ix86: allow HLE store of accumulator to absolute address
[deliverable/binutils-gdb.git] / gas / config / tc-i386.c
1 /* tc-i386.c -- Assemble code for the Intel 80386
2 Copyright (C) 1989-2018 Free Software Foundation, Inc.
3
4 This file is part of GAS, the GNU Assembler.
5
6 GAS is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
10
11 GAS is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GAS; see the file COPYING. If not, write to the Free
18 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
19 02110-1301, USA. */
20
21 /* Intel 80386 machine specific gas.
22 Written by Eliot Dresselhaus (eliot@mgm.mit.edu).
23 x86_64 support by Jan Hubicka (jh@suse.cz)
24 VIA PadLock support by Michal Ludvig (mludvig@suse.cz)
25 Bugs & suggestions are completely welcome. This is free software.
26 Please help us make it better. */
27
28 #include "as.h"
29 #include "safe-ctype.h"
30 #include "subsegs.h"
31 #include "dwarf2dbg.h"
32 #include "dw2gencfi.h"
33 #include "elf/x86-64.h"
34 #include "opcodes/i386-init.h"
35
36 #ifndef REGISTER_WARNINGS
37 #define REGISTER_WARNINGS 1
38 #endif
39
40 #ifndef INFER_ADDR_PREFIX
41 #define INFER_ADDR_PREFIX 1
42 #endif
43
44 #ifndef DEFAULT_ARCH
45 #define DEFAULT_ARCH "i386"
46 #endif
47
48 #ifndef INLINE
49 #if __GNUC__ >= 2
50 #define INLINE __inline__
51 #else
52 #define INLINE
53 #endif
54 #endif
55
56 /* Prefixes will be emitted in the order defined below.
57 WAIT_PREFIX must be the first prefix since FWAIT is really is an
58 instruction, and so must come before any prefixes.
59 The preferred prefix order is SEG_PREFIX, ADDR_PREFIX, DATA_PREFIX,
60 REP_PREFIX/HLE_PREFIX, LOCK_PREFIX. */
61 #define WAIT_PREFIX 0
62 #define SEG_PREFIX 1
63 #define ADDR_PREFIX 2
64 #define DATA_PREFIX 3
65 #define REP_PREFIX 4
66 #define HLE_PREFIX REP_PREFIX
67 #define BND_PREFIX REP_PREFIX
68 #define LOCK_PREFIX 5
69 #define REX_PREFIX 6 /* must come last. */
70 #define MAX_PREFIXES 7 /* max prefixes per opcode */
71
72 /* we define the syntax here (modulo base,index,scale syntax) */
73 #define REGISTER_PREFIX '%'
74 #define IMMEDIATE_PREFIX '$'
75 #define ABSOLUTE_PREFIX '*'
76
77 /* these are the instruction mnemonic suffixes in AT&T syntax or
78 memory operand size in Intel syntax. */
79 #define WORD_MNEM_SUFFIX 'w'
80 #define BYTE_MNEM_SUFFIX 'b'
81 #define SHORT_MNEM_SUFFIX 's'
82 #define LONG_MNEM_SUFFIX 'l'
83 #define QWORD_MNEM_SUFFIX 'q'
84 /* Intel Syntax. Use a non-ascii letter since since it never appears
85 in instructions. */
86 #define LONG_DOUBLE_MNEM_SUFFIX '\1'
87
88 #define END_OF_INSN '\0'
89
90 /*
91 'templates' is for grouping together 'template' structures for opcodes
92 of the same name. This is only used for storing the insns in the grand
93 ole hash table of insns.
94 The templates themselves start at START and range up to (but not including)
95 END.
96 */
97 typedef struct
98 {
99 const insn_template *start;
100 const insn_template *end;
101 }
102 templates;
103
104 /* 386 operand encoding bytes: see 386 book for details of this. */
105 typedef struct
106 {
107 unsigned int regmem; /* codes register or memory operand */
108 unsigned int reg; /* codes register operand (or extended opcode) */
109 unsigned int mode; /* how to interpret regmem & reg */
110 }
111 modrm_byte;
112
113 /* x86-64 extension prefix. */
114 typedef int rex_byte;
115
116 /* 386 opcode byte to code indirect addressing. */
117 typedef struct
118 {
119 unsigned base;
120 unsigned index;
121 unsigned scale;
122 }
123 sib_byte;
124
125 /* x86 arch names, types and features */
126 typedef struct
127 {
128 const char *name; /* arch name */
129 unsigned int len; /* arch string length */
130 enum processor_type type; /* arch type */
131 i386_cpu_flags flags; /* cpu feature flags */
132 unsigned int skip; /* show_arch should skip this. */
133 }
134 arch_entry;
135
136 /* Used to turn off indicated flags. */
137 typedef struct
138 {
139 const char *name; /* arch name */
140 unsigned int len; /* arch string length */
141 i386_cpu_flags flags; /* cpu feature flags */
142 }
143 noarch_entry;
144
145 static void update_code_flag (int, int);
146 static void set_code_flag (int);
147 static void set_16bit_gcc_code_flag (int);
148 static void set_intel_syntax (int);
149 static void set_intel_mnemonic (int);
150 static void set_allow_index_reg (int);
151 static void set_check (int);
152 static void set_cpu_arch (int);
153 #ifdef TE_PE
154 static void pe_directive_secrel (int);
155 #endif
156 static void signed_cons (int);
157 static char *output_invalid (int c);
158 static int i386_finalize_immediate (segT, expressionS *, i386_operand_type,
159 const char *);
160 static int i386_finalize_displacement (segT, expressionS *, i386_operand_type,
161 const char *);
162 static int i386_att_operand (char *);
163 static int i386_intel_operand (char *, int);
164 static int i386_intel_simplify (expressionS *);
165 static int i386_intel_parse_name (const char *, expressionS *);
166 static const reg_entry *parse_register (char *, char **);
167 static char *parse_insn (char *, char *);
168 static char *parse_operands (char *, const char *);
169 static void swap_operands (void);
170 static void swap_2_operands (int, int);
171 static void optimize_imm (void);
172 static void optimize_disp (void);
173 static const insn_template *match_template (char);
174 static int check_string (void);
175 static int process_suffix (void);
176 static int check_byte_reg (void);
177 static int check_long_reg (void);
178 static int check_qword_reg (void);
179 static int check_word_reg (void);
180 static int finalize_imm (void);
181 static int process_operands (void);
182 static const seg_entry *build_modrm_byte (void);
183 static void output_insn (void);
184 static void output_imm (fragS *, offsetT);
185 static void output_disp (fragS *, offsetT);
186 #ifndef I386COFF
187 static void s_bss (int);
188 #endif
189 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
190 static void handle_large_common (int small ATTRIBUTE_UNUSED);
191 #endif
192
193 static const char *default_arch = DEFAULT_ARCH;
194
195 /* This struct describes rounding control and SAE in the instruction. */
196 struct RC_Operation
197 {
198 enum rc_type
199 {
200 rne = 0,
201 rd,
202 ru,
203 rz,
204 saeonly
205 } type;
206 int operand;
207 };
208
209 static struct RC_Operation rc_op;
210
211 /* The struct describes masking, applied to OPERAND in the instruction.
212 MASK is a pointer to the corresponding mask register. ZEROING tells
213 whether merging or zeroing mask is used. */
214 struct Mask_Operation
215 {
216 const reg_entry *mask;
217 unsigned int zeroing;
218 /* The operand where this operation is associated. */
219 int operand;
220 };
221
222 static struct Mask_Operation mask_op;
223
224 /* The struct describes broadcasting, applied to OPERAND. FACTOR is
225 broadcast factor. */
226 struct Broadcast_Operation
227 {
228 /* Type of broadcast: no broadcast, {1to8}, or {1to16}. */
229 int type;
230
231 /* Index of broadcasted operand. */
232 int operand;
233 };
234
235 static struct Broadcast_Operation broadcast_op;
236
237 /* VEX prefix. */
238 typedef struct
239 {
240 /* VEX prefix is either 2 byte or 3 byte. EVEX is 4 byte. */
241 unsigned char bytes[4];
242 unsigned int length;
243 /* Destination or source register specifier. */
244 const reg_entry *register_specifier;
245 } vex_prefix;
246
247 /* 'md_assemble ()' gathers together information and puts it into a
248 i386_insn. */
249
250 union i386_op
251 {
252 expressionS *disps;
253 expressionS *imms;
254 const reg_entry *regs;
255 };
256
257 enum i386_error
258 {
259 operand_size_mismatch,
260 operand_type_mismatch,
261 register_type_mismatch,
262 number_of_operands_mismatch,
263 invalid_instruction_suffix,
264 bad_imm4,
265 unsupported_with_intel_mnemonic,
266 unsupported_syntax,
267 unsupported,
268 invalid_vsib_address,
269 invalid_vector_register_set,
270 unsupported_vector_index_register,
271 unsupported_broadcast,
272 broadcast_not_on_src_operand,
273 broadcast_needed,
274 unsupported_masking,
275 mask_not_on_destination,
276 no_default_mask,
277 unsupported_rc_sae,
278 rc_sae_operand_not_last_imm,
279 invalid_register_operand,
280 };
281
282 struct _i386_insn
283 {
284 /* TM holds the template for the insn were currently assembling. */
285 insn_template tm;
286
287 /* SUFFIX holds the instruction size suffix for byte, word, dword
288 or qword, if given. */
289 char suffix;
290
291 /* OPERANDS gives the number of given operands. */
292 unsigned int operands;
293
294 /* REG_OPERANDS, DISP_OPERANDS, MEM_OPERANDS, IMM_OPERANDS give the number
295 of given register, displacement, memory operands and immediate
296 operands. */
297 unsigned int reg_operands, disp_operands, mem_operands, imm_operands;
298
299 /* TYPES [i] is the type (see above #defines) which tells us how to
300 use OP[i] for the corresponding operand. */
301 i386_operand_type types[MAX_OPERANDS];
302
303 /* Displacement expression, immediate expression, or register for each
304 operand. */
305 union i386_op op[MAX_OPERANDS];
306
307 /* Flags for operands. */
308 unsigned int flags[MAX_OPERANDS];
309 #define Operand_PCrel 1
310
311 /* Relocation type for operand */
312 enum bfd_reloc_code_real reloc[MAX_OPERANDS];
313
314 /* BASE_REG, INDEX_REG, and LOG2_SCALE_FACTOR are used to encode
315 the base index byte below. */
316 const reg_entry *base_reg;
317 const reg_entry *index_reg;
318 unsigned int log2_scale_factor;
319
320 /* SEG gives the seg_entries of this insn. They are zero unless
321 explicit segment overrides are given. */
322 const seg_entry *seg[2];
323
324 /* Copied first memory operand string, for re-checking. */
325 char *memop1_string;
326
327 /* PREFIX holds all the given prefix opcodes (usually null).
328 PREFIXES is the number of prefix opcodes. */
329 unsigned int prefixes;
330 unsigned char prefix[MAX_PREFIXES];
331
332 /* RM and SIB are the modrm byte and the sib byte where the
333 addressing modes of this insn are encoded. */
334 modrm_byte rm;
335 rex_byte rex;
336 rex_byte vrex;
337 sib_byte sib;
338 vex_prefix vex;
339
340 /* Masking attributes. */
341 struct Mask_Operation *mask;
342
343 /* Rounding control and SAE attributes. */
344 struct RC_Operation *rounding;
345
346 /* Broadcasting attributes. */
347 struct Broadcast_Operation *broadcast;
348
349 /* Compressed disp8*N attribute. */
350 unsigned int memshift;
351
352 /* Prefer load or store in encoding. */
353 enum
354 {
355 dir_encoding_default = 0,
356 dir_encoding_load,
357 dir_encoding_store
358 } dir_encoding;
359
360 /* Prefer 8bit or 32bit displacement in encoding. */
361 enum
362 {
363 disp_encoding_default = 0,
364 disp_encoding_8bit,
365 disp_encoding_32bit
366 } disp_encoding;
367
368 /* Prefer the REX byte in encoding. */
369 bfd_boolean rex_encoding;
370
371 /* Disable instruction size optimization. */
372 bfd_boolean no_optimize;
373
374 /* How to encode vector instructions. */
375 enum
376 {
377 vex_encoding_default = 0,
378 vex_encoding_vex2,
379 vex_encoding_vex3,
380 vex_encoding_evex
381 } vec_encoding;
382
383 /* REP prefix. */
384 const char *rep_prefix;
385
386 /* HLE prefix. */
387 const char *hle_prefix;
388
389 /* Have BND prefix. */
390 const char *bnd_prefix;
391
392 /* Have NOTRACK prefix. */
393 const char *notrack_prefix;
394
395 /* Error message. */
396 enum i386_error error;
397 };
398
399 typedef struct _i386_insn i386_insn;
400
401 /* Link RC type with corresponding string, that'll be looked for in
402 asm. */
403 struct RC_name
404 {
405 enum rc_type type;
406 const char *name;
407 unsigned int len;
408 };
409
410 static const struct RC_name RC_NamesTable[] =
411 {
412 { rne, STRING_COMMA_LEN ("rn-sae") },
413 { rd, STRING_COMMA_LEN ("rd-sae") },
414 { ru, STRING_COMMA_LEN ("ru-sae") },
415 { rz, STRING_COMMA_LEN ("rz-sae") },
416 { saeonly, STRING_COMMA_LEN ("sae") },
417 };
418
419 /* List of chars besides those in app.c:symbol_chars that can start an
420 operand. Used to prevent the scrubber eating vital white-space. */
421 const char extra_symbol_chars[] = "*%-([{}"
422 #ifdef LEX_AT
423 "@"
424 #endif
425 #ifdef LEX_QM
426 "?"
427 #endif
428 ;
429
430 #if (defined (TE_I386AIX) \
431 || ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) \
432 && !defined (TE_GNU) \
433 && !defined (TE_LINUX) \
434 && !defined (TE_NACL) \
435 && !defined (TE_NETWARE) \
436 && !defined (TE_FreeBSD) \
437 && !defined (TE_DragonFly) \
438 && !defined (TE_NetBSD)))
439 /* This array holds the chars that always start a comment. If the
440 pre-processor is disabled, these aren't very useful. The option
441 --divide will remove '/' from this list. */
442 const char *i386_comment_chars = "#/";
443 #define SVR4_COMMENT_CHARS 1
444 #define PREFIX_SEPARATOR '\\'
445
446 #else
447 const char *i386_comment_chars = "#";
448 #define PREFIX_SEPARATOR '/'
449 #endif
450
451 /* This array holds the chars that only start a comment at the beginning of
452 a line. If the line seems to have the form '# 123 filename'
453 .line and .file directives will appear in the pre-processed output.
454 Note that input_file.c hand checks for '#' at the beginning of the
455 first line of the input file. This is because the compiler outputs
456 #NO_APP at the beginning of its output.
457 Also note that comments started like this one will always work if
458 '/' isn't otherwise defined. */
459 const char line_comment_chars[] = "#/";
460
461 const char line_separator_chars[] = ";";
462
463 /* Chars that can be used to separate mant from exp in floating point
464 nums. */
465 const char EXP_CHARS[] = "eE";
466
467 /* Chars that mean this number is a floating point constant
468 As in 0f12.456
469 or 0d1.2345e12. */
470 const char FLT_CHARS[] = "fFdDxX";
471
472 /* Tables for lexical analysis. */
473 static char mnemonic_chars[256];
474 static char register_chars[256];
475 static char operand_chars[256];
476 static char identifier_chars[256];
477 static char digit_chars[256];
478
479 /* Lexical macros. */
480 #define is_mnemonic_char(x) (mnemonic_chars[(unsigned char) x])
481 #define is_operand_char(x) (operand_chars[(unsigned char) x])
482 #define is_register_char(x) (register_chars[(unsigned char) x])
483 #define is_space_char(x) ((x) == ' ')
484 #define is_identifier_char(x) (identifier_chars[(unsigned char) x])
485 #define is_digit_char(x) (digit_chars[(unsigned char) x])
486
487 /* All non-digit non-letter characters that may occur in an operand. */
488 static char operand_special_chars[] = "%$-+(,)*._~/<>|&^!:[@]";
489
490 /* md_assemble() always leaves the strings it's passed unaltered. To
491 effect this we maintain a stack of saved characters that we've smashed
492 with '\0's (indicating end of strings for various sub-fields of the
493 assembler instruction). */
494 static char save_stack[32];
495 static char *save_stack_p;
496 #define END_STRING_AND_SAVE(s) \
497 do { *save_stack_p++ = *(s); *(s) = '\0'; } while (0)
498 #define RESTORE_END_STRING(s) \
499 do { *(s) = *--save_stack_p; } while (0)
500
501 /* The instruction we're assembling. */
502 static i386_insn i;
503
504 /* Possible templates for current insn. */
505 static const templates *current_templates;
506
507 /* Per instruction expressionS buffers: max displacements & immediates. */
508 static expressionS disp_expressions[MAX_MEMORY_OPERANDS];
509 static expressionS im_expressions[MAX_IMMEDIATE_OPERANDS];
510
511 /* Current operand we are working on. */
512 static int this_operand = -1;
513
514 /* We support four different modes. FLAG_CODE variable is used to distinguish
515 these. */
516
517 enum flag_code {
518 CODE_32BIT,
519 CODE_16BIT,
520 CODE_64BIT };
521
522 static enum flag_code flag_code;
523 static unsigned int object_64bit;
524 static unsigned int disallow_64bit_reloc;
525 static int use_rela_relocations = 0;
526
527 #if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
528 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
529 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
530
531 /* The ELF ABI to use. */
532 enum x86_elf_abi
533 {
534 I386_ABI,
535 X86_64_ABI,
536 X86_64_X32_ABI
537 };
538
539 static enum x86_elf_abi x86_elf_abi = I386_ABI;
540 #endif
541
542 #if defined (TE_PE) || defined (TE_PEP)
543 /* Use big object file format. */
544 static int use_big_obj = 0;
545 #endif
546
547 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
548 /* 1 if generating code for a shared library. */
549 static int shared = 0;
550 #endif
551
552 /* 1 for intel syntax,
553 0 if att syntax. */
554 static int intel_syntax = 0;
555
556 /* 1 for Intel64 ISA,
557 0 if AMD64 ISA. */
558 static int intel64;
559
560 /* 1 for intel mnemonic,
561 0 if att mnemonic. */
562 static int intel_mnemonic = !SYSV386_COMPAT;
563
564 /* 1 if pseudo registers are permitted. */
565 static int allow_pseudo_reg = 0;
566
567 /* 1 if register prefix % not required. */
568 static int allow_naked_reg = 0;
569
570 /* 1 if the assembler should add BND prefix for all control-transferring
571 instructions supporting it, even if this prefix wasn't specified
572 explicitly. */
573 static int add_bnd_prefix = 0;
574
575 /* 1 if pseudo index register, eiz/riz, is allowed . */
576 static int allow_index_reg = 0;
577
578 /* 1 if the assembler should ignore LOCK prefix, even if it was
579 specified explicitly. */
580 static int omit_lock_prefix = 0;
581
582 /* 1 if the assembler should encode lfence, mfence, and sfence as
583 "lock addl $0, (%{re}sp)". */
584 static int avoid_fence = 0;
585
586 /* 1 if the assembler should generate relax relocations. */
587
588 static int generate_relax_relocations
589 = DEFAULT_GENERATE_X86_RELAX_RELOCATIONS;
590
591 static enum check_kind
592 {
593 check_none = 0,
594 check_warning,
595 check_error
596 }
597 sse_check, operand_check = check_warning;
598
599 /* Optimization:
600 1. Clear the REX_W bit with register operand if possible.
601 2. Above plus use 128bit vector instruction to clear the full vector
602 register.
603 */
604 static int optimize = 0;
605
606 /* Optimization:
607 1. Clear the REX_W bit with register operand if possible.
608 2. Above plus use 128bit vector instruction to clear the full vector
609 register.
610 3. Above plus optimize "test{q,l,w} $imm8,%r{64,32,16}" to
611 "testb $imm7,%r8".
612 */
613 static int optimize_for_space = 0;
614
615 /* Register prefix used for error message. */
616 static const char *register_prefix = "%";
617
618 /* Used in 16 bit gcc mode to add an l suffix to call, ret, enter,
619 leave, push, and pop instructions so that gcc has the same stack
620 frame as in 32 bit mode. */
621 static char stackop_size = '\0';
622
623 /* Non-zero to optimize code alignment. */
624 int optimize_align_code = 1;
625
626 /* Non-zero to quieten some warnings. */
627 static int quiet_warnings = 0;
628
629 /* CPU name. */
630 static const char *cpu_arch_name = NULL;
631 static char *cpu_sub_arch_name = NULL;
632
633 /* CPU feature flags. */
634 static i386_cpu_flags cpu_arch_flags = CPU_UNKNOWN_FLAGS;
635
636 /* If we have selected a cpu we are generating instructions for. */
637 static int cpu_arch_tune_set = 0;
638
639 /* Cpu we are generating instructions for. */
640 enum processor_type cpu_arch_tune = PROCESSOR_UNKNOWN;
641
642 /* CPU feature flags of cpu we are generating instructions for. */
643 static i386_cpu_flags cpu_arch_tune_flags;
644
645 /* CPU instruction set architecture used. */
646 enum processor_type cpu_arch_isa = PROCESSOR_UNKNOWN;
647
648 /* CPU feature flags of instruction set architecture used. */
649 i386_cpu_flags cpu_arch_isa_flags;
650
651 /* If set, conditional jumps are not automatically promoted to handle
652 larger than a byte offset. */
653 static unsigned int no_cond_jump_promotion = 0;
654
655 /* Encode SSE instructions with VEX prefix. */
656 static unsigned int sse2avx;
657
658 /* Encode scalar AVX instructions with specific vector length. */
659 static enum
660 {
661 vex128 = 0,
662 vex256
663 } avxscalar;
664
665 /* Encode scalar EVEX LIG instructions with specific vector length. */
666 static enum
667 {
668 evexl128 = 0,
669 evexl256,
670 evexl512
671 } evexlig;
672
673 /* Encode EVEX WIG instructions with specific evex.w. */
674 static enum
675 {
676 evexw0 = 0,
677 evexw1
678 } evexwig;
679
680 /* Value to encode in EVEX RC bits, for SAE-only instructions. */
681 static enum rc_type evexrcig = rne;
682
683 /* Pre-defined "_GLOBAL_OFFSET_TABLE_". */
684 static symbolS *GOT_symbol;
685
686 /* The dwarf2 return column, adjusted for 32 or 64 bit. */
687 unsigned int x86_dwarf2_return_column;
688
689 /* The dwarf2 data alignment, adjusted for 32 or 64 bit. */
690 int x86_cie_data_alignment;
691
692 /* Interface to relax_segment.
693 There are 3 major relax states for 386 jump insns because the
694 different types of jumps add different sizes to frags when we're
695 figuring out what sort of jump to choose to reach a given label. */
696
697 /* Types. */
698 #define UNCOND_JUMP 0
699 #define COND_JUMP 1
700 #define COND_JUMP86 2
701
702 /* Sizes. */
703 #define CODE16 1
704 #define SMALL 0
705 #define SMALL16 (SMALL | CODE16)
706 #define BIG 2
707 #define BIG16 (BIG | CODE16)
708
709 #ifndef INLINE
710 #ifdef __GNUC__
711 #define INLINE __inline__
712 #else
713 #define INLINE
714 #endif
715 #endif
716
717 #define ENCODE_RELAX_STATE(type, size) \
718 ((relax_substateT) (((type) << 2) | (size)))
719 #define TYPE_FROM_RELAX_STATE(s) \
720 ((s) >> 2)
721 #define DISP_SIZE_FROM_RELAX_STATE(s) \
722 ((((s) & 3) == BIG ? 4 : (((s) & 3) == BIG16 ? 2 : 1)))
723
724 /* This table is used by relax_frag to promote short jumps to long
725 ones where necessary. SMALL (short) jumps may be promoted to BIG
726 (32 bit long) ones, and SMALL16 jumps to BIG16 (16 bit long). We
727 don't allow a short jump in a 32 bit code segment to be promoted to
728 a 16 bit offset jump because it's slower (requires data size
729 prefix), and doesn't work, unless the destination is in the bottom
730 64k of the code segment (The top 16 bits of eip are zeroed). */
731
732 const relax_typeS md_relax_table[] =
733 {
734 /* The fields are:
735 1) most positive reach of this state,
736 2) most negative reach of this state,
737 3) how many bytes this mode will have in the variable part of the frag
738 4) which index into the table to try if we can't fit into this one. */
739
740 /* UNCOND_JUMP states. */
741 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG)},
742 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16)},
743 /* dword jmp adds 4 bytes to frag:
744 0 extra opcode bytes, 4 displacement bytes. */
745 {0, 0, 4, 0},
746 /* word jmp adds 2 byte2 to frag:
747 0 extra opcode bytes, 2 displacement bytes. */
748 {0, 0, 2, 0},
749
750 /* COND_JUMP states. */
751 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG)},
752 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG16)},
753 /* dword conditionals adds 5 bytes to frag:
754 1 extra opcode byte, 4 displacement bytes. */
755 {0, 0, 5, 0},
756 /* word conditionals add 3 bytes to frag:
757 1 extra opcode byte, 2 displacement bytes. */
758 {0, 0, 3, 0},
759
760 /* COND_JUMP86 states. */
761 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG)},
762 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG16)},
763 /* dword conditionals adds 5 bytes to frag:
764 1 extra opcode byte, 4 displacement bytes. */
765 {0, 0, 5, 0},
766 /* word conditionals add 4 bytes to frag:
767 1 displacement byte and a 3 byte long branch insn. */
768 {0, 0, 4, 0}
769 };
770
771 static const arch_entry cpu_arch[] =
772 {
773 /* Do not replace the first two entries - i386_target_format()
774 relies on them being there in this order. */
775 { STRING_COMMA_LEN ("generic32"), PROCESSOR_GENERIC32,
776 CPU_GENERIC32_FLAGS, 0 },
777 { STRING_COMMA_LEN ("generic64"), PROCESSOR_GENERIC64,
778 CPU_GENERIC64_FLAGS, 0 },
779 { STRING_COMMA_LEN ("i8086"), PROCESSOR_UNKNOWN,
780 CPU_NONE_FLAGS, 0 },
781 { STRING_COMMA_LEN ("i186"), PROCESSOR_UNKNOWN,
782 CPU_I186_FLAGS, 0 },
783 { STRING_COMMA_LEN ("i286"), PROCESSOR_UNKNOWN,
784 CPU_I286_FLAGS, 0 },
785 { STRING_COMMA_LEN ("i386"), PROCESSOR_I386,
786 CPU_I386_FLAGS, 0 },
787 { STRING_COMMA_LEN ("i486"), PROCESSOR_I486,
788 CPU_I486_FLAGS, 0 },
789 { STRING_COMMA_LEN ("i586"), PROCESSOR_PENTIUM,
790 CPU_I586_FLAGS, 0 },
791 { STRING_COMMA_LEN ("i686"), PROCESSOR_PENTIUMPRO,
792 CPU_I686_FLAGS, 0 },
793 { STRING_COMMA_LEN ("pentium"), PROCESSOR_PENTIUM,
794 CPU_I586_FLAGS, 0 },
795 { STRING_COMMA_LEN ("pentiumpro"), PROCESSOR_PENTIUMPRO,
796 CPU_PENTIUMPRO_FLAGS, 0 },
797 { STRING_COMMA_LEN ("pentiumii"), PROCESSOR_PENTIUMPRO,
798 CPU_P2_FLAGS, 0 },
799 { STRING_COMMA_LEN ("pentiumiii"),PROCESSOR_PENTIUMPRO,
800 CPU_P3_FLAGS, 0 },
801 { STRING_COMMA_LEN ("pentium4"), PROCESSOR_PENTIUM4,
802 CPU_P4_FLAGS, 0 },
803 { STRING_COMMA_LEN ("prescott"), PROCESSOR_NOCONA,
804 CPU_CORE_FLAGS, 0 },
805 { STRING_COMMA_LEN ("nocona"), PROCESSOR_NOCONA,
806 CPU_NOCONA_FLAGS, 0 },
807 { STRING_COMMA_LEN ("yonah"), PROCESSOR_CORE,
808 CPU_CORE_FLAGS, 1 },
809 { STRING_COMMA_LEN ("core"), PROCESSOR_CORE,
810 CPU_CORE_FLAGS, 0 },
811 { STRING_COMMA_LEN ("merom"), PROCESSOR_CORE2,
812 CPU_CORE2_FLAGS, 1 },
813 { STRING_COMMA_LEN ("core2"), PROCESSOR_CORE2,
814 CPU_CORE2_FLAGS, 0 },
815 { STRING_COMMA_LEN ("corei7"), PROCESSOR_COREI7,
816 CPU_COREI7_FLAGS, 0 },
817 { STRING_COMMA_LEN ("l1om"), PROCESSOR_L1OM,
818 CPU_L1OM_FLAGS, 0 },
819 { STRING_COMMA_LEN ("k1om"), PROCESSOR_K1OM,
820 CPU_K1OM_FLAGS, 0 },
821 { STRING_COMMA_LEN ("iamcu"), PROCESSOR_IAMCU,
822 CPU_IAMCU_FLAGS, 0 },
823 { STRING_COMMA_LEN ("k6"), PROCESSOR_K6,
824 CPU_K6_FLAGS, 0 },
825 { STRING_COMMA_LEN ("k6_2"), PROCESSOR_K6,
826 CPU_K6_2_FLAGS, 0 },
827 { STRING_COMMA_LEN ("athlon"), PROCESSOR_ATHLON,
828 CPU_ATHLON_FLAGS, 0 },
829 { STRING_COMMA_LEN ("sledgehammer"), PROCESSOR_K8,
830 CPU_K8_FLAGS, 1 },
831 { STRING_COMMA_LEN ("opteron"), PROCESSOR_K8,
832 CPU_K8_FLAGS, 0 },
833 { STRING_COMMA_LEN ("k8"), PROCESSOR_K8,
834 CPU_K8_FLAGS, 0 },
835 { STRING_COMMA_LEN ("amdfam10"), PROCESSOR_AMDFAM10,
836 CPU_AMDFAM10_FLAGS, 0 },
837 { STRING_COMMA_LEN ("bdver1"), PROCESSOR_BD,
838 CPU_BDVER1_FLAGS, 0 },
839 { STRING_COMMA_LEN ("bdver2"), PROCESSOR_BD,
840 CPU_BDVER2_FLAGS, 0 },
841 { STRING_COMMA_LEN ("bdver3"), PROCESSOR_BD,
842 CPU_BDVER3_FLAGS, 0 },
843 { STRING_COMMA_LEN ("bdver4"), PROCESSOR_BD,
844 CPU_BDVER4_FLAGS, 0 },
845 { STRING_COMMA_LEN ("znver1"), PROCESSOR_ZNVER,
846 CPU_ZNVER1_FLAGS, 0 },
847 { STRING_COMMA_LEN ("btver1"), PROCESSOR_BT,
848 CPU_BTVER1_FLAGS, 0 },
849 { STRING_COMMA_LEN ("btver2"), PROCESSOR_BT,
850 CPU_BTVER2_FLAGS, 0 },
851 { STRING_COMMA_LEN (".8087"), PROCESSOR_UNKNOWN,
852 CPU_8087_FLAGS, 0 },
853 { STRING_COMMA_LEN (".287"), PROCESSOR_UNKNOWN,
854 CPU_287_FLAGS, 0 },
855 { STRING_COMMA_LEN (".387"), PROCESSOR_UNKNOWN,
856 CPU_387_FLAGS, 0 },
857 { STRING_COMMA_LEN (".687"), PROCESSOR_UNKNOWN,
858 CPU_687_FLAGS, 0 },
859 { STRING_COMMA_LEN (".mmx"), PROCESSOR_UNKNOWN,
860 CPU_MMX_FLAGS, 0 },
861 { STRING_COMMA_LEN (".sse"), PROCESSOR_UNKNOWN,
862 CPU_SSE_FLAGS, 0 },
863 { STRING_COMMA_LEN (".sse2"), PROCESSOR_UNKNOWN,
864 CPU_SSE2_FLAGS, 0 },
865 { STRING_COMMA_LEN (".sse3"), PROCESSOR_UNKNOWN,
866 CPU_SSE3_FLAGS, 0 },
867 { STRING_COMMA_LEN (".ssse3"), PROCESSOR_UNKNOWN,
868 CPU_SSSE3_FLAGS, 0 },
869 { STRING_COMMA_LEN (".sse4.1"), PROCESSOR_UNKNOWN,
870 CPU_SSE4_1_FLAGS, 0 },
871 { STRING_COMMA_LEN (".sse4.2"), PROCESSOR_UNKNOWN,
872 CPU_SSE4_2_FLAGS, 0 },
873 { STRING_COMMA_LEN (".sse4"), PROCESSOR_UNKNOWN,
874 CPU_SSE4_2_FLAGS, 0 },
875 { STRING_COMMA_LEN (".avx"), PROCESSOR_UNKNOWN,
876 CPU_AVX_FLAGS, 0 },
877 { STRING_COMMA_LEN (".avx2"), PROCESSOR_UNKNOWN,
878 CPU_AVX2_FLAGS, 0 },
879 { STRING_COMMA_LEN (".avx512f"), PROCESSOR_UNKNOWN,
880 CPU_AVX512F_FLAGS, 0 },
881 { STRING_COMMA_LEN (".avx512cd"), PROCESSOR_UNKNOWN,
882 CPU_AVX512CD_FLAGS, 0 },
883 { STRING_COMMA_LEN (".avx512er"), PROCESSOR_UNKNOWN,
884 CPU_AVX512ER_FLAGS, 0 },
885 { STRING_COMMA_LEN (".avx512pf"), PROCESSOR_UNKNOWN,
886 CPU_AVX512PF_FLAGS, 0 },
887 { STRING_COMMA_LEN (".avx512dq"), PROCESSOR_UNKNOWN,
888 CPU_AVX512DQ_FLAGS, 0 },
889 { STRING_COMMA_LEN (".avx512bw"), PROCESSOR_UNKNOWN,
890 CPU_AVX512BW_FLAGS, 0 },
891 { STRING_COMMA_LEN (".avx512vl"), PROCESSOR_UNKNOWN,
892 CPU_AVX512VL_FLAGS, 0 },
893 { STRING_COMMA_LEN (".vmx"), PROCESSOR_UNKNOWN,
894 CPU_VMX_FLAGS, 0 },
895 { STRING_COMMA_LEN (".vmfunc"), PROCESSOR_UNKNOWN,
896 CPU_VMFUNC_FLAGS, 0 },
897 { STRING_COMMA_LEN (".smx"), PROCESSOR_UNKNOWN,
898 CPU_SMX_FLAGS, 0 },
899 { STRING_COMMA_LEN (".xsave"), PROCESSOR_UNKNOWN,
900 CPU_XSAVE_FLAGS, 0 },
901 { STRING_COMMA_LEN (".xsaveopt"), PROCESSOR_UNKNOWN,
902 CPU_XSAVEOPT_FLAGS, 0 },
903 { STRING_COMMA_LEN (".xsavec"), PROCESSOR_UNKNOWN,
904 CPU_XSAVEC_FLAGS, 0 },
905 { STRING_COMMA_LEN (".xsaves"), PROCESSOR_UNKNOWN,
906 CPU_XSAVES_FLAGS, 0 },
907 { STRING_COMMA_LEN (".aes"), PROCESSOR_UNKNOWN,
908 CPU_AES_FLAGS, 0 },
909 { STRING_COMMA_LEN (".pclmul"), PROCESSOR_UNKNOWN,
910 CPU_PCLMUL_FLAGS, 0 },
911 { STRING_COMMA_LEN (".clmul"), PROCESSOR_UNKNOWN,
912 CPU_PCLMUL_FLAGS, 1 },
913 { STRING_COMMA_LEN (".fsgsbase"), PROCESSOR_UNKNOWN,
914 CPU_FSGSBASE_FLAGS, 0 },
915 { STRING_COMMA_LEN (".rdrnd"), PROCESSOR_UNKNOWN,
916 CPU_RDRND_FLAGS, 0 },
917 { STRING_COMMA_LEN (".f16c"), PROCESSOR_UNKNOWN,
918 CPU_F16C_FLAGS, 0 },
919 { STRING_COMMA_LEN (".bmi2"), PROCESSOR_UNKNOWN,
920 CPU_BMI2_FLAGS, 0 },
921 { STRING_COMMA_LEN (".fma"), PROCESSOR_UNKNOWN,
922 CPU_FMA_FLAGS, 0 },
923 { STRING_COMMA_LEN (".fma4"), PROCESSOR_UNKNOWN,
924 CPU_FMA4_FLAGS, 0 },
925 { STRING_COMMA_LEN (".xop"), PROCESSOR_UNKNOWN,
926 CPU_XOP_FLAGS, 0 },
927 { STRING_COMMA_LEN (".lwp"), PROCESSOR_UNKNOWN,
928 CPU_LWP_FLAGS, 0 },
929 { STRING_COMMA_LEN (".movbe"), PROCESSOR_UNKNOWN,
930 CPU_MOVBE_FLAGS, 0 },
931 { STRING_COMMA_LEN (".cx16"), PROCESSOR_UNKNOWN,
932 CPU_CX16_FLAGS, 0 },
933 { STRING_COMMA_LEN (".ept"), PROCESSOR_UNKNOWN,
934 CPU_EPT_FLAGS, 0 },
935 { STRING_COMMA_LEN (".lzcnt"), PROCESSOR_UNKNOWN,
936 CPU_LZCNT_FLAGS, 0 },
937 { STRING_COMMA_LEN (".hle"), PROCESSOR_UNKNOWN,
938 CPU_HLE_FLAGS, 0 },
939 { STRING_COMMA_LEN (".rtm"), PROCESSOR_UNKNOWN,
940 CPU_RTM_FLAGS, 0 },
941 { STRING_COMMA_LEN (".invpcid"), PROCESSOR_UNKNOWN,
942 CPU_INVPCID_FLAGS, 0 },
943 { STRING_COMMA_LEN (".clflush"), PROCESSOR_UNKNOWN,
944 CPU_CLFLUSH_FLAGS, 0 },
945 { STRING_COMMA_LEN (".nop"), PROCESSOR_UNKNOWN,
946 CPU_NOP_FLAGS, 0 },
947 { STRING_COMMA_LEN (".syscall"), PROCESSOR_UNKNOWN,
948 CPU_SYSCALL_FLAGS, 0 },
949 { STRING_COMMA_LEN (".rdtscp"), PROCESSOR_UNKNOWN,
950 CPU_RDTSCP_FLAGS, 0 },
951 { STRING_COMMA_LEN (".3dnow"), PROCESSOR_UNKNOWN,
952 CPU_3DNOW_FLAGS, 0 },
953 { STRING_COMMA_LEN (".3dnowa"), PROCESSOR_UNKNOWN,
954 CPU_3DNOWA_FLAGS, 0 },
955 { STRING_COMMA_LEN (".padlock"), PROCESSOR_UNKNOWN,
956 CPU_PADLOCK_FLAGS, 0 },
957 { STRING_COMMA_LEN (".pacifica"), PROCESSOR_UNKNOWN,
958 CPU_SVME_FLAGS, 1 },
959 { STRING_COMMA_LEN (".svme"), PROCESSOR_UNKNOWN,
960 CPU_SVME_FLAGS, 0 },
961 { STRING_COMMA_LEN (".sse4a"), PROCESSOR_UNKNOWN,
962 CPU_SSE4A_FLAGS, 0 },
963 { STRING_COMMA_LEN (".abm"), PROCESSOR_UNKNOWN,
964 CPU_ABM_FLAGS, 0 },
965 { STRING_COMMA_LEN (".bmi"), PROCESSOR_UNKNOWN,
966 CPU_BMI_FLAGS, 0 },
967 { STRING_COMMA_LEN (".tbm"), PROCESSOR_UNKNOWN,
968 CPU_TBM_FLAGS, 0 },
969 { STRING_COMMA_LEN (".adx"), PROCESSOR_UNKNOWN,
970 CPU_ADX_FLAGS, 0 },
971 { STRING_COMMA_LEN (".rdseed"), PROCESSOR_UNKNOWN,
972 CPU_RDSEED_FLAGS, 0 },
973 { STRING_COMMA_LEN (".prfchw"), PROCESSOR_UNKNOWN,
974 CPU_PRFCHW_FLAGS, 0 },
975 { STRING_COMMA_LEN (".smap"), PROCESSOR_UNKNOWN,
976 CPU_SMAP_FLAGS, 0 },
977 { STRING_COMMA_LEN (".mpx"), PROCESSOR_UNKNOWN,
978 CPU_MPX_FLAGS, 0 },
979 { STRING_COMMA_LEN (".sha"), PROCESSOR_UNKNOWN,
980 CPU_SHA_FLAGS, 0 },
981 { STRING_COMMA_LEN (".clflushopt"), PROCESSOR_UNKNOWN,
982 CPU_CLFLUSHOPT_FLAGS, 0 },
983 { STRING_COMMA_LEN (".prefetchwt1"), PROCESSOR_UNKNOWN,
984 CPU_PREFETCHWT1_FLAGS, 0 },
985 { STRING_COMMA_LEN (".se1"), PROCESSOR_UNKNOWN,
986 CPU_SE1_FLAGS, 0 },
987 { STRING_COMMA_LEN (".clwb"), PROCESSOR_UNKNOWN,
988 CPU_CLWB_FLAGS, 0 },
989 { STRING_COMMA_LEN (".avx512ifma"), PROCESSOR_UNKNOWN,
990 CPU_AVX512IFMA_FLAGS, 0 },
991 { STRING_COMMA_LEN (".avx512vbmi"), PROCESSOR_UNKNOWN,
992 CPU_AVX512VBMI_FLAGS, 0 },
993 { STRING_COMMA_LEN (".avx512_4fmaps"), PROCESSOR_UNKNOWN,
994 CPU_AVX512_4FMAPS_FLAGS, 0 },
995 { STRING_COMMA_LEN (".avx512_4vnniw"), PROCESSOR_UNKNOWN,
996 CPU_AVX512_4VNNIW_FLAGS, 0 },
997 { STRING_COMMA_LEN (".avx512_vpopcntdq"), PROCESSOR_UNKNOWN,
998 CPU_AVX512_VPOPCNTDQ_FLAGS, 0 },
999 { STRING_COMMA_LEN (".avx512_vbmi2"), PROCESSOR_UNKNOWN,
1000 CPU_AVX512_VBMI2_FLAGS, 0 },
1001 { STRING_COMMA_LEN (".avx512_vnni"), PROCESSOR_UNKNOWN,
1002 CPU_AVX512_VNNI_FLAGS, 0 },
1003 { STRING_COMMA_LEN (".avx512_bitalg"), PROCESSOR_UNKNOWN,
1004 CPU_AVX512_BITALG_FLAGS, 0 },
1005 { STRING_COMMA_LEN (".clzero"), PROCESSOR_UNKNOWN,
1006 CPU_CLZERO_FLAGS, 0 },
1007 { STRING_COMMA_LEN (".mwaitx"), PROCESSOR_UNKNOWN,
1008 CPU_MWAITX_FLAGS, 0 },
1009 { STRING_COMMA_LEN (".ospke"), PROCESSOR_UNKNOWN,
1010 CPU_OSPKE_FLAGS, 0 },
1011 { STRING_COMMA_LEN (".rdpid"), PROCESSOR_UNKNOWN,
1012 CPU_RDPID_FLAGS, 0 },
1013 { STRING_COMMA_LEN (".ptwrite"), PROCESSOR_UNKNOWN,
1014 CPU_PTWRITE_FLAGS, 0 },
1015 { STRING_COMMA_LEN (".ibt"), PROCESSOR_UNKNOWN,
1016 CPU_IBT_FLAGS, 0 },
1017 { STRING_COMMA_LEN (".shstk"), PROCESSOR_UNKNOWN,
1018 CPU_SHSTK_FLAGS, 0 },
1019 { STRING_COMMA_LEN (".gfni"), PROCESSOR_UNKNOWN,
1020 CPU_GFNI_FLAGS, 0 },
1021 { STRING_COMMA_LEN (".vaes"), PROCESSOR_UNKNOWN,
1022 CPU_VAES_FLAGS, 0 },
1023 { STRING_COMMA_LEN (".vpclmulqdq"), PROCESSOR_UNKNOWN,
1024 CPU_VPCLMULQDQ_FLAGS, 0 },
1025 { STRING_COMMA_LEN (".wbnoinvd"), PROCESSOR_UNKNOWN,
1026 CPU_WBNOINVD_FLAGS, 0 },
1027 { STRING_COMMA_LEN (".pconfig"), PROCESSOR_UNKNOWN,
1028 CPU_PCONFIG_FLAGS, 0 },
1029 };
1030
1031 static const noarch_entry cpu_noarch[] =
1032 {
1033 { STRING_COMMA_LEN ("no87"), CPU_ANY_X87_FLAGS },
1034 { STRING_COMMA_LEN ("no287"), CPU_ANY_287_FLAGS },
1035 { STRING_COMMA_LEN ("no387"), CPU_ANY_387_FLAGS },
1036 { STRING_COMMA_LEN ("no687"), CPU_ANY_687_FLAGS },
1037 { STRING_COMMA_LEN ("nommx"), CPU_ANY_MMX_FLAGS },
1038 { STRING_COMMA_LEN ("nosse"), CPU_ANY_SSE_FLAGS },
1039 { STRING_COMMA_LEN ("nosse2"), CPU_ANY_SSE2_FLAGS },
1040 { STRING_COMMA_LEN ("nosse3"), CPU_ANY_SSE3_FLAGS },
1041 { STRING_COMMA_LEN ("nossse3"), CPU_ANY_SSSE3_FLAGS },
1042 { STRING_COMMA_LEN ("nosse4.1"), CPU_ANY_SSE4_1_FLAGS },
1043 { STRING_COMMA_LEN ("nosse4.2"), CPU_ANY_SSE4_2_FLAGS },
1044 { STRING_COMMA_LEN ("nosse4"), CPU_ANY_SSE4_1_FLAGS },
1045 { STRING_COMMA_LEN ("noavx"), CPU_ANY_AVX_FLAGS },
1046 { STRING_COMMA_LEN ("noavx2"), CPU_ANY_AVX2_FLAGS },
1047 { STRING_COMMA_LEN ("noavx512f"), CPU_ANY_AVX512F_FLAGS },
1048 { STRING_COMMA_LEN ("noavx512cd"), CPU_ANY_AVX512CD_FLAGS },
1049 { STRING_COMMA_LEN ("noavx512er"), CPU_ANY_AVX512ER_FLAGS },
1050 { STRING_COMMA_LEN ("noavx512pf"), CPU_ANY_AVX512PF_FLAGS },
1051 { STRING_COMMA_LEN ("noavx512dq"), CPU_ANY_AVX512DQ_FLAGS },
1052 { STRING_COMMA_LEN ("noavx512bw"), CPU_ANY_AVX512BW_FLAGS },
1053 { STRING_COMMA_LEN ("noavx512vl"), CPU_ANY_AVX512VL_FLAGS },
1054 { STRING_COMMA_LEN ("noavx512ifma"), CPU_ANY_AVX512IFMA_FLAGS },
1055 { STRING_COMMA_LEN ("noavx512vbmi"), CPU_ANY_AVX512VBMI_FLAGS },
1056 { STRING_COMMA_LEN ("noavx512_4fmaps"), CPU_ANY_AVX512_4FMAPS_FLAGS },
1057 { STRING_COMMA_LEN ("noavx512_4vnniw"), CPU_ANY_AVX512_4VNNIW_FLAGS },
1058 { STRING_COMMA_LEN ("noavx512_vpopcntdq"), CPU_ANY_AVX512_VPOPCNTDQ_FLAGS },
1059 { STRING_COMMA_LEN ("noavx512_vbmi2"), CPU_ANY_AVX512_VBMI2_FLAGS },
1060 { STRING_COMMA_LEN ("noavx512_vnni"), CPU_ANY_AVX512_VNNI_FLAGS },
1061 { STRING_COMMA_LEN ("noavx512_bitalg"), CPU_ANY_AVX512_BITALG_FLAGS },
1062 { STRING_COMMA_LEN ("noibt"), CPU_ANY_IBT_FLAGS },
1063 { STRING_COMMA_LEN ("noshstk"), CPU_ANY_SHSTK_FLAGS },
1064 };
1065
1066 #ifdef I386COFF
1067 /* Like s_lcomm_internal in gas/read.c but the alignment string
1068 is allowed to be optional. */
1069
1070 static symbolS *
1071 pe_lcomm_internal (int needs_align, symbolS *symbolP, addressT size)
1072 {
1073 addressT align = 0;
1074
1075 SKIP_WHITESPACE ();
1076
1077 if (needs_align
1078 && *input_line_pointer == ',')
1079 {
1080 align = parse_align (needs_align - 1);
1081
1082 if (align == (addressT) -1)
1083 return NULL;
1084 }
1085 else
1086 {
1087 if (size >= 8)
1088 align = 3;
1089 else if (size >= 4)
1090 align = 2;
1091 else if (size >= 2)
1092 align = 1;
1093 else
1094 align = 0;
1095 }
1096
1097 bss_alloc (symbolP, size, align);
1098 return symbolP;
1099 }
1100
1101 static void
1102 pe_lcomm (int needs_align)
1103 {
1104 s_comm_internal (needs_align * 2, pe_lcomm_internal);
1105 }
1106 #endif
1107
1108 const pseudo_typeS md_pseudo_table[] =
1109 {
1110 #if !defined(OBJ_AOUT) && !defined(USE_ALIGN_PTWO)
1111 {"align", s_align_bytes, 0},
1112 #else
1113 {"align", s_align_ptwo, 0},
1114 #endif
1115 {"arch", set_cpu_arch, 0},
1116 #ifndef I386COFF
1117 {"bss", s_bss, 0},
1118 #else
1119 {"lcomm", pe_lcomm, 1},
1120 #endif
1121 {"ffloat", float_cons, 'f'},
1122 {"dfloat", float_cons, 'd'},
1123 {"tfloat", float_cons, 'x'},
1124 {"value", cons, 2},
1125 {"slong", signed_cons, 4},
1126 {"noopt", s_ignore, 0},
1127 {"optim", s_ignore, 0},
1128 {"code16gcc", set_16bit_gcc_code_flag, CODE_16BIT},
1129 {"code16", set_code_flag, CODE_16BIT},
1130 {"code32", set_code_flag, CODE_32BIT},
1131 #ifdef BFD64
1132 {"code64", set_code_flag, CODE_64BIT},
1133 #endif
1134 {"intel_syntax", set_intel_syntax, 1},
1135 {"att_syntax", set_intel_syntax, 0},
1136 {"intel_mnemonic", set_intel_mnemonic, 1},
1137 {"att_mnemonic", set_intel_mnemonic, 0},
1138 {"allow_index_reg", set_allow_index_reg, 1},
1139 {"disallow_index_reg", set_allow_index_reg, 0},
1140 {"sse_check", set_check, 0},
1141 {"operand_check", set_check, 1},
1142 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
1143 {"largecomm", handle_large_common, 0},
1144 #else
1145 {"file", dwarf2_directive_file, 0},
1146 {"loc", dwarf2_directive_loc, 0},
1147 {"loc_mark_labels", dwarf2_directive_loc_mark_labels, 0},
1148 #endif
1149 #ifdef TE_PE
1150 {"secrel32", pe_directive_secrel, 0},
1151 #endif
1152 {0, 0, 0}
1153 };
1154
1155 /* For interface with expression (). */
1156 extern char *input_line_pointer;
1157
1158 /* Hash table for instruction mnemonic lookup. */
1159 static struct hash_control *op_hash;
1160
1161 /* Hash table for register lookup. */
1162 static struct hash_control *reg_hash;
1163 \f
1164 /* Various efficient no-op patterns for aligning code labels.
1165 Note: Don't try to assemble the instructions in the comments.
1166 0L and 0w are not legal. */
1167 static const unsigned char f32_1[] =
1168 {0x90}; /* nop */
1169 static const unsigned char f32_2[] =
1170 {0x66,0x90}; /* xchg %ax,%ax */
1171 static const unsigned char f32_3[] =
1172 {0x8d,0x76,0x00}; /* leal 0(%esi),%esi */
1173 static const unsigned char f32_4[] =
1174 {0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
1175 static const unsigned char f32_6[] =
1176 {0x8d,0xb6,0x00,0x00,0x00,0x00}; /* leal 0L(%esi),%esi */
1177 static const unsigned char f32_7[] =
1178 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
1179 static const unsigned char f16_3[] =
1180 {0x8d,0x74,0x00}; /* lea 0(%si),%si */
1181 static const unsigned char f16_4[] =
1182 {0x8d,0xb4,0x00,0x00}; /* lea 0W(%si),%si */
1183 static const unsigned char jump_disp8[] =
1184 {0xeb}; /* jmp disp8 */
1185 static const unsigned char jump32_disp32[] =
1186 {0xe9}; /* jmp disp32 */
1187 static const unsigned char jump16_disp32[] =
1188 {0x66,0xe9}; /* jmp disp32 */
1189 /* 32-bit NOPs patterns. */
1190 static const unsigned char *const f32_patt[] = {
1191 f32_1, f32_2, f32_3, f32_4, NULL, f32_6, f32_7
1192 };
1193 /* 16-bit NOPs patterns. */
1194 static const unsigned char *const f16_patt[] = {
1195 f32_1, f32_2, f16_3, f16_4
1196 };
1197 /* nopl (%[re]ax) */
1198 static const unsigned char alt_3[] =
1199 {0x0f,0x1f,0x00};
1200 /* nopl 0(%[re]ax) */
1201 static const unsigned char alt_4[] =
1202 {0x0f,0x1f,0x40,0x00};
1203 /* nopl 0(%[re]ax,%[re]ax,1) */
1204 static const unsigned char alt_5[] =
1205 {0x0f,0x1f,0x44,0x00,0x00};
1206 /* nopw 0(%[re]ax,%[re]ax,1) */
1207 static const unsigned char alt_6[] =
1208 {0x66,0x0f,0x1f,0x44,0x00,0x00};
1209 /* nopl 0L(%[re]ax) */
1210 static const unsigned char alt_7[] =
1211 {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
1212 /* nopl 0L(%[re]ax,%[re]ax,1) */
1213 static const unsigned char alt_8[] =
1214 {0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1215 /* nopw 0L(%[re]ax,%[re]ax,1) */
1216 static const unsigned char alt_9[] =
1217 {0x66,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1218 /* nopw %cs:0L(%[re]ax,%[re]ax,1) */
1219 static const unsigned char alt_10[] =
1220 {0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1221 /* data16 nopw %cs:0L(%eax,%eax,1) */
1222 static const unsigned char alt_11[] =
1223 {0x66,0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1224 /* 32-bit and 64-bit NOPs patterns. */
1225 static const unsigned char *const alt_patt[] = {
1226 f32_1, f32_2, alt_3, alt_4, alt_5, alt_6, alt_7, alt_8,
1227 alt_9, alt_10, alt_11
1228 };
1229
1230 /* Genenerate COUNT bytes of NOPs to WHERE from PATT with the maximum
1231 size of a single NOP instruction MAX_SINGLE_NOP_SIZE. */
1232
1233 static void
1234 i386_output_nops (char *where, const unsigned char *const *patt,
1235 int count, int max_single_nop_size)
1236
1237 {
1238 /* Place the longer NOP first. */
1239 int last;
1240 int offset;
1241 const unsigned char *nops = patt[max_single_nop_size - 1];
1242
1243 /* Use the smaller one if the requsted one isn't available. */
1244 if (nops == NULL)
1245 {
1246 max_single_nop_size--;
1247 nops = patt[max_single_nop_size - 1];
1248 }
1249
1250 last = count % max_single_nop_size;
1251
1252 count -= last;
1253 for (offset = 0; offset < count; offset += max_single_nop_size)
1254 memcpy (where + offset, nops, max_single_nop_size);
1255
1256 if (last)
1257 {
1258 nops = patt[last - 1];
1259 if (nops == NULL)
1260 {
1261 /* Use the smaller one plus one-byte NOP if the needed one
1262 isn't available. */
1263 last--;
1264 nops = patt[last - 1];
1265 memcpy (where + offset, nops, last);
1266 where[offset + last] = *patt[0];
1267 }
1268 else
1269 memcpy (where + offset, nops, last);
1270 }
1271 }
1272
1273 static INLINE int
1274 fits_in_imm7 (offsetT num)
1275 {
1276 return (num & 0x7f) == num;
1277 }
1278
1279 static INLINE int
1280 fits_in_imm31 (offsetT num)
1281 {
1282 return (num & 0x7fffffff) == num;
1283 }
1284
1285 /* Genenerate COUNT bytes of NOPs to WHERE with the maximum size of a
1286 single NOP instruction LIMIT. */
1287
1288 void
1289 i386_generate_nops (fragS *fragP, char *where, offsetT count, int limit)
1290 {
1291 const unsigned char *const *patt = NULL;
1292 int max_single_nop_size;
1293 /* Maximum number of NOPs before switching to jump over NOPs. */
1294 int max_number_of_nops;
1295
1296 switch (fragP->fr_type)
1297 {
1298 case rs_fill_nop:
1299 case rs_align_code:
1300 break;
1301 default:
1302 return;
1303 }
1304
1305 /* We need to decide which NOP sequence to use for 32bit and
1306 64bit. When -mtune= is used:
1307
1308 1. For PROCESSOR_I386, PROCESSOR_I486, PROCESSOR_PENTIUM and
1309 PROCESSOR_GENERIC32, f32_patt will be used.
1310 2. For the rest, alt_patt will be used.
1311
1312 When -mtune= isn't used, alt_patt will be used if
1313 cpu_arch_isa_flags has CpuNop. Otherwise, f32_patt will
1314 be used.
1315
1316 When -march= or .arch is used, we can't use anything beyond
1317 cpu_arch_isa_flags. */
1318
1319 if (flag_code == CODE_16BIT)
1320 {
1321 patt = f16_patt;
1322 max_single_nop_size = sizeof (f16_patt) / sizeof (f16_patt[0]);
1323 /* Limit number of NOPs to 2 in 16-bit mode. */
1324 max_number_of_nops = 2;
1325 }
1326 else
1327 {
1328 if (fragP->tc_frag_data.isa == PROCESSOR_UNKNOWN)
1329 {
1330 /* PROCESSOR_UNKNOWN means that all ISAs may be used. */
1331 switch (cpu_arch_tune)
1332 {
1333 case PROCESSOR_UNKNOWN:
1334 /* We use cpu_arch_isa_flags to check if we SHOULD
1335 optimize with nops. */
1336 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1337 patt = alt_patt;
1338 else
1339 patt = f32_patt;
1340 break;
1341 case PROCESSOR_PENTIUM4:
1342 case PROCESSOR_NOCONA:
1343 case PROCESSOR_CORE:
1344 case PROCESSOR_CORE2:
1345 case PROCESSOR_COREI7:
1346 case PROCESSOR_L1OM:
1347 case PROCESSOR_K1OM:
1348 case PROCESSOR_GENERIC64:
1349 case PROCESSOR_K6:
1350 case PROCESSOR_ATHLON:
1351 case PROCESSOR_K8:
1352 case PROCESSOR_AMDFAM10:
1353 case PROCESSOR_BD:
1354 case PROCESSOR_ZNVER:
1355 case PROCESSOR_BT:
1356 patt = alt_patt;
1357 break;
1358 case PROCESSOR_I386:
1359 case PROCESSOR_I486:
1360 case PROCESSOR_PENTIUM:
1361 case PROCESSOR_PENTIUMPRO:
1362 case PROCESSOR_IAMCU:
1363 case PROCESSOR_GENERIC32:
1364 patt = f32_patt;
1365 break;
1366 }
1367 }
1368 else
1369 {
1370 switch (fragP->tc_frag_data.tune)
1371 {
1372 case PROCESSOR_UNKNOWN:
1373 /* When cpu_arch_isa is set, cpu_arch_tune shouldn't be
1374 PROCESSOR_UNKNOWN. */
1375 abort ();
1376 break;
1377
1378 case PROCESSOR_I386:
1379 case PROCESSOR_I486:
1380 case PROCESSOR_PENTIUM:
1381 case PROCESSOR_IAMCU:
1382 case PROCESSOR_K6:
1383 case PROCESSOR_ATHLON:
1384 case PROCESSOR_K8:
1385 case PROCESSOR_AMDFAM10:
1386 case PROCESSOR_BD:
1387 case PROCESSOR_ZNVER:
1388 case PROCESSOR_BT:
1389 case PROCESSOR_GENERIC32:
1390 /* We use cpu_arch_isa_flags to check if we CAN optimize
1391 with nops. */
1392 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1393 patt = alt_patt;
1394 else
1395 patt = f32_patt;
1396 break;
1397 case PROCESSOR_PENTIUMPRO:
1398 case PROCESSOR_PENTIUM4:
1399 case PROCESSOR_NOCONA:
1400 case PROCESSOR_CORE:
1401 case PROCESSOR_CORE2:
1402 case PROCESSOR_COREI7:
1403 case PROCESSOR_L1OM:
1404 case PROCESSOR_K1OM:
1405 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1406 patt = alt_patt;
1407 else
1408 patt = f32_patt;
1409 break;
1410 case PROCESSOR_GENERIC64:
1411 patt = alt_patt;
1412 break;
1413 }
1414 }
1415
1416 if (patt == f32_patt)
1417 {
1418 max_single_nop_size = sizeof (f32_patt) / sizeof (f32_patt[0]);
1419 /* Limit number of NOPs to 2 for older processors. */
1420 max_number_of_nops = 2;
1421 }
1422 else
1423 {
1424 max_single_nop_size = sizeof (alt_patt) / sizeof (alt_patt[0]);
1425 /* Limit number of NOPs to 7 for newer processors. */
1426 max_number_of_nops = 7;
1427 }
1428 }
1429
1430 if (limit == 0)
1431 limit = max_single_nop_size;
1432
1433 if (fragP->fr_type == rs_fill_nop)
1434 {
1435 /* Output NOPs for .nop directive. */
1436 if (limit > max_single_nop_size)
1437 {
1438 as_bad_where (fragP->fr_file, fragP->fr_line,
1439 _("invalid single nop size: %d "
1440 "(expect within [0, %d])"),
1441 limit, max_single_nop_size);
1442 return;
1443 }
1444 }
1445 else
1446 fragP->fr_var = count;
1447
1448 if ((count / max_single_nop_size) > max_number_of_nops)
1449 {
1450 /* Generate jump over NOPs. */
1451 offsetT disp = count - 2;
1452 if (fits_in_imm7 (disp))
1453 {
1454 /* Use "jmp disp8" if possible. */
1455 count = disp;
1456 where[0] = jump_disp8[0];
1457 where[1] = count;
1458 where += 2;
1459 }
1460 else
1461 {
1462 unsigned int size_of_jump;
1463
1464 if (flag_code == CODE_16BIT)
1465 {
1466 where[0] = jump16_disp32[0];
1467 where[1] = jump16_disp32[1];
1468 size_of_jump = 2;
1469 }
1470 else
1471 {
1472 where[0] = jump32_disp32[0];
1473 size_of_jump = 1;
1474 }
1475
1476 count -= size_of_jump + 4;
1477 if (!fits_in_imm31 (count))
1478 {
1479 as_bad_where (fragP->fr_file, fragP->fr_line,
1480 _("jump over nop padding out of range"));
1481 return;
1482 }
1483
1484 md_number_to_chars (where + size_of_jump, count, 4);
1485 where += size_of_jump + 4;
1486 }
1487 }
1488
1489 /* Generate multiple NOPs. */
1490 i386_output_nops (where, patt, count, limit);
1491 }
1492
1493 static INLINE int
1494 operand_type_all_zero (const union i386_operand_type *x)
1495 {
1496 switch (ARRAY_SIZE(x->array))
1497 {
1498 case 3:
1499 if (x->array[2])
1500 return 0;
1501 /* Fall through. */
1502 case 2:
1503 if (x->array[1])
1504 return 0;
1505 /* Fall through. */
1506 case 1:
1507 return !x->array[0];
1508 default:
1509 abort ();
1510 }
1511 }
1512
1513 static INLINE void
1514 operand_type_set (union i386_operand_type *x, unsigned int v)
1515 {
1516 switch (ARRAY_SIZE(x->array))
1517 {
1518 case 3:
1519 x->array[2] = v;
1520 /* Fall through. */
1521 case 2:
1522 x->array[1] = v;
1523 /* Fall through. */
1524 case 1:
1525 x->array[0] = v;
1526 /* Fall through. */
1527 break;
1528 default:
1529 abort ();
1530 }
1531 }
1532
1533 static INLINE int
1534 operand_type_equal (const union i386_operand_type *x,
1535 const union i386_operand_type *y)
1536 {
1537 switch (ARRAY_SIZE(x->array))
1538 {
1539 case 3:
1540 if (x->array[2] != y->array[2])
1541 return 0;
1542 /* Fall through. */
1543 case 2:
1544 if (x->array[1] != y->array[1])
1545 return 0;
1546 /* Fall through. */
1547 case 1:
1548 return x->array[0] == y->array[0];
1549 break;
1550 default:
1551 abort ();
1552 }
1553 }
1554
1555 static INLINE int
1556 cpu_flags_all_zero (const union i386_cpu_flags *x)
1557 {
1558 switch (ARRAY_SIZE(x->array))
1559 {
1560 case 4:
1561 if (x->array[3])
1562 return 0;
1563 /* Fall through. */
1564 case 3:
1565 if (x->array[2])
1566 return 0;
1567 /* Fall through. */
1568 case 2:
1569 if (x->array[1])
1570 return 0;
1571 /* Fall through. */
1572 case 1:
1573 return !x->array[0];
1574 default:
1575 abort ();
1576 }
1577 }
1578
1579 static INLINE int
1580 cpu_flags_equal (const union i386_cpu_flags *x,
1581 const union i386_cpu_flags *y)
1582 {
1583 switch (ARRAY_SIZE(x->array))
1584 {
1585 case 4:
1586 if (x->array[3] != y->array[3])
1587 return 0;
1588 /* Fall through. */
1589 case 3:
1590 if (x->array[2] != y->array[2])
1591 return 0;
1592 /* Fall through. */
1593 case 2:
1594 if (x->array[1] != y->array[1])
1595 return 0;
1596 /* Fall through. */
1597 case 1:
1598 return x->array[0] == y->array[0];
1599 break;
1600 default:
1601 abort ();
1602 }
1603 }
1604
1605 static INLINE int
1606 cpu_flags_check_cpu64 (i386_cpu_flags f)
1607 {
1608 return !((flag_code == CODE_64BIT && f.bitfield.cpuno64)
1609 || (flag_code != CODE_64BIT && f.bitfield.cpu64));
1610 }
1611
1612 static INLINE i386_cpu_flags
1613 cpu_flags_and (i386_cpu_flags x, i386_cpu_flags y)
1614 {
1615 switch (ARRAY_SIZE (x.array))
1616 {
1617 case 4:
1618 x.array [3] &= y.array [3];
1619 /* Fall through. */
1620 case 3:
1621 x.array [2] &= y.array [2];
1622 /* Fall through. */
1623 case 2:
1624 x.array [1] &= y.array [1];
1625 /* Fall through. */
1626 case 1:
1627 x.array [0] &= y.array [0];
1628 break;
1629 default:
1630 abort ();
1631 }
1632 return x;
1633 }
1634
1635 static INLINE i386_cpu_flags
1636 cpu_flags_or (i386_cpu_flags x, i386_cpu_flags y)
1637 {
1638 switch (ARRAY_SIZE (x.array))
1639 {
1640 case 4:
1641 x.array [3] |= y.array [3];
1642 /* Fall through. */
1643 case 3:
1644 x.array [2] |= y.array [2];
1645 /* Fall through. */
1646 case 2:
1647 x.array [1] |= y.array [1];
1648 /* Fall through. */
1649 case 1:
1650 x.array [0] |= y.array [0];
1651 break;
1652 default:
1653 abort ();
1654 }
1655 return x;
1656 }
1657
1658 static INLINE i386_cpu_flags
1659 cpu_flags_and_not (i386_cpu_flags x, i386_cpu_flags y)
1660 {
1661 switch (ARRAY_SIZE (x.array))
1662 {
1663 case 4:
1664 x.array [3] &= ~y.array [3];
1665 /* Fall through. */
1666 case 3:
1667 x.array [2] &= ~y.array [2];
1668 /* Fall through. */
1669 case 2:
1670 x.array [1] &= ~y.array [1];
1671 /* Fall through. */
1672 case 1:
1673 x.array [0] &= ~y.array [0];
1674 break;
1675 default:
1676 abort ();
1677 }
1678 return x;
1679 }
1680
1681 #define CPU_FLAGS_ARCH_MATCH 0x1
1682 #define CPU_FLAGS_64BIT_MATCH 0x2
1683
1684 #define CPU_FLAGS_PERFECT_MATCH \
1685 (CPU_FLAGS_ARCH_MATCH | CPU_FLAGS_64BIT_MATCH)
1686
1687 /* Return CPU flags match bits. */
1688
1689 static int
1690 cpu_flags_match (const insn_template *t)
1691 {
1692 i386_cpu_flags x = t->cpu_flags;
1693 int match = cpu_flags_check_cpu64 (x) ? CPU_FLAGS_64BIT_MATCH : 0;
1694
1695 x.bitfield.cpu64 = 0;
1696 x.bitfield.cpuno64 = 0;
1697
1698 if (cpu_flags_all_zero (&x))
1699 {
1700 /* This instruction is available on all archs. */
1701 match |= CPU_FLAGS_ARCH_MATCH;
1702 }
1703 else
1704 {
1705 /* This instruction is available only on some archs. */
1706 i386_cpu_flags cpu = cpu_arch_flags;
1707
1708 /* AVX512VL is no standalone feature - match it and then strip it. */
1709 if (x.bitfield.cpuavx512vl && !cpu.bitfield.cpuavx512vl)
1710 return match;
1711 x.bitfield.cpuavx512vl = 0;
1712
1713 cpu = cpu_flags_and (x, cpu);
1714 if (!cpu_flags_all_zero (&cpu))
1715 {
1716 if (x.bitfield.cpuavx)
1717 {
1718 /* We need to check a few extra flags with AVX. */
1719 if (cpu.bitfield.cpuavx
1720 && (!t->opcode_modifier.sse2avx || sse2avx)
1721 && (!x.bitfield.cpuaes || cpu.bitfield.cpuaes)
1722 && (!x.bitfield.cpugfni || cpu.bitfield.cpugfni)
1723 && (!x.bitfield.cpupclmul || cpu.bitfield.cpupclmul))
1724 match |= CPU_FLAGS_ARCH_MATCH;
1725 }
1726 else if (x.bitfield.cpuavx512f)
1727 {
1728 /* We need to check a few extra flags with AVX512F. */
1729 if (cpu.bitfield.cpuavx512f
1730 && (!x.bitfield.cpugfni || cpu.bitfield.cpugfni)
1731 && (!x.bitfield.cpuvaes || cpu.bitfield.cpuvaes)
1732 && (!x.bitfield.cpuvpclmulqdq || cpu.bitfield.cpuvpclmulqdq))
1733 match |= CPU_FLAGS_ARCH_MATCH;
1734 }
1735 else
1736 match |= CPU_FLAGS_ARCH_MATCH;
1737 }
1738 }
1739 return match;
1740 }
1741
1742 static INLINE i386_operand_type
1743 operand_type_and (i386_operand_type x, i386_operand_type y)
1744 {
1745 switch (ARRAY_SIZE (x.array))
1746 {
1747 case 3:
1748 x.array [2] &= y.array [2];
1749 /* Fall through. */
1750 case 2:
1751 x.array [1] &= y.array [1];
1752 /* Fall through. */
1753 case 1:
1754 x.array [0] &= y.array [0];
1755 break;
1756 default:
1757 abort ();
1758 }
1759 return x;
1760 }
1761
1762 static INLINE i386_operand_type
1763 operand_type_and_not (i386_operand_type x, i386_operand_type y)
1764 {
1765 switch (ARRAY_SIZE (x.array))
1766 {
1767 case 3:
1768 x.array [2] &= ~y.array [2];
1769 /* Fall through. */
1770 case 2:
1771 x.array [1] &= ~y.array [1];
1772 /* Fall through. */
1773 case 1:
1774 x.array [0] &= ~y.array [0];
1775 break;
1776 default:
1777 abort ();
1778 }
1779 return x;
1780 }
1781
1782 static INLINE i386_operand_type
1783 operand_type_or (i386_operand_type x, i386_operand_type y)
1784 {
1785 switch (ARRAY_SIZE (x.array))
1786 {
1787 case 3:
1788 x.array [2] |= y.array [2];
1789 /* Fall through. */
1790 case 2:
1791 x.array [1] |= y.array [1];
1792 /* Fall through. */
1793 case 1:
1794 x.array [0] |= y.array [0];
1795 break;
1796 default:
1797 abort ();
1798 }
1799 return x;
1800 }
1801
1802 static INLINE i386_operand_type
1803 operand_type_xor (i386_operand_type x, i386_operand_type y)
1804 {
1805 switch (ARRAY_SIZE (x.array))
1806 {
1807 case 3:
1808 x.array [2] ^= y.array [2];
1809 /* Fall through. */
1810 case 2:
1811 x.array [1] ^= y.array [1];
1812 /* Fall through. */
1813 case 1:
1814 x.array [0] ^= y.array [0];
1815 break;
1816 default:
1817 abort ();
1818 }
1819 return x;
1820 }
1821
1822 static const i386_operand_type acc32 = OPERAND_TYPE_ACC32;
1823 static const i386_operand_type acc64 = OPERAND_TYPE_ACC64;
1824 static const i386_operand_type control = OPERAND_TYPE_CONTROL;
1825 static const i386_operand_type inoutportreg
1826 = OPERAND_TYPE_INOUTPORTREG;
1827 static const i386_operand_type reg16_inoutportreg
1828 = OPERAND_TYPE_REG16_INOUTPORTREG;
1829 static const i386_operand_type disp16 = OPERAND_TYPE_DISP16;
1830 static const i386_operand_type disp32 = OPERAND_TYPE_DISP32;
1831 static const i386_operand_type disp32s = OPERAND_TYPE_DISP32S;
1832 static const i386_operand_type disp16_32 = OPERAND_TYPE_DISP16_32;
1833 static const i386_operand_type anydisp
1834 = OPERAND_TYPE_ANYDISP;
1835 static const i386_operand_type regxmm = OPERAND_TYPE_REGXMM;
1836 static const i386_operand_type regmask = OPERAND_TYPE_REGMASK;
1837 static const i386_operand_type imm8 = OPERAND_TYPE_IMM8;
1838 static const i386_operand_type imm8s = OPERAND_TYPE_IMM8S;
1839 static const i386_operand_type imm16 = OPERAND_TYPE_IMM16;
1840 static const i386_operand_type imm32 = OPERAND_TYPE_IMM32;
1841 static const i386_operand_type imm32s = OPERAND_TYPE_IMM32S;
1842 static const i386_operand_type imm64 = OPERAND_TYPE_IMM64;
1843 static const i386_operand_type imm16_32 = OPERAND_TYPE_IMM16_32;
1844 static const i386_operand_type imm16_32s = OPERAND_TYPE_IMM16_32S;
1845 static const i386_operand_type imm16_32_32s = OPERAND_TYPE_IMM16_32_32S;
1846 static const i386_operand_type vec_imm4 = OPERAND_TYPE_VEC_IMM4;
1847
1848 enum operand_type
1849 {
1850 reg,
1851 imm,
1852 disp,
1853 anymem
1854 };
1855
1856 static INLINE int
1857 operand_type_check (i386_operand_type t, enum operand_type c)
1858 {
1859 switch (c)
1860 {
1861 case reg:
1862 return t.bitfield.reg;
1863
1864 case imm:
1865 return (t.bitfield.imm8
1866 || t.bitfield.imm8s
1867 || t.bitfield.imm16
1868 || t.bitfield.imm32
1869 || t.bitfield.imm32s
1870 || t.bitfield.imm64);
1871
1872 case disp:
1873 return (t.bitfield.disp8
1874 || t.bitfield.disp16
1875 || t.bitfield.disp32
1876 || t.bitfield.disp32s
1877 || t.bitfield.disp64);
1878
1879 case anymem:
1880 return (t.bitfield.disp8
1881 || t.bitfield.disp16
1882 || t.bitfield.disp32
1883 || t.bitfield.disp32s
1884 || t.bitfield.disp64
1885 || t.bitfield.baseindex);
1886
1887 default:
1888 abort ();
1889 }
1890
1891 return 0;
1892 }
1893
1894 /* Return 1 if there is no conflict in 8bit/16bit/32bit/64bit/80bit on
1895 operand J for instruction template T. */
1896
1897 static INLINE int
1898 match_reg_size (const insn_template *t, unsigned int j)
1899 {
1900 return !((i.types[j].bitfield.byte
1901 && !t->operand_types[j].bitfield.byte)
1902 || (i.types[j].bitfield.word
1903 && !t->operand_types[j].bitfield.word)
1904 || (i.types[j].bitfield.dword
1905 && !t->operand_types[j].bitfield.dword)
1906 || (i.types[j].bitfield.qword
1907 && !t->operand_types[j].bitfield.qword)
1908 || (i.types[j].bitfield.tbyte
1909 && !t->operand_types[j].bitfield.tbyte));
1910 }
1911
1912 /* Return 1 if there is no conflict in SIMD register on
1913 operand J for instruction template T. */
1914
1915 static INLINE int
1916 match_simd_size (const insn_template *t, unsigned int j)
1917 {
1918 return !((i.types[j].bitfield.xmmword
1919 && !t->operand_types[j].bitfield.xmmword)
1920 || (i.types[j].bitfield.ymmword
1921 && !t->operand_types[j].bitfield.ymmword)
1922 || (i.types[j].bitfield.zmmword
1923 && !t->operand_types[j].bitfield.zmmword));
1924 }
1925
1926 /* Return 1 if there is no conflict in any size on operand J for
1927 instruction template T. */
1928
1929 static INLINE int
1930 match_mem_size (const insn_template *t, unsigned int j)
1931 {
1932 return (match_reg_size (t, j)
1933 && !((i.types[j].bitfield.unspecified
1934 && !i.broadcast
1935 && !t->operand_types[j].bitfield.unspecified)
1936 || (i.types[j].bitfield.fword
1937 && !t->operand_types[j].bitfield.fword)
1938 /* For scalar opcode templates to allow register and memory
1939 operands at the same time, some special casing is needed
1940 here. Also for v{,p}broadcast*, {,v}pmov{s,z}*, and
1941 down-conversion vpmov*. */
1942 || ((t->operand_types[j].bitfield.regsimd
1943 && !t->opcode_modifier.broadcast
1944 && (t->operand_types[j].bitfield.byte
1945 || t->operand_types[j].bitfield.word
1946 || t->operand_types[j].bitfield.dword
1947 || t->operand_types[j].bitfield.qword))
1948 ? (i.types[j].bitfield.xmmword
1949 || i.types[j].bitfield.ymmword
1950 || i.types[j].bitfield.zmmword)
1951 : !match_simd_size(t, j))));
1952 }
1953
1954 /* Return 1 if there is no size conflict on any operands for
1955 instruction template T. */
1956
1957 static INLINE int
1958 operand_size_match (const insn_template *t)
1959 {
1960 unsigned int j;
1961 int match = 1;
1962
1963 /* Don't check jump instructions. */
1964 if (t->opcode_modifier.jump
1965 || t->opcode_modifier.jumpbyte
1966 || t->opcode_modifier.jumpdword
1967 || t->opcode_modifier.jumpintersegment)
1968 return match;
1969
1970 /* Check memory and accumulator operand size. */
1971 for (j = 0; j < i.operands; j++)
1972 {
1973 if (!i.types[j].bitfield.reg && !i.types[j].bitfield.regsimd
1974 && t->operand_types[j].bitfield.anysize)
1975 continue;
1976
1977 if (t->operand_types[j].bitfield.reg
1978 && !match_reg_size (t, j))
1979 {
1980 match = 0;
1981 break;
1982 }
1983
1984 if (t->operand_types[j].bitfield.regsimd
1985 && !match_simd_size (t, j))
1986 {
1987 match = 0;
1988 break;
1989 }
1990
1991 if (t->operand_types[j].bitfield.acc
1992 && (!match_reg_size (t, j) || !match_simd_size (t, j)))
1993 {
1994 match = 0;
1995 break;
1996 }
1997
1998 if (i.types[j].bitfield.mem && !match_mem_size (t, j))
1999 {
2000 match = 0;
2001 break;
2002 }
2003 }
2004
2005 if (match)
2006 return match;
2007 else if (!t->opcode_modifier.d)
2008 {
2009 mismatch:
2010 i.error = operand_size_mismatch;
2011 return 0;
2012 }
2013
2014 /* Check reverse. */
2015 gas_assert (i.operands == 2);
2016
2017 match = 1;
2018 for (j = 0; j < 2; j++)
2019 {
2020 if ((t->operand_types[j].bitfield.reg
2021 || t->operand_types[j].bitfield.acc)
2022 && !match_reg_size (t, j ? 0 : 1))
2023 goto mismatch;
2024
2025 if (i.types[j].bitfield.mem
2026 && !match_mem_size (t, j ? 0 : 1))
2027 goto mismatch;
2028 }
2029
2030 return match;
2031 }
2032
2033 static INLINE int
2034 operand_type_match (i386_operand_type overlap,
2035 i386_operand_type given)
2036 {
2037 i386_operand_type temp = overlap;
2038
2039 temp.bitfield.jumpabsolute = 0;
2040 temp.bitfield.unspecified = 0;
2041 temp.bitfield.byte = 0;
2042 temp.bitfield.word = 0;
2043 temp.bitfield.dword = 0;
2044 temp.bitfield.fword = 0;
2045 temp.bitfield.qword = 0;
2046 temp.bitfield.tbyte = 0;
2047 temp.bitfield.xmmword = 0;
2048 temp.bitfield.ymmword = 0;
2049 temp.bitfield.zmmword = 0;
2050 if (operand_type_all_zero (&temp))
2051 goto mismatch;
2052
2053 if (given.bitfield.baseindex == overlap.bitfield.baseindex
2054 && given.bitfield.jumpabsolute == overlap.bitfield.jumpabsolute)
2055 return 1;
2056
2057 mismatch:
2058 i.error = operand_type_mismatch;
2059 return 0;
2060 }
2061
2062 /* If given types g0 and g1 are registers they must be of the same type
2063 unless the expected operand type register overlap is null.
2064 Memory operand size of certain SIMD instructions is also being checked
2065 here. */
2066
2067 static INLINE int
2068 operand_type_register_match (i386_operand_type g0,
2069 i386_operand_type t0,
2070 i386_operand_type g1,
2071 i386_operand_type t1)
2072 {
2073 if (!g0.bitfield.reg
2074 && !g0.bitfield.regsimd
2075 && (!operand_type_check (g0, anymem)
2076 || g0.bitfield.unspecified
2077 || !t0.bitfield.regsimd))
2078 return 1;
2079
2080 if (!g1.bitfield.reg
2081 && !g1.bitfield.regsimd
2082 && (!operand_type_check (g1, anymem)
2083 || g1.bitfield.unspecified
2084 || !t1.bitfield.regsimd))
2085 return 1;
2086
2087 if (g0.bitfield.byte == g1.bitfield.byte
2088 && g0.bitfield.word == g1.bitfield.word
2089 && g0.bitfield.dword == g1.bitfield.dword
2090 && g0.bitfield.qword == g1.bitfield.qword
2091 && g0.bitfield.xmmword == g1.bitfield.xmmword
2092 && g0.bitfield.ymmword == g1.bitfield.ymmword
2093 && g0.bitfield.zmmword == g1.bitfield.zmmword)
2094 return 1;
2095
2096 if (!(t0.bitfield.byte & t1.bitfield.byte)
2097 && !(t0.bitfield.word & t1.bitfield.word)
2098 && !(t0.bitfield.dword & t1.bitfield.dword)
2099 && !(t0.bitfield.qword & t1.bitfield.qword)
2100 && !(t0.bitfield.xmmword & t1.bitfield.xmmword)
2101 && !(t0.bitfield.ymmword & t1.bitfield.ymmword)
2102 && !(t0.bitfield.zmmword & t1.bitfield.zmmword))
2103 return 1;
2104
2105 i.error = register_type_mismatch;
2106
2107 return 0;
2108 }
2109
2110 static INLINE unsigned int
2111 register_number (const reg_entry *r)
2112 {
2113 unsigned int nr = r->reg_num;
2114
2115 if (r->reg_flags & RegRex)
2116 nr += 8;
2117
2118 if (r->reg_flags & RegVRex)
2119 nr += 16;
2120
2121 return nr;
2122 }
2123
2124 static INLINE unsigned int
2125 mode_from_disp_size (i386_operand_type t)
2126 {
2127 if (t.bitfield.disp8)
2128 return 1;
2129 else if (t.bitfield.disp16
2130 || t.bitfield.disp32
2131 || t.bitfield.disp32s)
2132 return 2;
2133 else
2134 return 0;
2135 }
2136
2137 static INLINE int
2138 fits_in_signed_byte (addressT num)
2139 {
2140 return num + 0x80 <= 0xff;
2141 }
2142
2143 static INLINE int
2144 fits_in_unsigned_byte (addressT num)
2145 {
2146 return num <= 0xff;
2147 }
2148
2149 static INLINE int
2150 fits_in_unsigned_word (addressT num)
2151 {
2152 return num <= 0xffff;
2153 }
2154
2155 static INLINE int
2156 fits_in_signed_word (addressT num)
2157 {
2158 return num + 0x8000 <= 0xffff;
2159 }
2160
2161 static INLINE int
2162 fits_in_signed_long (addressT num ATTRIBUTE_UNUSED)
2163 {
2164 #ifndef BFD64
2165 return 1;
2166 #else
2167 return num + 0x80000000 <= 0xffffffff;
2168 #endif
2169 } /* fits_in_signed_long() */
2170
2171 static INLINE int
2172 fits_in_unsigned_long (addressT num ATTRIBUTE_UNUSED)
2173 {
2174 #ifndef BFD64
2175 return 1;
2176 #else
2177 return num <= 0xffffffff;
2178 #endif
2179 } /* fits_in_unsigned_long() */
2180
2181 static INLINE int
2182 fits_in_disp8 (offsetT num)
2183 {
2184 int shift = i.memshift;
2185 unsigned int mask;
2186
2187 if (shift == -1)
2188 abort ();
2189
2190 mask = (1 << shift) - 1;
2191
2192 /* Return 0 if NUM isn't properly aligned. */
2193 if ((num & mask))
2194 return 0;
2195
2196 /* Check if NUM will fit in 8bit after shift. */
2197 return fits_in_signed_byte (num >> shift);
2198 }
2199
2200 static INLINE int
2201 fits_in_imm4 (offsetT num)
2202 {
2203 return (num & 0xf) == num;
2204 }
2205
2206 static i386_operand_type
2207 smallest_imm_type (offsetT num)
2208 {
2209 i386_operand_type t;
2210
2211 operand_type_set (&t, 0);
2212 t.bitfield.imm64 = 1;
2213
2214 if (cpu_arch_tune != PROCESSOR_I486 && num == 1)
2215 {
2216 /* This code is disabled on the 486 because all the Imm1 forms
2217 in the opcode table are slower on the i486. They're the
2218 versions with the implicitly specified single-position
2219 displacement, which has another syntax if you really want to
2220 use that form. */
2221 t.bitfield.imm1 = 1;
2222 t.bitfield.imm8 = 1;
2223 t.bitfield.imm8s = 1;
2224 t.bitfield.imm16 = 1;
2225 t.bitfield.imm32 = 1;
2226 t.bitfield.imm32s = 1;
2227 }
2228 else if (fits_in_signed_byte (num))
2229 {
2230 t.bitfield.imm8 = 1;
2231 t.bitfield.imm8s = 1;
2232 t.bitfield.imm16 = 1;
2233 t.bitfield.imm32 = 1;
2234 t.bitfield.imm32s = 1;
2235 }
2236 else if (fits_in_unsigned_byte (num))
2237 {
2238 t.bitfield.imm8 = 1;
2239 t.bitfield.imm16 = 1;
2240 t.bitfield.imm32 = 1;
2241 t.bitfield.imm32s = 1;
2242 }
2243 else if (fits_in_signed_word (num) || fits_in_unsigned_word (num))
2244 {
2245 t.bitfield.imm16 = 1;
2246 t.bitfield.imm32 = 1;
2247 t.bitfield.imm32s = 1;
2248 }
2249 else if (fits_in_signed_long (num))
2250 {
2251 t.bitfield.imm32 = 1;
2252 t.bitfield.imm32s = 1;
2253 }
2254 else if (fits_in_unsigned_long (num))
2255 t.bitfield.imm32 = 1;
2256
2257 return t;
2258 }
2259
2260 static offsetT
2261 offset_in_range (offsetT val, int size)
2262 {
2263 addressT mask;
2264
2265 switch (size)
2266 {
2267 case 1: mask = ((addressT) 1 << 8) - 1; break;
2268 case 2: mask = ((addressT) 1 << 16) - 1; break;
2269 case 4: mask = ((addressT) 2 << 31) - 1; break;
2270 #ifdef BFD64
2271 case 8: mask = ((addressT) 2 << 63) - 1; break;
2272 #endif
2273 default: abort ();
2274 }
2275
2276 #ifdef BFD64
2277 /* If BFD64, sign extend val for 32bit address mode. */
2278 if (flag_code != CODE_64BIT
2279 || i.prefix[ADDR_PREFIX])
2280 if ((val & ~(((addressT) 2 << 31) - 1)) == 0)
2281 val = (val ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
2282 #endif
2283
2284 if ((val & ~mask) != 0 && (val & ~mask) != ~mask)
2285 {
2286 char buf1[40], buf2[40];
2287
2288 sprint_value (buf1, val);
2289 sprint_value (buf2, val & mask);
2290 as_warn (_("%s shortened to %s"), buf1, buf2);
2291 }
2292 return val & mask;
2293 }
2294
2295 enum PREFIX_GROUP
2296 {
2297 PREFIX_EXIST = 0,
2298 PREFIX_LOCK,
2299 PREFIX_REP,
2300 PREFIX_DS,
2301 PREFIX_OTHER
2302 };
2303
2304 /* Returns
2305 a. PREFIX_EXIST if attempting to add a prefix where one from the
2306 same class already exists.
2307 b. PREFIX_LOCK if lock prefix is added.
2308 c. PREFIX_REP if rep/repne prefix is added.
2309 d. PREFIX_DS if ds prefix is added.
2310 e. PREFIX_OTHER if other prefix is added.
2311 */
2312
2313 static enum PREFIX_GROUP
2314 add_prefix (unsigned int prefix)
2315 {
2316 enum PREFIX_GROUP ret = PREFIX_OTHER;
2317 unsigned int q;
2318
2319 if (prefix >= REX_OPCODE && prefix < REX_OPCODE + 16
2320 && flag_code == CODE_64BIT)
2321 {
2322 if ((i.prefix[REX_PREFIX] & prefix & REX_W)
2323 || ((i.prefix[REX_PREFIX] & (REX_R | REX_X | REX_B))
2324 && (prefix & (REX_R | REX_X | REX_B))))
2325 ret = PREFIX_EXIST;
2326 q = REX_PREFIX;
2327 }
2328 else
2329 {
2330 switch (prefix)
2331 {
2332 default:
2333 abort ();
2334
2335 case DS_PREFIX_OPCODE:
2336 ret = PREFIX_DS;
2337 /* Fall through. */
2338 case CS_PREFIX_OPCODE:
2339 case ES_PREFIX_OPCODE:
2340 case FS_PREFIX_OPCODE:
2341 case GS_PREFIX_OPCODE:
2342 case SS_PREFIX_OPCODE:
2343 q = SEG_PREFIX;
2344 break;
2345
2346 case REPNE_PREFIX_OPCODE:
2347 case REPE_PREFIX_OPCODE:
2348 q = REP_PREFIX;
2349 ret = PREFIX_REP;
2350 break;
2351
2352 case LOCK_PREFIX_OPCODE:
2353 q = LOCK_PREFIX;
2354 ret = PREFIX_LOCK;
2355 break;
2356
2357 case FWAIT_OPCODE:
2358 q = WAIT_PREFIX;
2359 break;
2360
2361 case ADDR_PREFIX_OPCODE:
2362 q = ADDR_PREFIX;
2363 break;
2364
2365 case DATA_PREFIX_OPCODE:
2366 q = DATA_PREFIX;
2367 break;
2368 }
2369 if (i.prefix[q] != 0)
2370 ret = PREFIX_EXIST;
2371 }
2372
2373 if (ret)
2374 {
2375 if (!i.prefix[q])
2376 ++i.prefixes;
2377 i.prefix[q] |= prefix;
2378 }
2379 else
2380 as_bad (_("same type of prefix used twice"));
2381
2382 return ret;
2383 }
2384
2385 static void
2386 update_code_flag (int value, int check)
2387 {
2388 PRINTF_LIKE ((*as_error));
2389
2390 flag_code = (enum flag_code) value;
2391 if (flag_code == CODE_64BIT)
2392 {
2393 cpu_arch_flags.bitfield.cpu64 = 1;
2394 cpu_arch_flags.bitfield.cpuno64 = 0;
2395 }
2396 else
2397 {
2398 cpu_arch_flags.bitfield.cpu64 = 0;
2399 cpu_arch_flags.bitfield.cpuno64 = 1;
2400 }
2401 if (value == CODE_64BIT && !cpu_arch_flags.bitfield.cpulm )
2402 {
2403 if (check)
2404 as_error = as_fatal;
2405 else
2406 as_error = as_bad;
2407 (*as_error) (_("64bit mode not supported on `%s'."),
2408 cpu_arch_name ? cpu_arch_name : default_arch);
2409 }
2410 if (value == CODE_32BIT && !cpu_arch_flags.bitfield.cpui386)
2411 {
2412 if (check)
2413 as_error = as_fatal;
2414 else
2415 as_error = as_bad;
2416 (*as_error) (_("32bit mode not supported on `%s'."),
2417 cpu_arch_name ? cpu_arch_name : default_arch);
2418 }
2419 stackop_size = '\0';
2420 }
2421
2422 static void
2423 set_code_flag (int value)
2424 {
2425 update_code_flag (value, 0);
2426 }
2427
2428 static void
2429 set_16bit_gcc_code_flag (int new_code_flag)
2430 {
2431 flag_code = (enum flag_code) new_code_flag;
2432 if (flag_code != CODE_16BIT)
2433 abort ();
2434 cpu_arch_flags.bitfield.cpu64 = 0;
2435 cpu_arch_flags.bitfield.cpuno64 = 1;
2436 stackop_size = LONG_MNEM_SUFFIX;
2437 }
2438
2439 static void
2440 set_intel_syntax (int syntax_flag)
2441 {
2442 /* Find out if register prefixing is specified. */
2443 int ask_naked_reg = 0;
2444
2445 SKIP_WHITESPACE ();
2446 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2447 {
2448 char *string;
2449 int e = get_symbol_name (&string);
2450
2451 if (strcmp (string, "prefix") == 0)
2452 ask_naked_reg = 1;
2453 else if (strcmp (string, "noprefix") == 0)
2454 ask_naked_reg = -1;
2455 else
2456 as_bad (_("bad argument to syntax directive."));
2457 (void) restore_line_pointer (e);
2458 }
2459 demand_empty_rest_of_line ();
2460
2461 intel_syntax = syntax_flag;
2462
2463 if (ask_naked_reg == 0)
2464 allow_naked_reg = (intel_syntax
2465 && (bfd_get_symbol_leading_char (stdoutput) != '\0'));
2466 else
2467 allow_naked_reg = (ask_naked_reg < 0);
2468
2469 expr_set_rank (O_full_ptr, syntax_flag ? 10 : 0);
2470
2471 identifier_chars['%'] = intel_syntax && allow_naked_reg ? '%' : 0;
2472 identifier_chars['$'] = intel_syntax ? '$' : 0;
2473 register_prefix = allow_naked_reg ? "" : "%";
2474 }
2475
2476 static void
2477 set_intel_mnemonic (int mnemonic_flag)
2478 {
2479 intel_mnemonic = mnemonic_flag;
2480 }
2481
2482 static void
2483 set_allow_index_reg (int flag)
2484 {
2485 allow_index_reg = flag;
2486 }
2487
2488 static void
2489 set_check (int what)
2490 {
2491 enum check_kind *kind;
2492 const char *str;
2493
2494 if (what)
2495 {
2496 kind = &operand_check;
2497 str = "operand";
2498 }
2499 else
2500 {
2501 kind = &sse_check;
2502 str = "sse";
2503 }
2504
2505 SKIP_WHITESPACE ();
2506
2507 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2508 {
2509 char *string;
2510 int e = get_symbol_name (&string);
2511
2512 if (strcmp (string, "none") == 0)
2513 *kind = check_none;
2514 else if (strcmp (string, "warning") == 0)
2515 *kind = check_warning;
2516 else if (strcmp (string, "error") == 0)
2517 *kind = check_error;
2518 else
2519 as_bad (_("bad argument to %s_check directive."), str);
2520 (void) restore_line_pointer (e);
2521 }
2522 else
2523 as_bad (_("missing argument for %s_check directive"), str);
2524
2525 demand_empty_rest_of_line ();
2526 }
2527
2528 static void
2529 check_cpu_arch_compatible (const char *name ATTRIBUTE_UNUSED,
2530 i386_cpu_flags new_flag ATTRIBUTE_UNUSED)
2531 {
2532 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
2533 static const char *arch;
2534
2535 /* Intel LIOM is only supported on ELF. */
2536 if (!IS_ELF)
2537 return;
2538
2539 if (!arch)
2540 {
2541 /* Use cpu_arch_name if it is set in md_parse_option. Otherwise
2542 use default_arch. */
2543 arch = cpu_arch_name;
2544 if (!arch)
2545 arch = default_arch;
2546 }
2547
2548 /* If we are targeting Intel MCU, we must enable it. */
2549 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_IAMCU
2550 || new_flag.bitfield.cpuiamcu)
2551 return;
2552
2553 /* If we are targeting Intel L1OM, we must enable it. */
2554 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_L1OM
2555 || new_flag.bitfield.cpul1om)
2556 return;
2557
2558 /* If we are targeting Intel K1OM, we must enable it. */
2559 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_K1OM
2560 || new_flag.bitfield.cpuk1om)
2561 return;
2562
2563 as_bad (_("`%s' is not supported on `%s'"), name, arch);
2564 #endif
2565 }
2566
2567 static void
2568 set_cpu_arch (int dummy ATTRIBUTE_UNUSED)
2569 {
2570 SKIP_WHITESPACE ();
2571
2572 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2573 {
2574 char *string;
2575 int e = get_symbol_name (&string);
2576 unsigned int j;
2577 i386_cpu_flags flags;
2578
2579 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
2580 {
2581 if (strcmp (string, cpu_arch[j].name) == 0)
2582 {
2583 check_cpu_arch_compatible (string, cpu_arch[j].flags);
2584
2585 if (*string != '.')
2586 {
2587 cpu_arch_name = cpu_arch[j].name;
2588 cpu_sub_arch_name = NULL;
2589 cpu_arch_flags = cpu_arch[j].flags;
2590 if (flag_code == CODE_64BIT)
2591 {
2592 cpu_arch_flags.bitfield.cpu64 = 1;
2593 cpu_arch_flags.bitfield.cpuno64 = 0;
2594 }
2595 else
2596 {
2597 cpu_arch_flags.bitfield.cpu64 = 0;
2598 cpu_arch_flags.bitfield.cpuno64 = 1;
2599 }
2600 cpu_arch_isa = cpu_arch[j].type;
2601 cpu_arch_isa_flags = cpu_arch[j].flags;
2602 if (!cpu_arch_tune_set)
2603 {
2604 cpu_arch_tune = cpu_arch_isa;
2605 cpu_arch_tune_flags = cpu_arch_isa_flags;
2606 }
2607 break;
2608 }
2609
2610 flags = cpu_flags_or (cpu_arch_flags,
2611 cpu_arch[j].flags);
2612
2613 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
2614 {
2615 if (cpu_sub_arch_name)
2616 {
2617 char *name = cpu_sub_arch_name;
2618 cpu_sub_arch_name = concat (name,
2619 cpu_arch[j].name,
2620 (const char *) NULL);
2621 free (name);
2622 }
2623 else
2624 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
2625 cpu_arch_flags = flags;
2626 cpu_arch_isa_flags = flags;
2627 }
2628 else
2629 cpu_arch_isa_flags
2630 = cpu_flags_or (cpu_arch_isa_flags,
2631 cpu_arch[j].flags);
2632 (void) restore_line_pointer (e);
2633 demand_empty_rest_of_line ();
2634 return;
2635 }
2636 }
2637
2638 if (*string == '.' && j >= ARRAY_SIZE (cpu_arch))
2639 {
2640 /* Disable an ISA extension. */
2641 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
2642 if (strcmp (string + 1, cpu_noarch [j].name) == 0)
2643 {
2644 flags = cpu_flags_and_not (cpu_arch_flags,
2645 cpu_noarch[j].flags);
2646 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
2647 {
2648 if (cpu_sub_arch_name)
2649 {
2650 char *name = cpu_sub_arch_name;
2651 cpu_sub_arch_name = concat (name, string,
2652 (const char *) NULL);
2653 free (name);
2654 }
2655 else
2656 cpu_sub_arch_name = xstrdup (string);
2657 cpu_arch_flags = flags;
2658 cpu_arch_isa_flags = flags;
2659 }
2660 (void) restore_line_pointer (e);
2661 demand_empty_rest_of_line ();
2662 return;
2663 }
2664
2665 j = ARRAY_SIZE (cpu_arch);
2666 }
2667
2668 if (j >= ARRAY_SIZE (cpu_arch))
2669 as_bad (_("no such architecture: `%s'"), string);
2670
2671 *input_line_pointer = e;
2672 }
2673 else
2674 as_bad (_("missing cpu architecture"));
2675
2676 no_cond_jump_promotion = 0;
2677 if (*input_line_pointer == ','
2678 && !is_end_of_line[(unsigned char) input_line_pointer[1]])
2679 {
2680 char *string;
2681 char e;
2682
2683 ++input_line_pointer;
2684 e = get_symbol_name (&string);
2685
2686 if (strcmp (string, "nojumps") == 0)
2687 no_cond_jump_promotion = 1;
2688 else if (strcmp (string, "jumps") == 0)
2689 ;
2690 else
2691 as_bad (_("no such architecture modifier: `%s'"), string);
2692
2693 (void) restore_line_pointer (e);
2694 }
2695
2696 demand_empty_rest_of_line ();
2697 }
2698
2699 enum bfd_architecture
2700 i386_arch (void)
2701 {
2702 if (cpu_arch_isa == PROCESSOR_L1OM)
2703 {
2704 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2705 || flag_code != CODE_64BIT)
2706 as_fatal (_("Intel L1OM is 64bit ELF only"));
2707 return bfd_arch_l1om;
2708 }
2709 else if (cpu_arch_isa == PROCESSOR_K1OM)
2710 {
2711 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2712 || flag_code != CODE_64BIT)
2713 as_fatal (_("Intel K1OM is 64bit ELF only"));
2714 return bfd_arch_k1om;
2715 }
2716 else if (cpu_arch_isa == PROCESSOR_IAMCU)
2717 {
2718 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2719 || flag_code == CODE_64BIT)
2720 as_fatal (_("Intel MCU is 32bit ELF only"));
2721 return bfd_arch_iamcu;
2722 }
2723 else
2724 return bfd_arch_i386;
2725 }
2726
2727 unsigned long
2728 i386_mach (void)
2729 {
2730 if (!strncmp (default_arch, "x86_64", 6))
2731 {
2732 if (cpu_arch_isa == PROCESSOR_L1OM)
2733 {
2734 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2735 || default_arch[6] != '\0')
2736 as_fatal (_("Intel L1OM is 64bit ELF only"));
2737 return bfd_mach_l1om;
2738 }
2739 else if (cpu_arch_isa == PROCESSOR_K1OM)
2740 {
2741 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2742 || default_arch[6] != '\0')
2743 as_fatal (_("Intel K1OM is 64bit ELF only"));
2744 return bfd_mach_k1om;
2745 }
2746 else if (default_arch[6] == '\0')
2747 return bfd_mach_x86_64;
2748 else
2749 return bfd_mach_x64_32;
2750 }
2751 else if (!strcmp (default_arch, "i386")
2752 || !strcmp (default_arch, "iamcu"))
2753 {
2754 if (cpu_arch_isa == PROCESSOR_IAMCU)
2755 {
2756 if (OUTPUT_FLAVOR != bfd_target_elf_flavour)
2757 as_fatal (_("Intel MCU is 32bit ELF only"));
2758 return bfd_mach_i386_iamcu;
2759 }
2760 else
2761 return bfd_mach_i386_i386;
2762 }
2763 else
2764 as_fatal (_("unknown architecture"));
2765 }
2766 \f
2767 void
2768 md_begin (void)
2769 {
2770 const char *hash_err;
2771
2772 /* Support pseudo prefixes like {disp32}. */
2773 lex_type ['{'] = LEX_BEGIN_NAME;
2774
2775 /* Initialize op_hash hash table. */
2776 op_hash = hash_new ();
2777
2778 {
2779 const insn_template *optab;
2780 templates *core_optab;
2781
2782 /* Setup for loop. */
2783 optab = i386_optab;
2784 core_optab = XNEW (templates);
2785 core_optab->start = optab;
2786
2787 while (1)
2788 {
2789 ++optab;
2790 if (optab->name == NULL
2791 || strcmp (optab->name, (optab - 1)->name) != 0)
2792 {
2793 /* different name --> ship out current template list;
2794 add to hash table; & begin anew. */
2795 core_optab->end = optab;
2796 hash_err = hash_insert (op_hash,
2797 (optab - 1)->name,
2798 (void *) core_optab);
2799 if (hash_err)
2800 {
2801 as_fatal (_("can't hash %s: %s"),
2802 (optab - 1)->name,
2803 hash_err);
2804 }
2805 if (optab->name == NULL)
2806 break;
2807 core_optab = XNEW (templates);
2808 core_optab->start = optab;
2809 }
2810 }
2811 }
2812
2813 /* Initialize reg_hash hash table. */
2814 reg_hash = hash_new ();
2815 {
2816 const reg_entry *regtab;
2817 unsigned int regtab_size = i386_regtab_size;
2818
2819 for (regtab = i386_regtab; regtab_size--; regtab++)
2820 {
2821 hash_err = hash_insert (reg_hash, regtab->reg_name, (void *) regtab);
2822 if (hash_err)
2823 as_fatal (_("can't hash %s: %s"),
2824 regtab->reg_name,
2825 hash_err);
2826 }
2827 }
2828
2829 /* Fill in lexical tables: mnemonic_chars, operand_chars. */
2830 {
2831 int c;
2832 char *p;
2833
2834 for (c = 0; c < 256; c++)
2835 {
2836 if (ISDIGIT (c))
2837 {
2838 digit_chars[c] = c;
2839 mnemonic_chars[c] = c;
2840 register_chars[c] = c;
2841 operand_chars[c] = c;
2842 }
2843 else if (ISLOWER (c))
2844 {
2845 mnemonic_chars[c] = c;
2846 register_chars[c] = c;
2847 operand_chars[c] = c;
2848 }
2849 else if (ISUPPER (c))
2850 {
2851 mnemonic_chars[c] = TOLOWER (c);
2852 register_chars[c] = mnemonic_chars[c];
2853 operand_chars[c] = c;
2854 }
2855 else if (c == '{' || c == '}')
2856 {
2857 mnemonic_chars[c] = c;
2858 operand_chars[c] = c;
2859 }
2860
2861 if (ISALPHA (c) || ISDIGIT (c))
2862 identifier_chars[c] = c;
2863 else if (c >= 128)
2864 {
2865 identifier_chars[c] = c;
2866 operand_chars[c] = c;
2867 }
2868 }
2869
2870 #ifdef LEX_AT
2871 identifier_chars['@'] = '@';
2872 #endif
2873 #ifdef LEX_QM
2874 identifier_chars['?'] = '?';
2875 operand_chars['?'] = '?';
2876 #endif
2877 digit_chars['-'] = '-';
2878 mnemonic_chars['_'] = '_';
2879 mnemonic_chars['-'] = '-';
2880 mnemonic_chars['.'] = '.';
2881 identifier_chars['_'] = '_';
2882 identifier_chars['.'] = '.';
2883
2884 for (p = operand_special_chars; *p != '\0'; p++)
2885 operand_chars[(unsigned char) *p] = *p;
2886 }
2887
2888 if (flag_code == CODE_64BIT)
2889 {
2890 #if defined (OBJ_COFF) && defined (TE_PE)
2891 x86_dwarf2_return_column = (OUTPUT_FLAVOR == bfd_target_coff_flavour
2892 ? 32 : 16);
2893 #else
2894 x86_dwarf2_return_column = 16;
2895 #endif
2896 x86_cie_data_alignment = -8;
2897 }
2898 else
2899 {
2900 x86_dwarf2_return_column = 8;
2901 x86_cie_data_alignment = -4;
2902 }
2903 }
2904
2905 void
2906 i386_print_statistics (FILE *file)
2907 {
2908 hash_print_statistics (file, "i386 opcode", op_hash);
2909 hash_print_statistics (file, "i386 register", reg_hash);
2910 }
2911 \f
2912 #ifdef DEBUG386
2913
2914 /* Debugging routines for md_assemble. */
2915 static void pte (insn_template *);
2916 static void pt (i386_operand_type);
2917 static void pe (expressionS *);
2918 static void ps (symbolS *);
2919
2920 static void
2921 pi (char *line, i386_insn *x)
2922 {
2923 unsigned int j;
2924
2925 fprintf (stdout, "%s: template ", line);
2926 pte (&x->tm);
2927 fprintf (stdout, " address: base %s index %s scale %x\n",
2928 x->base_reg ? x->base_reg->reg_name : "none",
2929 x->index_reg ? x->index_reg->reg_name : "none",
2930 x->log2_scale_factor);
2931 fprintf (stdout, " modrm: mode %x reg %x reg/mem %x\n",
2932 x->rm.mode, x->rm.reg, x->rm.regmem);
2933 fprintf (stdout, " sib: base %x index %x scale %x\n",
2934 x->sib.base, x->sib.index, x->sib.scale);
2935 fprintf (stdout, " rex: 64bit %x extX %x extY %x extZ %x\n",
2936 (x->rex & REX_W) != 0,
2937 (x->rex & REX_R) != 0,
2938 (x->rex & REX_X) != 0,
2939 (x->rex & REX_B) != 0);
2940 for (j = 0; j < x->operands; j++)
2941 {
2942 fprintf (stdout, " #%d: ", j + 1);
2943 pt (x->types[j]);
2944 fprintf (stdout, "\n");
2945 if (x->types[j].bitfield.reg
2946 || x->types[j].bitfield.regmmx
2947 || x->types[j].bitfield.regsimd
2948 || x->types[j].bitfield.sreg2
2949 || x->types[j].bitfield.sreg3
2950 || x->types[j].bitfield.control
2951 || x->types[j].bitfield.debug
2952 || x->types[j].bitfield.test)
2953 fprintf (stdout, "%s\n", x->op[j].regs->reg_name);
2954 if (operand_type_check (x->types[j], imm))
2955 pe (x->op[j].imms);
2956 if (operand_type_check (x->types[j], disp))
2957 pe (x->op[j].disps);
2958 }
2959 }
2960
2961 static void
2962 pte (insn_template *t)
2963 {
2964 unsigned int j;
2965 fprintf (stdout, " %d operands ", t->operands);
2966 fprintf (stdout, "opcode %x ", t->base_opcode);
2967 if (t->extension_opcode != None)
2968 fprintf (stdout, "ext %x ", t->extension_opcode);
2969 if (t->opcode_modifier.d)
2970 fprintf (stdout, "D");
2971 if (t->opcode_modifier.w)
2972 fprintf (stdout, "W");
2973 fprintf (stdout, "\n");
2974 for (j = 0; j < t->operands; j++)
2975 {
2976 fprintf (stdout, " #%d type ", j + 1);
2977 pt (t->operand_types[j]);
2978 fprintf (stdout, "\n");
2979 }
2980 }
2981
2982 static void
2983 pe (expressionS *e)
2984 {
2985 fprintf (stdout, " operation %d\n", e->X_op);
2986 fprintf (stdout, " add_number %ld (%lx)\n",
2987 (long) e->X_add_number, (long) e->X_add_number);
2988 if (e->X_add_symbol)
2989 {
2990 fprintf (stdout, " add_symbol ");
2991 ps (e->X_add_symbol);
2992 fprintf (stdout, "\n");
2993 }
2994 if (e->X_op_symbol)
2995 {
2996 fprintf (stdout, " op_symbol ");
2997 ps (e->X_op_symbol);
2998 fprintf (stdout, "\n");
2999 }
3000 }
3001
3002 static void
3003 ps (symbolS *s)
3004 {
3005 fprintf (stdout, "%s type %s%s",
3006 S_GET_NAME (s),
3007 S_IS_EXTERNAL (s) ? "EXTERNAL " : "",
3008 segment_name (S_GET_SEGMENT (s)));
3009 }
3010
3011 static struct type_name
3012 {
3013 i386_operand_type mask;
3014 const char *name;
3015 }
3016 const type_names[] =
3017 {
3018 { OPERAND_TYPE_REG8, "r8" },
3019 { OPERAND_TYPE_REG16, "r16" },
3020 { OPERAND_TYPE_REG32, "r32" },
3021 { OPERAND_TYPE_REG64, "r64" },
3022 { OPERAND_TYPE_IMM8, "i8" },
3023 { OPERAND_TYPE_IMM8, "i8s" },
3024 { OPERAND_TYPE_IMM16, "i16" },
3025 { OPERAND_TYPE_IMM32, "i32" },
3026 { OPERAND_TYPE_IMM32S, "i32s" },
3027 { OPERAND_TYPE_IMM64, "i64" },
3028 { OPERAND_TYPE_IMM1, "i1" },
3029 { OPERAND_TYPE_BASEINDEX, "BaseIndex" },
3030 { OPERAND_TYPE_DISP8, "d8" },
3031 { OPERAND_TYPE_DISP16, "d16" },
3032 { OPERAND_TYPE_DISP32, "d32" },
3033 { OPERAND_TYPE_DISP32S, "d32s" },
3034 { OPERAND_TYPE_DISP64, "d64" },
3035 { OPERAND_TYPE_INOUTPORTREG, "InOutPortReg" },
3036 { OPERAND_TYPE_SHIFTCOUNT, "ShiftCount" },
3037 { OPERAND_TYPE_CONTROL, "control reg" },
3038 { OPERAND_TYPE_TEST, "test reg" },
3039 { OPERAND_TYPE_DEBUG, "debug reg" },
3040 { OPERAND_TYPE_FLOATREG, "FReg" },
3041 { OPERAND_TYPE_FLOATACC, "FAcc" },
3042 { OPERAND_TYPE_SREG2, "SReg2" },
3043 { OPERAND_TYPE_SREG3, "SReg3" },
3044 { OPERAND_TYPE_ACC, "Acc" },
3045 { OPERAND_TYPE_JUMPABSOLUTE, "Jump Absolute" },
3046 { OPERAND_TYPE_REGMMX, "rMMX" },
3047 { OPERAND_TYPE_REGXMM, "rXMM" },
3048 { OPERAND_TYPE_REGYMM, "rYMM" },
3049 { OPERAND_TYPE_REGZMM, "rZMM" },
3050 { OPERAND_TYPE_REGMASK, "Mask reg" },
3051 { OPERAND_TYPE_ESSEG, "es" },
3052 };
3053
3054 static void
3055 pt (i386_operand_type t)
3056 {
3057 unsigned int j;
3058 i386_operand_type a;
3059
3060 for (j = 0; j < ARRAY_SIZE (type_names); j++)
3061 {
3062 a = operand_type_and (t, type_names[j].mask);
3063 if (!operand_type_all_zero (&a))
3064 fprintf (stdout, "%s, ", type_names[j].name);
3065 }
3066 fflush (stdout);
3067 }
3068
3069 #endif /* DEBUG386 */
3070 \f
3071 static bfd_reloc_code_real_type
3072 reloc (unsigned int size,
3073 int pcrel,
3074 int sign,
3075 bfd_reloc_code_real_type other)
3076 {
3077 if (other != NO_RELOC)
3078 {
3079 reloc_howto_type *rel;
3080
3081 if (size == 8)
3082 switch (other)
3083 {
3084 case BFD_RELOC_X86_64_GOT32:
3085 return BFD_RELOC_X86_64_GOT64;
3086 break;
3087 case BFD_RELOC_X86_64_GOTPLT64:
3088 return BFD_RELOC_X86_64_GOTPLT64;
3089 break;
3090 case BFD_RELOC_X86_64_PLTOFF64:
3091 return BFD_RELOC_X86_64_PLTOFF64;
3092 break;
3093 case BFD_RELOC_X86_64_GOTPC32:
3094 other = BFD_RELOC_X86_64_GOTPC64;
3095 break;
3096 case BFD_RELOC_X86_64_GOTPCREL:
3097 other = BFD_RELOC_X86_64_GOTPCREL64;
3098 break;
3099 case BFD_RELOC_X86_64_TPOFF32:
3100 other = BFD_RELOC_X86_64_TPOFF64;
3101 break;
3102 case BFD_RELOC_X86_64_DTPOFF32:
3103 other = BFD_RELOC_X86_64_DTPOFF64;
3104 break;
3105 default:
3106 break;
3107 }
3108
3109 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
3110 if (other == BFD_RELOC_SIZE32)
3111 {
3112 if (size == 8)
3113 other = BFD_RELOC_SIZE64;
3114 if (pcrel)
3115 {
3116 as_bad (_("there are no pc-relative size relocations"));
3117 return NO_RELOC;
3118 }
3119 }
3120 #endif
3121
3122 /* Sign-checking 4-byte relocations in 16-/32-bit code is pointless. */
3123 if (size == 4 && (flag_code != CODE_64BIT || disallow_64bit_reloc))
3124 sign = -1;
3125
3126 rel = bfd_reloc_type_lookup (stdoutput, other);
3127 if (!rel)
3128 as_bad (_("unknown relocation (%u)"), other);
3129 else if (size != bfd_get_reloc_size (rel))
3130 as_bad (_("%u-byte relocation cannot be applied to %u-byte field"),
3131 bfd_get_reloc_size (rel),
3132 size);
3133 else if (pcrel && !rel->pc_relative)
3134 as_bad (_("non-pc-relative relocation for pc-relative field"));
3135 else if ((rel->complain_on_overflow == complain_overflow_signed
3136 && !sign)
3137 || (rel->complain_on_overflow == complain_overflow_unsigned
3138 && sign > 0))
3139 as_bad (_("relocated field and relocation type differ in signedness"));
3140 else
3141 return other;
3142 return NO_RELOC;
3143 }
3144
3145 if (pcrel)
3146 {
3147 if (!sign)
3148 as_bad (_("there are no unsigned pc-relative relocations"));
3149 switch (size)
3150 {
3151 case 1: return BFD_RELOC_8_PCREL;
3152 case 2: return BFD_RELOC_16_PCREL;
3153 case 4: return BFD_RELOC_32_PCREL;
3154 case 8: return BFD_RELOC_64_PCREL;
3155 }
3156 as_bad (_("cannot do %u byte pc-relative relocation"), size);
3157 }
3158 else
3159 {
3160 if (sign > 0)
3161 switch (size)
3162 {
3163 case 4: return BFD_RELOC_X86_64_32S;
3164 }
3165 else
3166 switch (size)
3167 {
3168 case 1: return BFD_RELOC_8;
3169 case 2: return BFD_RELOC_16;
3170 case 4: return BFD_RELOC_32;
3171 case 8: return BFD_RELOC_64;
3172 }
3173 as_bad (_("cannot do %s %u byte relocation"),
3174 sign > 0 ? "signed" : "unsigned", size);
3175 }
3176
3177 return NO_RELOC;
3178 }
3179
3180 /* Here we decide which fixups can be adjusted to make them relative to
3181 the beginning of the section instead of the symbol. Basically we need
3182 to make sure that the dynamic relocations are done correctly, so in
3183 some cases we force the original symbol to be used. */
3184
3185 int
3186 tc_i386_fix_adjustable (fixS *fixP ATTRIBUTE_UNUSED)
3187 {
3188 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
3189 if (!IS_ELF)
3190 return 1;
3191
3192 /* Don't adjust pc-relative references to merge sections in 64-bit
3193 mode. */
3194 if (use_rela_relocations
3195 && (S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_MERGE) != 0
3196 && fixP->fx_pcrel)
3197 return 0;
3198
3199 /* The x86_64 GOTPCREL are represented as 32bit PCrel relocations
3200 and changed later by validate_fix. */
3201 if (GOT_symbol && fixP->fx_subsy == GOT_symbol
3202 && fixP->fx_r_type == BFD_RELOC_32_PCREL)
3203 return 0;
3204
3205 /* Adjust_reloc_syms doesn't know about the GOT. Need to keep symbol
3206 for size relocations. */
3207 if (fixP->fx_r_type == BFD_RELOC_SIZE32
3208 || fixP->fx_r_type == BFD_RELOC_SIZE64
3209 || fixP->fx_r_type == BFD_RELOC_386_GOTOFF
3210 || fixP->fx_r_type == BFD_RELOC_386_PLT32
3211 || fixP->fx_r_type == BFD_RELOC_386_GOT32
3212 || fixP->fx_r_type == BFD_RELOC_386_GOT32X
3213 || fixP->fx_r_type == BFD_RELOC_386_TLS_GD
3214 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDM
3215 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDO_32
3216 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE_32
3217 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE
3218 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTIE
3219 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE_32
3220 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE
3221 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTDESC
3222 || fixP->fx_r_type == BFD_RELOC_386_TLS_DESC_CALL
3223 || fixP->fx_r_type == BFD_RELOC_X86_64_PLT32
3224 || fixP->fx_r_type == BFD_RELOC_X86_64_GOT32
3225 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCREL
3226 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCRELX
3227 || fixP->fx_r_type == BFD_RELOC_X86_64_REX_GOTPCRELX
3228 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSGD
3229 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSLD
3230 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF32
3231 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF64
3232 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTTPOFF
3233 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF32
3234 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF64
3235 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTOFF64
3236 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPC32_TLSDESC
3237 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSDESC_CALL
3238 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
3239 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
3240 return 0;
3241 #endif
3242 return 1;
3243 }
3244
3245 static int
3246 intel_float_operand (const char *mnemonic)
3247 {
3248 /* Note that the value returned is meaningful only for opcodes with (memory)
3249 operands, hence the code here is free to improperly handle opcodes that
3250 have no operands (for better performance and smaller code). */
3251
3252 if (mnemonic[0] != 'f')
3253 return 0; /* non-math */
3254
3255 switch (mnemonic[1])
3256 {
3257 /* fclex, fdecstp, fdisi, femms, feni, fincstp, finit, fsetpm, and
3258 the fs segment override prefix not currently handled because no
3259 call path can make opcodes without operands get here */
3260 case 'i':
3261 return 2 /* integer op */;
3262 case 'l':
3263 if (mnemonic[2] == 'd' && (mnemonic[3] == 'c' || mnemonic[3] == 'e'))
3264 return 3; /* fldcw/fldenv */
3265 break;
3266 case 'n':
3267 if (mnemonic[2] != 'o' /* fnop */)
3268 return 3; /* non-waiting control op */
3269 break;
3270 case 'r':
3271 if (mnemonic[2] == 's')
3272 return 3; /* frstor/frstpm */
3273 break;
3274 case 's':
3275 if (mnemonic[2] == 'a')
3276 return 3; /* fsave */
3277 if (mnemonic[2] == 't')
3278 {
3279 switch (mnemonic[3])
3280 {
3281 case 'c': /* fstcw */
3282 case 'd': /* fstdw */
3283 case 'e': /* fstenv */
3284 case 's': /* fsts[gw] */
3285 return 3;
3286 }
3287 }
3288 break;
3289 case 'x':
3290 if (mnemonic[2] == 'r' || mnemonic[2] == 's')
3291 return 0; /* fxsave/fxrstor are not really math ops */
3292 break;
3293 }
3294
3295 return 1;
3296 }
3297
3298 /* Build the VEX prefix. */
3299
3300 static void
3301 build_vex_prefix (const insn_template *t)
3302 {
3303 unsigned int register_specifier;
3304 unsigned int implied_prefix;
3305 unsigned int vector_length;
3306
3307 /* Check register specifier. */
3308 if (i.vex.register_specifier)
3309 {
3310 register_specifier =
3311 ~register_number (i.vex.register_specifier) & 0xf;
3312 gas_assert ((i.vex.register_specifier->reg_flags & RegVRex) == 0);
3313 }
3314 else
3315 register_specifier = 0xf;
3316
3317 /* Use 2-byte VEX prefix by swapping destination and source
3318 operand. */
3319 if (i.vec_encoding != vex_encoding_vex3
3320 && i.dir_encoding == dir_encoding_default
3321 && i.operands == i.reg_operands
3322 && i.tm.opcode_modifier.vexopcode == VEX0F
3323 && i.tm.opcode_modifier.load
3324 && i.rex == REX_B)
3325 {
3326 unsigned int xchg = i.operands - 1;
3327 union i386_op temp_op;
3328 i386_operand_type temp_type;
3329
3330 temp_type = i.types[xchg];
3331 i.types[xchg] = i.types[0];
3332 i.types[0] = temp_type;
3333 temp_op = i.op[xchg];
3334 i.op[xchg] = i.op[0];
3335 i.op[0] = temp_op;
3336
3337 gas_assert (i.rm.mode == 3);
3338
3339 i.rex = REX_R;
3340 xchg = i.rm.regmem;
3341 i.rm.regmem = i.rm.reg;
3342 i.rm.reg = xchg;
3343
3344 /* Use the next insn. */
3345 i.tm = t[1];
3346 }
3347
3348 if (i.tm.opcode_modifier.vex == VEXScalar)
3349 vector_length = avxscalar;
3350 else if (i.tm.opcode_modifier.vex == VEX256)
3351 vector_length = 1;
3352 else
3353 {
3354 unsigned int op;
3355
3356 vector_length = 0;
3357 for (op = 0; op < t->operands; ++op)
3358 if (t->operand_types[op].bitfield.xmmword
3359 && t->operand_types[op].bitfield.ymmword
3360 && i.types[op].bitfield.ymmword)
3361 {
3362 vector_length = 1;
3363 break;
3364 }
3365 }
3366
3367 switch ((i.tm.base_opcode >> 8) & 0xff)
3368 {
3369 case 0:
3370 implied_prefix = 0;
3371 break;
3372 case DATA_PREFIX_OPCODE:
3373 implied_prefix = 1;
3374 break;
3375 case REPE_PREFIX_OPCODE:
3376 implied_prefix = 2;
3377 break;
3378 case REPNE_PREFIX_OPCODE:
3379 implied_prefix = 3;
3380 break;
3381 default:
3382 abort ();
3383 }
3384
3385 /* Use 2-byte VEX prefix if possible. */
3386 if (i.vec_encoding != vex_encoding_vex3
3387 && i.tm.opcode_modifier.vexopcode == VEX0F
3388 && i.tm.opcode_modifier.vexw != VEXW1
3389 && (i.rex & (REX_W | REX_X | REX_B)) == 0)
3390 {
3391 /* 2-byte VEX prefix. */
3392 unsigned int r;
3393
3394 i.vex.length = 2;
3395 i.vex.bytes[0] = 0xc5;
3396
3397 /* Check the REX.R bit. */
3398 r = (i.rex & REX_R) ? 0 : 1;
3399 i.vex.bytes[1] = (r << 7
3400 | register_specifier << 3
3401 | vector_length << 2
3402 | implied_prefix);
3403 }
3404 else
3405 {
3406 /* 3-byte VEX prefix. */
3407 unsigned int m, w;
3408
3409 i.vex.length = 3;
3410
3411 switch (i.tm.opcode_modifier.vexopcode)
3412 {
3413 case VEX0F:
3414 m = 0x1;
3415 i.vex.bytes[0] = 0xc4;
3416 break;
3417 case VEX0F38:
3418 m = 0x2;
3419 i.vex.bytes[0] = 0xc4;
3420 break;
3421 case VEX0F3A:
3422 m = 0x3;
3423 i.vex.bytes[0] = 0xc4;
3424 break;
3425 case XOP08:
3426 m = 0x8;
3427 i.vex.bytes[0] = 0x8f;
3428 break;
3429 case XOP09:
3430 m = 0x9;
3431 i.vex.bytes[0] = 0x8f;
3432 break;
3433 case XOP0A:
3434 m = 0xa;
3435 i.vex.bytes[0] = 0x8f;
3436 break;
3437 default:
3438 abort ();
3439 }
3440
3441 /* The high 3 bits of the second VEX byte are 1's compliment
3442 of RXB bits from REX. */
3443 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3444
3445 /* Check the REX.W bit. */
3446 w = (i.rex & REX_W) ? 1 : 0;
3447 if (i.tm.opcode_modifier.vexw == VEXW1)
3448 w = 1;
3449
3450 i.vex.bytes[2] = (w << 7
3451 | register_specifier << 3
3452 | vector_length << 2
3453 | implied_prefix);
3454 }
3455 }
3456
3457 static INLINE bfd_boolean
3458 is_evex_encoding (const insn_template *t)
3459 {
3460 return t->opcode_modifier.evex
3461 || t->opcode_modifier.broadcast || t->opcode_modifier.masking
3462 || t->opcode_modifier.staticrounding || t->opcode_modifier.sae;
3463 }
3464
3465 /* Build the EVEX prefix. */
3466
3467 static void
3468 build_evex_prefix (void)
3469 {
3470 unsigned int register_specifier;
3471 unsigned int implied_prefix;
3472 unsigned int m, w;
3473 rex_byte vrex_used = 0;
3474
3475 /* Check register specifier. */
3476 if (i.vex.register_specifier)
3477 {
3478 gas_assert ((i.vrex & REX_X) == 0);
3479
3480 register_specifier = i.vex.register_specifier->reg_num;
3481 if ((i.vex.register_specifier->reg_flags & RegRex))
3482 register_specifier += 8;
3483 /* The upper 16 registers are encoded in the fourth byte of the
3484 EVEX prefix. */
3485 if (!(i.vex.register_specifier->reg_flags & RegVRex))
3486 i.vex.bytes[3] = 0x8;
3487 register_specifier = ~register_specifier & 0xf;
3488 }
3489 else
3490 {
3491 register_specifier = 0xf;
3492
3493 /* Encode upper 16 vector index register in the fourth byte of
3494 the EVEX prefix. */
3495 if (!(i.vrex & REX_X))
3496 i.vex.bytes[3] = 0x8;
3497 else
3498 vrex_used |= REX_X;
3499 }
3500
3501 switch ((i.tm.base_opcode >> 8) & 0xff)
3502 {
3503 case 0:
3504 implied_prefix = 0;
3505 break;
3506 case DATA_PREFIX_OPCODE:
3507 implied_prefix = 1;
3508 break;
3509 case REPE_PREFIX_OPCODE:
3510 implied_prefix = 2;
3511 break;
3512 case REPNE_PREFIX_OPCODE:
3513 implied_prefix = 3;
3514 break;
3515 default:
3516 abort ();
3517 }
3518
3519 /* 4 byte EVEX prefix. */
3520 i.vex.length = 4;
3521 i.vex.bytes[0] = 0x62;
3522
3523 /* mmmm bits. */
3524 switch (i.tm.opcode_modifier.vexopcode)
3525 {
3526 case VEX0F:
3527 m = 1;
3528 break;
3529 case VEX0F38:
3530 m = 2;
3531 break;
3532 case VEX0F3A:
3533 m = 3;
3534 break;
3535 default:
3536 abort ();
3537 break;
3538 }
3539
3540 /* The high 3 bits of the second EVEX byte are 1's compliment of RXB
3541 bits from REX. */
3542 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3543
3544 /* The fifth bit of the second EVEX byte is 1's compliment of the
3545 REX_R bit in VREX. */
3546 if (!(i.vrex & REX_R))
3547 i.vex.bytes[1] |= 0x10;
3548 else
3549 vrex_used |= REX_R;
3550
3551 if ((i.reg_operands + i.imm_operands) == i.operands)
3552 {
3553 /* When all operands are registers, the REX_X bit in REX is not
3554 used. We reuse it to encode the upper 16 registers, which is
3555 indicated by the REX_B bit in VREX. The REX_X bit is encoded
3556 as 1's compliment. */
3557 if ((i.vrex & REX_B))
3558 {
3559 vrex_used |= REX_B;
3560 i.vex.bytes[1] &= ~0x40;
3561 }
3562 }
3563
3564 /* EVEX instructions shouldn't need the REX prefix. */
3565 i.vrex &= ~vrex_used;
3566 gas_assert (i.vrex == 0);
3567
3568 /* Check the REX.W bit. */
3569 w = (i.rex & REX_W) ? 1 : 0;
3570 if (i.tm.opcode_modifier.vexw)
3571 {
3572 if (i.tm.opcode_modifier.vexw == VEXW1)
3573 w = 1;
3574 }
3575 /* If w is not set it means we are dealing with WIG instruction. */
3576 else if (!w)
3577 {
3578 if (evexwig == evexw1)
3579 w = 1;
3580 }
3581
3582 /* Encode the U bit. */
3583 implied_prefix |= 0x4;
3584
3585 /* The third byte of the EVEX prefix. */
3586 i.vex.bytes[2] = (w << 7 | register_specifier << 3 | implied_prefix);
3587
3588 /* The fourth byte of the EVEX prefix. */
3589 /* The zeroing-masking bit. */
3590 if (i.mask && i.mask->zeroing)
3591 i.vex.bytes[3] |= 0x80;
3592
3593 /* Don't always set the broadcast bit if there is no RC. */
3594 if (!i.rounding)
3595 {
3596 /* Encode the vector length. */
3597 unsigned int vec_length;
3598
3599 if (!i.tm.opcode_modifier.evex
3600 || i.tm.opcode_modifier.evex == EVEXDYN)
3601 {
3602 unsigned int op;
3603
3604 vec_length = 0;
3605 for (op = 0; op < i.tm.operands; ++op)
3606 if (i.tm.operand_types[op].bitfield.xmmword
3607 + i.tm.operand_types[op].bitfield.ymmword
3608 + i.tm.operand_types[op].bitfield.zmmword > 1)
3609 {
3610 if (i.types[op].bitfield.zmmword)
3611 i.tm.opcode_modifier.evex = EVEX512;
3612 else if (i.types[op].bitfield.ymmword)
3613 i.tm.opcode_modifier.evex = EVEX256;
3614 else if (i.types[op].bitfield.xmmword)
3615 i.tm.opcode_modifier.evex = EVEX128;
3616 else
3617 continue;
3618 break;
3619 }
3620 }
3621
3622 switch (i.tm.opcode_modifier.evex)
3623 {
3624 case EVEXLIG: /* LL' is ignored */
3625 vec_length = evexlig << 5;
3626 break;
3627 case EVEX128:
3628 vec_length = 0 << 5;
3629 break;
3630 case EVEX256:
3631 vec_length = 1 << 5;
3632 break;
3633 case EVEX512:
3634 vec_length = 2 << 5;
3635 break;
3636 default:
3637 abort ();
3638 break;
3639 }
3640 i.vex.bytes[3] |= vec_length;
3641 /* Encode the broadcast bit. */
3642 if (i.broadcast)
3643 i.vex.bytes[3] |= 0x10;
3644 }
3645 else
3646 {
3647 if (i.rounding->type != saeonly)
3648 i.vex.bytes[3] |= 0x10 | (i.rounding->type << 5);
3649 else
3650 i.vex.bytes[3] |= 0x10 | (evexrcig << 5);
3651 }
3652
3653 if (i.mask && i.mask->mask)
3654 i.vex.bytes[3] |= i.mask->mask->reg_num;
3655 }
3656
3657 static void
3658 process_immext (void)
3659 {
3660 expressionS *exp;
3661
3662 if ((i.tm.cpu_flags.bitfield.cpusse3 || i.tm.cpu_flags.bitfield.cpusvme)
3663 && i.operands > 0)
3664 {
3665 /* MONITOR/MWAIT as well as SVME instructions have fixed operands
3666 with an opcode suffix which is coded in the same place as an
3667 8-bit immediate field would be.
3668 Here we check those operands and remove them afterwards. */
3669 unsigned int x;
3670
3671 for (x = 0; x < i.operands; x++)
3672 if (register_number (i.op[x].regs) != x)
3673 as_bad (_("can't use register '%s%s' as operand %d in '%s'."),
3674 register_prefix, i.op[x].regs->reg_name, x + 1,
3675 i.tm.name);
3676
3677 i.operands = 0;
3678 }
3679
3680 if (i.tm.cpu_flags.bitfield.cpumwaitx && i.operands > 0)
3681 {
3682 /* MONITORX/MWAITX instructions have fixed operands with an opcode
3683 suffix which is coded in the same place as an 8-bit immediate
3684 field would be.
3685 Here we check those operands and remove them afterwards. */
3686 unsigned int x;
3687
3688 if (i.operands != 3)
3689 abort();
3690
3691 for (x = 0; x < 2; x++)
3692 if (register_number (i.op[x].regs) != x)
3693 goto bad_register_operand;
3694
3695 /* Check for third operand for mwaitx/monitorx insn. */
3696 if (register_number (i.op[x].regs)
3697 != (x + (i.tm.extension_opcode == 0xfb)))
3698 {
3699 bad_register_operand:
3700 as_bad (_("can't use register '%s%s' as operand %d in '%s'."),
3701 register_prefix, i.op[x].regs->reg_name, x+1,
3702 i.tm.name);
3703 }
3704
3705 i.operands = 0;
3706 }
3707
3708 /* These AMD 3DNow! and SSE2 instructions have an opcode suffix
3709 which is coded in the same place as an 8-bit immediate field
3710 would be. Here we fake an 8-bit immediate operand from the
3711 opcode suffix stored in tm.extension_opcode.
3712
3713 AVX instructions also use this encoding, for some of
3714 3 argument instructions. */
3715
3716 gas_assert (i.imm_operands <= 1
3717 && (i.operands <= 2
3718 || ((i.tm.opcode_modifier.vex
3719 || i.tm.opcode_modifier.vexopcode
3720 || is_evex_encoding (&i.tm))
3721 && i.operands <= 4)));
3722
3723 exp = &im_expressions[i.imm_operands++];
3724 i.op[i.operands].imms = exp;
3725 i.types[i.operands] = imm8;
3726 i.operands++;
3727 exp->X_op = O_constant;
3728 exp->X_add_number = i.tm.extension_opcode;
3729 i.tm.extension_opcode = None;
3730 }
3731
3732
3733 static int
3734 check_hle (void)
3735 {
3736 switch (i.tm.opcode_modifier.hleprefixok)
3737 {
3738 default:
3739 abort ();
3740 case HLEPrefixNone:
3741 as_bad (_("invalid instruction `%s' after `%s'"),
3742 i.tm.name, i.hle_prefix);
3743 return 0;
3744 case HLEPrefixLock:
3745 if (i.prefix[LOCK_PREFIX])
3746 return 1;
3747 as_bad (_("missing `lock' with `%s'"), i.hle_prefix);
3748 return 0;
3749 case HLEPrefixAny:
3750 return 1;
3751 case HLEPrefixRelease:
3752 if (i.prefix[HLE_PREFIX] != XRELEASE_PREFIX_OPCODE)
3753 {
3754 as_bad (_("instruction `%s' after `xacquire' not allowed"),
3755 i.tm.name);
3756 return 0;
3757 }
3758 if (i.mem_operands == 0
3759 || !operand_type_check (i.types[i.operands - 1], anymem))
3760 {
3761 as_bad (_("memory destination needed for instruction `%s'"
3762 " after `xrelease'"), i.tm.name);
3763 return 0;
3764 }
3765 return 1;
3766 }
3767 }
3768
3769 /* Try the shortest encoding by shortening operand size. */
3770
3771 static void
3772 optimize_encoding (void)
3773 {
3774 int j;
3775
3776 if (optimize_for_space
3777 && i.reg_operands == 1
3778 && i.imm_operands == 1
3779 && !i.types[1].bitfield.byte
3780 && i.op[0].imms->X_op == O_constant
3781 && fits_in_imm7 (i.op[0].imms->X_add_number)
3782 && ((i.tm.base_opcode == 0xa8
3783 && i.tm.extension_opcode == None)
3784 || (i.tm.base_opcode == 0xf6
3785 && i.tm.extension_opcode == 0x0)))
3786 {
3787 /* Optimize: -Os:
3788 test $imm7, %r64/%r32/%r16 -> test $imm7, %r8
3789 */
3790 unsigned int base_regnum = i.op[1].regs->reg_num;
3791 if (flag_code == CODE_64BIT || base_regnum < 4)
3792 {
3793 i.types[1].bitfield.byte = 1;
3794 /* Ignore the suffix. */
3795 i.suffix = 0;
3796 if (base_regnum >= 4
3797 && !(i.op[1].regs->reg_flags & RegRex))
3798 {
3799 /* Handle SP, BP, SI and DI registers. */
3800 if (i.types[1].bitfield.word)
3801 j = 16;
3802 else if (i.types[1].bitfield.dword)
3803 j = 32;
3804 else
3805 j = 48;
3806 i.op[1].regs -= j;
3807 }
3808 }
3809 }
3810 else if (flag_code == CODE_64BIT
3811 && ((i.types[1].bitfield.qword
3812 && i.reg_operands == 1
3813 && i.imm_operands == 1
3814 && i.op[0].imms->X_op == O_constant
3815 && ((i.tm.base_opcode == 0xb0
3816 && i.tm.extension_opcode == None
3817 && fits_in_unsigned_long (i.op[0].imms->X_add_number))
3818 || (fits_in_imm31 (i.op[0].imms->X_add_number)
3819 && (((i.tm.base_opcode == 0x24
3820 || i.tm.base_opcode == 0xa8)
3821 && i.tm.extension_opcode == None)
3822 || (i.tm.base_opcode == 0x80
3823 && i.tm.extension_opcode == 0x4)
3824 || ((i.tm.base_opcode == 0xf6
3825 || i.tm.base_opcode == 0xc6)
3826 && i.tm.extension_opcode == 0x0)))))
3827 || (i.types[0].bitfield.qword
3828 && ((i.reg_operands == 2
3829 && i.op[0].regs == i.op[1].regs
3830 && ((i.tm.base_opcode == 0x30
3831 || i.tm.base_opcode == 0x28)
3832 && i.tm.extension_opcode == None))
3833 || (i.reg_operands == 1
3834 && i.operands == 1
3835 && i.tm.base_opcode == 0x30
3836 && i.tm.extension_opcode == None)))))
3837 {
3838 /* Optimize: -O:
3839 andq $imm31, %r64 -> andl $imm31, %r32
3840 testq $imm31, %r64 -> testl $imm31, %r32
3841 xorq %r64, %r64 -> xorl %r32, %r32
3842 subq %r64, %r64 -> subl %r32, %r32
3843 movq $imm31, %r64 -> movl $imm31, %r32
3844 movq $imm32, %r64 -> movl $imm32, %r32
3845 */
3846 i.tm.opcode_modifier.norex64 = 1;
3847 if (i.tm.base_opcode == 0xb0 || i.tm.base_opcode == 0xc6)
3848 {
3849 /* Handle
3850 movq $imm31, %r64 -> movl $imm31, %r32
3851 movq $imm32, %r64 -> movl $imm32, %r32
3852 */
3853 i.tm.operand_types[0].bitfield.imm32 = 1;
3854 i.tm.operand_types[0].bitfield.imm32s = 0;
3855 i.tm.operand_types[0].bitfield.imm64 = 0;
3856 i.types[0].bitfield.imm32 = 1;
3857 i.types[0].bitfield.imm32s = 0;
3858 i.types[0].bitfield.imm64 = 0;
3859 i.types[1].bitfield.dword = 1;
3860 i.types[1].bitfield.qword = 0;
3861 if (i.tm.base_opcode == 0xc6)
3862 {
3863 /* Handle
3864 movq $imm31, %r64 -> movl $imm31, %r32
3865 */
3866 i.tm.base_opcode = 0xb0;
3867 i.tm.extension_opcode = None;
3868 i.tm.opcode_modifier.shortform = 1;
3869 i.tm.opcode_modifier.modrm = 0;
3870 }
3871 }
3872 }
3873 else if (optimize > 1
3874 && i.reg_operands == 3
3875 && i.op[0].regs == i.op[1].regs
3876 && !i.types[2].bitfield.xmmword
3877 && (i.tm.opcode_modifier.vex
3878 || (!i.mask
3879 && !i.rounding
3880 && is_evex_encoding (&i.tm)
3881 && (i.vec_encoding != vex_encoding_evex
3882 || i.tm.cpu_flags.bitfield.cpuavx512vl
3883 || cpu_arch_isa_flags.bitfield.cpuavx512vl)))
3884 && ((i.tm.base_opcode == 0x55
3885 || i.tm.base_opcode == 0x6655
3886 || i.tm.base_opcode == 0x66df
3887 || i.tm.base_opcode == 0x57
3888 || i.tm.base_opcode == 0x6657
3889 || i.tm.base_opcode == 0x66ef
3890 || i.tm.base_opcode == 0x66f8
3891 || i.tm.base_opcode == 0x66f9
3892 || i.tm.base_opcode == 0x66fa
3893 || i.tm.base_opcode == 0x66fb)
3894 && i.tm.extension_opcode == None))
3895 {
3896 /* Optimize: -O2:
3897 VOP, one of vandnps, vandnpd, vxorps, vxorpd, vpsubb, vpsubd,
3898 vpsubq and vpsubw:
3899 EVEX VOP %zmmM, %zmmM, %zmmN
3900 -> VEX VOP %xmmM, %xmmM, %xmmN (M and N < 16)
3901 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16)
3902 EVEX VOP %ymmM, %ymmM, %ymmN
3903 -> VEX VOP %xmmM, %xmmM, %xmmN (M and N < 16)
3904 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16)
3905 VEX VOP %ymmM, %ymmM, %ymmN
3906 -> VEX VOP %xmmM, %xmmM, %xmmN
3907 VOP, one of vpandn and vpxor:
3908 VEX VOP %ymmM, %ymmM, %ymmN
3909 -> VEX VOP %xmmM, %xmmM, %xmmN
3910 VOP, one of vpandnd and vpandnq:
3911 EVEX VOP %zmmM, %zmmM, %zmmN
3912 -> VEX vpandn %xmmM, %xmmM, %xmmN (M and N < 16)
3913 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16)
3914 EVEX VOP %ymmM, %ymmM, %ymmN
3915 -> VEX vpandn %xmmM, %xmmM, %xmmN (M and N < 16)
3916 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16)
3917 VOP, one of vpxord and vpxorq:
3918 EVEX VOP %zmmM, %zmmM, %zmmN
3919 -> VEX vpxor %xmmM, %xmmM, %xmmN (M and N < 16)
3920 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16)
3921 EVEX VOP %ymmM, %ymmM, %ymmN
3922 -> VEX vpxor %xmmM, %xmmM, %xmmN (M and N < 16)
3923 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16)
3924 */
3925 if (is_evex_encoding (&i.tm))
3926 {
3927 if (i.vec_encoding == vex_encoding_evex)
3928 i.tm.opcode_modifier.evex = EVEX128;
3929 else
3930 {
3931 i.tm.opcode_modifier.vex = VEX128;
3932 i.tm.opcode_modifier.vexw = VEXW0;
3933 i.tm.opcode_modifier.evex = 0;
3934 }
3935 }
3936 else
3937 i.tm.opcode_modifier.vex = VEX128;
3938
3939 if (i.tm.opcode_modifier.vex)
3940 for (j = 0; j < 3; j++)
3941 {
3942 i.types[j].bitfield.xmmword = 1;
3943 i.types[j].bitfield.ymmword = 0;
3944 }
3945 }
3946 }
3947
3948 /* This is the guts of the machine-dependent assembler. LINE points to a
3949 machine dependent instruction. This function is supposed to emit
3950 the frags/bytes it assembles to. */
3951
3952 void
3953 md_assemble (char *line)
3954 {
3955 unsigned int j;
3956 char mnemonic[MAX_MNEM_SIZE], mnem_suffix;
3957 const insn_template *t;
3958
3959 /* Initialize globals. */
3960 memset (&i, '\0', sizeof (i));
3961 for (j = 0; j < MAX_OPERANDS; j++)
3962 i.reloc[j] = NO_RELOC;
3963 memset (disp_expressions, '\0', sizeof (disp_expressions));
3964 memset (im_expressions, '\0', sizeof (im_expressions));
3965 save_stack_p = save_stack;
3966
3967 /* First parse an instruction mnemonic & call i386_operand for the operands.
3968 We assume that the scrubber has arranged it so that line[0] is the valid
3969 start of a (possibly prefixed) mnemonic. */
3970
3971 line = parse_insn (line, mnemonic);
3972 if (line == NULL)
3973 return;
3974 mnem_suffix = i.suffix;
3975
3976 line = parse_operands (line, mnemonic);
3977 this_operand = -1;
3978 xfree (i.memop1_string);
3979 i.memop1_string = NULL;
3980 if (line == NULL)
3981 return;
3982
3983 /* Now we've parsed the mnemonic into a set of templates, and have the
3984 operands at hand. */
3985
3986 /* All intel opcodes have reversed operands except for "bound" and
3987 "enter". We also don't reverse intersegment "jmp" and "call"
3988 instructions with 2 immediate operands so that the immediate segment
3989 precedes the offset, as it does when in AT&T mode. */
3990 if (intel_syntax
3991 && i.operands > 1
3992 && (strcmp (mnemonic, "bound") != 0)
3993 && (strcmp (mnemonic, "invlpga") != 0)
3994 && !(operand_type_check (i.types[0], imm)
3995 && operand_type_check (i.types[1], imm)))
3996 swap_operands ();
3997
3998 /* The order of the immediates should be reversed
3999 for 2 immediates extrq and insertq instructions */
4000 if (i.imm_operands == 2
4001 && (strcmp (mnemonic, "extrq") == 0
4002 || strcmp (mnemonic, "insertq") == 0))
4003 swap_2_operands (0, 1);
4004
4005 if (i.imm_operands)
4006 optimize_imm ();
4007
4008 /* Don't optimize displacement for movabs since it only takes 64bit
4009 displacement. */
4010 if (i.disp_operands
4011 && i.disp_encoding != disp_encoding_32bit
4012 && (flag_code != CODE_64BIT
4013 || strcmp (mnemonic, "movabs") != 0))
4014 optimize_disp ();
4015
4016 /* Next, we find a template that matches the given insn,
4017 making sure the overlap of the given operands types is consistent
4018 with the template operand types. */
4019
4020 if (!(t = match_template (mnem_suffix)))
4021 return;
4022
4023 if (sse_check != check_none
4024 && !i.tm.opcode_modifier.noavx
4025 && !i.tm.cpu_flags.bitfield.cpuavx
4026 && (i.tm.cpu_flags.bitfield.cpusse
4027 || i.tm.cpu_flags.bitfield.cpusse2
4028 || i.tm.cpu_flags.bitfield.cpusse3
4029 || i.tm.cpu_flags.bitfield.cpussse3
4030 || i.tm.cpu_flags.bitfield.cpusse4_1
4031 || i.tm.cpu_flags.bitfield.cpusse4_2
4032 || i.tm.cpu_flags.bitfield.cpupclmul
4033 || i.tm.cpu_flags.bitfield.cpuaes
4034 || i.tm.cpu_flags.bitfield.cpugfni))
4035 {
4036 (sse_check == check_warning
4037 ? as_warn
4038 : as_bad) (_("SSE instruction `%s' is used"), i.tm.name);
4039 }
4040
4041 /* Zap movzx and movsx suffix. The suffix has been set from
4042 "word ptr" or "byte ptr" on the source operand in Intel syntax
4043 or extracted from mnemonic in AT&T syntax. But we'll use
4044 the destination register to choose the suffix for encoding. */
4045 if ((i.tm.base_opcode & ~9) == 0x0fb6)
4046 {
4047 /* In Intel syntax, there must be a suffix. In AT&T syntax, if
4048 there is no suffix, the default will be byte extension. */
4049 if (i.reg_operands != 2
4050 && !i.suffix
4051 && intel_syntax)
4052 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
4053
4054 i.suffix = 0;
4055 }
4056
4057 if (i.tm.opcode_modifier.fwait)
4058 if (!add_prefix (FWAIT_OPCODE))
4059 return;
4060
4061 /* Check if REP prefix is OK. */
4062 if (i.rep_prefix && !i.tm.opcode_modifier.repprefixok)
4063 {
4064 as_bad (_("invalid instruction `%s' after `%s'"),
4065 i.tm.name, i.rep_prefix);
4066 return;
4067 }
4068
4069 /* Check for lock without a lockable instruction. Destination operand
4070 must be memory unless it is xchg (0x86). */
4071 if (i.prefix[LOCK_PREFIX]
4072 && (!i.tm.opcode_modifier.islockable
4073 || i.mem_operands == 0
4074 || (i.tm.base_opcode != 0x86
4075 && !operand_type_check (i.types[i.operands - 1], anymem))))
4076 {
4077 as_bad (_("expecting lockable instruction after `lock'"));
4078 return;
4079 }
4080
4081 /* Check if HLE prefix is OK. */
4082 if (i.hle_prefix && !check_hle ())
4083 return;
4084
4085 /* Check BND prefix. */
4086 if (i.bnd_prefix && !i.tm.opcode_modifier.bndprefixok)
4087 as_bad (_("expecting valid branch instruction after `bnd'"));
4088
4089 /* Check NOTRACK prefix. */
4090 if (i.notrack_prefix && !i.tm.opcode_modifier.notrackprefixok)
4091 as_bad (_("expecting indirect branch instruction after `notrack'"));
4092
4093 if (i.tm.cpu_flags.bitfield.cpumpx)
4094 {
4095 if (flag_code == CODE_64BIT && i.prefix[ADDR_PREFIX])
4096 as_bad (_("32-bit address isn't allowed in 64-bit MPX instructions."));
4097 else if (flag_code != CODE_16BIT
4098 ? i.prefix[ADDR_PREFIX]
4099 : i.mem_operands && !i.prefix[ADDR_PREFIX])
4100 as_bad (_("16-bit address isn't allowed in MPX instructions"));
4101 }
4102
4103 /* Insert BND prefix. */
4104 if (add_bnd_prefix
4105 && i.tm.opcode_modifier.bndprefixok
4106 && !i.prefix[BND_PREFIX])
4107 add_prefix (BND_PREFIX_OPCODE);
4108
4109 /* Check string instruction segment overrides. */
4110 if (i.tm.opcode_modifier.isstring && i.mem_operands != 0)
4111 {
4112 if (!check_string ())
4113 return;
4114 i.disp_operands = 0;
4115 }
4116
4117 if (optimize && !i.no_optimize && i.tm.opcode_modifier.optimize)
4118 optimize_encoding ();
4119
4120 if (!process_suffix ())
4121 return;
4122
4123 /* Update operand types. */
4124 for (j = 0; j < i.operands; j++)
4125 i.types[j] = operand_type_and (i.types[j], i.tm.operand_types[j]);
4126
4127 /* Make still unresolved immediate matches conform to size of immediate
4128 given in i.suffix. */
4129 if (!finalize_imm ())
4130 return;
4131
4132 if (i.types[0].bitfield.imm1)
4133 i.imm_operands = 0; /* kludge for shift insns. */
4134
4135 /* We only need to check those implicit registers for instructions
4136 with 3 operands or less. */
4137 if (i.operands <= 3)
4138 for (j = 0; j < i.operands; j++)
4139 if (i.types[j].bitfield.inoutportreg
4140 || i.types[j].bitfield.shiftcount
4141 || (i.types[j].bitfield.acc && !i.types[j].bitfield.xmmword))
4142 i.reg_operands--;
4143
4144 /* ImmExt should be processed after SSE2AVX. */
4145 if (!i.tm.opcode_modifier.sse2avx
4146 && i.tm.opcode_modifier.immext)
4147 process_immext ();
4148
4149 /* For insns with operands there are more diddles to do to the opcode. */
4150 if (i.operands)
4151 {
4152 if (!process_operands ())
4153 return;
4154 }
4155 else if (!quiet_warnings && i.tm.opcode_modifier.ugh)
4156 {
4157 /* UnixWare fsub no args is alias for fsubp, fadd -> faddp, etc. */
4158 as_warn (_("translating to `%sp'"), i.tm.name);
4159 }
4160
4161 if (i.tm.opcode_modifier.vex || i.tm.opcode_modifier.vexopcode
4162 || is_evex_encoding (&i.tm))
4163 {
4164 if (flag_code == CODE_16BIT)
4165 {
4166 as_bad (_("instruction `%s' isn't supported in 16-bit mode."),
4167 i.tm.name);
4168 return;
4169 }
4170
4171 if (i.tm.opcode_modifier.vex)
4172 build_vex_prefix (t);
4173 else
4174 build_evex_prefix ();
4175 }
4176
4177 /* Handle conversion of 'int $3' --> special int3 insn. XOP or FMA4
4178 instructions may define INT_OPCODE as well, so avoid this corner
4179 case for those instructions that use MODRM. */
4180 if (i.tm.base_opcode == INT_OPCODE
4181 && !i.tm.opcode_modifier.modrm
4182 && i.op[0].imms->X_add_number == 3)
4183 {
4184 i.tm.base_opcode = INT3_OPCODE;
4185 i.imm_operands = 0;
4186 }
4187
4188 if ((i.tm.opcode_modifier.jump
4189 || i.tm.opcode_modifier.jumpbyte
4190 || i.tm.opcode_modifier.jumpdword)
4191 && i.op[0].disps->X_op == O_constant)
4192 {
4193 /* Convert "jmp constant" (and "call constant") to a jump (call) to
4194 the absolute address given by the constant. Since ix86 jumps and
4195 calls are pc relative, we need to generate a reloc. */
4196 i.op[0].disps->X_add_symbol = &abs_symbol;
4197 i.op[0].disps->X_op = O_symbol;
4198 }
4199
4200 if (i.tm.opcode_modifier.rex64)
4201 i.rex |= REX_W;
4202
4203 /* For 8 bit registers we need an empty rex prefix. Also if the
4204 instruction already has a prefix, we need to convert old
4205 registers to new ones. */
4206
4207 if ((i.types[0].bitfield.reg && i.types[0].bitfield.byte
4208 && (i.op[0].regs->reg_flags & RegRex64) != 0)
4209 || (i.types[1].bitfield.reg && i.types[1].bitfield.byte
4210 && (i.op[1].regs->reg_flags & RegRex64) != 0)
4211 || (((i.types[0].bitfield.reg && i.types[0].bitfield.byte)
4212 || (i.types[1].bitfield.reg && i.types[1].bitfield.byte))
4213 && i.rex != 0))
4214 {
4215 int x;
4216
4217 i.rex |= REX_OPCODE;
4218 for (x = 0; x < 2; x++)
4219 {
4220 /* Look for 8 bit operand that uses old registers. */
4221 if (i.types[x].bitfield.reg && i.types[x].bitfield.byte
4222 && (i.op[x].regs->reg_flags & RegRex64) == 0)
4223 {
4224 /* In case it is "hi" register, give up. */
4225 if (i.op[x].regs->reg_num > 3)
4226 as_bad (_("can't encode register '%s%s' in an "
4227 "instruction requiring REX prefix."),
4228 register_prefix, i.op[x].regs->reg_name);
4229
4230 /* Otherwise it is equivalent to the extended register.
4231 Since the encoding doesn't change this is merely
4232 cosmetic cleanup for debug output. */
4233
4234 i.op[x].regs = i.op[x].regs + 8;
4235 }
4236 }
4237 }
4238
4239 if (i.rex == 0 && i.rex_encoding)
4240 {
4241 /* Check if we can add a REX_OPCODE byte. Look for 8 bit operand
4242 that uses legacy register. If it is "hi" register, don't add
4243 the REX_OPCODE byte. */
4244 int x;
4245 for (x = 0; x < 2; x++)
4246 if (i.types[x].bitfield.reg
4247 && i.types[x].bitfield.byte
4248 && (i.op[x].regs->reg_flags & RegRex64) == 0
4249 && i.op[x].regs->reg_num > 3)
4250 {
4251 i.rex_encoding = FALSE;
4252 break;
4253 }
4254
4255 if (i.rex_encoding)
4256 i.rex = REX_OPCODE;
4257 }
4258
4259 if (i.rex != 0)
4260 add_prefix (REX_OPCODE | i.rex);
4261
4262 /* We are ready to output the insn. */
4263 output_insn ();
4264 }
4265
4266 static char *
4267 parse_insn (char *line, char *mnemonic)
4268 {
4269 char *l = line;
4270 char *token_start = l;
4271 char *mnem_p;
4272 int supported;
4273 const insn_template *t;
4274 char *dot_p = NULL;
4275
4276 while (1)
4277 {
4278 mnem_p = mnemonic;
4279 while ((*mnem_p = mnemonic_chars[(unsigned char) *l]) != 0)
4280 {
4281 if (*mnem_p == '.')
4282 dot_p = mnem_p;
4283 mnem_p++;
4284 if (mnem_p >= mnemonic + MAX_MNEM_SIZE)
4285 {
4286 as_bad (_("no such instruction: `%s'"), token_start);
4287 return NULL;
4288 }
4289 l++;
4290 }
4291 if (!is_space_char (*l)
4292 && *l != END_OF_INSN
4293 && (intel_syntax
4294 || (*l != PREFIX_SEPARATOR
4295 && *l != ',')))
4296 {
4297 as_bad (_("invalid character %s in mnemonic"),
4298 output_invalid (*l));
4299 return NULL;
4300 }
4301 if (token_start == l)
4302 {
4303 if (!intel_syntax && *l == PREFIX_SEPARATOR)
4304 as_bad (_("expecting prefix; got nothing"));
4305 else
4306 as_bad (_("expecting mnemonic; got nothing"));
4307 return NULL;
4308 }
4309
4310 /* Look up instruction (or prefix) via hash table. */
4311 current_templates = (const templates *) hash_find (op_hash, mnemonic);
4312
4313 if (*l != END_OF_INSN
4314 && (!is_space_char (*l) || l[1] != END_OF_INSN)
4315 && current_templates
4316 && current_templates->start->opcode_modifier.isprefix)
4317 {
4318 if (!cpu_flags_check_cpu64 (current_templates->start->cpu_flags))
4319 {
4320 as_bad ((flag_code != CODE_64BIT
4321 ? _("`%s' is only supported in 64-bit mode")
4322 : _("`%s' is not supported in 64-bit mode")),
4323 current_templates->start->name);
4324 return NULL;
4325 }
4326 /* If we are in 16-bit mode, do not allow addr16 or data16.
4327 Similarly, in 32-bit mode, do not allow addr32 or data32. */
4328 if ((current_templates->start->opcode_modifier.size16
4329 || current_templates->start->opcode_modifier.size32)
4330 && flag_code != CODE_64BIT
4331 && (current_templates->start->opcode_modifier.size32
4332 ^ (flag_code == CODE_16BIT)))
4333 {
4334 as_bad (_("redundant %s prefix"),
4335 current_templates->start->name);
4336 return NULL;
4337 }
4338 if (current_templates->start->opcode_length == 0)
4339 {
4340 /* Handle pseudo prefixes. */
4341 switch (current_templates->start->base_opcode)
4342 {
4343 case 0x0:
4344 /* {disp8} */
4345 i.disp_encoding = disp_encoding_8bit;
4346 break;
4347 case 0x1:
4348 /* {disp32} */
4349 i.disp_encoding = disp_encoding_32bit;
4350 break;
4351 case 0x2:
4352 /* {load} */
4353 i.dir_encoding = dir_encoding_load;
4354 break;
4355 case 0x3:
4356 /* {store} */
4357 i.dir_encoding = dir_encoding_store;
4358 break;
4359 case 0x4:
4360 /* {vex2} */
4361 i.vec_encoding = vex_encoding_vex2;
4362 break;
4363 case 0x5:
4364 /* {vex3} */
4365 i.vec_encoding = vex_encoding_vex3;
4366 break;
4367 case 0x6:
4368 /* {evex} */
4369 i.vec_encoding = vex_encoding_evex;
4370 break;
4371 case 0x7:
4372 /* {rex} */
4373 i.rex_encoding = TRUE;
4374 break;
4375 case 0x8:
4376 /* {nooptimize} */
4377 i.no_optimize = TRUE;
4378 break;
4379 default:
4380 abort ();
4381 }
4382 }
4383 else
4384 {
4385 /* Add prefix, checking for repeated prefixes. */
4386 switch (add_prefix (current_templates->start->base_opcode))
4387 {
4388 case PREFIX_EXIST:
4389 return NULL;
4390 case PREFIX_DS:
4391 if (current_templates->start->cpu_flags.bitfield.cpuibt)
4392 i.notrack_prefix = current_templates->start->name;
4393 break;
4394 case PREFIX_REP:
4395 if (current_templates->start->cpu_flags.bitfield.cpuhle)
4396 i.hle_prefix = current_templates->start->name;
4397 else if (current_templates->start->cpu_flags.bitfield.cpumpx)
4398 i.bnd_prefix = current_templates->start->name;
4399 else
4400 i.rep_prefix = current_templates->start->name;
4401 break;
4402 default:
4403 break;
4404 }
4405 }
4406 /* Skip past PREFIX_SEPARATOR and reset token_start. */
4407 token_start = ++l;
4408 }
4409 else
4410 break;
4411 }
4412
4413 if (!current_templates)
4414 {
4415 /* Check if we should swap operand or force 32bit displacement in
4416 encoding. */
4417 if (mnem_p - 2 == dot_p && dot_p[1] == 's')
4418 i.dir_encoding = dir_encoding_store;
4419 else if (mnem_p - 3 == dot_p
4420 && dot_p[1] == 'd'
4421 && dot_p[2] == '8')
4422 i.disp_encoding = disp_encoding_8bit;
4423 else if (mnem_p - 4 == dot_p
4424 && dot_p[1] == 'd'
4425 && dot_p[2] == '3'
4426 && dot_p[3] == '2')
4427 i.disp_encoding = disp_encoding_32bit;
4428 else
4429 goto check_suffix;
4430 mnem_p = dot_p;
4431 *dot_p = '\0';
4432 current_templates = (const templates *) hash_find (op_hash, mnemonic);
4433 }
4434
4435 if (!current_templates)
4436 {
4437 check_suffix:
4438 /* See if we can get a match by trimming off a suffix. */
4439 switch (mnem_p[-1])
4440 {
4441 case WORD_MNEM_SUFFIX:
4442 if (intel_syntax && (intel_float_operand (mnemonic) & 2))
4443 i.suffix = SHORT_MNEM_SUFFIX;
4444 else
4445 /* Fall through. */
4446 case BYTE_MNEM_SUFFIX:
4447 case QWORD_MNEM_SUFFIX:
4448 i.suffix = mnem_p[-1];
4449 mnem_p[-1] = '\0';
4450 current_templates = (const templates *) hash_find (op_hash,
4451 mnemonic);
4452 break;
4453 case SHORT_MNEM_SUFFIX:
4454 case LONG_MNEM_SUFFIX:
4455 if (!intel_syntax)
4456 {
4457 i.suffix = mnem_p[-1];
4458 mnem_p[-1] = '\0';
4459 current_templates = (const templates *) hash_find (op_hash,
4460 mnemonic);
4461 }
4462 break;
4463
4464 /* Intel Syntax. */
4465 case 'd':
4466 if (intel_syntax)
4467 {
4468 if (intel_float_operand (mnemonic) == 1)
4469 i.suffix = SHORT_MNEM_SUFFIX;
4470 else
4471 i.suffix = LONG_MNEM_SUFFIX;
4472 mnem_p[-1] = '\0';
4473 current_templates = (const templates *) hash_find (op_hash,
4474 mnemonic);
4475 }
4476 break;
4477 }
4478 if (!current_templates)
4479 {
4480 as_bad (_("no such instruction: `%s'"), token_start);
4481 return NULL;
4482 }
4483 }
4484
4485 if (current_templates->start->opcode_modifier.jump
4486 || current_templates->start->opcode_modifier.jumpbyte)
4487 {
4488 /* Check for a branch hint. We allow ",pt" and ",pn" for
4489 predict taken and predict not taken respectively.
4490 I'm not sure that branch hints actually do anything on loop
4491 and jcxz insns (JumpByte) for current Pentium4 chips. They
4492 may work in the future and it doesn't hurt to accept them
4493 now. */
4494 if (l[0] == ',' && l[1] == 'p')
4495 {
4496 if (l[2] == 't')
4497 {
4498 if (!add_prefix (DS_PREFIX_OPCODE))
4499 return NULL;
4500 l += 3;
4501 }
4502 else if (l[2] == 'n')
4503 {
4504 if (!add_prefix (CS_PREFIX_OPCODE))
4505 return NULL;
4506 l += 3;
4507 }
4508 }
4509 }
4510 /* Any other comma loses. */
4511 if (*l == ',')
4512 {
4513 as_bad (_("invalid character %s in mnemonic"),
4514 output_invalid (*l));
4515 return NULL;
4516 }
4517
4518 /* Check if instruction is supported on specified architecture. */
4519 supported = 0;
4520 for (t = current_templates->start; t < current_templates->end; ++t)
4521 {
4522 supported |= cpu_flags_match (t);
4523 if (supported == CPU_FLAGS_PERFECT_MATCH)
4524 {
4525 if (!cpu_arch_flags.bitfield.cpui386 && (flag_code != CODE_16BIT))
4526 as_warn (_("use .code16 to ensure correct addressing mode"));
4527
4528 return l;
4529 }
4530 }
4531
4532 if (!(supported & CPU_FLAGS_64BIT_MATCH))
4533 as_bad (flag_code == CODE_64BIT
4534 ? _("`%s' is not supported in 64-bit mode")
4535 : _("`%s' is only supported in 64-bit mode"),
4536 current_templates->start->name);
4537 else
4538 as_bad (_("`%s' is not supported on `%s%s'"),
4539 current_templates->start->name,
4540 cpu_arch_name ? cpu_arch_name : default_arch,
4541 cpu_sub_arch_name ? cpu_sub_arch_name : "");
4542
4543 return NULL;
4544 }
4545
4546 static char *
4547 parse_operands (char *l, const char *mnemonic)
4548 {
4549 char *token_start;
4550
4551 /* 1 if operand is pending after ','. */
4552 unsigned int expecting_operand = 0;
4553
4554 /* Non-zero if operand parens not balanced. */
4555 unsigned int paren_not_balanced;
4556
4557 while (*l != END_OF_INSN)
4558 {
4559 /* Skip optional white space before operand. */
4560 if (is_space_char (*l))
4561 ++l;
4562 if (!is_operand_char (*l) && *l != END_OF_INSN && *l != '"')
4563 {
4564 as_bad (_("invalid character %s before operand %d"),
4565 output_invalid (*l),
4566 i.operands + 1);
4567 return NULL;
4568 }
4569 token_start = l; /* After white space. */
4570 paren_not_balanced = 0;
4571 while (paren_not_balanced || *l != ',')
4572 {
4573 if (*l == END_OF_INSN)
4574 {
4575 if (paren_not_balanced)
4576 {
4577 if (!intel_syntax)
4578 as_bad (_("unbalanced parenthesis in operand %d."),
4579 i.operands + 1);
4580 else
4581 as_bad (_("unbalanced brackets in operand %d."),
4582 i.operands + 1);
4583 return NULL;
4584 }
4585 else
4586 break; /* we are done */
4587 }
4588 else if (!is_operand_char (*l) && !is_space_char (*l) && *l != '"')
4589 {
4590 as_bad (_("invalid character %s in operand %d"),
4591 output_invalid (*l),
4592 i.operands + 1);
4593 return NULL;
4594 }
4595 if (!intel_syntax)
4596 {
4597 if (*l == '(')
4598 ++paren_not_balanced;
4599 if (*l == ')')
4600 --paren_not_balanced;
4601 }
4602 else
4603 {
4604 if (*l == '[')
4605 ++paren_not_balanced;
4606 if (*l == ']')
4607 --paren_not_balanced;
4608 }
4609 l++;
4610 }
4611 if (l != token_start)
4612 { /* Yes, we've read in another operand. */
4613 unsigned int operand_ok;
4614 this_operand = i.operands++;
4615 if (i.operands > MAX_OPERANDS)
4616 {
4617 as_bad (_("spurious operands; (%d operands/instruction max)"),
4618 MAX_OPERANDS);
4619 return NULL;
4620 }
4621 i.types[this_operand].bitfield.unspecified = 1;
4622 /* Now parse operand adding info to 'i' as we go along. */
4623 END_STRING_AND_SAVE (l);
4624
4625 if (intel_syntax)
4626 operand_ok =
4627 i386_intel_operand (token_start,
4628 intel_float_operand (mnemonic));
4629 else
4630 operand_ok = i386_att_operand (token_start);
4631
4632 RESTORE_END_STRING (l);
4633 if (!operand_ok)
4634 return NULL;
4635 }
4636 else
4637 {
4638 if (expecting_operand)
4639 {
4640 expecting_operand_after_comma:
4641 as_bad (_("expecting operand after ','; got nothing"));
4642 return NULL;
4643 }
4644 if (*l == ',')
4645 {
4646 as_bad (_("expecting operand before ','; got nothing"));
4647 return NULL;
4648 }
4649 }
4650
4651 /* Now *l must be either ',' or END_OF_INSN. */
4652 if (*l == ',')
4653 {
4654 if (*++l == END_OF_INSN)
4655 {
4656 /* Just skip it, if it's \n complain. */
4657 goto expecting_operand_after_comma;
4658 }
4659 expecting_operand = 1;
4660 }
4661 }
4662 return l;
4663 }
4664
4665 static void
4666 swap_2_operands (int xchg1, int xchg2)
4667 {
4668 union i386_op temp_op;
4669 i386_operand_type temp_type;
4670 enum bfd_reloc_code_real temp_reloc;
4671
4672 temp_type = i.types[xchg2];
4673 i.types[xchg2] = i.types[xchg1];
4674 i.types[xchg1] = temp_type;
4675 temp_op = i.op[xchg2];
4676 i.op[xchg2] = i.op[xchg1];
4677 i.op[xchg1] = temp_op;
4678 temp_reloc = i.reloc[xchg2];
4679 i.reloc[xchg2] = i.reloc[xchg1];
4680 i.reloc[xchg1] = temp_reloc;
4681
4682 if (i.mask)
4683 {
4684 if (i.mask->operand == xchg1)
4685 i.mask->operand = xchg2;
4686 else if (i.mask->operand == xchg2)
4687 i.mask->operand = xchg1;
4688 }
4689 if (i.broadcast)
4690 {
4691 if (i.broadcast->operand == xchg1)
4692 i.broadcast->operand = xchg2;
4693 else if (i.broadcast->operand == xchg2)
4694 i.broadcast->operand = xchg1;
4695 }
4696 if (i.rounding)
4697 {
4698 if (i.rounding->operand == xchg1)
4699 i.rounding->operand = xchg2;
4700 else if (i.rounding->operand == xchg2)
4701 i.rounding->operand = xchg1;
4702 }
4703 }
4704
4705 static void
4706 swap_operands (void)
4707 {
4708 switch (i.operands)
4709 {
4710 case 5:
4711 case 4:
4712 swap_2_operands (1, i.operands - 2);
4713 /* Fall through. */
4714 case 3:
4715 case 2:
4716 swap_2_operands (0, i.operands - 1);
4717 break;
4718 default:
4719 abort ();
4720 }
4721
4722 if (i.mem_operands == 2)
4723 {
4724 const seg_entry *temp_seg;
4725 temp_seg = i.seg[0];
4726 i.seg[0] = i.seg[1];
4727 i.seg[1] = temp_seg;
4728 }
4729 }
4730
4731 /* Try to ensure constant immediates are represented in the smallest
4732 opcode possible. */
4733 static void
4734 optimize_imm (void)
4735 {
4736 char guess_suffix = 0;
4737 int op;
4738
4739 if (i.suffix)
4740 guess_suffix = i.suffix;
4741 else if (i.reg_operands)
4742 {
4743 /* Figure out a suffix from the last register operand specified.
4744 We can't do this properly yet, ie. excluding InOutPortReg,
4745 but the following works for instructions with immediates.
4746 In any case, we can't set i.suffix yet. */
4747 for (op = i.operands; --op >= 0;)
4748 if (i.types[op].bitfield.reg && i.types[op].bitfield.byte)
4749 {
4750 guess_suffix = BYTE_MNEM_SUFFIX;
4751 break;
4752 }
4753 else if (i.types[op].bitfield.reg && i.types[op].bitfield.word)
4754 {
4755 guess_suffix = WORD_MNEM_SUFFIX;
4756 break;
4757 }
4758 else if (i.types[op].bitfield.reg && i.types[op].bitfield.dword)
4759 {
4760 guess_suffix = LONG_MNEM_SUFFIX;
4761 break;
4762 }
4763 else if (i.types[op].bitfield.reg && i.types[op].bitfield.qword)
4764 {
4765 guess_suffix = QWORD_MNEM_SUFFIX;
4766 break;
4767 }
4768 }
4769 else if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
4770 guess_suffix = WORD_MNEM_SUFFIX;
4771
4772 for (op = i.operands; --op >= 0;)
4773 if (operand_type_check (i.types[op], imm))
4774 {
4775 switch (i.op[op].imms->X_op)
4776 {
4777 case O_constant:
4778 /* If a suffix is given, this operand may be shortened. */
4779 switch (guess_suffix)
4780 {
4781 case LONG_MNEM_SUFFIX:
4782 i.types[op].bitfield.imm32 = 1;
4783 i.types[op].bitfield.imm64 = 1;
4784 break;
4785 case WORD_MNEM_SUFFIX:
4786 i.types[op].bitfield.imm16 = 1;
4787 i.types[op].bitfield.imm32 = 1;
4788 i.types[op].bitfield.imm32s = 1;
4789 i.types[op].bitfield.imm64 = 1;
4790 break;
4791 case BYTE_MNEM_SUFFIX:
4792 i.types[op].bitfield.imm8 = 1;
4793 i.types[op].bitfield.imm8s = 1;
4794 i.types[op].bitfield.imm16 = 1;
4795 i.types[op].bitfield.imm32 = 1;
4796 i.types[op].bitfield.imm32s = 1;
4797 i.types[op].bitfield.imm64 = 1;
4798 break;
4799 }
4800
4801 /* If this operand is at most 16 bits, convert it
4802 to a signed 16 bit number before trying to see
4803 whether it will fit in an even smaller size.
4804 This allows a 16-bit operand such as $0xffe0 to
4805 be recognised as within Imm8S range. */
4806 if ((i.types[op].bitfield.imm16)
4807 && (i.op[op].imms->X_add_number & ~(offsetT) 0xffff) == 0)
4808 {
4809 i.op[op].imms->X_add_number =
4810 (((i.op[op].imms->X_add_number & 0xffff) ^ 0x8000) - 0x8000);
4811 }
4812 #ifdef BFD64
4813 /* Store 32-bit immediate in 64-bit for 64-bit BFD. */
4814 if ((i.types[op].bitfield.imm32)
4815 && ((i.op[op].imms->X_add_number & ~(((offsetT) 2 << 31) - 1))
4816 == 0))
4817 {
4818 i.op[op].imms->X_add_number = ((i.op[op].imms->X_add_number
4819 ^ ((offsetT) 1 << 31))
4820 - ((offsetT) 1 << 31));
4821 }
4822 #endif
4823 i.types[op]
4824 = operand_type_or (i.types[op],
4825 smallest_imm_type (i.op[op].imms->X_add_number));
4826
4827 /* We must avoid matching of Imm32 templates when 64bit
4828 only immediate is available. */
4829 if (guess_suffix == QWORD_MNEM_SUFFIX)
4830 i.types[op].bitfield.imm32 = 0;
4831 break;
4832
4833 case O_absent:
4834 case O_register:
4835 abort ();
4836
4837 /* Symbols and expressions. */
4838 default:
4839 /* Convert symbolic operand to proper sizes for matching, but don't
4840 prevent matching a set of insns that only supports sizes other
4841 than those matching the insn suffix. */
4842 {
4843 i386_operand_type mask, allowed;
4844 const insn_template *t;
4845
4846 operand_type_set (&mask, 0);
4847 operand_type_set (&allowed, 0);
4848
4849 for (t = current_templates->start;
4850 t < current_templates->end;
4851 ++t)
4852 allowed = operand_type_or (allowed,
4853 t->operand_types[op]);
4854 switch (guess_suffix)
4855 {
4856 case QWORD_MNEM_SUFFIX:
4857 mask.bitfield.imm64 = 1;
4858 mask.bitfield.imm32s = 1;
4859 break;
4860 case LONG_MNEM_SUFFIX:
4861 mask.bitfield.imm32 = 1;
4862 break;
4863 case WORD_MNEM_SUFFIX:
4864 mask.bitfield.imm16 = 1;
4865 break;
4866 case BYTE_MNEM_SUFFIX:
4867 mask.bitfield.imm8 = 1;
4868 break;
4869 default:
4870 break;
4871 }
4872 allowed = operand_type_and (mask, allowed);
4873 if (!operand_type_all_zero (&allowed))
4874 i.types[op] = operand_type_and (i.types[op], mask);
4875 }
4876 break;
4877 }
4878 }
4879 }
4880
4881 /* Try to use the smallest displacement type too. */
4882 static void
4883 optimize_disp (void)
4884 {
4885 int op;
4886
4887 for (op = i.operands; --op >= 0;)
4888 if (operand_type_check (i.types[op], disp))
4889 {
4890 if (i.op[op].disps->X_op == O_constant)
4891 {
4892 offsetT op_disp = i.op[op].disps->X_add_number;
4893
4894 if (i.types[op].bitfield.disp16
4895 && (op_disp & ~(offsetT) 0xffff) == 0)
4896 {
4897 /* If this operand is at most 16 bits, convert
4898 to a signed 16 bit number and don't use 64bit
4899 displacement. */
4900 op_disp = (((op_disp & 0xffff) ^ 0x8000) - 0x8000);
4901 i.types[op].bitfield.disp64 = 0;
4902 }
4903 #ifdef BFD64
4904 /* Optimize 64-bit displacement to 32-bit for 64-bit BFD. */
4905 if (i.types[op].bitfield.disp32
4906 && (op_disp & ~(((offsetT) 2 << 31) - 1)) == 0)
4907 {
4908 /* If this operand is at most 32 bits, convert
4909 to a signed 32 bit number and don't use 64bit
4910 displacement. */
4911 op_disp &= (((offsetT) 2 << 31) - 1);
4912 op_disp = (op_disp ^ ((offsetT) 1 << 31)) - ((addressT) 1 << 31);
4913 i.types[op].bitfield.disp64 = 0;
4914 }
4915 #endif
4916 if (!op_disp && i.types[op].bitfield.baseindex)
4917 {
4918 i.types[op].bitfield.disp8 = 0;
4919 i.types[op].bitfield.disp16 = 0;
4920 i.types[op].bitfield.disp32 = 0;
4921 i.types[op].bitfield.disp32s = 0;
4922 i.types[op].bitfield.disp64 = 0;
4923 i.op[op].disps = 0;
4924 i.disp_operands--;
4925 }
4926 else if (flag_code == CODE_64BIT)
4927 {
4928 if (fits_in_signed_long (op_disp))
4929 {
4930 i.types[op].bitfield.disp64 = 0;
4931 i.types[op].bitfield.disp32s = 1;
4932 }
4933 if (i.prefix[ADDR_PREFIX]
4934 && fits_in_unsigned_long (op_disp))
4935 i.types[op].bitfield.disp32 = 1;
4936 }
4937 if ((i.types[op].bitfield.disp32
4938 || i.types[op].bitfield.disp32s
4939 || i.types[op].bitfield.disp16)
4940 && fits_in_disp8 (op_disp))
4941 i.types[op].bitfield.disp8 = 1;
4942 }
4943 else if (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
4944 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL)
4945 {
4946 fix_new_exp (frag_now, frag_more (0) - frag_now->fr_literal, 0,
4947 i.op[op].disps, 0, i.reloc[op]);
4948 i.types[op].bitfield.disp8 = 0;
4949 i.types[op].bitfield.disp16 = 0;
4950 i.types[op].bitfield.disp32 = 0;
4951 i.types[op].bitfield.disp32s = 0;
4952 i.types[op].bitfield.disp64 = 0;
4953 }
4954 else
4955 /* We only support 64bit displacement on constants. */
4956 i.types[op].bitfield.disp64 = 0;
4957 }
4958 }
4959
4960 /* Check if operands are valid for the instruction. */
4961
4962 static int
4963 check_VecOperands (const insn_template *t)
4964 {
4965 unsigned int op;
4966
4967 /* Without VSIB byte, we can't have a vector register for index. */
4968 if (!t->opcode_modifier.vecsib
4969 && i.index_reg
4970 && (i.index_reg->reg_type.bitfield.xmmword
4971 || i.index_reg->reg_type.bitfield.ymmword
4972 || i.index_reg->reg_type.bitfield.zmmword))
4973 {
4974 i.error = unsupported_vector_index_register;
4975 return 1;
4976 }
4977
4978 /* Check if default mask is allowed. */
4979 if (t->opcode_modifier.nodefmask
4980 && (!i.mask || i.mask->mask->reg_num == 0))
4981 {
4982 i.error = no_default_mask;
4983 return 1;
4984 }
4985
4986 /* For VSIB byte, we need a vector register for index, and all vector
4987 registers must be distinct. */
4988 if (t->opcode_modifier.vecsib)
4989 {
4990 if (!i.index_reg
4991 || !((t->opcode_modifier.vecsib == VecSIB128
4992 && i.index_reg->reg_type.bitfield.xmmword)
4993 || (t->opcode_modifier.vecsib == VecSIB256
4994 && i.index_reg->reg_type.bitfield.ymmword)
4995 || (t->opcode_modifier.vecsib == VecSIB512
4996 && i.index_reg->reg_type.bitfield.zmmword)))
4997 {
4998 i.error = invalid_vsib_address;
4999 return 1;
5000 }
5001
5002 gas_assert (i.reg_operands == 2 || i.mask);
5003 if (i.reg_operands == 2 && !i.mask)
5004 {
5005 gas_assert (i.types[0].bitfield.regsimd);
5006 gas_assert (i.types[0].bitfield.xmmword
5007 || i.types[0].bitfield.ymmword);
5008 gas_assert (i.types[2].bitfield.regsimd);
5009 gas_assert (i.types[2].bitfield.xmmword
5010 || i.types[2].bitfield.ymmword);
5011 if (operand_check == check_none)
5012 return 0;
5013 if (register_number (i.op[0].regs)
5014 != register_number (i.index_reg)
5015 && register_number (i.op[2].regs)
5016 != register_number (i.index_reg)
5017 && register_number (i.op[0].regs)
5018 != register_number (i.op[2].regs))
5019 return 0;
5020 if (operand_check == check_error)
5021 {
5022 i.error = invalid_vector_register_set;
5023 return 1;
5024 }
5025 as_warn (_("mask, index, and destination registers should be distinct"));
5026 }
5027 else if (i.reg_operands == 1 && i.mask)
5028 {
5029 if (i.types[1].bitfield.regsimd
5030 && (i.types[1].bitfield.xmmword
5031 || i.types[1].bitfield.ymmword
5032 || i.types[1].bitfield.zmmword)
5033 && (register_number (i.op[1].regs)
5034 == register_number (i.index_reg)))
5035 {
5036 if (operand_check == check_error)
5037 {
5038 i.error = invalid_vector_register_set;
5039 return 1;
5040 }
5041 if (operand_check != check_none)
5042 as_warn (_("index and destination registers should be distinct"));
5043 }
5044 }
5045 }
5046
5047 /* Check if broadcast is supported by the instruction and is applied
5048 to the memory operand. */
5049 if (i.broadcast)
5050 {
5051 int broadcasted_opnd_size;
5052
5053 /* Check if specified broadcast is supported in this instruction,
5054 and it's applied to memory operand of DWORD or QWORD type,
5055 depending on VecESize. */
5056 if (i.broadcast->type != t->opcode_modifier.broadcast
5057 || !i.types[i.broadcast->operand].bitfield.mem
5058 || (t->opcode_modifier.vecesize == 0
5059 && !i.types[i.broadcast->operand].bitfield.dword
5060 && !i.types[i.broadcast->operand].bitfield.unspecified)
5061 || (t->opcode_modifier.vecesize == 1
5062 && !i.types[i.broadcast->operand].bitfield.qword
5063 && !i.types[i.broadcast->operand].bitfield.unspecified))
5064 goto bad_broadcast;
5065
5066 broadcasted_opnd_size = t->opcode_modifier.vecesize ? 64 : 32;
5067 if (i.broadcast->type == BROADCAST_1TO16)
5068 broadcasted_opnd_size <<= 4; /* Broadcast 1to16. */
5069 else if (i.broadcast->type == BROADCAST_1TO8)
5070 broadcasted_opnd_size <<= 3; /* Broadcast 1to8. */
5071 else if (i.broadcast->type == BROADCAST_1TO4)
5072 broadcasted_opnd_size <<= 2; /* Broadcast 1to4. */
5073 else if (i.broadcast->type == BROADCAST_1TO2)
5074 broadcasted_opnd_size <<= 1; /* Broadcast 1to2. */
5075 else
5076 goto bad_broadcast;
5077
5078 if ((broadcasted_opnd_size == 256
5079 && !t->operand_types[i.broadcast->operand].bitfield.ymmword)
5080 || (broadcasted_opnd_size == 512
5081 && !t->operand_types[i.broadcast->operand].bitfield.zmmword))
5082 {
5083 bad_broadcast:
5084 i.error = unsupported_broadcast;
5085 return 1;
5086 }
5087 }
5088 /* If broadcast is supported in this instruction, we need to check if
5089 operand of one-element size isn't specified without broadcast. */
5090 else if (t->opcode_modifier.broadcast && i.mem_operands)
5091 {
5092 /* Find memory operand. */
5093 for (op = 0; op < i.operands; op++)
5094 if (operand_type_check (i.types[op], anymem))
5095 break;
5096 gas_assert (op < i.operands);
5097 /* Check size of the memory operand. */
5098 if ((t->opcode_modifier.vecesize == 0
5099 && i.types[op].bitfield.dword)
5100 || (t->opcode_modifier.vecesize == 1
5101 && i.types[op].bitfield.qword))
5102 {
5103 i.error = broadcast_needed;
5104 return 1;
5105 }
5106 }
5107
5108 /* Check if requested masking is supported. */
5109 if (i.mask
5110 && (!t->opcode_modifier.masking
5111 || (i.mask->zeroing
5112 && t->opcode_modifier.masking == MERGING_MASKING)))
5113 {
5114 i.error = unsupported_masking;
5115 return 1;
5116 }
5117
5118 /* Check if masking is applied to dest operand. */
5119 if (i.mask && (i.mask->operand != (int) (i.operands - 1)))
5120 {
5121 i.error = mask_not_on_destination;
5122 return 1;
5123 }
5124
5125 /* Check RC/SAE. */
5126 if (i.rounding)
5127 {
5128 if ((i.rounding->type != saeonly
5129 && !t->opcode_modifier.staticrounding)
5130 || (i.rounding->type == saeonly
5131 && (t->opcode_modifier.staticrounding
5132 || !t->opcode_modifier.sae)))
5133 {
5134 i.error = unsupported_rc_sae;
5135 return 1;
5136 }
5137 /* If the instruction has several immediate operands and one of
5138 them is rounding, the rounding operand should be the last
5139 immediate operand. */
5140 if (i.imm_operands > 1
5141 && i.rounding->operand != (int) (i.imm_operands - 1))
5142 {
5143 i.error = rc_sae_operand_not_last_imm;
5144 return 1;
5145 }
5146 }
5147
5148 /* Check vector Disp8 operand. */
5149 if (t->opcode_modifier.disp8memshift
5150 && i.disp_encoding != disp_encoding_32bit)
5151 {
5152 if (i.broadcast)
5153 i.memshift = t->opcode_modifier.vecesize ? 3 : 2;
5154 else
5155 i.memshift = t->opcode_modifier.disp8memshift;
5156
5157 for (op = 0; op < i.operands; op++)
5158 if (operand_type_check (i.types[op], disp)
5159 && i.op[op].disps->X_op == O_constant)
5160 {
5161 if (fits_in_disp8 (i.op[op].disps->X_add_number))
5162 {
5163 i.types[op].bitfield.disp8 = 1;
5164 return 0;
5165 }
5166 i.types[op].bitfield.disp8 = 0;
5167 }
5168 }
5169
5170 i.memshift = 0;
5171
5172 return 0;
5173 }
5174
5175 /* Check if operands are valid for the instruction. Update VEX
5176 operand types. */
5177
5178 static int
5179 VEX_check_operands (const insn_template *t)
5180 {
5181 if (i.vec_encoding == vex_encoding_evex)
5182 {
5183 /* This instruction must be encoded with EVEX prefix. */
5184 if (!is_evex_encoding (t))
5185 {
5186 i.error = unsupported;
5187 return 1;
5188 }
5189 return 0;
5190 }
5191
5192 if (!t->opcode_modifier.vex)
5193 {
5194 /* This instruction template doesn't have VEX prefix. */
5195 if (i.vec_encoding != vex_encoding_default)
5196 {
5197 i.error = unsupported;
5198 return 1;
5199 }
5200 return 0;
5201 }
5202
5203 /* Only check VEX_Imm4, which must be the first operand. */
5204 if (t->operand_types[0].bitfield.vec_imm4)
5205 {
5206 if (i.op[0].imms->X_op != O_constant
5207 || !fits_in_imm4 (i.op[0].imms->X_add_number))
5208 {
5209 i.error = bad_imm4;
5210 return 1;
5211 }
5212
5213 /* Turn off Imm8 so that update_imm won't complain. */
5214 i.types[0] = vec_imm4;
5215 }
5216
5217 return 0;
5218 }
5219
5220 static const insn_template *
5221 match_template (char mnem_suffix)
5222 {
5223 /* Points to template once we've found it. */
5224 const insn_template *t;
5225 i386_operand_type overlap0, overlap1, overlap2, overlap3;
5226 i386_operand_type overlap4;
5227 unsigned int found_reverse_match;
5228 i386_opcode_modifier suffix_check, mnemsuf_check;
5229 i386_operand_type operand_types [MAX_OPERANDS];
5230 int addr_prefix_disp;
5231 unsigned int j;
5232 unsigned int found_cpu_match;
5233 unsigned int check_register;
5234 enum i386_error specific_error = 0;
5235
5236 #if MAX_OPERANDS != 5
5237 # error "MAX_OPERANDS must be 5."
5238 #endif
5239
5240 found_reverse_match = 0;
5241 addr_prefix_disp = -1;
5242
5243 memset (&suffix_check, 0, sizeof (suffix_check));
5244 if (i.suffix == BYTE_MNEM_SUFFIX)
5245 suffix_check.no_bsuf = 1;
5246 else if (i.suffix == WORD_MNEM_SUFFIX)
5247 suffix_check.no_wsuf = 1;
5248 else if (i.suffix == SHORT_MNEM_SUFFIX)
5249 suffix_check.no_ssuf = 1;
5250 else if (i.suffix == LONG_MNEM_SUFFIX)
5251 suffix_check.no_lsuf = 1;
5252 else if (i.suffix == QWORD_MNEM_SUFFIX)
5253 suffix_check.no_qsuf = 1;
5254 else if (i.suffix == LONG_DOUBLE_MNEM_SUFFIX)
5255 suffix_check.no_ldsuf = 1;
5256
5257 memset (&mnemsuf_check, 0, sizeof (mnemsuf_check));
5258 if (intel_syntax)
5259 {
5260 switch (mnem_suffix)
5261 {
5262 case BYTE_MNEM_SUFFIX: mnemsuf_check.no_bsuf = 1; break;
5263 case WORD_MNEM_SUFFIX: mnemsuf_check.no_wsuf = 1; break;
5264 case SHORT_MNEM_SUFFIX: mnemsuf_check.no_ssuf = 1; break;
5265 case LONG_MNEM_SUFFIX: mnemsuf_check.no_lsuf = 1; break;
5266 case QWORD_MNEM_SUFFIX: mnemsuf_check.no_qsuf = 1; break;
5267 }
5268 }
5269
5270 /* Must have right number of operands. */
5271 i.error = number_of_operands_mismatch;
5272
5273 for (t = current_templates->start; t < current_templates->end; t++)
5274 {
5275 addr_prefix_disp = -1;
5276
5277 if (i.operands != t->operands)
5278 continue;
5279
5280 /* Check processor support. */
5281 i.error = unsupported;
5282 found_cpu_match = (cpu_flags_match (t)
5283 == CPU_FLAGS_PERFECT_MATCH);
5284 if (!found_cpu_match)
5285 continue;
5286
5287 /* Check AT&T mnemonic. */
5288 i.error = unsupported_with_intel_mnemonic;
5289 if (intel_mnemonic && t->opcode_modifier.attmnemonic)
5290 continue;
5291
5292 /* Check AT&T/Intel syntax and Intel64/AMD64 ISA. */
5293 i.error = unsupported_syntax;
5294 if ((intel_syntax && t->opcode_modifier.attsyntax)
5295 || (!intel_syntax && t->opcode_modifier.intelsyntax)
5296 || (intel64 && t->opcode_modifier.amd64)
5297 || (!intel64 && t->opcode_modifier.intel64))
5298 continue;
5299
5300 /* Check the suffix, except for some instructions in intel mode. */
5301 i.error = invalid_instruction_suffix;
5302 if ((!intel_syntax || !t->opcode_modifier.ignoresize)
5303 && ((t->opcode_modifier.no_bsuf && suffix_check.no_bsuf)
5304 || (t->opcode_modifier.no_wsuf && suffix_check.no_wsuf)
5305 || (t->opcode_modifier.no_lsuf && suffix_check.no_lsuf)
5306 || (t->opcode_modifier.no_ssuf && suffix_check.no_ssuf)
5307 || (t->opcode_modifier.no_qsuf && suffix_check.no_qsuf)
5308 || (t->opcode_modifier.no_ldsuf && suffix_check.no_ldsuf)))
5309 continue;
5310 /* In Intel mode all mnemonic suffixes must be explicitly allowed. */
5311 if ((t->opcode_modifier.no_bsuf && mnemsuf_check.no_bsuf)
5312 || (t->opcode_modifier.no_wsuf && mnemsuf_check.no_wsuf)
5313 || (t->opcode_modifier.no_lsuf && mnemsuf_check.no_lsuf)
5314 || (t->opcode_modifier.no_ssuf && mnemsuf_check.no_ssuf)
5315 || (t->opcode_modifier.no_qsuf && mnemsuf_check.no_qsuf)
5316 || (t->opcode_modifier.no_ldsuf && mnemsuf_check.no_ldsuf))
5317 continue;
5318
5319 if (!operand_size_match (t))
5320 continue;
5321
5322 for (j = 0; j < MAX_OPERANDS; j++)
5323 operand_types[j] = t->operand_types[j];
5324
5325 /* In general, don't allow 64-bit operands in 32-bit mode. */
5326 if (i.suffix == QWORD_MNEM_SUFFIX
5327 && flag_code != CODE_64BIT
5328 && (intel_syntax
5329 ? (!t->opcode_modifier.ignoresize
5330 && !intel_float_operand (t->name))
5331 : intel_float_operand (t->name) != 2)
5332 && ((!operand_types[0].bitfield.regmmx
5333 && !operand_types[0].bitfield.regsimd)
5334 || (!operand_types[t->operands > 1].bitfield.regmmx
5335 && !operand_types[t->operands > 1].bitfield.regsimd))
5336 && (t->base_opcode != 0x0fc7
5337 || t->extension_opcode != 1 /* cmpxchg8b */))
5338 continue;
5339
5340 /* In general, don't allow 32-bit operands on pre-386. */
5341 else if (i.suffix == LONG_MNEM_SUFFIX
5342 && !cpu_arch_flags.bitfield.cpui386
5343 && (intel_syntax
5344 ? (!t->opcode_modifier.ignoresize
5345 && !intel_float_operand (t->name))
5346 : intel_float_operand (t->name) != 2)
5347 && ((!operand_types[0].bitfield.regmmx
5348 && !operand_types[0].bitfield.regsimd)
5349 || (!operand_types[t->operands > 1].bitfield.regmmx
5350 && !operand_types[t->operands > 1].bitfield.regsimd)))
5351 continue;
5352
5353 /* Do not verify operands when there are none. */
5354 else
5355 {
5356 if (!t->operands)
5357 /* We've found a match; break out of loop. */
5358 break;
5359 }
5360
5361 /* Address size prefix will turn Disp64/Disp32/Disp16 operand
5362 into Disp32/Disp16/Disp32 operand. */
5363 if (i.prefix[ADDR_PREFIX] != 0)
5364 {
5365 /* There should be only one Disp operand. */
5366 switch (flag_code)
5367 {
5368 case CODE_16BIT:
5369 for (j = 0; j < MAX_OPERANDS; j++)
5370 {
5371 if (operand_types[j].bitfield.disp16)
5372 {
5373 addr_prefix_disp = j;
5374 operand_types[j].bitfield.disp32 = 1;
5375 operand_types[j].bitfield.disp16 = 0;
5376 break;
5377 }
5378 }
5379 break;
5380 case CODE_32BIT:
5381 for (j = 0; j < MAX_OPERANDS; j++)
5382 {
5383 if (operand_types[j].bitfield.disp32)
5384 {
5385 addr_prefix_disp = j;
5386 operand_types[j].bitfield.disp32 = 0;
5387 operand_types[j].bitfield.disp16 = 1;
5388 break;
5389 }
5390 }
5391 break;
5392 case CODE_64BIT:
5393 for (j = 0; j < MAX_OPERANDS; j++)
5394 {
5395 if (operand_types[j].bitfield.disp64)
5396 {
5397 addr_prefix_disp = j;
5398 operand_types[j].bitfield.disp64 = 0;
5399 operand_types[j].bitfield.disp32 = 1;
5400 break;
5401 }
5402 }
5403 break;
5404 }
5405 }
5406
5407 /* Force 0x8b encoding for "mov foo@GOT, %eax". */
5408 if (i.reloc[0] == BFD_RELOC_386_GOT32 && t->base_opcode == 0xa0)
5409 continue;
5410
5411 /* We check register size if needed. */
5412 check_register = t->opcode_modifier.checkregsize;
5413 overlap0 = operand_type_and (i.types[0], operand_types[0]);
5414 switch (t->operands)
5415 {
5416 case 1:
5417 if (!operand_type_match (overlap0, i.types[0]))
5418 continue;
5419 break;
5420 case 2:
5421 /* xchg %eax, %eax is a special case. It is an alias for nop
5422 only in 32bit mode and we can use opcode 0x90. In 64bit
5423 mode, we can't use 0x90 for xchg %eax, %eax since it should
5424 zero-extend %eax to %rax. */
5425 if (flag_code == CODE_64BIT
5426 && t->base_opcode == 0x90
5427 && operand_type_equal (&i.types [0], &acc32)
5428 && operand_type_equal (&i.types [1], &acc32))
5429 continue;
5430 /* xrelease mov %eax, <disp> is another special case. It must not
5431 match the accumulator-only encoding of mov. */
5432 if (flag_code != CODE_64BIT
5433 && i.hle_prefix
5434 && t->base_opcode == 0xa0
5435 && i.types[0].bitfield.acc
5436 && operand_type_check (i.types[1], anymem))
5437 continue;
5438 /* If we want store form, we reverse direction of operands. */
5439 if (i.dir_encoding == dir_encoding_store
5440 && t->opcode_modifier.d)
5441 goto check_reverse;
5442 /* Fall through. */
5443
5444 case 3:
5445 /* If we want store form, we skip the current load. */
5446 if (i.dir_encoding == dir_encoding_store
5447 && i.mem_operands == 0
5448 && t->opcode_modifier.load)
5449 continue;
5450 /* Fall through. */
5451 case 4:
5452 case 5:
5453 overlap1 = operand_type_and (i.types[1], operand_types[1]);
5454 if (!operand_type_match (overlap0, i.types[0])
5455 || !operand_type_match (overlap1, i.types[1])
5456 || (check_register
5457 && !operand_type_register_match (i.types[0],
5458 operand_types[0],
5459 i.types[1],
5460 operand_types[1])))
5461 {
5462 /* Check if other direction is valid ... */
5463 if (!t->opcode_modifier.d)
5464 continue;
5465
5466 check_reverse:
5467 /* Try reversing direction of operands. */
5468 overlap0 = operand_type_and (i.types[0], operand_types[1]);
5469 overlap1 = operand_type_and (i.types[1], operand_types[0]);
5470 if (!operand_type_match (overlap0, i.types[0])
5471 || !operand_type_match (overlap1, i.types[1])
5472 || (check_register
5473 && !operand_type_register_match (i.types[0],
5474 operand_types[1],
5475 i.types[1],
5476 operand_types[0])))
5477 {
5478 /* Does not match either direction. */
5479 continue;
5480 }
5481 /* found_reverse_match holds which of D or FloatR
5482 we've found. */
5483 if (!t->opcode_modifier.d)
5484 found_reverse_match = 0;
5485 else if (operand_types[0].bitfield.tbyte)
5486 found_reverse_match = Opcode_FloatD;
5487 else
5488 found_reverse_match = Opcode_D;
5489 if (t->opcode_modifier.floatr)
5490 found_reverse_match |= Opcode_FloatR;
5491 }
5492 else
5493 {
5494 /* Found a forward 2 operand match here. */
5495 switch (t->operands)
5496 {
5497 case 5:
5498 overlap4 = operand_type_and (i.types[4],
5499 operand_types[4]);
5500 /* Fall through. */
5501 case 4:
5502 overlap3 = operand_type_and (i.types[3],
5503 operand_types[3]);
5504 /* Fall through. */
5505 case 3:
5506 overlap2 = operand_type_and (i.types[2],
5507 operand_types[2]);
5508 break;
5509 }
5510
5511 switch (t->operands)
5512 {
5513 case 5:
5514 if (!operand_type_match (overlap4, i.types[4])
5515 || !operand_type_register_match (i.types[3],
5516 operand_types[3],
5517 i.types[4],
5518 operand_types[4]))
5519 continue;
5520 /* Fall through. */
5521 case 4:
5522 if (!operand_type_match (overlap3, i.types[3])
5523 || (check_register
5524 && (!operand_type_register_match (i.types[1],
5525 operand_types[1],
5526 i.types[3],
5527 operand_types[3])
5528 || !operand_type_register_match (i.types[2],
5529 operand_types[2],
5530 i.types[3],
5531 operand_types[3]))))
5532 continue;
5533 /* Fall through. */
5534 case 3:
5535 /* Here we make use of the fact that there are no
5536 reverse match 3 operand instructions. */
5537 if (!operand_type_match (overlap2, i.types[2])
5538 || (check_register
5539 && (!operand_type_register_match (i.types[0],
5540 operand_types[0],
5541 i.types[2],
5542 operand_types[2])
5543 || !operand_type_register_match (i.types[1],
5544 operand_types[1],
5545 i.types[2],
5546 operand_types[2]))))
5547 continue;
5548 break;
5549 }
5550 }
5551 /* Found either forward/reverse 2, 3 or 4 operand match here:
5552 slip through to break. */
5553 }
5554 if (!found_cpu_match)
5555 {
5556 found_reverse_match = 0;
5557 continue;
5558 }
5559
5560 /* Check if vector and VEX operands are valid. */
5561 if (check_VecOperands (t) || VEX_check_operands (t))
5562 {
5563 specific_error = i.error;
5564 continue;
5565 }
5566
5567 /* We've found a match; break out of loop. */
5568 break;
5569 }
5570
5571 if (t == current_templates->end)
5572 {
5573 /* We found no match. */
5574 const char *err_msg;
5575 switch (specific_error ? specific_error : i.error)
5576 {
5577 default:
5578 abort ();
5579 case operand_size_mismatch:
5580 err_msg = _("operand size mismatch");
5581 break;
5582 case operand_type_mismatch:
5583 err_msg = _("operand type mismatch");
5584 break;
5585 case register_type_mismatch:
5586 err_msg = _("register type mismatch");
5587 break;
5588 case number_of_operands_mismatch:
5589 err_msg = _("number of operands mismatch");
5590 break;
5591 case invalid_instruction_suffix:
5592 err_msg = _("invalid instruction suffix");
5593 break;
5594 case bad_imm4:
5595 err_msg = _("constant doesn't fit in 4 bits");
5596 break;
5597 case unsupported_with_intel_mnemonic:
5598 err_msg = _("unsupported with Intel mnemonic");
5599 break;
5600 case unsupported_syntax:
5601 err_msg = _("unsupported syntax");
5602 break;
5603 case unsupported:
5604 as_bad (_("unsupported instruction `%s'"),
5605 current_templates->start->name);
5606 return NULL;
5607 case invalid_vsib_address:
5608 err_msg = _("invalid VSIB address");
5609 break;
5610 case invalid_vector_register_set:
5611 err_msg = _("mask, index, and destination registers must be distinct");
5612 break;
5613 case unsupported_vector_index_register:
5614 err_msg = _("unsupported vector index register");
5615 break;
5616 case unsupported_broadcast:
5617 err_msg = _("unsupported broadcast");
5618 break;
5619 case broadcast_not_on_src_operand:
5620 err_msg = _("broadcast not on source memory operand");
5621 break;
5622 case broadcast_needed:
5623 err_msg = _("broadcast is needed for operand of such type");
5624 break;
5625 case unsupported_masking:
5626 err_msg = _("unsupported masking");
5627 break;
5628 case mask_not_on_destination:
5629 err_msg = _("mask not on destination operand");
5630 break;
5631 case no_default_mask:
5632 err_msg = _("default mask isn't allowed");
5633 break;
5634 case unsupported_rc_sae:
5635 err_msg = _("unsupported static rounding/sae");
5636 break;
5637 case rc_sae_operand_not_last_imm:
5638 if (intel_syntax)
5639 err_msg = _("RC/SAE operand must precede immediate operands");
5640 else
5641 err_msg = _("RC/SAE operand must follow immediate operands");
5642 break;
5643 case invalid_register_operand:
5644 err_msg = _("invalid register operand");
5645 break;
5646 }
5647 as_bad (_("%s for `%s'"), err_msg,
5648 current_templates->start->name);
5649 return NULL;
5650 }
5651
5652 if (!quiet_warnings)
5653 {
5654 if (!intel_syntax
5655 && (i.types[0].bitfield.jumpabsolute
5656 != operand_types[0].bitfield.jumpabsolute))
5657 {
5658 as_warn (_("indirect %s without `*'"), t->name);
5659 }
5660
5661 if (t->opcode_modifier.isprefix
5662 && t->opcode_modifier.ignoresize)
5663 {
5664 /* Warn them that a data or address size prefix doesn't
5665 affect assembly of the next line of code. */
5666 as_warn (_("stand-alone `%s' prefix"), t->name);
5667 }
5668 }
5669
5670 /* Copy the template we found. */
5671 i.tm = *t;
5672
5673 if (addr_prefix_disp != -1)
5674 i.tm.operand_types[addr_prefix_disp]
5675 = operand_types[addr_prefix_disp];
5676
5677 if (found_reverse_match)
5678 {
5679 /* If we found a reverse match we must alter the opcode
5680 direction bit. found_reverse_match holds bits to change
5681 (different for int & float insns). */
5682
5683 i.tm.base_opcode ^= found_reverse_match;
5684
5685 i.tm.operand_types[0] = operand_types[1];
5686 i.tm.operand_types[1] = operand_types[0];
5687 }
5688
5689 return t;
5690 }
5691
5692 static int
5693 check_string (void)
5694 {
5695 int mem_op = operand_type_check (i.types[0], anymem) ? 0 : 1;
5696 if (i.tm.operand_types[mem_op].bitfield.esseg)
5697 {
5698 if (i.seg[0] != NULL && i.seg[0] != &es)
5699 {
5700 as_bad (_("`%s' operand %d must use `%ses' segment"),
5701 i.tm.name,
5702 mem_op + 1,
5703 register_prefix);
5704 return 0;
5705 }
5706 /* There's only ever one segment override allowed per instruction.
5707 This instruction possibly has a legal segment override on the
5708 second operand, so copy the segment to where non-string
5709 instructions store it, allowing common code. */
5710 i.seg[0] = i.seg[1];
5711 }
5712 else if (i.tm.operand_types[mem_op + 1].bitfield.esseg)
5713 {
5714 if (i.seg[1] != NULL && i.seg[1] != &es)
5715 {
5716 as_bad (_("`%s' operand %d must use `%ses' segment"),
5717 i.tm.name,
5718 mem_op + 2,
5719 register_prefix);
5720 return 0;
5721 }
5722 }
5723 return 1;
5724 }
5725
5726 static int
5727 process_suffix (void)
5728 {
5729 /* If matched instruction specifies an explicit instruction mnemonic
5730 suffix, use it. */
5731 if (i.tm.opcode_modifier.size16)
5732 i.suffix = WORD_MNEM_SUFFIX;
5733 else if (i.tm.opcode_modifier.size32)
5734 i.suffix = LONG_MNEM_SUFFIX;
5735 else if (i.tm.opcode_modifier.size64)
5736 i.suffix = QWORD_MNEM_SUFFIX;
5737 else if (i.reg_operands)
5738 {
5739 /* If there's no instruction mnemonic suffix we try to invent one
5740 based on register operands. */
5741 if (!i.suffix)
5742 {
5743 /* We take i.suffix from the last register operand specified,
5744 Destination register type is more significant than source
5745 register type. crc32 in SSE4.2 prefers source register
5746 type. */
5747 if (i.tm.base_opcode == 0xf20f38f1)
5748 {
5749 if (i.types[0].bitfield.reg && i.types[0].bitfield.word)
5750 i.suffix = WORD_MNEM_SUFFIX;
5751 else if (i.types[0].bitfield.reg && i.types[0].bitfield.dword)
5752 i.suffix = LONG_MNEM_SUFFIX;
5753 else if (i.types[0].bitfield.reg && i.types[0].bitfield.qword)
5754 i.suffix = QWORD_MNEM_SUFFIX;
5755 }
5756 else if (i.tm.base_opcode == 0xf20f38f0)
5757 {
5758 if (i.types[0].bitfield.reg && i.types[0].bitfield.byte)
5759 i.suffix = BYTE_MNEM_SUFFIX;
5760 }
5761
5762 if (!i.suffix)
5763 {
5764 int op;
5765
5766 if (i.tm.base_opcode == 0xf20f38f1
5767 || i.tm.base_opcode == 0xf20f38f0)
5768 {
5769 /* We have to know the operand size for crc32. */
5770 as_bad (_("ambiguous memory operand size for `%s`"),
5771 i.tm.name);
5772 return 0;
5773 }
5774
5775 for (op = i.operands; --op >= 0;)
5776 if (!i.tm.operand_types[op].bitfield.inoutportreg
5777 && !i.tm.operand_types[op].bitfield.shiftcount)
5778 {
5779 if (!i.types[op].bitfield.reg)
5780 continue;
5781 if (i.types[op].bitfield.byte)
5782 i.suffix = BYTE_MNEM_SUFFIX;
5783 else if (i.types[op].bitfield.word)
5784 i.suffix = WORD_MNEM_SUFFIX;
5785 else if (i.types[op].bitfield.dword)
5786 i.suffix = LONG_MNEM_SUFFIX;
5787 else if (i.types[op].bitfield.qword)
5788 i.suffix = QWORD_MNEM_SUFFIX;
5789 else
5790 continue;
5791 break;
5792 }
5793 }
5794 }
5795 else if (i.suffix == BYTE_MNEM_SUFFIX)
5796 {
5797 if (intel_syntax
5798 && i.tm.opcode_modifier.ignoresize
5799 && i.tm.opcode_modifier.no_bsuf)
5800 i.suffix = 0;
5801 else if (!check_byte_reg ())
5802 return 0;
5803 }
5804 else if (i.suffix == LONG_MNEM_SUFFIX)
5805 {
5806 if (intel_syntax
5807 && i.tm.opcode_modifier.ignoresize
5808 && i.tm.opcode_modifier.no_lsuf)
5809 i.suffix = 0;
5810 else if (!check_long_reg ())
5811 return 0;
5812 }
5813 else if (i.suffix == QWORD_MNEM_SUFFIX)
5814 {
5815 if (intel_syntax
5816 && i.tm.opcode_modifier.ignoresize
5817 && i.tm.opcode_modifier.no_qsuf)
5818 i.suffix = 0;
5819 else if (!check_qword_reg ())
5820 return 0;
5821 }
5822 else if (i.suffix == WORD_MNEM_SUFFIX)
5823 {
5824 if (intel_syntax
5825 && i.tm.opcode_modifier.ignoresize
5826 && i.tm.opcode_modifier.no_wsuf)
5827 i.suffix = 0;
5828 else if (!check_word_reg ())
5829 return 0;
5830 }
5831 else if (intel_syntax && i.tm.opcode_modifier.ignoresize)
5832 /* Do nothing if the instruction is going to ignore the prefix. */
5833 ;
5834 else
5835 abort ();
5836 }
5837 else if (i.tm.opcode_modifier.defaultsize
5838 && !i.suffix
5839 /* exclude fldenv/frstor/fsave/fstenv */
5840 && i.tm.opcode_modifier.no_ssuf)
5841 {
5842 i.suffix = stackop_size;
5843 }
5844 else if (intel_syntax
5845 && !i.suffix
5846 && (i.tm.operand_types[0].bitfield.jumpabsolute
5847 || i.tm.opcode_modifier.jumpbyte
5848 || i.tm.opcode_modifier.jumpintersegment
5849 || (i.tm.base_opcode == 0x0f01 /* [ls][gi]dt */
5850 && i.tm.extension_opcode <= 3)))
5851 {
5852 switch (flag_code)
5853 {
5854 case CODE_64BIT:
5855 if (!i.tm.opcode_modifier.no_qsuf)
5856 {
5857 i.suffix = QWORD_MNEM_SUFFIX;
5858 break;
5859 }
5860 /* Fall through. */
5861 case CODE_32BIT:
5862 if (!i.tm.opcode_modifier.no_lsuf)
5863 i.suffix = LONG_MNEM_SUFFIX;
5864 break;
5865 case CODE_16BIT:
5866 if (!i.tm.opcode_modifier.no_wsuf)
5867 i.suffix = WORD_MNEM_SUFFIX;
5868 break;
5869 }
5870 }
5871
5872 if (!i.suffix)
5873 {
5874 if (!intel_syntax)
5875 {
5876 if (i.tm.opcode_modifier.w)
5877 {
5878 as_bad (_("no instruction mnemonic suffix given and "
5879 "no register operands; can't size instruction"));
5880 return 0;
5881 }
5882 }
5883 else
5884 {
5885 unsigned int suffixes;
5886
5887 suffixes = !i.tm.opcode_modifier.no_bsuf;
5888 if (!i.tm.opcode_modifier.no_wsuf)
5889 suffixes |= 1 << 1;
5890 if (!i.tm.opcode_modifier.no_lsuf)
5891 suffixes |= 1 << 2;
5892 if (!i.tm.opcode_modifier.no_ldsuf)
5893 suffixes |= 1 << 3;
5894 if (!i.tm.opcode_modifier.no_ssuf)
5895 suffixes |= 1 << 4;
5896 if (flag_code == CODE_64BIT && !i.tm.opcode_modifier.no_qsuf)
5897 suffixes |= 1 << 5;
5898
5899 /* There are more than suffix matches. */
5900 if (i.tm.opcode_modifier.w
5901 || ((suffixes & (suffixes - 1))
5902 && !i.tm.opcode_modifier.defaultsize
5903 && !i.tm.opcode_modifier.ignoresize))
5904 {
5905 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
5906 return 0;
5907 }
5908 }
5909 }
5910
5911 /* Change the opcode based on the operand size given by i.suffix. */
5912 switch (i.suffix)
5913 {
5914 /* Size floating point instruction. */
5915 case LONG_MNEM_SUFFIX:
5916 if (i.tm.opcode_modifier.floatmf)
5917 {
5918 i.tm.base_opcode ^= 4;
5919 break;
5920 }
5921 /* fall through */
5922 case WORD_MNEM_SUFFIX:
5923 case QWORD_MNEM_SUFFIX:
5924 /* It's not a byte, select word/dword operation. */
5925 if (i.tm.opcode_modifier.w)
5926 {
5927 if (i.tm.opcode_modifier.shortform)
5928 i.tm.base_opcode |= 8;
5929 else
5930 i.tm.base_opcode |= 1;
5931 }
5932 /* fall through */
5933 case SHORT_MNEM_SUFFIX:
5934 /* Now select between word & dword operations via the operand
5935 size prefix, except for instructions that will ignore this
5936 prefix anyway. */
5937 if (i.tm.opcode_modifier.addrprefixop0)
5938 {
5939 /* The address size override prefix changes the size of the
5940 first operand. */
5941 if ((flag_code == CODE_32BIT
5942 && i.op->regs[0].reg_type.bitfield.word)
5943 || (flag_code != CODE_32BIT
5944 && i.op->regs[0].reg_type.bitfield.dword))
5945 if (!add_prefix (ADDR_PREFIX_OPCODE))
5946 return 0;
5947 }
5948 else if (i.suffix != QWORD_MNEM_SUFFIX
5949 && !i.tm.opcode_modifier.ignoresize
5950 && !i.tm.opcode_modifier.floatmf
5951 && ((i.suffix == LONG_MNEM_SUFFIX) == (flag_code == CODE_16BIT)
5952 || (flag_code == CODE_64BIT
5953 && i.tm.opcode_modifier.jumpbyte)))
5954 {
5955 unsigned int prefix = DATA_PREFIX_OPCODE;
5956
5957 if (i.tm.opcode_modifier.jumpbyte) /* jcxz, loop */
5958 prefix = ADDR_PREFIX_OPCODE;
5959
5960 if (!add_prefix (prefix))
5961 return 0;
5962 }
5963
5964 /* Set mode64 for an operand. */
5965 if (i.suffix == QWORD_MNEM_SUFFIX
5966 && flag_code == CODE_64BIT
5967 && !i.tm.opcode_modifier.norex64
5968 /* Special case for xchg %rax,%rax. It is NOP and doesn't
5969 need rex64. */
5970 && ! (i.operands == 2
5971 && i.tm.base_opcode == 0x90
5972 && i.tm.extension_opcode == None
5973 && operand_type_equal (&i.types [0], &acc64)
5974 && operand_type_equal (&i.types [1], &acc64)))
5975 i.rex |= REX_W;
5976
5977 break;
5978 }
5979
5980 return 1;
5981 }
5982
5983 static int
5984 check_byte_reg (void)
5985 {
5986 int op;
5987
5988 for (op = i.operands; --op >= 0;)
5989 {
5990 /* Skip non-register operands. */
5991 if (!i.types[op].bitfield.reg)
5992 continue;
5993
5994 /* If this is an eight bit register, it's OK. If it's the 16 or
5995 32 bit version of an eight bit register, we will just use the
5996 low portion, and that's OK too. */
5997 if (i.types[op].bitfield.byte)
5998 continue;
5999
6000 /* I/O port address operands are OK too. */
6001 if (i.tm.operand_types[op].bitfield.inoutportreg)
6002 continue;
6003
6004 /* crc32 doesn't generate this warning. */
6005 if (i.tm.base_opcode == 0xf20f38f0)
6006 continue;
6007
6008 if ((i.types[op].bitfield.word
6009 || i.types[op].bitfield.dword
6010 || i.types[op].bitfield.qword)
6011 && i.op[op].regs->reg_num < 4
6012 /* Prohibit these changes in 64bit mode, since the lowering
6013 would be more complicated. */
6014 && flag_code != CODE_64BIT)
6015 {
6016 #if REGISTER_WARNINGS
6017 if (!quiet_warnings)
6018 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
6019 register_prefix,
6020 (i.op[op].regs + (i.types[op].bitfield.word
6021 ? REGNAM_AL - REGNAM_AX
6022 : REGNAM_AL - REGNAM_EAX))->reg_name,
6023 register_prefix,
6024 i.op[op].regs->reg_name,
6025 i.suffix);
6026 #endif
6027 continue;
6028 }
6029 /* Any other register is bad. */
6030 if (i.types[op].bitfield.reg
6031 || i.types[op].bitfield.regmmx
6032 || i.types[op].bitfield.regsimd
6033 || i.types[op].bitfield.sreg2
6034 || i.types[op].bitfield.sreg3
6035 || i.types[op].bitfield.control
6036 || i.types[op].bitfield.debug
6037 || i.types[op].bitfield.test)
6038 {
6039 as_bad (_("`%s%s' not allowed with `%s%c'"),
6040 register_prefix,
6041 i.op[op].regs->reg_name,
6042 i.tm.name,
6043 i.suffix);
6044 return 0;
6045 }
6046 }
6047 return 1;
6048 }
6049
6050 static int
6051 check_long_reg (void)
6052 {
6053 int op;
6054
6055 for (op = i.operands; --op >= 0;)
6056 /* Skip non-register operands. */
6057 if (!i.types[op].bitfield.reg)
6058 continue;
6059 /* Reject eight bit registers, except where the template requires
6060 them. (eg. movzb) */
6061 else if (i.types[op].bitfield.byte
6062 && (i.tm.operand_types[op].bitfield.reg
6063 || i.tm.operand_types[op].bitfield.acc)
6064 && (i.tm.operand_types[op].bitfield.word
6065 || i.tm.operand_types[op].bitfield.dword))
6066 {
6067 as_bad (_("`%s%s' not allowed with `%s%c'"),
6068 register_prefix,
6069 i.op[op].regs->reg_name,
6070 i.tm.name,
6071 i.suffix);
6072 return 0;
6073 }
6074 /* Warn if the e prefix on a general reg is missing. */
6075 else if ((!quiet_warnings || flag_code == CODE_64BIT)
6076 && i.types[op].bitfield.word
6077 && (i.tm.operand_types[op].bitfield.reg
6078 || i.tm.operand_types[op].bitfield.acc)
6079 && i.tm.operand_types[op].bitfield.dword)
6080 {
6081 /* Prohibit these changes in the 64bit mode, since the
6082 lowering is more complicated. */
6083 if (flag_code == CODE_64BIT)
6084 {
6085 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
6086 register_prefix, i.op[op].regs->reg_name,
6087 i.suffix);
6088 return 0;
6089 }
6090 #if REGISTER_WARNINGS
6091 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
6092 register_prefix,
6093 (i.op[op].regs + REGNAM_EAX - REGNAM_AX)->reg_name,
6094 register_prefix, i.op[op].regs->reg_name, i.suffix);
6095 #endif
6096 }
6097 /* Warn if the r prefix on a general reg is present. */
6098 else if (i.types[op].bitfield.qword
6099 && (i.tm.operand_types[op].bitfield.reg
6100 || i.tm.operand_types[op].bitfield.acc)
6101 && i.tm.operand_types[op].bitfield.dword)
6102 {
6103 if (intel_syntax
6104 && i.tm.opcode_modifier.toqword
6105 && !i.types[0].bitfield.regsimd)
6106 {
6107 /* Convert to QWORD. We want REX byte. */
6108 i.suffix = QWORD_MNEM_SUFFIX;
6109 }
6110 else
6111 {
6112 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
6113 register_prefix, i.op[op].regs->reg_name,
6114 i.suffix);
6115 return 0;
6116 }
6117 }
6118 return 1;
6119 }
6120
6121 static int
6122 check_qword_reg (void)
6123 {
6124 int op;
6125
6126 for (op = i.operands; --op >= 0; )
6127 /* Skip non-register operands. */
6128 if (!i.types[op].bitfield.reg)
6129 continue;
6130 /* Reject eight bit registers, except where the template requires
6131 them. (eg. movzb) */
6132 else if (i.types[op].bitfield.byte
6133 && (i.tm.operand_types[op].bitfield.reg
6134 || i.tm.operand_types[op].bitfield.acc)
6135 && (i.tm.operand_types[op].bitfield.word
6136 || i.tm.operand_types[op].bitfield.dword))
6137 {
6138 as_bad (_("`%s%s' not allowed with `%s%c'"),
6139 register_prefix,
6140 i.op[op].regs->reg_name,
6141 i.tm.name,
6142 i.suffix);
6143 return 0;
6144 }
6145 /* Warn if the r prefix on a general reg is missing. */
6146 else if ((i.types[op].bitfield.word
6147 || i.types[op].bitfield.dword)
6148 && (i.tm.operand_types[op].bitfield.reg
6149 || i.tm.operand_types[op].bitfield.acc)
6150 && i.tm.operand_types[op].bitfield.qword)
6151 {
6152 /* Prohibit these changes in the 64bit mode, since the
6153 lowering is more complicated. */
6154 if (intel_syntax
6155 && i.tm.opcode_modifier.todword
6156 && !i.types[0].bitfield.regsimd)
6157 {
6158 /* Convert to DWORD. We don't want REX byte. */
6159 i.suffix = LONG_MNEM_SUFFIX;
6160 }
6161 else
6162 {
6163 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
6164 register_prefix, i.op[op].regs->reg_name,
6165 i.suffix);
6166 return 0;
6167 }
6168 }
6169 return 1;
6170 }
6171
6172 static int
6173 check_word_reg (void)
6174 {
6175 int op;
6176 for (op = i.operands; --op >= 0;)
6177 /* Skip non-register operands. */
6178 if (!i.types[op].bitfield.reg)
6179 continue;
6180 /* Reject eight bit registers, except where the template requires
6181 them. (eg. movzb) */
6182 else if (i.types[op].bitfield.byte
6183 && (i.tm.operand_types[op].bitfield.reg
6184 || i.tm.operand_types[op].bitfield.acc)
6185 && (i.tm.operand_types[op].bitfield.word
6186 || i.tm.operand_types[op].bitfield.dword))
6187 {
6188 as_bad (_("`%s%s' not allowed with `%s%c'"),
6189 register_prefix,
6190 i.op[op].regs->reg_name,
6191 i.tm.name,
6192 i.suffix);
6193 return 0;
6194 }
6195 /* Warn if the e or r prefix on a general reg is present. */
6196 else if ((!quiet_warnings || flag_code == CODE_64BIT)
6197 && (i.types[op].bitfield.dword
6198 || i.types[op].bitfield.qword)
6199 && (i.tm.operand_types[op].bitfield.reg
6200 || i.tm.operand_types[op].bitfield.acc)
6201 && i.tm.operand_types[op].bitfield.word)
6202 {
6203 /* Prohibit these changes in the 64bit mode, since the
6204 lowering is more complicated. */
6205 if (flag_code == CODE_64BIT)
6206 {
6207 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
6208 register_prefix, i.op[op].regs->reg_name,
6209 i.suffix);
6210 return 0;
6211 }
6212 #if REGISTER_WARNINGS
6213 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
6214 register_prefix,
6215 (i.op[op].regs + REGNAM_AX - REGNAM_EAX)->reg_name,
6216 register_prefix, i.op[op].regs->reg_name, i.suffix);
6217 #endif
6218 }
6219 return 1;
6220 }
6221
6222 static int
6223 update_imm (unsigned int j)
6224 {
6225 i386_operand_type overlap = i.types[j];
6226 if ((overlap.bitfield.imm8
6227 || overlap.bitfield.imm8s
6228 || overlap.bitfield.imm16
6229 || overlap.bitfield.imm32
6230 || overlap.bitfield.imm32s
6231 || overlap.bitfield.imm64)
6232 && !operand_type_equal (&overlap, &imm8)
6233 && !operand_type_equal (&overlap, &imm8s)
6234 && !operand_type_equal (&overlap, &imm16)
6235 && !operand_type_equal (&overlap, &imm32)
6236 && !operand_type_equal (&overlap, &imm32s)
6237 && !operand_type_equal (&overlap, &imm64))
6238 {
6239 if (i.suffix)
6240 {
6241 i386_operand_type temp;
6242
6243 operand_type_set (&temp, 0);
6244 if (i.suffix == BYTE_MNEM_SUFFIX)
6245 {
6246 temp.bitfield.imm8 = overlap.bitfield.imm8;
6247 temp.bitfield.imm8s = overlap.bitfield.imm8s;
6248 }
6249 else if (i.suffix == WORD_MNEM_SUFFIX)
6250 temp.bitfield.imm16 = overlap.bitfield.imm16;
6251 else if (i.suffix == QWORD_MNEM_SUFFIX)
6252 {
6253 temp.bitfield.imm64 = overlap.bitfield.imm64;
6254 temp.bitfield.imm32s = overlap.bitfield.imm32s;
6255 }
6256 else
6257 temp.bitfield.imm32 = overlap.bitfield.imm32;
6258 overlap = temp;
6259 }
6260 else if (operand_type_equal (&overlap, &imm16_32_32s)
6261 || operand_type_equal (&overlap, &imm16_32)
6262 || operand_type_equal (&overlap, &imm16_32s))
6263 {
6264 if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
6265 overlap = imm16;
6266 else
6267 overlap = imm32s;
6268 }
6269 if (!operand_type_equal (&overlap, &imm8)
6270 && !operand_type_equal (&overlap, &imm8s)
6271 && !operand_type_equal (&overlap, &imm16)
6272 && !operand_type_equal (&overlap, &imm32)
6273 && !operand_type_equal (&overlap, &imm32s)
6274 && !operand_type_equal (&overlap, &imm64))
6275 {
6276 as_bad (_("no instruction mnemonic suffix given; "
6277 "can't determine immediate size"));
6278 return 0;
6279 }
6280 }
6281 i.types[j] = overlap;
6282
6283 return 1;
6284 }
6285
6286 static int
6287 finalize_imm (void)
6288 {
6289 unsigned int j, n;
6290
6291 /* Update the first 2 immediate operands. */
6292 n = i.operands > 2 ? 2 : i.operands;
6293 if (n)
6294 {
6295 for (j = 0; j < n; j++)
6296 if (update_imm (j) == 0)
6297 return 0;
6298
6299 /* The 3rd operand can't be immediate operand. */
6300 gas_assert (operand_type_check (i.types[2], imm) == 0);
6301 }
6302
6303 return 1;
6304 }
6305
6306 static int
6307 process_operands (void)
6308 {
6309 /* Default segment register this instruction will use for memory
6310 accesses. 0 means unknown. This is only for optimizing out
6311 unnecessary segment overrides. */
6312 const seg_entry *default_seg = 0;
6313
6314 if (i.tm.opcode_modifier.sse2avx && i.tm.opcode_modifier.vexvvvv)
6315 {
6316 unsigned int dupl = i.operands;
6317 unsigned int dest = dupl - 1;
6318 unsigned int j;
6319
6320 /* The destination must be an xmm register. */
6321 gas_assert (i.reg_operands
6322 && MAX_OPERANDS > dupl
6323 && operand_type_equal (&i.types[dest], &regxmm));
6324
6325 if (i.tm.operand_types[0].bitfield.acc
6326 && i.tm.operand_types[0].bitfield.xmmword)
6327 {
6328 if (i.tm.opcode_modifier.vexsources == VEX3SOURCES)
6329 {
6330 /* Keep xmm0 for instructions with VEX prefix and 3
6331 sources. */
6332 i.tm.operand_types[0].bitfield.acc = 0;
6333 i.tm.operand_types[0].bitfield.regsimd = 1;
6334 goto duplicate;
6335 }
6336 else
6337 {
6338 /* We remove the first xmm0 and keep the number of
6339 operands unchanged, which in fact duplicates the
6340 destination. */
6341 for (j = 1; j < i.operands; j++)
6342 {
6343 i.op[j - 1] = i.op[j];
6344 i.types[j - 1] = i.types[j];
6345 i.tm.operand_types[j - 1] = i.tm.operand_types[j];
6346 }
6347 }
6348 }
6349 else if (i.tm.opcode_modifier.implicit1stxmm0)
6350 {
6351 gas_assert ((MAX_OPERANDS - 1) > dupl
6352 && (i.tm.opcode_modifier.vexsources
6353 == VEX3SOURCES));
6354
6355 /* Add the implicit xmm0 for instructions with VEX prefix
6356 and 3 sources. */
6357 for (j = i.operands; j > 0; j--)
6358 {
6359 i.op[j] = i.op[j - 1];
6360 i.types[j] = i.types[j - 1];
6361 i.tm.operand_types[j] = i.tm.operand_types[j - 1];
6362 }
6363 i.op[0].regs
6364 = (const reg_entry *) hash_find (reg_hash, "xmm0");
6365 i.types[0] = regxmm;
6366 i.tm.operand_types[0] = regxmm;
6367
6368 i.operands += 2;
6369 i.reg_operands += 2;
6370 i.tm.operands += 2;
6371
6372 dupl++;
6373 dest++;
6374 i.op[dupl] = i.op[dest];
6375 i.types[dupl] = i.types[dest];
6376 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
6377 }
6378 else
6379 {
6380 duplicate:
6381 i.operands++;
6382 i.reg_operands++;
6383 i.tm.operands++;
6384
6385 i.op[dupl] = i.op[dest];
6386 i.types[dupl] = i.types[dest];
6387 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
6388 }
6389
6390 if (i.tm.opcode_modifier.immext)
6391 process_immext ();
6392 }
6393 else if (i.tm.operand_types[0].bitfield.acc
6394 && i.tm.operand_types[0].bitfield.xmmword)
6395 {
6396 unsigned int j;
6397
6398 for (j = 1; j < i.operands; j++)
6399 {
6400 i.op[j - 1] = i.op[j];
6401 i.types[j - 1] = i.types[j];
6402
6403 /* We need to adjust fields in i.tm since they are used by
6404 build_modrm_byte. */
6405 i.tm.operand_types [j - 1] = i.tm.operand_types [j];
6406 }
6407
6408 i.operands--;
6409 i.reg_operands--;
6410 i.tm.operands--;
6411 }
6412 else if (i.tm.opcode_modifier.implicitquadgroup)
6413 {
6414 unsigned int regnum, first_reg_in_group, last_reg_in_group;
6415
6416 /* The second operand must be {x,y,z}mmN, where N is a multiple of 4. */
6417 gas_assert (i.operands >= 2 && i.types[1].bitfield.regsimd);
6418 regnum = register_number (i.op[1].regs);
6419 first_reg_in_group = regnum & ~3;
6420 last_reg_in_group = first_reg_in_group + 3;
6421 if (regnum != first_reg_in_group)
6422 as_warn (_("source register `%s%s' implicitly denotes"
6423 " `%s%.3s%u' to `%s%.3s%u' source group in `%s'"),
6424 register_prefix, i.op[1].regs->reg_name,
6425 register_prefix, i.op[1].regs->reg_name, first_reg_in_group,
6426 register_prefix, i.op[1].regs->reg_name, last_reg_in_group,
6427 i.tm.name);
6428 }
6429 else if (i.tm.opcode_modifier.regkludge)
6430 {
6431 /* The imul $imm, %reg instruction is converted into
6432 imul $imm, %reg, %reg, and the clr %reg instruction
6433 is converted into xor %reg, %reg. */
6434
6435 unsigned int first_reg_op;
6436
6437 if (operand_type_check (i.types[0], reg))
6438 first_reg_op = 0;
6439 else
6440 first_reg_op = 1;
6441 /* Pretend we saw the extra register operand. */
6442 gas_assert (i.reg_operands == 1
6443 && i.op[first_reg_op + 1].regs == 0);
6444 i.op[first_reg_op + 1].regs = i.op[first_reg_op].regs;
6445 i.types[first_reg_op + 1] = i.types[first_reg_op];
6446 i.operands++;
6447 i.reg_operands++;
6448 }
6449
6450 if (i.tm.opcode_modifier.shortform)
6451 {
6452 if (i.types[0].bitfield.sreg2
6453 || i.types[0].bitfield.sreg3)
6454 {
6455 if (i.tm.base_opcode == POP_SEG_SHORT
6456 && i.op[0].regs->reg_num == 1)
6457 {
6458 as_bad (_("you can't `pop %scs'"), register_prefix);
6459 return 0;
6460 }
6461 i.tm.base_opcode |= (i.op[0].regs->reg_num << 3);
6462 if ((i.op[0].regs->reg_flags & RegRex) != 0)
6463 i.rex |= REX_B;
6464 }
6465 else
6466 {
6467 /* The register or float register operand is in operand
6468 0 or 1. */
6469 unsigned int op;
6470
6471 if ((i.types[0].bitfield.reg && i.types[0].bitfield.tbyte)
6472 || operand_type_check (i.types[0], reg))
6473 op = 0;
6474 else
6475 op = 1;
6476 /* Register goes in low 3 bits of opcode. */
6477 i.tm.base_opcode |= i.op[op].regs->reg_num;
6478 if ((i.op[op].regs->reg_flags & RegRex) != 0)
6479 i.rex |= REX_B;
6480 if (!quiet_warnings && i.tm.opcode_modifier.ugh)
6481 {
6482 /* Warn about some common errors, but press on regardless.
6483 The first case can be generated by gcc (<= 2.8.1). */
6484 if (i.operands == 2)
6485 {
6486 /* Reversed arguments on faddp, fsubp, etc. */
6487 as_warn (_("translating to `%s %s%s,%s%s'"), i.tm.name,
6488 register_prefix, i.op[!intel_syntax].regs->reg_name,
6489 register_prefix, i.op[intel_syntax].regs->reg_name);
6490 }
6491 else
6492 {
6493 /* Extraneous `l' suffix on fp insn. */
6494 as_warn (_("translating to `%s %s%s'"), i.tm.name,
6495 register_prefix, i.op[0].regs->reg_name);
6496 }
6497 }
6498 }
6499 }
6500 else if (i.tm.opcode_modifier.modrm)
6501 {
6502 /* The opcode is completed (modulo i.tm.extension_opcode which
6503 must be put into the modrm byte). Now, we make the modrm and
6504 index base bytes based on all the info we've collected. */
6505
6506 default_seg = build_modrm_byte ();
6507 }
6508 else if ((i.tm.base_opcode & ~0x3) == MOV_AX_DISP32)
6509 {
6510 default_seg = &ds;
6511 }
6512 else if (i.tm.opcode_modifier.isstring)
6513 {
6514 /* For the string instructions that allow a segment override
6515 on one of their operands, the default segment is ds. */
6516 default_seg = &ds;
6517 }
6518
6519 if (i.tm.base_opcode == 0x8d /* lea */
6520 && i.seg[0]
6521 && !quiet_warnings)
6522 as_warn (_("segment override on `%s' is ineffectual"), i.tm.name);
6523
6524 /* If a segment was explicitly specified, and the specified segment
6525 is not the default, use an opcode prefix to select it. If we
6526 never figured out what the default segment is, then default_seg
6527 will be zero at this point, and the specified segment prefix will
6528 always be used. */
6529 if ((i.seg[0]) && (i.seg[0] != default_seg))
6530 {
6531 if (!add_prefix (i.seg[0]->seg_prefix))
6532 return 0;
6533 }
6534 return 1;
6535 }
6536
6537 static const seg_entry *
6538 build_modrm_byte (void)
6539 {
6540 const seg_entry *default_seg = 0;
6541 unsigned int source, dest;
6542 int vex_3_sources;
6543
6544 /* The first operand of instructions with VEX prefix and 3 sources
6545 must be VEX_Imm4. */
6546 vex_3_sources = i.tm.opcode_modifier.vexsources == VEX3SOURCES;
6547 if (vex_3_sources)
6548 {
6549 unsigned int nds, reg_slot;
6550 expressionS *exp;
6551
6552 if (i.tm.opcode_modifier.veximmext
6553 && i.tm.opcode_modifier.immext)
6554 {
6555 dest = i.operands - 2;
6556 gas_assert (dest == 3);
6557 }
6558 else
6559 dest = i.operands - 1;
6560 nds = dest - 1;
6561
6562 /* There are 2 kinds of instructions:
6563 1. 5 operands: 4 register operands or 3 register operands
6564 plus 1 memory operand plus one Vec_Imm4 operand, VexXDS, and
6565 VexW0 or VexW1. The destination must be either XMM, YMM or
6566 ZMM register.
6567 2. 4 operands: 4 register operands or 3 register operands
6568 plus 1 memory operand, VexXDS, and VexImmExt */
6569 gas_assert ((i.reg_operands == 4
6570 || (i.reg_operands == 3 && i.mem_operands == 1))
6571 && i.tm.opcode_modifier.vexvvvv == VEXXDS
6572 && (i.tm.opcode_modifier.veximmext
6573 || (i.imm_operands == 1
6574 && i.types[0].bitfield.vec_imm4
6575 && (i.tm.opcode_modifier.vexw == VEXW0
6576 || i.tm.opcode_modifier.vexw == VEXW1)
6577 && i.tm.operand_types[dest].bitfield.regsimd)));
6578
6579 if (i.imm_operands == 0)
6580 {
6581 /* When there is no immediate operand, generate an 8bit
6582 immediate operand to encode the first operand. */
6583 exp = &im_expressions[i.imm_operands++];
6584 i.op[i.operands].imms = exp;
6585 i.types[i.operands] = imm8;
6586 i.operands++;
6587 /* If VexW1 is set, the first operand is the source and
6588 the second operand is encoded in the immediate operand. */
6589 if (i.tm.opcode_modifier.vexw == VEXW1)
6590 {
6591 source = 0;
6592 reg_slot = 1;
6593 }
6594 else
6595 {
6596 source = 1;
6597 reg_slot = 0;
6598 }
6599
6600 /* FMA swaps REG and NDS. */
6601 if (i.tm.cpu_flags.bitfield.cpufma)
6602 {
6603 unsigned int tmp;
6604 tmp = reg_slot;
6605 reg_slot = nds;
6606 nds = tmp;
6607 }
6608
6609 gas_assert (i.tm.operand_types[reg_slot].bitfield.regsimd);
6610 exp->X_op = O_constant;
6611 exp->X_add_number = register_number (i.op[reg_slot].regs) << 4;
6612 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
6613 }
6614 else
6615 {
6616 unsigned int imm_slot;
6617
6618 if (i.tm.opcode_modifier.vexw == VEXW0)
6619 {
6620 /* If VexW0 is set, the third operand is the source and
6621 the second operand is encoded in the immediate
6622 operand. */
6623 source = 2;
6624 reg_slot = 1;
6625 }
6626 else
6627 {
6628 /* VexW1 is set, the second operand is the source and
6629 the third operand is encoded in the immediate
6630 operand. */
6631 source = 1;
6632 reg_slot = 2;
6633 }
6634
6635 if (i.tm.opcode_modifier.immext)
6636 {
6637 /* When ImmExt is set, the immediate byte is the last
6638 operand. */
6639 imm_slot = i.operands - 1;
6640 source--;
6641 reg_slot--;
6642 }
6643 else
6644 {
6645 imm_slot = 0;
6646
6647 /* Turn on Imm8 so that output_imm will generate it. */
6648 i.types[imm_slot].bitfield.imm8 = 1;
6649 }
6650
6651 gas_assert (i.tm.operand_types[reg_slot].bitfield.regsimd);
6652 i.op[imm_slot].imms->X_add_number
6653 |= register_number (i.op[reg_slot].regs) << 4;
6654 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
6655 }
6656
6657 gas_assert (i.tm.operand_types[nds].bitfield.regsimd);
6658 i.vex.register_specifier = i.op[nds].regs;
6659 }
6660 else
6661 source = dest = 0;
6662
6663 /* i.reg_operands MUST be the number of real register operands;
6664 implicit registers do not count. If there are 3 register
6665 operands, it must be a instruction with VexNDS. For a
6666 instruction with VexNDD, the destination register is encoded
6667 in VEX prefix. If there are 4 register operands, it must be
6668 a instruction with VEX prefix and 3 sources. */
6669 if (i.mem_operands == 0
6670 && ((i.reg_operands == 2
6671 && i.tm.opcode_modifier.vexvvvv <= VEXXDS)
6672 || (i.reg_operands == 3
6673 && i.tm.opcode_modifier.vexvvvv == VEXXDS)
6674 || (i.reg_operands == 4 && vex_3_sources)))
6675 {
6676 switch (i.operands)
6677 {
6678 case 2:
6679 source = 0;
6680 break;
6681 case 3:
6682 /* When there are 3 operands, one of them may be immediate,
6683 which may be the first or the last operand. Otherwise,
6684 the first operand must be shift count register (cl) or it
6685 is an instruction with VexNDS. */
6686 gas_assert (i.imm_operands == 1
6687 || (i.imm_operands == 0
6688 && (i.tm.opcode_modifier.vexvvvv == VEXXDS
6689 || i.types[0].bitfield.shiftcount)));
6690 if (operand_type_check (i.types[0], imm)
6691 || i.types[0].bitfield.shiftcount)
6692 source = 1;
6693 else
6694 source = 0;
6695 break;
6696 case 4:
6697 /* When there are 4 operands, the first two must be 8bit
6698 immediate operands. The source operand will be the 3rd
6699 one.
6700
6701 For instructions with VexNDS, if the first operand
6702 an imm8, the source operand is the 2nd one. If the last
6703 operand is imm8, the source operand is the first one. */
6704 gas_assert ((i.imm_operands == 2
6705 && i.types[0].bitfield.imm8
6706 && i.types[1].bitfield.imm8)
6707 || (i.tm.opcode_modifier.vexvvvv == VEXXDS
6708 && i.imm_operands == 1
6709 && (i.types[0].bitfield.imm8
6710 || i.types[i.operands - 1].bitfield.imm8
6711 || i.rounding)));
6712 if (i.imm_operands == 2)
6713 source = 2;
6714 else
6715 {
6716 if (i.types[0].bitfield.imm8)
6717 source = 1;
6718 else
6719 source = 0;
6720 }
6721 break;
6722 case 5:
6723 if (is_evex_encoding (&i.tm))
6724 {
6725 /* For EVEX instructions, when there are 5 operands, the
6726 first one must be immediate operand. If the second one
6727 is immediate operand, the source operand is the 3th
6728 one. If the last one is immediate operand, the source
6729 operand is the 2nd one. */
6730 gas_assert (i.imm_operands == 2
6731 && i.tm.opcode_modifier.sae
6732 && operand_type_check (i.types[0], imm));
6733 if (operand_type_check (i.types[1], imm))
6734 source = 2;
6735 else if (operand_type_check (i.types[4], imm))
6736 source = 1;
6737 else
6738 abort ();
6739 }
6740 break;
6741 default:
6742 abort ();
6743 }
6744
6745 if (!vex_3_sources)
6746 {
6747 dest = source + 1;
6748
6749 /* RC/SAE operand could be between DEST and SRC. That happens
6750 when one operand is GPR and the other one is XMM/YMM/ZMM
6751 register. */
6752 if (i.rounding && i.rounding->operand == (int) dest)
6753 dest++;
6754
6755 if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
6756 {
6757 /* For instructions with VexNDS, the register-only source
6758 operand must be a 32/64bit integer, XMM, YMM, ZMM, or mask
6759 register. It is encoded in VEX prefix. We need to
6760 clear RegMem bit before calling operand_type_equal. */
6761
6762 i386_operand_type op;
6763 unsigned int vvvv;
6764
6765 /* Check register-only source operand when two source
6766 operands are swapped. */
6767 if (!i.tm.operand_types[source].bitfield.baseindex
6768 && i.tm.operand_types[dest].bitfield.baseindex)
6769 {
6770 vvvv = source;
6771 source = dest;
6772 }
6773 else
6774 vvvv = dest;
6775
6776 op = i.tm.operand_types[vvvv];
6777 op.bitfield.regmem = 0;
6778 if ((dest + 1) >= i.operands
6779 || ((!op.bitfield.reg
6780 || (!op.bitfield.dword && !op.bitfield.qword))
6781 && !op.bitfield.regsimd
6782 && !operand_type_equal (&op, &regmask)))
6783 abort ();
6784 i.vex.register_specifier = i.op[vvvv].regs;
6785 dest++;
6786 }
6787 }
6788
6789 i.rm.mode = 3;
6790 /* One of the register operands will be encoded in the i.tm.reg
6791 field, the other in the combined i.tm.mode and i.tm.regmem
6792 fields. If no form of this instruction supports a memory
6793 destination operand, then we assume the source operand may
6794 sometimes be a memory operand and so we need to store the
6795 destination in the i.rm.reg field. */
6796 if (!i.tm.operand_types[dest].bitfield.regmem
6797 && operand_type_check (i.tm.operand_types[dest], anymem) == 0)
6798 {
6799 i.rm.reg = i.op[dest].regs->reg_num;
6800 i.rm.regmem = i.op[source].regs->reg_num;
6801 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
6802 i.rex |= REX_R;
6803 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
6804 i.vrex |= REX_R;
6805 if ((i.op[source].regs->reg_flags & RegRex) != 0)
6806 i.rex |= REX_B;
6807 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
6808 i.vrex |= REX_B;
6809 }
6810 else
6811 {
6812 i.rm.reg = i.op[source].regs->reg_num;
6813 i.rm.regmem = i.op[dest].regs->reg_num;
6814 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
6815 i.rex |= REX_B;
6816 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
6817 i.vrex |= REX_B;
6818 if ((i.op[source].regs->reg_flags & RegRex) != 0)
6819 i.rex |= REX_R;
6820 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
6821 i.vrex |= REX_R;
6822 }
6823 if (flag_code != CODE_64BIT && (i.rex & (REX_R | REX_B)))
6824 {
6825 if (!i.types[0].bitfield.control
6826 && !i.types[1].bitfield.control)
6827 abort ();
6828 i.rex &= ~(REX_R | REX_B);
6829 add_prefix (LOCK_PREFIX_OPCODE);
6830 }
6831 }
6832 else
6833 { /* If it's not 2 reg operands... */
6834 unsigned int mem;
6835
6836 if (i.mem_operands)
6837 {
6838 unsigned int fake_zero_displacement = 0;
6839 unsigned int op;
6840
6841 for (op = 0; op < i.operands; op++)
6842 if (operand_type_check (i.types[op], anymem))
6843 break;
6844 gas_assert (op < i.operands);
6845
6846 if (i.tm.opcode_modifier.vecsib)
6847 {
6848 if (i.index_reg->reg_num == RegEiz
6849 || i.index_reg->reg_num == RegRiz)
6850 abort ();
6851
6852 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
6853 if (!i.base_reg)
6854 {
6855 i.sib.base = NO_BASE_REGISTER;
6856 i.sib.scale = i.log2_scale_factor;
6857 i.types[op].bitfield.disp8 = 0;
6858 i.types[op].bitfield.disp16 = 0;
6859 i.types[op].bitfield.disp64 = 0;
6860 if (flag_code != CODE_64BIT || i.prefix[ADDR_PREFIX])
6861 {
6862 /* Must be 32 bit */
6863 i.types[op].bitfield.disp32 = 1;
6864 i.types[op].bitfield.disp32s = 0;
6865 }
6866 else
6867 {
6868 i.types[op].bitfield.disp32 = 0;
6869 i.types[op].bitfield.disp32s = 1;
6870 }
6871 }
6872 i.sib.index = i.index_reg->reg_num;
6873 if ((i.index_reg->reg_flags & RegRex) != 0)
6874 i.rex |= REX_X;
6875 if ((i.index_reg->reg_flags & RegVRex) != 0)
6876 i.vrex |= REX_X;
6877 }
6878
6879 default_seg = &ds;
6880
6881 if (i.base_reg == 0)
6882 {
6883 i.rm.mode = 0;
6884 if (!i.disp_operands)
6885 fake_zero_displacement = 1;
6886 if (i.index_reg == 0)
6887 {
6888 i386_operand_type newdisp;
6889
6890 gas_assert (!i.tm.opcode_modifier.vecsib);
6891 /* Operand is just <disp> */
6892 if (flag_code == CODE_64BIT)
6893 {
6894 /* 64bit mode overwrites the 32bit absolute
6895 addressing by RIP relative addressing and
6896 absolute addressing is encoded by one of the
6897 redundant SIB forms. */
6898 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
6899 i.sib.base = NO_BASE_REGISTER;
6900 i.sib.index = NO_INDEX_REGISTER;
6901 newdisp = (!i.prefix[ADDR_PREFIX] ? disp32s : disp32);
6902 }
6903 else if ((flag_code == CODE_16BIT)
6904 ^ (i.prefix[ADDR_PREFIX] != 0))
6905 {
6906 i.rm.regmem = NO_BASE_REGISTER_16;
6907 newdisp = disp16;
6908 }
6909 else
6910 {
6911 i.rm.regmem = NO_BASE_REGISTER;
6912 newdisp = disp32;
6913 }
6914 i.types[op] = operand_type_and_not (i.types[op], anydisp);
6915 i.types[op] = operand_type_or (i.types[op], newdisp);
6916 }
6917 else if (!i.tm.opcode_modifier.vecsib)
6918 {
6919 /* !i.base_reg && i.index_reg */
6920 if (i.index_reg->reg_num == RegEiz
6921 || i.index_reg->reg_num == RegRiz)
6922 i.sib.index = NO_INDEX_REGISTER;
6923 else
6924 i.sib.index = i.index_reg->reg_num;
6925 i.sib.base = NO_BASE_REGISTER;
6926 i.sib.scale = i.log2_scale_factor;
6927 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
6928 i.types[op].bitfield.disp8 = 0;
6929 i.types[op].bitfield.disp16 = 0;
6930 i.types[op].bitfield.disp64 = 0;
6931 if (flag_code != CODE_64BIT || i.prefix[ADDR_PREFIX])
6932 {
6933 /* Must be 32 bit */
6934 i.types[op].bitfield.disp32 = 1;
6935 i.types[op].bitfield.disp32s = 0;
6936 }
6937 else
6938 {
6939 i.types[op].bitfield.disp32 = 0;
6940 i.types[op].bitfield.disp32s = 1;
6941 }
6942 if ((i.index_reg->reg_flags & RegRex) != 0)
6943 i.rex |= REX_X;
6944 }
6945 }
6946 /* RIP addressing for 64bit mode. */
6947 else if (i.base_reg->reg_num == RegRip ||
6948 i.base_reg->reg_num == RegEip)
6949 {
6950 gas_assert (!i.tm.opcode_modifier.vecsib);
6951 i.rm.regmem = NO_BASE_REGISTER;
6952 i.types[op].bitfield.disp8 = 0;
6953 i.types[op].bitfield.disp16 = 0;
6954 i.types[op].bitfield.disp32 = 0;
6955 i.types[op].bitfield.disp32s = 1;
6956 i.types[op].bitfield.disp64 = 0;
6957 i.flags[op] |= Operand_PCrel;
6958 if (! i.disp_operands)
6959 fake_zero_displacement = 1;
6960 }
6961 else if (i.base_reg->reg_type.bitfield.word)
6962 {
6963 gas_assert (!i.tm.opcode_modifier.vecsib);
6964 switch (i.base_reg->reg_num)
6965 {
6966 case 3: /* (%bx) */
6967 if (i.index_reg == 0)
6968 i.rm.regmem = 7;
6969 else /* (%bx,%si) -> 0, or (%bx,%di) -> 1 */
6970 i.rm.regmem = i.index_reg->reg_num - 6;
6971 break;
6972 case 5: /* (%bp) */
6973 default_seg = &ss;
6974 if (i.index_reg == 0)
6975 {
6976 i.rm.regmem = 6;
6977 if (operand_type_check (i.types[op], disp) == 0)
6978 {
6979 /* fake (%bp) into 0(%bp) */
6980 i.types[op].bitfield.disp8 = 1;
6981 fake_zero_displacement = 1;
6982 }
6983 }
6984 else /* (%bp,%si) -> 2, or (%bp,%di) -> 3 */
6985 i.rm.regmem = i.index_reg->reg_num - 6 + 2;
6986 break;
6987 default: /* (%si) -> 4 or (%di) -> 5 */
6988 i.rm.regmem = i.base_reg->reg_num - 6 + 4;
6989 }
6990 i.rm.mode = mode_from_disp_size (i.types[op]);
6991 }
6992 else /* i.base_reg and 32/64 bit mode */
6993 {
6994 if (flag_code == CODE_64BIT
6995 && operand_type_check (i.types[op], disp))
6996 {
6997 i.types[op].bitfield.disp16 = 0;
6998 i.types[op].bitfield.disp64 = 0;
6999 if (i.prefix[ADDR_PREFIX] == 0)
7000 {
7001 i.types[op].bitfield.disp32 = 0;
7002 i.types[op].bitfield.disp32s = 1;
7003 }
7004 else
7005 {
7006 i.types[op].bitfield.disp32 = 1;
7007 i.types[op].bitfield.disp32s = 0;
7008 }
7009 }
7010
7011 if (!i.tm.opcode_modifier.vecsib)
7012 i.rm.regmem = i.base_reg->reg_num;
7013 if ((i.base_reg->reg_flags & RegRex) != 0)
7014 i.rex |= REX_B;
7015 i.sib.base = i.base_reg->reg_num;
7016 /* x86-64 ignores REX prefix bit here to avoid decoder
7017 complications. */
7018 if (!(i.base_reg->reg_flags & RegRex)
7019 && (i.base_reg->reg_num == EBP_REG_NUM
7020 || i.base_reg->reg_num == ESP_REG_NUM))
7021 default_seg = &ss;
7022 if (i.base_reg->reg_num == 5 && i.disp_operands == 0)
7023 {
7024 fake_zero_displacement = 1;
7025 i.types[op].bitfield.disp8 = 1;
7026 }
7027 i.sib.scale = i.log2_scale_factor;
7028 if (i.index_reg == 0)
7029 {
7030 gas_assert (!i.tm.opcode_modifier.vecsib);
7031 /* <disp>(%esp) becomes two byte modrm with no index
7032 register. We've already stored the code for esp
7033 in i.rm.regmem ie. ESCAPE_TO_TWO_BYTE_ADDRESSING.
7034 Any base register besides %esp will not use the
7035 extra modrm byte. */
7036 i.sib.index = NO_INDEX_REGISTER;
7037 }
7038 else if (!i.tm.opcode_modifier.vecsib)
7039 {
7040 if (i.index_reg->reg_num == RegEiz
7041 || i.index_reg->reg_num == RegRiz)
7042 i.sib.index = NO_INDEX_REGISTER;
7043 else
7044 i.sib.index = i.index_reg->reg_num;
7045 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7046 if ((i.index_reg->reg_flags & RegRex) != 0)
7047 i.rex |= REX_X;
7048 }
7049
7050 if (i.disp_operands
7051 && (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
7052 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL))
7053 i.rm.mode = 0;
7054 else
7055 {
7056 if (!fake_zero_displacement
7057 && !i.disp_operands
7058 && i.disp_encoding)
7059 {
7060 fake_zero_displacement = 1;
7061 if (i.disp_encoding == disp_encoding_8bit)
7062 i.types[op].bitfield.disp8 = 1;
7063 else
7064 i.types[op].bitfield.disp32 = 1;
7065 }
7066 i.rm.mode = mode_from_disp_size (i.types[op]);
7067 }
7068 }
7069
7070 if (fake_zero_displacement)
7071 {
7072 /* Fakes a zero displacement assuming that i.types[op]
7073 holds the correct displacement size. */
7074 expressionS *exp;
7075
7076 gas_assert (i.op[op].disps == 0);
7077 exp = &disp_expressions[i.disp_operands++];
7078 i.op[op].disps = exp;
7079 exp->X_op = O_constant;
7080 exp->X_add_number = 0;
7081 exp->X_add_symbol = (symbolS *) 0;
7082 exp->X_op_symbol = (symbolS *) 0;
7083 }
7084
7085 mem = op;
7086 }
7087 else
7088 mem = ~0;
7089
7090 if (i.tm.opcode_modifier.vexsources == XOP2SOURCES)
7091 {
7092 if (operand_type_check (i.types[0], imm))
7093 i.vex.register_specifier = NULL;
7094 else
7095 {
7096 /* VEX.vvvv encodes one of the sources when the first
7097 operand is not an immediate. */
7098 if (i.tm.opcode_modifier.vexw == VEXW0)
7099 i.vex.register_specifier = i.op[0].regs;
7100 else
7101 i.vex.register_specifier = i.op[1].regs;
7102 }
7103
7104 /* Destination is a XMM register encoded in the ModRM.reg
7105 and VEX.R bit. */
7106 i.rm.reg = i.op[2].regs->reg_num;
7107 if ((i.op[2].regs->reg_flags & RegRex) != 0)
7108 i.rex |= REX_R;
7109
7110 /* ModRM.rm and VEX.B encodes the other source. */
7111 if (!i.mem_operands)
7112 {
7113 i.rm.mode = 3;
7114
7115 if (i.tm.opcode_modifier.vexw == VEXW0)
7116 i.rm.regmem = i.op[1].regs->reg_num;
7117 else
7118 i.rm.regmem = i.op[0].regs->reg_num;
7119
7120 if ((i.op[1].regs->reg_flags & RegRex) != 0)
7121 i.rex |= REX_B;
7122 }
7123 }
7124 else if (i.tm.opcode_modifier.vexvvvv == VEXLWP)
7125 {
7126 i.vex.register_specifier = i.op[2].regs;
7127 if (!i.mem_operands)
7128 {
7129 i.rm.mode = 3;
7130 i.rm.regmem = i.op[1].regs->reg_num;
7131 if ((i.op[1].regs->reg_flags & RegRex) != 0)
7132 i.rex |= REX_B;
7133 }
7134 }
7135 /* Fill in i.rm.reg or i.rm.regmem field with register operand
7136 (if any) based on i.tm.extension_opcode. Again, we must be
7137 careful to make sure that segment/control/debug/test/MMX
7138 registers are coded into the i.rm.reg field. */
7139 else if (i.reg_operands)
7140 {
7141 unsigned int op;
7142 unsigned int vex_reg = ~0;
7143
7144 for (op = 0; op < i.operands; op++)
7145 if (i.types[op].bitfield.reg
7146 || i.types[op].bitfield.regmmx
7147 || i.types[op].bitfield.regsimd
7148 || i.types[op].bitfield.regbnd
7149 || i.types[op].bitfield.regmask
7150 || i.types[op].bitfield.sreg2
7151 || i.types[op].bitfield.sreg3
7152 || i.types[op].bitfield.control
7153 || i.types[op].bitfield.debug
7154 || i.types[op].bitfield.test)
7155 break;
7156
7157 if (vex_3_sources)
7158 op = dest;
7159 else if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
7160 {
7161 /* For instructions with VexNDS, the register-only
7162 source operand is encoded in VEX prefix. */
7163 gas_assert (mem != (unsigned int) ~0);
7164
7165 if (op > mem)
7166 {
7167 vex_reg = op++;
7168 gas_assert (op < i.operands);
7169 }
7170 else
7171 {
7172 /* Check register-only source operand when two source
7173 operands are swapped. */
7174 if (!i.tm.operand_types[op].bitfield.baseindex
7175 && i.tm.operand_types[op + 1].bitfield.baseindex)
7176 {
7177 vex_reg = op;
7178 op += 2;
7179 gas_assert (mem == (vex_reg + 1)
7180 && op < i.operands);
7181 }
7182 else
7183 {
7184 vex_reg = op + 1;
7185 gas_assert (vex_reg < i.operands);
7186 }
7187 }
7188 }
7189 else if (i.tm.opcode_modifier.vexvvvv == VEXNDD)
7190 {
7191 /* For instructions with VexNDD, the register destination
7192 is encoded in VEX prefix. */
7193 if (i.mem_operands == 0)
7194 {
7195 /* There is no memory operand. */
7196 gas_assert ((op + 2) == i.operands);
7197 vex_reg = op + 1;
7198 }
7199 else
7200 {
7201 /* There are only 2 non-immediate operands. */
7202 gas_assert (op < i.imm_operands + 2
7203 && i.operands == i.imm_operands + 2);
7204 vex_reg = i.imm_operands + 1;
7205 }
7206 }
7207 else
7208 gas_assert (op < i.operands);
7209
7210 if (vex_reg != (unsigned int) ~0)
7211 {
7212 i386_operand_type *type = &i.tm.operand_types[vex_reg];
7213
7214 if ((!type->bitfield.reg
7215 || (!type->bitfield.dword && !type->bitfield.qword))
7216 && !type->bitfield.regsimd
7217 && !operand_type_equal (type, &regmask))
7218 abort ();
7219
7220 i.vex.register_specifier = i.op[vex_reg].regs;
7221 }
7222
7223 /* Don't set OP operand twice. */
7224 if (vex_reg != op)
7225 {
7226 /* If there is an extension opcode to put here, the
7227 register number must be put into the regmem field. */
7228 if (i.tm.extension_opcode != None)
7229 {
7230 i.rm.regmem = i.op[op].regs->reg_num;
7231 if ((i.op[op].regs->reg_flags & RegRex) != 0)
7232 i.rex |= REX_B;
7233 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
7234 i.vrex |= REX_B;
7235 }
7236 else
7237 {
7238 i.rm.reg = i.op[op].regs->reg_num;
7239 if ((i.op[op].regs->reg_flags & RegRex) != 0)
7240 i.rex |= REX_R;
7241 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
7242 i.vrex |= REX_R;
7243 }
7244 }
7245
7246 /* Now, if no memory operand has set i.rm.mode = 0, 1, 2 we
7247 must set it to 3 to indicate this is a register operand
7248 in the regmem field. */
7249 if (!i.mem_operands)
7250 i.rm.mode = 3;
7251 }
7252
7253 /* Fill in i.rm.reg field with extension opcode (if any). */
7254 if (i.tm.extension_opcode != None)
7255 i.rm.reg = i.tm.extension_opcode;
7256 }
7257 return default_seg;
7258 }
7259
7260 static void
7261 output_branch (void)
7262 {
7263 char *p;
7264 int size;
7265 int code16;
7266 int prefix;
7267 relax_substateT subtype;
7268 symbolS *sym;
7269 offsetT off;
7270
7271 code16 = flag_code == CODE_16BIT ? CODE16 : 0;
7272 size = i.disp_encoding == disp_encoding_32bit ? BIG : SMALL;
7273
7274 prefix = 0;
7275 if (i.prefix[DATA_PREFIX] != 0)
7276 {
7277 prefix = 1;
7278 i.prefixes -= 1;
7279 code16 ^= CODE16;
7280 }
7281 /* Pentium4 branch hints. */
7282 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
7283 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
7284 {
7285 prefix++;
7286 i.prefixes--;
7287 }
7288 if (i.prefix[REX_PREFIX] != 0)
7289 {
7290 prefix++;
7291 i.prefixes--;
7292 }
7293
7294 /* BND prefixed jump. */
7295 if (i.prefix[BND_PREFIX] != 0)
7296 {
7297 FRAG_APPEND_1_CHAR (i.prefix[BND_PREFIX]);
7298 i.prefixes -= 1;
7299 }
7300
7301 if (i.prefixes != 0 && !intel_syntax)
7302 as_warn (_("skipping prefixes on this instruction"));
7303
7304 /* It's always a symbol; End frag & setup for relax.
7305 Make sure there is enough room in this frag for the largest
7306 instruction we may generate in md_convert_frag. This is 2
7307 bytes for the opcode and room for the prefix and largest
7308 displacement. */
7309 frag_grow (prefix + 2 + 4);
7310 /* Prefix and 1 opcode byte go in fr_fix. */
7311 p = frag_more (prefix + 1);
7312 if (i.prefix[DATA_PREFIX] != 0)
7313 *p++ = DATA_PREFIX_OPCODE;
7314 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE
7315 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE)
7316 *p++ = i.prefix[SEG_PREFIX];
7317 if (i.prefix[REX_PREFIX] != 0)
7318 *p++ = i.prefix[REX_PREFIX];
7319 *p = i.tm.base_opcode;
7320
7321 if ((unsigned char) *p == JUMP_PC_RELATIVE)
7322 subtype = ENCODE_RELAX_STATE (UNCOND_JUMP, size);
7323 else if (cpu_arch_flags.bitfield.cpui386)
7324 subtype = ENCODE_RELAX_STATE (COND_JUMP, size);
7325 else
7326 subtype = ENCODE_RELAX_STATE (COND_JUMP86, size);
7327 subtype |= code16;
7328
7329 sym = i.op[0].disps->X_add_symbol;
7330 off = i.op[0].disps->X_add_number;
7331
7332 if (i.op[0].disps->X_op != O_constant
7333 && i.op[0].disps->X_op != O_symbol)
7334 {
7335 /* Handle complex expressions. */
7336 sym = make_expr_symbol (i.op[0].disps);
7337 off = 0;
7338 }
7339
7340 /* 1 possible extra opcode + 4 byte displacement go in var part.
7341 Pass reloc in fr_var. */
7342 frag_var (rs_machine_dependent, 5, i.reloc[0], subtype, sym, off, p);
7343 }
7344
7345 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7346 /* Return TRUE iff PLT32 relocation should be used for branching to
7347 symbol S. */
7348
7349 static bfd_boolean
7350 need_plt32_p (symbolS *s)
7351 {
7352 /* PLT32 relocation is ELF only. */
7353 if (!IS_ELF)
7354 return FALSE;
7355
7356 /* Since there is no need to prepare for PLT branch on x86-64, we
7357 can generate R_X86_64_PLT32, instead of R_X86_64_PC32, which can
7358 be used as a marker for 32-bit PC-relative branches. */
7359 if (!object_64bit)
7360 return FALSE;
7361
7362 /* Weak or undefined symbol need PLT32 relocation. */
7363 if (S_IS_WEAK (s) || !S_IS_DEFINED (s))
7364 return TRUE;
7365
7366 /* Non-global symbol doesn't need PLT32 relocation. */
7367 if (! S_IS_EXTERNAL (s))
7368 return FALSE;
7369
7370 /* Other global symbols need PLT32 relocation. NB: Symbol with
7371 non-default visibilities are treated as normal global symbol
7372 so that PLT32 relocation can be used as a marker for 32-bit
7373 PC-relative branches. It is useful for linker relaxation. */
7374 return TRUE;
7375 }
7376 #endif
7377
7378 static void
7379 output_jump (void)
7380 {
7381 char *p;
7382 int size;
7383 fixS *fixP;
7384 bfd_reloc_code_real_type jump_reloc = i.reloc[0];
7385
7386 if (i.tm.opcode_modifier.jumpbyte)
7387 {
7388 /* This is a loop or jecxz type instruction. */
7389 size = 1;
7390 if (i.prefix[ADDR_PREFIX] != 0)
7391 {
7392 FRAG_APPEND_1_CHAR (ADDR_PREFIX_OPCODE);
7393 i.prefixes -= 1;
7394 }
7395 /* Pentium4 branch hints. */
7396 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
7397 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
7398 {
7399 FRAG_APPEND_1_CHAR (i.prefix[SEG_PREFIX]);
7400 i.prefixes--;
7401 }
7402 }
7403 else
7404 {
7405 int code16;
7406
7407 code16 = 0;
7408 if (flag_code == CODE_16BIT)
7409 code16 = CODE16;
7410
7411 if (i.prefix[DATA_PREFIX] != 0)
7412 {
7413 FRAG_APPEND_1_CHAR (DATA_PREFIX_OPCODE);
7414 i.prefixes -= 1;
7415 code16 ^= CODE16;
7416 }
7417
7418 size = 4;
7419 if (code16)
7420 size = 2;
7421 }
7422
7423 if (i.prefix[REX_PREFIX] != 0)
7424 {
7425 FRAG_APPEND_1_CHAR (i.prefix[REX_PREFIX]);
7426 i.prefixes -= 1;
7427 }
7428
7429 /* BND prefixed jump. */
7430 if (i.prefix[BND_PREFIX] != 0)
7431 {
7432 FRAG_APPEND_1_CHAR (i.prefix[BND_PREFIX]);
7433 i.prefixes -= 1;
7434 }
7435
7436 if (i.prefixes != 0 && !intel_syntax)
7437 as_warn (_("skipping prefixes on this instruction"));
7438
7439 p = frag_more (i.tm.opcode_length + size);
7440 switch (i.tm.opcode_length)
7441 {
7442 case 2:
7443 *p++ = i.tm.base_opcode >> 8;
7444 /* Fall through. */
7445 case 1:
7446 *p++ = i.tm.base_opcode;
7447 break;
7448 default:
7449 abort ();
7450 }
7451
7452 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7453 if (size == 4
7454 && jump_reloc == NO_RELOC
7455 && need_plt32_p (i.op[0].disps->X_add_symbol))
7456 jump_reloc = BFD_RELOC_X86_64_PLT32;
7457 #endif
7458
7459 jump_reloc = reloc (size, 1, 1, jump_reloc);
7460
7461 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal, size,
7462 i.op[0].disps, 1, jump_reloc);
7463
7464 /* All jumps handled here are signed, but don't use a signed limit
7465 check for 32 and 16 bit jumps as we want to allow wrap around at
7466 4G and 64k respectively. */
7467 if (size == 1)
7468 fixP->fx_signed = 1;
7469 }
7470
7471 static void
7472 output_interseg_jump (void)
7473 {
7474 char *p;
7475 int size;
7476 int prefix;
7477 int code16;
7478
7479 code16 = 0;
7480 if (flag_code == CODE_16BIT)
7481 code16 = CODE16;
7482
7483 prefix = 0;
7484 if (i.prefix[DATA_PREFIX] != 0)
7485 {
7486 prefix = 1;
7487 i.prefixes -= 1;
7488 code16 ^= CODE16;
7489 }
7490 if (i.prefix[REX_PREFIX] != 0)
7491 {
7492 prefix++;
7493 i.prefixes -= 1;
7494 }
7495
7496 size = 4;
7497 if (code16)
7498 size = 2;
7499
7500 if (i.prefixes != 0 && !intel_syntax)
7501 as_warn (_("skipping prefixes on this instruction"));
7502
7503 /* 1 opcode; 2 segment; offset */
7504 p = frag_more (prefix + 1 + 2 + size);
7505
7506 if (i.prefix[DATA_PREFIX] != 0)
7507 *p++ = DATA_PREFIX_OPCODE;
7508
7509 if (i.prefix[REX_PREFIX] != 0)
7510 *p++ = i.prefix[REX_PREFIX];
7511
7512 *p++ = i.tm.base_opcode;
7513 if (i.op[1].imms->X_op == O_constant)
7514 {
7515 offsetT n = i.op[1].imms->X_add_number;
7516
7517 if (size == 2
7518 && !fits_in_unsigned_word (n)
7519 && !fits_in_signed_word (n))
7520 {
7521 as_bad (_("16-bit jump out of range"));
7522 return;
7523 }
7524 md_number_to_chars (p, n, size);
7525 }
7526 else
7527 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
7528 i.op[1].imms, 0, reloc (size, 0, 0, i.reloc[1]));
7529 if (i.op[0].imms->X_op != O_constant)
7530 as_bad (_("can't handle non absolute segment in `%s'"),
7531 i.tm.name);
7532 md_number_to_chars (p + size, (valueT) i.op[0].imms->X_add_number, 2);
7533 }
7534
7535 static void
7536 output_insn (void)
7537 {
7538 fragS *insn_start_frag;
7539 offsetT insn_start_off;
7540
7541 /* Tie dwarf2 debug info to the address at the start of the insn.
7542 We can't do this after the insn has been output as the current
7543 frag may have been closed off. eg. by frag_var. */
7544 dwarf2_emit_insn (0);
7545
7546 insn_start_frag = frag_now;
7547 insn_start_off = frag_now_fix ();
7548
7549 /* Output jumps. */
7550 if (i.tm.opcode_modifier.jump)
7551 output_branch ();
7552 else if (i.tm.opcode_modifier.jumpbyte
7553 || i.tm.opcode_modifier.jumpdword)
7554 output_jump ();
7555 else if (i.tm.opcode_modifier.jumpintersegment)
7556 output_interseg_jump ();
7557 else
7558 {
7559 /* Output normal instructions here. */
7560 char *p;
7561 unsigned char *q;
7562 unsigned int j;
7563 unsigned int prefix;
7564
7565 if (avoid_fence
7566 && i.tm.base_opcode == 0xfae
7567 && i.operands == 1
7568 && i.imm_operands == 1
7569 && (i.op[0].imms->X_add_number == 0xe8
7570 || i.op[0].imms->X_add_number == 0xf0
7571 || i.op[0].imms->X_add_number == 0xf8))
7572 {
7573 /* Encode lfence, mfence, and sfence as
7574 f0 83 04 24 00 lock addl $0x0, (%{re}sp). */
7575 offsetT val = 0x240483f0ULL;
7576 p = frag_more (5);
7577 md_number_to_chars (p, val, 5);
7578 return;
7579 }
7580
7581 /* Some processors fail on LOCK prefix. This options makes
7582 assembler ignore LOCK prefix and serves as a workaround. */
7583 if (omit_lock_prefix)
7584 {
7585 if (i.tm.base_opcode == LOCK_PREFIX_OPCODE)
7586 return;
7587 i.prefix[LOCK_PREFIX] = 0;
7588 }
7589
7590 /* Since the VEX/EVEX prefix contains the implicit prefix, we
7591 don't need the explicit prefix. */
7592 if (!i.tm.opcode_modifier.vex && !i.tm.opcode_modifier.evex)
7593 {
7594 switch (i.tm.opcode_length)
7595 {
7596 case 3:
7597 if (i.tm.base_opcode & 0xff000000)
7598 {
7599 prefix = (i.tm.base_opcode >> 24) & 0xff;
7600 goto check_prefix;
7601 }
7602 break;
7603 case 2:
7604 if ((i.tm.base_opcode & 0xff0000) != 0)
7605 {
7606 prefix = (i.tm.base_opcode >> 16) & 0xff;
7607 if (i.tm.cpu_flags.bitfield.cpupadlock)
7608 {
7609 check_prefix:
7610 if (prefix != REPE_PREFIX_OPCODE
7611 || (i.prefix[REP_PREFIX]
7612 != REPE_PREFIX_OPCODE))
7613 add_prefix (prefix);
7614 }
7615 else
7616 add_prefix (prefix);
7617 }
7618 break;
7619 case 1:
7620 break;
7621 case 0:
7622 /* Check for pseudo prefixes. */
7623 as_bad_where (insn_start_frag->fr_file,
7624 insn_start_frag->fr_line,
7625 _("pseudo prefix without instruction"));
7626 return;
7627 default:
7628 abort ();
7629 }
7630
7631 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
7632 /* For x32, add a dummy REX_OPCODE prefix for mov/add with
7633 R_X86_64_GOTTPOFF relocation so that linker can safely
7634 perform IE->LE optimization. */
7635 if (x86_elf_abi == X86_64_X32_ABI
7636 && i.operands == 2
7637 && i.reloc[0] == BFD_RELOC_X86_64_GOTTPOFF
7638 && i.prefix[REX_PREFIX] == 0)
7639 add_prefix (REX_OPCODE);
7640 #endif
7641
7642 /* The prefix bytes. */
7643 for (j = ARRAY_SIZE (i.prefix), q = i.prefix; j > 0; j--, q++)
7644 if (*q)
7645 FRAG_APPEND_1_CHAR (*q);
7646 }
7647 else
7648 {
7649 for (j = 0, q = i.prefix; j < ARRAY_SIZE (i.prefix); j++, q++)
7650 if (*q)
7651 switch (j)
7652 {
7653 case REX_PREFIX:
7654 /* REX byte is encoded in VEX prefix. */
7655 break;
7656 case SEG_PREFIX:
7657 case ADDR_PREFIX:
7658 FRAG_APPEND_1_CHAR (*q);
7659 break;
7660 default:
7661 /* There should be no other prefixes for instructions
7662 with VEX prefix. */
7663 abort ();
7664 }
7665
7666 /* For EVEX instructions i.vrex should become 0 after
7667 build_evex_prefix. For VEX instructions upper 16 registers
7668 aren't available, so VREX should be 0. */
7669 if (i.vrex)
7670 abort ();
7671 /* Now the VEX prefix. */
7672 p = frag_more (i.vex.length);
7673 for (j = 0; j < i.vex.length; j++)
7674 p[j] = i.vex.bytes[j];
7675 }
7676
7677 /* Now the opcode; be careful about word order here! */
7678 if (i.tm.opcode_length == 1)
7679 {
7680 FRAG_APPEND_1_CHAR (i.tm.base_opcode);
7681 }
7682 else
7683 {
7684 switch (i.tm.opcode_length)
7685 {
7686 case 4:
7687 p = frag_more (4);
7688 *p++ = (i.tm.base_opcode >> 24) & 0xff;
7689 *p++ = (i.tm.base_opcode >> 16) & 0xff;
7690 break;
7691 case 3:
7692 p = frag_more (3);
7693 *p++ = (i.tm.base_opcode >> 16) & 0xff;
7694 break;
7695 case 2:
7696 p = frag_more (2);
7697 break;
7698 default:
7699 abort ();
7700 break;
7701 }
7702
7703 /* Put out high byte first: can't use md_number_to_chars! */
7704 *p++ = (i.tm.base_opcode >> 8) & 0xff;
7705 *p = i.tm.base_opcode & 0xff;
7706 }
7707
7708 /* Now the modrm byte and sib byte (if present). */
7709 if (i.tm.opcode_modifier.modrm)
7710 {
7711 FRAG_APPEND_1_CHAR ((i.rm.regmem << 0
7712 | i.rm.reg << 3
7713 | i.rm.mode << 6));
7714 /* If i.rm.regmem == ESP (4)
7715 && i.rm.mode != (Register mode)
7716 && not 16 bit
7717 ==> need second modrm byte. */
7718 if (i.rm.regmem == ESCAPE_TO_TWO_BYTE_ADDRESSING
7719 && i.rm.mode != 3
7720 && !(i.base_reg && i.base_reg->reg_type.bitfield.word))
7721 FRAG_APPEND_1_CHAR ((i.sib.base << 0
7722 | i.sib.index << 3
7723 | i.sib.scale << 6));
7724 }
7725
7726 if (i.disp_operands)
7727 output_disp (insn_start_frag, insn_start_off);
7728
7729 if (i.imm_operands)
7730 output_imm (insn_start_frag, insn_start_off);
7731 }
7732
7733 #ifdef DEBUG386
7734 if (flag_debug)
7735 {
7736 pi ("" /*line*/, &i);
7737 }
7738 #endif /* DEBUG386 */
7739 }
7740
7741 /* Return the size of the displacement operand N. */
7742
7743 static int
7744 disp_size (unsigned int n)
7745 {
7746 int size = 4;
7747
7748 if (i.types[n].bitfield.disp64)
7749 size = 8;
7750 else if (i.types[n].bitfield.disp8)
7751 size = 1;
7752 else if (i.types[n].bitfield.disp16)
7753 size = 2;
7754 return size;
7755 }
7756
7757 /* Return the size of the immediate operand N. */
7758
7759 static int
7760 imm_size (unsigned int n)
7761 {
7762 int size = 4;
7763 if (i.types[n].bitfield.imm64)
7764 size = 8;
7765 else if (i.types[n].bitfield.imm8 || i.types[n].bitfield.imm8s)
7766 size = 1;
7767 else if (i.types[n].bitfield.imm16)
7768 size = 2;
7769 return size;
7770 }
7771
7772 static void
7773 output_disp (fragS *insn_start_frag, offsetT insn_start_off)
7774 {
7775 char *p;
7776 unsigned int n;
7777
7778 for (n = 0; n < i.operands; n++)
7779 {
7780 if (operand_type_check (i.types[n], disp))
7781 {
7782 if (i.op[n].disps->X_op == O_constant)
7783 {
7784 int size = disp_size (n);
7785 offsetT val = i.op[n].disps->X_add_number;
7786
7787 val = offset_in_range (val >> i.memshift, size);
7788 p = frag_more (size);
7789 md_number_to_chars (p, val, size);
7790 }
7791 else
7792 {
7793 enum bfd_reloc_code_real reloc_type;
7794 int size = disp_size (n);
7795 int sign = i.types[n].bitfield.disp32s;
7796 int pcrel = (i.flags[n] & Operand_PCrel) != 0;
7797 fixS *fixP;
7798
7799 /* We can't have 8 bit displacement here. */
7800 gas_assert (!i.types[n].bitfield.disp8);
7801
7802 /* The PC relative address is computed relative
7803 to the instruction boundary, so in case immediate
7804 fields follows, we need to adjust the value. */
7805 if (pcrel && i.imm_operands)
7806 {
7807 unsigned int n1;
7808 int sz = 0;
7809
7810 for (n1 = 0; n1 < i.operands; n1++)
7811 if (operand_type_check (i.types[n1], imm))
7812 {
7813 /* Only one immediate is allowed for PC
7814 relative address. */
7815 gas_assert (sz == 0);
7816 sz = imm_size (n1);
7817 i.op[n].disps->X_add_number -= sz;
7818 }
7819 /* We should find the immediate. */
7820 gas_assert (sz != 0);
7821 }
7822
7823 p = frag_more (size);
7824 reloc_type = reloc (size, pcrel, sign, i.reloc[n]);
7825 if (GOT_symbol
7826 && GOT_symbol == i.op[n].disps->X_add_symbol
7827 && (((reloc_type == BFD_RELOC_32
7828 || reloc_type == BFD_RELOC_X86_64_32S
7829 || (reloc_type == BFD_RELOC_64
7830 && object_64bit))
7831 && (i.op[n].disps->X_op == O_symbol
7832 || (i.op[n].disps->X_op == O_add
7833 && ((symbol_get_value_expression
7834 (i.op[n].disps->X_op_symbol)->X_op)
7835 == O_subtract))))
7836 || reloc_type == BFD_RELOC_32_PCREL))
7837 {
7838 offsetT add;
7839
7840 if (insn_start_frag == frag_now)
7841 add = (p - frag_now->fr_literal) - insn_start_off;
7842 else
7843 {
7844 fragS *fr;
7845
7846 add = insn_start_frag->fr_fix - insn_start_off;
7847 for (fr = insn_start_frag->fr_next;
7848 fr && fr != frag_now; fr = fr->fr_next)
7849 add += fr->fr_fix;
7850 add += p - frag_now->fr_literal;
7851 }
7852
7853 if (!object_64bit)
7854 {
7855 reloc_type = BFD_RELOC_386_GOTPC;
7856 i.op[n].imms->X_add_number += add;
7857 }
7858 else if (reloc_type == BFD_RELOC_64)
7859 reloc_type = BFD_RELOC_X86_64_GOTPC64;
7860 else
7861 /* Don't do the adjustment for x86-64, as there
7862 the pcrel addressing is relative to the _next_
7863 insn, and that is taken care of in other code. */
7864 reloc_type = BFD_RELOC_X86_64_GOTPC32;
7865 }
7866 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal,
7867 size, i.op[n].disps, pcrel,
7868 reloc_type);
7869 /* Check for "call/jmp *mem", "mov mem, %reg",
7870 "test %reg, mem" and "binop mem, %reg" where binop
7871 is one of adc, add, and, cmp, or, sbb, sub, xor
7872 instructions. Always generate R_386_GOT32X for
7873 "sym*GOT" operand in 32-bit mode. */
7874 if ((generate_relax_relocations
7875 || (!object_64bit
7876 && i.rm.mode == 0
7877 && i.rm.regmem == 5))
7878 && (i.rm.mode == 2
7879 || (i.rm.mode == 0 && i.rm.regmem == 5))
7880 && ((i.operands == 1
7881 && i.tm.base_opcode == 0xff
7882 && (i.rm.reg == 2 || i.rm.reg == 4))
7883 || (i.operands == 2
7884 && (i.tm.base_opcode == 0x8b
7885 || i.tm.base_opcode == 0x85
7886 || (i.tm.base_opcode & 0xc7) == 0x03))))
7887 {
7888 if (object_64bit)
7889 {
7890 fixP->fx_tcbit = i.rex != 0;
7891 if (i.base_reg
7892 && (i.base_reg->reg_num == RegRip
7893 || i.base_reg->reg_num == RegEip))
7894 fixP->fx_tcbit2 = 1;
7895 }
7896 else
7897 fixP->fx_tcbit2 = 1;
7898 }
7899 }
7900 }
7901 }
7902 }
7903
7904 static void
7905 output_imm (fragS *insn_start_frag, offsetT insn_start_off)
7906 {
7907 char *p;
7908 unsigned int n;
7909
7910 for (n = 0; n < i.operands; n++)
7911 {
7912 /* Skip SAE/RC Imm operand in EVEX. They are already handled. */
7913 if (i.rounding && (int) n == i.rounding->operand)
7914 continue;
7915
7916 if (operand_type_check (i.types[n], imm))
7917 {
7918 if (i.op[n].imms->X_op == O_constant)
7919 {
7920 int size = imm_size (n);
7921 offsetT val;
7922
7923 val = offset_in_range (i.op[n].imms->X_add_number,
7924 size);
7925 p = frag_more (size);
7926 md_number_to_chars (p, val, size);
7927 }
7928 else
7929 {
7930 /* Not absolute_section.
7931 Need a 32-bit fixup (don't support 8bit
7932 non-absolute imms). Try to support other
7933 sizes ... */
7934 enum bfd_reloc_code_real reloc_type;
7935 int size = imm_size (n);
7936 int sign;
7937
7938 if (i.types[n].bitfield.imm32s
7939 && (i.suffix == QWORD_MNEM_SUFFIX
7940 || (!i.suffix && i.tm.opcode_modifier.no_lsuf)))
7941 sign = 1;
7942 else
7943 sign = 0;
7944
7945 p = frag_more (size);
7946 reloc_type = reloc (size, 0, sign, i.reloc[n]);
7947
7948 /* This is tough to explain. We end up with this one if we
7949 * have operands that look like
7950 * "_GLOBAL_OFFSET_TABLE_+[.-.L284]". The goal here is to
7951 * obtain the absolute address of the GOT, and it is strongly
7952 * preferable from a performance point of view to avoid using
7953 * a runtime relocation for this. The actual sequence of
7954 * instructions often look something like:
7955 *
7956 * call .L66
7957 * .L66:
7958 * popl %ebx
7959 * addl $_GLOBAL_OFFSET_TABLE_+[.-.L66],%ebx
7960 *
7961 * The call and pop essentially return the absolute address
7962 * of the label .L66 and store it in %ebx. The linker itself
7963 * will ultimately change the first operand of the addl so
7964 * that %ebx points to the GOT, but to keep things simple, the
7965 * .o file must have this operand set so that it generates not
7966 * the absolute address of .L66, but the absolute address of
7967 * itself. This allows the linker itself simply treat a GOTPC
7968 * relocation as asking for a pcrel offset to the GOT to be
7969 * added in, and the addend of the relocation is stored in the
7970 * operand field for the instruction itself.
7971 *
7972 * Our job here is to fix the operand so that it would add
7973 * the correct offset so that %ebx would point to itself. The
7974 * thing that is tricky is that .-.L66 will point to the
7975 * beginning of the instruction, so we need to further modify
7976 * the operand so that it will point to itself. There are
7977 * other cases where you have something like:
7978 *
7979 * .long $_GLOBAL_OFFSET_TABLE_+[.-.L66]
7980 *
7981 * and here no correction would be required. Internally in
7982 * the assembler we treat operands of this form as not being
7983 * pcrel since the '.' is explicitly mentioned, and I wonder
7984 * whether it would simplify matters to do it this way. Who
7985 * knows. In earlier versions of the PIC patches, the
7986 * pcrel_adjust field was used to store the correction, but
7987 * since the expression is not pcrel, I felt it would be
7988 * confusing to do it this way. */
7989
7990 if ((reloc_type == BFD_RELOC_32
7991 || reloc_type == BFD_RELOC_X86_64_32S
7992 || reloc_type == BFD_RELOC_64)
7993 && GOT_symbol
7994 && GOT_symbol == i.op[n].imms->X_add_symbol
7995 && (i.op[n].imms->X_op == O_symbol
7996 || (i.op[n].imms->X_op == O_add
7997 && ((symbol_get_value_expression
7998 (i.op[n].imms->X_op_symbol)->X_op)
7999 == O_subtract))))
8000 {
8001 offsetT add;
8002
8003 if (insn_start_frag == frag_now)
8004 add = (p - frag_now->fr_literal) - insn_start_off;
8005 else
8006 {
8007 fragS *fr;
8008
8009 add = insn_start_frag->fr_fix - insn_start_off;
8010 for (fr = insn_start_frag->fr_next;
8011 fr && fr != frag_now; fr = fr->fr_next)
8012 add += fr->fr_fix;
8013 add += p - frag_now->fr_literal;
8014 }
8015
8016 if (!object_64bit)
8017 reloc_type = BFD_RELOC_386_GOTPC;
8018 else if (size == 4)
8019 reloc_type = BFD_RELOC_X86_64_GOTPC32;
8020 else if (size == 8)
8021 reloc_type = BFD_RELOC_X86_64_GOTPC64;
8022 i.op[n].imms->X_add_number += add;
8023 }
8024 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
8025 i.op[n].imms, 0, reloc_type);
8026 }
8027 }
8028 }
8029 }
8030 \f
8031 /* x86_cons_fix_new is called via the expression parsing code when a
8032 reloc is needed. We use this hook to get the correct .got reloc. */
8033 static int cons_sign = -1;
8034
8035 void
8036 x86_cons_fix_new (fragS *frag, unsigned int off, unsigned int len,
8037 expressionS *exp, bfd_reloc_code_real_type r)
8038 {
8039 r = reloc (len, 0, cons_sign, r);
8040
8041 #ifdef TE_PE
8042 if (exp->X_op == O_secrel)
8043 {
8044 exp->X_op = O_symbol;
8045 r = BFD_RELOC_32_SECREL;
8046 }
8047 #endif
8048
8049 fix_new_exp (frag, off, len, exp, 0, r);
8050 }
8051
8052 /* Export the ABI address size for use by TC_ADDRESS_BYTES for the
8053 purpose of the `.dc.a' internal pseudo-op. */
8054
8055 int
8056 x86_address_bytes (void)
8057 {
8058 if ((stdoutput->arch_info->mach & bfd_mach_x64_32))
8059 return 4;
8060 return stdoutput->arch_info->bits_per_address / 8;
8061 }
8062
8063 #if !(defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) || defined (OBJ_MACH_O)) \
8064 || defined (LEX_AT)
8065 # define lex_got(reloc, adjust, types) NULL
8066 #else
8067 /* Parse operands of the form
8068 <symbol>@GOTOFF+<nnn>
8069 and similar .plt or .got references.
8070
8071 If we find one, set up the correct relocation in RELOC and copy the
8072 input string, minus the `@GOTOFF' into a malloc'd buffer for
8073 parsing by the calling routine. Return this buffer, and if ADJUST
8074 is non-null set it to the length of the string we removed from the
8075 input line. Otherwise return NULL. */
8076 static char *
8077 lex_got (enum bfd_reloc_code_real *rel,
8078 int *adjust,
8079 i386_operand_type *types)
8080 {
8081 /* Some of the relocations depend on the size of what field is to
8082 be relocated. But in our callers i386_immediate and i386_displacement
8083 we don't yet know the operand size (this will be set by insn
8084 matching). Hence we record the word32 relocation here,
8085 and adjust the reloc according to the real size in reloc(). */
8086 static const struct {
8087 const char *str;
8088 int len;
8089 const enum bfd_reloc_code_real rel[2];
8090 const i386_operand_type types64;
8091 } gotrel[] = {
8092 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8093 { STRING_COMMA_LEN ("SIZE"), { BFD_RELOC_SIZE32,
8094 BFD_RELOC_SIZE32 },
8095 OPERAND_TYPE_IMM32_64 },
8096 #endif
8097 { STRING_COMMA_LEN ("PLTOFF"), { _dummy_first_bfd_reloc_code_real,
8098 BFD_RELOC_X86_64_PLTOFF64 },
8099 OPERAND_TYPE_IMM64 },
8100 { STRING_COMMA_LEN ("PLT"), { BFD_RELOC_386_PLT32,
8101 BFD_RELOC_X86_64_PLT32 },
8102 OPERAND_TYPE_IMM32_32S_DISP32 },
8103 { STRING_COMMA_LEN ("GOTPLT"), { _dummy_first_bfd_reloc_code_real,
8104 BFD_RELOC_X86_64_GOTPLT64 },
8105 OPERAND_TYPE_IMM64_DISP64 },
8106 { STRING_COMMA_LEN ("GOTOFF"), { BFD_RELOC_386_GOTOFF,
8107 BFD_RELOC_X86_64_GOTOFF64 },
8108 OPERAND_TYPE_IMM64_DISP64 },
8109 { STRING_COMMA_LEN ("GOTPCREL"), { _dummy_first_bfd_reloc_code_real,
8110 BFD_RELOC_X86_64_GOTPCREL },
8111 OPERAND_TYPE_IMM32_32S_DISP32 },
8112 { STRING_COMMA_LEN ("TLSGD"), { BFD_RELOC_386_TLS_GD,
8113 BFD_RELOC_X86_64_TLSGD },
8114 OPERAND_TYPE_IMM32_32S_DISP32 },
8115 { STRING_COMMA_LEN ("TLSLDM"), { BFD_RELOC_386_TLS_LDM,
8116 _dummy_first_bfd_reloc_code_real },
8117 OPERAND_TYPE_NONE },
8118 { STRING_COMMA_LEN ("TLSLD"), { _dummy_first_bfd_reloc_code_real,
8119 BFD_RELOC_X86_64_TLSLD },
8120 OPERAND_TYPE_IMM32_32S_DISP32 },
8121 { STRING_COMMA_LEN ("GOTTPOFF"), { BFD_RELOC_386_TLS_IE_32,
8122 BFD_RELOC_X86_64_GOTTPOFF },
8123 OPERAND_TYPE_IMM32_32S_DISP32 },
8124 { STRING_COMMA_LEN ("TPOFF"), { BFD_RELOC_386_TLS_LE_32,
8125 BFD_RELOC_X86_64_TPOFF32 },
8126 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
8127 { STRING_COMMA_LEN ("NTPOFF"), { BFD_RELOC_386_TLS_LE,
8128 _dummy_first_bfd_reloc_code_real },
8129 OPERAND_TYPE_NONE },
8130 { STRING_COMMA_LEN ("DTPOFF"), { BFD_RELOC_386_TLS_LDO_32,
8131 BFD_RELOC_X86_64_DTPOFF32 },
8132 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
8133 { STRING_COMMA_LEN ("GOTNTPOFF"),{ BFD_RELOC_386_TLS_GOTIE,
8134 _dummy_first_bfd_reloc_code_real },
8135 OPERAND_TYPE_NONE },
8136 { STRING_COMMA_LEN ("INDNTPOFF"),{ BFD_RELOC_386_TLS_IE,
8137 _dummy_first_bfd_reloc_code_real },
8138 OPERAND_TYPE_NONE },
8139 { STRING_COMMA_LEN ("GOT"), { BFD_RELOC_386_GOT32,
8140 BFD_RELOC_X86_64_GOT32 },
8141 OPERAND_TYPE_IMM32_32S_64_DISP32 },
8142 { STRING_COMMA_LEN ("TLSDESC"), { BFD_RELOC_386_TLS_GOTDESC,
8143 BFD_RELOC_X86_64_GOTPC32_TLSDESC },
8144 OPERAND_TYPE_IMM32_32S_DISP32 },
8145 { STRING_COMMA_LEN ("TLSCALL"), { BFD_RELOC_386_TLS_DESC_CALL,
8146 BFD_RELOC_X86_64_TLSDESC_CALL },
8147 OPERAND_TYPE_IMM32_32S_DISP32 },
8148 };
8149 char *cp;
8150 unsigned int j;
8151
8152 #if defined (OBJ_MAYBE_ELF)
8153 if (!IS_ELF)
8154 return NULL;
8155 #endif
8156
8157 for (cp = input_line_pointer; *cp != '@'; cp++)
8158 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
8159 return NULL;
8160
8161 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
8162 {
8163 int len = gotrel[j].len;
8164 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
8165 {
8166 if (gotrel[j].rel[object_64bit] != 0)
8167 {
8168 int first, second;
8169 char *tmpbuf, *past_reloc;
8170
8171 *rel = gotrel[j].rel[object_64bit];
8172
8173 if (types)
8174 {
8175 if (flag_code != CODE_64BIT)
8176 {
8177 types->bitfield.imm32 = 1;
8178 types->bitfield.disp32 = 1;
8179 }
8180 else
8181 *types = gotrel[j].types64;
8182 }
8183
8184 if (j != 0 && GOT_symbol == NULL)
8185 GOT_symbol = symbol_find_or_make (GLOBAL_OFFSET_TABLE_NAME);
8186
8187 /* The length of the first part of our input line. */
8188 first = cp - input_line_pointer;
8189
8190 /* The second part goes from after the reloc token until
8191 (and including) an end_of_line char or comma. */
8192 past_reloc = cp + 1 + len;
8193 cp = past_reloc;
8194 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
8195 ++cp;
8196 second = cp + 1 - past_reloc;
8197
8198 /* Allocate and copy string. The trailing NUL shouldn't
8199 be necessary, but be safe. */
8200 tmpbuf = XNEWVEC (char, first + second + 2);
8201 memcpy (tmpbuf, input_line_pointer, first);
8202 if (second != 0 && *past_reloc != ' ')
8203 /* Replace the relocation token with ' ', so that
8204 errors like foo@GOTOFF1 will be detected. */
8205 tmpbuf[first++] = ' ';
8206 else
8207 /* Increment length by 1 if the relocation token is
8208 removed. */
8209 len++;
8210 if (adjust)
8211 *adjust = len;
8212 memcpy (tmpbuf + first, past_reloc, second);
8213 tmpbuf[first + second] = '\0';
8214 return tmpbuf;
8215 }
8216
8217 as_bad (_("@%s reloc is not supported with %d-bit output format"),
8218 gotrel[j].str, 1 << (5 + object_64bit));
8219 return NULL;
8220 }
8221 }
8222
8223 /* Might be a symbol version string. Don't as_bad here. */
8224 return NULL;
8225 }
8226 #endif
8227
8228 #ifdef TE_PE
8229 #ifdef lex_got
8230 #undef lex_got
8231 #endif
8232 /* Parse operands of the form
8233 <symbol>@SECREL32+<nnn>
8234
8235 If we find one, set up the correct relocation in RELOC and copy the
8236 input string, minus the `@SECREL32' into a malloc'd buffer for
8237 parsing by the calling routine. Return this buffer, and if ADJUST
8238 is non-null set it to the length of the string we removed from the
8239 input line. Otherwise return NULL.
8240
8241 This function is copied from the ELF version above adjusted for PE targets. */
8242
8243 static char *
8244 lex_got (enum bfd_reloc_code_real *rel ATTRIBUTE_UNUSED,
8245 int *adjust ATTRIBUTE_UNUSED,
8246 i386_operand_type *types)
8247 {
8248 static const struct
8249 {
8250 const char *str;
8251 int len;
8252 const enum bfd_reloc_code_real rel[2];
8253 const i386_operand_type types64;
8254 }
8255 gotrel[] =
8256 {
8257 { STRING_COMMA_LEN ("SECREL32"), { BFD_RELOC_32_SECREL,
8258 BFD_RELOC_32_SECREL },
8259 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
8260 };
8261
8262 char *cp;
8263 unsigned j;
8264
8265 for (cp = input_line_pointer; *cp != '@'; cp++)
8266 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
8267 return NULL;
8268
8269 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
8270 {
8271 int len = gotrel[j].len;
8272
8273 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
8274 {
8275 if (gotrel[j].rel[object_64bit] != 0)
8276 {
8277 int first, second;
8278 char *tmpbuf, *past_reloc;
8279
8280 *rel = gotrel[j].rel[object_64bit];
8281 if (adjust)
8282 *adjust = len;
8283
8284 if (types)
8285 {
8286 if (flag_code != CODE_64BIT)
8287 {
8288 types->bitfield.imm32 = 1;
8289 types->bitfield.disp32 = 1;
8290 }
8291 else
8292 *types = gotrel[j].types64;
8293 }
8294
8295 /* The length of the first part of our input line. */
8296 first = cp - input_line_pointer;
8297
8298 /* The second part goes from after the reloc token until
8299 (and including) an end_of_line char or comma. */
8300 past_reloc = cp + 1 + len;
8301 cp = past_reloc;
8302 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
8303 ++cp;
8304 second = cp + 1 - past_reloc;
8305
8306 /* Allocate and copy string. The trailing NUL shouldn't
8307 be necessary, but be safe. */
8308 tmpbuf = XNEWVEC (char, first + second + 2);
8309 memcpy (tmpbuf, input_line_pointer, first);
8310 if (second != 0 && *past_reloc != ' ')
8311 /* Replace the relocation token with ' ', so that
8312 errors like foo@SECLREL321 will be detected. */
8313 tmpbuf[first++] = ' ';
8314 memcpy (tmpbuf + first, past_reloc, second);
8315 tmpbuf[first + second] = '\0';
8316 return tmpbuf;
8317 }
8318
8319 as_bad (_("@%s reloc is not supported with %d-bit output format"),
8320 gotrel[j].str, 1 << (5 + object_64bit));
8321 return NULL;
8322 }
8323 }
8324
8325 /* Might be a symbol version string. Don't as_bad here. */
8326 return NULL;
8327 }
8328
8329 #endif /* TE_PE */
8330
8331 bfd_reloc_code_real_type
8332 x86_cons (expressionS *exp, int size)
8333 {
8334 bfd_reloc_code_real_type got_reloc = NO_RELOC;
8335
8336 intel_syntax = -intel_syntax;
8337
8338 exp->X_md = 0;
8339 if (size == 4 || (object_64bit && size == 8))
8340 {
8341 /* Handle @GOTOFF and the like in an expression. */
8342 char *save;
8343 char *gotfree_input_line;
8344 int adjust = 0;
8345
8346 save = input_line_pointer;
8347 gotfree_input_line = lex_got (&got_reloc, &adjust, NULL);
8348 if (gotfree_input_line)
8349 input_line_pointer = gotfree_input_line;
8350
8351 expression (exp);
8352
8353 if (gotfree_input_line)
8354 {
8355 /* expression () has merrily parsed up to the end of line,
8356 or a comma - in the wrong buffer. Transfer how far
8357 input_line_pointer has moved to the right buffer. */
8358 input_line_pointer = (save
8359 + (input_line_pointer - gotfree_input_line)
8360 + adjust);
8361 free (gotfree_input_line);
8362 if (exp->X_op == O_constant
8363 || exp->X_op == O_absent
8364 || exp->X_op == O_illegal
8365 || exp->X_op == O_register
8366 || exp->X_op == O_big)
8367 {
8368 char c = *input_line_pointer;
8369 *input_line_pointer = 0;
8370 as_bad (_("missing or invalid expression `%s'"), save);
8371 *input_line_pointer = c;
8372 }
8373 }
8374 }
8375 else
8376 expression (exp);
8377
8378 intel_syntax = -intel_syntax;
8379
8380 if (intel_syntax)
8381 i386_intel_simplify (exp);
8382
8383 return got_reloc;
8384 }
8385
8386 static void
8387 signed_cons (int size)
8388 {
8389 if (flag_code == CODE_64BIT)
8390 cons_sign = 1;
8391 cons (size);
8392 cons_sign = -1;
8393 }
8394
8395 #ifdef TE_PE
8396 static void
8397 pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
8398 {
8399 expressionS exp;
8400
8401 do
8402 {
8403 expression (&exp);
8404 if (exp.X_op == O_symbol)
8405 exp.X_op = O_secrel;
8406
8407 emit_expr (&exp, 4);
8408 }
8409 while (*input_line_pointer++ == ',');
8410
8411 input_line_pointer--;
8412 demand_empty_rest_of_line ();
8413 }
8414 #endif
8415
8416 /* Handle Vector operations. */
8417
8418 static char *
8419 check_VecOperations (char *op_string, char *op_end)
8420 {
8421 const reg_entry *mask;
8422 const char *saved;
8423 char *end_op;
8424
8425 while (*op_string
8426 && (op_end == NULL || op_string < op_end))
8427 {
8428 saved = op_string;
8429 if (*op_string == '{')
8430 {
8431 op_string++;
8432
8433 /* Check broadcasts. */
8434 if (strncmp (op_string, "1to", 3) == 0)
8435 {
8436 int bcst_type;
8437
8438 if (i.broadcast)
8439 goto duplicated_vec_op;
8440
8441 op_string += 3;
8442 if (*op_string == '8')
8443 bcst_type = BROADCAST_1TO8;
8444 else if (*op_string == '4')
8445 bcst_type = BROADCAST_1TO4;
8446 else if (*op_string == '2')
8447 bcst_type = BROADCAST_1TO2;
8448 else if (*op_string == '1'
8449 && *(op_string+1) == '6')
8450 {
8451 bcst_type = BROADCAST_1TO16;
8452 op_string++;
8453 }
8454 else
8455 {
8456 as_bad (_("Unsupported broadcast: `%s'"), saved);
8457 return NULL;
8458 }
8459 op_string++;
8460
8461 broadcast_op.type = bcst_type;
8462 broadcast_op.operand = this_operand;
8463 i.broadcast = &broadcast_op;
8464 }
8465 /* Check masking operation. */
8466 else if ((mask = parse_register (op_string, &end_op)) != NULL)
8467 {
8468 /* k0 can't be used for write mask. */
8469 if (!mask->reg_type.bitfield.regmask || mask->reg_num == 0)
8470 {
8471 as_bad (_("`%s%s' can't be used for write mask"),
8472 register_prefix, mask->reg_name);
8473 return NULL;
8474 }
8475
8476 if (!i.mask)
8477 {
8478 mask_op.mask = mask;
8479 mask_op.zeroing = 0;
8480 mask_op.operand = this_operand;
8481 i.mask = &mask_op;
8482 }
8483 else
8484 {
8485 if (i.mask->mask)
8486 goto duplicated_vec_op;
8487
8488 i.mask->mask = mask;
8489
8490 /* Only "{z}" is allowed here. No need to check
8491 zeroing mask explicitly. */
8492 if (i.mask->operand != this_operand)
8493 {
8494 as_bad (_("invalid write mask `%s'"), saved);
8495 return NULL;
8496 }
8497 }
8498
8499 op_string = end_op;
8500 }
8501 /* Check zeroing-flag for masking operation. */
8502 else if (*op_string == 'z')
8503 {
8504 if (!i.mask)
8505 {
8506 mask_op.mask = NULL;
8507 mask_op.zeroing = 1;
8508 mask_op.operand = this_operand;
8509 i.mask = &mask_op;
8510 }
8511 else
8512 {
8513 if (i.mask->zeroing)
8514 {
8515 duplicated_vec_op:
8516 as_bad (_("duplicated `%s'"), saved);
8517 return NULL;
8518 }
8519
8520 i.mask->zeroing = 1;
8521
8522 /* Only "{%k}" is allowed here. No need to check mask
8523 register explicitly. */
8524 if (i.mask->operand != this_operand)
8525 {
8526 as_bad (_("invalid zeroing-masking `%s'"),
8527 saved);
8528 return NULL;
8529 }
8530 }
8531
8532 op_string++;
8533 }
8534 else
8535 goto unknown_vec_op;
8536
8537 if (*op_string != '}')
8538 {
8539 as_bad (_("missing `}' in `%s'"), saved);
8540 return NULL;
8541 }
8542 op_string++;
8543
8544 /* Strip whitespace since the addition of pseudo prefixes
8545 changed how the scrubber treats '{'. */
8546 if (is_space_char (*op_string))
8547 ++op_string;
8548
8549 continue;
8550 }
8551 unknown_vec_op:
8552 /* We don't know this one. */
8553 as_bad (_("unknown vector operation: `%s'"), saved);
8554 return NULL;
8555 }
8556
8557 if (i.mask && i.mask->zeroing && !i.mask->mask)
8558 {
8559 as_bad (_("zeroing-masking only allowed with write mask"));
8560 return NULL;
8561 }
8562
8563 return op_string;
8564 }
8565
8566 static int
8567 i386_immediate (char *imm_start)
8568 {
8569 char *save_input_line_pointer;
8570 char *gotfree_input_line;
8571 segT exp_seg = 0;
8572 expressionS *exp;
8573 i386_operand_type types;
8574
8575 operand_type_set (&types, ~0);
8576
8577 if (i.imm_operands == MAX_IMMEDIATE_OPERANDS)
8578 {
8579 as_bad (_("at most %d immediate operands are allowed"),
8580 MAX_IMMEDIATE_OPERANDS);
8581 return 0;
8582 }
8583
8584 exp = &im_expressions[i.imm_operands++];
8585 i.op[this_operand].imms = exp;
8586
8587 if (is_space_char (*imm_start))
8588 ++imm_start;
8589
8590 save_input_line_pointer = input_line_pointer;
8591 input_line_pointer = imm_start;
8592
8593 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
8594 if (gotfree_input_line)
8595 input_line_pointer = gotfree_input_line;
8596
8597 exp_seg = expression (exp);
8598
8599 SKIP_WHITESPACE ();
8600
8601 /* Handle vector operations. */
8602 if (*input_line_pointer == '{')
8603 {
8604 input_line_pointer = check_VecOperations (input_line_pointer,
8605 NULL);
8606 if (input_line_pointer == NULL)
8607 return 0;
8608 }
8609
8610 if (*input_line_pointer)
8611 as_bad (_("junk `%s' after expression"), input_line_pointer);
8612
8613 input_line_pointer = save_input_line_pointer;
8614 if (gotfree_input_line)
8615 {
8616 free (gotfree_input_line);
8617
8618 if (exp->X_op == O_constant || exp->X_op == O_register)
8619 exp->X_op = O_illegal;
8620 }
8621
8622 return i386_finalize_immediate (exp_seg, exp, types, imm_start);
8623 }
8624
8625 static int
8626 i386_finalize_immediate (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
8627 i386_operand_type types, const char *imm_start)
8628 {
8629 if (exp->X_op == O_absent || exp->X_op == O_illegal || exp->X_op == O_big)
8630 {
8631 if (imm_start)
8632 as_bad (_("missing or invalid immediate expression `%s'"),
8633 imm_start);
8634 return 0;
8635 }
8636 else if (exp->X_op == O_constant)
8637 {
8638 /* Size it properly later. */
8639 i.types[this_operand].bitfield.imm64 = 1;
8640 /* If not 64bit, sign extend val. */
8641 if (flag_code != CODE_64BIT
8642 && (exp->X_add_number & ~(((addressT) 2 << 31) - 1)) == 0)
8643 exp->X_add_number
8644 = (exp->X_add_number ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
8645 }
8646 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
8647 else if (OUTPUT_FLAVOR == bfd_target_aout_flavour
8648 && exp_seg != absolute_section
8649 && exp_seg != text_section
8650 && exp_seg != data_section
8651 && exp_seg != bss_section
8652 && exp_seg != undefined_section
8653 && !bfd_is_com_section (exp_seg))
8654 {
8655 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
8656 return 0;
8657 }
8658 #endif
8659 else if (!intel_syntax && exp_seg == reg_section)
8660 {
8661 if (imm_start)
8662 as_bad (_("illegal immediate register operand %s"), imm_start);
8663 return 0;
8664 }
8665 else
8666 {
8667 /* This is an address. The size of the address will be
8668 determined later, depending on destination register,
8669 suffix, or the default for the section. */
8670 i.types[this_operand].bitfield.imm8 = 1;
8671 i.types[this_operand].bitfield.imm16 = 1;
8672 i.types[this_operand].bitfield.imm32 = 1;
8673 i.types[this_operand].bitfield.imm32s = 1;
8674 i.types[this_operand].bitfield.imm64 = 1;
8675 i.types[this_operand] = operand_type_and (i.types[this_operand],
8676 types);
8677 }
8678
8679 return 1;
8680 }
8681
8682 static char *
8683 i386_scale (char *scale)
8684 {
8685 offsetT val;
8686 char *save = input_line_pointer;
8687
8688 input_line_pointer = scale;
8689 val = get_absolute_expression ();
8690
8691 switch (val)
8692 {
8693 case 1:
8694 i.log2_scale_factor = 0;
8695 break;
8696 case 2:
8697 i.log2_scale_factor = 1;
8698 break;
8699 case 4:
8700 i.log2_scale_factor = 2;
8701 break;
8702 case 8:
8703 i.log2_scale_factor = 3;
8704 break;
8705 default:
8706 {
8707 char sep = *input_line_pointer;
8708
8709 *input_line_pointer = '\0';
8710 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
8711 scale);
8712 *input_line_pointer = sep;
8713 input_line_pointer = save;
8714 return NULL;
8715 }
8716 }
8717 if (i.log2_scale_factor != 0 && i.index_reg == 0)
8718 {
8719 as_warn (_("scale factor of %d without an index register"),
8720 1 << i.log2_scale_factor);
8721 i.log2_scale_factor = 0;
8722 }
8723 scale = input_line_pointer;
8724 input_line_pointer = save;
8725 return scale;
8726 }
8727
8728 static int
8729 i386_displacement (char *disp_start, char *disp_end)
8730 {
8731 expressionS *exp;
8732 segT exp_seg = 0;
8733 char *save_input_line_pointer;
8734 char *gotfree_input_line;
8735 int override;
8736 i386_operand_type bigdisp, types = anydisp;
8737 int ret;
8738
8739 if (i.disp_operands == MAX_MEMORY_OPERANDS)
8740 {
8741 as_bad (_("at most %d displacement operands are allowed"),
8742 MAX_MEMORY_OPERANDS);
8743 return 0;
8744 }
8745
8746 operand_type_set (&bigdisp, 0);
8747 if ((i.types[this_operand].bitfield.jumpabsolute)
8748 || (!current_templates->start->opcode_modifier.jump
8749 && !current_templates->start->opcode_modifier.jumpdword))
8750 {
8751 bigdisp.bitfield.disp32 = 1;
8752 override = (i.prefix[ADDR_PREFIX] != 0);
8753 if (flag_code == CODE_64BIT)
8754 {
8755 if (!override)
8756 {
8757 bigdisp.bitfield.disp32s = 1;
8758 bigdisp.bitfield.disp64 = 1;
8759 }
8760 }
8761 else if ((flag_code == CODE_16BIT) ^ override)
8762 {
8763 bigdisp.bitfield.disp32 = 0;
8764 bigdisp.bitfield.disp16 = 1;
8765 }
8766 }
8767 else
8768 {
8769 /* For PC-relative branches, the width of the displacement
8770 is dependent upon data size, not address size. */
8771 override = (i.prefix[DATA_PREFIX] != 0);
8772 if (flag_code == CODE_64BIT)
8773 {
8774 if (override || i.suffix == WORD_MNEM_SUFFIX)
8775 bigdisp.bitfield.disp16 = 1;
8776 else
8777 {
8778 bigdisp.bitfield.disp32 = 1;
8779 bigdisp.bitfield.disp32s = 1;
8780 }
8781 }
8782 else
8783 {
8784 if (!override)
8785 override = (i.suffix == (flag_code != CODE_16BIT
8786 ? WORD_MNEM_SUFFIX
8787 : LONG_MNEM_SUFFIX));
8788 bigdisp.bitfield.disp32 = 1;
8789 if ((flag_code == CODE_16BIT) ^ override)
8790 {
8791 bigdisp.bitfield.disp32 = 0;
8792 bigdisp.bitfield.disp16 = 1;
8793 }
8794 }
8795 }
8796 i.types[this_operand] = operand_type_or (i.types[this_operand],
8797 bigdisp);
8798
8799 exp = &disp_expressions[i.disp_operands];
8800 i.op[this_operand].disps = exp;
8801 i.disp_operands++;
8802 save_input_line_pointer = input_line_pointer;
8803 input_line_pointer = disp_start;
8804 END_STRING_AND_SAVE (disp_end);
8805
8806 #ifndef GCC_ASM_O_HACK
8807 #define GCC_ASM_O_HACK 0
8808 #endif
8809 #if GCC_ASM_O_HACK
8810 END_STRING_AND_SAVE (disp_end + 1);
8811 if (i.types[this_operand].bitfield.baseIndex
8812 && displacement_string_end[-1] == '+')
8813 {
8814 /* This hack is to avoid a warning when using the "o"
8815 constraint within gcc asm statements.
8816 For instance:
8817
8818 #define _set_tssldt_desc(n,addr,limit,type) \
8819 __asm__ __volatile__ ( \
8820 "movw %w2,%0\n\t" \
8821 "movw %w1,2+%0\n\t" \
8822 "rorl $16,%1\n\t" \
8823 "movb %b1,4+%0\n\t" \
8824 "movb %4,5+%0\n\t" \
8825 "movb $0,6+%0\n\t" \
8826 "movb %h1,7+%0\n\t" \
8827 "rorl $16,%1" \
8828 : "=o"(*(n)) : "q" (addr), "ri"(limit), "i"(type))
8829
8830 This works great except that the output assembler ends
8831 up looking a bit weird if it turns out that there is
8832 no offset. You end up producing code that looks like:
8833
8834 #APP
8835 movw $235,(%eax)
8836 movw %dx,2+(%eax)
8837 rorl $16,%edx
8838 movb %dl,4+(%eax)
8839 movb $137,5+(%eax)
8840 movb $0,6+(%eax)
8841 movb %dh,7+(%eax)
8842 rorl $16,%edx
8843 #NO_APP
8844
8845 So here we provide the missing zero. */
8846
8847 *displacement_string_end = '0';
8848 }
8849 #endif
8850 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
8851 if (gotfree_input_line)
8852 input_line_pointer = gotfree_input_line;
8853
8854 exp_seg = expression (exp);
8855
8856 SKIP_WHITESPACE ();
8857 if (*input_line_pointer)
8858 as_bad (_("junk `%s' after expression"), input_line_pointer);
8859 #if GCC_ASM_O_HACK
8860 RESTORE_END_STRING (disp_end + 1);
8861 #endif
8862 input_line_pointer = save_input_line_pointer;
8863 if (gotfree_input_line)
8864 {
8865 free (gotfree_input_line);
8866
8867 if (exp->X_op == O_constant || exp->X_op == O_register)
8868 exp->X_op = O_illegal;
8869 }
8870
8871 ret = i386_finalize_displacement (exp_seg, exp, types, disp_start);
8872
8873 RESTORE_END_STRING (disp_end);
8874
8875 return ret;
8876 }
8877
8878 static int
8879 i386_finalize_displacement (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
8880 i386_operand_type types, const char *disp_start)
8881 {
8882 i386_operand_type bigdisp;
8883 int ret = 1;
8884
8885 /* We do this to make sure that the section symbol is in
8886 the symbol table. We will ultimately change the relocation
8887 to be relative to the beginning of the section. */
8888 if (i.reloc[this_operand] == BFD_RELOC_386_GOTOFF
8889 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL
8890 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
8891 {
8892 if (exp->X_op != O_symbol)
8893 goto inv_disp;
8894
8895 if (S_IS_LOCAL (exp->X_add_symbol)
8896 && S_GET_SEGMENT (exp->X_add_symbol) != undefined_section
8897 && S_GET_SEGMENT (exp->X_add_symbol) != expr_section)
8898 section_symbol (S_GET_SEGMENT (exp->X_add_symbol));
8899 exp->X_op = O_subtract;
8900 exp->X_op_symbol = GOT_symbol;
8901 if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
8902 i.reloc[this_operand] = BFD_RELOC_32_PCREL;
8903 else if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
8904 i.reloc[this_operand] = BFD_RELOC_64;
8905 else
8906 i.reloc[this_operand] = BFD_RELOC_32;
8907 }
8908
8909 else if (exp->X_op == O_absent
8910 || exp->X_op == O_illegal
8911 || exp->X_op == O_big)
8912 {
8913 inv_disp:
8914 as_bad (_("missing or invalid displacement expression `%s'"),
8915 disp_start);
8916 ret = 0;
8917 }
8918
8919 else if (flag_code == CODE_64BIT
8920 && !i.prefix[ADDR_PREFIX]
8921 && exp->X_op == O_constant)
8922 {
8923 /* Since displacement is signed extended to 64bit, don't allow
8924 disp32 and turn off disp32s if they are out of range. */
8925 i.types[this_operand].bitfield.disp32 = 0;
8926 if (!fits_in_signed_long (exp->X_add_number))
8927 {
8928 i.types[this_operand].bitfield.disp32s = 0;
8929 if (i.types[this_operand].bitfield.baseindex)
8930 {
8931 as_bad (_("0x%lx out range of signed 32bit displacement"),
8932 (long) exp->X_add_number);
8933 ret = 0;
8934 }
8935 }
8936 }
8937
8938 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
8939 else if (exp->X_op != O_constant
8940 && OUTPUT_FLAVOR == bfd_target_aout_flavour
8941 && exp_seg != absolute_section
8942 && exp_seg != text_section
8943 && exp_seg != data_section
8944 && exp_seg != bss_section
8945 && exp_seg != undefined_section
8946 && !bfd_is_com_section (exp_seg))
8947 {
8948 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
8949 ret = 0;
8950 }
8951 #endif
8952
8953 /* Check if this is a displacement only operand. */
8954 bigdisp = i.types[this_operand];
8955 bigdisp.bitfield.disp8 = 0;
8956 bigdisp.bitfield.disp16 = 0;
8957 bigdisp.bitfield.disp32 = 0;
8958 bigdisp.bitfield.disp32s = 0;
8959 bigdisp.bitfield.disp64 = 0;
8960 if (operand_type_all_zero (&bigdisp))
8961 i.types[this_operand] = operand_type_and (i.types[this_operand],
8962 types);
8963
8964 return ret;
8965 }
8966
8967 /* Return the active addressing mode, taking address override and
8968 registers forming the address into consideration. Update the
8969 address override prefix if necessary. */
8970
8971 static enum flag_code
8972 i386_addressing_mode (void)
8973 {
8974 enum flag_code addr_mode;
8975
8976 if (i.prefix[ADDR_PREFIX])
8977 addr_mode = flag_code == CODE_32BIT ? CODE_16BIT : CODE_32BIT;
8978 else
8979 {
8980 addr_mode = flag_code;
8981
8982 #if INFER_ADDR_PREFIX
8983 if (i.mem_operands == 0)
8984 {
8985 /* Infer address prefix from the first memory operand. */
8986 const reg_entry *addr_reg = i.base_reg;
8987
8988 if (addr_reg == NULL)
8989 addr_reg = i.index_reg;
8990
8991 if (addr_reg)
8992 {
8993 if (addr_reg->reg_num == RegEip
8994 || addr_reg->reg_num == RegEiz
8995 || addr_reg->reg_type.bitfield.dword)
8996 addr_mode = CODE_32BIT;
8997 else if (flag_code != CODE_64BIT
8998 && addr_reg->reg_type.bitfield.word)
8999 addr_mode = CODE_16BIT;
9000
9001 if (addr_mode != flag_code)
9002 {
9003 i.prefix[ADDR_PREFIX] = ADDR_PREFIX_OPCODE;
9004 i.prefixes += 1;
9005 /* Change the size of any displacement too. At most one
9006 of Disp16 or Disp32 is set.
9007 FIXME. There doesn't seem to be any real need for
9008 separate Disp16 and Disp32 flags. The same goes for
9009 Imm16 and Imm32. Removing them would probably clean
9010 up the code quite a lot. */
9011 if (flag_code != CODE_64BIT
9012 && (i.types[this_operand].bitfield.disp16
9013 || i.types[this_operand].bitfield.disp32))
9014 i.types[this_operand]
9015 = operand_type_xor (i.types[this_operand], disp16_32);
9016 }
9017 }
9018 }
9019 #endif
9020 }
9021
9022 return addr_mode;
9023 }
9024
9025 /* Make sure the memory operand we've been dealt is valid.
9026 Return 1 on success, 0 on a failure. */
9027
9028 static int
9029 i386_index_check (const char *operand_string)
9030 {
9031 const char *kind = "base/index";
9032 enum flag_code addr_mode = i386_addressing_mode ();
9033
9034 if (current_templates->start->opcode_modifier.isstring
9035 && !current_templates->start->opcode_modifier.immext
9036 && (current_templates->end[-1].opcode_modifier.isstring
9037 || i.mem_operands))
9038 {
9039 /* Memory operands of string insns are special in that they only allow
9040 a single register (rDI, rSI, or rBX) as their memory address. */
9041 const reg_entry *expected_reg;
9042 static const char *di_si[][2] =
9043 {
9044 { "esi", "edi" },
9045 { "si", "di" },
9046 { "rsi", "rdi" }
9047 };
9048 static const char *bx[] = { "ebx", "bx", "rbx" };
9049
9050 kind = "string address";
9051
9052 if (current_templates->start->opcode_modifier.repprefixok)
9053 {
9054 i386_operand_type type = current_templates->end[-1].operand_types[0];
9055
9056 if (!type.bitfield.baseindex
9057 || ((!i.mem_operands != !intel_syntax)
9058 && current_templates->end[-1].operand_types[1]
9059 .bitfield.baseindex))
9060 type = current_templates->end[-1].operand_types[1];
9061 expected_reg = hash_find (reg_hash,
9062 di_si[addr_mode][type.bitfield.esseg]);
9063
9064 }
9065 else
9066 expected_reg = hash_find (reg_hash, bx[addr_mode]);
9067
9068 if (i.base_reg != expected_reg
9069 || i.index_reg
9070 || operand_type_check (i.types[this_operand], disp))
9071 {
9072 /* The second memory operand must have the same size as
9073 the first one. */
9074 if (i.mem_operands
9075 && i.base_reg
9076 && !((addr_mode == CODE_64BIT
9077 && i.base_reg->reg_type.bitfield.qword)
9078 || (addr_mode == CODE_32BIT
9079 ? i.base_reg->reg_type.bitfield.dword
9080 : i.base_reg->reg_type.bitfield.word)))
9081 goto bad_address;
9082
9083 as_warn (_("`%s' is not valid here (expected `%c%s%s%c')"),
9084 operand_string,
9085 intel_syntax ? '[' : '(',
9086 register_prefix,
9087 expected_reg->reg_name,
9088 intel_syntax ? ']' : ')');
9089 return 1;
9090 }
9091 else
9092 return 1;
9093
9094 bad_address:
9095 as_bad (_("`%s' is not a valid %s expression"),
9096 operand_string, kind);
9097 return 0;
9098 }
9099 else
9100 {
9101 if (addr_mode != CODE_16BIT)
9102 {
9103 /* 32-bit/64-bit checks. */
9104 if ((i.base_reg
9105 && (addr_mode == CODE_64BIT
9106 ? !i.base_reg->reg_type.bitfield.qword
9107 : !i.base_reg->reg_type.bitfield.dword)
9108 && (i.index_reg
9109 || (i.base_reg->reg_num
9110 != (addr_mode == CODE_64BIT ? RegRip : RegEip))))
9111 || (i.index_reg
9112 && !i.index_reg->reg_type.bitfield.xmmword
9113 && !i.index_reg->reg_type.bitfield.ymmword
9114 && !i.index_reg->reg_type.bitfield.zmmword
9115 && ((addr_mode == CODE_64BIT
9116 ? !(i.index_reg->reg_type.bitfield.qword
9117 || i.index_reg->reg_num == RegRiz)
9118 : !(i.index_reg->reg_type.bitfield.dword
9119 || i.index_reg->reg_num == RegEiz))
9120 || !i.index_reg->reg_type.bitfield.baseindex)))
9121 goto bad_address;
9122
9123 /* bndmk, bndldx, and bndstx have special restrictions. */
9124 if (current_templates->start->base_opcode == 0xf30f1b
9125 || (current_templates->start->base_opcode & ~1) == 0x0f1a)
9126 {
9127 /* They cannot use RIP-relative addressing. */
9128 if (i.base_reg && i.base_reg->reg_num == RegRip)
9129 {
9130 as_bad (_("`%s' cannot be used here"), operand_string);
9131 return 0;
9132 }
9133
9134 /* bndldx and bndstx ignore their scale factor. */
9135 if (current_templates->start->base_opcode != 0xf30f1b
9136 && i.log2_scale_factor)
9137 as_warn (_("register scaling is being ignored here"));
9138 }
9139 }
9140 else
9141 {
9142 /* 16-bit checks. */
9143 if ((i.base_reg
9144 && (!i.base_reg->reg_type.bitfield.word
9145 || !i.base_reg->reg_type.bitfield.baseindex))
9146 || (i.index_reg
9147 && (!i.index_reg->reg_type.bitfield.word
9148 || !i.index_reg->reg_type.bitfield.baseindex
9149 || !(i.base_reg
9150 && i.base_reg->reg_num < 6
9151 && i.index_reg->reg_num >= 6
9152 && i.log2_scale_factor == 0))))
9153 goto bad_address;
9154 }
9155 }
9156 return 1;
9157 }
9158
9159 /* Handle vector immediates. */
9160
9161 static int
9162 RC_SAE_immediate (const char *imm_start)
9163 {
9164 unsigned int match_found, j;
9165 const char *pstr = imm_start;
9166 expressionS *exp;
9167
9168 if (*pstr != '{')
9169 return 0;
9170
9171 pstr++;
9172 match_found = 0;
9173 for (j = 0; j < ARRAY_SIZE (RC_NamesTable); j++)
9174 {
9175 if (!strncmp (pstr, RC_NamesTable[j].name, RC_NamesTable[j].len))
9176 {
9177 if (!i.rounding)
9178 {
9179 rc_op.type = RC_NamesTable[j].type;
9180 rc_op.operand = this_operand;
9181 i.rounding = &rc_op;
9182 }
9183 else
9184 {
9185 as_bad (_("duplicated `%s'"), imm_start);
9186 return 0;
9187 }
9188 pstr += RC_NamesTable[j].len;
9189 match_found = 1;
9190 break;
9191 }
9192 }
9193 if (!match_found)
9194 return 0;
9195
9196 if (*pstr++ != '}')
9197 {
9198 as_bad (_("Missing '}': '%s'"), imm_start);
9199 return 0;
9200 }
9201 /* RC/SAE immediate string should contain nothing more. */;
9202 if (*pstr != 0)
9203 {
9204 as_bad (_("Junk after '}': '%s'"), imm_start);
9205 return 0;
9206 }
9207
9208 exp = &im_expressions[i.imm_operands++];
9209 i.op[this_operand].imms = exp;
9210
9211 exp->X_op = O_constant;
9212 exp->X_add_number = 0;
9213 exp->X_add_symbol = (symbolS *) 0;
9214 exp->X_op_symbol = (symbolS *) 0;
9215
9216 i.types[this_operand].bitfield.imm8 = 1;
9217 return 1;
9218 }
9219
9220 /* Only string instructions can have a second memory operand, so
9221 reduce current_templates to just those if it contains any. */
9222 static int
9223 maybe_adjust_templates (void)
9224 {
9225 const insn_template *t;
9226
9227 gas_assert (i.mem_operands == 1);
9228
9229 for (t = current_templates->start; t < current_templates->end; ++t)
9230 if (t->opcode_modifier.isstring)
9231 break;
9232
9233 if (t < current_templates->end)
9234 {
9235 static templates aux_templates;
9236 bfd_boolean recheck;
9237
9238 aux_templates.start = t;
9239 for (; t < current_templates->end; ++t)
9240 if (!t->opcode_modifier.isstring)
9241 break;
9242 aux_templates.end = t;
9243
9244 /* Determine whether to re-check the first memory operand. */
9245 recheck = (aux_templates.start != current_templates->start
9246 || t != current_templates->end);
9247
9248 current_templates = &aux_templates;
9249
9250 if (recheck)
9251 {
9252 i.mem_operands = 0;
9253 if (i.memop1_string != NULL
9254 && i386_index_check (i.memop1_string) == 0)
9255 return 0;
9256 i.mem_operands = 1;
9257 }
9258 }
9259
9260 return 1;
9261 }
9262
9263 /* Parse OPERAND_STRING into the i386_insn structure I. Returns zero
9264 on error. */
9265
9266 static int
9267 i386_att_operand (char *operand_string)
9268 {
9269 const reg_entry *r;
9270 char *end_op;
9271 char *op_string = operand_string;
9272
9273 if (is_space_char (*op_string))
9274 ++op_string;
9275
9276 /* We check for an absolute prefix (differentiating,
9277 for example, 'jmp pc_relative_label' from 'jmp *absolute_label'. */
9278 if (*op_string == ABSOLUTE_PREFIX)
9279 {
9280 ++op_string;
9281 if (is_space_char (*op_string))
9282 ++op_string;
9283 i.types[this_operand].bitfield.jumpabsolute = 1;
9284 }
9285
9286 /* Check if operand is a register. */
9287 if ((r = parse_register (op_string, &end_op)) != NULL)
9288 {
9289 i386_operand_type temp;
9290
9291 /* Check for a segment override by searching for ':' after a
9292 segment register. */
9293 op_string = end_op;
9294 if (is_space_char (*op_string))
9295 ++op_string;
9296 if (*op_string == ':'
9297 && (r->reg_type.bitfield.sreg2
9298 || r->reg_type.bitfield.sreg3))
9299 {
9300 switch (r->reg_num)
9301 {
9302 case 0:
9303 i.seg[i.mem_operands] = &es;
9304 break;
9305 case 1:
9306 i.seg[i.mem_operands] = &cs;
9307 break;
9308 case 2:
9309 i.seg[i.mem_operands] = &ss;
9310 break;
9311 case 3:
9312 i.seg[i.mem_operands] = &ds;
9313 break;
9314 case 4:
9315 i.seg[i.mem_operands] = &fs;
9316 break;
9317 case 5:
9318 i.seg[i.mem_operands] = &gs;
9319 break;
9320 }
9321
9322 /* Skip the ':' and whitespace. */
9323 ++op_string;
9324 if (is_space_char (*op_string))
9325 ++op_string;
9326
9327 if (!is_digit_char (*op_string)
9328 && !is_identifier_char (*op_string)
9329 && *op_string != '('
9330 && *op_string != ABSOLUTE_PREFIX)
9331 {
9332 as_bad (_("bad memory operand `%s'"), op_string);
9333 return 0;
9334 }
9335 /* Handle case of %es:*foo. */
9336 if (*op_string == ABSOLUTE_PREFIX)
9337 {
9338 ++op_string;
9339 if (is_space_char (*op_string))
9340 ++op_string;
9341 i.types[this_operand].bitfield.jumpabsolute = 1;
9342 }
9343 goto do_memory_reference;
9344 }
9345
9346 /* Handle vector operations. */
9347 if (*op_string == '{')
9348 {
9349 op_string = check_VecOperations (op_string, NULL);
9350 if (op_string == NULL)
9351 return 0;
9352 }
9353
9354 if (*op_string)
9355 {
9356 as_bad (_("junk `%s' after register"), op_string);
9357 return 0;
9358 }
9359 temp = r->reg_type;
9360 temp.bitfield.baseindex = 0;
9361 i.types[this_operand] = operand_type_or (i.types[this_operand],
9362 temp);
9363 i.types[this_operand].bitfield.unspecified = 0;
9364 i.op[this_operand].regs = r;
9365 i.reg_operands++;
9366 }
9367 else if (*op_string == REGISTER_PREFIX)
9368 {
9369 as_bad (_("bad register name `%s'"), op_string);
9370 return 0;
9371 }
9372 else if (*op_string == IMMEDIATE_PREFIX)
9373 {
9374 ++op_string;
9375 if (i.types[this_operand].bitfield.jumpabsolute)
9376 {
9377 as_bad (_("immediate operand illegal with absolute jump"));
9378 return 0;
9379 }
9380 if (!i386_immediate (op_string))
9381 return 0;
9382 }
9383 else if (RC_SAE_immediate (operand_string))
9384 {
9385 /* If it is a RC or SAE immediate, do nothing. */
9386 ;
9387 }
9388 else if (is_digit_char (*op_string)
9389 || is_identifier_char (*op_string)
9390 || *op_string == '"'
9391 || *op_string == '(')
9392 {
9393 /* This is a memory reference of some sort. */
9394 char *base_string;
9395
9396 /* Start and end of displacement string expression (if found). */
9397 char *displacement_string_start;
9398 char *displacement_string_end;
9399 char *vop_start;
9400
9401 do_memory_reference:
9402 if (i.mem_operands == 1 && !maybe_adjust_templates ())
9403 return 0;
9404 if ((i.mem_operands == 1
9405 && !current_templates->start->opcode_modifier.isstring)
9406 || i.mem_operands == 2)
9407 {
9408 as_bad (_("too many memory references for `%s'"),
9409 current_templates->start->name);
9410 return 0;
9411 }
9412
9413 /* Check for base index form. We detect the base index form by
9414 looking for an ')' at the end of the operand, searching
9415 for the '(' matching it, and finding a REGISTER_PREFIX or ','
9416 after the '('. */
9417 base_string = op_string + strlen (op_string);
9418
9419 /* Handle vector operations. */
9420 vop_start = strchr (op_string, '{');
9421 if (vop_start && vop_start < base_string)
9422 {
9423 if (check_VecOperations (vop_start, base_string) == NULL)
9424 return 0;
9425 base_string = vop_start;
9426 }
9427
9428 --base_string;
9429 if (is_space_char (*base_string))
9430 --base_string;
9431
9432 /* If we only have a displacement, set-up for it to be parsed later. */
9433 displacement_string_start = op_string;
9434 displacement_string_end = base_string + 1;
9435
9436 if (*base_string == ')')
9437 {
9438 char *temp_string;
9439 unsigned int parens_balanced = 1;
9440 /* We've already checked that the number of left & right ()'s are
9441 equal, so this loop will not be infinite. */
9442 do
9443 {
9444 base_string--;
9445 if (*base_string == ')')
9446 parens_balanced++;
9447 if (*base_string == '(')
9448 parens_balanced--;
9449 }
9450 while (parens_balanced);
9451
9452 temp_string = base_string;
9453
9454 /* Skip past '(' and whitespace. */
9455 ++base_string;
9456 if (is_space_char (*base_string))
9457 ++base_string;
9458
9459 if (*base_string == ','
9460 || ((i.base_reg = parse_register (base_string, &end_op))
9461 != NULL))
9462 {
9463 displacement_string_end = temp_string;
9464
9465 i.types[this_operand].bitfield.baseindex = 1;
9466
9467 if (i.base_reg)
9468 {
9469 base_string = end_op;
9470 if (is_space_char (*base_string))
9471 ++base_string;
9472 }
9473
9474 /* There may be an index reg or scale factor here. */
9475 if (*base_string == ',')
9476 {
9477 ++base_string;
9478 if (is_space_char (*base_string))
9479 ++base_string;
9480
9481 if ((i.index_reg = parse_register (base_string, &end_op))
9482 != NULL)
9483 {
9484 base_string = end_op;
9485 if (is_space_char (*base_string))
9486 ++base_string;
9487 if (*base_string == ',')
9488 {
9489 ++base_string;
9490 if (is_space_char (*base_string))
9491 ++base_string;
9492 }
9493 else if (*base_string != ')')
9494 {
9495 as_bad (_("expecting `,' or `)' "
9496 "after index register in `%s'"),
9497 operand_string);
9498 return 0;
9499 }
9500 }
9501 else if (*base_string == REGISTER_PREFIX)
9502 {
9503 end_op = strchr (base_string, ',');
9504 if (end_op)
9505 *end_op = '\0';
9506 as_bad (_("bad register name `%s'"), base_string);
9507 return 0;
9508 }
9509
9510 /* Check for scale factor. */
9511 if (*base_string != ')')
9512 {
9513 char *end_scale = i386_scale (base_string);
9514
9515 if (!end_scale)
9516 return 0;
9517
9518 base_string = end_scale;
9519 if (is_space_char (*base_string))
9520 ++base_string;
9521 if (*base_string != ')')
9522 {
9523 as_bad (_("expecting `)' "
9524 "after scale factor in `%s'"),
9525 operand_string);
9526 return 0;
9527 }
9528 }
9529 else if (!i.index_reg)
9530 {
9531 as_bad (_("expecting index register or scale factor "
9532 "after `,'; got '%c'"),
9533 *base_string);
9534 return 0;
9535 }
9536 }
9537 else if (*base_string != ')')
9538 {
9539 as_bad (_("expecting `,' or `)' "
9540 "after base register in `%s'"),
9541 operand_string);
9542 return 0;
9543 }
9544 }
9545 else if (*base_string == REGISTER_PREFIX)
9546 {
9547 end_op = strchr (base_string, ',');
9548 if (end_op)
9549 *end_op = '\0';
9550 as_bad (_("bad register name `%s'"), base_string);
9551 return 0;
9552 }
9553 }
9554
9555 /* If there's an expression beginning the operand, parse it,
9556 assuming displacement_string_start and
9557 displacement_string_end are meaningful. */
9558 if (displacement_string_start != displacement_string_end)
9559 {
9560 if (!i386_displacement (displacement_string_start,
9561 displacement_string_end))
9562 return 0;
9563 }
9564
9565 /* Special case for (%dx) while doing input/output op. */
9566 if (i.base_reg
9567 && operand_type_equal (&i.base_reg->reg_type,
9568 &reg16_inoutportreg)
9569 && i.index_reg == 0
9570 && i.log2_scale_factor == 0
9571 && i.seg[i.mem_operands] == 0
9572 && !operand_type_check (i.types[this_operand], disp))
9573 {
9574 i.types[this_operand] = inoutportreg;
9575 return 1;
9576 }
9577
9578 if (i386_index_check (operand_string) == 0)
9579 return 0;
9580 i.types[this_operand].bitfield.mem = 1;
9581 if (i.mem_operands == 0)
9582 i.memop1_string = xstrdup (operand_string);
9583 i.mem_operands++;
9584 }
9585 else
9586 {
9587 /* It's not a memory operand; argh! */
9588 as_bad (_("invalid char %s beginning operand %d `%s'"),
9589 output_invalid (*op_string),
9590 this_operand + 1,
9591 op_string);
9592 return 0;
9593 }
9594 return 1; /* Normal return. */
9595 }
9596 \f
9597 /* Calculate the maximum variable size (i.e., excluding fr_fix)
9598 that an rs_machine_dependent frag may reach. */
9599
9600 unsigned int
9601 i386_frag_max_var (fragS *frag)
9602 {
9603 /* The only relaxable frags are for jumps.
9604 Unconditional jumps can grow by 4 bytes and others by 5 bytes. */
9605 gas_assert (frag->fr_type == rs_machine_dependent);
9606 return TYPE_FROM_RELAX_STATE (frag->fr_subtype) == UNCOND_JUMP ? 4 : 5;
9607 }
9608
9609 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9610 static int
9611 elf_symbol_resolved_in_segment_p (symbolS *fr_symbol, offsetT fr_var)
9612 {
9613 /* STT_GNU_IFUNC symbol must go through PLT. */
9614 if ((symbol_get_bfdsym (fr_symbol)->flags
9615 & BSF_GNU_INDIRECT_FUNCTION) != 0)
9616 return 0;
9617
9618 if (!S_IS_EXTERNAL (fr_symbol))
9619 /* Symbol may be weak or local. */
9620 return !S_IS_WEAK (fr_symbol);
9621
9622 /* Global symbols with non-default visibility can't be preempted. */
9623 if (ELF_ST_VISIBILITY (S_GET_OTHER (fr_symbol)) != STV_DEFAULT)
9624 return 1;
9625
9626 if (fr_var != NO_RELOC)
9627 switch ((enum bfd_reloc_code_real) fr_var)
9628 {
9629 case BFD_RELOC_386_PLT32:
9630 case BFD_RELOC_X86_64_PLT32:
9631 /* Symbol with PLT relocation may be preempted. */
9632 return 0;
9633 default:
9634 abort ();
9635 }
9636
9637 /* Global symbols with default visibility in a shared library may be
9638 preempted by another definition. */
9639 return !shared;
9640 }
9641 #endif
9642
9643 /* md_estimate_size_before_relax()
9644
9645 Called just before relax() for rs_machine_dependent frags. The x86
9646 assembler uses these frags to handle variable size jump
9647 instructions.
9648
9649 Any symbol that is now undefined will not become defined.
9650 Return the correct fr_subtype in the frag.
9651 Return the initial "guess for variable size of frag" to caller.
9652 The guess is actually the growth beyond the fixed part. Whatever
9653 we do to grow the fixed or variable part contributes to our
9654 returned value. */
9655
9656 int
9657 md_estimate_size_before_relax (fragS *fragP, segT segment)
9658 {
9659 /* We've already got fragP->fr_subtype right; all we have to do is
9660 check for un-relaxable symbols. On an ELF system, we can't relax
9661 an externally visible symbol, because it may be overridden by a
9662 shared library. */
9663 if (S_GET_SEGMENT (fragP->fr_symbol) != segment
9664 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9665 || (IS_ELF
9666 && !elf_symbol_resolved_in_segment_p (fragP->fr_symbol,
9667 fragP->fr_var))
9668 #endif
9669 #if defined (OBJ_COFF) && defined (TE_PE)
9670 || (OUTPUT_FLAVOR == bfd_target_coff_flavour
9671 && S_IS_WEAK (fragP->fr_symbol))
9672 #endif
9673 )
9674 {
9675 /* Symbol is undefined in this segment, or we need to keep a
9676 reloc so that weak symbols can be overridden. */
9677 int size = (fragP->fr_subtype & CODE16) ? 2 : 4;
9678 enum bfd_reloc_code_real reloc_type;
9679 unsigned char *opcode;
9680 int old_fr_fix;
9681
9682 if (fragP->fr_var != NO_RELOC)
9683 reloc_type = (enum bfd_reloc_code_real) fragP->fr_var;
9684 else if (size == 2)
9685 reloc_type = BFD_RELOC_16_PCREL;
9686 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9687 else if (need_plt32_p (fragP->fr_symbol))
9688 reloc_type = BFD_RELOC_X86_64_PLT32;
9689 #endif
9690 else
9691 reloc_type = BFD_RELOC_32_PCREL;
9692
9693 old_fr_fix = fragP->fr_fix;
9694 opcode = (unsigned char *) fragP->fr_opcode;
9695
9696 switch (TYPE_FROM_RELAX_STATE (fragP->fr_subtype))
9697 {
9698 case UNCOND_JUMP:
9699 /* Make jmp (0xeb) a (d)word displacement jump. */
9700 opcode[0] = 0xe9;
9701 fragP->fr_fix += size;
9702 fix_new (fragP, old_fr_fix, size,
9703 fragP->fr_symbol,
9704 fragP->fr_offset, 1,
9705 reloc_type);
9706 break;
9707
9708 case COND_JUMP86:
9709 if (size == 2
9710 && (!no_cond_jump_promotion || fragP->fr_var != NO_RELOC))
9711 {
9712 /* Negate the condition, and branch past an
9713 unconditional jump. */
9714 opcode[0] ^= 1;
9715 opcode[1] = 3;
9716 /* Insert an unconditional jump. */
9717 opcode[2] = 0xe9;
9718 /* We added two extra opcode bytes, and have a two byte
9719 offset. */
9720 fragP->fr_fix += 2 + 2;
9721 fix_new (fragP, old_fr_fix + 2, 2,
9722 fragP->fr_symbol,
9723 fragP->fr_offset, 1,
9724 reloc_type);
9725 break;
9726 }
9727 /* Fall through. */
9728
9729 case COND_JUMP:
9730 if (no_cond_jump_promotion && fragP->fr_var == NO_RELOC)
9731 {
9732 fixS *fixP;
9733
9734 fragP->fr_fix += 1;
9735 fixP = fix_new (fragP, old_fr_fix, 1,
9736 fragP->fr_symbol,
9737 fragP->fr_offset, 1,
9738 BFD_RELOC_8_PCREL);
9739 fixP->fx_signed = 1;
9740 break;
9741 }
9742
9743 /* This changes the byte-displacement jump 0x7N
9744 to the (d)word-displacement jump 0x0f,0x8N. */
9745 opcode[1] = opcode[0] + 0x10;
9746 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
9747 /* We've added an opcode byte. */
9748 fragP->fr_fix += 1 + size;
9749 fix_new (fragP, old_fr_fix + 1, size,
9750 fragP->fr_symbol,
9751 fragP->fr_offset, 1,
9752 reloc_type);
9753 break;
9754
9755 default:
9756 BAD_CASE (fragP->fr_subtype);
9757 break;
9758 }
9759 frag_wane (fragP);
9760 return fragP->fr_fix - old_fr_fix;
9761 }
9762
9763 /* Guess size depending on current relax state. Initially the relax
9764 state will correspond to a short jump and we return 1, because
9765 the variable part of the frag (the branch offset) is one byte
9766 long. However, we can relax a section more than once and in that
9767 case we must either set fr_subtype back to the unrelaxed state,
9768 or return the value for the appropriate branch. */
9769 return md_relax_table[fragP->fr_subtype].rlx_length;
9770 }
9771
9772 /* Called after relax() is finished.
9773
9774 In: Address of frag.
9775 fr_type == rs_machine_dependent.
9776 fr_subtype is what the address relaxed to.
9777
9778 Out: Any fixSs and constants are set up.
9779 Caller will turn frag into a ".space 0". */
9780
9781 void
9782 md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT sec ATTRIBUTE_UNUSED,
9783 fragS *fragP)
9784 {
9785 unsigned char *opcode;
9786 unsigned char *where_to_put_displacement = NULL;
9787 offsetT target_address;
9788 offsetT opcode_address;
9789 unsigned int extension = 0;
9790 offsetT displacement_from_opcode_start;
9791
9792 opcode = (unsigned char *) fragP->fr_opcode;
9793
9794 /* Address we want to reach in file space. */
9795 target_address = S_GET_VALUE (fragP->fr_symbol) + fragP->fr_offset;
9796
9797 /* Address opcode resides at in file space. */
9798 opcode_address = fragP->fr_address + fragP->fr_fix;
9799
9800 /* Displacement from opcode start to fill into instruction. */
9801 displacement_from_opcode_start = target_address - opcode_address;
9802
9803 if ((fragP->fr_subtype & BIG) == 0)
9804 {
9805 /* Don't have to change opcode. */
9806 extension = 1; /* 1 opcode + 1 displacement */
9807 where_to_put_displacement = &opcode[1];
9808 }
9809 else
9810 {
9811 if (no_cond_jump_promotion
9812 && TYPE_FROM_RELAX_STATE (fragP->fr_subtype) != UNCOND_JUMP)
9813 as_warn_where (fragP->fr_file, fragP->fr_line,
9814 _("long jump required"));
9815
9816 switch (fragP->fr_subtype)
9817 {
9818 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG):
9819 extension = 4; /* 1 opcode + 4 displacement */
9820 opcode[0] = 0xe9;
9821 where_to_put_displacement = &opcode[1];
9822 break;
9823
9824 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16):
9825 extension = 2; /* 1 opcode + 2 displacement */
9826 opcode[0] = 0xe9;
9827 where_to_put_displacement = &opcode[1];
9828 break;
9829
9830 case ENCODE_RELAX_STATE (COND_JUMP, BIG):
9831 case ENCODE_RELAX_STATE (COND_JUMP86, BIG):
9832 extension = 5; /* 2 opcode + 4 displacement */
9833 opcode[1] = opcode[0] + 0x10;
9834 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
9835 where_to_put_displacement = &opcode[2];
9836 break;
9837
9838 case ENCODE_RELAX_STATE (COND_JUMP, BIG16):
9839 extension = 3; /* 2 opcode + 2 displacement */
9840 opcode[1] = opcode[0] + 0x10;
9841 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
9842 where_to_put_displacement = &opcode[2];
9843 break;
9844
9845 case ENCODE_RELAX_STATE (COND_JUMP86, BIG16):
9846 extension = 4;
9847 opcode[0] ^= 1;
9848 opcode[1] = 3;
9849 opcode[2] = 0xe9;
9850 where_to_put_displacement = &opcode[3];
9851 break;
9852
9853 default:
9854 BAD_CASE (fragP->fr_subtype);
9855 break;
9856 }
9857 }
9858
9859 /* If size if less then four we are sure that the operand fits,
9860 but if it's 4, then it could be that the displacement is larger
9861 then -/+ 2GB. */
9862 if (DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype) == 4
9863 && object_64bit
9864 && ((addressT) (displacement_from_opcode_start - extension
9865 + ((addressT) 1 << 31))
9866 > (((addressT) 2 << 31) - 1)))
9867 {
9868 as_bad_where (fragP->fr_file, fragP->fr_line,
9869 _("jump target out of range"));
9870 /* Make us emit 0. */
9871 displacement_from_opcode_start = extension;
9872 }
9873 /* Now put displacement after opcode. */
9874 md_number_to_chars ((char *) where_to_put_displacement,
9875 (valueT) (displacement_from_opcode_start - extension),
9876 DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype));
9877 fragP->fr_fix += extension;
9878 }
9879 \f
9880 /* Apply a fixup (fixP) to segment data, once it has been determined
9881 by our caller that we have all the info we need to fix it up.
9882
9883 Parameter valP is the pointer to the value of the bits.
9884
9885 On the 386, immediates, displacements, and data pointers are all in
9886 the same (little-endian) format, so we don't need to care about which
9887 we are handling. */
9888
9889 void
9890 md_apply_fix (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED)
9891 {
9892 char *p = fixP->fx_where + fixP->fx_frag->fr_literal;
9893 valueT value = *valP;
9894
9895 #if !defined (TE_Mach)
9896 if (fixP->fx_pcrel)
9897 {
9898 switch (fixP->fx_r_type)
9899 {
9900 default:
9901 break;
9902
9903 case BFD_RELOC_64:
9904 fixP->fx_r_type = BFD_RELOC_64_PCREL;
9905 break;
9906 case BFD_RELOC_32:
9907 case BFD_RELOC_X86_64_32S:
9908 fixP->fx_r_type = BFD_RELOC_32_PCREL;
9909 break;
9910 case BFD_RELOC_16:
9911 fixP->fx_r_type = BFD_RELOC_16_PCREL;
9912 break;
9913 case BFD_RELOC_8:
9914 fixP->fx_r_type = BFD_RELOC_8_PCREL;
9915 break;
9916 }
9917 }
9918
9919 if (fixP->fx_addsy != NULL
9920 && (fixP->fx_r_type == BFD_RELOC_32_PCREL
9921 || fixP->fx_r_type == BFD_RELOC_64_PCREL
9922 || fixP->fx_r_type == BFD_RELOC_16_PCREL
9923 || fixP->fx_r_type == BFD_RELOC_8_PCREL)
9924 && !use_rela_relocations)
9925 {
9926 /* This is a hack. There should be a better way to handle this.
9927 This covers for the fact that bfd_install_relocation will
9928 subtract the current location (for partial_inplace, PC relative
9929 relocations); see more below. */
9930 #ifndef OBJ_AOUT
9931 if (IS_ELF
9932 #ifdef TE_PE
9933 || OUTPUT_FLAVOR == bfd_target_coff_flavour
9934 #endif
9935 )
9936 value += fixP->fx_where + fixP->fx_frag->fr_address;
9937 #endif
9938 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9939 if (IS_ELF)
9940 {
9941 segT sym_seg = S_GET_SEGMENT (fixP->fx_addsy);
9942
9943 if ((sym_seg == seg
9944 || (symbol_section_p (fixP->fx_addsy)
9945 && sym_seg != absolute_section))
9946 && !generic_force_reloc (fixP))
9947 {
9948 /* Yes, we add the values in twice. This is because
9949 bfd_install_relocation subtracts them out again. I think
9950 bfd_install_relocation is broken, but I don't dare change
9951 it. FIXME. */
9952 value += fixP->fx_where + fixP->fx_frag->fr_address;
9953 }
9954 }
9955 #endif
9956 #if defined (OBJ_COFF) && defined (TE_PE)
9957 /* For some reason, the PE format does not store a
9958 section address offset for a PC relative symbol. */
9959 if (S_GET_SEGMENT (fixP->fx_addsy) != seg
9960 || S_IS_WEAK (fixP->fx_addsy))
9961 value += md_pcrel_from (fixP);
9962 #endif
9963 }
9964 #if defined (OBJ_COFF) && defined (TE_PE)
9965 if (fixP->fx_addsy != NULL
9966 && S_IS_WEAK (fixP->fx_addsy)
9967 /* PR 16858: Do not modify weak function references. */
9968 && ! fixP->fx_pcrel)
9969 {
9970 #if !defined (TE_PEP)
9971 /* For x86 PE weak function symbols are neither PC-relative
9972 nor do they set S_IS_FUNCTION. So the only reliable way
9973 to detect them is to check the flags of their containing
9974 section. */
9975 if (S_GET_SEGMENT (fixP->fx_addsy) != NULL
9976 && S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_CODE)
9977 ;
9978 else
9979 #endif
9980 value -= S_GET_VALUE (fixP->fx_addsy);
9981 }
9982 #endif
9983
9984 /* Fix a few things - the dynamic linker expects certain values here,
9985 and we must not disappoint it. */
9986 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9987 if (IS_ELF && fixP->fx_addsy)
9988 switch (fixP->fx_r_type)
9989 {
9990 case BFD_RELOC_386_PLT32:
9991 case BFD_RELOC_X86_64_PLT32:
9992 /* Make the jump instruction point to the address of the operand. At
9993 runtime we merely add the offset to the actual PLT entry. */
9994 value = -4;
9995 break;
9996
9997 case BFD_RELOC_386_TLS_GD:
9998 case BFD_RELOC_386_TLS_LDM:
9999 case BFD_RELOC_386_TLS_IE_32:
10000 case BFD_RELOC_386_TLS_IE:
10001 case BFD_RELOC_386_TLS_GOTIE:
10002 case BFD_RELOC_386_TLS_GOTDESC:
10003 case BFD_RELOC_X86_64_TLSGD:
10004 case BFD_RELOC_X86_64_TLSLD:
10005 case BFD_RELOC_X86_64_GOTTPOFF:
10006 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
10007 value = 0; /* Fully resolved at runtime. No addend. */
10008 /* Fallthrough */
10009 case BFD_RELOC_386_TLS_LE:
10010 case BFD_RELOC_386_TLS_LDO_32:
10011 case BFD_RELOC_386_TLS_LE_32:
10012 case BFD_RELOC_X86_64_DTPOFF32:
10013 case BFD_RELOC_X86_64_DTPOFF64:
10014 case BFD_RELOC_X86_64_TPOFF32:
10015 case BFD_RELOC_X86_64_TPOFF64:
10016 S_SET_THREAD_LOCAL (fixP->fx_addsy);
10017 break;
10018
10019 case BFD_RELOC_386_TLS_DESC_CALL:
10020 case BFD_RELOC_X86_64_TLSDESC_CALL:
10021 value = 0; /* Fully resolved at runtime. No addend. */
10022 S_SET_THREAD_LOCAL (fixP->fx_addsy);
10023 fixP->fx_done = 0;
10024 return;
10025
10026 case BFD_RELOC_VTABLE_INHERIT:
10027 case BFD_RELOC_VTABLE_ENTRY:
10028 fixP->fx_done = 0;
10029 return;
10030
10031 default:
10032 break;
10033 }
10034 #endif /* defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) */
10035 *valP = value;
10036 #endif /* !defined (TE_Mach) */
10037
10038 /* Are we finished with this relocation now? */
10039 if (fixP->fx_addsy == NULL)
10040 fixP->fx_done = 1;
10041 #if defined (OBJ_COFF) && defined (TE_PE)
10042 else if (fixP->fx_addsy != NULL && S_IS_WEAK (fixP->fx_addsy))
10043 {
10044 fixP->fx_done = 0;
10045 /* Remember value for tc_gen_reloc. */
10046 fixP->fx_addnumber = value;
10047 /* Clear out the frag for now. */
10048 value = 0;
10049 }
10050 #endif
10051 else if (use_rela_relocations)
10052 {
10053 fixP->fx_no_overflow = 1;
10054 /* Remember value for tc_gen_reloc. */
10055 fixP->fx_addnumber = value;
10056 value = 0;
10057 }
10058
10059 md_number_to_chars (p, value, fixP->fx_size);
10060 }
10061 \f
10062 const char *
10063 md_atof (int type, char *litP, int *sizeP)
10064 {
10065 /* This outputs the LITTLENUMs in REVERSE order;
10066 in accord with the bigendian 386. */
10067 return ieee_md_atof (type, litP, sizeP, FALSE);
10068 }
10069 \f
10070 static char output_invalid_buf[sizeof (unsigned char) * 2 + 6];
10071
10072 static char *
10073 output_invalid (int c)
10074 {
10075 if (ISPRINT (c))
10076 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
10077 "'%c'", c);
10078 else
10079 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
10080 "(0x%x)", (unsigned char) c);
10081 return output_invalid_buf;
10082 }
10083
10084 /* REG_STRING starts *before* REGISTER_PREFIX. */
10085
10086 static const reg_entry *
10087 parse_real_register (char *reg_string, char **end_op)
10088 {
10089 char *s = reg_string;
10090 char *p;
10091 char reg_name_given[MAX_REG_NAME_SIZE + 1];
10092 const reg_entry *r;
10093
10094 /* Skip possible REGISTER_PREFIX and possible whitespace. */
10095 if (*s == REGISTER_PREFIX)
10096 ++s;
10097
10098 if (is_space_char (*s))
10099 ++s;
10100
10101 p = reg_name_given;
10102 while ((*p++ = register_chars[(unsigned char) *s]) != '\0')
10103 {
10104 if (p >= reg_name_given + MAX_REG_NAME_SIZE)
10105 return (const reg_entry *) NULL;
10106 s++;
10107 }
10108
10109 /* For naked regs, make sure that we are not dealing with an identifier.
10110 This prevents confusing an identifier like `eax_var' with register
10111 `eax'. */
10112 if (allow_naked_reg && identifier_chars[(unsigned char) *s])
10113 return (const reg_entry *) NULL;
10114
10115 *end_op = s;
10116
10117 r = (const reg_entry *) hash_find (reg_hash, reg_name_given);
10118
10119 /* Handle floating point regs, allowing spaces in the (i) part. */
10120 if (r == i386_regtab /* %st is first entry of table */)
10121 {
10122 if (is_space_char (*s))
10123 ++s;
10124 if (*s == '(')
10125 {
10126 ++s;
10127 if (is_space_char (*s))
10128 ++s;
10129 if (*s >= '0' && *s <= '7')
10130 {
10131 int fpr = *s - '0';
10132 ++s;
10133 if (is_space_char (*s))
10134 ++s;
10135 if (*s == ')')
10136 {
10137 *end_op = s + 1;
10138 r = (const reg_entry *) hash_find (reg_hash, "st(0)");
10139 know (r);
10140 return r + fpr;
10141 }
10142 }
10143 /* We have "%st(" then garbage. */
10144 return (const reg_entry *) NULL;
10145 }
10146 }
10147
10148 if (r == NULL || allow_pseudo_reg)
10149 return r;
10150
10151 if (operand_type_all_zero (&r->reg_type))
10152 return (const reg_entry *) NULL;
10153
10154 if ((r->reg_type.bitfield.dword
10155 || r->reg_type.bitfield.sreg3
10156 || r->reg_type.bitfield.control
10157 || r->reg_type.bitfield.debug
10158 || r->reg_type.bitfield.test)
10159 && !cpu_arch_flags.bitfield.cpui386)
10160 return (const reg_entry *) NULL;
10161
10162 if (r->reg_type.bitfield.tbyte
10163 && !cpu_arch_flags.bitfield.cpu8087
10164 && !cpu_arch_flags.bitfield.cpu287
10165 && !cpu_arch_flags.bitfield.cpu387)
10166 return (const reg_entry *) NULL;
10167
10168 if (r->reg_type.bitfield.regmmx && !cpu_arch_flags.bitfield.cpuregmmx)
10169 return (const reg_entry *) NULL;
10170
10171 if (r->reg_type.bitfield.xmmword && !cpu_arch_flags.bitfield.cpuregxmm)
10172 return (const reg_entry *) NULL;
10173
10174 if (r->reg_type.bitfield.ymmword && !cpu_arch_flags.bitfield.cpuregymm)
10175 return (const reg_entry *) NULL;
10176
10177 if (r->reg_type.bitfield.zmmword && !cpu_arch_flags.bitfield.cpuregzmm)
10178 return (const reg_entry *) NULL;
10179
10180 if (r->reg_type.bitfield.regmask
10181 && !cpu_arch_flags.bitfield.cpuregmask)
10182 return (const reg_entry *) NULL;
10183
10184 /* Don't allow fake index register unless allow_index_reg isn't 0. */
10185 if (!allow_index_reg
10186 && (r->reg_num == RegEiz || r->reg_num == RegRiz))
10187 return (const reg_entry *) NULL;
10188
10189 /* Upper 16 vector register is only available with VREX in 64bit
10190 mode. */
10191 if ((r->reg_flags & RegVRex))
10192 {
10193 if (i.vec_encoding == vex_encoding_default)
10194 i.vec_encoding = vex_encoding_evex;
10195
10196 if (!cpu_arch_flags.bitfield.cpuvrex
10197 || i.vec_encoding != vex_encoding_evex
10198 || flag_code != CODE_64BIT)
10199 return (const reg_entry *) NULL;
10200 }
10201
10202 if (((r->reg_flags & (RegRex64 | RegRex))
10203 || r->reg_type.bitfield.qword)
10204 && (!cpu_arch_flags.bitfield.cpulm
10205 || !operand_type_equal (&r->reg_type, &control))
10206 && flag_code != CODE_64BIT)
10207 return (const reg_entry *) NULL;
10208
10209 if (r->reg_type.bitfield.sreg3 && r->reg_num == RegFlat && !intel_syntax)
10210 return (const reg_entry *) NULL;
10211
10212 return r;
10213 }
10214
10215 /* REG_STRING starts *before* REGISTER_PREFIX. */
10216
10217 static const reg_entry *
10218 parse_register (char *reg_string, char **end_op)
10219 {
10220 const reg_entry *r;
10221
10222 if (*reg_string == REGISTER_PREFIX || allow_naked_reg)
10223 r = parse_real_register (reg_string, end_op);
10224 else
10225 r = NULL;
10226 if (!r)
10227 {
10228 char *save = input_line_pointer;
10229 char c;
10230 symbolS *symbolP;
10231
10232 input_line_pointer = reg_string;
10233 c = get_symbol_name (&reg_string);
10234 symbolP = symbol_find (reg_string);
10235 if (symbolP && S_GET_SEGMENT (symbolP) == reg_section)
10236 {
10237 const expressionS *e = symbol_get_value_expression (symbolP);
10238
10239 know (e->X_op == O_register);
10240 know (e->X_add_number >= 0
10241 && (valueT) e->X_add_number < i386_regtab_size);
10242 r = i386_regtab + e->X_add_number;
10243 if ((r->reg_flags & RegVRex))
10244 i.vec_encoding = vex_encoding_evex;
10245 *end_op = input_line_pointer;
10246 }
10247 *input_line_pointer = c;
10248 input_line_pointer = save;
10249 }
10250 return r;
10251 }
10252
10253 int
10254 i386_parse_name (char *name, expressionS *e, char *nextcharP)
10255 {
10256 const reg_entry *r;
10257 char *end = input_line_pointer;
10258
10259 *end = *nextcharP;
10260 r = parse_register (name, &input_line_pointer);
10261 if (r && end <= input_line_pointer)
10262 {
10263 *nextcharP = *input_line_pointer;
10264 *input_line_pointer = 0;
10265 e->X_op = O_register;
10266 e->X_add_number = r - i386_regtab;
10267 return 1;
10268 }
10269 input_line_pointer = end;
10270 *end = 0;
10271 return intel_syntax ? i386_intel_parse_name (name, e) : 0;
10272 }
10273
10274 void
10275 md_operand (expressionS *e)
10276 {
10277 char *end;
10278 const reg_entry *r;
10279
10280 switch (*input_line_pointer)
10281 {
10282 case REGISTER_PREFIX:
10283 r = parse_real_register (input_line_pointer, &end);
10284 if (r)
10285 {
10286 e->X_op = O_register;
10287 e->X_add_number = r - i386_regtab;
10288 input_line_pointer = end;
10289 }
10290 break;
10291
10292 case '[':
10293 gas_assert (intel_syntax);
10294 end = input_line_pointer++;
10295 expression (e);
10296 if (*input_line_pointer == ']')
10297 {
10298 ++input_line_pointer;
10299 e->X_op_symbol = make_expr_symbol (e);
10300 e->X_add_symbol = NULL;
10301 e->X_add_number = 0;
10302 e->X_op = O_index;
10303 }
10304 else
10305 {
10306 e->X_op = O_absent;
10307 input_line_pointer = end;
10308 }
10309 break;
10310 }
10311 }
10312
10313 \f
10314 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10315 const char *md_shortopts = "kVQ:sqnO::";
10316 #else
10317 const char *md_shortopts = "qnO::";
10318 #endif
10319
10320 #define OPTION_32 (OPTION_MD_BASE + 0)
10321 #define OPTION_64 (OPTION_MD_BASE + 1)
10322 #define OPTION_DIVIDE (OPTION_MD_BASE + 2)
10323 #define OPTION_MARCH (OPTION_MD_BASE + 3)
10324 #define OPTION_MTUNE (OPTION_MD_BASE + 4)
10325 #define OPTION_MMNEMONIC (OPTION_MD_BASE + 5)
10326 #define OPTION_MSYNTAX (OPTION_MD_BASE + 6)
10327 #define OPTION_MINDEX_REG (OPTION_MD_BASE + 7)
10328 #define OPTION_MNAKED_REG (OPTION_MD_BASE + 8)
10329 #define OPTION_MRELAX_RELOCATIONS (OPTION_MD_BASE + 9)
10330 #define OPTION_MSSE2AVX (OPTION_MD_BASE + 10)
10331 #define OPTION_MSSE_CHECK (OPTION_MD_BASE + 11)
10332 #define OPTION_MOPERAND_CHECK (OPTION_MD_BASE + 12)
10333 #define OPTION_MAVXSCALAR (OPTION_MD_BASE + 13)
10334 #define OPTION_X32 (OPTION_MD_BASE + 14)
10335 #define OPTION_MADD_BND_PREFIX (OPTION_MD_BASE + 15)
10336 #define OPTION_MEVEXLIG (OPTION_MD_BASE + 16)
10337 #define OPTION_MEVEXWIG (OPTION_MD_BASE + 17)
10338 #define OPTION_MBIG_OBJ (OPTION_MD_BASE + 18)
10339 #define OPTION_MOMIT_LOCK_PREFIX (OPTION_MD_BASE + 19)
10340 #define OPTION_MEVEXRCIG (OPTION_MD_BASE + 20)
10341 #define OPTION_MSHARED (OPTION_MD_BASE + 21)
10342 #define OPTION_MAMD64 (OPTION_MD_BASE + 22)
10343 #define OPTION_MINTEL64 (OPTION_MD_BASE + 23)
10344 #define OPTION_MFENCE_AS_LOCK_ADD (OPTION_MD_BASE + 24)
10345
10346 struct option md_longopts[] =
10347 {
10348 {"32", no_argument, NULL, OPTION_32},
10349 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
10350 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
10351 {"64", no_argument, NULL, OPTION_64},
10352 #endif
10353 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10354 {"x32", no_argument, NULL, OPTION_X32},
10355 {"mshared", no_argument, NULL, OPTION_MSHARED},
10356 #endif
10357 {"divide", no_argument, NULL, OPTION_DIVIDE},
10358 {"march", required_argument, NULL, OPTION_MARCH},
10359 {"mtune", required_argument, NULL, OPTION_MTUNE},
10360 {"mmnemonic", required_argument, NULL, OPTION_MMNEMONIC},
10361 {"msyntax", required_argument, NULL, OPTION_MSYNTAX},
10362 {"mindex-reg", no_argument, NULL, OPTION_MINDEX_REG},
10363 {"mnaked-reg", no_argument, NULL, OPTION_MNAKED_REG},
10364 {"msse2avx", no_argument, NULL, OPTION_MSSE2AVX},
10365 {"msse-check", required_argument, NULL, OPTION_MSSE_CHECK},
10366 {"moperand-check", required_argument, NULL, OPTION_MOPERAND_CHECK},
10367 {"mavxscalar", required_argument, NULL, OPTION_MAVXSCALAR},
10368 {"madd-bnd-prefix", no_argument, NULL, OPTION_MADD_BND_PREFIX},
10369 {"mevexlig", required_argument, NULL, OPTION_MEVEXLIG},
10370 {"mevexwig", required_argument, NULL, OPTION_MEVEXWIG},
10371 # if defined (TE_PE) || defined (TE_PEP)
10372 {"mbig-obj", no_argument, NULL, OPTION_MBIG_OBJ},
10373 #endif
10374 {"momit-lock-prefix", required_argument, NULL, OPTION_MOMIT_LOCK_PREFIX},
10375 {"mfence-as-lock-add", required_argument, NULL, OPTION_MFENCE_AS_LOCK_ADD},
10376 {"mrelax-relocations", required_argument, NULL, OPTION_MRELAX_RELOCATIONS},
10377 {"mevexrcig", required_argument, NULL, OPTION_MEVEXRCIG},
10378 {"mamd64", no_argument, NULL, OPTION_MAMD64},
10379 {"mintel64", no_argument, NULL, OPTION_MINTEL64},
10380 {NULL, no_argument, NULL, 0}
10381 };
10382 size_t md_longopts_size = sizeof (md_longopts);
10383
10384 int
10385 md_parse_option (int c, const char *arg)
10386 {
10387 unsigned int j;
10388 char *arch, *next, *saved;
10389
10390 switch (c)
10391 {
10392 case 'n':
10393 optimize_align_code = 0;
10394 break;
10395
10396 case 'q':
10397 quiet_warnings = 1;
10398 break;
10399
10400 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10401 /* -Qy, -Qn: SVR4 arguments controlling whether a .comment section
10402 should be emitted or not. FIXME: Not implemented. */
10403 case 'Q':
10404 break;
10405
10406 /* -V: SVR4 argument to print version ID. */
10407 case 'V':
10408 print_version_id ();
10409 break;
10410
10411 /* -k: Ignore for FreeBSD compatibility. */
10412 case 'k':
10413 break;
10414
10415 case 's':
10416 /* -s: On i386 Solaris, this tells the native assembler to use
10417 .stab instead of .stab.excl. We always use .stab anyhow. */
10418 break;
10419
10420 case OPTION_MSHARED:
10421 shared = 1;
10422 break;
10423 #endif
10424 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
10425 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
10426 case OPTION_64:
10427 {
10428 const char **list, **l;
10429
10430 list = bfd_target_list ();
10431 for (l = list; *l != NULL; l++)
10432 if (CONST_STRNEQ (*l, "elf64-x86-64")
10433 || strcmp (*l, "coff-x86-64") == 0
10434 || strcmp (*l, "pe-x86-64") == 0
10435 || strcmp (*l, "pei-x86-64") == 0
10436 || strcmp (*l, "mach-o-x86-64") == 0)
10437 {
10438 default_arch = "x86_64";
10439 break;
10440 }
10441 if (*l == NULL)
10442 as_fatal (_("no compiled in support for x86_64"));
10443 free (list);
10444 }
10445 break;
10446 #endif
10447
10448 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10449 case OPTION_X32:
10450 if (IS_ELF)
10451 {
10452 const char **list, **l;
10453
10454 list = bfd_target_list ();
10455 for (l = list; *l != NULL; l++)
10456 if (CONST_STRNEQ (*l, "elf32-x86-64"))
10457 {
10458 default_arch = "x86_64:32";
10459 break;
10460 }
10461 if (*l == NULL)
10462 as_fatal (_("no compiled in support for 32bit x86_64"));
10463 free (list);
10464 }
10465 else
10466 as_fatal (_("32bit x86_64 is only supported for ELF"));
10467 break;
10468 #endif
10469
10470 case OPTION_32:
10471 default_arch = "i386";
10472 break;
10473
10474 case OPTION_DIVIDE:
10475 #ifdef SVR4_COMMENT_CHARS
10476 {
10477 char *n, *t;
10478 const char *s;
10479
10480 n = XNEWVEC (char, strlen (i386_comment_chars) + 1);
10481 t = n;
10482 for (s = i386_comment_chars; *s != '\0'; s++)
10483 if (*s != '/')
10484 *t++ = *s;
10485 *t = '\0';
10486 i386_comment_chars = n;
10487 }
10488 #endif
10489 break;
10490
10491 case OPTION_MARCH:
10492 saved = xstrdup (arg);
10493 arch = saved;
10494 /* Allow -march=+nosse. */
10495 if (*arch == '+')
10496 arch++;
10497 do
10498 {
10499 if (*arch == '.')
10500 as_fatal (_("invalid -march= option: `%s'"), arg);
10501 next = strchr (arch, '+');
10502 if (next)
10503 *next++ = '\0';
10504 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
10505 {
10506 if (strcmp (arch, cpu_arch [j].name) == 0)
10507 {
10508 /* Processor. */
10509 if (! cpu_arch[j].flags.bitfield.cpui386)
10510 continue;
10511
10512 cpu_arch_name = cpu_arch[j].name;
10513 cpu_sub_arch_name = NULL;
10514 cpu_arch_flags = cpu_arch[j].flags;
10515 cpu_arch_isa = cpu_arch[j].type;
10516 cpu_arch_isa_flags = cpu_arch[j].flags;
10517 if (!cpu_arch_tune_set)
10518 {
10519 cpu_arch_tune = cpu_arch_isa;
10520 cpu_arch_tune_flags = cpu_arch_isa_flags;
10521 }
10522 break;
10523 }
10524 else if (*cpu_arch [j].name == '.'
10525 && strcmp (arch, cpu_arch [j].name + 1) == 0)
10526 {
10527 /* ISA extension. */
10528 i386_cpu_flags flags;
10529
10530 flags = cpu_flags_or (cpu_arch_flags,
10531 cpu_arch[j].flags);
10532
10533 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
10534 {
10535 if (cpu_sub_arch_name)
10536 {
10537 char *name = cpu_sub_arch_name;
10538 cpu_sub_arch_name = concat (name,
10539 cpu_arch[j].name,
10540 (const char *) NULL);
10541 free (name);
10542 }
10543 else
10544 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
10545 cpu_arch_flags = flags;
10546 cpu_arch_isa_flags = flags;
10547 }
10548 else
10549 cpu_arch_isa_flags
10550 = cpu_flags_or (cpu_arch_isa_flags,
10551 cpu_arch[j].flags);
10552 break;
10553 }
10554 }
10555
10556 if (j >= ARRAY_SIZE (cpu_arch))
10557 {
10558 /* Disable an ISA extension. */
10559 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
10560 if (strcmp (arch, cpu_noarch [j].name) == 0)
10561 {
10562 i386_cpu_flags flags;
10563
10564 flags = cpu_flags_and_not (cpu_arch_flags,
10565 cpu_noarch[j].flags);
10566 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
10567 {
10568 if (cpu_sub_arch_name)
10569 {
10570 char *name = cpu_sub_arch_name;
10571 cpu_sub_arch_name = concat (arch,
10572 (const char *) NULL);
10573 free (name);
10574 }
10575 else
10576 cpu_sub_arch_name = xstrdup (arch);
10577 cpu_arch_flags = flags;
10578 cpu_arch_isa_flags = flags;
10579 }
10580 break;
10581 }
10582
10583 if (j >= ARRAY_SIZE (cpu_noarch))
10584 j = ARRAY_SIZE (cpu_arch);
10585 }
10586
10587 if (j >= ARRAY_SIZE (cpu_arch))
10588 as_fatal (_("invalid -march= option: `%s'"), arg);
10589
10590 arch = next;
10591 }
10592 while (next != NULL);
10593 free (saved);
10594 break;
10595
10596 case OPTION_MTUNE:
10597 if (*arg == '.')
10598 as_fatal (_("invalid -mtune= option: `%s'"), arg);
10599 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
10600 {
10601 if (strcmp (arg, cpu_arch [j].name) == 0)
10602 {
10603 cpu_arch_tune_set = 1;
10604 cpu_arch_tune = cpu_arch [j].type;
10605 cpu_arch_tune_flags = cpu_arch[j].flags;
10606 break;
10607 }
10608 }
10609 if (j >= ARRAY_SIZE (cpu_arch))
10610 as_fatal (_("invalid -mtune= option: `%s'"), arg);
10611 break;
10612
10613 case OPTION_MMNEMONIC:
10614 if (strcasecmp (arg, "att") == 0)
10615 intel_mnemonic = 0;
10616 else if (strcasecmp (arg, "intel") == 0)
10617 intel_mnemonic = 1;
10618 else
10619 as_fatal (_("invalid -mmnemonic= option: `%s'"), arg);
10620 break;
10621
10622 case OPTION_MSYNTAX:
10623 if (strcasecmp (arg, "att") == 0)
10624 intel_syntax = 0;
10625 else if (strcasecmp (arg, "intel") == 0)
10626 intel_syntax = 1;
10627 else
10628 as_fatal (_("invalid -msyntax= option: `%s'"), arg);
10629 break;
10630
10631 case OPTION_MINDEX_REG:
10632 allow_index_reg = 1;
10633 break;
10634
10635 case OPTION_MNAKED_REG:
10636 allow_naked_reg = 1;
10637 break;
10638
10639 case OPTION_MSSE2AVX:
10640 sse2avx = 1;
10641 break;
10642
10643 case OPTION_MSSE_CHECK:
10644 if (strcasecmp (arg, "error") == 0)
10645 sse_check = check_error;
10646 else if (strcasecmp (arg, "warning") == 0)
10647 sse_check = check_warning;
10648 else if (strcasecmp (arg, "none") == 0)
10649 sse_check = check_none;
10650 else
10651 as_fatal (_("invalid -msse-check= option: `%s'"), arg);
10652 break;
10653
10654 case OPTION_MOPERAND_CHECK:
10655 if (strcasecmp (arg, "error") == 0)
10656 operand_check = check_error;
10657 else if (strcasecmp (arg, "warning") == 0)
10658 operand_check = check_warning;
10659 else if (strcasecmp (arg, "none") == 0)
10660 operand_check = check_none;
10661 else
10662 as_fatal (_("invalid -moperand-check= option: `%s'"), arg);
10663 break;
10664
10665 case OPTION_MAVXSCALAR:
10666 if (strcasecmp (arg, "128") == 0)
10667 avxscalar = vex128;
10668 else if (strcasecmp (arg, "256") == 0)
10669 avxscalar = vex256;
10670 else
10671 as_fatal (_("invalid -mavxscalar= option: `%s'"), arg);
10672 break;
10673
10674 case OPTION_MADD_BND_PREFIX:
10675 add_bnd_prefix = 1;
10676 break;
10677
10678 case OPTION_MEVEXLIG:
10679 if (strcmp (arg, "128") == 0)
10680 evexlig = evexl128;
10681 else if (strcmp (arg, "256") == 0)
10682 evexlig = evexl256;
10683 else if (strcmp (arg, "512") == 0)
10684 evexlig = evexl512;
10685 else
10686 as_fatal (_("invalid -mevexlig= option: `%s'"), arg);
10687 break;
10688
10689 case OPTION_MEVEXRCIG:
10690 if (strcmp (arg, "rne") == 0)
10691 evexrcig = rne;
10692 else if (strcmp (arg, "rd") == 0)
10693 evexrcig = rd;
10694 else if (strcmp (arg, "ru") == 0)
10695 evexrcig = ru;
10696 else if (strcmp (arg, "rz") == 0)
10697 evexrcig = rz;
10698 else
10699 as_fatal (_("invalid -mevexrcig= option: `%s'"), arg);
10700 break;
10701
10702 case OPTION_MEVEXWIG:
10703 if (strcmp (arg, "0") == 0)
10704 evexwig = evexw0;
10705 else if (strcmp (arg, "1") == 0)
10706 evexwig = evexw1;
10707 else
10708 as_fatal (_("invalid -mevexwig= option: `%s'"), arg);
10709 break;
10710
10711 # if defined (TE_PE) || defined (TE_PEP)
10712 case OPTION_MBIG_OBJ:
10713 use_big_obj = 1;
10714 break;
10715 #endif
10716
10717 case OPTION_MOMIT_LOCK_PREFIX:
10718 if (strcasecmp (arg, "yes") == 0)
10719 omit_lock_prefix = 1;
10720 else if (strcasecmp (arg, "no") == 0)
10721 omit_lock_prefix = 0;
10722 else
10723 as_fatal (_("invalid -momit-lock-prefix= option: `%s'"), arg);
10724 break;
10725
10726 case OPTION_MFENCE_AS_LOCK_ADD:
10727 if (strcasecmp (arg, "yes") == 0)
10728 avoid_fence = 1;
10729 else if (strcasecmp (arg, "no") == 0)
10730 avoid_fence = 0;
10731 else
10732 as_fatal (_("invalid -mfence-as-lock-add= option: `%s'"), arg);
10733 break;
10734
10735 case OPTION_MRELAX_RELOCATIONS:
10736 if (strcasecmp (arg, "yes") == 0)
10737 generate_relax_relocations = 1;
10738 else if (strcasecmp (arg, "no") == 0)
10739 generate_relax_relocations = 0;
10740 else
10741 as_fatal (_("invalid -mrelax-relocations= option: `%s'"), arg);
10742 break;
10743
10744 case OPTION_MAMD64:
10745 intel64 = 0;
10746 break;
10747
10748 case OPTION_MINTEL64:
10749 intel64 = 1;
10750 break;
10751
10752 case 'O':
10753 if (arg == NULL)
10754 {
10755 optimize = 1;
10756 /* Turn off -Os. */
10757 optimize_for_space = 0;
10758 }
10759 else if (*arg == 's')
10760 {
10761 optimize_for_space = 1;
10762 /* Turn on all encoding optimizations. */
10763 optimize = -1;
10764 }
10765 else
10766 {
10767 optimize = atoi (arg);
10768 /* Turn off -Os. */
10769 optimize_for_space = 0;
10770 }
10771 break;
10772
10773 default:
10774 return 0;
10775 }
10776 return 1;
10777 }
10778
10779 #define MESSAGE_TEMPLATE \
10780 " "
10781
10782 static char *
10783 output_message (FILE *stream, char *p, char *message, char *start,
10784 int *left_p, const char *name, int len)
10785 {
10786 int size = sizeof (MESSAGE_TEMPLATE);
10787 int left = *left_p;
10788
10789 /* Reserve 2 spaces for ", " or ",\0" */
10790 left -= len + 2;
10791
10792 /* Check if there is any room. */
10793 if (left >= 0)
10794 {
10795 if (p != start)
10796 {
10797 *p++ = ',';
10798 *p++ = ' ';
10799 }
10800 p = mempcpy (p, name, len);
10801 }
10802 else
10803 {
10804 /* Output the current message now and start a new one. */
10805 *p++ = ',';
10806 *p = '\0';
10807 fprintf (stream, "%s\n", message);
10808 p = start;
10809 left = size - (start - message) - len - 2;
10810
10811 gas_assert (left >= 0);
10812
10813 p = mempcpy (p, name, len);
10814 }
10815
10816 *left_p = left;
10817 return p;
10818 }
10819
10820 static void
10821 show_arch (FILE *stream, int ext, int check)
10822 {
10823 static char message[] = MESSAGE_TEMPLATE;
10824 char *start = message + 27;
10825 char *p;
10826 int size = sizeof (MESSAGE_TEMPLATE);
10827 int left;
10828 const char *name;
10829 int len;
10830 unsigned int j;
10831
10832 p = start;
10833 left = size - (start - message);
10834 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
10835 {
10836 /* Should it be skipped? */
10837 if (cpu_arch [j].skip)
10838 continue;
10839
10840 name = cpu_arch [j].name;
10841 len = cpu_arch [j].len;
10842 if (*name == '.')
10843 {
10844 /* It is an extension. Skip if we aren't asked to show it. */
10845 if (ext)
10846 {
10847 name++;
10848 len--;
10849 }
10850 else
10851 continue;
10852 }
10853 else if (ext)
10854 {
10855 /* It is an processor. Skip if we show only extension. */
10856 continue;
10857 }
10858 else if (check && ! cpu_arch[j].flags.bitfield.cpui386)
10859 {
10860 /* It is an impossible processor - skip. */
10861 continue;
10862 }
10863
10864 p = output_message (stream, p, message, start, &left, name, len);
10865 }
10866
10867 /* Display disabled extensions. */
10868 if (ext)
10869 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
10870 {
10871 name = cpu_noarch [j].name;
10872 len = cpu_noarch [j].len;
10873 p = output_message (stream, p, message, start, &left, name,
10874 len);
10875 }
10876
10877 *p = '\0';
10878 fprintf (stream, "%s\n", message);
10879 }
10880
10881 void
10882 md_show_usage (FILE *stream)
10883 {
10884 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10885 fprintf (stream, _("\
10886 -Q ignored\n\
10887 -V print assembler version number\n\
10888 -k ignored\n"));
10889 #endif
10890 fprintf (stream, _("\
10891 -n Do not optimize code alignment\n\
10892 -q quieten some warnings\n"));
10893 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10894 fprintf (stream, _("\
10895 -s ignored\n"));
10896 #endif
10897 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
10898 || defined (TE_PE) || defined (TE_PEP))
10899 fprintf (stream, _("\
10900 --32/--64/--x32 generate 32bit/64bit/x32 code\n"));
10901 #endif
10902 #ifdef SVR4_COMMENT_CHARS
10903 fprintf (stream, _("\
10904 --divide do not treat `/' as a comment character\n"));
10905 #else
10906 fprintf (stream, _("\
10907 --divide ignored\n"));
10908 #endif
10909 fprintf (stream, _("\
10910 -march=CPU[,+EXTENSION...]\n\
10911 generate code for CPU and EXTENSION, CPU is one of:\n"));
10912 show_arch (stream, 0, 1);
10913 fprintf (stream, _("\
10914 EXTENSION is combination of:\n"));
10915 show_arch (stream, 1, 0);
10916 fprintf (stream, _("\
10917 -mtune=CPU optimize for CPU, CPU is one of:\n"));
10918 show_arch (stream, 0, 0);
10919 fprintf (stream, _("\
10920 -msse2avx encode SSE instructions with VEX prefix\n"));
10921 fprintf (stream, _("\
10922 -msse-check=[none|error|warning]\n\
10923 check SSE instructions\n"));
10924 fprintf (stream, _("\
10925 -moperand-check=[none|error|warning]\n\
10926 check operand combinations for validity\n"));
10927 fprintf (stream, _("\
10928 -mavxscalar=[128|256] encode scalar AVX instructions with specific vector\n\
10929 length\n"));
10930 fprintf (stream, _("\
10931 -mevexlig=[128|256|512] encode scalar EVEX instructions with specific vector\n\
10932 length\n"));
10933 fprintf (stream, _("\
10934 -mevexwig=[0|1] encode EVEX instructions with specific EVEX.W value\n\
10935 for EVEX.W bit ignored instructions\n"));
10936 fprintf (stream, _("\
10937 -mevexrcig=[rne|rd|ru|rz]\n\
10938 encode EVEX instructions with specific EVEX.RC value\n\
10939 for SAE-only ignored instructions\n"));
10940 fprintf (stream, _("\
10941 -mmnemonic=[att|intel] use AT&T/Intel mnemonic\n"));
10942 fprintf (stream, _("\
10943 -msyntax=[att|intel] use AT&T/Intel syntax\n"));
10944 fprintf (stream, _("\
10945 -mindex-reg support pseudo index registers\n"));
10946 fprintf (stream, _("\
10947 -mnaked-reg don't require `%%' prefix for registers\n"));
10948 fprintf (stream, _("\
10949 -madd-bnd-prefix add BND prefix for all valid branches\n"));
10950 fprintf (stream, _("\
10951 -mshared disable branch optimization for shared code\n"));
10952 # if defined (TE_PE) || defined (TE_PEP)
10953 fprintf (stream, _("\
10954 -mbig-obj generate big object files\n"));
10955 #endif
10956 fprintf (stream, _("\
10957 -momit-lock-prefix=[no|yes]\n\
10958 strip all lock prefixes\n"));
10959 fprintf (stream, _("\
10960 -mfence-as-lock-add=[no|yes]\n\
10961 encode lfence, mfence and sfence as\n\
10962 lock addl $0x0, (%%{re}sp)\n"));
10963 fprintf (stream, _("\
10964 -mrelax-relocations=[no|yes]\n\
10965 generate relax relocations\n"));
10966 fprintf (stream, _("\
10967 -mamd64 accept only AMD64 ISA\n"));
10968 fprintf (stream, _("\
10969 -mintel64 accept only Intel64 ISA\n"));
10970 }
10971
10972 #if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
10973 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
10974 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
10975
10976 /* Pick the target format to use. */
10977
10978 const char *
10979 i386_target_format (void)
10980 {
10981 if (!strncmp (default_arch, "x86_64", 6))
10982 {
10983 update_code_flag (CODE_64BIT, 1);
10984 if (default_arch[6] == '\0')
10985 x86_elf_abi = X86_64_ABI;
10986 else
10987 x86_elf_abi = X86_64_X32_ABI;
10988 }
10989 else if (!strcmp (default_arch, "i386"))
10990 update_code_flag (CODE_32BIT, 1);
10991 else if (!strcmp (default_arch, "iamcu"))
10992 {
10993 update_code_flag (CODE_32BIT, 1);
10994 if (cpu_arch_isa == PROCESSOR_UNKNOWN)
10995 {
10996 static const i386_cpu_flags iamcu_flags = CPU_IAMCU_FLAGS;
10997 cpu_arch_name = "iamcu";
10998 cpu_sub_arch_name = NULL;
10999 cpu_arch_flags = iamcu_flags;
11000 cpu_arch_isa = PROCESSOR_IAMCU;
11001 cpu_arch_isa_flags = iamcu_flags;
11002 if (!cpu_arch_tune_set)
11003 {
11004 cpu_arch_tune = cpu_arch_isa;
11005 cpu_arch_tune_flags = cpu_arch_isa_flags;
11006 }
11007 }
11008 else if (cpu_arch_isa != PROCESSOR_IAMCU)
11009 as_fatal (_("Intel MCU doesn't support `%s' architecture"),
11010 cpu_arch_name);
11011 }
11012 else
11013 as_fatal (_("unknown architecture"));
11014
11015 if (cpu_flags_all_zero (&cpu_arch_isa_flags))
11016 cpu_arch_isa_flags = cpu_arch[flag_code == CODE_64BIT].flags;
11017 if (cpu_flags_all_zero (&cpu_arch_tune_flags))
11018 cpu_arch_tune_flags = cpu_arch[flag_code == CODE_64BIT].flags;
11019
11020 switch (OUTPUT_FLAVOR)
11021 {
11022 #if defined (OBJ_MAYBE_AOUT) || defined (OBJ_AOUT)
11023 case bfd_target_aout_flavour:
11024 return AOUT_TARGET_FORMAT;
11025 #endif
11026 #if defined (OBJ_MAYBE_COFF) || defined (OBJ_COFF)
11027 # if defined (TE_PE) || defined (TE_PEP)
11028 case bfd_target_coff_flavour:
11029 if (flag_code == CODE_64BIT)
11030 return use_big_obj ? "pe-bigobj-x86-64" : "pe-x86-64";
11031 else
11032 return "pe-i386";
11033 # elif defined (TE_GO32)
11034 case bfd_target_coff_flavour:
11035 return "coff-go32";
11036 # else
11037 case bfd_target_coff_flavour:
11038 return "coff-i386";
11039 # endif
11040 #endif
11041 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
11042 case bfd_target_elf_flavour:
11043 {
11044 const char *format;
11045
11046 switch (x86_elf_abi)
11047 {
11048 default:
11049 format = ELF_TARGET_FORMAT;
11050 break;
11051 case X86_64_ABI:
11052 use_rela_relocations = 1;
11053 object_64bit = 1;
11054 format = ELF_TARGET_FORMAT64;
11055 break;
11056 case X86_64_X32_ABI:
11057 use_rela_relocations = 1;
11058 object_64bit = 1;
11059 disallow_64bit_reloc = 1;
11060 format = ELF_TARGET_FORMAT32;
11061 break;
11062 }
11063 if (cpu_arch_isa == PROCESSOR_L1OM)
11064 {
11065 if (x86_elf_abi != X86_64_ABI)
11066 as_fatal (_("Intel L1OM is 64bit only"));
11067 return ELF_TARGET_L1OM_FORMAT;
11068 }
11069 else if (cpu_arch_isa == PROCESSOR_K1OM)
11070 {
11071 if (x86_elf_abi != X86_64_ABI)
11072 as_fatal (_("Intel K1OM is 64bit only"));
11073 return ELF_TARGET_K1OM_FORMAT;
11074 }
11075 else if (cpu_arch_isa == PROCESSOR_IAMCU)
11076 {
11077 if (x86_elf_abi != I386_ABI)
11078 as_fatal (_("Intel MCU is 32bit only"));
11079 return ELF_TARGET_IAMCU_FORMAT;
11080 }
11081 else
11082 return format;
11083 }
11084 #endif
11085 #if defined (OBJ_MACH_O)
11086 case bfd_target_mach_o_flavour:
11087 if (flag_code == CODE_64BIT)
11088 {
11089 use_rela_relocations = 1;
11090 object_64bit = 1;
11091 return "mach-o-x86-64";
11092 }
11093 else
11094 return "mach-o-i386";
11095 #endif
11096 default:
11097 abort ();
11098 return NULL;
11099 }
11100 }
11101
11102 #endif /* OBJ_MAYBE_ more than one */
11103 \f
11104 symbolS *
11105 md_undefined_symbol (char *name)
11106 {
11107 if (name[0] == GLOBAL_OFFSET_TABLE_NAME[0]
11108 && name[1] == GLOBAL_OFFSET_TABLE_NAME[1]
11109 && name[2] == GLOBAL_OFFSET_TABLE_NAME[2]
11110 && strcmp (name, GLOBAL_OFFSET_TABLE_NAME) == 0)
11111 {
11112 if (!GOT_symbol)
11113 {
11114 if (symbol_find (name))
11115 as_bad (_("GOT already in symbol table"));
11116 GOT_symbol = symbol_new (name, undefined_section,
11117 (valueT) 0, &zero_address_frag);
11118 };
11119 return GOT_symbol;
11120 }
11121 return 0;
11122 }
11123
11124 /* Round up a section size to the appropriate boundary. */
11125
11126 valueT
11127 md_section_align (segT segment ATTRIBUTE_UNUSED, valueT size)
11128 {
11129 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
11130 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
11131 {
11132 /* For a.out, force the section size to be aligned. If we don't do
11133 this, BFD will align it for us, but it will not write out the
11134 final bytes of the section. This may be a bug in BFD, but it is
11135 easier to fix it here since that is how the other a.out targets
11136 work. */
11137 int align;
11138
11139 align = bfd_get_section_alignment (stdoutput, segment);
11140 size = ((size + (1 << align) - 1) & (-((valueT) 1 << align)));
11141 }
11142 #endif
11143
11144 return size;
11145 }
11146
11147 /* On the i386, PC-relative offsets are relative to the start of the
11148 next instruction. That is, the address of the offset, plus its
11149 size, since the offset is always the last part of the insn. */
11150
11151 long
11152 md_pcrel_from (fixS *fixP)
11153 {
11154 return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address;
11155 }
11156
11157 #ifndef I386COFF
11158
11159 static void
11160 s_bss (int ignore ATTRIBUTE_UNUSED)
11161 {
11162 int temp;
11163
11164 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11165 if (IS_ELF)
11166 obj_elf_section_change_hook ();
11167 #endif
11168 temp = get_absolute_expression ();
11169 subseg_set (bss_section, (subsegT) temp);
11170 demand_empty_rest_of_line ();
11171 }
11172
11173 #endif
11174
11175 void
11176 i386_validate_fix (fixS *fixp)
11177 {
11178 if (fixp->fx_subsy)
11179 {
11180 if (fixp->fx_subsy == GOT_symbol)
11181 {
11182 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
11183 {
11184 if (!object_64bit)
11185 abort ();
11186 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11187 if (fixp->fx_tcbit2)
11188 fixp->fx_r_type = (fixp->fx_tcbit
11189 ? BFD_RELOC_X86_64_REX_GOTPCRELX
11190 : BFD_RELOC_X86_64_GOTPCRELX);
11191 else
11192 #endif
11193 fixp->fx_r_type = BFD_RELOC_X86_64_GOTPCREL;
11194 }
11195 else
11196 {
11197 if (!object_64bit)
11198 fixp->fx_r_type = BFD_RELOC_386_GOTOFF;
11199 else
11200 fixp->fx_r_type = BFD_RELOC_X86_64_GOTOFF64;
11201 }
11202 fixp->fx_subsy = 0;
11203 }
11204 }
11205 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11206 else if (!object_64bit)
11207 {
11208 if (fixp->fx_r_type == BFD_RELOC_386_GOT32
11209 && fixp->fx_tcbit2)
11210 fixp->fx_r_type = BFD_RELOC_386_GOT32X;
11211 }
11212 #endif
11213 }
11214
11215 arelent *
11216 tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
11217 {
11218 arelent *rel;
11219 bfd_reloc_code_real_type code;
11220
11221 switch (fixp->fx_r_type)
11222 {
11223 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11224 case BFD_RELOC_SIZE32:
11225 case BFD_RELOC_SIZE64:
11226 if (S_IS_DEFINED (fixp->fx_addsy)
11227 && !S_IS_EXTERNAL (fixp->fx_addsy))
11228 {
11229 /* Resolve size relocation against local symbol to size of
11230 the symbol plus addend. */
11231 valueT value = S_GET_SIZE (fixp->fx_addsy) + fixp->fx_offset;
11232 if (fixp->fx_r_type == BFD_RELOC_SIZE32
11233 && !fits_in_unsigned_long (value))
11234 as_bad_where (fixp->fx_file, fixp->fx_line,
11235 _("symbol size computation overflow"));
11236 fixp->fx_addsy = NULL;
11237 fixp->fx_subsy = NULL;
11238 md_apply_fix (fixp, (valueT *) &value, NULL);
11239 return NULL;
11240 }
11241 #endif
11242 /* Fall through. */
11243
11244 case BFD_RELOC_X86_64_PLT32:
11245 case BFD_RELOC_X86_64_GOT32:
11246 case BFD_RELOC_X86_64_GOTPCREL:
11247 case BFD_RELOC_X86_64_GOTPCRELX:
11248 case BFD_RELOC_X86_64_REX_GOTPCRELX:
11249 case BFD_RELOC_386_PLT32:
11250 case BFD_RELOC_386_GOT32:
11251 case BFD_RELOC_386_GOT32X:
11252 case BFD_RELOC_386_GOTOFF:
11253 case BFD_RELOC_386_GOTPC:
11254 case BFD_RELOC_386_TLS_GD:
11255 case BFD_RELOC_386_TLS_LDM:
11256 case BFD_RELOC_386_TLS_LDO_32:
11257 case BFD_RELOC_386_TLS_IE_32:
11258 case BFD_RELOC_386_TLS_IE:
11259 case BFD_RELOC_386_TLS_GOTIE:
11260 case BFD_RELOC_386_TLS_LE_32:
11261 case BFD_RELOC_386_TLS_LE:
11262 case BFD_RELOC_386_TLS_GOTDESC:
11263 case BFD_RELOC_386_TLS_DESC_CALL:
11264 case BFD_RELOC_X86_64_TLSGD:
11265 case BFD_RELOC_X86_64_TLSLD:
11266 case BFD_RELOC_X86_64_DTPOFF32:
11267 case BFD_RELOC_X86_64_DTPOFF64:
11268 case BFD_RELOC_X86_64_GOTTPOFF:
11269 case BFD_RELOC_X86_64_TPOFF32:
11270 case BFD_RELOC_X86_64_TPOFF64:
11271 case BFD_RELOC_X86_64_GOTOFF64:
11272 case BFD_RELOC_X86_64_GOTPC32:
11273 case BFD_RELOC_X86_64_GOT64:
11274 case BFD_RELOC_X86_64_GOTPCREL64:
11275 case BFD_RELOC_X86_64_GOTPC64:
11276 case BFD_RELOC_X86_64_GOTPLT64:
11277 case BFD_RELOC_X86_64_PLTOFF64:
11278 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
11279 case BFD_RELOC_X86_64_TLSDESC_CALL:
11280 case BFD_RELOC_RVA:
11281 case BFD_RELOC_VTABLE_ENTRY:
11282 case BFD_RELOC_VTABLE_INHERIT:
11283 #ifdef TE_PE
11284 case BFD_RELOC_32_SECREL:
11285 #endif
11286 code = fixp->fx_r_type;
11287 break;
11288 case BFD_RELOC_X86_64_32S:
11289 if (!fixp->fx_pcrel)
11290 {
11291 /* Don't turn BFD_RELOC_X86_64_32S into BFD_RELOC_32. */
11292 code = fixp->fx_r_type;
11293 break;
11294 }
11295 /* Fall through. */
11296 default:
11297 if (fixp->fx_pcrel)
11298 {
11299 switch (fixp->fx_size)
11300 {
11301 default:
11302 as_bad_where (fixp->fx_file, fixp->fx_line,
11303 _("can not do %d byte pc-relative relocation"),
11304 fixp->fx_size);
11305 code = BFD_RELOC_32_PCREL;
11306 break;
11307 case 1: code = BFD_RELOC_8_PCREL; break;
11308 case 2: code = BFD_RELOC_16_PCREL; break;
11309 case 4: code = BFD_RELOC_32_PCREL; break;
11310 #ifdef BFD64
11311 case 8: code = BFD_RELOC_64_PCREL; break;
11312 #endif
11313 }
11314 }
11315 else
11316 {
11317 switch (fixp->fx_size)
11318 {
11319 default:
11320 as_bad_where (fixp->fx_file, fixp->fx_line,
11321 _("can not do %d byte relocation"),
11322 fixp->fx_size);
11323 code = BFD_RELOC_32;
11324 break;
11325 case 1: code = BFD_RELOC_8; break;
11326 case 2: code = BFD_RELOC_16; break;
11327 case 4: code = BFD_RELOC_32; break;
11328 #ifdef BFD64
11329 case 8: code = BFD_RELOC_64; break;
11330 #endif
11331 }
11332 }
11333 break;
11334 }
11335
11336 if ((code == BFD_RELOC_32
11337 || code == BFD_RELOC_32_PCREL
11338 || code == BFD_RELOC_X86_64_32S)
11339 && GOT_symbol
11340 && fixp->fx_addsy == GOT_symbol)
11341 {
11342 if (!object_64bit)
11343 code = BFD_RELOC_386_GOTPC;
11344 else
11345 code = BFD_RELOC_X86_64_GOTPC32;
11346 }
11347 if ((code == BFD_RELOC_64 || code == BFD_RELOC_64_PCREL)
11348 && GOT_symbol
11349 && fixp->fx_addsy == GOT_symbol)
11350 {
11351 code = BFD_RELOC_X86_64_GOTPC64;
11352 }
11353
11354 rel = XNEW (arelent);
11355 rel->sym_ptr_ptr = XNEW (asymbol *);
11356 *rel->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
11357
11358 rel->address = fixp->fx_frag->fr_address + fixp->fx_where;
11359
11360 if (!use_rela_relocations)
11361 {
11362 /* HACK: Since i386 ELF uses Rel instead of Rela, encode the
11363 vtable entry to be used in the relocation's section offset. */
11364 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
11365 rel->address = fixp->fx_offset;
11366 #if defined (OBJ_COFF) && defined (TE_PE)
11367 else if (fixp->fx_addsy && S_IS_WEAK (fixp->fx_addsy))
11368 rel->addend = fixp->fx_addnumber - (S_GET_VALUE (fixp->fx_addsy) * 2);
11369 else
11370 #endif
11371 rel->addend = 0;
11372 }
11373 /* Use the rela in 64bit mode. */
11374 else
11375 {
11376 if (disallow_64bit_reloc)
11377 switch (code)
11378 {
11379 case BFD_RELOC_X86_64_DTPOFF64:
11380 case BFD_RELOC_X86_64_TPOFF64:
11381 case BFD_RELOC_64_PCREL:
11382 case BFD_RELOC_X86_64_GOTOFF64:
11383 case BFD_RELOC_X86_64_GOT64:
11384 case BFD_RELOC_X86_64_GOTPCREL64:
11385 case BFD_RELOC_X86_64_GOTPC64:
11386 case BFD_RELOC_X86_64_GOTPLT64:
11387 case BFD_RELOC_X86_64_PLTOFF64:
11388 as_bad_where (fixp->fx_file, fixp->fx_line,
11389 _("cannot represent relocation type %s in x32 mode"),
11390 bfd_get_reloc_code_name (code));
11391 break;
11392 default:
11393 break;
11394 }
11395
11396 if (!fixp->fx_pcrel)
11397 rel->addend = fixp->fx_offset;
11398 else
11399 switch (code)
11400 {
11401 case BFD_RELOC_X86_64_PLT32:
11402 case BFD_RELOC_X86_64_GOT32:
11403 case BFD_RELOC_X86_64_GOTPCREL:
11404 case BFD_RELOC_X86_64_GOTPCRELX:
11405 case BFD_RELOC_X86_64_REX_GOTPCRELX:
11406 case BFD_RELOC_X86_64_TLSGD:
11407 case BFD_RELOC_X86_64_TLSLD:
11408 case BFD_RELOC_X86_64_GOTTPOFF:
11409 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
11410 case BFD_RELOC_X86_64_TLSDESC_CALL:
11411 rel->addend = fixp->fx_offset - fixp->fx_size;
11412 break;
11413 default:
11414 rel->addend = (section->vma
11415 - fixp->fx_size
11416 + fixp->fx_addnumber
11417 + md_pcrel_from (fixp));
11418 break;
11419 }
11420 }
11421
11422 rel->howto = bfd_reloc_type_lookup (stdoutput, code);
11423 if (rel->howto == NULL)
11424 {
11425 as_bad_where (fixp->fx_file, fixp->fx_line,
11426 _("cannot represent relocation type %s"),
11427 bfd_get_reloc_code_name (code));
11428 /* Set howto to a garbage value so that we can keep going. */
11429 rel->howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_32);
11430 gas_assert (rel->howto != NULL);
11431 }
11432
11433 return rel;
11434 }
11435
11436 #include "tc-i386-intel.c"
11437
11438 void
11439 tc_x86_parse_to_dw2regnum (expressionS *exp)
11440 {
11441 int saved_naked_reg;
11442 char saved_register_dot;
11443
11444 saved_naked_reg = allow_naked_reg;
11445 allow_naked_reg = 1;
11446 saved_register_dot = register_chars['.'];
11447 register_chars['.'] = '.';
11448 allow_pseudo_reg = 1;
11449 expression_and_evaluate (exp);
11450 allow_pseudo_reg = 0;
11451 register_chars['.'] = saved_register_dot;
11452 allow_naked_reg = saved_naked_reg;
11453
11454 if (exp->X_op == O_register && exp->X_add_number >= 0)
11455 {
11456 if ((addressT) exp->X_add_number < i386_regtab_size)
11457 {
11458 exp->X_op = O_constant;
11459 exp->X_add_number = i386_regtab[exp->X_add_number]
11460 .dw2_regnum[flag_code >> 1];
11461 }
11462 else
11463 exp->X_op = O_illegal;
11464 }
11465 }
11466
11467 void
11468 tc_x86_frame_initial_instructions (void)
11469 {
11470 static unsigned int sp_regno[2];
11471
11472 if (!sp_regno[flag_code >> 1])
11473 {
11474 char *saved_input = input_line_pointer;
11475 char sp[][4] = {"esp", "rsp"};
11476 expressionS exp;
11477
11478 input_line_pointer = sp[flag_code >> 1];
11479 tc_x86_parse_to_dw2regnum (&exp);
11480 gas_assert (exp.X_op == O_constant);
11481 sp_regno[flag_code >> 1] = exp.X_add_number;
11482 input_line_pointer = saved_input;
11483 }
11484
11485 cfi_add_CFA_def_cfa (sp_regno[flag_code >> 1], -x86_cie_data_alignment);
11486 cfi_add_CFA_offset (x86_dwarf2_return_column, x86_cie_data_alignment);
11487 }
11488
11489 int
11490 x86_dwarf2_addr_size (void)
11491 {
11492 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
11493 if (x86_elf_abi == X86_64_X32_ABI)
11494 return 4;
11495 #endif
11496 return bfd_arch_bits_per_address (stdoutput) / 8;
11497 }
11498
11499 int
11500 i386_elf_section_type (const char *str, size_t len)
11501 {
11502 if (flag_code == CODE_64BIT
11503 && len == sizeof ("unwind") - 1
11504 && strncmp (str, "unwind", 6) == 0)
11505 return SHT_X86_64_UNWIND;
11506
11507 return -1;
11508 }
11509
11510 #ifdef TE_SOLARIS
11511 void
11512 i386_solaris_fix_up_eh_frame (segT sec)
11513 {
11514 if (flag_code == CODE_64BIT)
11515 elf_section_type (sec) = SHT_X86_64_UNWIND;
11516 }
11517 #endif
11518
11519 #ifdef TE_PE
11520 void
11521 tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
11522 {
11523 expressionS exp;
11524
11525 exp.X_op = O_secrel;
11526 exp.X_add_symbol = symbol;
11527 exp.X_add_number = 0;
11528 emit_expr (&exp, size);
11529 }
11530 #endif
11531
11532 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11533 /* For ELF on x86-64, add support for SHF_X86_64_LARGE. */
11534
11535 bfd_vma
11536 x86_64_section_letter (int letter, const char **ptr_msg)
11537 {
11538 if (flag_code == CODE_64BIT)
11539 {
11540 if (letter == 'l')
11541 return SHF_X86_64_LARGE;
11542
11543 *ptr_msg = _("bad .section directive: want a,l,w,x,M,S,G,T in string");
11544 }
11545 else
11546 *ptr_msg = _("bad .section directive: want a,w,x,M,S,G,T in string");
11547 return -1;
11548 }
11549
11550 bfd_vma
11551 x86_64_section_word (char *str, size_t len)
11552 {
11553 if (len == 5 && flag_code == CODE_64BIT && CONST_STRNEQ (str, "large"))
11554 return SHF_X86_64_LARGE;
11555
11556 return -1;
11557 }
11558
11559 static void
11560 handle_large_common (int small ATTRIBUTE_UNUSED)
11561 {
11562 if (flag_code != CODE_64BIT)
11563 {
11564 s_comm_internal (0, elf_common_parse);
11565 as_warn (_(".largecomm supported only in 64bit mode, producing .comm"));
11566 }
11567 else
11568 {
11569 static segT lbss_section;
11570 asection *saved_com_section_ptr = elf_com_section_ptr;
11571 asection *saved_bss_section = bss_section;
11572
11573 if (lbss_section == NULL)
11574 {
11575 flagword applicable;
11576 segT seg = now_seg;
11577 subsegT subseg = now_subseg;
11578
11579 /* The .lbss section is for local .largecomm symbols. */
11580 lbss_section = subseg_new (".lbss", 0);
11581 applicable = bfd_applicable_section_flags (stdoutput);
11582 bfd_set_section_flags (stdoutput, lbss_section,
11583 applicable & SEC_ALLOC);
11584 seg_info (lbss_section)->bss = 1;
11585
11586 subseg_set (seg, subseg);
11587 }
11588
11589 elf_com_section_ptr = &_bfd_elf_large_com_section;
11590 bss_section = lbss_section;
11591
11592 s_comm_internal (0, elf_common_parse);
11593
11594 elf_com_section_ptr = saved_com_section_ptr;
11595 bss_section = saved_bss_section;
11596 }
11597 }
11598 #endif /* OBJ_ELF || OBJ_MAYBE_ELF */
This page took 0.273177 seconds and 5 git commands to generate.