xrelease mov %eax, <disp> is another special case. It must not
5802 match the accumulator-only encoding of mov. */
5803 if (flag_code != CODE_64BIT
5804 && i.hle_prefix
5805 && t->base_opcode == 0xa0
5806 && i.types[0].bitfield.acc
5807 && operand_type_check (i.types[1], anymem))
5808 continue;
5809 /* Fall through. */
5810
5811 case 3:
5812 if (!(size_match & MATCH_STRAIGHT))
5813 goto check_reverse;
5814 /* Reverse direction of operands if swapping is possible in the first
5815 place (operands need to be symmetric) and
5816 - the load form is requested, and the template is a store form,
5817 - the store form is requested, and the template is a load form,
5818 - the non-default (swapped) form is requested. */
5819 overlap1 = operand_type_and (operand_types[0], operand_types[1]);
5820 if (t->opcode_modifier.d && i.reg_operands == i.operands
5821 && !operand_type_all_zero (&overlap1))
5822 switch (i.dir_encoding)
5823 {
5824 case dir_encoding_load:
5825 if (operand_type_check (operand_types[i.operands - 1], anymem)
5826 || operand_types[i.operands - 1].bitfield.regmem)
5827 goto check_reverse;
5828 break;
5829
5830 case dir_encoding_store:
5831 if (!operand_type_check (operand_types[i.operands - 1], anymem)
5832 && !operand_types[i.operands - 1].bitfield.regmem)
5833 goto check_reverse;
5834 break;
5835
5836 case dir_encoding_swap:
5837 goto check_reverse;
5838
5839 case dir_encoding_default:
5840 break;
5841 }
5842 /* If we want store form, we skip the current load. */
5843 if ((i.dir_encoding == dir_encoding_store
5844 || i.dir_encoding == dir_encoding_swap)
5845 && i.mem_operands == 0
5846 && t->opcode_modifier.load)
5847 continue;
5848 /* Fall through. */
5849 case 4:
5850 case 5:
5851 overlap1 = operand_type_and (i.types[1], operand_types[1]);
5852 if (!operand_type_match (overlap0, i.types[0])
5853 || !operand_type_match (overlap1, i.types[1])
5854 || ((check_register & 3) == 3
5855 && !operand_type_register_match (i.types[0],
5856 operand_types[0],
5857 i.types[1],
5858 operand_types[1])))
5859 {
5860 /* Check if other direction is valid ... */
5861 if (!t->opcode_modifier.d)
5862 continue;
5863
5864 check_reverse:
5865 if (!(size_match & MATCH_REVERSE))
5866 continue;
5867 /* Try reversing direction of operands. */
5868 overlap0 = operand_type_and (i.types[0], operand_types[i.operands - 1]);
5869 overlap1 = operand_type_and (i.types[i.operands - 1], operand_types[0]);
5870 if (!operand_type_match (overlap0, i.types[0])
5871 || !operand_type_match (overlap1, i.types[i.operands - 1])
5872 || (check_register
5873 && !operand_type_register_match (i.types[0],
5874 operand_types[i.operands - 1],
5875 i.types[i.operands - 1],
5876 operand_types[0])))
5877 {
5878 /* Does not match either direction. */
5879 continue;
5880 }
5881 /* found_reverse_match holds which of D or FloatR
5882 we've found. */
5883 if (!t->opcode_modifier.d)
5884 found_reverse_match = 0;
5885 else if (operand_types[0].bitfield.tbyte)
5886 found_reverse_match = Opcode_FloatD;
5887 else if (operand_types[0].bitfield.xmmword
5888 || operand_types[i.operands - 1].bitfield.xmmword
5889 || operand_types[0].bitfield.regmmx
5890 || operand_types[i.operands - 1].bitfield.regmmx
5891 || is_any_vex_encoding(t))
5892 found_reverse_match = (t->base_opcode & 0xee) != 0x6e
5893 ? Opcode_SIMD_FloatD : Opcode_SIMD_IntD;
5894 else
5895 found_reverse_match = Opcode_D;
5896 if (t->opcode_modifier.floatr)
5897 found_reverse_match |= Opcode_FloatR;
5898 }
5899 else
5900 {
5901 /* Found a forward 2 operand match here. */
5902 switch (t->operands)
5903 {
5904 case 5:
5905 overlap4 = operand_type_and (i.types[4],
5906 operand_types[4]);
5907 /* Fall through. */
5908 case 4:
5909 overlap3 = operand_type_and (i.types[3],
5910 operand_types[3]);
5911 /* Fall through. */
5912 case 3:
5913 overlap2 = operand_type_and (i.types[2],
5914 operand_types[2]);
5915 break;
5916 }
5917
5918 switch (t->operands)
5919 {
5920 case 5:
5921 if (!operand_type_match (overlap4, i.types[4])
5922 || !operand_type_register_match (i.types[3],
5923 operand_types[3],
5924 i.types[4],
5925 operand_types[4]))
5926 continue;
5927 /* Fall through. */
5928 case 4:
5929 if (!operand_type_match (overlap3, i.types[3])
5930 || ((check_register & 0xa) == 0xa
5931 && !operand_type_register_match (i.types[1],
5932 operand_types[1],
5933 i.types[3],
5934 operand_types[3]))
5935 || ((check_register & 0xc) == 0xc
5936 && !operand_type_register_match (i.types[2],
5937 operand_types[2],
5938 i.types[3],
5939 operand_types[3])))
5940 continue;
5941 /* Fall through. */
5942 case 3:
5943 /* Here we make use of the fact that there are no
5944 reverse match 3 operand instructions. */
5945 if (!operand_type_match (overlap2, i.types[2])
5946 || ((check_register & 5) == 5
5947 && !operand_type_register_match (i.types[0],
5948 operand_types[0],
5949 i.types[2],
5950 operand_types[2]))
5951 || ((check_register & 6) == 6
5952 && !operand_type_register_match (i.types[1],
5953 operand_types[1],
5954 i.types[2],
5955 operand_types[2])))
5956 continue;
5957 break;
5958 }
5959 }
5960 /* Found either forward/reverse 2, 3 or 4 operand match here:
5961 slip through to break. */
5962 }
5963 if (!found_cpu_match)
5964 continue;
5965
5966 /* Check if vector and VEX operands are valid. */
5967 if (check_VecOperands (t) || VEX_check_operands (t))
5968 {
5969 specific_error = i.error;
5970 continue;
5971 }
5972
5973 /* We've found a match; break out of loop. */
5974 break;
5975 }
5976
5977 if (t == current_templates->end)
5978 {
5979 /* We found no match. */
5980 const char *err_msg;
5981 switch (specific_error ? specific_error : i.error)
5982 {
5983 default:
5984 abort ();
5985 case operand_size_mismatch:
5986 err_msg = _("operand size mismatch");
5987 break;
5988 case operand_type_mismatch:
5989 err_msg = _("operand type mismatch");
5990 break;
5991 case register_type_mismatch:
5992 err_msg = _("register type mismatch");
5993 break;
5994 case number_of_operands_mismatch:
5995 err_msg = _("number of operands mismatch");
5996 break;
5997 case invalid_instruction_suffix:
5998 err_msg = _("invalid instruction suffix");
5999 break;
6000 case bad_imm4:
6001 err_msg = _("constant doesn't fit in 4 bits");
6002 break;
6003 case unsupported_with_intel_mnemonic:
6004 err_msg = _("unsupported with Intel mnemonic");
6005 break;
6006 case unsupported_syntax:
6007 err_msg = _("unsupported syntax");
6008 break;
6009 case unsupported:
6010 as_bad (_("unsupported instruction `%s'"),
6011 current_templates->start->name);
6012 return NULL;
6013 case invalid_vsib_address:
6014 err_msg = _("invalid VSIB address");
6015 break;
6016 case invalid_vector_register_set:
6017 err_msg = _("mask, index, and destination registers must be distinct");
6018 break;
6019 case unsupported_vector_index_register:
6020 err_msg = _("unsupported vector index register");
6021 break;
6022 case unsupported_broadcast:
6023 err_msg = _("unsupported broadcast");
6024 break;
6025 case broadcast_needed:
6026 err_msg = _("broadcast is needed for operand of such type");
6027 break;
6028 case unsupported_masking:
6029 err_msg = _("unsupported masking");
6030 break;
6031 case mask_not_on_destination:
6032 err_msg = _("mask not on destination operand");
6033 break;
6034 case no_default_mask:
6035 err_msg = _("default mask isn't allowed");
6036 break;
6037 case unsupported_rc_sae:
6038 err_msg = _("unsupported static rounding/sae");
6039 break;
6040 case rc_sae_operand_not_last_imm:
6041 if (intel_syntax)
6042 err_msg = _("RC/SAE operand must precede immediate operands");
6043 else
6044 err_msg = _("RC/SAE operand must follow immediate operands");
6045 break;
6046 case invalid_register_operand:
6047 err_msg = _("invalid register operand");
6048 break;
6049 }
6050 as_bad (_("%s for `%s'"), err_msg,
6051 current_templates->start->name);
6052 return NULL;
6053 }
6054
6055 if (!quiet_warnings)
6056 {
6057 if (!intel_syntax
6058 && (i.types[0].bitfield.jumpabsolute
6059 != operand_types[0].bitfield.jumpabsolute))
6060 {
6061 as_warn (_("indirect %s without `*'"), t->name);
6062 }
6063
6064 if (t->opcode_modifier.isprefix
6065 && t->opcode_modifier.ignoresize)
6066 {
6067 /* Warn them that a data or address size prefix doesn't
6068 affect assembly of the next line of code. */
6069 as_warn (_("stand-alone `%s' prefix"), t->name);
6070 }
6071 }
6072
6073 /* Copy the template we found. */
6074 i.tm = *t;
6075
6076 if (addr_prefix_disp != -1)
6077 i.tm.operand_types[addr_prefix_disp]
6078 = operand_types[addr_prefix_disp];
6079
6080 if (found_reverse_match)
6081 {
6082 /* If we found a reverse match we must alter the opcode
6083 direction bit. found_reverse_match holds bits to change
6084 (different for int & float insns). */
6085
6086 i.tm.base_opcode ^= found_reverse_match;
6087
6088 i.tm.operand_types[0] = operand_types[i.operands - 1];
6089 i.tm.operand_types[i.operands - 1] = operand_types[0];
6090 }
6091
6092 return t;
6093 }
6094
6095 static int
6096 check_string (void)
6097 {
6098 int mem_op = operand_type_check (i.types[0], anymem) ? 0 : 1;
6099 if (i.tm.operand_types[mem_op].bitfield.esseg)
6100 {
6101 if (i.seg[0] != NULL && i.seg[0] != &es)
6102 {
6103 as_bad (_("`%s' operand %d must use `%ses' segment"),
6104 i.tm.name,
6105 mem_op + 1,
6106 register_prefix);
6107 return 0;
6108 }
6109 /* There's only ever one segment override allowed per instruction.
6110 This instruction possibly has a legal segment override on the
6111 second operand, so copy the segment to where non-string
6112 instructions store it, allowing common code. */
6113 i.seg[0] = i.seg[1];
6114 }
6115 else if (i.tm.operand_types[mem_op + 1].bitfield.esseg)
6116 {
6117 if (i.seg[1] != NULL && i.seg[1] != &es)
6118 {
6119 as_bad (_("`%s' operand %d must use `%ses' segment"),
6120 i.tm.name,
6121 mem_op + 2,
6122 register_prefix);
6123 return 0;
6124 }
6125 }
6126 return 1;
6127 }
6128
6129 static int
6130 process_suffix (void)
6131 {
6132 /* If matched instruction specifies an explicit instruction mnemonic
6133 suffix, use it. */
6134 if (i.tm.opcode_modifier.size == SIZE16)
6135 i.suffix = WORD_MNEM_SUFFIX;
6136 else if (i.tm.opcode_modifier.size == SIZE32)
6137 i.suffix = LONG_MNEM_SUFFIX;
6138 else if (i.tm.opcode_modifier.size == SIZE64)
6139 i.suffix = QWORD_MNEM_SUFFIX;
6140 else if (i.reg_operands)
6141 {
6142 /* If there's no instruction mnemonic suffix we try to invent one
6143 based on register operands. */
6144 if (!i.suffix)
6145 {
6146 /* We take i.suffix from the last register operand specified,
6147 Destination register type is more significant than source
6148 register type. crc32 in SSE4.2 prefers source register
6149 type. */
6150 if (i.tm.base_opcode == 0xf20f38f0 && i.types[0].bitfield.reg)
6151 {
6152 if (i.types[0].bitfield.byte)
6153 i.suffix = BYTE_MNEM_SUFFIX;
6154 else if (i.types[0].bitfield.word)
6155 i.suffix = WORD_MNEM_SUFFIX;
6156 else if (i.types[0].bitfield.dword)
6157 i.suffix = LONG_MNEM_SUFFIX;
6158 else if (i.types[0].bitfield.qword)
6159 i.suffix = QWORD_MNEM_SUFFIX;
6160 }
6161
6162 if (!i.suffix)
6163 {
6164 int op;
6165
6166 if (i.tm.base_opcode == 0xf20f38f0)
6167 {
6168 /* We have to know the operand size for crc32. */
6169 as_bad (_("ambiguous memory operand size for `%s`"),
6170 i.tm.name);
6171 return 0;
6172 }
6173
6174 for (op = i.operands; --op >= 0;)
6175 if (!i.tm.operand_types[op].bitfield.inoutportreg
6176 && !i.tm.operand_types[op].bitfield.shiftcount)
6177 {
6178 if (!i.types[op].bitfield.reg)
6179 continue;
6180 if (i.types[op].bitfield.byte)
6181 i.suffix = BYTE_MNEM_SUFFIX;
6182 else if (i.types[op].bitfield.word)
6183 i.suffix = WORD_MNEM_SUFFIX;
6184 else if (i.types[op].bitfield.dword)
6185 i.suffix = LONG_MNEM_SUFFIX;
6186 else if (i.types[op].bitfield.qword)
6187 i.suffix = QWORD_MNEM_SUFFIX;
6188 else
6189 continue;
6190 break;
6191 }
6192 }
6193 }
6194 else if (i.suffix == BYTE_MNEM_SUFFIX)
6195 {
6196 if (intel_syntax
6197 && i.tm.opcode_modifier.ignoresize
6198 && i.tm.opcode_modifier.no_bsuf)
6199 i.suffix = 0;
6200 else if (!check_byte_reg ())
6201 return 0;
6202 }
6203 else if (i.suffix == LONG_MNEM_SUFFIX)
6204 {
6205 if (intel_syntax
6206 && i.tm.opcode_modifier.ignoresize
6207 && i.tm.opcode_modifier.no_lsuf
6208 && !i.tm.opcode_modifier.todword
6209 && !i.tm.opcode_modifier.toqword)
6210 i.suffix = 0;
6211 else if (!check_long_reg ())
6212 return 0;
6213 }
6214 else if (i.suffix == QWORD_MNEM_SUFFIX)
6215 {
6216 if (intel_syntax
6217 && i.tm.opcode_modifier.ignoresize
6218 && i.tm.opcode_modifier.no_qsuf
6219 && !i.tm.opcode_modifier.todword
6220 && !i.tm.opcode_modifier.toqword)
6221 i.suffix = 0;
6222 else if (!check_qword_reg ())
6223 return 0;
6224 }
6225 else if (i.suffix == WORD_MNEM_SUFFIX)
6226 {
6227 if (intel_syntax
6228 && i.tm.opcode_modifier.ignoresize
6229 && i.tm.opcode_modifier.no_wsuf)
6230 i.suffix = 0;
6231 else if (!check_word_reg ())
6232 return 0;
6233 }
6234 else if (intel_syntax && i.tm.opcode_modifier.ignoresize)
6235 /* Do nothing if the instruction is going to ignore the prefix. */
6236 ;
6237 else
6238 abort ();
6239 }
6240 else if (i.tm.opcode_modifier.defaultsize
6241 && !i.suffix
6242 /* exclude fldenv/frstor/fsave/fstenv */
6243 && i.tm.opcode_modifier.no_ssuf)
6244 {
6245 i.suffix = stackop_size;
6246 }
6247 else if (intel_syntax
6248 && !i.suffix
6249 && (i.tm.operand_types[0].bitfield.jumpabsolute
6250 || i.tm.opcode_modifier.jumpbyte
6251 || i.tm.opcode_modifier.jumpintersegment
6252 || (i.tm.base_opcode == 0x0f01 /* [ls][gi]dt */
6253 && i.tm.extension_opcode <= 3)))
6254 {
6255 switch (flag_code)
6256 {
6257 case CODE_64BIT:
6258 if (!i.tm.opcode_modifier.no_qsuf)
6259 {
6260 i.suffix = QWORD_MNEM_SUFFIX;
6261 break;
6262 }
6263 /* Fall through. */
6264 case CODE_32BIT:
6265 if (!i.tm.opcode_modifier.no_lsuf)
6266 i.suffix = LONG_MNEM_SUFFIX;
6267 break;
6268 case CODE_16BIT:
6269 if (!i.tm.opcode_modifier.no_wsuf)
6270 i.suffix = WORD_MNEM_SUFFIX;
6271 break;
6272 }
6273 }
6274
6275 if (!i.suffix)
6276 {
6277 if (!intel_syntax)
6278 {
6279 if (i.tm.opcode_modifier.w)
6280 {
6281 as_bad (_("no instruction mnemonic suffix given and "
6282 "no register operands; can't size instruction"));
6283 return 0;
6284 }
6285 }
6286 else
6287 {
6288 unsigned int suffixes;
6289
6290 suffixes = !i.tm.opcode_modifier.no_bsuf;
6291 if (!i.tm.opcode_modifier.no_wsuf)
6292 suffixes |= 1 << 1;
6293 if (!i.tm.opcode_modifier.no_lsuf)
6294 suffixes |= 1 << 2;
6295 if (!i.tm.opcode_modifier.no_ldsuf)
6296 suffixes |= 1 << 3;
6297 if (!i.tm.opcode_modifier.no_ssuf)
6298 suffixes |= 1 << 4;
6299 if (flag_code == CODE_64BIT && !i.tm.opcode_modifier.no_qsuf)
6300 suffixes |= 1 << 5;
6301
6302 /* There are more than suffix matches. */
6303 if (i.tm.opcode_modifier.w
6304 || ((suffixes & (suffixes - 1))
6305 && !i.tm.opcode_modifier.defaultsize
6306 && !i.tm.opcode_modifier.ignoresize))
6307 {
6308 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
6309 return 0;
6310 }
6311 }
6312 }
6313
6314 /* Change the opcode based on the operand size given by i.suffix. */
6315 switch (i.suffix)
6316 {
6317 /* Size floating point instruction. */
6318 case LONG_MNEM_SUFFIX:
6319 if (i.tm.opcode_modifier.floatmf)
6320 {
6321 i.tm.base_opcode ^= 4;
6322 break;
6323 }
6324 /* fall through */
6325 case WORD_MNEM_SUFFIX:
6326 case QWORD_MNEM_SUFFIX:
6327 /* It's not a byte, select word/dword operation. */
6328 if (i.tm.opcode_modifier.w)
6329 {
6330 if (i.tm.opcode_modifier.shortform)
6331 i.tm.base_opcode |= 8;
6332 else
6333 i.tm.base_opcode |= 1;
6334 }
6335 /* fall through */
6336 case SHORT_MNEM_SUFFIX:
6337 /* Now select between word & dword operations via the operand
6338 size prefix, except for instructions that will ignore this
6339 prefix anyway. */
6340 if (i.reg_operands > 0
6341 && i.types[0].bitfield.reg
6342 && i.tm.opcode_modifier.addrprefixopreg
6343 && (i.tm.opcode_modifier.immext
6344 || i.operands == 1))
6345 {
6346 /* The address size override prefix changes the size of the
6347 first operand. */
6348 if ((flag_code == CODE_32BIT
6349 && i.op[0].regs->reg_type.bitfield.word)
6350 || (flag_code != CODE_32BIT
6351 && i.op[0].regs->reg_type.bitfield.dword))
6352 if (!add_prefix (ADDR_PREFIX_OPCODE))
6353 return 0;
6354 }
6355 else if (i.suffix != QWORD_MNEM_SUFFIX
6356 && !i.tm.opcode_modifier.ignoresize
6357 && !i.tm.opcode_modifier.floatmf
6358 && !i.tm.opcode_modifier.vex
6359 && !i.tm.opcode_modifier.vexopcode
6360 && !is_evex_encoding (&i.tm)
6361 && ((i.suffix == LONG_MNEM_SUFFIX) == (flag_code == CODE_16BIT)
6362 || (flag_code == CODE_64BIT
6363 && i.tm.opcode_modifier.jumpbyte)))
6364 {
6365 unsigned int prefix = DATA_PREFIX_OPCODE;
6366
6367 if (i.tm.opcode_modifier.jumpbyte) /* jcxz, loop */
6368 prefix = ADDR_PREFIX_OPCODE;
6369
6370 if (!add_prefix (prefix))
6371 return 0;
6372 }
6373
6374 /* Set mode64 for an operand. */
6375 if (i.suffix == QWORD_MNEM_SUFFIX
6376 && flag_code == CODE_64BIT
6377 && !i.tm.opcode_modifier.norex64
6378 /* Special case for xchg %rax,%rax. It is NOP and doesn't
6379 need rex64. */
6380 && ! (i.operands == 2
6381 && i.tm.base_opcode == 0x90
6382 && i.tm.extension_opcode == None
6383 && operand_type_equal (&i.types [0], &acc64)
6384 && operand_type_equal (&i.types [1], &acc64)))
6385 i.rex |= REX_W;
6386
6387 break;
6388 }
6389
6390 if (i.reg_operands != 0
6391 && i.operands > 1
6392 && i.tm.opcode_modifier.addrprefixopreg
6393 && !i.tm.opcode_modifier.immext)
6394 {
6395 /* Check invalid register operand when the address size override
6396 prefix changes the size of register operands. */
6397 unsigned int op;
6398 enum { need_word, need_dword, need_qword } need;
6399
6400 if (flag_code == CODE_32BIT)
6401 need = i.prefix[ADDR_PREFIX] ? need_word : need_dword;
6402 else
6403 {
6404 if (i.prefix[ADDR_PREFIX])
6405 need = need_dword;
6406 else
6407 need = flag_code == CODE_64BIT ? need_qword : need_word;
6408 }
6409
6410 for (op = 0; op < i.operands; op++)
6411 if (i.types[op].bitfield.reg
6412 && ((need == need_word
6413 && !i.op[op].regs->reg_type.bitfield.word)
6414 || (need == need_dword
6415 && !i.op[op].regs->reg_type.bitfield.dword)
6416 || (need == need_qword
6417 && !i.op[op].regs->reg_type.bitfield.qword)))
6418 {
6419 as_bad (_("invalid register operand size for `%s'"),
6420 i.tm.name);
6421 return 0;
6422 }
6423 }
6424
6425 return 1;
6426 }
6427
6428 static int
6429 check_byte_reg (void)
6430 {
6431 int op;
6432
6433 for (op = i.operands; --op >= 0;)
6434 {
6435 /* Skip non-register operands. */
6436 if (!i.types[op].bitfield.reg)
6437 continue;
6438
6439 /* If this is an eight bit register, it's OK. If it's the 16 or
6440 32 bit version of an eight bit register, we will just use the
6441 low portion, and that's OK too. */
6442 if (i.types[op].bitfield.byte)
6443 continue;
6444
6445 /* I/O port address operands are OK too. */
6446 if (i.tm.operand_types[op].bitfield.inoutportreg)
6447 continue;
6448
6449 /* crc32 doesn't generate this warning. */
6450 if (i.tm.base_opcode == 0xf20f38f0)
6451 continue;
6452
6453 if ((i.types[op].bitfield.word
6454 || i.types[op].bitfield.dword
6455 || i.types[op].bitfield.qword)
6456 && i.op[op].regs->reg_num < 4
6457 /* Prohibit these changes in 64bit mode, since the lowering
6458 would be more complicated. */
6459 && flag_code != CODE_64BIT)
6460 {
6461 #if REGISTER_WARNINGS
6462 if (!quiet_warnings)
6463 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
6464 register_prefix,
6465 (i.op[op].regs + (i.types[op].bitfield.word
6466 ? REGNAM_AL - REGNAM_AX
6467 : REGNAM_AL - REGNAM_EAX))->reg_name,
6468 register_prefix,
6469 i.op[op].regs->reg_name,
6470 i.suffix);
6471 #endif
6472 continue;
6473 }
6474 /* Any other register is bad. */
6475 if (i.types[op].bitfield.reg
6476 || i.types[op].bitfield.regmmx
6477 || i.types[op].bitfield.regsimd
6478 || i.types[op].bitfield.sreg2
6479 || i.types[op].bitfield.sreg3
6480 || i.types[op].bitfield.control
6481 || i.types[op].bitfield.debug
6482 || i.types[op].bitfield.test)
6483 {
6484 as_bad (_("`%s%s' not allowed with `%s%c'"),
6485 register_prefix,
6486 i.op[op].regs->reg_name,
6487 i.tm.name,
6488 i.suffix);
6489 return 0;
6490 }
6491 }
6492 return 1;
6493 }
6494
6495 static int
6496 check_long_reg (void)
6497 {
6498 int op;
6499
6500 for (op = i.operands; --op >= 0;)
6501 /* Skip non-register operands. */
6502 if (!i.types[op].bitfield.reg)
6503 continue;
6504 /* Reject eight bit registers, except where the template requires
6505 them. (eg. movzb) */
6506 else if (i.types[op].bitfield.byte
6507 && (i.tm.operand_types[op].bitfield.reg
6508 || i.tm.operand_types[op].bitfield.acc)
6509 && (i.tm.operand_types[op].bitfield.word
6510 || i.tm.operand_types[op].bitfield.dword))
6511 {
6512 as_bad (_("`%s%s' not allowed with `%s%c'"),
6513 register_prefix,
6514 i.op[op].regs->reg_name,
6515 i.tm.name,
6516 i.suffix);
6517 return 0;
6518 }
6519 /* Warn if the e prefix on a general reg is missing. */
6520 else if ((!quiet_warnings || flag_code == CODE_64BIT)
6521 && i.types[op].bitfield.word
6522 && (i.tm.operand_types[op].bitfield.reg
6523 || i.tm.operand_types[op].bitfield.acc)
6524 && i.tm.operand_types[op].bitfield.dword)
6525 {
6526 /* Prohibit these changes in the 64bit mode, since the
6527 lowering is more complicated. */
6528 if (flag_code == CODE_64BIT)
6529 {
6530 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
6531 register_prefix, i.op[op].regs->reg_name,
6532 i.suffix);
6533 return 0;
6534 }
6535 #if REGISTER_WARNINGS
6536 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
6537 register_prefix,
6538 (i.op[op].regs + REGNAM_EAX - REGNAM_AX)->reg_name,
6539 register_prefix, i.op[op].regs->reg_name, i.suffix);
6540 #endif
6541 }
6542 /* Warn if the r prefix on a general reg is present. */
6543 else if (i.types[op].bitfield.qword
6544 && (i.tm.operand_types[op].bitfield.reg
6545 || i.tm.operand_types[op].bitfield.acc)
6546 && i.tm.operand_types[op].bitfield.dword)
6547 {
6548 if (intel_syntax
6549 && i.tm.opcode_modifier.toqword
6550 && !i.types[0].bitfield.regsimd)
6551 {
6552 /* Convert to QWORD. We want REX byte. */
6553 i.suffix = QWORD_MNEM_SUFFIX;
6554 }
6555 else
6556 {
6557 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
6558 register_prefix, i.op[op].regs->reg_name,
6559 i.suffix);
6560 return 0;
6561 }
6562 }
6563 return 1;
6564 }
6565
6566 static int
6567 check_qword_reg (void)
6568 {
6569 int op;
6570
6571 for (op = i.operands; --op >= 0; )
6572 /* Skip non-register operands. */
6573 if (!i.types[op].bitfield.reg)
6574 continue;
6575 /* Reject eight bit registers, except where the template requires
6576 them. (eg. movzb) */
6577 else if (i.types[op].bitfield.byte
6578 && (i.tm.operand_types[op].bitfield.reg
6579 || i.tm.operand_types[op].bitfield.acc)
6580 && (i.tm.operand_types[op].bitfield.word
6581 || i.tm.operand_types[op].bitfield.dword))
6582 {
6583 as_bad (_("`%s%s' not allowed with `%s%c'"),
6584 register_prefix,
6585 i.op[op].regs->reg_name,
6586 i.tm.name,
6587 i.suffix);
6588 return 0;
6589 }
6590 /* Warn if the r prefix on a general reg is missing. */
6591 else if ((i.types[op].bitfield.word
6592 || i.types[op].bitfield.dword)
6593 && (i.tm.operand_types[op].bitfield.reg
6594 || i.tm.operand_types[op].bitfield.acc)
6595 && i.tm.operand_types[op].bitfield.qword)
6596 {
6597 /* Prohibit these changes in the 64bit mode, since the
6598 lowering is more complicated. */
6599 if (intel_syntax
6600 && i.tm.opcode_modifier.todword
6601 && !i.types[0].bitfield.regsimd)
6602 {
6603 /* Convert to DWORD. We don't want REX byte. */
6604 i.suffix = LONG_MNEM_SUFFIX;
6605 }
6606 else
6607 {
6608 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
6609 register_prefix, i.op[op].regs->reg_name,
6610 i.suffix);
6611 return 0;
6612 }
6613 }
6614 return 1;
6615 }
6616
6617 static int
6618 check_word_reg (void)
6619 {
6620 int op;
6621 for (op = i.operands; --op >= 0;)
6622 /* Skip non-register operands. */
6623 if (!i.types[op].bitfield.reg)
6624 continue;
6625 /* Reject eight bit registers, except where the template requires
6626 them. (eg. movzb) */
6627 else if (i.types[op].bitfield.byte
6628 && (i.tm.operand_types[op].bitfield.reg
6629 || i.tm.operand_types[op].bitfield.acc)
6630 && (i.tm.operand_types[op].bitfield.word
6631 || i.tm.operand_types[op].bitfield.dword))
6632 {
6633 as_bad (_("`%s%s' not allowed with `%s%c'"),
6634 register_prefix,
6635 i.op[op].regs->reg_name,
6636 i.tm.name,
6637 i.suffix);
6638 return 0;
6639 }
6640 /* Warn if the e or r prefix on a general reg is present. */
6641 else if ((!quiet_warnings || flag_code == CODE_64BIT)
6642 && (i.types[op].bitfield.dword
6643 || i.types[op].bitfield.qword)
6644 && (i.tm.operand_types[op].bitfield.reg
6645 || i.tm.operand_types[op].bitfield.acc)
6646 && i.tm.operand_types[op].bitfield.word)
6647 {
6648 /* Prohibit these changes in the 64bit mode, since the
6649 lowering is more complicated. */
6650 if (flag_code == CODE_64BIT)
6651 {
6652 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
6653 register_prefix, i.op[op].regs->reg_name,
6654 i.suffix);
6655 return 0;
6656 }
6657 #if REGISTER_WARNINGS
6658 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
6659 register_prefix,
6660 (i.op[op].regs + REGNAM_AX - REGNAM_EAX)->reg_name,
6661 register_prefix, i.op[op].regs->reg_name, i.suffix);
6662 #endif
6663 }
6664 return 1;
6665 }
6666
6667 static int
6668 update_imm (unsigned int j)
6669 {
6670 i386_operand_type overlap = i.types[j];
6671 if ((overlap.bitfield.imm8
6672 || overlap.bitfield.imm8s
6673 || overlap.bitfield.imm16
6674 || overlap.bitfield.imm32
6675 || overlap.bitfield.imm32s
6676 || overlap.bitfield.imm64)
6677 && !operand_type_equal (&overlap, &imm8)
6678 && !operand_type_equal (&overlap, &imm8s)
6679 && !operand_type_equal (&overlap, &imm16)
6680 && !operand_type_equal (&overlap, &imm32)
6681 && !operand_type_equal (&overlap, &imm32s)
6682 && !operand_type_equal (&overlap, &imm64))
6683 {
6684 if (i.suffix)
6685 {
6686 i386_operand_type temp;
6687
6688 operand_type_set (&temp, 0);
6689 if (i.suffix == BYTE_MNEM_SUFFIX)
6690 {
6691 temp.bitfield.imm8 = overlap.bitfield.imm8;
6692 temp.bitfield.imm8s = overlap.bitfield.imm8s;
6693 }
6694 else if (i.suffix == WORD_MNEM_SUFFIX)
6695 temp.bitfield.imm16 = overlap.bitfield.imm16;
6696 else if (i.suffix == QWORD_MNEM_SUFFIX)
6697 {
6698 temp.bitfield.imm64 = overlap.bitfield.imm64;
6699 temp.bitfield.imm32s = overlap.bitfield.imm32s;
6700 }
6701 else
6702 temp.bitfield.imm32 = overlap.bitfield.imm32;
6703 overlap = temp;
6704 }
6705 else if (operand_type_equal (&overlap, &imm16_32_32s)
6706 || operand_type_equal (&overlap, &imm16_32)
6707 || operand_type_equal (&overlap, &imm16_32s))
6708 {
6709 if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
6710 overlap = imm16;
6711 else
6712 overlap = imm32s;
6713 }
6714 if (!operand_type_equal (&overlap, &imm8)
6715 && !operand_type_equal (&overlap, &imm8s)
6716 && !operand_type_equal (&overlap, &imm16)
6717 && !operand_type_equal (&overlap, &imm32)
6718 && !operand_type_equal (&overlap, &imm32s)
6719 && !operand_type_equal (&overlap, &imm64))
6720 {
6721 as_bad (_("no instruction mnemonic suffix given; "
6722 "can't determine immediate size"));
6723 return 0;
6724 }
6725 }
6726 i.types[j] = overlap;
6727
6728 return 1;
6729 }
6730
6731 static int
6732 finalize_imm (void)
6733 {
6734 unsigned int j, n;
6735
6736 /* Update the first 2 immediate operands. */
6737 n = i.operands > 2 ? 2 : i.operands;
6738 if (n)
6739 {
6740 for (j = 0; j < n; j++)
6741 if (update_imm (j) == 0)
6742 return 0;
6743
6744 /* The 3rd operand can't be immediate operand. */
6745 gas_assert (operand_type_check (i.types[2], imm) == 0);
6746 }
6747
6748 return 1;
6749 }
6750
6751 static int
6752 process_operands (void)
6753 {
6754 /* Default segment register this instruction will use for memory
6755 accesses. 0 means unknown. This is only for optimizing out
6756 unnecessary segment overrides. */
6757 const seg_entry *default_seg = 0;
6758
6759 if (i.tm.opcode_modifier.sse2avx && i.tm.opcode_modifier.vexvvvv)
6760 {
6761 unsigned int dupl = i.operands;
6762 unsigned int dest = dupl - 1;
6763 unsigned int j;
6764
6765 /* The destination must be an xmm register. */
6766 gas_assert (i.reg_operands
6767 && MAX_OPERANDS > dupl
6768 && operand_type_equal (&i.types[dest], &regxmm));
6769
6770 if (i.tm.operand_types[0].bitfield.acc
6771 && i.tm.operand_types[0].bitfield.xmmword)
6772 {
6773 if (i.tm.opcode_modifier.vexsources == VEX3SOURCES)
6774 {
6775 /* Keep xmm0 for instructions with VEX prefix and 3
6776 sources. */
6777 i.tm.operand_types[0].bitfield.acc = 0;
6778 i.tm.operand_types[0].bitfield.regsimd = 1;
6779 goto duplicate;
6780 }
6781 else
6782 {
6783 /* We remove the first xmm0 and keep the number of
6784 operands unchanged, which in fact duplicates the
6785 destination. */
6786 for (j = 1; j < i.operands; j++)
6787 {
6788 i.op[j - 1] = i.op[j];
6789 i.types[j - 1] = i.types[j];
6790 i.tm.operand_types[j - 1] = i.tm.operand_types[j];
6791 }
6792 }
6793 }
6794 else if (i.tm.opcode_modifier.implicit1stxmm0)
6795 {
6796 gas_assert ((MAX_OPERANDS - 1) > dupl
6797 && (i.tm.opcode_modifier.vexsources
6798 == VEX3SOURCES));
6799
6800 /* Add the implicit xmm0 for instructions with VEX prefix
6801 and 3 sources. */
6802 for (j = i.operands; j > 0; j--)
6803 {
6804 i.op[j] = i.op[j - 1];
6805 i.types[j] = i.types[j - 1];
6806 i.tm.operand_types[j] = i.tm.operand_types[j - 1];
6807 }
6808 i.op[0].regs
6809 = (const reg_entry *) hash_find (reg_hash, "xmm0");
6810 i.types[0] = regxmm;
6811 i.tm.operand_types[0] = regxmm;
6812
6813 i.operands += 2;
6814 i.reg_operands += 2;
6815 i.tm.operands += 2;
6816
6817 dupl++;
6818 dest++;
6819 i.op[dupl] = i.op[dest];
6820 i.types[dupl] = i.types[dest];
6821 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
6822 }
6823 else
6824 {
6825 duplicate:
6826 i.operands++;
6827 i.reg_operands++;
6828 i.tm.operands++;
6829
6830 i.op[dupl] = i.op[dest];
6831 i.types[dupl] = i.types[dest];
6832 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
6833 }
6834
6835 if (i.tm.opcode_modifier.immext)
6836 process_immext ();
6837 }
6838 else if (i.tm.operand_types[0].bitfield.acc
6839 && i.tm.operand_types[0].bitfield.xmmword)
6840 {
6841 unsigned int j;
6842
6843 for (j = 1; j < i.operands; j++)
6844 {
6845 i.op[j - 1] = i.op[j];
6846 i.types[j - 1] = i.types[j];
6847
6848 /* We need to adjust fields in i.tm since they are used by
6849 build_modrm_byte. */
6850 i.tm.operand_types [j - 1] = i.tm.operand_types [j];
6851 }
6852
6853 i.operands--;
6854 i.reg_operands--;
6855 i.tm.operands--;
6856 }
6857 else if (i.tm.opcode_modifier.implicitquadgroup)
6858 {
6859 unsigned int regnum, first_reg_in_group, last_reg_in_group;
6860
6861 /* The second operand must be {x,y,z}mmN, where N is a multiple of 4. */
6862 gas_assert (i.operands >= 2 && i.types[1].bitfield.regsimd);
6863 regnum = register_number (i.op[1].regs);
6864 first_reg_in_group = regnum & ~3;
6865 last_reg_in_group = first_reg_in_group + 3;
6866 if (regnum != first_reg_in_group)
6867 as_warn (_("source register `%s%s' implicitly denotes"
6868 " `%s%.3s%u' to `%s%.3s%u' source group in `%s'"),
6869 register_prefix, i.op[1].regs->reg_name,
6870 register_prefix, i.op[1].regs->reg_name, first_reg_in_group,
6871 register_prefix, i.op[1].regs->reg_name, last_reg_in_group,
6872 i.tm.name);
6873 }
6874 else if (i.tm.opcode_modifier.regkludge)
6875 {
6876 /* The imul $imm, %reg instruction is converted into
6877 imul $imm, %reg, %reg, and the clr %reg instruction
6878 is converted into xor %reg, %reg. */
6879
6880 unsigned int first_reg_op;
6881
6882 if (operand_type_check (i.types[0], reg))
6883 first_reg_op = 0;
6884 else
6885 first_reg_op = 1;
6886 /* Pretend we saw the extra register operand. */
6887 gas_assert (i.reg_operands == 1
6888 && i.op[first_reg_op + 1].regs == 0);
6889 i.op[first_reg_op + 1].regs = i.op[first_reg_op].regs;
6890 i.types[first_reg_op + 1] = i.types[first_reg_op];
6891 i.operands++;
6892 i.reg_operands++;
6893 }
6894
6895 if (i.tm.opcode_modifier.shortform)
6896 {
6897 if (i.types[0].bitfield.sreg2
6898 || i.types[0].bitfield.sreg3)
6899 {
6900 if (i.tm.base_opcode == POP_SEG_SHORT
6901 && i.op[0].regs->reg_num == 1)
6902 {
6903 as_bad (_("you can't `pop %scs'"), register_prefix);
6904 return 0;
6905 }
6906 i.tm.base_opcode |= (i.op[0].regs->reg_num << 3);
6907 if ((i.op[0].regs->reg_flags & RegRex) != 0)
6908 i.rex |= REX_B;
6909 }
6910 else
6911 {
6912 /* The register or float register operand is in operand
6913 0 or 1. */
6914 unsigned int op;
6915
6916 if ((i.types[0].bitfield.reg && i.types[0].bitfield.tbyte)
6917 || operand_type_check (i.types[0], reg))
6918 op = 0;
6919 else
6920 op = 1;
6921 /* Register goes in low 3 bits of opcode. */
6922 i.tm.base_opcode |= i.op[op].regs->reg_num;
6923 if ((i.op[op].regs->reg_flags & RegRex) != 0)
6924 i.rex |= REX_B;
6925 if (!quiet_warnings && i.tm.opcode_modifier.ugh)
6926 {
6927 /* Warn about some common errors, but press on regardless.
6928 The first case can be generated by gcc (<= 2.8.1). */
6929 if (i.operands == 2)
6930 {
6931 /* Reversed arguments on faddp, fsubp, etc. */
6932 as_warn (_("translating to `%s %s%s,%s%s'"), i.tm.name,
6933 register_prefix, i.op[!intel_syntax].regs->reg_name,
6934 register_prefix, i.op[intel_syntax].regs->reg_name);
6935 }
6936 else
6937 {
6938 /* Extraneous `l' suffix on fp insn. */
6939 as_warn (_("translating to `%s %s%s'"), i.tm.name,
6940 register_prefix, i.op[0].regs->reg_name);
6941 }
6942 }
6943 }
6944 }
6945 else if (i.tm.opcode_modifier.modrm)
6946 {
6947 /* The opcode is completed (modulo i.tm.extension_opcode which
6948 must be put into the modrm byte). Now, we make the modrm and
6949 index base bytes based on all the info we've collected. */
6950
6951 default_seg = build_modrm_byte ();
6952 }
6953 else if ((i.tm.base_opcode & ~0x3) == MOV_AX_DISP32)
6954 {
6955 default_seg = &ds;
6956 }
6957 else if (i.tm.opcode_modifier.isstring)
6958 {
6959 /* For the string instructions that allow a segment override
6960 on one of their operands, the default segment is ds. */
6961 default_seg = &ds;
6962 }
6963
6964 if (i.tm.base_opcode == 0x8d /* lea */
6965 && i.seg[0]
6966 && !quiet_warnings)
6967 as_warn (_("segment override on `%s' is ineffectual"), i.tm.name);
6968
6969 /* If a segment was explicitly specified, and the specified segment
6970 is not the default, use an opcode prefix to select it. If we
6971 never figured out what the default segment is, then default_seg
6972 will be zero at this point, and the specified segment prefix will
6973 always be used. */
6974 if ((i.seg[0]) && (i.seg[0] != default_seg))
6975 {
6976 if (!add_prefix (i.seg[0]->seg_prefix))
6977 return 0;
6978 }
6979 return 1;
6980 }
6981
6982 static const seg_entry *
6983 build_modrm_byte (void)
6984 {
6985 const seg_entry *default_seg = 0;
6986 unsigned int source, dest;
6987 int vex_3_sources;
6988
6989 vex_3_sources = i.tm.opcode_modifier.vexsources == VEX3SOURCES;
6990 if (vex_3_sources)
6991 {
6992 unsigned int nds, reg_slot;
6993 expressionS *exp;
6994
6995 dest = i.operands - 1;
6996 nds = dest - 1;
6997
6998 /* There are 2 kinds of instructions:
6999 1. 5 operands: 4 register operands or 3 register operands
7000 plus 1 memory operand plus one Vec_Imm4 operand, VexXDS, and
7001 VexW0 or VexW1. The destination must be either XMM, YMM or
7002 ZMM register.
7003 2. 4 operands: 4 register operands or 3 register operands
7004 plus 1 memory operand, with VexXDS. */
7005 gas_assert ((i.reg_operands == 4
7006 || (i.reg_operands == 3 && i.mem_operands == 1))
7007 && i.tm.opcode_modifier.vexvvvv == VEXXDS
7008 && i.tm.opcode_modifier.vexw
7009 && i.tm.operand_types[dest].bitfield.regsimd);
7010
7011 /* If VexW1 is set, the first non-immediate operand is the source and
7012 the second non-immediate one is encoded in the immediate operand. */
7013 if (i.tm.opcode_modifier.vexw == VEXW1)
7014 {
7015 source = i.imm_operands;
7016 reg_slot = i.imm_operands + 1;
7017 }
7018 else
7019 {
7020 source = i.imm_operands + 1;
7021 reg_slot = i.imm_operands;
7022 }
7023
7024 if (i.imm_operands == 0)
7025 {
7026 /* When there is no immediate operand, generate an 8bit
7027 immediate operand to encode the first operand. */
7028 exp = &im_expressions[i.imm_operands++];
7029 i.op[i.operands].imms = exp;
7030 i.types[i.operands] = imm8;
7031 i.operands++;
7032
7033 gas_assert (i.tm.operand_types[reg_slot].bitfield.regsimd);
7034 exp->X_op = O_constant;
7035 exp->X_add_number = register_number (i.op[reg_slot].regs) << 4;
7036 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
7037 }
7038 else
7039 {
7040 unsigned int imm_slot;
7041
7042 gas_assert (i.imm_operands == 1 && i.types[0].bitfield.vec_imm4);
7043
7044 if (i.tm.opcode_modifier.immext)
7045 {
7046 /* When ImmExt is set, the immediate byte is the last
7047 operand. */
7048 imm_slot = i.operands - 1;
7049 source--;
7050 reg_slot--;
7051 }
7052 else
7053 {
7054 imm_slot = 0;
7055
7056 /* Turn on Imm8 so that output_imm will generate it. */
7057 i.types[imm_slot].bitfield.imm8 = 1;
7058 }
7059
7060 gas_assert (i.tm.operand_types[reg_slot].bitfield.regsimd);
7061 i.op[imm_slot].imms->X_add_number
7062 |= register_number (i.op[reg_slot].regs) << 4;
7063 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
7064 }
7065
7066 gas_assert (i.tm.operand_types[nds].bitfield.regsimd);
7067 i.vex.register_specifier = i.op[nds].regs;
7068 }
7069 else
7070 source = dest = 0;
7071
7072 /* i.reg_operands MUST be the number of real register operands;
7073 implicit registers do not count. If there are 3 register
7074 operands, it must be a instruction with VexNDS. For a
7075 instruction with VexNDD, the destination register is encoded
7076 in VEX prefix. If there are 4 register operands, it must be
7077 a instruction with VEX prefix and 3 sources. */
7078 if (i.mem_operands == 0
7079 && ((i.reg_operands == 2
7080 && i.tm.opcode_modifier.vexvvvv <= VEXXDS)
7081 || (i.reg_operands == 3
7082 && i.tm.opcode_modifier.vexvvvv == VEXXDS)
7083 || (i.reg_operands == 4 && vex_3_sources)))
7084 {
7085 switch (i.operands)
7086 {
7087 case 2:
7088 source = 0;
7089 break;
7090 case 3:
7091 /* When there are 3 operands, one of them may be immediate,
7092 which may be the first or the last operand. Otherwise,
7093 the first operand must be shift count register (cl) or it
7094 is an instruction with VexNDS. */
7095 gas_assert (i.imm_operands == 1
7096 || (i.imm_operands == 0
7097 && (i.tm.opcode_modifier.vexvvvv == VEXXDS
7098 || i.types[0].bitfield.shiftcount)));
7099 if (operand_type_check (i.types[0], imm)
7100 || i.types[0].bitfield.shiftcount)
7101 source = 1;
7102 else
7103 source = 0;
7104 break;
7105 case 4:
7106 /* When there are 4 operands, the first two must be 8bit
7107 immediate operands. The source operand will be the 3rd
7108 one.
7109
7110 For instructions with VexNDS, if the first operand
7111 an imm8, the source operand is the 2nd one. If the last
7112 operand is imm8, the source operand is the first one. */
7113 gas_assert ((i.imm_operands == 2
7114 && i.types[0].bitfield.imm8
7115 && i.types[1].bitfield.imm8)
7116 || (i.tm.opcode_modifier.vexvvvv == VEXXDS
7117 && i.imm_operands == 1
7118 && (i.types[0].bitfield.imm8
7119 || i.types[i.operands - 1].bitfield.imm8
7120 || i.rounding)));
7121 if (i.imm_operands == 2)
7122 source = 2;
7123 else
7124 {
7125 if (i.types[0].bitfield.imm8)
7126 source = 1;
7127 else
7128 source = 0;
7129 }
7130 break;
7131 case 5:
7132 if (is_evex_encoding (&i.tm))
7133 {
7134 /* For EVEX instructions, when there are 5 operands, the
7135 first one must be immediate operand. If the second one
7136 is immediate operand, the source operand is the 3th
7137 one. If the last one is immediate operand, the source
7138 operand is the 2nd one. */
7139 gas_assert (i.imm_operands == 2
7140 && i.tm.opcode_modifier.sae
7141 && operand_type_check (i.types[0], imm));
7142 if (operand_type_check (i.types[1], imm))
7143 source = 2;
7144 else if (operand_type_check (i.types[4], imm))
7145 source = 1;
7146 else
7147 abort ();
7148 }
7149 break;
7150 default:
7151 abort ();
7152 }
7153
7154 if (!vex_3_sources)
7155 {
7156 dest = source + 1;
7157
7158 /* RC/SAE operand could be between DEST and SRC. That happens
7159 when one operand is GPR and the other one is XMM/YMM/ZMM
7160 register. */
7161 if (i.rounding && i.rounding->operand == (int) dest)
7162 dest++;
7163
7164 if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
7165 {
7166 /* For instructions with VexNDS, the register-only source
7167 operand must be a 32/64bit integer, XMM, YMM, ZMM, or mask
7168 register. It is encoded in VEX prefix. We need to
7169 clear RegMem bit before calling operand_type_equal. */
7170
7171 i386_operand_type op;
7172 unsigned int vvvv;
7173
7174 /* Check register-only source operand when two source
7175 operands are swapped. */
7176 if (!i.tm.operand_types[source].bitfield.baseindex
7177 && i.tm.operand_types[dest].bitfield.baseindex)
7178 {
7179 vvvv = source;
7180 source = dest;
7181 }
7182 else
7183 vvvv = dest;
7184
7185 op = i.tm.operand_types[vvvv];
7186 op.bitfield.regmem = 0;
7187 if ((dest + 1) >= i.operands
7188 || ((!op.bitfield.reg
7189 || (!op.bitfield.dword && !op.bitfield.qword))
7190 && !op.bitfield.regsimd
7191 && !operand_type_equal (&op, &regmask)))
7192 abort ();
7193 i.vex.register_specifier = i.op[vvvv].regs;
7194 dest++;
7195 }
7196 }
7197
7198 i.rm.mode = 3;
7199 /* One of the register operands will be encoded in the i.tm.reg
7200 field, the other in the combined i.tm.mode and i.tm.regmem
7201 fields. If no form of this instruction supports a memory
7202 destination operand, then we assume the source operand may
7203 sometimes be a memory operand and so we need to store the
7204 destination in the i.rm.reg field. */
7205 if (!i.tm.operand_types[dest].bitfield.regmem
7206 && operand_type_check (i.tm.operand_types[dest], anymem) == 0)
7207 {
7208 i.rm.reg = i.op[dest].regs->reg_num;
7209 i.rm.regmem = i.op[source].regs->reg_num;
7210 if (i.op[dest].regs->reg_type.bitfield.regmmx
7211 || i.op[source].regs->reg_type.bitfield.regmmx)
7212 i.has_regmmx = TRUE;
7213 else if (i.op[dest].regs->reg_type.bitfield.regsimd
7214 || i.op[source].regs->reg_type.bitfield.regsimd)
7215 {
7216 if (i.types[dest].bitfield.zmmword
7217 || i.types[source].bitfield.zmmword)
7218 i.has_regzmm = TRUE;
7219 else if (i.types[dest].bitfield.ymmword
7220 || i.types[source].bitfield.ymmword)
7221 i.has_regymm = TRUE;
7222 else
7223 i.has_regxmm = TRUE;
7224 }
7225 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
7226 i.rex |= REX_R;
7227 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
7228 i.vrex |= REX_R;
7229 if ((i.op[source].regs->reg_flags & RegRex) != 0)
7230 i.rex |= REX_B;
7231 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
7232 i.vrex |= REX_B;
7233 }
7234 else
7235 {
7236 i.rm.reg = i.op[source].regs->reg_num;
7237 i.rm.regmem = i.op[dest].regs->reg_num;
7238 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
7239 i.rex |= REX_B;
7240 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
7241 i.vrex |= REX_B;
7242 if ((i.op[source].regs->reg_flags & RegRex) != 0)
7243 i.rex |= REX_R;
7244 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
7245 i.vrex |= REX_R;
7246 }
7247 if (flag_code != CODE_64BIT && (i.rex & REX_R))
7248 {
7249 if (!i.types[i.tm.operand_types[0].bitfield.regmem].bitfield.control)
7250 abort ();
7251 i.rex &= ~REX_R;
7252 add_prefix (LOCK_PREFIX_OPCODE);
7253 }
7254 }
7255 else
7256 { /* If it's not 2 reg operands... */
7257 unsigned int mem;
7258
7259 if (i.mem_operands)
7260 {
7261 unsigned int fake_zero_displacement = 0;
7262 unsigned int op;
7263
7264 for (op = 0; op < i.operands; op++)
7265 if (operand_type_check (i.types[op], anymem))
7266 break;
7267 gas_assert (op < i.operands);
7268
7269 if (i.tm.opcode_modifier.vecsib)
7270 {
7271 if (i.index_reg->reg_num == RegIZ)
7272 abort ();
7273
7274 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7275 if (!i.base_reg)
7276 {
7277 i.sib.base = NO_BASE_REGISTER;
7278 i.sib.scale = i.log2_scale_factor;
7279 i.types[op].bitfield.disp8 = 0;
7280 i.types[op].bitfield.disp16 = 0;
7281 i.types[op].bitfield.disp64 = 0;
7282 if (flag_code != CODE_64BIT || i.prefix[ADDR_PREFIX])
7283 {
7284 /* Must be 32 bit */
7285 i.types[op].bitfield.disp32 = 1;
7286 i.types[op].bitfield.disp32s = 0;
7287 }
7288 else
7289 {
7290 i.types[op].bitfield.disp32 = 0;
7291 i.types[op].bitfield.disp32s = 1;
7292 }
7293 }
7294 i.sib.index = i.index_reg->reg_num;
7295 if ((i.index_reg->reg_flags & RegRex) != 0)
7296 i.rex |= REX_X;
7297 if ((i.index_reg->reg_flags & RegVRex) != 0)
7298 i.vrex |= REX_X;
7299 }
7300
7301 default_seg = &ds;
7302
7303 if (i.base_reg == 0)
7304 {
7305 i.rm.mode = 0;
7306 if (!i.disp_operands)
7307 fake_zero_displacement = 1;
7308 if (i.index_reg == 0)
7309 {
7310 i386_operand_type newdisp;
7311
7312 gas_assert (!i.tm.opcode_modifier.vecsib);
7313 /* Operand is just <disp> */
7314 if (flag_code == CODE_64BIT)
7315 {
7316 /* 64bit mode overwrites the 32bit absolute
7317 addressing by RIP relative addressing and
7318 absolute addressing is encoded by one of the
7319 redundant SIB forms. */
7320 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7321 i.sib.base = NO_BASE_REGISTER;
7322 i.sib.index = NO_INDEX_REGISTER;
7323 newdisp = (!i.prefix[ADDR_PREFIX] ? disp32s : disp32);
7324 }
7325 else if ((flag_code == CODE_16BIT)
7326 ^ (i.prefix[ADDR_PREFIX] != 0))
7327 {
7328 i.rm.regmem = NO_BASE_REGISTER_16;
7329 newdisp = disp16;
7330 }
7331 else
7332 {
7333 i.rm.regmem = NO_BASE_REGISTER;
7334 newdisp = disp32;
7335 }
7336 i.types[op] = operand_type_and_not (i.types[op], anydisp);
7337 i.types[op] = operand_type_or (i.types[op], newdisp);
7338 }
7339 else if (!i.tm.opcode_modifier.vecsib)
7340 {
7341 /* !i.base_reg && i.index_reg */
7342 if (i.index_reg->reg_num == RegIZ)
7343 i.sib.index = NO_INDEX_REGISTER;
7344 else
7345 i.sib.index = i.index_reg->reg_num;
7346 i.sib.base = NO_BASE_REGISTER;
7347 i.sib.scale = i.log2_scale_factor;
7348 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7349 i.types[op].bitfield.disp8 = 0;
7350 i.types[op].bitfield.disp16 = 0;
7351 i.types[op].bitfield.disp64 = 0;
7352 if (flag_code != CODE_64BIT || i.prefix[ADDR_PREFIX])
7353 {
7354 /* Must be 32 bit */
7355 i.types[op].bitfield.disp32 = 1;
7356 i.types[op].bitfield.disp32s = 0;
7357 }
7358 else
7359 {
7360 i.types[op].bitfield.disp32 = 0;
7361 i.types[op].bitfield.disp32s = 1;
7362 }
7363 if ((i.index_reg->reg_flags & RegRex) != 0)
7364 i.rex |= REX_X;
7365 }
7366 }
7367 /* RIP addressing for 64bit mode. */
7368 else if (i.base_reg->reg_num == RegIP)
7369 {
7370 gas_assert (!i.tm.opcode_modifier.vecsib);
7371 i.rm.regmem = NO_BASE_REGISTER;
7372 i.types[op].bitfield.disp8 = 0;
7373 i.types[op].bitfield.disp16 = 0;
7374 i.types[op].bitfield.disp32 = 0;
7375 i.types[op].bitfield.disp32s = 1;
7376 i.types[op].bitfield.disp64 = 0;
7377 i.flags[op] |= Operand_PCrel;
7378 if (! i.disp_operands)
7379 fake_zero_displacement = 1;
7380 }
7381 else if (i.base_reg->reg_type.bitfield.word)
7382 {
7383 gas_assert (!i.tm.opcode_modifier.vecsib);
7384 switch (i.base_reg->reg_num)
7385 {
7386 case 3: /* (%bx) */
7387 if (i.index_reg == 0)
7388 i.rm.regmem = 7;
7389 else /* (%bx,%si) -> 0, or (%bx,%di) -> 1 */
7390 i.rm.regmem = i.index_reg->reg_num - 6;
7391 break;
7392 case 5: /* (%bp) */
7393 default_seg = &ss;
7394 if (i.index_reg == 0)
7395 {
7396 i.rm.regmem = 6;
7397 if (operand_type_check (i.types[op], disp) == 0)
7398 {
7399 /* fake (%bp) into 0(%bp) */
7400 i.types[op].bitfield.disp8 = 1;
7401 fake_zero_displacement = 1;
7402 }
7403 }
7404 else /* (%bp,%si) -> 2, or (%bp,%di) -> 3 */
7405 i.rm.regmem = i.index_reg->reg_num - 6 + 2;
7406 break;
7407 default: /* (%si) -> 4 or (%di) -> 5 */
7408 i.rm.regmem = i.base_reg->reg_num - 6 + 4;
7409 }
7410 i.rm.mode = mode_from_disp_size (i.types[op]);
7411 }
7412 else /* i.base_reg and 32/64 bit mode */
7413 {
7414 if (flag_code == CODE_64BIT
7415 && operand_type_check (i.types[op], disp))
7416 {
7417 i.types[op].bitfield.disp16 = 0;
7418 i.types[op].bitfield.disp64 = 0;
7419 if (i.prefix[ADDR_PREFIX] == 0)
7420 {
7421 i.types[op].bitfield.disp32 = 0;
7422 i.types[op].bitfield.disp32s = 1;
7423 }
7424 else
7425 {
7426 i.types[op].bitfield.disp32 = 1;
7427 i.types[op].bitfield.disp32s = 0;
7428 }
7429 }
7430
7431 if (!i.tm.opcode_modifier.vecsib)
7432 i.rm.regmem = i.base_reg->reg_num;
7433 if ((i.base_reg->reg_flags & RegRex) != 0)
7434 i.rex |= REX_B;
7435 i.sib.base = i.base_reg->reg_num;
7436 /* x86-64 ignores REX prefix bit here to avoid decoder
7437 complications. */
7438 if (!(i.base_reg->reg_flags & RegRex)
7439 && (i.base_reg->reg_num == EBP_REG_NUM
7440 || i.base_reg->reg_num == ESP_REG_NUM))
7441 default_seg = &ss;
7442 if (i.base_reg->reg_num == 5 && i.disp_operands == 0)
7443 {
7444 fake_zero_displacement = 1;
7445 i.types[op].bitfield.disp8 = 1;
7446 }
7447 i.sib.scale = i.log2_scale_factor;
7448 if (i.index_reg == 0)
7449 {
7450 gas_assert (!i.tm.opcode_modifier.vecsib);
7451 /* <disp>(%esp) becomes two byte modrm with no index
7452 register. We've already stored the code for esp
7453 in i.rm.regmem ie. ESCAPE_TO_TWO_BYTE_ADDRESSING.
7454 Any base register besides %esp will not use the
7455 extra modrm byte. */
7456 i.sib.index = NO_INDEX_REGISTER;
7457 }
7458 else if (!i.tm.opcode_modifier.vecsib)
7459 {
7460 if (i.index_reg->reg_num == RegIZ)
7461 i.sib.index = NO_INDEX_REGISTER;
7462 else
7463 i.sib.index = i.index_reg->reg_num;
7464 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7465 if ((i.index_reg->reg_flags & RegRex) != 0)
7466 i.rex |= REX_X;
7467 }
7468
7469 if (i.disp_operands
7470 && (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
7471 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL))
7472 i.rm.mode = 0;
7473 else
7474 {
7475 if (!fake_zero_displacement
7476 && !i.disp_operands
7477 && i.disp_encoding)
7478 {
7479 fake_zero_displacement = 1;
7480 if (i.disp_encoding == disp_encoding_8bit)
7481 i.types[op].bitfield.disp8 = 1;
7482 else
7483 i.types[op].bitfield.disp32 = 1;
7484 }
7485 i.rm.mode = mode_from_disp_size (i.types[op]);
7486 }
7487 }
7488
7489 if (fake_zero_displacement)
7490 {
7491 /* Fakes a zero displacement assuming that i.types[op]
7492 holds the correct displacement size. */
7493 expressionS *exp;
7494
7495 gas_assert (i.op[op].disps == 0);
7496 exp = &disp_expressions[i.disp_operands++];
7497 i.op[op].disps = exp;
7498 exp->X_op = O_constant;
7499 exp->X_add_number = 0;
7500 exp->X_add_symbol = (symbolS *) 0;
7501 exp->X_op_symbol = (symbolS *) 0;
7502 }
7503
7504 mem = op;
7505 }
7506 else
7507 mem = ~0;
7508
7509 if (i.tm.opcode_modifier.vexsources == XOP2SOURCES)
7510 {
7511 if (operand_type_check (i.types[0], imm))
7512 i.vex.register_specifier = NULL;
7513 else
7514 {
7515 /* VEX.vvvv encodes one of the sources when the first
7516 operand is not an immediate. */
7517 if (i.tm.opcode_modifier.vexw == VEXW0)
7518 i.vex.register_specifier = i.op[0].regs;
7519 else
7520 i.vex.register_specifier = i.op[1].regs;
7521 }
7522
7523 /* Destination is a XMM register encoded in the ModRM.reg
7524 and VEX.R bit. */
7525 i.rm.reg = i.op[2].regs->reg_num;
7526 if ((i.op[2].regs->reg_flags & RegRex) != 0)
7527 i.rex |= REX_R;
7528
7529 /* ModRM.rm and VEX.B encodes the other source. */
7530 if (!i.mem_operands)
7531 {
7532 i.rm.mode = 3;
7533
7534 if (i.tm.opcode_modifier.vexw == VEXW0)
7535 i.rm.regmem = i.op[1].regs->reg_num;
7536 else
7537 i.rm.regmem = i.op[0].regs->reg_num;
7538
7539 if ((i.op[1].regs->reg_flags & RegRex) != 0)
7540 i.rex |= REX_B;
7541 }
7542 }
7543 else if (i.tm.opcode_modifier.vexvvvv == VEXLWP)
7544 {
7545 i.vex.register_specifier = i.op[2].regs;
7546 if (!i.mem_operands)
7547 {
7548 i.rm.mode = 3;
7549 i.rm.regmem = i.op[1].regs->reg_num;
7550 if ((i.op[1].regs->reg_flags & RegRex) != 0)
7551 i.rex |= REX_B;
7552 }
7553 }
7554 /* Fill in i.rm.reg or i.rm.regmem field with register operand
7555 (if any) based on i.tm.extension_opcode. Again, we must be
7556 careful to make sure that segment/control/debug/test/MMX
7557 registers are coded into the i.rm.reg field. */
7558 else if (i.reg_operands)
7559 {
7560 unsigned int op;
7561 unsigned int vex_reg = ~0;
7562
7563 for (op = 0; op < i.operands; op++)
7564 {
7565 if (i.types[op].bitfield.reg
7566 || i.types[op].bitfield.regbnd
7567 || i.types[op].bitfield.regmask
7568 || i.types[op].bitfield.sreg2
7569 || i.types[op].bitfield.sreg3
7570 || i.types[op].bitfield.control
7571 || i.types[op].bitfield.debug
7572 || i.types[op].bitfield.test)
7573 break;
7574 if (i.types[op].bitfield.regsimd)
7575 {
7576 if (i.types[op].bitfield.zmmword)
7577 i.has_regzmm = TRUE;
7578 else if (i.types[op].bitfield.ymmword)
7579 i.has_regymm = TRUE;
7580 else
7581 i.has_regxmm = TRUE;
7582 break;
7583 }
7584 if (i.types[op].bitfield.regmmx)
7585 {
7586 i.has_regmmx = TRUE;
7587 break;
7588 }
7589 }
7590
7591 if (vex_3_sources)
7592 op = dest;
7593 else if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
7594 {
7595 /* For instructions with VexNDS, the register-only
7596 source operand is encoded in VEX prefix. */
7597 gas_assert (mem != (unsigned int) ~0);
7598
7599 if (op > mem)
7600 {
7601 vex_reg = op++;
7602 gas_assert (op < i.operands);
7603 }
7604 else
7605 {
7606 /* Check register-only source operand when two source
7607 operands are swapped. */
7608 if (!i.tm.operand_types[op].bitfield.baseindex
7609 && i.tm.operand_types[op + 1].bitfield.baseindex)
7610 {
7611 vex_reg = op;
7612 op += 2;
7613 gas_assert (mem == (vex_reg + 1)
7614 && op < i.operands);
7615 }
7616 else
7617 {
7618 vex_reg = op + 1;
7619 gas_assert (vex_reg < i.operands);
7620 }
7621 }
7622 }
7623 else if (i.tm.opcode_modifier.vexvvvv == VEXNDD)
7624 {
7625 /* For instructions with VexNDD, the register destination
7626 is encoded in VEX prefix. */
7627 if (i.mem_operands == 0)
7628 {
7629 /* There is no memory operand. */
7630 gas_assert ((op + 2) == i.operands);
7631 vex_reg = op + 1;
7632 }
7633 else
7634 {
7635 /* There are only 2 non-immediate operands. */
7636 gas_assert (op < i.imm_operands + 2
7637 && i.operands == i.imm_operands + 2);
7638 vex_reg = i.imm_operands + 1;
7639 }
7640 }
7641 else
7642 gas_assert (op < i.operands);
7643
7644 if (vex_reg != (unsigned int) ~0)
7645 {
7646 i386_operand_type *type = &i.tm.operand_types[vex_reg];
7647
7648 if ((!type->bitfield.reg
7649 || (!type->bitfield.dword && !type->bitfield.qword))
7650 && !type->bitfield.regsimd
7651 && !operand_type_equal (type, &regmask))
7652 abort ();
7653
7654 i.vex.register_specifier = i.op[vex_reg].regs;
7655 }
7656
7657 /* Don't set OP operand twice. */
7658 if (vex_reg != op)
7659 {
7660 /* If there is an extension opcode to put here, the
7661 register number must be put into the regmem field. */
7662 if (i.tm.extension_opcode != None)
7663 {
7664 i.rm.regmem = i.op[op].regs->reg_num;
7665 if ((i.op[op].regs->reg_flags & RegRex) != 0)
7666 i.rex |= REX_B;
7667 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
7668 i.vrex |= REX_B;
7669 }
7670 else
7671 {
7672 i.rm.reg = i.op[op].regs->reg_num;
7673 if ((i.op[op].regs->reg_flags & RegRex) != 0)
7674 i.rex |= REX_R;
7675 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
7676 i.vrex |= REX_R;
7677 }
7678 }
7679
7680 /* Now, if no memory operand has set i.rm.mode = 0, 1, 2 we
7681 must set it to 3 to indicate this is a register operand
7682 in the regmem field. */
7683 if (!i.mem_operands)
7684 i.rm.mode = 3;
7685 }
7686
7687 /* Fill in i.rm.reg field with extension opcode (if any). */
7688 if (i.tm.extension_opcode != None)
7689 i.rm.reg = i.tm.extension_opcode;
7690 }
7691 return default_seg;
7692 }
7693
7694 static void
7695 output_branch (void)
7696 {
7697 char *p;
7698 int size;
7699 int code16;
7700 int prefix;
7701 relax_substateT subtype;
7702 symbolS *sym;
7703 offsetT off;
7704
7705 code16 = flag_code == CODE_16BIT ? CODE16 : 0;
7706 size = i.disp_encoding == disp_encoding_32bit ? BIG : SMALL;
7707
7708 prefix = 0;
7709 if (i.prefix[DATA_PREFIX] != 0)
7710 {
7711 prefix = 1;
7712 i.prefixes -= 1;
7713 code16 ^= CODE16;
7714 }
7715 /* Pentium4 branch hints. */
7716 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
7717 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
7718 {
7719 prefix++;
7720 i.prefixes--;
7721 }
7722 if (i.prefix[REX_PREFIX] != 0)
7723 {
7724 prefix++;
7725 i.prefixes--;
7726 }
7727
7728 /* BND prefixed jump. */
7729 if (i.prefix[BND_PREFIX] != 0)
7730 {
7731 FRAG_APPEND_1_CHAR (i.prefix[BND_PREFIX]);
7732 i.prefixes -= 1;
7733 }
7734
7735 if (i.prefixes != 0 && !intel_syntax)
7736 as_warn (_("skipping prefixes on this instruction"));
7737
7738 /* It's always a symbol; End frag & setup for relax.
7739 Make sure there is enough room in this frag for the largest
7740 instruction we may generate in md_convert_frag. This is 2
7741 bytes for the opcode and room for the prefix and largest
7742 displacement. */
7743 frag_grow (prefix + 2 + 4);
7744 /* Prefix and 1 opcode byte go in fr_fix. */
7745 p = frag_more (prefix + 1);
7746 if (i.prefix[DATA_PREFIX] != 0)
7747 *p++ = DATA_PREFIX_OPCODE;
7748 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE
7749 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE)
7750 *p++ = i.prefix[SEG_PREFIX];
7751 if (i.prefix[REX_PREFIX] != 0)
7752 *p++ = i.prefix[REX_PREFIX];
7753 *p = i.tm.base_opcode;
7754
7755 if ((unsigned char) *p == JUMP_PC_RELATIVE)
7756 subtype = ENCODE_RELAX_STATE (UNCOND_JUMP, size);
7757 else if (cpu_arch_flags.bitfield.cpui386)
7758 subtype = ENCODE_RELAX_STATE (COND_JUMP, size);
7759 else
7760 subtype = ENCODE_RELAX_STATE (COND_JUMP86, size);
7761 subtype |= code16;
7762
7763 sym = i.op[0].disps->X_add_symbol;
7764 off = i.op[0].disps->X_add_number;
7765
7766 if (i.op[0].disps->X_op != O_constant
7767 && i.op[0].disps->X_op != O_symbol)
7768 {
7769 /* Handle complex expressions. */
7770 sym = make_expr_symbol (i.op[0].disps);
7771 off = 0;
7772 }
7773
7774 /* 1 possible extra opcode + 4 byte displacement go in var part.
7775 Pass reloc in fr_var. */
7776 frag_var (rs_machine_dependent, 5, i.reloc[0], subtype, sym, off, p);
7777 }
7778
7779 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7780 /* Return TRUE iff PLT32 relocation should be used for branching to
7781 symbol S. */
7782
7783 static bfd_boolean
7784 need_plt32_p (symbolS *s)
7785 {
7786 /* PLT32 relocation is ELF only. */
7787 if (!IS_ELF)
7788 return FALSE;
7789
7790 /* Since there is no need to prepare for PLT branch on x86-64, we
7791 can generate R_X86_64_PLT32, instead of R_X86_64_PC32, which can
7792 be used as a marker for 32-bit PC-relative branches. */
7793 if (!object_64bit)
7794 return FALSE;
7795
7796 /* Weak or undefined symbol need PLT32 relocation. */
7797 if (S_IS_WEAK (s) || !S_IS_DEFINED (s))
7798 return TRUE;
7799
7800 /* Non-global symbol doesn't need PLT32 relocation. */
7801 if (! S_IS_EXTERNAL (s))
7802 return FALSE;
7803
7804 /* Other global symbols need PLT32 relocation. NB: Symbol with
7805 non-default visibilities are treated as normal global symbol
7806 so that PLT32 relocation can be used as a marker for 32-bit
7807 PC-relative branches. It is useful for linker relaxation. */
7808 return TRUE;
7809 }
7810 #endif
7811
7812 static void
7813 output_jump (void)
7814 {
7815 char *p;
7816 int size;
7817 fixS *fixP;
7818 bfd_reloc_code_real_type jump_reloc = i.reloc[0];
7819
7820 if (i.tm.opcode_modifier.jumpbyte)
7821 {
7822 /* This is a loop or jecxz type instruction. */
7823 size = 1;
7824 if (i.prefix[ADDR_PREFIX] != 0)
7825 {
7826 FRAG_APPEND_1_CHAR (ADDR_PREFIX_OPCODE);
7827 i.prefixes -= 1;
7828 }
7829 /* Pentium4 branch hints. */
7830 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
7831 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
7832 {
7833 FRAG_APPEND_1_CHAR (i.prefix[SEG_PREFIX]);
7834 i.prefixes--;
7835 }
7836 }
7837 else
7838 {
7839 int code16;
7840
7841 code16 = 0;
7842 if (flag_code == CODE_16BIT)
7843 code16 = CODE16;
7844
7845 if (i.prefix[DATA_PREFIX] != 0)
7846 {
7847 FRAG_APPEND_1_CHAR (DATA_PREFIX_OPCODE);
7848 i.prefixes -= 1;
7849 code16 ^= CODE16;
7850 }
7851
7852 size = 4;
7853 if (code16)
7854 size = 2;
7855 }
7856
7857 if (i.prefix[REX_PREFIX] != 0)
7858 {
7859 FRAG_APPEND_1_CHAR (i.prefix[REX_PREFIX]);
7860 i.prefixes -= 1;
7861 }
7862
7863 /* BND prefixed jump. */
7864 if (i.prefix[BND_PREFIX] != 0)
7865 {
7866 FRAG_APPEND_1_CHAR (i.prefix[BND_PREFIX]);
7867 i.prefixes -= 1;
7868 }
7869
7870 if (i.prefixes != 0 && !intel_syntax)
7871 as_warn (_("skipping prefixes on this instruction"));
7872
7873 p = frag_more (i.tm.opcode_length + size);
7874 switch (i.tm.opcode_length)
7875 {
7876 case 2:
7877 *p++ = i.tm.base_opcode >> 8;
7878 /* Fall through. */
7879 case 1:
7880 *p++ = i.tm.base_opcode;
7881 break;
7882 default:
7883 abort ();
7884 }
7885
7886 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7887 if (size == 4
7888 && jump_reloc == NO_RELOC
7889 && need_plt32_p (i.op[0].disps->X_add_symbol))
7890 jump_reloc = BFD_RELOC_X86_64_PLT32;
7891 #endif
7892
7893 jump_reloc = reloc (size, 1, 1, jump_reloc);
7894
7895 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal, size,
7896 i.op[0].disps, 1, jump_reloc);
7897
7898 /* All jumps handled here are signed, but don't use a signed limit
7899 check for 32 and 16 bit jumps as we want to allow wrap around at
7900 4G and 64k respectively. */
7901 if (size == 1)
7902 fixP->fx_signed = 1;
7903 }
7904
7905 static void
7906 output_interseg_jump (void)
7907 {
7908 char *p;
7909 int size;
7910 int prefix;
7911 int code16;
7912
7913 code16 = 0;
7914 if (flag_code == CODE_16BIT)
7915 code16 = CODE16;
7916
7917 prefix = 0;
7918 if (i.prefix[DATA_PREFIX] != 0)
7919 {
7920 prefix = 1;
7921 i.prefixes -= 1;
7922 code16 ^= CODE16;
7923 }
7924 if (i.prefix[REX_PREFIX] != 0)
7925 {
7926 prefix++;
7927 i.prefixes -= 1;
7928 }
7929
7930 size = 4;
7931 if (code16)
7932 size = 2;
7933
7934 if (i.prefixes != 0 && !intel_syntax)
7935 as_warn (_("skipping prefixes on this instruction"));
7936
7937 /* 1 opcode; 2 segment; offset */
7938 p = frag_more (prefix + 1 + 2 + size);
7939
7940 if (i.prefix[DATA_PREFIX] != 0)
7941 *p++ = DATA_PREFIX_OPCODE;
7942
7943 if (i.prefix[REX_PREFIX] != 0)
7944 *p++ = i.prefix[REX_PREFIX];
7945
7946 *p++ = i.tm.base_opcode;
7947 if (i.op[1].imms->X_op == O_constant)
7948 {
7949 offsetT n = i.op[1].imms->X_add_number;
7950
7951 if (size == 2
7952 && !fits_in_unsigned_word (n)
7953 && !fits_in_signed_word (n))
7954 {
7955 as_bad (_("16-bit jump out of range"));
7956 return;
7957 }
7958 md_number_to_chars (p, n, size);
7959 }
7960 else
7961 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
7962 i.op[1].imms, 0, reloc (size, 0, 0, i.reloc[1]));
7963 if (i.op[0].imms->X_op != O_constant)
7964 as_bad (_("can't handle non absolute segment in `%s'"),
7965 i.tm.name);
7966 md_number_to_chars (p + size, (valueT) i.op[0].imms->X_add_number, 2);
7967 }
7968
7969 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7970 void
7971 x86_cleanup (void)
7972 {
7973 char *p;
7974 asection *seg = now_seg;
7975 subsegT subseg = now_subseg;
7976 asection *sec;
7977 unsigned int alignment, align_size_1;
7978 unsigned int isa_1_descsz, feature_2_descsz, descsz;
7979 unsigned int isa_1_descsz_raw, feature_2_descsz_raw;
7980 unsigned int padding;
7981
7982 if (!IS_ELF || !x86_used_note)
7983 return;
7984
7985 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_X86;
7986
7987 /* The .note.gnu.property section layout:
7988
7989 Field Length Contents
7990 ---- ---- ----
7991 n_namsz 4 4
7992 n_descsz 4 The note descriptor size
7993 n_type 4 NT_GNU_PROPERTY_TYPE_0
7994 n_name 4 "GNU"
7995 n_desc n_descsz The program property array
7996 .... .... ....
7997 */
7998
7999 /* Create the .note.gnu.property section. */
8000 sec = subseg_new (NOTE_GNU_PROPERTY_SECTION_NAME, 0);
8001 bfd_set_section_flags (stdoutput, sec,
8002 (SEC_ALLOC
8003 | SEC_LOAD
8004 | SEC_DATA
8005 | SEC_HAS_CONTENTS
8006 | SEC_READONLY));
8007
8008 if (get_elf_backend_data (stdoutput)->s->elfclass == ELFCLASS64)
8009 {
8010 align_size_1 = 7;
8011 alignment = 3;
8012 }
8013 else
8014 {
8015 align_size_1 = 3;
8016 alignment = 2;
8017 }
8018
8019 bfd_set_section_alignment (stdoutput, sec, alignment);
8020 elf_section_type (sec) = SHT_NOTE;
8021
8022 /* GNU_PROPERTY_X86_ISA_1_USED: 4-byte type + 4-byte data size
8023 + 4-byte data */
8024 isa_1_descsz_raw = 4 + 4 + 4;
8025 /* Align GNU_PROPERTY_X86_ISA_1_USED. */
8026 isa_1_descsz = (isa_1_descsz_raw + align_size_1) & ~align_size_1;
8027
8028 feature_2_descsz_raw = isa_1_descsz;
8029 /* GNU_PROPERTY_X86_FEATURE_2_USED: 4-byte type + 4-byte data size
8030 + 4-byte data */
8031 feature_2_descsz_raw += 4 + 4 + 4;
8032 /* Align GNU_PROPERTY_X86_FEATURE_2_USED. */
8033 feature_2_descsz = ((feature_2_descsz_raw + align_size_1)
8034 & ~align_size_1);
8035
8036 descsz = feature_2_descsz;
8037 /* Section size: n_namsz + n_descsz + n_type + n_name + n_descsz. */
8038 p = frag_more (4 + 4 + 4 + 4 + descsz);
8039
8040 /* Write n_namsz. */
8041 md_number_to_chars (p, (valueT) 4, 4);
8042
8043 /* Write n_descsz. */
8044 md_number_to_chars (p + 4, (valueT) descsz, 4);
8045
8046 /* Write n_type. */
8047 md_number_to_chars (p + 4 * 2, (valueT) NT_GNU_PROPERTY_TYPE_0, 4);
8048
8049 /* Write n_name. */
8050 memcpy (p + 4 * 3, "GNU", 4);
8051
8052 /* Write 4-byte type. */
8053 md_number_to_chars (p + 4 * 4,
8054 (valueT) GNU_PROPERTY_X86_ISA_1_USED, 4);
8055
8056 /* Write 4-byte data size. */
8057 md_number_to_chars (p + 4 * 5, (valueT) 4, 4);
8058
8059 /* Write 4-byte data. */
8060 md_number_to_chars (p + 4 * 6, (valueT) x86_isa_1_used, 4);
8061
8062 /* Zero out paddings. */
8063 padding = isa_1_descsz - isa_1_descsz_raw;
8064 if (padding)
8065 memset (p + 4 * 7, 0, padding);
8066
8067 /* Write 4-byte type. */
8068 md_number_to_chars (p + isa_1_descsz + 4 * 4,
8069 (valueT) GNU_PROPERTY_X86_FEATURE_2_USED, 4);
8070
8071 /* Write 4-byte data size. */
8072 md_number_to_chars (p + isa_1_descsz + 4 * 5, (valueT) 4, 4);
8073
8074 /* Write 4-byte data. */
8075 md_number_to_chars (p + isa_1_descsz + 4 * 6,
8076 (valueT) x86_feature_2_used, 4);
8077
8078 /* Zero out paddings. */
8079 padding = feature_2_descsz - feature_2_descsz_raw;
8080 if (padding)
8081 memset (p + isa_1_descsz + 4 * 7, 0, padding);
8082
8083 /* We probably can't restore the current segment, for there likely
8084 isn't one yet... */
8085 if (seg && subseg)
8086 subseg_set (seg, subseg);
8087 }
8088 #endif
8089
8090 static void
8091 output_insn (void)
8092 {
8093 fragS *insn_start_frag;
8094 offsetT insn_start_off;
8095
8096 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8097 if (IS_ELF && x86_used_note)
8098 {
8099 if (i.tm.cpu_flags.bitfield.cpucmov)
8100 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_CMOV;
8101 if (i.tm.cpu_flags.bitfield.cpusse)
8102 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE;
8103 if (i.tm.cpu_flags.bitfield.cpusse2)
8104 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE2;
8105 if (i.tm.cpu_flags.bitfield.cpusse3)
8106 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE3;
8107 if (i.tm.cpu_flags.bitfield.cpussse3)
8108 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSSE3;
8109 if (i.tm.cpu_flags.bitfield.cpusse4_1)
8110 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE4_1;
8111 if (i.tm.cpu_flags.bitfield.cpusse4_2)
8112 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE4_2;
8113 if (i.tm.cpu_flags.bitfield.cpuavx)
8114 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX;
8115 if (i.tm.cpu_flags.bitfield.cpuavx2)
8116 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX2;
8117 if (i.tm.cpu_flags.bitfield.cpufma)
8118 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_FMA;
8119 if (i.tm.cpu_flags.bitfield.cpuavx512f)
8120 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512F;
8121 if (i.tm.cpu_flags.bitfield.cpuavx512cd)
8122 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512CD;
8123 if (i.tm.cpu_flags.bitfield.cpuavx512er)
8124 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512ER;
8125 if (i.tm.cpu_flags.bitfield.cpuavx512pf)
8126 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512PF;
8127 if (i.tm.cpu_flags.bitfield.cpuavx512vl)
8128 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512VL;
8129 if (i.tm.cpu_flags.bitfield.cpuavx512dq)
8130 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512DQ;
8131 if (i.tm.cpu_flags.bitfield.cpuavx512bw)
8132 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512BW;
8133 if (i.tm.cpu_flags.bitfield.cpuavx512_4fmaps)
8134 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_4FMAPS;
8135 if (i.tm.cpu_flags.bitfield.cpuavx512_4vnniw)
8136 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_4VNNIW;
8137 if (i.tm.cpu_flags.bitfield.cpuavx512_bitalg)
8138 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_BITALG;
8139 if (i.tm.cpu_flags.bitfield.cpuavx512ifma)
8140 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_IFMA;
8141 if (i.tm.cpu_flags.bitfield.cpuavx512vbmi)
8142 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_VBMI;
8143 if (i.tm.cpu_flags.bitfield.cpuavx512_vbmi2)
8144 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_VBMI2;
8145 if (i.tm.cpu_flags.bitfield.cpuavx512_vnni)
8146 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_VNNI;
8147
8148 if (i.tm.cpu_flags.bitfield.cpu8087
8149 || i.tm.cpu_flags.bitfield.cpu287
8150 || i.tm.cpu_flags.bitfield.cpu387
8151 || i.tm.cpu_flags.bitfield.cpu687
8152 || i.tm.cpu_flags.bitfield.cpufisttp)
8153 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_X87;
8154 /* Don't set GNU_PROPERTY_X86_FEATURE_2_MMX for prefetchtXXX nor
8155 Xfence instructions. */
8156 if (i.tm.base_opcode != 0xf18
8157 && i.tm.base_opcode != 0xf0d
8158 && i.tm.base_opcode != 0xfae
8159 && (i.has_regmmx
8160 || i.tm.cpu_flags.bitfield.cpummx
8161 || i.tm.cpu_flags.bitfield.cpua3dnow
8162 || i.tm.cpu_flags.bitfield.cpua3dnowa))
8163 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_MMX;
8164 if (i.has_regxmm)
8165 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XMM;
8166 if (i.has_regymm)
8167 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_YMM;
8168 if (i.has_regzmm)
8169 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_ZMM;
8170 if (i.tm.cpu_flags.bitfield.cpufxsr)
8171 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_FXSR;
8172 if (i.tm.cpu_flags.bitfield.cpuxsave)
8173 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XSAVE;
8174 if (i.tm.cpu_flags.bitfield.cpuxsaveopt)
8175 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XSAVEOPT;
8176 if (i.tm.cpu_flags.bitfield.cpuxsavec)
8177 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XSAVEC;
8178 }
8179 #endif
8180
8181 /* Tie dwarf2 debug info to the address at the start of the insn.
8182 We can't do this after the insn has been output as the current
8183 frag may have been closed off. eg. by frag_var. */
8184 dwarf2_emit_insn (0);
8185
8186 insn_start_frag = frag_now;
8187 insn_start_off = frag_now_fix ();
8188
8189 /* Output jumps. */
8190 if (i.tm.opcode_modifier.jump)
8191 output_branch ();
8192 else if (i.tm.opcode_modifier.jumpbyte
8193 || i.tm.opcode_modifier.jumpdword)
8194 output_jump ();
8195 else if (i.tm.opcode_modifier.jumpintersegment)
8196 output_interseg_jump ();
8197 else
8198 {
8199 /* Output normal instructions here. */
8200 char *p;
8201 unsigned char *q;
8202 unsigned int j;
8203 unsigned int prefix;
8204
8205 if (avoid_fence
8206 && i.tm.base_opcode == 0xfae
8207 && i.operands == 1
8208 && i.imm_operands == 1
8209 && (i.op[0].imms->X_add_number == 0xe8
8210 || i.op[0].imms->X_add_number == 0xf0
8211 || i.op[0].imms->X_add_number == 0xf8))
8212 {
8213 /* Encode lfence, mfence, and sfence as
8214 f0 83 04 24 00 lock addl $0x0, (%{re}sp). */
8215 offsetT val = 0x240483f0ULL;
8216 p = frag_more (5);
8217 md_number_to_chars (p, val, 5);
8218 return;
8219 }
8220
8221 /* Some processors fail on LOCK prefix. This options makes
8222 assembler ignore LOCK prefix and serves as a workaround. */
8223 if (omit_lock_prefix)
8224 {
8225 if (i.tm.base_opcode == LOCK_PREFIX_OPCODE)
8226 return;
8227 i.prefix[LOCK_PREFIX] = 0;
8228 }
8229
8230 /* Since the VEX/EVEX prefix contains the implicit prefix, we
8231 don't need the explicit prefix. */
8232 if (!i.tm.opcode_modifier.vex && !i.tm.opcode_modifier.evex)
8233 {
8234 switch (i.tm.opcode_length)
8235 {
8236 case 3:
8237 if (i.tm.base_opcode & 0xff000000)
8238 {
8239 prefix = (i.tm.base_opcode >> 24) & 0xff;
8240 add_prefix (prefix);
8241 }
8242 break;
8243 case 2:
8244 if ((i.tm.base_opcode & 0xff0000) != 0)
8245 {
8246 prefix = (i.tm.base_opcode >> 16) & 0xff;
8247 if (!i.tm.cpu_flags.bitfield.cpupadlock
8248 || prefix != REPE_PREFIX_OPCODE
8249 || (i.prefix[REP_PREFIX] != REPE_PREFIX_OPCODE))
8250 add_prefix (prefix);
8251 }
8252 break;
8253 case 1:
8254 break;
8255 case 0:
8256 /* Check for pseudo prefixes. */
8257 as_bad_where (insn_start_frag->fr_file,
8258 insn_start_frag->fr_line,
8259 _("pseudo prefix without instruction"));
8260 return;
8261 default:
8262 abort ();
8263 }
8264
8265 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
8266 /* For x32, add a dummy REX_OPCODE prefix for mov/add with
8267 R_X86_64_GOTTPOFF relocation so that linker can safely
8268 perform IE->LE optimization. */
8269 if (x86_elf_abi == X86_64_X32_ABI
8270 && i.operands == 2
8271 && i.reloc[0] == BFD_RELOC_X86_64_GOTTPOFF
8272 && i.prefix[REX_PREFIX] == 0)
8273 add_prefix (REX_OPCODE);
8274 #endif
8275
8276 /* The prefix bytes. */
8277 for (j = ARRAY_SIZE (i.prefix), q = i.prefix; j > 0; j--, q++)
8278 if (*q)
8279 FRAG_APPEND_1_CHAR (*q);
8280 }
8281 else
8282 {
8283 for (j = 0, q = i.prefix; j < ARRAY_SIZE (i.prefix); j++, q++)
8284 if (*q)
8285 switch (j)
8286 {
8287 case REX_PREFIX:
8288 /* REX byte is encoded in VEX prefix. */
8289 break;
8290 case SEG_PREFIX:
8291 case ADDR_PREFIX:
8292 FRAG_APPEND_1_CHAR (*q);
8293 break;
8294 default:
8295 /* There should be no other prefixes for instructions
8296 with VEX prefix. */
8297 abort ();
8298 }
8299
8300 /* For EVEX instructions i.vrex should become 0 after
8301 build_evex_prefix. For VEX instructions upper 16 registers
8302 aren't available, so VREX should be 0. */
8303 if (i.vrex)
8304 abort ();
8305 /* Now the VEX prefix. */
8306 p = frag_more (i.vex.length);
8307 for (j = 0; j < i.vex.length; j++)
8308 p[j] = i.vex.bytes[j];
8309 }
8310
8311 /* Now the opcode; be careful about word order here! */
8312 if (i.tm.opcode_length == 1)
8313 {
8314 FRAG_APPEND_1_CHAR (i.tm.base_opcode);
8315 }
8316 else
8317 {
8318 switch (i.tm.opcode_length)
8319 {
8320 case 4:
8321 p = frag_more (4);
8322 *p++ = (i.tm.base_opcode >> 24) & 0xff;
8323 *p++ = (i.tm.base_opcode >> 16) & 0xff;
8324 break;
8325 case 3:
8326 p = frag_more (3);
8327 *p++ = (i.tm.base_opcode >> 16) & 0xff;
8328 break;
8329 case 2:
8330 p = frag_more (2);
8331 break;
8332 default:
8333 abort ();
8334 break;
8335 }
8336
8337 /* Put out high byte first: can't use md_number_to_chars! */
8338 *p++ = (i.tm.base_opcode >> 8) & 0xff;
8339 *p = i.tm.base_opcode & 0xff;
8340 }
8341
8342 /* Now the modrm byte and sib byte (if present). */
8343 if (i.tm.opcode_modifier.modrm)
8344 {
8345 FRAG_APPEND_1_CHAR ((i.rm.regmem << 0
8346 | i.rm.reg << 3
8347 | i.rm.mode << 6));
8348 /* If i.rm.regmem == ESP (4)
8349 && i.rm.mode != (Register mode)
8350 && not 16 bit
8351 ==> need second modrm byte. */
8352 if (i.rm.regmem == ESCAPE_TO_TWO_BYTE_ADDRESSING
8353 && i.rm.mode != 3
8354 && !(i.base_reg && i.base_reg->reg_type.bitfield.word))
8355 FRAG_APPEND_1_CHAR ((i.sib.base << 0
8356 | i.sib.index << 3
8357 | i.sib.scale << 6));
8358 }
8359
8360 if (i.disp_operands)
8361 output_disp (insn_start_frag, insn_start_off);
8362
8363 if (i.imm_operands)
8364 output_imm (insn_start_frag, insn_start_off);
8365 }
8366
8367 #ifdef DEBUG386
8368 if (flag_debug)
8369 {
8370 pi ("" /*line*/, &i);
8371 }
8372 #endif /* DEBUG386 */
8373 }
8374
8375 /* Return the size of the displacement operand N. */
8376
8377 static int
8378 disp_size (unsigned int n)
8379 {
8380 int size = 4;
8381
8382 if (i.types[n].bitfield.disp64)
8383 size = 8;
8384 else if (i.types[n].bitfield.disp8)
8385 size = 1;
8386 else if (i.types[n].bitfield.disp16)
8387 size = 2;
8388 return size;
8389 }
8390
8391 /* Return the size of the immediate operand N. */
8392
8393 static int
8394 imm_size (unsigned int n)
8395 {
8396 int size = 4;
8397 if (i.types[n].bitfield.imm64)
8398 size = 8;
8399 else if (i.types[n].bitfield.imm8 || i.types[n].bitfield.imm8s)
8400 size = 1;
8401 else if (i.types[n].bitfield.imm16)
8402 size = 2;
8403 return size;
8404 }
8405
8406 static void
8407 output_disp (fragS *insn_start_frag, offsetT insn_start_off)
8408 {
8409 char *p;
8410 unsigned int n;
8411
8412 for (n = 0; n < i.operands; n++)
8413 {
8414 if (operand_type_check (i.types[n], disp))
8415 {
8416 if (i.op[n].disps->X_op == O_constant)
8417 {
8418 int size = disp_size (n);
8419 offsetT val = i.op[n].disps->X_add_number;
8420
8421 val = offset_in_range (val >> (size == 1 ? i.memshift : 0),
8422 size);
8423 p = frag_more (size);
8424 md_number_to_chars (p, val, size);
8425 }
8426 else
8427 {
8428 enum bfd_reloc_code_real reloc_type;
8429 int size = disp_size (n);
8430 int sign = i.types[n].bitfield.disp32s;
8431 int pcrel = (i.flags[n] & Operand_PCrel) != 0;
8432 fixS *fixP;
8433
8434 /* We can't have 8 bit displacement here. */
8435 gas_assert (!i.types[n].bitfield.disp8);
8436
8437 /* The PC relative address is computed relative
8438 to the instruction boundary, so in case immediate
8439 fields follows, we need to adjust the value. */
8440 if (pcrel && i.imm_operands)
8441 {
8442 unsigned int n1;
8443 int sz = 0;
8444
8445 for (n1 = 0; n1 < i.operands; n1++)
8446 if (operand_type_check (i.types[n1], imm))
8447 {
8448 /* Only one immediate is allowed for PC
8449 relative address. */
8450 gas_assert (sz == 0);
8451 sz = imm_size (n1);
8452 i.op[n].disps->X_add_number -= sz;
8453 }
8454 /* We should find the immediate. */
8455 gas_assert (sz != 0);
8456 }
8457
8458 p = frag_more (size);
8459 reloc_type = reloc (size, pcrel, sign, i.reloc[n]);
8460 if (GOT_symbol
8461 && GOT_symbol == i.op[n].disps->X_add_symbol
8462 && (((reloc_type == BFD_RELOC_32
8463 || reloc_type == BFD_RELOC_X86_64_32S
8464 || (reloc_type == BFD_RELOC_64
8465 && object_64bit))
8466 && (i.op[n].disps->X_op == O_symbol
8467 || (i.op[n].disps->X_op == O_add
8468 && ((symbol_get_value_expression
8469 (i.op[n].disps->X_op_symbol)->X_op)
8470 == O_subtract))))
8471 || reloc_type == BFD_RELOC_32_PCREL))
8472 {
8473 offsetT add;
8474
8475 if (insn_start_frag == frag_now)
8476 add = (p - frag_now->fr_literal) - insn_start_off;
8477 else
8478 {
8479 fragS *fr;
8480
8481 add = insn_start_frag->fr_fix - insn_start_off;
8482 for (fr = insn_start_frag->fr_next;
8483 fr && fr != frag_now; fr = fr->fr_next)
8484 add += fr->fr_fix;
8485 add += p - frag_now->fr_literal;
8486 }
8487
8488 if (!object_64bit)
8489 {
8490 reloc_type = BFD_RELOC_386_GOTPC;
8491 i.op[n].imms->X_add_number += add;
8492 }
8493 else if (reloc_type == BFD_RELOC_64)
8494 reloc_type = BFD_RELOC_X86_64_GOTPC64;
8495 else
8496 /* Don't do the adjustment for x86-64, as there
8497 the pcrel addressing is relative to the _next_
8498 insn, and that is taken care of in other code. */
8499 reloc_type = BFD_RELOC_X86_64_GOTPC32;
8500 }
8501 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal,
8502 size, i.op[n].disps, pcrel,
8503 reloc_type);
8504 /* Check for "call/jmp *mem", "mov mem, %reg",
8505 "test %reg, mem" and "binop mem, %reg" where binop
8506 is one of adc, add, and, cmp, or, sbb, sub, xor
8507 instructions without data prefix. Always generate
8508 R_386_GOT32X for "sym*GOT" operand in 32-bit mode. */
8509 if (i.prefix[DATA_PREFIX] == 0
8510 && (generate_relax_relocations
8511 || (!object_64bit
8512 && i.rm.mode == 0
8513 && i.rm.regmem == 5))
8514 && (i.rm.mode == 2
8515 || (i.rm.mode == 0 && i.rm.regmem == 5))
8516 && ((i.operands == 1
8517 && i.tm.base_opcode == 0xff
8518 && (i.rm.reg == 2 || i.rm.reg == 4))
8519 || (i.operands == 2
8520 && (i.tm.base_opcode == 0x8b
8521 || i.tm.base_opcode == 0x85
8522 || (i.tm.base_opcode & 0xc7) == 0x03))))
8523 {
8524 if (object_64bit)
8525 {
8526 fixP->fx_tcbit = i.rex != 0;
8527 if (i.base_reg
8528 && (i.base_reg->reg_num == RegIP))
8529 fixP->fx_tcbit2 = 1;
8530 }
8531 else
8532 fixP->fx_tcbit2 = 1;
8533 }
8534 }
8535 }
8536 }
8537 }
8538
8539 static void
8540 output_imm (fragS *insn_start_frag, offsetT insn_start_off)
8541 {
8542 char *p;
8543 unsigned int n;
8544
8545 for (n = 0; n < i.operands; n++)
8546 {
8547 /* Skip SAE/RC Imm operand in EVEX. They are already handled. */
8548 if (i.rounding && (int) n == i.rounding->operand)
8549 continue;
8550
8551 if (operand_type_check (i.types[n], imm))
8552 {
8553 if (i.op[n].imms->X_op == O_constant)
8554 {
8555 int size = imm_size (n);
8556 offsetT val;
8557
8558 val = offset_in_range (i.op[n].imms->X_add_number,
8559 size);
8560 p = frag_more (size);
8561 md_number_to_chars (p, val, size);
8562 }
8563 else
8564 {
8565 /* Not absolute_section.
8566 Need a 32-bit fixup (don't support 8bit
8567 non-absolute imms). Try to support other
8568 sizes ... */
8569 enum bfd_reloc_code_real reloc_type;
8570 int size = imm_size (n);
8571 int sign;
8572
8573 if (i.types[n].bitfield.imm32s
8574 && (i.suffix == QWORD_MNEM_SUFFIX
8575 || (!i.suffix && i.tm.opcode_modifier.no_lsuf)))
8576 sign = 1;
8577 else
8578 sign = 0;
8579
8580 p = frag_more (size);
8581 reloc_type = reloc (size, 0, sign, i.reloc[n]);
8582
8583 /* This is tough to explain. We end up with this one if we
8584 * have operands that look like
8585 * "_GLOBAL_OFFSET_TABLE_+[.-.L284]". The goal here is to
8586 * obtain the absolute address of the GOT, and it is strongly
8587 * preferable from a performance point of view to avoid using
8588 * a runtime relocation for this. The actual sequence of
8589 * instructions often look something like:
8590 *
8591 * call .L66
8592 * .L66:
8593 * popl %ebx
8594 * addl $_GLOBAL_OFFSET_TABLE_+[.-.L66],%ebx
8595 *
8596 * The call and pop essentially return the absolute address
8597 * of the label .L66 and store it in %ebx. The linker itself
8598 * will ultimately change the first operand of the addl so
8599 * that %ebx points to the GOT, but to keep things simple, the
8600 * .o file must have this operand set so that it generates not
8601 * the absolute address of .L66, but the absolute address of
8602 * itself. This allows the linker itself simply treat a GOTPC
8603 * relocation as asking for a pcrel offset to the GOT to be
8604 * added in, and the addend of the relocation is stored in the
8605 * operand field for the instruction itself.
8606 *
8607 * Our job here is to fix the operand so that it would add
8608 * the correct offset so that %ebx would point to itself. The
8609 * thing that is tricky is that .-.L66 will point to the
8610 * beginning of the instruction, so we need to further modify
8611 * the operand so that it will point to itself. There are
8612 * other cases where you have something like:
8613 *
8614 * .long $_GLOBAL_OFFSET_TABLE_+[.-.L66]
8615 *
8616 * and here no correction would be required. Internally in
8617 * the assembler we treat operands of this form as not being
8618 * pcrel since the '.' is explicitly mentioned, and I wonder
8619 * whether it would simplify matters to do it this way. Who
8620 * knows. In earlier versions of the PIC patches, the
8621 * pcrel_adjust field was used to store the correction, but
8622 * since the expression is not pcrel, I felt it would be
8623 * confusing to do it this way. */
8624
8625 if ((reloc_type == BFD_RELOC_32
8626 || reloc_type == BFD_RELOC_X86_64_32S
8627 || reloc_type == BFD_RELOC_64)
8628 && GOT_symbol
8629 && GOT_symbol == i.op[n].imms->X_add_symbol
8630 && (i.op[n].imms->X_op == O_symbol
8631 || (i.op[n].imms->X_op == O_add
8632 && ((symbol_get_value_expression
8633 (i.op[n].imms->X_op_symbol)->X_op)
8634 == O_subtract))))
8635 {
8636 offsetT add;
8637
8638 if (insn_start_frag == frag_now)
8639 add = (p - frag_now->fr_literal) - insn_start_off;
8640 else
8641 {
8642 fragS *fr;
8643
8644 add = insn_start_frag->fr_fix - insn_start_off;
8645 for (fr = insn_start_frag->fr_next;
8646 fr && fr != frag_now; fr = fr->fr_next)
8647 add += fr->fr_fix;
8648 add += p - frag_now->fr_literal;
8649 }
8650
8651 if (!object_64bit)
8652 reloc_type = BFD_RELOC_386_GOTPC;
8653 else if (size == 4)
8654 reloc_type = BFD_RELOC_X86_64_GOTPC32;
8655 else if (size == 8)
8656 reloc_type = BFD_RELOC_X86_64_GOTPC64;
8657 i.op[n].imms->X_add_number += add;
8658 }
8659 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
8660 i.op[n].imms, 0, reloc_type);
8661 }
8662 }
8663 }
8664 }
8665 \f
8666 /* x86_cons_fix_new is called via the expression parsing code when a
8667 reloc is needed. We use this hook to get the correct .got reloc. */
8668 static int cons_sign = -1;
8669
8670 void
8671 x86_cons_fix_new (fragS *frag, unsigned int off, unsigned int len,
8672 expressionS *exp, bfd_reloc_code_real_type r)
8673 {
8674 r = reloc (len, 0, cons_sign, r);
8675
8676 #ifdef TE_PE
8677 if (exp->X_op == O_secrel)
8678 {
8679 exp->X_op = O_symbol;
8680 r = BFD_RELOC_32_SECREL;
8681 }
8682 #endif
8683
8684 fix_new_exp (frag, off, len, exp, 0, r);
8685 }
8686
8687 /* Export the ABI address size for use by TC_ADDRESS_BYTES for the
8688 purpose of the `.dc.a' internal pseudo-op. */
8689
8690 int
8691 x86_address_bytes (void)
8692 {
8693 if ((stdoutput->arch_info->mach & bfd_mach_x64_32))
8694 return 4;
8695 return stdoutput->arch_info->bits_per_address / 8;
8696 }
8697
8698 #if !(defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) || defined (OBJ_MACH_O)) \
8699 || defined (LEX_AT)
8700 # define lex_got(reloc, adjust, types) NULL
8701 #else
8702 /* Parse operands of the form
8703 <symbol>@GOTOFF+<nnn>
8704 and similar .plt or .got references.
8705
8706 If we find one, set up the correct relocation in RELOC and copy the
8707 input string, minus the `@GOTOFF' into a malloc'd buffer for
8708 parsing by the calling routine. Return this buffer, and if ADJUST
8709 is non-null set it to the length of the string we removed from the
8710 input line. Otherwise return NULL. */
8711 static char *
8712 lex_got (enum bfd_reloc_code_real *rel,
8713 int *adjust,
8714 i386_operand_type *types)
8715 {
8716 /* Some of the relocations depend on the size of what field is to
8717 be relocated. But in our callers i386_immediate and i386_displacement
8718 we don't yet know the operand size (this will be set by insn
8719 matching). Hence we record the word32 relocation here,
8720 and adjust the reloc according to the real size in reloc(). */
8721 static const struct {
8722 const char *str;
8723 int len;
8724 const enum bfd_reloc_code_real rel[2];
8725 const i386_operand_type types64;
8726 } gotrel[] = {
8727 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8728 { STRING_COMMA_LEN ("SIZE"), { BFD_RELOC_SIZE32,
8729 BFD_RELOC_SIZE32 },
8730 OPERAND_TYPE_IMM32_64 },
8731 #endif
8732 { STRING_COMMA_LEN ("PLTOFF"), { _dummy_first_bfd_reloc_code_real,
8733 BFD_RELOC_X86_64_PLTOFF64 },
8734 OPERAND_TYPE_IMM64 },
8735 { STRING_COMMA_LEN ("PLT"), { BFD_RELOC_386_PLT32,
8736 BFD_RELOC_X86_64_PLT32 },
8737 OPERAND_TYPE_IMM32_32S_DISP32 },
8738 { STRING_COMMA_LEN ("GOTPLT"), { _dummy_first_bfd_reloc_code_real,
8739 BFD_RELOC_X86_64_GOTPLT64 },
8740 OPERAND_TYPE_IMM64_DISP64 },
8741 { STRING_COMMA_LEN ("GOTOFF"), { BFD_RELOC_386_GOTOFF,
8742 BFD_RELOC_X86_64_GOTOFF64 },
8743 OPERAND_TYPE_IMM64_DISP64 },
8744 { STRING_COMMA_LEN ("GOTPCREL"), { _dummy_first_bfd_reloc_code_real,
8745 BFD_RELOC_X86_64_GOTPCREL },
8746 OPERAND_TYPE_IMM32_32S_DISP32 },
8747 { STRING_COMMA_LEN ("TLSGD"), { BFD_RELOC_386_TLS_GD,
8748 BFD_RELOC_X86_64_TLSGD },
8749 OPERAND_TYPE_IMM32_32S_DISP32 },
8750 { STRING_COMMA_LEN ("TLSLDM"), { BFD_RELOC_386_TLS_LDM,
8751 _dummy_first_bfd_reloc_code_real },
8752 OPERAND_TYPE_NONE },
8753 { STRING_COMMA_LEN ("TLSLD"), { _dummy_first_bfd_reloc_code_real,
8754 BFD_RELOC_X86_64_TLSLD },
8755 OPERAND_TYPE_IMM32_32S_DISP32 },
8756 { STRING_COMMA_LEN ("GOTTPOFF"), { BFD_RELOC_386_TLS_IE_32,
8757 BFD_RELOC_X86_64_GOTTPOFF },
8758 OPERAND_TYPE_IMM32_32S_DISP32 },
8759 { STRING_COMMA_LEN ("TPOFF"), { BFD_RELOC_386_TLS_LE_32,
8760 BFD_RELOC_X86_64_TPOFF32 },
8761 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
8762 { STRING_COMMA_LEN ("NTPOFF"), { BFD_RELOC_386_TLS_LE,
8763 _dummy_first_bfd_reloc_code_real },
8764 OPERAND_TYPE_NONE },
8765 { STRING_COMMA_LEN ("DTPOFF"), { BFD_RELOC_386_TLS_LDO_32,
8766 BFD_RELOC_X86_64_DTPOFF32 },
8767 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
8768 { STRING_COMMA_LEN ("GOTNTPOFF"),{ BFD_RELOC_386_TLS_GOTIE,
8769 _dummy_first_bfd_reloc_code_real },
8770 OPERAND_TYPE_NONE },
8771 { STRING_COMMA_LEN ("INDNTPOFF"),{ BFD_RELOC_386_TLS_IE,
8772 _dummy_first_bfd_reloc_code_real },
8773 OPERAND_TYPE_NONE },
8774 { STRING_COMMA_LEN ("GOT"), { BFD_RELOC_386_GOT32,
8775 BFD_RELOC_X86_64_GOT32 },
8776 OPERAND_TYPE_IMM32_32S_64_DISP32 },
8777 { STRING_COMMA_LEN ("TLSDESC"), { BFD_RELOC_386_TLS_GOTDESC,
8778 BFD_RELOC_X86_64_GOTPC32_TLSDESC },
8779 OPERAND_TYPE_IMM32_32S_DISP32 },
8780 { STRING_COMMA_LEN ("TLSCALL"), { BFD_RELOC_386_TLS_DESC_CALL,
8781 BFD_RELOC_X86_64_TLSDESC_CALL },
8782 OPERAND_TYPE_IMM32_32S_DISP32 },
8783 };
8784 char *cp;
8785 unsigned int j;
8786
8787 #if defined (OBJ_MAYBE_ELF)
8788 if (!IS_ELF)
8789 return NULL;
8790 #endif
8791
8792 for (cp = input_line_pointer; *cp != '@'; cp++)
8793 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
8794 return NULL;
8795
8796 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
8797 {
8798 int len = gotrel[j].len;
8799 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
8800 {
8801 if (gotrel[j].rel[object_64bit] != 0)
8802 {
8803 int first, second;
8804 char *tmpbuf, *past_reloc;
8805
8806 *rel = gotrel[j].rel[object_64bit];
8807
8808 if (types)
8809 {
8810 if (flag_code != CODE_64BIT)
8811 {
8812 types->bitfield.imm32 = 1;
8813 types->bitfield.disp32 = 1;
8814 }
8815 else
8816 *types = gotrel[j].types64;
8817 }
8818
8819 if (j != 0 && GOT_symbol == NULL)
8820 GOT_symbol = symbol_find_or_make (GLOBAL_OFFSET_TABLE_NAME);
8821
8822 /* The length of the first part of our input line. */
8823 first = cp - input_line_pointer;
8824
8825 /* The second part goes from after the reloc token until
8826 (and including) an end_of_line char or comma. */
8827 past_reloc = cp + 1 + len;
8828 cp = past_reloc;
8829 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
8830 ++cp;
8831 second = cp + 1 - past_reloc;
8832
8833 /* Allocate and copy string. The trailing NUL shouldn't
8834 be necessary, but be safe. */
8835 tmpbuf = XNEWVEC (char, first + second + 2);
8836 memcpy (tmpbuf, input_line_pointer, first);
8837 if (second != 0 && *past_reloc != ' ')
8838 /* Replace the relocation token with ' ', so that
8839 errors like foo@GOTOFF1 will be detected. */
8840 tmpbuf[first++] = ' ';
8841 else
8842 /* Increment length by 1 if the relocation token is
8843 removed. */
8844 len++;
8845 if (adjust)
8846 *adjust = len;
8847 memcpy (tmpbuf + first, past_reloc, second);
8848 tmpbuf[first + second] = '\0';
8849 return tmpbuf;
8850 }
8851
8852 as_bad (_("@%s reloc is not supported with %d-bit output format"),
8853 gotrel[j].str, 1 << (5 + object_64bit));
8854 return NULL;
8855 }
8856 }
8857
8858 /* Might be a symbol version string. Don't as_bad here. */
8859 return NULL;
8860 }
8861 #endif
8862
8863 #ifdef TE_PE
8864 #ifdef lex_got
8865 #undef lex_got
8866 #endif
8867 /* Parse operands of the form
8868 <symbol>@SECREL32+<nnn>
8869
8870 If we find one, set up the correct relocation in RELOC and copy the
8871 input string, minus the `@SECREL32' into a malloc'd buffer for
8872 parsing by the calling routine. Return this buffer, and if ADJUST
8873 is non-null set it to the length of the string we removed from the
8874 input line. Otherwise return NULL.
8875
8876 This function is copied from the ELF version above adjusted for PE targets. */
8877
8878 static char *
8879 lex_got (enum bfd_reloc_code_real *rel ATTRIBUTE_UNUSED,
8880 int *adjust ATTRIBUTE_UNUSED,
8881 i386_operand_type *types)
8882 {
8883 static const struct
8884 {
8885 const char *str;
8886 int len;
8887 const enum bfd_reloc_code_real rel[2];
8888 const i386_operand_type types64;
8889 }
8890 gotrel[] =
8891 {
8892 { STRING_COMMA_LEN ("SECREL32"), { BFD_RELOC_32_SECREL,
8893 BFD_RELOC_32_SECREL },
8894 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
8895 };
8896
8897 char *cp;
8898 unsigned j;
8899
8900 for (cp = input_line_pointer; *cp != '@'; cp++)
8901 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
8902 return NULL;
8903
8904 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
8905 {
8906 int len = gotrel[j].len;
8907
8908 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
8909 {
8910 if (gotrel[j].rel[object_64bit] != 0)
8911 {
8912 int first, second;
8913 char *tmpbuf, *past_reloc;
8914
8915 *rel = gotrel[j].rel[object_64bit];
8916 if (adjust)
8917 *adjust = len;
8918
8919 if (types)
8920 {
8921 if (flag_code != CODE_64BIT)
8922 {
8923 types->bitfield.imm32 = 1;
8924 types->bitfield.disp32 = 1;
8925 }
8926 else
8927 *types = gotrel[j].types64;
8928 }
8929
8930 /* The length of the first part of our input line. */
8931 first = cp - input_line_pointer;
8932
8933 /* The second part goes from after the reloc token until
8934 (and including) an end_of_line char or comma. */
8935 past_reloc = cp + 1 + len;
8936 cp = past_reloc;
8937 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
8938 ++cp;
8939 second = cp + 1 - past_reloc;
8940
8941 /* Allocate and copy string. The trailing NUL shouldn't
8942 be necessary, but be safe. */
8943 tmpbuf = XNEWVEC (char, first + second + 2);
8944 memcpy (tmpbuf, input_line_pointer, first);
8945 if (second != 0 && *past_reloc != ' ')
8946 /* Replace the relocation token with ' ', so that
8947 errors like foo@SECLREL321 will be detected. */
8948 tmpbuf[first++] = ' ';
8949 memcpy (tmpbuf + first, past_reloc, second);
8950 tmpbuf[first + second] = '\0';
8951 return tmpbuf;
8952 }
8953
8954 as_bad (_("@%s reloc is not supported with %d-bit output format"),
8955 gotrel[j].str, 1 << (5 + object_64bit));
8956 return NULL;
8957 }
8958 }
8959
8960 /* Might be a symbol version string. Don't as_bad here. */
8961 return NULL;
8962 }
8963
8964 #endif /* TE_PE */
8965
8966 bfd_reloc_code_real_type
8967 x86_cons (expressionS *exp, int size)
8968 {
8969 bfd_reloc_code_real_type got_reloc = NO_RELOC;
8970
8971 intel_syntax = -intel_syntax;
8972
8973 exp->X_md = 0;
8974 if (size == 4 || (object_64bit && size == 8))
8975 {
8976 /* Handle @GOTOFF and the like in an expression. */
8977 char *save;
8978 char *gotfree_input_line;
8979 int adjust = 0;
8980
8981 save = input_line_pointer;
8982 gotfree_input_line = lex_got (&got_reloc, &adjust, NULL);
8983 if (gotfree_input_line)
8984 input_line_pointer = gotfree_input_line;
8985
8986 expression (exp);
8987
8988 if (gotfree_input_line)
8989 {
8990 /* expression () has merrily parsed up to the end of line,
8991 or a comma - in the wrong buffer. Transfer how far
8992 input_line_pointer has moved to the right buffer. */
8993 input_line_pointer = (save
8994 + (input_line_pointer - gotfree_input_line)
8995 + adjust);
8996 free (gotfree_input_line);
8997 if (exp->X_op == O_constant
8998 || exp->X_op == O_absent
8999 || exp->X_op == O_illegal
9000 || exp->X_op == O_register
9001 || exp->X_op == O_big)
9002 {
9003 char c = *input_line_pointer;
9004 *input_line_pointer = 0;
9005 as_bad (_("missing or invalid expression `%s'"), save);
9006 *input_line_pointer = c;
9007 }
9008 else if ((got_reloc == BFD_RELOC_386_PLT32
9009 || got_reloc == BFD_RELOC_X86_64_PLT32)
9010 && exp->X_op != O_symbol)
9011 {
9012 char c = *input_line_pointer;
9013 *input_line_pointer = 0;
9014 as_bad (_("invalid PLT expression `%s'"), save);
9015 *input_line_pointer = c;
9016 }
9017 }
9018 }
9019 else
9020 expression (exp);
9021
9022 intel_syntax = -intel_syntax;
9023
9024 if (intel_syntax)
9025 i386_intel_simplify (exp);
9026
9027 return got_reloc;
9028 }
9029
9030 static void
9031 signed_cons (int size)
9032 {
9033 if (flag_code == CODE_64BIT)
9034 cons_sign = 1;
9035 cons (size);
9036 cons_sign = -1;
9037 }
9038
9039 #ifdef TE_PE
9040 static void
9041 pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
9042 {
9043 expressionS exp;
9044
9045 do
9046 {
9047 expression (&exp);
9048 if (exp.X_op == O_symbol)
9049 exp.X_op = O_secrel;
9050
9051 emit_expr (&exp, 4);
9052 }
9053 while (*input_line_pointer++ == ',');
9054
9055 input_line_pointer--;
9056 demand_empty_rest_of_line ();
9057 }
9058 #endif
9059
9060 /* Handle Vector operations. */
9061
9062 static char *
9063 check_VecOperations (char *op_string, char *op_end)
9064 {
9065 const reg_entry *mask;
9066 const char *saved;
9067 char *end_op;
9068
9069 while (*op_string
9070 && (op_end == NULL || op_string < op_end))
9071 {
9072 saved = op_string;
9073 if (*op_string == '{')
9074 {
9075 op_string++;
9076
9077 /* Check broadcasts. */
9078 if (strncmp (op_string, "1to", 3) == 0)
9079 {
9080 int bcst_type;
9081
9082 if (i.broadcast)
9083 goto duplicated_vec_op;
9084
9085 op_string += 3;
9086 if (*op_string == '8')
9087 bcst_type = 8;
9088 else if (*op_string == '4')
9089 bcst_type = 4;
9090 else if (*op_string == '2')
9091 bcst_type = 2;
9092 else if (*op_string == '1'
9093 && *(op_string+1) == '6')
9094 {
9095 bcst_type = 16;
9096 op_string++;
9097 }
9098 else
9099 {
9100 as_bad (_("Unsupported broadcast: `%s'"), saved);
9101 return NULL;
9102 }
9103 op_string++;
9104
9105 broadcast_op.type = bcst_type;
9106 broadcast_op.operand = this_operand;
9107 broadcast_op.bytes = 0;
9108 i.broadcast = &broadcast_op;
9109 }
9110 /* Check masking operation. */
9111 else if ((mask = parse_register (op_string, &end_op)) != NULL)
9112 {
9113 /* k0 can't be used for write mask. */
9114 if (!mask->reg_type.bitfield.regmask || mask->reg_num == 0)
9115 {
9116 as_bad (_("`%s%s' can't be used for write mask"),
9117 register_prefix, mask->reg_name);
9118 return NULL;
9119 }
9120
9121 if (!i.mask)
9122 {
9123 mask_op.mask = mask;
9124 mask_op.zeroing = 0;
9125 mask_op.operand = this_operand;
9126 i.mask = &mask_op;
9127 }
9128 else
9129 {
9130 if (i.mask->mask)
9131 goto duplicated_vec_op;
9132
9133 i.mask->mask = mask;
9134
9135 /* Only "{z}" is allowed here. No need to check
9136 zeroing mask explicitly. */
9137 if (i.mask->operand != this_operand)
9138 {
9139 as_bad (_("invalid write mask `%s'"), saved);
9140 return NULL;
9141 }
9142 }
9143
9144 op_string = end_op;
9145 }
9146 /* Check zeroing-flag for masking operation. */
9147 else if (*op_string == 'z')
9148 {
9149 if (!i.mask)
9150 {
9151 mask_op.mask = NULL;
9152 mask_op.zeroing = 1;
9153 mask_op.operand = this_operand;
9154 i.mask = &mask_op;
9155 }
9156 else
9157 {
9158 if (i.mask->zeroing)
9159 {
9160 duplicated_vec_op:
9161 as_bad (_("duplicated `%s'"), saved);
9162 return NULL;
9163 }
9164
9165 i.mask->zeroing = 1;
9166
9167 /* Only "{%k}" is allowed here. No need to check mask
9168 register explicitly. */
9169 if (i.mask->operand != this_operand)
9170 {
9171 as_bad (_("invalid zeroing-masking `%s'"),
9172 saved);
9173 return NULL;
9174 }
9175 }
9176
9177 op_string++;
9178 }
9179 else
9180 goto unknown_vec_op;
9181
9182 if (*op_string != '}')
9183 {
9184 as_bad (_("missing `}' in `%s'"), saved);
9185 return NULL;
9186 }
9187 op_string++;
9188
9189 /* Strip whitespace since the addition of pseudo prefixes
9190 changed how the scrubber treats '{'. */
9191 if (is_space_char (*op_string))
9192 ++op_string;
9193
9194 continue;
9195 }
9196 unknown_vec_op:
9197 /* We don't know this one. */
9198 as_bad (_("unknown vector operation: `%s'"), saved);
9199 return NULL;
9200 }
9201
9202 if (i.mask && i.mask->zeroing && !i.mask->mask)
9203 {
9204 as_bad (_("zeroing-masking only allowed with write mask"));
9205 return NULL;
9206 }
9207
9208 return op_string;
9209 }
9210
9211 static int
9212 i386_immediate (char *imm_start)
9213 {
9214 char *save_input_line_pointer;
9215 char *gotfree_input_line;
9216 segT exp_seg = 0;
9217 expressionS *exp;
9218 i386_operand_type types;
9219
9220 operand_type_set (&types, ~0);
9221
9222 if (i.imm_operands == MAX_IMMEDIATE_OPERANDS)
9223 {
9224 as_bad (_("at most %d immediate operands are allowed"),
9225 MAX_IMMEDIATE_OPERANDS);
9226 return 0;
9227 }
9228
9229 exp = &im_expressions[i.imm_operands++];
9230 i.op[this_operand].imms = exp;
9231
9232 if (is_space_char (*imm_start))
9233 ++imm_start;
9234
9235 save_input_line_pointer = input_line_pointer;
9236 input_line_pointer = imm_start;
9237
9238 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
9239 if (gotfree_input_line)
9240 input_line_pointer = gotfree_input_line;
9241
9242 exp_seg = expression (exp);
9243
9244 SKIP_WHITESPACE ();
9245
9246 /* Handle vector operations. */
9247 if (*input_line_pointer == '{')
9248 {
9249 input_line_pointer = check_VecOperations (input_line_pointer,
9250 NULL);
9251 if (input_line_pointer == NULL)
9252 return 0;
9253 }
9254
9255 if (*input_line_pointer)
9256 as_bad (_("junk `%s' after expression"), input_line_pointer);
9257
9258 input_line_pointer = save_input_line_pointer;
9259 if (gotfree_input_line)
9260 {
9261 free (gotfree_input_line);
9262
9263 if (exp->X_op == O_constant || exp->X_op == O_register)
9264 exp->X_op = O_illegal;
9265 }
9266
9267 return i386_finalize_immediate (exp_seg, exp, types, imm_start);
9268 }
9269
9270 static int
9271 i386_finalize_immediate (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
9272 i386_operand_type types, const char *imm_start)
9273 {
9274 if (exp->X_op == O_absent || exp->X_op == O_illegal || exp->X_op == O_big)
9275 {
9276 if (imm_start)
9277 as_bad (_("missing or invalid immediate expression `%s'"),
9278 imm_start);
9279 return 0;
9280 }
9281 else if (exp->X_op == O_constant)
9282 {
9283 /* Size it properly later. */
9284 i.types[this_operand].bitfield.imm64 = 1;
9285 /* If not 64bit, sign extend val. */
9286 if (flag_code != CODE_64BIT
9287 && (exp->X_add_number & ~(((addressT) 2 << 31) - 1)) == 0)
9288 exp->X_add_number
9289 = (exp->X_add_number ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
9290 }
9291 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
9292 else if (OUTPUT_FLAVOR == bfd_target_aout_flavour
9293 && exp_seg != absolute_section
9294 && exp_seg != text_section
9295 && exp_seg != data_section
9296 && exp_seg != bss_section
9297 && exp_seg != undefined_section
9298 && !bfd_is_com_section (exp_seg))
9299 {
9300 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
9301 return 0;
9302 }
9303 #endif
9304 else if (!intel_syntax && exp_seg == reg_section)
9305 {
9306 if (imm_start)
9307 as_bad (_("illegal immediate register operand %s"), imm_start);
9308 return 0;
9309 }
9310 else
9311 {
9312 /* This is an address. The size of the address will be
9313 determined later, depending on destination register,
9314 suffix, or the default for the section. */
9315 i.types[this_operand].bitfield.imm8 = 1;
9316 i.types[this_operand].bitfield.imm16 = 1;
9317 i.types[this_operand].bitfield.imm32 = 1;
9318 i.types[this_operand].bitfield.imm32s = 1;
9319 i.types[this_operand].bitfield.imm64 = 1;
9320 i.types[this_operand] = operand_type_and (i.types[this_operand],
9321 types);
9322 }
9323
9324 return 1;
9325 }
9326
9327 static char *
9328 i386_scale (char *scale)
9329 {
9330 offsetT val;
9331 char *save = input_line_pointer;
9332
9333 input_line_pointer = scale;
9334 val = get_absolute_expression ();
9335
9336 switch (val)
9337 {
9338 case 1:
9339 i.log2_scale_factor = 0;
9340 break;
9341 case 2:
9342 i.log2_scale_factor = 1;
9343 break;
9344 case 4:
9345 i.log2_scale_factor = 2;
9346 break;
9347 case 8:
9348 i.log2_scale_factor = 3;
9349 break;
9350 default:
9351 {
9352 char sep = *input_line_pointer;
9353
9354 *input_line_pointer = '\0';
9355 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
9356 scale);
9357 *input_line_pointer = sep;
9358 input_line_pointer = save;
9359 return NULL;
9360 }
9361 }
9362 if (i.log2_scale_factor != 0 && i.index_reg == 0)
9363 {
9364 as_warn (_("scale factor of %d without an index register"),
9365 1 << i.log2_scale_factor);
9366 i.log2_scale_factor = 0;
9367 }
9368 scale = input_line_pointer;
9369 input_line_pointer = save;
9370 return scale;
9371 }
9372
9373 static int
9374 i386_displacement (char *disp_start, char *disp_end)
9375 {
9376 expressionS *exp;
9377 segT exp_seg = 0;
9378 char *save_input_line_pointer;
9379 char *gotfree_input_line;
9380 int override;
9381 i386_operand_type bigdisp, types = anydisp;
9382 int ret;
9383
9384 if (i.disp_operands == MAX_MEMORY_OPERANDS)
9385 {
9386 as_bad (_("at most %d displacement operands are allowed"),
9387 MAX_MEMORY_OPERANDS);
9388 return 0;
9389 }
9390
9391 operand_type_set (&bigdisp, 0);
9392 if ((i.types[this_operand].bitfield.jumpabsolute)
9393 || (!current_templates->start->opcode_modifier.jump
9394 && !current_templates->start->opcode_modifier.jumpdword))
9395 {
9396 bigdisp.bitfield.disp32 = 1;
9397 override = (i.prefix[ADDR_PREFIX] != 0);
9398 if (flag_code == CODE_64BIT)
9399 {
9400 if (!override)
9401 {
9402 bigdisp.bitfield.disp32s = 1;
9403 bigdisp.bitfield.disp64 = 1;
9404 }
9405 }
9406 else if ((flag_code == CODE_16BIT) ^ override)
9407 {
9408 bigdisp.bitfield.disp32 = 0;
9409 bigdisp.bitfield.disp16 = 1;
9410 }
9411 }
9412 else
9413 {
9414 /* For PC-relative branches, the width of the displacement
9415 is dependent upon data size, not address size. */
9416 override = (i.prefix[DATA_PREFIX] != 0);
9417 if (flag_code == CODE_64BIT)
9418 {
9419 if (override || i.suffix == WORD_MNEM_SUFFIX)
9420 bigdisp.bitfield.disp16 = 1;
9421 else
9422 {
9423 bigdisp.bitfield.disp32 = 1;
9424 bigdisp.bitfield.disp32s = 1;
9425 }
9426 }
9427 else
9428 {
9429 if (!override)
9430 override = (i.suffix == (flag_code != CODE_16BIT
9431 ? WORD_MNEM_SUFFIX
9432 : LONG_MNEM_SUFFIX));
9433 bigdisp.bitfield.disp32 = 1;
9434 if ((flag_code == CODE_16BIT) ^ override)
9435 {
9436 bigdisp.bitfield.disp32 = 0;
9437 bigdisp.bitfield.disp16 = 1;
9438 }
9439 }
9440 }
9441 i.types[this_operand] = operand_type_or (i.types[this_operand],
9442 bigdisp);
9443
9444 exp = &disp_expressions[i.disp_operands];
9445 i.op[this_operand].disps = exp;
9446 i.disp_operands++;
9447 save_input_line_pointer = input_line_pointer;
9448 input_line_pointer = disp_start;
9449 END_STRING_AND_SAVE (disp_end);
9450
9451 #ifndef GCC_ASM_O_HACK
9452 #define GCC_ASM_O_HACK 0
9453 #endif
9454 #if GCC_ASM_O_HACK
9455 END_STRING_AND_SAVE (disp_end + 1);
9456 if (i.types[this_operand].bitfield.baseIndex
9457 && displacement_string_end[-1] == '+')
9458 {
9459 /* This hack is to avoid a warning when using the "o"
9460 constraint within gcc asm statements.
9461 For instance:
9462
9463 #define _set_tssldt_desc(n,addr,limit,type) \
9464 __asm__ __volatile__ ( \
9465 "movw %w2,%0\n\t" \
9466 "movw %w1,2+%0\n\t" \
9467 "rorl $16,%1\n\t" \
9468 "movb %b1,4+%0\n\t" \
9469 "movb %4,5+%0\n\t" \
9470 "movb $0,6+%0\n\t" \
9471 "movb %h1,7+%0\n\t" \
9472 "rorl $16,%1" \
9473 : "=o"(*(n)) : "q" (addr), "ri"(limit), "i"(type))
9474
9475 This works great except that the output assembler ends
9476 up looking a bit weird if it turns out that there is
9477 no offset. You end up producing code that looks like:
9478
9479 #APP
9480 movw $235,(%eax)
9481 movw %dx,2+(%eax)
9482 rorl $16,%edx
9483 movb %dl,4+(%eax)
9484 movb $137,5+(%eax)
9485 movb $0,6+(%eax)
9486 movb %dh,7+(%eax)
9487 rorl $16,%edx
9488 #NO_APP
9489
9490 So here we provide the missing zero. */
9491
9492 *displacement_string_end = '0';
9493 }
9494 #endif
9495 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
9496 if (gotfree_input_line)
9497 input_line_pointer = gotfree_input_line;
9498
9499 exp_seg = expression (exp);
9500
9501 SKIP_WHITESPACE ();
9502 if (*input_line_pointer)
9503 as_bad (_("junk `%s' after expression"), input_line_pointer);
9504 #if GCC_ASM_O_HACK
9505 RESTORE_END_STRING (disp_end + 1);
9506 #endif
9507 input_line_pointer = save_input_line_pointer;
9508 if (gotfree_input_line)
9509 {
9510 free (gotfree_input_line);
9511
9512 if (exp->X_op == O_constant || exp->X_op == O_register)
9513 exp->X_op = O_illegal;
9514 }
9515
9516 ret = i386_finalize_displacement (exp_seg, exp, types, disp_start);
9517
9518 RESTORE_END_STRING (disp_end);
9519
9520 return ret;
9521 }
9522
9523 static int
9524 i386_finalize_displacement (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
9525 i386_operand_type types, const char *disp_start)
9526 {
9527 i386_operand_type bigdisp;
9528 int ret = 1;
9529
9530 /* We do this to make sure that the section symbol is in
9531 the symbol table. We will ultimately change the relocation
9532 to be relative to the beginning of the section. */
9533 if (i.reloc[this_operand] == BFD_RELOC_386_GOTOFF
9534 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL
9535 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
9536 {
9537 if (exp->X_op != O_symbol)
9538 goto inv_disp;
9539
9540 if (S_IS_LOCAL (exp->X_add_symbol)
9541 && S_GET_SEGMENT (exp->X_add_symbol) != undefined_section
9542 && S_GET_SEGMENT (exp->X_add_symbol) != expr_section)
9543 section_symbol (S_GET_SEGMENT (exp->X_add_symbol));
9544 exp->X_op = O_subtract;
9545 exp->X_op_symbol = GOT_symbol;
9546 if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
9547 i.reloc[this_operand] = BFD_RELOC_32_PCREL;
9548 else if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
9549 i.reloc[this_operand] = BFD_RELOC_64;
9550 else
9551 i.reloc[this_operand] = BFD_RELOC_32;
9552 }
9553
9554 else if (exp->X_op == O_absent
9555 || exp->X_op == O_illegal
9556 || exp->X_op == O_big)
9557 {
9558 inv_disp:
9559 as_bad (_("missing or invalid displacement expression `%s'"),
9560 disp_start);
9561 ret = 0;
9562 }
9563
9564 else if (flag_code == CODE_64BIT
9565 && !i.prefix[ADDR_PREFIX]
9566 && exp->X_op == O_constant)
9567 {
9568 /* Since displacement is signed extended to 64bit, don't allow
9569 disp32 and turn off disp32s if they are out of range. */
9570 i.types[this_operand].bitfield.disp32 = 0;
9571 if (!fits_in_signed_long (exp->X_add_number))
9572 {
9573 i.types[this_operand].bitfield.disp32s = 0;
9574 if (i.types[this_operand].bitfield.baseindex)
9575 {
9576 as_bad (_("0x%lx out range of signed 32bit displacement"),
9577 (long) exp->X_add_number);
9578 ret = 0;
9579 }
9580 }
9581 }
9582
9583 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
9584 else if (exp->X_op != O_constant
9585 && OUTPUT_FLAVOR == bfd_target_aout_flavour
9586 && exp_seg != absolute_section
9587 && exp_seg != text_section
9588 && exp_seg != data_section
9589 && exp_seg != bss_section
9590 && exp_seg != undefined_section
9591 && !bfd_is_com_section (exp_seg))
9592 {
9593 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
9594 ret = 0;
9595 }
9596 #endif
9597
9598 /* Check if this is a displacement only operand. */
9599 bigdisp = i.types[this_operand];
9600 bigdisp.bitfield.disp8 = 0;
9601 bigdisp.bitfield.disp16 = 0;
9602 bigdisp.bitfield.disp32 = 0;
9603 bigdisp.bitfield.disp32s = 0;
9604 bigdisp.bitfield.disp64 = 0;
9605 if (operand_type_all_zero (&bigdisp))
9606 i.types[this_operand] = operand_type_and (i.types[this_operand],
9607 types);
9608
9609 return ret;
9610 }
9611
9612 /* Return the active addressing mode, taking address override and
9613 registers forming the address into consideration. Update the
9614 address override prefix if necessary. */
9615
9616 static enum flag_code
9617 i386_addressing_mode (void)
9618 {
9619 enum flag_code addr_mode;
9620
9621 if (i.prefix[ADDR_PREFIX])
9622 addr_mode = flag_code == CODE_32BIT ? CODE_16BIT : CODE_32BIT;
9623 else
9624 {
9625 addr_mode = flag_code;
9626
9627 #if INFER_ADDR_PREFIX
9628 if (i.mem_operands == 0)
9629 {
9630 /* Infer address prefix from the first memory operand. */
9631 const reg_entry *addr_reg = i.base_reg;
9632
9633 if (addr_reg == NULL)
9634 addr_reg = i.index_reg;
9635
9636 if (addr_reg)
9637 {
9638 if (addr_reg->reg_type.bitfield.dword)
9639 addr_mode = CODE_32BIT;
9640 else if (flag_code != CODE_64BIT
9641 && addr_reg->reg_type.bitfield.word)
9642 addr_mode = CODE_16BIT;
9643
9644 if (addr_mode != flag_code)
9645 {
9646 i.prefix[ADDR_PREFIX] = ADDR_PREFIX_OPCODE;
9647 i.prefixes += 1;
9648 /* Change the size of any displacement too. At most one
9649 of Disp16 or Disp32 is set.
9650 FIXME. There doesn't seem to be any real need for
9651 separate Disp16 and Disp32 flags. The same goes for
9652 Imm16 and Imm32. Removing them would probably clean
9653 up the code quite a lot. */
9654 if (flag_code != CODE_64BIT
9655 && (i.types[this_operand].bitfield.disp16
9656 || i.types[this_operand].bitfield.disp32))
9657 i.types[this_operand]
9658 = operand_type_xor (i.types[this_operand], disp16_32);
9659 }
9660 }
9661 }
9662 #endif
9663 }
9664
9665 return addr_mode;
9666 }
9667
9668 /* Make sure the memory operand we've been dealt is valid.
9669 Return 1 on success, 0 on a failure. */
9670
9671 static int
9672 i386_index_check (const char *operand_string)
9673 {
9674 const char *kind = "base/index";
9675 enum flag_code addr_mode = i386_addressing_mode ();
9676
9677 if (current_templates->start->opcode_modifier.isstring
9678 && !current_templates->start->opcode_modifier.immext
9679 && (current_templates->end[-1].opcode_modifier.isstring
9680 || i.mem_operands))
9681 {
9682 /* Memory operands of string insns are special in that they only allow
9683 a single register (rDI, rSI, or rBX) as their memory address. */
9684 const reg_entry *expected_reg;
9685 static const char *di_si[][2] =
9686 {
9687 { "esi", "edi" },
9688 { "si", "di" },
9689 { "rsi", "rdi" }
9690 };
9691 static const char *bx[] = { "ebx", "bx", "rbx" };
9692
9693 kind = "string address";
9694
9695 if (current_templates->start->opcode_modifier.repprefixok)
9696 {
9697 i386_operand_type type = current_templates->end[-1].operand_types[0];
9698
9699 if (!type.bitfield.baseindex
9700 || ((!i.mem_operands != !intel_syntax)
9701 && current_templates->end[-1].operand_types[1]
9702 .bitfield.baseindex))
9703 type = current_templates->end[-1].operand_types[1];
9704 expected_reg = hash_find (reg_hash,
9705 di_si[addr_mode][type.bitfield.esseg]);
9706
9707 }
9708 else
9709 expected_reg = hash_find (reg_hash, bx[addr_mode]);
9710
9711 if (i.base_reg != expected_reg
9712 || i.index_reg
9713 || operand_type_check (i.types[this_operand], disp))
9714 {
9715 /* The second memory operand must have the same size as
9716 the first one. */
9717 if (i.mem_operands
9718 && i.base_reg
9719 && !((addr_mode == CODE_64BIT
9720 && i.base_reg->reg_type.bitfield.qword)
9721 || (addr_mode == CODE_32BIT
9722 ? i.base_reg->reg_type.bitfield.dword
9723 : i.base_reg->reg_type.bitfield.word)))
9724 goto bad_address;
9725
9726 as_warn (_("`%s' is not valid here (expected `%c%s%s%c')"),
9727 operand_string,
9728 intel_syntax ? '[' : '(',
9729 register_prefix,
9730 expected_reg->reg_name,
9731 intel_syntax ? ']' : ')');
9732 return 1;
9733 }
9734 else
9735 return 1;
9736
9737 bad_address:
9738 as_bad (_("`%s' is not a valid %s expression"),
9739 operand_string, kind);
9740 return 0;
9741 }
9742 else
9743 {
9744 if (addr_mode != CODE_16BIT)
9745 {
9746 /* 32-bit/64-bit checks. */
9747 if ((i.base_reg
9748 && ((addr_mode == CODE_64BIT
9749 ? !i.base_reg->reg_type.bitfield.qword
9750 : !i.base_reg->reg_type.bitfield.dword)
9751 || (i.index_reg && i.base_reg->reg_num == RegIP)
9752 || i.base_reg->reg_num == RegIZ))
9753 || (i.index_reg
9754 && !i.index_reg->reg_type.bitfield.xmmword
9755 && !i.index_reg->reg_type.bitfield.ymmword
9756 && !i.index_reg->reg_type.bitfield.zmmword
9757 && ((addr_mode == CODE_64BIT
9758 ? !i.index_reg->reg_type.bitfield.qword
9759 : !i.index_reg->reg_type.bitfield.dword)
9760 || !i.index_reg->reg_type.bitfield.baseindex)))
9761 goto bad_address;
9762
9763 /* bndmk, bndldx, and bndstx have special restrictions. */
9764 if (current_templates->start->base_opcode == 0xf30f1b
9765 || (current_templates->start->base_opcode & ~1) == 0x0f1a)
9766 {
9767 /* They cannot use RIP-relative addressing. */
9768 if (i.base_reg && i.base_reg->reg_num == RegIP)
9769 {
9770 as_bad (_("`%s' cannot be used here"), operand_string);
9771 return 0;
9772 }
9773
9774 /* bndldx and bndstx ignore their scale factor. */
9775 if (current_templates->start->base_opcode != 0xf30f1b
9776 && i.log2_scale_factor)
9777 as_warn (_("register scaling is being ignored here"));
9778 }
9779 }
9780 else
9781 {
9782 /* 16-bit checks. */
9783 if ((i.base_reg
9784 && (!i.base_reg->reg_type.bitfield.word
9785 || !i.base_reg->reg_type.bitfield.baseindex))
9786 || (i.index_reg
9787 && (!i.index_reg->reg_type.bitfield.word
9788 || !i.index_reg->reg_type.bitfield.baseindex
9789 || !(i.base_reg
9790 && i.base_reg->reg_num < 6
9791 && i.index_reg->reg_num >= 6
9792 && i.log2_scale_factor == 0))))
9793 goto bad_address;
9794 }
9795 }
9796 return 1;
9797 }
9798
9799 /* Handle vector immediates. */
9800
9801 static int
9802 RC_SAE_immediate (const char *imm_start)
9803 {
9804 unsigned int match_found, j;
9805 const char *pstr = imm_start;
9806 expressionS *exp;
9807
9808 if (*pstr != '{')
9809 return 0;
9810
9811 pstr++;
9812 match_found = 0;
9813 for (j = 0; j < ARRAY_SIZE (RC_NamesTable); j++)
9814 {
9815 if (!strncmp (pstr, RC_NamesTable[j].name, RC_NamesTable[j].len))
9816 {
9817 if (!i.rounding)
9818 {
9819 rc_op.type = RC_NamesTable[j].type;
9820 rc_op.operand = this_operand;
9821 i.rounding = &rc_op;
9822 }
9823 else
9824 {
9825 as_bad (_("duplicated `%s'"), imm_start);
9826 return 0;
9827 }
9828 pstr += RC_NamesTable[j].len;
9829 match_found = 1;
9830 break;
9831 }
9832 }
9833 if (!match_found)
9834 return 0;
9835
9836 if (*pstr++ != '}')
9837 {
9838 as_bad (_("Missing '}': '%s'"), imm_start);
9839 return 0;
9840 }
9841 /* RC/SAE immediate string should contain nothing more. */;
9842 if (*pstr != 0)
9843 {
9844 as_bad (_("Junk after '}': '%s'"), imm_start);
9845 return 0;
9846 }
9847
9848 exp = &im_expressions[i.imm_operands++];
9849 i.op[this_operand].imms = exp;
9850
9851 exp->X_op = O_constant;
9852 exp->X_add_number = 0;
9853 exp->X_add_symbol = (symbolS *) 0;
9854 exp->X_op_symbol = (symbolS *) 0;
9855
9856 i.types[this_operand].bitfield.imm8 = 1;
9857 return 1;
9858 }
9859
9860 /* Only string instructions can have a second memory operand, so
9861 reduce current_templates to just those if it contains any. */
9862 static int
9863 maybe_adjust_templates (void)
9864 {
9865 const insn_template *t;
9866
9867 gas_assert (i.mem_operands == 1);
9868
9869 for (t = current_templates->start; t < current_templates->end; ++t)
9870 if (t->opcode_modifier.isstring)
9871 break;
9872
9873 if (t < current_templates->end)
9874 {
9875 static templates aux_templates;
9876 bfd_boolean recheck;
9877
9878 aux_templates.start = t;
9879 for (; t < current_templates->end; ++t)
9880 if (!t->opcode_modifier.isstring)
9881 break;
9882 aux_templates.end = t;
9883
9884 /* Determine whether to re-check the first memory operand. */
9885 recheck = (aux_templates.start != current_templates->start
9886 || t != current_templates->end);
9887
9888 current_templates = &aux_templates;
9889
9890 if (recheck)
9891 {
9892 i.mem_operands = 0;
9893 if (i.memop1_string != NULL
9894 && i386_index_check (i.memop1_string) == 0)
9895 return 0;
9896 i.mem_operands = 1;
9897 }
9898 }
9899
9900 return 1;
9901 }
9902
9903 /* Parse OPERAND_STRING into the i386_insn structure I. Returns zero
9904 on error. */
9905
9906 static int
9907 i386_att_operand (char *operand_string)
9908 {
9909 const reg_entry *r;
9910 char *end_op;
9911 char *op_string = operand_string;
9912
9913 if (is_space_char (*op_string))
9914 ++op_string;
9915
9916 /* We check for an absolute prefix (differentiating,
9917 for example, 'jmp pc_relative_label' from 'jmp *absolute_label'. */
9918 if (*op_string == ABSOLUTE_PREFIX)
9919 {
9920 ++op_string;
9921 if (is_space_char (*op_string))
9922 ++op_string;
9923 i.types[this_operand].bitfield.jumpabsolute = 1;
9924 }
9925
9926 /* Check if operand is a register. */
9927 if ((r = parse_register (op_string, &end_op)) != NULL)
9928 {
9929 i386_operand_type temp;
9930
9931 /* Check for a segment override by searching for ':' after a
9932 segment register. */
9933 op_string = end_op;
9934 if (is_space_char (*op_string))
9935 ++op_string;
9936 if (*op_string == ':'
9937 && (r->reg_type.bitfield.sreg2
9938 || r->reg_type.bitfield.sreg3))
9939 {
9940 switch (r->reg_num)
9941 {
9942 case 0:
9943 i.seg[i.mem_operands] = &es;
9944 break;
9945 case 1:
9946 i.seg[i.mem_operands] = &cs;
9947 break;
9948 case 2:
9949 i.seg[i.mem_operands] = &ss;
9950 break;
9951 case 3:
9952 i.seg[i.mem_operands] = &ds;
9953 break;
9954 case 4:
9955 i.seg[i.mem_operands] = &fs;
9956 break;
9957 case 5:
9958 i.seg[i.mem_operands] = &gs;
9959 break;
9960 }
9961
9962 /* Skip the ':' and whitespace. */
9963 ++op_string;
9964 if (is_space_char (*op_string))
9965 ++op_string;
9966
9967 if (!is_digit_char (*op_string)
9968 && !is_identifier_char (*op_string)
9969 && *op_string != '('
9970 && *op_string != ABSOLUTE_PREFIX)
9971 {
9972 as_bad (_("bad memory operand `%s'"), op_string);
9973 return 0;
9974 }
9975 /* Handle case of %es:*foo. */
9976 if (*op_string == ABSOLUTE_PREFIX)
9977 {
9978 ++op_string;
9979 if (is_space_char (*op_string))
9980 ++op_string;
9981 i.types[this_operand].bitfield.jumpabsolute = 1;
9982 }
9983 goto do_memory_reference;
9984 }
9985
9986 /* Handle vector operations. */
9987 if (*op_string == '{')
9988 {
9989 op_string = check_VecOperations (op_string, NULL);
9990 if (op_string == NULL)
9991 return 0;
9992 }
9993
9994 if (*op_string)
9995 {
9996 as_bad (_("junk `%s' after register"), op_string);
9997 return 0;
9998 }
9999 temp = r->reg_type;
10000 temp.bitfield.baseindex = 0;
10001 i.types[this_operand] = operand_type_or (i.types[this_operand],
10002 temp);
10003 i.types[this_operand].bitfield.unspecified = 0;
10004 i.op[this_operand].regs = r;
10005 i.reg_operands++;
10006 }
10007 else if (*op_string == REGISTER_PREFIX)
10008 {
10009 as_bad (_("bad register name `%s'"), op_string);
10010 return 0;
10011 }
10012 else if (*op_string == IMMEDIATE_PREFIX)
10013 {
10014 ++op_string;
10015 if (i.types[this_operand].bitfield.jumpabsolute)
10016 {
10017 as_bad (_("immediate operand illegal with absolute jump"));
10018 return 0;
10019 }
10020 if (!i386_immediate (op_string))
10021 return 0;
10022 }
10023 else if (RC_SAE_immediate (operand_string))
10024 {
10025 /* If it is a RC or SAE immediate, do nothing. */
10026 ;
10027 }
10028 else if (is_digit_char (*op_string)
10029 || is_identifier_char (*op_string)
10030 || *op_string == '"'
10031 || *op_string == '(')
10032 {
10033 /* This is a memory reference of some sort. */
10034 char *base_string;
10035
10036 /* Start and end of displacement string expression (if found). */
10037 char *displacement_string_start;
10038 char *displacement_string_end;
10039 char *vop_start;
10040
10041 do_memory_reference:
10042 if (i.mem_operands == 1 && !maybe_adjust_templates ())
10043 return 0;
10044 if ((i.mem_operands == 1
10045 && !current_templates->start->opcode_modifier.isstring)
10046 || i.mem_operands == 2)
10047 {
10048 as_bad (_("too many memory references for `%s'"),
10049 current_templates->start->name);
10050 return 0;
10051 }
10052
10053 /* Check for base index form. We detect the base index form by
10054 looking for an ')' at the end of the operand, searching
10055 for the '(' matching it, and finding a REGISTER_PREFIX or ','
10056 after the '('. */
10057 base_string = op_string + strlen (op_string);
10058
10059 /* Handle vector operations. */
10060 vop_start = strchr (op_string, '{');
10061 if (vop_start && vop_start < base_string)
10062 {
10063 if (check_VecOperations (vop_start, base_string) == NULL)
10064 return 0;
10065 base_string = vop_start;
10066 }
10067
10068 --base_string;
10069 if (is_space_char (*base_string))
10070 --base_string;
10071
10072 /* If we only have a displacement, set-up for it to be parsed later. */
10073 displacement_string_start = op_string;
10074 displacement_string_end = base_string + 1;
10075
10076 if (*base_string == ')')
10077 {
10078 char *temp_string;
10079 unsigned int parens_balanced = 1;
10080 /* We've already checked that the number of left & right ()'s are
10081 equal, so this loop will not be infinite. */
10082 do
10083 {
10084 base_string--;
10085 if (*base_string == ')')
10086 parens_balanced++;
10087 if (*base_string == '(')
10088 parens_balanced--;
10089 }
10090 while (parens_balanced);
10091
10092 temp_string = base_string;
10093
10094 /* Skip past '(' and whitespace. */
10095 ++base_string;
10096 if (is_space_char (*base_string))
10097 ++base_string;
10098
10099 if (*base_string == ','
10100 || ((i.base_reg = parse_register (base_string, &end_op))
10101 != NULL))
10102 {
10103 displacement_string_end = temp_string;
10104
10105 i.types[this_operand].bitfield.baseindex = 1;
10106
10107 if (i.base_reg)
10108 {
10109 base_string = end_op;
10110 if (is_space_char (*base_string))
10111 ++base_string;
10112 }
10113
10114 /* There may be an index reg or scale factor here. */
10115 if (*base_string == ',')
10116 {
10117 ++base_string;
10118 if (is_space_char (*base_string))
10119 ++base_string;
10120
10121 if ((i.index_reg = parse_register (base_string, &end_op))
10122 != NULL)
10123 {
10124 base_string = end_op;
10125 if (is_space_char (*base_string))
10126 ++base_string;
10127 if (*base_string == ',')
10128 {
10129 ++base_string;
10130 if (is_space_char (*base_string))
10131 ++base_string;
10132 }
10133 else if (*base_string != ')')
10134 {
10135 as_bad (_("expecting `,' or `)' "
10136 "after index register in `%s'"),
10137 operand_string);
10138 return 0;
10139 }
10140 }
10141 else if (*base_string == REGISTER_PREFIX)
10142 {
10143 end_op = strchr (base_string, ',');
10144 if (end_op)
10145 *end_op = '\0';
10146 as_bad (_("bad register name `%s'"), base_string);
10147 return 0;
10148 }
10149
10150 /* Check for scale factor. */
10151 if (*base_string != ')')
10152 {
10153 char *end_scale = i386_scale (base_string);
10154
10155 if (!end_scale)
10156 return 0;
10157
10158 base_string = end_scale;
10159 if (is_space_char (*base_string))
10160 ++base_string;
10161 if (*base_string != ')')
10162 {
10163 as_bad (_("expecting `)' "
10164 "after scale factor in `%s'"),
10165 operand_string);
10166 return 0;
10167 }
10168 }
10169 else if (!i.index_reg)
10170 {
10171 as_bad (_("expecting index register or scale factor "
10172 "after `,'; got '%c'"),
10173 *base_string);
10174 return 0;
10175 }
10176 }
10177 else if (*base_string != ')')
10178 {
10179 as_bad (_("expecting `,' or `)' "
10180 "after base register in `%s'"),
10181 operand_string);
10182 return 0;
10183 }
10184 }
10185 else if (*base_string == REGISTER_PREFIX)
10186 {
10187 end_op = strchr (base_string, ',');
10188 if (end_op)
10189 *end_op = '\0';
10190 as_bad (_("bad register name `%s'"), base_string);
10191 return 0;
10192 }
10193 }
10194
10195 /* If there's an expression beginning the operand, parse it,
10196 assuming displacement_string_start and
10197 displacement_string_end are meaningful. */
10198 if (displacement_string_start != displacement_string_end)
10199 {
10200 if (!i386_displacement (displacement_string_start,
10201 displacement_string_end))
10202 return 0;
10203 }
10204
10205 /* Special case for (%dx) while doing input/output op. */
10206 if (i.base_reg
10207 && i.base_reg->reg_type.bitfield.inoutportreg
10208 && i.index_reg == 0
10209 && i.log2_scale_factor == 0
10210 && i.seg[i.mem_operands] == 0
10211 && !operand_type_check (i.types[this_operand], disp))
10212 {
10213 i.types[this_operand] = i.base_reg->reg_type;
10214 return 1;
10215 }
10216
10217 if (i386_index_check (operand_string) == 0)
10218 return 0;
10219 i.flags[this_operand] |= Operand_Mem;
10220 if (i.mem_operands == 0)
10221 i.memop1_string = xstrdup (operand_string);
10222 i.mem_operands++;
10223 }
10224 else
10225 {
10226 /* It's not a memory operand; argh! */
10227 as_bad (_("invalid char %s beginning operand %d `%s'"),
10228 output_invalid (*op_string),
10229 this_operand + 1,
10230 op_string);
10231 return 0;
10232 }
10233 return 1; /* Normal return. */
10234 }
10235 \f
10236 /* Calculate the maximum variable size (i.e., excluding fr_fix)
10237 that an rs_machine_dependent frag may reach. */
10238
10239 unsigned int
10240 i386_frag_max_var (fragS *frag)
10241 {
10242 /* The only relaxable frags are for jumps.
10243 Unconditional jumps can grow by 4 bytes and others by 5 bytes. */
10244 gas_assert (frag->fr_type == rs_machine_dependent);
10245 return TYPE_FROM_RELAX_STATE (frag->fr_subtype) == UNCOND_JUMP ? 4 : 5;
10246 }
10247
10248 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10249 static int
10250 elf_symbol_resolved_in_segment_p (symbolS *fr_symbol, offsetT fr_var)
10251 {
10252 /* STT_GNU_IFUNC symbol must go through PLT. */
10253 if ((symbol_get_bfdsym (fr_symbol)->flags
10254 & BSF_GNU_INDIRECT_FUNCTION) != 0)
10255 return 0;
10256
10257 if (!S_IS_EXTERNAL (fr_symbol))
10258 /* Symbol may be weak or local. */
10259 return !S_IS_WEAK (fr_symbol);
10260
10261 /* Global symbols with non-default visibility can't be preempted. */
10262 if (ELF_ST_VISIBILITY (S_GET_OTHER (fr_symbol)) != STV_DEFAULT)
10263 return 1;
10264
10265 if (fr_var != NO_RELOC)
10266 switch ((enum bfd_reloc_code_real) fr_var)
10267 {
10268 case BFD_RELOC_386_PLT32:
10269 case BFD_RELOC_X86_64_PLT32:
10270 /* Symbol with PLT relocation may be preempted. */
10271 return 0;
10272 default:
10273 abort ();
10274 }
10275
10276 /* Global symbols with default visibility in a shared library may be
10277 preempted by another definition. */
10278 return !shared;
10279 }
10280 #endif
10281
10282 /* md_estimate_size_before_relax()
10283
10284 Called just before relax() for rs_machine_dependent frags. The x86
10285 assembler uses these frags to handle variable size jump
10286 instructions.
10287
10288 Any symbol that is now undefined will not become defined.
10289 Return the correct fr_subtype in the frag.
10290 Return the initial "guess for variable size of frag" to caller.
10291 The guess is actually the growth beyond the fixed part. Whatever
10292 we do to grow the fixed or variable part contributes to our
10293 returned value. */
10294
10295 int
10296 md_estimate_size_before_relax (fragS *fragP, segT segment)
10297 {
10298 /* We've already got fragP->fr_subtype right; all we have to do is
10299 check for un-relaxable symbols. On an ELF system, we can't relax
10300 an externally visible symbol, because it may be overridden by a
10301 shared library. */
10302 if (S_GET_SEGMENT (fragP->fr_symbol) != segment
10303 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10304 || (IS_ELF
10305 && !elf_symbol_resolved_in_segment_p (fragP->fr_symbol,
10306 fragP->fr_var))
10307 #endif
10308 #if defined (OBJ_COFF) && defined (TE_PE)
10309 || (OUTPUT_FLAVOR == bfd_target_coff_flavour
10310 && S_IS_WEAK (fragP->fr_symbol))
10311 #endif
10312 )
10313 {
10314 /* Symbol is undefined in this segment, or we need to keep a
10315 reloc so that weak symbols can be overridden. */
10316 int size = (fragP->fr_subtype & CODE16) ? 2 : 4;
10317 enum bfd_reloc_code_real reloc_type;
10318 unsigned char *opcode;
10319 int old_fr_fix;
10320
10321 if (fragP->fr_var != NO_RELOC)
10322 reloc_type = (enum bfd_reloc_code_real) fragP->fr_var;
10323 else if (size == 2)
10324 reloc_type = BFD_RELOC_16_PCREL;
10325 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10326 else if (need_plt32_p (fragP->fr_symbol))
10327 reloc_type = BFD_RELOC_X86_64_PLT32;
10328 #endif
10329 else
10330 reloc_type = BFD_RELOC_32_PCREL;
10331
10332 old_fr_fix = fragP->fr_fix;
10333 opcode = (unsigned char *) fragP->fr_opcode;
10334
10335 switch (TYPE_FROM_RELAX_STATE (fragP->fr_subtype))
10336 {
10337 case UNCOND_JUMP:
10338 /* Make jmp (0xeb) a (d)word displacement jump. */
10339 opcode[0] = 0xe9;
10340 fragP->fr_fix += size;
10341 fix_new (fragP, old_fr_fix, size,
10342 fragP->fr_symbol,
10343 fragP->fr_offset, 1,
10344 reloc_type);
10345 break;
10346
10347 case COND_JUMP86:
10348 if (size == 2
10349 && (!no_cond_jump_promotion || fragP->fr_var != NO_RELOC))
10350 {
10351 /* Negate the condition, and branch past an
10352 unconditional jump. */
10353 opcode[0] ^= 1;
10354 opcode[1] = 3;
10355 /* Insert an unconditional jump. */
10356 opcode[2] = 0xe9;
10357 /* We added two extra opcode bytes, and have a two byte
10358 offset. */
10359 fragP->fr_fix += 2 + 2;
10360 fix_new (fragP, old_fr_fix + 2, 2,
10361 fragP->fr_symbol,
10362 fragP->fr_offset, 1,
10363 reloc_type);
10364 break;
10365 }
10366 /* Fall through. */
10367
10368 case COND_JUMP:
10369 if (no_cond_jump_promotion && fragP->fr_var == NO_RELOC)
10370 {
10371 fixS *fixP;
10372
10373 fragP->fr_fix += 1;
10374 fixP = fix_new (fragP, old_fr_fix, 1,
10375 fragP->fr_symbol,
10376 fragP->fr_offset, 1,
10377 BFD_RELOC_8_PCREL);
10378 fixP->fx_signed = 1;
10379 break;
10380 }
10381
10382 /* This changes the byte-displacement jump 0x7N
10383 to the (d)word-displacement jump 0x0f,0x8N. */
10384 opcode[1] = opcode[0] + 0x10;
10385 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
10386 /* We've added an opcode byte. */
10387 fragP->fr_fix += 1 + size;
10388 fix_new (fragP, old_fr_fix + 1, size,
10389 fragP->fr_symbol,
10390 fragP->fr_offset, 1,
10391 reloc_type);
10392 break;
10393
10394 default:
10395 BAD_CASE (fragP->fr_subtype);
10396 break;
10397 }
10398 frag_wane (fragP);
10399 return fragP->fr_fix - old_fr_fix;
10400 }
10401
10402 /* Guess size depending on current relax state. Initially the relax
10403 state will correspond to a short jump and we return 1, because
10404 the variable part of the frag (the branch offset) is one byte
10405 long. However, we can relax a section more than once and in that
10406 case we must either set fr_subtype back to the unrelaxed state,
10407 or return the value for the appropriate branch. */
10408 return md_relax_table[fragP->fr_subtype].rlx_length;
10409 }
10410
10411 /* Called after relax() is finished.
10412
10413 In: Address of frag.
10414 fr_type == rs_machine_dependent.
10415 fr_subtype is what the address relaxed to.
10416
10417 Out: Any fixSs and constants are set up.
10418 Caller will turn frag into a ".space 0". */
10419
10420 void
10421 md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT sec ATTRIBUTE_UNUSED,
10422 fragS *fragP)
10423 {
10424 unsigned char *opcode;
10425 unsigned char *where_to_put_displacement = NULL;
10426 offsetT target_address;
10427 offsetT opcode_address;
10428 unsigned int extension = 0;
10429 offsetT displacement_from_opcode_start;
10430
10431 opcode = (unsigned char *) fragP->fr_opcode;
10432
10433 /* Address we want to reach in file space. */
10434 target_address = S_GET_VALUE (fragP->fr_symbol) + fragP->fr_offset;
10435
10436 /* Address opcode resides at in file space. */
10437 opcode_address = fragP->fr_address + fragP->fr_fix;
10438
10439 /* Displacement from opcode start to fill into instruction. */
10440 displacement_from_opcode_start = target_address - opcode_address;
10441
10442 if ((fragP->fr_subtype & BIG) == 0)
10443 {
10444 /* Don't have to change opcode. */
10445 extension = 1; /* 1 opcode + 1 displacement */
10446 where_to_put_displacement = &opcode[1];
10447 }
10448 else
10449 {
10450 if (no_cond_jump_promotion
10451 && TYPE_FROM_RELAX_STATE (fragP->fr_subtype) != UNCOND_JUMP)
10452 as_warn_where (fragP->fr_file, fragP->fr_line,
10453 _("long jump required"));
10454
10455 switch (fragP->fr_subtype)
10456 {
10457 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG):
10458 extension = 4; /* 1 opcode + 4 displacement */
10459 opcode[0] = 0xe9;
10460 where_to_put_displacement = &opcode[1];
10461 break;
10462
10463 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16):
10464 extension = 2; /* 1 opcode + 2 displacement */
10465 opcode[0] = 0xe9;
10466 where_to_put_displacement = &opcode[1];
10467 break;
10468
10469 case ENCODE_RELAX_STATE (COND_JUMP, BIG):
10470 case ENCODE_RELAX_STATE (COND_JUMP86, BIG):
10471 extension = 5; /* 2 opcode + 4 displacement */
10472 opcode[1] = opcode[0] + 0x10;
10473 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
10474 where_to_put_displacement = &opcode[2];
10475 break;
10476
10477 case ENCODE_RELAX_STATE (COND_JUMP, BIG16):
10478 extension = 3; /* 2 opcode + 2 displacement */
10479 opcode[1] = opcode[0] + 0x10;
10480 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
10481 where_to_put_displacement = &opcode[2];
10482 break;
10483
10484 case ENCODE_RELAX_STATE (COND_JUMP86, BIG16):
10485 extension = 4;
10486 opcode[0] ^= 1;
10487 opcode[1] = 3;
10488 opcode[2] = 0xe9;
10489 where_to_put_displacement = &opcode[3];
10490 break;
10491
10492 default:
10493 BAD_CASE (fragP->fr_subtype);
10494 break;
10495 }
10496 }
10497
10498 /* If size if less then four we are sure that the operand fits,
10499 but if it's 4, then it could be that the displacement is larger
10500 then -/+ 2GB. */
10501 if (DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype) == 4
10502 && object_64bit
10503 && ((addressT) (displacement_from_opcode_start - extension
10504 + ((addressT) 1 << 31))
10505 > (((addressT) 2 << 31) - 1)))
10506 {
10507 as_bad_where (fragP->fr_file, fragP->fr_line,
10508 _("jump target out of range"));
10509 /* Make us emit 0. */
10510 displacement_from_opcode_start = extension;
10511 }
10512 /* Now put displacement after opcode. */
10513 md_number_to_chars ((char *) where_to_put_displacement,
10514 (valueT) (displacement_from_opcode_start - extension),
10515 DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype));
10516 fragP->fr_fix += extension;
10517 }
10518 \f
10519 /* Apply a fixup (fixP) to segment data, once it has been determined
10520 by our caller that we have all the info we need to fix it up.
10521
10522 Parameter valP is the pointer to the value of the bits.
10523
10524 On the 386, immediates, displacements, and data pointers are all in
10525 the same (little-endian) format, so we don't need to care about which
10526 we are handling. */
10527
10528 void
10529 md_apply_fix (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED)
10530 {
10531 char *p = fixP->fx_where + fixP->fx_frag->fr_literal;
10532 valueT value = *valP;
10533
10534 #if !defined (TE_Mach)
10535 if (fixP->fx_pcrel)
10536 {
10537 switch (fixP->fx_r_type)
10538 {
10539 default:
10540 break;
10541
10542 case BFD_RELOC_64:
10543 fixP->fx_r_type = BFD_RELOC_64_PCREL;
10544 break;
10545 case BFD_RELOC_32:
10546 case BFD_RELOC_X86_64_32S:
10547 fixP->fx_r_type = BFD_RELOC_32_PCREL;
10548 break;
10549 case BFD_RELOC_16:
10550 fixP->fx_r_type = BFD_RELOC_16_PCREL;
10551 break;
10552 case BFD_RELOC_8:
10553 fixP->fx_r_type = BFD_RELOC_8_PCREL;
10554 break;
10555 }
10556 }
10557
10558 if (fixP->fx_addsy != NULL
10559 && (fixP->fx_r_type == BFD_RELOC_32_PCREL
10560 || fixP->fx_r_type == BFD_RELOC_64_PCREL
10561 || fixP->fx_r_type == BFD_RELOC_16_PCREL
10562 || fixP->fx_r_type == BFD_RELOC_8_PCREL)
10563 && !use_rela_relocations)
10564 {
10565 /* This is a hack. There should be a better way to handle this.
10566 This covers for the fact that bfd_install_relocation will
10567 subtract the current location (for partial_inplace, PC relative
10568 relocations); see more below. */
10569 #ifndef OBJ_AOUT
10570 if (IS_ELF
10571 #ifdef TE_PE
10572 || OUTPUT_FLAVOR == bfd_target_coff_flavour
10573 #endif
10574 )
10575 value += fixP->fx_where + fixP->fx_frag->fr_address;
10576 #endif
10577 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10578 if (IS_ELF)
10579 {
10580 segT sym_seg = S_GET_SEGMENT (fixP->fx_addsy);
10581
10582 if ((sym_seg == seg
10583 || (symbol_section_p (fixP->fx_addsy)
10584 && sym_seg != absolute_section))
10585 && !generic_force_reloc (fixP))
10586 {
10587 /* Yes, we add the values in twice. This is because
10588 bfd_install_relocation subtracts them out again. I think
10589 bfd_install_relocation is broken, but I don't dare change
10590 it. FIXME. */
10591 value += fixP->fx_where + fixP->fx_frag->fr_address;
10592 }
10593 }
10594 #endif
10595 #if defined (OBJ_COFF) && defined (TE_PE)
10596 /* For some reason, the PE format does not store a
10597 section address offset for a PC relative symbol. */
10598 if (S_GET_SEGMENT (fixP->fx_addsy) != seg
10599 || S_IS_WEAK (fixP->fx_addsy))
10600 value += md_pcrel_from (fixP);
10601 #endif
10602 }
10603 #if defined (OBJ_COFF) && defined (TE_PE)
10604 if (fixP->fx_addsy != NULL
10605 && S_IS_WEAK (fixP->fx_addsy)
10606 /* PR 16858: Do not modify weak function references. */
10607 && ! fixP->fx_pcrel)
10608 {
10609 #if !defined (TE_PEP)
10610 /* For x86 PE weak function symbols are neither PC-relative
10611 nor do they set S_IS_FUNCTION. So the only reliable way
10612 to detect them is to check the flags of their containing
10613 section. */
10614 if (S_GET_SEGMENT (fixP->fx_addsy) != NULL
10615 && S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_CODE)
10616 ;
10617 else
10618 #endif
10619 value -= S_GET_VALUE (fixP->fx_addsy);
10620 }
10621 #endif
10622
10623 /* Fix a few things - the dynamic linker expects certain values here,
10624 and we must not disappoint it. */
10625 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10626 if (IS_ELF && fixP->fx_addsy)
10627 switch (fixP->fx_r_type)
10628 {
10629 case BFD_RELOC_386_PLT32:
10630 case BFD_RELOC_X86_64_PLT32:
10631 /* Make the jump instruction point to the address of the operand.
10632 At runtime we merely add the offset to the actual PLT entry.
10633 NB: Subtract the offset size only for jump instructions. */
10634 if (fixP->fx_pcrel)
10635 value = -4;
10636 break;
10637
10638 case BFD_RELOC_386_TLS_GD:
10639 case BFD_RELOC_386_TLS_LDM:
10640 case BFD_RELOC_386_TLS_IE_32:
10641 case BFD_RELOC_386_TLS_IE:
10642 case BFD_RELOC_386_TLS_GOTIE:
10643 case BFD_RELOC_386_TLS_GOTDESC:
10644 case BFD_RELOC_X86_64_TLSGD:
10645 case BFD_RELOC_X86_64_TLSLD:
10646 case BFD_RELOC_X86_64_GOTTPOFF:
10647 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
10648 value = 0; /* Fully resolved at runtime. No addend. */
10649 /* Fallthrough */
10650 case BFD_RELOC_386_TLS_LE:
10651 case BFD_RELOC_386_TLS_LDO_32:
10652 case BFD_RELOC_386_TLS_LE_32:
10653 case BFD_RELOC_X86_64_DTPOFF32:
10654 case BFD_RELOC_X86_64_DTPOFF64:
10655 case BFD_RELOC_X86_64_TPOFF32:
10656 case BFD_RELOC_X86_64_TPOFF64:
10657 S_SET_THREAD_LOCAL (fixP->fx_addsy);
10658 break;
10659
10660 case BFD_RELOC_386_TLS_DESC_CALL:
10661 case BFD_RELOC_X86_64_TLSDESC_CALL:
10662 value = 0; /* Fully resolved at runtime. No addend. */
10663 S_SET_THREAD_LOCAL (fixP->fx_addsy);
10664 fixP->fx_done = 0;
10665 return;
10666
10667 case BFD_RELOC_VTABLE_INHERIT:
10668 case BFD_RELOC_VTABLE_ENTRY:
10669 fixP->fx_done = 0;
10670 return;
10671
10672 default:
10673 break;
10674 }
10675 #endif /* defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) */
10676 *valP = value;
10677 #endif /* !defined (TE_Mach) */
10678
10679 /* Are we finished with this relocation now? */
10680 if (fixP->fx_addsy == NULL)
10681 fixP->fx_done = 1;
10682 #if defined (OBJ_COFF) && defined (TE_PE)
10683 else if (fixP->fx_addsy != NULL && S_IS_WEAK (fixP->fx_addsy))
10684 {
10685 fixP->fx_done = 0;
10686 /* Remember value for tc_gen_reloc. */
10687 fixP->fx_addnumber = value;
10688 /* Clear out the frag for now. */
10689 value = 0;
10690 }
10691 #endif
10692 else if (use_rela_relocations)
10693 {
10694 fixP->fx_no_overflow = 1;
10695 /* Remember value for tc_gen_reloc. */
10696 fixP->fx_addnumber = value;
10697 value = 0;
10698 }
10699
10700 md_number_to_chars (p, value, fixP->fx_size);
10701 }
10702 \f
10703 const char *
10704 md_atof (int type, char *litP, int *sizeP)
10705 {
10706 /* This outputs the LITTLENUMs in REVERSE order;
10707 in accord with the bigendian 386. */
10708 return ieee_md_atof (type, litP, sizeP, FALSE);
10709 }
10710 \f
10711 static char output_invalid_buf[sizeof (unsigned char) * 2 + 6];
10712
10713 static char *
10714 output_invalid (int c)
10715 {
10716 if (ISPRINT (c))
10717 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
10718 "'%c'", c);
10719 else
10720 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
10721 "(0x%x)", (unsigned char) c);
10722 return output_invalid_buf;
10723 }
10724
10725 /* REG_STRING starts *before* REGISTER_PREFIX. */
10726
10727 static const reg_entry *
10728 parse_real_register (char *reg_string, char **end_op)
10729 {
10730 char *s = reg_string;
10731 char *p;
10732 char reg_name_given[MAX_REG_NAME_SIZE + 1];
10733 const reg_entry *r;
10734
10735 /* Skip possible REGISTER_PREFIX and possible whitespace. */
10736 if (*s == REGISTER_PREFIX)
10737 ++s;
10738
10739 if (is_space_char (*s))
10740 ++s;
10741
10742 p = reg_name_given;
10743 while ((*p++ = register_chars[(unsigned char) *s]) != '\0')
10744 {
10745 if (p >= reg_name_given + MAX_REG_NAME_SIZE)
10746 return (const reg_entry *) NULL;
10747 s++;
10748 }
10749
10750 /* For naked regs, make sure that we are not dealing with an identifier.
10751 This prevents confusing an identifier like `eax_var' with register
10752 `eax'. */
10753 if (allow_naked_reg && identifier_chars[(unsigned char) *s])
10754 return (const reg_entry *) NULL;
10755
10756 *end_op = s;
10757
10758 r = (const reg_entry *) hash_find (reg_hash, reg_name_given);
10759
10760 /* Handle floating point regs, allowing spaces in the (i) part. */
10761 if (r == i386_regtab /* %st is first entry of table */)
10762 {
10763 if (!cpu_arch_flags.bitfield.cpu8087
10764 && !cpu_arch_flags.bitfield.cpu287
10765 && !cpu_arch_flags.bitfield.cpu387)
10766 return (const reg_entry *) NULL;
10767
10768 if (is_space_char (*s))
10769 ++s;
10770 if (*s == '(')
10771 {
10772 ++s;
10773 if (is_space_char (*s))
10774 ++s;
10775 if (*s >= '0' && *s <= '7')
10776 {
10777 int fpr = *s - '0';
10778 ++s;
10779 if (is_space_char (*s))
10780 ++s;
10781 if (*s == ')')
10782 {
10783 *end_op = s + 1;
10784 r = (const reg_entry *) hash_find (reg_hash, "st(0)");
10785 know (r);
10786 return r + fpr;
10787 }
10788 }
10789 /* We have "%st(" then garbage. */
10790 return (const reg_entry *) NULL;
10791 }
10792 }
10793
10794 if (r == NULL || allow_pseudo_reg)
10795 return r;
10796
10797 if (operand_type_all_zero (&r->reg_type))
10798 return (const reg_entry *) NULL;
10799
10800 if ((r->reg_type.bitfield.dword
10801 || r->reg_type.bitfield.sreg3
10802 || r->reg_type.bitfield.control
10803 || r->reg_type.bitfield.debug
10804 || r->reg_type.bitfield.test)
10805 && !cpu_arch_flags.bitfield.cpui386)
10806 return (const reg_entry *) NULL;
10807
10808 if (r->reg_type.bitfield.regmmx && !cpu_arch_flags.bitfield.cpummx)
10809 return (const reg_entry *) NULL;
10810
10811 if (!cpu_arch_flags.bitfield.cpuavx512f)
10812 {
10813 if (r->reg_type.bitfield.zmmword || r->reg_type.bitfield.regmask)
10814 return (const reg_entry *) NULL;
10815
10816 if (!cpu_arch_flags.bitfield.cpuavx)
10817 {
10818 if (r->reg_type.bitfield.ymmword)
10819 return (const reg_entry *) NULL;
10820
10821 if (!cpu_arch_flags.bitfield.cpusse && r->reg_type.bitfield.xmmword)
10822 return (const reg_entry *) NULL;
10823 }
10824 }
10825
10826 if (r->reg_type.bitfield.regbnd && !cpu_arch_flags.bitfield.cpumpx)
10827 return (const reg_entry *) NULL;
10828
10829 /* Don't allow fake index register unless allow_index_reg isn't 0. */
10830 if (!allow_index_reg && r->reg_num == RegIZ)
10831 return (const reg_entry *) NULL;
10832
10833 /* Upper 16 vector registers are only available with VREX in 64bit
10834 mode, and require EVEX encoding. */
10835 if (r->reg_flags & RegVRex)
10836 {
10837 if (!cpu_arch_flags.bitfield.cpuavx512f
10838 || flag_code != CODE_64BIT)
10839 return (const reg_entry *) NULL;
10840
10841 i.vec_encoding = vex_encoding_evex;
10842 }
10843
10844 if (((r->reg_flags & (RegRex64 | RegRex)) || r->reg_type.bitfield.qword)
10845 && (!cpu_arch_flags.bitfield.cpulm || !r->reg_type.bitfield.control)
10846 && flag_code != CODE_64BIT)
10847 return (const reg_entry *) NULL;
10848
10849 if (r->reg_type.bitfield.sreg3 && r->reg_num == RegFlat && !intel_syntax)
10850 return (const reg_entry *) NULL;
10851
10852 return r;
10853 }
10854
10855 /* REG_STRING starts *before* REGISTER_PREFIX. */
10856
10857 static const reg_entry *
10858 parse_register (char *reg_string, char **end_op)
10859 {
10860 const reg_entry *r;
10861
10862 if (*reg_string == REGISTER_PREFIX || allow_naked_reg)
10863 r = parse_real_register (reg_string, end_op);
10864 else
10865 r = NULL;
10866 if (!r)
10867 {
10868 char *save = input_line_pointer;
10869 char c;
10870 symbolS *symbolP;
10871
10872 input_line_pointer = reg_string;
10873 c = get_symbol_name (&reg_string);
10874 symbolP = symbol_find (reg_string);
10875 if (symbolP && S_GET_SEGMENT (symbolP) == reg_section)
10876 {
10877 const expressionS *e = symbol_get_value_expression (symbolP);
10878
10879 know (e->X_op == O_register);
10880 know (e->X_add_number >= 0
10881 && (valueT) e->X_add_number < i386_regtab_size);
10882 r = i386_regtab + e->X_add_number;
10883 if ((r->reg_flags & RegVRex))
10884 i.vec_encoding = vex_encoding_evex;
10885 *end_op = input_line_pointer;
10886 }
10887 *input_line_pointer = c;
10888 input_line_pointer = save;
10889 }
10890 return r;
10891 }
10892
10893 int
10894 i386_parse_name (char *name, expressionS *e, char *nextcharP)
10895 {
10896 const reg_entry *r;
10897 char *end = input_line_pointer;
10898
10899 *end = *nextcharP;
10900 r = parse_register (name, &input_line_pointer);
10901 if (r && end <= input_line_pointer)
10902 {
10903 *nextcharP = *input_line_pointer;
10904 *input_line_pointer = 0;
10905 e->X_op = O_register;
10906 e->X_add_number = r - i386_regtab;
10907 return 1;
10908 }
10909 input_line_pointer = end;
10910 *end = 0;
10911 return intel_syntax ? i386_intel_parse_name (name, e) : 0;
10912 }
10913
10914 void
10915 md_operand (expressionS *e)
10916 {
10917 char *end;
10918 const reg_entry *r;
10919
10920 switch (*input_line_pointer)
10921 {
10922 case REGISTER_PREFIX:
10923 r = parse_real_register (input_line_pointer, &end);
10924 if (r)
10925 {
10926 e->X_op = O_register;
10927 e->X_add_number = r - i386_regtab;
10928 input_line_pointer = end;
10929 }
10930 break;
10931
10932 case '[':
10933 gas_assert (intel_syntax);
10934 end = input_line_pointer++;
10935 expression (e);
10936 if (*input_line_pointer == ']')
10937 {
10938 ++input_line_pointer;
10939 e->X_op_symbol = make_expr_symbol (e);
10940 e->X_add_symbol = NULL;
10941 e->X_add_number = 0;
10942 e->X_op = O_index;
10943 }
10944 else
10945 {
10946 e->X_op = O_absent;
10947 input_line_pointer = end;
10948 }
10949 break;
10950 }
10951 }
10952
10953 \f
10954 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10955 const char *md_shortopts = "kVQ:sqnO::";
10956 #else
10957 const char *md_shortopts = "qnO::";
10958 #endif
10959
10960 #define OPTION_32 (OPTION_MD_BASE + 0)
10961 #define OPTION_64 (OPTION_MD_BASE + 1)
10962 #define OPTION_DIVIDE (OPTION_MD_BASE + 2)
10963 #define OPTION_MARCH (OPTION_MD_BASE + 3)
10964 #define OPTION_MTUNE (OPTION_MD_BASE + 4)
10965 #define OPTION_MMNEMONIC (OPTION_MD_BASE + 5)
10966 #define OPTION_MSYNTAX (OPTION_MD_BASE + 6)
10967 #define OPTION_MINDEX_REG (OPTION_MD_BASE + 7)
10968 #define OPTION_MNAKED_REG (OPTION_MD_BASE + 8)
10969 #define OPTION_MRELAX_RELOCATIONS (OPTION_MD_BASE + 9)
10970 #define OPTION_MSSE2AVX (OPTION_MD_BASE + 10)
10971 #define OPTION_MSSE_CHECK (OPTION_MD_BASE + 11)
10972 #define OPTION_MOPERAND_CHECK (OPTION_MD_BASE + 12)
10973 #define OPTION_MAVXSCALAR (OPTION_MD_BASE + 13)
10974 #define OPTION_X32 (OPTION_MD_BASE + 14)
10975 #define OPTION_MADD_BND_PREFIX (OPTION_MD_BASE + 15)
10976 #define OPTION_MEVEXLIG (OPTION_MD_BASE + 16)
10977 #define OPTION_MEVEXWIG (OPTION_MD_BASE + 17)
10978 #define OPTION_MBIG_OBJ (OPTION_MD_BASE + 18)
10979 #define OPTION_MOMIT_LOCK_PREFIX (OPTION_MD_BASE + 19)
10980 #define OPTION_MEVEXRCIG (OPTION_MD_BASE + 20)
10981 #define OPTION_MSHARED (OPTION_MD_BASE + 21)
10982 #define OPTION_MAMD64 (OPTION_MD_BASE + 22)
10983 #define OPTION_MINTEL64 (OPTION_MD_BASE + 23)
10984 #define OPTION_MFENCE_AS_LOCK_ADD (OPTION_MD_BASE + 24)
10985 #define OPTION_X86_USED_NOTE (OPTION_MD_BASE + 25)
10986 #define OPTION_MVEXWIG (OPTION_MD_BASE + 26)
10987
10988 struct option md_longopts[] =
10989 {
10990 {"32", no_argument, NULL, OPTION_32},
10991 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
10992 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
10993 {"64", no_argument, NULL, OPTION_64},
10994 #endif
10995 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10996 {"x32", no_argument, NULL, OPTION_X32},
10997 {"mshared", no_argument, NULL, OPTION_MSHARED},
10998 {"mx86-used-note", required_argument, NULL, OPTION_X86_USED_NOTE},
10999 #endif
11000 {"divide", no_argument, NULL, OPTION_DIVIDE},
11001 {"march", required_argument, NULL, OPTION_MARCH},
11002 {"mtune", required_argument, NULL, OPTION_MTUNE},
11003 {"mmnemonic", required_argument, NULL, OPTION_MMNEMONIC},
11004 {"msyntax", required_argument, NULL, OPTION_MSYNTAX},
11005 {"mindex-reg", no_argument, NULL, OPTION_MINDEX_REG},
11006 {"mnaked-reg", no_argument, NULL, OPTION_MNAKED_REG},
11007 {"msse2avx", no_argument, NULL, OPTION_MSSE2AVX},
11008 {"msse-check", required_argument, NULL, OPTION_MSSE_CHECK},
11009 {"moperand-check", required_argument, NULL, OPTION_MOPERAND_CHECK},
11010 {"mavxscalar", required_argument, NULL, OPTION_MAVXSCALAR},
11011 {"mvexwig", required_argument, NULL, OPTION_MVEXWIG},
11012 {"madd-bnd-prefix", no_argument, NULL, OPTION_MADD_BND_PREFIX},
11013 {"mevexlig", required_argument, NULL, OPTION_MEVEXLIG},
11014 {"mevexwig", required_argument, NULL, OPTION_MEVEXWIG},
11015 # if defined (TE_PE) || defined (TE_PEP)
11016 {"mbig-obj", no_argument, NULL, OPTION_MBIG_OBJ},
11017 #endif
11018 {"momit-lock-prefix", required_argument, NULL, OPTION_MOMIT_LOCK_PREFIX},
11019 {"mfence-as-lock-add", required_argument, NULL, OPTION_MFENCE_AS_LOCK_ADD},
11020 {"mrelax-relocations", required_argument, NULL, OPTION_MRELAX_RELOCATIONS},
11021 {"mevexrcig", required_argument, NULL, OPTION_MEVEXRCIG},
11022 {"mamd64", no_argument, NULL, OPTION_MAMD64},
11023 {"mintel64", no_argument, NULL, OPTION_MINTEL64},
11024 {NULL, no_argument, NULL, 0}
11025 };
11026 size_t md_longopts_size = sizeof (md_longopts);
11027
11028 int
11029 md_parse_option (int c, const char *arg)
11030 {
11031 unsigned int j;
11032 char *arch, *next, *saved;
11033
11034 switch (c)
11035 {
11036 case 'n':
11037 optimize_align_code = 0;
11038 break;
11039
11040 case 'q':
11041 quiet_warnings = 1;
11042 break;
11043
11044 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11045 /* -Qy, -Qn: SVR4 arguments controlling whether a .comment section
11046 should be emitted or not. FIXME: Not implemented. */
11047 case 'Q':
11048 break;
11049
11050 /* -V: SVR4 argument to print version ID. */
11051 case 'V':
11052 print_version_id ();
11053 break;
11054
11055 /* -k: Ignore for FreeBSD compatibility. */
11056 case 'k':
11057 break;
11058
11059 case 's':
11060 /* -s: On i386 Solaris, this tells the native assembler to use
11061 .stab instead of .stab.excl. We always use .stab anyhow. */
11062 break;
11063
11064 case OPTION_MSHARED:
11065 shared = 1;
11066 break;
11067
11068 case OPTION_X86_USED_NOTE:
11069 if (strcasecmp (arg, "yes") == 0)
11070 x86_used_note = 1;
11071 else if (strcasecmp (arg, "no") == 0)
11072 x86_used_note = 0;
11073 else
11074 as_fatal (_("invalid -mx86-used-note= option: `%s'"), arg);
11075 break;
11076
11077
11078 #endif
11079 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
11080 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
11081 case OPTION_64:
11082 {
11083 const char **list, **l;
11084
11085 list = bfd_target_list ();
11086 for (l = list; *l != NULL; l++)
11087 if (CONST_STRNEQ (*l, "elf64-x86-64")
11088 || strcmp (*l, "coff-x86-64") == 0
11089 || strcmp (*l, "pe-x86-64") == 0
11090 || strcmp (*l, "pei-x86-64") == 0
11091 || strcmp (*l, "mach-o-x86-64") == 0)
11092 {
11093 default_arch = "x86_64";
11094 break;
11095 }
11096 if (*l == NULL)
11097 as_fatal (_("no compiled in support for x86_64"));
11098 free (list);
11099 }
11100 break;
11101 #endif
11102
11103 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11104 case OPTION_X32:
11105 if (IS_ELF)
11106 {
11107 const char **list, **l;
11108
11109 list = bfd_target_list ();
11110 for (l = list; *l != NULL; l++)
11111 if (CONST_STRNEQ (*l, "elf32-x86-64"))
11112 {
11113 default_arch = "x86_64:32";
11114 break;
11115 }
11116 if (*l == NULL)
11117 as_fatal (_("no compiled in support for 32bit x86_64"));
11118 free (list);
11119 }
11120 else
11121 as_fatal (_("32bit x86_64 is only supported for ELF"));
11122 break;
11123 #endif
11124
11125 case OPTION_32:
11126 default_arch = "i386";
11127 break;
11128
11129 case OPTION_DIVIDE:
11130 #ifdef SVR4_COMMENT_CHARS
11131 {
11132 char *n, *t;
11133 const char *s;
11134
11135 n = XNEWVEC (char, strlen (i386_comment_chars) + 1);
11136 t = n;
11137 for (s = i386_comment_chars; *s != '\0'; s++)
11138 if (*s != '/')
11139 *t++ = *s;
11140 *t = '\0';
11141 i386_comment_chars = n;
11142 }
11143 #endif
11144 break;
11145
11146 case OPTION_MARCH:
11147 saved = xstrdup (arg);
11148 arch = saved;
11149 /* Allow -march=+nosse. */
11150 if (*arch == '+')
11151 arch++;
11152 do
11153 {
11154 if (*arch == '.')
11155 as_fatal (_("invalid -march= option: `%s'"), arg);
11156 next = strchr (arch, '+');
11157 if (next)
11158 *next++ = '\0';
11159 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
11160 {
11161 if (strcmp (arch, cpu_arch [j].name) == 0)
11162 {
11163 /* Processor. */
11164 if (! cpu_arch[j].flags.bitfield.cpui386)
11165 continue;
11166
11167 cpu_arch_name = cpu_arch[j].name;
11168 cpu_sub_arch_name = NULL;
11169 cpu_arch_flags = cpu_arch[j].flags;
11170 cpu_arch_isa = cpu_arch[j].type;
11171 cpu_arch_isa_flags = cpu_arch[j].flags;
11172 if (!cpu_arch_tune_set)
11173 {
11174 cpu_arch_tune = cpu_arch_isa;
11175 cpu_arch_tune_flags = cpu_arch_isa_flags;
11176 }
11177 break;
11178 }
11179 else if (*cpu_arch [j].name == '.'
11180 && strcmp (arch, cpu_arch [j].name + 1) == 0)
11181 {
11182 /* ISA extension. */
11183 i386_cpu_flags flags;
11184
11185 flags = cpu_flags_or (cpu_arch_flags,
11186 cpu_arch[j].flags);
11187
11188 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
11189 {
11190 if (cpu_sub_arch_name)
11191 {
11192 char *name = cpu_sub_arch_name;
11193 cpu_sub_arch_name = concat (name,
11194 cpu_arch[j].name,
11195 (const char *) NULL);
11196 free (name);
11197 }
11198 else
11199 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
11200 cpu_arch_flags = flags;
11201 cpu_arch_isa_flags = flags;
11202 }
11203 else
11204 cpu_arch_isa_flags
11205 = cpu_flags_or (cpu_arch_isa_flags,
11206 cpu_arch[j].flags);
11207 break;
11208 }
11209 }
11210
11211 if (j >= ARRAY_SIZE (cpu_arch))
11212 {
11213 /* Disable an ISA extension. */
11214 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
11215 if (strcmp (arch, cpu_noarch [j].name) == 0)
11216 {
11217 i386_cpu_flags flags;
11218
11219 flags = cpu_flags_and_not (cpu_arch_flags,
11220 cpu_noarch[j].flags);
11221 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
11222 {
11223 if (cpu_sub_arch_name)
11224 {
11225 char *name = cpu_sub_arch_name;
11226 cpu_sub_arch_name = concat (arch,
11227 (const char *) NULL);
11228 free (name);
11229 }
11230 else
11231 cpu_sub_arch_name = xstrdup (arch);
11232 cpu_arch_flags = flags;
11233 cpu_arch_isa_flags = flags;
11234 }
11235 break;
11236 }
11237
11238 if (j >= ARRAY_SIZE (cpu_noarch))
11239 j = ARRAY_SIZE (cpu_arch);
11240 }
11241
11242 if (j >= ARRAY_SIZE (cpu_arch))
11243 as_fatal (_("invalid -march= option: `%s'"), arg);
11244
11245 arch = next;
11246 }
11247 while (next != NULL);
11248 free (saved);
11249 break;
11250
11251 case OPTION_MTUNE:
11252 if (*arg == '.')
11253 as_fatal (_("invalid -mtune= option: `%s'"), arg);
11254 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
11255 {
11256 if (strcmp (arg, cpu_arch [j].name) == 0)
11257 {
11258 cpu_arch_tune_set = 1;
11259 cpu_arch_tune = cpu_arch [j].type;
11260 cpu_arch_tune_flags = cpu_arch[j].flags;
11261 break;
11262 }
11263 }
11264 if (j >= ARRAY_SIZE (cpu_arch))
11265 as_fatal (_("invalid -mtune= option: `%s'"), arg);
11266 break;
11267
11268 case OPTION_MMNEMONIC:
11269 if (strcasecmp (arg, "att") == 0)
11270 intel_mnemonic = 0;
11271 else if (strcasecmp (arg, "intel") == 0)
11272 intel_mnemonic = 1;
11273 else
11274 as_fatal (_("invalid -mmnemonic= option: `%s'"), arg);
11275 break;
11276
11277 case OPTION_MSYNTAX:
11278 if (strcasecmp (arg, "att") == 0)
11279 intel_syntax = 0;
11280 else if (strcasecmp (arg, "intel") == 0)
11281 intel_syntax = 1;
11282 else
11283 as_fatal (_("invalid -msyntax= option: `%s'"), arg);
11284 break;
11285
11286 case OPTION_MINDEX_REG:
11287 allow_index_reg = 1;
11288 break;
11289
11290 case OPTION_MNAKED_REG:
11291 allow_naked_reg = 1;
11292 break;
11293
11294 case OPTION_MSSE2AVX:
11295 sse2avx = 1;
11296 break;
11297
11298 case OPTION_MSSE_CHECK:
11299 if (strcasecmp (arg, "error") == 0)
11300 sse_check = check_error;
11301 else if (strcasecmp (arg, "warning") == 0)
11302 sse_check = check_warning;
11303 else if (strcasecmp (arg, "none") == 0)
11304 sse_check = check_none;
11305 else
11306 as_fatal (_("invalid -msse-check= option: `%s'"), arg);
11307 break;
11308
11309 case OPTION_MOPERAND_CHECK:
11310 if (strcasecmp (arg, "error") == 0)
11311 operand_check = check_error;
11312 else if (strcasecmp (arg, "warning") == 0)
11313 operand_check = check_warning;
11314 else if (strcasecmp (arg, "none") == 0)
11315 operand_check = check_none;
11316 else
11317 as_fatal (_("invalid -moperand-check= option: `%s'"), arg);
11318 break;
11319
11320 case OPTION_MAVXSCALAR:
11321 if (strcasecmp (arg, "128") == 0)
11322 avxscalar = vex128;
11323 else if (strcasecmp (arg, "256") == 0)
11324 avxscalar = vex256;
11325 else
11326 as_fatal (_("invalid -mavxscalar= option: `%s'"), arg);
11327 break;
11328
11329 case OPTION_MVEXWIG:
11330 if (strcmp (arg, "0") == 0)
11331 vexwig = evexw0;
11332 else if (strcmp (arg, "1") == 0)
11333 vexwig = evexw1;
11334 else
11335 as_fatal (_("invalid -mvexwig= option: `%s'"), arg);
11336 break;
11337
11338 case OPTION_MADD_BND_PREFIX:
11339 add_bnd_prefix = 1;
11340 break;
11341
11342 case OPTION_MEVEXLIG:
11343 if (strcmp (arg, "128") == 0)
11344 evexlig = evexl128;
11345 else if (strcmp (arg, "256") == 0)
11346 evexlig = evexl256;
11347 else if (strcmp (arg, "512") == 0)
11348 evexlig = evexl512;
11349 else
11350 as_fatal (_("invalid -mevexlig= option: `%s'"), arg);
11351 break;
11352
11353 case OPTION_MEVEXRCIG:
11354 if (strcmp (arg, "rne") == 0)
11355 evexrcig = rne;
11356 else if (strcmp (arg, "rd") == 0)
11357 evexrcig = rd;
11358 else if (strcmp (arg, "ru") == 0)
11359 evexrcig = ru;
11360 else if (strcmp (arg, "rz") == 0)
11361 evexrcig = rz;
11362 else
11363 as_fatal (_("invalid -mevexrcig= option: `%s'"), arg);
11364 break;
11365
11366 case OPTION_MEVEXWIG:
11367 if (strcmp (arg, "0") == 0)
11368 evexwig = evexw0;
11369 else if (strcmp (arg, "1") == 0)
11370 evexwig = evexw1;
11371 else
11372 as_fatal (_("invalid -mevexwig= option: `%s'"), arg);
11373 break;
11374
11375 # if defined (TE_PE) || defined (TE_PEP)
11376 case OPTION_MBIG_OBJ:
11377 use_big_obj = 1;
11378 break;
11379 #endif
11380
11381 case OPTION_MOMIT_LOCK_PREFIX:
11382 if (strcasecmp (arg, "yes") == 0)
11383 omit_lock_prefix = 1;
11384 else if (strcasecmp (arg, "no") == 0)
11385 omit_lock_prefix = 0;
11386 else
11387 as_fatal (_("invalid -momit-lock-prefix= option: `%s'"), arg);
11388 break;
11389
11390 case OPTION_MFENCE_AS_LOCK_ADD:
11391 if (strcasecmp (arg, "yes") == 0)
11392 avoid_fence = 1;
11393 else if (strcasecmp (arg, "no") == 0)
11394 avoid_fence = 0;
11395 else
11396 as_fatal (_("invalid -mfence-as-lock-add= option: `%s'"), arg);
11397 break;
11398
11399 case OPTION_MRELAX_RELOCATIONS:
11400 if (strcasecmp (arg, "yes") == 0)
11401 generate_relax_relocations = 1;
11402 else if (strcasecmp (arg, "no") == 0)
11403 generate_relax_relocations = 0;
11404 else
11405 as_fatal (_("invalid -mrelax-relocations= option: `%s'"), arg);
11406 break;
11407
11408 case OPTION_MAMD64:
11409 intel64 = 0;
11410 break;
11411
11412 case OPTION_MINTEL64:
11413 intel64 = 1;
11414 break;
11415
11416 case 'O':
11417 if (arg == NULL)
11418 {
11419 optimize = 1;
11420 /* Turn off -Os. */
11421 optimize_for_space = 0;
11422 }
11423 else if (*arg == 's')
11424 {
11425 optimize_for_space = 1;
11426 /* Turn on all encoding optimizations. */
11427 optimize = INT_MAX;
11428 }
11429 else
11430 {
11431 optimize = atoi (arg);
11432 /* Turn off -Os. */
11433 optimize_for_space = 0;
11434 }
11435 break;
11436
11437 default:
11438 return 0;
11439 }
11440 return 1;
11441 }
11442
11443 #define MESSAGE_TEMPLATE \
11444 " "
11445
11446 static char *
11447 output_message (FILE *stream, char *p, char *message, char *start,
11448 int *left_p, const char *name, int len)
11449 {
11450 int size = sizeof (MESSAGE_TEMPLATE);
11451 int left = *left_p;
11452
11453 /* Reserve 2 spaces for ", " or ",\0" */
11454 left -= len + 2;
11455
11456 /* Check if there is any room. */
11457 if (left >= 0)
11458 {
11459 if (p != start)
11460 {
11461 *p++ = ',';
11462 *p++ = ' ';
11463 }
11464 p = mempcpy (p, name, len);
11465 }
11466 else
11467 {
11468 /* Output the current message now and start a new one. */
11469 *p++ = ',';
11470 *p = '\0';
11471 fprintf (stream, "%s\n", message);
11472 p = start;
11473 left = size - (start - message) - len - 2;
11474
11475 gas_assert (left >= 0);
11476
11477 p = mempcpy (p, name, len);
11478 }
11479
11480 *left_p = left;
11481 return p;
11482 }
11483
11484 static void
11485 show_arch (FILE *stream, int ext, int check)
11486 {
11487 static char message[] = MESSAGE_TEMPLATE;
11488 char *start = message + 27;
11489 char *p;
11490 int size = sizeof (MESSAGE_TEMPLATE);
11491 int left;
11492 const char *name;
11493 int len;
11494 unsigned int j;
11495
11496 p = start;
11497 left = size - (start - message);
11498 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
11499 {
11500 /* Should it be skipped? */
11501 if (cpu_arch [j].skip)
11502 continue;
11503
11504 name = cpu_arch [j].name;
11505 len = cpu_arch [j].len;
11506 if (*name == '.')
11507 {
11508 /* It is an extension. Skip if we aren't asked to show it. */
11509 if (ext)
11510 {
11511 name++;
11512 len--;
11513 }
11514 else
11515 continue;
11516 }
11517 else if (ext)
11518 {
11519 /* It is an processor. Skip if we show only extension. */
11520 continue;
11521 }
11522 else if (check && ! cpu_arch[j].flags.bitfield.cpui386)
11523 {
11524 /* It is an impossible processor - skip. */
11525 continue;
11526 }
11527
11528 p = output_message (stream, p, message, start, &left, name, len);
11529 }
11530
11531 /* Display disabled extensions. */
11532 if (ext)
11533 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
11534 {
11535 name = cpu_noarch [j].name;
11536 len = cpu_noarch [j].len;
11537 p = output_message (stream, p, message, start, &left, name,
11538 len);
11539 }
11540
11541 *p = '\0';
11542 fprintf (stream, "%s\n", message);
11543 }
11544
11545 void
11546 md_show_usage (FILE *stream)
11547 {
11548 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11549 fprintf (stream, _("\
11550 -Q ignored\n\
11551 -V print assembler version number\n\
11552 -k ignored\n"));
11553 #endif
11554 fprintf (stream, _("\
11555 -n Do not optimize code alignment\n\
11556 -q quieten some warnings\n"));
11557 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11558 fprintf (stream, _("\
11559 -s ignored\n"));
11560 #endif
11561 #if defined BFD64 && (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
11562 || defined (TE_PE) || defined (TE_PEP))
11563 fprintf (stream, _("\
11564 --32/--64/--x32 generate 32bit/64bit/x32 code\n"));
11565 #endif
11566 #ifdef SVR4_COMMENT_CHARS
11567 fprintf (stream, _("\
11568 --divide do not treat `/' as a comment character\n"));
11569 #else
11570 fprintf (stream, _("\
11571 --divide ignored\n"));
11572 #endif
11573 fprintf (stream, _("\
11574 -march=CPU[,+EXTENSION...]\n\
11575 generate code for CPU and EXTENSION, CPU is one of:\n"));
11576 show_arch (stream, 0, 1);
11577 fprintf (stream, _("\
11578 EXTENSION is combination of:\n"));
11579 show_arch (stream, 1, 0);
11580 fprintf (stream, _("\
11581 -mtune=CPU optimize for CPU, CPU is one of:\n"));
11582 show_arch (stream, 0, 0);
11583 fprintf (stream, _("\
11584 -msse2avx encode SSE instructions with VEX prefix\n"));
11585 fprintf (stream, _("\
11586 -msse-check=[none|error|warning] (default: warning)\n\
11587 check SSE instructions\n"));
11588 fprintf (stream, _("\
11589 -moperand-check=[none|error|warning] (default: warning)\n\
11590 check operand combinations for validity\n"));
11591 fprintf (stream, _("\
11592 -mavxscalar=[128|256] (default: 128)\n\
11593 encode scalar AVX instructions with specific vector\n\
11594 length\n"));
11595 fprintf (stream, _("\
11596 -mvexwig=[0|1] (default: 0)\n\
11597 encode VEX instructions with specific VEX.W value\n\
11598 for VEX.W bit ignored instructions\n"));
11599 fprintf (stream, _("\
11600 -mevexlig=[128|256|512] (default: 128)\n\
11601 encode scalar EVEX instructions with specific vector\n\
11602 length\n"));
11603 fprintf (stream, _("\
11604 -mevexwig=[0|1] (default: 0)\n\
11605 encode EVEX instructions with specific EVEX.W value\n\
11606 for EVEX.W bit ignored instructions\n"));
11607 fprintf (stream, _("\
11608 -mevexrcig=[rne|rd|ru|rz] (default: rne)\n\
11609 encode EVEX instructions with specific EVEX.RC value\n\
11610 for SAE-only ignored instructions\n"));
11611 fprintf (stream, _("\
11612 -mmnemonic=[att|intel] "));
11613 if (SYSV386_COMPAT)
11614 fprintf (stream, _("(default: att)\n"));
11615 else
11616 fprintf (stream, _("(default: intel)\n"));
11617 fprintf (stream, _("\
11618 use AT&T/Intel mnemonic\n"));
11619 fprintf (stream, _("\
11620 -msyntax=[att|intel] (default: att)\n\
11621 use AT&T/Intel syntax\n"));
11622 fprintf (stream, _("\
11623 -mindex-reg support pseudo index registers\n"));
11624 fprintf (stream, _("\
11625 -mnaked-reg don't require `%%' prefix for registers\n"));
11626 fprintf (stream, _("\
11627 -madd-bnd-prefix add BND prefix for all valid branches\n"));
11628 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11629 fprintf (stream, _("\
11630 -mshared disable branch optimization for shared code\n"));
11631 fprintf (stream, _("\
11632 -mx86-used-note=[no|yes] "));
11633 if (DEFAULT_X86_USED_NOTE)
11634 fprintf (stream, _("(default: yes)\n"));
11635 else
11636 fprintf (stream, _("(default: no)\n"));
11637 fprintf (stream, _("\
11638 generate x86 used ISA and feature properties\n"));
11639 #endif
11640 #if defined (TE_PE) || defined (TE_PEP)
11641 fprintf (stream, _("\
11642 -mbig-obj generate big object files\n"));
11643 #endif
11644 fprintf (stream, _("\
11645 -momit-lock-prefix=[no|yes] (default: no)\n\
11646 strip all lock prefixes\n"));
11647 fprintf (stream, _("\
11648 -mfence-as-lock-add=[no|yes] (default: no)\n\
11649 encode lfence, mfence and sfence as\n\
11650 lock addl $0x0, (%%{re}sp)\n"));
11651 fprintf (stream, _("\
11652 -mrelax-relocations=[no|yes] "));
11653 if (DEFAULT_GENERATE_X86_RELAX_RELOCATIONS)
11654 fprintf (stream, _("(default: yes)\n"));
11655 else
11656 fprintf (stream, _("(default: no)\n"));
11657 fprintf (stream, _("\
11658 generate relax relocations\n"));
11659 fprintf (stream, _("\
11660 -mamd64 accept only AMD64 ISA [default]\n"));
11661 fprintf (stream, _("\
11662 -mintel64 accept only Intel64 ISA\n"));
11663 }
11664
11665 #if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
11666 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
11667 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
11668
11669 /* Pick the target format to use. */
11670
11671 const char *
11672 i386_target_format (void)
11673 {
11674 if (!strncmp (default_arch, "x86_64", 6))
11675 {
11676 update_code_flag (CODE_64BIT, 1);
11677 if (default_arch[6] == '\0')
11678 x86_elf_abi = X86_64_ABI;
11679 else
11680 x86_elf_abi = X86_64_X32_ABI;
11681 }
11682 else if (!strcmp (default_arch, "i386"))
11683 update_code_flag (CODE_32BIT, 1);
11684 else if (!strcmp (default_arch, "iamcu"))
11685 {
11686 update_code_flag (CODE_32BIT, 1);
11687 if (cpu_arch_isa == PROCESSOR_UNKNOWN)
11688 {
11689 static const i386_cpu_flags iamcu_flags = CPU_IAMCU_FLAGS;
11690 cpu_arch_name = "iamcu";
11691 cpu_sub_arch_name = NULL;
11692 cpu_arch_flags = iamcu_flags;
11693 cpu_arch_isa = PROCESSOR_IAMCU;
11694 cpu_arch_isa_flags = iamcu_flags;
11695 if (!cpu_arch_tune_set)
11696 {
11697 cpu_arch_tune = cpu_arch_isa;
11698 cpu_arch_tune_flags = cpu_arch_isa_flags;
11699 }
11700 }
11701 else if (cpu_arch_isa != PROCESSOR_IAMCU)
11702 as_fatal (_("Intel MCU doesn't support `%s' architecture"),
11703 cpu_arch_name);
11704 }
11705 else
11706 as_fatal (_("unknown architecture"));
11707
11708 if (cpu_flags_all_zero (&cpu_arch_isa_flags))
11709 cpu_arch_isa_flags = cpu_arch[flag_code == CODE_64BIT].flags;
11710 if (cpu_flags_all_zero (&cpu_arch_tune_flags))
11711 cpu_arch_tune_flags = cpu_arch[flag_code == CODE_64BIT].flags;
11712
11713 switch (OUTPUT_FLAVOR)
11714 {
11715 #if defined (OBJ_MAYBE_AOUT) || defined (OBJ_AOUT)
11716 case bfd_target_aout_flavour:
11717 return AOUT_TARGET_FORMAT;
11718 #endif
11719 #if defined (OBJ_MAYBE_COFF) || defined (OBJ_COFF)
11720 # if defined (TE_PE) || defined (TE_PEP)
11721 case bfd_target_coff_flavour:
11722 if (flag_code == CODE_64BIT)
11723 return use_big_obj ? "pe-bigobj-x86-64" : "pe-x86-64";
11724 else
11725 return "pe-i386";
11726 # elif defined (TE_GO32)
11727 case bfd_target_coff_flavour:
11728 return "coff-go32";
11729 # else
11730 case bfd_target_coff_flavour:
11731 return "coff-i386";
11732 # endif
11733 #endif
11734 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
11735 case bfd_target_elf_flavour:
11736 {
11737 const char *format;
11738
11739 switch (x86_elf_abi)
11740 {
11741 default:
11742 format = ELF_TARGET_FORMAT;
11743 break;
11744 case X86_64_ABI:
11745 use_rela_relocations = 1;
11746 object_64bit = 1;
11747 format = ELF_TARGET_FORMAT64;
11748 break;
11749 case X86_64_X32_ABI:
11750 use_rela_relocations = 1;
11751 object_64bit = 1;
11752 disallow_64bit_reloc = 1;
11753 format = ELF_TARGET_FORMAT32;
11754 break;
11755 }
11756 if (cpu_arch_isa == PROCESSOR_L1OM)
11757 {
11758 if (x86_elf_abi != X86_64_ABI)
11759 as_fatal (_("Intel L1OM is 64bit only"));
11760 return ELF_TARGET_L1OM_FORMAT;
11761 }
11762 else if (cpu_arch_isa == PROCESSOR_K1OM)
11763 {
11764 if (x86_elf_abi != X86_64_ABI)
11765 as_fatal (_("Intel K1OM is 64bit only"));
11766 return ELF_TARGET_K1OM_FORMAT;
11767 }
11768 else if (cpu_arch_isa == PROCESSOR_IAMCU)
11769 {
11770 if (x86_elf_abi != I386_ABI)
11771 as_fatal (_("Intel MCU is 32bit only"));
11772 return ELF_TARGET_IAMCU_FORMAT;
11773 }
11774 else
11775 return format;
11776 }
11777 #endif
11778 #if defined (OBJ_MACH_O)
11779 case bfd_target_mach_o_flavour:
11780 if (flag_code == CODE_64BIT)
11781 {
11782 use_rela_relocations = 1;
11783 object_64bit = 1;
11784 return "mach-o-x86-64";
11785 }
11786 else
11787 return "mach-o-i386";
11788 #endif
11789 default:
11790 abort ();
11791 return NULL;
11792 }
11793 }
11794
11795 #endif /* OBJ_MAYBE_ more than one */
11796 \f
11797 symbolS *
11798 md_undefined_symbol (char *name)
11799 {
11800 if (name[0] == GLOBAL_OFFSET_TABLE_NAME[0]
11801 && name[1] == GLOBAL_OFFSET_TABLE_NAME[1]
11802 && name[2] == GLOBAL_OFFSET_TABLE_NAME[2]
11803 && strcmp (name, GLOBAL_OFFSET_TABLE_NAME) == 0)
11804 {
11805 if (!GOT_symbol)
11806 {
11807 if (symbol_find (name))
11808 as_bad (_("GOT already in symbol table"));
11809 GOT_symbol = symbol_new (name, undefined_section,
11810 (valueT) 0, &zero_address_frag);
11811 };
11812 return GOT_symbol;
11813 }
11814 return 0;
11815 }
11816
11817 /* Round up a section size to the appropriate boundary. */
11818
11819 valueT
11820 md_section_align (segT segment ATTRIBUTE_UNUSED, valueT size)
11821 {
11822 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
11823 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
11824 {
11825 /* For a.out, force the section size to be aligned. If we don't do
11826 this, BFD will align it for us, but it will not write out the
11827 final bytes of the section. This may be a bug in BFD, but it is
11828 easier to fix it here since that is how the other a.out targets
11829 work. */
11830 int align;
11831
11832 align = bfd_get_section_alignment (stdoutput, segment);
11833 size = ((size + (1 << align) - 1) & (-((valueT) 1 << align)));
11834 }
11835 #endif
11836
11837 return size;
11838 }
11839
11840 /* On the i386, PC-relative offsets are relative to the start of the
11841 next instruction. That is, the address of the offset, plus its
11842 size, since the offset is always the last part of the insn. */
11843
11844 long
11845 md_pcrel_from (fixS *fixP)
11846 {
11847 return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address;
11848 }
11849
11850 #ifndef I386COFF
11851
11852 static void
11853 s_bss (int ignore ATTRIBUTE_UNUSED)
11854 {
11855 int temp;
11856
11857 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11858 if (IS_ELF)
11859 obj_elf_section_change_hook ();
11860 #endif
11861 temp = get_absolute_expression ();
11862 subseg_set (bss_section, (subsegT) temp);
11863 demand_empty_rest_of_line ();
11864 }
11865
11866 #endif
11867
11868 void
11869 i386_validate_fix (fixS *fixp)
11870 {
11871 if (fixp->fx_subsy)
11872 {
11873 if (fixp->fx_subsy == GOT_symbol)
11874 {
11875 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
11876 {
11877 if (!object_64bit)
11878 abort ();
11879 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11880 if (fixp->fx_tcbit2)
11881 fixp->fx_r_type = (fixp->fx_tcbit
11882 ? BFD_RELOC_X86_64_REX_GOTPCRELX
11883 : BFD_RELOC_X86_64_GOTPCRELX);
11884 else
11885 #endif
11886 fixp->fx_r_type = BFD_RELOC_X86_64_GOTPCREL;
11887 }
11888 else
11889 {
11890 if (!object_64bit)
11891 fixp->fx_r_type = BFD_RELOC_386_GOTOFF;
11892 else
11893 fixp->fx_r_type = BFD_RELOC_X86_64_GOTOFF64;
11894 }
11895 fixp->fx_subsy = 0;
11896 }
11897 }
11898 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11899 else if (!object_64bit)
11900 {
11901 if (fixp->fx_r_type == BFD_RELOC_386_GOT32
11902 && fixp->fx_tcbit2)
11903 fixp->fx_r_type = BFD_RELOC_386_GOT32X;
11904 }
11905 #endif
11906 }
11907
11908 arelent *
11909 tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
11910 {
11911 arelent *rel;
11912 bfd_reloc_code_real_type code;
11913
11914 switch (fixp->fx_r_type)
11915 {
11916 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11917 case BFD_RELOC_SIZE32:
11918 case BFD_RELOC_SIZE64:
11919 if (S_IS_DEFINED (fixp->fx_addsy)
11920 && !S_IS_EXTERNAL (fixp->fx_addsy))
11921 {
11922 /* Resolve size relocation against local symbol to size of
11923 the symbol plus addend. */
11924 valueT value = S_GET_SIZE (fixp->fx_addsy) + fixp->fx_offset;
11925 if (fixp->fx_r_type == BFD_RELOC_SIZE32
11926 && !fits_in_unsigned_long (value))
11927 as_bad_where (fixp->fx_file, fixp->fx_line,
11928 _("symbol size computation overflow"));
11929 fixp->fx_addsy = NULL;
11930 fixp->fx_subsy = NULL;
11931 md_apply_fix (fixp, (valueT *) &value, NULL);
11932 return NULL;
11933 }
11934 #endif
11935 /* Fall through. */
11936
11937 case BFD_RELOC_X86_64_PLT32:
11938 case BFD_RELOC_X86_64_GOT32:
11939 case BFD_RELOC_X86_64_GOTPCREL:
11940 case BFD_RELOC_X86_64_GOTPCRELX:
11941 case BFD_RELOC_X86_64_REX_GOTPCRELX:
11942 case BFD_RELOC_386_PLT32:
11943 case BFD_RELOC_386_GOT32:
11944 case BFD_RELOC_386_GOT32X:
11945 case BFD_RELOC_386_GOTOFF:
11946 case BFD_RELOC_386_GOTPC:
11947 case BFD_RELOC_386_TLS_GD:
11948 case BFD_RELOC_386_TLS_LDM:
11949 case BFD_RELOC_386_TLS_LDO_32:
11950 case BFD_RELOC_386_TLS_IE_32:
11951 case BFD_RELOC_386_TLS_IE:
11952 case BFD_RELOC_386_TLS_GOTIE:
11953 case BFD_RELOC_386_TLS_LE_32:
11954 case BFD_RELOC_386_TLS_LE:
11955 case BFD_RELOC_386_TLS_GOTDESC:
11956 case BFD_RELOC_386_TLS_DESC_CALL:
11957 case BFD_RELOC_X86_64_TLSGD:
11958 case BFD_RELOC_X86_64_TLSLD:
11959 case BFD_RELOC_X86_64_DTPOFF32:
11960 case BFD_RELOC_X86_64_DTPOFF64:
11961 case BFD_RELOC_X86_64_GOTTPOFF:
11962 case BFD_RELOC_X86_64_TPOFF32:
11963 case BFD_RELOC_X86_64_TPOFF64:
11964 case BFD_RELOC_X86_64_GOTOFF64:
11965 case BFD_RELOC_X86_64_GOTPC32:
11966 case BFD_RELOC_X86_64_GOT64:
11967 case BFD_RELOC_X86_64_GOTPCREL64:
11968 case BFD_RELOC_X86_64_GOTPC64:
11969 case BFD_RELOC_X86_64_GOTPLT64:
11970 case BFD_RELOC_X86_64_PLTOFF64:
11971 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
11972 case BFD_RELOC_X86_64_TLSDESC_CALL:
11973 case BFD_RELOC_RVA:
11974 case BFD_RELOC_VTABLE_ENTRY:
11975 case BFD_RELOC_VTABLE_INHERIT:
11976 #ifdef TE_PE
11977 case BFD_RELOC_32_SECREL:
11978 #endif
11979 code = fixp->fx_r_type;
11980 break;
11981 case BFD_RELOC_X86_64_32S:
11982 if (!fixp->fx_pcrel)
11983 {
11984 /* Don't turn BFD_RELOC_X86_64_32S into BFD_RELOC_32. */
11985 code = fixp->fx_r_type;
11986 break;
11987 }
11988 /* Fall through. */
11989 default:
11990 if (fixp->fx_pcrel)
11991 {
11992 switch (fixp->fx_size)
11993 {
11994 default:
11995 as_bad_where (fixp->fx_file, fixp->fx_line,
11996 _("can not do %d byte pc-relative relocation"),
11997 fixp->fx_size);
11998 code = BFD_RELOC_32_PCREL;
11999 break;
12000 case 1: code = BFD_RELOC_8_PCREL; break;
12001 case 2: code = BFD_RELOC_16_PCREL; break;
12002 case 4: code = BFD_RELOC_32_PCREL; break;
12003 #ifdef BFD64
12004 case 8: code = BFD_RELOC_64_PCREL; break;
12005 #endif
12006 }
12007 }
12008 else
12009 {
12010 switch (fixp->fx_size)
12011 {
12012 default:
12013 as_bad_where (fixp->fx_file, fixp->fx_line,
12014 _("can not do %d byte relocation"),
12015 fixp->fx_size);
12016 code = BFD_RELOC_32;
12017 break;
12018 case 1: code = BFD_RELOC_8; break;
12019 case 2: code = BFD_RELOC_16; break;
12020 case 4: code = BFD_RELOC_32; break;
12021 #ifdef BFD64
12022 case 8: code = BFD_RELOC_64; break;
12023 #endif
12024 }
12025 }
12026 break;
12027 }
12028
12029 if ((code == BFD_RELOC_32
12030 || code == BFD_RELOC_32_PCREL
12031 || code == BFD_RELOC_X86_64_32S)
12032 && GOT_symbol
12033 && fixp->fx_addsy == GOT_symbol)
12034 {
12035 if (!object_64bit)
12036 code = BFD_RELOC_386_GOTPC;
12037 else
12038 code = BFD_RELOC_X86_64_GOTPC32;
12039 }
12040 if ((code == BFD_RELOC_64 || code == BFD_RELOC_64_PCREL)
12041 && GOT_symbol
12042 && fixp->fx_addsy == GOT_symbol)
12043 {
12044 code = BFD_RELOC_X86_64_GOTPC64;
12045 }
12046
12047 rel = XNEW (arelent);
12048 rel->sym_ptr_ptr = XNEW (asymbol *);
12049 *rel->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
12050
12051 rel->address = fixp->fx_frag->fr_address + fixp->fx_where;
12052
12053 if (!use_rela_relocations)
12054 {
12055 /* HACK: Since i386 ELF uses Rel instead of Rela, encode the
12056 vtable entry to be used in the relocation's section offset. */
12057 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
12058 rel->address = fixp->fx_offset;
12059 #if defined (OBJ_COFF) && defined (TE_PE)
12060 else if (fixp->fx_addsy && S_IS_WEAK (fixp->fx_addsy))
12061 rel->addend = fixp->fx_addnumber - (S_GET_VALUE (fixp->fx_addsy) * 2);
12062 else
12063 #endif
12064 rel->addend = 0;
12065 }
12066 /* Use the rela in 64bit mode. */
12067 else
12068 {
12069 if (disallow_64bit_reloc)
12070 switch (code)
12071 {
12072 case BFD_RELOC_X86_64_DTPOFF64:
12073 case BFD_RELOC_X86_64_TPOFF64:
12074 case BFD_RELOC_64_PCREL:
12075 case BFD_RELOC_X86_64_GOTOFF64:
12076 case BFD_RELOC_X86_64_GOT64:
12077 case BFD_RELOC_X86_64_GOTPCREL64:
12078 case BFD_RELOC_X86_64_GOTPC64:
12079 case BFD_RELOC_X86_64_GOTPLT64:
12080 case BFD_RELOC_X86_64_PLTOFF64:
12081 as_bad_where (fixp->fx_file, fixp->fx_line,
12082 _("cannot represent relocation type %s in x32 mode"),
12083 bfd_get_reloc_code_name (code));
12084 break;
12085 default:
12086 break;
12087 }
12088
12089 if (!fixp->fx_pcrel)
12090 rel->addend = fixp->fx_offset;
12091 else
12092 switch (code)
12093 {
12094 case BFD_RELOC_X86_64_PLT32:
12095 case BFD_RELOC_X86_64_GOT32:
12096 case BFD_RELOC_X86_64_GOTPCREL:
12097 case BFD_RELOC_X86_64_GOTPCRELX:
12098 case BFD_RELOC_X86_64_REX_GOTPCRELX:
12099 case BFD_RELOC_X86_64_TLSGD:
12100 case BFD_RELOC_X86_64_TLSLD:
12101 case BFD_RELOC_X86_64_GOTTPOFF:
12102 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
12103 case BFD_RELOC_X86_64_TLSDESC_CALL:
12104 rel->addend = fixp->fx_offset - fixp->fx_size;
12105 break;
12106 default:
12107 rel->addend = (section->vma
12108 - fixp->fx_size
12109 + fixp->fx_addnumber
12110 + md_pcrel_from (fixp));
12111 break;
12112 }
12113 }
12114
12115 rel->howto = bfd_reloc_type_lookup (stdoutput, code);
12116 if (rel->howto == NULL)
12117 {
12118 as_bad_where (fixp->fx_file, fixp->fx_line,
12119 _("cannot represent relocation type %s"),
12120 bfd_get_reloc_code_name (code));
12121 /* Set howto to a garbage value so that we can keep going. */
12122 rel->howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_32);
12123 gas_assert (rel->howto != NULL);
12124 }
12125
12126 return rel;
12127 }
12128
12129 #include "tc-i386-intel.c"
12130
12131 void
12132 tc_x86_parse_to_dw2regnum (expressionS *exp)
12133 {
12134 int saved_naked_reg;
12135 char saved_register_dot;
12136
12137 saved_naked_reg = allow_naked_reg;
12138 allow_naked_reg = 1;
12139 saved_register_dot = register_chars['.'];
12140 register_chars['.'] = '.';
12141 allow_pseudo_reg = 1;
12142 expression_and_evaluate (exp);
12143 allow_pseudo_reg = 0;
12144 register_chars['.'] = saved_register_dot;
12145 allow_naked_reg = saved_naked_reg;
12146
12147 if (exp->X_op == O_register && exp->X_add_number >= 0)
12148 {
12149 if ((addressT) exp->X_add_number < i386_regtab_size)
12150 {
12151 exp->X_op = O_constant;
12152 exp->X_add_number = i386_regtab[exp->X_add_number]
12153 .dw2_regnum[flag_code >> 1];
12154 }
12155 else
12156 exp->X_op = O_illegal;
12157 }
12158 }
12159
12160 void
12161 tc_x86_frame_initial_instructions (void)
12162 {
12163 static unsigned int sp_regno[2];
12164
12165 if (!sp_regno[flag_code >> 1])
12166 {
12167 char *saved_input = input_line_pointer;
12168 char sp[][4] = {"esp", "rsp"};
12169 expressionS exp;
12170
12171 input_line_pointer = sp[flag_code >> 1];
12172 tc_x86_parse_to_dw2regnum (&exp);
12173 gas_assert (exp.X_op == O_constant);
12174 sp_regno[flag_code >> 1] = exp.X_add_number;
12175 input_line_pointer = saved_input;
12176 }
12177
12178 cfi_add_CFA_def_cfa (sp_regno[flag_code >> 1], -x86_cie_data_alignment);
12179 cfi_add_CFA_offset (x86_dwarf2_return_column, x86_cie_data_alignment);
12180 }
12181
12182 int
12183 x86_dwarf2_addr_size (void)
12184 {
12185 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
12186 if (x86_elf_abi == X86_64_X32_ABI)
12187 return 4;
12188 #endif
12189 return bfd_arch_bits_per_address (stdoutput) / 8;
12190 }
12191
12192 int
12193 i386_elf_section_type (const char *str, size_t len)
12194 {
12195 if (flag_code == CODE_64BIT
12196 && len == sizeof ("unwind") - 1
12197 && strncmp (str, "unwind", 6) == 0)
12198 return SHT_X86_64_UNWIND;
12199
12200 return -1;
12201 }
12202
12203 #ifdef TE_SOLARIS
12204 void
12205 i386_solaris_fix_up_eh_frame (segT sec)
12206 {
12207 if (flag_code == CODE_64BIT)
12208 elf_section_type (sec) = SHT_X86_64_UNWIND;
12209 }
12210 #endif
12211
12212 #ifdef TE_PE
12213 void
12214 tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
12215 {
12216 expressionS exp;
12217
12218 exp.X_op = O_secrel;
12219 exp.X_add_symbol = symbol;
12220 exp.X_add_number = 0;
12221 emit_expr (&exp, size);
12222 }
12223 #endif
12224
12225 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12226 /* For ELF on x86-64, add support for SHF_X86_64_LARGE. */
12227
12228 bfd_vma
12229 x86_64_section_letter (int letter, const char **ptr_msg)
12230 {
12231 if (flag_code == CODE_64BIT)
12232 {
12233 if (letter == 'l')
12234 return SHF_X86_64_LARGE;
12235
12236 *ptr_msg = _("bad .section directive: want a,l,w,x,M,S,G,T in string");
12237 }
12238 else
12239 *ptr_msg = _("bad .section directive: want a,w,x,M,S,G,T in string");
12240 return -1;
12241 }
12242
12243 bfd_vma
12244 x86_64_section_word (char *str, size_t len)
12245 {
12246 if (len == 5 && flag_code == CODE_64BIT && CONST_STRNEQ (str, "large"))
12247 return SHF_X86_64_LARGE;
12248
12249 return -1;
12250 }
12251
12252 static void
12253 handle_large_common (int small ATTRIBUTE_UNUSED)
12254 {
12255 if (flag_code != CODE_64BIT)
12256 {
12257 s_comm_internal (0, elf_common_parse);
12258 as_warn (_(".largecomm supported only in 64bit mode, producing .comm"));
12259 }
12260 else
12261 {
12262 static segT lbss_section;
12263 asection *saved_com_section_ptr = elf_com_section_ptr;
12264 asection *saved_bss_section = bss_section;
12265
12266 if (lbss_section == NULL)
12267 {
12268 flagword applicable;
12269 segT seg = now_seg;
12270 subsegT subseg = now_subseg;
12271
12272 /* The .lbss section is for local .largecomm symbols. */
12273 lbss_section = subseg_new (".lbss", 0);
12274 applicable = bfd_applicable_section_flags (stdoutput);
12275 bfd_set_section_flags (stdoutput, lbss_section,
12276 applicable & SEC_ALLOC);
12277 seg_info (lbss_section)->bss = 1;
12278
12279 subseg_set (seg, subseg);
12280 }
12281
12282 elf_com_section_ptr = &_bfd_elf_large_com_section;
12283 bss_section = lbss_section;
12284
12285 s_comm_internal (0, elf_common_parse);
12286
12287 elf_com_section_ptr = saved_com_section_ptr;
12288 bss_section = saved_bss_section;
12289 }
12290 }
12291 #endif /* OBJ_ELF || OBJ_MAYBE_ELF */
This page took 0.301609 seconds and 4 git commands to generate.